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Chapter 1

Introduction

This work has been done in the framework of the EUNISON European project, which aims
to build a detailed and accurate physical model of the voice.

1.1 State of the art

1.1.1 Vocal tract acoustics

1.1.1.1 The vocal tract

The vocal tract corresponds to the cavity located between the vocal folds and the lips. Its
length and its width are of the order of 17 cm and 5 cm respectively for an adult. It is
an important part of the vocal apparatus which act as an acoustic resonator and allows the
speaker to create sound sources. It acoustically interacts with the di�erent sound sources
which generates speech and singing sounds: the air jet pulsed by the vocal fold oscillation and
the turbulent sound sources generated by the constrictions present in the vocal apparatus.

A speaker or a singer can vary the shape of his vocal tract by moving his jaw, tongue and
lips in order to change the acoustic properties of the vocal tract. This allows one to produce
di�erent phonemes. Some of them are mainly characterized by the resonances, denoted as
formants in speech study, of the vocal tract. This is the case of the vowels which are identi�ed
and classi�ed using the two �rst formants of the vocal tract. The vowels [A], [i] and [u]
constitute the extremes in term of variation of the formants, [A] having the highest �rst
fomant, [i] the highest second formant and [u] the lowest second formant. Thus, the acoustic
properties of the vocal tract appear as critical for the di�erentiation of some phonemes and
for the quality and the timbre of the speech and singing production.

In the case of the voiced sounds (the sound for which the sound source is created by the
oscillations of the vocal folds), it is particularly interesting to characterize the contribution of
the vocal tract with a transfer function which relates the particle velocity generated by the
sound source at the entrance of the vocal tract to the acoustic pressure radiated outside of
the vocal tract.

1
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1.1.1.2 Simple modeling of vocal tract acoustics: the plane wave model

In order to study the acoustic properties of the vocal tract, it is useful to perform acoustic
modelling. In most of the physical models used in speech and singing study, the frequency
range is limited from 0 kHz to about 5 kHz. This limited frequency range which does not cover
the entire range of perception of the human ear is often used because it is su�cient to ensure
speech recognition and it allows one to use very simple acoustic models. In particular, one can
assume that plane waves are travelling inside the vocal tract, which means that the acoustic
pressure varies only along the propagation direction and depends only on the area of the
cross-sections of the vocal tract [1]�[4]. Thus, in this case a one-dimensional description with
an area function of the vocal tract shape is su�cient. This allows one to perform simulations
at a very low computational cost: it is possible to perform real time simulations [5]. However,
given the limited frequency range used, the quality of the simulations and synthesis is not
optimal.

1.1.1.3 Speech directivity

Another aspect of the transfer function between the sound source and the radiated sound is
the directivity e�ect. It consists in the variation of the amplitude and the phase of the sound
radiated by a speaker with the direction. The directivity is studied for various purposes, in-
cluding microphone placement optimisation [6], telephony [7], vocal performance practice [8]�
[10], experimental validation of acoustic theories [11], architectural acoustics [12], auralization
and three-dimensional (3D) sound synthesis [13], [14]. The observation of the directivity on
real speakers or singers has shown that the directivity patterns become more complex and
pronounced at high frequency [6], [8]�[10]. At low frequency (from 0 kHz to about 5 kHz),
this phenomenon is modeled by accounting for the di�raction of the acoustic waves by the
head and by taking into account the re�ections on the shoulder and the torso. The pressure
�eld at the mouth exit is modeled as a pulsating sphere.

1.1.2 Available supporting data

The limits of the simple modeling of the vocal tract acoustics and the necessity to have more
accurate modeling have been highlighted in the literature.

1.1.2.1 Limits of the plane wave model

Recent �ndings in speech perception emphasized the importance of frequencies beyond 5
kHz [15]. On the other hand, new technologies and applications (such as wideband telephony,
augmentative hearing or 3D sound synthesis) use frequencies beyond 5 kHz in order to improve
the sound quality and the communication comfort. At frequencies higher than 5 kHz, the
wavelength of the acoustic waves can become of the same order of size as the transverse
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dimension of the vocal tract. In this case, the plane wave assumption does not hold because
variations of the acoustic �eld in the plane perpendicular to the propagation direction can
be present. This has been observed both by simulations accounting for the 3D aspect of the
pressure �eld [16]�[18] and by measurements of the pressure �eld performed in vocal tract
replicas [19], [20]. As a consequence of these 3D variations of the acoustic �eld inside the
replicas, departures from the plane wave theory have been observed from around 5 kHz [16]�
[18], [21], [22]. Thus, the plane wave assumption appears as too limited to be used beyond
about 5 kHz and other acoustical models accounting for the 3D aspects of the pressure �eld
are needed for this frequency range.

1.1.2.2 High frequencies in speech directivity

In what concerns the directivity of the radiated sound, for frequencies higher than about
5 kHz, the wavelength of the acoustic waves can be of the same order of length as the mouth
aperture. As a consequence, the di�raction of the acoustic waves present at the mouth exit
becomes non negligible. On the other hand, variations of the acoustic �eld over the plane
of the mouth aperture can occur. Thus, the pulsating sphere model is no more accurate to
predict the directivity of the radiated sound, and the acoustic �eld inside the vocal tract is
likely to in�uence the directivity of the radiated sound. As a consequence, the directivity is
expected to vary for di�erent phonemes. Unfortunately, these variations are masked in most
of the directivity measurements performed on real speakers or singers, because the directivity
patterns are obtained from averaged spoken or sung sentences. However, it is shown in a
study of Monson [10] that there are substantial di�erences between the directivity patterns of
di�erent fricatives. On the other hand, it has been reported in the same study that there is
a di�erence of directivity pattern in high frequency which is related to gender, which may be
explained by a di�erence of vocal tract size and shape.

1.2 Formulation of the problem

There are very few studies reporting experimental measurements of the pressure �eld inside
vocal tract replicas. The progress of medical imagery [23]�[26] and of 3D printing allows one to
build more accurate replicas than the one used in the study of Motoki [19]. So more accurate
observations and measurements can be performed. On the other hand, the e�ects of some
geometrical features of the vocal tract, such as the eccentricity, the cross-sectional shape or
the mouth aperture, at high frequency are not clearly understood. The geometrical details
necessary to take into account in order to obtain a qualitatively realistic behavior of simpli�ed
vocal tract geometries have not been identi�ed. The 3D acoustic simulation methods, such
as �nite elements (FEM), �nite di�erences (FD) and multimodal method (MM) needs to
be compared and validated with experimental measurements. The in�uence of the internal
acoustic �eld and of its 3D aspect has not been investigated and is usually not taken into
account in the modelling of the speech directivity. In addition, no study has brought any
explanation of the physical origin of the directivity di�erences related to the phonemes. On



4 Introduction

the other hand, the directivity measurements have been all performed in octave bands or
in third of octave bands and with a minimal angular resolution of 15◦. This may mask
some phenomena which have important variations within small frequency intervals and small
angular regions.

1.3 Aim and outline of the thesis

The objectives of the work presented in this document are:

• To investigate how the 3D aspects of the acoustic �eld inside the vocal tract can a�ect the
transfer function of the vocal tract and the directivity of the radiated sound, focusing on
the in�uence of geometrical features of the vocal tract shape including the eccentricity,
the cross-sectional shape, the size of the mouth aperture and the lips.

• To measure accurately acoustic pressure �elds, transfer functions and directivity pat-
terns with a thinner frequency, angular resolution (5Hz and 3◦) than the one already
performed on real speakers and singers (third of octave bands and15◦) and to validate
experimentally 3D acoustic simulation methods with it.

• To investigate how simpli�ed vocal tract geometries can reproduce qualitatively the
properties of realistic ones.

• To compare the acoustic properties of the vocal tract shape corresponding to three vowels
which correspond to the extremes possible values of the formants ([A], [i] and [u]).

In order to account for the 3D aspects of the acoustic �eld, one can use any simulation
method which allows to take it into account. However, one has chosen for this work to apply
the multimodal method [27]�[30] to the case of the vocal tract. Indeed, besides having a lower
computational cost than the other simulation methods, it has the advantage to provide all
the information related to the propagation modes (eigen functions, cut-on1 frequencies, modal
amplitudes and projection matrices). This is a valuable aid to understand the relationship
between the geometrical features of the vocal tract shapes and the properties of the acous-
tic �eld. However, the implementation proposed here for this method is limited to straight
waveguides2 constituted of a concatenation of sections with arbitrary cross-section. Thus, this
implementation is particularly interesting for the simpli�ed geometries based on area func-
tion as an example. On the other hand FEM simulations have been used for more complex
geometries.

Several vocal tract geometries with di�erent degree of complexity have been used. Realis-
tic replica based on magnetic resonance images (MRI) [26] have been used to investigate the

1The term cut-on frequency refers to the fact that a propagation mode begins to propagate above its cut-

on frequency, it is the same as the cuto� frequency which refers to the fact that a propagation mode stops

propagating under its cuto� frequency.
2Bent waveguides can however be described with this method [31].
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acoustic properties, the directivity of realistic geometries and the in�uence of the lips. How-
ever, this type of geometry is subject to inter- and intra-speaker variations and their shape is
complex, which makes the understanding of the ongoing phenomena more di�cult. That is
why, simpli�ed geometries based on two [1] and 44 [23] tubes concatenations have been ex-
tensively studied. These geometries are fully described by a given area function, which allows
one to create several versions with di�erent geometrical details, such as the eccentricity of the
junctions and the cross-sectional shape, and to study their in�uence.

In order to perform measurements of the acoustic pressure, mechanical replicas of some
of these geometries have been built either with plexiglass tubes or using a 3D printer. An
experimental setup allowing to measure the acoustic pressure has been designed. This allowed
one to acquire experimental pressure �elds, transfer functions and directivity patterns which
have been compared to simulations performed with MM and FEM.

This document is organized as follows:

• In chapter 2 the MM implemented for this work is detailed.

• In chapter 3 the vocal tract geometries, the experimental setup, the data analysis meth-
ods and FEM are presented.

• In chapter 4 the simulated and measured transfer functions and pressure �elds are pre-
sented and discussed.

• In chapter 5 the simulated and measured directivity patterns are presented and discussed.
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The multimodal approach applied to
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In this chapter the multimodal theory used to compute the acoustic pressure and velocity
in a variable cross-section waveguide is detailed. This theory has been developed by several
authors including Roure [27], Kergomard [28], Pagneux [29] and Kemp [30]. It has already
been applied to the vocal tract case with rectangular cross-sections by Motoki [32]. The
aforementioned works are extended to consider straight vocal tract geometries with arbitrary
cross-sections and eccentric junctions. In order to solve the Helmholtz equation

∆p+ k2p = 0 , (2.1)

where ∆ is the Laplacian operator, k is the wavenumber and p is the pressure, the strategy
is to divide the waveguide in a succession of constant cross-section waveguides in which a
simple solution can be derived. By applying the continuity equations of the pressure and the
velocity at each junction and taking into account the radiation impedance at the open end of
the waveguide, one can backpropagate the impedance or admittance matrices from the open
end to the entrance. The acoustic pressure and velocity can then be propagated from the
entrance toward the exit and computed in each section. In what follows the assumptions of
linear acoustics (small perturbations assumption) are considered.

7
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Figure 2.1: Constant cross-section waveguide.

2.1 Constant cross-section waveguide

In this section the multimodal theory is detailed in the case of a constant cross-section waveg-
uide (see Fig. 2.1). Throughout this document, a generalized coordinate system (x1, x2, x3) is
used, x3 being the propagation direction. The pressure p and the volume velocity ux3 in the
propagation direction x3 inside a waveguide with arbitrary constant cross-sectional shape can
be expressed as the summation of the contribution of an in�nity of propagation modes ψn [33]
weighted by a propagation factor

(
Ane

−jknx3 ±Bnejknx3
)
and a time evolution factor ejωt,

p(x1, x2, x3, t) =
∞∑
n=0

ψn(x1, x2)
(
Ane

−jknx3 +Bne
jknx3

)
ejωt ,

ux3(x1, x2, x3, t) = S
ρc

∞∑
n=0

ψn(x1, x2)
(
Ane

−jknx3 −Bnejknx3
)
ejωt ,

(2.2)

where S is the surface of the cross-section, ρ is the constant air density, c is the speed of
sound at rest, An and Bn are the amplitude of the waves propagating forward and backward
respectively and ω is the angular frequency. To each propagation mode ψn corresponds a modal
wavenumber kn in the propagation direction x3 which satis�es the dispersion relationship

k2 = k2
x1 + k2

x2 + k2
n , (2.3)

where k = ω/c is the free �eld wavenumber. When no particular cross-sectional shape is
implied a single subscript n is used to identify the di�erent propagation modes ψn. In the
particular cases described in sections 2.1.1.1, 2.1.1.2 and 2.1.1.3, two or three subscripts are
used because they are introduced in their expressions and it is meaningful in what concerns
the mode-shapes.

To avoid heavy expressions it is more convenient to use a vector notation (throughout this
document vectors and matrix are in bold) and to omit the ejωt factor:

{
p(x1, x2, x3) = ψtP

ux3(x1, x2, x3) = ψtU ,
(2.4)

where the superscript t represent the transpose operator,
ψ = [ψ1(x1, x2), ψ2(x1, x2), ..., ψn(x1, x2)]t is a vector containing the magnitude of
the propagation modes ψn at the location (x1,x2,x3) and the time instant t, P =

[ A1e
−jk1x3 + B1e

jk1x3 , A2e
−jk2x3 + B2e

jk2x3 , ..., Ane
−jknx3 + Bne

jknx3 ]t is a vector con-
taining the amplitude of the propagation modes ψn for the acoutic pressure, U =
S
ρc [
(
A1e

−jk1x3 −B1e
jk1x3

)
,
(
A2e

−jk2x3 −B2e
jk2x3

)
, ...,

(
Ane

−jknx3 −Bnejknx3
)

]t is a vector
containing the amplitude of the propagation mode ψn for the volume velocity.
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Figure 2.2: Mode-shapes and cut-on frequencies fc (computed with Eq. (2.8)) of the propaga-
tion modes of a circular cross-section whose cut-on frequency is below 20 kHz for a diameter
of 29.5 mm and a temperature of 26.5◦C. The lines are zero amplitude nodal lines and the
color indicates the phase change.

2.1.1 Propagation modes

The functions ψn are the solutions of the two dimensional Helmholtz equation. They are part
of an orthogonal modal basis and they satisfy a normalisation condition

∫
S
ψ∗mψndS = Sδmn , (2.5)

where S is the cross-section surface.

Each propagation mode can propagate above its cut-on frequency fc. The mode of order
n = 0, ψ0, is the plane mode, the only one typically considered in vocal tract acoustics. Its
cut-on frequency being 0 Hz, it can propagate at any frequency. The other modes are denoted
as Higher Order Modes (HOM) in this document. Their cut-on frequency is higher than 0 Hz,
and below this frequency they are exponentially damped along the propagation axis from the
excitation point. In this case they are denoted as evanescent.

For the practical implementation of the MM approach, the in�nite summation of Eq. (2.2)
needs to be truncated to N + 1 modes. In the implementation used for this work, it has been
chosen to use only the modes whose cut-on frequency lies under an arbitrary frequency limit
(typically 20 kHz). As a consequence, the number of HOM used depends on the cross-sectional
shape. Thus, in the case of a complex geometry with multiple sections, it varies according to
the considered section, more propagation modes being considered in a section having a large
cross-section than in one with a small cross-section.
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2.1.1.1 Circular cross-sections

In the case of a circular cross-section of radius R, the propagation modes can be expressed
using polar coordinates (r, θ) in the plane (x1, x2) as a product of Bessel, sine and cosine
functions

ψmn(r, θ) =
Jn(rγmn/R)

Nmn

{
sin(nθ)

cos(nθ)
, (2.6)

where

Nmn =

{ √
Jn(γmn)2 − Jn−1(γmn)Jn+1(γmn) : n = 0,

1
2

√
Jn(γmn)2 − Jn−1(γmn)Jn+1(γmn) : n > 0,

(2.7)

is a normalization constant (for the computation of Nmn see appendix B), γmn is the order m
zero of the �rst derivative of the Bessel function Jn. The cut-on frequency fc of each mode
ψmn is given by

fcmn =
cγmn
2πR

. (2.8)

The mode-shapes and the cut-on frequencies of a circular cross-section corresponding to
some geometries studied later are presented for fc < 20 kHz in Fig. 2.2. They correspond to
a diameter of 29.5 mm and the cut-on frequencies have been computed for a temperature of
26.5◦C which corresponds to an experiment whose results are presented later (see section 4.1).
The modes ψ01, ψ02, ψ03, ψ04 and ψ11 are degenerated: they have two mode-shapes similar
by rotation of a certain angle having the same cut-on frequency. One can see that the �rst
subscript index corresponds to the radial dimension and the second to the angular dimension.

2.1.1.2 Rectangular cross-sections

In the case of a rectangular cross-section of dimensions a in x1 and b in x2, the functions ψmn
can be expressed as

ψmn(x1, x2) = Mm cos
(mπx1

a

)
Nn cos

(nπx2

b

)
(2.9)

with

{
Mm = 1 : m = 0,

Mm =
√

2 : m > 0,

{
Nn = 1 : n = 0,

Nn =
√

2 : n > 0.

Their cut-on frequencies are given by

fcmn =

√(mc
2a

)2
+
(nc

2b

)2
. (2.10)

The mode-shapes and the cut-on frequencies of a square cross-section corresponding to
some geometries studied later are presented for fc < 20 kHz in Fig. 2.3. They correspond
to a width of 29.5 mm and the cut-on frequencies have been computed for a temperature of
26.5◦C. The modes ψ01, ψ10, ψ02, ψ20, ψ12, ψ21, ψ03, ψ30, ψ13 and ψ31 are degenerated: their
mode-shapes are similar by a rotation of 90◦and they have the same cut-on frequency. One
can see that the �rst subscript index corresponds to the number of nodal lines along the axis
x1 and the second to the number of nodal lines along the axis x2.
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Figure 2.3: Mode-shapes and cut-on frequencies fc (computed with Eq. (2.10)) of the propa-
gation modes of a square cross-section whose cut-on frequency is below 20 kHz for a width of
29.5 mm and a temperature of 26.5◦C. The lines are zero amplitude nodal lines and the color
indicates the phase change.

2.1.1.3 Elliptical cross-sections

The case of an elliptical cross-section can be solved analytically using elliptical coordinates
(ξ,η). For a full devellopement of this solution see [34] and [35]. The elliptical coordinates can
be related to the coordinates (x1,x2) with the relations

x1 = h cosh ξ cos η , (2.11)

x2 = h sinh ξ sin η , (2.12)

where h is the semi inter-focal distance of the ellipse. The boundary of the elliptical cross-
section is de�ned by ξ = ξmax, with x1max = 2h cosh(ξmax) and x2max = 2h sinh(ξmax) the half
lengths of the major and minor axis respectively. The resolution of the Helmholtz equation
(Eq. (2.1)) on the cross-section leads to the Mathieu equation

d2V

dη2
+ (σ −K2 cos2 η)V = 0 , (2.13)

and the modi�ed Mathieu equation

d2U

dξ2
− (σ −K2 cosh2 ξ)U = 0 , (2.14)

with ψ(ξ, η) = U(ξ)V (η), σ the eigenvalue of the Mathieu function and K2 = h2[(ω/c)2−k2
n],

where kn is the wavenumber in the propagation direction x3. Two kinds of functions, denoted
as even and odd, are derived from Eqs. (2.13) and (2.14) [36], [37]:

ψemn(ξ, η) =
1

Nemn
Sem(Kemn, cos(η))Jem(Kemn, cosh(ξ)) , (2.15)
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Figure 2.4: Propagation modes whose cut-on frequency fc lies under 20 kHz for the dimensions
corresponding to the widest part of a vocal tract geometry with elliptical cross-sections (6.2
cm wide and 1.9 cm thick) and a temperature of 22.65 ◦C. The lines are zero amplitude nodal
lines and the color indicates the phase change.

where the ubscript e stands for even, Nemn is a normalization constant computed so that Eq.
(2.5) is satis�ed, Sem is the even Mathieu function of the �rst kind of order m [38], Jem is
the even modi�ed Mathieu function of the �rst kind of order m, m ∈ N,m ≥ 0, n ∈ N, n > 0,
Kemn is determined so that J ′em(Kemn, ξmax) = 0,

ψomn(ξ, η) =
1

Nomn
Som(Komn, cos(η))Jom(Komn, cosh(ξ)) , (2.16)

where the ubscript o stands for odd, Nomn is a normalization constant computed so that Eq.
(2.5) is satis�ed, Som is the odd Mathieu function of the �rst kind of order m [38], Jom is
the odd modi�ed Mathieu function of the �rst kind of order m, m ∈ N,m > 0, n ∈ N, n > 0,
Komn is determined so that J ′om(Komn, ξmax) = 0.

The cut-on frequencies are given by the relations:

femn =
c

π

√
Kemn

h2
, fomn =

c

π

√
Komn

h2
. (2.17)

The mode-shapes and the cut-on frequencies of an elliptical cross-section 6.2 cm wide in
x1 and 1.9 cm thick in x2 are presented for fc < 20 kHz in Fig. 2.4. One can see that with this
cross-sectional shape, there are no degenerated modes. The �rst subscript index corresponds
to the number of vertical nodal lines and the second subscript index corresponds to the number
of elliptical nodal lines. The odd function features a horizontal straight nodal line.

2.1.1.4 Arbitrary cross-sections

In order to handle geometries with arbitrary cross-sectional shapes, �nite di�erences (FD) are
used to solve the Helmholtz equation Eq. (2.1) [39], [40].
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Figure 2.5: Relative error between the cut-on frequencies computed with FD and analytically
with Eq. (2.8) for a circular cross-section of diameter 29.5 mm and a temperature of 26.5◦C
for a spacing of the points of the grid used for FD of 1 mm and 0.5 mm.

A grid of points is generated on the cross-section surface. The spacing between the points
of the grid used for the simulations was of 0.5 mm. This has been chosen as a compromise
between accuracy and computation time by performing convergence tests and comparing with
experimental results and analytical expressions (see section 4.1.2).

In order to test the validity of this approach, it has been applied to circular cross-sections
with a diameter of 29.5 mm and compared with the analytical expression of Eq. (2.6). The
same mode-shapes as the one presented in Fig. 2.2 are obtained with the FD.

The relative error between the cut-on frequencies computed with FD and analytically with
Eq. (2.8) is presented in Fig. 2.5 for a spacing of the points of the grid used for FD of 1 mm
and 0.5 mm. For a spacing of 1 mm, the relative error is smaller than 2% and for a spacing
of 0.5 mm it is smaller than 1%. Thus, as expected, the accuracy of the computation of
the cut-on frequency increases with the resolution. It is interesting to note that the error
can be di�erent for two degenerated modes for which the cut-on frequency given analytically
is the same. This can be explained by the fact that, due to the angular rotation of these
mode-shapes, the distribution of the points of the grid on them is di�erent. The relative error
does not necessarily increase with the frequency: the error corresponding to fc11, which is the
highest cut-on frequency computed can be smaller than the one of fc04.

2.1.2 Propagation matrices

Once the modal basis corresponding to the cross-section of a waveguide portion has been
computed up to a given frequency, it is necessary to compute the variation of the modal
amplitudes P and U along the axis x3.

Solving the Helmholtz equation Eq. (2.1) with the expressions of Eq. (2.4) for the pressure
and the velocity allows one to write two relationships between the pressure and velocity modal
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amplitudes P and U at two di�erent locations. Consider two points located within the
waveguide at the abscissas x(0)

3 and x(1)
3 . P (0) and U (0) at x(0)

3 can be known from P (1) and
U (1) at x(1)

3 with

P (0) = D1P
(1) +D2ZcU

(1), (2.18)

U (0) = D2Z
−1
c P (1) +D1U

(1), (2.19)

whereD1 = diag(cos(knd)) is a diagonal matrix whose terms are cos(knd) with d = x
(1)
3 − x

(0)
3 ,

D2 = diag(j sin(knd)) and Zc is the characteristic impedance matrix obtained as Zc =

diag
(
kρc
knS

)
.

Using P (i) = Z(i)U (i), with i = 0 or i = 1, allows one to write a relationship between the
impedance matrices Z(0) and Z(1) at x(0)

3 and x(1)
3

Z(0) =
[
D1Z

(1) +D2Zc

] [
D2Z

−1
c Z(1) +D1

]−1
. (2.20)

Following the same procedure and using the equation U (i) = Y (i)P (i) allows one to write
three other relationships between the impedance and the admittance matrices at x(0)

3 and x(1)
3

Z(0) =
[
D1 +D2ZcY

(1)
] [
D2Z

−1
c +D1Y

(1)
]−1

, (2.21)

Y (0) =
[
D1Y

(1) +D2Z
−1
c

] [
D2ZcY

(1) +D1

]−1
, (2.22)

Y (0) =
[
D1 +D2Z

−1
c Z(1)

] [
D2Zc +D1Z

(1)
]−1

. (2.23)

However D1 and D2 in Eqs. (2.20), (2.21), (2.22) and (2.23) contain very large terms for
evanescent modes which induce round o� numerical errors. To ensure numerical stability a
new diagonal matrix D3 = diag(tan(knd)) is introduced. Equations (2.20), (2.21), (2.22) and
(2.23) are rewritten using only D−1

3 and D−1
2 instead of D1 and D2,

Z(0) = (jD3)−1Zc −D−1
2 Zc[Z(1) + (jD3)−1Zc]D−1

2 Zc , (2.24)

Z(0) = (jD3)−1Zc −D−1
2 Zc[I + (jD3)−1Y (1)Zc]D−1

2 Zc , (2.25)

Y (0) = (jD3)−1Z−1
c −D−1

2 Z−1
c [Y (1) + (jD3)−1]D−1

2 Z−1
c , (2.26)

Y (0) = (jD3)−1Z−1
c −D−1

2 Z−1
c [I + (jD3)−1Z−1

c Z(1)]D−1
2 Z−1

c , (2.27)

I being the identity matrix. For a detailed computation of these four equations, see
appendix C.

