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RESUME 
 

 

Cette thèse a été préparée au sein de l’équipe de recherche « Méthodes et Outils pour la 

Conception Intégrée de Systèmes (MOCIS) » au Centre de Recherche en Informatique, Signal 

et Automatique de Lille (CRISTAL) en collaboration avec l‘équipe «Réseaux» du Laboratoire 

d’Electronique et d’Électrotechnique de Puissance de Lille (L2EP).  

 

La thèse se concentre sur le développement d’un outil d’analyse modale pour les réseaux à 

courant continu.  

 

Les systèmes traditionnels ont des dynamiques qui sont connues pour avoir des oscillations 

au niveau des rotors des générateurs d’une zone par rapport à une autre. Dans les réseaux 

électriques de puissance il y a des composants avec des dynamiques non linéaires, une 

linéarisation est nécessaire pour son analyse. 

 

La théorie fondamentale de l’analyse de sensibilité s’applique pour l’analyse des systèmes 

électriques de puissance dans les différentes étapes de la production et la transmission de 

l’énergie.  

 

Pour ce type de systèmes l’analyse modale sélective (SMA) a été developpée au MIT en 

1982. Le SMA fournit des algorithmes pour le calcul, la sélection et la réduction des variables 

d’état dans les grands systèmes électriques. Des outils de base concernant cette théorie sont 

devenus populaires et très utilisés. 

  

Les facteurs de participation représentent un exemple de ces outils, utilisés depuis 

longtemps. Ils ont été proposés par (I.J. Perez-Arriaga, Verghese, and Schweppe 1982). Les 

facteurs de participation groupés dans une matrice de participation   donnent l’importance des 
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variables d’état sur les valeurs propres du système. Il est important de dire que cette l’analyse 

se fait sur le modèle linéaire ou linéarisé du système. L’hypothèse associée à cet outil est d’avoir 

un modèle du système de type « diagonal dominant » ; en d’autres termes, les éléments 

diagonaux de la matrice du système  sont les plus importants pour les valeurs propres.  

 

Le but des facteurs de participation est la réduction des modèles des systèmes ayant une 

dynamique particulière comme celle des systèmes électromécaniques.  

 

Dans les nouveaux réseaux à courant continu, les dynamiques sont différentes de celles des 

systèmes traditionnels. Les dynamiques rapides des composants d’électronique de puissance  

n’étaient pas considérées dans les objectifs des analyses menées avec les facteurs de 

participation. Dans ce contexte, des besoins de nouveaux outils sont apparus pour l’analyse 

modale dans les réseaux à courant continu.  

 

Les objectifs de ce travail de thèse sont : 

 

• Appliquer la théorie actuelle pour l’analyse modale dans les systèmes à  courant continu 

multi-terminal (MTDC).  

• Développer une nouvelle méthodologie pour l’analyse dynamique des réseaux à courant 

continu.  

 

Le Chapitre 2 rappelle la théorie fondamentale de la sensibilité analytique sur laquelle les 

facteurs de participation sont basés. Pour une bonne compréhension des éléments de base de 

cette théorie, quelques exemples sont présentés mettant en oeuvre la formulation des facteurs 

de participation et les hypothèses pour l’utilisation de cette méthodologie.  

 

Avec quelques exemples mettant en évidence les effets des hypothèses, il apparaît que les 

facteurs de participation sont limités à un type des modèles particuliers. Dans la pratique, les 

facteurs de participation sont utilisés sur plusieurs modèles de réseaux de puissance sans vérifier 
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les hypothèses fondamentales. Pour cette raison, il est important de trouver une méthode ou un 

outil applicable à tous les modèles linéaires des réseaux de puissance. 

 

Dans le Chapitre 3, une formulation différente est proposée pour l’analyse par sensibilité 

paramétrique (Barrera-Gallegos, Dauphin-Tanguy, and Guillaud 2016). Cette méthodologie est 

basée sur la théorie de la sensitbilité analytique. Quelques exemples sont présentés pour montrer 

l’utilité de cette approche et sont comparés avec les facteurs de participation. 

 

Le chapitre 4  concerne la modélisation des convertisseurs à courant continu.  La première 

partie s’intéresse au convertisseur source de tension (VSC) qui est un des convertisseurs les 

plus populaires dans la conversion alternatif continu. La deuxième partie étudie le convertisseur 

modulaire multiniveaux (MMC) qui s’utilise de plus en plus en raison des avantages offerts par 

rapport aux modèles classiques des convertisseurs. Pour les deux cas, ces modèles linéaires sont 

présentés en vue de leur analyse paramétrique. 

 

Dans le chapitre 5, l’étude d’un modèle réduit didactique valide l’utilisation de l’analyse 

paramétrique. Un modèle plus complexe montre progressivement le couplage des paramètres 

dans un convertisseur VSC. La comparaison entre l’analyse paramétrique et les facteurs de 

participation permet d’exposer les limites de l’utilisation des facteurs de participation sur des 

réseaux HVDC. 

Ensuite, l’analyse du convertisseur MMC est présentée. Elle montre quelles sont les 

différentes façons de contrôler l’énergie stockée dans le convertisseur et leur une influence sur 

les différents couplages entre des paramètres de la partie AC et DC du convertisseur.  

 

En conclusion, il apparaît que la nouvelle méthodologie, par l’étude de la sensibilité est plus 

générale que l’approche par facteurs de participation et donne plus d’informations sur les 

caractéristiques dynamiques des réseaux HVDC. 
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Avec quelques exemples les effets des hypothèses et on montre que les facteurs de 

participation sont limites sur un type des modèles particulières. Dans la actualité, les facteurs 

de participation son utilises sur plusieurs de modèles des réseaux de puissance sans regarder les 

hypothèses fondamentales. Pour cette raison cet important de trouver une méthode ou utile avec 

pour appliquer dans tous les modèles linéaires des réseaux de puissance. 
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General introduction 
 

This thesis work has been performed under the co-guidance of Prof. Geneviève DAUPHIN-

TANGUY and Prof. Xavier GUILLAUD, in the context of the collaboration between the 

research group Méthodes et Outils pour la Conception Intégrée de Systèmes (MOCIS) at the 

Centre de Recherche en Informatique, Signal et Automatique de Lille (CRIStAL) and the research 

group Réseaux in the Laboratoire d'Electrotechnique et d'Electronique de Puissance de Lille 

(L2EP). 

This work was developed using the expertise in modelling and characterization of power 

electronic components of the L2EP and the diagnosis and analysis of complex models in the 

research group MOCIS.  

 

The objectives of the work are 

 to review the current methodologies used for the dynamic analysis of multi-terminal 

DC (MTDC) grids. 

 to develop a new methodology for the dynamic analysis of MTDC grids, allowing a 

clear understanding of how the component parameters associated to the state 

variables are related to the eigenvalues. 

 

It has been chosen to study the parametric sensitivity of variables which provides a deeper 

understanding on the importance of the parameters in the dynamics of the model. 

 

Classically used for this kind of problems, such approach supposes some assumptions on the 

form of the used model, the validity of which will be discussed in the next chapter 

 

The first chapter presents the state of the art for modal analysis of power electrical systems. 

It discusses the current problematics of the use of participation factors and its limitations.  

The second chapter presents the mathematical background of the sensitivity analysis and 

participation factors. With didactic examples, the characteristics of participation factors are 

shown.  

The third chapter proposes a new matrix for the analysis of parametric sensitivity. It is 

implemented on some didactic examples. 

The fourth chapter presents first the models of the voltage source converter with very well-

known for the AC/DC conversion. Recently, the Modular Multilevel topology is more and more 

used for high voltage DC systems. It is also described in the 4th chapter which proposes also a 

linearized approach of this converter.  

In the fifth chapter, the methodology proposed in chapter 3 is applied on MMC. A 

comparison with participation factor is proposed and the analyze of the results shows the 

effectiveness of the proposed tool  
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A general conclusion summarizes the main contribution of the thesis. 



 

 

 

 

 

Chapter 1 State of the art 
 

 

1.1 Context and motivation  

Power electrical systems analysis is particularly difficult due the quantity and the complexity 

of the dynamics. It has different objectives depending on the dynamics and properties analyzed 

in the system. The power system stability is a condition of equilibrium between the different 

phenomena in the electrical system. The stability of the system depends on different 

characteristics, Figure 1.1 presents an overall representation of the problems linked to power 

system stability (Kundur et al. 2004). 

 

 

Figure 1.1 Classification of power system stability 

This classification is based on the different kinds of disturbances applied to the system 

(Kundur et al. 2004)(Mondal, Chakrabarti, and Sengupta 2014).  

 The rotor angle stability is the ability of the synchronous machines interconnected in 

a power system to remain synchronized after a small disturbance.  

 The voltage stability refers to the ability of the system to maintain steady voltages at 

all busses during a disturbance. 

 The frequency stability is the ability of the system to maintain a steady frequency 

during a severe disturbance in the generation or load on the system.  

 

The rotor angle stability is one of the most studied characteristics of the power electrical 

systems, because it involves the stability of the complete system; however the analytical 

description of these dynamics is complex because of the nonlinearity of the involved 

phenomena. 
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The description of the dynamics under controlled circumstances is required to reduce the 

complexity of the analysis. There are some mathematical tools and methodologies for power 

stability analysis. For practical considerations and for reducing the complexity the system is 

considered to be under small disturbances. 

 

1.2 Small signal stability  

 

Small signal stability is the ability of the power system to maintain synchronism under small 

disturbances such as small variations in loads and generators. The non-linear differential 

equations are thus linearizable (Kundur et al. 2004). 

If power oscillations caused by small disturbances in the system decrease with time and the 

deviations of the state variables remain small for long time, the system is considered as stable. 

 

For the stability analysis, Lyapunov stability theory is widely used. It is related closely to 

the local stability in the non-linear system. Intuitively speaking, movement of a nonlinear 

system over a small range should have similar properties to its linearized approximation (X.-F. 

Wang, Song, and Irving 2008). 

To study the stability of the non-linear system at the operating point, the following results 

of Lyapunov’s stability theory apply:  

 

a) If the linearized system is asymptotically stable (all eigenvalues of A  have negative 

real parts) the current non-linear system is asymptotically stable at the equilibrium point.  

b) If the linearized system is unstable (at least one of the eigenvalues of A  has a positive 

real part), the current non-linear system is unstable at the equilibrium point. 

c) If the linearized system is critically stable (the real part of all eigenvalues of A  are non-

positive but at least one of them is zero) no conclusion is available about the non-linear 

system from its linearized approximation. 

 

Modal analysis can bring more insight into the dynamics at the operating point.  

 

In general, modal analysis is used in different applications as mechanical structures and 

electrical power networks. Figure 1.2 presents an example of the available tools for modal 

analysis in electrical and mechanical systems. 



 1.2 Small signal stability 
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Figure 1.2 Modal analysis 

 

1.2.1 Modal Analysis in power electrical systems 

Power electrical systems have thousands of elements interacting. In order to simplify their 

study, the analysis of power electrical systems is divided in different subsets of dynamics(Pal 

and Chaudhuri 2005): 

 Intra plant mode oscillations: Oscillations caused by the machines (interacting with 

each other) in the generation site. 

 Local plant mode oscillations: Oscillations caused by the generator and the rest of 

the electrical system.  

 Interarea mode oscillations: Caused by two or more groups of generators swinging 

against each other. This includes the dynamics of the transmission lines between the 

generators and some loads.  

 Control mode oscillations: Oscillations associated with generators and poorly tuned 

exciters, governors, high voltage direct current (HVDC) converters, static volt-

ampere reactive (VAR) compensators controls, among other power electronics 

components. 

 Torsional mode oscillations: modes associated with the turbine generator shaft 

system.  

 

Several powerful methods for the computation of eigenvalues associated with a small 

number of selected oscillation modes are published in the literature on power system 

stability(Morgan 1966; Determination, n.d.).  

Particularly, the selective modal analysis (SMA) approach described in (Verghese, Perez-

arriaga, and Schweppe 1982) and (Ignacio J. Perez-Arriaga et al. 1990) computes eigenvalues 

associated with selected modes of interest by using the so called “participation factors”. The 

objective is to identify variables that are relevant to the selected modes and then construct a 

reduced-order model involving only the relevant variables (Kundur 2007). The SMA was 

developed in the context of the local plant and inter-area mode oscillations, especially for low 
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frequency oscillatory modes, where these modes (eigenvalues) are often associated with the 

electromechanical elements in the system (Ignacio J. Perez-Arriaga et al. 1990).  

These oscillatory modes are fundamental for the dynamical behavior of the system; however, 

all the dynamical elements have to be taken into account due to their couplings.  

Indeed, all theories used until now have been based on the assumption that the grid was 

mainly fed by electromechanical systems as synchronous machines. Because frequency 

decoupling is possible between the electromagnetic frequencies and the so-called 

electromechanical frequencies under 10 Hz, the SMA is a widely used methodology for the 

analysis of this kind of systems. 

 

The selective modal analysis provides (Ignacio J. Perez-Arriaga et al. 1990): 

 Sensitivity-based tools for identifying physical state variables or components that are 

significant in producing the selected modes. 

 Methods for constructing reduced-order models that involve only the significant 

variables. 

 Representation of the influence of parts of the system on the selected modes with any 

desired accuracy. 

 Algorithms for efficiently and accurately computing the few selected modes of 

interest. 

 

For the reduction of the model, the methodology called “participation factors” has been 

proposed by (I.J. Perez-Arriaga, Verghese, and Schweppe 1982), based on the sensitivity 

analysis. This methodology gives a metric for relating states and eigenvalues. The participation 

factor approach is based on the assumption that some coupling between the state variables can 

be neglected. Chapter 2 presents a detailed discussion on the assumptions and basis of 

participation factors. 

Recent versions of specialized books on power electrical systems, for example (Kundur 

2007) and (Chaudhuri et al. 2014), dedicate some sections to the use of participation factors but 

without covering important assumptions. 

For systems with strongly coupled dynamics, the dynamics can have covered different 

frequencies and the use of participation factors could be not suitable. This problematics has 

been addressed in different works to overcome the limitations of the participation factors.  

In (Vasca and Verghese 1999) it is proposed an extension of the definition which leads to 

extended participation factors. Then in (Abed, Hassouneh, and Hashlamoun 2009) the original 

formulation is replaced for two cases with real and complex eigenvalues; a new definition 

including the output in the formulation is presented in (Sheng et al. 2010). 

 

Still nowadays, the first definitions of participation factors are in use for modal analysis. For 

example in (Tschirhart, Sussman, and Abed 2014) the participation factors are used to improve 

the analysis for voltage stability and monitoring.  
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The use of power electronics for all stages of energy generation and transmission has 

increased, in a way that its dynamics are important for the global system behavior. Moreover, 

the increasing use of renewable energies using direct current networks brings the necessity of 

new analysis tools. 

 

1.2.2 Modal Analysis of Multi-terminal DC grids  

Due to the increase of renewable energy and direct current (dc) links, power electronic 

converter is taking more and more importance in the grid.  

 

The energy management in a wind turbine is fundamentally different from a traditional 

power plant. There will be technical and operational implications for the power system at times 

of high shares of wind power. The power system should sustain disturbances, such as the loss 

of largest power plant or line, so that the frequency and voltage remain stable. Wind power is 

asynchronous generation that does not have the same inherent, physical support to the power 

system inertia as synchronous machines. The fundamental issues regarding frequency stability 

when losing a large unit or power line as well as large amounts of wind power tripping during 

network faults need further analyses (Holttinen 2012). 

 

The advantages (see Table 1.1) of connecting different systems using DC links have changed 

the properties of the power electrical systems (Okba et al. 2012). 

 

Table 1.1 Different advantages and drawbacks of HVDC systems  

Advantages Drawbacks 

 Greater power per conductor. 

 Simpler line construction and smaller 

transmission towers. 

 A bipolar HVDC grid line uses only two 

insulated sets of conductors. 

 Ground return can be used. 

 Each conductor can be operated as an 

independent circuit. 

 No charging current at steady state.  

 No skin effect. 

 Lower line losses. 

 Line power factor is always unity. 

 Synchronous operation is not required. 

 No physical restriction limiting the 

distance or power lever for HVDC 

underground or submarine cables. 

 

 Converters are expensive. 

 Converters require much reactive 

power. 

 Multi-terminal networks are not easy to 

operate. 

 Converters generate harmonics, hence 

require filters. 

 Break-even distance is influenced by 

the cost of right-of-way and line 

construction. 
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The analysis of HVDC and multi terminal direct current (MTDC) grids is being performed 

with tools designed for electrical systems based in alternant current (ac) models. This is the 

case of participation factors.  

 

The participation factors are very effective and rather simple to calculate when the linearized 

state model is established. For MTDC dynamic analysis (Kalcon et al. 2012), the participation 

factors are used to analyze the influence of control parameters on some eigenvalues of the 

system. More recently (Beerten, D Arco, and Suul 2015) use the participation factors to analyze 

the level of association between subsystems in a three station MTDC. However, no work 

reconsiders the theory from the basis to assess whether the fundamental assumptions are still 

valid.  

 

Clearly, the new electrical systems are a big challenge because of their multiple dynamics. 

The use of current analysis methodologies for traditional electrical systems could lead to 

unclear conclusions. To know more about these new ways of energy transmission new tools are 

needed.  

 

1.3 Conclusions  

For the analysis of power electrical systems, some tools and mathematical fundamentals are 

required. The analysis tools have to be adjusted and justified for their specific application.  

 

The use of the participation factors in systems out of their scope of analysis can lead to non-

adequate results. 

The description on how the analysis is performed and what are the intended purposes is 

important to understand and also how it can be improved.  

 

The following chapter presents a review of the fundamentals of modal analysis used in power 

electrical systems. 

 



 

 

 

 

Chapter 2 Modal sensitivity and participation 

factors 

2.1 Introduction 

The modal analysis for linear models is an important tool to model characteristics as the 

stability of damping oscillations among others. These characteristic depend on the coupling 

between components whose parameters are supposed to be known without uncertainty, which 

is not always the case.  

It is a common knowledge that there always exists a certain discrepancy between actual 

(real-operating) and nominal trajectories of any system. This discrepancy is partly due to 

various inherently approximation schemes in system identification, and partly due to possible 

further parameter variations stimulated by environmental changes as slow aging of components, 

variations in raw products or system components in process control applications, inaccuracy of 

measurement devices or methods, etc .(Eslami 1994). 

 

The study of the changes in the eigenvalues due to parameter changes is important, not only 

for stability purposes but also for the control of the state variables. Fundaments on sensitivity 

analysis are hereafter presented. 

 

2.2 Sensitivity matrices 

Modal analysis is based on sensitivity analysis of the eigenvalues of the state matrix A to 

changes in the system parameters.  

Consider a LTI model in free-response form, 

    x t Ax t  (2.1) 

where the matrix A  is,  

 

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a
A

a a a

 
 
 
 
 
 

 (2.2) 

Assuming the eigenvalues i  1, 2i n  are distinct, the right eigenvectors iv  

 1, 2, ,i n  are linearly independent and satisfy, 

 i i iAv v  (2.3) 

ju  1, 2 ,j n  are the correspondent eigenvectors of 
TA , such that, 

 
T

j j jA u u . (2.4) 

Or by transposition 
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T T

j j ju A u  (2.5) 

From (2.3) by pre-multiplication by T

ju  

 
T T

j i i j iu Av u v  (2.6) 

 

and  post-multiplied by iv  

 
T T

j i j iju Av u v  (2.7) 

it leads to 

   0T

i j j iu v    (2.8) 

For i j  the product T

j iu v  is zero and for i j  can have any value. For normalization 

purposes it is considered that the product is  

 1T

j iu v   (2.9) 

The modal matrices are,  

   2

11 21 1

12

2

2 2

1 2

1

n

n

n

n

n nn

v v v

v v v
V v v v

v v v

 
 
  
 
 
 

 (2.10) 

 

   2

11 21 1

12

2

2 2

1 2

1

n

n

n

n

n nn

u u

U u u

u

u u u

u

u

u u

 
 
  
 
 
 

 (2.11) 

 

By defining a basis change as 

    x t V t  (2.12) 

equation (2.1) becomes  

    1t V AV t   (2.13) 

Or 

    Λt t   (2.14) 

where Λ is the diagonal matrix composed of the 𝑛 eigenvalues of 𝐴. 

