
HAL Id: tel-01447591
https://hal.science/tel-01447591

Submitted on 27 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Atom interferometry: experiments with electromagnetic
interactions and design of a Bose Einsteincondensate

setup.
Boris Decamps

To cite this version:
Boris Decamps. Atom interferometry: experiments with electromagnetic interactions and design of a
Bose Einsteincondensate setup.. Quantum Physics [quant-ph]. Universite Toulouse III Paul Sabatier,
2016. English. �NNT : �. �tel-01447591�

https://hal.science/tel-01447591
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr






Dedicated to my environment

3





C O N T E N T S

I Experiments with electromagnetic interactions 27

1 lithium beam interferometer 29

1.1 Vacuum system and lithium source 30

1.1.1 Vacuum system 31

1.1.2 Supersonic lithium beam 32

1.1.3 Collimation 33

1.2 Diffraction process 34

1.2.1 Atom diffraction by a standing light wave 34

1.2.2 Kapitza-Dirac regime 35

1.2.3 Bragg regime 36

1.2.4 Laser setup 39

1.3 Atomic signal 41

1.3.1 Hot wire detector 41

1.3.2 Interferometric signal 42

1.3.3 Fringe visibility 46

1.3.4 Phase sensitivity 47

1.4 Conclusion 48

2 kerr modulator for matter waves 49

2.1 Wave modulation 50

2.1.1 Classical phenomenon 50

2.1.2 Quantum extension 51

2.2 Theoretical description 56

2.2.1 Naïve description of the phase modulation 56

2.2.2 Diffraction in time 58

2.2.3 Technical implementation 61

2.3 Kerr modulator 68

2.3.1 Low frequency modulation 69

2.3.2 Heterodyne atom wave beats 71

2.3.3 Data transmission 73

2.4 Conclusion 76

3 the pancharatnam phase: a tool for atom optics 79

3.1 Geometric phases 80

3.1.1 Phase in quantum mechanics 80

3.1.2 Geometric phase derivation 81

3.1.3 Pancharatnam phase 84

3.1.4 Experimental demonstrations 85

5



3.2 The Pancharatnam phase-shifter 88

3.2.1 Description of the experimental apparatus 88

3.2.2 Theoretical Pancharatnam phase shifter 89

3.2.3 Optical fringes 90

3.2.4 Quarter Wave Plate geometry 90

3.2.5 Rotation axis 93

3.2.6 Phase retardation 96

3.3 Application to atom interferometry 100

3.3.1 Atomic fringes swept by the Pancharatnam phase shifter 100

3.3.2 Phase control in a single interferometer 101

3.3.3 Dual-species simultaneous phase control 102

3.4 Conclusion 103

4 lithium tune-out wavelength 105

4.1 Tune-out wavelength 106

4.1.1 Electric polarizability of alkali atoms 106

4.1.2 Hyperfine coupling 107

4.1.3 Two particular wavelengths 109

4.1.4 Theoretical calculations 111

4.1.5 Experimental measurements and applications 114

4.2 Experimental setup 117

4.2.1 Optical setup 117

4.2.2 Laser’s polarization and waist 120

4.2.3 Atom beam hyperfine sublevel 121

4.2.4 Absolute frequency pointing 123

4.2.5 Stark laser angle 124

4.3 Experimental results 126

4.3.1 Power dependence 128

4.3.2 Residual vector component 131

4.3.3 Tune-out value 131

4.3.4 Error Budget 133

4.4 Conclusion 133

II Design of a Bose Einstein Condensate setup 137

5 new bec interferometer: motivations and design 139

5.1 A novel atom interferometer 140

5.1.1 Atom interferometry with Bose Einstein Condensates 140

5.1.2 Matter neutrality test 143

5.1.3 Atom interferometer source 146

5.1.4 Interferometric sequence 149

5.1.5 Interaction with electrodes 151

5.1.6 Detection 152

5.1.7 Conclusion 152

6



5.2 Hybrid atomic source 154

5.2.1 3D-MOT configuration 154

5.2.2 Magnetic trapping 157

5.2.3 Optical dipole trap 162

5.3 Dual isotopes evaporation 166

5.3.1 Evaporation principles and power laws 166

5.3.2 Sympathetic cooling 170

5.3.3 Simulation of our setup 172

5.3.4 Comparison with other BEC machines 179

5.4 Cloud transport in an optical lattice 180

5.4.1 Bloch oscillations 181

5.4.2 Transport from the surface 183

5.4.3 Numerical simulations 185

5.4.4 Loading from the dipole trap 188

5.4.5 Transport in the lattice 188

5.4.6 Amplitude and phase noise 190

5.5 Interferometer 193

5.5.1 Large Momentum Transfer 193

5.5.2 LMTMZ sensitivity 197

5.6 Conclusion 204

6 experimental setup 205

6.1 Vacuum system 207

6.1.1 Principal vacuum chambers 207

6.1.2 Assemblies 208

6.1.3 Viewports and indium seals 208

6.1.4 Assembly and bake-out 210

6.1.5 Pressure during operation 211

6.2 Laser system 212

6.2.1 Overview 212

6.2.2 85Rb Laser setup 212

6.2.3 Frequency adjustment and stability characterization 214

6.2.4 87Rb Laser setup 215

6.2.5 Fiber distribution 219

6.2.6 Collimation to the vacuum chamber 224

6.3 Magnetic source 227

6.3.1 Overview 227

6.3.2 Constraints on the optical dipole trap 232

6.4 Imaging system 234

6.5 Conclusion 236

7 atom source 239

7.1 2D MOT source 240

7.1.1 Push beam optimum 241

7



7.2 Optical trapping and cooling 242

7.2.1 Experimental sequence 243

7.2.2 Atom number 243

7.2.3 Temperature measurements 247

7.2.4 Loading the MMOT 249

7.2.5 Compressed MOT 250

7.2.6 Molasses 252

7.3 Conclusion 254

bibliography 261

8



L I S T O F F I G U R E S

1 Newton’s Ring 15

2 Interferometer 16

3 Mach Zehnder optical interferometer 17

4 Mach-Zehnder lithium interferometer 31

5 lithium Interferometer’s Vacuum chambers 32

6 Atom-Light diffraction regimes 36

7 Bragg lattices 39

8 lithium interferometer signal 45

9 Atom wave modulation in the time domain 54

10 Temporal evolution of the interaction potential 57

11 Interferometer and interaction region 63

12 Recombination for identical modulation frequencies 67

13 Recombination for different modulation frequencies 67

14 Interferometric signal modulated in time 69

15 Modulation dependence on the interferometric phase 70

16 Fourier amplitudes as a function of φd 70

17 Harmonic visibility as a function of φd 71

18 Modulation phase up to the 16th harmonic 72

19 Harmonic visibility extinction and revivals 73

20 Atomic fax count distribution 74

21 Atomic fax transferred file 75

22 Parallel transport on the Bloch and Poincaré spheres. 85

23 Pancharatnam phase measurements 86

24 Single photon Pancharatnam phase experiment 87

25 Setup for the Pancharatnam phase-shifter 89

26 Optical fringes for the Pancharatnam phase shifter. 91

27 Quarter Wave Plate apex angle measurement 93

28 Phase retardation geometry 94

29 Poincaré sphere trajectory with imperfect QWP’s 99

30 Atom fringes with the Pancharatnam phase shifter 100

31 Lithium "Tune-out" wavelength 112

32 Experimental setup for "Tune-out" measurement 118

33 Laser system for the "tune-out" measurement 119

34 Waist alignment on the interferometric paths 120

35 Optical pumping efficiency 122

36 Absolute laser frequency pointing 124

37 Doppler offset of the Stark laser 125

38 Phase induced by the Stark laser 126

9



39 Optical pumping effect on the Stark phase 127

40 Phase shift slope 128

41 Phase shift at a fixed frequency 129

42 Hyperpolarizability evaluation 130

43 Residual vector component of the Stark laser 132

44 "Tune-out" values of different measurement campaigns 132

45 Aharonov Bohm matter neutrality test 145

46 The four components of the new interferometer 147

47 Noise rejection in a dual interferometer 151

48 Magneto-Optical-Traps optical configurations 156

49 Single wire magnetic trap 157

50 Magnetic trapping 161

51 High gradients magnetic trap configuration 161

52 Dipole trap 162

53 Feshbach resonance 164

54 Evaporation principle 166

55 Sympathetic cooling trajectories: comparison to experiments 173

56 Sympathetic cooling trajectories 175

57 Tighter trap. 176

58 Different initial cloud parameters 177

59 Different initial ratio. 177

60 Existing and prospective BEC sources. 179

61 Bloch Oscillations in an optical lattice 182

62 Condensate transport from the surface 184

63 Trapping parameters during the transport 185

64 Ideal transport results 190

65 Lattice and cloud parameters during transport 191

66 Scheme of a LMTMZ. 193

67 Large momentum interferometer 195

68 7 pulses large momentum interferometer 196

69 Multi-pulse sensitivity function 201

70 LMZ Transfer function 203

71 Experimental setup 206

72 Pumping system 208

73 Main vacuum chambers 209

74 Indium seals 210

75 Frequency requirements 213

76 Muquans laser system 213

77
85Rb optical bench 214

78 Frequency and Power stability of the 85Rb laser 215

79
87Rb optical bench 216

80 Frequency stability of 87Rb repump laser 217

81 Frequency locking chain 217

82
87Rb locking performances 218

10



83 3D MOT laser setup 220

84 2D MOT laser setup 221

85 Four frequencies amplified light 223

86 Power stability at the fiber’s output 224

87 Schematic representation of the 2D MOT 225

88 Global view of the compact optical table 226

89 Geometry of the magnetic coils 228

90 Mesoscopic chip 229

91 Thermal conductivity simulation of the chip 230

92 Temperature tests of the experimental chip 232

93 Optical trap characteristics 234

94 Imaging system 235

95 Complete experimental setup 237

96 MOT snapshot 240

97 2DMOT snapshot 241

98 3D MOT loading 242

99 Loading rate 243

100 Experimental sequence 244

101 Saturation calibration 245

102 Detuning calibration 246

103 High saturation imaging 246

104 Gaussian widths and atom number 248

105 Time of Flight : Gaussian centers 249

106 Loaded atom number 250

107 MMOT cloud 251

108 MOT compression 252

109 Temperature measurement of CMOT 253

110 Final cloud temperature 253

111 Newton’s Ring 287

112 Interferometer 288

113 Mach Zehnder optical interferometer 290

11





L I S T O F TA B L E S

1 Atom interferometer list 21

2 Typical modulation frequencies in matter interferometry 52

3 Comparison of high frequencies modulation amplitudes 72

4 Atomic radio file 75

5 Calculated values of the "Tune-out" wavelengths 113

6 Calculated values of the "Magic" wavelengths 114

7 Residual sublevels population of optical pumping 122

8 Statistic and systematic errors on our "Tune-out" value 133

9 Transition strength ratio measurements 134

10 Spatial separation in atom interferometers 141

11 Matter neutrality experimental values 145

12 Interferometer performances goals 152

13 Collisional coefficients used in the numerical simulation. 172

14 Cloud characteristics up to BEC. 180

15 Available Laser power 224

16 Atom cloud characteristics 254

17 Atom interferometer list 294

13





I N T R O D U C T I O N

She felt... how life, from being made
up of little separate incidents which
one lived one by one, became curled
and whole like a wave which bore
one up with it and threw one down
with it, there, with a dash on the
beach.

Virginia Woolf, To the Lighthouse

Waves exhibit conceptual and mathematical properties that make them ideal tools
to describe a continuously growing list of physical phenomena (mechanical, acous-
tical, electromagnetic, gravitational,...). Particularly striking with visible electromag-
netic waves, their superposition property leads to one of their most prominent fea-
tures: Interferences.

optical interferences

Figure 1
Newton’s Rings created by a

convex lens illuminated by laser
light.

Photo licensed under CC BY-SA
3.0

The first observations of interferences patterns,
known as Newton’s Rings (see Fig. 1), were reported
by R. Boyle and R. Hooke in the 17th century. The suc-
cessive high and low intensity regions are either con-
structive or destructive superposition of two coherent
(i.e having a fixed phase relationship) waves. These
patterns offer contrasted signal and can be used to
measure small perturbations on the scale of an opti-
cal wavelength. Optical interferometers thrived partly
because of this high sensitivity. Another reason is that
interferometers allow to test fundamental properties
of electromagnetic waves. From the famous experi-
ments of Fizeau (1851) on the aether-drag hypothesis
or of Michelson & Morley (1886) on the speed of light
in different inertial frames to the very recent (2016)
gravitational waves detection performed by the LIGO interferometer, optical inter-
ferometers have provided and still provide extremely sensitive experimental tests to
physical theories.

An interferometer can be described (see Fig. 2) by two different paths which are
coherently recombined. For light the two paths can either represent two coherent
sources (wavefront splitting in Young’s double slit), two wavevector directions (am-
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Figure 2: General scheme of an interferometer setup.

plitude splitting for Michelson interferometer) or two polarization states (internal
state splitting such as Fresnel-Arago interferometers). For these interferometers, the
coherent splitting elements (I and II) are respectively mechanical slits, air-glass inter-
faces and birefringent materials. The optical intensity at one outputs depends on the
relative phase ∆Φ between the two paths. For example, the most common origin of
phase shift is due to different optical paths (either due to the lengths or refractive in-
dices). But one can also think of topological phases (such as the Pancharatnam phase)
which are independent of the exact trajectories.

matter waves interferences

In 1924, the de-Broglie hypothesis extended the realm of waves to massive particles.
Indeed, the essence of particle-wave duality lies in the de-Broglie wavelength, λdB,
associated to any particle with momentum p:

λdB =
h

p
' h

mv

where h is Plank’s constant and, in the non-relativistic limit, m is the mass and
v the classical velocity. This hypothesis was successfully demonstrated for the first
time in 1927 when C. Davisson and H. Germer diffracted an electron beam on a
metallic crystal [1]. Shortly after, this demonstration was extended to helium atoms
by I. Estermann and O. Stern [2]. In addition to providing a strong argument in favor
of quantum mechanics, this duality opened a new paradigm to particle physics: atom-
optics. Indeed, both electromagnetic and matter waves obey the Helmholtz equation:

∇2u+ k2u = 0 (1)

where k2 = 2mE/ h2 for matter waves and k2 = E2/
(
 h2c2

)
for electromagnetic waves.

This analogy has some important limits as the vacuum is dispersive for matter waves
while the classical electromagnetic theory is linear in vacuum. Still, matter-wave inter-
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ferometers are complementary tools to study different particles interactions as well
as their inner structure.

Matter-wave interferometers

The first matter-wave interferometers were realized with electrons (Marton et al. 1952

[3], Möllenstedt and Düker 1955 [4]) and benefited from the diffraction by thin crys-
tals and from the development of the electron biprism. Electron interferometers have
given rise to the field of electron holography which now probes the atomic structure
down to the single atom resolution and offers the possibility to map magnetic and
electric fields. Also, electron interferometers were the first tools to demonstrate fun-
damental properties such as the Aharonov-Bohm effect [5], [6] or the antibunching
effect resulting from the Pauli’s exclusion principle for Fermions. The recent report
by Hasselbach et al. [7] reviews electron interferometery in details.

The first neutron interferometer (H. Rauch et al. 1974 [8]) was developed thanks to
the so-called "Perfect silicon crystal". These interferometers demonstrated many phys-
ical features such as Berry’s phase and the magnetic Josephson effect (see Rauch’s
book [9]).

Marton’s electron and Rauch’s neutron interferometers had spatially separated
arms with a geometry similar to the optical Mach Zehnder interferometer. This ge-
ometry is very simple which makes it one of the most popular geometries in the field
of interferometers.

Mach Zehnder geometry

Figure 3
Optical Mach Zehnder interferometer relying

on two beam splitters and two mirrors.

The Mach Zehnder interferometer is in-
spired by the optical interferometer, rep-
resented on Fig. 3 developed at the
end of the 19th century by L. Mach
and L. Zehnder. This type of interfer-
ometers splits the wave amplitude into
two spatially separated paths that trav-
els through distinct environments. The
two paths are called the interferometer
arms. After reflection on mirrors, the
two waves are recombined on a second
beam splitter. The two outputs of the sec-
ond beam splitter exhibits complementary signals which oscillates as a function of
the differential phase ∆Φ acquired between the two arms. Experimentally, this setup
allows to control ∆Φ with macroscopic objects which interact separately with each
arms.
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Neutron and electron specificities

Electron are relatively simple to produce but, due to the very large Coulomb interac-
tion, a large flux requires high energy (> 10keV) electrons. Low energy neutrons are
produced by nuclear reactors which are not common and the available flux is weak.

Atom waves on the contrary do not experience such long range interactions and
can be produced by simpler setups. Additionally, the atom coherent manipulation
techniques developed in the mid 80’s, with the advent of laser sources, paved the way
to atom interferometers. These interferometers provided additional physical features
compared to the previous matter wave interferometers:

• Most of the neutrons and electrons interferometers operated in the strict regime
of self interference (i.e only a single particle is present at any given time in the
interferometer region). This was either due to the naturally low fluxes or to
the strong interaction between electrons that produced unwanted phase shifts.
Atoms do not suffer from this restriction and many particles effects (such as
squeezing) are even being investigated to be used in atom interferometry.

• The variety of atomic internal states offered new opportunities that were not
accessible to electrons and neutrons1. In particular, atoms offer the possibility
to combine specific features such as polarizability or magnetic moments. Also,
their interaction with the environment can be resonantly increased or specifi-
cally suppressed which allows to tune the interferometric phase accurately.

Atom interferometers were demonstrated for the first time2 in 1991 and has become
a major research field in fundamental physics.

atom interferometry

Reviewing the complete field of atom interferometry is a wide endeavor which was
undertaken in four reviews [11]–[14] and two books [15], [16]. Some of the general fea-
tures of these complex experiments will be described in this section, with particular
emphasis on the ones applied to Toulouse’s interferometers.

1991: a prolific year

In 1991, four different groups published atom interferometer fringes:

• O. Carnal and J. Mlynek [17] used a metastable He beam in a Young’s double
slit experiment.

1 With the exception of spin state.
2 Ramsey’s spectroscopy of atoms and molecules pre-existed these interferometers and is, per say, an

atom interferometer with internal state labelling [10] (similar to polarization interferometers in optics).
But the absence of diffracting structures usually excludes them from being considered as the first atom
interferometers.
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• D. Pritchard et al. [18] developed a Mach Zehnder atom interferometer with Na.

• M. Kasevich and S. Chu [19] used a cold Na source to measure the local gravi-
tational acceleration using a Mach Zehnder interferometer.

• Ch. J. Bordé and J. Helmcke et al. [20] measured the Sagnac phase with a satu-
rated absorption Ramsey fringes on a Ca beam.

These interferometer schemes (Mach Zehnder, Young’s slits, and Ramsey), diffrac-
tion elements (mechanical structures for the first two and laser gratings for the last
two) and atomic sources (thermal beams or cold clouds) were already very diversified.
But many more atom interferometers have been developed since.

Interferometer types

Atom interferometry exhibits many different conceptual schemes. One of the most
popular scheme recombines atom waves having different external momentum states
to produce interferences patterns. This type of interferometers is well represented by
the Mach Zehnder geometry ([18], [19], [21]–[33]) which explicitly shows the momen-
tum difference with a physical spatial separation. Combining this type of geometry
with internal state dependent interferometric arms results in Ramsey-Bordé interfer-
ometers ([20], [34]–[45]).

In addition to these two schemes, one can mention some specific apparatus which
are listed as atom interferometers. For example, Talbot Lau interferometers3 ([47],
[48]) consist in the near-field recombination of the multiple point sources produced
by a first grating. Higher interference signal intensities can generally be obtained in
these interferometers as a spatially incoherent atomic beam can be used as a source.
Also, internal state labeling interferometers, such as the Ramsey separated oscilla-
tory field method [49] or the spin echo technique ([50], [51]) can be viewed as atom
waves interfering in the internal state subspace. These setups were developed for
spectroscopy and lead to the onset of atomic clocks. Another technique is the tem-
poral counterpart of spatial fringes and is usually denoted as interferometers in the
time domain ([52]–[55]). Finally, a particular case of interferometers which confine the
atoms [56] during the interferometric time appeared with the development of cold
atoms trapping in particular with atom chips ([26], [57], [58])

Diffracting processes

The atom-optic tools to coherently produce superpositions of atom waves can also be
listed into general categories such as mechanical (absorbing) structures which have
been mostly used at the birth of atom interferometry and light gratings which are one
of the most widely spread tool. Light gratings can either endorse the role of phase

3 The C60 cluster interferometer developed in M. Arndt group[46] is a notable Talbot-Lau interferometer.
This research group demonstrated the possibility to use more and more massive objects in matter waves
interferometers.

19



gratings, absorbing gratings or both. Among the optical diffraction regime, one distin-
guishes diffraction which do not change the internal state (Kapitza-Dirac, Bragg and
Raman-Nath scattering, described in Chap 1) from the diffraction process address-
ing different internal states (Raman). In every cases, the diffraction process produces
atom momentum states separated by integer multiples of the photon wavevector kL.
However, with the advent of ultra cold sources such as Bose Einstein Condensates
(BECs), techniques highly velocity selective such as Bloch oscillations [59] or multiple
Bragg diffraction were applied to interferometry with ultra cold atoms. Similarly, si-
multaneous dual species interferometers involve more complex schemes such as four
wave double Raman diffraction [60]. In addition to these techniques, some methods
such as longitudinal Stern-Gerlach magnets which entangle the momentum state to
its internal state with magnetic field gradients, diffraction in time processes which
relied on evanescent wave reflection or time dependent potentials (as developed in
Chap 2) were used to produce interferometers in the time domain.

Atom source

Another criteria can be used to classify atom interferometers: their atom source. Ini-
tially, the large majority of atom interferometers relied on either thermal (effusive,
supersonic) or cold beams which produced modest atomic flux and required effi-
cient detection techniques. This is the reason why the first atom interferometers were
developed either with alkali atoms or with metastable noble gas atoms. With the de-
velopment of cold atoms, a new type of interferometers based on laser cooled gases
flourished due to the very long interaction time which improves the interferometer
sensitivity. The use of BECs for atom interferometry was initially set aside as pre-
liminary experiments demonstrated the prejudicial impact of atom-atom interactions.
However, the possibility to use BECs squeezed states [49] or extremelly small velocity
distribution for large spatial separations [61] renewed the interest in these sources.

Table 1 gives an overview of the previously cited interferometers. It is not a com-
prehensive list of all experiments that can be cited in the domain of atom interfer-
ometry but it shows how cold atoms, with the clear example of Rubidium atoms,
represent a very large fraction of current atom interferometers. It also points out the
recent development of dual species atom interferometers which, apart from the initial
demonstration of M. Weitz et al. [62], appeared after 2013.

5 This is the only available value about their initial cloud temperature.
6 Kapitza-Dirac.
7 More specifically, Velocity Selective Raman Transitions (VSRT) which filters the initial cloud momentum

distribution.
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Species Source Diffraction Group Reference

H∗
Thermal beam

Cold beam
Stern-Gerlach
Photon echo

J. Baudon
T. Hänsch

[63]
[39]

He∗
Thermal beam

Cold beam
Mechanical

Mechanical slits
O. Carnal and J. Mylnek
J. P. Toennies

[17]
[64]

3He Cold beam Stern-Gerlach U. Spinola [50]

Li
Thermal beam
Thermal beam

Spin echo
Bragg

R. Grimm
J. Vigué

[51]
[24]

Ne∗ Thermal beam Bragg S. A. Lee [22]

Na

Thermal beam
Cold atoms (30µK)

BEC
Thermal beam

Mechanical
Raman

Kapitza-Dirac
Mechanical

D. E. Pritchard
M. Kasevich and S. Chu
W. D. Phillips
A. D. Cronin

[18]
[19]
[48]
[25]

Mg Thermal beam Ramsey W. Ertmer [34]
Ar∗ Thermal beam Kapitza Dirac E. M. Rasel [21]
K Cold beam Mechanical S. Li [47]

Ca
Thermal beam
Thermal beam

Ramsey
Ramsey

C. J. Bordé and F. Riehle
N. Ito

[20]
[35]

85Rb
Thermal beam

Cold atoms
Cold atoms

Ramsey
Time modulation

Photon echo

A. Weis
T. Sleator and B. Dubettsky
A. Kumarakrishnan

[36]
[53]
[55]

87Rb

Cold atoms
BEC
BEC
BEC

Cold atoms
Cold atoms (8µK)
Cold atoms (3µK)

BEC
BEC

BEC (0.004µK)
Cold atoms (2µK)

BEC
Cold atoms (1.8µK)
Cold atoms (0.3µK)
Cold atoms (3µK)
Cold atoms (4µK)

Cold atoms (30µK4)

Evanescent wave
Bragg

Double well potential
Bragg, confined

Temporal KD5, confined
Raman6

Bloch oscillations
Ramsey
Bragg

Multi-Bragg
Raman, confined
Ramsey, confined

Raman
Raman
Raman
Raman
Raman

A. Aspect
T. Kuga
J. Schmiedmayer
S. Wu
M. Prentiss
W. Ertmer
F. Biraben
M. Oberthaler
N. P. Robins
M. Kasevich
F. P. D. Santos
P. Treutlein
A. Bresson
J. Luo
A. Peters
G. M. Tino
Z. Zhou

[54]
[23]
[65]
[26]
[57]
[40]
[59]
[49]
[28]
[61]
[56]
[58]
[30]
[31]
[32]
[33]
[44]

Sr Cold atoms (1.2µK) Bragg G. M. Tino [66]

Cs

Cold beam
Thermal beam

Cold atoms (1.5µK)
Cold atoms(1.2µK)

Evanescent wave
Raman
Raman
Raman

J. Dalibard
M. Kasevich
S. Chu
A. Landragin

[52]
[37]
[38]
[41]

(85Rb/87Rb)

Cold atoms(6µK)
Cold atoms(1µK)

BEC
Cold atoms(6µK)

Raman-Nath
Raman
Bragg

Raman

M. Weitz
A. Bresson
N. P. Robins
M. Zhan

[62]
[42]
[67]
[68]

(39K/87Rb) Cold atoms (30µK) Raman E. M. Rasel [43]
(40K/87Rb) Cold atoms (20/3µK) Raman P. Bouyer and A. Landragin [45]
(87Sr,88Sr) Cold atoms (1µK) Confined atoms G. M. Tino [69]

Table 1
Selected atom interferometers listed by atomic species. The variety of diffraction techniques

as well as the advent of cold atom sources are emphasized by the difference between the
smallest atoms (first quarter of the table) and the large number of Rubidium cold sources.
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precision measurements

From proof of principle apparatuses, atom interferometers rapidly focused towards
precision measurement setups. For twenty years, they have demonstrated their ex-
treme sensitivity and high accuracy on a large panel of effects. The interferometer
phase is indeed a combination of external potential effects, of the atomic trajectory in
the interferometer and its internal state wavefunction evolution. These effects can be
investigated for themselves or can be used to access fundamental physical properties
and to put new theories to the test.

Interaction phase shifts

Interest in atom interferometers mainly arises from their high sensitivity to exter-
nal perturbations. For example, in the framework of first order perturbation theory,
an external static potential U modifies an atom wave wavevector, k0 in free space,
according to the energy conservation:

 h2k20
2m

=
 h2k2p
2m

+U

where kp is the perturbed wave vector in the interaction region. The perturbative
assumption, U�  h2k20 (2m) allows to give an approximate expression for kp:

kp ' k0 −
mU
 h2k0

Therefore, the phase shift induced by the external potential can be expressed as:

φp =

∫
(kp − k0)ds = −

∫
U
 hv
ds = −

∫
U
 h
dt (2)

where we have neglected the trajectory deviation induced by the perturbation and
used the fact that v is the atom group velocity which is related to the atom path s
via ds/dt = v, where t is the propagation time. For example, a constant perturbation
applied for 100µsmeasured with a sensitivity on the interferometer phase of 10mrad
allows to probe potentials of U = 6× 10−14 eV which, compared to the atomic kinetic
energy (of the order of a few meV for thermal atoms) shows a relative sensitivity of
1011.

Depending on the origin of the perturbation potential, information on the atomic
structure and interactions are measurable with interferometry. For example :

• The interaction with an electromagnetic field leads to the measurement of both
DC or AC electric polarizability [70], [71] (see Chap. 4).
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• The presence of a gas on the interferometer arm induces phase shifts and colli-
sions via the van der Waals interactions which can be described as an effective
index of refraction and measured with interferometry [72], [73].

• The atom interaction with surfaces probes the Casimir-Polder potential [74],
[75].

Inertial effects

Another important sources of phase shift in an atom interferometer are inertial effects.
Indeed, eq. (2) clearly shows that the phase depends on the atomic trajectory in
the interferometer. As a result, accelerometers and gyrometers were developed and
proved to be extremely accurate tools sensitive, at 1 s, at the 4× 10−8m/s2 [31] and
10−8 rad/s level. These interferometers measure at the single atom level gravitational
accelerations [19], [76], gravity gradients [77] and rotations [37], [41]. The sensitivity
of these interferometers scales proportionally with the separated arms momentum
difference keff and as the square of the interferometer duration T . Progresses towards
higher sensitivities includes larger momentum separations [61] and larger T with
either large apparatus, micro-gravity environments [27], [78] or even spatial missions
[79].

Topological phases

Besides atomic physics applications and inertial sensors, the sensitivity to the wave-
funtion’s phase was used to demonstrate the existence of non-dynamical phases.
Aharonov-Bohm, Aharonov-Casher and Berry phases are some examples of the non-
dynamical phases that are acquired by the atomic wavefuntion. They respectively
correspond to the situation when the two paths enclose a region of different vector
potentials (for a charged particle), of different electric field (for a magnetic dipole)
or when the atomic states performs certain cyclic transformations (see Chap. 3). This
type of phases can only be detected by interferometers as they do not result from an
energy difference (i.e a force) which changes the atom trajectory.

Fundamental constants measurements

The high sensitivity to inertial effects was used to perform additional measurements
of the gravitational constant G. The relative uncertainty on this constant was of 150
ppm in the CODATA 2002 and resulted from a large discrepancy between reported
measurements. An additional measurement using atom interferometry [33] helped to
identify systematic effects as it is conceptually different with single atoms interactions.
Also, using the integer number of photons transferred to atoms with light pulses,
the fine structure constant α was recently measured with high accuracy through its
relationship with the h/m ratio [59].
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Fundamental tests

Finally interferometers are sensitive tools to probe for new physics. Among the fun-
damental studies performed with atom interferometry, one can think of the wide
range of decoherence experiments which were undertaken. Different processes were
investigated such as the coupling to the environment or the internal state depen-
dent interferometric paths. Some atom interferometers are dedicated to the test of
the Weak Equivalence Principle [43], [80], to the investigation of predicted deviation
from standard gravity [81], [82] or to test the matter neutrality (see Chap. 5).

thesis outline

In this context of atom interferometry, my work in Toulouse’s group contributes both
to the initial, and now fading, impulse of atomic beam interferometers and to the
newest field of ultra cold atom sources for precision measurement. Indeed, during
my three years P.h.D thesis, I worked on the lithium beam interferometer which was
developed in Toulouse near 2000. I contributed to experiments on atom wave beats,
on topological phases, on precision measurements and on fundamental decoherence
tests. In parallel, I participated to the development of a new dual species BEC inter-
ferometer which extends the atom interferometry research in Toulouse to new topics
such as matter neutrality.

As a result this thesis will be split into two parts:

Experiments with electromagnetic interactions:

The first part is dedicated to the experiments we did on the Lithium beam interfer-
ometer which will be described in Chap. 1. Then, each of the following chapters will
focus on one experiment which are, in order of appearance:

• Chap 2: A modulation in time experiment with a versatile Kerr modulator used
to detect both homodyne and heterodyne atomic beat signals.

• Chap 3: A new Pancharatnam dephasor which imprints a geometrical phase of
light on the interferometric signal to scan the atomic fringes.

• Chap 4: The first experimental measurement of 7Li, 2S1/2 |F = 2,mF = 2〉 "tune-
out" wavelength at which its dynamical polarizability vanishes.

Design of a Bose Einstein Condensate setup:

The second part of this thesis concerns the development of a new experimental ap-
paratus relying on a dual-species BEC source. The objectives and theoretical devel-
opments required for the proper scaling of this setup will be described in Chap 5.
Both dual species BEC production and transport challenges will be addressed as well
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as some new theoretical discussions on multi-pulses Mach Zehnder interferometers.
Then, a much more detailed chapter will describe the experimental setup (vacuum
system, laser sources, magnetic fields,...) and show how its performances fit with our
requirements. Finally, the last chapter will focus on the first atomic signals obtained
with this setup.
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Part I

Experiments with electromagnetic
interactions
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The atom interferometer developed in Toulouse in the late 90’s was designed to
investigate various dephasing interactions in a spatially separated interferometer. To
maximize the interferometer fringe visibility and the atomic flux, the atom diffraction
operates in the first Bragg order. The interferometric arms are produced in the Mach
Zehnder geometry with light gratings. These gratings are optical lattices which pro-
duce a coherent superposition of identical internal states with different momenta. In
this configuration, the choice of the Lithium atom, the lightest of alkali atoms, leads
to the large spatial arm separation of 100µm in an interferometer 1.2m long.
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A 100µm microscopic separation was enough to control separately the interaction
on each of the two interferometric arms and was put to great use for multiple inves-
tigations:

1. The magnetic field gradients influence on the total interferometric signal re-
sulting from incoherent sum of interference signals due to different magnetic
sublevels [83].

2. The measurement of the lithium electric polarizability with the lowest uncer-
tainty achieved up to now [71].

3. The measurement of the real and imaginary parts of the refractive index of
several noble gases for lithium matter waves [73].

4. The measurement of Van der Waals interaction between lithium and silicon
nitride gratings1 [75].

5. The first measurement of the topological phase predicted by He, McKellar and
Wilkens and the test of its independence with the wave group velocity [84].

This chapter gives a general description of this atom interferometer with particular fo-
cus on the experimental details necessary to the analysis of the experiments described
in the following chapters.

The general setup is schematized on Fig.4. It consists in four regions and five vac-
uum chambers. The first three chambers contain the lithium oven and collimating
slits as a very narrow atomic beam is needed to separate spatially the two interfer-
ometric arms. They make up the lithium source which will be described in Sec. 1.1.
Then, I will summarize briefly the different regimes of atom diffraction with an opti-
cal lattice and focus on Bragg diffraction. The principal elements of our laser system
used for atom diffraction and some of its main characteristics will conclude the de-
scription of the interferometric chamber. Finally, I will describe the Langmuir-Taylor
detector used to measure the output signal of our atom interferometer. The general
expression of the detected interferometric signal as well as the critical experimental
parameters which influence the phase measurement performance will be presented.

1.1 vacuum system and lithium source

The performances of an interferometer highly depend on its source quality. For op-
tical interferometers, light sources can be described in terms of monochromaticity
and luminance. Monochromaticity ensures the homogeneity of the phase shift ac-
quired by the different spectral components of the light which ultimately limits the
interferometer sensitivity. The luminance characterizes the photon flux per unit area
and solid angle and is a conserved quantity when the light travels through a non
absorbing medium. The interferometric signal depends on the incident luminance,

1 Which are similar to the absorbing gratings used by Keith et al. [18] in their Sodium interferometer
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Figure 4: Schematic representation of our Mach-Zehnder lithium interferometer. Four dis-
tinct regions separate the lithium source, the collimation slits, the interferometer
itself and the detection.

the efficiency of coherent superposition (i.e the visibility) and detector characteristics.
These quantities are directly linked to the interferometer phase sensitivity as will be
discussed in Sec. 1.3.2. Similarly, an atom interferometer source can be described in
terms of brilliance2 and monochromaticity, which from the de Broglie relation is di-
rectly related to the atomic velocity distribution. The characterization of our atomic
beam is thoroughly described in A. Miffre’s thesis [85] and only the main results will
be presented here. But before describing our lithium source, we need to give a few
details about the vacuum system.

1.1.1 Vacuum system

The scheme described on Fig. 4 is enclosed in five vacuum chambers represented on
Fig. 5. The first two chambers contain the lithium oven. They are pumped by two oil
diffusion pumps and are separated by a differential pumping stage. The highest gas
load comes from the supersonic beam which is why the pump with highest speed
(Varian VHS 400, 8000 L s−1) is used there. A pressure below 5× 10−4mbar is typical
of this first chamber. The second chamber is used as a differential vacuum chamber,
with a pressure of the order of 3× 10−6mbar when the lithium beam is under oper-
ation. It also serves to characterize the lithium atomic beam by laser induced fluores-
cence. A differential pumping stage separates the lithium oven from the collimation
region with a 1mm diameter skimmer. Just after the skimmer, optical pumping of the
lithium beam in a single hyperfine-Zeeman F,mF sublevel was implemented for some
experiments. Afterwards, the collimation chambers and interferometric chambers are

2 This quantity corresponds to the atomic flux per unit area and solid angle
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respectively pumped by one oil diffusion pump from Edwards and two Varian VHS
1200, fitted with water cooled baffles, so that the pressure in these chambers is typi-
cally 5× 10−7mbar, independently of the operation of the atomic beam. Finally the
detection chamber is pumped by a turbo molecular pump (TMP) which allowed to
reach ultra high vacuum pressure necessary to minimize stray signal on the hot wire
detector (described in Sec 1.3.1). The residual pressure is a few 10−9mbar when this
chamber is isolated by a gate valve and about 10−8mbar when the valve is opened.

Lithium Oven Collimation Interferometric chamber Detection

M1 M2 M3

Z

Y

X

Differential

vacuum

Figure 5: Main elements of the vacuum system. The four main regions are delimited by the
red dotted lines and the three Bragg mirrors are indicated. The six vacuum pumps
are labeled by their manufacturer or acronym.

Low pressure in the interferometric chamber is mandatory because collisions with
the background gas deflect the atoms which attenuates the mean atomic intensity.
One can also think of coherence loss but for light atoms such as lithium atoms, a back-
ground collision almost always results in an atomic trajectory which is not detected
and therefore does not contribute to the interferometric signal. A rough estimate of
the acceptable background pressure consists in imposing a mean free path ten times
larger than the interferometer length which corresponds approximately to a pressure
of 3× 10−7mbar at room temperature. Therefore, the vacuum performances of this
system are acceptable to prevent the background gas from limiting our interferometer
performances.

1.1.2 Supersonic lithium beam

The lithium beam is produced by a supersonic expansion of a carrier gas (which
is always a noble gas and is Argon in all the experiments described in this thesis)
mixed with a small amount of lithium. The rare gas pressure is usually 325 mbar.
The lithium pressure is about 0.5 mbar, equal to the vapor pressure of lithium at a
temperature near 700 ◦C, while the expansion velocity is fixed by the temperature
(780 ◦C) of the oven front part.

The numerous collisions occurring during the expansion keep the expanding gas
in a local thermal equilibrium while the internal enthalpy is transformed into kinetic
energy. As the density decreases rapidly, the collision rate becomes too small and
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the thermal equilibrium ceases to be maintained. The atoms of the beam can be
described by a Maxwellian distribution for their longitudinal velocity with a terminal
temperature T which is very low. The theory of this cooling effect has been developed
by Toennies and Winkelmann [86] and by Beijerinck and Verster [87]. Moreover in the
case of the expansion of a gas mixture, the terminal temperature is different for the
carrier gas and for the seeded gas. Our research group has developed the theory of
this effect, in the limit of infinite dilution of the seeded gas [88], [89]. The supersonic
beam carries a high atomic flux which can be described, far from the nozzle, by the
longitudinal velocity distribution:

P
(
v||
)
=

S||

ū
√
π
e
−

(
S||(v||−ū)

ū

)2
(3)

where S|| is a parameter called the parallel speed ratio which characterizes the distri-
bution’s width and ū is the mean longitudinal velocity which depends on the square
ratio of the oven temperature over the carrier mass3. For the purpose of this work, S||
will be close to 8 and ū will be of the order of 1060(10)ms−1.

1.1.3 Collimation

There are three main mechanical elements which collimate the previously described
atom beam: the skimmer and two slits

The skimmer consists in a 1mm diameter hole near the apex of a cone which is
aligned with the oven nozzle. It selects the highest intensity part of the beam and
reduces the gas load, due to the Argon stream, in the collimation and interferometric
chambers. The collimation of the lithium beam is done by two narrow rectangular
slits4, separated by 0.78m. The slit position can be tuned under vacuum with a µm
sensitivity which is necessary to optimize the lithium beam intensity. As we will
see in the next section, Bragg diffraction is highly selective in the atomic incidence
angle and the collimation is mandatory to prevent undiffracted atoms from reaching
the detection region. Also, having a small divergence ensures a spatial separation
between the two interferometric paths in the interferometer region and between its
two outputs. In practice, we used 18µm wide slits which corresponds to an atomic
beam divergence (angular aperture of 46µrad) smaller than the Bragg diffraction
angle. The resulting beam brilliance is approximately 2× 1020 atoms/(sm2sr).

3 This was of great practical use when different mean velocity were necessary because changing the
carrier gas (with either a lighter element, Neon, of a heavier one, Krypton) and keeping the oven
temperature constant allowed to work with different velocities.

4 We use a set of slits with different widths, nanolithographied on a silicon wafer.
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1.2 diffraction process

As mentioned in the introduction, various diffraction techniques have been employed
in atom interferometry. In this section, we will focus on the atom diffraction induced
by a monochromatic standing wave. We note however that moving lattices produced
by the superposition of different counter-propagating frequencies have also been ex-
tensively used with Raman diffraction which diffracts into different internal states.
More recently, Bloch oscillations have also been used but we will leave this discus-
sion to the description of the new interferometer in the second part of this thesis.

1.2.1 Atom diffraction by a standing light wave

The interaction of the electromagnetic field with an atom can be completely treated
in the formalism of second quantization (see for example [90]). In a situation when
the number of photons in a given mode is large and when the internal state atom
wavefunction is localized on a distance small compared to the optical wavelength, it
reduces to the electric dipole approximation. In this approximation, the electric field
amplitude and polarization are treated classically and the coupling to the atomic
electronic cloud is expressed in the interaction Hamiltonian:

Ĥint = −~̂d · ~E
(
~̂r, t
)

(4)

where ~d is the atomic electric dipole moment and ~E (~r, t) is the total electric field. The
hat on the position vector is used to emphasize the classical treatment of the field
compared to the quantum treatment of ~r, the atom center of mass.

The following treatment of atom-light interaction in the dipole approximation has
been extensively described in original papers [91], [92] and only main arguments will
be presented here.

Optical lattice

Let us now consider the interaction between an atom and a particular electric field
consisting in two counter propagating electric fields of identical amplitudes and po-
larizations. The resulting field is called an optical lattice because of its periodic struc-
ture in space. The subsequent total Hamiltonian is:

Ĥ = Ĥ0 +
~̂p2

2m
−

~̂d · ~E (~r)
2

(
ei[ωt−

~kL·~̂r+φ(~r0)] + e−i[ωt−
~kL·~̂r+φ(~r0)]

)
(5)

where Ĥ0 is the atomic Hamiltonian, m is the atomic mass and
{
ω,~kL

}
are respec-

tively the electric field’s frequency, wavevector and ,φ (~r0) is the reference phase of
the lattice which depends on a given position ~r0 such as a retro-reflecting mirror
position for example.
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In a two internal states picture, this Hamiltonian couples atomic states of different
momenta separated by integer numbers of ~kL. However, when we assume that the
laser detuning δ := ω−ω0, where ω0 is the internal state resonance frequency, is
large compared to :

• Γ , the excited state linewitdh

• ωD :=  h~k · ~kL/m, the Doppler frequency (where ~k is the atomic momentum)

• ωrec :=  hk2L/ (2m), the atomic recoil frequency

It is possible to adiabatically eliminate the excited state population which remains
marginally populated under the atom-light interaction. This results, in the rotating
wave approximation which neglects terms oscillating faster than δ, in the following
interaction Hamiltonian:

Ĥeff =
~̂p2

2m
+  hΩeff (~r) cos2

(
~kL ·~r

)
(6)

This Hamiltonian only acts on the external motional states of the ground-state. It
can be interpreted as a spatial potential lattice with amplitude Ωeff = Ω20 (~r) / (2δ),
where Ω0 (~r) := − 〈e| ~̂d · ~E (~r) |g〉 / h is the single photon Rabi frequency. This effective
interaction energy, as called light shift, emphasizes the parallel between atom optics
and classical optics for which periodic structures in matter play a similar role.

Now that we have the appropriate theoretical tools, we are going to discuss two
particular applications of this Hamiltonian which correspond to short and large in-
teraction times: the Kapitza-Dirac and Bragg regimes.

1.2.2 Kapitza-Dirac regime

This interaction regime owes its name to the theoretically similar situation of an elec-
tron beam diffracted by a standing wave of light, discussed by Kapitza and Dirac in
1933 [93]. This regime corresponds to short interaction times tint with an intense op-
tical lattice during which the atom dynamic is neglected [94]. The simplest situation
in which this occurs is when an atom beam intersects orthogonally a standing light
wave as schematized on Fig. 6a. An initial plane wave with well defined momentum
kz,0 along z becomes, after the interaction:

|Ψ (q, τ)〉 =
∞∑

n=−∞ Jn (2qτ) |2n〉 (7)

where Jn (·) is the Bessel function of the first kind, |2n〉 is the momentum state in the
lattice direction 2nkL, q = Ωeff/ (4ωrec) is the dimensionless potential amplitude
and τ = ωrectint is the dimensionless interaction time5. This corresponds to a trans-

5 The validity of this approximation corresponds to τ < 1/
(
4
√
q
)

[95]
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(a) Kapitza-Dirac regime

Z

X

(b) First order Bragg diffraction

Figure 6: (a) Kapitza-Dirac interaction with an orthogonal standing wave. The incident atom
wave is diffracted into several momentum components due to the lattice wave vec-
tor distribution. The angular distribution has been exaggerated for visual clarity.
(b) When the atom beam angle of incidence fulfills the Bragg condition, the trans-
mitted atom wave corresponds to a superposition of two momentum states sepa-
rated by 2~kL. Only the first order Bragg diffraction is represented here.

mitted wave in a superposition of transverse momentum states kx = 2nkL which,

from energy conservation, have a longitudinal component kz,n =
√
k2z,0 − (2nkL)

2.
Physically, this process corresponds to the absorption and stimulated emission of

multiple photons with an angular distribution of momentum directions. On sees that
in this regime, the population in the diffracted states cannot be evenly distributed
between two states (atom Beam-Splitter) or completely transferred to a single mo-
mentum state (atom Mirror). The Bragg diffraction regime is much better suited for
separated arms interferometry.

1.2.3 Bragg regime

When the optical potential is shallow, q < 1, and the interaction time is large, τ > 1,
the Hamiltonian (6) couples two momentum states separated by 2n photon momenta
when the incident plane wave fulfills the nth order Bragg condition6:

sin (θB) =
nλdB
λ

(8)

6 This condition results from energy and momentum conservation only.
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This condition is represented on Fig. 6b for the first order Bragg diffraction (n = 1).
The transmitted state is in a coherent superposition [83] of momentum states |−1〉
and |1〉:

|Ψ (τ)〉 =
[
cos (qτ) |−1〉− ieiφ(~r0) sin (qτ) |1〉

]
(9)

where we included the lattice phase φ (~r0) = ~kL ·~r0, which was assumed to be zero
at ~r = ~0 in eq. (6) but needs to be taken into account in the general case as it is
imprinted on the diffracted state. Also, by tuning the argument of the sine and co-
sine functions, one can create an output state in either a momentum superposition
1/
√
2
(
|−1〉− ieiφ(~r0) |1〉

)
which corresponds to an atom beam splitter or an output

state in the opposite momentum state which corresponds to an atomic mirror7.

Velocity selectivity

To realize an atom beam splitter, the transit time has to be equal to 2π/Ωeff. How-
ever, as discussed in the Sec. 1.1, our atom beam has a velocity distribution with
an approximately 20% full width at half maximum. Therefore, the diffraction am-
plitudes are also distributed around a mean value corresponding to the interaction
time of the mean velocity. In practice, we use optical lattices with a top hat intensity
distribution with a diameter D = 8mm. In this situation, the mean interaction time τ̄
corresponding to the mean velocity atomic wave is:

τ̄ =
D

ū
(10)

In our case, τ̄ corresponds to 7µs. The diffraction sensitivity to the interaction time
distribution is maximum in the atom splitter for which the transmitted state coeffi-
cient is approximately linear in the interaction time. The atom beam velocity spread
results in a population imbalance of approximately 20% between the two outputs8.
However, in the symmetric configuration of a Mach-Zehnder interferometer, this
asymmetry compensates between the first and the last Bragg diffraction gratings
and the two interfering waves have similar or equal amplitudes. The interferometer
visibility should therefore be very close to 1 as it decreases slowly (see eq. (16) and
[83]) with the amplitudes imbalance:

V =
2
√
ρ

1+ ρ

where ρ is the intensity ratio of the two interfering waves. For a diffraction imbalance
as large as 20%, the theoretical maximum visibility is still larger than 0.97.

7 These transformations are usually denoted by π/2 and π pulses respectively which relates to the value
of qτ.

8 This means that instead of having a perfect 50/50 beam splitter, the relative population at the output is
60/40 for atoms having a velocity 12% smaller than the mean velocity.
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Bragg angle

The Bragg condition eq. (8) corresponds, in our interferometer, to an incident angle
of 87µrad. Due to the finite lattice width, the direction of the absorbed and emitted
photons is not perfectly defined. Their components along the propagation direction
are zero with an uncertainty of the order of ∆kL ∼ 1/D where D is the diameter of
the lattice beam. Therefore, the angular acceptance (FWHM) of the Bragg diffraction
can be estimated with:

δθ =
∆kL
kL

=
λL
2πD

For our experimental parameters, it corresponds to 14µrad ∼ θB/6. This small
acceptance angle is one reason why drastic collimation was necessary to remove
undiffracted atom waves from the transmitted beam.

Internal state selectivity

The theoretical model of eq. (6) assumed an ideal two-level atom which needs to
be extended in the case of 7Li internal structure. Three effects need to be taken into
account when considering Bragg diffraction on our lithium beam.

1. The fine splitting of the excited state is not negligible compared to the laser
detuning δ which increases the effective coupling between different momen-
tum states by allowing different intermediate excited states. The resulting two
photon Rabi frequency becomes:

ΩR =
Ω20
2

[
1

δ1/2
+

2

δ3/2

]

where δ1/2 (δ3/2) is the detuning from the D1 line 2S1/2 → 2P1/2 (resp. D2 line
2S1/2 → 2P3/2) transition and the factor of 2 comes from the dipole transition
term which is

√
2 stronger for D2 than for D1.

2. The hyperfine splitting of the ground state is not small compared to the de-
tuning of the Bragg laser9. Hence when lithium atoms are equally distributed
among the ground state sublevels, which is initially the case at the output of the
lithium source, they experience different Rabi frequencies due to their different
detunings. In practice, 7Li has two hyperfine sublevels F = 1 and F = 2 sepa-

9 Only the ratio of the laser power (proportional to Ω20) over the detuning determines the two photon
Rabi frequency. Thus for a given available laser power, the detuning, chosen as large as possible to
minimize spontaneous emission due to the excited level population, has a maximum value of the order
of 3.5GHz with our laser system (see Sec 1.2.4).
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rated by ∆HFS/ (2π) = 803.5MHz. If the laser detuning is defined with respect
to the F = 2 state, the Rabi frequency of the F = 1 state will be:

ΩF=1R =
Ω20
2

[
1

δ1/2 +∆HFS
+

2

δ3/2 +∆HFS

]

It is therefore not possible to realize simultaneously atom splitters and perfect
atom mirrors for the two sublevels.

3. The presence of 6Li (7.5% of natural abudance) in our lithium beam does not
hinder the interferometer performances as the 10GHz isotopic shift of 6Li 2S1/2

level leads to a much higher detuning which reduces the diffraction efficiency
for this isotope.

Let us now describe the laser system used in our interferometer as the available
laser power limits our laser detuning.

1.2.4 Laser setup

Figure 7: Schematic representation of the optical and mechanical setup used to produce three
Bragg lattices. The optical bench is represented from above and the atom beam
travels from the right to the left.

The light source is a dye laser developed by Biraben et al.[96]. It converts 5W of
laser light at 532nm produced by a diode-pumped solid state laser (Verdi) manufac-
tured by Coherent R© into, after a double stage optical isolator, approximately 400mW
of laser light at 671nm. Its wavelength is measured with a home-made wavemeter
which compares it to the wavelength of a thermally stabilized Helium-Neon laser.
The wavelength reading has an accuracy of 10−4 nm which corresponds to 70MHz

39



at 671nm. Finally, a Hansch-Couillaud [97] locking scheme is implemented with a
thermally stabilized external cavity to control the Bragg detuning in the MHz range.

The majority of the available power is then shaped into a larger beam with a radius
of ∼ 8mm which homogeneous part is diaphragmed with a blade iris into a flatter
intensity profile 8mm diameter. A set of polarization cubes and half wave plates
distributes the resulting power to the three Bragg lattices as schematized in Fig. 7.
The three retro reflecting mirrors are glued on optical mounts fixed on a 1.4m long
aluminum alloy beam. Each mount rotations around the ~Z and ~Y directions10 are
controlled by piezoelectric-actuators to superpose the reflected beam on the incident
beam. Indeed, the lattice wave-vector of a retro-reflected setup is orthogonal to the
mirror surface with progressive fringes parallel to it (see Sec. 1.3.2 for a discussion on
the effect of the wavevector difference between incident and reflected beam). Addi-
tionally, to scan the interferometric phase which depends (see eq. (9) and eq. (15)) on
the lattice phase, the third Bragg mirror can be translated along the ~X direction on a
full course of 10 λL with an accuracy of λL/1000. In practice, to limit the non-linearity
of the actuator, the mirror was translated in its central region over 1 λL to scan the
atom fringes.

As mentioned above, the interaction time with the Bragg standing wave corre-
sponds to a transit time near 7µs. To perform a Bragg mirror, we have an available
power of approximately 40mW in the second Bragg lattice which gives us a maxi-
mum detuning δ3/2/ (2π) = 3.5GHz. This limits the interference signal mainly via
two effects:

• The spontaneous emission rate during the π pulse is given by the excited pop-
ulation times the spontaneous emission rate :

Γspon '
Γ

2

Ω20
δ2
3/2

where we have used the two level atom (D2 line) picture for simplicity. This
quantity leads to atom losses because a spontaneously emitted photon has a
dipolar radiation diagram which almost always results in the deviation from
the Bragg condition. Therefore, we can evaluate this loss as Γsponτ̄ ∼ 0.3% for
the maximum detuning possible. Summed over the three Bragg pulses, this
leads to 1% loss in the transmitted atomic flux.

• The different diffraction efficiencies due to the hyperfine splitting11 leads to
an imbalance between the detected atoms in the F = 2 manifold and in the
F = 1 manifold. This has to be taken into account when the interferometric
phase depends on the sublevel (in particular in Chap 4 where the optical po-
tential depends on the orbital momentum projection on the quantization axis).

10 The rotation along ~Y was adjusted to optimize the Bragg diffraction at each lattice and the rotation
around ~Z was optimized mainly on the third grating by maximizing the interferometric visibility.

11 Note that in our case, the detuning is not very large compared to the hyperfine splitting, which is
approximately 1/4 of the total detuning.
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To quantify this, we distinguish the proportion P (F) of detected atoms in the
interferometer output by its deviation from equiprobability:

P (F) =


1+5χ
8 F = 1

1−3χ
8 F = 2

(11)

where χ is a parameter between −1/5 and 1/3. A detailled analysis described
in S. Lepoutre’s thesis [98] shows that with this value of detuning, χ is of the
order of −0.06. Which means that almost 75% of the detected atoms are in the
F = 2 state.

Now that the Bragg diffraction parameters have been defined, let us describe the
detector used to count the atom number on an interferometric output before giving
some useful expression of the total interferometric signal.

1.3 atomic signal

The schematized interferometer setup of Fig. 4 shows how the Mach Zehnder interfer-
ometer produces, when the Bragg pulses are not perfect, multiple closed interferom-
eters in addition to the principal one (the continuous green line diamond). In order
to select the desired interferometer output a detection slit of 50µm width12 is micro-
positioned 0.4m after the third laser standing wave. It prevents other interferometer
arms from entering the detection chamber (5th Chamber) where a hot wire detector
counts the transmitted atomic flux.

1.3.1 Hot wire detector

This hot wire detector consists in a rhenium ribbon (30µm× 760µm cross section)
heated to approximatelly 1500K. It relies on the principle developped by Langmuir in
1925 [99] and demonstrated by Taylor [100] a few years later. A complete description
and characterization of this system can be found in R. Delhuille thesis [101] and in
[102].

The principle of this detector relies on the ionization of the lithium atoms adsorbed
on the oxidized rhenium surface. This ion evaporation from the surface is a proba-
bilistic event which can be characterized by an exponential distribution. The resi-
dence time of the lithium ion on the wire surface follows the probability P (tres) ∝
exp (−tres/τ) with the characteristic time τ given by:

τ = τ0e
Eads
kBT (12)

12 Which corresponds to the geometric size of the lithium beam at the detector position.
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where τ0 ∼ 10−13 s is of the order of the ionic vibrational period close to the surface13,
Eads ∼ 2.95 eV is the adsorption energy of the lithium ion and T is the wire temper-
ature which was chosen as a trade-off between detection efficiency and dynamic14.
In our case, τ ∼ 200µs with a large uncertainty. The ionized atom is then focused
with an electrostatic lens on a channeltron which produces with a high probability
an electronic pulse at each impact. These pulses are then processed with a counter
interfaced with the acquisition panel. The overall detection efficiency is estimated to
30%.

1.3.2 Interferometric signal

The detected atomic signal at the indirect output is the coherent sum of the two
atomic waves in the diffracted state |1〉 which followed paths (A) and (B) as schema-
tized on Fig 4. These two paths interacted with the three Bragg lattices. From eq. (9), it
is straightforward to decompose each trajectory into elementary diffraction processes
which transform the momentum state |±1〉 into the superposition:

|±1〉 −→
[
eiφ

±(~ri)α±i (1) |1〉+ ieiφ∓(~ri)α±i (−1) |−1〉
]

In this expression, we have separated the diffraction phases from the diffraction
amplitudes:

α
±
i (±1) = cos (qiτi)

α±i (∓1) = sin (qiτi)

where the subscript i denotes the parameter of the ith lattice. These coefficients can be
collected for the two paths under consideration and lead to the following amplitudes
of the |1〉 output state:

aA = α−
1 (1)α+

2 (−1)α−
3 (1) ei[−

~kL,1·(~r−~r1)+~kL,2·(~r−~r2)−~kL,3·(~r−~r3)−
3π
2 ]

aB = α−
1 (−1)α−

2 (1)α+
3 (1) ei[−

~kL,2·(~r−~r2)−
π
2 )

where ~ri is a reference position which depends on the ith mirror position. When the
diffraction processes are perfect, the amplitudes |aA| and |aB| are identical, but in the
general case, the atomic intensity per unit area is:

Ĩ = |aA + aB|
2 = Ĩ0

[
1− Ṽ cos

(
~δk ·~r+φd

)]
(13)

13 The measured values available in the literature [102] are scattered due to the absolute temperature
determination.

14 Increasing the temperature clearly reduced the ionization time but also reduces the lithium ionization
probability because the oxide coverage decreases [102].
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where the vector ~δk:

~δk = ~kL,1 − 2~kL,2 +~kL,3 (14)

is a wavevector difference representing the superposition of the interferometer paths.
The phase φd is the diffraction phase which only depends on the lattices reference
phases. Its general form is:

φd = ~kL,1 ·~r1 − 2~kL,2 ·~r2 +~kL,3 ·~r3 (15)

The parameter Ṽ corresponds to the fringes visibility and is defined by:

Ṽ =
2 |aA| |aB|

|aA|
2 + |aB|

2
(16)

and the mean intensity per unit area is Ĩ0 = |aA|
2 + |aB|

2.
The detected interference signal is the integration of all the transmitted atomic flux

by the detection slit:

I =

∫
slit

Ĩ0

[
1+ Ṽ cos

(
~δk ·~r+φd

)]
d2~r

= I0 [1+V cos (φd)] (17)

where the reference position vector ~r extends over the detection slit which is approx-
imately 50µm = 74 λL! wide in the ~X direction and 1mm = 1500 λL!! high in the
~Y direction. To reduce the spatial differential phase shifts between these detected
signals, φspatial = ~δk ·~r, ~δk has to be as parallel as possible to ~Z. Because the ~X com-
ponents of the wavevector are already highly constrained by the simultaneous Bragg
conditions15 this wavevector difference mainly reduce to the ~Y projections. This com-
ponent is minimized by rotating the second mirror around the ~Z axis until the highest
visibility is obtained.