2.1.3 Radiation impedance

Once relations between the modal amplitudes, impedance and admittance matrices at two
di�erent abscissas of a constant cross-section waveguide have been derived, it is necessary to
have a boundary condition in order to compute a solution for Eq. (2.1). At the open end of
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a waveguide, the boundary condition can be described with a radiation impedance matrix. It
can be obtained analytically in the case of circular [41] or rectangular [30], [42] cross-section.
For the intermediate cross-sections, the boundary condition is the modal amplitudes, the
impedance or the admittance matrix at the ends of the neighboring sections.

2.1.3.1 Numerical computation of the radiation impedance matrix

In the case of an arbitrary cross-section, no simple analytical expression of the radiation
impedance matrix can be derived. However it can be obtained by numerically integrating the
expression

Zmn =
jωρ

2πS2

∫
S

∫
S
ψm(x′1, x

′
2)ψn(x1, x2)

e−jkh

h
dSdS , (2.28)

with h =
√

(x1 − x′1)2 + (x2 − x′2)2 and S being the cross-section surface at the open end of
the waveguide.

This can be achieved by computing the values of ψm and ψn on each point of the grid used
for the FD and approximating the integrals of Eq. (2.28) by �nite summations

Zmn =
jωρ

2πN2

N∑
a=1

N∑
b=1

ψm(x′1a, x
′
2a)ψn(x1b, x2b)

e−jkhab

hab
, (2.29)

with hab =
√

(x1b − x′1a)2 + (x2b − x′2a)2. Note that one does not divide by the area S2, since
the area elements dS have not been taken into account in the summation above. On the other
hand, one must divide by the number of points N2.

A particular case appears when h = 0: in�nite values are generated and one must avoid
this case if Eq. (2.29) is used, and the accuracy of the computation is a�ected. In order
to work around this limitation, the position of the points on which the amplitude of one of
the eigen-modes is computed is expressed in polar coordinates (r, θ). The origin of the polar
landmark is set on the point whose position is de�ned in Cartesian coordinates so that the
radial coordinate is equal to h. Thus, the origin is moved for each point expressed in Cartesian
coordinates. In this case, the in�nitesimal area element is expressed as dS = hdrdθ in the
polar landmark, and Eq. (2.28) can be rewritten

Zmn =
jωρ

2πS2

∫
S

∫
S
ψm(r, θ)ψn(x1, x2)e−jkhdrdθdx1dx2 , (2.30)

and the division by h which induces the singularity in Eq. (2.29) is removed. Because a regular
discretization over x1 and x2 induces an irregular discretization over r and θ, it is necessary to
generate a second grid of Np points regularly spaced over r and θ. This insures that the area
element hdrdθ remains similar for each point (rb,θb) and that the simpli�cation introduced is
valid. As a consequence, a new grid is generated for each point (x1a,x2a). Eq. (2.30) can then
be discretized the following way:

Zm,n =
jωρ

2πN

N∑
a=1

1∑Np

b=1 hab

Np∑
b=1

ψm(rb, θb)ψn(x1a, x2a)e
−jkhab . (2.31)
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As for Eq. (2.29), one does not divide by the square of the area, since the area elements dS
are not taken into account. However, one must divide the polar coordinate summation by∑Np

b=1 hab for each value of a because it is the equivalent of
∫
S rdrdθ. The overall result needs

also to be divided by N .

2.1.3.2 Validation of the numerical computation of the impedance matrix with
analytical expressions

In order to validate the numerical method described earlier, its outcomes have been compared
to the values obtained with the analytical expressions given by [41] and [30] which have been
implemented in Matlab/Octave. Note that when implementing Eqs. (3.40) and (3.35) of
[30], one must be careful that the sine cardinal function is de�ned as sinc(x) = sin(x)

x in this
document, whereas it is de�ned as sinc(x) = sin(πx)

πx in Matlab and Octave.

The radiation impedance matrix ZR has been computed for a circular and a square opening
measuring 29.5 mm in the diameter and the width respectively. The data computed with the
numerical method and the expression given by [30] have been normalized by ρc

S , S being the
surface of the exit. This normalization is already applied in the expression given by [41]. In
order to avoid any disturbance due to the fact that the mode-shapes obtained with FD can
potentially be slightly di�erent from the analytical ones, Eqs. (2.6) and (2.9) have been used
to compute the mode-shapes for the numerical approach. A resolution of 0.5 mm has been
used. This corresponds to a ratio of resolution over largest dimension of about 1/60.

The real and imaginary parts of the �rst terms of the circular cross-section are presented
in Figs. 2.6a and 2.7a for the diagonal and coupling terms respectively. For the square cross-
section, the �rst terms of ZR are presented in Figs. 2.8a and 2.9a for the diagonal and the
coupling terms respectively. Note that Eq. 3.41 of [30] gives radiation impedance matrix
terms only for the modes without nodal lines in the diameter (which pass by the center of the
cross-section, see the modes ψ00, ψ02, ψ20 and ψ22 in Fig. 2.3). Thus, it is only possible to
compare the numerical and analytical method for modes with even indices: the indices of Eq.
(2.31) are two times greater than the one of Eq. 3.41 of [30].

The real part of the radiation impedance terms characterizes the losses by radiation at
the open end of the waveguide. The greater it is, the greater are the losses. The imaginary
part part characterizes the inertia introduced by the opening which varies the phase shift
introduced to the wave re�ected back to the waveguide. The greater it is, the greater is the
phase shift increase. In the plane wave theory, it can be accounted for with a length correction.

The same curves as the one reported in the literature [30], [41] are observed in Figs. 2.6a,
2.7a, 2.8a and 2.9a. Close to kR = 0, the radiation impedance tends to 0 for all terms of the
matrix, which corresponds to the perfect open end boundary condition.

In the case of the diagonal terms (see Figs. 2.6a and 2.8a), the real part increases and then
tends to one and the imaginary part increases and then decreases again to tend to zero. Thus,
it tends to the free �eld plane wave impedance. It corresponds to the fact that at high enough
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Figure 2.6: First diagonal terms of the normalized radiation impedance matrix ZR of a circular
opening of 29.5 mm in diameter computed with the expression provided by Zorumski [41]
(ZRa) and numerically (ZRn, Eq. (2.31)), (a) average value given by both methods, (b)
di�erence between both methods.
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Figure 2.7: First coupling terms of the normalized radiation impedance matrix ZR of a circular
opening of 29.5 mm in diameter computed with the expression provided by Zorumski [41]
(ZRa) and numerically (ZRn, Eq. (2.31)), (a) average value given by both methods, (b)
di�erence between both methods.
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Figure 2.8: First diagonal terms of the normalized radiation impedance matrix ZR of a square
opening having a width of 29.5 mm computed with the expression provided by Kemp [30]
(ZRa) and numerically (ZRn, Eq. (2.31)), (a) average value given by both methods, (b)
di�erence between both methods.
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Figure 2.9: First coupling terms of the normalized radiation impedance matrix ZR of a square
opening having a width of 29.5 mm computed with the expression provided by Kemp [30]
(ZRa) and numerically (ZRn, Eq. (2.31)), (a) average value given by both methods, (b)
di�erence between both methods.
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frequencies the free �eld assumption holds and there is no more the e�ect of the boundary
condition.

The coupling terms quantify how the di�erent propagation modes are coupled at the open
end of the waveguide (see Figs. 2.7a and 2.9a). Thus, even if not excited at the entrance, a
HOM coupled with another one which is excited can be excited by coupling and propagate
if the frequency is greater than its cut-on frequency. Their real and imaginary parts tends
to zero close to kR = 0, then increases and oscillates between negative and positive values,
and decreases to tend to zero at high frequency. This corresponds to the fact that at a high
enough frequency the free �eld assumption holds and no coupling can be possible. In the case
of a circular opening of 29.5 mm and considering only the modes propagating under 20 kHz
only the coupling terms Z00,10, Z01,11, Z10,00 and Z11,01 are non zero.

The radiation impedance matrix obtained with the numerical approach ZRn has been
compared with the one obtained with the analytical method ZRa. The absolute di�erence
between the real part and the imaginary part |ZRn−ZRa| is presented for the circular opening
in Figs. 2.6b and 2.7b for the diagonal and the coupling terms respectively. For the square
opening, |ZRn − ZRa| is presented in Figs. 2.8b and 2.9b for the diagonal and the coupling
terms respectively. In this case the relative error is not meaningful to compute everywhere
because when the curves cross zero, unrealistically large terms are computed.

The accuracy of the numerical computation is quite good: the absolute di�erence between
both methods is smaller than 7.10−3, which is three orders of magnitude smaller than the real
and the imaginary parts of the impedance. For the maxima of diagonal terms, this yields a
relative error smaller than 1% . The error tends to be smaller for the coupling terms. For a
given term, it varies with maxima and minima, but globally it tend to increase with kR.

2.2 Junction between waveguide portions

Once a solution of the Helmholtz equation (Eq. 2.1) can be derived for each section of the
waveguide, it is necessary to join the di�erent sections in order have a solution for the whole
waveguide.

2.2.1 Projection matrix

At a junction between two ducts with di�erent cross-sections it is necessary to �nd a rela-
tionship between the modal basis of each section. Let us consider two ducts a and b whose
cross-sectional surfaces are Sa and Sb respectively (see Fig. 2.10). Applying the continuity of
both the pressure p and the volume velocity ux3 on each side of the junction yields

ψtaPa = ψtbPb , (2.32)
1

Sa
ψtaUa =

1

Sb
ψtbUb . (2.33)
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Figure 2.10: Junction between two ducts of arbitrary cross-section shape.

Hereafter the subscript b always refers to the duct with the largest cross-section and the
subscript a to the smallest one. If one assumes that Sa < Sb and Sa lies inside Sb, multiplying
both sides of Eq. (2.32) with ψ∗a/Sa and integrating over Sa leads to

Pa =
1

Sa

[∫
Sa

ψ∗aψ
t
bdSa

]
Pb . (2.34)

In the same way multiplying Eq. (2.33) with ψ∗b and integrating over Sb yields

Ub =
1

Sa

[∫
Sb

ψ∗bψ
t
adSb

]
Ua . (2.35)

Yet we have ψa = 0 on Sb − Sa so

∫
Sb

ψ∗bψ
t
adSb =

∫
Sa

ψ∗bψ
t
adSa =

[∫
Sa

ψ∗aψ
t
bdSa

]†
,

where the symbol † means transpose conjugate. Thus, de�ning the projection matrix F as

F =
1

Sa

∫
Sa

ψ∗aψ
t
bdS, (2.36)

equations (2.34) and (2.35) can be rewriten as

Pa = FPb , (2.37)

Ub = F †Ua . (2.38)

Given that P = ZU and U = Y P , Eq. (2.37) and (2.38) can be expressed as

Za = FZbF
† , (2.39)

Yb = F †YaF . (2.40)

An analytic expression of Fmn can be found in the particular case of two circular cross-
sections sharing the same central axis (see [30]):

Fm0a,m0b =
2βγm0bJ1(βγm0b)

(β2γ2
m0b − γ2

m0a)J0(γm0b)
, (2.41)
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where β = Ra/Rb is the ratio of the radii of both cross-sections and γm0 is the order m zero of
the derivative of the Bessel function of �rst kind of order zero J0. Note that, in this case, only
the mode-shapes without radial nodal lines can generate non-zero values of the F matrix.

It is also possible to �nd analytic expressions for other particular cases such as junctions
between rectangular cross-sections or axisymmetric elliptical cross-sections. However, it is
di�cult to �nd an analytic expression for the case of an eccentric junction between circular
and elliptical cross-sections, and it is not possible to solve analytically the cases with arbitrary
cross-sections. Thus, numerical integration has been used to solve these problems. On the
other hand, this allows one to handle the case of the junction between two waveguide portions
having di�erent cross-sectional shape.

The value of ψa and ψb are evaluated at each point of the grid used for the FD computation
of the propagation modes. The coupling coe�cient can then be evaluated by computing the
sum

Fa,b =
1

N

Np∑
i=1

ψ∗a(x1i, x2i)ψb(x1i, x2i). (2.42)

Note that the case of a junction whose cross-sections are not enclosed in each other can be
solved by inserting an intermediate zero-length waveguide portion whose cross-section is the
intersection of the original two neighboring cross-sections.

2.2.2 Validation against analytical case

In order to test the validity and the accuracy of this approach, it has been compared with
the values given by Eq. (2.41). The case of a junction with radii equal to 14.5 mm and
29.5 mm (this corresponds to a geometry used in what is presented later, see section 3.1) have
been solved with both methods. The values of the �rst non-zeros terms of the matrix F are
presented in Fig. 2.11. Note that the comparison is made on the amplitude of the terms.
Sign di�erence can occur between analytic and numeric computations. However, this does not
a�ect the overall outcome of the simulation.

As expected the agreement improves when the resolution is increased. The maximal ampli-
tude di�erence is of 0.037 with 1 mm, 0.011 with 0.5 mm and 0.005 with 0.3 mm. The relative
amplitude di�erence can reach 29% with 1 mm, 8% with 0.5 mm and 4% with 0.3 mm. The
error in not the same for the di�erent terms of matrix F . The numerical solution is exact for
F00,00 and thus there is no amplitude di�erence with the analytical solution. The amplitude
di�erence is maximal for F20,00 (0.0365) and minimal for F20,10 (0.0007). The maximum of
relative amplitude di�erence is reached with F20,20 (28.6 %) and the minimum with F20,10

(0.05%). Computing relative amplitude di�erence for F00,10 and F00,20 is not meaningful
because the analytical value is zero for those terms.

The maximal relative amplitude di�erence obtained with the resolution used for the sim-
ulations, 0.5 mm, can appear as high (8%). However, it has been chosen as a compromise
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Figure 2.11: Amplitude of some terms of the projection matrix F computed analytically
(with Eq. (2.41)) and numerically (with Eq. (2.42)) with di�erent resolutions for the case of a
junction between two concentric cross-sections of radii 14.5 mm and 29.5 mm and di�erences
between the analytical and the numerical computations.
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Figure 2.12: The four di�erent con�gurations for backward propagation of the impedance and
admittance mattrices.

between accuracy and computation time, and the global convergence tests showed that the
overall convergence is satisfying (see section 4.1.2).

2.2.3 The four types of possible junctions

The impedance matrix can be back propagated towards the entrance of the waveguide. To
do so, Eqs. (2.39) and (2.40) allow one to propagate the impedance and admittance matrices
through a junction. However these matrices can be ill conditioned and inversion must be
avoided. Thus the impedance matrix must be used for expansions and the admittance matrix
for contractions. This constraint introduces four di�erent cases for the projection of the
impedance or admittance matrices from a junction to another which are described in Fig. 2.12.

For case a) both junctions are expanding so the impedance matrices can be propagated
through the junctions with Eq. (2.39) and Z(0) can be computed from Z(1) with Eq. (2.24).
On the contrary in case c) both junctions are contracting so the admittance matrices can be
propagated through the junctions with Eq. (2.40) and Y (0) can be computed from Y (1) with
Eq. (2.26). The case b) is expanding and then contracting so the admittance matrix can be
propagated through the junction of the right and the impedance matrix can be propagated
through the junction of the left. The impedance Z(0) can be computed from the admittance
Y (1) with Eq. (2.25). On the opposite the case d) is contracting and then expanding so the
impedance matrix can be propagated through the junction of the right and the admittance
matrix can be propagated through the junction of the left. The admittance Y (0) can be
computed from the impedance Z(1) with Eq. (2.27).

The problem of a junction whose cross-sections are not enclosed in each other can be
solved by inserting an intermediate zero-length waveguide portion whose cross-section is the
intersection of the original two neighboring cross-sections.
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Figure 2.13: Coupling terms of the projection matrix F of Eq. (2.36) between the plane mode
ψ00 and the HOM whose cut-on frequency is below 20 kHz (ψ01, ψ02, ψ10, ψ03, ψ04 and ψ11) for
a junction between two cylindrical sections of diameter 14.5 mm and 29.5 mm with a distance
between their centers varying from 0 to 7 mm. The amplitude of the terms F00,01, F00,02,
F00,03, F00,04 and F00,11, correspond to the combination of the amplitude of both degenerated

HOM ψmn1 and ψmn2: F00,mn =
√
F 2

00,mn1 + F 2
00,mn2.

2.2.4 E�ect of eccentricity on coupling terms

In order to investigate the e�ect of the degree of eccentricity of a junction between two cylindri-
cal waveguide portions on the excitation of HOM, the projection matrix F has been computed
by varying the distance between the centers of two circular cross-sections of diameter 14.5 mm
and 29.5 mm from 0 mm to 7 mm by step of 0.5 mm. This corresponds to the progressive
transition from a concentric con�guration to a fully eccentric one.

The coupling terms of the projection matrix F between the plane mode ψ00 and the HOM
whose cut-on frequency is below 20 kHz (see Fig. 2.2) are presented in Fig. 2.13. The
amplitude of the terms F00,01, F00,02, F00,03, F00,04 and F00,11, corresponds to the combination

of the amplitude of both degenerated HOM ψmn1 and ψmn2: F00,mn =
√
F 2

00,mn1 + F 2
00,mn2.

The coupling terms between the plane mode ψ00 and the modes with nodal lines on the
diameter (ψ01, ψ02, ψ03, ψ04 and ψ11, see Fig. 2.6) are 0 when there is no shifting between
the centers of the sections (which corresponds to the concentric con�guration). Indeed, the-
oretically in Eq. (2.36) the contributions of the plane mode ψ00 on either side of the nodal
lines of these modes compensate each other exactly.

When the eccentricity (the distance between the centers) is increased, the excitation of
the modes featuring nodal lines on the diameter is increased. On the contrary the excitation
of the axisymmetric mode ψ10 is decreased when the junction becomes more eccentric. This
is due to the fact that the circular nodal line of this mode gets closer to the middle of the
smallest cross-section. Thus the contributions of the plane mode ψ00 to excite ψ10 tend to
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annihilate.

2.3 Computation of pressure and volume velocity

2.3.1 Internal �eld

Once the impedance and or the admittance matrices Z and Y have been computed for each
section of the waveguide, it is possible to compute the modal amplitudes of the pressure and
the volume velocity P and U at the entrance and to propagate it up to the exit.

The pressure or the volume velocity of the source can be projected on the modal basis
which describes the pressure and velocity �eld at the source location. For a source delivering
a velocity vs on a surface Ss the modal amplitude Us corresponding to the source can be
known with

Us =

∫
Ss

ψ∗vsdSs . (2.43)

The pressure and the velocity modal amplitudes can then be propagated from the entrance to
the open end. Introducing Y (1) and Z(1) into Eqs. (2.18) and (2.19) leads to

P (1) =
[
D1 +D2ZcY

(1)
]−1

P (0) , (2.44)

U (1) =
[
D2Z

−1
c Z(1) +D1

]−1
U (0) , (2.45)

which allows one to propagate P or U (depending if the impedance or the admittance is
known) through a constant cross-section waveguide portion. The vectors P and U can then
be propagated through the junctions using Eqs. (2.37) and (2.38). Equations (2.18) and (2.19)
allow one to compute P and U at any abscissa x3 and the pressure p and the axial velocity
ux3 can be computed with Eq. (2.2) at any point inside the waveguide.

2.3.2 Radiated acoustic pressure

2.3.2.1 Free �eld

The pressure �eld radiated by the waveguide can be computed using the Rayleigh-Sommer�eld
integral

p(x1, x2, x3) =

∞∑
n=0

jωρ

2πS

∫
S
Unψn(x′1, x

′
2)
ejkh

h
dS, (2.46)

with Un the modal amplitude of the particle velocity,
h =

√
(x1 − x′1)2 + (x2 − x′2)2 + (x3 − x′3)2, S being the surface at the open end of the

waveguide and (x′1, x
′
2, x
′
3) the coordinates of the points on S.
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Figure 2.14: Path followed by a re�ected sound wave emitted by a ba�ed vocal tract replica.
(a) Re�ection on a plane perpendicular to the ba�e (b) Re�ection on a plane parallel to the
ba�e located behind the reception point

This integral can be approximated considering a �nite summation over N + 1 modes and
replacing the integral by a �nite summation evaluated on a grid of Np points

P (x1, x2, x3, k) =

N∑
n=0

jωρ

2πNp

Np∑
i=1

Unψn(x′1i, x
′
2i)
ejkhi

hi
, (2.47)

with hi =
√

(x1 − x′1i)2 + (x2 − x′2i)2 + (x3 − x′3i)2, (x′1i, x
′
2i, x

′
3i) being the coordinates of the

points of the grid. Note that one does not divide by the area S, since the area elements dS
have not been taken into account in the summation above. On the other hand, one must
divide by the number of points Np.

2.3.2.2 Taking into account re�ections

The free �eld radiation assumption corresponds to a theoretical case and, in practice, re�ec-
tions can be expected. Hence, a very simple model of specular re�ection has been used.

The interference of the sound wave directly radiated by the open end of waveguide geom-
etry with a wave re�ected on a plane perpendicular or parallel to the ba�e plane has been
implemented. To do so, the expression of the radiated pressure has been modi�ed to add the
contribution of Nr re�ected waves.

The distance traveled by the re�ected wave is represented in Figs. 2.14 for a re�ection on
a plane respectively perpendicular (Fig. 2.14a) and parallel (Fig. 2.14b) to the ba�e. The
distance dr corresponding to the projection of the incident path hi on the re�ection plane can
be computed by stating that the incident angle is equal to the re�ection angle:

dr =
hsd

2hs − (x2r − x2s)
, (2.48)
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with (x1s, x2s, x3s) the coordinates of the source point, (x1r, x2r, x3r) the coordinates of the
reception point and hs the distance between the source point and the re�ection plane. In the
case of a re�ection plane perpendicular, the distance d corresponding to the projection of the
incident and re�ected paths hi and hr on the re�ection plane is

√
(x1r − x1s)2 + (x3r − x3s)2.

For a re�ection plane parallel, this distance is
√

(x1r − x1s)2 + (x2r − x2s)2.

The incident and re�ected distances hi and hr can then be computed,

hi =
√
h2
s + d2

r , (2.49)

in the case of a perpendicular re�ection plane,

hr =
√

(hs − (x2r − x2s))2 + (d− dr)2 , (2.50)

and in the case of a parallel re�ection plane,

hr =
√

(hs − (x3r − x3s))2 + (d− dr)2 . (2.51)

The total path is thus

ht = hi + hr . (2.52)

The contribution of Nr re�ected waves can be added to the computation of the radiated
pressure at the reception point,

p(x1r, x2r, x3r, k) =

∞∑
n=0

jωρ

2πS

∫
S
Unψn(x1s, x2s)

(
ejkh

h
+

Nr∑
r=0

Rr
ejkhtr

htr

)
dS, (2.53)

where ω is the angular frequency, ρ is the air density, S is the surface of the
open end of the waveguide, (x1s, x2s, x3s) are the coordinates of the points on S,
Un is the modal amplitude of the volume velocity corresponding to the mode ψn,
h =

√
(x1r − x1s)2 + (x2r − x2s)2 + (x3r − x3s)2 is the distance traveled by the direct wave,

htr are the distances traveled by the re�ected waves computed with Eq. 2.52 and Rr are the
re�ection coe�cients.

This integral can be approximated considering a �nite summation over M ×N modes and
replacing the integral by a �nite summation evaluated on a grid of Np points belonging to the
surface S,

p(x1r, x2r, x3r, k) =

N∑
n=0

jωρ

2πS

Np∑
g=1

Unψn(x1sg, x2sg)

(
ejkhg

hg
+

Nr∑
r=0

Rr
ejkhtrg

htrg

)
dS, (2.54)

with hg =
√

(x1r − x1sg)2 + (x2r − x2sg)2 + (x3r − x3sg)2 the distance traveled by the direct
wave between the point g of the grid and the reception point, htrg the path corresponding to
the re�ection r of the sound generated by the point g of the grid, (x1sg, x2sg, x3sg) being the
coordinates of the points of the grid.
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2.4 Application to vocal tract

The implementation performed allows one to simulate the acoustic properties of the vocal
tract. Straight vocal tract geometries discretized in a concatenation of constant cross-section
sections can be simulated from very simple vocal tract models [1], or from area functions [23]
extracted from medical imaging procedures.

