
HAL Id: tel-01436723
https://hal.science/tel-01436723

Submitted on 23 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ADVANCED METHODS FOR THE RISK,
VULNERABILITY AND RESILIENCE ASSESSMENT

OF SAFETY-CRITICAL ENGINEERING
COMPONENTS, SYSTEMS AND

INFRASTRUCTURES, IN THE PRESENCE OF
UNCERTAINTIES

Nicola Pedroni

To cite this version:
Nicola Pedroni. ADVANCED METHODS FOR THE RISK, VULNERABILITY AND RESILIENCE
ASSESSMENT OF SAFETY-CRITICAL ENGINEERING COMPONENTS, SYSTEMS AND IN-
FRASTRUCTURES, IN THE PRESENCE OF UNCERTAINTIES. Engineering Sciences [physics].
Grenoble 1 UGA - Université Grenoble Alpes, 2016. �tel-01436723�

https://hal.science/tel-01436723
https://hal.archives-ouvertes.fr


1

Université Grenoble Alpes (UGA) 

Institut National Polytechnique de Grenoble (INP) 

École Doctorale Electronique, Electrotechnique, Automatique, Traitement 

du Signal (EEATS) 

Rapport d’activité Scientifique 

Présenté en vue de l’obtention de 

l’Habilitation à Diriger des Recherches (HDR) 

par 

Nicola Pedroni 

ADVANCED METHODS FOR THE RISK, VULNERABILITY AND 

RESILIENCE ASSESSMENT OF SAFETY-CRITICAL 

ENGINEERING COMPONENTS, SYSTEMS AND 

INFRASTRUCTURES, IN THE PRESENCE OF UNCERTAINTIES 

Date de soutenance: 04-02-2016 

Composition du jury: 

Rapporteurs: 

Prof. Terje Aven, University of Stavanger (UIS) 
Prof. Bruno Sudret, Swiss Federal Institute of Technology in Zurich (ETHZ) 
Prof. Antoine Grall, Université de Technologie de Troyes (UTT) 

Examinateurs: 

Prof. Christophe Bérenguer, Université Grenoble Alpes (UGA) – Institut National Polytechnique 
(INP) de Grenoble 
Prof. Enrico Zio, École CentraleSupélec and Politecnico di Milano 



2

Table of contents 

LIST OF ACRONYMS .................................................................................................................................................... 4�

LIST OF FIGURES .......................................................................................................................................................... 6�

LIST OF TABLES ............................................................................................................................................................ 7�

1� INTRODUCTION .................................................................................................................................................... 8�

2� CURRICULUM VITAE......................................................................................................................................... 10�

3� SYNTHETIC PRESENTATION OF TEACHING AND ADMINISTRATIVE ACTIVITIES ....................... 12�

3.1� TEACHING ACTIVITIES ....................................................................................................................................... 12�

3.2� ADMINISTRATIVE ACTIVITIES ............................................................................................................................ 17�

4� SYNTHETIC PRESENTATION OF THE RESEARCH ACTIVITIES ........................................................... 18�

4.1� OVERVIEW ON THE RESEARCH ACTIVITIES ......................................................................................................... 18�

4.2� PUBLICATIONS STATISTICS ................................................................................................................................ 21�

4.3� LIST OF PHD AND MASTER STUDENTS CO-DIRECTED ......................................................................................... 23�

4.4� SYNTHETIC PRESENTATION OF FUTURE RESEARCH ............................................................................................ 28�

4.4.1� Research themes ....................................................................................................................................... 28�

4.4.2� Research methods ..................................................................................................................................... 31�

4.5� SYNTHETIC PRESENTATION OF THE CAPITALIZATION AND TRANSFER ACTIVITIES .............................................. 32�

4.6� SCIENTIFIC OUTREACH ....................................................................................................................................... 35�

5� COMPLETE AND CLASSIFIED LIST OF PUBLICATIONS AND COMMUNICATIONS ........................ 40�

5.1� PEER-REVIEWED INTERNATIONAL JOURNAL PAPERS .......................................................................................... 40�

5.2� BOOK CHAPTERS ................................................................................................................................................ 43�

5.3� CONFERENCE PROCEEDINGS .............................................................................................................................. 44�

5.4� WORKS PUBLISHED AS TECHNICAL REPORTS OF INTERNATIONAL RESEARCH INSTITUTES .................................. 47�

6� DETAILED PRESENTATION OF THE PAST RESEARCH ACTIVITIES ................................................... 48�

6.1� AXIS 1 – RELIABILITY ANALYSIS AND RISK ASSESSMENT OF SAFETY-CRITICAL COMPONENTS AND SYSTEMS:

UNCERTAINTY MODELING AND QUANTIFICATION......................................................................................................... 52�

6.1.1� Problem statement .................................................................................................................................... 52�

6.1.1.1� Uncertainties in reliability analysis and risk assessment ......................................................................................... 52�

6.1.1.2� Types of uncertainty ............................................................................................................................................... 54�

6.1.2� Issues and possible solution approaches: a critical literature survey ...................................................... 55�

6.1.2.1� Issue 1: Quantitative modeling and representation of uncertainty coherently with the information available on the 

system  ................................................................................................................................................................................ 56�

6.1.2.2� Issue 2: Propagation of uncertainty to the output of the system model ................................................................... 66�

6.1.2.3� Issue 3: Updating as new information becomes available ....................................................................................... 67�

6.1.2.4� Issue 4: Dependences among input variables and parameters ................................................................................. 68�

6.1.3� Research developed: methodological and applicative contributions ........................................................ 70�



3

6.1.3.1� Issue 1: Quantitative modeling and representation of uncertainty coherently with the information available on the 

system  ................................................................................................................................................................................ 70�

6.1.3.2� Issue 2: Propagation of uncertainty to the output of the system model ................................................................... 74�

6.1.3.3� Issue 3: Updating as new information becomes available ....................................................................................... 75�

6.1.3.4� Issue 4: Dependences among input variables and parameters ................................................................................. 77�

6.2� AXIS 2 – SAFETY-CRITICAL SYSTEMS AND INFRASTRUCTURES: ADVANCED METHODS FOR MODELING,

SIMULATION AND ANALYSIS CONSIDERING UNCERTAINTIES ........................................................................................ 80�

6.2.1� Problem statement .................................................................................................................................... 80�

6.2.1.1� Safety-Critical Systems and Infrastructures ............................................................................................................ 80�

6.2.1.2� Risk, vulnerability and resilience ............................................................................................................................ 82�

6.2.2� Issues and possible solution approaches: a critical literature survey ...................................................... 87�

6.2.2.1� Issue 1: Development of innovative methods of representation and simulation of Critical Infrastructures (CIs), for 

the analysis of their vulnerability and resilience ....................................................................................................................... 89�

6.2.2.2� Issue 2: Design and implementation of innovative algorithms for the efficient risk assessment and/or reliability 

evaluation of highly-reliable engineered systems and infrastructures ...................................................................................... 95�

6.2.2.3� Issue 3: Development of innovative decision making approaches for the multi-criteria vulnerability analysis of 

safety-critical systems and infrastructures under uncertainty ................................................................................................. 102�

6.2.3� Research developed: methodological and applicative contributions ...................................................... 105�

6.2.3.1� Issue 1: Development of innovative methods of representation and simulation of critical infrastructures, for the 

analysis of their vulnerability and resilience .......................................................................................................................... 105�

6.2.3.2� Issue 2: Design and implementation of innovative algorithms for the efficient risk assessment and/or reliability 

evaluation of highly-reliable engineered systems and infrastructures .................................................................................... 111�

6.2.3.3� Issue 3: Development of innovative decision making approaches for the multi-criteria vulnerability analysis of 

safety-critical systems and infrastructures under uncertainty ................................................................................................. 116�

7� DETAILED PRESENTATION OF THE FUTURE RESEARCH ACTIVITIES .......................................... 120�

7.1� RESEARCH THEMES .......................................................................................................................................... 120�

7.2� RESEARCH METHODS ....................................................................................................................................... 129�

8� CONCLUSIONS ................................................................................................................................................... 132�

9� BIBLIOGRAPHY ................................................................................................................................................. 134�

APPENDIX: CONTENTS OF SIX SELECTED PUBLICATIONS ........................................................................ 152�



4

List of Acronyms 

AK   Adaptive Kernel 
AM-SIS   Adaptive Metamodel-based Subset Importance Sampling 
ANN   Artificial Neural Network 
ARIMA   AutoRegressive-Integrated-Moving Average 
BE   Basic Event 
BPA   Basic Probability Assignment 
CCF   Common Cause Failure 
CDF   Cumulative Distribution Function 
CE   Cross-Entropy 
CESNEF  CEntro Studi Nucleari Enrico Fermi 
CI   Critical Infrastructure 
CIP   Critical Infrastructure Protection 
COM   Commission of the European Community 
DBC   Dependency Bound Convolution 
DEnv   Distribution Envelop Determination 
DET   Dynamic Event Tree 
DM   Decision Making 
DMLD   Dynamic Master Logic Diagram 
DS   Dempster-Shafer Dempster-Shafer 
DSTE   Theory of Evidence 
ECP   Ecole Centrale Paris 
EDF   Electricité De France 
EENS   Expected Energy Not Supplied 
ELECTRE  ELimination Et Choix Traduisant la REalité
EPA   Environmental Protection Agency 
EPRI   Electric Power Research Institute 
ERNCIP  European Reference Network for Critical Infrastructure Protection 
ESREL   European Safety and RELiability Conference 
ET   Event Tree 
ETA   Event Tree Analysis 
FEM   Finite Element Model 
FIA   Fuzzy Interval Analysis 
FonCSI   Fondation Pour Une Culture De Securitè Industrielle 
FPDF   Fuzzy Probability Density Function 
FPTN   French Power Transmission Network 
FRV   Fuzzy Random Variable 
FT   Fault Tree 
FTA   Fault Tree Analysis 
GBT   Generalized Bayes Theorem 
GFR   Gas-cooled Fast Reactor 
GTST   Goal Tree Success Tree 
HDR   Habilitation à Diriger des Recherches 
ICT   Information and Communication Technology 
IDPSA   Integrated Deterministic and Probabilistic Safety Assessment 
IEEE   Institute of Electrical and Electronic Engineers 
IF   Importance Function 
IIR-LRNN  Infinite Impulse Response Locally Recurrent Neural Network 
IPTN   Italian Power Transmission Network 
IRS   Independent Random Sets 
IS   Importance Sampling 
ISD   Importance Sampling Density 
KS   Kolmogorov-Smirnov 
LaRC   Langley Research Center 
LASAR   Laboratory of Analysis of Signal and Analysis of Risk 
LBE-XADS  Lead Bismuth Eutectic eXperimental Accelerator Driven System 
LGI   Laboratoire Génie Industriel 
LHS   Latin Hypercube Sampling 
LS   Line Sampling 



5

MAUT   Multi-attribute utility theory 
MCDA   Multi-Criteria Decision Aid 
MCMC   Markov Chain Monte Carlo 
MCS   Monte Carlo Simulation 
MIP   Mixed Integer Programming 
MIT   Massachusetts Institute of Technology 
MFM   Multilevel Flow Modeling 
ML   Motter-Lai 
MLD   Master Logic Diagram 
MNE   Master in Nuclear Energy 
MOV   Motor-Operated Valves 
MR-Sort  Majority Rule Sorting 
MUQC   Multidisciplinary Uncertainty Quantification Challenge 
NASA   National Aeronautics and Space Administration 
NECSI   New England Complex Systems Institute 
NPP   Nuclear Power Plant 
NSBDE   Non-dominated Sorting Binary Differential Evolution 
NSGA   Non-dominated Sorting Genetic Algorithm 
OPA   ORNL-PSerc-Alaska 
ORNL   Oak Ridge National Laboratory 
OSIL   Optimisation des Systèmes Industriels et Logistiques 
PCE   Polynomial Chaos Expansion 
PDF   Probability Density Function 
PDMP   Piecewise Deterministic Markov Processes 
PRA   Probabilistic Risk Assessment 
Pserc   Power System Engineering Research Center (of Wisconsin University) 
QRA   Quantitative Risk Assessment 
RAMS   Reliability, Availability, Maintainability and Safety 
RBF   Radial Basis Function 
RESTART  REpetitive Simulation Trials After Reaching Thresholds 
RISEGrid  Research Institute for Smarter Electric Grids 
ROP   Resilience Optimization Problem 
RS   Response Surface 
RTE   Réseau de Transport d’Electricité 
SAIDI   System Average Interruption Duration Index 
SAIFI   System Average Interruption Frequency Index
SC   Stochastic Collocation 
SCADA   Supervisory Control And Data Acquisition 
SOC   Self-Organized Criticality 
SoS   System-of-Systems 
SPRA   Seismic Probabilistic Risk Assessment 
SRA   Society for Risk Analysis 
SS   Subset Simulation 
SSARS   Summer Safety and Reliability Seminars 
SSEC   Systems Science and Energy Challenge 
SVM   Support Vector Machine 
TE   Top Event 
UAV   Unmanned Aerial Vehicle 
UCTE   Union for the Coordination of Transmission of Electricity 
USNRC   US Nuclear Regulatory Commission 
VM   Variance Minimization 
WCDR   World Conference on Disaster Reduction 



6

List of Figures 

Figure 1. Conceptual structure of the general research framework 

Figure 2. Research Axes 1 and 2 developed during my academic activity 

Figure 3. Four conceptual and practical issues addressed under research Axis 1 

Figure 4. Example of probability box (p-box) for the generic uncertain variable Y 

Figure 5. Left: triangular possibility distribution )(yYπ  of a generic uncertain variable Y; in 

evidence, the �-cuts of level � = 0 (solid segment), 0.5 (dashed segment) and 1 (dot). Right: 

bounding upper and lower CDFs (i.e., cumulative possibility and necessity) of Y, ( )yF
Y

 = 

( ) ( ]( )yNAN YY ,∞−=  and ( )yF Y  = ( ) ( ]( )y�A� YY ,∞−= , A = (��, y], respectively 

Figure 6. Exemplary body of evidence (left) and the corresponding upper and lower CDFs (i.e., 

cumulative plausibility and belief) (right) for a generic uncertain variable Y 

Figure 7. Exemplary Fuzzy Random Variable (FRV). Left: possibility function )(µπ µ  for the mean 

� of variable Y. Right: bounding upper and lower CDFs of Y, ( )yF Y

α  and ( )yF
Y

α , built in 

correspondence of the �-cuts of level � = 0 (solid lines), 0.5 (dashed lines) and 1 (dot-dashed line) 

of )(µπ µ

Figure 8. Methods here considered and compared to address Issue 1 of research Axis 1, together 

with the corresponding applications and recommended approaches 

Figure 9. Methods here considered and compared to address Issue 2 of research Axis 1, together 

with the corresponding applications and recommended approaches 

Figure 10. Methods here considered and compared to address Issue 3 of research Axis 1, together 

with the corresponding applications and recommended approaches 

Figure 11. Methods here considered and compared to address Issue 4 of research Axis 1, together 

with the corresponding applications and recommended approaches 

Figure 12. Main characteristics of the safety-critical systems and infrastructures of interest to the 

present dissertation, and the corresponding related issues 

Figure 13. Illustration of the concepts of risk, vulnerability, robustness and resilience with 

reference to the functionality curve �(t) of a safety-critical system or infrastructure 

Figure 14. Three conceptual and practical issues addressed under research Axis 2 

Figure 15. Problems related to the efficient risk assessment and/or reliability evaluation of highly-

reliable engineered systems and infrastructures (Issue 2, Axis 2) 

Figure 16. Problems related to decision making process for the multi-criteria vulnerability analysis 

of safety-critical systems and infrastructures under uncertainty (Issue 3, Axis 2) 

Figure 17. Methods here considered and compared to address Issue 1 of research Axis 2, together 

with the corresponding applications 

Figure 18. Methods here considered and compared to address Issue 2 of research Axis 2, together 

with the corresponding applications 

Figure 19. Methods here considered and compared to address Issue 3 of research Axis 2, together 

with the corresponding applications 

Figure 20. Themes and methods that will be addressed in my future research 



7

List of Tables 

Table 1. Summary of the main teaching activities and content of the lectures 

Table 2. Number of classified publications 

Table 3. Analysis of the research collaborators 

Table 4. Synthetic presentation of the capitalization and transfer activities 

Table 5. Planning of the future research activities during 2015-2020 



8

1 Introduction 

This thesis presents my complete profile as an assistant professor at: (i) the Laboratory of Analysis 

of Signal and Analysis of Risk (LASAR) of the Energy Department of the Politecnico di Milano 

(Milano, Italy) (from March 2010 to February 2013); and (ii) the Chair on Systems Science and 

Energy Challenge (SSEC) installed in 2010 at CentraleSupélec with the support of Fondation 

Électricité De France (EDF) (from March 2013 to present). It serves as the main document 

supporting my application for the Habilitation à Diriger des Recherches (HDR) (Habilitation to 

Direct the Research). 

The research works presented in this thesis entitled “Advanced methods for the risk, vulnerability 

and resilience assessment of safety-critical engineering components, systems and infrastructures, in 

the presence of uncertainties” have been conducted before at the LASAR Laboratory and then at the 

Chair SSEC, both directed by Professor Enrico Zio. The major activities of both research groups 

have focused on the development, implementation and use of computational models, methods and 

algorithms for the analysis of the failure behavior of complex engineered systems and the related 

uncertainty. Then, the research topics of interest to both groups cover aspects related to reliability, 

availability and maintainability (RAM) engineering, risk assessment, safety and security evaluation, 

vulnerability and resilience analyses. 

Within this wide context, my past research consists of two main axes: 

1. uncertainty modeling and quantification techniques for the reliability analysis and risk 

assessment of safety-critical components and systems; 

2. advanced methods for modeling, simulation and analysis of safety-critical systems and 

infrastructures under uncertainties, in order to assess their associated risk, vulnerability and 

resilience. 

Four main research issues have been treated under Axis 1, whereas three issues have been addressed 

under Axis 2. The motivations, originalities and contributions within each research line are 

thoroughly presented in Section 6: in addition, for the sake of clarity and completeness six journal 

papers have been included in the Appendix at the end of the manuscript in order to provide the 

interested reader with further technical details about the topics and issues addressed. 

The future research has been planned around three main themes that are currently credited by many 

as among the most relevant for the analysis and management of the risk and vulnerability of 

complex, safety-critical systems and infrastructures: 

1. modeling and analysis of (extreme) external natural events; 

2. integration of the risks and vulnerabilities coming from cyber attacks; 
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3. management of multiple risks coming from heterogeneous ‘contributors’ (e.g., different

types of hazard) and different ‘locations’ (e.g., different power production units on the same 

site), for their aggregate evaluation. 

These analyses require substantial and consistent supports from the further advancements of all 

existing research lines. The detailed presentation of future work is in Section 7. A synthetic 

description of both past and future research is instead presented in Section 4, together with my 

supervision works which involved co-directing a number of PhD and master students. Most of them 

resulted to international journal publications. The complete and classified list of publications and 

communications is presented in Section 5. 

The teaching activities, presented in Section 3, were developed mainly in three areas: (i) Reliability, 

Availability, Maintenance and Safety (RAMS) techniques and their applications to engineered 

systems; (ii) advanced computational methods for the efficient representation and propagation of 

uncertainties through the mathematical models of engineered systems; (iii) thermodynamics and 

heat transfer in nuclear reactor systems. The levels have ranged from first years of national 

engineering schools to international masters and PhD courses. The activities have included 

presenting lectures, delivering tutorials, monitoring exams, and supervising projects and theses. The 

teaching has fed my research activities and certain research results have been transferred to the 

students through teaching. 

My administrative activities have been carried out mainly at the Laboratoire Génie Industriel (LGI) 

at CentraleSupélec where the Chair SSDE has been located. 

Following is my complete presentation, starting from the curriculum vitae. 
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2 Curriculum Vitae 
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Massachusetts Institute of Technology (MIT) (Cambridge, Massachusetts - USA), under the 
supervision of Prof. G. E. Apostolakis, September 2008 – May 2009. 
Title of the research project: “Simulation methods for uncertainty and sensitivity analysis of 
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(Chatenay-Malabry, France) and Ecole Superieure d'Electricite (SUPELEC) (Gif-Sur-Yvette, 
France), March 1, 2013 – present. 

• Assistant professor at the Laboratory of Signal and Risk Analysis (LASAR) of the Energy 
Department of the Politecnico di Milano (Milano, Italy), June 01, 2010 – February 28, 2013. 
Scientific Disciplinary Area: ING-IND/19 - Nuclear power plants. 
Title of the research program: “Development of advanced methods and models for the safety, 
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Nuclear Engineering – CEntro Studi Nucleari Enrico Fermi (CESNEF) of the Politecnico di 
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Title of the research program: “Study and development of feature selection methods for soft-
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3 Synthetic presentation of teaching and administrative activities  

(Présentation synthétique des activités d’enseignement et d’administration) 

The relevant teaching activities are detailed in Section 3.1, whereas the main administrative 
responsibilities are summarized in Section 3.2. 

3.1 Teaching activities 

(Présentation synthétique des activités d’enseignement) 

The courses were mainly developed in three areas: (i) Reliability, Availability, Maintenance and 
Safety (RAMS) techniques and their applications to engineered systems; (ii) advanced 
computational methods for the efficient representation and propagation of uncertainties through the 
mathematical models of engineered systems; (iii) thermodynamics and heat transfer in nuclear 
reactor systems. The levels range from first years of national engineering schools to international 
masters and PhD courses. The activities include presenting lectures, delivering tutorials, monitoring 
exams, and supervising projects and theses (see Table 1 for a summary). 

• Responsibility for the organization of Master courses (Lectures = 69hrs; Exercise sessions 

= 48hrs; Exams = 15hrs) 

− Co-responsible of the organization and activity of the course “Managing Uncertainty For 
Reliability Optimization - Maîtrise Des Incertitudes Pour l’Optimisation De La Fiabilité” 
(24 hours) of the Master Recherche “Optimisation des Systèmes Industriels et Logistiques 
(OSIL)” held at CentraleSupélec, Chatenay-Malabry, France, November 2014-January 

2015. The activity has entailed the organization of 3 (three-hour) lectures and 1 (three-hour) 
project exam. Total activity: lectures (9hrs), exam (3hrs). 

− Co-responsible of the organization and activity of the course “Nuclear Thermohydraulics” 
(45 hours) of the international Master in “Nuclear Energy” run by a consortium of several 
academic institutions (Universitè Paris-Sud 11, ParisTech, Ecole Centrale Paris and 
Supelec) with the support of several industrial establishments (EDF, Areva, GDF SUEZ), at 
the Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut 

national des sciences et techniques nucléaires (INSTN) (Saclay, France), September-
December 2012, 2013, 2014 and 2015. The activity has entailed the organization of 5 
(three-hour) lectures, 4 (three-hour) exercise sessions and 1 (three-hour) mid-term exam, for 
each year of course. Total activity: lectures (60hrs), exercise sessions (48hrs), exams 
(12hrs). 

• Lectures held during Ph.D. courses (Lectures = 45hrs; Exercise sessions = 0hrs; Tutorials 

= 6hrs; Exams = 0hrs) 

− Four-hour lecture and three-hour tutorial titled “Uncertainty modeling”, held during the 4th 
PhD School on “Vulnerability, risk and resilience of complex system and critical 
infrastructures”, organized by CentraleSupélec (Gif-Sur-Yvette, France), Politecnico di 
Milano (Milano, Italy) and TIME Association, 14-18 September 2015, CentraleSupélec 
(Gif-Sur-Yvette, France). Total activity: lectures (4hrs). 

− Four-hour lecture titled “Advanced Monte Carlo simulation methods: Markov Chain Monte 
Carlo, Subset Sampling, Line Sampling, and applications to reliability analysis”, held 
during the Multidisciplinary course “Monte Carlo Simulation Methods for the Quantitative 
Analysis of Stochastic and Uncertain Systems” offered by the “Scuola di Dottorato di 
Ricerca” of the Politecnico di Milano, 6th Edition, 2015, Politecnico di Milano (Milano, 
Italy). Total activity: lectures (4hrs). 

− Four-hour lecture and three-hour tutorial titled “Uncertainty modeling”, held during the 3rd 
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PhD School on “Vulnerability, risk and resilience of complex system”, organized by Ecole 
Centrale Paris (Chatenay-Malabry, France), Politecnico di Milano (Milano, Italy) and 
Supélec (Gif-Sur-Yvette, France), 13-17 October 2014, Supélec, Gif-Sur-Yvette, France. 
Total activity: lectures (4hrs), tutorials (3hrs). 

− Four-hour lecture and three-hour tutorial titled “Uncertainty modeling”, held during the 2nd 
PhD School on “Risk and uncertainty modelling”, organized by Ecole Centrale Paris 
(Chatenay-Malabry, France), Politecnico di Milano (Milano, Italy) and Supélec (Gif-Sur-
Yvette, France), 2-8 September 2013, Palazzo Natta, Como, Italy. Total activity: lectures 
(4hrs), tutorials (3hrs). 

− Two-hour “tutorial” lecture titled “Bootstrapped Artificial Neural Networks for Uncertainty 
and Sensitivity Analysis in Probabilistic Risk Assessment”, held during Course 22.38 
“Probability and its Application to Reliability, Quality Control, and Risk Assessment” by 
Prof. Apostolakis, included in the Ph.D. Course in “Nuclear Science and Engineering” of 
the Massachusetts Institute of Technology (MIT), Cambridge, Massachusetts (USA), 2009. 
Total activity: lectures (2hrs). 

− Four-hour lecture titled “Advanced Monte Carlo simulation methods: Markov Chain Monte 
Carlo, Subset Sampling, Line Sampling, and applications to reliability analysis”, held 
during the Multidisciplinary course “Monte Carlo Simulation Methods for the Quantitative 
Analysis of Stochastic and Uncertain Systems” offered by the “Scuola di Dottorato di 
Ricerca” of the Politecnico di Milano, 5th Edition, January-February 2014, Politecnico di 
Milano (Milano, Italy). Total activity: lectures (4hrs). 

− Four-hour lecture titled “Efficient Methods of Sampling Uncertain Variables: Subset and 
Line Sampling”, held during the Multidisciplinary course “Monte Carlo Simulation 
Methods for the Quantitative Analysis of Stochastic and Uncertain Systems” offered by the 
“Scuola di Dottorato di Ricerca” of the Politecnico di Milano, 4th Edition, September-
October 2012, Politecnico di Milano (Milano, Italy). Total activity: lectures (4hrs). 

− Two-hour lecture titled “Markov Chain Monte Carlo for model and parameter 
identification”, held during the Multidisciplinary course “Monte Carlo Simulation Methods 
for the Quantitative Analysis of Stochastic and Uncertain Systems” offered by the “Scuola 
di Dottorato di Ricerca” of the Politecnico di Milano, 3rd Edition, September 15-October 28 
2011, Politecnico di Milano (Milano, Italy). Total activity: lectures (2hrs). 

− Four-hour lecture titled “Efficient Methods of Sampling Uncertain Variables: Subset and 
Line Sampling”, held during the Multidisciplinary course “Monte Carlo Simulation 
Methods for the Quantitative Analysis of Stochastic and Uncertain Systems” offered by the 
“Scuola di Dottorato di Ricerca” of the Politecnico di Milano, 3rd Edition, September 15-
October 28 2011, Politecnico di Milano (Milano, Italy). Total activity: lectures (4hrs). 

− Two-hour lecture titled “Markov Chain Monte Carlo for model and parameter 
identification”, held during the Multidisciplinary course “Monte Carlo Simulation Methods 
for the Quantitative Analysis of Stochastic and Uncertain Systems” offered by the “Scuola 
di Dottorato di Ricerca” of the Politecnico di Milano, 2nd Edition, September 15-October 
20 2010, Politecnico di Milano (Milano, Italy). Total activity: lectures (2hrs). 

− Four-hour lecture titled “Efficient Methods of Sampling Uncertain Variables: Subset and 
Line Sampling”, held during the Multidisciplinary course “Monte Carlo Simulation 
Methods for the Quantitative Analysis of Stochastic and Uncertain Systems” offered by the 
“Scuola di Dottorato di Ricerca” of the Politecnico di Milano, 2nd Edition, September 15-
October 20 2010, Politecnico di Milano (Milano, Italy). Total activity: lectures (4hrs). 

− Three-hour lecture titled “Markov Chain Monte Carlo for model and parameter 
identification”, held during the Multidisciplinary course “Monte Carlo Simulation Methods 
for the Quantitative Analysis of Stochastic and Uncertain Systems” offered by the “Scuola 
di Dottorato di Ricerca” of the Politecnico di Milano, 1st Edition, 18 September-21 October 
2009, Politecnico di Milano (Milano, Italy). Total activity: lectures (3hrs). 
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− Four-hour lecture titled “Efficient Methods of Sampling Uncertain Variables: Subset and 
Line Sampling”, held during the Multidisciplinary course “Monte Carlo Simulation 
Methods for the Quantitative Analysis of Stochastic and Uncertain Systems” offered by the 
“Scuola di Dottorato di Ricerca” of the Politecnico di Milano, 1st Edition, 18 September-21 
October 2009, Politecnico di Milano (Milano, Italy). Total activity: lectures (4hrs). 

• Lectures held during Graduation (Bachelor and Master) courses (Lectures = 27hrs; 

Exercise sessions = 7hrs; Tutorials = 0hrs; Exams = 0hrs) 

− Three-hour lecture titled “Markov Models for Reliability and Availability Analysis”, held 
during the course “Risk Management” of the international Master in “Nuclear Energy” 
organized by a consortium of several academic institutions (Universitè Paris-Sud 11, 
ParisTech, Ecole Centrale Paris and Supelec and CEA-INSTN) with the support of several 
industrial establishments (EDF, Areva, GDF SUEZ), CEA-INSTN (Saclay, France), 2014. 
Total activity: lectures (3hrs). 

− Three-hour lecture titled “Markov Models for Reliability and Availability Analysis”, held 
during the course “Risk Management” of the international Master in “Nuclear Energy” 
organized by a consortium of several academic institutions (Universitè Paris-Sud 11, 
ParisTech, Ecole Centrale Paris and Supelec and CEA-INSTN) with the support of several 
industrial establishments (EDF, Areva, GDF SUEZ), CEA-INSTN (Saclay, France), 2013. 
Total activity: lectures (3hrs). 

− Three-hour lecture titled “Markov Models for Reliability and Availability Analysis”, held 
during the course “Risk Management” of the international Master in “Nuclear Energy” 
organized by a consortium of several academic institutions (Universitè Paris-Sud 11, 
ParisTech, Ecole Centrale Paris and Supelec and CEA-INSTN) with the support of several 
industrial establishments (EDF, Areva, GDF SUEZ), CEA-INSTN (Saclay, France), 2012. 
Total activity: lectures (3hrs). 

− Three-hour exercise session titled “Markov Reliability and Availability Analysis”, held 
during the course “Reliability, Safety and Risk Analysis A+B” of the Second Level 
graduation course in Nuclear Engineering, Environmental Engineering, Mathematical 
Engineering and Safety Engineering, Politecnico di Milano (Milano, Italy), 2012. Total 
activity: exercise sessions (3hrs). 

− Four-hour lecture titled “Uncertainty and Sensitivity Analysis”, held during the course 
“Reliability, Safety and Risk Analysis A+B” of the Second Level graduation course in 
Nuclear Engineering, Environmental Engineering, Mathematical Engineering and Safety 
Engineering, Politecnico di Milano (Milano, Italy), 2012. Total activity: lectures (4hrs). 

− Five-hour lecture titled “Markov Reliability and Availability Analysis”, held during the 
course “Reliability, Safety and Risk Analysis A+B” of the Second Level graduation course 
in Nuclear Engineering, Environmental Engineering, Mathematical Engineering and Safety 
Engineering, Politecnico di Milano (Milano, Italy), 2012. Total activity: lectures (5hrs). 

− One-hour lecture titled “Subset Simulation for the Safety Assessment of Radioactive Waste 
Repositories”, held during the course “Safety Assessment of Radioactive Waste 
Repositories” of the Second Level graduation course in Nuclear Engineering, Politecnico di 
Milano (Milano, Italy), 2012. Total activity: lectures (1hr). 

− Two-hour lecture titled “Uncertainty and Sensitivity Analysis”, held during the course 
“Safety Assessment of Radioactive Waste Repositories” of the Second Level graduation 
course in Nuclear Engineering, Politecnico di Milano (Milano, Italy), 2012. Total activity: 
lectures (2hrs). 

− Two-hour lecture titled "Multi-objective Genetic Algorithms", held during the course 
“Nuclear Power Plants Operation and Maintenance” of the Second Level graduation course 
in Nuclear Engineering, Politecnico di Milano (Milano, Italy), 2012. Total activity: lectures 
(2hrs). 
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− Four-hour lecture titled “Uncertainty and Sensitivity Analysis”, held during the course 
“Computational Methods for Reliability and Risk Analysis I+II” of the Second Level 
graduation course in Nuclear Engineering, Environmental Engineering and Safety 
Engineering, Politecnico di Milano (Milano, Italy), 2011. Total activity: lectures (4hrs). 

− Four-hour exercise session titled “Markov Reliability and Availability Analysis”, held 
during the course “Computational Methods for Reliability and Risk Analysis I+II” of the 
Second Level graduation course in Nuclear Engineering, Environmental Engineering and 
Safety Engineering, Politecnico di Milano (Milano, Italy), 2011. Total activity: exercise 
sessions (4hrs). 

• Lectures held during professional training courses (Lectures = 12hrs; Exercise sessions = 

12hrs; Tutorials = 0hrs; Exams = 0hrs) 

− Four-hour exercise session titled “Genetic Algorithms optimization”, held during the 
Professional Training Course “Advanced methods for the reliability and availability 
analyses, safety, maintenance, diagnostics and prognostics of industrial systems and plants”, 
14th Edition, 26-29 September 2011, Politecnico di Milano (Milano, Italy). Total activity: 
exercise sessions (4hrs). 

− Two-hour lecture titled “Advanced methods of Monte Carlo simulation for the estimation of 
small failure probabilities”, held during the Professional Training Course “Advanced 
methods for the reliability and availability analyses, safety, maintenance, diagnostics and 
prognostics of industrial systems and plants”, 14th Edition, 26-29 September 2011, 
Politecnico di Milano (Milano, Italy). Total activity: lectures (2hrs). 

− Eight-hour exercise session titled “Reliability and Availability of Simple Systems” held 
during the Professional Training Course “Reliability, Availability and Maintainability with 
Application in the Development Phases for Oil & Gas Upstream Projects”, 13-17 June 
2011, ENI Corporate University, Milano (Italy). Total activity: exercise sessions (8hrs). 

− Four-hour lecture titled “Genetic Algorithms with application to the optimization of system 
redundancy and maintenance”, held during the Professional Training Course “Advanced 
methods for the reliability and availability analyses, safety, maintenance, diagnostics and 
prognostics of industrial systems and plants”, 13th Edition, 20-23 September 2010, 
Politecnico di Milano (Milano, Italy). Total activity: lectures (4hrs). 

− Two-hour lecture titled “Advanced Monte Carlo Simulation Methods”, held during the 
Professional Training Course “Advanced methods for the reliability and availability 
analyses, safety, maintenance, diagnostics and prognostics of industrial systems and plants”, 
13th Edition, 20-23 September 2010, Politecnico di Milano (Milano, Italy). Total activity: 
lectures (2hrs). 

− Two-hour lecture titled “Advanced Monte Carlo Simulation Methods”, held during the 
Professional Training Course “Innovative techniques for the evaluation of the reliability, 
availability, maintenance and diagnostics of industrial systems and plants”, 12th Edition, 
21-24 September 2009, Politecnico di Milano (Milano, Italy). Total activity: lectures (2hrs). 

− Two-hour lecture titled “Recurrent Neural Networks”, held during the Professional Training 
Course “Innovative techniques for the evaluation of the reliability, availability, maintenance 
and diagnostics of industrial systems and plants”, 12th Edition, 21-24 September 2009, 
Politecnico di Milano. Total activity: lectures (2hrs). 
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Categories of courses and students (institution/course) 

Years Bachelor/Master Courses PhD Courses Professional Training Courses 

2007 - Recurrent Neural Networks (Polimi) 

2009 

- Bootstrapped Artificial Neural Networks (MIT) 
- Advanced Monte Carlo simulation methods (Polimi) 
- Markov Chain Monte Carlo for model and parameter 
identification (Polimi) 

- Recurrent Neural Networks (Polimi) 
- Advanced Monte Carlo simulation methods (Polimi) 

2010 

- Advanced Monte Carlo simulation methods (Polimi) 
- Markov Chain Monte Carlo for model and parameter 
identification (Polimi) 

- Advanced Monte Carlo simulation methods (Polimi) 
- Genetic algorithms for reliability optimization (Polimi) 

2011 
- Markov Reliability and Availability Analysis (Polimi) 
- Uncertainty and sensitivity analysis (Polimi) 

- Advanced Monte Carlo simulation methods (Polimi) 
- Markov Chain Monte Carlo for model and parameter 
identification (Polimi) 

- Advanced Monte Carlo simulation methods (Polimi) 
- Genetic algorithms for reliability optimization (Polimi) 
- Reliability and Availability of Simple Systems: 
probability models (ENI Corporate University) 

2012 

- Nuclear Thermohydraulics (Master Nuclear Energy - MNE): 
• Thermal design principles 
• Thermodynamic cycles for nuclear reactors 
• Thermal analysis of fuel elements 

- Markov Reliability and Availability Analysis (MNE) 
- Uncertainty and sensitivity analysis (Polimi) 
- Multi-Objective Genetic algorithms (Polimi) 
- Advanced Monte Carlo Simulation methods (Polimi) 

- Advanced Monte Carlo simulation methods (Polimi) 

2013 

- Nuclear Thermohydraulics (MNE, Paris) (see details of the 
lectures above) 
- Markov Reliability and Availability Analysis (MNE) 

- Uncertainty modeling (international PhD course)  

2014 

- Nuclear Thermohydraulics (MNE, Paris) (see details of the 
lectures above) 
- Markov Reliability and Availability Analysis (MNE) 

- Uncertainty modeling (international PhD course) 
- Advanced Monte Carlo simulation methods (Polimi) 

2015 

- Nuclear Thermohydraulics (MNE, Paris) (see details of the 
lectures above) 
- Managing Uncertainty For Reliability Optimization
(Master Recherche ECP, Paris): 

• Uncertainty in risk assessment 
• Uncertainty representation methods 
• Uncertainty propagation methods 

- Uncertainty modeling (international PhD course) 
- Advanced Monte Carlo simulation methods (Polimi) 

Table 1. Summary of the main teaching activities and content of the lectures
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3.2 Administrative activities 

(Présentation synthétique des activités d’administration) 

Relevant administrative responsibilities are the following: 
• Member of the organizing committee of the 4th PhD School on “Vulnerability, risk and 

resilience of complex system and critical infrastructures”, organized by École CentraleSupélec 
(Chatenay-Malabry, France) and Politecnico di Milano (Milano, Italy), 14-18 September 2015, 
CentraleSupélec, Chatenay-Malabry, France. 

• Member of the Board of Laboratory of LGI, from 2015. 
• Thesis Jury Member: International Master in Nuclear Energy (MNE), Specialty Operations, 

2015. The MNE is run by a consortium of several academic institutions (Universitè Paris-Sud 
11, ParisTech, Ecole Centrale Paris and Supelec and CEA-INSTN) with the support of several 
industrial establishments (EDF, Areva, GDF SUEZ), CEA-INSTN (Saclay, France). 

• Member of the evaluation committee of the exam projects of the course “Introduction to 
complex systems” (by Prof. E. Zio) of the Master “Genie Industriel (GI)”, Master Recherche 
“Optimisation des Systèmes Industriels et Logistiques (OSIL)” and Master Recherche 
“Modélisation et Management de la Conception” (MoMaC), held at Ecole Centrale Paris 
(ECP), Chatenay-Malabry, France, January 2015-March 2015. 

• Member of the evaluation committee of the exam projects of the course “Risk Management” 
(by Prof. E. Zio and Prof. M. Bouissou) of the Master “Genie Industriel (GI)”, held at Ecole 
Centrale Paris (ECP), Chatenay-Malabry, France, 2013. 
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4 Synthetic presentation of the research activities 

(Présentation synthétique des activités de recherche) 

In this Section, a synthetic presentation of my research activity is given: in particular, in Section 4.1, 
the main technical and scientific issues addressed during my research are briefly outlined; in 
Section 4.2, some statistics related to my publications are summarized; Section 4.3 contains the list 
of PhD and Master students co-directed, together with a brief description of their corresponding 
thesis works; Section 4.4 synthetically proposes medium- and long-term plans for future research; 
Section 4.5 describes the capitalization of my research in the form of participation to research 
projects at both national and international levels; finally, Section 4.6 reports a detailed list of 
technical activities that have been carried out during my academic career and that represent my 
‘scientific outreach’. For a thorough, detailed description of my overall research activity the reader 
is instead referred to Section 6. 

4.1 Overview on the research activities 

(Bilan des activités de recherche) 

My research is focused on the study and development of advanced models and methods for the risk, 

vulnerability and resilience assessment of complex, safety-critical engineering components, systems

and infrastructures (i.e., including industrial installations – such as nuclear and chemical plants – 
and critical infrastructures – such as civil, transportation, electric power, water, gas and 
communication systems), in the presence of uncertainties. In this respect, it is worth reminding that 
the concept of risk classically refers to the probability of occurrence (frequency) of a specific 
(mostly undesired/adverse) event leading to loss, damage or injury, and its extent. On the other 
hand, vulnerability can be defined as the system inability to withstand and “resist” to strains and 
stresses and it may be exploited by some perhaps unknown or previously unimagined threats and 
hazards (component failures, natural and men-made hazards). Finally, resilience quantifies the 
system ability to reduce the chances of shock, to adsorb a shock if it occurs and to recover quickly 
after a shock. 
The motivation of my research is the acknowledgement that these subjects nowadays play a relevant 
role in the design, development, operation and management of components, systems and 
infrastructures in many types of industry. This is particularly true for civil, nuclear, aerospace and 
chemical systems that are safety-critical and must thus be designed and operated within a 
quantitative risk-informed approach aimed at systematically integrating deterministic and 
probabilistic analyses to obtain a rational decision on the utilization of resources for protecting the 
systems of interest (possibly from different types of hazards), for reducing their vulnerability and 
improving their safety and resilience. 
A number of models and methods have been developed to these aims. Yet, new challenges emerge 
from the latest technological systems or the ongoing projects, such as the smart grids, mainly 
characterized by the complex and possibly intelligent behaviors of the components and the hybrid 
uncertainties embedded in the available modeling information. Actually, in general safety-critical 
industrial installations and infrastructures are complex systems composed by a multitude and variety

of ‘elements’, that is, physical hard components (e.g., road, railway, pipelines, pumps, etc.), soft 
components (e.g., Supervisory Control And Data Acquisition-SCADA, information and 
telecommunication systems) and human and organizational components. They are highly 
interconnected and mutually dependent in complex ways, so that a failure in one critical system or 
infrastructure can propagate to the others, possibly provoking (cascading) failures that generate 
large consequences well beyond the initial impact zone. In addition, such failures may be triggered 
by multiple and various sources of hazards due to exogenous and endogenous stressors, like natural 
events, terrorism, criminal activities, malicious behavior, market and policy factors, human factors 
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and technical random failures of hard components. Finally, such systems are affected by large 
uncertainties in the characterization of the failure and recovery behavior of their components, their 
interconnections and interactions: this makes the corresponding analysis a challenging task, because 
it requires to quantify the uncertainty and to predict how it propagates throughout the system. 
Developing new methods to confront these challenges is the goal of this thesis. With respect to that, 
my research works are grouped under two main axes: the first deals with the study of approaches 
for the modeling and quantification of uncertainty in the reliability analysis and risk assessment of 
safety-critical components and systems; the second focuses on the development of advanced 

computational methods for the modeling, simulation and analysis of safety-critical systems and 
infrastructures in the presence of uncertainties. 

Axis 1 – Reliability Analysis And Risk Assessment Of Safety-Critical Components And 

Systems: Uncertainty Modeling And Quantification 

− Summary: the research work in this axis is mainly focused on the modeling, quantitative 
treatment and analysis of uncertainties in the reliability analysis and risk assessment of 
safety-critical systems and components (in particular, for energy production and safety). 
Four main issues are treated under this axis: 

1. The first issue concerns the representation of uncertainty in reliability analysis and 
risk assessment, coherent with the information and data available. In the 
corresponding research works, probability theory has been typically used to represent 
aleatory uncertainty, related to randomness due to inherent variability in the system 
behavior. On the contrary, alternative (non-fully probabilistic) approaches (e.g., 
Fuzzy, Possibility, Evidence Theories, etc.) have been employed for representing and 
describing epistemic uncertainties, due to lack of knowledge. The relevant studies [6, 
7, 38, 68, 69, 70] include the PhD works of Elisa Ferrario and Chung-Kung Lo. 

2. The second issue is about the quantification of the uncertainty in the outcomes of a 
reliability analysis or risk assessment: this is obtained by propagation of the 
uncertainty in the input and parameters of the respective physical-mathematical 

models describing the safety-critical components and systems of interest. In the 
corresponding research works, efficient methods have been developed and applied 
for the joint propagation of hybrid aleatory and epistemic uncertainties, represented 
by both probabilistic and non-probabilistic approaches, respectively. The relevant 
studies [3, 6, 7, 9, 10, 38, 50, 53, 54, 66, 67] include the PhD works of Elisa Ferrario 
and Chung-Kung Lo. 

3. The third issue is about the modeling of dependences between uncertain variables and 
parameters. In the corresponding research works, different methods have been 
employed to model all types of (possibly unknown) dependences between uncertain 
variables, parameters and events. The relevant studies [3, 7, 9, 10, 39] include the 
PhD works of Elisa Ferrario. 

4. The fourth issue concerns the updating of the uncertainty representation as new

information and data become available. In the corresponding research works, 
techniques for updating in a ‘Bayesian’ framework also the (epistemic) uncertainty 
described by non-fully probabilistic approaches have been considered and their 
effectiveness has been compared. The relevant studies [3, 6, 38, 39, 51, 52] include 
the PhD works of Chung-Kung Lo. 

− Publications: international journal papers [3, 6, 7, 9, 10, 38, 39]; international conference 
proceedings [50-54]; international technical reports [66-70]. 

− Students: PhDs Elisa Ferrario, Chung-Kung Lo (at CentraleSupélec); Masters Elisa Ferrario 
(at Politecnico di Milano). 
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Axis 2 – Safety-Critical Systems And Infrastructures: Advanced Methods For Modeling, 

Simulation and Analysis Considering Uncertainties 

− Summary: the research work in this axis is mainly focused on the study and development of 
advanced computational methods for the efficient modeling, simulation and analysis of 
safety-critical systems and infrastructures, in the presence of uncertainties. There are three 
research issues under this axis:

1. The first issue concerns the development of innovative methods of representation and 
simulation of critical infrastructures (in particular, for energy production and 
transmission), for the analysis of their vulnerability and resilience characteristics. In 
the corresponding research works, the following activities have been carried out: (a) 
representation of the real system to capture its main features and the logical 

connections between the components and the subsystems, and to provide a picture of 
the information needed to answer relevant questions; (b) modeling the propagation of 
(cascading) failures in the critical systems and infrastructures of interest; (c) 
optimizing some characteristics of such critical systems and infrastructures (e.g., their 
topology and components capacities) in order to make them less vulnerable to natural 
external events and/or malevolent intentional attacks; (d) identifying optimal 

strategies for the timely recovery of the critical infrastructure performance after a 
cascading failure or a disruptive event (technically speaking, for increasing their 
resilience). The relevant studies are the PhD works of Elisa Ferrario and Yi-Ping 
Fang [1, 2, 5, 34, 36, 37, 47-49].

2. The second issue is about designing and implementing innovative algorithms for the 
efficient risk assessment and/or reliability evaluation of highly-reliable engineered 
systems and infrastructures (in particular, for energy production and/or transmission). 
These algorithms can be grouped into two classes. The first class comprises advanced 
methods of Monte Carlo Simulation (MCS) of stochastic degradation, failure and 
repair processes, and of Monte Carlo sampling for quantitative uncertainty analysis 
(e.g., Subset Simulation, Importance Sampling, etc.). Such techniques allow robust

risk and/or reliability estimations with a limited number of system model simulations 
(and associated low computational cost). The relevant studies [11, 13-15, 19, 21, 24, 
29, 30, 35, 40, 45, 46, 55, 57, 59, 60] include the PhD works of Pietro Turati. The 
second class comprises surrogate models (also called meta-models, like artificial 
neural networks, response surfaces, etc.) for regression and prediction of the physical 
processes of interest for the specific risk assessment and reliability analysis. Such 
techniques allow approximating the response of the original (typically long-running) 
system model in a very limited computational time. The relevant studies [12, 14, 16-
18, 20, 25-27, 41, 42, 44, 56, 58, 61-64] include the Master works of Lucia R. Golea.

3. The third research issue regards the development of innovative decision making

approaches for the (multi-criteria) vulnerability analysis of safety-critical systems 
and infrastructures under uncertainty. In more detail, an optimization-based

framework has been undertaken in order to find one or more sets of protective 

actions, such that the overall vulnerability level (or class) of a group of safety-critical 
systems or infrastructures of interest is minimized under given constraints. The 
relevant studies are the PhD works of Tai-Ran Wang [4, 31-33].

− Publications: international journal papers [1, 2, 4, 5, 11-21, 24-27, 29-37]; book chapters [40-
42]; international conference proceedings [44-49, 55-64]. 

− Students: PhDs Elisa Ferrario, Yi-Ping Fang, Tai-Ran Wang, Pietro Turati (at 
CentraleSupélec); Masters Lucia Roxana Golea (at Politecnico di Milano). 
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4.2 Publications statistics 

(Statistiques concernant les publications) 

Number of classified publications

Before 2008 2008 2009 2010 2011 2012 2013 2014
2015 or 

in press

Under 

review/revision

Journal 

papers 
2 2 7 3 1 4 3 1 5 11 

Book Chapters  2 1 1       
Conference 

proceedings 
3 2 1 5  2  6 3  

Technical 

reports 
     2 2 1   

Table 2. Number of classified publications 

H-index of the Author ID 14049106600 on Scopus: 11 
H-index on ISI Web of Science: 9 
H-index on Google Scholar: 12 (http://scholar.google.it/citations?user=YRRNEzAAAAAJ&hl=it) 

List of the main journals where my publications appear

− Reliability Engineering and System Safety (IF=2.410; JCR quartile Q1 in 2014) 
− Risk Analysis, an International Journal (IF=2.502; JCR quartile Q1 in 2014) 
− Computers and Structures (IF=2.134; JCR quartile Q1 in 2014) 
− IEEE Systems Journal (IF=1.980; JCR quartile Q1 in 2014) 
− IEEE Transactions on Nuclear Science (IF=1.283; JCR quartile Q1 in Nuclear Science and 

Technology and JCR quartile Q2 in Electrical and Electronic Engineering in 2014) 
− IEEE Transactions on Power Systems (IF=2.814; JCR quartile Q1 in 2014) 
− International Journal of Intelligent Systems (IF=1.886; JCR quartile Q2 in 2014) 
− Progress in Nuclear Energy (IF=1.119; JCR quartile Q2 in 2014) 

Representative papers

− E. Zio, N. Pedroni, “Estimation of the Functional Failure Probability of a Thermal-
Hydraulic Passive System by Subset Simulation”, Nuclear Engineering and Design, 
Volume 239, Issue 3, Mar. 2009, pp. 580-599, ISSN 0029-5493, published by Elsevier Ltd 
(Web of Science citations = 36, Scopus citations = 51, Google Scholar citations = 53). 

− N. Pedroni, E. Zio, “Uncertainty analysis in fault tree models with dependent basic events”, 
Risk Analysis, an International Journal, Vol. 33, Issue 6, 2013, pp. 1146–1173, ISSN 0272-
4332, published by Wiley-Blackwell (Web of Science citations = 1, Scopus citations = 2, 
Google Scholar citations = 3). 

− N. Pedroni, E. Zio, E. Ferrario, A. Pasanisi, M. Couplet, “Hierarchical propagation of 
probabilistic and non-probabilistic uncertainty in the parameters of a risk model”, 
Computers and Structures (Special Issue on Uncertainty Quantification in Structural 

Analysis and Design), Vol. 126, Sept. 2013, pp. 199–213, ISSN 0045-7949, published by 
Elsevier Ltd (Web of Science citations = 3, Scopus citations = 6, Google Scholar citations = 
7). 

− Y.-P. Fang, N. Pedroni, E. Zio, “Comparing network-centric and power flow models for the 
optimal allocation of link capacities in a cascade-resilient power transmission network”, 
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IEEE Systems Journal, 2015, doi: 10.1109/JSYST.2014.2352152, ISSN 1932-8184, 
published by IEEE Systems Council, Institute of Electrical and Electronics Engineers. 

Analysis of the main co-authors

Most research works are done through collaborations with SSEC researchers, external researchers, 
and students (including PhD students and master students) as shown in the following Table 3. The 
percentages are computed based on the 70 works on international journals, conference proceedings, 
book chapters and works published as reports of international research institutes. This presentation 
also shows the names of the main co-authors. 

SSEC Researchers External researchers Students 

E. Zio 100% F. Cadini (Polimi) 11.43% PhD 

Y. Li 1.43% A. Pasanisi (EdF) 8.57% Y.-P. Fang (SSEC) 8.57% 
E. Ferrario (Post-doc) 1.43% M. Couplet (EdF) 8.57% T.-R. Wang (SSEC) 5.71% 
  P. Baraldi (Polimi) 8.57% E. Ferrario (SSEC) 4.30% 

  
M. Broggi  
(University Liverpool) 

7.14% P. Turati (SSEC) 4.29% 

  G.E. Apostolakis (MIT) 5.71% C.-K. Lo (SSEC) 2.86% 

  
V. Mousseau 
(CentraleSupélec) 

4.29% Master 

  G. Gola (Polimi) 1.43% L.R. Golea (Polimi) 7.14% 
  G. Sansavini (ETHZ) 1.43% E. Ferrario (Polimi) 5.71% 
  D. Avram (Polimi) 1.43%   

Table 3. Analysis of the research collaborators 
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4.3 List of PhD and Master students co-directed 

(Liste des masters encadrés et thèses codirigées) 

This Section contains the list of PhD and Master students co-directed, together with a brief 
description of their corresponding thesis works and of the research output produced (in terms of 
published papers). 

PhD Students 

1. Elisa FERRARIO: 50% “System-of-systems modeling and simulation for the risk analysis of 

industrial installations and critical infrastructures”, thesis of École Centrale Paris, 
defended on 10 September 2014, supervisors: Nicola PEDRONI, Enrico ZIO. Now post-
doctoral fellow at CentraleSupélec, Laboratoire Génie Industriel (LGI). 

− Main contributions and results: This thesis addresses the risk analysis of industrial 
installations and Critical Infrastructures (CIs) within a System-of-Systems (SoS) 
framework. A SoS consists of multiple, heterogeneous, distributed, occasionally 
independently operating systems embedded in networks at multiple levels that 
evolve over time. System representation, modeling and simulation methods are 
developed to capture the peculiar features of SoS, with respect to their vulnerability 
and physical resilience to random failures and natural hazards. Several representation 
techniques of literature, i.e., Fault Tree, Muir Web, Hierarchical Modeling, Goal 
Tree Success Tree – Dynamic Master Logic Diagram, are explored and originally 
extended/tailored to fit the purpose of SoS analysis. One representation method is 
developed ex-novo, namely the Hierarchical Graph. Within these representation 
frameworks, binary and multiple states are used to model the performances of the 
SoS under analysis. Monte Carlo simulation and interval analysis are combined for 
the quantitative evaluation of the SoS models in presence of uncertainty (due to both 
randomness and lack of knowledge). Examples of analyses are carried out within 
two application areas: external event risk assessment and vulnerability of CIs. In 
particular, the first application deals with the safety and the physical resilience of a 
critical plant (i.e., a nuclear power plant) exposed to the risk of natural events (i.e., 
earthquakes and aftershocks). The second application considers the robustness and 
the recovery capacity of interdependent CIs (i.e., gas and electricity networks and a 
SCADA system). 

− Research outputs: 4 journal papers and 1 conference proceedings have been 
published and 1 journal paper is currently under review. 

− Jury for the thesis defense: Terje AVEN, Frank GUARNIERI, Mohamed HIBTI, 
Alois J. SIEBER, Enrico ZIO. 

2. Yi-Ping FANG: 50% “Critical Infrastructure Protection by Advanced Modelling, Analysis 

and Optimization for Cascading Failure Mitigation and Resilience”, thesis of 
CentraleSupélec, defended on 2 February 2015, supervisors: Nicola PEDRONI, Enrico ZIO. 
Now post-doctoral fellow at ETH Zurich, Laboratory of Reliability and Risk Engineering, 
Institute of Energy Technology at the Department of Mechanical and Process Engineering 
(D-MAVT). 

− Main contributions and results: The focus of this thesis is on the modelling, 
simulation and optimization of Critical Infrastructures (CIs) (e.g., power 
transmission networks) with respect to their vulnerability and resilience to cascading 
failures. This study approaches the problem by firstly modelling CIs at a 
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fundamental level, by focusing on network topology and physical flow patterns 
within the CIs. A hierarchical network modelling technique is introduced for the 
management of system complexity. Within these modelling frameworks, advanced 
optimization techniques (e.g., the Non-dominated Sorting Binary Differential 
Evolution � NSBDE � algorithm) are utilized to maximize both the robustness and 
resilience (recovery capacity) of CIs against cascading failures. Specifically, the first 
problem is taken from a holistic system design perspective, i.e., some system 
properties, such as its topology and link capacity, are redesigned in an optimal way 
in order to enhance system’s capacity of resisting to systemic failures. Both 
topological and physical cascading failure models (namely, the Motter-Lai and the 
ORNL-Pserc-Alaska models, respectively) are applied and their corresponding 
results are compared. With respect to the second problem, a novel framework is 
proposed for optimally selecting proper actions in order to maximize the capacity of 
the CI network to recover from a disruptive event. A heuristic, computationally 
cheap optimization algorithm is proposed for the solution of the problem, by 
integrating fundamental concepts from network flows and project scheduling. 
Examples of analysis are carried out by referring to several realistic CI systems, 
including the 380kV Italian Power Transmission Network (IPTN380), the 400kV 
French Power Transmission Network (FPTN400) and the IEEE 30 Bus test network. 

− Research outputs: 4 journal papers and 2 conference proceedings have been 
published and 2 journal papers are currently under review. 

− Jury for the thesis defense: Roberto SETOLA, Giovanni SANSAVINI, Stephane 
ANDRIEUX, Georgios GIANNOPOULOS, Enrico ZIO. 

3. Tai-Ran WANG: 30% “Decision making and modeling uncertainty for the multi-criteria 

analysis of complex energy systems”, thesis of CentraleSupélec, defended on 8 July 2015, 
supervisors: Nicola PEDRONI, Vincent MOUSSEAU, Enrico ZIO. 

− Main contributions and results: This work addresses the vulnerability analysis of 
safety-critical systems (e.g., nuclear power plants) within a framework that combines 
the disciplines of risk analysis and multi-criteria decision-making. The scientific 
contribution follows four directions: (i) a quantitative hierarchical model is 
developed to characterize the susceptibility of safety-critical systems to multiple 
types of hazard, within the needed ‘all-hazard’ view of the problem currently 
emerging in the risk analysis field; (ii) the quantitative assessment of vulnerability is 
tackled by an empirical classification framework: to this aim, a model, relying on the 
Majority Rule Sorting (MR-Sort) Method, typically used in the decision analysis 
field, is built on the basis of a (limited-size) set of data representing (a priori known) 
vulnerability classification examples; (iii) three different approaches (namely, a 
model-retrieval-based method, the Bootstrap method and the leave-one-out cross-
validation technique) are developed and applied to provide a quantitative assessment 
of the performance of the classification model (in terms of accuracy and confidence 
in the assignments), accounting for the uncertainty introduced into the analysis by 
the empirical construction of the vulnerability model; (iv) on the basis of the models 
developed, an inverse classification problem is solved to identify a set of protective 
actions which effectively reduce the level of vulnerability of the critical system 
under consideration. Two approaches are developed to this aim: the former is based 
on a novel sensitivity indicator, the latter on optimization. Applications on fictitious 
and real case studies in the nuclear power plant risk field demonstrate the 
effectiveness of the proposed methodology. 

− Research outputs: 1 journal paper and 1 conference proceeding have been published 
and 3 journal papers are currently under review. 
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− Jury for the thesis defense: Ahti SALO, Vytis KOPUSTINSKAS, François 
BEAUDOUIN, Maria Francesca MILAZZO, Enrico ZIO, Vincent MOUSSEAU. 

4. Chung-Kung LO: 10% “Methods for accounting of uncertainties in system analysis and 

decision making”, thesis of CentraleSupélec, defense expected by the end of 2015, 
supervisors: Nicola PEDRONI, Enrico ZIO. 

− Main contributions and results: The objective of this work is to establish a systematic 
approach to deal with uncertainties in the Seismic Probabilistic Risk Assessment 
(SPRA) of Nuclear Power Plants (NPPs) in order to provide more robust information 
and to improve the decision making practice. Actually, SPRA analyses are affected 
by significant aleatory and epistemic uncertainties. These uncertainties have to be 
represented and quantified coherently with the data, information and knowledge 
available, to provide reasonable assurance that related decisions can be taken 
robustly and with confidence. The amount of data, information and knowledge 
available for seismic risk assessment is typically limited, so that the analysis must 
strongly rely on expert judgments. In this thesis, several non-probabilistic techniques 
for handling uncertainties (e.g., Dempster-Shafer Theory of Evidence-DSTE, 
possibility theory and probability boxes) are considered and applied to exemplary 
case studies of NPP SPRAs. The main contributions of this work are two: (i) 
developing a complete, unitary and systematic framework of uncertainty treatment 
and applying it to SPRA models, showing how to describe the uncertain parameters 
based on industry generic data; (ii) embedding Bayesian updating based on plant 
specific data into the framework. The results of the application to realistic case 
studies show that the approach is feasible and effective in: (i) describing and jointly 
propagating aleatory and epistemic uncertainties in SPRA models; and (ii) providing 
‘conservative’ bounds on the safety quantities typically of interest to NPP SPRAs 
(e.g., the Core Damage Frequency): such bounds reflect the (limited) state of 
knowledge of the experts about the system analyzed.

− Research outputs so far: 1 journal paper and 1 conference proceeding have been 
published. 

5. Pietro TURATI: 50% “Advanced computational methods for uncertainty/sensitivity 

analysis and risk assessment in complex system”, thesis of CentraleSupélec, defense 
expected in February 2017, supervisors: Nicola PEDRONI, Enrico ZIO. 

− Main contributions and results: The main objective of this thesis is to develop 
advanced simulation techniques for the efficient exploration of extreme and 
unexpected events in the risk assessment of complex, dynamic engineered systems. 
Actually, the end states reached by a dynamic engineered system as outcomes of an 
accident scenario depend not only on the sequences of the events (i.e., on the 
scenario), but also on the exact timing and magnitudes of the failures. Including 
these additional features can make the analysis infeasible, due to the high dimension 
of the system state-space and the corresponding computational effort needed to 
simulate all possible system evolutions. In this thesis, we address the problem of 
efficiently probing the space of event sequences of a dynamic system by a means of 
“smart” and guided exploration techniques. In particular, the proposed approaches 
(mainly based on the concept of entropy, taken from information theory) are able to 
adaptively and intelligently allocate the simulation efforts preferably on those time 
sequences leading to “interesting” outcomes, e.g., on those that are more safety-
critical and/or rare. The resulting diversification in the precision of the state-space 
exploration supports the retrieval of critical system features, which can aid analysts 
and designers to prevent and mitigate dangerous and/or unexpected consequences. 
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− Research outputs so far: 1 conference proceeding has been published and 2 journal 
papers are currently under review. 

Master Students 

1. Elisa FERRARIO: 100% “Uncertainty Analysis in Risk Assessment for Environmental 

Applications”, final thesis for the Master in Environmental Engineering at Politecnico di 
Milano (Milano, Italy), defended in April 2011 (score: 110/110 cum laude), supervisor: 
Nicola PEDRONI, co-supervisors: Enrico ZIO, Alberto PASANISI. 

− Main contributions and results: Environmental risk assessment is an essential part of 
any decision-making process because it allows evaluating all potential risks 
associated with human activities that may cause environmental damage. However, 
environmental risk assessment studies are affected by significant aleatory and 
epistemic uncertainties. In the present thesis, the important issues of representation 
and propagation of uncertainties in environmental risk assessment applications have 
been addressed, by way of a model for the risk-based design of a flood protection 
dike. Different methods of joint propagation of aleatory and epistemic uncertainties 
have been embraced depending on the different frameworks adopted for uncertainty 
modeling and epistemic uncertainty representation. Two uncertainty model 
frameworks have been analyzed: in the first one a mixture of purely aleatory and 
purely epistemic uncertainties is considered (“level-1” setting); in the second one, 
aleatory and epistemic uncertainties are separated into two hierarchical levels 
(“level-2” setting). In addition, two frameworks for epistemic uncertainty 
representation have been adopted, i.e., probability and possibility theories. Within 
these frameworks, the efficiency of purely probabilistic and “hybrid” (i.e., mixed 
probabilistic and possibilistic) approaches has been compared in the task of jointly 
propagating aleatory and epistemic uncertainties, in both “level-1” and “level-2” 
settings. All the approaches have been tested on a case study involving the risk-based 
design of a flood protection dike. 

− Research outputs: 2 conference proceedings and 1 journal paper have been 
published. 

2. Lucia Roxana GOLEA: 50% “Locally Recurrent Neural Networks for Nonlinear Dynamic 

Modelling”, final thesis for the Master in Automatic Engineering at Politechnica University 
of Timisoara (Timisoara, Romania), defended in July 2007 (score: 9.72/10), supervisors: 
Nicola PEDRONI, Enrico ZIO. 

− Main contributions and results: The ability to model nonlinear dynamic systems has 
become a fundamental aspect for the safe and economically competitive operation of 
modern industrial systems and plants. Obviously, the knowledge of the state of a 
system during each instant of its operation is a fundamental feature for optimal 
control and safety. In practice, one wishes to get accurate estimates in real time. This 
entails the capability of performing fast calculations, which cannot be achieved with 
the large, detailed dynamic codes typically used in safety analysis, due to the long 
computing times involved. One has then to resort to either simplified or empirical 
models, whose parameters must be determined so that the model response best fits to 
the actual system behavior. Artificial Neural Networks (ANNs) are among the most 
powerful algorithms for empirical modelling. Whereas classical feedforward ANNs 
can model only static input/output mappings, dynamic Infinite Impulse Response 
Locally Recurrent Neural Networks (IIR-LRNNs) have proven capable of providing 
accurate approximations of the dynamic behavior of nonlinear systems. The time 
dependencies on the previous input values and system states are accounted for by 
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employing tapped-delay-lines (temporal buffers) and internal recurrence (feedback 
connections). In this thesis, IIR-LRNNs have been applied to two different contexts: 
(i) modelling the dynamics of a nuclear reactor, i.e., the Lead Bismuth Eutectic 
eXperimental Accelerator Driven System (LBE-XADS), under different transient 
conditions; (ii) forecasting failures and predicting the reliability of hardware 
engineered components (e.g., engine systems). The method has been compared to 
other empirical models, i.e., the radial basis function (RBF), the traditional ANN 
model and the Box-Jenkins autoregressive-integrated-moving average (ARIMA), 
showing its superiority. 

− Research outputs: 1 conference proceeding and 2 journal papers have been 
published. 
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4.4 Synthetic presentation of future research 

(Présentation synthétique de projet de recherche) 

Medium- and long-term developments of my activities in the field of risk, vulnerability and 
resilience assessment of safety-critical engineering components, systems and infrastructures will 
concern both novel research themes (Section 4.4.1) and methods (Section 4.4.2). In this Section, the 
main issues are synthetically summarized: a thorough, detailed presentation is instead given in 
Section 7, together with the precise, synoptic time scheduling of the developments of these lines. 

4.4.1 Research themes 

My future research will be carried out around three main themes that are currently credited by many 
as among the most relevant for the analysis and management of the risk and vulnerability of 
complex, safety-critical systems and infrastructures: 

1. Modeling and analysis of (extreme) external natural events and the corresponding 
quantitative assessment of the robustness and resilience of safety-critical systems and 
infrastructures with respect to this class of threats and hazards. 
It is a recognized fact that extreme events and weather conditions can cause natural disasters 
that can impact safety-critical systems (such as nuclear and chemical plants) and 
infrastructures (such as electric grids, energy and water supply systems, communication 
systems and transport routes), at the same time putting a strain on emergency and crisis 
response capabilities, and trigger accidents simultaneously at several installations. In 
addition, multiple hazards may develop at the same time (e.g., heavy winds and 
precipitation) or one hazard may trigger others (e.g., an earthquake followed by a tsunami, 
as in the dramatic catastrophe of Fukushima). 
Furthermore, recent studies predict that climate change will lead to more frequent and more 
intense natural disasters, also in areas where there are industrial facilities and infrastructures.  
In this newly arising context of extreme conditions assessment, one of the specific issues 
that I will address is the seismic risk assessment for nuclear systems and components with 
adequate treatment of the associated uncertainties. The goal is the quantitative assessment of 
the (failure) behavior of nuclear systems and components under the occurrence of a seismic 
event: in more detail, the response of structural systems subject to seismic risk will be 
studied and the structure fragility curves will be identified, representing the conditional 
probability of failure of a nuclear component for any given level of seismic excitation. The 
specific objectives of the research are the following: 

a) the study and development of robust and efficient methods to treat the available 
(scarce) information of different types, e.g., numerical simulations, expert 
judgement, real data, etc.; 

b) the quantification and efficient propagation of the (aleatory and epistemic) 
uncertainties through the (long-running) computer codes (i.e., Finite Element 
Models-FEMs) typically used to simulate the behavior of structural systems, by 
advanced simulation techniques and meta-models;  

c) the development of a methodology that is robust enough to be included in a general 
framework of seismic probabilistic risk assessment for nuclear power plants. 

This topic will be the subject of a PhD thesis in collaboration with the Électricité de France 
(EdF) R&D Department of “Mechanical and Acoustic Analyses” from October 2015 to 
October 2018. 
Another branch of this research theme will regard the probabilistic risk assessment of future 
electric power systems, exposed to natural hazards and extreme weather conditions. The 
research is motivated by the fact that the energy challenges faced by Europe and the rest of 
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the world are changing the landscape of these electric power systems. For example, 
originally developed as loosely interconnected networks of local systems, electric power 
grids have now extended on large scales, across regional and national boundaries. In 
addition, distributed resources, mostly in the form of small power generators based on 
renewable energies (such as photovoltaic panels and wind turbines), that are often 
geographically separated from the traditional power sources, are being increasingly 
connected to the existing backbone. 
In this light, environmental conditions can strongly influence the operation and performance 
of future generation and distribution systems for several reasons. First, the growing shares of 
renewable-energy generators installed inject considerable amounts of (aleatory) uncertainty

into power system operation (due to the inherently random nature of the corresponding 
natural resources). In addition, these systems employ relatively new technologies, and this 
introduces a significant amount of (epistemic) uncertainty (due to the limited or possibly 
null operating experience of the corresponding components or systems over the wide range 
of conditions encountered during operation). Furthermore, several intrinsically stochastic

environment-related contingencies (e.g., high winds, thunderstorms, heavy snows, or even 
earthquake and flooding events) can damage or deeply degrade the components of the power 
grid. Finally, the large spatial scale of these distributed infrastructures introduces an 
additional important aspect to consider in the analysis: that of the global impact of spatially 

local hazards. Indeed, whereas the spatially local hazards threaten relatively small-scale 
systems whose components are located in the hazard influence area, these relatively small-
scale systems are usually a part of much larger or national scale systems, and then the 
impact of localized natural hazards can extend to the large-scale systems they are embedded 
in. 
In this context, we will embrace a Probabilistic Risk Assessment (PRA) framework for a 
systemic analysis of system-scale scenarios, and to estimate the probability (or frequency) of 
such scenarios of disturbance to power system operation and their consequences: these 
elements are the constituents of risk. As for the boundary of the analysis, the extreme events 
and weather conditions can also significantly affect system risk by increasing the frequency 
of failures of the power components and/or inducing severe damage. 
In order to address these issues, I plan to put forward a multi-level analysis framework, 
based on two successive stages: (i) a “coarse” screening analysis for identifying the parts of 
the critical infrastructure most relevant with respect to its risk and (ii) a more detailed 
modeling of the operational dynamics of the identified parts for gaining insights on the 
causes and mechanisms responsible for the associated risk. In particular, I will evaluate the 
potentials of: (i) using network analysis based on measures of topological interconnection

and reliability efficiency, for the screening task; (ii) using object-oriented/agent-based

modeling as the simulation framework to capture the detailed dynamics of the operational 
scenarios involving the most vulnerable parts of the critical infrastructure as identified by 
the preceding network analysis. 
One of the major advantages of an object-oriented approach for modeling and simulating 
critical infrastructures, is the possibility to include physical laws into the simulation and to 
emulate the behavior of the infrastructure as it emerges from the behaviors of the individual 
objects and their interactions. On the other hand, this simulation-based approach becomes 
highly computer intensive for complex realistic infrastructures such as the power generation 
and distribution systems here of interest. The challenge in this respect is to reduce the 
computational burden, e.g., making use of rare event simulation techniques or by 
substituting some objects with empirical meta-models, while quantifying the uncertainty 
introduced in the approximation of the empirical models (see details below). 
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Eventually, the problem of optimally designing these future power generation and 
distribution systems (possibly including renewable generation sources) in the face of 
extreme events and conditions will be also tackled in the long term. 

2. Integration of the risks and vulnerabilities coming from cyber attacks, given that modern 
industrial installations and infrastructures currently rely on the massive and still increasing 
use of “soft components”, such as Supervisory Control And Data Acquisition-SCADA, 
information and telecommunication systems. 
Critical infrastructures (e.g., civil, transportation, electric power, water, gas and 
communication systems) are getting more and more automated, and strongly interconnected 
due to their increasing extension on large scales and the progressive advances in information 

technology. For example, today’s ability to run largely distributed power networks with a 
variety of generation technologies (e.g., nuclear, thermo, hydro, etc.) is only possible 
through the intense use of information and communication systems. If, on one hand, these 
advances and interdependences have increased their efficiency (e.g., provide better 
measurements, allow quicker operations, more powerful control schemes and broad access 
to data), on the other hand, they have created new vulnerabilities to component failures, 
natural and manmade events. The objective of the research is the development of novel 
methodologies for the assessment of the vulnerability of interdependent critical 
infrastructures (e.g., power transmission and telecommunication networks) to ‘combined’ 
physical and cyber attacks. The main challenge will be the development of novel methods to 
assess and model the interactions between the cyber and the physical security systems to 
understand the effects of cyber technology on overall security system effectiveness. 
This topic will be the subject of a PhD thesis in collaboration with the Électricité de France 
(EdF) R&D Department of “Measures and Information Systems for Electrical Networks” 
and the “Research Institute for Smarter Electric Grids” (RISEGrid) from January 2017 to 
January 2020: the application domain will be that of ‘smart grids’, i.e., power transmission 
networks characterized by an important use of informatics and telecommunication means. 

3. Management of multiple risks coming from heterogeneous ‘contributors’ (e.g., different

types of hazard, like internal failure events, fires, cyber attacks, earthquakes, floods, etc.) 
and different ‘locations’ (e.g., different power production units on the same site), for their 
aggregate evaluation according to different and possibly conflicting (safety-related, 
environmental, economical, etc.) criteria. It is evident how this third theme naturally 
“envelops” and includes also issues 1. and 2. reported above. 
Risk aggregation can be defined as the process of combining information on the risk from 
various: (i) ‘contributors’ (i.e., different types of hazard – for example, internal failure 
events, fires, earthquakes, etc.) and (ii) ‘locations’ (i.e., different power production units on 
the same site), in order to provide an overall characterization of risk. Traditional PRA 
approaches address these issues respectively as follows: (i) mean value contributions to the 
risk metrics of interest from various hazards are straightforwardly summed; (ii) risks from 
different units are considered separately, while dependencies and interactions between the 
units are introduced a posteriori, informally and on an ‘ad-hoc’ basis. On the other hand, 
events like the nuclear accident occurred in March 2010 at the Fukushima Daiichi plant in 
Japan call for new, more rigorous methods to address multi-hazard, multi-unit site risk. The 
challenges to the “risk aggregation process” are the following: (a) differing levels of 

maturity of the analyses used in the construction of the PRAs for the various hazard groups 
and for the various units; (b) different degrees of approximations made to facilitate the 
construction of the PRA models for the different hazards and sites; and (c) the varied nature

and magnitude of the uncertainties associated with the different analyses (for example, 
extremely rare - possibly never observed historically - environmental conditions related only 
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to some particular hazard may be so uncertain to call into question any classical, 
probabilistic statistical analysis). 
This topic will be the subject of a PhD thesis in collaboration with the Électricité de France 
(EdF) R&D Department of “Industrial Risk Management” from October 2015 to October 
2018. 

4.4.2 Research methods 

In tackling themes 1.-3. described above, I will contribute to the development of mathematical 
models of the safety-critical systems and infrastructures of interest for the simulation of their 
behavior in the presence of uncertainties. In this view, the complexity of the problems and of the 
systems addressed calls also for further methodological research: 

1. Novel approaches will be studied and developed that allow dealing with uncertainties in 
system models with multiple inputs/outputs, which are functions of time (and possibly of 
space) and show functional dependencies and correlations between each other. In this broad 
framework, particular attention will be devoted to the identification by sensitivity analysis of 
those (uncertain) “internal” system elements and “external” environmental contingencies 
that contribute the most to system risk, with the objective of properly driving resource 
allocation for uncertainty reduction and consequent confidence gain for design, maintenance 
and operation decision making. 

2. In order to reduce the computational effort associated to the risk, vulnerability and resilience 
assessment of complex safety-critical engineering systems (e.g., in the presence of object-
oriented modeling and long-running computer codes), special attention will be devoted to 
surrogate modeling (meta-modeling), with particular reference to the promising Polynomial 
Chaos Expansion (PCE) and Stochastic Collocation (SC) techniques. These methods expand 
(and approximate) the real system response as a truncated series of properly selected basis 
functions, “calibrated” by means of a limited-size set of available computer experiments. In 
particular, PCE surrogates the computer model with a series of orthonormal polynomials 
that are chosen in coherency with the probability distributions of the uncertain model input 
parameters. Instead, SC is a stochastic expansion method which constructs multidimensional 
interpolation polynomials over the system responses evaluated at a structured set of 
collocation points. 
In addition, further efforts will be made in the task of intelligently probing the space of the 
(undesired) event sequences of the complex, dynamic systems of interest. In particular, I 
plan to “complement” the research work carried out so far by developing advanced 
simulation techniques for scenario analysis, i.e., methods tailored to the “creation” of 
scenarios of potential future conditions and events of particular interest. In this case, the aim 
of simulation is neither of completeness nor of accuracy of estimation, as in traditional risk 
analysis, but rather of enabling the generation of “surprising” scenarios that may provide 
useful insights about what could happen. Methods of “adjoint” simulation may be of 
particular interest for generating deductive (anticipatory, backwards) scenarios, where we 
start from a future imagined event/state of the total system and question what is needed for 
this to occur. Interpretation of these scenarios by system thinking, to see the holes and 
interconnections, is critical if one has to identify “black swans”. 
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4.5 Synthetic presentation of the capitalization and transfer activities 

(Présentation synthétique des activités de valorisation et de transfert) 

This Section describes the capitalization of my activity in the form of participation to research 
projects at both national and international levels: a synthetic presentation is given also in Table 4.

• Research project “SINAPS@ - Earthquake and Nuclear Facilities: Ensuring and Sustaining 

Safety” (€ 12.5 million), partly funded by the French National Agency for Research and 
coordinated by the Commissariat pour l’Energie Atomique (CEA) with the following partners: 
Electricite’ de France (EdF), Ecole Normale Supérieure (ENS) de Cachan, CentraleSupélec, 
the Institute for Radiological Protection and Nuclear Safety, Laboratory Soil-Solids-Structures 
and Risks (Institut Polytechnique de Grenoble), Ecole Centrale de Nantes, EGIS – industry, 
AREVA, ISTerre, IFSTTAR and CEREMA. Years of participation: 2014-2015. 
− Objective: One of the key aspects of the project is the quantitative assessment of the 

(failure) behavior of nuclear systems under the occurrence of a seismic event. In this 
respect, computer codes based on Finite Element Models (FEMs) are adopted for the 
simulation of the system structural behavior and response: an example is represented by the 
“Code Aster” developed by the EDF Research & Development Department of “Mechanical 
and Acoustic Analyses” or “Analyses Mécaniques et Acoustique” in Clamart, France. 
However: (i) an accurate assessment of the system failure behavior typically requires a very 
large number (e.g., several thousands) of FEM simulations under many different scenarios 
and conditions, and (ii) FEMs are computationally expensive: thus, the computational 
burden associated to the analysis is often impracticable. In this respect, the objective is to 
study and develop advanced simulation techniques that allow reducing the computing time, 
while producing accurate and precise failure probability estimates. 

− Role: research collaborator with Dr. Elisa Ferrario in the team of CentraleSupélec. 
− Contributions: 

a) Collaboration in the research development with respect to the study of different fast-
running regression models (such as Artificial Neural Networks, quadratic response 
surfaces, etc.), to approximate the response of the original long-running FEMs and 
replace them into the seismic analysis. The bootstrap method is also employed to 
quantify the meta-model’s error and build confidence into the analysis. 

b) Collaboration and supervision in papers and reports writing. 

• Electricite’ de France (EdF)-Research and Development (R&D) project (Chatou, France): 
“Advanced computational methods for modelling the mechanisms of degradation in 

equipments of electricity production plants and uncertainty modelling and propagation”, 
40000EUR/year, Co-operation contract no. 5910059554, years of participation: January 2010-
December 2012. 
− Objective: The purpose of the research has been to investigate the feasibility of using 

advanced computational methods, like Monte Carlo simulation and soft computing 
techniques (artificial neural networks, fuzzy logic systems, evolutionary computing), for: (i) 
effectively modelling the degradation mechanisms which typically affect the equipment of 
electricity production plants (Track 1); (ii) effectively modelling and propagating 
uncertainties from input to output variables of deterministic computational codes (Track 2). 

− Role: main researcher within the team of the Politecnico di Milano. 
− Contributions: 

a) research development with respect to the following issues within Track 2: (i) hybrid 
representation and modelling of aleatory and epistemic uncertainties (i.e., how to 
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elicit scarce or imprecise knowledge about input variables to feed possibility 
distributions and/or fuzzy numbers; how to take into account dependency between 
uncertain variables in presence of scarce knowledge and a “vague”, qualitative 
definition of dependence; how to place the different uncertainty settings - 
frequentist, Bayesian, hybrid - in a common methodological framework; how to 
interpret and communicate the results in an industrial framework); (ii) identifying 
and pointing out the main difficulties whilst performing hybrid Monte Carlo 
uncertainty propagation and in giving directions for the effective way to speed up 
calculations (i.e., rationale of advanced hybrid Monte Carlo methods for estimating 
low failure probabilities or low-probability quantiles of the uncertain output of a 
numerical code; analysis of the robustness of the hybrid Monte Carlo estimation and 
comparison with probabilistic Monte Carlo); (iii) describing and putting into 
practice soft computing meta-models (mainly artificial neural networks) to replace 
the original system model, potentially highly time-consuming, for faster uncertainty 
propagation (i.e., rationale of soft computing meta-models; estimation of meta-
model’s errors; advantages and drawbacks of soft computing meta-models, in 
comparison with other “classical” meta-models, e.g., polynomial regression). 

b) Delivery of scientific seminars and participation to the exchange meetings with the 
other members of the project team (Dr. Alberto Pasanisi and Dr. Mathieu Couplet, 
members of the EdF Research & Development Department of “Industrial Risk 
Management” or “Maitrise des Risques Industriels (MRI)” in Chatou, France). 

c) Papers and reports writing. 
− Students supervised: Elisa Ferrario (M.Sc. 1 of Section 4.3) 

• Fondation Pour Une Culture De Securitè Industrielle (FonCSI) project (Toulouse, France): 
“Quantitative methods of uncertainty representation and modelling in risk analysis for 

decision-making practice”, 100000EUR, Co-operation contract no. AO-2008, years of 
participation: September 2009-October 2012. 
− Objective: This project has investigated techniques for modelling and analyzing 

uncertainties in the risk management of complex socio-technical systems, and their ability 
to provide useful decision-support information (estimating and representing uncertainty in a 
way which is understandable by and useful to decision-makers). 

− Role: main researcher within the team of the Politecnico di Milano. 
− Contributions: 

a) research development with respect to: (i) the implementation of innovative 
techniques for the application of recent methods of uncertainty modelling (e.g., 
possibility theory, belief theory, Bayesian approaches, interval theory, etc.) in risk 
analysis; (ii) the study and assessment of the contribution of these innovative 
techniques for people who make decisions on the basis of the outputs of a risk 
analysis (contribution in terms of decision support, support for ex ante and ex post 
justification of decisions, support for communication related to a decision, etc.); (iii) 
the identification of an optimal trade-off between the degree of sophistication of 
these techniques (in terms of their ability to represent different types of uncertainty 
in a precise way) and the simplified approaches often inevitable in practice, owing to 
data, time and/or budget limitations or to the current formulation of regulations and 
the cultural habits and know-how of decision-makers (in particular, contrasting the 
complexity of the information presented to decision-makers with its concrete 
contribution to real decisions); (iv) the indication of guidelines on the selection and 
concrete use of these representation techniques for practical decision-making. 

b) Delivery of scientific seminars and participation to the exchange meetings with the 
other members of the project team (i.e., École des Mines d’Albi Carmaux, ENTPE 
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Lyon, Université de Provence, ESCP-Europe, Université de Grenoble, Technische 
Universität Berlin). 

c) Papers and reports writing. 
− Students supervised: Elisa Ferrario (M.Sc. 1 of Section 4.3) 

 Years 

Research project 2009 2010 2011 2012 2013 2014 2015 

SINAPS@      Research collaborator

EDF  Main researcher    
FonCSI Main researcher    

Table 4. Synthetic presentation of the capitalization and transfer activities 
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4.6 Scientific outreach 

(Rayonnement Scientifique) 

This Section reports a detailed list of technical activities that have been carried out during my 
academic career: they represent my ‘scientific outreach’ and provide a picture of my position in the 
international scientific community. 

International Journal Editorial Board 

− One-year appointment as a Guest Editor for the International Journal ASCE-ASME Journal 

of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, December 2014 
- December 2015. 

− Guest Co-Editor for the International Journal ASCE-ASME Journal of Risk and Uncertainty 

in Engineering Systems, Part A: Civil Engineering. Special Issue on “Advanced Monte 
Carlo Methods and Applications in Reliability and Risk Analyses”, 2014-2015. 

International Journals Referee (number of papers reviewed) 

− Journal of Mechanical Systems and Signal Processing (1). 
− International Journal of Reliability and Safety (1). 
− Applied Mathematical Modelling (1). 
− ASCE-ASME Risk and Uncertainty in Engineering Systems Part B: Mechanical 

Engineering (2). 
− Journal of Aerospace Information Systems (2). 
− ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil 

Engineering (7). 
− IEEE Systems Journal (4). 
− International Journal of Uncertainty, Fuzziness and Knowledge-based Systems (1). 
− IEEE Transactions on Reliability (2). 
− Proceedings of the Institution of Mechanical Engineers, Part O, Journal of Risk and 

Reliability (5). 
− Computers and Structures (1). 
− Aerospace Science and Technology (1). 
− Statistics and Computing (2). 
− Nuclear Engineering and Technology (2). 
− Science and Technology of Nuclear Installations (2). 
− Nuclear Engineering and Design (2). 
− Reliability Engineering and System Safety (12). 
− IEEE Transactions on Evolutionary Computation (1). 

Referee for international conferences 

− Invited to review two papers submitted for publication in the Proceedings of the 2015 
European Safety and RELiability Conference (ESREL 2015), 7-10 September 2015, at 
ETH, the Swiss Federal Institute of Technology, Zürich, Switzerland. 

− Invited to review two papers submitted for publication in the Proceedings of the 1st 
International Conference on Information and Digital Technologies (IDT) 2015, 7-9 July 
2015, Zilina, Slovak Republic. 

− Invited to review seven papers submitted for publication in the Proceedings of the joint 
2012 International Conference on Probabilistic Safety Assessment and Management (PSAM 
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11) & European Safety and RELiability Conference (ESREL 2012), 25-29 June 2012, 
Helsinki, Finland. 

− Invited to review one paper submitted for publication in the Proceedings of the European 
Safety and RELiability (ESREL) 2011 Conference, 18-23 September 2011, Troyes, France. 

