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RESUME

La théorie fondamentale de l'analyse de sensibilité s'applique pour l'analyse des systèmes électriques de puissance dans les différentes étapes de la production et la transmission de l'énergie.

Pour ce type de systèmes l'analyse modale sélective (SMA) a été developpée au MIT en 1982. Le SMA fournit des algorithmes pour le calcul, la sélection et la réduction des variables d'état dans les grands systèmes électriques. Des outils de base concernant cette théorie sont devenus populaires et très utilisés.

Les facteurs de participation représentent un exemple de ces outils, utilisés depuis longtemps. Ils ont été proposés par (I.J. Perez-Arriaga, [START_REF] Verghese | Selective Modal Analysis With Applications to Electric Power Systems, Part II: The Dynamic Stability Problem[END_REF]. Les facteurs de participation groupés dans une matrice de participation donnent l'importance des viii variables d'état sur les valeurs propres du système. Il est important de dire que cette l'analyse se fait sur le modèle linéaire ou linéarisé du système. L'hypothèse associée à cet outil est d'avoir un modèle du système de type « diagonal dominant » ; en d'autres termes, les éléments diagonaux de la matrice du système sont les plus importants pour les valeurs propres.

Le but des facteurs de participation est la réduction des modèles des systèmes ayant une dynamique particulière comme celle des systèmes électromécaniques.

Dans les nouveaux réseaux à courant continu, les dynamiques sont différentes de celles des systèmes traditionnels. Les dynamiques rapides des composants d'électronique de puissance n'étaient pas considérées dans les objectifs des analyses menées avec les facteurs de participation. Dans ce contexte, des besoins de nouveaux outils sont apparus pour l'analyse modale dans les réseaux à courant continu.

Les objectifs de ce travail de thèse sont :

• Appliquer la théorie actuelle pour l'analyse modale dans les systèmes à courant continu multi-terminal (MTDC).

• Développer une nouvelle méthodologie pour l'analyse dynamique des réseaux à courant continu.

Le Chapitre 2 rappelle la théorie fondamentale de la sensibilité analytique sur laquelle les facteurs de participation sont basés. Pour une bonne compréhension des éléments de base de cette théorie, quelques exemples sont présentés mettant en oeuvre la formulation des facteurs de participation et les hypothèses pour l'utilisation de cette méthodologie.

Avec quelques exemples mettant en évidence les effets des hypothèses, il apparaît que les facteurs de participation sont limités à un type des modèles particuliers. Dans la pratique, les facteurs de participation sont utilisés sur plusieurs modèles de réseaux de puissance sans vérifier ix les hypothèses fondamentales. Pour cette raison, il est important de trouver une méthode ou un outil applicable à tous les modèles linéaires des réseaux de puissance.

Dans le Chapitre 3, une formulation différente est proposée pour l'analyse par sensibilité paramétrique (Barrera-Gallegos, [START_REF] Barrera-Gallegos | Modal Sensitivity of a Reduced Equivalent HVDC-VSC System[END_REF]. Cette méthodologie est basée sur la théorie de la sensitbilité analytique. Quelques exemples sont présentés pour montrer l'utilité de cette approche et sont comparés avec les facteurs de participation.

Le chapitre 4 concerne la modélisation des convertisseurs à courant continu. La première partie s'intéresse au convertisseur source de tension (VSC) qui est un des convertisseurs les plus populaires dans la conversion alternatif continu. La deuxième partie étudie le convertisseur modulaire multiniveaux (MMC) qui s'utilise de plus en plus en raison des avantages offerts par rapport aux modèles classiques des convertisseurs. Pour les deux cas, ces modèles linéaires sont présentés en vue de leur analyse paramétrique.

Dans le chapitre 5, l'étude d'un modèle réduit didactique valide l'utilisation de l'analyse paramétrique. Un modèle plus complexe montre progressivement le couplage des paramètres dans un convertisseur VSC. La comparaison entre l'analyse paramétrique et les facteurs de participation permet d'exposer les limites de l'utilisation des facteurs de participation sur des réseaux HVDC.

Ensuite, l'analyse du convertisseur MMC est présentée. Elle montre quelles sont les différentes façons de contrôler l'énergie stockée dans le convertisseur et leur une influence sur les différents couplages entre des paramètres de la partie AC et DC du convertisseur.

En conclusion, il apparaît que la nouvelle méthodologie, par l'étude de la sensibilité est plus générale que l'approche par facteurs de participation et donne plus d'informations sur les caractéristiques dynamiques des réseaux HVDC.

x Avec quelques exemples les effets des hypothèses et on montre que les facteurs de participation sont limites sur un type des modèles particulières. Dans la actualité, les facteurs de participation son utilises sur plusieurs de modèles des réseaux de puissance sans regarder les hypothèses fondamentales. Pour cette raison cet important de trouver une méthode ou utile avec pour appliquer dans tous les modèles linéaires des réseaux de puissance.

xi This work was developed using the expertise in modelling and characterization of power electronic components of the L2EP and the diagnosis and analysis of complex models in the research group MOCIS.

The objectives of the work are

 to review the current methodologies used for the dynamic analysis of multi-terminal DC (MTDC) grids.  to develop a new methodology for the dynamic analysis of MTDC grids, allowing a clear understanding of how the component parameters associated to the state variables are related to the eigenvalues.

It has been chosen to study the parametric sensitivity of variables which provides a deeper understanding on the importance of the parameters in the dynamics of the model.

Classically used for this kind of problems, such approach supposes some assumptions on the form of the used model, the validity of which will be discussed in the next chapter

The first chapter presents the state of the art for modal analysis of power electrical systems. It discusses the current problematics of the use of participation factors and its limitations.

The second chapter presents the mathematical background of the sensitivity analysis and participation factors. With didactic examples, the characteristics of participation factors are shown.

The third chapter proposes a new matrix for the analysis of parametric sensitivity. It is implemented on some didactic examples.

The fourth chapter presents first the models of the voltage source converter with very wellknown for the AC/DC conversion. Recently, the Modular Multilevel topology is more and more used for high voltage DC systems. It is also described in the 4th chapter which proposes also a linearized approach of this converter.

In the fifth chapter, the methodology proposed in chapter 3 is applied on MMC. A comparison with participation factor is proposed and the analyze of the results shows the effectiveness of the proposed tool Chapter 1 State of the art

Context and motivation

Power electrical systems analysis is particularly difficult due the quantity and the complexity of the dynamics. It has different objectives depending on the dynamics and properties analyzed in the system. The power system stability is a condition of equilibrium between the different phenomena in the electrical system. The stability of the system depends on different characteristics, Figure 1.1 presents an overall representation of the problems linked to power system stability [START_REF] Kundur | Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions[END_REF]).

Figure 1.1 Classification of power system stability

This classification is based on the different kinds of disturbances applied to the system [START_REF] Kundur | Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions[END_REF] [START_REF] Mondal | Power System Small Signal Stability Analysis and Control[END_REF].

 The rotor angle stability is the ability of the synchronous machines interconnected in a power system to remain synchronized after a small disturbance.  The voltage stability refers to the ability of the system to maintain steady voltages at all busses during a disturbance.  The frequency stability is the ability of the system to maintain a steady frequency during a severe disturbance in the generation or load on the system.

The rotor angle stability is one of the most studied characteristics of the power electrical systems, because it involves the stability of the complete system; however the analytical description of these dynamics is complex because of the nonlinearity of the involved phenomena.

The description of the dynamics under controlled circumstances is required to reduce the complexity of the analysis. There are some mathematical tools and methodologies for power stability analysis. For practical considerations and for reducing the complexity the system is considered to be under small disturbances.

Small signal stability

Small signal stability is the ability of the power system to maintain synchronism under small disturbances such as small variations in loads and generators. The non-linear differential equations are thus linearizable [START_REF] Kundur | Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions[END_REF].

If power oscillations caused by small disturbances in the system decrease with time and the deviations of the state variables remain small for long time, the system is considered as stable.

For the stability analysis, Lyapunov stability theory is widely used. It is related closely to the local stability in the non-linear system. Intuitively speaking, movement of a nonlinear system over a small range should have similar properties to its linearized approximation (X.-F. [START_REF] Wang | Modern Power Systems Analysis[END_REF].

To study the stability of the non-linear system at the operating point, the following results of Lyapunov's stability theory apply: a) If the linearized system is asymptotically stable (all eigenvalues of A have negative real parts) the current non-linear system is asymptotically stable at the equilibrium point. b) If the linearized system is unstable (at least one of the eigenvalues of A has a positive real part), the current non-linear system is unstable at the equilibrium point. c) If the linearized system is critically stable (the real part of all eigenvalues of A are non- positive but at least one of them is zero) no conclusion is available about the non-linear system from its linearized approximation.

Modal analysis can bring more insight into the dynamics at the operating point.

In general, modal analysis is used in different applications as mechanical structures and electrical power networks. Figure 1.2 presents an example of the available tools for modal analysis in electrical and mechanical systems. Several powerful methods for the computation of eigenvalues associated with a small number of selected oscillation modes are published in the literature on power system stability [START_REF] Morgan | Computational Procedure for the Sensitivity of an Eigenvalue[END_REF]Determination, n.d.).

Particularly, the selective modal analysis (SMA) approach described in (Verghese, Perezarriaga, and Schweppe 1982) and (Ignacio J. [START_REF] Perez-Arriaga | Developments in Selective Modal Analysis of Small-Signal Stability in Electric Power Systems[END_REF]) computes eigenvalues associated with selected modes of interest by using the so called "participation factors". The objective is to identify variables that are relevant to the selected modes and then construct a reduced-order model involving only the relevant variables [START_REF] Kundur | Power System Stability and Control[END_REF]. The SMA was developed in the context of the local plant and inter-area mode oscillations, especially for low frequency oscillatory modes, where these modes (eigenvalues) are often associated with the electromechanical elements in the system (Ignacio J. [START_REF] Perez-Arriaga | Developments in Selective Modal Analysis of Small-Signal Stability in Electric Power Systems[END_REF].

These oscillatory modes are fundamental for the dynamical behavior of the system; however, all the dynamical elements have to be taken into account due to their couplings.

Indeed, all theories used until now have been based on the assumption that the grid was mainly fed by electromechanical systems as synchronous machines. Because frequency decoupling is possible between the electromagnetic frequencies and the so-called electromechanical frequencies under 10 Hz, the SMA is a widely used methodology for the analysis of this kind of systems.

The selective modal analysis provides (Ignacio J. [START_REF] Perez-Arriaga | Developments in Selective Modal Analysis of Small-Signal Stability in Electric Power Systems[END_REF]):

 Sensitivity-based tools for identifying physical state variables or components that are significant in producing the selected modes.  Methods for constructing reduced-order models that involve only the significant variables.  Representation of the influence of parts of the system on the selected modes with any desired accuracy.  Algorithms for efficiently and accurately computing the few selected modes of interest.

For the reduction of the model, the methodology called "participation factors" has been proposed by (I.J. Perez-Arriaga, [START_REF] Verghese | Selective Modal Analysis With Applications to Electric Power Systems, Part II: The Dynamic Stability Problem[END_REF], based on the sensitivity analysis. This methodology gives a metric for relating states and eigenvalues. The participation factor approach is based on the assumption that some coupling between the state variables can be neglected. Chapter 2 presents a detailed discussion on the assumptions and basis of participation factors.

Recent versions of specialized books on power electrical systems, for example [START_REF] Kundur | Power System Stability and Control[END_REF] and [START_REF] Chaudhuri | Multi-Termibal Direct-Current Grids: Modeling, Analysis and Control[END_REF], dedicate some sections to the use of participation factors but without covering important assumptions.

For systems with strongly coupled dynamics, the dynamics can have covered different frequencies and the use of participation factors could be not suitable. This problematics has been addressed in different works to overcome the limitations of the participation factors.

In [START_REF] Vasca | Adimensional Models and Participation Factors for the Analysis ofInduction Motor Dynamics[END_REF] it is proposed an extension of the definition which leads to extended participation factors. Then in [START_REF] Abed | Modal Participation Factors Revisited: One Definition Replaced by Two[END_REF] the original formulation is replaced for two cases with real and complex eigenvalues; a new definition including the output in the formulation is presented in [START_REF] Sheng | Mode in Output Participation Factors for Linear Systems[END_REF].

Still nowadays, the first definitions of participation factors are in use for modal analysis. For example in [START_REF] Tschirhart | Using Participation Factors to Improve the Consistency and Accuracy of Prony Analysis for Voltage Stability Monitoring Applications[END_REF] the participation factors are used to improve the analysis for voltage stability and monitoring.

The use of power electronics for all stages of energy generation and transmission has increased, in a way that its dynamics are important for the global system behavior. Moreover, the increasing use of renewable energies using direct current networks brings the necessity of new analysis tools.

Modal Analysis of Multi-terminal DC grids

Due to the increase of renewable energy and direct current (dc) links, power electronic converter is taking more and more importance in the grid.

The energy management in a wind turbine is fundamentally different from a traditional power plant. There will be technical and operational implications for the power system at times of high shares of wind power. The power system should sustain disturbances, such as the loss of largest power plant or line, so that the frequency and voltage remain stable. Wind power is asynchronous generation that does not have the same inherent, physical support to the power system inertia as synchronous machines. The fundamental issues regarding frequency stability when losing a large unit or power line as well as large amounts of wind power tripping during network faults need further analyses [START_REF] Holttinen | Wind Integration: Experience, Issues, and Challenges[END_REF].

The advantages (see Table 1.1) of connecting different systems using DC links have changed the properties of the power electrical systems [START_REF] Okba | High Voltage Direct Current Transmission -A Review, Part I[END_REF]. The analysis of HVDC and multi terminal direct current (MTDC) grids is being performed with tools designed for electrical systems based in alternant current (ac) models. This is the case of participation factors.