To scan the interferometric fringes, one can either add a controlled interaction on
the atomic paths which usually results in an additional phase φint in the cosine
argument or one can change the laser diffraction phase by changing the position of
one mirror which acts as a reference frame for the lattice phase. This can be done
by translating the retroreflection mirror of the 3rd Bragg lattice which changes the

15 The differential component on the ~X direction is necessary much smaller than θBkL which results in a
negligible spatial phase shift of 5mrad (for a factor of 1/10).
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corresponding phase reference Φi by an amount proportional to the displacement
induced along the ~X direction mainly, δ~x:

δΦ3 = 2~kL,3 · δ~x (18)

This phase scan was continuously measured in order to reduce the number of param-
eters used to fit the interferometric fringes.

Optical Michelson interferometer

This measurement was performed with an optical Michelson interferometer which
uses the third Bragg mirror as a retroreflecting mirror. It is represented on Fig.7 and
consists in a Helium-Neon laser at 633nm split under vacuum, retro-reflected on M3
and interfering after the beam splitter with another reference arm . The optical inter-
ference fringes are detected outside vacuum on a photodiode. The detected fringes
are a function of the path difference between the two arms which depends on the
third mirror displacement δ~x (V):

δΦMichelson (V) = 2~kHe−Ne · δ~x (V) (19)

where ~kHe−Ne is the wavevector of the He-Ne induced lattice and V is the voltage ap-
plied to the piezoelectric actuator. The Michelson interferometer arm was positioned
below the atomic beam and does not interact with it. Due to non-linearities, the mir-
ror displacement δ~x (V) is expressed as a polynomial of order 3 in V in order to fit
accurately the fringe signal of the Michelson interferometer ΦMichelson (V). Apart
from a constant phase shift, the diffraction phase can be expressed by:

φd (V) = KδΦMichelson (V) +φd,0 (20)

where K is a constant coefficient equal to kL,3/kHe−Ne ∼ 0.94 which depends on the
projection of the He-Ne wavevector on the lattice wavevector. The phase φd,0 should
be constant if the X position of the mirrors were perfectly stable in time. However
because of thermal distortion of the mirror support it is slowly drifting in time (see
Fig. 8b). A typical atomic fringe as a function of the detected Michelson phase is
represented on Fig. 8a with the corresponding fitting coefficients.

Additional phase shifts

It is usual to group the different phases that are either part of the diffraction phase or
from other sources into some generic denominations that allow to discuss each effect
separately.

1. Lattice phase: This corresponds to the phase difference of the two interfering
laser beam forming the Bragg lattice. In our case, because the coherence length
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Figure 8: (a) Interferometric signal during a 100 s scan. Each points corresponds to a 1 s inte-
gration of the detected atoms. The black line is a result of a fit with eq. (17) which
gives I0 = 9.8× 103 atom/s , a visibility V of 71%, K = 0.88 and φd,0 = 0.4 rad (see
eq. (20)). For this recording, the atomic flux was quite low compared to an optimal
configuration.
(b) Drift of the diffraction phase reference φd,0 minus its initial value during a 2h
period. The graph is adapted from A. Miffre thesis [85]. The stars correspond to
the measured mean phases during 5min scanning periods and indicates a linear
drift of 7.4(2)mrad/min. The residual of the linear fit is represented at the bottom
with circles. A clear oscillation correlated to the temperature of water-cooled baffles
used for the two VHS 1200 oil diffusion pumps is visible. Indeed, the period of this
oscillations is close to 20min which corresponds to the period of the water cooler
used for the pumps.

of the dye laser is much larger than the path length difference between the
Bragg lattices, it can be treated as zero. But when the laser frequencies come
from different sources, their differential phase fluctuations needs to be taken
into account. Also, when the reflected beam acquires a differential phase shift
(such as the Pancharatnam phase in Chap. 3) this needs to be accounted for.

2. Sagnac phase: This phase is due to the global lattices rotations during the inter-
ferometer inducing a different laser phase probed by the two paths. Its general
form is

φSagnac = 2m~Ω · ~A/ h (21)

where ~Ω is the angular rotation speed and ~A is the interferometer’s enclosed
area. In our interferometer, the area is parallel to the floor which gives a projec-
tion coefficient sin (λToulouse), where λToulouse is the laboratory’s latitude. It
corresponds to 640mrad [103].

3. Zeeman phase: The phase difference between the two paths depends on the
integrated atomic energy along each paths. When a non zero magnetic field is
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experienced by each arm, the atomic ground state first order Zeeman shift leads
to a differential phase between different Zeeman sublevels:

φZeeman (F,mF) = −
µBmFgF

 h

∫ ∥∥∥~B (t)
∥∥∥dt (22)

where µB is Bohr’s magnetic moment and gF is the hyperfine level landé factor.
This phase vanishes when the field is homogeneous but, when a magnetic field
gradient exists bewteen the two arms, a differential Zeeman phase shift has to
be included in the interferometric phase. This is discussed in details in [89]. As
an order of magnitude, one can estimate the effect of a constant gradient orthog-
onal to the propagation direction. With a 20mG/mm gradient, the differential
phase between the two paths will be approximately π. This constraining condi-
tion shows how the magnetic environment needs to be controlled for mF 6= 0

atomic states.

4. Interaction phase: This phase, denoted φint includes any kind of induced
phase shift between the two paths.

1.3.3 Fringe visibility

The total interferometric signal is an incoherent superposition of:

• Different hyperfine component contributions, with varying populations P (F)
(see eq. (11)), and phases (see eq. (22)).

• Different velocity components in the atomic beam, with different diffraction
amplitudes cos [Ωeffτ (v)] (see eq. (9)) and dispersive phases.

• Different spatially distributed signals with different phases and possible overlap
between interferometric outputs.

Therefore, it is a useful simplification to collect these effects into the expression:

I = I0

[
1+Ve−

〈φ2〉
2 cos (φm)

]
(23)

where
〈
φ2
〉

is the variance of the mean phase φm. This expression captures the in-
terferometric signal behavior when all the differential phase effects on the incoherent
components are small compared to the mean phase16. This model shows that to get
the highest visibility, implying the highest phase sensitivity, one should keep the
phase variance on each path to a minimum. It also tells us that a visibility change

16 This expression also assumes a Gaussian distribution of the total phases which is a typical assumption
in term of noise sources and can be acceptable for the velocity dependent phases. Yet it is far from being
justified for the different Zeeman populations or for spontaneous emission processes. However, it is still
instructive for the aforementioned effects.
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informs us on the phase spread on each path (as is used for the optical pumping
characterization used in Chap 4).

1.3.4 Phase sensitivity

When a small interaction phase shift δφint is added to the diffraction phase, it is con-
venient to keep the later constant and close to π/2 to have the highest phase sensitivity
of the interferometric signal. In this situation, the atom intensity is approximately lin-
ear in the interaction phase: I (δφint) ∼ I0 + I0Vδφint. From this expression we can
estimate the smallest phase shift measurable by considering that all noise sources
are below the fundamental Poissonian noise induced by the discrete atomic count.
The phase sensitivity σφ, defined as the ratio of the 1σ statistical phase deviation per
square unit of frequency17, is:

σφ,count =
1

V
√
I0

(24)

which is around 7mrad/
√

Hz for our interferometer used at its highest performance
(V = 80% and I0 = 3× 104 atoms/s). Usually, we do not use this kind of measure-
ment process and prefer to scan a few fringes to get rid of drifts as described previ-
ously. The resulting phase sensitivity is in this case

√
2 larger σφ,count ∼ 10mrad/

√
Hz.

In addition to this fundamental phase noise, additional perturbations (such as vibra-
tions of the mirror support) can induce phase fluctuations. This is discussed in details
in [104] were the main source of phase noise, the Sagnac18 noise, was identified and
accounted for most of the visibility reduction of eq. 23. This noise has a vanishing
average value and its effect is already taken into account in eq. (24) which uses the
measured fringe visibility.

Phase drift

When the Michelson phase is used as a reference for the diffraction phase, a constant
term φd,0 was used to link the two quantities. In practice, this term was subject
to a rather large drift of a few 7.4(2)mrad/min when measured by A. Miffre [85].
This is represented on Fig. 8b where this "constant" phase is plotted as a function
of the acquisition duration. This drift was highly correlated to temperature drifts of
the mirror supports induced by the steady increase of the setup temperature during
the day. This is the reason why we mainly used a measurement procedure which
acquired simultaneously the diffraction phase without additional interaction phase
which was used as a reference. Details on this procedure are given in Chap. 4 Sec.
4.3. It resulted in a factor of two larger phase noise σφ,count ∼ 20mrad/

√
Hz which

17 In other words,
〈
φ2
〉
= σ2φ,count1/Tacq where Tacq is the phase acquisition time.

18 Called hence because it can be expressed as an effective rotation of the mirrors position during the
interferometer which leads to a phase shift proportional to the angular velocity and the enclosed inter-
ferometer area
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allowed to measure phases with a 1mrad statistical uncertainty in less than an hour
of operation, depending on the interferometer performances.

1.4 conclusion

In this chapter, we have described the lithium interferometer developed in Toulouse.
The characteristics and performances of its three main components, the lithium source,
the diffraction lattices and the hot wire detector, were discussed. In addition, some
theoretical aspects of the diffraction process were described which will be useful
in the second part of this thesis. Emphasis was made on the interferometric signal
which involves many effects, such as Zeeman shifts and vibrational noise, implicitly
included in the simple expression:

I = I0 [1+V cos (φ0 +φd +φint)] (25)

where we have collected in φ0 all additional phase shifts and have used a global
visibility resulting from differential diffraction efficiency and phase dispersion. With
this description, we should have all the tools necessary to describe the first part of
my work during these three years which were:

• Chap 2: The demonstration and characterization of a Kerr modulator for atom
interferometry.

• Chap 3: The development of a new tool for continuously phase shifting an atom
interferometer phase, the Pancharatnam phase shifter

• Chap 4: The measurement of 7Li,
∣∣
2 S1/2, F = 2,mF = 2

〉
’tune-out’ wavelength,

at which its polarizability vanishes.
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In this chapter, we describe a phase modulator for atom-waves, which is the perfect
atom-optics analogue of the Kerr modulator for light waves [105]. The Kerr effect is
the variation of a medium’s refractive index produced by the application of an electric
field. The variation is quadratic in the electric field amplitude for a large variety
of media and this effect has been used to modulate the phase of light waves. This
modulation induces frequency side-bands in the spectrum which can be detected
via wave-beating. We implemented the equivalent of this side-bands homodyne and
heterodyne detection in our interferometer by modulating the refractive index of
the atom waves. We briefly present the concept of electrical wave modulation, its
extension to matter waves and summarize the experiments which already produced
phase modulation of atom waves. Then, developing a theoretical model, we derive the
modulation amplitudes that we can expect from our experiment. Finally, we describe
in more details our phase modulator and compare the obtained spectra with our
model.
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2.1 wave modulation

2.1.1 Classical phenomenon

Wave beating is ubiquitous in physics [106]. It was discovered with acoustic waves
and extended to electromagnetic waves, from radio-frequencies to the laser domains.
It simply relies on the superposition of multiple waves oscillating at different frequen-
cies. For electromagnetic waves it can be written, in the simpler case of two fields
along the same polarization axis, as: Etot = E1eiω1t + E2ei(ω2t+φ) +C.C., where E1
and E2 ere the fields amplitudes, ω1 and ω2 their frequencies and φ is a phase shift.
Simple algebra yields a total intensity, 〈Itot (t)〉=I1+ I2+

√
I1I2 cos [(ω1 −ω2) t−φ],

where I1 and I2 are the respective intensities of the two fields. This expression as-
sumes that the detector bandwidth is higher than the frequency difference: |ω1−ω2|
but lower than ω1 and ω2. The sum of two waves of different frequencies thus in-
duces an intensity modulation, called a beat note, which is a signature of this differ-
ence averaged by the detector. This effect is commonly used for frequency compari-
son especially since the advent of the frequency comb [107]. The generation of waves
oscillating at different frequencies from a single-frequency source is commonly done
for electro-magnetic waves. For example, by modulating the electric field’s amplitude.
The resulting field is EAM = Ece

iωct [1+M cos (ωmt+φ)], where ωc and ωm are
the carrier and modulation frequencies, M is the modulation amplitude and φ is the
modulation phase. One can express the total electric field as a superposition of three
frequencies1:

EAM = Ec

{
eiωct +

M

2

[
ei(ωc+ωm)t+iφ + ei(ωc−ωm)t−iφ

]}
and the intensity reads:

IAM (t) = Ic

[
1+

M2

2
+ 2M cos (ωmt+φ) +

M2

2
cos (2ωmt+ 2φ)

]
displaying frequencies at the modulation frequency and its first harmonic. This method
is useful for extracting a signal from a noisy low frequency environment2 because it
can be synchronously mixed with the modulating signal and purified of modula-
tion harmonics. This is called homodyne detection and is used in communication
protocols or spectroscopy [110] in many different configurations: multiplexing, am-
plitude modulation, frequency modulation or phase modulation. The latter consists
in modulating directly the electromagnetic wave’s phase to generate side-bands at
the modulation frequency harmonics:

1 When the modulation frequency is much smaller than the carrier frequency, the additional frequencies
appearing in the spectrum are usually called side-bands.

2 Which can be due to low frequency intensity noise or electrical background noise see [108], [109].
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EPM = E0e
i(ωt+φm sin(ωmt))

= E0

+∞∑
p=−∞ Jp (φm) ei(ω+pωm)t (26)

Where Jp (·) is the Bessel function of the first kind. To produce this phase modu-
lation, one can modulate the refractive index n of the medium in which the wave
propagates with an additional electric field E (t). A second order expansion of the
refractive index modulation leads to:

n (t) = n0 +n1E (t) +n2E (t)
2

where n1 and n2 are in fact tensors of rank 1 and 2 respectively if the medium is
a crystal. The linear term n1E (t) is the Pockels effect and exists only in non-centro-
symmetric crystals3. The quadratic term n2E (t)

2 is the Kerr effect and corresponds
to the self interaction between the induced electric dipoles in the medium and the
applied electric field.

These wave modulation techniques essentially rely on the superposition principle
and on the wave description of electrical fields, which motivated us to extend it to
atoms. But let us first present how this can, and has been, done with matter waves.

2.1.2 Quantum extension

Following the description of Sec. 1.2, producing different frequency components in
an atom wave requires to create a coherent4 superposition of different energy states.
Diffraction is a general technique which describes the interaction of an incident plane
wave |ki,Ωi〉 ( hki: momentum,  hΩi: energy) with a perturbation periodic in space
and time. This interaction can transfer p quanta of momentum  hκ and energy  hω,
thus producing a superposition of plane waves |ki + pκ,Ωi + pω〉.

Contrary to electromagnetic waves, the vacuum is dispersive for matter waves,
which limits the range of detectable modulation frequencies. The dispersion relation
being  hω =

 h2k2

2m +mc2 in a non-relativistic description of matter waves, where m
is the particle’s mass and k its wave-vector. The phase velocity is vϕ =

(
v2g + c

2
)
/vg,

where vg is the wave’s group velocity. Clearly vϕ is always greater than c ! This
quantity does not describe any physical observable and the only relevant quantity
is vg which corresponds, for an atom, to its classical velocity. The dispersion of the
propagation delay between the modulation region and the detector can wash out
the phases between the different energy states. The average value of the propagation
delay is given by τprop = D/vg whereD is the distance between the diffraction region
and the detection region. Its dispersion leads to a maximum modulation frequency:

3 For example Lithium Niobate (LN) partially doped with magnesium oxyde and Potassium titanyl phos-
phate (KTP) are commonly used in Electro-Optic Modulators (EOM).

4 This ensures that the differential phase between different frequency components does not blur the
beating signal
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ωmax,p/(2π) =
1

∆τc

=
v2g

D∆vg
(27)

which corresponds to a phase spreading of 1 rad between the carrier and the side-
band. The resulting "decoherence" can however be circumvented by heterodyne de-
tection of the matter wave sidebands whose frequency difference is smaller than
ωmax,p/(2π). Another typical frequency of matter waves is the frequency width of
the source. This frequency gives an idea of the lowest detectable modulation fre-
quency which does not require homodyne techniques for longitudinal modulation.
For an atom wave of mean longitudinal velocity vg and of width ∆v, the longitudi-
nal coherence length is lc := λdBvg/∆vg which, expressed in frequency unit, gives a
minimum modulation frequency:

ωmin,s/(2π) =
mvg∆vg

 h

=
Ωg

2π

2∆vg

vg
(28)

where Ωg/(2π) = Ekin/h is the wave mean kinetic energy (in frequency unit). The
minimum modulation frequency is thus a fraction of the wave frequency. Orders of
magnitude of these two frequencies are listed in Tab. 2.

Matter wave vg(m/s) ∆vg(m/s) D(m) ωmin,s/(2π) ωmax,p/(2π)

Electron beam 108 100 1 10 THz 100 THz

Thermal atom beam 1000 100 1 1 THz 10 kHz

Cold neutron beam 10 0.1 1 1MHz 1kHz

Cold atom wave 1 10−4 10−2 10 kHz 10 kHz

Table 2: Maximum modulation frequencies for different type of matter wave experiments (7Li
was taken as a reference atom). The electron matter wave combines a small velocity
width and a high mean velocity which results in a high maximum modulation fre-
quency. For thermal atom beam and cold neutron beams, the propagation dispersion
limits the possible modulation frequencies at a few kHz. For cold atom experiments,
both frequencies are of the same order of magnitude.

The production of coherent superposition of different kinetic energies quantum
states has already been demonstrated with electrons, neutrons and atoms using vari-
ous techniques:
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Acoustic wave diffraction

In 1987, Hamilton et al.[111] used surface acoustic waves to diffract a grazing incident
neutron beam. They observed the direction of reflections on a quartz substrate which
was excited by electrodes transducers producing surface waves. The first order of
diffraction peaks are clearly resolved. This technique was latter on extended to atomic
waves on vibrating "surfaces" [52], [112].

Evanescent wave diffraction

In 1995, Dalibard’s group [52], [113] used a repulsive evanescent wave on the surface
of a prism, produced by an internally totally reflected laser beam, to create a superpo-
sition of different kinetic energy states by modulating (∼ 1MHz) the intensity of the
evanescent wave. They showed the appearance of different kinetic energy states in
their time of flight signal. The year after, they used a similar configuration to create a
series of temporal slits of controlled length and delay. An incident atom wave, freely
falling orthogonal to the surface could be absorbed (reflected) depending on their
arrival time on the "atom mirror" and whether the laser was turned Off (On). Chop-
ping the atom beam with these temporal slits resulted in temporal interference signal,
which proved the coherence between the different side-bands. The interference signal
from [113] is presented on Fig 9a.

Bragg diffraction with modulated potential

The same year, Zeilinger’s group [114] experimentally demonstrated that an ampli-
tude modulated standing light wave produces "dynamic" Bragg scattering of an in-
cident metastable Ar beam which incident angle was detuned from the Bragg angle.
Indeed, modulating the light grating intensity produced frequency side-bands that
matched the recoil frequency and restored diffraction. This phenomena is easily un-
derstood in the atomic rest frame. For example, if the incident angle is higher than
the Bragg angle θ = θB +∆θ > θB, the intensity modulation in the rest frame of the
atoms is higher than the recoil frequency. Therefore, adding a frequency modulation
co-propagating with the atoms reduced the frequency of the intensity modulation.
This effect restores energy conservation and diffraction. The produced side-bands
are detected by spatial filtering of the transmitted atomic beam, as shown on Fig
9b. They verified the coherence of the diffracted beams by probing the atomic in-
terference pattern with an absorbing grating. The transmitted intensity revealed the
beat notes oscillating at the modulation frequency which could be phase-shifted by
shifting the phase of the Bragg beam intensity modulation.

Time-dependent Zeeman interaction

In 1995, Werner’s group [115] applied a time dependent Zeeman splitting between
two spin states on one arm of their Mach-Zehnder neutron interferometer. They ob-
served the Fourier spectrum of their interference signal to extract the amplitudes of
the two spin states for different numbers of absorbed or emitted photons. These num-
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bers correspond to different side-bands in their energy spectrum. This method was
also used by Pritchard’s group to investigate coherences in a supersonic Na beam
and to rephase its different longitudinal components [116], [117].

(a) Time interference (b) Bragg diffraction

Figure 9: Figures from Dalibard’s experiment on evanescent mirrors temporal slits [113], and
from Zeilinger’s experiment on "dynamic" Bragg scattering [114].
(a): Interference pattern obtained in the temporal Young’s slits experiment display-
ing constructive (destructive) in the top (bottom) panel. The phase shift was in-
duced by changing the evanescent wave strength.
(b): Intensity of diffracted atoms as a function of their incident angle for different
intensity modulation frequencies. The central peak corresponds to the ’static’ Bragg
diffraction peak centered at ∆θ = 0 while the wings corresponds to the ’dynamic’
Bragg diffraction peaks which appears for symmetric angle due to the symmetric
side-bands generated by the modulation

Atom laser modes

In 2002, Aspect’s group [118] used the continuous out-coupling from a Rubidium
condensate (known as the atom-laser) to demonstrate the possibility to mode-lock the
freely falling exiting waves. In practice, they frequency modulated the out-coupling
RF to produce coherent energy side-bands that interfered into short coherent pulses
of atoms. A similar setup had been used a few years before by Bloch et al.[119] to mea-
sure the spatial correlation function in a condensate. The principle of the experiment
was to use slightly different RF frequencies which, due to the gravitational potential,
out-coupled atoms from different height in the condensate. In this situation, the two
freely-falling waves interfered and the visibility of the pattern was a signature of the
spatial coherence in the condensate.

Rotating grating diffraction

In 2003, Frank et al.[120], sent a neutron beam on a rotating silicon grating acting as a
phase modulator via a real index of refraction. They analysed the energy spectrum of
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the diffracted beam and detected energy side-bands. Due to the small neutron mass
and velocity (4.5ms−1), the kinetic frequency is relatively small and its spread is
relatively narrow (Ekin/h ' 25MHz and ωmin,s ' 1MHz). Because the frequency
of the phase grating could be as high as 1.7MHz, they were able to clearly resolve
side-bands in the energy spectrum.

Modulation in time

Side-bands generation had already been convincingly demonstrated with neu-
trons, electrons and atoms. The coherence properties of diffraction in time pro-
cess have been clearly shown for various techniques such as :

• Intensity modulation of a light grating.

• Zeeman interaction with an oscillating magnetic field.

• Modulated out-coupling from a Bose Einstein Condensate

• Modulation of an effective refractive index

The phase modulator we developed aimed at resolving the generated en-
ergy side-bands via heterodyne wave-beatings in order to quantitatively com-
pare the diffraction in time experiments to theory (diffraction amplitudes and
phases). This technique is very general and applicable to a wide range of in-
terferometers and can be used as a tool for heterodyne measurements of high
frequency phase shifts.
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2.2 theoretical description

2.2.1 Naïve description of the phase modulation

We consider the description of an atom of mass µ propagating freely in the +z di-
rection. At time t = 0 the atom enters a region, localized in space, in which its
potential energy depends on an external oscillating parameter. Semi-classically, we
can describe this atom with an initial wavepacket having a group velocity vi local-
ized in space at the position z (t) = vit. Because the potential is constant in the
transverse direction on a scale which is much larger than the de Broglie wavelength
λDB = h

µvi
∼ 53 pm we can neglect the transverse dynamics and reduce our study to

a one-dimensional Schrödinger equation:

i h
∂Ψ

∂t
=

[
−

 h2

2µ

∂2

∂z2
+U (z (t))

]
Ψ

Because of the linearity of this equation, we can simplify our study to the case of
a single initial plane wave |ki,Ωi〉 (initial wave-vector ki and energy Ei =  hΩi).
Analytically, because of the relation between space and time z (t) = vit, the spatially
localized interaction potential can be described by a purely time dependent potential
which is schematized on Fig. 10:

U (t) =

 0 if t 6∈
[
− L
2vi

, L2vi

]
U0 +UM cos (ωt) for t ∈

[
− L
2vi

, L2vi

] (29)

In the static approximation, when the oscillation frequency ω is much lower than
the inverse of the transit time 2πτ , the problem simplifies to the rectangular potential
barrier treated in any introductory course on quantum mechanics [121]. The trans-
mitted plane wave, in the weak potential approximation, is equal to the incoming
wave phase shifted by φ (t) = −∆kL = −U0

(t)kiL
2Ei

= −U0
(t)τ
 h . where ∆k is the wave-

number difference between the interaction region and free space, U0 (t) is the height
of the potential perturbation during the interaction. In this situation, energy is a con-
served quantity and no side-bands can be created. This result is exactly the first order
perturbation phase shift demonstrated by [122] which states that the phase shift ac-
cumulated by a plane wave in presence of a stationary perturbation U (z) can be
expressed as :

φ = −
1
 h

∫
Γ
(0)
cl

U (z (t))dt (30)

where Γ (0)cl is the unperturbed classical path of the particle. The time dependence
here is only fortuitous and comes from the propagation of the plane wave. However,
if one extends naïvely this expression to our time dependent potential (discarding
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Figure 10: Interaction region: We are interested in a time dependent, localized potential, act-
ing on a propagating atom wavefunction. Because of the propagation, the spatially
restricted potential appears as purely time dependent, which starts at t−i = − L

2vi

and ends at t+i = L
2vi

. The reference time being taken at the center of the interac-

tion region. Here, vi =
 hki
µ is the atoms classical velocity associated with |ki,Ωi〉

and L is the spatial length of the interaction region.

the constant step potential U0 for simplicity), the resulting phase shift would be, for
a plane wave of wave-vector ki = mvi

 h :

φ (t) = −
2UM
 hω

sin
(
ωL

2vi

)
cos (ωt) (31)

and the resulting transmitted wave |Ψt〉 = |Ψi〉 eiφ(t) is5:

|Ψt〉 = Ai
+∞∑
p=−∞ (−i)p Jp (φm) ei(pω+Ωi)t |ki,Ωi〉 (32)

The time dependent phase shift in this expression can be interpreted as a coherent
superposition of different energy states |kp,Ωi + pω〉, where kp =

√
 h
2µ

(Ωi + pω),
diffracted by the potential and coincides with the expression we get by considering
the phase diffraction eq. (26) of an optical field by a Kerr cell. This cannot be obtained
in a time independent approximation which conserves the atom wave energy. In the
next section, we will demonstrate rigorously that this description of the transmitted
state is correct.

5 Using the Anger-Jacobi expansion [123] for e−iz cos(u) =
∑+∞
n=−∞(−i)nJn (z) einu.
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2.2.2 Diffraction in time

Due to the fact that the maximum potential height in our experiment is of the or-
der of a millionth of the incoming wave’s kinetic energy, we will completely ne-
glect the reflected wave in our treatment6. In addition, the modulation frequency
ω < (2π)30 kHz is much less than the typical kinetic energy of the atomic beam :
Ei/ h ' (2π)9 THz, which cancels the probability of backward scattering, justifying
this approximation.

The problem of diffraction in time has been discussed by Li and Reichl [125] and
consists in two sets of infinite number of continuity equations. In our case, due to the
hypothesis of negligible reflection, we can obtain a closed form for the transmitted
wave. To do so, we will adapt their formalism and use the same Floquet approach.

Floquet expansion

Separating the atomic propagation into three regions, the free space propagation re-
gions (I and III) and the interaction region (II), one can solve the Schrödinger equation
in each region and combine the resulting expressions. As the freely propagating so-
lution are well known, we will focus on the interaction region. When the oscillating
potential U (t) is periodic in time of period T = 2π

ω , the Floquet theorem states that
the solutions to the Schrödinger equation in the region II can be written in the form:

ΨIIF (z, t) = e−iEFt/ hφ (z, t)

where EF is the Floquet eigen-energy and φ (z, t) is an unknown periodic function of
period T . Due to the homogeneity of the potential, finding the solution in region II
reduces to solving the separable Schrödinger equation [126]:

(
EF +

 h2

2µ

∂2

∂z2

)
φ (z, t) =

(
U (t) − i h

∂

∂t

)
φ (z, t)

which have solutions of the form φ (z, t) = g (z) f (t). Denoting E the separation
constant, one get the un-coupled set of equations:

−
 h2

2µ

d2g (z)

dz2
+U0g (z) = Eg (z) (33)

i h
df (t)

dt
−UM cos (ωt) f (t) = (E− EF) f (t) (34)

6 In a step potential, for low amplitude, the reflection coefficient reduces to
(
U0+UM
Ei

)2
which is in our

situation negligible. Furthermore, the distance over which our potential rises is large ∼ 1mm [124]
which does not change significantly over one atomic wavelength (54 pm) and this circumstances further
reduces the reflection probability.
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Solving eq. (34) and using the periodicity of f allows us to specify the separation
constant E = EF +m hω for a given m ∈ Z. Therefore, for each m ∈ Z the two
equations (33) and (34) admit solutions labeled by m:

fm (t) = fm (0) e
− i

 h

[
m hωt+

UM
ω sin(ωt)

]
gm (z) = gm (0) eiqmz

where qm = ±
√
2µ
 h (EF +m hω−U0) is the wave-vector inside the diffraction region.

We can collect these solutions in a compact form for the general solution in region II:

ΨII (z, t) =
+∞∑

m,n=−∞amJn
(
UM
 hω

)
ei(qmz−[ΩF+(m+n)ω]t) (35)

where ΩF = EF
 h is the Floquet frequency and am is a constant coefficient.

Continuity equations

The single incoming wave |ki,Ωi〉 in region (I) and the transmitted wave in region
(III) can be expressed as:

ΨI (z, t) = Aie
i(kiz−Ωit)

ΨIII (z, t) =

+∞∑
p=−∞Ape

i(kpz−Ωpt)

where, for the time being, (kp,Ωp)p∈Z (wave-vector, energy) is an arbitrary basis set
for freely propagating waves. Equating the wavefunctions at the borders:

(a) ΨI
(
−L2 , t

)
= ΨII

(
−L2 , t

)
∀t

(b) ΨII
(
L
2 , t
)
= ΨIII

(
L
2 , t
)
∀t

induces a convenient choice for ΩF (which was defined modulo ω): ΩF = Ωi and
shows that the only non-zero elements of the basis for the third region are defined
by energies Ωp = Ωi + pω and their associated wave-vectors. Now, one can extract
from these continuity equations the following infinite set of equations:

∞∑
m=−∞amJ−m

(
UM
 hω

)
e−i

qmL
2 = Aie

−i
kiL

2 (36)

∞∑
m=−∞amJn−m

(
UM
 hω

)
e−i

qmL
2 = 0 ∀n ∈ Z∗ (37)

∞∑
m=−∞amJp−m

(
UM
 hω

)
ei
qmL
2 = Ape

i
kpL

2 ∀p ∈ Z (38)
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To solve eq. (36) and eq. (37), we need to use the property of Bessel’s functions:

Jn (u+ v) =

∞∑
m=−∞ Jm (v) Jn−m (u)

which, reduces to7:

δn0 =

∞∑
m=−∞ J−m (u) Jn−m (u) (39)

where δn0 is the Kronecker delta. From the similarity between eq. (36), eq. (37) and
eq. (39), we can directly extract that one solution (and thus the only one by unicity of
the solution of a linear differential equation with well defined boundary conditions)
satisfies:

am

Ai
ei

(ki−qm)L
2 = J−m

(
UM
 hω

)
Replacing the resulting expression for the am coefficients in eq. (38) we get the renor-
malized diffracted amplitudes:

Ap

Ai
=

∞∑
m=−∞ J−m

(
UM
 hω

)
Jp−m

(
UM
 hω

)
ei

(2qm−ki−kp)L
2 (40)

Approximation

To describe further the diffraction amplitudes, one can expand to first order8 the
phase appearing in the sum eq. (40):

kp ' ki

(
1+

pω

2Ωi

)
qm ' ki

(
1+

mω

2Ωi
−

U0
2 hΩi

)
collecting identical terms and factorizing terms independent of the summation index
m, we obtain the following diffraction amplitude:

Ap

Ai
= e

−i
U0L
 hvi e−i

pφ
2 (−1)p

∞∑
m=−∞ Jm

(
UM
 hω

)
Jm−p

(
UM
 hω

)
eimφ

7 It simply follows from parity properties and the specific choice of v = −u, recalling that Jn (0) = δn0
8 It is again justified by the height of the potential step compared to the initial energy (ω,U0/ h)� Ωi
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where φ = ωL
vi

. In this expression, one directly recognizes the phase shift due the
constant potential U0 which is identical for all terms. We can simplify it by using the
Graf’s generalization [127] of the Bessel’s sum rule eq. (39):

Jν ($) exp (iνχ) =

∞∑
m=−∞ Jν+m (u) Jm (v) exp (imα) (41)

$ =
√
u2 + v2 − 2uv cosα

u− v cosα = $ cosχ

v sinα = $ sinχ

where, for (u, v) ∈ R+,∗ and α ∈ [0,π], $ and χ are real and positive. According to
[127], the validity condition |ve±iα| < |u| can be removed for ν ∈ Z which is our case.
Substituting α = φ, χ = π−φ

2 and $ = 2UM hω sin
(
φ
2

)
, one gets a simple expression

for the diffracted amplitude:

Ap

Ai
= e

−i
U0L
 hvi (−i)p Jp

(
2
UM
 hω

sin

(
φ

2

))
(42)

This expression is equal to the static approach of eq. (31). Indeed, our hypothesis of a
small potential completely justifies the first order WKB approximation in which only
the phase of our wavefunction is affected by the potential.

2.2.3 Technical implementation

Now that we have a solid description of diffraction in time processes, let’s focus on
the interferometric signal that we can detect and on the significant quantities that we
can derive to test our model.

Electric potential and static polarisability

To produce an homogeneous oscillating potential that leads to significant time diffrac-
tion, one needs to maximize9 the argument of Bessel function in eq. (42). In this ar-
gument, three parameters can be, in principle, adjusted independently: the potential
height UM, the modulation frequency ω and the length10 of the interaction region L.
It is easier to distinguish between two frequency domains:

1. ωLvi � 1 ⇔ ω � ωtr = (2π) viL : for low frequency compared to the inverse of
the transit time in the interaction region, the argument of Bessel’s function is
independent of frequency and is maximum for large potential and long inter-

9 To produce a pth harmonic, 2UM
 hω sin

(
ωL
2vi

)
has to be of order p+ 1 which roughly corresponds to the

Bessel’s first maximum.
10 It is possible to also change the mean group velocity of our atomic beam vi by changing the beam’s

seeding gas, but only the ratio L/vi appears in the argument so L and vi are not independent parame-
ters.
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action region. Note that the frequency range over which this approximation is
valid decreases with L

2. ωLvi � 1 ⇔ ω � ωtr = (2π) viL : for high frequency compared to ωtr, one
should maximize the potential height and choose an interaction length L = viπ

2ω

to be at the maximum of the sinus function. However, one should be careful
that the velocity distribution does not wash out this maximum. In mathematical

terms, 12
∂2

∂v2i

[
sin
(
ωL
vi

)]
∆v2i =

(
π∆vi
2vi

)2
� 1. This reduces to ∆vi

vi
< 2
π , which is

verified in our case.

We opted for the first domain which has the advantages of allowing longer in-
teraction lengths for which homogeneous potentials with sharp edges (compared to
the total length of the interaction region) were easier to implement. Also we wanted
first to observe modulation frequencies lower than our detection bandwidth ∼ 1 kHz

which is limited by Langmuir Taylor detector. Moreover, the two electrodes separated
by one ground plate setup developed by S. Lepoutre [84] produced both a good elec-
tric field homogeneity and a long interaction region. This type of Kerr modulator had
already been used to compensate the phase spreading induced by the atomic velocity
distribution [128] or to measure the mean velocity of an atomic beam [129].

The principle of this interaction cell is to polarize the atom electronic cloud with
an electric field. By doing so, the induced electric dipole moment is proportional to
the electric field in the low frequency, low field limit11:

〈~p〉T = α0~E

where ~p =
∑
i qi~ri is total electronic dipole moment, where i indexes each electron,

the time average 〈〉T is taken over a time long compared to electronic dynamics, α0
is the static electrical polarizability, and ~E is the electric field. In turn, the interaction
of this induced dipole moment with the electric field shifts the ground state atomic
energy level by:

U (~r, t) = −2πε0α|~E (~r, t) |2 (43)

where we have used the polarizability volume α = α0
4πε0

. To produce a well controlled
electric field on each path of the interferometer we use, as can be seen on Fig. 11, two
capacitors separated by a thin aluminium foil, called "septum" by Pritchard’s group
which developed it initially [70], acting as a common ground. We apply, on each of the
capacitors, a small oscillating electric potential V1 ∈ [0, 15]V combined with a high

11 More details on this effect will be given in Chap. 4.
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static one V0 ∼ 800V to enhance the oscillating term. The electric field magnitude can
therefore be written:

|~Etot (z, t) |2 =
1

deff

{
V20 + 2V0V1 cos (ωt) + [V1 cos (ωt)]2

}
z ∈

[
−
L

2
,
L

2

]
(44)

where deff is an effective distance between the electrodes depending only on the
geometry of the capacitors. Because the oscillating potential is small compared to
the static one, we can neglect12the last term oscillating at 2ω. The resulting potential
experienced by each arms of the interferometer can therefore be expressed by:

Uα (t) = U0,α +U1,α cos (ωαt) (45)

where α denotes the two paths A and B. Because we detect the interference term
between the two paths, we chose the constant potentials to be equals U0,A = U0 =

U0,B. And used symmetrical modulation amplitudes to simplify the analysis U1,A =

−U1,B = U1. Depending on the goal of the experiment, to detect the pth harmonic,
we chose either identical modulation frequencies ωA = ωB = ω, when p2πω was
much higher than the detection time (∼ 1ms) allowing us the directly detect the
modulation or slightly different frequencies ωA −ωB = ω to perform heterodyne
detection. This slightly different frequencies configuration allowed us to measure the
beating of the diffracted signals when the modulation frequency was too high for our
detector.

Li source

EB(t)

EA(t)
VA(t)

VB(t)

L

laser standing waves
detector

collimation slits

detection slit

double capacitor

A

B

mirror 1 mirror 2 mirror 3

septum

Figure 11: Schematic representation of the interferometer and its interaction region. The two
paths A and B are separated by approximately 100µm and the length of the inter-
action region is approximately 48mm.

12 The amplitude of the corresponding phase shift is less than 1% of the main phase shift.
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Interferometric signal

From eq. (42) we can write the atomic state at the position of the detector as:

|Ψαarrival (vi, t)〉 = Aαi e
i
(
∓φd2 −

U0L
 hvi

) ∞∑
p=−∞ i

pJp (φ
α
m) ei(k

α
p(zd−zc)−Ωpt)

∣∣kαp ,Ωαp
〉

where we have included the differential phase due to diffraction φd [its sign is − (+)
for path A (B)], φαm = −

2U1,α
 hωα

sin
(
ωαL
2vi

)
, kαp ' ki +

kipωα
2Ωi

and Ωp ' Ωαi + pωα. The
travelling distance zd − zc corresponds to the position difference between the center
of the interaction region and the detection. Because the detector bandwidth is ap-
proximately 1 kHz, the interference term between the two paths will not discriminate
between the different states

∣∣kαp ,Ωαp
〉
α

, thus we can factorize the last expression into:

|Ψαarrival (vi, t)〉 ' Aαi e
i
(
∓φd2 −

U0L
 hvi

)
ei(ki(zd−zc)−Ωit)

∞∑
p=−∞ i

pJp (φ
α
m) eipωα(t−τprop) |ki,Ωi〉

' Aαi e
i
(
∓φd2 −

U0L
 hvi

)
ei(ki(zd−zc)−Ωit)eiφ

α
m cos[ωα(t−τprop)] |ki,Ωi〉

where we have introduced the propagation delay between the detector and the in-
teraction region τprop = zd−zc

vi
. Finally, we get the interference signal which corre-

sponds to the amplitude of the coherent sum of the two states:

Iarrival (t) =
∣∣∣∣ΨAarrival (vi, t)〉+ ∣∣ΨBarrival (vi, t)〉∣∣2

=
∣∣∣A(A)
i

∣∣∣2 + ∣∣∣A(B)
i

∣∣∣2 + 2Re
(
A

(A)
i A

(B)
i ei(φd+∆φm cos(ω(t−τprop)))

)
= I0 [1+V0 cos (φd +∆φm cos (ω (t− τprop)))] (46)

where ∆φm = φAm − φBm ' 2φAm, and we have simplified the result for the case of
identical modulation frequencies ωA = ωB = ω. A similar expression for the case
of slightly different frequencies, as well as a graphical interpretation of this result, is
presented in Sec. 2.2.3 . We have also introduced the average intensity and visibility
of the interferometric signals:

I0 =
∣∣∣A(A)
i

∣∣∣2 + ∣∣∣A(B)
i

∣∣∣2
V0 =

2
∣∣∣A(A)
i

∣∣∣ ∣∣∣A(B)
i

∣∣∣∣∣∣A(A)
i

∣∣∣2 + ∣∣∣A(B)
i

∣∣∣2
Because the detection time is not instantaneous, there is a slight average ionization

delay τres ' 200µs between the detected amplitude and the arrival amplitude at the
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detector. The Langmuir-Taylor hot wire detection distribution can be approximated
by an exponential function:

dP (τ) = exp (−τ/ 〈τres〉)dτ (47)

We can combine this effect with τprop to get a unique mean time delay τ (vi) =

τprop (vi)+ τres. Moreover, many terms in eq. (46) depend on the atom’s initial veloc-
ity, with the particular example of the modulation phase ∆φm. Therefore we observe
an interferometric intensity averaged over the velocity distribution eq. (3):

Itot (t) =

∫∞
0

P (vi) I0 {1+V0 cos [φd +∆φm (vi) cos [ω (t− τ (vi))]]}dvi (48)

where we have explicitly indicated the velocity dependence of the relevant terms. It is
to be noted that the diffraction phase, the mean intensity and the visibility depend on
the velocity, but we simply used their mean values in our theoretical model. Indeed,
a complete description of the atom interferometer is not relevant in our case because
we can completely discriminate the modulation from the wide variety of constant
effects such as residual Zeeman phase shifts, velocity dependent diffraction efficiency,
Sagnac phase,...

To simplify the analysis of the recorded interferometric signal, it is useful to com-
pute the Fourier transform of eq. (48) in order to extract the phase and amplitude of
the modulation harmonics. From the measured Fourier signal:

I (ν) =
1

T

∫T
0

Itot

(
t
′
)
eiνt

′
dt
′

we get, according the Shannon’s criteria in the limit of long measurement time13 T a
simple expression for the normalized pth harmonic:

I (ν = pω)

I0
=
[
δ0p + Ṽ (p) cos

(
φd +

pπ

2

)]
(49)

where we have defined the complex visibility which takes into account the averaged
amplitudes of modulation harmonics:

Ṽ (p) = V0

∫∞
0

P (vi) Jp (∆φm (vi)) e
−ipωτ(vi)dvi

= V (p) e−iΨm(p) (50)

To be completely coherent, one should take into account explicitly the detection
response function into the Fourier transform of the detected signal. In other words,

13 In practice, this condition is verified when ωT � 1 which correspond to approximately a minute of
recording.
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because of the sampling rate, the counting method and the detector’s response time,
the detected signal consists in the convolution of the interferometric signal with the
detection function:

Imeasured (t) =

∫0
−∞ fdetect

(
t
′
)
Itot

(
t− t

′
)
dt
′

where fdetect represents the measurement method as well as the detector’s response.
This expression simply leads, in the Fourier domain, to multiply the normalized pth
harmonic by the normalized spectral response14 of our detector:

F (ν)

F (0)
= H0

(
ωsample − ν

) ωres

1− e
− ωres
ωsample

1− e
− ωres
ωsample e

i

(
ν

ωsample

)
ωres + iν

where H0 denotes the Heaviside step function, ωsample is the sampling rate and
ωres = 1

τres
is the ionisation frequency of the hot wire detector. In our experiment,

we have ωres ∼ 5 kHz, ωsample = 1 kHz and ν � ωsample. Thus, the normalized
spectral response reduces to:

F (ν)

F (0)
' ei arctan( −ν

ωres
)

∼ e−iντres

which is simply the time delay introduced in eq. (48). By doing this approximation,
we introduced at most a 1% error on the measured harmonic amplitude.

Modulation amplitudes

When the modulation frequencies on each paths are identical, the Fourier transform
’Visibility’ of the pth harmonic is given by eq. (50). It consists in the Bessel function
of order p, with phase ipωτ (vi), averaged over the velocity distribution. This can be
decomposed as a sum over n of the product of two Bessel functions (p and n+ p) as
expressed by eq. (41). It can be represented graphically (see Fig 12) by considering the
recombination of two frequency combs corresponding to both interferometric paths.
When recombined, a partial pth harmonic amplitude corresponds to the product of a
tooth from each path exactly separated by pω. Summing the partial amplitudes over
the teeth gives the detected full modulation amplitude.

When using different modulation frequencies on each path, we can either develop
the interference signal eq. (46) without the assumption of identical frequencies, collect
the terms oscillating at harmonics of ω = ωA −ωB and discard the terms oscillating
too fast for our detector. Or, we can simply reproduce the same analysis consisting

14 F (ν) =
∫∞
−∞ fdetect

(
t
′
)
eiνt

′
dt

′
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in combining amplitudes (see Fig. 13) resulting in the pth harmonic and we get an
harmonic visibility similar to eq.(50) but with a Bessel’s argument divided by 2:

Ṽ (p) = V0

∫∞
0

P (vi) [Jp (φm,A (vi))]
2 e−ipωτ(vi)dvi (51)

Now that we have a theoretical description of our Kerr modulator, let us describe
in more details the performed experiments and their results.
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Figure 12: Schematic representation of the wave-function amplitudes as a function of fre-
quency, in unit of ω, for identical modulation frequencies at a modulation phase
∆φm (u) = 8 rad. The initial state at the top of (a) corresponds to a single atom
having a well defined velocity which is separated and diffracted identically on
two paths (A and B). The superposition of the two outputs leads to (b) on which
we represented all the products making up the signal at ω (green arrows) and
only two products for 2ω (pink) and 3ω (yellow). The width of the frequency
distribution has been exaggerated for clarity
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Figure 13: Schematic representation of the wave-function amplitudes as a function of fre-
quency, in unit of ωA, for different modulation frequencies at a modulation phase
φm,α (u) = 1.5 rad. The initial state at the top of (a) corresponds to a single atom
having a well defined velocity which is separated and diffracted on two paths (A
and B). The superposition of the two outputs leads to (b) on which we represented
the products making up the signal at ω (green arrows), at 2ω (pink) and 3ω (yel-
low). The width of the frequency distribution has been exaggerated for clarity as
well as the frequency difference between the two paths which is much smaller
than the modulation frequencies.
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Atom wave phase modulation

The modulation of an atom wave effective index of refraction produces a su-
perposition of momentum states in the transmitted wave. A complete quantum
treatment of a modulation localized in space leads, in the perturbative regime,
to diffraction amplitudes (eq. (42)) which agree with the ones inferred from the
WKB approximation.
We produce phase modulation in our lithium interferometer by modulating an
external electric field which results, via the static polarizability, to the analog
of the Kerr effect in optic. If the modulation frequencies are low, we can detect
an homodyne beat signal eq. (49) and eq. (50). If the modulation frequencies
are large, we detect an heterodyne beat signal given by eq. (51).

2.3 kerr modulator

As already described in Chap. 1, we use an atom interferometer in a Mach-Zehnder
configuration with spatially separated arms. For this diffraction-in-time experiment,
we used a phase modulator cell based on the electrically induced polarization of
lithium atoms in presence of an external electric field. Because the atom’s ground
state energy dependence is quadratic in the applied field, this situation is similar to
the optical Kerr effect. The induced differential phase shift is:

∆φm (vi) = −
2U1,A
 hωA

sin

(
ωAL

2vi

)
+
2U1,B
 hωB

sin

(
ωBL

2vi

)
(52)

Because the modulation frequencies and amplitudes are very similar, this phase shift
is approximately given by:

∆φm (vi) ' 4KV0V1
2vi
ωAL

sin

(
ωAL

2vi

)
(53)

where K = 4.79× 10−4 rad/V2 was previously determined from DC measurements
[130]. Due to the frequency dependence of this phase shift, we can separate two types
of experiment:

• The low frequency modulation, for which ∆φm (vi) is independent of ωA and
vi. This corresponds to ωA � 2ū

πL ' (2π) 22 kHz.

• The frequency dependent case, where the transit time in the modulation cell is
not negligible compared to the modulation period. In this situation, the modu-
lation amplitude, for constant potentials, exhibits cancellations and revivals as
well as velocity spreading.

68



2.3.1 Low frequency modulation

Interferometric signal

We first apply low identical frequency modulations ω/ (2π) � 1 kHz on both in-
terferometer arms. By changing the modulation potential amplitude, we could pro-
duce phase shifts up to 15 rad and detect up to the 16th modulation harmonics
provided that it lays in the detector bandwidth. A typical interferometric signal
is presented on Fig 14 for a modulation frequency of 21Hz. For each frequencies
ω = (2π) {11, 21, 43, 73, 97, 151}Hz, similar interferometric signals were obtained.
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Figure 14: Interferometer signal for a constant phase difference ∆φm = 2.7 rad and a con-
stant diffraction phase φd ∼ −0.5 rad. Top panel: Number of atoms detected per
millisecond as a function of time. Bottom panel: Fourier amplitude of a 16.4 s long
recording as a function of frequency. Up to the 4th harmonics is revealed.

Diffraction amplitudes

In order to extract the Fourier amplitude of the pth modulation harmonic eq. (49),
we vary the interferometer phase φd by slowly moving the position of the third grat-
ing mirror with a piezoelectric actuator. The resulting scanning is monitored with a
Mach Zehnder optical interferometer which records this mirror’s position. As can be
seen from eq. (49), the harmonics amplitude oscillates with the interferometric phase.
Thus, for each mirror position, a 200ms long interferometric signal was recorded and
Fourier transformed. An example of the resulting interferometer signal and Fourier
signal is represented on Fig 15. Scanning the interferometer phase for approximately
a 2π period allowed for a full oscillation of the modulation amplitude. The result of
such scans can be seen on Fig 16. Finally, by extrapolating the obtained amplitudes
with eq. (49), we extract the modulation "visibility" Ṽ (p) and its phase Ψm (p).

69



0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45
 

 

Si
gn

al
 (c

ou
nt

s/m
s)

Time (ms)

(a) Scan 1

-100 -50 0 50 100
0

5 000

10 000

15 000

20 000

25 000

30 000 I( )

/(2 ) (Hz)

(b) Scan 1

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

Si
gn

al
 (c

ou
nt

s/m
s)

Time (ms)

(c) Scan 2

-100 -50 0 50 100
0

2 000

4 000

6 000

8 000

10 000

12 000

14 000

16 000

/(2 ) (Hz)

I( )

(d) Scan 2

Figure 15: Interferometric signals for two different interferometric phases displaying a maxi-
mal first order diffraction (top, φd = π

2 ) and a maximal second order diffraction
(bottom, φd = π). The left hand panel represents the direct interferometric signal
and the right hand panel shows the corresponding Fourier transform.

(a) Scan 1 (b) Scan 2

Figure 16: Fourier coefficient of the first three diffraction order (First: solid red, Second :green
dotted and Third :blue dashed) as a function of the interferometric phase for two
different scans (a), (b). The points correspond to data and the lines to the sinu-
soidal fits. Note that half of the time, the modulation was turned off to monitor
the interferometric phase, its intensity as well as its visibility for proper normal-
ization of the Fourier amplitudes.
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Visibility and phase

Knowing the Fourier transform amplitude and phase, relative to φd+
pπ
2 for the pth

harmonic, it is straightforward to extract the experimental visibility and phases. By
varying ∆φm we observed the appearance, disappearances, inversions and revivals
of up to the 16th harmonic, typical for Bessel’s functions. Fig. 17 summarizes the ob-
tained visibility and the Fig. 18 shows the phases. There is good agreement between
our theoretical model and the experimental data. There was only one free parame-
ter, the ionization delay τres (eq. (47)), for all fits and it was found to remain con-
stant equal to τres = 290(10)µs which agrees qualitatively with the not well known
value of 200µs (see Sec. 1.3.1 eq. (12) and [102]). For the visibility data, the residual
uncertainty is smaller than the size of the points and for the phases, the statistical
uncertainty corresponding to the quadratic mean of the residual uncertainties of dif-
ferent scans, is represented. The small phase dispersion can be explained by velocity
dispersion effects when the diffraction phase is large.
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Figure 17: Evolution of the harmonics visibility as a function of the total diffraction phase.
The squares (solid line) correspond to p = 0, the bullets (dashed line) to p = 1 and
the stars (dotted line) to p = 6. The lines correspond to the theoretical model eq.
(50) with no free parameter.

2.3.2 Heterodyne atom wave beats

Confindent that our theoretical model represented well the low frequency domain,
we now demonstrate the sinus cardinal behavior of the differential phase shift eq.
(53). To do so, we keep the modulation potential constant and change the modulation
frequency. In order to maximize the effect, we choose a low frequency differential
phase of 6.7 rad which mainly corresponds to zero, second and fourth harmonics
and almost no first and third harmonic as is summarized in Tab. 3. To be able to
detect the induced modulation, which had to be of the order of the inverse transit
time in the modulation cell ∼ (2π) 22 kHz, we used a heterodyne detection scheme by
applying slightly different frequencies on each interferometer’s arm. By doing so, we
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Figure 18: Measured phase Ψm (p) as a function of the harmonic order. Two different fre-
quencies were used: 11 and 43Hz. Different modulations amplitude were needed
for the different orders in order to minimize the phase’s uncertainty. For some or-
ders, multiple symbols corresponds to multiple modulation amplitudes for which
the phase could be extracted. The lines correspond to linear fits which yielded
the mean total time delay of 1.65(1)ms from which we could deduce the ioniza-
tion delay τres = 290(10)µs. There is no phase value for the seventh harmonic
because we did not, at the time, choose potential configurations for which the
seventh harmonic was intense enough at a modulation frequency of 11Hz.

∆φm (u) (rad) Order 0 Order 1 Order 2 Order 3 Order 4

1 0.765 0.440 0.115 0.020 0.003

3 0.260 0.339 0.486 0.309 0.132

5 0.178 0.328 0.047 0.365 0.392

6.7 0.285 0.095 0.314 0.092 0.231

8 0.172 0.234 0.113 0.291 0.105

Table 3: Harmonics amplitudes for different low frequency mean differential phases. The
phase used for atom-wave beating demonstration is highlighted and corresponds to
the cancellation of the first and third orders with high zeroth and second orders.

insured that the difference in modulation phase would not be significant while being
able to detect the beat notes between the generated side-bands with the same order.
In practice, we used a frequency difference (ωB −ωA) / (2π) = 13Hz for which, even
at the highest sensitivity frequency of 25 kHz (which corresponds to the maximum
of the sinus function in eq. (42)), the difference of modulation phase is less than 7%.
Thus, to a very good approximation, we can use the harmonic amplitudes eq. (51)
with φm,A (vi) = 2KV0V1

2vi
ωAL

sin
(
ωAL
2vi

)
.

The Fourier amplitudes are represented on Fig 19. The dependence on the modula-
tion frequency agrees well with our model. In particular, at 22 kHz, an atom going at
the mean velocity ū = 1050ms−1 spends exactly one period in the phase modulator
and its wavefunction in not modulated. The expected decrease of the side-bands am-
plitude is well observed and the unmodulated visibility V (0) /V0 is maximum. The
total amplitude is however non-zero due to the atomic beam velocity spread.
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(a) Zeroth Order (b) First Order

(c) Second Order (d) Third Order

Figure 19: Evolution of the harmonics visibility as a function of the modulation frequency:
the unmodulated amplitude V (0) /V0 as well as the first three harmonics are rep-
resented. The points correspond to data and the lines correspond to eq. (50). The
unmodulated amplitude increase around 22 kHz corresponds to the zero of the
mean velocity modulation amplitude which can be seen on all the harmonics am-
plitude.

2.3.3 Data transmission

Because of the high degree of similarities between this phase modulator and the mod-
ulation techniques used in classical data transmission15, we used our interferometer
as a data transmission line, using a technique similar to phase shift keying (PSK) in
what we call the ’Atomic Fax’. We also produced the equivalent of a radio by encod-
ing in our interferometer phase an audio signal which we call the ’Atomic Radio’.

Atomic fax

Because PSK was historically used in modems and is still, in an advanced form, used
in wireless protocols and broadcastings, we first implemented a basic data transfer.
Basically, PSK consists in encoding on an electromagnetic signal p bit(s) by phase
shifting it by a multiple of π

2(p−1)
. In our case, we restricted ourselves to transferring

a black and white picture encoded by a list of 1 bit. The protocol simply consisted in
phase shifting our interferometer phase by ∆φm = ±π2 . By choosing the appropriate
diffraction phase φd = π

2 , the atomic intensity reduced from eq. (46) to:

Iarrival (t) = I0 [1±V0] (54)

15 For example, the commonly AM and FM radio bands or even more the PAL broadcast protocol encoding
the color information in the quadrature phase of the intensity signal.

73



where ± depends on the sign of the ’modulation’ phase. Here, no actual modulation
was used (ω = 0) in order to get the higher bit rate16. Furthermore, by restricting our-
selves to 1 bit, we prevented our signal statistics (which is slightly over-Poissonian)
from inducing error bits. A typical example of our outputs distribution is represented
on Fig. 20 for which 95 934 bits were transmitted and the number of detected atoms
each 2ms were analysed. To prevent transient delays due to our detection or our
electrodes, we switch the phase every 5ms but ignore the first two and the last one
in our data analysis. This choice corresponds to the maximum distance between our
two counting peaks represented on Fig 20. This analysis gives a robust split number
of 90 atoms which separates the number of atoms corresponding to bit 1 and to bit 0.
The resulting error between the transmitted file and the initial one is less than 0.1%
for a 200 bits/s transfer and can be mainly attributed to a typical defect of our detec-
tor which consists in intense burst of ions lasting a few hundreds of ms induced by
rhenium oxydes [101]. The original and faxed files are shown on Fig. 21.

Bit 1

Bit 0

Figure 20: Histogram distribution of one data set. A total of 95 934 bits were counted during
2ms long recordings. The two states corresponding to bit 0 and bit 1 are well
separated by more than 2 FWHM which are slightly larger than the poissonian
width to be expected from independent singular events counting. The dashed line
between the two peaks corresponds to averaged distance between them, allowing
the correct splitting of the two bits.

Atomic radio

This setup transfers slightly more complex signals and we chose an audio file which
had the advantage of being already commonly described with its Fourier spectrum.
This enhances the parallel between our phase modulator spectrum description and
the audio spectrum we wanted to transfer. To implement this radio, we decided to use
a modulation amplitude ∆φm,radio ∼ 0.5 rad around which the first harmonic am-
plitude is approximately linear. Moreover, by keeping the diffraction phase constant

16 Detecting a modulation would require approximately a period which itself needs to be of the order of
ten times the detection time which leads to a maximum bit rate ∼ 100 bit/s, while simply detecting a
maximum or a minimum intensity can be done in a few detection times (in practice, we used 5) leading
to higher bit rates.
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(a) Original file (b) Faxed file

Figure 21: Original and decoded files transferred with our atomic fax. The original picture is
a black and white reproduction of a self-portrait wood engraving from an expres-
sionist German artist available at http://www.paboeckstiegel.de/. One clearly
sees the high degree of fidelity between the two pictures. A localised error can
be seen at the bottom left of the decoded picture corresponding to a well known
defect of the atomic detector which produces, randomly, a short burst of the de-
tector (see text), increasing the atomic signal count.

Original file Transfered file

Table 4: A portion of the European anthem, "Ode to Joy", was used as audio data. The original
as well as the transmitted one can be compared on this table.

φd = π
2 , the second harmonic was theoretically removed from the interferometric

spectrum. Finally the third harmonic was completely negligible with an amplitude
approximately 1/100 of the first harmonic amplitude. Therefore, modulating the mod-
ulation phase with the audio signal leads to a simple approximate interferometric
signal:

Iradio (t) = I0
{
1+V (1)∆φm,radio

(
1+ κ1usignal (t)

]}
(55)

where κ1 represents the slope of the first harmonic amplitude at ∆φm,radio and
usignal (t) is the audio file to be transmitted. In practice, we needed to reduce the
sampling rate of the audio file by a factor ten to prevent high frequency components
of the audio file from being cut-off by our detection. Finally, for simple comparison,
the recorded interferometric signal is accelerated ten times and the resulting audio
can be compared to the original in Tab. 4.
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2.4 conclusion

In this chapter, we reviewed the previous experiments which performed diffraction
in time on matter waves and presented our Kerr modulator implemented in our
Lithium interferometer. Our modulator has the advantages of being directly appli-
cable to other atomic or electronic separated arms interferometers and to allow the
temporal observation of high frequencies modulation via homodyne and heterodyne
detection. In addition, a completely analytical model was presented which allowed
us to identify the main characteristics of the modulator (its modulation frequency,
length and amplitude) that have to be adapted to the interferometer. Finally, we de-
scribed four different experiments. The first two allowed us to test our model in two
different configurations. One was conducted with a low modulation frequency, show-
ing that up to the 16th (limited by our ability to produce higher potentials) harmonic
of the modulation was present in our atomic beam and that the amplitude and phase
of the different side-bands are well described by our model (Fig. 17 and Fig. 18). The
second was aiming at producing the first matter-wave homodyne detection which
allowed us to check the high frequency limit of our model by observing disappear-
ances and revivals of the modulation amplitudes (Fig. 19). The last two experiments
were conducted in a more pedagogical perspective and consisted in the first atomic
fax and radio which convincingly transmitted data with an atomic phase modulator.

