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Équations différentielles ordinaires

Historiquement, la formulation des premières équations dites différentielles revient à Newton et Leibniz, inventeurs du calcul différentiel au xvii e siècle. Ces équations permettent notamment de modéliser l'évolution d'un système dans le temps. Par exemple, la seconde loi de Newton relie l'accélération d'un objet aux forces qui lui sont appliquées. À titre d'exemple, on considère une balle qui chute librement dans l'air. On note y(t) sa hauteur à l'instant t. L'équation différentielle ordinaire satisfaite par y est :

ÿ(t) = -g, (1.1) 
où g est la constante de gravitation. Il s'agit d'une équation différentielle ordinaire car le nombre d'inconnues (ici, uniquement la hauteur de la balle) est fini. Cette équation est dite du second ordre car la dérivée temporelle de plus grand ordre qui apparaît est une dérivée seconde. De plus, elle est linéaire.

Elle peut être intégrée (c'est-à-dire résolue de manière explicite) facilement. En supposant que la balle est initialement au repos à une hauteur y 0 , la résolution explicite de (1.1) fournit la formule :

y(t) = y 0 - 1 2 gt 2 . (1.2)
La complexité d'une équation différentielle reflète la richesse du système considéré et de sa dynamique. La dynamique de la chute libre d'une balle étant très simple, les équations (1.1) et (1.2) le sont aussi. Par exemple, si on considère la position d'un satellite autour de la Terre, que l'on va noter (y 1 , y 2 , y 3 ) ∈ R 3 afin de le repérer dans l'espace, on obtient l'équation du mouvement képlérien (en supposant que la Terre est au centre du repère) :

                 ÿ1 = -µ y 1 (y 2 1 + y 2 2 + y 2 3 ) 3 2 , ÿ2 = -µ y 2 (y 2 1 + y 2 2 + y 2 3 ) 3 2 , ÿ3 = -µ y 3 (y 2 1 + y 2 2 + y 2 3 ) 3 2 , (1.3) 
où µ est le paramètre gravitationnel standard (qui dépend de la masse de la Terre). L'équation (1.3) est plus complexe. En particulier, il n'est plus aussi simple de donner une formule explicite à l'aide de fonctions usuelles pour décrire les coordonnées y i (t). Cependant, il s'agit toujours d'une équation différentielle ordinaire, car le nombre d'inconnues (ici, les trois composantes de la position) reste fini. Les exemples précédents sont issus de la mécanique. Cependant, les équations différentielles ordinaires sont utilisées pour modéliser des phénomènes dans toutes les disciplines : physique, géologie, biologie, économie, sociologie, etc.

Équations aux dérivées partielles

Les équations aux dérivées partielles correspondent à une situation où le nombre d'inconnues est infini. En mécanique, ceci se produit dès qu'on considère un corps liquide, mou ou déformable : de l'eau, de l'air, une corde, de la boue, etc. Lorsqu'une corde vibre, on peut noter y(t, x) la hauteur de la corde à la position x (où x est une position horizontale comprise entre 0 et L, la longueur totale de la corde). Ainsi, le nombre d'inconnues est infini car il y a un nombre infini de positions x telles que 0 ≤ x ≤ L. L'équation d'évolution de la corde fait alors intervenir non seulement des dérivées par rapport au temps, mais aussi des dérivées par rapport à cette position. Ce sont des dérivées dites partielles (car relatives à une seule variable sur les deux du système). L'équation des ondes s'écrit :

∂ tt y = c 2 ∂ xx y, ( 1.4) 
où c décrit la vitesse des ondes dans la corde et peut se calculer à partir de sa tension et de sa masse linéique. Dans (1.4), on note les dérivées partielles avec le signe ∂ pour pouvoir préciser la variable par rapport à laquelle on dérive. Dans la suite de ce manuscript, on notera plutôt en indice les dérivées lorsqu'aucune confusion n'est possible. Ainsi y t désigne la dérivée par rapport au temps de y, y x la dérivée première en espace, y xx la dérivée seconde en espace et ainsi de suite. Une autre nouveauté par rapport aux équations différentielles ordinaires est la nécessité d'écriture des conditions aux bords. En effet, par exemple, l'équation (1.4) décrit correctement le phénomène de propagation des ondes dans la corde. Cependant, elle n'inclue aucune information sur ce qui se produit aux deux extrémités (en x = 0 et en x = L). Ces informations sont d'une nature différente et sont nécessaires pour clore le système. De nombreux choix sont possibles. Pour fixer les idées (et la corde) on peut imaginer que les deux extrémités sont immobiles : y(t, 0) = y(t, L) = 0, pour tout t ≥ 0.

(

Les équations aux dérivées partielles (EDP) sont rarement intégrales. Pour les étudier, il faut avoir recours à des méthodes plus subtiles que leur simple résolution explicite. Souvent, même la question de l'existence de solutions à une EDP donnée n'est pas évidente et requiert d'introduire les bons espaces fonctionnels pour franchir les difficultés techniques. Il arrive aussi que ces équations soient mal posées et que cela traduise un phénomène physique intéressant. Par exemple, une vague sur une plage finit par déferler. L'équation initiale qui régissait son déplacement souple au large n'est plus valable à partir de cet instant critique.

Contrôle, contrôlabilité et stabilisation

Les équations (1.1), (1.3) et (1.4) présentées ci-dessus décrivent l'évolution libre de systèmes physiques. Ces systèmes ne sont soumis qu'à des forces sur lesquelles il nous est impossible d'agir directement (on ne peut par exemple pas empêcher la gravité d'attirer le satellite vers la Terre). Or, dans de nombreux contextes, les ingénieurs disposent de moyens d'action sur les systèmes qui les intéressent : on peut souffler sur la balle, le satellite est équipé de propulseurs, on peut secouer une extrémité de la corde, etc. Ces moyens d'action sont appelés contrôles. Ils viennent modifier l'équation d'évolution en y ajoutant un paramètre qu'il nous est possible de choisir. Par exemple, l'équation d'une corde dont on secoue les deux extrémités pendant un intervalle de temps [0, T ] devient :

     y tt -c 2 y xx = 0, [0, T ] × [0, L], y(t, 0) = v 0 (t), [0, T ], y(t, L) = v L (t), [0, T ], (1.6) 
où on introduit v 0 (t) et v 1 (t) qui sont les contrôles de ce système et décrivent la hauteur de la corde à ses extrémités à l'instant t. L'opérateur contrôlant le système peut les choisir à chaque instant. L'évolution du système dépend de son état initial et du choix des contrôles par l'opérateur. À l'aide des contrôles, on souhaite réaliser un objectif. Les objectifs envisageables sont très nombreux et de natures variées. Dans cette thèse, on s'intéresse uniquement à la notion de contrôlabilité. La contrôlabilité est l'étude des trajectoires reliant deux états du système en un temps fixé. Par exemple, étant donné un état initial y 0 dont on part, un temps T et un état final y 1 , est-il possible de trouver un contrôle qui permette de diriger le système depuis l'état y 0 pour l'amener à l'état y 1 à l'instant T ? L'autre grande notion de contrôle (qui n'est pas étudiée dans cette thèse) est celle de la stabilisation : si l'état initial est proche d'un point d'équilibre du système, est-il possible de faire en sorte que l'état en reste proche éternellement et converge vers celui-ci ? Pensons par exemple à un pendule inversé qui n'est pas si facile que cela à maintenir debout ! La théorie du contrôle vise à fournir des réponses à ces questions en développant des méthodes qui permettent d'étudier les systèmes d'intérêt. Les idées ou méthodes développées sur un système d'exemple sont souvent transposables à plusieurs systèmes ou à plusieurs familles de systèmes. L'objectif des études théoriques est de donner des outils permettant d'aborder par la suite les applications pratiques sur des cas concrets. En ce sens, les équations ou systèmes étudiés dans les ouvrages de théorie du contrôle modélisent rarement directement un problème concret. Ce sont plus généralement des modélisations fortement simplifiées pour pouvoir isoler leurs comportements essentiels.

Notions de contrôlabilité pour les EDP

En ce qui concerne le temps, on parle de contrôlabilité en temps long lorsque l'on se laisse la possibilité de choisir le temps T en fonction des états à relier (il sera alors potentiellement d'autant plus grand que les états à relier sont éloignés). On parle de contrôlabilité en temps borné lorsqu'il existe T * fini tel que tous les états à relier puissent l'être en temps T ≤ T * . Enfin, la notion la plus forte est celle de contrôlabilité en temps petit, qui signifie que les états peuvent être reliés en un temps T aussi petit que souhaité. Elle n'est pas forcément toujours pertinente ; notamment pour des équations où il y a une vitesse de propagation de l'information finie, comme l'équation des ondes.

En ce qui concerne la cible, on parle de contrôlabilité à zéro quand on cherche à ramener des états initiaux non nuls à l'état nul (souvent choisi comme état d'équilibre du système). On parle de contrôlabilité aux trajectoires lorsque l'on cherche à rejoindre des états finaux dont on sait déjà qu'ils sont accessibles par le système de manière autonome (par exemple en partant d'une autre donnée initiale). On parle de contrôlabilité exacte lorsque l'on parvient à atteindre exactement la cible. On parle de contrôlabilité approchée lorsque l'on ne peut pas l'atteindre exactement mais que l'on peut s'en rapprocher aussi près que souhaité.

En ce qui concerne le point de départ, on parle de contrôlabilité globale si on souhaite pouvoir partir de n'importe quel état initial. On parle de contrôlabilité locale si le résultat démontré n'est vrai que pour un petit ensemble de données initiales voisines (par exemple des états petits pour de la contrôlabilité locale à zéro, ou des états proches d'un point de départ d'une trajectoire pour de la contrôlabilité locale aux trajectoires). Les résultats globaux ou locaux font souvent intervenir des méthodes complètement différentes. En effet, les résultats locaux reposent souvent sur la linéarisation de la dynamique au voisinage du point d'intérêt alors que les résultats globaux doivent intégrer l'ensemble de la dynamique du système.

Les combinaisons sont infinies ! Dans cette thèse, on s'intéressera aux deux définitions suivantes :

Definition 1 (Contrôlabilité locale à zéro en temps petit). Pour tout temps T > 0 fixé, il existe un voisinage δ > 0 tel que, pour toute donnée initiale y 0 dans ce voisinage, il existe un contrôle u défini sur [0, T ], tel que la trajectoire du système considéré partant de y 0 et soumise à u satisfasse y(T ) = 0.

Definition 2 (Contrôlabilité globale exacte à zéro en temps petit). Pour tout temps T > 0 fixé, pour toute donnée initiale y 0 , il existe un contrôle u défini sur [0, T ], tel que la trajectoire du système considéré partant de y 0 et soumise à u satisfasse y(T ) = 0.

Contexte de la thèse et objectifs

La mécanique des fluides est un domaine qui présente à la fois des difficultés mathématiques intéressantes et des possibilités d'applications multiples. C'est un sujet de recherche très actif en physique, en ingénierie et en mathématiques. En particulier, depuis une vingtaine d'années, de nombreuses questions de contrôle ont été étudiées. Cette thèse s'inscrit dans leur suite.

Si certains aspects sont désormais bien compris, c'est très loin d'être le cas de tous les phénomènes impliquant l'apparition d'une couche limite. Or, les couches limites apparaissent naturellement dans de très nombreuses situations réelles : par exemple pour des écoulements d'air le long d'une aile d'avion. De plus, du point de vue théorique aussi, les couches limites sont naturelles. En effet, elles sont le fruit de passages à la limite entre une dynamique et une autre.

Cette thèse s'articule autour de trois travaux faisant intervenir l'étude de systèmes présentant des couches limites. L'objectif principal est de comprendre si et comment ces couches limites peuvent être des obstacles ou non lors du contrôle des systèmes associés. On développe sur ces trois exemples des méthodes qui pourront être utilisées par la suite sur d'autres systèmes présentant des caractéristiques analogues.

Contrôlabilité de l'équation de Burgers visqueuse

Bien que posée dans un cadre extrêmement simple, l'équation de Burgers visqueuse illustre une grande variété de situations de contrôle en mécanique des fluides. Afin de simplifier les notations, nous étudierons dans cette thèse uniquement une version adimensionnée de l'équation de Burgers visqueuse posée sur le segment x ∈ [0, 1]. Il est facile de se ramener à des situations plus physiques par changements de variables affines. On considère donc l'état y(t, x) solution de l'équation aux dérivées partielles :

y t + yy x -y xx = 0.
(1.7)

La compétition entre le terme convectif quadratique yy x et le terme visqueux y xx permet d'étudier de manière explicite certains comportements qui se retrouvent en dimension supérieure dans des modèles plus complexes. Les nombreux outils disponibles en dimension un (base explicite de Fourier, principes du maximum et de comparaison, transformation de Cole-Hopf, méthode des caractéristiques) facilitent une analyse détaillée. Bien sûr, certains de ces outils ont des analogues en dimension supérieure ; ce qui laisse espérer la possibilité d'étendre une partie des résultats à des cas plus généraux. Même si ce n'est pas le cas dans tous les systèmes faisant intervenir l'équation de Burgers, on peut imaginer que y représente un champ de vitesse. Intuitivement, le terme de transport yy x fait avancer les vagues positives vers la droite et reculer les vagues négatives vers la gauche. Le terme dissipatif y xx régularise progressivement la solution en lissant ses variations brusques. Cette propriété est à l'opposé des comportements typiques de l'équation de Burgers non visqueuse donnée par : y t + yy x = 0.

(1.8)

Contrairement à la version visqueuse (1.7), l'équation hyperbolique (1.8) est le prototype de nombreuses équations faisant intervenir des chocs. Dans cette thèse, on s'intéressera essentiellement à l'équation régularisée, dont l'étude passe par des techniques assez différentes. Ponctuellement, on reviendra toutefois à la version hyperbolique pour trouver l'intuition du comportement à faible viscosité.

