
HAL Id: tel-01435879
https://hal.science/tel-01435879

Submitted on 20 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Autonomous Mobile Systems for Long-Term Operations
in Spatio-Temporal Environments

Cedric Pradalier

To cite this version:
Cedric Pradalier. Autonomous Mobile Systems for Long-Term Operations in Spatio-Temporal Envi-
ronments. Robotics [cs.RO]. INP DE TOULOUSE, 2015. �tel-01435879�

https://hal.science/tel-01435879
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Autonomous Mobile Systems for Long-Term
Operations in Spatio-Temporal Environments
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Chapter 1

Introduction

This document reports on research conducted between 2001 and 2015 in the field of au-
tonomous mobile robotics, specifically in what became known “field robotics”: a focus of
robotics on outdoor, little-structured environments close to industrial applications. Chap-
ter 2 describes a number of research projects, starting with activities initiated during my
doctorate research at INRIA between 2001 and 2004, followed by a post-doctoral fellowship
at CSIRO, in Canberra and Brisbane, Australia between 2004 and 2007. From 2007 to 2012,
my role as Deputy-Director of the Autonomous Systems Lab at ETH Zürich, Switzerland,
gave me the opportunity to supervise a number of projects ranging from space robotics and
mechatronic design to European projects on indoor navigation or autonomous driving. On
the other hand, chapter 3 will describe my reseach plan stemming from this experience and
preliminary results from projects started in my current position as Associate Professor at
GeorgiaTech Lorraine, the French campus of the Georgia Institute of Technology, also known
as GeorgiaTech, located in Atlanta, USA.

This research has been published in a number of journal publications which will support
our synthesis. A selection of these publications is attached at the end of this report and will
be described in more details in chapter 2:

1. Ming Liu, Cédric Pradalier, and Roland Siegwart. Visual homing from scale with an
uncalibrated omnidirectional camera. IEEE Transaction on Robotics, (99):1–13, 2013 –
Appendix A

2. Marie-Ève Garneau, Thomas Posch, Gregory Hitz, François Pomerleau, Cédric Pradalier,
Roland Siegwart, and Jakob Pernthaler. Short-term displacement of planktothrix rubescens
(cyanobacteria) in a pre-alpine lake observed using an autonomous sampling platform.
Limnography and Oceanography, 58(5), 2013 – Appendix B

3. Elena Stumm, Andreas Breitenmoser, Francois Pomerleau, Cedric Pradalier, and Roland
Siegwart. Tensor voting based navigation for robotic inspection of 3d surfaces using
lidar point clouds. The International Journal of Robotics Research, 31(11), 2012 – Ap-
pendix C

4. Ambroise Krebs, Cédric Pradalier, and Roland Siegwart. Adaptive rover behavior based
on online empirical evaluation: Rover–terrain interaction and near-to-far learning. Jour-
nal of Field Robotics, 27(2):158–180, 2010a – Appendix D
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5. Cédric Pradalier, Ashley Tews, and Jonathan Roberts. Vision-based operations of a
large industrial vehicle: Autonomous hot metal carrier. Journal of Field Robotics, 25
(4-5):243–267, 2008 – Appendix E

6. Cédric Pradalier and Kane Usher. Robust trajectory tracking for a reversing tractor
trailer. Journal of Field Robotics, 25(6-7):378–399, 2008 – Appendix F

7. Cédric Pradalier, Jorge Hermosillo, Carla Koike, Christophe Braillon, Pierre Bessière,
and Christian Laugier. The cycab: a car-like robot navigating autonomously and safely
among pedestrians. Robotics and Autonomous Systems, 50(1):51–67, 2005 – Appendix G

Out of this body of work, three main themes can be separated: the development of navigation
systems for various robotic systems in a deployment context [Liu et al., 2013, Stumm et al.,
2012, Krebs et al., 2010a, Pradalier et al., 2008, Pradalier and Usher, 2008, Pradalier et al.,
2005], the development of solutions to challenging perception problems in natural environ-
ments, mostly using vision [Liu et al., 2013, Krebs et al., 2010a, Pradalier et al., 2008, 2005]
and the design of autonomous mobile systems for the monitoring of natural and industrial
environments [Garneau et al., 2013, Hitz et al., 2012, Negre et al., 2008]. Chapter 2 will
present more details about these themes and link them to demonstrate how they converge to
a common research question: how to design efficient and robust autonomous mobile systems
for natural and unmodified environments, while taking into account the constraints resulting
from the need to deploy and evaluate these systems in the field.

From mobility and monitoring in natural unstructured system, our research is now evolving
towards long-term observation of large-scale environments subjected to changes on different
time scale. The environments we are considering here can be described on a multi-kilometer
scale but may require centimeters of precision in their representation, at least locally (de-
pending on the task). In these environments, change is expected to happen at scales varying
from seconds to years depending on the natural processes at play. Chapter 3 will provide
some insight on our current research and long-term perspectives.
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Chapter 2

Autonomous mobile systems for
natural and unmodified
environments

2.1 Localization, navigation and control for mobile robotic

systems

Designing the software architecture for mobile robotic systems involves, most of the times, the
dedication of a significant share of the work to the problems of localization, navigation and
multiple layers of control. This section will succinctly describe the systems we implemented
on some of the robotic systems we encountered in the last 15 years, in France, Switzerland
and Australia

2.1.1 CyCab: Navigation among pedestrians

Figure 2.1: The CyCab: an autonomous car-like vehicle for urban mobility

The CyCab (figure 2.1) is a small autonomous car-like vehicle. Its specificity is its ability
to steer both front and rear axle, giving it an excellent maneuverability well suited for urban
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environments. The work presented in Pradalier et al. [2005], Coué et al. [2006], Pradalier and
Bessière [2008] was conducted at INRIA Rhone-Alpes (Grenoble) between 2001 and 2004.

Autonomous navigation with the CyCab required to first solve the problems of localization
and mapping for which we presented an original approach [Pradalier and Sekhavat, 2002]
based on the identification of invariant features in the measurement process. From then
on, with the collaboration of J. Hermosillo, we could integrate a global planner accounting
for the dual-steering capability of the vehicle and an obstacle avoidance system built on a
probabilistic framework. The fully integrated systems was presented in Pradalier et al. [2005]
as well as in a number of public demonstrations.

2.1.2 The Hot Metal Carrier

Figure 2.2: The Hot Metal Carrier, a modified forklift for the transport of liquid aluminium

Our work on the Hot Metal Carrier (HMC, see figure 2.2) took place at the CSIRO1 in
Brisbane, Australia, between 2004 and 2007. Its summary is presented in Pradalier et al.
[2008]. For this system, the challenges were to develop a localization and navigation system,
the control layers, and most importantly vision-based load handling. The latter is the main
contribution in Pradalier et al. [2008]. Based on markers on the load and a vision-based
state estimator, the 6-meter long vehicle could insert its hook into the lifting ring of the
crucible with better than 5cm of precision and an excellent repeatability. Because of its
industrial nature, this project put a particular focus on robustness and a significant effort
was dedicated to the evaluation of the system in real conditions.

2.1.3 Reversing a tractor-trailer system

In parallel with the developments on the HMC at the CSIRO, we experimented with the
control of a tractor-trailer system on a reversing trajectory. Initially designed as an experi-

1Commonwealth Science and Industrial Research Organisation

5



Figure 2.3: The CSIRO tractor-trailer system

ment to learn the control principles applicable to chained systems [Tilbury et al., 1995], the
implementation of the controller on a real system (see figure 2.3) lead to interesting practical
contributions reported in Pradalier and Usher [2008].

The first item of interest in this case was that state-of-the-art control systems for a tractor-
trailer lead to overly complex model when using a real system and a chained-form decompo-
sition. In our particular case, the required model had to consider one tractor with 4 trailers
and a 10-dimensional state. The resulting control proved to be unable to deal with the non-
linearities inherent to a real system: actuator lag, dead zone, actuator limits,... Finally, when
using a real localization system, the estimated vehicle state is subjected to non-Gaussian
noise and abrupt steps, both of which are hard to deal with the linear control law from the
chained-form model. Our solution, based on nested PID controllers proved to be resilient to
all the challenges above and compared favorably with human drivers on a 400m test course.

2.1.4 Magnebike

The Magnebike is a robotic system developed at the Autonomous Systems Lab at ETH Zürich,
Switzerland [Tâche et al., 2009]. Its purpose is the inspection of metallic pipes such as the
steam chest on the output of a coal power plant. The ASL designed the system and proposed
a localization system based on the alignment of 3D laser point clouds. Our contribution,
presented in Stumm et al. [2012], is focusing on the navigation system: we propose a path
planner suitable for planning on non-planar manifolds (2D manifolds embedded in a 3D space)
and the associated trajectory following control system.

The challenge in this planning system is that the interior of pipes forms a complext 2D
manifold which cannot be projected to a planar system due to branching pipes. Furthermore,
in order for the system to be self-sufficient, it should not rely on CAD-map of the pipe network
(such maps are often out-of-date anyway) but should be able to create its own map out of
the 3D point clouds. This generate an additional challenge because the aligned point clouds
do not define a nice mesh of the surface but rather a haze of 3D measurements around the
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Figure 2.4: Magnebike: a robotic system to inspect metallic pipes

real surface. Rather than finding complex solutions to build an approximating mesh out of
the 3D point cloud, we decided to build a planner directly on the point cloud itself. This was
made possible by using tensor voting [Medioni et al., 2000] to estimate the local saliency of
the pipe surface. Finally, the Magnebike is able to drive with any orientation with respect to
gravity due to magnetic wheels but to maintain adherence when passing edges (e.g. entering
a side tube), the planner needs to enforce arriving on such edges with a 90 degree incidence
angle. With help of tensor voting, we can use a single process to not only detect the pipe
surfaces but also identify edges and their saliency. Integrating this additional input led to a
complete system able to plan in complex environment using only data collected on-board.

2.1.5 Rovers: adaptive planning, wheel control, odometry

Between 2007 and 2012, the Autonomous Systems Lab participated to various projects funded
by the European Space Agency to design prototypes of planetary rovers and build their con-
trol systems. Planetary rovers are designed with a very specific set of challenges. First of
all, up to now very little decision autonomy has been expected, so most of the research and
development focused on control systems. Most of the difficulty stems from the fact that these
vehicles typically have a passive suspension system, 4 to 6 wheels with individual high-torque
electrical motors as well as 4 to 6 steering motors allowing steering all the wheels indepen-
dently on some of the systems we designed. The challenges we addressed at the Autonomous
Systems Lab included torque control of individual wheels to maximize traction in slippery
conditions [Krebs et al., 2010b], using suspension deformation to reconstruct the traversed
terrain shape [Strupler et al., 2014], steering control optimization to minimize kinematic errors
on 6-wheeled rovers [Schwesinger et al., 2012], 3D odometry, ... Looking forward to a future
where rovers will be trusted with more decision autonomy, we also built a probabilistic frame-
work to learn the relation between remote terrain appearance and proprioceptive perceptions
(in this case vibrations) and to include these predictive models in the trajectory planner to
let the rover decide to avoid terrain patches where appearance hints at bad proprioceptive
properties. This approach, evaluated on the CRAB rover (figure 2.5, top left) in outdoor
conditions on earth (no planetary exploration mission was available for this test), has been
presented in Krebs et al. [2010a].
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Figure 2.5: Planetary rover prototypes developed at the Autonomous Systems Lab

2.1.6 Synthesis

All the systems presented above (which represent a selection of the systems we worked on)
share a common research question: how can we build integrated navigation systems for mobile
robotic systems working in real environments with real sensors? Are there elements that
can be reused from one system to the next, are there aspects that must be kept specific?
Between 2001 and 2014, the robotic community has matured as a whole, focusing also on
these questions and proposing solutions to mutualize all the common parts valid for a wide
range of systems. This also highlight a very important aspect of robotics and in particular
field robotics: deployment on real robots requires a significant engineering effort, to keep the
robots working, to keep their software up-to-date, to develop all the software infrastructures
to interact with the sensing and command hardware. These efforts are difficult to publish but
they are critical when one wants to properly evaluate solutions for robotic systems. Without
a strong engineering layer, robotic systems tend to be evaluated using anecdotal experiments
without statistical significance. In line with the common principle behind all our experiments,
the robotic community is showing more and more awareness of this issue and promoting well
designed field experiments and reference data-sets. As will be discussed in chapter 3, the
next step in this direction is naturally the deployment of robotic systems with a high level of
decision autonomy for long duration. This will raise new scientific problems, some of them
specific to robotics, and will lead to more robust, adaptive and autonomous systems.
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2.2 Challenging perception systems

The papers we discussed in the previous section were focusing on navigation and control
with the aim of creating autonomous integrated systems. However, when designing complete
robotic systems, perception tends to be one of the most challenging sub-system. As a result,
a significant part of our work was dedicated to the design of perception systems specialized
to a given task.

2.2.1 Self-similar landmarksSquare, Factor: 2/3 20
Figure 2.6: Self-similar landmarks: original from Briggs et al. [2000], orthogonal setup for
load handling, circular setup for underwater docking

Figure 2.7: Experiment on self-similar landmark robustness, from left to right: original de-
tection, non-rigid deformation, occlusions, perspective and loss of contrast.

Self-similar landmarks (seen in figure 2.6) are barcode-like patterns designed so that if a
pixel at a distance r from the reference point is black, a pixel at a distance p ·r is black as well
and one at

√
p · r is white. This property led to a marker that can be detected independently

of scale with a simple integral on a line of pixels. The original markers were presented
in Briggs et al. [2000] and we adapted them in two different ways as seen in figure 2.6. On
the Hot Metal Carrier, an orthogonal combination of markers was attached to the handle of
the crucible because of the geometry of the support and the fact that the tracking problem
could be reduced to two dimensions. For the autonomous underwater vehicle (AUV) Starbug
in the context of a docking task, a large circular landmark was associated to two smaller ones.
The large landmark could be detected at a large enough distance to guide the submarine to
the vicinity of the landmark. At this point, the smaller landmarks became visible and let
the system estimate the full pose of the vehicle with respect to the landmark frame (using
an accelerometer to solve potential ambiguities). The robustness of the self-similar landmark
detection can be observed in figure 2.7. The work on the Starbug AUV was published in Negre
et al. [2008]. The use of the self-similar landmark is at the core of the successful operations
of the Hot Metal Carrier and was published in Pradalier et al. [2008].
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Figure 2.8: Vision setup on the hot-metal carrier. Top camera placement on top of the HMC
mast, bottom camera view.

2.2.2 Vison-based manipulation

Vision-based load pickup on the Hot Metal Carrier was another of those problems where the
challenges stemmed out from the specific task and the deployment constraints (see figure 2.8
and Pradalier et al. [2008]). Because of the industrial nature of these systems carrying molten
aluminium, the perception system could not be placed safely at the bottom of the pickup mast
where the crucible detection would have been easiest. Also, a successful pickup requires to
detect the position and orientation of the crucible in real-time from a distance of 5 to 10
meters, in order for the 6 meter long HMC to align its hook with the 15cm ring on the
crucible. This detection system had to be robust to different lighting conditions and able to
reliably identify non detection. All these challenges led to a vision-based solution on a pan-
tilt-zoom platform with artificial markers on the crucible handle (see figure 2.8). A Bayesian
state estimator (particle filter) as well as the logic to cross-validate detections let us develop
a very reliable and repeatable system. The evaluation shown in figure 2.9, conducted over
5 hours of continuous operations, display the trajectories of the HMC hook in 15 different
pickups. At the time of the publication of these results in Pradalier et al. [2008], we did not
observe anymore failures: the systems was always either able to successfully pick the load up
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Figure 2.9: Performance of the vision based load pickup

or to identify that the pickup was not possible and re-initiate the pickup sequence or request
assistance as appropriate.

2.2.3 Vison-based homing using scale from SIFT features

Figure 2.10: Matching process of SIFT features in omnidirectional images.

The work presented in Liu et al. [2013] started in the European project Robots@Home
where the intent was to develop algorithms for navigation and in particular global localization
for a companion robot moving in an apartment. The cost constraints for such a system
prohibited the use of laser scanners and led to the choice of omnidirectional vision as the
main sensor. By identifying that SIFT scale [Lowe, 1999] could be used as a proxy for feature
distances in a visual-servoing [Espiau et al., 1992] framework, we could create a topological
navigation system. In the resulting map, locations were described by their omnidirectional
appearance and the associated SIFT features. Relations between places were just recorded
from odometry, based on the assumption that an apartment can actually be described by a
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road map of limited complexity.
The study in Liu et al. [2013] was particularly important because it proposed a detailed

evaluation of the suitability of SIFT scale as a features for visual servoing. We demonstrated
stability in the Lyapunov sense and made a detailed experimental validation showing the
sensitivity of the approach to parameters such as matching errors, feature noise, scale uncer-
tainty, convergence area. One of the image of the validation database can be seen in 2.10.
The theoretical and detailed practical evaluation is fundamental in our approach to robotics:
we strive to propose solutions to real problems with solid theoretical grounding and validate
them experimentally in relevant situations showing the limits and sensitivity of the approach.

2.2.4 Sonar-based navigation

Figure 2.11: The Noptilus Autonomous Underwater Vehicle (AUV)

Following up on the sensory-motor trajectories tried on the CyCab [Pradalier and Bessière,
2008], we are currently participating to the European project Noptilus where our task is to
realize sensory-motor trajectory following underwater on Autonomous Underwater Vehicles
(AUVs) – see figure 2.11 – using a variety of sonar sensors: single-beam echo sounders,
Doppler velocity loggers (DVL), multi-beam sounders and side-scan sonars. Single-beam and
DVL have already been used for tasks such as global localization with respect to a known
bathymetric map in Bayesian framework as shown in figure 2.12. However, for sensory-motor
replay, a sensor with a wider field of view such as multi-beam sounders and side-scan sonars
will be required. These sensors are particularly interesting from a research perspective since
there have been very little effort on integrating them in a control loop onboard AUVs even
though most modern system will actually embed them in their standard sensor suites. Side-
scan sonar are particularly interesting because a significant modelling work is required to
exploit the wealth of information they report, i.e. sonar energy received as a function of time
instead of simpler ranges reported by other sensors.

At this stage, limited results have been published on this project [Michalec and Pradalier,
2014] but more publications are expected in 2015. However, this project is also representative
of an aspect of our research line consisting in exploring the use of informative sensors in field
applications, using real data, real robots and real environment to solve problems relevant to
practical applications.

12



Figure 2.12: Terrain-based localization using a multi-beam sounder and a particle filter on the
Noptilus AUV. The bronze cloud around the trajectory is the accumulated particle position
over the whole trajectory. The 3D elevation map was realized by processing multibeam echo-
sounder data acquired on a survey mission.

2.3 Systems for environment observation

Out of all the robotic systems we’ve discussed so far, a common target application can be
seen emerging: the monitoring of complex environments, natural or industrial. On the one
hand, inspection is one of the few target application for civilian robotics where the business
model makes sense with the current state of the art. On the other hand, environment sci-
ence is currently awakening to the potential of automation and robotics for monitoring and
sampling applications. In the following sections, we will discuss several research projects we
conducted in this context of environment observation. Most of these projects have a sig-
nificant mechatronic design component and have been published as such. However, we will
exclude the planetary rover we already discussed in section 2.1.5: these systems are ultimately
designed for environment observation tasks, but our work was just too far ahead of the target
application to consider more than the basic control challenges.

2.3.1 Industrial inspection

Between 2007 and 2012, at ETH Zürich, we developed a number of systems focused on
industrial inspection. I will only mention here the one where I could make a technical con-
tribution instead of just taking care of the project management. As mentioned earlier, the
Magnebike [Stumm et al., 2012] is the archetype of the inspection robot system. It is designed
specifically for the inspection of metallic pipes in power plants and its design cost is negligible
in comparison with the loss of income resulting from a day off the grid of such a power plant.
Our main contribution on this system was the development of the navigation system as well
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as a significant contribution to the low-level embedded system. In a similar vein, at the be-

Figure 2.13: Example of storage tank targeted by the KTI project on robotic inspection

ginning of 2012, the Autonomous Systems Lab and the company Alstom Inspection Robotics
started a project funded by Swiss Chamber of Industry (KTI) under my supervision on the
automation of the inspection of storage tanks, and in particular oil and gas tanks. This is
one application where the European regulation is becoming more and more stringent – every
side panel of the tank needs to be inspected on 5 points using non-destructive method based
mostly on Eddy currents and ultra-sounds. The current state of the art is for a person to
abseil from the top of tanks similar to the ones in figure 2.13 while carrying the inspection
device. While this is rather a technology transfer project than a scientific contribution, this
project is interesting because it has the potential to significantly change industry standards
and the safety associated with storage tanks.
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2.3.2 Robots for natural environment monitoring

Natural environment autonomous monitoring raises a lot of interesting research challenges
for robotics. The first one stems from the design of robotic systems, from the mechanical and
electrical design to the software architecture. The second and third challenges are mobility
and perception in unstructured and natural environment. Without salient lines and corners,
a lot of the approaches presented in the literature have limited success in a forest or on
a lake shore. Working 5 years at the Autonomous Systems Lab, within the mechanical

Figure 2.14: Bio-inspired mechatronic design projects: a membrane-based underwater loco-
motion system inspire by a cuttlefish (left) and underwater system with a kinematic compa-
rable with a sea-turtle (right).

Figure 2.15: Autonomous boat designed at the Autonomous Systems Lab: Avalon (left) and
Lizhbeth (right) used in the Limnobotics project (www.limnobotics.ch).

engineering department of ETH Zürich, provided a strong incentive to address the challenges
of mechatronic design for autonomous mobility in natural environment. Section 2.1.5 (on
planetary rovers) shows some examples of systems designed for mobility in rock-and-sand
environments. In parallel with these works for the European Space Agency, we could conduct
mechatronic design projects up to the prototype stages. Some of them such as a concept
study on membrane-based locomotion underwater (similar to cuttlefish)[Peter et al., 2010]

15
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Figure 2.16: Autonomous vehicle specifically designed for environment monitoring: the Star-
bug AUV from CSIRO (left) and the Kingfisher ASV used at GeorgiaTech Lorraine (right).

or a longer study on the design of an underwater system with a mobility similar to a sea-
turtle [Siegenthaler et al., 2013], were mostly focusing on the mechatronic challenges and did
not reach the autonomy stage under my watch. Both projects can be seen in figure 2.14.

A number of projects at ASL focused on the design of autonomous boats, two of which
involved me technically (see figure 2.15). The first one consisted in the design of the au-
tonomous sail boat Avalon [Erckens et al., 2010]: a system designed from the beginning for
long-term autonomy both in terms of energy and decision. This boat was designed and com-
pleted during the course of year with a couple of further projects related to software autonomy.
Experiments in autonomy over 70 nautical miles were conducted around Toulon, France, only
interrupted by a mechanical failure. A second project started with the realization of an
electric-powered catamaran for the monitoring of algal blooms in Lake Zürich. This work was
later funded by the Swiss National Fund (1 PhD and 1 Post-Doc) in the project Limnobotics,
which I prepared and co-supervised. It demonstrated the non-heterogeneous nature of algal
bloom distributions and their dynamics, which was published by Garneau et al. [2013]. The
mechatronic design focused on the stability and deployability of the boat on fresh-water lake,
while allowing to reliably monitor the first 20 meters of the water column. In this project, the
system was built from the beginning for autonomous navigation, which allowed precise and
repeatable transects in Lake Zürich and Lake Cadagno, a small lake at an altitude of 2000m
in the Swiss Alps.

Finally, I also had the opportunity to contribute to the autonomy layer of systems designed
from the outset for environment monitoring. Specifically, at CSIRO in Brisbane, Australia,
in collaboration with M. Dunbabbin, we developed a number of experiments on the Starbug
AUV (see figure 2.16). The contribution there was on one hand, the implementation of a task
scheduling system (also used on the Hot Metal Carrier, section 2.1.2) and on the other hand,
the contribution of a robust vision-based docking approach presented in Negre et al. [2008].
These applications were deployed in the field happened after I left CSIRO but these tools
inspired the ones we developed for the Limnobotics project [Hitz et al., 2012, Garneau et al.,
2013]. The continuity of this experience also permitted the fast development of the autonomy
layer for the Kingfisher (see figure 2.16), which is at the core of our current projects towards
long-term natural environment monitoring. Preliminary results on this platform have been
presented in Griffith et al. [2014].
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Chapter 3

Perspectives: Towards observation
and operations in spatio-temporal
environments

The previous chapters provided an overview of my research path up to the beginning of 2015.
The next sections are now looking towards the future and I will discuss the directions my
projects are currently following as well as the continuity with the last fifteen years of research
I was involved in.

The core component of my research interests is the autonomous observation of environ-
ments in which change happens at a variety of scales, from seconds to years, some changes
being the result of abrupt events, others resulting from smooth variations of parameters. Some
changes will also be recurrent while others will happen only once in the observation period.
At another level, changes can be spatially localized or happen everywhere in the environment,
simultaneously or not. I qualify these environments as spatio-temporal environments: to be
understood they must be explored through time and space.

Monitoring spatio-temporal environments will require the development of spatio-temporal
models describing the structure of the environment itself and the dynamics of phenomena
occurring therein. Using an autonomous platform will let us perform a precise and repeatable
monitoring, sometimes with less supervision requirements. In a later stage, we also want to
close the loop and take advantage of autonomy to not only detect changes but also inspect
them in more details. This raises further interesting questions in fields such as autonomous
sampling or information-aware planning. Integrating such decision layers on-board, within
the autonomy framework of a robotic machine will also be a significant engineering feat out
of which practical contributions are expected.

3.1 Applications

Environment Sciences: As a field roboticist, my research objectives are driven first by
a set of applications which exhibit the problems I am interested in. The problem of long-
term environment monitoring applies naturally to a large range of studies in environmental
sciences, such as limnology, planetary exploration, oceanography, ethology, etc. To identify
these application fields in environment sciences, I am currently involved in the Zone Atelier
Moselle, a confederation of research laboratories interested in environment sciences around the
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Moselle watershed: from agrology and geology to bio-chemistry and toxicology. Research in
these fields relies on a lot of data sources but little use have been made so far of automation.
This is partially due to the cost of autonomous systems and the scarcity of embeddable
sensors suitable for these problems. Current projects to rehabilitate fallen industrial sites
in the Lorraine area could also support research on long-term monitoring to document and
evaluate the remediation actions.

Agriculture: Agriculture is another field in which autonomous long-term monitoring and
operations would make a lot of sense. A field where a crop is grown is naturally changing over
time, from ploughing and seeding to harvest. Most of these changes are what is expected out
of the natural growth dynamic of the plant of interest, but some changes can be the results of
disease, lack of input (water, fertilizers) or other damages. Regular and precise monitoring,
as well as remediation actions, will be the topic of the Flourish project, a project funded by
the European Commission in which the UMI 2958 GeorgiaTech-CNRS will take part from
March 2015 to September 2018. Half of our contribution to the project will be focused on
precise remediation, but a contribution to the perception and planning layers is also to be
expected.

Inspection: As mentioned above, inspection is also a natural application field for long-
term monitoring. Such monitoring can take a variety of form, from natural environment to
human-made infra-structures (bridges, canals) and industrial sites. Developing these projects
will require the establishment of industrial collaborations with end-users or equipment man-
ufacturers. Participation to challenges such as the Argos challenge [arg] will also be con-
sidered when appropriate1. The objective of the Argos challenge was the development of
an autonomous system for the monitoring and inspection of off-shore infrastructures. The
development of this direction of research will also be supported by existing cross-disciplinary
research within the UMI 2958 GeorgiaTech-CNRS and GeorgiaTech Lorraine which also hosts
specialists in acoustics and non-destructive testing, material science and simulation of defects
propagation in anisotropic materials.

The themes listed above do not intend to be exhaustive but it definitely covers a significant
part of the practical questions which are going to inspire our research in the upcoming years.

3.2 Challenges and Research Directions

Monitoring spatio-temporal environments will raise challenges at a number of level. First, the
core of the required research will focus on environment perception challenges in natural or
uncontrolled environments. This includes the development of spatio-temporal models, match-
ing and data association in changing environments, detection and classification of changes.
Secondly, combined with this understanding of spatio-temporal environments, robotic sys-
tems have to take advantage of their mobility to take autonomous decisions. This will lead to
challenges in the field of planning, control and mobility, such as information-aware planning,
multi-resolution observations or remediation in the context of a agricultural robot. Finally, a
given observation and inspection task will most likely require the development of a specialized
platform with proper mobility and a suitable sensor payload.

1Participation to the Argos challenge was denied due to legal and IP issues
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Although not a research objective in itself, the engineering challenges related to the de-
velopment of such platforms is essential to the ability to observe real environments and often
provide interesting collaboration opportunities with industrial partners.

3.2.1 Environment Perception
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Figure 3.1: The aligned and the reference images for six consecutive places along lake Sym-
phonie’s shore where the June 25, 2014 survey was compared to the June 13, 2014 survey. The
mowed grass is one of the most salient, non-natural changes between them, which appears in
all six.

Monitoring an environment over space and time generates a tremendous quantity of data,
in particular when using digital imagery. As an example (depicted in figure 3.1), we are
currently conducting a weekly monitoring of a small lake next to the UMI 2958 GT-CNRS in
Metz, France, and even with the low resolution images used, this represents between 4 and 8
GB of compressed data per week to describe close to 1 km of shore line. Figure 3.1 depicts
two aligned image sequences from these data-set, captured within a twelve-day interval. The
first challenge to be addressed is to build three dimensional spatio-temporal maps of the
environment being monitored. This will include some form of 3D representation extended
with an appropriate representation of the observed dynamic of the observed changes. At
this stage, it is unclear what an optimal representation is, but an avenue to explore could be
an extension of n-dimensional Haar-wavelets describing both the 3D volume, and maybe its
appearance, over time.

From a computer science perspective, the development of data-structures allowing an
efficient representation of spatio-temporal environments, while still being usable in real-time
applications and sufficiently easy to update is a significant challenge that will have to be
addressed at the same time as the choice of the representation.

One of the specific challenges resulting from the observation of a natural environment can
be seen in figure 3.2: natural environment are subjected to significant changes in lighting
conditions over time and this in turns makes them appear significantly different. This has
also been reported in Churchill and Newman [2013]. This is a challenge because monitoring
an environment over time requires associating a view acquired at a first moment with a view
acquired later, even though most of the environment appearance has changed in between.
We must hence separate the structural changes in the environment with the changes due
to variation in illumination. Our first experiments on this topic show that it will require
rethinking data-association and matching techniques for natural environments. For instance,
the ubiquitous SIFT features [Lowe, 1999] does not perform well in scenes consisting mostly
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Figure 3.2: Surveys captured at various times are aligned to the survey from Oct. 10, 2014 at
two different sections of lake Symphonie’s shore, denoted by A1-A6 and B1-B6. Each warped
image is shown with the reference image from the Oct 10 survey that it tried to align with.

of natural features such as shrubberies, trees and grass. This is probably due to the low
distinctiveness of objects, appearances and key-points in these environments. Note, that in
our preliminary experiments, other features were not performing significantly better in our
test data-sets.

Another important challenge to address will be the detection and classification of changes.
As mentioned earlier, we are interested in environments where change happens at the scale
of seconds to years, with abrupt changes and smooth ones. This will require developing new
approaches able to detect changes in large spatio-temporal data-sets and hopefully classify
them, at least with respect to their temporal properties. Ultimately, it would be particularly
interesting to distinguish expected changes from unexpected ones. In effect, an expected
change such as leaves falling down in fall would just be an expected observation of a spatio-
temporal representation encoding this particular dynamic in a known environment. This
event which would be a change in a map representing a static world would actually be a
non-event in a spatio-temporal map.

Finally, monitoring large scale environments over long duration will probably require con-
ducting the observation with an heterogeneous set of sensors and in particular with different
resolutions. These monitoring runs may also not be conducted synchronously. This will raise
further challenges linked with the management and fusion of heterogeneous data from multi-
ple spatio-temporal resolutions. To address these type of issues approaches using a continuous
time assumption as is currently popular in the SLAM community [Furgale et al., 2012, Oth
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et al., 2013] could be explored. A continuous representations of the spatio-temporal map as
a n-dimensional continuous function with local support could be updated with data at any
spatio-temporal resolution by just sampling it at the space-time point of the observation.

3.2.2 Planning, Control and Mobility

Monitoring spatio-temporal environments can be done using hand-held sensors, or sensors
mounted on manually driven vehicles. However, using autonomous systems offers certain
advantages which naturally come with interesting research challenges. The main advantage
of autonomous systems for such a monitoring task is the precision and repeatability of the
observation patterns, as noted in Garneau et al. [2013], combined with the potentially low
signature and reduced human involvement. The first challenge we consider is the optimization
of observation trajectories for the surveillance and monitoring of natural or unmodified spatio-
temporal environments. Because these environments change over time, they raise a new
definition of the coverage problem2: the only real coverage solution is to observe the entire
environment simultaneously and continuously. This covers both the spatial and temporal
dimension of the place of interest. Obviously, such a solution is not applicable to autonomous
systems with a limited perception footprint that cannot be everywhere at the same time. New
approaches will have to be developed to find locally optimal observation solutions that take
advantage of the part of the spatio-temporal model already known. Note that until enough
observation has been made to start such a model, the coverage problem is necessarily reduced
to its spatial dimension.

In a similar vein, using a spatio-temporal model of the environment could allow a focused
multi-resolution observation strategies: the autonomous system could gather long-range ob-
servations of the environment and compare them with its predictions and then only close-up
to collect more imagery from places where unexpected changes have been detected. This type
of planning is similar to information-aware planning [Hitz et al., 2014]. It could be further
extended if we consider that the autonomous vehicles are typically limited in autonomy by
their power source. In this condition we could envision planning multi-resolution monitoring
paths under the constraint of fixed/maximum observation duration.

Predicting and recognizing environment change, especially its appearance, could also be
expanded towards predicting environment properties following the lead of Krebs et al. [2010a].
In a riverine environment, this could allow use to predict changes in water eddies which in
turn could affect the feasibility or optimality of paths. In a ground environment, change
of appearance of the ground could be linked (possibly from experience) to the changes in
expected mobility conditions: hard ground turning to mud, wet grass turning slippery, icy road
surfaces, etc... Similarly, combining inspiration by the work of Churchill and Newman [2013]
with our work on sensory-motor trajectories [Pradalier et al., 2005], it would be interesting
to learn sensory-motor trajectories in a spatio-temporal environment and use the spatio-
temporal model of this environment to make such trajectories resilient to slow evolutions of
environment properties.

Finally, in an agricultural setting, the Flourish project [flo] depicted in 3.3, starting in
March 2015 will address the remediation aspect of spatio-temporal environment monitoring.
In a field, the seeded crop hopefully grows continuously while weeds may grow asynchronously.
By monitoring the changes and identifying growing weeds, an autonomous farming robot

2the choice of a trajectory that completely observe a given environment
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Figure 3.3: Concept drawing of the heterogeneous system planned for the European project
Flourish (courtesy of the Flourish consortium): a ground robot and a small aerial vehicle
work together to monitor and maintain a field.

could intervene and extract or destroy weeds. This will require precise localization of changes
and precise control to remove the identified weeds potentially in harsh field conditions while
meeting strong efficiency requirements.

3.3 Initial Results

This section presents first results obtained in the direction of this research plan and submitted
to international conferences at the time of this writing. This work has been conducted mostly
by S. Griffith, PhD student at the Georgia Institute of Technology under my supervision since
September 2013.

So far, we have been developing an autonomous monitoring framework to assist a human
trying to detect changes in lakeshore environments. This is a large spatial and temporal
scale study, involving over 50 surveys of a lakeshore collected over a year and a half with
an autonomous surface vehicle. In spite of the large variation of appearance across surveys,
our framework provides a human with aligned images and a way to quickly detect changes
between them. First visual SLAM [Košecka, 2013, Beall and Dellaert, 2014, He et al., 2006,
Agarwal et al., 2011] is used to find a coarse alignment of images between surveys, and second,
SIFT Flow [Liu et al., 2011] is applied to achieve dense correspondence. We present aligned
images to a human using the flickering paradigm, which a human can quickly use to perform
change detection. Results show that our method can align images in the midst of variation in
appearance of the sky, the water, changes in objects on a lakeshore, and the seasonal changes
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of plants. Initial results from our approach can be seen in figure 3.1 and 3.2
The problem of finding dense correspondences between images from two different surveys

of a natural environment is similar to related work on synchronizing image sequences. Evan-
gelidis and Bauckhage [2013] synchronize two image sequences by maximizing the number of
matching feature points between image pairs, and then refining the estimate based on image
similarity. A database is made for the first sequence, which is queried with images from a
new sequence to get a visually close frame. The result is refined using a 2D homography to
find the best corresponding image. Based on their algorithm’s performance to major changes
in illumination between video sequences, they recommend a different approach if sequences
have lots of variation between them. In a different approach to synchronization based on
time–warping, Wang et al. [2014] give a human the power to explore the space of possible
synchronizations through an interactive system.

In this report, image sequences from consecutive surveys are aligned to assist a human with
identifying changes. The aspect of our work regarding assisting humans perhaps makes it most
similar to that of Williams et al. [2012], in which sea-bottom imagery from an autonomous
underwater vehicle is annually captured over four years. They perform visual SLAM and
dense 3D reconstruction from stereo images to create a data exploration tool, which a human
uses to visually compare separate datasets. In contrast, in our work a human compares
directly aligned images, which exploits human skill at detecting changes between flickering
images of the same scene. Rather than try to match image patches or sparse features, we
align whole images and achieve dense correspondence on the order of a pixel–level alignment
between images of the same scene captured week(s) apart.

3.3.1 Experimental Setup

Robot

We used Clearpath’s Kingfisher autonomous surface vessel (ASV) for our experiments (de-
picted in 2.16). It is about 1 meter long and 2/3 meters wide, with two pontoons, a water-tight
compartment to house electronics, and an area on top for sensors and the battery. It is pro-
pelled by a water jet in each of its pontoons, which can turn it by differential steering. It can
reach a top speed of about 2 m/s, but we mostly operated it at lower speeds to maximize
battery life, which is about an hour with our current payload.

Our Kingfisher is outfitted with several sensors befitting an autonomous surface vehicle.
A prominent 704x480 color pan-tilt camera stands on top, capturing images at 10 frames per
second. Beneath it sits a single scan line laser-range finder with a field of view of about 270
degrees. It is pointed just above the surface of the water and provides a distance estimate for
everything less than 20m away. The watertight compartment houses a GPS, a compass, and
an IMU.

Environment

The ASV was deployed on Lake Symphony, Metz, France, a lake about 400 meters long and
200 meters wide with an 80-meter-wide island in the middle. The nature of the lakeshore
varied, with shrubs, trees, boulders, grass, sand, buildings, birds, and people in the immediate
surroundings. People mostly kept to the walking trail and a bike path a few meters from the
shore, and fishermen occasionally sat along the shore.
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Behavior

We used a simple set of behaviors to autonomously steer the robot around the perimeter of
the lake and the island. As the boat moves at a constant velocity of about 0.4m/s, a local
planner chooses among a set of state lattice motion primitives to keep the boat 10m away
from the lakeshore on its starboard side. Passing through a predefined waypoint along the
perimeter marks the transition to surveying the island. At this point the pan-tilt camera is
rotated from pointing starboard–side to pointing port–side, and the planner begins optimizing
the boat’s proximity to land on its port side. With this configuration, the robot is capable
of performing an entire survey autonomously; however, we occasionally took control using a
remote control in order to avoid fishing lines, debris, to swap batteries, or to fix unexpected
control failures (due to software errors, a sharp turn–around point, or the shore line being
behind the first row of trees in a flood).

We deployed the robot up to once per week over a period of 1.5 years, which began August
18, 2013. This report analyzes data from eight different surveys, which cut across 11 months
of variation. Each survey was performed in the daytime on a weekday in sunny or cloudy
weather, at various times of the day. They usually consisted of one complete run around the
entire lakeshore, including the island. In some cases a survey had to be cut short, resulting
in a partial run of the lakeshore.

Experimental Variation Several factors over the lifetime of the experiment added varia-
tion to the survey data, including changes with the boat, the maturity of the software, our
knowledge of the system, etc., The boat’s first pump-jets lasted approximately 25 hours,
which meant that we had to replace them after around 30 surveys. Because the pontoons, the
pump-jets, and the batteries were redesigned, the Kingfisher’s configuration changed slightly
after we swapped them.

3.3.2 Methodology

Enabling interactive natural scene monitoring between surveys consists of a two–step coarse-
to-fine alignment process, in which first the rough location where each image was captured
is identified, followed by second, a pixel-wise alignment is computed for images of the same
scene from two different surveys. The first step consists of visual SLAM. The second step
involves image registration.

Data Collection

A single survey represents a collection of image sequences, measurements of the camera pose,
and other useful information about the robot’s movement. During a survey, k, the robot

acquires the tuple Ak={T k
i , Ik

i , Ĉ
k
i , ω

k
i }

|Ak|
i=1

every tenth of a second, where T is the current

time, I is the image from the pan-tilt camera, Ĉ ∈ SE(3) is the estimated camera pose, and
ω is the boat’s angular velocity as measured from its IMU. The estimated camera pose is
derived from the boat’s GPS position, the measured heading from the compass, and the pan
and tilt positions of the camera. Each survey is down–sampled by a factor of five to reduce
data redundancy and speed up computation time.
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Visual SLAM

Finding nearby images in two long surveys is possible using raw measurements of the camera
pose, but because these measurements are prone to noise that could lead to trying to align
images of two different scenes, we use a visual slam framework to improve our estimates of
the camera positions.

Visual Feature Extraction We used generic feature tracking for Visual SLAM, which is
based on detecting 300 Harris corner features and then tracking them using the pyramidal
Lucas–Kanade Optical Flow algorithm (from OpenCV) as the boat moves. To ensure a
uniform distribution of visual features in a scene and to reduce the search time for optical
flow, images are divided into a 12x20 grid and new features are detected and tracked only
if they are located in an empty cell. Lucas–Kanade optical flow tracks each feature by
searching in a neighborhood of cells for the match that optimizes a brightness constraint
and a smoothness assumption. Features are removed from tracking if no suitable match is
found, if the displacement is too different from the boat’s movement, if too many features are
clustered together, or if its positions violate epipolar constraints. The result of this process
is a set of visual feature tracks F = f1, ..., fz, where fj = mj

tfirst
, ...,mj

tlast
and each mj

t ∈ N
2

defines a 2D pixel coordinate observed at time t.

Optimization We apply a graph–based SLAM approach for optimizing the camera poses
and the visual feature locations. A factor graph is used to represent the set of measurements
of the camera poses and the landmark positions, and the different constraints between them.
The GTSAM bundle adjustment framework is applied to the factor graph to reduce the error
in the initial estimates of the positions [Dellaert, 2012].

A factor graph is constructed with the measured camera poses, Ĉk = p1, ..., pn, where
n = |Ak|/5, and the visual feature tracks, F = f1, ..., fz, the robot acquires as it moves
through its environment. At each time step, t, a node, xt, is created to represent the camera
pose with pt being a position prior. If any new visual features are tracked, a new node, lj ,
is created for each one. The node for the camera pose is connected by an edge to the node
of each observed visual feature, which represents the visual constraint that the 3D position
of the visual feature matches its observed 2D pixel location, mj

t . An edge also connects the
camera node to the one for the previous time step, which constrains the two positions by the
kinematic motion model of the robot.

Usually, the robot kinematic constraint between two camera poses is directly observed
using odometry measurements. However, because our ASV is propelled by jet thrusters,
rather than wheels, typical odometry readings are lacking. As a result, the factor graph is
a bit more complicated in order to adequately constrain the degree of movement between
any two camera poses. Because two consecutive poses are related by a relatively constant
velocity and a relatively constant angular velocity of the boat, which is directly observable,
an additional node, vt, is created at each time step to represent the velocity of the robot.

Whereas nodes in the factor graph represent the variables to be optimized, factors in
the factor graph describe the constraints on each variable. For each direct measurement of
a variable (e.g., the compass directly measures the boat heading) a factor is used to limit
the value of the variable to within the acceptable variance of that measurement (e.g., the
standard deviation of the compass measurement is estimated as 10 degrees due to possible
distortions of the magnetic field caused by peak currents in the motors). A factor, ut, is used
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between consecutive pose nodes and the previous velocity node to describe the new position
as a function of the previous one, the previous velocity, and some deviation. Consecutive
velocity nodes are related by a factor, rt, which forces the velocity to change slowly between
each time step. A prior constraint, qt, is defined on the value of the velocity. Finally, an
observed pixel location, mj

t , of the visual feature, lj , is defined as a factor which constrains
the 3D position of the visual feature.

Because several noisy sensor readings are combined to describe the value of each variable,
any estimate of a variable’s true value is going to differ from its observations. The level of
expected divergence is manually specified through the expected standard deviation associated
with each constraint. Accordingly, given an estimate of the values of all the variables in the
factor graph, a heuristic estimate of the total error is computed. The goal of optimization is
to find values for the variables that minimize this error.

We optimize the estimated positions according to the constraints in the factor graph using
the iSAM2 bundle adjustment framework [Kaess et al., 2012]. iSAM2 makes incremental
bundle adjustment computationally feasible by converting the factor graph into a Bayes tree.
A Bayes tree data structure hierarchically organizes variables, which reduces the size of the
optimization problem by isolating the variables with large amounts of error. The Levenberg–
Marquardt algorithm is used to perform the optimization step, which incrementally refines
initial estimates of the variables over several iterations.

Because optimizing a factor graph of a large scale environment can require a significant
amount of computation time, we also make use of smart factors [Carlone et al., 2014]. Smart
factors employ the Schur complement to split a large optimization problem into smaller,
equivalent sub-problems. Smart factors also detect degenerate instances, i.e., cases when a
landmark feature is only observed once or is observed through a degenerate motion. In our
work, smart factors were applied to isolate the optimization for the 3D position of each visual
feature, which depend on many robot poses over long feature tracks.

For each survey Ak, the result of optimization is optimized camera positions, xkt |nt=1
,

and the visual feature locations lke |ze=1
. The optimized camera positions are used to iden-

tify two images of the same scene for image registration. The visual features are used to
compute the reprojection error, which serves as an indicator how closely the optimized posi-
tion estimates the true position. Using the values for, lke |ze=1

, and the initial measurements,
fj = mj

tfirst
, ...,mj

tlast
, the reprojection error was determined to average around 4-6 pixels in

the surveys.

3.3.3 Results

Figures 3.4 and 3.5 give an overview of the performance of our natural image alignment
framework. In figure 3.4, images from two datasets taken within two weeks at the end
of June 2014 are selected. Below each image, is the aligned image generated by SiftFlow
with the change manually highlighted in the red ellipse. Because we can precisely align the
images before displaying them to the user, detecting changes is made significantly easier. In
fact, most of the changes reported here were detected when reviewing the performance of
our approach, without prior knowledge of their occurrence. In figure 3.5, we illustrate the
significant robustness to appearance change exhibited by our approach. This is mostly due
to the robustness of SiftFlow in itself but also to the prior knowledge of the scene structure
that we can recover from the Visual SLAM reconstruction of the environment.
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Removed Bush Cut Branch Fell Tree

Mowed Grass People Removed Treetop

Figure 3.4: Examples of automatically aligned images with manually detected scene changes.
Red ellipses highlight the place where changes could be detected.
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Seasonal Globe Spots Sun Glare

Figure 3.5: Robustness of the combination of Visual SLAM and Sift Flow to significant
variations of scene appearance.

28



3.3.4 Selection a of minimum view set

A full survey of our 1km-long lake shore corresponds to approximately 60’000 images. It is
unreasonable and inefficient to expect a person to visually analyze such a large amount of
data. On the other hand, our robot is moving quite slowly along the lake shore, in order to
maximize overlap and reduce motion blur. Hence there is actually a minimal subset of images
that observe the entire lake shore. The goal of this section is to describe how such a minimal
subset can be found.

To find a minimal set of boat poses covering the entire lake shore, we will build our solution
on the well-known ”Set Cover Problem” (SCP) [Chvatal, 1979]. Adapted to our case, the SCP
can be expressed as follows. First, let S be the set of positions that need to be observed on
the lake shore. Each image i in our data set, observes a set Ii of these shore points. From now
on, we will assume that S is the union of all the point sets Ii. In reallity this union might be
larger than S. In this case, we will only consider the part of the Ii’s which intersect S. There
is no interest in considering the union smaller than S since it would mean that S contains
points of the shore that have not been observed and thus can be ignored in our context. The
SCP search for a minimal set of indices J such that

S =
⋃

j∈J

Ij (3.1)

The Set Cover Problem is known to be NP-Hard (or NP-Complete). It can be approached
using linear programming or a simple greedy approach which gives sufficient performance for
our application.

One of the challenges we face when using the SCP to solve our shore coverage problem is
that we first need to construct a set of shore points to be observed. To improve further the
quality of the selected viewpoints, we can add additional constraints to the search.

Constructing the shore points set

This section assumes that the output of the visual-slam has given us a fairly accurate estimate
of the pose at which image has been captured. Because the robot is controlled to move at a
constant distance d –10m in our case– from the shore, we simply consider that for each pose,
every point at distance d± ǫ in the camera frustrum stemming from the pose is a shore point.
In practice we take ǫ = 1m. This is implemented by rasterizing the shore map into a pixel
map and drawing a thick 10m arc centered on every pose with an angle consistent with the
camera intrinsic parameters. At the same time, for every shore pixel on the map, we can also
record the set of viewpoints at which it was seen. The set of shore points to observe in two
specific datasets is shown in figure 3.6.

Viewpoint constraints

For practical reasons, we need to consider additional constraints when selecting a pose as part
of the minimal covering set. The first obvious condition is that the camera must be in a valid
configuration, i.e. not pointing at the sky or transitioning between one side and the other.
The second constraint is that we want images with a minimal motion blur. Given the low
deployment speed of our robot, motion blur only occurs when fast rotations are needed. We
filter these images by rejecting any pose with too high a rotation rate, as measured by the
on-board gyroscopes.
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Figure 3.6: Shore points seen from the recorded path of in two datasets. The shore points
seen from the red path are displayed in red, the one in green are seen from the green path,
and those in magenta/pink are seen from both paths. The right image is a zoomed-in version
of the left one.

Finally, the purpose of this selection is to compare one data-set with one acquired at an
earlier or later time. Hence, we must ensure that there is actually corresponding viewpoint
in the other data-set. A pair of pose is considered useable if the boat positions are close
enough, and the intersection of the camera axis with the shore at a specified distance d are
close enough. The second constraint could be expressed on the bearing angles but a distance
between points lets us keep comparable values.

After removing the poses which don’t meet our constraints, we may not be covering the
full lake shore anymore. We believe that this is still the best result we can achieve with
our data and that including the remaining poses would just require more analysis without
significant benefits.
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Figure 3.7: Set of viewpoints required to cover the red dataset from figure 3.6 while accounting
for visibility in the green dataset. Black triangles correspond to the visibility frustrum of the
selected images. The right image is a zoomed-in version of the left one.

Solving the Set Coverage Problem

Under these assumptions, solving the Set Coverage Problem with the greedy algorithm works
as follows:

Let L be the list of selected viewpoints, initially empty;
while there are shore points to observe do

Select the valid shore point P which is the least observed;
Let V be a viewpoint such that

V observes P and;
V observes the largest number of unobserved shore points;

Remove P and all shore point observed in V from the list of points to observe;
Append V to L;

end
return L

Algorithm 1: Algorithm solving the shore coverage problem based on a heuristic for
the Set Cover Problem.
On our dataset, the greedy algorithm (see 1) runs in less than 30s and provides results

as illustrated in figure 3.7. Out of the 60’000 images, in average 200 are sufficient provide
a complete coverage of the high quality observations of the shore. This focus on quality is
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at the cost of not considering some images of the shore, either because they don’t have a
sufficiently close high-quality match in the other dataset or because the rotation speed is too
high and causes motion blur.

3.4 Conclusion

This chapter presented our research approach to the monitoring of spatio-temporal environ-
ments and in particular natural and unmodified environments where changes occur in a wide
range of frequencies. The coming years will see us explore various approaches to modelling,
capturing and updating representations of natural environments such as lake and river shores,
agricultural fields, crops, forest and parks. Building on spatio-temporal models, we expect
to contribute to the state of the art with approaches that take advantage of an autonomous
robotic platforms to act in a spatio-temporal environment. Actions could just focused on
data acquisition and monitoring with the challenges of information aware planning or extend
up to remediation as will be experimented within the Flourish project.

As mentioned in section 3.3, we are currently focused on long-term environment moni-
toring in natural and changing environments. On the shore of our testing site, we have so
far collected more than 1.5 million images of more than 50 hours of autonomous operation
over more than 18 months. This unique dataset will provide us with extremely valuable tools
for the development of spatio-temporal environment models. As of this writing, preliminary
results focusing on building 3D models of the environment and precisely aligning images taken
at different time are showing very promising performance.
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Abstract—Visual homing enables a mobile robot to move to a
reference position using only visual information. The approaches
that we present in this paper utilize matched image key points
(e.g., scale-invariant feature transform) that are extracted from
an omnidirectional camera as inputs. First, we propose three vi-
sual homing methods that are based on feature scale, bearing, and
the combination of both, under an image-based visual servoing
framework. Second, considering computational cost, we propose a
simplified homing method which takes an advantage of the scale
information of key-point features to compute control commands.
The observability and controllability of the algorithm are proved.
An outlier rejection algorithm is also introduced and evaluated.
The results of all these methods are compared both in simulations
and experiments. We report the performance of all related meth-
ods on a series of commonly cited indoor datasets, showing the
advantages of the proposed method. Furthermore, they are tested
on a compact dataset of omnidirectional panoramic images, which
is captured under dynamic conditions with ground truth for future
research and comparison.

Index Terms—Omnidirectional camera, topological visual
navigation, visual homing, visual servoing.

I. INTRODUCTION

V ISUAL homing is defined as navigation by vision of a

robot from an arbitrary starting position to a previously

specified reference home position [2]. It is considered to be one

of the basic abilities of a mobile robot, as well as one of the most

important components of visual topological navigation [3], [4].

On one hand, visual homing it is a lightweight method for robot

navigation. It utilizes only one pair of images taken at reference

and current poses to navigate a mobile robot, regardless the path

and motion before reaching the current state. On the other hand,

it can be easily extended to an integrated navigation system, by

sequentially setting the target nodes on a graph as references.

Compared to methods that are based on metric maps [5]–[7],

the visual topological navigation framework has the following

advantages.
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Zürich 8092, Switzerland (e-mail: cedric.pradalier@georgiatech-metz.fr;
rsiegwart@ethz.ch).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TRO.2013.2272251

1) Sparse representation of environment: Usually, the topo-

logical map that is used in visual topological navigation

is created incrementally, considering the feature changes.

A typical representation of the environment is a collection

of visual features at certain poses. The computational and

memory cost is relatively low.

2) Independent of precise maps: As a result, visual homing

is less sensitive to error accumulation, which commonly

occurs in metric approaches.

3) Lightweight planning: The path planning on metric maps

can be computationally very expensive; conversely, the

planning of visual topological navigation is based on graph

structures, which is easy to compute.

The primary challenge of the visual homing problem is the

estimation of the homing vector. It defines the direction along

which the robot can reach the home position. Our methods solve

this problem by taking inspiration from the generic framework

of visual servoing [8], [9]. Visual servoing has been widely ap-

plied in the area of motion control, such as the control of robotic

arms for industrial robots. In this paper, we propose a generic

visual servoing framework for the visual homing problem. This

is implemented as three different homing methods using differ-

ent properties of features. When deploying such an approach

on real robots, special care must be taken with the computa-

tional complexity of the algorithm. In general, visual servoing

approaches require the computation of the pseudoinverse of a

matrix whose size is proportional to the number of sampled fea-

tures n. In order to ameliorate this, we propose an approach that

is inspired from the visual servoing approach, but with a cost

linear in the number of features. We show in Section VI that the

resulting control is stable, and we compare its performance with

other related methods. The originality of this paper is that we

take advantage of the scale information of the scale-invariant

feature transform (SIFT) features to compute our control law.

We show in Section IV that the scale of the features is sufficient

to build such a control law.

For practical implementations of visual homing methods, the

robotic platforms necessarily have to manage the maneuvers in

the presence of dynamic objects, i.e., objects whose position

may change from the reference to the current image. If not

accounted for, features on these objects will be integrated in the

control output, and may lead to unstable or unsafe behavior of

the robot. A fast outlier rejection approach is discussed in this

paper. It is designed to handle such problems and to improve the

overall system performance. The parametrization and validation

of the approach will be presented in simulation and experiment.

The major contributions of this paper are as follows.

1) A comparative study of three novel visual homing ap-

proaches that are based on bearing and scale information

1552-3098 © 2013 IEEE
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under classical image-based visual servoing (IBVS)

framework.

2) Observability analysis on the system states regarding nav-

igation problem for an omnidirectional camera.

3) A robust and fast homing method that is based on scale

information of key-point descriptors, with the proof of

stability.

4) Evaluation of the aforementioned methods, as well as an

outlier rejection method, via simulations and experiments.

5) A concise dataset for future study of visual control prob-

lems using omnidirectional cameras.

In the following, we first give an overview of related work

in Section II. Section III reviews the visual homing problem

under visual servoing framework. Sections IV and V discuss

the fundamental aspects and observability of visual servoing-

based homing. Sections VI describes the algorithm and control

strategy of a simplified homing algorithm. The control loop

is introduced in Section VII, followed by the simulation and

experimental results. Conclusions and our future visions are

provided at the end of the paper.

II. RELATED WORK

Visual homing is often implemented using bearing-only

methods. An initial work was presented by Cartwright and

Collett [10] as the “snapshot” model. Franz et al. [11] continued

this direction by analyzing the error and convergence properties.

In our previous work [12], we gave a proof of the convergence

of a simplified bearing-only method, based on the Lyapunov

stability theory. In this paper, we formulate the bearing-only

problem [12] as part of the classical IBVS framework. Mean-

while, two other homing methods under this framework are

discussed as well.

Our work is stimulated by the work of Corke [13], where the

author used the average landmark vector (ALV) [14] principle

to implement a visual servoing task. The ALV method converts

the homing problem to a vector operation process, by summing

up the bearing vectors to a number of key points at the refer-

ence and the current positions. The difference between these

two sums is then used to compute the homing vector. However,

the following limitations should be considered. First, outliers in

landmark detection will greatly affect the accuracy of the hom-

ing vector. Second, the outputting homing vector of the ALV

algorithm highly depends on the estimation of the global ori-

entation. Third, the homing vector is directly calculated from

summarized bearing information of landmarks in current robot

pose frame, while the contribution of each landmark is trans-

parent to the final output. Finally, the algorithm is heuristic at

intermediate poses. This means that the calculation of accurate

homing direction is not feasible, and the mathematical conver-

gence of the algorithm is not guaranteed. In comparison, our

approach takes advantage of the scale information attached to

the key points to calculate the homing vector without distance

estimation, the usage of scale information guarantees the con-

vergence and observability of the system states. The proofs are

conducted in this paper.

According to Goedeme et al. [15], knowing the structure of

an environment and in particular the landmark positions is not

necessary for visual homing. This information can be recovered

by estimating the ratio of the distances to the matching key

points by triangulation using an extended Kalman Filter. Using

feature scales, we can avoid this estimation phase and use the

scale variation as a proxy for distance errors.

Lim and Barnes [16] presented a homing algorithm that was

based on the following principle. They divided the 2-D plane

into four regions and estimated the current robot position by

measuring the bearings to known landmarks. Compared with

their approach, we prove the convergence of our method using

the Lyapunov theory. It guarantees the stability of the controller.

A new trend for solving visual homing problems [17] was

proposed by Aranda et al. and improves the performances by

using 1-D trifocal tensors from the omnidirectional camera.

Compared with the works using 1-D-trifocal tensors [18], [19],

which rely on three-view geometry, our method infers the hom-

ing vector directly from the current appearance, and the result is

less reliant on feature association. Besides, our approach does

not require solving nonlinear equations constructed from the

tensors, where algebra error is embedded in the SVD process

and impossible to eliminate. Since the reconstruction of the en-

vironmental structure is not needed, our servoing-based method

requires less computational power.

Furthermore, the authors in [20] used a sliding-mode control

law to exploit the epipolar geometry; the authors in [21], directly

calculated the homographies from raw images; and Cherubini

and Chaumette [22] proposed a redundant framework for visual

homing problem, which in particular allows online obstacle

avoidance. The comparison with these works is not considered

here, since the basic strategies and premises are significantly

different.