For every simulation, the impedance or the admittance matrices, the modal amplitude
vectors for the pressure and the volume velocity, and the projection matrix are computed at
the entrance and the exit of each section. Then, the pressure can be computed at any desired
location inside or outside of the vocal tract geometry. This allows one to compute transfer
functions and pressure �elds. This has been applied in chapters 4 and 5 for the comparison
with the experimental data.
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In this chapter, the vocal tract replicas and the experimental setup used to perform ex-
perimental measurements of the pressure �eld and the transfer functions are presented. The
signal processing of the experimental data is detailed, and the in�uence of some experimen-
tal artefact is evaluated. Eventually, the FEM simulations also used to compare with the
experimental data and the MM simulation data are presented. The data acquired with the
experiments and the FEM simulations are compared with data obtained by MM simulations
in the chapters 4 and 5.

3.1 Vocal tract geometries.

In order to perform the measurements presented in this document, mechanical vocal tract
replicas with increasing complexity have been built. Pictures of these replicas are presented
in Fig. 3.1. Other geometries have been used for simulations only.

The simplest approximation of the vocal tract has been realized with a uniform tube
having a diameter of 29.5 mm and a length of 170 mm. The abscissa x3 = 0 corresponds to
the position of the sound source. A ba�e is attached to the other end of the replica. It can be

31
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a) One tube b) Two concentric tubes

c) Two eccentric tubes d) 44 concentric tubes

e) 44 eccentric tubes
f) 44 eccentric tubes with
elliptical cross-sections

g) MRI with lips h) MRI without lips

Figure 3.1: Vocal tract replicas. The sound source is connected at the left end of the replicas
and at the bottom for the MRI based ones. A ba�e is attached to the other end.

Figure 3.2: Area functions corresponding to the vowels [A], [i] and [u] provided by [1] for the
two tubes approximation and by [23] for the 44 tube ones. The abscissa x3 = 0 corresponds
to the position of the sound source.



3.1. Vocal tract geometries. 33

considered as very simple modelisation of the vowel [@] [1]. A replica of it has been made with
a Plexiglass tube (see Fig. 3.1a). It has been used mainly for preliminary tests, see sections
3.3.2, 3.3.3 and 3.3.4.

In order to study the e�ect of the eccentricity of a junction between two waveguide sections,
two geometries have been used.

1. One with two cylindrical tubes sharing the same central axis (see Fig. 3.1b, referred
hereafter as the two circular concentric [A], 2CC[A]).

2. One with two cylindrical tubes sharing a common line on the edge (see Fig. 3.1c, referred
hereafter as the two circular eccentric [A], 2CE[A]).

The two tubes of both geometries are 85 mm long and have an internal diameter of 14.5
mm and 29.5 mm. The corresponding area function is represented in Fig. 3.2. Although
these geometries are a very rough two tube approximation of the vocal tract, they can be seen
as a vowel [A] reproduction [1]. The common edge of the second geometry can be seen as a
reproduction of the palate. Two replicas of these geometries have been built with Plexiglas
tubes in order to perform measurements.

More realistic vocal tract geometries have been designed using the area functions provided
by Story [23] for the vowels [A], [i] and [u] (see Fig. 3.2).

Four geometries of increasing complexity have been designed with the area function cor-
responding to the vowel [A].

1. One has circular cross-sections sharing the same central axis (see Fig. 3.1d, referred
hereafter as the 44 cicular concentric [A], 44CC[A]).

2. One has circular cross-sections sharing a common line on the edge (see Fig. 3.1e, referred
hereafter as the 44 circular eccentric [A], 44CE[A]).

3. One has elliptical cross-sections sharing a common line on the edge in the plane (x2,x3)
(see Fig. 3.1f, referred hereafter as the 44 elliptical eccentric [A], 44EE[A]).

4. One has elliptical cross-sections sharing a common line on the edge in the plane (x2,x3).
The centers of the consecutive cross-sections are shifted by 25% of the maximal possible
shift in the plane (x1,x3), the edges of the smaller ones being contained inside the larger
ones (see Fig. 3.3a). This geometry is referred hereafter as the 44 elliptical fully eccentric
[A], 44EFE[A]).

In the case of the 44CE[A], the 44EE[A] and the 44EFE[A], the length of each section has
been adjusted so that the total length of the line that connects the centers of each cross-section
(referred as the midline hereafter) is the same as for 44CC[A]. Otherwise, numerical tests have
shown that a non-expected shift down of the formant positions can be produced (up to about
2%). Thus the length of each section is 3.88 mm, 3.82 mm, 3.86 mm and 3.85 mm for the
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Figure 3.3: Vocal tract geometries used for the simulations (a) vowel [A] (b) vowel [i] (c) vowel
[u]

Vowel [A] [i] [u]

Width (cm) 2.21 1.25 0.47
Height (cm) 0.68 0.23 0.11
Ratio 3.25 5.43 4.27

Table 3.1: Width (along x2), height (along x1) and ratio of width over height of the elliptical
shapes provided by [43] for three vowels.

44CC[A], the 44CE[A], the 44EE[A] and the 44EFE[A], respectively. On the other hand, the
eccentricity of the mouth aperture, obtained from [43] for the vowel [A] (see Tab. 3.1), has
been applied to all cross-sections to generate the 44EE[A] and 44EFE[A], as done in [18].

Mechanical replicas of the three �rst geometries corresponding to vowel [A] have been built
with a 3D printer (ProJet 3510 SD, with accuracy 0.025 mm to 0.05 mm per 25.4 mm) using
a UV curable plastic visijet M3X material (see Figs. 3.1d, 3.1e and 3.1f).

Geometries with elliptical cross-sections sharing a common line in the plane (x2,x3) and
with 25% of eccentricity in the plane (x1,x3) have been created from the vowels [i] and [u]
area functions (see Figs. 3.3b and 3.3c). As for the vowel [A], the ratio of the major axis over
the minor axis of the elliptical cross-sections have been determined after the work of Fromkin
[43] (see Tab. 3.1). The midline of these geometries has also been adjusted so that it is similar
to the midline of a geometry without eccentricity. The corrected length of the section is thus
3.81 mm for the 44EFE[i] and 4.34 mm for the 44EFE[u].

In order to have more realistic vocal tract geometries, the MRI-based 3D vocal tract
generated by [26] for vowel [A] was adapted for the current work. Some additional elements
not necessary for this study were removed, such as the subglottal tube and part of the face.
The resulting vocal tract geometries were then set in a rigid �at ba�e located at the mouth
termination plane, which is de�ned as the last front-plane that produces a closed outline
when it intersects with the vocal tract (see [44]). In order to study the in�uence of the lips,
a geometry without lips has been created. Note that in these geometries the teeth are not
present because they were not visible on the MRI.

Mechanical replicas of these geometries were 3-D-printed using the same method as for
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the 44 tubes replicas (see Figs. 3.1g and 3.1h).

3.2 Experimental setups

An experimental setup inspired from the work of [19] has been developed to measure the
acoustic pressure inside and outside of the vocal tract replicas. Schematic diagrams of this
setup are presented in Figs. 3.4a and 3.4c for the planes (x2, x3) and (x1, x3) respectively. A
simpli�ed version dedicated to directivity measurements is presented in Fig. 3.5.

In order to be able to generate sound over the frequency range 100 Hz to 15000 Hz,
two di�erent acoustic sources were needed. Because a loudspeaker would not provide enough
acoustic energy, compression chambers have become necessary. Two chambers have been used,
a Monacor KU-916T and an Eminence PSD:2002S-8 (see Fig. 3.4b) to generate sound in the
frequency ranges 100 Hz up to 2000 Hz and 2000 Hz up to 15000 Hz, respectively. The source
is connected to the replica with an adaptation part which features a 2 mm diameter centered
communication hole from which the sound radiates inside the vocal tract replica (see Fig.
3.4b). Used signals are sines with �xed frequency, linear sweeps, broadband noise and glottal
�ow simulated with a two mass model [45].

The acoustic pressure is then measured with a B&K 4182 probe microphone equiped with
a 1 mm in diameter and either 200 mm or 25 mm long probe. A 3D positioning system
(OWIS PS35, see Fig. 3.4d) allows one to move the probe microphone in all directions with
an accuracy of ±1.10−4 m and an amplitude of motion of 250 mm in x1, 250 mm in x2 and
400 mm in x3 (see Fig. 3.4d). However this accuracy can be reduced by the initial positioning
which is less accurate (±1 mm) and can induce a systematic error.

In order to measure the acoustic pressure at greater distances, the positioning system and
the probe microphone have been replaced by a microphone (B&K 4192 with a preampli�er
B&K 2669 L) placed on a mobile support (see Fig. 3.5b). This allows one to measure the
acoustic pressure at 48 cm from the exit of the replica at di�erent angles from the axis of the
replica (every 15◦ from -90◦ up to 90◦ as indicated in Fig. 3.5a). The angle 0◦ corresponds to
the center of the exit of the replicas following x3. For the eccentric geometries the common
edge corresponds to the angle 90◦.

The microphone signal Vm is next transmitted by means of a microphone conditioner (B&K
5935 L) to a data acquisition card (NI PCI-MIO 16 XE) at a sampling frequency of 44150
Hz. This card can record signals with di�erent ranges of amplitude. The ranges used for the
experiments were -5 V to +5 V and -10 V to +10 V, depending on the amplitude of the acoustic
pressure and the settings of the other devices. The signals having an amplitude higher than
these ranges were saturated. This card is also used to generate the excitation signal which is
transmitted to an ampli�er (Onkyo a-807) and then to the compression chamber. The input
voltage Vs of the sound source is also measured in order to get a phase reference. The whole
process is controlled by a Labview program.
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Figure 3.4: Experimental setup (a) schematic diagram in the plane (x2,x3) (b) sound source
(Eminence PSD:2002S-8 in this case) (c) schematic diagram in the plane (x1,x3) (d) positioning
system inside the insulated room
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Figure 3.5: Microphone setup, (a) schematic diagram in the plane (x1,x3), the eccentricity of
the replica corresponds to the experimental con�guration (b) picture

The open end of the replica, the microphone and the positioning system are set inside
an insulated room [1.92x1.95x1.99 m, Vol = 7.45 m3, 46]. Even though this room cannot be
considered as perfectly anechoic, its acoustic performances in the frequency range of interest
in this study (2 kHz to 10 kHz) are su�cient so that the in�uence of the external noise can be
neglected and the free �eld assumption holds: the direct �eld is higher than the reverberated
�eld up to 0.94 m from the open end of the replica and the attenuation of the external noise
is greater than 25 dB SPL [46].

Acoustic foam is placed on the table on which the positioner is located and on the positioner
to minimise re�ections. The acoustic source is placed outside of the insulated room to avoid
the interference between the sound directly radiated by the compression chamber and the
sound radiated by the replica. A rigid rectangular plane screen made of plexiglass is set on
the exit of the replica to get large dimensions (365x360 mm) compared to the wavelengths of
interest. It corresponds to the �anged boundary condition of the theory.

3.3 Data analysis

In order to measure transfer functions and pressure �eld maps, sines and linear sweeps have
been used as excitation signals. The expression of the signal s(t) corresponding to the linear
sweeps is:

s(t) = sin

(
2π

(
fmint+

∆f

2∆t
t2
))

, (3.1)

where fmin is the minimal frequency of the sweep signal, ∆f is the frequency range swept
and ∆t is the duration of the signal. Such kind of measurement is performed either at a
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limited number of locations and with a broad frequency range for the transfer function mea-
surements or at various locations distributed on a plane with a limited frequency range, or
a single frequency, for the pressure �eld maps measurements. Sinus is also used to measure
transfer functions by changing the frequency step by step (typically 10 Hz, each frequency
being generated during 1 s). Since these measurements have been used to validate simula-
tion methods, their accuracy and repeatability have been carefully investigated. On the other
hand, the reliability of the analysis method and its sensitivity to nonlinear phenomena has
been carefully investigated.

3.3.1 Amplitude and phase estimation

The use of sinusoidal signals allows one to concentrate the acoustic energy in one frequency
and to perform a measurement as long as desired at this frequency. As a consequence a good
signal to noise ratio can be achieved. The use of linear sweep signal with low slope (typically
500 Hz/s) can also ensure a good signal to noise ratio.

However, despite all the care used during the measurements, some phenomena can a�ect
the quality of the recorded signals. One cannot exclude the presence of noise and the harmonic
distortion of the sound source cannot be avoided. On the other hand, the signals can feature
continuous components and transients can be present when the sound source starts to generate
sound and after the frequency changes when the frequency is varied step by step for the sines.
Eventually, the physical phenomenon of acoustic streaming [47]�[49], which can be present at
the communication hole of the adaptation part or in narrow parts of the replicas, can induce
a nonlinear behavior. In order to isolate the e�ects of these phenomena from the useful part
of the signal, a careful signal processing method is used.

The parts of the signals a�ected by transients are removed. In the case of sines whose
frequency is changing step by step, the �rst 200 ms of each new frequency generation are
removed. The biginning and the ending of the linear sweeps are also reduced.

In the case of the linear sweeps, the recorded signal is sliced in small windows (typically
2048 samples) overlapping each other by an overlap rate α determined so that the desired
frequency resolution df is achieved:

α = 1− df × sr ×∆t

Ns ×∆f
,

where sr is the sample rate, ∆t is the duration of the sweep signal, Ns is the number of samples
of the window used and ∆f the di�erence between the minimal and the maximal frequency of
the signal. A Hann window is applied in order to limit the artefacts due to the small duration
of the window [50]. In the case of the sines, the signal is also sliced in windows corresponding
to the changes of frequency or position.

The Fourier transform is applied to each window so that one obtains the spectrum of the
acquired signal. Zero-padding is used to increase the frequency resolution. The amplitude
of the spectrum is normalized multiplying it by 2/N , N being the number of samples of the
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signal. In order to reduce the in�uence of the background noise and to remove the eventual
continuous component and the harmonics generated by the nonlinearities, the maximum of
amplitude of the spectrogram is searched inside a reduced frequency interval (100 Hz) centered
on the presumed frequency of the signal. Because the point with maximal amplitude does not
necessarily corresponds to the maximum, a parabolic interpolation is performed on the three
points closest to the maximum in order to estimate the actual maximum and the corresponding
frequency. Indeed, small deviations between the desired frequency and the actual one can
happen if the sampling frequency of the material is slightly di�erent from its setpoint. A
similar interpolation is used to estimate the phase corresponding to the frequency of the
maximum. This signal processing method has been validated with synthetic signals.

In order to simplify the computations and the storage of the data, a complex notation
Aejφ is used for the signals, A being the amplitude and φ the phase. The acoustic pressure is
estimated from the microphone output signal Vm(f) = |Vm|ejφm and the input voltage of the
sound source Vs(f) = |Vs|ejφs as

P (f) =
|Vm|
|Vs|

ej(φm−φs) .

Given that the sensitivity of the microphone is unknown, and that due to the probe it varies
with the frequency, the amplitude of the microphone signal is not converted to Pa. Thus,
when it is necessary, the amplitude is normalized by the maximal value, and when it is not
possible, the unit is noted ∝ Pa. This is not disturbing as long as no quantitative evaluation
of the data is needed. An additional phase corresponding to the ejωt factor can be added to
P (f) and thus one as

P (f, t) =
|Vm|
|Vs|

ej(φm−φs+ωt) .

Adding this factor allows one to compute the acoustic pressure at any time t instant of the
periodic oscillation at the frequency f . This allows one to create animations showing the
variations over time of the acoustic pressure at this frequency.

3.3.2 In�uence of nonlinearities

In order to evaluate the in�uence of the nonlinearity of the sound source, induced by the
electrodynamic system and or the acoustic streaming, a measurement has been performed
varying the amplitude of a sinusoidal excitation signal for a �xed position of the microphone
inside the 44CT (at the center of the exit surface).

The ratio of the amplitude |Vm| of the microphone output voltage over the amplitude |Vs|
of the sound source input voltage is presented as a function of |Vs| in the Fig. 3.6 for two
frequencies. The maximal value has been normalized to 0 dB in each case. One can see that
the ratio |Vm||Vs| decreases when the input voltage |Vs| increases. It is reduced by 1.5 dB for
|Vs| = 10V .

This can be explained by the fact that the nonlinearity of the sound source induces har-
monic distortion of the signal. When the amplitude is increased the energy of the higher order
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Figure 3.6: Ratio of the amplitude |Vm| of the microphone output voltage over the amplitude
|Vs| of the sound source input voltage as a function of |Vs| obtained with two sinusoidal input
signals of frequency 2380 Hz and 7350 Hz. The data have been normalized by the maximum.

Figure 3.7: Di�erence between the phase φm of the microphone output voltage and the phase
φs of the source input voltage as a function of the amplitude |Vs| of the sound source input
voltage obtained with two sinusoidal input signals of frequency 2380 Hz and 7350 Hz. The
phase corresponding to the lowest |Vs| has been removed to all the data.
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harmonics generated by the distortion is increased. Thus, the energy of the �rst harmonic
is decreased and the amplitude of the spectrum at this frequency is decreased. The ampli-
tude |Vs| is not in�uenced by the nonlinearities and remains the same. Thus, the ratio |Vm||Vs|
decreases.

The di�erence between the phase φm of the microphone output voltage and the phase φs
of the source input voltage is presented as a function of the amplitude |Vs| of the sound source
input voltage in Fig. 3.7 for two frequencies. The phase corresponding to the lowest value of
|Vs| has been subtracted from all the data.

One can see that the phase di�erence φm − φs tends to increase when |Vs| is increased.
However, it is reduced for four voltage values for the frequency 7350 Hz. The maximal phase
deviation is lower than 0.2 rad and 0.4 rad for 2380 Hz and 7350 Hz respectively.

For the input voltage range used (0 - 10 V), the maximal amplitude deviation induced
by the nonlinear behavior of the sound source is estimated to be about 1.5 dB. The maximal
phase deviation is of the order of 0.4 rad.

The mean value of the input voltage used for the experiments is 3.5 V. This has been
determined in order to get a compromise between a su�cient amplitude of the acoustic pressure
and a minimal disturbance due to nonlinearities. According to the measurements presented in
Figs. 3.6 and 3.7, the maximal disturbance expected from nonlinearities with an input voltage
of 3.5 V is about 0.5 dB and 0.4 rad.

The signal processing method (see section 3.3.1) which isolates the �rst harmonic from the
others, allows one to limit the disturbances due to the nonlinearities on the analysis of the
data. If, in addition, the amplitude of the input signal of the sound source is kept constant
during the measurement, one can use a linear system analysis for the computation of the
transfer functions without major disturbance.

3.3.3 Repeatability of measurements

In order to test the repeatability of the measurements performed with both the sines and the
linear sweep signals, a measurement has been repeated ten times. The frequency has been
varied from 1 kHz to 15 kHz and the acoustic pressure has been recorded at a �xed position
at the exit of a one tube replica. The duration of the sweep was 50 s, and for the sines the
frequency was increased by steps of 20 Hz.

The ratio |Vm||Vs| averaged on the ten measurements is presented in Figs. 3.8a and 3.9a for the
sines and the sweeps respectively. The maximal di�erence between these ratios is presented in
Figs. 3.8b and 3.9b. Likewise, the phase di�erence φm−φs averaged on the ten measurements
is presented in Figs. 3.8c and 3.9c for the sines and the sweeps respectively, and the maximal
di�erence between the di�erent phase measurements is presented in Figs. 3.8d and 3.9d.

The variations of the amplitude ratio with the frequency can be attributed to the combi-
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Figure 3.8: (a) Ratio of the amplitude of the microphone signal |Vm| over the sound source
input voltage |Vs| averaged on 10 measurements performed at the same location with a sines
signal whose frequency is varying by steps 20 Hz from 1 kHz to 15 kHz (b) maximal ratio di�er-
ence between the 10 measurements (c) phase di�erence φm−φs between the microphone signal
and the sound source input signal averaged on the 10 measurements (d) maximal variation of
the phase di�erence between the 10 measurements.
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Figure 3.9: (a) Ratio of the amplitude of the microphone signal |Vm| over the sound source
input voltage |Vs| averaged on 10 measurements performed at the same location with a sweep
signal whose frequency varies from 1 kHz to 15 kHz in 50 s (b) maximal ratio di�erence
between the 10 measurements (c) phase di�erence φm−φs between the microphone signal and
the sound source input signal averaged on the 10 measurements (d) maximal variation of the
phase di�erence between the 10 measurements.
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nation of the e�ect of the acoustic resonances of the tube and the frequency dependence of
the sound source amplitude. For the sines, the maximal amplitude di�erence is smaller than
0.9 dB in the range 1.2 kHz to 14.5 kHz. Outside this range it can reach up to 3 dB. The
maximal phase di�erence is smaller than 0.2 rad in the range 1 kHz to 14.5 kHz, and beyond
14.5 kHz it goes up to 0.39 rad. For the sweeps, the maximal amplitude di�erence is smaller
than 0.26 dB in the range 1.2 kHz to 13 kHz, and it can reach 1 dB out of this range. The
maximal phase di�erence is smaller than 0.06 rad in the range 1 kHz to 13 kHz, and beyond
13 kHz it can reach 0.2 rad.

The phase variations of the sines and the amplitude and phase variations of the sweeps
globally increases with the frequency. This can be understood as the consequence of the
global decrease of the amplitude of the measured acoustic pressure when the frequency is
increased. Indeed, the sound source becomes less e�cient at high frequency, and the probe of
the microphone by damping the high frequencies acts as a low pass �lter. The lower signal
to noise ratio at high frequency induces more variations between the di�erent measurements.
However, the amplitude variations of the sines remain globally constant in the frequency range
1.2 kHz to 14.5 kHz.

The greater variations observed between 1 kHz and 1.2 kHz can be related to the fact that
the optimal frequency range recommended by the constructor of the sound source Eminence
PSD:2002S-8 is 1.2 kHz to 20 kHz. Thus, the sound source may not provide enough acoustic
energy between 1 kHz and 1.2 kHz to achieve a signal to noise ratio as high as between 1.2
kHz and 13 kHz.

The fact that greater variations (0.9 dB and 0.2 rad) are observed with the sines than
with the sweeps (0.26 dB and 0.06 rad) can appear as unexpected. Indeed, the fact that more
acoustic energy is provided at a �xed frequency during a longer time than with the sweep
signal is expected to ensure a better signal to noise ratio. However, this can be explained
by the fact that the duration of the measurement with the sines is longer than the one with
sweeps: the �rst one lasts about two hours and the second one about 10 minutes. It is
hypothesized that the experimental conditions, and more particularly the temperature, can
more signi�cantly change during the experiment of two hours than during the one of ten
minutes. As a consequence the frequency and the amplitude of the peaks of the measured
acoustic pressure can have more variations. Thus, in the case of the sines, the variations of the
measured acoustic pressure would not only be due to measurement noise but also to actual
variation of the measured quantity. This hypothesis is reinforced by the fact that variations of
the maximal di�erence with the frequency show smooth increases and decreases which could
be attributed to frequency shifts of the peaks of the curve rather than to measurement noise.
On the opposite, in the case of the sweeps, the variations of the maximal di�erence with the
frequency is more noisy and could be attributed to the measurement noise mainly. If the
formulated hypothesis is correct, this show that the duration of a measurement process can
impacts its accuracy.

In addition, the amplitude of the maxima of the sines continuously changes along the
experiment, and the frequency continuously increases which is consistant with an increase of
temperature. It would be possible to extract the temperature curve from the experiment.
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Figure 3.10: Normalized amplitude of the pressure �eld measured with a spacing of 1 mm on
a 20 mm × 10 mm surface perpendicular to the tube axis just in front of the communication
hole inside the one tube replica at a frequency of 2550 Hz.

A similar experiment performed on the frequency range 2 kHz to 10 kHz, which con�rms
these results, is presented in appendix A.

In summary: The variations of amplitude and phase are frequency dependent and they
are lower than 0.9 dB and 0.2 rad for the frequency range 1.2 kHz to 14.5 kHz. Thus,
the repeatability of the measurements performed with sinusoidal and sweep signals can be
considered as good.

3.3.4 Measurements close to discontinuities

The �rst attempts to measure transfer functions were performed using two points, one located
near the exit of the replicas and one near the communication hole of the adaptation part.
Even though this was performed under the �rst cut-on frequency of the replica, discrepancies
between the plane wave theory and the experiments were observed. Di�erences in the fre-
quency of the maxima greater than 100 Hz were observed. In order to understand better the
origin of these deviations, the acoustic �eld has been measured near the communication hole.

The Fig. 3.10 shows the normalized amplitude of the acoustic pressure measured on a 20
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mm × 10 mm rectangular surface in the plane (x1,x3) just in front of the communication hole
inside the one tube replica at a frequency of 2550 Hz. One can see a peak of amplitude close
to the exit of the communication hole (at x1 = −1 mm and x3 = 0 mm) surrounded by a
minimum. In this small area, variations up to 10 dB within a distance of 1 mm are observed.
Close to the communication hole, the plane wave assumption does not hold: variations of
amplitude of the order of 15 dB are observed on x1 perpendicularly to the propagation axis
x3. However, these variations along x1 decreases when the distance from the communication
hole is increased. At x3 = 10 mm, the variations along x1 are lower than 1 dB and it is
possible to consider that the plane wave assumption is valid.