− Invited to review several abstracts submitted for publication in the Proceedings of the Tenth 
International Probabilistic Safety Assessment and Management (PSAM 10) Conference, 7-
11 June 2010, Seattle, Washington (USA). 

− Invited to review one paper submitted for publication in the Proceedings of the 8th 
International FLINS Conference on Computational Intelligence in Decision and Control, 
21-24 September 2008, Madrid, Spain. 

− Invited to review several abstracts submitted for publication in the Proceedings of the Ninth 
International Probabilistic Safety Assessment and Management (PSAM 9) Conference, 18-
23 May 2008, Hong Kong, China. 

Coordinator of technical-scientific areas at international conferences 

− Coordinator of the technical-scientific area “Stochastic Modeling and Simulation 
Techniques” at the joint 2012 International Conference on Probabilistic Safety Assessment 
and Management (PSAM 11) & European Safety and RELiability Conference (ESREL 
2012), 25-29 June 2012, Helsinki, Finland. 

Member of Technical Program Committees of International Conferences 

− Member of the Technical Programme Committee (TPC) of the 1st International Conference 
on Information and Digital Technologies (IDT) 2015, 7-9 July 2015, Zilina, Slovak 
Republic. 

− Member of the Technical Programme Committee (TPC) of the 2015 European Safety and 
RELiability Conference (ESREL 2015), 7-10 September 2015, at ETH, the Swiss Federal 
Institute of Technology, Zürich, Switzerland. 

− Member of the Technical Programme Committee (TPC) of the 10th International 
Conference on Digital Technologies (DT) 2014 - International Workshop on Reliability 
Technologies, 9-11 July 2014, Zilina, Slovak Republic. 

− Member of the Technical Programme Committee (TPC) of the joint 2012 International 
Conference on Probabilistic Safety Assessment and Management (PSAM 11) & European 
Safety and RELiability Conference (ESREL 2012), 25-29 June 2012, Helsinki, Finland. 

Chairman of Sessions at International Conferences 

− Chairman of the session titled “Simulation frameworks for Reliability, Availability, 
Maintenance and Safety (RAMS) I” at the 2015 European Safety and RELiability 
Conference (ESREL 2015), 7-10 September 2015, at ETH, the Swiss Federal Institute of 
Technology, Zürich, Switzerland. 

− Chairman of the session titled “Reliability and risk: automating analyses” at the 2015 
European Safety and RELiability Conference (ESREL 2015), 7-10 September 2015, at 
ETH, the Swiss Federal Institute of Technology, Zürich, Switzerland. 

− Chairman of the session titled “Stochastic simulation for reliability and risk analysis” at the 
joint 2012 International Conference on Probabilistic Safety Assessment and Management 
(PSAM 11) & European Safety and RELiability Conference (ESREL 2012), 25-29 June 
2012, Helsinki, Finland. 

− Co-chairman of the session titled “Advanced Reactors 16-1: Passive system reliability I” 
during the “10th International Probabilistic Safety Assessment & Management (PSAM) 
Conference”, Seattle, Washington (USA), 7-11 June 2010. 
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Organization of International PhD courses 

− Member of the organizing committee of the 4th PhD School on “Vulnerability, risk and 
resilience of complex system and critical infrastructures”, organized by École 
CentraleSupélec (Chatenay-Malabry, France) and Politecnico di Milano (Milano, Italy), 14-
18 September 2015, CentraleSupélec, Chatenay-Malabry, France. 

Seminars, Workshops, Invited Talks and Presentations at International Conferences 

− Séminaire Francilien de Sûreté de Fonctionnement, organized by the Groupe de travail de 
l’Institut de Maitrise des Risques (IMdR), at Ecole Centrale Paris, Chatenay-Malabry, 
France, 06 June 2014. Invited seminar titled “Efficient Methods for Treating Uncertain 
Variables in Risk Assessment Models”. 

− Young Researcher Workshop on “The Future of Reliability and Risk Analysis”, supported 
by ESRA (European Reliability and Safety Association) and SRA (Society of Risk 
Analysis), Ragusa, Italy, 26-27 May 2014. Invited seminar titled: “Considerations on the 
treatment of uncertainty in risk assessment, in the presence of ‘extreme’ events”. 

− European Safety and RELiability Conference (ESREL) 2013, Amsterdam, The Netherlands, 
29 September-2 October 2013. Oral presentation of the paper: N. Pedroni, E. Zio, A. 
Pasanisi, M. Couplet, “Bayesian probabilistic analysis of a nuclear power plant small loss of 
coolant event tree model with possibilistic parameters. 

− Seminar organized by the Department of Research & Development (R&D) – Management 
des Risques Industriels (MRI) of the Electricité de France (EdF), Clamart, France, 11 
December 2012. Invited seminar title: “Representing and Modeling Uncertainty in the 
Risk Assessment of Engineering Systems”. 

− Second seminar of the “Institut des Sciences du Risque et de l’Incertain (ISRI)” & “Chaire 
sur les Sciences de Système et Défis Energétiques (SSDE)”-European Foundation for New 
Energy-Electricité de France, Chatenay-Malabry, France, 29 November 2012. Invited 

seminar title: “Representing and Modeling Uncertainty in the Risk Assessment of 
Engineering Systems”. 

− Seminar organized by the “Fondation pour une Culture de Securitè Industrielle (FonCSI)” 
(Toulouse, France) within the contract “Quantitative methods of uncertainty representation 
and modelling in risk analysis for decision-making practice”, Politecnico di Milano, Milano, 
Italy, 15-16 November 2012. Invited seminar titled: “Bayesian updating of the possibilistic 
parameters of aleatory probability distributions in risk assessment: an application”. 

− 5th International Conference on Safety & Environment in Process & Power Industry 
(CISAP-5), Milano, Italy, 3-6 June 2012. Oral presentation of the paper: “Failure and 
Reliability Predictions by Locally Recurrent Neural Networks”. 

− Seminar organized by the “Fondation pour une Culture de Securitè Industrielle (FonCSI)” 
(Toulouse, France) within the contract “Quantitative methods of uncertainty representation 
and modelling in risk analysis for decision-making practice”, Technical University of Berlin 
(TUB), Berlin, Germany, 23-24 February 2012. Invited seminar titled “Decision-making in 
presence of uncertainties: an application”. 

− Workshop on “Uncertainty and Risk Quantification”, held at the School of Engineering of 
the University of Liverpool, 2-3 December 2011. Invited oral presentation titled “The 
problem of uncertainty in system risk assessment”. 

− European Safety and RELiability (ESREL) 2011 Conference, Troyes, France, 18-23 
September 2011. Oral presentation of the paper: P. Baraldi, N. Pedroni, E. Zio, E. 
Ferrario, A. Pasanisi, M. Couplet, “Monte Carlo and fuzzy interval propagation of hybrid 
uncertainties on a risk model for the design of a flood protection dike”. 

− Seminar organized by the “Fondation pour une Culture de Securitè Industrielle (FonCSI)” 
(Toulouse, France) within the contract “Quantitative methods of uncertainty representation 
and modelling in risk analysis for decision-making practice”, Institut d'Etudes Politiques 
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(IEP), Lyon, France, 11-12 July 2011. Invited seminar titled “Quantitative methods of 
uncertainty representation and modeling in risk analysis for decision-making practice”. 

− 6th International Conference on Sensitivity Analysis of Model Output (SAMO), Milano, 
Italy, 19-22 July 2010. Oral presentation of the paper: E. Zio, N. Pedroni, “Sensitivity 
analysis of the model of a nuclear passive system by means of Subset Simulation”. 

− 10th International Probabilistic Safety Assessment & Management (PSAM) Conference, 
Seattle, Washington (USA), 7-11 June 2010. Oral presentation of the paper: G.E. 
Apostolakis, N. Pedroni, E. Zio, “Artificial Neural Networks and quadratic Response 
Surfaces for the functional failure analysis of a thermal-hydraulic passive system”. 

− Seminar organized by the “Fondation pour une Culture de Securitè Industrielle (FonCSI)” 
(Toulouse, France) within the contract “Quantitative methods of uncertainty representation 
and modelling in risk analysis for decision-making practice”, École Nationale des Travaux 
Publics de l'État (ENTPE), Lyon, France, 8-9 April 2010. Invited seminar titled 
“Uncertainty characterization in risk analysis for decision making practice”. 

− European Safety and RELiability (ESREL) 2009 Conference, Prague, Czech Republic, 6-10 
September 2009. Oral presentation of the paper: E. Zio, N. Pedroni, “Subset Simulation 
and Line Sampling for Advanced Monte Carlo Reliability Analysis”. 

− Two-hour invited seminar titled “Advanced Monte Carlo Simulation Methods for 
Uncertainty and Sensitivity Analysis in Probabilistic Risk Assessment”, held at the Research 
and Development Department of the US Nuclear Regulatory Commission (NRC), Church 
Street CSB 6B1, Rockville, Maryland (USA), January 19, 2009. 

− 8th World Congress on Computational Mechanics (WCCM8) – 5th European Congress on 
Computational Methods in Applied Sciences and Engineering (ECCOMAS 2008), Venice, 
Italy, June 30 – July 5, 2008. Oral presentation of the paper: E. Zio, M. Broggi, L. Golea, 
N. Pedroni, “Predicting Reliability by Recurrent Neural Networks”. 

− 1st Summer Safety and Reliability Seminars (SSARS) 2007, Gdansk-Sopot, Poland, 22-29 
July 2007. Oral presentation of the paper: F. Cadini, E. Zio, N. Pedroni, “Recurrent 
Neural Networks for Dynamic Reliability Analysis”. 

− 7th International Fuzzy Logic and Intelligent Technologies in Nuclear Science (FLINS) 
Conference on Applied Artificial Intelligence, Genova, Italy, 29-31 August 2006. Oral 

presentation of the paper: E. Zio, P. Baraldi, N. Pedroni, "Feature Selection for Transients 
Classification by a Niched Pareto Genetic Algorithm”. 

Awards, recognitions and scholarships 

− Outstanding Reviewer for the ASCE-ASME Journal of Risk and Uncertainty in Engineering 
Systems, Part A: Civil Engineering, 2015. 

− “Premio giovani ricercatori”: prize for the most consistent scientific production in 2010 
among the young researchers of the Nuclear Division of the Energy Department of the 
Politecnico di Milano (Milano, Italy), 2011. 

− Progetto Roberto Rocca Visiting Student Fellowship for the Fall 2008 and Spring 2009 
semesters at MIT, obtained in 2008 – The award is one of the activities funded by the 
Progetto Rocca, which promotes collaborations and exchanges between MIT and the 
Politecnico di Milano. 

− Student’s congress scholarship covering the registration fee for the 8th World Congress on 
Computational Mechanics (WCCM8) – 5th European Congress on Computational Methods 
in Applied Sciences and Engineering (ECCOMAS 2008), June 30 – July 5, 2008, Venice, 
Italy. 

− Awarded of a scholarship from the Italian Ministry of Education for supporting the three-
year PhD studies in “Radiation Science and Technology” at the Energy Department of the 
Politecnico di Milano (Milano, Italy), 2007. 
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− Gold Medal Award, Best Graduate Student of the Year in Nuclear Engineering – Politecnico 
di Milano (Milano, Italy), 2006. 

International collaborations 

− Politecnico di Milano (Milano, Italy). 
− The Institute of Nuclear Energy Research (INER), Taiwan, within the supervision of PhD 

student Chung-Kung Lo at École Centrale Paris (see Section 4.3). 
− Fondation Pour Une Culture De Securitè Industrielle (FonCSI) (Toulouse, France), within 

contract AO-2008 “Quantitative methods of uncertainty representation and modelling in 

risk analysis for decision-making practice” (see Section 4.5). 
− Electricite’ de France (EdF)-Research and Development (R&D) group of “Maîtrise des 

Risques Industriels” (MRI) (Chatou, France) within contract no. 5910059554 “Advanced 

computational methods for modelling the mechanisms of degradation in equipments of 

electricity production plants and uncertainty modelling and propagation” (see Section 4.5). 

Activities for supporting expertises 

− Collaboration with Elisa FERRARIO within the research project “SINAPS@ - Earthquake 
and Nuclear Facilities: Ensuring and Sustaining Safety” (€ 12.5 million), partly funded by 
the French National Agency for Research and coordinated by CEA with the following 
partners: EDF, Ecole Normale Supérieure de Cachan, Ecole Centrale Paris, the Institute for 
Radiological Protection and Nuclear Safety, Laboratory Soil-Solids-Structures and Risks 
(Institut Polytechnique de Grenoble), Ecole Centrale de Nantes, EGIS – industry, AREVA, 
ISTerre, IFSTTAR and CEREMA (see Section 4.5). 

− Supervision of Elisa FERRARIO for the research project of EDF, 2010 (see Section 4.5). 
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5 Complete and classified list of publications and communications 

(Liste complète et classée des publications et des communications) 

In Section 5.1, we list the papers accepted, published or submitted to peer-reviewed international 
journals; in Section 5.2, we indicate the book chapters; in Section 5.3, we report the articles 
published or accepted for publication in the proceedings of international conferences; finally, in 
Section 5.4, we list the works published as technical reports of international research institutes. 

5.1 Peer-reviewed international journal papers 

Published or Accepted 

1. Y.-P. Fang, N. Pedroni, E. Zio, “Optimization of Cascade-Resilient Electrical Infrastructures 
and its Validation by Power Flow Modelling”, Risk Analysis, an International Journal, Volume 
35, Issue 4, April 2015, pp. 594–607, ISSN 0272-4332, published by Wiley-Blackwell. 

2. E. Ferrario, N. Pedroni, E. Zio, “Analysis of the robustness and recovery of critical 
infrastructures by Goal Tree Success Tree – Dynamic Master Logic Diagram, within a multi-
state system-of-systems framework, in the presence of epistemic uncertainty”, accepted for 
publication on the ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part 

B: Mechanical Engineering (Special Issue on Non-probabilistic Approaches for Handling 

Uncertainty in Engineering), doi: 10.1115/1.4030439, ISSN 2332-9025, published by the 
American Society of Mechanical Engineers. 

3. N. Pedroni, E. Zio, “Hybrid Uncertainty and Sensitivity Analysis of the Model of a Twin-Jet 
Aircraft”, Journal of Aerospace Information Systems (Special Issue on NASA Langley 

Multidisciplinary Uncertainty Quantification Challenge), Vol. 12, 2015, pp. 73-96, doi: 
10.2514/1.I010265, ISSN 2327-3097, published by American Institute of Aeronautics and 
Astronautics. 

4. T.-R. Wang, V. Mousseau, N. Pedroni, E. Zio, “Assessing the Performance of a Classification-
Based Vulnerability Analysis Model”, accepted for publication on Risk Analysis, an 

International Journal, 2014, doi: 10.1111/risa.12305, ISSN 0272-4332, published by Wiley-
Blackwell. 

5. Y.-P. Fang, N. Pedroni, E. Zio, “Comparing network-centric and power flow models for the 
optimal allocation of link capacities in a cascade-resilient power transmission network”, 
accepted for publication on IEEE Systems Journal, 2015, doi: 10.1109/JSYST.2014.2352152, 
ISSN 1932-8184, published by IEEE Systems Council, Institute of Electrical and Electronics 
Engineers. 

6. C.-K. Lo, N. Pedroni, E. Zio, “Treating uncertainties in a nuclear seismic probabilistic risk 
assessment by means of the Dempster-Shafer theory of evidence”, Nuclear Engineering and 

Technology, Vol. 46, Issue 1, 2014, pp. 11-26, ISSN 1738-5733, published by Korean Nuclear 
Society. 

7. N. Pedroni, E. Zio, E. Ferrario, A. Pasanisi, M. Couplet, “Hierarchical propagation of 
probabilistic and non-probabilistic uncertainty in the parameters of a risk model”, Computers 

and Structures (Special Issue on Uncertainty Quantification in Structural Analysis and Design), 
Vol. 126, Sept. 2013, pp. 199–213, ISSN 0045-7949, published by Elsevier Ltd. 

8. Y.F. Li, N. Pedroni, E. Zio, “A Memetic Evolutionary Multi-Objective Optimization Method 
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for Environmental Power Unit Commitment”, IEEE Transactions on Power Systems, Vol. 28, 
Issue 3, 2013, pp. 2660-2669, ISSN 0885-8950, published by IEEE Power & Energy Society. 

9. N. Pedroni, E. Zio, “Uncertainty analysis in fault tree models with dependent basic events”, 
Risk Analysis, an International Journal, Vol. 33, Issue 6, 2013, pp. 1146–1173, ISSN 0272-
4332, published by Wiley-Blackwell. 

10. N. Pedroni, E. Zio, “Empirical comparison of methods for the hierarchical propagation of 
hybrid uncertainty in risk assessment, in presence of dependences”, International Journal of 

Uncertainty, Fuzziness and Knowledge-Based Systems, Vol. 20, Issue 4, 2012, pp. 509-557, 
ISSN 0218-4885, published by World Scientific Publishing. 

11. E. Zio, N. Pedroni, “Monte Carlo Simulation-based Sensitivity Analysis of the model of a 
Thermal-Hydraulic Passive System”, Reliability Engineering and System Safety, Vol. 107, Nov. 
2012, pp. 90-106, ISSN 0951-8320, published by Elsevier Ltd. 

12. E. Zio, M. Broggi, L. Golea, N. Pedroni, “Failure and Reliability Predictions by Locally 
Recurrent Neural Networks”, in: V. Cozzani, E. De Rademaeker (Eds.), Chemical Engineering 

Transactions – Proceedings of the 5th International Conference on Safety & Environment in 

Process & Power Industry (CISAP-5), Milano, Italy, 3-6 June 2012, Volume 26, pp. 117-122, 
published by The Italian Association of Chemical Engineering-AIDIC, 2012, ISBN 978-88-
95608-17-4, ISSN 1974-9791. 

13. F. Cadini, D. Avram, N. Pedroni, E. Zio, "Subset Simulation of a reliability model for 
radioactive waste repository performance assessment", Reliability Engineering and System 

Safety, Volume 100, Apr. 2012, pp. 75-83, ISSN 0951-8320, published by Elsevier Ltd. 

14. E. Zio, N. Pedroni, “How to effectively compute the reliability of a thermal-hydraulic passive 
system”, Nuclear Engineering and Design, Volume 241, Issue 1, Jan. 2011, pp. 310-327, ISSN 
0029-5493, published by Elsevier Ltd. 

15. E. Zio, N. Pedroni, “An optimized Line Sampling method for the estimation of the failure 
probability of nuclear passive systems”, Reliability Engineering and System Safety, Volume 95, 
Issue 12, Dec. 2010, pp. 1300-1313, ISSN 0951-8320, published by Elsevier Ltd. 

16. E. Zio, G. E. Apostolakis, N. Pedroni, “Quantitative functional failure analysis of a thermal-
hydraulic passive system by means of bootstrapped Artificial Neural Networks”, Annals of 

Nuclear Energy, Volume 37, Issue 5, 2010, pp. 639-649, ISSN 0306-4549, published by 
Elsevier Ltd. 

17. N. Pedroni, E. Zio, G. E. Apostolakis, “Comparison of bootstrapped Artificial Neural 
Networks and quadratic Response Surfaces for the estimation of the functional failure 
probability of a thermal-hydraulic passive system”, Reliability Engineering and System Safety, 
Volume 95, Issue 4, 2010, pp. 386-395, ISSN 0951-8320, published by Elsevier Ltd. 

18. E. Zio, N. Pedroni, M. Broggi, L. Golea, “Modelling the dynamics of the Lead Bismuth 
Eutectic eXperimental Accelerator Driven System by an Infinite Impulse Response Locally 
Recurrent Neural Network”, Nuclear Engineering and Technology, Volume 41, Issue 10, 2009, 
pp. 1293-1306, ISSN 1738-5733, published by the Korean Nuclear Society. 

19. E. Zio, N. Pedroni, “Functional Failure Analysis of a Thermal-Hydraulic Passive System by 
Means of Line Sampling”, Reliability Engineering and System Safety, Volume 9, Issue 11, Nov. 
2009, pp. 1764-1781, ISSN 0951-8320, published by Elsevier Ltd. 
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20. E. Zio, M. Broggi, N. Pedroni, “Nuclear Reactor Dynamics On-Line Estimation by Locally 
Recurrent Neural Networks”, Progress in Nuclear Energy, Volume 51, Issue 3, Apr. 2009, pp. 
573-581, ISSN 0149-1970, published by Elsevier Ltd.

21. E. Zio, N. Pedroni, “Estimation of the Functional Failure Probability of a Thermal-Hydraulic 
Passive System by Subset Simulation”, Nuclear Engineering and Design, Volume 239, Issue 3, 
Mar. 2009, pp. 580-599, ISSN 0029-5493, published by Elsevier Ltd. 

22. P. Baraldi, N. Pedroni, E. Zio, “Application of a Niched Pareto Genetic Algorithm for 
Selecting Features for Nuclear Transients Classification”, International Journal of Intelligent 

Systems, Volume 24, Issue 2, Feb. 2009, pp. 118-151, ISSN 0884-8173, published by Wiley 
Periodicals, Inc., A Wiley Company. 

23. E. Zio, P. Baraldi, N. Pedroni, “Optimal Power System Generation Scheduling by Multi-
Objective Genetic Algorithms With Preferences”, Reliability Engineering and System Safety, 
Volume 94, Issue 2, Feb. 2009, pp. 432-444, ISSN 0951-8320, published by Elsevier Ltd. 

24. E. Zio, N. Pedroni, “Building Confidence in the Reliability Assessment of Thermal-Hydraulic 
Passive Systems”, Reliability Engineering and System Safety, Volume 94, Issue 2, Feb. 2009, 
pp. 268-281, ISSN 0951-8320, published by Elsevier Ltd. 

25. F. Cadini, E. Zio, N. Pedroni, “Recurrent Neural Networks for Dynamic Reliability Analysis”, 
Reliability & Risk Analysis: Theory & Applications, Volume 1, Issue 2, Jun. 2008, pp. 30-42, 
ISSN 1932-2321, published by Gnedenko Forum Publications. 

26. F. Cadini, E. Zio, N. Pedroni, “Validation of Infinite Impulse Response Multi-Layer 
Perceptron for Modeling Nuclear Dynamics”, Science and Technology of Nuclear Installations, 
Volume 2008, Article ID 681890, doi: 10.1155/2008/681890, ISSN 1687-6075, published by 
Hindawi Publishing Corporation. 

27. F. Cadini, E. Zio, N. Pedroni, “Simulating the Dynamics of the Neutron Flux in a Nuclear 
Reactor by Locally Recurrent Neural Networks”, Annals of Nuclear Energy, Volume 34, Issue 
6, Jun. 2007, pp. 483-495, ISSN 0306-4549, published by Elsevier Ltd. 

28. E. Zio, P. Baraldi, N. Pedroni, “Selecting Features for Nuclear Transients Classification by 
Means of Genetic Algorithms”, IEEE Transactions on Nuclear Science, Volume 53, Issue 3, 
Jun. 2006, pp.1479-1493, ISSN 0018-9499, published by IEEE Nuclear and Plasma Sciences 
Society. 

Under Review/Revision 

29. P. Turati, N. Pedroni, E. Zio, “An adaptive simulation framework for the efficient, semi-
automatic exploration of extreme and unexpected events in the risk assessment of dynamic 
engineered systems”, submitted for publication on Risk Analysis, an International Journal, 
2015, ISSN 0272-4332, published by Wiley-Blackwell.

30. N. Pedroni, E. Zio, “An Adaptive Metamodel-Based Subset Importance Sampling method for 
the efficient estimation of the small functional failure probability of a thermal-hydraulic passive 
system”, submitted for publication on Applied Mathematical Modelling, 2015, ISSN: 0307-
904X, published by Elsevier Ltd. 
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31. T. R. Wang, V. Mousseau, N. Pedroni, and E. Zio, “Identification of protective actions to 
reduce the vulnerability of safety-critical systems to malevolent intentional acts: an 
optimization-based decision-making approach”, submitted for publication on European Journal 

of Operational Research, 2015, ISSN: 0377-2217, published by Elsevier Ltd.

32. T.-R. Wang, V. Mousseau, N. Pedroni, E. Zio, “An empirical classification-based framework 
for the safety-related criticality assessment of complex energy production systems, in presence 
of inconsistent data”, under first review on Reliability Engineering and System Safety, 2015, 
ISSN 0951-8320, published by Elsevier Ltd. 

33. T.-R. Wang, N. Pedroni, E. Zio, “Identification of protective actions to reduce the vulnerability 
of safety-critical systems to malevolent intentional acts: a sensitivity-based decision-making 
approach”, under revision on Reliability Engineering and System Safety, 2015, ISSN 0951-
8320, published by Elsevier Ltd. 

34. E. Ferrario, N. Pedroni, E. Zio, “Evaluation of the robustness of critical infrastructures by 
Hierarchical Graph representation, clustering and Monte Carlo simulation”, under first review 
on Reliability Engineering and System Safety, ISSN 0951-8320, published by Elsevier Ltd. 

35. P. Turati, N. Pedroni, E. Zio, “Advanced RESTART method for the estimation of the 
probability of failure of highly reliable hybrid dynamic systems”, under second review on 
Reliability Engineering and System Safety, 2015, ISSN 0951-8320, published by Elsevier Ltd. 
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6 Detailed presentation of the past research activities 

(Présentation détaillée des activités de recherche)

ADVANCED METHODS FOR THE RISK, VULNERABILITY AND RESILIENCE 

ASSESSMENT OF SAFETY-CRITICAL ENGINEERING COMPONENTS, SYSTEMS 

AND INFRASTRUCTURES, IN THE PRESENCE OF UNCERTAINTIES

Safety-critical industrial installations (e.g., nuclear and chemical plants) and infrastructures (e.g., 

civil, transportation, electric power, water, gas and communication systems) are complex systems 

composed by a multitude and variety of ‘elements’, that is, physical hard components (e.g., road, 

railway, pipelines, pumps, etc.), soft components (e.g., SCADA, information and 

telecommunication systems) and human and organizational components [Gheorghe and Schlapfer, 

2006; Kröger and Zio, 2011]. They are highly interconnected and mutually dependent in complex 

ways, so that a failure in one critical system or infrastructure can propagate to the others, possibly 

provoking (cascading) failures that generate large consequences well beyond the initial impact 

zone [Weron and Simonsen, 2006; Hines et al., 2009; Helbing, 2013]. In addition, such failures may 

be triggered by multiple and various sources of hazards due to exogenous and endogenous 

stressors, like natural events, terrorism, criminal activities, malicious behavior, market and policy 

factors, human factors and technical random failures of hard components [Amin, 2001; Zio, 2009]. 

Finally, such systems are affected by large uncertainties in the characterization of the failure and 

recovery behavior of their components, their interconnections and interactions: this makes the 

corresponding analysis a challenging task, because it requires to quantify the uncertainty and to 

predict how it propagates throughout the system [Apostolakis, 1990; Helton and Pilch, 2011; Aven 

and Zio, 2010; Zio and Aven, 2011]. All these elements raise concerns with respect to the risk, 

vulnerability and resilience properties characterizing such systems. 

With respect to that, it is worth reminding that risk classically refers to the probability of 

occurrence (frequency) of a specific (mostly undesired/adverse) event leading to loss, damage or 

injury, and its extent [Kaplan and Garrick, 1981; Aven, 2012a and b]. These quantities and their 

associated uncertainties are considered as being numerically quantifiable: e.g., for Critical 

Infrastructures (CIs), risk can be computed as the loss of service with its resulting consequences for 

the people concerned [Kröger and Zio, 2011]. On the other hand, vulnerability can be defined as the 

system inability to withstand and “resist” to strains and stresses and it may be exploited by some 

perhaps unknown or previously unimagined threats and hazards (component failures, natural and 

men-made hazards) [Aven, 2007; Johansson and Hassel, 2010]. Finally, resilience quantifies the 
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system ability to reduce the chances of shock, to adsorb a shock if it occurs and to recover quickly 

after a shock: it may include technical (physical), organizational, social and economic aspects: see, 

e.g., [Bruneau et al., 2003; Hollnagel et al., 2006; Aven, 2011b] among many others1. These 

quantities must be accurately and precisely assessed in order to take rational decisions on the 

utilization of resources for protecting the safety-critical systems of interest (possibly from different 

types of hazards), for reducing their vulnerability and improving their safety and resilience [COM, 

2004; EPA, 2009; USNRC, 2009; NASA, 2010]. 

In general, the tasks outlined above are carried out by the following main steps: 

1. System representation: this step aims at capturing the main features of the real system 

providing a picture of the information needed to answer relevant questions. It depends on 

the type of the system and the outputs of interest: actually, different types of systems can be 

better described by different representation frameworks (e.g., complex network theory may 

be more suitable for large distributed systems [Dueñas-Osorio et al., 2007], whereas fault 

and event trees can be used for industrial installations [Zio, 2007]). 

2. System modeling: for a quantitative evaluation of risk, vulnerability and resilience, the 

‘pictorial’ representation of the system should be supported by a mathematical model [Cox, 

2011]. In general, actions, events and physical phenomena that may provoke system failures 

are described by mathematical models, which are then implemented in computer codes for 

numerical quantification [Bayarri et al., 2007]. Such models are intended to provide: (i) an 

approximate description of the behavior of the real system dependent on a number of (input) 

hypotheses and parameters; (ii) the numerical outputs of interest (i.e., in this case, the 

relevant risk, vulnerability and resilience metrics) [Helton and Sallaberry, 2012]. 

3. System simulation: the mathematical model is employed to simulate the behavior of the 

system under various conditions of interest (e.g., operational transitions and accident 

scenarios) and to evaluate the corresponding critical outputs of interest (see step 2. above). 

Notice that usually, many of the (input) parameters and hypotheses contained in the 

predictive models of the complex real-world systems are uncertain (see details below): thus, 

this step of ‘system simulation’ typically amounts to propagating the input uncertainty onto 

the outputs through the mathematical model [Helton, 2011; Helton et al., 2014b]. 

4. Decision making: the risk, vulnerability and resilience metrics produced in the simulation 

step are compared with predefined numerical safety criteria for guidance to risk-informed 

decision making processes [Helton and Breeding, 1993; Helton et al., 1999; Dubois and 

                                                 
1 Further details are not given here for brevity. For more precise (and quantitative) definitions and a synthetic, critical 
discussion on the concepts of risk, vulnerability and resilience, the reader is referred to Section 6.2.1.2. 
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Guyonnet, 2011; Helton et al., 2011]. In particular, the objective could be that of (optimally) 

determining a set of protective actions to be taken (e.g., increasing the number of monitoring 

devices, reducing the number of accesses to the safety-critical system, etc.) in order to 

effectively reduce (resp., increase) the level of risk and vulnerability (resp., resilience) of the 

safety-critical systems under consideration [Pepyne et al., 2001; Piwowar et al., 2009]. 

As a fundamental remark (see step 3. above), it is worth noting that not all the characteristics of the 

system under analysis can be fully captured in the corresponding mathematical models, due to: (i) 

the intrinsically random nature of several of the phenomena occurring during system operation 

(e.g., component degradation, failures, or more generally, stochastic transitions among different 

performance states), and (ii) the incomplete knowledge about some of the phenomena (e.g., due to 

lack of experimental data and results) [Apostolakis, 1990]. This leads to uncertainty on both the 

values of the model (input) parameters and on the hypotheses supporting the model structure; such 

input uncertainty causes uncertainty in the model outputs and, thus, in the corresponding risk, 

vulnerability and resilience estimates. This output uncertainty must be estimated as accurately and 

precisely as possible (compatibly with the information available on the problem) for a realistic 

quantification of the system behavior and of the associated risk, which builds confidence in the 

overall decision making process [Helton, 1997; Helton and Oberkampf, 2004; Helton et al., 2006]. 

The general research framework just described is pictorially represented in Figure 1. 

Within this general framework, my research has been carried out along two main axes: the first 

deals with the study of approaches for the modeling and quantification of uncertainty in the 

reliability analysis and risk assessment of safety-critical components and systems (Section 6.1); the 

second focuses on the development of advanced computational methods for the efficient modeling, 

simulation and analysis of safety-critical systems and infrastructures in the presence of uncertainties 

(Section 6.2). A pictorial representation of the two research axes explored in this dissertation is 

provided in Figure 2. 
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Figure 1. Conceptual structure of the general research framework 

Figure 2. Research Axes 1 and 2 developed during my academic activity 



52

6.1 Axis 1 – Reliability Analysis and Risk Assessment of Safety-Critical 

Components and Systems: Uncertainty Modeling and Quantification 

This Section intends to provide a complete overview on the research activities carried out under 

Axis 1. It starts by framing the problem of uncertainty in the reliability analysis and risk assessment 

of safety-critical engineered components and systems (Section 6.1.1); then, it critically surveys 

some conceptual and practical research issues relevant to this field and the corresponding possible 

solution approaches (Section 6.1.2); finally, it briefly summarizes the methodological and 

applicative contributions of the present work to each of the issues addressed (Section 6.1.3). 

6.1.1 Problem statement 

In this Section, the role of uncertainty in reliability analysis and risk assessment is discussed: in 

Section 6.1.1.1, the problem of uncertainty affecting the behavior and modeling of safety-critical 

components and systems is stated; in Section 6.1.1.2, the distinction between aleatory and epistemic 

uncertainty is recalled. 

6.1.1.1 Uncertainties in reliability analysis and risk assessment 

In the contexts of reliability analysis and risk assessment of interest to the present thesis, the 

quantitative analyses of the phenomena occurring in many safety-critical engineering systems, 

components and applications are based on mathematical (risk) models, which are then translated 

into numerical computer codes for quantification. Such models are intended to provide a 

representation of the real phenomena, based on a number of hypotheses and parameters. The 

models can be deterministic (e.g. Newton’s dynamic laws or Darcy’s law for groundwater flow) or 

stochastic (e.g. the Poisson model for describing the occurrence of earthquake events) [EPA, 2009; 

USNRC, 2009; NASA, 2010]. The risk models provide numerical outputs (e.g., relevant safety 

parameters) possibly to be compared with predefined numerical safety criteria for further guidance 

to risk-informed decision making processes [Helton and Breeding, 1993; Helton et al., 2000a; 

Dubois and Guyonnet, 2011; Helton et al., 2011]. 

In engineering practice, the mathematical models are not capable of capturing all the characteristics 

of the system under analysis. This is due to: (i) the intrinsically random nature of several of the 

phenomena occurring during system operation (e.g., component degradation, failures, or more 

generally, stochastic transitions among different performance states); (ii) the incomplete knowledge

about some of the phenomena (e.g., due to lack of experimental results) (see the following Section 

6.1.1.2) [USNRC, 1975; Apostolakis, 1990]. This leads to uncertainty on both the values of the 

model input parameters/variables (parameter uncertainty) and on the hypotheses supporting the 
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model structure (model uncertainty). Such uncertainty propagates within the model and causes 

uncertainty in its outputs and, thus, in the corresponding risk estimates. The quantification and 

characterization of the resulting output uncertainty is of paramount importance for a realistic 

assessment of the system behaviour and associated risk, for use in decision making [Helton and 

Davis, 2003; Helton and Oberkampf, 2004]: it defines the scope of the uncertainty analysis. 

Uncertainty analysis aims at determining the uncertainty in analysis results that derives from 

uncertainty in the input parameters [Helton et al., 2006]. We formally illustrate this by considering a 

generic mathematical model fZ(Y), which depends on the input quantities Y = {Y1, Y2, …, Yj, …, YN} 

and on the (possibly implicit) function fZ(·). The model is used to evaluate one or more output 

quantities Z = {Z1, Z2, …, Zl, …, ZO} of the system under analysis: 

Z = {Z1, Z2, …, Zl, …, ZO} = fZ(Y) = fZ(Y1, Y2, …, Yj, …, YN). (1)

By way of examples, in the risk-based design of a flood protection dike the output quantity of 

interest may be represented by the water level of the river in proximity of a residential area 

[Pasanisi et al., 2009; Limbourg and de Rocquigny, 2010]; in the reliability analysis of emergency 

safety systems in nuclear reactors the relevant quantity could be represented by, e.g., the peak 

temperature reached by the fuel cladding during an accidental scenario characterized by loss of 

coolant [Mackay et al., 2008; Patalano et al., 2008]. In what follows, for the sake of simplicity of 

illustration and without loss of generality we consider only one (scalar) output Z, i.e., Z = {Z1, Z2, 

…, Zl, …, ZO} � Z = fZ(Y). 

The uncertainty analysis of Z requires an assessment of the uncertainties about Y and their 

propagation through the model fZ(·) to produce an assessment of the uncertainties about Z. 

Typically, the uncertainty about model parameters Y and the uncertainty related to the model

structure fZ(·), i.e., uncertainty due to the existence of alternative plausible hypotheses on the 

phenomena involved, are treated separately; actually, while the first source of uncertainty has been 

widely investigated and more or less sophisticated methods have been developed to deal with it, 

research is still ongoing to obtain effective and agreed methods to handle the uncertainty related to 

the model structure [Ferson et al., 2003; Perry and Drouin, 2009; Le Duy et al., 2013]. See also 

[Aven, 2010b] who distinguishes between model inaccuracies (the differences between Z and 

fZ(Y)), and model uncertainties due to alternative plausible hypotheses on the phenomena involved2. 

In this thesis, we are concerned only with the uncertainty in the model parameters Y = {Y1, Y2, …, 

Yj, …, YN}. 

                                                 
2 Notice that model uncertainty also includes the fact that the model could be too simplified and therefore would neglect 
some important phenomena affecting the final result. This latter type of uncertainty is sometimes identified 
independently from model uncertainty and is known as completeness uncertainty [USNRC, 2002 and 2009]. 
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Finally, it is worth reminding that contrary to uncertainty analysis, the aim of sensitivity analysis is 

to identify (and rank) those input parameters, variables and possibly model hypotheses and 

assumptions that contribute the most to the uncertainty in the model outputs and, thus, in the 

corresponding risk estimates. This is of paramount importance for properly driving resource 

allocation for uncertainty reduction and consequent confidence gain for design, maintenance and 

operation decision making [Sudret, 2008; Blatman and Sudret, 2010; Sudret and Mai, 2015]. 

6.1.1.2 Types of uncertainty 

In the context of reliability analysis and risk assessment, uncertainty is conveniently distinguished 

into two different types: ‘aleatory’ (also known as ‘objective’ or ‘stochastic’) and ‘epistemic’ (also 

known as ‘subjective’ or ‘state-of-knowledge’) [Parry and Winter, 1981; Apostolakis, 1990; Helton, 

1994; Hoffman et al., 1994; Helton and Burmaster, 1996; Parry, 1996; Paté-Cornell, 1996; USNRC, 

2009]. The former refers to phenomena occurring in a random way. The latter captures the analyst 

confidence in the model by quantifying the degree of belief of the analysts on how well it represents 

the actual system [Apostolakis, 1993 and 1999]. 

Aleatory uncertainty is related to the intrinsically random nature of several of the phenomena 

occurring during system operation. It concerns, for instance, the occurrence of the events that define 

various possible accident scenarios for a safety-critical system (e.g., a nuclear power plant), the time 

to failure of a component or the random variation of the actual geometrical dimensions and material 

properties of a component or system (due to differences between the as-built system and its design 

upon which the analysis is based) [USNRC, 1990, 2002 and 2009; Breeding et al., 1992a and b; 

Gregory et al., 1992; Brown et al., 1992; Payne et al., 1992; Helton et al., 2000a-c, 2014a and b; 

Sallaberry et al., 2014]; moreover, examples taken from civil or environmental engineering 

comprise physical quantities like the maximal water flow of a river during a year, unexpected 

events like earthquakes or unpredictable processes like erosion, sedimentation and so on [USNRC, 

2005; Limbourg and de Rocquigny, 2010]. 

Epistemic uncertainty is instead associated to the lack of knowledge about some properties and 

conditions of the phenomena underlying the behavior of the systems. This uncertainty manifests 

itself in the model representation of the system behavior, in terms of both (model) uncertainty in the 

hypotheses assumed and (parameter) uncertainty in the (fixed but poorly known) values of the 

internal parameters of the model [Helton et al., 2000c; Cacuci and Ionescu-Bujor, 2004]; in the 

present paper, we are concerned only with the uncertainty in the model parameters. By way of 

example, the failure of a mechanical component is a random (i.e., aleatory) event (and, 

correspondingly, the time to failure T of the component is a random variable). In practice, an 

exponential probability model (pT(t|�) = �·e-�t) is often built to represent such random phenomenon 
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(i.e., component failure) and the corresponding random variable (i.e., time to failure T). This 

aleatory model contains a parameter (i.e., the failure rate �) that may be known with limited 

precision by the analyst, i.e., epistemic uncertainty is associated with it [Apostolakis and Kaplan, 

1981; Huang et al., 2001; USNRC, 2009]. 

Finally, notice that whereas epistemic uncertainty can be reduced by gathering information and data 

to improve the knowledge on the system behavior, the aleatory uncertainty cannot, and for this 

reason it is sometimes also called irreducible uncertainty. 

6.1.2 Issues and possible solution approaches: a critical literature survey 

The conceptual and practical issues related to the modeling and quantification of uncertainty in 

reliability analysis and risk assessment rise in their extensions to the contemporary or future safety-

critical engineered components and systems. In this thesis, we focus on four major ones that we 

have encountered in our research and practice and that are also confronted by other researchers in 

the field of reliability and risk engineering (the corresponding possible solution approaches 

available in the open literature are also presented and critically discussed): 

1. The uncertainties in the model (input) parameters and hypotheses have to be first 

systematically identified and classified; then, they have to be quantitatively modeled and 

described by rigorous mathematical approaches coherently with the information available on 

the system. The key point is to guarantee that uncertainties are taken into account in a way 

that the knowledge relevant for the risk assessment process is represented in the most 

faithful manner [Helton et al., 2014a-e; Aven, 2010a,b and 2011; Aven and Steen, 2010]. 

For sake of simplicity, we will not deal here explicitly with uncertainties tainting the 

system’s model itself. Whether this point is the object of many research and engineering 

works in the computer experiments community, e.g. [Kennedy and O’Hagan, 2001; Bayarri 

et al., 2007; Oberkampf and Trucano, 2008; Roy and Oberkampf, 2011], in engineering 

practice it is more common to separate the phases of assessing model’s accuracy and 

propagating uncertainties from input to output variables [Pasanisi and Dutfoy, 2012]. See 

also the interesting and pragmatic viewpoint on this issue in [Aven, 2010b] (see Section 

6.1.2.1). 

2. The uncertainties in the input(s) have to be propagated onto the output(s) of the risk model 

(i.e., onto the risk measures), to provide the decision makers with a clearly risk-informed

picture of the problem upon which they can confidently reason and deliberate [Aven and 

Zio, 2010; Dubois and Guyonnet, 2011; Helton and Sallaberry, 2012] (see Section 6.1.2.2). 

3. The quantitative representation of uncertainty needs to be updated, in a Bayesian 

framework, when new information/evidence (e.g., data) about the system of interest 
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becomes available [Bernardo and Smith, 1996; Bedford and Cooke, 2001; Kelly and Smith, 

2011] (see Section 6.1.2.3). 

4. Possible dependences existing among the input parameters and variables of the system risk 

model need to be properly accounted for [Ferson et al., 2004]. Actually, it is widely 

acknowledged that neglecting such dependences could lead to dramatic underestimations of 

the risk associated to the functioning of complex, safety-critical engineering systems 

[Ferson, 1996; Ferson and Burman, 1995; Ferson and Long, 1995; Ferson and Ginzburg, 

1996] (see Section 6.1.2.4). 

A pictorial view of the four conceptual and practical issues addressed in this thesis under research 

Axis 1 is given in Figure 3. 

Figure 3. Four conceptual and practical issues addressed under research Axis 1 

6.1.2.1 Issue 1: Quantitative modeling and representation of uncertainty coherently with the 

information available on the system 

As already mentioned above, aleatory uncertainty is related to randomness due to inherent 

variability in the system behavior (thus, it cannot be reduced by acquiring knowledge and 

information on the system). Probability models are typically introduced to represent this type of 

uncertainty. Examples of classical probabilistic models used to describe aleatory uncertainties in 

risk assessment are the Poisson/exponential model for events randomly occurring in time (e.g., 

random variations of the operating state of a valve) [Hofer et al., 2002; USNRC, 2005; Helton et al., 

2014e; Sallaberry et al., 2014], the binomial model for events occurring “as the immediate 

consequence of a challenge” (e.g., failures on demand of mechanical safety systems) [Krzykacz-

Hausmann, 2006; USNRC, 2009] and the Gumbel model for the maximal water level of a river in a 

particular year [Limbourg and de Rocquigny, 2010]. Probability models constitute the basis for the 
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statistical analysis of the data and information available on a system, and are considered essential 

for assessing the aleatory uncertainties and drawing useful insights on its random behaviour 

[Helton, 1994; Winkler, 1996]. They are also capable of coherently updating the probability values, 

as new data and information on the system become available.3

A probability model presumes some sort of model stability, by the construct of populations of 

similar units (in the Bayesian context, formally an infinite set of exchangeable random variables) 

[Bernardo and Smith, 1996; De Finetti, 1974]. In this framework, the standard procedure for 

constructing (aleatory) probability models of random events and variables is as follows: (i) observe 

the random process of interest over a finite period of time, (ii) collect data about the phenomenon, 

(iii) perform statistical analyses to identify the probability model (i.e., distribution) that best 

captures the variability in the available data and (iv) estimate the internal parameters of the selected 

probability model4 [Bernardo and Smith, 1994; Atwood et al., 2003; Frey and Burmaster, 1999]. 

For instance, the probability model for the time to failure of a given type of mechanical component 

can be estimated by collecting a large (in theory, infinite) number of failure times of identical or 

similar components (e.g., by resorting to experimental reliability tests and/or to historical data 

bases) and then ‘fitting the data’ by a proper probability distribution (traditionally, exponential or 

Weibull distributions are used to this aim) [Apostolakis, 1990; USNRC, 2005; USNRC, 2002 and 

2009; NASA, 2010]. However, such ‘presumed’ model stability is often not fulfilled and the 

procedure (i)-(iv) above cannot be properly carried out [Bergman, 2009]. 

In the engineering risk assessment practical context the situations are often unique, because the 

structures systems and components are, in the end, uniquely manufactured, operated and 

maintained, so that their life realizations is not identical to any others. Then, the collection of 

repeated random realizations of the related random phenomena of interest (e.g., failure occurrences) 

means in reality the construction of fictional populations of non-existing similar situations. Then, 

probability models in general cannot be easily defined; in some cases, they cannot be meaningfully 

defined at all. For example, it makes no sense to define the (frequentist) probability of a terrorist 

                                                 
3 For the sake of completeness, it is worth remembering that classical probability theory is formally defined by a triple 
(U, S, p), called a probability space, where: (i) U is a set that contains everything that could occur in the particular 
universe under consideration, (ii) S is a suitably restricted set of subsets of U, and (iii) p is the function that defines 
probability for (elements of) S. Notice that p is required to have the following properties: (i) if A ∈ S, then 0 � p(A) � 1; 
(ii) p(U) = 1, and (iii) if A1, A2, …, is a sequence of disjoint sets from S, then p(UiAi) = �ip(Ai). Finally, one of the 
important properties of probability is that p(A) + p(Ac) = 1, for A ∈ S. In words, the probability of an event occurring 
(i.e., p(A)) and the probability of an event not occurring (i.e., p(Ac)) must sum to one. As discussed in what follows, less 

restrictive conditions on the specification of likelihood are present in other approaches to uncertainty representation, 
e.g., possibility and evidence theories [Helton et al., 2004; Baudrit and Dubois, 2006]. 
4 In a frequentist view, the available data are interpreted as observable random realizations of an underlying, repeatable

probabilistic model (e.g., a probability distribution) representing the aleatory phenomenon of interest, which can be 
approximated with increasing precision by the analyst as the size of the available data set increases [Apostolakis, 
1990]. 
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attack [Aven and Heide, 2009]. In other cases, the conclusion may not be so obvious. For example, 

the (frequentist) probability of an explosion scenario in a process plant may be introduced in a risk 

assessment, although the underlying population of infinite similar situations is somewhat difficult to 

describe [Aven and Zio, 2010]. 

In addition, even when probability models with parameters can be established (justified) reflecting 

aleatory uncertainty, in many cases the amount of data available is insufficient for performing a 

meaningful statistical analysis on the random phenomenon of interest (e.g., because collecting this 

data is too difficult or costly); in other casas, the pieces of data themselves may be highly imprecise: 

in such situations, the internal parameters of the selected probability model cannot be estimated 

with sufficient accuracy and epistemic (state-of-knowledge) uncertainty is associated with them 

[Baudrit et al., 2008; Dubois, 2010]. A full risk description needs to assess the (epistemic) 

uncertainties about these quantities. This framework of two hierarchical levels of uncertainty is 

referred to as “two-level” setting in the literature [Helton, 1996 and 2011; Helton and Sallaberry, 

2011; Helton et al., 2011 and 2014b, d, e]. Examples of this “two-level” setting may be the 

following. First, we may consider a generic uncertain (input) variable Y , whose (aleatory) 

uncertainty is described by a Probability Density Function (PDF) )|( �ypY  with epistemically-

uncertain internal parameters }...,, ..., , ,{ 21 Pm θθθθ=� . In a reliability analysis framework, Y may 

represent the (random) time to failure T of a mechanical component, classically modeled by a 

Weibull distribution )|( �ypY  = pT(t|�, �) = Weibull(�, �) with poorly known location and scale 

parameters � = {�, �}. Another example can be taken from Fault Tree Analysis (FTA). In this case, 

the (aleatory) probability model is constituted by the Fault Tree (FT) itself, where the logic of the 

functioning/disfunctioning of the system of interest is systematically captured and the (random) 

event of system failure (namely, the Top Event-TE) is described by the combinations of the 

(random) failures of the individual (hardware, software and human) elements composing the system 

(namely, the Basic Events-BEs). If the internal parameters of such model, i.e., the probabilities 

(frequencies) of the BEs, are known with poor precision by the analysts, then epistemic uncertainty 

is associated with them (and consequently with the probability-frequency of the TE). 

In the current risk assessment practice, the epistemic uncertainty in the parameters entering the 

(probability) models of random events is typically represented by (subjective) probability 

distributions within a Bayesian framework: subjective probability distributions capture the analyst 

confidence in the probability model by quantifying his/her degree of belief on how well the model 

represents the actual phenomenon [Apostolakis and Kaplan, 1981; Apostolakis, 1990, 1993 and 

1999; Cooke, 1991; Ayyub, 2001; Meyer and Booker, 2001; Baudrit et al., 2006; Aven, 2010a, b; 

Huang et al., 2001; Singpurwalla, 2006; North, 2010; USNRC, 2002, 2005 and 2009]. The common 



59

term used is Probabilistic Risk Assessment (PRA, also referred to as Quantitative Risk Assessment-

QRA) [Garrick et al., 1967; Helton et al., 2000a-c and 2014a-e; Apostolakis, 2006; NAS/NRC, 

2008]. In facts, probability has been used to represent both aleatory and epistemic uncertainty from 

the beginning of the formal development of probability in the late 1600’s [Hacking, 1975]. 

However, one of the foundations of this approach is the de Finetti’s representation theorem (see 

[Bernardo, 1996] for a pedagogical presentation), the underlying hypothesis of which is, in practice, 

the exchangeability of the observations depending on epistemically uncertain variables. However, 

the probability-based approach to epistemic uncertainty representation can be considered 

unsatisfactory in some particular conditions of practical risk assessment when the hypothesis of 

exchangeability could be challenged [Aven and Zio, 2010]. Besides these mathematical 

considerations, the practical arguments against the fully probabilistic approach are evoked 

hereinafter. 

First of all, representing epistemic uncertainty by probability distributions (albeit subjective) 

amounts in practice to representing partial ignorance (imprecision) in the same way as randomness 

(variability) [Baudrit et al., 2008; Dubois, 2010]. Also, the fully probabilistic framework for 

assessing risk and uncertainties may be too narrow, as the subjective expert knowledge that the 

probability distributions are based on could be poor and/or even based on wrong assumptions, thus 

leading to conclusions that can mislead decision making. In the unique situations of risk 

assessment, the information available usually is not a sufficiently strong basis for assigning specific

probability distributions. In practical risk assessment and decision making, there are often many 

stakeholders and they may not be satisfied with a probability-based assessment based on subjective 

judgments made by one analysis group [Aven and Zio, 2010]. 

To overcome the above shortcomings of the fully probabilistic representation of uncertainty in risk 

assessment, alternative (non-fully probabilistic) approaches for representing and describing 

epistemic uncertainties in risk assessment have been suggested [Helton and Oberkampf, 2004; 

Helton and Johnson, 2011; Aven, 2010a,b and 2011a; Aven and Steen, 2010; Aven and Zio, 2011; 

Flage et al., 2009; Beer et al., 2013b and 2014b], e.g., fuzzy set theory [Klir and Yuan, 1995], fuzzy 

probabilities [Buckley, 2005; Beer, 2009b; Pannier et al., 2013], random set theory [Molchanov, 

2005], Dempster-Shafer theory of evidence [Dempster, 1967a and b; Shafer, 1976, 1987 and 1990; 

Ferson et al., 2003 and 2004; Helton et al., 2007a,b and 2010; Sentz and Ferson, 2002; Le Duy et 

al., 2013; Sallak et al., 2013], possibility theory (that can be considered also a ‘special case’ of 

evidence theory) [Baudrit and Dubois, 2006; Baudrit et al., 2006 and 2008; Dubois, 2006; Dubois 

and Prade, 1988], interval analysis [Moore, 1979; Ferson and Hajagos, 2004; Ferson and Tucker, 
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2006; Ferson et al., 2007 and 2010; Jalal-Kamali and Kreinovich, 2013; Muscolino and Sofi, 2013; 

Zhang et al., 2013], interval probabilities [Weichselberger, 2000] and probability bound analyses 

using p-boxes [Ferson and Ginzburg, 1996; Crespo et al., 2013; Mehl, 2013]. These settings are 

becoming popular in the reliability analysis and risk assessment frameworks and the remainder of 

the Section will be essentially focused on them. On the other hand, notice that the technical details 

of the different frameworks will be exposed only to the extent necessary to analyze and judge how 

these contribute to the communication of risk and the representation of the associated uncertainties 

to decision makers, in the typical settings of reliability analysis and risk assessment of safety-

critical systems with limited knowledge on their behavior. The driver of the critical analysis is 

really the need to feed the decision making process with representative information derived from 

the risk assessment, to robustly support the decision. 

In probability bound analysis, intervals are used for those components whose uncertainty cannot be 

accurately estimated (in other words, the knowledge of the analyst is not sufficient for providing a 

single, precise value or probability distribution for the parameter of interest, that is thus 

‘imprecisely’ defined by a range of possible values, all of which are coherent with the scarce 

information available). For the other components, traditional probabilistic analysis is carried out. 

This procedure results in a couple of extreme limiting Cumulative Distribution Functions (CDFs) 

(namely, a probability box or p-box) that bound above and below the “true” CDF of the quantity of 

interest. For illustration purposes, Figure 4 shows an example of probability box (p-box) for a 

generic uncertain (input) variable Y: the upper and lower CDFs, ( )yF Y  and ( )yF
Y , respectively, 

represent sure bounds on the “true” (unknown) CDF ( )yF Y  of Y, i.e., ( )yF
Y � ( )yF Y � ( )yF Y , 

∀ y ℜ∈ . The distance between the CDF bounds ( )yF Y  and ( )yF
Y  pictorially reflects the limited 

knowledge of the analyst who is not able to specify a single (aleatory) probability model (i.e., a 

single CDF) for Y. Actually, the family of all the CDFs that can be “drawn” within ( )yF Y  and 

( )yF
Y  is coherent with the (scarce and/or vague) information available on Y; thus, in principle any

CDF belonging to such family could represent the “true” (unknown) probability model ( )yF Y . 
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Figure 4. Example of probability box (p-box) for the generic uncertain variable Y 

However, this way of proceeding results often in very wide intervals and the approach has been 

criticised for not providing the decision-maker with specific analyst and expert judgments about 

epistemic uncertainties [Aven, 2010b]. The other frameworks mentioned above allow for the 

incorporation and representation of incomplete information. Their motivation is to be able to treat 

situations where there is more information than that supporting just an interval assignment on an 

uncertain parameter, but less than that required to assign a single specific probability distribution.  

All these theories produce epistemic-based uncertainty descriptions and in particular probability 

intervals. In few details, in fuzzy set theory membership functions are employed to express the 

degree of compatibility of a given numerical value to a fuzzy (i.e., vague, imprecisely defined) set 

(or interval). In possibility theory, uncertainty is represented by using a possibility distribution 

function that quantifies the degree of possibility of the values of a given uncertain (input) parameter, 

say, Y. Formally, an application of possibility theory involves the specification of a pair ( )( )yU Yπ,  

(called a possibility space), where: (i) U is a set that contains everything that could occur in the 

particular universe under consideration (e.g., it contains all the values that parameter Y can assume); 

(ii) 	Y(y) is the possibility distribution function mentioned above: this function is defined on U and 

is such that 0 � 	Y(y) � 1 for y ∈ U and sup{	Y(y): y ∈ U} = 1. The function 	Y(y) provides a 

measure of the likelihood that can be assigned to each element y of the universal set U (i.e., sample 

space) U. With respect to that, whereas in probability theory a single probability distribution 

function is introduced to define the (single-valued) probability of any interval (or event) A, in 

possibility theory one possibility function gives rise to two measures of likelihood, referred to as 

possibility and necessity measures {�Y(A), NY(A)}. These two measures represent probability

bounds, i.e., upper and lower probabilities, respectively: such measures are mathematically defined 

as ( ) ( ){ }yA� Y

Ay

Y π
∈

= sup  and NY(A) = 1 � ( ){ }yY

Ay

π
∉

sup  = 1 � ( )cY A� , respectively [Helton et al., 

2004; Baudrit and Dubois, 2006; Baudrit et al., 2006 and 2008; Dubois, 2006; Dubois and Prade, 

1988]. It can be demonstrated that the probability )(APY  associated to an event or to a set (interval) 
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A of parameter values is bounded above and below by such necessity and possibility values, i.e., 

( ) )()( A�APAN YYY ≤≤ . In other words, such bounds reflect the fact that due to the scarce 

information available, the analyst is not able or willing to precisely assign his/her probability 

)(APY : he/she can only bound it by upper and lower limits. From the definitions of {�Y(A), NY(A)} 

above and referring to the particular set (interval) A = (��, y], we can deduce the associated 

cumulative necessity/possibility measures ( ) ( ]( )yNAN YY ,∞−=  and ( ) ( ]( )y�A� YY ,∞−= . Given 

that ( ) )()( A�APAN YYY ≤≤  and that PY((��, y]) = ( )yF Y  by definition, then ( ]( )yN Y ,∞−  and 

( ]( )y�Y ,∞−  can be interpreted as the lower and upper limiting CDFs ( )yF
Y  and ( )yF Y ,

respectively, for the uncertain variable Y. For illustration purposes and by way of example, we 

consider an uncertain parameter Y. We suppose that the only information available on Y is that it can 

take values in the range (support) [900, 1300] and the most likely value (mode) is 1100. To 

represent this information a triangular possibility distribution on the interval [900, 1300] is typically 

used, with maximum value at 1100 (Figure 5 left). The corresponding cumulative necessity and 

possibility measures, ( ]( )yN Y ,∞−  = ( )yF
Y  and ( ]( )y�Y ,∞−  = ( )yF Y , respectively, are shown in 

Figure 5 right. This means that the triangular possibility distribution 	Y(y) of Figure 5 left 

“produces” the couple of CDFs shown in Figure 5 right: more importantly, it can be demonstrated 

that such CDFs bound all the possible CDFs (i.e., all the possible probability models) characterized 

by mode equal to 1100 and support [900, 1300]. In other words, the single possibility function 	Y(y) 

“encodes” the family of all the CDFs (i.e., of all the probability models) with mode equal to 1100 

and support [900, 1300] (see [Ferson et al., 2003; Baudrit and Dubois, 2006; Dubois, 2006] for a 

formal proof of this statement). 
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Figure 5. Left: triangular possibility distribution )(yYπ  of a generic uncertain variable Y; in 

evidence, the �-cuts of level � = 0 (solid segment), 0.5 (dashed segment) and 1 (dot). Right: 

bounding upper and lower CDFs (i.e., cumulative possibility and necessity) of Y, ( )yF
Y

 = 

( ) ( ]( )yNAN YY ,∞−=  and ( )yF Y  = ( ) ( ]( )y�A� YY ,∞−= , A = (��, y], respectively 
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In order to provide an additional practical interpretation of the possibility distribution function 

	Y(y), we can define its so-called �-cut sets (intervals) YAα  = {y: 	Y(y) � α }, with 0 ≤ α � 1. For 

example, YA 5.0 = [1000, 1200] is the set (interval) of y values for which the possibility function is 

greater than or equal to 0.5 (dashed segment in Figure 5 left). In the light of the discussion above, 

the �-cut set YAα  of parameter Y can be interpreted as the (1 – �)�100% Confidence Interval for Y, 

i.e., the interval such that αα −≥∈ 1][ YAYP . Actually, ( )YAN α � ][ YAYP α∈ � ( )YA� α , which is 

equivalent to write { })(sup1 yY

AY Y

π
α∉

− � ][ YAYP α∈ � { })(sup yY

AY Y

π
α∈

, i.e., 1 – � � ][ YAYP α∈ � 1. For 

example, γ
0A  = [900, 1300] is the (1 – 0)�100% = 100% CI for 
, i.e., the interval that contains the 

“true” value of 
 with certainty (solid segment in Figure 5, top left); γ
8.0A  = [1050, 1150] ( ⊂ γ

0A ) is 

the (1 – 0.8)�100% = 20% confidence interval, and so on. In this view, the possibility distribution 

	Y(y) can be interpreted as a set of nested confidence intervals for parameter Y [Baudrit and Dubois, 

2006]. 

Finally, in Dempster-Shafer Theory of Evidence (DSTE) uncertainty is described by a so-called 

body of evidence, i.e., a list of focal sets/elements (e.g., intervals) each of which is assigned a 

probability (or belief) mass (so-called Basic Probability Assignment-BPA). Formally, an 

application of evidence theory involves the specification of a triple (U, S, m) (called evidence 

space), where: (i) U is a set that contains everything that could occur in the particular universe 

under consideration, e.g., all the values that a given uncertain (input) parameter Y can assume 

(namely, the sample space or universal set); (ii) S is a countable collection of subsets of U (i.e., the 

ensemble of the so-called focal elements); (iii) m is a function (i.e., the BPA) defined on subsets of 

U, such that: (i) m(A) > 0, if A ∈ S; (ii) m(A) = 0, if A ⊂ U and A ∉ S, and (iii) ( )�
∈

=
SA

Am 1. For a 

subset A of U, m(A) is a number characterizing the amount of likelihood that can be assigned to A, 

but no proper subset of A. In this respect, it is worth noting that differently from probability theory, 

the function m is not the fundamental measure of likelihood. Rather, two measures (namely, 

plausibility and belief measures) are induced by m that bound the probability PY(A) of a set A of 

values of a given uncertain parameter Y. Such measures are mathematically defined as 

( ) ( )�
∅≠∩

=
AB

Y BmAPl  and ( ) ( )�
⊂

=
AB

Y BmABel , respectively, and they are such that BelY(A) � PY(A) �

PlY(A). In concept, m(B) can be thought of as the amount of likelihood that is associated with set B

but without any specification of how this likelihood might be apportioned over B; thus, this 

likelihood might be associated with any subset of B. Given this conceptualization of m(B), the belief 
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BelY(A) can be viewed as the minimum amount of likelihood that must be associated with A (i.e., 

this amount of likelihood cannot move out of A because the summation ( )�
⊂ AB

Bm  only involves B

that satisfies B ⊂ A). Similarly, the plausibility PlY(A) can be viewed as the maximum amount of 

likelihood that could be associated with A (i.e., this amount of likelihood could move into A because 

the summation ( )�
∅≠∩AB

Bm  involves all B that satisfies B � A 	 ∅ ) [Dempster, 1967a and b; Shafer, 

1976, 1987 and 1990; Ferson et al., 2003 and 2004; Helton et al., 2007a,b and 2010; Sentz and 

Ferson, 2002; Le Duy et al., 2013; Sallak et al., 2013]. For illustration purposes, let us assume that 

uncertain variable Y is described by the following body of evidence, ( )( ){ }2,1:, =iAmA i

Y

i

Y  = 

[ ]( ) [ ]( ){ }65.0,60.0,40.0,35.0,50.0,20.0  (Figure 6 left). It can be interpreted as follows: input Y lies 

within interval (focal set) 1
YA  = [0.20, 0.50] with probability at least equal to ( )1

YAm  = 0.35, whereas 

it lies within interval (focal set) 2
YA  = [0.40, 0.60] with probability at least equal to ( )2

YAm  = 0.65. 

Notice that using the relations reported above, this body of evidence can be transformed into upper 

and lower CDFs YF (y) and Y
F (y) for Y (also called cumulative plausibility and belief functions, 

respectively): in particular, ( )yF Y  = ( ]( )yPlY ,∞−  = ( )
[ ]
�

∅≠∞−∩ yA

i

Y
i
Y

Am
,

 and ( )yF
Y  = ( ]( )yBelY ,∞−  = 

( )
[ ]
�

∞−⊂ yA

i

Y
i
Y

Am
,

 (Figure 6 right). 
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Figure 6. Exemplary body of evidence (left) and the corresponding upper and lower CDFs (i.e., 

cumulative plausibility and belief) (right) for a generic uncertain variable Y 

For the sake of completeness and precision, it is worth pointing out that the most of the theories 

mentioned above (in particular, random set theory, probability bound analysis using p-boxes, 

interval probabilities, fuzzy probabilities and evidence theory) are ‘covered’ by the general common 

framework of imprecise probabilities [Beer and Ferson, 2013; Beer et al., 2013a; Blockley, 2013; 

Reid, 2013; Sankararaman and Mahadevan, 2013]. Actually, as highlighted above, “a key feature of 

imprecise probabilities is the identification of bounds on probabilities for events of interest; the 
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uncertainty of an event is characterized with two measure values — a lower probability and an 

upper probability” [Kozine and Filimonov, 2000]. The distance between the probability bounds 

reflects the indeterminacy in model specifications expressed as imprecision of the models and “this 

imprecision is the concession for not introducing artificial model assumptions” [Beer and Ferson, 

2013]. Peter M. Williams developed a mathematical framework for imprecise probabilities, based 

on de Finetti’s betting interpretation of probability [de Finetti, 1974]. This foundation was further 

developed independently by Vladimir P. Kuznetsov and Peter Walley (the former only published in 

Russian), see [Kuznetsov, 1991; Walley, 1991]. Following de Finetti’s betting interpretation, the 

lower probability is interpreted as the maximum price for which one would be willing to buy a bet 

which pays 1 if an event occurs and 0 if not, and the upper probability as the minimum price for 

which one would be willing to sell the same bet. These references, and [Walley, 1991] in particular, 

provide an in-depth analysis of imprecise probabilities and their interpretations, with a link to 

applications to probabilistic reasoning, statistical inference and decisions. It is however also 

possible to interpret the lower and upper probabilities using the reference to a standard 

interpretation of a subjective probability: such an interpretation is indicated by [Lindley, 2006], p. 

36. Consider the subjective probability P(A) and say that the analyst states that his/her assigned 

degree of belief is greater than the urn chance of 0.10 (the degree of belief of drawing one particular 

ball from an urn which include 10 balls) and less than the urn chance of 0.5. The analyst is not 

willing to make any further judgment. Then, the interval [0.10, 0.50] can be considered an 

imprecision interval for the subjective probability P(A). Finally, imprecise probabilities are also 

linked to the relative frequency interpretation of probability [Coolen and Utkin, 2007]. The simplest 

case reflects that the “true” frequentist probability p is in the interval [P(A), )(AP ] with certainty. 

More generally and in line with the above interpretations of imprecision intervals based on 

subjective probabilities P(•), a two-level uncertainty characterization can be formulated (see, e.g., 

[Kozine and Utkin, 2002]): [P(A), )(AP ] is an imprecision interval for the subjective probability 

P(a � p � b) where a and b are constants. In the special case that P(A) = )(AP  (= q, say) we are led 

to the special case of a q•100% credibility interval for p (i.e., with subjective probability q, the true 

value of p is in the interval [a, b]). For further details, the reader is referred, e.g., to the Special 

Issue on Imprecise Probabilities recently appeared on the Journal of Mechanical Systems and 

Signal Processing [Beer and Ferson, 2013]. 

It is worth admitting that these imprecise probability-based theories have not yet been broadly

accepted for use in the risk assessment community. Till now, the development effort made on these 

subjects has mostly had a mathematical orientation, and it seems fair to say that no established 
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framework presently exists for practical risk assessment based on these alternative theories [Aven 

and Zio, 2010]. 

6.1.2.2 Issue 2: Propagation of uncertainty to the output of the system model 

The scope of the uncertainty analysis is the quantification and characterization of the uncertainty in 

the output Z of the mathematical model fZ(Y) = fZ(Y1, Y2, …, Yj, …, YN) that derives from 

uncertainty in analysis inputs Y = {Y1, Y2, …, Yj, …, YN} (see Section 6.1.1.1) [Helton et al., 2006]. 

In the light of the considerations reported in the previous Section 6.1.2.1, this requires the joint, 

hierarchical propagation of hybrid aleatory and epistemic uncertainties through the model fZ(Y) 

[Helton et al., 2014a, c, e; Sallaberry et al., 2014]: actually, a “two-level” setting is considered 

where the probability models describing random phenomena contain parameters that are known 

with poor precision, i.e., that are affected by epistemic uncertainty. 

When both aleatory and epistemic uncertainties in a two-level framework are represented by 

probability distributions, a two-level (or double loop) Monte Carlo (MC) simulation is usually 

undertaken to accomplish this task [Cullen and Frey, 1999; Frey and Burmaster, 1999]. The 

approach comprises the following two main steps [Rao et al., 2007; Karanki et al., 2009; Limbourg 

and de Rocquigny, 2010]: 

i. repeated MC sampling of the parameters affected by epistemic uncertainty from the 

corresponding (subjective) probability distributions (outer loop processing epistemic 

uncertainty);  

ii. repeated MC sampling of possible values of the random variables from the corresponding 

aleatory probability distributions conditioned at the values of the epistemically-uncertain 

parameters sampled at step (i) above (inner loop processing aleatory uncertainty).  

The resulting output Z is described by a ‘bundle’ of aleatory probability distributions, one for each

realization of the epistemically-uncertain parameters. 

Alternatively, when the epistemic uncertainties are represented by possibility distributions, the 

hybrid Monte Carlo (MC) and Fuzzy Interval Analysis (FIA) approach5 is typically considered. In 

the hybrid MC-FIA method the MC technique [Kalos and Withlock, 1986; Zio, 2013] is combined 

with the extension principle of fuzzy set theory [Baraldi and Zio, 2008; Baudrit et al., 2005a,b and 

2007a, b; Cooper et al., 1996; Flage et al., 2010; Guyonnet et al., 2003; Kentel and Aral, 2004 and 

2007; Zadeh, 1965], within a “two-level” hierarchical setting [Baudrit et al., 2008; Kentel and Aral, 

2005; Moller, 2004; Moller and Beer, 2004 and 2008; Moller et al., 2003 and 2006]. This is done 

by:  

                                                 
5 In the following, this method will be referred to as “hybrid MC-FIA approach” for brevity. 
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i. FIA to process the uncertainty described by possibility distributions: in synthesis, several 

intervals for the epistemically-uncertain parameters described by possibility distributions are 

identified by performing a repeated, level-wise interval analysis. Technically speaking, with 

reference to the previous Section 6.1.2.1, several cuts of the possibility distribution 

functions are obtained for different confidence levels �;  

ii. MC sampling of the random variables to process aleatory uncertainty [Baudrit et al., 2008]: 

for each interval (�-cut) of the epistemically-uncertain parameters identified at step (i) 

above, a family of (aleatory) probability distributions is generated; then, such families are 

propagated through the system model fZ(Y) by MC simulation. 

In this approach the resulting output Z is represented by a set of nested ‘bundles’ of aleatory 

probability distributions: one ‘bundle’ is produced for each �-cut of the possibilistic epistemically-

uncertain parameters [Baudrit et al., 2008]. 

Finally, if the epistemic uncertainties are described within the framework of evidence theory, the 

Monte Carlo (MC)-based Dempster-Shafer (DS) approach employing Independent Random Sets 

(IRSs)6 is typically undertaken. In the MC-based DS-IRS method the focal sets (i.e., intervals) 

representing the epistemically-uncertain parameters are randomly sampled by MC according to the 

corresponding probability (or belief) masses [Baudrit and Dubois, 2005; Baudrit et al., 2003; Fetz, 

2001; Fetz and Oberguggenberger, 2004; Helton et al., 2004, 2005, 2007a,b and 2010; Helton and 

Johnson, 2011; Moral and Wilson, 1996; Oberkampf and Helton, 2002; Oberkampf et al., 2001; 

Tonon, 2004; Tonon et al., 2000a and b]. As for the double-loop MC, the result is a ‘family’ of 

aleatory probability distributions: one family is generated for each random combination of the focal 

sets representing the epistemically-uncertain parameters. 

6.1.2.3 Issue 3: Updating as new information becomes available 

In this Section, we address the issue of updating the representation of the epistemically-uncertain 

parameters of aleatory models (e.g., probability distributions), as new information/evidence (e.g., 

data) about the system becomes available. 

The framework adopted for this is the typical Bayesian one that is based on the well-known Bayes 

rule when epistemic uncertainties are represented by (subjective) probability distributions [Bernardo 

and Smith, 1994; Siu and Kelly, 1998; Lindley, 2000; Bedford and Cooke, 2001; Atwood et al., 

2003; Kelly and Smith, 2009 and 2011; Pasanisi et al., 2012]. 

Alternatively, when the representation of epistemic uncertainty is non-probabilistic, other methods 

of literature can be undertaken [Ferson, 2005]. In [Smets, 1993], a Generalized Bayes Theorem 

                                                 
6 In the following, this method will be referred to as “MC-based DS-IRS approach” for brevity. 
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(GBT) has been proposed within the framework of evidence theory and applied by [Le-Duy et al., 

2011] to update the estimates of the failure rates of mechanical components in the context of 

nuclear Probabilistic Risk Assessment (PRA). In [Viertl, 1996, 1997, 1999, 2008a, b and 2011; 

Viertl and Hareter, 2004a, b; Viertl and Hule, 1991], a modification of Bayes theorem has been 

presented to account for the presence of fuzzy data and fuzzy prior Probability Distribution 

Functions (PDFs). In [Dubois and Prade, 1997; Lapointe and Bobee, 2000], a purely possibilistic 

counterpart of the classical, well-grounded probabilistic Bayes theorem has been proposed to update 

the possibilistic representation of the epistemically-uncertain parameters of (aleatory) probability 

distributions: this requires the construction of a possibilistic likelihood function, which is used to 

revise the prior possibility distributions of the uncertain parameters (determined, as usual, on the 

basis of a priori subjective knowledge and/or data). Finally, [Beer, 2009a; Stein and Beer, 2011; 

Stein et al., 2013; Beer et al., 2014a] have introduced a hybrid probabilistic-fuzzy method that relies 

on the use of Fuzzy Probability Density Functions (FPDFs), i.e., PDFs with fuzzy parameters (e.g., 

fuzzy means, fuzzy standard deviations, etc.). Similarly to the MC-FIA approach for hybrid 

uncertainty propagation (Section 6.1.2.2), it is based on the combination of: (i) Fuzzy Interval 

Analysis (FIA) to process the uncertainty described by fuzzy numbers and (ii) repeated Bayesian 

updating of the uncertainty represented by (classical) probability distributions. This way of 

proceeding results in nested families of (probabilistic) posteriors for the epistemic parameters of 

interest: by resorting to the rules of possibility theory (see Section 6.1.2.1), such nested families can 

be finally synthesized into a single (posterior) possibility distribution function. 

6.1.2.4 Issue 4: Dependences among input variables and parameters 

Two types of dependence need to be considered in reliability analysis and risk assessment [Ferson 

et al., 2004]. The first type relates to the (dependent) occurrence of different (random) events (in 

the following, this kind of dependence will be referred to as ‘objective’ or ‘aleatory’). An example 

of this objective (aleatory) dependence may be represented by the occurrence of multiple failures 

which result directly from a common or shared root cause (e.g., extreme environmental conditions, 

failure of a piece of hardware external to the system, or a human error): they are termed Common 

Cause Failures (CCFs) and typically can concern identical components in redundant trains of a 

safety system [USNRC, 1993, 2007 and 2009; Zio, 2009]; another example is that of cascading 

failures, i.e., multiple failures initiated by the failure of one component in the system, as a sort of 

chain reaction or domino effect [Guimera et al., 2002; Watts, 2002; Sansavini et al., 2009; Zio and 

Sansavini, 2011a and b]. 

The second type refers to the dependence possibly existing between the estimates of the 

epistemically-uncertain parameters of the aleatory probability models used to describe random 
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events/variables (in the following, this kind of dependence will be referred to as ‘state-of-

knowledge’ or ‘epistemic’). This state-of-knowledge (epistemic) dependence exists when the 

epistemically-uncertain parameters of aleatory models are estimated by resorting to dependent 

information sources (e.g., to the same experts/observers or to correlated data sets) [Apostolakis and 

Kaplan, 1981; USNRC, 2009]. By way of example, consider the case of a system containing a 

number of physically distinct, but similar/nominally identical components whose failure rates are 

estimated by means of the same data set: in such situation, the state of knowledge about these 

failure rates is exactly the same and, thus, the distributions describing the epistemic uncertainty 

associated to such failure rates have to be considered totally (perfectly) dependent7. 

Considerable efforts have been done to address objective and state-of-knowledge dependences in 

risk analysis. In [Vaurio, 2002 and 2007; Karanki and Dang, 2010], objective dependencies among 

random events/variables have been treated by means of alpha factor models within the traditional 

framework of Common Cause Failure (CCF) analysis. In [Ferson et al., 2004; Sadiq et al., 2008], 

the use of Frank copula and Pearson correlation coefficient has been proposed to describe a wide 

range of objective dependences among aleatory events/variables. In [Li, 2007; Ferdous et al., 2011], 

(fuzzy) dependency factors are employed to model dependent events/variables. In [Iman and 

Conover, 1982; Iman and Davenport, 1982], the rank correlation method has been proposed to 

characterize dependencies between epistemically uncertain variables. In [Apostolakis and Kaplan, 

1981; USNRC, 2009], total (perfect) state-of-knowledge dependence among the failure rates of 

mechanical components has been modeled by imposing maximal correlation among the 

corresponding (subjective) probability distributions. In [Zhang, 1989 and 1993; Rushdi and 

Kafrawy, 1988; Kafrawy and Rushdi, 1990], state-of-knowledge dependences among the 

probabilities of the Basic Events (BEs) of a Fault Tree (FT) have been described by traditional 

correlation coefficients and propagated by the method of moments. In [Karanki and Dang, 2010; 

Karanki et al., 2010], statistical epistemic correlations have been modeled by resorting to the Nataf 

transformation [Huang and Du, 2006] within a traditional Monte Carlo Simulation (MCS) 

framework. In [Karanki et al., 2009], the Dependency Bound Convolution (DBC) approach [Ferson 

et al., 2004; Regan et al., 2004; Williamson and Downs, 1989] has been adopted to account for all 

                                                 
7 As stated in [USNRC, 2009], Page 54, “an analyst’s state of knowledge about the possible values of a parameter � can 
be expressed in terms of a probability density function ( )θθf  when using Bayesian updating or expert judgment. It is 

common practice to assign the same value to the parameters of BEs of identical or similar components. Therefore, for 
example, the probability of failure of a class of identical motor-operated valves (MOVs) to open is considered the same. 
Suppose that �1 and �2 represent the parameters of two physically distinct but identical MOVs: because this discussion 
assumes that all such MOVs have the same parameter, it is necessary to set �1 = �2. Moreover, because the analyst’s 
state of knowledge is the same for the two valves, it follows that ( )1

1 θθ
f  = ( )2

2 θθ
f . Thus, ( )1

1 θθ
f  and ( )2

2 θθ
f  must be 

regarded as being equal probability density functions and treated as completely dependent probability density 
functions”. 
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kinds of (possibly unknown) objective and epistemic dependences among the BEs of a FT. Finally, 

the Distribution Envelop Determination (DEnv) method has been proposed by [Berleant and 

Goodman-Strauss, 1998; Berleant and Zhang, 2004a, b; Berleant et al., 2003 and 2008] to model 

unknown dependences between correlated uncertain variables. 

6.1.3 Research developed: methodological and applicative contributions 

In this Section, the research developed in the present thesis within the fields of uncertainty 

modeling and quantification (Axis 1) is synthetically overviewed. In particular: (i) the 

methodological and applicative contributions of my research activity to the four challenges 

presented before are summarized; (ii) on the basis of the critical literature survey reported in 

Section 6.1.2 and of the research results obtained so far, specific techniques are recommended for 

tackling each of the four issues: precise guidelines on the recommended use of the techniques in 

practical reliability analysis and risk assessment are finally provided. 

In the presentation of these contributions and recommendations, reference will be made only to the 

most relevant works (mainly journal papers) realized by the candidate and his collaborators, within 

the PhD and Master theses activities. 

6.1.3.1 Issue 1: Quantitative modeling and representation of uncertainty coherently with the 

information available on the system 

As highlighted in Section 6.1.2.1, numerous imprecise probability-based theories have been 

recently introduced for uncertainty quantification: however, they have not yet been broadly 

accepted for use in the risk assessment community. Till now, the development effort made on these 

subjects has mostly had a mathematical orientation: thus, no established framework presently exists 

for practical risk assessment based on these alternative theories [Aven and Zio, 2010]. In this 

context, the primary objective of my research has been to assess the capabilities of these novel 

(non-fully probabilistic) techniques with respect to classical purely probabilistic approaches, in 

reliability and risk analysis applications. 

In [Pedroni and Zio, 2012; Pedroni et al., 2013a], we have systematically compared the effects of 

the probabilistic and non-probabilistic representations of the epistemically-uncertain parameters of 

(aleatory) probability distributions in a “two-level” uncertainty modeling framework. In the 

comparisons, several non-probabilistic approaches have been considered for the description of 

epistemic uncertainty (including intervals, probability boxes, Dempster-Shafer structures, 

possibility distributions and fuzzy numbers). These analyses have been carried out with reference to 

different risk assessment problems, in particular: (i) examples involving straightforward analytical 

functions, to keep the analysis simple and retain a clear view of each step of the comparison 
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[Pedroni and Zio, 2012]; (ii) a model for the risk-based design of a flood protection dike [Pedroni et 

al., 2013a] (Paper I in the Appendix). In each case study different numerical indicators (e.g., 

cumulative distributions, exceedance probabilities, quantiles, etc.) have been considered to perform 

a fair and quantitative comparison between the approaches and evaluate their rationale and 

appropriateness in relation to risk assessment. With respect to that, it is worth mentioning that the 

“driving criterion” chosen to assess and compare the approaches has been the “conservatism” of the 

results (i.e., of the risk estimates) produced by them. The motivation has been the acknowledgement 

that being conservative represents an advantage in decision making processes related to the risk 

assessment of complex, safety-critical components, systems and infrastructures, in particular when 

the information available on these systems is scarce and/or imprecise: in such cases, being 

conservative allows to be “safely”-coherent with the (scarce and/or imprecise) information 

available and, thus, to take more reliable and robust decisions. 

The comparisons have shown that in general different results are obtained in correspondence of 

different representations of epistemic uncertainty. As a consequence, embracing one approach or 

another may change the outcome of a decision making process based on a risk assessment involving 

uncertainties. In more detail, non-probabilistic representations of epistemic uncertainty have been 

shown produce more conservative results than a probabilistic one in the presence of scarce, vague 

and/or imprecise information. In particular, the results have highlighted that selecting a single, 

precise probability model to describe a critical random variable of interest without the support of 

proper experimental evidence may lead to significant underestimations of risk: for example, the 95-

th quantile of that variable could be underestimated even by a factor 5-10 (see also papers by 

[Baraldi et al., 2012; Pedroni et al., 2012] for additional quantitative examples of this statement in 

risk assessment applications). Thus, making inappropriately precise assumptions represents a 

dangerous behavior in decision making processes related to the risk assessment of complex, safety-

critical components, systems and infrastructures under uncertainties. These considerations and 

results can lead to the recommendation of using non-probabilistic representations of epistemic 

uncertainty in engineering risk assessment, to be “safely” coherent with the (possibly scarce and 

imprecise) information available. 

In more detail, on the basis of the results obtained from the comparisons mentioned above the 

Fuzzy Random Variable (FRV) approach is recommended for uncertainty modeling and 

representation [Baudrit et al., 2008]. In such a framework, aleatory uncertainty is classically 

represented by probability models (e.g., probability distributions), whereas epistemic uncertainty in 

the internal parameters of the aleatory models is described by possibility distributions (or fuzzy 

numbers). This recommendation is motivated by the following facts. First, a possibility function 



72

defines a family of probability distributions (see Section 6.1.2.1): this allows describing, in a faithful

and objective way, those situations where the knowledge available does not enable to precisely 

assign a single (subjective) probability distribution to an epistemically-uncertain parameter. Second, 

possibility theory is strongly connected with fuzzy sets and fuzzy logic, as conceptualized and put 

forward by [Zadeh, 1978]: actually, in his original view possibility distributions were meant to 

provide a graded semantics to natural language statements, which makes them particularly suitable 

for quantitatively translating (possibly vague, qualitative and imprecise) expert opinions. Finally, a 

possibility distribution also defines a set of nested confidence intervals for the parameter of interest 

(see Section 6.1.2.1). Correspondingly, it can be argued that a FRV defines a set of nested (aleatory) 

probability models, each of which contains the “true” probability model with a given confidence 

level (1 � �). Figure 7 shows an example of FRV. Variable Y is described by a Normal (aleatory) 

probability distribution with known standard deviation � = 100 and epistemically-uncertain mean �

represented by the possibility function )(µπ µ  of Figure 7, left. For each possibility (resp., 

confidence) level � (resp., 1 – �) in [0, 1], a family of CDFs for Y, namely ( ){ }
α

σµ,|yF Y , can be 

constructed by letting � range within µ
αA , i.e., ( ){ }

α
σµ,|yF Y  = ( ){ }100,:,| =∈ σµσµ µ

αAyF Y  (i.e., 

different Normal CDFs for Y are obtained in correspondence of the different values that the mean �

can assume within the interval µ
αA ). This family of CDFs (of level �) is bounded above and below 

by the upper and lower CDFs, ( )yF Y

α  and ( )yF
Y

α , defined as ( ) ( ){ }100,|sup ==
∈

σµ
µ
αµ

α yFyF Y

A

Y  and 

( ) ( ){ }100,|inf ==
∈

σµ
µ
αµ

α yFyF Y

A

Y , respectively. This set of nested pairs of CDFs 

( ) ( )( ){ }10:, ≤≤ ααα yFyF YY  bounds the “true” CDF ( )yF Y  of Y with confidence larger than or equal 

to (1 – �), i.e., ( ) ( ) ( ) ααα −≥≤≤ 1][ yFyFyFP YYY , with 0 ≤ α � 1 [Baudrit et al., 2008]. For 

illustration purposes, Figure 7 right shows the bounding upper and lower CDFs of Y, ( )yF Y

α  and 

( )yF
Y

α , built in correspondence of the �-cuts of level � = 0 (solid lines), 0.5 (dashed lines) and 1 

(dot-dashed line) of the possibility distribution )(µπ µ  of parameter � (Figure 7, left). For further 

technical details the interested reader is referred to Paper I [Pedroni et al., 2013a] reported in the 

Appendix. 

Finally, notice that the works [Baraldi et al., 2012; Pedroni et al., 2013a] under this research line 

have been done mainly within the Master thesis of Elisa Ferrario (M.Sc. 1 in Section 4.3). 
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Figure 7. Exemplary Fuzzy Random Variable (FRV). Left: possibility function )(µπ µ  for the mean 

� of variable Y. Right: bounding upper and lower CDFs of Y, ( )yF Y

α  and ( )yF
Y

α , built in 

correspondence of the �-cuts of level � = 0 (solid lines), 0.5 (dashed lines) and 1 (dot-dashed line) 

of )(µπ µ

A pictorial representation of the methods considered and compared to address Issue 1 of research 

Axis 1 is given in Figure 8, together with the corresponding applications and recommended 

approaches. 

Figure 8. Methods here considered and compared to address Issue 1 of research Axis 1, together 

with the corresponding applications and recommended approaches 
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6.1.3.2 Issue 2: Propagation of uncertainty to the output of the system model 

In [Baraldi et al., 2012; Pedroni et al., 2012; Pedroni and Zio, 2012; Pedroni et al., 2013a], we have 

compared different techniques for the propagation of uncertainty from the inputs to the output of a 

system model in a “two-level” setting. In the comparisons, different approaches have been 

considered in correspondence of different frameworks adopted for representing epistemic 

uncertainty (including double-loop MC, interval analysis, MC-based DS-IRS and MC-FIA 

techniques). The same case studies mentioned in Section 6.1.3.1 have been considered in the 

comparisons. By way of example, in the application concerning the risk-based design of a flood 

protection dike [Pedroni et al., 2013a] the output of interest is represented by the yearly maximal 

water level of a river in proximity of a residential area. It is computed as a function of four inputs, 

namely the yearly maximal water flow, the upstream and downstream riverbed levels and the 

Strickler friction coefficient between the river water and the riverbed. 