Some related early works used SIFT as main features for vi-

sual homing [23], [24]. They considered the epipolar geometries

as well as the orientation and scale of SIFT features for monocu-

lar cameras, following a framework similar to [8]. Among these,

the work by Vardy and Oppacher [25] is the closest to our sim-

plified approach using scale information. Their work developed

a scale invariant local image descriptor for visual homing, based

on the optical flow of unwrapped panoramic image from an om-

nidirectional camera. It was continued by Churchill et al. [26],

which presents results of real-time homing experiment using the

scale difference field in panoramic images, computed from SIFT

matches. In comparison to their work, we stress the following

two main differences. First, we utilize the error that is caused by

the variation of scales, by embedding the scale measures inside

the visual servoing framework. Second, we give a mathematical

proof of the convergence of the controller, and show the observ-

ability of feature states and robot headings. We refer to their

method as HSVS, namely heuristic scale-space visual servoing,

in the remainder of the paper.

III. PROBLEM DEFINITION

A. Formulation

The visual homing problem can be defined as shown in Fig. 1,

where p1 ,p2 , . . . ,pn are n key points, which are extracted

by SIFT, SURF [27], or other methods providing the scale
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Fig. 1. Abstracted problem of homing. Key points p1 to pn can be observed
at the current position C and at the Home position O. The variant sizes indicate
the differences of key points in scale.

information of key points. It is assumed that all the listed key

points can be seen from the current position C and the home

position O. The objective is to guide the robot from C to O

only by knowing the observed scale si and bearing angle βi that

are associated with key point pi . Negre et al. [28] showed that

the intrinsic scale can be used to aid the measurement of the

time to collision. Hoffmann et al. [24] showed a direct relation

between the scale and the distance to the feature point. How-

ever, for different setup and different environment, the absolute

distances to the features cannot be mapped directly. The scale

information that we extract from the key points comes from

the interpolation of the difference-of-Gaussian pyramid levels,

which is commonly used as SIFT key-point detector. We believe

that the variation of the scale of a key point can be seen, in first

approximation, as a proxy for the variation of its distance. Fur-

thermore, by introducing the scale information, we also prove

that the distances to key points are observable given the control

speed, as discussed in Section V.

B. Principles of Visual Servoing

In this paper, we assume that the robot can be controlled using

a velocity vector, including directions and the absolute values

of the speed. This neglects the nonholonomic properties of most

robotic platforms. It is acceptable for the simple differential

robots used in our experiments, but more work would be needed

to adapt this control framework to a more complex system such

as a car or a space rover.

When we consider the homing problem as a control problem

in the appearance space, it can be summarized as an IBVS

problem. In this context, the objective is to drive an error e

between the observed and desired features to zero. In a classical

visual servoing approach, the error would be the difference in

feature coordinates (in pixels). According to the fundamentals

of visual servoing, this error can be minimized, if the error

dynamics can be linked to the control input v using an interaction

matrix Le and the following relation [29]:

ė = Le v. (1)

Once the visual error can be properly represented, direct con-

trol commands can be calculated in order to minimize the error

e. Generally, the control commands can be represented in the

form

v = −λ L+
e
e (2)

where L+
e

is the pseudoinverse of the interaction matrix Le.

This controller is designed to have an exponential convergence

rate of the error, if the stability of the system is ensured. Ac-

cording to the stability analysis of IBVS in [29], the interaction

matrix and its pseudoinverse need to be full rank, in order to

guarantee local asymptotic stability.

IV. IMAGE-BASED VISUAL SERVOING

In this paper, we adopt the visual servoing framework to build

a robot controller, by using the scale and bearing information of

the key points, instead of their coordinates. We assume that the

key points are extracted from an omnidirectional camera, and we

can easily convert image coordinates to bearing angles. We also

assume that we are able to control the target robot by velocity

commands, and the robot configuration can be summarized by

its position (x, y) and its heading θ.

A. Definitions

The error of the system is comprised of two components: the

scale error and the bearing angle error. Therefore, the vector of

the error can be written as

e = (s − s∗,β − β∗)T (3)

where s = (s1 , . . . , sn ) is the vector of observed scale of the

key points, and β = (β1 , . . . , βn ) is the vector of their bearing

angles. The “*” superscript denotes the reference variables.

Before computing the derivative of the error, we need to derive

the relation between the scale of a feature si and the distance

to the corresponding entity li . The focal length of the camera

is denoted by f and S denotes the physical size of the region

defined by the corresponding key-point patch. Using simple

triangulation and the camera pin-hole model, we have

si =
S f

li
, and s∗i =

S f

l∗i
(4)

which leads to

si = s∗i
l∗i
li

. (5)

Assuming that the physical key point i is located at the 2-D

coordinates (xi , yi) in the same frame as the robot, we can make

explicit the relation between li , βi , and the robot position

li =
√

(xi − x)2 + (yi − y)2 (6)

βi = atan2(yi − y, xi − x) − θ. (7)

B. Error Derivative

To derive the error dynamics ė, we compute independently the

scale and bearing derivatives, by considering them as a function

of the robot pose

d

dt
[si(x, y, θ) − s∗i ] =

d si

dx

dx

dt
+

d si

dy

dy

dt
+

d si

dθ

dθ

dt
. (8)

Using (5) and (6), we have
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d

dt
[si(x, y, θ) − s∗i ] = s∗i l

∗
i

[

vx

d

dx

1

li
+ vy

d

dy

1

li

]

= −
s∗i l

∗
i

l2i
[vx cos β

g
i +vy sin β

g
i ] (9)

with vx = dx
dt

, and vy = dy
dt

.

Similarly, the bearing error can be derived as

d

dt
[βg

i (x, y, θ) − β∗
i ] =

d β
g
i

dx

dx

dt
+

d β
g
i

dy

dy

dt
+

d β
g
i

dθ

dθ

dt
. (10)

By plugging in the (7), this leads to

d

dt
[βg

i (x, y, θ) − β∗
i ] = −

yi − y

l2i
vx −

xi − x

l2i
vy − ω

= −
1

li
[vx sin β

g
i + vy cos β

g
i ] − ω (11)

with ω = dθ
dt

.

Similarly, the derivative of the distance to a key point i is

d

dt
[li(x, y, θ) − l∗i ] = −(vx cos β

g
i + vy sin β

g
i ). (12)

Note that β
g
i is the bearing angle of feature i in the global

frame instead of robot local frame. In order to transform them

to the robot local frame, the heading difference needs to be

considered, such that the bearing observation by the robot is

βi = β
g
i − (θ − θ∗). (13)

In practice, we can consider θ∗ = 0, meaning that we take the

reference robot pose as globally zero degree heading.

Combining (9) to (11), we can write the error dynamics as

follows:

ė
.
=

d

dt
e = Lev (14)

d

dt

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

s1 − s∗1
...

sn − s∗n
β1 − β∗

1
...

βn − β∗
n

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

=

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−
s∗1 l

∗
1

l21
cos β

g
1 −

s∗1 l
∗
1

l21
sin β

g
1 0

...
...

...

−
s∗n l∗n
l2n

cos βg
n −

s∗n l∗n
l2n

sin βg
n 0

−
1

l1
sin β

g
1 −

1

l1
cos β

g
1 −1

...
...

...

−
1

ln
sin βg

n −
1

ln
cos βg

n −1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

×

⎛

⎝

vx

vy

ω

⎞

⎠ .

As mentioned earlier, the interaction matrix in (14) is required

for the implementation of a visual servoing controller. One re-

maining problem is that neither the distance li nor l∗i can be

quantified easily using a single camera. Based on [30] and the

analysis on the visual errors in [9], we assume these values can

be approximated by constants due to the low sensitivity of the

controller to these parameters.

A direct way to reduce the complexity is that either the upper

part or the lower part of (14) is sufficient to form a visual

servoing interaction matrix. As it is trivial to rotate the robot on

spot once the translational error has been corrected, a two-stage

controller can be designed. First, deal with the translation error,

then correct the heading. We consider mainly the first stage,

since it is the key issue for homing. In practice, this means

that we can either implement a scale-only visual servoing or a

bearing-only visual servoing.

The interaction matrix for scale-only visual servoing is shown

as follows:

d

dt

⎛

⎜

⎝

s1 − s∗1
...

sn − s∗n

⎞

⎟

⎠
=

⎛

⎜

⎝

α1s
∗
1 cos β

g
1 α1s

∗
1 sin β

g
1

...
...

αns∗n cos βg
n αns∗n sin βg

n

⎞

⎟

⎠

(

vx

vy

)

.

(15)

The controller that is based on (15) is denoted as scale-only

visual servoing (SOVS) in the remainder of this paper. A similar

method, using the lower part of (14), is called a bearing-only

approach (BOVS), whose error dynamics can be derived as

d

dt

⎛

⎜

⎝

β1 − β∗
1

...

βn − β∗
n

⎞

⎟

⎠
=

⎛

⎜

⎝

γ1 sin β
g
1 γ1 cos β

g
1

...
...

γn sin βg
n γn cos βg

n

⎞

⎟

⎠

(

vx

vy

)

. (16)

According to the generic properties of the controller that are

stated in Section III-B, the local asymptotic stability is main-

tained if each interaction matrix and its pseudoinverse are full

ranked. This can be ensured by using reasonable big number of

matched features in real applications.

Recalling (13), the estimation of the heading θ is crucial for

the calculation of the interaction matrices. This implies that

a robot may need to have absolute heading references such

as a magnetic compass or a reliable visual compass for better

accuracy. Regarding the dataset that we use in Section IX, where

the robot is well aligned, this problem is trivial. However, this

matter needs to be considered in real applications.

V. OBSERVABILITY OF THE SCALE-BASED VISUAL

CONTROL SYSTEM

A. Definitions

Given the raw sensor measurements, the observability anal-

ysis of system states is important before we step on the desig-

nation of other advanced controllers. The observability analysis

also gives hints for what results can be expected from the system

configuration. The configuration of the discussed IBVS system

is described via the following system states:

x =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

x : x-coordinate of the robot position

y : y-coordinate of the robot position

θ : heading of the robot

s : vector of observed scales

β : vector of observed bearings

l : distance to features.

(17)

In order to get the full state for a motion constrained in 2-D

plane, we require at least three positively matched key points,

considering the number of geometrical constraints. Without the
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loss of generality, we can use the following subset of the full

state, where the minimum required key points are denoted by

subscripts 1, 2, and 3

x = (x y θ s1 s2 s3 β1 β2 β3 l1 l2 l3)
T . (18)

Following the definitions in (9), (11), and (12), using “∗” to

denote the reference variables, the state derivatives of the system

state is presented as (19), shown at the bottom of the page.

The observation function, which is also the zero-order Lie

derivative, includes the scale and bearing information

L0h = h(x) = ( s1 s2 s3 β1 β2 β3 )T
. (20)

The further Lie derivatives of the observation function over

the control functions are shown in (21)–(23). The control func-

tions are comprised of the three columns of (19), denoted by

f1 , f2 , f3 , respectively. For the purpose of conciseness, we use

Ci to denote cos (βi + θ − θ∗), and Si for sin (−βi − θ + θ∗)

▽L0h = ▽h(x)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (21)

B. Observation Matrix

We stop the computation by (23), because it has illustrated

that the observation matrix shown in (24) is already row full

ranked using (21)–(23), but not column full ranked. We notice

that continuing to calculate further derivatives would not help it

become column full rank, since the entries are independent of x

or y, (22)–(24), all shown at the bottom of the next page.

Using all the measurable variables and the known control

commands, the analysis of the null space of M reveals the

inherent relations among each state. The null space of the full

observation matrix M is given as

nullspace(M) = {[1, 0, 0,0,0,0], [0, 1, 0,0,0,0]} . (25)

This shows that the position of the robot (x, y) in the global

frame is not observable due to nonzero entries in the nullspace.

This is fine, since they are not of interest without knowing the

global reference frame. More importantly, it shows that the other

states θ, s, β, and particularly the distances to the feature points

l are observable, as long as the control command to the robot is

known.

Though not explicitly calculated by the homing algorithm,

these observable constraints imply that it is able to determine

the translation and rotation to a predefined position, since three

known distances to static feature points are adequate to well

determine such a transform for the motion in a 2-D plane.

VI. FAST VISUAL HOMING

From the observability analysis, we could see that the scale

information and bearing angles from local frame and especially

their changes are sufficient information for pose control. Derived

from this, we describe a scale-based visual homing approach

that does not require the computation of the pseudoinverse of

an interaction matrix in this section. Above all, this approach is

independent of the global heading estimation. Since the global

heading is usually approximated by visual compass and with

nonneglectable error [31], this method avoids such potentially

extra errors for real applications. We also provide the conver-

gence proof for the resulting control law.

ẋ =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

cos θ sinθ 0

sinθ −cosθ 0

0 0 1

−
s∗1 l

∗
1 cos (β1 + (θ − θ∗))

l1
2 −

s∗1 l
∗
1 sin (β1 + (θ − θ∗))

l1
2 0

−
s∗2 l

∗
2 cos (β2 + (θ − θ∗))

l2
2 −

s∗2 l
∗
2 sin (β2 + (θ − θ∗))

l2
2 0

−
s∗3 l

∗
3 cos (β3 + (θ − θ∗))

l3
2 −

s∗3 l
∗
3 sin (β3 + (θ − θ∗))

l3
2 0

−
sin (β1 + (θ − θ∗))

l1
−

cos (β1 + (θ − θ∗))

l1
−1

−
sin (β2 + (θ − θ∗))

l2
−

cos (β2 + (θ − θ∗))

l2
−1

−
sin (β3 + (θ − θ∗))

l3
−

cos (β3 + (θ − θ∗))

l3
−1

−cos (β1 + (θ − θ∗)) −sin (β1 + (θ − θ∗)) 0

−cos (β2 + (θ − θ∗)) −sin (β2 + (θ − θ∗)) 0

−cos (β3 + (θ − θ∗)) −sin (β3 + (θ − θ∗)) 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

·

⎛

⎝

vx

vy

ω

⎞

⎠ . (19)
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A. Scale-Based Control for a 1-D Robot

Recalling (9)

d

dt
(si − s∗i ) = −

s∗i l
∗
i

l2i
[vx cos βi + vy sin βi ] .

For the sake of argument, let us first consider an 1-D robot,

which is only able to move along the direction toward key

point i. Because the right side of the aforementioned equa-

tion can be seen as the projection of the robot velocity in

the direction toward the key point, denoting ei = si − s∗i , and

vi = vx cos βi + vy sin βi , we have

d

dt
ei = −

s∗i l
∗
i

l2i
vi . (26)

Following the designation strategy of visual servoing, we would

like to ensure an exponential decoupled decrease of the error

[29]. The following trivial control would achieve this goal (λ is

a positive constant)

vi = λiei . (27)

B. Generic Scale-Based Control

We abuse the intuition that the individual controllers for the

1-D case may be combined to calculate the required velocity for

the 2-D case as follows:

(

vx

vy

)

=

n
∑

i=1

λi (si − s∗i )

(

cos βi

sin βi

)

. (28)

However, even if the convergence was obvious in the 1-D

case, there is no guarantee that this sum of control contributions

would lead to a stable controller. In order to show the conver-

gence, we resort to the Lyapunov theory. We define the following

L1
f1

h =
∂h(x)

∂x
· f1 = ▽L0

f1
h · f1 =

(

−
s∗1 l

∗
1C1

l1
2 , −

s∗2 l
∗
2C2

l2
2 , −

s∗3 l
∗
3C3

l3
2 ,

S1

l1
,

S2

l2
,

S3

l3

)T

▽L1
f1

h =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 −
s∗1 l

∗
1S1

l1
2 0 0 0 −

s∗1 l
∗
11S1

l1
2 0 0 2

s∗1 l
∗
1C1

l1
3 0 0

0 0 −
s∗2 l

∗
2S2

l2
2 0 0 0 0 −

s∗2 l
∗
2S2

l2
2 0 0 2

s∗2 l
∗
2C2

l2
3 0

0 0 −
s∗3 l

∗
3S3

l3
2 0 0 0 0 0 −

s∗3 l
∗
3S3

l3
2 0 0 2

s∗3 l
∗
3C3

l3
3

0 0 −
C1

l1
0 0 0 −

C1

l1
0 0 −

S1

l1
2 0 0

0 0 −
C2

l2
0 0 0 0 −

C2

l2
0 0 −

S2

l2
2 0

0 0 −
C3

l3
0 0 0 0 0 −

C3

l3
0 0 −

S3

l3
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (22)

L1
f2

h =
∂h(x)

∂x
· f2 = ▽L0

f2
h · f2 =

(

−
s∗1 l

∗
1S1

l1
2 , −

s∗2 l
∗
2S2

l2
2 , −

s∗3 l
∗
3S3

l3
2 , −

C1

l1
, −

C2

l2
, −

C3

l3

)T

▽L1
f2

h =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 −
s∗1 l

∗
1C1

l1
2 0 0 0 −

s∗1 l
∗
11C1

l1
2 0 0 2

s∗1 l
∗
1S1

l1
3 0 0

0 0 −
s∗2 l

∗
2C2

l2
2 0 0 0 0 −

s∗2 l
∗
2C2

l2
2 0 0 2

s∗2 l
∗
2S2

l2
3 0

0 0 −
s∗3 l

∗
3C3

l3
2 0 0 0 0 0 −

s∗3 l
∗
3C3

l3
2 0 0 2

s∗3 l
∗
3S3

l3
3

0 0 −
S1

l1
0 0 0 −

S1

l1
0 0 −

C1

l1
2 0 0

0 0 −
S2

l2
0 0 0 0 −

S2

l2
0 0 −

C2

l2
2 0

0 0 −
S3

l3
0 0 0 0 0 −

S3

l3
0 0 −

C3

l3
2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (23)

M =

⎛

⎜

⎝

▽L0h

▽L1
f1

h

▽L1
f2

h

⎞

⎟

⎠
(24)
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nonnegative energy function (Lyapunov candidate function):

E =
1

2

n
∑

i=1

(

si − s∗i
s∗i

)2

. (29)

In this autonomous system with n-dimensional states s, the only

equilibrium is where s = s∗ in the feature space; and physically

it is the reference home position. According to the Lyapunov

theory, we need to show that
⎧

⎪

⎨

⎪

⎩

d

dt
E(t) = 0, only when all si = s∗i

d

dt
E(t) < 0, otherwise.

(30)

Based on the calculation in (9), the derivative of the energy

function is

dE

dt
=

n
∑

i=1

si − s∗i
s∗i

d si

dt

= −

n
∑

i=1

si − s∗i
s∗i

s∗i l
∗
i

l2i
[vx cos βi + vy sin βi ]

= −

[

vx

n
∑

i=1

s∗i l
∗
i

l2i

si − s∗i
s∗i

cos βi + vy

n
∑

i=1

s∗i l
∗
i

l2i

si − s∗i
s∗i

sin βi

]

.

(31)

Denoting

λi =
l∗i
l2i

(32)

and combining with (28), (31) is simplified as

dE

dt
= −

[

v2
x + v2

y

]

= −
∑

λ
2
i (si − s∗i )

2 ≤ 0. � (33)

Since the distances li and l∗i are nonnegative, (33) shows that

the control law of (28) is stable, and converges to si = s∗i (i.e.,

the reference home position). However, li and l∗i are not directly

measurable in practice, though observable. Following the error

analysis in [9], we approximate the λi’s by constants, since they

do not affect the convergence. Further validation via simulation

is given in Section VIII-B1).

VII. INTEGRATION AND CONTROL LOOP

In this section, we will discuss how the control laws can be

instantiated on a real system.

A. Control Loop

The control loop is depicted in Fig. 2. We first focus on the

visual processing pipeline on the right hand side of the dotted

line. It starts with capturing a new panoramic image. During each

running cycle, the omnidirectional image that is acquired from

the camera is unwrapped first, using a simple polar-coordinate

transformation. Note that this implies a minor assumption on

the calibration of the camera, namely that the image center is

known, but it is not necessary to know a full model of the

catadioptric shape.

Fig. 2. Control loop of multipoint homing.

SIFT features are then extracted from the unwrapped images

and used to compare the current image with the one acquired at

the home position. Although there is certainly a distortion in the

SIFT features due to mirror nonlinearity, this approach is also

used in related works and in particular in [25].

From the matched key points, the visual servoing control law

is applied, and a homing vector is computed. This vector is then

transmitted to the robot motion controller. The control vector

is then implemented while accounting for the nonholonomic

constraints of the target robot. The control loop is executed with

each newly captured image until convergence.

B. Outlier Rejection

When deploying visual homing algorithms in a real environ-

ment, it is likely that the scene captured at the home position will

change. For instance, the original image may contain furnitures

or objects that are moved over time, e.g., moving people. In

general, in an omnidirectional image, these objects only cover a

small portion of the image. In this section, we will describe how

to remove the falsely matched features, which may be caused by

these dynamic objects. Note that if a feature is extracted from

the objects, which disappear from the home image, This usually

does not raise a significant issue. This is because they usually

cannot get matched to anything in the current frame.

The outlier rejection method is the key to enhancing the re-

liability of our control method against dynamic objects. The

underlying assumption is that the main transformation between

the current image and the home image is simply a pure rota-

tion. This is true as long as the features are far enough from

the camera, or distance between the current position, and the

home position is small in comparison to the average distance

to the features. In practice, we take every matched feature in

the current image, and use the bearing difference with its home

correspondence to vote for a potential rotation angle. Once ev-

ery feature has cast its vote, the resulting histogram contains

a main peak corresponding to the main rotation. Other peaks

correspond to a set of features that moved coherently between
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Fig. 3. Result of our outlier rejection algorithm. The gray thin linkages mark
the inliers of the matching, and the white linkages mark the outliers.

the two images, i.e., dynamic objects. The background of the

histogram refers to outliers or points that violate the hypothesis

of a pure rotational error, i.e., points too close to the camera. The

assumption may appear a rough approximation of the general

case, but used with a lenient threshold, it provides a reliable

filter for gross outliers, which would have the worse effect on

the control law. In Section VIII-C, we provide an evaluation

of the effect of such an assumption. As a result, an instance

of outlier rejection using our approach is shown as Fig. 3. The

white linkages mark the detected outliers from the raw matching

result.

VIII. SIMULATION RESULTS

In this section, we present a number of simulation results

highlighting some properties, and basic principles of the homing

approaches. The first evaluation is to compare the convergence

behavior of different control methods. To this end, it is impor-

tant to have a common metric to compare all the image-based

homing, and characterize the influence of various assumptions

and parameters. In particular, we will illustrate the effect of not

knowing the distance to the features and the influence of the

pure-rotation assumption for outlier rejection.

A. Performance Comparison Using Image-Based Visual

Homing

1) Comparison of Convergence Behavior: In previous sec-

tions, we have discussed four approaches and one related method

by [26]:

BOVS: Bearing-only visual servoing, which only takes the

bearing angles to the features to compute the control

law [see (16)].

SOVS: Scale-only visual servoing, which mainly utilizes the

scale information, and the bearing plays a role in the

interaction matrix as well [see (15)].

SBVS: Scale and bearing visual servoing uses the full inter-

action matrix, which integrates the bearing and scale

error [see (14)].

HSVS: As a comparison, we also implemented the algorithm

in [26], referred to in this paper as HSVS. The

implementation follows the summarized equivalent

equation:

(

vx

vy

)

=
∑

i

sign(si − s∗i )

(

cos βi

sin βi

)

.

Fig. 4. (Left) Simulated trajectories by different visual homing methods.
(Right) Error evaluation on the simulated environment referring to (20,0).

SSVS: The simplified scale-based visual servoing, which

also uses scale information but does not require the

pseudoinverse computation [see (28)].

Fig. 4 depicts the simulated environment, where visual fea-

tures (blue stars) are assumed to be located on walls surrounding

a ground robot, each with a specified objective scale. The green

star marks the start position of the robot, while the red-filled

circle is the target home position. A simulated robot uses the

observed features to implement the control laws that were pre-

sented earlier in the paper, as well as HSVS from [26]. The

scale information is computed using a simple pin-hole model,

as described in (4). Fig. 4 depicts the incrementally generated

trajectories of the five methods.

We tune the controller gain for all the controllers such that the

number of iterations required by each method are similar. The

four visual servoing trajectories shows that all the control laws

guide the robot to the home position in a reasonable manner.

However, the proposed SSVS method leads to the straightest

trajectory, whereas the HSVS method makes the biggest detour.

The error field of the simulated environment is depicted on the

right of Fig. 4, by taking (20,0) as the reference home position.

Although the error field of the bearing error appears flatter than

the scale error field, we could observe that combining bearing

and scale error definitely help to shape the error field into a

round-shaped potential well.

Fig. 5 provides a graphical view of the normalized error con-

vergence using the various approaches. Note that the first row

of the graph represents the bearing error in radian, whereas the

other rows represent the error in the scale or combined space. In

each graph, the abscissa refers to the number of iterations. As

expected, the methods proposed in this study (BOVS, SOVS,

SBVS, and SSVS) all show overall exponential convergence,

fitting the justification of (2) indicated by [29]. Since the ex-

ponential convergence of HSVS is not mathematically guaran-

teed, the behavior of the error convergence does not reflect such

characteristic.

B. Influence of the Assumptions for SSVS

For the visual servoing approaches, the convergence proof re-

lies on the knowledge of the distance to the features. In practice,

this assumption cannot be easily fulfilled with a single cam-

era. For the standard visual servoing, it has been shown that
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Fig. 5. Vsual feature errors and the error distance to the home position over
time.

Fig. 6. Comparison between the assumptions with known and unknown dis-
tances to features.

assuming that all the features are at unit distance from the cam-

era leads to efficient control strategies [29].

Because we abuse this assumption for SSVS, it is necessary to

show its influence on the trajectories. Fig. 6 shows that there is

indeed a small difference, but the performance loss, in terms of

additional traveled distance, is minor. As for control parameters,

different distance assumptions lead to different gains. For the

test in Fig. 6, we have tuned the gain so that the number of

iterations until convergence is similar in both cases. Taking the

same starting and ending positions, by changing the environment

features and varying the assumed distance constant, we do the

simulation 100 times. We obtain an average traveled distance

of 42.1 when the distances are set to unity against 41.3 when

knowing the distances. The average absolute curvature are also

similar by 0.036 against 0.030. This example shows that similar

to the standard visual servoing, the scale-based approach is not

sensitive to the known distance assumption, and that distances

can be safely approximated to be constant (e.g. 1.0) for real

implementations.

Fig. 7. Justification of the assumption for outlier rejection. (a) Bearing thresh-
old (in rad) for a fixed inlier ratio. (b) Outlier ratio by fixing bearing threshold
(in rad).

Fig. 8. Instance at (8,4) from the A1originalH database of [32].

C. Parametrization of the Outlier Rejection

A successful homing process does not depend on a huge num-

bers of matched features. Therefore, a relatively low inlier ratio,

e.g., 50%, is usually more than sufficient to control the robot,

given reasonable large numbers of matches. As a reminder, we

select inliers if they globally correspond to a pure rotation of

the robot, thus ignoring the translational error with respect to

the home position. This is done by first finding the best rotation

by a voting scheme, and then selecting as inlier the features

that correspond to a best rotation approximation, within a given

angular threshold.

In order to justify the assumption and evaluate within what

region would such an assumption be true, we carry out the test

as follows. Considering the simulated environment depicted in

Fig. 4, we take the position at coordinate (0,0) as the refer-

ence, then evaluate all the other positions (with a resolution of

0.1m) by measuring the numbers of features that do not fit the

assumption, namely the outlier ratio.

The analysis result is shown in Fig. 7. The color in Fig. 7(a)

implies the minimum required value of the bearing threshold

(in radian) for different inlier ratio. This defines the area of

the workspace where the transformation between the observed

features and the reference can be seen as a pure rotation within

a given threshold and for a desired inlier ration (100%, 70%,

and 50%). Intuitively, a lower demanded inlier ratio will relax

the needs on a precise threshold. Fig. 7(b) depicts an alternative

visualization of the results from Fig. 7(a). It shows the ratio

of outliers by fixing the rotation threshold. The darker color

indicates lower outlier ratio, i.e., potentially better matching

results. Taking the lowest figure in Fig. 7(b) as an instance, the

dark area implies that by allowing a rotation threshold 1.5 rad,

potentially sufficient numbers of matches can be retrieved from
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Fig. 9. Homing vectors and error analysis referring to (5.8). The color-map in the first row indicates the number of matched key points; in the second row, the
color-map indicates the average angular error in degree. (a) Homing Vectors. (b) AAE analysis (in degree).

a large area around the home position, though it may lead to a

high false negative ratio.

For real applications, the rotation threshold needs to be tuned

according to the characteristic of the feature distribution in the

test environment. Empirically, we choose a threshold of 1.0 rad,

resulting in good outlier rejection performance, while still keep-

ing an inlier ratio of more than 80% in the tests on the dataset

introduced in Sections IX and X.

IX. RESULTS ON AN INDOOR DATASET

In order to compare all related methods under the same condi-

tions, we test on a widely cited dataset provided by Vardy [32].

The datasets are a collection of panoramic images (some with

unwrapped version) obtained from typical indoor environments,

plus the calibration information and pose information. Some of

the datasets includes dynamic objects in the scene, such as a mo-

bile chair, etc. All the raw images have a resolution of 640× 480

(unwrapped image: 561 × 81) and the actual intervals between

the two nearest nodes are equal constants, which is typically

30 cm. An instance from the database is shown in Fig. 8. By

taking position (5,8) of A1originalH dataset as the reference

home, the homing vectors calculated from other images in the

same dataset using different methods are shown as Fig. 9(a). The

color of the filled circles indicates the differences in number of

matched features. It is interesting to see that SSVS exhibits

clean behavior pointing toward the home position, even when

the matching ratio is low.

According to the comparison done in [26], the total average

angular error (TAAE) can be an important statistic result when

evaluating the homing ability. The overall average angular error

(AAE) can be obtained as follows:

AAE(ss) =
1

mn

m
∑

x=1

n
∑

y=1

AE(ss, cvxy )

where AE is the absolute angular error between the computed

homing vector and the ground truth. The subscript ss and cv

stands for saved scene and current view, respectively. For the en-

tire image database db, the TAAE computes the overall average

of AAE(ss) as follows:

TAAE(db) =
1

mn

m
∑

x=1

n
∑

y=1

AAE(ssxy ).

The AAE for each position of A1originalH is illustrated in

Fig. 9(b).

Test results on the full Vardy datasets are illustrated in Ta-

ble I, where we show extended statistics of the angular error,

such as maximums, minimums, and standard derivations. Darker

background on specific numbers mark the best performance of

the row. The “∗” after the name of datasets indicate that those

datasets are unwrapped by detection and operation on the largest

circle of the panoramic images. In terms of precision, SSVS

and BOVS show the best performance in general. However, we

must notice that BOVS requires a good enough estimation of the

global heading, which is in general vague using visual compass

methods [31]. Moreover, since SSVS and HSVS hold the lowest

computational complexity, the advantage of SSVS is revealed.
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TABLE I

ERROR ANALYSIS FOR ALL THE ALGORITHMS (IN DEGREE)

Fig. 10. Histogram of angular errors for the selected algorithms under the test condition with moving people. (a) BOVS. (b) HSVS. (c) SSVS.

Fig. 11. Sample image of the dataset with arbitrarily moving objects.

X. RESULTS OF THE REAL-TIME HOMING TEST

A. Homing Vectors to One Reference

In order to show the performances in a more dynamic en-

vironment, a dataset taken together with vicon motion capture

system is used for further evaluation. In this test, four people are

continuously moving in the scene of which the robot is taking

the data. A sample image is shown in Fig. 11.

The calculated homing vectors taking (0,0) position as refer-

ence home is depicted in Fig. 12, using SSVS. We could see that

the robot trajectory is arbitrary. Thanks to the motion tracking

system, the 6 DoF ground truth is simultaneously recorded. It

can be noticed that even with relatively low numbers of matched

feature points, the robot can show reasonable homing directions

using SSVS.

As comparison, only the outperforming algorithms from pre-

vious tests—BOVS, SSVS, and HSVS are carried out on this

dataset due to the limited space. Concerning BOVS requires

global heading estimation, we carry out the evaluation for BOVS

using the ground truth heading information. In practice, vi-

sual compass is required to provide such information, leading

to worse performance. For related works of visual compass,

see [31]. The histograms of the angular errors for the three

methods are shown in Fig. 10. It indicates that the SSVS has the

best precision and BOVS performs the worst even with ground

Fig. 12. Results of SSVS with moving people in the scene.

truth heading information. This result shows SSVS is better

fit for the robot navigation task in dynamic environments for

real-time applications.

B. Experiment of Outlier Rejection

The outlier rejection method is the key to ensuring the cor-

rectness of generated homing vectors in dynamic environments.

We also compare the cases with and without the proposed

outlier rejection method. The statistics of the generated an-

gular errors show the effect of the proposed outlier rejection

method, as depicted in Fig. 13. It shows that the implementa-

tions with the proposed outlier rejection have lower error mean

and smaller derivation. Regarding the simple assumption, the

additional computation that is required for outlier rejection is

minor. Therefore, such an algorithm is generally feasible for all
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Fig. 13. Error comparison in the cases with/without outlier rejection. The
labels marked with _on indicate the boxplot with outlier rejection and _off
indicates the results calculated from the raw matching result.

similar applications using key-point features that are obtained

from omnidirectional cameras.

XI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a visual homing framework

using visual servoing, which is based on the scale and bearing

measurements of popular visual features such as SIFT. After

showing how these measurements could be used in the standard

visual servoing framework, we proposed a simplified controller

with a complexity linear with the number of observed features.

We have demonstrated the usability of scale-based visual servo-

ing, and we have shown that our simplified approach is stable

and offers better performance than other methods based on the

results on standard datasets and experiments in an environment

with dynamic objects. We also demonstrated the necessary ob-

servability and stability analysis.

Overall, the proposed approach shows certain robustness

to dynamic changes in the environment. Similar to any other

visual-based homing solution, our approach is sensitive to strong

illumination changes, etc., which may completely destroy the

appearance. The extended results for a navigation framework

using the proposed algorithms are provided in our recent re-

port [33]. Concerning future work, we are considering applying

it to outdoor navigation on terrain manifold and extending it to

3-D space for unmanned aerial vehicles.

APPENDIX

PUBLIC DATASET

A compact dataset has been captured during the experiment

of this study. It is comprised of raw and unwrapped panoramic

images captured by an omnidirectional camera. The raw images

have a resolution 640 × 480, and the unwrapped version has

a resolution of 1014 × 172. Moreover, the dataset provides

pose ground truth with sub-millimeter precision, supported by a

vicon motion capture system. A summary is shown in Table II.

Please refer to http://www.asl.ethz.ch/people/lium/personal for

more information.

TABLE II

AVAILABLE PUBLIC DATASET RELATED TO THIS STUDY
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Short-term displacement of Planktothrix rubescens (cyanobacteria) in a pre-alpine lake

observed using an autonomous sampling platform
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Abstract

Short-term changes in temporal and spatial distributions of the toxic cyanobacterium Planktothrix rubescens in
Lake Zurich were investigated using high-resolution data sets acquired with an autonomous surface vessel (ASV).
Data profiles were recorded with a multi-parameter probe while the ASV navigated along 1.5 km toward a
waypoint located on the other side of the lake by using a global positioning system. We deployed the ASV seven
times on five consecutive days during the stratification period (July 2011) to generate cross-sectional views of
temperature, light, oxygen, and phycoerythrin and chlorophyll fluorescence from surface to 18 m. The data were
also used to compute daily photosynthetic rates. Data showed a daily reshaping of the P. rubescens distribution in
the metalimnion on both horizontal and vertical axes, from patches to a shore-to-shore spreading. A thermocline
depression observed after 16 h of sustained winds forced the accumulation of P. rubescens on the downwind shore.
The compression of the metalimnion and its downward shift by 6 m within 24 h suggested the modulation of a
longitudinal seiche following the wind event. This passive transport of the metalimnetic P. rubescens population
resulted in a 90% light reduction, and a decrease of the averaged daily photosynthetic rate from +21 mmol O2

m22 d21 to 210 mmol O2 m22 d21. Negative photosynthetic rates were computed on 2 d out of 5 d, meaning that
the transport of P. rubescens by seiches significantly affected the balance between oxygen production and
utilization in Lake Zurich, especially because it is the dominant primary producer.

In the pre-alpine Lake Zurich, Switzerland, the species
Planktothrix rubescens dominates the biomass of primary
producers (Micheletti et al. 1998; Bossard et al. 2001). The
ecological success of P. rubescens lies in its adaptation to
the seasonal stratification that takes place in the clear
mesotrophic waters of Lake Zurich (Walsby and Schanz
2002). Not only does P. rubescens thrive in the metalimnion
during late summer and early autumn, but the cyanobac-
terium also outcompetes other phytoplankton species
under the low-irradiance conditions that prevail in that
layer by maximizing the absorption of green light with
phycoerythrin pigments (Davis and Walsby 2002; Ober-
haus et al. 2007). P. rubescens can also regulate its
buoyancy with gas vesicles to maintain and adjust its
vertical position according to the irradiance, preferably at
depths above its photosynthetic compensation point where
it has the biggest competitive advantage (Walsby et al.
2001). The prevalence of P. rubescens in Lake Zurich, a
drinking water reservoir for 1.5 million people, is a serious
issue because it produces cyclic hepatotoxins called
microcystins, including the very acute form [D-Asp3,(E)-
Dhb7]microcystin-RR (Blom et al. 2001). Microcystins
represent major threats to domestic animals as well as
considerable hazards for human health through water
consumption and bathing (Codd et al. 2005). Even though
programs for water quality restoration by nutrient control
have been undertaken since the 1950s in Lake Zurich
(Bossard et al. 2001), P. rubescens populations have shown

no reduction, but rather an increase during the past decades
(Posch et al. 2012).

The spatial distribution of cyanobacteria varies vertically
as well as horizontally in shallow (Moreno-Ostos et al. 2009;
Pobel et al. 2011) and in deep lakes (Cuypers et al. 2010;
Salcher et al. 2011). In the epilimnion, spatial variations may
occur on short time scales (i.e., from hours to days) because
most of these changes arise from meteorological conditions.
For example, during quiet days of minimal mixis, cyano-
bacteria can form surface scums (Huisman and Hulot 2005),
and whenever winds generate surface currents, these scums
may accumulate locally (Pobel et al. 2011). In the
metalimnion, physical changes may also arise from weath-
er-forced events, such as when steady winds blow over a
stratified lake and pile up surface waters at the lee end shore
(Boegman 2009). This water buildup pushes down the
thermocline on the leeward shore and creates a compensa-
tory upward movement of the isotherms at the windward
shore (Horn et al. 1986). Once winds stop, the thermal layers
of the lake slide over each other to redistribute a new
equilibrium generating an oscillation, called an internal
seiche, which produces vertical movements of water at
depth, but produces very little motion at the surface
(Boegman 2009). These short-term, wind-induced events
generate vertical displacements of metalimnetic populations
of cyanobacteria, causing episodic changes in the irradiance
that reaches the cells, which in turn modify photosynthetic
rates with cascading effects on the ecosystem of small and
large lakes (Cuypers et al. 2010; Pannard et al. 2011).

Short-term variations in the vertical distribution of P.
rubescens due to displacement by seiches have been scarcely*Corresponding author: me.garneau@gmail.com
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documented (Thomas and Märki 1949; Thomas 1950;
Cuypers et al. 2010; Carraro et al. 2012), and there is no
information on the variations in light conditions that are
experienced by P. rubescens in situ. Comprehensive
calculations indicated that vertical shifts significantly affect
the net photosynthetic production balance because this
metalimnetic population is located close to its photosyn-
thetic compensation point (Walsby et al. 2001). Nonethe-
less, the ecological effects of such punctual events are
poorly described because the rapid and occasional nature
of their advent hinders their documentation using tradi-
tional sampling methodologies. More studies demonstrate
the effectiveness of high-frequency data sampling by fixed
fluorometer probes to monitor harmful cyanobacterial
blooms (Leboulanger et al. 2002; Brient et al. 2008;
McQuaid et al. 2011) but broader spatial information is
still limited (Porter et al. 2009).

A promising avenue to address harmful cyanobacteria
ecology from both a spatial and a temporal angle is the
application of autonomous mobile robots which, when
equipped with multiple sensors, can accurately and rapidly
measure limnological parameters at biologically relevant
spatiotemporal scales. The field of autonomous mobile
robotics has gained more interest in autonomous surface
vessels (ASV), and an increasing number of platforms are
designed for lake-ecosystem studies (Caron et al. 2008;
Dunbabin et al. 2009; Ferri et al. 2011). So far, none of
these mobile deployments have specifically aimed for the
monitoring of harmful cyanobacteria. Our newly designed
ASV provides a sampling method for high temporal and
spatial resolutions, both horizontally and vertically, and is
thereby applicable to the variability of lake hydrology and
of microbiological processes. The vessel holds a custom-
designed winch employed to lower a commercial multi-
parameter probe (Fig. 1). It can be rapidly deployed in
Lake Zurich, thereby allowing for the monitoring of short-
term variations in P. rubescens distribution.

Our objective was to document the role of episodic lake-
water movements on the light-based positioning of P.
rubescens in the water column and the consequences for its
growth. We hypothesized that physical processes substan-
tially affect the net photosynthetic rate of the P. rubescens
population. We deployed our ASV to measure the under-
water irradiance and to locate depths where P. rubescens
stratified, and we then compared the measured values with
the theoretical depth where the daily insolation would
support its neutral buoyancy.

Methods

Study site and sample collection—Lake Zurich (Fig. 2) is
a large and deep mesotrophic lake (, 10–20 mg L21 total
phosphorus) located at 406 m above sea level on the Swiss
Plateau, at the northern edge of the Alps (Bossard et al.
2001). The lake has a surface area of 68 km2, a maximal
depth of 136 m (Bossard et al. 2001), and 30 km long
thalweg path (i.e., the deepest continuous line in the lake
channel; Horn et al. 1986). The lake basin is mainly
exposed to northeasterly and southwesterly winds, which
are stormy in winter and spring (MeteoSwiss; http://
www.meteoswiss.admin.ch/files/kd/normwerte/norm8110/
windrosen/fr/SMA.pdf). Summer and autumn are compar-
atively calm, but various local winds circulate from the
surrounding hills toward the lake at night, and from the
lake back to the hills during daytime (Hantke et al. 1979).
Summertime is also characterized by short episodes of
strong west winds and thunderstorms that usually occur in
the late afternoon (Hantke et al. 1979). The wind stress at
the surface of the lake is non-uniform and quite variable
because of changes in the orientation in the thalweg
direction and the surrounding topography, resulting in
several longitudinal internal seiche modes in Lake Zurich
(Horn et al. 1986).

Meteorological parameters were obtained from the
website of the Zurich Water Police (Zurich Wasserschutzpo-
lizei, http://www.tecson-data.ch/zurich/seepozh/mythenquai.
html). Continuous records of global solar irradiance (Kipp
andZonenCM3pyranometer inWm22), wind speed (m s21),
and wind direction (u) were measured at 10 min intervals
from 10 July, which is the day prior sampling, to 17 July. The
weather station is located at 4.1 km north of the sampling
transect (Fig. 2) and meteorological data are presented in
Fig. 3.

Robotic approaches and water sampling—The ASV
collected vertical data profiles using a YSI-6600 multi-
parameter probe (YSI Incorporated) equipped with an
array of sensors while it navigated autonomously along a
linear path following pre-defined global positioning system
(GPS) waypoints. The precise GPS-based navigation
ensured that the positions of the measurements are
reproducible from one sampling run to the other, which
permitted data comparisons between all runs. The concep-
tion and manufacturing of the platform, the software
design as well as the robotic aspects are fully described in
Hitz et al. (2012). The navigation speed for sampling was
set for maximal data coverage of the studied area while

Fig. 1. The autonomous sampling vessel, which is a catama-
ran 2.5 m long and 1.8 m wide called Lizhbeth, during a sampling
mission on Lake Zurich. The winch system is used to lower a light
sensor and a multi-parameter probe, which is inserted in the
plane-shaped fiberglass casing. The casing has elongated perfora-
tions to allow the water to reach the sensors. The front tip of the
casing is a 4.2 kg steel weight.
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considering hardware-related constraints, such as the
sensor measurement frequencies and the capacity of the
two batteries. A sailing speed of 0.7 m s21 and a vertical
deployment speed of 0.1 m s21 for the probe, which
measures at a rate of 0.5 Hz, was the most advantageous
trade-off for a round-trip sampling from east to west along
the 1.5 km transect (Fig. 2A). The ASV sailed the transect
in 40 min while alternately lowering and raising the probe,
from the surface layer down to the upper part of the
hypolimnion (2–18 m), to capture the entire metalimnion
layer where P. rubescens accumulates during summer and
autumn. The combination of the horizontal and vertical
motions of the probe results in a zigzag sampling path
(Fig. 2B). For a given sampling run, the raw measurements
of the two inverse zigzag paths of the probe (i.e., one on the
forward trip and another on the return trip) were combined
to enhance the spatial coverage and to increase the
accuracy of the interpolation method (details below). A
complete field survey took 80 min, which is , 10% of the
shortest seiche period (17 h) in Lake Zurich (Horn et al.
1986).

The sampling campaign took place from 12 to 16 July
2011 along a straight-line transect starting on the west
shore (47.320119uN, 8.554894uE), and ending on the east
shore (47.326092uN, 8.572475uE; Fig. 2). The ASV was
deployed daily, and two times on 12 and 14 July to evaluate

the variations that may occur within a day. Sampling took
place , 2 h before and after noon, which was when the sun
was at its zenith and when the irradiance was maximal. The
bell-shaped curves of irradiance indicated that the light at
10:00 h and 15:00 h was usually similar (Fig. 3B).
Environmental data were collected every 2 s using sensors
for depth (m), temperature (uC), dissolved oxygen concen-
tration (mg L21) and saturation level (%), chlorophyll
fluorescence (relative fluorescence unit, RFU), which is a
proxy for the total phytoplankton biomass, and finally for
phycoerythrin fluorescence (also in RFU), which is a proxy
for P. rubescens biomass. Additionally, a spherical quan-
tum sensor (LI-COR) was installed on the probe to
measure the in situ photosynthetically active radiation
(PAR; mmol m22 s21). A second sensor placed on the boat
measured the PAR above the surface for reference. All
sensors were calibrated according to the manufacturer’s
guidelines. Delays in the response of the sensors on the
multi-parameter probe were detected because we were
deploying them at a faster speed than recommended by YSI
Incorporated. The time delay for a measurement was 15 s
with the sensor for dissolved oxygen, 14 s for the
phycoerythrin sensor, and 2 s for the temperature sensor.
The delays in the sensor responses were easily adjusted
back to the correct position of the reading, but it was not
possible for the dissolved oxygen 6562 Rapid PulseTM

Fig. 2. Map of Lake Zurich, Switzerland, and its surrounding topography (Source: Bundesamt für Landestopografie swisstopo [Art.
30 GeoIV]: 5704 000 000). Also shown are the location of the sampling transect, the weather station, and the thalweg path. (A) Schematic
illustration of the 1.5 km transect in Lake Zurich, where the probe is lowered and raised between 2 and 18 m. Zh stands for Zurich, ws for
weather station, and ls for limnological station. (B) Plot of the raw data recorded by the temperature sensor during the forward trip
toward the east shore that illustrates the zigzag path of the probe.
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Sensor (an electrochemical sensor) when the probe was
moving upward. As a result, the values were inaccurate,
and this half of the data set was excluded. A likely
explanation for inaccurate oxygen values is that the sensor
may respond poorly when passing from a lower oxygen
zone to higher oxygen zone. Electrochemical oxygen
sensors are influenced by oxygen concentration, as well as
changes in temperature, salinity, pressure, and stirring
(Tengberg et al. 2003). Thus, the number of data collected
(n) from 2 m to 18 m with each sensor amounted to 13,904
(or . 1900 for each sampling run); whereas, the data
collected with the dissolved oxygen sensor (nDO) was 6851.

On the first day of the sampling campaign and 1 week
after, on 19 July, vertical algal pigment profiles were
recorded using a TS-16-12 fluoroprobe (bbe Moldaenke
GmbH) that was deployed from a small craft above the
deepest point of the lake (47.307011uN, 8.577167uE). The

fluoroprobe was calibrated to differentiate between green
algae, diatoms, cryptophytes, and P. rubescens.

Quantification of Planktothrix by quantitative PCR for
sensor calibration—The RFU values given by the phycoer-
ythrin fluorescence sensor were considered good estimators
of P. rubescens biovolume because its phycoerythrin
content was shown to be relatively constant throughout
seasons (Ernst et al. 2009) and under various light
conditions (Skulberg and Skulberg 1985). The sensor was
thus calibrated by associating the RFU reading at a given
depth to the actual P. rubescens abundance, which was
determined by quantitative PCR (qPCR) analysis on water
samples taken at that same depth. We collected 47 samples
at various depths from 0 m to 20 m from 24 March to 03
November 2011. For each depth, two 400 mL volumes were
filtered through glass fiber filter membranes. The filters
were processed as crude lysates, as in Garneau et al. (2011),
and filtered through a 0.22 mm, low-binding cellulose
acetate syringe-tip filters to efficiently remove cellular
debris and filter remnants. The P. rubescens filaments were
quantified following the qPCR TaqMan assay on the 16S
ribosomal deoxyribonucleic acid (rDNA) gene developed
by Ostermaier and Kurmayer (2009). The qPCR approach
was calibrated using a four-point 1 : 10 serial dilutions of
DNA extracts of a P. rubescens culture (strain A7 isolated
from Lake Zurich by A. E. Walsby), for which the initial
biovolume was 375 mm3 L21 (6 126 mm3 L21, n 5 7). This
concentration was determined by microscopic examination
of formaldehyde-fixed filaments collected onto black
polycarbonate filters (0.22 mm pore size). The autofluor-
escent filaments under green light were quantified by
automated image analysis (Zeder et al. 2010). Counts were
translated into biovolumes (Van den Wyngaert et al. 2011).

Calibration curves were loaded for each qPCR run of
unknown samples to directly translate threshold cycle (Ct)
values into biovolumes. The calibration curve spanned over
concentrations from 3.75 3 100 mm3 L21 to 3.75 3

1023 mm3 L21, which corresponded to 2.34 3 1025 mm3 to
2.34 3 1028 mm3 of filaments per qPCR reaction. Six
calibration curves were run and combined to give a master
calibration curve described as y523.24x + 9.36, r2 5 0.96.
The qPCR efficiency (E) was calculated as E 5 100 3

10(21/m)
2 1 (where m is the slope of the master calibration

curve) and equaled 103%, which is within the acceptable
range of 90–110% for assay validation (Invitrogen 2008).
The qPCR method accuracy was confirmed by comparing
qPCR results with microscopic slides counted in triplicate
for 11 lake samples. The standard deviation on biovolumes
determined by microscopy was, on average, 30%. For a
given sample, the standard deviation on the triplicate
qPCR runs was, on average, 16%, and was never above
30%. Correlation analysis showed that the two quantifica-
tion methods gave very similar abundance values (m 5

0.82, r2 5 0.93). The linear regression used to convert RFU
values into qPCR-based biovolume (BioV in mm3 L21) was
BioV 5 0.806 [RFU] 2 0.899 (r2 5 0.90, n 5 47, p # 0.05).

Data interpolation—Sensor data were post-processed
using a two-dimensional interpolation method to create a

Fig. 3. Meteorological data measured from July 11, 00:00 h
to July 17, 23:50 h. Presented are running means of the data
recorded every 10 min for (A) air temperature, (B) solar
irradiance, (C) wind speed maxima, and (D) wind direction (0u
5 360u5 north, 90u5 east, 180u5 south, 270u5 west). The grey-
shaded area represents the period when sustained winds blew from
the northwest for 16 h.
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cross-sectional representation. These cross sections were
shaped using an anisotropic distance kernel because there
was a large difference between the scale of the horizontal
axis (1.5 km) and the vertical axis (18 m). Interpolations
were calculated over a depth range of 2–18 m using
MATLAB. This interpolation procedure was evaluated,
and results indicated that the error of the interpolation is
contained within the temporal variability observed in the
field (Hitz et al. 2012). For a given environmental
parameter, each interpolated value is considered represen-
tative of a volume that has a length of 30 m, a width of
30 m, and a height of 0.6 m. Using the interpolated
temperature profiles, the thermocline stratification index
(TSI in uC m21) was computed as follows:

TSI~DT=Dh ð1Þ

where DT is the difference in water temperature and Dh is
the depth interval (Yu et al. 2010). The stratification
increases with TSI values. The metalimnion boundaries
displayed on Figs. 4 and 5 were determined using a
gradient value of . 1uC m21.

Calculations of daily insolation, neutral buoyancy depth,
and photosynthetic compensation point—Two different
irradiance sensors were used in this study: (1) a quantum
LI-COR sensor, which measured the in situ PAR (or visible
range, 400–700 nm) in mmol m22 s21; and (2) a radiometric
Kipp and Zonen CM3 pyranometer, which measured the
global solar spectrum (305–2800 nm) in W m22 at the
surface of the lake. The conversion of these radiometric
units into photon units was estimated by the LI-COR
manufacturer to be roughly 4.6 mmol m22 s21

< 1 W m22,
which is equivalent to 1 J m22 s21 (Biggs 2000). Because
about 46% of the total solar energy is emitted in the
visible range (Walsby 2001; Blumthaler 2012), a value of
1 J m22 s21 on the CM3 pyranometer should be equivalent
to 2.116 mmol m22 s21 on the LI-COR sensor (i.e.,
4.6 mmol m22 s21 3 0.46). Thus, we used the theoretical ratio
LI-COR:CM3 of 2.116 mmol J21 (i.e., 2.116 mmolm22 s21 : 1 J
m22 s21) to convert the pyranometer values into PAR
equivalent values.

Each 10 min record of the global solar irradiance was
first multiplied by 600 s (i.e., 10 min 5 10 3 60 s) to
transform values in J m22. The resulting values were
afterward multiplied by 2.116 mmol J21. The daily
irradiance at the water surface Q0 (in mol m22) was then
calculated from the sum of the 10 min records over a period
of 24 h. The daily insolation Qz at depth z was calculated as
follows:

r

Fig. 4. Cross-sectional views of temperature (in uC) along the
transects across Lake Zurich between 12 and 16 July 2011,
indicated by letters A to G. The dashed white lines indicate the
upper and lower boundaries of the metalimnion, and depths
indicated on each line are mean values computed over the full
transect. The thin grey lines are the temperature isolines.
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Qz~Q0

Iz

I0
ð2Þ

where Iz is the irradiance at depth z and I0 is the irradiance
measured just below thewater surface, both in mmolm22 s21.

The neutral buoyancy depth zN is defined as the depth
where 50% of the P. rubescens filaments naturally float,
which corresponds to the depth where the daily photon
insolation QN is equal to 0.28 mol m22 (Walsby et al. 2004),
and is calculated as follows:

z~zIzDz

ln
QI

q

� �

{ ln
Q

q

� �

ln
QI

q

� �

{ ln
QIz1

q

� � ð3Þ

where z 5 zN and Q 5 QN; Dz is the sampling depth
interval; q is a constant equal to 1 mol m22; zI and zI+1 are,
respectively, sampling depths immediately above and below
the depth where the insolation equals QN; and QI and QI+1

are the daily insolation at these depths.
The growth compensation point Eg was defined as the

irradiance in the light phase that supports no growth over a
cycle of 12 h of light and 12 h of darkness (Davis andWalsby
2002). A Eg value of 0.8245 mmol m22 s21 was determined
for a P. rubescens culture growing at 15uC during 12 h of
light (Davis and Walsby 2002). To obtain the daily photon
insolation QC that corresponds to the compensation point
for P. rubescens growth, the Eg value was multiplied by
43,200 s (equivalent to 12 h), which gives a resulting QC

value of 0.0356 mol m22. The compensation depth zC is
calculated using Eq. 3 where z 5 zC and Q 5 QC.
Interpolated data were used to calculate zN and zC for each
sampling run. The resulting data were depicted in Fig. 5.

Calculation of the daily integrals of photosynthesis—
Daily integrals of photosynthesis were computed using our
vertical profile measurements of P. rubescens biovolumes,
temperature, and irradiance in Lake Zurich, and following
the calculation procedures of Walsby (1997, 2001). The
relationship between photosynthesis P and irradiance I is
described as follows:

P~Pm 1{exp
{aI

Pm

� �� �

zRzbI ð4Þ

where P is the photosynthetic rate, Pm is the maximum
photosynthetic rate, and R is the rate at zero irradiance (all
in mmol cm23 h21); a is the initial slope of the P/I curve at
low irradiance and b is the P/I curve slope at high
irradiance (both in mmol cm23 h21[mmol m22 s21]21);
and I is the photon irradiance in mmol m22 s21.

The photosynthetic coefficients a, b, Pm, and R were
determined experimentally by Walsby et al. (2001), where R
was the standardized respiration Rs calculated as 20.11 3

Pm (set 1 in Table 1). Among the photosynthetic coeffi-
cients available in the literature, the coefficients from
Walsby et al. (2001) were the most relevant to our data set
for three reasons: (1) the coefficients were measured for a
natural population of P. rubescens in Lake Zurich; (2) the

samples were incubated at 11 m in Lake Zurich, which
reflects the in situ light and temperature T9 of 15.5uC; and
(3) values are means of four P/I curves measured at
different time points to account for daily variations in the
coefficients. The daily photosynthetic rates computed with
the parameter set 1 were considered default values. They
were compared to rates computed using two other sets of
parameters, also determined for P. rubescens from Lake
Zurich (Table 1). The coefficient set 2 was calculated from
cultures growing at 20uC under controlled light conditions
(Walsby 2001); whereas, the set 3 was calculated from
resuspended filaments collected in the lake and incubated
at 12uC (Micheletti et al. 1998).

The photosynthetic rates Pzt (in mmol m23 h21) for a
given depth z at a given time t were computed from the
potential rate of photosynthesis that is predicted by the
photosynthetic coefficients and the in situ irradiance
measurements. Irradiance Itz at a given depth z and time
t is given as follows:

Itz~I0t
Iz

I0

� �

ð5Þ

where I0t is the irradiance below the surface at time t. The
parameter Itz replaced I in Eq. 4, which is re-arranged as
follows:

Pzt~Bz Pm 1{exp
{aItz

Pm

� �� �

zRz bItzð Þ

� �

T10

Tz{T ’ð Þ
10ð Þ ð6Þ

where Bz is P. rubescens biovolume at depth z (in cm3 m23).
Equation 6 also incorporates a correction term for
temperature, where T10 5 2 and is the relative increase in
P over 10uC; T9 is the incubation temperature for the P/I
curves (given in Table 1), and Tz is the temperature
measured at depth z.

We used the interpolated data to compute Pzt. The
interpolation gave a value for a volume that has a length of
30 m, a width of 30 m, and a height of 0.6 m. In other
words, the 1.5 km (or 1500 m) transect is composed of 50
interpolated volumes on the horizontal axis (distance) and
27 interpolated volumes on the vertical axis (depths from
2 m to 18 m). This sequence of interpolated areas can be
seen as a series of consecutive columns aligned from the
west shore to the east shore of the lake, over a distance
range of 0 m to 1500 m. Thus, for a given column, we
calculated a Pzt value for each depth z at each time point t.
Then, double integrals gg(P) over a day (24 h) and
throughout depths (from 2 m to 18 m) were calculated with
the trapezoidal rule. Daily integral photosynthetic rates are
expressed in mmol O2 m22 d21 and are estimators of the
photosynthesis by P. rubescens during a day in a given
surface area of Lake Zurich, from the surface down to the
upper part of the hypolimnion. The transects also have a
horizontal dimension (i.e., the distance); therefore, a mean
value was calculated for each transect.