The communication hole being small (2 mm in diameter) compared to the diameter of the
replica (29.5 mm), the observed pressure �eld can be interpreted as the radiation from the
communication hole inside the replica. At the frequency of the experiment, 2550 Hz, no HOM
can propagate inside the replica (the �rst cut-on frequency is 6.8 kHz at 26.5 ◦C). Thus, the
observed pressure �eld results from the excitation of evanescent HOM at the discontinuity.
This is in agreement with the fact that the variation along x1 are almost not noticeable after
x3 = 10 mm.

One can notice that the maximum of the radiation pattern is shifted by -1 mm on x1

from the center of the landmark. Thus, the actual position of the communication hole is at
x1 = -1 mm on this landmark. This can be attributed to an error in the positioning of the
probe, and it shows that the positioning error can be of the order of 1 mm.

In summary: the pressure �eld can have important transverse variations (up to 15 dB)
near discontinuities, even at low frequency and the plane wave assumption does not hold
inside a small region around the discontinuity. The important variations within a small space
interval (up to 10 dB within 1 mm) can increase the e�ect of the positioning error. The
discrepancies observed between the measured and simulated transfer functions came from the
fact that the plane wave assumption does not hold at one of the measurement points and that
the measurement error is increased when the pressure �eld has great variations within short
space intervals. Measurements close to strong discontinuities, such as the transition from the
adaptation part to the replica, should be avoided in order to limit the measurement errors.

3.3.5 Pressure-pressure transfer function

In order to compare the simulations with the experiments and to study the frequency behavior
of the vocal tract replicas, pressure-pressure transfer functions (PPTF) have been measured.
This kind of transfer function corresponds to the ratio of the acoustic pressure at two di�erent
points located inside or outside the replicas. In contrast to a volume velocity-pressure transfer
function (VPTF), PPTF do not give direct information about the interaction between a volume
velocity sound source, such as the vocal folds, and the vocal tract. Even though this would
have been of particular interest in the context of the study of vocal tract properties, it has
been chosen to measure PPTF because VPTF is di�cult to measure accurately: a direct
measure of volume velocity is di�cult to implement and with low accuracy, and indirect
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Figure 3.11: Schematic diagram of the transfer function measurement method.

measurement of volume velocity is subject to uncertainties which reduces the accuracy and
can introduce experimental bias. In addition, the inaccuracy of volume velocity measurement
can be increased when it is measured at the entrance of the vocal tract, as it is the case if one
desires to investigate the interaction between vocal folds and vocal tract, because the strong
discontinuity present there induces large variations of the acoustic �eld which can potentially
introduce errors linked to positioning inaccuracy (see section 3.3.4).

In contrast, the PPTF rely only on direct measurement of the acoustic pressure with a
microphone which is reliable and provides a good accuracy. In addition, as one does not focus
on coupling between vocal folds and vocal tract, measuring pressure at the entrance of the
vocal tract is not meaningful and one can measure it avoiding strong discontinuities.

In order to measure a PPTF between two points a and b inside or outside a vocal tract
replica, the acoustic pressure is measured either using sinusoidal signals varying the frequency
step by step or using sweep signals. A schematic diagram of the transfer functions involved
in the measurement is presented in Fig. 3.11.

Both pressure measurements are performed with the same probe microphone at two di�er-
ent stages separated in time. This allows one to avoid the calibration of the probe microphone
which can induce additional uncertainties. The microphone output signal Va is �rst measured
on the whole frequency range studied at the �rst point of coordinate (x1a, x2a, x3a), then Vb
is measured at the second point of coordinate (x1b, x2b, x3b). During each measurement the
supply voltage Vs is measured simultaneously at the input of the sound source in order to have
a phase and amplitude reference. The acquired signals can be written in complex notation:


Vs = Ase

jφs

Va = Aae
jφa

Vb = Abe
jφb

. (3.2)

Both transfer functions Hsa and Hsb between the supply voltage Vs and the probe micro-
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phone output signals Va and Vb corresponding to both measurement points are then estimated.
To achieve this the amplitudes |Va| and |Vb| of the signals measured by the probe microphone
is divided by the supply voltage amplitude |Vs| to compute the modulus. The phase is ob-
tained by computing the phase shifts φa − φs and φb − φs between the signals measured by
the probe microphone and the supply voltage. So the transfer functions Hsa and Hsb can be
expressed in the following way:

{
Hsa = |Va|

|Vs|e
j(φa−φs)

Hsb = |Vb|
|Vs|e

j(φb−φs)
(3.3)

The transfer function Hab between the measurement points a and b is obtained as the ratio
Hsb/Hsa. The transfer function Hsa corresponds to the product of the transfer functions of
the sound source, the propagation of sound from the sound source to the point (x1a, x2a, x3a),
the probe microphone and the microphone conditioner (see Fig. 3.11). Likewise, Hsb corre-
sponds to the product of the transfer functions of the sound source, the propagation of sound
from the sound source to the point (x1b, x2b, x3b), the probe microphone and the microphone
conditioner. If the experimental conditions are exactly the same (constant temperature) for
the measurement of transfer function Hsa and Hsb, the transfer function Hsb is the product
of transfer function Hsa by the transfer function Hab which ones wants to estimate. Thus we
have:

Hab =
Hsb

Hsa
. (3.4)

The transfer functions corresponding to the sound source, the acoustic propagation from
the source to the point a, the probe microphone and the microphone conditioner being present
in both Hsb and Hsa, they are eliminated in Eq. (3.4) and their in�uence on the estimation of
Hab is thus limited. This method relies on the hypothesis that the whole measurement system
is linear. As mentioned in part 3.3.2, this is not the case for the sound source. However using
the signal processing method detailed in 3.3.1 and keeping constant the amplitude of the input
voltage of the sound source during the whole process allows one to limit the disturbances due
to nonlinearities.

It is to be noted that the peaks that could appear in a PPTF do not correspond to the
vocal tract resonances or formants typically observed in vocal tract transfer functions (see,
e.g., [51], for an explanation of mechanical transmissibility functions). For instance, if Pa and
Pb are, respectively, obtained at the mouth exit and within the vocal tract, Pa will contain all
the formants that appear in a vocal tract transfer function, while some of them will also be
present in Pb, depending on their pressure distribution. Therefore, note that shared resonances
will be canceled once Hab is computed. Thus, the PPTF presented hereafter are discussed
in term of peaks and dips and not formants. However, this magnitude is of special interest
for the comparison between simulations and experiments, since the microphone and source
calibration can be avoided, a single microphone can be used for the measurements and the
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in�uence of the experimental setup (ampli�er, wires, and microphone conditioner) on them
can be neglected.

3.3.6 Pressure �eld maps

It is interesting to compare the acoustic pressure measured and simulated on a grid of points
distributed on a plane (typically the points of the grid were spaced by 2.5 mm). Even though
it is possible to generate an animation of the evolution of the pressure �eld with the frequency,
one can create an image of the pressure �eld maps only at a �xed frequency. Moreover, simi-
lar pressure �eld patterns are obtained for similar particular phenomenon occurring inside the
vocal tract geometries (resonance or anti-resonance) which do not necessarily occur at exactly
the same frequency in the simulation and the experiment. It is thus more meaningful to select
one of these particular phenomena, which can appear as a peak or a dip of pressure amplitude
at a given frequency and to compare the pressure maps at the frequency corresponding to
this phenomenon in the experiment and the simulation respectively. That is why di�erent
frequencies are used for the experiments and the di�erent simulation methods in the compar-
isons provided in part 4. More practically, the procedure used for these comparison was to
select a peak on the acoustic pressure recorded at one point inside or outside the replica and
to extract the pressure �eld map at the corresponding frequency. The acoustic pressure was
then simulated at the same location and the pressure �eld map was extracted at the frequency
corresponding to the same peak of acoustic pressure. These frequencies are thus di�erent from
the PPTF peak frequencies. When one considers a peak of amplitude, the perturbations due
to the frequency dependence of the sound source amplitude and the various phenomena which
can perturb the measurement do not a�ect the frequency because enough acoustic energy is
provided at this frequency.

3.3.7 Modal projection

In order to extract the modal amplitude P from the experimental data, a modal projection
has been applied. Multiplying both sides of Eq. (2.4) with ψ† and integrating over the surface
allows one to get ∫

S
ψ†p dS =

∫
S
ψ†ψtP dS . (3.5)

The modal amplitude of the pressure P is independent of the position on the cross-section
surface and can be removed from the integral. The normalisation condition (2.5) can then be
applied and the relation

P =

∫
S
ψ∗p dS (3.6)

can be derived. The modal amplitudes P can thus be extracted from the pressure �eld p.

In practice, the pressure �eld pi is measured on a distribution of N discrete points with
coordinates (x1i, x2i, x3) on the cross-section surface. The measurement plane being perpen-
dicular to the axis of the replica, x3 remains constant. Eq. (3.6) is approximated by a �nite
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summation

Pn(x3) =
N∑
i=1

ψn(x1i, x2i)p(x1i, x2i, x3) (3.7)

It is assumed that the propagation inside the replicas with circular cross-sections can be
described with Eq. (2.6). In this case, Eq. (3.7) can be expressed as

Pn(x3) =

N∑
i=1

Jn(riγmn/R)ejnθip(ri, θi, x3) , (3.8)

with ri and θi the polar coordinates of the points. This method is applied in section 4.1.4.

3.3.8 Directivity analysis

Directivity measurements are performed by measuring the acoustic pressure at various loca-
tions distributed on an half circle whose center is located at the exit of the studied replica.
This has been done �rstly with the experimental setup of Fig. 3.5 in order to be able to
measure at greater distances. Afterwards, the setup of Fig. 3.4 has also been used in order to
increase the angular resolution because some observed phenomenon showed signi�cant varia-
tions within small angular regions. Directivity maps can be created from these measurements
by representing the amplitude of the acoustic pressure as a function of the frequency and the
angular position in color scale.

In order to enhance the change of pressure amplitude with respect to the angular position,
unless stated di�erently, the amplitude at the di�erent positions has been normalized by the
amplitude at the central positions (which corresponds to the point located in front of the replica
at an angle of 0◦). The fact that the sound source amplitude depends on the frequency could
disturb the interpretation of the measurements and their comparison with the simulations.
However, its amplitude being the same for all the positions, dividing by the amplitude at one
position cancels its in�uence, and the results can be compared with the simulations. Thus,
one obtains a normalized directivity map.

To get a more general view of the directivity e�ects, the maximal sound pressure level
di�erence (MSPLD) between the di�erent positions has been computed for all the frequencies.
To do so, for each frequency, the minimum of the sound pressure level (in dB SPL) has been
subtracted from the maximum with respect to the angular position.

On the experimental data measured with the setup presented in Fig. 3.5 the amplitude at
-90◦ and 90◦ is lower for every measured frequency. Since it is not the case for the simulated
data and that this happens even at low frequencies, this can be attributed to a measurement
artifact probably related to the fact that the microphone was close to the wall of the insulated
room at these positions. To avoid the perturbations of this artifact in the analysis, the MSPLD
has been plotted with and without the measurements of the edges (at -90◦ and 90◦). However
the observed overall tendency remains similar.



3.4. FEM 51

3.4 FEM

In the framework of the EUNISON project, the measurements and MM simulations performed
have been compared with �nite element (FEM) simulations performed at the university La
Salle of Barcelona.

The �nite element method (FEM) was used to solve the time domain wave equation for
the acoustic pressure,

(∂2
tt − c2∇2)p = 0 , (3.9)

where p(x, t) stands for the acoustic pressure, c for the speed of sound, and ∂tt for the second
order time derivative [18]. First, each one of the vocal tract geometries were set in a rigid
ba�e with dimensions 0.3 m × 0.3 m. This ba�e constitutes one side of a rectangular volume
of 0.3 m × 0.3 m × 0.2 m in size which allowed sound waves to radiate out from the vocal
tract. Free-�eld radiation conditions were then emulated by means of a perfectly matched
layer (PML) of width 0.1 m that surrounded this radiation space and absorbed the outgoing
sound waves. The PML was con�gured to get a re�ection coe�cient of r∞ = 10−4 at its outer
boundary. The resulting computational domains were then meshed using linear tetrahedral
elements with a size that ranged from 0.002 mor 0.001 m within the vocal tract and immediate
outer space, to 0.0025 m or 0.005 m in the radiation space and 0.0075 m in the PML region.
As far as boundary conditions are concerned, a Gaussian pulse of the type [18]

GP (n) = e[(∆t n−TGP )0.29TGP ]2 [m3/s] , (3.10)

with TGP = 0.646/f0 and f0 = 10 kHz, was imposed at the vocal tract entrance to compute
transfer functions, while a sinusoidal signal, i.e., sin(2πft), with f corresponding to the fre-
quency of interest was used for obtaining pressure maps (see sections 4.1.4 and 4.2.4). To avoid
numerical errors beyond the maximum frequency of interest (fmax = 10 kHz), the Gaussian
pulse was �ltered using a low-pass �lter with cuto� frequency 10 kHz. At the vocal tract walls,
a constant frequency boundary admittance coe�cient of µ = 0.0025 or µ = 0.005 was imposed
to introduce losses. The �rst value was deemed appropriate after a tuning process, where the
resonance bandwidths obtained from simulations were adjusted to �t those from experiments.
The second value corresponds to the impedance of the vocal tract tissue Zw = 83 666 kg/m2s
(see [52]). The ba�e where the vocal tracts were set was considered rigid, i.e., µ = 0 on its
surface. A �nite element simulation lasting 20 ms or 25 ms for each case was then performed
with a sampling rate of fs = 1/∆t = 2000 kHz or fs = 1/∆t = 8000 kHz. Such a high
frequency rate is needed to ful�ll within the meshed computational domains, a restrictive
stability condition of the Courant�Friedrich�Levy type. The value of the sound speed was
chosen accordingly to the temperatures of the experiments. It was ranged between 340 m/s
and 350 m/s. Simulation times ranged between 24 and 80 hours in a serial computing system
with processor Intel R© CoreTM i5 2.8 GHz. Details on the �nite element formulation and on
the derivation of the boundary conditions can be found in [18] and [53], respectively.





Chapter 4

In�uence of HOM on pressure �eld
and transfer functions

In this chapter, the in�uence of HOM on the vocal tract acoustics is investigated through
PPTF and pressure maps measurements as well as simulated VPTF and input impedance.
Using the MM presented in chapter 2 and the experimental and numerical methods detailed
in chapter 3, di�erent geometrical approximations of the vocal tract shape corresponding to
the vowel [A] presented in section 3.1 are studied and compared. The results presented in this
chapter are partly published in [20] and [54].

4.1 Two cylindrical tubes approximation

The two tubes geometries (2CC[A] and 2CE[A]) are very simple approximations of the vowel
[A] proposed by Fant [1] in which the excitation and propagation of HOM can easily be
understood. That is why it has been extensively studied with both experiments, MM and
FEM simulations.

4.1.1 Propagation modes inside the geometries

Inside the small tube of the two tubes geometries the cut-on frequency of the �rst HOM (the
only one propagating under 20 kHz) is 14.5 kHz. The discontinuity corresponding to the
transition from the communication hole to the replica is likely to generate evanescent HOM
at the entrance of this tube. However, its length being more than �ve times larger than its
diameter, the in�uence of evanescent HOM can be neglected at the junction between the small
tube and the larger one. Thus, between 0 kHz and 10 kHz, only plane waves (mode ψ00) arrive
at this junction. Inside the larger tube, ψ01 (see Fig. 2.2) which has a cut-on frequency of 6.8
kHz, is the only HOM which can propagate under 10 kHz. Thus, the only modes propagating
inside these geometries under 10 kHz are ψ00 and ψ01.

The exit of the geometries being perfectly axisymmetric, the HOM ψ01 can be excited only
if the junction is asymmetric. Indeed, in Eq. (2.36) the contributions of ψ00 on either side of
the nodal line of ψ01 compensate each other exactly if the junction is perfectly axisymmetric.
In this case, the coupling term F00,01 between ψ00 and ψ01 is zero and ψ01 cannot be excited.

53
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Figure 4.1: Amplitude of the input impedance |Z| and of the transfer function |H| between
the input volume velocity and the acoustic pressure radiated at 60 cm in front of the exit
of two vocal tract approximations for the vowel [A] based on [1] with a concentric and an
eccentric junction between both sections.

If an asymmetry is introduced, as shown in section 2.2.4, F00,01 becomes non zero and ψ01 can
be excited. When the eccentricity is increased F00,01 increases. Thus ψ01 is not expected to
be present in the axisymmetric con�guration (2CC[A]).

4.1.2 Simulated velocity-pressure transfer functions and input impedance

In order to characterize the two tube geometries with quantities relevant for speech studies,
the input impedance Z and the transfer function H between the volume velocity imposed
at the entrance and the pressure radiated at a distance of 60 cm in front of the geometry
(angle of 0◦), which is relevant in the context of a conversation, have been computed with the
MM. The input impedance Z has been computed as the ratio of the acoustic pressure over
the particle velocity at the center of the communication hole. This quantity can be useful
to characterize the interaction between the vocal folds and the vocal tract while the transfer
function helps understanding what a listener can hear with a particular vocal tract geometry.
The amplitudes of H and Z are presented for the two types of junctions in Fig. 4.1.

First, di�erent resolutions of the grid used for the MM simulations have been tested by
computing the transfer function of the 2CE[A]. The averaged amplitude and phase di�er-
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Compared resolutions (mm) 2 - 1 1 - 0.5 0.5 - 0.3
Averaged amplitude di�erence (dB) 3.6 1.9 0.7
Averaged phase di�erence (rad) 0.8 0.4 0.2

Table 4.1: Averaged amplitude and phase di�erences between the transfer functions computed
with di�erent grid resolutions on a two tube geometrical approximation of the vowel [A] with
eccentric junction and circular cross-sections (2CE[A]).

ences between the transfer functions computed with the di�erent resolutions are presented in
Tab. 4.1. One can see that the averaged di�erence reduces when the resolution is increased.
Thus, the transfer function obtained with the MM implementation converges. However, it is to
be noted that when more resolution steps are tested, the transfer function does not monoton-
ically converge. This can be explained by the fact that the accuracy of the description of the
contour of the cross-section does not increase monotonically when the resolution is increased.
The resolution 0.5 mm has been chosen for the simulations as a compromise between accuracy
and computation time.

The peaks of H and Z corresponds to resonances inside the vocal tract, usually referred
to as formant in speech study. As expected, the frequencies of the peaks of Z corresponds to
the peaks of H. However, there is a di�erence of almost 50 Hz (1.2%) for the �fth peak for
the 2CC[A], and of almost 80 Hz (1.4%) for the last peak of 2CE[A]. The averaged di�erence
between the frequencies of the peaks of Z and H is 12 Hz for 2CC[A] and of 16 Hz for the
2CE[A]. The anti-resonances observed for the 2CE[A] correspond to dips of Z. The two �rst
formants, which characterize the vowel, have a frequency of 670 Hz and 1200 Hz. These values
do not vary on the junction type.

Except for the two last formants of 2CC[A], the frequencies of the formants are lower for
the 2CE[A] for both Z and H (down to 1.7% for the sixth formant). This shift down in the
formant frequencies could be explained by the fact that the 2CE[A] behaves as if it is extended
by the eccentricity of the junction. Indeed the midline is longer for the 2CE[A]. The fact that
the two last formants of the 2CC[A] have lower frequencies than the corresponding ones in the
2CE[A] (up to 1.69 % for the seventh formant) can be related to the fact that their frequency
is above the cut-on frequency of ψ01 (6.897 kHz at 26.5◦C) which is expected to be excited in
the 2CE[A].

Up to 6.5 kHz the input impedance curves of the concentric and eccentric con�gurations
are almost exactly similar. Above this frequency, the variations of Z are more complex for
the eccentric con�gurations. On the contrary, the transfer function of 2CC[A] has globally
an higher amplitude than the one of 2CE[A]: the averaged di�erence between both transfer
functions in the frequency range 0-10 kHz is 9 dB. This could be due to di�erences in the
interaction between the plane wave coming from the small tube and the evanescent HOM
excited at the junction. Indeed, in the case of the 2CC[A], ψ10 is very strongly excited (F00,10 >

1.5) while the other HOM are not excited, and in the case of the 2CE[A], the other HOM are
excited and F00,10 is close to 0.5 (see Fig. 2.13).
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(a) Bandwidths of transfer function H (b) Bandwidths of input impedance Z

Figure 4.2: Bandwidths (at -3 dB) of the formants as a function of the corresponding fre-
quencies of two approximations of the vocal tract shape for the vowel [A] constituted of two
cylindrical tubes with either concentric (2CC[A]) or eccentric junctions (2CE[A]).

In the case of the 2CE[A], there are two anti-resonances (at 7 kHz and 7.49 kHz) and four
formants (at 6.62 kHz, 7.63 kHz, 8.34 kHz and 9.85 kHz) which are not present in the case
of the 2CC[A]. Since, except for the formant at 6.6 kHz, they are above the cut-on frequency
of ψ01, they can be understood as the consequence of the excitation and the propagation of
this HOM. The fact that there is an additional formant below the cut-on frequency of ψ01,
but close to this frequency could mean that the in�uence of this HOM begins slightly under
its cut-on frequency. Indeed, when one gets closer to the cut-on frequency of an HOM, its
exponential damping becomes less important and a signi�cant amplitude can be expected at
the exit of the geometry.

When it was possible, The -3 dB bandwidths of the formants of H and Z have been
extracted. They are presented in Fig. 4.2. Up to the 5 kHz they are almost exactly similar
for both H and Z. There are more di�erences above this frequency, but the same tendency is
observed.

The bandwidths of the four �rst formants are almost similar for both the 2CC[A] and
the 2CE[A], and there are more di�erences above 5 kHz. This can be understood as the
consequence of the excitation of ψ01 in the case of the 2CE[A].

Except for the fourth formant, the bandwidths of the 2CC[A] increase with the frequency.
It is also the case for the formants of the 2CE[A] up to 7 kHz, but there is a sudden decrease
above this frequency and it increases again.

This can be explained by the di�erences in radiation e�ciency of ψ00 and ψ01. Since the
only loss mechanism implemented for these simulations is the radiation outside the geometries,
it is hypothesised that the variations of bandwidth can be related to the radiation e�ciency,
which is quanti�ed by the real part of the radiation impedance. A great value indicates that
the losses by radiation are important. In the case of the two tube geometries, < (Z00,00) is
superior to < (Z01,01) as it can be seen in Fig. 2.6a (the frequency range 0 kHz to 10 kHz
corresponds to the range kR = 0 to kR = 2.5). In the case of the 2CC[A] the sound is radiated
by ψ00 only and since < (Z00,00) increases with the frequency, the radiation losses increases
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Figure 4.3: Examples of pressure-pressure transfer functions between two points inside two
vowel [A] vocal tract replicas made of two cylindrical tubes with (top) concentric (2CC[A]) and
(bottom) eccentric junctions (2CE[A]). The Exp and FEM data has respectively been increased
and decreased by 10 dB and -10 dB with respect to the MM for visualization purposes. (Exp:
experimental data, MM: multimodal method, FEM: �nite element method).

which induces wider bandwidths of the formants. Up to the cut-on frequency of ψ01 the same
reasoning holds for the 2CE[A]. Above this frequency the sound is also radiated by ψ01 which
has a smaller radiation e�ciency. As a consequence, the bandwidths of the formants are
reduced and increase again because < (Z01,01) also increases.

In summary: Below the cut-on frequency of ψ01 the acoustical characteristics of 2CC[A]
and 2CE[A] are very close. On the contrary, above this frequency signi�cant di�erences are
observed: additional resonances and anti-resonances are observed when ψ01 can propagate.
The bandwidth of the resonances is also reduced when ψ01 is involved in the radiation of the
sound, because this HOM has a lower radiation e�ciency than ψ00.

4.1.3 Pressure-pressure transfer functions

In order to validate both the MM and FEM simulations, PPTF have been compared. Fig. 4.3
presents examples of PPTF measured and simulated between two points on the propagation
axis x3 (see Fig. 2.1 for x3 de�nition). One point is located inside the replica at 30 mm
from the source and the other one is outside at 10 mm from the open end. The resonance
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Peak frequencies (Hz)
plane mode higher order

modes
P1 P2 P3 P4 P5 P6 P7 P8 P9

concentric
Exp 970 2490 3160 4620 5840 8930 - - -
MM 970 2520 3190 4630 5910 9030 - - -
FEM 980 2530 3210 4640 5920 9040 - - -

eccentric
Exp 970 2480 3110 4630 5640 8990 7530 8230 9720
MM 970 2500 3150 4630 5730 9070 7540 8280 9790
FEM 980 2510 3160 4650 5740 9040 7480 8240 9720

Peak bandwidths (Hz)

concentric
Exp 40 157 159 542 228 422 - - -
MM 31 142 114 482 177 304 - - -
FEM 34 173 153 547 230 386 - - -

eccentric
Exp 45 149 156 * 159 316 * 195 *
MM 32 132 122 505 117 290 65 169 *
FEM 37 166 160 612 158 353 107 211 *

Table 4.2: Peak frequencies and -3 dB bandwidths of the pressure-pressure transfer functions
(PPTF) presented in Fig. 4.3 obtained for two vowel [A] vocal tract replicas made of two cylin-
drical tubes with concentric (2CC[A]) and eccentric junctions (2CE[A]). (Exp: experimental
data, MM: multimodal method, FEM: �nite element method *: not measurable).

frequencies and their -3 dB bandwidths are listed in Tab. 4.2.