Beyond the simple scope of a proof of principle that these experiments provide,
they can be pushed farther with higher modulation frequencies and could be ex-
tended to practical use in an electron holographic microscope or in a cold atom inter-
ferometer.

Higher modulation frequencies
For the time being, our homodyne detection of modulated matter waves was lim-

ited by both the available frequencies in our Kerr modulator and by the rather large
distance between the modulation region and the detector. To circumvent these limits
it would be interesting to use two laser beams, far detuned from resonance (to prevent
decoherence), and intensity modulated that would create an oscillating potential at
much higher frequencies. For example two focused laser beams having 40µm waists
would allow modulation frequencies three order of magnitudes larger (50MHz).

Electron holographic microscope
As described in [7], a holographic microscope can be thought as a separated arm

interferometer. Thus applying on one arm (A) an oscillating electric potential at fre-
quency ωA, results in a modulated phase shift on that arm ϕA (t). If the second
arm (B) interacts with a sample excited by a perturbation U (t) = U0 cos (ωBt) , it
will acquire a modulated phase shift ϕB (t) = kieδns (t), where ki is the electron
wave vector, e is the sample thickness and δns (t) is the modification of refractive
index induced by the perturbation U (t). The recombined interference signal would
therefore exhibit a modulation at the frequency difference ω = ωA −ωB. This het-
erodyne effect enables to get information on δns (t). Its phase in particular is related,
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in the linear response approximation, to the time domain by Fourier transform. This
method should make it possible to measure, for example, the sample response time
with very high spatial resolution (λDB ∼ 10 pm for high velocity electron beams) as
well as high temporal resolution (limiting modulation frequencies of ∼ 100 THz see
Tab. 2).
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In this chapter, I will present the Pancharatnam phase as a tool for controlling the
phase in an atom interferometer. It will consist in a brief introduction on geometric
phases, with emphasis on the particular case of the Pancharatnam phase for light
waves. I will focus on its description on the Poincaré sphere and some examples of
its experimental observation. Next, I will present our experimental apparatus and
discuss the technical parameters which modify the total phase of our Pancharatnam
phase-shifter. Then, I will present our experimental results and evaluate the effect
of the previously described defects on the interferometric signal. Finally, I will con-
sider the use of this type of phase shifter in two different contexts: single species
interferometer phase control and dual species simultaneous phase shifting.
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3.1 geometric phases

Geometric phases appear in physical systems of very different nature such as:

• A spin 1/2 precession in a magnetic field.

• A molecular wavefunction evolution in conformation transformations [131].

• Nonlinear dissipative systems [132].

• Enzymatic mechanism [133].

A particularly illustrative example is the interpretation of the Foucault’s pendulum
precession. This massive pendulum was initially (in 1851) conceived as a proof of
Earth’s rotation. Its principle relies on the rotation of the pendulum oscillation plane
with respect to a local fixed direction (say the North for example). Considering only
the Earth rotation around its North/South axis, this precession can be understood by
describing the normal to the oscillation plane. The normal is constrained to remain
in the local horizontal plane which implies that its instantaneous change is directed
towards the Earth center. If the pendulum is not located on the equator, this means
that the instantaneous change has non-zero components along the local reference
directions which slowly rotates the angle between the normal and the local North
direction. After a 2π rotation of the Earth, the normal to the oscillation plane will
have a non-trivial angle with its initial direction which corresponds to the geometric
phase accumulated during its transport on the sphere. This angle is:

θFoucault = 2π sin (λ)

where λ is the latitude at which the pendulum oscillates. This phase corresponds to
the geometric phase acquired by the pendulum during one revolution.

The first part of this section will derive summarily the general expression of the
geometric phase and show how, applied to light’s polarization trajectories on the
Poincaré sphere, it gives the Pancharatnam phase. Experimental verifications of the
Pancharatnam phase will then allow us to describe in more details how these abstract
trajectories are realized in practice.

3.1.1 Phase in quantum mechanics

The concept of phase in a dynamical system pre-existed the modern generalisation of
global invariant in an arbitrary quantum-state space. May it be the observable relative
phase between the Earth’s and Moon’s orbit or the appearance (and disappearance) of
harmonics in the superposition spectrum of two waves (acoustic, electromagnetic,...)
the phase was a measure of the purely temporal synchronicity between dynamical
objects. Its change was a consequence of the system’s dynamic. With the advent of
quantum mechanics, and matter-wave duality, phase became a dynamical object in
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itself and was explicitly associated with an eigen state’s energy. In particular, it was
associated with the system’s trajectory as can be seen in the Feynman propagator
[134] :

K
(
q ′, t ′ | qi, ti

)
=

∫
Dq (t) ei

S[q(t)]
 h

where Dq (t) is the functional measure on the path space and q (t) represents any
path starting at (qi, ti) and ending at (q ′, t ′) and S [·] is the system’s action:

S [q (t)] =

∫t
ti

L
(
q
(
t ′
)

, .
q
(
t ′
))
dt
′

where L is the Lagrangian. K (q ′, t ′ | qi, ti) is the Feynman propagator which deter-
mines the quantum state of a system at a later time tf > ti and arbitrary position qf
via the convolution:

Ψ (qf, tf) =
∫
K
(
q ′, t ′ | qi, ti

)
Ψ (qi, ti)dq

′
dt
′

In this formulation, the influence of the trajectories energy is clearly emphasized. In-
deed, the action being the time integral of the Lagrangian, the weight ei

S[q(t)]
 h in the

path integral will interfere destructively and cancel the contribution of trajectories
which explore energy regions far from the classical trajectory. The classical trajectory
corresponds to the action’s minimum i.e to the trajectory of minimal integrated en-
ergy. This link between dynamic and phase is at the core of quantum mechanics.
Let us however be clear about the possible ambiguity regarding the "phase operator"
sometimes defined as the natural conjugate of the number operator (Discussion of
this operator can be found in the articles by Mandel et al.[135]–[137]). Here, the phase
is used as a scalar quantity and as such is an equivocal quantity because it is defined
modulo 2π. This leads, as we will see in the next section, to a particular class of
phases which appears along dynamical trajectories of quantum states: the geometric
phase.

3.1.2 Geometric phase derivation

Following closely the kinetic approach of N. Mukunda and R. Simon [138], we will
give the general expression of the geometric phase appearing in quantum state trans-
formations. However, the initial descriptions of this effect is attributed to Berry [139],
in 1984, who described a particular case of this phase in an adiabatic approximation.
Previous work already discussed the appearance, in the Born Oppenheimer approxi-
mation, of a global phase factor in the nuclear wave function going around a closed
path [131] but did not described its general character. Also, the particular cases of
the polarization phase (Pancharatnam, [140]) and the electronic phase in presence
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of electromagnetic potentials (Ehrenberg and Siday [141] followed by Aharonov and
Bohm, [142] whose name were associated to this effect) are particular examples of
this general geometric phase.

General definitions

We consider the quantum states of an arbitrary system, denoted ψ, which are nor-
malized: |ψ| = 1 [the scalar product between states is denoted by (., .)]. We call N0
the set of such quantum states. From the normalization condition, we see that when
two states differ only by a constant phase: ψ

′
= eiαψ, where α is a real, they belong

to the same equivalent class under the action of U (1) =
{
eiα, α ∈ R

}
on N0. Now,

to show the consequences of this property on a transformation in this set, we need
to observe how the evolution of a state is characterized. To do so, let us take an arbi-
trary smooth curve (in the sense that it is a family of states indexed by a continuous
parameter, which are differentiably transformed into each others):

C0 = {ψ (s) |s ∈ [s1, s2] ⊂ R} (56)

The dynamic evolution of such a family has to obey:

( .
ψ (s) ,ψ (s)

)
+
(
ψ (s) ,

.
ψ (s)

)
= 0 ∀s ∈ [s1, s2]

due to the norm conservation. Thus, we have that
(
ψ (s) ,

.
ψ (s)

)
is purely imaginary

and as such equals to iIm
[(
ψ (s) ,

.
ψ (s)

)]
. When we perform a continuous change

of phase on C0 parametrized by the real continuous function α, called a gauge trans-
formation, we obtain a different family in N0:

C ′0 =
{
ψ
′
(s) = eiα(s)ψ (s) |s ∈ [s1, s2] ⊂ R

}
(57)

From this, it is straightforward to see that

(
ψ
′
(s) ,

.
ψ
′
(s)
)
=
(
ψ (s) ,

.
ψ (s)

)
+ i

.
α (s)

which gives, integrated over [s1, s2]:

arg
(
ψ ′ (s1) ,ψ ′ (s2)

)
− Im

[∫s2
s1

(
ψ ′ (s) ,

.
ψ ′ (s)

)
ds

]
= arg (ψ (s1) ,ψ (s2)) + (α (s2) −α (s1)) − Im

∫s2
s1

[(
ψ (s) ,

.
ψ (s)

)
+ i

.
α (s)

]
ds

= arg (ψ (s1) ,ψ (s2)) − Im

[∫s2
s1

(
ψ (s) ,

.
ψ (s)

)
ds

]
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Therefore this quantity is independent of the gauge transformation and only de-
pends on C0. Because it is also parametrization invariant (which means that it does
not depend on the way the parameter s scans [s1, s2], nor does it depend on [s1, s2]),
we can define the geometric phase associated to C0. C0 is the projection of C0 onto
the quotient space1 N0 of N0 under the action of U (1). The geometric phase is:

φg [C0] := arg (ψ (s1) ,ψ (s2)) − Im

(∫s2
s1

(
ψ (s) ,

.
ψ (s)

)
ds

)
(58)

This geometric phase can be separated into two parts, which depend on the specific
choice of class representative C0:

• The total phase: φp [C0] = arg (ψ (s1) ,ψ (s2))

• The dynamical phase: φd [C0] = Im
(∫s2
s1

(
ψ (s) ,

.
ψ (s)

)
ds
)

Clearly, the total phase represents the phase difference between the initial and final
states while the dynamic phase depends on the specific path going from ψ (s1) to
ψ (s2). An elegant way to classify geometric phases consists in choosing particular
representative C0 of C0 called a horizontal lift for which geometrical interpretations
are easier.

Horizontal lifts

Because the geometric phase does not depend on the choice of curve C0 representa-
tive of C0, we can find a gauge transformation for which the dynamical phase of C0
is exactly zero. This can be done by having:

Im
(
ψ (s) ,

.
ψ (s)

)
= 0 ∀ s ∈ [s1, s2]

Such a lift is called a horizontal lift. It is unique because the gauge transformation
which allows to find this particular representative is completely determined2. Using
this lift, we can express the geometric phase as:

φg [C0] = arg (ψ (s1) ,ψ (s2)) (59)

Therefore, we can visualize geometrically this phase as the phase shift between the
initial and final states on the condition that the curve between them is horizontal.
Geometrically, this condition is called parallel transport and consists in transforming
the state with infinitesimal orthogonal operations. To illustrate it, let us consider
the simple case of a two level atom. This system is equivalent to a spin 1/2 and its
evolution can be similarly represented on the Bloch-sphere (see Fig. 22a). For example,

1 This emphasize that this quantity does not depend on the gauge choice because on N0, all gauges
equivalent families have the same projection.

2 From a general representative C0, with the gauge transformation α (s) = −Im
(∫s
s1

(
ψ (s ′) ,

.
ψ (s ′)

)
ds ′
)

we can create this family.
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an atomic population only distributed in the lower (resp. higher) state is represented
by the South (resp. North) pole. During the parallel transport, the angle (defined in
the local tangent plane) between the state’s phase (represented by a vector) and the
direction of transport has to stay constant. This results in a phase shift between the
two extremal quantum states. It can be shown ([143]–[145]) that the resulting phase-
shift is equal to half the solid angle subtended by the enclosed area on the sphere.

3.1.3 Pancharatnam phase

To obtain the Pancharatnam phase, we now have to transpose the previous example
to the evolution of a polarization state on the Poincaré sphere [146]. The Poincaré
sphere is a powerful tool to describe the polarization state of a transverse electromag-
netic wave. Because the electric field is orthogonal to the direction of propagation, its
polarization can be described by two projections on orthogonal directions and by a
phase shift between these two components. Recalling that the electromagnetic field is
invariant under a global change of phase, the Poincaré sphere is identical to the Bloch
sphere when we identify the two orthogonal polarization states to the two atomic lev-
els. We can therefore apply the previous analysis performed on quantum states to the
evolution (see Fig. 22b) of light going through polarization rotators3. These perfect
rotators perform unitary transformations along great circles on the Poincaré sphere.
This ensures that the polarization state follow horizontal lifts on the Poincaré sphere
along the path denoted γ. This leads to a total phase shift, purely geometric, called
the Pancharatnam phase between polarization states at each path extremity. Its value
is also given by half the subtended solid angle which can be expressed [143] as:

φpanch [γ] = arccos
[

cos(θ12/2)
2+cos(θ23/2)

2+cos(θ31/2)
2−1

2 cos(θ12/2) cos(θ23/2) cos(θ31/2)

]
(60)

where θ12, θ23 and θ31 denote the angles between the trajectory’s vertices in the case
of a cyclic transformation4 performed by three rotators. Note that the Gauss-Bonnet’s
theorem [147] gives a much more compact expression5:

φpanch [γ] =
A1 +A2 +A3

2
− π

where Ai are the interior angular jumps at the surface vertices.

3 The rotation refered to affects only the polarisation state not actual geometrical rotations.
4 When the transformation is not cyclic, the final state can be projected onto the initial state which defines

the last portion of an artificially cyclic trajectory
5 This forms clearly emphasize the role of the underlying quotient space which curvature directly impact

the resulting formula.
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(a) Parallel transport on the Bloch sphere

 23

 31

 12

 A1

 A2

 A3

(b) Polarization trajectory on the Poincaré
sphere

Figure 22: (a) Parallel transport of the quantum state of a two level system on the Bloch
sphere. The phase of the state is represented by the direction of the blue vector.
The poles are denoted by N, S and the equator is represented in red. An initial
state is transported from A to pole N, then from N to B and finally brought back
to A. The parallel transport keeps the angle between the state’s phase and the
direction of transport constant. From A to N, this angle is zero while from N to
B it is not. The inset shows the phase shift between the initial (blue) and the final
(green) state. Ω is the solid oriented angle subtended by the trajectory.
(b) Poincaré sphere displaying the usual orthogonal polarization states: Right
Handed (RH) and Left Handed (LH). The Cartesian direction are labelled Hor-
izontal (H) and Vertical (V). O is the center of the sphere. The trajectory γ of a
right handed polarization going through three successive rotators is represented
in blue, orange and green. The arrows merely represent the direction of evolution.
θ12, θ23, θ31 correspond to the angles between the radii of the triangle vertices
and the angles A1,A2 and A3 are the jumps between the trajectory’s vertices.

3.1.4 Experimental demonstrations

The earliest experimental demonstration of a geometric optical phase6 appears in
1986 [148], [149] when Chiao et al. used an helically wounded optical fiber to rotate
adiabatically the propagation direction of a linearly polarized laser beam (see Fig.
23a). This purely geometrical evolution rotated the polarization state along a circle
which subtends a cone with apex at the origin and apex semi-angle θ. By changing
the pitch angle of the helix, they could change θ and scan the Pancharatnam phase
which resulted in the rotation of the polarization direction at the output of the fiber
(kept parallel to the input).

The following years, experiments using separated arms interferometers [150] demon-
strated, by using mirrors which non-adiabatically reversed the light’s helicity, that
adiabaticity was not necessary. In particular several experiments [151], [152] using
a quarter wave plate inside a Michelson interferometer (schematized on Fig.23b)
demonstrated a continuous change of the Pancharatnam phase by rotating the wave-

6 Because this experiment does not rotate a polarization state on the Poincaré sphere but a polarization
state direction in real space, the resulting phase is not, streactly speaking, a Pancharatnam phase and is
usually labelled as a spin redirection phase.
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plate. They even produced frequency side-bands in the light’s spectrum at twice the
rotation frequency of the rotating quarter-wave plate [153].

(a) Wound optical fibre set-up

retarder

Lens

Beam splitter

Glan-Taylor polariser

Photodiode

Fixed

QWP

Rotating

QWP

/4

H
é-

N
é 

L
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er

(b) Michelson set-up

2θ

(c) Trajectory

Figure 23: (a) Experimental set-up from [149]. An optical fiber is wound with a fixed helix
pitch and the linear polarisation direction at the fibre’s output is measured with a
polariser.
(b) Setup used for a continuous scan of the Pancharatnam QWP [152]. The po-
larized laser beam travels through two quarter-wave plates on one arm of the
interferometer. The first one is fixed with fast axis at 45◦ relative to the incident
polarization. The second one can be continuously rotated and its fast axis makes
an angle θ with respect to the initial polarization direction.
(c) Corresponding trajectory on the Poincaré sphere. The polarization state goes
from horizontal (H) to right handed (RH) in the first quarter-wave plate. Then, de-
pending on the angle θ, returns to linear (P). After retro-reflection on the mirror,
it goes from linear (P) to left handed (LH) and finally, returns to its original state
(H).

This phase was investigated down to the single photon level [154], [155]. The exper-
iment of Kwiat et al.[154] used a coincident detection setup of photon pairs produced
by a non-linear crystal (KDP). The lower frequency photon (idler) was directly de-
tected while the other one interfered in a Michelson interferometer similar to the one
described on Fig 23b. By reducing the energy acceptance of a filter used to detect the
idler photon, they reduced the energy distribution of the signal photons contributing
to the interference. When the Michelson interferometer was unbalanced, this lead to
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the revival of the Pancharatnam fringes visibility. The signal from [154] is represented
on Fig. 24.

Figure 24: Figure adapted from [154] representing coincident optical interference fringes. The
rotation angle of the quarter waveplate scans the Pancharatnam phase. The inter-
ference signal top (resp. bottom) corresponds to a broad (resp. narrow) energy
filter shows revival of the fringes visibility when the photon distribution is nar-
row. The arrows indicate the measured triple anticorrelation parameter, ensuring
the non-classical state of the detected photons.

Later on, the potential non linear behavior of the Pancharatnam phase was demon-
strated using a rotating analyser [156] or initially elliptic polarization states [157]. The
distinction between the dynamical part and geometric part was investigated with
twisted polarizers and retarders [158] and the case of open transformations, which
can lead to singularities, were described in [159].

Finally, I would like to emphasize the wavelength independent property of the Pan-
charatnam phase which was demonstrated by Hariharan et al.[160] in a white-light
interferometer. This achromaticity is hard to realize in optics because optical polar-
ization elements have to be achromatic which is not easy. For example, an achromatic
phase shifter with a phase deviation of 100mrad over the whole visible spectrum
was described in [161]. But for atoms imprinting the phase of an optical lattice (as
described in Sec. 1.2), part of this phase is achromatic (i.e velocity independent). This
property motivated the development of a new atom-optics tool: the Pancharatnam
phase shifter described in the next Section.
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Geometric phases

Geometric phases are intrinsically related to the system underlying symmetry.
For quantum states, the U (1) group leads to a global invariant of homotopic
transformations: the Berry’s phase. For light waves, the polarization state im-
prints a geometric phase called the Pancharatnam phase. Its characteristics
have been successfully demonstrated in many different setups. In particular, a
combination of two quarter wave plates on one arm of a Michelson interferom-
eter (Fig. 23b) allows to scan continuously the Pancharatnam phase.

3.2 the pancharatnam phase-shifter

The interferometric phase shift φd (see Sec. 1.3.2 eq. (15)) depends, in our Mach
Zehnder configuration, on the standing waves phases of each gratings:

φd = Φ1 +Φ3 − 2Φ2 (61)

where Φi denotes the phase of the ith Bragg lattice. To scan this phase, we usually
changed, with a piezo actuator, the position of the retro-reflecting mirror of the third
Bragg standing wave which modified the spatial reference of Φ3. A Pancharatnam
phase shifter also changes the diffraction phase without displacing the third mirror. It
consists in adding a pair of QWP’s in between the atom interferometer arms and the
retroreflecting mirror. This results in adding to the lattice phaseΦ3 the Pancharatnam
phase φP which can be controlled by the relative orientation of the two QWP’s. This
type of setup is directly inspired from the Michelson setup (see Fig. 23b) used by
Chyba et al.[152].

3.2.1 Description of the experimental apparatus

This phase shifter schematized on Fig.25a consists in two quarter wave-plates posi-
tioned right between the retro-reflecting mirror and the atom interferometer’s arms.
We use two zero order quarter wave plates manufactured by Fichou R© for the 671nm
wavelength. They are made of two polished quartz plates which optical axis are par-
allel to their faces. The thickness difference between the two plates is 18.6(2)µm. The
two plates are attached by molecular adhesion with their axis crossed. Therefore,
they induce a phase shift equal to π/2± π/150 at the nominal temperature of 20 ◦C .
These QWP’s were mounted on aluminium rings. The first QWP is glued with Torr
Seal R© epoxy onto the mechanical support of the second, rotating, QWP. The rotation
is driven with an externally rotated cam and a ferrofluid feedthrough located 150mm
above the atom interferometer arms. This choice was motivated by the high sensitivity
of the atomic phase to magnetic gradients which prevents the use of electric motors

88



too close to the interferometer. The cam is attached to a nylon worm screw which
transmits the rotation to a nylon worm wheel. The wheel is fixed on a 1 ′′ diameter
vacuum compatible bearing which is attached to the support. The bearing is made
of polymer with glass balls in order to exclude ferromagnetic elements close to the
atomic beam, at the expense of its guidance stability compared to usual metallic balls
bearings. The QWP ring is directly glued onto the wheel. On the other side of the me-
chanical support, a digital encoder7 (microE R©, MercuryII 6000V) records the angular
position of a glass plate attached on the other side of the bearing. This compact (less
than 30mm long) set up has an optical acceptance diameter of approximately 12mm
which is smaller than our Bragg beam diameter of 16mm. But by adjusting the beam
power and the laser detuning, this reduced aperture did not change the performance
of our interferometer.

Rotation encoder

External rotation control

Rotating

M3

(a) Phase shifter in vacuum (b) Realisation

Figure 25: Schematic representation (a) and picture (b) of the mechanical system introducing
two quarter wave plates on the path of the third Bragg beam. The rotation of the
second QWP is transmitted via a worm drive with a vacuum compatible rotation
worm screw. To minimize and stabilize the tilt between the rotation axis and the
QWP’s normal, thin foils of brass and Teflon have been fixed bellow the worm
wheel. A digital encoder records the angular position of the rotating QWP on the
other side of the bearing. The fixed QWP is mounted on the mechanical support
of this encoder.

3.2.2 Theoretical Pancharatnam phase shifter

In an ideal setup, each quarter wave plates produces a constant π2 phase shift between
the two polarization states on the whole laser beam. The incident laser beam is or-
thogonal to the QWP’s, its polarization is perfectly linear and makes an angle of 45◦

with the ordinary axis of the fixed quarter wave plate (FQWP). In these conditions,
the Pancharatnam phase is linear in the angle of rotation of the rotating quarter wave
plate (RQWP) and changes by 2π when the RQWP rotates by π. In other word, if ω
is the angular speed of the RQWP, the theoretical Pancharatnam phase is8:

φP,theo (t) = 2ωt (62)

7 Its accuracy is specified at 314µrad with a resolution approximately 4 times higher.
8 Provided an appropriate choice of the time origin.
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3.2.3 Optical fringes

We tested our Pancharatnam phase shifter with the Michelson interferometer im-
plemented on mirror M3 which was initially used to monitor the diffraction phase
when it was changed by varying the mirror’s position (see Sec 1.3.2). To test our
phase shifter, the mirror was fixed and we recorded the optical fringes as well as
the RQWP’s angle reading on the rotation encoder. Apart from a constant phase φM
proportional to the arm’s length difference, the measured intensity detected on one
output is expected to be:

I (t) = I0 {1+V cos [φM +φP,theo (t)]} (63)

Where I0 is the mean intensity and V is the visibility. We recorded the light inten-
sity directly with a photodiode. The result of a typical 2π revolution of the QWP is
represented on Fig. 26. As expected, the interferometric signal presents oscillations
at twice the rotation angle frequency and from the different width of the lobes, one
can clearly see a modulation of the instantaneous ’frequency’ at which the fringes are
scanned. Indeed, the modulation effect can be described as an effective time depen-
dent frequency ω [1+ uM cos (ωt+Ψ)] which oscillates periodically. This impression
is confirmed by comparison of two different fitting procedure. The linear one is a fit
to a simple sinusoidal evolution

flinear (θ) = off+ amp ∗ sin (2θ+ 2Ψ)

while the non-linear one includes a modulated frequency:

fnon−linear (θ) = off+ amp ∗ sin [2θ+ uM cos (θ+Ψ+Φ) + 2Ψ]

where (off, amp, Ψ, uM and Φ) are the fitting parameters. From the residuals, one
sees that some aspect of the difference between our measurement and the theoretical
prediction is captured (the residual is clearly lower around 3 rad and 6 rad) but there
remain some periodic behavior that is not accessible to our model. The modulation
amplitude resulting from the non-linear fit is uM = 0.35 rad.

To understand the origin of this modulation, we must refine our description of
the Pancharatnam phase shifter by taking into accounts defects of our apparatus.
Of course, due to the periodicity of the system, these defects do not change the
total phase after a 2π rotation of the QWP, but they can induce non-linearities in
the Pancharatnam phase. We identified three potential sources that we are going to
describe successively in the remaining of this section.

3.2.4 Quarter Wave Plate geometry

In a standing light wave, the intensity modulation is a consequence of the interference
between two counter-propagating electric fields and as such is highly sensitive to
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Figure 26: Pancharatnam fringes of the optical interferometer. The photodiode signal (which
has been sub-sampled for visual clarity) is proportional to the laser intensity in one
output of the Michelson interferometer. A 2π rotation induces two full oscillation
periods. The speed at which the fringes are scanned is clearly lower between 1
and 3 rad than between 5 and 7 rad indicating an angular dependence of the
instantaneous angular speed. A periodic defects around 2 rad is estimated to come
from a periodic slip of the QWP’s support on the rotation axis. The result of two
fitting functions (see text) are compared.

the wave-front quality. In a standard configuration, the reflected beam wave-front
is a combination of both the incoming wave-front and the mirror surface. But with
our phase-shifter, two quarter-wave plates contribute to modify the reflected wave-
front and, as the light goes back and forth, the effect is doubled. The specification
of our quarter wave plates indicates a transmitted wave-front quality of λ

10 RMS.
However, in our interferometer, the part of the laser standing wave interaction with
the atoms is a horizontal band of about 3mm height and 8mm length which is
small compared to the diameter of the QWP’s. Thus, we can reasonably expect that
the effective wave-front distortion is lower than the one specified. In addition, the
mechanical construction of the phase shifter was such that the center of rotation of
the RWQP was very close to the center of the mirror M3 but the exact altitude of the
atomic interferometer arm is not well known relative to the RQWP’s rotation center.
Therefore, the rotation can modulate the lattice phase around a mean value close to
the Pancharatnam phase due to the additional dynamical9 laser phase modulation.

To quantify this modulation, we measured the optical path in the quarter wave
plate. The method used is adapted from [162] and relies on the Fabry-Perot produced
by the parallel faces of the Quartz quarter wave plate. An incident polarized (aligned
on a principal axis of the slab) light is completely transmitted when the resonance
condition is fulfilled:

2ne cos (ip) = pλ p ∈ N

9 The dynamical phase here describes the phase accumulated during the laser propagation which is equal
to the integral along the optical path of 2πλ n (l)dl, where n (l) is the local index of refraction and dl is
the infinitesimal path in real space.
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where λ is the light’s wavelength, n is the refractive index at this wavelength and for
a given polarization direction, e is the slab thickness and ip is the resonant incident
angle. Therefore, by monitoring the reflected light, which displays concentric dark
rings whose angular minima are ip, we can determine the slab thickness variation
by measuring the angles (ip)p∈N. This method is very effective even in the presence
of anti-reflection coatings10 on the quarter wave plates. With pairs of consecutive
resonant angles, we measured the fractional part ε of p:

ε :=
2ne

λ
−

[
2ne

λ

]
=

i2p

i2p+1 − i
2
p

where [ ] is the integer part. The results are displayed on Fig. 27. We found a linear
variation on both coordinates, with a maximum excursion of the fractional part of
∆ε = 0.43, for the best QWP among the three produced by Fichou. This linear depen-
dence indicates a prismatic shape of the quarter wave plate. From the difference of
thickness over the large diagonal, which is simply given by ∆ελ/n̄ where n̄ ∼ 1.548
[163] is the quartz’s mean refractive index at λ = 0.633nm, we get the prism apex
angle:

α =
∆ελ

2
√
∆X2 +∆Y2n̄

' 10µrad

When the beam is slightly off the rotation axis as is represented on Fig 28a, this
prismatic effect leads to modulations of the dynamical phase. The dynamical phase
shift corresponds to twice the integrated optical path which, apart from a constant
term 2πn̄ē

λ , consists in a modulation :

φdyn1 (t) =
2π

λ
(n̄− 1) δrαcos (ωt+Ψ1)

where δr is the distance between the rotation axis and the effective laser region and
Ψ1 is a constant phase which depends on the prism orientation relative to the quarter
wave plate axis. We estimate a height difference δr ∼ 1mm between the QWP rotation
center and the interferometer’s arms which leads, with this QWP, to a modulation
amplitude of 0.19 rad.

10 It was specified better than 0.2% at 670nm but we used a slightly different wavelength λHe−Ne =
633nm to have more reflected light. A better choice would have been a single frequency laser with a
wavelength for which the AR coating have a stronger reflection coefficient but we did not have one at
hand.
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Figure 27: (a) : Typical CCD signal of the Fabry-Perot measurement. The pixel number is an
affine function of the light’s angle i. The intensity modulation has a contrast better
than 90% for the first extinction and the rings diameter are measured with a 1%
uncertainty, leading to a fractional part uncertainty of ±2%
(b): Fractional part for different beam position in a rectangle centred on the disc.
The rectangle is 6mm× 7.5mm and the fractional part is between 0.52 and 0.95 for
this quarter wave plate (see text). The linear dependence on the distance indicates
a prismatic slab with vertex angle α = 10µrad. A schematic representation of the
prism is shown on Fig. 28a.

3.2.5 Rotation axis

In addition to the prismatic effect, the axis of the laser beam can be different from the
normal to the quarter wave plate which itself can be different from the rotation axis.
This is represented on Fig.28c. We will decompose this effect in two parts:

Tilt between the laser beam axis and the QWP

The general formula giving the phase shift φ for a light beam going through a bire-
fringent media with an angle of incidence i [164]:

φ =
2πe

λ

ne
[
1−

(
sin2 (θ)
n2e

+
cos2 (θ)
n20

)
sin2 (i)

]1/2
−n0

[
1−

sin2 (i)
n20

]1/2
where ne and n0 are respectively the extraordinary refractive index and the ordinary
refractive index of the crystal, θ is the angle between the plane of incidence and the
ordinary axis. To first order in i� 1 and in ∆n = ne −n0 � ne,n0 this reduces to:

φbi =
2πe∆n

λ

[
1+

i2

2

1− 2 cos2 (θ)
n0ne

]
(64)

We see that this phase shift will depend on the direction of the ordinary axis θ. For the
RQWP, this angle will change with the rotation while for the fixed quarter wave plate
(FQWP), it will remain constant. We can however evaluate the order of magnitude of
this effect by considering the worst case θ ≡ 0

[
π
2

]
. In this case, the optical length will
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Figure 28: (a): Prismatic effect of the rotating quarter wave plate. The laser beam (red) in-
tersects orthogonally the prism which rotates around an axis parallel to its edge
going through its center O (dotted line). The distance from the rotation axis is
schematized at the bottom right
(b): Orientation of the rotation reference frame (O;X,Y,Z) relatively to the QWP
birefringent axis frame (O;X’,Y’,N). The laser beam is not orthogonal to the QWP
face and makes a constant angle with the rotation axis.
(c): Schematic representation of the possible alignment defects between the laser
beam axis (red), the normal of the quarter wave plate (N) and the rotation axis
(dotted line). The three axis are not coplanar !
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differ from it’s expected value by λi2/ (4n0ne) which, for i ∼ 15mrad, is ∼ λ/80000.
This value is about 0.1% of the specified accuracy of the QWP and is negligible in
our case but can become important if the optical length is better controlled (see 3.3.2)

Similarly to the prismatic effect, the dynamical phase will also change due to the
incident angle i. The dynamical phase shift induced by a parallel glass slide of width
ē is, in the small angle approximation:

φdyn2 (i) =
2πē

λ

{
n

cos (i/n)
−

cos (i/n− i)

cos (i/n)

}
' 2πē

λ

{
(n− 1) +

i2

2

(n− 1)

n

}
where i is the incident angle. Apart from a constant term, we can express the dynam-
ical phase shift as a function of i:

φdyn2 (i) =
2πē

λ

(n− 1)

n
i2

where an additional factor 2 due to the double pass configuration has been used. In
practice, this dynamical phase shift can account for 0.33 rad for an incident angle of
15mrad.

It might seem unrealistic to consider these two effects simultaneously (birefringent
effect and dynamical effect) since the latter is orders of magnitudes larger than the
former. However, the first effect is not negligible on the Pancharatnam phase when
one wants to control its value down to the mrad range as we will see in Sec. 3.2.6
and discuss in Sec. 3.3.2.

Tilt between rotation axis and the QWP’s normal

When the rotation axis is not perfectly orthogonal to the quarter wave plate, the
normal to the plate precesses around the rotation axis, which dynamically changes i
and θ. To determine their evolution, we can use the formalism of rotation matrices
which relates the coordinates in the rotating frame

(
~N, ~X ′, ~Y ′

)
attached to the QWP,

to the coordinates in the fixed frame
(
~Z, ~X, ~Y

)
as represented on Fig. 28c)). If β is the

constant angle between ~N and ~Z, and if one direction ( ~X ′) of the QWP is supposed to
remain in the (O;X, Y) plane, we get: cos (β) 0 sin (β)

sin (β) sin (ωt+Ψ2) cos (ωt+Ψ2) − cos (β) sin (ωt+Ψ2)

sin (β) cos (ωt+Ψ2) sin (ωt+Ψ2) cos (β) cos (ωt+Ψ2)


where Ψ2 is a phase determined by initial conditions and ω is the precession rate.
The direction of the normal axis is given by its first row:
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~N =

 cos (β)
sin (β) sin (ωt+Ψ2)

sin (β) cos (ωt+Ψ2)


thus, if we consider a laser beam contained in the plane (O;Z,X), making an angle γ
with (O;Z), its unit direction vector is:

~L =

 cos (γ)
sin (γ)

0


which simply gives us i (t) from the definition:

cos [i (t)] := ~L · ~N = cos (γ) cos (β) + sin (γ) sin (β) sin (ωt+Ψ2)

which reduces, in the limit of small β,γ� 1, to:

i2 (t)

2
= γβ sin (ωt+Ψ2)

To get the expression of cos [θ (t)], we need to take into account the fact that the
ordinary axis can make an arbitrary angle α with ~X ′:

cos [θ (t)] :=
[
cos (α) ~X ′ + sin (α) ~Y ′

]
·~L

= γ cos (ωt+Ψ2 −α) +β sin (α)

Recalling eq. (64), the effect of the angle between the ordinary axis and the plane
of incidence, proportional to cos2 [θ (t)], adds a fourth order contribution to the bire-
fringent phase which will be ignored due to the already small value of the second
order term.

3.2.6 Phase retardation

We will now summarize the effective total phase shifts induced by the two QWP on
the laser beam. To do so, we will first focus on the birefringent phase shifts which
modulate the Pancharatnam phase. Then, we will add the dynamical phase shifts to
get the total phase shift imprinted on the lattice.
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Birefringent phases

The first QWP is fixed and we didn’t investigate its prismatic shape. However, we can
use the manufacturer’s specification to evaluate the maximum systematic uncertainty
on the phase shift:

φFQWP =
π

2
[1± ε1]

{
1+

i2

2

1− 2 cos2 (θ)
n0ne

}
' π
2
[1± ε1]

where ε1 is the FQWP specified accuracy (in our case, ε1,2 <
1
75 ). The tilt angle (i ∼

15mrad) accounts for λ/80000 which is less than 0.1% of ε1 and as such negligible.
The second QWP combines both the systematic effect and a dynamical tilt which can
be expressed as:

φRQWP (t) = π
4
[1± ε2]

{
1+ γβ

n0ne
sin (ωt+Ψ2)

}
(65)

These effects will produce a modulation of the Pancharatnam phase and harmonics
of the rotation frequency can appear in the total phase due to the deviation from the
ideal trajectory on the Poincaré sphere. This effect might be higher than the previous
one because of the difficulty to simultaneously align three axis (rotation, birefringent
plate and laser) in vacuum but remains marginal. However, for the sake of the dis-
cussion11, we will give the expression of the Pancharatnam phase which takes into
account this modulation

Effect on the Pancharatnam phase

To evaluate the effect of these imperfections on the Pancharatnam phase, one can
use eq. (60) which relates the solid angle subtended by a spherical triangle on the
sphere. To do so, the simplest way is to decompose the spherical polygon into three
spherical triangles. The first one has vertices V1, V2 and V3 which correspond to
the initial, FQWP and RQWP polarization states respectively. The second one has
vertices V3, V4 and V5 which correspond to the polarization states after the second
crossing of the RQWP and the final state (after the second crossing of the FQWP).
In this description, the rotators are not perfect which results in an open trajectory
on the Poincaré sphere. Hence, the Pancharatnam phase is measured by orthogonal
projection of the final state on the initial one. This closes the path and adds a third
triangle with vertices V5,V1 and V3. Figure 29 summarizes this subdivision. Doing
so, we can express the total solid angle as the sum of the three partial solid angles
subtended by each of the spherical triangles. This leads to a page long analytical
expression which can be advantageously expended in power series of ε1, ε2 and
γβ
n0ne

:

11 in addition to the fact that this, to my knowledge, has not been expressed before.
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φP (t) ' 2ωt+
[
π sin (2ωt) (ε1 + ε2) −

π

2
sin (4ωt) ε1

]
+

3π2

16

(
4 sin (2ωt) ε1ε2 − sin (4ωt) ε21

)
+ π sin (2ωt)

[
1+ ε2 +

3π

4
ε1

]
sin (ωt+Ψ1)

γβ

n0ne
(66)

As anticipated, the different defects will mainly modulate the Pancharatnam phase
around its linear value 2ωt and will integrate to zero over the whole cycle. In our
case, εi are about three order of magnitudes larger than the tilt modulation which
is why we kept only their second order terms in the development. Interestingly, the
frequencies at which these modulations occur are distinct which allows to measure
them independently. Furthermore, only the first QWP retardance ε1 has a second
harmonic component at 4ω which comes from the fact that the FQWP defect is inte-
grated twice when the light goes through the RQWP, while the RQWP defect is only
integrated when going back through the RQWP.

Dynamical phases

The two effects inducing changes in the laser dynamical phase can be collected in a
total dynamical phase:

φdyn (t) = φdyn1 (t) +φdyn2 [i (t)]

=
4π (n− 1)

λ

{
αδr cos (ωt+Ψ1) + ē

γβ

n
sin (ωt+Ψ2)

}

Total phase

The total phase of the reflected laser beam is the sum of the initial phase, a
constant dynamic phase and two time-dependent contributions, the dynamical
phase φdyn (t) and the Pancharatnam phase φP (t).

φd (t) = φ0 +φdyn (t) +φP (t) (67)

This analysis justifies the non-linear fitting function used for the optical fringes
presented at the beginning of this Section. The order of magnitude of the mod-
ulation amplitude obtained uM = 0.35 rad compares well with the two dynam-
ical effect estimateda at 0.19 rad (prismatic) and 0.33 rad (tilt).

a We did not at the time take particular attention to the angular references which prevented us
from having an idea of the phase difference Ψ2 −Ψ1 which could have allowed us to measure
these two effects separately.

98



Figure 29: Imperfect trajectory on the Poincaré sphere due to a phase retardance different
from π/2 of the QWP’s. The defaults have been exaggerated for the sake of clarity
to ε1 = −1/15 and ε2 = 1/15. The 5 vertices used to calculate the subtended solid
angle are represented in blue.

99



3.3 application to atom interferometry

.
Now that we have quantitatively described the different parameters which modify

the total phase shift produced by this apparatus, let us examine how it was imple-
mented in an atom interferometer and what would be its advantages and its limits
for two applications: a continuous phase shifter for a single interferometer and a
simultaneous phase shifter for a dual species interferometer.

3.3.1 Atomic fringes swept by the Pancharatnam phase shifter

Once the Pancharatnam phase-shifter was operational, we used it on our atom inter-
ferometer to scan the atomic fringes. The result is presented in Fig.30. We obtained
fringes with high visibility (72%) which is similar to the fringes obtained by scanning
the phase with mirror M3. Similarly to the optical interferometer, we observed a non
linear dependence of the scan frequency which is very well described by the prism
and tilt modulation model. The modulation value we obtained from the atom inter-
ferometer fringes is uM = 0.39(1) rad, which is consistent with the measurement
performed using the optical Michelson interferometer. The slight difference can be
attributed to a different combination of the two effects which can differ for the Bragg
beam and the Michelson beam. In addition to the phase modulation, the angular
deviation of the reflected Bragg beam can have an effect on the atomic diffraction
process and we are going to describe them now.
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Figure 30: Atomic fringes scanned with the Pancharatnam phase-shifter. The number of
atoms at one output of the Mach-Zehnder type interferometer is plotted as a func-
tion of the rotating quarter wave plate angle. The atomic period is approximately
half the rotation period, as expected. A non-linear modulation is clearly visible in
the difference of slope around 4 and 7 rad and is well reproduced by a fitting pro-
cedure including a modulation of the instantaneous frequency. For comparison, a
linear fitting is also represented, but its residual has not be plotted to emphasize
the quality of the non-linear fit. A modulation of the residual amplitude is clearly
apparent but can be partly explained by the Poissonian statistic of atomic counting
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Interferometer visibility dependence

We have seen that the prismatic shape of the QWP induced a dynamical phase shift.
Doing so, we neglected the angular deviation of the reflected beam. This deviation
can change the mean wavevector of the third diffraction grating ~k3 =

(
~ki3 −

~kr3

)
/2,

where ~k3 is the laser wavevector and the superscript denote the incident and reflected
beams. This changes the spatial superposition of the interferometer arms which de-
grades the visibility12 and modulate the interferometric signal. From the angular
deviation in a prism under quasi normal incidence D = (n− 1)α− n2α2i where α
is the apex angle and i the angle of incidence, we get the projection of the mean
wave-vector on the vertical plane, in the direction orthogonal to the laser beam:

k
y
3 '

kL
2

sin
(
i0 + 2 (n− 1)α−n2α2i

)
(68)

where i0 is the angle between the two beams without the phase shifter and we have
assumed that the fixed QWP plate does not deflect the beam because the interferom-
eter alignment takes into account this deflection. Because, in our interferometer, the
visibility depends sharply on the wavevector difference between the three standing
waves [83], we can express the visibility V as a function of the incidence angle:

V (i) = V0
∣∣sinc [hDkL sin

(
i0 + 2 (n− 1)α−n2α2i

)]∣∣
where hD ∼ 3mm is the height of the detection region. For example, in a pessimistic
assumption, if we consider that the mean visibility we measured, 72%, is entirely
due to i0 and the constant deviation 2 (n− 1)α and that the maximum visibility
V0 is closer to 80%, we can approximate i0 ∼ 4µrad. With the prism angle value
measured in Sec. 3.2.4 and typical values of i ∼ 10mrad we find a modulation of the
visibility of about 2% which is not statistically resolved on Fig.30.

3.3.2 Phase control in a single interferometer

The Pancharatnam phase shifter can be used to control the phase shift of an atom
interferometer. Indeed, to obtain an accuracy of 1mrad on the total phase shift, one
would have to control the term 2ωt to at least 0.5mrad. This means that the angular
position of the RQWP has to be controlled with an accuracy better than 0.25mrad.
Additionally, each modulating term of eq. (67) would decrease the accuracy. The main
effect on the Pancharatnam phase φP (t) comes from the QWPs’ retardances accuracy
ε1 and ε2. To keep its modulation amplitude below 10% of the angular accuracy, εi
have to be better than 1

6000 . This is reachable since recent techniques in retardance
measurement have an accuracy better than 1

4000 [165] or even 1
104

[166]. As for the

12 This is simply due to the fact that the interferometer signal is integrated in the directions orthogonal to
the propagation axis. This washes out the fringes if there is a non zero wavevector difference in these
directions between the two outputs of the interferometer.
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dynamical phase φdyn (t), the prismatic angle α and distance from the rotation axis
δr have to be simultaneously considered. For a realistic δr ∼ 1mm, the RQWP apex
angle is constrained below 0.1µrad which seems unrealistic. It is therefore necessary
to design a rotating mount whose rotation center is precisely adjusted on the atoms.
Furthermore, the second part of the dynamical phase depends on the product γβ and
the QWP’s thickness ē. Typical values of 0.5mrad are easily reachable with a careful
alignment which leads to a modulation amplitude of 1.5mrad. Thus, this effect can
be reduced below the desired accuracy with the use of an autocollimator.

This phase shifter can be used to rapidly measure an induced (or offset) phase shift
φint in a sequential interferometer. Indeed, switching the interferometric phase φd
by π allows to alternatively measure the interferometric signal around the two highest
phase sensitivity regions. To perform these switches, the RQWP needs to be rotated
by π

2 between two cycles. Motorized rotator with high accuracy are commercially
available13 with rotation speed up to 15π rad/s which would be compatible with a
30Hz repetition rate.

3.3.3 Dual-species simultaneous phase control

An interesting feature of this phase shifter is its almost perfect independence on spa-
tial coordinates and on wavelength. As long as the QWP’s produce an homogeneous
phase shift on its aperture, atoms located at different positions in the laser beam will
acquire the same phase shift. Similarly, if the trajectories on the Poincaré sphere of the
polarization states of two different lasers of different wavelength are identical, the ge-
ometric phase shift experienced by the different atomic species interacting with each
wavelength will be identical. Several types of such achromatic QWP have been de-
veloped based on different principles: combination of two materials having different
birefringent dispersion [167] or identical materials with well chosen angle between
their principal axes [168], etc [169]. A dual species control relaxes the achromatic con-
dition because it only requires a π/2 retardance at two well determined wavelengths.
QWP’s presenting such characteristics can be realized with a combination of two
different thickness materials but these wave plates present, on average, higher sensi-
tivity to temperature14 and to the angle of incidence, which imposes more stringent
conditions on alignment.

Description

In dual species experiment, each atom interferometer phase shift is a complex com-
bination of the diffracting laser’s phase, of residual Zeeman effect, dynamical phase
along the species’ specific trajectory and optical shifts including cross-talks. When
Bragg’s pulses are used, the two standing wave phases can be scanned simultane-
ously only by controlling the retro-reflecting mirror position. However the mirror

13 The ’HO Series Slotless Motors’ of applimotion.inc uses a similar rotation encoder. It is however mag-
netic but the phase shifter does not have to be close to the atom interferometer arms.

14 Thermo-optic coefficients at two different wavelength can be different and it needs to be taken into
account in the design of the two materials.
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is also the reference frame to which the accelerations experienced by the atoms are
compared to. Thus, phase shifting by mirror control seems incompatible with vibra-
tion reduction and absolute positioning. Furthermore, when the optical wavelength
are different, the induced phase shift is not identical for the two species. The Pan-
charatnam phase-shifter could be used to solve these issues by providing an identical
control on the total phase for both species.

Lissajous ellipses

When the signal of interest is the differential phase between the two interferometers,
the interferometric signal of one species can be plotted with respect to the signal of
the other species to get what is called Lissajous ellipses. To scan this ellipse, it is
sufficient to have vibrations on the reflecting mirror which produces common phase
shift but can also add non common phase noise. The Pancharatnam dephasor could
be used to uniformly scan the ellipse at controlled phase difference, reducing the time
needed to acquire an ellipse and the bias [170] induced by this measurement process.

3.4 conclusion

In this chapter, we presented briefly the concept of geometric phase, its independence
on the state path in Hilbert space and its application to polarization states of an elec-
tromagnetic wave: the Pancharatnam phase. This lead us to present the Pancharatnam
phase-shifter we developed for our atom interferometer. Its characterization with an
initial optical interferometer showed an additional phase modulation to the theoreti-
cal ideal value of 2ωt. A finer description of the experimental defects allowed us to
point out the main parameters (incidence angle, prismatic shape and birefringence
accuracy) which influence the induced phase shift. The measured modulation ampli-
tude of 0.35 rad was well described by our model. Then, we applied this phase shifter
to atom interferometry and recorded interferometric fringes displayed on Fig.30. The
interferometric signal did not present higher phase noise compared to the classical
method and had the advantage of being unbounded. As expected, a 2π rotation of
the RQWP induced a phase shift of 4π. Because of our setup defects, we observe a
modulation of the total phase with an amplitude of 0.39 rad, which compares well to
the value obtained with the similar arrangement of the optical Michelson interferom-
eter. To reduce this phase modulation, one should first decrease the distance between
the rotation axis and the laser region interacting with the atoms. Greater care must
also be taken on the orthogonality between the QWP faces and the Bragg laser beams.
Finally, the example of two prospective applications was described: the accurate con-
trol of an interferometer’s phase and a common phase-shifter for dual species Bragg
interferometer.
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In this chapter, I will summarize the AC stark shift experienced by a polarized
atom in presence of an external electric field. This will lead me to present the "tune-
out wavelength" for which it vanishes. Historically, another particular wavelength:
the "magic" wavelength was used as it allows to cancel the differential light shift
experienced by two different atomic sublevels. A short description of a theoretical
model based on second order perturbation theory will allow us to exhibit and dis-
cuss these wavelengths for the particular case of 7Li. These wavelengths are interest-
ing in metrological apparatus as well as in experimental tests of QED calculations
which is the reason why a lot of experimental efforts were made recently to measure
them accurately. Atom interferometers are well fitted for these measurements which
motivated us to implement our own experimental setup. I will present it briefly and
focus on the parameters which determine directly our measurement accuracy and
sensitivity. Finally, I will present our experimental results which allowed us to mea-
sure 7Li "tune-out" wavelength of the |F = 2,mF = 2〉 state with an accuracy of a few
tens of fm which compares well with other recent experiments. Additionally, the
power dependence of the measured stark shift will be discussed and the influence of
hyperpolarizability will be subject to a preliminary evaluation.
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4.1 tune-out wavelength

4.1.1 Electric polarizability of alkali atoms

The spectral response of a particle assembly to an external perturbation has been
used in a large variety of domains, providing information on the collective (stress de-
formation in elasticity theory, phonons dispersion relations in crystals, electrical con-
ductivity in metals) and individual (refractive index of gases, shifting and splitting
of spectral lines induced by electric (Stark) and magnetic (Zeeman) effects) behaviors.
Dynamic polarizability is the restriction of this method to the electronic cloud re-
sponse function of an atom or a molecule under an external oscillating electric field.
In the classical theory, in presence of an external electric field ~E, the induced total
dipole moment ~P of the cloud can be expanded in a power series of the instanta-
neous electric field1. This polarization vector represents the electronic cloud’s ability
to deform under the electric field’s influence. The interaction changes the system’s
energy by an amount δU, which, for a centrally symmetric system is given by:

δU = −
α (ω)

〈
|E|2
〉

2
(69)

where α (ω) is the polarizability and
〈
|E|2
〉

is the electric field mean squared am-
plitude over a period. The simplest system that can be considered is probably the
hydrogen atom in an homogeneous electric field. Assuming an electronic density dis-
tribution spherically symmetric only displaced from equilibrium by the external field
leads [171] to the simple expression of hydrogen’s polarizability:

α
(1)
H =

3

4
a30

where a0 is Bohr’s radius and the polarizability is expressed in its volumic expres-
sion which is related to its S.I expression by α = α0/ (4πε0). This result gives an
approximate2 order of magnitude but calculations from first principles, using quan-
tum mechanics, lead to the exact value of 92a

3
0. For more complex systems, such as

atoms or ions, the polarizability can be calculated [172] by considering the dipole
approximation Hamiltonian:

Ĥint = −
∑
i

qi~̂E (~ri, t) · ~̂ri

1 In some systems, such as ferroelectric materials, this polarization vector also depends on the electric
field’s history due to a spontaneous polarization whose direction depends on the surrounding environ-
ment.

2 It is possible to refine this model by including density deformations.

106



where ~E (~r, t) = E0/2
[
~εe−i(ωt−

~k·~r) + c.c
]

is the electric field (amplitude E0, polarisa-
tion ~ε and frequency ω) and (qi,~ri) are respectively the charge and position of each
particle. The summation is performed over all the charged particles in the system.
When the electric field frequency is far from resonance, this interaction Hamiltonian
can be treated as a perturbation of an initial Hamiltonian Ĥ0 which takes into account
the kinetic term as well as the inter particles interaction. Because Ĥ0 commutes with
the parity operator and the interaction Hamiltonian Ĥint is uneven, transition coeffi-
cients

∣∣〈b|Ĥint|a〉∣∣ will be non-zero only between states of different parity. Applying
the perturbation theory to the total Hamiltonian Ĥ = Ĥ0 + Ĥint gives the second
order Stark shift [173] of a non degenerate ground state |a〉:

δU (ω) = −
E20
4 h

∑
b

<


∣∣∣〈b|~ε · ~d|a〉∣∣∣2

ωb −ωa −ω− iγba/2
+

∣∣∣〈a|~ε · ~d|b〉∣∣∣2
ωb −ωa +ω+ iγba/2

 (70)

where < denotes the real part, ωb = Eb/ h (ωa = Ea/ h) is the eigenstate initial
energy in frequency unit, γba = (γa + γb) /2 is the mean transition linewidth and
~d =
∑
i qi~ri is the total electric dipole. From eq. (69), it is straightforward to recognize

in eq. (70) the scalar dynamical polarizability of neutral atoms δU (ω) = −α
(2)(ω)
4 E20

where a factor 1/2 comes from the cos (ωt)2 time average.
For Alkali atoms, the electronic shell structure allows to separate the total atomic

state into two parts: the core made of a series of closed shells and the single valence
electron. When the electric field amplitude (∼ 106 V m−1 for 1W laser power focused
on a 6µm waist) is much lower than the inner core electric field (∼ 1012 V m−1),
the inner shell frequency dependence is negligible. In this regime, only the valence
electron’s state contributes to the dynamic polarizability which is developed:

α(2) (ω) ' α(2)
core +α

(2)
v (ω)

where α(2)
core denotes the second order constant contribution of the inner shell and

α
(2)
v (ω) is the dynamic polarizability which can be decomposed with a formula

similar to eq. (70) where the full atomic states are replaced by the electronic state of
the valence electron.

4.1.2 Hyperfine coupling

One can develop α(2)
v (ω) by taking into account the fine and hyperfine coupling of

the valence electron with its spin and the nucleus spin. Recalling that the Wigner-
Eckart theorem make it possible to factorize matrix element of spherical tensors into
two components, one independent of the angular momentum projection and one
Clebsch-Gordan coefficient. Also recalling that the electric dipole does not couple to
the nuclear spin, it is possible to express the total polarizability as a sum of three
tensorial components [173]:
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α
(2)
v,n,J,F,mF

(ω) =
[
α
(s)
n,J,F − V cosχ

mF
2F
α
(v)
n,J,F (71)

+

(
3 cos2 ξ− 1

2

)
3m2F − F(F+ 1)

F(2F− 1)
α
(t)
n,J,F,

]

where α(s,v,t) are the irreducible scalar (s), vector (v) and tensor (t) components, im-
plicitely dependent onω, of the polarisability. With the electromagnetic wave vector ~k
and the quantization axis ~eB, the angle χ is defined by cosχ =

∣∣∣~k ·~eB∣∣∣, V is the fourth
Stokes parameter of the light and characterizes the degree of circular polarisation3.
And cos ξ = ~ε · ~eB is the projection of the polarisation vector onto the quantization
axis. Here, the usual spectroscopic notation have been used with n, the quantum
number corresponding to the angular momentum operator ~̂L, J corresponds to the
fine structure composition ~̂J = ~̂L+ ~̂S, where ~̂S is the electron’s spin and F corresponds
to the hyperfine structure ~̂F = ~̂J+~̂I, with ~̂I the nuclear spin. The different irreducible
components are given by:

α
(s)
n,J,F =

1√
3(2F+ 1)

α
(0)
n,J,F (72)

α
(v)
n,J,F = −

√
2F

(F+ 1)(2F+ 1)
α
(1)
n,J,F

α
(T)
n,J,F = −

√
2F(2F− 1)

3(F+ 1)(2F+ 1)(2F+ 3)
α
(2)
n,J,F

with

α
(K)
n,J,F = (−1)K+F+1(2F+ 1)

√
2K+ 1∑

n ′,J ′,F ′
(−1)F

′
(2F ′ + 1)

{
1 K 1

F F ′ F

}{
F 1 F ′

J ′ I J

}2
1
 h
Re

(
1

ω ′ −ω− iγ ′/2
+

(−1)K

ω ′ +ω+ iγ ′/2

) ∣∣< n ′, J ′‖d‖n, J >
∣∣2

where ω ′ = [En ′,J ′,F ′ − En,J,F] / h is the energy difference between hyperfine states in
frequency units and γ ′ = [γn ′,J ′,F ′ + γn,J,F] /2 are the mean linewidths of the coupled
levels. |< n ′, J ′‖d‖n, J >| are the irreducible dipole matrix elements. It is interesting
to note that, when the hyperfine coupling is taken into account, hyperfine levels of
alkali’s groundstates, for which J = 1

2 , can have different polarizabilities4 due to
the tensor component which is non-zero as can be seen in the pre-factor of α(T).
This comes from the coupling with the nucleus spin which leads to a total spin F
eventually different from 0 and 1

2 .

3 In practice, V cosχ = i (~ε∗ ×~ε) ·~eB
4 This effect is one of the main limit of atomic clock accuracy as is reviewed in [174]
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4.1.3 Two particular wavelengths

The energy difference between two hyperfine states of alkali atoms can therefore be
expressed with the dynamical polarizability:

δU (ω,E0, ε,~eB) =  h
(
ωn,J,F1,mF1

−ωn,J,F2,mF2

)
−
(
α
(2)
v,n,J,F1,mF1

−α
(2)
v,n,J,F2,mF2

) E20
4

−
(
γ
(4)
v,n,J,F1,mF1

− γ
(4)
v,n,J,F2,mF2

) E40
64

(73)

where we have explicitly indicated the dependence in the electric field parameter
only in the energy difference and we have purposely added the hyperpolarizability,
usually denoted by γ for later discussion. To reduce the Stark shift induced by the
electric field amplitude, one can look for states which have exactly the same polariza-
tion. As can be seen from eq. (71), it is automatic when the two states are from the
same hyperfine manifold F1 = F2 and have opposite mF projections. For this exam-
ple, the electric field has to be polarized along the quantization axis to ensure that
the vector component difference does not contribute to the polarization difference.
But it is also possible5 to use the field frequency as an adjustable parameter which,
because of the sign difference in the real part of α(K)

n,J,F, can either cancel the polariza-
tion difference between the two states or the dynamic polarization itself. These two
situations correspond respectively to the so-called ’magic’ wavelengths and ’tune-out’
wavelengths.

Alkali’s ’tune-out’ wavelength

For the ground states 2S1/2 of alkali atoms, it is straightforward to get an estimate
of the ’tune-out’ wavelength. To do so, let us consider only the first two excited
states 2P1/2 and 2P3/2 contributions in the sum eq. (70). These contributions account
for more than 95% of the total polarizability [175]. Because the fine splitting of the
excited states is much larger than the hyperfine splittings and the ground state fine
splitting, we will neglect them in this discussion. Additionally, the level linewidths
are negligible compared to the detuning ω−ω ′ which simplifies the real part. In the
end, the Stark shift of the ground state simplifies to:

δU = −
E20
2 h

[
d21ω1

ω2 −ω21
+

d22ω2

ω2 −ω22

]
(74)

where ωi corresponds to the Di line frequency6 and di is the associated dipole tran-
sition matrix elements. For alkali atoms the first two exited states corresponds to

5 In particular when specific hyperfine substates are interesting due to their identical first order Zeeman
coefficients or low hyper-polarizabilities.

6 Traditionally, the 2S1/2 −→ 2P1/2 transition is called D1 line and the 2S1/2 −→ 2P3/2 transition is
called D2 line
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J1 = 1/2 and J2 = 3/2 which is why the transition strength ratio between the D2 line
and the D1 line is equal to

√
2J2 + 1/

√
2J1 + 1 =

√
2. Therefore, eq. (74) simplifies to:

δU = −
E20d

2
1

2 h

[
ω1

ω2 −ω21
+

2ω2

ω2 −ω22

]
(75)

To find the ’tune-out’ wavelength, i.e the wavelength which cancels the polarizability,
one can use the fact that the fine splitting ∆FS = ω2 −ω1 is much smaller than the
optical frequencies ωi. The solution to δU (ω) = 0 ∀E0 can be approximated by:

ωtune−out,approx = ω1 +
∆FS
3

(76)

which supports a geometrical approach consisting in finding the barycentre between
two weights separated by ∆FS with one of them twice as heavy as the first one.

