N
N

N

HAL

open science

Automata for relation algebra and formal proofs

Damien Pous

» To cite this version:

Damien Pous. Automata for relation algebra and formal proofs. Computer Science [cs]. ENS Lyon,

2016. tel-01445821

HAL Id: tel-01445821
https://hal.science/tel-01445821
Submitted on 25 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/tel-01445821
https://hal.archives-ouvertes.fr

- ECOLE NORMALE SUPERIEURE DE LYON -
Laboratoire de I'Informatique du Parallélisme - UMR5668 - LIP

HABILITATION A DIRIGER DES RECHERCHES

présentée et soutenue publiquement le 27 septembre 2016 par

Damien POUS

Automata

for relation algebra and formal proofs

devant la commission d’examen formée de

Luca
Arnaud
Georges
Peter
Olivier
Francois
Igor

ACETO
DURAND
GONTHIER
JIPSEN
LAURENT
POTTIER
WALUKIEWICZ

rapporteur

examinateur

examinateur

rapporteur et examinateur
examinateur

rapporteur et examinateur
examinateur

Acknowledgements

Je tiens tout d’abord a remercier Lucas Aceto, Peter Jipsen et Frangois Pot-
tier, qui ont accepté de relire ce manuscrit puis fait de nombreuses remar-
ques afin de 'améliorer. Je remercie également Arnaud Durand, Georges
Gonthier, Olivier Laurent et Igor Walukiewicz qui ont accepté de prendre
part au jury.

Viennent ensuite les collegues, étudiants, anciens professeurs ou amis,
hurluberlus sans qui ce travail n’aurait jamais vu le jour: de Jacques Sauloy
a Filippo Bonchi, en passant par Daniel Hirschkoff, Tom (de Savoie), Mon-
strencage et Iouri.

Je suis également redevable aux institutions: le CNRS pour la liberté
qu’il m’accorde, Plume pour sa convivialité inégalée, et le LIP pour l'air
frais et le nouveau point de vue qu’apportent chaque déménagement sur
les problémes qui nous résistent trop.

Merci enfin & Pamitos et nos joyeux trublions, Lucas et Hugo.

Contents

Introduction

1 Relation algebra
1.1 The (positive) calculus of relations
1.2 Theideal fragment: Kleene algebra
1.3 The strange fragment: allegories
1.4 Putting it all together: Kleene allegories
1.5 Kleene algebrawithtests.

2 Automata algorithms
2.1 Deterministicautomata.
2.2 Non-deterministicautomata
2.3 Automata with a large alphabet

3 Automation in the Coq proof assistant
3.1 Relation algebraand KATinCoq
32 Casestudies
3.3 Discussiono
3.4 Appendix: overall structure of the library

4 Abstract coinduction
4.1 Notation and preliminary material
42 Knaster-Tarski and Compatibility
43 Examples
44 Compatibilityup-to L.
45 Symmetryarguments
4.6 Example: up-to congruence for CCS
4.7 Respectful vs.compatible
4.8 Parameterized coinduction
49 Extensional characterisation of the companion
410 Discussion oo

Notes

AN 0 U1 W W

Introduction

We review in this manuscript several results we obtained since our PhD.
We organised those results into four chapters corresponding to four distinct
but related fields in computer science.

The first chapter is a biased introduction to the calculus of relations. This
tield was initiated by DeMorgan, Peirce and then Schroder in the late XIXth
century, and studied quite extensively by Tarski in the 1940’s. It consists in
understanding the algebraic and algorithmic properties of operations on
binary relations. Our introduction is biased in the sense that we remove
the most problematic operation from the beginning, set-theoretic comple-
ment, and that we consider reflexive transitive closure. This brings us to
the concepts of allegories (Freyd and Scedrov, Andréka and Bredikhin) and
Kleene algebra (Kleene, Conway, Kozen); and this allows us to state our
recent results with Paul Brunet on their least common generalisation.

The second chapter is about algorithms for checking equivalence of
finite automata. Such algorithms provide decision procedures for Kleene
algebra; they are also a basic block for verification software: programs that
make it possible to test the validity of other programs. There we present in
detail a new algorithm we have discovered with Filippo Bonchi, based on
a proof technique from concurrency theory: bisimulations up to congruence.
We also present an extension of a standard algorithm by Hopcroft and Karp
to deal with symbolic automata. Such automata are useful when working on
large alphabets.

The third chapter pertains to the domain of formal mechanised proofs,
where one uses the computer to write and proofcheck mathematical proofs
(be they proofs of mathematical theorems, or correctness proofs for pro-
grams or systems). There, we discuss some applications of a library we de-
veloped for the Coq proof assistant, where we provide tools for automated
reasoning in the calculus of relations, notably for Kleene algebra. These
automation tools were obtained by implementing and certifying automata
algorithms as well as important results about Kleene algebra.

In the last chapter we present an abstract theory of coinduction, a math-
ematical device coined by Milner in concurrency theory. This tool provides

2 Contents

powerful proof methods, especially for the study of state-based systems;
it was a surprise to discover that it could also be used to obtain efficient
algorithms, as in the second chapter. Our abstract theory of coinduction is
a refinement of the work of Sangiorgi in the 1990’s; it makes it simpler to
provide enhancements of the coinductive proof method, and to mechanise
them in proof assistants. We believe that it could help us to find new deci-
sion procedures for the calculus of relations, and then to certify them.

We point to the publications we assembled to obtain this manuscript
in the notes on page 89.

Notation

We denote sets by capital letters X,Y, S,T"... and functions by lower case
letters f, g, ... Givensets X and Y, X xY is their Cartesian product, XY is
their disjoint union and XV is the set of functions f: Y — X. The collection
of subsets of X is denoted by P(X). For a set of letters ¥, ¥* denotes the
set of all finite words over X; e the empty word; and uv the concatenation
of words u, v € ¥*. We use 2 for the set {0,1}.

Chapter 1

Relation algebra

We consider algebraic and algorithmic questions related to binary rela-
tions. On the algebraic side, we want to understand and characterise the
laws governing the behaviour of standard operations on relations: union, in-
tersection, composition, converse, etc.... On the algorithmic side, we look
for decision procedures for equality or inclusion of relations.

We start by defining formally the calculus of relations; then we focus on
two well-studied fragments of particular importance: Kleene algebras and al-
legories. Trying to unify those fragments lead us to a new result with Brunet,
and several open questions.

We also define Kleene algebra with tests, a framework introduced by
Kozen making it possible to deal with both relations and predicates.

1.1 The (positive) calculus of relations

Given a set P, a relation on P is a set of pairs of elements from P. For in-
stance, the usual order on natural numbers is a relation. In the sequel, re-
lations are ranged over using letters R, S, their set is written P(Px P), and
we write p R ¢ for (p,q) € R.

The set of relations is equipped with a partial order, set-theoretic in-
clusion (C), and three binary operations: set-theoretic union, written R+ S,
set-theoretic intersection, written R N .S, and relational composition:

R-SE2{{p,q)|Ire P, pRr N7Sq} .

It also contains three specific relations: the empty relation, written 0, the
universal relation, written T, and the identity relation:

12 {(p,p) |pe P} .

Lastly, one can consider three unary operations: set-theoretic complement,
written R¢, converse (or transpose), R°, and reflexive-transitive closure, R*,

4 Chapter 1. Relation algebra

defined as follows:

R {(p,q) | -pRq} ,
R°2{(p,q) | ¢Rp} ,
R* £ {{p,q) | 3po,---,Pn Po=P A pn=q A Vi<n, p; Rpit1} .

We restrict ourselves to this list of operations here, even though it is not
exhaustive. These operations make it possible to state many properties in a
concise way, without mentioning the points related by the relations. Here
are a few examples:

1CR Risreflexive:Vp € P,p Rp

R-RCR R is transitive: Vpgr, p Rr Am Rq=pRq
R-R*N1=0 Risacyclic:Vpg...pn, n>0, (Vi, p; Rpit1) = po # pn
R°-SCS-R° Rand S commute: Vpgr, rRpArSq=3t, qRtApSt

Moreover, these operations satisfy many laws. Some of these laws are
extremely simple (composition is associative, (R-R’)-R" = R-(R'-R"); the
empty relation absorbs composition, R -0 = 0 = 0 - R; reflexive-transitive
closures are transitive, R* - R* C R*). Others are much more complicated
and counter-intuitive. To see this the interested reader can try to deter-
mine which of the following equations and inequations are universally
true. (Over the eleven corresponding inequations, eight are true.)

INRCRRNRRR (1.1)

(R+ S)* = R*-(S-R*)* (1.2)
(R+S)*=((1+R)-S)* (1.3)
R(SNT)=R-SNRT (1.4)
R-SNTCR(SNR-T) (1.5)
RSNTC(RNT-S)(SNR-T) (1.6)
(RNST)T=RTNS-T (1.7)

Two questions arise naturally:

1. is it possible to axiomatise the set of laws that are universally true,
that is, to give a small number of elementary laws from which all
valid laws follow?

2. is it possible to decide whether a law is valid or not?

When considering all the operations listed above, the answer is negative in
both cases. Indeed, Monk proved that there cannot be a finite equational
axiomatisation [94], and Tarski proved that the theory is actually undecid-
able [135, 137]. In both cases, reflexive-transitive closure is not necessary

1.2. The ideal fragment: Kleene algebra 5

but the complement plays a crucial role. Thus we focus in the sequel on the
positive fragments, where complement is excluded.

Now we set up the concepts and notation needed in the sequel.

Let 3 be a set, whose elements are denoted by letters a, b. Expressions
are defined by the following grammar:

e,frgu=e+flenfle-fle?|e|0]1|T]|a (aeX) .

We often omit the operator “-” from expressions, writing e f for e- f. Given a
set £/ and a function o : ¥ — P(Ex E) mapping a letter from ¥ to a relation
on F, we define inductively the extension & of ¢ to expressions:

Glet+ f)2o(e)+6(f) 8(c°) 2 5(e) 5(1) 21
slenf)2o(e)na(f) o) 26(e) o(T)ET
(e f)=a(e)-o(f) 5(0) =0 5(a) = o(a)

Given two expressions e and f, an equation is valid, written e = f, if for
every set E and for every function o : ¥ — P(ExE), we have 6(e) = &(f).
Intuitively, an equation is valid if it is universally true in relations, if it holds
whatever the relations we use to interpret its variables.

Similarly, an inequation is valid, written F e C f, if 6(e) C &(f) for
every set £ and every function o : ¥ — P(EXE). As soon as we have
intersection or union, characterising valid equations is equivalent to char-
acterising valid inequations: for all expressions e, f, we have F e = f iff
FeC fandkF fCeandEeC fiffFe+ f=fiffFen f=e.

1.2 The ideal fragment: Kleene algebra

In this section we remove from the syntax the operations of intersection and
converse, as well as the constant T. In other words, we restrict to regular
expressions:

e,fogu=e+fle-fle|0|1]a (aeX) .

we shall see that with such a restriction, the validity of an equation is de-
cidable, and more precisely, PSPACE-complete.

1.2.1 Decidability

Let letters u, v range over finite words over the alphabet ¥. A language is a
set of words. We define inductively a function [-] associating a language to
each expression:

[e+ /12 [e]U /] 0] £ 0
le-f] £ {uv | u € [¢],v € [f]} [1] £ {e}
[€*] & {uy ... uy | Vi, u; € [e]} [a] & {a}

6 Chapter 1. Relation algebra

The key result about this fragment of the calculus of relations is the
following characterisation: an equation is valid for relations if and only if it
corresponds to an equality of languages.

Theorem 1.2.1. For all reqular expressions e, f, we have

Fe=f iff lel=1If1.

Inequations can be characterised in a similar way:
Fecf if] CIf] -

This theorem is relatively easy. Its main consequence in practice is
the decidability of the validity of equations: [e] and [f] are regular lan-
guages which we can easily represent using finite automata in order to
compare them. This characterisation also gives us the precise complexity
of the problem, as language equivalence of regular expressions is PSPACE-
complete [91].

1.2.2 Axiomatisability

In 1956, Kleene asks for axiomatisations of the previous theory [41]: is it
possible to find a small set of axioms (i.e., equations), from which all valid
equations between regular expressions follow?

In the sixties, Salomaa gives two axiomatisations [125] which are not
purely algebraic, and Redko proves that no finite equational axiomatisation
can be complete [118]. Conway studies extensively this kind of questions in
his monograph on regular algebra and finite automata [41], but we have to
wait for the nineties for new results: Krob and Kozen independently show
that one can axiomatise this theory in a finite way, but using axioms that
are not just equations, but implications between equations. (We move from
varieties to quasi-varieties.)

Krob’s proof is long and difficult [85], but it provides a complete pic-
ture: first he gives a purely equational axiomatisation, infinite but with
more structure than Salomaa’s axioms. Then he shows that those infinitely
many axioms can be derived from various finite axiomatisations involving
implications between equations.

On the contrary, Kozen goes straight to the point and focuses on a
specific finite axiomatisation (with implications). His proof is not simple
either, but much shorter [77, 78].

Theorem 1.2.2 (Kozen'91, Krob’91). For all reqular expressions e, f, we have
le] = [f] if and only if the equality e = f is derivable from the axioms listed in
Figure 1.1, where notation e < f is a shorthand fore + f = f.

1.2. The ideal fragment: Kleene algebra 7

et (f+g)=(e+f)+yg

etf=[f+e (+,0) is a commutative
e+0=¢e and idempotent monoid
et+e=e)
e(fg) = (ef)g
el=e (-,1) is a monoid
le=ce

e(f+g)=ef teg

(e+flg=eg+fg distributivity between
e0 =0 the two monoids
O0e=0 J

1+ ee* =e*
ef <f = € f<f ;lawsaboutKleene star

fe<f = fer<f

Figure 1.1: The axioms of Kleene algebra.

These axioms can be decomposed into four groups: the first three cor-
respond to the fact that we have an idempotent non-commutative semiring;
the last group of axioms characterises the operation of reflexive-transitive
closure, often called “Kleene star” in this context. This group is not entirely
symmetric: the law 14-e*e = e* is omitted as it can be derived from the other
axioms. The last two axioms are implications; intuitively, they tell that if
an expression f is invariant under composition with another expression e,
then it is also invariant with e*. The expressive power of the axiomatisation
mainly comes from those two implications: they make it possible to rea-
son inductively on Kleene star, in a purely algebraic way. (An equipollent
and perhaps more intuitive set of axioms states that that e* f is the smallest
fixpoint of the function x — f + xe, and symmetrically for fe*.)

One easily checks that each of these axioms is valid in the model of bi-
nary relations, but also when interpreting the expressions e, f, g as arbitrary
languages. The converse implication from Theorem 1.2.2 follows from this
remark: we prove only valid equations using those axioms.

The difficulty lies in the other implication: the completeness of these
axioms, the fact that every valid equation can be deduced from these ax-
ioms. We do not detail the proof here; a key step consists in showing that
the set of matrices with coefficients in a Kleene algebra forms a new Kleene

8 Chapter 1. Relation algebra

algebra (a Kleene algebra being a structure satisfying the axioms from Fig-
ure 1.1).

1.3 The strange fragment: allegories

Now consider a different fragment, where we only have composition, in-
tersection, converse, and constants 1 and T. For reasons to become clear
in Section 1.4, we reuse letters u, v, w to denote the corresponding regular
expressions, which we call terms:

u,v,wi=u-v|unv|u®|1|T]a (aeX) .

Modulo the presence of the constant T, this fragment was studied by
Andréka and Bredikhin [9], and by Freyd and Scedrov [52] under the name
of (representable) allegories. We will see that one can decide the validity
of inequations in this fragment, but that the corresponding theory is not
finitely axiomatisable, even using implications between equations.

1.3.1 Decidability

The key idea consists in characterising valid inequations by the existence of
graph homomorphisms. More precisely, homomorphisms of directed and
edge-labelled graphs with two distinguished vertices.

Definition 1.3.1 (Graph). A graph isa tuple (V, E, v, 0), where V is a set of ver-
tices, E C V x X x V isa set of labelled edges, and v, 0 € V are two distinguished
vertices, respectively called input and output.

We let letters G, H range over graphs and we define the following op-
erations:

* G - H is the graph obtained by composing the two graphs in series,
that is, by putting them one after the other and by merging the output
of G with the input of H;

* G'NH is the graph obtained by composing the two graphs in parallel,
that is, by putting them side by side and by merging their inputs and
their outputs;

* (G° is the graph obtained from G by exchanging input and output
(without reversing edges);

* 1is the graph without edges and with a single vertex (({*}, 0, *, *));

¢ T is the graph without edges and with two vertices, where input and
output are distinct (({*, o}, 0, *,));

1.3. The strange fragment: allegories 9

G-H & —0—G—0—H—>0— 1&£—o0—
N G~ N
GmH_—>o<H/o—> T2 %0 o—»
G° 2 «—0O0—G—>»0Q<—— a 2 —»O—a>o—>
Figure 1.2: Operations on graphs.
b
G(bnNe°): —0__=0—
(&
a b
G(a(b N ¢) N d): —>®O—>
d
a b
G(ab N ac): — bo—»
ST
G((a N bT)d): — o—teo—»

G(ab N 1): —>©—b>

Figure 1.3: Graphs associated to some terms.

¢ fora € ¥, ais the graph with two vertices and an edge labelled a from
the input to the output (({x, e}, {(x, a,e)},x, e)).

These operations are depicted in Figure 1.2; the input and the output of
each graph is denoted using unlabelled arrows. These operations make it
possible to associate a graph G(u) to every term u, by structural induction:

G(u-v) £ G(u) - G(v) G(1) =1
G(unv) 2 Gu)NG(v) GM=T
G(u®) £ G(u)° G(a) 2 a

The graphs of a few terms are drawn in Figure 1.3. These are series-parallel
graphs as long as we do not use converse and identity, that introduce loops
in presence of intersection, nor the constant T, that can disconnect some
parts of the graphs.

Some graphs are not associated to any term. The canonical counter-
example is the following one. (The labelling and the orientation of the five

10 Chapter 1. Relation algebra

Figure 1.4: A graph homomorphism.

edges is irrelevant so that we omit this information.)

— (1.8)

One can compare graphs using homomorphisms:

Definition 1.3.2. A homomorphism from the graph G to the graph H is a func-
tion from vertices of G to vertices of H that preserves labelled edges, input, and
output. We write H <4 G when there exists a homomorphism from G to H.

The relation « is a preorder on graphs. As an example, the graph of
a(bn c¢) N dis smaller than that of ab N ac, thanks to the homomorphism de-
picted in Figure 1.4 using dotted arrows. Note that homomorphisms need
not be injective or surjective, so that the preorder is completely unrelated
to the sizes of the graphs: a graph may perfectly be smaller than another
one, in the sense of the preorder, while having more vertices or edges (and
vice-versa).

The nice property of the fragment considered here is the following
characterisation: an inequation is valid for relations if and only if there ex-
ists a homomorphism between the underlying graphs:

Theorem 1.3.3 ([9, Theorem 1], [52, page 208]). For all terms u, v, we have
FuCuw iff G(u) 4«G(v) .

Graphs of terms being finite, one can look for a homomorphism be-
tween two such graphs in an exhaustive way, whence the decidability of
the problem.

Chandra and Merlin actually proved a similar result earlier, in the con-
text of databases [37]: they showed that the containment of conjunctive
queries can be reduced the problem of finding a graph homomorphism.
There, a conjunctive query is a first order formula without function sym-
bols, using only conjunctions, truth, and existential quantifiers. The con-
sidered graphs are actually hyper-graphs: edges correspond to predicates

1.3. The strange fragment: allegories 11

appearing in the formulas, which might have arbitrary arity; and they can
have arbitrarily many designated vertices: these correspond to the free vari-
ables of the formulas.

Except for the identity constant, the semantics of an allegorical expres-
sion is precisely such a conjunctive formula, with at most two free vari-
ables and where all predicates have arity two. Theorem 1.3.3 is thus almost
a corollary of the result by Chandra and Merlin.

Concerning complexity, the graph homomorphism problem is well-
known to be NP-complete, and so is the containment of conjunctive queries.
However we are in a very restricted case with allegories: the graphs of
terms have treewidth at most two. General results thus ensure that the
problem is polynomial [57]. More pragmatically, given an (arbitrary) graph
G with n vertices and an expression u of size m, a simple dynamic pro-
gramming algorithm decides whether there exists a homomorphism from
G(u) into G in O(n*m) operations. (We plan to develop those observations,
which are possibly new, in a future paper.)

1.3.2 Axiomatisability

Freyd and Scedrov define allegories [52] as structures satisfying the axioms
from Figure 1.5!, where notation e C f is a shorthand for e N f = e. First
note that composition does not distribute over intersections: composition
is monotone in its two arguments, which entails the following inequations
but not their converses:

e(fNg) Cef Neg
(fNg)eC fen ge

One can also deduce from the axioms that converse reverses composition,
distributes over intersections, and preserves constants 1 and T:

(enf)°=e"nf° To=T
(ef)o:foeo 10:1

The last axiom in Figure 1.5 is uncommon. It is called modularity law and is
equivalent in presence of the other axioms to its symmetrical counterpart:

ef NgCe(fney)

It also entails the following inequation, known as Dedekind’s inequality:

ef NgC(engf*)(fney)

'Up to some details: they do not consider the constant T, and they work in a categorical
setting, where the various operations are typed.

12 Chapter 1. Relation algebra

N(fng)=(nf)n
enf=fne (N, T) is a commutative
eNT =e and idempotent monoid
eNe=e
e(fg) = (ef)g
el=e (-,1) is a monoid
le=e
e(fng) Cef L
composition 1s monotone
(fNg)eC fe

(en f) involution reversing composition

(ef)” <

ef NgC(engf)f

00
&
} converse is a monotone

modularity law

Figure 1.5: Axioms of allegories.

Unfortunately, this finite and purely equational axiomatisation is not
complete for relations: some valid equations are not consequences of the
axioms?. Freyd and Scedrov actually proved that there exists no finite equa-
tional axiomatisation [52, page 210]. Hodkinson and Mikulds moreover
showed that there cannot be a finite first-order axiomatisation [63], and in
particular a quasi-equational one like, e.g., for Kleene algebra.

1.4 Putting it all together: Kleene allegories

Let us come back to the initial problem, that of the positive calculus of re-
lations. We have seen that two fragments are decidable: the fragment cor-
responding to regular expressions (+, -, -*,0,1), and that corresponding to
allegories (N, -,-°, T, 1). What happens when we take all operations?

First note that the function [-] associating a (regular) language to every

The counter-examples the author is aware of are not really informative. Freyd and Sce-
drov claim that homomorphisms which equate at most two vertices at a time give rise to
laws provable from these axioms ; in practice, laws requiring more are quite convoluted.

1.4. Putting it all together: Kleene allegories 13

regular expression can be extended to the operations of allegories:

lenfl=[e]Nf]
[°] & {an...a1|ai...a, € [e]}
T ey

However, the characterisation obtained in Theorem 1.2.1 no longer works
with these operations. Indeed, we have for instance

[and] ={a}N{b} =0=1[0] but Fanb=0
[a°] = {a} =a] but Fa®=a
la] = {a} € {aaa} = [aa®a] but F a C aa’a
[TaTbT] [TbTaT] but E TaTbT = TbTaT

To obtain a characterisation, we actually have to replace words (ele-
ments of ¥*) by graphs, and thus consider languages of graphs.

Definition 1.4.1. The language of graphs of an expression e, written G(e), is
defined as follows, by induction on e:

Gle+ f) £ G(e) UG(f) G0)£0

Glenf)2{GNH|GeG(e), HeG(f)} g(T) = {1}
Gle-f)={G-H|GeGle), HeG(f)} G(1) = {1}
G2 {Gy - Gn|lneN, Vi<n, G;e€Gle) Ga)2 {a}
G(e?) £{G" | G € G(e)}

This definition generalises the usual notion of language: when the con-
sidered expression contains no intersection, no converse, and no constant
T, then the associated graphs are isomorphic to words: these are simple
threads labelled by letters in .

To generalise also allegories, we have to make use of graph homomor-
phisms. Given a set L of graphs, we write *L for is downward closure:

‘“L2{G|3H,G«4H, HeL} .
We finally obtain the following characterisation:
Theorem 1.4.2. For all expressions e and f, we have
FeCf iff Gle) SYG(f)

We stated this characterisation with Brunet [32, Theorem 6]; its proof
merely consists in assembling results from the literature. This character-
isation generalises both Theorem 1.2.1 and Theorem 1.3.3. If e and f are

14 Chapter 1. Relation algebra

regular expressions, then all graphs in G(e) and G(f) are threads, and the
unique possible homomorphism between two such graphs is the identity;
whence G(e) C *G(f) iff G(e) C G(f). If instead e and f are terms v and v,
then G(e) = {G(u)} and G(f) = {G(v)}, so that G(e) C “G(f) is equivalent
to G(u) €4 G(v).