The solution of this equation is,  

    0it

i it e
   (2.15) 

with 

    0 0TU x   (2.16) 

 

Replacing (2.15) in (2.12) it becomes,  
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    

1

2

0 0

0 0
0

0 0 n

t

t

t

e

e
x t V

e









 
 
 
 
 
 

 (2.17) 

Then, replacing the initial condition from (2.16), 

    

1

2

0 0

0 0
0

0 0 n

t

t

T

t

e

e
x t V U x

e







 
 
 
 
 
 

 (2.18) 

In compact form thus,  

 

    
1

0i

n
t T

i i

i

x t e v u x




 
 
 

   (2.19) 

 

The correspondent fundamental problem in sensitivity theory is to determine the sensitivities 

of 𝜆𝑖, 𝑢𝑖 and 𝑣𝑖 to small changes in the elements of the matrix A . 

If an element  kla  in A  matrix is perturbed due to changes in system parameters, then the 

eigenvalues and eigenvectors of A  will change. Using (2.7) and (2.9),  

 
T T

i i i i iu Av u v   

 and considering that 1T

i iu v  , the partial differentiation of i  with respect to kla  is,  

 
 i

l

i

k

i

kl

Tu

a a

Av 


 
 (2.20) 

 

 
 

kl kl

T
iTi i

i i

kl

Avu
Av

a a a
u

  
 

  
 (2.21) 

Developing the partial derivative of iAv  

 

 

T
Ti i i

i

kl kl kl k

i

l

i i

u vA
v v

a
u A

a a a




   
   

    
 (2.22) 

 

and organizing , 

 

T
T Ti i i

i i i i

kl kl kl kl

i

u vA
v u v u

a a
A

a a




  
  

   
 (2.23) 

it leads to, 

 

T
T Ti i i

i i i i

kl kl kl kl

i i

u vA
u v v

a a
u

a a


 

  
  

   
 (2.24) 

By reducing in terms of the partial derivative of 
T

i iu v  with respect to kla , 
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 

kl kl

T

i iTi
i i i

kla a a

u vA
u v



 

 
  

 (2.25) 

and, by definition, 
T

i iu v =1 and its derivative is always 0, thus 

 
Ti

i

kl kl

i

A
u

a
v

a

 


 
 (2.26) 

Partial derivative of A  with respect to kla  is zero for most of the elements except for kla , 

and equal to 1 for kla , which reduces (2.26) to the scalar (2.27) 

 
kl

Ti
ik il

a
u v





 (2.27) 

 

Definition 2.1:Sensitivity matrices 

The sensitivity matrices iS  are defined as the set of the partial derivatives of each eigenvalue 

i  with respect to the elements of the matrix A  

 

11 12 1

1 1 1 2 1

2 1 2 2 2

21 22 2

1 2

1 2

i i i

n

i i i i i in

i i i

i i i i i in

ni

in i i

T

n i in in

i i i

n

i

n n

i

n

a a a
u v u v u v

u v u v u v
a a aS

u v u v u v

a

u v

a a

  

  

  

   
   
   
      
          
   
   
   

    

 (2.28) 

Then the solution  x t  can be expressed in terms of iS  

      
1 1

0 0i i

n n
t tT T

i i i

i i

x t e v u x e S x
 

 

   
    
   
   (2.29) 

 

For every change in an element kla  there will be a change in the eigenvalues of the model. 

This change can be linearly approximated by (Porter and Crossley 1972), 

 
i

i i kl

kl

a
a


  


 


 (2.30) 

where 
i  is the new value of a given eigenvalue and   is the change of kla ,  

For the stability problem, all the eigenvalues have to be in the open left side of the complex 

plane, which imposes, 

  10 ,2i
i kl

kl

a i n
a


  


 


 (2.31) 

For the case of conjugated complex eigenvalues it is known that the damping factor can be 

a restriction to an established 𝜉∗ for some systems. 
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*

2 2

real

real Im

i
i kl

kl

i i
i kl i kl

kl kl

a
a

a a
a a


 



 
   

 
  

  

    
     
    

 (2.32) 

The solution of the free motion system equation (2.1)  

    0Atx t e x  (2.33) 

can be obtained by different methods depending on the way Ate is calculated (Moler and Van 

Loan 2003). 

A function  f A  of a matrix A  can be defined as 

      1 1 n nf A f Z f Z     (2.34) 

where iZ  are the component matrices of A , assuming that A  has n  distinct eigenvalues. They 

are all related as,  

 
1

1 1 2 2

2 2 2 2

1 1 2 2

1 1 1 1

1 1 2 2

2

n n

n n

n n n n

n n

nZ Z Z

A Z Z Z

A Z Z

Z Z

I

Z

A Z

  

  

     

   

   

 









  



 

 (2.35) 

Written in the form of a linear system,  

 
1

1 2 2

1 1 11

1 2

1 1 1

n

n n nn

n n

ZI

ZA

ZA

  

    

    
    
     
    
    

     

 (2.36) 

it shows up a Vandermonde type matrix which leads to 

 1

1

2 1 2

1 1 1 1

1 2

1 1 1

n

n n n n

n n

Z I

Z A

Z A

  

  



   

     
     
     
     
     

    

 (2.37) 

where the Vandermonde inverse matrix has been widely studied for different cases. 

Then the exponential function of A is expressed by, 

 1 2

1 2
ntt tAt

ne e Z e Z e Z
      (2.38) 

Hence the solution of the free-motion system can be expressed  

 
   

1

0i

n
t

i

i

x t e Z x




  (2.39) 

This result is linked to the assumption that A  has n  distinct eigenvalues. 

The matrices iZ  have similar properties to the sensitivity matrices iS  such as the sum of all 

matrices iZ gives the identity matrix, 
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Property 2.1 The relation between both matrices is,  

 T

i iS Z  (2.40) 

In the particular case of repeated eigenvalues, it is not possible to obtain the solution, because 

the right and left eigen-matrices are not orthogonal.  

For the solution of the system, a so-called “confluent” Vandermonde matrix can be used but 

is not related with the sensitivity of the eigenvalues.  

 

2.3 Participation factors  

The PF are used in the modal control theory better known as sensitivity analysis. 

Participation factors focus their application in electrical power systems in which having a prior 

knowledge of the system is recommendable. As it is mentioned in (I.J. Perez-Arriaga 1981) “A 

crucial feature of the Dynamic stability problem (in the power systems context) and one that 

makes it particularly suitable for selective modal analysis (SMA), is that only a few, lightly 

damped, oscillatory modes are of interest, out of the hundreds of modes that the model may 

have”. It is also said that the SMA is not restricted to any particular kind of physical systems 

but it is focused on electrical power systems.  

 

Considered a linear system with distinct eigenvalues, as mentioned in (I.J. Perez-Arriaga et 

al. 1988) “The term (PF) reflects the activity of the thk  state variable when the thi  mode 

(eigenvalue) is excited”.  

 

Definition 2.2 Participation factors (I.J. Perez-Arriaga, Verghese, and Schweppe 1982) 

The participation factor (PF) matrix is defined as 

 

1 2

11 11 11

11 11 21 21 1 1

1 2

12 12 22 22 2 2

22 22 22

1 1 2 2

1 2

n

n n

n

n n

n n n n nn nn

n

nn nn nn

P

a a a
u v u v u v

u v u vu
a a a

u v u v

a a a

v

u v

 

 

 

  
   
   

     
      
   
   
   

  
    

 (2.41) 

Remark: 

It is assumed that A  is diagonal dominant, and that all 0ija  ,   , 1,2, ,i j n  (I.J. Perez-

Arriaga, Verghese, and Schweppe 1982). 

 

Properties of participation factors(Pagola, Perez-Arriaga, and Verghese 1989)  

 

a) The participation factors given by 𝑃𝑘𝑖 are not dependent on the units of the state 

variables. 
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b) The sum of all elements by rows or by columns of P  is 1. 

c) The PF represent the sensitivity of the eigenvalues i  to the diagonal elements iia

 1, 2i n of the matrix 𝐴. 

d) For diagonal transformations, the numeric value of the PF does not change (to be 

presented later). 

 

Definition 2.3: Solution of the free-motion system using participation factors (I.J. Perez-

Arriaga, Verghese, and Schweppe 1982) 

The approximated solution for the free-motion system is  

 

*

1

* *

*

( )

( ) ( )

( )

i

n

x t

x t x t

x t

 
 
 
 
 
 
 
 

 (2.42) 

with,  

 

  

1

2

* *

1 2( ) (0)

n

t

t

i i i ni i

t

e

e
x t P P P x

e







 
 
 
 
 
 

 (2.43) 

considering (0) 1ix  .  

 

Remark: 

This affirmation is only valid if A is diagonal dominant, as it will be shown in following 

examples. 

The approximated solution for the thi  state variable is, 

 

1

2

* *1 2( ) (0)
i

n

ii

t

t

n
i

ii ii

t

e

e
x t x

a a a

e







 

 
 

           
 
 

 (2.44) 

to be compared with the complete solution of (2.29) 

1 1 1

1

1 1 1

1 1

(0)

( ) (0)

(0)

n n nt t tt t t

i i

i i ii ii nn nn

n

n n n

x

x t e e e e e e x
a a a a a a

x

        

 
 
           
          

              
 
 


 





 

(2.45) 
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The following example presents analytically the complete solution and the participation 

factors approximation. 

 

Example 2.1 Consider the diagram in Figure 2.1 of a simple circuit with two resistances, 

one capacitor and one inductor. 

 

L

C 2
R

1
R

 

Figure 2.1 Circuit diagram. 

 

The free response differential state equation is, 

 

1

11 12

21 22

2

1

1 1

 

L L L L

C C
C C

R

i i i ia a L L
or

v va a
v v

C R C

 
                                    

 (2.46) 

The eigenvalues of the model are,  

 

  
1,2

1
2 2

1 1 1

2 2 2

1,2

1
2 2

11 22 11 22 11 22 12 21

1

( ) ( ) 4

2

1 1
4

     

2

R R R

L R C L R

a a a a a a a a
or

C R CL CL







      
           

      

   



  





 (2.47) 

The sensitivity matrices of the second order model can be easily obtained using the partial 

derivatives,  

 

1 1 2 2

11 12 11 12

1 2

1 1 2 2

21 22 21 22

   
a a a a

S S

a a a a

   

   

      
      
    
      

         

 (2.48) 

which leads to the following expressions,  

 

1
2 2

1 1 1

11 2 2

21 1 1 2
4

2  4    

R R

a L R C L R C






    
        

      

 (2.49) 
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1
2 2

1 1

12 2

1 1
4

 

R

a C L R C






    
     

      

 (2.50) 

 

1
2 2

1 1

21 2

1 1
4

 

R

a L L R C






    
      

      

 (2.51) 

 

1
2 2

1 1 1

22 2 2

21 1 1 2
4

2  4    

R R

a L R C L R C






    
        

      

 (2.52) 

 

 

1
2 2

2 1 1

11 2 2

21 1 1 2
4

2  4    

R R

a L R C L R C






    
        

      

 (2.53) 

 

1
2 2

1

12 2

2 1 1
4

 

R

a C L R C






    
      

      

 (2.54) 

 

1

12

2 2

21 2

1 1
4

 

R

a L L R C






  
    

    

 (2.55) 

 

1
2 2

1 1

22 2 2

2 21 1 1 2
4

2  4    

R R

a L R C L R C






    
        

      

 (2.56) 

where  

 
1

2

1R

R CL CL
    (2.57) 

Using the definition (2.29) for the solution of the second order model, 

 
 

 

1 2 1 2

1 2 1 2

1 2 1 2

11 11 21 21

1 2 1 2

12 12 22 22

0

0

L

C

t t t t

L

t t t t C

e e e e
i a a a a i

vv
e e e e

a a a a

   

   

   

   

    
         

    
               

 (2.58) 

From (2.41) the participation factor matrix is, 

 

1 2

11 11

1 2

22 22

a a
P

a a

 

 

  
  
 
  

   

 (2.59) 

 The approximated solution of the second order system according to the participation factors 

is,  
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 

 

1 2

1 2

*1 2

*

11 11

*

*1 2

22 22

0

0

L

L

C

C

t t

t t

e e i
i a a

v
e e v

a a

 

 

 

 

  
 

    
      

 
 

   
 



 








 (2.60) 

 

where the initial conditions are equal to one for all state variables. In (2.60) the solution is 

composed of the diagonal elements of (2.58) which corresponds to the condition: A  has to be 

diagonal dominant. 

 

2.3.1 Change of basis 

System state equations can have different representations depending on the choice of the 

state variables. However, the different representations of the equations do not change the 

intrinsic dynamics of the system.  

Consider an arbitrary change of basis of matrix T , defined as  

    x t T x t    (2.61) 

It leads to a new form of state matrix A  as 

 1A T AT  (2.62) 

Consider the transformation matrix T  diagonal as 

 

11

22

0 0

0 0

0 0 nn

T

t

t

t

 
 
 
 
 
 

 (2.63) 

The autonomous model represented by (2.1) and (2.2), becomes after basis change  

  

 

 

 

 

 

 

 

1 11 1
11 22 11 12 11 1

1 1

2 11 22 21 22 22 2 2

1 1

11 1 22 2

nn n

nn n

nn n nn n nn
n

n

x tx t a t t a t t a

t t a a t t ax t x t

t t a t t a a
x t x t

 

 

 

  
   
   
    
   
   

     
    

 (2.64) 

 

The linear transformation using (2.61) does not change the diagonal elements in (2.64). 

Therefore, the participation factor approximation does not change in the case of a diagonal 

transformation matrix.  

A particular case of diagonal basis change will be discussed in the next section. 

 

2.3.2 Per-unit representation  

In power system analysis, it is usually convenient to use a per-unit model to normalize 

system units. Compared to the use of physical units (amperes, volts, ohms, webers, henrys, 
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etc.), the per-unit system offers computational simplicity by eliminating units and expressing 

system quantities as dimensionless ratios. 

A well-chosen per-unit system can minimize computational effort, simplify evaluation and 

facilitate understanding of the characteristics. Some base quantities may be chosen 

independently and quite arbitrary, while others follow automatically depending on fundamental 

relationships between system variables. Normally, the base values are chosen so that the 

principal variables still be equal to one per-unit under the nominal condition. 

The general representation can be, 

 actual quantity
quantity in per unit

base value of quantity
  (2.65) 

 

In a power electrical system, there are some relations for the common variables in the system 

and the choice of the base values is commonly as, 

• bP  : power base,  

• bV  : voltage base generally chosen as the nominal voltage of the electrical network under 

analysis. 

• bi  : current base, related to the power base and voltage base defined as 

 
b

b

b

P
i

V
  (2.66) 

• bR  : resistance base, calculated as, 

 
b

b

b

V
R

i
  (2.67) 

• bf  : frequency base  

 

This per-unit representation is very useful for simple variables like voltages and currents. 

However, with energy storage elements there are different units for the different energy 

domains. The DC case is only developed here. 

Energy at the nominal point of operation can be chosen as base variable, using the 

normalized time constant H , defined for the mechanical inertia in (Kundur 2007) as 

 Kinetic co-energy in watts-seconds
(seconds)

P  in wattsb

H   (2.68) 

 

 For example in rotatory machines, H  is defined as,  

 
  

21
   

2(seconds)
b

moment of inertia angular velocity
H

P
  

(2.69) 
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For the DC elements, this constant is extended using the stored co-energy in inductors and 

capacitors.  

For inductors this normalized constant is described as, 

 
 21

2
b

L

b

L i
H

P
  

(2.70) 

where L  is the inductance value in henrys.  

For the capacitances,  

 
 21

2
b

C

b

C V
H

P
  

(2.71) 

where the C  is the capacitance value in Farads. CH  and LH  are in seconds. 

 

 Example of per unit representation for the DC circuits  

For the circuit presented in Figure 2.1, the state equation is(2.46),  

 

1 1

1 1

2 

L L

C
C

R

ii L L

v
v

C R C

 
                    

  

The per unit representation of the capacitance and inductance are, 

 2

2 L b

b

H P
L

i
  (2.72) 

 

 2

2 C b

b

H P
C

V
  (2.73) 

Substituting (2.72) in the first state equation in (2.46) gives, 

 2

2
1L b L

L C

b

H P di
R i v

i dt

 
   

 
 (2.74) 

Rearranging, it yields,  

 

1
2 L CL

L
bb

b

R i vid
H

Pdt i

i

   
 

 
 

(2.75) 

or  

 
1

2 CL L
L

b b bb b

b b

vi id R
H

V V idt i i

i i

 
    
     
    
 
 

 (2.76) 

From the definitions of per-unit variables,  
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  pu

 pu  pu2 1
L

L pu L C

di
H R i v

dt
    (2.77) 

rearranging 

 
 pu

 pu  pu

1 1

2 2

L pu

L C

L L

di R
i v

dt H H


   (2.78) 

For the second differential equation, using equation (2.73) it gives,  

 2

2

2

C b C C
L

b

H P dv v
i

V dt R

 
  

 
 (2.79) 

Rearranging, it yields,  

 

2

22

C
L

C
C

b

b

v
i

dv RH
Pdt

V


 

 
 

 (2.80) 

 

 

1

22 C CL
C

b b bb b

b b

v vid RH
V i idt V V

V V

   
    

   
 (2.81) 

simplifying using the definitions of the per-unit values,  

  
 pu

 pu  pu

1
2

2

C

C L C

pu

dv
H i v

dt R
   (2.82) 

rearranging  

 
 pu

 pu

1

2 2 2

LC
C

b C pu C

ivd
v

dt V H R H

 
  

 
 (2.83) 

The system state equation (2.46) becomes in the new basis 

 

  

 
 

1pu

2

1

2 2

1 1

2 2

L pu L puL L

C pu
C pu

C pu C

iH Hi

v
v

H R

R

H

 
   

             
 

 (2.84) 

 

The transformation matrix T  is,  

 
0

0

b

b

T
i

V

 
  
 

 (2.85) 

It is worth showing that the diagonal terms given here in pu have unchanged values 

 

Remarks of the change of basis 

This per unit representation is a common practice for the analysis and modeling of power 

electrical systems and particularly in the case of modal analysis. 
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When the per-unit representation is performed, the energy storage element parameters of the 

system have to be changed to a common unit. 

Linear transformations using diagonal transformation matrices do not change the numerical 

value of the diagonal terms in the matrices and the eigenvalues of the matrix are the same in 

the per-unit system and the original one.  

Moreover, the use of the PF in transformed pu models does not change its conclusions. 

 

2.4 Usage and interpretation of sensitivity matrices and participation 

factors 

The sensitivity matrices are a tool used for modal analysis. Their development responds to 

two objectives (Porter and Crossley 1972),  

i. The selection of system parameters such as the eigenvalues and their associated 

eigenvectors be as insensitive as possible to changes in such parameters. 

ii. The determination of good approximations of the eigenvalues and eigenvectors 

associated with various system components, without having to compute all the 

eigenvalues and eigenvectors. 

 

Participation factor theory was developed to understand and reduce models with uncoupled 

dynamics; its use in the selective modal analysis is well justified and understood as presented 

in section 2.2.  

The use of participation factors has changed since its first definition. For example in (Arabi 

et al. 1991), the PF matrix is used to show how important is a state variable for the eigenvalues 

or how important the eigenvalue is for the state variable. In (Hsu and Chen 1987) and (Ignacio 

J. Perez-Arriaga et al. 1990) they are used for the identification of the best location for 

stabilizers. 

In both cases, for the PF theory to be applied some assumptions have to be verified. The 

following examples will present some cases where this approach can suffer of a lack of 

precision. 

 

 Example 2.2: RLC circuit: time response and participation factor approximation  

Three cases are considered with different values for the element parameters. In the first case, 

the values are chosen in order to have real eigenvalues with a non-diagonal dominant matrix. 

In the second case, the eigenvalues are complex and the state matrix is non-diagonal dominant. 

In the third one the values are chosen to have complex eigenvalues and diagonal dominant 

matrix. As outputs, the selected states are the current in the inductance and the voltage in the 

capacitor. 