Alkali’s ’magic’ wavelength

Similarly, one can give an approximate value of the ’magic’ wavelength of the two
groundstate hyperfine levels, neglecting the hyperfine structure of the excited states.
The relative Stark shift between the states |2S1/2, F = I− 1/2 > and |2S1/2, F = I+

1/2 >, where I is the nuclear spin, is:

δU = −
E20d

2
1

2 h

[
ω1

ω2 −ω21
+

2ω2

ω2 −ω22
−

ω3

ω2 −ω23
+

2ω4

ω2 −ω24

]
(77)

where δHFS = ω3 −ω1 = ω4 −ω2 is the ground state hyperfine splitting and ∆FS =

ω2 −ω1 = ω4 −ω3 is the excited states fine splitting. Solving δU (ω) = 0 ∀E0 for
frequencies far from resonances in between the two D lines one gets the approximate
’magic’ wavelength:

ωmagic,approx = ω1 +
∆FS
3

+
δHFS
2

(78)

which again compares well with an intuitive approach. The two ’tune-out’ wave-
lengths for each hyperfine sublevel are separated by δHFS. If the polarizability of
each sublevel has a similar Taylor development around its zero value, the first or-
der terms will cancel each other in eq. (75) and the second order will only be zero
precisely in between the two ’tune-out’ wavelengths which corresponds to ωmagic.

Getting finer analytical expressions which take into account the excited state hy-
perfine structure and higher excited states becomes rapidly cumbersome. Which is
why numerical solutions will now be used to discuss further the value of these wave-
lengths.
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4.1.4 Theoretical calculations

Ab-initio evaluation of the ’tune-out’ and ’magic’ wavelengths using methods such as
configuration interaction, many-body perturbation theory and coupled cluster meth-
ods have been extensively studied recently. But it is out of the scope of this chapter
to describe these methods (see for example [176] for alkali ’magic’ wavelength and
[172] for a review of the numerical methods). However, using eq. (71), we were able
to calculate accurately the dynamic polarizability of 7Li close to the D lines because
the contribution of highly excited state is small7 compared to the contribution of the
2P states. We were careful to take into account the hyperfine structure, which is about
8% (resp. 1%) of the 2P fine structure for the ground (resp. first excited) state. I will
present here the obtained spectra and our theoretical evaluation of the ’tune-out’ and
’magic’ wavelengths for 7Li different groundstate hyperfine levels.

Theoretical and experimental parameters

To calculate the irreducible components α(K)
v,n,J,F we used:

1. Irreductible dipole matrix components |< n ′, J ′‖d‖n, J >| from numerical cal-
culations of Safronova et al. [177].

2. Frequency ω ′ of the hyperfine components of the D1 and D2 lines from ex-
perimental values of Sansonetti et al. [178]

3. Frequencyω ′ of the transitions toward higher states from experimental values
of Wiese et al. [179]. The hyperfine structure is not taken into account for these
states whose contribution to the polarizability is small

4. The transition linewidths for the D1 and D2 lines experimentally measured
by McAlexander et al. [180]

The transition linewidths for the higher excited states are neglected and we com-
pleted the scalar polarizability of eq. (71) by a small amount (2.09 au which is in
good agreement with the value 2.04(69)au reported by [175]) to account for the
small polarizability of the electronic inner shell. This was done by adjusting the zero
frequency limit of the dipole polarizability to the experimental value of 164.2 au [71].

Dynamic Polarizability

The calculated polarizability of the two hyperfine levels |F = 2,mF = 2 > and |F =

1,mF = −1 > is represented on Fig. 31. The position of "tune-out" and "magic"
wavelengths depends on the hyperfine state and on the laser polarization. Different
configuration were chosen to discuss the influence of the polarization purity and
direction on the "tune-out" wavelength:

7 We have taken into account excited states up the 7P state which shifted the ’tune-out’ wavelength by
0.3MHz which was far below our experimental accuracy and indicated that higher levels would not
shift significantly our result.
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eBConfig.1
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eB
Config.2

kLeB

Config.3

• Config.1: The laser polarization ~ε is linear and forms
with the propagation direction ~kL and the quantization
axis ~eB an orthogonal trihedral. This corresponds to
linear-σ transitions with V cos (χ) = 0 and cos (ξ) = 0.

• Config.2: The laser polarization is right handed and the
propagation direction is orthogonal to the quantization
axis. This corresponds to π and linear-σ transitions with
V cos (χ) = 0 and cos (ξ) = 1/

√
2. this configuration em-

phasizes the effect of the tensorial part.

• Config.3: The laser polarization is left handed and the
propagation direction is collinear to the quantization
axis. This corresponds to σ− transitions with V cos (χ) =
1 and cos (ξ) = 0. This configuration emphasizes the ef-
fect of the vectorial part.

Figure 31: Lithium polarizability in atomic units as a function of the detuning ∆ to the
reference frequency ω0 of the |F = 2 >−→ |F ′ = 1 > transition. The laser is
linearly polarized (Config. 1). The inset magnifies the region where the polariz-
ability vanishes. Two ’tune-out’ wavelengths are indicated which correspond to
the |F = 2,mF = 2 > and |F = 1,mF = −1 > states. The frequency difference,
845.5MHz, between the two ’tune-out’ wavelengths corresponds approximately
to the ground state hyperfine splitting δHFS = 803.5MHz.

The inset of Fig. 31 shows two "tune-out" wavelength of Config.3 which are labelled
λtune−out,2,2 and λtune−out,1,−1. Additionally, two crossings between these two
states dynamic polarizabilities exist and correspond to "magic" wavelengths which
are labelled λ(1)magic,2,−1 and λ(2)magic,2,−1. Also the difference between Config.1 and
Config.3 for a single state is clearly visible as the zero crossing is shifted by 5GHz
which indicates the large role played by the vector component α(v). The calculated
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positions of these "tune-out" and "magic" wavelengths are listed in Tab. 5 and Tab. 6.
Let us now discuss the effect of each polarizability components (α(s), α(v), α(t)) and
of the laser polarization on these wavelengths.

7Li ’tune-out’ wavelength

The tune-out wavelength values calculated by the simple approximation of eq. (76)
gives:

λtune−out,approx = 670.971 627 3nm

This value lies in between every set of wavelengths calculated for the hyperfine
sublevels represented in Tab 5. At this wavelength, 10 fm corresponds to 7MHz. The
tensor component α(t) has a small (30MHz for F = 2 and 7MHz for F = 1) effect
on the ’tune-out’ wavelength in each hyperfine manifold in Config.1. The difference
between different F states is approximately equal, as expected, to the hyperfine struc-
ture. Config.2 confirms this effect of the tensor component as its pre-factor is maxi-
mum in this situation. However, it shows that a completely orthogonal polarization
shifts the "tune-out" wavelength by a similar amount (25MHz for mF = 2) which
makes its value almost insensitive to small polarization residuals. However, the vec-
tor component α(v) has a large effect inside each manifold (3.7GHz for F = 2 and
1.7GHz for F = 1) as can be seen on Config. 3. This comes from the fact that the
vector component derivative, close to the ’tune-out’ wavelength, is much larger than
the tensor and scalar components derivative (because of the (−1)K sign factor in eq.
(72)) formF 6= 0 states. This large effect indicates that the quantization direction align-
ment orthogonal to the laser propagation direction has a large effect on the "tune-out"
wavelength value.

Hyperfine sublevel Config 1 Config 2 Config 3

|F = 2,mF = 2 > 670.9721146 670.9720793 670.9664622

|F = 2,mF = 1 > 670.9720793 670.9720968 670.9692737

|F = 2,mF = 0 > 670.9720677 670.9721027 670.9720677

|F = 2,mF = −1 > 670.9720793 670.9720968 670.9748373

|F = 2,mF = −2 > 670.9721146 670.9720793 ∅
|F = 1,mF = 1 > 670.9708450 670.9708507 670.9733984

|F = 1,mF = 0 > 670.9708565 670.9708450 670.9708565

|F = 1,mF = −1 > 670.9708450 670.9708507 670.968327

Table 5: Summary of the ’tune-out’ wavelengths λtune−out (nm) for the different hyperfine
levels of 7Li, between the two D lines. The different configuration corresponds to a
combination of laser polarization and quantization axis described in the text. The
empty value corresponds to a level which is only coupled to a single excited state
which prevents the cancellation of the polarizability. These values are to be compared
with the estimate λtune−out,approx = 670.971 627nm of eq. (76). The calculated
uncertainty on each of these values is 3.7 fm.
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7Li ’magic’ wavelength

A set8 of ’magic’ wavelengths for Config. 3 between hypefine ground states of 7Li are
presented in Tab 6. They compare poorly with the approximate value of eq. (78):

λmagic,approx = 670.971 024nm

which did not take into account the vector component. The value available in the
litterature, 670.971 625nm calculated by Safronova et al. [177] is also very different
as it did not take into account the hyperfine structure. The first and second laser
configuration do not have a ’magic’ wavelength between the two D lines because the
tensor component is too small, far from resonance, to compensate for the difference
in scalar polarizability between different F sates. Interestingly, there is no ’magic’
wavelength between the states |F = 2,mF = 1 > and |F = 1,mF = ±1 > because
the vector part of the polarizability of the |F = 2,mF = 1 > state is smaller than
the one of |F = 2,mF = 2 > which prevent the polarizabilities from being equal
close to the D lines. Finally, the fact that there is only one ’magic’ wavelength for the
|F = 2,mF = −2 > is due to the laser polarization choice which breaks the symmetry
between different orientation states.

Hyperfine sublevels Config. 3

|F = 2,mF = 2 > , |F = 1,mF = −1 >

{
670.9733291
670.9635046

|F = 2,mF = 1 > , |F = 1,mF = 0 >
{
670.9739934
670.9645429

|F = 2,mF = 0 > , |F = 1,mF = −1 >

{
670.9806735
670.9549675

|F = 2,mF = 0 > , |F = 1,mF = 1 >
{
670.9748475
670.9655926

|F = 2,mF = −1 > , |F = 1,mF = 0 >
{
670.9781470
670.9535853

|F = 2,mF = −2 > , |F = 1,mF = 1 > 670.9524365

Table 6: Summary of the ’magic’ wavelengths λmagic (nm) between different hyperfine lev-
els of 7Li and for different laser configurations. These values are to be compared
with the simple estimate λmagic,approx = 670.971 024nm of eq. (78). The calculated
uncertainty on each of these values is 5.4 fm.

4.1.5 Experimental measurements and applications

For alkali atoms, the exact position of the ’tune-out’ wavelength is mainly linked to
the ratio of the closest transition matrix elements. For example, the order of magni-
tude eq. (76) was derivated by assuming a ratio exactly equal to

√
2 and resulted in

a ’tune-out’ wavelength shifted from the D1 transition by (
√
2)
2
−1

(
√
2)
2
+1
∆FS. A recent de-

8 I selected levels for which the ’magic’ wavelength is far (> 1GHz) from resonance. This is motivated by
the approximation used to derive eq. (76) which is not valid close to resonance.
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scription of ’tune-out’ wavelengths link to transition ratio can be found in [181]. This
method allows to measure accurately matrix elements of high excited states by mea-
suring their ratios with lower lying states which are better known. The ratio itself is
of interest because its deviation from

√
2 can be tested against relativistic corrections

included in the modelling of many-body systems. Also, for smaller system, tune-out
wavelength measurements compare with non-relativistic quantum electrodynamics
calculations which might provide the opportunity to test different theoretical mod-
els.

Experimental protocols measuring or using these wavelengths are now going to be
briefly reviewed.

Matrix elements evaluation

The most common method to determine atomic transition elements, and their ratio
was excited states lifetime measurements with photoassociation spectroscopy [182].
The first ’tune-out’ wavelength measurement providing an improved value matrix
elements was done in Porto’s group in 2012 [183]. They used a setup in which a di-
lute Bose Einstein Condensate of 87Rb atoms pumped to the |F = 1,mF = −1 > was
subject to a series of around ten pulses of standing light waves. Each pulse diffracted
a small amount of the atoms into different n

(
2 h~kL

)
momentum states. This method

enhanced the sensitivity to small light shift because, in the small depth limit, the pop-
ulation increases proportionally to (npV0)

2, where np is the number of pulse and
V0 is the lattice depth, i.e the Stark shift. By changing the frequency of their lattice
between the resonance frequencies with the 6P states and between the 6P and 5P

states, for which transition matrix elements are accurately known by lifetime mea-
surement, they measured two ’tune-out’ wavelengths. These measurements lead to
the transition matrix elements for the 6P states with an accuracy improvement of
a factor 10. The same month, Holmgren et al.[184] published a measurement of the
’tune-out’ wavelength for potassium at λtune−out,K = 768.9712(15)nm. They used a
Mach Zehnder atom interferometer to measure the Stark shift induced on one arm.
This resulted in a global differential phase shift which vanishes at the tune-out wave-
length. Their experimental setup as well as fruitful discussions greatly inspired us for
our own setup. More recently, 87Rb transition ratio R = 1.992 21(3) was determined
by Leonard et al.[185] with a similar technique increasing by two orders of magni-
tudes its accuracy. This value ruled out some less accurate theoretical calculations
and remains the most accurate measurement made so far.

QED tests

In the context of QED tests, a ’tune-out’ wavelength of a non-alkali atom state, a
metastable helium state 23S1, was recently calculated with high precision [186] and
experimentally measured by Hensonet al.[187]. They used a Bose Einstein condensate,
magnetically trapped in their low field seekingmF = 1 state, which were out-coupled
from the trap with an RF sweep. Adding an optical potential, and the corresponding
Stark shift, on the magnetic trap lead to a higher, or lower, confining trap depending
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on the positive (negative) sign of the shift. This resulted in an higher (resp. lower)
outcoupling rate. By modulating the laser intensity they were able to detect the mod-
ulated outcoupling rate. The amplitude of the Fourier component at the modulation
frequency provided an information on the depth of the Stark potential and allowed
to measure the wavelength at which it vanishes: λtune−out,He∗ = 413.0938nm. This
measurement uncertainty lies two orders of magnitude lower than QED calculation.

Atom manipulation

These wavelengths can be used to simultaneously manipulate either different species
[188] or different atomic states [189]. The different species manipulation protocol in-
volves two optical lattices each tuned to one ’tune-out’ wavelength of the two species.
This choice allows to manipulate independently two co-located atomic clouds, each
one interacting only with the lattice which is not ’tuned out’ to it. This is useful to
precisely control the environment seen by each species which allows either to cancel
this contribution or to investigate the interaction difference of each species with the
environment
The ’magic’ wavelength choice for light shift insensitive atomic clocks has been abun-
dantly discussed [190] and demonstrated (Cs [191],Sr[192],40Ca+[193]). They use ’magic’
wavelength optical traps to increase the interrogation time of their atomic ensemble
and achieve accuracy comparable to state-of-the-art clocks operating with atoms in
free fall.
The use of state insensitive trapping have also been recently used by Li et al. [194]. By
tuning the trapping frequency to a ’magic’ wavelength, they prevented decoherence
between two collective states corresponding to a ground and a single excited Ryd-
berg state. This allows to increase the lifetime of their atomic memory which lead to
deterministic atom-light entanglement.

Tune-out wavelength

The atomic light shift induced by an external oscillating electric field is given,
to second order, by the dynamic polarizability (eq. (71)). For 7Li |F = 2,mF =

2 > state we expect it to vanish at the so-called "tune-out" wavelength:

λtune−out,Config.1,F=2,mF=2 = 670.9721146(37)nm

In frequency unit, it corresponds to ∆2,2,theo = 3.3844GHz to the blue of the
7Li F = 2 → F

′
= 1 transition. The exact value of this wavelength provides an

information on the transition strengths and is useful to test ab-initio theories.
For other atomic species, it was recently measured with 32 fm accuracy for
87Rb using atom interferometry.
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4.2 experimental setup

To measure the ’tune-out’ wavelength of 7Li which lies between the two D lines (see
Tab. 5), we implemented a setup in which a laser beam is focused on one of the two
paths in our interferometer (see Fig. 32).
The Stark shift experienced by the atom on this path can be expressed as :

φF,mF
= −

∫∞
−∞

α
(2)
F,mF

4 h
E20 (t)dt

where the time dependent electric field amplitude is correlated to the atom classical
trajectory. For an atom having a velocity ū crossing a Gaussian intensity distribution
it is:

E20 (t) =
4ηPL

πw20
exp

−
2(ūt)2

w2
0

where η = µ0c ∼ 377Ω is the vacuum’s impedance, w0 is the laser beam waist and
PL is the laser power. This leads to the following phase shift:

φF,mF
(ω,PL) = −

ηPL√
2πw0 hū

α
(2)
F,mF

(ω) (79)

The laser waist must be chosen smaller than the distance between the two arms and
larger than the width of the atomic beam to produce an homogeneous phase shift on
only one arm. For example, a laser power of 25mW focused on a 50µm waist and
a polarizability which, close to the ’tune-out’ wavelength depends on the detuning
with a slope of approximately9 103 au/MHz we can estimate the phase shift of eq.
(79) to 18mrad/MHz. Therefore, the MHz sensitivity seems reachable since phase
shifts of the order of the mrad have already been measured with our interferometer.

In the remainder of this section, we will focus on the technical implementation of
this interaction region.

4.2.1 Optical setup

To be able to measure the ’tune-out’ wavelength with a high accuracy, the laser setup
has to meet several conditions:

• The laser frequency has to be known with an accuracy better than a few MHz.

• The laser frequency has to be stabilized down to 1MHz during an interferomet-
ric sweep which lasts a few s.

9 The conversion coefficient from atomic unit to SI units is 1/
(
4πε0a

3
0

)
, where ε0 is the vacuum’s dielec-

tric constant and a0 is Bohr’s radius.
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Figure 32: Schematic representation of the interferometer for the ’tune-out’ wavelength mea-
surement. In addition to the interferometer described on Fig. 4, an optical pump-
ing stage, located between the skimmer and the collimation stage, and the corre-
sponding magnetic gradient (see Sec.4.2.3) are represented. The interaction region
with the Stark laser focused on the ’right’ path is represented with the correspond-
ing polarization and quantization axis.

• The laser frequency has to be swept around +3.4GHz from the D1 frequency.

• The laser power available on the atoms has to be at least 10mW.

• The polarization has to be purified and orthogonally aligned to the quantization
axis to prevent the vector component of the polarizability to shift the ’tune-out’
wavelength. It corresponds to Config. 1 defined previously.

The final optical setup used to produce the laser beam shone on the atomic beam
is schematized in Fig.33. It consists in a master laser which serves as a stabilized fre-
quency reference and a higher power laser, labelled ’Stark’ laser. The master laser is an
external cavity diode laser DL100 manufactured by Toptica R©, which has a linewidth
specified below 300 kHz. Its frequency is locked via biased10 saturated absorption to
the blue (218MHz) of the D1 transition F = 1 → F

′
= 2. From the amplitude of

the error signal, and the width of the transition, we can infer that the reference laser
stability is better than 1MHz at 1 s.

The Stark laser is an amplified external cavity diode laser from Sacher R©. It pro-
vides around 160mW after optical isolation. A weak beam (2mW) of the Stark laser
is superposed with a fraction of the master laser, on the same polarization and the
produced beat note is detected by a fast photodiode. The Full Width at Half Maxi-
mum of the beat note in a 1ms time span was smaller than 1MHz which ensured a
relative frequency measurement accuracy better than 1MHz. The beat note frequency

10 An acousto-optic modulator shifts the laser frequency before the absorption cell by a constant value
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Figure 33: Schematic view of the laser system for phase shifting one arm of the interferom-
eter. A master laser, locked to the blue (218MHz) of the D1 line with saturated
absorption is used as a frequency reference. The Stark laser is locked on a confo-
cal Fabry-Pérot cavity 1− 4GHz to the blue of the D1 line. A weak beam of the
Stark laser is sent to a high bandwidth photodiode which records the beat note be-
tween the two lasers. The main beam is sent with a polarization maintaining fiber
to the interferometer breadboard. On this breadboard, the laser beam is shaped,
polarization purified with a Glan-Thompson polarizer and focused on one of the
interferometric arms. A fraction of the power sent on the atomic beam is also
monitored.

is limited below 3GHz by our spectrum analyser11. Another weak beam of the Stark
laser is sent to a confocal Fabry-Pérot cavity. The Stark laser frequency is locked on
this cavity with a homodyne detection scheme. The cavity resonance frequency drifts
on a time scale much larger than the time needed to record an interferometric signal
which has little effect on the measured phase shift. We measured a typical drift of
8MHz in 4min and an averaged short time variance of 1MHz at 1 s. We decided to
monitor the frequency beat note to include this drift in our fitting procedure.

The remaining power of the Stark laser is injected into a polarization maintaining
fiber, which keeps the power fluctuation below 3% during a day. Finally, 90% of the
power is sent to a Glan-Thompson polarizer which filters the laser polarization just
before the focussing lens and the viewport above the interferometer. A total power of
around 40mW was available at the entrance of the viewport which ensures a large
enough phase shift.

11 This justifies our ’biased’ saturated absorption as well as the F = 2 → F
′
= 2 transition choice because

we needed to have a frequency reference high enough to be able to monitor the beat note.
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4.2.2 Laser’s polarization and waist

Laser waist and divergence

Focusing a laser beam on only one arm of the two interferometers is a compromise
between the field homogeneity across the interferometer arms, their spatial separa-
tion and the phase shift peak amplitude. Figure 34a represents the trapezoidal dis-
tributions of each arms atomic density along the Gaussian distribution of the laser
intensity. To discuss this trade-off, I calculated the relative amplitude of the Stark
phase induced by the velocity distribution in the interferometer and by the spatially
dependent electric field amplitude. The result of this numerical calculation is repre-
sented on Fig. 34b, where the differential phase shift between the two arms is plotted
as a function of the laser’s center position X0. We see that the larger the waist is,
the higher is the phase shift. This results from the longer interaction zone (along
the longitudinal direction) and the relatively small transverse overlap with the other
interferometric arm. However, when we did the experiment, we were worried that a
waist too large would reduce our sensitivity, which is why we aimed at a 60µm waist.
In hindsight, we should have used a slightly larger waist.

We measured the size of the laser waist on the atomic beam by duplicating the
focussing optics on the path to the monitoring photodiode. By using identical optical
components separated by the same distances, we were able to estimate the waist to
w0 = 61(2)µm and the Rayleigh length to 16mm. We controlled the distance to the
atomic beam better than a fewmm. This was enough to ensure that the effective waist
was known with a 10% uncertainty which was necessary to keep the overlapping be-
tween the laser beam and the two atomic paths minimum. The maximum phase shift
that can be experimentally induced between the two paths is 83% of the theoretical
value given by eq. (79).

(a) Atomic and Intensity distribution (b) Phase shift

Figure 34: (a): Atomic distribution profiles and laser beam profile at the position of maxi-
mum path separation for the mean atomic velocity. The laser beam intensity has
a small overlap with the left arm atomic beam which diminishes the differential
phase shift.
(b) Percentage of differential phase shift plotted as a function of the laser beam
center position for three different waists. The maximum (100%) Phase shift corre-
sponds to a monokinetic atomic beam interacting with a rectangular laser profile
of 120µm width which does not overlap with the second arm.
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Laser polarization axis

Using a Glan-Thompson polarizer, we aligned the laser polarization on the propaga-
tion direction (Z) of the atomic beam. This was done by aligning the reflected beam
of the polarizer on the mechanical reference frame (MRF) of the optical table. This
reference frame is aligned with the atomic reference frame (ARF) to approximately
17mrad.

The quantization axis was defined by a 1G magnetic field produced along the (X)
direction by ’Helmholtz’ coils mechanically fixed on the MRF. This alignment was
not as well controlled and is estimated at less than 90mrad. This is probably the
main source of uncertainty on the angle between the laser polarization ~ε and the
quantization axis ~eB. However, it is not an issue because, as we will see in Sec.4.2.3,
this can be quantified, and rejected, by performing differential measurement of the
’tune-out’ wavelength for the two hyperfine levels |F = 2,mF = 2 > and |F = 2,mF =

−2 > for which the vector component changes sign.

4.2.3 Atom beam hyperfine sublevel

Because the atomic polarizability has a tensor component when the hyperfine struc-
ture is resolved (discussed in Sec. 4.1.4), we implemented an optical pumping scheme
similar to the one described fully in [195] to be able to pump all the atoms in one
or the other of the F = 2 sublevels |F = 2,mF = ±2〉. This allowed us to cancel the
systematic effect due to the residual vector component which is not zero when the
laser polarization is not perfectly linear (as can be the case after transmission through
a vacuum viewport with a small birefringence due to mechanical stress) or not per-
fectly orthogonal to the quantization axis (as discussed in Sec.4.2.2).

The principle of the optical setup is straightforward. A second extended cavity
diode laser DL100 manufactured by Toptica R© is frequency locked on the D2 transi-
tion F = 2→ F

′
= 2. A weak beam extracted from this laser is tuned to the repumping

transition F = 1 → F
′
= 2 with an acousto-optic modulator in double pass configu-

ration increasing the frequency by 803.5MHz which corresponds to the groundstate
hyperfine splitting. These two laser frequencies are superposed, circularly polarized,
sent on the atomic beam (about 5mW of total power) and retro-reflected. Depend-
ing on the local magnetic field direction, which was controlled by three Helmholtz
pairs under vacuum, the magnetic groundstates sublevels |F = 2,mF = 2 > and
|F = 2,mF = −2 > could be populated with a high efficiency. This stage was im-
plemented before the collimation as photon absorption and emission broadens the
atomic beam which is detrimental after the collimation stage.

To evaluate the residual population in the other sublevels, a small magnetic gra-
dient was applied on the atomic path and is represented on Fig.32. When the dif-
ferent sublevels were significantly populated, the differential phases, proportional to
gFmFµB

∣∣∣~∇B∣∣∣, accumulated by each sublevel washed out the interferometric signal.
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Figure 35: Phase and visibility of the atomic fringes as a function of the coils’ current. The
lines correspond to a global fit leading to the populations presented in Tab.7 and
the data points are much larger than their uncertainty. The visibility drops sharply
when no pumping is implemented due to the difference (in amplitude and sign)
between phases of every hyperfine sublevels. When optical pumping is imple-
mented, this decrease is reduced and is now due to velocity spreading of the
phase. The linearity of the mean phase and the absence of oscillations indicates a
high pumping quality.

Comparing the visibility loss12 as well as the mean interferometric phase when the
optical pumping was ON and OFF allowed to extract the sublevels populations13.
The measured visibility and phases are presented on Fig. 35 and the population esti-
mates are summarized in Tab.7. Overall, the pumping efficiency is better than 95%.
As expected, the levels which have a residual population are the one closest to the
pumped level (|F = 2,mF = −1 > in the case of the σ− transitions) or polarized in
the opposite direction (|F = 2,mF = 2 >). This is due, respectively, to the dynamic of
the pumping which empties last the neighbour state and to spin flips of the pumped
atoms during their transit in the interferometer.

Hyperfine sublevel(s) Population (%), σ+ Population (%), σ−

|F = 2,mF = 2 > 100+0−4 0+2.2
−0

|F = 2,mF = 1 >, |F = 1,mF = −1 > 0+1.5
−0 0+1.4

−0

|F = 2,mF = 0 >, |F = 1,mF = 0 > 0+0.7
−0 0+0.7

−0

|F = 2,mF = −1 >, |F = 1,mF = 1 > 0+0.5
−0 0.7+2.4

−0

|F = 2,mF = −2 > 0+3−0 99+1−5.3

Table 7: Pumping efficiency in the different hyperfine sub-levels for two magnetic field di-
rections corresponding to the pumping transitions usually denoted σ+ and σ−. The
super (sub) scripts corresponds to upper (lower) error estimates (in %) of the fitting
procedure which keeps the total population equals to 100%.

12 Due to the velocity distribution, the interferometer visibility still vanishes with a perfect optical pump-
ing because of the Zeeman phase distribution, but oscillations around this perfect behaviour indicates
remaining populations in the other sublevels.

13 When the second order Zeeman shift is neglected, this method does not allow to decipher atoms in
sublevels having identical gFmF such as |F = 2,mF = 1 > and |F = 1,mF = −1 > for example.
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4.2.4 Absolute frequency pointing

To calibrate our beat note frequency reading, we used the Stark laser to horizon-
tally deviate atoms from the optically pumped atomic beam by resonant absorption.
Because of the atomic beam high collimation, this resulted in a decrease in the de-
tected atomic flux. Using the Bragg mirror M2, we were able to minimise the Doppler
shift between the push laser and the atomic beam by taking advantage of the well
controlled Bragg angle between the mirror’s normal and the atomic beam. Our align-
ment ensured an angle between our push laser and the Bragg mirror smaller than
1mrad which corresponds to a mean Doppler shift of 1.4MHz. We recorded the
atomic signal as a function of the beat note frequency. A typical measurement is rep-
resented on Fig. 36 where the two D1 transitions (F = 2→ F

′
= 1 and F = 2→ F

′
= 2)

are visible. Fitting the atomic signal with two Gaussian distributions (and a small
slope due atomic flux drifts) we extracted the peaks positions, separation and Full
Width at Half Maximum (FWHM).

The peaks separation of 91.1(2)MHz was slightly smaller than the expected value
of 92.1MHz. This is due to a Zeeman effect in the upper hyperfine levels which
brings closer the polarized states

∣∣∣F ′ = 2,mF ′ = +2
〉

and
∣∣∣F ′ = 1,mF ′ = +1

〉
. The cor-

responding magnetic field amplitude is 1.1G which is consistent with the magnetic
field used in the measurement region. The FWHM 10.3(2)MHz is about twice the nat-
ural width of the transition. This broadening comes from the pushing laser intensity
of about 7mW/cm2 leading to a saturation parameter of three. Finally, the second
peak mean position −1110.2(5)MHz is close to the expected value:

∆ωbeat/ (2π) = ωF=2,F ′=1/ (2π)−
(
ωF=1,F ′=2/ (2π) + 218MHz

)
= −1113.6MHz

(80)

which assumes an exact reference frequency of the master laser. The difference of
3.4MHz between the theoretical and the measured beat note can be explained by a
frequency shift of our master laser’s heat pipe due to a small Zeeman shift from the
earth’s magnetic field14 and to the buffer gas in the heat pipe (Argon). The locking
scheme could also induce a frequency shift in the master laser frequency because of
the approximate centering of the error signal. Finally, the Zeeman shift in the main
chamber (approximately 1.0MHz) also leads to a global frequency shift. For these
reasons, we used our push measurement to calibrate absolutely our Stark’s laser
with the linear relation:

ωStark (∆ωbeat) / (2π) = ωF=2→F ′=1/ (2π) + (∆ωbeat/ (2π) + 1110.2) 106 (81)

14 The residual magnetic field due to heating elements of the heat pipe had been carefully minimized by
the winding.
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where, again, we use ωF=2→F ′=1 as the reference frequency for our tune-out wave-
length determination.
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Figure 36: Detected atom number as a function of the beat frequency (notice the sign differ-
ence with eq. (80)!) between the push laser and the master laser. Resonant absorp-
tion deflects the atomic beam which reduces the atomic flux behind a detection
slit. Two resonances are clearly visible and correspond to the F = 2 → F

′
= 2 and

F = 2 → F
′
= 1 transitions. The position of the transitions allows to quantify the

absolute frequency of the laser

4.2.5 Stark laser angle

The angle between the Stark laser and the atomic beam can induce both a residual
vector component (previously discussed) of the polarizability and a Doppler shift
of the laser frequency. To reduce this angle, we used a mirror placed on the optical
board under vacuum which is almost parallel to the atomic beam. We superposed
the reflected beam onto the incident beam and estimated our alignment to ±4mrad.
To quantify the induced Doppler effect, we performed an additional ’push atoms’
measurement with the Stark laser in its final, vertical, position. A typical atomic signal
is represented on Fig. 37. The relative depth of the F

′
= 2 (resp. F

′
= 1) peak is smaller

(resp. larger) in Fig. 37 than in Fig. 36. This relatively small difference (around 20%
of the total depth) is not well understood but might be due to the depumping time
which is much faster in the vertical configuration as the laser intensity is much larger.
The width of the peaks 14.8(5)MHz is due to power and Doppler15 broadening and
the peaks position 1098.8(3)MHz corresponds to a Doppler shift of 11.4(5)MHz. The
corresponding Doppler angle of 7mrad16 is slightly higher than expected but can be
explained by the optimization of the phase shift amplitude which required a small
adjustment in the beam’s direction. The separation between the peaks 91.8(2)MHz is
also consistent with the previous analysis.

15 The atomic beam divergence in the vertical direction is of the order of 1mrad.
16 This angle is counted positively when the laser beam is propagating towards the atoms.
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Figure 37: Detected atom number as a function of the beat frequency between the push laser
and the master laser. The frequency shift allowed us to quantify the angle between
the Stark laser and the atomic beam to 7mrad.

System performances

In this section, we described the optical system implemented to phase shift our
interferometer close to the tune-out wavelength. We have seen that the laser
frequency is known with an accuracy limited by the Doppler angle between
our push beam and the atomic beam and by the Zeeman shift whose sign
has not been undetermined. The resulting frequency accuracy is estimated to
2MHz.
The statistical uncertainty on the frequency is measured for each atomic fringes
by monitoring the beat note. Typically, it a was of the order of 1MHz and we
rejected data for which it was larger than 5MHz because of the large phase
drift it implied.
Finally, we have seen that the laser frequency could be continuously controlled
from the D1 frequency to a detuning of +4.11GHz which is large compared
to the expected detuning of 3.4GHz. There is a few tens of mW available in a
focused spot of approximately 60µm waist which is enough for phase shifting
by more than 10mrad/MHz around the ’tune-out’ wavelength.
In the interaction region, the laser’s polarization is orthogonal to the atomic
quantization axis to better than 90mrad. This leads to a non-negligible polariz-
ability vector component which will be rejected with differential measurement
for two opposed angular momentum directions. The atomic beam is pumped
in a single hyperfine state with at least 96% efficiency.

a It corresponds to the square root of the sample’s variance plus the square of the Half Width
at Half Maximum (0.5MHz) of the beat note. This assumes independent noise sources and
corresponds to a worst case scenario.
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4.3 experimental results

We used the previously described apparatus to measure the ’tune-out’ wavelength of
lithium. The experimental protocol is similar to the one described in Chapter 2 and
consists in repeated fringe recordings at fixed laser power and frequency. Each fringe
was scanned with the third Bragg mirror M3 over almost two periods and consisted
in a series of binary configurations:

1. No interaction: Stark laser OFF, the interferometric signal is recorded to be used
as a phase reference

2. Interaction: Stark laser ON, the interferometric fringes are shifted.

A sinusoidal fitting procedure allowed to extract the relative visibility and phase
of the interacting signal with respect to the non-interacting one. A typical interfero-
metric signals is represented on Fig. 38 and exhibits almost identical visibility and a
phase shift of +213(2)mrad is clearly visible between the signal with interaction and
the signal without interaction. Simultaneously, the Stark laser beat note frequency is
recorded. Its mean value and standard deviation during each fringe sweep is calcu-
lated and associated to the phase shift measured during the sweep.
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Figure 38: Typical interferometric fringe. The blue hollow triangles correspond to the the
reference signal without interaction and its sinusoidal fit. The red triangles and its
fit correspond to the interferometric signal with interaction and displays a visible
phase shift with respect to the reference signal of 213(2)mrad.

By keeping the laser power constant and changing its frequency, we recorded the
phase shift as a function of frequency in order to extract the position of the zero
shift, corresponding to the ’tune-out’ wavelength. One of the first measurement we
performed consisted in comparing the phase shift behavior when the optical pump-
ing was implemented or not. The result of such an experiment is represented on
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Fig. 39. The frequency refered to as the "D1 line" corresponds to the frequency refer-
ence discussed in Sec. 4.2.4 which is ωF=2→F ′=1. As expected, close to the ’tune-out’
wavelength calculated in Tab. 5, which corresponds, for the |F = 2,mF = 2〉 level, to
a detuning of ∆2,2,theo = 3384.4MHz, the phase shift of the optically pumped beam
vanishes. The position of the unpumped ’tune-out’ wavelength is a little bit more
complicated to evaluate since it depends on the precise averaging of the 8 different
ground state sublevels interferometric signals, for which diffraction efficiency and in-
terferometric phases are different17. A simplistic approach consists in averaging the
calculated ’tune-out’ wavelengths of each hyperfine sublevel weighted by the hyper-
fine population. The idea consisting in distributing evenly the population in the two
hyperfine sublevels is too crude because of the aforementioned hyperfine selectivity
of our interferometer. But we can get a good estimate of the population imbalance
from our optical pumping fitting procedure which leads to a detected population
of each F = 1 sublevel corresponding to approximately 8(2)% of the total interfer-
ometric signal. Averaging the ’tune-out’ wavelengths with this imbalance gives an
expected detuning of ∆avg,theo = 3462(30)MHz. These theoretical values compares
relatively well with the ones obtained by a linear fit of the data presented in Fig. 39:
∆2,2,exp = 3400(1)MHz and ∆avg,exp = 3476(1)MHz. The difficulty to extract ac-
curate information from the unpumped situation lead us to discard this option and,
for the remaining of the chapter, we will focus on results obtained with an optically
pumped atomic beam only.

Figure 39: Phase shifts vs frequency with and without optical pumping. The Stark laser
power is kept at 10mW for both series. The lines correspond to linear fits and in-
tersect the origin at ∆2,2,exp = 3400(1)MHz (optically pumped) and ∆avg,exp =
3476(1)MHz (unpumped).

But before discussing in more details the position of the ’tune-out’ wavelength,
I would first like to discuss the influence of the laser power on our measurements

17 For a complete description of these effects, the reader can find a much more detailed discussion in the
thesis of S. Lepoutre [98] and J. Gillot [130]. But mainly, the diffraction amplitude depends on the exact
detunings in the Bragg interaction and the phases include residual magnetic gradients effects (or Stark
shifts in our case).
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which, in our first order Stark shift expansion, should only influence the slope of the
phase as a function of frequency and not the position of the zero crossing.

4.3.1 Power dependence

To evaluate the exact value of the slope, we can use the phase shift of eq. (79). Close18

to the tune-out wavelength, the dynamic polarizability is approximately linear:

α
(2)
2,±2 (ω) = −κ (ω−ωtune−out,2,±2)

with κ ∼ 103 au/MHz. Taking into account the overlapping described previously
(in Sec. 4.2.2) which reduces the experimental phase shift by 17% compared to the
theoretical expression, the resulting phase dependence is :

φf,mF
(ω,PL) ' −KPL (ω−ωtune−out,2,±2)

where K = 0.22mrad/(MHzmW). We tested the linearity of the phase by recording
the phase as a function of frequency for different powers. The slope KPL of of these
recordings was fitted and is represented on Fig. 40 as a function of PL. The linear
behavior for low power is well represented by the previous model. Indeed, the linear
fit gives an experimental value of Kexp = 0.19(1)mrad/(MHzmW). Its difference
from the theoretical value can be attributed to a small displacement of the Stark laser
focus position from the exact center of the interferometric arm and to a laser waist
slightly smaller than expected.
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Figure 40: Phase shift slope as a function of the Stark laser power. The black line is a linear
fit to the data points (red triangles) which takes into account the small power
fluctuations during the recordings.

18 As can be seen on Fig. 31, this assumption is valid in an interval at least 800MHz long which is larger
than the range over which we scanned the Stark phase.
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Additionally, at high power, the slope seems to increase non linearly. This is not
an artifact of the fitting procedure which takes into account the weight of each
point corresponding to the power fluctuations during a sweep. Indeed, by plotting
directly the phase shift at a fixed frequency (detuning of 3200MHz compared to
ωF=2→F ′=1/ (2π)) on Fig.41, the quadratic dependence appears clearly. This is a sig-
nature of higher order terms in the polarizability development eq. (73) and in partic-
ular of the hyperpolarizability. To quantitatively estimate the validity of our experi-
mental result we developed a theoretical model based on dressed states to evaluate
the fourth derivative of the ground state energy with respect to the electric field am-
plitude. This work is still under development and will be discussed further in the
perspectives.
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Figure 41: Phase shifts as a function of the laser power at a fixed detuning of 3200MHz. The
red squares are data points and the lines are fits with linear or quadratic power
dependence. The deviation from a linear behavior is due to hyperpolarizability
components in the Stark shift.

Order of magnitude

The hyperpolarizability order of magnitude can be evaluated using perturbation the-
ory [196]. As already discussed in the introduction, the hyperpolarizability energy
shift of an initial state |g〉 is calculated with the fourth order development of the dipo-
lar coupling. It can be expressed as a sum over all the possible photon transitions
which are:

〈g|d|m〉 〈m|d|p〉 〈p|d|n〉 〈n|d|g〉
(ωmg −ωL) (ωpg) (ωng −ωL)

or −
〈g|d|m〉 〈m|d|g〉 〈g|d|n〉 〈n|d|g〉
(ωmg −ωL) (ωng −ωL)

2
(82)

where d is the dipole operator, |m〉 =
∣∣2P1/2

〉
or
∣∣2P3/2

〉
, |p〉 =

∣∣2S1/2, F = 1 or F = 2
〉
,

|n〉 =
∣∣2P1/2

〉
or
∣∣2P3/2

〉
are the intermediate states and the second term corresponds

to the degenerate situation when the second intermediate state (|p〉) is identical to the
initial state (|g〉).
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The resonant coupling terms are shown on Fig. 42 where the virtual transitions
are represented by arrows. The different paths ( A - H ) represent every possible

two photon transitions. For example, A corresponds to
∣∣2S1/2, F = 2

〉
→
∣∣2P1/2

〉
→∣∣2S1/2, F = 2

〉
. For each physical four virtual photons trajectories, such as

(
A + E

)
or
(

D + F
)

, an hyperpolarizability term (eq. (82)) arises.
With the transitions displayed on Fig. 42, eight different terms need to be taken into

account. For this level of discussion, the transition strengths dependency on the laser
polarization (i.e the exact Clebsch-Gordan coefficients) were not taken into account.
This approximation gives an hyperpolarizability γ ∼ 1020 au at a wavelength close
to the tune-out wavelength. Compared to the DC hyperpolarizability term (4350 au
[196]), a resonant enhancement due to a much smaller energy denominators19 of eq.
(82) leads to a non-negligible contribution close to the tune-out wavelength. However,
this calculation is an order of magnitude larger than the result we obtain when taking
into account the exact transition strengths.
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Figure 42: Virtual transitions considered for the evaluation of the hyperpolarizability ampli-
tude. The intermediate states are labelled at the top of the figure. The degenerate
terms are represented by solid arrows and non-degenerate terms by dashed ar-
rows.

To keep this effect negligible, we chose a laser power low enough to remain in
the linear regime (typically 10mW), but estimated the shift induced by this effect
to 1.5MHz as, according to our preliminary results, the hyperpolarizability vanishes
at a higher frequency than a ’tune-out’ wavelength taking into account only the po-

19 The hyperfine splitting and the detuning to resonance are of the order of 1GHz which compared to the
optical photon frequency > 105GHz change the contributions of fourth order terms by more than 15

orders of magnitude.
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larizability. The dispersion induced by the different laser powers was estimated to
1MHz.

4.3.2 Residual vector component

Because the quantization axis and the polarization axis are difficult to precisely align,
we measured the phase shift as a function of frequency for states of opposite projec-
tion on the quantization axis (|F = 2,mF = 2〉 and |F = 2,mF = −2〉 states). The resid-
ual polarizability vector component has opposite sign for the two states which allows
to measure it independently of the static and tensorial parts. The result of this mea-
sure is represented on Fig. 43. The fact that the vector component lowers the ’tune-
out’ wavelength of the mF = +2 state tells us that the sign of total vector component
−V cosχmF

4 α
(v) is opposite to the sign of the static part and that the tune-out mea-

surements, which were performed with the |F = 2,mF = 2〉 for which the pumping
efficiency was slightly higher, will have to be shifted upward.

The frequency difference between the two ’tune-out’ wavelength:

∆2,−2,exp −∆2,2,exp = 20.5(5)MHz

tells us that the residual polarization coefficient V cosχ is of the order of 0.25%. This
is obtained by calculating the ’tune-out’ wavelength dependence on the residual po-
larization close to the ideal situation (Config. 1) and using this linear development to
evaluate this effect. This value is a bit high compared to the expected combination of
the Doppler angle (measured to 7mrad) and the tilt between the quantization axis
and the mechanical support (evaluated to 90mrad) which, combined, lead to 0.12%
residual polarization. But the viewport birefringence due to mechanical constrains
also increases this effect which was not quantified. In any cases, the order of magni-
tude seems reasonable and the shift of 10.3(5)MHz can be subtracted to the ’tune-out’
frequencies of the |F = 2,mF = 2〉 state.

4.3.3 Tune-out value

We performed a few measurements at different low laser powers (ranging between
5mW and 13mW) and fitted the phase shift as a linear function of the frequency
to determine the ’tune-out’ wavelength. The results are displayed on Fig. 44. There
is a large discrepancy between the different values of the resulting ’tune-out’ wave-
length values. I think that it can be mainly attributed to the optical pumping effi-
ciency which, as we have seen on the difference between pumped and unpumped
beam, has a large effect on the ’tune-out’ wavelength. Hence, different campaigns
correspond to different pumping efficiency which shifts by 5MHz%−1 the tune out
position (making the hypothesis that the "unpumped" percent lies completely in the
opposite |F = 1,mF = −1〉 level). Additionally, it took us some time to simultaneously
control all the different aspects of the experiment and some data points have been
corrected by assuming a frequency locked on the next upper hyperfine transition
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which shifted the frequency by a total of 91.2MHz which is disputable but did not
change significantly the mean detuning value. Only three data points lie inside the
1σ error bars which indicates clearly a poor statistic. But we did not, at the time of
the measurement campaigns, expected to reach this level of accuracy and did not
perform additional measurements.

The result of this analysis is a detuning at which the phase shift vanishes of:

∆2,2 = 3398(8)MHz

λtune-out,2,-2

λtune-out,2,2

Figure 43: Phase shifts as a function of the laser detuning to the D1 line. The laser power
is fixed at the highest power of 34mW to increase the phase sensitivity. The shift
between the two polarized states ’tune-out’ wavelengths is visible and corresponds
to 20.5(5)MHz.
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Figure 44: Detuning of zero crossings for eight different measurement campaigns. the values
corrected by the hyperfine splitting are represented as hollow circles. The black
solid line corresponds to a weighted average of the data and the dotted lines
correspond to the associated statistical 1σ interval.
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Parameter Statistical Systematic Correction
Frequency reference ωF=2→F ′=1 0.5MHz ±2.0MHz 0MHz

Optical pumping 6.6MHz 0MHz 0MHz

Orthogonality with atomic beam 0.5MHz −11.5MHz −11.5MHz
Residual vector component 0.5MHz 10.3MHz 10.3MHz

Hyperpolarizability 1MHz 1.5MHz 1.5MHz
8 campaigns 7.5MHz 0MHz 0MHz

Table 8: Summary of main source of error in the tune-out wavelength measurement

4.3.4 Error Budget

Now that we have an experimental value of the zero Stark shift position, we can
deduce from eq. (81) and after correction of systematic effects the exact ’tune-out’
wavelength value of the |F = 2,mF = 2〉 level. The main sources of systematics have
been described in Sec. 4.2 and are summarized in Tab 8. After correction, the resulting
’tune-out’ wavelength is:

λ2,2,tune−out = 670.972097(15)[3]nm

There is a large difference (12MHz) with the expected value:

λtune−out,Config.1,F=2,mF=2 = 670.9721146(37)nm

which could be explained by the matrix transition coefficient which we used in our
theoretical description which relied on a ratio of 2. We can extract this parameter
from the difference with our theoretical model which gives us a ratio RLi = 1.991(7).
This result is to be treated cautiously as its statistical deviation from 2 is not well
resolved. Especially when one estimates, from relativistic calculations [197], that RLi
deviation from 2 should be of the order of −3× 10−5. In addition, the deviation
from 2 is expected to increase with the number of electron as can be seen on Tab. 9

which summarizes the ratio measurements for different alkali atoms. Therefore, the
deviation from 2 for lithium atoms should be smaller than for sodium atoms which
was measured in the range of 2 with a smaller (4× 10−3) uncertainty. To reach the
10−5 deviation level necessary for accurate comparison with theory, a 50 kHz ’tune
out’ wavelength uncertainty needs to be reached which is two order of magnitudes
lower than our current control of statistical and systematic effects.

4.4 conclusion

In this chapter, we have described a theoretical model which develops the atomic
ground state energy in a power series expansion of the electric field amplitude in the
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Atom Ratio Method Reference
11

Na 1.9994(37) Spectroscopy [198]
19

K 1.9973(13) Interferometry cited in [175]
37

Rb 1.992 19(3) Interferometry [185]
55

Cs 1.9809(9) Spectroscopy [199]
87

Fr 1.9011(108) Spectroscopy [200]

Table 9: List of most accurate transition strength ratios measurements for Alkali atoms.

dipolar approximation. This allowed us to evaluate, for 7Li, theoretically the wave-
lengths at which the second order term, called dynamic polarizability, vanishes (at
’tune-out’ wavelengths) or is identical between specific levels (at ’magic’ wavelengths).
Then, we presented a few experimental techniques to measure these wavelengths as
well as some of their applications. Inspired by the experiment done by Holmgren
et al.[184], we decided to implement a similar setup on our lithium interferometer
which was described in Sec. 4.2. The crucial points of absolute frequency pointing,
atomic beam pumping and laser polarization were discussed and quantified. Finally,
our experimental results were presented and compared to theory. The unexpected in-
fluence of the hyperpolarizability at higher powers constrained us to use lower power
when measuring the ’tune-out’ wavelength to minimize its systematic effect. By mea-
suring the phase shift between states of opposite polarity (mF = ±2) we were able
to quantitatively reject the influence of the residual vector component. The hunting
down of these systematic shifts allowed us to correct the mean ’tune-out’ wavelength
frequency. We were however limited by our optical pumping efficiency which induces
a large statistical dispersion of our ’tune-out’ wavelength measurement. Our experi-
mental value of λ2,2,tune−out = 670.972097(15)[3]nm compares reasonably in terms
of accuracy to state of the art ’tune-out’ measurements.

Perspectives
The appearance of hyperpolarizability effects lead us to question further the valid-

ity of the theoretical model eq. (71) with which we evaluate the Stark energy shifts of
the groundstate hyperfine levels. The dynamical propagation of the atomic popula-
tions coupled via the electric dipole Hamiltonian showed that hyperfine state mixing
in presence of large electric field can not be neglected. Indeed, the transient super-
position of mF = 2 and mF = 0 (resp. mF = −2) states induced by two (resp. four)
virtual photons processes leads to systematic phase shifts due to the polarizability
(resp. hyperpolarizability) difference between these states as well as the Zeeman en-
ergy shift. Furthermore, population transfer to different hyperfine sublevels due to
non-adiabatic transitions can leave the transmitted atomic population in a different
hyperfine distribution which characteristically reduces the interferometric visibility.
In addition to these theoretical efforts allowing to quantify further systematics, exper-
imental improvements of the optical pumping with a push beam removing unwanted
hyperfine populations as well as complete removal of the vector component by mini-
mizing the systematic shift between λtune−out,2,2 and λtune−out,2,−2 would enhance
the reliability of this apparatus and reduce systematics effects. Coupled to more accu-
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rate frequency references and better stabilization of the confocal Fabry-Perot cavity
sub MHz uncertainty seems reachable which would be a first step towards an accu-
rate measurement of RLi.
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Part II

Design of a Bose Einstein
Condensate setup
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An atom interferometer with a large spatial separation and a high repetition rate
based on a dual isotopes atom chip is currently being developed in our group. In
this chapter, we define the objectives of the new apparatus, some specific constraints
have to be chosen in accordance with the scientific goals. These constraints and the
scientific context will be discussed in the first section of this chapter.

The second part of this chapter will focus on the design of the new interferometer
in regards of its objectives. I will first discuss the steps leading to a dual isotopes
BEC with the description of the different magnetic fields sources needed to produce
a magneto-optical trap, magnetic traps and Feshbach fields. Then, I will describe the
dual isotopes evaporation strategies with a simple sympathetic theoretical model al-
lowing us to dimension the critical parameters influencing the BEC production. Then,
I will present a transport protocol based on an optical lattice which pulls the atoms
from the chip’s surface. Numerical simulations, realized in collaboration with the
group of E. Rasel in Hanover (with N. Gaaloul in particular) were developed to char-
acterize its feasibility. Finally, the different strategies to produce Large Momentum
Transfer (LMT) interferometers will be discussed and the sensitivity function of a
7-pulse interferometric scheme will be derived.

5.1 a novel atom interferometer

5.1.1 Atom interferometry with Bose Einstein Condensates

In the prospect of developing a new experimental setup, it is important to define
some specific characteristics which guide the conception and delimit the experimental
field on which the project is intended to develop. In our case, we can summarize
these characteristics in three axes. The novel interferometer will continue to be a
separated arms atom interferometer, as was previously the lithium interferometer.
Among the possible sources, the team chose to use a Bose condensed atomic cloud of
rubidium to increase the spatial separation. These two aspects are motivated by the
long term goals which are precision measurements of electromagnetic interactions
and in particular of matter neutrality.

Let us now briefly review how these characteristics have been and will be imple-
mented in the domain of experimental physics.

Large spatial separation

A spatial separation between coherent matter waves has been produced with vari-
ous techniques such as material gratings [18], magneto-optical beams splitters [201],
spatially separated traps [202] or optical beam splitters used either in a Raman [19],
Bragg [22] or Bloch scheme [203]. The former were initially developed as proof of
principle tools and produced spatial separations in the sub mm range. The latter
techniques relied on the coherent transfer of 2n photon momenta to the atoms which
were extensively used for inertial sensors as their sensitivity scales with the space-
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time area enclosed between the interferometer arms. One way to increase this area
is to increase the momentum separation. This is the reason why particular effort
was undertaken recently to produce interferometer with Large Momentum Trans-
fer pulses using either single pulses (∆p = 24 hk [204]) or multi pulses (∆p = 4 hk

[60], ∆p = 10 hk [205] ∆p = 80 hk [206],∆p = 102 hk [61]) schemes1. Another way
to increase the space-time area is to increase the interferometric time T to separate
spatially the two interferometer arms. Apart from the interferometer based on Bloch
oscillations, all the LMT interferometers previously citedwere spatially separated by
less than2 1 cm (see Tab. 10).

The 10m high apparatus operating at 12 hk developed in Kasevich’s group very
recently demonstrated a 8.2 cm spatial separation between their two interferometric
arms [208]. The following year, they extended this performance to 54 cm separation
with 90 hk LMT splitters [209]. These decisive advances in spatial separation opens the
possibility to use macroscopic devices which interacts with each arms separately and
pushes further fundamental questions on the decoherence between macroscopically
separated wave-packets.

Publication (Year) 2n T Spatial separation

H. Müller et al.[204] (2008) 24 50ms 3mm

T. Lévèque et al.[60] (2009) 4 30ms 400µm

K. Y. Chung et al.[210] (2009) 2 400ms 3mm

R. Bouchendira et al.[203] (2011) 500 10ms 2.9 cm

S.Y. Lan et al.[205] (2012) 10 250ms 9mm

G. D. McDonald et al.[206] (2013) 80 1.3ms 600µm

Sugarbaker thesis [208] (2014) 12 1.15 s 8.2 cm

T. Kovachy et al.[209] (2015) 90 1.04 s 54 cm

Table 10: Summary of the recent advances in large spatial separation atom interferometers.
The combination of large momentum transfer 2n and large interferometric times T
is necessary to a large spatial separation.

BEC interferometry

The use of BEC as atomic source for atom interferometry has been subject to recent
theoretical [211]–[214] and experimental [23], [28], [215] efforts as it was shown that
one of the limits of thermal cloud interferometry was the cloud tranverse motion in
a distorted light beam wavefront [29], [203]. Louchet-Chauvet et al. showed that the
phase shift spreading induced by beam aberrations due to a curvature radius R scales
linearly with the cloud rms velocity ∆v:

∆Φ =
keff
R
∆v2T2

1 see Sec 5.5.1 for a description of LMT schemes
2 Very long baseline interferometers [207] operating at 2 hk momentum separation have interferometric

arms separated by about 5mm and require meter long vacuum systems.
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where keff = 2nkl is the effective wavevector separation between the two arms, kB
is Boltzmann constant and m is the atom mass. Let us take for example, a ∆v =

1 cms−1 87Rb cloud diffracted by a perfect Gaussian laser beam focused right at
the position of the first pulse on a 5mm waist. Then, 1 cm away, at the position of
the second pulse, the beam radius of curvature will be R = 1000 km. For a large
2n = 42 momentum separation, the interferometric time is T = 40ms and the phase
spread due to wavefronts curvature is ∆Φ = 540µrad which is larger than the Gouy
phase (100µrad in this situation). However, State of the art vacuum windows induce
locally much smaller curvatus radii which can create much larger phase spreading.
It is the main systematic effect reported in [203]. Reducing the rms velocity is the
easiest way to minimize this spreading without changing the interferometric time. A
condensate opens the possibility to reduce this phase shift by a factor 100 with ultra
cold BEC’s with ∆v = 1mms−1 [216]. Drastically narrower velocity distributions
have been demonstrated [217] and additional methods such as Delta kick cooling
[202], [218], [219] can minimize this phase shift even more.

Another advantage related to the rms velocity is the possibility to use Large Mo-
mentum Transfer beam splitters. These atom optics tools are highly velocity selective
and require a velocity spreading much smaller than the recoil velocity vrec to be
efficient. For example, the 102 hk beam splitting procedure demonstrated by Chiow
et al.[61] used a cloud with ∆v = 0.6mms−1 < 15%vrec condensate and their multi
pulses scheme still lead to a 90% atom loss. This larger momentum separation allows
to increase the interferometric time which, for inertial sensors, increases quadratically
the interferometer sensitivity, motivating the use of these schemes.

These advantages have to be appreciated in the light of the often mentioned BEC’s
drawbacks:

• The production rate of these atomic clouds is usually much smaller than ultra
cold atomic clouds which increases the time required to performNexp measure-
ments. However, it was demonstrated [220] that atom chips are an adequate
solution to reach production rate on the order of 1Hz.

• Atom-atom interactions in BEC’s induce a density dependent inhomogeneous
phase evolution. This effect leads to randomization of the phase between the
two interferometer arms which is a severe limitation on the contrast in trapped
interferometers [221], [222]. However, in the freely propagating case, it is possi-
ble to dilute the cloud with a preliminary expansion to reduce the cloud chem-
ical potential3 and to decrease the impact of phase diffusion between the two
separated clouds. [224]

Therefore BEC interferometry shows promising features to increase atom interfer-
ometers sensitivity and accuracy in the future which is particularly interesting in the
context of precision measurements.

3 In a Castin Dum BEC propagation model [223], the atom-atom interaction energy scales with the inverse
of the BEC volume which increases by a factor 105 in 200ms. This puts the chemical potential in the
10Hz range during our interferometer, leading to de-phasing well below 1mrad.
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Precision measurement

Atom interferometry has been an invaluable tool for precision measurements since
the initial experiment of O. Carnal and J. Mylnek in 1991. Among the past and present
field of applications, one can identify in particular:

• Inertial forces measurements: The intrinsic sensitivity of atoms to accelera-
tions led to the measurement of the local gravity acceleration with an actual
state of the art record sensitivity of 4× 10−9m/s2

√
Hz[31] and accuracy of

4× 10−8ms−2[29]. This sensitivity to inertial effects also led to the develop-
ment of sensors for acceleration gradients [225], [226] and rotations [37], [227].

• Fundamental constants measurements: Atom interferometry has proven to be
an accurate tool for precise determination of fundamental constants. Indeed, the
phase in an atom interferometer is sensitive to the exact value of the differential
potential energy between the two interferometer arms. This allowed the precise
determination of the gravitational constant G [33], [228] by using large masses
around the interferometric arms. Also, these potentials can be proportionnal
to an integer multiple of the recoil velocity imparted to an atom during the
diffraction process. This led to the accurate determination of the h/m ratio (h
is the Planck constant and m the atomic mass) and the subsequent evaluation
of the fine structure constant[203], [229].

• Quantum tests: An atom interferometer is also sensitive to the absolute value
of the atomic energy on each of the two paths. This is particularly useful for the
demonstration of quantum mechanics topological effects such as the geometri-
cal phases discussed in 3.

The high sensitivity of these instruments makes them ideal candidate for funda-
mental physic tests. Very ambitious proposals, are spatial missions designed to test
the Weak Equivalent Principle [80], to detect gravitational waves [230] or to probe
the interface between quantum and gravitational physics [231]. Ground based ex-
periments testing deviation from standard gravity and QED potentials with sub-µm
range are currently being developed [82], [232].