The participation factors are very effective and rather simple to calculate when the linearized state model is established. For MTDC dynamic analysis [START_REF] Kalcon | Small-Signal Stability Analysis of Multi-Terminal VSC-Based DC Transmission Systems[END_REF], the participation factors are used to analyze the influence of control parameters on some eigenvalues of the system. More recently [START_REF] Beerten | Identification and Small-Signal Analysis of Interaction Modes in VSC MTDC Systems[END_REF] use the participation factors to analyze the level of association between subsystems in a three station MTDC. However, no work reconsiders the theory from the basis to assess whether the fundamental assumptions are still valid.

Clearly, the new electrical systems are a big challenge because of their multiple dynamics. The use of current analysis methodologies for traditional electrical systems could lead to unclear conclusions. To know more about these new ways of energy transmission new tools are needed.

Conclusions

For the analysis of power electrical systems, some tools and mathematical fundamentals are required. The analysis tools have to be adjusted and justified for their specific application.

The use of the participation factors in systems out of their scope of analysis can lead to nonadequate results.

The description on how the analysis is performed and what are the intended purposes is important to understand and also how it can be improved.

The following chapter presents a review of the fundamentals of modal analysis used in power electrical systems.

Chapter 2 Modal sensitivity and participation factors

Introduction

The modal analysis for linear models is an important tool to model characteristics as the stability of damping oscillations among others. These characteristic depend on the coupling between components whose parameters are supposed to be known without uncertainty, which is not always the case.

It is a common knowledge that there always exists a certain discrepancy between actual (real-operating) and nominal trajectories of any system. This discrepancy is partly due to various inherently approximation schemes in system identification, and partly due to possible further parameter variations stimulated by environmental changes as slow aging of components, variations in raw products or system components in process control applications, inaccuracy of measurement devices or methods, etc . [START_REF] Eslami | Theory of Sensitivity in Dynamic Systems[END_REF].

The study of the changes in the eigenvalues due to parameter changes is important, not only for stability purposes but also for the control of the state variables. Fundaments on sensitivity analysis are hereafter presented.

Sensitivity matrices

Modal analysis is based on sensitivity analysis of the eigenvalues of the state matrix A to changes in the system parameters.

Consider a LTI model in free-response form, 

    x t
Assuming the eigenvalues i    1, 2 in  are distinct, the right eigenvectors i v   1, 2, , in 
are linearly independent and satisfy,
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are the correspondent eigenvectors of T A , such that,

T j j j A u u   .
(2.4) Or by transposition 
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(2. [START_REF] Hsu | Identification of Optimum Location for Stabiliser Applications Using Participation Factors[END_REF] In compact form thus,

    1 0 i n t T ii i x t e v u x           (2.19)
The correspondent fundamental problem in sensitivity theory is to determine the sensitivities of 𝜆 𝑖 , 𝑢 𝑖 and 𝑣 𝑖 to small changes in the elements of the matrix A .

If an element   kl a in A matrix is perturbed due to changes in system parameters, then the eigenvalues and eigenvectors of A will change. Using (2.7) and (2.9), 

             (2.24)
By reducing in terms of the partial derivative of 
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(2.28)

Then the solution   xt can be expressed in terms of i S       11 00 ii nn tt TT i i i ii x t e v u x e S x                 (2.29)
For every change in an element kl a there will be a change in the eigenvalues of the model.

This change can be linearly approximated by [START_REF] Porter | Modal Control: Theory and Applications[END_REF],

i i i kl kl a a        (2.30)
where i  is the new value of a given eigenvalue and  is the change of kl a ,

For the stability problem, all the eigenvalues have to be in the open left side of the complex plane, which imposes,

  1 0 ,2 i i kl kl a in a       (2.31)
For the case of conjugated complex eigenvalues it is known that the damping factor can be a restriction to an established 𝜉 * for some systems. 
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(2.32)

The solution of the free motion system equation (2.1)

    0 At x t e x 
(2.33) can be obtained by different methods depending on the way At e is calculated [START_REF] Moler | Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later[END_REF].

A function   fA of a matrix A can be defined as
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(2.34) where i Z are the component matrices of A , assuming that A has n distinct eigenvalues. They are all related as,
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Written in the form of a linear system,

1 1 2 2 1 1 1 1 12 1 1 1 n n n n n nn Z I Z A Z A                                          (2.36)
it shows up a Vandermonde type matrix which leads to
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where the Vandermonde inverse matrix has been widely studied for different cases. 

T i i S Z  (2.40)
In the particular case of repeated eigenvalues, it is not possible to obtain the solution, because the right and left eigen-matrices are not orthogonal.

For the solution of the system, a so-called "confluent" Vandermonde matrix can be used but is not related with the sensitivity of the eigenvalues.

Participation factors

The PF are used in the modal control theory better known as sensitivity analysis. Participation factors focus their application in electrical power systems in which having a prior knowledge of the system is recommendable. As it is mentioned in (I.J. Perez-Arriaga 1981) "A crucial feature of the Dynamic stability problem (in the power systems context) and one that makes it particularly suitable for selective modal analysis (SMA), is that only a few, lightly damped, oscillatory modes are of interest, out of the hundreds of modes that the model may have". It is also said that the SMA is not restricted to any particular kind of physical systems but it is focused on electrical power systems. Considered a linear system with distinct eigenvalues, as mentioned in (I.J. [START_REF] Perez-Arriaga | The Role of Participation Factors in Reduced Order Eigenanalysis of Large Power Systems[END_REF] [START_REF] Verghese | Selective Modal Analysis With Applications to Electric Power Systems, Part II: The Dynamic Stability Problem[END_REF]. [START_REF] Pagola | On Sensitivities, Residues and Participations: Applications to Oscillatory Stability Analysis and Control[END_REF] a) The participation factors given by 𝑃 𝑘𝑖 are not dependent on the units of the state variables.
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Properties of participation factors

b) The sum of all elements by rows or by columns of P is 1.

c) The PF represent the sensitivity of the eigenvalues 
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(2.45)

The following example presents analytically the complete solution and the participation factors approximation.

Example 2.1 Consider the diagram in Figure 2.1 of a simple circuit with two resistances, one capacitor and one inductor.

L C 2 R 1 R Figure 2.1 Circuit diagram.
The free response differential state equation is, 
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The eigenvalues of the model are, 
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The sensitivity matrices of the second order model can be easily obtained using the partial derivatives, 

                                                 (2.48)
which leads to the following expressions,

1 2 2 1 1 1 11 2 2 2 1 1 1 2 4 2 4 RR a L R C L R C                           (2.49) 1 2 2 11 12 2 11 4 R a C L R C                   (2.50) 1 2 2 11 21 2 11 4 R a L L R C                    (2.51) 1 2 2 1 1 1 22 2 2 2 1 1 1 2 4 2 4 RR a L R C L R C                           (2.52) 1 2 2 2 1 1 11 2 2 2 1 1 1 2 4 2 4 RR a L R C L R C                           (2.53) 1 2 2 1 12 2 2 11 4 R a C L R C                    (2.54) 1 1 2 2 2 21 2 11 4 R a L L R C                (2.55) 1 2 2 11 22 2 2 2 2 1 1 1 2 4 2 4 RR a L R C L R C                           (2.56) where 1 2 1 R R CL CL   (2.57)
Using the definition (2.29) for the solution of the second order model, 

    1 2 1 2 1 2 1 2 1 2
                                                (2.58)
From (2.41) the participation factor matrix is, 

                                  (2.60)
where the initial conditions are equal to one for all state variables. In (2.60) the solution is composed of the diagonal elements of (2.58) which corresponds to the condition: A has to be diagonal dominant.

Change of basis

System state equations can have different representations depending on the choice of the state variables. However, the different representations of the equations do not change the intrinsic dynamics of the system.

Consider an arbitrary change of basis of matrix T , defined as The linear transformation using (2.61) does not change the diagonal elements in (2.64). Therefore, the participation factor approximation does not change in the case of a diagonal transformation matrix.

    x t T x t
A particular case of diagonal basis change will be discussed in the next section.

Per-unit representation

In power system analysis, it is usually convenient to use a per-unit model to normalize system units. Compared to the use of physical units (amperes, volts, ohms, webers, henrys, etc.), the per-unit system offers computational simplicity by eliminating units and expressing system quantities as dimensionless ratios.

A well-chosen per-unit system can minimize computational effort, simplify evaluation and facilitate understanding of the characteristics. Some base quantities may be chosen independently and quite arbitrary, while others follow automatically depending on fundamental relationships between system variables. Normally, the base values are chosen so that the principal variables still be equal to one per-unit under the nominal condition.

The general representation can be, actual quantity quantity in per unit base value of quantity 

(2.65)

In a power electrical system, there are some relations for the common variables in the system and the choice of the base values is commonly as, 

P i V  (2.66) • b R : resistance base, calculated as, b b b V R i  (2.67) • b f : frequency base
This per-unit representation is very useful for simple variables like voltages and currents. However, with energy storage elements there are different units for the different energy domains. The DC case is only developed here.

Energy at the nominal point of operation can be chosen as base variable, using the normalized time constant H , defined for the mechanical inertia in [START_REF] Kundur | Power System Stability and Control[END_REF] For the DC elements, this constant is extended using the stored co-energy in inductors and capacitors.

For inductors this normalized constant is described as,

  2 1 2 b L b Li H P  (2.70)
where L is the inductance value in henrys.

For the capacitances,

  2 1 2 b C b CV H P  (2.71)
where the C is the capacitance value in Farads. 

L L C C R i i LL v v C R C                
The per unit representation of the capacitance and inductance are, (2.74)

Rearranging, it yields, 1 2 LC L L b b b R i v i d H P dt i i     (2.75) or 1 2 C LL L b b b bb bb v ii dR H V V i dt i i ii                     (2.76)
From the definitions of per-unit variables,

pu pu pu 21 L L pu L C di H R i v dt    (2.77) rearranging pu pu pu 1 1 22 L pu LC LL di R iv dt H H   (2.78)
For the second differential equation, using equation (2.73) it gives,

2 2 2 C b C C L b H P dv v i V dt R     (2.79) Rearranging, it yields, 2 2 2 C L C C b b v i dv R H P dt V      (2.80) 1 2 2 C C L C b b b b b b b vv i d R H V i i dt V V VV              (2.81)
simplifying using the definitions of the per-unit values,

pu pu pu 1 2 2 C C L C pu dv H i v dt R  (2.82) rearranging pu pu 1 2 2 2 L C C b C pu C i v d v dt V H R H    
(2.83)

The system state equation (2.46) becomes in the new basis 

L pu L pu LL C pu C pu C pu C i HH i v v HR R H                 (2.84) The transformation matrix T is, 0 0 b b T i V     (2.85)
It is worth showing that the diagonal terms given here in pu have unchanged values

Remarks of the change of basis

This per unit representation is a common practice for the analysis and modeling of power electrical systems and particularly in the case of modal analysis.

When the per-unit representation is performed, the energy storage element parameters of the system have to be changed to a common unit.

Linear transformations using diagonal transformation matrices do not change the numerical value of the diagonal terms in the matrices and the eigenvalues of the matrix are the same in the per-unit system and the original one.

Moreover, the use of the PF in transformed pu models does not change its conclusions.

Usage and interpretation of sensitivity matrices and participation factors

The sensitivity matrices are a tool used for modal analysis. Their development responds to two objectives [START_REF] Porter | Modal Control: Theory and Applications[END_REF],

i. The selection of system parameters such as the eigenvalues and their associated eigenvectors be as insensitive as possible to changes in such parameters. ii. The determination of good approximations of the eigenvalues and eigenvectors associated with various system components, without having to compute all the eigenvalues and eigenvectors.

Participation factor theory was developed to understand and reduce models with uncoupled dynamics; its use in the selective modal analysis is well justified and understood as presented in section 2.2.

The use of participation factors has changed since its first definition. For example in [START_REF] Arabi | Small Signal Stability Program Analysis of SVC and HVDC in AC Power Systems[END_REF], the PF matrix is used to show how important is a state variable for the eigenvalues or how important the eigenvalue is for the state variable. In [START_REF] Hsu | Identification of Optimum Location for Stabiliser Applications Using Participation Factors[END_REF] and (Ignacio J. [START_REF] Perez-Arriaga | Developments in Selective Modal Analysis of Small-Signal Stability in Electric Power Systems[END_REF]) they are used for the identification of the best location for stabilizers.

In both cases, for the PF theory to be applied some assumptions have to be verified. The following examples will present some cases where this approach can suffer of a lack of precision.

 Example 2.2: RLC circuit: time response and participation factor approximation

Three cases are considered with different values for the element parameters. In the first case, the values are chosen in order to have real eigenvalues with a non-diagonal dominant matrix. In the second case, the eigenvalues are complex and the state matrix is non-diagonal dominant. In the third one the values are chosen to have complex eigenvalues and diagonal dominant matrix. As outputs, the selected states are the current in the inductance and the voltage in the capacitor.

Case 1; Real eigenvalues, A non-diagonal dominant Table 2.1 Parameters of the circuit Parameter Value Parameter Value

L 2 mH C 1 F  1 R 10  2 R 100 
The free motion system is, 5000 500 10000 100 

LL C C ii v v              (2.
                 (2.88)
               (2.89)
The participation factor matrix is, 12 1.72 0.72 0.72 1.72

L C i P v        (2.90)
Using the per-unit representation for DC circuits presented in (2.84) the transformed system has the same eigenvalues. Table 2.2 presents the base values for the transformation. 

pu pu L L pu C C pu i i v v                  (2.91)
The modal matrices for the per-unit base are, 0.56 0.27 3.03 2.59 0.82 0.96 0.87 1.79

pu pu VU                  (2.92)
thus, the sensitivity matrices are, 12 1.7235 2.4969 0.7235 2.4969 0.4994 0.7235 0.4994 1.7235

pu pu SS                (2.93)
The participation factor matrix is unchanged as 12 1.72 0.72 0.72 1.72

pu pu L pu C i P v        (2.94)
From the elements in (2.94) it appears that the most important state for 1  is the current (in pu) in the inductance L and the most important state for 2  is the voltage in C .