 

Case 1; Real eigenvalues, A non-diagonal dominant  
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Table 2.1 Parameters of the circuit 

Parameter Value Parameter Value 

L  2  mH   C  1 F   

1R  10   2R  100   

 

The free motion system is, 

 
5000 500

10000 100

L L

C
C

i i

v
v

 
              

 

 (2.86) 

The eigenvalues are, 

 1 23551.2         1548.7      (2.87) 

The modal matrices are,  

 

 
    

0.32 0.14 5.28 5.04

0.94 0.98 0.75 1.74
V U 

     
   

     
 (2.88) 

Thus, the sensitivity matrices are, 

 

 
1 2

1.7235 4.993 0.7235 4.993
   

0.2497 0.7235 0.2497 1.7235
S S

    
    

    
 (2.89) 

 

The participation factor matrix is,  

 

1 2                      

1.72 0.72

0.72 1.72

    

L

C

i
P

v

 

 
  

 

 (2.90) 

 

Using the per-unit representation for DC circuits presented in (2.84) the transformed system 

has the same eigenvalues. Table 2.2 presents the base values for the transformation.  

 

Table 2.2 Per unit base parameters 

Parameter Value 

bP  50  Watts 

bV  10 volts 

The per unit representation is, 

 
 

 

5000 1000

5000 100

pu

pu

LL pu

C
C pu

ii

v
v

                   

 (2.91) 

The modal matrices for the per-unit base are,  
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0.56 0.27 3.03 2.59

0.82 0.96 0.87 1.79
pu puV U

   
 

 
   

     
 (2.92) 

thus, the sensitivity matrices are, 

 

 

1 2

1.7235 2.4969 0.7235 2.4969
   

0.4994 0.7235 0.4994 1.7235
pu puS S

    
    

    
 (2.93) 

 

The participation factor matrix is unchanged as 

 

 
1 2                         

1.72 0.72

0.72 1.72

     

pu

pu

L

pu

C

i
P

v

 

 
  

 

 (2.94) 

 

From the elements in (2.94) it appears that the most important state for 1  is the current (in 

pu) in the inductance L  and the most important state for 2  is the voltage in C . 

 

To validate this statement free response approximated by the PF given in (2.60) has to be 

compared with the complete free response of equation (2.58).  

The approximated free response solution using (2.60) is,  

 

 

 

     

     

3551.2 1548.7 **

* 3551.2 1548.7 *

1.72 0.72

0.72 1

0

.72 0

LL pupu

Cpu Cpu

t t

t t

e e ii t

v t e e v

 

 

  
   
       

 









 (2.95) 

The complete free response solution using (2.58) is 

 

 

 

 

 

1 2 1 2

1 2 1 2

01.72 0.72 0.49 0.49

02.49 2.49 0.72 1.72

pu pu

pu pu

t t t t
L L

t t t t

C C

i t ie e e e

v t ve e e e

   
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 (2.96) 

A comparison between the two solutions (2.95) and (2.96) is presented in Figure 2.2. The 

initial conditions are set to 1 ampere and 1 volt  
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Figure 2.2 Current in L (a) and voltage in C (b). 

Note the difference in the time responses and the peak amplitude.  

 

Case 2; Complex conjugated eigenvalues, A  non-diagonal dominant.  

 

Table 2.3 Changes in the parameters. 

Parameter Value Parameter Value 

L 2 mH   C 41 10  Farads 

R1 1 Ohms R2 100 Ohms 

The per-unit representation is, 
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                  

 (2.97) 

and the eigenvalues are,  

 1 2255   663.3          255  663.3i i        (2.98) 

The participation factor matrix is,  

 

1 2                                     

0.5 0.04 0.5 0.04

0.5 0.0

         

4 0.5 0.04

pu

pu

L

pu

C

i i i
P

v i i

 

  
  

  

 (2.99) 

It is natural to have complex PF if the eigenvalues are complex. These complex values have 

no meaning for the analysis (I.J. Perez-Arriaga 1981), and it is a common practice to use the 

modulus of the complex numbers.  

 
   

2 2

kl kl klP real P imaginary P   (2.100) 

 Using (2.100) in (2.99) yields  

 

(a)                                                                      (b) 
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1 2                             

0.5020 0.5020

0.5020 0.5 0
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2

 

pu

pu
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pu

C

i
P

v

 

 
  
 

 (2.101) 

 

It can be seen that (2.101) is not normalized.   

The problematics of interpretation of the complex elements in the PF has been explored in 

(Abed, Hassouneh, and Hashlamoun 2009), where an extension of the definition is proposed 

for PF with complex elements.  

The free response is (initial conditions are set to 1 ampere and 1 volt), 

Figure 2.3 Response with complex eigenvalues 

In this case the oscillatory response due to the complex eigenvalues is noticeable. The 

response for the voltage presents a difference with the PF approximation.   

 

Case 3; Conjugated complex eigenvalues, diagonal dominant.  

Table 2.4 Parameters 

Parameter Value Parameter Value 

L   1 mH   C   1  mF   

1R   10    
2R   0.1   

 

 The system equations are  

 
-10000 -1000

1000 -10000

L L

C
C

i i

v
v

 
            

 

 (2.102) 

The participation factor matrix is,  

 

(a)                                                                      (b) 



 2.4 Usage and interpretation of sensitivity matrices and participation factors 

 

25 

 

 

1 2                 

0.5 0.5

.
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C

i
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 
  
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 (2.103) 

The per-unit representation is, 
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pu
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C
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ii

v
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                  

 (2.104) 

Since they are equivalent systems, the eigenvalues for both representations are,  

 1 210000  1000         10000 1000i i        (2.105) 

The time response is given in Figure 2.4. and the initial conditions are set to 1 ampere and 1 

volt 

Figure 2.4 Diagonal dominant response in pu. 

Figure 2.4 shows that the approximation of the PF is close to the complete response.  

 

Gershgorin theorem (Gershgorin 1931; D. Meyer and Veselić 1980), defines inclusion and 

exclusion regions for the location of the eigenvalues of a given matrix A.  

A Gershgorin circle iC  drawn in the complex plane is centered in each iia -term of A  , and 

has a radius 
1

n

i ij

j
j i

R a



  . 

 

(a)                                                                    (b) 



Chapter 2 Modal sensitivity and participation factors 

 

26 

 

Im

Re













 

Figure 2.5 Gershgorin circles for equation (2.104). 

 

The circles in Figure 2.5 corresponds to the inclusion region containing all eigenvalues. 

When the system matrix is diagonal dominant, such regions of inclusion is relatively “small” 

and each of them can enclose are eigenvalue (Quarteroni, Sacco, and Saleri 2007; Varga 2000). 

A diagonal basis change changes the radius of circles only.  

 

 

2.5 Conclusions 

 

The use of participation factors has to face some limitations as diagonal dominancy the 

biggest restriction.  

The didactic simple example was aimed at showing up the imprecisions involved in some 

cases where the limitation was not respected. 

The role of the basis change has been discussed, and particularly in the case of per-unit 

representation. 

 

 

 



 

 

 

Chapter 3 Sensitivity analysis  
 

3.1 Introduction 

 

The sensitivity analysis responds to the fundamental eigen-problem associated with the 

behavior of linear systems. Such problem relating changes in element parameters has been 

studied by numerous authors since the early work of Carl Gustav Jacob Jacobi (Jacobi 1856). 

 

Parametric sensitivity analysis is used for the analysis of power electrical systems as in 

(Smed 1993) and (D’Arco, Suul, and Fosso 2014b). In (Smed 1993) a “new sensitivity analysis” 

is proposed, where the main purpose is to analyze large power systems.  This methodology is 

used for the analysis of constrain of active and reactive modulation for a generator, analysis of 

static VAR compensators and the static model of a HVDC link. 

More recently a workgroup in Norway has applied the parametric sensitivity analysis to the 

analysis of virtual synchronous machine (D’Arco, Suul, and Fosso 2015) for the control scheme 

voltage source converter (SCV) based HVDC grids (D’Arco, Suul, and Molinas 2014). This 

analysis deals with the sensitivity of the “most critical poles” A drawback of this methodology 

is that the parametric analysis is performed comparing elements with different units. 

 

3.2 New definition of parametric sensitivity matrix 

The analysis of electrical systems and electrical machinery using participation factors 

principally relates the state variables to the eigenvalues. However, as shown in the previous 

sections, there are some assumptions and limitations.  

 

The objective of this section is to present a new form of sensitivity matrix relating the change 

in the eigenvalues with respect to the parameters.  

 

Consider a model with n  distinct eigenvalues and suppose that m  parameters 
j

(   1,2, , )j m  could change.  

The sensitivity of a given eigenvalue i  due to changes in the matrix elements is calculated 

as 
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  

   
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 
    
 
    
 
 
   

    

 (3.1) 
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Each element of iS  is the sensitivity of the eigenvalue i   to an element of matrix A . Here 

we propose to consider the sensitivity of the eigenvalues to the physical parameters of the 

system. 

Consider a small change in the parameter 
j . Then the change in the eigenvalue i  can be 

approximated by, 

 
i

i j

j


 







 (3.2) 

The partial derivative in (3.2) of an eigenvalue with respect to the parameter 
j  is, 

 
11

11

for all  , , 1,2i i i i

j j j
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   

     
    

      
  (3.3) 

Using equation(2.27), it leads to  
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i il

kl j j

ku v
a a

a



 

  


  
 (3.4) 

We propose the following definition of a new sensitivity matrix of the eigenvalues with 

respect to a parameter. 

 

Definition 3.1: Consider a system model with n  distinct eigenvalues and suppose that m  

parameters could change. The following matrix called Parametric Sensitivity Matrix (PSM) is 

proposed, containing by rows the sensitivity of each eigenvalue to one parameter   1,2j j m 

. 
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   
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 (3.5) 

 

The organization of the parameters and the eigenvalues can help to understand the results. 

We recommend having a prior knowledge of the dynamics and the characteristics of the system 

to help in this organization task. 

 

 Repeated eigenvalues 

Parametric sensitivity matrix (PSM) is based on the hypothesis of distinct eigenvalues. The 

case of repeated eigenvalues is problematic, However, there are some alternatives for the 

numeric calculation of the partial derivatives in the matrix Sp . 
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As presented in (Paraskevopoulos, Tsonis, and Tzafestas 1974), the characteristic 

polynomial helps to calculate the different sensitivities. With higher order systems this 

methodology can be difficult to implement. Alden and Qureshy in 1985 presented a second 

order approximation of the sensitivity for the repeated eigenvalues. This approximated value 

can help but it is difficult to prove its efficacy.  

More recently, the use of parametric sensitivity for mechanical damped systems has brought 

the problem of the calculation of eigenvalue sensitivities when there are repeated eigenvalues. 

In (Choi et al. 2004) adjacent eigenvectors and orthonormal conditions are used to compose an 

algebraic equation. The algebraic equation developed can be used to compute derivatives of 

eigenvalues and eigenvectors. In (Li et al. 2013) a normalization of the eigenvalues is proposed 

as a first step to find the sensitivities; then a particular numeric solution is proposed, under the 

assumption of a damped system. In both cases the fact that the system is damped helps to make 

assumptions for the solution.  

 

This problematics of repeated eigenvalues is not solved yet for this thesis. It is important to 

assure always if the analyzed model has distinct eigenvalues for the use of the PSM.  

 

3.2.1 Example 3.1: Simple Circuit sensitivity of the eigenvalues to the elements  

Considering the circuit in Figure 2.1, the objective is to find the sensitivity of the eigenvalues 

to the parameters L and C  

The matrix of the model given in (2.46),  
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The eigenvalues are,  
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The sensitivity of 1  with respect to L calculated directly is  
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 (3.6) 

It can also be derived using equation (3.3)  
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 (3.7) 

Thus, the sensitivity of 2  to L is, 
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 (3.8) 

In this second order system, the sensitivities are easy to derive, but it becomes more difficult 

for higher order models.  

From the sensitivity matrix   1,iS i n  in terms of the eigenvalues, (from equation 2.28) 
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 (3.9) 

it gives  
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 (3.10) 

 

Using Definition 3.1, the sensitivity matrix with respect to L and C is derived as, 
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 (3.11) 

It can be derived in analytical form. This clearly reduces the complexity of deriving the 

analytical expressions of the eigenvalues directly.  

The objective is to compare the contribution of each term of the PSM.  

The PSM shows up several properties:  

 It is not normalized 

 It is unit dependent 

 There is no restriction of diagonal dominance matrices. 

It is possible to measure the sensitivity of the eigenvalues to any parameter in matrix A  

(explicit or implicit)  

Since the PSM is unit dependent, each element in the matrix can be any real or complex 

number. Comparing the contributions of the parameter to the eigenvalues with elements in a 

normalized base could help to understand its values.  
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3.2.2 Normalization 

Consider the parameter sensitivity matrix Sp  given in equation (3.5) of a system with n  

eigenvalues and m  parameters of interest.  

 

A. Normalization by rows 

The influence of the parameter 
j  in the eigenvalues is represented by the 

thj  row of Sp  
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 (3.12) 

To make it possible to compare the different parameter contributions, a normalization is 

proposed using different norms. 

 Using norm L1 or grid norm,  

The norm L1 (C. D. Meyer 2000) of 
jSp  is defined as 
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  (3.13) 

where 
jiSp is the thi  element of 

jSp . Thus the normalized vector is 
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The norm L1 of 
jSpn  is equal to 1.  

 

 Using norm L2 or Euclidean norm, 

The norm L2 of 
jSp  is defined (C. D. Meyer 2000) as,  

 1
2

2

2
1

n

j ji

i

Sp Sp


 
  
 
  (3.15) 

Similarly, the normalized vector is 
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 (3.16) 

 

The normalized vector 
nr jSp  has the characteristic that if the original vector 

jSp is complex, 

the normalized 
nr jSp  is also complex.  

 

B. Normalization by columns, using the norm L2 

The influence of a set of parameters   1,2j j m   in all eigenvalues, for i  is represented 

for the thi  column of Sp . 
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By columns, the normalization represents the change of the eigenvalues when several 

parameters change of the same quantity; this normalization can only be performed for 

parameters with the same unit. 

The normalization using the L2-norm (3.18) is defined as, 
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The normalized column is 
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Hereafter, some examples present the application of the parameter sensitivity matrix PSM 

using the simple circuit from Figure 2.1 for different dynamic characteristics 

 

3.2.3 Example 3.2: Simple Circuit with real eigenvalues 

Consider the simple circuit of Figure 2.1 and the equations in per-unit presented in (2.84),  
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Using the following parameters, 

 

Table 3.1 Parameters of the circuit 

Parameter  Value Parameter Value Parameter Value 

L  2 mH    C  100  F   
bP  50 W 

1R  10    
2R  100  

bV  10 V 

the system equations in per-unit from equation (2.91) 
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the eigenvalues are, 

 
1 23551.2,         1548.7        

The right and left eigenvectors from equation (2.92) are 
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Using the definition (3.1) 
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 (3.20) 

Using the parameters in Table 3.1, the sensitivity to the per-unit value of the capacitor is  

      

 

     

 

2

2

1

2

2

2

3.03 0.27 2.59 0.27

2 50 2

0.87 0.96 1.79 0.96
 

2 0

 

5 2

C C

C

C

C C

H

H

H H

H H





  

  




 








 (3.21) 

The sensitivity to the per-unit value of the inductor LH  is,  
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Using the associated eigenvectors it yields,  
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The sensitivity to the energy storage elements using equation (3.21) and (3.23) is,  
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A. Normalization by rows 

 

Normalizing by rows, the L2-norm of the first row of
puSp  is,  

 
   

2

2

2

1 12240954.4 2240954.4 12444390puSp     (3.25) 

The L2 norm for the second row Sp   is,  

 
   

2

2

2
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The normalized by rows sensitivity matrix 
nr puSp  is, 
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where each row represents the change in the eigenvalues with respect to each parameter in 

per-unit LH   and CH . To demonstrate the validity of the results in (3.27), a small change in 

LH  and CH is performed.  

 

A change of 10%  from the nominal value of LH  produces the following eigenvalue 

trajectories in Figure 3.1 and Figure 3.2 

 

Figure 3.1 Eigenvalue trajectories for a small change in LH  . 

A CH   change of 10%  from the nominal value in CH   produces, 

 

Figure 3.2 Eigenvalue trajectories for small change in CH . 

The eigenvalues remain real and negative thus stable. 

 

B. Normalization by columns  

The first column 1

puSp , 

1                                2  

1                                2  
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using L2-norm (3.15) as  
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and the second column 2

puSp   
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 (3.30) 

using L2 norm (3.15) as,  
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lead to the normalized sensitivity matrix 
nc puSp   
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 (3.32) 

The matrix 
nc puSp  represents the relative contribution of each parameter changing of the 

same value. The eigenvalue evolution for an equal change (0.01 milliseconds) of the parameters 

LH  and CH   is presented in Figure 3.3.  

 

Figure 3.3 Comparison for an equal change. 

The change in CH  and LH  produce a change in 1  and 2  in the same proportion shown in 

each column of 
nc puSp . 

3.2.4 Example 3.3: Simple Circuit zero in a diagonal element 

Considering a change in a resistance R1 to zero,  

 

 

1                            2  
1                               2  
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Table 3.2 Parameters for a zero in the diagonal 

Parameter  Value Parameter Value Parameter value 

L  2 mH   C  100 F   
bP
 

50 W 

1R
 

0    
2R  100   bV

 
10 V 

The system equations in per unit are, 

 0 1000

5000 100
puA

 
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 (3.33) 

The eigenvalues are, 

 1 250   2235.5 ,         50  2235.5i i        (3.34) 

 

The modal matrices are,  
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 (3.35) 

The participation factor matrix is, 
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and the modulus of 
puP  is, 
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 (3.37) 

The sensitivity with respect to the parameters is, 

 
1 2

1 2

2236627.2 2236627.

500000 1  1171952.8 500000 1  1171952.

2

8

L L

pu

C C

H H
Sp

i i

H H

i i

 

 

  
    
    
      

   


 (3.38) 

Normalizing by rows using the L2 norm gives  
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 (3.39) 

In equation (3.39), it is shown up that changes in the per-unit value of the inductance LH  

produce only changes in the imaginary part of the eigenvalues. It is with  the matrix 
nr puSp  gives 

more information using its complex representation.  

Figure 3.4 shows the eigenvalue trajectories with a change of 10%  from the nominal value 

of LH  . Clearly, the eigenvalues variate only on the imaginary axis, as the matrix 
nr puSp  

predicts 
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Figure 3.4 Eigenvalue trajectories for L 

3.2.5 Example 3.4: Simple Circuit with diagonal dominant elements  

 

Consider the parameters in Table 3.3. (case 3 in Chapter 2) 

Table 3.3 Parameters in diagonal dominant case 

Parameter  Value Parameter Value 

L  1 mH    C  1  mF   

1R  10    
2R  0.1  

 

 and the model calculated in (2.104),  
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The eigenvalues in (2.105),  
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The modal matrices are,  
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The participation factor matrix is, 
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The sensitivity with respect to the parameters in this case is, 
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the normalized matrix 
nr puSp  is, 
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Comparing with the previous examples this is the only case where the sensitivity and the 

participation factors lead to the same conclusions. Both parameters contribute in similar amount 

to the dynamics of the system.  

 

3.3 Remarks and uses. 

From the different scenarios in the examples, some remarks are established. 

As said before the use of participation factors is limited to the models with diagonal 

dominant state matrices.  

Advantages of the proposed PSM matrix  

 Using the PSM more information can be retrieved as  

o The sign of the elements represents the direction in the change of the 

eigenvalues. 

o The complex values in the PSM elements give information of how the 

contribution of the parameters affects the imaginary and the real part. 

o The normalization by rows gives the contribution of a parameter to all 

eigenvalues. 

o The normalization by columns gives the comparative contribution of the 

parameters for each eigenvalue. For this comparison, it is necessary to choose 

parameters with the same unit without exceptions. 

o The analysis of the parameters is not limited to the dynamic elements or explicit 

elements in the matrix A.  

Drawbacks 

o The need of the partial derivatives of the matrix A  with respect to the elements 

is clear. Depending on the equations, they could be difficult to derive.  

o The eigenvalues are assumed to be distinct. 

