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Abstract

This document has the purpose of presenting in an organic way my research on
integrable systems originating from the geometry of moduli spaces of curves, with
applications to Gromov-Witten theory and mirror symmetry. The text contains a
short introduction to the main ideas and prerequisites of the subject from geome-
try and mathematical physics, followed by a synthetic review of some of my papers
(listed below) starting from my PhD thesis (October 2008), and with some open
questions and future developements.

My results include:
• the triple mirror symmetry among P1-orbifolds with positive Euler charac-

teristic, the Landau-Ginzburg model with superpotential −xyz+xp+yq+zr
with 1

p
+ 1

q
+ 1

r
> 1 and the orbit spaces of extended affine Weyl groups of

type ADE,
• the mirror symmetry between local footballs (local toric P1-orbifolds) and

certain double Hurwitz spaces together with the identification of the corre-
sponding integrable hierarchy as a rational reduction of the 2DToda hierarchy
(with A. Brini, G. Carlet and S. Romano).

• a series of papers on various aspects of the double ramification hierarchy
(after A. Buryak), forming a large program investigating integrable systems
arising from cohomological field theories and the geometry of the double ram-
ification cycle, their quantization, their relation with the Dubrovin-Zhang
hierarchy, the generalizations of Witten’s conjecture and relations in the co-
homology of the moduli space of stable curves (with A. Buryak, B. Dubrovin
and J. Guéré).

In section 1 we discuss the notions of Hamiltonian systems of evolutionary PDEs,
integrable systems and tau-structure, with the aim of giving a quick yet somewhat
precise introduction to the mathematical physics needed for understanding Witten’s
conjecture and its generalizations.

In section 2, after a short recall of the basic objects from the geometry of the
moduli space of stable curves, we review the definition of cohomological field theo-
ries and the double ramification cycle.

In section 3 we recall the construction of the Dubrovin-Zhang hierarchy, an in-
tegrable system associated to a semisimple cohomological field theory. Using this
language we formulate Witten’s conjecture and its generalizations.

In section 4 we quickly review the Frobenius manifold approach to mirror sym-
metry.

Sections 5 and 6 are devoted to describing my two main research lines and the
content of a selection of my papers. Section 5 deals with quantum cohomology, mir-
ror symmetry and integrable systems. Section 6 deals with the more recent project
of constructing, understanding and computing the double ramification hierarchy, a
novel way of associating an integrable system to a given cohomological field theory.
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1. Integrable systems

In this section I will try to give, in a few pages, a precise idea of what an integrable
system is, in the context of evolutionary Hamiltonian PDEs. We will introduce the
minimal notions that will be used in what follows and assume a certain familiarity
with the finite dimensional theory of Poisson manifolds, to guide the reader in ex-
tending such notions to an infinite-dimensional context.

1.1. Formal loop space. An evolutionary PDE is a system of differential equations
of the form

∂tu
α = Fα(u∗, u∗1, u

∗
2, . . .), α = 1, . . . , N

where uαk = ∂kxu
α and we use the symbol ∗ to indicate any value for the sub or

superscripts.

Such a system can be heuristically interpreted as a vector field on the infinite-
dimensional space of all loops u : S1 → V , where V is a N -dimensional vector space
with a basis e1, . . . , eN and x is the coordinate on S1, so that uα = uα(x) is the com-
ponent along eα of such loop. This is just a heuristic interpretation as we choose to
work in a more formal algebraic setting by describing an appropriate ring of func-
tions for the loop space of V as follows.

Consider the ring of differential polynomials Â = C[[u∗]][u∗>0][[ε]] and endow it
with the grading deg(uαk ) = k, deg(ε) = −1. The role of the parameter ε and grad-
ing will become clear shortly. The operator ∂x acts on Â in the obvious way, i.e.
∂x =

∑
k≥0 u

α
k+1

∂
∂uα

k
(we use the convention of sum over repeated greek indices, but

not roman indices).

We define the space of local functionals as the quotient Λ̂ = Â/(Im∂x ⊕ C). The
equivalence class of f(u∗∗; ε) ∈ Â in this quotient will be denoted suggestively as
f =

∫
f(u∗∗; ε)dx (hinting at the quotient with respect to Im∂x as the possibility of

integrating by parts on the circle S1).

Local functionals in Λ̂ can hence be interpreted as functions on our formal loop
space of V whose value on a given loop u : S1 → V is the integral over S1 of some
differential polynomial in its components uα(x).

Changes of coordinates on the formal loop space will be described accordingly as

ũα = ũα(u∗∗, ε) ∈ Â[0], det

(
∂ũ∗|ε=0

∂u∗

)
̸= 0.

Notice here the importance of the parameter ε, whose exponent counts the number
of x-derivatives appearing in ũα. Its importance lies in the fact that we can use the
parameter ε to invert such change of coordinates: for fixed ũα(x), we just need to
solve the ODE ũα = ũα(u∗∗, ε) for the functions uα(x) order by order in ε and we
will obtain a differential polynomial uα = uα(ũ∗∗; ε). The resulting group is called
the Miura group.

Differential polynomials and local functionals can also be described using another
set of formal variables, corresponding heuristically to the Fourier components pαk ,
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k ∈ Z, of the functions uα = uα(x). Let us, hence, define a change of variables

uαj =
∑
k∈Z

(ik)jpαke
ikx,(1.1)

which is nothing but the j-th derivative of uα =
∑

k∈Z p
α
ke

ikx.

This allows us to express a differential polynomial f(u;ux, uxx, . . . ; ε) ∈ Â[d] as
a formal Fourier series f =

∑
fk1,...,kn
α1,...,αn;sε

spα1
k1
. . . pαn

kn
ei(

∑n
j=1 kj)x where the coefficient

fk1,...,kn
α1,...,αn;s is a polynomial in the indices k1, . . . , kn of degree s + d. Moreover, the

local functional f corresponds to the constant term of the Fourier series of f .

1.2. Poisson structures. In what follows we will be interested in Hamiltonian
systems of evolutionary PDEs. To this end we endow the space of local functionals
with a Poisson structure of the form

{f, g}K :=

∫
δf

δuµ
Kµν δg

δuν
dx,

where Kµν =
∑

j≥0K
µν
j ∂jx, Kµν

j ∈ Â[−j+1]. Given that the variational derivative
δ

δuα =
∑

k≥0(−∂x)k
∂

∂uα
k

is the natural extension to local functionals of the finite
dimensional notion of partial derivative, the above formula seems quite natural. The
differential operator K is called a Hamiltonian operator. Imposing antisymmetry
and the Jacobi identity for the Poisson brackets obviously imposes conditions on the
differential operator Kµν . For instance

Kαβ|ε=0 = gαβ(u)∂x + bαβγ (u)uγx,(1.2)

and the matrix (gαβ) is symmetric (and, for simplicity, we will always assume it
nondegenerate), the inverse matrix (gαβ) defines a flat metric and the functions
Γγ
αβ(u) := −gαµ(u)bµγβ (u) are the coefficients of the Levi-Civita connection corre-

sponding to this metric (see [DN83]).

We also define the Poisson bracket between a differential polynomial f ∈ Â and
a local functional g ∈ Λ̂ as follows

{f, g}K =
∑
s≥0

∂f

∂uµs
∂sx

(
Kµν δg

δuν

)
Such formula, is compatible with the previous one in the sense that

∫
{f, g}Kdx =

{f, g}K .

The action of a Miura transformation on the Poisson structure is given in terms
of Hamiltonian operators as follows

Kαβ
ũ = (L∗)αµ ◦Kµν

u ◦ Lβ
ν

where (L∗)αµ =
∑

s≥0
∂ũα

∂uµ
s
∂sx, Lβ

ν =
∑

s≥0(−∂x)s ◦
∂ũβ

∂uν
s
.

The following Darboux-type theorem states that, up to change of coordinates,
there exists but one Poisson structure on the formal loop space.

Theorem 1.1 ([Get02]). There exist a Miura transformation bringing any Poisson
bracket to the standard form

Kµν = ηµν∂x, ηµν constant, symmetric and nondegenerate
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The standard Poisson bracket also has a nice expression in terms of the variables
pαk :

{pαk , p
β
j }η∂x = ikηαβδk+j,0.