Statistical analysis—Statistical analyses on sensor data
were performed using MATLAB. The data were not
following a normal distribution; therefore, we used non-
parametric tests. Medians and interquartile ranges (Q1 and
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Q3) were used to summarize each sampling run as well as
each lake layer. The relationship between two variables was
evaluated based on Spearman’s rank correlation coefficient
(rS) at the level of significance p , 0.05. Kruskal–Wallis
analyses on rank-ordered data (KW) were used to compare
data between different groups. The null hypothesis that
mean ranks of samples were the same for all the groups was
rejected when p , 0.05. First, the three layers of the lake
were compared: (1) epilimnion, (2) metalimnion, and (3)
hypolimnion. Data were grouped by layer according to the
metalimnion depths determined using Eq. 1. Values from
2 m to the upper edge of the metalimnion were allocated to
the epilimnion; whereas, values from the lower edge of the
metalimnion down to 18 m were assigned to the hypolim-
nion. Analyses were performed for each sampling run
separately and for all the data together. Second, KW tests
were also performed for each sampling run to determine
whether the data recorded in the metalimnion in three
different areas of the lake come from the same population.
The three areas were (1) west shore or windward shore (0–
500 m), (2) central lake area (500–1000 m), and (3) east
shore or leeward shore (1000–1500 m). Finally, KW tests
were used to examine temporal variations by comparing the
seven sampling runs (Figs. 4A–G, 5A–G). Dunn’s post-hoc
tests were used to determine which layers, areas, or runs
differed from each other. It is worth noting that unlike the
one-way analysis of variance, the KW analysis does not test
the null hypothesis that the populations have equal means
or medians. This implies that two groups having identical
medians or means could be significantly different if their
mean ranks are different (McDonald 2009).

Results

Meteorological and physico-chemical parameters—The
weather during the week of sampling was fluctuating, and
when clouds appeared on 13 July, the air temperature and
the irradiance decreased accordingly (Fig. 3A,B). On 14
July, steady winds of moderate intensity accompanied by
gusts of up to 7 m s21 blew from the northwest for more
than 16 continuous hours (Fig. 3C,D). On 15 July, the
winds subsided, the temperature gradually rose, and the
next day was sunny (Fig. 3). Temperature profiles showed
that Lake Zurich was thermally stratified throughout the
sampling campaign (Fig. 4). Statistical analysis confirmed
that the epi-, meta-, and hypolimnion layers were
significantly different in terms of temperature, dissolved
oxygen saturation level, and in situ irradiance, whether
considering all the data or each sampling run separately
(KW p , 0.05; Table 2). All data taken together indicated
that between 12 and 16 July, the median temperature in the
metalimnion was 12.8uC and the median oxygen concen-
tration was 11.4 mg L21, equivalent to a median of 99% of
saturation. The light intensity in the metalimnion amounted
to 3.5 mmol m22 s21 (Table 2). Comparatively, the median
light intensity was much higher (median 207 mmol m22 s21)
in the epilimnion,andmuch lower (median0.60mmolm22 s21)
in the upper part of the hypolimnion (Table 2).

Biovolumes of P. rubescens—Vertical profiles of pig-
ments recorded with the fluoroprobe indicated that P.
rubescens was the dominant primary producer in Lake
Zurich during the sampling period (Fig. 6). P. rubescens

r

Fig. 5. Cross-sectional views of P. rubescens biovolume (in cm3 m23) in Lake Zurich between 12 and 16 July 2011. The dashed white
lines indicate the upper and lower boundaries of the metalimnion. The black line indicates the depth of the neutral buoyancy (zN), while
the green line indicates the depth of the compensation point for growth (zC). The right panel presents corresponding median values in the
metalimnion for Planktothrix biovolumes (Prub), temperature (Temp), underwater irradiance (I), and dissolved oxygen saturation
(DO%) calculated from the sensor data in each of the three transect areas for a given sampling run. The areas of the metalimnion that
were significantly different (Kruskal–Wallis analysis [KW], p , 0.05) for a given variable are in bold. A double asterisk indicates an area
that differs from all other areas; whereas, a single asterisk indicates two areas that are significantly different (KW p , 0.05). n indicates
the size of the data sets for Temp, I, and Prub, and nDO is the size of the DO data set.

Table 1. Photosynthetic coefficient sets for Planktothrix rubescens of Lake Zurich. Set 1 was used to compute the default value of
daily integral photosynthetic rates; the two other sets are for comparison. Coefficients were measured from experimental determination of
P/I curves (i.e., the relationship between photosynthesis P and irradiance I) of P. rubescens that was incubated in situ (set 1) or in
controlled conditions using cultures (set 2) or resuspended filaments in lake water (set 3). See Methods section for details on each
photosynthetic coefficient.

Coefficient and unit Set 1* Set 2{ Set 3{

a (mmol cm23 h21 (mmol m22 s21) 21) 26.7 14.9 88.2
b (mmol cm23 h21 (mmol m22 s21) 21) 0.522 20.0797 20.269
Pm (mmol cm23 h21) 676 486 1472.4
R (mmol cm23 h21) 274 247.3 2100.3
T9 (uC) 15.5 20.0 12.9
T10 2 2 2

* Walsby et al. 2001.
{ Walsby 2001.
{ Micheletti et al. 1998.
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accounted on average for 57% of the total chlorophyll a
concentration, whereas the second most abundant group,
the diatoms, accounted for 38%. No cryptophytes, which
also contain phycoerythrin pigments, were detected
(Fig. 6). P. rubescens filaments were well-stratified in the
metalimnion, where highest biovolumes were found (Ta-
ble 2). The median biovolumes in the epi- and hypolimnion
were similarly low, and were significantly different from the
biovolumes of the metalimnion (KW p , 0.05; Table 2).
When considering the P. rubescens biovolume data of all
runs and all layers together, the only strong correlation
(i.e., rS . 0.60) found was with chlorophyll fluorescence (rS
5 0.75, p, 0.05), concordant with the observation that this
organism was the dominant autotroph in the lake at the
time of sampling. There was also an association between
oxygen concentration and P. rubescens (rS 5 0.48, p ,

0.05), showing the importance of P. rubescens as primary
producer. This is in keeping with the recent work of Salcher
et al. (2011), who demonstrated that P. rubescens was the

dominant primary producer at the scale of the lake. The
association with oxygen increased when considering the
total chlorophyll fluorescence (i.e., all the primary produc-
ers in the top 18 m [rS 5 0.84, p , 0.05]).

When the three layers were analyzed separately, more
correlations were found. The epilimnion data subset
indicated that P. rubescens was more abundant as we go
deeper in the epilimnion (P. rubescens vs. depth, rS 5 0.76)
where underwater irradiance (I), temperature (temp), and
dissolved oxygen saturation level (DOsat) were lower (P.
rubescens vs. I, rS 5 20.64; vs. temp, rS 5 20.77; vs.
DOsat, rS 5 20.59; p , 0.05). The metalimnion subset
showed a stronger association between P. rubescens and the
dissolved oxygen concentration (rS 5 0.53, p , 0.05) than
when all data were considered.

Spatial and temporal variations in the metalimnion—Most
filaments were confined into a distinctive Planktothrix layer
(Fig. 5) that moved according to the oscillations of the
metalimnion (Fig. 4). The metalimnion width and location
changed within a day but, on average, the upper boundary
was located at 6.8 6 2.0 m while the lower boundary was at
14.4 6 1.2 m. Cross-sectional views also revealed horizon-
tal heterogeneity in isotherm depths, metalimnion widths
(Fig. 4), and P. rubescens biovolumes (Fig. 5). The
metalimnion tended to be slightly larger on the east shore
than on the west shore, and this was particularly apparent
on 15 July (Fig. 4F). Two transversal views from the first
sampling day depicted a particularly dense patch of P.
rubescens in the central portion of the lake (Fig. 5A,B).
Biovolumes and underwater irradiance in the metalimnion
were significantly different there than on both shores (KW
p , 0.05; Fig. 5A,B). On the next day, 13 July, P. rubescens
was more abundant on the east than on the west shore, as
suggested by KW test showing a significant (p , 0.05)
difference between these two areas; whereas underwater
light and temperature in the central part were different
from the west shore (KW p . 0.05; Fig. 5C).

The windy conditions that lasted 16 h during the night of
13 to 14 July (Fig. 3D) seemed to have induced the
thermocline depression that was visible on the morning of
14 July (Fig. 5D). The core of the P. rubescens population
was then located on the shore opposite to the prevailing
winds (i.e., the east shore) where metalimnetic biovolumes
were significantly different compared with elsewhere in the
lake (KW p , 0.05; Fig. 5D). The over-saturating oxygen
concentrations and the low underwater irradiance in the
metalimnion also showed differences between the three

Table 2. Median values and interquartile ranges (Q1 and Q3, in italics) for temperature (Temp), underwater irradiance (I),
Planktothrix rubescens biovolumes (Prub), and dissolved oxygen (DO) in the epilimnion, the metalimnion, and the upper hypolimnion
from 12 to 16 July 2011. Values were calculated from sensor data that were recorded over the entire lake transect. All the layers were
significantly different (Kruskal–Wallis analysis, p , 0.05) than the other layers for all variables, except for two variables. n indicates the
size of the data sets for Temp, I, and Prub; and nDO indicates the size of the DO data set.

Layer n Temp (uC) I (mmol m22 s21) Prub (cm3 m23) nDO DO (mg L21) DO (%)

Epilimnion 3230 20.7–21.5–21.9 90–207–410 0.23–0.63–1.4* 1530 10.8–11.2–11.5* 118–121–125
Metalimnion 7018 9.55–12.8–16.5 1.2–3.5–18 2.2–3.4–4.9 3487 10.1–11.4–11.9* 81–99–112
Upper hypolimnion 3656 6.11–6.40–6.84 0.30–0.60–0.80 0.55–0.79–1.1* 1834 7.6–7.9–8.3 61–63–66

* Indicates the two layers that are not significantly different from each other (p . 0.05) for Prub and for DO.

Fig. 6. Depth profiles of four phytoplankton groups in the
upper water column of Lake Zurich on 19 July 2011. The
concentration of each algal group is expressed in mg chlorophyll a
L21. No cryptophytes were detected.

1900 Garneau et al.



areas of the lake (KW p , 0.05; Fig. 5D). In the afternoon,
the biovolume on the west shore was significantly different
compared with the two other areas, and temperature was
higher on the east than in the center (KW p , 0.05;
Fig. 5E). Also observed in that afternoon was the
shallowest depth of the metalimnion layer (Fig. 4E). The
concentrations of P. rubescens in the metalimnion on 14
July were slightly lower (Fig. 5D,E) when compared with
all sampling runs (Table 3).

A striking change was observed on 15 July, when the
metalimnion was at its deepest location (Fig. 4F) and was
thinnest (average of 5.9 m). It harbored a dense and
elongated Planktothrix layer aligned on the 12 m depth
isoline that was significantly different in the central area
than on the west shore (KW p , 0.05), but not different
from the east shore (Fig. 5F). The quartiles for P. rubescens
biomass were as follows: west shore Q1 5 3.4, Q3 5 7.5;
center Q1 5 2.6, Q3 5 7.2; and east shore Q1 5 3.1, Q3 5

7.5. Similarly, even though the medians for irradiance were
equal, the center differed from the east shore (KW p ,

0.05; Fig. 5F). Quartiles were as follows: west shore Q1 5

0.30, Q3 5 1.5; center Q1 5 0.30, Q3 5 2.5; east shore Q1
5 0.20, Q3 5 1.4. P. rubescens concentrations were
maximal on 15 July; whereas, underwater light was the
lowest, and accordingly, both parameters significantly
differed from all other sampling runs (KW p , 0.05;
Table 3). On 16 July, the core of the Planktothrix layer was
shifted 3 m upward (Fig. 5G) and its biovolume was
reduced when compared with the previous day (Table 3).
Temperature, dissolved oxygen saturation level, and P.
rubescens biovolume were low and all different on the west
shore (KW p , 0.05; Fig. 5G).

Neutral buoyancy and compensation depths, and
daily photosynthesis—During the sampling period, the
shallowest mean depth for neutral buoyancy was 9.0 m
on 13 July, and the deepest was 10.9 m on 15 July (Fig. 5).
The bulk of P. rubescens biomass was found aligned with
the neutral buoyancy depth on three occasions: twice on the
sunny, warm, and calm day of 12 July, and once more on
the relatively windy and cloudy morning of 14 July
(Fig. 5A,B,D). On two instances, most of P. rubescens
filaments were located above the neutral buoyancy depth

(Fig. 5E,G). The compensation point was usually posi-
tioned close to the lower border of the metalimnion. Its
mean value fluctuated between 12.2 m and below 18.0 m
(Fig. 5). Most of the P. rubescens biomass was found above
the compensation depth, except on 15 July, where that
point was located at a mean depth of 13.1 m (Fig. 5F). The
deepest compensation depth (. 18 m) was found on 14 July
in the afternoon (Fig. 5E).

The daily irradiance Q0 varied significantly during the
sampling period, with values oscillating between
11.5 mol m22 on 13 July to a maximum of 58.1 mol m22

on the 16 July (Table 3). Daily photosynthesis (DP)
calculated for each sampling run indicated that the amount
of oxygen produced by P. rubescens varied from 12.2 mmol
O2 m22 d21 to 76.2 mmol O2 m22 d21 (DP-1 in Table 3).
Negative daily photosynthesis rates of 220.8 mmol O2

m22 d21 and 210.3 mmol O2 m22 d21 were computed on
13 and 15 July, respectively, indicating net oxygen
consumption by P. rubescens. On both days, most of the
P. rubescens biomass was located below the neutral
buoyancy depth (Fig. 5C,F), even though these 2 d were
different in terms of light field in the metalimnion. Solar
radiation and underwater irradiance were minimal on 13
July; whereas, these values were among the highest on 15
July (Fig. 3B; Table 3), but a large portion of the biomass
was located much deeper (Fig. 5F). On 15 July, the
percentages of oxygen saturation and the biovolumes of
P. rubescens were also significantly different from all the
other days (KW p , 0.05; Table 3), and a notable
proportion of P. rubescens biomass was found below the
compensation depth (Fig. 5F). Interestingly, on 14 and 16
July, two dates after which a negative photosynthesis value
was obtained, we observed oxygen saturation percentages
that were lower than 100% or, in other words, a relative
oxygen deficit (Table 3). The deficit in dissolved oxygen on
14 July in the afternoon (median 78%) was significantly
different from all other sampling runs (KW p , 0.05;
Table 3).

Two daily photosynthesis values were calculated for 12
and 14 July. For both days, the values calculated using the
afternoon data set were 1.5–2.5 times higher than when
calculated using the morning data set (Table 3). The rates
seemed to follow the available light in the metalimnion,

Table 3. Daily irradiance (Q0), irradiance measured just below the water surface (I0), and range of underwater irradiance (Imeta) in
the metalimnion (median, Q1 and Q3 [in italics]). Double integrals of daily photosynthesis were computed using the parameter set 1 (DP-
1), set 2 (DP-2), and set 3 (DP-3) and averaged over the transect. Also presented are the medians of sensor data measured from 2 m to
18 m for Planktothrix biovolumes (Prub) and dissolved oxygen saturation level (DO). Letters A to G refer to the seven sampling runs, as
used in Figs. 4 and 5. Sampling runs that were significantly different (Kruskal–Wallis, p , 0.05) from all other sampling runs for a given
variable are in bold and indicated by an asterisk (*).

Date, time
Q0

(mol m22)
I0

(mmol m22 s21)
Imeta

(mmol m22 s21)
Prub

(cm3 m23)
DO
(%)

DP-1 (mmol O2

m22 d21)
DP-2 (mmol O2

m22 d21)
DP-3(mmolO2

m22 d21)

A) 12 Jul, 10 h 50.0 490 1.3–5.9–37 1.8 99 23.2 8.38 141
B) 12 Jul, 15 h 50.0 440 2.4–6.6–34 1.8 95 34.0 13.1 170
C) 13 Jul, 10 h 11.5 180 0.70–2.4–12 1.6 96* 220.8 211.6 39.5
D) 14 Jul, 10 h 32.2 240 1.0–2.6–13 1.4 90 12.2 3.56 105
E) 14 Jul, 14 h 32.2 340 1.8–4.7–23 1.3 78* 29.9 11.5 156
F) 15 Jul, 10 h 41.6 490 0.30–0.50–1.8* 2.8* 112* 210.3 28.29 119
G) 16 Jul, 10 h 58.1 490 2.3–5.8–37 1.3 81 76.2 32.0 284
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rather than the light below the water surface at the time of
the sampling (Table 3). Nonetheless, the two daily photo-
synthetic rates computed for a given day were of the same
order of magnitude and showed the same trend for a net
production. The parameter set used to compute the daily
photosynthetic rates had a large influence on the resulting
values (Table 3). The parameters determined on a culture
grown at 20uC (set 2) yielded rates that were 30–80% lower
than when using parameters determined in situ at 15uC (set
1; Table 3). Nonetheless, both parameter sets gave similar
trends in the computed photosynthesis (e.g., negative rates
were computed for the same days). This was not the case
when using the parameter set 3, which gave much larger
estimations and no negative values (Table 3).

Discussion

High-resolution depiction of P. rubescens distribution—
The sampling at high temporal resolution highlights the
rapid remodeling of the Planktothrix distribution under
wind-forcing, on both horizontal and vertical axes. The
Planktothrix layer was moved downward along with the
oscillating metalimnion by about 6 m in , 24 h, which is
much larger than the mean filament sinking velocity of 0.4–
0.52 m d21 (Walsby et al. 2001; Walsby and Holland 2006).
The seiche-induced vertical displacement reduced the light
quantity in the metalimnion by , 90% with effects on daily
photosynthesis calculations that returned negative values,
denoting oxygen consumption by P. rubescens. These
results showed that seiche movements can sometimes move
a metalimnetic population close to, or even below, its
compensation depth and, thus, have consequences on the
balance between oxygen production and utilization. This is
especially significant in an ecosystem such as Lake Zurich,
where the phytoplankton biomass is dominated by the
metalimnetic cyanobacteria P. rubescens.

The brief but intensive sampling campaign carried out in
Lake Zurich gave fine temporal observations of the
Planktothrix layer movements from a cross-section per-
spective. The existence of seiche movements was inferred
from the isotherm displacements at our fixed transect
location, but our sampling was not designed to show the
complexity of physical processes at the basin scale. Such
detailed work would have required time-series data from
current meters and thermistor chains fixed on several
moorings (Horn et al. 1986). Our study rather intended to
illustrate the effects of known physical phenomena on the
ecology of P. rubescens in Lake Zurich. The results are
among the first to depict a short-term (3 d) displacement of
the Planktothrix layer caused by a storm event.

Robotics combined with sensing technologies had made
possible the observation of seiche motions by the acquisi-
tion of high-resolution data in both space and time. These
new and promising approaches for collecting continuous
measurements will surely contribute to our understanding
of ecosystems by generating large amounts of data at
relevant but yet unexplored scales. The organization,
integration, and analysis of such huge data sets are
challenging, and thus new software tools intelligible to
ecologists need to be developed for a better management

and visualization of these high-frequency data. Technolog-
ical shortcomings may also arise with the response time of
the sensors when profiling at fast speed, which were
particularly critical with the dissolved oxygen sensor.
Oxygen optodes may be an interesting solution because
they are highly precise and accurate optical sensors, and are
more stable than electrochemical sensors (Tengberg et al.
2003), but so far, the response time is still too slow for fast
profiling speeds. The development of better, faster sensors
is necessary for rapid profiling applications, especially
because a greater utilization of sensor technologies for field
biology studies is foreseen (Porter et al. 2009).

Patchiness in P. rubescens spatial distribution—The
transverse sections of Lake Zurich confirmed that P.
rubescens stretches from the western to the eastern side of
the basin, displaying a patchy pattern similar to the one
observed on a longitudinal north–south transect (Salcher et
al. 2011). Our results are in line with other observations of
the patchiness in P. rubescens horizontal distribution in
pre- and alpine lakes (Cuypers et al. 2010; Sotton et al.
2011). Large patches (, 500 m long) of dense Planktothrix
biomass recurrently formed in the metalimnion during our
sampling, with apparent effects on the local physico-
chemistry. In most areas where thick aggregations were
present, less light was measured, dissolved oxygen was
found in over saturating concentrations, and higher
temperatures were recorded (Fig. 5). Local increases in
dissolved oxygen are probably driven by high photosyn-
thetic rates of an abundant cyanobacterial biomass.
Compact buildup of cyanobacterial cells may also have
contributed to slightly warm the area due to the light
absorption by their photosynthetic pigments (Agustı́ and
Philips 1992). In the same vein, the accumulation of
Planktothrix filaments over a growth season was recog-
nized as the major modulator of light attenuation in Lake
Zurich (Walsby et al. 2001). Our results showed that this
could also be applied to shorter time scales, because
condensed biomass induced a localized steepening of the
light gradient leading to self-shading. Self-shading may
have an effect on toxin synthesis (Kardinaal et al. 2007).
Results of the latter authors’ competition experiments with
Microcystis cultures indicated that non-microcystin-pro-
ducing strains compete better for light than microcystin-
producing ones. Similarly, dense, shaded patches of
biomass may favor non-microcystin-producing P. rubes-
cens filaments, which, even though they are more vulner-
able to grazers (Kurmayer and Jüttner 1999), can hide from
grazers in the toxic accretion.

At a larger scale, underwater light, and thus photosyn-
thetic production, can be modified by cloud cover, which
has an effect on the buoyancy response of the Planktothrix
filaments. Theoretically, the neutral buoyancy depth is
located where the light averaged over a day can support the
photosynthetic production of dense components (i.e.,
carbohydrates) in moderate amounts that would still
permit 50% of filaments to naturally float (Walsby et al.
2004). Fluctuations in cloud cover were shown to affect the
neutral buoyancy depth on a daily basis (Walsby et al.
2004), and we also observed this within a single day. When
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the sun was visible in the afternoon of 14 July, more light
was measured in the water column than in the morning
(Table 3), and thus the depth of zN was pushed downward
by , 1 m on the west shore (Fig. 5D,E). Interestingly, the
zN depth stayed roughly at the same place on the east shore
because of light attenuation by the denser Planktothrix
patch. The median depth of this Planktothrix patch had
slightly moved upward by , 1 m during that 4 h interval.
This motion indicated a relative increase of gas vesicle
volume compared with the amount of photosynthesized
carbohydrates, which consumption can be inferred by a
concomitant decrease in oxygen saturation percentages.
Still, this displacement was greater than the estimated
average speed of Planktothrix filaments (, 0.5 m d21),
meaning that they were entrained upward along with the
metalimnion. Filaments can only maintain their depth if
the water column is completely stable, and their buoyancy
response is delayed relative to changes in irradiance
(Walsby and Schanz 2002). Hence, the Planktothrix layer
was aligned on the theoretical neutral buoyancy depth only
on some occasions of calm weather. This limitation in
buoyancy capacities was already described for motile
phytoplankton species living in the epilimnion, such as
the harmful dinoflagellate Ceratium. Ceratium cells cannot
migrate to optimal light conditions during windy days, but
can form a distinct layer during calm periods, even if they
last only a couple of hours (Alexander and Imberger 2009).
As with P. rubescens, the Ceratium population is located at
a depth of favored light conditions only for a short time
each day. Whether P. rubescens formed a dense layer that
stretched from one shore to the other or rather was
localized in a patch, the filaments were moved daily below
or above the calculated neutral buoyancy depth during our
sampling campaign, presumably by the action of seiches.

Vertical displacements of P. rubescens and effects on
daily photosynthesis—The vertical heterogeneity in the
Planktothrix distribution provided further evidences for
the up-and-down movements generated by wind-induced
seiches. This phenomenon was recently documented for
Lake du Bourget, a large and deep alpine lake, where the
depth of the Planktothrix maximum was displaced by up to
10 m at a given sampling location within a day (Cuypers et
al. 2010). In Lake Zurich, seiche motions were reported to
move the thermocline and the Planktothrix layer by up to
2 m over 36 h (Walsby et al. 2001). We noted larger vertical
movements than in this previous study, but the 6 m
downward shift of the metalimnion in , 24 h is similar to
observations in Lake du Bourget.

The thermocline depression and biomass accumulation
observed on the east shore of Lake Zurich on 14 July were
likely caused by sustained winds that blew from the
northwest for 16 consecutive hours the night before. These
winds could also have contributed to a modulation of the
dominant longitudinal seiche in the lake, which has a
period of 44 h (Horn et al. 1986), to form a seiche with two
vertical motions and one horizontal motion (V2H1 seiche).
Just after wind relaxation, seiches usually display one
vertical and one horizontal motion; whereas, V2H1 seiches
are generated as the oscillation progresses in the lake

(Boegman 2009). The second vertical mode of a V2H1
seiche creates oscillations in the epilimnion and the
hypolimnion that are in opposite modes, which produce
alternating movements of compression and stretching of
the metalimnion (Münnich et al. 1992). On two occasions,
our results depicted patches in the middle of the lake that
had stretched into a large band that spread shore to shore
within a day. No such remodeling of the Planktothrix layer
was previously documented in Lake Zurich, even if seiche
motions were detected (Walsby et al. 2001). In a small and
elongated Swiss alpine lake (5 km long and 1 km wide), a
V2H1 seiche was reported to provoke a simultaneous
maximal thickness of the metalimnion at one end of the
lake and minimal thickness at the other end (Münnich et al.
1992). Our transversal illustrations may be snapshots of the
compression and extension of the metalimnion by a V2H1
seiche that travels longitudinally, entraining P. rubescens
filaments from north to south in the lake basin. This may
explain the sudden increase in biovolume noted on 15 July
(Fig. 5F). Large changes in P. rubescens biovolumes along
the north–south longitudinal axis of Lake du Bourget were
also very likely generated by two-vertical-mode seiches
(Cuypers et al. 2010). Furthermore, the prevailing longitu-
dinal mode of 44 h (, 1.8 d) in Lake Zurich fits with our
time-series of isotherms depicted in Fig. 4, showing the
metalimnion at nearly the same place on the mornings of
12, 14, and 16 July. The cross-sections of P. rubescens
biomass are two-dimensional, and thus cannot reflect the
variations across the entire lake basin. Even though our
data set is limited to a fixed transversal line, the sampling
scheme allowed for the observation of the temporal
variations in P. rubescens distribution that were likely
occurring at the scale of the lake basin.

Vertical movements due to seiches drastically affect the
depth of the metalimnion and, thus, the irradiance that can
reach the Planktothrix layer. As pointed out previously
(Walsby 2001), little alterations in the layer depth lead to
substantial changes in daily photosynthesis because the
Planktothrix population was often located at its compen-
sation depth during our sampling. Consequently, the
balance between net positive and negative daily photosyn-
thesis had fluctuated from one day to the other. The largest
variation to occur between two consecutive days was an
eight-fold increase in daily photosynthetic rates from
210 mmol O2 m22 d21 to 76 mmol O2 m22 d21. Seiche
displacement of the Planktothrix layer was previously
shown to induce a two-fold change in light regime, which
had contributed to increase the daily photosynthesis from
9 mmol O2 m22 d21 to 53 mmol O2 m22 d21 (Walsby et al.
2001). In the small Lake Bromont (0.45 km2), changes in
light experienced by the metalimnetic cyanobacterial
population caused by a seiche induced comparatively
smaller variations (up to 6 25%) in photosynthetic
productivity (Pannard et al. 2011).

Irradiancewithin themetalimnionreached37mmolm22 s21

on the sunniest days, which falls in the light range of
20–200 mmol m22 s21 that would support maximal growth
rates of P. rubescens (Walsby and Schanz 2002). Most
median light values in the metalimnion (3–7 mmol m22 s21)
were above the lower limit of 2 mmol m22 s21 for net growth
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by P. rubescens (Bright and Walsby 2000), but not on 13 and
15 July. Negative photosynthetic rates were obtained on
these days during which part of the P. rubescens biomass was
located close to, and even below, the compensation depth for
growth. At such low irradiances, P. rubescens is capable of
heterotrophic growth through the assimilation of amino
acids (Zotina et al. 2003; Walsby and Jüttner 2006) and
glucose (Salcher et al. 2013), which may have reduced oxygen
stocks. Furthermore, on both days, the majority of the
Planktothrix population was located below the neutral
buoyancy depth. It is quite conceivable that the filaments
would tend to float upward by increasing the gas-vesicle
volume ratio through the respiration of dense carbohydrates
(Walsby et al. 2004). This may also explain the relative
oxygen deficit observed on each day following these episodes
of heterotrophy. On 16 July, the upward movement of the
Planktothrix layer well above the neutral buoyancy and
compensation depths resulted in a return to net daily
photosynthesis.

The primary production by P. rubescens in Lake Zurich
from July to November 1995 was found to equal zero only
on 4 d, when most of the population was located below 15 m
(Micheletti et al. 1998). These daily photosynthesis calcula-
tions were based on the parameter set 3 that included a
higher Pm value than reported in other works (see Table 1),
mainly because it was determined in incubation chambers
containing other photosynthetic organisms (Bright and
Walsby 2000). Likewise, when using the parameters of
Micheletti et al. (1998), our daily photosynthesis values were
nine times higher and no negative values were obtained
(Table 3). Hence, it is likely that the daily photosynthesis
values calculated for the 1995 growth season are overesti-
mated compared with subsequent studies. This implies that
muchmore negative photosynthetic rates may have occurred
during that 4 month period. This is further confirmed by
Walsby (2001), who recalculated the daily photosynthetic
rates using a more conservative Pm value and concluded that
positive production occurred most of the time, except on six
occasions, during the 4 months of their weekly sampling
campaign. Our high-resolution sampling indicated drastic
changes in daily photosynthetic rates in Lake Zurich, from
positive primary production on a given day, to negative
values on the next one.

The cross-sectional lake views obtained from our robotic
platform illustrated the considerable effect of seiche-
induced movements on photosynthetic rates by a metalim-
netic cyanobacterial species. The daily photosynthetic rates
varied by two-fold for a given day, depending on the
collection time of the data that were used for the
calculations. The lake system was also shown to alternate
between an autotrophic and heterotrophic state at daily
time scales, but the frequency of heterotrophic episodes as
well as their occurrence at the basin scale are still
unresolved. These observations stressed the influence of
the sampling time, location, and area on photosynthetic
rate calculations. Clearly, the dynamic and patchy nature
of cyanobacterial distribution complicates the design of an
efficient sampling strategy that would give a representative
monitoring. A recent review on marine harmful-bloom
surveillance recommended to gather several data types

(point data, transects, synoptic) from both water samples
and sensors, and to collect them using various systems (i.e.,
ships, fixed buoys, autonomous underwater vehicles, and
satellites) to improve predictive models (Stumpf et al.
2010). Similarly, lake studies should include classical
sampling methods as well as real-time, high-frequency data
acquisition by fixed and moving autonomous robotic
platforms. A step further would be the application of
adaptive sampling algorithms for environmental monitor-
ing, but this remains a rather unexplored aspect of robotics
(Dunbabin and Marques 2012). The combination of
traditional techniques and new technologies would eventu-
ally allow for a finer documentation of cyanobacteria
abundances in time and space, which is essential to identify
promoting factors, improve prediction models, and facili-
tate decision-making in water management.
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CUYPERS, Y., B. VINÇON-LEITE, A. GROLEAU, B. TASSIN, AND J.
HUMBERT. 2010. Impact of internal waves on the spatial
distribution of Planktothrix rubescens (cyanobacteria) in an
alpine lake. ISME J. 18: 1–10.

DAVIS, P. A., AND A. E. WALSBY. 2002. Comparison of measured
growth rates with those calculated from rates of photosyn-
thesis in Planktothrix spp. isolated from Blelham Tarn,
English Lake District. New Phytol. 156: 225–239,
doi:10.1046/j.1469-8137.2002.00495.x

DUNBABIN, M., A. GRINHAM, AND J. UDY. 2009. An autonomous
surface vehicle for water quality monitoring. Australasian
Conference on Robotics and Automation 2009, Sydney,
Australia. [accessed 2012 February 18]. Available from:
http://www.araa.asn.au/acra/acra2009/papers/pap155s1.pdf

———, AND L. MARQUES. 2012. Robots for environmental
monitoring: Significant advancements and applications. IEEE
Robot. Autom. Mag. 19: 24–39, doi:10.1109/MRA.2011.2181683

ERNST, B., S. J. HOEGER, E. O’BRIEN, AND D. R. DIETRICH. 2009.
Abundance and toxicity of Planktothrix rubescens in the pre-
alpine Lake Ammersee, Germany. Harmful Algae 8: 329–342,
doi:10.1016/j.hal.2008.07.006

FERRI, G., A. MANZI, F. FORNAI, B. MAZZOLAI, C. LASCHI, F.
CIUCHI, AND P. DARIO. 2011. Design, fabrication and first sea
trials of a small-sized autonomous catamaran for heavy
metals monitoring in coastal waters. IEEE Int. Conf. Robot
2011: 2406–2411.
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POSCH, T., O. KÖSTER, M. M. SALCHER, AND J. PERNTHALER. 2012.
Harmful filamentous cyanobacteria favoured by reduced
water turnover with lake warming. Nat. Clim. Change 2:

809–813, doi:10.1038/nclimate1581
SALCHER, M. M., J. PERNTHALER, N. FRATER, AND T. POSCH. 2011.

Vertical and longitudinal distribution patterns of different
bacterioplankton populations in a canyon-shaped, deep
prealpine lake. Limnol. Oceanogr. 56: 2027–2039,
doi:10.4319/lo.2011.56.6.2027

———, T. POSCH, AND J. PERNTHALER. 2013. In situ substrate
preferences of abundant bacterioplankton populations in a
prealpine freshwater lake. ISME J. 7: 896–907, doi:10.1038/
ismej.2012.162

SKULBERG, O. M., AND R. SKULBERG. 1985. Plantic species of
Oscillatoria (Cyanophyceae) from Norway. Characterization
and classification. Arch. Hydrobiol. Beih. 71: 157–174.

SOTTON, B., O. ANNEVILLE, S. CADEL-SIX, I. DOMAIZON, S. KRYS,
AND J. GUILLARD. 2011. Spatial match between Planktothrix
rubescens and whitefish in a mesotrophic peri-alpine lake:
Evidence of toxins accumulation. Harmful Algae 10: 749–758,
doi:10.1016/j.hal.2011.06.006

P. rubescens seiche-driven displacement 1905

http://dx.doi.org/10.1007%2Fs10750-012-1096-y
http://dx.doi.org/10.1016%2Fj.taap.2004.02.016
http://dx.doi.org/10.1016%2Fj.taap.2004.02.016
http://dx.doi.org/10.1046%2Fj.1469-8137.2002.00495.x
http://dx.doi.org/10.1046%2Fj.1469-8137.2002.00495.x
http://dx.doi.org/10.1109%2FMRA.2011.2181683
http://dx.doi.org/10.1016%2Fj.hal.2008.07.006
http://dx.doi.org/10.1016%2Fj.hal.2008.07.006
http://dx.doi.org/10.1128%2FAEM.06174-11
http://dx.doi.org/10.1109%2FMRA.2011.2181771
http://dx.doi.org/10.1109%2FMRA.2011.2181771
http://dx.doi.org/10.4319%2Flo.1986.31.6.1232
http://dx.doi.org/10.1128%2FAEM.02892-06
http://dx.doi.org/10.1128%2FAEM.02892-06
http://dx.doi.org/10.1093%2Fplankt%2F21.4.659
http://dx.doi.org/10.3354%2Fame030083
http://dx.doi.org/10.1039%2Fc0em00163e
http://dx.doi.org/10.1046%2Fj.1469-8137.1998.00196.x
http://dx.doi.org/10.1002%2Firoh.200811123
http://dx.doi.org/10.4319%2Flo.1992.37.8.1705
http://dx.doi.org/10.4319%2Flo.1992.37.8.1705
http://dx.doi.org/10.1111%2Fj.1529-8817.2007.00414.x
http://dx.doi.org/10.1007%2Fs00248-009-9484-1
http://dx.doi.org/10.1007%2Fs00248-009-9484-1
http://dx.doi.org/10.1016%2Fj.watres.2010.10.011
http://dx.doi.org/10.1525%2Fbio.2009.59.5.6
http://dx.doi.org/10.1525%2Fbio.2009.59.5.6
http://dx.doi.org/10.1038%2Fnclimate1581
http://dx.doi.org/10.4319%2Flo.2011.56.6.2027
http://dx.doi.org/10.4319%2Flo.2011.56.6.2027
http://dx.doi.org/10.1038%2Fismej.2012.162
http://dx.doi.org/10.1038%2Fismej.2012.162
http://dx.doi.org/10.1016%2Fj.hal.2011.06.006
http://dx.doi.org/10.1016%2Fj.hal.2011.06.006


STUMPF, R. P., V. FLEMING-LEHTINEN, AND E. GRANELI. 2010.
Integration of data for nowcasting of harmful algal blooms.
Venice-Lido: OceanObs-09 Proceedings. [accessed 2012 No-
vember 28]. Available at: https://abstracts.congrex.com/scripts/
jmevent/abstracts/FCXNL-09A02b-1860409-1-ppstumpf.pdf

TENGBERG, A., AND OTHERS. 2003. Optodes to measure oxygen in
the aquatic environment. Sea Technol. 44: 1–6.

THOMAS, E. A. 1950. Auffallige biologische Folgen von
Sprungschichtneigungen im Zürichsee. Schweiz. Z. Hydrol.
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AND J. PERNTHALER. 2010. Automated quantification and
sizing of unbranched filamentous cyanobacteria by model-
based object-oriented image analysis. Appl. Environ. Micro-
biol. 76: 1615–1622, doi:10.1128/AEM.02232-09
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Abstract

This paper describes a solution to robot navigation on curved 3D surfaces. The navigation system is composed of

three successive subparts: a perception and representation, a path planning, and a control subsystem. The environment

structure is modeled from noisy lidar point clouds using a tool known as tensor voting. Tensor voting propagates structural

information from points within a point cloud in order to estimate the saliency and orientation of surfaces or curves

found in the environment. A specialized graph-based planner establishes connectivities between robot states iteratively,

while considering robot kinematics as well as structural constraints inferred by tensor voting. The resulting sparse graph

structure eliminates the need to generate an explicit surface mesh, yet allows for efficient planning of paths along the

surface, while remaining feasible and safe for the robot to traverse. The control scheme eventually transforms the path

from 3D space into 2D space by projecting movements into local surface planes, allowing for 2D trajectory tracking.

All three subparts of our navigation system are evaluated on simulated as well as real data. The methods are further

implemented on the MagneBike climbing robot, and validated in several physical experiments related to the scenario of

industrial inspection for power plants.

Keywords

robotic inspection, 3D perception, environment modeling, path planning, autonomous climbing

1. Introduction

Inspection and maintenance of industrial facilities is

becoming increasingly important, especially since many of

the existing installations are reaching the ends of their life

expectancy. In the case of coal and nuclear power plants,

periodic inspections of the piping system are crucial for

detecting defects in the structure early on, and thus prolong-

ing the continuation of a power plant’s safe operation. How-

ever, the inspection task is often a difficult one, which is to

this day conducted by human inspectors and involves envi-

ronments with limited accessibility. In addition, disassem-

bly prior to inspection is commonly required, further adding

to the complexity and risk of damage during the inspection

procedure. Autonomous inspection robots offer an oppor-

tunity for in-situ inspections, improvements in inspection

efficiency and safety, and a reduced overall outage time of

the inspected power plant sections.

MagneBike is a compact mobile robot designed for

inspecting the inside of complex, tube-like industrial struc-

tures, specifically steam chests of power plant facilities.

Inspecting the inner surfaces of a steam chest for struc-

tural defects requires a mobile robot to carry a sensor, such

as a camera or a wall-penetrating ultrasonic probe, to any

desired point on the surface. This inspection task, com-

bined with the complexity of the 3D environment, presents

a number of challenges to a robot’s locomotion, localization

and navigation systems. The MagneBike robot has been

designed to cope with some of these challenges. Two mag-

netic wheels are arranged in a bicycle configuration with a

freely rotating fork and supporting wheels for stabilization

and lifting, enabling MagneBike to climb on ferromagnetic

surfaces with respect to any orientation, and traverse highly

curved and even step-like surfaces (Tâche et al., 2009).

MagneBike is equipped with a rotating lidar for taking 3D

laser scans of its environment, which has been success-

fully demonstrated to enable global localization via iterative

closest point (ICP) methods by Tâche et al. (2011). The

basic configuration of the MagneBike robot can be seen
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Fig. 1. The MagneBike robot and its expected environment. Left:

Close-up of the MagneBike robot. Middle: MagneBike inside a

steam chest at a junction facing a hole-like obstacle. Right: Out-

side view of the steam chest, with MagneBike climbing along the

tube perimeter.

in Figure 1 on the left, and Figure 1 in the middle and on

the right shows the robot with the mounted rotating lidar

deployed in a typical example of a steam chest environment.

Up until now, MagneBike has always been fully guided

via remote control by a human operator. This work there-

fore focuses on navigation and the further automation of the

MagneBike robot. In order to bridge the gap between com-

plete manual control and autonomy, MagneBike needs to be

capable of autonomous perception and navigation on a local

scale. We assume that a human operator or a higher level

planner on the robot will then provide the global guidelines

for exploration trajectories or inspection missions. In gen-

eral, a plan of the industrial structures, such as a map or 3D

model is not available. As a result, the navigation requires

the creation of a local model of the environment, obstacle

and feature detection, as well as a method for safe traver-

sal through the robot’s surroundings. The generation of

short paths that are feasible and avoid high-risk maneuvers

must be enforced, as reliability is a high priority in inspec-

tion applications and recovery from failure situations may

be extremely difficult or impossible in the narrow enclo-

sures the MagneBike robot operates in. The solution of the

presented inspection task is non-trivial due to the lack of

knowledge of the environment and the unique complexity,

which includes moving on surfaces in 3D space and passing

of various types of obstacles.

This paper proposes a navigation system for the novel

application domain of robots navigating on curved 3D

surfaces, and makes the following contributions:

(1) A method that originates from computer vision, so-

called tensor voting, is applied to robotics as a valuable

tool to model arbitrarily complex environments from point

clouds provided by laser range finders; the representation

is point-based and allows for the application of subsequent

processing steps (e.g. path planning) without the cost of

building representations such as polygonal surface meshes.

(2) A path planning method for planning based on noisy

point clouds is introduced; the planner is graph-based and

establishes connectivities between points with regard to

surface normals and robot constraints incrementally.

Fig. 2. Perception and navigation objectives. Left: MagneBike

plans its motion constrained to a 2D manifold embedded in 3D

space, based on laser range data; when confronted with obstacles,

MagneBike must detect and decide to either attack the obstacle

(middle), or avoid the obstacle (right).

(3) The navigation system is evaluated, implemented on

the MagneBike robot and tested in the challenging envi-

ronment of 3D tube-like structures. To the best of the

authors’ knowledge, this is the first system demonstrating

autonomous navigation constrained to complex 3D surfaces

independently of gravity.

The remainder of this section provides additional infor-

mation concerning the underlying assumptions about the

environment, as well as the perceptive sensors of Mag-

neBike. Section 2 describes related work in environment

representation or mapping, and path planning. Section 3

introduces and further motivates the proposed navigation

system. Next, Sections 4, 5 and 6 explain the theoreti-

cal basis behind our perception, path planning and con-

trol strategies. Sections 7 and 8 include evaluations based

on simulated and real data, and physical experiments with

MagneBike navigating a test environment. Finally, Section

9 concludes the paper and gives an outlook to future work.

1.1. Environmental characteristics

The environmental characteristics define many require-

ments on the navigation system. In this paper, the inspection

scenario and the steam chest will serve as an instance of

a 3D environment, which incorporates many characteris-

tic features such as narrow corridors, tunnels, obstacles to

avoid, and uneven terrain to negotiate, which are present

in many of today’s mobile robotic applications. Since the

MagneBike robot is expected to operate in arbitrarily ori-

ented, interconnected tube-like chambers of steam chests

(as shown in Figure 1 in the middle and on the right, and

in Figure 27), it must be able to drive along circumferen-

tial paths, through tight openings in tubes, over convex and

concave step transitions (for instance, wherever there is a

change in tube diameter), and over small gaps in the struc-

ture. A detailed discussion on the mobility requirements of

the MagneBike robot can be found in the work by Tâche

et al. (2009).

An important capability to note is that step-like obstacles

can be traversed if approached in a perpendicular direc-

tion, due to MagneBike’s ability to use stabilizing wheels as

lifters. However, if not approached perpendicularly, proper
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adhesion between the magnetic surfaces can be lost, causing

MagneBike to detach from the surface. Through experi-

ments documented by Tâche et al. (2009), the maximum

angle of attack for convex steps was found to be 14°, while

the maximum angle of attack for concave edges is 23°.

Similar behaviors might also be observed in different con-

texts, such as the negotiation of curbs in an urban scenario

or slopes by an outdoor all-terrain vehicle. Such mobility

requirements dictate that the proposed navigation system

must be able to identify various environmental features, and

if presented with any obstacles, either avoid or overcome

them safely. Figure 2 in the middle and on the right shows

two such examples of possible scenarios, one where Mag-

neBike attacks a step head-on and one where MagneBike

must circumvent a hole.

1.2. Sensing the environment

Figure 2, on the left, illustrates the overall perception and

navigation principle for moving on surfaces in 3D space.

Following the same reasoning as Tâche et al. (2011), a

laser range finder has been selected for perception, which

allows for localization and modeling of the environment.

This choice is motivated by the inability to use other stan-

dard robotic sensors such as GPS and vision in such heavily

confined, dark, and lightly textured metallic structures such

as the steam chest.

The MagneBike is equipped with a 3D lidar sensor, i.e.

a rotating Hokuyo laser range finder, which builds a 3D

point cloud representation of the surrounding structures as

it rotates around the robot’s vertical axis. In this work, we

make use of both the Hokuyo URG-04LX and the Hokuyo

UTM-30LX laser range finders; a characterization of these

sensors is presented in the work by Tâche et al. (2011),

Kneip et al. (2009), Wong et al. (2011) and Pomerleau

et al (2012).

Lidars, in addition to cameras, are one of the most widely

used sensing devices in current mobile robot systems. The

lidar point clouds can often be noisy, anisotropic, and have

huge density variations. In particular, specular reflections

occurring at the metallic surfaces add to the deformation of

the obtained point clouds. A severe demonstration of these

effects can be seen in Figure 3. Some additional alignment

errors are expected if instead of one single point cloud,

several compounded point clouds are used (see Figure 27

for an example of a point cloud composed of multiple

scans). Furthermore, for the presented work on inspection

we assume that, due to the nature of the environment, no

dynamic changes occur and thus the true environmental

features remain static throughout time. This assumption

must be relaxed when applying the navigation system to

more dynamic environments; extensions of the representa-

tion and planning subsystems along this direction are how-

ever outside the scope of this paper and subject to future

research.

In combination with the lidar sensor, odometry estima-

tions from the MagneBike robot can be used to perform

Fig. 3. Example of a lidar point cloud of a small metal step, which

is heavily affected by noise and density variations. The point cloud

contains 6,000 points, and was obtained from a Hokuyo URG-

04LX laser range finder.

six-degree-of-freedom (6-DoF) localization in the global

reference frame. This process and experimental results have

been presented in previous work on MagneBike by Tâche

et al. (2011). In this paper, we primarily focus on the envi-

ronment modeling, path planning and control, and there-

fore make the simplifying assumption that the approximate

6-DoF pose of the robot is readily available as input to

the robot’s navigation system. In the experiments of Sec-

tion 8 we use a Vicon motion capture system to obtain

the robot pose, replacing MagneBike’s native localization

capabilities.

2. Related work

Autonomous navigation in 3D environments using lidar

data presents a challenging problem for environment per-

ception and modeling, path planning, and control. This sec-

tion explores related approaches used in previous work to

address some of these problems.

2.1. Environment perception and modeling

The proposed navigation system enables robots to move

on 3D surfaces. The MagneBike robot in particular, is

capable of driving on the walls of complex and intercon-

nected enclosures. Representations of such environments

must be able to model the geometric structure of closed

and cyclical surfaces. Methods that create 2.5D represen-

tations such as elevation maps, which store terrain heights

in the cells of a 2D grid and are commonly used in robotics

to model rough terrain environments for navigation (Hebert

et al., 1989; Singh and Kelly, 1996; Thrun et al., 2004b),

are therefore not applicable. Extensions to multi-level sur-

face maps by Triebel et al. (2006) introduce several sur-

face classes per cell and thus allow for modeling vertical

structures and environments with multiple overlapping lev-

els (e.g. bridges, underpasses). However, this solution is

still intended for ground-based robots that encounter only

a few of such overlapping levels; it is not tailored to robots

which are expected to traverse vertical surfaces and ceil-

ings, and thus move in full 3D space. Environments can
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alternatively be modeled by 3D evidence or voxel grids.

More recent approaches use tree-based representations such

as octrees (see Wurm et al., 2010, and references therein),

which offer increased compactness and flexibility regard-

ing multi-resolution and dynamic expansion of maps of

unknown environments. Aside from grid-based representa-

tions, polygonal surface meshes are able to represent the

surfaces of complex structures more accurately. However,

3D surface reconstruction methods undergo a permanent

trade-off between computation cost and accuracy. Accurate

but computationally demanding approaches from computer

graphics (see Kazhdan et al., 2006, and references therein),

are confronted with simpler and faster but less accurate

methods for robotic applications (Marton et al., 2009; Gin-

gras et al., 2010). Another option is to work directly on the

point clouds (Pauly et al., 2002; Smith et al., 2010). This is

beneficial when dealing with noise and topological distor-

tions, as it makes the merging of data sets easier and avoids

the cost of one entire processing step by bypassing explicit

surface reconstruction. Intelligent sampling and inference

methods further simplify the point clouds, which helps to

reduce memory requirements. More compact representa-

tions of 3D structures can for example be obtained by fit-

ting basic geometric structures, such as planes and spheres,

to the input data but require the environment to be well

composed from these basic structures (Thrun et al., 2004a;

Schnabel et al., 2007). Vandapel et al. (2004) used statisti-

cal methods to classify different types of structures in lidar

data (e.g. clutter, lines, planes) for navigation in vegetated

terrain. King (2008) presented a method that uses a process

known as tensor voting to infer structure from laser range

data. This method has the benefits of being able to seg-

ment and classify different types of structures, estimate the

structures’ orientations, as well as interpolate missing parts

of these structures. We therefore return to tensor voting in

Section 4, where we present our approach to environment

representation, which makes use of tensor voting.

2.2. Path planning and control

Path planning algorithms are highly dependent on the types

of applications, robot platforms, and environments they

are meant for. In general, search-based, sampling-based, as

well as combinatorial planning rely on a graph structure

that connects through different states. Graph search algo-

rithms such as Dijkstra’s algorithm, A* or D* algorithms

(Hart et al., 1968; Koenig and Likhachev, 2002) are com-

monly used for path generation. Both the Theta* and the

Field D* algorithms and their extensions to three dimen-

sions (Carsten et al., 2006; Ferguson and Stentz, 2006; Nash

et al., 2010), generate paths that are no longer constrained

to graph edges in 2D maps and 3D volumes. Kimmel and

Sethian (1998) and Surazhsky et al. (2005) plan geodesic

paths on surfaces embedded in 3D space based on fast

marching and window propagation methods, by employing

the surface mesh as graph structure.

In our approach, we also use a graph structure for con-

necting the robot states. Although feasible paths are con-

strained to the surfaces in 3D space, in contrast to above

methods, we build on a point-based representation of the

environment and establish graph connectivity in a local and

incremental fashion. This allows us to expand states wher-

ever required ‘on the fly’ by taking the constraints from

the surface orientation and robot pose into account. The

presented navigation system extracts feature maps from

the point clouds and decomposes the environment around

the robot into a 3D grid structure. The graph connectivity

across neighboring grid cells is then established by locally

examining a set of possible movement vectors, which com-

bines elements from graph search and sampling-based plan-

ning. This approach has some parallels with motion primi-

tives and lattice-based graphs, which incorporate mobility

constraints directly into the search space (Pivtoraiko and

Kelly, 2005).

2.3. Related applications and environments

The task of inspecting narrow tube-like structures with

the MagneBike robot presents a rather unique application.

Often MagneBike’s level of integration and mobility has

not been reached by other climbing robots. An overview

of related climbing robots is given by Tâche et al. (2009).

However, related applications and environments with simi-

lar demands on the navigation system can be found in rovers

for rough terrain navigation, mining robots, and robots for

different inspection tasks: even though these robots gener-

ally do not climb walls of enclosed structures, they move

along surfaces embedded in 3D space.

For planning trajectories over rough terrain, Wetter-

green et al. (2010) and Singh and Kelly (1996) generate

kinematically feasible trajectories by forward simulation

on mesh and elevation map models. For global planning,

an A* search is applied. The approach by Howard and

Kelly (2007) builds on a detailed vehicle model and an

optimization-based trajectory generation framework, which

accounts for various constraints, such as constraints on the

rover’s heading at specific positions for instrument place-

ment. A cost functional is optimized in order to avoid obsta-

cles or minimize the risk of traversing difficult terrain with

high slopes or curvatures. Note that these properties resem-

ble the intended behaviors of our navigation system for

obstacle avoidance, obstacle negotiation and navigation on

curved surfaces.

Thrun et al. (2004b) applied a wheeled robot equipped

with a tiltable laser range finder to the exploration of under-

ground mines. The robot was mostly operated by remote

control, and performs simultaneous localization and map-

ping based on 2D maps. 3D range scans are used for nav-

igation; the environment’s traversability is represented in a

2.5D map.

Tavakoli et al. (2011) deployed a pole-climbing robot

and multiple ground robots for automated inspection of
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Fig. 4. Framework of the problem solving approach: percep-

tion and environment representation, path planning and control,

illustrated for a floor to wall transition.

the outer surface of industrial piping systems. The focus

is on the localization of the climbing robot and the map-

ping of the structure to be climbed through the team of

ground robots. Owing to the uniformity and circular geom-

etry of the pipe structures, however, mapping reduces to

a 2D problem and the climbing robot’s motion following

the pipe is rather a linear one. More interestingly, the work

of Englot and Hover (2011) deals with in-water ship hull

inspection by an autonomous underwater vehicle. The ship

hull is modeled as surface mesh from sonar range data,

and inspection paths encompassing the reconstructed model

are generated by sampling-based methods. While the robot

achieves complete sensor coverage, it moves in proximity

but not in direct contact with the ship hull surfaces. The

robot’s motion resides in open, full 3D space and, different

from our inspection scenario, is not directly constrained by

the surface geometry.

3. Navigation solution

In order to attain autonomous movement on a local scale,

several fundamental components are required. First, a

method is required for inferring the structure of the envi-

ronment, i.e. to sense and create a model of the envi-

ronment using sparse, noisy input data. Obstacles such

as steps or holes must be identified and included in the

description. Second, a method is needed to generate a fea-

sible and safe trajectory towards the goal state. Finally, a

control method must steer the robot along the provided

trajectory, using feedback from a robot localization method.

Figure 4 illustrates the framework of the complete naviga-

tion system.

The perception and representation task will be accom-

plished using tensor voting, which is able to estimate the

orientation and dimensionality of the underlying structures

given by the lidar point clouds. Most applications of ten-

sor voting in three dimensions, including the work by King

(2008), follow the process with a marching cubes algo-

rithm in order to create a triangular surface mesh. We argue

that such a full surface reconstruction is not necessary for

obtaining a valid representation for path planning, as the

raw tensor voting results, which are organized in a 3D

grid structure, can be used almost directly as environmental

maps.

This 3D grid structure lends itself well to graph-based

planning algorithms. Therefore, the classic A* algorithm,

which provides optimal low-cost paths for given heuristics,

has been chosen for the task of trajectory generation in this

work. Note that other graph-based planners, such as D*

(Koenig and Likhachev, 2002), which further enable effi-

cient replanning in situations with changing environment or

imperfect sensor information, could be used instead. How-

ever, as explained in Section 1.2, this lies outside of the

scope of this paper. We establish the graph connectivity and

cost functions in such a way that the mobility requirements

as discussed in Section 1.1 are satisfied, resulting in the

generation of feasible 6-DoF paths in 3D space.

These paths are then transformed into 2D, planar trajecto-

ries by projecting movements into local surface planes, in a

sense unwrapping the path from the 3D surface. Once this is

accomplished, any appropriate trajectory tracking algorithm

can be applied in two dimensions, using nonlinear feedback

of the robot’s pose.

4. Tensor voting for environmental

representation

This section gives a brief introduction on tensor voting,

followed by a description of how it is utilized in our nav-

igation system. A more general overview of tensor voting

principles can be found in the work of Medioni and Mordo-

hai (2004) and Mordohai and Medioni (2005). In addition,

King (2008) provides valuable insight into the application

of tensor voting to 3D environment modeling.

4.1. Basics of tensor voting

Tensor voting is a generic solution for perceptual organiza-

tion problems, and is based on a set of Gestalt principles,

which are believed to be used by the human visual system

(Medioni and Mordohai, 2004). Tensor voting is particu-

larly useful because it can be applied to a wide range of

applications and data types. Moreover, it can be performed

in any number of dimensions to segment input tokens, such

as points in a point cloud, into distinct structures. For exam-

ple, in two dimensions, input can be grouped into curve-like

structures (which have an associated direction) and regions

or junctions (which have no associated direction). Simi-

larly, in three dimensions, input can be grouped into sur-

faces (which have two associated directions), curves (with

one preferred direction), and directionless points or regions

(characteristic of noise or volumes). Note that curve ele-

ments can be found at the intersection of two surfaces,

which will prove extremely useful for classifying step-like

obstacles in the robot’s environment.

Raw point clouds generated from lidar systems provide

sparse, unoriented input tokens, whereas for our applica-

tion, dense, oriented data is desired for navigation and con-

trol. Tensor voting is able to densify sparse input data. This

densification is achieved through voting performed by each

input token at every location in a predefined grid structure,

essentially providing information at any desired resolution. at ETH Zurich on October 29, 2012ijr.sagepub.comDownloaded from 
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Fig. 5. Visualization of tensor voting in three dimensions. The

fundamental types of structures are shown in the left-most col-

umn. The second column shows the form of the representative 3D

tensors, with their eigenvalues λi. The last column shows the form

of the voting fields cast by each fundamental structure. The vectors

representing the structures’ normal spaces are illustrated in each

column as well. (Adapted from Medioni and Mordohai (2004).)

In addition, the orientation of any directional feature is

estimated by tensor voting simultaneously.

As mentioned, in three dimensions, there are the three

fundamental types of structures: surfaces, curves, and

unoriented points. Information needed for voting and seg-

mentation into these fundamental structures is encoded as

3D, second-order, symmetric tensors. This can be concep-

tualized as a 3 × 3 matrix, or alternatively as an ellipsoid

where the eigenvectors of the tensors represent the axes

of the ellipsoid, and the eigenvalues represent the size of

the ellipsoid in each corresponding direction. There are

therefore also three fundamental types of tensors, ‘stick’,

‘plate’ and ‘ball’ tensors, signifying the three aforemen-

tioned structures, as shown in Figure 5. These tensors are

aligned with the normal space of the corresponding surface.

Therefore, surface elements are represented by a 1D stick

tensor, aligned with the surface normal. Curves or edges,

on the other hand, are given by 2D plate tensors, where the

tangent direction is given by the third eigenvector, which

has a corresponding null eigenvalue. Tokens with no asso-

ciated direction are encoded as unoriented, 3D symmetric

ball tensors. In general, the magnitudes of the eigenvalues

designate the associated saliency, and any arbitrary tensor

can be decomposed into its ball, plate and stick components

in order to evaluate the dominance of each type of struc-

ture at that location. In three dimensions, decomposition is

achieved as follows:

T = λ1ê1êT
1 + λ2ê2êT

2 + λ3ê3êT
3 (1a)

= ( λ1 − λ2) ê1êT
1 + ( stick component)

+( λ2 − λ3) ( ê1êT
1 + ê2êT

2 ) ( plate component)

+λ3( ê1êT
1 + ê2êT

2 + ê3êT
3 ) ( ball component)

(1b)

Fig. 6. Basic tensor voting framework for unoriented input tokens.

(Adapted from Medioni et al. (2000).)

with λi representing the eigenvalues in order of decreasing

magnitude, and êi representing the corresponding eigenvec-

tors (Medioni and Mordohai, 2004). Note that throughout

this paper, the ‘·̂’ symbol represents unit vectors.

Through voting, each component of the tensor (ball,

plate, stick) is able to propagate its information according

to specific voting fields. The idea is for votes to convey

their apparent structure as if they were smoothly contin-

ued to the location where a vote takes place. The strength

of the vote is based on the likely prevalence of the hypo-

thetical structure at that location. Votes are cast by every

input token (e.g. points in a point cloud), and collected

using simple tensor addition. Ball tensors have no preferred

orientation, and therefore propagate uniformly in all direc-

tions, with a ball-shaped tensor field. Plate tensors, which

represent curve elements, have a roughly stick-shaped ten-

sor field, as the structure is likely to continue only along

the tangent directions. Stick tensors, on the other hand, vote

with a plate-shaped tensor field in order to continue the

surface-like structure. An illustration of the various tensor

field forms can be seen in Figure 5. The scale of these voting

fields, denoted by the voting scale parameter σ , can be cho-

sen based on the approximate feature size. Further details

regarding the specifics of the voting fields are discussed

next in Section 4.2.