.  

 

The information given by the PSM can be useful in different application scenarios as: 

 For the selection of parameters: clearly, the methodology shows its importance in this 

area by understanding the effect of the system parameters.  
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 For the tuning of control parameters: the use of the PSM is not restricted to open loop 

models but may be applied also to closed loop systems, where in many cases the tuning 

of parameters is a big issue.  

 For stability analysis: by knowing the general direction of trajectories in the eigenvalues 

for small changes in the parameters it is possible to determine which parameters 

participate the most in the eigenvalues close to be unstable. 

Table 3.4 presents the differences between the participation factor matrix and the parametric 

sensitivity of (D’Arco, Suul, and Fosso 2014a) and (Barrera-Gallegos, Dauphin-Tanguy, and 

Guillaud 2016).  

 

Table 3.4 Comparison of different approaches 
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3.4 Conclusions  

The participation factor matrix as analysis tool has shown up some limitations which makes 

it interesting to propose a new tool of analysis more general and rich in information on the 

dynamics of the system.  

The new methodology for analysis has the advantage of having normalized elements, where 

the information is organized, clear and useful. 

The interpretation of the elements in the PSM is not limited to real elements but also to 

complex variations of eigenvalues. Each element of the matrix describes the first order 

sensitivity of the eigenvalue, this can be understood as the general direction of the eigenvalue 

with respect to changes of the parameters. 

 

The new matrix can give a measurement of the change of the eigenvalues for changes of the 

parameters, and it can be used for different purposes as, 

 

 Stability analysis 

 Tuning of control parameters 

 Analysis and selection of new parameters  

 Analysis of coupling in different subsystems and parameters 



 

 

 

 

 

Chapter 4 State-space modeling of HVDC 

systems  

4.1 Introduction 

The previous chapters it is presented the analysis of the tools used till now on the classical 

AC power system and proposed another methodology more general but a little bit more complex 

to use. This approach will be applied on the specific domain of the HVDC grids. The 

presentation of this analysis is divided in two parts. The chapter 4 presents the modelling of the 

power electronics converter. It starts with the Voltage Source Converter, a very well-known 

topology, to follow on the Modular Multilevel converter which is now used for all the new 

projects in HVDC grid. The different control loops (current and voltage) are explained and 

some linearized models are proposed. In HVDC applications, two (HVDC link) ore more 

converters (MTDC grid) may be connected via cables or lines. A simplified model of these 

systems is also proposed. The same approach is proposed with MMC. 

 

4.2 Context of the HVDC development  

 

 

Chapter 1 presents the problematics of the dynamic analysis methods applied for the AC 

electrical networks in the high voltage DC networks. The difference in its fundamental 

dynamics makes the systems with power electronics different from the systems analyzed in (I.J. 

Perez-Arriaga et al. 1988) for this reason the present chapter is a brief presentation on the 

modeling of the HVDC systems. 

 

The electrical networks have been growing in size since the first power plants installed in 

big cities. The growing capability of the electrical network also evolved into a system with 

different ways of producing electrical energy from converting oil and gas, potential energy 

stored in dams, power from nuclear reactions, from the sun with photovoltaic panels from the 

wind with wind turbine. All these actual characteristics in the electrical systems bring new 

problems for controlling the electrical network. 

Nowadays the production of energy could be organized in two different kinds of production 

means of electrical energy, as non-renewable energy sources and renewable energy sources. A 

renewable source is a naturally recovered energy that could be extracted from nature without 

affecting its natural process of recovering. As an example of renewable energy source it could 

be rain, wind, sunlight, geothermal heat, tides and waves of the ocean. As a consequence a non-

renewable energy source is where the energy extracted from this source cannot be recovered as 

a natural process of the system. 
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Electrical power systems are composed of different elements as generators that convert the 

mechanical power to electrical one, transformers that allow changing the voltage values in order 

to transmit this electricity by efficient means, lines of transmission and elements of 

consumption and storage. Synchronous machines used for generation of electricity transform 

the mechanical power from primary sources prime mover (oil, gas, nuclear, hydraulic) into 

electrical power. 

The structure of electrical power systems varies in size and structure, however they all have 

the same basic characteristics; they are three-phase AC (alternating current) operating 

essentially at a constant voltage. 

Generation and transmission facilities use three-phase equipment. 

 

The transmission of the electrical power over significant distance to consumers spread over 

a wide area requires a transmission system comprising subsystems operating at different voltage 

levels (Kundur 2007). The voltage in the AC system has a particular wave form for each phase, 
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(4.1) 

 

where V  is the root mean square (RMS) voltage, t  is time,   is the base pulsation of the 

electrical system and each phase ( , , )a b cv v v  is dephased 120° from the other. If the voltage is 

represented as a vector with an amplitude and a phase with respect to av , we can plot the vectors 

of the three-phase voltage as shown in Figure 4.1. 

bv

o
120

av

cv

 

Figure 4.1 Phasorial representation of the three-phase voltage. 

The previous mentioned characteristics are very important for the interconnection between 

the different generation systems. The connection between different system is regulated to avoid 

congestion in the interconnections. 
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For example in Figure 4.2, the generation of each side could have different levels of voltage 

and frequencies. 

These differences between systems are common in the transmission lines connecting 

different generation systems. There are some ways to overcome this problematics, from the use 

of transformers, to the application of specific control methodologies. 

 

a

b
c

Generation
station Transformer Transformer

Generation
station

Transmission

Loads

a

b
c

 

Figure 4.2 Two generation systems connected  

Another option for connecting two different AC systems is by using the conversion to high 

voltage direct current (HVDC). With the grown market of renewable energy, the AC to DC 

conversion is used to connect this kind of systems. The power levels for the renewable sources 

may change depending on the conditions of the transmission and the associated energy sources, 

making the DC grids a very good option to connect such energy sources.  

The conversion is accomplished by means of power electronics using thyristors, insulated 

gate bipolar transistors (IGBT), or other power electronic components like integrated gate-

commutated thyristor (IGCT).  

It has been studied and proved that HVDC interconnections have less loses and better 

performance (Kundur 2007; Chapman 2010; Krause, Wasynczuk, and Sudhoff 2002). This 

performance also depends on the control architecture of the system. 

 

In some cases, the preferred way of power transmission from wind farms to AC systems is 

by using the HVDC connections (Gao et al. 2013; Bernal-Perez et al. 2012; Perveen, Kishor, 

and Mohanty 2014). HVDC also helps in the connection between power networks with different 

control systems and energy policies and connection between countries (Ismunandar 2010).  

 

From different perspectives, the installation of power electronic technologies such as HVDC 

transmission and flexible alternating current transmission system (FACTS) devices will help 

improving the degree of flexibility of the grid. This means that those technologies support the 

increasing usable capacity without harming secure operation of the grid (Liang, Gomis-

Bellmunt, and Hertem 2016). 

This involves changes on the grid from the traditional dynamic of the system governed by 

the dynamic of the synchronous generators to the dynamics of the power electronics used in the 

DC converters. Among the different converter technologies, in this thesis the analysis is focused 
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on the voltage source converters (VSC) and the modular multi-level converters (MMC), which 

are the more currently used nowadays. 

 

4.3 Voltage source converter  

 

The interconnection between two or more substations requires the control of power, voltage, 

and current in each substation to regulate the way the energy is transmitted from one or more 

sources to the loads. Because of that, the control is designed to act on all the variables. 

 

4.3.1 General control scheme 

Figure 4.3 presents the general control architecture of a station interconnecting an AC 

network to a DC grid (Rault et al. 2012; Cole et al. 2010). 
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Figure 4.3 Voltage source station control diagram. 

 

In Figure 4.3, dcP  is the power provided by the DC network, acP  is the power at the AC side 

of the substation. Power transferred to the AC side of the converter, is considered as positive. 
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Figure 4.4 VSC converter 

Figure 4.4 presents a configuration of Insulated Gate Bipolar Transistors (IGBT) used in the 

structure of an inverter. The modulation signals to the IGBT devices allow to open or close the 

switching devices in the converter and control the voltages mav , mbv  and mcv  at the AC side of 

the converter. This process is well known and described in literature (Mohan, Undeland, and 

Robbins 2003; Shen et al. 2012; Wu et al. 2014; Yazdani and Iravani 2010).  

 

The DC side terminals of a VSC are typically connected in parallel with a relatively large 

capacitor that behaves as a voltage source  

The VSC is a non-linear system, the model in  Yazdani and Iravani 2010 presents  a 

simplification of the VSC model for simulation and analysis of large scale systems. 

 

A. Average VSC model 

Under the hypothesis that the switching devices are fast, the average value model can be 

used (Peralta, Saad, Dennetiere, et al. 2012; K. Wang et al. 2014). Figure 4.5 shows this 

simplification, the switching devices are replaced by three-phase voltage sources mv  and a 

current source mi .   
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Figure 4.5 Reduced model of a VSC 

 

The power conservation principle, means that the power on the AC side must be equal to the 

power on the DC. 

 

ma ga mb gb mc gc dc mv i v i v i v i    (4.2) 

which becomes in the dq0 frame,  

 

md gd mq gq dc mv i v i v i   (4.3) 

The dq0 reduced diagram is presented in Figure 4.6, where each axis has its modulation 

signal 
qm and dm . The capacitance dcC is the equivalent capacitance of the converter. 
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Figure 4.6 dq0 model of a VSC 

 

The equations describing the circuit in the dq0 frame at the AC side are. 
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md gd f gd f f gq

gq

mq gq f gq f f gd

d i
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dt

d i
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dt
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      

      

 (4.4) 

In the frequency domain equations (4.4) are,  

  

 

*

*

md

mq

f f gd f gq

f f gq f gd

L s R i v L i

L s R i v L i





  

  
 (4.5) 

where,  

 *

*

mq

md

mq gq

md gd

v v v

v v v

 

 
 (4.6) 

and   is the frequency of oscillation at the AC side. In practice, the frequency is 

reconstructed using Phase Lock Loop (PLL). In the following, the frequency value   is 

assumed to be constant.  

 

B. Current loop 

 

The control of the current using power electronics is widely used for high voltage source 

converters. The objective is to produce a sinusoidal AC output in which amplitude and 

frequency and phase can be controlled in order to fix the current of the AC side of the VSC. 

The control of the current through the converter is necessary to control the transferred power. 

A common methodology is using the rotating reference frame dq0 instead of the three-phase 

stationary coordinated system; by decoupling the signals from the d and q axis the control is 

independently controlling active and reactive power. 

Derived from (4.5)and (4.6) the block diagram of the physical AC system in dq0 is shown 

in Figure 4.7. It shows up the coupling between gdi  and gqi . This coupling has been related to 

the transfer of active power and reactive power through each axis. If the coupling between the 

axis is compensated by the control, it is possible to have a decoupled control for active and 

reactive power. 

 

Neglecting the switching devices, the current loop presented in Figure 4.7 is a common 

strategy to control the current through the converter. 
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Figure 4.7 Current loop 

 

Figure 4.7 shows up the coupling between the currents gdi  and gqi .  

 

The effects of the terms 
f gqL i  and 

f gdL i are compensated 

 

The transfer function of the decoupled physical system is, 

 

* *

1

gq gd f

fmq md

f

i i L

Rv v
s

L

 



 (4.7) 

and the current loop PI controller transfer function is,  

 

 
1

1p

i

H s k
T s

 
  

 
 (4.8) 

pk  is the proportional gain of the PI controller, and iT  is the integral time of the controller. The two 

current loops have exactly the same parameters for the PI controllers. In a decoupled form each control 

loop is independent as presented in Figure 4.8, the closed loop equation of each loop is, 

 

 
2

p p

f f i

f p p

f f f i

k k
s

L L T
G s

R k k
s s
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        
   

 (4.9) 

 

The desired behavior of the closed loop is settled by fixing the damping coefficient ξ = 0.7 and the 

undamped natural frequency n  set to achieve a settling time st   of 10 milliseconds 
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Figure 4.8 Decoupled current loops 

 

Due to the choice on the PLL, the active power is related to the d-axis current magnitude 

and the reactive power with the q-axis current. If the reference of the q-axis current is set to 

zero, the possibility of repeated poles reduces and the dynamic analysis is straight forward. 

 

C. Voltage droop control  

For the control of the voltage, there are different approaches in the literature (Thams et al. 

2015; Wenyuan et al. 2014). In Figure 4.3 the voltage control is presented with a proportional 

block (droop control). This type of control is used in Multi-terminal DC grid since it allows 

sharing the balance effort in case of large variations of power. 
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Figure 4.9 Voltage and power control. 

The constant parameter 1
droopk

 shown in Figure 4.9 defines the drop of the voltage when 

there is a change of power in the system between certain limits. This characteristic is presented 

in Figure 4.10, where the x-axis of the graph corresponds to the power range of an AC system 

connected to the DC grid with a voltage range of change. In the point of desired operation aciP   

the voltage in the DC grid will be dciv . 
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Figure 4.10 Voltage droop characteristic. 

 

The response time of the system depends on the 
droopk  value. For a small 

droopk  the voltage 

droop is small. 

 

The changes of the power are considered from 1 to 1  in per unit. For a positive value the 

power will be consumed by the AC system. 

 

D. Linearization of the model 

Equation (4.3) presents nonlinear characteristics. For the modal analysis, a linearization is 

necessary.  

The linear equations of the model are,  

 

0 0 0 0gd md md gd m dc dc mdci V V I i V v I       (4.10) 

The station linearized model is presented in Figure 4.11 as a block diagram (Rault et al. 

2012) 
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Figure 4.11 Linear model. 

 

The sub index 0 refers to the operating point. This model is simplified but represents the 

major dynamics of the system: the DC bus voltage dynamics and grid current dynamics.  
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Clearly, this model neglects the inner controls of phase locked loop and the switching 

controls. The purpose of this simplification is to have a model simple enough to begin the 

analysis.  

 

 

4.3.2 Per-unit in HVDC grids 

As mentioned in section 2.3.2, the per-unit representation has its advantages for the use of 

manageable magnitudes of the variables.  

The use of the base values of an AC system into the HVDC network has become a standard 

(Yazdani and Iravani 2010).  

 

 Ac per-unit representation  

For the systems involving AC to DC conversions, the use of the AC per-unit representation 

involves AC base values corresponding to the oscillatory behavior of the system. When applied, 

the DC side of the converter is presented in terms of the AC base values including the oscillatory 

variables (oscillation frequency   in rad).  

Consider the following base values for a HVDC with a VSC station.  

 

Table 4.1 Base values for a VSC station 

Base value   Description  

bS   Base value of the apparent power of the AC side, in VA 

cos( )b b nP S   Base active value that depends on the phase angle n  

1nU  Nominal line to line voltage in volts 

1
1

3

n
b n

U
V V   Nominal line to neuter voltage in volts 

bf  Frequency base in hertz 

b  Frequency base in radians per second 

dcbV  Nominal voltage of the AC side 

 

Using the fundamental values of Table 4.1 the following relationships are developed for the 

AC side,  

 

23
[A];    [ ]

3

1
[H];     [F]

b b b
b b

b b b

b
b b

b b b

S V V
I Z

V I S

Z
L C

Z 

   

 

 (4.11) 

The base value of the energy storage elements depends on the impedance base bZ  and the 

oscillation frequency b .  
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The DC per unit is based on a strong assumption (Yazdani and Iravani 2010) 

 12 2 3dcb n bV U V   and cos( ) 1n   (4.12) 

 

the fundamental relations the current base and the resistance base are,  

 
3

[A];    4 [ ]
2

b
dcb dcb b

I
I R Z    (4.13) 

remembering that,  

 b dcb dcbS V I   (4.14) 

 

For example, consider the following state equation for a capacitor in a DC network in per 

unit  

 C
dc

dv
C i

dt
  (4.15) 

Considering (4.11), (4.15) yields, 

 ,

,

C pu

pu b dcb dc pu dcb

dv
C C V i I

dt
  (4.16) 

replacing bC  and rearranging 

 
,

,

1 C pudcb
pu dc pu

b b dcb

dvV
C i

Z I dt
  (4.17) 

Since 
4

dcb
b

R
Z   hence 

 
,

,

4 C pudcb
pu dc pu

bdc b dcb

dvV
C i

R I dt
  (4.18) 

The state equation becomes,  

 
,

,
4

C pu b
dc pu

pu

dv
i

dt C


  (4.19) 

The capacitor in per-unit is  

 1pu b b

b

b b

C C
C CZ

C

Z





    
(4.20) 

The capacitance 
puC  depends on the value of the base impedance, which depends on the 

voltage of the AC side.  

The per-unit values depend on the base values of the AC side. Thus, the following 

consequences apply. 

 The parametric analysis of a model with bigger order of magnitude in the AC (in 

pu) side this could lead wrong conclusions.  

 On the contrary, if the elements of the AC side (in pu) are smaller than the 

elements of the DC side this could lead to consider that the elements of the DC 

side are too important for certain modes. 
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The per-unit representation has a scaling effect on the per-unit value of the elements. If the 

base of scaling is not well chosen, the results can lead to different conclusions. Those will be 

valid in the context of the per-unit representation but not in the physical units of the system.  

It also opens the opportunity to discuss under which circumstances this method is not viable. 

 

Another alternative is to use the per-unit based on the stored energy of the DC elements as 

presented in section 2.3.2. This basis has the advantage of having elements that represent in a 

way the stored energy of each element in a uniform unit (seconds for the energy storage 

elements and per-unit for resistive elements). 

 

 

 

4.3.3 Reduced linear equivalent 

Consider the system of Figure 4.12, It  

150 MW 150 MW

300

 

Figure 4.12 HVDC link with two stations. 

For didactic reasons, let us assume that the changes of the operating point have no influence 

on the dynamics of the system. In addition, the dynamic of the current loop is supposed to be 

infinite.  

Therefore, the equivalent circuit in Figure 4.13 represent such reduced model. 
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Figure 4.13 HVDC link equivalent circuit. 

 

The two stations 1C  and 2C  are connected through a cable modeled by an inductor with 

two capacitors in each extremities, and a droop control scheme. 
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  1dcv  and 2dcv : voltages in each station measured in the capacitor in per-unit. 

 *

1dcv and *

2dcv : reference voltages in each station in per-unit. 

 10dcv and 20dcv : Voltage in the point of operation. 

 10dci and 20dci : current in the point of operation. 

 *

1P and *

2P : power reference for the equivalent sources in per-unit. 

 
1 1eq aC Cs C   and 

2 2eq bC Cs C  : equivalent capacitances composed by the 

capacitance of the station and the capacitance of each side of the equivalent model of 

the cable. 

 abL : equivalent inductance of the cable. 

 
1droopk and 

2droopk : voltage droop controllers.  

The equations of the model in per-unit are,  
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 (4.21) 

where,  
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 (4.22) 

 

The objective of this example is to measure the parametric sensitivity with respect to the 

capacitances in the stations and the inductance of the cable.  

This reduced model has no means to reproduce the complete dynamics of the systems but 

under the right circumstances can help to reproduce a large scale MTDC grid (Cole et al. 2010).  

 

 First order equivalent model 

Under the hypothesis of having 0abL   the model in Figure 4.13 is reduced to a first order 

system with lumped capacitance.  
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Figure 4.14 HVDC link equivalent circuit. 

 

The equivalent linear block diagram is presented in  
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Figure 4.15 Block diagram of the equivalent HVDC link. 

 

 

From which the first order fundamental polynomial is derived as  
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 (4.23) 

in which the eigenvalue is, 
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(4.24) 
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This first order transfer function is simple, describes the DC voltage behavior. 

 

4.3.4 Three terminal DC grid model 

 

Figure 4.16 illustrates the overall scheme of the studied three terminals MTDC. Converters 

1 and 2 are modeled with a classical two level droop-controlled VSC average models. The third 

terminal is only modeled with a current source li  and its associated DC capacitor. The power 

of each station is supposed to be 1 GW. The DC grid is modeled with two PI sections of DC 

cable, ab1 connecting the VSC 1 with VSC 3 and ab2 for the connection of VSC 2 with VSC 

3 (section ab1 : 150km and ab2 : 300km) 

 

A. MTDC model  

The classical VSC structure presented in 

 

Figure 4.16 is composed of a three-phase reactor AC filter 
1fL  ,

1fR  . The capacitor 1vscC  , 

directly connected on the DC side, is lumped in parallel with the end-point capacitor of the DC 

cable xC  resulting in an equivalent capacitance expressed as :  

 
1 1 1

2 2 2

eq vsc x

eq vsc x

C C C

C C C

 

 
 (4.25) 
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Figure 4.16 Three terminal MTDC grid with droop controlled VSC. 