1.3. Integrable hierarchies. A Hamiltonian system is an evolutionary PDE of the
form

∂tu
α = {uα, h}K = Kαν δh

δuν
, h ∈ Λ̂[0],

where h is called the Hamiltonian of the system.

An integrable system, or an integrable hierarchy, is an infinite system of Hamil-
tonian evolutionary PDEs

(1.3) ∂tβd
uα = {uα, hβ,d}K = Kαµ δhβ,d

δuµ
, hβ,d ∈ Λ̂[0],

generated by Hamiltonians hα,d ∈ Λ̂[0], α = 1, . . . , N , d ≥ 0 such that
{hα,i, hβ,j}K = 0

As in the finite dimensional situation, the above Poisson-commutativity condition
for the Hamiltonians is equivalent to the compatibility of the infinite system of
PDEs they generate. A formal solution to the above integrable hierarchy is given
by a formal power series uα(x, t∗∗; ε) ∈ C[[x, t∗∗, ε]] satisfying all the equations of the
hierarchy simultaneously.

1.4. Tau-functions. Consider the Hamiltonian system (1.3). Let us assume that
the Hamiltonian h1,0 generates the spatial translations:

∂t10u
α = Kαµ δh1,0

δuµ
= uαx .

A tau-structure for the hierarchy (1.3) is a collection of differential polynomials hβ,q ∈
Â[0]

N , 1 ≤ β ≤ N , q ≥ −1, such that the following conditions hold:
(1) Kαµ δhβ,−1

δuµ = 0, β = 1, . . . , N.

(2) The N functionals hβ,−1 are linearly independent.
(3) hβ,q =

∫
hβ,qdx, q ≥ 0.

(4) Tau-symmetry: ∂hα,p−1

∂tβq
=

∂hβ,q−1

∂tαp
, 1 ≤ α, β ≤ N, p, q ≥ 0.

Existence of a tau-structure imposes non-trivial constraints on a Hamiltonian
hierarchy. A Hamiltonian hierarchy with a fixed tau-structure will be called tau-
symmetric.

The fact that {hα,p−1, hβ,q} = 0 implies
∫ ∂hα,p−1

∂tβq
dx = 0. Thus, there exists a

differential polynomial Ωα,p;β,q ∈ Â[0] such that ∂xΩα,p;β,q = ∂hα,p−1

∂tβq
(and hence, in

particular, hα,p−1 = Ωα,p;1,0).

Consider an arbitrary solution uα = uα(x, t∗∗; ε) ∈ C[[x, t∗∗, ε]] of our hierar-
chy (1.3). Tau-symmetry guarantees that there exists a function F ∈ C[[t∗∗, ε]]
such that

(Ωα,p;β,q(u(x, t; ε);ux(x, t; ε), . . .))|x=0 =
∂2F

∂tαp∂t
β
q

, for any 1 ≤ α, β ≤ N and p, q ≥ 0.

The function F (t∗∗; ε) is called the tau-function of the given solution (in fact, for his-
torical reasons, the tau-function should correspond to the exponential of F , but we
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will ignore this distinction here, calling F tau-function indistinctly). Tau-symmetric
hierarchies hence have the property that the evolution along a particular solution of
any of their Hamiltonian densities is subsumed under one single function F (t∗∗; ε).

Given a tau-structure, its system of normal coordinates is the system of coor-
dinates ũα = ηαµhµ,−1(u

∗
∗; ε). The Hamiltonian operator takes the form Kαβ

ũ =
ηαβ∂x +O(ε), η being a constant symmetric nondegenerate matrix.

A class of Miura transformations preserving the tau structure is given by normal
Miura transformations. Let uα already be normal coordinates and F(u∗∗; ε) ∈ Â[−2].
The normal Miura transformation generated by F is given by

ũα = uα + ηαµ∂x{F , hµ,0}K .

Then the Hamiltonian densities h̃β,q = hβ,q + ∂x{F , hβ,q+1}K form again a tau-
structure and the coordinates ũα are normal for it. Moreover, for any solution of
the system, its tau-function changes in the following way under the normal Miura
transformation:

F̃ (t∗∗; ε) = F (t∗∗; ε) + F(u∗∗(x, t
∗
∗; ε); ε)|x=0

1.5. Example: the KdV hierarchy. The Korteweg-de Vries equation is the most
well known example of integrable Hamiltonian PDEs. It is defined on the formal
loop space of a one-dimensional vector space V = C, so we will suppress the greek
indices in all the above notations. The metric on V is simply η = 1. The Poisson
structure is given by the Hamiltonian operator K = ∂x (so it is in Getzler’s standard
form). The Hamiltonian is the following local functional in Λ̂[0]:

hKdV =

∫ (
u3

6
+
ε2

24
uu2

)
dx.

We can hence compute the Hamiltonian flow, i.e. the KdV equation:

ut = uu1 +
ε2

24
u3.

The KdV equation is one of the flows of an integrable hierarchy. There are various
ways to compute the other flows (or the other Hamiltonians) which compose such
hierarchy (see for instance [Dic03]). Here I choose to construct them by a recursive
procedure that we discovered with A. Buryak in [BR16a] and which was not known
before.

Let g−1 = u ∈ Â[0] and construct hi ∈ Λ̂[0], i ≥ −1 as hi =
∫
gidx, where the

differential polynomials gi ∈ Â[0] are produced by the recursive equation

gi+1 = (D − 1)−1∂−1x {gi, hKdV}, D :=
∑
k≥0

(k + 1)uk
∂

∂uk
.

At each step, this equation produces a new Hamiltonian density whose Poisson
bracket with hKdV = h1 is ∂x-exact so that it makes sense to take the inverse x-
derivative. The operator D − 1 is also easily inverted on each monomial of the
resulting differential polynomial (D on Â[0] just counts the number of variables u∗∗
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and ε). The reader can promptly check that we obtain
g−1 = u

g0 =
u2

2
+
ε2

24
u2

g1 =
u3

6
+
ε2

24
uu2 +

ε4

1152
u4

g2 =
u4

24
+ ε2

u2u2
48

+ ε4
(

7u22
5760

+
uu4
1152

)
+ ε6

u6
82944

The differential polynomials gi have the property that ∂gi
∂u

= gi−1.

A tau structure is obtained simply by taking hi = δhi+1

δu
. Indeed we have hi = gi

and tau-symmetry holds. The coordinate u is already a normal coordinate for this
tau-structure.
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2. Cohomological Field Theories and the double ramification cycle

In this section we introduce the notion of Cohomological Field Theory, a family
of cohomology classes on the moduli spaces of stable curves which is compatible
with the natural maps and boundary structure [KM94], and the double ramification
cycle, another cohomology class representing (a compactification of) the locus of
curves whose marked points support a principal divisor. We will assume a certain
familiarity with the geometry of the moduli space itself, referring to [Zvo06] for an
excellent introductory exposition.

2.1. Moduli space of stable curves. Here we just recall the main definitions and
fix the notations. Given two integers g, n ≥ 0 such that 2g − 2 + n > 0, the moduli
space of stable curves will be denoted by Mg,n. It is a (3g−3+n)-dimensional com-
pact complex orbifold (or smooth Deligne-Mumford stack) parametrizing all possible
stable Riemann surfaces (stable complex curves) with genus g and n distinct num-
bered points, up to biholomorphisms preserving nodes and marked points.

On Mg,n there is a universal curve Cg,n → Mg,n, a morphism of orbifolds whose
fiber over a point x ∈ Mg,n is isomorphic to the curve Cx represented by that point.
Each fiber Cx hence has n marked numbered points which, varying x ∈ Mg,n, form
n sections si : Mg,n → Cg,n, i = 1, . . . , n.

There are three natural morphisms among different moduli spaces. The forgetful
morpshism π : Mg,n+m → Mg,n forgets the last m marked point on a curve (con-
tracting all components of the curve that might have thus become unstable)

The gluing morphism σ : Mg1,n1+1 × Mg2,n2+1 → Mg1+g2,n1+n2 glues two stable
curves by identifying the last marked point of the first one with the last marked
point of the second one, which become a node.

The loop morphism τ : Mg,n+2 → Mg+1,n identifies the two last marked points
on the same stable curve, hence forming a loop and increasing the genus by 1.