The general framework of the tensor voting algorithm, as

proposed by Medioni et al. (2000), is shown in Figure 6.
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To start, the sparse input tokens are transformed into ten-

sors, which encode any known saliency or directionality. If

no preliminary structural information is known, the input

tokens are simply encoded as unit ball tensors. Once the

sparse tensors are initialized, they are refined through a

round of sparse voting. During the sparse vote, all input

tokens cast votes only at the locations of all other input

tokens. After sparse voting, the decomposed components

of the sparse tensors are then used to densify the informa-

tion through another round of voting, where votes are cast

by all input tokens throughout the entire space (represented

by a 3D grid). Note that ball components do not vote in

this round, as our analysis is focused on surfaces and edges,

rather than regions. Once the final votes have been collected

and summed, the components of the tensors can be used to

analyze the underlying structures.

4.2. Tensor voting applied to lidar point clouds

When originally described by Medioni et al. (2000), ten-

sor voting was intended for computer vision applications,

where everything is usually in two dimensions, dense, and

uniformly distributed. The framework could therefore ben-

efit from a few modifications when used in different types

of applications such as ours. Here we discuss a few changes

to the algorithm which were used in our implementation.

Similar alterations are outlined by Mordohai and Medioni

(2005) and King (2008), which were instrumental resources

for this section. First, an analytic formulation of the voting

fields is described, followed by a different proposal for the

vote decay functions, and then a method of token reduction

is presented.

4.2.1. Calculation of voting fields A vote cast by a tensor

is meant to impart its contained structure, as if the structure

was continued smoothly towards the location of the vote.

For a stick vote, the assumption is made that the smoothest

continuation of a surface is described by an arc of constant

curvature which runs tangent to the surface at the voter’s

location, or in other words, an osculating sphere. There-

fore a vote cast by a stick voter is also a stick, with the

direction that is normal to the osculating sphere at that loca-

tion (depicted in Figure 7). In the original implementations

of tensor voting (as discussed by Medioni and Mordohai

(2004)), the plate and ball fields were created by integrat-

ing the stick field as it is rotated about one or two of its

axes, respectively. These integrals unfortunately have no

closed-form solution, and so the integration is typically

done numerically, by rotating the stick tensor by fixed steps

and adding the results from each position. The resulting

field is then normalized such that its energy is equivalent to

that from the stick field. The results are stored in a look-up

table at the desired resolution, and then during the vot-

ing procedure, values are obtained by interpolating between

fields in the look-up table.

Fig. 7. Formulation of the stick vote in three dimensions. The

osculating spheres represent where the plate-shaped tensor field

spreads from the voter. The vectors at the votees (location where

the votes are cast) show the directions of the votes, which are

normal to the osculating spheres.

Calculation of votes using these pre-computed look-

up tables can be computationally costly and inaccurate,

especially when the number of dimensions is increased.

Therefore a new analytic formulation for the voting fields

is presented by Mordohai and Medioni (2005) and then

further simplified by King (2008). Mordohai and Medioni

(2005) outlined a comparison to the original implemen-

tation of tensor voting, and have shown improvements in

the three-dimensional case. We therefore adopt this analytic

approach in our implementation.

4.2.2. Vote decay function In general, the magnitude of

a vote is modulated based on how likely the continua-

tion of the hypothetical structure is. This can be evaluated

based on two of the Gestalt principles, which are proximity

and smooth continuation (Medioni and Mordohai, 2004).

Therefore, the vote weighting could be represented as a

function of distance for proximity and curvature for smooth

continuation. Typically, saliency decays exponentially with

distance squared. As a result, two tokens placed at almost

the exact same location will produce extremely strong votes

for each other, despite supplying very little new information

regarding the local structure. This can easily lead to ampli-

fication of small-scale noise, as well as introducing large

effects from density variations. In addition, the commonly

used curvature decay function was designed for computer

vision applications, and therefore exhibits strange behavior

when distances are not defined in pixels. For example, the

shape of the decay function changes drastically as the vot-

ing scale parameter σ is varied, and is completely invalid

for σ values less than one.

In our framework, we used a new weighting function for

votes derived by King (2008), which solves the aforemen-

tioned issues. The intuition used in the derivation of the new

decay function is that tokens should have the strongest votes

at a distance of σ , as this is the expected feature scale. Any

votes much closer or much farther than σ will receive a

lower weighting. In addition, the curvature decay function

and the distance decay function are decoupled, eliminating

unwanted side effects caused by the choice of σ . This new

way of choosing the decay function has also been shown to

provide smoother and more accurate results by King (2008).
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Fig. 8. Example of token reduction on real lidar data. The left

frame shows the anisotropic point cloud, the middle frame shows

the selected tokens and a few examples of the subsampling radius,

while the last frame shows the reduced point cloud.

4.2.3. Token reduction Typically, lidar point clouds can

contain a large number of points, with sizeable density

variations. These density variations can skew the saliency

results from the tensor voting in favor of densely sam-

pled regions. Although there should be some preference

for detecting structures at denser regions, the emphasis on

these areas is usually too strong, preventing any structure

inference at the less dense regions. The input tokens could

therefore be subsampled in order to unify the density and

reduce the computation time. However, it is important not

to throw out a lot of pertinent information, compromis-

ing the feature extraction. In this section, one method of

token reduction is proposed, and then later evaluated in

Section 7.1.1.

Under the assumption that relevant features (and the

strongest votes) occur on the scale of σ , subsampling

should be related to σ as well. Once tokens become too

sparse, and the inter-token distance goes above σ , the

saliencies resulting from the tensor voting should reflect

a low confidence in these areas. In contrast, in any dense

regions where the inter-token distance drops below σ , the

resulting saliencies should be considerably higher, but less

dependent on the local density. The way this is achieved

is by iteratively selecting tokens based on highest saliency

after sparse voting, and then removing any nearby tokens

within a given radius (taken as a fraction of the voting scale,

β · σ ). As a result, in high-density regions, the remain-

ing tokens are spaced such that the inter-token distance is

roughly equal to this radius, whereas in low-density regions,

the inter-token distance remains the same as before. This

approach has been adapted and simplified from a multi-

scale tensor voting method proposed by King (2008). An

illustration of this process performed on a lidar point cloud

can be seen in Figure 8.

4.3. Structure inference and modeling

After the tensor voting algorithm has been applied to the

lidar point cloud, the acquired results are used for scene

interpretation and path planning. The final tensors result-

ing from the second round of voting are densely distributed

at every cell throughout a 3D grid of the chosen resolu-

tion. These tensors can be decomposed again using Equa-

tion (1b), which produces dense structural information for

each underlying dimension. The final decomposed tensors

are exploited and utilized for creating a set of environmental

feature maps, which can be navigated by the path planning

algorithm described in Section 5.

During tensor decomposition, each structure type has an

associated saliency and directionality. For our application,

the environment is expected to consist of only surfaces and

edges, therefore limiting our analysis to the final stick and

plate tensors. The surface map stores the surface salien-

cies along with the surface normals, which are given by the

largest magnitude eigenvalue and eigenvector of the tensor.

Edge information, on the other hand, is first thresholded,

and only classified as an edge if the plate saliency is high

enough. Any of these cells will be treated as a form of

obstacle, and so the saliency value is no longer important.

A binary edge map is constructed, which distinguishes each

grid cell to be either an edge or not. The edge tangent, given

by the lowest magnitude eigenvalue and eigenvector, is rel-

evant for edge traversals of the robot, and is thus mapped as

well.

For safety reasons, edge obstacles are inflated by a radius,

which can be chosen to suit the specifications of the robot.

This is done by simply marking all of the neighboring grid

cells of an edge in the binary edge map positive as well. The

corresponding tangents are given by averaging the tangents

from the nearby grid cells that contain the original edge.

Figure 9 shows an example of these environmental fea-

ture maps, produced from a lidar point cloud of an L-shape

structure.

5. Path planning on 3D surfaces

In addition to perception and environment representation,

the unique environment in which MagneBike operates pro-

vides a number of challenges to path planning. Navigating

on 3D surfaces eliminates the possible use of many standard

path planning or trajectory generation algorithms, which

assume surfaces to be modeled through 2D maps or 2.5D

elevation maps. More complex surfaces in 3D space are tra-

ditionally represented by a surface mesh. Accurate mesh

generation, however, is particularly complicated if point

clouds are noisy or accumulated from matching several

smaller point clouds. The use of tensor voting to build envi-

ronmental feature maps allows us to forgo complex mesh

construction while still being able to plan feasible and cost-

optimized paths along the surface by using a specialized

graph-based planning algorithm.

5.1. Problem definition

The task of the path planner in the navigation system

is to generate 6-DoF paths between two given poses on

a local scale, connecting the current robot pose or start

pose, respectively, to a nearby goal pose on the robot’s

surrounding surface via a kinematically feasible and prefer-

ably optimal trajectory. Feasibility implies that the resultant

paths always remain constrained to the perceived surface,
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Fig. 9. Extraction of environmental feature maps: surface and edge maps are extracted from the tensor voting results for modeling the

environment. The input tokens are shown in the first image, followed by a cross section of the surface saliency map, then a cross section

of the surface normal map (scaled by saliency) and finally a cross section of the edge saliency with an overlay of the binary edge map.

i.e. unknown areas or uncertain areas of low saliency are

avoided, and limits on the path curvatures are met, i.e.

the paths are sufficiently smooth. Optimality aims at min-

imum travel time and increased safety in minimizing the

path length and overall risk of a path. For the MagneBike

robot, this means avoiding unknown areas, as well as reduc-

ing the attack angle when traversing high curvature regions.

Sharp bends, including the negotiation of step transitions

are only safe if the curvature lies in the robot’s x–z (sagittal)

plane, thus maintaining proper contact between the wheels

and the surface. These criteria must be satisfied by the path

planning algorithm in order to achieve practical results.

The main functionality of the proposed navigation sys-

tem is to act as a local planner on an intermediate level

in the system architecture. This works under the assump-

tion that there is a human operator or some higher-level

planner giving general guidelines on where the robot needs

to go. Goal poses requested from a higher-level layer can

be selected according to an arbitrary policy. In the context

of robotic inspection, typical policies set out goal poses

for exploration and coverage of the structure. As Section

8.2 will show, the navigation system can furthermore act

as global planner and is capable of planning longer, more

complex paths throughout large and noisy point clouds.

The dense tensor voting process creates a 3D grid-based

environment model, and path planning will utilize the same

grid structure in our case, linking a series of cells through

the grid to the goal. The linking defines a graph G( V , E),

with nodes V representing the grid cells and edges E repre-

senting possible transitions. The best path towards the goal

pose can then be found by using graph search algorithms,

such as A* in our case, which have been applied in many

mobile robotic applications, and have been proven capa-

ble of providing admissible, minimal cost paths in an opti-

mal way (Hart et al., 1968). The graph-based path planner

inherits desirable properties of optimality and completeness

guarantees from the underlying graph search algorithm.

Reasonable goal poses lie on the surface and are reachable

by the robot. In the event of the goal pose falling outside the

navigable subset of the registered point cloud, the planner

reports failure of finding a feasible path.

In a more general formulation, our path planning could

be applied to a more abstracted set of locations, as opposed

to grid cells. The grid results from the densification step

of tensor voting and provides a dense, regular structure.

The way we establish connections bears some similarities to

deterministic sampling on the grid; future extensions of the

graph-based planner might increase the algorithm’s adap-

tivity and scalability by introducing multi-resolution grids

or iterative grid refinement, or trade off optimality against

sparsity by exchanging the graph search by sampling-based

planning (LaValle, 2006).

Definition of the graph structure G( V , E) is not straight-

forward. Edge transition costs as well as heuristic functions

must be chosen in a way that will satisfy all previously

described constraints. In the next two subsections, further

details behind the graph construction are discussed.

5.2. Graph connectivity

Each grid cell has associated structural information, and

now the question arises of how this information can be used

to define kinematically feasible movements between such

cells (as illustrated in Figure 10), and locally connect the

cells to a graph structure. The fact that robot motion is

constrained to a 2D manifold reduces the number of cells

to be searched, and only the cells in close proximity of

the estimated surface need to be considered. Further, robot

mobility is directly linked to the local surface properties,

therefore the path planning algorithm must be cognizant of

both the robot’s and the structure’s orientations. To achieve

this, node state must also include orientation information.

Thus, each cell in the 3D grid (defined by 3D coordinates in

the world frameFw) is actually represented by a set of nodes

Vi ⊂ V , which corresponds to a set of discretized heading

vectors ĥw (each of them defined in the global frame Fw).

The node states are illustrated in Figure 11 (only 6 heading

vectors are shown here, as opposed to the 98 in our actual

implementation).

Using this, node connectivity is established ‘on the fly’

by restricting transitions to those neighboring nodes (i.e.

cell locations and orientations) deemed physically reach-

able (see Figure 12 for further illustration of the concept).

This allows for the direct inclusion of some kinematic con-

straints, as well as allowing for the complete goal pose to

be specified, while limiting the search space to tangential at ETH Zurich on October 29, 2012ijr.sagepub.comDownloaded from 
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Fig. 10. Establishing movement from one cell to another is

aided by the structural information given by the tensor voting

framework, such as the local surface normal estimates shown here.

Fig. 11. Node state contains the 3D location (i.e. the cell location

in our case), as well as the potential robot heading vector (here

discretized into six directions, and shown by vectors drawn next to

the cells). Therefore, each location has a set of associated nodes,

one for each (discretized) orientation.

Fig. 12. Single nodes from each set of nodes are connected in

a sparse graph, due to given constraints in the robot’s and sur-

face’s orientations, which determine connectivity. According to

these constraints, paths may go through the same physical 3D loca-

tion (i.e. the same set of nodes) but with a different heading, and

thus remain unconnected (i.e. different nodes).

movements along the estimated surface. Note the parallel

to planning in state lattices, where cells of regular grids are

linked by motion primitives (Pivtoraiko and Kelly, 2005).

The connections between nodes are established as each

node is taken from the A* OPEN list. The connectivity

for each node is dependent on the environmental feature

maps provided by tensor voting (see Section 4.3), along

with the robot orientation in the world frame Fw. There

are essentially two different scenarios, either the current

node belongs to an edge structure, or it does not. The case

is determined using the binary edge map, and specifies a

predetermined set of subsequent movement vectors in the

robot’s local body frame Fb. Figure 13 illustrates this con-

cept for both scenarios. The transformation between the

body frame Fb and world frame Fw is deduced using the

robot’s heading vector, along with the local surface prop-

erties. Once this transformation has been determined, the

appropriate set of movements is transformed into Fw, and

each movement is then discretized by snapping it to the

closest grid cell, providing the location coordinates of the

possible child nodes. The movement vectors to these can-

didate child locations are a subset of all of the possible

heading coordinates (illustrated by Figure 11), and so the

full node state of the resulting candidates are determined

accordingly. Next the surface saliencies are compared with

a threshold �, and only nodes with strong surface values

are permitted. Finally, the turn angle is calculated by pro-

jecting the movements into the local surface plane, and the

graph connectivity is only established for turns smaller than

a threshold T . Then the cost of this connection is evaluated

to determine whether the node will be added to the OPEN

list. The complete algorithm is outlined in Algorithm 1.

Algorithm 1 Establishing graph connectivity

(îbw, ĵb
w, and k̂b

w denote the axes of the robot’s body frame

Fb represented in the coordinates of the world frame Fw.)

1: if no edge then

2: k̂b
w ← current surface normal n̂w

3: îbw ← current heading ĥw

4: ĵb
w ← k̂b

w × îbw
5: list of moves �mb ← regular moves (Figure 13)

6: else if edge then

7: k̂b
w ← current surface normal n̂w

8: ĵb
w ← current edge tangent t̂w

9: îbw ← ĵb
w × k̂b

w

10: list of moves �mb ← edge moves (Figure 13)

11: end if

12: rotation matrix R = [ îbw ĵb
w k̂b

w
]

13: for all possible moves �mb do

14: Transform movement into wold frame, �mw = R�mb

15: �m′
w ← �mw ‘snapped’ to the closest grid cell

16: possible child position ← current position + �m′
w

17: if surface saliency > � and turn angle < T then

18: Establish edge connectivity

19: Expand node by evaluating the cost of transition

�m′
w (add the child node to the OPEN list)

20: end if

21: end for

This choice of graph connectivity ensures perpendicular

traversal of edges in the environment, limited turn angles

and staying within the close neighborhood of the best sur-

face estimate. Once a valid connection between two nodes

is established, costs based on the risk of traversing a con-

nection are assigned to the graph edge in order to meet the

remaining requirements of the path planning.

5.3. Cost functions and heuristics

After a node has been removed from the OPEN list, and

its children have been found using the process described

above, then the edge cost of traveling to each child node
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Fig. 13. Set of possible movement vectors �mb, based on the

robot’s local frame Fb for the two possible cases: (1) regular

moves, where the current node is not nearby an edge; (2) edge

moves, where the current node is near an edge of the environment.

needs to be evaluated to determine whether this child

node should eventually be added to the OPEN list. For

the MagneBike robot, there are essentially four different

contributions to the traversal costs between two nodes:

• distance (step size);

• surface saliency;

• turn angle;

• relative surface curvature.

The overall cost per edge is given in Equation (2), where

each individual cost is weighted appropriately:

total_cost = k0·( dist_cost) + k1·( surf _cost) ·( dist_cost)

+ k2 ·
turn_cost

dist_cost
+ k3·( curvature_cost) .

(2)

The details of each contribution to the cost function are

described in the following subsections, with the exception

of the distance cost, which is simply given by the Euclidean

distance between a node and its child node, approximating

the edge length as a straight line. The A* heuristic function

is similarly given by the Euclidean distance from the child

to the goal node.

5.3.1. Surface saliency In practice, when using lidar point

clouds, the surface saliencies vary a lot and, typically, any

values above a relatively low threshold are very close to

the actual surface. Very high saliency regions usually result

from very dense sampling in these areas. The token sub-

sampling strategy described in Section 4.2.3 helps to reduce

this saliency variation, but does not eliminate it completely.

Higher saliency regions should have some preference, how-

ever not so much that the path meanders unnecessarily in

order to traverse densely sampled areas. Therefore, the rel-

ative surface saliency is raised to an exponent (tuned empir-

ically to n = 4 in our experiments), penalizing low saliency

regions much more than high saliency regions:

surf _cost =

(

max_saliency − local_saliency

max_saliency

)n

, n ≥ 1.

(3)

Note that in the final cost calculations, the surface cost is

also multiplied by the step size, since longer steps over low

confidence areas should have a higher penalty than shorter

steps.

5.3.2. Turn angle Turn angles are calculated by projecting

the movement vector �mw and heading vector ĥw into a local

surface plane, �mwavg = �mw − n̂wavg ( �mw · n̂wavg ) and �hwavg =

ĥw − n̂wavg ( ĥw · n̂wavg ). The local surface plane is given by

the normal vector n̂wavg , which results from averaging the

parent and child surface normals. The cost function is then

obtained by taking the absolute value of the angle between

the two projected vectors:

�θ = cos−1
{ �mwavg

| �mwavg |
·

�hwavg

|�hwavg |

}

,

turn_cost =|�θ |2.

(4)

Similar to the surface cost calculation, the resulting angle

is squared, such that two smaller turns are preferred over

one larger one and, in addition, the turn cost is divided by

the step size in order to prefer more gradual turns.

5.3.3. Relative surface curvature The MagneBike robot is

capable of traversing curved surfaces, however, areas of

high curvature can be problematic if approached at the

wrong angle. Therefore, the angle between the plane of

curvature and the robot’s x–z plane should be minimized

in areas of high curvature (see Figure 14). The curvature

cost is therefore the product of the magnitude of change in

surface normal and the approach angle:

curvature_cost

= |change_in_surf _normal| · |approach_angle|

= cos−1( n̂parent · n̂child) · cos−1

(

n̂parent × n̂child

|n̂parent × n̂child|
· ĵb

w

)

(5)
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Fig. 14. Traveling at large angles with respect to the curvature

plane is penalized with higher costs.

Fig. 15. Transforming a 6-DoF path on a curved surface into two

dimensions, by projecting each step into its local surface plane.

where n̂parent and n̂child are the surface normals located at the

parent and child nodes respectively, and ĵb
w is the y-axis of

the robot’s local body frame, represented in the coordinates

of the world frame. The change in surface normal should

intuitively be inversely weighted by the step size, however

the overall curvature cost should be directly weighted by the

step size, therefore canceling out any dependence on step

size.

6. Control scheme

Once a feasible 6-DoF path through 3D space has been

generated, a control strategy is required in order to steer

the robot from the start to the goal pose. Despite hav-

ing suitable surface paths, the path following or trajectory

tracking task is far from simple in such a constrained envi-

ronment. Section 6.1 describes a method which transforms

the 6-DoF way points (given by a sequence of connected

nodes) into a 2D frame. Hence, the robot can be modeled

in two dimensions, which allows for the use of simpler 2D

control schemes. Section 6.2 models the robot as a front-

wheel-drive bicycle in regard to the MagneBike platform,

and nonlinear feedback is used in Section 6.3 to track the

computed trajectory according to the chosen model.

Fig. 16. Iterative computation of 2D way points based on the

projected 3D movements and corresponding turn angles.

6.1. Path dimensionality reduction

Although the motion is in 3D space, the robot is always

constrained to travel on a 2D manifold. Therefore, similar

to the idea by Furgale and Barfoot (2010), the path gener-

ated by the A* algorithm can be transformed into a lower-

dimensional space before a control strategy is applied.

This is done by iteratively projecting each movement into

its local surface plane, and aligning the 2D movements

based on the relative yaw angles between them, essentially

unwrapping the path from the surface. An illustration of this

transformation can be seen in Figure 15.

Local surface planes are found by averaging the surface

normals of the corresponding parent and child nodes. The

movement vectors can then be projected onto the local sur-

face, and the relative turn angle �θ between the movement

vectors can be calculated (see Section 5.3.2, Equation (4)).

The 2D coordinates of each way point are then iteratively

given by the coordinates of the previous way point plus the

projected movement �mi, rotated by �θi with respect to the

previous movement vector. This formulation is shown in

Figure 16 and Equation (6):
[

xi

yi

]

=

[

xi−1

yi−1

]

+ | �mi|

[

cos θi

sin θi

]

,

θi = θi−1 + �θi,

(6)

where x0 and y0 are initialized at the origin of the 2D control

frame, and θ0 is initialized to zero.

6.2. Modeling the MagneBike robot

Now that the desired path has been mapped into 2D space,

the motion model can be simplified to two dimensions as

well. The MagneBike robot is approximated by a simple

front-wheel-drive bicycle, with control inputs given by the

speed vs( t) and steering angle φ( t) of the front wheel. This

model is shown in Figure 17 and Equation (7), where l

denotes the distance between the two wheels:
⎡

⎣

ẋ

ẏ

θ̇

⎤

⎦ =

⎡

⎣

vs( t) cos φ( t) cos θ ( t)

vs( t) cos φ( t) sin θ( t)

vs( t) sin φ( t) /l

⎤

⎦ . (7)
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Fig. 17. Simplified front-wheel-drive model of the MagneBike

robot.

Equation (7) can be rewritten in a simpler form

⎡

⎣

ẋ

ẏ

θ̇

⎤

⎦ =

⎡

⎣

cos θ ( t) 0

sin θ ( t) 0

0 1

⎤

⎦

[

v( t)

ω( t)

]

, (8a)

with
φ( t) = tan−1( ω( t) l/v( t) ) ,

vs( t) = v( t) / cos φ( t) ,
(8b)

where v( t), the speed of a reference point on the rear wheel,

and ω( t), the angular speed around the rear wheel, are now

the control inputs of the system. The original control inputs,

vs( t) and φ( t), can be calculated directly from v( t) and

ω( t). Note that this new expression for the system equa-

tions is analogous to that of a differential-drive robot, which

has been well treated for control strategies in the litera-

ture. One possible method of control using state feedback to

track a parametrized trajectory is outlined in the following

section.

6.3. Trajectory tracking

In order to control the robot along the given 2D path, a set

of nonlinear feedback controls for trajectory tracking can be

used. This is done for MagneBike by using the kinematic

model described in the previous section, and then follow-

ing a virtual reference bike with known state along the

path, as suggested by Samson and Ait-Abderrahim (1991).

To establish the state of the reference bike for all time,

a B-spline is fitted through the 2D way points, creating a

continuous, parametrized path, from which the state of the

virtual reference bike can be inferred. For simplicity, the

reference bike will be assumed to follow the spline at a cho-

sen constant velocity vr. Once the state of the reference bike

has been determined, a nonlinear feedback law can be used

to stabilize the position and orientation error of the Mag-

neBike robot, relative to the reference bike, to zero. Position

and orientation feedback are assumed to be provided by a

localization system, such as that described by Tâche et al.

(2011). The state vector of the system is given by

X =

⎡

⎣

ǫx

ǫy

ǫθ

⎤

⎦

, (9)

Fig. 18. Tracking a virtual reference bike through nonlinear

feedback of the pose error.

where ǫx and ǫy represent the relative position of the

reference bike in MagneBike’s local frame Fb, and ǫθ =
θ − θr, where θ and θr are the respective orientations

of the bike and reference bike in the control frame (see Fig-

ure 18). The feedback control laws suggested by Samson

and Ait-Abderrahim (1991) are

ω = ωr − k3

k2
ǫθ + k6

k2
ǫx

− k1
k2

(

δx ωr
cos ǫθ −1

ǫθ
− vr

sin ǫθ
ǫθ

)

( ǫy + δx ǫθ ) ,

v = vr + k3k5ǫx

+
[

2k3k4 +
(

vr
cos ǫθ −1

ǫθ
+ δxωr

sin ǫθ
ǫθ

)

+ k6

]

ǫθ

+
[

( 1 − k1) ǫy − k1δx ǫθ

]

ω,

(10)

where vr and ωr are the velocities of the reference bike, and

δx is the control point offset given by the distance along

the local x-axis from the rear wheel. In addition, the control

gains can be tuned empirically under the following condi-

tions: k1 and k2 are positive real numbers, k3, k4 and k5 are

positive scalars assumed to be constant, 0 ≤ k4
2 < k5, and

k6 is any real scalar. The state vector X is guaranteed to con-

verge to zero, so long as vr and ωr are differentiable for all

t ≥ 0, these derivatives remain bounded, and the reference

bike does not stop moving.

Since a 2D control strategy is used, any 3D pose feedback

needs to be transformed into the 2D control plane before it

can be applied. This can be done by finding the nearest way

points in the 6-DoF path in 3D space, and then using their

corresponding surface normals to project the position and

orientation vectors into the local surface plane to find the

approximate offsets
[

ǫ̃x, ǫ̃y, ǫ̃θ

]

.

7. Experimental evaluation

Validation of the proposed navigation system was done

through a series of experiments, which are explained

and discussed in this and the next section. Section 8 evalu-

ates the navigation system based on the specific example

of the MagneBike robot and the steam chest inspection

scenario, and in this process relies on point clouds from

real lidar sensors. However, the experiments of this sec-

tion are kept more general. The evaluation does not depend

on MagneBike, and is done based on simulated, computer-

generated point clouds. The goal is to study particular

behaviors of the overall navigation system. Insight into
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the influence of various parameters, and how they can be

assigned, is provided. Results show that tensor voting can be

sufficiently robust to density and noise variations, and that

the path planning algorithm is capable of providing feasible

and low-cost paths over curved surfaces.

7.1. Evaluation of tensor voting

Lidar point clouds suffer from noise as well as irregular

and anisotropic density distributions. These characteristics

have a negative influence on the tensor voting outcome, and

therefore need to be investigated to ensure that meaningful

results can still be obtained using the lidar point clouds.

The scale at which the tensor voting is performed, deter-

mines what types of features are detected. As a result, the

proper choice of σ is crucial. If σ is too large, structures

will be over-smoothed, and small steps or holes might be

overlooked. Alternatively, if σ is too small, then noise in the

point cloud (such as ripples) could be detected as features.

The scale parameter σ is one of the few parameters to adjust

in the tensor voting subpart of the navigation system, but it

must be chosen in accordance to the robot model and the

robot’s environment. Therefore, we identified σ = 6 cm for

MagneBike, which will be described in Section 8.1, and use

this value in all of the experiments within this and the next

section. Although different values for σ could have been

chosen, the conclusions gained from the evaluations in this

section are independent of σ .

7.1.1. Robustness against variation in point density First,

the variation of density was investigated. The investigation

was carried out on two different shapes, a cylindrical tube

structure and an L-shaped structure, which provide exam-

ples of the basic structural forms. The point clouds were

artificially generated by randomly distributing points over

the surface. We use the deviation in estimated surface orien-

tations as a measure for the robustness of tensor voting. The

effects of density variation can be seen in Figure 19, where

the error in surface orientation is plotted versus the average

distance between points (expressed as the relative average

distance d̄ = d/σ ). The error values were determined by

calculating the angle between the estimated and actual ori-

entation vectors at 6,000 sample locations on the structures.

When evaluating orientation vectors, deviations in surface

normals were checked where the stick saliency was domi-

nant (i.e. not near an edge), and deviations in edge tangents

where the plate saliency was dominant (i.e. at edges). It

can be concluded from these plots that the error remains

well behaved, even when point density drops so low that

the shape is hardly recognizable. Note that because each

sample density is plotted in terms of the distance between

points, the actual size of the point cloud decreases by the

square of these values. Given our experience with the robot

configuration and targeted environments, we observed that

typical values for the density of real lidar point clouds gen-

erally fall within the first two (highest density) samples in

the plots, with an inter-point distance d of less than 2 cm

(or 0.33σ ). Areas with much higher inter-point distances

will result in low saliency values and will thus be handled

implicitly as unsafe regions by the path planner.

In addition, the effects of the token subsampling parame-

ter β were analyzed. This was done by creating point clouds

with varying density, again using the tube and L-shape

structures. These point clouds can be seen in Figure 20,

along with graphical results of the error values, and com-

putation time, as β is increased. These plots show that com-

putation time of dense voting can be drastically decreased,

without compromising the outcome of the tensor voting.

During all of the experiments in this paper, β was chosen

to be 0.5, due to the fact that higher values of β show lit-

tle further impact on time. As discussed in Section 4.2.3,

this method of token reduction also unifies the point den-

sity, resulting in more uniform saliency distributions, and

therefore a better representation of the actual surface.

7.1.2. Robustness against variation in noise Noise varia-

tion was then evaluated using the same techniques as for the

density experiments. The tests were conducted on the same

tube and L-shaped structures, this time as noise levels were

increased. The results are plotted in Figure 21, showing the

error in surface orientation, in relation to the standard devi-

ation of the Gaussian noise distribution. The images above

the graphs illustrate the extent of noise variation for the

tests. In real applications, this noise depends on the sensor

used and the type of reflecting surfaces. Characterization

of the URG-04LX and the UTM-30LX laser scanners over

different metallic surfaces shows that the standard deviation

on depth measurement is 0.028 m and 0.018 m, respectively

(Pomerleau et al., 2012). One can see that with this range of

noise, the orientation errors in the structure prediction from

the tensor voting remain below approximately 2.5◦.

7.2. Evaluation of path planning

Now that the validity of the tensor voting procedure has

been established, the results can be used to evaluate the path

planning algorithm. We demonstrate that any generated tra-

jectories are able to satisfy the mobility requirements spec-

ified in Section 1.1, namely the ability to climb on complex

surfaces, overcome step obstacles in a perpendicular direc-

tion, and avoid unnegotiable obstacles. Note that all of the

paths presented in this section are the result of processing

a single point cloud, with the start and goal poses as input.

No intermediate way points are provided by the user.

7.2.1. Impact of cost functions To start, the impact of the

different cost functions is illustrated. This is done in the

left-hand side of Figure 22, where one can see several paths

on a tube, which has a hole-type obstacle on the top part of

the surface. In this scenario, a trajectory must be generated

from one side of the hole to the other. The cost function of

Equation (2) with non-zero weights is used for all paths in

this figure; each path emphasizes the effect of the different

cost function weights. One path represents a search with
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Fig. 19. Error in estimated orientations, predicted from tensor voting performed on a tube structure (left) and an L-shaped structure

(right) as density is varied. The results are shown in terms of average relative distance, d̄ = d/σ . The density is inversely proportional

to the square of this value. A few samples of the point clouds that were used are shown above.

Fig. 20. Error in estimated orientations, predicted from tensor voting performed on a tube structure (left) and an L-shaped structure

(right), as well as computation time, as the masking parameter β is varied. Both point clouds contain 24,000 points.

high turn cost, therefore traveling through unsafe areas near

the hole. Another path demonstrates the significance of the

relative curvature cost; the path always prefers to travel in

the plane of curvature, or in a direction where there is no

curvature. A third path shows a preference for remaining on

highly salient areas of the surface, avoiding the low saliency

obstacle. The weighting of these cost functions can be tuned

to suit the design of the robot, nature of the environment,

and the safety requirements. An example of this is shown in

a path which balances the effects of each weight in order to

get a safe, yet efficient path.

7.2.2. Perpendicular edge traversal Next, the ability of

safe edge traversal is displayed in the right-hand side of

Figure 22. The analysis is performed on an L-shaped struc-

ture, and the image shows the detected edge feature, as well

as several paths traversing the edge perpendicularly. Each

path was obtained using a different inflation radius for the

binary edge map. The three paths correspond to increasing

radii of 0 cm, 10 cm, and 20 cm. This shows that depending

on the safety requirements and the size of the robot, edges

can be approached from a safe distance in order to ensure

successful step traversal.
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Fig. 21. Error in estimated orientations, predicted from tensor voting performed on a tube structure (left) and an L-shaped structure

(right) as noise is varied. The results are shown in relation to the standard deviation of the Gaussian noise distribution, which was used

to generate the point clouds. A few samples of the point clouds are shown above. All point clouds contain 12,000 points.

Fig. 22. Left: Illustration of paths resulting from different cost weights. The object pictured is a tube structure with a hole in it, with

surface shading representing relative surface saliency. The four paths represent different settings of the cost function weights. One path

emphasizes curvature cost, one turn cost, one surfaceness cost and one shows a practical balance between the different weights. Right:

Demonstration of paths resulting from varying the edge inflation radius. The paths show 20 cm, 10 cm and 0 cm inflations. Again,

surface shading represents the relative surface saliency. The detected edge of the L-shape structure is also highlighted.

Fig. 23. An example of an almost circular path, along with the

corresponding unwrapped 2D path. The robot is traveling in a loop

on the inside of the tube.

7.2.3. Planning more complex paths Figure 23 provides

an example of traveling on a non-planar surface with the

ability to follow an almost circular path. In this scenario

and for given cost weights, looping around the tube rep-

resents a safer path, in comparison to turning around on

the highly curved surface. The equivalent 2D path is also

shown, demonstrating the result of the unwrapping proce-

dure described in Section 6.1.

Another example on a more complex surface highlights

the full abilities of the navigation system. This can be seen

in Figure 24, which shows the input point cloud, the feature

detection results, as well as the 3D and 2D trajectories. In

this example, the robot must travel perpendicularly over the
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Fig. 24. The above results exemplify the ability of the algorithm to provide paths on a highly complex surface. The input point cloud

and 2D path are also shown. Here the robot must travel down and around in the tube section in order to cross to the other side of the

plate. Note that the edges, which are highlighted, are crossed perpendicularly when entering and exiting the tube section, according to

the initially specified requirements on attack angles for step climbing.

detected edge, around in the tube (mostly traveling in the

plane of curvature), and again perpendicularly over the next

edge, in order to cross to the other side of the plate safely.

8. Deployment on the MagneBike climbing

robot

The presented navigation system has been fully integrated

with the MagneBike robot. Once all of the components were

implemented, thorough testing of the entire system was con-

ducted. Implementation details and system evaluation are

discussed throughout this section. Section 8.1 describes the

overall setup. Section 8.2 presents the planning of global

paths in a real steam chest environment. Section 8.3 demon-

strates how MagneBike plans local paths to navigate in

a smaller steel tube. The test results from both sections

confirm the navigation system’s capability of environment

representation, 3D path planning, and control, while avoid-

ing or overcoming obstacles as necessary. Section 8.4 con-

cludes with a discussion of remaining issues relevant for the

end-to-end use case, such as path replanning, exploration

and sensing in occluded environments.

8.1. MagneBike platform

Successful implementation requires full integration of the

three subsystems for perception/representation, path plan-

ning and control with the MagneBike robot. The Mag-

neBike software is implemented in C++ using a Robot

Operating System (ROS) framework (for a ROS overview,

see Quigley et al. (2009)). The implementation of our nav-

igation solution is also realized in ROS/C++, allowing for

easy and modular integration with other software compo-

nents. Modularity is important, so that subsystems can be

easily added or removed, or also used in an iterative pro-

cess. An outline of our implementation can be seen in

Figure 25, showing the process of taking a scan of the envi-

ronment, performing tensor voting, planning a path and

Fig. 25. Graphical representation of the architecture of the navi-

gation system under ROS.

traveling along a computed trajectory towards the desired

goal. Only low-level control processes were performed

on-board MagneBike, the rest of the computations were

performed in real time, but off-board. The tensor voting

and path planning components of our current implementa-

tion are co-dependent, since the path planning algorithms

specifically rely on the tensor voting results. Therefore,

these two components were implemented within the same

ROS node, reflected by the gray dashed-line box in Figure

25. The architecture allows for iterating the entire naviga-

tion process based on a set of way points. The system has

been set up to continuously wait for new inputs and recom-

pute required information when necessary. If a goal lies

outside the currently available point cloud, failure to reach

the goal is reported, which permits the system to take new

actions.

The MagneBike robot is currently equipped with a rotat-

ing Hokuyo URG-04LX laser range finder for retrieving

point clouds of its surroundings. However, work on future
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MagneBike prototypes equipped with a Hokuyo UTM-

30LX laser range finder is underway. From our experience,

the UTM-30LX provides significantly better results in both

range and accuracy, especially in reflective environments.

An example of this can be seen in Figure 30, where scans

of a steel test environment are compared. As a result of the

poor performance of the Hokuyo URG-04LX in metallic

environment, most of the experiments have been conducted

using a rotating Hokuyo UTM-30LX, operated indepen-

dently from MagneBike. Despite this, useable results have

still been achieved with the Hokuyo URG-04LX, as shown

in Figure 32 and then demonstrated in Section 8.3.2. For the

sake of clarity, we will specify for each experiment in this

section which of the Hokuyo laser range finders has been

used.

In addition to the laser point cloud, robot pose estimates

are required for the control algorithm. The laser point cloud

of the real steam chest in Section 8.2 was collected in the

course of a field experiment, where the robot was navi-

gated through the environment by remote control; here the

robot localizes itself using the method presented by Tâche

et al. (2011). Section 8.3 in contrast, uses a Vicon motion

capture system rather than MagneBike’s own localization

system in order to focus the problem to the previously

unresolved tasks of environment representation and path

planning. Therefore, reflective markers have been rigidly

attached to the MagneBike robot to produce reliable 3D

position and orientation information, and can be seen in the

included image and video content.

8.1.1. Identification of the scale parameter Before experi-

ments can be conducted, the scale parameter σ of the tensor

voting subsystem must be determined. Intuition would say

that relevant features with respect to locomotion will likely

occur at roughly the same scale as the robot’s wheel size.

Therefore, a good starting guess for the scale parameter σ is

the wheel diameter of the MagneBike robot (σ = 6 cm). In

order to experimentally determine σ , tensor voting was per-

formed on a small step feature of roughly the same height

as the wheel diameter (and, therefore, about the scale where

features become relevant to MagneBike). The plate or edge

values for various σ values were analyzed. Figure 26 shows

that smaller scale voting at 2 cm causes noise to trigger high

edge saliencies, and large-scale voting at 10 cm causes the

step to be blurred over a large distance. We can see that

our intuition was correct, and a good choice for σ is in the

expected range, so within this work a σ value of 6 cm will

be assumed for all tests. Note that the determination of σ

is inherently more challenging for smaller robots, such as

MagneBike, because the relative scale of noise compared

with feature size is quite large.

8.2. Planning paths through a steam chest

To evaluate the robustness of the path generation against

real sensor noise, we use the point cloud created in the

Fig. 26. Results of plate saliency for various σ values, performed

on a typical lidar point cloud. This lidar scan containing 3,200

points was taken of a small metal step (see also Figure 3), approxi-

mately 6 cm high (using a Hokuyo UTM-30LX laser range finder).

Surface shading represents the relative plate saliencies. The cell

size used was 1 cm3. White dots show the original point cloud

used for tensor voting.

work of Tâche et al. (2011). The global map was realized

by operating the MagneBike robot by remote control in a

real steam chest, which was removed for maintenance pur-

poses. The pipe is over 4 m long and has seven entry points

(see Figure 27 on the top). For the global map, 59 scans

were recorded using the rotating URG-04LX laser scanner

mounted on MagneBike, and registered along a 5.8 m long

path. Figure 27 in the center shows a cut view of the result-

ing global point cloud. The shading of the points follows

the scan acquisition numbers, while the white line repre-

sents the trajectory of the laser and the spheres every pose

where a scan was taken. This map highlights several chal-

lenges that a real inspection procedure may create. The

exit points have a lower density than the core of the steam

chest. The long middle section of the steam chest reveals the

noise which is created by deformed scans and registration
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Fig. 27. Real steam chest environment. Top: Example of a steam

chest, which was used as the test site. Center: Global map result-

ing from registered point clouds. The shading of the points follows

the scan acquisition numbers and the white line describes the tra-

jectory of the laser scanner. Bottom: Saliency map after dense

voting has been performed. Grid cells with very low saliency were

removed for better visualization.

errors. Finally, the lower part of the middle section has a

very low point density due to the scanner position and robot

self-occlusion during the point cloud acquisition process.

Figure 27 on the bottom presents a cut view of the same

representation after dense tensor voting reconstruction. The

lighter shades represent high saliency surface regions. Note

that the regions of low density are still represented but

obtain a much lower saliency. The observation holds for the

exit points of the steam chest, as well as for the lower part

of the middle section, which is less salient when compared

with its upper part. Finally, the noise present in the middle

section is minimized, as we can observe from the fact that

the main saliency defines the shape of the pipe, even in the

middle section, properly.

For the path planning, we use five of the exit points as

final goals with the large opening of the steam chest as start-

ing point. Figure 28 presents the resulting paths through

the steam chest. The starting point is marked with an ‘S’,

and the five goal poses with their respective path number.

The paths are properly contained within the surface, even

in presence of noise and variable density. Path 1 follows the

Fig. 28. 6-DoF paths through the steam chest. Top and side views

of the five generated paths. The starting position of the robot is at

the large opening of the steam chest, the goal poses are placed

at five of the exit points. The global map is faded for better

visualization of the planned paths.

high saliency zone of the middle section on half of its length

before leaving with a smooth turn to finish in the opposite

orientation. Paths 2 and 3 present almost symmetric trajec-

tories, even though the goal positions are not set to the same

height. This supports that the planning is repeatable under

steady environment conditions.

Figure 29 shows the allocation of computation time for

each of the paths shown in Figure 28. These figures justify

the applicability of the system. The entire computation time

is within about 30 s, the same order of magnitude as the time

it takes for MagneBike to record a single 3D point cloud

(about 50 s), and therefore can be considered a very usable

result. This particular point cloud contains 32,000 points,

which explains why the sparse tensor voting accounts for

the majority of the computation time. After sparse voting,

the number of tokens is reduced to 8,000 using the reduction

methods explained in Section 4.2.3. This drastically reduces

the computation time of the dense voting, despite having

dense grid information at a resolution of up to 880,000 vox-

els with 3.5 cm side lengths. Further savings in computation

time can be achieved by using an approximate range-limited

nearest-neighbor search in the sparse voting.

This experiment shows positive results in view of plan-

ning complex paths in three dimensions based on a full

size inspection environment. In order to enhance the obser-

vations gained from this section, and further validate the
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Fig. 29. Breakdown of computation times corresponding to the

paths displayed in Figure 28.

Fig. 30. Comparison of two Hokuyo laser range finders, URG-

04LX and UTM-30LX, using scans of the test environment. The

scans were taken from the bottom of the left end of the tube, with

the lasers rotating around a vertical axis. The UTM-30LX shows

large improvements in both range and accuracy for this metallic

surface.

feasibility of planned paths, we realized a smaller scale

experiment in a steel tube setup.

8.3. Navigation inside a steel tube

This section outlines a number of experiments, which illus-

trate the capabilities of the navigation system when applied

to MagneBike. Three representative tests have been chosen

to demonstrate the ability of full 3D navigation, obstacle

avoidance, and perpendicular edge traversal. The documen-

tation of these experiments is additionally supported with

video footage given in Extensions 1, 2, and 3.

8.3.1. Test setup For realistic evaluation of the proposed

navigation solution, a test setup was built to mimic the

expected steam chest environment. The test setup consists

of a steel tube composed of three parts: one main cylinder

of 0.8 m diameter and 1.9 m length, an expanded section of

1 m diameter and 0.5 m length, and a small 0.4 m diameter

and 0.6 m long cylinder branching off from the main sec-

tion. In order to track the paths of the robot with the Vicon

motion capture system, the top portion of the main tube

can be taken off, allowing cameras to see inside. Images

of this test environment can be seen in Figure 30, with the

top removed. A series of experiments conducted using this

test environment will now be described in the following

subsections.

8.3.2. Experiment 1: Circling around the tube The first

experiment requires MagneBike to travel on a circumferen-

tial path around the tube, completing just over half a loop.

This is a task that outlines the success at planning and fol-

lowing true 6-DoF paths in 3D space, in contrast to standard

2D projection approaches, which would fail in this sce-

nario. Figure 31 shows the successful results using a point

cloud given by the rotating Hokuyo UTM-30LX, while Fig-

ure 32 shows an analogous test using a point cloud given

by the rotating Hokuyo URG-04LX mounted on the Mag-

neBike robot. One can see that despite the low quality of the

point cloud shown in Figure 32, practical results were still

achieved, and MagneBike reached its goal pose safely. The

trials plotted in Figure 31 can also be seen in a video of the

test in Extension 1.

8.3.3. Experiment 2: Avoiding a hole obstacle In the sec-

ond experiment the robot is set up to navigate around a hole

obstacle, similarly to Figure 22. If the hole was not there,

then a simpler, direct path could be chosen which runs diag-

onally through the tube. This test was done using a point

cloud provided from the rotating Hokuyo UTM-30LX sen-

sor. As a result, MagneBike is again successful in reaching

the goal, as shown in Figure 33, and in a video of the test in

Extension 2.

8.3.4. Experiment 3: Traversing an edge obstacle The

final experiment requires MagneBike to maneuver from

the main tube section into the small section branching off,

demonstrating its ability to follow more complex trajecto-

ries with additional constraints. To be successful, it must

detect the edge at the junction of the two tubes and cross

it perpendicularly. See Figure 34 for the presentation of the

results, and Extension 3 for a video of the experiment.

8.4. Discussion of end-to-end use case

In this and previous publications (Tâche et al., 2009, 2011),

we have developed and tested all of the subsystems that are

required for the successful deployment of MagneBike in

the use case of robotic inspection of a steam chest environ-

ment (as shown in Figure 27). In the following, we discuss

some of the remaining issues we expect to find along the
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Fig. 31. Experiment 1(a): Tracking a circumferential path (using

a Hokuyo UTM-30LX point cloud containing 15,000 points). An

image sequence of the experiment, followed by plots of the trajec-

tories below. The planned target path is shown on the left, and the

actual path as executed by the robot is plotted on the right.

Fig. 32. Experiment 1(b): Tracking a circumferential path (using

a Hokuyo URG-04LX point cloud containing 22,000 points). An

image sequence of the experiment, followed by plots of the trajec-

tories below. The planned target path is shown on the left, and the

actual path as executed by the robot is plotted on the right. Note

the strong deformations when compared with the point clouds of

Figure 31.

Fig. 33. Experiment 2: Avoiding a hole obstacle (using a Hokuyo

UTM-30LX point cloud containing 40,000 points). An image

sequence of the experiment, followed by plots of the trajectories

below. The planned target path is shown on the left, and the actual

path as executed by the robot is plotted on the right.

route towards the final demonstration of locomotion, local-

ization, environment modeling and path planning, working

all together on the MagneBike robot.

The point cloud acquisition, localization, mapping and

planning must be performed in an iterative way. The robot

will take a scan, move a short distance, take another scan,

and finally use odometry estimates and scan matching tech-

niques, such as ICP, to build a consistent 3D point cloud.

Occlusions and limited perception range will not influence

the navigation system directly. The system accepts a goal

only if it is positioned in the immediate surrounding of the

surface. Given a feasible goal as input, the system will com-

pute and return a path to the goal position, as well as the set

of corresponding controls.

In static environments such as the steam chest, an effi-

cient computation of paths is much more important than

path replanning. Given a static environment, acquiring new

scans at the same locations improves the environment mod-

els slightly but not substantially, and replanned paths will

remain close to previously planned paths. In such an envi-

ronment, it is sufficient that path computation updates the

paths only upon change in the goal points. If parts of the

environment - hidden by a junction in the steam chest for

example - are not known a priori, the environment needs
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Fig. 34. Experiment 3: Traversing an edge obstacle (using a

Hokuyo UTM-30LX point cloud containing 20,000 points). An

image sequence of the experiment, followed by plots of the trajec-

tories below. The planned target path is shown on the left, and the

actual path as executed by the robot is plotted on the right.

to be explored. An appropriate exploration strategy of a

higher level planner will select the new goal points for the

navigation system. Alternatively, the goal points can be set

manually by a human operator. As the robot cannot plan

paths to occluded and thus unknown locations, only a path

up to the occlusion point is computed in any case. New laser

scans are taken as soon as the occlusion points are reached.

Once the map is updated, new goal points and paths to be

planned will be part of the newly registered point cloud, and

thus paths must be computed completely anew rather than

being replanned.

9. Conclusion

This paper addresses the challenging problem of navigating

uneven surfaces in 3D space. A navigation solution is pro-

posed, which comprises different subsystems for perception

and environment representation, through to path planning

and control. First, a model of the environment is obtained

from a lidar point cloud using tensor voting. Surfaces and

edges are identified, and their orientation is estimated at the

sparse points of the point cloud, as well as at all locations in

a dense 3D grid. The tensor voting process provides a num-

ber of environmental feature maps, which are directly used

by a graph-based path planning algorithm. A specialized

A* planner represents the cells of the maps as a set of ori-

ented nodes, and establishes graph connections between the

nodes iteratively, by taking the full 3D position and orienta-

tion of the robot, as well as the structural information from

the feature maps into account. The obtained graph structure

limits the search space and enables the efficient generation

of safe and feasible 6-DoF paths along the curved surfaces.

Once a path over the surface is obtained, the equivalent 2D

path is found by projecting the movements into local sur-

face planes, and a 2D control strategy is applied to guide the

robot along the trajectory using nonlinear feedback laws.

The navigation system achieves smooth motions, avoidance

of obstacles in the structures, as well as obstacle negotiation

by perpendicular edge traversal.

The proposed system has been successfully integrated on

the MagneBike robot. Paths planned in a real steam chest

environment and tests with MagneBike driving on the inner

casing of a steel tube in an inspection task have demon-

strated the potential of tensor voting, path planning and

control for navigating a robot over complex 3D surfaces

in the presence of poorly structured point clouds and dif-

ferent types of obstacles. The last remaining step will be

to combine MagneBike’s locomotion, localization, environ-

ment modeling and path planning to work all together con-

currently, in order to take the robot to final field testing in

its operational context.

In future work, we furthermore will look at general-

izations of our navigation system for the planning on

point-based representations, or closer linkage of modeling

and planning techniques. The flexibility of the approach

should further be investigated through implementation on

other platforms, such as rough terrain ground-based robots.

Moreover, policies at higher level can make use of the

navigation system for robotic exploration and coverage.

Another interesting direction is on the improvement of

MagneBike’s lidar system, and on building several of the

MagneBike robots for the collaborative inspection on 3D

surfaces.
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Appendix: Index to Multimedia Extensions

The multimedia extension page is found at

http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video Experiment from Section 8.3.2 of the

MagneBike navigating around the cir-

cumference of a tube.

2 Video Experiment from Section 8.3.3 of the

MagneBike navigating around a hole-

type obstacle.

3 Video Experiment from Section 8.3.4 of the

MagneBike navigating over an edge-

type obstacle.
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e-mail: ambroise.krebs@mavt.ethz.ch, cedric.pradalier@mavt.ethz.ch, roland.siegwart@mavt.ethz.ch

Received 4 January 2009; accepted 2 November 2009

Owing to the fundamental nature of all-terrain exploration, autonomous rovers are confronted with un-
known environments. This is especially apparent regarding soil interactions, as the nature of the soil is typ-
ically unknown. This work aims at establishing a framework from which the rover can learn from its in-
teraction with the terrains encountered and shows the importance of such a method. We introduce a set of
rover–terrain interaction (RTI) and remote data metrics that are expressed in different subspaces. In prac-
tice, the information characterizing the terrains, obtained from remote sensors (e.g., a camera) and local sen-
sors (e.g., an inertial measurement unit) is used to characterize the respective remote data and RTI model.
In each subspace, which can be described as a feature space encompassing either a remote data measure-
ment or an RTI, similar features are grouped to form classes, and the probability distribution function over
the features is learned for each one of those classes. Subsequently, data acquired on the same terrain are
used to associate the corresponding models in each subspace and to build an inference model. Based on
the remote sensor data measured, the RTI model is predicted using the inference model. This process corre-
sponds to a near-to-far approach and provides the most probable RTI metrics of the terrain lying ahead of
the rover. The predicted RTI metrics are then used to plan an optimal path with respect to the RTI model
and therefore influence the rover trajectory. The CRAB rover is used in this work for the implementation
and testing of the approach, which we call rover–terrain interactions learned from experiments (RTILE). This ar-
ticle presents RTILE, describes its implementation, and concludes with results from field tests that validate the
approach. C© 2009 Wiley Periodicals, Inc.

1. INTRODUCTION

The field of mobile robotics has attracted a lot of attention
in recent years, due to very famous missions such as plane-
tary exploration with the Mars Exploration Rover (MER),
the Mars Science Lab (MSL), and ExoMars and competi-
tions such as the DARPA Grand Challenge and AUVSI. Al-
though robotic platforms have become very popular, they
are only a means to perform a more valuable task and
not really an achievement themselves. Therefore, and espe-
cially in the context of all-terrain robotic platforms, robotic
rovers have to be designed as best as possible with respect
to their task (what has to be done), their context (where it has
to be done), and their mission constraints (how it has to be
done). For example, in the context of planetary exploration,
the robot is required to provide a safe and reliable locomo-
tion with optimal performance, while consuming as little
energy as possible, in order to accomplish scientific analy-
sis in the area of interest.

In the end, the performance of the robot is influenced
by two factors:

• First, the performance depends on the robot’s physical
and mechanical properties, corresponding to its struc-
ture, suspension mechanism, actuators, and sensors.

• Second, the performance is related to the control of the
robotic platform, in a very generic sense. This includes
research in fields such as control, obstacle avoidance,
path planning, pose estimation, and so forth.

As mentioned in the latter point, the robot’s performance is
related to the interaction of the robot with its surroundings
and its capability to sense and represent the environment. A
natural environment, which is usually the operating place
for all-terrain rovers, involves a great diversity in terrain,
soil and obstacle types, shapes, and appearances. This di-
versity is difficult to model and hence implies additional
uncertainty that the rover must cope with.

Journal of Field Robotics 27(2), 158–180 (2010) C© 2009 Wiley Periodicals, Inc.
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1.1. Objectives

On 26 April 2005 (SOL 4461), one of NASA’s two Martian
rovers, Opportunity, almost got stuck in a sand dune in
Meridiani Planum. It took 5 weeks for the scientists to cau-
tiously extract the rover from this delicate situation and al-
low the mission to continue its course. This example shows
the importance of the uncertainties that automatically come
with an exploration mission. Although MER rovers were
extremely well designed, and even if their interactions with
expected terrains were cautiously characterized and tested
in many situations, such unexpected events can still occur.
In the end, the terrain on which the rover has to operate
is, at least partially, unknown and is extremely difficult to
characterize beforehand. This effect is even more apparent
in the case of applications in rough terrain. Hence we are
interested in designing a rover with the capability to learn
from its experience while it operates in a mission. Then
the accumulated knowledge could be used to improve the
rover’s behavior. Thus the idea is to make the best out of
an operating platform by giving it the capability to link re-
mote and local data. Remote data describe the environment
at a distance and are provided by sensors such as cameras,
LIDARs, and so forth. Local data express the rover–terrain
interaction (RTI) model, which refers to a metric character-
izing some aspect of the rover behavior. The RTI model can
be related to sensors such as an inertial measurement unit
(IMU), actuator encoders, and other proprioceptive sen-
sors. Learning the correspondence between local data (in-
formation that is near) and remote data (information that
is far) allows anticipating the RTI characteristics ahead of
robot position. This information can be used to influence
the rover behavior by changing its path. The data associa-
tion can be referred to as near to far and is a concept at the
very center of our approach. In fact, this data association
allows, in our case, the inference of local data based on re-
mote data, which corresponds to generating a RTI model of
the terrain lying ahead of the rover.

1.2. State of the Art

In all-terrain robotics, one of the main tasks of a rover is
to successfully move from a point A (starting position) to
a point B (goal). The first aspect is to ensure that the rover
uses only traversable areas to reach the goal. This criterion
is fundamental, but it usually does not limit the possible
paths to a single trajectory. The different possible paths can
be more or less efficient according to the RTI model. The
research of the present article proposes an approach allow-
ing the RTI model, and not the traversability, to be assessed
based on remote data. Based on this knowledge, the path
with the best RTI can be used. This subsection describes
the main research trends related to this work as trying to

1http://marsrovers.nasa.gov/mission/status opportunityAll 2005
.html#sol446

identify the terrain around the robot is not a new preoc-
cupation in the field. They are presented along three topic
lines. We begin by presenting the research using near-to-far
approaches enabling the traversability prediction. Then we
describe the approaches allowing recognizing or identify-
ing the terrain on which the rover is driving, making use of
an RTI model. Finally, the approaches enabling the RTI pre-
dictions are described. The last part relates to the present
work and its specificities with respect to other works de-
scribed in this state of the art.

Several research projects are trying to assess whether
the terrain ahead is traversable before negotiating it.
These remote-based methods use different combinations
or types of remote sensors—including radars, vision cam-
eras, and laser range finders—e.g., Lalonde, Vandapel,
Huber, and Hebert (2006), Manduchi, Castano, Talukder,
and Matthies (2005), Poppinga, Birk, and Pathak (2008),
and Vandapel, Huber, Kapuria, and Herbert (2004). The
assessed traversability is then used to plan the robot’s
route toward the goal and to ensure its safety. Since 2005,
the DARPA-funded LAGR2 project (Mulligan & Grudic,
2006a, 2006b) has contributed enormously to the devel-
opment and integration of these approaches. It offered a
common robotic platform to develop and test off-road al-
gorithms and compare the results. Trials were regularly
organized, offering challenging environment in which the
robot had to find its way to reach the goal and learn from
its experiments. Thus, the different teams involved in the
project, such as Bajracharya, Howard, Matthies, Tang, and
Turmon (2009), Huang, Ollis, Happold, and Stancil (2009),
Kim, Sun, Min Oh, Rehg, and Bobick (2006), Konolige et al.
(2009), Otte, Richardson, Mulligan, and Grudic (2009), Pro-
copio, Mulligan, and Grudic (2009), and Sermanet et al.
(2009), showed solutions to enable a robot to learn from its
experiment and handle unexpected events. Nevertheless,
this research is focused on giving an answer to whether the
terrain is traversable. This is expected as it is in line with
the goals of the LAGR project, which offers the rover sev-
eral trials to reach a goal, enabling the rover to learn from
its previous experiences. Furthermore, Hadsell et al. (2009)
and Happold, Ollis, and Johnson (2006) use an image-based
classification to enhance the traversability estimation of the
terrain. Thus, from near to far, the approach becomes fur-
ther to near, extending the perception horizon of the rover.
In Wellington and Stentz (2004), the true ground height in
vegetation is computed by making use of a near-to-far ap-
proach. Again this information allows the autonomous ve-
hicle to define whether the terrain is traversable.