The results have shown that the choice of the uncertainty propagation method is not so critical (in 

risk-informed decisions) only when the objective of the analysis is the computation of a couple of 

extreme bounding upper and lower CDFs (i.e., a probability box) for the model output of interest: 

actually, in this case the curves produced by the double MC, hybrid MC-FIA and the MC-based 

DS-IRS approaches are almost identical. However, the analysis of other relevant quantitative 

indicators (e.g., a given quantile of the model output) shows that the hybrid MC-FIA method 

produces more conservative and more reliable results than the double-loop MC and the MC-based 

DS-IRS approaches. In addition, this higher conservatism is particularly evident in the range of 

extreme probabilities (i.e., around 0 and 1) and quantiles that are of paramount importance in 

realistic risk assessment applications involving highly reliable engineering components, systems 

and infrastructures. For example, it has been shown that in several situations the choice of double-

loop MC or MC-based DS-IRS can lead to serious underestimations (e.g., up to 36%) of the values 

of high (e.g., 95-th, 99-th, etc.) quantiles of the model output. These findings and considerations 

confirm the recommendation of adopting the hybrid MC-FIA approach for uncertainty propagation 

in a “two-level” framework. For further technical details the interested reader is still referred to 

Paper I [Pedroni et al., 2013a] reported in the Appendix. 

A pictorial representation of the here considered and compared to address Issue 2 of research Axis 1 

is given in Figure 9, together with the corresponding applications and recommended approaches. 
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Figure 9. Methods here considered and compared to address Issue 2 of research Axis 1, together 

with the corresponding applications and recommended approaches

6.1.3.3 Issue 3: Updating as new information becomes available 

Coherently with the recommendations provided in Section 6.1.3.1, in [Pedroni et al., 2015] we have 

adopted possibility distributions to describe epistemic uncertainty and have addressed the issue of 

updating, in a Bayesian framework, the possibilistic representation of the epistemically-uncertain 

parameters of (aleatory) probability distributions by means of data. 

We have considered two approaches of literature (see Section 6.1.2.3): the first is based on the 

purely possibilistic Bayes’ theorem by [Dubois and Prade, 1997; Lapointe and Bobee, 2000]; the 

second is represented by the hybrid (probabilistic and possibilistic) method proposed by [Beer, 

2009a; Stein and Beer, 2011; Stein et al., 2013; Beer et al., 2014a]. The objective (and the main 

contribution of the paper) has been to systematically compare the effectiveness of the two methods. 

To keep the analysis simple and retain a clear view of each step, the investigations have been 

carried out with respect to a literature case study involving the risk-based design of a flood 

protection dike. 

The findings of the work have shown that in general adopting different methods may generate 

different results and possibly different decisions in risk problems involving uncertainties: this is of 

paramount importance in systems that are critical from the safety viewpoint, e.g., in the civil, 

nuclear, aerospace, chemical and environmental fields. In particular, on the basis of the results 
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obtained, it seems advisable to suggest the use of the purely possibilistic approach (instead of the 

hybrid one) for the following reasons: 

i. its strength in reducing epistemic uncertainty is significantly higher, in particular when the 

amount of available data is small (e.g., when only 5-10 pieces of data have been collected): 

this is important in decision making processes since reducing epistemic uncertainty 

significantly increases the analyst confidence in the decisions; 

ii. the computational time required is consistently lower (even by 2-3 orders of magnitude). 

In the light of these findings and results, the purely possibilistic approach has been applied by the 

candidate and some of his collaborators also for updating the epistemic uncertainty in the 

parameters of the Event Tree (ET) and Fault Tree (FT) models used in the Seismic Probabilistic 

Risk Assessment (SPRA) of Nuclear Power Plants (NPPs) [Lo et al., 2014a and b]. 

However, it has to be remarked that the construction of a possibilistic likelihood required by the 

purely possibilistic method, although recently tacked in the literature [Denoeux, 2014], still 

represents an issue to be further investigated from both the theoretical and practical viewpoint in 

order to avoid introducing biases in the analysis and to suggest the application of the approach for 

real risk assessment problems. With respect to that, future research should be devoted to the 

investigation of additional methods developed to this aim: see, e.g., [Masson and Denoeux, 2006; 

Mauris, 2008; Hou and Yang, 2010; Serrurier and Prade, 2011]. 

Finally, in [Pedroni and Zio, 2015b] we have introduced a novel approach for updating, by means of 

data, the epistemic uncertainty in the non-probabilistic (interval-valued) parameters of the aleatory 

probability distributions of random variables. It is worth mentioning that this method has been 

developed in response to the Multidisciplinary Uncertainty Quantification Challenge (MUQC) 

proposed by the NASA Langley Research Center (LaRC) [Crespo et al., 2014]. In the developed 

approach, first a p-box for the random variable of interest is built by means of the empirical data 

available: to this aim, a non-parametric approach based on the well-known Kolmogorov-Smirnov 

(KS) confidence limits has been considered [Ferson and Tucker, 2006; Ferson et al., 2003, 2007 and 

2010]. Then, the updated (i.e., reduced) intervals of the epistemically-uncertain parameters are 

optimally determined as those that do not “contradict” the experimental evidence available: in 

practice, we retain only those parameter values that produce aleatory probability distributions which 

are “contained” within the KS bounds constructed on the basis of data. This method (originally 

developed for updating interval-valued parameters) can be easily extended to possibilistic 

parameters: actually, it can be repeatedly applied to each �-cut interval of a possibility function. 
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Finally, notice that the works [Lo et al., 2014a and b] under this research line have been done 

mainly within the Ph.D. thesis of Chung-Kung Lo (Ph.D. 4 in Section 4.3). 

A pictorial representation of the here considered and compared to address Issue 3 of research Axis 1 

is given in Figure 10, together with the corresponding applications and recommended approaches. 

Figure 10. Methods here considered and compared to address Issue 3 of research Axis 1, together 

with the corresponding applications and recommended approaches

6.1.3.4 Issue 4: Dependences among input variables and parameters 

In [Pedroni and Zio, 2013] (Paper II in the Appendix), we have systematically analyzed and 

quantified the effects of objective (aleatory) and state-of-knowledge (epistemic) dependences 

between the Basic Events (BEs) of a Fault Tree (FT) on the Top Event (TE) probability. In more 

details, the following analyses have been performed: 

i. the study of the effects of different states of objective dependence between the BEs, when 

the state of epistemic dependence between the BE probabilities is defined (in particular, the 

states of independence and of perfect, opposite, positive, negative and unknown objective 

dependence have been explored); 

ii. the study of the effects of different states of epistemic dependence between the BE 

probabilities when the state of objective dependence between the BEs is given (in particular, 
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the states of independence and of perfect and unknown epistemic dependence have been 

considered). 

To keep the analysis simple and thus retain a clear view of each step, the investigations have been 

carried out with respect to an example involving a FT with six BEs; different numerical indicators 

(e.g., exceedance probabilities, quantiles, etc.) have been considered to perform a fair and 

quantitative comparison between different states of objective and epistemic dependence and 

evaluate their effects on the TE probability. 

The results have shown that: 

i. the treatment of objective dependences among random BEs is very critical since they have a 

dramatic impact on the system risk measure (i.e., the TE probability), in particular if the 

corresponding BE probabilities are small (e.g., of the order of 10-3–10-2): this poses serious 

concerns in the risk assessment of complex, safety-critical systems where the components 

are highly reliable and, thus, characterized by very small failure probabilities. For example, 

neglecting a state of positive objective dependence between two BEs (i.e., the occurrence of 

one event favors the occurrence of the other) could lead to underestimating the TE 

probability even by 1-2 orders of magnitude. In this view, in absence of precise information, 

for the sake of conservatism unknown (or, at least, positive) objective dependence should be 

assumed among random events; 

ii. the conditions of epistemic dependence should not be neglected, in particular when small 

probabilities and extreme quantiles have to be estimated: for example, neglecting the state 

of perfect epistemic correlation between two BE probabilities could lead to underestimating 

the TE probability by a factor 1.5-2. With respect to that, in absence of precise information, 

unknown (or, at least, perfect) epistemic dependences should be assumed in order to obtain 

conservative estimates of the TE probability. On the other hand, notice that if objective 

dependences are also present, the effects of epistemic dependence are likely to be 

overwhelmed by those of objective dependence, since they are quantitatively less relevant

and critical. 

In the light of these results, for the sake of conservatism, the use of Fréchet bounds [Ferson et al., 

2004; Fréchet, 1935; Frank et al., 1987; Sadiq et al., 2008] and of the Distribution Envelop 

Determination (DEnv) [Berleant and Goodman-Strauss, 1998; Berleant and Zhang, 2004a, b; 

Berleant et al., 2003 and 2008] methods is strongly recommended to account for all kinds of 

(possibly unknown) objective and epistemic dependences, respectively. For further technical details 

the interested reader is referred to Paper II [Pedroni and Zio, 2013] reported in the Appendix. 
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A pictorial representation of the methods here considered and compared to address Issue 4 of 

research Axis 1 is given in Figure 11, together with the corresponding applications and 

recommended approaches. 

Figure 11. Methods here considered and compared to address Issue 4 of research Axis 1, together 

with the corresponding applications and recommended approaches 

As a closing comment, it is important to notice that although in most of the analyses above 

conservatism has been evoked as the main criterion of comparisons, we do not intend to overstate

the benefits of conservatism in itself. Actually, (i) being conservative just for the sake of 

conservatism can lead to misallocation of resources; (ii) excessive conservatism can bring the 

results of an entire analysis into question, as it makes the analysts appear to lack appropriate 

understanding of the problem under consideration (of course, the same holds for analyses based on 

inappropriately precise assumptions); (iii) there may be situations where a conservative assumption 

affecting one result in an analysis turns out to be a non-conservative assumption with respect to 

another result of the same analysis. Overly conservative assumptions can be as damaging to good 

decision making as overly optimistic assumptions (i.e., not objectively “anchored” to the available 

information). In an analysis performed to support an important decision, the appropriate goal is to 

be neither overly optimistic nor overly pessimistic in the assumptions used, but rather to provide a 
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full, objective and faithful description of the uncertainties that are present in the analysis and its 

results (actually, this is the main, driving reason for resorting to non-probabilistic approaches). 

6.2 Axis 2 – Safety-Critical Systems and Infrastructures: Advanced Methods 

for Modeling, Simulation and Analysis Considering Uncertainties 

This Section provides a complete overview on the research activities carried out under Axis 2. It 

starts by analyzing the problems to be addressed when assessing the risk, vulnerability and 

resilience of complex safety-critical systems and infrastructures in the presence of uncertainties 

(Section 6.2.1); then, it points out some conceptual and practical research issues associated to the 

modeling, simulation and analysis of their behavior and it critically surveys the corresponding 

possible solution approaches (Section 6.2.2); finally, it briefly summarizes the methodological and 

applicative contributions of the present work to each of the issues addressed (Section 6.2.3). 

6.2.1 Problem statement 

In Section 6.2.1.1, we synthetically summarize the main features of complex safety-critical systems 

and infrastructures and point out why these characteristics pose problems with respect to the 

assessment of relevant quantities, such as their associated risk, vulnerability and resilience (defined 

in the following Section 6.2.1.2). 

6.2.1.1 Safety-Critical Systems and Infrastructures 

Safety-critical industrial systems (e.g., nuclear and chemical plants) and infrastructures (e.g., civil, 

transportation, electric power, water, gas and communication systems) are complex systems 

composed by a multitude and variety of heterogeneous ‘elements’, that is, physical hard 

components (e.g., road, railway, pipelines, pumps, etc.), soft components (e.g., SCADA, 

information and telecommunication systems) and human and organizational components. The 

welfare of modern society relies on the continuous operation of such systems and infrastructures 

that are essential in providing goods (such as energy, water, data) and services (such as 

transportation, banking and health care) across local, regional and national boundaries [Gheorghe 

and Schlapfer, 2006; Kröger and Zio, 2011]. 

These systems and infrastructures are getting more and more automated, highly interconnected and 

mutually dependent in complex ways, due to their increasing extension on large scales and the 

progressive advances in Information and Communication Technology (ICT). For example, “today’s 

ability to run largely distributed power networks with a variety of generation technologies, e.g., 

nuclear, thermo, hydro etc., is only possible through the intense use of information and 
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communication systems” [Gheorghe and Schlapfer, 2006]. These elements lead to significant 

structural complexity. 

In addition, these systems and infrastructures also present a considerable dynamic complexity: 

i. they evolve and adapt themselves responding to environmental changes to continue 

providing for their functionality. Actually, self-organization and adaptive learning are 

dynamic properties of complex systems, which allow them to adjust its architecture and 

behavior into a stable coherent pattern under external pressures, using long-term memory 

experience feedback to anticipate future unfavorable changes in system functioning [NECSI 

2005]. In the electric power grid, for example, adaptive learning is a challenge-response 

property, which results from the trade-off between consumer involvement and control by the 

central authority in the energy management process: on one side, intense consumer 

involvement can initiate chaotic behavior in the electrical system; on the opposite side, 

strong control by the central authority renders the system rigid, missing opportunities for 

service efficiency and for exercising system resilience and adaptation capacity.  

ii. they show emergent behavior. Indeed, the overall, “macro” behavior emerges from the 

interactions among single parts of a complex system: in other words, synergies emerge 

from the interactions among these components and the whole critical system or 

infrastructure is more than the sum of its parts [Seth, 2008]. Electric power grids have also 

shown emergent behavior in the past, where local failures have evolved into unexpected 

cascade failure patterns with transnational, cross-industry effects. 

What emerges from the considerations above is the typical construct of a System of Systems (SoS), 

in which the systems forming the collaborative set of the SoS fulfill their purposes and are managed 

for their own purposes and the purposes of the whole SoS [Eusgeld et al. 2011; Zio and Sansavini 

2011b]. On one hand, these advanced, complex and dynamic configurations have increased the 

efficiency of such systems and infrastructures (e.g., the massive use of ICT systems provides better 

measurements, allows quicker operations, more powerful control schemes and broad access to data 

[Gheorghe and Schlapfer, 2006]); on the other hand, they have created new vulnerabilities to 

component failures, natural and manmade events. For example, recent incidents have shown that 

ICT systems can be vulnerable to cyber-attacks and that such attacks can lead to disruption of 

physical systems and networks [Peng et al., 2013; Netkachov et al., 2014]. In addition, a failure in 

one critical system or infrastructure can propagate to the others, possibly provoking (cascading) 

failures that generate large consequences well beyond the initial impact zone [Weron and 

Simonsen, 2006; Hines et al., 2009; Helbing, 2013]. Moreover, such failures may be triggered by 

multiple and diverse sources of hazards associated to exogenous and endogenous stressors that may 
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target the various heterogeneous parts of the complex system: e.g., natural events, terrorism, 

criminal activities, malicious behavior, market and policy factors, human factors and technical 

random failures of hard components [Amin, 2001; Zio, 2009]. 

Finally, such complex systems are affected by large uncertainties in the characterization of the 

failure and recovery behavior of their components, their interconnections and interactions: this 

makes the corresponding analysis a challenging task, because it requires to quantify the uncertainty 

and to predict how it propagates throughout the system [Apostolakis, 1990; Helton and Pilch, 2011; 

Aven and Zio, 2010; Zio and Aven, 2011].  

In summary, the safety-critical systems and infrastructures of interest to the present dissertation 

show several common characteristics (Figure 12) that make them: 

i. difficult to model and analyze: as Zio (2007) and Kröger (2008) point out, in order to 

address the structural and dynamic complexities of these systems under uncertainties, new 

methods for their modeling, simulation and analysis are needed, since “…the current 

quantitative methods of risk, vulnerability and resilience analysis seem not to be fully 

equipped to deal with the level of complexity inherent in such systems” [Zio, 2007, p. 505]; 

ii. difficult to control or operate reliably and efficiently [Amin, 2001], which raises concerns 

with respect to the risk, vulnerability and resilience properties characterizing such systems. 

Figure 12. Main characteristics of the safety-critical systems and infrastructures of interest to the 

present dissertation, and the corresponding related issues 

6.2.1.2 Risk, vulnerability and resilience 

Risk (and systemic risk) 

In general terms, risk describes the (future) consequences potentially arising from the operation of 

our systems and from our activities, and the associated uncertainty. Consequences are usually seen 
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in negative, undesirable terms with respect to the planned objectives. Accident scenarios are a 

relevant part of risk, in that they are those combinations of events potentially leading to the 

undesired consequences. The recent definition of risk in the glossary of the specialty group on 

“Foundations of Risk Analysis” of the Society for Risk Analysis (SRA), refers to the consequences 

of a future activity, e.g. the operation of a CI, where the consequences are with respect to something 

that humans value. The consequences are often seen in relation to some reference values (planned 

values, objectives, etc.) and the focus is normally on negative, undesirable consequences. There is 

always at least one outcome that is considered as negative or undesirable [SRA, 2015]. 

A classical metric adopted to describe Risk (R) is the following set of triplets [Kaplan and Garrick, 

1981]: 

{ }iii XPSR ,,= , (2)

where Si denotes i-th specific (mostly undesired/adverse) event or scenario leading to loss, damage 

or injury; Pi denotes the probability (frequency) of occurrence of that scenario; and Xi denotes the 

extent of the resulting consequences. These quantities (and their associated uncertainties) are 

considered as being numerically quantifiable [Kröger and Zio, 2011]: e.g., for CIs, risk can be 

computed as the loss of service with its resulting consequences for the people concerned. However, 

recent research and discussions on the foundational issues of risk assessment and management have 

led to a broader and more complete description of risk. This includes, besides the triplets of 

elements reported in (2), also the uncertainty Ui in the probabilities (frequencies) Pi and 

consequences Xi, in the light of the analyst’s (lack of) knowledge (K) on the problem and the system 

at hand (see previous Section 6.1). Then, the quantification of risk in (2) could be rewritten as: 

( ) ( ){ }KUXUPSR iiiii ,,= . (3) 

For thorough practical and conceptual discussions on the definition and quantification of risk the 

reader is referred to, e.g., [Aven, 2012a and b; SRA, 2015] among many others. 

Today’s critical systems and infrastructures are challenged by the disruptive influences of a 

complex mix of manmade and naturally occurring threats and hazards, including terrorist attacks, 

accidents, natural disasters, and other emergencies. With respect to this, systemic risk is the risk of 

having not just statistically independent failures, but interdependent, cascading failures in a network 

of interconnected system components [Helbing, 2013]. In such cases, a localized initial failure 

(‘perturbation’) could spread to other parts of the system and have disastrous effects and cause, in 

principle, unbounded damage. Large scale outages resulting from systemic risks on real-world CI 

systems are well documented; examples include blackouts in power grids [US-CA, 2004; UCTE, 

2007; Pidd, 2012], telecommunication outages [Newman et al., 2002], financial bankruptcy 

[Battiston et al., 2007], and catastrophic failures in socio-economic systems [Zhao et al., 2011; 
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Kempe et al., 2003]. This is strong motivation for investigating the global dynamics of systemic 

risks. 

Vulnerability 

Vulnerability is a concept that is used in many areas, but its definition is often ambiguous and 

sometimes misleading [Buckle et al., 2000; Dilley and Boudreau, 2001; Weichselgartner, 2001; 

Haimes, 2006]. The term vulnerability has been introduced as the hazard-centric perception of 

disasters for which the representation in terms of risk appears too limited. A hazard of low intensity 

could have severe consequences on a system, while a hazard of high intensity could have negligible 

consequences: the level of vulnerability of the system makes the difference. 

In the glossary of the specialty group on “Foundations of Risk Analysis” of the SRA, vulnerability 

of a system is referred to the degree to which a the system can be affected by a given specific risk 

source or agent [SRA, 2015]. Along this line, many definitions explicate vulnerability as the 

system’s overall susceptibility to loss due to a given negative, i.e., the magnitude of the damage

given a specific strain. In this view, vulnerability can be interpreted as a flaw or weakness in the 

design, implementation, operation and/or management of an infrastructure system or its elements, 

that: (i) renders it susceptible to destruction or incapacitation when exposed to a hazard or threat, or 

(ii) reduces its capacity to resume new stable conditions. In order for the vulnerability to be 

meaningful, it must be related to specific hazard exposures (see, e.g., [Dilley and Boudreau, 2001]). 

A system might thus be vulnerable to certain hazard exposures but robust to others [Hansson and 

Helgesson, 2003]. Then, the assessment of the overall vulnerability of a system requires an 

evaluation of the exposure to different kinds of hazards (e.g., intentional, random internal and 

natural) [Zio et al., 2012]: an all-hazard approach encompassing a general view on the hazards 

targeting a given system is, thus, needed [Pollet and Cummings, 2009; Waugh, 2005]. 

In the light of the definitions given above, the concept of vulnerability can be viewed mainly from 

two perspectives: 

1. the first perspective is related to a global technical system property, where the goal is the 

evaluation of the extent of adverse effects caused by the occurrence of a specific hazardous 

event (e.g., [Aven, 2007; Johansson and Hassel, 2010; Kröger and Zio, 2011]). For 

example, the vulnerability of an electric power system might be specified in terms of: (i) 

changes of network characteristics following attacks on nodes and the scale (e.g., number 

of nodes/lines lost) or the duration of the associated loss, or (ii) the frequency of major 

blackouts (number per year) and the associated severity, measured either in power lost or 

energy unserved (MW or MWh); 



85

2. the second perspective is related to critical parts or components of a system (e.g., 

[Apostolakis and Lemon, 2005; Latora and Marchiori, 2005]): in this view, a component is

a vulnerability of a system if its failure causes large negative consequences to that system 

[Johansson and Hassel, 2010]. 

In this dissertation, we define vulnerability as “the consequences that arise when a system is 

exposed to a hazardous event of a given type and magnitude” and we adopt both the above two 

perspectives for vulnerability analysis (see details in Section 6.2.3.1). 

Resilience 

In recent years, lessons learned from some catastrophic accidents have extended the focus on the 

ability of safety-critical systems and infrastructures to withstand, adapt to and rapidly recover from 

the effects of a disruptive event and, thus, the concept of resilience [Moteff 2012; Obama 2013]. 

The outcomes of the 2005 World Conference on Disaster Reduction (WCDR) confirmed the 

significance of the entrance of the term resilience into disaster discourse and gave birth to a new 

culture of disaster response [Cimellaro et al., 2010]. As a result, systems should not only be reliable 

(i.e., have an acceptably low failure probability), but also be able to recover from disruptions of the 

nominal operating conditions [Zio, 2009]. Government policy has also evolved to encourage efforts 

that would allow assets to continue operating at some level, or quickly return to full operation after 

the occurrence of disruptive events [Moteff, 2012]. As a consequence, resilience is nowadays 

considered a fundamental attribute for safety-critical systems and infrastructures that should be 

guaranteed by design, operation and management. 

Resilience comes from the Latin word “resilio” that literary means “to leap back” and denotes a 

system attribute characterized by the ability to recover from challenges or disruptive events. The 

Merriam-Webster dictionary defines resilience as “the ability to recover from or adjust easily to 

misfortune or change”. A recent definition of resilience is given in the glossary of the specialty 

group on “Foundations of Risk Analysis” of the SRA, in terms of: (i) the ability of the system to 

sustain or restore its basic functionality following a risk source or an event (even unknown); (ii) the 

sustainment of system’s operations and associated uncertainties, following a risk source or an event 

(even unknown) [SRA, 2015]. Various other definitions of “resilience” have been proposed for 

infrastructure and economic system analysis in the past decades with specific focus on diverse fields 

of application, such as seismic engineering and structural systems, ecological systems, economics 

and financial systems, service systems, telecommunication systems, urban infrastructures, disaster 

analysis for avoidance and recovery (see, e.g., [Bruneau et al., 2003; Reed et al., 2009; Cimellaro et 

al., 2010; Aven, 2011b; Henry et al., 2012] for some relevant examples): all these diverse 
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definitions conceptually refer to the ability of a system or an organization to react and recover from 

unanticipated disturbances and events. 

A more “operationalized” definition of resilience is instead given by McDaniels et al. (2007). This 

definition points out two key properties of resilience, namely robustness and rapidity. Robustness 

refers to a system’s ability to withstand a certain amount of stress with respect to the loss of 

functionality of the system, or as Hansson and Helgesson (2003) defines it: “the tendency of a 

system to remain unchanged, or nearly unchanged, when exposed to perturbations”. In this view, 

robustness can be seen as the antonym of the term vulnerability. Rapidity on the other hand refers to 

a system’s ability to recover from an undesired event with respect to the speed of recovery. Both 

aspects will be considered and quantified in the present dissertation. 

From a synthetic disaster management perspective, Figure 13 conceptually illustrates all the 

concepts mentioned (i.e., risk, vulnerability, robustness and resilience) and their characteristics with 

reference to the functionality curve �(t) of a safety-critical system or infrastructure. Notice that �(t) 

could be represented by different metrics depending on the type of analysis (e.g., the amount of 

flow or services delivered, the availability of critical facilities, the number of customers served, or 

the enabling potential of economic activities for infrastructure systems): for a power transmission 

network �(t) may represent the amount of electricity delivered to the demand nodes as a function of 

time. In the Figure, as said before, Si denotes a risk scenario (e.g., a disruptive event, such as an 

earthquake or a terroristic attack) happening at time te, Pi denotes the probability (frequency) of that 

scenario, iX  is the resulting consequence (functionality loss) and Ui is the uncertainty associated 

with Pi and iX . 

In this conceptualization, the vulnerability (V(Ui)) of the system, defined as “the consequences that 

arise when the system is exposed to a hazardous event of a given type and magnitude”, can then be 

represented precisely by the uncertain variable 

( ) ( ){ }iii UXUV = . (4)

Notice that the extent of the consequence is measured between the time te, where the disruptive 

event happens, and the time td, where the system reaches the minimal functionality. 

Another uncertain variable RB(Ui) denotes the robustness (defined as “the tendency of a system to 

remain unchanged, or nearly unchanged, when exposed to perturbations”) of the system under 

scenario Si. It is the residual functionality right after the disruptive event and can be represented by 

the following relation: 

( ) ( ) ( ){ }iii UXt�URB −= 0 (5)
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On the post-disruption recovery process (between times td and tr), TRE[�(tr), Ui] denotes the interval 

of time required for the system to recover a stable, target functionality level �TG = �(tr) (notice that 

�(tr) may be lower than the initial, optimal functionality �(t0)): this element represents the 

“temporal” dimension of resilience (recovery time). On the contrary, �RE(tr, Ui) refers to the 

“amount” of system functionality that has been actually restored at time tr: this element represents 

the so-called “spatial” dimension of resilience (functionality recovery). Therefore, the resilience 

RE(Ui) can be in all generality expressed as a “function” of the following couple: 

( ) ( )[ ] ( ){ }irREirREi Ut�Ut�TURE ,,,= . (6)

Figure 13. Illustration of the concepts of risk, vulnerability, robustness and resilience with 

reference to the functionality curve �(t) of a safety-critical system or infrastructure 

6.2.2 Issues and possible solution approaches: a critical literature survey 

The quantities (2)-(6) described in the previous Section 6.2.1 must be accurately and precisely

assessed in order to take rational decisions on the utilization of resources for protecting the safety-

critical systems and infrastructures of interest (possibly from different types of hazards), for 

reducing their associated risk and vulnerability and improving their safety and resilience. In general, 

the tasks outlined above are carried out by the following main steps (see Figure 1): 

1. Representation of the real system to capture its main features and provide a picture of the 

information needed to answer relevant questions. 

2. Mathematical modeling of the system (and corresponding implementation in a computer 

code) to provide: (i) an approximate description of the behavior of the real system 

dependent on a number of (input) hypotheses and parameters; (ii) the numerical outputs of 

interest (i.e., in this case the relevant risk, vulnerability and resilience metrics). 
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3. Simulation of the behavior of the system under various conditions of interest (e.g., 

operational transitions and accident scenarios) and quantitative evaluation of the 

corresponding critical outputs of interest (i.e., risk, vulnerability and resilience). 

4. Risk-informed decision making processes to (optimally) determine a set of protective 

actions to be taken in order to effectively reduce (resp., increase) the level of risk and 

vulnerability (resp., resilience) of the safety-critical systems under consideration. 

In the present dissertation, these steps have been analyzed under three research lines/issues: 

1. the first concerns the development of innovative methods of representation and modeling of 

Critical Infrastructures (CIs) (in particular, for energy production and transmission), for the 

analysis of their vulnerability and resilience (Section 6.2.2.1); 

2. the second deals with the design and implementation of innovative algorithms for the 

efficient risk assessment and/or reliability evaluation of highly-reliable engineered systems 

and infrastructures (in particular, for energy production and safety) (Section 6.2.2.2);  

3. the third is about the development of innovative decision making approaches for the multi-

criteria vulnerability analysis of safety-critical systems and infrastructures (in particular, for 

energy production) under uncertainty (Section 6.2.2.3). 

A pictorial representation of the three research issues explored under Axis 2 is given in Figure 14. 

Figure 14. Three conceptual and practical issues addressed under research Axis 2
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6.2.2.1 Issue 1: Development of innovative methods of representation and simulation of 

Critical Infrastructures (CIs), for the analysis of their vulnerability and resilience 

A broad spectrum of approaches exists for representation and modeling of Critical Infrastructures 

(CIs), for the analysis of their vulnerability and resilience. However, as previously highlighted in 

Section 6.2.1.1, the analysis of these CIs cannot be carried out only with classical methods of 

system decomposition and logic analysis, which seem not to be fully equipped to deal with the level 

of complexity inherent in such systems (see Figure 12). Thus, a framework is needed to integrate a 

number of methods capable of viewing the problem from different perspectives under the existing 

uncertainties [Zio, 2014b]. The main perspectives include [Zio, 2014b]: 

� Logical methods based on system analysis, hierarchical and logic trees, etc.; these methods 

are capable of capturing the logic of the functioning/disfunctioning of a complex system, 

and of identifying the combinations of failures of elements (hardware, software and human) 

which lead to the loss of the system function. 

� Structural/topological methods based on system analysis, graph theory, statistical physics, 

etc.; these methods are capable of describing the connectivity of a complex system and 

analyzing its effects on the system functionality, on the cascade propagation of a failure and 

on its recovery (resilience), as well as identifying the elements of the system which must be 

most robustly controlled because of their central role in the system. 

� Flow methods, based on detailed, mechanistic models (and computer codes) of the processes 

occurring in the system; these methods are capable of describing the physics of system 

operation, its monitoring and control. 

� Phenomenological/Functional methods, based on transfer functions, state dynamic 

modeling, input-output modeling and control theory, agent-based modeling etc.; these 

methods are capable of capturing the dynamics of interrelated operation between elements 

(hardware, software and human) of a complex system and with the environment, from which 

the dynamic operation of the system itself emerges.

A brief literature survey on these approaches is given in what follows. 

Logical methods 

Several types of system representation and modeling approaches exist in literature and they rely 

mainly on a hierarchy or graph structure. 

Hierarchical Modeling has been often adopted to represent and model complex systems, since many 

organizational and technology-based systems are hierarchical in nature. This approach can be based 

on different perspectives, e.g., functional, technical, organizational, geographical, political, etc., and 
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can allow simplifying the modeling process and the ultimate management of the system as a whole 

[Haimes, 2012]. 

Hierarchical functional models include Goal Tree Success Tree (GTST) – also combined with 

Master Logic Diagram (MLD) – and Multilevel Flow Modeling (MFM). The GTST is a functional 

hierarchy of a system organized in levels starting with a goal at the top; the MLD, developed and 

displayed hierarchically, instead shows the “structural” relationships among independent parts of 

the systems: the combined GTST – MLD provides a powerful functional-structural description 

method. Finally, the dynamic version of the approach, namely the GTST – Dynamic MLD (GTST-

DMLD), allows describing also the temporal behavior of the systems [Hu and Modarres, 2000]. 

Notice that the GTST-DMLD has been considered and applied also in the present thesis (for details, 

see Section 6.2.3.1 and Paper III [Ferrario et al., 2015a] in the Appendix). Multilevel Flow Models, 

developed in the field of artificial intelligence, have been proposed for qualitative reasoning, i.e., 

for representing and structuring knowledge about physical phenomena and systems. They consider 

cause-effect relations and facilitate the reasoning at different levels of abstraction on the basis of 

“means-end” and “whole-part” decomposition and aggregation procedures. Goals, functions and 

flow of material, energy and information are connected to form a hyper graph. They are mainly 

used for measurement validation (e.g., for checking the measurement of a mass or energy flow), 

alarm analysis (e.g., for the identification of primary and secondary alarm), and fault diagnosis (i.e., 

for the identification of the consequences and the root causes of a disturbance in the system 

functioning) [Lind, 2011 and 2012]. 

This “logical” perspective includes also: (i) risk analysis approaches that evaluate the result of 

adverse events affecting a system by means of the potential negative consequences and their 

associated likelihoods, and it provides suggestions on how to reduce vulnerability, improve 

resilience and mitigate consequences, and (ii) probabilistic modeling adopted for the 

characterization of CIs. Risk analysis is carried out by qualitative [Moore, 2006; Piwowar et al., 

2009] and quantitative assessments [Apostolakis and Lemon, 2005; Flammini et al., 2009] with the 

further goal of ranking system components on the basis of their criticality [Koonce et al., 2008]. 

Traditional methods for risk analysis, e.g., Fault and Event Tree methodology and core methods of 

Probabilistic Risk Assessment (PRA), have been applied to the vulnerability analysis of CIs for 

protecting the systems against malevolent actions [Piwowar et al., 2009]. These hierarchical trees 

are commonly used to identify: (i) the initiating causes of a pre-specified, undesired event or (ii) the 

accident sequences that can generate from a single initiating event. These approaches comprise 

step-by-step processes typical of PRA [Kröger and Zio, 2011]. However, they imply drawbacks for 

use on safety-related issues of large-scale infrastructures due to: “i) the high complexity and 
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interconnectedness of modern CIs that cannot be adequately modeled; ii) all kinds of human factors 

and the full spectrum of threats, including malicious behavior and attacks that cannot be taken into 

account; iii) the dynamic or even the non-linear behavior of systems that cannot be easily handled; 

and iv) independence from contextual factors that has to be assumed” [Kröger, 2008]. Probabilistic 

modeling approaches include Markov Chains, Markov/Petri nets and Bayesian networks. The first 

two rely on the definition of transition probabilities of the system components among their 

reachable states. An achieved configuration of the component states determines the system state. A 

limitation of these methods is the exponential growth of the possible configuration of the system 

when the number of components increases and/or the number of states for each component is high. 

Bayesian networks can be used for modeling and predicting the behavior of a system, based on 

observed stochastic events. Drawbacks of this methodology arise from its complexity that leads to 

significant efforts in logic modeling and quantification, and from the limited capability of providing 

an exhaustive analysis. 

Structural/topological methods 

This class of approaches models the interdependent CIs on the basis of their topologies under 

different types of hazards [Ouyang, 2014]. They represent CIs by graphs (actually, they are 

network-based approaches) where the nodes are the components and the links are the physical and 

relational connections among them. These topology-based methods consider two possible states for 

the components (failed and functioning), and can measure the strength of the connections by 

including weighted links. For network theoretical studies of CIs, only the most fundamental parts of 

the infrastructure are usually modelled, i.e., the structural properties of the system that facilitates 

the physical transportation of the services they provide. On the contrary, in general no or limited

functional aspects of the network are modelled. Topological analysis based on complex network 

theory can unveil relevant properties of the structure of a network system [Albert et al., 2000; 

Strogatz, 2001] by: (i) highlighting the role played by its components, (ii) making preliminary 

vulnerability assessments based on the simulation of faults (mainly represented by the removal of 

nodes and arcs) and the subsequent re-evaluation of the network topological properties and (iii) 

guiding and focusing further detailed analyses of critical areas [Crucitti et al., 2006; Zio et al., 

2008]. Notable studies concerned with the structural analysis and assessment of the vulnerability 

among the CIs sector include structural vulnerability of urban transport networks� [Masucci et al., 

2009], vulnerability of power grids [Bompard et. al., 2009; Crucitti et al. 2005; Holmgren 2006; 

Hines and Blumsack, 2008; Eusgeld et al., 2009] and the Internet links [Latora and Marchoiri, 

2005]. Although simple graph models are common ways to represent and analyze CI networks, 
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parts of physical properties can also be incorporated into the structure representation of realistic CI 

systems (e.g., electrical power infrastructure) [Hines and Blumsack, 2008; Cotilla-Sanchez et al., 

2012]. Many performance metrics can be quantified, e.g., number of normal or failed components, 

connectivity loss, fraction of costumers affected, lost service hour, and they can be used to evaluate

interdependent effects to facilitate the assessment of mitigation actions and cascading failure 

consequences [Ouyang, 2014]. 

In real CI networks another importance dimension to add to the vulnerability characterization is the 

dynamics (i.e., processes going on within networks) of flow of the physical quantities in the 

network. This entails considering the interplay between structural characteristics and dynamical 

aspects, which makes the modeling and analysis very complicated since the load and capacity of 

each component and the flow through the network are often highly variable quantities both in space 

and time [Kröger and Zio, 2011]. This is particularly relevant in the study of cascading failures. 

Several models have been developed to capture the basic dynamic features of CI networks within a 

(weighted) topological analysis framework (see, e.g., [Watts, 2002; Motter and Lai, 2002; Holme et 

al., 2002; Motter, 2004; Crucitti et al., 2004; Kenney et al., 2005; Li et al., 2013]). Among these 

approaches, the well-known Motter-Lai (ML) model will be considered and applied in the present 

dissertation (for details, see Section 6.2.3.1 and Paper IV [Fang et al., 2015b] in the Appendix). In 

all these approaches, the dynamics of cascading is only related to statistical topological (structural) 

properties of the networks (e.g., the network connectivity). Nevertheless, these abstract modelling 

paradigms allow a preliminary analysis the system response to cascading failures and can be used to 

guide a successive more detailed simulation focused on the most relevant physical processes and 

network components. Despite their apparent simplicity, these models provide indications on the 

elements criticality for the propagation process [Zio and Sansavini, 2011a] and on the actions that 

can be performed in order to prevent or mitigate the undesired effects [Motter, 2004]. In addition, 

they have the advantage of modelling cascading dynamics with few parameters, so that their 

application to realistic, large-scale systems is feasible and certainly computationally cheap. On the 

other hand, they abstract the physical laws regulating the flows in the system: in other words, they 

cannot give sufficient information about the flow performance of the system, which is instead 

analyzed by flow-based methods. 

Flow-based methods 

This class of approaches models the interdependent CIs on the basis of their flow patterns under 

different types of hazards [Ouyang, 2014]: in other words, explicit consideration is given to the 

mathematical equations governing the physical flows of electricity, gas, water, data, etc., through 
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the CI connections. As the structural/topological methods, they represent CIs by networks (they are 

network-based approaches too). These methods can be based on uniform network descriptions [Lee 

et al., 2007], physical rules that provide a more realistic modeling on interdependencies [Ouyang et 

al., 2009], oriented stochastic modeling methods [Bobbio et al., 2010], dynamic functional model 

[Trucco et al., 2012], maximum flow model [Nozick et al., 2005], and others [Ouyang, 2014]. They 

capture the flow characteristics of interdependent CIs, identify critical component, and suggest 

improvement for the emergency protection; however, their computational cost can be prohibitive

when the components and links are described in detail [Ouyang, 2014]. 

Of particular interest to the present thesis are the physics-based flow models of cascading failures. 

There are many models of cascading failure selecting and approximating a modest subset of the 

many physical and engineering mechanisms of the system under study. Taking the study of 

cascading failures in electrical power grids as an example, the so-called Manchester model [Nedic 

et al., 2006] is a fairly detailed blackout model based on AC power flow simulation. The Hidden 

failure model [Wang and Thorp, 2001] is based on the hidden failure theory and tends to simulates 

hidden relay failures probabilistically, taking into account the DC power flow constraint of the 

network. In addition, some researchers [Iyer et al., 2009; Wang et al., 2012] provide Markov-

transition models for cascading failure in power grids, where the transition probabilities among 

states are derived from a stochastic model for line overloading using a stochastic flow redistribution 

model based upon DC power-flow equations. However, the state space of Markov-based model is 

large, as it requires tracking the functionality status of transmission lines and power flow 

information; in addition, due to the analytical complexity of the time-varying transition 

probabilities, the analytical and asymptotic characterization of probabilistic metrics (such as the 

blackout probability and distribution of the blackout size) is not possible. Finally, researchers at 

Oak Ridge National Laboratory (ORNL), Power System Engineering Research Center (PSerc) of 

Wisconsin University, and Alaska University (Alaska) have proposed a landmark study for blackout 

modelling in power grids, called the ORNL-PSerc-Alaska (OPA) model [Dobson et al., 2001]. The 

OPA model is built upon the Self-Organized Criticality (SOC) theory and DC power flow 

attributes. It contains two different time scale dynamics, i.e., power flow dynamics and power grid 

growth dynamics, and reveals the complexity and criticality of power systems. The OPA model 

seeks to faithfully describe the dispatching dynamics of the power flows during the evolution of the 

failure propagation following the initial disturbances, by explicitly incorporating the standard DC 

power flow equations and minimizing generation costs and load shedding [Dobson et al., 2001]. Till 

now, only ideal cases (such as tree networks) and real networks with a small number of nodes (�

100) have been treated by means of the OPA model [Carreras et al., 2002]. Large networks and the 
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influence of the topology on the dynamics of the model have not been studied yet. Notice that also 

the OPA model will be considered and applied in the present dissertation (for details, see Section 

6.2.3.1 and Paper IV [Fang et al., 2015b] in the Appendix). 

Finally, notice that embracing these more physical descriptions (and solving the corresponding 

constrained optimization functions associated to the model) results in a significant increase in the 

computational burden, rendering practical application extremely difficult for realistic networks with 

large numbers of elements [Sun and Han, 2005]. 

Phenomenological/Functional methods 

This category of methods includes i) agent based model, ii) system dynamic model, iii) economic-

based approaches, iv) others (e.g., dynamic control system theory and high level architecture). 

Agent based modeling is a simulation methodology coming from the field of complexity science. It 

is used to evaluate the dynamic operational behavior of infrastructure network and its associated 

economic entity. An agent based model is composed by three elements: i) agents, i.e., technical and 

non-technical components, ii), environment, i.e., abstract space where the agents can interact, and 

iii) rules, i.e., behavior patterns for the agent and the environment, they can include physical law. 

The behavior of the infrastructure emerges from the behaviors of the individual agent and their 

interactions [Kröger and Zio, 2011]. The main advantages of the agent based modeling are the 

possibility of representing heterogeneous components and capturing all types of interdependencies 

among CIs, capturing the emerging behavior, create a space where the agents interact according to 

distance, provide a scenario-based what-if analysis and the effectiveness assessment of different 

control strategies, and can be also integrated with other modeling technique to provide more 

comprehensive analysis [Borshchev and Filippov, 2004]. However, two main limitations are with 

respect to i) the challenge of calibrating the simulation parameters due to the lack of significant data 

and the difficulties in model the agent behavior, and ii) the dependence of the quality of the 

simulation on the assumptions made that are difficult to justify theoretically and statistically 

[Ouyang, 2014]. 

System dynamic models take a top-down analysis for interdependent CIs to characterize their 

functions such as production, transmission and consumption. It uses a series of differential 

equations to describe the system level behaviors of the CIs. The key concepts are i) feedback loops 

to indicate connection and direction of effects between CIs components, ii) stocks to represent the 

states of the system and iii) flow rates between stocks. Several are the advantages of this approach: 

for example, it allows capturing important causes and effects under disruptive scenarios, providing 

investment recommendations, and including multi-attribute utility functions to compare protection 



95

strategies. On the contrary, they cannot analyze component-level dynamics (such as change of 

infrastructure topologies), it is difficult to calibrate parameters (huge amount of data are needed) 

and perform a validation of the model [Ouyang, 2014]. 

Economic-based approaches include two types of economic theories employed to model CIs 

interdependencies: input-output model and computable general equilibrium. The first one is based 

on a static and linear model whose output is interpreted as the risk of inoperability of a CI, i.e., its 

inability to perform its function. It is based on the large-scale databases and measures the 

interdependencies among infrastructure sectors by economic relationships. The input-output model 

allows analyzing the propagation of perturbations between interdependent infrastructures and, thus, 

implementing effective mitigation strategies; in addition, it can provide analytical solutions that 

facilitate the sensitivity analysis of parameters [Ouyang, 2014]. However, it cannot analyze the 

interdependencies at component levels and it can give a good approximate result only when the 

disturbances have small impact on the economic sectors (since the interdependent matrix is derived 

from economic database and its elements measure the interdependent strength in normal economic 

operations), otherwise it will provide large errors [Ouyang, 2014]. The computable general 

equilibrium is an extension of the input-output model to capture nonlinear connections among CIs. 

Other approaches exist like dynamic control system theory [Casalicchio et al., 2011] and high level 

architecture that integrate all the other methods (e.g., agent based modeling) [Eusgeld et al., 2011; 

Wang et al., 2011]. 

These phenomenological approaches have not been taken into account in the present dissertation. 

6.2.2.2 Issue 2: Design and implementation of innovative algorithms for the efficient risk 

assessment and/or reliability evaluation of highly-reliable engineered systems and 

infrastructures 

Once a representation and a mathematical model of the safety-critical engineered system and/or 

infrastructure of interest is available (previous Section 6.2.2.1), its behavior has to be simulated

under various conditions (e.g., operational transitions and accident scenarios) and the corresponding 

critical outputs of interest (i.e., risk/reliability, vulnerability and resilience) have to be quantitatively 

evaluated. In practice, as highlighted in Section 6.2.1.1, real-world engineered systems and 

infrastructures are: (1) dynamic, i.e., their state changes (deterministically and/or stochastically) in 

time; (2) hybrid, i.e., they are characterized by both discrete and continuous variables (e.g., 

components’ discrete states, like functioning, failed, standby, and continuous physical quantities, 

like temperatures, pressures and flow rates); (3) complex, i.e., they are described by a large number 

of components, variables and parameters related by highly nonlinear dependences and 

interconnections. 
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These real-world system features rarely allow solving the models for risk assessment and reliability 

evaluation with uncertainty propagation analytically. On the other hand, Monte Carlo Simulation 

(MCS) methods offer a feasible means [Zio, 2013]. The basic idea is to:  

i. randomly generate a large number of possible system evolutions, including the undesired 

chains/sequences of events (scenarios Si, i = 1, 2, …) possibly leading to system disturbance 

and/or failure. Correspondingly, quantify the extent of the undesired consequences Xi of the 

accident scenarios Si, i = 1, 2, …; 

ii. estimate the corresponding probabilities (frequencies) Pi as the fraction of the number of 

simulations that end in a (failure) scenario/state of interest. 

While MCS makes it possible to assess the risk and/or reliability of a complex system or 

infrastructure, it presents some drawbacks (Figure 15): 

1. The necessity to introduce the time dimension into the analysis leads to a dramatic increase 

in the size of the system state space (and, thus, in the number of possible scenarios), which 

makes its thorough exploration impossible in practical cases of real, complex systems 

characterized by hundreds of (discrete-state) components and associated (continuous) 

physical quantities. 

2. When an accident scenario of interest is very rare, a large number of simulations of the 

complex system must be carried out to estimate the probability of that scenario with 

sufficient statistical accuracy and precision [Schueller, 2009]: this is a typical situation 

when dealing with highly-reliable engineered systems and with extreme events or “black 

swans” [Zio, 2014a; Aven, 2013 and 2015; Aven and Krohn, 2014].  

3. The computational cost associated to the simulation of the complex system behavior can be 

very high, e.g., it may take hours or even days to run one single scenario in some particular 

applications: typical examples are represented by Finite Element Models (FEMs) used in 

structural reliability analysis, by the computer code RELAP5-3D used to describe the 

thermal-hydraulic behavior of nuclear systems and by the detailed power flow models 

employed to simulate the behavior of electrical power networks [Fong et al., 2009; Perez et 

al., 2011; Dobson et al., 2001]. 

4. If the simulation of the behavior of the system of interest requires the propagation of hybrid

(aleatory and epistemic) uncertainty through the mathematical model, then the 

computational burden is increased even more dramatically: actually, in such a case families

of probability models have to be propagated for each uncertain model input parameter (see 

Section 6.1). 
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These problematic features call for advanced simulation techniques that allow performing efficient

and robust (i.e., accurate and precise) risk assessments and/or reliability evaluations for highly-

reliable engineered systems and infrastructures, while reducing the associated computational cost. 

Figure 15. Problems related to the efficient risk assessment and/or reliability evaluation of highly-

reliable engineered systems and infrastructures (Issue 2, Axis 2) 

In this dissertation, the above mentioned computational challenge is tackled in two different ways: 

from one side, efficient random sampling techniques are employed to perform robust estimations 

with a limited number of input samples drawn (and associated low computational time); from the 

other side, fast-running, surrogate regression models (also called response surfaces or meta-

models) are used to replace the long-running system model code in the risk assessment and 

reliability analysis. A critical literature survey on these two classes of methods is reported in what 

follows. 

Advanced random sampling methods 

The computational hurdles described in the previous Section can be tackled from one side by 

resorting to efficient simulation techniques that perform accurate and precise estimations of the 

(small) probabilities of rare failure events and scenarios associated to highly-reliable systems and 

infrastructures with a limited number of random samples. 

To this aim, the Importance Sampling (IS) method has been introduced, whereby a suitable 

Importance Sampling Density (ISD) is chosen so as to favor the MC samples to be near the failure 

region, thus forcing the rare failure event/scenario to occur more often [Au and Beck, 2003a; Au, 

2004]. In this regard, it is possible to show that there exists an optimal ISD so that the variance of 

the MC estimator is zero. Unfortunately, this optimal ISD is not implementable in practice, since its 

analytical expression depends on the unknown failure probability itself. With respect to that, several 

techniques in various fields of research have been proposed to reduce some distances between the 
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instrumental ISD and the optimal one: see, e.g., the Adaptive Kernel (AK) [Au and Beck, 1999; 

Morio, 2012], the Cross-Entropy (CE) [Rubinstein and Kroese, 2004; De Boer et al., 2005; Botev 

and Kroese, 2008], the Variance Minimization (VM) [Asmussen and Glynn, 2007] and the Markov 

Chain Monte Carlo-Importance Sampling (MCMC-IS) [Botev et al., 2013b] methods. 

Another possible approach is Stratified Sampling [Helton and Davis, 2003; Munoz Zuniga et al., 

2011]. This technique requires dividing the sample space into several non-overlapping subregions 

(referred to as “strata”) and calculating the probability of each subregion; the (stratified) sample is 

then obtained by randomly sampling a predefined number of outcomes from each stratum [Helton 

and Davis, 2003; Cacuci and Ionescu-Bujor, 2004]. By so doing, the full coverage of the sample 

space is ensured while maintaining the probabilistic character of random sampling. A major issue 

related to the implementation of Stratified Sampling lies in defining the strata and calculating the 

associated probabilities, which may require considerable a priori knowledge. As a remark, notice 

that the widely used event tree techniques in nuclear reactor PRA can be seen as defining and 

implementing Stratified Sampling of accident events and scenarios [Cacuci and Ionescu-Bujor, 

2004]. 

A popular compromise between plain random sampling (i.e., standard MCS) and 

Importance/Stratified Sampling is offered by Latin Hypercube Sampling (LHS), which is 

commonly used in PRA [Morris, 2000] for efficiently generating random samples [Helton and 

Davis, 2003; Sallaberry et al., 2008]. The effectiveness of LHS, and hence its popularity, derives 

from the fact that it provides a dense stratification over the range of each uncertain variable, with a 

relatively small sample size, while preserving the desirable probabilistic features of simple random 

sampling; moreover, there is no necessity to determine strata and strata probabilities like in 

Stratified Sampling [Helton and Davis, 2003]. For these reasons LHS is frequently adopted for 

efficiently propagating uncertainties in PRA problems [USNRC, 1990; Hofer et al., 2002; 

Krzykacz-Hausmann, 2006; Helton and Sallaberry, 2009]. On the other hand, LHS is very efficient 

for estimating mean values and standard deviations in complex reliability problems [Olsson et al., 

2003], but only slightly more efficient than standard MCS for estimating small failure probabilities 

[Pebesma and Heuvelink, 1999], like those expected for complex, safety-critical engineered systems 

and infrastructures. 

In the Subset Simulation (SS) approach, the small probability of an extreme failure event/scenario is 

expressed as a product of conditional probabilities of some chosen intermediate and thus more 

frequent events [Au and Beck, 2001; Au and Beck, 2003b; Ching et al., 2005; Au et al., 2007; Zio 

and Pedroni, 2009b and 2010b; Cadini et al., 2012; Au and Wang, 2014]. The problem of 

evaluating the small probabilities is thus tackled by performing a sequence of simulations of more 
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frequent events in their conditional probability spaces; the necessary conditional samples are 

generated through successive Markov Chain Monte Carlo (MCMC) simulations [Metropolis et al., 

1953], in a way to gradually populate the intermediate conditional regions until the final failure 

region is reached. A similar concept is exploited by the so called splitting methods [Botev and 

Kroese, 2012; Botev et al., 2013a; Murray et al., 2013]. 

In the Line Sampling (LS) method, lines (instead of random points) are used to probe the failure 

domain of the high-dimensional system state space under analysis [Schuëller and Pradlwarter, 2007; 

Zio and Pedroni, 2009c, 2010a,b; Valdebenito et al., 2010]. An “important direction” is optimally 

determined to point towards the failure domain of interest and a number of conditional, one-

dimensional problems are solved along such direction, in place of the high-dimensional problem 

[Pradlwarter et al., 2005]. The approach has been shown to perform significantly better than 

standard MCS in a wide range of risk assessment and reliability analysis applications in the 

structural, nuclear and aerospace fields [Koutsourelakis et al., 2004; Schueller et al., 2004; 

Pradlwarter et al., 2005 and 2007; Schueller and Pradlwarter, 2007; Valdebenito et al., 2010; Zio 

and Pedroni, 2009c; 2010a, b; 2012]. 

The above mentioned algorithms have shown to provide outstanding performances in static

problems, whereas their applicability to complex dynamic systems is not fully demonstrated. 

Methods explicitly designed for dynamic reliability analysis and risk assessment have been 

proposed in the literature [Labeau, 1996], and consistently developed through years [Labeau et al., 

2000]. In particular, Integrated Deterministic and Probabilistic Safety Assessment (IDPSA) is 

currently employed to take into account time-dependences in the evolution of the dynamic system 

and to probe the corresponding event sequence space for identifying unknown unreliability, 

unexpected scenarios and critical configurations [Zio, 2014a]. In this context, in [Zhu et al., 2006] 

advancements in the dynamic reliability field have been brought by including software behavior 

into the analysis and using an entropy-driven criterion to intelligently guide and force the simulation 

of scenarios of interest. [Hu et al., 2004] proposed methods that focus the exploration efforts, i.e. 

the simulations, on those scenarios having more uncertain outcomes (i.e., a higher number of end 

states). For this purpose, they exploited a function based on negative entropy for assessing the 

uncertainty in the simulation outcomes and a Bayesian scheme for updating the knowledge gathered 

by the simulations [Hu, 2005]. [
epin and Mavko, 2002] and [Rao et al., 2009] evaluate system 

failure probabilities by resorting to dynamic fault trees. A method exploiting Dynamic Event Tree 

(DET) and Monte Carlo simulation is proposed in [Li et al., 2010 and 2011] to force the stochastic 

system simulation to a failure state and to retrieve the corresponding probability by means of a 
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biasing approach similar to that of Importance Sampling. In [Catalyurek et al., 2010] and [Aldemir, 

2013] an efficient framework is proposed for the exploration of the state space of dynamic, hybrid 

and complex systems and the assessment of the corresponding state probabilities; however, an 

acceptance threshold on the probabilities is introduced to avoid an explosion of the number of 

system analysis, making these approaches prone to neglect events with small failure probabilities. 

Finally, Sequential Monte Carlo simulation has recently captured the attention of many researchers 

due to its rigorous consistent mathematical formulation and its possibility of dealing with rare 

events [Cérou et al., 2012] and large hybrid dynamic systems [Blom et al., 2006; Cassandras and 

Lygeros, 2006]. 

Fast-running surrogate regression models (or meta-models) 

Another viable approach to overcome the computational burden associated to the risk assessment 

and reliability analysis of highly-reliable safety-critical systems and infrastructures is that of 

resorting to fast-running, surrogate regression models, also called response surfaces or meta-

models, to approximate the input/output function implemented in the long-running system model 

code, and then substitute it in the system analysis [Storlie et al., 2008]. Because calculations with 

the surrogate model can be performed quickly, the problem of long simulation times is 

circumvented. 

The construction of such a surrogate model entails running a reduced number of expensive 

simulations (e.g., few hundreds) for specified “exemplary” system operating conditions and 

collecting the corresponding system response. Then, statistical techniques are employed for 

“fitting” the response surface to the “exemplary” data generated in the previous step: by so doing, 

the meta-model is “trained” to reproduce the behavior of the original long-running computer model. 

Several examples can be found in the open literature concerning the application of surrogate meta-

models in risk assessment and reliability analysis problems. In [Bucher and Most, 2008; Liel et al., 

2009; Bai et al., 2014], polynomial Response Surfaces (RSs) are employed to evaluate the failure 

probability of structural systems, whereas in [Arul et al., 2009; Fong et al., 2009; Mathews et al., 

2009], they are employed for performing the reliability analysis of emergency passive safety 

systems in advanced nuclear reactors. In [Deng, 2006; Hurtado, 2004 and 2007; Cardoso et al., 

2008; Cheng et al., 2008], learning statistical models such as Artificial Neural Networks (ANNs), 

Radial Basis Functions (RBFs) and Support Vector Machines (SVMs) are trained to provide local 

approximations of the failure domain in structural reliability problems. In [Zio et al., 2010; Pedroni 

et al., 2010] ANNs are used for the estimation of the failure probability of emergency safety 

systems in nuclear reactors. 
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In the same line of research, Gaussian process models and kriging are very promising. They assume

that the computer model behaves as a realization of a Gaussian random process whose parameters 

are estimated from the available computer runs [Bichon et al., 2008; Picheny et al., 2010; Bect et 

al., 2012]. Applications of Gaussian meta-models to realistic risk assessment problems in several 

engineering domains can be found, e.g., in [Marrel et al., 2009, 2015a and b; Volkova et al., 2008]. 

In addition, Polynomial Chaos Expansion (PCE) and Stochastic Collocation (SC) methods expand 

the system response as a truncated series of properly selected basis functions, “calibrated” by means 

of the available computer experiments [Ng and Eldred, 2012]. In particular, PCE surrogates the 

original, long-running computer model with a series of orthonormal polynomials that are chosen in 

coherency with the probability distributions of the uncertain model input parameters [Ghanem and 

Spanos, 1991; Sudret, 2008; Blatman and Sudret, 2010; Kersaudy et al., 2015; Schobi et al., 2015; 

Sudret and Mai, 2015]. Instead, SC is a stochastic expansion method which constructs 

multidimensional interpolation polynomials over the system responses evaluated at a structured set 

of collocation points [Babuska et al., 2007; Ng and Eldred, 2012]. 

On the other hand, notice that the approximation of the system output provided by an empirical 

regression model introduces an additional source of (model) uncertainty, which needs to be 

evaluated, particularly in safety critical applications like those of interest to the present dissertation. 

One way to do this is by resorting to bootstrapped regression models [Efron and Thibshirani, 1993], 

i.e., an ensemble of regression models constructed on different data sets bootstrapped from the 

original one [Zio, 2006; Storlie et al., 2009]. The bootstrap method is a distribution-free inference 

method which requires no prior knowledge about the distribution function of the underlying 

population [Efron and Thibshirani, 1993]. The basic idea is to generate a “bootstrapped data set” by 

random sampling with replacement from the original set of input-output examples available [Efron 

and Thibshirani, 1993]: each of these bootstrapped data sets is used to build a bootstrapped 

regression model which is used to calculate the quantities of interest (e.g., in this case the risk 

and/or reliability associated to the safety-critical system of interest). This allows quantifying, e.g., in 

terms of confidence intervals, the (model) uncertainty associated to the estimates provided by the 

meta-models [Efron and Thibshirani, 1993]. 

Finally, it is worth mentioning that other effective strategies combining advanced MCS methods 

with metamodeling have been proposed in the literature for reducing the computational efforts 

related to the assessment of the probabilities of rare events/scenarios: in such approaches the meta-

model is typically constructed and iteratively refined (by means of samples intelligently generated 

by the advanced MC scheme) until a desired level of accuracy in the failure probability estimate is 
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achieved: see, e.g., [Romero et al., 2004; Echard et al., 2011 and 2013; Bourinet et al., 2011; 

Balesdent et al., 2013; Dubourg et al., 2013; Dubourg and Sudret, 2014; Fauriat and Gayton, 2014; 

Cadini et al., 2014a, b and 2015]. 

6.2.2.3 Issue 3: Development of innovative decision making approaches for the multi-criteria 

vulnerability analysis of safety-critical systems and infrastructures under uncertainty 

As highlighted in the previous Sections, a broad spectrum of approaches has been proposed for the 

(efficient) assessment of the risk, vulnerability and resilience associated to safety-critical systems 

and infrastructures. Once these estimates are available, an “informed” Decision Making (DM) 

process has to be carried out to: 

i. compare the performances of different systems, rank them and possibly identify the 

preferred ones (for example, in the context of interest to the present dissertation the 

objective would be to identify the less risky/vulnerable and/or more resilient system 

configurations); 

ii. optimally determine sets of protective actions that can improve the overall situation, i.e., that 

can effectively reduce (resp., increase) the level of risk and vulnerability (resp., resilience) 

of the (group of) safety-critical systems or infrastructures under consideration. 

In this Section, we will be mainly concerned with the vulnerability of safety-critical systems and 

infrastructures and use it as the driving criterion for the DM process. 

In order to perform activities (i) and (ii) listed above, several issues need to be addressed (Figure 

16): 

1. DM problems typically present multiple and conflicting objectives (e.g., minimizing system 

vulnerability while minimizing protective actions costs); 

2. DM problems typically present multiple attributes and criteria to be considered for the 

evaluation and ranking of the alternative system configurations available and the selection of 

the preferred ones (e.g., the vulnerability of a power production site to a malevolent external 

attack could be evaluated on the basis of several attributes like the number of accesses to the 

site, the level of control at the entrance, the preparedness of the workers, the level of 

redundancy in the safety and security systems, etc.); 

3. as highlighted in Section 6.2.1.2, the assessment of the overall vulnerability of a safety-

critical system requires an evaluation of the exposure to different kinds of hazards: i.e., 

malevolent acts, accidental and natural occurrences should be all considered [Waugh, 2005; 

Pollet and Cummins, 2009; Zio et al., 2012]. Yet, these different hazards require a different

analytical treatment. Random accidents, natural failures and unintentional man-made 



103

hazards are typically known and categorized by emergency planners. Their occurrence can 

be typically modeled within a probabilistic framework typical of classical risk assessment 

approaches. Conversely, terrorism is a hazard that eludes quantification by probability 

theory due to the intentional and malevolent planning it implies [Zio et al., 2012]; 

4. in the case of intentional hazards due to malevolent acts, two additional issues need to be 

taken into account: (a) terroristic attacks are typically characterized by important 

consequences but low probabilities (frequencies): thus, the (very scarce and diverse) ‘pieces 

of data’ available on such events cannot be used for a sound, classical statistical analysis; (b) 

the occurrence of malevolent acts brings issues related to the large uncertainty due to 

behaviors of different rationality. 

Figure 16. Problems related to decision making process for the multi-criteria vulnerability analysis 

of safety-critical systems and infrastructures under uncertainty (Issue 3, Axis 2) 

As a result of issues 1.-4. listed above, classical risk analysis approaches can be very difficult to 

apply: in such cases, alternative methods should be sought. Multi-Criteria Decision Aid (MCDA) 

can provide a formal procedure for the assessment. Indeed, significant advances in MCDA over the 

last three decades constitute a powerful non-parametric alternative methodological approach for 

ranking, prioritization and classification problems, which can be adopted also for the vulnerability 

assessment of complex systems under uncertainty [Belton and Stewart, 2002]. 

In all generality, MCDA aims at constructing a systematic view of the decision maker preferences 

consistent with a certain set of assumptions, so as to give coherent guidance to the decision maker 

in the search for the preferred solution (for example, in the context of interest to the present 

dissertation, the less/more vulnerable system configuration). This is achieved by constructing a 

model to represent the decision maker preferences and value judgements. The model contains two 

primary elements, viz.: 
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1. preferences in terms of each individual criterion, i.e., models describing the relative 

importance or desirability of achieving different levels of performance for each identified 

criterion; 

2. aggregation scheme, for allowing inter-criteria comparisons, in order to combine preferences 

across criteria. 

Then, according to the nature of the DM problem, the policy of the decision maker and the overall 

objective of the decision, four different analyses can be performed to: 

1. identify the best (i.e., less vulnerable) alternative or select a limited set of the best 

alternatives; 

2. rank-order the alternatives from best (i.e., less vulnerable) to worst ones (i.e., more 

vulnerable); 

3. classify the alternatives into pre-defined homogenous groups (e.g., in the context here of 

interest, assign them to specified vulnerability categories); 

4. identify distinguishing features (i.e., attributes, physical characteristics, etc.) of the 

alternatives and perform their description based on these features. 

Finally, on the basis of the outcomes of (some of the) analyses 1.-4. above, the decision maker 

needs to “do something” about one or more situations which are found unsatisfactory in some way. 

The DM problem then constitutes much more than simply the evaluation and comparison of 

alternatives. It involves also an in-depth consideration of what is “unsatisfactory”, and the creative 

generation of possible courses of actions to address and improve the situation (e.g., select protective 

actions to reduce vulnerability) [Belton and Stewart, 2002]. In an MCDA context, this last step is 

often termed “inverse multi-criteria classification problem”: the objective is to identify the changes

that should be made to the features of a given group of alternatives (i.e., the safety-critical systems 

or infrastructures of interest) so that the group can be “classified” into a more desirable category 

(i.e., into a lower vulnerability class) [Aggarwal et al., 2010; Li et al., 2012]. 

A number of examples of applications of MCDA approaches to the assessment, ranking, 

prioritization of the vulnerability of safety-critical systems exist. [Apostolakis et al., 2005] and 

[Patterson and Apostolakis, 2007] focus on the identification of critical locations in infrastructures: 

these are seen as geographical points that are exposed to intentional attacks. Critical locations are 

not limited to individual infrastructures, but may affect multiple infrastructures: for example, water 

and electrical distribution systems may occupy the same service tunnels. The vulnerabilities and 

their ranking according to potential impacts are obtained by Multi-Attribute Utility Theory (MAUT) 

[Keeney and Raiffa, 1976; Keeney, 1993; Morgan et al., 2000]. In particular, decision makers focus 
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initially on seeking improvements to what is perceived to be the most important (operationally 

meaningful and measurable) criterion. In effect, available alternatives are systematically eliminated 

until, in the view of the decision maker, a satisfactory level of performance for this criterion has 

been ensured. At this point, attention shifts to the next most important criterion, and the search 

continues amongst the remaining alternatives for those which ensure satisfactory performance on 

this criterion. [Konce, 2008] has proposed a methodology for ranking components of a bulk power 

system with respect to its risk significance to the involved stakeholders. The likelihood and the 

extent of power outages when components fail to perform their designed functions are analyzed; the 

consequences associated with the failures are determined by considering the type and number of 

customers affected. [Johansson and Hassel, 2010] have proposed a framework for considering 

structural and functional properties of interdependent systems and have developed a predictive 

model in a vulnerability analysis context. [Piwowar et al., 2009] have proposed a systemic analysis 

which accounts for malevolence, i.e., the willingness to cause damage. [Cailloux and Mousseau, 

2011] have proposed a framework to evaluate and compare the threats and vulnerabilities associated 

with territorial zones according to multiple criteria (e.g., industrial activity, population, etc.) by 

using an outranking approach called ELimination Et Choix Traduisant la REalité (ELECTRE). In 

this approach an alternative is said to “outrank” or “dominate” another one if there is “sufficient” 

evidence to justify the conclusion that the first alternative is at least as good as the other, taking all

the measurable criteria into account (not only one at a time, sequentially like in MAUT) [Roy, 

1996; Roy and Bouyssou, 1993; Brans et al., 1985 and 1986]. 

6.2.3 Research developed: methodological and applicative contributions 

In this Section, we synthetically overview the methodological and applicative contributions of the 

present work to the modeling, simulation and analysis of safety-critical systems and infrastructures 

under uncertainties (Axis 2). In the presentation of the contributions, reference will be made only to 

the most relevant works (mainly journal papers for brevity) realized by the candidate and his 

collaborators, within the PhD and Master theses activities. 

6.2.3.1 Issue 1: Development of innovative methods of representation and simulation of 

critical infrastructures, for the analysis of their vulnerability and resilience 

In [Ferrario et al., 2015a], we have looked at the robustness and recovery properties of a System of 

Systems (SoS) consisting of two interdependent Critical Infrastructures (CIs) (gas and electric 

power networks), and a Supervisory Control And Data Acquisition (SCADA) system connected to 

the gas network, all affected by both aleatory and epistemic uncertainties [Nozik et al., 2005]. 
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To provide quantitative measures of the robustness RB(Ui) (5) and recovery capacity (i.e., 

resilience) RE(Ui) (6) of the SoS, we have evaluated: (i) the steady-state probability distributions of 

the supply of gas and electricity at the demand nodes (which represents the indicator �(t) of the SoS 

functionality, as defined in Section 6.2.1.2); and (ii) the time TRE[�(tr), Ui] needed to recover the 

system from the worst condition to the initial functionality level �(t0) in which all the demand 

nodes are satisfied, i.e., to obtain �(tr) = �(t0). 

We have proposed a hierarchical model description of the system logic and functionality by Goal 

Tree Success Tree – Dynamic Master Logic Diagram (GTST-DMLD) (Section 6.2.2.1), originally 

extending its representation characteristics to evaluate the physical flows of gas and electricity 

through the interdependent infrastructures. In particular, we have introduced new concepts in order 

to model in the diagram not only the dependency relations between the components, but also the 

ways in which the flows of gas and electricity are partitioned into the network on the basis of: (i) the 

importance of the demand nodes, (ii) the amount of product necessary to satisfy each demand, (iii) 

the constraints of the arc capacities and (iv) the information provided by the SCADA system. 

For a more realistic representation, we have utilized a multi-state model for consideration of the 

different degrees of damage that the individual components may experience. Transitions between 

different states of damage occur stochastically (aleatory uncertainty) and epistemic uncertainty 

affects the associated transition probabilities (frequencies) due to insufficient knowledge and 

information on the components degradation behavior. Indeed, safety-critical CIs are highly reliable 

and, thus, undergo few degradation states to failure, so that it is difficult to estimate damage levels 

and transition probabilities. We have adopted intervals to describe the epistemic uncertainty in the 

probabilities (frequencies) of transition between different components states and in the mean values 

of the holding time distributions: then, we have used interval analysis to calculate the (uncertain) 

probabilities (frequencies) of the states of all the components of the CIs. Finally, we have employed 

Monte Carlo Simulation (MCS) for the probabilistic evaluation of the system performance, i.e., of 

the robustness and resilience indicators mentioned above. 

The framework has shown the capability of representing, modeling and quantitatively accounting 

for i) the dependencies and interdependencies among the components of a critical infrastructure and 

between different CIs, respectively, ii) the stochastic variability in the states of the components, and 

iii) the epistemic uncertainty in the transition probabilities between different components states. The 

results and insights obtained can help to improve the global SoS performance, e.g., by improving 

the structural response of specific arcs that more easily turn into damage states or by developing a 

more redundant network that allows the supply of the product from different paths. For further 

technical details the interested reader is referred to Paper III [Ferrario et al., 2015a] reported in the 
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Appendix at the end of the manuscript. 

In [Ferrario et al., 2015b], we have proposed a Hierarchical Graph (HG) representation to evaluate 

the robustness RB(Ui) (5) of interdependent CIs, here measured as its capability to deliver the 

required amount of product (e.g., energy, water, etc.) to the demand nodes of the infrastructure. In 

doing so, we have taken into account the fact that the demand nodes may have different importance, 

which establishes possibly different priorities in the partitioning of the product through the 

connections and elements of the CI. The representation consists of a graph structured in hierarchical 

levels that allows highlighting critical arcs and supporting the quantitative robustness evaluation by 

assigning different priorities to the demand nodes.  

For illustration purpose, a case study has been considered that is adapted from the IEEE 123 node 

test feeders [IEEE, 2000] and includes a large electricity distribution network. As a measure of the 

robustness of the system, we have evaluated the steady-state probability distributions of the product 

(i.e., electricity) delivered to the demand nodes. The quantitative evaluation of the system 

robustness has been performed by MCS. In addition, an unsupervised spectral clustering algorithm 

has been also employed in combination with HG, in order to analyze the CI at different levels of 

detail and to make its size manageable [Fang and Zio, 2013]. The results have shown that the HG 

can be adopted together with hierarchical clustering to provide approximate results by analyzing 

clustered networks instead of the entire large-sized, real network. This can be useful in a first 

preliminary phase of design of the CIs, in order to have satisfactory, physically coherent results 

with relatively low computational cost. 

In [Fang et al., 2015b and c], we have been mainly concerned with power transmission networks 

and we have addressed the problem of optimally (re)designing some characteristics of these 

infrastructures in order to reduce (resp. improve) their vulnerability (resp., robustness/resistance) to 

cascading failures (started by both intentional attacks and random failures). 

In details, in [Fang et al., 2015c] we have proposed a methodology for the optimal allocation of the 

links connecting generators and distributors in a power transmission network for obtaining high 

resistance (i.e., low vulnerability V(Ui) (4)) to cascading failures, while keeping the investment 

costs low. In practical cases, the cost of knocking down an existing network and reconstructing it 

from scratch is prohibitive, especially for CIs like the power transmission network: a more 

practicable alternative is to reconfigure parts of the network topology, e.g., by reallocation of the 

links which connect production facilities to consumers. In most circumstances, low vulnerability 

and low cost are conflicting objectives and cannot be achieved simultaneously. For instance, a 

highly connected network can be very resistant (or robust) to cascading failures; on the other hand, 
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increasing the number of connecting links obviously increases costs. Formulated as a large-scale, 

nonlinear and combinatorial multi-objective optimization problem, the facility allocation problem 

has been solved by a heuristic method, i.e., the Non-dominated Sorting Binary Differential 

Evolution (NSBDE) algorithm. The search by the NSBDE requires: (i) the construction of a model

to describe the cascading failure process in the network of interest, and (ii) the repeated evaluation 

of the model for every possible generators-distributors configuration proposed by the algorithm 

during the search. With respect to that, we have embraced a topological cascading failure model 

(namely, the Motter-Lai – ML � model) (Section 6.2.2.1) to exploit is rapidity of calculation. Notice 

that under the topological ML model, network vulnerability V(Ui) has been quantified by the 

fraction of network “connectivity” lost in the cascading failure. 

For exemplification, we have applied the method to the 400kV French Power Transmission 

Network (FPTN400) [EDF, 2013; RTE, 2013], under the objectives of minimizing network 

vulnerability V(Ui) to cascading failures and minimizing investment costs. The results of the case 

study have shown that generator-distributor allocation can be optimized to improve the cascading 

resistance/robustness of a realistic power transmission network system at an acceptable cost. 

Then, we have tackled the problem of the physical significance of the topological optimization 

results obtained. For this reason, a more detailed, physics-based flow model (namely, the ORNL-

Pserc-Alaska – OPA – model) (Section 6.2.2.1) has been embraced. Notice that under this physics-

based flow model, network vulnerability V(Ui) has been classically quantified by the system load 

shedding. The OPA model has been performed on five network topologies selected from the Pareto 

optimal front found by the topological optimization process, in order to validate a posteriori the 

optimal configurations obtained. The ranking of the five selected networks with respect to their 

vulnerability to both intentional attacks and random failure has been found to be consistent with that 

of the ML model; in addition, the computational time required by the ML approach has been shown 

to be 6 times lower than that of the OPA approach. This has verified: (i) the physical 

meaningfulness of the topological optimization solutions, and (ii) the practical usefulness of 

abstract cascading models in network optimization tasks. 

As a further step in the comparison between topological and flow-based models, in [Fang et al., 

2015b] we have tackled the problem of searching for the most favorable pattern of link capacity

allocation for a CI power network with the objective of resisting to cascading failures with limited 

investment costs. As before, low vulnerability and low cost are conflicting objectives: for instance, 

a network whose components have high capacity can be highly resistant to failures; however, this 

type of components is often characterized by high costs. The problem has been formulated within a 

multi-objective optimization framework and has been solved by an evolutionary algorithm, namely 
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the Non-dominated Sorting Genetic Algorithm II (NSGA-II). The optimization has been carried out 

using two different approaches to cascade failure modelling: the computationally-cheap topological 

ML model and the more detailed, flow-based OPA model. Notice that differently from [Fang et al., 

2015c], both the ML and OPA models have been directly embedded within the search algorithm for 

optimally solving the problem of capacity resource allocation. 

The approaches have been compared on the FPTN400. Again, the analysis of the behavior of the 

link capacity patterns of the optimal solutions found has shown that the results provided by the ML 

and OPA models are consistent and highly correlated: this means that links with low capacity in 

ML tend to have low capacity in OPA, and links with high capacity in ML also tend to have high 

capacity in OPA. This consistency is not insignificant since it demonstrates that one improved 

pattern of capacity allocation optimized by the ML model is also of higher resistance (i.e., lower 

vulnerability) if measured by the more realistic OPA model. For further technical details the 

interested reader is referred to Paper IV [Fang et al., 2015b] reported in the Appendix. 

In [Fang et al., 2015a and d], we have instead addressed the problem of optimization of system 

resilience RE(Ui) (6). In [Fang et al., 2015a], firstly we have reviewed different definitions of 

system resilience and different metrics to evaluate it in the context of systems engineering, 

especially for infrastructure network systems. Then, we have proposed a novel time-dependent

metric of system resilience focusing on the post-disaster recovery process. It has been defined as 

the cumulative system functionality that has been restored at time t, normalized by the target

cumulative performance as if the system were not affected by disruption during this time period. In 

details, referring to Figure 13 and to the corresponding notation of Section 6.2.1.2, the time-

dependent resilience RE(t, Ui) of a safety-critical system under accident scenario Si (and affected by 

uncertainty Ui) has been mathematically defined as: 
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where �TG(
) is the target system performance, which is generally evolving in time due to the 

dynamic nature of service demand in infrastructure systems. For simplicity, it can be assumed that 

�TG(
) equals the initial system performance �(t0) and remains invariant. This metric is consistent 

with the basic meaning of resilience and it is able to quantify how a system “bounces back” from a 

disrupted state to an accepted performance, while capturing at the same time both the magnitude

and rapidity of the system recovery action (i.e., both the “spatial” and “temporal” dimension of 

resilience: see Section 6.2.1.2). In addition, notice that the system performance function �(�) in (7) 
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could be represented by different metrics (e.g., the amount of flow or services delivered, the 

availability of critical facilities, the number of customers served, or the enabling potential of 

economic activities for infrastructure systems), depending on which dimension (i.e., technical, 

organizational, social and economic) of resilience the analysis focuses on. This study has 

concentrated on the technical dimension of resilience and has utilized the amount of flow delivered 

to the demand nodes of a network as the performance level metric. 

Based on this resilience definition, the study has provided a framework for considering the role of 

recovery decisions and actions in the resilience optimization of infrastructure networks. 

Specifically, a project-oriented perspective has been applied to plan the process of network’s 

connections recovery after a disruptive event: that is, a set of link repair actions must be scheduled 

in an optimal way so as to maximize the network resilience over the recovery time. This Resilience 

Optimization Problem (ROP) has been formulated within a Mixed Integer Programming (MIP) 

framework. On the other hand, the time required to solve the MIP formulation may impair its 

application for effective restoration activities after extreme events affecting large-scale 

infrastructure networks. Therefore, a heuristic dispatching rule that integrates fundamental concepts 

from network flows and project scheduling has been finally proposed: it seeks to determine the set

of link repair tasks that maximizes the ratio between the improvement in system resilience and the 

cost of restoring the set of links. 

The application on a case study concerning the FPTN400 has shown that the proposed dispatching 

rule is able to obtain high-quality sub-optimal (and optimal in some cases) solutions to the ROP 

(actually, the difference with respect to the real, global optimum does not exceed 5%); in addition, 

the associated computational cost is much lower with respect to that of widely adopted commercial 

MIP solvers (actually, it can be reduced by a factor 5-15). 

Finally, based on the new resilience definition in (7), in [Fang et al., 2015d] we have proposed two 

metrics, i.e. the optimal repair time and the resilience reduction worth, to measure the criticality (or 

the importance) of the components of a network system from the perspective of their contribution to 

system recovery or resilience after a disruptive event. Specifically, the two metrics quantify: (i) the 

priority with which a failed component should be repaired and re-installed into the network, and (ii) 

the potential loss in the optimal system resilience due to a time delay in the recovery of a failed 

component, respectively. Given the stochastic nature of disruptive events on infrastructure 

networks, a Monte Carlo-based method is proposed to generate probability distributions of the two 

metrics for all the components of the network; then, a stochastic ranking approach based on the 

Copeland’s pairwise aggregation is used to rank components importance. The results obtained on 

the IEEE 30 Bus test system [IEEE, 2014] by the proposed measures have been compared to those 
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produced by classical topology-based importance measures used in network reliability analysis 

(e.g., betweenness centrality indices): the difference in the results have shown that classical 

measures are not appropriate to help implement resilience planning because they do not take into 

account system recovery time. Instead, the two measures proposed provide insights useful for 

practical restoration activities of infrastructure networks after suffering a disruptive event. 

Finally, notice that the works [Ferrario et al., 2015a and b] under this research issue have been done 

within the PhD thesis of Elisa Ferrario (Ph.D. 1 in Section 4.3); instead the works [Fang et al., 

2015a-d] have been done within the PhD thesis of Yi-Ping (Ph.D. 2 in Section 4.3). 

A pictorial representation of the methods here considered and compared to address Issue 1 of 

research Axis 2 is given in Figure 17, together with the corresponding applications. 

Figure 17. Methods here considered and compared to address Issue 1 of research Axis 2, together 

with the corresponding applications

6.2.3.2 Issue 2: Design and implementation of innovative algorithms for the efficient risk 

assessment and/or reliability evaluation of highly-reliable engineered systems and 

infrastructures 

Many of the papers under this research line have been developed during my PhD studies (see [Zio 

and Pedroni, 2009a-c and 2010a; Pedroni et al., 2010; Zio et al., 2010]): therefore, these works will 

not be analyzed in details in the present Section. Instead, I will briefly summarize only the content 

of some works carried out after my PhD (i.e., since 2010). 
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In the review paper by [Zio and Pedroni, 2011], the outcomes and results of the works cited above 

have been critically analyzed and synthesized: the objective has been to show how the 

computational issues associated to the evaluation of the reliability (resp., failure probability) of 

highly-reliable emergency passive safety systems in nuclear reactors can be effectively handled, and 

to correspondingly provide advices and recommendations8. Different computational methods have 

been recommended for efficiently tackling the different phases of the reliability assessment of 

nuclear passive systems: in particular, the optimized Line Sampling (LS) method originally 

proposed by the author in [Zio and Pedroni, 2010a] has been recommended for small failure 

probability estimation, whereas the use of Subset Simulation (SS) and bootstrapped meta-models 

(in particular, Artificial Neural Networks-ANNs) has been suggested for uncertainty propagation 

and sensitivity analysis in the presence of long-running system model codes. These 

recommendations have been arrived at on the basis of: (i) a critical review of the methods available 

in the literature on the subject; (ii) the experience of the authors in nuclear passive systems 

reliability assessments [Zio and Pedroni, 2009a-c; 2010a and 2012; Pedroni et al., 2010; Zio et al., 

2010]; (iii) a thorough comparison of the above mentioned approaches with benchmark methods of 

literature. For further technical details the interested reader is referred to Paper V [Zio and Pedroni, 

2011] reported in the Appendix. 

As a further development along this research line, in [Pedroni and Zio, 2015a] we have proposed a 

novel approach, namely, the Adaptive Metamodel-based Subset Importance Sampling (AM-SIS) 

method, which originally combines the powerful features of three existing techniques, i.e., MCMC-

IS, SS and ANNs (see Section 6.2.2.2). The method consists of the following main steps:  

1. an estimator of the optimal ISD is constructed in two stages: (a) the SS technique is adopted 

to generate a population of samples approximately distributed according to the optimal 

Importance Sampling Density (ISD). In order to reduce the computational effort associated 

to this step, the original long-running system model is replaced by an ANN meta-model, 

properly constructed and adaptively refined in proximity of the failure region of interest by 

means of the samples iteratively generated by SS; (b) the population thereby created is 

‘fitted’ by means of a proper Probability Density Function (PDF) to obtain an estimator for 

the optimal ISD: in this paper, a fully nonparametric PDF based on the well-known Gibbs 

Sampler is employed to this aim; 

                                                 
8 Notice that emergency safety systems are called “passive” if they do not need external input (especially energy) to 
operate: on the contrary, they rely on the intelligent use of physical phenomena (e.g., radiation, natural circulation, etc.) 
to perform their safety function (e.g., the removal of the decay heat in a nuclear reactor after a loss of coolant accident). 
In this view, passive systems are expected to be highly reliable and to improve the safety of nuclear power plants 
because of simplicity and reduction of both human interactions and hardware failures. 
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2. the IS method is applied, in which the ISD estimator constructed at step (1) above is used as 

an ISD to evaluate the small failure probability (resp., high reliability) of the engineered 

system of interest. 

The performance of the AM-SIS method in the estimation of small failure probabilities (i.e., around 

10-7) has been assessed with a very small number of samples drawn, i.e., of code evaluations (e.g., 

of the order of few tens or hundreds): this is important for practical cases in which the computer 

codes require several hours to run a single simulation. Also, the computational efficiency of AM-

SIS has been extensively and systematically compared to that of several probabilistic simulation 

methods of literature (namely, standard MCS, LHS, IS, AK-IS, SS and optimized LS). The results 

have shown that AM-SIS outperforms the other approaches in terms of:  

i. accuracy and precision of the failure probability estimates: for example, the standard 

deviation of the estimator can be 1-3 orders of magnitude lower than that of the other 

methods; 

ii. reduced overall computational burden (i.e., reduced number of random samples drawn and, 

correspondingly, of expensive system model evaluations): in summary, only few hundreds

of code runs (i.e., around 400) were necessary for ‘completing’ the two phases of ISD 

construction (by ANN and SS) and of failure probability (10-7) evaluation. 

The investigations have been carried out with regards to a case study dealing with the reliability 

analysis of a passive, natural convection-based decay heat removal emergency safety system of a 

Gas-cooled Fast Reactor (GFR) (modified from [Pagani et al., 2005]). 

For what concerns the analysis of highly-reliable dynamic and hybrid systems, in [Turati et al., 

2015a] we have considered the REpetitive Simulation Trials After Reaching Thresholds 

(RESTART) method, an advanced MCS technique taking its root in splitting theory. The approach 

has shown promising performance in the analysis of dynamic, discrete systems [Villén-Altamirano 

and Villén-Altamirano, 1991; Villén-Altamirano and Villén-Altamirano, 1994], and can be 

potentially extended to dynamic, hybrid systems. The method is based on the random generation of 

many possible realizations of the life of the dynamic system. Such trajectories are split (i.e., 

“multiplied”) when they get close to “interesting” regions of the system state space (i.e., the failure 

region); on the contrary, the trajectories are stopped if they tend to go far from the failure region. 

This way of proceeding, coupled with a proper weight assigned to each path, allows a more efficient 

exploration of the system state space and, thus, a reduction of the variance of the corresponding 

failure probability estimator [Villén-Altamirano and Villén-Altamirano, 2002]. The indication of 

which trajectories should be split (i.e., of which regions of the state space should be explored more 
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deeply) is given by a properly selected scalar Importance Function (IF) that results, thus, crucial for 

the overall performance of the method [Villén-Altamirano and Villén-Altamirano, 2006; Amrein 

and Künsch, 2011]. In particular, the possibility of embedding the discrete and continuous variables 

typically describing a hybrid system within a single scalar importance function has attracted our 

interest toward this method. 

In this view, the objective of the paper has been to show how this widely applied technique can be 

efficiently employed for hybrid, dynamic, highly reliable systems. For this reason, we have applied 

the RESTART method to evaluate the failure probability of two systems of literature, whose 

mathematical models contain both discrete and continuous time-dependent variables: the first is a 

control system of a liquid hold-up tank [Marseguerra and Zio, 1996] and the second is a system 

composed by a pneumatic valve and a centrifugal pump subject to degradation [Lin et al., 2015]. 