Some considerations are taken into account regarding the station dynamic equivalent:  

The particular dynamic of the low level control and the switching devices are neglected:
*

mac macv v  (

 

 Figure 4.16).  

 The system is considered under balanced conditions. 

 Since the AC voltage source is considered here as perfect, the dynamic of the PLL is not 

taken into account. 

 

For simplifying the model, 
gqi is supposed to be null. 

 

All the other equations are linear so, there are included in the same form as in the linearized 

model of the VSC. The complete block diagram of the linearized MTDC system is presented 

in Figure 4.17.  
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Figure 4.17 Block diagram of the MTDC system 

where the variables in upper case and with the subscript 0 are the operating point, and the 

variables with  the Greek symbol   refer to the deviation variables. 

 

A. Model in per unit 

As explained in Chapter 3, an accurate conclusion from the use of parametric sensitivity 

matrix supposes to have quantities without any unit. It is the reason why the use of per unit is 

mandatory in this type of analysis. With a linear model, the equations in per unit are the same 

as for the original ones. In the new model, all the per-unit elements are represented with a 

subscript “pu” for this section. The system in per unit can be expressed in a state-space form as 

follows:  
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where, 
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B. Analysis of the solution of the free-motion model 

From the free motion system equations, prior knowledge of the system can be interpreted. 

The use prior knowledge of the system helps for the modal analysis. For example, the diagonal 

elements with zero in (4.26) assure that there is no strict diagonal dominance. Nevertheless, the 

few diagonal elements can have a strong importance for the solution of the system. 
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Consider the parameters in Table 4.2 

Table 4.2 Parameters of the HVDC system 

Element Value in SI Value in pu 

1eqC  42.3236 10  F 7.4749 pu 

2eqC  42.1383 10 F 6.8790 pu 

3eqC  4 2.5088 10  F 8.707pu 

1abL  1.122  H 3.4422 pu 

2abL  0.5610  H 1.7211 pu 

fL  0.0978 H 0.3pu 

fR  0.05 Ohm 1.221×10-4 pu 

Two different conditions are considered for the free-motion system  

 For kdroop=0.5 

The matrix of the system is  

 

5.25 10.51 10.51 0 0 0 0 0 0

182.53 0 0 0 0 0 182.53 0 0

839.99 0 420 0 0 0 0 420 0

0 0 0 5.708 11.417 11.417 0 0 0

0 0 0 365.069 0 0 365.069 0 0

0 0 0 839.99 0 420 0 0 420

0 9.7314 0 0 9.7314 0 0 0 0

428.57 0 214.28 0 0 0 0 0 0

0 0 0 428.57 0 214.28 0 0 0
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 (4.29) 

The eigenvalues are presented in Table 4.3. 

Table 4.3 Eigenvalues for 0.5droopk   

Eigenvalues Frequency (Hz) Damping ratio 

1,2 4.20 94.01i     14.97 0.044 

3,4 11.03 48.1i     7.85 0.223 

5 14.37    0 - 

6,7 198.05 225.26i     47.73 0.66 

8,9 199.31 225.16i     47.85 0.662 

 

The solution of the system is derived from definition (2.29) 
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For the current 1Labi  the solution is 
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 (4.30) 

Each term of (4.30) corresponds to the elements of the sensitivity matrices, 0x  represent the 

initial conditions vector.  

The first four terms of the solution equation (4.30) the elements of multiplu 
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(4.31) 

The circled elements are the elements with greater contribution to the dynamics of the state.  

The complete solution of the state is difficult to present, nevertheless the comparison between 

them gives interesting results.  

 The term 3t  has small participation in the solution. 

 The terms 1t , 2t and 4t have an important contribution to the solution for the exponential 

terms 3t
e
 and 4te  

For the PF analysis, it is necessary that  2t  has to be more important, looking at the numbers 

of the exponential terms 3t
e
 and 4te  it is clear that 1t  and 4t have a bigger contribution to the 

solution.  

 

4.4 Modular Multi-level Converter reduced model  

The use of modular multilevel converter (MMC) is a real breakthrough compared with the 

classical 2 and 3 level converters. All new HVDC links are now using this kind of topology. 

The advantages are, low losses, modularity, scalability and low harmonic distortion 

(Abildgaard and Molinas 2012). The dynamic analysis is an important task to understand its 

behavior, control its dynamics, and avoid stability problems in the systems using MMC stations.  

 

The Figure 4.18 shows the topology of a three phase Modular Multilevel Converter. It has 

three legs, one per phase, and each leg has two arms (upper and lower arm). N submodules 

connected in series compose the arms. The number of submodules can vary depending on the 

desired output voltage level and expected redundancy. For a 401-Level MMC-HVDC system 

N could be in the order of 400 up to 440 (Peralta, Saad, Dennetière, et al. 2012) 
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Figure 4.18 diagram of the modular multilevel converter 

 

The MMC has the upper and lower arms composed by a series of blocks xxxSM  with two 

switches 1S  and 2S . Each arm is connected to each phase of the AC sources.(
gav , 

gbv ,
gcv ) and 

the upper and lower sides of the arms connected to the DC side of the converter. 

 

The arm inductances ( armL ) limit the DC fault current gradients and support the voltage 

difference caused by the insertion and disconnection of the submodules. For limiting the current 

in case of AC fault, there are the inductances 
fL  in the AC side; they also help to control the 

grid current and limit the rise of current in the case of AC short circuit. The resistive part of the 

arm inductances and the output filter are noted as armR  and 
fR  respectively.  

This model can be very complex; its control has to be fast to provide the signals for each 

switch submodule. For this thesis as presented for the VSC converter the switching dynamics 

are not taken into account for simplification purposes. Nevertheless the simplification of this 

model has been developed in different forms (Bergna Diaz, Suul, and D’Arco 2015; Beddard 

and Barnes 2015; H Saad et al. 2014; Peralta, Saad, Dennetière, et al. 2012) 

The four different models in reduced complexity are presented in (H Saad et al. 2014) in the 

following form,  
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Model 
type 2

Model 
type 1

Model 
type 3

Model 
type 4

 

Figure 4.19 MMC models in decreasing complexity. 

 Model 1: This model considers a detailed representation of power switches The 

model presented uses an ideal controlled switch, two nonlinear (series and anti-

parallel) diodes, and two snubber circuits. 

 Model 2: This model replaces the power switches with ON/OFF resistors. This 

allows performing a Norton equivalent of the whole arm at each simulation step time, 

reducing the number of nodes of the circuit considerably. 

 Model 3: In this model each MMC arm is averaged using the switching function 

concept of a half-bridge converter based on the assumption that all SM capacitor 

voltages are balanced (Delarue, Gruson, and Guillaud 2013). 

 Model 4: Here the IGBT’s and their diodes are not explicitly represented and the 

MMC behavior is modeled using controlled voltage and current sources.  

 

The model type 3 represent a good dynamic behavior, it can still be simplified with reasonable 

assumptions (Freytes et al. 2016). In order to reduce the number of state variables and reduce 

dynamic complexity. Figure 4.20 depicts the MMC with arm average model  (AAM),  

 

Figure 4.20 Model type 3. 
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This model assumes that the voltages of all the submodule capacitors are maintained in a close 

range, thus allowing to replace them by an equivalent one. Therefore, each arm includes an arm 

inductance armL  , an arm resistance armR  and an equivalent capacitor totC  in parallel with a 

chopper. 

 

The voltages
jmuv , 

jmlv and the currents
jui , 

jli of each arm  ,  ,  j a b c  are described as follows, 

 

,

,

,

,

uj j tot uj

lj j tot lj

tot uj j j

tot lj j j

m u C

m l C

C u u

C l l

v m v

v m v

i m i

i m i









 (4.32) 

where,  

 
,tot ujCv and 

,tot ljCv are the voltages across the capacitors in the upper and lower arms  

 
jum and 

jlm  are the corresponding instantaneous duty cycle 

 
,tot ujCi and 

,tot ljCi are the currents through capacitors of the upper and lower arms. 

The Kirchhoff’s law for each arm gives,  
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 (4.33) 

The addition of the upper and lower parts yields, 
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Equation (4.34) describes the AC side dynamics of the AAM.  

For the DC side, the following equations are defined,  

 2 2
j

j j

diff

dc diff arm arm diff

di
v v L R i

dt
    (4.36) 

where,  
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 (4.37) 

The relation of AC and the DC side (4.34) and (4.36) define the dynamics of the lower and 

upper parts of the arms. At this point, the model has three arms, each one with upper and lower 

part. 

 

4.4.1 Simplification of the AAM 

Considering that under controlled operation, the upper and lower voltages are equal, 

 
uj lj jCtot Ctot Ctotv v v   (4.38) 

where 
jCtotv  is the average voltage of the capacitor in the j  arm. 
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With this assumption, each arm relationship becomes,  

 2 totC

tot dc diff ac g mdc mac
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where,  
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Then each phase of the AAM is reduced as shown in Figure 4.21. 

+

diff j
i
i

2
arm

L 2
arm

R

jdiff
v

dc
m

ac
m

2
jtot

C
totjC

v

jmdc
i

jmaci
ac

eq
L

ac

eq
R

jv
v

jg
v

g
i

dc
v

+

 
Figure 4.21 Reduced phase-arm circuit. 

Under balanced conditions, each arm has the same amount of energy stored. Therefore in order 

to further simplify the model for a balanced AC system, it is reasonable to assume.  

 
a b cCtot Ctot Ctotv v v   (4.42) 

Following this assumption, it follows that,  

 *

, , , ,

2 tot

j j

C

tot mdc mac

j a b c j a b c

dv
C i i

dt  

    (4.43) 

This assumption allows to replace the six capacitors of the arms by a capacitor six times bigger. 



Chapter 4 State-space modeling of HVDC systems 

 

66 

 

 * 2 2 2
a b ctot tot tot totC C C C    (4.44) 

Moreover, it allows saying that the current is equally distributed among the arms. Thus, the 

modulation signals become, 

 
a b cdc dc dc dcm m m m    (4.45) 

 

This model is suitable when the focus is on the AC and DC current dynamics and the total 

energy stored in each arm. Finally, this allows comes up with the model in Figure 4.22.  
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Figure 4.22 Equivalent dq0 MMC average model. 

The equations of the average model for the AC side are  

 

gdac ac ac

ed md gd eq gd eq gq

gqac ac ac

eq mq gq eq gq eq gd

di
L v v R i L i

dt

di
L v v R i L i

dt





   

   

 (4.46) 

For the DC side 
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where the equivalent resistance and inductance are,  
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The AC voltages and currents are  
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The DC side voltages and currents are 

 
mdc dc Ctot

mdc dc dc

v m v

i m i
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
 (4.50) 

Choosing the energy in the MMC as the state variable its derivative is  

  tot
mdc dc md gd mq gq

dW
v i v i v i

dt
     (4.51) 

which is non-linear 

As it can be seen, this simplified MMC model is very similar to the VSC model. One more 

modulation is added between the capacitor *

totC  and the DC bus. 

 

4.4.2 Control strategy 

The MMC control is much more complex than VSC control. It exists many possibilities to 

achieve this control. One solution is briefly presented here. More details can be find in (Samimi 

2015)  

As mentioned before, the MMC equivalent on the AC side is similar to the VSC station, The 

additional inductance and its proper capacitance in the DC side makes the MMC station 

different to control. As in the two-level VSC, a control strategy based on two cascaded loops 

(namely inner and outer loops) is applied. 

A. Inner controllers 

Figure 4.23 presents the inner controls for the MMC. The AC side presents a classical current 

controller. The DC side has a controller for the current dci   

 

Figure 4.23 Inner controllers. 
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The blocks marked as PI are classical proportional and integral controllers. Inner control 

loops are required to be the fastest.  

 

As the AC side in the MMC is similar to the VSC the control of the current is practically 

equal with the considerations required for this converter. In addition, in the MMC station a 

control of the differential currents in the arms is needed for the DC side.  

B. Outer controllers 

The outer loops correspond to the control of the voltage in the DC side and the total energy 

stored in the station (Hani Saad et al. 2015). Figure 4.25 presents the control blocks in the loops 

The AC side controls the AC current in the inner control and the power of the AC side or the 

voltage in the DC side. The DC side controls the DC current and the total energy stored in the 

MMC. The control of the energy is based in the conservation of the energy exchanged in the 

converter.  

The power controllers   control and  controlac acP Q  are the outer controllers of the AC side. 

Similarly, to the inner controllers, they use a structure of PI controllers.  

If the energy reference  of the controller is a constant value, as considered in (Hani Saad et 

al. 2015), then the equivalent capacitor *

totC  is completely decoupled from the DC grid. 

However, if the energy reference is associated with the square of the DC voltage 2

dcv , the 

equivalent capacitor may consider as if it were connected to the DC bus  

To sum up, there are two alternatives for the control of the energy: 

 Including the energy on in the cable capacitance in the DC grid. 

 Excluding the energy on in the cable capacitance in the DC grid. 

 

If the stored energy of the MMC is shared with the DC bus. The MMC behaves as if the *

totC  

were connected to the DC bus. 

 Voltage control  

If the converter is regulating the DC voltage, the d-axis current reference is generated by a 

DC voltage control loop equipped with a controller to ensure there is no static error on the slack-

bus. In this case, an IP controller is used to limit the overshoot when changing the DC bus 

voltage reference. 
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Figure 4.24 dcv  voltage controller. 
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 Energy control 

The control of the total energy totW  is based on the regulation of the exchanged energy 

between AC and DC sides (Hani Saad et al. 2015). For this control, a classic PI control is used.  

 

Figure 4.25 presents the complete nonlinear system with its control (Akkari 2016).  

 

 

Figure 4.25 Block diagram of the complete non-linear system. 

 

4.4.3 Linearization 

As for the VSC, a linearized model proposed for the MMC.  

The linearization of the energy equation (4.51) is,  
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Figure 4.26 presents the block diagram of the linear MMC station. 

 

Figure 4.26 Linearized physical system. 

 

4.4.4 One station MMC in a MTDC network  

Consider the model given in Figure 4.27,  
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Figure 4.27 MMC station connected to a MTDC network. 

This model is composed by a MMC station connected through a cable to a multi-terminal 

direct current network. 

A. Power Control 

 Figure 4.28 presents the block diagram of the MMC station controlling the power. 
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Figure 4.28 Block diagram of a power controlled MMC.  

This model has the following state variables  
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Table 4.4 State variables of the MMC power controlled in a MTDC 

State variable  description 

gdi   Current of the d-axis in the AC side 

gqi  Current of the q-axis in the AC side 

dci  Current of the DC side 

totW  Total energy in the station 

, gdInt i   State of the controller of the AC current (d-axis) 

, gqInt i  State of the controller of the AC current (q-axis) 

, dcInt i  State of the controller of current in the DC side  

, totInt W  State of the controller of energy 

 

 

 

B. Voltage control 

For the control of the voltage in the DC  
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Figure 4.29 Block diagram of a voltage controlled MMC 
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Table 4.5 State variables of the MMC voltage controlled in a MTDC 

State variable  description 

gdi   Current of the d-axis in the AC side 

gqi  Current of the q-axis in the AC side 

dci  Current of the DC side 

totW  Total energy in the station 

, gdInt i   State of the controller of the AC current (d-axis) 

, gqInt i  State of the controller of the AC current (q-axis) 

, dcInt i  State of the controller of current in the DC side  

, dcInt v  State of the controller of voltage in the DC side 

, totInt W  State of the controller of energy 

 

4.4.5 Two stations MMC in a HVDC 

Consider the diagram of the system in Figure 4.30, it presents an HVDC link using the  

2gv

1gi fL
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1dcv
xC xC

abL1MMC

2dcv

2MMC

fR fL
2gi

2gv
  

Figure 4.30 HVDC link with MMC stations. 

 

This model has one station (MMC1) controlling the transferred power totP   and the other 

(MMC2) controlling the voltage 2dcv , the same structures of as in Figure 4.28 and Figure 4.29 

respectively.  

In total having 20 state variables,  

 

Table 4.6 State variables of the MMC1  

State variable  description 

gdi   Current of the d-axis in the AC side 

gqi  Current of the q-axis in the AC side 

dci  Current of the DC side 

totW  Total energy in the station 

, gdInt i   State of the controller of the AC current (d-axis) 



 4.5 Conclusions 

 

73 

 

, gqInt i  State of the controller of the AC current (q-axis) 

, dcInt i  State of the controller of current in the DC side  

, totInt W  State of the controller of energy 

 

Table 4.7 State variables of the MMC2 

State variable  description 

gdi   Current of the d-axis in the AC side 

gqi  Current of the q-axis in the AC side 

dci  Current of the DC side 

totW  Total energy in the station 

, gdInt i   State of the controller of the AC current (d-axis) 

, gqInt i  State of the controller of the AC current (q-axis) 

, dcInt i  State of the controller of current in the DC side  

2, dcInt v  State of the controller of voltage in the DC side 

, totInt W  State of the controller of energy 

 

Table 4.8 State variables of the cable 

1dcv  Voltage in the output of the MMC 

2dcv  Voltage in the side of the MTDC 

Labi  Current in the inductance of the cable 

 

 

4.5 Conclusions 

The knowledge of the systems before the parametric analysis is important to understand the 

relationships between the parameters and the eigenvalues.  

The VSC is one of the most studied converters, therefore its importance for using a new tool 

of analysis.  

The model describing the MMC is a new model developed by the team of the L2EP, in a 

collaborative work leaded by Julian Freytes and others. The description of the Models and 

validations is made in a form that allows having automatically the linearized time invariant 

equations.  

An automatic analysis tool was implemented for these models in the MATLAB ® 

environment. Appendix A describes the routine of parametric sensitivity analysis for the models 

described in this chapter. This computational tool adjusts to any LTI system automatically, 

having the appropriated inputs, it gives the PSM and the analysis tables.  
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Next chapter presents the results of the analysis performed in the systems detailed in the 

present chapter. 
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Chapter 5 Modal analysis on HVDC systems 
 

 

5.1 Objectives of the analysis 

 

Chapter 4 has presented the basic topologies used in HVDC application. In this chapter, the 

methodology of sensitivity parametric matrix is applied and compared with the participation 

factor. Different examples are chosen to illustrate this methodology. The simple system 

presented in section 4.3.3 is first analyzed. Due to the simplicity of the model, it cannot be 

considered as very realistic but since it is simple, it is possible to compare the obtain results 

with analytical results to confirm the accuracy of the method.  

The second example is an elementary Multi Terminal DC grid connected to AC system with 

Voltage Source Converter. This example shows clearly the limit of the participation factor 

method.  

The third example is focused on MMC: the converter by itself first and then in a HVDC link. 

 

 

5.2 Simplified equivalent DC link 

In a first step, a simplified HVDC link is analyzed. Figure 5.1 recalls the structure of this 

system. 
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Figure 5.1 Topology of the simplified HVDC 

 

 

 

For this model the following parameters are considered  
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Table 5.1 Parameters of the HVDC network 

Element Value Element Value 

1Cs  195.31 F   abL  2.2439 H 

2Cs  195.31 F  Ca  37.044 F  

1,2droopk  0.2 Cb  37.044 F  

bV  640 kV Cable length l  300 km 

bP  1 MW   

 

As it can be seen in equation (4.21), the coefficient of the matrix are not symmetric while we 

could expect a symmetry due to the topology of the studied system. Looking at equation (4.22)

the coefficients  1   and 2  depend on the operating points 
01dc pui  and 

02dc pui which have the 

same magnitude but with opposite sign. 