On the total space of the universal curve there is a line bundle ωg,n → Cg,n. On the
smooth points of the fibers Cx of Cg,n it is defined as the relative cotangent (canon-
ical) bundle with respect to the projection Cg,n → Mg,n and it extends canonically
to the singular points to give an actual line bundle on the full Cg,n.

The tautological bundles Li → Mg,n, i = 1, . . . , n are defined as Li = s∗iωg,n. The
fiber of Li at the point x ∈ Mg,n is the cotangent line at the i-th marked point
of the curve Cx represented by x. The first Chern class of Li will be denoted by
ψi = c1(Li) ∈ H2(Mg,n,Q).

The Hodge bundle H → Mg,n is the rank g vector bundle over Mg,n whose fiber
over x ∈ Mg,n consists of the vector space of abelian differentials on the curve Cx

represented by x. Its g Chern classes will be denoted by λi = ci(H) ∈ H2i(Mg,n,Q),
i = 1, . . . , g, and Λ(s) :=

∑g
i=0 s

iλi.

2.2. Cohomological Field theories. Cohomological field theories (CohFTs) were
introduced by Kontsevich and Manin in [KM94] to axiomatize the properties of
Gromov-Witten classes of a given target variety. As it turns out this notion is ac-
tually more general, in the sense that not all CohFTs come from Gromov-Witten
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theory. The main idea is to define a family of cohomology classes on all moduli
spaces Mg,n, for all stable choices of g and n, parametrized by an n-fold tensor
product of a vector space, in such a way that they are compatible with the natural
maps between moduli spaces we considered above. Let us review their precise defi-
nition.

Let g, n ≥ 0 such that 2g−2+n > 0. Let V a C-vector space with basis e1, . . . , eN
and endowed with a symmetric nondegenerate bilinear form η. A cohomological field
theory (CohFT) is a system of linear maps cg,n : V ⊗n → H∗(Mg,n,C) such that

(i) cg,n is Sn equivariant (with respect to permutations of copies of V in V ⊗n

and marked points on the curves),
(ii) c0,3(e1 ⊗ eα ⊗ eβ) = ηαβ,
(iii) π∗cg,n(eα1 ⊗ . . .⊗ eαn) = cg,n(eα1 ⊗ . . .⊗ eαn ⊗ e1)

where π : Mg,n+1 → Mg,n,
(iv) σ∗cg1+g2,n1+n2(eα1⊗. . .⊗eαn1+n2

) = cg1,n1+1(eα1⊗. . .⊗eαn1
⊗eµ)ηµνcg2,n2+1(eν⊗

eαn1+1 ⊗ . . .⊗ eαn1+n2
)

where σ : Mg1,n1+1 ×Mg2,n2+1 → Mg1+g2,n1+n2

(v) τ ∗cg+1,n(eα1 ⊗ . . .⊗ eαn) = cg,n+2(eα1 ⊗ . . .⊗ eαn ⊗ eµ ⊗ eν)η
µν

where τ : Mg,n+2 → Mg+1,n,

The potential of the CohFT is defined as

F (t∗∗; ε) :=
∑
g≥0

ε2gFg(t
∗
∗), where

Fg(t
∗
∗) :=

∑
n≥0

2g−2+n>0

1

n!

∑
d1,...,dn≥0

⟨
n∏

i=1

τdi(eαi
)

⟩
g

n∏
i=1

tαi
di
,

⟨τd1(eα1) . . . τdn(eαn)⟩g :=
∫
Mg,n

cg,n(⊗n
i=1eαi

)
n∏

i=1

ψdi
i .

Some examples of CohFTs are:
• Trivial CohFT: V = C, η = 1, cg,n = 1,
• Hodge CohFT: V = C, η = 1, cg,n = Λ(s) =

∑g
j=1 s

jλj
• GW theory of a smooth projective variety X:
V = H∗(X,C), η = Poincaré pairing, cg,n(⊗n

i=1eαi
) = p∗ev

∗(⊗n
i=1eαi

)qβ

where p : Mg,n(X, β) → Mg,n, ev : Mg,n(X, β) → Xn

where Mg,n(X, β) is the moduli space of stable maps u from curves C of
genus g with n marked points to X of degree u∗[C] = β ∈ H2(X,Z). The
projection p forgets the map u and the evaluation map ev evaluates the map
u on the n marked points.
Notice that, in order to perform the pushforward along p, a notion of Poincaré
duality must be used, which involves the virtual fundamental class of Mg,n(X, β).

• Witten’s r-spin classes:

V = Cr−1, r ≥ 2, ηαβ = δα+β,r

cg,n(ea1+1, . . . , ean+1) ∈ H∗(Mg,n;Q) is a class of degree (r−2)(g−1)+
∑n

i=1 ai
r

if
ai ∈ {0, . . . , r − 2} are such that this degree is a non-negative integer, and
vanishes otherwise. The class is constructed in [PV00] (see also [Chi06]) by
pushing forward to Mg,n Witten’s virtual class on the moduli space of curves
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with r-spin structures. An r-spin structure on a smooth curve (C, x1, . . . , xn)
is an r-th root L of the (twisted) canonical bundle K(

∑
aixi) of the curve,

where ai ∈ {0, . . . , r − 1}. Witten’s class is the virtual class of r-spin struc-
tures with a holomorphic section (and vanishes when one of the ai’s equals
r − 1), but we will not go into the details of the construction here. This is
an example of CohFT that is not a Gromov-Witten theory.

• Fan–Jarvis–Ruan–Witten (FJRW) theory: consider the data of (W,G) where
– W = W (y1, . . . , ym) is a quasi-homogeneous polynomial with weights
w1, . . . , wm and degree d, which has an isolated singularity at the origin,

– G is a group of diagonal matrices γ = (γ1, . . . , γm) leaving the polyno-
mialW invariant and containing the diagonal matrix j := (e

2iπw1
d , . . . , e

2iπwm
d ).

The vector space V is given by

V =
⊕
γ∈G

(QWγ ⊗ dy
γ
)G,

where Wγ is the γ-invariant part of the polynomial W , QWγ is its Jacobian
ring, the differential form dy

γ
is
∧

yj∈(Cm)γ dyj, and the upper-script G stands
for the invariant part under the group G. It comes equipped with a bidegree
and a pairing, see [CIR14, Equation (4)] or [PV11, Equation (5.12)].
Roughly, the cohomological field theory [FJR13, FJR07] is constructed us-
ing virtual fundamental cycles of certain moduli spaces of stable orbicurves
with one orbifold line bundle Li for each variable yi, i = 1, . . . ,m, such that
for each monomial Wj in W , Wj(L1, . . . , Lk) = K(

∑n
i=1 xi), where K is the

canonical bundle of the curve and x1, . . . , xn are its marked points.

2.3. Double ramification cycle. The double ramification cycle (or DR cycle)
DRg(a1, . . . , an) is defined as the push-forward to the moduli space of stable curves
Mg,n of the virtual fundamental class of the moduli space of rubber stable maps to
P1 relative to 0 and ∞, with ramification profile (orders of poles and zeros) given
by (a1, . . . , an) ∈ Zn, where

∑n
i=1 ai = 0. Here “rubber” means we consider maps

up to the C∗-action in the target P1 and a positive/negative coefficient ai indicates
a pole/zero at the i-th marked point, while ai = 0 just indicates an internal marked
point (that is not a zero or pole).

We view the DR cycle as a cohomology class in H2g(Mg,n,Q) representing some
natural compactification of the locus, inside Mg,n, formed by complex curves with
marked points x1, . . . , xn such that

∑n
i=1 aixi is the divisor of the zeros and poles of

a meromorphic function.

Recently Pixton conjectured an explicit formula for the DR cycle in terms of ψ-
classes and boundary strata, which was then proven in [JPPZ16]. The problem of
expressing the DR cycle in terms of other tautological classes has been known since
around 2000 as Eliashberg’s problem, since Yakov Eliashberg posed it as a central
question in symplectic field theory, and Pixton’s formula provides a surprisingly ex-
plicit answer. We will not recall the full formula here, limiting ourselves to recalling
instead that the class DRg(a1, . . . , an) belongs to H2g(Mg,n,Q), is tautological, and
is a (non-homogeneous) polynomial class in the ai’s formed by monomials of even
degree and top degree equal to 2g.
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In fact, the restriction of the DR cycle to the moduli space of curves of com-
pact type Mct

g,n ⊂ Mg,n (i.e. those stable curves having only separating nodes) is
described by the simpler Hain’s formula [Hai13]

H2g(Mct
g,n) ∋ DRg(a1, . . . , an)|Mct

g,n
=

1

g!