Note also that for all graph languages L, K, we have L C *K iff *L C
“K. Valid equations are thus characterised as follows:

Fe=f iff ‘Gle) = *G(f) .

To illustrate this theorem, consider expressions ¢ = o™ N 1and f £
(aa)™ N 1, where g7 is a shorthand for gg*. The set of graphs G(e) is the set
of non-trivial cycles labelled with a:

On the other side, G(f) is the set of non-trivial cycles of even length. Thus
we immediately get G(f) € G(e) € *G(e), whence F f C e. The converse
inequation is also valid: to each cycle from G(e), possibly of odd length, one
can associate the cycle of double length, in G(f); indeed, there is a homo-
morphism from this cycle of double length into the shorter one:

The following three laws can be proved valid in the same way.

(aNbb)y*Ca*Nbd*
((a N b)(1 Nb)an b)) C(an bb)*
(@nN T NbT) = (1N TH)(a N TH)*

1.4.1 Decidability

Together with Brunet [32], we proposed an automata model allowing us
to recognise languages of graphs associated to expressions. This automata
model takes inspiration from Petri nets [101, 97], which make it possible
to explore richer structures than plain words. To each expression e, we as-
sociate what we call a Petri automaton, whose language is precisely *G(e).

1.4. Putting it all together: Kleene allegories 15

Thanks to Theorem 1.4.2, the problem of validity of equations or inequa-
tions thus reduces to the problem of comparing Petri automata.

As of today, we solved this algorithmic problem only for a fragment of
the calculus: we have to forbid converse and constants 1 and T, and replace
reflexive-transitive closure -* by transitive closure -+ (because reflexive-
transitive closure implicitly contains the identity: we have 1 = 0*). The cor-
responding equational theory was recently studied by Andréka, Mikulas,
and Németi [8]; over this signature, it coincides with the equational the-
ory of languages. Under this restriction, the considered graphs are always
acyclic, so that the automata become simpler to compare: we have shown
that the problem of comparing these automata is EXPSPACE-complete [32].
This fragment is thus EXPSPACE-easy. (Our reduction does not allow us to
deduce a lower-bound.)

Note that intersection is the problematic operation: without intersec-
tion (and associated constant T), we obtain Kleene algebras with converse, for
which Bloom, Esik and Stefanescu have obtained decidability [17], and for
which we obtained PSPACE-completeness with Brunet [30, 31].

Coming back to the whole calculus, Brunet just proved a Kleene theo-
rem for our automata model [29]: given a Petri automaton, one can extract
an expression accepting the same set of graphs. As a consequence, decid-
ability of the whole calculus is equivalent to decidability of this automata
model.

1.4.2 Axiomatisability

Hodkinson and Mikuldas proved that there cannot be a finite axiomatisation
whenever the considered fragment contains composition, intersection, and
converse [63]. Even a quasi-equational one.

Without intersection and associated constant T, Bernatsky and Esik
have shown that the following five axioms suffice when added to a com-
plete axiomatisation of Kleene algebras (e.g., those from Figure 1.1) [45].

(ef)° = f€° er =¢e*° e C eee

(e+f)O:eO+fO 60026

Andréka and Mikulds cleaned up the situation for the remaining frag-
ments excluding Kleene star [7], but their finite axiomatisability result is
wrong when the identity is included, and they use an alternative defini-
tion of T. (With their definition, T can be axiomatised just as a top element:
laws such as (1.7) or TaTbT = TbTaT are not valid for them.) Therefore,
several questions remain open, even without considering Kleene star.

With Kleene star, we would like to understand whether Kleene alge-
bra axioms (Figure 1.1) are sufficient when added to a complete axiomati-
sation of (representable) allegories. We could not find any counter-example

16 Chapter 1. Relation algebra

to completeness so far, and a proof of such a result seems challenging: the
existing proofs of completeness for Kleene algebra are far from trivial.

Another question is whether partial axiomatisations give rise to decid-
able equational theories. For instance, by using a finer notion of graph ho-
momorphism, Gutiérrez has shown that allegories, as axiomatised in Fig-
ure 1.5, are decidable [58]. Could such a result be extended to deal with
Kleene star?

1.5 Kleene algebra with tests

We finally consider Kleene algebra with tests (KAT), an equational sys-
tem for program verification, which can also be seen as an extension of
the calculus of relations. The theory of KAT has been developed by Kozen
et al. [79, 40, 81], it has received much attention for its applications in
various verification tasks ranging from compiler optimisation [82] to pro-
gram schematology [10], and very recently for network programming anal-
ysis [6, 49].

As in the case of Kleene algebra, KAT admits a finite based quasi-
equational axiomatisation, and it enjoys a decidable equational theory (ac-
tually, PSPACE-complete) thanks to a reduction to an automata problem.
We will use an algorithm implemented in Coq in Chapter 3. Unlike in the
previous sections, we introduce KAT as an algebraic structure rather than
through the calculus of relations: such a presentation is possible but less
relevant here.

A Kleene algebra with tests is a tuple £ = (X, B,[:]) where X is a
Kleene algebra (Figure 1.1), B is a Boolean algebra of tests,and [| : B — X
is a homomorphism from (B, A,V, T, 1) to (X, -, +,1,0).

The prototypical example is that of binary relations and predicates:
given a support set P, binary relations on P form a Kleene algebra, (decid-
able) predicates on P form a Boolean algebra, and every predicate ¢ € P(P)
can be faithfully represented as a relation [¢] € P(PxP):

(9] = {(p,p) | p € ¢} .

One checks easily that this embedding is a homomorphism of appropriate
type:

[0 ¢] =9l [¥] [pUYP] = [¢] + [¢] [Pl=1 0] =0

This model is typically used to interpret imperative programs (see Sec-
tion 3.2.1): such programs are state transformers, i.e., binary relations be-
tween states, and the conditions appearing in these programs are just pred-
icates on states. The Kleene algebra component deals with the control-flow

1.5. Kleene algebra with tests 17

graph of the programs—sequential composition, iteration, and branching—
while the Boolean algebra component deals with the conditions appearing
in if-then-else statements, while loops, or pre- and post-assertions.

The equational theory of Kleene algebra with tests is complete over
this relational model [83]: any equation e = f that holds universally in this
model can be proved from the axioms of KAT (i.e., Kleene algebra axioms,
Boolean algebra axioms, and the axioms corresponding to the homomor-
phism from tests to programs). In practice, this means that if an equation
cannot be proved from KAT axioms, then it cannot be universally true on
binary relations: proving its validity for a particular instantiation of the
variables necessarily requires one to exploit additional properties of this
particular instance.

We describe two other models in the sequel: the syntactic model and
the model of guarded string languages. There are however other impor-
tant models of KAT. First of all, any Kleene algebra can be extended into
a Kleene algebra with tests by embedding the two-element Boolean lattice.
We also have traces models (where one keeps track of the whole execution
traces of the programs rather than just their starting and ending points),
matrices over a Kleene algebra with tests, but also models inherited from
semirings like min-plus and max-plus algebra, or convex-polygon semir-
ings [70]. The latter models have a degenerate Kleene star operation; they
become useful when one constructs matrices over them, for instance to
study shortest path algorithms.

1.5.1 KAT expressions

Let p, q range over a set X of letters (or actions), and let ay,...,a, be the
elements of a finite set © of primitive tests. Boolean expressions and KAT ex-
pressions are defined by the following syntax:

a,br=a; €0 |aNalaVa|-a|T|L (Boolean expressions)
e,fu=peX|la|e-fle+f|e|1]0. (KAT expressions)

(KAT expressions are regular expressions over an alphabet consisting either
of plain letters p, g, or Boolean formulas a, b over primitive tests ay, . .., a,.)
Given a Kleene algebra with tests £ = (X, B, [:]), any pair of maps § : © —
Band o : ¥ — X gives rise to a KAT homomorphism allowing one to in-
terpret expressions in K. Given two such expressions e and f, the equation
e = fis a KAT theorem, written KAT + e = f, when the equation holds in
any Kleene algebra with tests, under any interpretation. One checks easily
that KAT expressions quotiented by the latter relation form a Kleene alge-
bra with tests; this is the free Kleene algebra with tests over > and ©.

The following (in)equations illustrate the kind of laws that hold in all

18 Chapter 1. Relation algebra

Kleene algebra with tests:

[aV —a] =1 [a A (maVb)] = [a][b] = [~(=a v —b)]
e'e’ = e (e+ /)" =e(fer)” (e+eef)” <(e+ef)
[a]([~ale)” = [a] [a)([ale[-a] + [al f[a])*[a] < (ef)”

(As before in this chapter, the preorder <is definedbye < f = e+ f = f.)
The laws from the first line come from the Boolean algebra structure, while
the ones from the second line come from the Kleene algebra structure. The
two laws from the last line are more interesting: their proof must mix both
Boolean algebra and Kleene algebra reasoning.

1.5.2 Guarded string languages

Guarded string languages are the natural generalisation of string languages
for Kleene algebra with tests. We briefly define them.

An atom is a function from primitive tests (©) to Booleans; it indicates
which of these tests are satistied. We let a, 5 range over atoms, the set of
which is denoted by At. We let u, v range over guarded strings [73]: alter-
nating sequences of atoms and letters, which both start and end with an
atom:

A1,P1y -5 Qny Py An1 -

The concatenation u * v of two guarded strings u, v is a partial opera-
tion: it is defined only if the last atom of u is equal to the first atom of v; it
consists in concatenating the two sequences and removing one copy of the
shared atom in the middle.

ey , O 1) * 1,491 1 i
(s Py) * (Brogq undefined otherwise

):{"'717717517(]17”' ifan—i-l:/Bl

This partial operation is easily shown to be associative. The Kleene algebra
with tests of guarded string languages is obtained by considering sets of
guarded strings for X and sets of atoms for B:

X = P((At x)" x At) B =P (At)
L-K={uxv|ueLAveK} aNb=anb
L+K=LUK aVb=aUb

L*={uy *- - *uy | Juy...un, Vi <n,u; € L} -a=At\a

1={a|ac At} T=At

0=10 la] = {a | a € a} 1=0

(Note that we slightly abuse notation by letting o denote either an atom, or
a guarded string reduced to an atom.)

1.5. Kleene algebra with tests 19

1.5.3 Completeness

Let G be the unique homomorphism from KAT expressions to guarded
string languages such that a primitive test is mapped to the set of atoms
that declare it to hold, and a letter p is mapped to the set of all guarded
strings containing a single letter, p:

G(a;) = {a | a(a;) is true} G(p) ={app | a,p € At}

Completeness of KAT over guarded string languages can be stated as fol-
lows.

Theorem 1.5.1. For all KAT expressions e, f, KAT e = f iff G(e) = G(f).

The left-to-right implication is easy since guarded strings form a model
of KAT. The converse implication is the difficult one; it was proved by
Kozen and Smith [83]. Their proof consists in bringing KAT expressions
into a format that makes it possible to apply completeness of Kleene alge-
bra over languages (Theorem 1.2.1).

This theorem allows one to prove (in)equations valid in every model of
KAT, by resorting to an algorithm deciding guarded string language equiv-
alence. We exploit this idea to automate formal proofs in Chapter 3.

1.5.4 Eliminating hypotheses

Theorem 1.5.1 gives a decision procedure for the equational theory of KAT,
that is, in absence of any hypothesis. For instance, an equation like (p +
q)* = p*q*, which is provably true under the hypothesis that pg = ¢p, can-
not be deduced by means of this theorem.

Some hypotheses can however be exploited [39, 59]: those having one
of the following shapes.

i) e=0;
(ii) [ale = e[b], [a]e < e[b], or e[b] < [ale;
(iii) e < [a]e ore < e[d]
(iv) a=bora <}
(v) [alp = [a] or pla] = [a], for atomic p € 5

Equations of the first kind (i) are called “Hoare” equations, for rea-
sons to become apparent in Section 3.2.2. They can be eliminated using the
following implication:

{e Fugu =+ ugu entails e=f . (M

g=20

20 Chapter 1. Relation algebra

This implication is valid for any term u, and the method is complete [59]
when u is taken to be the universal KAT expression, ¥*. Intuitively, for this
choice of u, ugu recognises all guarded strings that contain a guarded string
of g as a substring. Therefore, when checking that e + ugu = f + ugu are
language equivalent rather than e = f, we rule out all counter-examples to
e = f that contain a substring belonging to g: such counter-examples are
irrelevant since g is known to be empty.

Equations of the shape (iii) and (iv) are actually special cases of those
of the shape (ii), which are in turn equivalent to Hoare equations. For in-
stance, we have [ale < e[b] iff [a]e[-b] = 0. Moreover, two hypotheses of
shape (i) can be merged into a single one using the fact thate = 0A f =0
iff e+ f = 0. Therefore, we can aggregate all hypotheses of shape (i-iv) into
a single one (of shape (i)), and use the above technique just once.

Hypotheses of shape (v) are handled differently, using the following equiv-
alence:

lalp=[a] iff p=[-alp+]a] , 1)

This equivalence allows us to substitute [—a]p + [a] for p in the consid-
ered goal—whence the need for p to be atomic. Again, the method is com-
plete [59], i.e.,

KATF ([alp=[a] = e=f) iff KATF el = f0 ,

where 6 is the substitution {p — [—a|p + [a]}.

1.5.5 KAT and the calculus of relations

We conclude this chapter with three additional questions.

First, in our presentation of the calculus of relations, we did exclude
set-theoretic complement from the beginning, as it immediately brings un-
decidability and incompleteness (Section 1.1). On the other hand, by re-
stricting complementation to tests, Kleene algebra with tests remains decid-
able and finitely based. This raises the following question: in which other
fragments of the calculus of relations can we add Boolean tests while re-
taining decidability and finite axiomatisability? It would seem reasonable
that any fragment that is decidable or finitely axiomatisable without tests
would remain so with such an addition. Still, this deserves a proper study.

Second, one can easily define a weaker notion of Kleene algebra with
tests, where tests are not a Boolean algebra but a Heyting algebra, or just
a bounded distributive lattice. Do these alternative remain decidable and
finitely axiomatisable? We believe that this is the case for bounded distribu-
tive lattices, but the case of Heyting algebras seems harder. (The Boolean

1.5. Kleene algebra with tests 21

case is no longer conservative, and the free Heyting algebra over a single
generator is already infinite.)

The case of bounded distributive lattices is interesting because it is a
fragment of the calculus of relations: it can be encoded using operations
(-,+,N,-*,1,0). Indeed, starting from a KAT expression without comple-
mentation, one can push all occurrences of [.] towards the leaves, and en-
code a primitive test [a;] using the expression a; N 1. (If the KAT expression
is over the alphabets 3 and ©, the resulting expression is over the alphabet
¥ 1 ©.) Of course this fragment of the calculus is much more expressive:
expressions such as p N ¢, pg N 1, or (p N 1)p do not belong to the image
of this translation. Still, this means that decidability of Kleene algebra with
tests in a bounded distributive lattice is a necessary step for decidability of
the (-,+,N,*,1,0) fragment of the calculus of relations.

Lastly, we have seen that certain kinds of hypotheses can be eliminated
in Kleene algebra with tests (Section 1.5.4). What kind of hypotheses can be
eliminated in other fragments of the calculus of relations?

Chapter 2

Automata algorithms

Checking language equivalence of finite automata is a classic problem in
computer science, with many applications in areas ranging from compilers
to model checking. We have seen in the previous chapter that the validity of
(in)equations in Kleene algebra reduces to this problem. In this chapter we
present new algorithms for it.

A wide range of algorithms in computer science build on the ability
to check language equivalence or inclusion of finite automata. In model-
checking for instance, one can build an automaton for a formula and an
automaton for a model, and then check that the latter is included in the for-
mer. More advanced constructions need to build a sequence of automata
by applying a transducer, and to stop whenever two subsequent automata
recognise the same language [24]. Another field of application is that of var-
ious extensions of Kleene algebra (Chapter 1), whose equational theories
are reducible to language equivalence of various kinds of automata: regu-
lar expressions and finite automata for plain Kleene algebra [78], “closed”
automata for Kleene algebra with converse [17, 45], or guarded string au-
tomata for Kleene algebra with tests (KAT) [81].

Equivalence of deterministic finite automata (DFA) can be checked ei-
ther via minimisation [64] or, more directly, through Hopcroft and Karp’s
algorithm [66]. This latter algorithm for checking language equivalence of
finite automata can be seen as an instance of Huet’s first-order unification
algorithm without occur-check [67, Section 5.8]: one tries to unify the two
automata recursively, keeping track of the generated equivalence classes of
states using an efficient union-find data-structure.

We describe this algorithm formally in Section 2.1; its complexity has
been studied by Tarjan [134]: checking language equivalence of two states
in a DFA with n states over an alphabet of size k requires O(nka(k,n))
operations, where a(k,n) is a very slow-growing inverse of Ackermann’s
function. This might look rather satisfactory, except that: 1) in most applica-
tions one starts with non-deterministic automata (NFA), and 2) sometimes

24 Chapter 2. Automata algorithms

the alphabet is too large to be iterated naively.

For the first point, it is well-known that NFA can be determinised us-
ing the powerset construction, and that there can be exponentially many
reachable sets. In fact, language equivalence becomes PSPACE-complete
for NFA over an alphabet with at least two letters [91]—and coNP-complete
with one letter. In Section 2.2 we give an algorithm we developed with Fil-
ippo Bonchi [21], which can improve exponentially over both Hopcroft and
Karp’s algorithm and more recent algorithms based on antichains [140, 2,
44]. In those cases, our algorithm does not build the whole deterministic
automaton, but just a small part of it.

The second point is raised for instance with the automata required for
deciding Kleene algebra with tests (Section 1.5). We propose in Section 2.3
to use symbolic automata, where the transition function is represented in a
compact way using binary decision diagrams (BDD) [34, 35]. The key idea
consists in exploring reachable pairs symbolically, so as to avoid redundan-
cies. This idea can be combined with existing optimisations, and we show
in particular a nice integration with the disjoint sets forest data-structure
from Hopcroft and Karp’s algorithm.

2.1 Deterministic automata

We start by recalling Hopcroft and Karp’s algorithm [66], showing that it
exploits an instance of what is nowadays called a coinduction proof princi-
ple [92, 127, 123].

In Section 2.3 we will need to work with Moore machines [95] rather
than automata: the accepting status of a state is not necessarily a Boolean,
but a value in a fixed yet arbitrary set. Since this generalisation is harmless,
we stick to the standard automata terminology.

A deterministic finite automaton (DFA) over the alphabet ¥ and with
outputs in B is a triple (S, 0,t), where S is a finite set of states, 0: S — B is
the output function, and t: § — S is the (total) transition function which
returns, for each state 2 and for each letter a € 3, the next state ¢, (). For
w € ¥*, we denote by x 2 2’ the least relation such that (1) z = z and (2)
% 2 ifr 5 2” and 2” % 2/ for some 2.

The language of a state © € S of a DFA is the function [z]: ¥* — B
defined as follows:

[z](€) = of@) , [z](aw) = [ta(z)](w)

(When the output set is 2, these functions are indeed characteristic func-
tions of formal languages). Two states x, y € S are said to be language equiv-
alent (written « ~ y) when they accept the same language.

Throughout the chapter, we consider a fixed automaton (S, o, %) and
we study the following problem: given two states in 5, is it the case that

2.1. Deterministic automata 25

they are language equivalent? This problem generalises the familiar prob-
lem of checking whether two automata accept the same language: just take
the union of the two automata as the automaton (5, 0,t), and determine
whether their respective starting states are language equivalent.

2.1.1 Language equivalence via coinduction

We first define the notion of bisimulation. We make explicit the underlying
notion of progression, which we need in the sequel.

Definition 2.1.1 (Progression, Bisimulation). Given two relations R, R’ C 52
on states, R progresses to R, denoted R — R/, if whenever x R y then

1. o(z) = o(y) and
2. foralla € %, to(z) R ta(y).
A bisimulation is a relation R such that R — R.

Proposition 2.1.2 (Coinduction). Two states are language equivalent iff there
exists a bisimulation that relates them.

Bisimulation is thus a sound and complete proof technique for check-
ing language equivalence of DFA. Accordingly, we obtain the simple algo-
rithm described in Figure 2.1.

This algorithm works as follows: the variable R contains a relation
which is a bisimulation candidate and the variable todo contains a queue of
pairs that remain to be processed. To process a pair (z,y), one first checks
whether it already belongs to the bisimulation candidate: in that case, the
pair can be skipped since it was already processed. Otherwise, one checks
that the outputs of the two states are the same (line 11), and one pushes all
derivatives of the pair to the todo queue (line 12—this requires the type X
of letters to be iterable, and thus finite, an assumption which is no longer
required with the symbolic algorithm to be presented in Section 2.3.2). The
pair (z,y) is finally added to the bisimulation candidate, and we proceed
with the remainder of the queue.

Proposition 2.1.3. Forall z,y € S, x ~ y iff Naive(z,y).

Proof. The main invariant of the loop (line 8: R »— R U todo) ensures that
when todo becomes empty, then R contains a bisimulation. Another in-
variant is that R contains the starting states. Therefore, thanks to Proposi-
tion 2.1.2, if the algorithm answers true, then the starting states were indeed
language equivalent.

A third invariant of the loop is that for any pair (2/,’) in todo, there
exists a word w such that z = 2/ and y — /. Therefore, if we reach a pair
of states whose outputs are distinct—line 11, then the word w associated to
that pair witnesses the fact that the two initial states are not equivalent. []

26 Chapter 2. Automata algorithms

lvaloa— g

2valtta— X = «

3

4 let Naive(x,y) =

5 letR=Set.empty () in

let todo = Queue.singleton (x,y) in

while Queue.not_empty todo do
(* invariant: R — R U todo x*)
let (x,y) = Queue.pop todo in

10 if Set.mem (x,y) R then continue

11 if o x # oy then return false

12 forall a € ¥ do Queue.push todo (t x a, ty a)

13 Set.add (x,y) R

14 done

15 return true

O 0 I O

Figure 2.1: Naive algorithm for checking language equivalence. An abstract
view of Hopcroft and Karp’s algorithm HK(z, y) is obtained by replacing the
test in step 10 with Set.mem (x,y) e(R).

For a concrete example, consider the DFA with input alphabet ¥ = {a}
and outputs in B = 2 in the left-hand side of Figure 2.2. Accepting states are
overlined; suppose we want to check that x and u are language equivalent.
During the initialisation, (z, u) is inserted in todo. At the first iteration, since
o(z) = 0 = o(u), (z,u) is inserted in R and (y,v) in todo. At the second
iteration, since o(y) = 1 = o(v), (y,v) is inserted in R and (z, w) in todo. At
the third iteration, since o(2) = 0 = o(w), (2, w) is inserted in R and (y, v) in
todo. At the fourth iteration, since (y, v) is already in R, the algorithm does
nothing. Since there are no more pairs to check in todo, the relation R is a
bisimulation and the algorithm terminates returning true.

These iterations are concisely described by the numbered dashed lines
in Figure 2.2. The line i means that the connected pair is inserted in R at
iteration 7. (In the sequel, when enumerating iterations, we ignore those
where a pair from todo is already in R so that there is nothing to do.)

2.1.2 Hopcroft and Karp’s algorithm

The naive algorithm is quadratic: a new pair is added to R at each non-
trivial iteration, and there are only n? such pairs, where n = |S| is the num-
ber of states of the DFA. To make this algorithm (almost) linear, Hopcroft
and Karp actually record a set of equivalence classes rather than a set of vis-
ited pairs. As a consequence, their algorithm may stop earlier, if it encoun-
ters a pair of states that is not already in R but belongs to its reflexive, sym-

2.1. Deterministic automata 27

a — — X\ a7b — avb —
r—1 z ;p%—y%z@a,b

\ L S | | A

\ | \ \ 215 27 31
s

5 2 3 1 |, by

\ e \ v W

- ~——
U—>v W &/a' a,b
a

Figure 2.2: Checking for language equivalence in a DFA.

metric, and transitive closure. For instance, in the right-hand side example
from Figure 2.2, we can stop when we encounter the dotted pair (y, w) since
these two states already belong to the same equivalence class according to
the four previous pairs.

With this optimisation, the produced relation R contains at most n
pairs. Formally, ignoring the concrete data structure used to store equiv-
alence classes, Hopcroft and Karp’s algorithm consists in replacing line 10
in Figure 2.1 with

if Set.mem (x,y) e(R) then continue

where e: P(5%) — P(S?) is the function mapping a relation R C S? into
its symmetric, reflexive, and transitive closure. We refer to this algorithm
as HK.

