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Abstract

Multi-label classification is an extension of traditional single-label classification,
where classes are not mutually exclusive, and each example can be assigned to several
classes simultaneously. It is encountered in various modern applications such as scene
classification and video annotation. The main objective of this thesis is the development
of new techniques to address the problem of multi-label classification. The first part of
this manuscript studies the problem of multi-label classification in the context of the
theory of belief functions. We propose a multi-label learning method that is able to
take into account relationships between labels and to classify new instances using the
formalism of uncertainty representation for set-valued variables. The second part deals
with the problem of prototype selection in the framework of multi-label learning. We
propose an editing algorithm based on the k-nearest neighbors rule in order to purify
training datasets and improve the performances of multi-label classification algorithms.
Experimental results on synthetic and real-world datasets show the effectiveness of our
approaches.

Keywords: supervised learning; multi-label classification; belief functions theory;
k-nearest neighbors rule; prototype selection; edition.
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Résumé

La classification multi-label est une extension de la classification traditionnelle dans
laquelle les classes ne sont pas mutuellement exclusives, chaque individu pouvant appar-
tenir à plusieurs classes simultanément. Ce type de classification est requis par un grand
nombre d’applications actuelles telles que la classification d’images et l’annotation de
vidéos. Le principal objectif de cette thèse est la proposition de nouvelles méthodes
pour répondre au problème de classification multi-label. La première partie de cette
thèse s’intéresse au problème d’apprentissage multi-label dans le cadre des fonctions
de croyance. Nous développons une méthode capable de tenir compte des corrélations
entre les différentes classes et de classer les individus en utilisant le formalisme de repré-
sentation de l’incertitude pour les variables multi-valuées. La deuxième partie aborde le
problème de l’édition des bases d’apprentissage pour la classification multi-label. Nous
proposons un algorithme basé sur l’approche des k-plus proches voisins qui permet de
détecter les exemples erronés dans l’ensemble d’apprentissage. Des expérimentations
menées sur des jeux de données synthétiques et réelles montrent l’intérêt des approches
étudiées.

Mots clés : apprentissage supervisé ; classification multi-label ; théorie des fonctions
de croyance ; règle des k-plus proches voisins ; sélection de prototypes ; édition.
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Résumé étendu

La classification traditionnelle, dite « mono-label », suppose que chaque individu
à classer appartienne à une et une seule classe parmi un ensemble prédéfini de classes
supposées mutuellement exclusives. La classification multi-label quant à elle permet
d’associer plusieurs classes simultanément à un exemple donné. Dans ce type de pro-
blème, les classes ne sont pas nécessairement exclusives [94][112].

La classification multi-label est largement requise par différentes applications ac-
tuelles telles que la catégorisation de documents selon leur contexte [15], la classification
d’images en fonction de leur contenu sémantique [7][82], la classification de chansons
par rapport aux émotions qu’elles évoquent [67], etc.

Plusieurs méthodes ont été proposées pour traiter la problématique de l’apprentis-
sage multi-label [61]. Ces méthodes peuvent être divisées en trois groupes selon la façon
dont on traite les données d’apprentissage. Le premier groupe de méthodes transforme
le problème d’apprentissage multi-label en un ou plusieurs problèmes d’apprentissage
mono-label. Le second groupe se base, quant à lui, sur l’adaptation directe des al-
gorithmes de classification mono-label pour l’apprentissage multi-label. Le troisième
groupe résout le problème multi-label par un ensemble des méthodes appartenant aux
deux groupes précédents.

Dans l’apprentissage multi-label, l’appartenance d’un individu à une classe ap-
porte de l’information sur l’appartenance de ce même individu à une autre classe.
Par exemple, les articles de journaux sont plus susceptibles d’être associés aux classes
science et environnement qu’aux classes environnement et sport. Dans le domaine mé-
dical, les personnes obèses sont plus sujettes à l’intolérance au glucose (problème relié
au diabète) qu’à la migraine, etc.

L’objectif de cette thèse est la conception de nouvelles techniques pour répondre au
problème de classification multi-label. La première partie de ce travail a été consacrée

1



Résumé étendu

au développement d’une méthode originale basée sur l’approche RAKEL (RAndom
k-labELsets), qui appartient au dernier groupe de méthodes multi-label. Le principe
de cette approche est de générer aléatoirement des sous-ensembles de classes de petite
taille par rapport au nombre total des classes et d’apprendre chaque sous-ensemble par
un classifieur multi-label. Étant donné un individu x à classer, la prédiction des classes
de x est déterminée par une stratégie de vote en utilisant un seuil préfixé. La méthode
RAKEL a l’avantage de tenir compte des corrélations éventuelles entre les différentes
classes. En revanche, cette méthode induit une perte d’information puisqu’elle réalise
l’apprentissage sur des sous-ensembles de labels. De plus, dans cette méthode, trois
paramètres sont à identifier : le nombre de sous-ensembles (ou, d’une manière équiva-
lente, le nombre de classifieurs), la taille de ces sous-ensembles et le seuil utilisé lors de
l’application de la stratégie de vote [96].

Un cadre important pour la présentation des connaissances est celui de la théorie
des fonctions de croyance, appelé encore théorie de Dempster-Shafer ou théorie de l’évi-
dence [81]. Dans ce formalisme, les connaissances sont représentées par des fonctions de
croyance définies sur des cadres de discernement. Soit Y l’ensemble de toutes les classes
possibles pour un problème donné. Dans le cas multi-label, le cadre de discernement,
défini comme étant l’ensemble de toutes les hypothèses possibles pour un problème
donné, est l’ensemble de toutes les combinaisons possibles de classes, noté Ω = 2Y .
Ainsi, les fonctions de masses sont définies de l’ensemble des parties de Ω vers l’inter-
valle [0, 1]. Avec l’augmentation du nombre de classes, le nombre de valeurs à manipuler
croît avec une complexité doublement exponentielle. Pour remédier à ce problème en
utilisant la notion des variables multi-valuées, les auteurs dans [25][26] proposent de ne
pas considérer l’ensemble 2Ω en entier mais seulement un sous-ensemble clos par inter-
section et ayant un structure de treillis. Ce nouvel ensemble est suffisant pour modéliser
le problème de classification multi-label avec une complexité polynomiale en fonction
du nombre de classes. Motivés par cette formulation et afin de réduire la perte d’in-
formation causée par l’utilisation de la méthode RAKEL (du fait que l’apprentissage
de classifieurs est effectué sur un sous-ensemble de labels) tout en tenant compte des
corrélations possibles entre les différentes classes, nous avons proposé de conserver la
structure de l’approche RAKEL et de combiner les sorties de différents classifieurs dans
le cadre de la théorie des fonctions de croyance, en utilisant le formalisme de représenta-
tion de l’incertitude pour les variables multi-valuées. La méthode développée, baptisée

2



Résumé étendu

RAKEL Évidentielle, présente l’intérêt de ne pas nécessiter de fixer un seuil pour ap-
pliquer la stratégie de vote, la décision étant prise après combinaison des fonctions de
masse par la règle de Dempster. Nous illustrons la méthode RAKEL Évidentielle sur des
données synthétiques et ainsi que sur des jeux de données communément utilisés pour
l’évaluation des méthodes de classification multi-label. Les résultats obtenus montrent
l’intérêt et l’efficacité de notre méthode par rapport à la méthode RAKEL classique.

À notre connaissance, aucun travail n’avait été effectué sur l’édition ou la purifica-
tion des bases d’apprentissage pour la classification multi-label. L’une des contributions
de cette thèse est l’introduction d’un algorithme simple pour traiter ce problème. En
effet, les bases d’apprentissage utilisées dans les applications multi-label peuvent conte-
nir des données corrompues par des erreurs dans les vecteurs d’entrée ou dans leurs
étiquettes. Ceci peut avoir des effets néfastes sur les performances des méthodes de
classification. L’algorithme que nous présentons est basé sur la méthode des k plus
proches voisins (k-ppv) conjointement avec un critère de performance multi-label, ap-
pelé le coût de Hamming, qui permet de détecter les exemples mal classés dans l’en-
semble d’apprentissage. En se basant sur la valeur de ce critère, les moins bons exemples
d’apprentissage sont sélectionnés puis éliminés. Le nouvel ensemble d’apprentissage «
purifié » servira pour l’apprentissage des classifieurs multi-label.

Afin de caractériser les performances de notre algorithme de purification, nous
l’avons mis en oeuvre avec la méthode des k-ppv crédibiliste (EMLkNN) ainsi qu’avec la
méthode des séparateurs à vaste marge pour la classification multi-label (Rank-SVM).
Nous avons comparé pour ces deux méthodes sur des données synthétiques et réelles
avant et après purification. Les performances ont été évaluées selon différents critères
souvent utilisés dans le contexte de la classification multi-label, ainsi que le temps
d’apprentissage et la capacité mémoire pour stocker les données. Les résultats obte-
nus montrent que la purification des données d’apprentissage permet d’améliorer les
performances de méthodes de classification multi-label avec une diminution du temps
d’exécution ainsi qu’une réduction de l’espace de stockage requis.

3
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Introduction

When you hear a classical piece of music on the car radio, how do you feel? Do
you feel happy, sad, amazed, quiet, or angry? Could a computer system predict these
emotions? This problem does not seem very complicated, since anyone can express his
feelings based on his mood and the memories that this piece of music evokes.

However, there is a huge list of human emotions that we can experience, sometimes
simultaneously. In this case, what should be the basis for assigning some of these to
this song? Is it the genre, the rhythm, the style or the instrumentation? An approach
could be to look through a musical database for a song with similar features. However,
how could this database be annotated? Manually or automatically using some digital
music collection?

This is an example of the multi-label learning task: to assign one object to one
or more classes from a predefined set of classes. Multi-label learning differs in several
aspects from traditional single-label learning. In multi-label learning, classes are not
necessarily exclusive, which means that the assignment of an instance to a certain class
may provide information about the membership of this instance to other classes. For
example, newspaper articles are more likely to be assigned with both labels politics
and economy, than they are with both economy and environment. In the medical
domain, patients with diabetes are more susceptible to infections than those having
migraine [72][110][112].

Multi-label learning covers a wide range of application areas. For instance, an
electronic document can belong to multiple topics: technology, sport, economy. A
medical patient may be affected by more than one diseases: diabetes, obesity, high
cholesterol, etc. [65]. A piece of music can evoke several emotions: amazed, happy,
excited. One protein might have multiple functional labels: metabolism, energy, cellular
biogenesis [113].
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In order to tackle with such learning tasks, numerous methods have been proposed
for building multi-label classifiers. These methods can be categorized into three groups:
problem transformation, algorithm adaptation and ensemble methods. Problem trans-
formation methods convert the multi-label learning problem into one or more conven-
tional single-label sub-problems, which are handled separately using traditional existing
approaches; a multi-label classifier is then obtained by combining all sub-classifiers. In
contrast, algorithm adaptation methods extend some specific learning algorithm to cope
with multi-label training datasets directly. The last category refers to methods that
use ensembles to make multi-label predictions; their base classifiers belong either to
problem transformation or algorithm adaptation methods [61][88].

In multi-label learning, labeled examples are generally annotated by experts. In
many applications, there is no ground truth for assigning unambiguously a set of la-
bels to an instance. An expert may be uncertain about the labelling of an instance.
Moreover, several experts may have conflicting opinions, which can be confusing when
learning from the obtained dataset. For instance, in our emotion prediction exam-
ple, an expert may decide that a song evokes happiness and relaxation, while another
might judge that this music can induce nostalgia. These problems might introduce
some uncertainty in the labeling process.

This thesis is about multi-label learning. This task is to learn from a set of pre-
viously labeled examples and to build a model that can automatically predict the set
of labels for new instances. Our objective is to improve the performances of existing
multi-label classifiers.

In our work, we focus on the improvement of a classification method that belongs
to the third group of multi-label methods, ensemble methods. This method, called
RAKEL (RAndom-k-labEL sets), aims at solving the multi-label classification problem
while taking into consideration the correlation between labels [96]. It randomly breaks
the set of labels into smaller sets and learns a single-label classifier for each subset. To
make a decision, the different predictions for each label are aggregated via voting. This
method reduces the complexity of multi-label methods belonging to the first category,
known as problem transformation methods. However, RAKEL suffers from loss of
information as each base classifier only considers a subset of labels. Moreover, in this
approach, the user has to identify the number of random label sets, the size of these
sets and an adequate threshold in the voting process.
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One important framework for the presentation of knowledge is the context of the

theory of belief functions, also called evidence theory or Dempster-Shafer theory. In

this context, knowledge is expressed in terms of belief functions defined on frames of

discernment. Let Y be the set of all possible classes in a multi-label learning problem.

The frame of discernment, defined as the set of mutually exclusive and exhaustive hy-

potheses about some problem domain, is the set of all possible combinations of classes;

it is denoted by Ω = 2Y . Mass functions are then defined from the power set of Ω to

[0, 1]. This approach often implies working in a space of very high cardinality, when the

number Q of classes is large. To alleviate this problem, the authors in [25][26] propose

an approach based on the definition of a restricted family of subsets of 2Ω that is closed

under intersection and has a lattice structure. This framework is able to express rich

information about the problem of multi-label classification with only a moderate com-

plexity. Based on this work and in order to alleviate the loss of information inherent

in the RAKEL method while accounting for label correlation in a more efficient way,

we propose to retain the basic principle of the RAKEL approach while handling uncer-

tainties in multi-label problems by combining the different outputs in the framework

of Dempster-Shafer theory.

In general, multi-label classifiers are learnt from complete training sets where each

instance is correctly described by its own features and it is associated with a precise

set of labels. However, collecting such high quality information may be impractical due

to the size of data and the cost of human experts. This is why real-world datasets are

never as good as we would like them to be and can contain various kinds of errors,

either random or systematic. Therefore, the success of machine learning algorithms

depend very much on the learner’s ability to handle imprecisions and uncertainties in

data labeling and to deal with erroneous data.

One intuitive way to alleviate problems incurred by previously labeled instances,

as already mentioned, consists of identifying dubious instances that may be erroneous

or mislabeled and eliminating them from the training set. This approach, referred to

as prototype selection, provides an appropriate reduced subset of prototypes that leads

to improving the performances of some classifiers and reducing the conceptual costs of

learning methods.

7



Introduction

Summary of contributions

In this thesis we propose two original methods that address the multi-label classifi-

cation problem. These two methods attempt to exploit correlation between labels and

to handle imprecise and uncertain information while taking into account specificities of

multi-labeled data.

Our first contribution tackles the problem of learning using ensemble methods. The

developed method is called Evidential RAKEL (published in [49] and [50]). It is an

extended version of the classical RAKEL based on the voting process. These two

methods apply different classifiers on several subsets of labels selecting from the whole

set of possible labels. However, Evidential RAKEL converts each output from a base

classifier into a mass function. These mass functions are combined and a final decision

is made. To evaluate our method, we applied Evidential RAKEL to synthetic and

real-world datasets. Our experimental results show that Evidential RAKEL performs

better than traditional classifiers such as classical RAKEL and Ensemble of Multi-Label

classifiers (EML).

Our second contribution addresses the problem of prototype selection in the frame-

work of multi-label learning. To the best of our knowledge, this problem had not seen

addressed so far. In the literature on single-label learning, a large number of methods

has been proposed for prototype selection. Many of these methods tend to edit training

datasets to keep the most reliable instances. Most editing algorithms are based on the

k-nearest neighbor rule, and the edition is done by comparing the predicted and the

ground truth classes for each training instance [36]. In contrast, in multi-label learning,

each training example can be labeled by several classes and a classifier can correctly

predict some of them and induce misclassifications for others. To select the erroneous

or mislabeled data, we propose a new evaluation measure inspired by the well-known

metric, Hamming loss, which assesses the predictive performance by using the average

difference between the truth and the predicted sets of labels [94].

Our editing algorithm has been applied to a wide variety of data sources (published

in [51]). Two multi-labeled classifiers are learnt from the obtained edited data. These

classifiers achieve better performance according to several measures, when learning

from edited data than they do when learning from the initial datasets. An analysis of
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time complexity shows that learning from edited data makes it possible to reduce the
running time for some classifiers.

Organization of the thesis

The thesis is structured as follows. Chapter 1 introduces the framework in which the
research is placed. It briefly presents an overview of existing multi-label methods, ap-
plication domains and performance criteria. Chapter 2 outlines the general background
on belief functions theory and its application to multi-label learning. In Chapter 3, we
formalize our learning algorithm based on the RAKEL approach in the belief function
framework and presents the experimental results. In Chapter 4, we propose a novel
editing method in the field of multi-label learning. This chapter begins by a review
of single-label editing methods, introduces our editing algorithm and discusses some
experimental results. General conclusions and future works conclude this manuscript.
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Chapter 1

Multi-label learning

1.1 Introduction

Machine learning is usually defined as the field of study that gives computers the
ability to learn without being explicitly programmed. This learning is possible thanks
to previous observed circumstances or to computers models that describe problems
from a given dataset. Machine learning techniques have traditionally been divided into
three categories: supervised, unsupervised and semi-supervised learning.

In supervised learning [54], the system receives a dataset with different parameter
values and different decisions (for example classes for a classification task), and the goal
is to find the best model which automatically maps an input example to the correct
output class. Supervised learning methods are particularly applicable to classification
and regression problems. In the case of classification, the outputs take discrete values
from a finite set known as the set of classes (or labels). In the case of regression, the
outputs are numerical.

In unsupervised learning, elements of the dataset are not labeled. Unsupervised
learning methods look for similarities within the dataset without any need for prior
labelling of the data. Typical unsupervised tasks include clustering that groups similar
items into clusters, and dimensionality reduction which maps a set of high dimensional
input instances into a lower dimensional space while preserving certain properties of
the dataset [43].

Semi-supervised learning is halfway between supervised and unsupervised learn-
ing [13]. In semi-supervised learning, the key idea is to use a large amount of unlabeled
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data with the labeled data to produce classifiers. This thesis focuses on the supervised
learning problem for classification.

This chapter gives a definition and summary of works related to supervised classi-
fication and especially to multi-label learning. It is organized as follows. Section 1.2
discusses the different types of classification for supervised learning. Section 1.3 explains
the different multi-label learning approaches. A collection of real-world applications re-
quiring multi-label learning is described in Section 1.4. We dedicate some discussions
to statistics describing multi-labeled data in Section 1.5. Finally, we provide a set
of evaluation metrics for predictive performance in Section 1.6, and we end with the
conclusion in Section 1.7.

1.2 Classification problems

In the supervised learning domain, there are two different phases: the training phase
and the testing phase. In the training phase, the machine learning method learns a
classifier from training data in order to produce a model that maps the attributes of
the training examples to the corresponding target class (class or classes). In the testing
phase, the computer model is used to label unseen instances in order to evaluate the
classifier performance (see Figure 1.1).

Training dataset

Testing dataset

Machine learn-
ing algorithm

Computer model

Computer model Predicted sets of labels

Figure 1.1: Overview of machine learning system

Let {x1, . . . ,xn} be a set of n training instances generated according to some dis-
tribution, and let X be the domain of instances. Let Y be the set of target classes. The
goal is to find a classifier that predicts the class of each unseen instance.

12
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Hereafter, we will discuss different supervised learning tasks. Machine learning al-
gorithms can be categorized into different groups according to the partition of instances
and their target categories.

Single-label classification

Single-label (or traditional) classification is the task of automatically assigning a
single class label to each input instance, where a classifier learns to associate to every
unseen element its most probable class or category. In general, single-label classification
problems can be divided into two main groups: binary and multi-class problems.

The binary classification problem is the simplest case, where the set of classes is
restricted to two. In this context, we distinguish between the positive (+1) and the
negative (−1) class, and we denote by positive instances, those having the positive
class as a true label and vice versa. A simple example of the binary-class problems is
when a women goes to the doctor to find out if she is pregnant. The result of the test
may be either positive or negative. Many learning algorithms for binary classification
are presented in the literature, such as support vector machines [86] and kernel Fisher
discriminants [34].

When the number of classes is greater than two, the learning problem is called
multi-class classification. It is assumed that target classes are disjoint and exclusive,
in the sense that every element belongs to precisely one class. Multi-class classifica-
tion is encountered in various fields; for instance, an individual has one blood type
among a set of four types: A, B, AB or O. Generally, multi-class classification prob-
lems can be solved in two ways; using either direct multi-class learning algorithms
or decomposition-based approaches that combine several binary-class classifiers [69].
The former category includes methods such as: neural networks [6], decision trees [68],
k-nearest neighbors [5] and naive Bayes classifiers [2].

The one-class classification problem is the one where an instance can belong to only
and only one class from a set of predefined classes. One-class classification differs from
the binary and multi-class classification by the fact that the training set contains only
objects of the target class and no information is available about the other classes. The
task is to define a boundary that encloses the target objects and minimizes the chance
of accepting outlier objects [52]. This type of classification is widely used in the area of
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machine diagnostics: the positive class is then defined by measurements corresponding
to the nominal state of the machine.

Multi-label classification

Multi-label classification is the task of assigning to an input instance multiple classes
simultaneously from a set of disjoint classes; the classes are then no longer mutually
exclusive. In this context, we often use the term "label" instead of "class". Each
instance is associated with a set of relevant labels. The remaining labels are considered
as irrelevant.

Contrary to single-label classification, the multi-label task is influenced by intrinsic
latent correlations between labels, in the sense that the membership of an instance to
a class can be helpful to predict its set of labels [112]. For example, a patient with a
high blood pressure is more likely to develop heart disease than an other person, but
less likely to develop a muscular dystrophy.

Multi-label learning has important applications in many real-world problems like
text categorization, scene classification, video annotation and bioinformatics, where the
task is to predict for an example a set of labels whose size is a priori unknown [7][15][67][82].
It’s clear that the single label problem can be considered as a special case of the multi-
label learning problem.

Multi-label learning is related to multi-label ranking. Multi-label ranking is the
task of learning a mapping from instances to rankings over the set of labels, such that
the relevant labels are ranked higher than the irrelevant ones [31][58][61].

Multi-instance learning

Multi-instance or multiple-instance (MI) learning refers to a learning scenario where
each example is represented by many alternative feature vectors (instances) instead of
one single instance [29]. In this context, the set of instances called a bag has a class
label, but the instances themselves are not explicitly labeled. A bag is labeled as
positive if it contains at least one positive instance; otherwise it is labeled as negative.