−1

4

∑
J⊂{1,...,n}

g∑
h=0

a2Jδ
J
h

g

where

aJ :=
∑
j∈J

aj , δJh =


 , δ

{i}
0 = −ψi.

From this formula it is apparent that DRg(a1, . . . , an)|Mct
g,n

is a polynomial class
in the ai’s homogeneous of degree 2g. This formula is useful for instance when com-
puting the intersection in Mg,n of DRg(a1, . . . , an) with the class λg, since the latter
vanishes outside Mct

g,n anyway.
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3. The Dubrovin-Zhang hierarchy of a cohomological field theory

3.1. DZ hierarchy. Dubrovin and Zhang [DZ05], but see also [BPS12a, BPS12b],
give a construction of an integrable hierarchy starting from a semisimple cohomo-
logical field theory. A CohFT is said to be semisimple when the associative algebra
with structure constants ηαµ ∂F0

∂tµ0∂t
β
0∂t

γ
0

∣∣∣
t∗>0=0

is semisimple generically with respect to

the variables t∗0.

Consider the potential F (t∗∗; ε) =
∑

g≥0 ε
2gFg(t

∗
∗) of the CohFT. Denote Ωα,p;β,q(t

∗
∗; ε) =

∂2F (t∗∗;ε)

∂tαp ∂t
β
q

=
∑

g≥0Ω
[2g]
α,p;β,q(t

∗
∗)ε

2g.

The construction starts in genus 0 and we use variables v∗∗ for the fomal loops
space. Here the hierarchy is given by the following Hamiltonian densities and Poisson
structure: {

hα,p(v
∗) = Ω

[0]
α,p+1;1,0(t

∗
0 = v∗, 0, 0, . . .)

(KDZ
v )αβ = ηαβ∂x

.

Commutativity of these Hamiltonians is a simple consequence of the fact that
the nodal divisors D(12|34) and D(13|24) are equivalent in H∗(M0,4,Q). Also, these
Hamiltonian densities are a tau-structure by definition.

Let then vα(x, t∗∗), α, 1, . . . , N , be the solution to the above integrable hierarchy
with initial datum vα(x, t∗∗ = 0) = δα1 x. We have, see e.g. [BPS12a],

Fg(t
∗
0, t
∗
1, . . .) = Fg(P

∗
0 (v

∗
0, . . . , v

∗
3g−2), . . . , P

∗
3g−2(v

∗
0, . . . , v

∗
3g−2), 0, . . .)|x=0

where P ∗∗ are in general rational functions, not differential polynomials.

Consider the change of coordinates

wα(v∗∗; ε) = vα +
∑
g≥1

ε2g
∂2Fg(v

∗
0, . . . , v

∗
3g−2)

∂tα0∂x

It is not a Miura transformation, because the P ∗∗ are not differential polynomials.

The full Dubrovin-Zhang (DZ) hierarchy is just the transformation of the above
genus 0 hierarchy with respect to the above non-Miura change of coordinates. In
fact, in order to obtain a tau-structure, we want to add a ∂x-exact term to the
Hamiltonians, as prescribed for a normal (albeit non-Miura) transformation:{

hDZ
α,p(w

∗
∗; ε) := hα,p(w

∗
∗; ε) +

∑
g≥1 ε

2g ∂2Fg(w∗
∗ ;ε)

∂tαp+1∂x

(KDZ
w )αβ = (L∗)αµ ◦ (KDZ

v )µν ◦ Lβ
ν

where (L∗)αµ =
∑

s≥0
∂wα

∂vµs
∂sx, Lβ

ν =
∑

s≥0(−∂x)s ◦
∂wβ

∂vνs
.

The DZ hierarchy is an integrable tau-symmetric hierarchy whose tau-function
for the solution with initial datum wα(x, t∗∗ = 0; ε) = δα1 x (called the topological
solution) is, by construction, the partition function of the CohFT.

The technical hypothesis of semisimplicity of the CohFT is used in the proof that,
in spite of the fact that the transformation v∗ 7→ w∗ is not Miura, the Hamiltonian
densities hDZ

α,p(w
∗
∗; ε) and Poisson structure (KDZ

w )αβ are still of the correct differential
polynomial class.
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3.2. Witten’s conjecture and its generalizations. In [Wit91], Witten conjec-
tured that the partition function of the trivial CohFT is the tau-function of the
topological solution to the KdV hierarchy.

Another way to state this, in light of the last section, is that the DZ hierarchy of
the trivial CohFT is the KdV hierarchy.

This conjecture was proved by Kontsevich in [Kon92] and, after that, many simi-
lar conjectures and results appeared in the literature, consisting in identifying and
controlling the DZ hierarchy of a given CohFT. For instance in [FSZ10], Faber-
Shadrin-Zvonkine proved that the DZ hierarchy of Witten’s r-spin class (for r ≥ 2
a CohFT that was defined in [PV00]) coincides with the r-KdV Gelfand-Dickey hi-
erarchy, another well known tau symmetric integrable system.

4. Frobenius manifold mirror symmetry

4.1. Frobenius manifolds. Frobenius manifolds were introduced by Dubrovin [Dub96]
to axiomatize the structure of certain families of 2D topological field theories.

A Frobenius manifold is a smooth or analytic (or even formal) N -dimensional
manifold M whose tangent spaces TpM have a structure of Frobenius algebras (a
commutative associative algebra with a unit e and a symmetric non-degenerate bilin-
ear form η such that η(u, v ·w) = η(u·v, w), u, v, w ∈ TpM), smoothly or analytically
depending on the point p ∈M . Moreover we require η to be a flat metric, ∇e = 0 (∇
being the Levi-Civita connection for η) and, if c(u, v, w) := η(u · v, w), ∇zc(u, v, w)
to be symmetric with respect to all 4 vector fields u, v, w, z.

Locally any Frobenius manifold corresponds to a smooth or analytic solution F
(called the Frobenius potential) of the Witten-Dijkgraaf-Verlinde-Verlinde equations

∂3F
∂tα∂tβ∂tµ

ηµν
∂3F

∂tν∂tγ∂tδ
=

∂3F
∂tγ∂tβ∂tµ

ηµν
∂3F

∂tν∂tα∂tδ

∂3F
∂t1∂tα∂tβ

= ηαβ

where η is a constant symmetric nondegenerate matrix.

Given F(t∗), ηαβ is the flat metric written in the flat coordinates t1, . . . , tN , the
structure constants of the Frobenius algebra are cαβγ = ηαµ ∂3F

∂tµ∂tβ∂tγ
and e = ∂

∂t1
is

the unit.

One often requires the existence of a covariantly linear vector field E, ∇(∇E) = 0,
called the Euler vector field, whose flow rescales the Frobenius algebra and acts by
conformal transformations on the η. This amounts to quasi-homogeneity of the
Frobenius potential, E(F) = dFF+ (quadratic, linear and constant terms in t∗). In
this case we call the Frobenius manifold quasi-homogeneous.

4.2. Mirror symmetry. Frobenius manifold have very different origins. Let us
enumerate some examples:
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• Genus 0 part of cohomological field theories: restricting a CohFT partition
function to genus 0 and no psi classes, i.e.

F(t∗) = F0(t
∗
∗)|t∗>0=0

t∗0=t∗
,

we get a solution to the WDVV equations, which in this case are just a
restatement of the fact that the nodal divisors D(12|34) and D(13|24) are equiv-
alent in H∗(M0,4,Q).

This makes the underlying vector space V a Frobenius manifold where η
is the (constant) metric of the CohFT, the unit vector field e is the unit of
the CohFT, etc.

• Miniversal deformations of simple singularities: a construction due to K. and
M. Saito (see for instance Hertling’s book [Her02] for a review) endows the
base space of a semiuniversal unfolding of an isolated hypersurface singular-
ity with the structure of a Frobenius manifold.