2.1.3 Bisimulations up to equivalence

We now show that the optimisation used by Hopcroft and Karp corre-
sponds to exploiting an “up-to technique”. Let us consider the right-hand
side example from Figure 2.2. HK(z,u) constructs the following relation,
represented with dashed lines.

Ry = {(x7u)a (y’ U)v (va)a (Za U)}

This relation is not a bisimulation: it contains the pair (z,), whose b-transi-
tions lead to (y, w), which is not in Ryk. Instead, this pair belongs to e(Rux);
the candidate Ry is only a bisimulation up to e:

Definition 2.1.4 (Bisimulation up-to). Let f: P(S?) — P(5?) be a function
on relations. A relation R is a bisimulation up to f if R — f(R),ie., ifz Ry,
then

1. o(z) = o(y) and
2. foralla € ¥, to(z) f(R) ta(y).

28 Chapter 2. Automata algorithms

With this definition, Hopcroft and Karp’s algorithm consists in trying
to build a bisimulation up to equivalence closure (e). To prove the correct-
ness of the algorithm, it suffices to show

Theorem 2.1.5. Every bisimulation up to e is contained in a bisimulation.
This theorem is not especially difficult, we prove it in Chapter 4.
Corollary 2.1.6. Forall z,y € S, x ~ y iff HK(z, y).

Proof. As for Proposition 2.1.3, by using the invariant R — e(R) U todo. We
deduce that R is a bisimulation up to e after the loop. We conclude with
Theorem 2.1.5 and Proposition 2.1.2. O

An informal complexity analysis of HK goes as follows. One can enter
the main loop at most n = |S| times: at the beginning e(R) is a discrete
partition with n equivalence classes, and we merge two equivalence classes
at each iteration. The inner iteration (line 12) costs k = |X| operations.

To obtain the complexity in O(nka(k,n))), one has to represent the
equivalence relation e(R) using a disjoint set forest data-structure [66]: this
makes it possible to implement the test on line 10 and the update on line 13
in almost constant amortised time [134].

2.2 Non-deterministic automata

We now move from DFA to non-deterministic automata (NFA). A NFA over
the alphabet ¥ is a triple (5, o, t), where S is a finite set of states, 0: S — Bis
the output function, and t: S — P(S)” is the transition relation: it assigns
to each state € S and letter a € ¥ a set of possible successors.

The powerset construction transforms any NFA (S, 0,t) into the DFA
(P(S), 0!, t!) where of: P(S) — B and t!: P(S) — P(S)> are defined for
all X € P(S) and a € X as follows:

HX) =Y ofa) £(X) = 3 taa)

zeX reX

(For of to be properly defined, we need B to be a semilattice; we use the sum
symbol to denote both the corresponding operation on B and set-theoretic
union on P(S).) By definition, of and t* are semi-lattice homomorphisms.
These properties are fundamental for the up-to technique we are going to
introduce. In order to stress the difference with generic DFA, which usually
do not carry this structure, we use the following definition.

Definition 2.2.1. A determinised NFA is a DFA (P(S), o*, t!) obtained via the
powerset construction of some NFA (S, 0,1).

2.2. Non-deterministic automata 29

lvalo:a— g
2valt:a — ¥ — a set
3
4 let Naive(X,Y) =
5 letR=Set.empty () in
6 let todo = Queue.singleton (X,Y) in
7 while Queue.not_empty todo do
8 (* invariant: R »— R U todo x)
9 let (X,Y) = Queue.pop todo in
10 if Set.mem (X,Y) R then continue
11 if of X # of Y then return false
12 forall a € ¥ do Queue.push todo (tf X a, t? Y a)
13 Set.add (X,Y)R
14 done
15 return true

Figure 2.3: On-the-fly naive algorithm, for checking the equivalence of sets
of states X and Y of an NFA (5,0,t). HK(X,Y) is obtained by replacing
the test in line 10 with Set.mem (X’,Y") e(R), and HKC(X,Y") is obtained by
replacing it with Set.mem (X’,Y") ¢(RUtodo).

Hereafter, we use a lighter notation for representing states of deter-
minised NFA: in place of the singleton {z}, we write 2 and, in place of
{z1,..., 20}, we write 1 + -+ + z,, (thus 0 for 0)). Consider for instance
the NFA (S, 0,t) depicted below (left) and part of the determinised NFA
(P(9), 0, t*) (right).

a

figéz T—ytz—>T+ty—>z+y+=z
a
\E/ /ka)

In the determinised NFA, makes one single a-transition into y + z. This
state is final: of (y + 2) = of(y) + o*(2) = o(y) + o(z) = 1+ 0 = 1; it makes
an a-transition into ti(y +2)= ti(y) + tﬁ(z) =to(y) + ta(z) =z +y.

Algorithms for NFA can be obtained by computing the determinised
NFA on-the-fly [46]: starting from the algorithms for DFA (Figure 2.1), it
suffices to work with sets of states, and to inline the powerset construction.
The corresponding code is just the composition of the previous algorithm
with the powerset construction, we give it explicitly in Figure 2.3 for the
sake of clarity. The naive algorithm (Naive) does not use any up to tech-
nique, Hopcroft and Karp’s algorithm (HK) reasons up to equivalence at
line 10.

30 Chapter 2. Automata algorithms

2.2.1 Bisimulations up to context

The semi-lattice structure (P(S5), +,0) carried by determinised NFA makes
it possible to introduce a new up-to technique, which is not available with
plain DFA: up to context. This technique is grounded on a simple observa-
tion on determinised NFA: for all sets X and Y of states of the original NFA,
the union of the language recognised by X and the language recognised by
Y is equal to the language recognised by the union of X and Y. In symbols:

(X +Y]=[X]+][Y] (2.1)

Therefore, if a bisimulation R relates the set of states X; with Y7, and X5
with Y5, then [X;] = [V7] and [X3] = [Y2] and we can immediately conclude
by (2.1) that X; + X, and Y7 + Y5 are language equivalent as well.

Definition 2.2.2 (Context closure). Let u: P(P(S)?) — P(P(S)?) be the func-
tion mapping a relation R on sets of states to the smallest relation which contains
R and which is compatible with union:

X1 U(R) Y1 X2 U(R) Y2
X1+ XouR)Y1+Ys

Proposition 2.2.3. Every bisimulation up to u is contained in a bisimulation.

To illustrate this idea, let us check the equivalence of states = and u in
the following NFA.

a

a
ar /N
V2 W v
a

u w=<—"v
~— a
a

The determinised automaton is depicted below.

z ey —= 2 LT ty—">ytz=rtytz
11 2: 31 4 56 /La)
u»av+w7u+w»au+v+w©a

The numbered lines shows a bisimulation containing « and u. Actually, this
is the relation that is built by Hopcroft and Karp’s algorithm. The dashed
lines (numbered by 1, 2, 3) form a smaller relation which is not a bisimula-
tion, but a bisimulation up to context: the equivalence of z +y and u+v+w
is deduced from the fact that x is related with u and y with v 4+ w, without
the need to further explore the automaton.

2.2. Non-deterministic automata 31

a
—_—=_ a
Xz Yy<—=z

—
a
\/)

a

O O

a

S ytzrty->rtyte

a

gl- - -5

Figure 2.4: A bisimulation up to congruence.

2.2.2 Bisimulations up to congruence

The techniques of up-to equivalence and up-to context can actually be com-
bined, resulting in a powerful proof technique which we call bisimulation up
to congruence.

Definition 2.2.4 (Congruence closure). Let c: P(P(S5)?) — P(P(S)?) be the
function mapping a relation R on sets of states to the least equivalence relation
which contains R and which is compatible with union.

Theorem 2.2.5. Every bisimulation up to c is contained in a bisimulation.

As before for bisimulations up to equivalence, we prove this theorem
in Chapter 4. An example illustrating a bisimulation up to congruence is
given in Figure 2.4. The relation R expressed by the dashed numbered lines
(formally R = {(z, u), (y + 2, u)}) is neither a bisimulation nor a bisimula-
tion up to equivalence or up to context since y + z =+ = + y and u > u, but
(x+y, u) ¢ e(R) + u(R). However, R is a bisimulation up to congruence.
Indeed, we have (z + y, u) € ¢(R):

x4y c(R)u+ty ((z,u) € R)
c(R)y+z+y ((y +2,u) € R)
= yYy+=z
c(R)u ((y +2,u) € R)

In contrast, we need four pairs to get a bisimulation up to equivalence con-
taining (x,u): this is the relation depicted with both dashed and dotted
lines in Figure 2.4.

Note that we can deduce many other equations from R; in fact, ¢(R)
defines the following partition of sets of states:

{0}, {y}, {z}, {z, u, 24y, 242, and the 9 remaining subsets}.

32 Chapter 2. Automata algorithms

2.2.3 Optimised algorithm for NFA

The algorithm we developed with Filippo Bonchi [21], called HKC in the
sequel, relies on up to congruence: line 10 from Figure 2.3 becomes

if Set.mem (X,Y) ¢(RUtodo) then continue

Observe that we use ¢(R U todo) rather than c¢(R): this allows us to skip
more pairs (potentially exponentially many, see the discussion after Re-
mark 2.2.7), and this is safe since all pairs in todo will eventually be pro-
cessed.

Corollary 2.2.6. Forall X, Y € P(S), X ~ Y iff HKC(X,Y).

Proof. As for Proposition 2.1.3, by using the invariant R — ¢(R U todo) for
the loop. We deduce that R is a bisimulation up to congruence after the
loop. We conclude with Theorem 2.2.5 and Proposition 2.1.2. O

The most important point about these three algorithms is that they
compute the states of the determinised NFA lazily. This means that only
accessible states need to be computed. This is of practical importance since
the determinised NFA can be exponentially large. In case of a negative an-
swer, the three algorithms stop even before all accessible states have been
explored; otherwise, if a bisimulation (possibly up-to) is found, it depends
on the algorithm:

¢ With Naive, all accessible states need to be visited, by definition of
bisimulation.

¢ With HK, the only case where some accessible states can be avoided
is when a pair (X, X) is encountered: the algorithm skips this pair so
that the successors of X are not necessarily computed (this situation
never happens when starting with disjoint automata). In the other
cases where a pair (X, Y) is skipped, X and Y are necessarily already
related with some other states in R, so that their successors will even-
tually be explored.

* With HKC, accessible states are often skipped. For a simple example, let
us recall the execution of HKC on the NFA from Figure 2.4. After two
iterations, R = {(x, u), (y + z,u)}. Since z + y ¢(R) u, the algorithm
stops without building the states x + y and = + y + 2. Similarly, in the
example from the Introduction, HKC does not construct the four states
corresponding to pairs 4, 5, and 6.

This ability of HKC to ignore parts of the determinised NFA can bring an
exponential speed-up. For an example, consider the family of NFA in Fig-
ure 2.5, where n is an arbitrary natural number. Taken together, the states

2.2. Non-deterministic automata 33

a a,b ab
(l,b C X I . e Tn
b a,b ab

a,b a,b ab
a,b C zZ Z1 e Zn

Figure 2.5: Family of examples where HKC exponentially improves over AC
and HK; we have z + y ~ z.

x and y are equivalent to z: they recognise the language (a+b)*(a+b)""!.
Alone, z recognises the language (a+b)*a(a+b)", which is known for hav-
ing a minimal DFA with 2" states. Therefore, checking = + y ~ z via min-
imisation (as in [64]) requires exponential time, and the same holds for
Naive and HK since all accessible states must be visited. This is not the case
with HKC, which requires only polynomial time on this example. Indeed,
HKC(z+vy, z) builds the relation

R ={(z+y, 2)}
U{(z+Y; +yir1, Ziy1) | i <n}
U{(a:—i-Y; + iy, ZZ'_|_1) ‘ 1< n} ,

where Y; = y+yi1+...+y;, and Z; = z+z1+ ... +2;. R only contains 2n + 1
pairs and is a bisimulation up to congruence. To see this, consider the pair
(x+y+z1+y2, Z2) obtained from (z+y, z) after reading the word ba. Al-
though this pair does not belong to R/, it belongs to its congruence closure:

z+y+z1+y2 ¢(R') Zi+y2 (z+y+z1 R Zy)
c(R) z+y+y1+y2 (z+y+y1 R’ Z1)
¢(R) Zy . (z4y+yi+y2 R Z3)

Remark 2.2.7. In the above derivation, the use of transitivity is crucial: R’ is a
bisimulation up to congruence, but not a bisimulation up to context. In fact, there
exists no bisimulation up to context of linear size proving x +y ~ z.

We now discuss the exploration strategy, i.e., how to choose the pair to
extract from the set todo in step 3.1. When looking for a counter-example,
such a strategy has a large influence: a good heuristic can help in reaching
it directly, while a bad one might lead to explore exponentially many pairs
tirst. In contrast, the strategy is not so relevant when looking for an equiva-
lence proof (when the algorithm eventually returns true). Actually, one can
prove that the number of steps performed by Naive and HK in such a case
does not depend on the strategy. This is not the case with HKC: the strategy

34 Chapter 2. Automata algorithms

can induce some differences. However, we experimentally observed that
breadth-first and depth-first strategies usually behave similarly on random
automata. This behaviour is due to the fact that we check congruence w.r.t.
R U todo rather than just R (line 10): with this optimisation, the example
above is handled in polynomial time whatever the chosen strategy. In con-
trast, without this small optimisation, it requires exponential time with a
depth-first strategy.

2.24 Computing the congruence closure

For the optimised algorithm to be effective, we need a way to check whether
some pairs belong to the congruence closure of a given relation. We present
a simple solution based on set rewriting; the key idea is to look at each pair
(X,Y) in a relation R as a pair of rewriting rules:

X—-X+Y Y —-X+Y |,

which can be used to compute normal forms for sets of states. Indeed, by
idempotence, X R Y entails X ¢(R) X +Y.

Definition 2.2.8. Let R C P(S)2 be a relation on sets of states. We define ~»r C
P(S)? as the smallest irreflexive relation that satisfies the following rules:

XRY XRY Z ~sp 7!
X ~pX+Y Y »p X4+Y U+Z~pU+Z

Lemma 2.2.9. For all relations R, ~» g is confluent and normalising.

In the sequel, we denote by X | i the normal form of a set X w.r.t. ~p.
Intuitively, the normal form of a set is the largest set of its equivalence class.
Recalling the example from Figure 2.4, the common normal form of x + y
and u can be computed as follows (R is the relation {(z, u), (y + 2z, u)}):

:164—yNk u
x+y+uw Ma:jtu
r+y+z+u

Theorem 2.2.10. For all relations R, and for all X, Y € P(S), we have X | p =
Yiniff (X,Y) € c(R).

We actually have X |r = Y |riff X C Y |rpand Y C X g, so that the
normal forms of X and Y do not necessarily need to be fully computed in
practice. Still, the worst-case complexity of this sub-algorithm is quadratic
in the size of the relation R (assuming we count the number of operations
on sets: unions and inclusion tests—the difficulty which makes the algo-
rithm quadratic being that we do not know in advance in which order to
apply the rewriting rules).

2.2. Non-deterministic automata 35

Note that many algorithms were proposed in the literature to com-
pute the congruence closure of a relation (see, e.g., [98, 130, 14]). However,
they usually consider uninterpreted symbols or associative and commuta-
tive symbols, but not associative, commutative, and idempotent symbols,
which is what we need here.

2.2.5 Using HKC for checking language inclusion

For NFA, language inclusion can be reduced to language equivalence: the
semantics function [—] is a semi-lattice homomorphism, so that for all sets
of states X, Y, [X+Y] = [Y] iff [X] + [Y] = [Y] iff [X] C [Y]. Therefore, it
suffices to run HKC(X +Y,Y) to check the inclusion [X] C [Y].

One might wonder whether checking the two inclusions separately
is more convenient than checking the equivalence directly. This is not the
case: checking the equivalence directly actually allows one to skip some
pairs that cannot be skipped when reasoning by double inclusion. As an ex-
ample, consider the DFA on the right of Figure 2.2. The relation computed
by HKC(x,u) contains only four pairs (because the fifth one follows from
transitivity). Instead, the relations built by HKC(z, z+u) and HKC(u+z, u)
would both contain five pairs: transitivity cannot be used since our rela-
tions are now oriented (from y < v, z < v and z < w, we cannot deduce
y < w). Figure 2.5 shows another example, where we get an exponential
factor by checking the equivalence directly rather than through the two
inclusions: transitivity, which is crucial to keep the relation computed by
HKC(z+y, 2) small—see Remark 2.2.7, cannot be used when checking the
two inclusions separately.

In a sense, the behaviour of the coinductive proof here is similar to
that of standard proofs by induction, where one often has to strengthen the
induction predicate to get a (nicer) proof.

2.2.6 Exploiting similarity

Looking at the example in Figure 2.5, a natural idea would be to first quo-
tient the automaton by graph isomorphism. By doing so, one would merge
the states x;, y;, z; and obtain the following automaton, for which checking
x+y ~ z is much easier.

b
N
a, ab ____
a,be/ml RN
ab C p a,b
As shown in [2, 44] for antichain algorithms, one can do more than
graph isomorphism, by exploiting any preorder contained in language in-

36 Chapter 2. Automata algorithms

clusion. Hereafter, we show how this idea can be embedded in HKC, result-
ing in an even stronger algorithm.

For the sake of clarity, we fix the preorder to be similarity [92], which
can be computed in quadratic time [61]. (Graph isomorphism can be com-
puted slightly more efficiently, but it is less powerful as an up-to technique.)

Definition 2.2.11 (Similarity). Let similarity be the largest relation < on states
of an NFA such that x < y entails:

1. o(z) < o(y) and

2. foralla € ¥, 2" € S such that x % ', there exists some ' such that y = y'
and ¥’ < y/.

To exploit similarity pairs in HKC, it suffices to notice that for any sim-
ilarity pair z < y, we have z+y ~ y. Let < denote the relation {(z+v, v) |
xz = y}, and let ¢ be the function mapping a relation R to ¢(R U <). The
theory from Chapter 4 will allow us to deduce

Theorem 2.2.12. Every bisimulation up to ¢ is contained in a bisimulation.

Accordingly, we call HKC' the algorithm obtained from HKC (Figure 2.3)
by replacing the test (X,Y) € ¢(R U todo) with (X,Y) € ¢(R U todo). (This
test can be implemented efficiently by preprocessing the NFA.)

Corollary 2.2.13. Forall sets X,Y, X ~ Y iff HKC'(X,Y).

2.2.7 Antichain algorithms

The problem of deciding NFA equivalence is PSPACE-complete [91]. How-
ever, neither HKC nor HKC’ are in PSPACE: both of them keep track of the
states they explored in the determinised NFA, and there can be exponen-
tially many such states. This also holds for HK and for the more recent
antichain algorithm [140] (called AC in the following) and its optimisation
(AC") exploiting similarity [2, 44].

The latter algorithms can be explained in terms of coinductive proof
techniques: we establish in [21] that they actually construct bisimulations
up to context, i.e., bisimulations up to congruence for which one does not
exploit symmetry and transitivity.

Theoretical comparison We compared the various algorithms in detail
in [21]. Their relationship is summarised in Figure 2.6, where an arrow X—Y
means that (a) Y can explore exponentially fewer states than X, and (b) Y
can mimic X, i.e., the coinductive proof technique underlying Y is at least as
powerful as the one of X.

In the general case, AC needs to explore many more states than HKC: the
use of transitivity, which is missing in AC, allows HKC to drastically prune

2.2. Non-deterministic automata 37

General case Disjoint inclusion case
HKC’ HKC’
PN |
HKC AC’ AC’
HK ™ AC HKC < AC
Naive HK <> Naive

Figure 2.6: Relationships among the algorithms.

the exploration. For instance, to check x+y ~ z in Figure 2.5, HKC only needs
a linear number of states (see Remark 2.2.7), while AC needs exponentially
many states. In contrast, in the special case where one checks for the inclu-
sion of disjoint automata, HKC and AC exhibit the same behaviour. Indeed,
HKC cannot make use of transitivity in such a situation, as explained in Sec-
tion 2.2.5. Things change when comparing HKC’ and AC’: even for checking
inclusion of disjoint automata, AC’ cannot always mimic HKC’: the use of
similarity tends to virtually merge states, so that HKC’ can use the up to
transitivity technique which AC’ lacks.

Experimental comparison The theoretical relationships we have drawn
in Figure 2.6 are substantially confirmed by an empirical evaluation of the
performance of the algorithms. Here, we only give a brief overview; see [21]
for a complete description of those experiments.

We compared our OCaml implementation [108] for HK, HKC and HKC’,
and the libvata C++ library [87] for AC and AC’. We use a breadth-first
exploration strategy: we represent the set todo from Figure 2.3 as a FIFO
queue. As mentioned at the end of Section 2.2.3, considering a depth-first
strategy here does not alter the behaviour of HKC in a noticeable way.

We performed experiments using both random automata and a set of
automata arising from model-checking problems.

o Random automata. We used Tabakov and Vardi’s model [133] to generate
1000 random NFA with two letters and a given number of states. We exe-
cuted all algorithms on these NFA, and we measured the number of pro-
cessed pairs, i.e., the number of required iterations (like HKC, AC is a loop
inside which pairs are processed). We observe that HKC improves over AC by
one order of magnitude, and AC improves over HK by two orders of magni-
tude. Using up-to similarity (HKC' and AC’) does not improve performance
much; in fact, similarity is almost the identity relation on such random au-
tomata. The corresponding distributions for HK, HKC, and AC are plotted on
Figure 2.7, for automata with 100 states. Note that while HKC only improves

number of checked NFA

100 |

10 |

38 Chapter 2. Automata algorithms

'HK
AC
HKC —
3 L |_| L L HJ/ L H | L L | | i | L i | L q
1 10 100 1000 10000 100000

number of processed pairs

Figure 2.7: Distributions of the number of processed pairs, for a thousand
experiments with random NFA.

by one order of magnitude over AC when considering the average case,
it improves by several orders of magnitude when considering the worst
cases.

e Model checking automata. Abdulla et al. [2, 44] used automata sequences
arising from regular model-checking experiments [24] to compare their al-
gorithm (AC’) against AC. We reused these sequences to test HKC’ against AC’
in a concrete scenario. For all those sequences, we checked the inclusions
of all consecutive pairs, in both directions. The timings are given in Ta-
ble 2.1, where we report the median values (50%), the last deciles (90%), the
last percentiles (99%), and the maximum values (100%). We distinguish be-
tween the experiments for which a counter-example was found, and those
for which the inclusion did hold. For HKC’ and AC’, we display the time
required to compute similarity on a separate line: this preliminary step is
shared by the two algorithms. As expected, HKC and AC roughly behave the
same: we test inclusions of disjoint automata. HKC' is however quite faster
than AC’: up to transitivity can be exploited thanks to similarity pairs. Also
note that over the 546 positive answers, 368 are obtained immediately by
similarity.

2.2. Non-deterministic automata 39

. inclusions (546 pairs) counter-examples (518 pairs)
algorithm 50% | 90% | 99% | 100% | 50% | 90% | 99% | 100%
AC 0.036 | 0.860 | 4.981 | 5.084 || 0.009 | 0.094 | 1.412 | 2.887
HKC 0.049 | 0.798 | 6494 | 6.762 || 0.000 | 0.014 | 0.916 | 2.685

sim_time 0.039 | 0.185 | 0.574 | 0.618 || 0.038 | 0.193 | 0.577 | 0.593
AC’ -sim_time | 0.013 | 0.167 | 1.326 | 1.480 || 0.012 | 0.107 | 1.047 | 1.134
HKC’ -sim_time || 0.000 | 0.034 | 0.224 | 0.345 || 0.001 | 0.005 | 0.025 | 0.383

Table 2.1: Timings, in seconds, for language inclusion of disjoint NFA gen-
erated from model-checking.

2.2.8 Discussion

Our implementation of HKC is available online [108], together with proofs
mechanised in the Coq proof assistant and an interactive applet making it
possible to test the presented algorithms online, on user-provided exam-
ples.

Complexity. The previous algorithms and those based on antichains have
exponential complexity in the worst case while they behave rather well in
practice. For instance, in Figure 2.7, one can notice that over a thousand
random automata, very few require to explore a large amount of pairs.
This suggests that an accurate analysis of the average complexity might
be promising. An inherent problem comes from the difficulty to charac-
terise the average shape of determinised NFA [133]. To avoid this problem,
with HKC, we could try to focus on the properties of congruence relations.
For instance, given a number of states, how long can be a sequence of (in-
crementally independent) pairs of sets of states whose congruence closure
collapses into the full relation? (This number is an upper-bound for the size
of the relations produced by HKC.) One can find ad-hoc examples where this
number is exponential, but we suspect it to be rather small in average.