In parallel, a line of research proposes to classify ter-
rains based on the rover–terrain characteristics (Ojeda,
Borenstein, Witus, & Karlsen, 2006), such as the vibra-
tions induced in the robot (Iagnemma, Kang, Shibly, &

2LAGR stands for Learning Applied to Ground Robots.

Journal of Field Robotics DOI 10.1002/rob



160 • Journal of Field Robotics—2010

Dubowski, 2004). Vibration is mainly measured in terms
of the linear acceleration of the wheel bars or the robot
body (Brooks & Iagnemma, 2005, 2007; Weiss, Froehlich,
& Zell, 2006). See Weiss, Fechner, Stark, and Zell (2007)
for a comparison of different methods for classification of
three and six types of terrains using a frequency-based rep-
resentation. In relation to the vibration characteristics, the
effect of the robot’s velocity on the terrain classification is
studied in Dupont, Moore, Collins, and Coyle (2008), and
a velocity-independent classification method is proposed
and tested on a very limited number of terrains. Similarly,
Ward and Iagnemma (2009) propose a speed-independent
solution for vehicles with a higher dynamics, classifying
terrain using a single suspension-mounted accelerometer.
Another famous characteristic used to express the rover–
terrain behaviors is slippage. Angelova, Matthies, Helmick,
and Petrona (2007) propose to learn the slippage model of
the rover with respect to the terrain type and geometrical
characteristics. Ishigami, Miwa, Keiji, and Kazuya (2006)
also propose a slippage model in relation to the terrain
slope. In Weiss and Zell (2008) it is argued that an au-
tonomous system, in addition to learning from training
data, should be able to detect and classify new terrains. The
authors propose a Gaussian mixture model for detection
and classification of novel terrains. Halatci, Brooks, and
Iagnemma (2008) propose a classification method making
use of both visual and vibration data, comparing several
classification methods. It shows great results in classifying
terrains encountered, but fundamentally the process is a su-
pervised one. Apart from Angelova et al. (2007) and Brooks
and Iagnemma (2007), there is no near-to-far approach used
to anticipate the RTI. In Angelova et al. (2007), the terrain
appearance is divided into well-known classes providing a
prior set of trained classifiers. The number and type of the
terrain is then fixed, and the slippage model is then learned
for each one of those. The end-to-end approach including
this work is presented in Helmick, Angelova, and Matthies
(2009). In the case of Brooks and Iagnemma (2007), it is the
other way around as the visual characteristics of the ter-
rain are learned online while the rover–terrain characteris-
tic classifiers were trained beforehand. One way or another,
those approaches rely on trained classifiers, which implies
a given and fixed number of classes.

1.3. Contributions

The research of the present article proposes an approach
allowing the RTI model, and not the traversability (as in
the LAGR-related projects), to be assessed based on remote
data. Thus, based on a near-to-far approach, the RTIs can
be estimated and abstracted into classes. We also argue
that it seems more appropriate for a robot to classify ter-
rains based on its needs and according to how they affect
its behavior and not necessarily based on human-defined
classes. In other words, the presented approach categorizes
the terrain in a way that is suitable for its path planning.

Figure 1. CRAB rover used in the context of this research.

Finally, another essential point is that this classification is
not fixed to a rigid number of classes but rather results from
the rover’s experience. The terrain representation is actu-
ally learned and can evolve online with respect to the sit-
uation encountered by the rover. Therefore, the approach
is very flexible and is capable of incorporating new types
of terrain or RTI models while traversing the terrain. Also
note that the present work does not take the traversability
into account because the focus lies instead on the RTI model
learning and prediction. The overall approach is named
RTILE, which stands for rover–terrain interactions learned
from experiments.

1.4. Content

The objective of our work is to implement an online terrain
classification and prediction algorithm. Its goal is to mod-
ify the rover’s behavior according to a given metric. This
metric could be, for example, the slippage minimization in
the context of the MER rover. The next section focuses on
giving an overview of the approach, including a theoret-
ical description of all the components needed to achieve
it. Then, the implementation of this approach in the spe-
cific context of the CRAB rover platform is described in
Section 3. The CRAB is a rover with six motorized wheels
(Figure 1). We present the results of three described experi-
ments in Section 4. The first one shows the learning capabil-
ities of the approach, and the other two expose the overall
effects of the approach, namely, the rover’s behavior being
influenced by its experience. The last part of the article is
dedicated to the conclusion and future work envisioned.

2. APPROACH OVERVIEW

This section describes our approach to tackle the RTI prob-
lem. The focus is placed on the theoretical and generic
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Figure 2. Schematic summarizing the RTILE approach.

concepts of RTILE. Figure 2 shows a simplified description
of the approach and highlights its most important elements.
First the near-to-far part is realized using a grid-based ap-
proach, allowing for local and remote data associations.
A Bayesian model (Bessière, Laugier, & Siegwart, 2008) is
used to handle the uncertainties, and its various probability
distributions are assessed in the learning part. The prediction
makes use of the knowledge acquired to estimate the RTI
ahead of the rover. Finally the path planning uses the pre-
dicted RTI to influence the rover trajectory.

In this section, we go further into the details of the dif-
ferent aspects summarized above. To this end, the associa-
tion of characteristics representing the terrain ahead of the
rover and characteristics describing the rover’s behavior,
named near to far, are described. Then the probabilistic model
is presented, leading to the inference subsection presenting
how the prediction of the local features Fl is performed. The
next two subsections, Class Association and Class Definition
and Novelty Detection, focus on the learning aspects of the
method. The subsection subspaces describes the local and re-
mote data representations. The last subsection refers to the
path planning of the rover trajectory. First, we describe the
meaning of rover behavior.

2.1. Rover Behavior

The rover behavior refers to its manner of behaving or act-
ing within its environment. It can be influenced in many
different ways as it is dependent on various levels of con-
trol. In many research projects, the elements acted upon are
the control type or the control parameters; however, in this
study, we are interested in the path used by the rover. Ac-
cordingly, the traversability, in other words where the robot
is able to drive or not, is essential to the robot. The fo-
cus is on a complementary aspect, namely to differentiate
the areas traversable with respect to their trafficability—
ability of a rover to traverse different soil types—from
their terrainability—ability to negotiate terrain irregulari-

ties (Apostolopoulos, 2001). Specific metrics are used here
to learn and characterize the rover’s performance. For ex-
ample, in the case of the rover Opportunity, as well as other
rough-terrain robots, a possibility would be to use a met-
ric referring to the slippage. However, our approach is not
limited to slippage. The metrics used in the context of this
research are presented in the next section.

An example is the robot Roomba,3 a very famous do-
mestic robot aimed at cleaning home floors. The robot be-
haves the same regardless of the type of floor (parquet, car-
pet, etc.) of the diverse areas it has to clean. It would be
nice to make this robot infer the initially unknown, diverse
types of floors from the noise the rover makes while clean-
ing them. Thus the Roomba could optimize its cleaning pat-
tern according to a metric driving the rover behavior, which
in this case could be the amount of noise generated. For
example, the robot could prefer to clean the area where it
makes less noise at night.

2.2. Near to Far

The capability of a rover to learn from its environment is
linked to its ability to acquire data from the environment,
which is directly linked to the rover sensors. Two different
types of sensors are needed here, namely local and remote.
First, we require the ability to characterize aspects of the
RTIs with the local sensors. Then, in order to influence the
rover’s behavior, i.e., its path, we need to obtain informa-
tion on the terrain ahead of the vehicle with the remote sen-
sors. The remote sensors observe the terrain ahead of the
vehicle and extract some terrain characterizations. Later,
when driving over the same terrain patch, the behavioral
sensor records another terrain characterization. It is impor-
tant to link all these data, to generate a bridge from near to
far. The remote characteristics (or features) are expressed as
Fr , and Fl corresponds to the local ones. The goal then is to

3http://www.irobot.com
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form samples si associating the corresponding remote and
local features, samples that can be then processed and used
for learning:

si = (Fl, Fr ). (1)

It is important to note that in Eq. (1) the remote and lo-
cal features correspond to the same spatial area in order to
have consistent si . Thus, Fl and Fr are not acquired at the
same time, and the use of Fr is delayed to form the samples.

2.3. Probabilistic Model

Based on the samples reflecting the rover experience, a
predictive model can be built. This model is used to as-
sociate predictive terrain observations and behavioral ter-
rain characterizations (roughness, slippage, softness, etc.).
Therefore, the joint probability distribution and its decom-
position include Fr and Fl :

P (Fr , Fl) = P (Fr )P (Fl | Fr ).

Such a model, although theoretically correct, leads to com-
plexity and dimensionality issues. In fact, the computed
featured are continuous objects in multiple dimensions,
and the corresponding distributions are difficult to imple-
ment and compute. For this reason similar features are re-
grouped into classes, providing an abstraction layer. Thus
Kr and Kl , which express the terrain type (or class) in both
the remote and local feature space, are added to the model:

P (Fr , Fl,Kr , Kl).

The decomposed joint distribution is expressed as follows:

P (Fr , Fl, Kr ,Kl) = P (Kr )P (Kl | Kr )P (Fl | Kl)P (Fr | Kr ).
(2)

The probability distribution of the features is assumed to be
dependent only on its corresponding class. This means that
the features expressing different RTIs, Fl and remote ter-
rain information Fr , are conditionally independent, given
Kl and Kr . This is an important assumption that drives the
RTI model and the corresponding features design. In the
end, the idea is to use a more tractable expression to
the following equation:

P (Fl | Fr ), (3)

which corresponds to the following question: What are the
predicted Fl , based on the observed Fr?

2.4. Inference

Now that the probabilistic model has been expressed and
its joint distribution described, the Bayes’ rule can be used

to develop Eq. (3):

P (Fl | Fr ) =

∑

Kr

∑

Kl
P (Kr )P (Kl | Kr )P (Fl | Kl)P (Fr | Kr )

P (Fr )

=
∑

Kr

{[

P (Kr )P (Fr | Kr)

P (Fr )

]

×
∑

Kl

P (Fl | Kl)P (Kl | Kr )

}

. (4)

To simplify this expression, we can remark that the first part
of this equation corresponds to the development of P (Kr |

Fr ) using Bayes’ rule:

P (Kr | Fr ) =
P (Kr )P (Fr | Kr)

P (Fr )
. (5)

Also, using the law of total probability, we can identify the
second part of Eq. (4) as P (Fl | Kr ), the distribution over the
local features knowing the remote class:

P (Fl | Kr ) =
∑

Kl

P (Fl | KlKr )P (Kl | Kr )

=
∑

Kl

P (Fl | Kl)P (Kl | Kr ). (6)

Note that this uses the assumption that the local features
are conditionally independent of the remote class knowing
the local class: P (Fl | KlKr ) = P (Fl | Kl).

Using Eqs. (5) and (6), Eq. (4) can be rewritten as

P (Fl | Fr ) =
∑

Kr

[

P (Kr | Fr )
∑

Kl

P (Fl | Kl)P (Kl | Kr )

]

=
∑

Kr

P (Kr | Fr )P (Fl | Kr ). (7)

To simplify the double summation over Kr and Kl , we will
consider only the most likely remote class based on the re-
mote features. Let us define the most likely remote class k̃r

as

k̃r = argmax
Kr

[P (Kr | Fr )]. (8)

Only considering k̃r is translated into the following approx-
imation:

P (Kr = k̃r | Fr ) ∼= 1 and P (Kr �= k̃r | Fr ) ∼= 0, (9)

which is a good approximation, as long as the classes are
well separated in the features space, meaning that their
probability distributions have to be peaked.
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Using this approximation, Eq. (7) becomes

P (Fl | Fr ) ∼= P (Kr = k̃r | Fr )
∑

Kl

P (Fl | Kl)P (Kl | Kr = k̃r )

∼=
∑

Kl

P (Fl | Kl)P (Kl | Kr = k̃r ) (10)

∼= P (Fl | Kr = k̃r ).

Therefore Eqs. (7) and (10) allow us to determine the most
probable predicted local features Fl based on the remote
features Fr .

Note that summing all the probabilities in the com-
putation of P (Fl | Kr ) is the mathematically exact way to
proceed, but approximations could be considered, result-
ing in a pessimistic or an optimistic result. For example, a
pessimistic approach would consider only the local feature
Fl resulting in the worst robot behavior, among the ones
that can be predicted from the remote feature class Kr . Of
course, the meaning of worst has to be defined in the RTI
context and can be assessed by the impact of the Fl on the
global rover performance. Such an approach is an interest-
ing way of preserving the hardware. In any case, asserting
that the Fl is predicted from the Fr corresponds to predict-
ing the RTI. The theoretical description of the approach is
expressed involving several probability distribution func-
tions, which are learned based on the rover experience. The
learning process is the subject of the two next subsections.

2.5. Class Association

In this subsection, we expose the connection between the
probability distribution of the local classes and the remote
ones, which corresponds to expressing the link between the
classes on the local and remote space, or P (Kl | Kr ) from
Eq. (2). This information is acquired at the same time as
the samples si are formed, because it contains the corre-
spondence between the data in each subspace, as shown
in Figure 3.

The samples si provide knowledge about how prob-
able the connections between the various subspaces are.
Thus assuming that A and B in Figure 3 are two subspaces

A
F

B
i

F
B
j

B

F
A
j

F
A
i

1

2

1

2

3

Figure 3. Connections between the classes of different sub-
spaces allowing inference.

with, respectively, two and three classes,

P (KB = 3 | KA = 2) =
NKB=3KA=2

NKA=2
=

P (AB)

P (A)
,

with NKB=3KA=2 being the number of connections between
class 3 of B and class 2 of A and NKA=2 representing the
number of samples collected as part of class 2 of A. Now
assuming that A is a remote subspace and B is a local
subspace, the class association can be performed and it is
learned based on the data obtained by the rover.

2.6. Class Definition and Novelty Detection

Besides learning the class association, the ability to learn the
classes themselves within the features space is fundamen-
tal. In other words, we need a method to decide whether
new data are part of an existing class or whether they are
eligible for creating a new one. An important aspect of the
learning is to let the robot handle the data related to its
experiments in the most suitable way. This means that the
classes do not necessarily correspond to human defined cri-
teria. In this sense, the approach relates closely to unsuper-
vised learning.

The probability distributions of the features for a given
class are defined as a Gaussian distribution. The inference
and the expression of the prediction are described in the
following part.

Assume that we have a feature space consisting of C

classes, whose distributions are Gaussian, to which another
distribution is added. This additional distribution refers to
the unknown class, or class 0, and is based on a uniform
distribution. Therefore, the probability distributions are the
following:

P (F | K = k) =

{

Gμk ,σk
if 1 ≤ k ≤ C

U otherwise (k = 0)
, (11)

with F and K being variables associated, respectively, with
the features and the class number. The novelty detection
aims to know the class corresponding to a given feature.
If the class is not known yet, a new class can be created.
Therefore, the question is the following:

P (K | F ) ∝ P (K)P (F | K).

And using the maximum likelihood, it can be expressed as

k̃ = argmax
j∈[1,n]

[P (F | K = j )].

Knowing that, the novelty detection concerns data whose
classification results in K = 0. For example, considering a
subspace of one dimension with j classes learned, new data
F = f are classified as follows:

K =

{

j if P (K = k̃ | F = f ) > U

0 otherwise
. (12)
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In case that the classification results in K = 0, the new data
are considered as not being part of the existing class and in-
stead are considered to create a new one. Most importantly,
this decision is taken automatically, naturally when the new
data do not fit into the current description of the classes in
the subspace.

The data are processed in batches, at a specific mo-
ment (e.g., when the rover has traveled a given distance or
reached a waypoint). At this point, the new pieces of data
available are handled as follows:

• If they can be found as part of an existing class, they will
then reinforce the knowledge of this class.

• If they can be found as part of class 0, or the unknown
class, then the new data are part of no existing class in
the current representation. Thus we have the following
possibilities:
— The new data f can be used, together with N other

similar ones, to create a new class K = C + 1:

P (F | K = C + 1) = GμC+1,σC+1 ,

with

μC+1 =
1

N

N
∑

i=1

fi and σ 2
C+1 =

1

N

N
∑

i=1

(fi − μC+1)2.

— If perceived as outliers, the data can be either stored
for later use (when enough similar data are avail-
able) or simply discarded (in case of a transition be-
tween terrains, for example). New data can be per-
ceived as outliers if the total number of samples of
the unknown class is not big enough.

2.7. Subspaces

The feature space representation, in which the learning is
performed, is divided into a set of subspaces. Each one of
these is a feature space representing either remote data or
an RTI (i.e., local data). This implementation is performed
for the following reasons.

First, using all the inputs of the robot’s sensors to char-
acterize its interaction with the terrain into a single space
leads to implementation issues. The number of dimensions
of the feature space would be enormous, and it would be in-
effective because they would most likely be sparse. Further-
more, the implementation would be difficult due to com-
putational costs. Thus, in order to have useful results and
distributions with a reasonable number of dimensions, a
framework has to be defined.

Second, we are more interested in the meaning of
the rover’s interaction with the terrain than in the rover’s
sensor data themselves. Therefore, the feature space is
subdivided into subspaces that correspond to given char-
acteristics of the RTI. The features of the subspaces them-
selves correspond directly to the characteristics, and they

are learned with the assumption that they are distributed
according to a (multi)normal law. For each subspace, the
metric that corresponds to a good or bad RTI is also known.

Finally, another advantage of subdividing the space
is the flexibility it offers. The different RTI models can
be treated one after the other and are independent. Thus
adding a new type of RTI model, i.e., as a result of a new
sensor integrated to the platform, does not affect what is
already learned or the other subspaces. This is particularly
useful in the context of this research.

We propose to define the subspaces according to the
terrain characteristics (e.g., softness) and their effects on the
robot. It can be interesting to have only a single type of sen-
sor per subspace even though several sensors provide data
regarding the same RTI model. In this case, several sub-
spaces addressing the same RTI model can be used. Such
a methodology improves the approach’s reliability. Thus, if
a sensor is damaged in operation, or if a sensor is modified
or changed, part of the terrain representation can still be
used.

The features of the subspaces modeling the RTI have
to be designed with care. They are the elements that will
capture the terrain representation and the class definitions
within the subspaces.

For example, in the context of the Roomba robot, the
RTI type could be defined as the noise generated by the
robot cleaning the soil. The feature that could be used in this
case is a root-mean-square (RMS) value of the noise signal.
In this case a low RMS value would correspond to a better
RTI, if a quiet behavior of the robot is preferred. To summa-
rize, the subspaces have to be defined with respect to the
robotic platform (the sensors available) and the application
to which the robot is dedicated.

2.8. Path Planning

A path planner is used to drive the rover and reach the
goal, using the terrains with the best predicted RTI model
possible. This path planner is E∗4 (Philippsen, Jensen, &
Siegwart, 2006). It is briefly described here in a first part,
and then its use within RTILE is explained.

The E∗ algorithm is a grid-based path planner that is
based on a weighted-region approach. The environment in
which the rover is evolving is represented as a grid where
the robot position and its goal position are known. A navi-
gation function is computed for each cell, stating the path’s
cost to reach the goal from this cell. The underlying tech-
nique is expressed within the continuous domain, which
corresponds to a wavefront propagating from the goal to-
ward the rover. The path to reach the goal can be found by
using a gradient descent over the navigation function.

4E∗ is very similar to the field D∗ (Ferguson & Stentz, 2005) regard-
ing the functionalities. It differs mostly in terms of implementation.
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The grid used by E∗, named Ge, is formed of nodes, or
cells ce. Several interesting properties are linked with ce:

• r(ce) is the difficulty or cost of traversing a given cell.
This parameter corresponds intuitively to the wavefront
speed of the navigation function. For example, a cell cor-
responding to an obstacle would block the wavefront.

• v(ce) represents the “height” of the navigation function
of the cell. It can be computed based on the v(cn

e ) of the
neighbor cell closest to the goal, cn

e , and based on the
wavefront propagation cost r(ce).

In a typical application, the rover and goal positions are
given to E∗. The navigation function is then computed for
each ce, based on the r(ce). The cells corresponding to ob-
stacles block the navigation function propagation, and the
cells in the neighborhood of those have their propagation
cost increased. This pushes the rover away from the obsta-
cles without blocking the navigation function propagation.
The trajectory reaching the goal can be then computed by
using the gradient descent on the navigation function from
the rover position to the goal position.

In our work the propagation cost is used in a different
way. It is computed based on traversability, as well as on
the predicted RTI. Thus, we have

r(ce) = f (�, T ). (13)

The metric � depends on the evaluation of the RTI, called
MRTI, computed based on the local features. T depends
mainly on the geometry of the terrain and can be consid-
ered as a Boolean value corresponding to the traversability.
Even though other research considers the traversability as a
continuous metric, a decision has still to be taken allowing
the rover to traverse or not an area. T is the result of this
decision:

� = h(MRTI) with � ∈ [0; 1], (14)

T =

{

1 if the cell is traversable

0 otherwise
. (15)

� takes a high value for a terrain having a good rover inter-
action. Hence, a value of 1 for � means a perfect behavior of
the rover according to the metric defined, whereas a value
of 0 corresponds to a terrain to be avoided. For example,
assume that the rover faces two terrains (named white and
gray), as depicted in Figure 4. The rover, whose position is
marked by the cross, has to reach the goal on the right-hand
side. If the rover is able to identify the terrains according to

�white > �gray,

then the resulting generated trace (dashed) provided by E∗

naturally avoids the gray terrain and is a result of a gra-
dient descent performed on the navigation function (illus-
trated by the wavefront). In summary, E∗ offers a trade-off
between the movement cost and the path length and it pro-
vides a trace to be followed to reach the goal.

Figure 4. Wavefront propagation with E∗ (Philippsen, 2006),
from the goal (marked with a circle) to the robot (marked with
a cross). The trace proposed by E∗ using the gradient descent is
also depicted in dashes.

3. IMPLEMENTATION

In this section, the RTILE approach is described in more de-
tail, as well as the challenges and solutions implemented in
the context of the CRAB rover platform. The most impor-
tant assumptions are first described, and the rover is then
presented. The learning process and its use to predict the
RTI follow. Finally, the pseudo code of the approach and a
summary conclude this section.

3.1. Assumptions

The most important assumptions driving the implementa-
tion of the approach on the CRAB rover, and therefore in-
fluencing the interpretation of the tests results, are summa-
rized as follows:

• Although numerous works identify the traversability
(T ) of the rover surroundings, the goal here focuses on
the RTI. The consequence is that the traversability is not
taken into account, or rather the terrain surrounding the
rover is assumed to be traversable.

• The terrain surrounding the rover is assumed to be glob-
ally flat. As we are interested in showing the adaptive
behavior of the robot, the experiments conducted use
flat grounds with varied � characteristics.

• Knowledge acquired during past tests can be reused, but
this is not necessary. It is assumed that the approach is
not dependent on any prior knowledge regarding the
RTI or the remote data model. Thus, a predefined set of
classes, such as grass, gravel, and so on, is not required.

• The adaptive behavior is driven by � [Eq. (14)], which is
assumed to be known and provided by a user. In other
words, the meaning of what a “good” and “bad” terrain
is must be provided.

3.2. Hardware Platform

The platform used in the context of this project is the CRAB
rover, depicted in Figures 1 and 5. The CRAB rover has six
motorized wheels with a passive suspension mechanism. It
is composed of a double–parallel bogie mechanism on each
side, connected via a differential. The first parallel bogie is
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Figure 5. CRAB suspension mechanism movement. The position of the angular sensors is depicted with the dashed circles. The
four MRb (two on each side) are indicated with a b, and the two MRd (one on each side) are marked with a d.

between the front and the middle wheels, and the second
links the middle and the back wheels. The loop is closed
via a rocker bogie that is connected to the chassis. As this
link is made via a single pivot joint, a differential is nec-
essary to control the chassis attitude. The kinematics of the
passive suspension mechanism can be observed in Figure 5.
The pivot joints on the parallel bogie are positioned so that
the rover has an equal repartition of its mass on the wheels
on a level ground. The six wheels are motorized with dc
Maxon motors, as are the four steering units, which are
linked to the four corner wheels. The control of the robot
can be performed according to the kinematic constraints
by implementing a double Ackermann steering, one for the
front wheels and the other for the back wheels. Table I gives
an overview of the most important CRAB dimensions.

The following sensors are available on the platform:

• An IMU, placed at the chassis level (represented by the
arrows in Figure 5). It is an MT9-B from Xsens that pro-
vides Euler angles.

Table I. Dimensions of the CRAB rover.

Parameter Value Unit

Width 0.773 m
Distance front to middle 0.324 m
Distance middle to back 0.324 m
Ground clearance 0.2 m
Wheel diameter 0.196 m
Wheel width 0.1 m
Weight 37.25 kg
Speed autonomous 0.06 m · s−1

• Four angular sensors positioned on the parallel bogies.
The sensors, MRb, are homemade and based on a mag-
netoresistive technology to measure the pivot joint angle
at positions shown in Figure 5 with b.

• Two angular sensors, MRd , placed on the differential are
of the same sensors as above. Their positions are shown
in Figure 5 with d.

• An HD webcam from Logitech (Quickcam Pro 9000)
provides two megapixel images of what lies ahead of
the robot within a 53-deg field of view and is the only
sensor that provides predictive data.

3.3. Rover Control

The algorithm described below is used on the CRAB to fol-
low the trace, or planned path, provided by E∗. In a first
step, the rover is considered as a differential-drive rover (re-
ferred to as a differential rover). Then the computed com-
mands are applied to the CRAB rover, taking its specific
kinematic constraints into account.

The control for a differential rover can be achieved ac-
cording to Siegwart and Nourbakhsh (2004). The transla-
tional (vtrans) and the rotational (vrot) velocities are com-
puted as follows:

vtrans =

{

kρρ if ρ < δ1

vmax otherwise
, (16)

vrot = kαα, (17)

with ρ the distance to the goal and α the angle between the
rover’s orientation and the direct trajectory to the next trace
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Figure 6. Path following for a differential-drive robot.

waypoint tr . These parameters are illustrated in Figure 6:

tr =

{

tri if ρw > δ2

tri+1 otherwise
. (18)

tr is defined as the next waypoint, tri , except if it is closer
than a threshold, δ2. In this case, the next waypoint is used.
Thus, the rover reaches its goal following the trace pro-
vided by E∗. The method described above is a standard
approach that enables a differential robot to follow a trace.
Table II shows the values of the control parameters used to
drive the CRAB rover during the tests.

To retrieve the commands for each one of the 10 mo-
tors (six driving wheels and four steering units), vtrans and
vrot have to be transformed into commands for the CRAB’s
motors. The rover is basically controlled via a virtual wheel
placed at the front of the rover, as depicted in Figure 7. The
virtual wheel’s steering angle ηv and velocity ωv are com-
puted as follows:

ηv = arctan

(

vrot ∗ dl/2

vtrans

)

, (19)

ωv =
vtrans

cos(ηv)
. (20)

An instantaneous rotation center (IRC) is defined by inter-
secting the virtual wheel axis and the middle wheel’s axis.
The position of the IRC and the relative distances to all the
wheels is used to compute the required commands for all
the motors. The corresponding set points, ηi and ωi , for the
six wheels are derived from ηv and ωv using the geometry
of the rover.

Table II. Control parameters for the CRAB rover.

Parameter Value Unit

kα 0.2 s−1

kρ 0.097 s−1

δ1 0.285 m
δ2 0.507 m

Figure 7. CRAB velocity control based on the virtual wheel.
The IRC position is defined as the intersection of the middle
wheels’ axis and the virtual wheel axis.

3.4. Learning

This section describes the implementation of the required
elements for the learning task. An illustration of this pro-
cess is given in Figure 8. The subspaces used in this work
are the following. The first two represent the RTI types, the
so-called softness and bumpiness, which are local subspaces.
The last subspace represents remote data and is called ap-
pearance, as linked with camera images. The creation of
samples si associating local and remote features is based
on a two-dimensional (2D) grid–based decomposition of
the environment. The grid considered here is Gl , formed
of cells cl , which are used for the learning part.

For the remote features, the acquisition process is
discrete and features are computed each time an image
is taken. Thus the grid Gl is projected onto the image
obtained, and the areas (called patches) defined by the vis-
ible cells cl are processed. The corresponding data, char-
acterizing the remote aspect of the patches, are saved
within cl .

The local feature processing differs because it depends
on continuous sources, and their segmentation is driven by
the wheel positions. Thus, when a wheel moves into a cell
the data of the local source are recorded until the wheel
moves out, after which the local features are computed.

learning

Λ

Local Subspace i

Remote Subspace j

Bayesian
Inference

MRTI

prediction

Fl

Fr

t

Fr

Fl

p

si

Figure 8. Schematic representing the learning and prediction
mechanism in the representation chosen for this work (using
subspaces). The metric � is the function that drives how the
path is planned and can be related to the rover’s behavior as
expressed in Section 2.1.
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Note that the wheels spend most of their time in differ-
ent cells and each wheel is treated independently to gen-
erate the features. As an example, let us imagine the rover
moving straight and parallel to one of the grid axes, the tra-
versed cell (cl) end up with three local features in each sub-
space. The three features are acquired sequentially as the
three wheels enter and leave the cell.

When the last wheel leaves the cell behind the rover,
and the cell contains both local and remote features, a
sample is created for use in the learning process. Note
that ProBT,5 a programming tool facilitating the creation of
Bayesian models and their reusability, is used to create and
learn the needed probability distributions. We now con-
tinue with a description of the subspaces used and their
corresponding features.

3.4.1. Local Feature: Softness

The local softness subspace refers to whether the terrain
has a soft soil (e.g., sand) or a hard one (such as asphalt),
which can be measured by the shocks occurring to the rover
structure. Owing to the particular suspension system of the
CRAB rover and its metallic wheels, every shock resulting
from the wheel–terrain interaction is directly transmitted to
the chassis. Thus the shocks can be measured on the chas-
sis with the IMU. As this specific IMU measures the Euler
angles, φj with j referring to the three axes, one needs to
process its data to retrieve the acceleration.6 As we are in-
terested in the magnitude of the shocks, the absolute value
of the angular acceleration along the x and y rover axes are
used as features:

F softness
l = (‖αx‖, ‖αy‖), (21)

where αj , j = x, y is the angular acceleration of the robot.
Note also that as ‖αj‖ is a vector, the mean value is simply
computed over the sequence corresponding to the grid cell
treated. The angular acceleration along the z axis is not used
as it is coupled with changes in the heading of the rover.

This RTI design is inspired by other research work,
such as that of Brooks and Iagnemma (2005) and Weiss et al.
(2006). These researchers have used this metric to classify
the terrains the rover is traversing according to predefined
classes. In these cases more complex features are used, such
as the power spectral density (PSD) of the signal.

Finally, it must be noted that the data generated by the
IMU are from a single source and express an RTI potentially
influenced by all six wheels. To create the samples si , the
IMU data must be related to the grid cells corresponding to
the positions of all six wheels.

5http://www.probayes.com
6The IMU Xsense MT9-B can provide either the Euler angles, the
quaternions, or the rotation matrix.

3.4.2. Local Feature: Bumpiness

The bumpiness subspace, which is also local, refers to the
geometric characteristic of the terrain, whether it is flat (e.g.,
grass, at least on a soccer field) or bumpy (e.g., sand). This
characteristic can be measured by the movement of the
CRAB’s suspension system, whose state is sensed by the
angular sensors. Thus the MRb angles (τ ) are used to ob-
tain the data of the suspension system movement. The av-
erage of the absolute value of the angular variation is pro-
portional to the amount of displacement of the suspension
system, which is defined as the bumpiness:

F
bumpiness
l = (‖τ − μx‖). (22)

As each suspension mechanism has two redundant MRb

sensors, a single data source can be computed as follows for
the left—and similarly for the right—suspension system:

MRleft
b =

MRleft
front − MRleft

back

2
. (23)

Because in this case the sensors are quite noisy, a low-pass
filter is also used to smooth the data:

τi = a · MRleft
b + (1 − a)τi−1. (24)

A value of a = 0.3 was empirically determined to solve
the sensors’ noise issue. Note that the data of the MRleft

b

and MR
right
b are indifferently mixed in the subspace as the

structure is perfectly symmetrical. This leads to similar
interpretations of the data if the metric is computed on the

MRleft
b or MR

right
b signal.

In fact the bumpiness is fed by two continuous sources

(MRleft
b and MR

right
b ). This feature is specific to the CRAB

rover. Owing to its highly compliant suspension mecha-
nism, which adapts naturally to the terrain’s shape, the sus-
pension movement directly reflects the roughness of the
terrain.

3.4.3. Remote Feature: Appearance

Although described last, the appearance subspace is not
the least because it is the only remote one and hence fun-
damental and necessary to predict the RTIs. The idea here
is to be able to visually identify the different terrains us-
ing a color-based criterion. The hue-saturation-value (HSV)
color space is usually preferred because it is robust to illu-
mination changes. Thus Brooks and Iagnemma (2007) used,
among other elements, a color-based terrain descriptor con-
sisting of four values: S, V, and the sine and cosine of H (to
avoid any discontinuity problem). Such features were im-
plemented and tested but, in the context of our approach,
they lead to an unreliable representation of the asphalt ter-
rain (probably due to its gray color, which has a poorly de-
fined hue value).

In the present work, the appearance subspace makes
use of a new color representation, which is normalized and
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inspired from HSV, using the following features:

F
appearance
r = (�RG, �GB), (25)

with

�RG =
R − G

v
,

�GB =
G − B

v
,

v = max(R, G, B).

The divisor is named v as it is exactly how the V value is
defined in the HSV color space. This operation imposes a
fixed V value and sensibly solves the problems with chang-
ing illumination. The differences between the values R and
G, and G and B, are enough to describe the color then.
This representation is different from the normalized RGB
color space due to this V value removal, which is a mea-
sure of where a particular color lies along the lightness–
darkness axis. Removing this parameter allows the feature
to be more robust to changes of illumination.

3.5. Prediction

This subsection concentrates on the use of the predicted
MRTI and the path planner E∗. As both the learning part
and path planning part are based on grid-based methods,
the interaction is easy to foresee. In fact the cell sizes of both
grids are subject to constraints that are different and con-
trary. On one side, the learning grid (Gl) cells’ size must be
sufficient to log a portion of signal from the local sources
that is significant. On the other side, the path planning grid
(Ge) cells must be fine enough to drive the rover efficiently.
For these reasons, the two grids are aligned but have dif-
ferent resolutions. The details of both are presented in the
following parts.

3.5.1. Grids Sizes

According to the position and orientation of the rover, the
grid is overlaid onto every new image taken. Then the
image is divided into patches corresponding exactly to
the cells and the visual features are computed and stored
into each Gl corresponding cell. The local sources are han-
dled based on the position of the wheels as previously ex-
plained. The size of the grid is defined as the rover’s radius,
which is slightly larger than half its width:

SGl
=

lengthtot

2
=

0.196 + 0.648

2
= 0.422 m,

SGe
=

SGl

λle
.

However, such a grid size is not fine enough for the plan-
ning and therefore a resolution λle times higher is used for
Ge. In our implementation, λle = 5, which corresponds to
an E∗ resolution smaller than 10 cm. Such a resolution is

sufficient for accurately planning the rover trajectory while
having a reasonable computational cost.

3.5.2. Differential Prediction

The visual features Fr are computed for each one of the
patches extracted from the images. The patches correspond
to a portion of the image defined by the projection of the
Gl cells on the image. Based on those Fr and according to
Eq. (10), the most probable Fl are assessed for each one of
the cells and correspond to the expected RTI. An additional
predicted cost rp(ce) can be computed for each one of the
observed cells of Gl , adjusting the E∗ propagation costs of
the corresponding Ge cells, as follows:

r(ce)+ = r(ce) + rp(ce). (26)

The idea is to adapt the cells’ cost r(ce) by a small amount
(ǫ) each time a prediction can be performed. ǫ is either posi-
tive when the predicted RTI metric (M

p

RTI) is “good” or oth-
erwise negative. As a reminder, note that the meaning of a
“good” or “bad” RTI is assumed to be provided by the user.

Hence, let us assume that the RTI performance is mea-
sured by the softness and that softer soils are preferred.
In this case, a “good” RTI corresponds to preferred lower
values of the feature expressing the softness. The addi-
tional predicted cost [Eq. (27)] is then computed as follows,
based on the RTI experienced from the beginning of the test
[Eq. (28)]:

if good < bad

rp(ce) =

⎧

⎪

⎨

⎪

⎩

+ǫ if M
p

RTI < Mm
RTI

−ǫ if M
p

RTI > Mm
RTI

0.0 if M
p

RTI = Mm
RTI or if unknown

, (27)

with

Mm
RTI =

Mmax
RTI + Mmin

RTI

2
. (28)

The additional predicted cost is positive when the RTI pre-
dicted (F

p
l ) corresponds to a characteristic smaller than the

median RTI encountered during the test (until then) and
negative otherwise. As a practical detail, ǫ = 0.05 is used
during our experiments.

3.5.3. Prediction Processing

Two steps are performed prior to integrating the additional
predicted cost rp(ce) within E∗, as suggested by Eq. (26).
First, a step dilating the additional predicted cost is needed.
During the learning process, the RTI is computed associat-
ing the images patches with the wheels’ positions. On the
other hand, E∗ plans a path as a trajectory to be followed
by the center of the rover. Therefore, the cost expected by E∗

has to characterize the RTI of a rover center and rp(ce) must
be updated accordingly. From the point of view of predic-
tion, the additional predicted cost corresponds to a rover
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Figure 9. Different steps of the terrain prediction. Original prediction (left), dilated prediction (middle), and the resulting E∗ grid
(right). Note that on the latter, the starting position and goal are depicted with the lighter dots.

whose position and orientation places one of its wheels into
the cell. By considering the position of the wheels with re-
spect to the rover’s center, this problem is overcome by ex-
pending the worst additional predicted cost, which corre-
sponds to applying a dilation mask of radius width/2 on
rp(ce).

The second step corresponds to a simple smoothing
operation. In fact, discontinuities in r(ce) would result in
unnatural paths planned by E∗. Thus, having positive and
negative additional predicted costs creates edges at the ter-
rains’ borders and results in traces planned that tend to fol-
low these discontinuities. In the end, the resulting traces
contain sharp turns and are very abrupt. The use of a very
simple Gaussian filter of size λle, corresponding to one cell
Gl , solves this issue.

Figure 9 depicts rp(ce) on the left, the result of the di-
lation operation (middle), and the resulting E∗ grid (right).
The additional predicted costs sent are based on the princi-
ple of trying to minimize the vibrations within the rover’s
structure. Following this rule, grass is better than as-
phalt. The specific situation depicted here corresponds to
Figure 10. The grass, on the left-hand side, leads to a pos-
itive rp(ce). The asphalt terrain receives, on the contrary, a
negative one.

3.6. Summary

The entire implementation of the current approach is de-
scribed in this subsection and is summarized in pseudo
code in Algorithm 1, corresponding to the whole soft-
ware depicted in Figure 2, and results can be observed in
Figure 10. The rover is placed in a situation in which two
terrains can be observed. These two terrains were previ-
ously encountered by the rover, and therefore the RTI can
be predicted ahead of the rover. The grass and asphalt areas
correspond, respectively, to positive and negative rp(ce).
The patches in between are unknown (or class 0). Note the
dual resolution that is used to refine the border between
different areas. When a cell cl is classified as unknown and
surrounded by two different known neighbors, the image
patch is divided into subpatches corresponding to its cells
ce. Those subpatches are processed to classify them and

predict their RTI. This ensures a good detection of the tran-
sition of the two terrain types. Note that the learning part
is not affected by this procedure and does not take the sub-
patches into account.

It can be noted that the prediction of the local fea-
tures is pretty straightforward, especially because there is
only one remote subspace; however, it is not difficult to
use several remote subspaces because their final prediction
would be the result of naive Bayesian fusion.

Algorithm 1 RTILE pseudo code

Input Poserover; Data ← Pose estimate and Sensors data
Output: Ctrlrover ← Rover commands
while Waypoint not reached do

Update the rover’s pose within Gl and Ge;
Compute d, the distance to the last position where an

image was taken;

If cell containing wheel pose changed from cl,i to cl,j then

Compute RTI, of cl,i → Fl,i ;
end

If d > SGl
then

Take an image;

Extract patches from image (npatches);

Compute Fr,n with 1 ≤ n ≤ npatches;

Predict RTI → F
p

l,n = f (Fr,n);

Compute rp(ce), predicted additional cost;
Process rp(ce), dilate and smooth;
Send rp(ce) to E∗ → r(ce)

+ = r(ce) + rp(ce);
Update E∗ trace;

end

If cln moved behind the rover then

Create sin corresponding;
Save sin for learning;

end

Compute Ctrlrover based on trace;
Send Ctrlrover to the rover control module;

end
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Figure 10. Original image taken from the CRAB (left) and its terrain cell decomposition and prediction using two resolutions
(right). The overlay corresponds to the additional predicted cost attributed.

4. RESULTS

This section is dedicated to the description of the tests per-
formed, their focus and the corresponding results. Four
tests are presented here showing different aspects of the
approach. The first and second tests illustrate the learning
capability of the approach, in both controlled and natural
environments. The third test shows the action of the whole
method in a controlled environment, whereas the fourth
test is performed in a more realistic environment.

4.1. Learning: Controlled Environment Trial

This test is designed to show the learning capabilities based
on the rover’s knowledge. In this context, the three sub-
spaces presented in the preceding section are used. The
RTILE approach enables the rover to learn its RTI models
in an unsupervised manner within each subspace, which
means that the classes learned are not based on a human-
defined criterion. Therefore, it can be difficult to show the
learning capabilities if the output is not understandable.
For this reason, this first test places the rover in a controlled
environment where its RTIs are sufficiently distinctive and
expected to be learned into different classes. This experi-
ment is also referred to as test 1.

4.1.1. Setup

The tests were performed indoors, using carpets to control
the terrain appearance (Figure 11). The softness of the ter-
rain can be controlled by the number of carpet layers used,
whereas the bumpiness is changed by using wooden sticks
placed under the carpets. Thus the appearance, the bumpi-
ness, and the softness could be defined independently. The
test consists of four successive runs labeled A–D. In each
run, the rover is placed in a situation with a given appear-
ance, bumpiness, and softness. The rover is then commanded
to move forward on a 5-m-long trajectory and is expected
to learn correctly from the data logged during the run. The
rover moves at a speed of 10 cm/s. According to Figure 2,

Figure 11. CRAB performing one of the runs of test 1.

the near-to-far and learning parts are used, whereas the path
planning and the prediction part are dismissed. Except for
the first run, in which no prior information is available for
the learning algorithm, the knowledge resulting from the
learning performed on the previous runs is available.

The following runs are performed, and the associated
terrain can be seen in Figure 12:

• In run A, the rover moves on the concrete, hardest sur-
face, which is flat.

• In B, a single layer of grass-like carpet is used. The ter-
rain is flat.

• For run C, a brownish carpet with wooden sticks is used.
The wooden sticks are 2.4 cm in height and 4 cm in
length and are placed 70 cm apart.

• Finally in run D, the grass-like carpet is reused. The ter-
rain is flat, but this test makes use of three layers of
carpet.

In a first step, the sequence of runs A, B, C, and D, named
ABCD, is analyzed in detail. Then the knowledge acquired
after the four runs for a different sequence is also analysed.
It is interesting because the learning is based on processing
the data on the basis of what is already learned. The dif-
ferent sequences analyzed are the following: ABCD, DCBA,
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Figure 12. Appearance of the various terrain types used for test 1. Runs A (left), B and D (middle), and C (right).

CDAB, CADB, and BADC. The first run of every sequence
is performed without any prior knowledge. Note that the
length of the trajectory is equal for each run and the num-
ber of samples generated for each run is also equal. Thus,
over a 5-m trajectory, 18 samples are generated.

4.1.2. Results

The progress of the rover knowledge resulting from the
learning performed on the successive runs data of sequence
ABCD can be seen in Figure 13.

The first run results in learning an initial class for each
one of the subspaces, which is normal because no prior
information is available at this point and therefore all the
samples can be labeled only as unknown and used to learn
the first class.

The second run presents a different appearance, as well
as a softer terrain. As expected, a second class was learned
in both subspaces but the bumpiness model remains as a
single class, meaning that the bumpiness features were cor-
rectly classified.

Figure 13. Progress of the rover knowledge during the first
test sequence, ABCD. The softness (left) and bumpiness (right)
subspaces can be seen in parallel or independently. Their num-
ber of elements is alike as it depends on the appearance classes.

Run C offers a different appearance and a different
bumpiness. Both were correctly learned, and the softness
is correctly recognized as equivalent to the previous test;
both have only a single layer of carpet.

Finally, the last run has only a softer surface, but it was
correctly learned because a third softness class is added at
this point. Both the appearance and the bumpiness are cor-
rectly interpreted as previously learned.

The final distributions have the data depicted in
Figure 14. The class number is written beside the corre-
sponding distribution, followed by the mean values of the
corresponding features. Note also that the whole features
space is not shown.

The rover knowledge resulting from the learning per-
formed for the different sequences can be seen in Table III.
It shows that the different sequences end up with very sim-
ilar results, but with little variation. The sequences DCBA,
CDAB, and CADB have a marginal additional class appear-
ing in the softness subspace, whereas the sequence BADC
has one appearing in the bumpiness subspace.

4.1.3. Summary

The learning approach is successfully validated in this test,
and several elements can be highlighted. First, the sequence
ABCD, presented in more detail, shows interesting ele-
ments. A new class is learned each time it is expected. Then,
on the other hand, the previously learned classes are cor-
rectly recognized if the rover is confronted to a character-
istic that was learned. This can be seen for each one of the
subspaces, the appearance (D), the bumpiness (B and D),
and the softness (C). This proves that the features in each
of the subspaces are good. The approach is also capable of
relearning as the inference of the softness has evolved after
the fourth run. The subspaces are being learned indepen-
dently; hence the approach is flexible.

Second, considering the different sequences tested,
Table III shows that the different sequences end up with the
same results, with very few variations, which proves that
the features used characterize the terrains well and that the
knowledge acquired is meaningful.

Also note that the classification of the different runs
into the expected classes is the result of well-defined sub-
spaces and a specifically designed experimental setup. The
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Figure 14. Representation of the learned distributions. Softness (upper left), bumpiness (upper right), and appearance (bottom). Note
that the whole feature space is not represented. In each plot, the classes’ numbers are written close to the corresponding probability
distribution, in addition to the mean values.

Table III. Test 1 classification of samples.

Softness (%) Bumpiness (%)

Sequence Appearance class 1 2 3 4 1 2 3

ABCD 1 100.0 0.0 0.0 0.0 100.0 0.0 0.0
2 0.0 50.0 50.0 0.0 100.0 0.0 0.0
3 0.0 100.0 0.0 0.0 0.0 100.0 0.0

DCBA 1 100.0 0.0 0.0 0.0 100.0 0.0 0.0
2 0.0 44.4 50.0 5.6 100.0 0.0 0.0
3 0.0 100.0 0.0 0.0 0.0 100.0 0.0

CDAB 1 100.0 0.0 0.0 0.0 100.0 0.0 0.0
2 0.0 44.4 50.0 5.6 100.0 0.0 0.0
3 0.0 100.0 0.0 0.0 0.0 100.0 0.0

CADB 1 100.0 0.0 0.0 0.0 100.0 0.0 0.0
2 0.0 44.4 50.0 5.6 100.0 0.0 0.0
3 0.0 100.0 0.0 0.0 0.0 100.0 0.0

BADC 1 100.0 0.0 0.0 0.0 100.0 0.0 0.0
2 0.0 50.0 50.0 0.0 94.4 0.0 5.6
3 0.0 100.0 0.0 0.0 0.0 100.0 0.0
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subspaces are well defined because they recognize specific
terrain characteristics and their impact on the rover. The
different runs were designed with knowledge of the sub-
spaces to achieve the terrain representation. It is obvious
that using different subspaces (e.g., using other sensors) or
using a different setup would result in a different terrain
representation.

Finally, as Figure 14 shows, the learned distributions of
the appearance subspace are peaked. This corroborates the
approximation assumed in Eq. (8). Therefore the learning
method used in the context of this work offers all the re-
quired properties.

4.2. Learning: Natural Environment Trial

This test is presented to analyze the capabilities of the learn-
ing aspects of the approach in a real environment. There-

Grass

Transition

Gravel

Asphalt

Figure 15. Trajectory of the CRAB rover during test 2. Differ-
ent types of terrains as well as the transition in between can be
observed. The terrain classes leave a lot of room for interpreta-
tion, because the ground truth is difficult to define.

Figure 16. Typical terrains observed during the test (top) and their corresponding classification results (bottom). The overlay
colors have the following meaning: red, class 1; green, 2; blue, 3; and black, 4. The class 0, or “unknown,” is in yellow (in the
right-hand-side picture).

fore, it is very similar to the previous test except for the
lack of clear ground truth regarding what has to be learned
and how. Using a natural environment allows the algo-
rithm to really learn according to its own terrain represen-
tation. Nevertheless the results can be analyzed in terms
of segmentation and sensitivity. This test is referred to as
test 2.

4.2.1. Setup

The CRAB rover is driven manually over a 310-m-long tra-
jectory at a speed of 10 cm/s in the test environment of a lit-
tle village in the countryside. During the test, the rover was
driven on various terrain types such as thick grass, gravel,
and asphalt. The transitions in between these types can
also be counted as separate terrains. The rover trajectory
and information regarding the terrains can be observed in
Figure 15. Note that the surface encountered by the rover is
generally flat.

4.2.2. Results

The test has the following result with respect to the learning
algorithm. We will focus here on the appearance subspace, as
it is then the entry point to differentiate terrains and reuse
the knowledge acquired.

In the first section, the algorithm learned the grass as
the first class. The second class learned is the transition be-
tween the grass and the gravel. Then the gravel resulted in
learning a new class, class 3, but this class also includes as-
phalt, which is not distinguished from gravel. In the gravel
section, some small patches of grass resulted in learning
a fourth class. At the end of the test, all the patches ac-
quired from the images are classified. These results can be
observed in Figure 16.
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Figure 17. Representation of the learned distributions. Softness (upper left), bumpiness (upper right), and appearance (bottom). Note
that the whole feature space is not represented. In each plot, the classes’ numbers are written close to the corresponding probability
distribution, in addition to the mean values.

Regarding the RTI subspaces, the softness proved to be
very sensitive as no fewer than 11 classes were obtained
from the test. The bumpiness resulted in only two classes,
but this can be expected because the CRAB did not face any
obstacle whatsoever. The details of the probability distribu-
tions learned from this test can be observed in Figure 17.

4.2.3. Summary

The learning algorithm works well, and the results for each
subspace are good. In the appearance subspace, the asphalt
terrain is not distinguished from gravel due to the lack of
features representing the texture. On the contrary, although
the features used are fairly simple, a lot of different terrain
types are “seen” in the softness subspace. This experiment
shows that it is important to use the right features to rep-
resent the terrain in such an unsupervised and generic ap-
proach.

As for the previous test, and as Figure 17 shows, the
learned distributions of the appearance subspace are peaked.

This shows again that the approximation of Eq. (8) is well
founded.

4.3. RTILE: Controlled Environment Trial

The test is designed to verify the validity of the whole ap-
proach and especially the rover’s behavior influence based
on the knowledge available and learned during the test.
This implies that we need to choose the function that rates
the RTI, MRTI, and also depends on the test environment.
These tests are aimed at showing the impact of the over-
all method on the rover control, so the function is chosen
to minimize the amount of vibration within the structure,
thus defining

MRTI =

√

F softness
l,1

2
+ F softness

l,2

2
. (29)

Therefore, in this test, the path is planned according to the
softness prediction of the terrain ahead of the rover. Note
that the bumpiness is still acquired and handled but it is not
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Figure 18. Setup of second test and resulting trajectories.

taken into account to evaluate the MRTI driving the rover’s
path.

Following the successful results of the learning trial and
in order to validate the approach step by step, the present
test is performed indoors, in a controlled environment.
Every component of the RTILE approach described in
Section 2 is used. This test is referred to as test 3.

4.3.1. Setup

The rover is initially commanded to move toward a way-
point 4 m ahead and then another 10 m ahead of the start-
ing position. The configuration of the environment can be
seen in Figure 18, and two types of terrain can be observed.
The first terrain type is concrete, whereas the second is
grass-like carpets. The straight trajectory between the start-
ing position and first waypoint drives the CRAB mostly
on the grass-like carpet, and a straight trajectory between
the first waypoint and the goal is only on concrete. Such
straight trajectories can be considered as the default trajec-
tories because the rover would move along them to reach
the waypoint without taking the environment into account.
The rover starts the test with a prior regarding the concrete
and its corresponding softness, which means that the rover
was driven for a few meters on this surface and it was able

to characterize it. Therefore, concrete is “known” at the be-
ginning of each test run. The test is repeated five times, and
the rover drives autonomously at a speed of 6 cm/s.

4.3.2. Results

The first section of the test, which reaches the first way-
point, is performed in a straight line. The prior is not suf-
ficient to challenge the obvious straight movement on a
surface that is completely unknown. Upon reaching the
waypoint, the samples acquired are processed and learned.
This results in the creation of a new appearance and soft-
ness class corresponding to the grass-like carpet. In the sec-
ond section of the test, the default trajectory is challenged
by the opportunity of moving almost all way through on
the grass-like carpet, which is softer than the concrete. As
shown in Figure 18, the rover takes a slightly longer path to
remain on the carpet.

To express what happened during the test, it is nec-
essary to define metrics summarizing the rover behavior.
Thus, two metrics are defined here, one corresponding to
the distance traveled and the other corresponding to the
softness of the terrain:

MDist =
∑

√

�x2 + �y2, (30)

MSoft =

√

‖αx‖
2

+ ‖αy‖
2
, (31)

with i being the trajectory section between waypoints i and
i + 1. As this test is composed of two sections, the first
one being the same for the RTILE approach as well as the
default approach, three pairs of results are presented in
Table IV.

4.3.3. Summary

The softness of the second section has a value significantly
lower using the RTILE approach. This is a success as a ter-
rain minimizing the chassis vibrations is preferred. This re-
sult is consistent and repeatable, as the very low standard
deviation over MSoft shows. Figure 18 indicates that the
trajectories of the five runs have globally the same shape,
but with some variation, which is reflected by the slightly
higher standard deviation over MDist, corresponding to the
rover trajectory in the end of Section 2.

Table IV. RTILE controlled environment (test 3) results.

MSoft (rad/s2) MDist (m)

Section 2 Section 2

Section 1 Default RTILE Section 1 Default RTILE

Mean 0.14 0.42 0.24 3.74 6.23 6.90
Std. dev. 0.02 0.02 0.02 0.02 0.02 0.17
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Figure 19. Final prediction map (left) and prediction on the carpet (right). The prediction map shows the value of � for each one
of the observed cl , which corresponds to the sum of the multiple rewards computed. The area depicted corresponds only to the
second test section, the first bringing nothing as all the Fr are unknown at this time. The second carpet can be well identified on
the prediction map. On the right-hand side, the prediction performed during the second test section on the carpet is shown. The
result is very satisfying as only the transition cells are unknown.

When using RTILE, sections 1 and 2 correspond to the
same terrain (grass-like carpet), but their MSoft values are
quite different. This difference is induced by the very last
part of the trajectory, just before the goal, where the rover
has to move a couple of meters on concrete. This raises the

value of the MSoft
2,RTILE.

In despite of these variations, the paths show that the
rover behavior is influenced by the learned RTI, and this
knowledge allows the path of the rover to be adapted. The
E∗ path planner is successfully used and integrated to the
approach, and the inference of the RTI on the terrain is suc-
cessful.

Finally, to have an insight into the test, the map rating
the RTI in this environment and the processing of an image
to recognize previously met terrain are shown in Figure 19.

4.4. RTILE: Natural Environment Trial

The test is very similar to test 3. It aims also at verifying the
entire approach but goes a step further by using a natural

environment. Here, natural means that the environment is
not as controlled as before, and some additional uncertain-
ties are therefore taken into account. Therefore, the same
MRTI function is used as with the previously presented trial.
Thus, the path is planned according to the softness predic-
tion of the terrain ahead of the rover, focusing on mini-
mizing the vibration within the rover chassis. Note that
for the same reasons as for the previous test, the bumpi-
ness is not taken into account. This test is referred to as
test 4.

4.4.1. Setup

The test is divided into two parts. The setups of both parts
are depicted in Figure 20.

In the first part, the rover is commanded to reach a first
waypoint 5 m ahead, and then another 10 m ahead of the
starting position. Performing a straight, direct trajectory,
the rover moves first on asphalt and then on grass. In the
second part, the rover aims for a goal positioned 8 m ahead

0

2

4

6

8

00.511.5

x
 [

m
]

y [m]

Rover trajectories

RTILE
Default

Figure 20. Test 4: CRAB rover at the starting point of first part (learning phase on the left-hand side), of the second part (middle),
and resulting test trajectories (right). The traces left by the rover in the grass during the previous trial can be observed.
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Table V. RTILE natural environment (test 4) results.

MSoft (rad/s2) MDist (m)

Default RTILE Default RTILE

Mean 0.40 0.24 7.72 8.44
Std. dev. 0.04 0.02 0.02 0.07

and a straight trajectory would drive the rover on asphalt
only. The test is also repeated five times to have more reli-
able results, and the rover drives autonomously at a speed
of 6 cm/s.

4.4.2. Results

The first part is executed without a prior, and the waypoints
are reached via a straight trajectory. It gives the opportunity
to learn the asphalt and grass terrains, in terms of both ap-
pearance and softness. The second part of the test makes
use of the knowledge acquired in the first part. In this case,
and as depicted in Figure 20, the default trajectory is not
used and a area) trajectory moving on the grass terrain is
preferred. The resulting metrics of this test are presented
in Table V. Figure 21 shows the E∗ propagation costs, r(ce),
resulting from the test.

4.4.3. Summary

As the results above show, the use of RTILE allows the rover
to select a softer terrain to reach the goal. As a side effect,
this increases the distance traveled because the trajectory is
longer.

This test shows again the rover’s behavior influenced
as a result of the learned RTI, which influences the path of
the rover. The test started without any prior knowledge re-

 0
 1

 2
 3

 4
 5

 6
 7

 8

-4
-3

-2
-1

 0
 1

 2
 3

 4

E* grid

x [m]

y [m]

Figure 21. Final prediction map of test 4 showing the value
of � for each one of the observed cl . The grass terrain is well
recognized and predicted. It corresponds to the area on the left-
hand side.

garding the rover behavior; a short 5-m trajectory on both
terrains allowed the rover to sufficiently learn both terrains.

4.5. Lessons Learned

The learning trials show that it is possible to learn from the
rover’s experiments, which can be done without any prior
and in an unsupervised way, except for the definition of the
cost regarding the learning part. First, the features have to
be designed with care, to represent a specific and meaning-
ful RTI model. As the results of test 2 show, the features
must also be sensitive enough to be able to express differ-
ent RTI models according to different terrain types. Second,
in order to have reasonable computational time and mem-
ory usage, the features spaces must necessarily have a re-
duced number of dimensions, which also underlines the
need for carefully designed features. To summarize, using
an unsupervised approach requires the transfer of much
more knowledge within the features. From a general point
of view, it can also be noted that too many classes are gen-
erally better than too few classes in the subspaces. A finer
representation of the terrains encountered is achieved by
having more classes modeling the RTI.

The two RTILE trials show that the knowledge ac-
quired to qualify the RTI can be used to influence the rover
behavior or its path. Using RTILE has a cost regarding the
rover behavior, as the resulting trajectory is longer in both
tests. This raises the following questions: To what extent
can the rover trajectory be influenced by the RTI? And what
is the maximal deviation from the default path in order to
have an optimal rover behavior?

Another point is that the remote subspaces are partic-
ularly important and are a key element of RTILE. They are
the entry point to use the knowledge acquired and make
any prediction as they are used to recognize the previ-
ously met terrains. If the appearance subspace, in the con-
text of this article, regroups too many terrain types within
the same class, the RTI predicted does not give any useful
information. Then, the remote feature classes are better be-
ing too specific, rather than too largely defined.

Finally and similarly to the previous point, the cam-
era’s field of view has a big influence over the RTI pre-
dicted. The camera used in this research has a reduced field
of view, and therefore all the information available in the
images is used to predict the RTI. In this context it is very
important to be able to detect as precisely as possible the
transition between different terrains, and in this perspec-
tive, the use of a dual-resolution grid improves the results.

5. CONCLUSION

The RTILE approach aims to learn the RTI based on the
rover’s experiments, without any prior. The knowledge ac-
quired is subsequently used to form RTI predictions on ter-
rains lying ahead of the rover, which results in an influence
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on the rover trajectory. The approach is implemented and
successfully tested on the CRAB rover.