Without going into details, we can very roughly say that, given an holo-
morphic hypersurface singularity λ : (Cn, 0) → (C, 0) and the space M of
its semiuniversal deformations λt, t ∈ M , we can identify the Jacobian ring
J (λt) =

OCn,0

⟨∂x1λt,...,∂xnλt⟩ with th tangent space TtM , which is hence endowed
with the structure of a commutative associative algebra with unit.

Endowing these tangent spaces with a flat metric is more difficult. Saito
proved that special volume forms, called primitive forms ω = u(x, t)dx1 . . . dxn,
exist such that the residue metric

η(∂tα , ∂tβ) = resdλt=0
(∂tαλt)(∂tβλt)

(∂x1λt) . . . (∂xnλt)
ω

makes M a Frobenius manifold.

• Landau-Ginzburg models: various generalizations of Saito’s construction ex-
ist where the germ of the isolated singularity λ is replaced by a more general
function on some smooth algebraic variety.

For instance Dubrovin [Dub96] gave a construction of a Frobenius manifold
structure on the Hurwitz space of pairs (C, λ), where C is a smooth algebraic
curve of genus g and λ is a meromorphic function with fixed branching profile
over ∞. The space of semiuniversal deformations is hence replaced by the
space of all possible pairs (C, λ) and the analogue of the theory of primitive
forms is developed.

Similar constructions exist for special classes of more general functions.
For instance Sabbah [Sab99] identified a class of functions with isolated sin-
gularities on affine manifolds, called tame functions, for which he was able
to generalize most of Saito’s constructions.

In this context, all these construction are referred to by the broad name of
Landau-Ginzburg models. The function over whose deformation space the
Frobenius structure is constructed is called Landau-Ginzburg potential or
superpotential.
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• Orbit space of Coxeter groups and generalizations: Dubrovin showed in
[Dub93] that one can endow the orbit space of a finite Coxeter group, i.e. a
finite group of linear transformations of a Euclidean space V generated by
reflections, with a structure of Frobenius manifold. This structure is closely
related to the one we have seen above for isolated hypersurface singularities
(indeed, the orbit space of an irreducible Coxeter group is bi-holomorphically
equivalent to the universal unfolding of a simple singularity). This construc-
tion was later generalized to extended affine Weyl groups in [DZ98].

In this context we can give the following (admittedly vague) definition of mir-
ror symmetry. Two geometric objects (target manifolds for Gromov-Witten theory,
intrinsically defined CohFTs, Landau-Ginzburg models, etc.) are mirror partners
when they give rise to the same (isomorphic) Frobenius manifolds.

For instance the genus 0 restriction of Witten’s r-spin CohFT, the hypersurface
singularity λ(x) = xr and the Coxeter goup Ar−1 produce, for r ≥ 2, the same
Frobenius manifolds and hence form a mirror symmetric triple [Dub93, Dub96].

The special case r = 2 is particularly simple and the reader can check explicitly
that the first two Frobenius manifolds coincide. Witten’s 2-spin calss is just the
trivial CohFT. Its genus 0, the primary partition function is hence F = t3

6
. The

simple singularity λ = x2 has semiuniversal deformation given by λt(x) = x2 + t, so
the algebra structure is ∂t · ∂t = ∂t and the residue metric (here the primitive form
is simply ω = 2dx) is just η(∂t, ∂t) = 1.

Givental and Teleman have shown that it is possible to reconstruct (up to tensor-
ing with the Hodge CohFT) in an essentially unique way a semisimple cohomological
field theory using only information in genus 0 and, in fact, only the corresponding
structure of Frobenius manifold. This means that, at least in the semisimple case,
we could reformulate the above notion of mirror symmetry, as an equivalence of
CohFTs at all genera, with different geometric origins.

Even in the non-semisimple case, when we have two constructions of CohFTs from
different geometric objects, we can upgrade the above notion of Frobenius manifold
mirror symmetry to higher genus by requiring that the two CohFTs coincide. This
is what is conjectured to happen, for instance, for the Fan-Jarvis-Ruan-Witten the-
ory of (W, ⟨j⟩) where W is the quintic polynomial W (y∗) = y51 + · · · + y55 and the
Gromov-Witten theory of the quintic hypersurface in {W (y∗) = 0} ⊂ P4. In genus
0 this was proven in [CR10].
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5. Integrable systems in Gromov-Witten theory and mirror
symmetry

Starting from my thesis I’ve been interested in Gromov-Witten invariants, of-
ten with the aim of better understanding mirror symmetry and its relation with
integrable systems. Here we consider the (non-homological) formulation of mir-
ror symmetry as an isomorphism between Frobenius manifolds of different origins:
the quantum cohmology of a target variety [KM94], singularity theory of Landau-
Ginzburg models [Her02, FJR13], certain algebraic objects like Coxeter or Weyl
groups [Dub93, DZ98], the dispersionless limit of an integrable hierarchy [DZ05],
etc.

5.1. Quantum cohomology of orbicurves and their mirror model. One of my
first papers on the subject, [Ros10a], deals with the computation of the quantum
cohomology of orbicurves, i.e. closed Riemann surfaces with a finite number of
singular points with orbifold structure of order n (stabilizer Z/nZ). Using techniques
I had developed in [Ros08a, Ros08b] for the case of smooth curves (consisting in
interpreting the degeneration formulae in relative Gromov-Witten theory in the
language of quantum integrable systems arising in Symplectic Field Theory) I was
able to classify all orbicurves C whose quantum cohomology has Frobenius potential
which is polynomial in the variables tk, k = 1, . . . , N − 1 and etN , where ϕ1, . . . , ϕN

is a basis for the Chen-Ruan orbifold cohomology H∗CR(C,C) and ϕN ∈ H2
CR(C,C).

Theorem 5.1. [Ros10a] The only orbicurves with Frobenius potential polynomial
in tk, k = 1, . . . , N − 1 and et

N are those with positive Euler characteristic, i.e.
projective lines with at most three orbifold points of the type:

P1
p,q,r, with 1

p
+

1

q
+

1

r
> 1

For these orbicurves I was able to compute explicitly the quantum cohomology
Frobenius manifold and I found the following example of triple mirror symmetry.

Theorem 5.2. [Ros10a] The quantum cohomology of projectuve line P1
p,q,r with three

orbifold points of order p, q and r, the Landau-Ginzburg model λ(x, y, z) = −xyz +
xp + yq + zr and the extended affine Weyl groups of type ADE give rise to the same
Frobenius structure for 1

p
+ 1

q
+ 1

r
> 1.

Notice that, for the case r = 1, i.e. the case of “footballs” P1
p,q, this result re-

duces to mirror symmetry with the Landau-Ginzburg model of Laurent polynomials
λ(x) = xp+ t1xp−1+ . . .+ tp+qx−q studied in [MT08]. This theorem proves in partic-
ular a conjecture of Takahashi [Tak10], who predicted the Landau-Ginzburg model
(although I was unaware of this at the time) from homological mirror symmetry
considerations.

More recently, Milanov, Shen and Tseng [MST14] where able to identify the
Dubrovin-Zhang hierarchy associated to the Gromov-Witten theory of orbicurves
P1
p,q,r with positive Euler characteristic, as the Kac-Wakimoto hierarchies of type

ADE (or ADE-Toda hierarchies).

5.2. Quantum cohomology of local P1 and its mirror model. A similar re-
sult was obtained more recently in a collaboration with A. Brini and G. Carlet.
We identified a mirror partner of the local projective line (i.e. the Gromov-Witten
target space modeling the local geometry of a neighborhood of a rational curve in
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a Calabi-Yau threefold). This target space is actually non-compact and can be de-
scribed as the rank two bundle OP1(−1)⊕OP1(−1) over P1. Gromov-Witten theory
is only defined in its equivariant version using localization with respect to an appro-
priate (anti-diagonal) C∗ action on the fibres of this bundle (in particular degree 0
curves form non-compact moduli spaces, and the C∗ action is used to localize the
computation to compact fixed loci).

Moreover we found that the corresponding Dubrovin-Zhang integrable hierarchy
at genus 0 is the dispersionless Ablowitz-Ladik hierarchy.

Theorem 5.3 ([BCR12]). The equivariant quantum cohomology of OP1(−1)⊕OP1(−1)
and the Landau-Ginzburg model λ(z) = evz z−eq

z−e−q , v, q ∈ C give rise to the same
Frobenius manifold. The corresponding dispersionless Dubrovin-Zhang hierarchy is
the dispersionless Ablowitz-Ladik hierarchy.