To validate this statement free response approximated by the PF given in (2.60) has to be compared with the complete free response of equation (2.58).

The approximated free response solution using (2.60) is, 

               
                            (2.96)
A comparison between the two solutions (2.95) and (2.96) is presented in Figure 2.2. The initial conditions are set to 1 ampere and 1 volt (2.98) The participation factor matrix is, 12 0.5 0.04 0.5 0.04 0.5 0.0 4 0.5 0.04

pu pu L pu C i ii P v i i        (2.99)
It is natural to have complex PF if the eigenvalues are complex. These complex values have no meaning for the analysis (I.J. Perez-Arriaga 1981), and it is a common practice to use the modulus of the complex numbers. It can be seen that (2.101) is not normalized. The problematics of interpretation of the complex elements in the PF has been explored in [START_REF] Abed | Modal Participation Factors Revisited: One Definition Replaced by Two[END_REF], where an extension of the definition is proposed for PF with complex elements. The free response is (initial conditions are set to 1 ampere and 1 volt),

Figure 2.3 Response with complex eigenvalues

In this case the oscillatory response due to the complex eigenvalues is noticeable. The response for the voltage presents a difference with the PF approximation.

Case 3; Conjugated complex eigenvalues, diagonal dominant.

Table 2.

Parameters Parameter Value Parameter Value

L 1 mH C 1 mF 1 R 10  2 R 0.1 
The system equations are -10000 -1000 1000 -10000

LL C C ii v v            (2.102)
The participation factor matrix is, Gershgorin theorem [START_REF] Gershgorin | Über Die Abgrenzung Der Eigenwerte Einer Matrix[END_REF][START_REF] Meyer | On Some New Inclusion Theorems for the Eigenvalues of Partitioned Matrices[END_REF], defines inclusion and exclusion regions for the location of the eigenvalues of a given matrix A. The circles in Figure 2.5 corresponds to the inclusion region containing all eigenvalues.

A Gershgorin circle

When the system matrix is diagonal dominant, such regions of inclusion is relatively "small" and each of them can enclose are eigenvalue [START_REF] Quarteroni | Numerical Mathematics[END_REF][START_REF] Varga | Matrix Iterative Analysis[END_REF].

A diagonal basis change changes the radius of circles only.

Conclusions

The use of participation factors has to face some limitations as diagonal dominancy the biggest restriction.

The didactic simple example was aimed at showing up the imprecisions involved in some cases where the limitation was not respected.

The role of the basis change has been discussed, and particularly in the case of per-unit representation.

Introduction

The sensitivity analysis responds to the fundamental eigen-problem associated with the behavior of linear systems. Such problem relating changes in element parameters has been studied by numerous authors since the early work of Carl Gustav Jacob Jacobi [START_REF] Jacobi | Über Ein Leichtes Verfahren Die in Der Theorie Der Säculärstörungen Vorkommenden Glenichungen Numerich Aufzulösen[END_REF].

Parametric sensitivity analysis is used for the analysis of power electrical systems as in [START_REF] Smed | Feasible Eigenvalue Sensitivity for Large Power Systems[END_REF]) and (D'Arco, Suul, and Fosso 2014b). In [START_REF] Smed | Feasible Eigenvalue Sensitivity for Large Power Systems[END_REF] a "new sensitivity analysis" is proposed, where the main purpose is to analyze large power systems. This methodology is used for the analysis of constrain of active and reactive modulation for a generator, analysis of static VAR compensators and the static model of a HVDC link.

More recently a workgroup in Norway has applied the parametric sensitivity analysis to the analysis of virtual synchronous machine (D'Arco, Suul, and Fosso 2015) for the control scheme voltage source converter (SCV) based HVDC grids (D'Arco, Suul, and Molinas 2014). This analysis deals with the sensitivity of the "most critical poles" A drawback of this methodology is that the parametric analysis is performed comparing elements with different units.

New definition of parametric sensitivity matrix

The analysis of electrical systems and electrical machinery using participation factors principally relates the state variables to the eigenvalues. However, as shown in the previous sections, there are some assumptions and limitations.

The objective of this section is to present a new form of sensitivity matrix relating the change in the eigenvalues with respect to the parameters. 

i i i n i i i n i i i i n n nn a a a a a a S i m a a a                                         (3.1)
Each element of i S is the sensitivity of the eigenvalue i  to an element of matrix A . Here we propose to consider the sensitivity of the eigenvalues to the physical parameters of the system.

Consider a small change in the parameter j  . Then the change in the eigenvalue i  can be approximated by,

i ij j        (3.2)
The partial derivative in (3.2) of an eigenvalue with respect to the parameter j  is, 11 11 for all , , 1, 2

i i i i j j j kl nn ln j kn aa a a k l i a n a                             (3.3)
Using equation(2.27), it leads to

kl i kl i il kl jj k uv aa a          (3.4)
We propose the following definition of a new sensitivity matrix of the eigenvalues with respect to a parameter. 

  . 3 12 1 1 1 1 3 3 2 1 2 1 n n j j j j n m m m m Sp                                                   (3.5)
The organization of the parameters and the eigenvalues can help to understand the results. We recommend having a prior knowledge of the dynamics and the characteristics of the system to help in this organization task.

 Repeated eigenvalues

Parametric sensitivity matrix (PSM) is based on the hypothesis of distinct eigenvalues. The case of repeated eigenvalues is problematic, However, there are some alternatives for the numeric calculation of the partial derivatives in the matrix Sp .

As presented in [START_REF] Paraskevopoulos | Eigenvalue Sensitivity of Linear Time-Invariant Control Systems with Repeated Eigenvalues[END_REF], the characteristic polynomial helps to calculate the different sensitivities. With higher order systems this methodology can be difficult to implement. Alden and Qureshy in 1985 presented a second order approximation of the sensitivity for the repeated eigenvalues. This approximated value can help but it is difficult to prove its efficacy.

More recently, the use of parametric sensitivity for mechanical damped systems has brought the problem of the calculation of eigenvalue sensitivities when there are repeated eigenvalues. In [START_REF] Choi | Higher Order Eigensensitivity Analysis of Damped Systems with Repeated Eigenvalues[END_REF]) adjacent eigenvectors and orthonormal conditions are used to compose an algebraic equation. The algebraic equation developed can be used to compute derivatives of eigenvalues and eigenvectors. In [START_REF] Li | Eigensensitivity Analysis of Damped Systems with Distinct and Repeated Eigenvalues[END_REF]) a normalization of the eigenvalues is proposed as a first step to find the sensitivities; then a particular numeric solution is proposed, under the assumption of a damped system. In both cases the fact that the system is damped helps to make assumptions for the solution.

This problematics of repeated eigenvalues is not solved yet for this thesis. It is important to assure always if the analyzed model has distinct eigenvalues for the use of the PSM.

Example 3.1: Simple Circuit sensitivity of the eigenvalues to the elements

Considering the circuit in Figure 2.1, the objective is to find the sensitivity of the eigenvalues to the parameters L and C

The matrix of the model given in (2.46), 

1 2 1 11 LL C C R ii LL v v C R
          or 1 2 2 1 1 1 2 2 2 1,2 1 1 1 4 2 R R R L R C L R C R CL CL                               The sensitivity of 1  with respect to L calculated directly is 2 1 1 1 2 3 2 2 1 2 2 1 1 1 2 22 11 4 2 1 2 2 RR L L L R C R CL R R R CL L R CL CL                                (3.6)
It can also be derived using equation (3.3) 

a a a a L a L a L a L a L                            (3.7)
Thus, the sensitivity of 2

 to L is, 1 2 2 2 1 1 2 2 2 1 1 1 2 3 2 2 2 1 2 11 4 2 2 RR L L L R C R CL R R R L R CL CL CL                                (3.8)
In this second order system, the sensitivities are easy to derive, but it becomes more difficult for higher order models.

From the sensitivity matrix   

a a a a u v u v u v L L L L L L Sp a a a a u v u v C C C C C uv u v u v C                                                      (3.11)
It can be derived in analytical form. This clearly reduces the complexity of deriving the analytical expressions of the eigenvalues directly.

The objective is to compare the contribution of each term of the PSM.

The PSM shows up several properties:  It is not normalized  It is unit dependent  There is no restriction of diagonal dominance matrices. It is possible to measure the sensitivity of the eigenvalues to any parameter in matrix A (explicit or implicit)

Since the PSM is unit dependent, each element in the matrix can be any real or complex number. Comparing the contributions of the parameter to the eigenvalues with elements in a normalized base could help to understand its values.

Normalization

Consider the parameter sensitivity matrix Sp given in equation (3.5) of a system with n eigenvalues and m parameters of interest.

A. Normalization by rows

The influence of the parameter j  in the eigenvalues is represented by the th j row of

Sp 3 12 n j j j j j Sp                  (3.12)
To make it possible to compare the different parameter contributions, a normalization is proposed using different norms.

 (3.16)

The normalized vector nr j

Sp has the characteristic that if the original vector j Sp is complex, the normalized nr j Sp is also complex.

B. Normalization by columns, using the norm L2

The influence of a set of parameters 1, 2 j jm

  in all eigenvalues, for i  is represented for the th i column of Sp . 1 2 3 i i i T i i m Sp                     (3.17)
By columns, the normalization represents the change of the eigenvalues when several parameters change of the same quantity; this normalization can only be performed for parameters with the same unit.

The normalization using the L2-norm (3.18) is defined as,

1 2 2 2 1 n i ji j Sp Sp       (3.18)
The normalized column is

1 2 3 2 2 2 2 T i i i mi i nc i i i i Sp Sp Sp Sp Sp Sp Sp Sp Sp         (3.19)
Hereafter, some examples present the application of the parameter sensitivity matrix PSM using the simple circuit from Figure 2.1 for different dynamic characteristics

Example 3.2: Simple Circuit with real eigenvalues

Consider the simple circuit of Figure 2.1 and the equations in per-unit presented in (2.84), 

C H C C C C C a a a a u v u v H H H H Sp u v u H v H                          (3.20)
Using the parameters in Table 3.1, the sensitivity to the per-unit value of the capacitor is 
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L L L L L H LL Sp u v a a a a u v u v H H H H H H uv                       (3.22)
Using the associated eigenvectors it yields, The eigenvalues remain real and negative thus stable.

             

B. Normalization by columns

The first column 

L nr pu C H Sp H ii ii          (3.43)
Comparing with the previous examples this is the only case where the sensitivity and the participation factors lead to the same conclusions. Both parameters contribute in similar amount to the dynamics of the system.

Remarks and uses.

From the different scenarios in the examples, some remarks are established. As said before the use of participation factors is limited to the models with diagonal dominant state matrices.

Advantages of the proposed PSM matrix

 Using the PSM more information can be retrieved as o The sign of the elements represents the direction in the change of the eigenvalues. o The complex values in the PSM elements give information of how the contribution of the parameters affects the imaginary and the real part. o The normalization by rows gives the contribution of a parameter to all eigenvalues. o The normalization by columns gives the comparative contribution of the parameters for each eigenvalue. For this comparison, it is necessary to choose parameters with the same unit without exceptions. o The analysis of the parameters is not limited to the dynamic elements or explicit elements in the matrix A.

Drawbacks o

The need of the partial derivatives of the matrix A with respect to the elements is clear. Depending on the equations, they could be difficult to derive. o The eigenvalues are assumed to be distinct. .

The information given by the PSM can be useful in different application scenarios as:  For the selection of parameters: clearly, the methodology shows its importance in this area by understanding the effect of the system parameters.

 For the tuning of control parameters: the use of the PSM is not restricted to open loop models but may be applied also to closed loop systems, where in many cases the tuning of parameters is a big issue.  For stability analysis: by knowing the general direction of trajectories in the eigenvalues for small changes in the parameters it is possible to determine which parameters participate the most in the eigenvalues close to be unstable. Table 3.4 presents the differences between the participation factor matrix and the parametric sensitivity of (D'Arco, Suul, and Fosso 2014a) and (Barrera-Gallegos, Dauphin-Tanguy, and Guillaud 2016). 
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Applied to

All modes of the system and states 

Yes

No No

Conclusions

The participation factor matrix as analysis tool has shown up some limitations which makes it interesting to propose a new tool of analysis more general and rich in information on the dynamics of the system.

The new methodology for analysis has the advantage of having normalized elements, where the information is organized, clear and useful.

The interpretation of the elements in the PSM is not limited to real elements but also to complex variations of eigenvalues. Each element of the matrix describes the first order sensitivity of the eigenvalue, this can be understood as the general direction of the eigenvalue with respect to changes of the parameters. The previous chapters it is presented the analysis of the tools used till now on the classical AC power system and proposed another methodology more general but a little bit more complex to use. This approach will be applied on the specific domain of the HVDC grids. The presentation of this analysis is divided in two parts. The chapter 4 presents the modelling of the power electronics converter. It starts with the Voltage Source Converter, a very well-known topology, to follow on the Modular Multilevel converter which is now used for all the new projects in HVDC grid. The different control loops (current and voltage) are explained and some linearized models are proposed. In HVDC applications, two (HVDC link) ore more converters (MTDC grid) may be connected via cables or lines. A simplified model of these systems is also proposed. The same approach is proposed with MMC.

Context of the HVDC development

Chapter 1 presents the problematics of the dynamic analysis methods applied for the AC electrical networks in the high voltage DC networks. The difference in its fundamental dynamics makes the systems with power electronics different from the systems analyzed in (I.J. [START_REF] Perez-Arriaga | The Role of Participation Factors in Reduced Order Eigenanalysis of Large Power Systems[END_REF] for this reason the present chapter is a brief presentation on the modeling of the HVDC systems.