In this fundamental domain of atom electromagnetic interactions another opened
question is of great interest: is matter exactly neutral ?

5.1.2 Matter neutrality test

One of the first precision measurement planned on our setup is a test of matter
neutrality which have been initially mentionned by Kasevich and Chu [233] and was
afterward discussed by our group [234] and by the Standford’s group [235].

The theoretical motivation for matter neutrality tests is related to the quantization
charge issue in the Standard Model [236]. However, in the prospect of an extended
Standard Model, charge quantization appears in different forms. Some models pre-
dict the de-quantization of charge only for neutrons and neutrinos which acquire

143



finite opposite charges while the protons and the electrons keep the exact same
opposite values. Inversely, complete charge quantization can be derived when ad-
ditional couplings are included in the theory which concerns new physics such as
right handed Majorana neutrinos. Additional theories such as CP violating mixing
to the electromagnetic field or small photon masses can include non zero residual
charges[235]. But this discussion is out the scope of this thesis.

The idea of a residual electric charge either due to the non zero neutron charge
qn 6= 0 or to the absolute charge difference between the proton and the electron
charge qp + qe = δq 6= 0 finds its origin in a paper by Piccard and Kessler4 (cited
in the review by Unnikrishnan and Gillies [237]). In this paper, they claim a limit on
δq/qe < 5× 10−21 with the gas efflux method using CO2 molecules.

The principle of this method is to detect the potential change of a metal container
which releases a compressed gaz. As the gaz flows out, the container potential is
monitored. If the outgoing molecules, or atoms, have a residual charge, the container
potential will be different after the release. This type of experiment was also car-
ried out using Hydrogen, Helium [238] Argon, Nitrogen [239] and the final residual
charge uncertainty reached a 10−21 electron charge level.

Other experimental techniques such as a levitated macroscopic object [240] or an
acousitc cavity resonator [241] have been used to measure δq/qe.

The levitator method [240] was initially motivated by the possible existence of
fractionally charged particles or free quarks. Its principle relied on an experiment
similar to the famous Millikan oil drops. A levitated object is subject to an electric
field and its position is monitored as its charge is neutralized. For different field
amplitudes, the trajectories cross exactly at the same position if there is no residual
charge.

The acoustic resonator relied on the monitoring of the acoustic frequencies present
in a cavity excited by an electric field at a given frequency. The amplitude of the
acoustic spectrum at the field frequency depends on the residual charge amplitude.

Regarding the neutron residual charge, almost all experiment5 performed up to
date used another technique, the beam deflection [242]. This experimental setup relies
on the deflection of a neutron beam by a strong electric field. The use of a collimated
achromatic beam was necessary to reach a neutron charge upper bound qn/qe =

10−21.
All these experiments reached the upper limit of 10−21qe on the residual charge

and were mainly limited by the necessary cancellation of the residual charge induced
by free charges. Table 11 summarizes some of the results obtained with these setups.
A striking element is the lack of recent improvement on the 10−21 limit which em-
phasize the need for new approaches to go beyond this current limit.

In the absence of a specific theoretical model, experimental tests with an improved
sensitivity are useful for more phenomenological theories which can transform an up-

4 According to [237], Piccard & Kessler would have set up the experiment for testing Einstein’s idea that
residual charges might explain the Earth electromagnetic field with ’mass currents’ circulating around
the atmosphere.

5 With the exception of the gas efflux performed by Hillas et al. [239] which used the differential upper
bound of two atoms to evaluate the corresponding neutron upper residual charge.
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Experiment type year residual charge Reference

Gaz efflux 1959 (±1)10−21 [239]

Acoustic resonantor 1973 (±1.3)10−21 [241]

Levitated object 1987 (0.8± 0.8)10−21 [240]

Neutron Beam 1988 (−0.4± 1.1)10−21 [242]

Table 11: Comparison of the residual charge limit obtained with different experimental pro-
cedures. The residual charge denotes indifferently δq or qn.

per limit on charge neutrality into specific constraints on the theory. This is why the
development of an atom interferometer to test for matter neutrality was undertaken
in our group.

Matter neutrality test using a Mach-Zehnder interferometer

Figure 45
Scheme of the matter neutrality
test using the scalar Aharonov

Bohm effet.

The experiment principle (shown on Fig. 45) relies
on the scalar Aharonov-Bohm effect. In the presence
of an external electric potential V , the phase of an
atomic wavefunction is shifted by an amount propor-
tional to a potential atomic residual electric charge εe
and the interaction time with the potential τ:

Φ =
εeVτ

 h

To increase the sensitivity to a residual charge η =

ε/A, we can either increase A, which is the number
of nucleons, the applied electrical potential V or the
interaction time τ. Rubidium atoms allows to use the
two bosonic isotopes 85Rb and 87Rb. This yields the
additional possibility of a differential measurement allowing for a discrimination
between neutron residual charge and proton-electron charge quantization.

To be able to produce large electric potential difference, separated arms interfer-
ometry is essential to have macroscopic potential sources creating up to ∆V = 105 V

potential difference between the two interferometer arms.
Finally, in order to have large interaction times, a fountain type interferometer

has the advantage of the zero atomic velocity at the trajectory apogee where the
interaction can be implemented. This allows interaction times τ with the electrodes
of several ms. With this in mind, the electrical neutrality sensitivity can be expressed
as:

ση =
 h

Ae∆Vτ
σφ (83)
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where σφ is the interferometer phase sensitivity after averaging. For example, a phase
sensitivity of 0.02mrad directly leads to a residual charge sensitivity ση of the order
of 3× 10−25 which is four orders of magnitude better than current state of the art
values.

However, reaching this phase sensitivity is challenging for long (2T > 80ms) inter-
ferometers due to the phase noise induced, for example, by the accelerations associ-
ated with the reference mirror vibrations. We will see however that a first version of
this interferometer, limited by vibrations, already improves a matter neutrality test
by two orders of magnitudes. Also, with this method, a differential measurement of
the interferometer phase makes it possible to get rid of systematic effects such as
the diffraction beam wavefront previously discussed. A BEC source pushes further
the possible rejection as its trajectory can be more accurately controlled compared to
thermal clouds.

Using atom interferometry to test matter neutrality allows to measure the residual
charge down to the single atom level which, compared to the previously described
macroscopic experiments, reduces the number of possible experimental biases which
makes the measurement analysis more robust.

5.1.3 Atom interferometer source

A schematic of the full interferometric sequence is represented on Fig. 46. A Bose Ein-
stein Condensate will be produced in a combination of magnetic and optical trap and
will be launched upwards. Large momentum transfer Bragg pulses will then separate
the two interferometric arms during which the interaction with the electrodes will be
pulsed. After reflection and recombination, the two interferometric outputs will be
detected when they are spatially separated.

The remainder of this section will consist in examining successively the constraints
on the atomic source and the diffraction process needed for this prospective experi-
ment. A short discussion of the interaction region and detection scheme will be given
for completeness.

Atomic source

As was described in Chap. 1, a continuous interferometer source can be described in
terms of monochromaticity and brilliance. However, for a sequential experiment as is
the case of pulsed beams or single cloud sources, it is more convenient to describe the
source in terms of initial atom number, velocity width and repetition rate. The velocity
distribution is relevant here because the interferometer contrast and the number of
atoms contributing to the interferometer signal depend on the diffraction efficiency
which, as we will see in Sec 5.5.1, depends on the velocity distribution.

The interferometer long term phase sensitivity σφ will be used to discuss its per-
formance. It quantifies the ultimate sensitivity of the apparatus and can be related,
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Figure 46: The four (dotted green) parts of our dual isotopes interferometer.

assuming the averaging6 of a white noise source, to its shot to shot sensitivity σshot,
to the cycle time τc and the integration time τmes by:

σφ = σshot

√
τc

τmes
(84)

The lowest the phase sensitivity, the better the statistical phase uncertainty. In term
of source characteristics, the ultimate7 noise source in an atom interferometer is the
quantum projection noise (QPN) which contributes to the shot to shot sensitivity by
an amount:

σQPN =
1

C
√
N

where C is the interferometer contrast and N is the atom number contributing to the
interferometer signal. To minimize this quantity, it is advantageous to use high atom
numbers and to have the larger interferometer contrast, for example, 105 atoms and
a contrast C = 0.5 leads to a noise of 6mrad per shot. To reach the 20µrad phase
sensitivity discussed previously, an integration time of six days with a duty cycle of
5 s (corresponding to Nexp = 105 measurements) are necessary.

However, additional statistical noise sources (such as vibrational noise) can lead
to σshot higher than this fundamental limit and have to be kept in mind during the
conception. In particular, the interferometer sensitivity function will be described in
Sec. 5.5.2 which allows to evaluate the impact of different noise sources on the final
interferometric phase noise.

6 As long as phase drifts can be efficiently rejected by differential measurements.
7 This does not take into account the possibility to use non classical atomic states which can reduce this

limit down to the Heisenberg limit which scales as N−1.
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In regards of these limits, we opted for some specific technologies for our atom
source.

Bose condensed atom source

Two main reasons motivate the choice of BEC as atom sources and they both come
from the necessity of a very narrow initial velocity distribution.

• The first point is due to the ballistic expansion of the atomic cloud during its
fountain trajectory. The velocity spread ∆v of the initial atomic cloud equal to√
kBTemp/m (where an effective temperature Temp is usually used to describe

the velocity distribution, kB is Boltzmann constant and m is the atomic mass).
This distribution leads, when the role of interaction is negligible and the cloud
expansion is purely ballistic, to a cloud size ∆r at the fountain apogee (height
H ∼ 0.3m) ∆r =

√
2kBTempH/ (mg) where g is the local gravitational accel-

eration. For state of the art atomic sensors, the temperature is on the order of
a few µK leading to a cloud’s radius ∆r ∼ 2.5mm which renders difficult an
accurate control of systematics effects. Additionally, to reduce the impact of in-
tensity fluctuations on the interferometer contrast, the Bragg lasers have to be
large compared to the cloud size. Because they have to go through electrodes of
centimetric size, their waists are limited to w0 ∼ 5mm which limits the cloud
size to a few hundreds of µm. For example, to limit the thermal expansion to
500µm at the fountain apogee, the initial cloud temperature has to be smaller
than 30nK in the transverse direction.

• The second point comes from atomic diffraction which relies on Bragg diffrac-
tion. As will be discussed in Sec. 5.5.1 high order Bragg diffraction pulses are
highly selective in the atom velocity. Therefore, the velocity distribution width
in the longitudinal direction has to be typically smaller than the recoil velocity
vrec :=  hkL/m divided by the number of transferred photons nB:

∆v <
vrec

nB

This corresponds to cloud temperature of the order of 70nK for nb = 5.

Temperatures achievable with BEC of tens of nK are possible which corresponds
perfectly to these constraints.

Atom chip

Equation (84) indicates that at constant measurement time, the phase uncertainty
scales as

√
τc, thus reducing the cycle time τc (or equivalently increasing the repeti-

tion rate), directly leads to an enhanced sensitivity. The production of large BEC at
a high repetition rate requires initial high atomic densities. To combine a large atom
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number in a small volume, magnetic trapping produced by atom chips [243] are ex-
cellent candidates because of the proximity to the current sources leading to tight
magnetic traps which reduces the duration of evaporative cooling. However, when it
comes to fountain launching, the surface prohibitively diffracts the interacting beams
when the chip’s surface is vertical.

Dual isotopes condensation

The use of a dual isotopes interferometer allows to compare the measured phase
shifts for two different neutron numbers, electron and proton numbers being equal.
Therefore, the differential phase between this two isotopes directly leads to the test
of the neutron charge. In our case, we planned to use the two isotopes of rubidium.

Because of its negative scattering length, it is not possible to Bose condense a large
number of 85Rb atoms8. In order to get similar phase sensitivity for both isotopes,
it is mandatory to produce atomic clouds with comparable atom numbers. The use
of a Feshbach resonance, allowing to tune 85Rb scattering length to a positive value,
is a simple choice for the production of dual isotopes condensate. In particular, the
Feshbach resonance near a magnetic field of 155G is broad (see Sec. 5.2.3) and has in-
teresting collisional properties (see Sec. 5.3) for the rapid production of dual isotopes
BECs. This is the reason why we opted for a hybrid atom chip which can transfer
pre-cooled atomic clouds first into a magnetic trap and then into a pure dipole trap
in which the final step towards condensation can be performed.

Fountain launch

The condensate will be launched by a moving lattice at 2ms−1 in order to separate
physically the atomic source production region from the interferometric region. This
allows a precise control of the interferometric environment which is beneficial for
systematic effect control and additional noise sources reduction. In particular, the
UHV pumps or the magnetic fields necessary to the source production can generate
residual magnetic fields which might produce detrimental phase shifts in the interfer-
ometers. Magnetic shielding combined with an homogeneous magnetic field in the
interferometer region will reduce these effects.

Additionally, this fountain geometry allows to control the 85Rb scattering length
in the launching region to prevent the BEC collapse and to let the cloud expand to
reduce the atom-atom interactions. Finally, long interaction times can be reached as
the interferometer is performed at the fountain apogee where the atomic velocity
vanishes.

5.1.4 Interferometric sequence

Separated arms can be realized with a Mach Zehnder type interferometer (similar to
the one describe in Chap 1) which includes Large Momentum Beam Splitters (LMBS)

8 The critical number of atoms that can be condensed in a harmonic trap (harmonic length ah0) is
proportional to ah0/ |a| [244], where a is the s-wave scattering length.
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(see Sec. 5.5.1). Increasing the spatial separation allows both to increase the interaction
time with the electrodes and to apply higher potential difference.

Indeed, to amplify the differential Aharonov-Bohm effect, the two interferometer
arms will interact with potentials of opposite signs. Hence, a very large electric field
will be created in between the two electrodes charged at ±V which needs to be spa-
tially separated to prevent cathodic arcing. According to the experimental tests pre-
sented in [245] (chap2, fig. 2.9), the sustainable applied potential difference increases
linearly with the electrode separation at 10−9mbar with a slope of 25 kV mm−1.
Therefore, a 8mm spatial separation is enough for this potential difference.

Large spatial separation

A spatial separation of 1 cm is the minimum separation between the two atomic arms
to be able to switch the electrodes only when the atomic trajectories are sufficiently far
from the electrodes boundaries. Considering a single splitting pulse creating a coher-
ent superposition of external states having momenta mv0 −N hkL and mv0 +N hkL.
The spatial separation between the two paths will be proportional to the interferomet-
ric time T : ∆H = 2N hkLT/m. Therefore, increasing the interferometric time can be
sufficient to have large spatial separation. However, phase noise of the Bragg beams
due to the reference mirror acceleration vibrations scales as T2 :

σacc = 2NkLT
2σa

where σacc is the phase noise accumulated on the diffraction beams after 1 s and
σa is the acceleration noise of the reference mirror at 1 s. With a passive isolation
platform, the typical acceleration noise is σa = 4× 10−7ms−2/

√
Hz [246]. With our

experimental parameters 2N = 42, T = 40ms, it leads to a phase noise of 200mrad at
1 s. From eq. (83), it means that the sensitivity to a potential residual charge reaches
10−21 when limited by this phase noise and integrates down to 5× 10−24 with 105

measurements.
A first setup to go beyond this limit consists in the combination of an isolation plat-

form and a seismometer which monitors the vibrations during each measurement. It
is an efficient way to either correlate9 the interferometric phase with the measured
accelerations which can be used for post-correction or to actively stabilize the refer-
ence mirror. Both of these methods lead to a gain of approximately 5 on the short
term phase noise[247]. This puts the shot to shot phase noise in the 50mrad range,
lowering the integrated residual charge sensitivity down to 10−24.

Double interferometer

To overcome the vibrational noise limit, a double interferometer (represented on Fig.
47) is possible. It allows to reject the common vibrational noise between an upper in-
terferometer (which can interact with the electrodes) and a lower similar interferom-

9 This motivates the calculation of the interferometer sensitivity function presented in Sec. 5.5.2 which is
needed for an efficient correction.
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Figure 47: Principle of a dual interferometer: two spatially separated atomic cloud with iden-
tical velocities interact with the same laser pulses. Both interferometers acquire the
laser phases φd but only the upper interferometer acquires the interaction phase
with the electrodes. The common noise on φd can be efficiently rejected to keep
only the information on the interaction phase φint

eter which solely contains the information on the phase noise due to the diffraction
processes. A double atom interferometer setup was initially demonstrated by Snad-
den et al. [225] and applied recently [248], [249].The interferometer demonstrated by
Chiow et al. [248] used Large Momentum Beam splitter and they obtained a 10%
interferometer contrast with N = 20 and T = 50ms. Comparing this result with
their previous single interferometer, they were able to increase the interferometer
time from 1ms to 50ms without loss in contrast showing clearly the efficiency of
this method. The performance of this rejection scheme was discussed10 by F. Pereira
Dos Santos in [250] who has shown that phase sensitivities on the differential phase
(φint) close to the QPN could be recovered even in the presence of large phase noise
imperfectly correlated between the two interferometric outputs. This advanced setup
motivated us to design a large condensate source to reduce further our interferometer
ultimate sensitivity.

5.1.5 Interaction with electrodes

In order to reach a high sensitivity on matter neutrality, the interferometric environ-
ment has to be controlled in many different aspects. The position of the electrodes
has to remain constant both on the short timescale (during the active interaction time
τ) and on the long time scale (during the whole integration duration τmes). This
requires a mechanical structure to maintain the electrodes rigidly fixed. Also, the

10 Its application to Weak equivalent principle tests was also discussed in [45]

151



ramping of the electric potential will require large transient currents11.Because the
development of these experimental elements has yet to be done, we decided to pro-
duce the interferometer in an accessible region which necessarily is far away from
the complex structure of the atomic source. This choice was also motivated by the
good optical access which allows to image with high resolution the interferometer
outputs. This means that the atomic initial velocity has to be large enough to enclose
the interferometer in a separated vacuum cell. In practice the initial velocity has to
be larger than

√
H02g ∼ 2ms−1, where H0 ∼ 20 cm is the height above the atomic

source of the first splitting pulse of the interferometric sequence.

5.1.6 Detection

In order to read out the interferometric phase, one finally has to be able to count
either the total number of atoms on each external states or directly access the spatially
dependent atomic distribution of each output atomic clouds. In both cases, optical
access to the atomic clouds once they are sufficiently spatially separated after the
final π/2 pulse has to be guaranteed. In practice, 3 cm below the electrode, large
rectangular viewports provide an optical access with a numerical aperture of 0.2. The
clouds are well separated by 1 cm.

5.1.7 Conclusion

In this section, we have shown that a matter neutrality test with a 102 fold improve-
ment of the current measures can be realized with an atom interferometer limited
by vibration noise. Velocity dispersion, accurate control of the atomic trajectories and
large spatial separation motivate the initial choice of a Bose condensed atomic source.
In the prospect of a quantum projection noise limited measurement, particular effort
needs to be undertaken to ensure the possibility of large atom numbers. To reach
these performances with high repetition rates an hybrid trap on an atom chip will
now be presented.

Interferometer version Vibration limited Rejection limited QPN limited

σshot 200mrad 40mrad 6mrad

σφ (105 measurements) 700µrad 150µrad 20µrad

ση 5× 10−24 10−24 3× 10−25

Table 12: Description of the two prospective limits on a matter neutrality test and the corre-
sponding integrated sensitivities on the electron-proton charge.

11 The produced magnetic fields might be quite large on the interferometric path which is why great care
will have to be taken to symmetrize the setup to produce identical second order Zeeman phase shifts
(atoms are usually prepared in a zero magnetic projection state) on the two interferometric arms.
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Interferometer sequence

The atomic source will consist in a Bose-condensed cloud of 105 atoms with
a momentum width in the LMT lattice direction of 0.2vrec. It corresponds to
a longitudinal temperature of the order of 15nK which is challenging and
might require additional cooling (or focusing) stages, such as Delta-Kick Cool-
ing [251]. The cloud will be launched at 2.1ms−1 which corresponds to a
fountain height of 23 cm. At its apogee, the condensate will have a radius of
approximately 500µm and large momentum transfer beam splitter will create
a superposition of momentum states separated by 42 hkL. With an interferomet-
ric time T = 40ms, interaction τ = 10ms with electrodes separated by 8mm at
a potential of 105 V is possible. With a cycle time of 5 s, 105 measurements can
be realized in 6 days. Depending on the limiting noise source, matter neutrality
tests with increased sensitivity will be performed as is summarized in Tab. 12.
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5.2 hybrid atomic source

The atomic source consists in a 3D-Mirror Magneto-Optic-Trap (3D MMOT) [252] of
the two atomic isotopes. After a short cooling and compression stage, this cloud will
be loaded into a pure magnetic trap (MT) [253] produced by a chip’s wire. In this trap,
a sympathetic cooling stage [254], induced by RF evaporation, will be performed and
the resulting cloud will eventually be transferred into a purely optical trap produced
by a pair of optical tweezers. A second evaporative step in presence of the Feshbach
magnetic field will allow to reach condensation of both isotopes. The condensed
cloud will be transported from the optical trap to the launching region with an optical
lattice. After a final transfer into a vertical lattice, it will be launched by an accelerated
lattice.

In this section, we are going to discuss the cloud production prior to the evapora-
tion and transportation stages.

Among the required magnetic fields necessary for the planned cloud production,
one can distinguish three distinct magnetic configurations that are going to be suc-
cessively described:

• The MMOT quadrupole field, necessary to create magnetic gradients used in
Magneto-Optical Trapping.

• The MT gradients generating a conservative magnetic trap minimum.

• The Feshbach magnetic field used to tune the collisional properties of 85Rb.

5.2.1 3D-MOT configuration

Magneto optical traps are widely used to capture and cool atoms or even molecules
[255]. Description of these traps can be found in [256],[257] and only their main
characteristics will be presented here.

MOT principle

The magneto-optical force induced by a single laser field ~E on a two-level atom can
be written:

~F =
 h~kLΓΩ

2

2

1

δ2tot + (Γ ′/2)2

where ~kL is the laser light wavevector, Γ is the natural linewidth of the transition,
Ω := ~d · ~E/ h is the Rabi frequency, δtot is the total detuning experienced by the atom
and Γ ′ := Γ

√
1+ s is the intensity broadened linewidth (s := 2Ω2/

[
Γ + (2δtot)

2 /Γ
]

is
called the saturation parameter). Adding two excited states in a simple F = 0 −→ F ′ =

1 atomic transition leads to different energy levels which depend on the external mag-
netic field ~B via Zeeman interaction. In the first order perturbation expansion, this
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results in a magnetic dependent resonance transition ω0,B = ω0 − gFmFµBB, where
ω0 is the resonance frequency in the absence of external field, gF is the atomic level
Landé factor, mF is the atomic total angular momentum projection on the magnetic
field direction and µB is Bohr magneton. Additionally, taking into account the atomic
velocity, the total detuning can be expressed as:

δtot = δ− ~kL ·~v− gFmFµBB

where δ := ωL −ω0 is the unperturbed laser detuning. Hence, if the magnetic field
amplitude B depends on the atomic position, it is possible to produce both a spatially
and velocity dependent force on the atomic motion. In the weak intensity limit, this
model extends directly to the interaction of an atom with two counter propagating
(along the z quantization axis for example) laser beams by simply adding the two
magneto-optical forces having opposite wavevectors. If the laser beam polarizations
are chosen σ+ and σ− with respect to the quantization axis, each laser can only drive
one atomic transition mF = 0 −→ mF ′ = +1 and mF = 0 −→ mF ′ = −1 which results
in only one specific Zeeman detuning for each laser beam. If the external magnetic
field is directed along the laser beams axis with a magnitude proportional to the
distance from some z = 0 reference position, B = κz and changes direction at this
point, it is possible to express the total force experienced by the atoms along the z
direction as:

Fz,tot =
 hkLΓΩ

2

2

[
1

(δ− kLv−βz)
2 + (Γ ′/2)2

−
1

(δ+ kLv+βz)
2 + (Γ ′/2)2

]

where β = µBκ is the Zeeman shift gradient and we have implicitly assumed identical
amplitude of the two electric fields. Expanding this force around the magnetic field
minimum and for small atomic velocities, one gets a total force:

Fz,tot ' 2 hkLΓΩ2
δ[

δ2 + (Γ ′/2)2
]2 (kLv+βz)

which acts as a cooling and trapping force when the laser is tuned to the red of the
atomic resonance (δ < 0). Combining three such pairs of counter-propagating laser
beams with a quadrupole magnetic field (as produced by two coils in anti-Helmholtz
configuration which have the same axis as one of the laser beams) and the correct
laser polarizations allows to produce a three dimensional trapping and cooling force.
This is represented on Fig. 48a where a six beams traditional MOT configuration is
depicted.
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(a) Traditionnal MOT configuration (b) Mirror MOT configuration

Figure 48: (a) Classical MOT configuration with a Quadrupole field produced by two Anti-
Helmholtz coils (the arrow indicates the current direction). The laser polarization
are denoted by LH (Left Handed) and RH (Right Handed) and are adapted to the
magnetic field direction along the laser axis. In the overlapping region, atoms can
be trapped and cooled.
(b) Mirror MOT configuration which produces the equivalent of the traditional
MOT. The reflected beams on the mirror produce two additional beams with or-
thogonal polarizations that provide for the counter propagating laser beams for
the incoming one.

Mirror MOT

We implemented a MOT closer to a surface with the so-called mirror MOT[252], [258].
This configuration uses a reflecting surface to produce two of the six beams of the
traditional MOT configuration. By taking advantage of the polarization change upon
reflection on a conductor with a 45◦ incident angle, it is possible to produce the
polarization configuration required for magneto-optic trapping. This is represented
on Fig. 48b where the dotted laser beams represent the equivalent laser beam corre-
sponding to the reflections on the mirror surface. To match the quadrupole symmetry,
which corresponds to the C∞ symmetry group, one has to align the laser beam sym-
metry axis, which corresponds to the D4h group, on the quadrupole axis. In the
standard configuration, any of the three counter-propagating polarizations can be
adjusted according to the field direction. In the mirror MOT configuration, only the
reflected beam directions can be used as the reflection breaks the polarization sym-
metry for the unreflected beam. Some experiments [78], [259]–[261] used U-shaped
wires positioned directly below the reflecting surface to produce, with an additional
bias field, the necessary quadrupole magnetic field. We decided to keep an external
anti-Helmholtz coils configuration.
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5.2.2 Magnetic trapping

the next step is the transfer of the cloud into a pure magnetic trap. This type of trap
[253] relies on the Zeeman potential energy gFmFµBB which presents a minimum
for low magnetic field seeking states (for which the product gFmF is positive) when
the magnetic field amplitude itself has a local minimum. The principle of magnetic
trapping can be understood with a simple configuration which consists in the combi-
nation of a single wire conducting a constant current and a homogeneous magnetic
field orthogonal to the wire. This single wire trap will be presented first before dis-
cussing the actual magnetic trapping potentials designed for our experiment.

Single wire trap

Figure 49
Magnetic trap produced by
a single carrying wire and

a transverse biais field.
Adapted from [243]

The magnetic field produced by a single wire carrying a
current I is:

~BSW =
µ0I

2πr
~uθ

where r is the distance from the wire and µ0 is the vac-
uum permeability. Adding an external constant magnetic
field of amplitude Bbias produces a magnetic field zero.
This is illustrated on Fig. 49 were lines of constant mag-
netic field amplitude are represented in a plane orthog-
onal to the single wire. One sees that the total magnetic
field vanishes at a given distance above the wire:

zmin =
µ0I

2πBbias
(85)

At this position, the magnetic field can be approxi-
mated by a two dimensional quadrupole field in the trans-
verse direction to the wire. At this stage, the magnetic po-
tential experienced by the atoms is not confining in the
wire direction and has a zero value at its center. A pop-
ular solution to both of these issues consist in adding two orthogonal wires to the
initial single wire. If the currents in these wires are flowing in the same direction
(a situation similar to a Helmholtz configuration) a magnetic field will be produced
along the single wire which produces a magnetic potential with a non-zero mini-
mum and a weaker confinement along the single wire direction. This situation can
be realized in practice with a simple configuration called "Z" shaped traps which is
described on Fig. 50a.
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Majorana losses

An important source of losses in this type of traps is the initial assumption that atoms
remains in the low magnetic field seeking states. This hypothesis assumes that the
magnetic moment of trapped atoms follow the magnetic field direction throughout
their trajectories in the trap. This hypothesis remains valid as long as the Larmor
frequency ΩL := gFmFµBB (~r) / h is large compared to the typical frequency describ-
ing the atoms dynamic12 Ωdyn. When the magnetic field has a zero minimum, this
condition can never be realised close to the minimum and the atomic magnetic mo-
ment changes direction compared to the magnetic field direction. This results in a
"spin-flip" which transfers atoms in a non-trapped state, indcing atoms are lost. This
is the reason why non zero magnetic field traps have been developed such as the
TOP traps [262] and the Ioffe-Pritchard traps [263] which reduces this effect. Our "Z"
shaped trap belongs to the second group of traps and we can estimate the loss rate
γMajorana induced by this effect.

Close to the trap minimum, the magnetic field amplitude can be expanded, in the
simpler case of a symmetric trap, in a power series expansion:

B (r) = B0 +
b
′′
r2

2

where B0 is the magnetic field minimum and b
′′

is its spatial second derivative. To
estimate the magnetic region in which atoms are lost due to spin flips let us evalu-
ate the volume where the condition ΩL 6 Ωdyn is not fulfilled. Close to the field
minimum, the atomic dynamics is well represented by the frequency of the bottom
harmonic potential, Ωdyn =

√
2gFmFµBb

′′
/m. Therefore, the distance to the center

at which the Larmor frequency becomes larger than the dynamic frequency is;

aMaj =

√
2 h

mΩ2dyn

(
Ωdyn −ΩL,0

)
(86)

where ΩL,0 = gFmFµBB0/ h is the Larmor frequency at the center of the trap. As
can be seen in this expression, this quantity makes sense if and only if Ωdyn > ΩL,0

which is automatically verified for zero minimum magnetic traps but which might
not be the case for sufficiently large magnetic minima and as such can serve as a
good experimental goal to prevent this type of losses.

Assuming that all atoms entering this volume are lost, we can find an analytic
expression of the Majorana loss rate. The number of atoms entering a sphere of radius
aMaj during an infinitesimal time dt is dNMaj = n0v̄dtπa

2
Maj, where n0 is the

12 In other words, the characteristic time of the dynamical evolution 1/Ωdyn is much larger than the
characteristic time of the atomic moment evolution 1/ΩL which ensures that the latter follows smoothly
the magnetic field during the atomic motion.
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atomic density13 in the center of the trap and v̄ =
√
8kBT/ (πm) is the mean velocity

of an atomic cloud at temperature T . The resulting loss rate γmaj is therefore:

γmaj =
1

N

dNMaj

dt
=
2 hΩdyn
πkBT

(
Ωdyn −ΩL,0

)
One of the main issue of this type of losses is their polynomial divergence as

the temperature tends to zero (for linear traps, the temperature dependence is even
larger with a T−2 dependence [264]). For example, a typical harmonic trap has a
frequency ranging from Ωdyn/ (2π) = 100Hz to 1 kHz. At a temperature of 5µK, the
Majorana loss rate ranges between 1Hz and 120Hz which prevents long trapping
times. Hopefully, it is possible to prevent these losses either by preventing atoms
from approaching the bottom of the magnetic trap (with an optical "plug [265] for
example) or by having a minimum Larmor frequency ΩL,0 much larger than the
trapping frequency. In practice, a field minimum B0 ∼ 1G gives a minimum frequency
ΩL,0 = 1.4MHz which is much larger than typical Ωdyn.

The "Z" shaped traps described previously combines a non zero magnetic field and
a versatile trapping geometry which allows to capture and compress an atomic cloud
produced by a mirror MOT which we will now describe.

Mode matching capture

To transfer efficiently atoms from the mirror MOT to the magnetic trap, it is important
to adapt the magnetic field geometry to the approximately spherical shape of the cold
atoms in the mirror MOT. This design was carefully undertaken by J. Alibert who
will present the procedure in more details. Figure 50b represents the magnetic field
equipotentials designed to capture, almost 100% of the MOT cloud. The capture relies
on the sudden ramping up of the magnetic trap fields after the molasses. Assuming
that the atoms did not have time to rethermalize during the transfer, we can apply
the Virial theorem to estimate the temperature of the trapped atomic cloud.

In a linear trap, the total energy is three times the kinetic energy. Assuming14 that
the total energy of trapped atoms is the sum of the initial energy and the acquired
potential energy due to the capture, one obtains the following equality:

Tf =
Ti
3
+
2
∫
nMOT (~r)VMT (~r)d

3~r

9NkB

where Ti is the molasses initial temperature, Tf is the trapped atoms final temperature,
nMOT is the atomic density in the MOT and VMT is the magnetic trap potential.

Assuming a quadrupole potential VMT (x,y, z) = gFmFµBb
′
√
x2+y2

4 + z2, where b
′

13 In a harmonic trap at thermal equilibrium, the peak density is given by:

n0 = N
(
 hΩdyn

)3
/
[
3 (kBTΛ (T))3

]
with Λ (T) =

√
2π h2/ (mkBT) the thermal de-Broglie wavelength.

14 At this stage, the atom-atom interaction energy accounts for less than 1 ppm of the total internal energy.
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is the magnetic field "gradient" and a spherically symmetric atomic distribution in
the MOT nMOT = N

(2πσ)3
e−r

2/(2σ2), with σ the MOT typical width, we obtain the
following expression for the final temperature:

Tf =
Ti
3
+

2

9
√
6π

[
ln
(
2+
√
3
)
+ 2
√
3
] gFmFµBb ′σ

kB
(87)

where the numerical prefactor is of the order of 0.25. It is comparable to other prefac-
tors found in the litterature (0.35 for an isotropic trap [266]).

This can lead to a large increase in the trapped cloud temperature if the second
term exceeds the temperature reduction of the first term. For example, a σ = 2mm,
Ti = 50µK MOT, loaded in a b = 20G/cm quadrupole trap in a gFmF = 1 mag-
netic state will have a final temperature of 290µK which is almost 6 times its initial
temperature. To reduce this heating, it is advantageous to decrease the MOT size
and to use smaller magnetic gradients at the beginning of the transfer. Typically15,
the MOT size scales, at constant atom number and large detuning, as

[
Ω2/ (δb ′)

]1/3.
Therefore, extinguishing the MOT light at higher magnetic gradient and larger de-
tuning is an efficient way of reducing σ and the final temperature in the trap. This
technique is usually denoted as a Compressed MOT (CMOT) [268]. In addition, eq.
(87) corresponds to the worst case scenario with a sudden trap ramping. The more
realistic trapped cloud temperature will be smaller due to a progressive transfer to
the magnetic trap also inducing heating but at constant phase space density.

Our configuration

In addition to the efficient transfer, our magnetic trap is also designed to allow for
a fast evaporation cooling stage which increases the atomic cloud phase space den-
sity by reducing its temperature through selective removal of atoms. This will be
described in Sec. 5.3. In order to increase the evaporation cooling speed it is manda-
tory to have a large elastic collision rate Γel at the beginning of the evaporation. This
collision rate depends on the atomic density, the mean velocity and the atomic elastic
cross section (this will be discussed in more details in Sec. 5.3). One can show that
Γel scales as the magnetic gradient b ′ to the power 4/3 (and the temperature scales as
b ′2/3). Therefore, it is interesting to initially compress the atomic cloud by increasing
b ′ while keeping the phase space density constant. If the compression time is long
compared to the thermalisation time, it is possible to realize an adiabatic compression
at constant entropy.

Figure 51 presents the theoretical magnetic potentials at the end of a compression
stage. Additional "I" wires (along the Z direction) were added to the "Z" shaped
configuration to increase the magnetic trapping gradients in the Y direction. The
current in the "Z" wire is 30A, the current in the "I" wires is 20A and the bias field is
50G. An additional constant magnetic field along the Y direction of 7G was added
to push the MT position further from the wire.

15 This expression assumes an homogeneous density in the MOT and takes into account the re-scattering
force induced by light emitted in the MOT. This effect was initially discussed in [267]
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(a) Z wire trap
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(b) Magnetic isopotentials

Figure 50: (a) Schematic representation of the "Z" shaped trap. A single current is driven
through the wire (in orange) which produces a magnetic field represented by the
black circles (lines of constant field in the case of an infinite wire). An additional
bias magnetic field displaces the magnetic minimum (blue dot) from the (ZY)
plane to a given height X0 ∼

µ0I
2πBbias

above the plane.
(b) The magnetic isopotentials produced by a "Z" shaped wires whose dimensions
are adapted to match the cold atom cloud (dotted red circle). The black ellipsoïd
represents the equipotential in the magnetic trap corresponding to the typical
energy kbT of the loaded atomic cloud. On can see the magnetic potential "leak"
due to the gravity field at position (X = 3.5, Z = −2).

(a) Magnetic field potential in the wire’s direc-
tion

(b) Magnetic field potential in the gravity di-
rection

Figure 51: Magnetic potentials in the Y and Z directions of the "Z" shaped wire presented
on Fig. 50a, two additional wires increasing the compression in the Y direction
and a constant Bias field. The depth is given in temperature unit for a gFmF = 1
maximally trapping state.
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In principle, a "Z" wire combined with a constant bias field is well described by the
potential of a Ioffe-Pritchard (IP) trap which is the combination of a quadrupole field
and a bias field. However, the two additional "I" wires and the constant Y magnetic
field change the trap geometry. Therefore, an analytical description with a IP potential
is not adapted for this geometry which is why I chose to describe it in terms of mean
magnetic gradients and mean frequencies.

An important feature of these traps is their rather good linearity at large tempera-
ture (ranging from 100µK to 1mK) as is emphasized by the harmonic fit of the trap
minimum and a reasonable trapping volume (1.5mK height which is more than five
times the cloud temperature Tf). With the previous parameters the mean magnetic
field gradient 3

√
b
′
xb
′
yb
′
z and the mean trapping frequency 3

√
ωxωyωz are respec-

tively 50Gcm−1 and (2π) 370Hz for Rubidium atoms in gFmF = 1 magnetic states.
With these parameters, elastic collision rates of 103 s−1 can be achieved which is suf-
ficient for the 1 s evaporation cooling scenarii described in Sec. 5.3.3.

5.2.3 Optical dipole trap

85Rb negative scattering length at zero magnetic field prevents the Bose condensa-
tion of large atom number. Above a critical density, the 85Rb BECs are unstable and
collapse due to the formation of 85Rb2 molecules. Therefore, a constant and homoge-
neous magnetic field is necessary at the last stage to adjust 85Rb scattering length via
a Feshbach resonance. The magnetic field amplitude (160G) is much larger than the
trapping magnetic fields. Therefore an optical trap is used to confine the atoms. It is
represented on Fig. reffig.chap6.hybridsetup where the mirror MOT and "Z" and "I"
wires are represented on top of the reflecting surface. Crossed dipole beams produce
the 3D tight confinement used to reach the BEC regime in an external homogeneous
magnetic field.

Figure 52: Schematic representation of the chip with the 3D MOT beams reflected on the
surface, the atomic cloud, the "Z" and "I" wires as well as the crossed dipole trap.

162



Before describing the Feshbach magnetic fields characteristics in our experiment, I
will briefly present the physical phenomenon of Feshbach resonances as well as the
particular case of 85Rb |2,−2〉 tunable scattering length.

Feshbach magnetic fields

Feshbach resonances are usually [269][270] described in the framework of scattering
in a central potential. They consist in a resonant enhancement of the phase shift ac-
quired during the collision which results in the divergence of the scattering length. In
this framework, two atoms collides at low energy E0 in the s-wave and the asymptotic
energy of the collisional open channel corresponds to the hyperfine energies of the
two atoms. This situation is represented on Fig. 53a where the asymptotic energy of
the open channel corresponds to the zero energy point reference. Due to the hyperfine
interaction with the nucleus spin, this collisional channel can be coupled to one or
more closed channels which are not accessible at these low energies and correspond
to different spin states. Only one of these channels is represented on Fig. 53a where
one of its bound states Ebound is represented in the potential well. This coupling can
be resonantly enhanced when the bound state energy is equal to the collisional en-
ergy Ebound −→ E0 and results in a superposition with a molecular state during the
collision which increases sharply the scattering length. To realize this enhancement,
the Zeeman energy term can be used to control the relative position ∆E (B) between
the two channels. In the basic situation of only one closed channel sufficiently cou-
pled to the open channel, the total scattering cross section can be expressed as the
product of the zero magnetic field term abg and a magnetic field dependent resonant
part:

a (B) = abg

(
1−

∆B

B−Bres

)
where ∆B is the width of the resonance and Bres is the resonance position.

85Rb |2,−2〉 Feshbach resonance [271] is represented on Fig. 53b. This resonance
is broad which means that it is possible to tune 85Rb scattering length to a positive
value without unrealistic conditions on the required magnetic field (control of a few
100mG). In addition, the resonance magnetic field has the advantage of being rela-
tively small. To tune 85Rb scattering length to a reasonable value for evaporative cool-
ing (a few 100 a0 as is the case for 87Rb, see next section) it is necessary to produce a
constant magnetic field region around 163G. At this field value, the scattering length
slope is approximately −50 a0/G which means that the field has to be homogeneous
at the Gauss level to allow for an efficient evaporation.

To produce this homogeneous magnetic field over the evaporation and launching
region, we have a pair of horizontal coils of radius R separated by R which is the
distance of a Helmholtz configuration. The magnetic field produced at the center of
the two coils is given by:
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(a) Two channel model (b) Feshbach resonance of 85Rb |2,−2〉

Figure 53: (a) Open and closed collisional channels in energy unit as a function of the atomic
separation. The long range distance ∆E between the closed and open channel can
be tuned by adjusting the energy level of the contributing states.
(b) Graph from [271]. The scattering length in unit of Bohr radius around the
Feshbach resonance at B0 =∼ 155G is represented in solid black line.

BFesh (I) =

(
4

5

) 3
2 µ0nI

R

where n = 56 is the number of spires and I = 32.4A is the current. Expanding the
magnetic field around its maximal amplitude at the center gives us an idea of the
magnetic field variation ∆BFesh over a distance δz orthogonal to the coils axis:

∆BFesh =
3BFesh (δz)

2

2R2
(88)

Therefore, at 163G, the distance over which the magnetic field amplitude remains
higher than 162G is 2/3

√
1/163R ∼ 5%R which, for our experimental apparatus,

corresponds to 5mm. This value is in fact overestimated as the real coils have a
large (4 cm) thickness in the transverse and longitudinal directions. The real magnetic
field will therefore be smoothed over these typical dimensions and the magnetic
field variation will be smaller than eq. (88). In addition, its is also possible to sweep
the current in the coils during the launching to ensure that the magnetic field is
homogeneous over the cloud trajectory. The cloud expansion during and after the
fountain launching will need to make sure that the 85Rb cloud is dilute enough that
the resonance crossing does not lead to a collapse.
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Magnetic fields

High gradients magnetic fields for cooling and trapping as well as homoge-
neous magnetic fields necessary to tune 85Rb scattering length are produced
with a combination of macroscopic coils and wires. The final configuration
combines an initially large trapping volume and reduced heating with a com-
pressed trap leading to large collision rates (1× 103 s−1). The Feshbach mag-
netic field of 163G is produced by large Helmholtz coils ensuring a spatial
homogeneity better than 1G over a 1 cm radius region.
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5.3 dual isotopes evaporation

In this section, I will present a theoretical model of sympathetic cooling used to esti-
mate the optimal RF cooling trajectory. Different collisional channels, trap parameters
(depth η, gradients and lifetime), and initial temperatures will be discussed. Also the
two isotopes atom number ratio will show that depending on the final atom number
goal, efficient strategies can be implemented.

Spatial coordinate

Energy

kBT0

kBT0

h RF

gF mF = -1

gF mF = 1

Figure 54
Magnetic potential energy
represented for trapping
and anti-trapping states.

Forced evaporation was historically first performed on
a hydrogen cloud [272] and has been one of the major
tools for the achievement of Bose Einstein Condensation.
It relies on the cooling induced by thermalization of an
atomic ensemble from which the high energy distribu-
tion tail is constantly removed. This can be realized with
a RF field (frequency νRF) shone on a cold cloud trapped
in a magnetic field potential. This is represented on Fig.
54 where the spatially dependent energy levels of the
trapped (gFmF = 1) and untrapped (gFmF = −1) states
are represented. By using the appropriate RF field, reso-
nant transitions between these two states can be induced
at a fixed energy level. This removes from the trap atoms
which have an energy η > 1 times the mean energy in the
cloud and reduces the cloud temperature T0.

To quantify the efficiency of this process on a dual isotopes mixture, we are first
going to review a theoretical model developed to describe the main evaporation pro-
cesses which directly affects the evaporation trajectory. Then, a direct extension of
this model will allow us to discuss the optimal trajectories for our dual isotopes
condensation.

5.3.1 Evaporation principles and power laws

The expression derived here follows directly the lecture notes of Cohen-Tannoudji
1996-1997 [273] given at Collège de France. They give the preliminary structure nec-
essary for the sympathetic description used to simulate our evaporation scheme.

To describe the evaporation process, the atomic cloud is described by the statistical
distribution of an ideal gas of identical and independent bosons. The thermodynamic
quantities of the ensemble, such as the energy or the density of states, are expressed
in terms of the cloud temperature T and atom numberN. From this initial description,
one can derive three equations which completely describe the evaporation.

1. The first equation is the expression of the total energy E of the gas trapped in a
power law potential U (r) = Cr3/δ having a finite effective depth η = εt/ (kBT),
where εt is the potential energy at which atoms are no longer trapped. The
total energy can be expressed as:

166



E = N

(
3

2
+ δ

)
R

(
3

2
+ δ,η

)
kBT

where R
(
3
2 + δ,η

)
= Γ

(
5
2 + δ,η

)
/Γ
(
3
2 + δ,η

)
is the ratio of two incomplete

Gamma functions which describes the finite height effect of the potential on
the energy distribution of the cloud. It is useful to introduce the parameter
c̃ =

(
3
2 + δ

)
R
(
3
2 + δ,η

)
which collects this dependency and allows to express

the energy in a more compact form E = c̃NkBT .

2. The second equation accounts for the atomic losses during the evaporation.
Three different loss mechanisms dominate the analysis:

• The atom losses induced by the evaporation (i.e collisions having an output
channel of untrapped energy). The resulting atom losses rate is given by:

(
dN

dt

)
evap

= −ΓevN

where Γev = Γele−η
[
η−

(
5
2 + δ

)
R
(
5
2 + δ,η

)]
is the evaporation rate which

is proportional to the elastic collision rate Γel = nv̄σel.

• The atom losses induced by the inelastic collisions (which can be residual
background or Oort cloud [274] collisions for example). They are given by:

(
dN

dt

)
inel

= −ΓinelN

• The atom losses due to the spilling. This loss mechanism comes from the
trap depth lowering usually used to keep η constant16. By lowering the trap
depth, some atoms are lost before colliding and as such do not contribute
to the evaporation process. This term is given by:

(
dN

dt

)
spill

= −ΓspillN

where Γspill = ξ̃ 1
τramp

with ξ̃ =
(
3
2 + δ

) [
1− R

(
3
2 + δ,η

)]
and where τramp

is a characteristic time of the trapping depth lowering.

3. The third equation results from a detailed analysis of the energetic losses during
the evaporation. They correspond to each atomic loss mechanism and can be
described by:

16 As the cloud cools, the trap depth becomes a larger fraction of the mean thermal energy kBT , hence, to
keep an effective evaporation process, the depth is adequately lowered.
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• The energy loss due to the evaporation process which removes higher en-
ergy atoms from the cloud. This is given by:

(
dE

dt

)
ev

= −Γev

(
η+ κ̃

c̃

)

where κ̃ = 1−
P( 72+δ,η)
P( 32+δ,η)

/
[
η−

(
5
2 + δ

)
R
(
3
2 + δ,η

)]
is the average height of

evaporated atoms above the potential cut-off (in temperature unit)17.

• The energy loss induced by inelastic collisions. This is simply:

(
dE

dt

)
inel

= −ΓinelE

• The energy losses induced by the spilling process which removes atoms
with energy εt:

(
dE

dt

)
inel

= −
ηΓspill

c̃
E

From these three equations, one gets a differential system of two equations with
two variables (the cloud temperature and number of atoms). This system can be
rewritten as a set of two non linear first order differential equations18:

Ṫ

T
= −

α̃

1− α̃ξ̃
Γev

Ṅ

N
= −

1

1− α̃ξ̃
Γev − Γinel (89)

where α̃ = (η+ κ̃− c̃) /
(
c̃+ κ̃ξ̃

)
. It is convenient to use a different pair of variables

which are the peak atomic density and the average relative velocity. They are related
to the previous variables by the expressions:

n =
N

Λ3 (T) ξ (T)P
(
3
2 + δ,η

)
v =

√
8kBT

πm

17 In the limit of large depth, this parameter takes the simpler form (η−7/2−δ)(5/2+δ)
η−5/2−δ which is of the

order of unity
18 Indeed, both Γev and Γinel depend on the atomic density and the mean atomic velocity which gives a

power law non linear term NT1/2−δ in both equations.
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where ξ (T) = APLΓ
(
3
2 + δ

)
(kBT)

3/2+δ is the partition function with APL depending
only on the potential strength and the potential exponent19 δ and the thermal de
Broglie wavelength is Λ (T) =

√
2π h2/ (mkBT). The resulting coupled differential

equations are:

ṅ

n
= Anvσ− Γinel

v̇

v
= −Bnvσ

where the coefficients A and B are constant:

A =
δα̃− 1

1− α̃ξ̃
e−η

[
η− (

5

2
+ δ)R

(
3

2
+ δ,η

)]
B =

α̃

2
(
1− α̃ξ̃

)e−η [η− (
5

2
+ δ)R

(
3

2
+ δ,η

)]
This reduced set of equations can be analytically solved when the inelastic collision

rate is constant and gives power laws expressions which compare qualitatively with
actual evaporation trajectories.

power law
It is experimentally easier to access the atom number and the cloud temperature

than the cloud peak density. Therefore, to simplify the comparison to experiments,
evaporation trajectory are usually represented in the (T ,N) parameter space. Using
eq. (89) one can show that, when the inelastic collisions are negligible, T

Nα̃
is a con-

served quantity. Hence, in a (T ,N) logarithmic plot, the evaporation trajectory will
be represented by a straight line with a slope 1/α̃.

runaway evaporation
Another particular feature of the coupled set of equations is the so-called run-

away evaporation. This phenomenon is an exponential increase of the evaporation
efficiency. This can be directly seen on the elastic collision rate which diverges when
two conditions are met:

• The inelastic loss rate is small compared to the initial elastic collision rate :

r =
Γinel
Γel,0

< 0.003

• The potential depth is such that the difference A−B is positive and larger than
r. This roughly translates to a parameter η ∼ 6 at which A−B is maximum.

19 For example, in an isotropic harmonic trap, APL = 1/
[
2 ( hω)3

]

169



Under these conditions, the phase space density diverges after a finite evaporation
duration. Actually, additional inelastic losses increases r but, up to a point, this large
increase can be used to reach the BEC regime.

5.3.2 Sympathetic cooling

In our experiment however, we are interested in dual isotopes evaporation and in
particular in the initial sympathetic cooling process which allows to cool 85Rb via
thermalisation with 87Rb. To simulate this process, I used the previously described
theory and added an additional energy loss (or energy gain) term in each isotopes
energetic analysis which takes into account the inter-isotopes elastic collisions. In
practice, I considered two atomic clouds of temperatures T87 (resp. T85) and atom
number N87 (resp. N85). The collision rate between these two atomic clouds is20 be
proportional to the inter-isotopes elastic cross section σdual, to the standard deviation

between the two clouds velocity
√
v287 + v

2
85 and to the other isotopes density (n85 for

the inter-isotopes collision rate of 87Rb for example). Taking into account the simplest
collisions which equally redistribute the energy between the two collisional partners,
which is a good approximation in the case of two isotopes with very similar masses,
we get the additional energy rate:

(
dE87
dt

)
dual

=
T87 − T85
2T87

1

N87
σdual

√
v287 + v

2
85n85E87

and a similar term for 85Rb with inverted subscripts. Unraveling the exact same
derivation, this sympathetic term resulted in a coupling term between the differential
system of 87Rb and the one of 85Rb. This coupling can be expressed by:

ṅ87 = A87n
2
87v87σ− Γinel,87 +C87σdual

v287 − v
2
85

2v287

√
v287 + v

2
85n85n87

v̇87 = −B87n87v
2
87σ+D87σdual

v287 − v
2
85

2v287

√
v287 + v

2
85n85v87

where the isotopes dependent constants A87,B87,C87 and D87 have been explicitly
labelled with their corresponding isotope because the trapping potential height can
depend on isotope specific parameters (such as the magnetic sublevel). The new con-
stant coefficients are given by:

C87 =
α̃ξ̃

1− α̃ξ̃

c̃

c̃− η− κ̃
(90)

D87 =
α̃

2
(
1− α̃ξ̃

) c̃

c̃− η− κ̃
(91)

20 See [275] for a description of molecular dynamics for example.
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and a similar pair of differential equations holds for 85Rb. Due to the temperature
dependent elastic cross section of 85Rb, I did not try to find an analytical solution of
this coupled set of equations and used numerical integration.

Comparison with existing experiments

I tested this theoretical model with the experimental results published by Bloch et al.
[254] and by Altin et al. [276]. In these two papers, sympathetic cooling in a magnetic
trap between the two isotopes of Rubidium is described and the corresponding evap-
oration trajectories are represented on Fig. 55. These two experiments have collisional
parameters relatively different because they do not use the same hyperfine sublevels
for each isotopes.

1. In [254], 85Rb is in the |F = 3,mF = 3〉 state and 87Rb is in the |F = 2,mF = 2〉
state, this collisional channel will be labelled channel (3, 2). The magnetic poten-
tial experienced by these two states are identical and only the isotope selective
RF transitions induces differential losses between the two isotopes. In practice
this led to isotope specific depths and the corresponding η87 and η85 truncation
parameters.

2. In [276], 85Rb is in the |F = 2,mF = −2〉 state and 87Rb is in the |F = 1,mF = −1〉
state, this collisional channel will be labelled channel (−2,−1). The magnetic
potential experienced by 85Rb is a factor 4/3 larger than the one experienced
by 87Rb which contributes to the isotope selective RF transitions because 85Rb
density is reduced at the resonance position of the RF frequency. In this situa-
tion, both the potential strengths and the truncation parameters were isotopes
specific.

To simulate these experiments, I used collisional properties available in the lit-
erature [276]–[279] summarized in Tab. 13, as well as the temperature dependent
behavior of 85Rb elastic cross section described by Burke et al. in [278]. The elas-
tic cross section of 87Rb does not significantly change (appart from a factor 2 in-
crease around 400µK) and was kept constant σ = 8πa2T ,87 where aT ,87 = 106a0

[254]. So does the dual isotopes elastic cross section σdual = 4πa2T ,87−85 where
aT ,87−85 = 240a0(channel (3, 2)) = 200a0 (channel (−2,−1)). The three body losses
were not taken into account in the channel (3, 2) due to the dominant two body loss
rate. Inelastic losses induced by background collisions are also taken into account by
adding to the inelastic collision rate a constant loss rate proportional to the inverse
of the vacuum lifetime τvac.

The result of the numerical simulations are presented on Fig. 55c and Fig. 55d.
Due to the large number of experimental parameters approximately known (such
as the cloud lifetime and initial temperature in the case of Bloch’s experiment or
the truncation parameter during the evaporation process), these simulations can only
serve as a qualitative test for our model. However, in both situations, the evaporation
trajectories are well described by our numerical results and similar atom numbers
are obtained (around 2× 107 atoms of both isotopes at 20µK for Fig. 55c and 2× 106
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Hyperfine sates
85Rb |F = 3,mF = 3〉
87Rb |F = 2,mF = 2〉

85Rb |F = 2,mF = −2〉
87Rb |F = 1,mF = −1〉

Ke
1× 10−14 cm3 s−1
2× 10−16 cm3 s−1

3× 10−18 cm3 s−1
3× 10−18 cm3 s−1

Ke,intra 1× 10−15 cm3 s−1 3× 10−18 cm3 s−1

K3 Unavailable
5× 10−29 cm6/s
4× 10−29 cm6/s

Table 13: Collisional coefficients used in the numerical simulation.

87Rb atoms and 106 85Rb atoms at 4µK for Fig. 55d) . In particular, the decrease
of the sympathetic cooling efficiency when the number of atoms in each isotopes
becomes comparable is well represented on Fig. 55c where the losses of 85Rb rapidly
increases when the number of 87Rb becomes smaller. In addition, the larger atom
loss in the channel (3, 2) at higher temperature of 85Rb in Fig. 55d coincides with
the experimental losses. These losses are due to the much larger21 two body inelastic
coefficient Ke. One important feature not represented by this numerical simulation
is the slope change in the number of 87Rb when the two isotopes have similar atom
numbers. This feature can be understood by the gravitational sag neglected in our
model which displace the two atomic clouds by a small amount. When the cloud’s
size decreases due to larger atomic densities at lower temperature, which corresponds
to the situation in 55b around 1µK for example, the elastic collisions between the two
isotopes happens only in the two distributions tails which reduces the efficiency of
sympathetic cooling. Also Majorana losses were not included in this model because
non-zero magnetic minima were used in both experiments. This loss channel becomes
important at low temperature which might explain the higher loss rate of both 87Rb
trajectories.

5.3.3 Simulation of our setup

In order to dimension properly our magnetic traps, we used this model to have a gen-
eral idea of the possible evaporation strategies. The first question we had to address
was which atomic state were we going to use ? The choice of the 85Rb |F = 2,mF = −2〉
and 87Rb |F = 1,mF = −1〉 levels was advantageous for its low inelastic loss proper-
ties, its higher RF selectivity during the evaporation and corresponds to the magnetic
states exhibiting the Feshbach resonance necessary to finish the evaporation in the
optical trap. On the other hand, the 85Rb |F = 3,mF = 3〉 and 87Rb |F = 2,mF = 2〉 lev-
els have a higher Landé factor gFmF = 1 and experience larger trapping potentials
which allows to evaporate faster.

For typical magnetic fields such as the one presented on Fig. 50 with gradients
of b0 = 200G/cm and bottom frequencies of ω0 = 200Hz we simulated typical
evaporation trajectories for both magnetic levels. The typical dynamic lengths in this

21 As can be seen in Tab. 13 the loss rate is larger by two order of magnitudes compared to 87Rb and
almost four order of magnitudes compared to the |F = 2,mF = −2〉 magnetic state
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situation (either harmonic oscillator length or first zero of the Airy function) are of
the order of 1µm. The theoretical model of coupled differential equations assumes
that the dynamic remains in the collisionless regime. Indeed, in order to derive eq.
(89), it was assumed that a collision producing an atom with an energy higher than
ηkBT necessarily lead to removal from the trap. This assumption translates into an
atom mean free path much larger than the typical distance of a round trip in the
trap which approximately corresponds to the "dynamical length". In our simulation,
the atom mean free path will always be larger than 10µm which ensures that our
model remains valid throughout the evaporation. But before discussing the result, let
us describe in more details the numerical simulation details.
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(d) Simulated cooling trajectory of [254]

Figure 55: (a) Figure from [276]. Approximately 109 87Rb atoms and 2× 107 85Rb atoms are
loaded into a cigar shaped trap having a mean frequency of 73Hz. The vacuum
lifetime is approximately 20 s and corresponds to the main source of inelatic losses.
(b) Figure from [254]. 8× 108 87Rb atoms and 3× 106 85Rb atoms are loaded into
a cigar shaped trap having a mean frequency of 105Hz. The number of atoms for
two atomic isotopes (black dots, 87Rb and white dots, 85Rb) as a function of the
cloud temperature.
(c) and (d): Corresponding simulated evaporation trajectories.
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Description of the numerical simulation

We use the coupled set of equations previously describedand start with an initial
number of atoms N87,ini = 5× 108 and N85,ini = 107. Both cloud temperatures T87
and T85 are initially identical and corresponds to the temperature of the cloud in a
compressed magnetic trap. A conservative value of 400µK corresponds to the typical
parameters b0 and ω0. The background collision rate is fixed at 0.02 s−1. From this
initial cloud, we start the evaporation at constant ηlin = 6 in a linear trap. As the
temperature drops, the linear approximation begins to fail because the atoms lies at
the bottom of the trap. To distinguish between the linear and the quadratic regime,
we stop this first step when the phase space density in both traps are equal22. From
this final state, a new evaporation simulation starts in a pure harmonic trap with an
identical ηquad = 6. The evaporation is continued until the cloud temperature drops
to 5µK which defines the final state. This double stage evaporation simulation could
have benefited from an analytical expression of the density of states which provides
a unified description in between the two limiting cases. This was done for the case of
a bi-dimensional Ioffe Pritchard trap [280]. However, our trap geometry is not well
approximated by simple analytical formulas as it results from the complex combina-
tion of three wires and two external fields (see Sec. 5.2.2). But the numerical results
presented in [280] show that the transition between the two evaporation regime hap-
pens precisely when the cloud temperature is equal to U0/kB, where U0 is the IP
trap minimum. Analytically, I found that this temperature corresponds exactly to sit-
uation where the phase space density in the 2D linear trap is equal to the phase space
density in the 2D harmonic trap. Therefore, our criteria seems reasonable.