As expected, above the cut-on frequency of ψ01 (6897 kHz at 26.5◦C), peaks and dips
which are absent in the concentric case, appear for the eccentric one. In experiments, these
dips are located at 7030 Hz and 7380 Hz while additional peaks are found at 7530 Hz, 8230
Hz and 9720 Hz (see Tab. 4.2). The peak frequencies of the 2CE[A] slightly di�er from the
2CC[A] (up to 3.4 % lower for P5 of the experimental data). Their bandwidths are smaller,
up to 30.2 % smaller for P5 of the experimental data. As for the formants of H and Z, the
peak above the cut-on frequency of ψ01 has a higher frequency in the case of the 2CE[A], and
its bandwidth is smaller. The MM and FEM simulations follow the same trend.

Some small di�erences can also be observed below 5 kHz. As for the formants of H and
Z, the peaks mainly occur at a lower frequency for the 2CE[A] compared to the 2CC[A] (up
to 1.6 % lower for P3 of the experimental data), except for P1 and P4 which have similar
values. This shift down in the peak frequencies could be explained by the fact that the replica
behaves as if it is extended by the eccentricity of the junction. Indeed the midline is longer
for the eccentric case.

Both MM and FEM peak frequencies are close to the experiments, within less than 2 %.
In general, the bandwidths of the simulations are smaller than those obtained experimentally.
This can be understood as an e�ect of visco-thermal losses. Indeed, accounting for visco-
thermal losses would reduce the resonance frequencies and increase their bandwidths ([33]),
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and the e�ect is expected to be similar on the peaks of the PPTF. The MM neglects all visco-
thermal losses while FEM account partially for them (see Section 3.4) and are thus closer to
the experimental values.

In summary: A good agreement between the experimental data and the MM and FEM
simulations has been found. Observations similar to the one performed on H and Z have been
performed on the PPTF: the same shift down of the peak frequencies at low frequency has
been observed and above the cut-on frequency of ψ01, a HOM, higher peak frequencies with
lower bandwidths have been observed.

4.1.4 Pressure �eld maps

In order to investigate the e�ect of HOM on the internal and the external acoustic �eld, and
to validate both MM and FEM simulation methods, pressure �eld maps have been measured
and simulated.

4.1.4.1 Longitudinal plane pressure �eld measurement

In Fig. 4.4 is shown as an example the pressure maps for the concentric (top) and eccentric
con�guration (bottom) when the 7th formant is excited, for both experiments and simulations.
Some cuts of these pressure maps are also shown in Fig. 4.5 to compare more easily the
measurements and the results obtained with each method.

In agreement with the results observed on the transfer functions, no propagation of the
HOM can be appreciated on the pressure �eld in the concentric case (see top of Fig. 4.4).
However, the experimental data exhibit some non planar waveforms (see Fig. 4.4a), in contrast
to simulations (see Fig. 4.4b and Fig. 4.4c). Although the greatest care was taken when
building the replica, it appears that it is not perfectly symmetrical. As a consequence the
�rst HOM, ψ01, is slightly excited and propagates. The in�uence of degree of eccentricity of
a junction is further investigated in section 5.2.1. However, the longitudinal pressure pro�le
along x3 is located on the nodal line of ψ01 and allows one to observe the e�ect of the plane
mode alone. The measured pro�le appears to be similar to the one obtained in simulations
(see Fig. 4.5a). Secondly, the transverse pro�le along x2 presented in Fig. 4.5b shows that
this e�ect has a limited impact on the radiated pressure. On the other hand, the iso-amplitude
lines are almost circular outside of the replica (see top of Fig. 4.4 and Fig. 4.5b), showing
that the acoustic pressure is radiated in almost spherical waves.

In what concerns the 2CE[A], the �rst HOM ψ01 e�ects can be observed in both experi-
ments and simulations (see bottom of Fig. 4.4 and Fig. 4.5). While the plane mode is still
predominant in the narrowest tube, ψ01 becomes predominant in the widest cross-section of
the replica. The in�uence of this mode on the radiated �eld can be observed as well. The
radiated sound pattern is no longer spherical (see bottom of Fig. 4.4 and Fig. 4.5d). This is
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Figure 4.4: Examples of pressure amplitude maps inside and outside of two vowel [A] vocal
tract replicas made of two cylindrical tubes with a concentric (2CC[A] top) and an eccentric
(2CE[A] bottom) junction for high frequencies (Exp: experimental data, MM: multimodal
method, FEM: �nite element method, here the origin of the coordinate system is located in
the center of the exit plane).
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Figure 4.5: Cuts of the pressure maps in Fig. 4.4 along the central axis x3 (left column)
and a perpendicular x2 axis located just in front of the open end (right column) measured
and simulated on two vowel [A] vocal tract replicas made of two cylindrical tubes with either
concentric or eccentric junctions (2CC[A] and 2CE[A]). A 10 dB shift has been applied between
the maxima of the three curves for visualization purposes. (Exp: experimental data, MM:
multimodal method, FEM: �nite element method).
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investigated in further detail in section 5.1.

Finally, the di�erent curves shown in Fig. 4.5 have been quantitatively compared. The
mean di�erence between the experiment and the simulations is less than 1 dB for the concentric
case and less than 2 dB for the eccentric case.

In summary: As for the PPTF, a good agreement has been found between the experimental
data and the MM and FEM simulations. The observation of the pressure �eld showed that,
as expected, the plane wave assumption is not valid above the cut-on frequency of ψ01 when
ψ01 is excited, and that the radiation of the sound is a�ected by the propagation of ψ01.
On the other hand it has been observed that the excitation of ψ01 is very sensitive to small
asymmetries.

4.1.4.2 Transverse plane (x1,x2) pressure �eld measurement

In the purpose of identifying the propagation modes involved and to quantify their contribu-
tion, pressure �eld measurements have been performed in the plane (x1,x2) perpendicular to
the propagation axis x3. In order to have a distribution of the measurement points as homoge-
neous as possible, it has been chosen to place them on the nodes of a triangular mesh instead
of a square one. Indeed, the edges of a circular shape are more evenly covered using this type
of distribution. The real part and the phase of the measured pressure �eld are presented in
Fig. 4.6. The real part of acoustic pressure corresponds to the magnitude of the pressure at
the time instant corresponding to φm − φs + ωt = nπ, n being a relative integer, which yields
t = (nπ − φm + φs)/ω. The magnitude of the real part is thus not the amplitude, and can
be smaller. However, this quantity is interesting to study in this context because, unlike the
amplitude, it allows one to see the sign change of the acoustic pressure.

It has been chosen to investigate the pressure �eld at a frequency above the cut-on fre-
quency of ψ01 at 7.4 kHz inside the 2CC[A] at 1 cm after the junction inside the larger tube.
Indeed, close to the junction the amplitude of the evanescent modes is non-negligible and
investigating their amplitude can help to con�rm the hypothesis formulated earlier in section
4.1.2. A similar measurement has been performed in the 2CE[A] at the frequency correspond-
ing to the �rst anti-resonance, 7.06 kHz. Indeed, at this frequency the amplitude of ψ01 is
expected to be particularly high.

In the case of the 2CC[A], one can see in Figs. 4.6a and 4.6c that the variations of the real
part and the phase of the acoustic pressure are small. On the other hand, the real part and
the phase have the same sign everywhere on the surface. Thus, as expected, one can see that
even above the cut-on frequency of the �rst HOM, ψ01, the plane mode ψ00 is predominant.

However, the amplitude of the variations of the real part and the phase over the surface
is not negligible: 0.0008 ∝ Pa and 0.7 rad. One can also see that the pressure �eld is divided
into two regions: the left hand side has a higher real part and a lower phase than the right
hand side. This can be explained by the fact that the HOM amplitude is small, but not zero.
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Real part of the acoustic pressure (∝ Pa)

(a) 2 concentric tubes (2CC[A]) (b) 2 eccentric tubes (2CE[A])
Phase of the acoustic pressure (rad)

(c) 2 concentric tubes (2CC[A]) (d) 2 eccentric tubes (2CE[A])

Figure 4.6: Real part and phase of the acoustic pressure measured in the plane (x1,x2) per-
pendicularly to the propagation axis x3, 4.5 cm after the junction inside larger part of the
two tube replicas of the vowel [A] having either a concentric (2CC[A]) or an eccentric (2CE[A])
junction. The real part is proportional to Pa to the sensitivity of the microphone and the
phase is computed as the di�erence between the phase of the microphone and the phase of
the sound source input signal.
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(a) 2 concentric tubes (2CC[A]) (b) 2 eccentric tubes (2CE[A])

Figure 4.7: Modale amplitudes |Pn| of the pressure measured and simulated on a plane per-
pendicular to the propagation axis of two tube approximations of the vowel [A] with either
concentric (2CC[A]) or eccentric (2CE[A]) junctions.

It is hypothesised that this comes from the fact that the replica is not perfectly axisymmetric
and that ψ01 is slightly excited.

Unlike the 2CC[A], the acoustic pressure has consequent variations over the surface in the
case of the 2CE[A]. The pressure �eld is clearly divided into two regions with opposite sign
separated by a line which coincides with the axis x2. The amplitude of the variation of the
real part and the phase is larger than for the 2CC[A]: 0.0023 ∝ Pa and 3.1 rad. Moreover,
the phase di�erence between the two regions is almost π, so one can consider that these two
regions have opposite phase. The mode-shape of ψ01 (see Fig. 2.2) can be clearly recognized.
Thus, one can conclude that, as expected, above its cut-on frequency, ψ01 can be predominant
in the 2CE[A] geometry.

However, the averaged values of the real part and the phase are not zero: 0.00022 ∝ Pa

and -0.25 rad. On the other hand the real part values are higher on the right hand side. This
can be understood as the e�ect of the plane mode, which is still present though its amplitude
is small.

In order to investigate more precisely and more quantitatively the contributions of the
di�erent propagation modes to the acoustic �eld, the measured pressure �elds have been pro-
jected on the basis of the propagation modes corresponding to a circular shape (see section
2.1.1.1) using the method detailed in section 3.3.7. This allowed one to compute their ampli-
tudes Pn which are presented in Fig. 4.7. These amplitudes have been compared with the one
theoretically computed with the MM. In order to make this comparison possible, they have
been normalized by the sum of the square of the amplitudes P 2

n of each mode, P †P . Thus,
they are necessarily smaller than one.

As expected from the theory and the observation of the Figs. 4.6a and 4.6c, one can see
on Fig. 4.7a that in the case of the 2CC[A] the plane mode ψ00 has the highest amplitude.
The assumption that ψ01 is slightly excited in the experiment is also con�rmed: unlike the
MM, the experiment shows a non zero amplitude for ψ01. On the other hand, the amplitude
of ψ00 is smaller for the experiment, which is consistent with the fact that a part of the energy
is carried by ψ01 in this case. It is hypothesised that this di�erence comes from the fact that,
even though it was carefully built, the replica is not perfectly axisymmetric. One can also
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notice that the �rst axisymmetric HOM ψ10 has a non zero amplitude for both the experiment
and the MM. Since its cut-on frequency (14354 Hz at 26.5◦C) is higher than the frequency of
these experiments and simulations, one can conclude that it is an evanescent mode generated
by the discontinuity corresponding to the junction between the two tubes. This observation is
consistent with the hypothesis formulated in section 4.1.2 from the projection matrix F that
ψ10 is more strongly excited in the 2CC[A]. The fact that its amplitude is almost two times
higher in the experiment, could mean that its exponential decay is overestimated in the MM,
but maybe the small imperfections could also play a role in this di�erence. The agreement
between MM and experiment is not so good: the relative di�erence

(
|PMM−PExp|

PExp

)
is of 7.5%

for ψ00 and 47% for ψ10.

The assumptions formulated for the pressure �eld observed in the 2CE[A] are also con-
�rmed. Indeed, one can see in Fig. 4.7b that the mode ψ01 has the highest amplitude and
predominates. On the other hand, the plane mode amplitude is non-zero. The amplitude
obtained for ψ00 and ψ01 with the MM simulation and the experiment is closer than for the
2CC[A]: the relative di�erence is of 1.9% for ψ00 and 0.26% for ψ01. This better agreement
can be explained by the fact that there is no ambiguity concerning the axisymmetry and the
excitation of ψ00 and ψ01. The axisymmetric case would thus be a theoretical case di�cult to
reproduce accurately experimentally. The amplitude of the HOM ψ02, ψ10 and ψ03 is small but
non zero in the case of the experiment, as for the 2CC[A], the origin of this small discrepancy
can be attributed to inaccuracies of the replica.

In summary: The measurements and the simulations in the plane (x1,x2) perpendicular
to the propagation axis x3 allowed one to con�rm more directly the hypothesis formulated
concerning the excitation of ψ01 and of the evanescent HOM. The modal projection have proved
to be an e�cient tool for estimating the modal amplitude Pn of the propagation modes. With
the exception of the discrepancies generated by the small imperfections of the 2CC[A], a good
agreement has been found between the theoretical modal amplitudes and the one provided by
the MM.

Conclusions concerning the two tube geometries: The two tubes replicas point out
the evidence for HOM in a simpli�ed two tubes vocal geometries. The importance of the
connection of the junctions appears to be critical. When present, these HOM strongly a�ect
both the internal and the radiated sound �eld. In the next section is evaluated if these �ndings
still hold for more complex vocal tract approximations.

4.2 44 tubes approximations

In order to study the e�ect of HOM on more realistic geometries, 44 tubes approximations
of the vocal tract geometry for vowel [A] have been built from the area function provided by
Story [23]. These approximations correspond to the state of the art of the geometrical vocal



66 Chapter 4. In�uence of HOM on pressure �eld and transfer functions

tract approximation used in speech studies. Their description with an area function gives a
lot of freedom for the precise realisation of the geometries. Indeed, the cross-sectional shape
and the eccentricity of the junction can be varied and compared while the area function used
to design it remains similar. This allows one to test a variety of parameters and to evaluate
their in�uence on the vocal tract transfer function and the directivity of the radiated sound.

In order to perform measurements on these geometries, the three vowel [A] vocal tract
replicas presented in Figs. 3.1d, 3.1e and 3.1f of Section 3.1 have been used. In this case the
measurements have been limited to the frequency range (2kHz - 10kHz), of more interest for
the purposes of this work. Only one sound source was required for this frequency range, and
the measurement procedure was thus more simple.

4.2.1 Propagation modes inside the geometries

Though more complex, the 44 tube geometries have the same kind of shape as the two tubes
ones: a narrow part (from x3 = 0 mm to x3 = 80 mm, see Fig. 3.2) is followed by a wider
one (from x3 = 80 mm to x3 = 167 mm). Thus, for the same reason as for the two tube
geometries, only the plane mode ψ00 is expected to propagate inside the 44CC[A], and only
ψ00 and ψ01 are expected to propagate inside the 44CE[A].

In the case of the 44EE[A], because of the elliptical cross-sectional shape, the propagation
modes involved have di�erent mode-shapes (see Fig. 2.4). However, the area function remains
similar, and a narrow part in which only plane waves can propagate is connected to a wider part
in which HOM can propagate. Thus, as for the 44CE[A], the HOM are excited at the entrance
of this wider part by the coupling with the plane mode ψe01. Because their contributions
compensate each other in Eq. (2.36), all the HOM featuring a vertical nodal line on the
vertical symmetry axis x2 are not expected to propagate. So the only HOM expected to
propagate between 0 kHz and 10 kHz are ψe21 and ψo11. However, ψo11 is expected to have a
very limited in�uence on this frequency range since its cut-on frequency, 9860 Hz at 22.65◦C
in the widest part, is very close to 10 kHz. Unlike the eccentric con�gurations with circular
cross-sections (2CE[A] and 44CE[A]), the eccentricity does not play an important role in the
excitation of ψe21. Indeed, this HOM is excited because a larger area in the center is covered
by the intersection with a smaller cross-section than the areas with opposite phase on the
edges. As a consequence, this HOM can be excited with an axisymmetric con�guration.

4.2.2 Simulated velocity-pressure transfer functions and input impedance

As for the two tube geometries, the input impedance Z and the transfer function H have
been computed with the MM. The correspondence between the peaks of Z and H, with a
di�erence smaller than 0.7%, is better than for the two tube geometries. It is interesting to
notice that, unlike for the 2CE[A], the anti-resonances do not necessarily correspond to a dip
of input impedance.
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Figure 4.8: Amplitude of the simulated (with MM) input impedance |Z| and of the transfer
function |H| between the input volume velocity and the acoustic pressure radiated at 60 cm
in front of the exit of three vocal tract approximations for the vowel [A] based on ([23]) with
concentric junction and circular cross-section, eccentric junctions and circular cross-sections
and eccentric junctions in the plane (x2,x3) and elliptical junctions.



68 Chapter 4. In�uence of HOM on pressure �eld and transfer functions

The frequencies of the two �rst formants are 660 Hz and 930 Hz, which is similar to the
values given in [23]. As for the two tube geometries, these values do not depend on the junction
type. If there is a di�erence of only 10 Hz with the frequency of the �rst formant of the two
tube geometries (670 Hz), the di�erence with the second formant is much larger (1200 Hz for
the 2CC[A] and the 2CE[A]). This can be explained by the fact that the two tube shape has
been designed so that the frequencies of the two �rst formants corresponds to the averaged
values observed for the vowel [A] [1], whereas the area function of the 44 tube geometries
has been determined from MRI measurements [23]. In this case, the perturbations related
to the measurement process (supine position in a noisy environment, see [23] for a detailed
discussion) can induce formant frequencies di�erent from the averaged value, but which still
corresponds to a vowel [A].

The frequencies of the formants of 44CC[A] are globally higher than the one of 44CE[A]
up to 1% higher for the sixth formant. However, the �rst, second and seventh formant are
lower, down to 0.9% for the second. The same tendency is observed between the 44CC[A] and
the 44EE[A]: with the exception of the second and the seventh formants, their frequency is
higher for the 44CC[A] (up to 0.9% for the eighth). So the reduction of the frequency of the
formants under the cut-on frequency of the �rst propagating HOM (5885 Hz for ψ01 for the
44CE[A] at 23.2◦C and 6084 Hz for ψe21 for the 44EE[A] at 22.65◦C) when eccentric junctions
are introduced is not as clearly observed for the 44 tube geometries as for two tube ones.
This can be understood as the consequence of the correction of the length of the midline (see
section 3.1) which has been successful in limiting the variations of the formants.

Up to 6 kHz the input impedance curves of the three con�gurations are almost exactly
similar, and di�erences are observed above this frequency. However, unlike the two tube
geometries, the di�erences are limited to three frequency intervals: 6.2 kHz to 7 kHz, 7.9 kHz
to 8.6 kHz and 9.3 kHz to 9.8 kHz. In addition, no signi�cant change of the global amplitude
of H is observed. This could be interpreted as the fact that the variations of cross-sectional
area are more progressive in this case. As for the two tube geometries, additional formants
and anti-resonances are observed when eccentric junctions are used and when the cross-section
shape is changed. An additional formant (at 6.51 kHz) and three anti-resonances (at 6.6 kHz,
8.41 kHz and 9.67 kHz) can be seen in the transfer function of the 44CE[A]. In the case of the
44EE[A], there is also an additional formant (at 6.59 kHz) and three anti-resonances (at 6.78
kHz, 8.61 kHz and 9.95 kHz).

The frequencies of the formants of the 44CE[A] and the 44EE[A] are quite close: the
maximal di�erence is of 1.3% for the seventh formant which is higher in the case of the 44EE[A].
There are more di�erences in the frequency of the anti-resonances, up to 2.9% higher for the
second anti-resonance of the 44EE[A]. This can be explained by the fact that the formants
which are in common with the 44CC[A] are mainly due to the propagation of the plane mode
and that the anti-resonances and the additional formant are due to the propagation of HOM
which are di�erent in the case of the 44CE[A] and of the 44EE[A]. This hypothesis is reinforced
by the fact that the di�erence between the frequency of the formants of the 44CE[A] and the
44EE[A] is maximal for the additional formant. The fact that the additional formant and
the anti-resonances are higher for the 44EE[A] can be related to the fact that the HOM ψe21
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(a) Bandwidths of transfer function H (b) Bandwidths of input impedance Z

Figure 4.9: Bandwidths as a function of the corresponding formants frequencies of three
approximations of the vocal tract shape for the vowel [A] constituted of 44 tubes with circular
cross-section and concentric junctions (44CC[A]), circular cross-section and eccentric junctions
(44CE[A]) and elliptical cross-sections and eccentric junctions in the plane (x2,x3) (2ET[A]).

involved in this geometry has a cut-on frequency (6084 Hz) higher than the one of ψ01 (5885
Hz) which is involved in the 44CE[A].

The -3 dB bandwidths of the formants ofH and Z have been extracted and are presented in
Fig. 4.9 as a function of the formant frequency. Since the only loss mechanism implemented for
these simulations is the radiation outside the geometries, it is hypothesised that the variations
of bandwidth can be related to the radiation e�ciency which is quanti�ed by the real part of
the radiation impedance. The same evolution is observed for H and Z. For all the geometries
it increases with the frequency up to 6 kHz, above which it varies and more di�erences can be
seen between the geometries. This global increase can be explained by the fact that the losses
by radiation increases with the frequency. Indeed, the real part of the radiation impedance of
the plane mode ψ00 increases in the frequency range 0 kHz to 10 kHz.

The bandwidths of the 44CE[A] are globally wider than the one of the 44EE[A] between
0 kHz and 5 kHz, up to 84 Hz wider for the �fth formant. The opposite is observed above
this frequency: the bandwidths of the 44CE[A] are smaller than the ones of the 44EE[A],
down to 200 Hz for the ninth formant. This can be explained by the fact that up to the
�fth formant ψ00 is predominant. The real part of its radiation impedance is smaller with an
elliptical cross-section than a circular one (considering the same cross-sectional area). Thus,
the radiation losses are less important with elliptical cross-section and the bandwidth of the
formants tends to be smaller in this frequency range. Above 5 kHz the in�uence of the HOM
is more important. In the case of the 44CE[A], for all the junctions, the coupling term between
ψ00 and ψ01 is higher than the coupling term between ψe01 and ψe21 in the case of the 44EE[A].
Indeed, as an example, F00,01 = 0.52 at the junction between the section 22 and 23, which
corresponds to the beginning of the wide part, and Fe01,e21 = 0.4. The mode ψe21 is thus less
strongly excited and its contribution to the radiation is less important than ψ01 in the case of
the 44CE[A]. Given that the real part of the radiation impedance of ψ01 and ψe21 are smaller
than the one of ψ00 and ψe01, the radiation e�ciency of the 44CE[A] is reduced compared to
the 44EE[A] and its bandwidths are smaller.



70 Chapter 4. In�uence of HOM on pressure �eld and transfer functions

Figure 4.10: Examples of pressure-pressure transfer functions (PPTF) between two points
inside three simpli�ed vowel [A] vocal tract replicas with (top) concentric junctions and circular
cross-sections (44CC[A]), (middle) eccentric junctions and circular cross-sections (44CE[A])
and (bottom) eccentric junctions and elliptical cross-sections (44EE[A]). (Exp: experimental
data, MM: multimodal method, FEM: �nite element method).

4.2.3 Pressure-pressure transfer functions

In order to validate the MM and FEM simulation methods for the 44 tube geometries in the
frequency domain, PPTF have been simulated and measured. PPTF between two points inside
the replicas located at 80 mm and 130 mm from the source on x3 are presented in Fig. 4.10.
The peaks and dips frequencies and -3 dB bandwidths of the peaks of these transfer functions
have been listed in Tab. 4.3.

As expected from Section 4.1, one can observe peaks (P3 and P4) and dips (D1 and D2)
for the geometries which feature eccentric junctions and elliptical cross-sections (44CE[A] and
44EE[A]) which are not observed for the concentric con�guration (44CC[A]).

In the mid-frequency range (2 kHz - 5.5 kHz) the peaks occur at lower frequencies for the
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Peak and dip frequencies (Hz)
plane mode HOM dips
P1 P2 P3 P4 D1 D2

concentric
Exp 3430 5180 - - - -
MM 3500 5230 - - - -
FEM 3450 5210 - - - -

eccentric
Exp 3360 4970 6600 8320 5790 9530
MM 3440 5010 6620 8460 5850 9610
FEM 3410 5020 650 8340 5810 9510

elliptic
Exp 3340 5120 6730 8550 6300 9790
MM 3480 5140 6770 8610 6320 9890
FEM 3440 5140 6730 8510 6290 9790
Peak and dip bandwidths (Hz)

concentric
Exp 227 552 - - - -
MM 208 512 - - - -
FEM 213 507 - - - -

eccentric
Exp 210 478 31 14 30 65
MM 190 435 14 49 211 102
FEM 183 446 27 55 72 86

elliptic
Exp 154 433 54 113 15 72
MM 184 433 4 17 258 6
FEM 205 454 41 48 64 8

Table 4.3: Peaks and dips frequencies and bandwidths of examples of transfer functions (pre-
sented in Fig. 4.10) between two points inside of three vowel [A] vocal tract replicas with
concentric junctions and circular cross-sections (44CC[A]), eccentric junctions and circular
cross-sections (44CE[A]) and eccentric junctions and elliptical cross-sections (44EE[A]). The
Exp and FEM data have, respectively, been increased and decreased by 10 dB and -10 dB
with respect to the MM for visualization purposes. (Exp: experimental data, MM: multimodal
method, FEM: �nite element method).
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44CE[A] and the 44EE[A]. Indeed, for the experimental data they are up to 4% lower (for P2)
for the 44CE[A] and the 44EE[A]. So, the same tendency as the one observed for the resonances
of H and Z is observed here with a larger magnitude (the di�erence is up to 1% for H and
Z). Another di�erence between the 44CC[A] and the other geometries at the mid-frequencies
is the reduction of the peak bandwidths. This e�ect is stronger than on P2 and P3 of the
two tubes replicas. Indeed, for the 44CE[A] the bandwidths of P1 and P2 are 7.3% and 13.5%
smaller than for the 44CC[A]. The e�ect is more important for the 44EE[A]: P1 and P2 are
32.3% and 21.4% smaller than for the 44CC[A]. This tendency is only observed for the third
and the sixth formant of H and Z. The same trend is observed on simulations, however, the
e�ect is more pronounced for the 44CE[A] on FEM simulations. Thus, it appears that the
e�ect of the eccentricity of the junctions and the cross-sectional shape on the bandwidths of
the peaks is not negligible, even at mid-frequencies.