Model checking. The experiments summarised in Table 2.1 show the ef-
ficiency of our approach for regular model-checking using automata on
finite words.

In order to face other model-checking problems, it would be useful to
extend up-to techniques to automata on infinite words, or trees. Unfortu-
nately, the determinisation of these automata (the so called Safra’s construc-
tion) does not seem suitable for exploiting either antichains or up to con-
gruence. However, for some problems like LTL realisability [47] that can be
solved without prior determinisation (the so-called Safraless approaches),
antichains have been crucial in obtaining efficient procedures. We leave as
future work to explore whether up-to techniques could further improve
such procedures.

40 Chapter 2. Automata algorithms

2.3 Automata with a large alphabet

In Section 1.5 we have recalled a completeness result by Kozen and Co-
hen (Theorem 1.5.1), making it possible to reduce the equational theory
of Kleene algebra with tests to a problem of language equivalence. Un-
fortunately, the corresponding alphabet is exponentially large in the num-
ber of primitive tests. As such, it renders standard algorithms for language
equivalence intractable, even for reasonably small inputs. This difficulty is
shared with other fields where various people proposed to work with sym-
bolic automata to cope with large, potentially infinite, alphabets [35, 139]. By
symbolic automata, we mean finite automata whose transition function is
represented using a compact data-structure, typically binary decision dia-
grams (BDDs) [34, 35], allowing one to explore the automata in a symbolic
way.

D’Antoni and Veanes proposed a minimisation algorithm for symbolic
automata [43], which is much more efficient than the adaptations of the tra-
ditional algorithms [95, 65, 99]. Here we focus on the simpler problem of
language equivalence: while language equivalence can be solved by min-
imisation, minimisation has complexity nlnn where Hopcroft and Karp’s
algorithm is almost linear (for DFA—see the discussion at the end of Sec-
tion 2.1).

In this section we describe a simple coinductive algorithm for checking
language equivalence of symbolic automata (Section 2.3.2). This algorithm
is generic enough to support the various improvements discussed in the
previous section. In the case of up-to equivalence, we show how to combine
binary decisions diagrams and disjoint set forests, the efficient data-structure
used in Hopcroft and Karp’s algorithm. This results in a new version of
their algorithm, for symbolic automata (Section 2.3.4).

2.3.1 Binary decision diagrams

Assume an ordered set (A, <) and an arbitrary set B. Binary decision dia-
grams are directed acyclic graphs that can be used to represent functions of
type 24 — B. When B = 2 is the two-elements set, BDDs thus intuitively
represent Boolean formulas with variables in A.

Formally, a (multi-terminal, ordered) binary decision diagram (BDD) is a
pair (N, ¢c) where N is a finite set of nodes and c is a function of type N —
B W (AxNxN) such that if ¢(n) = (a,l,r) and either ¢(I) = (a’,_,_) or
c(r)y=(da,_,_), thena < d'

The condition on c ensures that the underlying graph is acyclic, which
makes it possible to associate a function [n]: 24 — B to each node n of a

2.3. Automata with a large alphabet 41

BDD:

b ife(n)=beB
[n](a) =< [1](a) ife(n) = (a,l,r)and a(a) =0
[r](a) ife(n) = (a,l 1

,7) and a(a)
Let us now recall the standard graphical representation of BDDs:

* A node n such that ¢(n) = b € B is represented by a square box
labelled by b.

* A node n such that ¢(n) = (a,l,r) € A x N x N is a decision node,
which we picture by a circle labelled by a, with a dotted arrow to-
wards the left child (1) and a plain arrow towards the right child (r).

For instance, the following drawing represents a BDD with four nodes; its
top-most node denotes the function given on the right-hand side.

by ifa(a;) =1and a(az) =0
o
by otherwise

A BDD is reduced if c is injective, and ¢(n) = (a,l,r) entails [# r.
(The above example BDD is reduced.) Any BDD can be transformed into a
reduced one. When A is finite, reduced (ordered) BDD nodes are in one-to-
one correspondence with functions from 24 to B [34, 35]. The main interest
in this data-structure is that it is often extremely compact.

In the sequel, we only work with reduced ordered BDDs, which we
simply call BDDs. We denote by BDD 4[B] the set of nodes of a BDD with
values in B, which is large enough to represent all considered functions.
We moreover let | f| denote the unique BDD node representing a given
function f: 24 — B. This notation is useful to give abstract specifications to
BDD operations: in the sequel, all usages of this notation actually underpin
efficient BDD operations.

42 Chapter 2. Automata algorithms

1 type 5 node = 3 descr hash_consed
2 and Sdescr=Vof 3 | Nof Ax 8 node x 3 node
3
4 val hashcons: 5 descr — (3 node
5val c: 5 node — 3 descr
6 val memo_rec: (o= —=y)—a' =5 —=y)—a' = —y
7 (x with o' = o hash_consed, 3’ = hash_consed x*)
8
9 let constant v = hashcons (V v)
10 let node a1 r=if 1==r then 1 else hashcons (N(a,1,r))
11
12 let apply (f: « — 8 — 7): a@ node — 3 node — 7y node =
13 memo_rec (funapp xy —
14 match c(x), c(y) with
15 | Vv,Vw— constant (f vw)
16 | N(a,l,r),V_—nodea(apply) (appry)
17 | V_,N(a,1,r) — node a (app x 1) (app x r)
18 | N(a,,r), N@@’,l',r") —
19 if a=a’ thennodea (app L ") (app r r’)
20 if a<a’ thennodea (apply)(appry)
21 if a>a’ then node a’ (app x ") (app x r’))

Figure 2.8: An implementation of BDDs.

2.3. Automata with a large alphabet 43

Implementation. To better explain parts of the proposed algorithms, we
give a simple implementation of BDDs in Figure 2.8.

The type for BDD nodes is given first: we use Fillidtre’s hash-consing
library [48] to enforce unique representation of each node, whence the two
type declarations and the two conversion functions hashcons and ¢ between
those types. The third utility function memo_rec is just a convenient operator
for defining recursive memoised functions on pairs of hash-consed values.

The function constant creates a constant node, making sure it was not
already created. The function node creates a new decision node, unless that
node is useless and can be replaced by one of its two children. The generic
function apply is central to BDDs [34, 35]: many operations are just in-
stances of this function. Its specification is the following:

apply fzy = [a— f([z](a))([y](e))]

This function is obtained by “zipping” the two BDDs together until a con-
stant is reached. Memoisation is used to exploit sharing and to avoid per-
forming the same computations again and again.

Suppose now that we want to define logical disjunction on Boolean
BDD nodes. Its specification is the following:

zVy=law [z](@)V[yl(a)].

We can thus simply use the apply function, applied to the Boolean disjunc-
tion function:

let dsj: bool node — bool node — bool node = apply (V)

Note that this definition could actually be slightly optimised by inlining
apply’s code, and noticing that the result is already known whenever one
of the two arguments is a constant:

1 let dsj: bool node — bool node — bool node =
2 memo_rec (fundsj xy —

3 match c(x), c(y) with

4 | Vtrue, _ | _,Vfalse—x

5 | _,Vtruel Vfalse,_ —vy

6 | N(a,i,r),N@’,l,r)—

7 if a=a’ thennodea (dsj 1 ") (dsj r r’)

8 if a<a’ thennodea (dsj ly)(dsjry)

9 if a>a’ then node a’ (dsj x 1’) (dsj x r"))

We ignore such optimisations in the sequel, for the sake of clarity.

44 Chapter 2. Automata algorithms

S1 So S3 S4 S5

81, 82,83 S84, S5
a/00001111 (00001111
b|0O110011 00110011
c/01010101|01010101
t 81 8359 85928383S52S59 | S4S54 8585584848585

Figure 2.9: A symbolic DFA with five states.

2.3.2 Symbolic automata

A standard technique [35, 60, 139, 43] for working with automata over a
large input alphabet consists in using BDDs to represent the transition func-
tion: a symbolic DFA with output set B and input alphabet ¥ = 24 for some
set A is a triple (S, t, 0) where S is the set of states, t: S — BDD 4[S] maps
states into nodes of a BDD over A with values in S, and o: S — B is the
output function.

Such a symbolic DFA is depicted in Figure 2.9. It has five states, input
alphabet 219} and natural numbers as output set. We represent the BDD
graphically; rather than giving the functions ¢ and o separately, we label
the square box corresponding to a state = with its output value o(z) and
we link this box to the node t(x) defining the transitions of = using a solid
arrow. The explicit transition table is given below the drawing.

The simple algorithm described in Figure 2.1 is not optimal when work-
ing with such symbolic DFA: at each non-trivial iteration of the main loop,
one goes through all letters of > = 24 to push all the derivatives of the
current pair of states to the queue todo (line 12), resulting in a lot of redun-
dancies.

2.3. Automata with a large alphabet 45

Suppose for instance that we run the algorithm on the DFA of Fig-
ure 2.9, starting from states s; and s4. After the first iteration, R contains the
pair (s1, s4), and the queue todo contains eight pairs:

(317 84), (837 54)’ (527 85)7 (827 55)7 (837 34)’ (837 84)7 (827 55)7 (327 35)

Assume that elements of this queue are popped from left to right. The first
element is removed during the following iteration, since (s1, s4) already is
in R. Then (s3, s4) is processed: it is added to R, and the above eight pairs
are appended again to the queue, which now has fourteen elements. The
following pair is processed similarly, resulting in a queue with twenty one
(14 — 1 + 8) pairs. Since all pairs of this queue are already in R, it is finally
emptied through twenty one iterations, and the algorithm returns true.

Note that it would be even worse if the input alphabet was actually
declared to be 2{%0¢4}; even though the bit d of all letters is irrelevant for
the considered DFA, each non-trivial iteration of the algorithm would push
even more copies of each pair to the todo queue.

What we propose here is to exploit the symbolic representation, so
that a given pair is pushed only once. Intuitively, we want to recognise that
starting from the pair of nodes (n, m), the letters 010, 011, 110 and 111 are
equivalent!, since they lead to the same pair, (s2, s5). Similarly, the letters
001, 100, and 101 are equivalent: they lead to the pair (s3, s4).

This idea is easy to implement using BDDs: like for the apply func-
tion (Figure 2.8), it suffices to zip the two BDDs together, and to push pairs
when we reach two leaves. We use for that the procedure iter2 from Fig-
ure 2.10, which successively applies a given function to all pairs reachable
from two nodes. Its code is almost identical to apply, except that nothing
is constructed (and memoisation is just used to remember those pairs that
have already been visited).

We finally modify the simple algorithm from Section 2.1 by using this
procedure on line 12: we obtain the code given in Figure 2.11. We apply
iter2 to its first argument once and for all (line 7), so that we maximise
memoisation: a pair of nodes that has been visited in the past will never be
visited again, since all pairs of states reachable from that pair of nodes are
already guaranteed to be processed. (As an invariant, we have that all pairs
reachable from a pair of nodes memoised in push_pairs appear in r U todo.)

Let us illustrate this algorithm by running it on the DFA from Fig-
ure 2.9, starting from states s; and s4 as previously. During the first iter-
ation, the pair (s1,s4) is added to R, and push_pairs is called on the pair
of nodes (n,m). This call virtually results in building the following BDD,
where leaves consist of calls to Queue.push todo.

!Letters being elements of 2{**¢}, we represent them with bit-vectors of length three.

46

Chapter 2. Automata algorithms

1 let iter2 (f: a« x 8 — unit): a node — (8 node — unit =

O 0 IO U1 i WIN

—_
(@]

memo_rec (fun iter2 xy —
match c(x), c(y) with
Vv, Vw— f (v,w)
| V_,N(_,,r)—iter2x1;iter2xr
| N, ,,r),V_—iter2ly;iter2ry
| N(a,1,r), N(a’,l,r") —
if a=a’ theniter2 11 iter2rr’
if a<a’ theniter2ly;iter2ry
if a>a’ theniter2 x U; iter2 x r’)

Figure 2.10: Iterating over the set of pairs reachable from two nodes.

lvaloa— g
2valt: o — a bdd — o

3

4 let symb_Naive(x,y) =

5

NeRNo N o)

10

12
13
14
15

let R=Set.empty() in
let todo = Queue.singleton (x,y) in
let push_pairs = iter2 (Queue.push todo) in
while Queue.not_empty todo do
let (x,y) = Queue.pop todo in
if Set.mem (x,y) R then continue
if o x # oy then return false
push_pairs (t x) (ty)
Set.add (x,y) R
done;
return true

Figure 2.11: Symbolic algorithm for checking language equivalence.

2.3. Automata with a large alphabet 47

The following three pairs are thus pushed to todo.

(517 84)’ (537 54)7 (327 55)

The first pair is removed by a trivial iteration: (s1, s4) already belongs to R.
The two other pairs are processed by adding them to R, but without push-
ing any new pair to todo: thanks to memoisation, the two expected calls to
push_pairs n mare skipped.

All in all, each reachable pair is pushed only once to the todo queue.
More importantly, the derivatives of a given pair are explored symbolically.
In particular, the algorithm would execute exactly in the same way, even if
the alphabet was actually declared to be much larger (for instance because
the considered states were part of a bigger automaton with more letters). In
fact, the main loop is executed at most n? times, where n is the total number
of BDD nodes (both leaves and decision nodes) reachable from the starting
states.

Finally note that in the code from Figure 2.11, the candidate relation R
is redundant, as the pairs it contains are also stored implicitly in the mem-
oisation table of iter2 (except for the initial pair). The corresponding lines
(5, 10, and 13) can thus be removed.

2.3.3 Displaying symbolic counter-examples.

The bisimulation-based algorithms for language equivalence can be instru-
mented to produce counter-examples in case of failure, i.e., a word which
is accepted by one state and not by the other.

An advantage of the previous algorithm is that those counter-examples
can be displayed symbolically; thus enhancing readability. This is particu-
larly important in the context of formal assisted proofs (e.g., in Chapter 3,
when working with KAT in Coq [110]), where a plain guarded string is

48 Chapter 2. Automata algorithms

often too big to be useful to the user, while a ‘symbolic” guarded string—

where only the relevant bits are displayed—can be really helpful to under-

stand which hypotheses have to be used to solve the current goal.
Consider for instance the following automaton.

DD

Intuitively, the topmost states s and ¢ are not equivalent because ¢ can take
two transitions to reach t”, with output 0, while with two transitions, s can
only reach s”, with output 1. More precisely, the word 100 001 over 2{e:t<}
is a counter-example: we have

[s](100 001) = [s'](001) = o(s") =1,
[¢](100 001) = [¢'](001) = o(t") =0 .

But there are plenty of other counter-examples of length two: it suffices
that: a be assigned true and b be assigned false in the first letter, and that
c be assigned true in the second letter. The values of the bit ¢ in the first
letter, and of the bits a and b in the second letter do not change the above
computation. As a consequence, this counter-example is best described as
the pseudo-word 10- --1, or alternatively the word (a A —b) c whose letters
are conjunctions of literals indicating the least requirements to get a counter
example.

The algorithm from Figure 2.11 can be modified so as to give this in-
formation back to the user. The required modifications are as follows:

2.3. Automata with a large alphabet 49

¢ modify the queue todo to store triples (w, x, y) where (z,y) is a pair of
states to process, and w is the associated potential counter-example;

¢ modify the function iter2 (Figure 2.10), so that it uses an additional
argument to record the encountered node labels, with negative po-
larity when going through the recursive call for the left child, and
positive polarity for the right child;

¢ modify line 11 of the main algorithm to return the symbolic word
associated with the current pair when the output test fails.

2.3.4 Disjoint sets forests on BDDs

The previous algorithm can be freely enhanced by using up-to techniques,
as described in Section 2: it suffices to modify line 10 to skip pairs more
or less aggressively, according to the chosen up-to technique. For an up-to
technique f, line 10 thus becomes

if Set.mem (x,y) (f r) then continue .

The up-to-equivalence technique used in Hopcroft and Karp’s algo-
rithm can however be integrated in a deeper way, by exploiting the fact
that we work with BDDs. This leads to a second algorithm, which we de-
scribe in this section.

Let us first recall disjoint sets forests, the data structure used by Hopcroft
and Karp to represent equivalence classes. As explained in Section 2.1, this
data-structure makes it possible to check whether two elements belong to
the same class and to merge two equivalence classes, both in almost con-
stant amortised time [134].

The idea consists in storing a partial map from elements to elements
and whose underlying graph is acyclic. An element for which the map is
not defined is the representative of its equivalence class, and the represen-
tative of an element pointing in the map to some y is the representative of
y. Two elements are equivalent if and only if they lead to the same repre-
sentative; to merge two equivalence classes, it suffices to add a link from
the representative of one class to the representative of the other class. Two
optimisations are required to obtain the announced theoretical complexity:

* when following the path leading from an element to its representa-
tive, one should compress it in some way, by modifying the map so
that the elements in this path become closer to their representative.
There are various ways of compressing paths, in the sequel, we use
the method called halving [134];

¢ when merging two classes, one should make the smallest one point
to the biggest one, to avoid generating too many long paths. Again,

50 Chapter 2. Automata algorithms

1 let unify (f: 8 x 8 — unit): S node — S node — unit =

2 (x the disjoint sets forest x)

3 let m=Hmap.empty() in

4 let link xy =Hmap.addmxy in

5 (* representative of a node x*)

6 let rec reprx=

7 match Hmap.get m x with

8 | None — x

9 | Some y — match Hmap.get my with
10 | None —y
11 | Some z — link x z; repr z
12 in
13 let recunifyxy=
14 letx=reprxin
15 lety=repryin
16 if x #y then
17 match c(x), c(y) with
18 | Vv,Vw— link x y; f (v,w)
19 | V_,N(,,r)— linky x; unify x 1, unify x r
20 | N(_,,,r),V_— linkxy; unify Ly; unify ry
21 | N(a,1,r), N(a’,l,r") —
22 if a=a’ then link x y; unify 1 1; unify r r’
23 if a<a’ then link x y; unify Ly ; unify ry
24 if a>a’ then link y x; unify x U; unify x r’)
25 inunify

Figure 2.12: Unifying two nodes of a BDD, using disjoint set forests.

there are several possible heuristics, but we elude this point in the
sequel.

As explained above, the simplest thing to do would be to replace the
bisimulation candidate R from Figure 2.11 by a disjoint sets forest over the
states of the considered automaton, as we did in Section 2.1.3. Instead, a
new idea consists in relating the BDD nodes of the symbolic automaton
rather than just its states (i.e., just the BDD leaves). By doing so, one avoids
visiting pairs of nodes that have already been visited up to equivalence.

Concerning the implementation, we first introduce a BDD unification
algorithm (Figure 2.12), i.e., a variant of the function iter2 which uses dis-
joint sets forest rather than plain memoisation. This function first creates an
empty forest (we use Fillidtre’s module Hmap of maps over hash-consed val-
ues to represent the corresponding partial maps). The function link adds
a link between two representatives; the recursive terminal function repr

2.3. Automata with a large alphabet 51

1 let symb_HK(x,y) =

2 let todo = Queue.singleton (x,y) in

3 let push_pairs =unify (Queue.push todo) in
4 while Queue.not_empty todo do

5 let (x,y) = Queue.pop todo in

6 if o x # oy then return false

7 push_pairs (t x) (ty)
8 doneg;
9 return true

Figure 2.13: Symbolic algorithm optimised with disjoint set forests.

looks for the representative of a node and implements halving. The inner
function unify is defined similarly as iter2, except that it first takes the rep-
resentative of the two given nodes, and that it adds a link from one to the
other before recursing.

Those links can be put in any direction on lines 18 and 22, and we
should actually use an appropriate heuristic to take this decision, as ex-
plained above. In the four other cases, we put a link either from the node
to the leaf, or from the node with the smallest label to the node with the
biggest label. By proceeding this way, we somehow optimise the BDD, by
leaving as few decision nodes as possible.

It is important to notice that there is actually no choice left in those four
cases: we work implicitly with the optimised BDD obtained by mapping
all nodes to their representatives, so that we have to maintain the invariant
that this optimised BDD is ordered and thus acyclic. (Notice that this op-
timised BDD need not be reduced anymore: the children of a given node
might be silently equated, and a node might have several representations
since its children might be silently equated with the children of another
node with the same label.)

We finally obtain the algorithm given in Figure 2.13. It is similar to
the previous one (Figure 2.11), except that we use the new function unify to
push pairs into the todo queue, and that we no longer store the bisimulation
candidate R: this relation is subsumed by the restriction of the disjoint set
forests to BDD leaves.

If we execute this algorithm on the symbolic DFA from Figure 2.9, be-
tween states s; and s4, we obtain the disjoint set forest depicted below us-
ing dashed red arrows. This actually corresponds to the pairs which would
be visited by the first symbolic algorithm (Figure 2.11).

52 Chapter 2. Automata algorithms

If instead we start from the top-most nodes in the following partly de-
scribed automaton, we would get the disjoint set forest depicted similarly
in red, while the first algorithm would go through all violet lines, one of
which is superfluous.

The corresponding optimised BDD consists of the three nodes labelled with
a, b, and d on the right-hand side. This BDD is not reduced, as explained
above: the node labelled with b should be removed since it points twice to
the node labelled with d, and removing this node makes the node labelled
with a useless, in turn.

2.3.5 Discussion

An implementation of the previous algorithms is available online as an
OCaml library [109].

2.3. Automata with a large alphabet 53

Complexity. Concerning complexity, while the algorithm from Figure 2.11
is quadratic in the number n of BDD nodes (and leaves) that are reachable
from the starting symbolic DFA, the optimised algorithm from Figure 2.13
performs at most n iterations: two equivalence classes of nodes are merged
each time a link is added, and we start with the discrete partition of nodes.

Unfortunately, we cannot immediately deduce that the algorithm is
almost linear, as did Tarjan for Hopcroft and Karp’s algorithm [134]. The
problem is that we cannot always freely choose how to link two repre-
sentatives (i.e., on lines 19, 20, 23, and 24 in Figure 2.12), so that we can-
not guarantee that the amortised complexity of maintaining those equiv-
alence classes is almost constant. We conjecture that such a result holds,
however, as the choice we enforce in those cases virtually suppresses bi-
nary decision nodes, and thus reduces the complexity of subsequent BDD
unifications. Also note that together with Goel, Khanna and Larkin, Tar-
jan recently showed that the almost constant amortised complexity is still
reached (asymptotically) with randomised linking [54].

KAT. Our initial motivation for this work was to obtain an efficient deci-
sion procedure for Kleene algebra with tests. Indeed, we proposed various
constructions for building efficiently a symbolic automaton out of a KAT
expression: symbolic versions of the extensions of Brzozowski’s deriva-
tives [36] and Antimirov’ partial derivatives [11] to KAT, as well as a gen-
eralisation of Ilie and Yu'’s inductive construction [69]. We skip those con-
structions in the present manuscript, referring the interested reader to [111].

Unification with row types. As mentioned at the beginning of this chap-
ter, Hopcroft and Karp’s algorithm can be seen as an instance of Huet’s
tirst-order unification algorithm for recursive terms (i.e., without occur-
check). The algorithm presented in Figure 2.13, and more specifically the
BDD unification sub-algorithm (Figure 2.12) is reminiscent of Rémy’s ex-
tension of Huet’s algorithm for dealing with row types—to obtain an ML-
like type inference algorithm in presence of extensible records [119, 120,
103].

More precisely, row types are almost-constant functions from a given
set of labels to types, typically represented as association lists with a de-
fault value. Unification of such row types is performed pointwise, and is
implemented by zipping the two association lists together, as we do here
with BDDs (which generalise from almost constant functions to functions
with finitely many output values).

It would thus be interesting to understand whether our generalisation
of this unification sub-algorithm, from association lists to BDDs, could be
useful in the context of unification: either by exploiting the richer structure
of functions represented by BDDs, or just for the sake of efficiency, when the

54 Chapter 2. Automata algorithms

set of labels is large (e.g., for type inference on object-oriented programs,
where labels correspond to method names).

Chapter 3

Automation in the Coq proof
assistant

Proof assistants such as Coq or Isabelle/HOL are software tools that make
it possible to certify mathematical proofs or programs.

We present a Coq library for relation algebra, including tools for auto-
mated reasoning about various fragments up to Kleene algebra with tests.
We show how to exploit these tools in the context of program verification by
proving equivalences of while programs, correctness of some standard com-
piler optimisations, Hoare rules for partial correctness, and a particularly
challenging equivalence of flowchart schemes.