Magnetic states comparison

Figure 56 presents different evaporation trajectories of the two possible collisional
channels (3, 2) and(−2,−1). On Fig. 56a, one sees the transition point between the lin-
ear and quadratic traps around 100µK for the first channel and 50µK for the second
channel. This is due to the fact that less 87Rb atoms are lost during the first evapo-
ration in the linear trap (the phase space density is linear in the atom number) and
because the trap is less confining in the second channel. In both cases, the evapora-
tion is in the runaway regime and typically, about 90% of the evaporation duration
is in the linear trap. It appears that the second channel results in a much larger 85Rb
atom loss than the first channel. This is because the main atom loss mechanism in
this channel are the background collisions23. Therefore, the atom losses scales linearly
with the evaporation duration which is 6 times longer, resulting in much larger 85Rb
losses. Note the similar behavior at high temperature of 85Rb atom number in the first
channel with the beginning of an exponential decrease prevented by the accelerating
evaporation efficiency.

22 The phase space density in a quadratic trap behaves as T−3 while the phase space density in a linear
trap evolves as T−9/2. Hence, as the temperature drops, the linear phase space density increases faster
than the quadratic phase space density which explains the existence of this transition point.

23 Apart for 85Rb in the first channel for which at typical initial density of 1× 1012 cm−3 the inelastic loss
rate is similar to the background loss rate ∼ 0.01 s−1
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Figure 56: (a) Comparison of the two possible collisional channels used during the evapora-
tion. The atom number of each isotopes is represented as a function of the cloud
temperature. The total duration of the evaporation is indicated in the legend for
each channel.
(b) Comparison of two evaporation trajectories in the collisional channel 2. The
dashed line correspond to an evaporation at η = 6 and the dot-dashed line corre-
spond to an evaporation at η = 4.

On Fig. 56b a faster evaporation scheme was chosen in the second channel to try to
bypass this initial large atom loss. An evaporation at η = 4 is represented which does
not result in a runaway evaporation but was approximately half as long as the initial
trajectory. As expected, this less efficient evaporation does not lead to less atom losses,
but it can reduce the evaporation time which is critical to get a high repetition rate.
This faster cold cloud production leads to approximately 90% atom losses which is
not realistic if the final atom number is critical.

Before concluding on this aspect, let us first discuss the issue of magnetic state
preparation. Indeed, pumping atoms in the 85Rb |F = 3,mF = 3〉 magnetic state (and
the corresponding one for 87Rb atoms) is straightforward when starting from an op-
tical molasses. It is also possible to pump atoms in the lower hyperfine level 85Rb
|F = 2,mF = −2〉 but the polarization required to produce a dark state are different
for the two pump frequencies. By adjusting the initial MOT loading, we can however
reasonably expect to be able to control the initial atom number loaded in the mag-
netic trap in any of the chosen magnetic state. If we start the evaporation in the first
channel, we will need to implement some coherent state transfer (such as STIRAP
protocols which where demonstrated to be possible directly in magnetic traps [281])
but the transfer to an opposite magnetic orientation have additional difficulties (such
as the transitional non trapped state |F = 3,mF = 0〉) and can lead to large atom loss
during the transfer. A possible solution would be to implement this magnetic transfer
in the optical dipole trap but inelastic losses due to the large atomic density can lead
to significant atom losses during the transfer.
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Figure 57: Different traps:
Dashed line:b0=200G/cm, ω0/ (2π)=200Hz

Solid line:b1=350G/cm, ω1/ (2π)=300Hz

Therefore, it is not clear whether we
should use the first collisional channel
or the second one in terms of final atom
number. But in terms of evaporation du-
ration of the order of, or smaller than,
1 s only the first evaporation channel
seems reasonable with the current mag-
netic fields. However, as is represented
on Fig. 57, quick evaporation in the sec-
ond channel is possible with higher gra-
dients of b1 = 350G/cm and trapping
frequencies of 300Hz. These values sim-
ply compensate for the smaller Landé
factor and the resulting evaporation tra-
jectory is similar to the one in channel
1 with smaller magnetic fields which is
represented on Fig. 56a.

Temperature, background collisions and atom ratio influence

With these evaporation trajectories, high final phase space densities are reachable in
reasonable times. For example, the phase space density in the collisional channel 1 is
3× 10−3 at the final temperature of 5µK. With this density, we will see in the next
section that Bose Einstein Condensation in the final optical trap is reachable. But let
us first discuss the effects of the initial temperature, the background collision rate or
the initial 85Rb atom numbers.

To quantify these effects, I simulated the evaporation trajectory in the channel 1.
The result of these simulations are represented on Fig. 58. and Fig. 59

What we learn from these trajectories is that the initial temperature is decisive. As
can be seen on Fig. 58a, an initial cloud of 600µK needs 6 times more time to cool
down to 5µK than a 400µK one. It also leads to a final atom number 10 times smaller
for 87Rb and 5 times smaller for 85Rb. This comes from the fact that a smaller initial
number of 85Rb was used in this situation. Indeed, keeping 107 85Rb in the initial
cloud prevented to achieve a 5µK temperature because the thermal load of 85Rb on
the 87Rb cloud was too large and could not be efficiently cooled down below 100µK,
which corresponds to the temperature at which the elastic collision rate of 85Rb starts
to become comparable to the one of 87Rb allowing 85Rb to starts evaporating on its
own. This is mainly due to the longer evaporation time in the linear trap which leads
to large losses from background collisions. As expected, a lower initial temperature
of 200µK leads to a much faster evaporation and a higher 87Rb final number.

Figure 58b presents the result of different background collision rates. We see that
the evaporation trajectory is not too sensitive to the inelastic losses induced by the
surrounding vacuum. However, when the lifetime approaches the evaporation dura-
tion, this parameters starts to reduce the evaporation efficiency as expected by the
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Figure 58: (a) Evaporation trajectories for different initial temperatures (dash-dotted: 200µK,
solid line: 400µK, dashed line: 600µK).
(b) Evaporation trajectories for different background collision rate (the lifetime is
indicated in the legend). As long as the evaporation time is much smaller than
the background lifetime, it has little consequences on the final state and/or the
evaporation time.

induced loss of low energy atoms, preventing the thermalisation to a lower tempera-
ture. The evaporation time slightly increases too but this effect is at most of the order
of 10%.
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Figure 59
Final atom number ratio N85,final/N87,final
as a function of the initial atom number ratio
N85,ini/N87,ini. The evaporation duration
for initial ratios of 0.002, 0.012 and 0.02 are

represented besides the points.

Finally, the effect of the initial 85Rb
atom number is represented on Fig. 59.
I represent the final atom number ra-
tio N85/N87 as well as the evaporation
time for some of these points. An im-
portant feature is that the initial 85Rb
atom number mainly influence the dura-
tion of the evaporation. Indeed, the final
number of 87Rb changes by 40% when
the number of 85Rb atoms is multiplied
by 10. But it does not change its effi-
ciency as the evaporation remains in the
runaway regime. Additionally, one can
see that increasing the initial number of
85Rb atoms tends to slow the evapora-
tion process. Therefore, this initial atom
number has to be carefully optimized to
produce the desired condensate. On the
other hand, controlling the final ratio of
the two atomic isotopes atom number can be crucial for some experiments because
the dual isotopes cloud shape and miscibility [282], [283] depends on this ratio. This
theoretical model might allow to optimize the evaporation strategies according to the
desired final ratio.
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Transfer to the dipole trap

To reach the BEC regime with both isotopes, we need to finish the evaporation in a
Feshbach magnetic field. The ultra-cold atomic cloud obtained at the end of this first
evaporation will be transferred into a pure optical dipole trap (ODT)24. This trap will
be produced by crossed laser beams described in Sec. 6.3.2. To transfer the majority
of atoms into the ODT, its size must not be too small compared to the initial cloud25.
An interesting feature of this transfer is the continuous evaporation of atoms trapped
in the ODT. This leads to an optically trapped cloud with a temperature similar to
the previous temperature in the magnetic trap26. Since the trapping frequencies in
the dimple are usually higher than the one in the magnetic trap, this leads to a phase
space density increase proportional to the ratio of the final frequency over the initial
frequency to the cube.

Condensation in Feshbach magnetic field

To estimate the final evaporation trajectory, I use a conservative atom number of
2× 106 at a temperature of 5µK. It corresponds either to he final atom number pre-
sented on Fig 56b (channel 2) or to the final atom number presented on Fig 58b
(channel 1) with an additional atom loss due to the transfer to the right magnetic
state. The most common strategy for evaporation in an ODT consists in decreasing
the potential depth to keep the evaporation threshold η constant. Scaling laws for
this evaporation process lead to [286]:

(
Nf
Ni

)
=

(
Uf
Ui

)3/[2(η ′−3)]
(
Df
Di

)
=

(
Uf
Ui

)3(η ′−4)/[2(η ′−3)]

where i (resp. f) denotes the initial (resp. final) state, U is the optical potential depth
and η

′
= η+ (η− 5) / (η− 4). To reach quantum degeneracy, the phase space density

has to attain the well known value of 2.612 which will be our final state criterion for
this last step. The initial phase space density (PSD) in our optical trap is of the order
of 2× 10−2 at the beginning of the evaporation (with trapping frequencies of 500Hz).
Therefore, a factor 130 on the PSD is needed to reach degeneracy. With a trapping
depth27 η = 7, this means that the optical potential has to be lowered by a factor
65 which corresponds to a final depth of 550nK. At this stage, the number of atoms
remaining is 4× 105 at a temperature of 50nK. The duration of this stage is governed

24 We note however that without 85Rb atoms, our simulated final phase space densities of 87Rb, which
are close to the condensation threshold, allow to reach condensation without additional evaporation (as
described in [284]) in the ODT.

25 In [285], they found that almost all Cesium atoms were transferred into the dimple when its radius was
larger than 150µm which is to be compared to the cloud initial radius of 325µm corresponding to a
ratio of 1/2. In our situation, the initial cloud radius will be approximately 140µm which constrains the
dimple radius to 70µm

26 It can even be smaller due to "evaporation" (or loss) of atoms in the tail of the magnetic trap.
27 Which corresponds to a trade-off between speed and efficiency.
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by the initial elastic collision rate28 Γel ∼ 770 s
−1 and corresponds approximately29 to

3 s.

5.3.4 Comparison with other BEC machines

The atomic cloud trajectory summarized in Tab. 14 can be compared, in terms of
condensed atom production rate, with existing setups using either all optical setups
[287], [288], atom chips [78], [220], [289]–[291] or hybrid setups for dual isotopes [67],
[282]. Figure 60 summarizes the performances of these experiments and we can see
that our estimation seems reasonable. It is similar to the fastest BEC machine for a
single isotope configuration (not described) and is expected to perform as efficiently
as the recent 85Rb/87Rb all optical BEC machine of [67].
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Figure 60: Demonstrated high production rates (6 8 s,circles) of 87Rb BEC sources, adapted
from [78]. All dual isotopes sources 85Rb/87Rb are also represented (squares). The
red points correspond to published experiments (notice the temporal axis break
for dual experiments) and the blue points correspond to the characteristics infered
from our simulations. Our dual evaporation is calculated to perform much faster
than the two published experiments [67], [282] thanks to the fast loading rate and
the tight initial magnetic trap.

28 Weighted by 2e−η (η− 4)η
′
/3 and by a correction factor taking into account inelastic losses during the

evaporation process.
29 As we will see in the next section, our crossed dipole beams have a large waist difference which we

could use to implement a runaway optical evaporation [287] by controlling the trap depth with the large
beam while keeping the larger trapping frequencies with the smaller beam. The duration and efficiency
of this stage could therefore benefit from further investigations.
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Evaporation

We combine sympathetic RF evaporation in a tight (b0 = 200G/cm ,
ω0/ (2π) = 200Hz) magnetic trap and induced evaporation in a crossed dipole
trap (ω̄/ (2π) = 500Hz) to produce a large 87Rb/85Rb BEC. To quantitatively
estimate this setup performances, a sympathetic cooling numerical model was
developed and simulated successful evaporation strategies over a wide range
of initial parameters (Hyperfine state, atom number, temperature, trap depth).
The different evaporation steps of a reasonable strategy are summarized in the
following Table.

Production step N 87Rb/85Rb T PSD Time

3D MOT 1× 109 / 2× 107 50µK 5× 10−7 1 s

MT 5× 108 / 1× 107 200µK 1× 10−6 1.05 s
CMT 5× 108 / 1× 107 400µK 1× 10−6 1.15 s

Evaporated CMT 5× 106 / 2× 106 5µK 3× 10−3 2.15 s
DT 2× 106 / 1× 106 5µK 2× 10−2 2.5 s

Evaporated DT 4× 105 / 2× 105 0.05µK 2.612 5.5 s

Table 14: Summary of the cloud characteristics during its different preparation stages.

5.4 cloud transport in an optical lattice

Then, the transport from the optical trap to the launching position will be the subject
to particular focus as numerical simulations were performed to ensure the feasibil-
ity of the planned strategy. Finally, some details about dual isotopes launching in
accelerated lattices will be discussed.

One of the major advantages of an atom chip BEC source is the tight magnetic trap-
ping potentials resulting from the proximity to the wires. In our case, this becomes
an inconvenient because of the lattice and Bragg beams which are diffracted by the
surface.

A transportation scheme using an optical guide coupled to a moving lattice was
considered because a high degree of control of the final cloud position and veloc-
ity. It was necessary to prevent fluctuations in the fountain trajectories and in the
diffraction efficiencies. Its principle relies on the possibility to load a BEC in an op-
tical lattice, to accelerate and decelerate the latter, and to unload the condensate in
its final position while keeping the phase coherence of the condensate. This type of
manipulation can be viewed as optical Bloch oscillations [292], [293] which we are
going to describe first (for a recent description see P. Cladé chapter in [16]). Then the
transport procedure will be described and its main impediments will be emphasized.
The numerical model used to simulate this transport and their results will conclude
this section.
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5.4.1 Bloch oscillations

Let us consider the simplest case of a single atom interacting with two counter-
propagating laser beams in a 1D model. The total electric field is the sum of two
sinusoidal terms:

Etot = E1 cos (k1z−ω1t+φ1) + E2 cos (−k2z−ω2t+φ2)

where Ei are the field amplitudes,ωi their frequencies, ki their wavevector amplitude
and φi their reference phase. Assuming for simplicity an equal amplitude E0, we can
factor this into:

Etot = 2E0 cos
[
(k1 + k2) z− (ω1 −ω2) t+ (φ1 −φ2)

2

]
× cos

[
(k1 − k2) z− (ω1 +ω2) t+ (φ1 +φ2)

2

]
If the frequency difference ω2 −ω1 = ∆ω is small compared to the optical fre-
quencies ∆ω � ωi the total electric field oscillates at the optical mean frequency
ω1 + ∆ω/2 with an effective phase (φ1 +φ2) /2 and a spatially dependent ampli-
tude. As was described in Sec 1.2, if the frequencies are far detuned from the atomic
resonance frequency ωi −ω0 = ∆ � Γ the atom-light interaction can be expressed
as:

V̂eff =
 hΩeff
2

[
1− cos

(
2keffẑ+∆ωt+ φ̄

)]
(92)

where keff = (k1 + k2) /2 and φ̄ = (φ1 −φ2) /2. This corresponds to an optical lattice
having a spatial periodicity π/keff moving in the −z direction at a constant velocity
∆ω/ (2keff).

Assuming ∆ω = 0, we can describe the atomic wave-function using the Bloch the-
orem. The potential periodicity allows to describe the atomic wave-function, solution
to the effective Hamiltonian Ĥeff = p̂2/ (2m) + V̂eff (z, t), with the Bloch basis:

Ψnq (z) = unq (z) eiqz

where q is the atomic quasi-momentum30 defined by the atomic momentum modulo
keff and unq (z) are periodic functions solutions to the eigenvalues equation:

30 The physical interpretation of this quantity is not straightforward as the momentum is not a conserved
quantity in presence of an external force. This is the reason why an "effective" momentum, q, is intro-
duced which represents only partially the atomic motion but corresponds to a "good" quantum number
when treating the effect of the potential on the atom. To recover the atomic momentum, one has to
combine both n and q to retrieve k = q+nkeff which will represent an atomic eigenstate in free flight.
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The eigen-energies Enq are labelled with their band index n and are usually repre-
sented in the first Brillouin zone (corresponding to q ∈ [−keff,keff]) as can be seen on
Fig. 61 where multiple Brillouin zones have been represented. When the lattice is at
rest, the problem is time independent and an atom having an initial quasi-momentum
q0 will remain in a superposition of unq0 (z).

Band

Index

Figure 61: Figure adapted from [294]. The band structure of an accelerated lattice is repre-
sented as a function of q and the lattice wave-vector. Two different transfers at the
Brillouin sides are represented corresponding to adiabatic (A) and diabatic (D)
trajectories.

However, when one includes the lattice translation in the z direction with a fre-
quency difference ∆ω (t), one can show that an atom initially in the lowest energy
band will follow the lattice. Its velocity, in a semi-classical picture, will be given by:

v (t) = v0 +
∆ω (t) −∆ω (t0)

keff
(93)

where v0 is the atomic initial energy at t = t0. This acceleration is known as Bloch
oscillations and originate from the adiabatic passage at the Brillouin borders of the
atomic wavefunction. This transfer ensures that the atomic wave-function follows the
lowest energy band, in the reference frame of the lattice. It is also possible to represent
this velocity change as stimulated absorption and emission from one laser to the other.
The subsequent recoil velocities imparted to the atom changes its motion by discrete
amounts proportional to 2vrec = 2 hkeff/m. Therefore, eq. (93) is only approximate
as it does not take into account the discrete nature of photon transfer between the
atom and the electric field. When the semi classical velocity is not congruent with the
initial velocity modulo 2vrec, the final atomic state will be in a coherent superposition
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of two momentum states k0 + 2pkeff and k0 + 2(p+ 1)keff, where p is the integer
part of [v (t) − v0] / (2vrec).

Additionally, this description does not take into account the number of non adia-
batic transitions at each transfer. To evaluate the fraction of atoms lost during these
transitions, one can use the Landau-Zener formula:

PZener = e
− ac
a(t) (94)

where ac =
πΩ2eff
16keff

is a critical acceleration depending on the lattice depth and

a (t) = d∆ω(t)
dt is the lattice instantaneous acceleration. The lattice depth Ωeff ap-

pears explicitly in this condition because the adiabaticity depends on the distance
between the first and second energetic bands which increases as the coupling to the
field increases. Two different atomic trajectories are represented on Fig. 61 and cor-
responds to the two following cases. The atom remains in the lower band (adiabatic)
and continues to being "trapped" in the lattice (and its velocity in the laboratory frame
increases according to eq. (93)) or the atom changes band (non-adiabatic) and does
not follow the lattice translation which results, in the moving frame of the lattice, in
a periodic increase of its quasi-momentum.

In practice, eq. (94) is not too constraining because it is possible to have a very large
critical acceleration ac with deep lattices. For example, ac = 1000m/s2 for 87Rb in
a lattice at 1560nm with Ωeff = (2π) 23 kHz = 24ωrec, where ωrec =

 hk2eff
2m is the

recoil frequency. This allows for example to increase the atom’s velocity by 2ms−1

in 20ms while keeping the atom losses below 2%. 31

This technique will be used to transfer our atomic cloud to a launching region,
where another Bloch acceleration will launch the BEC upwards.

5.4.2 Transport from the surface

The experimental scheme is represented on Fig. 62. From the initial crossed dipole
trap, the atoms will be transferred into an horizontal lattice made of two counter-
propagating laser beams with a controlled frequency difference ∆ω (t) = ω2 −ω1.
An appropriate frequency ramp ∆ω (t) described in the numerical section will trans-
port the cloud farther from the surface.

Because the transport distance, x0 = 4.5mm, is approximately equal to the Rayleigh
length of the guide used to produce the lattice, the optical potential amplitude will
change during the acceleration. This is represented on Fig. 63 where the transverse
frequencies ωy (x), ωz (x) and gravitational sag position z0 (x) are shown as a func-
tion of the distance from the waist. This transportation scheme constrained the waist
of the longitudinal dipole trap beam as it has to maintain the atoms against gravity
even at the final cloud position (x0).

31 Indeed, the number of transition required to accelerate to 2ms−1 is 340. The atom loss can be estimated

as 1−
(
1− e−

ac
amax

)340
. Therefore, with a maximal acceleration of 100m/s2, the losses remains below

2%.
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x=0

Figure 62: Description of the experimental scheme simulated for the BEC transport. The ini-
tial BEC will be loaded from the crossed dipole trap into a lattice. The optical
equipotentials will then be translated by changing the frequency difference be-
tween the two beams until the cloud is displaced by a chosen distance x0 from its
initial location.

To fix ideas, using the theoretical expression of the laser intensity of a perfect
TEM00 mode, this means that the potential created by a laser guide can be expressed
as:

Utot (x,y = 0, z) = ρ
I20

1+ λ2x2

π2w40

e

− 2z2

w2
0

(
1+ λ2x2

π2w4
0

)
−mgz

where the x = 0 origin is taken at the laser waist w0, I0 is the laser beam peak
intensity and ρ is coefficient which only depend on the laser beam wavelength and
atomic polarizability (see grimm_optical_1999 for a review):

ρ =
3πc

2ω3D1ε0

[
Γ

ω0 −ωL
+

Γ

ω0 +ωL

]
Γ is the transition linewidth and ω0 is the barycentre of the D lines. For the 1560nm
wavelength, ρ = 4.1× 10−37m2 s which corresponds to ρ/kB = 29mK/

(
W µm−2

)
in more practical units. If the potential minimum ∂Utot/∂z|z=z0(x) = 0 is located at

a position small compared to the local waist, z0 (x) � w0

√(
1+ λ2x2

π2w40

)
, one can get

approximate analytical solutions. The gravitational sag is given by:

z0 (x) ∼
mgw20
4ρI20

(
1+

λ2x2

π2w40

)2
(95)

To minimize atom losses induced by this gravitational sag, it is interesting to find
the optimal waist which minimizes z0 (x0) at the end of the transport. This can be
done by differentiating eq. (95) with respect to w0. One finds that z0 (x0) is minimum
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for an optimal waist w0,opt = 4

√
λ2X20/π

2 ∼ 47µm which corresponds to the waist
chosen in all our simulations.

(a) Guide trapping frequencies (b) Gravitational sag

Figure 63: (a) Evolution of the two transverse trapping frequencies as a function of the dis-
tance from the laser waist. In both directions, the trapping parameters change by
more than a factor 2. The laser power is 1W and waist w0 = 47µm.
(b) Position of the potential minimum (gravitational sag) as a function of the dis-
tance from the laser waist. The red curve corresponds to the approximate solution
of eq. (95) showing good agreement with the blue one which is the exact numerical
solution.

In collaboration with N. Gaaloul in Hanover and with two of his students, R.
Corgier and S. Loriani, we developed a numerical simulation of this procedure in
order to find the fastest transfer time and to take into account the possible effects
of gravity on the transport efficiency (characterized with the number of transferred
atoms as well as the velocity distribution broadening). It is also planned to use these
simulations to discuss the effects of lattice depths fluctuations and lattice phase noise
on the transport efficiency.

5.4.3 Numerical simulations

The principle of the simulation relies on the Gross-Pitaevskii equation which de-
scribes, in the mean field approximation, the N-particles wavefunction of the conden-
sate. Its time dependent form is:

i h
∂φ (~r, t)
∂t

= H (~r, t)φ (~r, t) =
[
−

 h2

2m
M +Vext (~r; t) +Ng |φ (~r, t)|2

]
φ (~r, t) (96)

where Vext (~r; t) denotes the external potential and g = 4π h2as
m describes the s-

wave scattering between atoms in the condensate, where as is the scattering length
(as = 100a0 for 87Rb). The wavefunction φ (~r, t) is an approximation of the exact N
particles wavefunction. This approximation is valid as long as the number of particles
is large (which allows to neglect depletion of the condensate to excited modes and
the resulting interaction terms) and the density is sufficiently small (n � a−3s ) in or-
der to neglect higher order atom-atom interactions to keep only the termNg |φ (~r, t)|2

which is the first order Hartree-Fock development.
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The numerical propagation of eq. (96) discretizes the time evolution of a given
initial wavefunction φ (~r, t0) and performs, at each time step, the unitary transforma-
tion:

φ (~r, t+ δt) = e−
iH(~r,t)δt

 h φ (~r, t)

where H (~r, t) is the Gross-Pitaevskii Hamiltonian (eq. (96)). The time step δt needs to
be small compared to the smallest dynamical process. In our case, it corresponds to
the high trapping frequencies at the bottom of each lattice wells ωlat/ (2π) ∼ 10 kHz.
In practice, the time step is chosen such as δtωlat � 1 and the convergence of
numerical results with decreasing time steps is checked.

Due to the non-local (in ~r space) character of the Laplacian in the Hamiltonian
it is advantageous to express the wavefunction in ~k space in which this operator is
local. Fourier transforms are therefore necessary to propagate easily the wavefunction
in each space where the corresponding propagator has the simplest form. However,
these numerical operations are time consuming which is why a split step method is
used [295], [296] to reduce the number of these transformations. Discussion on the
numerical aspects of these simulations can be found in the theses [297], [298].

effective 1d model
In the absence of gravity, the external potential is axially symmetric and an effective

1D Hamiltonian can be derived from eq. (96). This is numerically important as the
computation time is reasonable even with the large number of grid points required by
the large scale difference between the lattice period and the condensate size. However,
including gravity in the simulation required some approximations in order to proceed
further numerically.

Because of the large transverse frequencies compared to the initial longitudinal
one, it is reasonable to neglect the initial transverse excitations which are much more
energetic. Additionally, the loading and transport protocol should be slower than
the typical transverse dynamic time (2π/ωy,z), the transverse dynamic can thus be
adiabatically eliminated during the transport which assumes that it keeps its station-
ary shape. These two reasons motivated us to use an approximate solution for the
ground state wavefunction which is propagated only in the x direction and fixed in
the transverse directions:

φ (x,y, z; 0) = ϕ (x; t) fy (y, x; t) fz (z, x; t)

where ϕ (x; t) is an un-constrained wavefunction, solution of an the effective 1D
Hamiltonian Ĥ1Deff (eq. (98) below), fz (z, x; t) and fy (y, x; t) are Gaussian Ansätze:

fl (l, x; t) =
1√

π1/2ηl (x, t)
e−ikl(t)le

−
(l−lc(t))

2

2η2
l
(x,t) (97)
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where l = y, z which have parametrized width ηl (x, t), center lc (t) and phase kl (t).
These solutions adequately describe the transverse wavefunction in harmonic traps
for low atom numbers < 103 but deviate from the exact solution at higher atom num-
bers due to the non-linear interaction term. Nevertheless, this factorized form can
still give us some insight into the loading and transport dynamic as it includes spa-
tial terms which, as we discussed previously, evolves significantly during the trans-
port. In addition, the transverse effect of gravity can be represented by both zc (t)
and kz (t) which represent the mean center and the momentum of the cloud in the z
direction. The effective Hamiltonian takes into account these additional terms:

Ĥ1Deff = −
 h2

2m
O2x + Veff (x, t) +N

g

2πηzηy
|ϕ (x, t)|2 (98)

−  h
( .
kyyc +

.
kzzc

)
+

 h2

2m

(
k2y + k

2
z+

1

2ηy
+

1

2ηz

)
+
1

2
mω2y (x)

(
η2y

2
+y2c

)
+
1

2
mω2z (x)

[
η2z
2
+(z0 (x) − zc)

2

]

where we have omitted the explicit space and time dependence of the Gaussians pa-
rameters, Veff (x, t) = Vext (x,yc, zc; t) is the 1D external potential and ωy (x) (resp.
ωz (x)) is the harmonic potential in the transverse y (resp. z) direction which takes
into account a spatially dependent trapping frequency. In this effective Hamiltonian,
one can group the different contributions in different categories. The first three terms
(red) corresponds to the Gross Pitaevskii Hamiltonian in an effective 1D dimension.
The terms (purple) which depend on ky(z) and yc (z) are energy terms which take
into account the total energy change induced by the transverse velocities and posi-
tion. The remaining terms (blue) which depend on ηy(z) represent the competition
in the transverse direction between reducing the potential energy (reducing ηy(z))
and reducing the kinetic energy (increasing ηy(z) to reduce the velocity distribution).
Also, the effect of gravity is included in the exact location of the potential minimum
z0 (x) and on the external potential.

Three scalar equations are coupled to this effective Hamiltonian for each transverse
direction:

1

2
mω2y (x)η

4
y (x, t) =

 h2

2m
+N

g

4πηz (x, t)
|ϕ (x, t)|2 ηy (x, t)

.
ky (x, t) = −

1
 h

∂Vext (~r, t)
∂y

|x,y=yc(t),z=zc(t)

.
yc (t) =

mky (t)
 h

with similar equations for z and we recall that Vext (~r; t) is the complete external
potential prior to 1D transformation.

This model allows us to combine a fast numerical computation with some of the
interesting features such as the displacement (and possible oscillations) in the trans-
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verse direction and the effect of large local densities in the lattice wells during the
transport. But before, let us describe the dipole guide and lattice parameters during
the transport.

5.4.4 Loading from the dipole trap

The condensate groundstate is numerically computed in the initial cigar shaped trap
(ω⊥/ (2π) = 210Hz,ω‖ = 1.5Hz) for 104 87Rb atoms. It corresponds to the trap
for which the crossed dipole beam has been adiabatically32 turned off. The counter
propagating beam intensity is then ramped up to load the atoms into the optical
lattice. To ensure an adiabatic loading in the lowest Bloch band, one can use the
sufficient condition |dΩeff (t) /dt|� 16ω2rec adapted from Denschlag et al. [302]. We
use a sinus ramping function characterized by the ramping time τload:

Ωeff (t) = sωrec sin2
(

πt

2τload

)
(99)

where s is the lattice depth33. The adiabatic condition can therefore be expressed as
τload � sπ/ (64ωrec) ∼ s× 8µs. For a deep (s = 50) lattice, we typically use τload =

4.5ms which corresponds to an order of magnitude between the two timescales. We
checked that no diffracted momentum components were populated during this stage
by immediately unloading the lattice which result in a single momentum distribu-
tion centered around the initial cloud mean momentum p = 0. The initial and loaded
wavefunction are represented on Fig. 64a in position space and on Fig. 64b in mo-
mentum space. The inset emphasizes, on a logscale, that initially no other momen-
tum components than the p = 0 are present. The loaded wavefunction displays clear
peaks at multiples of 2kL. Also, the momentum width is initially very narrow (FWHM
10−2vrec) both in the harmonic trap and in the lattice. The initially shallow trap is an
important step of this transportation protocol as direct loading and transport from a
tighter (ω⊥/ (2π) = 210Hz,ω‖ = 15Hz) trap lead to higher losses of the transported
cloud.

5.4.5 Transport in the lattice

In order to keep the size of the numerical grid reasonable we use the reference frame
of the moving lattice. This leads to unitary transformations of the effective Hamilto-
nian (98). This procedure is described in details in [303] and we will only mention
that it simply results in a spatially dependent potential term mx̂a (t) added to eq.
(98). We ramp up the lattice acceleration smoothly up to a constant value alat. After

32 Faster processes relying on shortcut to adiabaticity could also be used [299]–[301] as the longitudinal
frequency 1.5Hz requires a very long ∼ 1 s adiabatic expansion.

33 We are using the convention which is based on the recoil energy ER =  h2k2L/ (2m) as unit of lattice
depth. We note that the lattice energy EL = 4ER is also used in the literature but did not choose this
convention.

188



a constant acceleration stage, the lattice acceleration is ramped down to zero. A simi-
lar deceleration stage is then performed which brings back the lattice and the cloud at
rest in the laboratory frame. The result of this transportation protocol is represented
on Fig. 64.

The lattice depth and acceleration ramps are shown on Fig. 65a. For these simula-
tions, the spatially dependent transverse frequencies and lattice depth were included
in the numerical propagation using approximate analytical expressions such as eq.
(95). The change in lattice depth is the reason why different "accelerations" are used
for the acceleration stage and deceleration stages. In practice, using a deceleration
amplitude half as large as the acceleration was sufficient to prevent non-adiabatic
transitions.

The condensate mean position and velocity are represented resp. on Fig 65c and
Fig. 65d. Clearly, the condensate follows perfectly the lattice dynamic as the position
difference compared to the lattice position remains below 10−2 µm. Also the relative
velocity is less than 5× 10−3vrec which, compared to the 140vrec maximum velocity
is completely negligible. Additionally, the momentum distribution width (in velocity
unit) is represented as a function of time. The initial increase is a known effect [304]
of progressive wavefunction dephasing between each lattice wells due to the inhomo-
geneous value of the chemical potential. Interestingly, the spatially dependent depth
seems to lead to partial re phasing as the width tends to decrease slightly at the end
of the transport. In a situation were the depth would have been kept constant, the
final width in the X direction would have been almost a factor of two larger !

The final cloud prior to and after unloading is represented on Fig. 64c in position
space and on Fig. 64d in momentum space. The final cloud shape is typical of a
Thomas-Fermi inverted parabola distribution as is expected for an interacting con-
densate. The final momentum distribution has negligible (106 times smaller than the
main p = 0 component) residual momentum components at multiples of 2 hkL. The
momentum distribution is asymmetric which leads to a non-zero mean velocity of
10−2vrec. This residual velocity is not well understood but might be due to the final
potential asymmetry: the guide, and lattice, depth changes by approximately 10%
over the whole cloud. Nevertheless, compared to the cloud velocity distribution this
is a very small value which will not significantly deflect the atoms of the perfect
fountain trajectory.

Nevertheless, this transportation protocols is robust against condensate numbers
and exact lattice depth. Indeed, keeping all dynamical parameters constant, increas-
ing the number of atoms up to 106 or changing the lattice depth by 10% did not
change the shape of the transported cloud. Also, faster accelerations than the one
presented here (up to 300m/s2) showed similar performances.
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(a) Wavefunction in position space
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(b) Wavefunction in momentum space
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Figure 64
Simulation results of the transport protocol (see text).
(a): Wavefunction probability distribution,

∫ ∫
|φ (x,y, z; t)|2 dydz, as a function of the

position along the lattice direction at three initial stages. Initial wavefunction (t = 0ms) and
loaded wavefunction before transport (t = 5ms).
(b): Fourier transform probability distribution,

∫ ∫ ∣∣φ̃ (kx,ky,kz; t)
∣∣2 dkydkz, as a function of

the momentum kx along the lattice direction at three initial stages. Initial Fourier transform
(t = 0ms) and loaded wavefunction before transport (t = 5ms). The inset shows the loaded
momentum distribution on a much wider momentum grid and with a logarithmic scale for
the Y axis. Distinct peaks at multiples of 2kL are present in the loaded wavefunction. Notice
the very small x-range.
(c): Same as (a) except for the stages. Transported stage (t = 26.181ms) and unloaded stage
(t = 28.681ms)
(d): Same as (b) except for the stages. Transported stage (t = 26.181ms) and unloaded stage
(t = 28.681ms). Notice the ten times larger x-range than (b).

5.4.6 Amplitude and phase noise

Further simulation are currently under way to take into account the effect of phase
fluctuations and lattice depth evolution during the transport. To do so, we include
Gaussian noise both on the lattice depth s and on the reference phase φ̄ (see eq. (92)).

The efficiency of the transport is evaluated by computing the overlap between the
unperturbed final wavefunction φ0 (such as the one displayed on fig. 64c) and the
transported wavefunction with noise φnoise. The corresponding efficiency criterion
ηnoise is defined as:

ηnoise =

∣∣∣∣∫+∞
−∞ φnoise (x, 0, 0; tf)φ0 (x, 0, 0; tf)dx

∣∣∣∣
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Figure 65: (a): Lattice parameters as a function of time. Both the lattice depth (left, solid line)
and the lattice acceleration (right, dashed line) are shown. Notice the spatially
depend depth due to the laser intensity decrease and the smallest deceleration
due to the smallest depth.
(b): Evolution of the condensate velocity width as a function of time. When loaded
into the lattice, it corresponds to the weighted average of each velocity component
(2nvrec) Full Width at Half Maximum.
(c): Difference between the mean position of the wavefunction and the accelerated
frame position. The inset displays the mean position with 4.5mm displacement.
(d): Difference between the mean velocity of the wavefunction and the accelerated
frame velocity in vrec units. The inset displays the mean velocity.

The width of the Gaussian distributions are parametrized such that34 the standard
deviation of the depth and phase for a single simulation is, on average, controlled.

For a given mean standard deviation (MSD) of phase (or amplitude), multiple sim-
ulations are performed with randomly distributed phase (or amplitude) fluctuations.
The preliminary result indicate that a phase MSD of 10(2)mrad (resp. 30(10)mrad)
during the whole transport leads to ηnoise ∼ 99(1)% (resp. ηnoise ∼ 90(2)%). There-
fore, the transport seems feasible with standard laboratory phase locking. The trans-
portation is even more robust to amplitude noise as a 4% amplitude MSD leads to

34 The sum of k independent centered normally distributed random variables with width σ1 is described
by a centered normal distribution with width σ

√
k. Therefore, we choose σ so that σ

√
Nnumeric is

equal to a particular mean standard deviation , where Nnumeric is the number of numerical steps at
which a random variable was sampled.
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less than 2% losses. It ensures that local fluctuations of the counterpropagating fields
should not reduce the transport efficiency.

Additional investigations of the transport efficiency are being developed. First a
better statistic on our current values and a larger panel of phase and amplitude MSD
will improve our test of a white noise spectrum. Then, it will be interesting to see if
the noise spectrum at specific frequencies (such as the lattice trap typical frequencies
ωtrap/ (2π) or the transverse guide frequencies) can resonantly disturb the transport.

Transport

To transport the condensate away from the mirror surface an optical lattice
transport protocol is considered. To take into account the beam divergence
and experimental imperfections, numerical simulations developed in collab-
oration with Hanover’s group is currently under development. Preliminary
results indicate that the transport is efficient as all the atoms are transported
to their final location and there remain no diffracted momentum components
at the end of the transport. This transportation protocol is reliable as fluctua-
tions of the atom number or of the lattice amplitude do not significantly reduce
its efficiency. However, phase fluctuations as large as 30mrad can reduce the
transport efficiency by as much as 10% which indicates that an active relative
phase stabilization can be beneficial.
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5.5 interferometer

With this BEC source, a large spatial separation Mach-Zehnder type interferometer
will be performed. The scheme presented on Fig. 46 was only an approximate rep-
resentation of the different strategies for Large Momentum Transfer Mach Zehnder
Interferometer (LMTMZI). In this section, we are going to discuss in more details
how a coherent superposition of momentum states |p〉 and |p+ 2N hk〉 can be experi-
mentally produced.

5.5.1 Large Momentum Transfer

Figure 66: Momentum state of upper (red) and lower (blue) interferometric arms. The π1
pulses diffract both arms while the π2 pulses are resonant with only one arm.

High order Bragg pulses

One way to produce a LMTMZ consists in a combination of Bragg pulses as shwon on
Fig. 66 and was recently applied to produce a 102 hk momentum separation[61]. To
increase the momentum separation between the two interferometric arms, the cloud
is initially split in two momentum states separated by 2N1 hkL35 (First π1/2 pulse36,
duration τ). Then one of the two arms (let us choose the upper one for simplicity) is
subject to a series of n π2 pulses which are resonant only with the upper arm mo-
mentum states. Theoretically, each pulse transfers successively the upper arm in the
momentum states {(N1 + 2N2)  hkL, (N1 + 4N2)  hkL, ...}. At the end of this sequence,
the two interferometric arms are separated by a large momentum 2 (N1 +nN2)  hkL.
The cloud then propagate freely during the interferometric time T . An inverse se-
quence is performed on the upper arm, bringing it back to the momentum state
N1 hkL and the two arms are simultaneously transferred in the opposite state with
a π1 pulse. Finally, the symmetric manipulations are performed on the lower arm

35 With this notation, we assume that the two counter propagating beams are perfectly aligned and we
neglect the small wavevector difference due to the slight frequency difference, which is justified by the
fact that the frequency difference is typically of the order of the Doppler frequency shift and the recoil
frequencies which are ∼ 1MHz for a 1ms−1 atomic velocity and 3.77 kHz respectively. These values
correspond to fractions 1× 10−8 and 1× 10−11 of the laser frequency which are completely negligible.

36 This notation is inspired by Bragg diffraction. I wanted to emphasize the different roles played by the
two types (π1 and π2) of Bragg pulses which interact with both arms or with a single one.
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(serie of π2 pulses, free propagation and transfer back to the initial state). The inter-
ferometer is then recombined with a final π1/2 pulse mixing the two paths. Figure 67

represent the atomic trajectories and the corresponding Bragg pulses corresponding
to this sequence with N1 = 1, N2 = 5 and n = 4.

Theoretical description of these High order Bragg diffraction pulses exist for dif-
ferent diffraction regimes (top hat pulses [305], perturbative expansion for Gaussian
pulses [306], chirped laser frequencies37 [308]) and often based on the effective Hamil-
tonian derived in Chap 1 eq. (6).

To model the LMT scheme, one often uses on the effective Rabi frequency [306]:

Ωeff (N) =
ΩNeff

(8ωrec)
N−1

1

[(N− 1)]2

where Ωeff is the effective two photon coupling strength, N is the Bragg diffraction
order and ωrec the recoil frequency. This term gives an effective coupling rate in the
sub-system formed by the two momentum states (|p〉 , |p+ 2N hk〉). This approxima-
tion is valid as long as the interaction time is long and the intermediate levels are
negligibly populated (4(N − 1)ωrec � Ωeff). Unfortunately, for large momentum
transfers, this condition leads to prohibitively long Bragg pulses which leads to large
losses induced by spontaneous emission38 or requires a very large detuning from res-
onance ∆. The laser power required to keep the pulse duration small with respect to
the atomic motion during the pulse increases to the power N with the detuning.

This is the reason why numerical integration of the system of equation formed
by the two momentum states (|p〉 , |p+ 2N hk〉) as well as all the intermediate and
some neighbouring states are necessary to evaluate the efficiency of these high order
Bragg pulses. It was shown by Szigeti et al.[213] that high efficiency (> 90% per
π pulse) could be realised for narrow velocity atomic cloud (∆v < 0.1vrec) which
can be produced either by velocity selective Raman pulses [309] or ultra cold clouds
such as BECs. For a N = 5 Bragg pulse, they calculated an optimal coupling Ωeff ∼
50ωrec and a pulse duration τopt = 0.35

ωrec
. This is consistent with the experimental

parameters of Chiow et al.[61]: a 0.25
ωrec

duration, and a 33ωrec two photon coupling
were used to produce N = 6 Bragg diffraction of a 4nK↔ 0.1vrec atomic cloud with
a 94% transfer efficiency.

Bloch oscillations

Another possible LMT uses a combination of an initial first order Bragg pulse fol-
lowed by a coherent acceleration of one of the two momentum states. It was recently
demonstrated [204], [206], [294] as an efficient tool for LMT beam splitter. It is impor-
tant to note that, compared to the transport protocol which loaded all the atoms in the

37 This method is a combination of the time dependent light intensity, constant frequency, used in Bragg
scattering and the constant light intensity, time dependent frequency, used in the Bloch oscillation
scheme. It was recently used [307] to produce a 30 hk momentum separation interferometer with 5%
visibility.

38 Which, at constant interaction time τπ = π/Ωeff (N), scales as 1/∆2, where ∆ is the Bragg laser detun-
ing from resonance.
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Figure 67: Interferometric sequence of the LMT Multi Bragg interferometer. The two interfer-
ometric paths positions, velocities and accelerations are represented as a function
of time. The separation parameters were T = 40ms, τ = 1ms (exaggerated for the
purpose of this figure), N1 = 1, N2 = 5 and n = 4.

same band, this protocol requires to load two initially separated momentum states
|p〉 and |p+ 2 hk〉 into two different Bloch bands. Only one of the two components
will follow adiabatic transitions as its quasi-momentum q increases which requires
the lattice depth to be between 0.5 hωrec and 1.5 hωrec [310]. This separation scheme
has the advantage of an approximately constant efficiency (∼ 95% per pulse) over a
∼ 0.4vrec wide velocity range. However, the lattice acceleration is highly dependent
on its intensity which produces spatially dependent phase shifts and renders this
diffraction scheme sensitive to intensity noise.

Planned sequence

As a first sequence for LMTMZI, we opted for the high order Bragg schemes which
were experimentally demonstrated in a few interferometers [61], [204]. Using four
N2 = 5 high order Bragg pulses, we plan to produce 42 hk momentum separation be-
tween our upper and lower interferometric arms which, for an interferometric time
T = 40ms, will be sufficient to have a spatial separation of 1 cm between the two
atomic paths apogees and an interaction time with the electrodes larger than 10ms
as discussed in Sec. 5.1.4. To produce these pulses, a 1W Bragg laser, 10GHz de-
tuned from resonance is currently being developed. We expect to have approximately
300mW laser power available in two beams having a well defined frequency differ-
ence ∆ω (t) which, used in a retro-reflected σ+ configuration, will produce an opti-
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cal lattice stationary in the reference frame of the atomic cloud39. With 2mm waist
Gaussian beams, this will result in a maximal two photon coupling Ωeff = 100ωrec
sufficient for optimal diffraction. Combining the expected losses of a 10nK ∼ 0.10vrec
atomic cloud (10% per pulse) as well as the losses induced by spontaneous emission
(2% per pulse), we can expect that 35% of the initial atoms will contribute to the inter-
ferometric signal. With an initial condensate of 2× 105atoms (see Tab 14 in Sec. 5.3),
this results in almost 7× 104 atoms which leads to a minimum Quantum Projection
Noise of 6mrad as used in our phase sensitivity estimate (Tab. 12, Sec. 5.1.7).

To reach this noise limit, we need to reject efficiently the phase noise of our mea-
surements which requires a precise knowledge of the interferometer sensitivity to
noise sources. This is why, a preliminary work on the LMTMZI modelling will now
be discussed.
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Figure 68: Interferometric sequence of the LMT Multi Bragg interferometer. The two interfer-
ometric paths positions, velocities and accelerations are represented as a function
of time. The separation parameters were T = 10ms, τ = 1ms. For clarity, the num-
ber of transferred momenta has been increased to N1 = 5, N2 = 10 and n = 1.
The result of the calculation corresponds to the values given in the text.

39 As well as an optical lattice moving at twice the atomic velocity in the opposite direction to which the
atoms are insensitive
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5.5.2 LMTMZ sensitivity

I calculated the sensitivity function gs (t) of a LMTMZ interferometer based on High
order Bragg pulses using a method similar to the one developed by P. Cheinet de-
scribed in details in his thesis [311]. This tool corresponds to the impulse response
function of the interferometer and was initially developed in the context of atomic
clocks.

The function gs (t) is defined as the effect on the interferometric phase of a phase
jump δφ happening at a time t on the phase difference between the diffracting lasers.
In the LMTMZI, the interferometric output is the atomic population in one of the two
momentum states ±N1 hkL. If we denote by P+ the normalized population in the
momentum state +N1 hkL, we can relate the atomic population to the interferometric
phase:

P+ (Φ) =
1− cos (Φ)

2

This leads to the following expression of the sensitivity function :

gs (t) = lim
δφ→0

dΦ (δφ, t)
dδφ

=
2

sin (Φ)
lim
δφ→0

dP+ (Φ, δφ, t)
dδφ

(100)

where Φ (δφ, t) (P+ (δφ, t)) denotes the interferometric phase (population) if a phase
jump δφ occurred at time t. This function is particularly useful to express the inter-
ferometric phase Φ as a function of the laser phase φ (t) during the interferometer:

Φ =

∫+∞
−∞ gs (u)

dφ (u)

du
du (101)

which, as we will see in the next sections, is a useful formalism to discuss the effect
of noise sources on the interferometer phase.

As an example, we can take the three pulses Mach-Zehnder interferometer with
infinitely short pulses. In this situation, the function gMZs (t) can be estimated40 by
considering the following cases:

• The phase jump happens before the first Bragg pulses, t < −T . The interferom-
eter will not be sensitive to this jump as no laser phase has been imprinted on
the atomic wavefunction. In this case, gMZs (t) = 0

• The phase jump happens in between the first π/2 and the π pulse. In this situa-
tion, the final interferometric phase will be φ1− 2 (φ2 + δφ)+ (φ3 + δφ). There-
fore, its derivative with respect to δφ is gMZs (t) = −1.

40 It is convenient to use the center of the middle π pulse as a time reference because the sensitivity
function is then an even function of time.
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• Similarly, on finds that a jump between the π and the second π/2 pulse lead
to a sensitivity function of gMZs (t) = +1 and that a jump after the second π/2
jump has no influence on the interferometric phase gMZs (t) = 0.

A more detailed analysis of this sensitivity function, including the finite duration
of the Bragg pulses, gives a similar function with smoothed edges at the time of the
Bragg pulses. The exact expression of gMZs [311] is in this case:

gMZs (t) =


sin [(t)Ωeff] t ∈ [0; τ]
1 t ∈ [τ; T + τ]
sin [(t− T)Ωeff] t ∈ [T + τ; T + 2τ]

(102)

where Ωeff is the effective Rabi frequency of the Bragg pulse. As gMZs is an odd
function of time, the t < 0 part is completely defined by eq. (102).

Let us now describe the principle of the calculation used to obtain the sensitivity
function of the LMTMZI. For the sake of simplicity, only the N1 = 1, N2 = 1 and
n = 1 case has been treated yet.

Formalism

In this section, we are going to describe the expressions used to calculate the sensi-
tivity function for the simplest LMTMZI presented on Fig. 68. The calculation relies
on the matrix formalism used to express the atomic state after the interaction with
a top hat light pulse. Let us denote by |e〉, |f〉 and |g〉 the momentum states | hk0〉,
| h (k0 + 2kL)〉 and | h (k0 + 4kL)〉, where  hk0 is the initial atomic momentum in the
laboratory frame. We will assume that no other momentum states are populated dur-
ing the Bragg pulses and we will write the atomic state as:

|Ψ (t)〉 = Ce (t) |e〉+Cf (t) |f〉+Cg (t) |g〉 :=

 Ce (t)

Cf (t)

Cg (t)


For the π1 pulses we can express the transfer matrix Me↔f (t0,φ,Ωeff, τ) between

the transferred state |Ψ (t0 + τ)〉 and the incoming state |Ψ (t0)〉 as:

Me↔f (t0,φ,Ωeff, τ) =


cos
(
Ωeffτ
2

)
e−iωeτ −iei[(ω1−ω2)t0+φ] sin

(
Ωeffτ
2

)
e−iωfτ 0

ie−i[(ω1−ω2)t0+φ] sin
(
Ωeffτ
2

)
e−iωeτ cos

(
Ωeffτ
2

)
e−iωfτ 0

0 0 e−iωgτ


where ωe,f,g denotes the different atomic states frequencies and ω1,2 are the two
laser frequencies (in the laboratory frame). This transfer matrix assumes that the mo-
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mentum states | h (k0 + 3kL)〉 and | h (k0 − 3kL)〉 are two far detuned to be efficiently
coupled to the lattice which is why the population in the |g〉 is unaffected41. Similarly,
one can define the transfer matrix of the π2 pulses as:

Mf↔g (t0,φ,Ωeff, τ) =


exp−iωeτ 0 0

0 cos
(
Ωeffτ
2

)
e−iωfτ −iei[(ω3−ω4)t0+φ] sin

(
Ωeffτ
2

)
e−iωgτ

0 ie−i[(ω3−ω4)t0+φ] sin
(
Ωeffτ
2

)
e−iωfτ cos

(
Ωeffτ
2

)
e−iωgτ


where ω3,4 are the two laser frequencies (in the laboratory frame) producing the
co-moving lattice. The freely propagating transfer matrix MF (u) corresponds to the
Ωeff = 0 case applied to the previous matrices and can be written:

MF (u) =

 e−iωeu 0 0

0 e−iωfu 0

0 0 e−iωgu


With this formalism, one can chain the transfer matrix corresponding to the dif-

ferent Bragg pulses of the LMTMZI to calculate the atomic population and phase,
during the interferometer. For example, the matrix Me↔f

(
tπ1/2,φ,Ωeff,π/ (2Ωeff)

)
represents the first π1/2 pulse and Mf↔g (tπ2 ,φ,Ωeff,π/ (Ωeff)) represents the sub-
sequent π2 pulse. By choosing the time reference in the middle of the central π1 pulse,
the total interferometric matrix can be expressed as the product:

Me↔f (T + 5τ+ 2tc,φ3,Ωeff, τ).MF (tc)

.Mf↔g (T + 3τ+ tc,φ3,Ωeff, 2τ).MF (T) .Mf↔g (τ+ tc,φ2,Ωeff, 2τ)

.MF (tc) .Me↔f (−τ,φ2,Ωeff, 2τ).MF (tc)

.Mf↔g (−3τ− tc,φ2,Ωeff, 2τ).MF (T) .Mf↔g (−T − 5τ− tc,φ1,Ωeff, 2τ)

.MF (tc) .Me↔f (−T − 6τ− 2tc,φ1,Ωeff, τ) (103)

where tc is the cycle time between Bragg pulses and we have emphasized the inter-
ferometer arm on which the pulses are acting by using the same color code as Fig. 68.
Applying this interferometer sequence to an initial state (1, 0, 0) gives a population in
the |f〉 state at the end of the interferometer sequence:

|Cf (T + 5τ+ 2tc)|
2 =

1− cos [2 (φ1 +φ3 − 2φ2)]
2

41 This explains the e↔ f subscript as only these two momentum states are coupled during the interaction.
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as is to be expected for this interferometer.

Sensitivity function derivation

To obtain the sensitivity function from this formalism, one splits the transfer matrices
applied at the time t into a product of two matrices having a phase difference δφ. For
example, if the phase jump happens at a time t ∈ [−3τ− tc,−τ− tc], the fifth matrix:

Mf↔g (−3τ− tc,φ2,Ωeff, 2τ)

becomes:

Mf↔g (t,φ2 + δφ,Ωeff,−τ− tc − t)Mf↔g (−3τ− tc,φ2,Ωeff, 3τ+ tc − t)

And the phase in the following matrices will also be incremented by an amount δφ
to take into account the phase jump on the following pulses. Computing the resulting
population in the final state |Cf (T + 5τ+ 2tc, δφ)|2 and using eq (100) one obtains the
Large Mach-Zehnder sensitivity function:

gLMZs (t) =



sin (tΩeff) t ∈ [0, τ]

1 t ∈ [τ, τ+ tc]

1
4 sin [2∆ω (t− tc − τ)] sin2 [(t− tc − τ)Ωeff]

+ cos [2∆ω (t− tc − τ)] cos
[
(t− tc − τ)

Ωeff
2

]
+2 sin2

[
(t− tc − τ)

Ωeff
2

]
 t ∈ [τ+ tc, 3τ+ tc]

2 t ∈ [3τ+ tc, T + 3τ+ tc]

1
4 sin [2∆ω (t− T − tc − 5τ)] sin2 [(t− T − tc − 5τ)Ωeff]

+ cos [2∆ω (t− T − tc − 5τ)] cos
[
(t− T − tc − 5τ)

Ωeff
2

]
+2 sin2

[
(t− T − tc − 5τ)

Ωeff
2

]


t ∈ [T + 3τ+ tc,
T + 5τ+ tc]

1 t ∈ [T + 5τ+ tc, T + 5τ+ 2tc]

sin ((T + 6τ+ 2tc − t)Ωeff) t ∈ [T + 5τ+ 2tc, T + 6τ+ 2tc]

(104)

where for each pulse, we have assumed the resonance condition to be fulfilled : ω1−
ω2 = ωe−ωf, ω3−ω4 = ωf−ωg and we have chosen the highest sensitivity point
Φ = π/2. The quantity ∆ω = ωg −ωe = 4ωD + 16ωrec. The t < 0 part of gs is
obtained by using the time reversal symmetry of the interferometer which results in
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an odd function. Fig. 69 represents gs for T = 1ms, τ = 100µs and ωD = 0. The
sensitivity function of the three pulse interferometer is included as a comparison.
An interesting feature of this sensitivity function is its dependence on the energy
difference between the |e〉 and the |g〉 state. It can be understood as a energy shift
induced by the interaction with three different momentum states. Indeed, the three
sates cannot be simultaneously degenerate in any reference frame. Therefore, it is
not possible to continuously describe the two interferometric arms in a single frame
(accelerated due to gravity) were both interferometer arms have the same energy. The
inset of Fig. 69 presents an enlarged view of the sensitivity function during one of
the π2 pulse which depends on ∆ωτ.

Figure 69: Complete sensitivity function (black) of eq. (104) compared to the three pulse
sensitivity function (red, dashed). The interferometer parameters are T = 1ms,
τ = 100µs and ωD = 0. A comparison of the energy dependent part for two
smaller impulsion times τ = 10µs (blue) and τ = 1µs (green) is shown on the
bottom right.

Phase noise sensitivity

From eq. (101) one sees that in addition to providing a simple expression of the inter-
ferometric phase when the laser phase is changed from pulse to pulse, the sensitivity
function also allows to quantify the interferometer phase noise. For example, in the
presence of a sinusoïdal phase fluctuation, φ (t) = S0 cos (ω0t) eq. (101) gives us the
amplitude of the corresponding interferometric phase δΦ:

δΦ = S0ω0

∫∞
−∞−gs (t) sin (ω0t)dt

which is proportional to the Fourier transform G of gs:
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G (ω) :=

∫∞
−∞ gs (t) e−iωtdt

evaluated at the noise frequency ω0:

δΦ = iS0ω0G (ω0)

When the phase noise is described by a spectral density Sφ (ω), the interferometer
phase standard deviation σΦ is given by [312]:

σ2Φ =

∫∞
0

|ωG (ω)|2 Sφ (ω)
dω

2π

To extract information from this expression, one needs to know the transfer func-
tion H (ω) := |ωG (ω)|. In the limit of short diffraction pulses (neglecting the energy
dependent part ∆ω� 1/τ) and zero cycle time tc = 0, a simple analytical expression
of the transfer function for the Large Mach-Zehnder can be obtained:

HLMZ (ω) = sin
(
T + 6τ

2
ω

)
16ωΩeff∣∣ω2 −Ω2eff∣∣

{
cos
(
T + 6τ

2
ω

)
+
Ωeff
2ω

[
sin
(
T

2
ω

)
+ 3 sin

(
T + 4τ

2
ω

)]}
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which presents similar feature compared to the Mach Zehnder sensitivity function
calculated and described in [311]. The sinusoidal first factor periodically cancels the
transfer function at frequencies multiple of 1/ (T + 6τ) which conveys the physical
fact that the interferometer is insensitive to fluctuation that are identical at each
diffracting pulses. At frequencies higher than the pulse duration 1/τ, fluctuations
tend to average during each pulses which can be seen on the low-pass filter fac-
tor 16ωΩeff

|ω2−Ω2eff|
. Finally, another set of frequencies cancels the last factor in brackets.

One can note the 1/ (T + 4τ) and 1/T particular frequencies which correspond to the
shorter time scale between π2 pulses (either on the same arms or on opposite arms)
which can also lead to a partial compensation of phase noise at these frequencies.

This transfer function is represented on Fig. 70 for the parameters T = 50ms and42

τ = 20µs. Due to the large oscillatory behaviour, the high frequency part has been
averaged on one frequency period 1/ (T + 6τ) to emphasize the low-pass filter and
the secondary zeros.

The precise knowledge of this transfer function is important either to define the
interferometer sequence to reject particular frequencies that might have large spectral
components or to implement active noise rejection with an external vibration sensor.
However, the result presented here are only the first step as both higher number of

42 It corresponds to the limit of the ∆ω� 1/τ assumption.
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Figure 70: Transfer function of the Mach-Zehnder sensitivity function (102) (blue, dashed)
and the Large Mach Zehnder sensitivity function (104) (red, full). The amplitude at
low frequency are different due to the scale factor between the two interferometers.
A large dip in the second function at 15 kHz reflects how the different frequencies
1/ (T + 6τ), 1/ (T + 4τ) and 1/T can cancel the transfer function around the 1/ (3τ)
frequency.

pulses are used to create Large Momentum Mach Zehnder Interferometer and they
often consist in more complicated pulse shape with additional transient atomic states.

LMT Interferometer

Our expected interferometric sequence will consist in a LMT multi-Bragg inter-
ferometer with 42 hkL momentum separation. With moderate power (300mW)
and detuning (δ = 10GHz) we expect to get 7× 104 atoms contributing to the
interferometric signal. To reach the QPN, vibrational noise rejection is manda-
tory and motivated us to develop the initial tools required to evaluate the exact
sensitivity function and the corresponding transfer function of this LMT inter-
ferometer. As an example, a 7 pulse interferometer sequence was described. In
particular, its transfer function was calculated and displayed a new particular
frequency 1/ (3τ) at which its sensitivity decreases.
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5.6 conclusion

To perform an improved measurement of matter neutrality, a new apparatus was
conceived and is currently under development in our group. This chapter shows
how this new experiment should improve the current knowledge on the residual
charge by a factor of 200 when its shot to shot sensitivity is limited by Quantum
Projection Noise. This measurement relies on the large spatial separation (> 1cm)
of a Bose-condensed atom interferometer operated at a cycle time of 6 s. To reach
these performances, specific development of a dual isotopes atomic chip source was
undertaken. The resulting magnetic field configurations combined with numerical
simulation of a dual isotopes evaporation showed how dual condensation could be
achieved in a final optical trap. A transport protocol of a single isotope BEC, based on
a guided optical lattice, was then described and the first numerical results obtained
with an effective 1D Hamiltonian were shown.