 

The AC per unit has been chosen, the numerical value of the state matrix is then deduced,  
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 (5.1) 

 

The eigenvalues are  

Table 5.2 Eigenvalues 

Eigenvalues (rad/s) Frequency (Hz) 
Damping 

coefficient 

1,2 25.51  55.47i    9.71 0.41  

3 54.06      1 

 

The first pair of eigenvalues 
1,2  can be associated to the coupling between the elements in 

the cable: equivalent capacitances 
1eqC , 

2eqC , and the inductance abL . Indeed, considering only 

the PI filter CLC the theoretical natural resonance frequency is 

 

1 2

1 1 1 1
9.85 

2
n

ab eq eq

f Hz
L C C

 
   

 
  (5.2) 

As it can be noticed, the theoretical frequency is very similar to the calculated one.  

 

The second pole
3 , can be calculated when neglecting the effect of the inductance (see 

section 4.3.3). The real eigenvalue on this first order model is,  
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the theoretical eigenvalue is  

 52.53rads
s

    (5.3) 

which is close to
3 54.06  rad

s
   .  

For change of reference of voltage in the station 2 *

2dcv  the dynamic response of the system 

is presented in Figure 5.2. 
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Figure 5.2 Dynamic response of the voltage in the link for a change of 0.1pu in the voltage 

reference.  

the participation factor matrix is, 
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 (5.4) 

the modulus of each element of P are, 
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To each state variable, it is possible to associate a parameter 

 

Table 5.3  Association between state variables and parameters 

1dcv  2dcv  
abLi  

1eqC  
2eqC  

abL  
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 (5.6) 

Normalizing by rows using the L2 norm,  
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 (5.7) 

 

At this stage, an important remark has to be done about the elements of both matrices. In P, 

the numerical values have no physical meaning whereas in nrSp , it is possible to draw some 

information from these values.  

 

From (5.6) and (5.7), small changes in the inductance abL  produce changes in the imaginary 

part of 1  and 2 . As graphical illustration, Figure 5.3 presents the eigenvalue trajectories 

subject to a modification of 10%  for abL  from its nominal value.  
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Figure 5.3 Eigenvalue trajectories changing abL . 

In Figure 5.3, the circle in the trajectories represent the eigenvalues for the nominal 

parameter values.  

Changing the value of the equivalent capacitance 
1eqC  in 10% the eigenvalue trajectories 

are presented in Figure 5.4,  

 

Figure 5.4 Eigenvalue trajectories changing the equivalent capacitance 
1eqC  . 

Considering the normalization by columns, 



Chapter 5 Modal analysis on HVDC systems 

 

80 

 

 

1,

2,

1,

1 2 3                                                                  

0.22 0.19 0.22 0.19 0.78

0.13 0.11 0.13 0.11 0.62

0.02 0.94 0.02 0.94 0.09

eq pu

eq pu nc

ab pu

C

C S

i i

i

iL

i

i

p

  

 

 

  

 
 


 
  

 (5.8) 

Equation (5.8) reveals that 
1,2   are sensitive to 

1,eq puC , 
2,eq puC and 

1,ab puL  which is normal 

since this poles are linked with the natural resonance frequency of the CLC filter. As also 

expected 3  mainly depends on 
1,eq puC  and 

2,eq puC . 

 

Consider variations in parameters 
1droopk  and 

2droopk in the state equations, the parametric 

sensitivity matrix becomes,  
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 (5.9)  

using the parameter values of Table 5.1 and the equation (3.3), the PSM normalized by 

columns is, 
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 (5.10) 

 

A change of 0.02 in 
1droopk and 

2droopk  produces the trajectories in Figure 5.5. It can be seen 

that 3   is more sensitive to a variation on 
2droopk  than on a variation on 

1droopk . 

 
                   a) Variation on 

1droopk                                          b)Variation on 
2droopk  

Figure 5.5 Eigenvalue Trajectories with a change on 
1droopk and 

2droopk . 
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From the analysis presented in (5.10), the eigenvalue 3  is mostly controlled by the 
2droopk  

parameter. The integration of the control parameters to the ncSp  matrix is possible only when 

the control parameters and the physical parameters have the same units. In this case the 

parameters 
1droopk  and 

2droopk  are linked to the power units. 

 

Additionally, the integration of the control parameters in the analysis may hide some 

properties since the modes seems only sensitive to the control parameters.  In the following 

examples, both results will be presented: either the parameters of the control and the power part 

in the same matrix or two different matrixes. This remark highlights that the conclusion drawn 

from the analysis of this matrix highly depends on the choice of the parameters integrated in 

the matrix. 

 

 

5.3 Dynamic analysis of a three terminal MTDC 

After the study of a simplified HVDC link model, the three points HVDC system define in 

section 4.3.4 is analyzed. The main parameters of the control and the system are given, the 

dynamics of this system is studied with respect to the variation of the droop value. In (Rault et 

al. 2013), a clear connection between the droop value and the response time of a simplified 

VSC MTDC system has been demonstrated. 3 decreasing values are analyzed: 0.5, 0.2 and 0.1 

which means decreasing time response of the voltage control. 

 

Since participation factors link eigenvalues to state variable and sensitivity matrix 

eigenvalue to parameters, a strict comparison is not straightforward. Hence, only physical 

parameters relative to state variables have been placed in the sensitivity matrix. 

 

Table 5.4  Association between state variables and parameters 

1dcv  
1abLi  

1fLi  
2dcv  

2abLi  
2fLi  

3dcv  

1eqC  
1abL  1fL  

2eqC  
2abL  2fL  

3eqC  

 

A. High droop value  

The numerical values has already been presented in section 4.3.4. for a droop value set to 

0.5. 

 

The system has the nine eigenvalues presented in Table 5.5 

 

Table 5.5 Eigenvalues for 0.5droopk   

Eigenvalues Frequency (Hz) Damping ratio 

1,2 4.20 94.01i   
 

14.97 0.044 

3,4 11.03 48.1i   
 

7.85 0.223 

5 14.37     - 1 
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6,7 198.05 225.26i   
 

47.73 0.66 

8,9 199.31 225.16i   
 

47.85 0.662 

 

Figure 5.6 presents the time domain simulation for the system subject to a change of power 

in the third station of 0.1 pu. The signal shows a first order response combined with a slightly 

damped second order response. The frequency of the pseudo oscillation approximately 

corresponds to 
1,2  
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Figure 5.6 Voltage response. 

Before analyzing the participation factor and the sensitivity matrix, some intuitive 

considerations may be done:  

 5 corresponds to the first order pole found in (Rault et al. 2013) assuming a simple 

DC network only composed of capacitors the theoretical value is  14  rad
s

  .   

 
6,7 and 

8,9  are relative to the current loop. Since the chosen time response is 10 ms 

with a damping of 0.7, the theoretical natural frequency is: 47.7 Hz. 

 

Looking only to the physical elements chosen in (5.11) , the matrix ncSp   is:   
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(5.11) 

 

The participation factors are:  
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(5.12) 

 

In Spnc and P, the elements circled: 

  in green:  means that similar information may be drawn from both matrices. 

 in red:   means that different information may be drawn from both matrices. 

 

The terms with a modulus inferior to the modulus of 0.1 0.1i  are presented with  . 

 

In this case, the results obtain with P and Spnc are nearly similar:  

 

 5 : P and Spnc confirm that this mode is mainly depending on the capacitors. 

  and : P and Spnc confirm that these modes are mainly associated with the 

AC current loop 

  are related to Ceq3 (vdc3), and Lab2 ( 2Labi  ) 

  are related to Ceq1, (vdc1), Ceq2 (vdc2) and Lab1, (
1abLi ) 

 

There is only the natural coupling on the cable sections. In models where the coupling is not 

strong between parameters, the results of the parametric sensitivity and the participation factors 

can lead to similar results.  

 

At this stage, an important remark has to be done about the elements of both matrices. In P, 

the numerical values have no physical meaning whereas in Spnc, it is possible to draw some 

information from these values.  Indeed, each element represents the derivative of a pole with 

respect to a given parameter. Hence, a high modulus of an element compare with the other 

elements in the same column is relative to a high sensitivity of the pole to the parameter but the 

complex number gives also the direction of the evolution of the pole.   

 

Figure 5.7 and Figure 5.8 presents the evolution of the nine poles with respect to Ceq1 and 

Lab1. The evolution of the 4 is relative to elements in Spnc matrix: 0.18 0.23i  for Ceq1, 

0.04 – 0.85i  for Lab1.  
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Figure 5.7 Eigenvalue evolution for changing 
1eqC  0.5  pu . 

 

Figure 5.8 Eigenvalue evolution for changing 1abL 0.5  pu . 

B.  Medium droop value 

 

In this section, the droop value is set to 0.2 on both VSC stations; the eigenvalues are given 

in Table V.3. 

Table 5.6 Eigenvalues for 0.2droopk   

Eigenvalues Frequency (Hz) Damping ratio 

1,2 10.53 89.7i     14.37 0.044 

3,4 25.34 41.12i     7.68 0.524 

5 38.36    - 1 

6,7 180.63 244.67i    48.40 0.593 

8,9 184.10 243.78i    47.61 0.602 

 



 5.3 Dynamic analysis of a three terminal MTDC 

 

85 

 

Figure 5.9 presents the time domain simulation for the system subject to the same events as 

previously.   

1.6 1.8 2 2.2 2.4 2.6 2.8

time {s}

0.985

0.99

0.995

1

1.005

1.01

Voltage {pu}
Vdc1
Vdc2

 

Figure 5.9 Voltage response of the VSC stations 

6,7 and 
8,9 are nearly the same as previously which is normal since there are relative to the 

current loop.  

5 has increased which is consistent with the analysis proposed in (Rault et al. 2013), 

however a very important difference is noticed between ncSp and P. ncSp  shows clearly that this 

pole not only depends on the capacitors but also on Lab1, Lab2, Lf2. This phenomena is not noticed 

in P. Moreover, the origin of 
1,2  is different in ncSp  and P.  

For 
3,4 , the information given by P and ncSp  can be considered as nearly similar.  
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C. Small droop value  

In this section, the droop value is set to 0.1 on both VSC, it leads to new values for the 

eigenvalues presented in Table 5.7. 

Table 5.7 Eigenvalues for 0.1droopk    

Eigenvalues Frequency (Hz) Damping ratio 

1,2 11.92 80.23i     12.9 0.147 

3,4 44.60 8.07i     7.36 0.984 

5 81.58    0 - 

6,7 157.60 282.89i     51.53 0.486 

8,9 162.92 278.91i     5148 0.506 

The voltage response produced for this case is presented in Figure 5.10 
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Figure 5.10 Voltage response. 

 

The matrix ncSp  is 
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  (5.15) 
 

 

For this example the participation factors are,  
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   (5.16) 
 

 

From a general point of view, many differences are noticed between ncSp and P and it is 

nearly impossible to compare both matrices.
6,7 and 

8,9  are still next to their theoretical value 

with a slight variation.  Information given by P start to be wrong because an influence of vdc1, 

vdc2 is noticed where as ncSp   does not give this information.  

The change of droop parameter involves clearly a coupling between the AC and the DC 

elements (mainly for 5  and for
1,2 ). ncSp shows this coupling while P  points out no strong 

couplings. 

 

One can conclude that when strong couplings are emerging between the different parts of 

the studied system, participation factors are not valid any more.   
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5.4 Dynamic analysis of HVDC system with MMC 

As already mentioned, most of the HVDC links are now connected to AC system with MMC. 

For the high level control, one of the main differences between MMC and VSC is about the 

energy control. In the VSC, the capacitor is directly connected to the DC grid whereas, in the 

MMC, there is no direct connection. It is the reason why an energy loop has to be implemented 

in the MMC control as shown in Figure 4.25. 

 

In this figure, the energy  totW  is controlled thanks to the DC power with the modulation of 

dci  reference  *

dci . It is also possible to implement the control of energy with the AC current 

 *

gdi . Both controls are compared in the sequel in term of dynamics The section analyzes the 

dynamic behavior of a MMC in different study cases:  

 One single MMC connected to a constant DC bus : energy controlled by DC power 

(section 5.4.1), AC power (section 5.4.2) 

 One single MMC connected to a variable DC bus : constant energy reference (section 

5.4.3), variable energy reference (section 5.4.4) 

 An HVDC link with MMC 

 

 

5.4.1 One MMC connected to a fixed voltage source: energy controlled by DC power 

 

Let us suppose that the MMC station is connection to a constant DC voltage source.  The 

MMC control has two aims:  

 Controlling the MMC internal energy. In this section, the energy is controlled 

with the help of DC power. 

 Controlling the power flowing through the converter thanks to the AC power. 

gv

g
i fL

fR

macv

dci

1dcv

MMC





 
Figure 5.11 MMC connected to a fixed voltage source. 

 

Table 5.8 Parameter values of one MMC station connected to a MTDC grid 

Element Value Element Value 

bP
  

1 GW N  400 

bU
 320  kV fR  0.512     

bf  50  Hz fL  58.7  mH 
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dcbV
 

640 kV totC
 

32.55  F   

armL
  48.9  mH armR

  1.024  Ohm 

 

The control settings are shown in Table 5.9. 

Table 5.9 Control settings 

Controller 
Reference control 

parameters 

Reference eigenvalues 

(rad/s) 

AC current control for 
gdi  and 

gqi  
 4 

 . 0.7

Time response ms

Damping coef



  
525 535.6i   

DC current control 
 4

 . 0.7

Time response ms

Damping coef



  
525 535.6i   

totW control 
 50

 . 0.7

Time response ms

Damping coef



  
42.42 42.43i   

 

The system equations lead to the eigenvalues in Table 5.10.  

 

Table 5.10 Eigenvalues with energy controlled by DC power. 

Eigenvalues Frequency (Hz) Damping ratio 

1,2 42.1 42.78i   
 

9.55  0.701  

3,4 489.8 565.7 94i   
 

119.12   0.65   

5,6 531.16 534.84i   
 

119.36   0.704   

7,8 531.16 529.5i   
 

119.36   0.708  

 

Looking at the control settings in Table 5.9, the eigenvalues can be easily understood.  

 
1,2  is related to the control of the energy. 

 
3,4 is related to the DC current loop. 

 
5,6  and 

7,8  are related to the AC current loop as they are very similar and in the 

control scheme are identical. 

For the analysis of this model is important to clarify that the model uses the state variables 

that are expressed in per-unit using the representation introduced in section 2.3.2. 

 

The PF matrix is  
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  (5.17) 
 

 To compare the PSM and the PF matrix the PSM is composed by the parameters most 

related to the state variables, energy storage parameters (
totCH , 

eqdcLH , 
eqacLH ) and the parameters 

of the integrator in the controllers (
dciT , 

gdqiT , 
totWT ) which are in the same unit. The control for 

the dq AC grid is considered to be equal for the q and d axis so the control parameters are 

represented as with the same variable  gdqiT   to simplify the analysis and computation of the 

PSM.  
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  (5.18) 
 

The circled element is the only different element, compared to the PF matrix there are only 

two elements in the matrix with a different interpretation 

 

Comparing P matrix and Spnc matrix leads to some interesting conclusions in this example. 

 Both matrices lead to similar overall conclusions. 

 Spnc gives more accurate conclusion on 
1,2   mode. Indeed, since the energy is 

controlled by DC current, it is normal that this mode is depending on the 
eqdcLH . 

 Spnc can lead to misleading conclusion since 
3,4 , the modes which are relative to 

the DC loop, do not seem to depend on the 
dciT . 
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As presented in the example in section 5.2, the analysis of physical parameters and control 

parameters can hide valuable information, the analysis separating physical elements and control 

elements is performed, in this way. 

 

The analysis for the energy storage elements is,  
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The coupling in the first pair of eigenvalues is the result of controlling the energy using the 

dc energy, this coupling is not taken in to account in the PF matrix. 

 

The control parameters the parametric analysis is  
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The analysis of the integral time confirms that each controller has an influenced on the 

particular eigenvalues relative to the loop where the integral parameter is involved in.  
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5.4.2 One MMC connected to a fixed voltage source: DC power mode and energy 

controlled by AC power 

 

This case is very similar to the previous one except that the energy is controlled by the AC 

power. The power flowing through the converter is then controlled by DC power.  

 

Since all the parameters for the MMC and the control are the same, the eigenvalues or the 

system are very similar to the previous ones as shown in Table 5.11.  

 

Table 5.11 Eigenvalues for the DC link 

Eigenvalues Frequency (Hz) Damping ratio 

1,2 41.53 41.25i   
 9.31 0.709  

3,4 525.0 571.1 93i   
 123.56  0.67  

5,6 531.16 534.84i   
 119.96  0.704  

7,8 535.47 525.14i   
 119.36  0.714  

 

As previously, the origin of the eigenvalues is rather easy to find:  

 
1,2  is related to the control of the energy. 

 
3,4  is related to the DC current loop. 

 
5,6  and 

7,8  are related to the AC current loop as they are very similar and in the 

control scheme are identical. 

 

Relatively similar to the previous example this initial guess is made in knowledge of the 

reference eigenvalues and “intuition”.  

 

The PF matrix is  
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  (5.21) 
 

The PSM is  
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  (5.22) 
 

 

As in the previous example 
ncSp  is more accurate than participation factor since it highlights 

the dependence of 
1,2   the mode which corresponds to the energy with the AC parameter which 

is normal due the choice on the control. It is also possible to separate the physical and control 

parameters but in this case, the information is similar.  
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This analysis can be used for the proportional constants parameters in the controllers. 
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This analysis can also be used for the proportional constants parameters in the controllers. 

The same information are drawn as for the integral parameter.  
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5.4.3 One MMC connected to a variable DC bus – energy reference constant 

 

The variable DC bus is modelled by a capacitor associated to a current source (see Figure 

5.12). This current source is modelling the current which could be delivered by another MMC 

connected on the same DC bus as in an HVDC link as it will be presented in section 5.4.4. 
dcC  

is a simplified model of the cable which links both stations.  

 

  Since the voltage is not fixed, it has to be regulated. The MMC control has to aims:  

 controlling the MMC internal energy. In this section, the energy is controlled 

with the help of AC power. 

 controlling the DC voltage thanks to the DC power.  

 

 

g
v

gi fL
fR

macv

dci

1dcv

MMC

dc
C

 

Figure 5.12 MMC connected to a variable voltage source. 

 

With the same parameters values and the following control parameters.  

 

Table 5.12 Control settings 

Controller  Reference control 

parameters 

Reference eigenvalues 

(rad/s) 

AC current control for 
gdi  

and
gqi    

 4 

 . 0.7

Time response ms

Damping coef



  
525 535.6i   

DC current control 
 4

 . 0.7

Time response ms

Damping coef



  
525 535.6i   

totW control 
 50

 . 0.7

Time response ms

Damping coef



  
42.42 42.43i   

1dcv  control 
 70

 . 0.7

Time response ms

Dammping coef




 30 30.6i   

 

 

Using the parameter values in Table 5.8 and the control settings in Table 5.12, the system 

equations leads to the eigenvalues in Table 5.13.  
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Table 5.13 Eigenvalues for the DC link 

Eigenvalues Frequency (Hz) Damping ratio 

1,2 41.53 45.25i     9.31 0.709  

3,4 60.2 60 55 . 2i     13.59   0.705   

5,6 475.45 583.82i     119.8   0.63   

7,8 525.01 571.93i     123.56   0.67  

9,10 531.16 529.5i     119.36   0.708  

 

 the eigenvalues can be related to:  

 
1,2  is the control of the energy in the station. 

 
5,6 , 

7,8  and 
9,10  are related to the AC and DC current loops. 

 3,4 : considering the numerical values, it is not so obvious to find the relationship 

between the eigenvalues and the parameters of the model. 

 

The PF matrix is  
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 (5.26) 
 

The PSM is  
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 (5.27) 
 

 

The conclusions which can be drawn from this comparison are similar to the previous 

examples. 
ncSp  analysis give more accurate information on the system since it highlights clearly 

the relation between the modes linked with the internal energy and the energy stored in the DC 

bus with their respective storage element, which is normal, but also with the internal loops. 

 1,2 : the mode associated with the internal energy depends on 
totCH  and 

LeqacH  since the 

energy is controlled by AC power.  

 3,4 : the mode associated with the DC bus energy depends on 
dcCH  and 

LeqdcH  since the 

voltage is controlled by DC power.  