The electrical networks have been growing in size since the first power plants installed in big cities. The growing capability of the electrical network also evolved into a system with different ways of producing electrical energy from converting oil and gas, potential energy stored in dams, power from nuclear reactions, from the sun with photovoltaic panels from the wind with wind turbine. All these actual characteristics in the electrical systems bring new problems for controlling the electrical network.

Nowadays the production of energy could be organized in two different kinds of production means of electrical energy, as non-renewable energy sources and renewable energy sources. A renewable source is a naturally recovered energy that could be extracted from nature without affecting its natural process of recovering. As an example of renewable energy source it could be rain, wind, sunlight, geothermal heat, tides and waves of the ocean. As a consequence a nonrenewable energy source is where the energy extracted from this source cannot be recovered as a natural process of the system. Electrical power systems are composed of different elements as generators that convert the mechanical power to electrical one, transformers that allow changing the voltage values in order to transmit this electricity by efficient means, lines of transmission and elements of consumption and storage. Synchronous machines used for generation of electricity transform the mechanical power from primary sources prime mover (oil, gas, nuclear, hydraulic) into electrical power.

The structure of electrical power systems varies in size and structure, however they all have the same basic characteristics; they are three-phase AC (alternating current) operating essentially at a constant voltage.

Generation and transmission facilities use three-phase equipment.

The transmission of the electrical power over significant distance to consumers spread over a wide area requires a transmission system comprising subsystems operating at different voltage levels [START_REF] Kundur | Power System Stability and Control[END_REF]. The voltage in the AC system has a particular wave form for each phase,
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where V is the root mean square (RMS) voltage, t is time,  is the base pulsation of the electrical system and each phase ( , , ) The previous mentioned characteristics are very important for the interconnection between the different generation systems. The connection between different system is regulated to avoid congestion in the interconnections.

For example in Figure 4.2, the generation of each side could have different levels of voltage and frequencies.

These differences between systems are common in the transmission lines connecting different generation systems. There are some ways to overcome this problematics, from the use of transformers, to the application of specific control methodologies. Another option for connecting two different AC systems is by using the conversion to high voltage direct current (HVDC). With the grown market of renewable energy, the AC to DC conversion is used to connect this kind of systems. The power levels for the renewable sources may change depending on the conditions of the transmission and the associated energy sources, making the DC grids a very good option to connect such energy sources.

The conversion is accomplished by means of power electronics using thyristors, insulated gate bipolar transistors (IGBT), or other power electronic components like integrated gatecommutated thyristor (IGCT).

It has been studied and proved that HVDC interconnections have less loses and better performance [START_REF] Kundur | Power System Stability and Control[END_REF][START_REF] Chapman | Electric Machinery Fundamentals[END_REF][START_REF] Krause | Analysis of Electric Machinery and Drive Systems[END_REF]. This performance also depends on the control architecture of the system.

In some cases, the preferred way of power transmission from wind farms to AC systems is by using the HVDC connections [START_REF] Gao | A Review of Inertia and Frequency Control Technologies for Variable Speed Wind Turbines[END_REF][START_REF] Bernal-Perez | Wind Power Plant Control for the Connection to Multiterminal HVdc Links[END_REF][START_REF] Perveen | Off-Shore Wind Farm Development: Present Status and Challenges[END_REF]. HVDC also helps in the connection between power networks with different control systems and energy policies and connection between countries [START_REF] Ismunandar | Control of Multi-Terminal VSC-HVDC for Offshore Wind Power Integration[END_REF].

From different perspectives, the installation of power electronic technologies such as HVDC transmission and flexible alternating current transmission system (FACTS) devices will help improving the degree of flexibility of the grid. This means that those technologies support the increasing usable capacity without harming secure operation of the grid [START_REF] Liang | HVDC Grids: For Offshore and Supergrid of the Future[END_REF].

This involves changes on the grid from the traditional dynamic of the system governed by the dynamic of the synchronous generators to the dynamics of the power electronics used in the DC converters. Among the different converter technologies, in this thesis the analysis is focused on the voltage source converters (VSC) and the modular multi-level converters (MMC), which are the more currently used nowadays.

Voltage source converter

The interconnection between two or more substations requires the control of power, voltage, and current in each substation to regulate the way the energy is transmitted from one or more sources to the loads. Because of that, the control is designed to act on all the variables.

General control scheme

Figure 4.3 presents the general control architecture of a station interconnecting an AC network to a DC grid [START_REF] Rault | Method for Small Signal Stability Analysis of VSC-MTDC Grids[END_REF][START_REF] Cole | Generalized Dynamic VSC MTDC Model for Power System Stability Studies[END_REF]. m ac *

L f R f v ga v ma L f R f v gb v mb L f R f v gc v mc .
. . The DC side terminals of a VSC are typically connected in parallel with a relatively large capacitor that behaves as a voltage source

The VSC is a non-linear system, the model in Yazdani and Iravani 2010 presents a simplification of the VSC model for simulation and analysis of large scale systems.

A. Average VSC model

Under the hypothesis that the switching devices are fast, the average value model can be used [START_REF] Peralta | Dynamic Performance of Average-Value Models for Multi-Terminal VSC-HVDC Systems[END_REF]K. Wang et al. 2014). 

m ac * L f R f v ga v ma L f R f v gb v mb L f R f v gc v mc . . . i ga i gb i gc i m i dc i c v dc v mac * Modulation C s L f R f v ga v ma L f R f v gb v mb L f R f v gc v mc .
. . The power conservation principle, means that the power on the AC side must be equal to the power on the DC.

ma ga mb gb mc gc dc m v i v i v i v i    (4.2)
which becomes in the dq0 frame,

md gd mq gq dc m v i v i v i  (4.3)
The dq0 reduced diagram is presented in 

di v v R i L L i dt di v v R i L L i dt                 (4.4)
In the frequency domain equations (4.4) are,

    * * md mq f f gd f gq f f gq f gd L s R i v L i L s R i v L i         (4.5)
where,

* * mq md mq gq md gd v v v v v v   (4.6)
and  is the frequency of oscillation at the AC side. In practice, the frequency is reconstructed using Phase Lock Loop (PLL). In the following, the frequency value  is assumed to be constant.

B. Current loop

The control of the current using power electronics is widely used for high voltage source converters. The objective is to produce a sinusoidal AC output in which amplitude and frequency and phase can be controlled in order to fix the current of the AC side of the VSC.

The control of the current through the converter is necessary to control the transferred power. A common methodology is using the rotating reference frame dq0 instead of the three-phase stationary coordinated system; by decoupling the signals from the d and q axis the control is independently controlling active and reactive power.

Derived from (4.5)and (4.6) the block diagram of the physical AC system in dq0 is shown in Figure 4.7. It shows up the coupling between gd i and gq i . This coupling has been related to the transfer of active power and reactive power through each axis. If the coupling between the axis is compensated by the control, it is possible to have a decoupled control for active and reactive power.

Neglecting the switching devices, the current loop presented in Figure 4.7 is a common strategy to control the current through the converter.

. . 
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The desired behavior of the closed loop is settled by fixing the damping coefficient ξ = 0.7 and the undamped natural frequency n  set to achieve a settling time s t of 10 milliseconds

+ - AC dynamic PI controller + - AC dynamic PI controller 1 f f R L s  1 f f R L s  1 1 p i k T s        1 1 p i k T s        gq i gd i * gd i * gq i * mq v * md v Figure 4.8 Decoupled current loops
Due to the choice on the PLL, the active power is related to the d-axis current magnitude and the reactive power with the q-axis current. If the reference of the q-axis current is set to zero, the possibility of repeated poles reduces and the dynamic analysis is straight forward.

C. Voltage droop control

For the control of the voltage, there are different approaches in the literature [START_REF] Thams | Stability of DC Voltage Droop Controllers in VSC HVDC Systems[END_REF][START_REF] Wenyuan | Analysis of Active Power Control for VSC-HVDC[END_REF]. In Figure 4.3 the voltage control is presented with a proportional block (droop control). This type of control is used in Multi-terminal DC grid since it allows sharing the balance effort in case of large variations of power. shown in Figure 4.9 defines the drop of the voltage when there is a change of power in the system between certain limits. This characteristic is presented in Figure 4.10, where the x-axis of the graph corresponds to the power range of an AC system connected to the DC grid with a voltage range of change. In the point of desired operation The changes of the power are considered from 1 to 1  in per unit. For a positive value the power will be consumed by the AC system.

D. Linearization of the model

Equation (4.3) presents nonlinear characteristics. For the modal analysis, a linearization is necessary.

The linear equations of the model are,

0 0 0 0 gd md md gd m dc dc mdc i V V I i V v I        (4.10)
The station linearized model is presented in Figure 4.11 as a block diagram [START_REF] Rault | Method for Small Signal Stability Analysis of VSC-MTDC Grids[END_REF]) The sub index 0 refers to the operating point. This model is simplified but represents the major dynamics of the system: the DC bus voltage dynamics and grid current dynamics.
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Clearly, this model neglects the inner controls of phase locked loop and the switching controls. The purpose of this simplification is to have a model simple enough to begin the analysis.

Per-unit in HVDC grids

As mentioned in section 2.3.2, the per-unit representation has its advantages for the use of manageable magnitudes of the variables.

The use of the base values of an AC system into the HVDC network has become a standard [START_REF] Yazdani | Voltage-Sourced Converters in Power Systems[END_REF].

 Ac per-unit representation

For the systems involving AC to DC conversions, the use of the AC per-unit representation involves AC base values corresponding to the oscillatory behavior of the system. When applied, the DC side of the converter is presented in terms of the AC base values including the oscillatory variables (oscillation frequency  in rad).

Consider the following base values for a HVDC with a VSC station. The capacitor in per-unit is

1 pu b b b bb CC C CZ C Z      (4.20)
The capacitance pu C depends on the value of the base impedance, which depends on the voltage of the AC side.

The per-unit values depend on the base values of the AC side. Thus, the following consequences apply.

 The parametric analysis of a model with bigger order of magnitude in the AC (in pu) side this could lead wrong conclusions.  On the contrary, if the elements of the AC side (in pu) are smaller than the elements of the DC side this could lead to consider that the elements of the DC side are too important for certain modes.

The per-unit representation has a scaling effect on the per-unit value of the elements. If the base of scaling is not well chosen, the results can lead to different conclusions. Those will be valid in the context of the per-unit representation but not in the physical units of the system.

It also opens the opportunity to discuss under which circumstances this method is not viable.

Another alternative is to use the per-unit based on the stored energy of the DC elements as presented in section 2.3.2. This basis has the advantage of having elements that represent in a way the stored energy of each element in a uniform unit (seconds for the energy storage elements and per-unit for resistive elements).

Reduced linear equivalent

Consider the system of Figure 4.12, It For didactic reasons, let us assume that the changes of the operating point have no influence on the dynamics of the system. In addition, the dynamic of the current loop is supposed to be infinite.

Therefore, the equivalent circuit in Figure 4.13 represent such reduced model. 
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The objective of this example is to measure the parametric sensitivity with respect to the capacitances in the stations and the inductance of the cable.

This reduced model has no means to reproduce the complete dynamics of the systems but under the right circumstances can help to reproduce a large scale MTDC grid [START_REF] Cole | Generalized Dynamic VSC MTDC Model for Power System Stability Studies[END_REF].

 First order equivalent model

Under the hypothesis of having 0 ab L  the model in Figure 4.13 is reduced to a first order system with lumped capacitance. The equivalent linear block diagram is presented in 
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MTDC model

The classical VSC structure presented in  The system is considered under balanced conditions.  Since the AC voltage source is considered here as perfect, the dynamic of the PLL is not taken into account.

For simplifying the model, gq i is supposed to be null.

All the other equations are linear so, there are included in the same form as in the linearized model of the VSC. The complete block diagram of the linearized MTDC system is presented in Figure 4.17.
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.17 Block diagram of the MTDC system where the variables in upper case and with the subscript 0 are the operating point, and the variables with the Greek symbol  refer to the deviation variables.

A. Model in per unit

As explained in Chapter 3, an accurate conclusion from the use of parametric sensitivity matrix supposes to have quantities without any unit. It is the reason why the use of per unit is mandatory in this type of analysis. With a linear model, the equations in per unit are the same as for the original ones. In the new model, all the per-unit elements are represented with a subscript "pu" for this section. The system in per unit can be expressed in a state-space form as follows: 
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where,     

i k i k C k v i k i k a C k v       
eq pu ik v v C ik v v C               (4.28)

B. Analysis of the solution of the free-motion model

From the free motion system equations, prior knowledge of the system can be interpreted. The use prior knowledge of the system helps for the modal analysis. For example, the diagonal elements with zero in (4.26) assure that there is no strict diagonal dominance. Nevertheless, the few diagonal elements can have a strong importance for the solution of the system. 

Consider the parameters in

A                                 (4.29)
The eigenvalues are presented in Table 4.3. 
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(4.30) Each term of (4.30) corresponds to the elements of the sensitivity matrices, 0

x represent the initial conditions vector.

The first four terms of the solution equation (4.30) the elements of multiplu 
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The circled elements are the elements with greater contribution to the dynamics of the state.

The complete solution of the state is difficult to present, nevertheless the comparison between them gives interesting results.

 The term 3 t has small participation in the solution.

 The terms 1 t , 2 t and 4 t have an important contribution to the solution for the exponential terms 3 t e  and 4 t e 

For the PF analysis, it is necessary that 2 t has to be more important, looking at the numbers of the exponential terms 3 t e  and 4 t e  it is clear that 1 t and 4 t have a bigger contribution to the solution.

Modular Multi-level Converter reduced model

The use of modular multilevel converter (MMC) is a real breakthrough compared with the classical 2 and 3 level converters. All new HVDC links are now using this kind of topology. The advantages are, low losses, modularity, scalability and low harmonic distortion [START_REF] Abildgaard | Modelling and Control of the Modular Multilevel Converter (MMC)[END_REF]. The dynamic analysis is an important task to understand its behavior, control its dynamics, and avoid stability problems in the systems using MMC stations.