The PPTF obtained for the 44EE[A] is similar to the one obtained for the 44CE[A] up
to the high frequencies where the peak and dip frequencies are higher for the 44EE[A] (see
middle and bottom of Fig. 4.10). Indeed, for the 44EE[A] the frequency of P4 and D1 are
respectively 230 Hz and 510 Hz higher (or 2.8 % and 8.8 % higher). This can be related to
the higher resonances and anti-resonance frequencies observed for the 44EE[A] in H and Z.
Similarly, it can be related to the fact that due to the di�erence of cross-section, di�erent
HOM having di�erent cut-on frequencies are involved in the 44CE[A] and the 44EE[A]. As for
H and Z, the bandwiths of the 44CE[A] are wider than the ones of the 44EE[A] below the
cut-on frequency of the �rst propagating HOM, up to 56 Hz higher for P1. And, likewise, the
opposite is observed above this frequency: the bandwidths of the 44CE[A] are smaller than
the ones of the 44EE[A], down to 99 Hz smaller for P4.

Both MM and FEM simulations are in good agreement with the experiments. The maxi-
mal di�erence between peaks and dips frequencies is less than 5 %. The bandwidths of the
simulations are smaller than in the experiments. The di�erence is more pronounced for the
MM. As for the two tubes replicas this can be attributed to the visco-thermal losses which are
partially taken into account by the FEM (see Section 3.4) but neglected by the MM. On the
other hand, on the experimental data of Fig. 4.10 one can notice an additional peak above P4
for the 44CE[A] and the 44EE[A] which does not appear in the simulations. The presence of
this peak may be due to experimental issues such as positioning error or small imperfections
in the replica.

In summary: Similar di�erences as the one observed between the 2CC[A] and the 2CE[A]
are observed between the 44CC[A] and the 44CE[A]. Likewise, additional peaks and dips are
observed in the case of the 44CE[A] and the 44EE[A]. The di�erence of cross-sectional shape
has been observed to in�uence the frequency and the bandwidth of the peaks and dips of the
PPTF. As for the PPTF of the two tube geometries, similar characteristics have been found
between the PPTF and H and Z. Thus, higher peak and dip frequencies and bandwidths are
observed above the cut-on frequency of the �rst propagating HOM for the 44EE[A] than for
the 44CE[A]. Eventually, a good agreement has been found between the simulations and the
experiment.
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4.2.4 Pressure �eld maps

In order observe the e�ect of HOM on the pressure �eld and to validate the MM and FEM
simulation methods for the 44 tube geometries, pressure maps have been simulated and mea-
sured. In Fig. 4.11 examples of pressure maps are presented for the 44CC[A] (top), the
44CE[A] (middle) and the 44EE[A] (bottom) at high frequency values for both experiments
and simulations. Longitudinal and transversal cuts of these maps along x3 and x2 at 2.5 mm
from the open end outside of the replicas are provided in Fig. 4.12.

For the 44CC[A] one can observe the e�ect of the HOM inside the replica for the exper-
imental data (see Fig. 4.11a) for which signi�cant variations of the amplitude along x2 can
be seen. This is not the case for the simulated data for which the iso-amplitude lines are
perpendicular to x3 inside the replicas (see Fig. 4.11b and Fig. 4.11c). As for the two tube
geometries, it is hypothesised that this is due to small imperfections of the replica. The pres-
sure pro�le along the central axis x3 provided in Fig. 4.12a allows one to observe the e�ect
of the plane mode alone. It appears to be similar to the simulation pro�les. On the other
hand, the transverse pressure pro�le along x2 presented in Fig. 4.12b shows that the e�ect on
the radiated pressure is limited. As a matter of fact, the iso-amplitude lines of the radiated
pressure are almost circular.

As expected, this is not the case for the 44CE[A] and the 44EE[A]. The e�ect of the HOM
inside these replicas can be clearly observed (see middle and bottom of Fig. 4.11). Signi�cant
variations of the amplitude along x2 are observed and there are local maxima and minima
of the amplitude inside the geometries. The minima obtained with MM and FEM are more
pronounced than those measured experimentally, and the minima of the MM simulations are
more important than those of the FEM simulation (see middle and bottom of Fig. 4.11 and
Fig. 4.12). This can be related to the observations made on the PPTF: the peaks of the
simulations have higher amplitudes and narrower bandwidths. The origin of this di�erence is
probably also the poor representation of visco-thermal losses in the simulations.

The pressure radiated by the 44CE[A] and the 44EE[A] appears as strongly directional
though it is less noticeable for the 44EE[A] (see middle and bottom of Fig. 4.11).

In Fig. 4.12 both MM and FEM simulations show pressure pro�les which are close to the
experimental data. There are however some small di�erences in the amplitude of the minima
and the symmetry of the patterns in the cuts performed along x2 outside of the vocal tracts
(see Fig. 4.12b, Fig. 4.12d and Fig. 4.12f). In Fig. 4.12b and 4.12f the experimental pressure
pro�le is not perfectly symmetrical whereas the simulation pressure pro�les are. In Fig. 4.12d
the two lobes of the experimental data have almost the same amplitude whereas for both MM
and FEM the left lobe has a smaller amplitude than the right lobe. Small di�erences in the
amplitude of the minima can also be observed on the cuts performed along x3 (see Fig. 4.12a,
Fig. 4.12c and Fig. 4.12e). It is assumed that the di�erence comes from an experimental
artifact due either to some imperfections of the replicas or to re�ections on the table which
has been insu�ciently damped by the acoustic foam.

To compare more directly the cuts of Fig. 4.12 the same procedure as for the two tubes
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Figure 4.11: Examples of pressure amplitude maps for high frequencies inside and outside
of three simpli�ed vowel [A] vocal tract replicas with (top) concentric junctions and circular
cross-sections, (middle) eccentric junctions and circular cross-sections and (bottom) eccentric
junctions and elliptical cross-sections. (Exp: experimental data, MM: multimodal method,
FEM: �nite element method, here the origin of the coordinate system is located in the center
of the exit plane).
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Figure 4.12: Cuts of the pressure maps in Fig. 4.11 along the propagation axis x3 (left
column) and the axis x2 just in front of the open end ( right column) measured and simulated
on three simpli�ed vowel [A] vocal tract replicas with (top) concentric junctions and circular
cross-sections, (middle) eccentric junctions and circular cross-sections and (bottom) eccentric
junctions and elliptical cross-sections. A 10 dB shift has been applied between the maxima
of the three curves for visualization purposes. (Exp: experimental data, MM: multimodal
method, FEM: �nite element method).
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replicas has been followed. The maximal mean di�erence between the simulations and the
experiments is 2.8 dB for the FEM and 2.2 dB for the MM.

In summary: The three con�gurations tested highlight the importance of taking HOM
into account for high frequency simulations of the vocal tract acoustics. The e�ect of HOM
on transfer functions and radiation patterns is emphasized by the 44CE[A] and the 44EE[A]
con�gurations. The measurements and the simulations have also shown that the HOM can
a�ect the mid-frequency behavior of vocal tract like geometries.

4.3 MRI based vowel [A] geometries: in�uence of lips

The work presented here is a part of a study published in [54]. Measurements and FEM
simulations (performed at the university La Salle of Barcelona) have been performed with two
vocal tract replicas (see Figs. 3.1g and 3.1h) created from a geometry provided for the vowel [A]
in the Aalto database [26]. This type of geometries is among the more realistic which are used
to study speech. Due to the complexity of their shape it is di�cult to understand exactly
how the HOM are involved in their acoustic properties. Nevertheless, they are very useful
to investigate the acoustic properties of the vocal tract and to compare with the simpli�ed
geometries.

This vowel has been chosen because its large mouth aperture and its wide oral cavity
allowed one to measure the pressure on a large plane inside the replicas (see Fig. 4.13). On
the other hand, these geometrical features are likely to induce strong directivity e�ects. In
order to study the in�uence of the lips, one replica is built without lips (see Fig. 3.1h) and
the measurement and simulations obtained with both geometries are compared. A ba�e of
dimensions 365×360 mm was attached to the end of the replicas to mimic the face. Linear
sweep signals have been used to measure the acoustic pressure at each point of a grid located
in the plane (x1, x3) (spaced by 2.5 mm, see Fig. 4.13) from 2 kHz to 10 kHz.

4.3.1 Pressure-pressure transfer functions

In order to compare the FEM simulations with the experiments in the frequency domain,
PPTF (see part 3.3.5) have been computed between several couples of points of the grid. An
example of these comparisons is presented in Fig. 4.14 and Tab. 4.4. These data corresponds
to the PPTF computed between a point P1(−0.0325, 0, 0) located within the oral cavity and
a point P2(0, 0, 0) located at the center of the last closed cross-section which has been chosen
as the origin of the coordinates. As one can see in Fig. 4.14, the experiment and the FEM
simulations are quite close. The frequency and the amplitude of the three more pronounced
peaks and dips of these PPTF have been extracted and are presented in Tab. 4.4. The -3
dB bandwidth of these peaks is also provided. The relative di�erence between the frequency
of the peaks and dips fFEM and fExp obtained with FEM simulations and experimentally
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x3

x1

x2

Figure 4.13: Grid of points where the acoustic pressure is measured and simulated inside a
vowel [A] geometry extracted from MRI provided in the Aalto database ([26]).

Figure 4.14: Pressure-pressure transfer function (PPTF) H12(f) = P2(f)/P1(f) for vowel
[A] (a) with lips and (b) without lips obtained by �nite element simulations (FEM) and
experiments (Exp). P1(f) and P2(f) stand for the Fourier transform of the acoustic pressure
collected at point 1 and point 3, which are, respectively, located within the oral cavity and at
the mouth exit.
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With lips
Peaks frequencies (Hz) Dips frequencies (Hz)

FEM 3270 4895 8535 5335 7720 8880
Exp 3255 4865 8615 5430 7790 8980

Peaks amplitude (dB) Dips amplitude (dB)
FEM 23.3 24.7 -3.5 -17.1 -30.9 -15.3
Exp 24.2 27.1 -1.9 -14.9 -43.5 -14.8

Without lips
Peaks frequencies (Hz) Dips frequencies (Hz)

FEM 3565 4915 8575 5495 7705 8935
Exp 3550 4870 8645 5505 7760 9010

Peaks amplitude (dB) Dips amplitude (dB)
FEM 17.5 20.8 -3.9 -18.6 -47 -19.4
Exp 22.6 28.3 -2.4 -28.9 -23.4 -22.5

Peaks -3 dB bandwidth (Hz)
With lips Without lips

FEM 215 20 210 220 70 175
Exp 190 50 105 30 30 30 95

Table 4.4: Amplitude and frequencies of the three more pronounced peaks and dips of pressure-
pressure transfer functions measured and simulated on two vowel [A] vocal tract geometries
created from MRI with and without lips between two points located respectively within the
oral cavity and at the mouth exit. The -3 DB bandwidth of the peaks is also provided.
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with lips without lips
FEM Exp FEM Exp

3rd formant (Hz) 2205 2235 2270 2275
last formant (Hz) 9670 9755 9710 9775

Table 4.5: Frequencies of the formants selected using the procedure depicted in part 3.3.6
in order to compare the pressure �eld measured and simulated inside vowel [A] geometries
created from MRI with and without lips.

respectively,
(
|fFEM−fExp|

fExp

)
, is smaller than 2%. The amplitude of the peaks tends to be

higher for the experimental values (up to 7.53 dB higher for the second peak in the case
without lips) and their -3 dB bandwidth tends to be smaller (down to 190 Hz smaller for
the �rst peak of the case without lips). This could be due to the fact that the wall losses
implemented in the FEM simulations are slightly over-estimated and considered as constant
with the frequency. A few additional peaks and dips can be seen in the experimental data,
in particular at 6640 Hz and 6975 Hz for the case with lips and 3990 Hz, 6925 Hz and 7075
Hz for the case without lips. This could be attributed to geometrical di�erences between the
replicas and the mesh used for the FEM simulations. Indeed, though the 3D printer used is
very accurate (0.025 mm to 0.05 mm per 25.4 mm), the geometry can be slightly distorted
during the 3D printing process and some small amount of the wax used during the 3D printing
process can remain attached to the walls of the replicas.

Except for the second dip, the frequencies of the peaks and dips are higher in the case
without lips (up to 295 Hz higher for the �rst peak). This can be understood as the e�ect of the
additional length introduced by the lips, which tends to lower the resonance frequencies. The
dips being related to HOM propagation, the fact that the second one has a higher frequency
in the case without lips could mean that the change of boundary condition induced by the
presence of the lips can a�ect di�erently the HOM propagation. For the FEM simulations,
the amplitudes of the peaks and dips is higher in the case with lips. With the exception of the
second peak and the second dip, this is con�rmed by the experiment. This can be explained
by the fact that the additional length introduced by the lips induces a higher amplitude of
the acoustic pressure at the mouth exit.

4.3.2 Pressure �eld maps

In order to compare spatially the FEM simulations with the experiments, pressure maps were
extracted and compared. The procedure presented in part 3.3.6 has been used to choose the
frequency of the comparisons. Thus, the third formant and the last formant of the frequency
range have been selected (see Tab. 4.5). The corresponding pressure maps and cuts along x2

and x3 (in the midsagittal plane) are presented for the third formant and the last formant
in Figs. 4.15 and 4.16 respectively. The cuts along x2 were performed 1 cm in front of the
mouth exit and the cuts along x3 have been performed in the middle of the measurement
surface. Iso-amplitude lines have been added to the pressure maps in order to enhance the
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With lips

(a) FEM 2205 Hz (b) Exp 2235 Hz (c) Front-plane cut (d) Midsagittal cut
Without lips

(e) FEM 2270 Hz (f) Exp 2275 Hz (g) Front-plane cut (h) Midsagittal cut

Figure 4.15: Pressure amplitude maps for the third formant of vowel [A] obtained by �nite
element simulations (FEM) and experiments (Exp) with lips (top) and without lips (bottom).
The acoustic pressure distribution within the oral cavity and at an area close to the vocal tract
exit (mouth) is presented. Moreover, cuts of the pressure amplitude maps in a front-plane
located 1 cm in front of the mouth exit and in the midsagittal plane are also presented.
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With lips

(a) FEM 9670 Hz (b) Exp 9755 Hz (c) Front-plane cut (d) Midsagittal cut
Without lips

(e) FEM 9710 Hz (f) Exp 9775 Hz (g) Front-plane cut (h) Midsagittal cut

Figure 4.16: Pressure amplitude maps obtained for the last formant before 10 kHz of vowel
[A] by �nite element simulations (FEM) and experiments (Exp) with lips (top) and without
lips (bottom). The acoustic pressure distribution within the oral cavity and at an area close
to the vocal tract exit (mouth) is presented. Moreover, cuts of the pressure amplitude maps
in a front-plane located 1 cm in front of the mouth exit and in the midsagittal plane are also
presented.
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visualisation of the amplitude variations.

In the case of the third formant, which can be considered as low frequency, we can see
that the acoustic pressure is almost uniform in the plane (x1,x2). Moreover, the iso-amplitude
lines are perpendicular to x3 inside the geometries. The sound is almost uniformly radiated:
the iso-amplitude lines are almost like circles outside of the replica. So it can be concluded
that the plane wave assumption and the ba�ed plane piston ([55] p226-227) are satisfying
to describe the internal acoustic �eld and sound radiation at this frequency. There is no
noticeable di�erence between the case with lips and the case without lips. The patterns
obtained experimentally and with FEM simulations are very similar: the averaged di�erence
between the pressure maps is of the order of 0.2 dB.

In the case of the last formant, which can be considered as high frequency, there are
signi�cant variations of the acoustic pressure in the plane (x1,x2). The iso-amplitude lines
are no more perpendicular to the axis x3 inside the geometries. The radiation of the sound
is no more uniform: outside the geometry the iso-amplitude lines are asymmetrical with a
low amplitude direction. So it can be concluded that the plane wave assumption and the
ba�ed �at piston radiation model do not give a satisfying description of the acoustic �eld
in this case: HOM are needed to be taken into account. In contrast to the low frequency
pressure maps, signi�cant di�erences of the patterns can be seen: the low amplitude direction
of both con�gurations is located at opposite sides of the mouth exit. The radiation of these
geometries is further investigated in section 5.4. Besides, there is a good agreement between
the experiments and the FEM simulations: the averaged di�erence between the pressure maps
is of the order of 1 dB.

In summary: The in�uence of HOM inside realistic geometries has been con�rmed. The
presence of the lips have been observed to lower the frequency of the peaks and dips of the
PPTF, to reduce their bandwidth and to modify the radiation patterns. Eventually, the FEM
successfully predicts the acoustic �eld inside and outside these realistic geometries.



Chapter 5

In�uence of HOM on directivity

In the previous chapter the e�ects of the HOM have been investigated mainly inside the
vocal tract. In this chapter the sound radiation outside of the vocal tract is studied. The
question of how the transfer function of the vocal tract varies with the orientation of the vocal
tract with respect to the position of a reception point is addressed. To do so, the radiated
acoustic pressure has been measured and simulated at various angles from the exit of the vocal
tract geometries with di�erent complexity. The results presented in this chapter are partly
published in [56].

5.1 Directivity of two tubes and 44 tubes geometries with cir-
cular cross-sections

The acoustic pressure radiated by the 2CC[A], 2CE[A], 44CC[A] and the 44CE[A] has been
measured at 48 cm from the exit of the replicas varying the angular position by steps of 15◦

using the experimental setup represented in Fig. 3.5. The distance of 48 cm was the larger
distance reachable with the experimental setup and has been used as the closest to a relevant
distance in the context of a conversation. All measurements have been performed in the plane
(x1,x3), and the common edge of the 2CE[A] and the 44CE[A] has been placed on the 90◦ side
(as represented on Fig. 3.5a).

5.1.1 volume velocity distribution at the exit

In the case of the concentric con�gurations, the only propagation modes expected at the
exit of the geometries are ψ00 and evanescent HOM which are generated by the discontinuity
corresponding to the transition from the geometries to the exterior space. In the case of the
eccentric con�gurations, ψ01 can be present and introduces the appearance of two areas with
opposite phase on the exit surface.

The evanescent HOM can change the volume velocity distribution on the exit surface,
and one could expect an in�uence on the directivity of the radiated sound. However, in
the concentric con�gurations, a simulation performed with all modes whose cut-on frequency
lies below 20 kHz and a simulation with plane mode only gives exactly the same directivity
patterns at 0.48 m from the exit. Thus, the in�uence of these modes can be neglected at this

83
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a) 2 concentric tubes (2CC[A]) experiment b) 2 eccentric tubes (2CE[A]) experiment

c) 2 concentric tubes (2CC[A]) MM simulation d) 2 eccentric tubes (2CE[A]) MM simulation

Figure 5.1: Normalized amplitude (dB) and maximal sound pressure level di�erence MSPLD
with respect to the angular position of the pressure radiated from two tubes vowel [A] replicas
with concentric (2CC[A]) and eccentric (2CE[A]) junction measured and simulated at 48 cm
from the exit between 2 kHz and 10 kHz every 15 ◦ and 3 ◦ for respectively the experiments
and the simulations. To avoid perturbations linked to experimental artifacts present on the
extremal positions, the maximal sound pressure level di�erence has been computed with and
without the edge positions (-90 ◦ and 90 ◦).
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a) 44 concentric tubes (44CC[A]) experiment b) 44 eccentric tubes (44CE[A]) experiment

c) 44 concentric tubes (44CC[A]) MM simulation d) 44 eccentric tubes (44CE[A]) MM simulation

Figure 5.2: Normalized amplitude (dB) and maximal sound pressure level di�erence MSPLD
with respect to the angular position of the pressure radiated from 44 tubes vowel [A] replicas
with concentric (44CC[A]) and eccentric (44CE[A]) junction measured and simulated at 48 cm
from the exit between 2 kHz and 10 kHz every 15 ◦ and 3 ◦ for respectively the experiments
and the simulations. To avoid perturbations linked to experimental artifacts present on the
extremal positions, the maximal sound pressure level di�erence has been computed with and
without the edge positions (-90 ◦ and 90 ◦).
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a) 2 concentric
tubes (2CC[A])

b) 2 eccentric
tubes (2CE[A])

c) 44 concentric
tubes (44CC[A])

d) 44 eccentric
tubes (44CE[A])

Figure 5.3: Measured (dotted lines) and simulated (full lines) acoustic pressure amplitude
(dB) as a function of angle at selected frequencies.

a) two eccentric tubes (2CE[A])

b) 44 eccentric tubes (44CE[A])

Figure 5.4: Angle corresponding to the minimum (for maximal sound pressure level di�erence
MSPLD values larger than 3 dB) of the radiated pressure as a function of the frequency
extracted from the simulations of the eccentric geometries (2CE[A] and 44CE[A]). The angles
corresponding to the pressure 6 dB higher than the minimum are presented in dashed lines.
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distance and the volume velocity distribution can be considered as uniform if ψ00 is the only
mode propagating.

5.1.2 Directivity of concentric con�gurations (2CC[A] and 44CC[A])

The measured and simulated normalized pressures and the MSPLD are presented in Figs. 5.1
and 5.2 for respectively the two and 44 tube geometries. Directivity patterns obtained for
selected frequencies are presented in Fig. 5.3, and the angle corresponding to the minimal
amplitude is presented for the simulations performed on the 2CE[A] and the 44CE[A] in Fig.
5.4.

The concentric con�gurations generate a one lobe symmetric directivity pattern with a
maximum in the center (at 0◦, see Figs. 5.1a, 5.1c, 5.2a and 5.2c). The amplitude of this lobe
increases in the center and decreases towards the edges (-90◦ and 90◦) when the frequency
is increased. The MSPLD increases progressively and reaches 10 dB and 7 dB at 10 kHz for
the 2CC[A] and 44CC[A] respectively. In the experimental data, this pattern is perturbed by
measurement noise which can be due to insu�ciently damped re�ections on the walls of the
insulated room, or external noise.

In addition to this noise, one can see more important localized discrepancies between
the experiments and the simulations. For the 2CC[A], a peak of MSPLD of 10 dB can be
seen at 7.52 kHz. The corresponding directivity pattern presented in Fig. 5.3a is asymmetric
with a lower amplitude between 0◦and 90◦. Other less pronounced discrepancies can be
found at 7 kHz and 9.3 kHz. On the experimental data obtained with the 44CC[A], peaks of
MSPLD can be seen at 8.1 kHz (36 dB), 8.3 kHz (34 dB), 8.8 kHz (14 dB) and 9.1 kHz (57
dB). Inside a narrow frequency band centered on these frequencies, the directivity patterns is
constituted of two asymmetric lobes separated by a low amplitude direction (see Fig. 5.3c).
These discrepancies can be related to the di�erences observed between the measured and
simulated internal pressure �elds observed in sections 4.1.4 and 4.2.4 in Figs. 4.4, 4.6, 4.7 and
4.11. It can be hypothesized that they are generated by small asymmetries of the replicas,
this is further investigated in section 5.2.1. Apart in these particular narrow frequency bands,
the same patterns are observed for the experimental and the simulated data.

For the concentric con�gurations, the only propagation mode involved in the radiation is
ψ00. Thus, the only directivity e�ect which can be expected is the well known radiation from
a ba�ed circular piston ([55] p226-227). Indeed, except for some localized discrepancies in
the experimental data, the directivity pattern of these con�gurations is one symmetric lobe
with higher amplitude in the center (at 0◦) whose MSPLD increases progressively with the
frequency. This pattern is only due to the di�erence in the distances traveled by the waves
coming from the di�erent parts of the radiating surface to the reception point which induces
a phase di�erence.
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5.1.3 Directivity of eccentric con�gurations (2CE[A] and 44CE[A])

For the eccentric geometries, a one lobe pattern which becomes more pronounced for increased
frequency can be seen up to 6.5 kHz. Above this limit, more complex asymmetric patterns with
one or two lobes are visible (see Figs. 5.1b, 5.1d, 5.2b, 5.2d, 5.3b and 5.3d). The variations
of the directivity are important within short frequency intervals: the MSPLD can vary up to
50 dB within 100 Hz intervals.