Brève histoire de l'équation et exemples de modélisations

Il est difficile de dire avec précision à quand remontent les premiers travaux sur cette équation. Dès la fin du xix e siècle, Forsyth [START_REF] Russel | Theory of differential equations[END_REF] avait connaissance de son existence. En 1915, Bateman la considère dans [9] en se posant déjà la question du comportement asymptotique lorsque la viscosité tend vers 0. Bien sûr, ce sont les nombreux travaux répétés [START_REF] Martinu | Mathematical examples illustrating relations occurring in the theory of turbulent fluid motion[END_REF], [START_REF] Burgers | Application of a model system to illustrate some points of the statistical theory of free turbulence[END_REF], [START_REF] Martinus | A mathematical model illustrating the theory of turbulence[END_REF] de Burgers lui-même entre 1939 et 1948 qui justifient le nom donné aujourd'hui à l'équation. Ses études portaient initialement sur les turbulences dans la dynamique des gaz. Très vite, Burgers réduit les systèmes qu'il étudie et n'en conserve que cette portion simplifiée, qui concentre déjà de nombreux phénomènes d'intérêt ; tant sur le plan mathématique que physique. Il espère tenir ainsi un modèle simple lui permettant d'étudier les turbulences.

Hélas, les travaux de Hopf [START_REF] Hopf | The partial differential equation u t + uu x = µu xx[END_REF] en 1950 et Cole [START_REF] Cole | On a quasi-linear parabolic equation occurring in aerodynamics[END_REF] en 1951 démontrent que l'équation est intégrabl : il existe des formules donnant explicitement la solution à chaque instant en fonction de la donnée initiale. Dès lors, Batchelor remarque dans [START_REF] Batchelor | The theory of homogeneous turbulence[END_REF] que ce modèle ne traduit pas un élément clef des phénomènes de turbulence : la forte sensibilité presque chaotique en la donnée initiale. Rosenblatt en construit même des solutions périodiques [START_REF] Rosenblatt | Remarks on the Burgers equation[END_REF]. Parfois vue comme un analogue de Navier-Stokes en dimension un, soulignons tout de même qu'il existe une différence importante liée à l'impossibilité d'imposer une condition de divergence nulle en dimension un.

Puisqu'elle modélise de manière simplifiée des équations plus complexes (en conservant certaines propriétés mais en s'affranchissant de certaines difficultés), l'équation de Burgers a été très utilisée en mathématiques pour mettre au point des méthodes théoriques ou numériques avant de passer aux situations plus complexes. C'est une sorte de banc d'essai.

Comme cela est illustré dans [START_REF] Logan | An introduction to nonlinear partial differential equations[END_REF], l'équation de Burgers présente aussi un intérêt en tant que modèle dans de nombreux domaines : dynamique des gaz ; écoulements en eaux peu profondes ; ondes hydromagnétiques dans des plasmas froids ; ondes acoustiques [START_REF] Hsing | Gardner : Korteweg-de Vries equation and generalizations. III. Derivation of the Korteweg-de Vries equation and Burgers equation[END_REF] ; modélisation du trafic routier [START_REF] Musha | Traffic current fluctuation and the burgers equation[END_REF], [START_REF] Nagatani | Density waves in traffic flow[END_REF] ; écoulements dans les sols [START_REF] Su | Analysis of turbulent flow patterns of soil water under field conditions using burgers equation and porous suction-cup samplers[END_REF] ; formation des chocs dans les gaz inélastiques [START_REF] Ben-Naim | Shocklike dynamics of inelastic gases[END_REF] ; cosmologie [150] ; et bien sûr, les dynamiques de turbulence comme dans [START_REF] Bec | Burgers turbulence[END_REF] ou [START_REF] Bouchaud | Velocity fluctuations in forced burgers turbulence[END_REF].

Modélisation du trafic routier

Dans ce paragraphe, nous esquissons rapidement l'établissement de l'équation de Burgers pour modéliser le trafic routier. Pour plus de détails, consulter les présentations approfondies de [START_REF] Beltrami | Mathematics for dynamic modeling[END_REF] ou [104]. Considérons donc un réseau routier constitué d'une unique route rectiligne infinie sur laquelle circulent des véhicules tous identiques. Notons ρ(t, x) la densité de véhicules à la position x de la route et au temps t. De même, notons v(t, x) la vitesse moyenne des véhicules situés à la position x au temps t. Le flux de véhicules s'exprime avec le produit ρv. Comme nous avons supposé que le réseau routier ne comprenait qu'une unique route, aucun véhicule ne peut ni entrer ni sortir. La conservation du nombre de véhicules se traduit par l'équation : ρ t + (ρv) x = 0.

(1.9)

Nous nous intéressons à l'évolution de la densité des véhicules ρ (par exemple pour savoir où va se former un bouchon, ou comment il va se déplacer). Pour clore le système et aboutir à une équation autonome en ρ, il faut supposer que la vitesse des véhicules dépend de leur densité. Lorsque la route est vide, les véhicules circulent tous à la vitesse v max . Lorsque la densité dépasse un certain seuil ρ max (par exemple si forte que les pare-chocs se touchent), la vitesse est nécessairement nulle. Entre ces deux extrêmes, on peut par exemple choisir d'interpoler linéairement :

v(ρ) = 1 - ρ ρ max v max . ( 1.10) 
Cette modélisation, qui peut paraître grossière, est confirmée dès 1935 par des mesures sur le terrain de Greenshields [START_REF] Bd Greenshields | A study of traffic capacity[END_REF]. Sous l'hypothèse (1.10), une rapide analyse de fonction indique que le flux ρv(ρ) est maximal lorsque la densité est égale à la moitié de la densité maximale. Il est donc naturel de regarder une quantité quantifiant l'écart entre ρ et cette densité optimale. Introduisons :

y := 2 v max ρ max ρ max 2 -ρ .
(1.11)

En combinant (1.9), (1.10) et (1.11) on arrive à la conclusion que y vérifie (1.8). Cette modélisation est très répandue depuis les articles fondateurs de Lighthill et Whitham [START_REF] Michael | On kinematic waves. ii. a theory of traffic flow on long crowded roads[END_REF] puis de Richards [START_REF] Paul | Shock waves on the highway[END_REF] (qui ont donné le nom de modèle LWR à cette modélisation simple). On en tire par exemple les constats (certes intuitifs) que les bouchons se propagent vers l'arrière alors que les zones de circulation fluide se propagent vers l'avant. De plus, on peut faire apparaître le terme visqueux si l'on considère que les conducteurs anticipent et adaptent leur vitesse en fonction de la densité de véhicules qu'ils observent devant eux. Introduisons un paramètre ν > 0. On peut par exemple supposer que (1.10) est à modifier en :

v = 1 - ρ ρ max v max -ν ρ x ρ .
(1.12)

Ainsi, on intègre l'idée que, lorsque la circulation est plus importante devant le conducteur, il décélère légèrement. Le ratio ρ x /ρ dans (1.12) correspond à l'idée que les humains perçoivent essentiellement des variations relatives. En faisant le même travail de changement d'inconnue, on obtient une équation légèrement visqueuse pour y : y t + yy x -νy xx = 0.

(1.13)

Vagues en eaux peu profondes

Les équations de la mécanique des fluides étant très complexes, il est courant de chercher à les simplifier pour tenir compte d'un contexte particulier et concentrer la modélisation autour d'un phénomène d'intérêt. En ce sens, de nombreuses limites asymptotiques peuvent être étudiées (petites vagues, eaux très profondes, canaux unidimensionnels, fonds plats, vagues oscillantes, vagues déferlantes, de petite amplitude, etc.). Dans un certain nombre de contextes, on retombe ainsi sur des équations de type Burgers (voir par exemple [START_REF] Doelman | The dynamics of modulated wave trains[END_REF] ou [START_REF] Shi | Katsoulakis : Hyperbolic systems with supercharacteristic relaxations and roll waves[END_REF]).

Une des limites les plus fréquentes est celle de vagues longues se propageant à la surface d'un canal unidimensionnel peu profond. C'est Saint-Venant qui a formulé ces équations qui portent son nom dans [START_REF] Barré De Saint-Venant | Théorie du mouvement non permanent des eaux, avec application aux crues des rivières e à l'introduction des marées dans leurs lits[END_REF] en 1871. En notant x la position le long du canal, h la hauteur d'eau, u sa vitesse horizontale moyenne et g la gravité, on obtient, sous forme conservative :

∂ t h + ∂ x (hu) = 0, (1.14) 
∂ t (hu) + ∂ x hu 2 + 1 2 gh 2 = 0.

(1.15)

Voir par exemple la présentation complète de [START_REF] Debnath | Nonlinear water waves[END_REF] pour l'établissement rigoureux de (1.14) et (1.15) à partir des équations de Navier-Stokes. Certains régimes de l'équation de Saint-Venant peuvent être ramenés à l'étude d'équations de Burgers. Voir [START_REF] Bonneton | Note sur la propagation des vagues en zone de surf interne[END_REF] ou [START_REF] Noble | Existence et stabilité de roll-waves pour les équations de Saint Venant[END_REF] pour des exemples de tels raisonnements.

Systèmes de contrôle autour de l'équation de Burgers visqueuse

En ce qui concerne les contrôles exercés sur le système, de nombreux choix sont possibles. Dans la littérature mathématique, on en distingue deux catégories : les contrôles intervenant au second membre de l'équation (1.7) en tant que terme forçant, et les contrôles au bord appliqués aux extrémités du domaine en x = 0 et/ou en x = 1. Ces deux approches permettent de modéliser des situations pratiques très différentes. Du point de vue de l'analyse théorique, elles sont cependant parfois équivalentes.

Contrôles internes

Pour les contrôles de type « terme forçant », on remplace l'équation (1.7) par :

y t + yy x -y xx = f.
(1.16)

Si l'on s'autorisait à choisir f (t, x) sans aucune contrainte, le système résultant ne présenterait aucun intérêt, ni pratique ni mathématique. En effet, il serait possible d'en prescrire totalement la dynamique à chaque instant. Il faut donc s'imposer au moins une restriction supplémentaire sur f . Un choix fréquent dans la littérature est d'exiger que le support de f en espace soit inclus dans un segment strict [a, b] ou 0 < a < b < 1, traduisant ainsi le fait que l'action exercée par la force de contrôle doit être localisée dans une portion précise du domaine. Un autre choix fréquent est de se ramener à un nombre fini de contrôles scalaires en décomposant la force f sur une base (finie) d'actions élémentaires autorisées. On réduit ainsi drastiquement l'espace des mouvements directement accessibles par l'intermédiaire du contrôle (ce qui rend à la fois la question plus intéressante et aussi la mise en oeuvre pratique plus réaliste). A l'extrême, on peut se ramener à un unique contrôle scalaire : f (t, x) = u(t)χ(x), où χ(x) est un profil donné. Dans cette thèse, on s'intéressera beaucoup au cas où χ(x) = 1 est uniforme en espace. Cette situation dégénérée fournit une sorte d'analogue 1D à ce que serait un gradient de pression en dimension supérieure.

Contrôles frontières

Pour l'instant, nous n'avons pas indiqué les conditions au bord du domaine associées à l'équation (1.7). Or, les conditions au bord peuvent servir de contrôle. Lorsque l'on se restreint à étudier des solutions de (1.7) vérifiant y(t, 1) = 0 ou y x (t, 1) = 0, on dira que l'on n'exerce pas de contrôle en x = 1. Pour exercer un contrôle en x = 1, il faut, par exemple, s'autoriser à choisir librement y(t, 1) = v 1 (t) ou y x (t, 1) = w 1 (t).

On note que le choix précis d'agir sur l'état ou sa dérivée n'a pas d'importance en terme de contrôlabilité. En effet, si le système est contrôlable pour l'un des choix, il le sera pour l'autre et réciproquement. Par conséquent, une autre façon de présenter les choses est de ne préciser au moment de la définition du système que les conditions aux limites non contrôlées. On parle de système sous-déterminé. La contrôlabilité est alors vue comme l'étude des trajectoires admissibles. Par exemple, le système suivant est « contrôlé » en x = 1 :

y t + yy x -y xx = 0 [0, T ] × [0, 1], y x (t, 0) = 0 [0, T ].
(1.17)

En supposant qu'on a trouvé une trajectoire particulière ȳ solution de (1.17) telle que ȳ(0, •) = y 0 et ȳ(T, •) = y 1 , on peut en déduire des contrôles associés. Par exemple, en notant v 1 (t) := ȳx (t, 1), on peut reformuler a posteriori le théorème en considérant que ȳ était l'unique solution du système bien posé :

         y t + yy x -y xx = 0 [0, T ] × [0, 1],
y x (t, 0) = 0 [0, T ],

y x (t, 1) = v 1 (t) [0, T ],
y(0, x) = y 0 (x) [0, 1].

(1.18)

La construction préalable de la trajectoire ȳ garantit alors que l'unique solution de (1.18) rejoint l'état final y 1 au temps final T . Cette approche de la contrôlabilité frontière en vision « sous-déterminée » s'avère particulièrement concise et élégante pour les équations de la mécanique des fluides en dimension supérieure. En effet, le caractère bien-posé des problèmes avec données au bord inhomogènes est parfois difficile à établir et dépend fortement des conditions exactes choisies. Cette approche permet donc de s'affranchir de difficultés techniques.

Possibilité d'équivalence entre les deux points de vue

Dans un certain nombre de cas, les deux points de vue (contrôlabilité interne et contrôlabilité frontière) sont équivalents. Donnons un exemple d'une telle situation.

Lemme 1. On s'intéresse à la contrôlabilité globale exacte à zéro en temps petit. Considérons :

     y t + yy x -y xx = f (t, x)χ [a,b] , [0, T ] × [0, 1], y(t, 0) = 0 [0, T ], y(t, 1) = 0 [0, T ]. (1.19) et      y t + yy x -y xx = 0, [0, T ] × [0, 1], y(t, 0) = 0 [0, T ], y(t, 1) = v 1 (t) [0, T ].
(1.20) 

Caractère bien posé du système contrôlé

On donne ici quelques résultats préliminaires concernant les systèmes de Burgers avec contrôles. Ces résultats classiques sont abondamment utilisés au cours de cette thèse (au moins implicitement). Par souci de concision, leurs démonstrations sont omises. Elles n'utilisent que des techniques standard bien éprouvées. Soit T, ν > 0. De façon à englober tous les cas considérés dans la suite, on étudie le système :

         y t + yy x -νy xx = f (t, x) [0, T ] × [0, 1], y(t, 0) = v 0 (t) [0, T ], y(t, 1) = v 1 (t) [0, T ], y(0, x) = y 0 (x) [0, 1]. (1.21) Lemme 2. Soit f ∈ L 2 ([0, T ] × [0, 1]), v 0 , v 1 ∈ H 1/4 [0, T ] et y 0 ∈ L 2 [0, 1]. Le système (1.21) admet une unique solution faible y ∈ C 0 [0, T ]; L 2 [0, 1] ∩ L 2 [0, T ]; H 1 [0, 1]
; l'équation étant alors vérifiée au sens des distributions.