Proof assistants have gained in popularity since the last decade, with
remarkable achievements such as a certified realistic C-compiler [88], a
complete formal proof of Feit-Thompson’s odd order theorem—a mile-
stone result in group theory [55]—and Kepler’s conjecture—a long stand-
ing conjecture about optimal sphere packing (cf. the Flyspeck project). The
tirst two projects used the Coq proof assistant. The third one used a mixture
of Isabelle and HOL Light.

Formal proofs provide the highest confidence degree: corner cases can-
not be forgotten by inadvertence, all details must be written down, and
even the boring details are properly reviewed, since the reviewer actually
is the computer. However, writing a formal proof requires a lot of work and
expertise, as one regularly has to struggle against the system to transform
mathematical intuitions into an acceptable proof. A crucial aspect with this
respect is automation. Automation is mandatory in any non-trivial devel-
opment, to take care of the boring details and let the author focus on the
challenging parts of the proof. In Coq, part of the automation is provided
by high-level tactics like ring for solving polynomial equations, tauto for
propositional tautologies, lia for linear integer arithmetic, omega for Pres-
burger arithmetic, or congruence for deciding whether an equality is a con-

https://code.google.com/p/flyspeck/
http://coq.inria.fr/
http://isabelle.in.tum.de
http://www.cl.cam.ac.uk/~jrh13/hol-light/

56 Chapter 3. Automation in the Coq proof assistant

sequence of a set of other equalities. Depending on the proof under devel-
opment, the use of such tactics reduces the final proof script by an order of
magnitude. All this without sacrificing the global trust level: these tactics
provide formal proofs.

One of our mid-term objectives is to develop a comprehensive library
for relation algebra, including proofs of standard results and powerful au-
tomation tools. We already made an important step towards this objective:
the RelationAlgebra library [110] is a medium-sized library which currently
contains Kozen’s completeness proofs for Kleene algebra and KAT, as well
as associated decision procedures and tactics. We plan to develop tactics
for the other decidable fragments of the calculus of relations: this library is
designed from the beginning to support the whole calculus of relations, in
an axiomatic way.

3.1 Relation algebra and KAT in Coq

We want to deal with all fragments of the calculus of relations, axiomati-
cally: monoids (-, 1), allegories (-,N, -°, 1), Kleene algebras (-, +,-*,1,0) and
all other combinations. The model of binary relations is the guideline: if
possible, we use a complete axiomatisation (e.g., Kleene algebra), other-
wise we use an incomplete yet useful one (e.g., allegories).

In order to factor these axiomatisations, we use a system of bitmask:
all operations from Chapter 1 are always defined (plus a few ones actu-
ally, like left and right residuals [117, 53]), but the axioms they satisfy vary
according to a parameter, the bitmask, describing which operations are cur-
rently considered. Using Coq’s dependent types, this makes it really easy
to define various concepts once and for all: the free model, normalisation
functions, and general results from universal algebra that do not depend
on the considered fragment.

Another specificity for which Coq’s dependent types help a lot is that
we actually define categories rather than algebras: all the operations we
consider can easily be typed in such a way that composition (-) and iden-
tity (1) become the basic ingredients of a category'. Doing so makes it pos-
sible to work with heterogeneous relations, between distincts sets, rather
than just homogeneous ones, on a single and fixed set. Lattice-theoretic op-
erations act on each homset, converse is a contravariant identity-on-object
functor, and Kleene star only operates on square homsets: those with the
same source and target.

Doing so makes it possible to deal with models such as heterogeneous
relations or rectangular matrices, the latter model being extremely useful
for the proof of completeness of Kleene algebra (Theorem 1.2.2). On the
other hand, handling this slight generalisation is non-trivial and deeply

!This is actually the way Freyd and Scedrov define allegories [52].

http://perso.ens-lyon.fr/damien.pous/ra/

3.1. Relation algebra and KAT in Coq 57

impacts the whole infrastructure (e.g., for reification). This actually leads
us to prove “untyping theorems”, which make it possible to prove typed
equations by resorting to untyped computations [106, 107].

3.1.1 Decision procedure for KAT

The decision procedure for KAT cannot be formulated, a priori, as a simple
rewriting system: it involves automata algorithms, it cannot be defined in
Ltac, at the meta-level, and it does not produce a certificate which could
easily be checked in Coq, a posteriori. This leaves us with only one possi-
bility: defining a reflexive tactic [25, 4, 56].

Doing so is challenging: we have to prove completeness of KAT ax-
ioms w.r.t. guarded string languages (Theorem 1.5.1), and to provide a
provably correct algorithm for language equivalence of KAT expressions.

The completeness theorem for KAT is far from trivial; we actually have
to formalise a lot of preliminary material: finite sums, finite sets, unique
decomposition of Boolean expressions into sums of atoms, regular expres-
sion derivatives, expansion theorem for regular expressions, matrices, au-
tomata. .. This theorem relies on the completeness of Kleene algebra, which
requires at some point to establish decidability of language equivalence for
DFA. We do so by providing a “mathematical algorithm”, which is reason-
ably easy to prove correct and complete, but which is absurdly inefficient.

In contrast, we need a reasonably efficient algorithm for language equiv-
alence of KAT expressions, which does not need to be proved complete:
correctness is sufficient for the tactic to work. To this end, we use the naive
coinductive algorithm from the previous chapter, using an extension of An-
timirov” partial derivatives [11] to obtain automata from KAT expressions.

We do not give more details here, the interested reader can consult [110]
or the library, which is documented [115]. Putting the previous ingredients
together, we obtain a reflexive tactic called kat, which allows one to dis-
charge automatically any goal belonging to the equational theory of KAT.
This tactic works on any model of KAT: those already declared in the li-
brary (relations, languages, matrices, traces), but also the ones declared by
the user.

For the sake of simplicity, the Coq algorithm we implemented for KAT
does not produce a counter-example in case of failure. To be able to give
such a counter-example to the user, we actually run an OCaml version of
the algorithm first. This has two advantages: the tactic is faster in case of
failure, and the counter-example—a guarded string—can be pretty-printed
in a nicer way, using symbolism as explained in Section 2.3.3.

58 Chapter 3. Automation in the Coq proof assistant

3.1.2 Eliminating hypotheses

The above kat tactic works for the equational theory of KAT, that is, for
solving (in)equations that hold in any model of KAT, under any interpreta-
tion. In particular, this tactic does not make use of any hypothesis which is
specific to the model or to the interpretation.

The techniques we discussed in Section 1.5.4 to eliminate some hy-
potheses in KAT can be easily automated in Coq. We first prove once and
for all the appropriate equivalences and implications (the tactic kat is use-
ful for that). Then we define some tactics in Ltac that collect hypotheses
of shape (i-iv), put them into shape (i), and aggregate them into a single
one which is finally used to update the goal according to (}). Separately, we
define a tactic that rewrites in the goal using all hypotheses of shape (v),
through (). Finally, we obtain a tactic called hkat, that just preprocesses the
conclusion of the goal using all hypotheses of shape (i-v) and then calls the
kat tactic. Note that the completeness of this method [59] is a meta-theorem;
we do not need to formalise it.

3.2 Case studies

We now present some examples of Coq formalisations where one can take
advantage of our library.

3.2.1 Bigstep semantics of ‘while’ programs

The bigstep semantics of ‘while” programs is taught in almost every course
on semantics and programming languages. Such programs can be embed-
ded into KAT in a straightforward way [80], thus providing us with proper
tools to reason about them. Let us formalise such a language in Coq.
Assume a type state of states, a type loc of memory locations, and
an update function to update the value of a memory location. Call arith-
metic expression any function from states to natural numbers, and Boolean
expression any function from states to Booleans (we use a partially shallow
embedding). The ‘while” language is defined by the inductive type below:

Inductive prog:=

skp

aff (1: loc) (e: expr)
seq (p q: prog)

ite (b: test) (p g: prog)
whl (b: test) (p: prog).

Variable loc, state: Set.
Variable update: loc — nat — state — state.

Definition expr := state — nat.
Definition test := state — bool.

The bigstep semantics of such programs is given as a “state transformer”,
i.e., a binary relation between states. Following standard textbooks, one can
define this semantics in Coq using an inductive predicate:

3.2. Case studies 59

Notation “1«—e’ := (aff L €). Notation“p;q” := (seqp q).

Inductive bstep: prog — rel state state :=

| s_skp:V's, bstepskpss

| s_aff: V1 es, bstep(l<e)s (update L (e s) s)

| s_seq: Vpqgss s, bstepps s’ — bstepqgs’s” — bstep(p;q)s s”

| s_ite_ff:Vbpgss, —-bs —bstepgss’ — bstep(itebpq) s s’

| s_ite_tt:Vbpgss’, bs —>bsteppss” — bstep(itebpq) s s’

| s whl ff:Vbps, =bs — bstep(whlbp)s s

| s_.whl_tt:Vbpss’, bs — bstep(seqp(whlbp)) ss” — bstep(whlbp)s s’

Alternatively, one can define this semantic through the relational model of
KAT, by induction over the program structure:

Fixpoint bstep (p: prog): rel state state:=
match p with
| skp =1
seqp q = bstep p-bstepq
aff lLe =updle
iteb p g = [b]-bstep p+[—b]-bstep q
whlb p = ([b]-bstep p)*-[—b]

end.

(Notations come for free since binary relations are already declared as a
model of KAT.) The “skip” instruction is interpreted as the identity relation;
sequential composition is interpreted by relational composition. Assign-
ments are interpreted using the following auxiliary function:

Definition upd 1l e: rel state state:= funs s’ = s’ =update 1 (e s) s.

For the ‘if-then-else” statement, the Boolean expression b is a predicate on
states, i.e., a test in our relational model of KAT; this test is used to guard
both branches of the possible execution paths. Accordingly for the “‘while’
loop, we iterate the body of the loop guarded by the test, using Kleene star.
We make sure one cannot exit the loop before the condition gets false by
post-guarding the iteration with the negation of this test.

This alternative definition is easily proved equivalent to the previous
one. Its relative conciseness makes it easier to read (once one knows KAT
notation); more importantly, this definition allows us to exploit all theo-
rems and tactics about KAT, for free. For instance, suppose that one wants
to prove some program equivalences. First define program equivalence,
through the bigstep semantics:

Notation "p ~ q":=(bstep p==bstep q).

(The “==" symbol denotes equality in the considered KAT model; in this
case, relational equality.) The following lemmas about unfolding loops and
dead code elimination, can be proved automatically.

Lemma two_loops b p: whlb (whlb p) ~ whlbp.
Proof. simpl. kat. Qed.

60 Chapter 3. Automation in the Coq proof assistant

(* ([b]-(([b]-bstep p)*-[—=b]))*-[-b] == ([b]-bstep p)*-[-b] x)

Lemma fold_loop b p: whlb (p; iteb p skp) ~ whlbp.
Proof. simpl. kat. Qed.
(x ([b]-(bstep p-([b]-bstep p+[—b]-1)))*-[-b] == ([b]-bstep p)*-[—=b] x)

Lemma dead_codeabpqr: whl(aVvb)p; itebgr ~ whl(avb)p; r.
Proof. simpl. kat. Qed.
(* ([aVbl-bstep p)*-[—(aVb)]l-([bl-bstep q+ [—b]l-bstep r)
== ([aVb]-bstep p)*-[-(aVb)]l-bstep r x)

(The semicolon in program expressions is a notation for sequential compo-
sition; the comments below each proof show the intermediate goal where
the bstep fixpoint has been simplified, thus revealing the underlying KAT
equality.)

Of course, the kat tactic cannot prove arbitrary program equivalences:
the theory of KAT only deals with the control-flow graph of the programs
and with the Boolean expressions, not with the concrete meaning of as-
signments or arithmetic expressions. We can however mix automatic steps
with manual ones. Consider for instance the following example, where we
prove that an assignment can be delayed. Our tactics cannot solve it auto-
matically since some reasoning about assignments is required; however, by
asserting manually a simple fact (in this case, an equation of shape (ii)), the
goal becomes provable by the hkat tactic.

Definition subst l e (b: test): test:= funs = b (update l (e s) s).
Lemma aff_iteleb p q: l«e;itebpqg ~ ite(subst leb) (l«e;p)(l«e;q).
Proof.
simpl. (x upd 1 e-([b]-bstep p+ [—b]-bstep q) ==
[subst 1 e b]-(upd 1 e-bstep p):-[—subst 1L e b]-(upd 1 e-bstep q) *)
assert (upd 1 e-[b] ==[subst L eb]-upd 1 e)
by (cbv; firstorder; subst; eauto).
hkat.
Qed.

3.2.2 Hoare logic for partial correctness

Propositional Hoare logic for partial correctness [62] of while programs is
subsumed by KAT [80]. The key ingredient in Hoare logic is the notion of
a “Hoare triple” {A}p{B}, where p is a program, and A, B are two for-
mulas about the memory manipulated by the program, respectively called
pre- and post-conditions. A Hoare triple {A}p{B} is valid if whenever the
program p starts in some state s satisfying A and terminates in a state s/,
then s satisfies B. Such a statement can be translated into KAT as a simple
equation:

[Alp[~B] =0

3.2. Case studies 61

Indeed, [A]p[—B] = 0 precisely means that there is no execution path along
p that starts in A and ends in —B. Such equations are Hoare equations (they
have the shape (i) from Section 3.1.2), so that they can be eliminated auto-
matically. As a consequence, inference rules of Hoare logic can be proved
automatically using the hkat tactic. For instance, for the ‘while” rule, we get
the following script:

Lemma rule_whlAbp: {AAD}p{A} — {A}whlb p {AA—Db}.
Proof. simpl. hkat. Qed.
(x [AADb]-bstep p-[-A]==0 — [A]-(([bl-bstep p)*-[=b])-[-(AA—b)]==0 *)

3.2.3 Compiler optimisations

Kozen and Patron [82] use KAT to verify a rather large range of standard
compiler optimisations, by equational reasoning. Citing their abstract, they
cover “dead code elimination, common subexpression elimination, copy propaga-
tion, loop hoisting, induction variable elimination, instruction scheduling, alge-
braic simplification, loop unrolling, elimination of redundant instructions, array
bounds check elimination, and introduction of sentinels”. They cannot use au-
tomation, so that the size of their proofs ranges from a few lines to half a
page of KAT computations.

We formalised all those equational proofs using our library. Most of
them can actually be solved instantaneously, by a simple call to the hkat
tactic. For the few remaining ones, we gave three to four line proofs, con-
sisting of first rewriting using hypotheses that cannot be eliminated, and
then a call to hkat.

The reason why hkat performs so well is that most assumptions al-
lowing to optimise the code in these examples are of the shape (i-v). For
instance, to state that an instruction p has no effect when [a] is satisfied,
we use an assumption [a]p = [a]. Similarly, to state that the execution of
a program x systematically enforces [a], we use an assumption z = z[a).
The assumptions that cannot be eliminated are typically those of the shape
pq = gp: “the instructions p and ¢ commute”; such assumptions have to be
used manually.

3.2.4 Flowchart schemes

The last example we discuss here is due to Paterson, it consists in prov-
ing the equivalence of two flowchart schemes (i.e.,, goto programs—see
Manna’s book [90] for a complete description of this model). These two
schemes are given in Figure 3.1; Manna proves their equivalence using sev-
eral successive graph transformations. His proof is really high-level and
informal; it is one page long, plus three additional pages to draw inter-
mediate flowcharts schemes. Angus and Kozen [10] give a rather detailed

62 Chapter 3. Automation in the Coq proof assistant

9

y<ff)

Figure 3.1: Paterson’s equivalent flowchart schemes [90, pages 254 and 258].

equational proof in KAT, which is about six pages long. Using the hkat tac-
tic together with some ad-hoc rewriting tools, we managed to formalise
Angus and Kozen’s proof in three rather sparse screens.

Like in Angus and Kozen’s proof, we progressively modify the KAT
expression corresponding to the first scheme, to make it evolve towards
the expression corresponding to the second scheme. Our mechanised proof
thus roughly consists in a sequence of transitivity steps closed by hkat, al-
lowing us to perform some rewriting steps manually and to move to the
next step. This is illustrated schematically by the code presented in Fig. 3.2.

Most of our transitivity steps (the y;’s) already appear in Angus and
Kozen'’s proof; we can actually skip a lot of their steps, thanks to hkat. Some
of these simplifications can be spectacular: for instance, they need one page
to justify the passage between their expressions (24) and (27), while a sim-
ple call to hkat does the job; similarly for the page they need between their
steps (38) and (43).

3.3. Discussion 63

Lemma Paterson: x_1 == z.

Proof.
transitivity y_1. hkat. (* x .1 ==y_1 %)
a few rewriting steps transforming y_1 into x_2.
transitivity y_2. hkat. (* Xx_2 ==y_2 x)
a few rewriting steps transformingy_2 into x_3.
(x ... %)
transitivity y 12. hkat. (* x_12 ==y_12 x*)
a few rewriting steps transformingy_12 into x_13.
hkat. (x x_13 ==z x*)
Qed.

Figure 3.2: Skeleton for the proof of equivalence of Paterson’s flowchart
schemes.

3.3 Discussion

Several formalisations of algorithms and results related to regular expres-
sions and languages have been proposed since we released our Coq reflex-
ive decision procedure for Kleene algebra [26]: partial derivatives for reg-
ular expressions [5], regular expression equivalence [42, 84, 13, 96], regular
expression matching [75]. None of these works contains a formalised proof
of completeness for Kleene algebra, so that they cannot be used to obtain
a general tactic for KA (note however that Krauss and Nipkow [84] obtain
an Isabelle/HOL tactic for binary relations using Theorem 1.2.1 to sidestep
the completeness proof—but they cannot deal with other models of KA).

On the algebraic side, Struth et al. [50, 12] showed how to formalise
and use relation algebra and Kleene algebra in Isabelle/HOL; they exploit
the automation tools provided by this assistant, but they do not try to de-
fine decision procedures specific to Kleene algebra, and they do not prove
completeness.

The presented tools allowed us to shorten significantly a number of pa-
per proofs—those about Hoare logic, compiler optimisations, and flowchart
schemes. Getting a way to guarantee that such proofs are correct is impor-
tant: although mathematically simple, they tend to be hard to proofread
(we invite the sceptical reader to check Angus and Kozen’s paper proof of
Paterson example [10]). Moreover, automation greatly helps when search-
ing for such proofs: being able to get either a proof or a counter-example
for any proposed equation is a big plus: it makes it much easier to progress
in the overall proof.

Our library is rather exhaustive as far as Kleene algebra with tests
is concerned: axiomatisation, models, completeness proof, decision proce-
dure, elimination of hypotheses. Many things remain to be done for other
fragments of the calculus of relations: decision procedure for Kleene al-

64 Chapter 3. Automation in the Coq proof assistant

gebra with converse, axiomatisation and decision of identity-free Kleene
lattices, elimination of other kinds of hypotheses.

3.4 Appendix: overall structure of the library

The Coq library can be browsed online [115]; it is documented and axiom-
free. Many aspects of this implementation work cannot be explained here:
how to encode the algebraic hierarchy, how to work efficiently with finite
sets and finite sums, how to exploit symmetry arguments, reflexive nor-
malisation tactics, tactics about lattices, finite ordinals and encodings of
set-theoretic constructs in ordinals. ..

The library is medium-sized: according to coqwc, the library consists
of 4377 lines of specifications and 3020 lines of proofs, that distribute as
follows. We hope to maintain such a reasonable codebase when developing
further extensions.

specif. | proofs | comments
ordinals, comparisons, finite sets. .. 674 323 225
algebraic hierarchy 490 374 216
models (languages, relations. ..) 1279 461 404
linear algebra, matrices 534 418 163
completeness, decision procedures, tactics | 1400 | 1444 740

We close this chapter with a succinct description of each module from
the library; their dependencies are depicted in Figure 3.3.

Utilities

common: basic tactics and definitions used throughout the library

comparisons: types with decidable equality and comparison function

positives: simple facts about binary positive numbers
ordinal: finite ordinals, finite sets of finite ordinals
pair: encoding pairs of ordinals as ordinals
powerfix: simple pseudo-fixpoint iterator

lset: sup-semilattice of finite sets represented as lists

Algebraic hierarchy

level: bitmasks allowing us to refer to arbitrary points in the hierarchy
lattice: “flat” structures, from preorders to Boolean lattices
monoid: typed structures, from po-monoids to residuated Kleene lattices

kat: Kleene algebra with tests

3.4. Appendix: overall structure of the library 65

kleene: Basic facts about Kleene algebra
normalisation: normalisation and semi-decision tactics for relation algebra
Models
prop: distributive lattice of propositions
boolean: Boolean trivial lattice, extended to a monoid.
rel: heterogeneous binary relations
lang: word languages
traces: trace languages
atoms: atoms of the free Boolean lattice over a finite set
glang: guarded string languages
lsyntax: free lattice (Boolean expressions)
syntax: free relation algebra
regex: regular expressions
gregex: KAT expressions (typed—for completeness)
ugregex: untyped KAT expressions (for the decision procedure)
Untyping theorems
untyping: untyping theorem for structures below KA with converse

kat_untyping:

untyping theorem for guarded string languages

Linear algebra

sups:
sums:
matrix:
matrix_ext:
rmx:

bmx:

finite suprema/infima (a la bigop, from ssreflect)

finite sums

matrices over all structures supporting this construction
additional operations and properties about matrices
matrices of regular expressions

matrices of Booleans

Automata, completeness

dfa:

nfa:

ugregex_dec:
ka_completeness:
kat_completeness:
kat_reification:
kat_tac:

deterministic automata, decidability of language inclusion
matricial non-deterministic finite state automata

decision of language equivalence for KAT expressions
(untyped) completeness of Kleene algebra

(typed) completeness of Kleene algebra with tests

tools and definitions for KAT reification

decision tactics for KA and KAT, elimination of hypotheses

66 Chapter 3. Automation in the Coq proof assistant

kat_tac

/

kat_completeness

/

ka_completeness

kat_reification dfa kat_untyping ugregex_dec

Ceme)
I gregex @ ugregex @

‘ atoms glang
boolean . kat)

Figure 3.3: Dependencies of the modules from the RelationAlgebra library.

Chapter 4

Abstract coinduction

Coinduction is a simple mathematical tool, dual to induction. It provides
powerful proof techniques for checking properties of different kinds of sys-
tems, and we have seen in Chapter 2 that it can lead to efficient algorithms,
using so-called “up-to techniques”. In this chapter we give an abstract ac-
count of these enhancements to coinduction, in complete lattices.

Coinduction follows from Knaster-Tarski’s fixpoint theorem on com-
plete lattices [74, 136]. It was first used implicitly, for instance in finite au-
tomata algorithms [66, 65], until Milner popularised it by proposing bisim-
ilarity as a natural way to compare concurrent programs [92]. It was then
widely used, for instance to analyse other process calculi [93], the lambda-
calculus [3], cryptographic protocols [1], distributed implementations [51],
concurrent ML [72], analytic differential equations [124], or C compilers [88,
129].

The reason for such a success is that like induction, coinduction pro-
vides a powerful proof technique: to prove some property by coinduction,
it suffices to exhibit an invariant. Typically, in program semantics, one can
prove the equivalence of two programs by exhibiting a bisimulation relation
that contains those two programs. The point there is that while program
equivalence is a global property (for instance, because equivalent programs
should remain equivalent under arbitrary contexts), the conditions for a re-
lation to be a bisimulation are local. By using coinduction one can thus
ensure a global property by checking only local properties. Very much like
induction allows one to reduce a proof about arbitrary natural numbers to
a proof about zero and successor.

From the beginning [92], Milner introduced enhancements of the bisim-
ulation proof method. They make it possible to work with relations that
are much smaller than actual bisimulations and yet ensure program equiv-
alence: they are always contained in a bisimulation. Those relations are
usually called bisimulations up to. The benefits of these enhancements can
be spectacular; a bisimulation up to can be finite whereas any enclosing

68 Chapter 4. Abstract coinduction

bisimulation is infinite. Sometimes it may be hard even to define an enclos-
ing bisimulation, let alone carrying out the whole proof. There are many
possible enhancements, and they proved useful, if not essential, in proofs
about name-passing languages [23, 71, 128], languages with information
hiding mechanisms (e.g., existential types, encryption and decryption con-
structs [1, 132, 131]), and higher-order languages [86, 76]. We used such
enhancements in Chapter 2 to improve Hopcroft and Karp’s algorithm in
the case of non-deterministic finite automata [21, 22].

Sangiorgi developed a first theory of those enhancements [126, 128],
which we further refined during our PhD [104, 105], resulting in a book
chapter [116]. In this line of work, the emphasis was put on composition-
ality: given the wide variety of enhancements, it is crucial to have tools to
analyse each of them separately, and then to combine them when needed
in a concrete proof. Since enhancements do not compose in general, San-
giorgi proposed a notion of respectful enhancement. These form a subclass
of the valid enhancements, and they enjoy nice compositional properties:
they are closed under union and composition. One can thus establish a dic-
tionary of respectful enhancements, and then use any combination of those
in concrete proofs. In our refinement of this framework, respectfulness was
modified into compatibility, a slightly more natural notion which essentially
plays the same role but leads to a smoother theory.