The oldest multi-instance application is the drug activity prediction. A molecule
treated as a bag of conformers, is biologically active if and only if one of its conformers
is responsible for the observed bioactivity, and a molecule is inactive if none of its
conformers is responsible for the observed activity [33].
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Algorithms proposed in this area can be divided into two groups. The first group of
methods handles directly the multi-instance problems. An example in this category is
the three axis-parallel rectangles algorithm which attempts to look for an axis-parallel
rectangle in the feature space to represent the target concept [29]. The second group
tries to adapt existing learning algorithms to solve the multi-instance problem. This
group includes the Bayesian-kNN [104] and ID3-MI [16] methods, among others.

The most general variant of multi-instance learning is multi-instance multi-label
(MIML) learning, where each example can be described by multiple instances and
associated with multiple labels. For example, in text categorization, a document can
be represented by a bag of instances (several sections or paragraphs), and may belong
to several topics such as sports and politics. To solve such problems, existing methods
include the MIMLBoost algorithm [117], the MIML support vector machines [117] and
the MIML k-nearest neighbors techniques [115].

Hierarchical classification

Hierarchical classification refers to the situation where categories have a hierarchi-
cal structure. Recently, researchers investigated the use of hierarchies to multi-label
classification domain [11][84][101]. The corresponding learning task is referred to as
hierarchical multi-label classification. Each input element is assigned to more than one
class and the hierarchy of classes is expressed by generalization trees or directed acyclic
graphs [73][101].

Hierarchical classification is required by many modern applications such as collec-
tions of web pages, biological functions of genes or Text categorization. For example,
in web page categorization, two top-level categories: Business and Computers can
be divided into multiple subcategories: Business/Jobs, Business/Inverting, Comput-
ers/Internet, Computers/Hardware and Computers/Software.

To deal with hierarchical learning problems, different algorithms have been pro-
posed in the literature [84][99]. These algorithms can be categorized into three groups:
flat classification, local classification (or Top-Down) and global classification (or Big-
Bang) approaches. In the flat classification approaches, the hierarchical problem is
transformed to a flat classification problem where the class hierarchy is ignored and
the classification problem handles only the leaf-node classes. Each leaf-node is treated
by an ordinary classifier (multi-class or multi-label). Local classification approaches
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apply one or more classifiers to each class node or class level of the hierarchy and each
classifier works as a flat classifier at that level, while global classification approaches
construct one global classification model for all classes created in a single run of the
algorithm.

Example

Based on the observed features for a given example, and the number of predefined
classes as well as the mutual relation between these classes, the follow example can
illustrate the different problems outlined above. Figure 1.2 gives an example of all
previous types of classification for an image taken from the cable car in Singapore
to the Sentosa island. Figure 1.2(a) shows the results on the binary classification by
making a "Yes" decision based on the "beach" viewed in this picture. Figure 1.2(b)
shows the multi-class classification by associating one and only one class to the image.
In Figure 1.2(c), the image is considered as multi-labeled and three classes are involved,
say "Forest", "City", and "Beach". In Figure 1.2(d), the image is divided into multiple
regions in which we can see different objects like "Sea", "Trees", "Hotels", "Roads",
"Grassland", "Building" and "Resort". According to these regions, multi-instance multi-
label learning assigns the output to three classes, "Forest", "City", and "Beach". Based
on hierarchical classification, different categories are organized in a hierarchical tree-
like structure as illustrated in figure 1.2(e). Each category has a certain number of
subcategories describing the Sentosa island. In this island, we can find a variety of
attractions including the "Universal Studios of Singapore", three artificial beaches and
a forest containing "Fauna" and "Flora".

1.3 An overview of approaches for multi-label learning

Let X denote an instance space, and let Y = {ω1, . . . , ωQ} be a finite set of labels.
Let D = {(x1, Y1), . . . , (xn, Yn)} denote a dataset composed of n multi-labeled objects
(xi, Yi), xi ∈ X and Yi ⊆ Y, where each instance is independent and identically dis-
tributed (i.i.d.) drawn from an unknown distribution. The goal of multi-label learning
is to build a multi-label classifier H that maps an instance x to its associated set of
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Is this a beach?
Yes (+1)
No (−1)

(a) Binary Classification

What is this?

Beach
Forest
City
People

(b) Multi-class Classification

Which of these?

Beach, Forest
Beach, City

Forest, People
Forest, City, Beach

(c) Multi-label Classification

Sea

Lea

Trees

Hotels

Resort

Building

Roads

The multiple regions
belong to which
of these items?

Beach, Forest
Beach, City

Forest, People
Forest, City, Beach

(d) MIML Classification

What is this? Sentosa

Forest

Fauna Flora

Beach

Palawan
beach

Siloso
beach

Tanjong
beach

Resorts
World

Hotels
Universal
Studios

(e) Hierarchical Classification

Figure 1.2: Different types of classification problems
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labels Y and optimizes some evaluation metrics. Here, the set of all subsets of Y is the

power set of Y denoted by 2Y .

Numerous methods have been proposed in the literature to deal with multi-label

learning problems. Existing algorithms can be grouped into three categories as pro-

posed in [61]: problem transformation approaches, problem adaptation algorithms and

ensemble methods. The first category divides the multi-label problem into one or more

conventional single-label problems. The second category generalizes single-label algo-

rithms to cope with multi-labeled data directly. Finally, the third category incorporates

the merits of these two previous approaches.

In the following paragraph, we will explain in more details each of these categories

and describe the main characteristics of corresponding methods. Figure 1.3 shows the

different categories and associated methods.

Multi-label approaches

Problem transfor-
mation methods

Binary Relevance

Label Powerset

Label Ranking

Problem adap-
tation methods

Decision trees
and Boosting

Lazy learning

Support Vec-
tor Machines

Ensemble methods

Ensemble of
classifier chains

Random k-Label sets

Ensemble of multi-
label classifiers

Figure 1.3: Multi-label learning approaches [61]

1.3.1 Problem transformation methods

The simplest strategy in multi-label learning is the problem transformation ap-

proaches which can be used with any learning algorithm. In these methods, the multi-

label classification problem is transformed into one or more single-label classification

problems. The solutions of these problems are then combined to solve the original

task of multi-label learning. Problem transformation methods include three principal

approaches: binary relevance, label powerset and label ranking.
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Binary relevance

The Binary Relevance (BR) approach, also known as the one-against-all strategy,

divides the multi-label learning problem with Q possible classes into Q single-label clas-

sification problems which can be solved by training Q binary classifiers (h1, . . . ,hQ) [93].

Each q classifier (q ∈ {1, . . . , Q}) is trained on the original dataset, and aims at

determining the relevance of its particular label for a given instance. When clas-

sifying a new instance x, BR outputs the union of labels that are positively pre-

dicted by the binary classifiers. The multi-label classifier is then determined by:

H(x) = {ωq ∈ Y|hq(x) = 1}. Many well-known classical classification methods are

generalized to handle the multi-label problem using the BR approach, e.g., decision

trees, SVM and k-NN. The BR approach is simple to implement, and its complexity

is linear with the number of possible labels. However, BR ignores correlation between

labels by treating each label independently. To deal with the negative aspects of BR,

the Classifier Chain (CC) introduced in [72] involves Q binary classifiers linked along

a chain. The Label Powerset approach presented in the next Section constitutes also

one of the alternatives to deal with these negative aspects of the BR approach.

Label Powerset

Given a training dataset D with n instances, the Label Powerset (LP) approach

considers each unique set of labels in D as a single label and then trains a single-label

classifier. The number of classes is upper bounded by min(2Q,n). The complexity of

LP relies on the complexity of the single-label classifier with respect to the number of

classes. For a new instance, the LP approach outputs the most probable class which

is a set of labels in the original multi-label representation. LP has the advantage of

taking into account label correlations. Moreover, a negative aspect of this approach

is that it may lead to imbalanced datasets with a large number of classes associated

with few examples. This issue is resolved by considering only the label combinations

frequently found in D as class values for the single-label classifier. This new approach

is called pruned transformation method [70].

19



Chapter 1: Multi-label learning

Label Ranking

The Label Ranking (LR) approach learns a mapping from instances to rankings over
all possible labels. Given a relevance ranking over labels for an instance, single-label
classification selects the most relevant label (or class) for this instance. In contrast, in
the multi-label case, the topmost labels, and not only the top label, are related to that
instance. To output the label set for an unseen instance, the LR approach splits the
ordered label set into relevant and irrelevant labels. The goal of multi-label learning is
thus to find a scoring function f : X × Y −→ R that assigns a score or value to each
couple (x, ω) ∈ X × Y. To determine classes that should be assigned to a particular
instance, a threshold value is introduced. The output of the multi-label classifier H is
thus: H(x) = {ω ∈ Y|f(x, ω) ≥ t}, where t is a threshold, usually fixed to a constant
value. The LR approach does not explicitly model label correlations.

1.3.2 Problem adaptation algorithms

Problem adaptation methods customize traditional machine learning algorithms in
order to handle multi-label concepts directly. These methods have the advantage of
focusing on one specific algorithm. Another advantage is that these methods use the
whole training dataset (instances and labels) at once to train a multi-label classifier. In
general, the performances of these algorithms are better in difficult real-world problems
than those of problem transformation methods, at the cost of higher complexity. Several
adaptations of traditional learning algorithms have been proposed in the literature,
some of them extend all labels and instances simultaneously, like decision trees [17] and
the multi-label support vector machines [31], while others consider each class separately,
like the multi-label k-nearest neighbors method (MLkNN) [116]. These methods are
briefly reviewed below.

Decision trees and Boosting

Decision trees are among the most popular methods for classification in machine
learning. Starting with all training instances, a decision tree creates a predictive model
having a tree structure, which can be viewed as a partitioning of the training dataset.
Nodes in the tree represent attributes that are connected to branches which lead to child
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nodes (partitions). For an unseen instance, the target class is predicted by following
the path of nodes and branches from the root node to the terminal leaf.

Many decision trees algorithms have been extended to multi-label classification
domain. In [17], a C4.5 multi-label algorithm is proposed by modifying the formula of
entropy. A large number of leaves is generated for all combinations of different labels.
This method can handle multiple labels on several levels of the hierarchy and assign
a larger cost to misclassifications higher up in the hierarchy. It was evaluated first on
multi-labeled data coming from functional genomics.

Boosting was applied to multi-label learning and especially to text categoriza-
tion [78]. Boosting-based methods include two slightly different versions of the ensemble
learning method AdaBoost (AdaBoost.MH and AdaBoost.MR). The former extension
aims at predicting the set of all correct labels for a query instance, while the latter
is designed to find a classifier that ranks the labels so that the correct labels will re-
ceive the highest ranks. AdaBoost.MH is combined with the alternating decision trees
algorithm to produce the Adapted Decision Tree Boosting, ADTBoost.MH in [23].

Support Vector Machines

Support Vector Machines (SVM) have widely been used with problem transfor-
mation methods, especially with the BR approach, to resolve the multi-label learning
problem [39][105][110]. However, to the best of our knowledge, only one method has
been proposed in the literature in order to extend the SVM algorithm to handle the
multi-label problem directly.

Rank-SVM defines a linear model based on a ranking system combined with a label
set size predictor [31]. In the original input space, Q linear discriminative functions are
defined as, (q ∈ {1, . . . , Q}), fq(x) = 〈wq,x〉 + bq, where wq and bq denote the weight
vectors and bias terms. This model is decomposed into two parts. The former follows
a ranking system, which orders the labels according to their output values. The latter
defines a set size predictor (t(x)) which can serve as a threshold value to differentiate
the relevant labels from the others, (fq(x) > t(x)).

This procedure aims at minimizing the ranking loss, defined as the average fraction
of label pairs that are not correctly ordered, while holding a large margin. More details
on this method are given in Chapter 4. In [111], a zero label is added to find a natural
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zero point to detect relevant labels. The new model simplifies the original form of
Rank-SVM and leads to a novel quadratic problem with special linear constraints.

Lazy learning

Several lazy learning algorithms have been adapted to multi-label tasks. In [116], the
authors proposed a multi-label classification method based on the k-nearest neighbors
(k-NN) algorithm, named MLkNN. In this method, maximum a posteriori estimation is
used to determine the proper set of labels to be assigned to a test instance x, according
to statistical information extracted from the labeling of the nearest neighbors. For each
ωq in Y, the numbers of neighboring instances belonging to each possible class are used
in order to compute the posterior probabilities that x belongs or does not belong to
ωq. Depending on which of these probabilities is greater, we decide to assign or not the
class ωq to test instance x. The decision is made independently for each label.

An improvement on the MLkNN method, called Dependent Multi-Label k-nearest
neighbor (DMLkNN), was introduced in [112]. This method generalizes the MLkNN
algorithm by relaxing the assumption of label independence. The correlation between
labels is exploited when computing the two aforementioned probabilities. When com-
puting the posterior probabilities for ωq, the frequency of co-occurrence of a label ωr
in the label sets of the neighboring instances affects the membership of x to class ωq.
The DMLkNN method takes into account these dependencies between labels.

Two extensions of the k-NN method for the multi-label classification are presented
in [60]. These two versions, applied to document categorization, consider the co-
occurrences in documents of multiple categories. Given a new instance, the labels
associated with the k-nearest neighbors are retrieved, and a counter corresponding to
each label is increased if that label exists in each of these neighbors. The test instance
is thus classified with the top N weighted labels (represented by the largest counts). N
is chosen based on the number of labels of the instance. These methods are unsuitable
when the number of labels is not identified for a new instance [94].

A multi-label learning algorithm following the paradigm of associative classification
through associative rules is proposed in [90]. The multi-class multi-label associative
classification (MMAC) is divided in three modules: rules generation, recursive learning
and classification. In [100], the idea of associative rules is combined with lazy learning
which iteratively exploits dependencies between labels.
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1.3.3 Ensemble methods

Ensemble methods incorporate problem transformation and problem adaptation
classifiers. Many of these methods can be aggregated to output a new classifier for
multi-label learning. The aggregated algorithms can be homogeneous in the sense
that one can use the same algorithm for each classifier, or heterogeneous, when various
algorithms contribute in building of the final classifier. Ensemble methods may alleviate
disadvantages of one base-classifier by adding ensemble of classifiers. Several ensemble
methods have been proposed, among them: ensemble of classifier chains [72], random
k-label sets [96] and ensemble of multi-label classifiers [88].

Ensemble of classifier chains

Ensemble of Classifier Chains (ECC) use Classifier Chains (CC) as base classi-
fiers [72]. ECC was proposed to relieve the effect of classifier order in CC, by training
an ensemble of CC classifiers, C1, . . . , Cm. Each Ck can be trained with a random chain
ordering on a random subset of D. Given an unseen instance, predictions from different
classifiers are gathered and combined for each label so that each label receives a num-
ber of votes. To output the final multi-label set, a threshold is used to select the most
relevant labels. This ensemble method can use any multi-label problem transformation
method as base classifier. In general, ECC outperforms BR and CC while maintaining
an acceptable computational complexity.

Random k-labEL sets

The RAndom k-labEl sets (RAKEL) method is related to problem transformation
approaches and especially to the LP approach [96]. RAKEL retrieves the problem of LP
presented by the large number of labels with few examples per class. This method draws
a random subset of size k from all labels and trains a LP-based multi-label classifier
for each of the label sets. Given a new instance, the decision of all LP-classifiers are
combined using a simple voting process to determine the final set of labels. RAKEL
has a number of parameters that should be optimized to get near-optimal performance.
This can be difficult when the number of training examples is insufficient. This method
will be described in further detail in Chapter 3.
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Ensemble of multi-label classifiers

To improve the performance of multi-label classifiers and to address the imbalance
problem (very few instances for some labels), the authors in [88] proposed Ensemble of
Multi-Label classifiers (EML). EML use heterogeneous ensembles of multi-label learn-
ers, which consist of a set of individually trained classifiers: h1, . . . ,hq, each multi-label
classifier hk belongs to different adaptation group. For a test instance x, each individual
classifier hk produces a Q-dimensional vector Pk = [p1k, . . . , pQk]. Each pik represents
the probability that the membership of instance x to class ωi has been correctly as-
signed by classifier k. The outputs of these q classifiers are aggregated by using different
combination techniques based on averaging and weighted voting methods. The results
show that these approaches provide significant improvements by tackling the problems
of class imbalance and label correlation.

1.4 Applications

Perhaps the oldest application of multi-label classification is text categorization,
where the task is to assign predefined categories to free text documents. Text cate-
gorization applications may include controlled vocabulary indexing (e.g., sorted search
results by Google and Yahoo), documents filtering (e.g., email classification between
spam and serious mails), word sense disambiguation (e.g., cold = disease, temperature
sensation or environmental condition), web search and information security [56][80].
In most applications, text categorization requires multi-label classification. For exam-
ple, in medical diagnosis, a document report including some symptoms can describe a
category of diseases like: high blood pressure, high cholesterol and heart disease.

Automatic music classification is a problem in the field of Music Information Re-
trieval. Due to advances in technologies such as data compression and network trans-
mission, digital music collections have grown in volume, and the need for automatic
retrieval, classification and organization are becoming more and more demanding by
the user [75]. Digital music collections are based on textual meta-data, like artist,
genre, emotion, rhythm and timbre [118]. Due to the fact that a music piece can be-
long to an unrestricted set of musical genres, like blues rock and Latin jazz, music genre
classification supports multi-label learning algorithms [14][59].
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Figure 1.4: MNI structural atlas of the adult human brain [28]

With the huge amount of medical images produced, automatic image annotation

becomes an important task to improve analysis for patient diagnosis, surgical planning,

therapy and medical reference. These 3D images can come from different modalities

like Magnetic Resonance Imagery (MRI), Nuclear Medicine Imagery (NMI), ultrasound

Imagery (USI) or Computed Tomography Imagery (CTI) [3][63]. Each image is rep-

resented by a grid of scalar values. Multi-label learning is required in medical image

analysis where each grid is labeled by a region representing structural elements of the

scanned object such as bone, muscle or organs [28]. Figure 1.4 shows different regions

of the brain for an adult as viewed by the MNI (Montreal Neurological Institute for

neuroscience).

Another applications of multi-label classification can be found in bioinformatics

where genes and proteins are annotated with their functional roles [48][79][113]. Due to

annotation, a gene has several functions of which the biological function is intrinsically

a multi-label classification problem. For example, a protein can have enzyme regulator

activity with catalytic domain and kinase activity. Figure 1.5 gives an overview of

protein-encoding gene functions, where each protein can have some of these activities

at the same time.
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Figure 1.5: Overview of protein-encoding gene functions, as summarized by InterPro
families and their mapping to molecular function terms. 2

1.5 Multi-labeled dataset statistics

Given a multi-labeled dataset D = {(xi, Yi), i = 1, . . . ,n} with xi ∈ X and Yi ⊆ Y,
this dataset can be measured by the number of instances (n), the number of attributes
in the input space, and the number of labels (Q). In the following, we review some
statistics about the multi-labeled dataset D [94].

1. The Label Cardinality (LCard) of D is the average number of labels per instance.
Label cardinality is calculated as

LCard(D) = 1
n

n∑
i=1
|Yi| (1.1)

2. The Label Density (LDen) of D is defined as the average number of labels per

2. http://www.wormbook.org/chapters/www_genomclassprot/genomclassprot.html
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instance divided by the total number of labels Q. Label density is calculated as:

LDen(D) = 1
n

n∑
i=1

|Yi|
Q

(1.2)

Both metrics indicate the number of alternative labels that characterize the
examples of a multi-labeled dataset. Label cardinality is independent of the
total number of labels in the classification problem, while label density takes
into consideration the total number of labels. Two datasets with the same label
cardinality but with different label densities may present different properties
that influence the performance of the multi-label classification methods.

3. The Distinct Label sets (DL) counts the number of label sets that are unique
across the total number of examples. Distinct label sets is given by:

DL(D) = |{Yi ⊆ Y|∃ xi ∈ X : (xi, Yi) ∈ D}| (1.3)

This measure gives an idea of the regularity of the labeling scheme.

1.6 Evaluation metrics

Performance evaluation for multi-label learning systems differs from that of single-
label classification. Let H : X→ 2Y be a multi-label classifier that assigns a predicted
label subset of Y = {ω1, . . . , ωQ} to each instance x ∈ X, and let f : X × Y → [0, 1]
be the corresponding scoring function which gives a score for each label ωq which in
turn is interpreted as the probability that ωq is relevant. The function f(., .) can be
transformed to a ranking function rankf (., .) which maps the outputs of f(x, ω) for
any ω ∈ Y to {1, 2, . . . , Q} so that f(xi, ωq) > f(xi, ωr) implies that rankf (xi, ωq) <
rankf (xi, ωr), (the most relevant label, receives the highest rank (1), while the least
relevant one, receives the lowest rank (Q)) [95].

Given a set S = {(x1, Y1), . . . , (xm, Ym)} of m test examples, the evaluation met-
rics of multi-label learning systems are divided into two groups: prediction-based and
ranking-based metrics. Prediction-based measures are calculated based on the average
difference of the actual and the predicted set of labels over all test examples. Ranking-
based metrics evaluate the label ranking quality depending on the scoring function
f(., .).
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1.6.1 Prediction-based measures

Hamming loss: The hamming loss metric for the set of labels is defined as the
fraction of labels whose relevance is incorrectly predicted:

HLoss(H,S) = 1
m

m∑
i=1

|Yi4Ŷi|
Q

, (1.4)

where 4 denotes the symmetric difference between two sets.
Accuracy: The accuracy metric gives an average degree of similarity between the

predicted and the ground truth label sets:

Accuracy(H,S) = 1
m

m∑
i=1

|Yi ∩ Ŷi|
|Yi ∪ Ŷi|

. (1.5)

Precision: The precision metric computes the proportion of true positive predic-
tions:

Precision(H,S) = 1
m

m∑
i=1

|Yi ∩ Ŷi|
|Ŷi|

. (1.6)

Recall: This metric estimates the proportion of true labels that have been predicted
as positives:

Recall(H,S) = 1
m

m∑
i=1

|Yi ∩ Ŷi|
|Yi|

. (1.7)

F1-measure: F1 measure is defined as the harmonic mean of precision and recall.
It is calculated as:

F1(H,S) = 1
m

m∑
i=1

2|Yi ∩ Ŷi|
|Yi|+ |Ŷi|

. (1.8)

Note that the smaller the value of the Hamming loss, the better the performance.
For the other metrics, higher values correspond to better classification quality.

1.6.2 Ranking-based measures

One-error: This metric computes how many times the top-ranked label is not in
the true set of labels of the instance, and it ignores the relevancy of all other labels.

OErr(f,S) = 1
m

m∑
i=1
〈[arg max

ω∈Y
f(xi, ω)] /∈ Yi〉, (1.9)
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where for any proposition H, 〈H〉 equals to 1 if H holds and 0 otherwise. Note that, for
single-label classification problems, the One Error is identical to ordinary classification
error.

Coverage: Coverage computes the average of how far we need to move down the
ranked label list in order to cover all the labels assigned to a test instance.