 

Separating physical elements and Control elements  
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  (5.28) 
 

The analysis shows that the internal energy storage in the MMC in the total capacitance 
totCH

is important for the control of the energy and the control of the voltage is performed trough the 

equivalent DC inductance
eqdcLH . 

 

The control parameters for the integral time,  
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  (5.29) 
 

 

 

5.4.4 Two terminal MMC DC link (MMC1 Power mode W controlled by dc Power, 

MMC2 voltage mode W controlled by Ac Power)  

Considering the model given in section 4.4.5, two MMC stations compose the system. One 

of the stations controls its energy and power (MMC1) and the link and the other (MMC2) 

controls the voltage of the link. Both stations have a control loop of the internal energy as 

already explained in Chapter 4 The system has 20 state variables for this complex problem the 

use of the parametric sensitivity is proposed. 

The free-motion equations have no particular form, in other words, is not possible to know 

much from them if it does have a diagonal dominance or if there are couplings between the state 

equations.  

Considering the structure in Figure 4.30 

1gv

1gi 1fL
1fR 1dci

1dcv
xC xC

abL1MMC

2dcv

2MMC

2fR 2fL
2gi

2gv

2dci

 
HVDC link with MMC stations 

Using the parameters in Table 5.14. 

Table 5.14 Parameters of the MMC stations 

Element Value Element Value 

bP   1 GW N  400 

bU  320  kV fR  0.521  Ohms 

bf  50  Hz fL  58.7  mH   

dcbV  640 kV Cable length l  300 km   

armL   48  mH  totC   32.55  F   

armR   1.024  Ohm   abL   3.739  /mH km   

1,2xC   0.2469  F   
abR   5.346  /m km   

 

The control scheme has the following settings 
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Table 5.15 Control settings MMC1 

Controller  Setting  Prospect eigenvalue 

(rad/s) 

AC current control  
 4 

 . 0.7

Time response ms

Dammping coef




  525 535.6i   

DC current control 
 4 

 . 0.7

Time response ms

Dammping coef




 525 535.6i   

totW  control 
 40 

 . 0.7

Time response ms

Dammping coef




 53.02 53.04i   

 

Table 5.16 Control settings MMC1 

Controller  Setting  Prospect eigenvalue 

(rad/s) 

AC current 

control  

 4 

 . 0.7

Time response ms

Dammping coef




  525 535.6i   

DC current 

control 

 4 

 . 0.7

Time response ms

Dammping coef




 525 535.6i   

totW  control 
 40 

 . 0.7

Time response ms

Dammping coef




 53.02 53.04i   

2dcv  control 
 70 

 . 0.7

Time response ms

Dammping coef




 30 30.6i   

 

Because of its complexity, the complete set of equations is not presented.  

 
Figure 5.13 Voltage response for a change of voltage reference 

 

Figure 5.13 presents the voltage response for a change of the voltage reference from the 

MTDC equivalent, increasing 0.1pu of the power in 2t s  and decreasing 0.1pu in 3t s . 
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The system equations lead to the eigenvalues in Table 5.17.  

Table 5.17 Eigenvalues for  the DC link  

Eigenvalues (rad/s) Frequency (Hz) Damping ratio 

1,2 22.11 32.49i      6.25  0.56  

3 43.49       1  

4,5 52.95 52.74i     11.89   0.708   

6,7 88.1 152.8 69i     28.55   0.5   

8,9 251.4 16105 .17i     259.3  0.15  

10,11 404.75 671.98i     124.85   0.51   

12,13 426.16 426.64i     95.97   0.706   

14,15 426.16 422.36i     95.49   0.71   

16 468.53       1  

17,18 527.32 550.86i     121.36   0.69   

19,20 531.16 529.50i     119.3   0.7  

 

From Table 5.17 it is possible to anticipate the link between some eigenvalues with a 

damping ratio near to 0.7 and the controllers of the MMC stations. However, it is not 

straightforward to have an intuition on all the present 20 eigenvalues. 

From the system matrix in per-unit and the eigenvalues the PF matrix is presented in 

equation (5.30). The sub index 1 and 2 indicate the station MMC1 or MMC2 respectively. 

According to the PF the eigenvalues have the following contributions 

 

 

 

 

 

 

 

 





 Modal analysis on HVDC systems 

 

101 

 

 

1,2 3 4,5 6,7 8,9 10,11 12,13 14,15 16 17,18                                                                                                                                                                     19,20

1

1

1

1

2

2

2

2

1

1

1

2

2

2

2

               

0.13 0.07

0.25 0.01

0.99 0.01 0.99 0.01

0.09 0.

 

x

tot

eqac

eqdc

x

tot

eqac

eqdc

g

dc

tot

g

dc

dc

tot

C

C

L

L

C

C

L

L

Lab

i

i

W

i

i

v

W

H i

H i

H i i

H

H

H

H

H

H

Ti

Ti

Ti

Ti

Ti

Ti

T

Spnc

i



         

         

        

  









 89 0.43 0.81 0.99 0.17

0.67 0.29

0.03 0.42 0.97 0.01 0.99 0.01

0.62 0.79 1 0.11 0.09

0.05 0.35

0 0.17 0 0.17

0.02 0.38

i i i

i

i i i

i i

i

i i

i

     

          

         

       

       

         

        

          

      

 



  

  



 



0.01 0.21 0.01 0.21

0.09 0.26 0.31

0.28 0.31 0.93

i i

i

i

  

        

          

        

        

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


 




 







 




 

(5.30) 

 

 



Chapter 5 Modal analysis on HVDC systems 

 

102 

 

1,2 3 4,5 6,7 8,9 10,11 12,13 14,15 16 17,18 19,20

1

1

1

1

1

2

2

2

2

2

                                                        

 

                                      

tot

tot

gd

dc

C

gd

gq

dc

dc

C

gd

gq

dc

Lab

i

v

v

i

i

i

v

v

i

i

i

i

Int

          

0.43 0.26 0.07 0.16

0.48 0.5

0.5 0.5

0.5 0.5

0.45 0.52

0.44 0.09

0.49 0.31

1

1

1

1

2

2

2

2

2

gq

dc

tot

gd

gq

dc

dc

tot

i i

i

i

i

i

i

i

i

i

W

i

i

i

v

n

W

c

Int

Int

Int

Int

Int

Int

Int

Int

Sp

        

         

         

         

         

         

 

 















0.48 0.51

0.50 0.50

0.45 0.25

0.52 0.21

0.5 0.5

0.5 0.5

0.46 0.28

0.52 0.48

0.51 0.48

0.50 0

i

i

i

i

i

i

i

i

i

       

         

         

         

         

         

         

         

         

         

         



















 .50

0.10 0.13 0.81

0.24 0.32 0.53

0.22 0.03 0.59

i

i

i

i

        

        

        







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(5.31) 

According to the PF the eigenvalues have the following contributions 

From the matrix Spnc  the following can be stated.  
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Table 5.18 Most important parameters for the eigenvalues Table 5.19 State variables with most contribution to the 

eigenvalues 

 

 Eigenvalues Parameters 

Voltage and Energy in MMC2 
1,2 22.11 32.49i      

2totCH , 2eqacLH ,
2dcvTi 2totWTi  

3 43.49    
2dcvTi , 

2totWTi  

Energy in MMC1 4,5 52.95 52.74i     
1totCH , 1eqdcLH , 

1totWTi  

DC physical couplings MMC1 6,7 88.1 152.8 69i     
1xCH , 1eqdcLH , LabH ,  

Equivalent inductance MMC2 8,9 251.4 16105 .17i     
2eqdcLH  

DC current control MMC1 10,11 404.75 671.98i     
1eqdcLH  

AC current control MMC1 

(dq frame) 

12,13 426.16 426.64i     
1eqacLH 1giTi  

14,15 426.16 422.36i     
1eqacLH 1giTi  

DC current control MMC2 16 468.53    2eqdcLH  

AC current control MMC2 

(dq frame) 

17,18 527.32 550.86i     
2eqacLH , 2gdiInt  

19,20 531.16 529.50i     2eqacLH 2gqiInt  

 

Eigenvalues states 

1,2 22.11 32.49i     
2totCv , 

2dcvInt , 
2totWInt  

3 43.49    2dcvInt , 
2totWInt  

4,5 52.95 52.74i     
1totCv , 

1totWInt  

6,7 88.1 152.8 69i     
1dcv , Labi  

8,9 251.4 16105 .17i     
2dcv , 2dci , 

2dciInt  

10,11 404.75 671.98i     
1dcv , 1dci , 

1dciInt  

12,13 426.16 426.64i     
1gdi , 1gdiInt  

14,15 426.16 422.36i     
1gqi , 1gqiInt  

16 468.53    2dciInt  

17,18 527.32 550.86i     
2gdi , 2gdiInt  

19,20 531.16 529.50i     2gqi , 
2gqiInt  





5.4 Dynamic analysis of HVDC system with MMC 

 

 

 

Comparing both tables leads to the following conclusions: 

 Same results for the 8 eigenvalues related to AC current loops (
12,13 , 

14,15 , 
17,18 , 

19,20 ).  

 Similar results on energy control (
1,2 , 

4,5 ) where the ncSp  is a little bit more 

accurate. 

 Similar results for the 4 poles relative to DC current loops. Participation factors give 

wrong information because it suggests and influence of 1dcv  , 2dcv  on these poles. 

This information is not found in ncSp matrix.  

 
6,7  is the only eigenvalue where a coupling is noticed between a converter and the 

inductance LabH . Some rather similar information are drawn from participation factor 

except for 
1LeqdcH . 

 Similar results is notice also on the eigenvalue 3  but it is difficult to understand the 

physical meanings of this eigenvalue. 

 Different results are noticed on 16 but it is also difficult to understand the physical 

meanings on this pole. 

 

The parametric sensitivity helps in this case to understand how the eigenvalues are related 

to the explicit parameters in the matrix of the linear system. Nevertheless, the physical 

relationships of the parameters may help also to understand how non-explicit parameters relate 

to the eigenvalues  

Let’s take the example of the length of the cable. The parameter has an influence on Lab. As 

seen previously only the eigenvalue 
6,7  is relative but 1LabH  so, it is possible to anticipate that 

only this pole will be sensitive to the length. Figure 5.16 (circled eigenvalues) confirms this 

affirmation  
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Figure 5.14 Eiegnvalues changing the cable length from 300Km to 100Km. 

The analysis of a system with many eigenvalues is a complex task but as the automatic tool 

in MATLAB® performs all the partial derivatives, the result of the analysis is obtained in few 

seconds.  

 

 

5.5 Conclusions 

The analysis of the different models of the VSC and MMC station shows the efficacy of the 

parametric sensitivity analysis. However for reasonable dynamics a large part of the 

information given by the participation factor are correct. The comparison with the participation 

factors shows clearly the limitation of the participation factors when the systems are strongly 

coupled in case of high dynamics for the system 

 

From the technical point of view, the parametric sensitivity analysis shows the nature of the 

different eigenvalues taking into account for any kind of parameters in the model. New insight 

on the couplings and interactions between elements (or subsystems) can be envisaged with this 

technique. 

 

 



 

 

 

Chapter 6 General Conclusions and Perspectives 
 

In this thesis, it has been presented a review of the participation factor matrix as an analysis 

tool showing some limitations. Nonetheless, its application is valid depending on the properties 

of the model.  

 

From the easy interpretation of the PF and the accurate information of the parametric 

sensitivity analysis, a methodology has been proposed using the parametric sensitivity for 

modal analysis in LTI models. A new form of modal analysis is presented in Chapter 3, 

including the formulation of the Parametric Sensitivity Matrix (PSM).  

 

The PSM has the advantage of having normalized elements, where the information is 

organized, clear and useful. It has been shown that the per unit approach is mandatory to obtain 

consistent results. The interpretation of the elements in the PSM is not limited to real numbers 

but also to complex number for the sensitivities. Each element of the matrix describes the first 

order sensitivity of the eigenvalue. 

 

The PSM can give a measurement of the change of the eigenvalues for changes of the 

parameters, and it can be used for different purposes as, 

 

 Stability analysis 

 Tuning of control parameters 

 Analysis and selection of new parameters  

 Analysis of coupling in different subsystems and parameters 

 

The purpose of this thesis is to show that the PSM is a better alternative for the analysis of 

DC networks. 

 

The analysis of the different models of the VSC and reduced model of a MMC station shows 

the efficacy of the parametric sensitivity analysis. The comparison with the participation factors 

shows how the participation factors have a limitation when the systems are strongly coupled. 

 

An automatic analysis tool was implemented for the MMC models in the MATLAB ® 

environment. Appendix A describes the routine of parametric analysis for the models described 

in this chapter. This computational tool is suitable for any LTI system, having the appropriated 

inputs. The efficacy of the implementation allows having an analytical model and the analysis 

for a point of operation in less than one minute for a complex model of 20 state variables. 
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This thesis is part of the collaborative effort with Julian Freytes and Samy Akkari, where the 

perspectives is to applied the defined methodology to more complex MMC models and use it 

on MTDC networks. 

 

In the short term: 

 Use of the PSM in a larger MTDC network  

 Analysis of a MMC  in AC unbalanced operating point  

 Study of the evolution of the energy in the system subject to a variation on a given 

parameter to determine the most active eigenvalues 

 Possible reduction and validation of its dynamics using the activity analysis (Louca, 

Stein, and Hulbert 2010) and the PSM.  

 Use of the PSM for evaluate the couplings between subsystems developing a metric 

to measure the index of coupling.  

 

In the long term 

 Develop a general formulation for linear systems of the PSM. 

 Include a second order derivative on the sensitivity for the PSM. 

 

 

 

Scientific contribution 

From the work of this thesis two papers were published in international conference and one 

journal paper has been submitted in an international journal. 

 

Barrera Gallegos, Noe, Genevieve Dauphin-Tanguy, and Xavier Guillaud. 2016. “Modal 

Sensitivity of a Reduced Equivalent HVDC-VSC System.” In International Conference on 

Control, Decision and Information Technologies. 

 

Barrera-gallegos, Noé, Geneviève Dauphin-Tanguy, and Xavier Guillaud. 2014. “Bond 

Graph Model Analysis of an Offshore Wind Farm.” In 11th International Conference on Bond 

Graph Modeling and Simulation, 832–38. 

 

Barrera Gallegos, Noe, Julian Freytes, Genevieve Dauphin-Tanguy, and Xavier Guillaud. 

2016. “Comparison between Participation Factors and Parametric Sensitivity Methodology for 

dynamic analysis on a MTDC system” in review for the Special Issue on Advances in High-

Voltage Transmission Systems  
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Jacobi, Carl Gustav Jacob. 1856. “Über Ein Leichtes Verfahren Die in Der Theorie Der 

Säculärstörungen Vorkommenden Glenichungen Numerich Aufzulösen.” Crelle’s J., 51–

94. 

Kalcon, Giddani O., Grain P. Adam, Olimpo Anaya-Lara, Stephen Lo, and Kjetil Uhlen. 2012. 

“Small-Signal Stability Analysis of Multi-Terminal VSC-Based DC Transmission 

Systems.” IEEE Transactions on Power Systems 27 (4): 1818–30. 

doi:10.1109/TPWRS.2012.2190531. 

Krause, Paul C, Oleg Wasynczuk, and Scott D Sudhoff. 2002. “Analysis of Electric Machinery 

and Drive Systems.” Power Engineering. doi:10.1109/9780470544167. 

Kundur, Prabha. 2007. Power System Stability and Control. McGraw-Hill, Inc. 

Kundur, Prabha, Jonh Paserba, Venkat Ajjarapu, Göran Andersson, Anjan Bose, Claudio 

Canizares, Nikos Hatziargyriou, et al. 2004. “Definition and Classification of Power 

System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions.” IEEE 

Transactions on Power Systems 19 (3): 1387–1401. doi:10.1109/TPWRS.2004.825981. 

Li, Li, Yujin Hu, Xuelin Wang, and Ling Ling. 2013. “Eigensensitivity Analysis of Damped 

Systems with Distinct and Repeated Eigenvalues.” Finite Elements in Analysis and Design 

72: 21–34. doi:10.1016/j.finel.2013.04.006. 



 Bibliography 

 

111 

 

Liang, Jun, Oriol Gomis-Bellmunt, and Dirk Van Hertem. 2016. “HVDC Grids: For Offshore 

and Supergrid of the Future,” 528. 

Meyer, Calr D. 2000. Matrix Analysis and Applied Linear Algebra. SIAM. 

Meyer, D., and K. Veselić. 1980. “On Some New Inclusion Theorems for the Eigenvalues of 

Partitioned Matrices.” Numerische Mathematik 34 (4): 431–37. doi:10.1007/BF01403679. 

Mohan, Ned, Tore M Undeland, and William P Robbins. 2003. Power Electronics: Converters, 

Applications and Design. 3rd Editio. Wiley and Sons. 

Moler, Cleve, and Charles Van Loan. 2003. “Nineteen Dubious Ways to Compute the 

Exponential of a Matrix, Twenty-Five Years Later.” SIAM Review 45 (1): 3–49. 

doi:10.1137/S00361445024180. 

Mondal, Debasish, Abhijit Chakrabarti, and Aparajita Sengupta. 2014. Power System Small 

Signal Stability Analysis and Control. First Ed. Elsevier Inc. 

Morgan, B.S. 1966. “Computational Procedure for the Sensitivity of an Eigenvalue.” 

Electronics Letters 2 (6): 197. doi:10.1049/el:19660166. 

Okba, Mohamed H., Mohamed H. Saied, M. Z. Mostafa, and T. M. Abdel- Moneim. 2012. 

“High Voltage Direct Current Transmission - A Review, Part I.” In 2012 IEEE Energytech, 

1–7. IEEE. doi:10.1109/EnergyTech.2012.6304650. 

Pagola, F. Luis, Ignacio J. Perez-Arriaga, and George C. Verghese. 1989. “On Sensitivities, 

Residues and Participations: Applications to Oscillatory Stability Analysis and Control.” 

IEEE Transactions on Power Systems 4 (1): 278–85. doi:10.1109/59.32489. 

Pal, Bikash, and Balarko Chaudhuri. 2005. Robust Control in Power Systems. 

doi:10.1007/b136490. 

Paraskevopoulos, P., C. Tsonis, and S. Tzafestas. 1974. “Eigenvalue Sensitivity of Linear 

Time-Invariant Control Systems with Repeated Eigenvalues.” IEEE Transactions on 

Automatic Control 19 (5): 610–12. doi:10.1109/TAC.1974.1100638. 

Peralta, Jaime, Hani Saad, Sebastien Dennetiere, and Jean Mahseredjian. 2012. “Dynamic 

Performance of Average-Value Models for Multi-Terminal VSC-HVDC Systems.” IEEE 

Power and Energy Society General Meeting, 1–8. doi:10.1109/PESGM.2012.6345610. 

Peralta, Jaime, Hani Saad, Sébastien Dennetière, Jean Mahseredjian, and Samuel Nguefeu. 

2012. “Detailed and Averaged Models for a 401-Level MMC-HVDC System.” IEEE 

Transactions on Power Delivery 27 (3): 1501–8. doi:10.1109/TPWRD.2012.2188911. 

Perez-Arriaga, I.J. 1981. “Selective Modal Analysis With Applications to Electric Power 

Systems.” Massachusetts Institute of Technology. 

Perez-Arriaga, I.J., L Rouco, F.L. Pagola, and J.L. Sancha. 1988. “The Role of Participation 

Factors in Reduced Order Eigenanalysis of Large Power Systems.” 1988., IEEE 

International Symposium on Circuits and Systems. IEEE, 923–27. 

doi:10.1109/ISCAS.1988.15074. 

Perez-Arriaga, I.J., G.C. Verghese, and F.C. Schweppe. 1982. “Selective Modal Analysis with 

Applications to Electric Power Systems, PART I: Heuristic Introduction.” IEEE 

Transactions on Power Apparatus and Systems PAS-101 (9): 3117–25. 

doi:10.1109/TPAS.1982.317524. 

Perez-Arriaga, Ignacio J., George C. Verghese, F. Luis Pagola, Jos??Luis Sancha, and Fred C. 

Schweppe. 1990. “Developments in Selective Modal Analysis of Small-Signal Stability in 

Electric Power Systems.” Automatica 26 (2): 215–31. doi:10.1016/0005-1098(90)90117-

Z. 