Lemme 3. Soit f ∈ L 2 ([0, T ] × [0, 1]), v 0 , v 1 ∈ H 3/4 [0, T ] et y 0 ∈ H 1 [0, 1].
On suppose que les données vérifient les conditions de compatibilité v 0 (0) = y 0 (0) et v 1 (0) = y 0 (1) aux coins du domaine spatiotemporel. Le système (1.21) admet une unique solution forte

y ∈ C 0 [0, T ]; H 1 [0, 1] ∩L 2 [0, T ]; H 2 [0, 1] ; l'équation étant alors vérifiée dans L 2 .
Pour les problèmes unidimensionnels, les principes du maximum et de comparaison s'avèrent extrêmement puissants. En effet, ils permettent d'encadrer une solution inconnue à partir de solutions de référence déjà connues. Dans cette thèse, on utilise le principe suivant.

Lemme 4. On considère deux familles de données y

± 0 ∈ L 2 [0, 1], f ± ∈ L 2 ([0, T ] × [0, 1]), v ± 0 , v ± 1 ∈ H 1/4 [0, T ].
On suppose que les deux familles sont ordonnées : 

y - 0 ≤ y + 0 , f -≤ f + , v - 0 ≤ v + 0 et v - 1 ≤ v + 1 . (1.22)

Alors les solutions y

± ∈ C 0 [0, T ]; L 2 [0, 1] ∩ L 2 [0, T ]; H 1 [0,
y -≤ y + p.p. sur [0, T ] × [0, 1]. (1.23)
Ce principe reste vrai pour des solutions plus fortes. Il reste aussi vrai pour les solutions entropiques du système hyperbolique (qui sont en effet obtenues par passage à la limite ν → 0).

Quelques résultats de contrôlabilité à zéro connus

Donnons un aperçu des résultats déjà connus en terme de contrôlabilité vers zéro de l'équation de Burgers visqueuse. Afin de fixer les notations, on considère désormais le système de contrôle suivant :

         y t + yy x -y xx = u(t) [0, T ] × [0, 1], y(t, 0) = v 0 (t) [0, T ], y(t, 1) = v 1 (t) [0, T ], y(0, x) = y 0 (x) [0, 1]. (1.24)
Selon les études, on utilise les trois contrôles à la fois ou bien seulement certains (les autres étant alors implicitement choisis nuls). En fonction de ce choix, les phénomènes physiques en jeu et les méthodes théoriques pour étudier le système diffèrent. On s'intéresse ici au système (1.24) sous l'angle de la contrôlabilité vers l'état d'équilibre y(T, •) = 0 en temps petit. Ceci permet de présenter une grande partie des résultats connus de manière concise et unifiée, tout en préservant l'essentiel des enjeux. De manière générale, le jeu d'échelles dans le système (1.24) oriente les démonstrations. Les résultats locaux (à données petites) s'obtiennent naturellement en linéarisant le système et en étudiant les propriétés de l'équation de la chaleur. Les résultats globaux (à données grandes), s'obtiennent eux à partir des propriétés hyperboliques de l'équation de Burgers non visqueuse (1.8), le terme quadratique dominant la dynamique.

Contrôlabilité locale avec un seul contrôle au bord

La première situation étudiée est celle où on utilise un seul contrôle au bord (et pas de contrôle interne), par exemple v 0 (t). Comme vu dans le Lemme 1, cette situation est équivalente à l'étude de la contrôlabilité sans contrôle au bord et avec un contrôle interne supporté dans un petit ouvert. Dans ces deux situations équivalentes, on peut démontrer la contrôlabilité locale à zéro en temps petit. Théorème 1. Soit T > 0. Il existe r > 0 tel que, pour toute donnée initiale y 0 ∈ L 2 [0, 1] vérifiant :

|y 0 | L 2 [0,1] ≤ r, (1.25) il existe un contrôle v 0 ∈ H 1/4 [0, T ] tel que la solution y ∈ C 0 [0, T ]; L 2 [0, 1] ∩ L 2 [0, T ]; H 1 [0, 1] de (1.24) avec u = v 1 = 0 satisfasse y(T, •) = 0. De plus, il est possible de choisir v 0 ∈ C ∞ [0, T ].
Ce résultat est naturel. En effet, pour ce qui concerne la contrôlabilité locale, on peut négliger le terme quadratique yy x dans (1.24). Ainsi, les résultats positifs de contrôlabilité pour la chaleur peuvent être transférés à Burgers. Or, la contrôlabilité frontière pour la chaleur est déjà connue (voir [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF]Theorem 3.3]). La démonstration du Théorème 1 peut être attribuée à Fursikov et Imanuvilov. En effet, même s'il ne s'y trouve pas explicitement, les techniques qu'ils présentent dans [START_REF] Fursikov | Controllability of evolution equations[END_REF] peuvent être adaptées pour démontrer ce résultat. Il faut en revanche un peu plus de travail pour pouvoir choisir un contrôle régulier. Leur preuve repose sur des estimations de Carleman pour les équations paraboliques. Il s'agit d'une amélioration d'un résultat précédent avec deux contrôles au bord [START_REF] Fursikov | On controllability of certain systems simulating a fluid flow[END_REF]. La méthode permet même d'obtenir la contrôlabilité locale aux trajectoires en temps petit.

On donne ici une démonstration élémentaire et nouvelle du Théorème 1 à l'aide de la transformation de Hopf-Cole et de la méthode des moments de Fattorini et Russell [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF].

Démonstration. Soit T > 0. On considère le système de chaleur contrôlé : 

         z t -z xx = 0 [0, T ] × [0, 1], z(t, 0) = w(t) [0, T ], z x (t, 1) = 0 [0, T ], z(0, x) = z 0 (x) [0, 1]. ( 1 
z 0 (x) = exp - 1 2 1 0 y 0 (s)ds -1. (1.27) D'après (1.27), il existe r > 0 tel que, si |y 0 | 2 ≤ r, alors |z 0 | ∞ ≤ 1 2 et |z 0 | 2 ≤ r 1 .
Il est donc possible de ramener z 0 à 0 avec un contrôle |w| ∞ ≤ 1 2 , de telle sorte que le principe du maximum garantisse z ≥ -

1 2 sur [0, T ] × [0, 1]. En posant y = -2z x /(1 + z), on obtient une solution y de (1.24) avec u = v 1 = 0 et telle que y(T, •) = 0 dès que (1.25).
Pour que le contrôle correspondant v 0 (t) = -2z x (t, 0)/(1 + w(t)) soit régulier, il suffit que z x (t, 0) le soit. Or, ceci est vrai dès lors que y 0 ∈ C ∞ (et donc z 0 ). Si ce n'est pas le cas, on choisit un contrôle nul sur (0, T /2) le temps que y soit régularisée avant d'appliquer la stratégie présentée sur (T /2, T ).

Non contrôlabilité globale avec un seul contrôle au bord

Si la contrôlabilité locale est réalisable avec un seul contrôle au bord, ce n'est en revanche pas le cas de la contrôlabilité globale. Cette question a été étudiée par Imanuvilov et Fursikov dans [START_REF] Fursikov | On controllability of certain systems simulating a fluid flow[END_REF]. Ils y démontrent que, pour tout temps T fixé, il existe des états non atteignables (même de manière approchée) en partant de 0. La question de la contrôlabilité vers 0 est abordée par Guerrero et Fernández-Cara dans [START_REF] Et | Null controllability of the Burgers system with distributed controls[END_REF] sous l'angle du calcul du temps minimal de contrôlabilité à zéro T (r) pour des données initiales de norme plus petite que r. La contrôlabilité globale à zéro en temps petit est donc fausse :

Théorème 2. Il existe T > 0 et y 0 ∈ C ∞ [0, 1] tels que, pour tout contrôle v 0 ∈ H 1/4 [0, T ], la solution y ∈ C 0 [0, T ]; L 2 [0, 1] ∩ L 2 [0, T ]; H 1 [0, 1] de (1.24) avec u = v 1 = 0 vérifie y(T, •) = 0.
Ce théorème est une conséquence de l'existence d'un temps minimal pour la contrôlabilité à zéro. Il est aussi inclus dans le résultat plus fort de Guerrero et Imanuvilov énoncé dans le cadre de deux contrôles au bord dans [START_REF] Guerrero | Remarks on global controllability for the Burgers equation with two control forces[END_REF]. Cependant, ces résultats plus complexes masquent la dynamique physique simple qui est à l'oeuvre ici. En effet, pour l'équation de Burgers, les vagues négatives se propagent vers la gauche du domaine. En exerçant un contrôle au bord gauche du domaine, on a donc peu d'espoir d'arriver à envoyer un signal négatif vers la droite. On donne ici une démonstration élémentaire et nouvelle du Théorème 2 inspirée de cette idée et de [START_REF] Fursikov | On controllability of certain systems simulating a fluid flow[END_REF].

Démonstration. Soit y 0 ∈ H 1 [0, 1] une donnée initiale à choisir plus tard et T à fixer plus tard aussi. On note ȳ la solution de (1.24) libre (sans contrôle), partant de y 0 et y la solution de (1.24) correspondant à un contrôle v 0 . On décompose y = ȳ + h. Par différence, l'EDP satisfaite par h est :

h t -h xx + hh x + hȳ x + h x ȳ = 0.
(1.28)

Pour traduire l'intuition de déplacement directionnel des vagues négatives, on étudie la partie négative p := min (h, 0). Pour quantifier la taille de p, on introduit :

E(t) := 1 0 x 4 |p(t, x)| 2 dx. (1.29)
Le poids de (1.29) est choisi pour faciliter les intégrations par parties et masquer une éventuelle légère action locale du contrôle à gauche h(t, 0) = v 0 (t). On montre que la croissance de E est limitée indépendamment du choix de v 0 . En effet, en dérivant (1.29), en utilisant (1.28) et en intégrant par parties, on obtient :

1 2 d dt E(t) = -x 4 p 2 x - 4 3 x 3 |p| 3 + 6 x 2 p 2 + 4 x 3 p 2 ȳ + x 4 ȳpp x ≤ - 4 3 x 3 |p| 3 + x 2 p 2 6 + 4x|ȳ| + 1 4 x 2 |ȳ| 2 ≤ - 4 3 E 3 (t) + λ 1/3 (t)E 2 (t) ≤ 1 12 λ(t), (1.30) 
où la dernière ligne est obtenue par inégalité de Hölder en introduisant :

E(t) := 1 0 x 3 |p| 3 1 3 et λ(t) = 6 + 4x|ȳ| + 1 4 x 2 |ȳ| 2 3 . (1.31)
Ainsi, en combinant (1.30) et (1.31), on obtient l'existence d'une constante C ne dépendant ni de y 0 ni du contrôle v 0 telle que :

E(t) ≤ C 1 + |ȳ| 6 ∞ t. (1.32)
On considère une donnée initiale positive, par exemple y 0 (x) = x(1 -x). Par principe du maximum, on va avoir ȳ ≥ 0 et donc ȳh ≥ ȳp. Ainsi,

1 0 x 4 y 2 (t, x)dx = x 4 ȳ2 + x 4 h 2 + 2 x 4 ȳh ≥ x 4 ȳ2 + 2 x 4 ȳp ≥ x 4 ȳ2 -2 x 4 ȳ2 1 2
(E(t))

1 2 ≥ 1 2 1 0 x 4 ȳ2 (t, x) -2E(t). (1.33) Comme ȳ ∈ C 0 ([0, T ]; L 2 [0, 1]
), on déduit de (1.32) et (1.33) l'existence de T 1 > 0 tel que, pour tout t ∈ (0, T 1 ), on ait encore :

1 0 x 4 y 2 (t, x)dx ≥ 1 4 1 0 x 4 y 2 0 (x)dx > 0. (1.34)
Or, (1.34) empêche d'arriver à l'état nul.

Non contrôlabilité globale avec deux contrôles au bord

Si le fait qu'un seul contrôle au bord ne soit pas suffisant est très intuitif, il n'en va pas de même du résultat concernant la situation avec deux contrôles au bord. En effet, Guerrero et Imanuvilov démontrent dans [START_REF] Guerrero | Remarks on global controllability for the Burgers equation with two control forces[END_REF] que l'utilisation simultanée des deux contrôles au bord v 0 et v 1 ne suffit pas non plus à obtenir la contrôlabilité globale à zéro en temps petit. L'obstruction de signe soulevée dans le paragraphe précédent ne suffit plus à comprendre ce résultat. Plus précisément, on a :

Théorème 3. Il existe T > 0, y 0 ∈ H 1 [0, 1] et c > 0 tels que, pour tous contrôles v 0 , v 1 ∈ H 3/4 [0, T ]
compatibles avec y 0 au temps initial, on ait |y(T, •)| H 1 ≥ c, où y est la solution de (1.24) correspondant à ces données avec u = 0. Ils parviennent ainsi à construire des données initiales particulières qu'il est impossible de ramener près de 0 en un temps T donné (vraisemblablement très petit, car la contrôlabilité globale en temps long est en revanche facile à démontrer par décroissance de l'énergie puis contrôle local). Intuitivement, une façon d'appréhender ce résultat est de considérer qu'il s'agit d'un phénomène de balancier. Si la donnée initiale y 0 est positive et assez grande, il va falloir l'écraser par une vague négative venue de la droite. Pour revenir à zéro, cette vague devra à son tour être submergée par une vague positive encore plus grande issue de la gauche. La situation s'emballe et on ne parvient jamais à retourner à zéro. Cet argument semble en revanche difficile à mettre en oeuvre.