Three years ago, Hur et al. proposed parameterized coinduction [68], an
extremely neat variation on Knaster-Tarski theorem which allows one to
present coinductive proofs incrementally, without having to exhibit the in-
variant (or bisimulation relation) from the beginning. Such a possibility is
especially useful in the context of mechanised formal proofs: the process of
discovering the appropriate invariant becomes interactive and amenable
to automation. They also show in this paper how to exploit respectful en-
hancements with parameterized coinduction. When doing so, they define
the greatest respectful enhancement and they remark in passing that it is so
powerful that there is no point in using a different one.

This simple remark recently lead us to rework our theory of enhanced
coinduction: unexpectedly, in addition important simplifications, we ob-
tain an alternative proof of Knaster-Tarski’s theorem, the distinction be-
tween respectful and compatible enhancements vanishes, and parameter-
ized coinduction becomes a byproduct of the theory [112].

4.1 Notation and preliminary material

A complete lattice is a triple (X, <,\/) where (X, <) is a partial order (reflex-
ive, transitive, and antisymmetric) such that any subset Y of X has a least

4.1. Notation and preliminary material 69

upper bound \/ Y: forall z € X,
\/Ygz iff VyeY, y<z

A complete lattice always has a bottom element, written L, and a binary
join operation, written with infix symbol V:

J_é\/Q) :c\/yé\/{ac,y}

Arbitrary greatest lower bounds can be derived from least upper bounds.
We denote binary ones (meets) with the infix symbol A.

Standard examples of complete lattices include: subsets (of a given set)
ordered with inclusion; binary relations (on a given set) ordered with in-
clusion again, and functions into a complete lattice, ordered pointwise. A
fourth example, used thoroughly in this paper, is the set of monotone func-
tions on a complete lattice.

More precisely, given a complete lattice (X, <,\/), a function f : X —
X is monotone if it preserves the partial order:

Ve,ye X, z<y = f(z) < f(y)

We write [X — X]| for the set of monotone functions on X. When ordered
pointwise, this set forms a complete lattice: for all f,¢g : [X — X] and
FC[X — X],

f<g2vVreX, f(z)<glx) VF2aze\/ f@

fer

A post-fixpoint of a function f : [X — X]is an element « such that z < f(x);
a fixpoint is an element x such that z = f(z).

In the sequel we mostly work within a generic complete lattice X, the
corresponding lattice of monotone functions [X — X], and that of mono-
tone functions on [X — X|: [[X — X] — [X — X]]. To avoid confusion,
we use the following convention: letters z,y, z range over elements of X,
letters f,g,b,c,t range over functions in [X — X], and uppercase letters
F,B,S,T are reserved for functions in [[X — X| — [X — X]]. We follow
the same convention in concrete examples, except that we use bold fonts.

This discipline allows us to overload most symbols in the sequel: for
instance, depending on the context, L can denote the empty set, the bot-
tom element of an abstract complete lattice X, or the everywhere-bottom
function in [X — X].

To further alleviate notation, we denote the identity function by 1, and
both function composition and function application by juxtaposition:

¢ fx denotes the application of a function f to an element x, usually
written f(x);

70 Chapter 4. Abstract coinduction

* fg denotes the composition of two functions f and g, usually written

fog.

(Similarly for F'g and F'B.) We associate juxtapositions to the right when
there is no ambiguity. For instance, we write fgx for f(gx) = (fg)z, fgb for
f(gb) = (fg)b, and TT'f for T(T'f) = (TT)f. In contrast, we keep paren-
theses in expressions such that (B f)g and B(fg) which are not equal in
general.

4.2 Knaster-Tarski and Compatibility

We fix throughout the chapter a complete lattice (X, <, \/) and a monotone
function b : [X — X]. Knaster-Tarski’s theorem characterises the greatest
fixpoint vb of b as the least upper bound of all its post-fixpoints:

by

T <

; (4.1)

N <
N VAN

The corresponding coinduction principle is given on the right-hand side. In
words, to prove that z is below in the greatest fixpoint, find a post-fixpoint
y above z. The idea of enhancements is to use an additional function f and
to look for post-fixpoints of bf rather than b: we switch to the following
principle of coinduction up to f

T <
(4.2)
i

y <bfy
<vb
The function f typically enlarges its argument, and the post-fixpoints of
bf can be much smaller than those of b; these are the bisimulations up to
we alluded to in the Introduction. The function f corresponds to a valid
enhancement when the above rule holds, or, equivalently, when v(bf) < vb.
Our primary goal is to obtain such functions.

A monotone function f : [X — X] is compatible (for b) if fo < bf.
Compatible functions yield valid enhancements (see Remark 4.2.6), and it
is straightforward to check that 1 and b are compatible, that the composition
of two compatible functions is compatible, and that the least upper bound
of a family of compatible functions is compatible.

Definition 4.2.1. We call companion of b the monotone function obtained as the
least upper bound of all compatible functions:

t2 \/ f

fo<bf

4.2. Knaster-Tarski and Compatibility 71

Lemma 4.2.2. The companion is compatible:
th < bt (4.3)

Thus this is the greatest compatible function. It moreover satisfies

b<t (4.4)
1<t (4.5)
<t (4.6)

The last two inequalities entail idempotence, i.e., tt = t.

The companion makes it possible to provide an alternative definition
of the greatest (post-)fixpoint:

Theorem 4.2.3. The greatest fixpoint of b is the value of the companion on the
bottom element.
vb=tl 4.7)

Proof. We first show that ¢ is the greatest post-fixpoint:

1. t1 is a post-fixpoint: we have t 1 < tbL < btL by monotonicity and
compatibility of ¢;

2. itis the largest: if x < bz, then the constant-to-z function Z is compat-
ible and thus smaller than ¢, so that x = .1 < t.L.

We conclude that ¢L is a fixpoint as in Knaster-Tarski’s proof: from mono-
tonicity of b and the first point, bt L is also a post-fixpoint, and thus bt L <
tL by the second point. O

Using idempotence of the companion, we also get

Corollary 4.2.4. The companion preserves the greatest fixpoint:
tvb = vb (4.8)

Typically, when b is the function defining bisimilarity on some process
calculus, we recover the fact that if contextual closure is compatible (and
thus below t) then bisimilarity is closed under contexts—see Section 4.6.

In the sequel we write b' for the composite function bt. This function
is an improved version of b, with more post-fixpoints (we have b < bh) but
the same greatest fixpoint:

Theorem 4.2.5. The companion is a valid enhancement, we have

vbl = vb (4.9)

72 Chapter 4. Abstract coinduction

Proof. From (4.5) we deduce b < bf, and thus vb < vb'. The interesting
result is the other inequality. Since vb' is the greatest post-fixpoint of bT, it
suffices to show that any post-fixpoint = of b' is smaller than vb. We have

te < th'x = thtx (assumption on x and monotonicity of t)
< bttx (t is compatible (4.3))
<btr = bl (by (4.6) and monotonicity of b)

Thus tz is a post-fixpoint of b, and tz < vb. We conclude with (4.5): we have
r <tz < vb. O

Remark 4.2.6. In earlier work by Sangiorgi [126] and then by the author [104],
where the emphasis was on compatible functions rather than on the greatest one
(the companion), the corresponding result is “if f is compatible, and x < bfx then
x < vb"”. Such a result requires a convoluted proof. Indeed, when f is an arbitrary
compatible function, one does not have 1 < f and ff < f, and the above proof
breaks. Instead, one constructs the sequence f'v = x, fitlx £ ffix and one
shows by recurrence that fixz < bf"'z. One deduces that f*x £ \/, flz is a
post-fixpoint, so that v < f“x < vb. Focusing on the companion makes it possible

to avoid this use of natural numbers.

Remark 4.2.7. One might hope to enhance the function b further by using the
companion of b'. However we stagnate when doing so: let t* be the companion of
bt we have

=t (4.10)
pit — ot 4.11)
Equation (4.10) generalises Theorem 4.2.5: we have vb' = t* | =t 1 = vb.

4.3 Examples

We illustrate the previous notions on three examples: Milner’s calculus of
communicating systems (CCS) [92], from which the theory of up-to tech-
niques originates; finite automata, for which we used bisimulations up to
equivalence and bisimulation up to congruence in Chapter 2; and Rutten’s
stream calculus [124].

4.3.1 Milner’s CCS

Let us consider a fragment of Milner’s calculus of communicating systems
(CCS). We fix a set of names a, b . .., and a set of process constants A, B,
CCS processes and labels are defined by the following grammar:

PQ:=A|0|aP|P|P

a,Bu=alalrT

4.3. Examples 73

AP aP %P
PLP Q% qQ PP
PlQ = P'|Qf PlQ = P'lQ

Figure 4.1: Labelled transition system of a fragment of CCS.

We let R, S range over binary relations on processes.

The corresponding labelled transition system (LTS) is given in Fig-
ure 4.1. The first rule accounts for recursion: it assumes that each process
constant is associated to a process in some global table. The two symmetric
rule for parallel composition are omitted.

Let b be the following monotone function on the lattice of binary rela-
tions on processes:

b: R {(P,Q)|Va,
VP, P35 Plentails 3Q', Q = Q and P’ R Q'
VQ', Q % Q entails 3P, P % P'and P/ R Q' }

The so-called bisimulations are the post-fixpoints of b, and bisimilarity (~) is
its greatest-fixpoint.

An enhanced coinductive proof. Consider the following process defini-
tions, and let us try to prove that A ~ B.

A% abD B2 a.b.C
C £a.(AlC) D £ a.(B|D)

Any bisimulation containing the pair (A, B) must be infinite. Instead, the
companion of b allows us work with the finite relation S = {(A, B), (C, D)}:
we have S < bfS.

Indeed, we have A % b.D and B % b.C. While the pair (b.D, b.C") does
not belong to S, we can use the following functions to cancel the b prefixes
and to transpose C' and D:

c:R— {{a.P, a.QQ) | «valabel, P R Q}
i:R—=R°={(Q, P)| PR Q}
We thus have (4, B) € bic'S. The function i is trivially compatible for b,

and we shall see in Section 4.6 that ¢ is below the companion of b, written
t in the sequel. Whence ic' < tt < t, and thus (A, B) € biS.

74 Chapter 4. Abstract coinduction

Similarly, we have C LN A|C and D 3 B|D, and we use the following
function to cancel parallel composition and recover the two pairs from S:

c: R {(PIP, QQY | PRQ,P RQ'}

This function is below t (see Section 4.6 again), so that we get (C, D) €
bclS < bis.

Note that thanks to the companion, we only had to study transitions
along labels a and @, even though the processes at hand also perform tran-
sitions labelled b and 7. (For instance, we have A LLUNY ! |B|D). The fact
that the starting processes cannot diverge one from the other using those
actions is somehow factored once and for all, in the proofs that ¢ and cl are

valid enhancements.

Modularity. As pointed out by Hur et al. [68], working with the compan-
ion rather than with specific compatible functions is quite convenient: it
does not require us to announce a global up-to technique up-front. (Here,
something like ic' V cl.) In each sub-case of the proof, we can just extract
from the companion whatever is needed for that case. This approach is
much more robust, especially in the context of computer-assisted proofs.
Suppose for instance that one slightly changes the definition of D into
a.(D|B). One can still conclude by reasoning up to commutativity of par-
allel composition, and this additional technique is already available in the
companion: there is no need to update the declared up-to technique, one
just needs to adjust the proof locally. (Of course one needs to prove that
this new kind of enhancement is available in the companion, but this can
be done separately, and once and for all.)

Code reuse. Although this was not needed in the previous example, one
can also show that the following function is compatible:

J: R=>RR={(P, R)|3Q, PRQ, QR R}

Thus j < t, and together with (4.6), jt < t. In other words, for any relation
R the relation tR is transitive. Similarly, the constant-to-identity function
1 is compatible, so that tR is always a reflexive relation. More generally,
from ¢, cl,1,i,j < t and tt < t, we deduce that for any relation R, tR is a
congruence containing both R and ~.

In the context of proof assistants, this simple realisation makes it possi-
ble to reuse standard technology for automating equational reasoning (e.g.,
in the Coq proof assistant, setoid rewriting).

Also note that since ~ = t_L, we obtain as a special case that bisimilar-
ity is a congruence. In particular, once the aforementioned technology has
been settled for tR for an arbitrary R, tools for equational reasoning about
bisimilarity come for free.

4.3. Examples 75

4.3.2 Finite automata

In Chapter 2 we defined several coinductive algorithms for language equiv-
alence of finite automata. It remained to show that some up-to techniques
are sound. Given a DFA (S, 0,t), define the following monotone function
on relations on S:

b: R {(z,y) | o(z) =0o(y) and Va € 3, to(z) R ta(y)} -

The post-fixpoints of b precisely correspond to the bisimulations (Defini-
tion 2.1.1). Moreover, given a monotone function f, the post-fixpoints of b f
correspond to the bisimulations up to f (Definition 2.1.4).

We have explained Hopcroft and Karp’s algorithm in terms of bisim-
ulations up to equivalence, and for that we needed that every bisimulation
up to equivalence be contained in a bisimulation (Theorem 2.1.5). As in the
case of CCS, we only need to show that the functions 1,1, and j are com-
patible, which is straightforward. From the closure properties of the com-
panion (Proposition 4.2.2), it follows that the equivalence closure function
is contained in the companion, and thus a valid enhancement.

Similarly, to obtain up-to-context and up-to-congruence for a deter-
minised NFA (S, o, t*), we only have to show that the following function
is compatible.

R {X+X, YHY) | X RY, X' RY'}

This comes from the fact that the functions ¢ and of are semilattice ho-
momorphisms. As above, we deduce that the companion contains the con-
textual closure and congruence closure functions, whence Proposition 2.2.3
and Theorem 2.2.5.

4.3.3 The stream calculus

As a third example, we consider the stream calculus, as developed by Rut-
ten [124]. Let us denote by R“ the set of streams, i.e., infinite sequences
o, T ... of real numbers.

Together with the following function associating to each stream its first
element and its tail, R is a final coalgebra for the functor F.X =R x X

R¥ - R x R¥
o +— (00,0")
One can thus define streams by behavioural differential equations (i.e., using

F-coalgebras). For instance, the everywhere-0 stream (can be defined by
the following equations:

0o =0 0=0

76 Chapter 4. Abstract coinduction

Similarly, pointwise addition of streams can be defined by

(0 +T7)o =00+ 10 (c+7) =0 +7

Shuffle product. Things become more interesting for more complex op-
erations. Take for instance the shuffle product of streams, usually defined by
the following formula:
(c®T) i<n> X 0% X T,
rart k k n—k
This operation can alternatively be defined using the following differential
equations, which no longer involve binomial coefficients:

(0 ®@7)o =00 X 10 (c@1)=0d®1 + 01

As noticed by Rutten, proving a simple property like associativity can be
difficult with the former definition, as it would involve double summa-
tions of terms with several binomial coefficients. In contrast, one can give a
straightforward coinductive proof.

Let b be the following (monotone) function on binary relations on
streams:

b: R— {{o, 7y |op =mpand ¢’ R 7'}

One can check that its greatest fixpoint is the identity relation: (o, 7) € vb
iff o = 7. One can thus prove stream equalities by coinduction.

As a trivial example consider commutativity of stream addition: it is
immediate to see that the relation {(c + 7, 7+ o) | 0,7 € R“} is a post-
fixpoint of b; this relation is thus contained in the identity, and stream ad-
dition is commutative.

Coming back to associativity of the shuffle product, we might accord-
ingly try to use the following relation:

SE{{lcr)@p, 0@ (T®p)) |07, p ER?}
Unfortunately, this relation is not a post-fixpoint of b: assuming distribu-
tivity has already been proved, we have

(cerj@p) =('an)@p + (cor)@p + (c07) @/
(co(r@p) =de(Tep +0a(rap) +o@(Te/)
and those two streams are not related by S. Like in the previous example
in CCS, we would like to cancel the two sums on both sides, in order to
recover three pairs in S. This is possible using the companion of b: the
following function is easily shown to be compatible for b, so that S < b'S.
c R {{lo+p, T+w)|oRT, pRwW}

We have thus obtained a straightforward proof of associativity of the shuf-
fle product.

4.4. Compeatibility up-to 77

Exponentiation. Let us consider a third natural operation on streams: ex-
ponentiation, defined by the following differential equation:

/ /
ey = e’° e =0 ®e

As expected, we have e”T7 = ¢? @ e”. To prove it by following the same
path as above, one needs to cancel a shuffle product, thus calling for the
following function:

c® R=>{(c@p, TQW) |cRT, pRw}

While this function is indeed below the companion of b, it is not compatible
for b. To understand why, let us try to prove compatibility of this function,
ie., c®b < bc®. Let R be a relation. We have

c®bR={(c®p, TQw) | 0 bR 7, p bR w}

So assuming o bR 7 and p bR w, we have to show that (¢ ® p, T @ w) €
bc®R. That (o ® p)o = (T ®w)y is easy; the problem comes from the tails of
those streams:

(c@p)=0d@p+ o)
Tow) =7T"0w + 70

First we need to cancel the sum operation (using c*). Second, while we
have ¢’ R 7" and p’ R w’ by assumption, we only have p bR w and o bR .
In the end, instead of c®b < bc®, we have

c®b < bctc®(b V1) (4.12)

We shall see in the following section that such a result nevertheless ensures
that the function ¢® is below the companion of b, and can thus safely be
used in enhanced coinductive proofs about streams.

4.4 Compatibility up-to

In this section we show that the companion is a coinductive object. This
gives us powerful proof techniques to obtain enhancements.

Definition 4.4.1. Let B be the following function from monotone functions on X
to monotone functions on X:

B:[X - X]—[X = X]

g\ f

fb<byg

78 Chapter 4. Abstract coinduction

Lemma 4.4.2. B is monotone, and for all functions f,g : [X — X]|,

f<Bg iff [b<bg (4.13)

In particular, f is compatible if and only if it is a post-fixpoint of B, so
that the companion is the greatest fixpoint of B:

t=vB (4.14)

We can thus reuse the machinery from Section 4.2 with B, in the second-
order lattice [X — X]. Let T be the companion of B, and let BT £ BT.

In the previous section, in the example about streams, we had a first
function ¢, which was compatible and thus trivially below the compan-
ion. In contrast, we claimed that the function c® was below the companion,
although it is not compatible: we do not have c®b < bc®, i.e,, ¢® < Bce®
(where B is the higher-order function associated to the function b by Defi-
nition 4.4.1). Instead, we had ¢® < B(c"c®(bV1)). Using the results below,
we will deduce from this inequality that c® < Bfc®, so that ¢® < vB: the
function ¢® indeed lives below the companion.

In a sense, we face the standard scenario of bisimulation proofs, but in
the lattice of monotone functions: c® is an obvious coinductive candidate,
but it is too weak, we should strengthen it to get a post-fixpoint. Luckily,
instead of doing so, we can use an enhancement to build on the knowledge
accumulated so far about the companion (in this case, that it contains ct,
amongst other things.)

Getting back to the abstract framework, the second-order companion
T enjoys many good properties, listed in Proposition 4.4.4 below. We first
need to establish a compatibility result for B.

Lemma 4.4.3. The function S : f — ff is compatible for B.

Proposition 4.4.4. For any function f : [X — X|, we have

(4.15)
(4.16)
(4.17)
(4.18)
(4.19)
(4.20)

- s = o

NN NN NN
e e

T
(THTf

N
~
S s T

~—

In particular, T f is always an idempotent function.

Coming back to the example about the shuffle product on streams,
write t and T for the companions of b and B. It is now straightforward to

4.5. Symmetry arguments 79

check that cc®(b Vv 1) < Tc®
cc®bVv1) <tc®(b V1) (c* is compatible)
< (Tc®)c®(Te® v Tc®) (by (4.15), (4.16), and (4.17))
< (Te®)(Te®)(Te?) (by (418))
< Tc® (by (4.20) twice)

So from (4.12) we deduce c¢® < Bfc® and thus ¢® < t, as announced earlier.

(Note that we chose to make the function ¢*¢c® (b V 1) explicit here for
the sake of explanation. In a direct proof, one would prove c® < Bfc® by
extracting the required components out of Tc® on the fly, exactly as we did
in Section 4.3.1 but at the second-order level.)

4.5 Symmetry arguments

We now give a rather general result allowing to exploit symmetry argu-
ments in various proofs. This result formally justifies standard practice in
bisimulation proofs with paper and pencil. When it comes to formal, mech-
anised, proofs, it is crucial to have such results, to factor the code and avoid
cut-and-paste.

Leti: [X — X]be a monotone involution on X:
it =1 (4.21)

Call an element € X symmetric if ix = x (which is equivalent to iz < z
thanks to (4.21)). Call a function f : [X — X]| symmetric if fi = if (which is
equivalent to f being compatible for 7, again using (4.21)).

As a concrete example in the lattice of binary relations, the natural
candidate for the function i is the transposition function from Section 4.3.1:

i:R—=R'={(Q, P)|PRQ}

With such a choice, a relation R is symmetric if R~ =R, and a function f
is symmetric if f(R™!) = f(R)~! for all relations R.

When the function b is symmetric, the following proposition can be
used to factor proofs about symmetric candidates, both at the level of ele-
ments (X) and at the level of enhancements ([X — X]). We instantiate this
result in the following section, when reasoning about bisimilarity in CCS
and the m-calculus.

Proposition 4.5.1. Let s : [X — X| be a monotone function such that the func-
tion b decomposes as follows:

b=sANisi

Then vb is symmetric, it = t, and

80 Chapter 4. Abstract coinduction

P& P P& P N PP & P
— o o # a,a —
P+Q—P (va)P — (va)P P — P

Figure 4.2: Remaining rules for the LTS of CCS.

1. forall z,y € X with x symmetric, x < bty iff © < sty;

2. forall f,g:[X — X]with f symmetric, fo < bTgiff fb < sTg.

4.6 Example: up-to congruence for CCS

In this section, we illustrate the above framework by applying it to recover
up-to-context and up-to congruence for CCS, in a compositional way. In-
deed, thanks to the closure properties of the companion, it suffices to show
that the functions associated to each syntactic construction are below t to
obtain the full context closure function. Combined with the fact that the
transposition function i and the squaring function j are also below t, we
will immediately obtain the full congruence closure.

For the sake of completeness, let us consider here the entire calculus of
communicating systems. In addition to the operations used in Section 4.3.1,
there is choice, name restriction, and replication.

P.Qu=A|0|a.P|P|P|P+P|(va)P|!P

a,fu=alalT

The additional rules for the labelled transition system are given in Fig-
ure 4.2. (The symmetrical rule for choice is omitted.)

Recall the function b from Section 4.3.1, which we used to define bisim-
ilarity. Let s be the “first half” of this function:

s: R {(P,Q)|Va,P' P % Pentails 3Q, Q & Q'and PP R Q' }

With such a function, we only play from left to right. The post-fixpoints of
s are the simulations, and its greatest fixpoint is similarity. The composite
function isi corresponds to simulations again, but played from right to left.
As expected the function b for bisimilarity thus decomposes as required in
Proposition 4.5.1:

b=sAisi (4.22)

Applied in this setting, equivalence (1) from Proposition 4.5.1 is not
so surprising: when analysing the transitions of a symmetric bisimulation

4.6. Example: up-to congruence for CCS 81

candidate, we can restrict ourselves to the left-to-right part of the bisimula-
tion game. Note that thanks to the companion, we do not need y to be sym-
metric (because ty is). The second equivalence (2) from Proposition 4.5.1
is quite important in the sequel: one can also restrict ourselves to the left-
to-right part of the bisimulation game when analysing the behaviour of a
potential enhancement, provided it is symmetric.

Following closely the syntax of the calculus, we define the following
functions on binary relations:

c : R {{a.P,a.QQ) | «alabel, PR Q}

c: R {(PIP,QIQ) | PRQ, PPRQ'}
R {(P+P,Q+Q)|PRQ, PRQ'}
c!:R»—>{('P'Q>]PRQ}

¢’ : R {((va)P, (va)Q) | a aname, P R Q}

The functions ¢/ and ¢ have already been defined in Section 4.3.1; we in-
clude them here to emphasise the uniformity of those definitions.