The systems have been modeled via Piecewise Deterministic Markov Processes (PDMPs). 

Although suggestions and guidelines for the construction of proper Importance Functions (IFs) for 

discrete dynamic systems are given in literature [Villén-Altamirano, 2007; Villén-Altamirano, 

2010b; Villén-Altamirano, 2014], no indications have been given yet with reference to hybrid

systems: this has represented the main contribution of our work. The new IFs introduced have been 

shown capable of considering the dependences between the degradation of the process components 

of the systems: by so doing, the performance of the RESTART has been found to be close to the 

optimal theoretical one derived in [Villén-Altamirano and Villén-Altamirano, 2002]. 

In [Turati et al., 2015b], we have addressed the problem of thoroughly and intelligently exploring 

the state space of hybrid dynamic safety-critical systems. In this context, the paper has contributed 

to IDPSA by proposing an efficient framework for: (i) analyzing, under the constraint of limited

computational effort (i.e., of a fixed number of available simulations to run), the possible evolutions

of hybrid dynamic systems; and (ii) identifying those event sequences (i.e., scenarios Si) that can 

bring the systems in unexpected and/or extreme conditions (e.g., in those end states that are more 

safety-critical and/or rare). 

In particular, we have proposed a method that relies on two phases: 

1. in the first, the exploration efforts (i.e. the simulations) are focused on those scenarios 

having more uncertain outcomes (i.e., a higher number of end states for the system). For this 

purpose, we have exploited a function based on negative entropy for assessing the 

uncertainty in the outcomes and a Bayesian scheme for updating the knowledge gathered by 

the simulations [Turati et al., 2015c]. As a result, scenarios that can reach a larger number 

of end states are explored more frequently and thoroughly; 
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2. on the basis of the results of step 1., new driving functions are introduced in order to embed 

into the search the analyst’s (acquired) knowledge and preferences, such as his/her interest 

for specific scenarios or end states (e.g., those that are more rare/unexpected and/or that lead 

to more severe consequences): by so doing, the guided exploration of the “interesting” 

portions of the state space is deepened and refined. 

The performance of the proposed adaptive semi-automatic guided exploration framework has been 

verified on a simple, but representative, case of a dynamic system made by a gas transmission pipe 

(actively controlled by a valve), which is connected in series to two pipes in parallel: all the 

components are subject to stochastic failures described by proper probability distributions. The 

effectiveness of the method has been also compared to that of crude Monte Carlo Sampling and that 

of a simple, entropy-based search scheme [Turati et al., 2015c]: the results have shown its 

superiority in efficiently and intelligently probing and evenly “covering” the system state space. In 

addition, it has been highlighted that the guided exploration phase (step 2. above) allows running a 

large number of simulations that lead to the extreme events/scenarios of interest, thus favoring the 

retrieval of critical features and time dependences characterizing those events: this can aid analysts 

and designers to prevent and mitigate dangerous and/or unexpected consequences. 

Notice that the works [Turati et al., 2015a-c] under this research issue have been done within the 

PhD thesis of Pietro Turati (Ph.D. 5 in Section 4.3). 

A pictorial representation of the methods here considered and compared to address Issue 2 of 

research Axis 2 is given in Figure 18, together with the corresponding applications. 
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Figure 18. Methods here considered and compared to address Issue 2 of research Axis 2, together 

with the corresponding applications

6.2.3.3 Issue 3: Development of innovative decision making approaches for the multi-criteria 

vulnerability analysis of safety-critical systems and infrastructures under uncertainty 

In [Wang et al., 2015b], we addressed the issue of evaluating the vulnerability of (a fleet of) safety-

critical systems (in particular, Nuclear Power Plants-NPPs) to malevolent intentional acts. With 

respect to that, due to the specific features (low frequency but important effects) of intentional 

hazards (characterized by significant uncertainties due to behaviors of different rationality) the 

analysis is difficult to perform by traditional risk assessment methods (see Section 6.2.2.3). For this 

reason, we have proposed to tackle the problem within a Multi-Criteria Decision Aid (MCDA) 

framework relying on empirical classification. In particular, we have adopted a classification model 

based on the Majority Rule Sorting (MR-Sort) method [Leroy et al., 2011] to assign an alternative 

of interest (i.e., a safety-critical system) to a given (vulnerability) class (or category). The MR-Sort 

classification model contains a group of (adjustable) parameters that have to be calibrated by means 
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of a set of empirical classification examples (also called training set), i.e., a set of alternatives with 

the corresponding pre-assigned vulnerability classes. 

Due to the finite (typically small) size of the set of training classification examples usually available 

in the analysis of real complex safety-critical systems, the performance of the classification model 

can be impaired. In particular: 

i. the classification accuracy (resp., error), that is, the expected fraction of patterns correctly 

(resp., incorrectly) classified, is typically reduced (resp., increased); 

ii. the classification process is characterized by significant uncertainty, which affects the 

confidence of the classification-based vulnerability model: in our work, we define the 

confidence in a classification assignment as in [Baraldi et al., 2011], that is, as the 

probability that the class assigned by the model to a given (single) pattern is the correct one.  

A quantitative assessment of the performance of the classification model (in terms of accuracy and 

confidence in the assignments) is thus needed. This issue has been addressed by three different 

approaches, namely, the model-retrieval-based method [Leroy et al., 2011], the bootstrap method 

[Efron and Thibshirani, 1993] and the leave-one-out cross-validation technique [Baraldi et al., 

2011]. From the results obtained in a case study involving NPPs it has been concluded that although 

the model retrieval-based approach may be useful for providing an upper bound on the error rate of 

the classification model, the bootstrap method seems to be advisable for the following reasons: (i) it 

makes use of the training data set available from the particular case study at hand, thus 

characterizing the uncertainty intrinsic in it; (ii) for each alternative (i.e., safety-critical system) to 

be classified, it is able to assess the confidence in the classification by providing the probability that 

the selected vulnerability class is the correct one. This is of paramount importance in the decision 

making processes involving the vulnerability assessment of safety-critical systems, since it provides 

a tool to quantify the ‘robustness’ of a given decision. For further technical details the interested 

reader is referred to Paper VI [Wang et al., 2015b] reported in the Appendix. 

An additional issue related to empirical classification is represented by the fact that the examples 

provided by the experts for the construction of the classification model may contain contradictions: 

thus, a validation of the consistency of the data set is opportune. With respect to that, in [Wang et 

al., 2015a] two approaches have been used to tackle this problem: the inconsistencies in the data 

examples have been “resolved” by deleting or relaxing, respectively, some constraints in the 

process of model construction [Leroy et al., 2011]. The approaches have been successfully tested on 

a case study involving the assessment of the overall level of safety-related criticality of a group of 

NPPs. 
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Finally, in [Wang et al., 2015c and d] the base model developed in [Wang et al., 2015b] has been 

extended to address the inverse classification problem [Aggarwal et al., 2010; Li et al., 2012; 

Mousseau and Slowinski, 1998] of (optimally) determining a set of protective actions that can 

effectively reduce the level of vulnerability of a safety-critical system, taking into account a 

specified set of constraints (e.g., budget limits) [Aven and Flage, 2009]. Mathematically speaking, 

the aim is to identify how to modify some features of the input patterns (i.e., the attributes of the 

safety-critical system under analysis) such that the resulting class is changed as desired (i.e., the 

vulnerability category is reduced to a desired level). 

In [Wang et al., 2015d], sensitivity indicators have been originally introduced as measures of the 

variation in the vulnerability class that a safety-critical system is expected to undergo after the 

application of a given set of protective actions. These indicators form the basis of an algorithm to 

rank different combinations of actions according to their effectiveness in reducing the safety-critical 

systems vulnerability.  

In [Wang et al., 2015c], the problem has been instead tackled within an optimization framework: the 

set of protective actions to implement is chosen as the one minimizing the overall level of 

vulnerability of the group of safety-critical systems of interest. Three different optimization 

approaches have been explored: (i) one single classification model is built to evaluate and minimize 

system vulnerability; (ii) an ensemble of compatible classification models, generated by the 

bootstrap method, is employed to perform a “robust” optimization, taking as reference the “worst-

case” scenario over the group of models; (iii) finally, a distribution of classification models, still 

obtained by bootstrap, is considered to address vulnerability reduction in a “probabilistic” fashion 

(i.e., by minimizing the “expected” vulnerability of the fleet of systems). 

The developed methods have been applied fictitious and real NPPs. From the results obtained, it has 

been concluded that a combination of protective actions can be still obtained using only a single 

classification model (approach i. above); however, this set of actions is not robust with respect to 

the uncertainty of the classification model. The robust optimization may, then, be used for obtaining 

a more conservative set of actions, coping with model uncertainty. Eventually, the probabilistic 

optimization seems most practical for real cases, for the following reasons: (i) as for the robust 

case, it handles the uncertainty coming from the finite data set available and the compatible models; 

(ii) by minimizing the expected value of the (bootstrapped) probability distribution of the overall 

vulnerability of the fleet of NPPs, some “extreme” models of the bootstrapped ensembles are 

“neglected”, which is reasonable and more realistic. 
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Finally, notice that the works [Wang et al., 2015a-d] under this research issue have been done 

within the PhD thesis of Tai-Ran Wang (Ph.D. 3 in Section 4.3). 

A pictorial representation of the methods here considered and compared to address Issue 3 of 

research Axis 2 is given in Figure 19, together with the corresponding applications. 

Figure 19. Methods here considered and compared to address Issue 3 of research Axis 2, together 

with the corresponding applications
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7 Detailed presentation of the future research activities 

(Présentation détaillée de projet de recherche) 

Protection of individual and national interests relies, in part, on our collective capacity to sustain 

safe, reliable and efficient operation of safety-critical systems (such as nuclear and chemical plants) 

and infrastructures (such as electric grids, energy and water supplies, communication systems and 

transport routes). However, there exist many challenges to the fulfillment of these objectives: (i) 

increase in population and weather extremes (e.g., flooding) now cause unprecedented stress on our 

aging systems and infrastructures; (ii) pressure to work ever more efficiently in a privatized, open 

market remains a primary factor of risk in such systems; (iii) security threats create additional 

serious challenges to operators; (iv) technology continues to evolve, and risks must be dynamically 

assessed to integrate the potential disruptive power of new forms of attacks that exploit the 

technological advancements, e.g., cybercrime and micro Unmanned Aerial Vehicles (UAVs) flying 

over sensitive facilities; (v) systems and infrastructures have become highly interconnected. Risks 

and vulnerabilities are compounded by systems interdependency in a way that is difficult to 

understand and address effectively. 

Within this broad context, my future research will concern both relevant research themes (Section 

7.1) and methods (Section 7.2). 

7.1 Research themes 

My future research will be carried out around three main themes that are currently credited by many 

as among the most relevant for the analysis and management of the risk and vulnerability of 

complex, safety-critical systems and infrastructures: 

1. Modeling and analysis of (extreme) external natural events and the corresponding 

quantitative assessment of the robustness and resilience of safety-critical systems and 

infrastructures with respect to this class of threats and hazards; 

2. Integration of the risks and vulnerabilities coming from cyber attacks, given that modern 

industrial installations and infrastructures currently rely on the massive and still increasing 

use of “soft components”, such as Supervisory Control And Data Acquisition-SCADA, 

information and telecommunication systems; 

3. Management of multiple risks coming from heterogeneous ‘contributors’ (e.g., different

types of hazard, like internal failure events, fires, cyber attacks, earthquakes, floods, etc.) 

and different ‘locations’ (e.g., different power production units on the same site), for their 

aggregate evaluation according to different and possibly conflicting (safety-related, 
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environmental, economical, etc.) criteria. It is evident how this third theme naturally 

“envelops” and includes also issues 1. and 2. reported above. 

These three themes are developed in more details in what follows: 

1. It is a recognized fact that extreme events and weather conditions can cause natural disasters 

that can impact safety-critical systems (such as nuclear and chemical plants) and 

infrastructures (such as electric grids, energy and water supply systems, communication 

systems and transport routes), at the same time putting a strain on emergency and crisis 

response capabilities, and trigger accidents simultaneously at several installations. In 

addition, multiple hazards may develop at the same time (e.g., heavy winds and 

precipitation) or one hazard may trigger others (e.g., an earthquake followed by a tsunami, 

as in the dramatic catastrophe of Fukushima). 

Furthermore, recent studies predict that climate change will lead to more frequent and more 

intense natural disasters, also in areas where there are industrial facilities and infrastructures.  

Under these premises, an increasingly preferable approach to describe and manage systemic 

risk is to explore and defend against catastrophic accident scenarios, on top of the usual 

consideration given to reasonably probable scenarios. 

In this newly arising context of extreme conditions assessment, one of the specific issues 

that I will address is the seismic risk assessment for nuclear systems and components with 

adequate treatment of the associated uncertainties. The goal is the quantitative assessment of 

the (failure) behavior of nuclear systems and components under the occurrence of a seismic 

event: in more detail, the response of structural systems subject to seismic risk will be 

studied and the structure fragility curves will be identified, representing the conditional 

probability of failure of a nuclear component for any given level of seismic excitation. The 

specific objectives of the research are the following: 

a) the study and development of robust and efficient methods to treat the available 

(scarce) information of different types, e.g., numerical simulations, expert 

judgement, real data, etc.; 

b) the quantification and efficient propagation of the (aleatory and epistemic) 

uncertainties through the (long-running) computer codes (i.e., Finite Element 

Models-FEMs) typically used to simulate the behavior of structural systems, by 

advanced simulation techniques and meta-models;  

c) the development of a methodology that is robust enough to be included in a general 

framework of seismic probabilistic risk assessment for nuclear power plants.  
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This topic will be the subject of a PhD thesis in collaboration with the Électricité de France 

(EdF) R&D Department of “Mechanical and Acoustic Analyses” from October 2015 to 

October 2018. 

Another branch of this research theme will regard the probabilistic risk assessment of future 

electric power systems, exposed to natural hazards and extreme weather conditions. These 

systems are critical for our everyday’s life, as they reach virtually every home, school, 

hospital, office, factory and institution. They are complex systems made of a large number 

of spatially distributed, interconnected elements (wires and machines), which link the 

electricity generators to the customers, for satisfaction of their diverse needs.  

The existing power generation and distribution systems have been developed to meet the 

requirements of conventional single direction power delivery from centralized high-capacity 

generation units (e.g. thermal plants, nuclear power plants, etc.) to various end-user loads 

(e.g. industry, commerce, residence, etc.). However, the energy challenges faced by Europe 

and the rest of the world are changing the landscape of power systems. For example, 

originally developed as loosely interconnected networks of local systems, electric power 

grids have now extended on large scales, across regional and national boundaries. In 

addition, distributed resources, mostly in the form of small power generators based on 

renewable energies (such as photovoltaic panels and wind turbines), that are often 

geographically separated from the traditional power sources, are being increasingly 

connected to the existing backbone. The extent of the interconnectedness, the number and 

variety of power sources and generators, of controls and loads make electric power grids 

among the most complex engineered systems.  

Besides the above mentioned technological challenges, a number of emerging issues are 

daunting the electric power grid systems and increasing the stress of the environments in 

which these are to be operated. These are: (a) the deregulated energy market, which has 

resulted in the systems being operated closer to their capacity and limits, i.e., with reduced 

safety margins, and consequently in the need for new and balanced business strategies; (b) 

the prospected demand for electricity in the next 25–50 years, which results in the need to 

technically respond by increased capacity and efficiency; (c) the sensed increase in the 

exposure to malevolent attacks that are no longer only hypothetical, which calls for effective 

protection to a different type of hazard/threat, much more difficult to predict than random 

failures. In the light of these elements, security and reliability are major concerns for power 

production and distribution systems.  
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Actually, a comprehensive evaluation of the risk associated with these systems must 

consider contingencies under normal environmental conditions and also extreme ones. 

Environmental conditions can strongly influence the operation and performance of future 

generation and distribution systems for several reasons. First, the growing shares of 

renewable-energy generators installed inject considerable amounts of (aleatory) uncertainty

into power system operation: actually, owing to the inherently random nature of the 

corresponding natural resources, renewable-energy generators behave quite differently from 

conventional ones. In addition, these systems employ relatively new technologies, and this 

introduces a significant amount of (epistemic) uncertainty due to lack of knowledge and/or 

data on the physical phenomena involved and/or to limited or (possibly) null operating 

experience of the corresponding components or systems over the wide range of conditions 

encountered during operation. Finally, several intrinsically stochastic environment-related 

contingencies (e.g., high winds, thunderstorms, heavy snows, or even earthquake and 

flooding events) can damage or deeply degrade the components of the power grid 

[Rocchetta et al., 2015]. The presence of all these uncertainties puts pressure on decision 

makers in two directions: (1) to robustly assess the risk associated to the modern power 

production and distribution systems; (2) to identify by sensitivity analysis those (uncertain) 

“internal” system elements and “external” environmental contingencies that contribute the 

most to system risk, with the objective of properly driving resource allocation for 

uncertainty reduction and consequent confidence gain for design, maintenance and operation 

decision making. 

Differently from classical power system reliability assessments that focus on the evaluation 

of quantities such as System Average Interruption Duration Index (SAIDI), System Average 

Interruption Frequency Index (SAIFI) and Expected Energy Not Supplied (EENS) to reflect 

the ability to supply adequate electric service over the long term, we will embrace a 

Probabilistic Risk Assessment (PRA) framework for a systemic analysis of system-scale 

scenarios, and to estimate the probability (or frequency) of such scenarios of disturbance to 

power system operation and their consequences [McCalley et al., 2004]: these elements are 

the constituents of risk. As for the boundary of the analysis, the extreme events and weather 

conditions can also significantly affect system risk by increasing the frequency of failures of 

the power components and/or inducing severe damage [McCalley et al., 2005]. In addition, 

the large spatial scale of these distributed CIs introduces an additional important aspect to 

consider in the risk analysis: that of the global impact of spatially local hazards [Wilkinson 

et al., 2012]. Indeed, whereas the spatially local hazards threaten relatively small-scale 
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systems whose components are located in the hazard influence area, these relatively small-

scale systems are usually a part of much larger or national scale systems, and then the 

impact of localized natural hazards can extend to the large-scale systems they are embedded 

in. Examples can be found in [Hong et al., 2015] concerning the Chinese railway system 

under flood hazards and in [Poljansek et al., 2012] with respect to the seismic risk analysis 

of the European gas and electricity networks. Recently, some works on localized failures 

have been made by scholars by resorting to a topological approach in the field of complex 

network theory: see [Shao et al., 2015; Berezin et al., 2015]. However, these purely 

topology-based studies usually produce the risk results with weak correlations to those 

results obtained when the infrastructure system flow properties are considered [Cavalieri 

and Franchin, 2014; Ouyang, 2013; Ouyang et al., 2014]. 

In order to address these issues related to the distributed nature of these power systems on 

very large spatial scales, I plan to put forward a multi-level analysis framework, based on 

two successive stages [Eusgeld et al, 2009]: (i) a screening analysis for identifying the parts 

of the critical infrastructure most relevant with respect to its risk and (ii) a detailed modeling

of the operational dynamics of the identified parts for gaining insights on the causes and 

mechanisms responsible for the associated risk. In particular, I will evaluate the potentials 

of: (i) using network analysis based on measures of topological interconnection and 

reliability efficiency, for the screening task; (ii) using object-oriented/agent-based modeling 

as the simulation framework to capture the detailed dynamics of the operational scenarios 

involving the most vulnerable parts of the critical infrastructure as identified by the 

preceding network analysis. With regards to object-oriented/agent-based modeling, 

objects/agents can be used to model both technical components such as generators, and non-

technical components such as grid operators. The different objects interact with each other 

directly (e.g., generator dispatch) or indirectly (e.g., via, the physical network). Each object 

is modeled by attributes, e.g., physical constraints on technical components such as thermal 

limits of transmission lines, and by rules of behavior, which include both deterministic and 

stochastic time-dependent processes, each triggered by an input from the object 

environment. A deterministic process is for instance the outage of a component when its 

condition reaches a failure threshold, while stochastic processes are probabilistic component 

failure modes, changing load levels or operator reactions in case of (extreme) contingencies 

[Eusgeld et al, 2009]. 

One of the major advantages of an object-oriented approach for modeling and simulating 

critical infrastructures, is the possibility to include physical laws into the simulation and to 
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emulate the behavior of the infrastructure as it emerges from the behaviors of the individual 

objects and their interactions. In other words, the overall system behavior results from the 

interactions among the multiple single objects of different kinds which make up the system. 

This modeling achieves a closer representation of the system behavior by integrating the 

spectrum of different stochastic phenomena which may occur, thus generating a multitude of 

representative stochastic, time-dependent event chains. On the other hand, this simulation-

based approach becomes highly computer intensive for complex realistic infrastructures such 

as the power generation and distribution systems here of interest. The challenge in this 

respect is to reduce the computational burden, e.g., making use of rare event simulation 

techniques or by substituting some objects with empirical meta-models, while quantifying 

the uncertainty introduced in the approximation of the empirical models (see details below). 

Eventually, the problem of optimally designing these future power generation and 

distribution systems (possibly including renewable generation sources) in the face of 

extreme events and conditions will be also tackled in the long term. 

2. As mentioned above, critical infrastructures are getting more and more automated, and 

strongly interconnected due to their increasing extension on large scales and the progressive 

advances in information technology. For example, today’s ability to run largely distributed 

power networks with a variety of generation technologies (e.g., nuclear, thermo, hydro, etc.) 

is only possible through the intense use of information and communication systems. 

Systems that rely on the tight integration of physical processes, computational resources, 

and communication capabilities are called cyber-physical systems. If, on one hand, these 

advances and interdependences have increased their efficiency (e.g., provide better 

measurements, allow quicker operations, more powerful control schemes and broad access 

to data), on the other hand, they have created new vulnerabilities to component failures, 

natural and manmade events. Recent studies and real-world incidents have demonstrated the 

inability of existing security methods to ensure a safe and reliable functionality of cyber-

physical infrastructures against unforeseen failures and, possibly, external attacks [Sridhar et 

al., 2012]. Actually, Critical Infrastructure Protection (CIP) has gained great importance in 

all nations, with particular focus being placed traditionally on physical protection and asset 

hardening [Lewis, 2006]. Proofs of this statement are represented by: (i) the directives of the 

Department of Homeland Security in the USA [Bush, 2002; Bush, 2003; Clinton, 1998]; (ii) 

the Thematic Area launched by the European Reference Network for Critical Infrastructure 
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Protection (ERNCIP) to address the CIP problem systematically; and (iii) the numerous 

European Union projects on the subject [Klein et al., 2011]. 

Concerns about security of control systems are not new [Basseville and Nikiforov, 1993; 

Ding, 2008]. Cyber-physical systems, however, suffer from specific vulnerabilities for 

which appropriate detection, identification and assessment techniques need to be developed. 

For instance, the reliance on communication networks and standard communication 

protocols to transmit measurements and control packets increases the possibility of 

intentional and worst-case (cyber) attacks against physical plants. On the other hand, 

information security methods (such as authentication, access control, message integrity, and 

cryptography methods) appear inadequate for a satisfactory protection of cyber-physical 

systems. Indeed, these security methods do not exploit the compatibility of the 

measurements with the underlying physical process and control mechanism, which are the 

ultimate objective of a protection scheme [Cardenas et al., 2009]. Moreover, such 

information security methods are not effective against insider attacks carried out by 

authorized entities [Slay and Miller, 2007] and they also fail against attacks targeting 

directly the physical dynamics [De Marco et al., 1996]. 

This calls for the development of novel methodologies for the assessment of the risk and 

vulnerability of interdependent critical infrastructures (e.g., power transmission and 

telecommunication networks) to ‘combined’ physical and cyber attacks. The main challenge 

will be to assess and model the interactions between the cyber and the physical security 

systems to understand the effects of cyber technology on overall security system 

effectiveness [SANDIA, 2005; Graves, 2006; Hromada and Lukas, 2012]. 

This topic will be the subject of a PhD thesis in collaboration with the Électricité de France 

(EdF) R&D Department of “Measures and Information Systems for Electrical Networks” 

and the “Research Institute for Smarter Electric Grids” (RISEGrid) from January 2017 to 

January 2020: the application domain will be that of ‘smart grids’, i.e., power transmission 

networks characterized by an important use of informatics and telecommunication means. 

3. Risk aggregation can be defined as the process of combining information on the risk from 

various: (i) ‘contributors’ (i.e., different types of hazard – for example, internal failure 

events, fires, earthquakes, etc.) and (ii) ‘locations’ (i.e., different power production units on 

the same site), in order to provide an overall characterization of risk [EPRI, 2014]. 

Traditional PRA approaches address these issues respectively as follows: (i) mean value 

contributions to the risk metrics of interest from various hazards are straightforwardly 
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summed [EPRI, 2014]; (ii) risks from different units are considered separately, while 

dependencies and interactions between the units are introduced a posteriori, informally and 

on an ‘ad-hoc’ basis [Schroer and Modarres, 2012]. On the other hand, events like the 

Fukushima nuclear accident mentioned above call for new, more rigorous methods to 

address multi-hazard, multi-unit site risk. The challenges to the “risk aggregation process” 

are the following [Yang, 2012; EPRI, 2014; Stutzke, 2014]: 

a) The levels of maturity of the analyses used in the construction of the PRAs are 

different for the various hazard groups and for the various units. The principal 

concern with aggregating the contributions to the risk metrics from the individual 

contributors to the metrics is the potential for the analysis of the individual 

contributors to introduce biases and uncertainties that are not equivalent across 

contributors, thus distorting the insights that can be derived from the results. The 

most commonly cited concern is with the combination of the risk from the various 

hazard groups by simply adding the mean values for all hazard groups. This concern 

stems from the acknowledged differences in the capabilities of the methods used to 

estimate these risk contributions, and the effect this has on the uncertainties in these 

risk estimates. This is a consequence of the different maturity levels of the methods. 

b) Different degrees of approximations are made to facilitate the construction of the 

PRA models for the different hazards and sites. PRA models are a discretized 

representation of the potential spectrum of accident sequences for a particular plant, 

and consequently, approximations are a necessary part of creating and quantifying 

these models. These approximations are made for a number of reasons that include 

practical considerations, such as the limitation of analytical tools and resource 

limitations. The degree to which the discretization of the spectrum of accident 

sequences is developed is to a large extent determined by the level of detail needed 

to support the purpose of the analysis. In addition, a number of assumptions are 

made during the construction of the model to address the unavailability or limitations 

of constituent analysis techniques. In some cases, this leads to the use of 

conservative models and in other cases it leads to the omission of possible risk 

contributors from the model. This may result in a non-conservative bias in the 

results. Furthermore, it is accepted that a model may necessarily lack certain 

contributions to risk because they are not known to exist (i.e., the “unknown 

unknowns”). These approximations and assumptions result in biases on the mean 

values of risk metrics derived from these PRAs, and their nature is such that the 
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magnitude of their effects is not easily quantified. These biases are typically, 

although not always, considered to be conservative. On the other hand, the 

approximations made when developing the PRA models for different hazard groups 

result in differing degrees of bias; furthermore, the biases will be manifested 

differently from analyst to analyst. 

c) The nature and magnitude of the uncertainties associated with the different analyses 

is extremely varied. The characterization of uncertainty derived from a propagation 

of parametric uncertainties through the PRA models is conditional upon all the 

assumptions and approximations that have gone into that model. For example, the 

PRA model for failure events internal to a nuclear power plant is nearly always the 

basis for the PRA models used to analyze other hazard groups, since it incorporates 

the potential initiating events and the functions, systems and operator actions 

required to respond to those initiating events. Common practice is that all other 

hazard groups are analyzed by determining how a hazard of a specified severity 

affects the plant in terms of causing an initiating event and causing damage to the 

structures, systems or components of the plant that support the functions required to 

respond to the initiating event. There can be significant uncertainties regarding how 

to model both the frequencies of external hazards and their impacts on the plant. In 

many cases, the response has been to adopt models that result in a conservative bias 

on either the frequency of specific hazard events, on their impact on the plant, or 

both. A “mean” risk estimate derived from a conservative model is clearly not a 

“true mean” risk value. Furthermore, the existence of model uncertainties that are not 

taken into account explicitly in the evaluation of the mean values implies that there 

cannot be one single result upon which decisions are made. Rather, there can be 

several different results, depending on the number of key modeling uncertainties. 

Finally, extremely rare - possibly never observed historically - environmental 

conditions related only to some particular hazards (that have a very high probability 

of causing significant damage to the plant) may be so uncertain to call into question 

any classical, probabilistic statistical analysis (and obviously the evaluation of mean 

values for the risk metrics of interest). 

These challenges will be addressed during a PhD work in collaboration with the Électricité 

de France (EdF) R&D Department of “Industrial Risk Management” from October 2015 to 

October 2018. 
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7.2 Research methods 

In tackling themes 1.-3. described above, I will contribute to the development of mathematical 

models of the safety-critical systems and infrastructures of interest for the simulation of their 

behavior in the presence of uncertainties. In this view, the complexity of the problems and of the 

systems addressed calls also for further methodological research: 

1. Novel approaches will be studied and developed that allow dealing with uncertainties in 

system models with multiple inputs/outputs, which are functions of time (and possibly of 

space) and show functional dependencies and correlations between each other. In this broad 

framework, particular attention will be devoted to the identification by sensitivity analysis of 

those (uncertain) “internal” system elements and “external” environmental contingencies 

that contribute the most to system risk, with the objective of properly driving resource 

allocation for uncertainty reduction and consequent confidence gain for design, maintenance 

and operation decision making [Lamboni et al., 2011; Auder et al., 2012; Gamboa et al., 

2013; Collin et al., 2015; Marrel et al., 2015a and b]. 

2. In order to reduce the computational effort associated to the risk, vulnerability and resilience 

assessment of complex safety-critical engineering systems (e.g., in the presence of object-

oriented modeling and long-running computer codes), special attention will be devoted to 

surrogate modeling (meta-modeling), with particular reference to the promising Polynomial 

Chaos Expansion (PCE) and Stochastic Collocation (SC) techniques. These methods expand 

(and approximate) the real system response as a truncated series of properly selected basis 

functions, “calibrated” by means of a limited-size set of available computer experiments. In 

particular, PCE surrogates the computer model with a series of orthonormal polynomials 

that are chosen in coherency with the probability distributions of the uncertain model input 

parameters [Ghanem and Spanos, 1991; Sudret, 2008; Blatman and Sudret, 2010; Kersaudy 

et al., 2015; Schobi et al., 2015; Sudret and Mai, 2015]. Instead, SC is a stochastic 

expansion method which constructs multidimensional interpolation polynomials over the 

system responses evaluated at a structured set of collocation points [Babuska et al., 2007; 

Ng and Eldred, 2012]. 

In addition, further efforts will be made in the task of intelligently probing the space of the 

(undesired) event sequences of the complex, dynamic systems of interest. In particular, I 

plan to “complement” the research work carried out so far by developing advanced 

simulation techniques for scenario analysis, i.e., methods tailored to the “creation” of 

scenarios of potential future conditions and events of particular interest. In this case, the aim 

of simulation is neither of completeness nor of accuracy of estimation, as in traditional risk 
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analysis, but rather of enabling the generation of “surprising” scenarios that may provide 

useful insights about what could happen. Methods of “adjoint” simulation may be of 

particular interest for generating deductive (anticipatory, backwards) scenarios, where we 

start from a future imagined event/state of the total system and question what is needed for 

this to occur. Interpretation of these scenarios by system thinking, to see the holes and 

interconnections, is critical if one has to identify “black swans” [Aven, 2013; Aven and 

Krohn, 2014]. 

A pictorial representation of the themes and methods object of my future research is given in Figure 

20.  

Figure 20. Themes and methods that will be addressed in my future research 

The scheduling of the developments of these lines is shown in Table 5. Theme 3 (“risk 

aggregation”) will be the main trunk throughout the coming years because it is transversal to 

different engineering fields and it envelops both Theme 1 and 2. There is a preliminary research 

work that has already started under this Theme by means of the internship of a Master student in 

collaboration with the EDF R&D department of “Industrial Risk Management”: the corresponding 

Ph.D. will start in October 2015. Themes 1 (2015-2018) and 2 (2017-2019) will at the same time 

feed Theme 3 and benefit from its development. In this respect, notice that a Ph.D. in collaboration 

with the EDF R&D Department of “Mechanical and Acoustic Analyses” has already started in the 
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field of modeling and analysis of (extreme) external natural events (Theme 1), with particular 

emphasis on seismic risk assessment for nuclear systems and components. On the contrary, Theme 2 

(“cyber risk”) will be launched in 2017 with the expected, more precise definition of the terms of 

collaboration between the EDF R&D Department of “Measures and Information Systems for 

Electrical Networks” and the “Research Institute for Smarter Electric Grids” (RISEGrid). The 

methodological research will be carried out in parallel. Methods for uncertainty and sensitivity 

analysis (Method 1) and for scenario simulation (Method 2(b)) are obviously needed to support 

constantly the development of all the research themes. The use of meta-modeling techniques 

(Method 2(a)) will be instead particularly useful in the analysis of Theme 1, where I plan to adopt 

object-oriented/agent-based models that are particularly computer intensive. 

Years 

Research 2015 2016 2017 2018 2019 2020

Themes       
Theme 1: extreme events X X X X   

Theme 2: cyber risk   X X X X 

Theme 3: risk aggregation X X X X X X 

Methods       

Method 1: Uncertainty and sensitivity analysis X X X X X X 

Method 2(a): Simulation (meta-modeling) X X X X   

Method 2(b): Simulation (scenario analysis) X X X X X X 

Table 5. Planning of the future research activities during 2015-2020 
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8 Conclusions 

From a quantitative point of view, my works include 28 international journal publications (14 on 

the top journals such as IEEE Systems Journal, Reliability Engineering & Systems Safety, IEEE 

Transactions on Power Systems, Risk Analysis, IEEE Transactions on Nuclear Science and 

Computers and Structures), 4 book chapter, 22 communications on the international/national 

conferences and 5 works published as technical reports of international research institutes. My H-

index is 12 on Google scholar, 11 on Scopus and 9 on Web of Science. Many of these publications 

were co-authored with external academic researchers and industrial partners, justifying our 

openness and the community recognition from academia and industry. I have co-directed 2 M.Sc. 

students and 5 Ph.D. students (including 2 pending) evidenced by joint publications. I have 

participated in 3 international projects or contracts. I have also directed or co-organized 5 sessions 

or tracks in international conferences. I have exercised numerous scientific reviewing activities for 

international journals or conferences. Finally, I have been serving as a Guest Editor one 

international journal (namely, the ASCE-ASME Journal of Risk and Uncertainty in Engineering 

Systems, Part A: Civil Engineering). 

My research activities on advanced models and methods for the risk, vulnerability and resilience 

assessment of complex, safety-critical engineering components, systems and infrastructures, in the 

presence of uncertainties were conducted first within the Laboratory of Analysis of Signal and 

Analysis of Risk (LASAR) of the Energy Department of the Politecnico di Milano (March 2010-

February 2013), then within the Chair on System Science and the Energy Challenge (SSEC) (March 

2013-present). These activities were initiated by the problems/demands from the national industry 

applications or from the international academic communities during our participation in various 

research projects. Particularly, our involvement in the project SINAPS@ (since 2014) and our 

collaboration contracts with EDF R&D (January 2010-December 2012) and with FonCSI 

(September 2009-October 2012) have enabled us to enhance our knowledge in connection with 

other scientific fields and thus develop our scientific themes and build relationships with other 

European and international universities. 

From the teaching viewpoint, I have been co-responsible of the organization and activity of the 

course “Nuclear Thermo-hydraulics” of an international Master in “Nuclear Energy” at the 

Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Institut national des sciences 

et techniques nucléaires (INSTN) (Saclay, France) for 4 years (2012-2015) and of the course 

“Managing Uncertainty for Reliability Optimization” of a Research Master at CentraleSupélec for 1 

year (2015). In addition to these responsibilities, I have held a large number of lectures during 
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professional training courses (about 24 hours), Master courses of the Politecnico di Milano (about 

25 hours), international Master courses (9 hours), Ph.D. courses offered by the Doctoral School of 

the Politecnico di Milano (about 30 hours) and international Ph.D. courses (about 17 hours). 

All these activities impose a scientific rigor that I can further develop not only in my personal 

scientific production and in my teaching responsibilities, but also in the doctoral supervision and 

future works in order to establish our research activity on solid qualitative bases.  

I have already obtained the Italian Academic Qualification to be an Associate Professor in the 

Scientific Disciplinary Area of “Thermodynamics and Nuclear Engineering” in February 2014. 

However, I have decided to pursue my HDR in France by preparing this thesis because it not only 

allows me to officially supervise Ph.D. candidates, but it also provides me, through the process of 

pursuing this qualification, with a deepened understanding of my past, current and future research 

and an opportunity to improve my articulation and animation abilities. In addition, I want to 

continue teaching students to transfer as much as possible the results of my research and I also want 

to take further teaching responsibilities in order to evolve certain teaching activities in line with my 

research. Finally, the HDR degree will enable me for the qualification of full professor in France 

which is my career development target for the next 5 years. 
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a b s t r a c t

We consider a model for the risk-based design of a flood protection dike, and use probability distributions

to represent aleatory uncertainty and possibility distributions to describe the epistemic uncertainty asso-

ciated to the poorly known parameters of such probability distributions.

A hybrid method is introduced to hierarchically propagate the two types of uncertainty, and the results

are compared with those of a Monte Carlo-based Dempster–Shafer approach employing independent

random sets and a purely probabilistic, two-level Monte Carlo approach: the risk estimates produced

are similar to those of the Dempster–Shafer method and more conservative than those of the two-level

Monte Carlo approach.

Ó 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In risk analysis, uncertainty is typically distinguished into two

types: randomness due to inherent variability in the system behav-

ior and imprecision due to lack of knowledge and information on

the system. The former type of uncertainty is often referred to as

objective, aleatory, stochastic whereas the latter is often referred

to as subjective, epistemic, state of knowledge [1,2].

We are interested in the framework of two hierarchical levels of

uncertainty, referred to as ‘‘two-level’’ setting [3]: the models of

the aleatory events (e.g., the failure of a mechanical component

or the variation of its geometrical dimensions and material proper-

ties) contain parameters (e.g., probabilities, failure rates, . . .) that

are epistemically uncertain because known with poor precision

by the analyst.

Both the aleatory and epistemic uncertainties in the two-level

framework can be represented by probability distributions, and

propagated by two-level (or double loop) Monte Carlo (MC) simu-

lation [4]: in the outer simulation loop, the values of the parame-

ters affected by epistemic uncertainty are sampled and fed onto

the probability distributions of the inner loop where the aleatory

variables are sampled [5,6].

In some cases, the imprecise knowledge, incomplete informa-

tion and scarce data impair the probabilistic representation of

epistemic uncertainty. A number of alternative representation

frameworks have been proposed to handle such cases [7], e.g.,

fuzzy set theory [8], Dempster–Shafer theory of evidence [9–14],

possibility theory [15–18] and interval analysis [19–21].

In this paper, we use probability distributions to describe the

first level aleatory uncertainty and possibility distributions to de-

scribe the second level epistemic uncertainty in the parameters

of such probability distributions [15–18].

For the propagation of the hybrid (probabilistic and possibilis-

tic) uncertainty representation, the MC technique [22,23] is com-

bined with the extension principle of fuzzy set theory [24–33],

within a ‘‘two-level’’ hierarchical setting [16,34–39]. This is done

by (i) fuzzy interval analysis to process the uncertainty described

by possibility distributions, (ii) repeated MC sampling of the

random variables to process aleatory uncertainty [16,24,29].

The joint hierarchical propagation of probabilistic and possibi-

listic representations of uncertainty is applied to a model for the

risk-based design of a flood protection dike developed as a realistic

benchmark for uncertainty modeling [3]; the effectiveness of the

propagation method is compared to that of: (i) a Monte Carlo

(MC)-based Dempster–Shafer (DS) approach employing indepen-

dent random sets (IRSs) (i.e., where the epistemically uncertain

parameters are represented by discretefocal sets that are randomly
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and independently sampled by MC)3 [40–50], (ii) a traditional two-

level MC approach [2,4,6]. To the best of the authors’ knowledge, this

is the first time that the above mentioned methods are systemati-

cally compared with reference to risk assessment problems where

hybrid uncertainty is separated into two hierarchical levels.

The remainder of the paper is organized as follows. In Section 2,

the hybrid method for uncertainty propagation is described; in

Section 3, the flood model is presented; in Section 4, the results

of the joint hierarchical propagation of aleatory and epistemic

uncertainties through the model of Section 3, and the comparison

with the MC-based DS-IRS and two-level MC approaches are re-

ported and commented; in Section 5, conclusions are provided.

The details about the hybrid, MC-based DS-IRS and two-level MC

computational procedures are given in Appendices A, B and C,

respectively.

2. Joint hierarchical propagation of aleatory and epistemic

uncertainties in a ‘‘two-level’’ framework

In all generality, we consider a model whose output is a function

Z = f (Y1,Y2, . . . ,Yn) of n uncertain variables Yi, i = 1, . . . ,n, ordered in

such away that the first k, Y1,Y2, . . . ,Yj, . . . ,Yk, are ‘‘probabilistic’’, i.e.,

their uncertainty is described by probability distributions

pY1
ðy1jh1Þ; pY2

ðy2jh2Þ; . . . ; pY j
ðyjjhjÞ; . . . ; pYk

ðykjhkÞ, where hj ¼ fhj;1;
hj;2; . . . ; hj;mj

g; j ¼ 1;2; . . . ; k, are the vectors of the corresponding

internal parameters, and the last n ÿ k, Yk+1,Yk+2, . . . ,Yl, . . . ,Yn, are

‘‘purely possibilistic’’, i.e., their uncertainty is epistemic and repre-

sented by the possibility distributions pYkþ1 ðykþ1Þ;pYkþ2 ðykþ2Þ;
. . . ;pY l ðylÞ; . . . ;pYn ðynÞ.

In a ‘‘two-level’’ framework, the parameters hj, j = 1,2, . . . ,k, are

themselves affected by epistemic uncertainty. We describe these

uncertainties by possibility distributions phj ðhjÞ ¼ fphj;1 ðhj;1Þ;phj;2

ðhj;2Þ; . . . ;phj;mj ðhj;mj
Þg, j = 1,2, . . . ,k. For clarification by way of exam-

ple, we may consider Y � N(l,r) = N(h) = N(h1,h2), where the

parameter l = h1 has a triangular possibility distribution with core

{c} and support [a,b], and parameter r = h2 has a triangular possi-

bility distribution with core {f} and support [e,d].

The propagation of the hybrid uncertainty can be performed by

combining the Monte Carlo (MC) technique [22,23] with the exten-

sion principle of fuzzy set theory [24–33] by means of the follow-

ing two main steps [16,34–39]:

i. fuzzy interval analysis to process epistemic uncertainty;

ii. repeated MC sampling of the random variables to process

aleatory uncertainty.

Technical details about the operative steps of the procedure are

given in Appendix A.

The method produces m possibility distributions pf
i ðzÞ,

i ¼ 1;2; . . . ;m, for the output variable Z = f(Y1,Y2, . . . ,Yn) (where m

is the number of random samples of the aleatory variables drawn

by MC). Then, for each set Acontained in the universe of discourse

UZ of Z, it is possible to obtain the possibility measure P
f
i ðAÞ and

the necessity measure Nf
i ðAÞ from pf

i ðzÞ, i ¼ 1;2; . . . ;m, by:

P
f
i ðAÞ ¼ maxz2Afpf

i ðzÞg; ð1Þ

Nf
i ðAÞ ¼ infzRAf1ÿ pf

i ðzÞg ¼ 1ÿP
f
i ðAÞ 8A#UZ : ð2Þ

The m different realizations of possibility and necessity can then be

combined to obtain the belief Bel (A) and the plausibility Pl (A) for

any set A, respectively [15]:

BelðAÞ ¼
Xm

i¼1

piN
f
i ðAÞ; ð3Þ

PlðAÞ ¼
Xm

i¼1

piP
f
i ðAÞ; ð4Þ

where pi is the probability of sampling the i-th realization of the

random variable vector (Y1,Y2, . . . ,Yk): if m realizations are gener-

ated by plain random sampling, then pi is simply 1/m. For each

set A, this technique thus computes the probability-weighted aver-

age of the possibility measures associated with each output fuzzy

interval.

The likelihood of the value f(Y) passing a given threshold z can

then be computed by considering the belief and the plausibility of

the set A = (ÿ1,z]; in this respect, Bel (f(Y) 2 (ÿ1,z]) and

Pl (f(Y) 2 (ÿ1,z]) can be interpreted as bounding, average cumula-

tive distributions FðzÞ ¼ Belðf ðYÞ 2 ðÿ1; z�Þ, FðzÞ ¼ Plðf ðYÞ 2 ðÿ1;

z�Þ [15].
Let the core and the support of a possibilistic distribution pf(z)

be the crisp sets of all points of UZ such that pf(z) is equal to 1

and nonzero, respectively. Considering a generic value z of f(Y), it

is Pl (f(Y) 2 (ÿ1,z]) = 1 if and only if P
f
i ðf ðYÞ 2 ðÿ1; z�Þ ¼ 1,

"i = 1, . . . ,m, that is, for z > z� ¼ maxifinfðcoreðpf
i ÞÞg. Similarly,

Pl (f(Y) 2 (ÿ1,z]) = 0 if and only if P
f
i ðf ðYÞ 2 ðÿ1; z�Þ ¼ 0

8i ¼ 1; . . . ;m, that is, for z 6 z� ¼ minifinfðsupportðpf
i ÞÞg.

Finally, one way to estimate the total uncertainty on f(Y ) is to

provide a confidence interval at a given level of confidence, taking

the lower and upper bounds from Pl (f(Y) 2 (ÿ1,z]) and Bel (f(Y)

2 (ÿ1,z]), respectively [15]. On the other hand, Bel (f(Y) 2 (ÿ1,z])

and Pl (f(Y) 2 (ÿ1,z]) cannot convey any information on the pre-

diction that f(Y) lies within a given interval [z1,z2], since neither

Bel (f(Y) 2 [z1,z2]) nor Pl (f(Y) 2 [z1,z2]) can be expressed in terms

of Bel (f(Y) 2 (ÿ1,z]) and Pl (f(Y) 2 (ÿ1,z]), respectively.

3. Case study: flood protection risk-based design

The case study deals with the design of a protection dike in a

residential area closely located to a river with potential risk of

floods. Two issues of concern are: (i) high construction and annual

maintenance costs of the dike; (ii) uncertainty in the natural phe-

nomenon of flooding. Then, the different design options must be

evaluated within a flooding risk analysis framework accounting

for uncertainty.

In Section 3.1, a short description of the model for flood protec-

tion dike design is given; in Section 3.2, the uncertain variables of

the model are described.

3.1. The model

The maximal water level of the river (i.e., the output variable of

the model, Zc) is given as a function of several (and some uncertain)

parameters (i.e., the input variables of the model) [3]:

Zc ¼ Zv þ
Q

Ks � B �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðZm ÿ ZvÞ=L

p
 !3=5

; ð5Þ

where:

– Q is the yearly maximal water discharge (m3/s);

– Zm and Zv are the riverbed levels (m asl) at the upstream and

downstream part of the river under investigation, respectively;

– Ks is the Strickler friction coefficient;

– B and L are the width and length of the river part (m),

respectively.

The input variables are classified as follows:

3 In the following, this method will be referred to as ‘‘MC-based DS-IRS approach’’

for brevity.
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– Constants: B = 300 m, L = 5000 m.

– Uncertain variables: Q, Zm, Zv, Ks.

3.2. The input variables: physical description and representation of the

associated uncertainty

The input variables are affected by aleatory and epistemic

uncertainties. The aleatory part of the uncertainty is described by

probability distributions of defined shape (e.g., normal, exponen-

tial, . . .). The parameters of the probability distributions describing

the aleatory uncertainty are themselves affected by epistemic

uncertainty represented in terms of possibility distributions.

In this section, a detailed description of the uncertain input

variables is given together with the explanation of the reasons

underlying the choices of their description by probability and pos-

sibility distributions. In particular, in Section 3.2.1, the yearly max-

imal water flow Q is discussed; in Section 3.2.2, the upstream and

downstream riverbed levels Zm and Zv are presented; finally, in

Section 3.2.3, the Strickler friction coefficient Ks is described.

3.2.1. The yearly maximal water flow, Q

The Gumbel distribution Gumðq j a; bÞ is a well-established

probabilistic (aleatory) model for maximal flows [3]:

Gumðqja;bÞ ¼ 1

b
exp ÿ exp

qÿ a
b

� �� �
exp

aÿ q

b

� �
: ð6Þ

The extreme physical bounds on variable Q are [3]:

– Qmin = 10 m3/s;

– Qmax = 10,000 m3/s.

The parameters a and b in (6) are affected by epistemic uncer-

tainty; however, a large amount of data (i.e., 149 annual maximal

flow values) is available for performing statistical inference on

them. In particular, the point estimates l̂a and l̂b and the corre-

sponding standard deviations r̂a and r̂b have been obtained for

the parameters a and b of the Gumbel distribution (6) by perform-

ing maximum likelihood estimations with the 149 data available:

the method has provided l̂a ¼ 1013 m3=s, l̂b ¼ 558 m3=s,

r̂a ¼ 48 m3=s and r̂b ¼ 36 m3=s [3]. Since a large amount of data

(i.e., 149) has been used for performing statistical inference on a
and b, then the epistemic uncertainty associated to them is mainly

of ‘‘statistical nature’’. As a consequence, a probabilistic treatment

of this epistemic uncertainty has been proposed in the original

paper [3]: in particular, a and b have been chosen to be normally

distributed, i.e., a � paðaÞ ¼ Nðl̂a; r̂aÞ ¼ Nð1013;48Þ and

b � pbðbÞ ¼ Nðl̂b; r̂bÞ ¼ Nð558;36Þ [3].
In the present paper, the Gumbel shape of the aleatory probabil-

ity distributions (6) is retained but the epistemic uncertainty on

the parameters is represented in possibilistic terms: this allows

defining a family of probability distributions (properly bounded

by plausibility and belief functions) that quantifies the expert’s

lack of knowledge about the parameters themselves and, thus,

his/her inability to select a single probability distribution for them.

To do so, the normal probability distributions pa(a) and pb(b) used

in [3] are transformed into the possibility distributions pa(a) and

pb(b) by normalization, i.e., paðaÞ ¼ paðaÞ
sup paðaÞ, p

bðbÞ ¼ pbðbÞ
sup pbðbÞ [16].

The supports of the possibility distributions pa(a) and pb(b) are

set to ½l̂a ÿ r̂a; l̂a þ r̂a� ¼ ½965;1061� and ½l̂b ÿ r̂b; l̂b þ r̂b� ¼
½523;594�, respectively, according to the suggestions by Limbourg

and de Rocquigny [3]. The possibility distributions pa(a) and

pb(b) are shown in Fig. 1, left and right, respectively.

Notice that in the present paper, the choice of transforming

probability density functions into possibility distribution by nor-

malization has been made arbitrarily, for the sake of simplicity,

accepting that the resulting possibility distributions do not in gen-

eral adhere to the probability–possibility consistency principle

[51]; other techniques of transformation of probability density

functions into possibility distributions exist, e.g., the principle of

maximum specificity [52] and the principle of minimal commit-

ment [53].

3.2.2. The upstream and downstream riverbed levels, Zm and Zv
The minimum and maximum physical bounds on variables Zm

and Zv are Zm,min = 53.5 m, Zv,min = 48 m, Zm,max = 57 m and

Zv,max = 51 m, respectively [3].

Normal distributions truncated at the minimum and maximum

physical bounds have been selected in [3] to represent the aleatory

part of the uncertainty, i.e., Zm � N(lZm,rZm) and Zv � N(lZv,rZv).

An amount of 29 data has been used in the reference paper [3] to

provide the point estimates l̂Zm ¼ 55:03 m, l̂Zv ¼ 50:19 m,

r̂Zm ¼ 0:45 m, r̂Zv ¼ 0:38 m for parameters lZm, lZv, rZm and rZv,

respectively, by means of the maximum likelihood estimation

method. However, according to [3] there is large uncertainty about

the shape of the probability distributions of Zm and Zv: as a conse-

quence the authors embrace a conservative ‘‘two-level’’ frame-

work, using the maximum likelihood estimation method to

provide also standard deviations as a measure of the uncertainty

on the point estimates l̂Zm, l̂Zv , r̂Zm and r̂Zv : in particular,

r̂l̂Zm
¼ 0:08, r̂l̂Zv

¼ 0:07, r̂r̂Zm
¼ 0:06 and r̂r̂Zv

¼ 0:05. Using this

information, the authors in [3] model the epistemic uncertainty

associated to the parameters lZm, lZv, rZm and rZv by normal dis-

tributions, i.e., lZm � Nðl̂Zm; r̂l̂Zm
Þ, lZv � Nðl̂Zv ; r̂l̂Zv

Þ,
rZm � Nðr̂Zm; r̂l̂Zm

Þ and rZv � Nðr̂Zv ; r̂r̂Zv
Þ.

In this paper, the shapes of the aleatory probability distribu-

tions for Zm and Zv, i.e., N(lZm,rZm) and N(lZv,rZv), are kept unal-

tered with respect to those of [3]; on the contrary, the

information produced by the maximum likelihood estimation

method on parameters lZm, lZv, rZm and rZv, i.e., the point esti-

mates l̂Zm, l̂Zv , r̂Zm, r̂Zv and the corresponding standard deviations

r̂l̂Zm
, r̂l̂Zv

, r̂r̂Zm
, r̂r̂Zv

, is used to build possibility distributions for

lZm, lZv, rZm and rZv by means of the Chebyshev inequality

[54,55]. The classical Chebyshev inequality [54,55] defines a brac-

keting approximation on the confidence intervals around the

known mean l of a random variable Y, knowing its standard devi-

ation r. The Chebyshev inequality can be written as follows:

PðjY ÿ lj 6 krÞP 1ÿ 1

k
2

for kP 1: ð7Þ

Formula (7) can be thus used to define a possibility distribution p
that dominates any probability density function with given mean

l and standard deviation r by considering intervals [l ÿ kr,l + kr]
as a-cuts of p and letting pðlÿ krÞ ¼ pðlþ krÞ ¼ 1

k2
¼ a. This pos-

sibility distribution defines a probability family Pl;rðpÞ which has

been proven to contain all probability distributions with mean l
and standard deviation r, whether the unknown probability distri-

bution function is symmetric or not, unimodal or not [54].

In this case, the point estimates l̂Zm, l̂Zv , r̂Zm and r̂Zv produced

by the maximum likelihood estimation method, are used in (7) as

the means of the parameters lZm, lZv, rZm and rZv, whereas the

errors r̂l̂Zm
, r̂l̂Zv

, r̂r̂Zm
and r̂r̂Zv

associated to the estimates l̂Zm,

l̂Zv , r̂Zm and r̂Zv are used in (7) as the standard deviations of the

parameters lZm, lZv, rZm and rZv in order to build the correspond-

ing possibility distributions plZm , plZv , prZm and prZv ; the supports

of the possibility distributions are obtained by extending two

times the standard deviation r̂l̂Zm
, r̂l̂Zv

, r̂r̂Zm
and r̂r̂Zv

in both

directions with respect to the estimates l̂Zm, l̂Zv , r̂Zm and r̂Zv (Figs.

2 and 3).
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3.2.3. The Strickler friction coefficient, Ks

The Strickler friction coefficient Ks is the most critical source of

uncertainty because it is usually a simplification of a complex

hydraulic model. The absolute physical limits of Ks are

[a,b] = [5,60] [3].

The friction coefficient Ks is affected by random events modify-

ing the river status (e.g., erosion): the corresponding variability is

typically described by a normal distribution, i.e., Ks � N(lKs,rKs)

[3]. However, the mean value lKs of this normal distribution is dif-

ficult to measure because data can only be obtained through ‘‘indi-

rect calibration characterized by significant uncertainty’’: in [3]

this is reflected in a ‘‘very small set of five data available with

±15% noise’’. The sample mean l̂Ks and standard deviation r̂Ks of

these five pieces of data equal 27.8 and 3, respectively. In order

to reflect the imprecision generated by the indirect measurement

process, the ‘‘minimal sample mean’’ l̂min ¼ 23:63 and the ‘‘maxi-

mal sample mean’’ l̂max ¼ 31:97 are also calculated under the con-

servative hypothesis that all measurements are biased in the same

direction [3]. Moreover, since the small sample size adds a non-

negligible ‘‘statistical epistemic uncertainty’’ to the values l̂min

and l̂max, as described in [3] the 70% confidence bounds on l̂min

and l̂max are also computed as l̂min ÿ r̂Ksffiffi
5

p ¼ 22:3 and

l̂min ÿ r̂Ksffiffi
5

p ¼ 33:3, respectively. In [3], these considerations result

in the following uncertainty quantification for Ks:

Ks � NðlKs;rKsÞ;

with rKs ¼ r̂Ks ¼ 3 and lKs 2 l̂min ÿ
r̂Ksffiffiffi
5

p ; l̂max þ
r̂Ksffiffiffi
5

p
� �

¼ ½22:3;33:3�: ð8Þ

In this paper, the shape of the aleatory probability distribution of Ks,

i.e., N(lKs,rKs) in (8) is retained; however, differently from the ori-

ginal paper, a possibility distribution is associated to lKs. In partic-

ular, a trapezoidal possibility distribution is here proposed: the

support is chosen to be ½a; b� ¼ l̂min ÿ r̂Ksffiffi
5

p ; l̂max þ r̂Ksffiffi
5

p
h i

¼ ½22:3;33:3�
as in (8); however, in this paper additional information is provided

concerning the most likely values of lKs exploiting the available

data set: in particular, since the core of the trapezoidal distribution

contains the most likely values of the parameter lKs, in this case it is

set to ½c;d� ¼ l̂min ÿ r̂Ksffiffi
5

p ; l̂max þ r̂Ksffiffi
5

p
h i

¼ ½26:5;29:1�, i.e., the interval

obtained by adding/subtracting to the sample mean l̂Ks ¼ 27:8

(which is assumed to be themost likely value for lKs) the ‘‘statistical’’

epistemic uncertainty due to the low sample size (i.e., the quantity
r̂Ksffiffi
5

p ) (Fig. 4).

A final remark is in order with respect to the approaches consid-

ered in this work for constructing possibility distributions. The

construction of the possibility distribution obviously depends on

the information available on the uncertain parameter: when a

probability distribution is originally available a corresponding pos-

sibility distribution can be generated by resorting to the probabil-

ity–possibility transformations available in the open literature, e.g.,

the normalization method (like in the present case), the principle

of maximum specificity or that of minimal commitment

[29,52,53]; when the mean and the standard deviation of the

parameter distribution can be estimated, e.g., by means of empiri-

cal data, the Chebyshev inequality can be used; finally, when the

absolute physical limits and the most likely value(s) of the param-

eter are available, a triangular or trapezoidal possibility distribu-

tion can be constructed.

4. Application

In this Section, the hybrid method described in Section 2 is ap-

plied with the procedure in Appendix A to hierarchically propagate

probabilistic and possibilistic uncertainties through the model of

Section 3.1, in a ‘‘two-level’’ framework. The results obtained by

the hybrid approach are compared to those produced by (i) a tra-

ditional one-level pure probabilistic approach, where the parame-

ters of the aleatory probability distributions are fixed, known

values (only for illustration purposes, Section 4.1), (ii) a MC-based

DS-IRS approach, where the possibility distributions are encoded

into discrete sets that are randomly and independently sampled

by MC and (iii) a two-level (or double loop) Monte Carlo (MC) ap-

proach, where the parameters of the aleatory probability distribu-

tions are uncertain and themselves described by probability

distributions (Section 4.2).

4.1. Comparison of the ‘‘two-level’’ hybrid Monte Carlo and

possibilistic approach with a one-level pure probabilistic approach

Only for illustration purposes, the following one-level pure

probabilistic model has been considered for comparison:

Q � Gumðl̂a; l̂bÞ ¼ Gumð1013;558Þ; ð9Þ
Zm � Nðl̂Zm; r̂ZmÞ ¼ Nð55:03;0:45Þ; ð10Þ
Zv � Nðl̂Zv ; r̂ZvÞ ¼ Nð50:19;0:38Þ; ð11Þ
Ks � Nðl̂Ks; r̂KsÞ ¼ Nð27:8;3Þ; ð12Þ

where the parameters of the probability distributions are defined in

Sections 3.2.1,3.2.2,3.2.3: in particular, the parameters for Q, Zm and
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Fig. 1. Possibility distributions pa(a) (left) and pb(b) (right) of the parameters a and b of the Gumbel probability distribution (6) of the maximal water flow Q [m3/s], obtained

by normalization of the probability distributions pa(a) and pb(b) proposed in [3].
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Zv correspond to their maximum likelihood estimates and the

parameter l̂Ks of Ks is the sample mean of the five available pieces

of data obtained by neglecting measurement uncertainty.

Fig. 5 shows the comparison of the cumulative distribution

functions of the maximal water level of the river (i.e., the output

variable of the model, Zc) obtained by the one-level pure probabi-

listic approach (solid line) with the belief (lower dashed curve) and

plausibility (upper dashed curve) functions obtained by the hybrid

Monte Carlo and possibilistic approach in a ‘‘two-level’’ setting

(Section 2 and Appendix A).

It can be seen that:

� the hybrid approach propagates the uncertainty by separating

the aleatory and epistemic components; this separation is

visible in the output distributions of the maximal water level

of the river where the separation between the belief and

plausibility functions reflects the imprecision in the knowl-

edge of the possibilistic parameters of the probability

distributions;

� the uncertainty in the output distribution of the pure probabi-

listic approach is given only by the slope of the cumulative

distribution;

� as expected, the cumulative distribution of the maximal water

level of the river obtained by the pure probabilistic method is

within the belief and plausibility functions obtained by the

hybrid approach.
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Fig. 2. Left: possibility distribution plZm of lZm constructed using Chebyshev inequality (7) with l̂Zm ¼ 55:03 and r̂l̂Zm
¼ 0:08. Right: possibility distribution prZm of rZm

constructed using Chebyshev inequality (7) with r̂Zm ¼ 0:45 and r̂r̂Zm
¼ 0:06.
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Fig. 3. Left: possibility distribution plZv of lZv constructed using Chebyshev inequality (7) with l̂Zv ¼ 50:19 and r̂l̂Zv
¼ 0:07. Right: possibility distribution prZv of rZv

constructed using Chebyshev inequality (7) with r̂Zv ¼ 0:38 and r̂r̂Zv
¼ 0:05.
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Fig. 4. Trapezoidal possibility distribution function for the parameter lKs with

support [a,b] = [22.3,33.3] and core [c,d] = [26.5,29.1].
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4.2. Comparison of the ‘‘two-level’’ hybrid Monte Carlo and

possibilistic approach with the MC-based DS-IRS and two-level

(double loop) MC approaches

In this Section, the following approaches are considered and

compared in the task of hierarchically propagating aleatory and

epistemic uncertainties in a ‘‘two-level’’ framework:

i. the hybrid Monte Carlo (MC) and possibilistic approach of

Section 2 and Appendix A;

ii. the Monte Carlo (MC)-based Dempster–Shafer approach

employing independent random sets (IRSs) (Appendix B);

iii. a two-level (double loop) MC approach (Appendix C):

a. assuming independence between the epistemically uncer-

tain parameters of the aleatory probability distributions.

This choice has been made to perform a fair comparison

with the MC-based DS-IRS approach, which assumes inde-

pendence between the epistemically uncertain parameters

(see Appendix B);

b. assuming total dependence between the epistemically

uncertain parameters of the aleatory probability distribu-

tions. This choice has been made to perform a fair compar-

ison with the hybrid MC and possibilistic approach, which

implicitly assumes by construction total dependence

between the epistemically uncertain parameters (see Sec-

tion 2 and Appendix A).4

It is worth noting that the representation of epistemic uncertainty

here used in the MC-based DS-IRS approach entirely relies on the

possibilistic representation described in Section 3.2 and employed

by the hybrid MC and possibilistic approach: however, in order

to tailor this possibilistic representation to the DS framework,

the possibility distributions of Section 3.2 are discretized into focal

sets (or intervals), each of which is assigned a probability mass: the

reader is referred to Appendix B for some details.

In addition, notice that the probability distributions here used

in the two-level MC approach for Q, Zm and Zv and for the corre-

sponding epistemically uncertain parameters are the same as those

proposed in the original paper by Limbourg and de Rocquigny [3]

(and recalled in Sections 3.2.1 and 3.2.2); the only exception is rep-

resented by the probability distribution for lKs, which for consis-

tency and coherence of the comparison is here obtained by

normalization of the trapezoidal possibility distribution described

in Section 3.2.3 and shown in Fig. 4, i.e.,

plKs ðlKsÞ ¼
plKs ðlKsÞR b

a
plKsðlKsÞdlKs

:

Table 1 summarizes the characteristics of the approaches i–iii

used in the following to propagate aleatory and epistemic uncer-

tainties in a ‘‘two-level’’ framework.

The following comparisons are considered: approaches that

represent in the same way the epistemic uncertainty (i.e., in terms

of probability or possibility distributions) but assume different rela-

tionships (i.e., dependence or independence) between the episte-

mically uncertain parameters are compared in Section 4.2.1 (in

particular, comparisons are performed between approaches iiia

and iiib above and between approaches i and ii above): such com-

parisons are made to study the effect of the state of dependence be-

tween the epistemically uncertain parameters of the aleatory

probability distributions when a probabilistic/non-probabilistic

representation of epistemic uncertainty is given; approaches

assuming the same dependence relationship between the epistemi-

cally uncertain parameters but employing different representations

of the epistemic uncertainty are compared in Section 4.2.2 (in par-

ticular, comparisons are performed between approaches ii and iiia

above and between approaches i and iiib above): such comparison

are made to study the effect of the probabilistic/non-probabilistic

representations of the epistemically uncertain parameters of the

aleatory probability distributions when the state of dependence be-

tween the epistemically uncertain parameters is given. Table 2

summarizes the comparisons carried out in the present paper to-

gether with the corresponding objectives.

A final consideration is in order with respect to the analyses

performed in the present paper. Only two extreme states of depen-

dence between the epistemically uncertain parameters of the ale-

atory probability distribution functions (PDFs) are here considered:

in particular, independence (methods ii and iiia) and total depen-

dence (methods i and iiib) are assumed between all the uncertain

parameters of the PDFs of all the aleatory variables. On one side,

the choice of these extreme conditions serves the purpose of

strongly highlighting the effects of epistemic dependence between

the uncertain parameters, which allows deriving clear indications

and guidelines for the application of the different approaches in

risk assessment problems. On the other side, such (strong)

assumptions of independence or total dependence between all

the epistemically uncertain parameters may not be realistic in

cases of practical interest, like the one analyzed in the present pa-

per. Referring to the previous Section 3.2, it can be seen that the

possibility distributions describing the uncertainty in the parame-

ters of the PDFs of the four aleatory variables Q, Zm, Zv and Ks are

estimated based on four distinct data sets (i.e., one data set for each

aleatory variable). This has two implications: (1) when the PDF of a

given aleatory variable containsmore than one uncertain parameter

(which is the case of Q, Zm and Zv), such parameters are totally

dependent between each other (for example, the location parame-

ter a and the scale parameter b of the PDF of variable Q are totally

dependent between each other because their uncertainty is esti-

mated based on the same data set); (2) the uncertain parameters

of the PDF of a given aleatory variable are epistemically indepen-

dent with respect to the parameters of the PDFs of the other alea-

tory variables (for example, the location parameter a and the

scale parameter b of the PDF of variable Q are independent from
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Fig. 5. Comparison of the cumulative distribution function of the maximal water

level of the river Zc obtained by a one-level pure probabilistic approach (solid line)

with the belief (lower dashed curve) and plausibility (upper dashed curve)

functions obtained by the ‘‘two-level’’ hybrid Monte Carlo and possibilistic

approach of Section 2.

4 It is important to note that the condition of total epistemic (or state-of-

knowledge) dependence between parameters of risk models is far from unlikely. For

example, consider the case of a system containing a number of physically distinct, but

similar/nominally identical components whose failure rates are estimated by means of

the same data set: in such situation, the distributions describing the uncertainty

associated to the failure rates have to be considered totally dependent [56,57].
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the mean lZm and the standard deviation rZm of the PDF of variable

Zm because their uncertainty is estimated based on two different

data sets).

4.2.1. Studying the effect of the state of dependence between the

epistemically uncertain parameters of the aleatory probability

distributions

We start by comparing approaches iiia and iiib. above, i.e., two-

level MC assuming independence and total dependence between

the uncertain parameters, respectively: the upper and lower cumu-

lative distribution functions of the model output Zc obtained by ap-

proaches iiia and iiib are shown in Fig. 6.

In this case, assuming total dependence between the uncertain

parameters is shown to lead to a smaller gap between the upper

and lower cumulative distribution functions of the model output

Zc than assuming independence. This can be easily explained by

analyzing the input–output functional relationship of the model

(5): it can be seen that one of the input variables (i.e., Q) appears

at the numerator, whereas others (i.e., Ks and Zm) appear at the

denominator, and another one appears both at the numerator

and at the denominator (i.e., Zv). In such a case, the highest possible

values for the model output Zc are obtained with a combination of

high values of both Q and Zv (i.e., high values of the corresponding

uncertain parameters a, b, lZv and rZv) and low values of both Ks

and Zm (i.e., low values of the corresponding uncertain parameters

lKs, rKs, lZm and rZm); conversely, the lowest possible values for

the model output Zc are obtained with a combination of low values

of both Q and Zv and high values of both Ks and Zm. These extreme

situations (which give rise to the largest separation between the

upper and lower cumulative distribution functions, i.e., to the most

‘‘epistemically’’ uncertain and, thus, conservative case), can be ob-

tained only in case iiia above, i.e., assuming independence between

the epistemically uncertain parameters. Actually, if a pure random

sampling is performed among independent uncertain parameters,

all possible combinations of values can be in principle generated,

since the entire ranges of variability of the uncertain parameters

can be explored independently: thus, in some random samples,

high values of Q and Zv may be combined by chance with low val-

ues of both Ks and Zm, whereas in other random samples low values

of both Q and Zv may be combined by chance with high values of

both Ks and Zm. Conversely, such ‘‘extreme’’ situations cannot occur

if there is total dependence between the uncertain parameters (i.e.,

case iiib above). Actually, in such a case high (low) values of both Q

and Zv can only be combined with high (low) values of both Ks and

Zm, giving rise to values of output Zc which are lower (higher) than

the highest (lowest) possible: in other words, the separation be-

tween the upper and lower cumulative distribution functions pro-

duced in case iiib is always smaller than that produced by the

‘‘extreme’’ situations described above (which are possible only in

case iiia).

A final, straightforward remark is in order. The considerations

made above about what combinations of parameter values would

lead to the most conservative results (i.e., to the largest gap be-

tween the upper and lower cumulative distribution functions)

are strictly dependent on the input–output relationship consid-

ered: obviously, a different model (with different functional rela-

tionships between inputs and outputs) would require different

combinations of input values in order to obtain the most conserva-

tive results. For example, for the hypothetical model w = (x ⁄ y)/z

the most conservative results (i.e., the largest separation between

the upper and lower cumulative distribution functions) would be

obtained by imposing total dependence between x and y and oppo-

site dependence between z and both x and y.

We now move onto compare i and ii. Fig. 7 shows the plausibil-

ity and belief functions of the model output Zc produced by the

MC-based DS-IRS method (case ii) and by the hybrid MC and pos-

sibilistic approach (case i).

The results are very similar because, in the present case, the

effect of the different dependence relationships between the

Table 1

Characteristics of the approaches considered to propagate aleatory and epistemic

uncertainties in a ‘‘two-level’’ framework.

Method Epistemic

uncertainty

representation

Epistemic

uncertainty

propagation

State of

dependence

between the

epistemically

uncertain

parameters

Hybrid MC and

possibilistic (i)

Possibility

distributions

Fuzzy interval

analysis

Total dependence

MC-based DS-IRS (ii) Focal sets with

associated

probability masses

(discretization of

possibility

distributions)

Random

sampling (of

discrete focal

sets) by MC

Independence

Two-level MC (iii) Probability

distributions

Random

sampling (of

probability

distributions)

by MC

Independence

(iiia)/total

dependence (iiib)

Table 2

Comparisons performed between the different approaches, and their relative objectives.

State of dependence between the

epistemically uncertain parameters

Independence Total

dependence

Objective

Representation of

epistemic

uncertainty

Probabilistic Two-level MC

(iiia)

vs. Two-level MC

(iiib)

Study the effect of the state of dependence between the epistemically uncertain

parameters of the aleatory probability distributions when a probabilistic/non-probabilistic

representation of epistemic uncertainty is givenvs. vs.

Non-

probabilistic

MC-based

DS-IRS (ii)

vs. Hybrid MC and

possibilistic (i)

Objective Study the effect of the

probabilistic/non-probabilistic

representation of the epistemically

uncertain parameters of the

aleatory probability distributions

when the state of dependence

between the epistemically

uncertain parameters is given
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epistemically uncertain parameters is not evident. This may be ex-

plained as follows. In general, the closer the shape of the possibility

distribution of a parameter is to that of a rectangle, defined over a

given support, the higher the epistemic uncertainty associated to

that parameter (actually, if a parameter is represented by a rectan-

gular possibility distribution, the only information available about

the parameter is the interval where it is defined, i.e., we are totally

ignorant about its distribution). It can be easily seen that if the state

of knowledge of many of the epistemically uncertain parameters is

close to that of total ignorance, the state of dependence between

them becomes negligible. By way of example, refer to the possibil-

ity distributions of the parameters lZm (Fig. 8, left) and b (Fig. 8,

right) described in Section 3.2. Selecting the same confidence level

a ¼ alZm
1 ¼ ab

1 ¼ 0:5 for the two variables (i.e., imposing total

dependence between them) produces the same couple of a-cuts
than selecting different levels alZm

1 ¼ 0:5– ab

2 ¼ 0:1. Notice that

this holds for many other combinations of a values: for example,

in this case all combinations with ab ranging between 0 and 0.6

and alZm ranging between 0 and around 0.25 produce the same

couple of a-cuts.
Since, in the present case study the shape of many of the possi-

bility distributions are quite close to that of a rectangle (see Figs.

1–4), the state of dependence between the uncertain parameters

scarcely affects the results.

A final consideration is in order with respect to the results ob-

tained. The first comparison (Fig. 6) shows that in the present case

study the two-level MC approach assuming dependence among

parameters gives rise to a smaller separation between the cumula-

tive distribution functions than the two-level MC approach assum-

ing independence among parameters: in other words, it can be

considered less conservative. The second comparison (Fig. 7)

shows that the results obtained by the hybrid MC and possibilistic

approach and the MC-based DS-IRS approach are very similar.

Therefore, the state of dependence between the epistemically

uncertain parameters of the aleatory probability distributions is

more likely to become a critical factor (e.g., in risk-informed deci-

sions) when the representation of the uncertain parameters is

probabilistic.

4.2.2. Studying the effect of the probabilistic/non-probabilistic

representation of the epistemically uncertain parameters of the

aleatory probability distributions

In this Section, we perform comparisons between approaches ii

and iiia and between approaches i and iiib above, i.e., approaches

that represent epistemic uncertainty in radically different ways:

in particular, both in hybrid and in MC-based DS-IRS methods, pos-

sibility distributions are employed which identify a family of prob-

ability distributions for the epistemically uncertain parameters5;

on the contrary, in the two-level MC approach, only a single probabil-

ity distribution is assigned to represent the epistemic uncertainty

associated to the parameters.

Fig. 9 shows the upper and lower cumulative distribution

functions of the model output Zc obtained by the two-level MC ap-

proach assuming independence between the uncertain parameters

(case iiia) and the plausibility and belief functions produced by the

MC-based DS-IRS approach (case ii).

The results are very similar, which is explained as follows. First

of all, there is obviously a strong similarity between the shapes of

the probability distributions of the epistemically uncertain param-

eters used in the two-level MC approach (case iiia) and the corre-

sponding possibility distributions used in the MC-based DS-IRS

approach (case ii).6 For example, the ranges of variability of the

uncertain parameters are the same for both the probability and the

possibility distributions considered (see Sections 3.2.1,3.2.2,3.2.3);

in addition, some of the possibility distributions employed in the

MC-based DS-IRS approach (e.g., those of parameters a and b of the

Gumbel distribution for Q) are obtained by simple normalization of

the probability distributions employed in the two-level MC approach

(Section 3.2.1); finally, the trapezoidal probability distribution used

in the two-level MC approach for the Strickler friction coefficient Ks

is also obtained by simple normalization of the trapezoidal possibility

distribution proposed in the present paper and shown in Fig. 4 of Sec-

tion 3.2.3.

In addition to the similarity between the probability and possi-

bility distributions considered, the second motivation for the sim-

ilarity between the results lies in the assumption of independence

between the epistemically uncertain parameters and in the charac-

teristics of the two algorithms used to propagate the uncertainties.

In the two-level MC approach, a plain random sampling is per-

formed from the probability distribution of the epistemically

uncertain parameters, which are considered independent: as a

consequence of this independence, in principle all possible combi-

nations of values of the parameters can be sampled, since the entire

ranges of variability of the parameters are explored randomly and

independently. In the MC-based DS-IRS approach, the focal sets

generated by the discretization of the possibility distributions are
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Fig. 6. Comparison of the upper and lower cumulative distribution functions of the

maximal water level of the river Zc obtained by the two-level Monte Carlo approach,

considering both independence and total dependence between the epistemically

uncertain parameters.
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method.

5 Remember that in the MC-based DS-IRS approach the possibility distributions are

discretized into focal sets (Appendix B).
6 As before, notice that this comparison is fair because both methods assume

independence between the epistemically uncertain parameters.
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selected randomly and independently by MC (step 2. of the proce-

dure in Appendix B); in addition, all the focal sets selected are

exhaustively searched to maximize/minimize the model output.

As a final comparison, Fig. 10 shows the upper and lower cumu-

lative distribution functions of the model output Zc obtained by the

two-level MC approach assuming total dependence between

parameters (case iiib) and the hybrid MC approach (case i) (which

assumes total dependence between parameters).

From the consideration made above it is clear why the gap is

smaller between the cumulative distributions in the two-level

MC approach assuming total dependence between the uncertain

parameters (case iiib) than between the plausibility and belief

functions produced by the hybrid approach (case i).7 Actually, in

case iiib only a limited set of combinations of uncertain parameter

values can be randomly explored, whereas in case i, the same confi-

dence level a is chosen to build the a-cuts for all the possibility dis-

tributions of the uncertain parameters (step 3. of the procedure in

Appendix A). Then, the minimum and maximum values of the model

output Zc are identified letting the uncertain parameters range inde-

pendently within the corresponding a-cuts (step 3. of the procedure

in Appendix A): thus, contrary to the case iiib, once a possibility level

a is selected, all possible combinations of parameter values can be ex-

plored, since the a-cuts of all the parameters are exhaustively

searched to maximize/minimize the model output Zc (giving rise to

a larger separation between the plausibility and belief functions).

A final remark is in order with respect to the results obtained.

Since in this case the hybridMC and possibilistic approach gives rise

to a larger separation between the plausibility and belief functions

than the two-level MC approach (assuming total dependence be-

tween the epistemically uncertain parameters), it can be considered

more conservative. As a consequence, embracing onemethod instead

of the other may significantly change the outcome of a decision

making process in a risk assessment problem involving uncertain-

ties: this is of paramount importance in systems that are critical

from the safety view point, e.g., in the nuclear, aerospace, chemical

and environmental fields. On the contrary, since the results ob-

tained by the two-level MC approach (assuming independence

among the epistemically uncertain parameters) and the MC-based

DS-IRS are very similar, embracing one method instead of the other

would not change significantly the final decision.

In conclusion, it is worth highlighting that when there is total

dependence between the epistemically uncertain parameters, a

probabilistic representation of epistemic uncertainty may fail to

produce reliable and conservative results, which raises concerns

from the point of view of safety. A quantitative demonstration of

this statement is given in what follows.

The final goal of the uncertainty propagation is to determine (i)

the dike level necessary to guarantee a given flood return period or

(ii) the flood risk for a given dike level.

With respect to issue (i) above, the quantity of interest that is

most relevant to the decision maker is the 99% quantile of Zc, i.e.,

Z0:99
c , taken as the annual maximal flood level. This corresponds

to the level of a ‘‘centennial’’ flood, the yearly maximal water level

with a 100 year-return period. With respect to issue (ii) above, the

quantity of interest that is most relevant to the decision maker is

the probability that the maximal water level of the river Zc exceeds

a given threshold z⁄, i.e., P(ZcP z⁄); in the present report,

z⁄ = 55.5 m as in [3]. Table 3 reports the lower (Z0:99
c;lowerÞ and upper

ðZ0:99
c;upperÞ 99th percentiles obtained from the two limiting cumula-

tive distributions and the corresponding LowerBound(ZcP z⁄) and

UpperBound(ZcP z⁄). In addition, as synthetic mathematical indi-

cators of the imprecision in the knowledge of Zc (i.e., of the separa-

tion between the lower and upper cumulative distribution

functions), the following percentage widths have been reported:

� WZc ¼
Z0:99c;upperÿZ0:99

c;lower

Z0:99
c;prob

of the interval ½Z0:99
c;lower; Z

0:99
c;upper� with respect to

the percentile Z0:99
c;prob obtained by the pure probabilistic approach

of Section 4.1;

� W� ¼ UpperBoundðZcPz�ÞÿLowerBoundðZcPz�Þ
PðZcPz�Þprob

of the interval [Lower-

Bound(ZcP z⁄),UpperBound(ZcP z⁄)] with respect to the per-

centile Z0:99
c;prob obtained by the pure probabilistic approach of

Section 4.1.

The considerations previously reported are confirmed: there is a

similarity between the values of the indicators relative to the hybrid

MC and possibilistic approach (case i), to the MC-based DS-IRS ap-

proach (case ii) and to the two-level MC approach assuming inde-

pendence among the uncertain parameters (case iiia); on the

contrary, there is a significant difference between these indicators

and those produced by the two-level MC approach assuming total

dependence between the uncertain parameters (case iiib). In partic-

ular, as anticipated before, one consideration concerning the com-

parison between the hybrid approach and the two-level MC

considering total dependence is worth to be done. Analyzing, for in-

stance, the probability that the maximal water level of the river Zc
exceeds the threshold z⁄ = 55.5m, P[ZcP z⁄ = 55.5], it can be seen

that the hybrid approach is much more conservative than the

two-level MC approach assuming total dependence between

parameters: in fact, for instance, the upper bounds of P[ZcP z⁄]
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7 As before, notice that this comparison is fair because both methods assume total

dependence between the epistemically uncertain parameters.
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are 0.0241 and 0.0111 for cases i and iib, respectively. Thus, in this

case the use of the two-level MC approach would lead to underesti-

mating by about 54% the probability that themaximalwater level of

the river Zc exceeds the threshold z⁄ = 55.5 m: in other words, it

would lead to underestimating by about 54% the ‘‘failure probabil-

ity’’ of the dike and, at the same time, the flood risk. The same

consideration holds for the dike level necessary to guarantee a

100 year-return period represented by the 99% quantile Z0:99
c of

the water level of the river; for example, the upper bounds of Z0:99
c

are 56.03 m and 55.50 m for cases i and iib, respectively. Thus, also

in this case the use of the two-level MC approach would lead to a

slight underestimation of the dike level necessary to guarantee a

100 year flood return period. Therefore, even if the two-levelMC ap-

proach purposely tries to separate variability from imprecision, dif-

ferently from the hybrid approach, it treats lack-of-knowledge in

the same way as it treats variability (i.e., using probability distribu-

tions): as a consequence, in some cases, it may fail to produce reli-

able and conservative results, which can raise great concerns from

the safety point of view: in particular, in the present case study,

the two-level MC approach leads to less conservative results when

total dependence between the epistemically uncertain parameters

is assumed. This leads to conclude also thatwhen the state of depen-

dence between the parameters is not known to the analyst (which is

far from unlikely in practice), a non-probabilistic representation of

epistemic uncertainty may represent the ‘‘safest’’ choice.

5. Discussion of the results

The analyses performed in the previous Section 4 can be sum-

marized as follows:

1. a comparison between the hybrid method and the one-level

pure probabilistic approach, highlighting that:

� the hybrid method explicitly propagates the uncertainty by

separating the contributions coming from the aleatory and

epistemic variables;

� the uncertainty in the output distribution of the pure prob-

abilistic approach is given only by the slope of the cumulative

distribution;

� as expected, the cumulative distribution of the model output

obtained by the pure probabilistic method is within the

belief and plausibility functions obtained by the hybrid

approach;

2. comparisons between the hybrid, MC-based DS-IRS and two-

level MC approaches with the following objectives:

a. the study of the effect of dependence between the epistemi-

cally uncertain parameters of the aleatory probability

distributions when a probabilistic/non-probabilistic repre-

sentation of epistemic uncertainty is adopted:

� the comparison between two-level MC approaches

assuming total dependence and independence between

the parameters, respectively, has shown that in the case

study considered assuming dependence between the

parameters leads to a smaller gap between the upper

and lower cumulative distributions of the model output,

i.e., to less conservative results;

� the comparison between the MC-based DS-IRS and

hybrid approaches has shown that the plausibility and

belief functions produced by the two approaches are sim-

ilar: in other words, the hybrid method is not signifi-

cantly influenced by the total dependence between the

epistemically uncertain parameters, due to the large

uncertainty that is associated to the parameters in the

case study considered.

Based on the considerations above, it can be argued that the

state of dependence between the epistemically uncertain par-

ameters of the aleatory probability distributions is more likely

to become a critical factor (e.g., in risk-informed decisions) w-

hen the representation of the uncertain parameters is

probabilistic.

b. the study of the effect of the probabilistic/non-probabilistic

representation of epistemic uncertainty when the state of

dependence between parameters is defined:

� the comparison between the MC-based DS-IRS approach

and the two-level MC approach assuming independence

between theepistemicallyuncertainparametershasshown

that in the case study considered the upper and lower

cumulative distribution functions of themodel output pro-

ducedby the twoapproachesare similar. This isdue to i) the

strong similarity between the shapes of the possibility and

probability distributions of the epistemically uncertain

parameters used in the MC-based DS-IRS and two-level

MC approaches, respectively, ii) the independence between

theparameters and iii) the similar characteristics of the two

algorithms used to propagate the uncertainties;

� the comparison between the hybrid and the two-level

MC approach assuming total dependence between the

parameters has shown that the gap between the plausi-

bility and belief functions of the model output produced

by the hybrid approach is larger than the gap between
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Fig. 9. Comparison of the cumulative distribution functions of the maximal water

level of the river Zc obtained by the Dempster–Shafer method and the two-level

Monte Carlo method assuming independence between the epistemically uncertain

parameters.
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the upper and lower cumulative distribution functions

produced by the two-level MC method. This is due to

both the different representations of epistemic uncer-

tainties and to the characteristics of the two algorithms

used to propagate the uncertainties. Actually, in the

hybrid method the epistemic uncertainty on the parame-

ters is represented by possibility distributions defining a

family of probability distributions; on the contrary, in the

two-level MC approach only a single probability distribu-

tion is selected to represent the epistemic uncertainty on

a parameter. As a result, the two algorithms propagate

the uncertainty differently: in the hybrid method, an

exhaustive interval analysis is performed for different a-
cuts of the possibility distributions, whereas in the two-

level MC method a plain random sampling is performed

from the probability distribution of the uncertain param-

eters: the result is that the hybrid approach is able to

explore a larger set of combinations of uncertain param-

eter values than the two-level MC approach (assuming

dependence among parameters), thus producing more

conservative results. This has been quantitatively con-

firmed by way of the risk model for the design of a flood

protection dike through the computation of i) the dike

level necessary to guarantee a 100 year flood return per-

iod and ii) the flood risk for a given dike level. In fact, both

quantities have been underestimated by the two-level

MC approach with respect to the hybrid approach.

Based on the considerations above, it can be argued that a

probabilistic representation of the epistemically uncertain

parameters of the aleatory probability distributions may fail to

Table 3

Comparison of the lower and upper values of Zc percentiles and threshold exceedance probability obtained by the three methods analyzed; the respective percentage widthsW of

the intervals are also reported. All values are in meters.

Method Z0:99
c (pure probabilistic value = 55.34) P½Zc P 55:5� (pure probabilistic value = 0.0076)

½Z0:99
c;lower ; Z

0:99
c;upper � WZc [%] [LowerBound,UpperBound] W� [%]

Hybrid MC and possibilistic (total dependence) (case i) [54.79,56.03] 2.2 [0.0024,0.0241] 286

MC-based DS-IRS (independence) (case ii) [54.82,56.23] 2.6 [0.0014,0.0335] 423

Two-level MC (independence) (case iiia) [54.56,56.06] 2.7 [0.0013,0.0293] 368

Two-level MC (total dependence) (case iiib) [54.05,55.50] 0.8 [0.0042,0.0111] 91

Table 4

Comparisons performed between the different approaches, and their relative findings.