La démonstration proposée dans [START_REF] Guerrero | Remarks on global controllability for the Burgers equation with two control forces[END_REF] repose sur la transformation dite de Hopf-Cole. Il s'agit d'un changement de fonction inconnue spécifique à l'équation de Burgers et qui permet de la ramener à une équation de la chaleur. Présentée initialement dans [START_REF] Hopf | The partial differential equation u t + uu x = µu xx[END_REF], elle consiste à considérer la quantité :

(t, x) → exp - 1 2 x 0 y(t, x )dx (1.35)
où la nouvelle fonction inconnue sera un cran plus régulière que y et surtout strictement positive. En relevant avec précaution les conditions au bord, on est ramené à l'étude du système :

         z t -z xx = 0 [0, T ] × [0, 1], z(t, 0) = k 0 (t) [0, T ], z(t, 1) = k 1 (t) [0, T ], z(0, x) = z 0 (x) [0, 1].
(1.36)

Plus précisément, en tenant compte des conditions au bord choisies, Guerrero et Imanuvilov démontrent l'équivalence entre le Théorème 3 et la proposition :

Proposition 1. Pour tout z 0 > 0 ∈ H 2 [0, 1] avec z 0 (0) = 1, il existe k 0 , k 1 > 0 ∈ H 1 [0, T ] vérifiant et une constante Z > 0, tels que la solution z de (1.36) vérifie z(T, •) = Z.
Le problème de contrôlabilité globale à zéro pour Burgers est donc réduit à la question d'atteindre un état constant pour la chaleur avec des contrôles au bord positifs. La suite de la démonstration fonctionne par contradiction. L'argument clef consiste à montrer que, pour la chaleur, des sources positives peuvent masquer une source négative en temps court. Le lemme central se formule ainsi : Lemme 5. Soient 0 < s 1 < s 2 < s 3 < 1 les positions de trois sources de chaleur initiales ; deux sources positives situées en s 1 et s 3 d'intensité unitaire entourant une source négative située en s 2 d'intensité -θ. Notons δ s le dirac en position s. On considère U la solution du système de chaleur retourné en temps :

         U t + U xx = 0 [0, T ] × [0, 1], U (t, 0) = 0 [0, T ], U (t, 1) = 0 [0, T ], U (T, x) = δ s1 -θδ s2 + δ s3 [0, 1].
(1.37) Ce travail est en relation avec un analogue du lemme de Hopf pour les équations elliptiques (voir [START_REF] Friedman | Partial differential equations of parabolic type[END_REF] et [START_REF] Le | Principe du maximum, régularité elliptique et applications[END_REF]). L'idée générale est cependant intuitive : si le temps est trop court, un observateur situé au bord du domaine ne peut pas soupçonner la présence du terme source négatif car il est aveuglé par les sources positives, situées plus près du bord.

Il existe T * (θ) tel que, si T ≤ T * (θ), les flux sortants U x (t, 0) et -U x (t,
La fin de la démonstration procède par l'absurde. On considère θ > 2, un temps T < T * (θ) et U la solution de (1.37). On considère aussi z tel que décrit dans la Proposition 1 (que l'on suppose vraie par contradiction). En multipliant z t -z xx par U et en intégrant par parties on obtient la relation : 

- T 0 [U x (t, 0)k 0 (t) -U x (t, 1)k 1 (t)] dt -Z(θ -2) - 1 0 U (0, x)z 0 (x)dx = 0. ( 1 

Contrôlabilité globale mixte avec trois contrôles

Pour obtenir un résultat de contrôlabilité globale pour l'équation de Burgers, il faudrait que le système hyperbolique correspondant soit aussi globalement contrôlable en temps petit. Or, lorsque y t +yy x = 0, la propagation de l'information émise au bord se fait à vitesse finie. L'absence de terme de pression semble être handicapante. C'est l'idée qui a motivé l'introduction du terme contrôle scalaire u(t) par Chapouly dans la note [START_REF] Chapouly | Global controllability of nonviscous Burgers type equations[END_REF] puis l'article complet [START_REF] Chapouly | Global controllability of nonviscous and viscous Burgers-type equations[END_REF].

En ajoutant ce contrôle interne aux deux contrôles au bord, elle démontre qu'on peut obtenir de la contrôlabilité globale en temps petit vers toutes les trajectoires. En particulier, on a donc contrôlabilité globale à zéro en temps petit :

Théorème 4. Soit T > 0 et y 0 ∈ L 2 [0, 1]. Il existe u, v 0 , v 1 ∈ C ∞ [0, T ]
tels que la solution y de (1.24) associée à ces contrôles satisfasse y(T, •) = 0. Sa démonstration repose sur de multiples ingrédients : l'étude du système hyperbolique correspondant, sa réversibilité en temps, son invariance par changement d'échelle permettant d'étudier des données petites, l'étude du système linéarisé autour d'une trajectoire de référence (méthode du retour) et un argument de point fixe pour passer au non linéaire. Une partie conséquente du travail associé consiste à établir des estimées pour faire fonctionner l'argument de point fixe puis à revenir au cas visqueux. L'argument physique clef est la linéarisation autour d'une trajectoire uniforme en espace : ȳ(t, x) := a(t) où a est un profil positif régulier, reliant 0 à 0 et dont l'intégrale sur [0, T ] est suffisante pour vider le domaine de ce qu'il contenait initialement.

A titre d'étape intermédiaire en vue de la suite, on présente ici une démonstration nouvelle du Théorème 4, ne nécessitant pas d'avoir recours à un argument de point fixe. L'intuition derrière la méthode présentée ci-dessous est d'écraser la donnée initiale par une immense vague positive émise depuis la gauche du domaine. Ceci permet de manipuler directement le système non linéaire (plutôt que de chercher à linéariser autour d'une trajectoire de référence).

Démonstration. Soit T > 0 et y 0 ∈ L 2 [0, 1]. Quitte à laisser le système évoluer librement pendant une première phase, on peut supposer que y 0 ∈ L ∞ . De plus, on sait que, même avec un unique contrôle au bord, la contrôlabilité locale est acquise. Donc il suffit de démontrer ici qu'on peut atteindre au temps T /2 un état tel que |y(T /2, •)| L 2 ≤ r, où r est donné par le Théorème 1. On s'intéresse désormais à la première phase de contrôlabilité approchée.

Pour faire ressortir le caractère essentiellement hyperbolique de la contrôlabilité en temps court, on introduit ε 1 et on s'astreint à réaliser la contrôlabilité sur l'intervalle de temps [0, εT ]. On effectue ensuite un changement d'échelle pour échanger ce temps court contre une petite viscosité en posant ỹ(t, x) := εy(εt, x), ũ(t) := εu(εt), ṽ0 (t) := εv 0 (εt) et ṽ1 (t) := εv 1 (εt). Ainsi (1.24) devient :

         ỹt + ỹ ỹx -εỹ xx = u(t) [0, T ] × [0, 1], ỹ(t, 0) = ṽ0 (t) [0, T ], ỹ(t, 1) = ṽ1 (t) [0, T ], ỹ(0, x) = εy 0 (x) [0, 1].
(1.39)

Pour ε assez petit, on a ε|y 0 | ∞ ≤ 1. En émettant à gauche du domaine une vague de taille H telle que

H-1 2 × T 2 > 1
, la formule de Rankine-Hugoniot (donnant la vitesse de propagation d'un choc) permet de s'attendre à ce que la vague émise à gauche écrase complètement la donnée initialement présente dans le domaine dès l'instant T /2. En effet, en choisissant ũ = 0, ṽ0 = ṽ1 = H, on démontre que, pour H assez grand :

|ỹ(T /2, •) -H| L ∞ [0,1] = O e -c/ε . (1.40)
L'estimation (1.40) peut se démontrer avec ou sans la transformation de Hopf-Cole (voir la preuve du Thèorème 13 ou la Remarque 15 dans [START_REF] Coron | Some open problems on the control of nonlinear partial differential equations[END_REF]). Ainsi, à l'issue de cette première phase se déroulant sur [0, T /2], on atteint quasiment un état uniforme en espace. Dans la seconde phase [T /2, T ], on utilise le contrôle interne pour redescendre vers zéro. On applique donc les contrôles :

u(t) = - 2H T et v 0 (t) = v 1 (t) = 2H T (T -t), (1.41) 
de telle sorte que l'on soit quasiment retourné à zéro au temps T . Grâce aux contrôles choisis dans (1.41) et à l'estimation (1.40), on peut démontrer que :

|y(εT, •)| L 2 [0,1] = O 1 ε e -c/ε . (1.42)
Par croissance comparée dans (1.42), on peut se rapprocher aussi proche de zéro qu'on le souhaite. Comme expliqué plus haut, on peut ensuite retourner exactement à zéro à l'aide des résultats de contrôlabilité locale.

Nouveau résultat : contrôlabilité globale mixte avec deux contrôles

Énoncé du résultat

Un des fils directeurs de cette thèse est l'étude de systèmes issus de la mécanique des fluides faisant intervenir des couches limites. En effet, pour envisager pouvoir un jour aborder la question de la contrôlabilité globale pour Navier-Stokes, il est nécessaire de comprendre si les couches limites visqueuses sont ou non un obstacle pour la contrôlabilité. Il est donc naturel d'étudier cette question dans le cadre simplifié de l'équation de Burgers. Pour provoquer l'apparition d'une couche limite, une possibilité est de s'astreindre à essayer de démontrer un résultat de contrôlabilité globale ne faisant intervenir qu'un seul des deux contrôles au bord (par exemple v 0 (t) et u(t)). À l'extrémité droite du domaine, en x = 1, la condition de Dirichlet homogène y(t, 1) = 0 va alors provoquer l'apparition d'une couche limite. J'ai démontré dans cette thèse le résultat suivant :

Théorème 5. Soit T > 0 et y 0 ∈ L 2 [0, 1]. Il existe u, v 0 ∈ C ∞ [0, T ]
tels que la solution y de (1.24) associée à ces données et vérifiant y(t, 1) ≡ 0 vérifie y(T, •) = 0.

Ce résultat montre que le troisième contrôle n'est pas nécessaire pour la contrôlabilité globale exacte à zéro en temps petit. Sa démonstration illustre bien la formation inévitable de la couche limite, puis sa disparition grâce à la stratégie de contrôle. Par symétrie, il serait aussi possible de démontrer un résultat analogue avec le contrôle à droite et une couche limite à gauche.

Éléments de démonstration

Comme dans le cas complètement contrôlé précédent, il suffit de démontrer un résultat de contrôle global approché vers zéro en temps petit (car les arguments locaux pour Burgers n'ont besoin que d'un unique contrôle au bord). On va aussi effectuer un changement d'échelle. Soit T > 0 le temps imparti. En changeant d'échelle avec un facteur ε 1 arbitraire, on se ramène à un intervalle très long [0, T /ε] que l'on voit comme deux parties successives : [0, T ] puis [T, T /ε]. Dans la première partie, on applique une stratégie de contrôle conçue pour le système hyperbolique. A cause de la condition de Dirichlet homogène en x = 1, cette stratégie a pour dommage collatéral la création d'une couche limite près du bord droit du domaine. La seconde partie très longue de l'intervalle de temps a pour but de laisser à cette couche limite le temps de se dissiper. On étudie donc le système : 

         ỹt + ỹ ỹx -εỹ xx = u(t) [0, T /ε] × [0, 1], ỹ(t, 0) = ṽ0 (t) [0, T /ε], ỹ(t, 1) = 0 [0, T /ε], ỹ(0, x) = ỹ0 (x) [0, 1]. ( 1 
         ỹt + ỹ ỹx = u(t) [0, T ] × [0, 1], ỹ(t, 0) ∈ E(ṽ 0 (t)) [0, T ], ỹ(t, 1) ≥ 0 [0, T ], ỹ(0, x) = ỹ0 (x) [0, 1], (1.44) 
où la fonction à valeur ensemble E est définie par la relation : Pour passer au système légèrement visqueux, il faut estimer la couche limite qui va se créer au bord droit du domaine. En effet, en imposant à gauche une donnée H 1, on ne peut plus espérer atteindre un état uniforme en espace. En revanche, on s'attend à arriver tout près de l'état stationnaire correspondant k ε défini comme étant la solution de : L'idée essentielle pour conclure la preuve est d'utiliser le long intervalle de temps [T, T /ε] pour laisser la partie régularisante de l'équation de Burgers (analogue à cette de la chaleur) dissiper ce résidu. Or, ce résidu ressemble de plus en plus à un dirac de largeur ε → 0. Par conséquent, son contenu spectral se concentre autour de fréquences d'ordre 1/ε. Celles-ci sont ensuite dissipées pendant un temps d'ordre T /ε avec une viscosité ε. Elles se retrouvent donc effectivement fortement régularisées, ce qui permet d'atteindre un état proche de zéro.

E(v) := ] -∞, -v] ∪ {v} si v ≥ 0, ] -∞, 0] si v ≤ 0. ( 1 
     k ε k ε x -εk ε xx = 0 [0, 1], k ε (0) = H, k ε (1) = 0. ( 1 

Remarques et perspectives

Ce résultat est très encourageant. Premièrement, sur l'exemple de Burgers, il montre que le fait de n'avoir accès qu'à une partie du bord du domaine n'empêche pas d'obtenir un résultat de contrôlabilité globale exacte à zéro. Deuxièmement, il illustre bien la mécanique qui est à l'oeuvre (et qui devrait se retrouver de manière similaire en dimension supérieure) : pour un système issu de la mécanique des fluides, vouloir contrôler en temps petit est équivalent à contrôler à petite viscosité en temps 1 ; en appliquant le contrôle issu du système hyperbolique limite, on atteint notre objectif à une couche limite près, qu'il est possible d'estimer. Troisièmement, il met en valeur le phénomène d'auto-dissipation de la couche limite, qui est très prometteur pour les équations plus complexes. En effet, cette propriété tendrait à indiquer la marche à suivre : appliquer le contrôle issu du système non visqueux puis attendre la dissipation naturelle de la couche limite. Eventuellement, il peut être nécessaire d'adapter la stratégie de contrôle pour être sûr que la couche limite ait les propriétés nécessaires pour s'auto-dissiper.

Perspective 2. La démonstration actuelle de ce résultat utilise la transformation de Hopf-Cole pour rendre explicites les calculs liés à la constitution puis à la dissipation de la couche limite. Ceux-ci s'en retrouvent ainsi grandement simplifiés. Il serait intéressant de ré-écrire la preuve en s'affranchissant de cette transformation spécifique à l'équation de Burgers. En effet, on pourrait ainsi appliquer la méthode à d'autres équations analogues. Ceci pourrait par exemple se faire en introduisant des développements multi-échelles de la couche limite.