The near-to-far technique generates samples associat-
ing remote and local data, whose probability distribution
can be learned with the ProBT tool. The E∗ path planner,
combined with the predicted RTI, allows the rover’s be-
havior to be influenced. The notion of subspaces, repre-
senting various RTI models, is also introduced, and three
of them, namely softness, bumpiness, and appearance, are
presented.

Finally the tests conducted with the CRAB rover
show the feasibility of the approach as well as its suc-
cessful implementation. The unsupervised learning indi-
cates good results in detecting new classes within sub-
spaces, and the entire approach is successfully tested in
both controlled and natural environments. The tests pre-
sented in this article show the interest and versatility of the
approach.

The method proposed in this article is not foreseen as
a replacement to reduce design activity or to get rid of any
wheel–ground interaction model or even to avoid consider-
ing the terrain traversability. The approach proposed here
has to be considered as a complementary tool, a perfor-
mance enhancer for a well-designed rover.

A few words about slip are necessary, as using it as a
subspace can be very appropriate. Slip is important as sev-
eral aspects of a rover mission demand as little slip as pos-
sible. First, navigation is more accurate if the rover does not
slip. Second, because slipping wheels do not contribute to
the rover’s movement, slip is a loss of energy. Finally, po-
tential slip increases the risk of operation failure due to loss
of control of the vehicle. Despite all these elements, slip is
not considered in this work, and this is mainly due to two
reasons.

• Slip can be measured only if a reference (or ground
truth) is available. This is not the case for the CRAB
rover (but is being developed).

• The goal of the current research is to show the rover un-
der the influence of RTI models learned from its exper-
iments and to show a methodology to do this. In this
context, the types of RTI models used are not as impor-
tant as the approach itself. Thus, the authors do not feel
compelled to use slip in this approach.

Henceforth, although the approach description is sound
and the tests corroborate its potential, some questions are
still open. Among them, two are of importance and are the
focus of upcoming work. The first one concerns the learn-
ing aspect. In the work presented here, all the new sam-
ples that could not be classified (or that are classified “un-
known”) are used to generate a new class. The problem is
that nothing proves that only a single new terrain was dis-
covered, and this is what is implicitly assumed. To solve
this potential problem, a clustering step has to be added be-
fore the learning. It can also be noted that this is not a crit-

ical problem if the learning process is performed more fre-
quently than there are terrain changes in the environment.
The second issue is linked with the characterization of the
approach. It is known that the E∗ path planner proposes a
trade-off between the path length and the trafficability cost
(in the case of RTILE). In this context the values assigned
to r(ce) have to be characterized, answering the following
questions: In an environment with several terrains, what is
the impact of a change of r(ce) on the E∗ proposed path?
What is the relation between the variation of propagation
cost and the amplitude of the difference between the RTILE
and the default path? At the moment, it is assumed that the
user provides RTILE with the metric MRTI driving the cost.
The next step is to refine the interaction with E∗ in order
to be able to use an input such as the following: A detour
of amplitude δm can be performed for a predicted δMRTI

between two terrains.
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Hot metal carriers (HMCs) are large forklift-type vehicles used to move molten metal in
aluminum smelters. This paper reports on field experiments that demonstrate that HMCs
can operate autonomously and in particular can use vision as a primary sensor to locate
the load of aluminum. We present our complete system but focus on the vision system
elements and also detail experiments demonstrating reliable operation of the materials
handling task. Two key experiments are described, lasting 2 and 5 h, in which the HMC
traveled 15 km in total and handled the load 80 times. C© 2008 Wiley Periodicals, Inc.

1. INTRODUCTION

Autonomous ground vehicles (AGVs) have been rou-
tinely operating in factories around the world since
the 1970s. Thousands of units now deliver prod-
ucts in warehouses, car plants, and aircraft factories.
These environments are indoors (free of significant
changes in environmental conditions such as light-
ing) and generally clean and dry. These AGVs typi-
cally operate at low speed, in flat driving areas and
where the driving surface is normally smooth.

The next frontier for AGVs is that of the out-
door/indoor industrial work site. Examples include
steel works, aluminum smelters, large construction
sites, and ports. These are environments that con-
tain outdoor areas exposed to the weather and where
the driving area may contain hills and the driving
surface may be rough. There are very few examples

of operational outdoor industrial AGVs anywhere in
the world. One notable example is that of the auto-
mated shipping port in Brisbane, Australia (Nelmes,
2006). There, a container handling operation has
been operating autonomously for the past two years
using large autonomous straddle carrier vehicles
(AutoStrad AGVs) to stack and move containers. This
application is simple, in terms of typical outdoor ma-
terials handling tasks, but is impressive in that the
AGVs operate in all weather conditions, 24 h a day.
The autonomous port is also isolated from people,
making the operation inherently safe.

Our project aims to push the technology of AGVs
to the next stage: that of an industrial work site with
a more difficult materials handling task, harsher en-
vironmental conditions, and the issue of people oper-
ating around the vehicles.

Journal of Field Robotics 25(4–5), 243–267 (2008) C© 2008 Wiley Periodicals, Inc.
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Figure 1. HMC in the process of picking up the crucible.

We are focusing our research using the exam-
ple of molten aluminum handling at a smelter. In
the aluminum industry, hot metal carriers (HMCs)
perform the task of transporting molten aluminum
from the smelter (where the aluminum is made) to
the casting shed, where it is turned into block prod-
ucts. There are estimated to be 400 HMC vehicles
worldwide with a 50/50 ratio of modified forklift-
type vehicles to purpose-built vehicles. Our project
has been tasked with the automation of the class
of forklift-type HMCs. The vehicles weigh approxi-
mately 20 t unloaded and resemble forklifts except
that they have a dedicated hook for manipulating the
load rather than fork tines (Figure 1). The molten alu-
minum is carried in large metal crucibles. The cru-
cibles weigh approximately 2 t, and they can hold 8
t of molten aluminum usually superheated to above
700◦C. Therefore, HMC operations are considered
heavy, hot, and hazardous, with safety of operation
a significant issue. This application also shares many
issues with other applications such as vehicle trans-
port in the steel industry and the large-scale construc-
tion industry (large commercial building sites).

1.1. The Challenge: Reliability and Safety

There are many challenges in the HMC indoor/
outdoor operating environment. Inside, there is a vast

amount of infrastructure, other mobile machines, and
people. In various areas, there are large magnetic
fields and high temperatures near the molten alu-
minum pots. Outside, an HMC’s path may be sur-
rounded by infrastructure (buildings, fences, stored
materials, and other vehicles) and their operation
may be affected by environmental conditions such as
rain, fog, snow, and heat. Research into automating
these vehicles and their operations needs to consider
the variability in operating conditions to produce re-
peatable and reliable performance of the task.

At a typical smelter, a handful of HMCs are used
to carry the aluminum from the 500-m-long pot lines
to a handful of furnace and casting sites, which can
be up to 1 km away. Figure 2 shows an aerial view
of a typical smelter. HMCs operate on their own road
(the hot metal road) due to the criticality of their op-
eration to the supply chain and the hazardous nature
of their cargo. The hot metal road may not be used
or crossed by other vehicles without explicit autho-
rization. Smelter staff may cross the road but should
not disrupt the HMC’s work flow by doing so. In this
context obstacle detection is a critical part of any au-
tonomous HMC; however, obstacle avoidance is not.
Any unexpected obstacle must be dealt with safely
by stopping the vehicle, eventually signaling with the

Figure 2. Aerial view of a smelter showing the pot line
sheds and the hot metal road.
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horn. Replanning a path around the obstacle is nei-
ther necessary nor desirable and is potentially unsafe.

1.2. Aims: Outdoor Vision and Visual Servoing
for an Autonomous HMC

The HMC must first accurately locate the crucible in
order to pick it up. Crucibles are typically dropped off
by a crane, after being filled with the hot metal, ready
for the HMC to pick up. The exact drop-off point will
vary slightly each time, and so the HMC must lo-
cate the crucible each time. Owing to the extremely
high temperatures, it is not practical to locate any
electronic tag-like devices (RFID) on the crucible. Vi-
sion is an obvious way to address this location prob-
lem and has been a major focus of the research in
our project. A human operator uses his/her eyes to
servo the hook to the crucible handle’s eye, and so vi-
sion is a promising sensing method to try. However,
there are very few examples of the reliable use of vi-
sion for load detection and load localization in out-
door (all weathers) or indoor environments that have
strong “outdoor light” projecting through shutters or
windows.

Our aim was therefore to develop a reliable
vision-based method for crucible detection that could
operate in all typical lighting conditions under which
a human operator is expected to perform the task, in-
cluding cloudy and sunny skies, rain, darkness, and
indoors under artificial lights.

We also aimed to borrow another method from
the human operator, that of visual servoing. The task
of hook insertion requires high precision, with the
hook having to be driven into a 20-cm-wide target
area (the so-called hook-eye). It is clear that operators
visually servo the hook of the HMC in order to insert
it into the hook-eye of the crucible handle. Our re-
search aimed to determine whether we could mimic
this human method of crucible pickup in a robust
way.

1.3. Paper Outline

The remainder of this paper is structured as follows.
Section 2 presents the work related to automating in-
dustrial vehicles and previous work in the areas of
vision for automated materials handling tasks. Sec-
tion 3 outlines the architecture and technical compo-
nents of our vehicle’s systems. Section 4 details the vi-
sion algorithms developed for reliably identifying the
crucible. Section 5 provides details and performance

of various long-duration experiments conducted at
our work site. Section 6 describes an analysis of the
failure modes of the numerous subsystems of our ar-
chitecture. Finally, Section 7 concludes the paper with
a brief discussion of the significance of the research
and outlines our future work plan.

2. RELATED WORK

There has been much research into automating in-
dustrial vehicles for cargo transport. Mora, Suesta,
Armesto, and Tornero (2003) present a complete sys-
tem for controlling autonomous forklifts in a ware-
house. The forklifts are scheduled from a centralized
controller and can be operated autonomously or re-
motely. Localization of the vehicles is provided by a
web-cam sensing lines painted on the floor.

Hasunuma et al. (2003) demonstrate a differ-
ent approach to automating vehicles by using a hu-
manoid robot to operate the controls of a conven-
tional vehicle. The advantages of using a humanoid
are that the vehicle does not necessarily have to
be modified to allow pseudo-autonomous operation
and the robot can be used for other tasks. The disad-
vantages are that the current standard of humanoid
technology makes controlling a vehicle overly chal-
lenging and unreliable. Furthermore, vehicle control
has to be encoded in the humanoid, which would
be difficult for a closed-loop system considering the
complexity of a human conducting the same tasks.

In 1999, our research team demonstrated the
autonomous operation of an underground mining
vehicle, a load-haul-dump (LHD) vehicle (Roberts
et al., 2000; Roberts, Duff, & Corke, 2002) This work
showed that two-dimensional (2D) scanning lasers
could be used to navigate a vehicle at 20 km/h
with little clearance (approximately 0.5 m) between
the vehicle and tunnel walls. The system developed
worked on the principle of relative or reactive naviga-
tion in which the LHD was steered based on the open
space observed immediately in front of it. Higher-
level turning commands, such as “turn left,” “go
straight,” and so on, were issued by a navigation
layer that had a coarse representation of location in
the mine tunnel system. The navigator kept track of
which section of the tunnel the LHD was in by ob-
serving key features such as intersections. The sys-
tem is now available commercially and has been de-
ployed in a number of mines around the world.

With respect to the load handling task and,
in particular, pallet handling by a forklift, several
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important research works must be noticed. Garibotto
et al. (Garibotto et al., 1998; Garibotto, Masciangelo,
Ilic, & Basino, 1996, 1997) present ROBOLIFT, a
robotic forklift able to pick up/drop off pallets using
computer vision. This work was conducted indoors
and used specially designed fiducials. In our case,
we are aiming at a minimally modified outdoor set-
ting where these fiducials may not be discriminative
enough. In more recent research, Nygards, Hogstrom,
and Wernersson (2000) used the image of a visible
laser in a camera image to localize a pallet and dock
a forklift to it. After some experiments, we found that
an eye-safe laser is not powerful enough to be reli-
ably visible by a camera in bright sunlight. Finally,
Seelinger and Yoder (2005) described another method
of vision-based pallet sensing. Again, this work was
aimed at an indoor forklift, and it used motion cap-
ture fiducials.

Most of the control algorithms discussed in the
above-mentioned research into load handling could
be applied to our crucible handling task. However,
the pallet sensing methods are not suitable due to
their low saliency and reliability in an outdoor, indus-
trial setting.

If we consider now the use of computer vision for
mobile robotics in outdoor environments, many ex-
amples are found in the literature, including state-of-
the-art deployments such as the DARPA Grand Chal-
lenge (Buehler, 2006; Iagnema & Buehler, 2006) or the
LAGR Program (Mulligan & Grudic, 2006). However,
most reported work used computer vision for navi-
gation, obstacle avoidance, or lane tracking and not
for load identification or load localization: this is the
key problem in our application and has not been ad-
dressed in a meaningful way before in other similar
applications. The field of visual servoing (e.g., Corke,
1996; Espiau, Chaumette, & Rives, 1992; Mezouar &
Chaumette, 2002) aims specifically at controlling the
interaction between robots and their environment us-
ing vision. Most of the control techniques used in this
article come from this field, with specific care given
to implementability and reliability.

One of the important achievements of our sys-
tem is the ability to use a pan tilt zoom (PTZ) cam-
era to exhaustively scan a search area while guar-
anteeing that any part of the area will be seen with
enough resolution (Section 4.6). This problem is re-
lated to the mosaicing problem (Teller et al., 2001) be-
cause creating a mosaic requires acquiring a tiling of
images. Compared to our problem, mosaicing typi-
cally requires a regular tiling of the sphere around the

camera and does not consider the choice of zoom to
guarantee observation resolution. Building a cover-
ing tiling for a polygon also has attracted interest in
computational geometry [see Grünbaum & Shephard
(1986) for instance]. Most tiling methods attempt to
create an arrangement of regular polygons (the tiles)
that will cover an infinite plane without gaps or over-
laps between the polygonal tiles. In our context, as
we will detail later, a given camera configuration
provides a way to observe a polygonal area of the
scanned region. In this area, the camera resolution
per unit of surface will vary, and only a subset of the
area may provide enough resolution to accurately de-
tect our crucible. To exhaustively scan a search region,
we have to select a set of camera configurations re-
sulting in a set of observed areas covering the search
region with enough resolution at any point. In com-
putational geometry terms we are trying to cover a
polygonal region with a minimal selection of irreg-
ular polygons minimally overlapping. As a conse-
quence, techniques from the geometrical tiling liter-
ature are not readily applicable.

It is also important to note that a number
of companies (including Corecon and Omnitech
robotics) provide autonomous forklifts for indoor,
warehouse environments. Most use laser-based so-
lutions, mainly due to the high reliability of fea-
tures detected with these sensors. But to the authors’
knowledge, no generic, vision-based, outdoor forklift
is commercially available today.

3. SYSTEM DESCRIPTION

Our HMC has been automated to the level where
it can carry out all the operations of a convention-
ally operated vehicle with a driver onboard. How-
ever, whereas the driver of a conventional HMC is re-
sponsible for the efficiency, safety, and sensing for the
operations, the autonomous HMC has onboard sys-
tems to take this role. Apart from the obvious inter-
nal sensors that provide information about the state
of the vehicle (e.g., temperature, oil pressure, odom-
etry, hook height, and mast tilt), the vehicle has ex-
ternal environment sensors to assist with navigation,
obstacle management, and crucible handling tasks.
Four scanning laser range finders (SICK LMS 2911)
are positioned around the vehicle (Figure 3) and are

1For interested readers, we use the LMS 291-S05. This laser scanner
provides 0.5-deg resolution over a field of view of 180 deg with an
effective range of 30 m with 0.01-m resolution. In addition to the
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Figure 3. The HMC’s lasers are located at each corner of
the vehicle, tilted down by approximately 4 deg. They of-
fer overlapping coverage out to approximately 30 m. They
are used for localization in the navigation phases and for
obstacle avoidance.

tilted down by 4 deg to provide 360 deg of coverage
to a distance of approximately 30 m. However, there
are still blind spots close to the vehicle (Figure 3).
These lasers are used to provide beacon-based local-
ization and obstacle detection [see Section 3.1 and
Tews, Pradalier, & Roberts (2007)]. Localization us-
ing laser and beacons would be accurate enough to
achieve the crucible handling task if only the crucible
was guaranteed to be delivered always at the same
place, with an accuracy better than 5 cm. As this is not
a realistic requirement when crucibles are handled by
industrial cranes and swinging hooks, a more flexi-
ble method was needed. To this end, a pair of PTZ
web-cams (Figure 4) was attached to the mast, to be
used as primary sensors for locating the crucible via
markers on its handle. The use of computer vision for
crucible handling is the main topic of this paper.

The autonomous HMC’s safety system consists
of a number of physical interlocks, emergency stops
(E-stops), obstacle detection, and on- and off-board
radio frequency (RF) remote fail-safe and software
watchdogs. The E-stops are located around the ve-
hicle, inside and on the portable remote RF device.
Activating an E-stop brings the vehicle to a quick
halt, and the engine is shut down. Hydraulic controls

range data, the laser provides a reflectivity flag that is nonzero only
on retroreflective material.

are frozen at this point. Door interlocks are also in-
cluded in the E-stop loop to prevent access to the ve-
hicle when it is running autonomously. The software
safety systems consist of high-level velocity control
when objects are detected close to the vehicle and
low-level watchdog checks between interface level
software and the low-level control software. A time-
out on the watchdog initiates an E-stop.

Figure 5 provides a high-level view of the soft-
ware and hardware architecture of the autonomous
HMC’s systems. Low-level components such as
throttle, brakes, steering, hook, and mast controls are
controlled through programmable logic controllers
(PLCs). The critical safety components, such as the
E-stop buttons and the watchdog monitor, are con-
trolled through higher grade, fail-safe PLCs. These
PLCs provide redundancy checks of relay connec-
tions and continuously monitor the input and output
state of hardware connections.

The Hardware (H/W) Abstraction program con-
verts the internal vehicle state sensors to human-
readable signals and manages the vehicle demands
in an opposite manner. High-level programs work
directly with the external sensors and vehicle state
to control the vehicle. Vehicle-level programs control
and monitor the vehicle hardware systems.

3.1. Localization and Navigation

The localization system (Tews et al., 2007) is com-
posed of laser range finders detecting retroreflective
beacons placed around the environment. It uses the
vehicle’s encoder-based odometry as a motion refer-
ence but provides better accuracy because odometry
suffers from drift and inaccuracies, depending on the
tire pressures and load and road surface conditions.
A full payload for the HMC weighs approximately
10 t, which distorts the tires and affects odometry
readings. In many applications, global positioning
system (GPS) is a useful sensor for outdoor-only
operations. Differential, wide-area augmentation
system (WAAS), and real-time kinematics (RTK) GPS
can provide higher accuracy than normal GPS with
precisions in the range of 2 cm to several meters.
However, GPS accuracy depends on many factors,
including visibility of a significant number of satel-
lites in the GPS constellation and a relatively clear
path from the GPS and differential base stations to
the vehicle’s receiver. Around our work site (and in a
typical smelter), none of these factors are maintained
because the vehicle operates inside and between
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Figure 4. The mast-mounted PTZ web-camera used for locating the crucible. Left: placement on the forklift mast; right:
zoomed-in photo of the camera inside its weatherproof casing.

large buildings and around roadways surrounded
by tall trees. This results in significant multipathing
and signal loss or complete dropout in some areas.
Therefore, a local rather than global localization
solution is required.

The navigation system uses way points derived
automatically by manually driving the required route
of operations. Way points are recorded after a cer-
tain change in distance since the last way point or
a certain change in vehicle heading. Each way point
also contains a velocity so that ramping speeds can
be utilized for smoother navigation. The resulting
way-point list is split into task segments with each
segment being a homogeneous action such as a for-
ward traverse (used for normal navigation) or back-
ward traverse (used for crucible manipulation tasks).
Within a segment, the navigation system switches to
the next way point on the list when it is close to the
current way point. The mission program (Section 3.3)
handles switching between tasks.

Currently, the obstacle management system is
simply a velocity-reduced gradient envelope sur-
rounding the vehicle. As obstacles get closer to the

vehicle, the vehicle slows and will eventually stop
if they are too close. This behavior can be disabled
when operating close to infrastructure such as when
entering a narrow doorway. When reversing toward
the crucible, the sector surrounding it is blanked so
that it will not be considered as an obstacle. These
simple rules have worked adequately for our cur-
rent operations, but we are improving the system to
be more flexible to the current environment and task
state. For example, the sensitivity of the field for con-
sidering an object to inhibit HMC operations will be
different when operating in open areas and when it is
operating in the confined space of a shed.

3.2. Crucible Operations

The key functionality of a HMC is its ability to han-
dle the crucible. Two main operational phases can be
distinguished: crucible pickup and crucible drop-off.

Crucible drop-off Drop-off is an easy maneuver
from an automation point of view. No sensing is re-
quired, and a simple ballistic maneuver is sufficient
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Figure 5. HMC system architecture. The program blocks are shown in boxes or ellipses with leaves representing physical
parts of the system.

(Figure 6). The maneuver can be decomposed into
three steps: first, lowering the hook so as to lower the
crucible on the ground, then moving away from the
crucible while lowering the hook to bring the handle
to its rest position, and finally moving 15 cm away
from the crucible to clear the hook from the crucible.

Figure 6. Schematic of the hook movement during a drop-
off maneuver.

Crucible pickup The pickup maneuver is more chal-
lenging than the drop-off. It can be divided into two
steps: first, an approach step in which the hook is vi-
sually guided toward the pickup point in the middle
of the crucible handle (Figure 7), and then the actual
pick up. The latter is an easy maneuver, again a bal-
listic movement, similar to a drop-off (Figure 6).

Approaching the crucible requires a continu-
ous estimation of the crucible’s pose relative to the
HMC’s hook. An onboard camera provides this infor-
mation using techniques presented in Section 4. Con-
sidering the nonholonomic properties of the vehicle,

Figure 7. Crucible approach trajectories and variables.
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Figure 8. Example of a real approach trajectory.

the HMC servos to the line orthogonal to the crucible,
passing through the pickup point (Figure 7).

The approach trajectory is executed at constant
speed v (e.g., 0.4 m/s) while the steering of the vehi-
cle is controlled using the standard pure pursuit con-
trol law (Hebert, Thorpe, & Stentz, 1997):

·
θ = Kθ�θ + Kyv

sin �θ

�θ
�y, (1)

where Kθ and Ky are tunable gains,
·
θ is the rotation

speed from which a steering angle can be computed,
and other variables are illustrated in Figure 7. De-
pending on the initial error, this controller may bring
the vehicle to the pickup line. This usually requires
two conditions: the initial alignment error (|�y| and
|�θ |) must not be too big, and the distance to the cru-
cible (|�x|) must be sufficient to implement the ma-
neuver. Then the pickup can continue successfully.
Otherwise, we need to reliably detect this failure and
generate a mitigation strategy. In our implementa-
tion, we must ensure that the final position of the
vehicle presents a value of |�y| smaller than 0.15 m
and an orientation error smaller than 20 deg. These
values are arbitrary and adapted empirically to our
system. This cannot be considered a reliable failure
detection yet because these errors can be the result
of camera misalignment or other inconsistencies in
the crucible sensing process. We are currently adding
sensing modalities to obtain several ways to confirm,
with increased dependability, that the hook engage-
ment has been successful.

To illustrate the pickup maneuver, Figure 8 gives
an example of an approach trajectory captured dur-
ing our 5-h continuous trial (Section 5).

3.3. Mission Control and Recovery

The mission controller is responsible for switching
between tasks and monitoring their performance. A
task may be “drive along a section of road,” “drop off
the crucible,” “start up the engine,” or even “blow the
horn.” Currently a mission is a sequence of tasks with
each task returning its status during execution. Once
a task has finished, the mission controller selects the
next task. Contingencies occurring during task exe-
cution cause the mission controller to select the con-
tingency subtask for that task. For example, a missed
crucible pickup will trigger a “missed approach” sig-
nal and the HMC will move away from the crucible
and retry the approach maneuver.

Practically, the mission controller is composed of
two parts: a task executer and a task scheduler, which
interact as illustrated in Figure 9. The task executer,
written in C or C++, contains modular code to im-
plement each registered task. For instance, the “start
up the engine” task sends the start-up signal to the
low-level interface, waits for the engine revolutions
per minute (RPM) to stabilize to a usable level, and
terminates with a success signal. If the engine RPM
stay null for too long, the task terminates with a fail-
ure signal. The task executer is also responsible for re-
ceiving task execution requests and handling the ini-
tialization and completion of the tasks.
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Figure 9. Overview of the mission control architecture.

The task scheduler (written in Python) uses the
mission description to schedule each task in se-
quence. To this end, it sends execution requests to the
task executer and waits for termination, raising an ex-
ception if the status is an error.

The mission controller is a generic component
of our system: only the task implementations are
specific to the HMC. For this reason, it is cur-
rently used on several of our platforms, includ-
ing an autonomous submarine (Negre, Pradalier, &
Dunbabbin, 2007).

This framework allows for automatic mission
planning and even dynamic on-line mission re-
planning. Nevertheless, these functionalities were
not part of the initial requirements for the HMC
application. Missions described in Section 5 were
hand planned, with built-in contingency plans. Algo-
rithm 1 gives an excerpt of a plan included in a long-
duration mission.

Algorithm 1 Example of mission plan, with contingency
management

# Read current pose

pose.read()

try:

# First try to servo to recorded

# position of the crucible

mi.servoto mem()

# Pick up the crucible

mi.pickup()

except MissionError,me:

try:

# If it fails, go back to scan

# location

mi.servoto point(pose.x,pose.y,pose.

heading)

# Try a different type of pick up

# (long range pick up)

mi.lrpickup(scanregion.x,

scanregion.y)

except MissionError,me:

# If this fails, then ask for human

# intervention

print "Cannot find crucible for

pick up, please pick up manually"

mi.wait manual reset()

4. VISION-BASED OPERATIONS

4.1. Challenges and Objectives

To perform a reliable crucible pickup, it is necessary
to have a reliable crucible localization system. Several
solutions can be envisioned. The more obvious one
requires using the vehicle’s localization system and
a memory of the last crucible drop-off location. Un-
fortunately, this will fail if crucibles are handled by
other vehicles without a localization system such as a
crane in smelter operations. It would also be possible
to use the laser range finders to detect and localize
the crucible from the shape of its hull. This solution
would certainly be reliable, but in our current setting,
the lasers are located too high on the vehicle to get
a good view on the crucible. Changing their position
would reduce the efficiency of the vehicle localization
and obstacle detection systems.

The crucible localization system we present relies
on computer vision. This, in itself, creates challenges
and opportunities. The challenges occur because out-
door computer vision is known to be complex due to
such difficulties as uncontrolled lighting conditions
or unstructured and uncontrolled environments. Im-
plementing an accurate and reliable computer vision
solution in these conditions requires a carefully en-
gineered solution. On the other hand, a camera is
a much more interesting perceptual medium than a
laser range finder. It has a much larger field of view
and provides details more densely reported in its
field of view.

In summary, this section will describe how we
used PTZ cameras to localize the crucible handle,
and more specifically the handle eye, in which the
HMC hook must be inserted before lifting the cru-
cible. This requires localizing the handle eye within
±10-cm lateral accuracy and ±5-cm longitudinal ac-
curacy. It is important to realize here that the hook can
be controlled only vertically from the vehicle (tilting
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the mast does not significantly move the tip of the
hook) and as a consequence these accuracies can be
achieved only by accurately positioning the whole
vehicle, which is 6 m long and 2 m wide, with strong
nonholonomic constraints.

4.2. Landmark Choice

We chose to maximize the resilience of our system to
external perturbation by using artificial fiducials at-
tached to the crucible. These fiducials will be used
to provide the position of orientation of the crucible
handle. In our application, it is not required to ob-
tain a full 3D position and rotation: as we will de-
tail further on, in our specific setting, the localization
problem can be reduced to a planar problem. Also,
although obtaining a crucible identification from the
fiducials will be useful in future deployment of the
system, it was not required for our setup and has not
been addressed in the context of this paper.

Most existing vision-based industrial applica-
tions use motion capture fiducials, that is, small disks
with black-and-white quadrants (Garibotto et al.,
1998; Seelinger & Yoder, 2006). These fiducials pro-
vide strong corners and may be good enough for an
indoor controlled environment, but they are not dis-
tinctive enough for reliable outdoor detection.

In the context of industrial computer vision,
some more informative landmarks have also been
proposed (e.g., ARTag and QRCode) and compar-
ative studies presented: see Claus and Fitzgibbon
(2004) or Zhang, Fronz, and Navab (2002) for in-
stance. These landmarks are designed to be very in-
formative; some of them even carry information bits
or error correction codes. On the other hand, they
are sensitive to occlusion and scratching and we es-
timated that they would not be detected reliably
enough over the intended range of distances.

Instead, we chose to use self-similar landmarks,
as described by Briggs et al. (2000) and shown in
Figure 10. These have been shown to be very reliably

Figure 10. Self-similar landmark as described in Briggs, Scharstein, Braziunas, Dima, and Wall (2000).

detected, especially in an indoor setting. Formally, the
requirements are as follows: a pixel line of the cam-
era must cut the black/white transitions in the im-
age of these fiducials with an angle bigger than 45
deg. Furthermore, the fiducial must appear with a
width larger than the detection window in the image,
i.e., typically 40 pixels. Once these two conditions
are fulfilled, the detection is not sensitive to perspec-
tive effects, shearing, or small rotations. Addition-
ally, this landmark is very resilient to lighting condi-
tion changes, change of scale, partial occlusion, and
scratches. This is especially valuable for a “ruggedi-
zed” implementation, as required in a real industrial
setting. It is also important to note that the fiducial
detector will not detect a mirror image of the land-
mark.

Nevertheless, in an outdoor environment, we
found that the landmark suffers from two main de-
fects. First, it is salient horizontally (or more gener-
ally, on a direction perpendicular to the stripes), but
the estimation of its vertical position is more sensi-
tive to noise and more uncertain: strong contrasts,
JPEG encoding, sensor saturation, or image slant can
make the vertical position of the fiducial very unre-
liable. Then, if we consider an application in an in-
dustrial environment, corrugated iron, used to cre-
ate shed walls, can create a nearly self-similar pattern
when observed with enough perspective. In this in-
frequent case, this can generate large numbers of false
positives.

To increase the robustness of our landmark, we
have tested two alternatives: an orthogonal landmark
made of two self-similar patterns patched together
with a 90-deg rotational offset and a circular land-
mark where the self-similarity is radial instead of be-
ing axial. The orthogonal landmark is depicted in
Figure 11. The circular landmark is less sensitive to
rotation and motion blur, but more sensitive to oc-
clusions than the orthogonal one. Also it is easier to
align the orthogonal landmark with an existing struc-
ture because its reference point is located along one
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Figure 11. Orthogonal landmark (right version): The small
disc is the reference point of the landmark.

of its edges. Orthogonal landmarks can be made in
two versions, with each being easily distinguishable:
a left version, where the horizontal landmark goes
from left to right, on the right of an up-to-down ver-
tical landmark, and a right version, resulting from a
flip of the other one over the vertical axis. The latter is
shown in Figure 11. The possibility to create two eas-
ily distinguishable landmarks and the accurate align-
ment of the orthogonal landmarks were the com-
pelling arguments for their use in this application.

To detect an orthogonal landmark, we use the
self-similar landmark detector described in Briggs
et al. (2002). This gives the position of the horizon-
tal and vertical landmark. A pair of landmarks can
be considered an orthogonal landmark if the distance
between them is small and the difference of orienta-
tion is close to 90 deg. If these conditions are verified
we can estimate the location of the orthogonal land-
mark reference point (Figure 11) in the image.

As a final note on our landmark design, we im-
plemented our landmarks by having them printed
with UV-resistant inks on rigid surfaces. This in-
creases their cost but is critical for items that will
spend a major part of their life span outdoors. To
date, our landmarks have been on our crucible for
18 months, and they endured this time in Australian
subtropical sun and heavy rainfalls without signifi-
cant performance degradation.

4.3. Landmark Projection

To localize the crucible, we need to detect the fidu-
cials attached to it, and from their location in the im-
age, estimate their position with respect to the HMC’s
hook. Figure 12 shows the crucible handle and the

two fiducials attached to it, as seen from the mast
camera.

Let us first define the target plane as a plane par-
allel to the ground passing through the fiducial ref-
erence points. We can assume that when the HMC is
approaching the crucible, the hook is also located in
this plane.2 Using this definition, and assuming that
the ground is locally flat around the crucible, we can
reduce the general fiducial localization problem to a
simpler localization in the target plane.

Our camera is mounted on a PTZ head attached
to the forklift mast. Knowing the camera model, the
PTZ parameters, and the pose of the camera with re-
spect to the hook, it is possible to build a one-to-one
mapping between image pixels and their projection
onto the target plane. In addition, given a point in
the target plane, it may be possible to find a unique
pan-tilt configuration that makes this point visible in
the center of the image frame. Our PTZ head is in-
stalled such that this mapping exists for any point of
the target plane located between the HMC and the
crucible. The PTZ system provides a pan/tilt accu-
racy of the order of 0.5 deg, resulting in landmark lo-
calization accuracy of about 2.5 cm when the crucible
is closest. Using our camera with a constant field of
view of 42 deg, we were able to detect the visual land-
marks until 7 m from the HMC hook point. Misalign-
ment of the pan/tilt encoder can happen (although
very seldom), resulting in a considerably reduced
system reliability. As a consequence, an alignment
checking function would be required. Implementa-
tion of this function and mitigation strategies are the
subject of ongoing research.

4.4. Crucible Localization and Tracking

4.4.1. Localization

The approach to the handle must be done on a tra-
jectory perpendicular to the handle; consequently, we
need to estimate not only the pose of the handle’s eye,
but also the orientation of the handle bar. To reliably
and accurately determine the orientation of the han-
dle, we set up two orthogonal self-similar landmarks
(one left and one right).

Using the landmark extractor described by
Briggs et al. (2000) and the mapping from the im-
age frame to the target plane, it is straightforward to

2The crucible handle is a large object whose height to the ground is
known and constant.
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Figure 12. Fiducials and their placement on the crucible (as seen from the PTZ camera).

localize the handle. To be robust to multiple possible
perturbations, the handle localization is integrated
into a particle filter (Doucet, De Freitas, & Gordon,
2001) and fused with movement information coming
from the vehicle odometry.

In principle, a particle filter uses a set of samples
(particles) to represent a probability distribution re-
sulting for a Bayesian filtering process. Formally, if
we let Xt = (x, y) be the state of one of the handle
ends at time t , Zt the observation of a fiducial at time
t , and �u

t the vehicle displacement between times
t and u, then the goal of the particle filter is to
estimate

P
(

Xt |Zt1 . . . Ztn �τ2
τ1

. . . �τm

τm−1

)

.

To this end, the filter relies on two models: the ob-
servation model P (Zt |Xt ) that predicts a fiducial ob-
servation and a displacement model P (Xtk |Xtk−1

�
tk
tk−1

)
that predicts the motion of the particles.

It must be noted that any recursive state estima-
tion technique would be suitable for this task, es-
pecially a Kalman filter. The choice of a particle fil-
ter was motivated by the nonlinearity of the system
and by technical aspects such as the availability of
the source code from another part of the project and
the ease of visualization. The heavier computational
requirements of a particle filter were not critical in
comparison with the fiducial detection part of the
system.

The localization is implemented as follows. We
use two instances of a particle filter. Each one uses
200 particles to track the position (x, y), in the target
plane, of one side of the handle. From the segment
formed by these two estimates, it is then possible to
evaluate the orientation of the handle and the posi-

tion of the hook insertion point, given as the middle
of the segment. All the coordinates are expressed in
the vehicle frame, as if the vehicle were static and the
crucible moving. This representation has been chosen
to simplify the expression of the hook control as a ser-
voing to zero.

When a landmark is identified in the image
frame, its position is mapped to the target plane and
used as an observation to update the particle filter
estimate. Formally, this means that Zt is the projected
position (xf , yf ) in the target plane of a detected fidu-
cial. The observation model used is then

P (Zt = (xf , yf )|Xt = (x, y)) �G(Xt , �Z),

where G(µ, σ ) is the Gaussian distribution of mean µ

and covariance σ . Another possible model would be
to consider directly the fiducials position in the im-
age as observations. In our implementation, the addi-
tional complexity was deemed unnecessary.

In between visual observations, the vehicle
odometry is used to infer the motion of the handle
in the target plane. Between t1 and t2, the vehicle dis-
placement is a translation Tv and a rotation Rv . By
changing the reference frame, this can be expressed
as a translation �

t2
t1 of the observed fiducial. The re-

sulting displacement model is

P
(

Xtk |Xtk−1
�

tk
tk−1

)

�G
(

Xtk−1
+ �

tk
tk−1

, ��

)

.

In practice, both fiducial observation and odometry
measurements run at different rates: the odometry
information is sampled at 20 Hz, whereas the in-
formation on landmark localization is generated at
2–3 Hz, when the camera is focusing on the tracked
landmark.
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In this implementation, we had to take special
care in the management of the processing delays, es-
pecially when receiving two video streams. Owing to
time sharing on the CPU, and to the shear compu-
tational cost of the operation, there can be a signif-
icant delay, up to 0.5 s, between the availability of
an image and the end of the self-similar landmark
extraction. It is then necessary to backtrack the par-
ticle filter localization estimate, in order to integrate
the landmark observation at the time the image was
captured.

The output of both particle filters is a probabilis-
tic estimation of the handle ends. Using the a priori
knowledge of the handle length and the spread of the
particles, we can evaluate whether the estimated han-
dle length is compatible with the reality and wait for
this estimation to converge to a consistent value be-
fore allowing the HMC to move. It is also possible
to use the handle length to constrain the position of
one landmark when only the other one is being ob-
served. This type of nonlinear constraint would be
the only compelling reason for choosing a tracking
implementation based on a particle filter over an ex-
tended Kalman filter, given the otherwise low nonlin-
earity of the system. In practice, we tested the use of
this constraint while using a single camera and found
it added little accuracy given the low update rate.
When using two cameras, we disabled this constraint
because it is much less frequent to observe only one
landmark.

4.4.2. Visual Tracking

While the HMC is approaching the handle, the cam-
era is controlled in pan, tilt, and zoom to ensure that
the landmark stays in the image frame and is visible
with enough resolution. This is implemented by con-
trolling the PTZ head so as to put the current position
estimate in the center of the image.

To observe both sides of the handle, we make the
camera focus for 2 s on each landmark. While the ve-
hicle is far from the handle, both landmarks stay vis-
ible together. For the last meter of the approach, the
landmarks cannot be seen together because the max-
imum field of view of the camera becomes too small.
Consequently, each landmark can be tracked for only
two seconds out of four.

In the current stage of our development, with
only one crucible available, we have not developed
any specific identification software. Our landmarks
are distinctive enough to avoid any false positives

and to identify each side of the handle without
ambiguity.

Nevertheless, in a real industrial site, where all
crucibles would be marked with similar fiducials, the
handle identification would have to be dealt with
properly. Using geometric constraints in a way sim-
ilar as in the Joint Compatibility Data Association
(Neira & Tardos, 2001) is likely to be successful here.
Adding a unique tag to the handle would also help in
identifying individual crucibles.

4.5. Multicamera Integration

To improve the accuracy and robustness of our
system, we decided to use two PTZ cameras. Using
multiple sources of observations integrates naturally
in the particle filter framework. Two possible uses of
the multicamera/multilandmark system are possible:
Either each camera stares at only one landmark, or
each camera observes each landmark alternatively.

The advantage of having one camera per land-
mark is that it requires fewer PTZ movements and
consequently increases the efficiency of camera us-
age. On the other hand, if one of the cameras fails or
becomes inaccurate, then the associated landmark is
no longer tracked accurately.

To improve robustness, we chose to have both
cameras looking alternatively to each landmark. Ide-
ally, we would want to detect that one camera is be-
coming inconsistent or unreliable, and only then start
panning the other camera between landmarks. Fu-
ture work therefore includes more robust identifica-
tion and mitigation of camera failures.

4.6. Long-Range Crucible Discovery
and Pickup

The approach presented in the preceding sections is
adapted to the tracking of a pair of orthogonal self-
similar landmarks. It does not address locating the
crucible in the environment when only an approxi-
mate location is known, for example, it is somewhere
within a 20 × 20 m area. If the area is small enough,
the discovery may be achieved by setting the camera
at a known fixed position, but in most cases, a scan-
ning strategy must be implemented.

In this section, we address the problem of finding
the crucible when the only available knowledge is a
range of locations where the crucible may be, given
as a 2D polygon, called the candidate polygon. As for
the crucible orientation, we assume that it is
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compatible with a detection by the camera. We con-
sider that the polygon is big enough to prevent find-
ing the crucible with a single PTZ configuration. We
also assume that the polygon may extend far enough
away from the camera to require that various level of
zoom be tried to detect the self-similar landmarks.

With these assumptions, our objective is to select
an optimally small set of PTZ configurations guaran-
teeing that any place in the polygon will be observed
with enough image resolution. We refer to this prob-
lem as the “viewpoint problem.”

4.6.1. Optimal Viewpoint

Consider a point P in the candidate polygon. We can
assume that there exists a pan angle and a tilt angle
such that P is visible in the center of the image frame.
The camera zoom is set such that a hypothetical fidu-
cial located at P, ideally orthogonal to the optical axis,
would appear as an object of width w in the image
frame. This construction is depicted in Figure 13. This
tuple of pan, tilt, and zoom will be defined as the op-
timal viewpoint for P .

One of the limitations of this optimal viewpoint
definition is the assumption of orthogonality. In real-
ity, achieving this configuration would require mov-
ing either the camera or the fiducial, both infeasible
in practice. Nevertheless, we justify this assumption
by the fact that in order to be observable by the cam-
era, the fiducial must be close enough from orthogo-
nal to the optical axis (an angle greater than 45 deg
is usually challenging for the vision system). Finally
this assumption provides a practical way to compute
a desired zoom level for the camera to observe the re-
gion around P with a good chance of being able to
detect any fiducial within.

4.6.2. Covisibility

A point Q is said to be covisible to P if it satisfies
two conditions: (i) when P is observed on its opti-
mal viewpoint, Q also appears in the image frame,
outside of a w-pixel margin around the image border,
and (ii) if a fiducial is located at Q, it appears as an
object of width at least wp = 0.8 w in the image frame
(see Figure 13, right). Obviously the distance to the
border and the width of the projected targets are tun-
able values. Empirically, we use w = 50 pixels, and
we define the other parameters as a function of w.
The width of the projected target (wp) must be such
that a target can be detected if its size is at least wp.

4.6.3. The Covisibility Graph

To solve the viewpoint selection problem, we first
discretize it. The candidate polygon is divided into
cells with sides of length similar to the landmark size.
In our case we use 0.5 × 0.5 m cells. For each cell
C, the cell center P is used to compute an optimal
viewpoint for the cell. Then for all cells D around P ,
we evaluate whether the center Q of D is covisible
to P . This enumeration is done by spiraling around
C until no covisible cells are found on a complete
revolution.

We define a covisibility graph as a set of nodes
and directed edges:

• a node is the center of a cell,
• an edge from node P to node Q indicates that

Q is covisible to P .

The minimum acceptable distance dm to the border of
the image frame is linked to wp and also to the appar-
ent size σ of cells in the image frame. If dm is smaller
than σ and σ is of the order of wp, then there is a
possibility that a fiducial located exactly at the border
between two cells may not be visible in any of the im-
age frame observing these cells.

4.7. Solving the Viewpoint Problem

Let us call G the covisibility graph built upon the
discretized candidate polygon. Solving the viewpoint
problem is finding a minimal set of nodes S in G, such
that for any node v in G, there exists an edge of G be-
tween a node of S and v. The resulting set of nodes
is equivalent to a set of viewpoints by mapping the
nodes to their optimal viewpoint.

Algorithm 2 Selection of a set of view points in order to
scan a candidate polygon using one camera

1: Let O be an order of the nodes of G.
2: Let V be the list of nodes of G sorted according to O.
3: Mark all nodes in V as unvisited.
4: for all nodes v in V do
5: if v has been visited then
6: continue
7: end if
8: find a unvisited node w such that v is

co-visible to w and the size of the set of
unvisited nodes co-visible to w is maximal.

9: add w to the selection of view points.
10: mark all nodes co-visible to w as visited.
11: end for
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Optimal pan, tilt, and zoom Covisibility in the image frame

Figure 13. Optimal viewpoint selection and covisibility (Q is covisible to P ).

This problem can be modeled as the well-known
minimum set cover problem (Vazirani, 2004) by asso-
ciating to each node the set of its neighbors and itself.
The minimum set cover problem is known to be NP
hard.

To solve it in a reasonable time on our system we
use the greedy heuristic described in Algorithm 2.

Experimentally, this heuristic can be imple-
mented to run very fast. The complexity of this
heuristic is O(n log n + e), where n is the number
of nodes and e the number of edges. This comes
from the following reasoning. First, the set of nodes
must be ordered, which is at most O(n log n). Then
all nodes are visited once and only once, and for
each node v (cf. lines 4–11 in Algorithm 2), finding w

(line 8) requires considering all neighbors of v. Dur-
ing this process, all edges of the graph are traversed
no more than twice.

When testing this algorithm with various cell-
ordering heuristics, we found very little difference in
the size of the resulting viewpoint set. Nevertheless,
the heuristic is fast enough that we can run it with
various cell-ordering heuristics and select the small-
est set of viewpoints.

The cell-ordering heuristics we chose to use,
without proof of optimality, are the following: the dis-
tance to the camera, increasing or decreasing; the cov-
isibility cardinal, increasing or decreasing; the natural
order of the cell (lexical order of the coordinates); and
random.

Shown in Table I is the size of the resulting view-
point set for the different cell-ordering heuristic for
a square polygon, of 10 × 10 m located 10 m away
from the camera. It should be observed that in this

Table I. Influence of cell ordering on the size of the se-
lected viewpoint set.

Order Plan size

Increasing distance 9
Decreasing distance 8
Increasing covisibility 8
Decreasing covisibility 12
Random order 10
Increasing lexical 8

example very representative of the real use of the al-
gorithm, the choice of order has little influence on the
required number of viewpoints. Experimentally, if we
try to move this square candidate area within 15 m
left and right and from 5 to 20 m in front of the ve-
hicle, the difference between the best and the worst
cell ordering is on average 3 viewpoint only with a
standard deviation of 2. This is consistent with what
we have observed for any real experiments. Never-
theless, our test showed that none of the ordering
heuristics in this table was always best. As a result
of the low computational cost of the viewpoint selec-
tion heuristic, we can test these orders and pick the
best results.

An example of a resulting viewpoint selection
is shown in Figure 14. Each viewpoint is associated
with a set of visible cells. The convex hull of this set
of cells defines the projected polygon associated to a
viewpoint. Owing to the resolution constraint and the
candidate polygon discretization, the projected poly-
gon is not a quadrilateral, as would be expected from
the homographic projection of the image frame.
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Figure 14. Projection of image frames corresponding to se-
lected viewpoint onto the target plane: each polygon shows
which part of the target plane is visible with enough reso-
lution in a given frame.

Figure 14 shows how the candidate polygon is
covered by the projected polygons generated from
the set of viewpoints. In this figure, each polygon
is represented transparently to show how the view-
points overlap. It is obvious that many cells are ob-
served from at least two viewpoints (Figure 15 shows
how many viewpoints observe a given cell), and in
this respect, the heuristic appears to be potentially
suboptimal. In practice it is fast enough for the size
of problem we are considering, especially when im-
plemented with multiple cameras (Section 4.7.2).

It may be argued that only a limited set of candi-
date polygons need to be scanned and consequently
that the corresponding optimal viewpoint sets could
be computed off-line once and for all. In reality, the
shape of the candidate polygon may be unique, but

Figure 15. Number of viewpoints (color scale from 0 to 4)
observing each cell in the target plane with enough resolu-
tion, for the viewpoint selection in Figure 14.

its position with respect to the vehicle reference point
will change for any search, depending on where the
vehicle stops to perform the search. Given the accu-
racy of the vehicle localization and control, it may
be valid to ignore these changes and to always per-
form the same scanning pattern, with the advan-
tage of more repeatability and determinism. On the
other hand, computing the search pattern on-line pro-
vides a more flexible solution at the cost of very
little computation time. This might become useful
when dealing with an environment where multiple
vehicles handle the crucibles with various degrees of
accuracy.

4.7.1. Viewpoint Plan Execution

Once a viewpoint set has been selected it is exe-
cuted by actually moving the camera to each view-
point in sequence until both sides of the handle have
been observed. At each position, an image is captured
and processed to extract orthogonal self-similar land-
marks. At this point, it is essential not to have false
positives, and fortunately the orthogonal self-similar
landmarks are distinctive enough that we have never
observed any. The detected landmarks are then fed
into the particle filter, as described in Section 4.4.

Once the plan has been completed, the landmark
tracker (Section 4.4) is activated and subsequent ob-
servations are used to refine the landmark position
estimation.

It is essential to be able to evaluate whether the
plan execution has effectively been successful in find-
ing the crucible. In our current implementation, in
which the crucible is the only object with attached
landmarks, this is achieved by simply checking that
both extremities of the handle have been observed
during the scan.

4.7.2. Multicamera Viewpoint Selection

The approach described previously can be adapted to
plan a set of viewpoints for multiple cameras. Several
approaches can be envisioned: we can either build
an independent plan for each camera or build a plan
with a minimally small set of viewpoints shared be-
tween the cameras. We can also try to build a plan
that can be achieved in minimum time, even if it may
have a suboptimal number of viewpoints.
Building an independent plan for each camera This
solution provides the most reliability because all
places in the candidate polygon will be scanned
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twice, once by each camera. It can be implemented
by simply running the previous heuristic twice and
then executing the scan plans independently. It is also
the slowest approach because it takes as long as the
longest camera.
Finding an optimally small set of viewpoints using
both cameras Algorithm 2 can be adapted to share
the set of viewpoints to cover between each camera.
It can then find the smallest set of viewpoints of the
three approaches proposed in this section, but it does
not try to balance the number of viewpoints given to
each camera. As a result, if implemented in parallel,
the global scanning duration is the scanning duration
of the camera with the biggest set of viewpoints to
process.
Finding the shortest plan If the cameras are con-
trolled in parallel, the shortest time will be achieved
by distributing the viewpoints evenly to the cameras.
To implement this, we need to modify the definition
of the covisibility graph and adapt the heuristic. An
edge in the covisibility graph will now be associated
with a camera: a node Q is covisible to P using cam-
era C if Q is visible when P is observed by C on its op-
timal viewpoint. The resulting heuristic is described
in Algorithm 3.

Algorithm 3 Finding a view point selection to scan a
candidate polygon with several cameras

1: Let O be an order of the nodes of G.
2: Let V be the list of node of G sorted according to O.
3: Mark all node in V as unvisited.
4: C:= first camera.
5: for all node v in V do
6: if v has been visited then
7: continue
8: end if
9: C:= next camera that can see v

10: find an unvisited node w such that v is
co-visible to w using C and the size of the
set of unvisited nodes co-visible to w using
C is maximal.

11: add the pair (w, C) to the selection of
view point.

12: mark all nodes co-visible to w using C as
visited.

13: end for

Figure 16 shows a typical result obtained using
this approach and two cameras. The final number of
viewpoints is still eight, but it can be appreciated that

Figure 16. Projection of image frames corresponding to se-
lected viewpoint onto the target plane: optimal viewpoint
for two cameras while trying to balance the camera use,
blue polygons correspond to the area viewed by camera 1;
red ones are viewed by camera 2.

each camera will deal with four viewpoints. A paral-
lel implementation will have scanned the candidate
polygon in only four camera movements.

4.7.3. Discussion

We have identified two aspects that need refinement
in the future: First, similar to the approach tracker,
the long-range crucible detector needs to include geo-
metric information (e.g., the known distance between
landmarks) to validate the detections. This would
also help in the development of better identification
of the nondetection cases. Second, when the plan ex-
ecution fails to find the crucible, some actions are re-
quired to try to find it. The definition of mitigation
strategies is a problem that is difficult to address in a
reliable and robust manner, but we consider this and
the previous points as critical future work directions.

As discussed previously (Section 4.5), to take ad-
vantage of multiple cameras, proper management of
camera failures should be implemented. If one cam-
era failed, the current viewpoint selection should be
aborted and a new plan for the remaining camera
should be evaluated. Alternatively, the new plan may
cover only the part of the candidate polygon that is
still to be scanned. This strategy has not been evalu-
ated yet on our system.

5. SIGNIFICANT EXPERIMENTS

Repeatability and reliability are paramount to using
an autonomous vehicle for continuous operations.
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We have successfully conducted numerous sched-
uled and unscheduled demonstrations of the au-
tonomous HMC. We have also scheduled demonstra-
tions of capability over prolonged periods toward
creating dependable operations. The autonomous
HMC has been operational for more than 1 year,
and we have now conducted more than 200 h of au-
tonomous missions. In this section, results from the
two most significant demonstrations are presented.
These consist of 5- and 2-h experiments in which the
vehicle was completely independent of human con-
trol except for a safety supervisor. The crucible was
filled with 3 t of solid concrete to simulate a partial
payload. We determined that a partial load was suf-
ficient for our demonstrations and is less stressful on
the vehicle than a full payload.

5.1. Setup and Goals

The goals of the 5-h experiment were to demonstrate
short-distance, highly repeatable navigation and cru-
cible operations. It also allowed us to examine the ef-
fects of continuous operations on the accuracy of nav-
igation and crucible operations. Vehicles operating
over long time periods will have subtle changes
in their dynamics; for example, as the vehicle and
computer hardware get hotter, the response times to
commands can change. The vehicle operations were
conducted in a large constrained concrete area (in-
side the blue box in Figure 17) running a basic contin-
uous mission of navigation and crucible operations.
All crucible detections were conducted by a single
camera.

Figure 17. The path (yellow) of the 2-h experiment. The
crucible pickup and drop-off occurred in the open area at
the end of the path on the left, and the in-shed operations
were conducted in the large shed in the upper right. The 5-
h experiment was conducted in the large area surrounded
by buildings indicated by the blue box.

Table II. Key statistics from the 5- and 2-h experiments.

Total Cycle Velocity Cruc.
Experiment dist. dist. range ops.

5 h 8.5 km 0.3 km −1.1:1.6 m/s 58
2 h 6.5 km 0.93 km −1.4:3.0 m/s 14

The goals of the 2-h experiment were to demon-
strate operations over a longer distance in various
types of environment with in-shed crucible opera-
tions. Figure 17 shows the vehicle path (yellow) for
the 2-h experiment on an aerial map of the environ-
ment. Note that the path traverses buildings and a
narrow roadway surrounded by bushland. The mis-
sion was set up for a complete set of vehicle op-
erations, including start-up and shutdown, and the
challenge of having to initially find the crucible in
the environment because its precise location was not
known. There were two locations for crucible opera-
tions: an open area and the confined space of a stor-
age shed. The difference with the 5-h experiment was
that it used two cameras for all crucible operations.
This is mostly because the relevant hardware and
software were developed and installed during the
6 months between the two experiments.

5.2. Results

Table 2 summarizes the main statistics from the ex-
periments. The Total dist. is how far the HMC trav-
eled during the experiment. The Cycle dist. is the dis-
tance traveled in each iteration. The Velocity range
is the maximum and minimum velocity the vehicle
traveled, and the Cruc. ops. field is the total number
of times the crucible was picked up and dropped off.

5.2.1. Reliability

In each experiment, only a single intervention was re-
quired by the supervisor. For the 5-h experiment, the
battery in the supervisor’s safety remote went flat af-
ter approximately 4 h. This caused an E-stop to be
triggered on the vehicle, which brought it to an im-
mediate halt, and it shut down. The battery was re-
placed and the vehicle restarted. At the time of the
stoppage, it was about to pick up the crucible, and
after the restart, it executed a “missed approach” re-
covery procedure and continued uninterrupted op-
erations until the end of the experiment. During the
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2-h experiment, the vehicle failed once to pick up the
crucible. This was mainly due to the vehicle perfor-
mance changing as it got warmer (the day was par-
ticularly hot). The rising temperatures affected the
control limits of the vehicle, causing the brakes to be
more responsive and the engine to rev higher dur-
ing a pickup. An increase in engine RPM was used in
the criterion to determine contact with the crucible,
which triggered prematurely in this case. A manual
pickup was performed, and the vehicle continued its
autonomous mission. This problem did not manifest
again throughout the remainder of the mission. The
failure highlights how even though systematic fail-
ures can be anticipated, there are also the changes in
the vehicle’s physical performance due to environ-
ment conditions to consider. Since this experiment,
we have changed the pickup to not rely on engine
revolutions.

5.2.2. Navigation

A thorough analysis of the navigation system is be-
yond the scope of this paper, and empirical evidence
is provided instead. In both experiments, the naviga-
tion system (described in Section 3.1) was accurate
and reliable from the perspective of vehicle perfor-
mance and an empirical postanalysis of the recorded
vehicle tracks. In the 5-h experiment, the HMC was at
most 15 cm away from its nominal path, which high-
lighted the navigation consistency and accuracy.

In the 2-h experiment, there were several areas
where highly accurate navigation was required: driv-
ing into and out of the HMC’s parking location, trav-
eling along the narrow back road, and entering the
shed where the crucible was being dropped off. In
the HMC’s parking spot, there is a raised mainte-
nance pit over which it drives. The clearance on either
side of the pit to the inside of the wheels is approxi-
mately 20 cm. Along the back road, there is only 0.5-m
clearance on either side of the road where either soft
ground or drop-offs occur. Although this seems like
ample clearance, it represents the longest part of a cy-
cle at the highest velocity, so any deviations in vehi-
cle control can result in a significant displacement of
the vehicle on the path. Operations in the shed where
the crucible was dropped off and picked up had to
be within 10 cm because the entry to the shed is
quite narrow, as can be seen in Figure 18. Once inside
the shed, there is infrastructure on either side of the
vehicle, which meant there was very little room for
maneuvering (Figure 19).

Figure 18. The doorway into the storage shed was nar-
row for the HMC to enter. There was approximately 30-cm
clearance on either side.

Figure 19. In the storage shed, space was limited for HMC
operations.

5.2.3. Obstacle Management

The vehicle’s obstacle management system raised
some interesting issues. In normal operations, HMCs
go close to infrastructure and contact the crucible.
They also travel along long roads where no obsta-
cles should be present. This requires a multivariate
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strategy for determining what constitutes an obstacle,
how to handle obstacles, and what ranges should be
considered for obstacle detection. In our experience,
the answers to these questions are primarily site and
area specific and secondarily vehicle and task spe-
cific. For instance, at our site, if an obstacle is detected
along the long back road, the vehicle needs to halt
because it cannot avoid it, whereas in the open com-
pound area, it may be able to choose a different path
around a detected obstacle. Also, obstacle detection
needs to be smart during a crucible pickup because
the vehicle needs to contact the crucible. Our current
simple strategy is to have a different obstacle detec-
tion profile for when the crucible is on or off the vehi-
cle, and to turn off obstacle detection when entering
an area where the vehicle will go close to infrastruc-
ture, such as when entering the storage shed. We are
in the process of enhancing the obstacle management
system to address the issues mentioned above.

5.2.4. Crucible Pickup

Five-hour experiment The reliability and pre-
dictability of the HMC autonomous maneuver is crit-
ical to its acceptance by industry. As an illustration of
the repeatability of our current implementation, the
vision-based pickup was used for all pickups in our
5-h experiment. Figure 20 shows the superimposition
of half of the 58 pickups performed during this time;
the other half happening at the other end of the path
could not be displayed in this picture. Each line on
this figure shows the path of the tip of the hook dur-
ing a pickup maneuver. These paths were acquired
by hand marking the position of the hook on a video
sequence captured by a static camera. At the same
time, for each pickup, the position of the crucible in
the image was recorded, also by hand marking it.
This specific mission being very repetitive, we expect
the crucible to be always dropped in the same loca-
tion. In Figure 20, the dots overlaid on the crucible
handle show the recorded crucible positions and it
can be seen that they are contained in a small ellipse
of approximately 10-cm radius. It can also be clearly
seen that the paths are well contained in an envelope
whose width is correlated with the ellipse size. Apart
from this analysis, it is difficult to analyze the perfor-
mance of the crucible pickup operation, because it is
either successful or it fails.