State of dependence between the

epistemically uncertain parameters

Independence Total

dependence

Findings

Representation

of epistemic

uncertainty

Probabilistic Two-

level MC

(iiia)

vs. Two-level

MC (iiib)

Method (iiia) vs. (iiib):
–In the case study considered, assuming dependence between the parame-

ters leads to a smaller gap between the upper and lower CDFs of the model

output, i.e., to less conservative results

Method (i) vs. (ii):
–The plausibility and belief functions produced by the two approaches are

similar: in other words, the hybrid method is not significantly influenced by

the total dependence between the epistemically uncertain parameters

General:
–The state of dependence between the epistemically uncertain parameters

of the aleatory probability distributions is more likely to become a critical

factor (e.g., in risk-informed decisions) when the representation of the

uncertain parameters is probabilistic

vs. vs.

Non-

probabilistic

MC-

based

DS-IRS

(ii)

vs. Hybrid MC

and

possibilistic

(i)

Findings

Method (ii) vs. (iiia):
–In the cases study considered, the

upper and lower CDFs of the model out-

put produced by the two approaches are

similar

Method (i) vs. (iiib):
The gap between the plausibility and

belief functions of the model output

produced by the hybrid approach is lar-

ger than the gap between the upper and

lower CDFs produced by the two-level

MC method

General:
A probabilistic representation of the

epistemically uncertain parameters of

the aleatory probability distributions

may fail to produce reliable and conser-

vative results when there is total depen-

dence between the uncertain

parameters, which raises concerns from

the point of view of safety
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produce reliable and conservative results when there is total

dependence between the uncertain parameters, which raises

concerns from the point of view of safety.

The findings gained by the comparisons performed in Section 4 are

summarized in Table 4 for the sake of clarity.

6. Conclusions

In the present paper, we performed the joint hierarchical prop-

agation of hybrid probabilistic and possibilistic uncertainty repre-

sentations onto a flood risk-based design model in a ‘‘two-level’’

framework. The results obtained have been compared with those

produced by a one-level pure probabilistic approach, a MC-based

DS-IRS approach and a two-level (double loop) MC approach with

the objective of studying the effects of (i) (in)dependence between

the epistemically uncertain parameters of the aleatory probability

distributions and (ii) probabilistic/non-probabilistic representations

of epistemic uncertainty. To the best of the authors’ knowledge,

this is the first time that the above mentionedmethods are system-

atically compared with reference to risk assessment problems

where hybrid uncertainty is separated into two hierarchical levels.

The findings of the work show that adopting different methods

for jointly propagating hybrid uncertainties may generate different

results and possibly different decisions in risk problems involving

uncertainties: this is of paramount importance in systems that

are critical from the safety viewpoint, e.g., in the nuclear, aero-

space, chemical and environmental fields.

In particular, it seems advisable to suggest that, if nothing is

known about the dependence relationship between the epistemi-

cally uncertain parameters, one should resort to the hybrid MC

and possibilistic approach or to the MC-based DS-IRS approach be-

cause their risk estimates are more conservative than (or at least

comparable to) those obtained by the two-level MC approach

assuming dependence (or independence) between the epistemi-

cally uncertain parameters: thus, a non-probabilistic representa-

tion of epistemic uncertainty represents in general a ‘‘safer’’

choice than a probabilistic one.

Appendix A. Operative procedure for the propagation of

aleatory and epistemic uncertainty in the hybrid MC and

possibilistic approach

The operative steps for the propagation of hybrid probabilistic

and possibilistic uncertainty in a ‘‘two-level’’ framework are the

following:

1. sample a matrix fui
jg, i ¼ 1;2; . . . ;m, j = 1,2, . . . ,k, of random

numbers from a uniform distribution U½0;1Þ;
2. set a = 0 (outer loop processing epistemic uncertainty);

3. select the a-cuts A
hj;1
a ;A

hj;2
a ; . . . ;A

hj;mj
a of the possibility distribu-

tions phj ðhjÞ ¼ fphj;1 ðhj;1Þ;phj;2 ðhj;2Þ; . . . ;phj;mj ðhj;mj
Þg of the param-

eters hj ¼ fhj;1; hj;2; . . . ; hj;mj
g, of the ‘‘probabilistic’’ variables

Y1,Y2, . . . ,Yj, . . . ,Yk, and the a-cuts Akþ1
a ;Akþ2

a ; . . . ;An
a of the possi-

bility distributions fpYkþ1 ðykþ1Þ;pYkþ2 ðykþ2Þ; . . . ;pY l ðylÞ; . . . ;pYn

ðynÞg of the ‘‘purely possibilistic’’ variables, Yk+1,Yk+2, . . . ,Yl,

. . . ,Yn, as intervals of possible values ½hj;a; �hj;a� ¼ f½hj;1;a; �hj;1;
a�; ½hj;2;a; hj;2;a�; . . . ; ½hj;mj ;a;

�hj;mj ;a�g, j = 1,2, . . . ,k, and ½yl;a; �yl;a�,
l = k + 1,k + 2, . . . ,n, respectively;

4. set i = 1 (inner loop processing aleatory uncertainty);

5. sample the i-th random intervals ½yij;a; �yij;a�, j = 1,2, . . . ,k, of the

‘‘probabilistic’’ variables Yj, j = 1,2, . . . ,k, corresponding to the

a-cuts ½hj;a; �hj;a� ¼ f½hj;1;a; �hj;1;a�; ½hj;2;a; �hj;2;a�; . . . ; ½hj;mj ;a;
�hj;mj ;a�g

(found at step 3. above) and to the i-th random vector fui
1;

ui
2; . . . ;u

i
j; . . . ;u

i
kg (generated at step 1. above). In particular,

the i-th random interval ½yij;a; �yij;a� for Yj, j = 1,2, . . . ,k, is calcu-

lated by yij;a ¼ infhj2½hj;a ;�hj;a �F
ÿ1
Y j
ðui

jjhjÞ and �yij;a ¼ suphj2½hj;a ;�hj;a �F
ÿ1
Y j

ðui
jjhjÞ, where Fÿ1

Y j
ð�jhjÞ is the inverse of the cumulative distribu-

tion function (cdf) FY j
ð�jhjÞ of pY j

ð�jhjÞ; by way of example,

Fig. A.1 shows the procedure for sampling the i-th random

interval ½yij;a; �yij;a� for the generic uncertain variable Yj.

6. calculate the smallest and largest values of f(Y1,Y2, . . . ,Yj, . . . ,Yk,

Yk+1,Yk+2, . . . ,Yl, . . . ,Yn), denoted by f ia and
�f ia respectively, letting

variables Yj rangewithin the intervals ½yij;a; �yij;a�, j ¼ 1;2; . . . ; k, and

letting variables Yl, l = k + 1, k + 2, . . . ,n range

within ½yl;a; �yl;a�, l ¼ kþ 1; kþ 2; . . . ;n; in particular, f ia ¼
inf j;Y j2½yij;a ;�y

i
j;a
�;l;Y l2½yl;a ;�yl;a �f ðY1;Y2; . . . ;Y j; . . . ;Yk;Ykþ1;Ykþ2; . . . ;Y l; . . . ;

YnÞ and �f ia ¼ supj;Y j2½yij;a ;�y
i
j;a
�;l;Y l2½yl;a ;�yl;a �f ðY1;Y2; . . . ;Y j; . . . ;Yk;Ykþ1;

Ykþ2; . . . ;Y l; . . . ;YnÞ.

7. take the values f ia and �f ia found in 6. above as the lower and

upper limits of the a-cut of f(Y1,Y2, . . . ,Yj, . . . ,Yk,Yk+1,Yk+2, . . . ,Yl,
. . . ,Yn) in correspondence of the i-th random realization of the

aleatory uncertainty;

8. if i–m, then set i = i + 1 and return to step 5. above; otherwise

go to step 9. below;

9. if a– 1, then set a = a + Da (e.g.,Da = 0.05) and return to step 3.

above; otherwise, stop the algorithm: the fuzzy random realiza-

tion (fuzzy interval) pf
i , i ¼ 1;2; . . . ;m of Z = f(Y1,Y2, . . . ,Yn) is

constructed as the collection of the values f ia and �f ia,

i ¼ 1;2; . . . ;m, found at step 6. above (in other words, pf
i is

defined by all its a-cut intervals ½f ia;�f ia�).

It is worth noting that performing an interval analysis on a-cuts
assumes total dependence between the epistemically uncertain

variables. Actually, this procedure implies strong dependence

between the information sources (e.g., the experts or observers)

that supply the input possibility distributions, because the same

confidence level a is chosen to build the a-cuts for all the epistemi-

cally uncertain variables [15].

Finally, by way of example and only for illustration purposes, in

Fig. A.1 the procedure for sampling the i-th random interval

½yij;a; �yij;a� for the generic uncertain variable Yj is shown. Let us sup-

pose that the probability distribution of Yj is normal with parame-

ters hj = {hj,1,hj,2} = {l,r}; the mean l = hj,1 is represented by a

triangular possibility distribution with core c = 5 and support

[a,b] = [4,6] and the standard deviation r = hj,2 is a fixed point-wise

value (r = hj,2 = 4). With reference to the operative procedure out-

lined above, a possibility value a (e.g., a = 0.3 in Fig. A.1, left) is se-

lected and the corresponding a-cut for l = hj,1 is found, i.e.,

½la; �la� ¼ ½hj;1;a; �hj;1;a� ¼ ½4:3;5:7� (see step 3. of the procedure

above). The cumulative distribution functions F
Y j

hj
are constructed

using the upper and lower values of l, i.e., la = hj,1,a = 4.3 and

�la ¼ �hj;1;a ¼ 5:7 (Fig. A.1, right); then, a random number ui
j (e.g.,

ui
j ¼ 0:7 in Fig. A.1, right) is sampled from a uniform distribution

in [0,1) and the interval ½yij;a; �yij;a� is computed as ½infhj2½hj;a ;�hj;a �
Fÿ1
Y j
ðui

jjhjÞ; suphj2½hj;a ;�hj;a �
Fÿ1
Y j
ðui

jjhjÞ� ¼ ½infl2½la ;�la �Fÿ1
Y j
ðui

jjlÞ; supl2½la ;�la � F
ÿ1
Y j

ðui
jjlÞ� ¼ ½infl2½4:3;5:7�FY j

ÿ1ð0:7jlÞ; supl2½4:3;5:7�Fÿ1
Y j
ð0:7jlÞ� ¼ ½6:4;7:8�

(see step 5. of the procedure above).

Appendix B. Operative procedure for the propagation of aleatory

and epistemic uncertainty in the Monte Carlo-based Dempster–

Shafer approach employing independent random sets

In the MC-based DS-IRS approach, the possibility distributions

employed in the hybrid MC and possibilistic method (Appendix

A) are encoded into discrete (focal) sets as follows:
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i. determine q (nested) focal sets for the generic possibilistic

variable/parameter Y as the a-cuts Aat ¼ ½yat ; �yat �,
t = 1,2, . . . ,q, with a1 = 1 > a2 > � � � > aq > aq+1 = 0;

ii. build the mass distribution of the focal sets by assigning

mat ¼ Dat ¼ at ÿ atþ1.

In particular, in the case study of the work presented in this pa-

per, q = 20 and mat ¼ Dat ¼ Da ¼ 0:05, for the sake of comparison

with the hybrid MC and possibilistic approach described in Section

2 and Appendix A and applied in Section 4.

The operative steps for the propagation of aleatory and episte-

mic uncertainty in a ‘‘two-level’’ framework according to the MC-

based DS-IRS approach are the following8:

1. set ia = 1 (outer loop processing epistemic uncertainty);

2. sample the values faia
j;ip
g, j = 1,2, . . . ,k, ip = 1,2, . . . ,mj, from the

discrete distribution fðaj;ip ;t ;maj;ip ;t
Þ : t ¼ 1;2; . . . ; q ¼ 20g ¼ fðaj;

ip;1;maj;ip ;1
Þ; ðaj;ip ;2;maj;ip ;2

Þ; . . . ; ðaj;ip ; q ¼ 20;maj;ip ;q¼20
Þg ¼

fð1;0:05Þ; ð0:95;0:05Þ; . . . ; ð0;0:05Þg; these sampled values rep-

resent the a levels of the focal sets of the discretized possibility

distributions phj ðhjÞ ¼ fphj;1 ðhj;1Þ;phj;2 ðhj;2Þ; . . . ;phj;mj ðhj;mj
Þg of the

parameters hj ¼ fhj;1; hj;2; . . . ; hj;mj
g of the ‘‘probabilistic’’ vari-

ables Y1,Y2, . . . ,Yj, . . . ,Yk. Then sample the values faia
l g,

l = k + 1,k + 2, . . . ,n, from the discrete distribution fðal;t ;mal;t Þ : t
¼ 1;2; . . . ; q ¼ 20g ¼ fðal;1;mal;1 Þ; ðal;2;mal;2 Þ; . . . ; ðal;q¼20;mal;q¼20

Þg
¼ fð1;0:05Þ; ð0:95;0:05Þ; . . . ; ð0;0:05Þg; these sampled values

represent the a levels of the focal sets of the discretized possi-

bility distributions pYkþ1 ðykþ1Þ;pYkþ2 ðykþ2Þ; . . . ;pY l ðylÞ; . . . ;pYn ðynÞ
of the ‘‘purely possibilistic’’ variables, Yk+1,Yk+2, . . . ,Yl, . . . ,Yn.

Notice that, differently from the hybrid MC and possibilistic

approach (Appendix A), a different value a is randomly and inde-

pendently sampled for each epistemically uncertain parameter/

variable, i.e., independence is assumed between the epistemi-

cally uncertain parameters/variables;

3. on the basis of the a levels sampled at step 2., select the random

focal sets A
hj;1

aia
j;1

;A
hj;2

aia
j;2

; . . . ;A
hj;mj

aia
j;mj

, j = 1,2, . . . ,k, for the parameters

hj ¼ fhj;1; hj;2; . . . ; hj;mj
g and the random focal sets

Akþ1

aia
kþ1

;Akþ2

aia
kþ2

; . . . ;An

aian
for the ‘‘purely possibilistic’’ variables Yk+1,

Yk+2, . . . ,Yl, . . . ,Yn, as intervals of possible values ½h
j;aia

j;ip

; �h
j;aia

j;ip

� ¼

f½h
j;1;aia

j;1

; �h
j;1;aia

j;1

�; ½h
j;2;aia

j;2

; h
j;2;aia

j;2

�; . . . ; ½h
j;mj ;a

ia
j;mj

; �h
j;mj ;a

ia
j;mj

�g, j = 1,2, . . . ,k,

and ½y
l;aia

l

; y
l;aia

l

�,l = k + 1,k + 2, . . . ,n, respectively;

4. perform the same steps 4.–8. (inner loop processing aleatory

uncertainty) as in the procedure of Appendix A to obtain f i;ia

and �f i;ia , i = 1,2, . . . ,m, ia = 1,2, . . . ,ma, as the upper and lower

limit of f(Y1,Y2, . . . ,Yn) in correspondence of the i-th random

realization of the aleatory uncertainty and of the ia-th random

realization of epistemic uncertainty;

5. if ia –ma, then set ia = ia + 1 and return to step 2.; otherwise,

stop the algorithm: the random sets Ei;ia ¼ ½f i;ia ;�f i;ia �,
i = 1,2, . . . ,m, ia = 1,2, . . . ,ma, of Z = f(Y1,Y2, . . . , Yn) are obtained

with the collection of the values f i;ia and �f i;ia , i = 1,2, . . . ,m,

ia = 1,2, . . . ,ma, found at step 5. above. A probability mass

mðEi;ia Þ ¼ 1
ma�m, is associated at each random set Ei;ia .

For each set A contained in the universe of discourse UZ of the out-

put variable Z, it is possible to obtain the belief Bel (A) and the plau-

sibility Pl (A) for any set A, respectively [14,15]:
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Fig. A.1. Left: triangular possibility distribution of the mean l of the normal probability distribution of Yj � N(l,4) = N(h); in evidence the a-cut of level

a ¼ 0:3½hj;1;a; �hj;1;a� ¼ ½la; �la� ¼ ½4:3;5:7�. Right: cumulative distribution functions of Yj built in correspondence of the extreme values la = 4.3 and �la ¼ 5:7 of the a-cut
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Fig. C.1. mp = 10 cumulative distribution functions bF Z
ip
, ip ¼ 1;2; . . . ;mp , (solid lines)

produced by a two-level MC approach together with the corresponding upper and

lower empirical cumulative distribution functions (dashed lines).8 The reader is referred to Section 2 and Appendix A for the notation used.
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BelðAÞ ¼
X

Ei;ia #A

mðEi;ia Þ; ðB:1Þ

PlðAÞ ¼
X

Ei;ia\A–0

mðEi;iaÞ: ðB:2Þ

Appendix C. Two-level Monte Carlo method

Let us consider a model whose output is a function Z = f(Y1,Y2,

. . . ,Yj, . . . ,Yn) of n uncertain variables Yj, j = 1,2, . . . ,n, that are

‘‘probabilistic’’, i.e., their uncertainty is described by probability

distributions pY1
ðy1jh1Þ; pY2

ðy2jh2Þ; . . . ; pY j
ðyjjhjÞ; . . . ; pYk

ðykjhkÞ with

parameters hj ¼ fhj;1; hj;2; . . . ; hj;mj
g, j = 1,2, . . . ,n; the parameters

{hj:j = 1,2, . . . ,n} are themselves described by probability distribu-

tions phj ðhjÞ ¼ fphj;1 ðhj;1Þ; phj;2 ðhj;2Þ; . . . ; phj;mj ðhj;mj
Þg. By way of exam-

ple, let Y � N(l,r) = N(h) = N (h1,h2) and the parameters h = {h1,

h2} = {l,r} have a normal distribution with known mean and var-

iance, i.e., h1 = l � N(ll,rl) and h2 = r � N(lr,rr).
9

In such a case, the propagation of uncertainty can be performed

by a two-level Monte Carlo (MC) technique, which is constituted

by the following two main steps [2,4]:

i. MC sampling of the parameters affected by epistemic uncer-

tainty (outer loop processing epistemic uncertainty);

ii. repeated MC sampling of possible values of the ‘‘probabilis-

tic’’ variables from the corresponding probability distribu-

tions conditioned at the values of the epistemically

uncertain parameters sampled at step i above (inner loop

processing aleatory uncertainty).

In more detail, the operative steps of the procedure are:

1. set ip = 1 (outer loop processing epistemic uncertainty);

2. sample a vector fripk g, k = 1,2, . . . ,np of uniform random numbers

in [0,1) (np is the total number of epistemically uncertain

parameters, i.e., np ¼
Pn

j¼1mj);

3. identify the ip-th set of random realizations h
ip
k , k = 1,2, . . . ,np, of

the epistemically uncertain parameters hk, k = 1,2, . . . ,np, using

the random vector frip1 ; r
ip
2 ; . . . ; r

ip
k ; . . . ; r

ip
npg sampled at step 2.

above. In particular, the value h
ip
k is calculated by

h
ip
k ¼ ½Fhk �ÿ1ðripk Þ, k ¼ 1;2; . . . ;np, where ½Fhk �ÿ1 is the inverse of

the cumulative distribution Fhk of phk ;

4. set i = 1 (inner loop processing aleatory uncertainty);

5. sample a vector fui
jg, j = 1,2, . . . ,n, of uniform random numbers

in [0,1);

6. identify the i-th set of random realizations y
i;ip
j , j = 1,2, . . . ,n, of

the ‘‘probabilistic’’ variables Yj, j = 1,2, . . . ,n, using the random

vector fui
1; u

i
2; . . . ;u

i
j; . . . ;u

i
ng sampled at step 5. above and the

random realizations h
ip
k , k = 1,2, . . . ,np, of the epistemically

uncertain parameters sampled at step 3. above. In particular,

the value y
i;ip
j is calculated by y

i;ip
j ¼ Fÿ1

Y j
ðui

jjh
ip
k Þ, j = 1,2, . . . ,n

where Fÿ1
Y j
ð�jhipk Þ is the inverse of the cumulative distribution

FY j
ð�jhipk Þ of pY j

ð�jhipk Þ (notice that pY j
ð�jhipk Þ is the probability

distribution of Yj conditioned at the values h
ip
k , k = 1,2, . . . ,np,

of the epistemically uncertain parameters hk, k = 1,2, . . . ,np,

sampled at step 3. above;

7. calculate the value zi;ip of the model output Z as

zi;ip ¼ f ðyi;ip1 ; y
i;ip
2 ; . . . ; y

i;ip
j ; . . . ; y

i;ip
n Þ;

8. if i–m, then set i = i + 1 and return to step 5.; otherwise, build

the empirical cumulative distribution function bF Z
ip
for Z using

the m values of zi;ip ¼ f ðyi;ip1 ; y
i;ip
2 ; . . . ; y

i;ip
j ; . . . ; y

i;ip
n Þ, i = 1,2, . . . ,m,

obtained performing steps 5.–7.: in other words, bF Z
ip

is the

empirical cumulative distribution function of the model output

Z when the epistemically uncertain parameters hk,

k = 1,2, . . . ,np, are set to the values h
ip
k , k = 1,2, . . . ,np.

9. if ip –mp, then set ip = ip + 1 and return to step 2.; otherwise, stop

the algorithm: the output of the algorithm is a set ofmp empirical

cumulative distribution functions fbF Z
ip
: ip ¼ 1;2; . . . ;mpg for the

model output Z. This set fbF Z
ip
: ip ¼ 1;2; . . . ;mpg have to be post-

processed in order to obtain the upper and lower cumulative dis-

tribution functions for Z: Fig. C.1 shows an example of mp = 10

cumulative distribution functions (solid lines) produced by the

two-level MC approach together with the corresponding upper

and lower cumulative distribution functions (dashed lines).

The operative steps of the two-level MC method described above

assume independence between the epistemically uncertain param-

eters: actually, the random vector frip1 ; r
ip
2 ; . . . ; r

ip
k ; . . . ; r

ip
npg sampled

at step 2. above is such that r
ip
1 – r

ip
2 – � � � – r

ip
k – � � � – r

ip
np ; on

the contrary, in case of total dependence, the condition

r
ip
1 ¼ r

ip
2 ¼ � � � ¼ r

ip
k ¼ � � � ¼ r

ip
np have to be imposed (Fig. C.2).
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Uncertainty Analysis in Fault Tree Models with Dependent
Basic Events

Nicola Pedroni1 and Enrico Zio1,2,∗

In general, two types of dependence need to be considered when estimating the prob-
ability of the top event (TE) of a fault tree (FT): “objective” dependence between the
(random) occurrences of different basic events (BEs) in the FT and “state-of-knowledge”
(epistemic) dependence between estimates of the epistemically uncertain probabilities of
some BEs of the FT model. In this article, we study the effects on the TE probability of ob-
jective and epistemic dependences. The well-known Frèchet bounds and the distribution en-
velope determination (DEnv) method are used to model all kinds of (possibly unknown) ob-
jective and epistemic dependences, respectively. For exemplification, the analyses are carried
out on a FT with six BEs. Results show that both types of dependence significantly affect the
TE probability; however, the effects of epistemic dependence are likely to be overwhelmed
by those of objective dependence (if present).

KEY WORDS: Epistemically uncertain probabilities; fault tree; objective and epistemic dependences

1. INTRODUCTION

In fault tree analysis (FTA),(1−5) limiting rel-
ative frequency probabilities are typically used to
describe aleatory uncertainty and subjective prob-
abilities to describe epistemic uncertainty.3(2,6−14)

Recently, it has been argued that a probabilistic rep-
resentation of epistemic uncertainty is difficult to jus-
tify in those cases in which the analysis is carried out
based on insufficient knowledge, information, and

1Energy Department, Politecnico di Milano, Via Ponzio, 34/3 –
20133 Milano, Italy.

2Chair of system science and the energetic challenge, Electricitè
de France-Ecole Centrale de Paris and Supelec, Grande Voie des
Vignes, 92295, Chatenay Malabry-Cedex, France.

3In the following, “probability” refers to the limiting relative fre-
quency concept whenever followed by the word “chance” in
parentheses, and to the epistemic concept whenever used alone.

∗Address correspondence to Enrico Zio, Electricitè de France-
Ecole Centrale de Paris and Supelec, Grande Voie des Vignes,
92295, Chatenay Malabry-Cedex, France; tel: +33-01-41-13-16-
06; fax: +33-01-41-13-12-72; enrico.zio@ecp.fr; enrico.zio@
supelec.fr.

data. To overcome this hurdle, a number of alter-
native nonprobabilistic representation frameworks
have been proposed,(15−19) for example, fuzzy set the-
ory,(20−28) possibility theory,(29−33) hybrid combina-
tions of probability and possibility theories,(30,34−36)

Dempster-Shafer (DS) theory of evidence,(37−44) and
interval analysis.(45−49)

To describe the epistemic uncertainty in the pro-
babilities (chances) of the basic events (BEs) of a
fault tree (FT) model, here we use possibility dis-
tributions and DS structures, together with proba-
bility distributions. The epistemic uncertainties are
then propagated onto the probability (chance) of
the top event (TE) by resorting to the general
and comprehensive framework of DS theory of
evidence.(37−44)

Dependence may exist among some BEs of the
FT model.(40) In particular, two types of dependence
need to be considered. The first type relates to the
(dependent) occurrence of different (random) BEs
(in the following, this kind of dependence will be re-
ferred to as “objective” or “aleatory”). An example

1146 0272-4332/13/0100-1146$22.00/1 C© 2012 Society for Risk Analysis
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of this objective (aleatory) dependence may be
represented by the occurrence of multiple failures
that result directly from a common or shared root
cause (e.g., extreme environmental conditions, fail-
ure of a piece of hardware external to the system,
or a human error): they are termed common cause
failures (CCFs) and frequently affect, for example,
identical components in redundant trains of a safety
system;(2,50−52) another example is that of cascading
failures, that is, multiple failures initiated by the fail-
ure of one component in the system, as a sort of
chain reaction or domino effect.(52−57) The second
type refers to the dependence possibly existing be-
tween the estimates of the epistemically uncertain
probabilities (chances) of some BEs of the FT model
(in the following, this kind of dependence will be
referred to as “state-of-knowledge” or “epistemic”).
This state-of-knowledge (epistemic) dependence ex-
ists when the probabilities (chances) of some BEs
are estimated by resorting to dependent information
sources (e.g., to the same experts/observers or to cor-
related data sets).(2,11)

In this context, the aim of this article is to sys-
tematically analyze and quantify the effects of ob-
jective (aleatory) and state-of-knowledge (epistemic)
dependences between the BEs on the TE probability
(chance). In more details, the following analyses are
performed:

1. The study of the effects of different states
of objective dependence between the BEs
when the state of epistemic dependence be-
tween the BE probabilities (chances) is de-
fined. In this analysis the well-known Frèchet
bounds(40,58−60) are used to model the full
range of objective dependences here of
interest;

2. The study of the effects of different states
of epistemic dependence between the BE
probabilities (chances) when the state of
objective dependence between the BEs is
given. In this analysis the distribution en-
velope determination (DEnv) method(61−65)

is undertaken in order to account for all
kinds of (possibly unknown) epistemic de-
pendences between the BE probabilities
(chances).

To keep the analysis simple and thus retain a
clear view of each step, the investigations are car-
ried out with respect to an example involving a
FT with six BEs; different numerical indicators are

considered to perform a fair and quantitative com-
parison between different states of objective and
epistemic dependence and evaluate their effects on
the TE probability (chance).

The work benefits from the efforts that have
already been done to address objective and state-
of-knowledge dependences in FTA. In Refs. 66–
68, objective dependencies between BEs are treated
by means of alpha factor models within the tra-
ditional framework of CCF analysis. In Refs. 40
and 60 the use of Frank copula and Pearson cor-
relation coefficient is proposed to describe a wide
range of objective dependences between the BEs.
In Refs. 69 and 70 (fuzzy) dependency factors
are employed to model dependent BEs. In Refs.
71–74 state-of-knowledge dependences between the
BE probabilities (chances) are described by tra-
ditional correlation coefficients and propagated by
the method of moments. In Refs. 68 and 75 sta-
tistical epistemic correlations are modeled by re-
sorting to the Nataf transformation(76) within a
traditional Monte Carlo simulation framework.(77,78)

Finally, in Ref. 79 the dependency bound convo-
lution approach is undertaken to account for all
kinds of (possibly unknown) epistemic dependences
between the probabilities (chances) of correlated
BEs.

The remainder of the article is organized as fol-
lows. In Section 2, the methods employed in this
study to model objective and state-of-knowledge de-
pendences in FTA are described; in Section 3, the
FT studied is presented; in Section 4, the results of
the application of the methods of Section 2 to the FT
of Section 3 are shown; finally, Section 5 offers some
discussions and conclusions.

2. METHODS EMPLOYED IN THIS STUDY

FOR MODELING DEPENDENCES IN

FAULT TREE ANALYSIS

In this section, the computational strategies here
employed for modeling dependences in FTA are
described in detail: in particular, Section 2.1 deals
with the representation of objective (aleatory) de-
pendences between (the occurrence of) BEs; in-
stead, Section 2.2 concerns the treatment of state-
of-knowledge (epistemic) dependences between the
probabilities (chances) of the BEs.

Other approaches for modeling objective depen-
dences between (random) events can be found in
Refs. 40, 60, and 66–70.
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Fig. 1. Simple parallel (left-hand side) and series (right-hand side) systems of two components whose failure probabilities (chances) are
P(B1) and P(B2), respectively.

2.1 Modeling Objective (Aleatory) Dependences

Between the Basic Events

Let B1 and B2 be two BEs with probabilities
(chances) P(B1) and P(B2), respectively; with ref-
erence to the simple parallel and series systems of
Fig. 1 (left- and right-hand side, respectively), B1 and
B2 may represent the events of failure of Compo-
nents 1 and 2, respectively, and P(B1) and P(B2)
the corresponding probabilities (chances). If B1 and
B2 are independent, the occurrence of one event
(e.g., failure of Component 1) does not affect the
occurrence of the other (e.g., failure of Component
2), that is, P(B1|B2) = P(B1) and P(B2|B1) = P(B2).
Then, the probabilities (chances) P(B1 ∩ind B2) and
P(B1 ∪ind B2) of the conjunction (B1 ∩ind B2) and dis-
junction (B1 ∪ind B2) of events B1 and B2 (i.e., the
probabilities-chances of failure of the parallel and se-
ries systems of Fig. 1, left- and right-hand side, re-
spectively) are given by the well-known deterministic
functions gB1∩ind B2

(P(B1), P(B2)), that is, Equations
(1) and gB1∪ind B2

(P(B1), P(B2)) (2), respectively:(40,60)

P(B1 ∩ind B2) = gB1∩ind B2
(P(B1), P(B2))

= P(B1) × P(B2)
(1)

P(B1 ∪ind B2) = gB1∪ind B2
(P(B1), P(B2))

= 1 − (1 − P(B1)) × (1 − P(B2)),
(2)

where the symbols “∩ind” and “∪ind” denote the con-
junction and disjunction of independent events, re-
spectively.

If events B1 and B2 are perfectly dependent (i.e.,
B1 ⊂ B2 or B2 ⊂ B1), the occurrence of one event
(e.g., failure of Component 1 in Fig. 1) implies the
occurrence of the other (e.g., failure of Component 2
in Fig. 1) (i.e., P(B2|B1) = 1 or P(B1|B2) = 1, respec-
tively). In this case, P(B1 ∩perf B2) and P(B1 ∪perf B2)
are given by Equations (3) and (4), respectively:(40,60)

P(B1 ∩perf B2) = gB1∩perf B2
(P(B1), P(B2))

= min (P(B1), P(B2))
(3)

P(B1 ∪perf B2) = gB1∪perf B2
(P(B1), P(B2))

= max(P(B1), P(B2)),
(4)

where the symbols “∩perf ” and “∪perf ” denote the
conjunction and disjunction of perfectly dependent
events, respectively. Examples of perfect depen-
dence can be found in many engineered systems.
For example, some components may be subject to
the same maintenance strategy and suffer a com-
mon mistake in the procedure, or may experience
the same history of environmental conditions lead-
ing to failure. Such shared life conditions may make
failures of components close to perfectly dependent
events.(2,40,50,51) The importance of this state of de-
pendence can be understood with reference to the
simple parallel system of Fig. 1, left-hand side: if
Components 1 and 2 were perfectly dependent, the
failure of only one component would lead to the fail-
ure of the entire parallel system.

Finally, if events B1 and B2 are oppositely de-
pendent, the occurrence of one event minimizes the
likelihood of occurrence of the other. In this case,
P(B1 ∩opp B2) and P(B1 ∪opp B2) are given by Equa-
tions (5) and (6), respectively:(40,60)

P(B1 ∩opp B2) = gB1∩opp B2
(P(B1), P(B2))

= max(P(B1) + P(B2) − 1, 0)
(5)

P(B1 ∪opp B2) = gB1∪opp B2
(P(B1), P(B2))

= min (P(B1) + P(B2), 1),
(6)

where the symbols “∩opp” and “∪opp” denote the
conjunction and disjunction of oppositely dependent
events, respectively. An example of opposite de-
pendence may be represented by the series of a
fuse wire (e.g., Component 1 in Fig. 1, right-hand
side) and an electronic device (e.g., Component 2 in
Fig. 1, right-hand side). In case of overcurrent, fail-
ure of the fuse wire (event B1) prevents failure of
the electronic component (event B2); thus, the joint
failure of both components might be better mod-
eled by events that are oppositely dependent than
independent.
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When no information at all about the state
of objective dependence between events B1 and
B2 is available, precise estimates for P(B1 ∩ B2)
and P(B1 ∪ B2) cannot be computed. Instead, ex-
treme bounds P(B1 ∩ukn B2) (Equation (7)) and
P(B1 ∪ukn B2) (Equation (8)) on P(B1 ∩ B2) and
P(B1 ∪ B2), respectively, can be obtained by means
of the classical Frèchet inequalities:(40,58−60)

P(B1 ∩ukn B2) = [gB1∩opp B2
, gB1∩perf B2

] = [max(P(B1)

+P(B2) − 1, 0), min(P(B1), P(B2))] (7)

P(B1 ∪ukn B2) = [gB1∪perf B2
, gB1∪opp B2

] = [max(P(B1),

P(B2)), min(P(B1) + P(B2), 1)], (8)

where functions gB1∩perf B2
, gB1∪perf B2

, gB1∩opp B2
, and

gB1∪opp B2
are defined in Equations (3)–(6) and the

symbols “∩ukn” and “∪ukn” denote the conjunction
and disjunction of events whose state of objective
dependence is completely unknown, respectively.
As stated in Ref. 40, it is worth mentioning that
(i) P(B1 ∩ukn B2) (Equation (7)) and P(B1 ∪ukn B2)
(Equation (8)) are “bounds on all possible cases
of objective dependence” (because they include by
construction dependences ranging from opposite to
perfect) and (ii) they represent the “best possible
bounds in the absence of information about objec-
tive dependence, that is, they could not be any tighter
without excluding some possible objective depen-
dences.”(40)

Finally, if the analyst is able to say something
about the sign of objective dependence, then Frèchet
bounds (Equations (7) and (8)) can be tightened. In
particular, if B1 and B2 are positively dependent, that
is, the occurrence of one event favors the occurrence
of the other, then P(B1|B2) > P(B1) and P(B2|B1) >

P(B2), from which it follows that P(B1 ∩pos B2) >

P(B1 ∩ind B2). In this case, bounds P(B1 ∩pos B2) and
P(B1 ∪pos B2) on P(B1 ∩ B2) and P(B1 ∪ B2) are ob-
tained by Equations (9) and (10), respectively:(40,60)

P(B1 ∩pos B2) = [gB1∩ind B2
, gB1∩perf B2

] = [P(B1)

×P(B2),min(P(B1), P(B2))] (9)

P(B1 ∪pos B2) = [gB1∪perf B2
, gB1∪ind B2

] = [max(P(B1),

P(B2)), 1 − (1 − P(B1)) × (1 − P(B2))]. (10)

On the contrary, if B1 and B2 are nega-
tively dependent, then bounds P(B1 ∩neg B2) and
P(B1 ∪neg B2) on P(B1 ∩ B2) and P(B1 ∪ B2)
are obtained using Equations (11) and (12),

respectively:(40,60)

P(B1 ∩neg B2) = [gB1∩opp B2
, gB1∩ind B2

] = [max(P(B1)

+P(B2) − 1, 0), P(B1) × P(B2)] (11)

P(B1 ∪neg B2) = [gB1∪ind B2
, gB1∪opp B2

]

= [1 − (1 − P(B1)) × (1 − P(B2)),

min(P(B1) + P(B2), 1)]. (12)

2.2 Modeling State-of-Knowledge (Epistemic)

Dependences Between the Probabilities

(Chances) of the Basic Events

In all generality, let us assume that:

i. events B1 and B2 are linked to an event Z of
interest by the generic logical connection “o”
(e.g., “o” may stand for “∩ ,” “∪ ,” . . .);

ii. the state of objective dependence between
events B1 and B2 is defined and indicated
as “oobj”: for example, if there is positive
objective dependence between B1 and B2,
then the subscript “obj” stands for “pos” (see
Section 2.1);

iii. the probability (chance) P(Z) of the event Z

= (B1 oobj B2) of interest is obtained as P(Z)
= gZ(P(B1), P(B2)), where gZ(P(B1), P(B2))
is a deterministic function that provides a for-
mal, mathematical description of the state of
objective dependence between events B1 and
B2 (for example, gZ(·, ·) may be one of those
reported in Equations (1)–(12)).

iv. the probabilities (chances) P(B1) and
P(B2) of events B1 and B2 are consid-
ered epistemically uncertain. For ease of
explanation, let us suppose that the epis-
temic uncertainty on P(B1) and P(B2)
is represented by the DS structures
{(Ai

P(B1), m(Ai
P(B1))) : i = 1, 2, . . . , nB1

} and

{(A
j

P(B2), m(A
j

P(B2))) : j = 1, 2, . . . , nB2
}, re-

spectively: in other words, P(B1) and P(B2)
are described by two sets of nB1

and nB2
inter-

vals (focal elements) Ai
P(B1) = [pi

B1
, pi

B1
], i = 1,

2, . . . , nB1
, and A

j

P(B2) = [p j

B2
, p

j
B2

], j = 1, 2, . . . ,

nB2
, respectively, each of which is assigned a

probability (or belief) mass m(Ai
P(B1)), i = 1,

2, . . . , nB1
, and m(A

j

P(B2)), j = 1, 2, . . . , nB2
, re-

spectively (it is worth stressing that m(Ai
P(B1))

and m(A
j

P(B2)) represent the degrees of belief
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Fig. 2. Top panel: illustrative DS structures {([0.20, 0.50], 0.35), ([0.40, 0.60], 0.65)} and {([0.10, 0.35], 0.45), ([0.30, 0.45], 0.55)} for P(B1)

(left-hand side) and P(B2) (right-hand side), respectively. Bottom panel: upper (solid line) and lower (dashed line) CDFs, F
P(B1)

, F
P(B2)

,
F P(B1), and F P(B2), respectively, corresponding to the illustrative DS structures described above.

of membership of P(B1) and P(B2) in sets

Ai
P(B1) and A

j

P(B2) only, but without any

specification of how these degrees of belief

might be apportioned over Ai
P(B1) and A

j

P(B2),

respectively; in other words, m(Ai
P(B1)) and

m(A
j

P(B2)) express the proportion to which all

available and relevant evidence supports the
claim that P(B1) and P(B2), whose characteri-
zation is incomplete, belong to sets Ai

P(B1) and

A
j

P(B2), respectively). By way of example, let

{(Ai
P(B1), m(Ai

P(B1))) : i = 1, 2, . . . , nB1
= 2} =

{([0.20, 0.50], 0.35), ([0.40, 0.60], 0.65)} and

{(A
j

P(B2), m(A
j

P(B2))) : j = 1, 2, . . . , nB2
= 2} =

{([0.10, 0.35], 0.45), ([0.30, 0.45], 0.55)}: for

clarity, the corresponding DS structures
are pictorially shown in Fig. 2, top left-
and right-hand side, respectively. Referring
to probability (chance) P(B1) of event B1

(Fig. 2, top left-hand side), the corre-
sponding DS structure can be interpreted
as follows: probability (chance) P(B1) of
event B1 lies within interval A1

P(B1) = [0.20,

0.50] at least with probability m(A1
P(B1)) =

0.35, whereas it lies within interval A2
P(B1) =

[0.40, 0.60] at least with probability m(A2
P(B1))

= 0.65. Notice that the DS structures de-
scribed above can be transformed into
upper and lower cumulative distribution

functions (CDFs) F
P(B1)

, F
P(B2)

, F P(B1), and
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F P(B2) for P(B1) and P(B2), respectively: in

particular, F
P(B1)

(pB1
) = P[P(B1) < pB1

] =
∑

Ai
P(B1)∩[0,pB1

]6=0 m(Ai
P(B1)) and F P(B1)(pB1

) =

P[P(B1) < pB1
] =

∑

Ai
P(B1)⊂[0,pB1

] m(Ai
P(B1)); in

the same way, F
P(B2)

(pB2
)= P[P(B2)< pB2

]=
∑

A
j

P(B2)∩ [0, pB2
]6=0 m(A

j

P(B2)) and F P(B2)(pB2
) =

P[P(B2) < pB2
] =

∑

A
j

P(B2)⊂[0,pB2
] m(A

j

P(B2)).

The upper and lower CDFs, F
P(B1)

, F
P(B2)

,

F P(B1), and F P(B2), respectively, corre-
sponding to the illustrative DS structures
{([0.20, 0.50], 0.35)., .([0.40, 0.60], 0.65)},
and {([0.10, 0.35], 0.45)., .([0.30, 0.45], 0.55)}
of P(B1) and P(B2) are pictorially shown
in Fig. 2, bottom left- and right-hand side,
respectively. For example, referring again to

event B1, the upper and lower CDFs, F
P(B1)

and F P(B1), can be interpreted as follows:
the probability P[P(B1) < pB1

] that P(B1) is
lower than or equal to, for example, pB1

= 0.30

lies within interval [F P(B1)(0.30), F
P(B1)

(0.30)]
= [0, 0.35] (referring to the concept of
Bayesian subjective probabilities, the bounds

[F P(B1)(0.30), F
P(B1)

(0.30)] = [0, 0.35]
reflect that the analyst is not able or will-
ing to precisely assign his/her probability
P[P(B1) < pB1

]). Further details about DS
structures (and DS theory of evidence) are
not given here for brevity: the interested
reader is referred to the copious literature in
the field.4(37−44)

The focal elements A
ij

P(Z) = [pij

Z
, p

ij
Z], i = 1,

2, . . . , nB1
, j = 1, 2, . . . , nB2

, of the probability
(chance) P(Z) of the event Z = (B1 ◦obj B2) are
obtained as images of the focal sets Ai

P(B1), i = 1,

2, . . . , nB1
, and A

j

P(B2), j = 1, 2, . . . , nB2
, through

the function gZ(P(B1), P(B2)) as A
ij

P(Z) = [pij

Z
, p

ij
Z] =

[minP(B1)∈Ai
P(B1),P(B2)∈A

j

P(B2)
{gZ(P(B1), P(B2))},..

maxP(B1)∈Ai
P(B1),P(B2)∈A

j

P(B2)
{gZ(P(B1), P(B2))}], i = 1,

4Notice that representing the epistemic uncertainty in the prob-
abilities (chances) P(B1) and P(B2) by DS structures does not
impair the generality of the description. Actually, any other type
of distribution that may be used to describe the epistemic uncer-
tainty in P(B1) and P(B2) can be easily transformed into a DS
structure: approaches for transforming probability distributions
can be found in Refs. 80 and 81, whereas techniques for trans-
forming possibility distributions can be found in Refs. 30.

2, . . . , nB1
, j = 1, 2, . . . , nB2

. For illustration purposes,
again let B1 and B2 be the events of failure of Com-
ponents 1 and 2, respectively, of the simple parallel
system of Fig. 1 left-hand side, and P(B1) and P(B2)
the corresponding probabilities (chances): then, the
probability (chance) P(Z) of failure of the parallel
system of Fig. 1 left is the probability (chance) of the
conjunction Z = (B1 ∩obj B2) of B1 and B2. For the
sake of simplicity, we also suppose that B1 and B2

are (objectively) independent events (i.e., “obj” =

“ind”): in such a case, P(Z) is given by the product of
P(B1) and P(B2), that is, P(Z) = gZ(P(B1), P(B2)) =

P(B1)·P(B2) (see Equation (1)). Finally, we suppose
that P(B1) and P(B2) are distributed as in Fig. 2. In
this case, the lower (resp., upper) bound pij

Z
(resp.,

p
ij
Z) of the focal set A

ij

P(Z) is computed as the prod-

uct of the lower bounds pi

B1
and p j

B2
(resp., up-

per bounds pi
B1

and p
j
B2

) of the focal sets Ai
P(B1)

and A
j

P(B2), respectively, that is, pij

Z
= pi

B1
.p j

B2
(resp.,

p
ij
Z = pi

B1
.p

j
B2

), i = 1, 2, j = 1, 2. Thus, it is found

that A11
P(Z) = [0.2·0.1, 0.5·0.35] = [0.02, 0.175], A12

P(Z) =

[0.2·0.3, 0.5·0.45] = [0.06, 0.225], A21
P(Z) = [0.4·0.1,

0.6·0.35] = [0.04, 0.210], A22
P(Z) = [0.4·0.3, 0.6·0.45] =

[0.120, 0.270].

The probability masses m(A
ij

P(Z)) of the focal ele-

ments A
ij

P(Z), i = 1, 2, . . . , nB1
, j = 1, 2, . . . , nB2

, thereby

obtained have to be determined based on the state
of epistemic dependence between the estimates of
P(B1) and P(B2). Three conditions of epistemic de-
pendence are often encountered in risk assessment
problems and, thus, considered in this article: (i) in-
dependence (Section 2.2.1), (ii) total (perfect) de-
pendence (Section 2.2.2), and (iii) unknown depen-
dence5 (Section 2.2.3).

2.2.1 Independence

If the distributions describing the epistemic un-
certainty associated to P(B1) and P(B2) are built
using “different information sources” (e.g., differ-
ent experts, observers, or data sets), then state-of-
knowledge independence (item i. above, “epi” =

“ind”) exists between the estimates of P(B1) and

5In the rest of the article, the state of epistemic dependence be-
tween the probabilities (chances) P(B1) and P(B2) of events B1

and B2 linked to an event Z of interest by the logical connection
“◦obj” is indicated as (B1 ◦obj B2)epi, where the superscript “epi”
stands for “ind,” “perf,” or “ukn” in the cases of independence,
total (perfect), or unknown epistemic dependence, respectively.
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Fig. 3. Upper (solid lines) and lower (dashed lines) CDFs, F
P(Z)

and F P(Z), of the probability (chance) P(Z) of the conjunction of two
(objectively) independent events B1 and B2 with probabilities (chances) P(B1) and P(B2) distributed as in Fig. 2, under the assumptions of
independence (top left-hand side), total (top right-hand side), and unknown (bottom panel) epistemic dependence.

P(B2): in this article, such condition is modeled by
assuming “random set independence” between the
focal elements Ai

P(B1) = [pi

B1
, pi

B1
], i = 1, 2, . . . , nB1

,

and A
j

P(B2) = [p j

B2
, p

j
B2

], j = 1, 2, . . . , nB2
.(40,82−84) In

practice, this amounts to computing the probabil-

ity masses m(A
ij

P(Z)) of the focal elements A
ij

P(Z) as

the product of the probability masses m(Ai
P(B1)) and

m(A
j

P(B2)), that is, m(A
ij

P(Z)) = m(Ai
P(B1)).m(A

j

P(B2)),

i = 1, 2, . . . , nB1
, j = 1, 2, . . . , nB2

. Thus, referring
again to the example above, it is found that under
the assumption of random set independence (“epi” =

“ind”) the probability masses of the focal sets
A11

P(Z) = [0.02, 0.175], A12
P(Z) = [0.06, 0.225],

A21
P(Z) = [0.04, 0.210] and A22

P(Z) = [0.120, 0.270] are

m(A11
P(Z)) = 0.35 × 0.45 = 0.1575, m(A12

P(Z)) = 0.35 ×

0.55 = 0.1925, m(A21
P(Z)) = 0.65 × 0.45 = 0.2925

and m(A22
P(Z)) = 0.65 × 0.55 = 0.3575, respectively.

The corresponding upper and lower CDFs, F
P(Z)

and F P(Z), of the probability (chance) P(Z) of Z =

(B1 ∩ind B2)ind are shown in Fig. 3, top left-hand side.

2.2.2 Total (Perfect) Dependence

When the same information source is em-
ployed to construct the uncertainty distributions for
P(B1) and P(B2), then total (perfect) dependence
(item ii. above, “epi” = “perf”) exists between
the estimates of P(B1) and P(B2).(2,11) By way of
example, consider the case of a system containing a
number of physically distinct, but similar/nominally
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identical components whose failure probabilities
(chances) are estimated by means of the same data
set: in such situation, the state of knowledge about
these failure probabilities (chances) is exactly the
same and, thus, the distributions describing the
epistemic uncertainty associated to such failure
probabilities (chances) have to be considered totally
(perfectly) dependent.6(2,11) In this article, such
condition is straightforwardly modeled by imposing
maximal correlation between the distributions of
P(B1) and P(B2).(2,11) In practice, assuming that
the distributions of P(B1) and P(B2) are totally
(perfectly) correlated implies that when one uncer-
tain parameter (e.g., P(B1)) is large with reference
to its statistical distribution, then also the other
uncertain parameter (e.g., P(B2)) is large “to the
same degree with respect to its own statistical dis-
tribution.”(40) This “empirical” definition suggests
the computational strategy for simulating total
(perfect) correlation between the distributions of the
uncertain parameters P(B1) and P(B2): (i) choose
a set of nB (equally spaced) values β i, i = 1, 2, . . . ,
nB, within [0, 1) (e.g., β1 = 0, β2 = 0.01, . . . , βnB−1

= 0.99, βnB = 1); (ii) identify the corresponding
focal sets Ai

P(B1) = [pi

B1
, pi

B1
] and Ai

P(B2) = [pi

B2
, pi

B2
]

of P(B1) and P(B2) using the inverse transform

method, that is, [(F
P(B1)

)−1(β i ), (F P(B1))−1(β i )] and

[(F
P(B2)

)−1(β i ), (F P(B2))−1(β i )], i = 1, 2, . . . , nB,
respectively (notice that using the same values β i for
the identification of the focal sets of both P(B1) and
P(B2) implies total (perfect) dependence between
them);(11) (iii) calculate the focal elements Ai

P(Z)

as [minP(B1)∈Ai
P(B1),P(B2)∈Ai

P(B2)
{gZ(P(B1), P(B2))},

[maxP(B1)∈Ai
P(B1),P(B2)∈Ai

P(B2)
{gZ(P(B1), P(B2))}], i = 1,

2, . . . , nB; (iv) associate to Ai
P(Z) the probability mass

m(Ai
P(Z)) = 1/nB, i = 1, 2, . . . , nB. Referring again

to the example above, it is found that under the

6As stated in Ref. 2, p. 54, “an analyst’s state of knowledge about
the possible values of a parameter θ can be expressed in terms
of a probability distribution f θ (θ) when using Bayesian updat-
ing or expert judgment. It is common practice to assign the same
value to the parameters of BEs of identical or similar compo-
nents. Therefore, for example, the probability of failure of a class
of identical motor-operated valves (MOVs) to open is consid-
ered the same. Suppose that θ1 and θ2 represent the parameters
of two physically distinct but identical MOVs: because this dis-
cussion assumes that all such MOVs have the same parameter,
it is necessary to set θ1 = θ2. Moreover, because the analyst’s
state of knowledge is the same for the two valves, it follows that
f θ1 (θ1) = f θ2 (θ2). Thus, f θ1 (θ1) and f θ2 (θ2) must be regarded
as being equal distributions and treated as completely dependent
distributions.”

assumption of total (perfect) epistemic dependence
the probability masses of the focal sets A11

P(Z) = [0.02,

0.175], A12
P(Z) = [0.06, 0.225], A21

P(Z) = [0.04, 0.210]

and A22
P(Z) = [0.120, 0.270] obtained by performing

steps (i)–(iv) above are m(A11
P(Z)) = 0.35, m(A12

P(Z)) =

0, m(A21
P(Z)) = 0.10 and m(A22

P(Z)) = 0.55, respectively.

The resulting upper and lower CDFs, F
P(Z)

and
F P(Z), of the probability (chance) P(Z) of Z =

(B1 ∩ind B2)perf are shown in Fig. 3, top right-hand
side.

2.2.3 Unknown Dependence

When the state of dependence between the in-
formation sources used to build the distributions of
P(B1) and P(B2) cannot be defined precisely by the
analyst (item iii. above, “epi” = “ukn”), for the sake
of conservatism all kinds of (possibly unknown) epis-
temic dependences between the estimates of P(B1)
and P(B2) have to be accounted for. In this arti-
cle, the distribution envelope determination (DEnv)
method(61−65) is adopted to this aim. The DEnv
method allows computing extreme upper and lower

CDFs F
P(Z)

DEnv(pZ) and F
P(Z)
DEnv(pZ) on the probability

(chance) P(Z) = gZ(P(B1), P(B2)) of the event Z =

(B1 ◦obj B2)ukn of interest no matter what correla-
tions or dependencies exist among P(B1) and P(B2);
these bounds are also the “pointwise best possible,
which means they could not be any tighter without
excluding some possible dependences.”(40) In prac-
tice, the aim of the DEnv approach is to identify the

nB1
×nB2

probability masses m(A
ij

P(Z)) for the focal el-

ements A
ij

P(Z), i = 1, 2, . . . , nB1
, j = 1, 2, . . . , nB2

, such

that the upper CDF on P(Z) is the maximal possi-

ble (i.e., F
P(Z)

DEnv(pZ) = max{F
P(Z)

(pZ)} and the lower

CDF on P(Z) is the minimal possible (F
P(Z)
DEnv(pZ) =

min{F P(Z)(pZ)} provided that a precise set of con-

straints is satisfied.(61−65) In more detail, F
P(Z)

DEnv(pZ)

and F
P(Z)
DEnv(pZ) are found by solving the following lin-

ear maximization (Equation (13)) and minimization
(Equation (14)) problems, respectively:

Find m
(

A
ij

P(Z)

)

, i = 1, 2, . . . , nB1
, j = 1, 2, . . . , nB2

:

F
P(Z)

DEnv (pZ) = max
{

F
P(Z)

(pZ)
}

= max



















∑

A
ij

P(Z)
=gZ

(

Ai
P(B1)

,A
j

P(B2)

)

∩[0,pZ]6=0

m
(

A
ij

P(Z)

)



















,∀pZ

(13)
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Find m
(

A
ij

P(Z)

)

, i = 1, 2, . . . , nB1
, j = 1, 2, . . . , nB2

:

F
P(Z)
DEnv (pZ) = min

{

F P(Z) (pZ)
}

= min



















∑

A
ij

P(Z)
=gZ

(

Ai
P(B1)

, A
j

P(B2)

)

⊂[0, pZ]

m
(

A
ij

P(Z)

)



















, ∀pZ

(14)

subject to the constraints that (i) the probability

masses m(Ai
P(B1)) and m(A

j

P(B2)) are conserved (i.e.,
∑nB1

i=1 m(A
ij

P(Z)) = m(A
j

P(B2)), j = 1, 2, . . . , nB2
, and

∑nB2

j=1 m(A
ij

P(Z)) = m(Ai
P(B1)), i = 1, 2, . . . , nB1

) and

(ii) the probability masses m(A
ij

P(Z)) are larger than

or equal to zero. For illustration purposes, the val-

ues of F
P(Z)

DEnv(pZ) = F
P(Z)

DEnv(0.08) and F
P(Z)
DEnv(pZ) =

F
P(Z)
DEnv(0.22) are calculated with reference to the ex-

ample above. In order to calculate F
P(Z)

DEnv(0.08) by
solving maximization problem (13), those focal sets

among A
ij

P(Z), i = 1, 2, .j = 1, 2, that intersect inter-

val [0, pZ] = [0, 0.08] have to be identified. Since
in this case A11

P(Z) = [0.02, 0.175], A12
P(Z) = [0.06,

0.225], A21
P(Z) = [0.04, 0.210] and A22

P(Z) = [0.120,

0.270] (see above), only focal sets A11
P(Z), A12

P(Z), and

A21
P(Z) intersect interval [0, 0.08]; then, only focal sets

A11
P(Z), A12

P(Z), and A21
P(Z) and the corresponding proba-

bility masses m(A11
P(Z)), m(A12

P(Z)), and m(A21
P(Z)) have

to be included in the function F
P(Z)

(0.08) to be max-
imized. As a consequence, maximization problem
(13) becomes:

Find m
(

A11
P(Z)

)

, m
(

A12
P(Z)

)

, m
(

A21
P(Z)

)

, m
(

A22
P(Z)

)

:

F
P(Z)

DEnv (0.08) = max
{

F
P(Z)

(0.08)
}

= max
{

m
(

A11
P(Z)

)

+ m
(

A12
P(Z)

)

+ m
(

A21
P(Z)

)}

(15)

subject to the constraints that (i) m(A11
P(Z)) +

m(A12
P(Z)) = m(A1

P(B1)) = 0.35, m(A21
P(Z)) + m(A22

P(Z))

= m(A2
P(B1)) = 0.65, m(A11

P(Z)) + m(A21
P(Z)) =

m(A1
P(B2)) = 0.45, m(A12

P(Z)) + m(A22
P(Z)) = m(A2

P(B2))

= 0.55 and (ii) m(A11
P(Z)), m(A12

P(Z)), m(A21
P(Z)),

m(A22
P(Z)) ≥ 0. The optimization process leads to

F
P(Z)

DEnv(0.08) = 0.8 with m(A11
P(Z)) = 0, m(A12

P(Z)) =

0.35, m(A21
P(Z)) = 0.45 and m(A22

P(Z)) = 0.2.

Instead, in order to calculate F
P(Z)
DEnv(0.22) by

solving minimization problem (14), those focal sets

among A
ij

P(Z), i = 1, 2, . j = 1, 2, that are included in

interval [0, pZ] = [0, 0.22] have to be identified. Since
in this case A11

P(Z) = [0.02, 0.175], A12
P(Z) = [0.06, 0.225],

A21
P(Z) = [0.04, 0.210] and A22

P(Z) = [0.120, 0.270] (see

above), only focal sets A11
P(Z) and A21

P(Z) are included

in interval [0, 0.22]; then, only A11
P(Z) and A21

P(Z) and

the corresponding probability masses m(A11
P(Z)) and

m(A21
P(Z)) have to be taken into account in the func-

tion F P(Z)(0.22) to be minimized. Then, minimiza-
tion problem (14) becomes:

Find m
(

A11
P(Z)

)

, m
(

A12
P(Z)

)

, m
(

A21
P(Z)

)

, m
(

A22
P(Z)

)

:

F
P(Z)
DEnv (0.22) = min

{

F P(Z) (0.22)
}

= min
{

m
(

A11
P(Z)

)

+ m
(

A21
P(Z)

)}

(16)

subject to the same constraints as Equation (15). The

optimization process leads to F
P(Z)
DEnv(0.22) = 0.45 with

m(A11
P(Z)) = 0.15, m(A12

P(Z)) = 0.20, m(A21
P(Z)) = 0.30

and m(A22
P(Z)) = 0.35.

Finally, it is worth noting that in order to con-

struct the entire CDFs F
P(Z)

DEnv(pZ) and F
P(Z)
DEnv(pZ) for

P(Z), such optimization problems have to be solved
for all the values pZ of interest. The resulting upper

and lower CDFs, F
P(Z)

and F P(Z), of the probability
(chance) P(Z) of Z = (B1 ∩ind B2)ukn are shown in
Fig. 3, bottom panel.

3. CASE STUDY

In this section, we present the example FT used
for reference. In Section 3.1, the FT structure and
BEs uncertainties are described; in Section 3.2, the
different states of (objective and epistemic) depen-
dence between the BEs are summarized; in Section
3.3, the numerical indicators used to quantify the ef-
fects of such dependences are provided.

3.1 Fault Tree Structure and Basic

Events Uncertainties

A simple FT comprised of nBE = 6 BEs {Bi: i =

1, 2, . . . , nBE = 6} is considered (Fig. 4). BEs B1, B2,
and B3 are linked to event E1 by junction J1 (an OR-
gate) and BEs B4, B5, and B6 are linked to event
E2 by junction J2 (also an OR-gate); finally, events
E1 and E2 are linked to the TE X by junction J3
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Fig. 4. FT structure.

(an AND-gate):

X = E1 ∩ E2 = (B1 ∪ B2 ∪ B3) ∩ (B4 ∪ B5 ∪ B6) .

(17)

Letting {P(Bi ) : i = 1, 2, . . . , nBE = 6} denote
the probabilities (chances) of BEs {Bi: i = 1, 2, . . . ,
nBE = 6}, the probability (chance) P(X) of the TE X

is expressed in all generality as follows:

P (X) = gX (P (B1) , P (B2) , P (B3) , P (B4) ,

P (B5) , P (B6)) , (18)

where gX(·) is a deterministic function of (i) the FT
structure (i.e., the logical connections between the
BEs) (see Fig. 4) and (ii) the (possible) objective de-
pendences existing between the BEs (see Sections 2
and 3.2).

It is assumed that {P(Bi ) : i = 1, 2, . . . ,

nBE = 6} are epistemically uncertain. Uncer-
tainties about {P(Bi ) : i = 1, 6} are described
using lognormal probability distribution functions
{ f P(Bi )(pBi

) = LN(µi , σi ) : i = 1, 6} with parame-
ter values {(µi, σ i): i = 1, 6} as specified in Table I.
As an example, B1 and B6 could denote failure of an
item (e.g., a mechanical component) for which a suffi-
cient amount of informative (failure) data is available
for statistical analysis and for accurate characteri-
zation of the corresponding epistemic uncertainty
by a precise probability distribution. Differently,
uncertainties about {P(Bi ) : i = 2, 3, 5} are repre-
sented using (trapezoidal) possibility distributions
{π P(Bi )(pBi

) = TRAP(ai , bi , ci , di ) : i = 2, 3, 5},
with supports {[ai, di]: i = 2, 3, 5} and cores {[bi, ci]:
i = 2, 3, 5} as specified in Table I. By way of example,
B2, B3, and B5 could denote events (e.g., human-
error-dominated events) for which no data exist
and where the (trapezoidal) possibility distributions
are constructed based on expert statements alone.

Finally, the uncertainty about P(B4) is described
by a finite DS structure, that is, by a set of nB4

= 4

intervals (focal elements) A
j

P(B4) = [p j

B4
, p

j
B4

], j = 1,

2, . . . , nB4
= 4, each of which is assigned a probability

mass m(A
j

P(B4)), j = 1, 2, . . . , nB4
= 4, as specified

in Table I. As an example, B4 could denote failure
of an item (e.g., a protective or automation system,
a digital instrumentation and control system, a
recently-developed technology, . . .) for which only
sparse pieces of data exist: in such cases, the avail-
able information is much more valuable than purely
subjective (and often vague) expert judgment, but
it is not sufficient for building a precise probability
distribution.

Two different cases are considered: “large”
(Case A) and “small” (Case B) BE probabilities
(chances). In Case A, {P(Bi ) : i = 1, 2, . . . , nBE = 6}

are of the order of 10−1, whereas in Case B they
are of the order of 10−3 (Table I). For illustra-
tion purposes, Fig. 5 shows the distributions of
{P(Bi ) : i = 1, 2, . . . , nBE = 6}, with reference only
to Case B.

3.2 States of Dependence Considered

The following states of objective dependence be-
tween the BEs of Section 3.1 are considered in the
analysis (Section 2.1): (a) independence (see Equa-
tions (1) and (2)), (b) perfect (see Equations (3) and
(4)), (c) opposite (see Equations (5) and (6)), (d) pos-
itive (see Equations (9) and (10)), (e) negative (see
Equations (11) and (12)), and (f) unknown depen-
dence (see Equations (7) and (8)). In addition, the
following states of epistemic dependence between
the probabilities (chances) of the BEs of Section 3.1
are considered in the analysis (Section 2.2): (i) in-
dependence, (ii) perfect, and (iii) unknown depen-
dence.

Two classes of analyses are performed
(Section 4):

1. assuming unknown epistemic dependence (iii.
above) between the probabilities (chances) of
the BEs, the effects of different states (a–f
above) of objective dependence between the
BEs are analyzed;

2. assuming objective independence (a. above)
between the BEs, the effects of different
states (i.–iii. above) of epistemic dependence
between the probabilities (chances) of the
BEs are analyzed.
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Fig. 5. Distributions of {P(Bi ) : i = 1, 2, . . . , nBE = 6} for Case B.
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Table I. Characteristics and Parameters of the Distributions of {P(Bi ) : i = 1, 2, . . . , nBE = 6}

P(B1)
Epistemic uncertainty description Probability distribution

Distribution shape Lognormal, f P(B1)(pB1
) = LN(µ1, σ 1)

Distribution parameters Case A µ1 = –1.6094, σ 1 = 0.3226

Case B µ1 = –5.8091, σ 1 = 0.6678

P(B2)
Epistemic uncertainty description Possibility distribution

Distribution shape Trapezoidal, π P(B2)(pB2 ) = TRAP(a2, b2, c2, d2)

Distribution parameters Case A a2 = 1 × 10−1, b2 = 1.5 × 10−1, c2 = 2.5 × 10−1, d2 = 4 × 10−1

Case B a2 = 2 × 10−3, b2 = 3 × 10−3, c2 = 5 × 10−3, d2 = 8 × 10−3

P(B3)
Epistemic uncertainty description Possibility distribution

Distribution shape Trapezoidal, π P(B3)(pB3 ) = TRAP(a3, b3, c3, d3)

Distribution parameters Case A a3 = 2.5 × 10−1, b3 = 4 × 10−1, c3 = 4 × 10−1, d3 = 5 × 10−1

Case B a3 = 5 × 10−3, b3 = 8 × 10−3, c3 = 8 × 10−3, d3 = 1 × 10−2

P(B4)

Epistemic uncertainty description Dempster-Shafer (DS) structure

Distribution shape {(A
j

P(B4), m(A
j

P(B4))) : j = 1, 2, . . . , nB4 = 4}

Distribution parameters Case A {([5 × 10−2, 2.5 × 10−1], 0.19), ([1 × 10−1, 1.5 × 10−3], 0.33), ([2.5 × 10−1, 4 × 10−1],
0.25), ([2 × 10−1, 3 × 10−1], 0.23)}

Case B {([1 × 10−3, 5 × 10−3], 0.19), ([2 × 10−3, 3 × 10−3], 0.33), ([5 × 10−3, 8 × 10−3], 0.25),
([4 × 10−3, 6 × 10−3], 0.23)}

P(B5)

Epistemic uncertainty description Possibility distribution

Distribution shape Trapezoidal, π P(B5)(pB5
) = TRAP(a5, b5, c5, d5)

Distribution parameters Case A a5 = 5 × 10−2, b5 = 2 × 10−1, c5 = 2 × 10−1, d5 = 4.5 × 10−3

Case B a5 = 1 × 10−3, b5 = 4 × 10−3, c5 = 4 × 10−3, d5 = 9 × 10−3

P(B6)

Epistemic uncertainty description Probability distribution

Distribution shape Lognormal, f P(B6)(pB6
) = LN(µ6, σ 6)

Distribution parameters Case A µ6 = –1.3863, σ 6 = 0.2465

Case B µ6 = –5.2150, σ 6 = 0.4214

Table II summarizes the analyses carried out in
the present article (Section 4) together with the cor-
responding objectives.

For clarity, Table III reports the details of Anal-
yses 1 and 2 (Table II). First, only for illustration
purposes the effects of different states of (objec-
tive and epistemic) dependences between BEs {Bi:
i = 1, 2, . . . , nBE = 6} are demonstrated with ref-
erence to very simple configurations (referred to
as C1–C5 in Table III). In particular, events Z =

(B1 ∩ B6) (C1), (B1 ∩ B5) (C2), (B2 ∩ B5) (C3),
(B4 ∪ B5) (C4), and (B2 ∪ B3) (C5) are consid-
ered in both Analyses 1 and 2 to study whether (and

how) the effects of different states of (objective and
epistemic) dependence are influenced by the par-
ticular logical connection existing between the BEs.
Moreover, such analyses are performed in both Case
A (namely, “large” BE probabilities-chances) and
Case B (namely, “small” BE probabilities-chances)
to study whether (and how) the effects of different
states of (objective and epistemic) dependence are
influenced by the magnitude of the BE probabilities
(chances).

Then, the more realistic case involving the FT
of Fig. 4 is considered to analyze the effects that
(objective and epistemic) dependences between BEs
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Table II. Analyses Performed in Section 4, and their Relative Objectives

States of dependence between the BEs

Objective (Section 2.1) Epistemic (Section 2.2) Aim of the analysis

Analysis 1 (Table III

and Section 4.1)

(a) independence
(b) perfect dependence
(c) opposite dependence
(d) positive dependence
(e) negative dependence
(f) unknown dependence

(iii) unknown dependence Study the effects of different states of objective
dependence between the BEs of the FT when the
state of epistemic dependence between the
probabilities (chances) of the BEs is given (in
particular, unknown epistemic dependence is
assumed in the present analysis)

Analysis 2 (Table III

and Section 4.2)

(a) independence (i) independence
(ii) total (perfect) dependence
(iii) unknown dependence

Study the effects of different states of epistemic
dependence between the probabilities (chances)
of the BEs of the FT when the state of objective
dependence between the BEs is given (in
particular, objective independence is assumed in
the present analysis)

Table III. Details of the Computations Performed in Analyses 1 and 2 (Table II)

Analysis 1 – Unknown (ukn) epistemic dependence between the probabilities (chances) of the BEs

Configuration Events and corresponding states of objective (obj) dependence Cases

Simple configurations: pairs

of basic events (BEs)

C1 Z = (B1 ∩obj B6)ukn obj = ind, perf , opp,

ukn (see Section 2.1)
A, B

C2 Z = (B1 ∩obj B5)ukn

C3 Z = (B2 ∩obj B5)ukn

C4 Z = (B4 ∪obj B5)ukn

C5 Z = (B2 ∪obj B3)ukn

Top event (TE) X T1 X = [(B1 ∪ind B2 ∪ind B3) ∩ind (B4 ∪ind B5 ∪ind B6)]ukn B

T2 Positive (pos) objective dependence between B1 and B6

T3 X = [(B1 ∪ind B2 ∪ind B3) ∩ind (B4 ∪ukn B5 ∪ind B6)]ukn

T4 X = [(B1 ∪ukn B2 ∪ukn B3) ∩ukn (B4 ∪ukn B5 ∪ukn B6)]ukn

Analysis 2 – Objective independence (ind) between the BEs

Configuration Events and corresponding states of epistemic (epi) dependence Cases

Simple configurations: pairs

of basic events (BEs)

C1 Z = (B1 ∩ind B6)epi epi = ind, perf , ukn (see
Section 2.2)

A, B

C2 Z = (B1 ∩ind B5)epi

C3 Z = (B2 ∩ind B5)epi

C4 Z = (B4 ∪ind B5)epi

C5 Z = (B2 ∪ind B3)epi

Top event (TE) X T1 X = [(B1 ∪ind B2 ∪ind B3) ∩ind (B4 ∪ind B5 ∪ind B6)]ind B

T2 X = [(B1 ∪ind B2 ∪ind B3) ∩ind (B4 ∪ind B5 ∪ind B6)]perf

T3 X = [(B1 ∪ind B2 ∪ind B3) ∩ind (B4 ∪ind B5 ∪ind B6)]ukn

Notes: “Obj” = objective; “epi” = epistemic; “ind” = independence; “perf ” = perfect; “opp” = opposite; “ukn” = unknown.
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{Bi: i = 1, 2, . . . , nBE = 6} have on the probabil-
ity (chance) P(X) of the TE X (Table III, Config-
urations T1–T4 of Analysis 1 and T1–T3 of Anal-
ysis 2). These computations are performed only in
Case B (namely, “small” BE probabilities-chances)
because in realistic safety-critical engineered sys-
tems the basic components are usually highly reli-
able and, thus, the corresponding failure probabili-
ties (chances) are typically very small. In Analysis 1,
Configuration T1 represents the reference, baseline
case where all the BEs are considered independent.
On the opposite, Configuration T4 represents the ex-
treme (most conservative) case where no assump-
tions about the states of objective dependence be-
tween all the BEs are made. Instead, Configurations
T2 and T3 represent “intermediate” (and more real-
istic) cases. In particular, in Configuration T2 posi-
tive objective dependence is assumed between BEs
B1 and B6 (i.e., those events representing failures of
mechanical components): this situation is far from
unlikely in real systems and may be due to several
causes, for example, (i) shared pieces of equipment
(e.g., components in different systems are fed from
the same electrical bus) or (ii) physical interactions
(e.g., failures of some component create extreme en-
vironmental stresses, which increase the probability-
chance of multiple-component failures). Instead, in
Configuration T3 unknown objective dependence is
assumed between BE B4 (i.e., an event representing
the failure of a protective or automation system) and
BE B5 (i.e., an event dominated by a human error):
in real systems, this situation may occur, for exam-
ple, when an operator turns off a protection system
(event B4) after failing to correctly diagnose the con-
ditions of a plant (event B5).

Finally, in Analysis 2 only “extreme” situations
are considered: in particular, in Configurations T1,
T2, and T3 states of independence, total (perfect) de-
pendence, and unknown epistemic dependence, re-
spectively, are assumed between all the probabilities
(chances) of all the BEs of the FT.

3.3 Quantitative Indicators

Two quantitative indicators are here introduced
to evaluate the effects that different states of (objec-
tive and state-of-knowledge) dependence between
the BEs (Section 3.2) have on the probability
(chance) P(Z) of an event Z of interest (e.g., in our
case the TE X): (i) the interval [p0.95

Z
, p0.95

Z ] for the

95th percentile P(Z)0.95 of P(Z), and (ii) the relative

average distance dZ between the upper and lower

CDFs F
P(Z)

and F P(Z).
The interval [p0.95

Z
, p0.95

Z ] for the 95th percentile

P(Z)0.95 of P(Z) is defined as:

[

p0.95

Z
, p0.95

Z

]

= [
(

F
P(Z)

)−1

(0.95) ,

(

F P(Z)
)−1

(0.95)],

(19)

where [F
P(Z)

]−1 and [F P(Z)]−1 are the inverse func-

tions of the upper and lower CDFs F
P(Z)

and F P(Z),
respectively, of P(Z). It is worth noting that in a risk
analysis context, p0.95

Z = (F P(Z))−1(0.95) is the inter-
esting quantity since it guarantees that the proba-
bility P[P(Z) ≤ p0.95

Z ] that the true value of P(Z) is
lower than p0.95

Z = (F P(Z))−1(0.95) is greater than or
equal to 0.95. Thus, p0.95

Z = (F P(Z))−1(0.95) can be in-
terpreted as a conservative assignment of the 95th
percentile P(Z)0.95 (i.e., a conservative estimate of
risk) with respect to the imprecision arising from the
input BEs of the FT: obviously, the larger the value
of p0.95

Z , the larger the risk associated to the system.
The relative average distance dZ between the up-

per and lower CDFs F
P(Z)

and F P(Z) of P(Z) is de-
fined as:

dZ =

∫ 1

0

dZ (β) dβ

E
[

P (Z)INS
]

=

∫ 1

0

[

(

F P(Z)
)−1

(β) −
(

F
P(Z)

)−1

(β)

]

dβ

E
[

P (Z)INS
] ,

(20)

where [F
P(Z)

]−1 and [F P(Z)]−1 are defined above;

dZ(β) = (F P(Z))−1(β) − (F
P(Z)

)−1(β) is the width of

the interval [pβ

Z
, p

β

Z] for the βth percentile P(Z)β of

P(Z) (in other words, dZ(β) is the distance between

the upper and lower CDFs F
P(Z)

and F P(Z) of P(Z)
computed at cumulative probability level β along the
real “horizontal” axis; it is straightforward to notice
that dZ(β) can take values between 0 and 1 because
it is the distance between the upper and lower val-
ues of the βth percentile of P(Z), which obviously
takes values between 0 and 1); finally, E[P(Z)INS]
is the expected value of the probability distribution

f P(Z)INS

(pINS
Z ) obtained by transforming the upper

and lower CDFs F
P(Z)

and F P(Z) of P(Z) according
to the principle of insufficient reason.(85) The sam-
pling procedure for estimating E[P(Z)INS] is
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i. transform the upper and lower CDFs F
P(Z)

and F P(Z) of P(Z) into the (unique) probabil-

ity distribution f P(Z)INS

(pINS
Z ):(85,86)

a. sample NINS random realizations {uk:
k = 1, 2, . . . , NINS} from a uniform
probability distribution on [0, 1) and
consider the corresponding intervals

[(F
P(Z)

)−1(uk), (F P(Z))−1(uk)], k = 1, 2, . . . ,
NINS;

b. sample a random realization pINS
Z,k

for P(Z)INS from a uniform proba-
bility distribution on each interval

[(F
P(Z)

)−1(uk), (F P(Z))−1(uk)], k = 1, 2, . . . ,
NINS: the distribution resulting from the col-
lection of the realizations pINS

Z,k , k = 1, 2, . . . ,
NINS, is an empirical estimate for

f P(Z)INS

(pINS
Z ));

ii. estimate E[P(Z)INS] as 1/.NINS ·
∑NINS

k=1 pINS
Z,k .

Other methods for transforming the upper and

lower CDFs F
P(Z)

and F P(Z) of P(Z) into a (unique)
probability distribution are available in Refs. 36, 85,
87, and 88.

It is worth noting that the quantity dZ (20) pro-
vides a measure of the average distance (i.e., separa-

tion) between the upper and lower CDFs F
P(Z)

and
F P(Z) of P(Z), computed along the real “horizontal”
axis. In this sense, it is also an indicator of the uncer-
tainty (i.e., imprecision) “contained” in the distribu-
tion of P(Z): the larger the average distance dZ (20),
the larger the uncertainty (imprecision) associated to
P(Z).

Finally, notice that the expected value
E[P(Z)INS] in Equation (20) is simply chosen
as a numerical indicator of the approximate “lo-

cation” of the upper and lower CDFs F
P(Z)

and
F P(Z) on the “horizontal” axis: in other words, it
is taken as a numerical indicator of the order of
magnitude of P(Z). In this view, E[P(Z)INS] serves
the main purpose of a normalization factor for

the integral
∫ 1

0 [(F P(Z))−1(β) − (F
P(Z)

)−1(β)]dβ,
whose magnitude is obviously dependent on the
magnitude of P(Z) and, thus, on the magnitude
of the BE probabilities (chances). In this way,
such normalization factor allows a fair comparison
between values of the distance dZ (20) computed
in Cases A and B (Section 3.1), where the BE
probabilities (chances) differ by several orders of
magnitude.

4. APPLICATION

In this section, the methods described in Section
2 for handling dependences in FTA are applied to the
example of Section 3. In particular, Section 4.1 con-
tains the results of Analysis 1 (Table III in Section
3.2), whereas Section 4.2 reports the results of Anal-
ysis 2 (Table III in Section 3.2).

4.1 Studying the Effects of Objective (Aleatory)

Dependences Between the Basic Events

Table IV reports the values of the indicators
[p0.95

Z
, p0.95

Z ] (19) and dZ (20) obtained for the

events Z = (B1 ∩obj B6)ukn, (B1 ∩obj B5)ukn, (B2

∩obj B5)ukn, (B4 ∪obj B5)ukn, and (B2 ∪obj B3)ukn

(Configurations C1–C5 of Analysis 1 in Table III)
under the assumptions of independence (“obj” =

“ind”), perfect (“obj” = “perf”), opposite (“obj” =

“opp”), and unknown (“obj” = “ukn”) objective
dependence, with reference to Cases A and B (Sec-
tion 3.1); the estimates of E[P(Z)INS] are also shown
for completeness. In addition, only for illustration
purposes Fig. 6 depicts the upper and lower CDFs

F
P[(B1∩obj B5)ukn]

, F
P[(B4∪obj B5)ukn]

, F P[(B1∩obj B5)ukn], and

F P[(B4∪obj B5)ukn] obtained for events (B1 ∩obj B5)ukn

(top panel) and (B4 ∪obj B5)ukn (bottom panel),
respectively, under the assumptions of indepen-
dence (solid lines), perfect (dashed lines), opposite
(dotted lines), and unknown (dot-dashed lines)
objective dependence, with reference to Cases A
(left-hand side) and B (right-hand side). Notice that

by construction F
P[(B1∩ukn B5)ukn]

= F
P[(B1∩perf B5)ukn]

and F P[(B1∩ukn B5)ukn] = F P[(B1∩opp B5)ukn], whereas

F
P[(B4∪ukn B5)ukn]

= F
P[(B4∪opp B5)ukn]

and F P[(B4∪ukn B5)ukn] =

F P[(B4∪perf B5)ukn] (see Equations (7) and (8)): however,
only for clarity of illustration the corresponding lines
in Fig. 6 are not overlapped.

We start by analyzing those cases where the
BEs are linked by AND-gates, that is, Z = (B1

∩obj B6)ukn, (B1 ∩obj B5)ukn, and (B2 ∩obj B5)ukn

(Configurations C1–C3 in Table III). It can be
seen that in Case A the upper bounds p0.95

(B1∩obj B6)ukn ,

p0.95
(B1∩obj B5)ukn , and p0.95

(B2∩obj B5)ukn of the 95th per-

centiles P[(B1 ∩obj B6)ukn]0.95, P[(B1 ∩obj B5)ukn]0.95,
and P[(B2 ∩obj B5)ukn]0.95 are 0.1528, 0.1557, and
0.1760, respectively, under the assumption of in-
dependence, whereas they are 0.3461, 0.3462,
and 0.3941, respectively, under the assumption of
unknown dependence. Thus, the assumption of



Uncertainty Analysis in Fault Tree Models 1161

Table IV. Values of the Indicators [p0.95
Z

, p0.95
Z ] (19) and dZ (20) Obtained for the Simple Events Z = (B1 ∩obj B6)ukn, (B1 ∩obj B5)ukn, (B2

∩obj B5)ukn, (B4 ∪obj B5)ukn, and (B2 ∪obj B3)ukn (Configurations C1–C5 of Analysis 1 in Table III) Under the Assumptions of
Independence, Perfect, Opposite, and Unknown Objective Dependence, with Reference to Cases A and B; the Estimates for E[P(Z)INS]

are Also Reported for Completeness

Analysis 1 – Unknown (ukn) epistemic dependence between the probabilities (chances) of the BEs

State of objective (obj) dependence

Event Z Indicators Independence (ind) Perfect (perf ) Opposite (opp) Unknown (ukn)

Case A

(B1 ∩obj B6)ukn (C1) E[P(Z)INS] 0.0583 0.1954 0 0.1069

dZ 0.8634 0.6321 / 3.6672

[p0.95
Z

,p0.95
Z ] [0.0492, 0.1528] [0.2205, 0.3461] 0 [0, 0.3461]

(B1 ∩obj B5)ukn (C2) E[P(Z)INS] 0.0553 0.1627 0 0.1068

dZ 1.4779 1.8426 / 3.8630

[p0.95
Z

,p0.95
Z ] [0.0243, 0.1557] [0.1564, 0.3462] 0 [0, 0.3462]

(B2 ∩obj B5)ukn (C3) E[P(Z)INS] 0.0715 0.2068 0 0.1573

dZ 1.6629 3.0140 / 4.3991

[p0.95
Z

,p0.95
Z ] [0.0188, 0.1760] [0.1220, 0.3941] 0 [0, 0.3941]

(B4 ∪obj B5)ukn (C4) E[P(Z)INS] 0.3933 0.2645 0.4538 0.4219

dZ 0.9325 0.5493 1.1871 1.3495

[p0.95
Z

,p0.95
Z ] [0.3100, 0.6670] [0.2500, 0.4401] [0.3302, 0.8401] [0.2500, 0.8401]

(B2 ∪obj B3)ukn (C5) E[P(Z)INS] 0.5272 0.3873 0.6251 0.5750

dZ 0.5161 0.2419 0.7644 0.9542

[p0.95
Z

,p0.95
Z ] [0.4519, 0.6970] [0.3910, 0.4961] [0.4911, 0.8941] [0.3910, 0.8941]

Case B

(B1 ∩obj B6)ukn (C1) E[P(Z)INS] 2.01 × 10−5 3.00 × 10−3 0 1.84 × 10−3

dZ 1.3339 67.0056 / 182.6408

[p0.95
Z

,p0.95
Z ] [1.41 × 10−5, 9.21 × 10−5] [3.43 × 10−3, 8.19 × 10−3] 0 [0, 8.19 × 10−3]

(B1 ∩obj B5)ukn (C2) E[P(Z)INS] 1.84 × 10−5 2.71 × 10−3 0 1.83 × 10−3

dZ 1.2028 101.9268 / 198.2254

[p0.95
Z

,p0.95
Z ] [8.75 × 10−6, 7.85 × 10−5] [2.56 × 10−3, 8.80 × 10−3] 0 [0, 8.80 × 10−3]

(B2 ∩obj B5)ukn (C3) E[P(Z)INS] 2.62 × 10−5 4.14 × 10−3 0 3.15 × 10−3

dZ 1.7034 164.6245 / 240.1765

[p0.95
Z

,p0.95
Z ] [5.68 × 10−6, 7.01 × 10−5] [2.44 × 10−3, 7.88 × 10−3] 0 [0, 7.88 × 10−3]

(B4 ∪obj B5)ukn (C4) E[P(Z)INS] 8.93 × 10−3 5.19 × 10−3 9.00 × 10−3 8.33 × 10−3

dZ 1.0216 0.4700 1.0325 1.1676

[p0.95
Z

,p0.95
Z ] [6.59 × 10−3, 1.67 × 10−2] [5.00 × 10−3, 8.76 × 10−3] [6.40 × 10−3, 1.68 × 10−2] [5.00 × 10−3, 1.68 × 10−2]

(B2 ∪obj B3)ukn (C5) E[P(Z)INS] 1.25 × 10−2 7.74 × 10−3 1.25 × 10−2 1.15 × 10−2

dZ 0.6381 0.2047 0.6468 0.8076

[p0.95
Z

,p0.95
Z ] [9.83 × 10−3, 1.78 × 10−2] [7.82 × 10−3, 9.92 × 10−3] [9.82 × 10−3, 1.79 × 10−2] [7.82 × 10−3, 1.79 × 10−2]

independence would lead to underestimating the
upper bounds of the 95th quantiles (and, thus,
the risk associated to the system) by 2.27, 2.22,
and 2.24 times, respectively. These considera-
tions are reflected also by the analysis of the

relative average distances d(B1∩obj B6)ukn, d(B1∩obj B5)ukn ,
and d(B2∩obj B5)ukn between the upper and lower

CDFs F
P[(B1∩obj B6)ukn]

, F
P[(B1∩obj B5)ukn]

, F
P[(B2∩obj B5)ukn]

,

F P[(B1∩obj B6)ukn], F P[(B1∩obj B5)ukn], and F P[(B2∩obj B5)ukn],
respectively. Actually, as before the assumption
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Fig. 6. Upper and lower CDFs F
P[(B1∩obj B5)ukn]

, F
P[(B4∪obj B5)ukn]

, F P[(B1∩obj B5)ukn], and F P[(B4∪obj B5)ukn] obtained for events (B1 ∩obj B5)ukn

(top panel) and (B4 ∪obj B5)ukn (bottom panel), respectively, under the assumptions of independence (solid lines), perfect (dashed lines),
opposite (dotted lines), and unknown (dot-dashed lines) objective dependence, with reference to Case A (left-hand side) and B (right-hand
side). Top, right-hand side: the value P[(B1 ∩obj B5)ukn] = 0 in Case B is represented out of scale at about 6 × 10−7 for clarity of illustration.

of independence leads to underestimating the un-
certainty (imprecision) “contained” in the dis-
tributions of the probabilities P[(B1 ∩obj B6)ukn],
P[(B1 ∩obj B5)ukn], and P[(B2 ∩obj B5)ukn] by 4.25,
2.61, and 2.65 times, respectively.

This underestimation is much more sig-
nificant in Case B. Actually, the values of
p0.95

(B1∩obj B6)ukn, p0.95
(B1∩obj B5)ukn , and p0.95

(B2∩obj B5)ukn are

9.2078 × 10−5, 6.9995 × 10−5, and 7.0080 × 10−5,
respectively, under the assumption of independence,
whereas they are 8.1876 × 10−3, 8.8002 × 10−3, and
7.8810 × 10−3, respectively, under the assumption
of unknown dependence. Thus, the assumption of
independence leads to underestimating the upper
bounds of the 95th quantiles (and, thus, the risk
associated to the system) by 89.02, 125.70, and

112.60 times, respectively. Again, these consider-
ations are reflected by the analysis of the relative
average distances d(B1∩obj B6)ukn, d(B1∩obj B5)ukn , and
d(B2∩obj B5)ukn . Actually, as before the assumption
of independence leads to underestimating the
uncertainty (imprecision) associated to the distri-
butions of P[(B1 ∩obj B6)ukn], P[(B1 ∩obj B5)ukn],
and P[(B2 ∩obj B5)ukn] by 136.89, 164.80, and
140.99 times, respectively. A visual represen-
tation of these results is given in Fig. 6, top
panel: actually, it can be seen that the upper and

lower CDFs F
P[(B1∩ukn B5)ukn]

and F P[(B1∩ukn B5)ukn]

of P[(B1 ∩ukn B5)ukn] (dashed lines) completely

envelop the upper and lower CDFs F
P[(B1∩ind B5)ukn]

and F P[(B1∩ind B5)ukn] of P[(B1 ∩ind B5)ukn] (solid lines)
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in both Cases A (left-hand side) and B (right-hand
side).