Cov(f,S) = 1
m

m∑
i=1

max
ω∈Yi

rankf (xi, ω)− 1. (1.10)

Ranking loss: This metric computes the number of times that an incorrect label
is ranked higher than a correct label.

RLoss(f,S) = 1
m

m∑
i=1

1
|Yi||Y i|

|(ωq, ωr) ∈ Yi × Y i\f(xi, ωq) ≤ f(xi, ωr)| (1.11)

where Y i is the complementary set of Yi in Y.
Average precision: This metric evaluates the average fraction of labels ranked

above a particular label ω ∈ Yi which are actually in Yi.

AvPrec(f,S) = 1
m

m∑
i=1

1
|Yi|

∑
ωq∈Yi

|{ωr ∈ Yi}\rankf (xi, ωr) ≤ rankf (xi, ωq)|
rankf (xi, ωq)

. (1.12)

Note that AvPrec(f,S) = 1 means that the labels are perfectly ranked. For the
other metrics, smaller values correspond to a better label ranking quality.

1.7 Conclusion

This chapter has presented a literature survey on classification, which is traditionally
a supervised learning task. We have categorized supervised classification problems into
four types depending on the input example, its output target class (or classes) and the
mutual relation between the predefined classes.

After that, we have focused our study on multi-label classification. An analysis of
the existing multi-label methods has been presented. These methods can be divided in
three categories depending on the way they use multi-labeled data. Finally, we have
described several real-world applications of multi-label learning.

To evaluate multi-label classifiers, various metrics can be involved. These metrics
can be divided into groups: prediction-based and ranking-based metrics. The former is
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calculated based on the comparison between the predicted labels and the ground truth
labels, while the latter is based on the predicted ranking of labels.
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Transferable belief model

2.1 Introduction

Dempster-Shafer theory, also known as the theory of belief functions, was originally
introduced by A. Dempster in the 1960’s and refined by G. Shafer in the 1970’s. In the
1990’s, this theory was developed by Smets, who introduced several tools for informa-
tion fusion and decision making [85]. Nowadays, this theory is widely used to represent
uncertain knowledge. However, it suffers from high complexity in applications that
have large frames of discernment.

The authors in [25][26] have introduced an approach which makes it possible to
define and manipulate belief functions in a very large frame. This approach is based on
defining belief functions on a class C(Ω) of subsets of 2Ω. It can be used for applying
belief functions to multi-label learning problems with uncertainties and ambiguities
problems.

In this chapter, we will recall the basic concepts of Dempster-Shafer theory in
Section 2.2. We will first describe some elements of this theory namely the frame of
discernment as well as mass, belief, commonality and plausibility functions. Secondly,
we will discuss different rules for combining items of evidence and making decision.
In Section 2.3, we will explain the application of belief functions in C(Ω), which is a
subset of 2Ω; we will review some basic definitions about lattices and belief functions in
lattices. We will also show that the Dempster-Shafer calculus can be extended to the
restricted set C(Ω), which is close under intersection and has a lattice structure. Direct
application of this theory to multi-label classification leads to the Evidential Multi-label
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k-Nearest Neighbor (EMLkNN) method, which will be detailed in Section 2.4. Finally,
Section 2.5 will conclude the chapter.

2.2 Dempster-Shafer theory

In his book A Mathematical Theory of Evidence [81], Shafer introduced the basic
concepts of belief functions. In this section, we will present a summary of this theory,
followed by the basis operations of combination and making decision.

Frame of discernment

Dempster-Shafer (D-S) theory is a mathematical theory of evidence. It measures the
degree of support of a piece of evidence to various propositions by assigning masses be-
tween zero and one to subsets of a domain of interest Ω, called the frame of discernment.
This theory extends probability theory, in so far as masses are assigned to arbitrary
subsets of Ω and not only to singletons. In particular, complete ignorance corresponds
to the case where all the mass is assigned to the whole frame of discernment.

Mass function

To express the belief among the different subsets of Ω, a function m : 2Ω → [0, 1] is
called a mass function verifying:

∑
A⊆Ω

m(A) = 1. (2.1)

The quantity m(A) measures the belief that is committed to A and to no smaller
subset. The subsets A of Ω verifying m(A) > 0 are called focal elements of m. m is
called normalized if ∅ is not a focal element, and dogmatic if Ω is not a focal element.

Belief function

A mass function induces a belief function defined as follows for all A ⊆ Ω:

bel(A) =
∑
∅6=B⊆A

m(B), (2.2)

bel(A) is interpreted as the total degree of support in proposition A, or the degree of
belief in this proposition.
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Commonality function

Another function in the D-S theory is the commonality. The commonality function
of A, which is the sum of masses allocated to supersets of A, can be interpreted as the
total probability mass that can move freely to every point of A. It is equal to:

q(A) =
∑
B⊇A

m(B). (2.3)

Plausibility function

The plausibility, pl(A), quantifies the maximum amount of potential specific support
that could be given to A. It is equal to one minus the belief in Ā:

pl(A) =
∑

B∩A 6=∅
m(B) (2.4)

= 1− bel(A), (2.5)

where Ā represents the complement of A.

Rules of combination

Let m1 and m2 be two mass functions on Ω induced by two different sources of
information. The conjunctive sum (or unnormalized Dempster’s rule of combination)
of m1 and m2 is a new mass function given by:

(m1 ∩©m2)(A) =
∑

B∩C=A
m1(B)m2(C), (2.6)

For all A ⊆ Ω, this rule is commutative, associative, and admits the vacuous mass
function (defined by m(Ω) = 1) as neutral element. It is conjunctive as the product
of m1(B) and m2(C) is transferred to the intersection of B and C. The quantity
(m1 ∩©m2)(∅) is referred to as the degree of conflict.

It is known that the Dempster’s rule of combination can also be computed through
the commonality function [81]. Given q1 and q2, the commonality functions associated
to m1 and m2, the conjunctive rule in terms of commonality functions is defined by:

q1 ∩©2(A) = q1(A).q2(A). (2.7)
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The normalized Dempster’s rule is defined by:

(m1 ⊕m2)(A) =
{ (m1 ∩©m2)(A)

1−K if A 6= ∅
0 if A = ∅,

(2.8)

where K = (m1 ∩©m2)(∅) is the degree of conflict. It is clear that m1⊕m2 is defined as
long as K < 1.

Let q1⊕2 denote the commonality function corresponding to m1 ⊕ m2. It can be
computed from q1 and q2, as follows:

(q1 ⊕ q2)(A) =
{ (q1(A).q2(A)

1−K if A 6= ∅
1 if A = ∅.

(2.9)

Another rule for combination is the disjunctive rule, defined by:

(m1 ∪©m2)(A) =
∑

B∪C=A
m1(B)m2(C). (2.10)

This rule is also commutative and associative.
Denoting by bel1 ∪©bel2 the belief function corresponding tom1 ∪©m2, it can be shown

that:

(bel1 ∪©bel2)(A) = bel1(A)bel2(A), ∀A ∈ Ω, (2.11)

which is the counterpart of (2.9).
In general, the conjunctive rule is used when the pieces of evidence to be combined

are given by reliable sources of information while the disjunctive rule is used when at
least one of the sources of information is reliable. Both of them assume that the sources
of information are independent.

Dubois and Prade [30] have proposed a hybrid rule intermediate between the con-
junctive and disjunctive sums, in which the product m1(B)m2(C) is assigned to B ∩C
whenever B∩C 6= ∅, and to B∪C otherwise. This rule is not associative, but it usually
provides a good summary of partially conflicting items of evidence.

In [24] a combination rule, called cautious conjunctive rule, is introduced to com-
bine belief functions induced by reliable, but possibly overlapping bodies of evidence.
This rule is based on the canonical decomposition of belief functions. A disjunctive
counterpart to this rule, called the bold disjunctive rule can also be defined. Both rules
are commutative, associative and idempotent.
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Making decision

In order to make decisions, a two-level model is proposed in [85]: the credal level
and the pignistic one. At the credal level, items of evidence are represented by mass
(or equivalently belief) functions and combined. At the pignistic level, decisions are
made by maximizing expected utilities [76]. Once a decision has to be made, a mass
function m is transformed into a pignistic probability distribution p in order to compute
these expectations. The pignistic transformation consists in normalizing m (assuming
that m(∅) < 1), and then distributing each normalized mass m(A)/(1−m(∅)) equally
between the atoms ωq ∈ A:

p(ωq) =
∑

{A⊆Ω,ωq∈A}

m(A)
(1−m(∅))|A| , ∀ωq ∈ Ω. (2.12)

In [18], an alternative method is advocated to transform a belief function into a
corresponding probability function model by normalizing the plausibilities of singletons.
The plausibility transformation can be used for making decisions with belief functions
by selecting the hypothesis with maximum plausibility. The plausibility transformation
Plp is then defined by:

Plp(ωq) = pl(ωq)∑
{pl(ωq)|ωq ∈ Ω} , ∀ωq ∈ Ω. (2.13)

Example 1 Let us assume that a crime has been committed and there are three sus-
pects: Peter, Paul and Mary. Suppose we have two testimonies: Witness 1 says the
killer was a man, while witness 2 claims that he has found a blond hair at the crime
scene. We know that Mary and Paul are blond.

The frame of discernment for this problem is: Ω = {Peter, Paul,Mary}. We know
that witness 1 is drunk 20% of the time. This piece of evidence can be represented by
a mass function m1 as follows: m1({Peter, Paul}) = 0.8, m1({Peter, Paul,Mary}) =
0.2. The .8 belief mass given to {Peter, Paul} corresponds to the part of belief that
witness 1 was not drunk. The rest of belief (1-0.8) is given to the ignorance (Ω): if
witness 1 was drunk, we have no information about the killer.

Considering the second item of evidence, there is a probability 0.6 that the room has
been cleaned before the crime. The resulting belief function will then be: m2({Paul,Mary}) =
0.6, m2({Peter, Paul,Mary}) = 0.4. Assuming that these two items of evidence are
distinct, they should be combined using the conjunctive or disjunctive sum. Table 2.1
represents the items of evidence associated with each witness, with their conjunctive
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Table 2.1: Conjunctive and disjunctive combination sums of m1 and m2 in Example 1.

Suspect m1 m2 m1 ∩©2 m1 ∪©2

∅ 0 0 0 0
Paul 0 0 0.48 0
Peter 0 0 0 0
Mary 0 0 0 0

Peter or Paul 0.8 0 0.32 0
Paul or Mary 0 0.6 0.12 0
Mary or Peter 0 0 0 0

Peter, Paul or Mary 0.2 0.4 0.08 1

Table 2.2: Pignistic probability and plausibility transformation associated with the con-
junctive combination sum of m1 and m2 in Example 1.

Suspect m1 m2 p1 ∩©2 Plp1∩2

∅ 0 0 0 0
Paul 0 0 0.727 0.625
Peter 0 0 0.187 0.250
Mary 0 0 0.087 0.125

Peter or Paul 0.8 0 - -
Paul or Mary 0 0.6 - -
Mary or Peter 0 0 - -

Peter, Paul or Mary 0.2 0.4 - -

and disjunctive sums. The proposition ∅ means here that none of the three suspects
was the killer.

We may remark here, that the disjunctive sum yields to total ignorance by associ-
ating a mass function equal to 1 to Ω. For that reason, we should use the conjunctive
sum to make a decision and select the element having the maximum pignistic proba-
bility or the maximum plausibility. Table 2.2 displays the pignistic probability and the
plausibilities of singletons associated with the conjunctive combination. In this case we
can remark that the decision given by the two decision rules coincide.

Example 2 Consider now the classification problem and let Ω = {ω1, . . . , ωQ} be
the set of target classes. In the case of multi-class classification, target classes are
mutually exclusive and the frame of discernment is usually defined as the set of dis-
tinct number of classes is Ω. Mass function is then the mapping from the power set
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of Ω, 2Ω = {{ω1}, . . . , {ωQ}, {ω1, ω2}, . . . , {ωQ−1, ωQ}, {ω1, ω2, ω3}, . . . , {ω1, . . . , ωQ}},
containing 2Q elements, to the unit interval. In the case of multi-label learning, target
classes are not mutually exclusive because an instance may belong to several classes
simultaneously. The frame of discernment will then contain all possible subsets of Ω
and will be equal to the power set of Ω, Θ = 2Ω. To define mass functions, we have to
manipulate subsets of Θ. As there are 22Q such subsets, this approach rapidly becomes
intractable as the number Q of classes increases. As explained in the introduction, the
authors in [25][26] present a formalism for applying the Dempster-Shafer framework to
very large frames such as the power set of a finite set Ω with manageable complexity.
This formalism will be recalled in the next section.

2.3 Belief functions on set-valued variables

Let Ω be a finite set. Defining belief functions on 2Ω would lead to double-
exponential complexity, and may become intractable except for sets Ω with very small
cardinality. However, as shown in [62], the Dempster-Shafer theory can be used with a
strict subset C(Ω) of 2Ω that is closed under intersection. The closure system (C(Ω),⊆)
has a lattice structure.

In the following, we will recall the necessary background on lattices following by the
application of the theory of belief functions on lattices. The main concepts of Dempster-
Shafer will then be extended to the case where we want to describe the uncertainty
regarding a set-valued variable V on a finite domain Ω.

2.3.1 Belief functions in general lattices

Lattices

A detailed review of lattice theory can be found in [62]. The following presentation
follows [40]. Let L be a finite set and≤ a partial ordering (i.e., a reflexive, antisymmetric
and transitive relation) on L. The structure (L,≤) is called a poset. We say that (L,≤)
is a lattice if, for every x, y ∈ L, there is a unique greatest lower bound (denoted by
x∧y) and a unique least upper bound (denoted by x∨y). Operations ∧ and ∨ are called
the meet and join operations, respectively. For finite lattices, the greatest element >
and the least element ⊥ always exist. We say that x covers y if x > y and there is no
z such that x > z > y. An element x of L is an atom if it covers only one element and
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this element is ⊥. It is a co-atom if it is covered by a single element and this element

is >.

Two lattices L and L′ are isomorphic if there exists a bijective mapping f from L to

L′ such that x ≤ y ⇔ f(x) ≤ f(y). For any poset (L,≤), we can define its dual (L,≥)

by inverting the order relation. A lattice is autodual if it is isomorphic to its dual.

A lattice is distributive if (x∨y)∧z = (x∧z)∨(y∧z) holds for all x, y, z ∈ L. For any

x ∈ L, we say that x has a complement in L if there exists x′ ∈ L such that x∧ x′ = ⊥

and x ∨ x′ = >. L is said to be complemented if any element has a complement. A

distributive lattice in which each element has a complement is called a Boolean lattice.

Every Boolean lattice is isomorphic to (2Ω,⊆) for some set Ω. For the lattice (2Ω,⊆),

we have ∧ = ∩, ∨ = ∪, ⊥ = ∅ and > = Ω.

A closure system C on a set Θ is a family of subsets of Θ that closed under inter-

section. As shown in [62], any closure system (C,⊆) is a lattice with the following meet

and join operations

C1 ∧ C2 = C1 ∩ C2 (2.14)

C1 ∨ C2 =
⋂
{C ∈ C|C1 ∪ C2 ⊆ C}. (2.15)

Belief functions on lattices

As shown in [40], the theory of belief function can be extended from the Boolean

lattice (2Ω,⊆) to any lattice, not necessarily Boolean. Most results of Dempster-Shafer

theory can be transposed in the general lattice setting (L,≤). For instance, Dempster’s

rule can be extended by replacing ∩ by ∧ in (2.8), and relation (2.9) between common-

ality functions is preserved. Similarly, we can extend the disjunctive rule (2.10) by

substituting ∨ for ∪ in (2.10), and relation (2.11) still holds. The extension of other

notions from classical Dempster-Shafer theory may require additional assumptions on

(L,≤). For instance, the definition of the plausibility function pl as the dual of bel using

(2.5) can only be extended to autodual lattices. Also, probability measures cannot be

defined on arbitrary lattices. Consequently, the pignistic probability (2.12) can only be

extended in restricted settings.
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2.3.2 Belief functions on the lattice (C(Ω),⊆)

The Lattice (C(Ω),⊆)

Let V be a variable taking zero, one or several values in a finite set Ω. Such a
variable is said set-valued [26].

Let A0 ⊆ Ω be the unknown true value of V . To express partial knowledge about a
set-valued variable V in the belief function framework, we should define a mass function
mΘ on Θ. As explained in the beginning of this section, this approach is inapplicable
except for sets Ω with very small cardinality.

As an alternative, the authors in [26] proposed to define mass functions and associ-
ated functions on a subset of 2Θ that forms a lattice when equipped with the inclusion
relation. The intuitive idea underlying this approach is the fact that, when expressing
knowledge about a set-valued variable V , it is often convenient to specify sets of values
that are certainly taken by V , and sets of values that are certainly not taken by V .
This can be illustrated by the following example.

Example 3 Let V denote the emotions evoked upon hearing a song, defined on the
large set Ω of existing emotions. If an expert may decide that this song certainly evokes
happiness and certainly does not evoke sadness, but may be undecided regarding the
other emotions (such as quietness, anger, surprise, etc.), then all subsets of Ω containing
A = {happiness} and not intersecting B = {sadness} are possible values of V .

More generally, letQ(Ω) = {(A,B) ∈ 2Ω×2Ω|A∩B = ∅Ω} be the set of ordered pairs
of disjoint subsets of Ω, where ∅Ω denotes the empty set of Ω. For any (A,B) ∈ Q(Ω),
let ϕ(A,B) denote the following subset of Θ = 2Ω:

ϕ(A,B) = {C ⊆ Ω|C ⊇ A,C ∩B = ∅Ω}. (2.16)

ϕ(A,B) is thus the subset of Θ composed of all subsets of Ω including A and non
intersecting B. Equivalently, it is the set of all subsets of Ω that include A and are
included in B:

ϕ(A,B) = {C ⊆ Ω|A ⊆ C ⊆ B}. (2.17)

It is thus the interval [A,B] in the lattice (2Ω,⊆).
Let C(Ω) denote the set of all subsets of Θ of the form ϕ(A,B), completed by the

empty set of Θ, noted ∅Θ:

C(Ω) = {ϕ(A,B)|A ⊆ Ω, B ⊆ Ω, A ∩B = ∅Ω} ∪ {∅Θ}.
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C(Ω) is thus a subset of 2Θ. For a reason that will become evident later, we will also

use ϕ(Ω,Ω) as an alternative notation for ∅Θ. Function ϕ is thus a bijective mapping

from Q∗(Ω) = Q(Ω) ∪ {(Ω,Ω)} to C(Ω). The following proposition states that C(Ω) is

a closure system and, consequently, has a lattice structure.

Proposition 1 C(Ω) is a closure system of Θ, and

ϕ(A,B) ∩ ϕ(A′, B′) =

ϕ(A ∪A′, B ∪B′) if (A ∪A′) ∩ (B ∪B′) = ∅Ω
∅Θ otherwise,

for all (A,B) and (A′, B′) in Q∗(Ω).

The meet operation is the intersection, and the join operation t is defined by:

ϕ(A,B) t ϕ(A′, B′) = ϕ(A ∩A′, B ∩B′).

As noticed in [41], any ordered pair (A,B) of disjoint subsets of Ω = {ω1, . . . , ωQ}

can be represented by a vector (y1, . . . , yQ) ∈ {−1, 0, 1}Q, with

yi =


1 if ωi ∈ A,
−1 if ωi ∈ B,
0 otherwise.

This encoding makes it clear that the cardinality of C(Ω) is equal to 3|Ω| + 1 which

is much less than the 22|Ω| elements of 2Θ.

Belief functions in (C(Ω),⊆)

The general theory of belief functions can then be applied directly to the special

lattice (C(Ω),⊆).

Let m : C(Ω) → [0, 1] be a mass function on C(Ω). The notation m(ϕ(A,B)) will

be simplified to m(A,B). For this reason, m will be called a two-place mass function.

Belief and commonality functions can be computed from m using the following
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formula:

bel(A,B) =
∑

ϕ(C,D)⊆ϕ(A,B)
m(C,D)−m(Ω,Ω) (2.18)

=
∑

C⊇A,D⊇B
m(C,D)−m(Ω,Ω), (2.19)

q(A,B) =
∑

ϕ(C,D)⊇ϕ(A,B)
m(C,D) (2.20)

=
∑

C⊆A,D⊆B
m(C,D). (2.21)

The conjunctive sum operation in C(Ω) is defined as follows:

(m1 ∩©m2)(A,B) =
∑

ϕ(C,D)∩ϕ(E,F )=ϕ(A,B)
m1(C,D)m2(E,F ) (2.22)

=


∑

C∪E=A,D∪F=B
m1(C,D)m2(E,F ) if A ∩B = ∅Ω,∑

(C∪E)∩(D∪F )6=∅Ω

m1(C,D)m2(E,F ) if A = B = Ω.
(2.23)

It can be computed using the commonality functions as:

q1 ∩©2(A,B) = q1(A,B) · q2(A,B), ∀(A,B) ∈ Q∗(Ω). (2.24)

The disjunctive sum can be defined as follows:

(m1 ∪©m2)(A,B) =
∑

ϕ(C,D)tϕ(E,F )=ϕ(A,B)
m1(C,D)m2(E,F ) (2.25)

=
∑

C∩E=A,D∩F=B
m1(C,D)m2(E,F ). (2.26)

Another equation allows us to calculate m from q:

m(A,B) =
∑

C⊆A,D⊆B
(−1)|A\C|+|B\D|q(C,D). (2.27)

Making decision

When working with belief functions in a Boolean Lattice (2Ω,⊆), a usual decision
rule is to select the singleton {ω} of Ω with the largest plausibility or, equivalently,
with the largest commonality. In the lattice (C(Ω),⊆), the plausibility function is not
defined, but the commonality function exists and its maximum can be easily computed
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by solving an integer programming problem with non-linear constraints. A possible rule
for decision making is thus to select the element of Ω with the largest commonality [25].

Another rule for making decision is to compute, for each item {ω} in Ω, two degrees
of belief: bel({ω}, ∅) and bel(∅, {ω}) (like the Dempster-Shafer theory when making
decision at the credal level). If (bel({ω}, ∅) ≥ bel(∅, {ω})), then the final decision must
contain {ω} [26].

Example 4 Let Ω = {ω1, ω2, ω3} be the set of classes for a multi-label classification
problem. Let x be an unseen instance to classify. Suppose that we receive the following
items of evidence through two experts’ opinions:

1. Expert 1 tells us that x certainly belongs to class {ω1} and certainly not belong
to class {ω3}, with confidence 0.8. This is represented by the following mass
function:

m1({ω1}, {ω3}) = 0.80, m1(∅, ∅) = 0.20.