The Figure 4.18 shows the topology of a three phase Modular Multilevel Converter. It has three legs, one per phase, and each leg has two arms (upper and lower arm). N submodules connected in series compose the arms. The number of submodules can vary depending on the desired output voltage level and expected redundancy. For a 401-Level MMC-HVDC system N could be in the order of 400 up to 440 [START_REF] Peralta | Detailed and Averaged Models for a 401-Level MMC-HVDC System[END_REF] The arm inductances ( arm L ) limit the DC fault current gradients and support the voltage difference caused by the insertion and disconnection of the submodules. For limiting the current in case of AC fault, there are the inductances f L in the AC side; they also help to control the grid current and limit the rise of current in the case of AC short circuit. The resistive part of the arm inductances and the output filter are noted as arm R and f R respectively. This model can be very complex; its control has to be fast to provide the signals for each switch submodule. For this thesis as presented for the VSC converter the switching dynamics are not taken into account for simplification purposes. Nevertheless the simplification of this model has been developed in different forms [START_REF] Diaz | Small-Signal State-Space Modeling of Modular Multilevel Converters for System Stability Analysis[END_REF][START_REF] Beddard | Modelling of MMC-HVDC Systems -An Overview[END_REF][START_REF] Saad | Modular Multilevel Converter Models for Electromagnetic Transients[END_REF][START_REF] Peralta | Detailed and Averaged Models for a 401-Level MMC-HVDC System[END_REF] The four different models in reduced complexity are presented in [START_REF] Saad | Modular Multilevel Converter Models for Electromagnetic Transients[END_REF] in the following form, The model type 3 represent a good dynamic behavior, it can still be simplified with reasonable assumptions [START_REF] Freytes | Small-Signal State-Space Modeling of an HVDC Link with Modular Multilevel Converters[END_REF]. In order to reduce the number of state variables and reduce dynamic complexity. 
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The addition of the upper and lower parts yields,

j jj g ac ac vj g eq eq g di v v L R i dt    (4.34)
where:

    2 2 2 2 2 j j j ij uj j g u l mm v arm f ac eq arm f ac eq i i i vv v RR R LL L        (4.35)
Equation (4.34) describes the AC side dynamics of the AAM. For the DC side, the following equations are defined,

22 j j j diff dc diff arm arm diff di v v L R i dt    (4.36)
where,

2 j j j j lj uj ul diff diff m m ii i v v v    (4.37)
The relation of AC and the DC side (4.34) and (4.36) define the dynamics of the lower and upper parts of the arms. At this point, the model has three arms, each one with upper and lower part.

Simplification of the AAM

Considering that under controlled operation, the upper and lower voltages are equal, This model is suitable when the focus is on the AC and DC current dynamics and the total energy stored in each arm. Finally, this allows comes up with the model in 

di L v v R i L i dt di L v v R i L i dt           (4.46) For the DC side * * dc dc dc eq mdc dc eq dc Ctot mdc mac tot di L v v R i dt dv C i i dt     (4.47)
where the equivalent resistance and inductance are, 2 3 2 3

dc arm eq dc arm eq L L R R   (4.48)
The AC voltages and currents are ,

md d Ctot mq q Ctot mac d gd q gq v m v v m v i m i m i   (4.49)
The DC side voltages and currents are

mdc dc Ctot mdc dc dc v m v i m i   (4.50)
Choosing the energy in the MMC as the state variable its derivative is

  tot mdc dc md gd mq gq dW v i v i v i dt     (4.51)
which is non-linear As it can be seen, this simplified MMC model is very similar to the VSC model. One more modulation is added between the capacitor * tot C and the DC bus.

Control strategy

The MMC control is much more complex than VSC control. It exists many possibilities to achieve this control. One solution is briefly presented here. More details can be find in [START_REF] Samimi | Modélisation et Commande Des Convertisseurs MMC En Vue de Leur Intégration Dans Le Réseau Électrique[END_REF] As mentioned before, the MMC equivalent on the AC side is similar to the VSC station, The additional inductance and its proper capacitance in the DC side makes the MMC station different to control. As in the two-level VSC, a control strategy based on two cascaded loops (namely inner and outer loops) is applied. The blocks marked as PI are classical proportional and integral controllers. Inner control loops are required to be the fastest.

A. Inner controllers

As the AC side in the MMC is similar to the VSC the control of the current is practically equal with the considerations required for this converter. In addition, in the MMC station a control of the differential currents in the arms is needed for the DC side.

B. Outer controllers

The outer loops correspond to the control of the voltage in the DC side and the total energy stored in the station [START_REF] Saad | MMC Capacitor Voltage Decoupling and Balancing Controls[END_REF]. Figure 4.25 presents the control blocks in the loops The AC side controls the AC current in the inner control and the power of the AC side or the voltage in the DC side. The DC side controls the DC current and the total energy stored in the MMC. The control of the energy is based in the conservation of the energy exchanged in the converter.

The power controllers   However, if the energy reference is associated with the square of the DC voltage 2 dc v , the equivalent capacitor may consider as if it were connected to the DC bus To sum up, there are two alternatives for the control of the energy:  Including the energy on in the cable capacitance in the DC grid.  Excluding the energy on in the cable capacitance in the DC grid.

If the stored energy of the MMC is shared with the DC bus. The MMC behaves as if the * tot C

were connected to the DC bus.

 Voltage control If the converter is regulating the DC voltage, the d-axis current reference is generated by a DC voltage control loop equipped with a controller to ensure there is no static error on the slackbus. In this case, an IP controller is used to limit the overshoot when changing the DC bus voltage reference. 

1 gd v * gd i 1 dc p v k 1 dc p v k   2 * dc v   2 dc v    

Linearization

As for the VSC, a linearized model proposed for the MMC. 

dW i v v i v i v i i v i v dt              (4.52)

One station MMC in a MTDC network

Consider the model given in Figure 4.27, 
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ac eq L  ac eq L  1 ac ac eq eq R L s  1 ac ac eq eq R L s  + 0 mq v + 0 md v + 0 gd i       0 gd i 1 s ac eq L  ac eq L      PI + 1 dc dc eq eq R L s  + 0 mdc v    0 dc i   PI       PI   gd v  gq v ac P  mq v  * gd i * gq i 1 gd v * g P gd v  gq v dc P  tot W  gd i  gq i  md v  mdc v  dc i  PI * dc i 1 dc v * dc P ac P * tot P * tot W dc v  dc i  gq i  gd i        AC Current control Power control DC Current control Energy Current control
L  ac eq L  1 ac ac eq eq R L s  1 ac ac eq eq R L s  + 0 mq v + 0 md v + 0 gd i       0 gd i 1 s ac eq L  ac eq L      PI + 1 dc dc eq eq R L s  + 0 mdc v    0 dc i   PI       PI   gd v  gq v ac P  mq v  * gd i * gq i gd v  gq v dc P  tot W  gd i  gq i  md v  mdc v  dc i  PI * dc i 1 dc v * dc P ac P * tot P * tot W dc v  dc i  gq i  gd i            1 dc p v k 1 dc p v k   2 * dc v   2 dc v AC Current control DC Current control Energy Current control dc v control

Two stations MMC in a HVDC

Consider the diagram of the system in Figure 4.30, it presents an HVDC link using the In total having 20 state variables, 

2 g v 1 g i f L f R dc i 1 dc v x C x C ab L 1 MMC 2 dc v 2 MMC f R f L 2 g i 2 g v

Conclusions

The knowledge of the systems before the parametric analysis is important to understand the relationships between the parameters and the eigenvalues.

The VSC is one of the most studied converters, therefore its importance for using a new tool of analysis.

The model describing the MMC is a new model developed by the team of the L2EP, in a collaborative work leaded by Julian Freytes and others. The description of the Models and validations is made in a form that allows having automatically the linearized time invariant equations.

An automatic analysis tool was implemented for these models in the MATLAB ® environment. Appendix A describes the routine of parametric sensitivity analysis for the models described in this chapter. This computational tool adjusts to any LTI system automatically, having the appropriated inputs, it gives the PSM and the analysis tables.

Next chapter presents the results of the analysis performed in the systems detailed in the present chapter.

Chapter 5 Modal analysis on HVDC systems 5.1 Objectives of the analysis Chapter 4 has presented the basic topologies used in HVDC application. In this chapter, the methodology of sensitivity parametric matrix is applied and compared with the participation factor. Different examples are chosen to illustrate this methodology. The simple system presented in section 4.3.3 is first analyzed. Due to the simplicity of the model, it cannot be considered as very realistic but since it is simple, it is possible to compare the obtain results with analytical results to confirm the accuracy of the method.

The second example is an elementary Multi Terminal DC grid connected to AC system with Voltage Source Converter. This example shows clearly the limit of the participation factor method.

The third example is focused on MMC: the converter by itself first and then in a HVDC link.

Simplified equivalent DC link

In a first step, a simplified HVDC link is analyzed. Figure 5.1 recalls the structure of this system. The first pair of eigenvalues 1,2  can be associated to the coupling between the elements in the cable: equivalent capacitances As it can be noticed, the theoretical frequency is very similar to the calculated one.
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The second pole 3  , can be calculated when neglecting the effect of the inductance (see the participation factor matrix is, 0.32 0.05 0.32 0.05 0.368 0.17 0.17 0.17 0.17 0.659 0.51 0.22 0.51 0.22 0.02

ii ii i P i                (5.4)
the modulus of each element of P are, (5.7) At this stage, an important remark has to be done about the elements of both matrices. In P, the numerical values have no physical meaning whereas in nr Sp , it is possible to draw some information from these values.

From (5.6) and (5.7), small changes in the inductance Considering the normalization by columns, (5.9) using the parameter values of Table 5.1 and the equation (3.3), the PSM normalized by columns is, Additionally, the integration of the control parameters in the analysis may hide some properties since the modes seems only sensitive to the control parameters. In the following examples, both results will be presented: either the parameters of the control and the power part in the same matrix or two different matrixes. This remark highlights that the conclusion drawn from the analysis of this matrix highly depends on the choice of the parameters integrated in the matrix.

Dynamic analysis of a three terminal MTDC

After the study of a simplified HVDC link model, the three points HVDC system define in section 4.3.4 is analyzed. The main parameters of the control and the system are given, the dynamics of this system is studied with respect to the variation of the droop value. In [START_REF] Rault | Investigation on Interactions between AC and DC Grids[END_REF], a clear connection between the droop value and the response time of a simplified VSC MTDC system has been demonstrated. 3 decreasing values are analyzed: 0.5, 0.2 and 0.1 which means decreasing time response of the voltage control.

Since participation factors link eigenvalues to state variable and sensitivity matrix eigenvalue to parameters, a strict comparison is not straightforward. Hence, only physical parameters relative to state variables have been placed in the sensitivity matrix.

Table 5.4 Association between state variables and parameters

1 dc v 1 ab L i 1 f L i 2 dc v 2 ab L i 2 f L i 3 dc v 1 eq C 1 ab L 1 f L 2 eq C 2 ab L 2 f L 3 eq C A.

High droop value

The numerical values has already been presented in section 4.3.4. for a droop value set to 0.5.

The system has the nine eigenvalues presented in Table 5.5 Before analyzing the participation factor and the sensitivity matrix, some intuitive considerations may be done:  5  corresponds to the first order pole found in [START_REF] Rault | Investigation on Interactions between AC and DC Grids[END_REF]) assuming a simple DC network only composed of capacitors the theoretical value is 14 rad s  .

 6,7

 and 8,9  are relative to the current loop. Since the chosen time response is 10 ms with a damping of 0.7, the theoretical natural frequency is: 47.7 Hz.

Looking only to the physical elements chosen in (5.11) , the matrix nc Sp is: 
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(5.11)

The participation factors are: 
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0.50 0.46 0.50 0.46 0.50 0.46 0.50 0.46
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In Spnc and P, the elements circled: in green: means that similar information may be drawn from both matrices. in red:

means that different information may be drawn from both matrices.

The terms with a modulus inferior to the modulus of 0.1 0.1i  are presented with  .

In this case, the results obtain with P and Spnc are nearly similar: There is only the natural coupling on the cable sections. In models where the coupling is not strong between parameters, the results of the parametric sensitivity and the participation factors can lead to similar results.

At this stage, an important remark has to be done about the elements of both matrices. In P, the numerical values have no physical meaning whereas in Spnc, it is possible to draw some information from these values. Indeed, each element represents the derivative of a pole with respect to a given parameter. Hence, a high modulus of an element compare with the other elements in the same column is relative to a high sensitivity of the pole to the parameter but the complex number gives also the direction of the evolution of the pole. 

B. Medium droop value

In this section, the droop value is set to 0.2 on both VSC stations; the eigenvalues are given in Table V  and 8,9  are nearly the same as previously which is normal since there are relative to the current loop.

5

 has increased which is consistent with the analysis proposed in [START_REF] Rault | Investigation on Interactions between AC and DC Grids[END_REF], however a very important difference is noticed between nc Sp and P.

nc Sp shows clearly that this pole not only depends on the capacitors but also on Lab1, Lab2, Lf2. This phenomena is not noticed in P. Moreover, the origin of 1,2

 is different in nc Sp and P.

For 3,4  , the information given by P and nc Sp can be considered as nearly similar. 
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C. Small droop value

In this section, the droop value is set to 0.1 on both VSC, it leads to new values for the eigenvalues presented in Table 5.7. 
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For this example the participation factors are, 
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From a general point of view, many differences are noticed between nc Sp and P and it is nearly impossible to compare both matrices. 6,7

 and 8,9  are still next to their theoretical value with a slight variation. Information given by P start to be wrong because an influence of vdc1, vdc2 is noticed where as nc Sp does not give this information.

The change of droop parameter involves clearly a coupling between the AC and the DC elements (mainly for 5

 and for 1,2  ).

nc Sp shows this coupling while P points out no strong couplings.