In order to see better the appearance and the evolution of the two lobe pattern, the angle
corresponding to the minimum between the lobes has been plotted in Fig. 5.4. This minimum
is typically of the order of 30 dB lower than the maximum and is limited to a narrow angular
region of about 30◦. Its direction can vary a lot (up to 60◦) within a short frequency interval
(of the order of 100 Hz). For both 2CE[A] and 44CE[A], the minimum of amplitudes tends to
be located between -90◦ and 0◦, which corresponds to the side opposite to the common edge.

In the case of the 2CE[A], the patterns obtained by simulation can be recognized in the
experimental data. For both experiment and simulation, peaks of MSPLD can be seen at 7
kHz, 7.5 kHz, 8.5 kHz, 8.8 kHz and 9.6 kHz. Except between 7.9 kHz and 8.1 kHz, two lobes
can be seen at all the frequencies from 6.94 kHz (see Figs. 5.3b and 5.4a).

In the case of the 44CE[A], similar patterns can be recognized in the experiment and the
simulation, but there are more di�erences above 9 kHz. Peaks of MSPLD can be seen at 6.6
kHz, 8.5 kHz and 9.7 kHz (see Fig. 5.3d) for both experiment and simulation. A two lobes
pattern appears inside more reduced and isolated frequency intervals: 6.63 kHz to 6.65 kHz,
8.38 kHz to 8.53 kHz and 9.58 kHz to 9.89 kHz (see Fig. 5.4b). Between 6.6 kHz and 8.5 kHz
a one lobe symmetric pattern can be seen and between 8.5 kHz and 9.7 kHz, there is a one
lobe asymmetric pattern with lower amplitude between 0◦and 90◦.

In the case of the eccentric con�gurations, the ba�ed circular piston pattern can be seen
under the cut-on frequency of ψ01 because up to this frequency ψ00 is the only mode prop-
agating. Above this cut-on frequency the particle velocity distribution on the exit surface is
no more uniform. The phase di�erence between the waves coming from the di�erent parts of
the radiating surface is not only due to the di�erences in traveled distance but also to the
amplitude and phase variations on the radiating surface. As a consequence, more complex
directivity patterns are observed.

5.1.4 Two lobes pattern

The presence of ψ01 at the exit of the geometries can induce the appearance of two areas with
opposite phase. In this case, the radiating surface acts as an acoustic dipole and a directivity
pattern with two lobes separated by a low amplitude direction is generated.

The interference of the acoustic pressure radiated by ψ00 and ψ01 can reinforce the radiated
acoustic pressure on one side and decreases it on the other. Asymmetric directivity patterns
are thus obtained. The low amplitude direction is no more oriented to the center (0◦), but is
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shifted to the side having the lowest amplitude. The variations of the amplitudes and phase
of ψ00 and ψ01 with the frequency changes the direction of the minimum of amplitude.

The propagation of another HOM than ψ01 can generate di�erent directivity patterns.
This is what can be seen in section 5.3 in which one can see that an elliptical cross-section
can generate a three lobe pattern.

5.1.5 Comparison between HOM and plane piston

At some frequencies the combination of ψ00 and ψ01 can result in a volume velocity distribution
which compensates partially the phase di�erence due to the di�erences in traveled distances
between the di�erent part of the radiating surface and the reception point. This generates a
reduced directivity compared to the ba�ed circular piston at the same frequency. This can be
seen between the second and the third peaks of MSPLD and above the �fth peak of MSPLD
for the 2CE[A] (see Figs. 5.1b and 5.1d). For the 44CE[A] it can be seen before or after the
MSPLD peaks (see Figs. 5.2b and 5.2d). The e�ect of HOM is slightly noticeable below the
cut-on frequency, from about 6.4 kHz, whereas the cut-on frequency of ψ01 is 6.8 kHz for the
two tubes geometries. This can be explained by the fact that close to the cut-on frequency
the reduction of amplitude of the evanescent modes generated at the junction becomes less
important and they can have a signi�cant amplitude at the exit.

5.1.6 Relation between input impedance and directivity

The peaks of MSPLD appear close to input impedance minima. For the 2CE[A] the peaks
of MSPLD at 7 kHz, 7.5 kHz, 8.5 kHz and 9.6 kHz can be related to minima of impedance
located at 7 kHz, 7.4 kHz, 8.6 kHz and 9.5 kHz. Likewise for the 44CE[A] the peaks of
MSPLD at 6.6 kHz and 9.7 kHz can be related to minima of input impedance located at close
frequencies. However, the frequencies are not exactly the same and some peaks of MSPLD
cannot be related to maxima or minima of input impedance. As an example, for the 2CE[A],
the peak of MSPLD at 8.8 kHz does not correspond to a maximum or minimum of input
impedance. Likewise, for the 44CE[A], the peak of MSPLD at 8.5 kHz can not be related to
a maximum or minimum of input impedance. One can also notice that for the 2CE[A], the
peak of MSPLD located at 7.5 kHz is between a minimum (at 7.4 kHz) and a maximum (at
7.6 kHz) of input impedance. Thus, it is not possible to �nd a simple relation between the
input impedance curve and the directivity phenomenon.

Spectrum of the sound radiated by the 2CE[A]

In order to get an idea of how the HOM e�ect can be perceived, the 2CE[A] replica has
been excited using a broadband noise. This can be considered as an imitation of whispered
voice. The spectrum of the radiated sound is presented for each measurement position in Fig.
5.5. Up to 6.5 kHz it is very similar for each position, except at the edges (-90◦ and 90◦)
where the amplitude is globally lower than at the other positions (this has the same origin as
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Figure 5.5: Spectrogram of the sound radiated by a vocal tract replica consisting in a two
tube approximation with an eccentric junction (2CE[A]) recorded at a distance of 48 cm from
the exit every 15◦. The excitation signal used is a broadband noise. Hann windows of 46.4
ms (2048 samples) have been used with an overlap rate of 0.9.

the artifact mentioned in section 3.3.8). Above 6.5 kHz there is noticeable di�erences between
the positions. As an example, at -75◦, -60◦and -45◦the amplitude is lower than at the other
positions between 8.5 kHz and 9.5 kHz. The pattern observed on the directivity maps of Figs.
5.1b and 5.1d can be recognized in the variations of the spectrum with the position. The
authors perceived an audible di�erence between the positions when listening to the recorded
sounds.

5.1.7 Conclusions concerning the directivity of the 2CC[A], 2CE[A],
44CC[A] and 44CE[A]

The measurements and the simulations performed on the 2CC[A], 2CE[A], 44CC[A] and the
44CE[A] showed that the propagation of the HOM ψ01 inside vocal tract approximations of
the vowel [A] induces great variations (up to 50 dB of MSPLD) of the directivity patterns
within small frequency intervals (of the order of 100 Hz) above 6.5 kHz.

A particular e�ect related to the mode-shape of ψ01 has been highlighted. The division of
the exit surface into two areas with opposite phase generates a directivity pattern composed
of two lobes separated by a low amplitude direction (of the order of 30 dB lower than the
maximum). The variations of amplitude and phase of ψ00 and ψ01 with the frequency induce
variations of the size of the lobes and the direction of the minimal amplitude (up to 60◦

within 100 Hz). Another e�ect of the propagation of ψ01 is the reduction of the directivity in
comparison with the ba�ed circular piston directivity in some frequency intervals.
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Figure 5.6: Maximal sound pressure level di�erence MSPLD as a function of the frequency
computed for di�erent spacing of the centers of both cross-sections of the two tubes geometries.

Since the vocal tract geometry is subject to inter- and intra-speaker di�erences even for a
single phoneme as considered in this study, care is needed when extrapolating these conclu-
sions to human speech. The two vocal tract approximations studied generate very di�erent
directivity patterns above the �rst cut-on frequency.

Because the directivity patterns become di�erent from the ba�ed circular piston above
the �rst cut-on frequency in the eccentric con�gurations, one can expect that the directivity
is perceived di�erently above this frequency. This assumption is reinforced by the fact that
di�erences related to the position are visible in the spectrogram of the sound emitted by the
replicas excited with a broadband noise above 6.5 kHz. However, one can question how the
great variations (up to 50 dB of MSPLD within 100 Hz) of the e�ects of the HOM on the
directivity with the frequency are perceived or if they can be noticed by a listener. Thus, it
would be interesting to carry out perceptual tests to further investigate this question. For
the same reasons, classical spectral measures such as the octave/third-octave frequency band
might mask the localized aspect of this e�ect. On the other hand, given the limited angular
region of some phenomena, it would be interesting to increase the angular resolution in the
future. Because of the high frequency energy present in fricative and plosive sounds, this e�ect
is expected to have more perceptual impact. Thus, it would be interesting to investigate its
consequences with vocal tract geometries corresponding to these phonemes.

5.2 In�uence of eccentricity degree and convergent shape

5.2.1 In�uence of the degree of eccentricity

In order to investigate the in�uence of the degree of eccentricity of a junction on the directivity,
simulations have been performed varying the distance between the centers of the two cross-
sections of the 2 tubes geometry from 0 mm to 7 mm by steps of 0.5 mm. This corresponds to
the progressive transition from the 2CC[A] (Fig. 3.1a) to the 2CE[A] (Fig. 3.1b). The radiated
pressure has been computed for each distance between the centers. The MSPLD correspond-
ing to four distances between the centers is presented in Fig. 5.6. These distances, 0 mm,
0.5 mm, 3.5 mm and 7 mm, corresponds respectively to the concentric con�guration, the lo-
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west possible eccentricity with the discretization of the cross-sectional surface used (0.5 mm),
the intermediate con�guration and the fully eccentric con�guration. At 0.5 mm of distance,
peaks of MSPLD up to 20 dB can be seen above 6.5 kHz and the MSPLD curve is completely
separated from the 0 mm curve above 8 kHz. With a distance of 3.5 mm the MSPLD curve
is very similar to the 7 mm curve.

The simulations performed varying the eccentricity showed that even a very small eccen-
tricity (0.5 mm) can induce signi�cant changes of the directivity patterns with respect to the
axisymmetric con�guration (up to 15 dB of di�erence). Thus, it is not required to have a large
eccentricity so that ψ01 is excited and propagate. This is in agreement with the assumption
that the localized discrepancies between simulations and experiments can be explained by
small asymmetries in the replicas. The fact that the frequencies of the discrepancies observed
for the 2CC[A] corresponds to peaks of MSPLD of the 2CE[A] reinforces this hypothesis. How-
ever, the matching between the frequency of the discrepancies and the peaks of MSPLD of the
eccentric con�guration is less good for the 44 tubes geometries. The perfectly axisymmetric
cases thus appear as theoretical cases di�cult to reproduce accurately experimentally. The
human vocal tract cannot be considered as axisymmetric and from these observations, one
can conclude that axisymmetric geometrical approximations of it are not likely to reproduce
a realistic directivity above their �rst cut-on frequency. Introducing asymmetries in such kind
of approximations would allow one to simulate a qualitatively more realistic directivity above
the �rst cut-on frequency.

In summary: The excitation of HOM being very sensitive to small asymmetries, the rele-
vance of axisymmetric vocal tract approximation for the simulation of the speech directivity
above the �rst cut-on frequency of the vocal tract can be questioned. Introducing asymmetries
in these approximations would allow one to simulate qualitatively more realistic directivity
patterns.

5.2.2 Convergent exit

During speech production, the vocal tract often has a cavity located before the mouth with
larger transverse dimensions than the mouth exit, and thus has a convergent exit. This is
what one can see in the area function of the 44 tubes approximations which decreases near
the open end of the vocal tract (see Fig. 3.1f).

However, this is not the case for the two tubes approximation. In order to investigate how
a convergent exit can a�ect the directivity, a third 0 length section has been added at the
end of the 2CE[A] geometry. Its diameter has been reduced by steps of 0.5 mm from 29.5 mm
(which corresponds to the diameter of the second section) to 10 mm. A convergent exit is
thus gradually introduced. The radiated pressure has been computed for each diameter value.
The MSPLD and the input impedance corresponding to 3 diameters values, 29.5 mm, 20 mm
and 10 mm, are presented in Figs. 5.7a and 5.7b respectively. The �rst one corresponds to
the 2CE[A] without convergent exit.
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a) Maximal sound pressure level di�erence b) Input impedance

Figure 5.7: Maximal sound pressure level di�erence MSPLD and input impedance as a func-
tion of the frequency computed for di�erent diameters of the exit of the two eccentric tubes
geometry.

When the diameter of the third section is reduced, the MSPLD is globally decreasing.
With a diameter of 10 mm it is almost zero up to 6.5 kHz. However, above 6.5 kHz the
MSPLD still has locally important values (up to about 35 dB at 7 kHz, 7.3 kHz, 8.1 kHz and
9.3 kHz for an exit diameter of 10 mm), but between these peaks the MSPLD is reduced. The
frequency of the peaks is decreased and one peak disappears at 10 mm. The peaks of input
impedance have a larger amplitude and a reduced bandwidth and the minima have a reduced
amplitude. The frequency of the peaks and minima of input impedance is also reduced.

In the case of a convergent exit, the radiation losses are reduced in comparison with a
non-convergent exit. As it can be observed on the input impedance curves, this induces a
higher amplitude and a reduced bandwidth of the resonances inside the vocal tract. This
can be related to the fact that the e�ects of the HOM are more localized around the peaks
of MSPLD for reduced exit diameters (see Fig. 5.7). When the diameter of the exit is
reduced, one gets closer to a closed end boundary condition and the resonance frequencies are
reduced. This can be related to the decrease of the frequency of the peaks of MSPLD and
input impedance for reduced exit diameters. Thus, the fact that the 44CE[A] has a convergent
exit and not the 2CE[A] can explain why the e�ects of HOM are more localized in frequency
for the 44 eccentric tubes geometry.

The in�uence of HOM can be seen even with a diameter of 10 mm which is almost three
times smaller than the diameter of the large tube. Thus, more generally, it can be expected to
be signi�cant even if the mouth aperture is small compared to the preceding cavity. One can
expect that the in�uence of HOM on the directivity varies qualitatively with the phonemes. A
wide mouth aperture would induce an e�ect visible at all the frequencies above the �rst cut-on
frequency of the vocal tract and a narrow mouth aperture would induce an e�ect limited to
localized narrow frequency intervals. This is further investigated in section 5.5.

In summary: The e�ects of HOM can be seen even if the radiating surface is small compared
to the largest dimension of the vocal tract. However, in this case, they tend to be localized in
particular frequency bands.
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5.3 Directivity of a con�guration with elliptical cross-section
(44EE[A])

Directivity measurements have also been performed on the 44EE[A], however, in this case,
in order to better observe the phenomena depicted in section 5.1, the angular resolution has
been increased to 3◦. To do so, the experimental setup using the positioner has been used
(Fig. 3.4) instead of the one using a manually moved microphone. The motion of the probe-
microphone being automated, the measurement of the acoustic pressure at more locations was
less tedious and more accurate than by moving the microphone manually. However, in this
case, the maximal achievable distance from the exit is limited to 10 cm. As a consequence, the
directivity can be measured only in relatively close �eld. In order to investigate the in�uence
of the HOM on directivity at higher frequencies than 10 kHz, the frequency range has been
increased to 15 kHz.

5.3.1 Comparison with experiment

The directivity maps measured and simulated with MM in the horizontal plane (x1,x3) on the
44EE[A] at 4 cm from the exit as well as the averaged di�erence between the experiment and
the simulation are presented in Fig. 5.8.

Below 6.7 kHz, the e�ect of the di�raction of the plane waves can be seen as a one
symmetric lobe pattern which becomes more pronounced when the frequency is increased.

Above the cut-on frequency of ψe21 (6084 Hz at 22.65◦C, see Fig. 2.4), the directivity
patterns become more complex. As for the 2CE[A] and the 44CE[A], they show important
change within small frequency intervals (of the order of 100 Hz) and small angular regions (of
the order of 30◦). In particular, transitions from almost omnidirectional to very directional
patterns within less than 100 Hz are observed at 6.72 kHz, 8.49 kHz, 10.61 kHz, 12.31 kHz
and 13.92 kHz for the experiment and at 6.72 kHz, 8.52 kHz, 10.52 kHz, 12.29 kHz, 13.9 kHz
and 14.41 kHz for the simulation. However, unlike the geometries with circular cross-sections,
three lobe patterns are observed instead of two lobe ones.

Unlike the geometries with circular cross-section, the three lobe pattern can be obtained
with the plane mode only from 9.4 kHz. Indeed, the wavelength (3.67 cm at 9.4 kHz) is smaller
than the width of the exit of the geometry (4.42 cm) in this frequency range. And the phase
variations along the width of the exit are larger than 2π. However, this three lobe pattern is
perturbed by the propagation HOM. The position of the amplitude minima is modi�ed, and
the amplitude of the lobes can be ampli�ed or reduced depending on the frequency. The one
lobe pattern is similarly perturbed by the propagation of HOM between 6.7 kHz and 9.4 kHz.

Globally, the directivity maps obtained by experiment and simulations show very similar
patterns which are perfectly symmetric with respect to the 0◦ position for the simulations
and with small asymmetries for the experiment. The amplitude maxima and minima have
similar angular position and occur at similar frequencies. This good agreement, is con�rmed
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(a) Experiment

(b) Simulation

(c) Di�erence between the experiment and the simulation averaged on the angular position

Figure 5.8: Normalized amplitude as a function of the frequency and the angular position
measured and simulated at 4 cm from the exit of a vowel [A] vocal tract replica created from
an area function from [23] constituted of 44 tubes with elliptical cross-sections with junction
eccentric in the vertical plane (x2,x3) and symmetric in the horizontal plane (x1,x3) (44EE[A].
The di�erence between the experiment and the simulation averaged on the angular positions
is also presented as a function of the frequency.
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(a) Experiment
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(b) MM simulation with re�ection

Figure 5.9: Normalized amplitude as a function of the frequency and the angular position
measured and simulated at 10 cm from the exit of a vowel [A] vocal tract replica created
from an area function from [23] constituted of 44 tubes with elliptical cross-sections with
junction eccentric in the vertical plane (x2,x3) and symmetric in the horizontal plane (x1,x3)
(44EE[A]). The simulation takes into account a re�ection on a plane located 37.6 cm behind
the microphone.

by the fact that the di�erence between the experiment and the simulation averaged on the
angular position (see Fig. 5.8c) is globally smaller than 5 dB. There are however some peaks
of averaged di�erence with higher amplitude (at 6.72 kHz, 8.28 kHz, 8.52 kHz, 10.52 kHz and
12.28 kHz). But they are due to small di�erences in the frequency at which abrupt changes in
directivity pattern occur. The averaged di�erence globally increases with the frequency. This
can be related to the fact that the more complex patterns do not match exactly: there are
small di�erences in the angular position of the minima of the three lobe pattern (of the order
of 5◦).

The small asymmetries observed in the experiments can be attributed to small imper-
fections of the replica, insu�ciently damped re�ections or background noise. The di�erence
in the frequency at which the abrupt changes of directivity pattern occur can be explained
by a di�erence between the cut-on frequency of the HOM used for the simulations and the
experimental one. This can come from inaccuracies in the measurement of the temperature,
variations of the temperature during the experiment (the cut-on frequency of the HOM is
very sensitive to temperature change1), di�erence between the experimental boundary condi-
tion and the one implemented in MM (the 3D printed material can be slightly porous) and
from numerical errors. These small frequency di�erences explain the presence of peaks in the
averaged di�erence curve at the same frequencies.
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5.3.2 E�ect of �rst re�ection outside the replica

The acoustic pressure has been measured and simulated in the horizontal plane (x1,x2) on
the 44EE[A] at a larger distance from the exit of 10 cm. The corresponding directivity map
is presented in Fig. 5.9.

Directivity patterns globally similar to the ones of Fig. 5.8 are observed: abrupt transitions
within small frequency intervals (order of 100 Hz) and three lobe patterns. However, in this
case a periodic pattern, shaped like parabolic arcs is visible on the measured directivity maps
on all the frequency range (see Fig. 5.9a).

It has been hypothesised that this is the result of the interference with re�ected waves.
Thus, a re�ection have been introduced in the simulation following the method described
in section 2.3.2.2 in order to reproduce this phenomenon. Since the arm of the positioner
has been estimated as the object which most likely causes re�ections, the re�ection plane
of the simulation has been placed at its location which is 37.6 cm behind the end of the
probe-microphone. Note that the displacement of the re�ection plane with the motion of the
positioner is taken into account in the simulation.

On the simulated directivity map (see Fig. 5.9b) one can see the directivity patterns with
a periodic interference pattern shaped like parabolic arcs superimposed. Thus, even though
the interference patterns obtain by simulation are not exactly similar to the one observed on
the experimental data, one can conclude that the phenomenon is qualitatively reproduced and
that the hypothesis of the interference with a re�ected wave is consistent.

The di�erences between the interference patterns of the experiment and the simulations
can be attributed to the limitation of the simple specular model used for this modelization,
to the fact that the re�ection coe�cient of the surface is not one, the surface of the positioner
harm is not rigorously �at and that other re�ections not taken into account also inteferes with
the direct �eld. Indeed, a more careful observation of Fig. 5.9a reveals that a second periodic
parabolic pattern is superimposed to the more important one. The arcs of this second pattern
are narrower and closer to each other. Since it has been observed with MM simulations that
the parabolic patterns becomes narrower and closer to each other when the re�ection plane
is farther from the microphone, it can be hypothesised that this pattern is due to a re�ection
on the wall located in front of the replica.

The in�uence of the re�ections is more important and more visible at 10 cm from the
exit than at 4 cm because the direct �eld has a lower amplitude at this distance, whereas
the re�ected waves can have, on the contrary, a higher amplitude. However, a more careful
observation of Fig. 5.8a reveals that an interference pattern is also visible between 5 kHz and
8 kHz. The variations of amplitude of the interference pattern related to the re�ections can
reach 25 dB at 10 cm, whereas it is limited to 5 dB at 4 cm.

However, this e�ect remains lower in amplitude than the di�raction of the plane waves and

1A variation of temperature of 1◦C induces a variation of about 10 Hz of the frequency of ψ01 in the case

of a circular cross-section of diameter 29.5 mm.



98 Chapter 5. In�uence of HOM on directivity

the in�uence of HOM. Indeed, without re�ections the MM simulations can have a maximal
di�erence up to 50 dB. On the other hand, the measurements performed at 48 cm (see section
5.1) show that even though there are non negligible re�ection at this distance, the same
patterns are observed on the directivity maps measured and simulated. The fact that no
interference patterns are visible on the directivity maps of Figs. 5.1 and 5.2 can be explained
by the lower angular resolution, which does not allows one to observe it. However, there
are some small periodic amplitude variations for each position which may be explained by
re�ections.

The fact that even in an environment designed so that the re�ections are as limited as
possible interference patterns due to re�ection signi�cantly in�uence the observed directivity
maps shows that this phenomenon cannot be neglected when considering a more realistic
context in which nothing is done to damp the re�ections. Eventually, this raises the question
of how to account for the room acoustics with the radiation model used.

5.4 Directivity of the MRI based vocal tract geometries

In order to investigate how the sound is radiated from the vocal tract with geometries as
realistic as possible, directivity measurements have been performed on the geometries created
from MRI (see Figs. 3.1g and 3.1h). As for the 44EE[A], the setup using a positioner has
been used in order to insure a good angular resolution (3◦) and the measurements have been
performed in the frequency range from 2 kHz up to 15 kHz.

5.4.1 Directivity measurements performed with realistic replicas

The amplitude of the sound radiated by both MRI based geometries is presented as directivity
maps in Fig. 5.10.

Except in the case of the vertical plane (x2,x3), the directivity patterns are almost om-
nidirectional up to 3.5 kHz. The �rst e�ect which can be attributed to HOM propagation is
visible in the horizontal plane at 3.56 kHz for the case with lips and 3.58 kHz for the case
without lips. It appears as an abrupt change (within less than 20 Hz) from a one lobe pattern
with lower amplitude on the -90◦ side to a lower amplitude on the 90◦ side. The e�ects of
HOM can then be seen at all the frequencies from about 4 kHz for the case with lips and about
5 kHz for the case without lips. As observed in sections 5.1 and 5.3, it appears as signi�cant
variations of the directivity pattern within short frequency intervals (of the order of 100 Hz)
and small angular regions (of the order of 30◦). However, in this case, it can be seen in larger
proportion and complexity than with the 2CE[A], the 44CE[A] and the 44EE[A]. Indeed, more
than ten abrupt transitions of directivity pattern can be seen for both geometries in both
planes, in particular at 5.96 kHz, 11.49 kHz and 13.37 kHz for the lips case and at 6.63 kHz,
10.89 kHz and 12.8 kHz for the no lips case. Directivity patterns with one, two or three lobes
are observed. They are asymmetric at most of the frequencies.
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(a) With lips vertical (x2,x3)
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(b) Without lips vertical (x2,x3)
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(c) With Lips horizontal (x1,x3)
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(c) Without Lips horizontal (x1,x3)

Figure 5.10: Normalized amplitude (dB) as a function of the frequency and the angular
position of the acoustic pressure radiated at 4cm from the exit of two replicas built from an
MRI database ([26]) with and without lips (see Figs. 3.1g and 3.1h). These measurements
have been performed in the horizontal (x1,x3) and the vertical (x2,x3) planes.
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The greater complexity of the measured directivity patterns compared to the ones observed
with the 2CE[A], the 44CE[A] and the 44EE[A] can be explained by the greater complexity of
the MRI geometries. The fact that almost no symmetric patterns are observed shows that the
symmetric geometries are particular cases which does not match the behaviour of a realistic
vocal tract shape. The lower frequency limit at which the HOM e�ect starts compared to
the previously studied replicas can be explained by the wider dimensions and the overall
asymmetry and eccentricity of the shape which allows every propagation mode, even the ones
with the lowest cut-on frequency, to be excited and to propagate.