Nouveau résultat : non contrôlabilité avec un seul contrôle interne

Énoncé du résultat

Que l'on utilise deux contrôles au bord ou bien un seul, c'est la présence du contrôle interne u(t), qui permet d'obtenir la contrôlabilité globale en temps petit. Une question naturelle est alors de savoir si la contrôlabilité globale est préservée lorsque l'on utilise le contrôle interne u(t) mais plus aucun contrôle frontière. Ce n'est pas le cas. Sans contrôle au bord, même la contrôlabilité locale est perdue. J'ai démontré dans cette thèse le résultat suivant : Théorème 6. Pour tout M > 0, il existe T > 0 tel que, pour tout δ > 0, il existe une donnée initiale

y 0 ∈ H 1 0 [0, 1] avec |y 0 | H 1 0 ≤ δ telle que, pour tout contrôle u ∈ L 2 [0, T ] satisfaisant |u| L 2 ≤ M , la solution y de (1.24) avec v 0 = v 1 = 0 est telle que y(T, •) = 0.
De plus, la donnée initiale y 0 peut être choisie très régulière (polynôme en x).

Ce résultat local indique que, si le temps est trop court, il existe des données initiales infinitésimalement proches de l'état nul qu'il est tout de même impossible de ramener à zéro. A fortiori, si même la contrôlabilité locale exacte à zéro en temps petit est fausse, il en va de même pour la contrôlabilité globale exacte à zéro en temps petit.

Éléments de démonstration

On considère donc un temps imparti T 1 que l'on note ε pour illustrer la limite envisagée. Comme précédemment, on effectue le changement d'échelle habituel pour se ramener à une étude sur une plage de temps fixe t ∈ [0, 1] du système :

         ỹt + ỹ ỹx -εỹ xx = u(t) [0, 1] × [0, 1], ỹ(t, 0) = 0 [0, 1], ỹ(t, 1) = 0 [0, 1], ỹ(0, x) = εy 0 (x) [0, 1].
(1.47)

Comme on envisage de démontrer un résultat local, la première étape est de considérer le système linéarisé de (1.47) autour de ỹ = 0. En notant a le linéarisé de ỹ, on obtient : De manière générale, la contrôlabilité d'un système linéarisé permet (souvent) d'obtenir un résultat de contrôle local pour le système non linéaire. En revanche, la non contrôlabilité du système linéarisé permet rarement de conclure quant à la contrôlabilité du système non linéaire. Il faut alors poursuivre le développement pour déterminer si les directions perdues peuvent ou non être "rattrapées" à un ordre supérieur. On développe donc à l'ordre suivant en écrivant formellement ỹ = ηa + η 2 b + O(η 3 ), où η est un petit paramètre fictif décrivant la taille du contrôle. On obtient l'équation pour le second ordre :

         a t -εa xx = u(t) [0, 1] × [0, 1], a(t, 0) = 0 [0, 1], a(t, 1) = 0 [0, 1], a(0, x) = a 0 (x) [0, 1]. ( 1 
         b t -εb xx = -aa x [0, 1] × [0, 1], b(t, 0) = 0 [0, 1], b(t, 1) = 0 [0, 1], b(0, x) = b 0 (x) [0, 1].
(1.49)

L'intuition est alors que la quantité quadratique présente au second membre de (1.49) va permettre, via un argument de signe, de nier la possibilité de retourner à zéro. Pour cela, on commence par étudier ces systèmes avec des données initiales nulles (a 0 = b 0 = 0). On cherche une projection de b (sous la forme bρ) dont on peut démontrer qu'elle a un signe en temps petit. Soit ρ ∈ H 1 0 [0, 1] un profil de projection à fixer plus tard. Puisque a dépend linéairement de u et b quadratiquement de a, il est raisonnable de penser qu'on peut écrire au temps final t = 1 une formule du type :

1 0 b(1, x)ρ(x)dx = 1 0 1 0 K ε (s 1 , s 2 )u(s 1 )u(s 2 )ds 1 ds 2 .
(1.50)

Un argument de signe sur la projection de b se traduit par une éventuelle coercivité de l'opérateur intégral correspondant au noyau K ε . En considérant les systèmes adjoints de (1.48) et (1.49), il est possible de démontrer l'égalité (1.50) et de donner l'expression du noyau :

K ε (s 1 , s 2 ) = 1 2 1 s1∨s2 1 0 Φ ε x (1 -t, x)G ε (t -s 1 , x)G ε (t -s 2 , x)dxdt, (1.51)
où les fonctions Φ ε et G ε sont données comme les solutions des systèmes de chaleur suivants :

         G ε t -εG ε xx = 0 [0, 1] × [0, 1], G ε (t, 0) = 0 [0, 1], G ε (t, 1) = 0 [0, 1], G ε (0, x) = 1 [0, 1] (1.52)
1.2. Contrôlabilité de l'équation de Burgers visqueuse

et          Φ ε t -εΦ ε xx = 0 [0, 1] × [0, 1], Φ ε (t, 0) = 0 [0, 1], Φ ε (t, 1) = 0 [0, 1], Φ ε (0, x) = ρ(x) [0, 1].
(1.53)

Comme on raisonne en temps petit, on commence par s'intéresser au noyau limite lorsque ε → 0. Sous réserve de quelques hypothèses sur le profil ρ, on obtient (au moins formellement) la limite :

K ε (s 1 , s 2 ) ∼ √ ε |2 -s 1 -s 2 | 3/2 -|s 1 -s 2 | 3/2 . (1.54)
On est amené à étudier le noyau limite du second membre de (1.54) : . Ce travail permet d'exhiber une quantité coercive au temps final. Au second ordre, le système dérive donc dans une certaine direction lors de l'application du contrôle u. Pour conclure sur le système non linéaire initial, il faut parvenir à estimer les restes (d'ordre 3 et plus) qui constituent la différence entre l'approximation de second ordre a + b et ỹ. La difficulté est d'établir des estimations de ces restes ne nécessitant que la norme H -5/4 du contrôle (qui est, a priori, plus faible que les normes habituelles pour lesquelles le système est bien posé). Cela s'avère néanmoins possible. On démontre ainsi que le système, partant d'une donnée initiale nulle, dérive dans la direction ρ. Par conséquent, si on choisit une donnée initiale dont la projection sur ρ est déjà positive, le système va continuer à s'éloigner de zéro ; ce qui permet de nier la contrôlabilité locale en temps petit.

K 0 u, u := 1 0 1 0 |2 -s 1 -s 2 | 3/2 -|s 1 -s 2 | 3/2 u(s 1 )u(s 2 )ds 1 ds 2 = 3 4 1 0 1 0 |s 1 -s 2 | -1/2 + |2 -s 1 -s 2 | -1/2

Remarques et perspectives

Ce résultat est surtout intéressant pour sa méthode. En effet, cette méthode d'analyse fine du noyau correspondant à l'approximation quadratique du système pourrait être appliquée dans de nombreuses situations où le système linéarisé ne suffit pas à conclure. On peut notamment envisager d'appliquer la méthode du noyau à des équations comme Korteweg-de-Vries ou Schrödinger dans les cas qui sont encore ouverts à ce jour. Concernant l'équation de Burgers, les extensions suivantes sont intéressantes : Perspective 3. Ce théorème n'élimine pas l'espoir de démontrer un résultat de contrôlabilité globale approchée en temps petit. En effet, on peut imaginer que le même type de raisonnement qu'utilisé précédemment (avec cette fois une couche limite à gauche et une couche limite à droite) puisse aboutir. Une piste serait de procéder en deux phases : une première phase où l'on utilise un contrôle de très grande amplitude et très oscillant pour créer des couches limites bien concentrées aux bords du domaine, puis une seconde phase où on laisse les couches limites se dissiper naturellement. On pourrait ainsi espérer démontrer la conjecture suivante : 

∀T > 0, ∀y 0 ∈ L 2 [0, 1], ∀δ > 0, ∃u ∈ L 2 [0, T ], |y u (T, •)| L 2 ≤ δ. ( 1 
∀T > 0, ∃M > 0, ∀δ > 0, ∃|y 0 | L 2 ≤ δ, ∀|u| L 2 ≤ M, |y u (T, •)| L 2 = 0. ( 1 
∃T > 0, ∀M > 0, ∃δ > 0, ∀|y 0 | L 2 ≤ δ, ∃|u| L 2 ≤ M, |y u (T, •)| L 2 = 0.
(1.59)

Contrôlabilité de l'équation de Navier-Stokes

L'équation de Navier-Stokes est sûrement l'équation la plus connue en mécanique des fluides. Dans sa version la plus simple, elle décrit le mouvement d'un fluide incompressible dont la viscosité ν > 0 est donnée. L'équation peut être utilisée pour modéliser des situations physique 2D (dans le plan) ou 3D (dans l'espace). Le coeur de l'équation se formule ainsi : Connue depuis deux siècles, elle est encore aujourd'hui au coeur de nombreuses questions ouvertes en mathématiques. On pense évidemment notamment au prix proposé par l'institut Clay pour la résolution de la question du caractère bien posé de cette équation [START_REF] Fefferman | Existence and smoothness of the Navier-Stokes equation[END_REF].

∂ t u + (u • ∇) u -ν∆u + ∇p = 0, div u = 0, (1.60 

Éléments historiques et premiers résultats

Établissement de l'équation

Historiquement, les premiers efforts de modélisation sous forme d'équation aux dérivées partielles de la dynamique des fluides remontent à Bernoulli [START_REF] Bernoulli | Sumptibus Johannis Reinholdi Dulseckeri[END_REF] dès le xviii e siècle. C'est à Euler que l'on doit la formulation, en 1755, de l'équation qui porte son nom [START_REF] Euler | Principes généraux du mouvement des fluides[END_REF]. Avec les mêmes notations que dans (1.60) : [START_REF] Navier | Mémoire sur les lois du mouvement des fluides[END_REF] et [START_REF] Gabriel | On the effect of the internal friction of fluids on the motion of pendulums[END_REF]). Ce terme modélise l'idée qu'un fluide en mouvement va dissiper de l'énergie sous forme de chaleur liée à la friction à l'échelle microscopique entre les particules. La viscosité ν est un paramètre dont l'importance est cruciale. Selon les contextes, on peut avoir ν 1 (fluides presque parfaits) ou ν 1 (fluides très visqueux comme le miel ou un glacier). L'étude de la convergence de Navier-Stokes vers Euler quand ν → 0 est un sujet de recherche très actif.

∂ t u + (u • ∇) u + ∇p = 0, div u = 0. ( 1 

Caractère bien posé de l'équation mathématique

Il faut attendre le xx e siècle pour avoir les premiers résultats mathématiques d'envergure concernant l'équation de Navier-Stokes avec les travaux de Leray. Dans l'article fondateur [START_REF] Leray | Sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF], il définit une notion de solution turbulente pour (1.60) et démontre l'existence globale de telles solutions. Dans ce paragraphe, on note Ḣs (R d ) l'espace de Sobolev homogène d'ordre s. Lemme 6. Pour toute donnée initiale u 0 ∈ L 2 (R d ), il existe une solution turbulente globale en temps à l'équation (1.60) 

avec donnée initiale u 0 , i.e. une fonction u ∈ L ∞ loc (R + , L 2 (R d )) ∩ L 2 loc (R + , Ḣ1 (R d )) satisfaisant l'inégalité d'énergie : |u(t)| 2 L 2 + 2 t 0 |∇u(s)| 2 L 2 ds ≤ |u 0 | 2 L 2 (1.62)
et vérifiant l'équation d'évolution au sens faible :

pour toute ϕ ∈ C ∞ c (R + × R d ) à divergence nulle, R d u 0 • ϕ(0, •) + R+ R d u • ∂ t ϕ + νu • ∆ϕ + u ⊗ u : ϕ = 0. (1.63)
La force de ce résultat est de garantir une existence globale en temps de la solution, y compris pour des données initiales de taille arbitraire. En revanche, ce résultat ne contient pas d'affirmation sur le caractère unique de la solution construite. Cette question importante est encore ouverte aujourd'hui. Actuellement, pour obtenir de l'unicité, on utilise des notions plus fortes de solution. Leur existence globale n'est alors plus garantie. Leray démontre ainsi :

Lemme 7. Pour toute donnée initiale u 0 ∈ H 1 (R d ), il existe un temps T > 0 et une unique solution forte à l'équation (1.60) avec donnée initiale u 0 dans l'espace C 0 [0, T ]; Ḣ1 (R d ) ∩ L 2 [0, T ]; Ḣ2 (R d ) .
En 2D, on peut prendre T = +∞. En 3D, il existe c > 0 telle que T peut être choisi égal à +∞ dès que la condition de petitesse suivante est vérifiée :

|u 0 | L 2 |∇u 0 | L 2 ≤ c.
(1.64)

Par la suite, de nombreux travaux sont venus compléter ces premiers résultats pour tenter d'affiner les espaces utilisés et d'imaginer ce qui peut se passer au voisinage d'un temps critique d'existence (quels critères d'explosion ?). On peut en particulier citer les travaux de Fujita et Kato [START_REF] Fujita | On the Navier-Stokes initial value problem[END_REF] puis Koch et Tataru [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF] qui ont abaissé la régularité demandée à la donnée initiale de H 1 à Ḣ1/2 , puis à BMO -1 .

En dimension 2, on connaît beaucoup plus de choses et les résultats obtenus sont plus satisfaisant. En effet, beaucoup de phénomènes pathologiques n'apparaissent qu'avec la dimension 3. Notamment, en 2D, il y a existence globale et unicité des solutions fortes.

Réflexion sur les conditions au bord

La plupart des travaux théoriques sur Navier-Stokes considèrent que le fluide évolue dans l'espace entier. En effet, ce cadre permet d'utiliser des outils très puissants comme l'invariance d'échelle ou les transformations de Fourier. De plus, l'essentiel des difficultés liées à l'explosion ou non de la solution sont déjà présentes. Cependant, pour les applications (et notamment l'étude des questions de contrôle), il est plus réaliste de considérer que le fluide évolue à l'intérieur d'un domaine Ω (ouvert régulier, connexe et borné). Les résultats énoncés plus hauts se transposent à ce cadre (et les difficultés demeurent).

Près des bords du domaine, il faut néanmoins imposer en plus des conditions aux limites pour fermer le système. Ces conditions aux limites peuvent traduire différentes idées physiques. La condition la plus répandue pour Navier-Stokes est la condition de non glissement ou Dirichlet qui s'énonce par : u = 0 sur ∂Ω.