2. Expert 2 tells us that x belongs either to {ω1} or {ω2}. He is sure at 70% that x
should be assigned to class ω1, and with a certainty equal to 15% that x should
be assigned to class ω2. This is represented by:

m2({ω1}, ∅}) = 0.70, m2({ω2}, ∅) = 0.15, m2(∅, ∅) = 0.15.

Assuming these two items of evidence to be distinct, they should be combined using
the conjunctive sum operation ∩©. This may be achieved in two ways:

1. We may compute the intersection between each focal element of m1 and each fo-
cal element ofm2 and apply formula (2.22). The computations may be presented
as in Table 2.3.

2. Alternatively, we may compute the commonality functions q1 and q2 using (2.20),
multiply them, and convert the result into a mass function using (2.27). The
intermediate and final results are shown in Table 2.4.

We may check that both approaches yield to the same result. Let m12 = m1 ∩©m2.
We get:

m12({ω1}, {ω3}) = 0.68,

m12({ω1}, ∅) = 0.14,

m12({ω1, ω2}, {ω3}) = 0.12,

m12({ω2}, ∅) = 0.03,

m12(∅, ∅) = 0.14.
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Table 2.3: Computation of the conjunctive sum of m1 and m2 in Example 4. The
columns and the lines correspond to the focal elements of m1, and m2, respectively. Each
cell contains the intersection of a focal element of m1 and a focal element of m2. The mass
of each focal element is indicated below it.

({ω1}, {ω3}) (∅, ∅)
0.8 0.2

({ω1}, ∅) ({ω1}, {ω3}) ({ω1}, ∅)
0.7 0.7× 0.8 0.7× 0.2

({ω2}, ∅) ({ω1, ω2}, {ω3}) ({ω2}, ∅)
0.15 0.15× 0.8 0.15× 0.2
(∅, ∅) ({ω1}, {ω3}) (∅, ∅)
0.15 0.15× 0.8 0.15× 0.2

Based on this evidence and in order to make a decision, we select from Table 2.4 the
singleton with the maximum of communality, which is {ω1, ω2}. Using the second rule
of decision, we should compare two quantities(bel({ω}, ∅) and bel(∅, {ω})) according to
Equation (4.5). From Table 2.5, we can say that x can be labelled with {ω1, ω2} but
not with {ω3}.

2.4 Application to multi-label classification

Consider the multi-label classification problem, in which objects may belong simul-

taneously to several classes. In order to use the formalism presented in the previous sec-

tion, as explained in [26], the training set is then presented byD = {(x1, A1, B1), . . . , (xn, An, Bn)},

where Ai ⊆ Y denotes a set of classes that surely apply to instance xi, and Bi ⊆ Ω a set

of classes that surely do not apply to the same instance. If Yi ⊆ Y denotes the true label

set of xi, we thus only know that Yi ∈ ϕ(Ai, Bi). The Evidential Multi-label k-Nearest

Neighbor (EMLkNN) method builds a multi-label classifier H as will be explained in

the following.

Given a new instance x, let N k
x be the set of its k nearest neighbors in D, according

to some distance d. This item of evidence given by (xi, Ai, Bi), where xi is an element

of that set, is represented by the following mass function:
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Table 2.4: Computation of m1 ∩©m2 and m1 ⊕m2 in Example 4.

A B m1 q1 m2 q2 q1 ∩©2 m1 ∩©m2 m1 ⊕m2

∅ ∅ 0.2 1 0.15 0.15 0.15 0.03 0.03
∅ {ω1} 0 0.2 0 0.15 0.03 0 0
∅ {ω2} 0 0.2 0 0.15 0.03 0 0
∅ {ω3} 0 0.2 0 0.15 0.03 0 0
∅ ({ω1, ω2}) 0 0.2 0 0.15 0.03 0 0
∅ ({ω1, ω3}) 0 0.2 0 0.15 0.03 0 0
∅ ({ω2, ω3}) 0 0.2 0 0.15 0.03 0 0
∅ ({ω1, ω2, ω3}) 0 0.2 0 0.15 0.03 0 0
{ω1} ∅ 0 0.2 0.7 0.85 0.17 0.14 0.14
{ω1} {ω2} 0 0.2 0 0.85 0.17 0 0
{ω1} {ω3} 0.8 1 0 0.85 0.85 0.68 0.68
{ω1} ({ω2, ω3}) 0 1 0 0.85 0.85 0 0
{ω2} ∅ 0 0.2 0 0.30 0.06 0.03 0.03
{ω2} {ω1} 0 0.2 0.15 0.30 0.06 0 0
{ω2} {ω3} 0 0.2 0 0.30 0.06 0.015 0.015
{ω2} ({ω1, ω3}) 0 0.2 0 0.30 0.06 0.015 0.015
{ω3} ∅ 0 0.2 0 0.15 0.03 0 0
{ω3} {ω1} 0 0.2 0 0.15 0.03 0.07 0.07
{ω3} {ω2} 0 0.2 0 0.15 0.03 0 0
{ω3} ({ω1, ω2}) 0 0.2 0 0.15 0.03 0 0

({ω1, ω2}) ∅ 0 0.2 0 1 0.2 0 0
({ω1, ω2}) {ω3} 0 1 0 1 1 0.12 0.12
({ω1, ω3}) ∅ 0 0.85 0 0.85 0.17 0 0
({ω1, ω3}) {ω2} 0 0.85 0 0.85 0.17 0 0
({ω2, ω3}) ∅ 0 0.30 0 0.30 0.06 0 0
({ω2, ω3}) {ω1} 0 0.30 0 0.30 0.06 0 0

({ω1, ω2, ω3}) ∅ 0 1 0 1 0.2 0 0
({ω1, ω2, ω3}) ({ω1, ω2, ω3}) 0 1 0 1 1 0 0
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Table 2.5: Computation of bel({ω}, ∅) and bel(∅, {ω}) in Example 4.

ωi bel({ωi}, ∅) bel(∅, {ωi})
ω1 0.94 0
ω2 0.15 0
ω3 0 0.80

mi(Ai, Bi) = α exp (−γd(x,xi)) , (2.28)

mi(∅, ∅) = 1− α exp (−γd(x,xi)) , (2.29)

where α and γ are two parameters, such that 0 < α < 1 and γ > 0.
The k mass functions resulting from the neighborhooding of x may then combined

by the conjunctive sum:

m = ∩©i:xi∈N k
x
mi. (2.30)

For making decision, we can find the set of labels with the greatest communality,
or we can compare the two degrees of belief (bel({ω}, ∅) and bel(∅, {ω})) for each label
{ω}. Thus, the multi-label classifier H is defined by:

H(x) = {ω ∈ Y | bel({ω}, ∅) ≥ bel(∅, {ω})}. (2.31)

2.5 Conclusion

In this chapter, we have presented a review on evidence combination and reasoning
under uncertainty using belief functions. The theory of belief functions is a general
framework for reasoning with uncertainty; however, its complexity has to be controlled
when it is applied to very large frames of discernment. We introduced the formalism
for quantifying uncertainty on a set-valued variable V defined on a domain Ω in the
belief function framework. When the frame of discernment Ω forms itself a lattice for
some partial ordering, the set of events may be defined as a family C(Ω) of subsets of
2Ω. Using this method, it is possible to define and manipulate belief functions in very
large frames such as the power set of a finite set. In the following chapter, we will use
this approach to develop a new multi-label classification method.
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Chapter 3

Extension of the RAKEL method
to set-valued variables

3.1 Introduction

Chapter 1 reviewed the different approaches to multi-label learning using classi-
cal classification and ranking. We have shown that there exist three principal cat-
egories: problem transformation approaches, problem adaptation algorithms and en-
semble methods. In this chapter, we are interested in ensemble methods and especially
the RAKEL algorithm.

This chapter reviews the RAKEL method, which seeks to classify multi-labelled
instances while taking the relation between labels into account. However, this method
incurs some loss of information since it is based on learning with small subsets of labels.
Consequently, the relationships between labels are then not well represented. Moreover,
there are three parameters to be specified a priori. To alleviate these problems, we ex-
tend this method to the belief functions framework recalled in Chapter 2. The resulting
novel algorithm, called Evidential RAKEL, addresses some of the above problems while
keeping the property of handling correlation between labels.

Section 3.2 reviews the RAKEL method and details the corresponding algorithm.
Section 3.3 discusses the correlation between labels and expresses this property on
some multi-labelled datasets. Section 3.4 introduces the proposed evidential multi-
label classification algorithm based on the RAKEL approach. Experiments on both
synthetic and real-world datasets will be illustrated in Section 3.5. Finally, Section 3.6
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concludes this chapter.

3.2 Random K-labEL sets: RAKEL

Let X denote an instance space and let Y = {ω1, ω2, . . . , ωQ}, be the finite set
of labels in a multi-label training task. A training set of n instances is denoted by
D = {(xi, Yi), i = 1, . . . ,n}, where xi ∈ X is a feature vector describing instance i,
and Yi ⊆ Y is the set of labels for that instance. The goal is to output a multi-label
classifier H that predicts a set of labels for each unseen instance.

RAndom k-labEL sets (RAKEL) is an ensemble method for multi-label classifica-
tion. RAKEL handles multi-labelled data by generating LP-based multi-label classifiers
for different small-size subsets of labels [96][97]. To reduce the computational com-
plexity of the effective LP method for large numbers of labels and training instances,
RAKEL involves "labels splitting" and "LP classification" and build a set of classifiers
from different subsets of the finite set of labels. In order to label unseen instances, the
method combines the predictions of these multiple classifiers using a voting process to
output the value of each label separately.

Label splitting. Given a size of label sets k, RAKEL constructs model random
subsets of labels, Zj , {j = 1, . . . ,model}, from Y. The different label sets may be
overlapping and the overlap is certain when k × model > Q. For each label set Zj ,
the associated training set, denoted as Dj , is obtained from the original training set
D by replacing the label sets of training instances, Yi, by their intersections with Zj :
Dj = {(xi, Yi ∩ Zj), i = 1, . . . ,n}. Note that this may lead to examples annotated by
the empty set. These examples are not excluded from Dj but included in another class
by considering the empty set as a new class.

LP classification. Each training set Dj is learnt by a single-label classifier hj
having as class values all the subsets of Zj that are found in Dj . Given an new instance
x, each single-label classifier hj provides binary predictions (+1 or −1) on each label
in Zi. The rest of labels (Y \ Zj) are not learnt by hj , and their predictions by hj are
denoted by 0.

Fusion of classifier decisions. To predict the set of labels for x, predictions
of single-label classifiers are gathered and their mean is calculated separately for each
label ωq ∈ Y. An adapted threshold t, usually equal to 0.5, is used in order to give the
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final decision. This intuitive threshold correspond to the majority voting rule for the
fusion of classifier decisions. Thus, the multi-label classifier H for the RAKEL method
is determined as follows:

H(x) = {ωq ∈ Y|[(
model∑
j=1

(hj(x, ωq) > 0))/(
model∑
j=1
| hj(x, ωq) |] ≥ t}.

This method can predict a label set that was not present in the initial training
set because the final output of the multi-label classifier is assembled from different
predictions of all single-label classifiers. The number of single-label classifiers model
and the number of labels in each model k are tunable parameters that need to be
specified. For k = 1 and model = Q, RAKEL trains Q binary classifiers and we get the
BR approach, while for k = Q and model = 1, we get the single-label classifier of the
LP approach.

To improve the performance of the RAKEL method, one should increase the ex-
pected number of outputs per label, which means that k × model should take a large
value. Since the complexity of RAKEL grows exponentially with the size of label sets
k, but only linearly with the number of classifiers model, it is more usual to set k to a
small value (e.g. k = 3), while giving to model a range of values going from Q to 2 ∗Q.

Concerning the threshold parameter, it is usual to consider a range of values from
0 to 1 with a 0.1 step. Experimental results in [97] demonstrate that low t values lead
to better results for some metrics (e.g. F1 -measure which promotes the intersection
between the initial and predicted sets of labels, when t has a low value, the number of
predicted labels increases and F1 tends to have high value), while large t values yield
better results for other metrics (e.g. Hamming loss). Authors in [96] fix t to 0.5 on
intuitive grounds.

The RAKEL algorithm

The RAKEL algorithm is summarized in Figure 3.1. It involves three main modules.
The first one, "Label splitting", divides the set of labels into model overlapping, equally-
sized subsets. The second module, "multi-label learning", uses a LP single-label classifier
for each subset. The last module implements the fusion of classifier decisions for the
prediction of label sets for a new instance.
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Training dataset
with Q labels

Label Splitting

Subset 1

Training set 1

LP classification

Prediction 1

Subset 2

Training set 2

LP classification

Prediction 2

. . .

Subset model

Training
set model

LP classification

Prediction model

Predictions Fusion

Final Prediction

Figure 3.1: The RAKEL algorithm

3.3 Correlation between labels

Learning the relationships between labels is a challenging problem in multi-label
classification where classes are overlapped and correlated, in the sense that, the anno-
tation of an instance by some class may provide information about the membership of
that instance to other classes. In the absence of label relationships, the multi-label task
is uninteresting and the given data can be handled by a single-label method without
any loss of information.

Various approaches have been proposed in the literature to model the correlation
between labels [71][112]. Relations between labels can be exploited via different orders:
binary or high order. In the former, label correlations can be expressed as relations
between each pair of labels, while the latter captures relations between a label and
all remaining labels. High order relations are more complex to represent than binary
correlations, which can be measured by the conditional probability of one label given
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another.
Binary correlations can be visualized in different ways [71]. Given a multi-labelled

data D with Q possible labels, one way to measure the co-occurrence of two labels
ωq and ωr is through conditional probabilities. The conditional probability of label
ωq being relevant given that the label ωr is relevant, is P(ωq|ωr). P(ωq) is the prior
probability. When P(ωq|ωr) and P(ωq) are different, one can say that there is some rela-
tionship between ωq and ωr. Figures 3.2 and 3.3 show the graph of co-occurrences label
probabilities for the Emotions (Q = 6) and Scene (Q = 6) datasets used in our experi-
ments, which will be detailed in Section 4.4.2. In this figure, node thickness indicates
prior probability P(ωq), while edge thickness indicates the co-occurrence probability:
P(ωq|ωr)×P(ωr), calculated from the training dataset. Figures 3.4 and 3.5 display the
contingency matrix M for the same datasets, in which we explore the conditional and
prior probabilities for each pair of classes: Mqr = P(ωq|ωr) and Mqq = P(ωq). We can
see clearly that, for the scene dataset, some labels have more than two relationships,
while others like "sunset", have no relationships with any other labels.

amazed-surprised

happy-pleased

relaxing-calm

quiet-still

sad-lonely

angry-fearful

Figure 3.2: Graph of co-occurrences probabilities of the labels for the Emotions dataset

The oldest approach in multi-label learning that considers relation between labels
is the LP approach. As explained in Section 1.3, LP is a simple effective multi-label
learning method, which considers each unique set of labels in the multi-label learning
as a different class of a single-label classification task. LP has the advantage of taking
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sunset beach

foliage
field

mountain

urban

Figure 3.3: Graph of co-occurrences probabilities of the labels for the Scene dataset

correlations among labels into consideration. However, LP may lead to imbalanced
datasets with a large number of classes and few examples per class.

RAKEL deals with the aforementioned problems by breaking the large set of la-
bels into different small-sized subsets and employing LP in each of these subsets. To
aggregate the sub-classifiers, RAKEL uses the voting process to predict the output on
each label separately for a given instance. The RAKEL method has several advantages:
it is simple, effective, and it takes label correlation into account. Additionally, it can
be used with any state-of-the-art single-label classification. However, when the initial
number of labels Q is large, choosing small value of k has the consequence that correla-
tion between labels is not well taken into account. Hence, we need to increase the value
of k. However, the complexity of RAKEL is exponential with k. Thus, by aggregating
the different sub-classifier results, we may lose some information about the correlation
between the initial subsets of labels.

Given a test instance x to classify with the RAKEL method, the output of each
sub-classifier is regarded as a set-valued variable by taking zero, one or several values in
Y. Table 3.1 represents an example annotated with the RAKEL method on a problem
where the number of labels is Q = 6, using the following parameters: k = 3, model = 5,
and t = 0.5. Each of the 5 classifiers expresses partial knowledge about x, for example,
with respect to h1, ω1 and ω3 are certainly taken by x, while ω2 are certainly not
taken by x, and we have no information concerning the rest of labels (ω4, ω5 and ω6).
Moreover, in the final phase, the decision on each label is made independently of the
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Figure 3.4: Contingency matrix M of prior probabilities: Mqq = P(ωq) (on the diagonal)
and conditional probabilities: Mqr = P(ωq|ωr) (q is a row and r is a column) for the
Emotions dataset

Table 3.1: An example of classification with the RAKEL method on a multi-label problem
where Q = 6, and with k = 3, model = 5, and t = 0.5.

classifier 3-label sets ω1 ω2 ω3 ω4 ω5 ω6

h1 {ω1, ω2, ω3} 1 -1 1 0 0 0
h2 {ω2, ω3, ω5} 0 1 1 0 -1 0
h3 {ω3, ω5, ω6} 0 0 -1 0 -1 1
h4 {ω1, ω4, ω6} 1 0 0 -1 0 -1
h5 {ω4, ω5, ω6} 0 0 0 -1 1 1

average votes 2/2 1/2 2/3 0/2 1/3 2/3
final prediction 1 1 1 -1 -1 1
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Figure 3.5: Contingency matrix M of prior probabilities: Mqq = P(ωq) (on the diagonal)
and conditional probabilities: Mqr = P(ωq|ωr) (q is a row and r is a column) for the Scene
dataset

subset of labels leading to such result. A more adequate approach for multi-label

learning might be to consider results of all classifiers and their corresponding subsets

of labels. In this case, the final decision would result not only on the predictions of the

base classifiers, but also on their output probabilities.

In this chapter, our purpose is to reduce the loss of information inherent in the

RAKEL method (as each base classifier only considers a subset of labels), while ac-

counting for label correlation in a more efficient way. Our approach will be based on

the theory of evidence. We propose to retain the basic principle of the RAKEL ap-

proach but to combine the different classifiers in the belief function framework. The

proposed approach is called Evidential RAKEL. Three major issues are related to our

method. The first issue concerns the representation of information from all classifiers

regarding the classification of unseen instance x. Each base classifier output is repre-

sented by a mass function on the corresponding subset of labels. The second issue refers

to the class membership resulting from each classifier. In the framework of set-valued
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variables, the knowledge about the labelling of an instance can be represented by sets
of values certainly taken by x and sets of values certainly not taken by x [26]. The
third issue concerns the fusion of classifier outputs in order to achieve more reliable
information and better decisions.

3.4 Evidential RAKEL

3.4.1 Principle of the Method

Evidential RAKEL is based on the RAKEL approach. For each of the subsets
Zj , j ∈ {1, . . . ,model}, the training phase of the algorithm consists of replacing the
label sets of training instances Yi by their intersections with Zj : Dj = {(xi, Yi∩Zj), i =
1, . . . ,n}. Inside Dj , and if the size of Dj is sufficiently high, we may have until 2k

combinations of labels resulting from applying the LP approach where each combination
can be considered as a new class. Thus, Evidential RAKEL trains model multi-label
classifiers h1, h2, . . . ,hmodel. With this method, the classification task is usually done
with the same classification algorithm for the model classifiers.

Given an unseen instance x, each classifier hj produce probabilities on the subsets
of Zj in order to make a decision about the labelling of x by hj . More explicitly, let l
be the number of all subsets of Zj (l = 2k), the output of hj will be described by a score
vector Pj = (Pj,1, Pj,2, . . . , Pj,l), given on a vector gathering all subsets of Zj , which is
zj = (zj,1, zj,2, . . . , zj,l). The value Pj,p can be considered as the belief of assigning the
class zj,p to the test instance by hj .

In the frame of discernment Y, each classifier hj can be considered as source of
information and its outputs may be regarded as an item of evidence. Regarding the
classifier hj , each class value {zj,p} can be represented by the focal element, ϕ(Aj,p, Bj,p)
where Aj,p = {zj,p} and Bj,p = Zj \{zj,p}, Aj,p is the set of labels assigned to one group
and Bj,p is its complement in Zj . In a classical RAKEL method, the most probable
class zj,p is chosen based on the higher value Pj,p. However, in the Evidential RAKEL
we consider all probabilities and focal elements, and the item of evidence resulting from
each classifier may be given by a mass function over Y defined by:

mj(Aj,p, Bj,p) = s.Pj,p, for each Aj,p, Bj,p ⊆ Zj (3.1)

mj(∅, ∅) = 1− s.
l∑

p=1
Pj,p = 1− s, (3.2)
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Table 3.2: An example of association items of evidence to the outputs of a classifier inside
the Evidential RAKEL method using 3-label sets (k = 3).

Focal elements (ϕ(A,B)) Output probabilities (Pj) mj(A,B)
(∅, {ω3, ω4, ω5}) 0.0048 0.0043
({ω5}, {ω3, ω4}) 0.0836 0.0753
({ω4}, {ω3, ω5}) 0 0
({ω4, ω5}, {ω3}) 0.0059 0.0053
({ω3}, {ω4, ω5}) 0.0145 0.0130
({ω3, ω4}, {ω5}) 0.8343 0.7508
({ω3, ω5}, {ω4}) 0.0486 0.0437
({ω3, ω4, ω5}, ∅) 0.0084 0.0076

(∅, ∅) - 0.1000

where s is a parameter such that 0 < s < 1.
For instance, given Linear Discriminant Analysis (LDA) (detailed in Section 4.4.2)

as a base classifier hj , LDA can estimate the posterior probabilities for possible classes
in the set Dj which represented by Pj . Table 3.2 shows the results of applying the
LDA method on the Emotions dataset (that will be described in Section 4.4.2), by
randomly choosing three labels Zj = {ω3, ω4, ω5} from six. LDA will assign a posterior
a probability to each subset of Zj , called here a focal element. For example, from
this table, we can see that the maximum probability is obtained for ϕ({ω3, ω4}, {ω5}),
which is equal to 0.8343. In the Evidential RAKEL, this means that we have a degree
of belief equal to 0.8343 that the true set of labels of x contains ω3 and ω4, and does
not contain ω5, and we are undecided regarding the other labels (ω1, ω2, ω6). The focal
set ϕ(∅, {ω3, ω4, ω5}) represents the empty set, which is considered as a class in Zj . The
third column in this table computes the mass function corresponding to that item of
evidence by fixing s to 0.9.