In most of these steps, the additional isotope, 85Rb, required special care which
emphasizes the inherent difficulty to produce and manipulate such a cloud. I dare-
say that the precautions implemented to circumvent these difficulties form a solid
guideline for the future developments.

Finally a brief description of the two main scenarii used for Large Momentum
Mach Zehnder interferometers allowed us to describe the requirements in terms of
laser power and detuning necessary for 42 hk multiple Bragg beam splitters. Also,
the sensitivity function of a 7-pulses Mach Zehnder interferometer was derived the-
oretically which is a first step towards a complete description of multi-pulses atom
interferometers.
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6 E X P E R I M E N TA L S E T U P
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The global objectives and specificities of this new experiments are established. In
this chapter, I describe the experimental setup. This description is purposefully very
detailed in order to provide a usable source of information for the next generation of
P.h.D. students on this setup and potentially for the development of similar setups.
At the end of each section, the main points are summarized for the reader eager to
avoid these detailed descriptions.

I will describe the main parts of the experiment: the vacuum system, the laser sys-
tem and the magnetic sources. The vacuum chamber was designed to incorporate a
2D MOT source to a main chamber were the 3D MOT and the subsequent atom traps.
Ultra high vacuum pressure are required for these steps and will be characterized
accordingly. The laser system necessary for the trapping, cooling, imaging and state
preparation of the dual isotope source will then be described with particular focus on
the frequency control and the long term stability of the setup. The optical system de-
veloped for the superposition and fiber injection of all the required laser beams will
then be specified. Finally, the large magnetic coils and the mesoscopic chip structure
and fabrication will be explained as well as some of the practical issues (wire tem-
perature and optical access of the dipole beams) raised by this macroscopic structure.
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Finally, a short presentation of the imaging system used to characterize the MOT will
be given.

A general overview of the complete experimental structure is presented on Fig. 71

which displays front and rear views of the apparatus and its mechanical support.

(a) Front view

(b) Rear view

Figure 71: Schematic representation of the complete experimental setup. The 2D MOT with
its magnetic shield 1 (Golden rod cylinder), the magnetic coils for the Feshbach
magnetic field 2 (blue disc), bias field 3 (pink disc), quadrupole fields 4

(turquoise supports) and the chip support 5 (pink block at the center of the ap-
paratus) are clearly visible. The vacuum chambers will be presented on Fig. 73 and
on Fig.72 with clearer details. The mechanical support includes aluminum optical
breadboards. All the surrounding metallic parts have been carefully separated (by
a mechanical cut and with Kapton insulated screws) to prevent any eddy currents
in the structure. The total dimensions of the structure is 120 cm× 79 cm× 60 cm.
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6.1 vacuum system

In order to create an appropriate environment for our cold atomic beam source and
atomic clouds in the different traps, we mainly have to take into account the back-
ground collisions which principally lead to losses. The typical decay time τback
of an atomic ensemble in a trap depends on the background pressure1: τback =(
10−8/P(mbar)

)
s. Typically, a pressure below 10−10mbar is necessary to have trap

lifetimes longer than the evaporation duration. For atom chips, the evaporation can
be much faster than for macroscopic magnetic traps which relaxes the requirement
on the background pressure2. On the other hand, atom chips usually increase the
pressure as they can include additional degassing parts compared to other vacuum
systems. Which is why we designed a vacuum system with a low pressure in the
BEC production region, i.e the main chamber, even in the presence of the atom chip.
In this section, we are going to describe this system and show that the vacuum per-
formances reached are acceptable.

6.1.1 Principal vacuum chambers

The vacuum system consists in 4 principal chambers:

• The vacuum chamber of the 2D-MOT source is represented on Fig. 73d. It was
made by the SYRTE and consists in a rectangular parallelepiped chamber con-
nected via a Lesker R© VAT-54124-GE02 valve to a Rubidium dispenser. Rectan-
gular viewports (25mm× 90mm) provide access to the transverse sides and a
1 ′′ diameter viewport provides optical access along the chamber. The atomic
flux emitted is collimated by an exit hole 0.75mm diameter and 16mm long.

• The main vacuum chamber for the source contains the atom chip. It is an oc-
tagonal titanium chamber represented on Fig. 73c. The incircle has a 200mm
diameter and the chamber is 100mm thick. Among its eight sides, three are CF
35 flanges for the connection to the other chambers and five are sealed with 2 ′′

diameter viewports. The chamber front is sealed with a φ = 170mm, 20mm
thick window. The chamber back is a CF 100 flange which incorporates four CF
35 pods. At the center of this flange, a 1.5 ′′ diameter viewport provides optical
access through the chip (It can be seen clearly on Fig. 71b).

• The lower interferometer chamber, represented on Fig. 73b, is located 84mm
below the main chamber. It is a 50mm× 50mm× 130mm rectangular paral-
lelepiped titanium chamber with two CF16 viewports on its upper sides and
four 1 ′′ diameter viewports on its lower sides. A final 1 ′′ diameter viewport
seals the lower 50mm× 50mm face.

1 In principle, this depends on the other colliding particle mass, temperature, cross section and partial
pressure [313], but this practical rule of thumbs is useful for order of magnitudes considerations.

2 For example, in Sec. 5.3 we have seen that τback ∼ 20 s is sufficient for dual isotopes evaporation which
corresponds to a background pressure of the order of 5× 10−10mbar
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• The upper interferometer chamber, represented on Fig. 73a, is located 66mm
above the main chamber. It is a 70mm× 70mm× 200mm rectangular paral-
lelepiped titanium chamber with three CF25 flanges, two 1 ′′ diameter view-
ports on its lower sides and two 90mm× 40mm× 15mm rectangular view-
ports. A final 2 ′′ diameter viewport seals the upper 70mm× 70mm face.

6.1.2 Assemblies

Figure 72
Assembled vacuum system showing the
connecting cross to the 2D MOT and the T
connected on one of the rear pods. The empty
pod was later used to add a CapaciTorr R© D50

NEG pump to the main chamber. The pink
elements between the main chamber and the
upper and lower chambers correspond to the
magnetic coils supports

The assembled vacuum system is pre-
sented on Fig. 72. The main chamber is
connected to a pumping section made of
a 70mm diameter titanium cross. A non
magnetic valve (DN40-54132-GE02 VAT)
on one of the orthogonal arms leads to
the turbo molecular pump . The other
orthogonal arm is connected to a D100-
5 SAES R© Getter pump. The last "arm"
consist in a 90mm long, 3mm diam-
eter differential pumping tube connec-
tion to the 2D MOT source. A copper
valve GV-16CF-V-M from Lewvac R© was
inserted between the 2D MOT and this
tube to isolate, if necessary, the source
from the main experiment. Indeed, the
2D MOT can be connected to a smaller
turbo pump which is sufficient to re-
place a dispenser relatively rapidly.
The lower and upper chambers are di-
rectly mounted on the main chamber
via CF 35 flanges connected with tubes
34mm diameter and 40mm diameter respectively.
One of the four rear pods of the main chamber is connected to a 70mm diameter T ti-
tanium connector. The bent part leads to a D200-5 SAES R© Getter pump. The straight
part is connected to a DN40 54132-GE02 VAT valve which itself can be connected to
the turbo molecular pump.

6.1.3 Viewports and indium seals

Apart from the two CF16 viewports of the lower chamber, all viewports were fixed
on the chamber using an indium sealing technique. They were all made of BK7 glass
coated to have a low reflectivity at 780nm; 1064nm and 1560nm. This was chosen
in accordance with the wavelength required for atomic cooling, imaging and with
the available high power lasers potentially usable for atomic manipulation. The seal-
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(a) Upper

(b) Lower

Upper chamber

Lower chamber

2D

MOT

(c) Main
(d) 2D MOT

Figure 73: Schematic representation of the four main vacuum chambers. The final assembly
is represented on Fig. 72

ing technique relies on the molecular adhesion between a pure indium gasket and the
surfaces of the BK7 glass on one side and the metal flange on the other side. This tech-
nique was initially developed for cryogenic vacuum experiments as the sealing does
not rely on mechanical constraints (as is the case for copper gasket for example) but
on a chemical bound which is far more robust to deformations. However, one of the
main drawbacks of this technique is the relatively low bake-out temperature (indium
melting point at 1 atm is 157 ◦C) which prevents to bake the assembled chamber
to temperature higher than 110 ◦C, increasing exponentially the bake-out duration.
However indium magnetic properties are interesting as its diamagnetic susceptibility
is much smaller than the one of alloys used in non-magnetic seals of commercial view-
ports (which have a residual magnetic field of a few 10mG). Additionally, the smaller
mechanical constrains on the viewports reduces optical wave-front distortions.
The viewport of the 2D MOT were sealed with indium. The procedure consists in
four main steps.
First, one has to remove the oxide layer which covers the indium wire. To do so, pre-
cision wipes (lint free) from Kimtech Science and a few drops of acetone were used to
remove the thicker part of the oxide layer. Multiple cleaning were necessary to obtain
a shiny surface. Then, the wire was put in a hydrochloric acid bath at 10% equivalent
mass. After 60 s, using ceramic tweezers, the wire was directly transferred to a first
distilled water bath. After 10 minutes, the wire was dried on a clean wipe and put in
a different distilled water bath. After another 10 minutes, the dried wire was ready
to be modeled to its gasket shape.
Using a Teflon cylinder, the indium gasket with the right diameter was created. To
do so, an initial approximate circle was shaped and the wire was cut with approxi-
mately 2mm extra length. This additional wire length was knotted around the other
wire end as represented on Fig 74. The knot was "tightened" using clean tweezers to
obtain a knot height similar to the wire diameter to have a gasket as flat as possible.
Then, using the same Teflon cylinder, the gasket was carefully positioned on the win-
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Figure 74: The four steps of the indium sealing technique. Left top: All the elements of the
cleaning procedure described in the text are visible. Right top, knot of an indium
gasket with the twined laces indicated in green. Left bottom, indium gasket posi-
tioned on the viewport flange with a Teflon tool. Right bottom, sealed viewport
and its back flange, the pressed seal is visible with its larger width at the knot
location.

dow flange. With care being taken to ensure appropriate centering.
Finally, the window was placed on the gasket, and a back flange was used to press
the seal with an even compression all along the seal’s length. This procedure was
similar to the sealing of copper gasket apart from the maximum torque applied on
the screws. By steps of 0.2Nm, a maximum torque of 1Nm was applied on a 2 ′′

diameter 15mm thick window, on each of the 6 screws. In principle, the back flanges
can be removed once the vacuum is established and the seal is complete, but we did
not chose to do it as they do not reduce much the optical access.

6.1.4 Assembly and bake-out

To test the airtightness of the vacuum chambers, the whole vacuum system was put
together without the chip mount. Particular care was taken on the screws and other
assembly elements to reduce the amount of stray magnetic fields around the interfer-
ometer regions. Titanium (resp. nickel free brass) screws were used for the assembly
of the titanium chambers and the large flanges (resp. of the viewports back-flanges).
As can be seen on Fig. 72, the magnetic coils supports are fitted to the vacuum system
and had to be mounted at the same time. I will come back to these elements in Sec.
6.3.
The pressure, at room temperature, decreased to approximately 2× 10−8mbar in
a week. To reach the 10−10mbar range quickly, we baked-out the whole appara-
tus. For ten days, the vacuum chambers were heated to approximately 100 ◦C. The
differential temperature across the different parts was kept below than 10 ◦C to pre-
vent thermal dilatation from creating additional mechanical stress. After bake-out,
the pressure rapidly decreased and at 5× 10−9mbar the ion pumps were turned on
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and the NEG were activated. Pressure of the order of the ion pumps sensitivity limit
1× 10−11mbar was then reached in three days.

Repeating this procedure after adding the mesoscopic chip (see Sec. 6.3.1 for its
description) resulted in a slightly higher final pressure 10−10mbar read on the ion
pumps. During this operation, an additional NEG pump (CapaciTorr R© D50) was
installed on one of the four rear pods right at the center of the main chamber.

6.1.5 Pressure during operation

Reaching UHV pressure when the system is baked-out is only the first step towards
good vacuum. One also needs to have the appropriate pressure during the apparatus
operation. This is the reason why differential pumping stages are present between
the 2D MOT source and the main chamber. The 2D MOT aperture already has a
conductance C2D = 12.1d3/l = 3× 10−3 L s−1, where d and l are the cylindrical
aperture diameter and length in cm, which reduces the gas charge at its output. The
pressure in the 2D MOT during operation is typically smaller than 5× 10−7mbar
therefore, the gas charge at the aperture output is 2× 10−9mbars/L. The 100 L/s
D100 getter pump situated at the 2D MOT output should be able to pump this charge
down to a pressure of 5× 10−11mbar. But the distance between the 2D MOT output
and the chip’s mirror (400mm) and the capture radius of the 3D MOT (5mm) reduces
the usable beam solid angle to 0.17 sr (corresponding to a beam angular aperture of
15mrad). Therefore, an additional differential pumping stage (represented on Fig.
72), reduces the gas charge by half3 and should not change the 3D MOT loading rate
(the geometrical 2D MOT aperture with this additional tube is 15mrad). Reducing
the gas load tends to extend the ion pumps lifetime which motivates this additional
differential stage.
In practice, we have seen that the pressure indicated by the ion pumps increases
slowly during the day (from 2× 10−10mbar in the morning to 6× 10−10mbar at
the end of the day) which indicates that vacuum conditions in the main chamber are
probably changing due to residual rubidium gas. However, quantitative measurement
of the trap lifetime needs to be undertaken as soon as the atoms are magnetically
trapped4 in order to be sure of our vacuum quality.

Vacuum system

The complete vacuum system consists in four Titanium chambers. Differential
pumping stages, ion pumps and NEG lead to a pressure in the main chamber
around 5× 10−10mbar. Indium sealing techniques were used for most of the
viewports to limit the stray magnetic fields and the wavefront distortions on
the diffracting beams.

3 The conductance of the second tube is similar to C2D: 3.6× 10−3 L s−1
4 MOT lifetimes have already been estimated and seems to be in the 15 s range. Even though additional

loss mechanisms can prevail during this type of measurements it still indicates that the background
lifetime is at least 15 s, corresponding to a background pressure below 7× 10−10mbar.
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6.2 laser system

The dual isotope objective of our atom source guided most of our choices on the
design of the laser system for cooling and imaging light as it required four laser
frequencies. Besides, in the perspective of long measurement campaigns, the optical
system had to be robust and reliable. This section will consist in a complete descrip-
tion of the laser system realized during my thesis and will show how it fulfills the
aforementioned objectives while generating the necessary intensities and combined
frequencies for the atom sources different production steps.

6.2.1 Overview

Laser cooling of alkali atoms requires simultaneously at least two frequencies per
atomic isotope. For Rubidium, the P 3

2

hyperfine structure is larger than the states
linewidth Γ . Therefore, the superposition of only two frequencies is sufficient to per-
form Doppler and sub-Doppler cooling as well as optical pumping and imaging.
These frequencies are generally denoted cooling and repump frequencies as they cor-
respond, in the steady state MOT operation, to the cycling frequency which reduces
the atomic motion and to the frequency which prevents atom losses to dark states.
The exact frequencies required for 85Rb and 87Rb are summarized on Fig. 75. One
can see that the repump frequency remains constant and that the "cooling" frequency
needs to be tuned a few Γ below the cycling transition during the 3D MOT stage.
Additionally, to efficiently pump the atoms in a low field seeking dark state (87Rb
|F = 2,mF = 2〉 for example), the "cooling" frequency is tuned to the lower transition,
44Γ below the MOT cooling transition. This means that only the cooling laser frequen-
cies need to be dynamically changed over a typical range of 20Γ as the optical pump-
ing light can be produced with an additional constant shift. Also, for sub-Doppler
cooling, optical pumping and imaging, the light intensity needs to be controlled in-
dependently between cooling and repump frequencies which requires independent
control of the laser power.

6.2.2 85Rb Laser setup

The laser system used for 85Rb is a commercial system developed by Muquans R©.
It relies on two Distributed FeedBack (DFB) laser diodes with a master and slave
architecture (cf. Fig. 76). The master laser is amplified by a commercial Erbium-
doped fiber amplifier (EDFA) from Keopsys (CEFA-C-PB-HP-PM-40-NL1-OM1-B301-
FAFA). A third amplified output is frequency doubled in Periodically-Poled Lithium
Niobate (PPLN) crystal and provides around 280mW of Repump light. A weak
beam is used in a saturated absorption cell which locks the master frequency on
the |F = 2〉 −→ |F ′ = 1〉 transition. The slave laser is phase-locked on the master laser
and similarly amplified and doubled. It has two high power outputs (160mW) and a
third lower power one (30mW). The frequency difference ∆f,85 between the master
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Figure 75: Energy levels of the electronic transitions used for laser cooling, pumping and
imaging of 85Rb and 87Rb. The left hand side transitions represent the frequencies
at which the Repump and Cooling lasers are locked. The right hand side summa-
rizes the different frequencies required in each experimental steps and gives the
corresponding typical detuning of each beam.

and slave laser is controlled by a direct Digital Synthesizer (DDS) clocked by an ex-
ternal frequency. The frequency difference between the outputs of this laser system
is given by the relation ∆f,85 = 2 ∗ 32 ∗ fDDS which takes into account a division
factor of the beat note frequency between the master and slave and the frequency
doubling. This allows to control the slave output’s frequency ("Cooling") hundreds of
MHz around the |F = 3〉 −→ |F ′ = 4〉 transition frequency.

Figure 76: Scheme of the Muquans laser.
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Figure 77: Schematic representation of the 85Rb optical bench.

6.2.3 Frequency adjustment and stability characterization

The laser frequency provided by this system does not correspond to the repump
transition |F = 2〉 −→ |F ′ = 3〉 represented on Fig. 75a. This is the reason why addi-
tional frequency shifts provided by Acousto-Optic-Modulators (AOM) from Crystal
Electronics R© (ref: 3080-122) were implemented. They are also used as fast shutters.
The optical drawing is represented on Fig. 77 were the repump (M) and cooling
(S2,S3) outputs are injected in AOM’s and, for the repump light, split into two dif-
ferent beams which will be described further in Sec. 6.2.6. The AOM’s are driven by
an RF source at 92.8MHz (Repump) and 80MHz (Cooling) which shifts the repump
laser to the required |F = 2〉 −→ |F ′ = 3〉 transition frequency and offsets the cooling
laser by a constant amount5. The RF source is made of a Voltage Controlled Oscil-
lator (VCO, model ZX95-100-S+), a switch (ZX73-2500-S+) to control the amplitude
and a 25 dB high power amplifier (ZHL-3A-S+) produces the required 10 dBm for
the AOM’s. The diffraction efficiencies in the +1 order are higher than 70% which is
close to the specified maximum (85%).

Additional polarizing elements were included before the AOM’s. This choice is
motivated by the large fluctuation of the polarization direction that we observed at
the fiber outputs. Indeed, these long term fluctuations reach the 10% level which
degrades our power stability as subsequent polarizing elements are used on the op-
tical path. To minimize this effect, polarizers used at their maximal transmission are
included which reduces the subsequent power fluctuations as they depend on the
square of the polarization direction. The small polarization fluctuation is illustrated
on Fig. 78 were we show the Allan variance of the polarization filtered laser outputs.
The long term relative stability remains below 10−4 at 5h ∼ 2× 104 s which is suffi-
ciently low for laser cooling experiments. A particular feature around 100 s showing
a transitory increase in fluctuations is probably linked to the air conditioner which
has a typical period of a few minutes.

5 It corresponds to the central frequency band of the AOM’s which is the most efficient region
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Figure 78: Allan variance of laser power for this setup. The inset shows a typical recording
of the normalized power at output S2. The blue background corresponds to a
sampling rate of τ = 1 s, the black lines corresponds to a sampling rate of τ = 102 s
and the red line to smoothed mean value.

Regarding the frequency stability of this laser system, we will see in Sec 6.2.4 that
the long term frequency drift is below 200 kHz. This ensures a reliable cooling se-
quence as the frequency needs to be adjusted to better than a fraction of the transition
linewidth.

6.2.4 87Rb Laser setup

The 87Rb laser setup is designed on the same principle as the 85Rb one (cf. Fig. 79). A
repump laser is locked close to the repumping transition with a saturated absorption
setup and a cooling laser is locked at a given frequency difference ∆f,87 with respect
to the repump laser. However, two main differences distinguish this setup from the
85Rb one. The first one is the lasers which, for 87Rb, are an extended cavity laser diode
from Toptica R© (DL Pro 100 780-11355) as repump laser and an amplified and doubled
Telecom laser system manufactured by Quantel R© (EYLSA 780 MSA) as cooling laser.
The available laser powers are better distributed for laser cooling experiments as
the repump laser total power is around 60mW and the cooling laser total power is
slightly less than 1W which corresponds to the ratio of 1:20 for repumping light
versus cooling light. The second difference is the frequency locking instead of the
phase locking.

The repump laser locking scheme relies on a FM-spectroscopy technique applied to
a saturated absorption setup. The Electro-Optical Modulator (EOM), from Qubig R©
(ref: EO-F6-25L3), produces the phase modulation. Detecting the saturated absorption
with a fast photodiode and demodulating the signal directly provides an error signal
usable in a PID loop. The correction is implemented with the digital laser locking
module from Toptica R©. The laser is locked on the |F = 1〉 −→ |F ′ = 1/F ′ = 2〉 cross-
over peak of 87Rb. To increase the absorption amplitude, we used a heating element
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to get the cell to 50 ◦C which provided a ten fold improvement of the Signal/Noise
ratio. After optimization of the PID parameters, the laser remains locked for days.

Figure 79: Schematic representation of the 87Rb optical bench. The two frequency control
parts are emphasized in green and pink colors.

Frequency stability

By monitoring the beat note between this repump laser and the 85Rb repump laser,
we estimated the long term frequency drifts of our two locking systems as well as
the laser linewidths. The result of this measurement is presented on Fig. 80. The Al-
lan deviation of the frequency beat note is represented for times up to 104 s. We see
that the long term frequency fluctuations, which we can assume to a good extend
uncorrelated, are around 200 kHz. It shows that both laser frequencies are controlled,
relatively to their mean value, down to a fraction (Γ/40, assuming identical indepen-
dent noise sources) of the transition linewidth. It guarantees that the laser source is
stable enough for laser cooling. On the short time scale the frequency fluctuations
are well integrated by a white noise model (black line). The short term jitter is about
500 kHz at 100ms. Also, the beat note linewidth at 1ms was of the order of 500 kHz
which tells us that the 85Rb repump laser linewidth is at least6 400 kHz. This is coher-
ent with typical DFB linewidths which are of the order of 1MHz.

6 Extended cavity laser diode have much narrower linewidth, specified at 100 kHz by Toptica R© for exam-
ple, than DFB diode lasers. This is the reason why beat note linewidth is probably dominated by the
85Rb repump laser.
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Figure 80: Allan deviation of the frequency beat note between the two 85Rb and 87Rb repump
lasers (red cross, the dashed line is a guide to the eye). The black line represents
white noise integrated from 0.2 s to 10 s. The inset shows the temporal frequency
difference evolution subtracted by its mean value. In black is represented the full
data set and in red its averaged value over 100 s.

Slave locking scheme

Figure 81
Schematic representation of the
frequency chain, frequency converter and
servo-loop system used to lock the 87Rb
cooling laser on the 87Rb repump laser.

The beat note produced by interferences
on a fast photodiode (Hamamatsu R© G4176-
03 with a 25GHz frequency cut-off) of
two laser beams from both laser allows to
lock the cooling laser frequency with re-
spect to the repump laser (see Fig. 79 red
shaded area). The beat note frequency corre-
sponds to the frequency difference between
two hyperfine levels: 6.568GHz. We used
a combination of frequency mixers to di-
vide the measured frequency into the fre-
quency range (0− 500MHz) of a frequency-
to-voltage converter. This is represented on
Fig. 81 where two frequency mixing are per-
formed. The first mixing produces a signal
at the frequency difference ∆f,87 − fVCO,1,
where fVCO,1 = 4.1925GHz is a fixed value.
This signal is amplified and mixed with a sec-
ond frequency fVCO,2 (Vtune)∈ [1.4; 2]GHz
which can be dynamically controlled by an
external tuning voltage. The high frequen-
cies are filtered out and only the low fre-
quency component fVCO,2 − (∆f,87 − fVCO,1) lies in the conversion range of the fre-
quency converter.
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In a 300MHz wide band around 500MHz, this converter produces an error pro-
portional to the beat note frequency:

ε (∆f,87,Vtune) = A+B [fVCO,2 (Vtune) + fVCO,1 −∆f,87]

where A is a fixed offset and B = 20mV/MHz is the converter gain almost constant
within the frequency range. This signal is used as an error input for PID controller
which provides the feedback signal applied on the cooling diode laser current. The
long term frequency stability of this system is stable below the 100 kHz level at 104 s
which indicates that the cooling frequency stability is mainly limited by the repump
laser locking system. On the shorter time scale, the beat note spectrum is rather large
(FWHM of 5MHz for a 1ms acquisition) which tends to indicate a large frequency
jitter. A possible solution to reduce this broad spectrum would be to use another laser
diode source such as a RIO R© Planex laser diode.
We opted for this locking system to have dynamical control on the locking frequency
via fVCO,2 (Vtune). An agile system allows to sweep the detuning of the cooling laser
over 70MHz between the MOT and the molasses in less than 1ms. The frequency
change of our system is presented on Fig. 82 were a sudden change in the VCO
frequency of up to 13 linewidths is monitored on the error signal provided by the
frequency converter. It shows that the laser frequency is brought to its final value
in approximately 300µs regardless of the frequency change amplitude and that the
overshoot is equal to 2% of the frequency kick amplitude. These performances are
sufficient for our optical molasses which uses a detuning sweep of −10Γ in a few
100µs.
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Figure 82: Temporal evolution of the error signal after a sudden change of the VCO tuning
potential. Different detunings (4Γ red, 9Γ blue and 13Γ green) are represented
and show that without any shaping of the tuning command, the laser frequency
follows the command in less than 300µs.
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Frequency shift and intensity control

Additional AOMs frequency shifts, dynamically shuts the light from both lasers and
produce two sets of Cooling and Repump beams. They are represented on Fig. 79

along the two locking systems. The repump light is shifted 78.5MHz up to produce
the |F = 1〉 −→ |F ′ = 3〉 resonant frequency and the cooling laser is up-shifted by
80MHz.

The two sets of Cooling and Repump beams are then combined with the 85Rb
frequencies.

6.2.5 Fiber distribution

In order to optimize the stability of the cold atoms production, we chose an optical
setup which provides different frequency combinations directly from optical fibers.
In this section, I am going to show how light for the 3D MOT, the imaging beam, the
2D MOT and the optical pumping beams are generated from the two laser sources.

3D MOT beams

Four laser beams (indicated by ∆) are combined to produce the 3D MOT light. They
include one 85Rb Cooling beam, one 85Rb Repump beam, one 87Rb Cooling beam
and one 87Rb Repump beam. The optical setup is represented on fig. 83. They are
first recombined isotope by isotope on a 50/50 non polarizing beam splitter (orange
and turquoise). Then, each of these (Cooling+Repump) beams are recombined with
the other isotope beams on a second 50/50 non polarizing beam splitter. Four beams
(pink) are produced with all four frequencies aligned on the same polarization. They
are all injected in four polarization maintaining fibers. As we cannot optimize per-
fectly the spatial mode for each frequencies independently, the injection efficiency is
not always optimal. I still managed to obtain at least 50% of the available power (up
to 80%) at the fiber outputs. This is summarized for all four frequencies in Tab. 15.

2D MOT beams and optical pumping light

The four remaining laser beams (indicated by ?) were recombined by type (i.e 85Rb
and 87Rb cooling frequencies together). This choice was made as it is useful for optical
pumping stages or blow-away beams to control separately the cooling or repumping
frequencies for each isotopes. Also, for the optical pumping stage, the "Cooling" fre-
quency has to be tuned to the lower transition, |F = 2〉 −→ |F ′ = 2〉 for 87Rb, while
the Repump frequency does not need to be shifted. Therefore, we used an additional
AOM for the Cooling beams only.

Besides, we needed to increase our 85Rb cooling power and 87Rb repump power for
our 2D MOT which is done with a tapered amplifier. This scheme allowed to keep
the amplifier in steady state while shutting the laser intensities for the other beams.
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This superposition scheme is represented on Fig. 84. It produces two outputs (1 and
2) containing the frequency shifted cooling beams and the repump beams. The other
two beams are dedicated to the 2D MOT. One beam corresponds to the push beam
schematized on Fig. 73d which increases the flux of the 2D MOT source. The other
beam is injected in a tapered amplifier semiconductor (EYP-TPA-0780-01000-3006-
CMT03). Temperature control of the semiconductor is ensured with a temperature
module from wavelength electronics R© (PTC5K-CH-5 A) and results in a temperature
stability of 0.05 ◦C. The maximum current of the amplifier is 1.5A and is provided by
an standard low noise power supply (PLD5K-CH-5-A). With 20mW input power, we
have 400mW output at 1A with a single beam. Combining four different frequencies
in the amplifier leads, at low intensity (below 500mA), to an output power equal to
the linear sum of the output powers obtained for each separated frequencies. This
indicates that the amplification regime remains linear in this configuration. However,
increasing the amplifier gain leads to wave mixing which generates additional fre-
quencies. This is represented of Fig. 85 where the beat note spectrum between the
frequencies present in the tapered amplifier output is shown for two different crystal
currents. I have labelled f1−4 the frequencies present at the amplifier input, they cor-
respond respectively to 85Rb Repump (1mW), 85Rb Cooling (10mW), 87Rb Repump
(1mW) and 87Rb Cooling (10mW) frequencies, where the powers in bracket corre-
spond to the input powers. This spectrum shows that the ratio of cooling powers
over repump powers remains around 10 for both currents as the peaks correspond-
ing to f1,3 − f2,4 remain at the same levels compared to the f2 − f4 peak. Also, on
the 1000mA spectrum the higher frequency components such as 2f2, 2f4 and f2 + f4
increase. These components are below 1% of the total power as can be seen by the
relative amplitude of the 2f2 − 2f4 peak compared to the f2 − f4 one. But compared
to the 500mA spectrum they are at the level of repump powers at higher current
(the 2f2 − 2f4 peak is comparable to the f1 − f3 peak). These frequencies are not an
issue as they are far from excited state transitions. Even if they tend to reduce the
amount of effective power in the cooling beams. See for example, how the f2 − f4
peak diminishes at higher current indicating a loss of power in these frequencies.

In any cases, injecting 50mW = (2+ 23+ 2+ 23)mW of total power in the amplifier
operated at 1A produces 450mW of total power which is collimated and shaped in
an approximately circular laser mode (3mm radius). A polarizing cube splits it into
two balanced beams 220mW each which are injected with 50% efficiency into two
polarization maintaining fibers. Typical powers available for the 2D MOT are thus
50mW per cooling frequency and 5mW per repump frequency which, as we will see
in Sec. 7.1 is enough for optimal operation.

Fiber performances

The stability the powers at the fiber output was characterized and a long term sta-
bility below 1% during a day is ensured on all fiber outputs. The result of a typical
measurement is presented on Fig. 86 were the Allan variances of a week-end long
measurement is presented for three of the four frequencies present in one fiber. The
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Figure 85: Comparison of the self beat spectrum of the amplifier output light. The same
amount of output power (1mW) is focused on a photodiode whose output is send
to a spectrum analyser. The beat frequencies between each frequency components
are labelled accordingly. The beat amplitudes indicate the relative amount of each
field amplitude. In particular, the repump frequencies amplitude remain constant
compared to the cooling frequencies amplitude which corresponds to a 1/10 ratio.

power stability before the fiber collimator of output S2, corresponding to one 85Rb
cooling beam, was already presented on Fig. 78 and can be used as a comparison.
The short term stability is around 10−4 of the total power7. A transitional feature
around 1h probably indicates thermal effects.

The polarization direction at the fiber output is also essential to have a good control
of the laser beam polarization state in the experiment. A polarization extinction ratio
measurement, evaluating the amount of polarization in the orthogonal state, was
performed for each fiber and on each frequencies. This measurement relies on the
rapid dephasing between the two principal polarization axis in the fiber induced by
a local temperature change. We measure the polarization direction at the fiber output
by measuring the transmitted and reflected intensities of a polarizing beam splitter.
We observe a precession of the polarization state around one of the two principal
polarization axis. A half wave plate placed before the fiber collimator allows to align
the injected polarization on one of these two principle axes8 which minimizes the
precession amplitude. For all our fibers, Polarization Extinction Ratio (PER) better

7 It does not represent the stability during operation as time constants in AOM’s are more of the order
of 100ms which will dominate the power fluctuation at the short time scale, additional investigation of
the cycle stability, once the experiment is running will be performed to quantify the exact short term
stability

8 Usually, one axis showed better performances than the other.
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than9 1 : 100 for all frequencies were obtained, ensuring at most 1% of residual
polarization in the orthogonal state at the fiber output.

These four frequencies beam are then shaped and properly polarized directly on
the separated apparatus.
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Figure 86: Allan variance of laser power at the fiber’s output. The inset shows 87Rb cooling
power time evolution at a τ = 10 s sample rate (blue background) at a τ = 104 s
sample rate (black line) as well as the smoothed mean value (Red line).

Cooling 85Rb Repump 85Rb Cooling 87Rb Repump 87Rb
Typical input 20 1.8 82 4

Output MMOT 1 14 1.6 50 2.5
Output MMOT 2 10 1.1 40 2.1
Output MMOT 3 14 1.4 76 2.6
Output Imaging 13 1.3 50 1.8

Table 15: Summary of the available powers (inmW) at each fiber outputs. The input power is
only given as a reference as input powers varied between each fibers and between
each frequency by more than 20%

6.2.6 Collimation to the vacuum chamber

2D MOT beams

The optical setup was included in the 2D MOT system (see Fig. 87). It consists in
a pair (horizontal and vertical) of light sheets produced by two polarizing beam
splitters in series which distribute evenly the power into three beams. As the elliptical
ratio of the distributed beam is large (7mm width for a 3mm height), it results in
an almost continuous sheet of light for transverse cooling. Rectangular quadrupole
coils operated at different currents (this will be described in more details in Sec.
7.1) produce the magnetic field configuration for the transverse collimation. A final

9 In practice, it is possible to have better PER for two frequencies among the four present (probably due to
non-polarizing splitters imperfections), 87Rb cooling frequency was chosen as reference and PER better
than 1 : 1000 were obtained for every fiber.
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pushing beam 0.7mm waist is directed along the 2D MOT chamber to increase the
atomic flux towards the 3D MOT.

Figure 87: Collimation to the 2D MOT.

Mirror MOT beams

There are three 3D MOT beams used in a retro reflected mirror MOT configuration.
Two horizontal beams are aligned at 45◦ with respect to the chip surface10 and a third
vertical beam is retro-reflected. All beams are collimated to 7mm waists and their
divergence over 5m was measured below 0.2mrad (a factor of 5 above the minimum
divergence of a Gaussian TEM00 beam). The polarization is set by a QWP directly
integrated in the collimator (Schäfter-Kirchhoff, 60FC-Q-4-M75-13) for the horizontal
beams and by a 2 ′′ diameter QWP for the vertical beam. This choice was motivated
by the necessity of additional vertical beams (such as the Bragg beams) which will be
superposed to the MOT beam with a polarizing beam splitter cube.

Complete view of the optical setup

The global setup is shown on Fig. 88. It fits on a 1.5m× 1.5m optical table and
provides all fibered outputs to the main experiment. The control electronics and laser
sources (apart from the 87Rb repump laser, clearly visible in blue) are located on two
separated racks not shown in the picture. A surrounding box allows good thermal
equilibrium and acoustic isolations necessary for the stability of the repump laser
(ECDL) and helpful for the long term stability of the optical alignments.

10 The large 6.6mm beam displacement induced by the front viewport constrained the size of the beams
in our configuration.
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Figure 88: View of the compact optical setup.

Laser system

Laser light required for a dual isotope 2D MOT and 3D MOT is produced
by two independent laser systems based on frequency doubled Telecom lasers
(1560nm). The frequencies are controlled via saturated absorption and master-
slave architectures which remain locked for weeks. The long term frequency
stability of both systems are suitable for continuous experiments with sub
MHz drifts. The frequency tunability and agility of both cooling lasers are
good enough for the characterization and optimization of cold atom clouds
with more than 100MHz accordability in at most 500µs. Superposition of all
the required laser frequencies is performed on a compact breadboard which
includes a 4 frequencies tapered amplifier and provides fibered outputs to the
experiment with good power and polarization stability. The dual isotope mix-
ture implied a trade-off in the available laser power due to the difficulty to
inject simultaneously four frequencies in the many fibers.
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6.3 magnetic source

The required magnetic fields have already been discussed in Sec. 5.2.2 and will be
described in more details in Julien Alibert’s thesis. Here, we only give the global
geometry of the experimental setup.

6.3.1 Overview

Three pairs of magnetic coils are designed to carry high currents and as such are
made of hollow rectangular copper wires watercooled during operation. An exam-
ple of such magnetic coils is represented on Fig. 89b. These magnetic coils were
made with the technical assistance of Laboratoire des Champs Magnétiques Intenses
(LNCMI) which possess both the know-how and apparatus to realize robust and
compact coils. The black coating that recovers the coil winding is a thermal insulat-
ing polymer (STYCAST U 2535 PT B) which also insures good thermal conductiv-
ity between the layers. The magnetic coils requiring high currents are the 3D MOT
quadrupole coils (up to 200A), the Feshbach coils (operating around 40A) and the
Bias coils (up to 80A). The Feshbach coils were designed large enough to ensure good
field homogeneity in the whole cloud production region. The Bias coils produce the
bias field for the magnetic trapping on the chip (along the Z direction). The choice
of external coils is easier in a laboratory leads to a high power consumption. How-
ever smaller, under vacuum, coils could be considered which drastically reduces the
requirements in terms of electrical currents.

Auxiliary coils such as the displacement coils, optical pumping coils and com-
pensation coils are operating at lower current and made of plain copper wires. The
displacement coils are used to change the distance between the chip and the trap-
ping minimum. The optical pumping coils produce a magnetic field directed along
the (Y+Z) diagonal. The compensation coils are directed along the three spatial direc-
tions and surround the whole apparatus, they can be seen on Fig. 95. The quadrupole
coils are dedicated to the 3D MOT operation. Most of the other coils will be operating
simultaneously together with the wires on the mesoscopic chip.

Description of the mesoscopic chip

This chip was initially designed to be a thin Silicon Carbide crystal (transparent at
1560nm). Gold wires can be directly deposited on its surface and they provide the re-
flecting layer for the MMOT. They were designed to be relatively thick (10µm× 300µm)
in order to sustain high currents (10A) resulting in large magnetic gradients. This de-
sign was developed in collaboration with the SYRTE and the CNES but technical
difficulties delayed its fabrication. This is the reason why we made a mesoscopic chip
which, apart from the wire dimensions, has a geometry very similar to the planned
microscopic chip. This is not negligible as it increases the minimal distance between
the wires and the atomic cloud from 200µm (or less) to 800µm.
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(a) Magnetic coils configuration (b) Experimental realization

Figure 89: (a): Combination of the main magnetic field sources around the Z shaped trap.
The perspective point of view corresponds to the rear of the main chamber.
(b): Water cooled magnetic coil with its connectors at the background (combina-
tion of standard swagelock R© fittings and home made copper connectors).

Our trap consists in a "Z" wire and an external bias field plus two "I" wires for
increasing confinement in the Y direction (see Sec. 5.2.2). The larger distance implies
that higher currents are necessary to produce the same magnetic gradients. Especially
in the capture stage from the molasse a large capture volume far from wires requires a
large current. With 1mm diameter wires 40A are necessary to produce the magnetic
fields presented on Fig. 51. The final design is represented on Fig. 90. It consists in
a 50mm× 50mm× 20mm oxygen free copper support which is extruded to receive
the "Z" wire (blue), "I" wires (green) and an additional loop for the RF knife used
during the forced evaporation. The wires were glued with EPO-TEK 301 which is
UHV compatible, electrically insulating and a good thermal conductor. Curing at
60 ◦C for two hours was performed before adding a 100µm thick indium sheet on
top of the copper surface to reduce asperities between the surface and the MOT
mirror.

This mirror is a 140mm diameter, 200µm thick glass substrate. It is transparent
at 1560nm and one face has a dichroic coating designed to transmit 1560nm and
optimized to have a high reflection coefficient for both incident linear polarizations
at 780nm and for an incidence angle of 45◦. We measured a reflectivity better than
98% and a transmission higher than 97% (limited by the uncoated substrate face).
We checked that a right handed polarization (S3 = 0.999) was transformed into a left
handed polarization (S3 = −0.990) after reflection at 45◦.

In addition to the adhesion of the indium sheet, four titanium screws with hand
made indium washer maintain the mirror at the center of the support. The electrical
connections with the feedthroughs is ensured by larger (2mm diameter) copper wires
(refered to as the conducting wires). These wires cannot transfer heat to a surround-
ing bulk which is why three wires in parallel have been used for the main "Z" wire
supporting the highest current. In this configuration the conducting wires produce
27 times less heat than the "Z" wire and distribute the heat to multiple feedthroughs.
The electrical contact between the chip’s wire and these wires is ensured by Beryl-
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lium connectors. At the other end, the conducting wires are connected to beryllium
push-on connectors fixed on 8 feedthrough copper pins 5mm diameter. Each pin is
specified for a maximum current of 12A.

Figure 90: Technical realization of the mesoscopic chip with the corresponding wires, elec-
trical connections and mirror. A Teflon ring was added between the electrical
feedthrough wires to prevent contact between the connectors heads.

To ensure proper electrical isolation, the wires sheath is made of Kapton which is a
poor thermal conductor. Therefore, we simulated the thermal conduction of the gen-
erated Joules heating to the surrounding copper support to ensure that high currents
were reasonable for this structure.

Thermal problematic

Joules generated heat is already an issue for microscopic chips [314], but in our sit-
uation, even higher currents were necessary due to the large distance to the cloud.
This is the reason why numerical simulations were implemented to ensure that the
heating induced by these 40A strategies were kept below reasonable values.

Heat transfer simulation

A finite element simulation of the wire heating was done using the Comsol Multiphysic R©
software. It solved both the time dependent heat equation in the different materials
and boundaries and Ohm’s equation in the wire. This allowed to take into account
some specific feature such as the temperature dependent copper resistivity and the
current density gradient around the wire edges. The chip model used in this simula-
tion is represented on Fig. 91. It shows how the material bulk (copper) incorporates a
wire (green) which has an insulating sheath. The contact between the sheath and the
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copper block is ensured by a filling material with properties adapted from the glue
specifications.

Figure 91: (Left Top): Simulated chip and heat transfer direction through the bottom face.
(Right Top): Steady state temperature profile below the wire.
(Bottom) Asymptotic temperature of three different wire diameters as a function
of the current.

The simulation sets a total current ±I through the wire surface edges as well as an
initial temperature of 20 ◦C. Thermal boundary conditions were chosen as to prevent
any heat flux to the top and sides faces11. Heat can only be dissipated through the
bottom copper face which was kept at constant temperature (infinite thermal bath).
The stationary thermal state is represented by two plots on Fig. 91. The 2D-plot shows
the temperature distribution in the plane just below the wire. One sees that the heat
flow spreads in the transverse directions with negligible heating of the copper. The
second graph shows the peak temperature in the wire as a function of the current for
different wire radii. As expected, the Joules heating increases quadratically with the
current, but an over quadratic behavior can be seen for the smallest diameter as the
temperature rise increases the wire resistance. Some parameters such as the dimen-
sion of the central hole or the thickness of the insulating sheath were investigated
to find the optimal parameters for our design. In the presented results, the Kapton
thickness is 100µm and the central hole has a 5mm diameter. For a 1mmwire radius,

11 Conduction under vacuum is not possible and thermal radiation is negligible at these low temperatures.
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one sees that the maximum temperature rise is smaller than 14 ◦C for 40A which is
small enough to prevent damages to the mirror substrate.

Electrical and thermal tests

We checked experimentaly that the chip wires could support higher and higher cur-
rents without damages nor runaway heatings as it can happen if the supply current
remains constant as the temperature rises. This was ensured by monitoring the wire
resistance as well as the ion pumps pressure which could indicate a change in the
copper bloc degassing rate. No visible pressure change was seen which does not give
a definitive test as the ion pump is not located in the main chamber. However, mak-
ing simple assumptions, we can obtain a temperature estimate of the wire from the
resistance rise recording.

We measured the total resistance Rtot of the circuit which was made of the conduct-
ing wires, the contact resistances and the "Z" wire resistance RZ. With independent
measurements, we were able to evaluate RZ and obtained a value 5.8mΩ which is
in good agreement with the predicted 5.5mΩ value calculated from the wire dimen-
sions and copper resistivity. Then, monitoring the total resistivity as a constant cur-
rent was driven through the wire, we extracted an estimation of the wire temperature
increase. In this model we neglected the temperature rise of the conducting wires as
they have a much smaller linear resistivity due to a larger diameter. The resistance
rise was entirely attributed to the chip’s wire and we obtained the following relation
between maximum temperature rise ∆T and resistance rise ∆Rtot:

∆T = κ
∆Rtot

α
(106)

where α = 4× 10−3 K−1 is copper thermal conductivity coefficient and κ < 1 is a
numerical coefficient which can be expressed as an integral depending on the tem-
perature distribution in the chip’s wire. This coefficient drastically changes the tem-
perature range over which the rise takes place. This is the reason why a conservative
value of 11/12 was used. This value corresponds to the case of a wire exchanging
heat only at its extremities with a bath kept at a constant temperature. In this case,
the temperature profile is a parabolic function with maximum at the wire’s center.

The result of this measurement is presented on Fig. 92 were the temperature rise is
plotted as a function of time. We see that an initial 10 s rapid increase can be well de-
scribed by an exponential phase with a rising time of 4.4 s and an asymptote at 18 ◦C.
Then the long term increase tends to a linear behavior with a slope of 0.5 ◦Cs−1.
When compared to the finite element simulations, we can see that the predicted tem-
perature increase (14 ◦C) is lower than the measured asymptote. The amount of ap-
proximations used to obtain the temperature rise can certainly be incriminated for
this difference (both the κ factor and the constant resistance of the conducting ele-
ments). In practice, the constant rise at long duration might be an issue for very long
measurement campaigns which, even at a cycle time of 1/5, corresponding to the pro-
jected duration of the magnetic trap, might lead to a constant heating of the chip’s
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Figure 92: Extrapolated temperature increase of the "Z" wire during a continuous 40A cur-
rent supply. Two fits are shown and correspond to two different heat transfer
mechanisms. First the rapid temperature increase establishes a temperature gra-
dient between the wire and the surrounding support. Then thermal conduction
through the Kapton sheath transfers heat to the copper support which leads to a
second dynamical regime.

wire of about 0.1 ◦C per experiment cycle. Additional investigations of this heating
and a full characterization of a potential active or passive cooling will be necessary
to ensure the long term stability of this setup. It is not an issue at the moment as the
cycling rate is much lower.

Magnetic sources

High magnetic fields for the MOT and magnetic traps are produced by water
cooled magnetic coils operating at high currents (∼ 100A). We developed a
preliminary mesoscopic magnetic chip which includes a dichroïc mirror that
might be, in the future, replaced by an additional microscopic chip. High cur-
rents (up to 40A) are used in 1mm diameter copper wires. Thermal tests show
qualitative agreement with our simulations and indicate that heating is negli-
gible at short trapping times.

6.3.2 Constraints on the optical dipole trap

In addition to the trapping magnetic fields, the chip was designed with an optical
aperture (φ = 5mm diameter) for a crossed dipole trap centered on the magnetic trap.
Two power amplified outputs (1W at 1560nm) of the 85Rb laser system are available.
The dipole trap beams are constrained by the surrounding viewports and by the chip
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itself. It guided our choice of the central hole to have both an efficient heat transfer
from the Z wire to the support as discussed in Sec. 6.3.1 and a focused transverse
beam with a margin of alignment. This is represented on Fig. 93 were the chip and
the viewports dimensions are summarized. For example, the transverse beam along
the x direction can be focused to a w1,0 = 50µm waist and remain small compared
to the mechanical apertures. For this example, the beam waist is 190µm at the hole
countersunk, which is a twentieth of the hole diameter. At the viewport position, the
waist is 3.3mm which is also 1/20 of the aperture. This situation corresponds to the
optimized laser waist discussed in the transportation protocol (Sec. 5.4).

for the second dipole trap along the y direction, the situation is somewhat more
constrained by the chip’s edges. If we denote by X0 ∼ 500µm the distance of the
crossed trap center from the chips’s surface, and Lc ∼ 48mm the distance of the chip
edge from the trap center, we can estimate the waist range which satisfy the following
condition :

w (Lc) < κX0 (107)

where κ ∼ 1/2 is a numerical factor which imposes that the laser waist at the chip
edges is smaller than the distance from the chip surface. Using the gaussian beam

divergence formula w2 (y) = w2,0

√
1+ (y/zR)

2 and solving the resulting second
order inequation, one can show that the waist range satisfying eq. (107) is:

κX0√
2

√√√√1−√1− 4L2cλ
2

π2κ4X40
6 w2,0 6

κX0√
2

√√√√1+√1− 4L2cλ
2

π2κ4X40

which is valid only for κ > κlim = 4

√
4L2cλ

2/
(
π2X40

)
which corresponds to ∼ 0.43 in

our case. The optimal choice for w2,0 in terms of diffraction by the edges corresponds
to κ = κlim and gives12 w2,0,lim = 154µm. However, when taking into consideration
the resulting depth of the optical trap, one can relax the condition on κ to create a
tighter trap13. For example, κ = 0.5 gives a minimum waist w2,0 = 105µm. In both of
these cases, the beam waist at the viewport position is less than a fifth of the viewport
radius.

12 Note that this limiting value does not depend on X0 !
13 This of course leads to a certain amount of wriggles in the trap potential as the diffraction from the

edges can modulate the intensity distribution of the beam but the distance from the diffracting edge is
a hundred times larger than the wavelength which means that this effect is probably negligible.
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Figure 93: Sectional view of the copper support with detailed dimensions. The dipole trap
beams parallel and through the chip are represented to emphasize the geometrical
constraints induced by the support’s geometry. The waists are not represented to
scale to show the difference between the parallel 100µm and the crossed 47µm
waists.

Dipole trap

The chip’s support impedes the optical traps and optimal parameters for our
geometry consist in a 100µm waist for the grazing laser beam and 47µm waist
for the crossing beam (see Sec. 5.4.2). With the available laser power (1W), it
corresponds to an optical dimple 8.5µK deep with frequencies (53, 244, 241)Hz
in the (X, Y,Z) directions.

6.4 imaging system

We use three fluorescence detection schemes ss atom imaging systems. Two of them
are CCD cameras (GS3-U3-14S5M-C) from Pointgrey R© with a magnification system.
The third one is a high gain photodiode (φ4mm diameter, PDA36A from Thorlabs R©)
with a single collecting lens. They are represented on Fig. 94.

• The photodiode is used during the MOT optimization and gives an idea of
the atom number collected in the cloud. It typically underestimate the number
of atoms by 50%. The detection system collects the fluorescence photons emit-
ted by the trapped atoms. Neglecting the very small number of photons that
can be reflected on the chip’s mirror, one gets the following expression for the
photodiode electric potential Vph:

Vph = Gα780 hω0
Ω1
4π

s

1+ s+
(
2δ1
Γ

)2 Γ2Nat (108)
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30 cm

25 cm

CCD

Photodiode

Figure 94: Schematic representation of the detection systems. Another CCD imaging setup
identical to the one represented here is directed parallel to the chip surface.

where G = 2.4(1)× 106 V A−1 is the amplifier gain, α780 = 0.48(1)AW−1 its
spectral responsitivity, ω0 is the photon frequency, Ω1 = 4(1)× 10−3 sr the
collection angle, s (∼ 60) the light saturation14 parameter, δ1 is the MOT light
detuning and Γ the transition linewidth. With these values, the number of atoms
is easily calibrated by:

Nat '
Vph (V)

1.35
109 (109)

where Vph is given in volts. This estimation provides only an approximate value
of the atom number as the solid angle Ω1 is not well known. Absorption and
re-scattering effects can also lead to lower fluorescence signal for dense atom
cloud as is the case at the end of the MOT loading and during the compression
stage. We probably to under-evaluate the atom number with this fluorescence
collection. However, it provides a practical tool as the signal can be easily and
continuously monitored.

• The CCD setup is used to have both a finer control on the atom number es-
timation and a better synchronicity for the atomic cloud imaging. It also pro-
vides spatial information on the atom distribution. After calibration of the CCD
efficiency (with a calibrated reference beam, for different camera gain, pixel
number and integration time) we obtained, for our system, a proportionality
coefficient between the number Ne− of electron detected and the number of
incident photons Nγ:

Nγ = 10−(Gain−20)/19340Ne−

14 The saturation intensity used is 2.5mW/cm2 as discussed in Sec. 7.2.2.
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where Gain is the CCD amplifier gain. Using again a similar formula for the
number of detected atoms, one gets, with Ω2/ (4π) = 1.6(1)× 10−3 sr:

Nat,i =
1+ s+

(
2δ1
Γ

)2
s

2

Γτ
1.4(1)× 105Ne−,i (110)

where τ is the detection time and i labels the CCD ith pixel. Compared to
the photodiode detection scheme, this can be precisely calibrated by changing
the saturation parameter, the laser detuning and the detection integration time,
providing a much more accurate knowledge of the atom number.

Detection system

The MOT cloud analysis is performed both with a photodiode collection sys-
tem and CCD sensors. Combined, they provide rapid and precise tools for the
atom number evaluation and the spatial shape of the cloud.

6.5 conclusion

In this chapter, the experimental setup was described and characterized. The vacuum
system we built reached 10−10mbar pressure range. Additional tests of lifetime in
the magnetic traps are necessary to characterize further the vacuum quality in the
vicinity of the chip. The dual isotope laser system was then described. It provides all
the necessary frequencies for the MOT, the optical pumping and the imaging beams
and we tested its capacity for long term measurements and the reliability of the lock-
ing system stable below 200 kHz. Both locking system are agile and allows for rapid
change of the cooling laser frequencies as required by the cold cloud experimental
sequence described in the next chapter. Finally, laser powers available at the fibers
outputs are sufficient for dual isotope laser cooling and stable to better than 1% for
more than 2 days. The macroscopic magnetic sources as well as the mesoscopic chip
were described. Most of them have already been implemented on the experiment
and will be characterized fully in J. Alibert’s thesis. Finally, the constraints on the
transverse optical trap and the characteristics of the imaging system were discussed,
giving a complete picture of the experiment, which is shown on Fig. 95.
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7 ATO M S O U R C E
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This chapter describes the performances of the atomic source at different stages.
From the initial 2D MOT source to the magnetic trap loading, we will describe the
main steps (MMOT loading, compression and molasses) which shape the cold atomic
cloud. I will show how the cloud atom number, dimensions and temperature are
measured with high saturation fluorescence imaging and discuss the limits of this
method. I will conclude by presenting the initial result of the magnetic trapping
which has not been optimized yet.
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7.1 2d mot source

The 2D MOT source was designed to produce a high atomic flux ∼ 1010 atoms/s

with a compact setup. It relies on a rubidium dispenser heated to 50 ◦C with two
thermocoax R©1. The rubidium enters a vacuum chamber were three transverse cool-
ing and trapping regions collimate the rubidium towards the exit hole. rubidium
atoms can be seen as three bright cigar shaped regions shown on Fig. 97. Balancing
the laser power over the three transversal cooling stages slightly changed the relative
height of each cigar but only an even distribution aligns them. However, in this con-
figuration, their axis is slightly displaced compared to the center of the chamber (exit
hole height) due to the gravitational potential. To compensate this offset, we slightly
unbalanced the two vertical coil currents. This resulted in a good alignment between
the three cigars and the 2D MOT output axis as can be seen on the inset of Fig. 97.

Loading the 3D MOT from this rubidium source, was initially not possible as its
quadrupole field perturbed the magnetic field in the 2D MOT chamber. This is shown
on Fig. 97 were the three cigar spots are represented with and without the quadrupole
field of the 3D MOT. To isolate the 2D chamber from this field gradient, we added
µ-metal shielding plates in between the 2D MOT chamber and the quadrupole coils.
This can be seen on Fig. 95 where three metal plates are positioned as best as possible
around the 2D MOT exit hole. To compensate for the residual horizontal magnetic
gradient that persisted, we unbalanced the two horizontal 2D MOT coils current. This

1 Both the dispenser and the valve leading to the chamber are heated to prevent any cold-finger conden-
sation effect which reduces the rubidium gas flux to the 2D chamber.

Figure 96: Picture of the experimental setup during the MOT phase. The atomic cloud, as
well as its reflection on the chip’s mirror, appear as a small orange (false color)
spot, the size of a red currant. One MOT collimator as well as an out-of-focus
quadrupole coil are visible at the foreground.
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was enough to approximately align the three cigars on the chamber axis. In practice,
it requires to increase by 5% the current of one coil. This adjustment is very sensitive
as a 1% current change reduces by a factor 3 the 2D MOT loading rate.

In the remainder of this chapter, we are going to discuss the main parameters
which influenced the 3D MOT characteristics (in terms of loading rate, atom number,
temperature and size). Before, I would first like to emphasize that all this optimization
was performed on 87Rb as the requirement on the initial atom number are more
stringent on this isotope than on 85Rb. Still, we loaded both atomic species in this
3D MOT with high atom numbers (109 85Rb atoms were loaded simultaneously with
3× 109 87Rb atoms2). It ensures that a dual species atomic cloud can be prepared
with the required atom numbers for the sympathetic evaporation stage (50 times less
85Rb atoms are necessary than 87Rb atoms which corresponds to the initial state in
Tab. 14, Sec.5.3).

Without 

Quadrupole coils

With 

Quadrupole coils

Exit hole

Figure 97: Right hand side: Picture of the 2D MOT clouds taken from the push beam view-
port. The camera is slightly out of alignment to show the three cigar shaped re-
gions. The exit hole is the black circle in the background. The vertical bright spots
correspond to light scattered by edges inside the chamber. The bottom right inset
corresponds to the in-axis view once the three clouds were aligned on the exit
hole (emphasized by the green circle).
Left hand side: Effect of the quadrupole magnetic field on the 2D MOT prior to
magnetic shielding and current imbalance between the 2D MOT coils.

7.1.1 Push beam optimum

A typical loading curve is shown on Fig. 98 where the number3 of atoms captured in
the 3D MOT is represented as a function of the loading time. After an initial exponen-
tial increase lasting ∼ 1 s, the number of collected atoms saturates. We interprete the

2 This value was obtained prior to the 3D MOT optimization which is why it seems relatively small
compared to the values given afterwards.

3 The photodiode signal has been corrected with the measured asymptotic atom number of the CCD
cameras. Indeed, the atom number indicated by this system is about 2/3 smaller than the one measured
by the CCD camera probably due to the calibration (solid angle, amplifier gain,...) uncertainty. The
accuracy of our fluorescence imaging technique is discussed in Sec. 7.2.2.
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saturation as due to the proximity of the surface which prevents the cloud from get-
ting larger. The transversal and the pushing beams detuning δ2 are identical but can
be changed independently of the 3D MOT. We found that a laser detuning δ2 = −Γ

was the optimum choice for the 3D MOT loading rate, which is slightly smaller than
the optimal detuning (δ1 = −2Γ ) for the 3D MOT discussed in Sec. 7.2.4. This value
is a trade-off between the transverse collimation which is expected to reach its lowest
divergence for δ2 = −Γ/2 and the almost resonant frequencies (δ2 < 0) of counter-
propagating atoms that are being accelerated back toward the 2D MOT exit.
The geometrical alignment of the pushing beam on the 2D MOT axis and its polariza-
tion direction were also critical which is the reason why an additional optical setup
was installed and replaces the one initially planned (see Fig. 87).
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Figure 98: Atom number captured in the 3D MOT inferred from the photodiode signal eq.
(109). The exponential fit gives a loading time of 950(10)µs and an asymptotic
atom number of 6× 109 atoms. However, the loading saturates to a lower atom
number due probably to the proximity of the mirror surface.

Push beam intensity

In addition to the value of the 2D MOT detuning, the loading rate depends on the
power in the pushing beam. This is represented on Fig. 99 where I show the loading
rate for different powers in the push beam. An optimum at 300µW, corresponding to
an intensity of 20mW/cm2 ' 6Is, leads to a loading rate of 11(2)× 109 atoms/s. This
is comparable to other performances (1010 atoms/s [311]) obtained with a similar
setup.