The facts that (i) the assumption of objective
independence leads to a consistent underestima-
tion of risk and (ii) such underestimation is more
dramatic in Case B than in Case A are explained
as follows. The probability (chance) of the con-
junction of two independent events, say B1 and
B5, is given by the product of the corresponding
probabilities (chances) P(B1) and P(B5), that is,
P(B1 ∩ind B5) = P(B1).P(B5) (see Equation (1)):
thus, if P(B1) and P(B5) are of the order of 10−n,
then P(B1 ∩ind B5) is of the order of 10−2n. In-
stead, if no assumption at all about the state of
objective dependence between B1 and B5 can be
made, only (extreme and best possible) lower and
upper bounds on P(B1 ∩ B5) can be computed
as P(B1 ∩ukn B5) = [P(B1 ∩ukn B5), P(B1 ∩ukn B5)] =

[P(B1 ∩opp B5), P(B1 ∩perf B5)] = [max{P(B1)+ P
(B5) − 1, 0}, min{P(B1), P(B5)}] (see Equa-
tion (7)). In this case, if P(B1) and P(B5) are
of the order of 10−n, then the upper bound
P(B1 ∩ukn B5) = min{P(B1), P(B5)} (which repre-
sents the most conservative estimate of risk) is still of
the order of 10−n. As a consequence, P(B1 ∩ukn B5)
≈ 10−n is approximately n orders of magnitude
larger than P(B1 ∩ind B5) ≈ 10−2n, which explains
also why the difference between P(B1 ∩ind B5) and
P(B1 ∩ukn B5) dramatically increases as P(B1) and
P(B5) decrease (i.e., as n increases).

Different situations arise in the cases where the
BEs are linked by OR-gates, that is, Z = (B4 ∪obj

B5)ukn and (B2 ∪obj B3)ukn (Configurations C4 and
C5 in Table III). It can be seen that in Case A the
values of p0.95

(B4∪obj B5)ukn and p0.95
(B2∪obj B3)ukn are 0.6670 and

0.6970, respectively, under the assumption of inde-
pendence, whereas they are 0.8401 and 0.8941, re-
spectively, under the assumption of unknown de-
pendence. Thus, the assumption of independence
leads to underestimating the upper bounds of the
95th quantiles (and, thus, the risk associated to
the system) by about 1.26 and 1.28 times, respec-
tively. These considerations are reflected also by the
values of the relative average distances d(B4∪obj B5)ukn

and d(B2∪obj B3)ukn between the upper and lower

CDFs F
P[(B4∪obj B5)ukn]

, F
P[(B2∪obj B3)ukn]

, F P[(B4∪obj B5)ukn],

and F P[(B2∪obj B3)ukn], respectively. Actually, as be-
fore, the assumption of independence leads to un-
derestimating the uncertainty (imprecision) “con-
tained” in the distributions of P[(B4 ∪obj B5)ukn]
and P[(B2 ∪obj B3)ukn] by 1.45 and 1.85 times.

Notice that the magnitude of such underestima-
tions is not negligible, but it is much less rele-
vant than for the cases where BEs are linked by
AND-gates.

In Case B, the values of p0.95
(B4∪obj B5)ukn and

p0.95
(B2∪obj B3)ukn are 1.6685 × 10−2 and 1.7772 × 10−2, re-

spectively, under the assumption of independence,
whereas they are 1.6763 × 10−2 and 1.7881 × 10−2,
respectively, under the assumption of unknown de-
pendence. Thus, in this case the assumption of inde-
pendence leads to a very slight underestimation of
the upper bounds of the 95th quantiles (and, thus,
of the risk associated to the system), that is, only by
about 1.01 and 1.02 times, respectively. Instead, the
values of the relative average distances d(B4∪obj B5)ukn

and d(B2∪obj B3)ukn are 1.0216 and 0.6381, respectively,
under the assumption of independence, whereas they
are 1.1676 and 0.8076, respectively, under the as-
sumption of unknown dependence: in other words,
the uncertainty (imprecision) associated to distribu-
tions of P[(B4 ∪obj B5)ukn] and P[(B2 ∪obj B3)ukn] is
underestimated by about 1.14 and 1.27 times. Thus,
although the risk estimates are comparable, the un-
derestimation of the uncertainty (imprecision) asso-
ciated to the distributions of P[(B4 ∪obj B5)ukn] and
P[(B2 ∪obj B3)ukn] is not negligible. A visual repre-
sentation of these results is given in Fig. 6, bot-
tom right-hand side. Actually, it can be seen that

the lower CDFs F P[(B4∪ukn B5)ukn] (dashed line) and

F P[(B4∪ind B5)ukn] (solid line) (i.e., the CDFs used to
estimate the upper bounds of the 95th quantiles
of P[(B4 ∪ukn B5)ukn] and P[(B4 ∪ind B5)ukn], respec-
tively) almost coincide; on the contrary, the upper

CDF F
P[(B4∪ukn B5)ukn]

(dashed line) lies consistently

above the upper CDF F
P[(B4∪ind B5)ukn]

(solid line).
These results are explained as follows. The

probability (chance) of the disjunction of two
independent events, say B4 and B5, is given by
P(B4 ∪ind B5) = P(B4) + P(B5) − P(B4).P(B5) (see
Equation (2)). Instead, if no assumptions at all about
the state of objective dependence between B4 and B5

can be made, only (extreme and best possible) lower
and upper bounds on P(B4 ∪ B5) can be computed
as P(B4 ∪ukn B5) = [P(B4 ∪ukn B5), P(B4 ∪ukn B5)] =

[P(B4 ∪perf B5), P(B4 ∪opp B5)] = [max{P(B4),
P(B5)}, min{1, P(B4) + P(B5)}] (see Equation (8)).
If both P(B4) and P(B5) are of the order of
10−n (with n ≫ 1, like in the present Case
B), then P(B4 ∪ind B5) = P(B4) + P(B5) –
P(B4) × P(B5) ≈ P(B4) + P(B5) = 2 × 10−n.
In addition, it is evident that P(B4 ∪ukn B5) =
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[max{P(B4), P(B5)}, min{1, P(B4) + P(B5)}] ≈

[10−n, 2 × 10−n]. This means that if both P(B4)
and P(B5) are quite small (i.e., if n >> 1), then
the value of P(B4 ∪ind B5) is comparable to that of
P(B4 ∪ukn B5), that is, P(B4 ∪ind B5) ≈ P(B4 ∪ukn B5)
≈ 2 × 10−n: in other words, two radically different
assumptions about the state of objective depen-
dence between B4 and B5 provide a comparable
risk estimate. On the contrary, the uncertainty
(imprecision) “contained” in the distributions of
P(B4 ∪ind B5) and P(B4 ∪ukn B5) is obviously quite
different: actually, the interval P(B4 ∪ukn B5) ≈

[10−n, 2 × 10−n] “completely envelops” the estimate
P(B4 ∪ind B5) ≈ 2 × 10−n.

Similar analyses are performed on the probabil-
ity (chance) P(X) of the TE X of the FT in Fig. 4. Ta-
ble V reports the values of the indicators [p0.95

X
, p0.95

X ]

(19) and dX (20) obtained for P(X) under different
assumptions of objective dependence between the
BEs (Configurations T1–T4 in Table III), with refer-
ence to Case B; the estimates for E[P(X)INS] are also
shown for completeness. For illustration purposes,

Fig. 7 depicts the upper and lower CDFs F
P(X)

and
F P(X) obtained for P(X) under different assumptions
of objective dependence between the BEs (Configu-
rations T1–T4 in Table III).

These results confirm the considerations drawn
by the analysis of the simple Configurations C1–C5
in Table III. For example, it can be seen that the
values of the upper bound p0.95

X on the 95th quan-
tile P(X)0.95 are 7.2275 × 10−4 and 8.9766 × 10−3 in
Configurations T1 (where all the BEs are considered
independent) and T2 (where BEs B1 and B6 are con-
sidered positively dependent). This means that ne-
glecting a hypothetical state of positive dependence
between only one pair of BEs linked by an AND-gate
is sufficient for underestimating the upper bound
p0.95

X of the 95th quantile P(X)0.95 (and, thus, the risk
associated to the system) by 12.42 times. On the con-
trary, in Configuration T3 (where no indication at
all about the state of objective dependence between
BEs B4 and B5 is available), the value of p0.95

X is
7.7580 × 10−4: thus, in this case even assuming un-
known objective dependence between a couple of
BEs linked by an OR-gate leads to overestimating
the risk associated to the system only by about 1.07
times with respect to the “baseline” assumption of
independence. Finally, Configuration T4 represents
the “extreme” case where unknown objective depen-
dence is assumed between all the BEs of the FT: no-
tice that since in the present Analysis 1 unknown

epistemic dependence is also assumed between the
probabilities (chances) of all the BEs, Configuration
T4 provides the most “uncertain” and, thus, conser-
vative estimate for P(X). Actually, the values of p0.95

X

and dX are 2.5923 × 10−2 and 72.7040, respectively,
that is, 35.87 and 44.14 times larger than those ob-
tained under the “baseline” assumption of objective
independence between all the BEs (Configuration
T1).

Some considerations are in order with respect
to the results obtained. It has been shown that
the assumption of objective independence between
BEs linked by AND-gates very often leads to a
significant underestimation of (i) the risk associ-
ated to the system (here represented by the upper
bound p0.95

X of the 95th quantile P(X)0.95 of P(X))
and (ii) the uncertainty (imprecision) “contained”
in the distribution of P(X) (here represented by
the relative average distance dX between the up-

per and lower CDFs F
P(X)

and F P(X) of the TE
probability-chance P(X)). In more detail, it can be
seen that when the BE probabilities (chances) are
of the order of 10−1 (like in the present Case A),
the assumption of objective independence leads to
underestimating risk and uncertainty by 2.22–2.27
times and 2.61–4.21 times, respectively, with respect
to the assumption of unknown objective dependence.
Instead, if the BE probabilities (chances) are of the
order of 10−2–10−3 (like in the present Case B), the
assumption of objective independence leads to un-
derestimating risk and uncertainty by 89–125 times
and 136–164 times, respectively, with respect to the
assumption of unknown objective dependence. Thus,
the effects of objective dependences between BEs
linked by AND-gates becomes more and more dra-
matic as the BE probabilities (chances) decrease: this
poses serious concerns in the risk assessment of com-
plex systems where the components are highly re-
liable and, thus, characterized by very small failure
probabilities (chances).

Instead, it has been shown that the assumption
of objective independence between BEs linked by
OR-gates leads to a slight underestimation of both
risk and uncertainty. In particular, it can be seen that
when the BE probabilities (chances) are of the or-
der of 10−1 (like in the present Case A), the assump-
tion of objective independence leads to underesti-
mating risk and uncertainty by 1.26–1.28 times and
1.45–1.85 times, respectively, with respect to the
assumption of unknown objective dependence. In-
stead, if the BE probabilities (chances) are of the
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Table V. Values of the Indicators [p0.95
X

, p0.95
X ] (19) and dX (20) obtained for P(X) Under Different Assumptions of Objective

Dependence Between the BEs (Configurations T1–T4 in Table III), with Reference to Case B; the Estimates for E[P(X)INS] Are
Also Reported

Analysis 1 – Unknown epistemic dependence between the probabilities (chances) of the BEs Case B

Indicators

Top Event (TE) X (configuration, Table III) E[P(X)INS] dX [p0.95
X

,p0.95
X ]

X = [(B1 ∪ind B2 ∪ind B3) ∩ind (B4 ∪ind B5 ∪ind B6)]ukn (T1) 2.8725 × 10−4 1.6472 [7.3617 × 10−5, 7.2275 × 10−4]

Positive (pos) objective dependence between B1 and B6 (T2) 2.2574 × 10−3 15.3945 [6.5629 × 10−5, 8.9766 × 10−3]

X = [(B1 ∪ind B2 ∪ind B3) ∩ind (B4 ∪ukn B5 ∪ind B6)]ukn (T3) 2.8998 × 10−4 1.7324 [6.1237 × 10−5, 7.7580 × 10−4]

X = [(B1 ∪ukn B2 ∪ukn B3) ∩ukn (B4 ∪ukn B5 ∪ukn B6)]ukn (T4) 1.0463 × 10−2 72.7040 [3.5735 × 10−5, 2.5923 × 10−2]
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Fig. 7. Upper and lower CDFs F
P(X)

and
F P(X) obtained for P(X), with reference
to Case B under different assumptions of
objective dependence between the BEs
(Configurations T1–T4 in Table III). The
value P(X) = 0 is represented out of
scale at about 1 × 10−5 for clarity of
illustration.

order of 10−2–10−3 (like in the present Case B), the
assumption of objective independence does not lead
to a remarkable underestimation of risk, whereas
it causes a nonnegligible underestimation of uncer-
tainty (i.e., by 1.14–1.27 times with respect to the as-
sumption of unknown objective dependence). Based
on these considerations, it can be concluded that (i)
the assumption of objective independence between
BEs linked by OR-gates leads to a slight under-
estimation of risk only when the BE probabilities
(chances) are relatively large (e.g., of the order of
10−1) and (ii) the relevance of the underestimation
of uncertainty does not change dramatically as the
BE probabilities (chances) change. These considera-
tions makes the treatment of dependences between
BEs linked by OR-gates much less critical than for
AND-gates.

4.2 Studying the Effects of State-of-Knowledge

(Epistemic) Dependences Between the

Probabilities (Chances) of the Basic Events

Table VI reports the values of the indicators
[p0.95

Z
, p0.95

Z ] (19) and dZ (20) obtained for the events

Z = (B1 ∩ind B6)epi, (B1 ∩ind B5)epi, (B2 ∩ind B5)epi,
(B4 ∪ind B5)epi and (B2 ∪ind B3)epi (Configurations
C1–C5 of Analysis 2 in Table III) under the as-
sumptions of independence (“epi” = “ind”), perfect
(“epi” = “perf”), and unknown (“epi” = “ukn”)
epistemic dependence, with reference to Cases
A and B; the estimates for E[P(Z)INS] are also
reported for completeness. In addition, only for illus-
tration purposes, Fig. 8 shows the upper and lower

CDFs F
P[(B1∩ind B5)epi ]

, F
P[(B4∪ind B5)epi ]

, F P[(B1∩ind B5)epi ],

and F P[(B4∪ind B5)epi ] obtained for events (B1 ∩ind B5)epi
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Table VI. Values of the Indicators [p0.95
Z

, p0.95
Z ] (19) and dZ (20) Obtained for Events Z = (B1 ∩ind B6)epi, (B1 ∩ind B5)epi, (B2 ∩ind B5)epi,

(B4 ∪ind B5)epi, and (B2 ∪ind B3)epi (Configurations C1–C5 of Analysis 2 in Table III) Under the Assumptions of Independence, Perfect,
and Unknown Epistemic Dependence, with Reference to Cases A and B

Analysis 2 – Objective independence (ind) between the BEs

State of epistemic (epi) dependence

Event Z Indicators Independence (ind) Perfect (perf ) Unknown (ukn)

Case A

(B1 ∩ind B6)epi (C1) E[P(Z)INS] 0.0543 0.0576 0.0583

dZ 0 0 0.9270

[p0.95
Z

,p0.95
Z ] 0.0974 0.1230 [0.0492, 0.1528]

(B1 ∩ind B5)epi (C2) E[P(Z)INS] 0.0474 0.0510 0.0553

dZ 0.8993 0.9389 1.7242

[p0.95
Z

,p0.95
Z ] [0.0503, 0.1216] [0.0634, 0.1467] [0.0243, 0.1557]

(B2 ∩ind B5)epi (C3) E[P(Z)INS] 0.0609 0.0622 0.0715

dZ 1.4874 1.5152 1.9523

[p0.95
Z

,p0.95
Z ] [0.0254, 0.1551] [0.0283, 0.1717] [0.0188, 0.1760]

(B4 ∪ind B5)epi (C4) E[P(Z)INS] 0.3817 0.3740 0.3933

dZ 0.6510 0.6393 0.9608

[p0.95
Z

,p0.95
Z ] [0.3786, 0.6423] [0.3933, 0.6618] [0.3100, 0.6670]

(B2 ∪ind B3)epi (C5) E[P(Z)INS] 0.5192 0.5178 0.5272

dZ 0.4239 0.4229 0.5241

[p0.95
Z

,p0.95
Z ] [0.4707, 0.6798] [0.4813, 0.6932] [0.4519, 0.6970]

Case B

(B1 ∩ind B6)epi (C1) E[P(Z)INS] 1.62 × 10−5 2.01 × 10−5 2.01 × 10−5

dZ 0 0 1.6603

[p0.95
Z

,p0.95
Z ] 4.36 × 10−5 6.72 × 10−5 [1.41 × 10−5, 9.21 × 10−5]

(B1 ∩ind B5)epi (C2) E[P(Z)INS] 1.69 × 10−5 1.96 × 10−5 1.85 × 10−5

dZ 0.9112 0.9943 1.3109

[p0.95
Z

,p0.95
Z ] [2.38 × 10−5, 6.09 × 10−5] [3.45 × 10−5, 7.85 × 10−5] [8.75 × 10−6, 7.88 × 10−5]

(B2 ∩ind B5)epi (C3) E[P(Z)INS] 2.43 × 10−5 2.49 × 10−5 2.62 × 10−5

dZ 1.4878 1.5251 1.8371

[p0.95
Z

,p0.95
Z ] [1.01 × 10−5, 6.19 × 10−5] [1.13 × 10−5, 6.87 × 10−5] [5.68 × 10−6, 7.01 × 10−5]

(B4 ∪ind B5)epi (C4) E[P(Z)INS] 8.69 × 10−3 8.65 × 10−3 8.93 × 10−3

dZ 0.7266 0.7237 1.0499

[p0.95
Z

,p0.95
Z ] [8.38 × 10−3, 1.59 × 10−2] [8.82 × 10−3, 1.67 × 10−2] [6.59 × 10−3, 1.67 × 10−2]

(B2 ∪ind B3)epi (C5) E[P(Z)INS] 1.22 × 10−2 1.22 × 10−2 1.25 × 10−2

dZ 0.5289 0.5298 0.6502

[p0.95
Z

,p0.95
Z ] [1.05 × 10−2, 1.72 × 10−2] [1.07 × 10−2, 1.76 × 10−2] [9.83 × 10−3, 1.78 × 10−2]
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Fig. 8. Upper and lower CDFs F
P[(B1∩ind B5)epi ]

, F
P[(B4∪ind B5)epi ]

, F P[(B1∩ind B5)epi ], and F P[(B4∪ind B5)epi ] obtained for events (B1 ∩ind B5)epi

(top panel) and (B4 ∪ind B5)epi (bottom panel), respectively, under the assumptions of independence (solid lines), perfect (dashed lines),
and unknown (dot-dashed lines) epistemic dependence, with reference to Cases A (left-hand side) and B (right-hand side).

(top panel) and (B4 ∪ind B5)epi (bottom panel),
respectively, under the assumptions of independence
(solid lines), perfect (dashed lines), and unknown
(dot-dashed lines) epistemic dependence, with ref-
erence to Cases A (left-hand side) and B (right-hand
side).

We start by analyzing the cases where the
BEs are linked by AND-gates and we refer only
to event Z = (B1 ∩ind B5)epi (C2) for brevity
sake. It can be seen that in Case A the values
of the upper bound p0.95

(B1∩ind B5)epi of the 95th per-

centile P[(B1 ∩ind B5)epi ]0.95 are 0.1216, 0.1467, and
0.1557 under the assumptions of independence, to-
tal (perfect) and unknown epistemic dependence, re-
spectively. Thus, the assumption of epistemic inde-
pendence would lead to underestimating the upper
bound of the 95th quantile (and, thus, the risk as-
sociated to the system) by 1.21 and 1.28 times with
respect to the assumptions of total and unknown

epistemic dependence, respectively; in addition, no-
tice that the assumption of perfect dependence pro-
duces estimates of the upper bound of the 95th quan-
tile that are comparable to those obtained under
the assumption of unknown dependence. These con-
siderations are reflected also by the analysis of the
values of the relative average distance d(B1∩ind B5)epi be-

tween the upper and lower CDFs F
P[(B1∩ind B5)epi ]

and

F P[(B1∩ind B5)epi ]. Actually, as before the assumption of
epistemic independence leads to underestimating the
uncertainty (imprecision) “contained” in the distri-
bution of P[(B1 ∩ind B5)epi ] by about 1.04 and 1.92
times with respect to the assumptions of perfect and
unknown epistemic dependence, respectively. Simi-
lar considerations can be drawn from the analyses of
events (B1 ∩ind B6)epi and (B2 ∩ind B5)epi.

No significant differences can be found here be-
tween the results obtained in Cases A and B. For
example, in Case B, the assumption of epistemic
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independence leads to underestimating the upper
bounds of the 95th quantiles (and, thus, the risk as-
sociated to the system) by 1.287 and 1.290 times with
respect to the assumptions of total and unknown
epistemic dependence, respectively; in addition, the
estimates produced by the assumptions of total and
unknown epistemic dependence are almost identical
as before.

Very similar considerations (and results) can be
drawn by the analysis of those cases where the BEs
are linked by OR-gates, that is, Z = (B4 ∪ind B5)epi

and (B2 ∪ind B3)epi (Configurations C4 and C5 in
Table III) in both Cases A and B: thus, we analyze
only event (B4 ∪ind B5)epi with reference to Case A
for brevity. It can be seen that the assumption of
independence leads to underestimating the upper
bounds of the 95th quantiles (and, thus, the risk as-
sociated to the system) by 1.03 and 1.04 times with
respect to the assumptions of total and unknown de-
pendence, respectively.

These results are pictorially confirmed by
Fig. 8: actually, it can be seen that the upper and
lower CDFs of P[(B1 ∩ind B5)epi] (top panel) and
P[(B4 ∪ind B5)epi] (bottom panel) obtained under
the assumption of unknown epistemic dependence
(dot-dashed lines) completely envelop those ob-
tained under the assumptions of independence (solid
lines) and perfect dependence (dashed lines) in
both Cases A (left-hand side) and B (right-hand
side) (i.e., they obviously represent more conser-
vative estimates of the bounding distributions). In
addition, it is worth noting that the lower (resp.,
upper) CDFs obtained under the assumption of

perfect epistemic dependence, i.e., F P[(B1∩ind B5)perf ]

and F P[(B4∪ind B5)perf ] (resp., F
P[(B1∩ind B5)perf ]

and

F
P[(B4∪ind B5)perf ]

), are very close to those produced by
the assumption of unknown epistemic dependence,

that is, F P[(B1∩ind B5)ukn] and F P[(B4∪ind B5)ukn] (resp.,

F
P[(B1∩ind B5)ukn]

and F
P[(B4∪ind B5)ukn]

) in the region
where the cumulative probability is very close to
the “extreme” upper bound 1 (resp., lower bound
0). In other words, the CDFs produced under
assumptions of perfect and unknown epistemic
dependence are almost identical in the range of ex-
treme probabilities-chances (i.e., extreme quantiles)
that are of particular interest in the risk assessment
of complex, highly reliable systems.

Similar analyses were performed on P(X). Table
VII reports the values of the indicators [p0.95

X
, p0.95

X ]

(19) and dX (20) obtained for P(X) under different
assumptions of epistemic dependence between the
probabilities (chances) of the BEs (Configurations
T1–T3 of Analysis 2 in Table III), with reference to
Case B; the estimates for E[P(X)INS] are also shown
for completeness. For illustration purposes, Fig. 9 de-

picts the upper and lower CDFs F
P(X)

and F P(X) ob-
tained for P(X) assuming independence (solid lines),
perfect (dashed lines), and unknown (dot-dashed
lines) epistemic dependence between the probabili-
ties (chances) of all the BEs (Configurations T1–T3
of Analysis 2 in Table III).

It can be seen that the values of the upper
bound p0.95

X of the 95th percentile P(X)0.95 are
4.4030 × 10−4, 6.4111 × 10−4, and 7.2275 × 10−4 un-
der the assumptions of independence, total depen-
dence, and unknown dependence, respectively. Thus,
the assumption of independence would lead to un-
derestimating the upper bound of the 95th quantile
(and, thus, the risk associated to the system) by 1.456
and 1.641 times with respect to the assumptions of
total and unknown dependence, respectively. This is
reflected by the analysis of the indicator dX : the as-
sumption of epistemic independence leads to under-
estimating dX by 1.02 and 2.56 times, with respect
to the assumptions of total and unknown epistemic
dependence.

Some considerations are in order with respect
to the results obtained. It has been shown that the
assumption of epistemic independence between the
probabilities (chances) of BEs linked by AND-gates
very often leads to an underestimation of (i) the risk
associated to the system (here represented by the up-
per bound of the 95th quantile of the TE probability-
chance) and (ii) the “imprecision” contained in the
distribution of the TE probability-chance (here rep-
resented by the relative average distance between
the upper and lower CDFs of the TE probability-
chance). In particular, in the analysis of Configura-
tions C1–C5 it is shown that when the BE proba-
bilities (chances) are of the order of 10−1 (like in
the present Case A), the assumption of epistemic
independence leads to underestimating risk and un-
certainty by 1.11–1.57 times and 1.02–1.92 times, re-
spectively, with respect to the assumptions of to-
tal and unknown epistemic dependence. Similarly,
if the BE probabilities (chances) are of the order
of 10−2–10−3 (like in the present Case B), the as-
sumption of epistemic independence leads to under-
estimating risk and uncertainty by 1.11–2.10 times
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Table VII. Values of the Indicators [p0.95
X

, p0.95
X ] (19) and dX (20) Obtained for P(X) Under the Assumptions of Independence, Perfect,

and Unknown Epistemic Dependence (Configurations T1–T3 of Analysis 2 in Table III), with Reference to Cases A and B

Analysis 2 – Objective independence (ind) between the BEs Case B

Indicators

Top Event (TE) X (configuration, Table III) E[P(X)INS] dX [p0.95
X

,p0.95
X ]

X = [(B1 ∪ind B2 ∪ind B3) ∩ind (B4 ∪ind B5 ∪ind B6)]ind (T1) 2.1571 × 10−4 0.8576 [1.9821 × 10−4, 4.4030 × 10−4]

X = [(B1 ∪ind B2 ∪ind B3) ∩ind (B4 ∪ind B5 ∪ind B6)]perf (T2) 2.3119 × 10−4 0.8781 [3.1555 × 10−4, 6.4111 × 10−4]

X = [(B1 ∪ind B2 ∪ind B3) ∩ind (B4 ∪ind B5 ∪ind B6)]ukn (T3) 2.8725 × 10−4 2.1935 [7.3617 × 10−5, 7.2275 × 10−4]
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Fig. 9. Upper and lower CDFs F

P(X)
and

F P(X) obtained for P(X) under the
assumptions of independence (solid
lines), perfect (dashed lines), and
unknown (dot-dashed lines) epistemic
dependence (Configurations T1–T3 of
Analysis 2 in Table III), with reference to
Case B.

and 1.03–1.44 times, respectively, with respect to
the assumptions of total and unknown epistemic
dependence.

Similar results are obtained for BEs linked by
OR-gates. In particular, it can be seen that when the
BE probabilities (chances) are of the order of 10−1

(like in the present Case A), the assumption of in-
dependence leads to underestimating risk and uncer-
tainty by 1.02–1.04 times and 1.01–1.48 times, respec-
tively, with respect to the assumptions of total and
unknown epistemic dependence. If the BE probabil-
ities (chances) are of the order of 10−2–10−3 (like in
the present Case B), the assumption of epistemic in-
dependence leads to underestimating risk and uncer-
tainty by 1.025–1.05 times and 1.01–1.44 times, re-
spectively, with respect to the assumptions of total
and unknown epistemic dependence.

Finally, in the analysis of the probability
(chance) of the TE of the FT in Fig. 4 it is shown
that assuming epistemic independence between the
probabilities (chances) of all the BEs leads to under-
estimating risk and uncertainty by 1.456–1.641 and
1.02–2.56 times, respectively, with respect to the as-
sumptions of total and unknown epistemic depen-
dence. A final remark is in order with respect to the
fact that in all the cases considered, the 95th quantile
estimates produced under the assumption of perfect
dependence are comparable to those obtained under
the hypothesis of unknown dependence.

On the basis of these considerations, it can be
concluded that (i) the effects of epistemic depen-
dence are in general nonnegligible (in particular,
in the estimation of small probabilities-chances and
extreme quantiles), but they are quantitatively less
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relevant and critical than those of objective de-
pendence (see Section 4.1); (ii) the effects of epis-
temic dependence are not influenced dramatically
by the type of logical connection existing between
the BEs, and (iii) the effects of epistemic depen-
dence are not modified significantly by the magni-
tude of the BE probabilities (chances). These con-
siderations demonstrate that epistemic dependences
cannot be neglected in the risk assessment of com-
plex, safety-critical engineering systems (in partic-
ular, when small probabilities-chances and extreme
quantiles have to be estimated); however, their ef-
fects are likely to be overwhelmed by those of objec-
tive dependences (if present).

5. DISCUSSION AND CONCLUSIONS

In this article, the effects of objective and state-
of-knowledge dependences between the BEs of a FT
have been quantified. Two types of analyses have
been carried out on a FT with six BEs:

1. assuming unknown epistemic dependence be-
tween the probabilities (chances) of the BEs,
the effects of different states of objective de-
pendence between the BEs have been quanti-
fied;

2. assuming objective independence between
the BEs, the effects of different states of epis-
temic dependence between the probabilities
(chances) of the BEs have been studied.

With respect to analysis 1 above, it has been
shown that:

• the assumption of objective independence be-
tween the BEs linked by AND-gates always
leads to a serious underestimation of (i) the
risk associated to the system (here represented
by the upper bound of the 95th quantile of
the TE probability-chance) and (ii) the uncer-
tainty (imprecision) “contained” in the (dis-
tribution of the) TE probability-chance (here
represented by the relative average distance
between the upper and lower CDFs of the
TE probability-chance) with respect to the as-
sumptions of perfect and unknown objective
dependence: actually, the corresponding esti-
mates may differ even by several orders of
magnitude;

• this underestimation becomes more and more
dramatic as the BE probabilities (chances) get
smaller: this poses serious concerns in the risk
assessment of complex systems where the com-

ponents are highly reliable and, thus, char-
acterized by very small failure probabilities
(chances);

• the assumption of objective independence be-
tween BEs linked by OR-gates may lead to a
slight underestimation of both risk and the un-
certainty. In particular:

j the assumption of objective independence
between BEs leads to a slight underestima-
tion of risk only when the BE probabilities
(chances) are relatively large (e.g., of the or-
der of 10−1); otherwise, when the BE proba-
bilities (chances) are quite small (e.g., of the
order of 10−2–10−3), the assumption of in-
dependence produces risk estimates that are
comparable even to those provided by the
assumption of unknown dependence;

j the assumption of objective independence
between BEs always leads to a slight under-
estimation of the uncertainty (imprecision)
“contained” in the distribution of the TE
probability (chance);

j the effects of objective dependence between
BEs linked by OR-gates are not influenced
dramatically by the magnitude of the BE
probabilities (chances).

Based on the considerations above, it can be con-
cluded that:

• the treatment of objective dependences be-
tween BEs linked by AND-gates is much more
critical than for OR-gates;

• unknown (or, at least, perfect) objective de-
pendence should be assumed between BEs
linked by AND-gates, in particular if the corre-
sponding probabilities (chances) are very small
(e.g., of the order of 10−3–10−2): this leads to
obtaining conservative risk estimates;

• objective dependences between BEs linked by
OR-gates can be in general neglected if the
corresponding probabilities (chances) are very
small (e.g., around 10−3−10−2).

With respect to analysis 2 above, it has been
shown that:

• the assumption of epistemic independence be-
tween the probabilities (chances) of the BEs
leads to a nonnegligible underestimation of the
risk associated to the system (here represented
by the upper bound of the 95th quantile of
the TE probability-chance) with respect to the
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assumptions of perfect and unknown epistemic
dependence: this is particularly evident in the
estimation of small probabilities (chances) and
extreme quantiles that are of paramount im-
portance in the risk assessment of complex,
highly reliable systems;

• the estimates for the upper bound of the 95th
quantile of the TE probability (chance) pro-
duced by the assumptions of perfect and un-
known epistemic dependence are comparable;

• the effects of epistemic dependence between
the BE probabilities (chances) are quantita-
tively less relevant and critical than those of
objective dependence between the BEs: they
may differ by several orders of magnitude;

• the effects of epistemic dependence are not
modified significantly by the magnitude of the
BE probabilities (chances);

• the effects of epistemic dependence are not
influenced dramatically by the type of logical
connection existing between the BEs.

Based on the considerations above, it can be con-
cluded that:

• the conditions of epistemic dependence be-
tween some BE probabilities (chances) should
not be neglected when small probabilities
(chances) and extreme quantiles have to be es-
timated: with respect to that, unknown (or, at
least, perfect) epistemic dependences should
be assumed in order to obtain conservative risk
estimates;

• if objective dependences are also present (e.g.,
between BEs linked by AND-gates and char-
acterized by very small probabilities-chances),
the effects of epistemic dependence are likely
to be overwhelmed by those of objective
dependence.
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Analysis of the Robustness
and Recovery of Critical
Infrastructures by Goal
Tree–Success Tree: Dynamic
Master Logic Diagram, Within
a Multistate System-of-Systems
Framework, in the Presence of
Epistemic Uncertainty
In this paper, we evaluate the robustness and recovery of connected critical infrastruc-
tures (CIs) under a system-of-systems (SoS) framework taking into account: (1) the
dependencies among the components of an individual CI and the interdependencies
among different CIs; (2) the variability in component performance, by a multistate model;
and (3) the epistemic uncertainty in the probabilities of transitions between different
components states and in the mean values of the holding-times distributions, by means

of intervals. We adopt the goal tree success tree–dynamic master logic diagram
(GTST–DMLD) for system modeling and perform the quantitative assessment by Monte

Carlo simulation. We illustrate the approach by way of a simplified case study consisting
of two interdependent infrastructures (electric power system and gas network) and a
supervisory control and data acquisition (SCADA) system connected to the gas network.
[DOI: 10.1115/1.4030439]

Keywords: critical infrastructures, electric power system, gas distribution network,
SCADA, robustness, recovery time, multistate, goal tree success tree–dynamic master logic

diagram, Monte Carlo simulation, epistemic uncertainty, imprecise probability,
interval analysis

1 Introduction

CIs, e.g., transportation, electric power, water, gas, and commu-
nication systems, interact on the basis of complex relationships that
cross the single-infrastructure boundary. This exposes CIs to the
risk that a failure in an infrastructure can have negative impacts
on another interconnected one. For example, CIs are becoming
more and more dependent on information technologies that, on
one hand, provide control and support their increasing efficiency
but, on the other hand, create new vulnerabilities [1]. As an addi-
tional example from the field, the widespread power electric
blackout that occurred in the Midwest and Northeast of the United
States and Ontario, Canada, on August 2003, affected the service-
ability of the water system at Cleveland, OH, due to the lack of
power needed to operate the water pumping stations [2]. Analyzing
and understanding the interdependences existing among infrastruc-
ture systems is fundamental for the safe operation and control of

these SoSs.
We adopt an SoS framework of analysis to evaluate the SoS

robustness and recovery properties, considering the dependencies
among the components of a CI and the interdependencies among
different CIs. For a more realistic representation, we utilize a

multistate model for consideration of the different degrees of
damage that the individual components may experience [3].
Transitions between different states of damage occur stochastically
(aleatory uncertainty), and epistemic uncertainty affects the associ-
ated transition probabilities due to insufficient knowledge and
information on the components’ degradation behavior [4–6]. In-
deed, safety-CIs are highly reliable, and thus, undergo few degra-
dations to failure, such that it is difficult to estimate damage levels
and transition probabilities [7–11].

For illustration purpose, we adapt the framework of analysis to a
case study proposed in [1], in which the system considered consists
of two interdependent infrastructures (gas and electric power net-
works), and a SCADA system connected to the gas network. To
measure the robustness and recovery capacity of the system, we
look at the steady-state probability distributions of the supply of
gas and electricity at the demand nodes and the time needed to re-
cover the SoS from the worst scenario to a level in which all the
demand nodes are satisfied, respectively.

We propose a hierarchical model description of the system
logic and functionality by GTST–DMLD [12], extending its repre-
sentation characteristics to evaluate the physical flows of gas and
electricity through the interdependent infrastructures. We adopt in-
tervals to describe the epistemic uncertainty in the probabilities of
transition between different components states and in the mean val-
ues of the holding-time distributions [13–21], and we use interval
analysis to calculate the (uncertain) probabilities of the states of all
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the components of the CIs [22–27]. Finally, we employ Monte
Carlo simulation [28,29] for the probabilistic evaluation of the SoS
performance.

The paper is organized as follows: In Sec. 2, the case study is
presented; in Sec. 3, the SoS modeling by GTST–DMLD is illus-
trated; Sec. 4 details the procedural steps to evaluate the
SoS performance under epistemic uncertainty are given; in Sec. 5,
results of the analysis are shown and discussed; and in Sec. 6, a
conclusion is provided.

2 Case Study

The case study is taken from Ref. [1] and it deals with two in-
terconnected infrastructures, i.e., a natural gas distribution network
and an electricity generation/distribution network (Fig. 1, top, solid
and dashed lines, respectively). The gas distribution network is
supported by a SCADA system (Fig. 1, top, dotted lines). The ob-
jective of this interconnected SoS is to provide the necessary
amount of gas and electricity (hereafter also called “product”) to
four demand nodes (end-nodes); namely, D1 and D2 (gas), and
L1 and L2 (electricity).

The gas distribution network, supplied by two sources of gas
(namely, S1 and S2, that are connected to the network by arcs
S1_DS1 and S2_DS2, respectively), provides gas to the end-
nodes D1 and D2 and to two nodes of the electricity network
(E1 and E2). Once the gas enters into nodes E1 and E2, it is trans-
formed into electrical energy that flows through arcs E1_G1 and
E2_G2 (representing the electric power generation stations) to
supply the end-nodes of electricity (L1 and L2); notice that the
demand L2 can be supplied by both electrical generations
E1_G1 and E2_G2. The assumption is made that the gas–
electricity transformation occurs with a constant coefficient, i.e.,
100 cu. ft. (1 cu. ft ≈ 0.028m3) of natural gas produces 1 MWh
of electricity [1].

A SCADA system controls the gas flow through arcs a_b, b_c,
c_d, and d_e. It is assumed that: (1) the SCADA has two core sub-
systems controlling different sets of arcs (in particular, the first

one—SUB1—refers to links a_b and b_c, whereas the second
one—SUB2—controls arcs c_d and d_e) and (2) the SCADA is
always provided with electric power [1].

The capacities of the arcs of the gas and electricity networks
(determining the maximum flows of gas or electricity supported
by the arcs) can be deterministic (i.e., fixed constant values)

or stochastic (i.e., randomly evolving in time) (Fig. 1, bottom).
The stochastic capacities give rise to a multistate model that

reflects the possibly different degrees of damage of the arcs. In con-
trast, the SCADA system-state is defined by a binary random
variable, whose values one and zero represent its complete and par-

tial functioning, respectively. For example, when the state of the
SCADA subsystem SUB1 (controlling arcs a_b and b_c) is zero,
the capacity of these arcs decreases because of the incorrect infor-

mation provided by the SCADA subsystem (even if the arcs are not
subject to a direct damage). On the basis of the two states of the
SCADA subsystems, two different vectors of capacities are identi-

fied for each arc a_b, b_c, c_d, and d_e as illustrated in Fig. 1
(bottom).

In the following, we generically denote the value of the

state of a component (i.e., the capacity of the arcs) as ζc;i, i ∈
f1; 2; : : : ;Scg, where c indicates the component of interest and i

is the state number (when i ¼ 1, the component is in the worst
state, whereas when i ¼ Sc, it is in the best state); Sc is the total
number of states for that component. For example, component

S1_DS1 has SSI DSI ¼ 4 possible states of gas capacity: ζSI DSI;1 ¼
90,000 cu: ft:, ζSI DSI;2 ¼ 95,000 cu: ft:, ζSI DSI;3 ¼ 100,000 cu: ft:,

ζSI DSI;4 ¼ 105,000 cu: ft: The total number of components in the
SoS is referred to as NC.

Changes in the arc capacities are due to random failures or
recovery actions. The state transitions over time are modeled by

Fig. 1 Top: Interdependent gas (solid lines) and electric (dashed lines) infrastructures

and SCADA system (dotted lines) [1]; the quantities demanded by the end-nodes D1,

D2, L1, and L2 are reported in bold. Bottom: deterministic and stochastic arc capacities

(1 cu. ft ≈ 0.028m3).
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Markov and semi-Markov processes as in Ref. [1]. Semi-Markov
processes are adopted to represent the evolution of the capacities
of the gas supply links (S1_DS1 and S2_DS2), whereas
Markov processes are used for all the other arcs. Both Markov
and semi-Markov processes for a generic component c,
c ¼ 1; 2; : : : ;NC, are defined by a transition probability matrix
P
c ¼ fpc

ij∶i; j ¼ 1; 2; : : : ; Scg, where pc
ij is the one-step probabil-

ity of transition from state i to state j. In addition, the semi-
Markov processes are characterized by a matrix of continuous prob-
ability distribution (e.g., normal), T

c ¼ fthcij ≈ Nðμc
ij; σ

c
ijÞ∶i;

j ¼ 1; 2; : : : ;Scg, for the holding time, i.e., for the time of resi-
dence in state i before performing a transition to state j. The total
number of components in the SoS described by the semi-Markov
processes is referred to as NS.

Differently from Ref. [1], we take into account the epistemic
uncertainty affecting the transition probabilities and the holding-
time distributions of the Markov and semi-Markov processes,
respectively. In particular, intervals ½pc

ij
; p̄c

ij', c ¼ 1; 2; : : : ;NC,
i; j ¼ 1; : : : ;Sc, (instead of fixed constant values) are used to
describe the state transition probabilities for both Markov and
semi-Markov processes (matrices P

c, c ¼ S1 DS1; S2 DS2;
a b; b c; c d; d e;SCADA;E1 G1 and E2 G2, in Fig. 2 with
respect to the states defined in Fig. 1, bottom) [30–35]. The hold-
ing-time distributions for the components modeled by the semi-
Markov processes are considered normal with epistemically
uncertain mean (described by an interval ½μc

ij
; μ̄c

ij') and fixed stan-
dard deviation, σc

ij (matrices Tc, c ¼ S1 DS1;S2 DS2, in Fig. 2);
this level-2 hierarchical representation produces a family of normal
probability distributions characterized by the same standard
deviation, but different mean values: such a bundle of distributions
is often referred to as distributional probability-box (p-box)

[36–41]. Notice that we have considered a single value instead

of an interval of values for the standard deviation sinply to reduce

the computational time of the simulation, but this does not represent

a limitation of the approach.
In the present work, the demand nodes are not given the

same importance: in particular, D1 is more important than L1;

on its turn, L1 is more important than both D2 and L2 (which in-

stead are equally important). These assumptions are made to illus-

trate and motivate the logical repartition of electricity and gas flows

in the network and its representation in the GTST–DMLD given

in Sec. 3.
The objectives of the analysis are to determine the cumulative

distribution functions (CDFs) of: (1) the product delivered to

the demand nodes (i.e., D1, D2, L1, and L2) at the steady-state

and (2) the time needed to recover the SoS from the worst sce-

nario. As the state transition probabilities of the network compo-

nents are affected by epistemic uncertainty and are described by

intervals, ½pc
ij
; p̄c

ij', c ¼ 1; 2; : : : ;NC, i; j ¼ 1; : : : ; Sc, the corre-

sponding component steady-state probabilities are also affected

by epistemic uncertainty and are represented by intervals of

possible values, ½Πc;i
min;Π

c;i
max', c ¼ 1; 2; : : : ;NC, i ¼ 1; 2; : : : ;Sc.

As a consequence, a set of CDFs corresponding to the set

of possible steady-state probabilities within the intervals

½Πc;i
min;Π

c;i
max', c ¼ 1; 2; : : : ;NC, i ¼ 1; : : : ;Sc is obtained for

each demand node. For the same reason (i.e., for the presence

of the epistemic uncertainty in the state transition probabilities

and in the mean of the components holding-time distributions),

a set of CDFs for the recovery time of the system is obtained

in correspondence to the set of possible state transition

probabilities.

Fig. 2 Holding-time distributions (matrices Tc ) for the arcs described by semi-Markov processes:

each element of the matrix represents a normal distribution with uncertain (interval) mean and fixed

standard deviation. State transition probability matrices (Pc ) for the arcs described by Markov and

semi-Markov processes: each element of the matrix represents an interval for the corresponding

transition probability.
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3 SoS Modeling

3.1 GTST—DMLD: Basic Concepts. The GTST–DMLD
is a goal-oriented method based on a hierarchical framework

[12]. It gives a comprehensive description of the systems in terms

of functions (qualities), objects (parts), and their relationships

(interactions). The first description is provided by the goal tree

(GT), the second by the success tree (ST), and the third by the

DMLD [12].
The GT identifies the hierarchy of the qualities of the system

comprising the objective of the analysis, i.e., the goal, organizing

them in functions that are in turn subdivided into other functions,

etc. The hierarchy is built by answering questions on “how” the

subfunctions can attain the parent functions (looking at the hier-

archy from top to bottom) and on “why” the functions are needed

(looking at the hierarchy from bottom to top). Two types of qual-

ities, i.e., main and support functions, are considered: the former

directly contributes to achieving the goal, whereas the latter sup-

ports the realization of the former [42].
The ST represents the hierarchy of the objects of the system,

from the entire system to the parts necessary to attain the last levels

of the GT. This hierarchy is built identifying the elements that are

“part of” the parent objects. As for the GT, two types of objects are

distinguished also in the ST: main and support. The former is di-

rectly contributing to the achievement of the main functions,

whereas the latter is needed for the operation of the former [42].
The DMLD is an extension of the master logic diagram (MLD)

[12] introduced to model the dynamic behavior of a physical

system. It describes the interactions between parts, functions,

and parts and functions in the form of a dependency matrix, and

it includes the dynamics by means of time-dependent fuzzy logic

rules [12].
A conceptual sketch of GTST–DMLD is given in Fig. 3. The GT

is drawn at the top, the ST tree on the left, and the DMLD is rep-

resented by filled dots at the intersections between vertical and hori-

zontal lines, to indicate the possible dependencies between the

elements on the left and on the top. Several types of logic gates

can be used to represent the time-dependent fuzzy logic rules,

and different dependency-matrix nodes to describe the probabilities

and degrees of truth in the relationships [12]. Figure 4 gives an ex-

ample of dependency of an element C on two elements A and B by

the “AND” gate in a DMLD [12]. In this case, the output value of

the element C is the minimum value between the inputs A and B.

Replacing the “AND” gate with an “OR” gate, the output value will

be the maximum between the input values.
Further details on the construction of the GTST–DMLD mod-

eling and its applications are not given here for the sake of brevity:

the interested reader is referred to the cited literature [12,42].

In Sec. 3.2, the adaptation of the GTST–DMLD for modeling
interconnected networked infrastructures is illustrated.

3.2 GTST—DMLD for Interconnected Networked
Infrastructures. In this section, we adapt the GTST–DMLD pre-
sented in Sec. 3.1, in general terms, for an adequate representation
of interconnected networked infrastructures, and in particular, of the
ones making the SoS of our case study in Sec. 2. Specifically, we
introduce new concepts in order to model in the diagram not only
the dependency relations between the components but also the ways
in which the flows of gas and electricity are partitioned into the net-
work on the basis of: (1) the importance of the demand nodes,
(2) the amount of product necessary to satisfy each demand,
(3) the constraints of the arc capacities, and (4) the information pro-
vided by the SCADA system. In the following, first, we explain the
notation adopted in the GTST–DMLD, and then, we apply it to the
case study of interest.

In the present work, we distinguish between three main types of
dependency: direct, indirect, and constraint-based dependencies, as
illustrated in Figs. 5 and 6. The first ones, pictorially represented by
a dot, express the fact that the product of the element on the bottom
passes straight into the element on the top. Indirect dependencies,
represented by a hexagon, capture the relations between arcs that
share the same input flow, but whose outputs are not related. This
type of dependencies is important for the optimal allocation of the
product in the network: for example, it is used to describe those
cases where the flow exceedance in an arc can be better partitioned
into another arc that is not directly connected to it, but that shares
one of the inputs (see the example of Fig. 5(b)). Finally, constraint-
based dependencies, depicted by a triangle, are employed to take
into account those relations that do not involve an exchange of
physical product, but rather a transfer of information which may
impact the state of the connected element. Finally, it is worth noting
that in the model, we adopt the symbol of triangle also to represent
some physical constraints posed by the problem, such as the maxi-
mum flow required by a demand node.

It is worth mentioning that since in the present case we are in-
terested in analyzing the flows passing through the network (and not
just the dependency relations), the inputs of an arc are flows and the
output is (generally) the sum of the flow inputs. For this reason, in
this context, the “AND” gate assumes a different meaning than that
in Ref. [12] (see the previous Sec. 3.1): in particular, the output
value is the sum of the input values and it is represented by a
“+” in the middle of the gate, as shown in the following examples
(Figs. 5 and 6). We can then distinguish between the “logical” gates
studied by Hu and Modarres [12] and the “physical” gates proposed
in the present work: the first ones are needed to highlight the logical
connections between the elements that take part/role in a given
structure or function of interest; the second ones are used to evaluate
the physical flow distribution in the system. Examples of the types
of dependencies (direct, indirect, and constraint-based) associated
to the physical gates are shown in the following.

Fig. 3 Conceptual sketch of GTST–DMLD: the filled dots

indicate the possible dependencies between the objects

(filled dot on the left) and between the objects and func-

tions (filled dot on the right), the logic gates indicate how

a given function depends on the input values

Fig. 4 Example of an element C that depends on two

elements A and B by an “AND” gate
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For clarity of illustration, in Fig. 5, examples of two types of
direct and indirect dependencies are given, with respect to different
graph representations. Notice that nodes are neglected and just the
relations between arcs are considered. Fig. 5(a) shows the depend-
ence of arc C on two input arcs A and B: arc C receives all the input
products from A and B (e.g., if the flows in arcs A and B are 50 and
70 units, respectively, the flow in arc C is 120 units); this complete
direct dependence is depicted by a black dot. Fig. 5(b) and (c) de-
scribes the same “physical” situation (i.e., an input arc A and two
output arcs B and C), but with different relative importance of the
arcs. Two different cases are illustrated. In the first case (Fig. 5(b)),

arc B is more important than C: thus, in this situation, the flow from
A supplies first arc B until its demand is satisfied, and then arc C:
e.g., if the flow in arc A is 100 units and both arcs B and C need 80
units, arc B will receive 80 units—demand fully satisfied—and arc
C, the rest, i.e., 20 units—demand partially satisfied. Arc C is de-
pendent on arc B, as the flow that can reach C depends on the quan-
tity given to B. In the second case (Fig. 5(c)), arcs B and C are
equally important: thus, the input flow (A) is divided into equal
parts on the basis of the number of output arcs (i.e., two in this
example); with respect to the numeric example above, both arcs
B and C will receive 50 units—demands partially satisfied. Arcs
B and C are reciprocally dependent, as the product distributed to
one of them depends on that delivered to the other one. The depend-

ency between arcs B and C is “indirect” for both cases, as the output
of an arc is not the input of the other one and vice versa. In the case
of Fig. 5(b), the flow that enters into C is given by the difference
between the entire flow from A (direct dependency) and the flow
given to B (indirect dependency); this concept is illustrated in the
GTST–DMLD by the symbol of direct dependency from A to C
(dot) and the symbol of indirect dependency from B to C (hexagon).
In particular, for a quantitative evaluation of the model, a white
hexagon is introduced to reduce the input flow from arc A by
the quantity of product given to arc B: in this view, the white hex-
agon assumes the value of the flow in B with a negative sign. The
flow given to B can be the entire flow of A or a lower value depend-

ing on the constraints and arc capacity (see the following example in
Fig. 6). In the case of Fig. 5(c), the flow from A is divided into equal
parts: this condition is represented by a gray dot. However, this
equal partition of the flow may not represent the optimal one, as
some output arcs may require less flow than the one allocated ac-
cording to this criterion, e.g., if the flow in arc A is 100 units and
arcs B and C need 80 and 20 units, respectively, giving 50 units to
both arcs is not a good allocation of the resource, as B is partially
satisfied and some product (i.e., 30 units) given to arc C is wasted.
Thus, to optimize the repartition of the flow, indirect dependencies
are adopted: they are directed from an output arc to all the other
output arcs that share the same input. In this case, the “surplus flow”

is a positive quantity and it is represented by a gray hexagon (to
distinguish it from the “negative” white hexagon of the example
in Fig. 5(b)).

Notice that the graphical representation of Fig. 5(b) and (c) is
identical; however, the partition of the flux from A is completely
different in the two cases: this means that the graphical representa-

tion alone cannot be used to describe the repartition of the flows in
the network according to different criteria. On the contrary, the

DMLD can capture and represent this aspect, which is useful in
the quantitative evaluation of system performance.

In Fig. 6, examples of two types of constraint-based dependen-

cies are given, with respect to different possible graph representa-
tions. Figure 6(a) depicts the same situation as Fig. 5(a), with an
additional arc D whose behavior impacts on the state of arc C

(however, notice that D is not an input to C). This dependency
is represented by a gray triangle, and it means that the output of
C can be modified on the basis of the state of arc D. In the present

case study, this constraint-based dependency is used to model the
SCADA system that can decrease the actual flow of the controlled
arc if it is in a damage state. Figure 6(b) represents the same sit-

uation of Fig. 5(c) with the addition of another arc (D) sequential
to arc C. In this case, there is not a “real dependency” from arc D to

arc C, but we adopt the symbol of constraint-based dependency
(triangle) as a partitioning constraint to represent the fact that the
capacity (or the demand) of arc D can limit the amount of flow

Fig. 5 Examples of direct and indirect dependencies with respect to possible graph

representations

Fig. 6 Examples of constraint-based dependencies with

respect to possible graph representations
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in input to arc C, e.g., if the flow in arc A is 100 units, the capacity
of arc C is 50 units, and arcs B and D need 80 and 20 units, respec-
tively; the repartition of the flow is as follows: first 100 units from A
are equally divided between arcs B and C (50 units each) and the
surplus (if there is) is partitioned between arcs B and C, then the
constraint-based dependency is considered (i.e., arc D needs 20
units), and the new surplus is given to arc B (i.e., the exceedance
of 30 units from arc C is directed to arc B). This partitioning con-
straint is represented in the DMLD by a black triangle, and it is
needed to control the input flow partitioned in different arcs and
guarantee that it is not higher than necessary.

Finally, another type of constraint is taken into account,
i.e., the one related to the capacity of the arcs: when the flow in
input to an arc is higher than the capacity of the arc itself,
the output flow will be equal to the capacity of the arc. The arc
capacity can be deterministic or stochastic, and in the GTST–
DMLD, it is represented by a gray or dot-filled rectangle, respec-
tively (see Fig. 7).

In Fig. 7, the GTST–DMLD of the case study in Sec. 2 is shown.
The GT on the top represents the main goal of the SoS, related

to the supply of the demands of gas and electricity: the objective is

achieved if the corresponding nodes D1, D2, L1, and L2 receive
the required amount of gas and electricity, respectively. In the
present case study, we limit the analysis to the last level of the
GT, i.e., we analyze the performance of each demand, without in-
vestigating a global indicator of the SoS.

The ST is composed of the main hierarchies of the gas and elec-
tricity networks (that directly provide the demand nodes with gas
and electricity to achieve the goal function) and of the support hi-
erarchy of the SCADA system (that is needed for the control of the
gas network, and therefore, it is not directly involved in the achieve-
ment of the goal function); given its support role, it is represented in
a parallel dashed branch connected to the gas hierarchy.

The DMLD is represented by the relationships between objects
of the ST or between objects of the ST and functions of the GT.
It allows determining the goal function by the evaluation of all
the dependencies from the bottom to the top of the diagram,
following the rules explained above for the direct, indirect, and
constraint-based dependencies. For example, arc a_b depends on
two arcs, DS1_a and DS2_b, connected by direct dependencies
(Fig. 7). Thus, the output of a_b is given by the sum of the corre-
sponding input values, i.e., DS1_a + DS2_b. This value may, then,

Fig. 7 GTST–DMLD of the case study in Sec. 2 corresponding to the graph of Fig. 1
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be modified by the constraint-based dependency of the SCADA
system and by the (stochastic) capacity of arc a_b itself.

4 Evaluation of the SoS Performance

In this section, we illustrate the evaluation of the performance of
the SoS, described in Sec. 2, in the presence of epistemic uncertain-
ties (represented by intervals) affecting the components’ state tran-
sition probabilities and the mean values of the holding-time
distributions. As already mentioned in Sec. 2, the system perfor-
mance is quantified in terms of: (1) robustness, measured by the
steady-state probability distributions of the product delivered at
the demand nodes (see Sec. 4.1) and (2) recovery capacity, mea-
sured by the time needed to recover the SoS from the worst scenario
(see Sec. 4.2). Appendix A gives a brief overview of imprecise (in-
terval) probabilities.

4.1 Robustness. To compute the steady-state probability dis-
tributions of the product delivered at the demand nodes, the follow-
ing three main steps are carried out:

1. Processing the epistemic uncertainties by interval analysis:
this step leads to the evaluation of the intervals of the
steady-state probabilities [Πc;i

min;Π
c;i
max], i ¼ 1; 2; : : : ; Sc, for

the states of each component (c ¼ 1; 2; : : : ;NC) of the
SoS.

2. Evaluation of the SoS performance (i.e, robustness) by
Monte Carlo simulation: this step leads to the determination
of a set of CDFs of the product delivered at each demand
node at steady-state, one for each possible combination
of steady-state probabilities ranging within the intervals
½Πc;i

min;Π
c;i
max', i ¼ 1; 2; : : : ; Sc (found at step 1 above).

3. Postprocessing the results obtained at the previous step 2: this
step leads to the identification of two extreme upper and lower
CDFs that bound the set of CDFs produced at step 2 above.

In more details:

1. Solve the following optimization problems for the lower

(resp., upper) boundsΠc;i
min (resp.,Π

c;i
max), c ¼ 1; 2; : : : ;NC, for

each row i, i ¼ 1; 2; : : : ;Sc, of the transition probability
matrix P

c (that is composed of probability intervals
½pc

ij
; p̄c

ij', i; j ¼ 1; 2; : : : ;Sc):

Πc;i
min ¼ min

pc
ij
;j¼1;2; : : : ;Sc

fΠc;ig; ∀ i ¼ 1; 2; : : : ; Sc;

c ¼ 1; 2; : : : ;NC ð1Þ

Πc;i
max ¼ max

pc
ij
;j¼1;2; : : : ;Sc

fΠc;ig; ∀ i ¼ 1; 2; : : : ; Sc;

c ¼ 1; 2; : : : ;NC

such that

pc
ij ∈ ½pc

ij
; p̄c

ij' ð2Þ

X

Sc

j¼1

pc
ij ¼ 1 ð3Þ

Π
c ¼ Π

c · Pc ð4Þ

The constraint of Eq. (2) means that the transition prob-
ability from state i to state j is not known precisely and can
take values in the interval ½pc

ij
; p̄c

ij' [27]; the constraint of

Eq. (3) refers to a fundamental property of Markov and
semi-Markov processes, i.e., the states for each component

are exhaustive [43]; finally, Eq. (4) reports the definition of
steady-state probability for a Markov process [43]. Notice that
the sum of the elements of the vector Πc is equal to 1. In the
case of a semi-Markov process, the output of Eq. (4), i.e., Πc,

is weighted by the expected time of residence, τ i, in a given

state, i, before performing a transition [44]: ξc;i ¼ Πc;i ·

τ i=
P

Sc

j¼1 Π
c;j · τ j for i ¼ 1; : : : ; Sc. Notice that the optimiza-

tion problems (Eq. (1)) can be solved by performing an ex-
haustive greedy search within the probability intervals
½pc

ij
; p̄c

ij', if the dimensions of the corresponding transition

probability matrices are relatively small (e.g., below 4 × 4),
otherwise, alternative intelligent techniques should be sought,
e.g., metaheuristic methods such as genetic algorithms (GAs)
[27]. In this work, we resort to GAs for arcs a_b, b_c, c_d,
and d_e (whose transition probability matrices are 7 × 7),
whereas we perform an exhaustive search for all the other
arcs. In Appendix B, the operative steps to obtain the lower
and upper bounds of the steady-state probabilities (i.e.,
½Πc

min;Π
c
max ') by performing an exhaustive search are de-

tailed, and the need to resort to alternative intelligent tech-
niques when the dimension of the transition probability
matrix increases is discussed.

2. Identify the CDFs of the product delivered at each demand
node at steady-state for all the possible combinations of com-
ponents steady-state probabilities found at step 1 above:

a. For each component c, c ¼ 1; 2; : : : ;NC, let the steady-

state probabilities, Πc;i, i ¼ 1; 2; : : : ;Sc, range within the

corresponding interval ½Πc;i
min;Π

c;i
max', i ¼ 1; 2; : : : ;Sc, to

obtain a set of Qc vectors of steady-state probabilities,

fΠc;1;Πc;2; : : : ;Πc;q; : : : ;Πc;Qc

g: q ¼ f1; : : : ;Qcg,
such that

P

Sc

i¼1 Π
c;q;i ¼ 1, q ¼ 1; : : : ;Qc. Notice that this

gives rise to Q1 ( Q2( · · · (QNC ¼ Ntot possible combi-
nations of steady-state probability vectors of the system
components, i.e., to Ntot steady-state probability vectors
for the entire system.

b. For all the NC components, select one steady-state
probability vector among the set Πc;q, c ¼ 1; 2; : : : ;NC,
q ∈ f1; : : : ;Qcg (generated at step a above); in other
words, this amounts to selecting one of the Q1 ( Q2( · · ·
(QNC ¼ Ntot steady-state probability vectors for the
entire SoS.

c. Fixing the SoS steady-state probability vector selected
in step b, randomly sample the states ζc;i (i.e., the
capacities), i ¼∈ f1; : : : ; Scg, of all the components of
the system (i.e., arcs). Then, compute the product deliv-
ered at the demand nodes propagating the flow in each
component of the SoS through the GTST–DMLD
(see Sec. 3.2).

d. Repeat step c a large number of times (e.g., 1000 in this
work) and obtain the CDF for the product delivered at
each demand node.

e. Repeat steps c and d for another combination of the stea-
dy-state probability vectors, Π

c;q, c ¼ 1; 2; : : : ;NC,
q ∈ f1; : : : ;Qcg, of all the NC components, until all
the Ntot possible combinations of the steady-state prob-
ability vectors of the SoS are explored.
At the end of steps a–e, an ensemble of CDFs for

each demand nodes is obtained, one for each of the Ntot

possible combinations of steady-state probabilities of the
entire SoS.

3. Identify the extreme minimum and maximum CDFs (i.e., the
enveloping p-box of the CDFs) of the product delivered at
the demand nodes that bound the set of CDFs produced at
step 2 above.

4.2 Recovery Time. The time needed to recover the SoS from
the worst scenario (i.e., the one characterized by components in the
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worst state) to a level in which all the demand nodes are satisfied is
carried out by three main steps:

1. Processing the epistemic uncertainties by interval analysis:
this step lead to the identification of Kc transition probability

matrices Pc;k, c ¼ 1; 2; : : : ;NC, k ¼ 1; 2; : : : ;Kc, composed

of single values; in addition, for the NS components described

by semi-Markov process, this step leads to the identification of

Hc matrices Mu
c;h, c ∈ f1; 2; : : : ;NCg, h ∈ f1; 2; : : : ;Hcg,

composed of single values of the mean of the holding-time

distributions.
2. Evaluation of the SoS performance (i.e., recovery capacity) by

Monte Carlo simulation: this step leads to the determination of

a set of CDFs of the time needed to recover the SoS, one for

each possible combination of state probability matrices

sampled.
3. Postprocessing the results obtained at the previous step 2: this

step leads to the identification of two extreme upper and lower

CDFs that bound the set of CDFs produced at step 2

above.

In more details, step 1 is described in Appendix B (steps
B1–B3) and step 2 instead is performed as follows:

a. Randomly select NC matrices P
c;k, c ¼ 1; 2; : : : ;NC,

k ∈ f1; 2; : : : ;Kcg, for all the NC components of the SoS

and NS matricesMu
c;h, h ∈ f1; 2; : : : ;Hcg, for the NS com-

ponents c described by a semi-Markov process.
b. Set u ¼ 1 (counter of the number of simulations).
c. Initialize the state of the components at the worst state

(ζc;i; i ¼ 1; c ¼ 1; 2; : : : ;NC): in this state, configuration
of the SoS, the product delivered to the demand nodes is low-
er than the optimum required.

d. Initialize the following time variables:

• System simulation time, t ¼ 0, starting time of the si-
mulation: this variable represents the current simulation
time and is needed to compute the recovery time of
the SoS;

• components’ state transition time tsc ¼ Δt, c ¼
1; 2; : : : ;NC, where Δt is the time step of the simula-
tion (Δt ¼ 1 in arbitrary units, in this work): these time
variables (tsc, c ¼ 1; 2; : : : ;NC) are needed to deter-
mine if the component c can perform a state transition
at a given time step t, as illustrated in the next step e;
they are set to one, since at this time step, all the com-
ponents perform the first state transition.

e. Set t ¼ tþΔt: if t ¼ tsc, then the component c,
c ∈ f1; : : : ;NCg, performs a state transition: then, randomly
sample its new state from the matrix P

c;k (k ∈ f1; : : : ;Kcg)
selected at step a and update the variable tsc as follows:

Fig. 8 Right (dotted line) and left (solid line) cumulative distribution functions of the product delivered to the nodes D1,

D2, L1, and L2 at the steady-state (1 cu. ft. ≈ 0.028m3)
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• If c is described by a Markov process, tsc ¼ tsc þΔt,
since a state transition occurs at each time step.

• If c is described by a semi-Markov process,
tsc ¼ tsc þ t(, where t( is the time of the next transition
that is sampled from the corresponding holding-time
distribution with mean value taken from the matrix
Mu

c;h, h ∈ f1; 2; : : : ;Hcg, selected at the previous step
a. The sampled value t( is rounded to the nearest integer
except when it is zero; in this case, the value is rounded
to one.

Check t ¼ tsc for all the components c, c ¼
1; 2; : : : ;NC.

f. Evaluate the product delivered to the demand nodes at time t
by adopting the GTST–DMLD (see Sec. 3.2), taking into ac-
count the state transition of the components in the previous
step e.

g. Repeat steps e–f until the product delivered to the demand
nodes is equal to, or higher than, the optimum required:
the corresponding value of recovery time (tru) is then re-
corded for the simulation u.

h. Set u ¼ uþ 1 and repeat steps c–g a large number of times
(e.g., 1000 in this work).

i. A CDF of the recovery time of the SoS is identified
for a combination of state probability matrices P

c;k,
c ¼ 1; 2; : : : ;NC, k ∈ f1; 2; : : : ;Kcg, selected at step a.

j. Repeat the entire procedure (steps a–i) a large number
of times (e.g., 10,000 in this work) to explore many
different combinations of probability matrices P

c;k, c ¼
1; 2; : : : ;NC, k ∈ f1; 2; : : : ;Kcg.

At the end of the procedure, a set of CDFs of the recovery time

of the performance of the SoS is obtained.
The results are processed at step 3, where the minimum and

maximum CDFs (i.e., the enveloping p-box of the CDFs) of the

recovery time that bound the set of CDFs obtained at step 2 above

are identified, and the 99th percentile of the distributions is com-

puted as a measure of the recovery time.

5 Results

Figure 8 shows the lower (dotted line) and upper (solid line)

CDFs of the gas and the electricity delivered at steady-state to

the demand nodes D1, D2 and L1, L2, respectively, obtained by

the procedure illustrated in Sec. 4.1. Table 1 reports the correspond-

ing (upper and lower) probabilities that the product delivered to the

demand nodes, D1, D2, L1, and L2, exceeds the following threshold

values: d(1 ¼ 95,000 cu: ft:, d(2 ¼ 75,000 cu: ft:, l(1 ¼ 475 MWh,

and l(2 ¼ 375 MWh (i.e., the probabilities that the corresponding

demands are satisfied).
It can be seen that in general the probability of satisfying de-

mand nodes D1 and L1 is higher than for nodes D2 and L2: their

threshold values are satisfied, in the worst case, with probability

equal to 0.971 and 0.963, respectively. On the other hand, node

D2 is the least supplied: the upper and lower probabilities which

the product delivered to it exceeds the corresponding threshold

value are low, i.e., 0.450 and 0.780, respectively. This is due to

the fact that node D2 can be satisfied by only one path that presents

high epistemic uncertainty in the arc capacities (a_b, b_c, c_d,

and d_e). On the other hand, node L2 is satisfied with probability

between 0.929 and 0.992 even if it is the farthest node from the

input sources (and, thus, more affected by uncertainty due to the

uncertainties in the arc capacities): this is due to the presence of

two redundant paths that allow its supply by arcs E1_G1 and

E2_G2.
Figure 9 illustrates the lower (dotted line) and upper (solid line)

CDFs of the time needed to restore the SoS to a level in which all the

demand nodes are satisfied, starting from the worst scenario.
The gap between the CDFs reflects the epistemic uncertainty in

the transition probability values. In the figure, the 99th percentile of

the CDFs is also reported as a measure of the recovery time.

6 Conclusions

In this paper, we have introduced a SoS framework for the analy-

sis of the robustness and recovery of CIs. The analysis by such

framework builds on the construction of a GTST–DMLD for sys-

tem modeling and Monte Carlo simulation for the quantitative

evaluation of the system performance at steady-state. The develop-

ment of the framework in practice has been shown considering the

same example created by Ref. [1] consisting of two interdependent

infrastructures, gas and electric power networks, and a SCADA sys-

tem connected to the gas network.
In the original framework of Ref. [1], the analysis of the robust-

ness and recovery capacity of CIs has been performed by adopting

network flow algorithms combined with stochastic processes.

The adoption of the GTST–DMLD modeling framework makes

the analysis of the robustness and recovery capacity of CIs

accessible to a different audience than the original work by Ref. [1].

Actually, there is a community of analysts who are much more

comfortable using concepts inherent in the GTST–DMLD

framework than using methods based on network flow algorithms

and stochastic processes. The model put forth by Ref. [1] was

based on the analysis methods of operations research, whereas

the GTST–DMLD framework has its roots in the reliability and risk

Table 1 Upper and lower probabilities that the product delivered to the demand nodes (D1, D2, L1, and L2) exceeds the
corresponding requested threshold value (1 cu. ft. ≈ 0.028m3)

D1 ≥ d(1 ¼ 95,000 cu: ft:
[lower, upper]

D2 ≥ d(2 ¼ 75,000 cu: ft:
[lower, upper]

L1 ≥ l(1 ¼ 475 MWh
[lower, upper]

L2 ≥ l(2 ¼ 375 MWh
[lower, upper]

[0.971, 1] [0.450, 0.780] [0.963, 1] [0.929, 0.992]

Fig. 9 Right (dotted line) and left (solid line) cumulative

distribution functions of the recovery time of the

supply of the demand nodes, starting from the worst

scenario
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analysis of nuclear power plants and complex electromechanical
systems.

The framework here developed has shown the capability of
representing, modeling, and quantitatively accounting for: (1) the
dependencies and interdependencies among the components of a
CI and between different CIs, respectively, (2) the variability in
the states of the components (by adopting a multistate model),
and (3) the epistemic uncertainty in the transition probabilities be-
tween different components states (by interval analysis).

The results and insights obtained can help to improve the global
SoS performance by improving the structural response of specific
arcs that more easily turn into damage states or by developing a
more redundant network that allows the supply of the product from
different paths.

Appendix A: Imprecise (Interval) Probabilities

To understand the meaning of imprecise probabilities (or interval
probabilities), consider an event A. Uncertainty about whether
it occurs is represented by a lower probability PðAÞ and an

upper probability P̄ðAÞ, giving rise to a probability interval

½PðAÞ; P̄ðAÞ', where 0 ≤ PðAÞ ≤ P̄ðAÞ ≤ 1. The difference

ΔPðAÞ ¼ P̄ðAÞ − PðAÞ is called the imprecision in the represen-
tation of the event A. Single-valued probabilities are a special
case of no imprecision, and the lower and upper probabilities
coincide.

Williams [45] developed a mathematical framework for impre-
cise probabilities, based on de Finetti’s betting interpretation of
probability [11]. This foundation was further developed independ-
ently by Kuznetsov and Walley (the former only published in
Russian), see Refs. [14,15]. Following de Finetti’s betting interpre-
tation, the lower probability is interpreted as the maximum price for
which one would be willing to buy a bet which pays one if A occurs
and zero if not, and the upper probability as the minimum price for
which one would be willing to sell the same bet. If the upper and
lower values are equal, the interval is reduced to a precise proba-
bility. These references, and Ref. [15] in particular, provide an in-
depth analysis of imprecise probabilities and their interpretations,
with a link to applications to probabilistic reasoning, statistical in-
ference, and decisions.

It is, however, also possible to interpret the lower and upper
probabilities using the reference to a standard interpretation of a
subjective probability PðAÞ: such an interpretation is indicated
by Ref. [46, p. 36]. Consider the subjective probability PðAÞ
and say that the analyst states that his/her assigned degree of belief
is greater than the urn chance of 0.10 (the degree of belief of draw-
ing one particular ball from an urn which includes ten balls) and less
than the urn chance of 0.5. The analyst is not willing to make any
further judgement. Then, the interval [0.10, 0.50] can be considered
an imprecision interval for the probability PðAÞ.

Of course, even if the assessor assigns a probability PðAÞ ¼ 0.3,
one may interpret this probability as having an imprecision interval
[0.25, 0.34] (as a number in this interval is equal to 0.3 when
displaying one digit only), interpreted analogously to the [0.1, 0.5]
interval. Hence, imprecision is always an issue in a practical uncer-
tainty analysis context. This imprecision is commonly viewed as a
result of measurement problems. The reference to the urn lottery
provides a norm to which assessors should aspire, but measurement

problems may make the assessor unable to behave according to it
(see also the discussion in Ref. [9, p. 32]).

However, other researcher and analysts have a more positive
view on the need for such intervals; see the discussions in
Refs. [8,22–26]: imprecision intervals are required to reflect phe-
nomena as discussed previously, for example when experts are
not willing to express their knowledge more precisely than by using
probability intervals.

Imprecise probabilities are also linked to the relative frequency
interpretation of probability [10]. The simplest case reflects that the
“true” frequentist probability p is in the interval [PðAÞP; P̄ðAÞ]
with certainty. More generally and in line with the above interpre-
tations of imprecision intervals based on subjective probabilities
Pð·Þ, a two-level uncertainty characterization can be formulated
(see, e.g., Ref. [13]): ½PðAÞ; P̄ðAÞ' is an imprecision interval for the
subjective probability Pða ≤ p ≤ bÞ, where a and b are constants.
In the special case that PðAÞ ¼ P̄ðAÞð¼ q; sayÞ, we are led to the
special case of a q · 100% credibility interval for p (i.e., with sub-
jective probability q, the true value of p is in the interval [a, b]).
For further details, the reader is referred to the recent Special Issue
on imprecise probabilities appearing in the “Journal of Mechanical
Systems and Signal Processing” [30].

Appendix B: Processing Epistemic Uncertainty by

Interval Analysis: Detailed Operative Steps

The operative steps carried out to process the epistemic uncer-
tainty by interval analysis, needed for the robustness and recovery
analyses of Secs. 4.1 and 4.2, are illustrated in the following.

To recall the notation, the algorithm requires in what follows
inputs:

• A state transition probability matrix P
c, c ¼ 1; : : : ;NC,

composed of probability intervals P
c ¼ f½pc

ij
; p̄c

ij'∶c ¼
1; : : : ;NC; i; j ¼ 1; : : : ;Scg for all the NC components
c of the system, where i and j are indices representing
the state of the component c, and Sc is the total number
of states of component c. The state transition probability
matrix P

c assumes this form:

P
c ¼

i=j 1 2 : : : Sc

1

2

: : :

Sc

#

#

#

#

#

#

#

#

#

½pc
11
; p̄c

11' ½pc
12
; p̄c

12' : : : ½pc
1Sc

; p̄c
1Sc '

½pc
21
; p̄c

21' ½pc
22
; p̄c

22' : : : ½pc
2Sc

; p̄c
2Sc '

: : : : : : : : : : : :

½pc
Sc1

; p̄c
Sc1' ½pc

Sc2
; p̄c

Sc2' : : : ½pc
ScSc

; p̄c
ScSc '

#

#

#

#

#

#

#

#

#

• A holding time distribution matrix Tc, c ∈ f1; 2; : : : ;NCg,
for the NS components described by a semi-Markov pro-
cess with epistemically uncertain mean μc

ij represented by
an interval of values,

T
c ¼ fthcij ≈ Nðμc

ij; σ
c
ijÞ∶μ

c
ij ∈ ½μc

ij
; μ̄c

ij'; i; j ¼ 1; : : : ; Scg

T
c ¼

i=j 1 2 : : : Sc

1

2

: : :

Sc

#

#

#

#

#

#

#

#

#

Nð½μc
11
; μ̄c

11';σ
c
11Þ Nð½μc

12
; μ̄c

12'; σ
c
12Þ : : : Nð½μc

1Sc
; μ̄c

1Sc ';σ
c
1ScÞ

Nð½μc
21
; μ̄c

21';σ
c
21Þ Nð½μc

22
; μ̄c

22'; σ
c
22Þ : : : Nð½μc

2Sc
; μ̄c

2Sc '; σ
c
1ScÞ

: : : : : : : : : : : :

Nð½μc
Sc1

; μ̄c
Sc1';σ

c
Sc1Þ Nð½μc

Sc2
; μ̄c

Sc2';σ
c
Sc2Þ : : : Nð½μc

ScSc
; μ̄c

ScSc '; σ
c
ScScÞ

#

#

#

#

#

#

#

#

#
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By way of example and for clarity of illustration, in the

following, we refer to component c ¼ S2 DS2 of Fig. 1,

whose transition probability matrix P
c and holding-time dis-

tributions Tc are reported in Fig. 2.

The algorithm proceeds as follows:

B1. Select a component c, c ∈ f1; 2; : : : ;NCg, and a row
i, i ∈ f1; 2; : : : ;Scg, of matrix P

c whose dimension is
Sc × Sc (see Fig. 10, left): for component c ¼ S2 DS2,
P
c has dimension 3 × 3. Letting the probabilities pc

ij,

j ¼ 1; 2; : : : ;Sc, vary within the corresponding intervals
½pc

ij
; p̄c

ij', identify all the possible combinations of the

probability values in row i (Fig. 10, middle, with reference
to row i ¼ 2). Given the assumption that the component
states are exhaustive [Eq. (3) in Sec. 4], only those

combinations of probabilities guaranteeing
P

Sc

j¼1 p
c
ij ¼ 1 are

considered (Fig. 10, right). The total number of suitable

combination for row i is referred to as Zc;i.
If component c is described by a semi-Markov process,

select also row i of matrix T
c. Letting the mean values, μc

ij,

j ¼ 1; 2; : : : ; Sc, of the holding-time distributions vary within

the corresponding intervals ½μc
ij
; μ̄c

ij', identify all the

possible combinations of the mean values of row i (Fig. 11).

The total number of combinations obtained for the mean is

referred to as Mc;i for row i.

Fig. 10 Exemplification of step B1 for the row i ! 2 of the probability matrix Pc , c ! S2 DS2, to

identify Zc;i combinations of transition probability values

Fig. 11 Exemplification of step B1 for the row i ! 2 of the holding-time distribution

matrix Tc , c ! S2 DS2, to identify Mc;i combinations of mean values
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Repeat this step B1 for all the rows i ¼ 1; 2; : : : ;Sc of the
matrices Pc and T

c.
At the end of this step,

P

Sc

i¼1 Z
c;i, c ∈ f1; : : : ;NCg, vec-

tors of probability values, and
P

Sc

i¼1 M
c;i, c ∈ f1; : : : ;NCg,

vectors of mean values, are obtained. For example, in Fig. 12

(top), 15 transition probability vectors (
P

Sc

i¼1 Z
c;i ¼ 15,

c ¼ S2 DS2, i ¼ 1; : : : , Sc ¼ 3) are obtained for component
S2_DS2: one vector for row i ¼ 1 ðZc;1 ¼ 1Þ, seven vectors

for row i ¼ 2 ðZc;2 ¼ 7Þ, and seven vectors for row
i ¼ 3 ðZc;3 ¼ 7Þ.

B2. Obtain Kc transition probability matrices P
c;k ½Sc × Sc',

k ¼ 1; : : : ;Kc, for component c, c ∈ f1; : : : ;NCg, by
performing the combinations of all the Zc;i vectors obtained
for all the rows i, i ¼ 1; : : : ;Sc, at the previous step B1
(Fig. 12, bottom).

If the component c is described by a semi-Markov process,

find also Hc matrices Mu
c;h ½Sc × Sc', h ¼ 1; 2; : : : ;Hc, of

the mean values of the holding-time distribution by performing
the combinations of all the Mc;i vectors obtained for all the

rows i, i ¼ 1; : : : ; Sc, at the previous step B1.
B3. Repeat steps B1—B2 for each component (c ¼ 1; 2; : : : ;NC)

of the SoS. All the NC components are, then, associated with a
set of possible transition probabilities matrices P

c;k, k ¼
1; : : : ;Kc (resulting from the imprecise transition probabil-
ities). In addition, the components described by a semi-Mar-
kov process (i.e., NS components) are also associated with a
set of Hc matrices, Mu

c;h, h ¼ 1; 2; : : : ;Hc, containing the
mean values of the corresponding holding time distributions.

Steps B1–B3 above are needed in the evaluation of the re-

covery time, and they precede step 2 of the algorithm of
Sec. 4.2. Instead, in order to evaluate the steady-state proba-

bilities necessary to perform the robustness analysis of Sec. 4.1,
the procedure continues as follows:

B4. Select a component c and compute the steady-state prob-
ability vectors Π

c;k (or ξc;k if c is described by a semi-
Markov process), k ¼ 1; : : : ;Kc, one for each transition
probability matrix P

c;k, k ¼ 1; : : : ;Kc, obtained at the pre-
vious step B3. If component c is described by a Markov
process, Eq. (4) (Sec. 4.1) is adopted; otherwise, if component
c is described by a semi-Markov process, the output of
Eq. (4) is weighted by the expected time of residence, τ i,

in a given state i, i ¼ 1; : : : ;Sc [44]: ξc;k;i ¼ Πc;k;i · τ i=
P

Sc

j¼1 Π
c;k;j · τ j, i ¼ 1; : : : ;Sc, k ¼ 1; : : : ;Kc. For illustra-

tion purposes, Fig. 13 shows examples of the matrices Pc;k,
k ∈ f1; : : : ;Kcg, and Mu

c;h, h ∈ f1; : : : ;Hcg for component
c ¼ S2 DS2. Then, the procedure for evaluating the steady-
state probability vectors Π

c;k and ξc;k for Markov and semi-
Markov processes, respectively, is detailed.

B5. Compute the minimum and maximum steady-state probabil-
itiesΠc;i

min andΠ
c;i
max, c ¼ 1; 2; : : : ;NC, for each row (i.e., com-

ponent state) i, i ¼ 1; : : : ;Sc, as follows:
Πc;i

min¼minkðΠ
c;1;i;Πc;2;i; :::;Πc;k;i; :::;Πc;Kc;iÞ andΠc;i

max ¼
maxkðΠ

c;1;i;Πc;2;i; : : : ;Πc;k;i; : : : ;Πc;Kc ;iÞ, if component c is
described by a Markov process, or Πc;i

min ¼ minkðξ
c;1;i;

ξc;2;i; : : : ; ξc;k;i; : : : ; ξc;K
c ;iÞ and Πc;i

max ¼maxkðξ
c;1;i; ξc;2;i; : : : ;

ξc;k;i; : : : ; ξc;K
c ;iÞ, if component c is described by a semi-

Markov process. Each component c, c ¼ 1; 2; : : : ;NC, is then
associated with a vector of imprecise (interval) steady-state
probabilities

Π
c ∈

i

1

2

: : :

Sc

#

#

#

#

#

#

#

#

#

½Πc;i¼1

min ;Πc;i¼1
max '

½Πc;i¼2

min ;Πc;i¼2
max '

: : :

½Πc;i¼Sc

min ;Πc;i¼Sc

max '

#

#

#

#

#

#

#

#

#

B6. Letting the steady-state probabilities Πc;i, i ¼
1; 2; : : : ;Sc, of component c vary within the corresponding
intervals ½Πc;i

min;Π
c;i
max', identify all the possible combinations

of the probability values to obtain a set of Qc steady-state prob-
ability vectors (obviously the sum of the components of each
vector is equal to one) (see step 2a of Sec. 4.1).

B7. Repeat steps B4—B6 for each component (c ¼
1; 2; : : : ;NC) of the SoS.

Notice that in the procedure above (steps B1—B7), extreme
lower and upper steady-state probabilities Πc

min and Π
c
max, respec-

tively, are obtained by resorting to a exhaustive greedy search:
this amounts to identifying (in principle) all the possible combina-
tions between (in principle) all the possible probability values in
the corresponding intervals. For example, in step B1, the probabil-
ities pc

ij are allowed to range within their intervals ½pc
ij
; p̄c

ij': for the

Fig. 12 Exemplification of step B2 to identify a set transition probabilitymatrix PPc;k , k ! 1; : : : ;Kc ,

for component c ! S2 DS2, given the
P

Sc

i!1
Z c;i vectors obtained at step B1
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sake of practical computation, we identify, e.g., seven discrete
values within each interval ½pc

ij
; p̄c

ij'. If we assume that the number

of states is Sc ¼ 3, then the total number of possible combinations
between the transition probability values is 343; if the number of
states is 7, i.e., Sc ¼ 7, the number of possible combinations in-
creases to 823,543. Obviously, the higher the number of discrete
values taken within the intervals ½pc

ij
; p̄c

ij' the more precise the re-

sults, but the more prohibitive the computational cost. For these rea-
sons, when the dimension of the transition probability matrix
increases, we need to resort to alternative (intelligent) techniques:
in other words, in order to obtain the lower and upper steady-state
probabilities Πc

min and Π
c
max, respectively, we do not analyze all the

possible combinations between all values of pc
ij ∈ ½pc

ij
; p̄c

ij'; instead,

we intelligently explore only those combinations that driving the
search appear as the most “promising” for the maximization and
minimization of Πc. In this work, we resort to GAs for the analysis
of arcs a_b, b_c, c_d, and d_e, the transition probability matrices of
which have size 7 × 7. In particular, we run the MATLAB function
“ga” twice to find the minimum and maximum steady-state prob-
ability vectors Πc

min and Π
c
max, respectively. In more details, Eq. (4)

of Sec. 4.1 represents the function to be optimized (i.e., minimized
and maximized, respectively) by the GA, Eq. (3) of Sec. 4.1 rep-
resents the equality constraints to satisfy, and Eq. (2) shows the
upper and lower bounds of the transition probabilities pc

ij needed

in Eq. (4).
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Comparing Network-Centric and Power Flow Models
for the Optimal Allocation of Link Capacities in a
Cascade-Resilient Power Transmission Network

Yi-Ping Fang, Nicola Pedroni, and Enrico Zio, Senior Member, IEEE

Abstract—In this paper, we tackle the problem of searching for
the most favorable pattern of link capacity allocation that makes
a power transmission network resilient to cascading failures with
limited investment costs. This problem is formulated within a
combinatorial multiobjective optimization framework and tackled
by evolutionary algorithms. Two different models of increasing
complexity are used to simulate cascading failures in a network
and quantify its resilience: a complex network model [namely, the
Motter–Lai (ML) model] and a more detailed and computationally
demanding power flow model [namely, the ORNL–Pserc–Alaska
(OPA) model]. Both models are tested and compared in a case study
involving the 400-kV French power transmission network. The re-
sults show that cascade-resilient networks tend to have a nonlinear
capacity–load relation: In particular, heavily loaded components
have smaller unoccupied portions of capacity, whereas lightly
loaded links present larger unoccupied portions of capacity (which
is in contrast with the linear capacity–load relation hypothesized
in previous works of literature). Most importantly, the optimal
solutions obtained using the ML and OPA models exhibit consis-
tent characteristics in terms of phrase transitions in the Pareto
fronts and link capacity allocation patterns. These results provide
incentive for the use of computationally cheap network-centric
models for the optimization of cascade-resilient power network
systems, given the advantages of their simplicity and scalability.