Once the mass functions induced by the outputs of all classifiers have been calcu-
lated, and in order to choose the appropriate set of labels for x, we can combine these
mass functions by using a variety of techniques based on evidence theory. In this work,
we use Dempster’s rule (2.8) for combining elements of evidence:

m = ⊕model
j=1 mj . (3.3)
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For making a decision, two techniques can be used: we can calculate the belief for
each label separately, or compute the maximum of commonality to predict directly the
whole set of labels for the test instance x (Section 2.3).

3.4.2 Decision Phase

Bel function

After combining all elements of evidence using a combination rule, the bel function
is calculated. For each class ω ∈ Y, we compute the degree of belief bel({ω}, ∅) that the
predicted label set Y of x contains ω, and the degree of belief bel(∅, {ω}) that it does
not contain ω. A final decision is made by chosen ω if the degree of belief bel({ω}, ∅)
is greater than bel(∅, {ω}). We then define the multi-label classifier H as

H(x) = {ω ∈ Y | bel({ω}, ∅) ≥ bel(∅, {ω})}.

Commonality function

An alternative way of making a decision, introduced in [25], is to find the set of
labels with the greatest commonality. The commonality function corresponding to the
conjunctive sum (3.3) can be obtained by:

q ∝
model∏
j=1

qj , (3.4)

where qj is the commonality function associated tomj . These individual commonalities
can be expressed for any subset Y of Y by:

qj(Y ) =
{

1− s+ s.Pj,p if Y ∈ ϕ(Aj,p, Bj,p)
1− s otherwise.

(3.5)

The subset ϕ(Aj,p, Bj,p) is the set of all subsets of Y that include Aj,p and are
included in Bj,p: ϕ(Aj,p, Bj,p) = {Y ⊆ Y|Aj,p ⊆ Y ⊆ Bj,p}. To simplify calculations,
we shall introduce some notations:

αj = 1− s+ s.Pj,p

βj = s.Pj,p

Aj,p = Aj

Bj,p = Bj .
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We thus have:

qj(Y ) =
{
αj if Y ∈ ϕ(Aj , Bj)
αj − βj otherwise,

(3.6)

and,

q ∝
model∏
j=1

αj(
αj − βj
αj

)1−δj , (3.7)

with

δj =
{

1 if Y ∈ ϕ(Aj,p, Bj,p)
0 otherwise.

(3.8)

For each focal element ϕ(Aj , Bj), let us introduce the following notations:

ajq =
{

1 if ωq ∈ Aj
0 otherwise,

(3.9)

and

bjq =
{

1 if ωq ∈ Bj
0 otherwise.

(3.10)

In [25], each subset of labels Y can be represented by a Q-dimensional vector con-
taining integer values (1 or 0) if the corresponding label ωq is in Y or not. With these
notations, the inclusion constraint Aj ⊆ Y may be translated by:

Q∑
q=1

ajqyq =
Q∑
q=1

ajq. (3.11)

Similarly, the constraint Y ⊆ Bj , or, equivalently, Bj ⊆ Y , may be written as:

Q∑
q=1

bjq(1− yq) =
Q∑
q=1

bjq. (3.12)

Maximizing q(Y ) is equivalent to maximizing its logarithm, which is equal to:

ln q(Y ) =
model∑
j=1

[lnαj + (1− δj)(ln(αj − βj)− ln(αj))] + constant (3.13)

=
model∑
j=1

[δj ln(αj) + (1− δj)(ln(αj − βj))] + constant. (3.14)
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To find the set Y with greatest commonality, the authors in [25] solve the following

binary integer programming problem:

min
y∈{0,1}Q,δ∈{0,1}model

model∑
j=1

δj ln(αj − βj), (3.15)

subject to the constraints:



Q∑
q=1

aqjyq ≥ δj
Q∑
q=1

aqj ∀ j = 1 . . .model

Q∑
q=1

bjq(1− yq) ≥ δj
Q∑
q=1

bjq ∀ j = 1 . . .model

(3.16)

The multi-label classifier H is defined as

H(x) = {Y ⊆ Y | q(Y ) = max q}.

With this technique, we directly obtain the final predicted set of labels for input

vector x, but we do not have a score function that calculates the probability of relevance

for each label separately.

The full pseudo code for the Evidential RAKEL approach is illustrated in Algo-

rithm 1. The parameter s (normalization factor) is an input parameter. It is used with

the classifier related to the problem transformation category to get a mass value on

the empty set. If s = 1, then the source of information hj is fully reliable. If s = 0

the source of information is not reliable at all and all the mass will be assigned to

the greatest focal element ϕ(∅, ∅). Note that here, we can train not only a single-label

classifier but also a multi-label classifier hj and the outputs may be expressed as de-

grees of evidence on the existing focal elements. With the Evidential RAKEL, we take

all outputs instead of the final prediction from each classifier and we combine them

in the large frame of discernment. This approach allows us to use all the information

provided by each classifier and to capture the relationship between classes. Another

advantage of the Evidential RAKEL is the reduction of the number of input parameters

as compared to the classical RAKEL method: the threshold parameter is eliminated,

since the decision is automatically made under the belief function framework.
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Algorithm 1 Evidential RAKEL algorithm.

Input: training dataset D, new instance x, number of labels k randomly chosen from
Y, number of models model, classifier h, normalization factor s
Output: predicted set of labels for x via the bel function Y1, corresponding scoring
function f1, predicted set of labels via the maximum of commonality Y2

1: for j = 1 to model do
2: Identify Zj : the set of k labels randomly chosen from Y;
3: Identify Dj : the training set corresponding to Zj ;
4: l = 2k;
5: Learn classifier h by looking for the l subsets (zj) of Zj that can be found in Dj

and their scoring vector Pj ;
6: Identify zj and Pj ;
7: for p = 1 to l do
8: Aj,p = {zj,p};
9: Bj,p = Zj \ {zj,p};
10: mj(Aj,p, Bj,p) = s.Pj,p;
11: end for
12: mj(∅, ∅) = 1− s;
13: Calculate qj according to Equation 3.5;
14: end for
15: m = ⊕model

j=1 mj ;
16: for q = 1 to Q do
17: f̂1(x, ωq) = bel({ωq}, ∅);
18: if {bel({ωq}, ∅) ≥ bel(∅, {ωq})} then
19: Ŷ1(q) = +1;
20: else
21: Ŷ1(q) = −1;
22: end if
23: end for
24: q ∝

∏model
j=1 qj ;

25: Ŷ2 = arg maxY{q}.
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3.5 Experimental Evaluation

In this section, we present several experiments with both synthetic and real data in
order to study the performances of our approach.

3.5.1 Experiments on Synthetic Data

In this subsection, we use a synthetic dataset to illustrate the Evidential RAKEL
approach. Our method is compared to the classical RAKEL method using a voting
process for decision making.

We have generated a two-dimensional dataset with three classes: Y = {ω1, ω2, ω3}.
The dataset contains 1000 instances drawn from seven Gaussian distributions with
the same covariance matrix equal to

(
1 0
0 1

)
and means: (-5,-5), (5,-5), (0,5), (0,-5),

(-3,1), (3,1) and (0,0). The corresponding labels are respectively {ω1}, {ω2}, {ω3},
{ω1, ω2}, {ω1, ω3}, {ω2, ω3}, and {ω1, ω2, ω3}. This dataset was randomly divided into
training and test datasets with sizes 700 and 300, respectively. Table 3.3 summarizes
the distribution of the dataset.

Table 3.3: Distribution of the synthetic data.

Label set Training instances Testing instances
{ω1} 154 64
{ω2} 140 72
{ω3} 151 74
{ω1, ω2} 60 27
{ω1, ω3} 64 25
{ω2, ω3} 80 24
{ω1, ω2, ω3} 51 14

For both methods (RAKEL and Evidential RAKEL), the number of labels chosen
for each model was set to k = 2 (2 labels were learnt in each model). The number of
models (model) was fixed to 2 which means that each class will at least be repeated
in one model. Note here that the maximum number of models that can be taken is 3.
Each model uses the LDA method as base classifier. The threshold parameter for the
classical RAKEL is set to 0.5. The two sets of labels are {ω2, ω3} and {ω1, ω2}.
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Figure 3.6: Training instances of synthetic data

Hereafter, we show the result of the two methods for a test instance x which is

located in the area of labels {ω1,ω3} (as shown in Figure 3.6). The true label set for x

is Y = {ω1, ω3}. Figure 3.7 shows a part of the region space for x, and the estimated

label sets for this instance by using the RAKEL and Evidential RAKEL methods.

To estimate the predicted label set for x using the classical RAKEL, we look for

the outputs of classifiers h1 and h2. We obtain the following probabilities from h1:

P(ω2, ω3) = 0.0412

P(ω2, ω3) = 0.4727

P(ω2, ω3) = 0.0022

P(ω2, ω3) = 0.4839,

the estimated label set for x given by classifier h1 is {ω2, ω3}. It is chosen by selecting
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Figure 3.7: Estimated label set (in bold) for a test instance using the classical RAKEL
(top) and Evidential RAKEL (bottom) methods.
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the label set having the highest probability. From classifier h2, we get:

P(ω1, ω2) = 0.1835

P(ω1, ω2) = 0.0024

P(ω1, ω2) = 0.3616

P(ω1, ω2) = 0.4525.

Thus, the estimated label set for x given by classifier h2 is {ω1, ω2}. To calculate the
final predictions, the outputs of these two classifiers are averaged, as seen in Table 3.4,
and we obtain Ŷ = {ω1, ω2, ω3} as final output.

Table 3.4: Results for a test instance in the synthetic dataset with the classical RAKEL
approach.

classifier 2-label sets ω1 ω2 ω3

h1 {ω2, ω3} 0 1 1
h2 {ω1, ω2} 1 1 0

average votes 1/1 2/2 1/1
final prediction 1 1 1

By applying the Evidential RAKEL, we can associate a mass function to the outputs
of each classifier. The mass function resulting from classifier h1 is:

m1(∅, {ω2, ω3}) = 0.0371

m1({ω3}, {ω2}) = 0.4251

m1({ω2}, {ω3}) = 0.0020

m1({ω2, ω3}, ∅) = 0.4355

m1(∅, ∅) = 0.1000.

Equivalently, the mass function induced from the outputs of classifier h2 is:

m2(∅, {ω1, ω2}) = 0.1652

m2({ω2}, {ω1}) = 0.0022

m2({ω1}, {ω2}) = 0.3254

m2({ω1, ω2}, ∅) = 0.4072

m2(∅, ∅) = 0.1000.
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Table 3.5: Computation ofm1 ∩©m2 resulting from the two mass functions in the synthetic
dataset example.

(∅, {ω2, ω3}) ({ω3}, {ω2}) ({ω2}, {ω3}) ({ω2, ω3}, ∅) (∅, ∅)
0.0371 0.4251 0.0020 0.4355 0.1000

(∅, {ω1, ω2}) (∅, {ω1, ω2, ω3}) ({ω3}, {ω1, ω2}) ∅Y ∅Y (∅, {ω1, ω2})
0.1652 0.1652× 0.0371 0.1652× 0.4251 0.1652× 0.0020 0.1652× 0.4355 0.1652× 0.1000

({ω2}, {ω1}) ∅Y ∅Y ({ω2}, {ω1, ω3}) ({ω2, ω3}, {ω1}) ({ω2}, {ω1})
0.0022 0.0022× 0.0371 0.0022× 0.4251 0.0022× 0.0020 0.0022× 0.4355 0.0022× 0.1000

({ω1}, {ω2}) ({ω1}, {ω2, ω3}) ({ω1, ω3}, {ω2}) ∅Y ∅Y ({ω1}, {ω2})
0.3254 0.3254× 0.0371 0.3254× 0.4251 0.3254× 0.0020 0.3254× 0.4355 0.3254× 0.1000

({ω1, ω2}, ∅) ∅Y ∅Y ({ω1, ω2}, {ω3}) ({ω1, ω2, ω3}, ∅) ({ω1, ω2}, ∅)
0.4072 0.4072× 0.0371 0.4072× 0.4251 0.4072× 0.0020 0.4072× 0.4355 0.4072× 0.1000
(∅, ∅) (∅, {ω2, ω3}) ({ω3}, {ω2}) ({ω2}, {ω3}) ({ω2, ω3}, ∅) (∅, ∅)
0.1000 0.1000× 0.0371 0.1000× 0.4251 0.1000× 0.0020 0.1000× 0.4355 0.1000× 0.1000

Table 3.6: Computation of the bel function for the synthetic dataset example.

bel({ωq}, ∅) bel(∅, {ωq})
q = 1 0.6744 0.1578
q = 2 0.4426 0.5406
q = 3 0.7938 0.0385

We combine these two mass functions using the Dempster’s rule (2.8) as shown in
Table 3.5.

In order to make a decision about the final predicted label set for x, we need to
compute the bel function and to compare the two quantities presented in Equation 3.4.2,
for each q ∈ {1, 2, 3} as shown in Table 3.6. Thus, we get Ŷ ′ = {ω1, ω3} as final label
set. We can see that, by using the LDA classifier with the Evidential RAKEL, we can
estimate the true label set for x, while by using the classical RAKEL, the estimated
label set is erroneous. The fact that the two results are different is not surprising if we
observe the outputs of the two classifiers. By examining the outputs of classifier h1, we
observe that the highest probability (0.4839) is assigned to the label set {ω2, ω3}, while
the second largest probability (0.4727) is assigned to class {ω2, ω3}; this latter value
can be interpreted as a degree of belief that x belongs to {ω3} and does not belong to
{ω2}. Regarding the outputs of classifier h2, the highest probability (0.4525) is assigned
to {ω1, ω2} while the second largest probability (0.3616) is assigned to {ω1, ω2}, which
means that we have some degree of belief that x does not belong to ω2. Using the
Evidential RAKEL, all these degrees of belief are considered when combining the two
mass functions and making the decision. However, the classical RAKEL may not be
able to take this information in consideration when determining the label set of x.
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Thus, we can conclude that the Evidential RAKEL method can take into account all
the information provided by a classifier, and may correct some lack of information when
calculating the label set for a test instance.

3.5.2 Experiments on Real-World Data

To evaluate the performance of our algorithm on real data, we carried out some
experiments with three multi-labelled datasets from the domain of multimedia (mu-
sic and image) classification. We applied our approach with three existing classifica-
tion methods: Linear Discriminant Analysis (LDA), The Classification And Regres-
sion Tree (CART), and the Evidential k-nearest neighbor for multi-label classification
(EMLkNN). Before presenting our experimental results, we first shortly describe the
benchmark multi-label datasets. We then give a short overview of the evaluation mea-
sures for multi-label classification used in our experiments. Next, we explain the base
classifiers used in our approach and the parameter setting of these methods.

Datasets

Our method was experimented using the Emotions, Scene and Image datasets 1.
— Emotions dataset. This dataset consists of 593 songs labelled by experts ac-

cording to the emotions they generated. Each piece of music is described by
8 rhythmic features and 64 timbre features, and can be annotated with the
following emotions: amazed-surprised, happy-pleased, relaxing-calm, quiet-still,
sad-lonely and angry-fearful. The average number of labels for each song is
1.869, and the number of distinct label sets is equal to 27 [92].

— Scene dataset. The Scene dataset consists of 2407 natural scene images. There
are six different semantic classes: beach, sunset, foliage, field, mountain, urban.
Spatial color moments are used as features. Each image is divided into 49
blocks using 7 × 7 grid. The mean and variance of each band are computed
corresponding to a low-resolution image and to computationally inexpensive
texture features, respectively. Each image is then described by 49×2×3 features.
The average number of labels for each picture is 1.074, and the number of distinct
label sets is equal to 15 [7].

1. http://mulan.sourceforge.net/datasets.html
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— Image dataset. This dataset contains 2000 natural scene images belonging to
the following classes: desert, mountains, sea, sunset, trees. Each image is rep-
resented by a feature vector using the same method employed for the Scene
dataset [116]. The average number of labels per instance is 1.24, and the num-
ber of distinct set of labels is equal to 20.

Evaluation measures

As previously discussed in Chapter 1, performance evaluation of multi-label clas-
sifiers requires different measures than those used in traditional classification. In our
experiments, we use the prediction-based measures (Hamming loss, Accuracy, Precision,
Recall and F1-measure).

Base classifiers

In our experiments, we select two types of existing base classifiers: the LDA and the
CART decision tree learning algorithms chosen from the traditional single-label classi-
fication literature, and the EMLkNN method from the category of problem adaptation
methods for multi-label learning.

Linear Discriminant Analysis (LDA) is used to generate a set of linear discriminant
functions, one for each class. This method is based on the assumption that the fea-
ture vector in each class has a multivariate normal distribution with equal covariance
matrix. In order to make a decision for an unseen instance x, LDA estimates the pos-
terior probability for each group of the set Zj . The Classification And Regression Tree
(CART) method uses the set of training data with the predefined classes for building
trees. The CART algorithm constructs binary trees, namely each internal node has
exactly two outgoing nodes. It searches for all possible variables and all possible values
in order to find the best split. The process is repeated for each of the resulting data
fragments. Splitting may stop when CART detects no further gain can be made [8].
The Evidential k-nearest neighbor for multi-label classification (EMLkNN) is based on
the evidential k-NN rule. This method was discussed in Section 2.4.

Parameter setting

In our experiments, we used the following parameters:
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— For the classical RAKEL and Evidential RAKEL approaches, we set the number
of label sets to 3 (k = 3) and the number of models ranges from Q to 2 ∗Q.

— For the EMLkNN method, we used the Euclidian distance, the parameter γ was
fixed to 0.1, and the number of nearest neighbors was set to 10.

— For the methods belonging to problem transformation category (LDA and CART),
we set the normalization factor s to 0.9.

— For the classical RAKEL approach, in the voting process, the threshold param-
eter was set to 0.5 (t = 0.5) according to [96].

Results and discussion

Our approach was compared to the classical RAKEL using two types of decision:
the voting process with threshold equal to 0.5 (Vote), and the threshold selected via
some statistics of multi-labelled datasets. This last method, known as the Ensemble
Multi-Label learning approach (EML), uses the difference between the label cardinality
of the training dataset (D) and the predictions made on the testing set (S) to select
the corresponding threshold in the making decision step [88]:

t = arg min
t∈{0:0.1:1}

|LCard(D)− LCard(H(S))|,

where the label cardinality measure, LCard(X), is the average number of labels per
instance. All experiments were conducted with 10-fold cross-validation.

Due to randomization of label space, results are very sensitive to the selected com-
bination of labels. To deal with this negative aspect, we grouped results in batches of
10 classifiers calculated for the same value of model, and we computed the average and
the standard deviation. The performance of all methods are shown in Tables 3.7-3.15.
In these tables, the rank of each method is given, and best value on each evaluation
criterion is highlighted in bold letters. To statistically measure the significance of per-
formance difference, two-tailed paired t-tests at 5% significance level were performed
between the Evidential RAKEL and the RAKEL approaches.

The presented experimental results can be summarized as follows:
— Tables 3.7, 3.10 and 3.13 indicate that our method Evidential RAKEL LDA

outperforms in average the original RAKEL with the two values of threshold
(0.5 and difference of LCard). We note that there is no clear difference in our
method between the two rules of decision, MaxCom and Bel.
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— From the results in Tables 3.8, 3.11 and 3.14, we can say that our Evidential

RAKEL DT yields good performances and it is competitive with the two versions

of decision on all evaluation metrics except the recall criterion.

— We remark that for the two classifiers (LDA and DT), the classical RAKEL

outperforms our method on the recall criterion. This can be explained by the

fact that the classical RAKELmethod tends to classify most examples as positive

with respect to all existing classes. This also explains why our method is superior

to classical RAKEL by taking the other metrics as a reference.

— We note that we cannot apply the EMLkNNmethod, with the classical RAKEL,

since with the voting process we need to have a final decision in each classifier,

to average all results and output the final decision. In this case, the different

mass functions given on Zj should be transferred to Y by conditioning before

combining. Tables 3.9, 3.12 and 3.15 show the comparison between the two rules

of decision for the Evidential RAKEL EMLkNN.

We have to say that one of the major drawback of the Evidential RAKEL is the

space complexity: we have to manipulate 3k subsets in each classifier, which makes a

total of model ∗ 3k subsets. The complexity thus increases with Q, as model is going

from Q to 2 ∗Q.

Table 3.7: Experimental results (mean±std) on the Emotions dataset using the ADL
classifier.

MaxCom Bel EML Vote
Hamming loss− 0.2394± 0.0050(2) 0.2365± 0.0050•(1) 0.2487± 0.0014•(3) 0.2524± 0.0028•(4)

Accuracy+ 0.5142± 0.0086(1) 0.5137± 0.0092◦(2) 0.4992± 0.0049•(4) 0.5070± 0.0034•(3)
Precision+ 0.6328± 0.0094(2) 0.6356± 0.0088◦(1) 0.6187± 0.0049•(3) 0.6127± 0.0038•(4)
Recall+ 0.6303± 0.0084(2) 0.6220± 0.0078•(4) 0.6227± 0.0141•(3) 0.6502± 0.0056•(1)
F1+ 0.6031± 0.0087(1) 0.6012± 0.0087◦(3) 0.5910± 0.0056•(4) 0.6015± 0.0033◦(2)

+(-): the higher (smaller) the value, the better the performance.
•(◦): statistically significant (non-significant) difference of performance between the Evidential

RAKEL-MaxCom and the compared algorithm, based on two-tailed paired t-test at 5% significance.
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Table 3.8: Experimental results (mean±std) on the Emotions dataset using the DT
classifier.

MaxCom Bel EML Vote
Hamming loss− 0.2583± 0.0069(1) 0.2596± 0.0047◦(2) 0.2748± 0.0062•(4) 0.2689± 0.0088•(3)

Accuracy+ 0.4577± 0.0129(1) 0.4503± 0.0106•(2) 0.4436± 0.0118•(3) 0.4275± 0.0066•(4)
Precision+ 0.5796± 0.0128(1) 0.5750± 0.0109•(2) 0.5554± 0.0104•(4) 0.5568± 0.0146•(3)
Recall+ 0.5427± 0.0092(2) 0.5351± 0.0080•(3) 0.5672± 0.0165•(1) 0.5203± 0.0104•(4)
F1+ 0.5350± 0.0115(1) 0.5284± 0.0097•(3) 0.5322± 0.0123◦(2) 0.5094± 0.0050•(4)

+(-): the higher (smaller) the value, the better the performance.
•(◦): statistically significant (non-significant) difference of performance between the Evidential

RAKEL-MaxCom and the compared algorithm, based on two-tailed paired t-test at 5% significance.

Table 3.9: Experimental results (mean±std) on the Emotions dataset using the EMLkNN
classifier.