5.3. Quantum cohomology of local footballs and their mirror model. In
[BCRR14] we recently managed to understand how to generalize the above result
to local projective lines with two orbifold points (toric local P1-orbifolds). In doing
this we discovered a new family of integrable hierarchies parametrized by two posi-
tive integer parameters. They all consist in very peculiar reductions of the famous
2-dimensional Toda hierarchy.

2Toda is an integrable system with two space and one time variables (a 2+1 sys-
tem), hence it lives on a bigger phase space than the ones we have considered so far.
We found in particular that its Poisson structure degenerates on a two non-negative
integer parameters family of Poisson submanifolds, giving rise to completely kine-
matic reductions (which means that this reductions do not depend on the form of
the 2Toda Hamiltonians, but just on the form of its Poisson structure). We called
these rational reductions, or RR2Ta,b because of the special form of their Lax oper-
ator.

From the point of view of integrable systems, this family subsumes various other
hierarchies of different origins, namely the extended bigraded Toda hierarchy (in-
volved in the Gromov-Witten theory of P1-orbifolds), the Ablowitz-Ladik hierarchy
(GW theory of local P1), and the q-deformed Gelfand-Dickey hierarchies.

From the point of view of Gromov-Witten theory and mirror symmetry we re-
lated the local footballs with a generalization of Dubrovin’s Frobenius structure on
Hurwitz spaces (called double Hurwitz spaces, as they involve branched covers of P1

with fixed ramification profile over two points). In particular we have the following
result.

Theorem 5.4 ([BCRR14]). The equivariant quantum cohomology of the local foot-
balls OP1

a,b
(−1/a)⊕OP1

a,b
(−1/b) for a, b ≥ 1 and the double Hurwitz spaces of mero-

morphic functions λ : P1 → P1 with fixed ramification profile (a, 1, . . . , 1) over 0
and (b, 1, . . . , 1) over ∞ carry isomorphic Frobenius structures. The corresponding
integrable hierarchy is the dispersionless limit of the rational reductions RR2Ta,b.

This suggests the following Witten-type conjecture.

Conjecture 5.5 ([BCRR14]). The all genus Gromov-Witten potential of the local
football OP1

a,b
(−1/a) ⊕ OP1

a,b
(−1/b), a, b ≥ 1 is the topological tau-function of the

rational reduction RR2Ta,b

In [BCRR14] we successfully tested this conjecture in genus 1 for any a, b ≥ 1.
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6. Double ramification hierarchies

In this section I review one of my main lines of research, a joint project with
A. Bruryak and, more recently, with J. Guéré and B. Dubrovin. It deals with a
novel construction that associates an integrable, tau-symmetric hierarchy to a co-
homological field theory (this time without the semisemplicity assumption which is
needed for the Dubrovin-Zhang hierarchy) and is inspired by Eliashberg, Givental
and Hofer’s Symplectic Field Theory [EGH00].

Since the construction makes explicit use of the intersection theory of the double
ramification cycle, we call this hierarchy the double ramification (DR) hierarchy.
In its classical version it was introduced by A. Buryak in [Bur15], who also ex-
plicitly computed the first two examples (the classical DR hierarchies of the trivial
and Hodge CohFTs, corresponding to the KdV and Intermediate Long Wave hier-
archies), thereby showing the interest and power of this technique.

Its properties, quantization and relation with the DZ hiearchy were studied and
clarified in the series of joint papers [BR16a, BR16b, BDGR16a, BDGR16b], partly
guided by our previous investigations of the classical and quantum integrable sys-
tems arising in SFT [FR11, Ros15].

The DR hierarchy has many interesting properties and even advantages over the
more classical Dubrovin-Zhang hierarchy, including a much more direct access to the
explicit form of the Hamiltonians and Poisson structure, a natural and completely
general technique to quantize the integrable systems thus produced, recursion rela-
tions for the Hamiltonians that are reminiscent of genus 0 TRRs in Gromov-Witten
theory but work at all genera. When Dubrovin proposed to me to work on a thesis
on integrable systems arising in SFT, back in 2004, he said he believed that was
the actual correct approach to integrable hierarchies from moduli spaces of curves.
I believe that prediction has found complete confirmation in the power of the DR
hierarchy project.

Finally, one of the main parts of this project is the proof of the conjecture (orig-
inally proposed in a weaker form by A. Buryak) that the DZ and DR hierarchies
for a semisimple CohFT are in fact equivalent under a normal Miura transforma-
tion that we completely identified in [BDGR16a]. While the general proof of such
conjecture is the object of an ongoing work, we managed to show its validity in a
number of examples and classes of interesting special cases. Our present approach
to the general statement reduces it to proving a fnite number of relations in the
tautological ring of each Mg,n.

6.1. The main idea. Symplectic Field Theory [EGH00] is a large project attempt-
ing to provide a unified view on established pseudoholomorphic curve theories in
symplectic topology like symplectic Floer homology, contact homology and Gromov-
Witten theory, leading to numerous new applications, including a construction of
quantum integrable systems from the geometry of the moduli spaces of pseudoholo-
morphic curves in symplectic cobordisms between contact manifolds.

In a sense, the double ramification hierarchy arises from completely analogous
constructions in the complex algebraic setting and with the axiomatized language
of cohomological field theories replacing curve counting in target varieties. In this
sense the double ramification hierarchy is a quantum integrable system, even if A.
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Buryak introduced first its classical version in [Bur15].

Given a cohomological field theory cg,n : V ⊗n → H∗(Mg,n,C), at the heart of
the construction for the classical hierarchy lie its intersection numbers with the DR
cycle, the powers of one psi-class and the top Hodge class λg:

P g;a1,...,an
α,d;α1,...,αn

=

∫
DRg(−

∑
ai,a1,...,an)

λgψ
d
1cg,n+1 (eα ⊗⊗n

i=1eαi
) .

This is all the geometric content used in the definition of the DR hierarchy.

These intersection numbers are collected into generating functions gα,d depending
on the indices α = 1, . . . , N and d ≥ 0 which have the form of differential poly-
nomials (see next section). The differential polynomials gα,d directly play the role
of Hamiltonian densities for a classical integrable system. The Poisson structure,
on the other hand, and contrary to what happens for the DZ hierarchy, does not
depend on the cohomological field theory and is always in Getzler’s standard form.

Notice that, because of the presence of the class λg, Hain’s formula is sufficient
to compute the above intersection numbers. This advantage if often exploited in
explicit computations.

6.2. DR hierarchy Hamiltonians. Because of the polynomiality properties of the
DR cycle, P g;a1,...,an

α,d;α1,...,αn
is a homogeneous polynomial in a1, . . . , an of degree 2g. So, if

we write it as such,

P g;a1,...,an
α,d;α1,...,αn

=
∑

∑
bi=2g

P̃ g;b1,...,bn
α,d;α1,...,αn

ab11 . . . a
bn
n ,

we can give the following definition:

gα,d :=
∑

g≥0,n≥0
2g−1+n>0

(−ε2)g

n!

∑
a1,...,an∈Z

P g;a1,...,an
α,d;α1,...,αn

pα1
a1
. . . pαn

an eix
∑

ai

=
∑

g≥0,n≥0
2g−1+n>0

(−ε2)g

n!

∑
∑

bi=2g

P̃ g;b1,...,bn
α,d;α1,...,αn

uα1
b1
. . . uαn

bn

and hence we have two expressions for the DR Hamiltonian densities, in variables
p∗∗ and u∗∗ respectively. The second line, in particular, is clearly a differential poly-
nomial in Â[0].

Commutativity {gα,p, gβ,q} = 0 with respect to the standard Hamiltonian oper-
ator (KDR)µν = ηµν∂x (we omit the subscript K in {·, ·}K when K is in Getzler’s
standard form), was proved in [Bur15]. Let’s give an idea of the proof.

In genus 0, where the DR cycle is equal to 1, this equation is basically equivalent to
the equivalence of boundary divisors D(12|34) and D(13|24) in H∗(M0,4,Q). The genus
0 argument can be ported to higher genus by working with images of the curves of
the DR cycle with respect to the meromorphic function (or more precisely rubber
map to P1) that is defined on them. This is a general fact: we often find that genus
0 properties of the DZ hierarchy have all genera analogues on the DR hierarchy side.