One can conclude that when strong couplings are emerging between the different parts of the studied system, participation factors are not valid any more.

Dynamic analysis of HVDC system with MMC

As already mentioned, most of the HVDC links are now connected to AC system with MMC. For the high level control, one of the main differences between MMC and VSC is about the energy control. In the VSC, the capacitor is directly connected to the DC grid whereas, in the MMC, there is no direct connection. It is the reason why an energy loop has to be implemented in the MMC control as shown in  One single MMC connected to a constant DC bus : energy controlled by DC power (section 5.4.1), AC power (section 5.4.2)  One single MMC connected to a variable DC bus : constant energy reference (section 5.4.3), variable energy reference (section 5.4.4)  An HVDC link with MMC

One MMC connected to a fixed voltage source: energy controlled by DC power

Let us suppose that the MMC station is connection to a constant DC voltage source. The MMC control has two aims:

 Controlling the MMC internal energy. In this section, the energy is controlled with the help of DC power.  Controlling the power flowing through the converter thanks to the AC power. The system equations lead to the eigenvalues in Table 5.10. Looking at the control settings in Table 5.9, the eigenvalues can be easily understood.  1,2

 is related to the control of the energy.  3,4

 is related to the DC current loop.

 5,6

 and 7,8  are related to the AC current loop as they are very similar and in the control scheme are identical. For the analysis of this model is important to clarify that the model uses the state variables that are expressed in per-unit using the representation introduced in section 2.3.2.

The PF matrix is 

i i W i i i i i i i i v i i i Int Int Int Int P                                               
(5.17)

To compare the PSM and the PF matrix the PSM is composed by the parameters most related to the state variables, energy storage parameters ( 

                            (5.18)
The circled element is the only different element, compared to the PF matrix there are only two elements in the matrix with a different interpretation Comparing P matrix and Spnc matrix leads to some interesting conclusions in this example.

 Both matrices lead to similar overall conclusions.  Spnc gives more accurate conclusion on 1,2  mode. Indeed, since the energy is controlled by DC current, it is normal that this mode is depending on the As presented in the example in section 5.2, the analysis of physical parameters and control parameters can hide valuable information, the analysis separating physical elements and control elements is performed, in this way.

The analysis for the energy storage elements is, 

C L L nc i i i i i H H H Sp                       (5.19)
The coupling in the first pair of eigenvalues is the result of controlling the energy using the dc energy, this coupling is not taken in to account in the PF matrix.

The control parameters the parametric analysis is The analysis of the integral time confirms that each controller has an influenced on the particular eigenvalues relative to the loop where the integral parameter is involved in.

One MMC connected to a fixed voltage source: DC power mode and energy controlled by AC power

This case is very similar to the previous one except that the energy is controlled by the AC power. The power flowing through the converter is then controlled by DC power. Since all the parameters for the MMC and the control are the same, the eigenvalues or the system are very similar to the previous ones as shown in Table 5.11. As previously, the origin of the eigenvalues is rather easy to find:  1,2

 is related to the control of the energy.  is related to the DC current loop.

 5,6

 and 7,8  are related to the AC current loop as they are very similar and in the control scheme are identical.

Relatively similar to the previous example this initial guess is made in knowledge of the reference eigenvalues and "intuition".

The PF matrix is 

i i W i i i i i i i v i i i Int Int Int Int P                                 6i     
C L i n L i W c i i i i i ii i H H H T T T Sp                                  (5.22)
As in the previous example nc Sp is more accurate than participation factor since it highlights the dependence of 1,2

 the mode which corresponds to the energy with the AC parameter which is normal due the choice on the control. It is also possible to separate the physical and control parameters but in this case, the information is similar. This analysis can be used for the proportional constants parameters in the controllers. (5.25) This analysis can also be used for the proportional constants parameters in the controllers. The same information are drawn as for the integral parameter.

i i i i i H H H Sp                    (5.
i i nc W i ii i k k Sp k                      

One MMC connected to a variable DC busenergy reference constant

The variable DC bus is modelled by a capacitor associated to a current source (see Figure 5.12). This current source is modelling the current which could be delivered by another MMC connected on the same DC bus as in an HVDC link as it will be presented in section 5.4.4. dc C is a simplified model of the cable which links both stations.

Since the voltage is not fixed, it has to be regulated. The MMC control has to aims:

 controlling the MMC internal energy. In this section, the energy is controlled with the help of AC power.  controlling the DC voltage thanks to the DC power. Using the parameter values in Table 5.8 and the control settings in Table 5.12, the system equations leads to the eigenvalues in Table 5.13. 

i i W v i i i i v v i i i Int Int Int Int Int P                               0 
i i i i i i                                                     (5.26)
The PSM is 

C C L L i i W v nc i i i i i i H H H H T T T T Sp                      0.98 0.01 0 0.21 0 21 0.03 0.6 i i i i                                          
(5.27)

The conclusions which can be drawn from this comparison are similar to the previous examples.

nc Sp analysis give more accurate information on the system since it highlights clearly the relation between the modes linked with the internal energy and the energy stored in the DC bus with their respective storage element, which is normal, but also with the internal loops. 

i i ii i i i H H H H Sp                            (5.28)
The analysis shows that the internal energy storage in the MMC in the total capacitance Considering the model given in section 4.4.5, two MMC stations compose the system. One of the stations controls its energy and power (MMC1) and the link and the other (MMC2) controls the voltage of the link. Both stations have a control loop of the internal energy as already explained in Chapter 4 The system has 20 state variables for this complex problem the use of the parametric sensitivity is proposed.

The free-motion equations have no particular form, in other words, is not possible to know much from them if it does have a diagonal dominance or if there are couplings between the state equations.

Considering the structure in Figure 4.30

1 g v 1 g i 1 f L 1 f R 1 dc i 1 dc v x C x C ab L 1 MMC 2 dc v 2 MMC 2 f R 2 f L 2 g i 2 g v 2 dc i
HVDC link with MMC stations Using the parameters in Table 5.14. The system equations lead to the eigenvalues in Table 5.17. From Table 5.17 it is possible to anticipate the link between some eigenvalues with a damping ratio near to 0.7 and the controllers of the MMC stations. However, it is not straightforward to have an intuition on all the present 20 eigenvalues.

From the system matrix in per-unit and the eigenvalues the PF matrix is presented in equation (5.30). The sub index 1 and 2 indicate the station MMC1 or MMC2 respectively.

According to the PF the eigenvalues have the following contributions 

i i i i i i i i i i i i i                                                                                              0.
i i i i                                                                                                                                
(5.30) (5.31)
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According to the PF the eigenvalues have the following contributions From the matrix Spnc the following can be stated.  is the only eigenvalue where a coupling is noticed between a converter and the inductance Lab H . Some rather similar information are drawn from participation factor except for 1 Leqdc H .

 Similar results is notice also on the eigenvalue 3  but it is difficult to understand the physical meanings of this eigenvalue.

 Different results are noticed on 16

 but it is also difficult to understand the physical meanings on this pole.

The parametric sensitivity helps in this case to understand how the eigenvalues are related to the explicit parameters in the matrix of the linear system. Nevertheless, the physical relationships of the parameters may help also to understand how non-explicit parameters relate to the eigenvalues Let's take the example of the length of the cable. The parameter has an influence on Lab. As seen previously only the eigenvalue 6,7

 is relative but 1 Lab H so, it is possible to anticipate that only this pole will be sensitive to the length. Figure 5.16 (circled eigenvalues) confirms this affirmation Figure 5.14 Eiegnvalues changing the cable length from 300Km to 100Km.

The analysis of a system with many eigenvalues is a complex task but as the automatic tool in MATLAB® performs all the partial derivatives, the result of the analysis is obtained in few seconds.

Conclusions

The analysis of the different models of the VSC and MMC station shows the efficacy of the parametric sensitivity analysis. However for reasonable dynamics a large part of the information given by the participation factor are correct. The comparison with the participation factors shows clearly the limitation of the participation factors when the systems are strongly coupled in case of high dynamics for the system From the technical point of view, the parametric sensitivity analysis shows the nature of the different eigenvalues taking into account for any kind of parameters in the model. New insight on the couplings and interactions between elements (or subsystems) can be envisaged with this technique.

In this thesis, it has been presented a review of the participation factor matrix as an analysis tool showing some limitations. Nonetheless, its application is valid depending on the properties of the model.

From the easy interpretation of the PF and the accurate information of the parametric sensitivity analysis, a methodology has been proposed using the parametric sensitivity for modal analysis in LTI models. A new form of modal analysis is presented in Chapter 3, including the formulation of the Parametric Sensitivity Matrix (PSM).

The PSM has the advantage of having normalized elements, where the information is organized, clear and useful. It has been shown that the per unit approach is mandatory to obtain consistent results. The interpretation of the elements in the PSM is not limited to real numbers but also to complex number for the sensitivities. Each element of the matrix describes the first order sensitivity of the eigenvalue.

The PSM can give a measurement of the change of the eigenvalues for changes of the parameters, and it can be used for different purposes as,  Stability analysis  Tuning of control parameters  Analysis and selection of new parameters  Analysis of coupling in different subsystems and parameters

The purpose of this thesis is to show that the PSM is a better alternative for the analysis of DC networks.

The analysis of the different models of the VSC and reduced model of a MMC station shows the efficacy of the parametric sensitivity analysis. The comparison with the participation factors shows how the participation factors have a limitation when the systems are strongly coupled.

An automatic analysis tool was implemented for the MMC models in the MATLAB ® environment. Appendix A describes the routine of parametric analysis for the models described in this chapter. This computational tool is suitable for any LTI system, having the appropriated inputs. The efficacy of the implementation allows having an analytical model and the analysis for a point of operation in less than one minute for a complex model of 20 state variables. This thesis is part of the collaborative effort with Julian Freytes and Samy Akkari, where the perspectives is to applied the defined methodology to more complex MMC models and use it on MTDC networks.

In the short term:

 Use of the PSM in a larger MTDC network  Analysis of a MMC in AC unbalanced operating point  Study of the evolution of the energy in the system subject to a variation on a given parameter to determine the most active eigenvalues  Possible reduction and validation of its dynamics using the activity analysis (Louca, Stein, and Hulbert 2010) and the PSM.  Use of the PSM for evaluate the couplings between subsystems developing a metric to measure the index of coupling.

In the long term  Develop a general formulation for linear systems of the PSM.  Include a second order derivative on the sensitivity for the PSM.

Scientific contribution

From the work of this thesis two papers were published in international conference and one journal paper has been submitted in an international journal. Barrera Gallegos, Noe, Genevieve Dauphin-Tanguy, and Xavier Guillaud. 
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  Figure 1.2 Modal analysis

  The approximated solution of the second order system according to the participation factors is,

  base generally chosen as the nominal voltage of the electrical network under analysis. • b i : current base, related to the power base and voltage base defined as b b b



  Example of per unit representation for the DC circuitsFor the circuit presented in Figure2.1, the state equation is(2.46), 11 11 2

  72) in the first state equation in (2.46) gives,

Figure 2 . 2

 22 Figure 2.2 Current in L (a) and voltage in C (b). Note the difference in the time responses and the peak amplitude.

  Figure 2.4 Diagonal dominant response in pu.

Figure 2 .

 2 Figure 2.4 shows that the approximation of the PF is close to the complete response.

Figure 2 . 5

 25 Figure 2.5 Gershgorin circles for equation (2.104).

  Consider a model with n distinct eigenvalues and suppose that m parameters

Definition 3. 1 :

 1 Consider a system model with n distinct eigenvalues and suppose that m parameters could change. The following matrix called Parametric Sensitivity Matrix (PSM) is proposed, containing by rows the sensitivity of each eigenvalue to one parameter 1, 2 j jm

  Figure 3.1 Eigenvalue trajectories for a small change in

  represents the relative contribution of each parameter changing of the same value. The eigenvalue evolution for an equal change (0.01 milliseconds) of the parameters L H and C H is presented in Figure 3.3.

Figure

  Figure 3.3 Comparison for an equal change.

  Figure 3.4 Eigenvalue trajectories for L 3.2.5 Example 3.4: Simple Circuit with diagonal dominant elements

  The new matrix can give a measurement of the change of the eigenvalues for changes of the parameters, and it can be used for different purposes as,Stability analysis  Tuning of control parameters  Analysis and selection of new parameters  Analysis of coupling in different subsystems and parameters Chapter 4 State-space modeling of HVDC systems 4.1 Introduction
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 41 Figure 4.1 Phasorial representation of the three-phase voltage.

  Figure 4.2 Two generation systems connected

P

  Figure 4.3 Voltage source station control diagram.

  Figure 4.4 VSC converter

Figure

  

  Figure 4.5 Reduced model of a VSC

Figure

  Figure 4.6 dq0 model of a VSC

  Figure 4.7 Current loop

Figure

  Figure 4.9 Voltage and power control. The constant parameter 1

  Figure 4.10 Voltage droop characteristic.

Figure 4 .

 4 Figure 4.11 Linear model.

  The base value of the energy storage elements depends on the impedance base b Z and the oscillation frequency b  .The DC per unit is based on a strong assumption[START_REF] Yazdani | Voltage-Sourced Converters in Power Systems[END_REF] For example, consider the following state equation for a capacitor in a DC network in per unit

Figure 4

 4 Figure 4.12 HVDC link with two stations.

Figure 4

 4 Figure 4.13 HVDC link equivalent circuit.

  in each station measured in the capacitor in per-unit. capacitances composed by the capacitance of the station and the capacitance of each side of the equivalent model of the cable.

Figure 4

 4 Figure 4.14 HVDC link equivalent circuit.

Figure 4

 4 Figure 4.15 Block diagram of the equivalent HVDC link.

Figure 4 .Figure 4 .

 44 Figure 4.16 is composed of a three-phase reactor AC filter 1 f L , 1 f R . The capacitor 1 vsc C , directly connected on the DC side, is lumped in parallel with the end-point capacitor of the DC cable

Figure 4 .