MaxCom Bel
Hamming loss− 0.2181± 0.0014(1) 0.2438± 0.0300◦(2)

Accuracy+ 0.5465± 0.0020(1) 0.5345± 0.0133•(2)
Precision+ 0.6510± 0.0014(1) 0.6352± 0.0187◦(2)
Recall+ 0.6391± 0.0041(2) 0.6434± 0.0081•(1)
F1+ 0.6216± 0.0020(1) 0.6118± 0.0115•(2)

+(-): the higher (smaller) the value, the better the performance.
•(◦): statistically significant (non-significant) difference of performance between the Evidential

RAKEL-MaxCom and the compared algorithm, based on two-tailed paired t-test at 5% significance.

Table 3.10: Experimental results (mean±std) on the Scene dataset using the ADL clas-
sifier.

MaxCom Bel EML Vote
Hamming loss− 0.1351± 0.0024(3) 0.1343± 0.0021◦(2) 0.1337± 0.0015•(1) 0.1444± 0.0020•(4)

Accuracy+ 0.5981± 0.0053(1) 0.5977± 0.0054◦(2) 0.5899± 0.0031•(3) 0.5810± 0.0028•(4)
Precision+ 0.6276± 0.0058(2) 0.6277± 0.0059◦(1) 0.6181± 0.0034•(3) 0.6057± 0.0032•(4)
Recall+ 0.6634± 0.0013(2) 0.6516± 0.0024•(3) 0.6493± 0.0071•(4) 0.6858± 0.0046•(1)
F1+ 0.6299± 0.0041(1) 0.6258± 0.0032•(2) 0.6194± 0.0034•(4) 0.6244± 0.0013•(3)

+(-): the higher (smaller) the value, the better the performance.
•(◦): statistically significant (non-significant) difference of performance between the Evidential

RAKEL-MaxCom and the compared algorithm, based on two-tailed paired t-test at 5% significance.

3.6 Conclusion

In multi-label classification, it is customary to transform multi-labelled instances to
the domain of single-label and to classify these instances using LP classifiers. However,
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Table 3.11: Experimental results (mean±std) on the Scene dataset using the DT classifier.

MaxCom Bel EML Vote
Hamming loss− 0.1179± 0.0079(2) 0.1153± 0.0060•(1) 0.1282± 0.0080•(4) 0.1243± 0.0093•(3)

Accuracy+ 0.5811± 0.0161(2) 0.5833± 0.0158◦(1) 0.5753± 0.0213◦(3) 0.5533± 0.0101•(4)
Precision+ 0.6087± 0.0174(2) 0.6112± 0.0166◦(1) 0.5996± 0.0223•(3) 0.5783± 0.0111•(4)
Recall+ 0.6095± 0.0046(2) 0.6086± 0.0062◦(3) 0.6453± 0.0130•(1) 0.6005± 0.0116•(4)
F1+ 0.5999± 0.0126(3) 0.6012± 0.0128◦(1) 0.6069± 0.0189•(2) 0.5776± 0.0061•(4)

+(-): the higher (smaller) the value, the better the performance.
•(◦): statistically significant (non-significant) difference of performance between the Evidential

RAKEL-MaxCom and the compared algorithm, based on two-tailed paired t-test at 5% significance.

Table 3.12: Experimental results (mean±std) on the Scene dataset using the EMLkNN
classifier.

MaxCom Bel
Hamming loss− 0.1050± 0.0003(2) 0.1033± 0.0004•(1)

Accuracy+ 0.6651± 0.0027(1) 0.6586± 0.0030•(2)
Precision+ 0.7012± 0.0029(1) 0.6938± 0.0032•(2)
Recall+ 0.6663± 0.0021(1) 0.6605± 0.0028•(2)
F1+ 0.6775± 0.0026(1) 0.6709± 0.0030•(2)

+(-): the higher (smaller) the value, the better the performance.
•(◦): statistically significant (non-significant) difference of performance between the Evidential

RAKEL-MaxCom and the compared algorithm, based on two-tailed paired t-test at 5% significance.

this transformation is challenged by loss of information due to the fact that we consider
only a subset of labels in each base classifier. In this chapter, we reviewed the RAKEL
method, which deals with these problems but has some limitations; moreover, this
method has several parameters that need to be tuned a priori. This chapter described
a solution for these problems based on the theory of evidence.

Evidential RAKEL is an efficient multi-label classification method. The idea is to
address the limitation of the RAKEL approach while still taking into account the cor-
relation between labels. Thus, Evidential RAKEL reduces the number of parameters
of the RAKEL method by allowing us to circumvent the need of specifying a threshold
parameter. We illustrated our method on synthetic and real datasets and we com-
pared the results with those of the classical RAKEL method. Experimental results
demonstrated that Evidential RAKEL performs significantly better than the RAKEL
approach for all methods (ADL, CART and EMLkNN) with respect to all evaluation
metrics and on the different datasets.
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Table 3.13: Experimental results (mean±std) on the Image dataset using the ADL clas-
sifier.

EMLkNN Rank-SVM
MaxCom Bel EML Vote

Hamming loss− 0.2505± 0.0018(3) 0.2440± 0.0011•(2) 0.2411± 0.0046•(1) 0.2669± 0.0044•(4)
Accuracy+ 0.4727± 0.0037(2) 0.4766± 0.0039•(1) 0.4669± 0.0033•(3) 0.4625± 0.0038•(4)
Precision+ 0.5229± 0.0039(2) 0.5272± 0.0045•(1) 0.5209± 0.0038◦(4) 0.5092± 0.0050•(3)
Recall+ 0.5651± 0.0031(2) 0.5586± 0.0032•(3) 0.5473± 0.0142•(4) 0.6024± 0.0057•(1)
F1+ 0.5211± 0.0033(3) 0.5219± 0.0030◦(2) 0.5126± 0.0062•(4) 0.5240± 0.0029◦(1)

+(-): the higher (smaller) the value, the better the performance.
•(◦): statistically significant (non-significant) difference of performance between the Evidential

RAKEL-MaxCom and the compared algorithm, based on two-tailed paired t-test at 5% significance.

Table 3.14: Experimental results (mean±std) on the Image dataset using the DT classi-
fier.

EMLkNN Rank-SVM
MaxCom Bel EML Vote

Hamming loss− 0.2583± 0.0134(2) 0.2530± 0.0111◦(1) 0.2875± 0.0100•(4) 0.2812± 0.0132•(3)
Accuracy+ 0.3935± 0.0189(1) 0.3864± 0.0149◦(2) 0.3227± 0.0181•(3) 0.3042± 0.0207•(4)
Precision+ 0.4515± 0.0222(1) 0.4460± 0.0176◦(2) 0.3729± 0.0139•(3) 0.3569± 0.0181•(4)
Recall+ 0.4634± 0.0101(1) 0.4470± 0.0092•(2) 0.4205± 0.0432•(3) 0.3826± 0.0434•(4)
F1+ 0.4377± 0.0166(1) 0.4279± 0.0133◦(2) 0.3732± 0.0246•(3) 0.3492± 0.0270•(4)

+(-): the higher (smaller) the value, the better the performance.
•(◦): statistically significant (non-significant) difference of performance between the Evidential

RAKEL-MaxCom and the compared algorithm, based on two-tailed paired t-test at 5% significance.

Table 3.15: Experimental results (mean±std) on the Image dataset using the EMLkNN
classifier.

EMLkNN
MaxCom Bel

Hamming loss− 0.2002± 0.0010(2) 0.1954± 0.0014•(1)
Accuracy+ 0.5354± 0.0017(1) 0.5338± 0.0035◦(2)
Precision+ 0.6088± 0.0021(1) 0.6051± 0.0038•(2)
Recall+ 0.5491± 0.0019(1) 0.5490± 0.0036◦(2)
F1+ 0.5643± 0.0017(1) 0.5626± 0.0036◦(2)

+(-): the higher (smaller) the value, the better the performance.
•(◦): statistically significant (non-significant) difference of performance between the Evidential

RAKEL-MaxCom and the compared algorithm, based on two-tailed paired t-test at 5% significance.
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Chapter 4

Editing multi-labelled data

4.1 Introduction

In classification problems, performance of algorithms depends greatly on the quality
of the learning data. Real world data often suffer from noisy or erroneous instances
due to several problems, like errors in the input vectors or in their labels. To cope
with this problem in the framework of single-label learning, several methods based on
data reduction have been introduced. These techniques are usually based on prototype
selection [10][36][74][98].

Prototype selection methods are usually applied to remove erroneous or redundant
instances from the training dataset [36][57][66]. These methods are widely used with the
traditional nearest neighbor rule due to their simplicity and effectiveness. In addition
to improving classification accuracy for unseen instances, using prototypes dramatically
decreases storage and classification-time costs.

However, despite extensive works in multi-label learning [22][61][72][95][110][112],
there is a lack of methods for improving the quality of multi-labelled training instances.
This fact motivated us to study this problem in the framework on multi-label learning.
We developed an original method based on a prototype selection using the nearest
neighbor rule and a local criterion, in order to purify training dataset and improve the
performances of multi-label classification algorithms.

This chapter is organized as follows. Background notions on the nearest neighbor
rule in the classical single-label framework and some related techniques for prototype
selection will first be recalled in Section 4.2. Our approach will then be introduced in
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Section 4.3. Section 4.4 reports the experimental evaluation of the presented methods
on synthetic and real-world datasets. Finally, our contribution will be summarized in
Section 4.5.

4.2 Related works on prototype selection for single-labelled
data

The problem of noise handling has received considerable attention in the literature
on machine learning. Seeking to start with something relatively simple, scientists have
focused on the nearest neighbor classifier considered as one of the most well-known
technique in machine learning and data mining due to its simplicity and effectiveness.
Given a training set of single-labelled data, the idea is to select an optimal set of training
instances, known as prototypes, in order to maximize the performances of the Nearest
Neighbor (NN) classifier and/or to minimize the computing time of this classifier [20].
Later, the idea of selecting "good" instances has also been applied to other types of
classifiers [10]. In this section, we will rapidly review the nearest neighbor rule, and
give a definition and summary of works related to prototype selection methods for the
NN rule and other classification methods.

Nearest Neighbor classification

The Nearest Neighbor rule [19] is a well-known and non-parametric decision pro-
cedure for machine learning and data mining tasks. It has been considered as one of
the most effective algorithms in machine learning, and one of the top ten methods in
data mining [36][108]. In traditional supervised learning, this rule assigns to an unseen
sample x, the class of the nearest training instance according to some distance met-
ric. The voting k-nearest neighbor rule (k-NN), with k > 1, is a generalization of the
NN approach where the predicted class of x is set as equal to the class represented a
majority of its k nearest neighbors in the training set.

However, the k-NN rule suffers from several problems such as large storage require-
ments, high computational complexity in the operational phase, and low tolerance
to noise due to considering all instances as relevant while the training set may con-
tain noisy or mislabelled examples. Different techniques have been proposed in the
literature to alleviate these problems. One technique, known as prototype selection,
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consists of selecting an appropriate subset of the training data that yields a similar

or even higher classification accuracy. Prototype selection methods can be categorized

into three different families. First, edition methods eliminate noisy instances from the

original training set in order to improve classification accuracy. Second, condensation

methods select a sufficiently small subset of training instances which lead to the same

performance of the single nearest neighbor rule (1-NN), by removing instances that

will not affect classification accuracy. Finally, hybrid methods select a small subset of

training instances that incorporates the goals of these two previous methods [9][36].

In the following, we will provide more details about prototype selection in single-

label learning. Figure 4.1 shows a map of the main methods proposed in the litera-

ture [9][35][36].

Prototype selection methods for nearest neighbor classification

Editing methods

Edited near-
est neighbor

Repeated edited
NN / All k-NN

kk′ nearest
neighbor rule

Multiedit algorithm

Modified edited
nearest neighbor

Neural network
ensemble Editing

NN editing aided
by unlabelled data

Condensing methods

Condensed near-
est neighbor rule

Iterative conden-
sation algorithm

Reduced nearest
neighbor rule

Tomek condensed
nearest neighbor rule

Minimal consistent set

The improved k-
nearest neighbor rule

Template reduc-
tion for k-NN

Hybrid methods

Instance-based learning

Decremental reduction
optimization procedure

Genetic algorithms

Tabu search

Multi-category
proximal SVM

Prototype selection
method based on SVM

Figure 4.1: Prototype selection methods for nearest neighbor classification
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Editing methods

Editing methods process the training data by removing border and noisy instances
or making other necessary cleaning, with the aim of improving classification accuracy
of learning algorithms on test data. Below we first review some algorithms related to
the editing approach for the nearest neighbor rule. We then provide an overview of
editing methods that are not specific to the nearest neighbor rule but contribute to
output better quality data for any learning algorithm.

Wilson proposed the first editing rule [106], called Edited Nearest Neighbor (ENN),
to improve the performance of the 1-NN rule. This method can be described in the
following manner. Each instance in the training set is classified using the k-NN rule and
it is marked if its predicted class does not agree with the true class. Edition is achieved
by deleting all misclassified instances at once. After, any input sample is classified
using the 1-NN rule with the remaining instances. Experiments with the editing rule
were reported by Tomek who proposed two variants of the ENN rule: RENN and All
k-NN [91]. The Repeated Edited Nearest Neighbor (RENN) rule repeats the ENN
algorithm until a stable set is obtained where no more samples are edited out. The All
k-NN applies iteratively the ENN algorithm with the i-NN rule where i is going from
1 to k.

In [53], the generalized editing procedure based on the kk′-NN rule was introduced.
The purpose of this procedure was two-fold: improving the level of performance of the
ENN algorithm and reducing the proportion of deleted samples. Based on the class of a
majority of k′ instances from a group of k nearest samples to an instance x, the group of
k samples is either deleted or relabelled as belonging to the majority class. The 1-NN is
then used on the edited set to classify an input instance. In [27], the authors proposed
the well-known Multiedit algorithm, which randomly breaks the initial training set into
different subsets. In each subset, every instance is classified using the 1-NN rule with
the instances in the next subset. Misclassified instances are discarded. The remaining
instances constitute a new set and the algorithm is iteratively repeated until no more
instances are edited out.

In [45], a Modified Edited k-NN rule (MEKNN) was proposed. According to this
rule, a sample x is deleted from the initial set if its class does agree with the class of its
k nearest neighbors and their tying instances (tying instances are those in the training
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set that are at the same distance to x as its furthest neighbor). In addition, this method
introduces a fixed number of pairs (k, k′). k is the number of neighbors to make the
edition process and k′ is employed to classify any new instance in the obtained edited
set. The goal was to obtain the optimal pairs of k and k′ to employ the final editing
reference set.

In [47], the authors proposed an ensemble of neural networks to edit the training
set of k-NN classifiers. The Neural Network Ensemble Editing (NNEE) algorithm uses
bagging predictors to construct a neural network ensemble from the original training
dataset. The class label of training examples are replaced by the label predicted by the
neural network ensemble. This algorithm works with two parameters, i.e., the number
of neural networks used in the neural network ensemble, and the number of hidden
units in the networks.

Another method for nearest neighbor editing was proposed in [42]. This method
uses the concept of semi-supervised learning and edits the training instances by using
the whole dataset including: labelled and unlabelled instances. The proposed method,
called NNEAUD (Nearest Neighbor Editing Aided by Unlabelled Data), consists of two
steps: labels are first predicted for unlabelled instances, and the augmented dataset
is then used in data editing. The NNEAUD method uses ENN, RENN, and AllkNN
algorithms with unlabelled data to edit the training instances.

The literature survey indicates that only a few papers have so far dealt with general
editing methods that can be applied to any dataset before feeding it to a learning
algorithm. In [10] [102], the authors proposed an approach to identify and eliminate
mislabelled instances from the training set for supervised learning. The idea was to
use a set of learning algorithms to create classifiers that serve as filters for the training
data. Instances that are well classified by the filter are selected to obtain the reduced
dataset.

Condensing methods

Condensing methods try to find a significantly reduced subset that leads to the
same performance as the initial training dataset while reducing the computation time
when classifying new instances. The idea behind these methods is to retain instances
that are near the decision boundaries and remove instances that are far away from the
decision boundaries. Below is a summary of some condensing methods.

77



Chapter 4: Editing multi-labelled data

Hart was one of the first who proposed a condensing algorithm, named Condensed
Nearest Neighbor Rule (CNN) [20][44] in 1968, for reducing the given training dataset
into a consistent subset of instances that correctly classifies all original instances with
the nearest neighbor rule. CNN begins by randomly selecting a representative prototype
from each class to form the initial condensed subset. Using this subset with the NN
rule, each misclassified instance is iteratively added to the condensed subset to ensure
its correct classification. This process is repeated until there are no more additions
to the condensed neighbors subset. One drawback of this method is its sensitivity to
the initial ordering of the training dataset. Furthermore, it is suitable only for the 1-
NN rule. To tackle this problem, Swonger proposed in [87] the Iterative Condensation
Algorithm (ICA), which can either add or delete instances from the condensed set.
ICA introduced the notion of margin of classification, defined as the difference between
the distance of x to the closest prototype of the correct class, minus the distance to
the closest prototype of an incorrect class, which is negative for incorrectly classified
instances and positive for correctly classified instances. ICA starts with a prototype set
containing one prototype from each different class, and iteratively add instances having
the highest margin of classification, or delete prototypes from the prototype set if they
are not necessary for the correct classification of any training instance. This approach
has accommodate outliers and has convergence characteristics that permit to achieve
a minimum consistent set.

In [37], Gates proposed the Reduced Nearest Neighbor rule (RNN), which is a vari-
ant of the condensed methods. With RNN, the condensed set is obtained by iteratively
contracting the initial training dataset. Each training instance is deleted from the con-
densed set if its deletion does not affect the correct classification of other instances. In
[12], a novel approach is introduced to find prototypes for a nearest neighbor classifier.
The idea is to start with every sample in the given training set as a prototype, and
then merge nearest neighbors of the same class as long as the merge does not increase
the error rate. The merging is accomplished by either simple or weighted averaging
of the nearest neighbor pairs. This method decreases the size of the training set to a
much greater extent than approaches considered so far [20].

In [91], Tomek proposed two modifications to the CNN approach in order to improve
the selection of initial prototypes. The idea behind these modifications was to grow the
condensed set using only instances that are close to the decision boundary. The subset
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obtained with these modifications is smaller than that obtained by the CNN algorithm,
and the retained boundary instances are better chosen as they are closer to the decision
boundary. In [21], Dasarathy proposed a method to find a Minimal Consistent Set
(MCS) of instances based on the concept of the nearest unlike neighbor subset. This
method uses a voting mechanism to select samples in the order of significance of their
contribution to achieve the same performance of the 1-NN rule on the reduced set.

In [109], Wu et al. proposed an effective technique to speed up k-NN classification
while maintaining the same level of accuracy. The Improved k-NN (IkNN) algorithm
starts with an initial pattern set that is sufficiently large. It defines weights and attrac-
tive capacities (the alternative capacity of an instance x is defined as the number of
patterns in the new set that matches the class of x) for each pattern in the training set.
IKNN is implemented by iteratively eliminating patterns which exhibit high attractive
capacities. This approach tends to accelerate the classification procedure considerably,
especially in cases where the feature space has large dimensionality.

In [32], Fayed and Atiya presented the Template Reduction for k-NN (TRKNN).
TRKNN is based on the concept of nearest neighbors chains. For each pattern x in the
training set, the chain C is built by finding the nearest neighbor of x from a different
class. Then, the nearest neighbor of that new pattern belonging to the class of the
starting instance x is located. The chain C is ended with two patterns that are nearest
neighbor to each other. By calculating the distances between patterns inside the chain
C, TRKNN drops the further patterns having the same class of x. As the chain
converges onto the boundary elements, TRKNN drops instances that are far away from
the decision boundaries. This approach has the advantage of reducing the number of
prototypes while maintaining the same level of classification accuracy as the traditional
k-NN.

Hybrid methods

Hybrid methods aim at finding a minimal-size training subset that maintains or in-
creases classification accuracy for test data, by removing noisy samples and superfluous
instances.

In [1], the authors proposed a family of algorithms called Instance-Based learning,
(IB1, IB2, IB3), which generates classification predictions by using specific instances.
Using the classical nearest neighbor rule, the IBL algorithm starts with an initial empty
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set. Each instance in the training set is then added to it, based on its contribution to
maximizing classification accuracy on subsequently presented instances. IB1 uses the
1-NN rule as a base classifier. IB2 adds to the reduced set only instances that are
misclassified, to eliminate superfluous instances. However, IB2 is sensitive to noisy
instances. These instances can be stored as they are exceptions and are generally
misclassified. IB3 is an extension of IB2 that employs a significance test to distinguish
noisy instances from instances that are good classifiers in the reduced set.

A class of techniques based on reducing storage requirements in instance-based
learning algorithms was proposed in [107]. The Decremental Reduction Optimization
Procedure (DROP) contains five methods (DROP1-DROP5) and introduces new heuris-
tics to decide which instances to keep and which instances to remove from the training
set. Each instance x has k-nearest neighbors and a nearest enemy which is the near-
est instance to x with a different output class. Instances having x in their k-nearest
neighbors are called associates of x. The basic rule here is to remove x if at least as
many of its associates would be correctly classified without x. Whenever any instance
x is removed, all of its associates must eliminate x from their list of nearest neighbors,
and then must add a new nearest neighbor from the training set. The process has
to be repeated for all training instances. Using the previous rule, the five algorithms
(DROP1-DROP5) take careful note of the order in which instances are removed.

Genetic algorithms were introduced in [46][55] for simultaneous editing and feature
selection to design the 1-NN classifier. The aim was to generate the minimal reduced set
having the maximal classification accuracy. In [114], the authors proposed an approach
to treat the reference subset selection as an optimization problem, which is to minimize
sample size while keeping the resubstitution error rate below some threshold. They
proposed to solve this problem using a Tabu Search (TS) algorithm [38]. When the
error rate threshold is equal to zero, the algorithm outputs a near minimal consistent
subset. While the threshold is set to a small appropriate value, the obtained reference
subset may have reasonably good generalization capacity. A neighborhood exploration
method is then introduced to improve the performance of the general TS.

In [103], the authors presented a method for selecting prototypes for the k-NN clas-
sifier using the Multi-category Proximal Support Vector Machine (MCPSVM). This
approach tends to reduce the size of the training dataset in two ways: increases the
separation between classes by eliminating noisy instances at the decision boundaries,
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and it removes instances that are far from boundaries and are often not useful for
classification. In [57], the authors presented an alternative method of prototypes selec-
tion that merges the condensing and editing methods based on support vectors. This
method selects prototypes only from support vectors. The support vectors found in
the procedure are post processed with the DROP2 algorithm in order to obtain the
resulting prototype set.