Regarding the lighting conditions, this experi-
ment started at noon and lasted until 5 p.m., close
to sunset at this time of the year in Queensland,

Figure 20. Pickup approach trajectories: superimposition
of 29 pickups. The dots and the ellipse around the crucible
handle show the variability of the crucible location across
this set of maneuvers. The top figure shows an overview of
the experiment area, and the bottom figure shows a close-
up on the paths themselves. For reference, the handle width
is about 2 m and the pickup hole approximately 20 cm
across.

Australia. The weather was fine with passing clouds
(cumulus), and the light condition ranged from
bright midday sunlight to reddish sunset illumina-
tion. Shadows were sharp under the sunlight and
very smooth under the clouds. For all the pickups,
both fiducials on the handle had the same lighting
conditions. If one fiducial was in the shade and the
other in bright sunlight, it is likely that due to the lim-
ited dynamic range of the camera, the fiducials may
not be detected successfully.
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For the final pickup, the vehicle had to pick up
the crucible outside of a shed where the lights had
been turned on. The camera was not capable of han-
dling this dynamic range, and we had to turn the
shed light off to let the vehicle find the crucible and
pick it up. A more advanced autonomous system
would have solved the problem by turning its own
lights on, but unfortunately the light control had not
been automated in our system.
Two-hour experiment In the 2-h experiment, three
types of pickup were performed: long-range camera
based, short-range camera based, and known loca-
tion navigation based. When picking up the crucible
based on its known location, the difference between
the current vehicle location and the crucible location
is used as an input to the control law sketched in
Section 3.2. As a consequence, no vision detection is
performed and the overall pickup can be done much
faster, but this solution would not be robust enough
in a situation in which various vehicles are handling
the crucibles.

In most of the crucible operations, the location of
the crucible is recorded on every drop-off and for our
experiments, the crucible is not perturbed from drop-
off to pickup, so this location can also be used for the
subsequent pickup. Nevertheless, this solution was
used in only half of the pickups in this experiment be-
cause the drop-off point was in a tight corridor, and
there was not enough maneuvering space to allow a
vision-based pickup.

For the long-range camera-based pickup, the ini-
tial crucible detection was conducted without the lo-
cation of the crucible being known. Instead, a 20 ×

20 m area was defined to contain the crucible in the
environment. The two onboard cameras applied the
technique described in Section 4.6 to successfully find
the crucible, and then the standard visual servoing
pickup was undertaken. This search for the crucible
was required only for the first pickup. In the follow-
ing vision-based pickups, the recorded position of the
crucible was used as a hint as to where the camera
should initially be pointed. This assumed that the
various sources of uncertainty would not be enough
to prevent the crucible from being visible in this ini-
tial image frame.

The short-range camera-based and known loca-
tion navigation-based pickups were successful for the
duration of the 2-h experiment. Half of the pickups
were performed using the vision-based method, and
the other half based on the known location of the cru-
cible. The navigation pickup was of particular inter-

est because it demonstrated the accuracy of the local-
ization and vehicle control systems. All the pickup
and drop-off locations were inside an ellipsis less
than 15-cm in radius, as can be seen in Figure 21.

6. FAILURE MODE ANALYSIS

As is often the case in complex autonomous sys-
tems, there are various sources of failure, with some
being detectable while others are not. In this sec-
tion, we list some of the possible failures of the dif-
ferent sub-systems, identifying their properties and
solutions.

6.1. Navigation

Vehicle hardware and interface It is possible that
components of the vehicle hardware may fail dur-
ing an autonomous run. Some of these events can
be detected, but there may be no solution except for
aborting the mission. For example, in one particular
situation, a main pneumatic hose was damaged. This
can be detected by monitoring the system pressure,
but no corrective action can be performed by the au-
tonomous system because, as a redundant safety sys-
tem, the vehicle is designed so that a lack of pressure
engages the brakes. Other hardware failures such as
alternator shutdown and battery failure can also be
detected with the onboard sensing, but they cannot
be corrected.

Hardware interfaces (green part in Figure 5) can
fail in three ways: stop provide data, provide incor-
rect data, or implement an incorrect control. We have
currently implemented solutions to the first case, in
which the mission will be aborted, but have yet to do
so for the second and third. Failure detection based
on data consistency is not expected to be difficult, but
this is a subject for further research.
Localization The localization system relies on the
laser range finder and on correct identification of the
reflective beacons. In case one laser range finder fails,
we can continue to localize reliably with the three re-
maining. For localization, only two working lasers
are required to have sufficient field of view in our
environment. In some cases, the laser scanner fail-
ure can be solved by power-cycling them. We have
installed the hardware to implement this kind of re-
mediation, but we have not tested it at the time of this
writing.
Obstacle detection Similarly to the localization sub-
system, the obstacle detection subsystem relies on the
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Figure 21. The 28 traverses into and out of the storage shed during the 2-h experiment. These paths are contained in an
envelope whose radius is less than 15 cm.

laser scanners. If one of them fails, then the vehi-
cle field of view is reduced to less than 360 deg and
this subsystem cannot be used reliably anymore. As a
consequence, the collision avoidance system will stop
the vehicle.
Control The navigation subsystem is responsible for
steering the vehicle along its paths. It can fail in three
main cases: if the path are badly designed, if the lo-
calization fails, or if the vehicle hardware fails. The
two latter cases have been discussed above, so we
will discuss only the case of badly designed paths.
To be tracked reliably, paths must be designed with a
bounded curvature. If the path curvature is not feasi-
ble for the vehicle, the path tracking control law will
fail to stabilize the vehicle on the path. This can be
detected by monitoring the tracking error. In prac-
tice, we avoid this problem by defining only feasible
paths or learning the path from the logs of a human
driver.

6.2. Crucible Handling

Pickup and drop-off The implementation of our cru-
cible pickup and drop-off are ballistic movements. As
a consequence, they can fail if the hook and mast con-
trols are behaving unexpectedly or if the hook posi-
tion sensing is failing. Both cases cannot always be
detected. We have implemented our state machines
with timeouts in order to catch some of the control
failure, but we are aware that this is only a partial
solution. Redundant and multimodal sensing would
certainly be part of a more robust solution to this
subsystem.
Crucible visual detection and tracking Being one of
the most complex components of the system, the cru-
cible detection subsystem is the most prone to failure.
It relies on the mast control to be accurate, the pan-
tilt-zoom control to be working correctly, the camera
sensors to be exporting data at a high enough frame
rate, the crucible fiducials to be set up at the correct
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position and visible, the vehicle to report accurate
odometry, and most important, the vision algorithms
to be able to detect the fiducials.

Because the hardware failure modes have already
been discussed, the main issues affecting the vision
system are listed below:

• The PTZ control of the camera relies on an
accurate calibration of its internal encoders.
This may drift after a few weeks of inactiv-
ity or a period of brown power. We handle
this case by a specific daily start-up procedure
that checks that the control is accurate.

• If the camera frame rate slows, this can be
detected easily but not corrected by the au-
tonomous system.

• The fiducials have been attached to the cru-
cible with industrial-strength tape. In our set-
ting this provides secure positioning on the
crucible and has been in use for more than
2 years of outdoor exposure. On a real cru-
cible, which can be heated close to 700◦C,
heat-resistant paint would be used.

• To ensure that the fiducials are visible, we de-
sign our missions and vehicle paths appro-
priately, and we assume that the crucible is
not moved significantly between drop-off and
pickup.

• The fiducial detection algorithm can fail in
various ways: when the sun (particularly
at sunset) is facing the camera, the whole
environment is too bright (particularly
around midday on a light-colored concrete
patch), or if it is too dark. Currently, there
is no solution to these problems, but we can
ensure that the vehicle goes into a safe failure
state when the fiducials cannot be detected.
Several remedial actions are foreseen but not
implemented: the vehicle could try to switch
its headlights on, or we could try some smart
control of the camera exposure.

• The internal calibration of the camera also
plays an important role in the crucible local-
ization system. We currently rely on this cali-
bration to stay constant, and we check its va-
lidity only in our start-up procedure.

• If the fiducials are too far away from the cam-
era, the resolution at which they appear in
the image can be insufficient to detect them
properly. There are two ways to deal with
this problem. The simple and reliable one is

to ensure that the vehicle is close enough be-
fore initiating the visual servoing maneuver.
It could also be possible to use the camera
zoom as in the long-range search (Section 4.6),
but changing the zoom is a very slow control
and this severely reduces the field of view.

• When the system is very close to the cru-
cible, the fiducials may appear highly slanted,
which makes their detection challenging (due
to the nature of the detection algorithm). A
circular self-similar landmark would help in
this case. Another possible problem at short
range is the very important angular distance
between the two sides of the handle. This
makes controlling the pan and tilt from one
fiducial to the other a long operation, during
which the fiducials are not tracked. Unfortu-
nately, this is the time when we need the most
accuracy in the tracking, because the hook
must be raised as soon as it is engaged in the
handle. To add some redundancy, and to be
less sensitive to localization delays, we have
added a contact sensor on the hook. This sen-
sor guarantees the correct engagement of the
handle.

If any of the above failures occur during a visual
servoing to the crucible, the autonomous solution
is to retry the maneuver, possibly using the long-
range search to ensure that the crucible localization
is found.
Localization-based crucible engagement When the
crucible is dropped off, its position is recorded and
can be used to make a quick pickup maneuver with-
out using the vision system. This approach can fail if
the laser scanners fail, if the vehicle control hardware
fails, or if the localization system is incorrect either at
drop-off time or at engagement time. Hardware fail-
ures have already been discussed above. One way to
detect that this engagement has failed is to check that
a contact has been detected no more than 20 cm away
from the prerecorded position. In case of failure, cor-
rective actions can be achieved only at mission level:
the vehicle can move back to a safe scanning posi-
tion and start the vision system to detect and track the
crucible.

6.3. Summary

As can be seen above, there are many ways our
system can fail. To deal with some of them, we
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have introduced exception management in the mis-
sion control system. Unfortunately, only a few fail-
ure modes can be reliably detected, and even fewer
can lead to a smart recovery action: stopping the ve-
hicle and aborting the mission or calling for help
cannot be considered smart. The only failure modes
we can currently handle reliably and autonomously
are the cases in which the localization-based cru-
cible engagement or the visual crucible engagement
fails.

7. CONCLUSIONS AND FUTURE WORK

We have shown in this paper that it is possible to fully
automate a large industrial materials handling oper-
ation: that of hot metal movement in an aluminum
smelter. At our work site, we have fully automated a
HMC and have demonstrated typical operations of
a production vehicle. Our vehicle is capable of au-
tonomous start-up, shutdown, navigation, obstacle
management, and crucible pickup and drop-off. The
work reported here is focused on the use of vision
as the primary sensor for detecting the load, a 2-t
crucible containing an 8-t load (normally molten alu-
minum, but 3 t of concrete deadweight in our case).

We have addressed the challenge of using a vi-
sion system outdoors, in ever-changing lighting and
weather conditions, by using artificial visual land-
marks (fiducials) mounted on the handle of the cru-
cible. A novel landmark was created using two or-
thogonal self-similar landmarks that proved to be
robust in the outdoor environment.

First, the problem of accurately locating and
tracking the crucible handle so that the HMC could
be visually servoed to pick it up was tackled using
a particle filter–based tracker that also used vehicle
odometry data. This method was further enhanced
with the development of a multi-PTZ camera sys-
tem that increased the accuracy and robustness of the
close-range approach tracker.

Second, the problem of long-range crucible detec-
tion was addressed. A technique was developed that
used the same PTZ cameras as used for the approach
tracker to locate the crucible at a range of 20 m and
where only an approximate estimate of the crucible’s
location was available.

Our system has conducted more than 200 h of
autonomous operations and demonstrated long pe-
riods of high reliability and repeatability. In this pa-
per, we have presented results from a 5-h-duration,

fully autonomous run. This experiment is a signifi-
cant achievement in field robotics as it is one of the
first long-duration autonomous demonstrations that
has a challenging vision-sensed manipulation task
every few minutes. During the 5-h run, the crucible
was handled 58 times and the vehicle traveled nearly
8.5 km. The route distance for this experiment was
relatively short at 0.3 km, and so another experiment
with a longer route was undertaken. This experiment
lasted for 2 h with a route distance of 0.93 km and a
total mission distance of 6.5 km.

Future work on this project includes the testing
of the vision system in the dark (using lights on the
HMC), the development of a more sophisticated ob-
stacle detection system that builds 3D maps of the ter-
rain ahead of the vehicle, and the development of a
robust personnel safety system to automatically de-
tect people nearby. The ultimate goal of the project is
to deploy and test the system at an operational alu-
minum smelter.
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Tractor-trailer reversing is a classical nonlinear control problem in which many of the so-
lutions proposed in the literature perform poorly in the presence of real-world constraints
such as steering angle, rate limits, and lags. In this paper we describe a new method in
which an inner loop controls the hitch angle of the trailer, creating a virtual articulated
vehicle to which existing control techniques can be applied. We provide an analysis of the
stability and convergence properties of this control approach, as well as experimental re-
sults that illustrate the robustness of this approach to model estimation errors, low-level
control loop dynamics, and other disturbances introduced by, for example, state estima-
tion errors. C© 2008 Wiley Periodicals, Inc.

1. INTRODUCTION

Reversing of tractor-trailer systems is a common task
in both recreational and industrial settings. In the
recreational domain, examples of tractor-trailer re-
versing tasks include parking of transportation trail-
ers and the reversing of boat trailers onto boat ramps.
A driver-aid or automation system for performing
such tasks could be of significant benefit for inexperi-
enced or unskilled drivers.

In industrial settings, examples of tractor-trailer
systems include agricultural systems, transportation,
and cargo handling. Generally, drivers in industry are
well trained and experience little difficulty in achiev-
ing a desired tractor-trailer reversing trajectory. How-
ever, a growing number of these tasks are being auto-
mated, for which a robust and reliable control system
is essential.

Most existing approaches address the problem
through the development of complex, nonlinear con-
trollers, which can prove to be difficult to imple-
ment and tune. Furthermore, few, if any, of these ap-
proaches can deal with slow steering loop dynamics
and limits, and many of these methods also fail in the
face of significant noise in the system state estimation.

By reformulating the problem such that the in-
put to the system is the angle between the tractor and
trailer (i.e., the hitch angle) rather than the tractor
steering angle, the system can be treated as a “vir-
tual” articulated vehicle. Closing the inner loop on
the hitch angle can be achieved using a proportional–
integral (PI) controller, and the outer loop on the tra-
jectory can be closed with very simple methods based
on path lateral, longitudinal, and orientation errors.
This paper extends earlier work (Pradalier & Usher,
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2007a, 2007b) by providing a more thorough theoreti-
cal analysis of the properties of this control approach.

The remainder of this paper is structured as
follows: Section 2 defines the problem addressed,
including the kinematic model of the tractor-trailer
system; Section 3 reviews existing approaches and
discusses the problems with these approaches as ap-
plied to platforms with significant underlying con-
trol loop dynamics; Section 4 outlines our approach
to trajectory control and discusses in depth the hitch-
angle stabilization loop; Section 5 describes the plat-
form and the properties of the system considered in
this paper, Section 6 outlines comprehensive exper-
iments validating the approach, and Section 7 con-
cludes the paper.

2. PROBLEM MOTIVATION

The problem addressed in this work is that of revers-
ing a tractor-trailer system onto a preplanned trajec-
tory in the face of very slow steering loop dynam-
ics and steering angle range limitations. The system
should also be tolerant to noise in the available pose
estimates. Additionally, as the system is targeted as a
driver aid or as an automation system for industrial
robots, it should rely on minimal computational and
sensory resources, be easy to implement and tune,
and be tolerant to plant variation.

The geometry of the tractor-trailer system consid-
ered here is depicted in Figure 1. The lengths referred
to in this figure are defined as follows: L, the distance
between the front and rear axles of the tractor; L1, the
distance between the rear axle of the trailer and the
hitch joint; and L2, the distance between the trailer
axle and the hitch joint.

The system states are described by (x, y), the
Cartesian coordinate of point P in the global frame;
θ1 and θ2, the heading of the tractor and trailer, re-
spectively; and ψ , the hitch angle (note that θ2 = θ1

+ ψ). The system is controlled via two inputs: v, the
linear velocity of point P (v = ‖P·‖); and φ, the steer-
ing angle of the front wheels. With this notation, the
system can be described by the following equations:

x
· = v cos θ1, (1)

y
· = v sin θ1, (2)

θ
·
1 =

v tan φ

L
, (3)

Figure 1. Kinematic model of a tractor-trailer system. It is
particularly important to note the definition of the steering
angle φ and the hitch angle ψ , i.e., the angle between the
tractor and the trailer.

ψ
· =

−v tan φ

L

(

L1

L2
cos ψ + 1

)

−
v

L2
sin ψ. (4)

The first three equations of this system are the
standard kinematics for a car-like vehicle; see,
e.g., De Luca and Oriolo (1995) for a derivation. Prov-
ing the expression for ψ

·
requires consideration of the

speed VH of point H (resp. P or Q) in the global frame.
First, we define �1 = [0, 0, θ

·
1]T and �2 = [0, 0, θ

·
2]T .

Then,

VH = VP + �1 × P H, (5)

VH = VQ + �2 × Q H . (6)

with θ2 = θ1 + ψ and where bold italic notation rep-
resents vectors. The expression for ψ

·
is derived by

solving

VP + �1 × P H = VQ + �2 × Q H . (7)

3. REVIEW OF EXISTING APPROACHES

The control of tractor-trailer systems has received
much attention in the scientific and patent litera-
ture (see, e.g., Carter & Lormor, 2004; Karl, 1987;
Robert, 2004) as it has clear industrial applications
and is also interesting due to its inherent nonlinear
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nature. In this section, we review several approaches
to the problem and present representative examples
of our testing of these approaches. To do this, we
use the kinematic model of the tractor-trailer system
[Eqs. (1)–(4)] and introduce additional dynamics in
the steering response through rate limiting.

3.1. Stabilization Using a Virtual Tractor

The first method tested in this review relies on the
idea that there exists a unique one-to-one mapping
between the speed vector of a point on the tractor and
the speed vector of a point on the trailer (Sekhavat,
Lamiraux, Laumond, Bauzil, & Ferrand, 1997) (see
Figure 1). Knowing this relation, it is possible to “vir-

Figure 2. Stabilization of a tractor trailer to a straight trajectory (y = 0) using the HILARE controller (Sekhavat et al., 1997),
while varying the steering angle rate (simulation). In each graph, the top part of the plot is demand trajectory (straight line)
and the path of the vehicle moving from left to right, the arrows showing the heading of the tractor and trailer, and the
bottom part shows the steering angle during the maneuver.

tually” exchange the role of the tractor and trailer.
Given the distance from the trailer to the reference
trajectory, a simple controller, such as pure pursuit
(Hebert, Thorpe, & Stentz, 1997), can give the desired
translational and rotational speed for the trailer. This
control vector can then be mapped to a control vector
for the tractor.

Experimentally, this method is able to stabilize
the system, provided that we assume there are no
limits on the steering angle rate. When even modest
steering rate limits are introduced, the performance
quickly degrades. Figure 2 illustrates this degrada-
tion: at a steering rate limit of 110 deg/s, control is
still effective if not oscillatory, and at 100 deg/s, sta-
bilization is no longer possible.
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3.2. Differential Flatness

In the work of Rouchon, Fliess, Lévine, and Martin
(1993), the tractor-trailer system depicted in Figure 1
is classed as a general one-trailer system, which has
been proved to be differentially flat. Using this prop-
erty, and inspired by Hermosillo and Sekhavat (2003)
and Pradalier et al. (2005), we can convert the trajec-
tory of the tractor-trailer system into the trajectory of
its flat output (y1, y2):

y1 = x + L2 cos(θ + ψ)

+L(ψ)
L2 sin(θ + ψ) − L1 sin(θ )
√

L2
1 + L2

2 − 2L1L2 cos ψ

, (8)

y2 = y + L2 sin(θ + ψ)

+L(ψ)
L2 cos(θ + ψ) − L1 cos(θ )
√

L2
1 + L2

2 − 2L1L2 cos ψ

, (9)

with

L(ψ) = L1L2

∫ 2π−ψ

π

cos σ
√

L1 + L2 − 2L1L2 cos σ
dσ.

Following Hermosillo and Sekhavat (2003) and
Pradalier et al. (2005), a stabilizing control law is

y
(3)
i=1,2 = (y⋆

i )(3) +
2

∑

j=0

ki,j

[

y
(j )
i − (y⋆

i )(j )
]

, (10)

where (y⋆
1, y

⋆
2) is the flat output corresponding to the

state on the reference trajectory and (.)(p) is the time
derivative operator of order p.

This technique requires the estimation of the two
first derivatives of the state’s flat output and then in-
tegration of the resulting control in order to deduce
the actual steering and speed from the third deriva-
tive of the flat output, all of this while using and in-
verting Eqs. (8) and (9). Even if theoretically stable,
the multiple derivatives and integrations make this
method extremely sensitive to noise in the state esti-
mation. In a real implementation, the state estimate
can be quite noisy, making the second derivative of
its flat output close to meaningless.

Our experience (Pradalier et al., 2005) in imple-
menting this type of control law confirms this pre-
dicted sensitivity. Moreover, the tuning of the param-
eters ki,j is difficult due to their sheer number, their

coupled effect on all the vehicle states, and the ab-
sence of any physical meaning of these parameters.

3.3. Trajectory Stabilization Using
Precomputed Gains

Walsh, Tilbury, Sastry, Murray, and Laumond (1994)
proposed a control law that, in theory, can exponen-
tially stabilize a tractor-trailer system onto a reference
trajectory. In principle, this control scheme estimates
a gain for a linear control law on each point of the
reference trajectory, using the shape of the trajectory
over the next 	t seconds.

In our implementation, this approach presented
two main difficulties. First, the precomputation of
the gains involves complex integral estimations that
can be prohibitively long if the trajectory is longer
than a few meters. Second, this method does not pro-
vide a way to prioritize the control: When steering a
trailer, it is essential to keep the hitch angle stable and
controllable because entering a jackknife situation
is irrecoverable unless forward motion is instigated.
Unfortunately, this method does not provide any
mechanism to deal with this constraint.

3.4. Chained-Form Representation

To obtain the chained form for this system, we first
use Altafini’s (2001) result, which shows that a car-
like tractor pulling an off-centered single trailer can
be modeled as a standard three-trailer system (that
is, one tractor pulling three trailers). From this, the
work of Sørdalen (1993) and Tilbury, Sørdalen, Bush-
nell, and Sostry (1995) gives the transformation of this
system into a chained-form representation. The equa-
tions for this representation run to several pages in
length and are omitted here for brevity.

One of the primary problems with the chained-
form representation is that it creates very strong cou-
pling between all the angles of the system; as a conse-
quence, designing a controller and a tuning strategy
is as hard as, or even harder than, when using the
flatness property of the system.

3.5. Optimal Control

The optimal control–based methods use optimization
schemes to derive a sequence of demands that will
drive the tractor-trailer system onto the desired tra-
jectory or path; see, for example, Altafini, Speranzon,
and Wahlberg (2001) and Divelbiss and Wen (1997).

Journal of Field Robotics DOI 10.1002/rob



382 • Journal of Field Robotics—2008

In simple terms, these methods use a vehicle model
and a simulation process to compute the control com-
mands that will lead to the best tracking of the trajec-
tory. The required control trajectory can be optimized
over some time horizon for minimal time, minimal
control effort, or a combination of these and any other
relevant “costs.”

These methods rely on being able to adequately
simulate the vehicle’s behavior, which requires con-
siderably more computational resource than would
be required for the approach proposed in this pa-
per. Deviations from the model, which in real-world
implementations are inevitable, can lead to errors,
which requires reestimation of the optimal control se-
quence. Furthermore, these methods are open loop,
meaning that replanning is necessary to deal with er-
rors in localization.

3.6. Learning-Based Approaches

The learning-based controllers seek to ease the compu-
tational burdens of the previous methods by provid-
ing a mapping between the current vehicle state, the
desired state, and the required inputs to reach the de-
sired state; see, for example, Koza (1992). Essentially,
a simulated model of the tractor-trailer system is used
to try many different possible methods and parame-
ters. “Learning” occurs by searching the parameter
space for the best set of methods/parameters, which
are then encoded into, for example, a neural network
or look-up table, which maps the “current” to “de-
sired” configuration.

The main drawback of these techniques is the
learning itself: If learning occurs from a model of the
system, then errors in the model are clearly prob-
lematic; if learning occurs on the real vehicle, then
there are safety issues because it is not possible to pre-
dict the behavior of the vehicle in the learning phase.
Also, even if the best set of parameters performs well
in practice, it is hard to guarantee its performance,
which can be problematic in an application in which
reliability is an issue.

4. OUR APPROACH

Our approach to stabilizing a tractor-trailer system to
a trajectory is based on the idea of closing an inner
loop around the trailer hitch angle and then treating
the vehicle as a “virtual” articulated vehicle for which
there are provably stable algorithms for stabilizing to
a trajectory (Pradalier & Usher 2007b). We begin the

discussion with the outer loop, which stabilizes the
vehicle to the trajectory, and then we discuss in more
detail the inner, hitch-angle control loop and its sta-
bility properties.

4.1. Trajectory Stabilization

To stabilize the vehicle to a trajectory (represented
by a sequence of vehicle states indexed by time), we
use a path-tracking controller derived for an articu-
lated vehicle and apply an additional controller on
the vehicle speed to ensure that the vehicle progresses
along the trajectory.

The first important aspect of a tractor-trailer sys-
tem is that its dynamics are asymmetric. When driv-
ing forward, the trailer angle is naturally exponen-
tially stable. When reversing, it is naturally unstable.
Consequently we use different control laws for the
two situations.

When driving forward, we use a standard
trajectory-tracking control law, such as pure pursuit
(Hebert et al., 1997), and we ignore the trailer. When
reversing, we use the trajectory control law pre-
sented in Ridley and Corke (2003), where a load haul
dump (LHD) vehicle was considered. LHDs are four-
wheeled, center-articulated vehicles that are used in
underground metalliferous (non-coal) mining opera-
tions for the transport of ore.

The control law presented in Ridley and Corke
(2003) aims at stabilizing the vehicle on a path, i.e., a
two-dimensional curve in the plane. It relies on three
error measurements, as depicted in Figure 3: ξy , the
lateral error; ξθ , the heading error; and ξκ , the curva-
ture error. The control law is defined as

ψ
·⋆ = Kyξy + Kθξθ + Kκξκ , (11)

where Ky , Kθ , and Kκ are tuning parameters.1 From
the hitch-angle derivative, a desired hitch angle ψ⋆

is computed by integration.2 Here, this desired hitch

1For operations at higher velocities, these gains are speed depen-
dent (Ridley & Corke, 2003).
2In discussions with the implementers of Ridley and Corke (2003)
on a real LHD (Duff, Roberts, Corke, Sikka, & Winstanley, 2000;
Roberts, Duff, & Corke, 2002), it was found that it may some-
times be necessary to directly set ψ ⋆ = Kyξy +Kθξθ + Kκξκ . With
this change, the vehicle will tend to straighten instead of bending
to correct minor errors as would occur with the integrated version.
This can be useful when minor errors are mostly the result of local-
ization noise. In practice, we use the nonintegrated version of the
control, and the success of this strategy is borne out in the results.
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Figure 3. Trajectory error definitions.

angle is then fed into the hitch-angle stabilization law
described in the next section. Speed is controlled us-
ing a standard pursuit approach to maintain the vehi-
cle’s progression along the trajectory and the system
switch from the forward control law to the reversing
control law when a change of direction is required,
as occurs when the onset of jackknifing is detected
or there is a cusp in the trajectory [see Pradalier and
Usher (2007b) for details]. The trajectory-tracking sys-
tem is described in block diagram form in Figure 4.

A common problem for such switching con-
trollers is that of “chattering,” in which the sys-

Figure 4. Block diagram for the reversing control law.

tem gets trapped on the threshold between the two
controllers. In this work, we rely on the concept of
hysteresis to overcome this problem. For example, on
detecting a jackknife situation that requires forward
motion for correction, we ensure that the forward mo-
tion continues until the hitch-angle error converges to
a value 10 times smaller than the jackknife detection
value. This is an acceptable behavior because conver-
gence is exponential when driving forward, as shown
in Lamiraux (1997).

Of course, more sophisticated switching strate-
gies are available [see, e.g., Campi, Hespanha, and
Prandini (2004) and Hespanha, Liberzon, and Morse
(2003a, 2003b)], but the hysteresis concept has proven
to be sufficient in practice in this instance. However,
this strategy assumes that the trajectory has been
planned as a smooth path with a relatively low max-
imum curvature and, consequently, the desired hitch
angle ψ⋆ is always small. In cases in which this as-
sumption is not valid, it is certainly possible to create
situations in which the system will chatter.

4.2. Hitch-Angle Stabilization

We now turn to the critical element in our approach,
which is the hitch-angle stabilization loop. The de-
tails of this method appear in our previous work on
the topic (Pradalier & Usher, 2007a, 2007b), and only
an outline is provided here. However, a more de-
tailed formal analysis of the properties of this loop
will be presented, from which a nonlinear control
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law arises that allows operation over a broader hitch-
angle range.

In short, a simple PI controller is enough to
achieve the hitch-angle stabilization task:

φ = Kp(ψ⋆ − ψ) + KI

∫ t

0

(ψ⋆ − ψ)du,

where ψ⋆ is the demanded hitch angle and Kp and KI

are the proportional and integral gains.
Our previous analysis of this controller showed

that for nonzero operating points, the control de-
mand needs to be modified in order to compen-
sate for the steady-state error introduced by non-
linearities at these points. Of course, the integral term
in the controller would compensate for these effects,
but this premodification of the demand speeds up the
system response. The expression for modifying the
demand such that the system converges to the true
demand is

ψd (ψ⋆) =
KP L1 − L+ KP L2

KP (L1 + L2)
ψ⋆. (12)

Using the above relations, the control law to obtain
theoretical convergence on ψ⋆ is

φ = Kp[ψd (ψ⋆) − ψ] + KI

∫ t

0

(ψ⋆ − ψ)du. (13)

As will be highlighted in the following analysis, the
integral term is required to account for minor inac-
curacies remaining after the proportional control that
can result from the linearization leading to ψd (ψ⋆)
or from errors in the vehicle model (L, L1, and
L2).

4.2.1. Stability Analysis

First we assign a Lyapunov function to the system
that, in order to prove stability, must be positive
semidefinite for all values of the system state. We
choose

V = 1
2 [ψd (ψ⋆) − ψ]2. (14)

The stability of the system can be determined by ana-
lyzing V

· = dV /dt , i.e.,

V
· = ψ

·
[ψ − ψd (ψ⋆)], (15)

where we have used the approximation that ψ
· d (ψ⋆)=

0. This assumption means that we are considering
very smooth trajectories, where the rate of variation
of the desired trailer angle is small with respect to the
variation of the actual angle.

Inserting the control law of Eq. (13) (the pro-
portional component only) and the expression for ψ

·

[Eq. (4)] into the above relation leads to

V
· = −

v tan
{

Kp

[

ψd (ψ⋆) − ψ
]}

L

(

L1

L2
cos ψ + 1

)

−
v

L2
sin(ψ)

after some rearrangement. Figure 5(a) shows a plot
of the value of this function across the range of
inputs ψ⋆ = [−π/2, π/2] and the output state ψ =
[−π/2, π/2], where KP = 1 has been substituted, and
Figure 5(b) highlights the instability points.

These plots indicate that the system is stable
for most of the operating region. Exceptions include
the “ripples” as indicated in Figure 5(b), but these
are avoided in practice by restricting the operating
regime. Furthermore, Eq. (16) can be used to moni-
tor the system, altering behavior as appropriate. For
example, if Eq. (16) evaluates to a positive number,
the reversing maneuver will inevitably lead to a jack-
knife condition and should be ceased, and a forward
correcting motion initiated.

4.2.2. Alternative, Nonlinear Controller

The Lyapunov function analysis from the preceding
section can be used to derive an alternative, nonlin-
ear, hitch-angle controller. First we note that the sys-
tem is stable for V

· ≤ 0 [where V
·

is from Eq. (15)],
which can be achieved by setting

ψ
· = −K(ψ − ψ⋆), (16)

where K is a positive gain. Inserting the expression
for ψ

·
[Eq. (4)] and rearranging this equation for φ

leads to the controller

φ = arctan

[

L

v

K(ψ − ψ⋆) − v sin ψ

L2

L1

L2
cos ψ + 1

]

. (17)

This version of the hitch-angle controller theoretically
ensures convergence across the range of hitch angle
from −π/2 to π/2. Additionally, this controller does
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Figure 5. Surface showing the closed-loop behavior of the time derivative of the Lyapunov function V
·
. Color scale high-

lights the value of V
·
.

not require a modification of the demanded hitch an-
gle ψ⋆ for nonzero operating points. However, like
the controller of Eq. (13), this control law is also sen-
sitive to errors in the system’s geometric parameters.
Thus, an integral term is required to ensure conver-
gence without steady-state error. In practice, as will
be illustrated in Section 6.1., due to the restricted op-
erating range in hitch angle, the performance of this
controller is about equivalent to that of Eq. (13).

4.2.3. Can the System Be Linearized?

Analysis of the system is substantially simplified if
we can remove its nonlinear elements. To evaluate the

Figure 6. Comparison of full and linearized ψ
·

dynamics. Color scale highlights the value of ψ
·
.

linearity of the system, we first look at the closed-loop
behavior of the ψ

·
dynamics by inserting the control

law of Eq. (13) into Eq. (4). Figure 6(a) shows a plot of
these dynamics over a feasible range of the state and
input space.

If instead we linearize the system about φ = 0
and ψ = 0, we have tan φ ≈ φ, cos ψ ≈ 1, and sin ψ ≈
ψ , and we obtain the approximated (open-loop) ψ

dynamics:

ψ
· = −

[

v

L
φ

(

L1

L2
+ 1

)

+
v

L2
ψ

]

, (18)
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and again inserting the control law of Eq. (13), we ob-
tain the closed-loop behavior for ψ

·
. Figure 6(a) illus-

trates the linearized ψ
·

dynamics. Comparison with
Figure 6(b) shows that the linearized response closely
follows the true dynamics for the majority of the
workspace and, even at the extremities, exhibits sim-
ilar behavior.

The ability to linearize the system allows for the
use of classical linear control tools for stability analy-
sis and tuning purposes.

4.3. Tuning Strategy

A key advantage of this controller over existing meth-
ods is its simplicity, making it easy to implement and
tune. The tuning strategy we use consists of three
steps:

Tuning of the hitch-angle controller This requires
tuning of the parameters KP and KI in Eq. (13). A
standard proportional integral derivative (PID) tun-
ing technique can be used, based on an analysis of the
linearized system. In practice, we first start with KP

= 1 and KI = 0, and then initialize the system with a
nonzero hitch angle, stabilizing to zero while revers-
ing at constant speed. We then increase KP until oscil-
lation appears. When KP is optimal, we increase KI ,
and the process is repeated, except in this case it is
preferable to stabilize the system to a nonzero hitch
angle in order to set the integral gain high enough to
account for model errors. This procedure should also
give practical bounds on the controllable hitch angles.
Tuning of Kx , Ky , and Kθ These parameters can be
tuned by subjecting the system to lateral steps: From
a starting position with a null hitch angle, the system
must stabilize itself to a straight trajectory with a
lateral offset (1 m, for instance), a process illustrated
in Figure 7. The initial values of these parameters
can be set so as to generate the maximum hitch angle
for a given error. For instance, we may want to use
the maximum hitch angle when the lateral error |ξy |
reaches 1.5 m or the heading error |ξθ | reaches 30 deg.
During this stage, Kκ should be set to zero.
Tuning of Kκ Kκ has an influence only when driving
on curved trajectories. As a consequence, it should
be tuned by controlling the system to a circular tra-
jectory with a feasible curvature. Using only Ky and
Kθ , the system should be able to closely track a circu-
lar path. Kκ adds “look-ahead” by keeping the hitch
angle above zero even if the other errors are null.
In practice Kκ is less important than the other gains

because changing the curvature is, in effect, how we
control the trajectory of our system.

4.4. Simulations

Figure 7 shows the resilience of our controller to steer-
ing angle rate limitations. From an unlimited steering
rate to a maximum of 20 deg/s, the controller was
able to correct a 1-m lateral error with a very smooth
path. With a maximum steering rate of 15 deg/s, a
limit cycle starts to appear but the system still con-
verges. At a rate limit of 10 deg/s, the controller can
no longer stabilize the trailer onto the reference path.
These results should be compared to those of Fig-
ure 2, where the minimum acceptable steering rate
was roughly 100 deg/s.

5. EXPERIMENTAL PLATFORM

The platform used in these experiments is the CSIRO
Autonomous Tractor (AT), as shown in Figure 8. It is
an Ackerman-steered, ride-on mower that has been
retrofitted with an array of actuators, sensors, and a
computer system enabling the implementation and
testing of control and navigation algorithms. The
trailer hitch angle is sensed using a set of string pot
encoders. Table I summarizes the system geometry
with reference to Figure 1. For full details of the ve-
hicle’s design, refer to Usher (2005).

5.1. System Dynamics

The dynamics of the underlying control loops are
extremely important in the application of trajectory
and pose control algorithms to nonholonomic sys-
tems. In this section we identify models of the AT’s
response to steering and velocity inputs, which are
subsequently used for system design and analysis
purposes.

Table I. Geometric parameters of the CSIRO tractor-trailer
system.

Parameter Value (m)

L 1.2
L1 0.45
L2 1.2
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Figure 7. Stabilization of a tractor trailer to a straight trajectory using our approach while varying the steering angle speed
(simulation). In each graph, the top part of the plot is the path of the vehicle moving from left to right, arrows showing the
heading of the tractor and trailer, and the bottom part shows the steering angle during the maneuver.

5.1.1. Steering

An approximate model of the steering dynamics was
experimentally identified from the response of the
AT’s steering loop to step changes in desired steering
angle when traveling in reverse at 0.3 ms−1. The re-
sponse was determined to be approximately second
order of the form (in the Laplace domain)

φ(s)

φ∗(s)
=

ω2
n

s2 + 2ζωn + ω2
n

. (19)

The parameters ωn and ζ vary due to the com-
plexity of the interactions between the terrain and the
wheels on different surfaces and also with the vehi-
cle’s translational speed. For these experiments, pa-
rameter values of ωn = 2.15 and ζ = 1.0 were found to
model the system adequately. Additionally, the steer-

ing angle range is limited to φmax = ± 30 deg and it
is rate limited at approximately φ

·
max = ± 20 deg/s.

Figure 9(a) shows a plot of the actual and modeled
response of the vehicle to a step input.

5.1.2. Velocity

The velocity loop was empirically determined to have
a first-order response, which is represented in the
Laplace domain as

v(s)

v∗(s)
=

Kv

τvs + 1
. (20)

Figure 9(b) illustrates the AT’s response to a
unit step change in velocity while traveling on level
ground (concrete) and the response of the first-order
model where Kv = 1 and τv = 1.33. Again, the model
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Figure 8. The AT with its trailer.

parameters will vary on sloping terrain, on different
surfaces, and under different loading conditions. In
addition, the speed of the AT is constrained to the
range −1.5 ms−1 < v < 3 ms−1.

In practice, the velocity loop has little impact on
the overall system dynamics, and thus the primary
focus in this work is on the analysis of the system,
including the steering-loop dynamics.

5.2. Hitch-Angle Control System Modeling

We now consider a linear model of the hitch-angle
control loop for the AT. In this analysis, we consider
the controller of Eq. (13) and, to ease the analysis, ig-
nore the effects of the integral term in the controller.

The steering loop dynamics are modeled by
Eq. (19), and the linearized hitch-angle dynamics are
represented (after the introduction of an intermediary
state for the steering) by

⎡

⎣

ρ
·

φ
·

ψ
·

⎤

⎦ =

⎡

⎢

⎣

0 −ω2
n ω2

nKP

1 −2ζωn 0

0 − v
L

(

L1

L2
+ 1

)

− v
L2

⎤

⎥

⎦

⎡

⎣

ρ

φ

ψ

⎤

⎦

+

⎡

⎣

ω2
nKP

(L1+L2)+L

(L1+L2)

0
0

⎤

⎦ψ∗, (21)

x
· = A · x + B · u. (22)

5.2.1. Root Locus

The characteristic equation for this system can be
found by calculating the determinant of sI − A,
where A is the state transition matrix. The character-
istic equation for this system is

s3 +
(

v

L2
+ 2ζωn

)

s2 +
(

2ζωnv

L2
+ ω2

n

)

s

−ω2
n

v

L2

[

1 −
K

L
(L1 + L2)

]

. (23)

By placing Eq. (23) in the form 1 + KP GH = 0, we can
observe the behavior of the roots of the characteristic
equation for various values of KP . The resulting root
locus plot is shown in Figure 10. The root locus indi-
cates that the system is stable for 0.72 < KP < 9.68,
and for a critically damped system, the gain should
be set to KP = 1.65.
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Figure 9. Step response of the steering and velocity loops. Model data are plotted as a dashed line and experimental data
as a solid line.

Journal of Field Robotics DOI 10.1002/rob



390 • Journal of Field Robotics—2008

Figure 10. Root locus plot for the closed-loop system, including the steering loop dynamics, using the linear P controller.

5.2.2. Sensitivity Analysis

We now turn to an analysis of the sensitivity of the
system to parameter variations. First, we present the
case for the parameter L, following which a summary
of the results for the remaining parameters is pre-
sented.

To determine the system’s sensitivity to L, we
evaluate

Ss.L =
L

s

∂s

∂L
, (24)

which results in

ω2
nKpv(L1+L2)

LL2

3s3 +
(

2v
L2

+ 4ζωn

)

s2 +
(

ω2
n + 2ζωnv

L2

)

s
.

We now evaluate this sensitivity at two representa-
tive levels of system gain KP , using the root locus of
Figure 10 to determine the dominant poles at these
points:

KP = 1.23 : s = −0.357, Ss.L = −5.27,

KP = 3.10 : s = −0.362 ± 1.0i, Ss.L = 0.40 � 141deg.

This indicates that the poles in the system are very
sensitive to changes in the parameter L and that this
sensitivity is substantially reduced with increasing
gain.

We can also evaluate the effect of a change in L

on the position of the dominant pole by rearranging
Eq. (24):

	s = sSs.L

	L

L
.

At the gain KP = 1.23 (where the mathematics are
more straightforward), a 10% increase in L yields
	s = 0.19, or a shift to the right of 0.19 units for a
10% increase in L.

Table II summarizes the results of this analysis for
the two selected gains analyzed above. With the ex-
ception of L2, which appears to bear little influence
over the system sensitivity, the system is similarly
sensitive to the other parameters at the lower gain,
with a vastly reduced sensitivity at the higher gain.
Practically, this analysis implies that the system pa-
rameters should be measured with reasonable accu-
racy and that some form of integral action is required
in the controller to accommodate any errors in these
measurements.
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Table II. System sensitivity to variations in geometric
parameters and vehicle velocity.

||Ss.P ||

Parameter (P) KP = 1.23 KP = 3.10

L 5.270 0.390
L1 47.600 0.018
L2 0.015 0.001
v 125.790 0.110

5.2.3. Gain Tuning

In practice, the system was tuned using the methods
of Section 4.3. For the hitch-angle stabilization loop,
gains of KP = 4, KI = 0.03 were found to provide both
quick and accurate response with minimal overshoot,
whereas for the trajectory-tracking loop, gains of Kx

= 2, Ky = 0.2, Kθ = 1, and Kκ = 0.05 were found to
give the desired behavior.

6. RESULTS

This section presents results obtained when tracking
various reversing trajectories, first controlling only
the hitch angle, then controlling the tractor’s position
using odometry-based localization, and then con-
ducting several tests using an external localization
estimate. The external localization estimates are pro-

Figure 11. Experimental performance comparison of the linear and nonlinear hitch-angle controllers in following a sinu-
soidal input. Reference trajectory is shown as a solid line, actual trajectory as a dashed line, and steering angle input as a
dotted line.

vided by a particle-filter–based method using the ve-
hicle odometry and sparse reflective beacons sensed
with a front-mounted laser range finder [details on
the localization system can be found in Duff, Usher,
and Ridley (2006)]. This localization estimate is “drift-
free” but comes at the cost of localization discontinu-
ities when corrections are applied on spotting a bea-
con. Such discontinuities are especially challenging
for the trajectory-tracking system.

6.1. Hitch-Angle Controller

Figure 11 shows experimental tests comparing the
linear [Eq. (13)] and nonlinear [Eq. (17)] hitch-angle
controllers, in which the tractor was reversing at
a constant speed of 0.3 m/s. From these plots, we
note that the linear and nonlinear controllers give
very similar performance in terms of accuracy of the
tracking and control of the oscillations. The oscilla-
tions of the hitch angle around the nominal trajectory
are caused by slop in the hitch-angle sensing and a
limit cycle caused by the steering rate limit. On the
basis of these results, and for the sake of controller
simplicity, we chose to use the linear controller for
the following experiments.

6.2. Reversing on a Circle with Fixed Radius

In the first set of experiments, we define reference tra-
jectories as arcs of circles of various radii. The pose of
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Figure 12. Trajectory tracking with odometry-based localization.

the vehicle is computed using odometry information.
The advantage of this setting is that the vehicle pose
is a very clean and smooth signal. The disadvantage
is that odometry localization is known to drift over
time and, consequently, is not suitable for real-life,
long-range, robotic operations.

Figure 12 shows tracking results for a circular
path, with radii of 7.5 and 15 m. As can be observed,
the tracking is very accurate for radii of 15 m. For a
radius of 7.5 m, the maximum achievable curvature
is reached and the system cannot converge to the re-
quired trajectory. However, it should be noted that
the system converges to a stable orbit, which is the
best it can do to follow the required curvature.

6.3. Reversing on a Badly Planned Trajectory

In the second set of experiments, we stretch the sys-
tem by introducing a more complex path, as de-
picted in Figure 13(a). We consider this trajectory to
be “badly planned” because it does not take into ac-
count the limitations of the vehicle, especially the lim-
ited turning radius and the very strong limitation on
the hitch-angle rate. In addition, the trajectory con-
tains path discontinuities in which straight lines join
circular segments; such discontinuities are challeng-
ing for the control law because they require a very
fast change of hitch angle. Our objective here is to
show the performance of our system at the limits
of its nominal specification. To further challenge the
controller, we also use the external localization sys-
tem rather than the vehicle odometry.

Figure 13(b) illustrates how the planned path
is tracked by our tractor-trailer systems. From this
experiment, we note that on straight-line segments
the system converges reasonably fast. On the curved
segments, the curvature is beyond the vehicle capa-
bilities and the tracked trajectory is offset from the
planned one. Transitions between the curved and
straight segments of the path (Events 5, 8, and 9)
introduce a discontinuity that the system struggles
to deal with but nevertheless recovers from. Local-
ization discontinuities (Events 6 and 7) are handled
much more gracefully than the path discontinuities.
Finally, Event 5 is an occurrence of a situation in
which a beginning of jackknife was detected and the
vehicle had to drive forward for approximately 2 m
to restabilize the trailer, before continuing reversing.

From these experiments, it is clear that in order to
obtain very accurate tracking, the path planner needs
to take into account the strong constraints of this sys-
tem, in particular, the small maximum trackable cur-
vature and the need for smooth curvature profiles.
However, the trajectory control performed extremely
well within these constraints.

6.4. Reversing on a Preplanned Trajectory

In this set of experiments, our objective was to
demonstrate the performance of our system in a real-
world situation. To this end, we designed a path
across our research center. This path is approximately
170 m long and was planned manually using hand-
selected way points and interpolating splines. This
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Figure 13. Performance for a poorly planned trajectory that does not account for curvature limitations or path discontinu-
ities. Events are denoted by the boxed numbers.
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Figure 14. Reversing trajectories of the autonomous system on three independent runs.

approach guarantees a smooth and continuous trajec-
tory. For these experiments, the system relied on the
external localization estimates.

The resulting path is depicted in Figure 14(a). It
is composed of two segments: a short forward mo-
tion to help align the system with the trajectory and a
long reversing segment of approximately 160 m. The
main constraints when designing this trajectory were
to keep the vehicle close to the middle of the road and
to minimize the path curvature.

Figures 14(b)–14(d) show the trajectories realized
by our controller on three separate runs. More accu-

rately, the trajectories represent the path of the center
of the AT’s rear axle. Examples of localization jumps
(corrections) can be seen at the top end of all trajecto-
ries and around (55, 0) in Runs B and C. It is impor-
tant to note that our system stays stable around the
reference trajectory, even when the localization esti-
mation is very unstable. In some situations, e.g., close
to (−10, 10) in Runs A and C, or close to (75, 0) in Run
B, the localization estimate oscillates between the two
sides of the reference trajectory. If this occurs at the
wrong frequency, it can bring the system to a jack-
knife situation. In all cases, the preliminary signs of
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Table III. Summary of experimental run statistics, for human and autonomous drivers.

Subject Graph Label Experience Duration (s) Corrective Fwd Motions Avg Speed (m/s)

1 1 Professional 160 0 1.12
2 2 Beginner 300 4 0.60
3, Run 1 3 Beginner 322 3 0.55
3, Run 2 4 Beginner 230 2 0.78
4, Run 1 5 Medium 278 2 0.64
4, Run 2 6 Medium 290 2 0.62
5, Run 1 7 Medium 400 2 0.45
5, Run 2 8 Medium 250 0 0.72
6 9 First time 980 14+ 0.18

Auto A 10 Autonomous 620 1 0.29
Auto B 11 Autonomous 600 1 0.3
Auto C 12 Autonomous 628 2 0.29

this event were detected by the system, and a short
forward motion was initiated to realign the vehicle
with the reference trajectory.

6.5. Evaluation: Comparison
with Human Drivers

As a final experimental evaluation of our reversing
system, we tested a number of human drivers in per-
forming a trajectory similar to that performed by the
autonomous system outlined in Section 6.4. Skill lev-
els of these drivers were the following:

First time: first experience of trailer reversing
Beginner: driver having reversed a trailer a couple of

times in recreational activities
Medium: driver who regularly reverses trailers in

recreational activities
Professional: professional truck driver

For practical reasons, the drivers were required to
keep the vehicle in the middle of the road, rather
than following the same trajectory as the automated
system.

We evaluated the drivers’ ability to stabilize the
trailer and to avoid jackknife situations and the sta-
tistical properties of their steering input. Figure 15
shows an example of human-controlled trajectories,
in comparison with autonomous system ones.

6.5.1. Trajectories

These experiments were conducted using six drivers,
some of whom drove the trajectory twice. Some
statistics about the drivers’ performances are pre-

sented in Table III. Examples of trajectories real-
ized by representative subjects are presented in Fig-
ure 14(d), where the paths were recorded using the
external localization system.

When comparing the performance of human
drivers with the autonomous control, one obvious
difference is the travel speed. Except for the driver
who was reversing a trailer for the first time, all hu-
man drivers were much faster than our system. As
we will see later, this is mainly a result of the lim-
ited actuation capabilities of the autonomous system;
to compensate for these limitations, the system has to
be artificially slowed down.

Concerning the trajectories, the autonomous sys-
tem realizes smoother paths than the inexperienced
drivers and drives in a similar fashion as the more ex-
perienced human drivers. This is a definitive achieve-
ment given the limited actuation and the fact that the
control relies on localization estimates, which can be
discontinuous.

6.5.2. Hitch-Angle Stabilization

Figure 16(a) depicts the statistical properties of the
measured hitch angle for each run as box diagrams.
Each box represents the statistical distribution of
measured hitch angles through its five-number sum-
maries [the smallest observation, lower quartile (Q1),
median, upper quartile (Q3), and largest observa-
tion]. If we call IQR the interquartile range, i.e., Q3
− Q1, then any data more than 1.5 IQR from the
closest quartile (Q1 or Q3) are considered outliers.
Graphically, the boxes in this diagram show the Q1
− Q3 interval: The “whiskers” show the farthest data
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Figure 15. Reversing trajectories of inexperienced to medium drivers. Numbers correspond to those in Table III.
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Figure 16. Comparisons of the capabilities of human drivers and the autonomous system. Numbers correspond to those
given in the Graph label column of Table III. Lines 10–12 correspond to the three runs of the autonomous system.

point from the quartiles that is not considered an out-
lier, and the red circles show points considered out-
liers. The height of the boxes is not meaningful in our
analysis.

In practice each line represents one run, with
numbers referring to the different subjects in Table III.
Lines 10–12 refer to the autonomous runs. The width
of a box with its whiskers gives the range of steer-
ing angle regularly used by the driver. The red circles
depict the steering angle used by the driver in infre-
quent events, such as the correction of the beginning
of a jackknife situation. Jointly, the boxes and the cir-
cles give the range of control the driver (human or
autonomous) used to achieve the trajectory.

For the autonomous runs, we note that the me-
dian hitch angle is slightly shifted toward positive
values. This is expected because the trajectory is close
to a long right-hand turn. When comparing the hitch-
angle range of the autonomous system with that of
the human drivers, it is clear that the autonomous
system keeps much tighter control of the angle than
most of the human drivers and is comparable with
the professional driver (Driver 1). Nevertheless, it
must be noted that this performance is achieved at
the cost of a much lower ground speed (0.3 instead of
1.0 m/s).

Figures 16(b)–16(d) illustrate the properties of the
steering angle and its first derivative, recorded for the
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human drivers and the autonomous system. These
graphs demonstrate the reduced control range and
capabilities available to the autonomous system in
comparison with the capabilities of human drivers:
The accessible steering range available to the automa-
tion system is reduced by 40% in comparison to the
human drivers, and the accessible steering speed and
steering acceleration are reduced by about 70%. From
these observations, it is clear that human drivers use
their additional range of control to drive faster while
demonstrating similar hitch-angle stabilization per-
formance.

Finally, it is interesting to note that with driving
capabilities reduced by 70%, the performance of our
system is similar to that of a professional driver, albeit
with a velocity reduced by about 70%. We are yet to
determine whether this is a coincidence.

7. CONCLUSION

This article evaluated a new control scheme for a
tractor-trailer system. This scheme is based on a two-
layer control loop: First a hitch-angle stabilization
loop controls the angle between tractor and trailer,
and then a path-tracking control loop, initially de-
signed for an articulated mining vehicle, is adapted
to our tractor-trailer system.

The main advantage of this approach over tra-
ditional methods is its simplicity of implementation.
Only a few parameters need to be tuned, and they
all have a clear physical meaning. Although simple,
this control scheme relies on a mathematically sound
background.

Finally, this control law was implemented on a
real vehicle and experiments were conducted on chal-
lenging trajectories. Given the limited dynamic per-
formance of our platform (slow response time, loose
components, low speed actuation), the control law
exhibited excellent convergence and stability proper-
ties. Furthermore, our controller also compared well
with a range of human drivers on a similar trajectory,
even though the control system is significantly hand-
icapped in terms of its actuation capabilities.
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The CyCab: a Car-Like Robot Navigating
Autonomously and Safely Among Pedestrians

Cédric Pradalier, Jorge Hermosillo, Carla Koike,
Christophe Braillon, Pierre Bessière, Christian Laugier
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INRIA Rhône-Alpes, 38334 Saint Ismier cedex France

Abstract

The recent development of a new kind of public transportation system relieson a particular
double-steering kinematic structure enhancing manoeuvrability in cluttered environments
such as downtown areas. We callbi-steerable cara vehicle showing this kind of kinemat-
ics. Endowed with autonomy capacities, the bi-steerable car ought to combine suitably and
safely a set of abilities: simultaneous localisation and environment modelling, motion plan-
ning and motion execution amidst moderately dynamic obstacles. In this paper we address
the integration of these four essential autonomy abilities into a single application. Specif-
ically, we aim at reactive execution of planned motion. We address the fusion ofcontrols
issued from the control law and the obstacle avoidance module using probabilistic tech-
niques.

Key words: Car-like robot, navigation, path planning, obstacle avoidance, autonomous
navigation.

1 Introduction

The development of new Intelligent Transportation Systems(ITS), more practical,
safe and accounting for environmental concerns, is a technological issue of highly
urbanised societies today [18]. One of the long run objectives is to reduce the use of
the private automobile in downtown areas, by offering new modern and convenient
public transportation systems. Examples of these, are the CyCab robot – designed
at INRIA and currently traded by the Robosoft company (see www.robosoft.fr) –
and the pi-Car prototype of IEF (Institut d’Electronique Fondamentale, Université
Paris-Sud).

Preprint submitted to Elsevier Science 7 October 2004



The kinematic structure of these robots differs from that ofa car-like vehicle in
that it allows the steering of both the front axle and the rearone. We call a vehicle
showing this feature a bi-steerable car (or BiS-car for short).

Endowed with autonomy capacities, the bi-steerable car ought to combine suitably
and safely a set of abilities that eventually could come to the relief of the end-user
in complex tasks (e.g. parking the vehicle). Part of these abilities have been tackled
separately in previous work: simultaneous localisation and environment modelling,
motion planning execution amidst static obstacles and obstacle avoidance in a mod-
erately dynamic environment without accounting for a planned motion.

In this paper we address the integration of these four essential autonomy abilities
into a single application. Specifically, we aim at reactive execution of planned mo-
tion. We address the fusion of controls issued from the control law and the obsta-
cle avoidance module using probabilistic techniques. We are convinced that these
results represent a step further towards the motion autonomy of this kind of trans-
portation system. The structure of the paper follows.

In section 2, we sketch the environment reconstruction and localisation methods
we used and we recall how the central issue regarding the motion planning and
execution problem for the general BiS-car was solved. Section 3 explains how our
obstacle avoidance system was designed and section 4 how it was adapted to the
trajectory tracking system. In section 5 we present experimental settings showing
the fusion of these essential autonomy capacities in our bi-steerable platform the
CyCab robot. We close the paper with some concluding remarks and guidelines on
future work in section 6.

2 Localisation, Environment modelling, Motion planning and execution

In the design of an autonomous car-like robot, we are convinced that localisation,
modelling of the environment, path planning and trajectorytracking are of funda-
mental importance.

2.1 Map-building and Localisation

The CyCab robot is the size of a golf-cab capable of attaining upto 30Km/h.
Its “natural” environment is the car-park area of the INRIA Rhône-Alpes (about
10000m2). For localisation purposes, we did not want to focus on the detection of
natural features in the environment, since such detection is often subject to failure
and not very accurate. So, in order to ensure reliability, wedecided to install artifi-
cial landmarks in the environment. These landmarks had to bedetected easily and
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Fig. 1. Obstacle map evolution: Experimental images during the obstacle map-building
phase. The vehicle is driven within the car-park area as long as needed.Simultaneously, the
laser range sensor is used to detect the landmarks to build-up the localisation map.

accurately, and they should be identified with a reasonable computation effort. Fig.
2 shows our robot, its sensor and the landmarks : cylinder covered with reflector
sheets, specially designed for our Sick laser range finder.

Landmarks
Sick 2D laser
range finder 

Cycab robot

Fig. 2. Cycab robot and its landmarks for localization

Moreover, in order to keep flexibility, we wanted to be able toequip the environ-
ment with non permanent beacons. For this reason, we could not rely on a definitive
landmark map, and we had to build a system able to learn the current state of the
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car-park area. This led us to use SLAM1 methods. The method which was best
suited to our needs was the Geometric Projection Filter (see[21] for reference, and
[24] for implementation details). It consists in building amap of features uncor-
related with the robot state. Such features are, for instance, the distance between
landmarks or angles between three of them.

Owing to the accuracy of the laser range finder, to the good choice of our land-
marks, and to the strength of the SLAM methods we use, we evaluate the worst
case accuracy of our localisation system to the following value: about 10 centime-
tres in position and 2 degrees in orientation. We refer the reader to [24] for more
details about the way we evaluate these values.

2.2 The Obstacle Map

The previous method localises the robot and builds a landmark map. But, we still
miss a map of observed obstacles in order to plan safe paths. To achieve this goal,
we build a kind of simplified occupancy grid[8] on the environment. This struc-
ture gives us informations correlated with the probabilitythat a given place is the
boundary of an obstacle.

Both maps are built online, in real-time, by the robot during the construction phase.
Fig. 1 shows how the obstacle map evolves while we are exploring the environ-
ment. This map is made of small patches which are added according to the need of
the application. In this way, the map can be extended in any direction, as long as
memory is available. Once the map-building phase has finished, the obstacle map
is converted into a pixmap and passed to the Motion Planning stage.