Making this argument precise, one gets to prove the following equation for prod-
ucts of double ramification cycles. For a subset I = {i1, i2, . . .}, i1 < i2 < . . ., of
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the set {1, . . . , n} let AI := (ai1 , ai2 , . . .). Suppose the set {1, 2, . . . , n} is divided
into two disjoint subsets, I ⊔ J = {1, 2, . . . , n}, in such a way that

∑
i∈I ai > 0.

Let us denote by DRg1(0x1 , AI ,−k1, . . . ,−kp) � DRg2(0x2 , AJ , k1, . . . , kp) the cycle
in Mg1+g2+p−1,n+2 obtained by gluing the two double ramification cycles at the
marked points labeled by the positive integers k1, . . . , kp. Here 0x indicates a a
coefficient 0 at the marked point x. Then∑∏p

i=1 ki
p!

DRg1(0x1 , AI ,−k1, . . . ,−kp)�DRg2(0x2 , AJ , k1, . . . , kp)(6.1)

−
∑∏p

i=1 ki
p!

DRg1(0x2 , AI ,−k1, . . . ,−kp)�DRg2(0x1 , AJ , k1, . . . , kp) = 0.(6.2)

The sum is over I, J , p > 0 k1 > 0, . . . , kp > 0, g1 ≥ 0, g2 ≥ 0.

If we intersect this relation with the class λg (which kills the terms with p > 1)
and with the ψ-classes and CohFT, and form the corresponding generating function,
we obtain precisely∑

k>0

(
kηµν

∂gα,p
∂pµk

∂gβ,q
∂pν−k

− kηµν
∂gβ,q
∂pµk

∂gα,p
∂pν−k

)
= {gα,p, gβ,q} = 0.

In [Bur15] Buryak computed the first two examples of DR hierarchies. For the
trivial CohFT he found the KdV hierarchy, the same result as for the DZ hierarchy.
For the Hodge CohFT he found the Intermediate Long Wave hierarchy (ILW). When
comparing this second case with the DZ hierarchy he realized that, once more, the
integrable systems were the same, but this time he had to perform a Miura trans-
formation to match them. This motivated him to propose the following conjecture.

Conjecture 6.1 (Weak DR/DZ equivalence [Bur15]). Given a semisimple CohFT,
the associated DZ and DR hierarchy coincide up to a Miura transformation.

6.3. Recursion relations. In [BR16a], using results about the intersection of a
ψ-class with the DR cycle from [BSSZ15] by analogy with my previous paper with
O. Fabert [FR11], we found the following recursion equations among the DR Hamil-
tonian densities.

Theorem 6.2 ([BR16b]). For all α = 1, . . . , N and p = −1, 0, 1, . . ., let gα,−1 =
ηαµu

µ. We have

∂x(D − 1)gα,p+1 =
{
gα,p, g1,1

}
,(6.3)

(6.4) ∂x
∂gα,p+1

∂uβ
=
{
gα,p, gβ,0

}
,

where D := ε ∂
∂ε

+
∑

s≥0 u
α
s

∂
∂uα

s
.

Equation (6.3) is especially striking. First of all it provides and effective procedure
to reconstruct the full hierarchy starting from the knowledge of g1,1 only. Secondly,
from the point of view of integrable systems, such recursion was not known. Even in
the simplest examples it does not coincide with any previously known reconstruction
techniques for the symmetries of an integrable hierarchy (it is in fact this recursion
that we presented in section 1.5 for the KdV equation) . At the same time, its uni-
versal form (its form is rigid, independent of the CohFT or the integrable hierarchy)
suggests that it should be regarded as some sort of intrinsic feature of at least a
class of integrable systems (see section 6.7).
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6.4. Tau-structure and the strong DR/DZ equivalence. In [BDGR16a] we
provide the DR hierarchy with a tau-structure and study its topological tau-function.

Theorem 6.3. The DR hierarchy is tau-symmetric. A tau-structure is given by
hα,p =

δgα,p+1

δu1 .

Consider the normal coordinates ũα = ηµνhµ,−1. Let us write the tau-function
associated to the topological solution (with initial datum ũα(x, 0; ε) = xδα1 ) as

FDR(t∗∗; ε) =
∑
g≥0

ε2gFDR
g (t∗∗), where

FDR
g (t∗∗) =

∑
n≥0

2g−2+n>0

1

n!

∑
d1,...,dn≥0

⟨
n∏

i=1

τdi(eαi
)

⟩DR

g

n∏
i=1

tαi
di
.

Notice that this DR partition function has only an indirect geometric meaning. Con-
trary to the correlators of the topological tau-function of the DZ hierarchy (which
coincide with the correlators of the CohFT), the correlators ⟨

∏n
i=1 τdi(eαi

)⟩DR

g are
not a priori defined as intersection numbers in H∗(Mg,n,Q), but only as the coeffi-
cients of the series FDR. We can a posteriori try to study their geometric meaning,
and, as a consequence of certain properties of the DR cycle, we find the following
surprising selection rule.

Proposition 6.4 ([BDGR16a]). ⟨τd1(eα1) . . . τdm(eαm)⟩
DR
g = 0 when

∑m
i=1 di >

3g − 3 +m or
∑m

i=1 di ≤ 2g − 2.

In light of the conjectured equivalence with the DZ hierarchy, the first selection
rule looks like the corresponding vanishing property ⟨τd1(eα1) . . . τdm(eαm)⟩g = 0

when
∑m

i=1 di > 3g− 3+m, which just means that we cannot integrate too many
ψ-classes without surpassing the dimension of the moduli space (for short, we say
that correlators cannot be “too big”). But the second selection rule actually says
that the DR correlators cannot be too small either! This rule one has no analogue in
the DZ case and, as it turns out, provides the key to a much deeper understanding
of the DR/DZ equivalence.

The situation is that we are trying to compare two integrable tau-symmetric
hierarchies by a Miura transformation that is supposed to modify the tau-function by
killing all “small correlators” (which are present on the DZ side and absent in the DR
side). A natural candidate would then be a normal Miura transformation (since they
preserve tau-symmetry) generated by a differential polynomial F(w∗∗; ε) ∈ Â[−2],

ũα = wα + ηαµ∂x{F , h
DZ

µ,0}DZ

and we know that such transformations modify the tau-function by

F̃ (t∗∗; ε) = F (t∗∗; ε) + F(w∗∗(x, t
∗
∗; ε); ε)|x=0

Can we find F(w∗∗; ε) so that F̃ (t∗∗; ε) satisfies the selection rule (i.e. has no small
correlators)? As it turns out, yes, and this selects a unique normal Miura trasnfor-
mation!

Theorem 6.5 ([BDGR16a]). ∃! F(w∗∗; ε) ∈ Â[−2] such that F red := F+F(w∗∗; ε)|x=0

satisfies the above selction rules.

This makes Buryak’s conjecture much more precise.
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Conjecture 6.6 (Strong DR/DZ equivalence, [BDGR16a]). For any semisimple
CohFT, the DR and DZ hierarchies coincide up to the normal Miura transformation
generated by the unique F(w∗∗; ε) found in Theorem 6.5. Even in the non-semisimple
case, we can state this conjecture as F red = FDR.

When proven true, the conjecture would clearly state that, although equivalent as
integrable systems to the DZ hiearchy, the DR hiearchy contains strictly less infor-
mation than the DZ hiearchy. Indeed, starting from the DZ hierarchy it is possible
to construct the normal Miura transformation mapping to the DR hiearchy, while
the DR hierarchy does not contain this extra information. This is perhaps not sur-
prising given at least the presence of the class λg in the DR hiearchy intersection
numbers.

From the point of view of integrable systems however, this is of great interest.
The fact the DR hierarchy is some sort of standard form of the DZ hiearchy allows
to study these systems ignoring complications that might just come from the sys-
tem of coordinates in which they are described. The presence of powerful recursion
relations for the Hamiltonians, for instance, seems to rely precisely on this special
standard form.

Finally we remark that the extra information that is killed by the above normal
Miura transformation, might be (maybe in part) recovered once we consider the
quantum DR hiearchy (which replaces λg in the construction by the full Hodge class
Λ(s)), see below.