7.2 optical trapping and cooling

To go further into the description of our atomic source, I am first going to discuss the
general experimental sequence as well as the detection system used. Then, the three
main steps that are the mirror MOT (MMOT), the compressed MOT (CMOT) and the
optical molasses will we characterized.
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Figure 99: 3D MOT loading rate as a function of the push beam intensity. A clear optimum
at 8 Is leads to loading rates of 1010 atoms/s.

7.2.1 Experimental sequence

The complete experimental sequence is shown on Fig. 100 where the laser parame-
ters and the quadrupole filed gradient are summarized. After an initial loading stage
of 1 s, the magnetic gradient is ramped up and the cooling laser detuning is simul-
taneously increased (CMOT stage). This leads to an increased atomic density and
a reduced cloud temperature (discussed in Sec. 7.2.5). In addition, a constant field
along the Y direction is progressively ramped up during the CMOT to transport the
magnetic field minimum closer to the surface. Then all magnetic fields are turned
off and a molasses stage is performed by increasing further the laser detuning (see
Sec.7.2.6). Finally, the laser intensities are ramped down by the AOMs with a small
delay on the repumping light to keep all the atoms in the same hyperfine level |F = 2〉.
This cloud is the final released atomic cloud. It can either be characterized with time
of flight measurements (see Sec. 7.2.3) or transferred in the magnetic trap.

7.2.2 Atom number

In this subsection I discuss the imaging technique used to characterize the atomic
cloud spatial distribution and total atom number. As discussed in Sec. 6.4 we use a
set of two CCD sensors which collect fluorescence photons. A light pulse produced
by all 3D MOT beams excites the atoms with controlled peak intensity I and detun-
ing δ1 with respect to the cooling transition. A second pulse provides the reference
background without atom which, after substraction, gives an image of the atom cloud.
Equation (110) gives the number of atoms as a function of the electron counts (related
to the pixel depth) of this image.

To test the validity of this formula, identical clouds were produced and the imaging
light parameters (intensity and detuning) were scanned. The results of this procedure
are shown on Fig. 101 and on Fig. 102. Both the saturation profile s/ (1+ s) and
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Figure 100: Temporal sequence of the laser and trapping parameters: quadrupole field gradi-
ent, intensity per laser beam and cooling detuning δ1. The horizontal axis is not
at scale but each step duration is indicated above the graphs.

Lorentzian shape s/
[
1+ s+ (2δ1/Γ)

2
]

accurately describe the experimental data. In
our case, the saturation parameter s does not correspond to an ideal two-level system
saturation. Due to the number of different transitions that can be excited, s is defined
by s = I/I∗s, where I∗s is an effective saturation intensity:

I∗s = αIs

where Is = 3.58mW/cm2 is the saturation intensity of F = 2→ F
′
= 3 for an isotropic
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light polarization and α is a numerical parameter.
Fitting with a saturation function s/ (1+ s) the profile of Fig. 101, one can access

I∗s knowing the probe laser waist (0.7 cm). With this measure, I obtain an effective
saturation intensity of I∗s = 3mW/cm2. This value is smaller than Is because most
of the F = 1, 2 → F

′
= 0, 1, 2 transitions have smaller transition strengths than the

F = 2→ F
′
= 3 transitions.

Fitting with a Lorentzian distribution the profiles of Fig 102, one can see that the
zero detuning agrees with an independent frequency calibration using a saturated
absorption setup within its error bar (1MHz). Also, from the Lorentzian widths, one
recovers the saturated transition width Γ (1+ s) for two different saturation param-
eters s = 4 and s = 14.5. It corresponds to the two experimental parameters of
Ipeak,1 = 8mW/cm2 and Ipeak,2 = 32mW/cm2 if the effective saturation intensity
is I∗s = 2mW/cm2.

The discrepancy between the two experimental effective saturation intensities em-
phasizes the difficulty to define this parameter when one deals with multi-level transi-
tions coupled with the re-absorption of photons having a variety of polarization. For
the purpose of this thesis, I used the intermediate value of 2.5mW/cm2 to evaluate
the saturation parameter. This is not an important issue for high saturation imaging
as the exact saturation parameters does not need to be accurately known.

Indeed, we can see on Fig. 102 that probing the cloud with a saturated probe
renders the number of electrons independent of the exact saturation parameter and
we will see that it represents accurately the number of atoms in the cloud.
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Figure 101: Electron count
∑
iNe,i as a function of the probe peak laser power. The fit cor-

responds to eq. (110) with fixed pulse duration, τ = 20µs, detuning, δ1 = 0 and
atom number Nat.

Highly saturated fluorescence imaging

Highly saturating beams allows to prevent the large absorption of dense clouds
which usually reduces the saturation of the probe at the center of the cloud. It can
lead to experimental bias in the atom number calibration as all the atoms do not
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Figure 102: Electron count as a function of the probe detuning δ1 for two different peak
saturations infered from the Loretzian widths : s = 4 and s = 15. The number
of electron has been corrected by the peak saturation factor s/ (1+ s) to compare
the peak amplitudes. The fits corresponds to the Lorentzian shape of eq. (110).
The optical thickness for this calibration was approximately 5.

scatter photons at the same rate and the central scattered photons are re-absorbed by
atoms from the external "layers".

Figure 103
Absorption in a dense cloud.

To understand the situation, let us consider a cylin-
der of atoms, 100µm radius, 0.2 cm long at the center
of a dense 5× 1010Atoms/cm3. This slab of atoms
cloud can absorb at most (i.e at complete satura-
tion) 6× 1013 photons/s. A highly saturated laser
beam (s = 60) conveys 1.9× 1014 photons/s through
this cylinder. Therefore, assuming that all the excited
atoms spontaneously emit outside of the laser beam,
about 66% of the photon flux remains after the cylin-
der. This shows that the initial assumption that all
atoms are saturated by the laser intensity is valid as
the intensity is still large (s = 40) after absorption.

Clouds are usually described by their peak optical thickness σn0l where σ ∼

2.5× 10−9 cm2 is the resonant absorption cross section of a single atom. This pa-
rameter describes the atom absorption in the linear and individual regime with an
intensity attenuation factor given by e−σn0l. The previous cylinder optical thickness
is approximately 25. In the strongly non-linear regime, the excited state finite lifetime
reduces the amount of photons absorption.

As a consequence, the fluorescence rate is accurately known, Γ/2 for all atoms, as
long as the optical thickness is much smaller than the saturation parameter. Also, the
attenuation due to absorption is well represented by the effective optical thickness
σn0l/s. If we consider the previous example, exp (−σn0l/s) = 66% which is exactly
the proportion of transmitted laser light. Therefore, the re-absorption by the external
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"layers" of the fluorescence photons emitted by the center of the cloud is considerably
reduced.

Only for high saturation fluorescence detection, both the number of detected pho-
tons and their spatial distribution accurately represent the atom number and its dis-
tribution. This is supported by a discussion in [315] where DePue et al. showed how
saturated fluorescence is an accurate tool for atom number evaluation as long as the
saturation parameter is four times larger than the cloud optical thickness.

Using all three MOT beams to image the MOT cloud allowed to reach a com-
bined saturation intensity of smaxsim78. This saturation intensity is sufficient for
the MMOT characterization, which has an optical thickness of the order of 20. Our
atom number detection accuracy assumes that the scattered light emitted during the
light pulse reaches the detector. With a conservative assumption that only a fraction
exp (−σn0l/smax) of the scattered light is not re-absorbed and is not detected, we es-
timate the accuracy4 of our MMOT atom number determination to better than 20%.
This is probably overestimated but since the statistical noise is of the same order of
magnitude, it does not limit the discussion on the atom cloud characteristics. The
condition of large saturation compared to the optical depth limit the efficiency of this
detection scheme to clouds with optical depth below 25.

7.2.3 Temperature measurements

Time of flight method in cold atom experiments is routinely employed and was ini-
tially developed by Lett. et al. [316]. It is based on the release of the trapped cloud
and the subsequent free space expansion of the atomic distribution which is well de-
scribed by a Maxwell-Boltzmann distribution. The cloud has a time dependent width
[317] in every direction:

σ2x,y,z (t) = σ
2
0;x,y,z +

kBT

M
t2 (111)

where σ0;i is the initial Gaussian width in the i = x,y, z direction, t is the expansion
(TOF) time, M is the mass of the atom and T is the cloud temperature.
Imaging the cloud after different expansion times (typically starting at 1ms and up
to 50ms) and fitting the transverse profile with a single Gaussian function (see next
section for a discussion on the cloud profiles) provides information on the cloud
width and position. A typical measurement is represented on Fig. 104. One can see
that the quadratic behavior is unclear in the horizontal direction as a double peak
distribution (see fig. 107) progressively merges into a single peak. On the other hand,
in the vertical direction, the width clearly follows eq. (111) for TOF larger than 20ms.
This transition between two linear regimes occurs when the cloud density is similar to
the uncompressed cloud. Indeed, for this measurement, the cloud initial density was
1011Atoms/cm3 and a 20ms TOF decreased its density by a factor 2. At this point,

4 Other parameters such as the amplifier gain and the collecting solid angle are known much more
accurately.
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the cloud optical depth is about a third of the saturation intensity which means that
the fluorescence distribution begins to be realistic.

Note that this time of flight measurement corresponds to a denser atom cloud
(CMOT) for which the transition was clearer. The y-axis intercept of the vertical di-
rection linear fit gives an estimation of the initial cloud size (2.6(1)mm). The slope
gives a cloud temperature of 70µK.

Additionally, the cloud center evolution during the time-of flight measurement can
provide some useful information on the cloud initial velocity and eventual acceler-
ations induced by the magnetic field switch-off. The fitted center are shown on Fig.
105. A quadratic fit of the vertical center corresponds to the gravitational acceleration
with a fitted value of 9.8(1)m/s2. It indicates that our pixel calibration, performed
independently, is accurate. Only the position for TOF larger than 20ms were used as
the cloud center prior to dilution is also not well measured.

Figure 104: The parameters of the fitted integrated profiles are shown as a function of the free
flight time. Widths squared as a function of time squared. Before 400ms2, the
vertical and horizontal widths do not reflect the actual cloud size as the density
is too large to have a good fluorescence picture. However, after 20ms, the cloud
is diluted enough to allow for the extraction of the widths which leads to cloud
temperature of 70µK. Due to the chip surface, the horizontal width is hard to
evaluate as it truncates the atomic profile at large TOF.

High saturation fluorescence imaging

To measure the 87Rb cloud characteristics, we use a highly saturated light pulse
coupled to a CCD sensor which collects fluorescence photons. This technique
is accurate (∼ 20%) when the cloud peak optical thickness is much smaller (at
least a factor 3) than the probe saturation. If the initial optical thickness is too
large, a preliminary expansion is necessary to obtain a fair representation of the
atom distribution. This feature appears clearly in time of flight measurements
which provide information on the cloud temperature and its initial size.

248



Figure 105: The parameters of the fitted integrated profiles are shown as a function of the
free flight time. Center of the fitted Gaussian as a function of time. The Vertical
position is a parabola as should be a fall in free flight. The horizontal position
gets nearer to the surface at long times.

7.2.4 Loading the MMOT

With this tool, we are now capable to discuss the optimization of the cold atom
cloud at its different stages. The first step consisted in improving the atom number of
trapped atoms in the MMOT at a position close to the magnetic trap by adjusting the
quadrupole fiels and the MMOT beams. The method we used consisted in adjusting
the horizontality and verticality of the MMOT beams with an orthogonal reflection
on the chip’s mirror and by centering the vertical beam on the top and bottom view-
ports. Then, the MMOT coils’ height and position was adjusted, keeping the beams
alignment fixed, in order to have the largest, highest symmetry and optimal position
(at the center of the chip’s "Z" wire) cloud.

Afterwards, the laser beams parameters (relative power of the cooling over the
repumping beam, total cooling power, different powers in the vertical beam with re-
spect to the horizontal beams, magnetic gradient...) were systematically scanned but
did not improve the MMOT performances. We found that 1/10 of relative repumping
power, highest cooling power available, balanced powers in all three directions and a
magnetic field gradient of 15G/cm were the optimal parameters.

The cooling laser detuning, on the other hand shows a clear optimum for loading
high atom numbers. This is represented on Fig. 106 were the asymptotic number of
loaded atoms is shown as a function of the cooling laser detuning δ1. There is a clear
maximum around −2Γ for the MMOT.

The measured profiles of the loaded cloud are represented on Fig. 107 where the
fluorescence signal of the side camera is shown with its integrated profiles. This
cloud corresponds to the initial density of 5(1)× 1010Atoms/cm3. From this picture,
one can extract the initial cloud’s widths (at 1/e2) in the Z (2.4mm) direction. In
the vertical direction, an initial double peak structure requires a double Gaussian
fit which gives two different widths. One (blue curve) is similar to the Z direction
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Figure 106: Asymptotic number of loaded atoms as a function of the cooling laser detun-
ing δ1. The maximum around −2Γ corresponds to a competition between the
radiation pressure and the trapping force.

(2.5mm) while the other (green curve) is much smaller (1.4mm). The origin of this
shape is not well understood but might result from different effects:

• A shadow effect due to the imbalance between the laser intensities of the counter
propagating beams. It increases the trap spring constant on the side of the mir-
ror as the beams are less attenuated by reflection than by transmission through
the cloud.

• A radiative force induced by photons emitted by the MMOT and reflected by
the mirror surface. It pushes the closest atoms away from the surface.

The optimized cloud at the end of the loading stage typically contains 5(1)× 109 atoms
trapped 5mm away from the chip’s surface at a temperature of 150(20)µK. At this
stage, the density is low enough to have an accurate picture of the cloud with-
out any time of flight. Indeed, we measure5 widths of (σ0,x = 2.9(2)mm, σ0,y =

3.5(2)mm and σ0,z = 2.4(1)mm). These values agree well with the y-axis inter-
cept of time of flight measurements which is accurate when the density is much
smaller than the saturation. The corresponding peak densityNat/

(
4/3πσ0,xσ0,yσ0,z

)
is 5(1)× 1010 atoms/cm3 as previously claimed. This is the limit of our high satura-
tion fluorescence detection. Therefore, for the following steps, the cloud will be ini-
tially too dense to be directly imaged and its widths will be evaluated from time of
flight measurements after 20ms free space expansion.

Lowering the cloud temperature and increasing its density are necessary to have
an efficient transfer to the magnetic trap. This is the reason why compression stages
and optical molasses were included at the end of our MMOT sequence.

7.2.5 Compressed MOT

During the compression stage, the magnetic gradient and the laser detuning δ1 are
increased in approximately 25ms. The increased gradients leads to a tighter con-

5 Due to the double peak feature, σ0,x is approximatively measured and the given value corresponds to
the width of the convolution between the two fitted Gaussians.
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Figure 107: Fluorescence snapshot of the cloud at the end of the 3D MOT loading. The inte-
grated profiles are shown along each sides and exhibit a double Gaussian shape
shown by the green and blue curves whose sum (black line) fits the experimental
data points (red dots). This is particularly striking in the (X direction) orthogonal
to the chip surface were the two gaussian centers are separated by 2mm. After
∼ 15ms, this double peak structure merges in a single shape which simplifies
the width measurement in this direction. In the vertical (Z) direction, this is less
problematic as the flat background does not influence the main peak width eval-
uation. Additionally, one can see that the cloud center is initially below (1mm)
the magnetic wire height. This is not voluntary as we are still in the process of
optimizing the molasses overlap with the magnetic trap. The subsequent com-
pression and displacement stage as well as the cloud center typical trajectory
during a time of flight measurement are represented along the cloud distribu-
tion.

finement. But due to the radiation pressure, the cloud size cannot decrease if the
scattering rate remains constant. This is the reason why the detuning is increased.
During this stage, a constant bias field directed along the Y direction is linearly in-
creased from6 0 to 3G. We found no clear optimum in the compression duration as
long as it was large compared to the magnetic field ramping time. However, the final
detuning has a large effect on the cloud final temperature as is shown on Fig. 108.
Keeping the other parameters constant (a final magnetic gradient of 30G/cm, a con-

6 The bias field depends on the magnetic gradient as we do not want the atomic cloud closer to the chip
than its horizontal width, to prevent atom losses.
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stant light intensity and a bias field amplitude of 4G) the final detuning was scanned
and the compressed cloud temperature measured with the previously described time
of flight technique. An example of such measurement is shown on Fig. 109. From an
initial temperature around 150µK, the final temperature linearly decreases with the
detuning down to approximately 50µK. Even the "horizontal temperature", which
is not a as well measured initially as the vertical temperature, displays a similar be-
havior. Increasing the detuning further than7 −16Γ did not improved the final cloud
temperature and, on the contrary, tended to increase the cloud temperature. During
this stage, about 20% of atoms are lost. It results in 4(1)× 109 atoms trapped in
the CMOT. As expected, the density increases to 1011 atoms/cm3 (σ0,x = 1.7(2)mm,
σ0,y = 2.5(2)mm σ0,z = 2.3(2)mm). Compared to the density in the initial magnetic
trap (3× 1011 atoms/cm3), we see that the obtained density is reasonable to assume
an efficient transfer.
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Figure 108: Evolution of the CMOT temperature as a function of the cooling detuning δ1
during the compression stage. The temperature measured along the X and Z
direction decrease linearly as a function of the detuning down to 50µK at δ1 =
−15Γ . The circled points correspond to the time of flight measurement displayed
on Fig. 109.

7.2.6 Molasses

At the end of the compression stage, the laser parameters are kept constant for 350µs
which corresponds to the commutation time required to ramp the quadrupole coils
current down to zero. The molasses detuning is then linearly swept during this last
step from δ1 = −10Γ to δ1 = −14Γ . The exact final detuning did not have a large
influence on the final temperature. The molasses duration is on the contrary an im-
portant paramaters for the final cloud temperature. Its effect is represented on Fig. 110

where the molasse duration was scanned between 0.1ms and 5ms. During ms, the

7 This large detuning is required by the highly saturated transition. Usually, smaller intensities are used
during this stage as well as smaller detunings. We did not try this sequence as the cloud characteristics
were already satisfying.
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temperature fluctuates strongly which might indicate the presence of residual eddy
currents producing uncontrolled magnetic fields. Indeed, sub-Doppler cooling mech-
anisms are hindered by non-zero magnetic fields [318], [319]. Nevertheless, after this
initial stage, the temperature drops rapidly. From the compressed cloud temperature
around 50µK, the final cloud temperature gets down to 12µK after 2ms. Increasing
further the molasses duration tends to increase the cloud temperature and to atom
losses. Indeed, the atoms are not magnetically trapped anymore and starts to fall out
of the laser beams.
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Figure 109: Typical time of flight measurement used for Fig. 108. TOF larger than 20ms are
represented as the density is initially two large for our imaging system. The bi-
modal distributions are merged which improves the Gaussian width extraction
as can be seen by the more regular behavior of the two orthogonal directions. A
discrepancy between the two temperature remains but almost vanishes when the
cloud is completely compressed (see Fig. 108 at δ1 = −16Γ ).
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Figure 110: Vertical temperature as a function of the molasses duration at fixed final detuning
δ1 = −14Γ . The temperature for short molasses time fluctuates a lot which might
be due to residual magnetic fields induced by eddy currents. However, the final
molasses temperature is stable below 12µK at 2ms.
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At the end of this stage, the atom cloud contains approximately 2× 109 atoms at
a temperature of 12µK. Its gaussian widths (1/e2) in all three directions are σ0,x =

1.6(1)mm, σ0,y = 2.3(2)mm and σ0,z = 2.6(2)mm corresponding to a density of
5(1)× 1010Atoms/cm3.

Atom cloud preparation

The production of a cold dense 87Rb cloud is performed in three steps. An
initial 1 s loading from the 2D MOT produces the MMOT cloud located 5mm
from the mirror surface. A compression and displacement stage of 25ms in-
creases the cloud density and moves it closer (2mm) to the surface. Finally, a
molasse stage of 2ms cools the atoms down to 12(10)µK. The cloud charac-
teristics are summarized in Tab. 16 where the Phase Space Density (PSD) has
been included to show the gain at each step.

Production step N T (µK) n0 (atoms/cm3) PSD

MMOT 5(1)× 109 150(20) 5(1)× 1010 2× 10−7

CMOT 4(1)× 109 50(10) 1011 2× 10−6

Molasses 2.0(5)× 109 12(2) 5(1)× 1010 8× 10−6

Table 16: Atom cloud characteristics at end of the different stages.

7.3 conclusion

From a completely empty lab room in the early 2014, we designed and developed an
apparatus that is starting to produce cold atom clouds and which offers the possibility
to create dual species atomic clouds. In this chapter, we discussed how the setup
described in Chap 6 was initially optimized to have a large number of atoms 2× 109

in a cold 12µK compressed cloud located close (2mm) to the mirror chip surface.
We also presented the detailed experimental sequence as well as the highly saturated
fluorescence technique we used to characterize the cloud. This imaging technique
enables us to extract reliable quantities (atom number, size, temperature) of the cold
atomic cloud as long as the optical thickness is much smaller than the saturation.
The next step, transferring the cloud to the chip’s magnetic trap, is already under
development and the forced evaporation should soon follow !

Magnetic trapping

We have just started to load atoms in the magnetic trap produced by the chip. For the
time being, we suddenly ramp up the current in the "Z" wire up to 40A and found an
optimal bias field along the Z direction of 50G which corresponds to a magnetic field
minimum 1mm away from the chip’s surface. We detect approximately 108 atoms re-
maining in the trap after 60ms holding time, during which the untrapped cloud falls
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out of the trapping region. Optical pumping and adjusted overlap of the molasses
with the magnetic trap is under way. The magnetic cloud temperature at this stage is
around 160µK. This temperature is promising as it is about half of the temperature
(300µK) that was used in our evaporating cooling model, which might lead to highest
atom number, and shortest evaporation duration, than initially planned.
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C O N C L U S I O N

This thesis reviewed most of the work undertaken during my three years in the Atom
Interferometry group in Toulouse in collaboration with Alexandre Gauguet, Matthias
Büchner and Jacques Vigué. It was split into two main parts.

The majority of the first and a half year, I worked on the realisation of some exper-
iments on the Lithium beam interferometer.
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It started with the Kerr modulator experi-
ment which produced diffraction in time of
both interferometric arms, leading to an het-
erodyne and homodyne detection of the fre-
quency side-bands generated in the atomic
spectrum. The experimental setup was previ-
ously built by Jonathan Gillot and my work
mostly consisted in implementing the differ-
ent experiments that allowed us to test a the-
oretical model we developed . The agreement
of the modulation amplitudes and phases mo-
tivated us to try a pedagogical experiment
which resulted in the first atomic fax and ra-
dio. This was presented in Chap. 2 and pub-
lished in [320].
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Then, in the process of developing additional
laser beams required for the Tune-Out wave-
length measurement, we implemented the atom
optics tool presented as the Pancharatnam de-
phasor. To understand the non-linear behaviour
of our phase shifter, a detailed analysis of the
experimental imperfections was developed. It al-
lowed us to investigate the smallest deviations
from the ideal Pancharatnam phase. Additional
treatment of the experimental fringes, both opti-
cal and atomic, supported this investigation. The
application of such a tool for precision atom in-
terferometry benefited from this detailed descrip-
tion to pre-empt the limits of such an apparatus.
This was presented in Chap. 3.
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λtune-out,2,-2

λtune-out,2,2

Next the theoretical modelling of 7Li dynam-
ical polarizability coupled with a sophisticated
experimental setup allowed us to perform the
first measurement of 7Li |F = 2,mF = 2〉 Tune-out
wavelength:

λ2,2,tune−out = 670.972097(15)[3]nm

which updates the list of accurately measured
Tune-Out wavelength for Alkali atoms with an
uncertainty at the level of other state of the art
measurements. This experiment also leads us to
question the validity of our theoretical model
which did not include hyperpolarizability effects
that can shift the exact position of Tune-Out
wavelengths.

The remaining year and a half, I worked with Julien Alibert and Alexandre Gau-
guet on the design and development of a new interferometer.

This new interferometer relies on a
Bose-Einstein Condensate produced at
a high repetition rate by combining
an intense 2D MOT source, a Mirror
MOT and an atom chip. This forms
the source of a large spatial separation
(> 1cm) fountain type interferometer
produced by Large Momentum Transfer
light pulses. In addition to investigating

the use of condensates in atom interferometry, this setup is build to perform a matter
neutrality test via an Aharonov-Bohm scalar phase. This is one of the reason why a
dual isotopes (85Rb/87Rb) source was designed in order to test for both charge equal-
ity and neutron neutrality. These specific constraints required to be combined which
needed both modelling (of the dual isotopes evaporation, of the transport from the
chip,...) and theoretical development of the LMT interferometric schemes. This de-
scription of the future interferometer was presented in Chap 5.
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In parallel, the development of the laser setup,
the magnetic field sources and the vacuum sys-
tem was undertaken in our new experimental
room. The journey from empty breadboards, sep-
arate vacuum pieces, raw copper wires, brand
new lasers system and new electronics to the
functional apparatus we have now was not par-
ticularly emphasized but was one of the most in-
teresting part of my thesis. Nevertheless, the tech-
nical choices as well as the apparatus performances were presented in great details
in Chap 6 and gave a good overview of each of these tasks.

In the last chapter, some of the recent perfor-
mances achieved with this apparatus were pre-
sented. As expected, we obtain a few billions
atoms in our initial Mirror MOT in approxi-
mately 1 s. Compression, displacement and mo-
lasses stages lead to 2× 109Atoms close to the
mirror surface at an ultra cold (12µK) temper-
ature. Magnetic trapping of this cloud is under
way and we hope to proceed further down to
BEC very shortly !
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F R E N C H I N T R O D U C T I O N

She felt... how life, from being made
up of little separate incidents which
one lived one by one, became curled
and whole like a wave which bore
one up with it and threw one down
with it, there, with a dash on the
beach.

Virginia Woolf, To the Lighthouse

Les ondes présentent un ensemble de propriétés mathématiques qui, conceptuelle-
ment, leur permettent de décrire un ensemble toujours plus large de phénomènes
physiques (mécaniques, acoustiques, électromagnétiques, gravitationnels,...). Une de
leurs propriétés, le principe de superposition, est particulièrement flagrante pour les
ondes électromagnétiques dans le domaine visible grâce à un phénomène fondamen-
tal : l’interférence.

interférences optiques

Figure 111
Anneaux de Newton obtenus

avec une lentille convexe
illuminée par une lumière laser.

Photo sous licence libre CC
BY-SA 3.0

La première observation de signaux interférentiels,
aujourd’hui connus sous le nom d’anneaux de New-
ton (voir Fig. 111), a été décrite par R. Boyle et R.
Hooke au xvii

e siècle siècle. Les zones de faible ou
de forte intensité lumineuse correspondent respec-
tivement à une interférence destructive ou construc-
tive issue de la superposition de deux ondes co-
hérentes (c.-à-d. ayant une relation de phase fixée).
Ces motifs (aussi appelés franges d’interférence) peu-
vent être très contrastés et permettent de mesurer des
perturbations à l’échelle de la longueur d’onde op-
tique. Les interféromètres optiques se sont largement
développés en partie grâce à cette très grande sen-
sibilité. Mais ils ont aussi permis de tester certaines
propriétés fondamentales des ondes électromagnétiques. Que cela soit la fameuse ex-
périence de Fizeau en 1851 sur la viscosité supposée de l’éther, le test de l’invariance
de la vitesse de la lumière par Michelson & Morley ou la récente détection d’ondes
gravitationnelles par l’interféromètre LIGO, les interféromètres optiques ont été, et
sont encore, des outils extrêmement sensibles pour tester des théories physiques.
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Figure 112: Schéma général d’un interféromètre.

Un interféromètre peut être résumé (voir Fig. 112) à deux chemins différents par-
courus par une onde et recombinés. Pour la lumière, ces deux chemins peuvent
soit correspondre à deux sources cohérentes (séparation de fronts d’onde tels que
pour les fentes d’Young), à deux vecteurs d’ondes différents (séparation d’amplitude
comme pour l’interféromètre de Michelson) ou à deux états de polarisation (sépa-
ration de l’état interne comme pour l’interféromètre de Fresnel-Arago). Les étapes
de séparations cohérentes (I et II) sont réalisées, respectivement pour ces précédents
interféromètres, par des fentes mécaniques, des interfaces air/verre et des matériaux
biréfringents. L’intensité lumineuse sur chacune des deux sorties de l’interféromètre
dépend de la différence de phase ∆Φ entre les deux chemins parcourus. Par exemple,
l’une des origines les plus simples de déphasage est la différence de chemin optique
(provenant d’une différence de distance ou d’une différence d’indice). Cependant,
d’autres phases, telles que des phases topologiques, par exemple la phase de Pan-
charatnam, peuvent être à l’origine d’un déphasage et ne dépendent pas exactement
du chemin suivi.

interférences d’onde de matière

En 1924, l’hypothèse de dualité onde-corpuscule formulée par L. de Broglie a étendu
le domaine de l’interférométrie aux particules massives. En effet, l’essence de cette
dualité est contenue dans la longueur d’onde de de Broglie, λdB, associée à toute
particule de quantité de mouvement p:

λdB =
h

p
' h

mv

où h est la constante de Plank et, à la limite non relativiste, m est la masse et v
la vitesse classique. Cette hypothèse a connu sa première vérification expérimentale
en 1927 lorsque C. Davisson et H. Germer ont réalisé la diffraction d’un faisceau
d’électrons incidents sur un cristal métallique [1]. Peu de temps après, la diffraction
d’atomes d’hélium fut réalisée par I. Estermann et O. Stern [2]. En plus d’apporter un
argument solide en faveur de la mécanique quantique, cette dualité a permis d’ouvrir
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le champ de l’optique à la physique atomique ce qui a mené à l’essor de l’optique
atomique. En effet, l’évolution des ondes électromagnétiques et des ondes atomiques
sont toutes régies par l’équation de Helmoltz :

∇2u+ k2u = 0 (112)

avec k2 = 2mE/ h2 pour les ondes de matières et k2 = E2/
(
 h2c2

)
pour les ondes

électromagnétiques. Cette analogie a cependant ses limites, car le vide est dispersif
pour les ondes de matières alors que la théorie électromagnétique est linéaire dans
le vide. Toujours est-il que les interféromètres à ondes atomiques sont devenus des
outils incontournables pour l’étude des interactions entre particules ainsi que pour
la caractérisation de leur structure interne.

Interféromètres à ondes de matière

Les premiers interféromètres à ondes de matière ont été réalisés avec des électrons
(Marton et al. 1952 [3], Möllenstedt and Düker 1955 [4]) et ont bénéficié de la diffrac-
tion produite par de fines lames de cristal et du biprisme à électron. Les inter-
féromètres à électrons ont ouvert la voie à l’holographie électronique qui permet
de nos jours de sonder la structure atomique à l’échelle de l’atome et permet de
cartographier les champs magnétiques et électriques. Les interféromètres à électrons
ont aussi été les premiers outils démontrant des propriétés fondamentales telles que
l’effet Aharonov-Bohm [5], [6] ou l’effet d’anticoïncidence (antibunching) résultant
du principe d’exclusion de Pauli pour les Fermions. La publication récente de Has-
selbach et al. [7] passe en revue l’interférométrie électronique pour de plus amples
détails.

Le premier interféromètre à neutron (H. Rauch et al. 1974 [8]) a vu le jour grâce
aux cristaux parfaits de silicone. Ces interféromètres ont démontré un grand nombre
de propriétés physiques telles que la phase de Berry ou l’effet Josephson magnétique
(voir le livre de Rauch [9]).

L’interféromètre à électrons de Marton ainsi que celui à neutrons de Rauch ont en
commun une géométrie à bras séparés similaire à celle de l’interféromètre optique
de Mach Zehnder. Cette géométrie particulièrement simple est répandue en inter-
férométrie.

Géométrie Mach Zehnder

L’interféromètre de Mach Zehnder s’inspire de l’interféromètre optique schématisé
sur la figure 113 développé à la fin du xix

e siècle par L. Mach et L. Zehnder. Ce
type d’interféromètre sépare l’amplitude de l’onde en deux chemins séparés spatiale-
ment qui sondent des environnements différents. Ces deux chemins sont souvent
appelés bras de l’interféromètre. Après réflexion sur des miroirs, les deux ondes sont
recombinées sur une seconde séparatrice. Les deux sorties de la seconde séparatrice
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présentent des signaux complémentaires qui oscillent en fonction de la différence de
phase ∆Φ accumulée par chaque bras. Ce dispositif expérimental permet de contrôler
∆Φ en introduisant des objets macroscopiques interagissant séparément avec chaque
chemin interférométrique.

Figure 113: Mach Zehnder optique composé de deux séparatrices et deux miroirs.

Spécificités des électrons et des neutrons

Les électrons sont relativement simples à produire, mais, à cause de la répulsion
de Coulomb, de larges flux ne sont accessibles qu’à haute énergie (> 10keV). Des
neutrons de basse énergie sont produits dans les réacteurs nucléaires qui ne sont pas
très courants et pour lesquels le flux disponible est relativement faible.

Les ondes atomiques, elles, ne sont pas sujettes à des interactions à longue portée
et peuvent être produites par des systèmes relativement simples. De plus, des tech-
niques de manipulation cohérente d’atomes ont vu le jour au milieu des années
80, grâce à l’avènement des sources laser, ce qui a rendu possible le développe-
ment d’interféromètres atomiques. Ces interféromètres ont permis l’investigation de
phénomènes physiques nouveaux en regard des précédents interféromètres à ondes
atomiques :

• La plupart des interféromètres à neutrons et à électrons font interférer une onde
de matière à une particule avec elle-même et une seule particule est présente,
en moyenne, dans l’interféromètre. Ceci est une conséquence directe des flux
relativement faibles ou de la forte interaction entre électrons qui peuvent mener
à des déphasages indésirables. Les atomes ne sont pas soumis à ces contraintes
et des effets à plusieurs particules (tel que les états comprimés en spin) font
même l’objet de développements spécifiquement appliqués à l’interférométrie.

• La gamme d’états internes accessibles pour les atomes est bien plus large que
pour les électrons ou les neutrons8. En particulier, il est possible de combiner
différentes caractéristiques (comme la polarisabilité ou le moment magnétique)
selon l’espèce atomique choisie. De plus, l’interaction de l’atome avec son en-

8 Pour lesquels seul l’état de spin est variable.
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vironnement peut être amplifiée de façon résonante ou spécifiquement sup-
primée, ce qui permet de contrôler la phase interférométrique précisément.

Les interféromètres atomiques ont été démontrés pour la première fois9 en 1991 et
ils sont depuis devenu un champ de recherche majeur en physique fondamentale.

interférométrie atomique

Passer en revue l’ensemble du champ de l’interférométrie atomique est une tâche
imposante qui a été entreprise dans quatre revues [11]–[14] et deux livres [15], [16].
Dans cette partie, nous allons décrire quelques caractéristiques générales de ces ex-
périences avec une attention particulière en ce qui concerne les aspects communs à
l’interféromètre développé à Toulouse.

1991: une année prolifique

En 1991, quatre groupes différents ont publié des résultats présentant des franges
d’interférence atomiques.

• O. Carnal et J. Mlynek [17] ont utilisé un jet d’hélium métastable dans une
expérience de type fentes d’Young.

• D. Pritchard et al. [18] ont développé un interféromètre de type Mach Zehnder
avec du sodium.

• M. Kasevich et S. Chu [19] ont mesuré l’accélération de la pesanteur avec un
interféromètre de type Mach Zehnder utilisant une source d’atomes de sodium
refroidis.

• Ch. J. Bordé et J. Helmcke et al. [20] ont mesuré la phase de Sagnac à l’aide d’un
dispositif de franges de Ramsey sur du calcium en absorption saturée.

Ces interféromètres (Mach Zehnder, fentes d’Young et Ramsey) utilisent différents
types d’éléments diffractant (structures mécaniques pour les deux premiers et réseaux
optiques pour les deux derniers) ainsi que différentes sources d’atomes (jets ther-
miques ou nuages d’atomes froids); ils présentent déjà une large diversité. Depuis,
beaucoup d’autres interféromètres ont vu le jour.

Type d’interféromètres

Un interféromètre atomique peut être produit selon différentes méthodes. L’une des
plus répandues recombine des ondes atomiques ayant eu différents états d’impulsions

9 La spectroscopie Ramsey d’atomes et de molécules a existé bien avant ces interféromètre et peut être con-
sidérée, à strictement parler, comme un interféromètre atomique réalisé sur l’état interne [10] (ce type
d’interféromètre est similaire aux interféromètres à polarisation en optique). Cependant, l’absence de
structure diffractante empêche habituellement de considérer ces expériences comme des interféromètres
atomiques.
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avant d’être recombinées dans le(s) même(s) état(s) afin d’obtenir des franges d’inter-
férences. Ce type d’interféromètre comprend les analogues à la géométrie Mach
Zehnder ([18], [19], [21]–[33]) qui peut séparer spatialement les deux bras par une dif-
férence de direction (ou de vitesse) de propagation. La combinaison de cette géométrie
avec des états atomiques internes différents sur chaque bras interférométrique donne
lieu à la configuration dite de Ramsey-Bordé ([20], [34]–[45]).

En plus de ces deux types d’interféromètres, il se trouve un certain nombre de
géométries différentes qui permettent de réaliser un interféromètre atomique. Par
exemple, l’interféromètre de Talbot-Lau10 ([47], [48]) est un interféromètre qui ex-
ploite la diffraction en champs proche, généralement produite par des structures ab-
sorbantes. Ces interféromètres bénéficient habituellement de signaux de plus grande
intensité, car la condition de cohérence transverse de la source n’est plus néces-
saire. Des interféromètres utilisant différents états internes peuvent aussi être décrits
comme des interféromètres atomiques avec par exemple, la méthode de Ramsey à
champs oscillants séparés [49] ou la technique d’écho de spin ([50], [51]) qui peu-
vent être décrit comme un phénomène d’interférence dont chaque bras évolue dans
l’espace des états internes. Ces méthodes ont été initialement développées pour la
spectroscopie et sont aujourd’hui plus du domaine des horloges atomiques. Une
autre méthode peut être vue comme l’équivalent temporel des franges d’interférences
spatiales ; elle est généralement regroupée sous la dénomination d’interféromètre en
temps ([52]–[55], [321]), car les franges d’interférences évoluent dynamiquement à un
point donné de l’espace.

Enfin, certains interféromètres reposent sur des géométries confinées qui tirent
parti du développement des atomes froids et des puces à atomes pour produire des
signaux d’interférences avec des atomes guidés.

Processus de diffraction

Les outils d’optique atomique permettant de produire une superposition cohérente
d’ondes de matière peuvent aussi être séparés en catégories avec les principalement
des structures mécaniques (absorbantes) qui ont été utilisées aux débuts de l’interfé-
rométrie atomique et des réseaux optiques qui sont de nos jours un des outils les plus
largement exploités. Les réseaux optiques peuvent remplir le rôle de réseau de phase
et/ou de réseau absorbant. Le régime de diffraction de ces réseaux peut être subdi-
visé selon que le processus adresse le même état interne (diffraction de Kapitza-Dirac,
de Bragg ou de Raman-Nath, voir Chap. 1) ou des états internes différents (diffraction
Raman). Quelle que soit la situation, ce processus de diffraction produit une super-
position cohérente d’états d’impulsion séparés par un nombre entier d’impulsions kL
des photons optiques.

Cependant, avec l’essor des sources d’atomes ultra froids, tel que les condensats
de Bose-Einstein (CBE), de nouvelles techniques très sélectives en vitesse ont pu voir

10 L’interféromètre à agrégats de C60 développé dans le groupe de M. Arndt [46] est un exemple notable
d’interféromètre de Talbot-Lau. De plus, des objets de plus en plus massifs ont été utilisés par ce groupe
pour démontrer la dualité onde-corpuscule sur des systèmes de plus en plus complexes.
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le jour telles que les oscillations de Bloch ([59]) ou la diffraction de Bragg d’ordre
multiple. Parallèlement, des interféromètres utilisant deux espèces atomiques ont pu
être développés grâce à des méthodes plus complexes telle que la double diffraction
Raman à quatre ondes [60].

L’on peut aussi citer d’autres méthodes, comme le Stern et Gerlach longitudinal
qui couple l’état d’impulsion avec l’état interne à l’aide de gradients de champs mag-
nétiques, ou les méthodes de diffraction en temps, telle que la réflexion sur une onde
évanescente modulée ou sur des potentiels dépendants du temps (comme cela sera
décrit au Chap. 2) qui permettent de produire des interféromètre en temps.

Source d’atomes

Un dernier critère permet de différencier les interféromètres atomiques : la source
d’atomes. À leur début, la majorité des interféromètres atomiques utilisaient un jet
d’atomes (effusif ou supersonique), éventuellement refroidi, qui produisait des flux
atomiques modestes et nécessitait des détecteurs très performants. C’est une des
raisons pour laquelle les premiers interféromètres atomiques utilisaient soit des al-
calins, soit des atomes de gaz nobles dans un état métastable. Suite au développement
des sources d’atomes froids, un nouveau domaine d’interféromètrie s’est développé,
bénéficiant de temps d’interaction plus longs ce qui améliora la sensibilité de ces
appareils.

L’utilisation de condensats de Bose-Einstein comme source d’atomes avait été ini-
tialement rejetée, car les quelques expériences initiales avaient mis en évidence l’effet
préjudiciable des interactions interatomiques sur les déphasages interférométriques.
Cependant, la possibilité d’utiliser des condensats dans des états comprimés [49] ou
ayant une distribution en vitesse extrêmement fine permettant l’augmentation de la
séparation spatiale entre les bras atomiques [61] a renouvelé l’intérêt pour ce type de
source en interférométrie atomique.

Le tableau 17 récapitule l’ensemble des interféromètres sus-cités. Cette liste ne
comptabilise pas toutes les expériences d’interférométrie atomique, mais elle permet
tout de même de mettre en avant le prépondérance des interféromètres à atomes
froids, avec l’exemple clair du rubidium, pour les interféromètres atomiques actuels.
De plus, le développement récent d’interféromètres atomiques à double espèce ne
date, si ce n’est la démonstration initiale de M. Weitz et al. [62], que de 2013.

11 Cette valeur est la seule disponible dans la littérature pour estimer la température initiale de leur nuage.
12 Ou, de façon plus précise, Transitions Raman Sélectives en Vitesse (TRSV) qui filtrent la distribution en

impulsion initiale du nuage.

293



Atome Source Diffraction Groupe Référence

H∗
Jet thermique

Jet refroidi
Stern-Gerlach

Echo de photon
J. Baudon
T. Hänsch

[63]
[39]

He∗
Jet thermique

Jet refroidi
Mecanique

Fentes matérielles
O. Carnal and J. Mylnek
J. P. Toennies

[17]
[64]

3He Jet refroidi Stern-Gerlach U. Spinola [50]

Li
Jet thermique
Jet thermique

Spin echo
Bragg

R. Grimm
J. Vigué

[51]
[24]

Ne∗ Jet thermique Bragg S. A. Lee [22]

Na

Jet thermique
Atomes froids (30µK)

CBE
Jet thermique

Mecanique
Raman

Kapitza-Dirac
Mecanique

D. E. Pritchard
M. Kasevich and S. Chu
W. D. Phillips
A. D. Cronin

[18]
[19]
[48]
[25]

Mg Jet thermique Ramsey W. Ertmer [34]
Ar∗ Jet thermique Kapitza Dirac E. M. Rasel [21]
K Jet refroidi Mécanique S. Li [47]

Ca
Jet thermique
Jet thermique

Ramsey
Ramsey

C. J. Bordé
N. Ito

[20]
[35]

85Rb
Jet thermique
Atomes froids
Atomes froids

Ramsey
Modulation temporelle

Echo de photon

A. Weis
T. Sleator and B. Dubettsky
A. Kumarakrishnan

[36]
[53]
[55]

87Rb

Atomes froids
CBE
CBE
CBE

Atomes froids
Atomes froids (8µK)
Atomes froids (3µK)

Atomes froids (0.3µK)
CBE
CBE

CBE (0.004µK)
Atomes froids (2µK)

CBE
Atomes froids (1.8µK)
Atomes froids (0.3µK)
Atomes froids (3µK)
Atomes froids (4µK)

Atomes froids (30µK11)

Onde évanescente
Bragg

Potentiel à double puits
Bragg, confiné
Echo de réseau

Raman12

Oscillations de Bloch
Raman
Ramsey
Bragg

Multi-Bragg
Raman

Ramsey, confiné
Raman
Raman
Raman
Raman
Raman

A. Aspect
T. Kuga
J. Schmiedmayer
S. Wu
M. Prentiss
W. Ertmer
F. Biraben
P. Bouyer
M. Oberthaler
N. P. Robins
M. Kasevich
F. P. D. Santos
P. Treutlein
A. Bresson
J. Luo
A. Peters
G. N. Tino
Z. Zhou

[54]
[23]
[65]
[26]

[321]
[59]
[40]
[27]
[49]
[28]
[29]
[61]
[58]
[30]
[31]
[32]
[33]
[44]

Sr Atomes froids (1.2µK) Bragg G. M. Tino [66]

Cs

Jet refroidi
Jet thermique

Atomes froids (1.5µK)
Atomes froids(1.2µK)

Onde évanescente
Raman
Raman
Raman

J. Dalibard
M. Kasevich
S. Chu
A. Landragin

[52]
[37]
[38]
[41]

(85Rb/87Rb)

Atomes froids(6µK)
Atomes froids(1µK)

CBE
Atomes froids(6µK)

Raman-Nath
Raman
Bragg

Raman

M. Weitz
A. Bresson
N. P. Robins
M. Zhan

[62]
[42]
[67]
[68]

(39K/87Rb) Atomes froids (30µK) Raman E. M. Rasel [43]
(40K/87Rb) Atomes froids (20/3µK) Raman P. Bouyer and A. Landragin [45]
(87Sr,88Sr) Atomes froids (1µK) Atomes confinés G. M. Tino [69]

Table 17
Sélection d’interféromètres atomiques classés par espèce atomique. La grande variété des
méthodes de diffraction ainsi que l’importance des sources d’atomes froids sont mises en
évidence par la différence entre le nombre d’interféromètres utilisant les atomes les plus

légers (premier quart de tableau, expériences souvent pionnières) et le nombre
d’interféromètres à base de rubidium refroidi.
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mesures de précision

Les interféromètres atomiques sont rapidement devenus des outils de mesure de pré-
cision en plus de leur utilité en terme d’expérience de principe. Ces vingt dernières
années, ils ont fait la preuve d’une très large sensibilité et d’une grande exactitude, et
ce dans de nombreux domaines. La phase interférométrique combine en effet dif-
férentes contributions avec des termes provenant notamment de l’interaction des
atomes avec des potentiels externes, des trajectoires suivies par l’atome à la fois dans
l’espace réel (phase dynamique) ou dans l’espace des états internes. Ces différents
effets peuvent être étudiés en eux-même ou peuvent être mis à contribution pour
mesurer des propriétés physiques plus fondamentales, voire pour tester les théories
physiques.

Déphasage dû aux interactions

L’intérêt porté aux interféromètres atomiques provient en partie de leur très grande
sensibilité à des perturbations induites par des potentiels externes. Par exemple, dans
le cadre de la théorie des perturbations au premier ordre, un potentiel statique U va
modifier le vecteur d’onde d’un atome, initialement k0 en espace libre, selon la loi de
conservation de l’énergie :

 h2k20
2m

=
 h2k2p
2m

+U

où kp désigne le vecteur d’onde dans la zone d’interaction. L’hypothèse perturbative,
U�  h2k20 (2m), nous permet de donner une forme approchée de kp :

kp ' k0 −
mU
 h2k0

Ainsi, nous pouvons exprimer le déphasage induit par l’effet de ce potentiel externe
selon :

φp =

∫
(kp − k0)ds = −

∫
U
 hv
ds = −

∫
U
 h
dt (113)

où la modification de la trajectoire classique de l’atome, induite par l’effet du poten-
tiel d’interaction, a été négligée et où nous avons utilisé le fait que la vitesse de groupe
v est reliée au chemin parcouru s par ds/dt = v, t étant le temps de propagation.

Par exemple, une perturbation constante appliquée pendant 100µs mesuré avec
une sensibilité sur la phase interférométrique de 10mrad permet de détecter des po-
tentiels d’interaction de l’ordre de U = 6× 10−14 eV ce qui, en regard de l’énergie
cinétique des atomes (de l’ordre de quelquesmeV pour des atomes thermiques) mon-
tre une sensibilité relative de l’ordre de 1011.
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Selon l’origine du potentiel perturbatif, il est possible d’obtenir, par interférométrie
atomique, des informations sur la structure atomique tels que :

• L’interaction avec un champ électromagnétique permet de procéder à des mesures
de polarisabilité statique et dynamique [70], [71] (voir Chap. 4).

• L’ajout d’un gaz sur le trajet de l’un des bras interférométriques induit des
déphasages et des collisions par interaction de type Van der Waals qui peuvent
être décrites par un indice de réfraction effectif et mesurées par interférométrie
[72], [73].

• La présence de surface proche des trajectoires atomiques peut aussi permettre
d’accéder à des régimes d’interaction de type Casimir-Polder [74], [75].

Effets inertiels

Une autre contribution importante au déphasage interférométrie peut être regroupé
dans la catégorie d’effets inertiels. En effet, l’équation (113) met clairement en évi-
dence le fait que la phase interférométrique dépend des trajectoires atomiques au
sein de l’interféromètre. C’est pourquoi des accéléromètres et des gyromètres atom-
iques ont pu voir le jour et sont même devenus des instruments sensibles, à une
seconde, aux niveaux de 4× 10−8m/s2 [31] et de 10−8 rad/s respectivement. Ces
interféromètres permettent de mesurer, au niveau atomique, l’accélération gravita-
tionnelle [19], [76], les gradients de gravité [77] et les rotations [37], [41].

La sensibilité de ces interféromètres augmente proportionnellement à différence
d’impulsion keff entre les deux bras et avec le carré du temps interférométrique T .
C’est pourquoi les développements en vue d’augmenter l’extrême sensibilité de ces
appareils sont en partie dirigés vers de plus grandes séparatrices en impulsion [61] ou
vers de plus long temps d’interactions. Ceci étant possible avec de grands appareils,
ou des expériences en micro-gravité [27], [78], voire même avec des projets spatiaux
[80].

Phases topologiques

En plus d’être des outils en physique atomique et des capteurs inertiels fins, la
sensibilité à la phase de la fonction d’onde elle-même a été mise en application
pour accéder à des déphasages qui ne rentrent pas dans la catégorie des phases
dynamiques (telles que décrites par l’équation (113)). Les phases Aharonov-Bohm,
Aharonov-Casher et phases de Berry sont quelques exemples de telles phases. Elles
correspondent respectivement à une situation où les deux bras interférométriques tra-
versent des zones où le potentiel vecteur est différent (pour des particules chargées),
où le champ électrique est différent (pour des dipôles magnétiques) ou de façon plus
générale, lorsque l’état atomique interne évolue selon certaines transformations cy-
cliques (voir le Chap. 3). Cette catégorie de phases ne peut être détectée que par
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interférométrie, car elles ne sont pas issues d’une différence d’énergie (c.-à-d. d’une
force) qui peut, elle, être détectée par la modification d’une trajectoire atomique.

Mesure de constantes fondamentales

La très grande sensibilité aux effets inertiels a été utilisée pour mesurer d’une nou-
velle manière la constante de gravitation G. L’incertitude relative sur cette constante
était de 150 ppm selon le CODATA 2002 ce qui était dû à une dispersion des mesures
préalablement effectuées. Utiliser l’interférométrie atomique [33] pour évaluer cette
constante a permis de s’affranchir de certains effets systématiques de par la différence
conceptuelle importante apportée par la mesure au niveau de l’atome libre. Une autre
mesure de constante fondamentale, utilisant le caractère quantifié du nombre de pho-
tons transmis avec des séparatrices lumineuses, a permis d’évaluer la constante de
structure fine α avec une très grande exactitude grâce à une mesure du rapport h/m
[59].

Test de physique fondamentale

Pour finir, les interféromètres atomiques sont des outils suffisamment sensibles pour
explorer de nouvelles théories physiques. Un exemple parmi la large gamme de tests
fondamentaux est par exemple le panel d’expériences menées sur la décohérence. Des
processus très différents ont ainsi été mis à jour tels que le couplage avec l’environnement
ou la décohérence progressive lorsque les chemins sont couplés à l’état atomique in-
terne.

Certains interféromètres atomiques sont de nos jours dédiés à des tests du principe
d’équivalence [43], [80], à la recherche de déviation supposée de la loi de gravitation
universelle [81], [82] ou à des tests de la neutralité de la matière (voir Chap. 5).

plan de la thèse

Dans ce contexte d’interférométrie atomique, le travail que j’ai effectué au sein de
l’équipe de Toulouse se situe en partie dans la continuité de l’essor initial, maintenant
sur le déclin, d’interféromètres à jet atomique et en partie dans le champ plus récent
d’interféromètre à atomes froids pour des mesures de précision. En effet, durant mes
trois années de thèse, j’ai travaillé sur l’interféromètre à jet de lithium développé à
Toulouse dans les années 2000. En particulier, j’ai contribué aux expériences menées
sur le battement d’ondes de matières, sur l’utilisation d’une phase topologique en in-
terférométrie, sur une mesure de précision de la longueur d’onde d’extinction (tune-
out), ainsi que sur des expériences de décohérence induite par un rayonnement de
type corps noir. Parallèlement, j’ai contribué au développement d’un nouvel inter-
féromètre utilisant une source de deux isotopes atomiques condensés. Cette nouvelle
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expérience s’inscrit dans la lignée des mesures mettant en jeu des interactions élec-
tromagnétiques avec en particulier l’objectif de tester la neutralité de la matière.

Assez naturellement, cette thèse sera donc divisée en deux parties :

Expériences basées sur l’interaction électromagnétique :

La première partie est dédiée aux expériences réalisées sur l’interféromètre à jet de
lithium qui sera préalablement décrit dans le Chap. 1. Les chapitres suivants décriront
chacun une des expériences qui, par ordre d’apparition, sont :

• Chap 2: Une expérience de modulation en temps utilisant un modulateur à effet
Kerr, facilement transposable à d’autres systèmes, qui nous a permis de mettre
en évidence la détection homodyne et hétérodyne du battement des ondes de
matières modulées.

• Chap 3: Un déphaseur de Pancharatnam d’un nouveau genre permettant de
transférer cette phase géométrique de la lumière aux atomes et ainsi de scanner
la phase du signal d’interférence atomique.

• Chap 4: La première mesure de la longueur d’onde d’extinction du 7Li dans
le niveau 2S1/2 |F = 2,mF = 2〉 à laquelle sa polarisabilité dynamique devient
nulle.

Conception d’un nouvel interféromètre à CBE :

La deuxième partie de cette thèse décrit le travail de conception et de développe-
ment du nouveau dispositif expérimental basé sur une source d’atomes condensés
contenant deux isotopes de rubidium. Les objectifs expérimentaux, en particulier
en terme de performance d’un test de neutralité de la matière, ainsi que les out-
ils théoriques nécessaires au dimensionnement de ce dispositif seront tout d’abord
présentés dans le chapitre 5. Dans ce chapitre, nous discuterons des spécificités de
la condensation d’un nuage de ces deux isotopes, de la problématique du transport
du condensat ainsi que des premiers résultats théoriques sur la modélisation d’un
interféromètre à pulses multiples de type Mach Zehnder. Puis, un chapitre beaucoup
plus technique présentera à la fois le dispositif expérimental (système à vide, sources
laser, sources de champs magnétiques...) ainsi que ses performances en regard des
besoins pour des mesures de précision. Enfin, le dernier chapitre discutera des pre-
miers signaux obtenus avec ce dispositif et des performances de la source d’atomes
refroidis déjà obtenue.
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F R E N C H C O N C L U S I O N

Ce manuscrit a présenté la majorité du travail réalisé durant ces trois dernières an-
nées au sein du groupe d’interférométrie atomique de Toulouse sous la tutelle de
Alexandre Gauguet, Matthias Büchner et Jacques Vigué. Il est divisé en deux parties.

La première année et demie, j’ai travaillé sur la mise en place et l’interprétation de
quelques expériences réalisées avec l’interféromètre à jet de lithium.
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Nous avons commencé par une expérience
de diffraction en temps des deux bras inter-
férométriques à l’aide d’un modulateur de phase
basé sur l’effet Kerr. Cela nous a permis de
démontrer par détection homodyne et hétéro-
dyne la présence de composantes de fréquence
latérales produites dans le spectre atomique. Le
dispositif expérimental avait été précédemment
construit par Jonathan Gillot et mon travail a con-
sisté à implémenter les différentes expériences
afin de les confronter à un modèle théorique que
nous avons développé. Le très bon accord des am-

plitudes et des phases de modulation avec notre modèle nous a menés à réaliser une
expérience pédagogique consistant en un fax et une radio à onde de matière. Ces
expériences ont été présentées dans le Chap. 2 et ont été publiées dans [320].
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Puis, alors que nous mettions en place le
système optique nécessaire à la mesure de la
longueur d’onde d’extinction ("tune-out wave-
length"), nous avons démontré l’applicabilité
d’un déphaseur de Pancharatnam pour les on-
des atomiques. Afin d’interpréter le caractère
non linéaire de notre déphaseur, une analyse dé-
taillée des différentes imperfections expérimen-
tales a été présentée. Cette étude a été par-
tiellement confirmée par le traitement de nos
franges d’interférences obtenues à l’aide des in-
terféromètres optiques et atomiques. Cette étude
nous a permis de quantifier l’actuelle exactitude
limite de ce type de système et de présenter
ses intérêts potentiels lorsqu’il est appliqué à
l’interférométrie atomique.
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λtune-out,2,-2

λtune-out,2,2

Dans le chapitre 4, nous avons présenté un
modèle théorique de la polarisabilité dynamique
du 7Li, ainsi que le dispositif expérimental qui
nous a permis de mesurer, pour la première
fois, la longueur d’onde d’extinction de l’état
|F = 2,mF = 2〉:

λ2,2,tune−out = 670.972097(15)[3]nm

Cette mesure contribue à la connaissance des
longueurs d’ondes d’extinction des Alcalins avec
une précision similaire à celle des autres mesures
de précisions réalisées ces dernières années.
Cette expérience nous a aussi amenés à remettre

en question le modèle théorique utilisé qui ne prend pas en compte les effets d’ordres
supérieurs avec notamment le fait que l’hyperpolarisabilité déplace la position de la
longueur d’extinction linéairement avec l’intensité.

L’année et demie restante, j’ai participé, avec Julien Alibert et Alexandre Gauguet,
au développement et au dimensionnement d’un nouvel interféromètre atomique.

Ce nouvel interféromètre est basé sur
un condensat de Bose-Einstein produit
avec un large taux de répétition grâce
à la combinaison d’une source d’atome
intense (Piège Magnéto-Optique, PMO,
2D), d’un PMO 3D sur miroir et d’une
puce à atome. Cette source est conçue
pour réaliser un interféromètre atom-
ique en fontaine bénéficiant d’une large

séparation spatiale des bras atomiques grâce à des séparatrices optiques à large dif-
férence d’impulsion. En plus de permettre l’étude de l’utilisation de condensats en in-
terférométrie, ce système a pour but de tester la neutralité de la matière à l’aide d’un
déphasage de type Aharonov-Bohm scalaire. Pour cette raison, la source est conçue
de façon à permettre l’utilisation de deux isotopes du rubidium 85Rb/87Rb afin de
tester à la fois la neutralité du neutron et l’égalité des charges protonique et électron-
ique. Ces objectifs nous ont menés à réaliser des simulations (de l’évaporation sym-
pathique entre isotopes, du transport dans un réseau optique d’un condensat depuis
une position proche de la puce à atome, etc...) et à développer des outils théoriques
pour les interféromètres à séparatrices multiples. La présentation de ce travail a été
réalisée dans le chapitre 5.
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La réalisation pratique du système à vide, des
sources de champs magnétiques et du système
laser a aussi fait partie de mon travail de thèse.
L’ensemble du processus, partir d’une salle vide,
de tables optiques nues, des chambres en ti-
tane, de fil de cuivre brut, de systèmes laser et
d’électronique en pièce détachée jusqu’au sys-
tème fonctionnel actuel, n’a pas été particulière-
ment mis en avant dans cette thèse, mais a été
définitivement formateur et motivant. Toutefois, certains choix techniques ainsi que
les performances globales du système actuel ont été présentés avec force détails dans
le chapitre 6 et donnent un bon aperçu des différentes tâches associées.

Enfin, dans le dernier chapitre, les récentes
performances de ce système ont été présentées.
Comme nous l’attendions, quelques milliards
d’atomes sont capturés dans le PMO miroir
en une seconde. Des étapes de compression,
de déplacement et de mélasse nous permettent
d’obtenir un nuage contenant 2× 109Atomes
proches de la surface à une température ultra

froide (12µK). Nous sommes en train de transférer ces atomes dans le piège magné-
tique et espérons poursuivre la route jusqu’au condensat de Bose très prochainement
!
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