Let ¢ be one of the above functions; we want to prove ¢ < t, where
t is the companion of b. From the results of Section 4.4, it thus suffices to
prove cb < bTc¢, where T is the companion of the second-order function B
associated to b. And since all the above functions are symmetric, it suffices
by Proposition 4.5.1(2) to prove

cb <sTe¢

For the “dynamic” operations that disappear after a single transition (func-
tions ¢ and c*), we actually do not need coinduction at all. Routine com-
putations lead to

cb <sb cb<s

(For c', we have ¢ < s.) This is fine because we have both b < T 1 (4.16)
and 1 < T1 (4.17).

Instead, we do need coinduction for the “static” operations, which per-
sist through transitions. The simplest is name restriction: we have c¢’b <
sc”, and c” < Tc” by (4.18). Parallel composition requires more care, we
give a detailed proof to better illustrate our method.

Lemma 4.6.1. We have c!b < sTcl, whence c! < t.

Proof. Let R be a relation, an let P, R, (Q, S be processes such that (P, Q)
and (R, S) belong to bR. We have to show that (P|R, Q|S) belongs to sTc!.
Thus suppose that P|R % Py and let us find some Qg such that QS % Qo
and (P, Qo) € Tc/R. There are four cases according to the rules of parallel
composition (Figure 4.1):

82 Chapter 4. Abstract coinduction

1. Py = P'|R with a = 7, and for some name a, P % P’,and R % R
From our assumptions about (P, Q) and (R, S), we obtain processes

Q and &’ suchthat Q % @, S % S, P R Q and R R S'. We
deduce that Q|S = Q'|S’, and the pair (P'|R’,Q’|S’) belongs to c/R
and hence Tc/R by (4.18).

2. same as above but with a and @ exchanged.

3. Py = P'|Rwith P % P’. From the hypothesis about the pair (P, Q)
we obtain a process Q' such that @ % Q' and P’ R Q'. We deduce
that Q|S = @’|S, and it remains to show

(P'|R,Q'|S) € TcIR

This is not as direct as before: rather than R R S, we have R bR S.
From (4.18) and (4.20), we have c!Tcl < Tcl. Therefore, it suffices
to show that P’ Tc/R @' and R Tc/R S. The former holds thanks
to (4.17); for the latter we use (4.16) instead.

4. Py = P|R' with R % R’. This case is handled as above. O

(Note that the above proof amounts to proving c/b < scl/(b Vv 1) and
then showing that cl/(b v 1) < Tcl using the generic properties of T—
Proposition 4.4.4.)

We skip replication in this manuscript. This operation is quite chal-
lenging as far as up-to techniques are concerned: there was a slight mistake
in [128], it requires specific rule formats [121], and people formalising up-to
techniques in proof assistants have eluded this operation so far [38, 102].
Nevertheless, the techniques developed above allow us to give a much
cleaner proof, thus amenable to formalisation [112]. The pi-calculus can
also be handled in a streamlined way, despite the various subtleties aris-
ing due to the input prefix and to scope-extrusion [112].

4.7 Respectful vs. compatible

Before turning to parameterized coinduction, we discuss a historical pe-
culiarity which has been causing some troubles since the introduction of
up-to techniques, and which we can nicely resolve by using the companion
function.

When Sangiorgi studied the bisimulation proof technique [126], he in-
troduced the notion of respectful function to obtain compositionality results.
With the present notation, a monotone function f : [X — X] is respectful
(for b) if forall z,y € X,

r<yand z < by entail fz <bfy .

4.7. Respectful vs. compatible 83

Lett £ bA1 (e, b'y = by Ay). Without the assumption x < y, respect-
fulness would be equivalent to compatibility (for b). With this assumption,
it is equivalent to compatibility for b'.

One can easily show that any compatible function (for b) is respect-
ful, but some interesting respectful functions are not compatible. This is
the reason why Sangiorgi needed this refinement. For instance the context
closure function in CCS is respectful but not compatible. Hur et al. used
respectfulness for the same reason [68].

In our own previous work [104, 116, 89], some of which with Sangiorgi,
we found that the theory of plain compatibility was somewhat nicer to de-
velop than that of respectfulness, so that we proposed to use the function ¢/
rather than b when necessary (doing so is always possible). Although this
was not their only reason, Parrow and Pohjola also chose a function b such
that b = b’ in their theory of up-to techniques for the psi-calculus [102].

In this paper, we used the most natural function b to define strong
bisimilarity in CCS, and this function does not satisfy b = b’. So how is it
possible that we could obtain up-to context?

The point is that with the companion function, we do not need the up-
to context function to be compatible stricto-senso. It just has to be below
the companion function ¢. For instance, in our proof for the parallel com-
position operation in CCS, we obtained c/b < bTc!, which does not entail
compatibility of c|.This contrasts with the literature, where we would prove
c/b’ < blc,ie., thatclis respectful (compatible for b’).

That we can recover up-to context in CCS and 7 without switching
to b’ is not a coincidence: the greatest respectful function always coincides
with the greatest compatible function:

Proposition 4.7.1. Let t' be the companion of b’ = b A 1. We have ' = t and
VT = b

In other words, the historical trade-off between b and ¥/, or compatibil-
ity and respectfulness, is irrelevant. The functions b and ¥’ lead to the same
coinductive proof principle once enhanced with their companion. One can
actually go even further and show that obtaining specific up-to techniques
is equally hard with ¥’ and b: their (enhanced) second-order proof princi-
ples also collapse.

Proposition 4.7.2. Let B’ be the second-order function associated to V', and let T’
be the companion of B’ (so that vB' =t' = T’ 1). We have T' = T and B't = B

84 Chapter 4. Abstract coinduction

4.8 Parameterized coinduction

Recall the coinductive proof principle, as provided by Knaster-Tarski’s the-
orem:

r<y<by
z<vb

This approach has an important drawback: the need to define the coin-
duction invariant (y) up-front. This does not match the standard practice,
where the coinductive predicate is obtained incrementally from z, by pro-
gressively extending it until it becomes a post-fixpoint. In the context of a
paper proof, one can always gather the final coinductive predicate a poste-
riori, to display it at the beginning of the proof. In the context of interactive
formal proofs, this becomes really inconvenient.

To solve this problem, Hur et al. proposed to use parameterized coinduc-
tion [68]. The trick consists in defining an auxiliary function G, : [X — X]
with the following properties:

Gyl = vb (4.23)
Gyr = b(z V Gpx) (4.24)
y< GplyvVze) = y< G (4.25)

Concretely, they define Gy as the greatest fixpoint of the function mapping
an element z to b(z V z). They also show how to use up-to techniques with
parameterized coinduction, using the greatest respectful function (which
coincides with ¢, according to Section 4.7). As we do here the idea is to
switch to b = bt, and thus they use G, rather than G} Doing so leads to a
fourth equation [68, Theorem 13]:

Gb‘(== thJy (426)
Surprisingly, we actually have
Theorem 4.8.1. G} = b'.

(This result follows from Theorem 4.8.2 below; note that G}, # b in general:
the companion plays a crucial role in this result.)

This means we do not need the machinery of the Gy function to imple-
ment parameterized coinduction; it is already provided by the companion.
Following this idea, we give an alternative presentation of parameterized
coinduction.

Let us first prove the following counterpart to (4.25):

Theorem 4.8.2. Forall z,y € X, ify < bt(y V x) then y < tx.

4.8. Parameterized coinduction 85

y<tl Yy
INIT DONE
y <vb y < tx
< ftx t <bt(yVzx
y</ / upr 1O f y—(y)COIND
y < tx y <tz

Figure 4.3: A proof system for parameterized enhanced coinduction.

Proof. Assume y < bt(y V z) (H), and let f : 2 — \/__y. This function
maps the points above x to y and all other points to the bottom element. In
particular, fz =y, so that we have to show fz < tx.

Abstracting over =, we actually show that f < t. To this end, we use
second-order coinduction up-to, and we prove f < B'f,i.e, fb < bTf. Let
z € X.Ifx € bz, then fboz = L < b(T'f)z. Otherwise, assume x < bz (H');
we have

fbz=y (by definition of f and (H"))
< bty V) (by ()
=bt(fz V) (by definition of f)
< bt(fbz V bz) (by (H"))
— bt(fbV b)z

We easily check that ¢(fbV b) < T f using Proposition 4.4.4, so that we have
fb < bT'f, as required. O

Intuitively, tx contains everything that can safely be deduced from z,
not necessarily in a guarded way. In particular, x can be deduced from tx.
Instead, btx = Gix is more restrictive and corresponds to guarded deduc-
tions only: we do not have x < btx in general. With this intuition, the above
theorem reads as follows: to deduce y from z, one can assume y provided
one switches to guarded deductions.

This leads us to the “proof system” given in Figure 4.3. The four rules
are valid: if their premises hold, so do their conclusion. The first one is for
initialisation: to prove that y is below the greatest fixpoint, deduce it from
the empty context. The second rule is an axiom rule: if y belongs to the con-
text x, then we can deduce y. The third one makes it possible to use any en-
hancement known to be below the companion. Typically, when some con-
gruence closure is below the companion, this rule makes it possible to use
equational (or inductive) reasoning. The fourth rule is just Theorem 4.8.2:
it corresponds to an actual coinductive step. Also note that since b < ¢, the
third rule can be used to play one step of the bisimulation game, without

86 Chapter 4. Abstract coinduction

storing the current value of y in the context. Doing so corresponds to using
Equation (4.24) from Hur et al.” formalism.

To give an example, let us revisit the example from Section 4.3.1. We
wanted to prove that A ~ B, and we guessed that the relation { (A, B), (C, D)}
could be used as a bisimulation candidate, thanks to several enhancements.
With the proof system from Figure 4.3, we can give a parameterized-style
proof, where we do not guess the bisimulation candidate in advance.

(4,B) € {(C, D), (4, B)} (C,D) € {{C, D), (A, B)}

(DONE) (DONE)

(A, B) € t{(C, D), (A, B)} (€.D) eC{(C.D)(AB)} [
(AIC, B|D) € t{(C, D), (A, B)}
(C, D) € bt{(C, D), (A, B)}

(C,D) € t(A, B)

(D,C) € t(A, B)
(b.D,b.C) € t(A, B)
(A, B) € bt(A, B)
(A,B) e tL

A~B

(DEE. OF b)
(CoIND)
(UpTOigt)
(UpTOC < t)
(DEF. OF b)
(CoIND)

(INIT)

As previously, the required enhancements do not need to be declared up-
front, they are extracted from the companion using the rule (UP TO), when
needed. We left aside the proofs of c, cl,i < t in the above example, be-
cause we obtained them once and for all in Sections 4.3.1 and 4.6. Note
however that the third rule (UP TO) allows us to jump to the next level in
the middle of a proof: since t = vB = T'L, one can fulfil its second premise
by using the same proof system. In fact, by the results of Section 4.4, these
four rules cover not only enhanced coinduction, but also the enhancements
themselves. Nothing prevents us from continuing with the next level again,
although we did not find any concrete application so far.

4.9 Extensional characterisation of the companion

At the same time we submitted this work about the largest compatible func-
tion [112], Parrow and Weber submitted a note [100] where they give a
nice and intriguing characterisation of the largest respectful function, i.e.,
thanks to Proposition 4.7.1, of the companion. They use Sangiorgi’s notion
of progression [126, 128]; we recast their result here in terms of monotone
functions.

Let us first recall the abstract counterpart to Milner’s stratification of
bisimilarity. Given the monotone function b : [X — X], define a sequence

4.10. Discussion 87

(ba)a of elements of X indexed by ordinals, by transfinite induction:

Dat1 2 bbg b2 N ba
a<A
The initialisation is given by the special case A = 0 (by = T). This sequence
is decreasing and it always stationates at some ordinal, typically w when b
is co-continuous. It is well-known that the greatest fixpoint of b is the limit
of this sequence (see, e.g., Rubin and Rubin [122]):

Theorem 4.9.1. We have vb = \\ , ba.
The counterpart to Parrow and Weber’s characterisation is the following:
Theorem 4.9.2. Forall x € X, we have tx = \{by | v < ba}-

In words, the companion maps a point to the smallest element of the strat-
ification that contains it. When z = 1, we recover Theorem 4.9.1; when
x = vb, we recover Corollary 4.2.4.

410 Discussion

The presented theory as well as the examples have been formalised as a
Coq library [114].

GSOS is a rule format that was introduced to ensure congruence prop-
erties for bisimilarity [16]. We have recently shown that it also gives rise to a
respectful contextual closure function: up-to context can always be used for
GSOS specifications [19]. In light of the present results, we can deduce that
such a closure is always contained in the companion in two ways: first by
reusing the existing proofs of respectfulness and switching to the compan-
ion by Proposition 4.7.1; second, by an easy generalisation of our treatment
of CCS (Section 4.6).

The latter approach is rather intriguing from a categorical point of
view. Indeed, GSOS specifications can be seen abstractly as distributive
laws [138, 15]. More precisely, when ¥ is the functor corresponding to a
term signature, and when F X = (P,X)* is the functor whose coalgebras
are the finitary branching LTS with labels in A, we have that a GSOS speci-
fication is exactly a distributive law

S(F x Id) = FT

The fact that we have F' x Id on the left makes it quite natural to consider
respectfulness rather than compatibility when studying up-to-context tech-
niques in this setting. The present results however suggest that there might
be a more direct path, by using a categorical version of the companion.

Similarly, we would like to understand the categorical counterpart to
Theorem 4.9.1 (the extensional characterisation of the companion through
the stratification of the greatest fixpoint).

Notes

Chapter 1 about relation algebra is a translation of my course notes for
the EJCIM’16 research school [113] (in French). The new results announced
there were obtained with my current PhD student, Paul Brunet. (Precise
complexity of Kleene algebra with converse [30, 31], and new automata
model for Kleene allegories [32].)

The first part of Chapter 2 (Sections 2.1 and 2.2 about coinductive al-
gorithms for DFA and NFA) is largely based on our work with Filippo
Bonchi [21, 22]. An implementation, Coq proofs, and a web applet are avail-
able [108]. We subsequently extended this work with Alexandra Silva and
Georgianna Caltais to handle various decorated trace semantics, including
must-testing [18].

The second part of Chapter 2, about symbolic algorithms (Section 2.3)
roughly corresponds to the first part of [111]. An implementation and a
web applet for KAT are available [109].

Chapter 3 about automation in the Coq proof assistant is based on [110].
We initiated this work with Thomas Braibant, my first PhD student, with
whom we implemented a first Coq tactic for Kleene algebra [26, 28], as well
as tools for rewriting modulo associativity and commutativity [27]. We re-
cently used the new library [115] with Paul Brunet and Insa Stucke to prove
the correctness of several algorithms from graph theory, in a relation alge-
braic way [33].

The last chapter, about abstract coinduction, is based on [112]; Coq
proofs are also available [114]. In another line of work with Daniela Petrisan,
Jurriaan Rot, and Filippo Bonchi, we gave a categorical account to enhance-
ments of the coinductive proof method [19, 20]. There we start from the
observation that bialgebras for a distributive law give rise to well-behaved
systems [138], and we use fibrations to state simple conditions under which
generalisations of the various up-to techniques discussed in Chapters 2
and 4 are compatible.

Bibliography

[1] M. Abadi and A. D. Gordon. A bisimulation method for crypto-
graphic protocols. Nord. J. Comput., 5(4):267—-, 1998.

[2] P. A. Abdulla, Y.-E. Chen, L. Holik, R. Mayr, and T. Vojnar. When
simulation meets antichains. In Proc. TACAS, volume 6015 of LNCS,
pages 158-174. Springer, 2010.

[3] S. Abramsky. The Lazy Lambda Calculus. In D. A. Turner, editor, Re-
search Topics in Functional Programming, pages 65-116. Addison Wes-
ley, 1990.

[4] S. E Allen, R. L. Constable, D. J. Howe, and W. E. Aitken. The seman-
tics of reflected proof. In Proc. LICS, pages 95-105. IEEE, 1990.

[5] J. B. Almeida, N. Moreira, D. Pereira, and S. M. de Sousa. Partial
derivative automata formalized in Coq. In Proc. CIAA, volume 6482
of LNCS, pages 59-68. Springer, 2010.

[6] C. J. Anderson, N. Foster, A. Guha,]J.-B. Jeannin, D. Kozen,
C. Schlesinger, and D. Walker. Netkat: semantic foundations for net-
works. In Proc. POPL, pages 113-126. ACM, 2014.

[7] H. Andréka and S. Mikulds. Axiomatizability of positive algebras of
binary relations. Algebra Universalis, 66(1):7-34, 2011.

[8] H. Andréka, S. Mikulds, and I. Németi. The equational theory of
Kleene lattices. Theoretical Computer Science, 412(52):7099-7108, 2011.

[9] H. Andréka and D. Bredikhin. The equational theory of union-free
algebras of relations. Algebra Universalis, 33(4):516-532, 1995.

[10] A. Angus and D. Kozen. Kleene algebra with tests and program
schematology. Technical Report TR2001-1844, CS Dpt., Cornell Uni-
versity, July 2001.

[11] V. M. Antimirov. Partial derivatives of regular expressions and finite
automaton constructions. Theoretical Computer Science, 155(2):291—
319, 1996.

http://dx.doi.org/10.1007/BFb0053560
http://dx.doi.org/10.1007/BFb0053560
http://dx.doi.org/10.1007/978-3-642-12002-2_14
http://dx.doi.org/10.1007/978-3-642-12002-2_14
http://web.comlab.ox.ac.uk/oucl/work/samson.abramsky/lazy.ps.gz
http://dx.doi.org/10.1109/LICS.1990.113737
http://dx.doi.org/10.1109/LICS.1990.113737
http://dx.doi.org/10.1007/978-3-642-18098-9_7
http://dx.doi.org/10.1007/978-3-642-18098-9_7
http://dx.doi.org/10.1145/2535838.2535862
http://dx.doi.org/10.1145/2535838.2535862
http://dx.doi.org/10.1007/s00012-011-0142-3
http://dx.doi.org/10.1007/s00012-011-0142-3
http://dx.doi.org/10.1016/j.tcs.2011.09.024
http://dx.doi.org/10.1016/j.tcs.2011.09.024
http://dx.doi.org/10.1007/BF01225472
http://dx.doi.org/10.1007/BF01225472
http://hdl.handle.net/1813/5831
http://hdl.handle.net/1813/5831
http://dx.doi.org/10.1016/0304-3975(95)00182-4
http://dx.doi.org/10.1016/0304-3975(95)00182-4

92 Bibliography

[12] A. Armstrong and G. Struth. Automated reasoning in higher-order
regular algebra. In Proc. RAMiCS, volume 7560 of LNCS, pages 66—81.
Springer, 2012.

[13] A. Asperti. A compact proof of decidability for regular expression
equivalence. In Proc. ITP, volume 7406 of LNCS, pages 283-298.
Springer, 2012.

[14] L. Bachmair, I. V. Ramakrishnan, A. Tiwari, and L. Vigneron. Con-
gruence closure modulo associativity and commutativity. In Proc.
FroCoS, volume 1794 of LNCS, pages 245-259. Springer, 2000.

[15] F. Bartels. Generalised coinduction. Mathematical Structures in Com-
puter Science, 13(2):321-348, 2003.

[16] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced. In
Proc. POPL, pages 229-239. ACM, 1988.

[17] S. L. Bloom, Z. Esik, and G. Stefanescu. Notes on equational theories
of relations. Algebra Universalis, 33(1):98-126, 1995.

[18] F. Bonchi, G. Caltais, D. Pous, and A. Silva. Brzozowski’s and up-to
algorithms for must testing. In Proc. APLAS, volume 8301 of LNCS,
pages 1-16. Springer, 2013.

[19] F. Bonchi, D. Petrisan, D. Pous, and J. Rot. Coinduction up-to in a
fibrational setting. In Proc. CSL-LICS, pages 20:1-20:9. ACM, 2014.

[20] F. Bonchi, D. Petrisan, D. Pous, and J. Rot. Lax bialgebras and up-
to techniques for weak bisimulations. In Proc. CONCUR, volume 42
of LIPIcs, pages 240-253. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2015.

[21] F. Bonchi and D. Pous. Checking NFA equivalence with bisimula-
tions up to congruence. In Proc. POPL, pages 457-468. ACM, 2013.

[22] F. Bonchi and D. Pous. Hacking nondeterminism with induction and
coinduction. Commun. ACM, 58(2):87-95, Jan. 2015.

[23] M. Boreale and D. Sangiorgi. Bisimulation in name-passing calculi
without matching. In Proc. LICS. IEEE, 1998.

[24] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract regular model
checking. In Proc. CAV, volume 3114 of LNCS, pages 372-386.
Springer, 2004.

[25] R. Boyer and J. Moore. Metafunctions: proving them correct and us-
ing them efficiently as new proof procedures. In The Correctness Prob-
lem in Computer Science, pages 103-184. NY: Academic Press, 1981.

http://dx.doi.org/10.1007/978-3-642-33314-9_5
http://dx.doi.org/10.1007/978-3-642-33314-9_5
http://dx.doi.org/10.1007/978-3-642-32347-8_19
http://dx.doi.org/10.1007/978-3-642-32347-8_19
http://dx.doi.org/10.1007/10720084_16
http://dx.doi.org/10.1007/10720084_16
http://dx.doi.org/10.1017/S0960129502003900
http://dx.doi.org/10.1145/73560.73580
http://dx.doi.org/10.1007/BF01190768
http://dx.doi.org/10.1007/BF01190768
http://dx.doi.org/10.1007/978-3-319-03542-0_1
http://dx.doi.org/10.1007/978-3-319-03542-0_1
http://dx.doi.org/10.1145/2603088.2603149
http://dx.doi.org/10.1145/2603088.2603149
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.240
http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.240
http://dx.doi.org/10.1145/2429069.2429124
http://dx.doi.org/10.1145/2429069.2429124
http://dx.doi.org/10.1145/2713167
http://dx.doi.org/10.1145/2713167
http://dx.doi.org/10.1109/LICS.1998.705653
http://dx.doi.org/10.1109/LICS.1998.705653
http://dx.doi.org/10.1007/978-3-540-27813-9_29
http://dx.doi.org/10.1007/978-3-540-27813-9_29

Bibliography 93

[26] T. Braibant and D. Pous. An efficient Coq tactic for deciding Kleene
algebras. In Proc. 1st ITP, volume 6172 of LNCS, pages 163-178.
Springer, 2010.

[27] T. Braibant and D. Pous. Tactics for reasoning modulo AC in Coq. In
Proc. 1st CPP, volume 7086 of LNCS, pages 167-182. Springer, 2011.

[28] T. Braibant and D. Pous. Deciding Kleene algebras in Coq. Logical
Methods in Computer Science, 8(1):1-16, 2012.

[29] P. Brunet. A Kleene theorem for Petri automata. Submitted, 2016.

[30] P. Brunet and D. Pous. Kleene algebra with converse. In Proc. RAM-
iCS, volume 8428 of LNCS, pages 101-118. Springer, 2014.

[31] P. Brunet and D. Pous. Algorithms for Kleene algebra with converse.
Journal of Logical and Algebraic Methods in Programming, 2015.

[32] P. Brunet and D. Pous. Petri automata for Kleene allegories. In Proc.
LICS, pages 68-79. ACM, 2015.

[33] P. Brunet, D. Pous, and I. Stucke. Cardinalities of relations in Coq.
Submitted, 2016.

[34] R. E. Bryant. Graph-based algorithms for boolean function manipu-
lation. IEEE Trans. Computers, 35(8):677-691, 1986.

[35] R. E. Bryant. Symbolic Boolean manipulation with ordered binary-
decision diagrams. ACM Computing Surveys, 24(3):293-318, 1992.

[36] J. A. Brzozowski. Derivatives of regular expressions. Journal of the
ACM, 11(4):481-494, 1964.

[37] A. K. Chandra and P. M. Merlin. Optimal implementation of con-
junctive queries in relational data bases. In Proc. STOC, pages 77-90.
ACM, 1977.

[38] K. Chaudhuri, M. Cimini, and D. Miller. A lightweight formalization
of the metatheory of bisimulation-up-to. In Proc. CPP, pages 157-166.
ACM, 2015.

[39] E. Cohen. Hypotheses in Kleene algebra. Technical report, Bellcore,
Morristown, N.]J., 1994.