(1.65)

Si cette condition est la plus utilisée (à la fois pour son expression simple et pour sa relative validité expérimentale), il en existe d'autres. En particulier, en 1823, Navier propose dans son mémoire [START_REF] Navier | Mémoire sur les lois du mouvement des fluides[END_REF] une condition autorisant un léger glissement avec frottement le long des parois. Bien sûr, les parois restent imperméables au fluide. Sa condition s'énonce : Cette condition a été justifiée rigoureusement dans [START_REF] Coron | Derivation of slip boundary conditions for the Navier-Stokes system from the Boltzmann equation[END_REF] à partir des conditions aux limites au niveau microscopique (pour l'équation de Boltzmann). Dans certaines situations physiques, il s'agit du bon modèle : turbulence avec des murs non lisses [START_REF] Edward | Lectures in mathematical models of turbulence[END_REF] ou en acoustique [START_REF] Geymonat | On the vanishing viscosity limit for acoustic phenomena in a bounded region[END_REF]. Voir [START_REF] Iftimie | Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions[END_REF] pour d'autres références bibliographiques autour de cette condition. Lorsque α est grand, on retrouve une condition proche de la condition (1.65) de non glissement. Lorsque α est petit en revanche, on obtient une sorte de glissement quasi-parfait (du moins sur un bord plat).

u • n = 0 et [D(u)n + αu] tan = 0 sur ∂Ω, ( 1 
En 2D, la condition (1.66) peut s'exprimer à l'aide du rotationnel : 

u • n = 0 et 2 (κ -α) u • τ + rot u = 0 sur ∂Ω, ( 1 
u • n = 0 et (rot u) ∧ n = 0 sur ∂Ω (1.69)
et elle correspond à une situation où α n'est plus un simple réel mais une matrice, la matrice A, dite matrice de forme du domaine et définie par Aτ = ∂ τ n pour les vecteurs tangentiels τ .

Convergence vers Euler et couches limites

Soit ν > 0 la viscosité utilisée dans l'équation de Navier-Stokes. Lorsque ν → 0, les phénomènes visqueux deviennent de moins en moins importants et le terme inertiel domine la dynamique. En notant u ν la solution de (1.60) avec une viscosité ν, on s'attend à ce que la suite de solutions construite ait une limite u 0 qui soit donnée par la dynamique d'Euler. De plus, lorsque la viscosité est ainsi évanescente, on aimerait pouvoir écrire un développement asymptotique pour décrire l'écart entre la solution d'Euler et u ν . Cette question est très étudiée et loin d'être entièrement résolue, en particulier à cause des conditions au bord.

En l'absence de bords, la convergence est très bonne (voir par exemple les travaux sur la convergence dans le cadre de l'espace entier [10], [START_REF] David | Groups of diffeomorphisms and the motion of an incompressible fluid[END_REF] ou [START_REF] Swann | The convergence with vanishing viscosity of nonstationary Navier-Stokes flow to ideal flow in R 3[END_REF]). Ce n'est en revanche pas le cas en présence de bords. Ceci est lié au fait que l'équation d'Euler est d'ordre 1 alors que Navier-Stokes est d'ordre 2. On ne peut donc pas imposer autant de conditions au bord. Le choix de la condition au bord utilisée est alors déterminant pour l'étude du comportement des couches limites. Le cas le plus étudié est celui de la condition de Dirichlet u = 0 sur ∂Ω.

Dès 1904, le physicien Prandtl donne dans [START_REF] Prandtl | Uber flussigkeits bewegung bei sehr kleiner reibung[END_REF] une équation qui porte désormais son nom et qui tente de décrire le comportement du fluide au voisinage d'une paroi lorsque la viscosité est petite. Pour simplifier l'exposé, on considère le cadre d'un demi-espace dans le plan. La paroi d'intérêt est situé en x 2 = 0 et on regarde le demi-espace supérieur x 2 > 0. On note y = x 2 / √ ν la variable rapide adéquate pour la description de l'épaisseur de la couche limite, x = x 1 la variable horizontale lente et (u, v) les deux composantes de la vitesse. L'équation de Prandtl se formule ainsi : La composante normale se déduit de la condition de divergence nulle par intégration. Par ailleurs, le terme source au second membre correspond à la pression eulérienne. La condition à la limite infinie y → ∞ correspond à l'idée que la couche limite fait le lien entre la condition de Dirichlet au bord et la dynamique non visqueuse à l'intérieure. L'équation de Prandtl a été énormément étudiée, mais sa compréhension par la communauté mathématique est encore seulement partielle. En effet, elle présente de réelles difficultés. Déjà Prandtl luimême avait noté que sa validité était probablement sujette à caution. Physiquement et numériquement, il existe de nombreux exemples de situations où la couche limite se décolle (ou se sépare) du bord ; voir [START_REF] Guyon | Hydrodynamique physique[END_REF], [START_REF] Van Dommelen | The spontaneous generation of the singularity in a separating laminar boundary layer[END_REF], [START_REF] Van Dommelen Et Stephen | On the Lagrangian description of unsteady boundary-layer separation[END_REF] ou [START_REF] Cowley | Computer extension and analytic continuation of Blasius' expansion for impulsive flow past a circular cylinder[END_REF]. Mathématiquement ensuite, on sait construire des solutions qui présentent des singularités [START_REF] Weinan | Blowup of solutions of the unsteady Prandtl's equation[END_REF] et démontrer que la version linéarisée est mal posée dans le cadre des espaces de Sobolev [START_REF] Gérard | On the ill-posedness of the Prandtl equation[END_REF]. Un des arguments clefs est l'absence de régularisation dans la direction tangentielle alors que la composante v est obtenue en intégrant verticalement la quantité ∂ x u. Il y a une perte de dérivée qui n'est pas compensée par de la régularisation.

           ∂ t u + u∂ x u + v∂ y u -∂ yy u = ∂ t u 0 + u 0 ∂ x u 0 |∂Ω [0, T ] × R × R + , ∂ x u + ∂ y v = 0 [0, T ] × R × R + , u = v = 0 [0, T ] × R × {0}, lim y→∞ u = u 0 |∂Ω [0, T ] × R.
Des résultats positifs sont connus dans deux cadres. Le premier cadre est celui où l'on suppose que les données initiales satisfont une condition de monotonie en y qui permet d'empêcher le décollement. Les résultats les plus connus sont dus à Oleinik [START_REF] Oleinik | Samokhin : Mathematical models in boundary layer theory[END_REF], [START_REF] Oleȋnik | On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid[END_REF]. Voir aussi [START_REF] Xin | On the global existence of solutions to the Prandtl's system[END_REF]. Le second cadre est celui des données initiales analytiques, notamment avec les travaux de Sammartino et Caflisch [START_REF] Maria | Well-posedness of the boundary layer equations[END_REF], [START_REF] Sammartino | Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations[END_REF] et [START_REF] Sammartino | Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution[END_REF].

Pour un panorama des résultats connus, voir [START_REF] Weinan | Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation[END_REF] par E ou [START_REF] Nickel | Prandtl's boundary-layer theory from the viewpoint of a mathematician[END_REF] par Nickel.

Résultats de contrôlabilité connus

La question du contrôle de l'équation de Navier-Stokes remonte au moins aux travaux de Lions. Elle figure ainsi comme problème ouvert dans [START_REF] Lions | Exact controllability for distributed systems. Some trends and some problems[END_REF] en 1991. Le problème ouvert de référence s'énonce ainsi. Soit Ω ⊂ R d (d = 2 ou 3) un ouvert connexe régulier et Γ une partie de sa frontière ∂Ω sur laquelle le contrôle va agir. On considère le système de contrôle :

         ∂ t u + (u • ∇) u -∆u + ∇p = 0 [0, T ] × Ω, div u = 0 [0, T ] × Ω, u = 0 [0, T ] × ∂Ω \ Γ, u(0, •) = u 0 Ω. (1.71) 
On voit le système (1.71) comme un système sous-déterminé dans lequel on a omis de préciser les conditions au bord le long de Γ. Ces conditions manquantes correspondent à la possibilité d'y exercer un contrôle, avec des flux entrants ou sortants, tel qu'illustré ci-dessous :

Ω ∂Ω \ Γ Γ u = 0 Figure 1.1 -Situation du problème de contrôle (1.71).
La question ouverte et difficile est de savoir si ce système est globalement contrôlable à zéro en temps petit. Est-ce que, pour tout temps T > 0 et toute donnée initiale u 0 (choisie dans un espace raisonnable), il existe une trajectoire u de (1.71) telle que u(T, •) = 0. De nombreux travaux ont été menés dans cette direction et on présente dans cette thèse un résultat qui semble être un pas important vers la résolution positive de cette question.

Méthodes dédiées aux résultats locaux

Une première façon d'aborder l'équation de Navier-Stokes est de voir le terme quadratique comme une perturbation et d'obtenir la contrôlabilité à l'aide du laplacien. Par exemple, dans [START_REF] Fabre | Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems[END_REF], Fabre utilise un procédé de troncature. Dans [START_REF] Lions | Exact boundary controllability of Galerkin's approximations of Navier-Stokes equations[END_REF], Lions et Zuazua utilisent une approximation de Galerkin pour différents systèmes de mécanique des fluides. Bien sûr, cette approche est surtout efficace pour obtenir des résultats locaux.

Imanuvilov démontre dans [START_REF] Yu | Imanuvilov : Remarks on exact controllability for the Navier-Stokes equations[END_REF] un résultat de contrôle local en temps petit aux trajectoires régulières. Formulé dans le cadre de la contrôlabilité à zéro, on a :

Lemme 8. Soit T > 0. Il existe δ > 0 tel que, pour toute donnée initiale u 0 ∈ H 1 0 (Ω) de divergence nulle et satisfaisant |u 0 | H 1 ≤ δ, il existe une solution u régulière de (1.71) telle que u(T, •) = 0.
Ce résultat a depuis été amélioré dans [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF] par Fernández-Cara, Guerrero, Imanuvilov et Puel. Leur démonstration utilise des estimations de Carleman. Ils étendent la contrôlabilité locale vers des trajectoires moins régulières (il n'est plus nécessaire de les supposer C ∞ ). Dans le cadre de la contrôlabilité à zéro, ce nouveau résultat ne change pas la donne car la trajectoire identiquement nulle est déjà très régulière. La seule différence est que l'hypothèse de petitesse de la donnée initiale est un peu plus faible.

Dans le cadre des conditions au bord de Navier, des résultats ont aussi été démontrés. Dans [105], les auteurs démontrent un résultat de contrôlabilité locale à zéro en temps petit valable en 2D. Dans [START_REF] Guerrero | Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions[END_REF], Guerrero, démontre la contrôlabilité locale à zéro en temps petit en 2D et en 3D pour des conditions au bord de type Navier plus générales (et notamment non linéaires). D'autres approches existent. Dans [START_REF] Agrachev | Navier-Stokes equations : controllability by means of low modes forcing[END_REF], Agrachev et Sarychev contrôlent l'équation de Navier-Stokes avec des modes basses fréquences. Ils utilisent des méthodes de géométrie différentielle et la théorie des algèbres de Lie pour des systèmes de contrôle en dimension finie.

Plus récemment, Chaves-Silva et Lebeau ont élaboré une nouvelle preuve de la contrôlabilité à zéro pour le système de Stokes reposant sur une inégalité spectrale pour les fonctions propres du Laplacien pour le problème de Stokes dans [START_REF] Chaves-Silva | Spectral inequality and optimal cost of controllability for the stokes system[END_REF].

Contrôlabilité de l'équation d'Euler

À l'inverse, pour obtenir des résultats globaux, il vaut mieux adopter le point de vue opposé. Déjà en dimension finie, il est connu que, si un système du type ẏ = F (y) + Bu où F est quadratique est contrôlable, alors le système ẏ = F (y) + Ay + Bu est aussi contrôlable (voir [START_REF] Coron | On the controllability of nonlinear partial differential equations[END_REF]Theorem 3.8]).

De même, pour les systèmes issus de la mécanique des fluides, obtenir un résultat de contrôlabilité en temps petit demande de travailler à grand nombre de Reynolds (c'est-à-dire avec de grandes vitesses de fluides et une petite viscosité) à l'intérieur du domaine d'intérêt. Ainsi, les forces convectives dominent et le système fluide se comporte presque comme son équivalent non visqueux. Dans notre cas, pour Navier-Stokes, on espère donc pouvoir déduire des résultats globaux à partir de la contrôlabilité d'Euler.

Les résultats de contrôlabilité globale pour Euler reposent tous sur la méthode du retour, introduite par Coron dans [START_REF] Coron | Global asymptotic stabilization for controllable systems without drift[END_REF] (voir aussi [55, Chaptitre 6]). Le système considéré est alors :

         ∂ t u + (u • ∇) u + ∇p = 0 [0, T ] × Ω, div u = 0 [0, T ] × Ω, u • n = 0 [0, T ] × ∂Ω \ Γ, u(0, •) = u 0 Ω. (1.72)
La contrôlabilité globale exacte entre des états réguliers à été démontrée par Coron dans [START_REF] Coron | Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels[END_REF] pour des domaines 2D simplement connexes, puis dans [START_REF] Coron | On the controllability of 2-D incompressible perfect fluids[END_REF] pour des domaines 2D quelconques sous l'hypothèse que Γ rencontre toutes les composantes connexes de ∂Ω. Glass a ensuite adapté l'argument pour des domaines 3D (sous la même hypothèse), dans [START_REF] Glass | Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles en dimension 3[END_REF] pour les domaines simplement connexes puis dans [START_REF] Glass | Exact boundary controllability of 3-D Euler equation[END_REF] pour des domaines généraux. Glass a aussi étudié dans [START_REF] Glass | An addendum to a J. M. Coron theorem concerning the controllability of the Euler system for 2D incompressible inviscid fluids[END_REF] les obstructions à la contrôlabilité globale en 2D dans le cas d'un domaine non simplement connexe lorsque Γ ne rencontre pas toutes les composantes connexes du bord.