4.3 Editing multi-labelled data using the k-NN rule

4.3.1 Motivation

In multi-label learning, the goal is to generate a multi-label classifier that will gen-
eralize from a set of multi-labelled training instances in such a way that classification
performances for labelling new data are optimized. However, errors in multi-labelled
training datasets can occur for several reasons. One cause is the subjectivity, when the
boundaries of each class are based on individual perspectives. For example, in genre
classification of musical signals, each musical genre may have its boundaries shifted
from person to person [4]. A second cause of anomalies or noisy instances is ambiguity
during data-entry. For example, in clinical text for multi-label classification (medical
multi-labelled data collected from Cincinnati children’s hospital medical center), abbre-
viations and acronyms used to anonymization of patients may lead to ambiguity when
processing such data by taking more than one sense and having multi-purposes (in a
clinical setting, FT can be an abbreviation for full-term, foot test, field test, full-time or
family therapy) [65]. Other errors can arise from missing information and data trans-
formation or storage. Furthermore, many examples may have an erroneous set of labels
due to an experimental assignment problem or even a human annotation error. To the
best of our knowledge, no algorithm addressing these problems under the multi-label
framework has been proposed so far.

In the following, we propose an original method to edit multi-labelled data by iden-
tifying and eliminating erroneous or anomalous samples. The purpose of this method is
three-fold: first, to increase the quality of training instances assumed to become more
reliable; second, to improve the performances of the classifier built from the resulting
training data; and third to increase the response time of the learning algorithm. This
method is based on the k-nearest neighbor rule for multi-label classification, and on an
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evaluation criterion used locally in the set Nx of k-nearest neighbors of x to evaluate
the quality of an instance x. Based on this evaluation criterion, we can delete the
most irrelevant, or the worst samples from the initial training dataset. We introduce
in the next section the Hamming loss which is an evaluation criterion that we selected
to evaluate relevancy of samples.

4.3.2 Hamming loss

As explained in Section 1.6, in traditional single-label classification the predictive
performance is usually measured by the test error rate; while in multi-label clas-
sification the predictive performance is more complex, because the classification of
each test instance can be fully correct, partially correct or fully wrong. Given a set
S = {(x1, Y1), . . . , (xm, Ym)} of m test examples, evaluation metrics can be divided
into two groups: prediction-based and ranking-based metrics [95]. We will focus in this
section on the Hamming loss metric. The Hamming loss is a prediction-based metric
regarded as an average of the error rate of the classifier on the Q binary problems where
the decision is performed separately [77]. It is defined by:

H = 1
m

m∑
i=1

|Yi4Ŷi|
Q

, (4.1)

where Yi is the ground truth label set for the pattern xi, Ŷi is the predicted label set
for xi and 4 denotes the symmetric difference between two sets. In other words, the
Hamming loss is based on counting prediction errors (an incorrect label is predicted)
and missing errors (a true label is not predicted). Note that the value of this criterion
is in the interval [0, 1] and smaller values correspond to higher classification quality.
We will present hereafter a simple method using this metric conjointly with a k-NN
rule for multi-label classification in order to edit the training dataset.

4.3.3 Editing algorithm: Edited Nearest Neighbor for Multi-Labelled
data

Let x be an unseen instance for which we wish to estimate the set of labels. Given a
training set D = {(x1, Y1), . . . , (xn, Yn)} where Yi ⊆ Y = {ω1, . . . , ωQ}. In the following
steps, we describe the proposed method to edit the training dataset:
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1. For each training instance xi in D, search for Nxi , the set of its k nearest
neighbors according to some distance function (e.g. the euclidian distance);

2. Apply a k-NN based multi-label classifier and calculate a predicted set of labels
Ŷi for xi;

3. For each training instance in D, calculate the associated Hamming loss given
by:

HLossi = |Yi4Ŷi|
Q

; (4.2)

4. Estimate the Hamming loss HLoss, which is the mean of the associated Ham-
ming loss for all instances in D:

— if HLoss is less than a predefined threshold t, then stop the algorithm;
— else,

(a) Rank the training instances in D with respect to their HLossi and select
a subset E l containing l instances with the higher Hamming loss HLossi;

(b) Update the training set by deleting those in E l : D ← D \ E l;

(c) Return to step 1.

Note that any k-NN based multi-label classifier [26][112][116] can be applied in Step 2.
In this Chapter, we chose the EMLkNN method introduced in Chapter 2. According to
this method, each element in Nxi represents a piece of knowledge about the labelling
of xi. A two-valued mass function is then associated to each of the k neighbors in Nxi

according to Equations (2.28) and (2.29):

mi(Ai, Bi) = α exp (−γd(x,xi)) , (4.3)

mi(∅, ∅) = 1− α exp (−γd(x,xi)) , (4.4)

where Ai is the set of labels that surely apply to instance xi, and Bi is the set of labels
that surely do not apply to the same instance (Ai, Bi ⊆ Y). These items of evidence
are combined to produce a global mass function, using the conjunctive rule of Equation
2.30:

m = ∩©i:xi∈N k
x
mi.
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In order to estimate the label set for xi denoted by Ŷi, the global mass function is used
according to Equation 1.31:

Ŷi = {ω ∈ Y | bel({ω}, ∅) ≥ bel(∅, {ω})}.

Intuitively, k should be set to a small value because if k is high, undesirable instances
elimination will occur on the boundary between different classes. If k is equal to 1,
the EMLkNN algorithm boils down to the 1-NN algorithm, and the set of labels to
be assigned to an example is the same as that of his neighbor. In Step 3, one can
use other stopping criteria than the general HLoss. For example, we can stop editing
if the Hamming loss associated to each instance is less than a predefined threshold t.
We can also substitute the Hamming loss by another multi-label metric evaluation. In
Steps 4a and 4b, we delete instances with high value of HLossi, which means deleting
the worst instances with respect to a local EMLkNN rule. One can add a condition to
keep instances belonging to classes with low occurrence.

4.3.4 Effect of editing on Rank-SVM and EMLkNN

To study the efficiency of our editing method, we analyzed the effect of applying
multi-label classification methods on the reduced set obtained by editing initial training
datasets. We chose two well-known algorithms from the literature of multi-label learn-
ing. The first one, RankSVM, is based on the concept of multi-label ranking, while the
other one, EMLkNN, presented in Chapter 2, is based on the evidential multi-label k
nearest neighbors concept.

RankSVM is a multi-label ranking approach introduced by Elisseeff and Weston
in [31]. The ultimate goal was to minimize a criterion measure for multi-label learning,
called Ranking loss, and to maximize the margin. The Ranking loss is defined by:

RLoss = 1
m

m∑
i=1

1
|Yi|Yi|

|R(xi)|, (4.5)

where R(xi) = {(ωq, ωl) ∈ Yi × Yi | f(xi, ωq) ≤ f(xi, ωl)}, Yi denotes the complement
of Yi in Y, and f is the scoring function that gives a score for each label ωq interpreted
as the probability that ωq is relevant. The authors introduce a special multi-label
margin defined on (x, Y ) as the signed distance between the instance x and the decision
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boundary defined by: {x | ∃q, 〈wq − wl,x〉+ bq − bl = 0}. It is equal to:

min
(q,l) | (ωq ,ωl)∈(Yi×Yi)

yq
〈wq − wl,x〉+ bq − bl

‖wq − wl‖

where wq, wl and bq, bl denote the weight vectors and bias terms, and yq is a binary
element equal to +1 if label q is in Y , −1 otherwise.

The Rank-SVM model is built from two different sub-systems. The first one, named
ranking system, is constructed as follows:

min
wj ,j=1,...,Q

Q∑
q=1
‖wq‖2 + C

n∑
i=1

1
|Yi|

∣∣Yi

∣∣ ∑
(q,l) | (ωq,ωl)∈(Yi×Yi)

ξiql (4.6)

subject to:

〈wq − wl,xi〉+ bq − bl ≥ 1− ξiql, (q, l) ∈ Yi × Yi

ξiql ≥ 0, i = 1, . . . , n,

where the penalty constant C controls the trade-off between the slack variable ξiql and
the margin. Using the Lagrangien technique, the dual of (4.6) is formulated as:

max
αiql

W (α) = −1
2

Q∑
q=1

n∑
h,i=1

βqhβqi < xh,xi > +
n∑
i=1

∑
(q,l) | (ωq ,ωl)∈(Yi×Yi)

αiql

subject to:

αiql ∈
[
C
Ci

]
∑n
i=1

∑
(j,l) | (ωj ,ωl)∈(Yi×Yi) cijlαijl = 0, q = 1, . . . , Q,

with

cijl =


0 if j 6= q and l 6= q

+1 if j = q
−1 if l = q

and

βqi =
∑

(j,l) | (ωj ,ωl)∈(Yi×Yi)

cijlαijl.

The ranking system orders the labels according to their outputs, rq(x) = 〈wq,x〉+bq for
q = 1, . . . , Q. The other goal of the Rank-SVM method is to predict a threshold t(x)
and all integer q such that rq(x) > t(x) are considered to belong to the label set Y of
x. It is well-known that such an algorithm can be generalized to non-linear separating
boundaries by just replacing the dot products < xi,xj > by kernels k(xi,xj).
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Rank-SVM on edited dataset

The Rank-SVM method described above is based on the margin criterion. SVM-

based classifiers separate different classes by finding optimal classification hyperplanes

from the training dataset. If the dataset contains misclassified instances, the SVM-

based algorithm may lead to erroneous separating boundary (hyperplane in the linear

case). The problem can be addressed by using a soft margin that accepts some mis-

classification instances from the training dataset. This can be achieved by introducing

positive slack variables (ξ) as in Equation (4.6), where C is the tradeoff between the

model complexity (having a large margin) and the empirical error (having smaller errors

in the training dataset). If the parameter C is high, this method will try to correctly

classify all training examples to the detriment of generalization performance. When C

is decreased, instances near the boundaries become margin errors, providing a much

larger margin for the rest of the data. Since the edited training dataset is expected

to contain fewer noisy data than the original dataset, it is straightforward to see that

learning a Rank-SVM to multi-label classification from the edited dataset will be more

simple. In fact, the number of slack variables (ξ) will be reduced and smoother decision

boundaries with better generalization ability can be expected.

EMLkNN on edited dataset

The EMLkNN method can be applied using the edited training dataset in order to

classify unseen instances. The number k of neighbors to be used is not necessarily the

same as that used in the editing algorithm. To avoid confusion, the number of neighbors

used in the editing algorithm will be noted by k′ if needed. It is easy to see that by

using the edited training dataset, the number of neighbors to be used by the EMLkNN

method can be less than that used by the same method on the original training dataset.

This will decrease the running time of the algorithm since less distances and masses

combination have to be calculated. More generally, the objective of using an edited

training dataset with the EMLkNN method is three-fold: improving the performance

of multi-label classifiers, using less memory for storing training instances and distances,

and providing faster decision rule.
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Table 4.1: Description of the synthetic data without the erroneous instances.

Label set Training instances Testing instances
{ω1} 85 41
{ω2} 84 41
{ω3} 82 46
{ω1, ω2} 30 20
{ω1, ω3} 42 18
{ω2, ω3} 46 23
{ω1, ω2, ω3} 31 11

4.4 Experimental Evaluation

In this section, we present experiment results with synthetic and real-world datasets
from different domains to demonstrate the effect of edition on the performances of the
two multi-label classification methods described below.

4.4.1 Experiments with Synthetic Data

In this section, we will illustrate the behavior of our editing algorithm on synthetic
datasets using the two methods of classification discussed above. The goal of these
experiments is to study the effects of edition on multi-label learning algorithms.

A dataset with three-overlapping classes in two-dimension was first considered. The
dataset contains 600 instances belonging to three possible labels Ω = {ω1, ω2, ω3}.
These instances were drawn from seven Gaussian distributions with means (−5,−5),
(5,−5), (0, 5), (0,−5), (−3, 1),(3, 1), and (0, 0). The standard deviations was equal
two for the first three distributions and one for the others. We assigned the following
classes, respectively, for samples drawn from each of these distributions: {ω1}, {ω2},
{ω3}, {ω1, ω2}, {ω1, ω3}, {ω2, ω3}, {ω1, ω2, ω3}. This dataset was randomly divided
into training and test datasets with size 400 and 200, respectively. Table 4.1 gives the
distribution of instances over the different labels.

To test our editing algorithm, 40 instances drawn in the region allocated to classes
{ω1}, {ω2} and {ω1, ω2} were wrongly assigned to class {ω3}. These noisy samples are
generated randomly from two normal distributions with means (−4,−6) and (4,−6),
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respectively, and a standard deviation equal to 2. Figure 4.2 shows the dataset (initial
+ noisy instances) with their class assignments.
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Figure 4.2: Training instances of synthetic data

Figures 4.3 and 4.4 show the decision boundaries for our synthetic data with a
support vector domain using a Gaussian kernel. The boundary region for each class
label was drawn using the Rank-SVM method, with the Gaussian kernel: k(x,x′) =
exp(−γr‖x − x′‖2), γr = 5. We used the same parameters values for the Rank-SVM
method with the training data before and after editing. Figure 4.3 shows the decision
boundaries for the initial training dataset. As we can see, these decision boundaries
are significantly influenced by noisy instances and there is no clear separation between
classes. In the area of class {ω2} (on the right of this figure), we can see several zones
belonging to classes {ω1, ω2, ω3}. Also, in the area of class {ω1}, the erroneous instances
create three zones with instances belonging to class {ω3}.
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Figure 4.3: The Rank-SVM decision boundaries between classes with the training instances
before editing (Gaussian kernel).
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Figure 4.4: The Rank-SVM decision boundaries between classes with the training instances
after editing (Gaussian kernel).
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Table 4.2: Some evaluation measures for the Rank-SVM method before and after the
edition of the synthetic dataset.

Before Editing After Editing
Hamming loss− 0.1667 0.1017

Accuracy+ 0.7283 0.8358
F1+ 0.7422 0.8423

+(-): the higher (smaller) the value, the better the performance.

In Figure 4.4, we can see the decision boundaries for the same dataset after editing.
In this figure, we can see that, with editing, noisy instances have been removed, and
smoother decision boundaries are produced. The area is now divided into seven zones.
Instances belonging to class {ω1} are on the left of Figure 4.4, instances assigned by
label {ω2} are on the right, and instances labelled with {ω3} are at the top. Using a
geometrical interpretation, we can easily distinguish the area belonging to each combi-
nation of these classes. Instances annotated by three classes are in the middle of this
figure. Note that the number of training instances was reduced to 382 (initial number
of training data was 440), and the number of support vectors was decreased from 409 to
352. Table 4.2 reports the experimental results on three evaluation criteria: Hamming
loss, accuracy and the F1-measure.

From these two figures, we can observe that training the Rank-SVM method with a
purified dataset leads to smoother separating boundaries, creates homogeneous clusters
and reduces the number of support vectors.

Figure 4.5 shows the performance of our editing approach on the synthetic data
using the EMLkNN method. We used from the library of multi-label measures three
evaluation criteria: Hamming loss, accuracy and the F1-measure. The values of these
metrics are shown as a function of the number of neighbors k. From this figure, we can
observe that when k takes small values, the EMLkNN algorithm tested on the edited
dataset performs better than EMLkNN tested on noisy dataset. As k increases, the
EMLkNN method tends to have the same performance on these two datasets. This can
be explained by the fact that, when increasing the number of neighbors, the effect of
randomly erroneous instances decreases giving that we use more information (coming
from more instances), and also the applied method (EMLkNN) is based on an evidential
distance-weighted k-nearest neighbor rule.

90



Chapter 4: Editing multi-labelled data

1 2 3 4 5 6 7 8 9 10 11 12
0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

number of neighbors

H
am

m
in

g 
Lo

ss

2 4 6 8 10 12
0.88

0.9

0.92

0.94

0.96

0.98

1

number of neighbors

A
cc

ur
ac

y

2 4 6 8 10 12
0.9

0.92

0.94

0.96

0.98

1

number of neighbors

F
1−

m
ea

su
re

 

 

Before Editing
After Editing

Figure 4.5: Some evaluation measures for the EMLkNN method before and after the
edition of the synthetic dataset.

4.4.2 Experiments on Real-World Data

In this section, we apply the two multi-label classification methods discussed above
(EMLkNN and Rank-SVM) to our datasets and we evaluate their performances before
and after editing. In the following, we will report the benchmark datasets, the evalu-
ation metrics used in our experiments and parameter settings for edition. Finally, we
will provide a discussion of experimental results.

Datasets

The datasets 1 that were included in our experiments cover different application
domains: multimedia classification (Emotions), bioinformatics (Yeast) and text cate-

1. Datasets available at http://mulan.sourceforge.net/datasets.html, and http://cse.seu.
edu.cn/people/zhangml/.
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gorization (Medical, Enron and Webpage).

— Emotions dataset. This dataset contains 593 songs described by eight rhythmic
features and 64 timbre features. There are six classes, and each song can belong
to more than one label according to the Emotions generated [92]. More details
were given in Chapter 3.

— Yeast dataset. The yeast Saccharomyces cerevisiae is one of the best studied or-
ganisms. Each gene is described by the concatenation of micro-array expression
data and phylogenetic profile and it is associated with a subset of 14 functional
classes from the Comprehensive Yeast Genome Database of the Munich Infor-
mation Center for Protein Sequences 1. This dataset contains 2417 genes and 14
possible labels [64].

— Medical dataset. This dataset contains 978 documents for patient symptom
histories collected from the Computational Medicine Center concerning a chal-
lenge task on the automated processing of clinical free text. Each document is
represented by a vector of 1449 features [65].

— Enron dataset. The Enron email 2 dataset was made public by the Federal
Energy Regulatory Commission during its investigation. It contains around
517.431 emails (without attachments) from 151 users distributed in 3500 folders.
Each message includes the senders and the receiver email address, date and
time, subject, body, text and some other email specific technical details. After
preprocessing and careful selection of these documents, 53 different labels are
obtained with 753 combinations of distinct label sets [83].

— Webpage categorization dataset. This dataset were collected from the "yahoo.com"
domain [89]. Eleven different webpage categorization subproblems are consid-
ered, corresponding to 11 independent multi-label categories: Arts and Human-
ities, Business and Economy, Computers and Internet, Education, Entertain-
ment, Health, Recreation and Sports, Reference, Science, Social and Science,
and Society and Culture. Each subproblem consists of 5000 documents (2000 as
training dataset and 3000 as testing dataset). Each webpage was represented as
a bag of words and normalized to the unit length.

1. http://mips.gsf.de/genre/proj/yeast/
2. http://enrondata.org/content/research/
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Table 4.3: Characteristics of the Emotions, Yeast, Medical and Enron datasets.

Domain Number of Feature vector Number of Label Label Distinct
instances dimension labels cardinality density label sets

Emotions music 593 72 6 1.868 0.311 27
Yeast biology 2417 103 14 4.237 0.303 198

Medical text 978 1449 45 1.245 0.028 94
Enron text 1702 1001 53 3.378 0.064 753

Table 4.4: Characteristics of the Webpage categorization dataset.

Number of Feature vector Number of Label Label Distinct
instances dimension labels cardinality density label sets

Arts and Humanities 5000 462 26 1.627 0.063 462
Business and Economy 5000 438 30 1.590 0.053 161
Computers and Internet 5000 681 33 1.487 0.046 253

Education 5000 550 33 1.465 0.044 308
Entertainment 5000 640 21 1.426 0.068 232

Health 5000 612 32 1.667 0.052 257
Recreation and Sports 5000 606 22 1.414 0.065 322

Reference 5000 793 33 1.159 0.035 217
Science 5000 743 40 1.489 0.036 398

Social and Science 5000 1047 39 1.274 0.033 226
Society and Culture 5000 636 27 1.705 0.063 582

Tables 4.3 and 4.4 provide an overview of the different characteristics of all experi-
mental datasets.

Evaluation measures

To evaluate the performance of our proposed editing algorithm with the two multi-
labelled methods discussed above, several measures are employed. These measures
can be categorized into two groups: prediction-based and ranking-based metrics (more
details are given in Chapter 1). In this chapter, we consider the following measures:

— Prediction-based: Hamming loss, Accuracy, Precision, Recall and F1-measure;
— Ranking-based: Average precision, Coverage, Ranking loss, and One-error.

Parameter Tuning

In this section, we comment how to tune different parameters to apply the different
algorithms described in this paper. Note that we call editing parameters those applied
on the initial dataset with the editing algorithm in order to obtain an edited training
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Figure 4.6: Hamming loss measure for EMLkNN on the initial Emotions training set for
different values of γ.

dataset. We call testing parameters those used in a multi-label classification algorithm

learnt from initial or edited learning dataset. Hereafter, we will show the influence of

these parameters by using the Emotions dataset.

Editing parameters

For the editing algorithm presented in Section 4.3.3, there are three tunable param-

eters:

— γ: Parameter used in Equations (4.3) and (4.4) to scale the distance to each

neighbor. It was fixed at the best value obtained by cross validation using the

EMLkNN method on the initial training dataset.

— k′: Number of neighbors used in the editing algorithm.

— t: Threshold used to determine the number l of instances to delete. We use in

the simulation a Hamming loss calculated on each instance as in Equation (4.2).

This Hamming loss calculated on only one instance will have a value equals q/Q,

where q ∈ {0, . . . , Q}. Note that the value of the parameter t to be taken should

depend on the global Hamming loss calculated on the training dataset.
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Figure 4.7: Hamming loss measure for EMLkNN on the initial Emotions training set as
a function of t.
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Figure 4.8: Hamming loss measure for EMLkNN on the initial Emotions training set as
a function of k′.
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Figure 4.6 shows the box plot for the Hamming loss metric obtained by the EMLkNN
method on the initial dataset before editing the data for different values of γ, where k
was varied from 1 to 12 (thus each box plot corresponds to 12 values of the Hamming
loss obtained for a given γ). Figure 4.7 shows the Hamming loss measure obtained as
a function of t, where k′ was varied from 1 to 12, γ was fixed to 0.1, and k was fixed
to 3 (we can get the same results for any value of k, for that we chose for it a small
value). The box plot in Figure 4.8 shows the Hamming loss criterion with respect to
the number of neighbors k′. k was varied from 1 to 12, and γ was fixed to 0.1.

Testing parameters

In the testing phase, the EMLkNN and the Rank-SVM methods are tested with
the edited data. EMLkNN has two parameters: the number of neighbors k, and the
discounting parameter γ. These parameters were determined using grid search and by
focusing on the Hamming loss measure: k was varied from 1 to 12, and γ from 0 to
1 with 0.01 steps. Note that the algorithm presented in Section 4.3.3 was repeated
only once by taking a small value of t to eliminate an important number of erroneous
instances at once.