[40] E. Cohen, D. Kozen, and F. Smith. The complexity of Kleene algebra
with tests. Technical Report TR96-1598, CS Dpt., Cornell University,
1996.

http://dx.doi.org/10.1007/978-3-642-14052-5_13
http://dx.doi.org/10.1007/978-3-642-14052-5_13
http://dx.doi.org/10.1007/978-3-642-25379-9_14
http://dx.doi.org/10.2168/LMCS-8(1:16)2012
https://hal.archives-ouvertes.fr/hal-01258754
http://dx.doi.org/10.1007/978-3-319-06251-8_7
http://dx.doi.org/10.1016/j.jlamp.2015.07.005
http://dx.doi.org/10.1109/LICS.2015.17
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1109/TC.1986.1676819
http://dx.doi.org/10.1145/136035.136043
http://dx.doi.org/10.1145/136035.136043
http://dx.doi.org/10.1145/321239.321249
http://dx.doi.org/10.1145/800105.803397
http://dx.doi.org/10.1145/800105.803397
http://dx.doi.org/10.1145/2676724.2693170
http://dx.doi.org/10.1145/2676724.2693170
http://www.researchgate.net/publication/2648968_Hypotheses_in_Kleene_Algebra
http://www.cs.cornell.edu/~kozen/papers/ckat.pdf
http://www.cs.cornell.edu/~kozen/papers/ckat.pdf

94 Bibliography

[41] J. H. Conway. Regular algebra and finite machines. Chapman and Hall,
1971.

[42] T. Coquand and V. Siles. A decision procedure for regular expression
equivalence in type theory. In Proc. CPP, volume 7086 of LNCS, pages
119-134. Springer, 2011.

[43] L. D’Antoni and M. Veanes. Minimization of symbolic automata. In
Proc. POPL, pages 541-553. ACM, 2014.

[44] L. Doyen and J.-F. Raskin. Antichain Algorithms for Finite Automata.
In Proc. TACAS, volume 6015 of LNCS. Springer, 2010.

[45] Z. Esik and L. Bernatsky. Equational properties of Kleene algebras
of relations with conversion. Theoretical Computer Science, 137(2):237-
251, 1995.

[46]].-C. Fernandez, L. Mounier, C. Jard, and T. Jéron. On-the-fly verifi-
cation of finite transition systems. Formal Methods in System Design,
1(2/3):251-273, 1992.

[47] E. Filiot, N. Jin, and J.-F. Raskin. An antichain algorithm for LTL
realizability. In Proc. CAV, volume 5643 of LNCS, pages 263-277.
Springer, 2009.

[48]]J.-C. Fillidtre and S. Conchon. Type-safe modular hash-consing. In
Proc. ML, pages 12-19. ACM, 2006.

[49] N. Foster, D. Kozen, M. Milano, A. Silva, and L. Thompson. A coal-
gebraic decision procedure for NetKAT. In Proc. POPL. ACM, 2015.

[50] S. Foster and G. Struth. Automated analysis of regular algebra. In
Proc. IJCAR, volume 7364 of LNCS, pages 271-285. Springer, 2012.

[51] C. Fournet, J. Lévy, and A. Schmitt. An asynchronous, distributed
implementation of mobile ambients. In Proc. IFIP TCS, volume 1872
of LNCS, pages 348-364. Springer, 2000.

[52] P. Freyd and A. Scedrov. Categories, Allegories. North Holland, 1990.

[53] N. Galatos, P. Jipsen, T. Kowalski, and H. Ono. Residuated Lattices: An
Algebraic Glimpse at Substructural Logics. Elsevier, 2007.

[54] A. Goel, S. Khanna, D. Larkin, and R. E. Tarjan. Disjoint set union
with randomized linking. In Proc. SODA, pages 1005-1017. SIAM,
2014.

http://dx.doi.org/10.1007/978-3-642-25379-9_11
http://dx.doi.org/10.1007/978-3-642-25379-9_11
http://dx.doi.org/10.1145/2535838.2535849
http://dx.doi.org/10.1007/978-3-642-12002-2_2
http://dx.doi.org/10.1016/0304-3975(94)00041-G
http://dx.doi.org/10.1016/0304-3975(94)00041-G
http://dx.doi.org/10.1007/BF00121127
http://dx.doi.org/10.1007/BF00121127
http://dx.doi.org/10.1007/978-3-642-02658-4_22
http://dx.doi.org/10.1007/978-3-642-02658-4_22
http://dx.doi.org/10.1145/1159876.1159880
http://dx.doi.org/10.1145/2676726.2677011
http://dx.doi.org/10.1145/2676726.2677011
http://dx.doi.org/10.1007/978-3-642-31365-3_22
http://dx.doi.org/10.1007/3-540-44929-9_26
http://dx.doi.org/10.1007/3-540-44929-9_26
http://dx.doi.org/10.1137/1.9781611973402.75
http://dx.doi.org/10.1137/1.9781611973402.75

Bibliography 95

[55] G. Gonthier, A. Asperti,]. Avigad, Y. Bertot, C. Cohen, F. Garillot,
S. L. Roux, A. Mahboubi, R. O’Connor, S. O. Biha, I. Pasca, L. Rideau,
A. Solovyev, E. Tassi, and L. Théry. A machine-checked proof of the
odd order theorem. In Proc. ITP, volume 7998 of LNCS, pages 163—
179. Springer, 2013.

[56] B. Grégoire and A. Mahboubi. Proving equalities in a commutative
ring done right in Coq. In Proc. TPHOL, volume 3603 of LNCS, pages
98-113. Springer, 2005.

[57] M. Grohe. The complexity of homomorphism and constraint satisfac-
tion problems seen from the other side. |. ACM, 54(1):1:1-1:24, Mar.
2007.

[58] C. Gutiérrez. Decidability of the equational theory of allegories. In
Proc. 4th RelMiCS, pages 91-96, 1998.

[59] C.Hardin and D. Kozen. On the elimination of hypotheses in Kleene
algebra with tests. Technical Report TR2002-1879, CS Dpt., Cornell
University, October 2002.

[60] J. G. Henriksen, J. L. Jensen, M. E. Jorgensen, N. Klarlund, R. Paige,
T. Rauhe, and A. Sandholm. Mona: Monadic second-order logic
in practice. In Proc. TACAS, volume 1019 of LNCS, pages 89-110.
Springer, 1995.

[61] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing sim-
ulations on finite and infinite graphs. In Proc. FOCS, pages 453—462.
IEEE, 1995.

[62] C. A.R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, 12(10):576-580, 1969.

[63] 1. Hodkinson and S. Mikulds. Axiomatizability of reducts of algebras
of relations. Algebra Universalis, 43(2):127-156, 2000.

[64] J. E. Hopcroft. An n log n algorithm for minimizing in a finite au-
tomaton. In Proc. International Symposium of Theory of Machines and
Computations, pages 189-196. Academic Press, 1971.

[65]]J. E. Hopcroft. An nlog n algorithm for minimizing states in a finite
automaton. Technical report, Stanford University, 1971.

[66]]. E. Hopcroft and R. M. Karp. A linear algorithm for testing equiv-
alence of finite automata. Technical Report 114, Cornell University,
December 1971.

http://dx.doi.org/10.1007/978-3-642-39634-2_14
http://dx.doi.org/10.1007/978-3-642-39634-2_14
http://dx.doi.org/10.1007/11541868_7
http://dx.doi.org/10.1007/11541868_7
http://dx.doi.org/10.1145/1206035.1206036
http://dx.doi.org/10.1145/1206035.1206036
http://hdl.handle.net/1813/5855
http://hdl.handle.net/1813/5855
http://dx.doi.org/10.1007/3-540-60630-0_5
http://dx.doi.org/10.1007/3-540-60630-0_5
http://dx.doi.org/10.1109/SFCS.1995.492576
http://dx.doi.org/10.1109/SFCS.1995.492576
http://dx.doi.org/10.1145/363235.363259
http://dx.doi.org/10.1007/s000120050150
http://dx.doi.org/10.1007/s000120050150
http://i.stanford.edu/pub/cstr/reports/cs/tr/71/190/CS-TR-71-190.pdf
http://i.stanford.edu/pub/cstr/reports/cs/tr/71/190/CS-TR-71-190.pdf
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR71-114
http://techreports.library.cornell.edu:8081/Dienst/UI/1.0/Display/cul.cs/TR71-114

96 Bibliography

[67] G. Huet. Résolution d’équations dans les langages d’ordre 1,2, ... ,w. PhD
thesis, Université Paris VII, 1976. These d’Etat.

[68] C. Hur, G. Neis, D. Dreyer, and V. Vafeiadis. The power of parame-
terization in coinductive proof. In Proc. POPL, pages 193-206. ACM,
2013.

[69] L. Ilie and S. Yu. Follow automata. Information and Computation,
186(1):140-162, 2003.

[70] K.Iwano and K. Steiglitz. A semiring on convex polygons and zero-
sum cycle problems. SIAM J. Comput., 19(5):883-901, 1990.

[71] A. Jeffrey and]J. Rathke. Towards a theory of bisimulation for local
names. In Proc. LICS, pages 5666, 1999.

[72] A. Jeffrey and J. Rathke. A theory of bisimulation for a fragment of
concurrent ML with local names. Theoretical Computer Science, 323(1-
3):1-48, 2004.

[73] D. M. Kaplan. Regular expressions and the equivalence of programs.
J. Comput. Syst. Sci., 3(4):361-386, 1969.

[74] B. Knaster. Un théoréme sur les fonctions d’ensembles. Annales de la
Société Polonaise de Mathématiques, 6:133-134, 1928.

[75] V.Komendantsky. Reflexive toolbox for regular expression matching:
verification of functional programs in Coq+ssreflect. In Proc. PLPV,
pages 61-70. ACM, 2012.

[76] V. Koutavas and M. Wand. Small bisimulations for reasoning about
higher-order imperative programs. In Proc. POPL, pages 141-152.
ACM, 2006.

[77] D.Kozen. A completeness theorem for Kleene Algebras and the alge-
bra of regular events. In Proc. LICS, pages 214-225. IEEE Computer
Society, 1991.

[78] D. Kozen. A completeness theorem for Kleene algebras and the al-
p 8
gebra of regular events. Information and Computation, 110(2):366-390,
1994.

[79] D. Kozen. Kleene algebra with tests. Transactions on Programming
Languages and Systems, 19(3):427-443, May 1997.

[80] D. Kozen. On Hoare logic and Kleene algebra with tests. ACM Trans.
Comput. Log., 1(1):60-76, 2000.

http://yquem.inria.fr/~huet/PUBLIC/Huet1976.pdf
http://dx.doi.org/10.1145/2429069.2429093
http://dx.doi.org/10.1145/2429069.2429093
http://dx.doi.org/10.1016/S0890-5401(03)00090-7
http://dx.doi.org/10.1137/0219061
http://dx.doi.org/10.1137/0219061
http://dx.doi.org/10.1109/LICS.1999.782586
http://dx.doi.org/10.1109/LICS.1999.782586
http://dx.doi.org/10.1016/j.tcs.2004.03.005
http://dx.doi.org/10.1016/j.tcs.2004.03.005
http://dx.doi.org/10.1016/S0022-0000(69)80027-9
http://dx.doi.org/10.1145/2103776.2103784
http://dx.doi.org/10.1145/2103776.2103784
http://dx.doi.org/10.1145/1111037.1111050
http://dx.doi.org/10.1145/1111037.1111050
http://dx.doi.org/10.1109/LICS.1991.151646
http://dx.doi.org/10.1109/LICS.1991.151646
http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1145/343369.343378

Bibliography 97

[81] D. Kozen. On the coalgebraic theory of Kleene algebra with tests.
Technical report, CIS, Cornell University, March 2008.

[82] D. Kozen and M.-C. Patron. Certification of compiler optimizations
using Kleene algebra with tests. In Proc. CL2000, volume 1861 of Lec-
ture Notes in Artificial Intelligence, pages 568-582. Springer, 2000.

[83] D. Kozen and F. Smith. Kleene algebra with tests: Completeness
and decidability. In Proc. CSL, volume 1258 of LNCS, pages 244-259.
Springer, September 1996.

[84] A. Krauss and T. Nipkow. Proof pearl: Regular expression equiva-
lence and relation algebra. Journal of Algebraic Reasoning, 49(1):95-106,
2012.

[85] D. Krob. Complete systems of B-rational identities. Theoretical Com-
puter Science, 89(2):207-343, 1991.

[86] S. B. Lassen. Relational Reasoning about Functions and Nondeterminism.
PhD thesis, Department of CS, University of Aarhus, 1998.

[87] O. Lengadl, J. Siméacek, and T. Vojnar. Vata: A library for efficient ma-
nipulation of non-deterministic tree automata. In Proc. TACAS, vol-
ume 7214 of LNCS, pages 79-94. Springer, 2012.

[88] X. Leroy. Formal verification of a realistic compiler. Communications
of the ACM, 52(7):107-115, 2009.

[89] J. Madiot, D. Pous, and D. Sangiorgi. Bisimulations up-to: Beyond
tirst-order transition systems. In Proc. CONCUR, volume 8704 of
LNCS, pages 93-108. Springer, 2014.

[90] Z. Manna. Mathematical Theory of Computation. McGraw-Hill, 1974.

[91] A.Meyer and L.]. Stockmeyer. Word problems requiring exponential
time. In Proc. STOC, pages 1-9. ACM, 1973.

[92] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[93] R. Milner,]. Parrow, and D. Walker. A calculus of mobile processes,
I/1L. Information and Computation, 100(1):1-77, 1992.

[94] D. Monk. On representable relation algebras. Michigan Math.]|.,
11(3):207-210, 09 1964.

[95] E. F. Moore. Gedanken-experiments on sequential machines. Au-
tomata Studies, Annals of Mathematical Studies, 34:129-153, 1956.

http://hdl.handle.net/1813/10173
http://dx.doi.org/10.1007/3-540-44957-4_38
http://dx.doi.org/10.1007/3-540-44957-4_38
http://dx.doi.org/10.1007/3-540-63172-0_43
http://dx.doi.org/10.1007/3-540-63172-0_43
http://dx.doi.org/10.1007/s10817-011-9223-4
http://dx.doi.org/10.1007/s10817-011-9223-4
http://dx.doi.org/10.1016/0304-3975(91)90395-I
http://dx.doi.org/10.1007/978-3-642-28756-5_7
http://dx.doi.org/10.1007/978-3-642-28756-5_7
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1007/978-3-662-44584-6_8
http://dx.doi.org/10.1007/978-3-662-44584-6_8
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1145/800125.804029
http://dx.doi.org/10.1307/mmj/1028999131
http://people.mokk.bme.hu/~kornai/termeszetes/moore_1956.pdf

98 Bibliography

[96] N. Moreira, D. Pereira, and S. M. de Sousa. Deciding regular ex-
pressions (in-)equivalence in Coq. In Proc. RAMiCS, volume 7560 of
LNCS, pages 98-113. Springer, 2012.

[97] T. Murata. Petri nets: Properties, analysis and applications. Proc. of
the IEEE, 77(4):541-580, Apr 1989.

[98] G. Nelson and D. C. Oppen. Fast decision procedures based on con-
PP P
gruence closure. Journal of the ACM, 27(2):356-364, 1980.

[99] R. Paige and R. E. Tarjan. Three partition refinement algorithms.
SIAM Journal on Computing, 16(6):973-989, 1987.

[100] J. Parrow and T. Weber. The largest respectful function. To appear in
Logical Methods in Computer Science.

[101] C. A. Petri. Fundamentals of a theory of asynchronous information
flow. In Proc. IFIP Congress, pages 386-390, 1962.

[102] J. A. Pohjola and J. Parrow. Bisimulation up-to techniques for psi-
calculi. In Proc. CPP, pages 142-153. ACM, 2016.

[103] F. Pottier and D. Rémy. Advanced Topics in Types and Programming
Languages, chapter The Essence of ML Type Inference. MIT Press,
2004.

[104] D. Pous. Complete lattices and up-to techniques. In Proc. APLAS,
volume 4807 of LNCS, pages 351-366. Springer, 2007.

[105] D. Pous. Techniques modulo pour les bisimulations. PhD thesis, Ecole
Normale Supérieure de Lyon, February 2008.

[106] D. Pous. Untyping typed algebraic structures and colouring proof
nets of cyclic linear logic. In Proc. CSL, volume 6247 of LNCS, pages
484-498. Springer, August 2010.

[107] D. Pous. Untyping typed algebras and colouring cyclic Linear Logic.
Logical Methods in Computer Science, 8(2), 2012.

[108] D.Pous. Web appendix to [21, 22], with omitted proofs, Coq develop-
ment, and interactive applet. http://perso.ens-1lyon.fr/damien.
pous/hkc, 2012.

[109] D.Pous. Web appendix to [111], with implementation and interactive
applet. http://perso.ens-1lyon.fr/damien.pous/symkat, 2012.

[110] D. Pous. Kleene Algebra with Tests and Coq tools for while pro-
grams. In Proc. ITP, volume 7998 of LNCS, pages 180-196. Springer,
2013.

http://dx.doi.org/10.1007/978-3-642-33314-9_7
http://dx.doi.org/10.1007/978-3-642-33314-9_7
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1145/322186.322198
http://dx.doi.org/10.1145/322186.322198
http://dx.doi.org/10.1137/0216062
http://dx.doi.org/10.1145/2854065.2854080
http://dx.doi.org/10.1145/2854065.2854080
http://dx.doi.org/10.1007/978-3-540-76637-7_24
http://www.ens-lyon.fr/LIP/Pub/Rapports/PhD/PhD2008/PhD2008-02.pdf
http://dx.doi.org/10.1007/978-3-642-15205-4_37
http://dx.doi.org/10.1007/978-3-642-15205-4_37
http://dx.doi.org/10.2168/LMCS-8(2:13)2012
http://perso.ens-lyon.fr/damien.pous/hkc
http://perso.ens-lyon.fr/damien.pous/hkc
http://perso.ens-lyon.fr/damien.pous/symkat
http://dx.doi.org/10.1007/978-3-642-39634-2_15
http://dx.doi.org/10.1007/978-3-642-39634-2_15

Bibliography 99

[111] D. Pous. Symbolic algorithms for language equivalence and Kleene
Algebra with Tests. In Proc. POPL, pages 357-368. ACM, 2015.

[112] D. Pous. Coinduction all the way up. In Proc. LICS, pages 307-316.
ACM, 2016.

[113] D. Pous. Informatique Mathématique, une photographie en 2016, chapter
Algebres de relations. CNRS Editions, 2016.

[114] D. Pous. Web appendix to [112], with omitted proofs and Coq for-
malisation. http://perso.ens-1lyon.fr/damien.pous/cawu, 2016.

[115] D. Pous. RelationAlgebra: Coq library covering relation algebra and
KAT. http://perso.ens-1lyon.fr/damien.pous/ra, developed since
2012.

[116] D. Pous and D. Sangiorgi. Advanced Topics in Bisimulation and
Coinduction, chapter about “Enhancements of the coinductive proof
method”. Cambridge University Press, 2011.

[117] V. Pratt. Action logic and pure induction. In Proc. JELIA, volume 478
of LNCS, pages 97-120. Springer, 1990.

[118] V.Redko. On defining relations for the algebra of regular events. Ukr.
Mat. Z.,16:120-, 1964.

[119] D.Rémy. Algebres Touffues. Application au Typage Polymorphe des Objets
Enregistrements dans les Langages Fonctionnels. PhD thesis, Université
Paris VII, 1990. These de doctorat.

[120] D. Rémy. Extension of ML type system with a sorted equational the-
ory on types, 1992. Research Report 1766.

[121] J. Rot and M. M. Bonsangue. Combining bialgebraic semantics and
equations. In Proc. FoSSaCS, volume 8412 of LNCS, pages 381-395.
Springer, 2014.

[122] H. Rubin and J. E. Rubin. Equivalents of the Axiom of Choice. North
Holland, 1963.

[123] J. Rutten. Automata and coinduction (an exercise in coalgebra). In
Proc. CONCUR, volume 1466 of LNCS, pages 194-218. Springer, 1998.

[124] J. J. M. M. Rutten. A coinductive calculus of streams. Mathematical
Structures in Computer Science, 15(1):93-147, 2005.

[125] A. Salomaa. Two complete axiom systems for the algebra of regular
events. Journal of the ACM, 13(1):158-169, 1966.

http://dx.doi.org/10.1145/2676726.2677007
http://dx.doi.org/10.1145/2676726.2677007
http://dx.doi.org/10.1145/2933575.2934564
http://perso.ens-lyon.fr/damien.pous/cawu
http://perso.ens-lyon.fr/damien.pous/ra
http://www.cambridge.org/gb/knowledge/isbn/item6542021
http://www.cambridge.org/gb/knowledge/isbn/item6542021
http://dx.doi.org/10.1007/BFb0018436
http://gallium.inria.fr/~remy/ftp/eq-theory-on-types.pdf
http://gallium.inria.fr/~remy/ftp/eq-theory-on-types.pdf
http://dx.doi.org/10.1007/978-3-642-54830-7_25
http://dx.doi.org/10.1007/978-3-642-54830-7_25
http://dx.doi.org/10.1007/BFb0055624
http://dx.doi.org/10.1017/S0960129504004517
http://dx.doi.org/10.1145/321312.321326
http://dx.doi.org/10.1145/321312.321326

100 Bibliography

[126] D. Sangiorgi. On the bisimulation proof method. Mathematical Struc-
tures in Computer Science, 8:447-479, 1998.

[127] D. Sangiorgi. Introduction to Bisimulation and Coinduction. Cambridge
University Press, 2011.

[128] D. Sangiorgi and D. Walker. The w-calculus: a Theory of Mobile Pro-
cesses. Cambridge University Press, 2001.

[129] J. Sevcik, V. Vafeiadis, F. Z. Nardelli, S. Jagannathan, and P. Sewell.
Compcerttso: A verified compiler for relaxed-memory concurrency.
Journal of the ACM, 60(3):22, 2013.

[130] R. E. Shostak. Deciding combinations of theories. Journal of the ACM,
31(1):1-12, 1984.

[131] E. Sumii and B. C. Pierce. A bisimulation for dynamic sealing. Theo-
retical Computer Science, 375(1-3):169-192, 2007.

[132] E. Sumii and B. C. Pierce. A bisimulation for type abstraction and
recursion. Journal of the ACM, 54(5), 2007.

[133] D. Tabakov and M. Vardi. Experimental evaluation of classical au-
tomata constructions. In Proc. LPAR, volume 3835 of LNCS, pages
396—411. Springer, 2005.

[134] R. E. Tarjan. Efficiency of a good but not linear set union algorithm.
Journal of the ACM, 22(2):215-225, 1975.

[135] A. Tarski. On the calculus of relations. |. Symbolic logic, 6:73-89, 1941.

[136] A. Tarski. A Lattice-Theoretical Fixpoint Theorem and its Applica-
tions. Pacific Journal of Mathematics, 5(2):285-309, June 1955.

[137] A. Tarski and S. Givant. A Formalization of Set Theory without Vari-
ables, volume 41 of Colloquium Publications. American Mathematical
Society, Providence, Rhode Island, 1987.

[138] D. Turi and G. D. Plotkin. Towards a mathematical operational se-
mantics. In Proc. LICS, pages 280-291. IEEE, 1997.

[139] M. Veanes. Applications of symbolic finite automata. In Proc. CIAA,
volume 7982 of LNCS, pages 16-23. Springer, 2013.

[140] M. D. Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains:
A new algorithm for checking universality of finite automata. In Proc.
CAV, volume 4144 of LNCS, pages 17-30. Springer, 2006.

http://dx.doi.org/10.1017/S0960129598002527
http://www.cambridge.org/gb/knowledge/isbn/item6542019/
http://dx.doi.org/10.1145/2487241.2487248
http://dx.doi.org/10.1145/2422.322411
http://dx.doi.org/10.1016/j.tcs.2006.12.032
http://dx.doi.org/10.1145/1284320.1284325
http://dx.doi.org/10.1145/1284320.1284325
http://dx.doi.org/10.1007/11591191_28
http://dx.doi.org/10.1007/11591191_28
http://dx.doi.org/10.1145/321879.321884
http://dx.doi.org/10.1109/LICS.1997.614955
http://dx.doi.org/10.1109/LICS.1997.614955
http://dx.doi.org/10.1007/978-3-642-39274-0_3
http://dx.doi.org/10.1007/11817963_5
http://dx.doi.org/10.1007/11817963_5

	Introduction
	Relation algebra
	The (positive) calculus of relations
	The ideal fragment: Kleene algebra
	The strange fragment: allegories
	Putting it all together: Kleene allegories
	Kleene algebra with tests

	Automata algorithms
	Deterministic automata
	Non-deterministic automata
	Automata with a large alphabet

	Automation in the Coq proof assistant
	Relation algebra and KAT in Coq
	Case studies
	Discussion
	Appendix: overall structure of the library

	Abstract coinduction
	Notation and preliminary material
	Knaster-Tarski and Compatibility
	Examples
	Compatibility up-to
	Symmetry arguments
	Example: up-to congruence for CCS
	Respectful vs. compatible
	Parameterized coinduction
	Extensional characterisation of the companion
	Discussion

	Notes