Toutes les références citées ci-dessus reposent sur l'utilisation de la méthode du retour. Soit Cette invariance d'échelle permet de restreindre la preuve au cas des temps longs et des données initiales petites. L'idée est ensuite d'utiliser un développement de la forme :

ũε (t, x) = u 0 (t, x) + εu 1 (t, x) + O(ε 2 ).
(1.73)

Dans (1.73), u 0 représente la trajectoire de référence autour de laquelle on est train de linéariser l'équation et u 1 représente ce premier ordre linéarisé (qui contient la donnée initiale : u 1 (0, •) = u a ). Les équations satisfaites par les deux premiers ordres sont :

           ∂ t u 0 + u 0 • ∇ u 0 + ∇p 0 = 0 [0, T ] × Ω, div u 0 = 0 [0, T ] × Ω, u 0 • n = 0 [0, T ] × ∂Ω \ Γ, u 0 (0, •) = 0 Ω (1.74) et            ∂ t u 1 + u 0 • ∇ u 1 + u 1 • ∇ u 0 + ∇p 1 = 0 [0, T ] × Ω, div u 1 = 0 [0, T ] × Ω, u 1 • n = 0 [0, T ] × ∂Ω \ Γ, u 1 (0, •) = u a Ω.
(1.75)

Au niveau du profil de référence u 0 , on a une liberté totale. La seule contrainte est de revenir à 0 au temps final (méthode du retour) ! Au niveau du profil u 1 , on constate qu'il est globalement transporté par u 0 . L'idée est donc de construire une trajectoire u 0 qui, dans l'intervalle de temps considéré, parvient à vider complètement le domaine de tout son contenu initial. D'un point de vue lagrangien, toutes les particules doivent être sorties du domaine avant l'instant final. Formellement, ceci peut s'écrire en introduisant le flot de l'équation. L'analyse de l'équation (1.75) se fait souvent à l'aide de la vorticité. En effet, en notamment ω 1 = rot u 1 , on obtient (en 3D et sous l'hypothèse rot u 0 = 0) :

∂ t ω 1 + u 0 • ∇ ω 1 + ω 1 • ∇ u 0 = 0 [0, T ] × Ω, ω 1 (0, •) = rot u a Ω. (1.76)
En raisonnant en termes de support, même si ω 1 subit un terme d'amplification, le flot u 0 va le faire sortir hors du domaine. La construction de u 0 est plus ou moins complexe selon la dimension. En dimension 2, quand le domaine Ω est simplement connexe, on peut chercher u 0 sous la forme u 0 (t, x) = β(t)∇θ(x). Ainsi, on sépare les variables (ce qui permet de retourner facilement à zéro) et on a un écoulement irrotationnel. Comme div u 0 = 0, le profil θ s'obtient en résolvant un problème elliptique.

Navier-Stokes et couches limites

Hélas, le passage d'Euler à Navier-Stokes ne se fait pas sans heurt. En effet, près des parois non contrôlées ∂Ω \ Γ, des couches limites peuvent se former. Il s'agit de zones de faible épaisseur faisant la transition entre la dynamique non visqueuse qui régit le mouvement loin des parois et la condition au bord choisi pour le système visqueux. La compréhension de ces couches limites et de la façon dont elles interagissent avec le contrôle est au centre de cette thèse.

Pour éviter cet écueil, la première idée qui vient à l'esprit est de ne pas vivre cette situation en imposant ∂Ω \ Γ = ∅. Ainsi, dans [START_REF] Coron | Fursikov : Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary[END_REF], Coron et Fursikov démontrent un résultat de contrôlabilité globale à zéro en temps petit lorsque le domaine considéré est une variété sans bord (le contrôle étant alors interne). Dans le même esprit, Fursikov et Imanuvilov [START_REF] Fursikov | Exact controllability of the Navier-Stokes and Boussinesq equations[END_REF] démontrent un résultat de contrôlabilité globale à zéro en temps petit lorsque le contrôle agit sur l'ensemble de la paroi (Γ = ∂Ω). Dans ces deux cas, il n'y a aucune couche limite car il n'y a pas de paroi non contrôlée.

Une autre méthode pour ne pas avoir de couche limite est de choisir une condition au bord plus favorable. Dans une géométrie simple (un rectangle en 2D), Chapouly démontre dans [START_REF] Chapouly | On the global null controllability of a Navier-Stokes system with Navier slip boundary conditions[END_REF] un résultat de contrôlabilité globale à zéro en temps petit lorsque avec la condition rot u = 0 sur les parois non contrôlées. En notant [0, L] × [0, 1] le rectangle considéré, son contrôle agit sur les parois verticales en x 1 = 0 et x 1 = L. Les bords non contrôlés sont les parois horizontales en x 2 = 0 et x 2 = 1. La contrôlabilité de Navier-Stokes est ici déduite de celle d'Euler en utilisant une trajectoire u 0 explicite de la forme u 0 (t, x) = (α(t), 0). Ainsi, la trajectoire d'Euler satisfait déjà les conditions au bord et il n'y a donc pas de couche limite.

Dans le cas des conditions aux limites de Navier (qui sont moins favorables que la condition de Lions), Coron démontre dans [START_REF] Coron | On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions[END_REF] un résultat de contrôlabilité globale approchée vers zéro en temps petit. Il démontre que, si dans l'intérieur du domaine on peut obtenir une contrôlabilité quasi-exacte à zéro, ce n'est pas le cas près du bord. La contrôlabilité approchée est obtenue en norme W -1,∞ , ce qui n'est pas assez fort pour conclure avec un résultat local. Les couches limites résiduelles sont trop importantes et n'ont pas été maîtrisées pendant la stratégie de contrôle.

Pour les conditions de Dirichlet (les plus difficiles mathématiquement), Guerrero, Imanuvilov et Puel démontrent dans [START_REF] Guerrero | Remarks on global approximate controllability for the 2-D Navier-Stokes system with Dirichlet boundary conditions[END_REF] (resp. [START_REF] Guerrero | A result concerning the global approximate controllability of the Navier-Stokes system in dimension 3[END_REF]) pour un carré (resp. un cube) dont un côté (resp. une face) n'est pas contrôlé(e), un résultat qui ressemble à de la contrôlabilité globale approchée en temps petit. La méthode consiste à ajouter un terme source (sous la forme d'une force au second membre de l'équation d'évolution) pour absorber la couche limite. Ils démontrent que cette force est petite dans L p ([0, T ]; H -1 (Ω)), pour 1 < p < 4/3 (en 3D). Hélas, ceci ne suffit pas à conclure quant à la possibilité de faire du vrai contrôle global approché car la norme obtenue est trop faible et il est donc impossible de passer à la limite. La situation rappelle le résultat de Coron dans le cas des conditions de Navier.

Tous ces résultats conduisent à penser qu'il faut absolument étudier les couches limites pour pouvoir conclure dans le cas du système (1.71).

Nouveau résultat : contrôlabilité globale à zéro avec Navier au bord

Pour avancer dans la résolution du grand problème ouvert concernant la contrôlabilité globale de Navier-Stokes en temps petit lorsque le contrôle n'agit que sur une partie de la frontière, on s'intéresse dans cette thèse à une situation analogue au système (1.71) mais avec une condition au bord de type Navier avec frottement (plutôt que du Dirichlet pur). Il s'agit d'une étape intermédiaire importante. En effet, jusqu'à présent, il n'y avait pas de résultat de contrôlabilité globale en temps petit en présence de couches limites.

Heuristiquement, la démarche consiste à combiner trois idées. Premièrement, Coron a démontré dans [START_REF] Coron | On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions[END_REF] qu'on pouvait utiliser la contrôlabilité d'Euler pour obtenir une contrôlabilité excellente dans l'intérieur du domaine dans le cas des conditions de Navier (mais pas jusqu'aux bords). Deuxièmement, Iftimie et Sueur ont démontré dans [START_REF] Iftimie | Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions[END_REF] qu'il était possible d'écrire un développement asymptotique de la couche limite créée par des conditions au bord de type Navier lorsque la viscosité tend vers 0. Troisièmement, on a vu dans cette thèse, pour le cas de l'équation de Burgers [START_REF] Marbach | Small time global null controllability for a viscous Burgers' equation despite the presence of a boundary layer[END_REF], que le fait de pouvoir calculer explicitement l'état des couches limites permettait de démontrer leur auto-dissipation par la partie régularisante de l'équation des fluides.

Énoncé du résultat

Soit d = 2 ou 3 et Ω ⊂ R d un ouvert connexe borné régulier (on suppose par exemple que sa frontière est C 2 . Il n'est pas nécessaire de supposer que Ω est simplement connexe. Soit Γ une partie ouverte de ∂Ω. On suppose que Γ rencontre toutes les composantes connexes de ∂Ω. Cette hypothèse est nécessaire pour notre démonstration. Soit α un coefficient de frottement. Les modèles les plus simples font intervenir un α scalaire, constant et positif. Aucune de ces hypothèses n'est nécessaire à notre démonstration. Il est possible de choisir α : ∂Ω → M d×d (R) une fonction régulière du bord à valeur dans l'espace des matrices. On considère le système :

         ∂ t u + (u • ∇) u -∆u + ∇p = 0 [0, T ] × Ω, div u = 0 [0, T ] × Ω, u • n = 0 [0, T ] × ∂Ω \ Γ, [D(u) + αu] tan = 0 [0, T ] × ∂Ω \ Γ.
(1.77) Dans cette thèse, j'ai démontré le théorème suivant en collaboration avec Jean-Michel Coron et Franck Sueur (article en cours finition) :

Théorème 7. Soit T > 0 et u * ∈ L 2 (Ω) une donnée initiale à divergence nulle et tangente aux bords. Il existe une solution faible u ∈ C 0 [0, T ]; L 2 (Ω) ∩ L 2 [0, T ]; H 1 (Ω) qui est une trajectoire de (1.77) telle que u(0, •) = u * et u(T, •) = 0.
Dans cette formulation (et comme cela est souvent le cas en contrôle de systèmes issus de la mécanique des fluides), le contrôle utilisé n'apparaît que de manière implicite. On démontre l'existence d'une trajectoire à un système sous-déterminé. Les contrôles s'obtiennent comme les traces appropriées de la trajectoire construite.

Éléments de démonstration

Cadre géométrique simplifié On donne ici des éléments de démonstration de ce résultat dans le cas d'un domaine rectangulaire en 2D. Ce cadre permet de simplifier les notations tout en préservant l'essentiel des idées. Les arguments s'adaptent en effet sans difficulté à la 3D et aux domaines de formes quelconques. On travaille donc dans un domaine Ω = [0, L] × (-1, 1) où L > 0 décrit la longueur du rectangle. On notera x = (x 1 , x 2 ) les coordonnées d'un point du domaine. De même, on notera u = (u 1 , u 2 ) les deux composantes de la vitesse du fluide. Ainsi, u vérifie :

     ∂ t u 1 + u 1 ∂ 1 u 1 + u 2 ∂ 2 u 1 -∆u 1 = -∂ 1 p, ∂ t u 2 + u 1 ∂ 1 u 2 + u 2 ∂ 2 u 2 -∆u 2 = -∂ 2 p, ∂ 1 u 1 + ∂ 2 u 2 = 0. (1.78)
On voit ce domaine comme une sorte de rivière ou de tube à l'intérieur duquel s'écoule un fluide. On peut agir sur le fluide aux deux extrémités ouvertes Γ 0 = {0} × (-1, 1) et Γ L = {L} × (-1, 1). En revanche, sur les deux parois horizontales Γ ± = [0, L] × {±1} on suppose qu'on ne peut pas agir et que le fluide obéit à une condition au bord de type Navier avec un frottement α ≥ 0 (pour fixer les idées). Dans notre cadre géométrique simplifié (bords plats, horizontaux), la condition (1.66) se traduit par :

u 2 = 0 et ∂ n u 1 + 2αu 1 = 0 sur Γ -∪ Γ + .
(

La condition (1.79) traduit un frottement qui va engendrer des couches limites le long des parois horizontales. On a noté ∂ n la dérivée dans la direction de la normale extérieure à la paroi.

Changement d'échelle et développement asymptotique

On fixe T le temps imparti pour réaliser la contrôlabilité à zéro et u * la donnée initiale à contrôler. On introduit comme d'habitude une petite échelle ε 1 pour échanger le temps petit contre une viscosité petite. On note u ε (t, x) := εu(εt, x) et p ε (t, x) := ε 2 p(εt, x) qui sont maintenant solutions (sur un temps long) de :

               ∂ t u ε + (u ε • ∇) u ε -ε∆u ε = -∇p ε on [0, T /ε] × Ω, div u ε = 0 on [0, T /ε] × Ω, u ε 2 = 0 on [0, T /ε] × Γ ± , ∂ n u ε 1 + 2αu ε 1 = 0 on [0, T /ε] × Γ ± , u ε | t=0 = εu * on Ω.
(1.80)

En suivant le développement proposé par Iftimie et Sueur dans [START_REF] Iftimie | Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions[END_REF], on écrit :

u ε (t, x) = u 0 (t, x) + √ εv t, x, ϕ(x) √ ε + εu 1 (t, x) + ε 5/4 R ε (t, x). (1.81)
La pression est aussi développée selon la même échelle : 

p ε (t, x) = p 0 (t, x) + εp 1 (t, x) + ε 5/4 π ε (t, x). ( 1 
(T /ε, •)| L 2 (Ω) = o(ε).
Ainsi, dans l'espace initial, on aura construit une suite de solutions telles que |u(T, •)| L 2 (Ω) = o(1) en partant de la donnée initiale u * . Par conséquent, il sera possible de conclure grâce aux résultats déjà connus de contrôlabilité locale pour Navier-Stokes.

Pour mener à bien cette idée, nous allons choisir u 0 tel que u 0 (T /ε, •) = u 1 (T /ε, •) = 0. Nous allons aussi choisir u 0 de sorte à ce que la couche limite v se dissipe suffisamment bien. Le reste R ε n'est pas problématique. En effet, il est précédé d'un facteur ε 5/4 et est donc petit (sous réserve qu'on démontre que son équation d'évolution est bien posée).

Trajectoire eulérienne de référence À l'ordre O(1), le profil u 0 vérifie une équation d'Euler et est de type méthode du retour (donc part de zéro et y revient). Grâce au cadre géométrique rectangulaire, on peut choisir ce profil sous la forme extrêmement simple u 0 (t, x) := h(t)e 1 , où h est une fonction régulière de t. La pression est donnée par p 0 (t, x) := -ḣx 1 . Le couple (u 0 , p 0 ) est solution de l'équation d'Euler. On choisit h ∈ C ∞ (R + ) telle que :

h(0) = 0, (1.83) h(t) ≥ 0 for t ≤ T /2, (1.84) T /2 0 h(t)dt ≥ 2L, (1.85 
) Terme correctif de couche limite À l'ordre O( √ ε), on introduit le profil de correction de couche limite. Sa condition initiale est nulle. Grâce au cadre géométrique simplifié, ce profil est uniquement horizontal. On peut de plus supposer qu'il ne dépend pas de x 1 (ce qui a pour conséquence d'assurer qu'il est à divergence nulle). On écrit donc v(t, x, z) = 2αθ(x 2 )V (t, z)e 1 , où V est défini par :

h(t) = 0 for t ≥ T, (1.86) T 0 h(t)dt = 0. ( 1 
     ∂ t V -∂ zz V = 0, t ≥ 0, z ≥ 0, ∂ z V (t, 0) = h(t), t ≥ 0, z = 0, V (0, z) = 0, t = 0, z ≥ 0. (1.88)
De plus, θ est une fonction régulière vérifiant θ(±1) = 1 et telle que supp(θ) est contenu dans un voisinage du bord. On impose aussi ϕ θ = 2α pour x 2 = ±1 (afin d'éliminer la couche limite d'ordre supérieur).