For the Rank-SVM method, we used the Gaussian kernel with three tunable pa-
rameters: kernel scale parameter γr, penalty constant C, and maximal iterations M.
By focusing on the Hamming loss measure, cross-validation via grid search was applied
for parameter tuning as explained in [111]. The γR and C parameters took values from
27, 26, . . . , to 2−7 respectively. M was set to 50, 100, 150 and 200.

Results and Discussion

In this section, we evaluate the performance of the editing algorithm by comparing
the results achieved by the EMLkNN and Rank-SVM methods before and after editing.
Using the optimal parameter values obtained on the training datasets, we studied the
performance using independent test datasets. The experimental results on datasets are
given in Tables 4.5-4.8. For the webpage dataset, the average performance out of the
11 different categorization problems is reported in Table 4.9. The rank of each method
is given, and the best value on each evaluation criterion is highlighted in bold letters.
These results can be summarized as follows:
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— From the results in Tables 4.5-4.9, we can observe that EMLkNN applied on
edited data improves the performance of the same method on the initial dataset
for all prediction-based metrics except the Hamming loss measure. The Ham-
ming loss criterion is similar before and after edition.

— Regarding the Rank-SVM method, results on editing datasets are better than
those on initial datasets for all measures (prediction-based and ranking-based
metrics).

— The Rank-SVM applied on editing datasets gives the best performance accord-
ing to the majority of evaluation measures for the Yeast, Medical, Enron, and
Webpage datasets. For the Emotions dataset, the best performance on the
ranking-based measures was obtained by the Rank-SVM method applied to the
edited dataset, while the best results according to predicted-based measures
were obtained by the EMLkNN algorithm applied to the edited dataset.

In order to show the effect of edition on data storage, Table 4.10 reports the number
of instances of full and edited training datasets. The results indicate that the edited
datasets require less storage space than do the initial datasets.

In order to study the impact of edition on classification time, we compared the time
used by each method (programmed in Matlab) applied to the initial and edited datasets.
Table 4.11 presents the total running time (learning + testing time) using the initial
training and edited datasets. We can see that the running time of the two classifiers
(EMLkNN and Rank-SVM) are significantly reduced in our experiments, except for
the Enron dataset. In general, EMLkNN is faster than Rank-SVM, due to the space
complexity of the Rank-SVM method which is proportional to n ∗ Q2. The machine
used was Intel(R) Xeon(R) CPU at 2.67 GHz, 12 GB RAM with Matlab2012a.

To statistically measure the significance of performance difference between results
on initial datasets and those on edited datasets, pairwise t-tests at 5% significance level
are carried out using ten-fold cross validation. The average results are reported in
Tables 4.12-4.15.

The results presented in this section show the advantage of editing multi-label
datasets to improve the performance of multi-label classifiers. By comparing the per-
formance of multi-label classifiers (EMLkNN and Rank-SVM) before and after edition,
we can conclude that editing initial multi-label datasets improve the performance eval-
uation of some classifiers. Furthermore, we may reduce the complexity of classifiers
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since we need to train less instances, which are distributed into more homogeneous
clusters. We might deduce also that editing training datasets is a way to reduce the
running time complexity of some multi-label classification methods. Even if we use the
Hamming loss criterion to edit the training datasets, we can get better performance on
other metrics.

4.5 Conclusion

In this chapter, we have addressed the problem of prototype selection in the frame-
work of multi-label learning. Although the extensive works in multi-label classification,
to the best of our knowledge, the topic of prototype selection has not received any at-
tention so far. The goal is not only to optimize performance of some classifiers, but also
the size of the training dataset must be reduced as well as the computational time of
learning algorithms. This chapter demonstrates our contribution to edit multi-labelled
dataset.

Edited Nearest Neighbor for Multi-Labelled data is an efficient editing method.
The idea is, first, to classify all training instances using a k-NN rule, and, second, to
eliminate erroneous instances based on a local criterion induced from the Hamming
loss measure. The reduced set of instances is then used to classify unseen instances.
We have demonstrated the effect of editing dataset on two learning algorithms: the
EMLkNN and the Rank-SVM. This was illustrated through an example on synthetic
data.

We applied our algorithm of editing to five real-world datasets from different do-
mains of application: multimedia classification, bioinformatics and text categorization.
Experimenting with these datasets, we observed that the learning algorithms (EMLkNN
and Rank-SVM) with the editing datasets significantly outperformed the same algo-
rithms on the initial datasets in terms of classification performance and computational
costs. The explanation is that the editing datasets are distributed in more homoge-
neous clusters by reducing the number of irrelevant instances. Learning from these new
instances is faster with better generalization ability.
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Table 4.5: Experimental results on the Emotions dataset.

EMLkNN Rank-SVM
Before Editing After Editing Before Editing After Editing

Hamming loss− 0.209(4) 0.204(2) 0.206(3) 0.194(1)
One-Error− 0.287(2) 0.297(3) 0.302(4) 0.277(1)
Coverage− 1.881(2) 2.010(4) 1.896(3) 1.847(1)

Ranking loss− 0.168(3) 0.220(4) 0.166(2) 0.158(1)
Average Precision+ 0.7994(2) 0.7959(4) 0.7993(3) 0.8080(1)

Accuracy+ 0.519(4) 0.569(1) 0.546(3) 0.561(2)
Precision+ 0.656(3) 0.705(1) 0.651(4) 0.690(2)
Recall+ 0.592(3) 0.657(1) 0.642(2) 0.642(2)
F1+ 0.596(4) 0.648(1) 0.621(3) 0.637(2)

+(-): the higher (smaller) the value, the better the performance.

Table 4.6: Experimental results on the Yeast dataset.

EMLkNN Rank-SVM
Before Editing After Editing Before Editing After Editing

Hamming loss− 0.205(4) 0.202(3) 0.197(2) 0.193(1)
One-Error− 0.261(4) 0.249(3) 0.221(1) 0.238(2)
Coverage− 6.494(3) 6.577(4) 6.424(2) 6.269(1)

Ranking loss− 0.188(3) 0.201(4) 0.167(2) 0.165(1)
Average precision+ 0.751(3) 0.751(4) 0.767(2) 0.768(1)

Accuracy+ 0.515(4) 0.529(2) 0.522(3) 0.539(1)
Precision+ 0.685(4) 0.689(3) 0.697(2) 0.703(1)
Recall+ 0.599(4) 0.618(3) 0.625(3) 0.635(1)
F1+ 0.613(4) 0.627(3) 0.628(3) 0.641(1)

+(-): the higher (smaller) the value, the better the performance.
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Table 4.7: Performance of our method on the Medical dataset.

EMLkNN Rank-SVM
Before Editing After Editing Before Editing After Editing

Hamming loss− 0.018(3) 0.018(4) 0.012(2) 0.011(1)
One-Error− 0.285(2) 0.291(3) 0.141(1) 0.141(1)
Coverage− 3.541(3) 3.661(4) 1.135(1) 1.255(2)

Ranking loss− 0.124(3) 0.126(4) 0.015(1) 0.018(2)
Average precision+ 0.779(3) 0.776(4) 0.897(2) 0.898(1)

Accuracy+ 0.559(4) 0.585(3) 0.688(2) 0.726(1)
Precision+ 0.617(4) 0.647(3) 0.744(2) 0.781(1)
Recall+ 0.569(4) 0.594(3) 0.718(2) 0.754(1)
F1+ 0.581(4) 0.608(3) 0.716(2) 0.754(1)

+(-): the higher (smaller) the value, the better the performance.

Table 4.8: Performance of our method on the Enron dataset.

EMLkNN Rank-SVM
Before Editing After Editing Before Editing After Editing

Hamming loss− 0.057(3) 0.059(4) 0.055(2) 0.053(1)
One-Error− 0.437(3) 0.478(4) 0.287(2) 0.275(1)
Coverage− 21.959(3) 26.226(4) 13.758(2) 12.772(1)

Ranking loss− 0.261(3) 0.395(4) 0.099(2) 0.090(1)
Average precision+ 0.568(3) 0.509(4) 0.619(2) 0.647(1)

Accuracy+ 0.303(4) 0.318(3) 0.398(2) 0.436(1)
Precision+ 0.473(4) 0.484(3) 0.574(2) 0.587(1)
Recall+ 0.340(4) 0.359(3) 0.495(2) 0.556(1)
F1+ 0.372(4) 0.390(3) 0.511(2) 0.550(1)

+(-): the higher (smaller) the value, the better the performance.
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Table 4.9: Performance of our method on the Webpage dataset.

EMLkNN Rank-SVM
Before Editing After Editing Before Editing After Editing

Hamming loss− 0.054(3) 0.056(4) 0.043(2) 0.042(1)
One-Error− 0.559(4) 0.551(3) 0.417(2) 0.402(1)
Coverage− 11.036(3) 12.379(4) 5.080(2) 4.169(1)

Ranking loss− 0.446(3) 0.520(4) 0.128(2) 0.1000(1)
Average precision+ 0.498(3) 0.482(4) 0.651(2) 0.673(1)

Accuracy+ 0.337(4) 0.363(3) 0.402(2) 0.437(1)
Precision+ 0.393(4) 0.423(3) 0.465(2) 0.508(1)
Recall+ 0.365(4) 0.388(3) 0.435(2) 0.467(1)
F1+ 0.364(4) 0.390(3) 0.432(2) 0.469(1)

+(-): the higher (smaller) the value, the better the performance.

Table 4.10: Number of instances in the initial and edited training datasets.

Initial training data Edited training data
Emotions 391 113
Yeast 1500 832

Medical 645 624
Enron 1123 861

Webpage 22000 13693

Table 4.11: Running Time (in Seconds) on the test sets for the two methods.

EMLkNN Rank-SVM
Before Editing After Editing Before Editing After Editing

Emotions 1.4 0.4 162.9 9.9
Yeast 12.4 10.1 1.1 ∗ 104 0.2 ∗ 104

Medical 7.3 3.7 1.6 ∗ 104 1.4 ∗ 104

Enron 18.8 8.2 1.0 ∗ 104 1.6 ∗ 104

Webpage 61.7 47.7 2.1 ∗ 104 s ' 14 h 8.6 ∗ 103 s ' 5.9 h
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Table 4.12: Experimental results (mean±std) on the Emotions dataset.

EMLkNN Rank-SVM
Before Editing After Editing Before Editing After Editing

Hamming loss− 0.1906 ± 0.0197• 0.1457 ± 0.0641 0.1918 ± 0.0217• 0.1481 ± 0.0474
One-Error− 0.2664 ± 0.0438• 0.1881 ± 0.1000 0.2560 ± 0.0806• 0.1580 ± 0.0691
Coverage− 1.8160 ± 0.1985◦ 1.5238 ± 0.4024 1.7022 ± 0.2927◦ 1.5049 ± 0.4016

Ranking loss− 0.1734 ± 0.0278◦ 0.1310 ± 0.0612 0.1564 ± 0.0396• 0.1000 ± 0.0495
Average precision+ 0.7997 ± 0.0300• 0.8642 ± 0.0544 0.8069 ± 0.0437• 0.8742 ± 0.0477

Accuracy+ 0.5578 ± 0.0453• 0.6810 ± 0.1199 0.5409 ± 0.0495• 0.6582 ± 0.0946
Precision+ 0.6882 ± 0.0515• 0.7742 ± 0.0948 0.6629 ± 0.0651• 0.7566 ± 0.0805
Recall+ 0.6414 ± 0.0511• 0.7717 ± 0.0862 0.6542 ± 0.0625• 0.7681 ± 0.1017
F1+ 0.6352 ± 0.0453• 0.7479 ± 0.0951 0.6260 ± 0.0519• 0.7348 ± 0.0850

•(◦): statistically significant (non-significant) difference of performance of the classification algorithm applied
on the initial and the edited dataset, based on two-tailed paired t-test at 5% significance.

Table 4.13: Experimental results (mean±std) on the Yeast dataset.

EMLkNN Rank-SVM
Before Editing After Editing Before Editing After Editing

Hamming loss− 0.2012 ± 0.0100• 0.1681 ± 0.0410 0.1946 ± 0.0061• 0.1574 ± 0.0384
One-Error− 0.2416 ± 0.0268• 0.1704 ± 0.0744 0.2156 ± 0.0320◦ 0.1652 ± 0.0724
Coverage− 6.4813 ± 0.2632• 5.7267 ± 0.8003 6.3363 ± 0.2360• 5.4958 ± 0.7416

Ranking loss− 0.1862 ± 0.0148• 0.1393 ± 0.0533 0.1652 ± 0.0073• 0.1164 ± 0.0451
Average precision+ 0.7574 ± 0.0181• 0.8131 ± 0.0588 0.7727 ± 0.0126• 0.8291 ± 0.0587

Accuracy+ 0.5241 ± 0.0213• 0.6036 ± 0.0738 0.5291 ± 0.0163• 0.6110 ± 0.0763
Precision+ 0.6820 ± 0.0243• 0.7342 ± 0.0601 0.6951 ± 0.0163• 0.7552 ± 0.0571
Recall+ 0.6136 ± 0.0229• 0.7051 ± 0.0757 0.6331 ± 0.0220• 0.7125 ± 0.0795
F1+ 0.6214 ± 0.0210• 0.6964 ± 0.0683 0.6336 ± 0.0114• 0.7074 ± 0.0692

•(◦): statistically significant (non-significant) difference of performance of the classification algorithm applied
on the initial and the edited dataset, based on two-tailed paired t-test at 5% significance.
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Table 4.14: Experimental results (mean±std) on the Medical dataset.

EMLkNN Rank-SVM
Before Editing After Editing Before Editing After Editing

Hamming loss− 0.0168 ± 0.0031◦ 0.0149 ± 0.0016 0.0106 ± 0.0016◦ 0.0095 ± 0.0014
One-Error− 0.2769 ± 0.0679◦ 0.2415 ± 0.0283 0.1370 ± 0.0333◦ 0.1181 ± 0.0338
Coverage− 3.3559 ± 1.1640◦ 4.1286 ± 0.8808 1.0705 ± 0.3695◦ 0.8641 ± 0.2841

Ranking loss− 0.1078 ± 0.0343• 0.1513 ± 0.0273 0.0138 ± 0.0069◦ 0.0111 ± 0.0050
Average precision+ 0.7840 ± 0.0471◦ 0.7957 ± 0.0186 0.9055 ± 0.0220◦ 0.9151 ± 0.0213

Accuracy+ 0.5923 ± 0.0638• 0.6420 ± 0.0339 0.7194 ± 0.0421• 0.7690 ± 0.0296
Precision+ 0.6536 ± 0.0654• 0.7049 ± 0.0332 0.7614 ± 0.0496• 0.8097 ± 0.0344
Recall+ 0.6109 ± 0.0612• 0.6675 ± 0.0375 0.7573 ± 0.0410• 0.8186 ± 0.0321
F1+ 0.6192 ± 0.0632• 0.6718 ± 0.0342 0.7462 ± 0.0438• 0.7994 ± 0.0300

•(◦): statistically significant (non-significant) difference of performance of the classification algorithm applied
on the initial and the edited dataset, based on two-tailed paired t-test at 5% significance.

Table 4.15: Experimental results (mean±std) on the Enron dataset.

EMLkNN Rank-SVM
Before Editing After Editing Before Editing After Editing

Hamming loss− 0.0621 ± 0.0104◦ 0.0569 ± 0.0038 0.0558 ± 0.0135◦ 0.0485 ± 0.0027
One-Error− 0.5715 ± 0.0978• 0.3903 ± 0.0746 0.2937 ± 0.1114◦ 0.2146 ± 0.0488
Coverage− 25.6451 ± 6.3233◦ 23.2417 ± 2.4229 13.9366 ± 3.2339• 11.4764 ± 1.1672

Ranking loss− 0.3345 ± 0.0863◦ 0.2939 ± 0.0575 0.0978 ± 0.0237• 0.0719 ± 0.0124
Average precision+ 0.4673 ± 0.0563◦ 0.5772 ± 0.0523 0.6140 ± 0.0871• 0.7020 ± 0.0347

Accuracy+ 0.1646 ± 0.0582• 0.3659 ± 0.0477 0.3797 ± 0.1249• 0.4857 ± 0.0398
Precision+ 0.3343 ± 0.1058• 0.5416 ± 0.0592 0.5748 ± 0.0968• 0.6603 ± 0.0378
Recall+ 0.1836 ± 0.0663• 0.4212 ± 0.0541 0.4660 ± 0.1097• 0.5985 ± 0.0437
F1+ 0.2185 ± 0.0746• 0.4477 ± 0.0539 0.4940 ± 0.1049• 0.6021 ± 0.0402

•(◦): statistically significant (non-significant) difference of performance of the classification algorithm applied
on the initial and the edited dataset, based on two-tailed paired t-test at 5% significance.
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Table 4.16: Experimental results (mean±std) on the Webpage dataset.

EMLkNN Rank-SVM
Before Editing After Editing Before Editing After Editing

Hamming loss− 0.063 ± 0.001• 0.050 ± 0.007 0.042 ± 0.005 0.041 ± 0.004◦
One-Error− 0.564 ± 0.007• 0.523 ± 0.059 0.399 ± 0.036 0.394 ± 0.035◦
Coverage− 12.124 ± 0.149• 10.313 ± 1.531 5.253 ± 0.397 4.321 ± 0.687•

Ranking loss− 0.494 ± 0.006• 0.415 ± 0.064 0.132 ± 0.009 0.108 ± 0.015•
Average precision+ 0.485 ± 0.004• 0.532 ± 0.057 0.631 ± 0.031 0.678 ± 0.028•

Accuracy+ 0.359 ± 0.004◦ 0.372 ± 0.063 0.402 ± 0.028 0.440 ± 0.039•
Precision+ 0.417 ± 0.004◦ 0.425 ± 0.061 0.467 ± 0.032 0.500 ± 0.037•
Recall+ 0.402 ± 0.006◦ 0.396 ± 0.062 0.439 ± 0.030 0.486 ± 0.040•
F1+ 0.391 ± 0.005◦ 0.397 ± 0.062 0.434 ± 0.030 0.474 ± 0.039•

•(◦): statistically significant (non-significant) difference of performance of the classification algorithm applied
on the initial and the edited dataset, based on two-tailed paired t-test at 5% significance.
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This thesis addressed the problem of multi-label classification, where each instance
can be assigned to one or more than one class. In recent years, multi-label learning
is increasingly demanded by real-world applications, such as text categorization, scene
analysis, bioinformatics and music classification. For example, an electronic document
related to sports can also be labeled as economic. Several methods have been proposed
in the literature to solve the multi-label learning problem. These methods may be
influenced by the quality of training instances, and their characteristics.

The goal of this thesis was twofold:
— Designing classifiers for multi-label learning that can handle uncertainties pre-

sented in the training dataset;
— Making the training dataset more reliable using an edition algorithm.
In the rest, we briefly summarize our contributions and then discuss some future

works.

Summary and contributions

Chapter 1 of this thesis discussed the existing methods for multi-label learning. We
have shown that there exist three main categories depending on the learning process
from the training datasets: problem transformation, algorithm adaptation and ensem-
ble methods. Methods in the first category transform the multi-label problem into
different problems of single-label learning while having computational complexity to
model some characteristics of multi-label learning. Methods in the second category
extend the existing traditional classifiers to the framework of multi-label learning. In
general, these methods perform better than those of the first category at the price
of higher complexity. The third category seeks to reduce the previous problems and
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to take into account the advantages of the two previous categories. Also in Chapter
1, we have presented some applications and introduced some evaluation metrics for
multi-label learning.

Chapter 2 reviewed the basics of belief functions theory, which is a general frame-
work for reasoning with uncertainty. This chapter described extensions of this theory
to lattices in order to reduce the complexity of belief functions. We showed how this
formalism can be used to represent uncertainty about set-valued variables, as required
in multi-label learning tasks.

In Chapter 3, we have presented some characteristics of multi-label problem and
focused on correlations that can exist between labels. We have shown such a correlation
in two real-world datasets. The principle of the RAKEL approach was extended to the
framework of belief functions theory in order to handle uncertainty that may exist in the
training set. The resulting approach, referred to as Evidential RAKEL, incorporates
two stages: inducing many classifiers on different small subsets of labels, and then
proceeding to gather all information given by the different classifiers in order to combine
them under the theory of evidence. Two ways to make a final decision regarding the
predicted label set for an example have been explained: the bel function which aims to
predict the output for each label separately, and the maximum of communality which
is determined via solving an integer programming problem under constraints.

An illustration on a synthetic dataset showed the ability of our method to handle
uncertainty in the training set. Experimental results on real-world datasets show also
that Evidential RAKEL tends to outperform the classical RAKEL method in terms of
predictive-based metrics.

An important contribution of this thesis is the editing algorithm for multi-label
learning introduced in Chapter 4. The goal of this approach is to edit (retain/remove)
each instance in the training set in order to get a subset of more reliable instances.
As a result, training a multi-label classifier becomes easier in practice. Our editing
algorithm is based on the voting of all neighbors for an instance and on a simple
criteria, the Hamming loss, to estimate the classification error of the target instance.

An illustration on a synthetic dataset showed that our editing algorithm could
remove outliers and erroneous instances, and made us able to get smoother decision
boundaries between classes. Two multi-label classification methods (EMLkNN and
Rank-SVM) were applied to a large set of real-world data after editing. When compared
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to the same methods on datasets before editing, learning from reduced datasets was
shown to have the following advantages:

— It achieves better predictive performance, according to prediction-based and
ranking-based metrics;

— It has lower running time;
— It reduces the memory space to store training instances.

Future Work

Further extensions and improvements can be considered as a continuation of this
work.

The Evidential RAKEL method demonstrated good predictive performance on three
datasets selected from the library of multi-labeled data. It will be interesting to confirm
the efficiency of this method on other challenging real-world applications, after the space
complexity limitation has been overcome. Future work will consider the development
of a toolbox for the theory of evidence on large sets to implement evidential reasoning
without limitation on CPU time.

This thesis showed that learning from edited data improves the performances of
learning algorithm and reduces the running time. Future research should consider ap-
plying the existing algorithm to other applications domains and with other classifiers
to investigate the merit of editing in these settings. We could also study other edit-
ing mechanisms based on other approaches, like support vector machines or neural
networks.

It will also be interesting to explore the editing idea with imbalanced data, in which
examples from some classes outnumber examples from other classes. The motivation
is to detect erroneous or mislabeled instances without influencing the multi-label char-
acteristic of the given dataset. This suggests that instances, belonging to classes with
few examples should remain unchanged or should be edited carefully.

Another direction for future research is to adapt condensing approaches in the
domain of multi-label learning. These approaches would select the minimal consistent
subset of instances that represents all possible classes and their relationships. This
idea could accelerate the response time of multi-label classifiers and further reduce
their computational complexity, by learning from a more coherent set.
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