Index Terms—Capacity optimization, cascading failures, com-
plex network theory model, evolutionary algorithm (EA), power
flow model, power transmission network.

I. INTRODUCTION

OUR modern society has come to depend on large-scale
critical infrastructures (CIs) to deliver resources and

services to consumers and businesses in an efficient manner.
These CIs are complex networks of interconnected functional
and structural elements. Large-scale outages on these real-
world complex networks, although infrequent, are increasingly
disastrous to our society, with estimates of direct costs up
to billions of dollars and inestimable indirect costs. Typical
examples include blackouts in power transmission networks
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[1]–[3], financial bankruptcy [4], telecommunication outages
[5], and catastrophic failures in socioeconomic systems [6], [7].
Research regarding modeling, prediction, and mitigation of

cascading failures in CIs, whereby small initial disturbances
may propagate through the whole infrastructure system, has
addressed the problem in different ways, including physical
models for describing cascading-failure phenomena [8]–[11],
control and defense strategies against cascading failures [12]–
[14], analytical calculation of capacity parameters [15], and
modeling of real-world data [16].
In particular, various problems concerning the robustness and

functionality of CI systems (ranging from power outages and
Internet congestion to affordability of public transportation) are
ultimately determined by the extent to which the CI capability
matches supply and demand under realistic conditions [17].
In this respect, the following two issues are closely related
to each other and of significant interest: 1) how to improve
network resilience to cascading failures; and 2) how to design
CI systems with reasonably limited cost. In most circumstances,
high resilience and low cost are conflicting objectives and
cannot be simultaneously achieved. For instance, a network
whose components have high capacity can be highly resilient
to failures; however, this type of components is often character-
ized by high costs.
Continuous effort has been made to model the capacity–load

relationship of CI systems and to enhance the CI performance
with limited cost. A homogeneous capacity–load relationship
model has been widely used in the study of CIs [8], [9], [12]–
[14], [18], whereby the capacity of a link (node) is assumed to
be proportional to the initial flow of the link (node; note that
some of the studies focus on link modeling, whereas others
concentrate on modeling node behavior). However, it has been
argued by Kim and Motter that this is unrealistic, and empirical
data suggest that the relationship between capacity and load
of transmission lines is nonlinear [17], [19]: Heavily loaded
lines usually have a lower tolerance parameter than lightly
loaded lines. Most recently, Wang and Kim [20] proposed a
(nonlinear) two-step function for the relationship between the
capacity and load of network vertices. Although based on an
oversimplified model, it has been shown efficient to prevent
cascades by protecting highest-load vertices. Li et al. [21]
introduced a more complex heuristic capacity model whereby
vertices with both higher loads and larger degrees are paid
more extra capacities. It is shown that this model can achieve
better network robustness than previous models under the same
amount of available resources.

1932-8184 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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In this paper, we tackle the issue from a systematic perspec-
tive by searching for the strategy of resource (capacity) allo-
cation in a power transmission network that is most favorable
for resisting cascading failures, while keeping the total resource
(capacity) limited (i.e., while minimizing the network cost).
This serves as the primary objective of this paper. In more
detail, the problem is formulated within a large-scale, nonlin-
ear, and combinatorial multiobjective optimization framework
and is solved by a fast and elitist genetic algorithm, namely,
NSGA-II [22].
The search by the NSGA-II also requires 1) the construction

of a model to describe the cascading-failure process in the
network of interest and 2) the repeated evaluation of the model
for every possible capacity allocation pattern proposed by the
algorithm during the search. With respect to the model, two
approaches are typically considered in the analysis of power
transmission systems: complex network theory models, such as
the Motter–Lai (ML) model [8], [9], and artificial power flow
models, such as the ORNL–Pserc–Alaska (OPA) model [10],
[11], [39]. These approaches provide different tradeoffs be-
tween the (relatively low) computational cost associated to the
model evaluation (allowing applications to large-scale power
grids) and the (high) level of detail in the system description (in-
cluding physical characteristics and power flows constraints),
respectively.
The OPA model seeks to faithfully describe the dispatching

dynamics of the power flows during the evolution of the failure
propagation following the initial disturbances, by explicitly
incorporating the standard dc power flow equations and min-
imizing generation cost and load shedding [10]. Embracing
this more physical description and solving the constrained
linear optimization functions associated to the model result in
a significant increase in the computational burden, rendering
practical application extremely difficult for realistic networks
with large numbers of elements [23]. For these reasons, topo-
logical models based on complex network theory (e.g., the ML
model) have emerged in recent years [8], [9], [13], [14], [18],
[24]–[26]. In particular, the MLmodel is a relatively simple and
abstract model relying on the resemblance of complex networks
to electrical infrastructure systems (in terms of graph theory).
It has the advantage of modeling cascading dynamics with
few parameters, so that its application to realistic large-scale
networks is feasible and certainly more readily than OPA [16].
However, ML abstracts the power flow laws and constraints of
the electrical system. Inevitably, then, it cannot provide direct
physical measures of blackout size but rather abstract measures
such as efficiency loss. This has posed questions on whether it
is adequate in practice, due to its abstract nature, although it
has been recognized to offer a new and interesting perspective
on the study of cascading failures on power grids [23].
It is worth mentioning that studies tackling the problem of

comparison between network-centric approaches and power
flow approaches are few in literature. Some studies [23], [25],
[27] have provided qualitative comparisons between complex
network theory models and power flow models, identifying
similarities and differences and evaluating advantages and dis-
advantages. Most recently, Correa and Yusta have concluded
on the appropriateness of graph theory techniques for the

assessment of electric network vulnerability by comparison to
physical power flow models [28]. By extensive comparative
simulation, Cupac et al. have shown that a network-centric
model (CLM) exhibits ensemble properties that are consistent
with the more realistic OPA fast-scale model [29]. Along these
lines, our study takes the comparison a step forward by analyz-
ing the optimization results, enabling to find more interesting
insights.
In this paper, we embrace both the ML and OPA cascading

failure models and embed them within NSGA-II for optimally
solving the problem of capacity resource allocation. With re-
spect to that, the second objective of this paper is to study the
possibility of using a simplified network-centric model (instead
of a detailed power flow model) within an optimization frame-
work, without affecting the quality of the optimal solutions
found. For illustration, we apply the method to the 400-kV
French power transmission network, under the objectives of
maximizing network resilience to cascading failures and min-
imizing investment costs. Finally, we systematically compare
the results obtained by using the two cascading failure models
of different complexity.
The remainder of this paper is organized as follows. In

Section II, we introduce the ML and OPA cascading failure
models in detail. We then formulate the multiobjective opti-
mization problem taking investment costs and failure resilience
into account in Section III. In Section IV, we briefly introduce
the procedure of the NSGA-II algorithm. Section V illustrates
the French 400-kV power transmission network case study and
the analysis and comparison of the results. Discussion and
conclusion are given in Section VI.

II. MODELS OF CASCADING FAILURE
CONSIDERED IN THIS WORK

Modeling the dynamic evolution of system-wide cascading-
failure processes poses a number of challenges due to the
diversity of mechanisms, which can trigger the initial failure
and influence the subsequent propagation of breakdowns in the
power system [27]. Various cascading-failure models have been
proposed; these can be divided into two main categories: those
based on complex network theory analysis and those using
power flow analysis, often including optimal economic power
dispatch after each failure in the propagation, e.g., by linear
optimal power flow [29].
Complex network theory models, including the ML model

adopted in this work and described in Section II-A, abstract
the representation of a power grid as a graph and then study
the connectivity characteristics, the propagation mechanisms
through the graph connections, and their relationships. These
types of models have proved to provide a good understanding
of the specific grid dynamics of cascading failures [30]. How-
ever, in these models, the assumptions only abstract the real
loading of the components and the flow distribution through
the connections. For this reason, it is necessary to ascertain the
meaningfulness of the results for real electrical infrastructures.
Power flow models, on the contrary, are based on realistic

power flow equations to describe the flow dispatching dynamics
and failure evolution after the initial disturbances in the power
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grid. The OPA model, which is the most commonly used of this
type of models, is introduced in Section II-B and is based on
the dc power flow approximation [31].

A. ML Model

The original ML model has been proposed by Motter and
Lai [8], with extensions to differentiate generators and loads
[16]. Here, the extended ML model in terms of transmission
line failures is utilized. The power transmission network is
represented as an undirected graph Q with a set of N ver-
tices representing NG generators and ND loads representing
distribution substations, interconnected by a set of M edges
representing transmission lines. The structure of the network is
identified by an N ×N interaction matrix W , whose element
wij is 0 if nodes i and j are not directly connected; otherwise, it
is assigned a value of 1, for an unweighted network, or another
numerical value, for a weighted network (as in the case of the
work in this paper).
The ML model assumes that at each time step, one unit

of the relevant quantity (e.g., electrical flow for power grids)
is exchanged between every pair of generator and distributor
nodes and transmitted along the shortest path connecting them.
Then, the flow at one link is computed as the number of shortest
paths passing through it. More precisely, the flow FML

l of link l
is quantified by the link betweenness, calculated as the fraction
of the generator–distributor shortest paths passing through that
link, i.e.,

FML
l =

1

NGND

∑

i∈VG,j∈VD

nij(l)

nij

, l ∈ E (1)

where E(‖E‖ = M) is the set of all the links in the network;
VG(‖VG‖ = NG), and VD(‖VD‖ = ND) are the sets of genera-
tors and distributors, respectively; nij is the number of shortest
paths between generator nodes and distributor nodes; and nij(l)
is the number of generator–distributor shortest paths passing
though link l.
In the originalML model [8], a homogeneous capacity–load

relationship is assumed: The capacity of link l is assumed to be
proportional to its initial flow FML

l (0) with a network tolerance
parameter α, i.e.,

CML
l = (1 + α)FML

l (0), l ∈ E. (2)

The concept of tolerance parameter α (α ≥ 0) can be under-
stood as an operating margin allowing safe operation of the
component under potential load increment.1 The occurrence of
a cascading failure is initiated by removal of a link, which,
in general, changes the distribution of shortest paths. Then,
the flow at a particular link can change, and if it increases
and exceeds its capacity, the corresponding link fails. Any
failure leads to a new redistribution of loads, and as a result,
subsequent failures can occur.

1In this paper, the link capacities are variables to be optimized (see
Section III); thus, assumption (2) is obviously not introduced in the problem
formulation of the present work.

Using this cascading-failure model, the damage of networkQ
can be characterized by the fraction of network efficiency lost
in the cascading failure, i.e.,

VML =
E(Q)− E(Q)

E(Q)
(3)

where VML ∈ [0, 1] and E(Q) represents the residual network
structure after the cascading failure. E(Q) measures the net-
work efficiency based on the node pair shortest-path distance
between generators and distributors. For its computation, all
pairs of nodes i ∈ VG, and j ∈ VD are weighted by the inverse
of their distance, i.e.,

E(Q) =
1

NGND

∑

i∈VG

∑

j∈VD

1

d(i, j)
(4)

where d(i, j) is the number of edges for an unweighted network
or the sum of edge weights for a weighted network in the
shortest path from i to j (like in the present case).
The geodesic network damage VML measures the function-

ality of a network when subjected to a contingency due to
cascading-link disruption with regard to its steady state (base
case). As VML increases, the impact on the network due to
cascading failure also increases, as some components become
disrupted. VML has proved to be a well-defined index capable
of providing results consistent with those of physical-model
indexes [28].
The detailed simulation of the ML cascading-failure model

proceeds as follows.

1) A random link is chosen as failed and, thus, is removed
from the network.

2) Recur to (1) and Floyd’s shortest-path algorithm to calcu-
late the flow of each working link in the network.

3) Test each link for failure: For each link l ∈ E of the
network, if FML

l > CML
l , then link l is regarded as failed

and, thus, is removed from the network.
4) If any working link fails, return back to step 2. Other-

wise, terminate the simulation and evaluate the network
damage by (3).

Complex network theory models, such as the ML that we use
within our optimization framework in Section III, have no direct
physical relation to the mechanisms of realistic power grids,
but they have the key advantage that by utilizing techniques
from graph theory, they can be applied to analyze large-scale
networks. For this reason, this modeling approach is seeing in-
creasing applications for modeling cascading-failure processes
in power grids.

B. OPA Model

The OPA model has been proposed by researchers at the
Oak Ridge National Laboratory (ORNL), Power System En-
gineering Research Center of Wisconsin University (PSerc),
and Alaska University (Alaska) [10], [11]. The OPA model is
built upon the self-organized criticality theory; contains two
different time-scale dynamics, i.e., fast power flow dispatching
dynamics and slow power grid growth dynamics; and describes
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the complexity and criticality of power systems. It is a novel
and powerful tool for analyzing power systems. Our analysis
focuses on the fast power flow dynamics, in order to ensure
comparability with the ML model shortest-path assumption.
The cascading-failure model is based on the standard dc

power flow equation, i.e.,

FOPA = A · P (5)

where FOPA is a vector whose M components are the power
flows through the lines, i.e., FOPA

l (l ∈ E), P is a vector whose
N − 1 components are the power injection of each node; Pi (N
is the total number of nodes in the network), with the exception
of the reference generator, P0; and A is a constant matrix that
depends on the network structure and impedances (see [10] for
details about the computation of A). The reference generator
power is not included in vector P to avoid singularity of A as a
consequence of the overall power balance.
The generator power dispatch is solved using standard linear

programming methods. Using the input power demand, the
power flow (5) is solved with the condition of minimizing the
following cost function:

f =
∑

i∈VG

Pi(t) +K
∑

j∈VD

Pj(t). (6)

This definition gives preference to generation shift while as-
signing a high cost (set K = 100) to load shedding, and it is
assumed that all generators operate at the same cost and that all
loads are served with equal priority. The minimization is done
with the following constraints.

1) Generator power injections are generally positive and lim-
ited by installed capacity limits: 0≤Pi≤Pmax

i , i∈VG.
2) Loads always have negative power injections: P dem

j ≤
Pj ≤ 0, j ∈ VD.

3) The flow through links is limited by link capacities:
|FOPA

i | ≤ COPA
i .

4) Total power generation and consumption remain bal-
anced:

∑

i∈VG∪VD
Pi = 0.

Notice that in order to simplify the power flow problem,
making it linear, a number of assumptions have been made in
the standard formulation of dc power flow, one of which is that
the transmission line resistance is assumed to be negligible:
R ≪ X, i.e., lines are assumed without loss [31]. This means
that the loss of power transmission is neglected in the original
OPA cascading-failure model [10]. However, the objective of
cost minimization (6) is only applied to guide the generator
power redispatch after the occurrence of a transmission line
failure, for which changes in generation or load shedding are
usually considered, as the change in transmission loss among
different redispatch strategies should probably not be large and
considered by the network operator [10].
After solving the linear optimization by using the simplex

method as implemented in the work of Flannery et al. [33],
we examine which lines are overloaded. A line is considered
to be overloaded if the power flow through it is within 1%
of the limit capacity COPA

l . Each overloaded line may outage
with probability p1 (p1 is set as 1 in the case study to ensure

its comparability with ML). If an overloaded line experiences
an outage, its power flow limit COPA

l is divided by a very
large number k1 to ensure that, practically, no power may
flow through the line. Moreover, to avoid a matrix singularity
from the line outage, the impedance values of failed lines
are multiplied by a large number k2, resulting in changes of
network matrix A.
Load shedding is utilized to quantify the damage of the

cascading failure. For an individual node, load shedding is
defined as the absolute value of the difference between its
power injection and demand, i.e.,

LSj =
∣

∣P dem
j − Pj

∣

∣ , j ∈ VD. (7)

Subsequently, total load shedding for the system is

LS =
∑

j∈VD

LSj . (8)

Finally, system load shedding is normalized by its total demand
and used as a measure of damage to the system resulting from
a cascading failure, i.e.,

VOPA =
LS
D

=

∑

j∈VD

LSj
∑

j∈VD

P dem
j

. (9)

The fact that simulation results from the OPA model are
consistent with historical blackout data for real power systems
has justified its effectiveness [11]. However, the applications of
OPA have generally been limited to networks with a relatively
small number of nodes compared with real power grids [23],
due to the computational efforts involved.

III. FORMULATION OF THE MULTIOBJECTIVE

OPTIMIZATION PROBLEM

Here, we generally frame the problem of searching the most
favorable pattern of link capacities in a realistic power transmis-
sion network, so as to optimize its resilience against cascading
failures. By associating a cost to (the capacity of) each link of
the network, the optimization process also seeks to minimize
the total cost. With the aim of comparing network-centric
and power flow approaches, both the ML and OPA models
introduced in Section II are used to evaluate the vulnerability of
the pattern of link capacities proposed during the optimization
search.
Specifically, we define the variables to be optimized as the

capacities of the links in the network, Cl, l ∈ E (i.e., CML
l

for the ML model and COPA
l for the OPA model). Thus, the

homogeneous capacity allocation strategy as expressed in (2) is
no longer adopted in the optimization. Instead, any nonnegative
vector C ∈ R

M
+ could represent a potential solution. It is noted

that the searching space R
M
+ is intractably large in reality,

where a power transmission network usually has hundreds or
thousands of links.
We then assume that the cost associated with each link

capacity is linearly proportional to the value of the capacity,
with coefficient ϕ (we simply set ϕ as 1 in our case study).
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The total investment cost related to a capacity allocation pattern
C∈RM

+ in the power transmissionnetwork can thenbedefinedas

Cost(C) =
∑

l∈E

ϕCl. (10)

The network damage resulting from a cascading failure in the
presence of a given capacity pattern can be obtained by running
theML (or the OPA) simulation in correspondence of the capac-
ity pattern and then using (3) [or (9) for OPA]. The cascade is
initiated by the failure of a single link in each model. The single
link is randomly selected from the set of links E in the network
with equal probability. Then, the algorithms for cascading
simulation proposed in Section II are applied. The cascade
simulations run over several iterations until they either converge
or exceed the maximum number of steps (we use a maximum of
20 iterations for both ML and OPA). Finally, the network vul-
nerability for a given capacity allocation pattern is obtained as
the average network damage VML (or VOPA for OPA), over var-
ious random triggers (we use 30 triggers for bothML and OPA).
Through the quantification of the capacity allocation cost and

cascading-failure vulnerability, the capacity allocation problem
is formulated as a multiobjective optimization, i.e.,











min
C∈RM

+

Cost(C) (11)

min
C∈RM

+

V (C). (12)

Objective function (11) is the sum of the link capacity costs;
function (12) expresses the cascade vulnerability objective,
where V (C) is VML when the ML model is used or VOPA

when OPA is used. Observe that under this definition, the most
cascade-resilient network might be the network with infinite
capacity, which obviously would conflict with the objective of
minimizing cost.

IV. MOEAS FOR OPTIMAL CAPACITY ALLOCATION

Multiobjective evolutionary algorithms (MOEAs) have
proven to be general, robust, and powerful search tools that
are desirable for tackling problems involving 1) multiple con-
flicting objectives and 2) intractably large and highly complex
search spaces [34]. In extreme synthesis, the main properties of
evolutionary algorithms (EAs) are that the search for the optima
is conducted 1) using a (possibly) large population of multiple
solution points or candidates; 2) using operations inspired by
the evolution of species, such as breeding and genetic mutation;
3) using probabilistic operations; and 4) using information on
the objective or search functions and not on its derivatives.
The main advantages are 1) fast convergence to near global
optima, 2) superior global searching capability in complicated
search spaces, and 3) applicability even when gradient infor-
mation is not readily achievable. MOEAs rely on the following
concepts [35].

1) Pareto front: The locus that is formed by a set of solutions
that are equally good when compared with other solutions
of that set is called Pareto front.

2) Nondomination: Nondominated or Pareto-optimal solu-
tions are those solutions in the set that do not dominate

each other, i.e., neither of them is better than the other
in all the objective function evaluations. The solutions on
each Pareto front are Pareto-optimal with respect to each
other.

In this paper, we use a fast and elitist genetic algorithm,
namely, NSGA-II [22], to solve multiobjective optimization
problems (11) and (12). NSGA-II has been proved to be an
efficient algorithm to find Pareto-optimal solutions [36]; for
further details about this algorithm and relevant surveys on
multiobjective evolutionary optimization, the reader is referred
to [22], [34]–[36]. The complete procedure for our capacity
allocation optimization problem is detailed as follows:
1) read power transmission network data (line, bus, adja-

cency matrix, etc.) and fix the MOEA parameters (pop-
ulation size, maximum generation, etc.);

2) randomly initialize a (parent) population of possible
solutions (individuals) and evaluate the fitness of each
individual with respect to the two objective functions
(11) and (12); sort the parent population according to the
nondomination criterion [35];

3) select the parents that are more fit for reproduction by
using a binary tournament selection [22]; the procedure
is such that fitter individuals are selected with higher
probability;

4) generate an offspring population by crossover and muta-
tion operators and evaluate the fitness of each individual
in the offspring population with respect to the two objec-
tive functions (11) and (12);

5) combine the parent and offspring populations to generate
a new “trial” aggregate population and perform nondom-
inated sorting on the “trial” population;

6) generate a new parent population by selecting the best
solutions in the sorted “trial” population, until a desired
population size is reached;

7) if the stop condition is met, then terminate the iteration;
otherwise, go to step 3.

The nondominated solutions of the last population constitute
the Pareto-optimal front of the optimization problem at hand.

V. CASE STUDY AND RESULTS ANALYSIS

A. Case Study and Parameter Setting

In this paper, the 400-kV French power transmission network
(FPTN400; see Fig. 1) is taken for exemplification of the
proposed approach. The network is built from the data on the
400-kV transmission lines of the RTE website [37]. It has 171
nodes (substations) and 220 edges (transmission lines). We dis-
tinguish the generators, which are the source of power, from the
other distribution substations, which receive power and transmit
it to other substations or distribute it in local distribution grids.
By obtaining the power plant list from EDF website [38] and
relating them with the ID of the buses in the transmission
network, we have 26 generators and 145 distributors. Only the
nuclear power plants, hydroelectric plants, and thermal power
plants whose installed capacities are larger than 1000 MW
are considered. Although simplifications have been made, the
network model still has sufficient details to illustrate the validity
of the method on a realistic-size electrical infrastructure.
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Fig. 1. 400-kV French power transmission network (FPTN400) [37].

TABLE I
PARAMETERS OF THE NSGA-II ALGORITHM

For optimal allocation of link capacity in the network, the
NSGA-II algorithm introduced in Section IV is applied with
regard to the objectives of minimizing cascade vulnerability and
investment cost, expressed by functions (11) and (12), respec-
tively. Both the ML and OPA models are used to evaluate the
cascade vulnerability of the proposed network. The parameter
values used in the NSGA-II algorithm are reported in Table I. In
this paper, we do not attempt to find the best optimal setting for
each of the NSGA-II parameters, and they have been set by trial
and error guided by the aim of reaching convergence. For the
interested reader, extensive studies exist particularly focusing
on the task of tuning GA parameters [40]–[42].

B. Comparison Between the ML and OPA Models

1) Model Adjustments and Settings: The comparison be-
tween the optimization results of the ML and OPA models is
not straightforward due to the differences of the two models in
the way of representing system flow, in the iterative algorithms
they rely on, and in the way of measuring the damage pro-
duced by the cascading failure. Accordingly, some assumptions
and adjustments to the models are necessary to ensure their
comparability.

Flow initialization: In the ML model, initial link flow
is directly calculated by (1). Regarding the OPA model, the
calculation of initial link power flow by (5) necessitates data
about power demand and generator capacity. Prior studies set
these data by evolving the network using combined fast–slow
dynamics until the network reaches a steady state [10], [11]. In
order to ensure comparability with ML and taking into account
that we limit the scope of our comparison to fast dynamics, we
use a simpler initialization strategy that does not require the
consideration of network upgrades over time.
Although the ML model does not represent demand and gen-

eration capacity quantitatively, it assumes that every distributor
is connected to every generator, whereby there is only one
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Fig. 2. Scatterplot of the normalized initial link flows in the ML and OPA
models, with reference to the 400-kV French power transmission network. The
initial link flow in ML is highly correlated to that in OPA (rML,OPA = 0.77).
The best fit line is also shown.

shortest path from any distributor to every generator. This im-
plies that every distributor attempts to extract an equal amount
of power from every generator [29]. Thus, to facilitate compa-
rability with the ML model, we use the following assumptions
in OPA: 1) All the loads have equal constant power demand;
and 2) the total generation capacity is set to be equal to the total
demand and equally divided among the generators.
In Fig. 2, we plot the relationship between the initial flow of

each link determined using the ML model and that determined
using the OPA model in the FPTN400. Each green square in
the figure corresponds to one of the links in the network. The
x-axis is the value of initial flow of the link in ML, and its
y-axis is the value of its initial flow in the OPA approach. It
can be seen that the initial link flow in ML is highly correlated
with the initial link flow in OPA, computed by means of
the proposed initialization method (the correlation coefficient
rML,OPA is equal to 0.77). That is to say, links with high initial
flow in ML tend to have high initial flow in OPA, and vice
versa. This shows that our initialization strategy is consistent for
ML and OPA.

Cost normalization: Since the ML and OPA models rely
on different variables and algorithms (see Section II), the nu-
merical values of each link flow and capacity determined within
the two approaches are obviously not identical. Therefore, in
order to facilitate the comparison of the optimization results
from the two approaches, the cost of each capacity (allocation
pattern) proposed by the optimization algorithm is normalized
by the corresponding total initial network flow,2 and indicated
as Cost in both the ML and OPA models.

Comparison method: As previously mentioned, it is ev-
ident that the ML and OPA models provide different results
at the local scale [29]; however, we evaluate to what extent
the two approaches are consistent at the global system level.

2By this definition, the normalized cost has precisely the same physical
meaning with the network tolerance parameter α.

Fig. 3. Phase transitions in the Pareto-optimal fronts showing cascade vulner-
ability (i.e., average efficiency loss for ML and average load shedding for OPA)
with respect to normalized investment cost.

In particular, we compare the two approaches by performing
the following analyses.
1) We verify whether the Pareto fronts based on the ML

and OPA models exhibit similar characteristics in terms
of phase transitions of cascade vulnerability with respect
to normalized investment cost.

2) We investigate whether the Pareto-optimal solutions
showing the same level of investment cost also present
similar capacity allocation patterns.

3) We examine whether the link capacity patterns along
the two optimal frontiers exhibit similar characteristics
for decreasing network vulnerability (i.e., for increasing
network resilience).

2) Comparison Results: We first investigate the shape of the
Pareto fronts obtained using the ML and OPA models in
the capacity allocation optimization: In particular, we analyze
the variation of cascade vulnerability as a function of nor-
malized investment cost. Notice that a proper comparison of
the Pareto fronts obtained with the ML and OPA models is
only possible with the adjustments proposed in the previous
section. Fig. 3 shows that ML and OPA Pareto fronts exhibit
similar phase transitions (although their absolute values are
different, which is not unexpected considering the fact that they
apply different modeling parameters and cascade vulnerability
measures): Both curves present a sharp decrease in network
vulnerability in the same Cost region (i.e., 1.0 ≤ Cost ≤ 1.5),
where a small increase in the cost gives a large gain in terms
of cascade resilience. Moreover, regions of plateau exist for
certain cost values in both models (i.e., for 1.5 ≤ Cost ≤ 1.75
and 2.0 ≤ Cost ≤ 2.2 in ML, and for 1.5 ≤ Cost ≤ 1.8 and
2.15 ≤ Cost ≤ 2.45 in OPA), in which increasing investment
cost does not improve network resilience. Finally, both curves
show a relatively stable regime for large Cost values (i.e.,
Cost ≥ 2.2), where network resilience is already high, and
its relative improvement is negligible even for a significant
increase in the network cost (for example, referring to the ML
model, increasing Cost from 1.97 to 2.61, i.e., of 32.5%, we
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Fig. 4. (Left panel) ML and (right panel) OPA Pareto fronts (squares and triangles) obtained in the multiobjective optimization framework in Section III, together
with (solid line) the results obtained by employing a homogeneous capacity allocation strategy.

reduce the network vulnerability of only 1.5%). One could refer
to the Pareto fronts of ML (squares in left panel) and OPA
(triangles in right panel) in Fig. 4, where this relative stable
regime is shown more clearly on a linear y-axis scale.
In Fig. 4, we compare the Pareto fronts obtained by the

ML and OPA models within the multiobjective optimization
framework in Section III with the results obtained by assum-
ing a classical homogeneous capacity allocation strategy (see
Section II-A). The capacity in the homogeneous capacity allo-
cation is assumed to be linearly proportional to the initial flow
by means of the network tolerance parameter α, as indicated
in (2); thus, the normalized cost of a given capacity allocation
pattern is precisely equal to parameter α by construction. It
can be seen that in both cases, the multiobjective optimization
approach based on ML and OPA produces superior solutions
as the corresponding Pareto fronts are closer to the coordinate
axes. The linear (homogeneous) capacity–load relationship ev-
idently appears not optimal for obtaining a cost-efficient and
cascade-resilient network.
We then compare the link capacity patterns of those solutions

along the two Pareto fronts that present approximately the same
values of Cost. In particular, three representative values of
normalized cost (i.e., Cost = 1.07, 1.27, and 1.81) along the
Pareto fronts are chosen, and the relationship between the link
capacities of the corresponding optimal solutions obtained by
the ML and OPA models is visualized using the scatterplots in
Fig. 5(a)–(c), respectively. It is evident that the link capacities
of the optimal solutions based on the ML and OPA models
are highly correlated (with correlation coefficient rML,OPA =
0.73, 0.69, and 0.76, respectively). That is, links with low
capacity in the ML model are likely to have low capacity also in
the OPA model, and links with high capacity in ML also have
high capacity in OPA.
Finally, it is interesting to analyze how the pattern of link

capacities changes when lower network cascade vulnerability
(higher network resilience) is demanded, i.e., which type of
capacity allocation pattern is the most favorable in resisting
cascading failure. We tackle this problem by investigating
the “expected” network link capacity pattern as a function of
cascade vulnerability, i.e., the configuration of capacity pattern

“averaged” over all possible solutions of the Pareto front lying
within a given “regime” (i.e., interval) of cascade vulnerability
of interest. Parameter βs (namely, βs

ML for ML and βs
OPA for

OPA) is used to represent the “regime” of vulnerability, where
s indicates the size of the corresponding interval. It is noted that
smaller βs represents higher network resilience.
Fig. 6 reports the results of averaged link capacity patterns for

three different levels of cascade vulnerability, i.e., 0.6≤β0.1≤
0.7, 0.3≤β0.1≤0.4, and 0≤β0.1≤0.1 in the case of a homo-
geneous allocation strategy (circles) and of the optimization-
based approach in our study (squares). The left panel (a)–(c)
refers to ML, whereas the right panel (d)–(f) relates to OPA.
It is found that the optimal link capacity patterns exhibit
consistent characteristics between ML and OPA models. For
example, in both cases, the optimal link capacity patterns are
similar to their corresponding homogeneous allocations only
in less-resilient networks, i.e., when 0.6≤β0.1≤0.7, where the
objective of minimizing investment cost is much more biased
[see Fig. 6(a) and (d)]. When we increase the importance of
minimizing the network vulnerability (e.g., for 0.3≤β0.1≤0.4
and 0≤β0.1≤0.1), the optimal link capacities show a nonlinear
relationship with respect to their initial flows, as shown in
Fig. 6(b), (c), (e), and (f). Specifically, the heavily loaded links
tend to decrease their capacities, and the lightly loaded links
tend to increase their capacities. That is to say, the unoccupied
portion of capacity tends to decrease in links with larger loads,
and the unoccupied portion of capacity tends to increase in the
less-loaded links. Furthermore, the more importance is given
to the minimization of network cascade vulnerability, the more
pronounced the nonlinear behavior is, as shown in Fig. 6(c) and
(f). Our findings are consistent with the empirical observations
and results from the traffic fluctuation model [17], [19].

VI. DISCUSSION AND CONCLUSION

In this paper, we have tackled the problem of searching for
the most favorable pattern of link capacity allocation for a CI
network with the objective of resisting cascading failures with
limited investment costs. The problem has been formulated
within a multiobjective optimization framework and has been
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Fig. 5. Scatterplot of the (normalized) link capacities of three representative ML and OPA Pareto solutions showing the same normalized cost. The link capacities
of the Pareto solutions with the same level of cost show highly correlated allocation patterns. (a) ML solution (1.07, 0.63) versus OPA solution (1.07, 0.30):
rML,OPA = 0.73. (b) ML solution (1.27, 0.24) versus OPA solution (1.27, 0.21): rML,OPA = 0.69. (c) ML solution (1.81, 0.074) versus OPA solution
(1.81, 0.057): rML,OPA = 0.76. The line of best fit is also plotted, for visual guidance.

solved by an evolutionary algorithm, namely, the NSGA-II.
The optimization has been carried out using two different
approaches to cascade failure modeling: a computationally
cheap complex network model, namely, the ML model, and
a more detailed power flow model, namely, the OPA model.
The approaches have been compared in a case study involving
the 400-kV French power transmission network (FPTN400).
Although simplifications have been applied, the network model
still has sufficient detail to illustrate the validity of the method
on a realistic electrical infrastructure.
The objective of this paper is twofold: 1) to tackle the issue

of capacity–load relationship from a systematic perspective, by
introducing the optimization of link capacity allocation; and
2) to study the possibility of using a simplified network-centric
model (instead of a detailed power flow model) within the
optimization framework, without affecting the quality of the
optimal solutions found, by embedding both the ML and OPA
models into the optimization and comparing their results.

Primarily, our multiobjective optimization results show that
both the ML and OPA models produce improved Pareto so-
lutions with respect to those obtained by assuming a classical
homogeneous allocation strategy. In addition, the optimal link
capacity allocations show a nonlinear capacity–load relation:
The unoccupied portion of capacity tends to decrease in links
with larger loads, whereas the unoccupied portion of capacity
tends to increase in the lightly loaded links. This is in sharp
contrast to the linear capacity–load relation hypothesized in
previous works of literature [8], [9], [12]–[14], [18]. This non-
linear behavior is probably a consequence of the following ob-
servation: Since larger loads in heavily loaded components tend
to result from a large number of flow events, the relative size of
the fluctuations in these components tends to be small when
other lightly loaded components fail during a cascading failure;
considering that the unoccupied capacity is the operating mar-
gin that allows safe operation for the component under potential
load increment (mainly determined by the perturbations caused
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Fig. 6. “Averaged” optimal link capacity patterns for three different levels of cascade vulnerability (0.6 ≤ β0.1 ≤ 0.7, 0.3 ≤ β0.1 ≤ 0.4, and 0 ≤ β0.1 ≤ 0.1)
inML left panel (a)–(c)] and OPA [right panel (d)–(f)]. The scatterplot shows the relationship between the link capacities and the initial link flows in a homogeneous
allocation strategy, where the capacity of a link is assumed to be proportional to its initial flow (circles) and after in the optimization-based approach in Section III
(squares).

by the failure of other components of the network), this explains
why in the optimal solutions the unoccupied capacity tends to
be smaller for links with larger loads.
Additionally, the analysis of the behavior of the link capacity

patterns of the Pareto-optimal solutions as a function of the vul-
nerability level has shown that the results provided by ML and
OPA are consistent: The more importance is given to the objec-
tive of network cascade vulnerability, themore pronounced is the
nonlinear capacity–load relation for both models. Moreover, the
Pareto fronts produced by ML and OPA exhibit similar phase
transitions. Both curves exhibit a sharp decrease in network vul-
nerability when 1.0≤Cost≤1.5, a plateau for certain cost val-
ues (i.e., for 1.5≤Cost≤1.75 and 2.0≤Cost≤2.2 in ML, and
for 1.5≤Cost≤1.8 and 2.15≤Cost≤2.45 in OPA) and a rela-
tively stable regime when Cost≥2.2. Furthermore, the link ca-
pacities of the Pareto-optimal solutions produced by theML and
OPA models show a highly correlated allocation pattern, which
means that links with low capacity in ML tend to have low ca-
pacity in OPA, and links with high capacity in ML also tend to
have high capacity in OPA. This consistency is not insignificant
since it demonstrates that one resilience-improved pattern of
capacity allocation optimized by the MLmodel is also of higher
resilience if measured by the more realistic OPA model.
The results from this comparative study provide an im-

portant contribution regarding the usefulness of a topological
model (ML) in the optimization of a cascade-resilient electrical

network. AlthoughML is a relatively simple and abstract model
(that does not account for the power flow laws and constraints
of the electrical system), it is able to provide results that are
consistent with a detailed and more realistic power flow model
(OPA), when applied to the problem of network optimization
against cascading failure. Most importantly, with respect to
OPA, it has the advantages of simplicity and scalability: The
average time needed to carry out a single cascade failure
simulation is 3.9 and 20.8 s for ML and OPA, respectively, on
a double 2.4-GHz Intel CPU and 4-GB RAM computer. This
provides impetus for the use of network-centric models to the
study of cascading failure in large power network systems.
Future works may consider comparing our optimization

results with real data, i.e., the empirical capacity–load char-
acteristics, for extracting further insights about how realistic
infrastructure systems evolve. Moreover, it is noted that the
optimization based on the OPA model leads to solutions of
reduced vulnerability compared with its ML counterpart (see
Fig. 4), and the modeling reason behind it is worthy of fur-
ther study. Furthermore, Newton–Raphson-based power flow
approaches [43] could be applied for the comparison with
the ML model, since they give a more detailed depiction of
the cascading-failure process, although the price to be paid
is that they are computationally expensive. Finally, it would
be interesting to apply our method to other networks, e.g. the
standard IEEE Power Systems Test Cases and the like.
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a b s t r a c t

The computation of the reliability of a thermal–hydraulic (T–H) passive system of a nuclear power plant

can be obtained by (i) Monte Carlo (MC) sampling the uncertainties of the system model and parameters,

(ii) computing, for each sample, the system response by a mechanistic T–H code and (iii) comparing the

system response with pre­established safety thresholds, which define the success or failure of the safety

function. The computational effort involved can be prohibitive because of the large number of (typically

long) T–H code simulations that must be performed (one for each sample) for the statistical estimation

of the probability of success or failure. The objective of this work is to provide operative guidelines to

effectively handle the computation of the reliability of a nuclear passive system. Two directions of com­

putation efficiency are considered: from one side, efficient Monte Carlo Simulation (MCS) techniques are

indicated as a means to performing robust estimations with a limited number of samples: in particular,

the Subset Simulation (SS) and Line Sampling (LS) methods are identified as most valuable; from the other

side, fast­running, surrogate regression models (also called response surfaces or meta­models) are indi­

cated as a valid replacement of the long­running T–H model codes: in particular, the use of bootstrapped

Artificial Neural Networks (ANNs) is shown to have interesting potentials, including for uncertainty prop­

agation. The recommendations drawn are supported by the results obtained in an illustrative application

of literature.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Nuclear safety has expanded its considerations to severe acci­

dents and increased its requirements for guaranteeing effective

safety functions. This explains the interest in passive systems (Ahn

et al., 2010; Kim et al., 2010), which all innovative reactor concepts

make use of, to a large extent in combination with active systems

(Mackay et al., 2008; Mathews et al., 2008, 2009).

According to the International Atomic Energy Agency (IAEA)

definitions, a passive component does not need external input

(especially energy) to operate (IAEA, 1991). Then, the term “pas­

sive” identifies a system which is composed entirely of passive

components and structures, or a system, which uses active compo­

nents in a very limited way to initiate subsequent passive operation.

The currently accepted categorization of passive systems, devel­

oped by the IAEA, is summarized in Table 1 (IAEA, 1991).

∗ Corresponding author at: Energy Department, Politecnico di Milano, Via Ponzio,

34/3 – 20133 Milan, Italy. Tel.: +39 02 2399 6340; fax: +39 02 2399 6309.

E­mail addresses: enrico.zio@ecp.fr, enrico.zio@supelec.fr, enrico.zio@polimi.it

(E. Zio).
1 Tel.: +39 02 2399 6340; fax: +39 02 2399 6309.

Passive systems are expected to contribute significantly to

nuclear safety by combining peculiar characteristics of simplic­

ity, reduction of human interaction and reduction or avoidance of

external electrical power and signals input (Nayak et al., 2008a,b,

2009). On the other hand, the assessment of the effectiveness of

passive systems must include considerations on their reliability;

these have to be drawn in the face of lack of data on some underlying

phenomena, scarce or null operating experience of these systems

over the wide range of conditions encountered during operation

and less guaranteed performance as compared to active safety sys­

tems (Pagani et al., 2005; Burgazzi, 2007a).

Indeed, although passive systems are credited a higher reliabil­

ity with respect to active ones, because of the reduced unavailability

due to hardware failure and human error, the uncertainties

involved in the actual operation of passive systems in the field

and their modeling are usually larger than in active systems. Two

different sources of uncertainties are usually considered in pas­

sive system analysis: randomness due to intrinsic variability in the

behavior of the system (aleatory uncertainty) and imprecision due

to lack of data on some underlying phenomena (e.g., natural circu­

lation) and to scarce or null operating experience over the wide

range of conditions encountered during operation (Apostolakis,

1990; Helton and Oberkampf, 2004).

0029­5493/$ – see front matter © 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.nucengdes.2010.10.029
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Table 1

Categorization of passive systems (IAEA, 1991).

Category Description

A Physical barriers and static structures (e.g., concrete buildings)

B Moving working fluid (e.g., cooling by free convection)

C Moving mechanical parts (e.g., check valves)

D External signals and stored energy (e.g., scram systems)

As a consequence of these uncertainties, in practice there is a

nonzero probability that the physical phenomena involved in the

passive system operation lead to failure of performing the intended

safety function even if (i) safety margins are present and (ii) no

hardware failures occur. In fact, deviations in the natural forces

and in the conditions of the underlying physical principles from

the expected ones can impair the function of the system itself: this

event is referred to in the literature as functional failure (Burgazzi,

2003). The quantification of the probability of this occurrence is an

issue of concern both for the “nominal” passive systems (e.g., the

ESBWR operating in nominal conditions) (Juhn et al., 2000; Rohde

et al., 2008) and the “emergency” passive systems (e.g., accumula­

tors, isolation condensers, etc.) (Chung et al., 2008). In the following,

the discussion will focus on the latter type of systems.

The occurrence of functional failures is especially critical in Type

B passive systems, i.e., those involving moving working fluids and

referred to as thermal–hydraulic (T–H) passive systems (Table 1).

The reason lies behind the small driving forces engaging passive

operation and the complex and delicate T–H phenomena deter­

mining the system performance. For performing their accident

prevention and/or mitigation functions, these passive systems rely

exclusively on natural forces, e.g., gravity or natural convection,

not generated by external power sources. Because the magnitude

of the natural forces which drive operation is relatively small,

counter­forces (e.g., friction) cannot be ignored because of compa­

rable magnitude. This leads to uncertainty in the actual T–H system

performance which must be evaluated by a specific, systematic and

rigorous methodology.2

In recent years, several methodologies have been proposed in

the literature to quantify the probability that nuclear passive sys­

tems fail to perform their functions (Burgazzi, 2007b; Zio and

Pedroni, 2009a). A number of methods adopt the system reliabil­

ity analysis framework. In Aybar and Aldemir (1999), a dynamic

methodology based on the cell­to­cell mapping technique has been

used for the reliability analysis of an inherently safe Boiling Water

Reactor (BWR). In Burgazzi (2007a), the failure probability is eval­

uated as the probability of occurrence of different independent

failure modes, a priori identified as leading to the violation of

the boundary conditions and/or physical mechanisms needed for

successful passive system operation. In Burgazzi (2002), model­

ing of the passive system is simplified in terms of the modeling

of the unreliabilities of the hardware components of the system:

this is done by identifying the hardware components failures that

degrade the natural mechanisms which the passive system relies

upon and associating the corresponding components unreliabili­

ties. This concept is also at the basis of the Assessment of Passive

System ReliAbility (APSRA) approach which has been applied to

the reliability analysis of the natural circulation­based Main Heat

Transport (MHT) system of an Indian Heavy Water Reactor (HWR)

(Nayak et al., 2008a,b, 2009).

An alternative approach is founded on the introduction of the

concept of functional failures, within the reliability physics frame­

2 Notice that in the following, the discussion will focus on Type B passive systems,

i.e., those involving moving working fluids and referred to as T–H passive systems;

thus, the locution “passive system” will implicitly mean “T–H passive system” in the

remainder of the paper.

work of load­capacity exceedance (Burgazzi, 2003, 2007a,c, 2008,

2009): a passive system fails to perform its function due to devia­

tions from its expected behavior which lead the load imposed on

the system to overcome its capacity. In Woo and Lee (2009a,b, 2010)

and Han and Yang (2010), this concept is at the basis of the esti­

mation of the functional failure probability of passive decay heat

removal systems of Very High Temperature Reactors (VHTRs). It

also provides the basis for the methodologies known as Reliabil­

ity Evaluation of PAssive Safety (REPAS) systems (D’Auria et al.,

2002; Jafari et al., 2003; Zio et al., 2003) and Reliability Methods for

Passive Safety (RMPS) functions (Marquès et al., 2005), developed

and employed for the analysis of passive Residual Heat Removal

Systems (RHRSs) of Light Water Reactors (LWRs). It has also been

used to evaluate the failure probabilities of decay heat removal sys­

tems in Gas­cooled Fast Reactors (GFRs) (Pagani et al., 2005; Bassi

and Marquès, 2008; Mackay et al., 2008; Patalano et al., 2008; Zio

and Pedroni, 2009b,c, 2010; Pedroni et al., 2010; Zio et al., 2010),

sodium­cooled Fast Breeder Reactors (FBRs) (Mathews et al., 2008,

2009; Arul et al., 2009, 2010) and the lead­cooled, fast spectrum

Flexible Conversion Ratio Reactor (FCRR) (Fong et al., 2009). In all

these analyses, the passive system is modeled by a detailed, mech­

anistic T–H system code and the probability of not performing the

required function is estimated based on a Monte Carlo (MC) sample

of code runs which propagate the epistemic (state­of­knowledge)

uncertainties in the model describing the system and the numerical

values of its parameters. Because of the existence of these uncer­

tainties, it is possible that even if no hardware failure occurs, the

system may not be able to accomplish its mission.3

The functional failure­based approach provides in principle the

most realistic assessment of the T–H passive system, thanks to the

flexibility of Monte Carlo Simulation (MCS) which does not suf­

fer from any T–H model complexity and, therefore, does not force

to resort to simplifying approximations: for this reason, the func­

tional failure­based approach will be taken here as reference. On

the other hand, such approach requires considerable and often

prohibitive computational efforts. The reason is twofold. First, a

large number of Monte Carlo­sampled T–H model evaluations must

generally be carried out for an accurate uncertainty propagation

and functional failure probability estimation. Since the number of

simulations required to obtain a given accuracy depends on the

magnitude of the failure probability to be estimated, with the com­

putational burden increasing with decreasing functional failure

probability (Schueller, 2007, 2009), this poses a significant chal­

lenge for the typically quite small (e.g., less than 10−4) probabilities

of functional failure of T–H passive safety systems. Second, long cal­

culations (several hours) are typically necessary for each run of the

detailed, mechanistic T–H code (one code run is required for each

sample of values drawn from the uncertainty distributions) (Fong

et al., 2009; Pourgol­Mohamad et al., 2010).4

Finally, notice that for the same reasons a high computational

burden is associated also to the sensitivity analysis process, i.e., the

identification of the model parameters that contribute the most

3 It is worth mentioning also the work performed by Lee and co­workers who

took up the problem of passive system functional reliability assessment focusing on

the idea of identifying the limit state function of the system (essentially referring

to the generic structural reliability paradigm of load­capacity exceedance described

above) as a prelude to the quantification of the functional reliability itself (Aumeier,

1994; Aumeier and Lee, 1993, 1994; Aumeier et al., 1995, 2006; Lee et al., 1993, 1994,

1995). However, since the focus of the present paper is on the efficient computation

of the passive system functional reliability (given the limit state function of the

system and proper input probability distributions representing the uncertainties in

the system model and parameters), no further details are given here for brevity; the

interested reader is thus referred to the cited references.
4 For example, the computer code RELAP5­3D, which is used to describe the

thermal–hydraulic behavior of nuclear systems, may take up to 20 h per run in some

applications.
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to the uncertainty in the performance of the passive system and

consequently to its functional failure (Saltelli et al., 2008; Marrel

et al., 2009).

Thus, efficient simulation techniques must be sought to perform

robust functional failure probability estimation, uncertainty prop­

agation and sensitivity analysis while reducing as much as possible

the number of T–H code simulations and the associated computa­

tional time.

The objective of the present paper is to show how the computa­

tional issues associated to the functional reliability assessment of

nuclear passive systems can be effectively handled. Two concep­

tual directions of computation efficiency are considered: efficient

Monte Carlo Simulation techniques for performing robust esti­

mations based on a limited number of samples drawn (i.e., T–H

code simulations); fast­running, surrogate regression models (also

called response surfaces or meta­models) in replacement of the

long­running T–H model codes.

Within this conceptual framework, different computational

methods are recommended for efficiently tackling the different

phases of the functional reliability assessment of nuclear passive

systems: in particular, an optimized Line Sampling (LS) method (Zio

and Pedroni, 2010) is recommended for functional failure probabil­

ity estimation, whereas the use of Subset Simulation (SS) (Au and

Beck, 2001, 2003b) and bootstrapped Artificial Neural Networks

(ANNs) (Efron and Thibshirani, 1993; Zio, 2006) is suggested for

uncertainty propagation and sensitivity analysis.

These recommendations are arrived at on the basis of (i) a critical

review of the methods available in the literature on the subject and

(ii) the experience of the authors in nuclear passive systems func­

tional reliability assessments (Zio and Pedroni, 2009a,b,c, 2010;

Pedroni et al., 2010; Zio et al., 2010).

The remainder of the paper is organized as follows. In Section

2, the main sources and types of uncertainties involved in the

operation and modeling of nuclear passive systems are recalled.

In Section 3, the reliability analysis of nuclear passive systems

is framed in terms of the concept of functional failure. In Sec­

tion 4, the two conceptual directions considered for reducing the

computational burden associated to the reliability assessment of

nuclear passive systems (i.e., advanced MCS and empirical regres­

sion modeling) are presented and critically analyzed on the basis

of a literature review. In Section 5, techniques are recommended

to effectively tackle the computational burden associated to the

different phases of the reliability assessment; results of the applica­

tion of the proposed techniques to a case study of literature are also

shown. Finally, guidelines and recommendations are summarized

in the concluding section.

2. Sources and types of uncertainties in the operation and

modeling of nuclear passive systems

Uncertainties in the operation and modeling of nuclear pas­

sive systems must be accounted for in their reliability evaluations

within a Probabilistic Risk Assessment (PRA) framework (Burgazzi,

2004, 2007a,b,c; Pagani et al., 2005).

To effectively represent and model these uncertainties, it

is useful to distinguish two kinds: “aleatory” and “epistemic”

(Apostolakis, 1990; Helton and Oberkampf, 2004; USNRC, 2009).

The former refers to phenomena occurring in a random way: prob­

abilistic modeling offers a sound and efficient way to describe such

occurrences. The latter captures the analyst’s confidence in the

PRA model by quantifying the degree of belief of the analysts on

how well it represents the actual system; it is also referred to as

state­of­knowledge or subjective uncertainty and can be reduced by

gathering information and data to improve the knowledge on the

system behavior.

Table 2

Categories of uncertainties associated to nuclear passive systems reliability

assessment.

Categories of uncertainties

ALEATORY

Occurrence of accident scenarios

Failure time of mechanical components

Variation of geometrical dimensions

Variation of material properties

EPISTEMIC

T–H analysis Model (correlations)

Parameters

System failure analysis Failure criteria

Failure modes (critical parameters)

As might be expected, the uncertainties affecting the opera­

tion of nuclear passive systems (Table 2) are both of aleatory kind,

because of the randomness in the occurrence of some phenom­

ena, and of epistemic nature, because of the limited knowledge

on some phenomena and processes and the paucity of the relative

operational and experimental data available (Burgazzi, 2007a).

Aleatory uncertainties concern, for instance, the occurrence of

an accident scenario, the time to failure of a component or the

variation of the actual geometrical dimensions (due to differences

between the as­built system and its design upon which the analysis

is based) and material properties (affecting the failure modes, e.g.,

concerning undetected leakages and heat losses) (NUREG­1150,

1990; Helton, 1998; USNRC, 2002; Burgazzi, 2007a,b,c). Two exam­

ples of classical probabilistic models used to describe this kind of

uncertainties in PRAs are the Poisson model for events randomly

occurring in time (e.g., random variations of the operating state

of a valve) and the binomial model for events occurring “as the

immediate consequence of a challenge” (e.g., failures on demand)

(NUREG­CR­6850, 2005). The effects of these uncertainties are then

propagated onto the risk measure, e.g., by Monte Carlo simulation

based on Importance Sampling or Stratified Sampling (Hofer et al.,

2002; Cacuci and Ionescu­Bujor, 2004; Krzykacz­Hausmann, 2006).

The contribution of aleatory uncertainty to nuclear passive sys­

tems failure is quite clear: for example, natural circulation could

be altered by a random disturbance in the system geometry or by

a random variation of the operating state of a component (Pagani

et al., 2005).

In the present paper, the representation and propagation of

aleatory uncertainties are not considered, the focus being on epis­

temic uncertainty (Pagani et al., 2005; Bassi and Marquès, 2008;

Mackay et al., 2008; Mathews et al., 2008; Patalano et al., 2008;

Arul et al., 2009, 2010).

Epistemic uncertainty is associated to the lack of knowledge

about the properties and conditions of the phenomena (i.e., nat­

ural circulation) underlying the behavior of the passive systems.

This uncertainty manifests itself in the model representation of

the system behavior, in terms of both (model) uncertainty in the

hypotheses assumed and (parameter) uncertainty in the values

of the parameters of the model (Cacuci and Ionescu­Bujor, 2004;

Helton et al., 2006; Patalano et al., 2008).

Model uncertainty arises because mathematical models are sim­

plified representations of real systems and, therefore, their results

may be affected by error or bias. Model uncertainty also includes

the fact that the model could be too simplified and therefore would

neglect some important phenomena affecting the final result. This

latter type of uncertainty is sometimes identified independently

from model uncertainty and is known as completeness uncertainty

(USNRC, 2009).

Model uncertainty may for example involve the correlations

adopted to describe the T–H phenomena, which are subject to

errors of approximation. Such uncertainties may for example be

captured by a multiplicative model (Zio and Apostolakis, 1996;
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Patalano et al., 2008):

z = c(x)ε, (1)

where z is the real value of the quantity to be predicted (e.g., heat

transfer coefficients, friction factors, Nusselt numbers or thermal

conductivity coefficients), c(·) is the mathematical model of the cor­

relation (i.e., the result of the correlation as computed by the T–H

code), x is the vector of correlating variables and ε is the associ­

ated multiplicative error factor: as a result, the uncertainty in the

quantity z to be predicted is translated into an uncertainty in the

multiplicative error factor ε. This error is commonly classified as

representing model uncertainty.

Furthermore, uncertainty affects the values of the parameters

used to describe the system (e.g., power level, pressure, cooler wall

temperature, material conductivity, . . .), e.g., owing to errors in

their measurement or insufficient data and information. For exam­

ple, according to industry practice and experience, an error of 2%

is usually considered in the determination of the power level in

a reactor, due to uncertainties in the measurements. As a conse­

quence, the power level is usually known only to a certain level of

precision, i.e., epistemic uncertainty is associated with it.

Both model and parameter uncertainties associated to the cur­

rent state of knowledge of the system can be represented by

subjective probability distributions within a Bayesian approach to

PRA (Apostolakis, 1990, 1995, 1999). In current PRAs, the effect of

these uncertainties is often propagated on the risk measure by Latin

Hypercube Sampling (LHS) (Helton and Davis, 2003).

Epistemic uncertainties affect also the identification of the fail­

ure criterion to be adopted for the system under analysis: for

instance, reactor parameters (e.g., the maximal cladding temper­

ature) as well as passive system variables (e.g., the thermal power

exchanged in a cooler) could be equally adopted as indicators of the

safety performance of the passive system; furthermore, the failure

thresholds may be established as point­targets (e.g., a specific quan­

tity of liquid must be delivered within a fixed time) or time­varying

targets or even integral targets over a defined mission time (e.g., the

system must reject at least a given value of thermal power during

the entire system intervention) (Jafari et al., 2003; Marquès et al.,

2005).

Finally, state­of­knowledge uncertainty affects the identifi­

cation of the possible failure modes and related causes and

consequences, such as leaks (e.g., from pipes and pools), deposit

thickness on components surfaces (e.g., pipes or heat exchang­

ers), presence of non­condensable gases, stresses, blockages and

material defects (Burgazzi, 2007a). The identification of all the rel­

evant modes/causes of failure in terms of critical parameters for

the passive system performance/stability and the assessment of

the relative uncertainty may be attempted by commonly used haz­

ard identification procedures, like HAZard and OPerability (HAZOP)

analysis and Failure Mode and Effect Analysis (FMEA) (Burgazzi,

2004, 2006).

The contribution of epistemic uncertainties to the definition of

the reliability/failure probability of nuclear passive systems can be

qualitatively explained as follows. If the analyst is not fully confi­

dent on the validity of the correlations adopted to estimate, e.g.,

the design value of the heat transfer coefficient in the core dur­

ing natural convection (e.g., due to the paucity of experimental

data available in support of the use of a particular correlation),

he/she admits that in a real accident scenario the actual value of

the heat transfer coefficient in the core might deviate from the

nominal/design one (i.e., different from the value computed by a

deterministic correlation). If this variation (accepted as plausible

by the analyst) were to take place during an accident scenario, it

may cause the passive system to fail performing its safety function;

based on the current state of knowledge of the heat transfer phe­

nomenon in the core under the expected conditions, the likelihood

of the heat transfer coefficient variation is to be quantified for esti­

mating the reliability/failure probability. A future improvement in

the state of knowledge, e.g., due to the collection of data and infor­

mation useful to improve the characterization of the heat transfer

phenomenon, would lead to a change in the epistemic uncertainty

distribution describing the likelihood of the various values of heat

transfer coefficient and eventually to a more accurate estimate of

the system reliability/failure probability (Pagani et al., 2005; Bassi

and Marquès, 2008; Mackay et al., 2008; Mathews et al., 2008, 2009;

Patalano et al., 2008; Arul et al., 2009, 2010; Fong et al., 2009).

In the present paper, only epistemic uncertainties are considered

in the estimation of the reliability/failure probability of nuclear pas­

sive systems (Pagani et al., 2005; Bassi and Marquès, 2008; Mackay

et al., 2008; Mathews et al., 2008; Patalano et al., 2008; Arul et al.,

2009,2010).

3. Functional failure analysis of nuclear passive systems

The essential steps for the conceptual development of the

functional failure analysis of nuclear passive systems are briefly

reported below (Marquès et al., 2005):

1. Detailed modeling of the system response by means of a deter­

ministic, best­estimate (typically long­running) T–H code.

2. Identification of the vector x = {x1, x2, . . . , xj, . . . , xni
} of param­

eters/variables, models and correlations (i.e., the inputs to the

T–H code) which contribute to the uncertainty in the vector

y = {y1, y2, . . . , yl, . . . , yno } of the outputs of the best­estimate

T–H calculations (Section 2).

3. Propagation of the uncertainties associated to the identified rel­

evant parameters, models and correlations x (step 2. above)

through the deterministic, long­running T–H code in order to

provide a complete representation (in terms of Probability Den­

sity Functions – PDFs, Cumulative Distribution Functions – CDFs

and so on) of the uncertainty associated to the vector y of the

outputs (step 2. above) of the deterministic, best­estimate T–H

code.

4. Estimation of the functional failure probability of the passive sys­

tem conditional on the current state of knowledge about the

phenomena involved (step 2. above) (Pagani et al., 2005; Bassi

and Marquès, 2008; Mackay et al., 2008; Mathews et al., 2008,

2009; Patalano et al., 2008; Arul et al., 2009, 2010; Fong et al.,

2009; Zio and Pedroni, 2009a,b,c, 2010; Pedroni et al., 2010; Zio

et al., 2010). Formally, let Y(x) be a single­valued scalar vari­

able indicator of the performance of the passive system (e.g.,

the fuel peak cladding temperature) and ˛Y a threshold value

defining the corresponding failure criterion (e.g., a limit value

imposed by regulating authorities).5 For illustrating purposes, let

us assume that the passive system operates as long as Y(x) < ˛Y;

equivalently, introducing a variable called Performance Function

(PF) as gx(x) = Y(x) − ˛Y, failure occurs if gx(x) > 0. The probability

P(F) of system functional failure can then be expressed by the

multidimensional integral:

P(F) =

∫ ∫

. . .

∫

IF (x)q(x)dx (2)

where q( · ) is the joint Probability Density Function (PDF) rep­

resenting the uncertainty in the parameters x, F is the failure

5 Note that the choice of a single­valued performance function does not reduce

the generality of the approach, because any multidimensional vector of physical

quantities (i.e., the vector y of the outputs of the T–H code in this case) can be

conveniently re­expressed as a scalar parameter by resorting to suitable min–max

transformations: see Au and Beck (2001, 2003b) and Zio and Pedroni (2009b,c, 2010)

for details.
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Fig. 1. Empirical CDF of the performance function Y(x) of the passive system in Pagani et al. (2005). Solid lines: SS with NT = 1850 samples; dashed lines: LHS with NT = 1850

samples; dot­dashed lines: reference LHS with NT = 500,000 samples.

region (where gx(·) > 0) and IF(·) is an indicator function such

that IF(x) = 1, if x ∈ F and IF(x) = 0, otherwise. The MCS procedure

for estimating the functional failure probability entails that a

large number NT of samples of the values of the system parame­

ters x be drawn from the corresponding probability distributions

and used to evaluate Y(x) by running the T–H code. An estimate

P̂(F)NT of the probability of failure P(F) can then be computed by

dividing the number of times that Y(x) > ˛Y by the total number

of samples NT.

5. Perform a sensitivity study to determine the contribution of the

individual uncertain parameters (i.e., the inputs to the T–H code)

{xj: j = 1, 2, . . ., ni} to the uncertainty in the outputs of the T–H

code {yl: l = 1, 2, . . ., no} (and in the performance function Y(x) of

the passive system) and consequently to the functional failure

probability of the T–H passive system. As is true for uncertainty

propagation (step 4. above), sensitivity analysis relies on multi­

ple (e.g., many thousands) evaluations of the code for different

combinations of system inputs.

In this work, we propose to tackle the computational burden

posed by the uncertainty propagation, failure probability estima­

tion and sensitivity analysis of steps 3.–5. above in two effective

ways (Section 4): from one side, efficient Monte Carlo Simulation

techniques can be employed to perform robust estimations with a

limited number of input samples (Section 4.1); from the other side,

fast­running, surrogate regression models (also called response

surfaces or meta­models) can be used to replace the long­running

T–H model code (Section 4.2).

4. Handling the computational issues associated to the

functional reliability assessment of nuclear passive systems

In this section, the two approaches considered for dealing with

the computational issue associated to the functional reliability

assessment of nuclear passive systems are summarized: in Section

4.1, various Monte Carlo Simulation techniques are synthetically

described; in Section 4.2, empirical regression modeling is pre­

sented as a means to build fast­running, surrogate models for

replacing the long­running T–H model codes. Both approaches are

critically reviewed on the basis of the available literature.

4.1. Advanced Monte Carlo Simulation methods

As previously stated, the computational issues described in the

previous Section 3 can be tackled from one side by resorting to effi­

cient simulation techniques that perform robust estimations with
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a limited number of input samples, thus with an associated low

computational time.

One such technique is the Importance Sampling (IS) method

(Kalos and Whitlock, 1986; Au and Beck, 2003a; Au, 2004; Schueller

et al., 2004). This technique amounts to replacing the original PDF

of the uncertain variables with an Importance Sampling Density

(ISD) chosen so as to generate samples that lead to failure more fre­

quently (Au and Beck, 2003a). IS has the capability of considerably

reducing the variance of the estimates compared with standard

MCS, provided that the ISD is chosen similar to the theoretical opti­

mal one. In practice, substantial insights on the system behavior

and extensive modeling work may be required to identify a “good”

ISD, e.g., by setting up complex kernel density estimators (Au and

Beck, 2003a), by identifying the design point of the problem (Au,

2004) or simply by tuning the parameters of the ISD based on

expert judgment and trial­and­error (Pagani et al., 2005). Overall,

this increases the effort associated to the simulation; furthermore,

there is always the risk that an inappropriate choice of the ISD may

lead to worse estimates compared to standard MCS (Schueller et al.,

2004).

Another technique is Stratified Sampling. This technique

requires dividing the sample space into several non­overlapping

subregions (referred to as “strata”) and calculating the probabil­

ity of each subregion; the (stratified) sample is then obtained by

randomly sampling a predefined number of outcomes from each

stratum (Helton and Davis, 2003; Cacuci and Ionescu­Bujor, 2004).

By so doing, the full coverage of the sample space is ensured

while maintaining the probabilistic character of random sampling.

A major issue related to the implementation of Stratified Sampling

lies in defining the strata and calculating the associated proba­

bilities, which may require considerable a priori knowledge. As a

remark, notice that the widely used event tree techniques in nuclear

reactor PRA can be seen as defining and implementing Stratified

Sampling of accident events and scenarios (Cacuci and Ionescu­

Bujor, 2004).

A popular compromise between plain random sampling (i.e.,

standard MCS) and Importance/Stratified Sampling is offered by

LHS, which is commonly used in PRA (Morris, 2000) for efficiently

generating random samples (MacKay et al., 1979; Helton and Davis,

2003; Helton et al., 2005; Sallaberry et al., 2008). The effectiveness

of LHS, and hence its popularity, derives from the fact that it pro­

vides a dense stratification over the range of each uncertain variable,

with a relatively small sample size, while preserving the desirable

probabilistic features of simple random sampling; moreover, there

is no necessity to determine strata and strata probabilities like in

Stratified Sampling (Helton and Davis, 2003). For these reasons LHS

is frequently adopted for efficiently propagating epistemic uncer­

tainties in PRA problems (NUREG­1150, 1990; Helton, 1998; Hofer

et al., 2002; Krzykacz­Hausmann, 2006; Helton and Sallaberry,

2009).

On the other hand, LHS is very efficient for estimating mean

values and standard deviations in complex reliability problems

(Olsson et al., 2003), but only slightly more efficient than stan­

dard MCS for estimating small failure probabilities (Pebesma and

Heuvelink, 1999), like those expected for passive safety systems.

Recently, SS (Au and Beck, 2001, 2003b) and LS (Koutsourelakis

et al., 2004; Pradlwarter et al., 2005) have been proposed as

advanced Monte Carlo Simulation methods for efficiently tack­

ling the multidimensional problems of structural reliability. These

methods have proved efficient also in the estimation of the func­

tional failure probability of T–H passive systems (Zio and Pedroni,

2009b,c, 2010). Indeed, structural reliability problems are also for­

mulated within a functional failure framework of analysis, in which

the systems fail whenever the load applied (i.e., the stress) exceeds

their capacity (i.e., the resistance) (Schueller and Pradlwarter,

2007). This makes the two methods suitable for application to the

functional reliability analysis of nuclear passive systems, where the

failure is specified in terms of one or more safety variables (e.g.,

temperatures, pressures, flow rates, . . .) crossing the safety thresh­

olds specified by the regulating authorities (Bassi and Marquès,

2008; Mackay et al., 2008; Mathews et al., 2008; Patalano et al.,

2008).

More specifically, in the SS approach, the functional failure prob­

ability is expressed as a product of conditional probabilities of some

chosen intermediate and thus more frequent events. The problem

of evaluating the small probabilities of functional failures is thus

tackled by performing a sequence of simulations of more frequent

events in their conditional probability spaces; the necessary con­

ditional samples are generated through successive Markov Chain

Monte Carlo (MCMC) simulations (Metropolis et al., 1953), in a way

to gradually populate the intermediate conditional regions until the

final functional failure region is reached.

In the LS method, lines, instead of random points, are used to

probe the failure domain of the high­dimensional problem under

analysis (Pradlwarter et al., 2005). An “important direction” is opti­

mally determined to point towards the failure domain of interest

and a number of conditional, one­dimensional problems are solved

along such direction, in place of the high­dimensional problem

(Pradlwarter et al., 2005). The approach has been shown to perform

better than standard MCS in a wide range of reliability applica­

tions (Koutsourelakis et al., 2004; Schueller et al., 2004; Pradlwarter

et al., 2005, 2007; Schueller and Pradlwarter, 2007; Lu et al., 2008;

Valdebenito et al., 2010; Zio and Pedroni, 2009c, 2010). Further­

more, if the boundaries of the failure domain of interest are not

too rough (i.e., almost linear) and the “important direction” is

almost perpendicular to them, the variance of the failure proba­

bility estimator could be ideally reduced to zero (Koutsourelakis

et al., 2004).6

In the present paper, particular focus is devoted to SS and LS:

for this reason, synthetic descriptions of these techniques and an

illustrative application to the functional failure analysis of a T–H

passive system are reported in Section 5.

4.2. Empirical regression modeling

Another way to tackle the computational issues associated to

the reliability analysis of nuclear passive systems is that of resorting

to fast­running, surrogate regression models, also called response

surfaces or meta­models, to approximate the input/output function

implemented in the long­running system model code, and then

substitute it in the passive system reliability analysis (Storlie and

Helton, 2008).

The construction of such regression models entails running the

system model code a predetermined, reduced number of times

(e.g., 50–100) for specified values of the uncertain input variables

and collecting the corresponding values of the output of interest;

then, statistical techniques are employed for calibrating/adapting

the internal parameters/coefficients of the response surface of the

regression model in order to fit the input/output data generated in

the previous step.

Putting it in a formal framework, let us consider a generic meta­

model to be built for performing the task of nonlinear regression,

i.e., estimating the nonlinear relationship between a vector of input

6 Apart from efficient MC techniques, there exist methods based on nonparamet­

ric order statistics (Wilks, 1942) that propagate uncertainties through mechanistic

T–H codes with reduced computational burden, especially if only one­ or two­sided

confidence intervals are needed for particular statistics (e.g., the 95th percentile)

of the outputs of the code. For example, the so­called coverage (Guba et al., 2003;

Makai and Pal, 2006) and bracketing (Nutt and Wallis, 2004) approaches can be used

to identify the number of sample code runs required to obtain a given confidence

level on the estimates of prescribed statistics of the code outputs.
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variables x = {x1, x2, . . . , xj, . . . , xni
} and a vector of output targets

y = {y1, y2, . . . , yl, . . . , yno }, on the basis of a finite (and possibly

small) set of input/output data examples (i.e., patterns), Dtrain ={(xp,

yp), p = 1, 2, . . ., Ntrain} (Zio, 2006). It can be assumed that the target

vector y is related to the input vector x by an unknown nonlinear

deterministic function �y(x) corrupted by a noise vector «(x), i.e.,

y(x) = �y(x) + ε(x) (3)

As introduced in Section 3, in the present case of T–H passive sys­

tem functional failure probability assessment the vector x contains

the relevant uncertain system parameters/variables, the nonlinear

deterministic function �y (x) represents the complex, long­running

T–H mechanistic model code (e.g., RELAP5­3D), the vector y(x) con­

tains the output variables of interest for the analysis and the noise

ε(x) represents the errors introduced by the numerical methods

employed to calculate �y (x) (Storlie et al., 2009); for simplicity,

in the following we assume ε(x) = 0 (Secchi et al., 2008). Thus, the

objective of the regression task is to estimate �y (x) in (3) by means

of a regression function f(x, w*) depending on a set of parameters

w* to be properly determined on the basis of the available data

set Dtrain. The algorithm used to calibrate the set of parameters

w* is obviously dependent on the nature of the regression model

adopted, but in general it aims at minimizing the mean (absolute

or quadratic) error between the output targets of the original T–H

code, yp = �y(xp), p = 1, 2, . . ., Ntrain, and the output vectors of the

regression model, ŷp = f (xp, w∗), p = 1, 2, . . ., Ntrain; for example,

the Root Mean Squared Error (RMSE) is commonly adopted to this

purpose (Zio, 2006).

Several examples can be found in the open literature concerning

the application of surrogate meta­models in reliability problems.

In Bucher and Most (2008), Gavin and Yau (2008) and Liel et al.

(2009), polynomial Response Surfaces (RSs) are employed to eval­

uate the failure probability of structural systems; in Arul et al.

(2009, 2010), Fong et al. (2009) and Mathews et al. (2009), lin­

ear and quadratic polynomial RSs are employed for performing

the reliability analysis of T–H passive systems in advanced nuclear

reactors; in Deng (2006), Hurtado (2007), Cardoso et al. (2008) and

Cheng et al. (2008), learning statistical models such as ANNs, Radial

Basis Functions (RBFs) and Support Vector Machines (SVMs) are

trained to provide local approximations of the failure domain in

structural reliability problems; in Volkova et al. (2008) and Marrel

et al. (2009), Gaussian meta­models are built to calculate global

sensitivity indices for a complex hydrogeological model simulating

radionuclide transport in groundwater.

However, when using the approximation of the system output

provided by an empirical regression model, an additional source of

model uncertainty is introduced which needs to be evaluated, par­

ticularly in safety critical applications like those related to nuclear

power plant technology. In this paper we propose to resort to

bootstrapped regression models (Efron and Thibshirani, 1993), i.e.,

ensembles of regression models, constructed on different data sets

bootstrapped from the original one (Zio, 2006; Storlie et al., 2009).

In fact, the ensemble framework of regression modeling allows

quantifying the model uncertainty associated to the estimates pro­

vided by the regression models in terms of confidence intervals.

The bootstrap method is a distribution­free inference method

which requires no prior knowledge about the distribution func­

tion of the underlying population (Efron and Thibshirani, 1993).

The basic idea is to generate samples from the observed data by

sampling with replacement from the original data set (Efron and

Thibshirani, 1993): each of these bootstrapped data sets is used to

build a bootstrapped regression model which is used to calculate

the reliability quantity of interest (e.g., the passive system failure

probability in this case). From the theory and practice of ensembles

of empirical models, it can be shown that the estimates given by

bootstrapped regression models is in general more accurate than

the estimate of the best regression model in the bootstrap ensemble

of regression models (Zio, 2006; Cadini et al., 2008).

Some examples of the application of the bootstrap method for

the evaluation of the uncertainties associated to the output of

regression models in safety­related problems can be found in the

literature: in Zio (2006), bootstrapped ANNs are trained to pre­

dict nuclear transients processes; in Cadini et al. (2008) and Secchi

et al. (2008), the model uncertainty, quantified in terms of a stan­

dard deviation, is used to “correct” the ANN output in order to

provide conservative estimates for important safety parameters in

nuclear reactors (i.e., percentiles of the pellet cladding tempera­

ture); finally, in Storlie et al. (2009), the bootstrap procedure is

combined with different regression techniques, e.g., Multivariate

Adaptive Regression Spline (MARS), Random Forest (RF) and Gradi­

ent Boosting Regression (GBR), to calculate confidence intervals for

global sensitivity indices of the computationally demanding model

of a nuclear waste repository.

In the present paper, particular emphasis is given to boot­

strapped ANN regression models: for this reason, a synthetic

description of this technique and an illustrative application to the

functional failure analysis of a T–H passive system is reported in

Section 5.

5. Recommendations for reducing the computational

burden associated to the functional reliability analysis of

nuclear passive systems

In this section (i) the different phases of the functional reliability

analysis of nuclear passive systems are considered: in particular,

the estimation of the functional failure probability (Section 5.1),

the uncertainty propagation (Section 5.2) and sensitivity analy­

sis (Section 5.3) phases; (ii) on the basis of the literature review

and the considerations made in the previous Section 4, techniques

are recommended to efficiently tackle the computational burden

associated to each of these analyses; (iii) guidelines on the recom­

mended techniques are provided, with illustrative applications to

the functional reliability analysis of a nuclear passive system of

literature (Pagani et al., 2005).

5.1. Functional failure probability estimation

If the analyst is only interested in an accurate and precise esti­

mation of the (typically small) functional failure probability of the

T–H passive system (modeled by a long­running, nonlinear and non­

monotonous T–H code), then the use of the Line Sampling technique

is strongly suggested.

In extreme synthesis, the computational steps of the algorithm

are (Pradlwarter et al., 2005, 2007):

1. From the original multidimensional joint probability density

function q( ·): ℜ n → [0, ∞ ), sample NT vectors {xk : k = 1, 2, . . .,

NT}, with xk =

{

xk
1
, xk

2
, . . . , xk

j
, . . . , xk

n

}

.

2. Transform the NT sample vectors {xk : k = 1, 2, . . ., NT} defined in

the original (i.e., physical) space into NT samples {�k : k = 1, 2, . . .,
NT}defined in the so­called “standard normal space”, where each

random variable is represented by an independent central unit

Gaussian distribution; also the PFs gx( · ) defined in the physical

space have to be transformed into g�( · ) in the standard normal

space (Huang and Du, 2006).

3. In the standard normal space, determine a unit vector ˛ ={˛1, ˛2,

. . ., ˛j, . . ., ˛n}
T (hereafter also called “important unit vector” or

“important direction”) pointing towards the failure domain F of

interest.

4. Reduce the problem of computing the high­dimensional failure

probability integral (2) to a number of conditional one­
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dimensional problems, solved along the “important direction”

˛ in the standard normal space: in particular, estimate NT con­

ditional “one­dimensional” failure probabilities {P̂(F)1D,k : k =

1, 2, . . . , NT }, corresponding to each one of the standard nor­

mal samples {�k : k = 1, 2, . . ., NT} obtained in step 2. Notice

that 2·NT or 3·NT system performance analyses (i.e., runs of the

T–H model code) have to be carried out to calculate each of

the NT conditional one­dimensional failure probability estimates

{P̂(F)1D,k : k = 1, 2, . . . , NT } (see Pradlwarter et al., 2005, 2007

for details).

5. Compute the unbiased estimator P̂(F)NT for the failure probabil­

ity P(F) and its variance �2
⌊

P̂(F)NT
⌋

as:

P̂(F)NT =

(

1

NT

)

NT
∑

k=1

P̂(F)1D,k, (4)

�2
⌊

P̂(F)NT
⌋

=

(

1

NT

)

(NT − 1)

NT
∑

k=1

(P̂(F)1D,k
− P̂(F)NT )

2
. (5)

The LS method here outlined can significantly reduce the vari­

ance (5) of the estimator (4) of the failure probability integral (2)

(Koutsourelakis et al., 2004); however, its efficiency depends on the

determination of the important direction ˛ (step 3. above).

With respect to this issue, four methods have been proposed in

the open literature to estimate the important direction ˛ for LS. In

Koutsourelakis et al. (2004), the important unit vector ˛ is com­

puted as the normalized “center of mass” of the failure domain F

of interest; in Koutsourelakis et al. (2004) and Valdebenito et al.

(2010), the important unit vector ˛ is taken as pointing in the

direction of the “design point” in the standard normal space; in

Pradlwarter et al. (2005), the direction of ˛ is identified as the nor­

malized gradient of the performance function g�( · ) in the standard

normal space; finally, in a previous paper by the authors (Zio and

Pedroni, 2010), the important direction ˛ is taken as the one mini­

mizing the variance (5) of the failure probability estimator (4). This

latter method produces more accurate and precise failure probabil­

ity estimates than those provided by the other three techniques of

literature and, for this reason, its adoption is recommended for the

estimation of the small failure probabilities of T–H passive systems.

In more details, in Zio and Pedroni (2010) the optimal important

direction ˛opt for Line Sampling is defined as the one minimizing

the variance �2
[

P̂(F)NT
]

(5) of the LS failure probability estima­

tor P̂(F)NT (4). Notice that ˛opt can be expressed as the normalized

version of a proper vector �opt in the standard normal space, i.e.,

˛opt = �opt/||�opt||2. Thus, in order to search for a physically mean­

ingful important unit vector ˛opt (i.e., a vector that optimally points

towards the failure domain F of interest), �opt should belong to the

failure domain F of interest, i.e., �opt ∈ F or, equivalently, g�(�opt) > 0.

In mathematical terms, the optimal LS important direction ˛opt

is obtained by solving the following nonlinear constrained mini­

mization problem:

Find ˛opt=�
opt

/||�
opt

||2 : �2
⌊

P̂(F)NT
⌋

= min
˛=�/||�||2

{

�2
⌊

P̂(F)NT
⌋}

subject to � ∈ F(i.e., g�(�) > 0).
(6)

The conceptual steps of the procedure for solving (6) are (Zio

and Pedroni, 2010):

1. An optimization algorithm proposes a candidate solution

˛ = �/||�||2 to (6): for example, probabilistic search algorithms

like Genetic Algorithms (GAs) (Konak et al., 2006; Marseguerra

et al., 2006) are particularly suitable for multivariate nonlinear

problems like those involving nuclear passive safety systems (Zio

and Pedroni, 2010).

2. The LS failure probability estimator P̂(F)NT (4) and the associ­

ated variance �2
⌊

P̂(F)NT
⌋

(5) are calculated using the unit vector

˛ = �/||�||2 proposed as important direction in step 1. above.

3. The variance �2
⌊

P̂(F)NT
⌋

obtained in step 2. above is the objec­

tive function to be minimized.

4. The feasibility of the proposed solution ˛ = �/||�||2 is checked

by evaluating the system PF g�(·) (i.e., by running the system

model code) in correspondence of �: if the proposed solution

˛ = �/||�||2 is not feasible (i.e., if � /∈ F or, equivalently, g�(�) ≤ 0), it

is penalized by increasing the value of the corresponding objective

function �2
⌊

P̂(F)NT
⌋

.

5. Steps 1.–4. are repeated until a predefined stopping criterion is

met and the optimization algorithm identifies the optimal unit

vector ˛opt = �opt/||�opt||2.

Notice that (i) the optimization search requires the itera­

tive evaluation of hundreds or thousands of possible solutions

˛ = �/||�||2 to (6) and (ii) 2·NT or 3·NT system performance analyses

(i.e., runs of the system model code) have to be carried out to calcu­

late the objective function �2
⌊

P̂(F)NT
⌋

for each proposed solution

(steps 2. and 3. above); as a consequence, the computational effort

associated to this technique would be absolutely prohibitive with a

system model code requiring hours or even minutes to run a single

simulation. Hence, for practical applicability, one has to resort to

a regression model as a fast­running approximator of the original

system model code for performing the calculations in steps 2. and

4. above, to make the computational cost acceptable.

The regression model suggested is the classical three­layered

feed­forward ANN (Bishop, 1995). In order to improve the accu­

racy in the approximation of the system PF g�(·) (needed for an

accurate estimation of the LS important direction ˛), the employed

ANN models can be trained by a properly devised sequential, two­

step algorithm based on error back­propagation, as proposed in Zio

and Pedroni (2010). In extreme synthesis, a first­step ANN regres­

sion model is built using a set of input/output data examples. The

resulting ANN model is used (instead of the original, long­running

system model code) to provide an approximation to the design point

of the problem: this is meant to provide an approximate, rough

indication of the real location of the failure domain F of interest.

Subsequently, a new data set is randomly generated centered on

the approximate design point previously identified: a second­step

ANN model is then constructed on these newly generated data set.

This should result in an ANN regression model which is more accu­

rate in proximity of the failure domain F of interest, thus providing

reliable estimates of the system PF g�(·) for the identification of the

LS important direction ˛ (Zio and Pedroni, 2010).

For completeness, we report some of the results obtained in a

previous work by the authors (Zio and Pedroni, 2010), in which the

optimized LS method described above is applied for the estimation

of the small functional failure probability P(F) of the passive decay

heat removal system of a Gas­cooled Fast Reactor (GFR) of literature

(Pagani et al., 2005) (notice that in this example P(F) = 3.541 × 10−4).

A detailed description of the system is not reported here for brevity:

the interested reader is referred to Pagani et al. (2005) for details.

Further, the benefits coming from the use of the proposed

method is shown by means of a comparison between the estimation

accuracies and precisions of the following simulation methods: (i)

standard MCS; (ii) LHS (Helton and Davis, 2003); (iii) standard IS (Au

and Beck, 2003a; Au, 2004); (iv) a combination of standard IS and

LHS (hereafter referred to as IS + LHS) (Olsson et al., 2003); (v) SS (Au

and Beck, 2001, 2003b); (vi) optimized LS (Zio and Pedroni, 2010);

(vii) a combination of optimized LS and LHS (hereafter referred to

as LS + LHS) (Zio and Pedroni, 2010). Part of the results used in the

comparison are derived from the manipulation of results previously

obtained by the authors (Zio and Pedroni, 2009b,c, 2010).
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Table 3

Values of the performance indicators ε̄ (8), w̄CI (10) and FOM (11) obtained with NT = 1850 samples by methods (i)–(vii) in the estimation of the functional failure probability

P(F) of the passive system in Pagani et al. (2005).

Functional failure probability (“True” value, P(F) = 3.541 × 10−4)

Method Nc,P(F) Nc,add Performance indicators (NT = 1850; S = 2000)

ε̄ (%) w̄CI (%) FOM

Standard MCS (i) NT = 1850 0 101.681 305.874 1.081 × 103

LHS (ii) NT = 1850 0 96.652 305.870 1.222 × 103

IS (iii) NT = 1850 110 3.803 18.601 6.159 × 105

IS + LHS (iv) NT = 1850 110 3.564 17.970 7.121 × 105

SS (v) NT = 1850 0 35.760 183.180 6.414 × 103

LS (vi) 3·NT = 5550 110 0.517 2.322 1.329 × 107

LS + LHS (vii) 3·NT = 5550 110 0.268 1.102 8.295 × 107

In order to properly represent the randomness of the probabilis­

tic simulation methods (i)–(vii) adopted and provide a statistically

meaningful comparison between their performances in the esti­

mation of the system failure probability P(F), S = 2000 independent

runs of each method have been carried out. In each simulation s = 1,

2, . . ., S, the percentage relative absolute error εs between the true

(reference) value of the system failure probability P(F) and the cor­

responding estimate P̂(F)NT
s obtained with NT samples is computed

as follows:

εs =
|P(F) − P̂(F)NT

s |

P(F)
× 100, s = 1, 2, . . . , S (7)

The accuracies of the simulation methods of interest in the esti­

mation of P(F) are then compared in terms of the mean percentage

relative absolute error ε̄ over S = 2000 runs:

ε̄ =

(

1

S

)

S
∑

s=1

εs (8)

The quantity (8) provides a measure of the percentage relative

absolute error in the estimation of the failure probability P(F) made

on average in a single run by the simulation method with NT samples;

obviously, the lower ε̄, the higher the accuracy of the method.

The failure probability estimates P̂(F)NT
s , s = 1, 2, . . . , S, are then

used to build a bootstrapped 95% Confidence Interval (CI) for the

failure probability estimator P̂(F)NT , i.e.,
⌊

L
CI,P̂(F)NT , U

CI,P̂(F)NT

⌋

(9)

where U
CI,P̂(F)NT and L

CI,P̂(F)NT are the 2.5th and 97.5th percentiles,

respectively, of the bootstrapped empirical distribution of the fail­

ure probability estimator P̂(F)NT . The percentage relative width w̄CI

of the bootstrapped 95% CI of the LS failure probability estimator

P̂(F)NT is then computed as

w̄CI =
U

CI,P̂(F)NT − L
CI,P̂(F)NT

P(F)
× 100 (10)

Obviously, the lower w̄CI , the higher the precision of the method.

Finally, in addition to the accuracy and precision of the failure

probability estimator, also the computational time associated to

the simulation method has to be taken into account. To this aim,

the FOM can be used:

FOM =
1

�2(P̂(F)NT )tcomp

≈
1

�̂2(P̂(F)NT )tcomp

(11)

where tcomp is the computational time required by the simulation

method and �2
⌊

P̂(F)NT
⌋

is defined in (5). Since �2(P̂(F)NT ) ∝ NT and

approximately tcomp ∝ NT, the FOM is independent of NT. Obviously,

the higher the FOM, the higher the computational efficiency of the

method.

Table 3 reports the values of the performance indicators ε̄ (8),

w̄CI (10) and FOM (11) obtained with NT = 1850 samples by the sim­

ulation methods (i)–(vii) (notice that since NT is the same for all the

simulation methods, performance indicators ε̄ (8) and w̄CI (10) can

be compared fairly). The number of T–H code runs required by each

method is also reported: actually, when a single run of the system

model code lasts several hours (which is often the case for pas­

sive safety systems) the total number of simulations is the critical

parameter which determines the overall computational cost (i.e.,

tcomp) associated to the method. In particular, Nc,P(F) is the num­

ber of code runs used by the algorithm only to estimate the failure

probability P(F); instead, Nc,add is the number of additional code runs

required to set up the method: for example, for IS and IS + LHS, Nc,add

code runs are used to build the ISD by identification of the “design

point” of the problem (Au, 2004); instead, for LS and LS + LHS, Nc,add

code runs are used to identify the important direction ˛ by mini­

mization of the variance of the LS failure probability estimator (Zio

and Pedroni, 2010).