6.5. The proof of the strong DR/DZ conjecture. In [BDGR16a] we prove the
strong DR/DZ equivalence conjecture for a number of CohFTs.

Theorem 6.7 ([BDGR16a]). The strong DR/DZ equivalence conjecture holds in the
following cases:

• the trivial CohFT,
• the full Hodge class,
• Witten’s 3-, 4- and 5-spin classes
• the GW theory of P1,
• up to genus 5 for any rank 1 CohFT,
• up to genus 1 for any semisimple CohFT.

We also have an unpublished proof for the Gromov-Witten theory of any smooth
variety of positive dimension with non-positive first Chern class and for the D4 Fan-
Jarvis-Ruan-Witten class [FJR13, FFJMR16] which will appear in an upcoming
publication with my student C. Du Crest de Villeneueve.

However, in all these cases, the proof is either by direct computation or by some
ad hoc technique. A large and quite technical part of our project deals with proving
Conjecture 6.6 on completely general grounds.

The strategy of the proof for the general case which we are pursuing, in [BDGR16b]
and our next paper in progress, is to give explicit geometric formulas for the corre-
lators appearing in both FDZ and F red in terms of sums over certain decorated trees
corresponding to cycles in the Mg,n. This reduces the strong DR/DZ conjecture to
a family of relations in the tautological ring of Mg,n. In particular we managed to
further reduce this family to a finite number (equal to the number of partitions of
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2g) of relations in each Mg,n.

6.6. Quantization. As we already remarked, the idea for the DR hierarchy came
from Symplectic Field Theory where quantum integrable systems arise naturally. Let
us see how this happens in the language we used in this document, of cohomological
field theories in the complex algebraic category. The intersection numbers to be
considered look perhaps more natural,

P g;a1,...,an
α,d;α1,...,αn

(s) =

∫
DRg(−

∑
ai,a1,...,an)

Λ (s)ψd
1cg,n+1 (eα ⊗⊗n

i=1eαi
) .

Indeed the product Λ(s)cg,n+1 (eα ⊗⊗n
i=1eαi

) is itself a CohFT (and every CohFT
can be written this way), so we are simply intersecting a CohFT, the ψ-classes and
the DR cycle.

P g;a1,...,an
α,d;α1,...,αn

(s) is a non-homogeneous polynomial in a1, . . . , an of top degree 2g, so

P g;a1,...,an
α,d;α1,...,αn

(s) =
∑

∑
bi=2k≤2g

P̃ g;b1,...,bn
α,d;α1,...,αn

(s) ab11 . . . a
bn
n

and we define

Gα,d :=
∑

g≥0,n≥0
2g−1+n>0

(i~)g

n!

∑
a1,...,an∈Z

P g;a1,...,an
α,d;α1,...,αn

(
−ε2

i~

)
pα1
a1
. . . pαn

an eix
∑

ai

=
∑

g≥0,n≥0
2g−1+n>0

(i~)g

n!

∑
∑

bi≤2g

P̃ g;b1,...,bn
α,d;α1,...,αn

(
−ε2

i~

)
uα1
b1
. . . uαn

bn

Notice how (i~) has replaced (−ε2) as the genus parameter and, at the same time,
we have given the Hodge class parameter s the value

(
−ε2
i~

)
, so that these two choices

compensate in the limit ~ = 0 to give back the classical Hamiltonian densities gα,p.

What about commutativity of these new Hamiltonians? We can again use equa-
tion (6.1), but, because the top Hodge class λg has now been replaced by the full
Hodge class Λ(s), all values of p > 0 will contribute to the sum. This translates into
the following equation:

[Gα,p, Gβ,q] = 0

where [f, g] := f ⋆ g− g ⋆ f with f ⋆ g = f

(
e

∑
k>0 i~kηαβ

←−−
∂

∂pα
k

−−−→
∂

∂p
β
−k

)
g. The exponential

here comes precisely from the fact that double ramification cycles are now glued
along any number of marked points, not just one, as it was the case for the classical
DR hierarchy.

So we have commutativity in a new sense, namely with respect to the non-
commutative product ⋆. This is a star product deforming Getzler’s standard Pois-
son structure in the deformation quantization sense, so what we obtain is a genuine
quantization of the classical DR hierarchy. In [BR16b] we actually develop a precise
extension of the formal loop space with this quantum algebra structure (including
a surprising formula to express the ⋆-product in terms of u∗∗ variables) that, we be-
lieve, has independent value.
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From a mathematical physics viewpoint this is an entirely new and surprisingly
universal quantization technique for integrable field theories. We have completely
explicit formulas for the quantum versions of KdV, Toda, ILW, Gelfand-Dickey and
other integrable hiearchies, that, to our knowledge, were either unknown or known
in a much more indirect way.

This explicit description also rests on the anlogue of Theorem 6.2 which, again,
allows to reconstruct the full quantum hierarchy from the Hamiltonian G1,1 alone.

Theorem 6.8 ([BR16b]). For all α = 1, . . . , N and p = −1, 0, 1, . . ., let Gα,−1 =
ηαµu

µ. We have

∂x(D − 1)Gα,p+1 =
1

~
[
Gα,p, G1,1

]
,(6.5)

(6.6) ∂x
∂Gα,p+1

∂uβ
=

1

~
[
Gα,p, Gβ,0

]
,

where D := ε ∂
∂ε

+ 2~ ∂
∂~ +

∑
s≥0 u

α
s

∂
∂uα

s
.

Finally, in [BDGR16b], we define and study the quantum analogue of the no-
tion of tau-structure and tau-functions and prove that the quantum DR hierarchy
satisfies tau-symmetry. This allows to define a quantum deformation of the DR po-
tential that clearly contains more geometric information on the associated CohFT
and needs to be investigated further. For instance, can one recover, from this in-
formation, the full DZ hierarchy and, eventually, the tautological part of the CohFT?

6.7. Integrable systems of DR type. The recursion equation (6.5) or its classi-
cal version (6.3) are really surprising from the point of view of integrable systems.
No expert we talked to was able to recognize them as something previously known.

Moreover we realized that one could interpret such equation as constraints for
the generating Hamiltonian G1,1 itself, just by imposing that, at each step of the
recursion, we still obtain a commuting quantity. This technique proved fruitful to
reproduce, for instance, the full DR hierarchy starting from genus 0 in the case of
polynomial Frobenius manifolds (i.e. those genus 0 CohFT associated with Coxeter
groups as in [Dub93]). In doing these computational experiments we realized that
the recursions (6.5), (6.3) were of independent value in the theory of integrable sys-
tems.

For simplicity, let us state our result in the classical situation.

Theorem 6.9. Assume that a local functional g1,1 ∈ Λ̂[0] (not necessarily of geo-
metric origin) is such that the recursion (6.3) produces, at each step, Hamiltonians
that still commute with g1,1 (so that the recursion can go on indefinitely). Assume
moreover that δg1,1

δu1 = 1
2
ηµνu

µuν + ∂2xr, where r ∈ Â[−2].

Then we have
(i) g1,0 =

1

2
ηµνu

µuν + ∂2x(D − 1)−1r,
(ii) {gα,p, gβ,q} = 0, α, β = 1, . . . , N, p, q ≥ −1,

(iii) {gα,p, gβ,0} = ∂x
∂gα,p+1

∂uβ
, β = 1, . . . , N, p ≥ −1,

(iv) ∂gα,p
∂u1

= gα,p−1, α = 1, . . . , N, p ≥ −1,



Integrable systems and moduli spaces of curves 27

hence in particular we get an integrable tau-symmetric hierarchy.

This suggests that it is interesting to consider integrable systems originating from
local functionals satisfying the hypothesis of the above theorem. We call them inte-
grable systems of DR type.

Since the hypothesis above can be easily checked, we were able to give a low genus
classification of rank 1 integrable systems of DR type. It turns out that they seem to
correspond precisely to rank 1 cohomological field theory. Tests in rank 2 show the
emergence of integrable systems of more general origin. However this was expected
from geometry too. Indeed the construction of the classical DR hierarchy also works
for partial CohFTs, i.e. CohFTs that do not satisfy the loop gluing axiom. It would
appear from low genus computations that classical integrable systems of DR type
are classified by partial CohFTs but only those coming from actual CohFTs possess
a quantization.
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