 4 Figure 4.18 diagram of the modular multilevel converter

  Figure 4.19 MMC models in decreasing complexity.  Model 1: This model considers a detailed representation of power switches The model presented uses an ideal controlled switch, two nonlinear (series and antiparallel) diodes, and two snubber circuits.  Model 2: This model replaces the power switches with ON/OFF resistors. This allows performing a Norton equivalent of the whole arm at each simulation step time, reducing the number of nodes of the circuit considerably.  Model 3: In this model each MMC arm is averaged using the switching function concept of a half-bridge converter based on the assumption that all SM capacitor voltages are balanced (Delarue, Gruson, and Guillaud 2013).  Model 4: Here the IGBT's and their diodes are not explicitly represented and the MMC behavior is modeled using controlled voltage and current sources.

  Figure 4.20 Model type 3.

  Then each phase of the AAM is reduced as shown in Figure4.21.

Figure 4 .

 4 Figure 4.21 Reduced phase-arm circuit.Under balanced conditions, each arm has the same amount of energy stored. Therefore in order to further simplify the model for a balanced AC system, it is reasonable to assume.

FigureFigure 4 .

 4 Figure 4.22 Equivalent dq0 MMC average model. The equations of the average model for the AC side are

Figure 4 .

 4 Figure 4.23 Inner controllers.

  controllers of the AC side.Similarly, to the inner controllers, they use a structure of PI controllers.If the energy reference of the controller is a constant value, as considered in[START_REF] Saad | MMC Capacitor Voltage Decoupling and Balancing Controls[END_REF], then the equivalent capacitor * tot C is completely decoupled from the DC grid.

Figure 4

 4 Figure 4.24 dc v voltage controller.

Figure 4 .

 4 Figure 4.25 presents the complete nonlinear system with its control (Akkari 2016).

Figure 4 .

 4 Figure 4.25 Block diagram of the complete non-linear system.

Figure 4 .

 4 Figure 4.26 presents the block diagram of the linear MMC station.

Figure 4 .

 4 Figure 4.26 Linearized physical system.

Figure 4 .

 4 Figure 4.27 MMC station connected to a MTDC network. This model is composed by a MMC station connected through a cable to a multi-terminal direct current network.

Figure 4 .

 4 Figure 4.28 Block diagram of a power controlled MMC. This model has the following state variables

Figure 4 .

 4 Figure 4.29 Block diagram of a voltage controlled MMC

Figure 4 .

 4 Figure 4.30 HVDC link with MMC stations.

  Figure 5.1 Topology of the simplified HVDC

Figure 5 . 2

 52 Figure 5.2 Dynamic response of the voltage in the link for a change of 0.1pu in the voltage reference. the participation factor matrix is,

Figure 5 . 3

 53 Figure 5.3 Eigenvalue trajectories changing ab L . In Figure 5.3, the circle in the trajectories represent the eigenvalues for the nominal parameter values. Changing the value of the equivalent capacitance 1 eq C in 10% 

  integration of the control parameters to the nc Sp matrix is possible only when the control parameters and the physical parameters have the same units. In this case the

Figure 5 . 6

 56 Figure 5.6 Voltage response.

)

  5 : P and Spnc confirm that this mode is mainly depending on the capacitors.   and : P and Spnc confirm that these modes are mainly associated with the AC current loop   are related to Ceq3 (vdc3), and Lab2 ( 2 Lab i  are related to Ceq1, (vdc1), Ceq2 (vdc2) and Lab1,

Figure 5 .

 5 Figure 5.7 and Figure 5.8 presents the evolution of the nine poles with respect to Ceq1 and Lab1. The evolution of the 4 is relative to elements in Spnc matrix: 0.18 0.23i 

Figure

  Figure 5.7 Eigenvalue evolution for changing 1 eq C

Figure

  Figure 5.8 Eigenvalue evolution for changing 1 ab L 0.5 

Figure

  Figure 5.10 Voltage response.

  Figure 4.25. In this figure, the energy   tot W is controlled thanks to the DC power with the modulation of dc i reference   * dc i . It is also possible to implement the control of energy with the AC current   * gd i . Both controls are compared in the sequel in term of dynamics The section analyzes the dynamic behavior of a MMC in different study cases:

Figure 5

 5 Figure 5.11 MMC connected to a fixed voltage source.

  are in the same unit. The control for the dq AC grid is considered to be equal for the q and d axis so the control parameters are represented as with the same variable  



  Spnc can lead to misleading conclusion since 3,4  , the modes which are relative to the DC loop, do not seem to depend on the dc i T .

Figure 5

 5 Figure5.12 MMC connected to a variable voltage source.



  1,2 : the mode associated with the internal energy depends on

  the control of the energy and the control of the voltage is performed trough the equivalent terminal MMC DC link (MMC1 Power mode W controlled by dc Power, MMC2 voltage mode W controlled by Ac Power)

  complexity, the complete set of equations is not presented.

Figure 5 .

 5 Figure 5.13 Voltage response for a change of voltage reference

  2016. "Modal Sensitivity of a Reduced Equivalent HVDC-VSC System." In International Conference on Control, Decision and Information Technologies. Barrera-gallegos, Noé, Geneviève Dauphin-Tanguy, and Xavier Guillaud. 2014. "Bond Graph Model Analysis of an Offshore Wind Farm." In 11th International Conference on Bond Graph Modeling and Simulation, 832-38. Barrera Gallegos, Noe, Julian Freytes, Genevieve Dauphin-Tanguy, and Xavier Guillaud. 2016. "Comparison between Participation Factors and Parametric Sensitivity Methodology for dynamic analysis on a MTDC system" in review for the Special Issue on Advances in High-Voltage Transmission Systems

  

  

  

  

  

  

Table of Contents

 of 

xiii List of Figures

Table 4 .

 4 1 Base values for a VSC station ............................................................................. Table 4.2 Parameters of the HVDC system .........................................................................

	Table 4.3 Eigenvalues for	0.5
	Table 5.5 Eigenvalues for	0.5
	Table 5.6 Eigenvalues for	0.2
	Table 5.7 Eigenvalues for	0.1

droop k  ................................................................................ Table 4.4 State variables of the MMC power controlled in a MTDC ................................. Table 4.5 State variables of the MMC voltage controlled in a MTDC ............................... Table 4.6 State variables of the MMC1 ............................................................................... Table 4.7 State variables of the MMC2 ............................................................................... Table 4.8 State variables of the cable .................................................................................. Table 5.1 Parameters of the HVDC network ....................................................................... Table 5.2 Eigenvalues.......................................................................................................... Table 5.3 Association between state variables and parameters .......................................... Table 5.4 Association between state variables and parameters .......................................... droop k  ................................................................................ droop k  ................................................................................ droop k  ................................................................................. Table 5.8 Parameter values of one MMC station connected to a MTDC grid .................... Table 5.9 Control settings .................................................................................................... Table 5.10 Eigenvalues with energy controlled by DC power. ........................................... Table 5.11 Eigenvalues for the DC link .............................................................................. Table 5.12 Control settings .................................................................................................. Table 5.13 Eigenvalues for the DC link ..............................................................................

Table 5 .

 5 14 Parameters of the MMC stations ....................................................................... Table 5.15 Control settings MMC1 ..................................................................................... Table 5.16 Control settings MMC1 ..................................................................................... Table 5.17 Eigenvalues for the DC link ............................................................................. This thesis work has been performed under the co-guidance of Prof. Geneviève DAUPHIN-TANGUY and Prof. Xavier GUILLAUD, in the context of the collaboration between the research group Méthodes et Outils pour la Conception Intégrée de Systèmes (MOCIS) at the Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) and the research group Réseaux in the Laboratoire d'Electrotechnique et d'Electronique de Puissance de Lille (L2EP).

	xvi

Table 5.18 Most important parameters for the eigenvalues ............................................ Table 5.19 State variables with most contribution to the eigenvalues.............................

Table 1

 1 

	.1 Different advantages and drawbacks of HVDC systems
	Advantages	Drawbacks
	 Greater power per conductor.	 Converters are expensive.
	 Simpler line construction and smaller	 Converters require much reactive
	transmission towers.	power.
	 A bipolar HVDC grid line uses only two	 Multi-terminal networks are not easy to
	insulated sets of conductors.	operate.
	 Ground return can be used.	 Converters generate harmonics, hence
	 Each conductor can be operated as an	require filters.
	independent circuit.	 Break-even distance is influenced by
	 No charging current at steady state.	the cost of right-of-way and line
	 No skin effect.	construction.
	 Lower line losses.	
	 Line power factor is always unity.	
	 Synchronous operation is not required.	
	 No physical restriction limiting the	
	distance or power lever for HVDC	
	underground or submarine cables.	

  This result is linked to the assumption that A has n distinct eigenvalues.

	Property 2.1 The relation between both matrices is,
	Then the exponential function of A is expressed by,
			e	At		12 12 tt e Z e Z  	 	n t e Z 	n	(2.38)
	Hence the solution of the free-motion system can be expressed
							n	
						  x t	1    i e Z x i t i 	  0	(2.39)
	The matrices	Z have similar properties to the sensitivity matrices	S such as the sum of all
			i						i
	matrices	Z gives the identity matrix,		
		i						

  

							(2.61)
	It leads to a new form of state matrix A as
				A		T	1 	AT	(2.62)
	Consider the transformation matrix T diagonal as
		T		00  t 11 22  00 t  	(2.63)
				00  nn t 
	The autonomous model represented by (2.1) and (2.2), becomes after basis change
	      xt 1 2 n xt xt         	      xt 1 2 n xt xt           11 11 22 11 12 11 1 11 11 22 21 22 22 2 11 11 1 22 2 nn n nn n nn n nn n nn a t t a t t a t t a a t t a t t a t t a a         	(2.64)

  86) 

	The eigenvalues are,		
	12 3551.2   	1548.7  	(2.87)
	The modal matrices are,		
	0.32 0.14 0.94 0.98 VU  	5.28 5.04 0.75 1.74

Table 2
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	.2 Per unit base parameters
	Parameter	Value
	b P	50 Watts
	b V	10 volts
	The per unit representation is,	
	5000	1000
	5000	100

Table 2 .

 2 3 Changes in the parameters.

	Parameter Value Parameter	Value
	L	2	mH	C	4 1 10  	Farads
	R1	1 Ohms R2	100 Ohms
	The per-unit representation is,					
	L C  pu pu i v    	50000 5000 100 100      pu pu L C i v    	(2.97)
	and the eigenvalues are,					
	1     2 255 663.3 ii 255 663.3   

Table 3 .1 Parameters of the circuit Parameter Value Parameter Value Parameter Value

 3 

	L 1 R the system equations in per-unit from equation (2.91) 2 mH C 100  10  2 R 100  5000 1000 5000 100 L C H H ii F H H L C v                the eigenvalues are, 1 2 3551.2, 1548.7      v The right and left eigenvectors from equation (2.92) are	b P b V	50 W 10 V

Table 3 .

 3 3 Parameters in diagonal dominant case

	Parameter Value Parameter Value
	L	1 mH	C	1 mF
	1 R	10 	2 R	0.1 
	and the model calculated in (2.104),		
		10000	2000	
		500	10000	

Table 3 .

 3 4 Comparison of different approaches

		Participation factors	Parameter	PSM (Barrera et al
			(I.J. Perez-Arriaga,	Sensitivity	2016)
			Verghese, and		(D'Arco, Suul, and
			Schweppe 1982)		Fosso 2014a)
			12		n
			11 a	11 a	11 a
			12		n
	Formulation	P	22 a	22 a	a	22
			12		n
			nn a	a	nn	a	nn

Table 4

 4 

.1 Base values for a VSC station

Table 4 . 2 Table 4 .

 424 2 Parameters of the HVDC system

	Element	Value in SI		Value in pu
	1 eq C	4 2.3236 10  	F	7.4749 pu
	eq C	2	4 2.1383 10  	F	6.8790 pu
		3			

Table 4
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	.3 Eigenvalues for	k		0.5
					droop
	Eigenvalues		Frequency (Hz)	Damping ratio
	1,2    4.20 94.01i 		14.97	0.044
	3,4    11.03 48.1i 		7.85	0.223
	5   14.37		0		-
	6,7    198.05 225.26i 	47.73	0.66
	8,9    199.31 225.16i 		47.85	0.662
	The solution of the system is derived from definition (2.29)
	  x t	1 n   i t T i i e S x     	  0

Table 4 .

 4 4 State variables of the MMC power controlled in a MTDC

	State variable	description
	gd i 	Current of the d-axis in the AC side
	i 		Current of the q-axis in the AC side
			gq
		i		Current of the DC side
			dc
		W	Total energy in the station
					tot
	Int	,	i	State of the controller of the AC current (d-axis)
					gd
	Int	,	i	State of the controller of the AC current (q-axis)
					gq
	Int	,	i	State of the controller of current in the DC side
					dc
	Int	,	W	State of the controller of energy
					tot
	B. Voltage control
	For the control of the voltage in the DC
	1			
	v			
	gd			
					ac
					eq

Table 4

 4 

				.6 State variables of the MMC1
	State variable	description
	i 	Current of the d-axis in the AC side
			gd
	i 	Current of the q-axis in the AC side
			gq
		i	Current of the DC side
			dc
		W	Total energy in the station
			tot
	, Int i	State of the controller of the AC current (d-axis)
			gd

Table 5 .