It can be seen that the optimized Line Sampling methods (i.e.,

both LS and LS + LHS) provide more accurate and precise failure

probability estimates than the other methods: actually, the mean

percentage errors ε̄ are about 13–380 times lower than those of

the other methods, whereas the percentage 95% CI widths w̄CI

are about 16–278 times lower than those of the other methods.

Finally, although the computational cost associated to the opti­

mized Line Sampling methods is higher than that of the other

methods (because the total number of T–H code runs is more than

3 times larger), the overall computational efficiency of the method

is significantly higher: actually, the FOM is about 2–4 orders of mag­

nitude larger than that of the other methods.

The previous example has served to demonstrate that the opti­

mized LS methods indeed provide more accurate and precise failure

probability estimates than the other simulation methods consid­

ered. However, this must be achieved with a small number of

samples (and, thus, of T–H model evaluations: say, few tens or

hundreds depending on the application), because in practice the

T–H computer codes require several hours to run a single sim­

ulation (Fong et al., 2009). Thus, we consider here a practical

situation where the number Nc,P(F) of T–H code runs allowed for

estimating the small failure probability P(F) = 3.541 × 10−4 is set

to few tens (e.g., 30 in this case). The results are summarized in

Table 4.

It can be seen that even in this case the optimized Line Sampling

methods (i.e., both LS and LS + LHS) provide more accurate and pre­

cise failure probability estimates than the other methods: actually,

the mean percentage errors ε̄ are about 6–44 times lower than those

of the other methods, whereas the percentage 95% CI widths w̄CI are

about 6–163 times lower than those of the other methods. Finally,

the global efficiency of the method is significantly higher: actually,

the FOM is about 1–3 orders of magnitude larger than that of the

other methods.

These results confirm the recommendation of adopting this

method.
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Table 4

Values of the performance indicators ε̄ (8), w̄CI (10) and FOM (11) obtained with Nc,P(F) = 30 T–H code runs by methods (i)–(vii) in the estimation of the functional failure

probability P(F) of the passive system in Pagani et al. (2005).

Functional failure probability (“True” value, P(F) = 3.541 × 10−4)

Method NT Nc,add Performance indicators (Nc,P(F) = 30; S = 2000)

ε̄ (%) w̄CI (%) FOM

Standard MCS (i) Nc,P(F) = 30 0 206.150 3.943 × 103 911.541

LHS (ii) Nc,P(F) = 30 0 183.080 3.492 × 103 1.162 × 103

IS (iii) Nc,P(F) = 30 110 29.049 139.280 1.474 × 105

IS + LHS (iv) Nc,P(F) = 30 110 27.182 134.170 1.679 × 105

SS (v) / 0 / / /

LS (vi) Nc,P(F)/3 = 10 110 7.016 36.278 2.338 × 106

LS + LHS (vii) Nc,P(F)/3 = 10 110 4.684 24.154 5.029 × 106

5.2. Uncertainty analysis

The objective of the uncertainty analysis is to propagate the

uncertainty associated to the input parameters x = {x1, x2, . . ., xj, . . .,
xni} through the deterministic, long­running T–H code in order to

quantify the uncertainty associated to the output variables y = {y1,

y2, . . ., yl, . . ., xno} of interest and to the performance function Y(x)

of the passive system (e.g., computing PDFs, CDFs and percentiles).

In all fairness, notice that the strongly recommended LS tech­

nique allows only the (efficient) calculation of the failure probability

of the passive system, but it does not allow a complete uncertainty

propagation: actually, no PDFs, CDFs or percentiles of the T–H code

outputs of interest can be identified in a single simulation run. Thus,

if the analyst is interested in propagating the uncertainty onto the

output, two options are recommended:

1. in the (unlikely) case that the T–H model is sufficiently simple

and requires seconds or minutes to run, the use of the SS algorithm

may represent the optimal choice (Section 5.2.1);

2. in those (more realistic) cases where the T–H model requires

many hours, or days, to perform a single evaluation, the use

of fast­running surrogate regression models (e.g., bootstrapped

ANNs, in this work) instead of the long­running original T–H code

seems mandatory (Section 5.2.2).

These recommendations are further explained and motivated

below.

5.2.1. Uncertainty propagation using Subset Simulation

The idea underlying the SS method is to convert the simulation

of an event (e.g., the rare failure event) into a sequence of simula­

tions of intermediate conditional events corresponding to subsets

(or subregions) of the uncertain input parameter space (for exam­

ple, if a passive decay heat removal system in a nuclear reactor is

assumed to fail when the fuel peak cladding temperature exceeds

725 ◦C, then plausible intermediate conditional events could be

represented by the peak cladding temperature exceeding 350, 500

and 650 ◦C, respectively). During simulation, the conditional sam­

ples (lying in the intermediate subsets or subregions) are generated

by means of properly designed Markov chains; by so doing, the

conditional samples gradually populate the successive intermedi­

ate subsets (or subregions) up to the target (failure) region (Au and

Beck, 2001, 2003b).

In synthesis, the SS algorithm proceeds as follows. First, N

vectors {xk
0

: k = 1, 2, . . . , N} are sampled by standard MCS, i.e.,

from the original probability density function q(·). The correspond­

ing values of the response variable {Y(xk
0
) : k = 1, 2, . . . , N} are

then computed and the first threshold value y1 (identifying the

first intermediate conditional event) is chosen as the (1 − p0)Nth

value in the increasing list of values {Y(xk
0
) : k = 1, 2, . . . , N}. With

this choice of y1, there are now p0N samples among {xk
0

: k =

1, 2, . . . , N}whose response Y(x) lies in the intermediate subregion

F1 = {x: Y(x) > y1}. Starting from each one of these samples, MCMC

simulation is used to generate (1 − p0)N additional conditional sam­

ples in the intermediate subregion F1 = {x: Y(x) > y1}, so that there

are a total of N conditional samples {xk
1

: k = 1, 2, . . . , N}∈ F1. Then,

the intermediate threshold value y2 is chosen as the (1 − p0)Nth

value in the ascending list of {Y(xk
1
) : k = 1, 2, . . . , N} to define

F2 = {x: Y(x) > y2}. The p0N samples lying in F2 function as ‘seeds’ for

sampling (1 − p0)N additional conditional samples lying in F2, mak­

ing up a total of N conditional samples {xk
2

: k = 1, 2, . . . , N}∈ F2.

This procedure is repeated until the samples lying in the inter­

mediate subregion Fm−1 = {x: Y(x) > ym−1} are generated to yield

ym > y as the (1 − p0)Nth value in the ascending list of {Y(xk
m−1

) :

k = 1, 2, . . . , N} (Au and Beck, 2001, 2003b; Au, 2005; Au et al.,

2007).

The superior efficiency of SS with respect to standard MCS in

the uncertainty propagation task has been widely demonstrated

in the open literature: the interested reader may refer to Au and

Beck (2001, 2003b) for mathematical details, to Ching et al. (2005),

Katafygiotis and Cheung (2005,2007), Au (2007), Au et al. (2007)

and Pradlwarter et al. (2007) for illustrative applications to high­

dimensional (i.e., n ≥ 100) structural reliability problems and to Zio

and Pedroni (2009b) for an application to the functional failure

analysis of a T–H passive system.

For completeness, we report some of the results previously

obtained by the authors (Zio and Pedroni, 2009b) in the use of

the SS method to propagate the uncertainties through the T–H

model of the passive decay heat removal system of a GFR analyzed

in the previous Section 5.1 (Pagani et al., 2005). Nine uncertain

input parameters {xj: j = 1, 2, . . ., 9} are taken into account and

two safety variables {yl: l = 1, 2} (i.e., the hot­ and average­channel

temperatures of the naturally circulating coolant leaving the core)

are considered as outputs of interest of the T–H system model

code. The output variables {yl: l = 1, 2} are then used to generate

a single­valued system performance indicator (or critical response

variable) Y(x) for the evaluation of passive system failure; further

details can be found in Pagani et al. (2005) and Zio and Pedroni

(2009b).

The performance of SS is compared to that of LHS: notice that

LHS has been chosen as benchmark method due to its popularity

and wide use in PRA (Helton and Davis, 2003; Sallaberry et al., 2008;

Helton and Sallaberry, 2009). Following the approach presented in

Au et al. (2007) and subsequently used in Zio and Pedroni (2009b),

Fig. 1, left shows the empirical Cumulative Distribution Function

(CDF) of the performance function Y(x) of the passive decay heat

removal system considered; in addition, Fig. 1, right focuses on the

portion of CDF where the cumulative probability ranges between

0.999 and 1. The results produced by SS with a total of NT = 1850

samples (i.e., T–H code runs) are shown in solid lines, whereas

those produced by LHS with the same number of samples/T–H code

runs (i.e., NT = 1850) are shown in dashed lines. The dot­dashed
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lines correspond to the results obtained by LHS with NT = 500,000

samples/T–H code runs: this number of samples is largely sufficient

for efficiently estimating the CDF even where the cumulative prob­

ability ranges between 0.999 and 1: thus, the corresponding results

are taken as benchmarks.

Notice that the results from SS are satisfactorily close to the

reference solution in all the probability ranges considered. On the

contrary, LHS with 1850 samples is not able to produce accurate

results for values of the cumulative probability very close to 1 (Fig. 1,

right). This is due to the fact that with 1850 samples there are on

average only 1850(1 − 0.999) = 1850 × 0.001 ∼ 2 samples in Fig. 1,

right. In contrast, SS (due to successive conditional MCMC simu­

lations) generates 1850 and 500 conditional samples in Fig. 1, left

and right, respectively, giving enough information for an efficient

estimation of the CDF.

Then, the 99.9th percentile of the performance function Y(x) of

the passive system is estimated by SS with 1850 samples (obtaining

1120.1 ◦C) and LHS with 1850 (obtaining 1095.3 ◦C) and 500,000

samples (obtaining 1118.9 ◦C). It can be seen that the estimate of

the 99.9th percentile produced by SS with 1850 samples is very

accurate and close to the reference one, i.e., the one computed by

LHS with 500,000 samples: however, this result is obtained with a

computational effort which is 500,000/1850 ≈ 270 times lower; on

the contrary, the percentile identified by LHS with 1850 samples is

much lower than the reference one.

Finally, to assess quantitatively the statistical properties and the

precision of the 99.9th percentile estimates produced by SS with

1850 samples and LHS with 1850 samples, S = 100 independent

runs have been carried out for each simulation method and the

empirical 95% Confidence Intervals (CIs) of the 99.9th percentile

estimates thereby obtained have been computed: the obtained CIs

are [1068.9, 1183.0] and [1012.4, 1242.1] for SS and LHS, respec­

tively. It can be seen that the width of the 95% CI produced by SS is

about 2 times lower than that of LHS: thus, conversely, the precision

of the estimate is 2 times higher.

As a final remark, it is worth noting that for SS (differently from

LS) there does not seem to exist any indication that it is possible to

reduce the number of samples (i.e., the number of T–H model code

evaluations) to below a few hundreds. Actually, referring to the

computational flow of SS described above, at least N = 100 samples

have to be generated in each subset Fi, i = 1, 2, . . ., m, to produce

reliable estimates in the uncertainty propagation phase: thus, if

high quantiles (e.g., the 99.9th or 99.99th percentiles) have to be

estimated (which is often the case for passive safety systems), then

an amount of about N × m = 100 × 3 = 300 or N × m = 100 × 4 = 400

samples have to be generated, respectively. As a consequence, if

the T–H model requires many hours, or days, to perform a single

evaluation, SS is not suitable.

5.2.2. Uncertainty propagation using bootstrapped Artificial

Neural Networks

In those cases where the T–H model requires many hours, or

days, to perform a single evaluation, the use of fast­running sur­

rogate regression models instead of the long­running original T–H

code becomes somewhat mandatory: because calculations with the

surrogate model can be performed quickly, the problem of long

simulation times is circumvented.

Here, the use of ANNs is recommended for this task. In extreme

synthesis, ANNs are computing devices inspired by the function

of the nerve cells in the brain (Bishop, 1995). They are com­

posed of many parallel computing units (called neurons or nodes)

arranged in different layers and interconnected by weighed con­

nections (called synapses). Each of these computing units performs

a few simple operations and communicates the results to its neigh­

bouring units. From a mathematical viewpoint, ANNs consist of

a set of nonlinear (e.g., sigmoidal) basis functions with adapt­

able parameters w* that are adjusted by a process of training (on

many different input/output data examples), i.e., an iterative pro­

cess of regression error minimization (Rumelhart et al., 1986).

ANNs have been demonstrated to be universal approximants of

continuous nonlinear functions (under mild mathematical condi­

tions) (Cybenko, 1989), i.e., in principle, an ANN model with a

properly selected architecture can be a consistent estimator of any

continuous nonlinear function, e.g., any nonlinear T–H code simu­

lating the system of interest. Further details about ANN regression

models are not reported here for brevity; the interested reader

may refer to the cited references and the copious literature in

the field. The particular type of ANN considered in this paper is

the classical three­layered feed­forward ANN trained by the error

back­propagation algorithm.

Notice that the recommendation of using ANN regression

models is mainly based on (i) theoretical considerations about

the (mathematically) demonstrated capability of ANN regression

models of being universal approximants of continuous nonlinear

functions (e.g., any nonlinear T–H code simulating the system of

interest) (Cybenko, 1989) and (ii) the experience of the authors’ in

the use of ANN regression models for propagating the uncertain­

ties through T–H model codes simulating passive safety systems

(Pedroni et al., 2010; Zio et al., 2010): for example, in Pedroni et al.

(2010), both the accuracy and precision of ANN regression models

in estimating the percentiles of the temperature of the naturally cir­

culating coolant in a passive decay heat removal system have been

compared and shown to be superior to those of simple quadratic

Response Surface (RS) regression models. Since no further compar­

isons with other types of regression models have been performed

by the authors yet, no additional proofs of the superiority of ANNs

with respect to other regression models can be provided at present,

in general terms.

To evaluate the additional source of model uncertainty intro­

duced by the ANN empirical regression model the use of an

ensemble of ANN regression models, constructed on different data

sets bootstrapped from the original one is recommended (Zio,

2006; Storlie et al., 2009). The bootstrap method is a distribution­

free inference method which requires no prior knowledge about

the distribution function of the underlying population (Efron and

Thibshirani, 1993). The basic idea is to generate a sample from

the observed data by sampling with replacement from the original

data set (Efron and Thibshirani, 1993): each of these bootstrapped

data sets is used to build a bootstrapped regression model which

is used to calculate the quantity of interest (e.g., in this case of

uncertainty propagation, the quantity of interest may be repre­

sented by the vector y of the outputs of the T–H model code, by

the performance function of the passive system Y(x) and by their

percentiles). In this context, the bootstrap algorithm is used to

quantify, in terms of confidence intervals, the model uncertainty

associated to the estimates provided by the ANN regression mod­

els. Recall also that from the theory and practice of ensemble

empirical models, it can be shown that the estimates given by

bootstrapped ANN regression models are in general more accurate

than the estimate of the best ANN regression model in the boot­

strap ensemble of ANN regression models (Zio, 2006; Cadini et al.,

2008).

In synthesis, the following steps must be undertaken to per­

form uncertainty propagation by means of bootstrapped ANNs (Zio,

2006; Storlie et al., 2009):

1. Generate a data set Dtrain of training input/output data examples

by sampling a (possibly reduced) number Ntrain of independent

input parameters values xp, p = 1, 2, . . ., Ntrain, and calculating the

corresponding set of Ntrain output vectors yp = �y(xp) through the

mechanistic T–H system code.
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2. Generate a set Dval of validation input/output data examples

(different from Dtrain) by sampling a (possibly reduced) num­

ber Nval of independent input parameters values xp, p = 1, 2, . . .,
Nval, and calculating the corresponding set of Nval output vectors

yp = �y(xp) through the mechanistic T–H system code.

3. Build an ANN regression model f(x, w*) using the training and

validation data sets Dtrain and D
val; in particular, the training data

set Dtrain is used to calibrate the internal parameters w* of the

regression model, whereas the validation data set D
val is used to

monitor the accuracy of the ANN model during the training pro­

cedure in order to avoid overfitting of the training data according

to the so­called early stopping method. In practice, the RMSE is

computed on Dval at different iterative stages of the training pro­

cedure: at the beginning of training, this value decreases as does

the RMSE computed on the training set Dtrain; later in the train­

ing, if the ANN regression model starts overfitting the data, the

RMSE calculated on the validation set Dval starts increasing and

training must be stopped (Bishop, 1995).

4. Measure the accuracy of the constructed regression model con­

structed in step 3. by computing proper numerical figures (e.g.,

the commonly adopted coefficient of determination R2 and

RMSE) for each output yl, l = 1, 2, . . ., no, on a new data set

Dtest ={(xp, yp), p = 1, 2, . . ., Ntest} of size Ntest, purposely gener­

ated for testing the regression model built (Marrel et al., 2009),

and thus different from those used for training and validation.

5. Use the regression model f(x, w*), in place of the original T–H

model code, to provide a point estimate Q̂ of the quantity Q of

interest (e.g., in this case of uncertainty propagation, the quantity

Q may be represented by the vector y of the outputs of the T–H

model code, by the performance function of the passive system

Y(x) and by their percentiles).

6. Build an ensemble of B (e.g., B = 500–1000) regression models

{f b(x, w∗
b
), b = 1, 2, . . . , B} on the basis of bootstrap data sets

Dtrain,b ={(xp,b, yp,b), p = 1, 2, . . ., Ntrain}, b = 1, 2, . . ., B, generated by

performing random sampling with replacement from the original

training data set Dtrain ={(xp, yp), p = 1, 2, . . ., Ntrain}.

7. Use each of the bootstrapped regression models f b(x, w∗
b
), b = 1,

2, . . ., B, to calculate an estimate Q̂b, b = 1, 2, . . ., B, for the quantity

Q of interest: by so doing, a bootstrap­based empirical probability

distribution for the quantity Q is produced which is the basis for

the construction of the corresponding confidence intervals.

8. Calculate the so­called Bootstrap Bias Corrected (BBC) point esti­

mate Q̂BBC for Q (see Baxt and White, 1995 for details) and

the corresponding two­sided BBC­100 × (1 − ˛)% CI (using the

bootstrap­based empirical probability distribution for the quan­

tity Q obtained in step 7. above).

The complete and detailed bootstrap algorithm is not reported

here for brevity; some technical details can be found in Efron and

Thibshirani (1993), Zio (2006), Cadini et al. (2008), Secchi et al.

(2008), Storlie et al. (2009), Pedroni et al. (2010) and Zio et al.

(2010).

For completeness, we report some of the results obtained in a

previous work by the authors (Pedroni et al., 2010), in which boot­

strapped ANNs are used to propagate the uncertainties through

the T–H model of Section 5.1 (Pagani et al., 2005); again, the per­

formance of bootstrapped ANNs is compared to that of LHS.

Fig. 2, left shows the empirical CDF of the performance func­

tion Y(x) of the passive decay heat removal system considered; in

addition, Fig. 2, right focuses on the portion of CDF where the cumu­

lative probability ranges between 0.95 and 1. The results obtained

with NT = 500,000 estimations from B = 1000 by bootstrapped ANNs

(built on Ncode = Ntrain + Nval + Ntest = 80 + 20 + 10 = 110 input/output

examples, i.e., T–H code runs) are shown in solid lines, whereas

those produced by LHS with the same number of T–H code runs (i.e.,

NT = Ncode = 110) are shown in dashed lines. Notice that the com­

parison between these two approaches is fair because the number

Ncode of runs of the original T–H system model code (and thus the

associated overall computational effort) is the same (i.e., Ncode = 110);

however, for LHS the few system model code runs are directly used

to produce the CDF of interest, whereas for bootstrapped ANNs they

are used to build the regression models, which are in turn employed

to produce the CDF estimate. The dot­dashed lines correspond to

the results obtained by LHS with NT = Ncode = 500,000 samples (i.e.,

T–H code runs): this number of samples is largely sufficient for

efficiently estimating the CDF even where the cumulative proba­

bility ranges between 0.95 and 1: thus, the corresponding results

are taken as benchmarks.

The bootstrapped ANNs are shown to be quite reliable and accu­

rate, as the CDF produced is satisfactorily close to the reference one

(i.e., the one produced by LHS with NT = Ncode = 500,000 samples) in

all the probability ranges considered. Also, the bootstrapped ANN

results are obtained at a much lower computational effort: actually,

the number Ncode of T–H code runs (i.e., 110) is about 4500 times

lower than that of the reference case (i.e., 500,000). The overall

CPU time required by the use of bootstrapped ANNs (i.e., on aver­

age 2.22 h) is about 180 times lower than that required by the use

of the original T–H model code (i.e., on average 409 h).

Further, it can be seen that the bootstrapped ANNs built on

Ncode = Ntrain + Nval + Ntest = 80 + 20 + 10 = 110 input/output examples

(i.e., T–H code runs) outperform LHS with the same number

Ncode = 110 of T–H code simulations: actually, LHS is not able to

produce accurate results, in particular for values of the cumulative

probability very close to 1 (Fig. 2, right).

The two approaches are further compared in the estimation

of the 95th percentile of the performance function Y(x) of the

passive decay heat removal system. The BBC point estimate of

the 95th percentile of the performance function Y(x) obtained

with NT = 500,000 estimations from B = 1000 bootstrapped ANNs

and with NT = 110 and 500,000 estimations from LHS are 802.5 ◦C,

824.1 ◦C and 794.2 ◦C, respectively. It can be seen that the estimate

produced by the bootstrapped ANNs is quite close to the reference

one, i.e., the one obtained by LHS with 500,000 samples: the corre­

sponding percentage Relative Absolute Error (RAE) is 1.04%; on the

contrary, the percentile identified by LHS with NT = 110 samples is

considerably larger: the corresponding percentage RAE is 3.74%. It

can be seen that the percentage RAE produced by the bootstrapped

ANNs is 3.6 times lower than that of LHS with NT = 110 samples:

thus, conversely, the accuracy of the estimate is 3.6 times higher.

Finally, to assess quantitatively the statistical properties and the

precision of the 95th percentile estimates produced by the methods

considered, the 95% CI associated to the estimates are evaluated. In

particular, S = 1000 independent runs of LHS with NT = Ncode = 110

samples are carried out and the empirical 95% CI of the 95th per­

centile estimate thereby obtained has been computed: it turns out

to be [785.6, 868.2]; on the contrary, the BBC 95% CI is produced

by B = 1000 bootstrapped ANN regression models constructed on

Ncode = 110 data examples according to steps 1.–8. above: it turns

out to be [777.06, 818.92]. It can be seen that the width of the CI

produced by bootstrapped ANNs is about 2 times lower than that

of LHS: thus, conversely, the precision of the estimate is 2 times

higher.

5.3. Sensitivity analysis

For safety­critical systems, like nuclear passive systems, the

task of sensitivity analysis is fundamental for reliability/failure

probability assessment and safety decision­making and assurance

(Helton and Sallaberry, 2009). In particular, in the functional fail­

ure analysis of a T–H passive system, sensitivity analysis can be a

useful tool for identifying the uncertain parameters (i.e., the uncer­

tain inputs to the T–H code) that contribute most to the variability
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of the model outputs (i.e., the coolant outlet temperatures): this

information is important for the identification of those parameter

and hypothesis uncertainties that are most relevant in determin­

ing system failure (Saltelli et al., 2008; Volkova et al., 2008; Marrel

et al., 2009).

In general, the sensitivity analysis outcomes provide two impor­

tant insights. On the one side, the analyst is able to identify those

parameters/variables whose epistemic uncertainty plays a major

role in determining the functional failure of the T–H passive sys­

tem: consequently, his/her efforts can be focused on increasing the

state­of­knowledge on these important parameters/variables and

the related physical phenomena (for example, by the collection of

experimental data one may achieve an improvement in the state­

of­knowledge on the correlations used to model the heat transfer

process in natural convection and a corresponding reduction in the

uncertainty); on the opposite side, the analyst can identify those

parameters/variables that are not important and may be excluded

from the modeling and analysis.

The options recommended for performing sensitivity analysis

are the same as those proposed for uncertainty analysis (Section

5.2), as explained below.

5.3.1. Sensitivity analysis using Subset Simulation

The Markov chain samples generated by SS can be used not only

for estimating the conditional probabilities but also to infer the

probable scenarios that will occur in the case of failure (Au, 2005).

Intuitively, from the comparison of the probability density function

q(xj|F) of the uncertain parameter xj, j = 1, 2, . . ., ni, conditional to the

occurrence of failure F, with the unconditional probability density

function q(xj), an indication can be obtained on how important is

the parameter xj in affecting the system failure. Formally, for any

given value of xj the Bayes’ theorem reads,

P(F |xj) =
q(xj|F)

q(xj)
P(F), j = 1, 2, ..., ni (12)

so that P(F|xj) is insensitive to xj when q(xj|F) ∼ q(xj), i.e., when the

conditional probability density function q(xj|F) is similar in shape

to the PDF q(xj) (Au and Beck, 2003b; Au, 2005; Au et al., 2007).

The effectiveness of this approach for sensitivity analysis has been

demonstrated by a number of studies conducted in the field of

structural reliability: for example, in Au and Beck (2003a,b) and Au

(2005), the approach has been effectively used to address a 1500­

dimensional problem concerning a steel frame subject to stochastic

ground motion; in Au et al. (2007) the method has been applied to

perform a compartment fire risk analysis where seven uncertain

parameters were considered, whereas in Zio and Pedroni (2009b)

it has been applied to perform the sensitivity analysis of the model

of Section 5.1.

In this latter work, the sensitivity of the passive system perfor­

mance to the ni = 9 uncertain input parameters has been studied by

examining the change of the sample distributions q(xj|Fi), j = 1, 2,

. . ., ni, i = 1, 2, . . ., m, at different conditional levels Fi, i = 1, 2, . . .,
m. The histograms of the conditional samples of two of the nine

uncertain parameters (i.e., x2, the pressure level established in the

guard containment after the Loss of Coolant Accident (LOCA), and

x8, the friction factor in mixed convection) at different conditional

levels for a single SS run are shown in Fig. 3, left. It can be seen

that the performance of the passive system is strongly sensitive to

the pressure level established in the guard containment after the

LOCA, as indicated by the significant leftward shift of its empirical

conditional distribution (histograms) from the unconditional one

(solid lines). A slight sensitivity of the passive system performance

is also observed with respect to the correlation errors in the friction

factor (rightward shift) in mixed convection.

The information contained in the empirical conditional distribu­

tions q(xj|Fi), j = 1, 2, . . ., ni, i = 1, 2, . . ., m, can then be used to refine

the sensitivity information by obtaining the distribution of the sys­

tem failure probability conditional on the values of the individual

uncertain input parameters, i.e., P(F|xj), according to (12) (Fig. 3,

right): this information is relevant because it quantifies how the

failure probability P(F) of the passive system would change if the

value of the uncertain parameter xj were set to a given value (e.g.,

if its epistemic uncertainty were reduced).

Note that SS presents the advantage over other standard

techniques of sensitivity analysis, of being directly “embedded”

in the computation of the failure probability: the SS algo­

rithm produces the empirical conditional distributions of Fig. 3

during the simulation that is performed to compute the func­

tional failure probability of the passive system. In other words,

while estimating the functional failure probability of the sys­

tem, sensitivity analysis results are produced that can be readily

visualized for identification and ranking of the most important

variables.

5.3.2. Sensitivity analysis using bootstrapped Artificial Neural

Networks

Bootstrapped ANNs are used to replace the original T–H code

in the multiple (e.g., many thousands) system performance eval­

uations (for different combinations of system inputs) required by

sensitivity analysis; thus, in principle, bootstrapped ANNs could be

used in the development of any of the sensitivity analysis methods

available in the open literature.

Here we recommend the use of bootstrapped ANNs for com­

puting first­ and total­order Sobol sensitivity indices (Sobol, 1993)

for the vector y of the outputs of the T–H code and for the pas­

sive system performance function Y(x): see Zio et al. (2010) for a

preliminary analysis of this kind.

By definition, the first­order Sobol sensitivity index Sl
j
, j = 1, 2,

. . ., ni, l = 1, 2, . . ., no, quantifies the proportion of the variance of

the output yl, l = 1, 2, . . ., no, that can be attributed to the vari­

ance of the uncertain input variable xj alone, i.e., without taking

into account interactions with other input variables; on the con­

trary, the total­order Sobol sensitivity index Sl
Tj

, j = 1, 2, . . ., ni, l = 1,

2, . . ., no, quantifies the proportion of the variance of the output yl,

l = 1, 2, . . ., no, that can be attributed to the variance of the uncer­

tain input variable xj taking into account the interactions (of all the

orders) with all the other input variables. A thorough description

of these sensitivity measures goes beyond the scope of this work:

mathematical details can be found in Saltelli (2002a,b) and Saltelli

et al. (2008).

As pointed out in Saltelli (2002a), the sensitivity indices Sl
j

and

Sl
Tj

have the advantage of being global because the effect of the

entire distribution of the parameter whose uncertainty importance

is evaluated, is considered; moreover, this sensitivity index is also

“model free” because its computation is independent from assump­

tions about the model form, such as linearity, additivity and so on.

The drawback of this approach relies in the computational burden

associated to its calculation: actually, thousands or millions of sys­

tem model evaluations are frequently required for the evaluation

of Sobol indices through Monte Carlo­based techniques (Saltelli,

2002a; Saltelli et al., 2008).

For completeness, we complete the results obtained in a previ­

ous work by the authors (Zio et al., 2010) (in which bootstrapped

ANNs were applied for computing first­order Sobol indices for one

of the outputs of the model of Section 5.1) by computing first­ and

total­order Sobol indices SY
j

and SY
Tj

for the performance function

Y(x) of the model of the T–H passive system of Section 5.1. The algo­

rithm proposed by Saltelli (2002a) has been implemented to obtain

the “true” (i.e., reference) values of the first­ and total­order Sobol
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Fig. 3. Sensitivity analysis by SS. Left: empirical conditional distributions of uncertain input parameters x2 and x8 at different conditional levels (histograms) compared to

their unconditional distributions (solid lines); right: distribution of the system failure probability conditional on the values of the individual uncertain input parameters x2

and x8 , i.e., P(F|x2) and P(F|x8).

sensitivity indices SY
j

and SY
Tj

for the input variables xj, j = 1, 2, . . .,

9: these values obtained with NT = 110,000 runs of the original T–H

model code are reported for reference in Table 5 (in parentheses).

Table 5 reports also the BBC point estimates ŜY
j,BBC

and

ŜY
Tj,BBC

for SY
j

and SY
Tj

, j = 1, 2, . . ., 9, obtained with NT = 110,000

estimations from B = 1000 bootstrapped ANN models built

on Ncode = Ntrain + Nval + Ntest = 80 + 20 + 10 = 110 input/output exam­

ples, i.e., T–H code runs; the table also shows the corresponding

BBC­95% CIs: the information conveyed by these intervals is impor­

tant when few data are used to train the bootstrapped ANNs

and the consequent confidence of the analyst on the Sobol index

point estimates ŜY
j,BBC

and ŜY
Tj,BBC

is poor, like in the present

case.

It can be seen that bootstrapped ANNs are quite accurate because

the BBC point estimates produced are satisfactorily close to the ref­

erence values; moreover, ANNs are sufficiently precise since the BBC

95% CIs are quite narrow around the reference values.

Finally, notice that the computational cost associated to the use

of bootstrapped ANNs is much lower than that required by the use

of the original T–H code: actually, the computational times associ­

ated to both analyses have been of 2.12 h and 92 h, respectively, on

a Pentium 4 CPU 3.00 GHz.

Table 5

Bootstrap Bias Corrected (BBC) point estimates ŜY
j,BBC

and ŜY
Tj,BBC

, j = 1, 2, . . ., 9, and BBC­95% Confidence Intervals (CIs) of the first­ and total­order Sobol sensitivity indices SY
j

and SY
Tj

, j = 1, 2, . . ., 9, calculated he performance function Y(x) of the model of the T–H passive system in Pagani et al. (2005).

Parameters Sensitivity analysis using bootstrapped ANNs

SY
i

SY
Ti

ŜY
j,BBC

(“reference”) BBC­95% CI ŜY
Tj,BBC

(“reference”) BBC­95% CI

x1 7.6774 × 10−3 (8.6372 × 10−3) [4.751 × 10−4 , 8.971 × 10−3] 0.0113 (0.0121) [9.001 × 10−3 , 0.0195]

x2 0.7879 (0.7928) [0.7792, 0.8158] 0.8259 (0.8391) [0.8188, 0.8553]

x3 0.0496 (0.0516) [0.0331, 0.0510] 0.0546 (0.0434) [0.0391, 0.0570]

x4 3.3248 × 10−6 (8.4218 × 10−6) [0.8.317 × 10−5] 2.226 × 10−3 (3.0575 × 10−3) [3.231 × 10−4 , 4.385 × 10−3]

x5 0.0651 (0.0522) [0.0583, 0.0767] 0.0711 (0.0833) [0.0655, 0.0809]

x6 1.2317 × 10−4 (6.5814 × 10−5) [0.3.718 × 10−4] 2.2169 × 10−3 (3.1948 × 10−3) [3.179 × 10−4 , 4.862 × 10−3]

x7 2.4542 × 10−5 (6.0669 × 10−5) [0.4.239 × 10−4] 2.2013 × 10−3 (3.0618 × 10−3) [3.447 × 10−4 , 4.621 × 10−3]

x8 0.0527 (0.0522) [0.0500, 0.0677] 0.0827 (0.0832) [0.0718, 0.0955]

x9 1.5848 × 10−6 (5.9493 × 10−6) [0.8.168 × 10−5] 2.1968 × 10−3 (3.0531 × 10−3) [3.455 × 10−4 , 4.333 × 10−3]
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6. Conclusions

The assessment of the reliability of T–H passive systems is a cru­

cial issue to be resolved for their extensive use in future nuclear

power plants. The reliance of T–H passive systems on inherent

physical principles makes their reliability evaluation quite difficult

to accomplish, if compared to classical system reliability analysis,

due to the lack of data which makes current knowledge of passive

system operation somewhat poor, thus introducing large uncer­

tainties in the analysis. These uncertainties are both of aleatory

and epistemic nature and are mainly due to poor understanding

and imprecise modeling of the phenomena affecting the T–H per­

formance of the system and of the relative physical correlations,

environmental and boundary conditions used.

These issues may in principle be detrimental for the pub­

lic acceptance of future reactor designs, which conversely are

expected to offer an overall, guaranteed level of safety higher than

the one of the currently operating nuclear fleet, especially thanks

to the adoption of passive systems.

Thus, there is a strong need for the development and demonstra­

tion of consistent methodologies and approaches for T–H passive

systems reliability assessment.

As a further step forward in this direction, in this paper the com­

putational issues associated with assessing the reliability of T–H

passive systems have been considered. The copious use of expert

judgment and subjective assumptions during the assessment pro­

cess leads to the need of propagating the associated uncertainties

by simulating several times the system response under different

working conditions: this can be done by Monte Carlo sampling the

uncertainties in the system model and parameters, and simulat­

ing the corresponding passive system response with a mechanistic

T–H computer code. However, this approach requires considerable

computational efforts. The reason is twofold. First, a large number

of Monte Carlo­sampled T–H model evaluations must generally be

carried out for an accurate estimation of the functional failure prob­

ability. Since the number of simulations required to obtain a given

accuracy depends on the magnitude of the failure probability to be

estimated, with the computational burden increasing with decreas­

ing functional failure probability, this poses a significant challenge

for the typically quite small (e.g., less than 10−4) probabilities of

functional failure of T–H passive safety systems. Second, long cal­

culations (several hours) are typically necessary for each run of the

detailed, mechanistic T–H code (one code run is required for each

sample of values drawn from the uncertainty distributions).

These computational issues can be tackled in two different ways.

From one side, efficient Monte Carlo Simulation techniques can be

employed to perform robust estimations with a limited number of

input samples; from the other side, fast­running, surrogate regres­

sion models (also called response surfaces or meta­models) can be

used to replace the long­running T–H model code.

Different approaches have been considered and compared with

reference to a case study of literature involving the natural convec­

tion cooling in a GFR after a LOCA (Pagani et al., 2005).

On the basis of the results obtained in the present and previous

works by the authors (Zio and Pedroni, 2009a,b,c, 2010; Pedroni

et al., 2010; Zio et al., 2010), the following guidelines and recom­

mendations can be drawn:

• If the interest is only in an accurate and precise estimation

of the (typically small) functional failure probability of the

T–H passive system (modeled by a long­running, nonlinear and

non­monotonous T–H code), then the following approach is rec­

ommended (Section 5.1):

a. build an Artificial Neural Network (ANN) regression model

using a sequential, two­step training algorithm on a reduced

number of examples (e.g., around one hundred) of the

input/output nonlinear relationships underlying the original

system model code;

b. use the ANN model as a fast­running surrogate of the original

system model code in the determination of the LS important

direction; the technique recommended for this is that based

on the minimization of the variance of the LS failure probabil­

ity estimator by means of Genetic Algorithms: the motivation

is that since it relies directly on the definition of the optimal

LS important direction, it produces more accurate and precise

failure probability estimates than those provided by the other

techniques proposed in the literature;

c. estimate the functional failure probability of the T–H passive

system by means of Line Sampling with a small number of

samples (e.g., few tens); the accuracy and precision of the esti­

mates can be enhanced by combining Line Sampling with Latin

Hypercube Sampling.

It is worth remarking once more that the LS technique allows

only the calculation of the failure probability of the passive

system, whereas it does not allow a complete uncertainty propa­

gation.
• If the analyst is interested also in the uncertainty propagation

(i.e., determination of the PDFs, CDFs, percentiles of the T–H code

outputs of interest and so on) and sensitivity analysis, two options

are recommended:

1. the SS method offers a feasible means because it generates

a large amount of conditional (failure) samples by sequential

MCMC simulations developed in different subsets of the uncer­

tain input space. This allows producing the PDFs and CDFs of

all the T–H code outputs of interest (e.g., peak cladding tem­

peratures, pressures, mass flow rates and so on) in a single

simulation run. Moreover, the conditional samples distribu­

tions in different subsets of the uncertain input space can be

used to study the sensitivity of the passive system performance

to the uncertain system input parameters: the informative

measure of the importance of a given parameter in determin­

ing the failure of the system is the deviation of its conditional

distribution from the unconditional one.

On the other hand, differently from the LS method, there

does not seem to exist any indication that it is possible to

reduce the number of samples (i.e., the number of T–H model

code evaluations) to below a few hundreds. Actually, at least

one hundred samples have to be generated in each subset to

produce reliable failure probability estimates: thus, if the fail­

ure probabilities to be estimated are 10−4 or 10−5 (which is

often the case for passive safety systems), then an amount of

400 or 500 samples have to be generated, respectively. As a

consequence, if the T–H model requires many hours, or days,

to perform a single evaluation, SS is not suitable; on the other

hand, if the T–H model is sufficiently simple and requires sec­

onds or minutes to run, SS may represent the optimal choice.

2. in those (realistic) cases where the T–H model requires many

hours, or days, to perform a single evaluation, the use of fast­

running surrogate regression models (e.g., ANNs, quadratic

RSs, . . .) instead of the long­running original T–H code seems

mandatory. The following procedure is recommended:

a. run the T–H system model code a predetermined, reduced

number of times (e.g., 50–100) for specified values of the

uncertain input variables;

b. collect the corresponding values of the output of interest;

c. employ statistical techniques for calibrating/adapting the

internal parameters/coefficients of the response surface of

the regression model in order to fit the input/output data

generated in the previous steps;

d. use the empirical regression model built at step c. to esti­

mate the quantities of interest: in this paper, the estimation

of (i) the CDF of the passive system performance function, (ii)
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its 95th and 99.9th percentiles and (iii) first­ and total­order

Sobol sensitivity indices has been illustrated;

e. use the bootstrap procedure to quantify, in terms of

confidence intervals, the uncertainties associated to the

estimates provided by the empirical regression models.

It is worth pointing out that the selection of a surrogate regres­

sion model suitable to replace the complex, nonlinear T–H code

in the uncertainty propagation process is quite a difficult task:

actually, such selection is heavily dependent on the particular

application at hand, so that no general rules are available to this

aim.

In the present paper, ANN regression models have been rec­

ommended on the basis of (i) theoretical considerations about

the (mathematically) demonstrated capability of ANN regression

models of being universal approximants of continuous nonlinear

functions (e.g., any nonlinear T–H code simulating the system of

interest) (Cybenko, 1989) and (ii) the experience of the authors in

the use of ANN regression models for propagating the uncertain­

ties through T–H model codes simulating passive safety systems

(Pedroni et al., 2010; Zio et al., 2010). However, since no detailed

and systematic comparisons with other types of regression mod­

els (except for quadratic response surfaces (Pedroni et al., 2010)

have been performed by the authors yet, no additional proofs of

the superiority of ANNs with respect to other regression models

can be provided at present. Future research will be devoted to

address this issue, although it is arguably optimistic to think that

a general statement in this direction can be reached.

Finally, a general remark is in order to drive the reader towards

a correct interpretation of the numerical results obtained and of the

recommendations drawn in the present paper. Actually, one may

interpret that the failure probabilities and sensitivity indices com­

puted by means of the methodologies described and recommended

throughout the paper are the failure probabilities and sensitivity

indices associated to the “real” T–H passive system under analysis

(i.e., those quantities that would characterize the behavior of the

T–H passive system in its operation during a real accidental tran­

sient). However, in order for this to be true, the T–H code employed

in the analyses would need to be flawless and comprehensive of

all the relevant failure modes of the real T–H passive system, all

aleatory uncertainties would need to be modeled perfectly, and all

epistemic uncertainties would need to be well characterized. This

is obviously not so and it seems in order to acknowledge that the

computational methods described and recommended throughout

the paper can “only” do as much, driving the T–H code with its lim­

itations (even if very detailed and extremely demanding to run).

In other words, the paper has addressed the quantification of pas­

sive system functional reliability “only” from the computational

viewpoint, i.e., to the extent that the relevant failure modes are

captured in the T–H model code being driven, and to the extent

that the input uncertainty distributions are appropriate. Even after

consistency checks are run and statistical confidence bounds are

established on the results, issues may remain concerning the pos­

sibility of “extending” the results obtained in the analyses to the

“actual” behavior of the “real” T–H passive system during an acci­

dental transient, because of the model incomplete representation

of reality.
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In this article, a classification model based on the majority rule sorting (MR-Sort) method is
employed to evaluate the vulnerability of safety-critical systems with respect to malevolent
intentional acts. The model is built on the basis of a (limited-size) set of data representing
(a priori known) vulnerability classification examples. The empirical construction of the clas-
sification model introduces a source of uncertainty into the vulnerability analysis process: a
quantitative assessment of the performance of the classification model (in terms of accuracy
and confidence in the assignments) is thus in order. Three different approaches are here con-
sidered to this aim: (i) a model-retrieval-based approach, (ii) the bootstrap method, and (iii)
the leave-one-out cross-validation technique. The analyses are presented with reference to
an exemplificative case study involving the vulnerability assessment of nuclear power plants.

KEY WORDS: Classification model; confidence estimation; MR-Sort; nuclear power plants; vulnerabil-
ity analysis

1. INTRODUCTION

The vulnerability of safety-critical systems and
infrastructures (e.g., nuclear power plants) is of
great concern, given the multiple and diverse haz-
ards that they are exposed to (e.g., intentional,
random, natural)(1) and the potential large-scale con-
sequences. This has motivated an increased atten-
tion in analyses to guide designers, managers, and
stakeholders in (i) the systematic identification of
the sources of vulnerability, (ii) its qualitative and
quantitative assessment,(2,3) and (iii) the selection of
proper actions to reduce it. In this article, we are
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concerned only with intentional hazards (i.e., those
related to malevolent acts) and we mainly address is-
sue (ii) mentioned above (i.e., the quantitative eval-
uation of vulnerability).

With respect to that, due to the specific fea-
tures (low frequency but important effects) of
intentional hazards (characterized by significant un-

certainties due to behaviors of different rationality)
the analysis is difficult to perform by traditional
risk assessment methods.(1,4,5) For this reason, in
this work we propose to tackle the issue of eval-
uating vulnerability to malevolent intentional acts
by an empirical classification modeling framework.
In particular, we adopt a classification model based
on the majority rule sorting (MR-Sort) method(6) to
assign an alternative of interest (i.e., a safety-critical
system) to a given (vulnerability) class (or cate-
gory). The MR-Sort classification model contains a
group of (adjustable) parameters that have to be
calibrated by means of a set of empirical classifica-
tion examples (also called training set), that is, a set
of alternatives with the corresponding preassigned
vulnerability classes.

1 0272-4332/14/0100-0001$22.00/1 C© 2014 Society for Risk Analysis
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Due to the finite (typically small) size of the set
of training classification examples usually available in
the analysis of real complex safety-critical systems,
the performance of the classification model is im-
paired. In particular, (i) the classification accuracy

(resp., error), that is, the expected fraction of pat-
terns correctly (resp., incorrectly) classified, is typi-
cally reduced (resp., increased); (ii) the classification
process is characterized by significant uncertainty,
which affects the confidence of the classification-
based vulnerability model: in our work, we define
the confidence in a classification assignment as in
Ref. 10, that is, as the probability that the class as-
signed by the model to a given (single) pattern is
the correct one. Obviously, there is the possibility
that a classification model assigns correctly a very
large (expected) fraction of patterns (i.e., the model
is very accurate), but at the same time each (cor-
rect) assignment is affected by significant uncertainty
(i.e., it is characterized by low confidence). It is
worth mentioning that besides the scarcity of train-
ing data, there are many additional sources of un-
certainty in classification problems (e.g., the accuracy
of the data, the suitability of the classification tech-
nique used): however, they are not considered in this
work.

The performance of the classification model (i.e.,
the classification accuracy—resp., error—and the
confidence in the classification) needs to be quan-
tified: this is of paramount importance for taking
robust decisions in the vulnerability analyses of
safety-critical systems.(7,8)

In this article, three different approaches are
used to assess the performance of a classification-
based MR-Sort vulnerability model in the presence
of small training data sets. The first is a model-
retrieval-based approach,(6) which is used to as-
sess the expected percentage error in assigning new
alternatives. The second is based on bootstrapping

the available training set in order to build an en-
semble of vulnerability models;(9) the method can be
used to assess both the accuracy and the confidence
of the model: in particular, the confidence in the as-
signment of a given alternative is given in terms of the
full (probability) distribution of the possible vulner-
ability classes for that alternative (built on the boot-
strapped ensemble of vulnerability models).(10) The
third is based on the leave-one-out cross-validation
(LOOCV) technique, in which one element of the
available data set is (left out and) used to test the ac-
curacy of the classification model built on the remain-
ing data: also this approach is employed to estimate

the accuracy of the classification vulnerability model
as the expected percentage error, that is, the fraction
of alternatives incorrectly assigned (computed as an
average over the left-out data).

The contribution of this work is twofold:

r classification models have proved useful in a va-
riety of fields including finance, marketing, en-
vironmental and energy management, human
resources management, medicine, risk analysis,
fault diagnosis, etc.,(11) but to the best of the
authors’ knowledge, this work is the first to pro-
pose a classification-based hierarchical frame-
work for the analysis of the vulnerability to
intentional hazards of safety-critical systems;

r the bootstrap method is originally applied to es-
timate the confidence in the assignments pro-
vided by the MR-Sort classification model, in
terms of the probability that a given alternative
is correctly classified.

The article is organized as follows. The next
section presents the hierarchical framework for vul-
nerability analysis to intentional hazards. Section 3
shows the classification model applied within the pro-
posed framework. Section 4 describes the learning
process of a classification model by the disaggrega-
tion method. In Section 5 three approaches are pro-
posed to analyze the performance of the classification
model. Then, the proposed approaches are validated
on the case study of a group of nuclear power plants
(NPPs) in Section 6. Finally, Sections 7 and 8 present
the discussion and conclusions of this research.

2. GENERAL FRAMEWORK:

VULNERABILITY TO

INTENTIONAL HAZARDS

Vulnerability is defined in different ways de-
pending on the domains of application, for example,
a measure of possible future harm due to exposure to
a hazard,(1) the identification of weaknesses in secu-
rity, focusing on defined threats that could compro-
mise a system’s ability to provide a service,(12) the set
of conditions and processes resulting from physical,
social, economic, and environmental factors that in-
crease the susceptibility of a community to the impact
of hazards.(13)

With the focus on the susceptibility to intentional
hazards, the three-layers hierarchical model devel-
oped in Ref. 14 is considered and shown in Fig. 1. The
susceptibility to intentional hazards is characterized
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Fig. 1. Hierarchical model for susceptibility to intentional hazards.

in terms of attractiveness and accessibility. These are
hierarchically broken down into factors that influ-
ence them, including resilience seen as pre-attack
protection (which influences on accessibility) and
post-attack recovery (which influences on attractive-
ness). The decomposition is made in six criteria,
which are further decomposed into a layer of basic
subcriteria, for which data and information can be
collected. The details of the general framework of
analysis are not given here for brevity; the interested
reader is referred to Ref. 14 and to Appendix A.

For the purpose of this article, only six cri-
teria are considered: physical characteristics, social
criticality, possibility of cascading failures, recovery
means, human preparedness, and level of protection
(Fig. 1). These six criteria are used as the basis to as-
sess the vulnerability of a given safety-critical system
of interest (e.g., an NPP). Four levels (or categories)
of vulnerability are considered: satisfactory, accept-
able, problematic, and serious. In this view, the issue
of assessing vulnerability is here tackled within a clas-
sification framework: given the characterization of a
critical system in terms of the six criteria mentioned

above, a proper vulnerability category (or class) has
to be selected for that system. A description of the
algorithm used to this purpose is given in the follow-
ing section.

It is worthy to mention that the cyber charac-
teristics are not taken into account in this work; in
future work they will be added for the criteria physi-
cal characteristics and protection.

3. CLASSIFICATION MODEL FOR

VULNERABILITY ANALYSIS: THE

MR-SORT METHOD

The MR-Sort method is a simplified version of
ELECTRE Tri, an outranking sorting procedure in
which the assignment of an alternative to a given cat-
egory is determined using a complex concordance-
non-discordance rule.(15,16) We assume that the
alternative to be classified (in this article, a safety-
critical system or infrastructure of interests, e.g., an
NPP) can be described by an n-tuple of elements
x = {x1, x2, ..., xi , ..., xn}, which represent the evalu-
ation of the alternative with respect to a set of n
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criteria (by way of example, in this article the cri-
teria used to evaluate the vulnerability of a safety-
critical system of interest may include its physi-
cal characteristics, social criticality, level of protec-
tion, and so on: see Section 2). We denote the
set of criteria by N = {1, 2, ..., i, ..., n} and assume
that the values xi of criterion i range in the set
Xi

(9) (e.g., in this article all the criteria range in
[0, 1]). The MR-Sort procedure allows assigning
any alternative x = {x1, x2, ..., xi , ..., xn} ∈ X = X1 ×

X2 × ... × Xi × ... × Xn to a particular predefined
category (in this article, a class of vulnerability), in a
given ordered set of categories, {Ah : h = 1, 2, ..., k};
as mentioned in Section 2, k = 4 categories are con-
sidered in this work: A1 = satisfactory, A2 = accept-
able, A3 = problematic, A4 = serious.

To this aim, the model is further specialized in
the following way:

r We assume that Xi is a subset of R for all i ∈

N and the subintervals (X1
i , X2

i , ..., Xh
i , ..., Xk

i )
of Xi are compatible with the order on the
real numbers, that is, for all x1

i ∈ X1
i , x2

i ∈

X2
i , ..., xh

i ∈ Xh
i , ..., xk

i ∈ Xk
i , we have x1

i > x2
i >

... > xh
i > ... > xk

i . We assume furthermore that
each interval xh

i , h = 2, 3, ..., k has a smallest el-

ement bh
i , which implies that xh−1

i ≥ bh
i > xh

i .
The vector bh = {bh

1 , bh
2 , ..., bh

i , ..., bh
n} (contain-

ing the lower bounds of the intervals Xh
i of crite-

ria i = 1, 2, ..., n in correspondence of category
h) represents the lower limit profile of category
Ah.

r There is a weight ωi associated with each cri-
terion i = 1, 2, ..., n, quantifying the relative
importance of criterion i in the vulnerability as-
sessment process; notice that the weights are
normalized such that

∑n
i=1 ωi = 1.

In this framework, a given alternative x =

{x1, x2, ..., xi , ..., xn} is assigned to category
Ah, h = 1, 2, ..., k, if

∑

i∈N:xi ≥bh
i

ωi ≥ λ and
∑

i∈N:xi ≥bh+1
i

ωi < λ, (1)

where λ is a threshold (0 ≤ λ ≤ 1) chosen by the
analyst. Rule (1) is interpreted as follows. An
alternative x belongs to category Ah if: (1) its
evaluations in correspondence of the n criteria
(i.e., the values {x1, x2, ..., xi , ..., xn}) are at least
as good as bh

i ( lower limit of category Ah with re-
spect to criterion i), i = 1, 2, ..., n, on a subset of
criteria that has sufficient importance (in other
words, on a subset of criteria that has a weight

larger than or equal to the threshold λ chosen by
the analyst); and at the same time (2) the weight
of the subset of criteria on which the evalua-
tions {x1, x2, ..., xi , ..., xn} are at least as good
as bh+1

i (lower limit of the successive category
Ah+1 with respect to criterion i), i = 1, 2, ..., n,
is not sufficient to justify the assignment of x to
the successive category Ah+1. Notice that alter-
native x is assigned to the best category A1 if∑

i∈N:xi ≥b1
i
ωi ≥ λ and it is assigned to the worst

category Ak if
∑

i∈N:xi ≥b−k−1 ωi < λ. Finally, it is
straightforward to notice that the parameters of
such a model are the k · n lower limit profiles
(n limits for each of the k categories), the n

weights of the criteria ω1, ω2, ..., ωi , ..., ωn, and
the threshold λ, for a total of n(k + 1) + 1 pa-
rameters.

4. CONSTRUCTING THE MR-SORT

CLASSIFICATION MODEL

In order to construct an MR-Sort classifi-
cation model, we need to determine the set
of n(k + 1) + 1 parameters described in Section
2, that is, the weights ω = {ω1, ω2, ..., ωn}, the
lower profiles b = {b1, b2, ..., bh, ..., bk},with bh =

{bh
1 , bh

2 , ..., bh
i , ..., bh

n}, h = 1, 2, ..., k, and the thresh-
old λ; in this article, λ is considered a fixed, constant
value chosen by the analyst (e.g., λ = 0.9).

To this aim, the decision maker provides
a training set of classification examples DTR =

{(xp, Ŵ
t
p), p = 1, 2, ..., NT R}, that is, a set of NTR al-

ternatives (in this case, NPPs) xp = {x
p

1 , x
p
2 , ..., x

p
i , ...,

x
p
n }, p = 1, 2, ..., NT R together with the correspond-

ing real preassigned categories (i.e., vulnerability
classes) Ŵt

p (the superscript t indicates that Ŵt
p rep-

resents the true, a priori known vulnerability class of
alternative xp).

The calibration of the n(k + 1) parameters is
done through the learning process detailed in Ref. 6.
In extreme synthesis, the information contained in
the training set DTR is used to restrict the set of
MR-Sort models compatible with such information,
and to finally select one among them.(6) The a pri-

ori known assignments generate constraints on the
parameters of the MR-Sort model. In Ref. 6, such
constraints have a linear formulation and are inte-
grated into a mixed integer program (MIP) that is
designed to select one (optimal) set of such param-
eters ω∗ and b∗ (in other words, to select one clas-
sification model M(·|ω∗, b∗)) that is coherent with
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the data available and maximizes a defined objective

function. In Ref. 6, the optimal parameters ω∗ and
b∗ are those that maximize the value of the minimal
slack in the constraints generated by the given set
of data DTR. Once the (optimal) classification model
M(·|ω∗, b∗) is constructed, it can be used to assign a
new alternative x(i.e., a new NPP) to one of the vul-
nerability classes Ah, h = 1, 2, ..., k: in other words,
M(x|ω∗, b∗) = ŴM

x where ŴM
x is the class assigned by

model M(·|ω∗, b∗) to alternative x and assumes one
value among {Ah : h = 1, 2, ..., k}. Further mathemat-
ical details about the training algorithm are not given
here for brevity: the reader is referred to Ref. 6 and
to Appendix B.

Obviously, the number NTR of available classifi-
cation examples is finite and quite small in most real
applications involving the vulnerability analysis of
safety-critical systems. As a consequence, the model
M(·|ω∗, b∗) is only a partial representation of reality
and its assignments are affected by uncertainty: this
uncertainty, which needs to be quantified to build
confidence in the decision process that follows the
vulnerability assessment.

In the following section, three different methods
are presented to assess the performance of the MR-
Sort classification model.

5. METHODS FOR ASSESSING THE

PERFORMANCE OF THE

CLASSIFICATION-BASED

VULNERABILITY ANALYSIS MODEL

5.1. Model-Retrieval-Based Approach

The first method is based on the model-retrieval
approach proposed in Ref. 6. A fictitious set Drand

TR

of NTR alternatives {xrand
p : p = 1, 2, ..., NT R} is

generated by random sampling within the ranges
Xi of the criteria, i = 1, 2, ..., n. Notice that the size
NTR of the fictitious set Drand

TR has to be the same
as the real training set DTR available, for the com-
parison to be fair. Also, an MR-Sort classification
model M(·|ωrand, brand) is constructed by randomly
sampling possible values of the internal parameters,
{ωi : i = 1, 2, ..., n} and {bh : h = 1, 2, ..., k − 1}.
Then, we simulate the behavior of a decision-
maker (DM) by letting the (random) model
M(·|ωrand, brand) assign the (randomly generated)
alternatives {xrand

p : p = 1, 2, ..., NT R}. In other

words, we construct a learning set Drand
TR by assigning

the (randomly generated) alternatives using the

(randomly generated) MR-Sort model, that is,
Drand

TR = {(xrand
p , ŴM

p ) : p = 1, 2, ..., NT R}, where ŴM
p

is the class assigned by model M(·|ωrand, brand) to
alternative xrand

p , that is, ŴM
p = M(xrand

p |ωrand, brand).
Subsequently, a new MR-Sort model M′(·|ω′, b′),
compatible with the training set Drand

TR , is inferred
using the MIP formulation summarized in Sec-
tion 3 and in Appendix B. Although models
M(·|ωrand, brand) and M′(·|ω′, b′) may be quite
different, they coincide on the way they assign
elements of Drand

TR , by construction. In order to
compare models M and M′, we randomly generate
a (typically large) set Drand

test of new alternatives
Drand

test = {xtest,rand
p : p = 1, 2, ..., NTest } and we com-

pute the percentage of assignment errors, that is, the
proportion of these NTest alternatives that models M

and M′ assign to different categories.
In order to account for the randomness in the

generation of the training set Drand
TR and of the

model M(·|ωrand, brand), and to provide robust es-
timates for the assignment errors ǫ, the procedure
outlined above is repeated for a large number Nsets

of random training sets D
rand, j
TR , j = 1, 2, ..., Nsets ; in

addition, for each set j the procedure is repeated
for different random models M(·|ωrand,l , brand,l), l =

1, 2, ..., Nmodels . The sequence of assignment er-
rors thereby generated, e jl , j = 1, 2, ..., Nsets, l =

1, 2, ..., Nmodels , is then averaged to obtain a robust
estimate for ǫ. The procedure is sketched in Fig. 2.

Notice that this method does not make any use
of the original training set DTR (i.e., of the training
set constituted by real-world classification examples).
In this view, the model-retrieval-based approach can
be interpreted as a tool to obtain an absolute evalua-
tion of the expected error that an “average” MR-Sort
classification model M(·|ω, b) with k categories, n cri-
teria, and trained by means of an “average” data set
of given size NTR makes in the task of classifying a
new generic (unknown) alternative.

5.2. The Bootstrap Method

A way to assess both the accuracy (i.e., the ex-
pected fraction of alternatives correctly classified)
and the confidence of the classification model (i.e.,
the probability that the category assigned to a given
alternative is the correct one) is by resorting to the
bootstrap method,(17) which is used to create an en-
semble of classification models constructed on differ-
ent data sets bootstrapped from the original one:(18)

the final class assignment provided by the ensemble
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Fig. 2. The general structure of the model-retrieval approach.

Fig. 3. The bootstrap algorithm.

is based on the combination of the individual output
of classes provided by the ensemble of models.(10)

The basic idea is to generate different train-
ing data sets by random sampling with replacement
from the original one:(17) such different training sets
are used to build different individual classification
models of the ensemble. In this way, the individ-
ual classifiers of the ensemble possibly perform well
in different regions of the training space and thus
they are expected to make errors on alternatives

with different characteristics; these errors are bal-
anced out in the combination, so that the perfor-
mance of the ensemble of bootstrapped classification
models is in general superior to that of the single
classifiers.(18,19) This is a desirable property since it is
a more realistic simulation of the real-life experiment
from which our data set was obtained. In this article,
the output classes of the single classifiers are com-
bined by majority voting: the class chosen by most
classifiers is the ensemble assignment. Finally, the
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accuracy of the model is given by the fraction of
the patterns correctly classified. The bootstrap-based
empirical distribution of the assignments given by the
different classification models of the ensemble is then
used to measure the confidence in the classification
of a given alternative x that represent the probability
that this alternative is correctly assigned.(10,20)

In more detail, the main steps of the bootstrap
algorithm are as follows (Fig. 3):

(1) Build an ensemble of B (typically of the
order of 500–1,000) classification models
{Mq(·|(ωq, bq) : q = 1, 2, ..., B)} by random
sampling with replacement from the original
data set DTR and use each of the boot-
strapped models Mq(·|ωq, bq) to assign a class
Ŵ

q
x , q = 1, 2, ..., B, to a given alternative x

of interest (notice that Ŵ
q
x takes a value in

Ah, h = 1, 2, ..., k). By so doing, a bootstrap-
based empirical probability distribution
P(Ah|x), h = 1, 2, ..., k for category Ah of
alternative x is produced, which is the basis
for assessing the confidence in the assignment
of alternative x. In particular, repeat the
following steps for q = 1, 2, ..., B:
(i) Generate a bootstrap data set DTR,q =

{(xp, Ŵ
t
p) : p = 1, 2, ..., NT R}, by perform-

ing random sampling with replacement
from the original data set DTR = {(xp, Ŵ

t
p) :

p = 1, 2, ..., NT R} of NTR input/output pat-
terns. The data set DTR,q is thus constituted
by the same number NTR of input/output
patterns drawn among those in DTR,
although due to the sampling with replace-
ment some of the patterns in DTR will ap-
pear more than once in DTR,q, whereas
some will not appear at all.

(ii) Build a classification model {Mq(·|ωq, bq) :
q = 1, 2, ..., B}, on the basis of the boot-
strap data set DTR,q = {(xp, Ŵ

t
p) : p =

1, 2, ..., NT R}.
(iii) Use the classification model Mq(·|ωq, bq)

to provide a class Ŵ
q
x , q = 1, 2, ..., B to a

given alternative of interest, that is, Ŵ
q
x =

Mq(x|ωq, bq).
(2) Combine the output classes Ŵq, q = 1, 2, ..., B

of the individual classifiers by majority vot-
ing: the class chosen by most classifiers is
the ensemble assignment Ŵens

x , i.e., Ŵens
x =

argmaxAh [cardq{Ŵ
q
x = Ah}].

(3) As an estimation of the confidence in
the majority-voting assignment Ŵens

x (step 2,
above), we consider the bootstrap-based

empirical probability distribution P(Ah|x),
h = 1, 2, ..., k, that is, the probability that cat-
egory Ah is the correct category given that
the (test) alternative is Ref. 6. The estima-
tor of P(Ah|x) here employed is: P(Ah|x) =∑B

q=1 I{Ŵq=Ah}

B
, where I{Ŵq = Ah} = 1, if Ŵq =

Ah, and 0 otherwise.
(4) Finally, the error of classification is presented

by the fraction of the number of the alterna-
tives being assigned by the classification model
and the total number of the alternatives. The
accuracy of the classification model is defined
as the complement to 1 to the error.

5.3. The LOOCV Technique

LOOCV is a particular case of the cross-
validation method. In cross-validation, the origi-
nal training set DTR is divided into N partitions,
A1, A2, ..., AN, and the elements in each of the par-
titions are classified by a model trained by means
of the elements in the remaining partitions (leave-
p-out cross-validation).(20) The cross-validation er-
ror is, then, the average of the N individual error
estimates. When N is equal to the number of ele-
ments NTR in DTR, the result is LOOCV, in which
each instance xp, p = 1, 2, ..., NT R is classified by all
the instances in DTR except for itself.(21) For each
instance xp, p = 1, 2, ..., NT R in DTR, the classifica-
tion accuracy is 1 if the element is classified correctly
and 0 if it is not. Thus, the average LOOCV error
(resp., accuracy) over all the NTR instances in DTR is
ǫ/NTR (resp., 1 − ǫ/NTR), where ǫ(resp., NTR − ǫ) is
the number of elements incorrectly (resp., correctly)
classified. Thus, the accuracy in the assignment is
estimated as 1 − ǫ/NTR.

With respect to the leave-p-out cross-validation,
the LOOCV produces a smaller bias of the true error
rate estimator. However, the computational time in-
creases significantly with the size of the data set avail-
able. This is the reason why the LOOCV is particu-
larly useful in the case of small data sets. In addition,
for very sparse data sets (e.g., of size lower than or
equal to 10), we may be forced to use LOOCV in
order to maximize the number of training examples
employed and to generate training sets containing an
amount of information that is sufficient and reason-
able for building an empirical model.(22) In Fig. 4, the
algorithm is sketched with reference to a training set
DTR containing NTR = 11 data (like in the case study
considered in the following section).
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Fig. 4. Leave-one-out cross-validation study procedure.

6. APPLICATION

The methods presented in Section 5 are here
applied on an exemplificative case study concern-
ing the vulnerability analysis of NPPs.(14) We iden-
tify n = 6 main criteria i = 1, 2, ..., n = 6 by means of
the hierarchical approach presented in Ref. 14 (see
Section 2); x1 = physical characteristics, x2 = social
criticality, x3 = possibility of cascading failures, x4 =

recovery means, x5 = human preparedness, and x6 =

level of protection. Then, k = 4 vulnerability cate-
gories Ah, h = 1, 2, ..., k = 4 are defined as: A1 = sat-
isfactory, A2 = acceptable, A3 = problematic, and
A4 = serious (Section 2). The training set DTR is con-
stituted by a group of NTR = 11 NPPs xp with the
corresponding a priori known categories Ŵt

p, that is,
DTR = {(xp, Ŵ

t
p) : p = 1, 2, ..., NT R = 11}. The train-

ing set is summarized in Table I.
In what follows, the three techniques of Section

5 are applied to assess the performance of the MR-
Sort classification-based vulnerability analysis model
built using the training set DTR of Table I.

6.1. Application of the Model-Retrieval-Based

Approach

We generate Nsets = 1, 000 different training

sets D
rand, j
TR , j = 1, 2, ..., Nsets , and for each set

j, we randomly generate Nmodels = 100 models

Table I. Training Set with NTR = 11 Assigned Alternatives

Alternatives, xp Vulnerability
Class Ŵt

p

x1 = {0.61, 0.6, 0.75, 0.86, 1, 0.94} A1

x2 = {0.33, 0.27, 0, 0.575, 0.4, 0.72} A3

x3 = {0.55, 0.33, 0.5, 0.725, 0.7, 0.71} A2

x4 = {0.55, 0.33, 0.75, 0.8, 0.7, 0.49} A3

x5 = {0.39, 0.23, 0.5, 0.6, 0.6, 0.62} A3

x6 = {0.39, 0.27, 0.75, 0.725, 0.7, 0.68} A2

x7 = {0.61, 0.7, 0.5, 0.725, 0.9, 0.94} A2

x8 = {0.16, 0.1, 0.5, 0.475, 0.3, 0.59} A4

x9 = {0.1, 0, 0.25, 0.5, 0.6, 0.61} A4

x10 = {0.1, 0, 0, 0.3, 0.3, 0.43} A4

x11 = {0.61, 0.7, 0.75, 1, 1, 0.94} A1

M(·|ωrand,l , brand,l), l = 1, 2, ..., Nmodels = 100. By so
doing, the expected accuracy (1-ǫ) of the corre-
sponding MR-Sort model is obtained as the average
of Nsets · Nmodels = 1, 000 · 100 = 100, 000 values (1 −

ǫ jl), j = 1, 2, ..., Nsets, l = 1, 2, ..., Nmodels (see Sec-
tion 5.1). The size Ntest of the random test set Drand

TR

is Ntest = 10, 000. Finally, we perform the procedure
of Section 5.1 for different sizes NTR of the random
training set Drand

TR (even if the size of the real train-
ing set available is NTR = 11; see Table I): in particu-
lar, we choose NTR = 5, 11, 20, 50, 100, and 200. This
analysis serves the purpose of outlining the behavior
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of the accuracy (1 − ǫ) as a function of the amount of
classification examples available.

The results are summarized in Fig. 5 where the
average percentage assignment error ǫ is shown as a
function of the size NTR of the learning set (from 5
to 200). As expected, the assignment error ǫ tends
to decrease when the size of the learning set NTR

increases: the higher the cardinality of the learn-
ing set, the higher (resp., lower) the accuracy (resp.,
the expected error) in the corresponding assign-
ments. Comparing these results with those obtained
by Leroy et al. (6) using MR-Sort models with k = 2
and 3 categories and n = 3–5 criteria, it can be seen
that for a given size of the learning set, the error rate
(resp., the accuracy) grows (resp., decreases) with the
number of model parameters to be determined by
the training algorithm = n(k + 1) + 1. It can be seen
that for our model with n = 6 criteria and k = 4 cate-
gories, in order to guarantee an error rate inferior to
10% we would need training sets consisting of more
than NTR = 100 alternatives. Typically, for a learn-
ing set of NTR = 11 alternatives (like that available
in the present case study), the average assignment er-
ror ǫ is around 30%; correspondingly, the accuracy
of the MR-Sort classification model trained with the
data set DTR of size NTR = 11 available in the present
case is around (1 − ǫ) = 70%: in other words, there
is a probability of 70% that a new alternative (i.e., a
new NPP) is assigned to the correct category of vul-
nerability.

In order to assess the randomness intrinsic in
the procedure used to obtain the accuracy esti-
mate mentioned above, we have also calculated
the 95% confidence intervals for the average
assignment error ǫ of the models trained with
NTR = 11, 20, and 100 alternatives in the training
set. The 95% confidence interval for the error
associated to the models trained with 11, 20, and 100
alternatives as learning set are [25.4%, 33%], [22.2%,
29.3%], and [10%, 15.5%], respectively. For illus-
tration purposes, Fig. 6 shows the distribution of the
assignment mismatch built using the Nsets · Nmodels =

100, 000 values ǫ jl, j = 1, 2, ..., Nsets = 1, 000, l =

1, 2, ..., Nmodels = 100, generated as described in
Section 5.1 for the example of 11 alternatives.

6.2. Application of the Bootstrap Method

A number B (= 1,000) of bootstrapped train-
ing sets DTR,q, q = 1, 2, ..., 1, 000 of size NTR = 11
is built by random sampling with replacement from
DTR. The sets DTR,q are then used to train B = 1, 000
different classification models {M1, M2, ..., M1000}.

Table II. Number of Patterns Classified with Confidence Value

Confidence range (0.4, 0.5] (0.5, 0.6] (0.6, 0.7]

Number of patterns 1 2 0

Confidence range (0.7, 0.8] (0.8, 0.9] (0.9, 1]
Number of patterns 1 2 5

This ensemble of models can be used to clas-
sify new alternatives. Fig. 7 shows the proba-
bility distributions P(Ah|xp), h = 1, 2, ..., k = 4, p =

1, 2, ..., NT R = 11, empirically generated by the en-
semble of B = 1, 000 bootstrapped MR-Sort clas-
sification models in the task of classifying the
NTR = 11 alternatives of the training set DTR =

{x1, x2, ..., xNT R
}. The categories highlighted by the

rectangles are those selected by the majority of
the classifiers of the ensemble: it can be seen
that the assigned classes coincide with the origi-
nal categories of the alternatives of the training set
(Table I), that is, the accuracy of the inferred classifi-
cation model based on the given training set (with 11
assigned alternatives) is 1.

In order to investigate the confidence of the
algorithm in the classification of the test patterns, the
results achieved testing one specific pattern taken in
turn from the training set are analyzed. For each test
of a specific pattern xi , the distribution of the assign-
ments by the B = 1, 000 classifiers shows the confi-
dence of the assignment of the classification model
on this specific pattern. By way of example, it can be
seen that alternative x3 is assigned to Class A2 (the
correct one) with a confidence of P(A2|x3) = 0.81,
whereas alternative x6 is assigned to the same class
A2, but with a confidence of only P(A2|x6) = 0.56.

Notice that the most interesting information re-
gards the confidence in the assignment of the test pat-
tern to the class with the highest number of votes,
that is, the class actually assigned by the ensem-
ble system according to the majority voting rule
adopted.(10) In this respect, Table II reports the dis-
tribution of the confidence values associated to the
class to which each of the 11 alternatives has been
assigned.

Thus, a 10/11 ≈ 91% of all class assignments
with confidence bigger than 0.5 are correct.

6.3. Application of the LOOCV Method

Based on the original training set DTR of
size NTR = 11, we generate 11 “new” training sets
DTR,i , i = 1, 2, ..., 11 (each containing NTR − 1 = 1−

assigned alternatives) by taking out each time one
of the alternatives from DTR. These 11 training
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Fig. 5. Average assignment error ǫ (%) as a function of the size NTR of the learning set according to the model-retrieval-based approach of
Section 5.1.

Fig. 6. Distribution of the assignment mismatch for an MR-Sort model trained with NTR = 11 alternatives (%).
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Fig. 7. Probability distributions P(Ah|xp), h = 1, 2, ..., k = 4, p = 1, 2, ..., NTR = 11 obtained by the ensemble of B = 1,000 bootstrapped
MR-Sort models in the classification of the alternatives xp contained in the training set DTR.

Table III. Comparison Between the Real Categories and the
Assignments Provided by the LOOCV Models

Real Assignments by
Alternative Categories, Ŵt

p LOOCV Method

x1 1 1
x2 3 3
x3 2 2

x4 3 2

x5 3 3

x6 2 3

x7 2 2
x8 4 4
x9 4 4
x10 4 4
x11 1 1

sets are then used to train 11 different classifica-
tion models M1, M2, ..., M11. Each of these 11 mod-
els is used to classify the alternative correspondingly
taken out. Table III shows the comparison between
the real classes Ŵt

p of the alternatives of the train-
ing set and the categories assigned by the trained
models.

It can be seen that ǫ = 2 out of the NTR = 11
alternatives are assigned incorrectly (alternatives x4

and x6). Thus, the accuracy in the classification is
given by the complement to 1 of the average er-
ror rate, that is, 1 − ǫ/NTR = 1 − 2/11 = 1 − 0.182 =

0.818. Notice that the 95% confidence interval for
this recognition rate is [0.5901, 1].

7. DISCUSSION OF THE RESULTS

The three proposed methods provide conceptu-
ally and practically different estimates of the perfor-
mance of the MR-Sort classification model.

The model-retrieval-based approach provides a
quite general indication of the classification capabil-
ity of a vulnerability model with given characteristics.
Actually, in this approach the only constant, fixed pa-
rameters are the size NTR of the training set (given
by the number of real-world classification examples
available), the number of criteria n, and the number
of categories k (given by the analysts according to
the characteristics of the systems at hand). On this
basis, the space of all possible training sets of size
NTR and the space of all possible models with the
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above-mentioned structure (n criteria and k cate-
gories) are randomly explored (again, notice that no
use is made of the original real training set): the clas-
sification performance is obtained as an average over
the possible random training sets (of fixed size) and
random models (of fixed structure). Thus, the result-
ing accuracy estimate is a realistic indicator of the
expected classification performance of an “average”
model (of given structure) trained with an “average”
training set (of given size). In the case study consid-
ered, the average assignment error (resp., accuracy)
is around 30% (resp., 70%).

On the contrary, the bootstrap method uses the
real training set available to build an ensemble of
models compatible with the data set itself. In this
case, we do not explore the space of all possible
training sets as in the model-retrieval-based ap-
proach, but rather the space of all the classification
models compatible with that particular training set
constituted by real-world examples. In this view, the
bootstrap approach serves the purpose of quantifying
the uncertainty intrinsic in the particular (training)
data set available when used to build a classification
model of given structure (i.e., with given numbers n

and k of criteria and categories, respectively). In this
case study, the accuracy evaluated by the bootstrap
method is much higher (equals to one) than that
estimated by the model-retrieval-based approach:
this is reasonable because the latter evaluates the
accuracy on a wider (i.e., in a broad sense, more
uncertain) space of possible models and training sets;
on the other hand, in the former method the training
set adopted is given and it represents possibly only
one of those randomly generated within the model-
retrieval-based approach. In addition, notice that
differently from the model-retrieval-based approach,
the bootstrap method does not provide only the
global classification performance of the vulnerability
model, but also the confidence that for each test
pattern a class assigned by the model is the correct
one: this is given in terms of the full probability
distribution of the vulnerability classes for each
alternative to be classified.

Finally, also the LOOCV method has been used
to quantify the expected classification performance
of the model trained with the particular training
data set available. In order to maximally exploit
the information contained in the training set DTR,
NTR = 1 “reduced” (training) sets are built, each
containing NTR − 1 = 10 assigned alternatives:
each “reduced” set is used to build a model whose

classification performance is evaluated on the ele-
ment correspondingly left out. The average error
rate (resp., accuracy) turns out to be 18.2% (resp.,
72.8%). The 95% confidence interval for the error
rate (resp., accuracy) is approximately [0, 0.4099]
(resp., [0.5901, 1]).

8. CONCLUSIONS

In this article, the issue of quantifying the vul-
nerability of safety-critical systems (in the example,
NPPs) with respect to intentional hazards has been
tackled within an empirical classification framework.
To this aim an MR-Sort model has been trained by
means of a small-sized set of data representing a pri-

ori known classification examples. The performance
of the MR-Sort model has been evaluated with re-
spect to: (i) its classification accuracy (resp., error),
that is, the expected fraction of patterns correctly
(resp., incorrectly) classified; (ii) the confidence as-
sociated to the classification assignments (defined as
the probability that the class assigned by the model
to a given [single] pattern is the correct one). The
performance of the empirically constructed classifi-
cation model has been assessed by resorting to three
approaches: a model-retrieval-based approach, the
bootstrap method, and the LOOCV technique. To
the best of the authors’ knowledge, it is the first time
that:

r A classification-based hierarchical framework is
applied for the analysis of the vulnerability of
safety-critical systems to intentional hazards;

r The confidence in the assignments provided by
an MR-Sort classification model is quantita-
tively assessed by the bootstrap method in terms
of the probability that a given alternative is cor-
rectly classified.

From the results obtained it can be concluded
that although the model-retrieval-based approach
may be useful for providing an upper bound on the
error rate of the classification model (obtained by
exploring the space of all possible random models
and training sets), the bootstrap method seems to
be advisable for the following reasons: (i) it makes
use of the training data set available from the partic-
ular case study at hand, thus characterizing the un-
certainty intrinsic in it; (ii) for each alternative (i.e.,
safety-critical system) to be classified, it is able to as-
sess the confidence in the classification by providing
the probability that the selected vulnerability class is
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the correct one. This is of paramount importance in
the decision-making processes involving the vulner-
ability assessment of safety-critical systems, since it
provides a metric for quantifying the “robustness” of
a given decision.

APPENDIX A:

As described in Section 2, the hierarchical model
developed in Ref. 14 is considered to analyze the vul-
nerability of NPPs to intentional hazards. The sus-
ceptibility to intentional hazards (first layer) is char-
acterized in terms of attractiveness and accessibility
(second layer). These are hierarchically broken down
into factors that influence them, including resilience
seen as preattack protection (which influences on
accessibility) and postattack recovery (which influ-
ences on attractiveness); this decomposition is made
in six criteria: physical characteristics, social critical-
ity, possibility of cascading failures, recovery means,
human preparedness, and level of protection (third
layer). These six third-layer criteria are further de-
composed into a layer of basic subcriteria, for which
data and information can be collected (fourth layer)
(see Table A1). The criteria of the layers are assigned
preference directions for treatment in the decision-
making process. The preference direction of a crite-
rion indicates toward which state it is desirable to
lead it to reduce susceptibility, that is, it is assigned
from the point of view of the defender of an at-
tack who is concerned with protecting the system.
Although only the six criteria of the third level of
the hierarchy are considered in the NPPs vulnera-
bility analysis considered in this article, examples of
evaluation of the basic subcriteria of the fourth layer
are proposed in what follows for exemplification pur-
poses: in particular, we describe an example of the
procedure employed to calculate the numerical val-
ues of the third-layer criteria on the basis of the char-
acteristics of the fourth-layer subcriteria.

In extreme synthesis, the subcriteria of the fourth
layer can be characterized by crisp numbers or lin-
guistic terms, depending on the nature of the subcri-
terion. These descriptive terms and/or values of the
fourth-layer subcriteria are then scaled into numer-
ical categories. The influence to the corresponding
third-layer criterion of each of the subcriteria is an-
alyzed.

To get the values of the six main third-layer cri-
teria, (i) we assign arbitrary weights to each subcrite-
rion and (ii) we apply a simple weighted sum to the
categorical values of the constituent subcriteria.

A.1 Illustrative Example: Evaluation of the

Criterion Physical Characteristics

The criterion “physical characteristics” is taken
as an illustrative example. It is constituted by the sub-
criteria “number of workers,” “nominal power pro-
duction,” and “number of production” or “service
units.” The description and category scales are pre-
sented as follows.

Number of Workers

This criterion can be seen to contribute to the at-
tractiveness for an attack from various points of view,
for example: (1) the more workers, the more work
injuries and deaths from an attack; (2) the more
workers, the easier for the attackers to sneak into the
system; (3) the more workers, the higher the possibil-
ity that one of them can be turned into an attacker.
Limiting the number of workers can, then, contribute
to the security of the plant and, thus, reduce its attrac-
tiveness for an attack. Table A2 reports some refer-
ence values typical of NPPs.

Nominal Capacity

The higher the production capacity, the larger
the potential consequences of lost production or se-
curity in case of an attack. Then, it is preferable to
have a site with low capacity. Of course, for a fixed
amount of total capacity needed, this would lead to
its distribution on multiple sites, with an increase
in the number of multiple targets, though each of
them would lead to milder consequences if attacked.
Table A3 shows some reference values of power gen-
eration capacity at NPP sites.

Number of Production or Service Units

Locally, within a single site, this criterion rep-
resents the number of potential attack points. Pref-
erence would go toward having a small number of
targets on a site. Table A4 gives some reference val-
ues for NPPs.

We choose NPP x1 as an example to show
the calculation of the numerical value associated to
the main criterion “physical characteristics” starting
from the data relative to the three corresponding
subcriteria (i.e., number of workers, nominal power
production, and number of production or service
units). The original data of the three subcriteria of
x1 are listed in Table A5.
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Table A1. Criteria, Subcriteria, and Preference Directions

Possibility of
Criterion Physical Characteristics Social Criticality Cascading Failures

Subcriteria Number of workers Percentage of contribution to the
welfare

Connection distance

Nominal power production Size of served cities
Number of production units

Preference direction Min Min Min

Criterion Recovery Means Human Preparedness Level of Protection

Subcriteria Number of installed backup components Training Physical size of the system
Duration of backup components Safety management Number of accesses
Duration of repair and recovery actions Entrance control
External emergency measures Surveillance

Preference direction Max Max Max

Table A2. Number of Workers

Number of
Level Workers

1 500
2 1,000
3 1,500
4 2,000
5 2,500

Table A3. Nominal Power Production

Level Nominal Power
Level Production

1 1,000 MWe
2 3,000 MWe
3 5,000 MWe
4 7,000 MWe
5 10,000 MWe

Table A4. Number of Production or Service Units

Number of Production
Level or Service Units

1 2
2 4
3 6

In scaling them onto corresponding category,
we obtain the categorical value of alternative x1

(Table A6).
Then, the numerical values of Table A6 are nor-

malized (i.e., rescaled Between 0 and 1 based on the
predefined scales) as shown in Table A7.

Table A5. Corresponding Subcriteria Original Data of Main
Criterion Physical Characteristics of x1

Nominal Power Number of
Number of Production Production or

Alternative Workers (MWe) Service Units

x1 600 1,000 2

Table A6. Categorical Value for the Subcriteria Corresponding
to the Main Criterion “Physical Characteristics” of Nuclear

Power Plant x1

Number of
Number of Nominal Power Production or

Alternative Workers Production Service Units

x1 2 2 1

Table A7. Normalized Categorical Value for Corresponding
Subcriteria of Main Criterion Physical Characteristics of x1

Number of
Number of Nominal Power Production or

Alternative Workers Production Service Units

x1 0.4 0.4 0.33

Using the weights of these three subcriteria (ar-
bitrarily assigned by the authors) in Table A8, we can
apply a simple weighted sum to calculate the cumu-
lative value for main criterion “physical characteris-
tics”: 0.4 × 0.3 + 0.4 × 0.5 + 0.33 × 0.2 = 0.386.

Finally, considering the preference directions of
Table A1 (i.e., minimization for criterion “physical
characteristics”) and setting for each main criteria
the value “0” as the worst case and “1” as the best
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Table A8. Weights of Subcriteria for Physical Characteristics

Main Criterion: Number of
Physical Number of Nominal Power Production or
Characteristics Workers Production Service Units

Weights 0.3 0.5 0.2

one, we convert the cumulative weighed value ob-
tained earlier to its complement to “1,” that is, 1 −

0.386 = 0.614.
For the other five main third-layer criteria, the

process of calculation is the same as for criterion
“physical characteristics.”

APPENDIX B: MATHEMATICAL DETAILS

ABOUT THE ALGORITHM OF

DISAGGREGATION OF AN MR-SORT

CLASSIFICATION MODEL

We consider the case involving k categories
that are, thus, separated by (k − 1) fron-
tier denoted b = {b1, b2, ..., bh, ..., bk−1}, where
bh = {bh

1 , bh
2 , ..., bh

i , ..., bh
n, h = 1, 2, ..., k}, n is the

number of criteria that are taken into account. Let
DTR = {(xp, Ŵ

t
p), p = 1, 2, ..., NT R} be the training

set, where NTR is the number of alternatives, and
(A1, A2, ..., Ak) be the partition of the training set,
ordered from the best to worst alternatives.

For each alternative xp ∈ DTR, in category Ah

of the learning set DTR (for h = 2, 3, ..., k − 1), let
us define 2n binary variables δh

ip and δh−1
ip , for p =

1, 2, ..., NT R, such that δl
ip equals to 1 iff gi (xp) ≥

bl
i for l = h − 1, h and δh

ip = 0 ⇔ gi (xp) < bh
i . We

introduce 2n continuous variables cl
ip(l = h − 1, h)

constrained to be equal to ωi if δl
ip = 1 and to 0 oth-

erwise.
We consider an objective function that describes

the robustness of the assignment. We introduce two
more continuous variables, yp and zp, for each xp ∈

DTR and α. In maximizing α, we maximize the value
of the minimal slack in the constraints.

We resume all the constraints in the following
mathematical program:

max α, (A1)

α ≤ yp, α ≤ zp,∀xp ∈ DTR, (A2)

∑

i,p∈N

cl
ip + yp + ǫ = λ,∀xp ∈ Al−1, (A3)

∑

i,p∈N

cl
ip = λ + zp,∀xp ∈ Al , (A4)

cl
ip ≤ ωi ,∀xp ∈ DTR,∀i ∈ N, (A5)

cl
ip ≤ δl

ip,∀xp ∈ DTR,∀i ∈ N, (A6)

cl
ip ≥ δl

ip − 1 + ωi ,∀xp ∈ DTR,∀i ∈ N, (A7)

Mδl
ip + ǫ ≥ gi (xp) − bl

i ,∀xp ∈ DTR,∀i ∈ N, (A8)

M(δl
ip − 1) ≤ gi (xp) − bl

i ,∀xp ∈ DTR,∀i ∈ N, (A9)

∑

i,p∈N

ωi = 1, λ ∈ [0.5, 1], (A10)

ωi ∈ [0, 1],∀i ∈ N, (A11)

cl
ip ∈ [0, 1], δl

ip ∈ {0, 1},∀xp ∈ DTR,∀i ∈ N, (A12)

yp, zp ∈ R,∀xp ∈ DTR, (A13)

α ∈ R, (A14)

M is an arbitrary large positive value, and ǫ an arbi-
trary small positive quantity.

The case in which xp belongs to one of the ex-
treme categories (A1 and Ak) is simple. It requires the
introduction of only n binary variables and n continu-
ous variables. In fact, if xp belongs to A1 we just have
to express that the subset of criteria on which xp is
at least as good as b1 has sufficient weight. In a dual
way, when xp lies in Ak, the worst category, we have
to express that it is at least as good as bk on a subset
of criteria that has not sufficient weight.
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