5.4.2 E�ect of the lips on the directivity

Signi�cant di�erences can be observed between the case with lips and the case without lips.
The number and the frequency of the abrupt change of directivity pattern are di�erent. How-
ever, some similar patterns can be found at close frequencies, as an example in the horizontal
plane (x1,x3) at 3.56 kHz for the case with lips and at 3.58 kHz for the case without lips. A
similar global tendency can be observed in the horizontal plane. See as an example the area
with no abrupt change of directivity pattern between 9 kHz and 10 kHz. However, in this case
the minimum is not located on the same side (90◦ in the case with lips and -90◦ in the case
without lips).

There are more di�erences in the vertical plane (x2,x3). In the case with lips two directions
with globally lower amplitude (at about -70◦ and 70◦) which are not present in the case
without lips are observed. The amplitude also tends to be globally higher in the center. This
can be understood as the e�ect of the lips, which is more important in the vertical plane
(x2,x3) because it is in this plane that the presence of the lips induces the more important
geometrical change. One can also notice that, in the case with lips, the 90◦ side has globally
lower amplitude at all the frequencies. This can be explained by the fact that the upper lip,
which is located at the 90◦ side, is larger than the lower lip in this geometry. The fact that
the lower amplitude induced by the presence of the upper lip can be seen even at the lowest
frequency shows that the di�raction by the upper lip a�ects the directivity even if the only
propagation mode present is the plane mode.

In summary: The lips appear as a key element in the radiation of the sound, especially in
the vertical plane (x2,x3). The combination with the e�ect of the HOM coming from inside
change signi�cantly the radiation patterns. However, this also introduces some global changes
which can be seen at all the frequencies.

5.5 Comparison of the vowels [A], [i] and [u]

After having investigated the e�ect of the HOM on various degrees of simpli�cation of the
vowel [A] this vowel has been compared to two other vowels, [i] and [u]. These three vowels
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Figure 5.11: Normalized amplitude (dB) as a function of the frequency and the angular
position simulated at 60 cm from the exit of three vocal tract approximations for the vowels
[A], [i] and [u] (44EFE[A], 44EFE[i] and 44EFE[u]) created from area functions provided by
Story [23].

corresponds to the three extremes of the possible geometrical shapes of the vocal tract. As
for the 44EFE[A], the 44EFE[i] and 44EFE[u] have been created from area functions provided
by Story [23]. The conclusions drawn from the preceding results lead one to create it with
elliptical cross-sections and fully eccentric junctions in the plane (x2,x3) and 25 % eccentric
junctions in the plane (x1,x3) (see Fig. 3.3). The 25 % eccentricity in the plane (x1,x3) has
been added in order to break any symmetry in the geometries.

5.5.1 Simulation of the directivity patterns of the vowels [A], [i] and [u]

The acoustic pressure has been simulated with the MM at 60 cm from the exit of the geometries
up to 15 kHz for a temperature of 20◦C. The corresponding directivity maps are presented in
Fig. 5.11.

As for the previously studied geometries, one can observe the combination of the e�ect of
the di�raction of the plane mode and the e�ect of the HOM. For the three geometries, abrupt
transitions occurring in a small frequency interval (of the order of 100 Hz) are observed.
The frequency intervals in which the abrupt transitions occur are narrower in the case of the
44EFE[u] and even narrower in the case of the 44EFE[i]. The e�ect of HOM begins to be
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visible at 3.8 kHz for the 44EFE[A], 9.1 kHz for the 44EFE[i] and 4.4 kHz for the 44EFE[u].
Their e�ect tends to be localized in narrow frequency intervals in the case of the 44EFE[i]
and the 44EFE[u]. In the case of the 44EFE[A], the e�ects of HOM are present at all the
frequencies from 6.7 kHz and inside two narrow intervals (of the order of 500 Hz) located
around 3.8 kHz and 5.7 kHz. In the case of the 44EFE[i], the e�ect is present inside two very
small frequency intervals (about 50 Hz) above 9.1 kHz, and inside wider intervals above 10
kHz. There is a strong minimum located around 10.3 kHz in the direction -26◦. In the case
of the 44EFE[u], the e�ect is limited to 20 narrow bands (smaller than 300 Hz).

5.5.2 Comparison between the approximations of the vowel [A] and the
measurements performed on the realistic replicas of the vowel [A]

The directivity map simulated with the 44EFE[A] is qualitatively closer to the directivity maps
measured on the MRI based replicas than the other vowel [A] approximations. Indeed, in the
case of the 44EE[A] the directivity patterns show complex variations with abrupt changes, but
it is perfectly symmetric with respect to the central position 0◦ (see Figs. 5.8a and 5.8b). On
the opposite, the directivity map of Fig. 5.11a shows asymmetric directivity patterns for all
the frequency ranges in which the e�ect of HOM is observed. Another similarity between the
44EFE[A] and the realistic geometries is the fact that the �rst e�ect of HOM is observed at
3.8 kHz and 3.5 kHz and that it is observed at all the frequencies from 6.7 kHz and 5 kHz.
On the opposite, the �rst observed e�ect of HOM for the 44EE[A] is at 6.7 kHz and the e�ect
is visible at all the frequencies from 8.5 kHz.

The same qualitative behavior is observed for the 44EFE[A] and the MRI based replicas
with more complexity for second one. Thus, one can conclude that the use of elliptical cross-
sections with eccentricity in both planes allows one to simulate acoustic properties qualitatively
close to the one of realistic geometries using a very simple description of the vocal tract
shape based on an area function. This can be of particular interest if one desire to perform
simulations with a lower computational cost than with numerical methods such as FEM or
FD. The simple description of the geometry is also an advantage: an area function is a very
small amount of data compared to a 3D geometry based on MRI and it can be interpolated.
Simple articulatory models could also be used for this purpose.

5.5.3 Comparison between the vowels [A], [i] and [u]

The 44EFE[A] has a mouth opening wider (4.42 cm) than the one of the 44EFE[i] and the
44EFE[u] (2.51 cm and 2.4 cm respectively), which is preceded by a large oral cavity (6.2 cm
in the widest part, see Figs. 3.2 and 3.3a). Thus, HOM are expected to propagate at relatively
low frequency (below 4 kHz) and they can in�uence directly the volume velocity distribution
at the exit of the geometry. As a consequence, more complex radiation patterns with a more
pronounced directivity are generated. In addition, the larger distance between the di�erent
radiating points of the surface induces a more pronounced directivity due to the di�raction of
the plane waves, which increases the overall directivity.
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Figure 5.12: Transfer functions between the input volume velocity and the acoustic pressure
radiated at 60 cm in front of the exit of three vocal tract geometries corresponding to the vowels
[A], [i] and [u] (44EFE[A], 44EFE[i] and 44EFE[u]) created from area functions provided by
[23].

In the case of the 44EFE[u], there is a large cavity (5.67 cm in the widest part) preceding
a small mouth opening (2.4 cm) (see Figs. 3.2 and 3.3c). This allows the HOM to propagate
at relatively low frequency (4.4 kHz), but their in�uence on the radiation is limited to small
frequency intervals (of the order of 500 Hz) because of the small opening. The e�ect of a
convergent exit investigated in section 5.2.2 is thus observed and con�rmed here.

In the case of the 44EFE[i], there is a cavity with large dimensions (6 cm in the widest part)
near the entrance of the geometry (between x3 = 2 cm and x3 = 10 cm) which is connected to
the mouth by a narrow channel. The HOM which can propagate at relatively low frequency
in the large cavity can in�uence the acoustic �eld at the entrance of the channel and excite
evanescent HOM, but they are exponentially damped along this channel and until a relatively
high frequency (9.1 kHz) only plane waves arrive at the opening. The e�ect of HOM begins
to be visible only for the frequencies at which the wavelength is of the same order of size as
the width of the channel (of the order of 2 cm). The e�ect of the HOM propagating inside
the wider part can then be transmitted to the opening. The volume velocity distribution at
the exit is thus in�uenced by both the HOM of the widest part which induces abrupt changes
in narrow frequency intervals and the HOM propagating in the channel which induce e�ects
more spread in the frequencies.

In summary: The e�ect of a convergent exit investigated in section 5.2.2 is con�rmed here.
One can see that it is possible to predict qualitatively the e�ect of HOM on the directivity of
radiated sound from the shape of the vocal tract geometry.

5.5.4 Transfer function variations

In order to investigate the e�ect of HOM on the transfer functions of the three vowels, the
transfer functions between the input volume velocity and the acoustic pressure radiated at 60
cm in front of the geometries (at 0◦) have been computed. They are presented in Fig. 5.12.
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One can notice the presence of anti-resonances due to HOM propagation at relatively
low frequency for the three geometries. In the case of the 44EFE[A] and the 44EFE[i], the
�rst anti-resonances occur at 3.85 kHz and in the case of the 44EFE[u] it occurs at 4.4 kHz.
Other anti-resonances and resonances due to HOM propagation can be found above these
frequencies. Thus, even if the propagation of HOM does not necessarily impact the directivity
of the radiated sound, e�ects on the transfer functions are present in all the cases.

However, one can not consider a unique vocal tract transfer function when the directivity
e�ects are signi�cant. When the directivity is only produced by the di�raction of the plane
waves, the one lobe pattern generated does not induce signi�cant variations of the transfer
function. The e�ect produced can be modeled by a low pass �lter whose cut-o� frequency
reduces towards the edges (-90◦ and 90◦). When HOM can a�ect the directivity, the e�ect
produced on the variations of the transfer function with respect to the location of the reception
point are more complex. At a given frequency, the transfer function can have a minimum at
one angular position and a maximum at the other. It is no more possible to de�ne a unique
transfer function which can be modi�ed to account for plane wave di�raction. There are as
many vocal tract transfer functions as reception points.

In summary: Depending on the shape of the vocal tract, its transfer function can have
more or less important variations with respect to the position of the reception point. A large
mouth opening and a large cavity close to the mouth will favor e�ects of HOM on directivity
at relatively low frequency (about 4 kHz). A small mouth opening and a large cavity distant
from the mouth exit will induce a reduced in�uence of the HOM on the directivity. However,
in any case, the HOM will in�uence the transfer function at relatively low frequency (about 4
kHz) by inducing anti-resonances and additional resonances.



Chapter 6

Conclusions and perspectives

6.1 Conclusions

With respect to the objectives outlined in the introduction, the following conclusions are made.

6.1.1 In�uence of the appearance of 3D acoustic �eld in the vocal tract

The work presented in this document allowed one to improve the understanding of the in�uence
of the 3D aspects of the acoustic �eld on the transfer function of the vocal tract and on the
directivity of the radiated sound. It has been observed that the propagation of HOM, which
induce 3D variations of the acoustic �eld, generate anti-resonances and additional resonances.
The bandwidth of the resonances has been observed to be a�ected by the di�erence in radiation
e�ciency of the HOM involved. Small changes (about 2%) of the resonance frequencies below
the cut-on frequency of the �rst HOM due to the excitation of evanescent HOM have also
been observed.

As expected, the propagation of HOM has been observed to in�uence consequently the
directivity of the radiated sound. Thus, the transfer function has important variations (up
to 50 dB) within small frequency intervals (of the order of 100 Hz) and within small angular
regions (about 30◦). In the case of circular cross-sections, the propagation of the �rst HOM
ψ01 generates a two lobes directivity pattern which cannot be predicted by the plane piston
model. The lobes of the patterns generated by the HOM can have signi�cant variation of
direction (up to 60◦) within small frequency intervals (of the order of 100 Hz). It has been
observed that the directivity can be locally reduced by the propagation of HOM in comparison
with the directivity predicted with the plane mode only.

The comparison of three vocal tract geometrical approximations for the vowels [A], [i] and
[u] showed that the e�ects of HOM vary a lot with the vocal tract geometry. Even though the
e�ects of HOM have been observed in narrow frequency intervals from 3.5 kHz, the expected
limit of about 4-5 kHz for the appearance of this phenomenon has been con�rmed.

105
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6.1.2 Accurate measurements

The design of an experimental setup, especially dedicated to measure pressure �elds and
transfer functions inside waveguides, allowed one to perform accurate measurements (with a
maximal variability of the order of 1 dB). Directivity measurements with increased frequency
and angular resolution (5 Hz and 3◦) compared to the previous measurements performed with
speakers and singers (third of octave bands and 15◦) allowed one to make more accurate
observations of the directivity patterns and of their variation with the frequency.

6.1.3 Validation of the 3D acoustic simulation methods

The comparison of the experimental measurements of pressure �elds and PPTF with the MM
and FEM simulations showed that the acoustic �eld is successfully predicted by both methods.
The frequency of the peaks of the PPTF is predicted with a typical accuracy of 5%. However,
the -3 dB bandwidth of the peaks is underestimated by the MM because visco-thermal losses
are not taken into account in this implementation. The bandwidths obtained with FEM are
closer to the experimental ones but still have signi�cant di�erences because the losses are
considered constant for all the frequencies. Average di�erences between the pressure �elds are
of the order of 1dB. On the other hand, even though the resonances and anti-resonances cannot
be directly observed with PPTF, their characteristics can be deduced from the observation of
the peaks and dips of the PPTF. The projection of the pressure �eld measured in the plane
perpendicular to the propagation axis x3 showed that there is a good agreement between the
modal amplitudes predicted by the MM simulation and the experimental ones. The directivity
patterns are successfully predicted by the radiation model implemented, and the e�ect of a
re�ection on an object is qualitatively reproduced by a simple model of specular re�ection.

6.1.4 Comparison of the MM and the FEM

The FEM can be applied to any geometry, but require long simulation durations (typically
of the order of 24h on serial computing system with processor Intel R© CoreTM i5 2.8 GHz
for the geometries studied in this document) and needs to mesh outer space. The MM has
a shorter simulation duration (typically of the order of 1 h with processor Intel R© CoreTM

VproTM 3.0 GHz for the geometries studied in this document) and does not require any other
discretization than the vocal tract, but is limited to unbended straight geometries in the
current implementation used.

6.1.5 E�ect of geometrical features

The eccentricity appears to be a key factor for the excitation and the propagation of the
HOM featuring nodal lines located on a symmetry axis. It has been shown that a very
small asymmetry is su�cient to allow these HOM to contribute to the acoustic �eld, indeed
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MM simulations have shown that a shift of 0.5 mm of the centers of the sections of the
two tube geometry is su�cient to generate signi�cant e�ects of the HOM. This is the origin
of larger discrepancies between simulation and experiment for the axisymmetric geometries:
the replicas used for the experiment being not perfectly axisymmetric, HOM can be slightly
excited. At high frequency (above about 5 kHz), the axisymmetric geometries appear as
particular theoretical cases di�cult to reproduce experimentally which does not correspond to
the features of a realistic vocal tract. Thus, the eccentricity is important to take into account
for reproducing qualitatively the acoustical properties of the vocal tract when the 3D aspects
of the acoustic �eld need to be taken into account.

The cross-section shape appears as a very important factor which determines the HOM
(mode-shapes and cut-on frequencies) potentially present in the geometries. The frequency
of the resonances, the coupling between the propagation modes at the change of cross-section
and the directivity patterns are determined by the cross-sectional shape.

The size of the mouth aperture in�uences the directivity and the bandwidth of the reso-
nances. A large mouth aperture is likely to induce larger bandwidths, and directivity e�ect
of the HOM spreads on large frequency intervals. A small mouth aperture is likely to induce
small bandwidths and directivity e�ects limited to small frequency intervals (of the order of
500 Hz) but still present.

The presence of the lips lowers the resonance frequencies and reduces their bandwidth.
They appear as a key element in the radiation of the sound by creating low amplitude directions
in the vertical plane (x1,x2) present at all the frequencies.

6.1.6 Comparison of simpli�ed vocal tract replicas with realistic ones

Building a vocal tract geometry from an area function using elliptical cross-sections and junc-
tions eccentric in both vertical and horizontal planes allows one to get acoustical properties
qualitatively close to the ones of a realistic geometry. The use of such kind of geometry would
allow one to perform, as an example, sound synthesis based on a physical model with less
complexity for the description of the vocal tract geometry and at a lower computational cost.

6.1.7 Comparison of the vowels [A], [i] and [u]

It has been observed with MM simulation that, as expected, the directivity patterns can vary
a lot with the considered phoneme, and a physical explanation has been proposed for the
di�erence observed. Indeed, the di�erent directivity properties of the vowels [A], [i] and [u]
can be related to the shape of the corresponding geometries. In particular, the e�ect of the
mouth aperture investigated with a two tubes vocal tract approximation is con�rmed. A large
cavity located close to the mouth induces the appearance of the e�ect of the HOM at relatively
low frequency (about 4 kHz) and if this same cavity is placed closer to the glottis the e�ect
of the HOM appear at higher frequency because the 3D aspects of the acoustic �eld cannot
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be transmitted through the narrower part which connects it to the mouth.

6.2 Perspectives

Based on these conclusions, the following perspectives are proposed.

The e�ects of the HOM at high frequency (above 5 kHz) need to be taken into account in
any physical modeling of vocal tract acoustics and more generally in high frequency studies
related to speech and singing. In particular, some e�ects not present at low frequency such
as the presence of anti-resonances and, overall the variation of the transfer function with the
position of the reception point need to be considered. Given the signi�cant variations of the
HOM within small frequency intervals, one can question how their e�ect is perceived by a
listener. Thus, the perceptual consequences of the HOM need to be further investigated. On
the other hand, it would be interesting to pursue this work with geometries corresponding
to other phonemes. In particular, the fricatives and the plosives, which have more energy in
the high frequencies, and which have been observed to have a pronounced directivity would
be very interesting to study. It would be also very interesting to study these e�ects on real
speakers by performing more accurate directivity measurements with a higher frequency and
angular resolution and focusing on single phonemes.



Appendix A

Repeatability test 2-10 kHz

In this appendix an experiment complementary to the one detailed in section 3.3.3 is presented.
A measurement has been repeated three times with sinus signals at a �xed position on the
exit surface of a uniform tube. The frequency has been varied by steps of 10 Hz from 2 kHz
to 10 kHz.
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Figure A.1: (a) Amplitude averaged on three measurements performed at the same location
(b) maximal amplitude di�erence between the three measurements
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Figure A.2: (a) Phase averaged on three measurements performed at the same location (b)
maximal phase di�erence between the three measurements

The ratio |Vm||Vs| is presented as a function of the frequency in Fig. A.1a. It is proportional
to the amplitude of the acoustic pressure. As for the experiments presented in section 3.3.3,
the variations of amplitude with the frequency can be attributed to the combination of the
e�ect of the acoustic resonances of the tube and the frequency dependence of the sound source
amplitude. Error bars show the range of variations of the measured amplitude. The di�erence
between the maximal and the minimal amplitudes for each frequency is presented in Fig. A.1b.
One can see that the variations of amplitude over the three experiments remains lower than
0.4 dB. These variations change with the frequency. They can be very low at some frequencies
(0.0013 dB at 8.3 kHz), and reach maxima at others (0.038 dB at 9.7 kHz). Globally the
variations tend to increase with the frequency. This can be understood as the consequence of
the global decrease of the amplitude of the measured acoustic pressure when the frequency is
increased. Indeed, the sound source becomes less e�cient at high frequency, and the probe of
the microphone by damping the high frequencies acts as a low pass �lter. As a consequence,
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the signal to noise ratio is reduced and more variations can be induced by the measurement
noise.

The phase di�erence φm − φs is presented as a function of the frequency in Fig. A.2a. It
corresponds to the phase variations of the acoustic pressure with the frequency. Error bars
show the range of variations of the measured phase di�erence. The di�erence between the
maximal and the minimal phase for each frequency is presented in Fig. A.2b. One can see
that the variations of phase between the three experiments remain lower than 0.08 rad. As
for the amplitude, it changes with the frequency and can have very low values (down to 0.001
rad at 6 kHz) and reachs maxima at other frequencies (up to 0.07 rad at 9.6 kHz).

In conclusion, the variations of amplitude and phase are respectively lower than 0.4 dB and
0.08 rad for this experiment. This having been carried out within less time (40 minutes) than
the experiment with the sinus presented in section 3.3.3 (two hours), the variations due to the
change of experimental conditions are less important, and indeed the observed variations are
smaller for this experiment (0.9 dB and 0.2 rad for the other experiment). However, there are
less repetitions and it is still possible that the e�ect of the measurement noise on the variations
of the measured quantities is less visible. Nevertheless, the smooth variations of the maximal
di�erence can still be interpreted as the e�ect of the variation of the experimental conditions
during the measurement process.





Appendix B

Normalization constants of the
propagation modes in circular

cross-sections

In order to compute the normalization constant Nmn present in the expression of the propa-
gation modes of a circular cross-section (Eq. (2.6)), one applies the normalisation condition
of Eq. (2.5): ∫

S

Jn( rγmn

R )2

N2
mn

cos(nθ)2dS = S . (B.1)

If n = 0, cos(nθ) = 1 and Eq. (B.1) can be integrated in the following way:
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which results in
N2
mn =

√
Jn(γmn)2 − Jn−1(γmn)Jn+1(γmn) . (B.3)

If n > 0, Eq. (B.1) can be integrated in the following way:
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which results in

N2
mn =

√
1

2
(Jn(γmn)2 − Jn−1(γmn)Jn+1(γmn)) . (B.5)

Note that if a sinus is used in Eq. (2.6), the case n = 0 can not be treated because ψm0 = 0

and the case n > 0 can be integrated and also leads one to the Eq. (B.5).

113





Appendix C

Detailed computation of the four
junction types

One has (jD3)−1 = D−1
2 D1 and D2

1 − I = D2
2

C.1 Two consecutives expansions
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Résumé � L'acoustique du conduit vocal est souvent décrite avec de simples modèles ondes
planes à une dimension. Cependant, cela n'est pas satisfaisant quand, à haute fréquence
(à partir d'environ 5 kHz), des variations tridimensionnelles du champ acoustique sont
présentes. La théorie acoustique multimodale a été implémentée pour prendre en compte les
aspects tridimensionnels de l'acoustique du conduit vocal. Un système expérimental a été
conçu pour mesurer avec précision des fonctions de transfert, des champs de pression et des
diagrammes de directivité sur des maquettes de conduits vocaux. Les données expérimentales
obtenues ont été comparées avec les simulations réalisées avec la théorie implémentée et avec
la méthode des éléments �nis. Le champ acoustique tridimensionnel et les diagrammes de
directivité ont été prédis avec succès par les deux méthodes de simulation. Il a été observé que
la propagation de mode acoustique d'ordre supérieur induit des variations tridimensionnelles
du champ acoustique, génère des antirésonances et des résonances additionnelles, et a�ecte la
directivité du son rayonné de façon signi�cative. L'excentricité de la forme du conduit vocal
apparaît comme critique pour l'excitation et la propagation des modes d'ordre supérieur. Il
est conclu qu'à haute fréquence (au-delà de 5 kHz), la fonction de transfert du conduit vocal
peut avoir des variations signi�catives dans de petits intervalles de fréquences (de l'ordre
de 100 Hz) et dans des régions angulaires restreintes (de l'ordre de 30◦). Ces variations
nécessitent d'être prises en compte dans les études de la parole qui se focalisent sur les hautes
fréquences.

Mots clés : parole, conduit vocal, acoustique, champ acoustique tridimensionnel,
méthode multimodale, directivité

Abstract � The vocal tract acoustics is often described with a simple one dimensional
plane wave approach. However, this is not satisfying when at high frequency (from about 5
kHz) three dimensional variations of the acoustic �eld are present. The multimodal acoustic
theory has been implemented in order to account for the three dimensional aspects of the
vocal tract acoustics. An experimental setup has been designed to measure accurately
transfer functions, pressure �eld maps and directivity patterns of vocal tract replicas. The
experimental data obtained have been compared with simulations performed with the imple-
mented theory and with a �nite element method. The three dimensional acoustic �elds and
the directivity patterns were successfully predicted by both simulation methods. It has been
observed that the propagation of higher order acoustical modes, induces three dimensional
variations of the acoustic �eld, generates anti-resonances and additional resonances, and
signi�cantly a�ects the directivity of the radiated sound. The eccentricity of the vocal tract
shape appears as critical for the excitation and the propagation of the higher order acoustical
modes. It is concluded that at high frequency (above 5 kHz), the transfer function of the
vocal tract can have signi�cant variations within short frequency intervals (of the order of
100 Hz) and within small angular regions (of the order of 30◦) which need to be taken into
account in the studies of speech which focus on high frequencies.

Keywords: speech, vocal tract, acoustic, three-dimensional acoustic �eld, multimodal
method, directivity
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