Perveen, Rehana, Nand Kishor, and Soumya R. Mohanty. 2014. “Off-Shore Wind Farm 

Development: Present Status and Challenges.” Renewable and Sustainable Energy 

Reviews 29. Elsevier: 780–92. doi:10.1016/j.rser.2013.08.108. 

Porter, Brian, and Roger Crossley. 1972. Modal Control: Theory and Applications. Taylor and 

Francis Ltd. 



 Bibliography 

 

112 

 

Quarteroni, Alfio, Riccardo Sacco, and Fausto Saleri. 2007. Numerical Mathematics. Texts in 

Applied Mathematics. Vol. 37. Texts in Applied Mathematics. Springer New York. 

doi:10.1007/b98885. 

Rault, P., F. Colas, X. Guillaud, and S. Nguefeu. 2012. “Method for Small Signal Stability 

Analysis of VSC-MTDC Grids.” 2012 IEEE Power and Energy Society General Meeting 

3: 1–7. doi:10.1109/PESGM.2012.6345318. 

Rault, P., X. Guillaud, F. Colas, and S. Nguefeu. 2013. “Investigation on Interactions between 

AC and DC Grids.” 2013 IEEE Grenoble Conference PowerTech, POWERTECH 2013 3. 

doi:10.1109/PTC.2013.6652229. 

Saad, H, S Dennetiere, J Mahseredjian, P Delarue, X Guillaud, J Peralta, and S Nguefeu. 2014. 

“Modular Multilevel Converter Models for Electromagnetic Transients.” IEEE 

Transactions on Power Delivery 29 (3): 1481–89. doi:10.1109/TPWRD.2013.2285633. 

Saad, Hani, Xavier Guillaud, Jean Mahseredjian, Sebastien Dennetiere, and Samuel Nguefeu. 

2015. “MMC Capacitor Voltage Decoupling and Balancing Controls.” IEEE Transactions 

on Power Delivery 30 (2): 704–12. doi:10.1109/TPWRD.2014.2338861. 

Samimi, Shabab. 2015. “Modélisation et Commande Des Convertisseurs MMC En Vue de Leur 

Intégration Dans Le Réseau Électrique.” Ecole centrale de Lille. 

Shen, L., M. Barnes, J.V. Milanovic, and R. Preece. 2012. “Control of VSC HVDC System 

Integrated with AC Network.” 10th IET International Conference on AC and DC Power 

Transmission (ACDC 2012), 51–51. doi:10.1049/cp.2012.1954. 

Sheng, Li Sheng Li, E.H. Abed, M.a. Hassouneh, Huizhong Yang Huizhong Yang, and M.S. 

Saad. 2010. “Mode in Output Participation Factors for Linear Systems.” American Control 

Conference (ACC), 2010, 956–61. 

Smed, Thomas. 1993. “Feasible Eigenvalue Sensitivity for Large Power Systems.” IEEE 

Transactions on Power Systems 8 (2): 555–63. doi:10.1109/59.260827. 

Thams, Florian, Jon Are Suul, Salvatore D’Arco, Marta Molinas, and Friedrich Wilhelm Fuchs. 

2015. “Stability of DC Voltage Droop Controllers in VSC HVDC Systems.” In 2015 IEEE 

Eindhoven PowerTech, 1–7. IEEE. doi:10.1109/PTC.2015.7232614. 

Tschirhart, Paul, Alan Sussman, and Eyad H. Abed. 2014. “Using Participation Factors to 

Improve the Consistency and Accuracy of Prony Analysis for Voltage Stability 

Monitoring Applications.” 2014 IEEE PES Innovative Smart Grid Technologies 

Conference, ISGT 2014. doi:10.1109/ISGT.2014.6816391. 

Varga, Richard S. 2000. Matrix Iterative Analysis. New York. Vol. 27. Springer Series in 

Computational Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg. 

doi:10.1007/978-3-642-05156-2. 

Vasca, F., and G.C. Verghese. 1999. “Adimensional Models and Participation Factors for the 

Analysis ofInduction Motor Dynamics.” ISIE ’99. Proceedings of the IEEE International 

Symposium on Industrial Electronics (Cat. No.99TH8465) 2. 

doi:10.1109/ISIE.1999.798659. 

Verghese, G., I. Perez-arriaga, and F. Schweppe. 1982. “Selective Modal Analysis With 

Applications to Electric Power Systems, Part II: The Dynamic Stability Problem.” IEEE 

Transactions on Power Apparatus and Systems PAS-101 (9): 3126–34. 

doi:10.1109/TPAS.1982.317525. 

Wang, Kai, Xiaobo Hu, Wei Sun, Haishun Sun, and Ke Zhang. 2014. “DC Voltage Control and 

Power Dispatch Study of a Five-Terminal DC Grid Based on Average-Value VSC Model.” 

POWERCON 2014 - 2014 International Conference on Power System Technology: 

Towards Green, Efficient and Smart Power System, Proceedings, no. Powercon: 2285–92. 

doi:10.1109/POWERCON.2014.6993784. 

Wang, Xi-Fan, Yonghua Song, and Malcolm Irving. 2008. Modern Power Systems Analysis. 

Springer. 



 Bibliography 

 

113 

 

Wenyuan, Wang, A Beddard, M Barnes, and O Marjanovic. 2014. “Analysis of Active Power 

Control for VSC-HVDC.” Power Delivery, IEEE Transactions on 29 (4): 1978–88. 

doi:10.1109/TPWRD.2014.2322498. 

Wu, Jie, Zhi Xin Wang, Lie Xu, and Guo Qiang Wang. 2014. “Key Technologies of VSC-

HVDC and Its Application on Offshore Wind Farm in China.” Renewable and Sustainable 

Energy Reviews 36. Elsevier: 247–55. doi:10.1016/j.rser.2014.04.061. 

Yazdani, Amirnaser, and Reza Iravani. 2010. Voltage-Sourced Converters in Power Systems. 

Hoboken, NJ, USA: John Wiley & Sons, Inc. doi:10.1002/9780470551578. 

 



 

 

 

 Automatic routine for 

parametric sensitivity analysis  
 

For the analysis of the parametric sensitivity in different models an automatic routine was 

developed. The parametric sensitivity analysis described in Chapter 3 has the following inputs 

 the analytic equations of the linear (or linearized) model. 

 the list of parameters to analyze 

 the list of all the parameters 

 the list of the parameter values  

 

With these inputs, the automatic routine follows the next flow chart.  

Get variables
for analysis

Calculation of 
eigenvalues and 

eigenvectors

Calculation of 
the PSM

Calculation of
partial derivatives

Normalization 
Analysis of 
normalized 

matrices 

Presentation of
results 

 

Figure A.1 General flow chart for the parametric sensitivity analysis. 

For the stages in the flow chart different functions were developed, for the examples in 

section 5.4 the function to get the variables has,  

 

% 

************************************************************************* 
% [Par,vals,A_sys]=getvariab() 
% This function gives the necesary matrices for the parametric 

sensitivity 
% analysis.  
% Par is the matrix of parameters conaineds on the matrix of the system 
% Asys is the matrix of the system in symbolic form 
% vals is the matrix of the parameter values in the same order as Par 
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% v1 (11/01/2016) Noe Barrera G.  
% v2 (11/03/2016) Julian Freytes 
% v2.1 (14/03/2016) Noe Barrera G. added state names for PF analysis 
% v3  (23/08/16) Noe B New version adpted to have the elemetrs for 
% HVDC.link of Julian 
% v4 (21/08/2016) Julian F New version adopted for MMC DQ control 
% % % % % % % % % % % % % % % % %  
function [Par,vals,A_sys_sym,A_sys_num, state_names]=PS_getvariab() 
tic 
addpath([cd '/a01_GeneralFunctions/']); 
run('a00_RUNME_MMC_Pmode_Symb.m') 
run('a00_RUNME_MMC_Pmode_Num.m') 
Struct = MMC1; 
A_sys_sym= Struct.A_sys_sym; 
A_sys_num= Struct.A_sys; 
Par = symvar(A_sys_sym); 
vals = zeros(1,length(Par)); 

  
for i = 1:length(Par) 
    Index = SeekAndReturnIndex_Sym(char(Par(i)), Struct.Parameters); 
    vals(i) =  Struct.Parameters.num(Index); 
end     

  
vals= vals'; 

  
state_names=Struct.States.sym; 
rmpath([cd '/a01_GeneralFunctions/']); 
disp('Computing time for PS_getvariab:') 

 

 

 

The computation of the eigenvalues, eigenvectors and the sensitivity matrices have the 

following code, 

Asysnum = A_sys_num; 

  
% PFF = PS_PartFact(Asysnum); 
[Vi,lamd]=eig(Asysnum);               %%Rigth eigenvector and eigenvalues 
 Uti=inv(Vi);                         %%transponse of the left 

eigenvector 
 Ui=transpose(Uti);                   %%Left eigenvector  

 

 

The calculation of the partial derivatives is performed using the tool of differentiation in 

MATLAB®. 

 

Each row of the PSM is computed in a loop  

 

% 

************************************************************************* 
% [Spnl]=parSens(Asys,PP,all,values,S) 
% This function calculate the parametric sensitivity for a given 

parameter 
%  
% 'PP' is the parameter of the analysis [1x1] 
%  
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% 'Asys' is the system matrix in symbolic representation  
%  
% 'all' is the vector of all paramters in symbolic representation  
%  
% 'values' is the vector of paramter values in the same order as 'all' 
%  
% 'S' are the sensitivity matrices of the system 
%  
% 'Spnl' is the output vector with the parametric sensitivity respect to 

PP 
% for all eigenvalues  
%   v1 11/02/2016     Noe------noebg20@gmail.com 
%   v1.5 10/10/2016   Julian  added  
%************************************************************************ 

  

  
function [Spnl]=PS_parSens(Asys,PP,all,values,S) 
Spnl=zeros(1,length(Asys));             %%variable inicialization 

  
    PDi=expand(diff(Asys,PP));                  %%partial 

differientiation  
    a01_NoeValues 
    tic 
    PDi_num=(eval(PDi));       %%sustitution, 

  
tic 
 for k=1:length(Asys) 
   for j=1:length(Asys) 
       for i=1:length(Asys) 
           Spnl(k)=Spnl(k)+(S(j,i,k)*PDi_num(j,i));     %%definition of 

sensitivity acording to the chain rule 

            
       end 
   end 
end 
  toc   

 

 

 

For the normalization the function used is 

% 

************************************************************************* 
% function [Spnl]=normaliz(SP,RC) 
% This function calculate the normalization using L2-norm 
%  
% 'SP' is the parametric sensitivity matrix 
%  
% 'RC' is the mode of normalization  
% % % % % % 'rows' or 'columns' 
%  
% 'Spn1' is the matrix SP normalized  
%  
% v1.1 (11/01/2016) Noe Barrera G.  
% % % % % % % % % % % % % % % % %  
function [Spnl]=PS_normaliz(SP,RC) 

  
[a,b]=size(SP); 
Spnl=zeros(a,b); 
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if strcmp(RC,'rows') 
    for i=1:a 
        for k=1:b 
            Spnl(i,k)=SP(i,k)/norm(SP(i,:),2); 
        end  
    end 
else if strcmp(RC,'columns') 

         
    for i=1:b 
        for k=1:a 
            Spnl(k,i)=SP(k,i)/norm(SP(:,i),2); 
        end  
    end 
    else 
         error('---------------NORMALIZATION NOT SPECIFIED-----use help 

normaliz------------------------') 
    end 
end 

 

 

The analysis and the presentation of the results in the workspace performed by the following 

function. 

% 

************************************************************************* 
% [tot]=show_results(SP, lamd, param2) 
% This function show the results of the parametric sensitivity analysis 
%  
% SP is the matrix of parameters sensitivities normalized 
% lamd is the vector of eigenvalues 
% param2 is the vector of parameter analysis in symbolic 
% KoA is a character to select the kind of analysis by 'rows' or 

'columns' 
%  
% v2.2 (11/03/2016) Noe Barrera G.   noebg20@gmail.com 
% v2.3 (22/03/2016) Noe Barrera G. labels e--->n 
% % % % % % % % % % % % % % % % %  
function [tot]=PS_show_results(SP, lamd, param2,KoA) 
esp=' '; 
epsil='_____n_____';                                %%text for the values 

which are smaller than abs(0.1+0.1i) 
disp('') 
disp('      The order of the eigenvalues is     ') 
disp('') 
[a,b]=size(SP); 
tot=cell(a+1,b+1); 
for i=1:length(lamd) 
    disp([num2str(char(181)),'_',num2str(i),' = 

',num2str(lamd(i,i),'%6.2f' )]) 
    if i>=10 
        tx1='===='; 
        tx2='==='; 
    elseif i>=100 
        tx1='===='; 
        tx2='=='; 
    elseif i>=1000 
        tx1='===='; 
        tx2='='; 
    else 
        tx1='===='; 
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        tx2='===='; 
    end 

         
    tot(1,i+1)={strcat(tx1,num2str(char(181)),'_',num2str(i),tx2)}; 
end 
sl=zeros(length(param2),1); 
for i=1:length(param2) 
    v=char(param2(i)); 
    sl(i)=length(v); 
end 
maxi=max(sl); 
tem='/'; 
for i=1:(maxi+4) 

     
    tem=strcat(tem,'/'); 
end 

  
tot(1,1)={tem}; 
for i=1:length(param2) 
    v=char(param2(i)); 

     
     for k=1:(maxi+5)-sl(i) 
         v=strcat(v,'_'); 
     end 

     
    tot(i+1,1)={v}; 
end 
tot(i+1,1)={v}; 

  
for i=2:a+1 
    for j=2:b+1 
        if imag(SP(i-1,j-1))==0 
            SP(i-1,j-1)=complex(SP(i-1,j-1),1e-25); 
        end 
        if real(SP(i-1,j-1))>=0 
            if (abs(SP(i-1,j-1))<abs(0.1+0.1i)) 
               tot(i,j)={epsil}; 
            else 
                tot(i,j)={strcat('+',num2str(SP(i-1,j-1),'%6.2f' ))}; 
            end 

                    
        else 
            if (abs(SP(i-1,j-1))<abs(0.1+0.1i)) 
              tot(i,j)={epsil}; 
            else 
                tot(i,j)={num2str(SP(i-1,j-1),'%6.2f' )}; 
            end 

             
        end 

        

     
    end 
end 

  
    if strcmp(KoA,'rows') 
        disp('-----------------------------------------------------------

---------') 
        disp('|     The parametric sensitivity matrix normalized by rows 

is,     |') 
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        disp('-----------------------------------------------------------

---------') 
    elseif strcmp(KoA,'columns') 
        disp('-----------------------------------------------------------

---------') 
        disp('|    The parametric sensitivity matrix normalized by 

columns is,   |') 
        disp('-----------------------------------------------------------

---------') 
    end 
for i=1:b 
    if i==1 
        temp=strcat(tot(:,1), {'    '},tot(:,2)); 
    else 
        temp=strcat(temp, {'    '},tot(:,i+1)); 
    end 
end 

   
    texttot=char(temp); 

  
disp(texttot); 

  
text0=strcat({','}, {' '}, {esp},{char(144)}); 
%--------------------------tables construction---------------------------

---------- 
temp1=cell(a+1,b+1); 
if strcmp(KoA,'rows') 
      disp('-------------------------------------------------------------

----------------------') 
    disp('by rows: The most influenced eigenvalues of the system by each 

parameter are:') 
    disp('---------------------------------------------------------------

--------------------') 

  
temp1(:,1)=tot(:,1); 
    for i=2:a+1 

         
        for j=2:b+1 
            if strcmp(char(tot(i,j)),'_____n_____') 
                temp1(i,j)={''}; 
            else 
                temp1(i,j)={strcat(char(181),'_',num2str(j-

1),char(text0))}; 
            end 

             
        end 
    end 

     
    for i=1:b 
        if i==1 
            tet=strcat(temp1(:,1), {''},temp1(:,2)); 
        else 
            tet=strcat(tet, {''},temp1(:,i+1)); 
        end 

     
    end 

  
    disp(char(tet)) 
else 
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    if strcmp(KoA,'columns') 
              disp('-----------------------------------------------------

------------------------------') 

  
        disp('by columns: The most the most important parameter for each 

eigenvalue are,') 
              disp('-----------------------------------------------------

------------------------------') 

  
        transt=transpose(tot); 

         

  

  
temp2(:,1)=transt(:,1); %([2:a+1],1); 
    for i=2:b+1 

         
        for j=2:a+1 
            if strcmp(char(transt(i,j)),'_____n_____') 
                temp2(i,j)={''}; 
            else 
                temp2(i,j)={strcat(char(param2(j-1)),char(text0))}; 
            end 

             
        end 
    end 

     
    for i=1:a 
        if i==1 
            tet=strcat(temp2(:,1), {' '},temp2(:,2)); 
        else 
            tet=strcat(tet, {''},temp2(:,i+1)); 
        end 

     
    end 

  
    disp(char(tet)) 

     
    else 
        warning('See help for selection of anlysis') 
        error('The selected analysis does not exist please seletc only 

rows or columns as string') 

         
    end 

   
end 
disp('The elements with ____n____ teir value is less than the modulus of 

(0.1+-0.1i)') 

 

 



 

 

 

Sensibilité Paramétrique pour l’Analyse Dynamique des Réseaux à Courant Continu 

Ce travail de thèse a pour finalité de présenter différentes méthodologies pour l’analyse de 

réseaux à curant continue haut tension (HVDC).  

La théorie fondamentale de l‘analyse de sensitivité s’applique sur analyse des systèmes 

électriques de puissance dans les différents étapes de la production et la transmission de 

l’énergie. Des outils de bases concernant cette théorie sont devenus populaires et très utilisés. 

 En pratique, les facteurs de participation représentent un exemple de ces outils, utilisés 

depuis longtemps. Ils ont été proposés par (Perez-Arriaga et al., 1982). Nous présentons la 

théorie fondamentale de la sensitivité analytique dans laquelle les facteurs de participation son 

basse. Pour une bonne compréhension de ces éléments de base de cette théorie, quelques 

exemples sont présentés. Nous présentons une formulation différente pour l’analyse par 

sensitivité paramétrique (Barrera Gallegos et al., 2016). Enfin, les deux méthodologies sur des 

exemples des réseaux HVDC. Notre comparaison permet d’exposer les limites de l’utilisation 

des facteurs de participation sur des réseaux HVDC. En conclusion, la nouvelle méthodologie 

est plus générale comparée aux facteurs de participation. Egalement, la nouvelle méthodologie, 

par sensitivité paramétrique, nous donne plus d’informations sur les caractéristiques 

dynamiques des réseaux HVDC. 

Mot clefs : Analyse modale, Sensitivité paramétrique, facteurs de participation, Réseaux au 

courant continu. 

 

Parametric sensitivity for analysis of dc networks 

The work presented in this thesis presents different methodology for parametric sensitivity 

of high voltage dc networks(HVDC). 

The fundamental theory of modal analysis has been applied for analysis of the power 

electrical systems in its different stages of production and transmission of energy. Tools derived 

from these fundamentals have become popular with its use. Among the tools used in dynamic 

analysis, participation factors have been used for a long time. Proposed by (Perez-Arriaga et 

al., 1982), they give a metric for relating states and eigenvalues of a system. The participation 

factors is a tool that helps in the reduction of systems.  

Firstly, we present the fundaments of the sensitivity analysis upon which the participation 

factors are based on. The principle is illustrated with several examples. 

We propose a new formulation for sensitivity analysis using parametric sensitivity (Barrera 

Gallegos et al., 2016). 

In the latter, the application of participation factors and parametric sensitivity analysis is 

performed using HVDC networks. This comparison exposes the limitation of the participation 

factors for the general analysis of HVDC grids. 

In conclusion, the new methodology is a better and general alternative compared to 

traditional participation factors employed for analysis of HVDC grids. In addition, the new 

technique of parametric sensitivity produces several novel information related to the dynamic 

characteristics of the HVDC grid. 

Key words: Modal analysis, parametric sensitivity, participation factors, high voltage direct 

current grids. 
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