 5 1 Parameters of the HVDC networkThe AC per unit has been chosen, the numerical value of the state matrix is then deduced,

		Element	Value	Element		Value
	1 Cs	195.31		F	ab L			2.2439 H
	Cs	2	195.31		F	Ca			37.044		F
	k	1,2 droop	0.2			Cb			37.044		F
	b V		640 kV			Cable length	l		300 km
	P		1 MW					
	b							
	As it can be seen in equation (4.21), the coefficient of the matrix are not symmetric while we
	could expect a symmetry due to the topology of the studied system. Looking at equation (4.22)
	the coefficients 1  and 2  depend on the operating points	dc i	pu	01	and	dc i	pu	02	which have the
	same magnitude but with opposite sign.			
			 1, 2, , ab s pu s pu L pu u uu 42.02 10.507 63.04 10.507 182.53 182.5 0 3 0 0 L ab 1, 2, , s s u i i   pu pu pu                    	(5.1)
	The eigenvalues are						
						Table 5.2 Eigenvalues	
			Eigenvalues (rad/s)	Frequency (Hz)	Damping coefficient
			1,2 	25.51 55.47i  	9.71			0.41
			3   54.06					

 1

Table 5
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		.5 Eigenvalues for	k		0.5
			droop	
	Eigenvalues	Frequency (Hz)		Damping ratio
	1,2    4.20 94.01i 	14.97		0.044
	3,4    11.03 48.1i 	7.85		0.223
	5   14.37	-		1

Table 5

 5 

			.7 Eigenvalues for	k	droop		0.1
			Eigenvalues		Frequency (Hz) Damping ratio
		1,2    11.92 80.23i 		12.9				0.147
		3,4    44.60 8.07i 		7.36				0.984
		5   81.58		0				-
		6,7    157.60 282.89i 	51.53			0.486
		8,9    162.92 278.91i 	5148			0.506
	The voltage response produced for this case is presented in Figure 5.10
									Voltage {pu}
	1.01								Vdc1
									Vdc2
	1.005							
	1							
	0.995							
	0.99							
	0.985	1.6	1.8	2	2.2				2.4	2.6	2.8
					time {s}			

Table 5 .

 5 8 Parameter values of one MMC station connected to a MTDC grid

	Element	Value Element	Value
	b P	1 GW	N		400
	U	b	320 kV	R	f	0.512 
	f	b	50 Hz	L	f	58.7 mH

Table 5 .

 5 10 Eigenvalues with energy controlled by DC power.

	Eigenvalues	Frequency (Hz) Damping ratio
	1,2    42.1 42.78i 	9.55	0.701
	3,4   489.8 565. 7 94i 	119.12	0.65
	5,6    531.16 534.84i 	119.36	0.704
	7,8    531.16 529.5i 	119.36	0.708

Table 5
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	.11 Eigenvalues for the DC link
	Eigenvalues	Frequency (Hz) Damping ratio
	1,2    41.53 41.25i 	9.31	0.709
	3,4   525.0 571. 1 93i 	123.56	0.67
	5,6    531.16 534.84i 	119.96	0.704
	7,8    535.47 525.14i 	119.36	0.714

Table 5 .

 5 12 Control settings

	Controller		Reference control	Reference eigenvalues
			parameters	(rad/s)
	AC current control for and i	i gd	Time Damping response coef	4 . 0.7 ms  	525 535.6i 
	gq				
	DC current control		Time Damping response coef	4 . 0.7 ms  	525 535.6i 
	tot W control		Time Damping response coef	50 . 0.7 ms  	42.42 42.43i 
	1 dc v control		Time Dammping response coef 	70 . 0.7 ms 	30 30.6i 

Table 5 .

 5 13 Eigenvalues for the DC link : considering the numerical values, it is not so obvious to find the relationship between the eigenvalues and the parameters of the model.

		Eigenvalues		Frequency (Hz)	Damping ratio
		1,2    41.53 45.25i 	9.31		0.709
		3,4   60.2 60 5 5 .2 i 	13.59		0.705
		5,6    475.45 583.82i 	119.8		0.63
		7,8    525.01 571.93i 	123.56		0.67
		9,10    531.16 529.5i 	119.36		0.708
	the eigenvalues can be related to:			
		1,2  is the control of the energy in the station.	
		5,6  , 7,8  and 9,10  are related to the AC and DC current loops.
		3,4			
	The PF matrix is			
		1,2	3,4	5,6	7 ,8	9,10



Table 5 .

 5 14 Parameters of the MMC stations

	Element b P b U b f dcb V arm L arm R 1,2 x C	Value 320 kV 1 GW 50 Hz 640 kV 48 mH 1.024 Ohm 0.2469 F 	Element Cable length l N f R f L tot C ab L ab R	Value 0.521 Ohms 400 58.7 mH 300 km 32.55 F  3.739 / mH km 5.346 m km / 
	The control scheme has the following settings	

Table 5 .

 5 17 Eigenvalues for the DC link

	Eigenvalues (rad/s)	Frequency (Hz) Damping ratio
	1,2    22.11 32.49i 	6.25	0.56
	3   43.49		1
	4,5    52.95 52.74i 	11.89	0.708
	6,7   88.1 152. 8 69i 	28.55	0.5
	8,9   251.4 1610 5 .17i 	259.3	0.15
	10,11    404.75 671.98i 	124.85	0.51
	12,13    426.16 426.64i 	95.97	0.706
	14,15    426.16 422.36i 	95.49	0.71
	16   468.53		1
	17,18    527.32 550.86i 	121.36	0.69
	19,20    531.16 529.50i 	119.3	0.7

Table 5 .

 5 18 Most important parameters for the eigenvalues Table 5.19 State variables with most contribution to the eigenvalues Dynamic analysis of HVDC system with MMC Comparing both tables leads to the following conclusions:  Same results for the 8 eigenvalues related to AC current loops ( 12,13  , 14,15  , 17,18  , Similar results for the 4 poles relative to DC current loops. Participation factors give wrong information because it suggests and influence of 1

		Eigenvalues				Parameters	Eigenvalues	states
	Voltage and Energy in MMC2	1,2    22.11 32.49i  3 43.49  	H	tot C	2	,	eqac L 2 dc H v Ti ,	2 Ti , Ti v dc 2 tot W	2	tot W Ti	2	1,2    22.11 32.49i  3 43.49  	2 v , tot C Int , v dc Int , 2 dc 2 v Int W Int W tot tot 2	2
	Energy in MMC1	4,5    52.95 52.74i 		1 H , tot C	H	eqdc L	1	,	tot W Ti	1	4,5    52.95 52.74i 	tot C v , 1	tot W Int	1
	DC physical couplings MMC1	6,7   88.1 152. 8 69i 		x C H , 1	H	eqdc L	1	,	Lab H ,	6,7   88.1 152. 8 69i 	dc 1 v ,	Lab i
	Equivalent inductance MMC2	8,9   251.4 1610 5 .17i 						H		L				2	8,9 	251.4 1610 5 .17i  	2 v , 2 dc dc i ,	dc i Int	2
											eqdc
	DC current control MMC1	10,11    404.75 671.98i 						H	L				1	10,11 		404.75 671.98i  	1 dc v , 1 dc i ,	dc i Int	1
											eqdc
	AC current control MMC1 (dq frame)	12,13    426.16 426.64i  14,15 426.16 422.36i    					H H	eqac L L	1 1	i Ti i Ti	g	1 1	12,13  14,15 	 	426.16 426.64i   426.16 422.36i  	gd i , 1 1 gq i ,	i Int i gd gq Int	1 1
								eqac					g
	DC current control MMC2 AC current control MMC2 (dq frame)	468.53   16 527.32 550.86i    17,18  19,20 531.16 529.50i    				2 Int eqdc L 2 H , eqac L eqac gq i gd 2 L H H 2 i Int	2	17,18  19,20 	16    527.32 550.86i 468.53   531.16 529.50i   	i Int dc i , gd Int 2 i 2 2 gq i , i gd gq Int	2 2
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Automatic routine for parametric sensitivity analysis

For the analysis of the parametric sensitivity in different models an automatic routine was developed. The parametric sensitivity analysis described in Chapter 3 has the following inputs  the analytic equations of the linear (or linearized) model. The calculation of the partial derivatives is performed using the tool of differentiation in MATLAB®. 

Each row of the PSM is computed in a loop
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% 'Asys' is the system matrix in symbolic representation % % 'all' is the vector of all paramters in symbolic representation % % 'values' is the vector of paramter values in the same order as 'all' % % 'S' are the sensitivity matrices of the system % % 'Spnl' is the output vector with the parametric sensitivity respect to PP % for all eigenvalues % v1 11/02/2016 Noe------noebg20@gmail.com % v1. 

The analysis and the presentation of the results in the workspace performed by the following function. % This function show the results of the parametric sensitivity analysis % % SP is the matrix of parameters sensitivities normalized % lamd is the vector of eigenvalues % param2 is the vector of parameter analysis in symbolic % KoA is a character to select the kind of analysis by 'rows' or 'columns' % % v2.2 (11/03/2016) Noe Barrera G. noebg20@gmail.com % v2.3 (22/03/2016) Noe Barrera G. labels e--->n % % % % % % % % % % % % % % % % % function [tot] for j=2:b+1 if imag(SP(i-1,j-1))==0 SP(i-1,j-1)=complex(SP(i-1,j-1),1e-25); end if real(SP(i-1,j-1))>=0 if (abs(SP(i-1,j-1))<abs(0.1+0.1i)) tot(i,j)={epsil}; else tot(i,j)={strcat('+',num2str(SP(i-1,j-1),'%6.2f' ))}; end else if (abs(SP(i-1,j-1))<abs(0.1+0.1i)) tot(i,j)={epsil}; else tot(i,j)={num2str(SP(i-1,j-1),'%6.2f' )}; end end end end if strcmp(KoA,'rows') disp('----------------------------------------------------------- ---------') disp('| The parametric sensitivity matrix normalized by rows is, |')

The parametric sensitivity matrix normalized by columns is, |') disp(' --------------------------------------------------------------------' %--------------------------tables construction------------------------------------

disp('by rows: The most influenced eigenvalues of the system by each parameter are:') disp('--------------------------------------------------------------- --------------------') temp1(:,1)=tot(:,1); for i=2:a+1 for j=2:b+1 if strcmp(char(tot(i,j)),'_____n_____') temp1(i,j)={''}; else temp1(i,j)={strcat(char(181),'_',num2str(j-1),char(text0))}; end end end for i=1:b if i==1 tet=strcat(temp1(:,1), {''},temp1(:,2)); else tet=strcat(tet, {''},temp1(:,i+1)); end end disp(char(tet)) else ------------------------------') disp('by columns: The most the most important parameter for each eigenvalue are,') disp('----------------------------------------------------- ------------------------------') transt=transpose(tot); temp2(:,1)=transt(:,1); %([2:a+1],1); for i=2:b+1 for j=2:a+1 if strcmp(char(transt(i,j)),'_____n_____') temp2(i,j)={''}; else temp2(i,j)={strcat(char(param2(j-1)),char(text0))}; end end end for i=1:a if i==1 tet=strcat(temp2(:,1), {' '},temp2(:,2)); else tet=strcat(tet, {''},temp2(:,i+1)); end end disp(char(tet)) else warning('See help for selection of anlysis') error('The selected analysis does not exist please seletc only rows or columns as string') end end disp('The elements with ____n____ teir value is less than the modulus of (0.1+-0.1i)')

Sensibilité Paramétrique pour l'Analyse Dynamique des Réseaux à Courant Continu

Ce travail de thèse a pour finalité de présenter différentes méthodologies pour l'analyse de réseaux à curant continue haut tension (HVDC).

La théorie fondamentale de l'analyse de sensitivité s'applique sur analyse des systèmes électriques de puissance dans les différents étapes de la production et la transmission de l'énergie. Des outils de bases concernant cette théorie sont devenus populaires et très utilisés.

En pratique, les facteurs de participation représentent un exemple de ces outils, utilisés depuis longtemps. Ils ont été proposés par [START_REF] Perez-Arriaga | Selective Modal Analysis with Applications to Electric Power Systems, PART I: Heuristic Introduction[END_REF]. Nous présentons la théorie fondamentale de la sensitivité analytique dans laquelle les facteurs de participation son basse. Pour une bonne compréhension de ces éléments de base de cette théorie, quelques exemples sont présentés. Nous présentons une formulation différente pour l'analyse par sensitivité paramétrique [START_REF] Barrera-Gallegos | Modal Sensitivity of a Reduced Equivalent HVDC-VSC System[END_REF]. Enfin, les deux méthodologies sur des exemples des réseaux HVDC. Notre comparaison permet d'exposer les limites de l'utilisation des facteurs de participation sur des réseaux HVDC. En conclusion, la nouvelle méthodologie est plus générale comparée aux facteurs de participation. Egalement, la nouvelle méthodologie, par sensitivité paramétrique, nous donne plus d'informations sur les caractéristiques dynamiques des réseaux HVDC.

Mot clefs : Analyse modale, Sensitivité paramétrique, facteurs de participation, Réseaux au courant continu.

Parametric sensitivity for analysis of dc networks

The work presented in this thesis presents different methodology for parametric sensitivity of high voltage dc networks(HVDC).

The fundamental theory of modal analysis has been applied for analysis of the power electrical systems in its different stages of production and transmission of energy. Tools derived from these fundamentals have become popular with its use. Among the tools used in dynamic analysis, participation factors have been used for a long time. Proposed by (Perez-Arriaga et al., 1982), they give a metric for relating states and eigenvalues of a system. The participation factors is a tool that helps in the reduction of systems.

Firstly, we present the fundaments of the sensitivity analysis upon which the participation factors are based on. The principle is illustrated with several examples.

We propose a new formulation for sensitivity analysis using parametric sensitivity [START_REF] Barrera-Gallegos | Modal Sensitivity of a Reduced Equivalent HVDC-VSC System[END_REF].

In the latter, the application of participation factors and parametric sensitivity analysis is performed using HVDC networks. This comparison exposes the limitation of the participation factors for the general analysis of HVDC grids.

In conclusion, the new methodology is a better and general alternative compared to traditional participation factors employed for analysis of HVDC grids. In addition, the new technique of parametric sensitivity produces several novel information related to the dynamic characteristics of the HVDC grid.

Key words: Modal analysis, parametric sensitivity, participation factors, high voltage direct current grids.