2.3 Motion Planning Amidst Static Obstacles

The Motion Planner adopted for the CyCab was presented in [26].Essentially, it is
a two step approach, dealing separately with the physical constraints (the obstacles)
and with the kinematic constraints (the non-holonomy). Theplanner first builds a
collision-free path without taking into account the non-holonomic constraints of
the system. Then, this path is approximated by a sequence of collision-free feasible
sub-paths computed by asuitable2 steering method. Finally, the resulting path is
smoothed.

A key issue in non-holonomic motion planning is to find a steering method account-
ing for the kinematics of the robot. One way of designing steering methods for a

1 Simultaneous Localisation And Mapping
2 i.e. Verifying the topological property as explained in [26].
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non-holonomic system is to use itsflatnessproperty [10] allowing also for feedback
linearisation of the nonlinear system (this is discussed insection 2.6). This is what
we did for the general BiS-car for which a flat output—or linearising output—was
given in [26].

2.4 Steering a BiS-car

The kinematics model of a general bi-steerable vehicle and its flat output are shown
in Fig. 3.

R
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ϕ

f(ϕ)

VF

VR
VH
γ

P
(ϕ

)

Q
(ϕ

)

Ω
θ

X

Y

xR

yR

Fig. 3. Cycab robot, its landmarks and its kinematics model showing the coordinates of the
flat output (pointH) with respect to the reference frame of the robot placed at pointF . In
our case we have that(xF , yF , θ, ϕ) is the state of the robot.

The striking advantage of planning a path in the flat space is that we only need
to parameterise a 2-dimensional curve whose points and derivatives define every-
where the currentn-dimensional state3 of the robot (in the case of the BiS-car
n = 4). The main characteristic of such a curve is its curvatureκ from which the
steering angle can be computed.

Fig. 4 shows the outcome of the motion planner using an obstacle map generated
as described in the previous section.

2.5 User-Planner Interface

The User-Planner interface in the CyCab is achieved through atouch-screensu-
perposed to a640 × 480 pixels LCD display. Additionally, we use the keyboard to
allow for the entrance of data.

3 The configuration space in robotics is called thestate spacein control theory, so we will
use indistinctly both terms.
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Landmarks
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Parked cars

Grown obstacles

Buildings

GoalOrigin

Fig. 4. Path computed by the motion planner using a real obstacle map. The obstacles are
grown as well as the robot before computing the path.

The interface is used to display the current position of the robot within its environ-
ment and to capture the goal position entered by the user. These positions together
with the obstacle map is passed to the motion planner. The output path is then
displayed allowing the user to validate the path or start a new search.

Finally, the reference trajectory is generated using a regular parameterisation of the
path [16] and the user is requested to accept to start the execution of the trajectory.

2.6 Trajectory tracking using flatness

It is well known that a non-holonomic system cannot be stabilised using only
smooth state static feedbacks [6]. Ever since then, time-varying feedbacks [25]
and dynamic feedbacks have been successfully used in particular for the canonical
tractor-trailer and car-like robots [9].

Flat systems are feedback linearisable by means of a restricted class of dynamic
feedback calledendogenous[10]. The interest is that we are able to use state-of-
the-art linear control techniques to stabilise the system.We present here results
coming from recent work on feedback linearisation of the general BiS-car.

For a reference frame of the robot placed at pointF in Fig. 3, the flat outputy =
(y1, y2)

T of a BiS-car are the coordinates of a pointH = (xH, yH)T = (y1, y2)
T ,
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computed as a function of the state as follows:

H = F + P(ϕ)~uθ + Q(ϕ)~uθ⊥

whereP(ϕ) andQ(ϕ) are coordinate functions relative to the robot’s reference
frame (see [26] for details) and where~uθ (resp.~uθ⊥) is the unitary vector in the
directionθ (resp. the directionθ + π

2
).

Looking for a tractable relation between the controls of therobot and the linearising
output, we found an expression giving the flat output dynamicswith respect to a
more convenient reference frame placed at the middle of the front axle of the robot
(pointF ) and having orientationγ = [θ +β(ϕ)]±π where the functionβ(ϕ) is the
characteristic angle of the velocity vector of the flat output.

The convenience of this new reference frame relies on the fact that the velocity of
the flat output has a single component in it. More precisely—assuming thatγ =
θ + β(ϕ) + π—one can show that, in this reference frame, the flat output dynamics
is given by the following expression [14]:

∂H

∂t
= υH ~uγ (1)

υH = υF [cos(ϕ − β − π) −QF ] + ωϕ[
∂P

∂ϕ
−

∂β

∂ϕ
Q]

F(ϕ) =
sin(ϕ − f(ϕ))

L cos(f(ϕ))

where (υF , ωϕ) are the controls of the robot (i.e. the heading and the front-steering
speeds),(ϕ−β−π) is the angle subtended between the velocity vector of the robot
~VF and the velocity vector of the flat output~VH (see Fig. 3).

From expression (1) the open-loop controls of the robot can be found as soon as
the trajectory of pointH is known. As we are interested in stabilising the BiS-car
around a reference trajectory, we explored the fact that, owing to the flatness prop-
erty, the system is diffeomorphic to a linear controllable one [10]. The endogenous
dynamic feedback that linearises the general bi-steerablesystem is presented in
[14]. Then, from linear control theory, it can be shown that the closed-loop control
stabilising the reference trajectoryy∗ has the following form :

y
(3)
i = (y∗

i )
(3) −

2
∑

j=0

ki,j

(

y
(j)
i − (y∗

i )
(j)

)

i = 1, 2 (2)

Where(.)(p) stands for the total derivative of orderp. See [7] for details.
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3 Obstacle avoidance using probabilistic reasoning

The previous approach considers trajectories in a static environment. In order to
make the execution of these trajectories more robust, an obstacle avoidance system
should be prepared to react to unpredicted changes in the environment. This section
presents the principles of our obstacle avoidance module.

3.1 State of the art on reactive trajectory tracking

Most of the approaches for obstacle avoidance are local([11,5]), that is they do not
try to model the whole environment. They goal is rather to usesensor measures to
deduce secure commands. Being simpler and less computationnaly intensive, they
seem more appropriate to fast reactions in a non-static environment. On the other
hand, we can not expect optimal solutions from a local method. It is possible that
some peculiar obstacle configuration create a dead-end fromwhich the robot cannot
escape with obstacle avoidance only.

3.1.1 Potential fields

The general idea of potential fields methods, proposed initially by O. Khatib in
1986, is to build a function representing both the navigation goals and the need for
obstacle avoidance. This function is built so has to decrease when going closer to
the goal and to increase near obstacles. Then, the navigation problems is reduced to
an optimisation problem, that is, to find the commands that brings the robot to the
global minimum of the function. This later can be defined withrespect to the goal
and the obstacles but other constraints can also be added therein.

Numerous extensions to the potential fields have been proposed since 1986. Among
others, we can cite the Virtual Force Fields [3], the Vector Field Histograms [4] and
their extensions VFH+[28] and VFH*[29]. Basically, these methods try to find the
best path to the goal among the secure ones.

3.1.2 Steering Angle Field (SAF)

The SAF method, proposed byFeiten et al.in 1994, use obstacles to constrain
steering angle in a continuous domain. Simultaneously, speed control is an iterative
negociation process between the high-level driving moduleand the local obstacle-
avoidance module.

One of the first extension to this method was published in [27]. It express the col-
lision avoidance problem as an optimisation problem in the robot controls space
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(linear and rotational speeds).

3.1.3 Dynamic Window

The Dynamic Window approach[11] propose to avoid obstaclesby exploring com-
mand space in order to maximise an objective function. This later accounts for the
progression toward the goal, the position of closer obstacles and current robot con-
trols. Being directly derived from the robot dynamic, this methode is particularly
well adapted to high speed movements.

The computational cost of the optimization process is reduced using the dynamic
caracteristics of the robot (bounded linear and angular acceleration) so as to reduce
the searched space. This kind of constraints are calledHard Constraintssince the
must be respected. Conversely, when the objective function includes preferences
on the robot movement, we call the resulting constraintsSoft Constraints.

3.1.4 Dynamic environments and Velocity Obstacles

In the specific case of moving obstacles, special methods have been proposed[17,2]
using theVelocity Obstaclenotion. Basically, this notion consist in projecting per-
ceived obstacles and their expected movement in the space ofsecure commands.
So, each mobile object generates a set of obstacles in the command space. These
obstacles represent the commands that will bring to a collision in the future.

In the general case, obstacle movement parameters are not known a priori, so they
have to be deduced from sensor data. Obstacle avoidance controls are then com-
puted in reaction to theses previsions. Currently, it is still quite difficult to get re-
liable previsions of the obstacles future trajectory. Consequently, these obstacle
avoidance methods are not appliable in real situations yet.

3.1.5 Obstacle avoidance and trajectory following

When we want to perform obstacle avoidance manoeuvres while following a trajec-
tory, a specific problem appear. On our non-holonomous robot, the path planning
stage took into account the kinematic of the robot and planneda feasible path.
When the reactive obstacle avoidance generates commands, the vehicle leaves its
planned trajectory. Then, we cannot be sure anymore that theinitial objective of the
trajectory is still reachable.

A solution to this problem was proposed in [20]. This method tries to deform the
global trajectory in order to avoid the obstacle, respect the kinematic constraints
and ensure that the final goal is still reachable. Even if theoretically very inter-
esting, this obstacle avoidance scheme is still difficult toapply in real situations
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due to it computational complexities, especially on an autonomous car. In our ex-
periments[20], the vehicle had to stop for several minutes in order to perform the
trajectory deformation

3.2 Objectives

After all these results on obstacle avoidance, it seems obvious that our goal is not to
propose a new solution to this problem. It has been shown[19,1] that probalities and
bayesian inference are appropriate tools to deal with real world uncertainty and to
model reactive behaviors. We this in mind, we wanted to thinkabout the expression
of the obstacle avoidance problem as a bayesian inference problem. Consequently,
the originality of our approach is mainly its expression andthe semantic we can
express with it.

3.3 Specification

The CyCab can be commanded through a speedV and a steering angleΦ. It is
equipped withπ radians sweeping laser range finder. In order to limit the vol-
ume of the data we manipulate, we summarised the sensor output as 8 values :
the distances to the nearest obstacle in aπ/8 angular sector(see Fig. 5). We will
call Dk, k = 1 . . . 8 the probabilistic variables corresponding to these measures.

Besides, we will assume that this robot is commanded by some high-level system
(trajectory following for instance) which provides it witha pair of desired com-
mands(Vd, Φd).

Our goal is to find commands to apply to the robot, guarantyingthe vehicle security
while following the desired command as much as possible.

3.4 Sub-models definition

Given the distanceDi measured in an angular sector, we want to express a com-
mand to apply that is safe while tracking desired command. Nevertheless, since this
sector only has limited information about robot surrounding, we choose to express
the following conservative semantic: tracking the desiredcommand should be a soft
constraint whereas an obstacle avoidance command should bea hard constraint, the
closer the obstacle, the harder the constraint.

We express this semantic using a probability distribution over the commands to
apply(V, Φ) knowing the desired commands and the distanceDi measured in this
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Fig. 6. Evolution of mean and standard deviation ofPi(V | VdDi) andPi(Φ | ΦdDi)
according to distance measured

sector:
Pi(V Φ | VdΦdDi) = Pi(V | VdDi)Pi(Φ | ΦdDi) (3)

wherePi(V | VdDi) and Pi(Φ | ΦdDi) are Gaussian distributions respectively
centred onµV (Vd, Di) and µΦ(Φd, Di) with standard deviationσV (Vd, Di) and
σΦ(Φd, Di). FunctionsµV , µΦ, σV , σΦ are defined with sigmoid shape as illustrated
in Fig. 6. Example of resulting distributions are shown in Fig. 7.

11



There is two specific aspects to notice in Fig. 6 and 7. First, concerning the means
µV andµΦ, we can see that, the farther the obstacle, the closer to the desired com-
mandµ will be, and conversely, the nearer the obstacle, the more secureµ: minimal
speed, strong steering angle.

 0

 0.5

 1

 1.5Speed
-0.3

-0.2
-0.1

 0
 0.1

 0.2
 0.3

 0.4

Steering Angle

Probability

 0

 0.5

 1

 1.5Speed
-0.3

-0.2
-0.1

 0
 0.1

 0.2
 0.3

 0.4

Steering Angle

Probability

Fig. 7. Shape ofPi(V Φ | VdΦdDi) for far and close obstacles

Second, the standard deviation can be seen as a constraint level. For instance, when
an obstacle is very close to the robot (smallDi), its speedmustbe strongly con-
strained to zero, this is expressed by a small standard deviation. Conversely, when
obstacle is far, robot speedcanfollow the desired command, but there is no damage
risk in not applying exactly this command. This low level constraint is the result of
a big standard deviation.

3.5 Command fusion

Knowing desired controls and distance to the nearest obstacle in its sector, each sub-
model, defined byPi(V Φ | VdΦdDi), provides us with a probability distribution
over the robot controls. As we have eight sectors, we will have to fuse the controls
from eight sub-models. Then we will find the best control in term of security and
desired control following.

To this end, we define the following joint distribution:

P (V Φ Vd Φd D1 . . . D8 S) = P (D1 . . . D8) P (Vd Φd) (4)
P (S) P (V Φ | Vd Φd D1 . . . D8 S)

where variableS ∈ [1 . . . 8] express which sector is considered.P (D1 . . . D8) and
P (VdΦd) are unknown distribution4 . As there is no need to favour a specific sub-
model, we defineP (S) as a uniform distribution. The semantic ofS will be em-

4 Actually, as we know we will not need them in future computation, we don’t haveto
specify them.
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phasised by the definition ofP (V Φ | VdΦdD1 . . . D8S):

P (V Φ | VdΦdD1 . . . D8[S = i]) = Pi(V Φ | VdΦdDi)

In this equation, we can see that the variableS acts as model selector: given its
valuei, the distribution over the commands will be computed by the sub-modeli,
taking into account only distanceDi.

Using equation 4, we can now express the distribution we are really interested in,
that is the distribution over the commands accounting for all the distances but not
variableS:

P (V Φ | Vd Φd D1 . . . D8) =
∑

S

(P (S)P (V Φ | Vd Φd D1 . . . D8 S)) (5)

This equation is actually the place where the different constraint level expressed by
functionsσV andσΦ will be useful. The more security constraints there will be,the
more peaked will be the sub-model control distribution. So sub-models who see no
obstacles in their sector will contribute to the sum with quasi-flat distribution, and
those who see perilous obstacles will add a peaky distribution, hence having more
influence (see Fig. 8). Finally the command really executed by the robot is the one
which maximiseP (V Φ | Vd Φd D1 . . . D8) (eq. 5).
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Fig. 8. Probability distribution over speed and steering, resulting from the obstacle avoid-
ance system.
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3.6 Results

Fig. 9 illustrates the result of the obstacle avoidance system applied on a simulated
example. The simulated CyCab is driven manually with a joystickin a square envi-
ronment. In this specific situation, the driver is continuously asking for maximum
speed, straight forward (null steering angle). We can observe on the dotted trajec-
tory that, first obstacle avoidance module bends the trajectory in order to avoid the
walls, and second, when there is no danger of collisions, desired commands are
applied exactly as requested.

From the density of dots, we can figure out the robot speed: it breaks when it comes
close to the walls and while its turning and try to follow desired speed when obsta-
cles are not so threatening.
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Starting position

Fig. 9. Robot trajectory while driven manually with constant desired steering angle

3.7 Relation to fuzzy logic approaches

The design of our obstacle avoidance modules may remind somereaders of a fuzzy
logic controller[15,22,12]. It is rather difficult to say that one approach is better
than the other. Both fuzzy logic and bayesian inference view themselves as exten-
sion of classical logic. Furthermore, both methods will deal with the same kind of
problems, providing the same kind of solutions. Some will prefer the great freedom
of fuzzy logic modelling and others will prefer to rely on thestrong mathematical
background behind bayesian inference.

As far as we can see, the choice between fuzzy logic and bayesian inference is
rather an personal choice, similar to the choice of a programming language: it has
more consequences on the way we express our solution than on the solution itself.
To extend the analogy, one might relate fuzzy logic to the C language whereas
Bayesian inference would be closer to Ada.
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4 Trajectory tracking with obstacle avoidance

The method presented in the previous section provides us with an efficient way
to fuse a security system and orders from a high level system.Nevertheless the
perturbations introduced in the trajectory following system by obstacle avoidance
are such that they can make it become unstable. In this section will show how we
integrate trajectory tracking and obstacle avoidance.

While following the trajectory, obstacle avoidance will modify certain commands
in order to follow as much as possible desired orders while granting security. These
modifications may introduce delay or diversions in the control loop. If no appropri-
ate action is taken to manage these delays the control law maygenerate extremely
strong accelerations or even become unstable when obstacles are gone. This is
typically the case when our system evolves among moving pedestrians. Thus we
designed a specific behaviour to adapt smoothly our control system to the pertur-
bations induced by obstacle avoidance.

4.1 Multiplexed trajectory tracking

4.1.1 Validity domain of flat control law

Experimentally, we found that the control law based on flatness can manage errors
in a range of about 1 meter and 15 degrees around nominal trajectory. Further-
more, as this control law controls the third derivative of the flat output (eq. 2), it
is a massively integrating system. For this reason, a constant perturbation such as
immobilisation due to a pedestrian standing in front of the vehicle will result in
a quadratic increase of the control law output. This phenomena is mainly due to
the fact that when obstacle avoidance slows the robot down, it strongly breaks the
dynamic rules around which the flat control law was built. So,there is no surprise
in its failure.

4.1.2 Probabilistic control law

In order to deal with the situations that flat control law cannot manage, we designed
a trajectory tracking behaviour (TTB) based again on probabilistic reasoning (sec-
tion 4.2). As this behaviour has many similarities with a weighted sum of propor-
tional control laws, we do not expect it to be sufficient to stabilise the robot on its
trajectory. Nevertheless, it is sufficient to bring it back in the convergence domain
of the flat control law when obstacle avoidance perturbations have occurred. Basi-
cally, the resulting behaviour is as follows: while the robot is close to its nominal
position, it is commanded by flat control law. When, due to obstacle avoidance, it
is too far from its nominal position, TTB takes control, and try to bring it back to
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flat control law’s convergence domain. When it enters this domain, flat control law
is reinitialised and starts accurate trajectory tracking(this is illustrated in fig. 10).

4.1.3 Time control

Path resulting from path planning (section 2.3) is a list of robot configuration in-
dexed by time. So when the robot is slowed down by a traversingpedestrian, it
compensates its delay by accelerating. Nevertheless, whenthe robot is stopped dur-
ing a longer time, let’s say fifteen seconds, it should not consider to be delayed of
fifteen seconds, otherwise it will try to reach a position fifteen second ahead, with-
out tracking the intermediary trajectory. To tackle this difficulty, we introduced a
third mode to the trajectory tracking: when the robot comes too far from its nominal
position, we freeze the nominal position, and we use the TTB to reenter the domain
where nominal position can be unfrozen.

The global system is illustrated by Fig. 10: we implemented some kind of multi-
plexer/demultiplexer which manage transitions between control laws. In order to
avoid oscillating between control laws when at the interface between two domains
of validity, we had to introduce some hysteresis mechanism in the switching. This
is illustrated in Fig. 10.

Fig. 10. Basic diagram of the control law selector mechanism and validity domainsof the
control laws

4.2 Trajectory tracking behaviour

Our trajectory tracking behaviour was built as a probabilistic reasoning, in a way
similar to the obstacle avoidance presented above (section3). Functionnaly, it is
very similar to a fuzzy control scheme as presented in [15] and illustrated in [12].

To specify our module, we use a mechanism of fusion with diagnosis[23]. If A
andB are two variables, we will define a diagnosis boolean variable IB

A which
express a consistency betweenA andB. Then,A andB will be called thediagnosed
variablesof IB

A .

Our goal is to express the distribution over the desired controls (Vd, Φd) knowing
reference controls(Vr, Φr) planned by the path planning stage, and error in position
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(δX, δY ) and orientationδθ with respect to the nominal position. Fig. 11 illustrates
theses variables.

Vd

Φd

Xδ

δY

Reference 
Vehicle

V r

Φ r

Tracking 
Vehicle

δθTra
jec

to
ry

Fig. 11. Variables involved in trajectory tracking behaviour

In addition to the preceding variables, we will add five diagnosis variablesIδX
Vd

, IVr

Vd
,

IδY
Φd

, Iδθ
Φd

andIΦr

Φd
. Variables linked to an error variable(δX, δY, δθ) will diagnose if a

given command helps correcting this error. Variables linked to reference commands
evaluate if a command is similar to the reference one.

All these variables describe the relation between their diagnosed variables in the
following joint distribution:

P (Vd Φd Vr Φr δX δY δθ IδX
Vd

IVr

Vd
IδY
Φd

Iδθ
Φd

IΦr

Φd
) = (6)

P (Vd Φd) P (Vr Φr) P (δX δY δθ)

P (IδX
Vd

| Vd δX) P (IVr

Vd
| Vd Vr)

P (IδY
Φd

| Φd δY ) P (Iδθ
Φd

| Φd δθ Vd) P (IΦr

Φd
| Φd Φr)

Using this joint distribution and Bayes rule, we will be able to infer

P (Vd Φd | (Vr Φr) (δX δY δθ) (7)

[IδX
Vd

= 1] [IVr

Vd
= 1] [IδY

Φd
= 1] [Iδθ

Φd
= 1] [IΦr

Φd
= 1])

Basically, this equation expresses the fact that we are looking for the most likely
commands in order to correct tracking error while accounting for reference com-
mands. Having all the diagnosis variables set to one enforces this semantic.

In the preceding joint distribution (eq. 6), all the diagnosed variables are assumed
to be independent, and to have uniform distributions. All the information concern-
ing the relation between them will be encoded in the distribution over diagnosis
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variables. In order to define this distributions, we first define the functiondσ(x, y)
as a Mahalanobis distance betweenx andy:

dσ(x, y) = e−
2
2(

x−y

σ )
2

Then, for two variablesA andB, we define

P ([IB
A = 1] | AB) = dS(A,B)(A, f(B)).

Let’s see how preceding functionsS andf are defined in specific cases.

4.2.1 Proportional compensation of errors

In the case ofIδX
Vd

, we setf(δX) = α.δX and

S(Vd, δX) = max((1 − β.δX)σmax , σmin).

Expression off implies that the maximum ofP (IδX
Vd

| Vd δX) will be for a value of
Vd proportional to the errorδX. Expression ofS defines the constraint level associ-
ated to this speed: the bigger the error, the more confident weare that a proportional
correction will work, so the smallerσ.

The basic behaviour resulting from this definition is that when the robot is behind
it nominal position, it will move forward to reduce its error: the bigger its error, the
faster and with more confidence that this is the good control to apply.

For IδY
Φd

, we use a similar proportional scheme. Its basic meaning is that when the
robot has a lateral error, it has to steer, left or right, depending on the sign of this
error. Again, the bigger the error, the more confident we are that we have to steer.

Finally, the same apply forIδθ
Φd

, except that the steering direction depends not only
of the orientation error, but also of the movement directionVd.

4.2.2 Using planned controls

In the path planning stage, the trajectory was defined as a setof nominal position,
associated with planned speed and steering angle. They haveto be accounted for,
especially when error is small.

Let’s consider firstIVr

Vd
. We setf andS as follows:f(Vr) = Vr andS(Vd, Vr) =

σVr
∈ [σmin, σmax], rather close toσmax. By this way, planned speed is used as a

indication to the trajectory following system. The distribution overIΦr

Φd
is defined

using the same reasoning.
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4.3 Results

Fig. 12 illustrates the basic behaviour of our trajectory tracking behaviour. In both
graphs, desired command will maximise eitherP (V | δX Vc) or P (Φ | δY δθ Φc).
Since curveP (V | δX Vc) is closer toP (V | δX) than toP (V | Vc), we can
observe that longitudinal error (δX) has much more influence than reference com-
mand on the vehicle speed. In the same manner, steering angleis a trade-off be-
tween what should be done to correct lateral error (δY ) and orientation error (δθ),
lightly influenced by reference steering angle.

Fig. 12. Trajectory tracking : resulting command fusion

Fig. 13 shows the collaboration of obstacle avoidance and trajectory following on
a simulated example. Planned trajectory passes through an obstacle which was not
present at map building time. Obstacle avoidance modifies controls in order to grant
security. When errors with respect to nominal trajectory is too big, our control law
selector switch to the trajectory tracking behaviour. Hereit is a big longitudinal er-
ror, due to obstacle avoidance slowing down the vehicle, which trigger the switch-
ing.

4.4 Discussion

Using the multiplexed control laws we managed to integrate,in the same control
loop, our flat control, accurate but sensible to perturbation, with our TTB, less
accurate but robust to perturbations. By this way we obtaineda system capable of
tracking trajectory generated by our path planner while accounting for unexpected
object in the environment.

Finally, when the robot has gone too far from reference trajectory, or when reactive
obstacle avoidance can not find suitable controls anymore, it may be necessary to
re-plan a new trajectory to the goal. This has not been implemented on the robot
yet, but this should not be considered neither a technical nor a scientific issue.
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Fig. 13. Collaboration of trajectory tracking and obstacle avoidance on a simulated example

Fig. 14. An experimental setting showing from left to right: The arbitrary placing of the
landmarks; the manual driving phase for landmark and obstacle map-building; the obstacle
map generated together with the current position of the robot as seen on the LCD display;
the capture of the goal position given by the user by means of the touch-screen; the execu-
tion of the found trajectory among aggressive pedestrians.

5 Experimental setup

We tested the integration of these essential autonomy capacities in our experimental
platform the Cycab robot. The aim was to validate the theoretical considerations
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made for the BiS-car and to get insight into the limitations ofthe whole motion
scheme.

The computation power on-board the Cycab is aPentium IITM 233MHz running a
Linux system. All programs were written in C/C++ language.

During the experiments the speed of the robot was limited to 1.5ms−1. The control
rate of the robot was fixed at50ms. The throughput rate of the laser range-finder
was limited to140ms 5 ; therefore the control system has to rely momentarily in
odometry[13] readings.

Fig. 14 is a set of pictures showing a complete application integrating the stages
described throughout the paper.

Fig. 15. Executed trajectory among static obstacles and moving pedestrians. Rear middle
point (R in fig. 3) trajectory is drawn.

Fig. 16. Executed trajectory with respect to planned trajectory, and multiplexermode.

5 This rate is fair enough for our needs, even though we could use a real-time driver.
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Fig. 17. Applied speeds with respect to planned speed, and multiplexer mode.

Fig. 18. Applied steering with respect to planned steering, and multiplexer mode.

Figs 15 to 18 illustrates how a planned trajectory is executed while avoiding moving
pedestrians. In this environment, the control law using flatness could only be used
at the beginning and at the end of the trajectory. On the remaining of the trajectory,
speed and steering angle are adjusted in order to maintain security while keeping
pace with the plan as much as possible.
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6 Discussion & Conclusions

In this paper, we presented our new steps toward the autonomyof a bi-steerable car.
The integration of localisation, map building, trajectoryplanning and execution in
a moderately dynamic environment was discussed. Control lawusing the CyCab
flatness property was found to be insufficient for trajectorytracking among moving
pedestrians.

Even if this integration was successful and provides satisfactory results, we are
convinced that a reactive behaviour cannot be sufficient forthe autonomy of vehicle
in a real urban environment. For this reason, we are working on the perception and
identification of road users (pedestrians, cars, bikes or trucks). By this way, we will
be able to predict future movement of “obstacles” and to react accordingly, in a
smarterway than the simple scheme proposed in this paper.
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Jürg Weber 

2010-09-15  

2010-12-25 

Autonomous navigation and mapping for a micro-

helicopter 

Christian Gehring, 

Yves Pilat 

2010-02-22  

2010-06-30 

Design and evaluation of a Wing-Leg for an underwater 

robot 
Janine Stocker 

2010-02-22  

2010-06-30 

Sensor integration and obstacle avoidance for an 

orientation assistant for Science City Hoenggerberg 
Meng-Yu Yu 

2010-02-22  

2010-06-04 

Satellite tracking from camera: the inverse GPS problem 
Thomas 

Neuenschwander 

2008-10-31  

2009-03-11 

 

d) Bachelor Projects supervised (Undergraduate projects) 

During the Bachelor, students must also conduct a final project, accounting for 100% of 

their time during their 6th semester. The table below lists the project I supervised: 

Title Student(s) Dates 

Control of a Micro UAV using an external laser tracker 
Andreas Michel, 

Dominic Jud 

2011-02-21  

2011-06-18 

Autonomous docking for the Limnobotics Autonomous 

Sampling Boat 
Nico Geiser 

2010-02-22  

2010-09-30 

Embedded Obstacle Avoidance for the CoaX Erik Voigt 
2010-02-22  

2010-06-30 

Fully autonomous MAV-flight in avalanche regions 
Luc Oth, Manuel 

Grauwiler 

2010-02-22  

2010-06-04 

Path planning and navigation of an orientation assistant 

for Science City Hoenggerberg 
Benedikt Mathis 

2010-02-22  

2010-06-04 

User-Interface and –guiding behavior for an orientation 

assistant for Science City Hoenggerberg 
Lorenz Oswald 

2010-02-22  

2010-06-04 

Autonomous docking for the Limnobotics Autonomous 

Sampling Boat 
Chrstoph Kammer 

2010-02-22  

2010-06-04 

Implementation of a low level controller and design of a 

roll cage for the BOOGAR 

Claudio Cavelti, 

Daniel Längle 

2009-02-16  

2009-05-30 

Design of a Diving System for a Robotic Fish 
Thomas 

Wuhrmann 

2009-02-16  

2009-05-29 

iPhone-Robot Command Interface: A Case Study Florian Müller 
2009-02-16  

2009-05-29 
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Sailing Strategy for a Robotic Yacht Gion-Andri Büsser 
2009-02-16  

2009-05-29 

Design and Evaluation of locomotion concepts for an 

Autonomous Underwater Robot. 

Benjamin Peter, 

Roman 

Ratnaweera 

2009-02-15  

2009-06-01 

Design of a communication system for an Autonomous 

Sailboat 
Stefan Wismer 

2009-02-15  

2009-06-01 

Design of a trajectory following controller for an 

Autonomous Sailboat 
Hendrik Erckens 

2009-02-15  

2009-06-01 

Energy Management for an Autonomous Sailboat Jürg Weber 
2009-02-15  

2009-06-01 

 

e) Studies of Mechatronics supervised (Undergraduate projects) 

Also during the Bachelor, students must conduct a small literature research project 

alled a “tudy of Me hatro i s . The ta le elo  lists the “tudies of Mechatronics I 

supervised: 

Title Student(s) Dates 

Mechatronic history of computer input device 
Lorenzo Garbani 

Marcantini 

2011-10-03  

2011-12-23 

Autonomous docking for the Limnobotics Autonomous 

Sampling Boat 
Nico Geiser 

2010-02-22  

2010-06-04 

Embedded Obstacle Avoidance for the CoaX Erik Voigt 
2010-02-22  

2010-05-31 

Studies of Mechatronics: Adaptive control for flying robots Luca Vanoni 
2009-10-01  

2009-12-18 

Studies of Mechatronics: Adaptive control for 

ground/walking robots 
Titus Haas 

2009-10-01  

2009-12-18 

Studies of Mechatronics: methodologies for functional 

autonomy 
Benedikt Mathis 

2009-10-01  

2009-12-18 

Object Recoginition Dani Eberli 
2008-10-06  

2008-12-19 

LAGR project: overview of eight control strategies Stefan Haag 
2008-09-22  

2008-12-19 

 

f) «Fokus Projects» 

The fokus projects aims at bringing together teams of 5 to 10 students at the end of the 

Bachelor. Over 12 months, their objectives are to face all the phases of a mechatronic 

project: mechanical design, electrical design, electronic design, software design and 

implementation of all these elements into a full system. Furthermore, the students 

must find their own funding and present their project at the end of the Bachelor as if 
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they were launching a product. I directly supervised the Avalon project in 2008-2009 

with the objective to develop an autonomous sail boat to cross the Atlantic (this lead to 

one publication in the Robotic and Automation Magazine). As deputy-director of the 

ASL, I have been normally involved at a high-level of supervision every year for our 3 

projects.  

3. CSIRO 

o Organization of the visit of French PhD students from the INRIA team e-Motion (Ch. Braillon, 

A. Negre). Each visit led to publications, in particular with a publication in the Journal of 

Field Robotics for A. Negre. 

o Organization of the reciprocal visit of an Australian PhD student to INRIA (S. Nuske). 

B. Other Teaching Activities 

1. ETH Zürich 

o Creation and responsibility and teaching of Information Processing for Robotics (42 hours in 

the Master of Robotics, System and Control) in collaboration with Dr. R. Triebel and Dr. F. 

Colas. Taught three times from 2009 to 2011.  

IV. Scholarly Accomplishments 

A. Published Books and Parts of Books 

 Pradalier, C. and Bessière, P. Chapter 3 of Probabilistic Reasoning and Decision Making 

in Sensory-Motor Systems, Springer Tracts in Advanced Robotics, 2008, Bessière, Pierre; 

Laugier, Christian; Siegwart, Roland (Eds.) 

B. Refereed Publications 

1. International Journals 

1) Liu, M., Pradalier, C., Siegwart, R. Visual homing from scale with an 

uncalibrated omnidirectional, camera, IEEE Transactions on Robotics, 29(6), pp. 

1353-1365, 2013 

2) MÈ Garneau, T Posch, G Hitz, F Pomerleau, C Pradalier, R Siegwart , Short-term 

displacement of Planktothrix rubescens (cyanobacteria) in a pre-alpine lake 

observed using an autonomous sampling platform, Limnography and 

Oceanography 58 (5), 2013 

3) Stumm, E.; Breitenmoser, A.; Pomerleau, F.; Pradalier, C. and Siegwart, R. 

Tensor-voting-based navigation for robotic inspection of 3D surfaces using lidar 

point clouds, The International Journal of Robotics Research, 2012 
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4) Gonzalez, R.; Rodriguez, F.; Guzman, J.L.; Pradalier, C. and Siegwart,R. 

Combined visual odometry and visual compass for off-road mobile robots 

localization, Robotica, 2012 

5) Hitz, G.; Pomerleau, F.; Garneau, M.-E.;  Pradalier, C.; Posch, T.; Pernthaler, J. 

and Siegwart, R. Autonomous Inland Water Monitoring: Design and Application 

of a Surface Vessel, IEEE Robotics and Automation Magazine, 2012. 

6) Krebs, A., Pradalier, C., and Siegwart, R. Adaptive Rover Behaviour Based on 

Online Empirical Evaluation: Rover-Terrain Interaction and Near-to-Far Learning, 

Journal of Field Robotics, 2010. 

7) Erckens, H., Busser G.A., Pradalier, C., Siegwart, R. Avalon, IEEE Robotics & 

Automation Magazine, 2010 

8) Pradalier, C., Tews, A. and Roberts, J. Vision-based operations of a large 

industrial vehicle: autonomous hot metal carrier. Journal of Field Robotics. 2008. 

9) Pradalier, C. and Usher, K. Robust trajectory tracking for a reversing tractor 

trailer. Journal of Field Robotics. 2008. 

10) Nègre, A.; Pradalier, C. and Dunbabin, M. Robust vision-based underwater 

homing using self-similar landmarks. Journal of Field Robotics. 2008. 

11) Coué, C.; Pradalier,C.; Laugier,C.; Fraichard,T. and Bessière,P.  Bayesian 

Occupancy Filtering for Multitarget Tracking: an Automotive Application   Int. 

Journal of Robotics Research, 2006.  

12) Pradalier, C.; Hermosillo, J.; Koike, C.; Braillon, C.; Bessière, P. and Laugier, C. 

The CyCab: a car-like robot navigating autonomously and safely among 

pedestrians  Robotics and Autonomous Systems, 2005  

13) Hermosillo, J.; Pradalier, C.; Sekhavat, S. and Laugier, C. Autonomous 

Navigation of a Bi-steerable Car: Experimental Issues Machine Intelligence and 

Robotic Control Journal, 2004  

2. International Conferences 

a) 2014 

1) R Michalec, C Pradalier, Sidescan Sonar Aided Inertial Drift Compensation in 

Autonomous Underwater Vehicles,  OCEANS'14 MTS/IEEE, St. John's, September 

2014 

2) A Jacobson, D Panozzo, O Glauser, C Pradalier, O Hilliges, O Sorkine-Hornung, 

Tangible and Modular Input Device for Character Articulation, 41st conference 
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on computer graphics and interactive techniques (SIGGRAPH), Vancouver, 

August 2014. 

3) S Griffith, P Drews, and C Pradalier: Towards Autonomous Lakeshore 

Monitoring, International Symposium on Experimental Robotics (ISER), 

Marakesh, June 2014 

4) P Strupler, C Pradalier, R Siegwart, Terrain Mapping and Control Optimization 

for a 6-Wheel Rover with Passive Suspension International Conference on Field 

and Service Robotics, 297-310, 2014 

b) 2013 

5) C Siegenthaler, C Pradalier, F Gunther, G Hitz, R Siegwart, System integration 

and fin trajectory Design for a robotic sea-turtle, IEEE/RSJ International 

Conference Intelligent Robots and Systems (IROS), 2013 

6) A Mcfadyen, L Mejias, P Corke, C Pradalier, Aircraft collision avoidance using 

spherical visual predictive control and single point features, IEEE/RSJ 

International Conference Intelligent Robots and Systems (IROS), 2013 

7) R Gonzalez, F Rodriguez, JL Guzman, C Pradalier, R Siegwart , Control of off-

road mobile robots using visual odometry and slip compensation , Advanced 

Robotics 27 (11), 893-906,2013 

8) P Furgale, C. Pradalier et al., Toward automated driving in cities using close-to-

market sensors: An overview of the V-Charge Project, IEEE Intelligent Vehicles 

Symposium (IV), 2013, 809-816 

c) 2012 

9) Liu,M.; Pradalier,C.; Pomerleau,F.; Siegwart,R.  Scale-only Visual Homing from 

an Omnidirectional Camera. Proc. of The IEEE International Conference on 

Robotics and Automation (ICRA), May 2012.  

10) Pradalier,C.; Bouabdallah,S.; Gohl,P.; Egli,M.; Caprari,G.; Siegwart,R. The CoaX 

Micro-helicopter: A Flying Platform for Education and Research  Advances in 

Autonomous Mini Robots, 89-99 

d) 2011 

11) D Font, M Tresanchez, C Siegentahler, T Pallejà, M Teixidó, C Pradalier, Design 

and Implementation of a Biomimetic Turtle Hydrofoil for an Autonomous 

Underwater Vehicle Sensors 11 (12), 11168-11187, 2011 
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12) A Bonchis, N Hillier, J Ryde, E Duff, C Pradalier, Experiments in Autonomous 

Earth Moving 18th IFAC World Congress 18 (1), 11588-11593, 2011 

13) Y Yu, C Pradalier, G Zong , Appearance-based monocular visual odometry for 

ground vehicles Advanced Intelligent Mechatronics (AIM), 2011 IEEE/ASME 

International Conference, 2011 

14) D Font, M Tresanchez, C Siegentahler, M Teixidó, T Pallejà, C Pradalier, 

Experimental determination of the hydrofoil's angle of attack in the case of a 

turtle-like Autonomous Underwater Vehicle OCEANS, 2011 IEEE-Spain, 2011 

15) B Xu, C Pradalier, A Krebs, R Siegwart, F Sun, Composite control based on 

optimal torque control and adaptive Kriging control for the CRAB rover, Robotics 

and Automation (ICRA), 2011 IEEE International Conference on, 1752-1757, 2011 

16) X Perrin, F Colas, R Chavarriaga, C Pradalier, JR Millán, R Siegwart , Learning 

User Habits for Semi-Autonomous Navigation using Low Throughput Interfaces 

IEEE Int Conf Systems, Man, and Cybernetics (IEEE SMC 2011), 2011 

17) A Medina, C Pradalier, G Paar, A Merlo, S Ferraris, L Mollinedo, A Servicing 

Rover for Planetary Outpost Assembly ASTRA, 2011 

18) B Xu, C Pradalier, R Siegwart, Torque control with kriging estimation for the 

CRAB rover ASTRA, 2011 

19) CD Remy, O Baur, M Latta, A Lauber, M Hutter, MA Hoepflinger, C Pradalier, 

Walking and crawling with ALoF: a robot for autonomous locomotion on four 

legs Industrial Robot: An International Journal 38 (3), 264-268, 2011 

e) 2010 

20) Liu, M.; Pradalier, C.; Siegwart, R. and Chen, Q. "A Bearing-Only 2D/3D-Homing 

Method under a Visual Servoing Framework", Proc. of The IEEE International 

Conference on Robotics and Automation (ICRA), May 2010.  

21) Peter, B.; Ratnaweera, R.; Fischer, W.; Pradalier, C. and Siegwart, R. "Design 

and Evaluation of a Fin-Based Underwater Propulsion System", Proc. of The IEEE 

International Conference on Robotics and Automation (ICRA), May 2010. 

22) Krebs, A.; Risch, F.; Thueer, R.; Maye, J.; Pradalier, C. and Siegwar, R. "Rover 

control based on an optimal torque distribution - Application to 6 motorized 

wheels passive rover", Proc. of The IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS), October 2010. 

23) Krebs, A.; Pradalier, C. and Siegwart, R. "RTILE - Adaptive rover navigation 

based on online terrain learning", Proc. of The 10th International Symposium on 
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Artificial Intelligence, Robotics and Automation in Space (iSAIRAS), September 

2010 

24) Remy, C.; Baur, O.; Latta, M.; Lauber, A.; Hutter, M.; Hoepflinger, M.; 

Pradalier, C. and Siegwart, R. "Walking and Crawling with ALoF - A Robot for 

Autonomous Locomotion on Four Legs, Proc. of the 13th International 

Conference on Climbing and Walking Robots (CLAWAR), September 2010. 

f) 2009 

25) L. Giger, S. Wismer, S. Boehl, G. Buesser, H. Erckens, J. Weber, P. Moser, P. 

Schwizer, C. Pradalier, R. Siegwart, "Design and Construction of the 

Autonomous Sailing Vessel AVALON", Proc. of The World Robotic Sailing 

Championship and International Robotic Sailing Conference, 2009.  

26) X. Perrin, F. Colas, C. Pradalier, R. Siegwart, "Learning to identify users and 

predict their destination in a robotic guidance application", Field and Service 

Robotics (FSR), 2009.  

27) Liu, M.; Scaramuzza, D.; Pradalier, C.; Siegwart, R. and Chen, Q. "Scene 

Recognition with Omnidirectional Vision for Topological Map using Lightweight 

Adaptive Descriptors", Proc. of The IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS), October 2009.  

28) Shin, J.; Gachter, S.; Harati, A.; Pradalier, C. and Siegwart, R. "Object 

Classification based on a Geometric Grammar with a Range Camera", Proc. of 

The IEEE International Conference on Robotics and Automation (ICRA), May 

2009. 

g) 2008 

29) Krebs, A,; Pradalier, C. and Siegwart R., "Comparison of Boosting based Terrain 

Classification using Proprioceptive and Exteroceptive Data", Proc. of The 11th 

International Symposium on Experimental Robotics (ISER), July 2008.  

30) Hoepflinger, M.; Krebs, A.; Pradalier, C.; Lee, C.; Obstei, R. and Siegwart, R. 

"Description of the Locomotion Control Architecture on the ExoMars Rover 

Breadboard", Proc. of The 10th ESA Workshop on Advanced Space Technologies 

for Robotics and Automation (ASTRA), 2008.  

31) Krebs, A.; Pradalier, C. and Siegwart, R. "Strategy for adaptive rover behavior 

based on experiment", Proc of the 10th ESA Worshop on Advanced Space 

Technologies for Robotics and Automation, 2008.  
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32) Pradalier, C. Vision-based handling tasks for an autonomous outdoor forklift. In: 

Laugier, C. and Siegwart, R., eds. Field and Service Robots: Results of the 6th 

International Conference (FSR '07); Chamonix, France.  Springer; 2008: 61-70. 

(Springer tracts in advanced robotics. v. 42). ISBN: 9783540754039. 

33) Pradalier, C. and Usher, K. Experiments in autonomous reversing of a tractor-

trailer system. In: Laugier, C. and Siegwart, R., eds. Field and Service Robots: 

Results of the 6th International Conference (FSR '07); Chamonix, 

France.  Springer; 2008: 475-484. (Springer tracts in advanced robotics. v. 42). 

ISBN: 9783540754039. 

34) Braillon, C.; Pradalier, C.; Usher, K.; Crowley, J. L., and Laugier, C. Occupancy 

grids from stereo and optical flow data. In: Khatib, O.; Kumar, V., and Rus, D., 

eds. Experimental Robotics: the 10th International Symposium on Experimental 

Robotics (ISER '06); Rio de Janeiro, Brazil.  Springer; 2008: 367-376. (Springer 

tracts in advanced robotics. v. 39). ISBN: 9783540774563. 

h) 2007 

35) Negre, A.; Pradalier, C., and Dunbabin, M. Robust vision-based underwater 

target identification and homing using self-similar landmarks. In: Laugier, C. and 

Siegwart, R., eds. Field and Service Robots: Results of the 6th International 

Conference (FSR '07); Chamonix, France.  Springer; 2008: 51-60. (Springer tracts 

in advanced robotics. v. 42). ISBN: 9783540754039. 

36) Nuevo, J.; Pradalier, C., and Bergasa, L. M. Model-based load localisation for an 

autonomous Hot Metal Carrier. IEEE/RSJ International Conference on Intelligent 

Robots and Systems (IROS 2007); San Diego, Calif.  IEEE; 2007: 247-252. ISBN: 

9781424409129. 

37) Pradalier, C. and Usher, K. A simple and efficient control scheme to reverse a 

tractor-trailer system on a trajectory. IEEE International Conference on Robotics 

and Automation (ICRA '07); Rome, Italy.  IEEE; 2007: 2208-2214.  

38) Roberts, J.; Pradalier, C., and Tews, A. Autonomous hot metal carrier. In: 

Grandfield. J. F. and Taylor, J. A., eds. Aluminium Cast House Technology : 10th 

Australasian Conference & Exhibition; Sydney, NSW.  CSIRO Publ.; 2007: 247-

256. ISBN: 9780643094741. 

39) Roberts, J.; Tews, A., and Pradalier, C. Experiments and experiences with 

dependability for a large autonomous industrial vehicle. 5th IARP/IEEE-

RAS/EURON International Workshop on Technical Challenges for Dependable 

Robots in Human Environments; Rome, Italy.  2007.  
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40) Roberts, J.; Tews, A.; Pradalier, C., and Usher, K. Autonomous hot metal 

carrier: navigation and manipulation with a 20 tonne industrial vehicle. IEEE 

International Conference on Robotics and Automation (ICRA '07); Rome, 

Italy.  IEEE; 2007: 2770-2771. 

41) Tews, A.; Pradalier, C., and Roberts, J. Reliable autonomous industrial vehicle 

operations. IEEE International Conference on Robotics and Automation (ICRA 

'07); Rome, Italy.  IEEE; 2007: 1176-1182. 

3. 2006 

42) Braillon, C.; Pradalier, C.; Crowley, J. L., and Laugier, C. Real-time moving 

obstacle detection using optical flow models. IEEE Intelligent Vehicle Symposium 

(IV 2006); Tokyo, Japan.  IEEE; 2006: 466-471.  

43) Braillon, C.; Pradalier, C.; Usher, K.; Crowley, J. L., and Laugier, C. Occupancy 

grids from stereo and optical flow data. IEEE International Symposium on 

Experimental Robotics (ISER '06); Rio de Janeiro, Brazil.  2006.  

44) Braillon, C.; Usher, K.; Pradalier, C.; Crowley, J. L., and Laugier, C. Fusion of 

stereo and optical flow data using occupancy grids. 9th International IEEE 

Conference on Intelligent Transportation Systems (ITSC 2006); Toronto, 

Ont.  IEEE; 2006: 1240-1245.  

45) Braillon, C.; Usher, K.; Pradalier, C.; Crowley, J. L., and Laugier, C. Real-time 

stereo and optical flow data fusion. IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS 2006); Beijing, China.  IEEE; 2006.  

4. 2005 

46) Tay, C.; Pradalier, C. and Laugier, C. Online reconstruction of vehicles in a car 

park. In: Corke, P. and Sukkarieh, S., eds. Field and Service Robotics: Results of 

the 5th International Conference (FSR 2005); Port Douglas, Qld.  Springer; 2006: 

207-218. (Springer tracts in advanced robotics. v. 25). ISBN: 3540334521.  

47) Pradalier, C.; Vaussier, S. and Corke, P. Path planning for a parking assistance 

system: implementation and experimentation. Australasian Conference on 

Robotics and Automation (ACRA 2005); University of New South Wales.  ARAA; 

2005. CD ROM. ISBN: 0958758379. 

48) Tay,C.; Pradalier,C. and Laugier,C. Vehicle Detection And Car Park Mapping 

Using Laser Scanner Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and 

Systems - Edmonton, Alberta, Canada - August 2005  
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5. 2004 

49) Pradalier, C.; Hermosillo, J.; Koike, C.; Braillon, C.; Bessière, P. and Laugier, C. 

An Autonomous Car-Like Robot Navigating Safely Among Pedestrians  Proc. of 

the IEEE Int. Conf. on Robotics and Automation - New Orleans, LA (US) - April 

2004  

50) Pradalier, C.; Bessière, P. and Laugier, C. Driving On A Known Sensori-Motor 

Trajectory With A Car-like Robot  Cédric Pradalier, Pierre Bessière, Christian 

Laugier Proc. of the Int. Symp. on Experimental Robotics - Singapore (SG) - June 

2004  

51) Lefebvre, O.; Lamiraux, F.; Pradalier, C. and Fraichard, T.  Obstacles Avoidance 

for Car-Like Robots. Integration And Experimentation on Two Robots  Proc. of 

the IEEE Int. Conf. on Robotics and Automation - New Orleans, LA (US), page 

4277--4282 - April 2004 

52) Pradalier, C. and Bessière, P. Perceptual navigation around a sensori-motor 

trajectory  Proc. of the IEEE Int. Conf. on Robotics and Automation - New 

Orleans, LA (US) - April 2004  

6. 2003 

53) Coué, C. ; Pradalier,C. and Laugier, C.  Bayesian Programming for Multi-Target 

Tracking: an Automotive Application   Proc. of the Int. Conf. on Field and Service 

Robotics - Lake Yamanaka (JP) - July 2003  

54) Hermosillo, J.; Pradalier, C.; Sekhavat, S. and Laugier, C. Experimental Issues 

from Map Building to Trajectory Execution for a Bi-steerable Car. Proc. of the 

IEEE Int. Conf. on Advanced Robotics - Coimbra (PT) - July 2003  

55) Pradalier, C.; Colas, F. and Bessière, P. Expressing Bayesian Fusion as a Product 

of Distributions: Application to Randomized Hough Transform   Proc. of the 

Conf. on Bayesian Methods and Maximum Entropy in Science and Engineering - 

Jackson Hole, WY (US) - August 2003  

56) Pradalier, C.; Colas, F. and Bessière, P. Expressing Bayesian Fusion as a Product 

of Distributions: Applications in Robotics Proc. of the IEEE-RSJ Int. Conf. on 

Intelligent Robots and Systems - Las vegas, NV (US) - October 2003  

57) Koike, C.; Pradalier, C.; Bessière, P. and Mazer, E. Obstacle Avoidance and 

Proscriptive Bayesian Programming  Proc. of the Workshop on Reasoning with 

Uncertainty in Robotics - Acapulco (MX) - July 2003  
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58) Koike, C.; Pradalier, C.; Bessière, P. and Mazer, E. Proscriptive Bayesian 

Programming Application for Collision Avoidance  Proc. of the IEEE-RSJ Int. Conf. 

on Intelligent Robots and Systems - Las vegas, NV (US) - October 2003  

59) Pradalier, C.; Hermosillo, J.; Koike, C.; Braillon, C.; Bessière, P. and Laugier, C. 

Safe and Autonomous Navigation for a Car-Like Robot Among Pedestrian IARP 

Int. Workshop on Service, Assistive and Personal Robots - Madrid (ES) - October 

2003 

60) Hermosillo, J.; Pradalier, C.; Sekhavat, S.; Laugier, C. and Baille,G. Towards 

Motion Autonomy of a Bi-steerable Car: Experimental Issues from Map-building 

to Trajectory Execution Proc. of the IEEE Int. Conf. on Robotics and Automation - 

Taipei (TW) - May 2003  

7. 2002 

61) Pradalier,C. and Sekhavat,S. «Localization Space»: a Framework for Localization 

and Planning, for Systems Using a Sensor/Landmarks Module, Proc. of the IEEE 

Int. Conf. on Robotics and Automation, Washington DC, 2002 

62) Pradalier,C. and Sekhavat,S. Concurrent matching, localization and map 

building using invariant features,  Proc. of the IEEE-RSJ Int. Conf. on Intelligent 

Robots and Systems, 2002 

C. Editorial Contributions 

63) Pradalier,C.; Hirzinger,G.;Siegwart,R. Robotics Research: The 14th International 

Symposium ISRR, Springer, 2011 

64) Pradalier,C.; Hirzinger,G.;Siegwart,R. Editoria,l Special Issue on the Fourteenth 

International Symposium on Robotics Research, 2009 The International Journal 

of Robotics Research 30 (3), 263-264, published in 2011 

65) Laugier,C.; Martinelli,A.; Pradalier,C.; Siegwart,R. The International Journal of 

Robotics Research (IJRR)-Special issue on``Field and Service Robotics'', 2009 

66) Pradalier,C.; Laugier,C.; Martinelli,A.; Siegwart,R. Editorial for Journal of Field 

Robotics—Special Issue on Field and Service Robotics, Journal of Field Robotics 

25 (6‐7), 303-304, 2008 

http://scholar.google.ch/citations?view_op=view_citation&hl=en&user=4_1DZoYAAAAJ&pagesize=100&sortby=pubdate&citation_for_view=4_1DZoYAAAAJ:BqipwSGYUEgC
http://scholar.google.ch/citations?view_op=view_citation&hl=en&user=4_1DZoYAAAAJ&pagesize=100&sortby=pubdate&citation_for_view=4_1DZoYAAAAJ:BqipwSGYUEgC
http://scholar.google.ch/citations?view_op=view_citation&hl=en&user=4_1DZoYAAAAJ&pagesize=100&sortby=pubdate&citation_for_view=4_1DZoYAAAAJ:70eg2SAEIzsC
http://scholar.google.ch/citations?view_op=view_citation&hl=en&user=4_1DZoYAAAAJ&pagesize=100&sortby=pubdate&citation_for_view=4_1DZoYAAAAJ:70eg2SAEIzsC
http://scholar.google.ch/citations?view_op=view_citation&hl=en&user=4_1DZoYAAAAJ&pagesize=100&sortby=pubdate&citation_for_view=4_1DZoYAAAAJ:JV2RwH3_ST0C
http://scholar.google.ch/citations?view_op=view_citation&hl=en&user=4_1DZoYAAAAJ&pagesize=100&sortby=pubdate&citation_for_view=4_1DZoYAAAAJ:JV2RwH3_ST0C
http://scholar.google.ch/citations?view_op=view_citation&hl=en&user=4_1DZoYAAAAJ&pagesize=100&sortby=pubdate&citation_for_view=4_1DZoYAAAAJ:RYcK_YlVTxYC
http://scholar.google.ch/citations?view_op=view_citation&hl=en&user=4_1DZoYAAAAJ&pagesize=100&sortby=pubdate&citation_for_view=4_1DZoYAAAAJ:RYcK_YlVTxYC
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V. Service 

A. Professional Contributions 

 2005: Member of the organization team for the Field and Service Robotics conference (FSR) 

 2006: Integration in the ICRA Associate Editors (in the team since then) 

 2007: Integration in the FSR Committee 

 2009: Integration in the Journal of Field Robotics Editorial board. 

 2009: Publication chair and local organizer for the International Symposium on Robotics 

Resear h  I“RR’ , “epte er  

 : Progra  hair for CARPI’ : Co fere e o  Ad a e Ro oti s for the Po er I dustry 

 2012: Organizer for the RO“ o ’ : Te h i al o fere e arou d the RO“ iddle are. 

VI. Grants and Contracts 

A. As Principal and Co-Principal Investigator 
Note that at ETH Zürich, the legal responsibility always lies with the professor leading a 

research lab, even if the proposal has been written and submitted by one of the lab 

member. In the projects below I listed myself as a PI when I was actually leading the project.  

1. European funding (FP6/FP7/H2020): 

 Flourish : RIA/H2020, 2015-2018, PI, Preparation of the proposal. Funding : Total 

' ’ €, Allo ated to the UMI  ’ €.   

 Noptilus: IP/FP7, 2010-2014, PI, Preparation of the proposal, Supervision of ASL 

responsibilities and technical contributions, supervision of 1 PhD students. Autonomous 

Underwater Vehicles. Fu di g: Total ’ ’ € Allo ated to A“L ’ € 

 V-Charge: IP/FP7, 2010-2014, Co-PI, Preparation of the proposal, technical coordinator
1
, 

supervision of 1 PostDoc, 2-3 PhD students. Vision-based autonomous car navigation.  

Fu di g: Total ’ ’ € Allo ated to A“L ’ ’ € 

                                                           

 

1
 The coordinator of a European project is the partner who is interacting with the funding agency and leading the 

project. The technical coordinator is the person leading the technical activities of the consortium. 
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2. Funding from the European Spacial Agency (ESA): 

 ExoMars, 2007-2011: PI, Proposals, development of various prototypes and tools for the 

ExoMars program. Continuous supervision of 1-2 PhD or engineers. Prime contractor: RUAG 

Space (Switzerland).  

Approximate funding for ASL: 300’  CHF. 

 Eurobot Rover Prototype, 2009: PI, proposal, design and development of a space rover for 

mobile manipulation experiments. Prime contractor: GMV (Spain). Supervision of 1 

engineer. Fu di g: Total ’ € Allo ated to A“L ’ € 

 Heavy Duty Planetary Chassis, 2011: PI, proposal, design and development of a scalable 

space rover. Supervision of 1 engineer.  Prime contractor: RUAG Space (Switzerland).  

Funding: Allocated to ASL ’ € 

 Lunar Robotic Challenge, 2008: supervision of a team of students and PhD to build a robotic 

platform for lunar exploration over 8 months. Deployment and tests in a volcanic 

environment in Tenerife.  

Fu di g: Allo ated to A“L ’ €.  

3. Funding from national agencies: 

 Swiss National Fund: Li o oti s  proje t, -2013: Co-PI, supervision of 1 PhD (G. Hitz). 

Study of algae populations using an autonomous surface vessel.  

Fu di g: Total ’  CHF Allo ated to A“L ’  CHF. 

 Co issio  for Te h ology a d I o atio : Auto o ous Ro oti  I spe tio  usi g High-

Pre isio  Lo alisatio , -2012, PI, proposal lead, collaboration with industrial partners: 

Alstom Inspection Robotics and Leica Geo-Systems. Supervision of 2 engineers.  

Fu di g:  ’  CHF 

B. As Investigator 

1. European funding (FP6/FP7): 

 Robots@Home: STREP/FP6, 2006-2009, Supervision of the ASL responsibilities and technical 

contributions, supervision of 1 PostDoc, 2PhD students. Mobile robot navigation in an 

indoor environment. 

 NIFTI: IP/FP7, 2009-2013, Preparation of the proposal, general supervision of ASL side and 

overview, supervision of 1 PostDoc and 2PhD students. Robotic search and rescue. 

 s-Fly: STREP/FP7, 2008-2011, Preparation of the proposal, general supervision of ASL side 

and overview (Coordinator: ASL), supervision of 1 PostDoc and 2PhD students. Swarm of 

flying robots. 
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 Europa: STREP/FP7, 2008-2011, Preparation of the proposal, general supervision of ASL side 

and overview, supervision of 1 PostDoc and 3PhD students. Navigation in outdoor urban 

environment. 

VII. Honors and Awards 

 Prix De Vigier, Juin 2011, received from fo datio  De Vigier  .de igier. h  for the 
spin-off Skybotix (founding member). 

 TeamWork Award, 2007, CSIRO 

VIII. Personal Data 

Born: 1978    Citizenship:  French 

Email 

WWW 

cedric.pradalier@georgiatech-metz.fr 

http://dream.georgiatech-metz.fr 

Language: French (native), English (fluent), Spanish and German (basics) 
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