Une des idées clefs de la méthode est de ne pas chercher à ramener V à zéro à l'aide du contrôle (ni exactement, ni de manière approchée). Le rôle du contrôle à ce stade est de garantir que V atteint à l'instant T un état bien préparé qui assure que la dissipation naturelle liée à la chaleur sur la demi-droite {z > 0} soit suffisante pour s'occuper elle-même de ramener V vers 0 sur la plage de temps (T, T /ε) qui correspond donc à un temps long et permet d'espérer une bonne dissipation.

Vidange de l'état initial par advection

On se place à l'ordre O(ε). C'est ici que la donnée initiale u * intervient. Ainsi, la condition initiale pour le profil u 1 est u 1 (0, •) = u * . Grâce à la forme du profil eulérien choisi, on a :

∂ t u 1 + h(t)∂ x1 u 1 = -∇p 1 , div u 1 = 0. (1.89)
De plus, il est clair que la donnée initiale va être entièrement transportée hors du domaine dès le temps T /2 grâce aux hypothèses (1.84) et (1.85) faites sur le profil h. À partir du temps T /2, pour que u 1 reste nul, il suffit d'imposer des contrôles nuls au bord. Pour plus de clarté, on construit explicitement le profil u 1 à partir de u * . 1) On remarque qu'il est possible de supposer que u * est régulier. En effet, si ce n'est pas le cas, il suffit de laisser le système de Navier-Stokes initial évoluer librement pendant un petit temps (quitte à étendre le domaine pour en faire un domaine régulier sans coin et à étendre la donnée initiale). Par régularisation, on peut donc supposer que u * est très régulier.

2) De plus, on peut aussi supposer que la moyenne de u * 1 est nulle. Ceci résulte de la condition de divergence nulle. Comme on peut choisir les contrôles sur les bords verticaux, on peut par exemple les choisir nuls (en choisissant un raccord régulier avec la donnée initiale). Dès que ces contrôles sont nuls, le fluide est coincé dans le rectangle et la condition de divergence nulle indique que

+1 -1 u * 1 (t, x 1 , x 2 )dx 2 = 0 pour tout 0 < x 1 < L.
3) Enfin, on peut encore supposer que u * satisfait les conditions au bord de Navier. Si ce n'est pas le cas initialement, il suffit là aussi de laisser le système évoluer un court instant.

4) On peut étendre u * en ū, fonction régulière à support compact dans (-L/2, 3L/2) × (-1, 1) et satisfaisant les conditions au bord de Navier. Introduisons la fonction de courant associée à u * :

φ * (x 1 , x 2 ) := x2 -1 u * 1 (x 1 , x )dx . (1.90) Ainsi φ * (•, ±1) = 0. De plus, x 2 ∂ 22 φ * + 2α∂ 2 φ * = 0 pour x 2 = ±1.
Comme u * est régulière, φ * aussi. On voit φ * comme une fonction régulière de [0, L] dans A où :

A := ϕ ∈ C 3 ([-1, 1]), t.q. ϕ = x 2 ∂ 22 ϕ + 2α∂ 2 ϕ = 0 pour x 2 = ±1 . (1.91)
On peut donc étendre φ * en φ ∈ C 3 0 ((-L/2, 3L/2), A). On pose alors ū = (∂ 2 φ, -∂ 1 φ) qui définit une extension C 3 à support compact de u * , à divergence nulle et satisfaisant les conditions de Navier au bord.

5) On pose alors, pour t ≤ T /2,

u 1 (t, x 1 , x 2 ) := ū(x 1 - t 0 h(s)ds, x 2 ). (1.92) 
Pour t ≥ T /2, on pose u 1 (t, •) ≡ 0. On a ainsi construit explicitement le profil u 1 qui s'annule à partir de T /2 et qui peut être choisi très régulier. 

Équation satisfaite par le reste

∂ t R ε -ε∆R ε + (u ε • ∇) R ε + AR ε = -∇π ε + F ε -G ε , (1.93)
où on introduit les notations :

AR ε := ε (R ε • ∇) u 1 + R ε 2 ϕ ∂ z v + √ ε∂ 2 v , ( 1.94 
)

F ε := ε 1/4 ∂ 22 v + 2ϕ ε -1/4 ∂ 2z v + ε 3/4 ∆u 1 , (1.95) G ε := ε 3/4 u 1 • ∇ u 1 + ε 1/4 (v • ∇)u 1 + ε 1/4 u 1 2 ∂ 2 v + ε -1/4 u 1 2 ϕ ∂ z v. (1.96)
Dans (1.95) et (1.96), les seconds membres sont au plus de taille O(1) dans L 1 (R + , L 2 (Ω)). En effet, malgré les facteurs singuliers en ε -1/4 , comme ils dépendent de la variable rapide, on regagne un facteur ε +1/4 grâce au jacobien du changement de variables.

La condition de Navier tangentielle correspond au noyau de l'opérateur ∂ n +2α = -ϕ ∂ 2 +2α appliqué à la partie tangentielle du champ de vitesse. En utilisant l'égalité

∂ x2 f (t, x 2 , ϕ(x2) √ ε ) = ∂ 2 f + ϕ √ ε ∂ z f , la condition au bord se traduit par : -∂ z v + 2αu 0 = 0, (1.97) -ϕ ∂ 2 v + 2αv = 0, (1.98) -ϕ ∂ 2 u 1 1 + 2αu 1 1 = 0, (1.99) -ϕ ∂ 2 R ε 1 + 2αR ε 1 = 0. (1.100)
La condition au premier ordre (1.97) est celle qui a motivé l'introduction de la couche limite v. Elle est donc vérifiée. Pour simplifier les calculs, une astuce est d'ajuster θ tel que ϕ θ = 2α. Ceci permet de garantir automatiquement (1.98). Les deux conditions suivantes correspondent à l'idée que u 1 et R ε satisfont des conditions de Navier avec frottement homogènes.

Dissipation autonome de la couche limite Grâce au choix du profil d'Euler h, on obtient une très bonne décroissance pour le profile de couche limite V . Cette décroissance sera utilisée de deux manières différentes. D'une part, pour démontrer que les termes sources générés par la couche limite dans l'équation du reste (1.93) sont intégrables en temps long (ce qui est nécessaire pour que l'équation du reste soit bien posée). D'autre part pour démontrer que la couche limite est toute petite à l'instant final (ce qui est nécessaire pour appliquer un résultat local). On a :

Lemme 9. Soit T > 0 et h ∈ C ∞ (R + ). On suppose que h vérifie (1.83), (1.86) et (1.87). On considère V la solution de (1.

88). Alors il existe C(T, h) telle que les estimations suivantes soient vérifiées :

V L 1 (R+,H 2 (R+)) ≤ C(T, h).
(1.101)

V (t, •) H 2 (R+) ≤ C(T, h) ln t t 5/4
pour t > 0.

(1.102)

Démonstration. On utilise la transformée de Fourier pour calculer la norme H 2 de V . On commence par introduire W tel que V (t, z) = -h(t)e -z + W (t, z). Ainsi, on doit avoir W z (t, 0) ≡ 0. Pour assurer cette condition, on étend W par parité sur R. On obtient le système :

∂ t W -∂ zz W = ( ḣ(t) -h(t))e -|z| , t ≥ 0, z ∈ R, W (0, z) = 0, t = 0, z ∈ R. (1.103) 
Comme le terme source de (1.103) est pair, il est clair que la condition au bord W z (t, 0) = 0 restera satisfaite pour tout t ≥ 0. Après transformation de Fourier et résolution de l'EDO correspondante, on obtient la formule :

Ŵ (t, ζ) = 2 1 + ζ 2 t 0 e -ζ 2 (t-s) ( ḣ(s) -h(s))ds.
(1.104)

En utilisant l'hypothèse (1.86) (h ≡ 0 après T ) dans (1.104), on exprime pour t ≥ 0 : 

W (t, •) 2 H 2 (R) = R (1 + ζ 2 ) 2 Ŵ (t, ζ) 2 dζ = 4 R min(t,T ) 0 ḣ(s) -h(s) e -ζ
ζ 2 t 0 e -ζ 2 (t-s) h(s) -ḣ(s) ds = e -ζ 2 (t-s) h(s) -ḣ(s) t 0 - t 0 e -ζ 2 (t-s) ḣ(s) -ḧ(s) ds. (1.106)
En utilisant (1.106) et la régularité de h, on obtient :

t 0 e -ζ 2 (t-s) h(s) -ḣ(s) ds ≤ 1 ζ 2 (4 |h| C 1 + T |h| C 2 ) . (1.107)
Pour estimer la norme de W pour t ≤ 3T , on sépare l'intégrale autour du seuil |ζ| = 1 et on combine (1.105) avec (1.107). Lorsque T ≤ t ≤ 3T , on ignore même la régularisation supplémentaire qui a lieu entre T et t. On obtient :

W (t, •) 2 H 2 (R) ≤ 4 |ζ|≤1 min(t,T ) 0 h -ḣ 2 + 4 |ζ|≥1 1 ζ 4 (4 |h| C 1 + T |h| C 2 ) 2 ≤ C 1 (T, h). (1.108)
Estimations pour des temps longs. Soit t ≥ 3T . On choisit ρ > 0 (un taux de décroissance à fixer plus tard). On coupe l'intégrale au seuil e -ζ 2 t ≤ t -ρ , soit |ζ| ≥ ρ ln t t 1/2

. Cette fréquence de coupure tend vers 0 quand t → +∞. On estime ainsi l'énergie contenue aux hautes fréquences :

W # (t) := 4 |ζ|≥| ρ ln t t | 1/2 T 0 (h(s) -ḣ(s))e -ζ 2 (t-s) ds 2 dζ ≤ 4 |ζ|≥| ρ ln t t | 1/2 e -ζ 2 t e -ζ 2 T T 0 (h(s) -ḣ(s))e -ζ 2 (T -s) ds 2 dζ ≤ 4t -ρ • R e -ζ 2 T dζ • T 0 |h -ḣ| 2 ≤ 4 π T • t -ρ • T 0 |h -ḣ| 2 .
(1.109)

Pour les basses fréquences :

W (t) := 4 |ζ|≤| ρ ln t t | 1/2 T 0 (h(s) -ḣ(s))e -ζ 2 (t-s) ds 2 dζ ≤ 8 ρ ln t t 1/2 • sup |ζ|≤| ρ ln t t | 1/2 e -ζ 2 τ T 0 (h(s) -ḣ(s))e ζ 2 s ds 2 .
(1.110)

Comme T est fixé et ζ est petit, on utilise la formule de Taylor e x -k≤N

x k k! ≤ e x x N +1 (N +1)! . Ainsi, T 0 (h(s) -ḣ(s))e ζ 2 s ds - T 0 (h(s) -ḣ(s)) N k=0 (sζ 2 ) k k! ds ≤ T 0 |h(s) -ḣ(s)|e sζ 2 (sζ 2 ) N +1 (N + 1)! ds T 0 (h(s) -ḣ(s))e ζ 2 s ds ≤ e T ζ 2 (T ζ 2 ) N +1 (N + 1)! • T 0 |h -ḣ|.
(1.111)

Pour cette estimation, on a besoin que h(0) = h(T ) = 0 et T 0 s j h(s)ds = 0 pour 0 ≤ j ≤ N . Ces hypothèses impliquent en particulier T 0 s j ḣ(s)ds = 0 pour 0 ≤ j ≤ N + 1. D'après (1.110) et (1.111), on a : 

W (t) ≤ 8T 2N +2 (N + 1)! 2 • ρ ln t t 2N +5/2 • T 0 |h -ḣ| 2 . ( 1 
W (t, •) H 2 (R) ≤ C 2 (T, h) ln t t 5/4 . (1.113) Or, V (t, z) = W (t, z) -h(t)e -z pour z ≥ 0. Ainsi, grâce à (1.86), V (t, z) = W (t,
1 2 d dt Ω (R ε ) 2 + ε Ω |∇R ε | 2 + 2α Γ± (R ε 1 ) 2 = Ω (AR ε )R ε + Ω (F ε -G ε )R ε . (1.114)
En ignorant les termes dissipatifs (dont le signe est ici connu), on obtient par Cauchy-Schwartz :

d dt |R ε (t, •)| L 2 ≤ |A(t, •)| L ∞ |R ε (t, •)| L 2 + |F ε (t, •)| L 2 + |G ε (t, •)| L 2 . (1.115)
Puis, grâce au lemme de Grönwall :

R ε L ∞ (L 2 ) ≤ F ε L 1 (L 2 ) + G ε L 1 (L 2 ) exp A L 1 (L ∞ ) . (1.116)
Pour estimer les tailles des termes sources et multiplicatifs qui apparaissent dans (1.116), on a besoin du lemme suivant (qui est une version simplifiée de [108, Lemme 3, page 150]) qui permet de gagner un facteur ε 1/4 lié au jacobien du changement de variables lorsque l'on estime un terme de couche limite.

Lemme 10. Soit β ∈ C 0 [-1, 1] tel que β ≡ 0 sur -1 2 , 1 2 . Pour tout γ ∈ L 2 (R + ) et ε > 0 : x 2 → β(x 2 )γ ϕ(x 2 ) √ ε L 2 [-1,1] ≤ 2ε 1/4 |β| ∞ |γ| L 2 (R+) . (1.117)
Démonstration. Près des parois, on avait supposé ϕ = 1. Ainsi, près du bord inférieur, ϕ(x 2 ) = 1 + x 2 donne, par un changement de variable affine :

1 2 -1 β 2 (x 2 )γ 2 ϕ(x 2 ) √ ε dx 2 = √ ε 1 2 √ ε 0 β 2 ( √ εz -1)γ 2 (z)dz ≤ √ ε|β| 2 ∞ |γ| 2 L 2 (R+) . (1.118)
On obtient (1.117) en procédant de même pour 1 2 ≤ x 2 ≤ 1.

On revient au calcul des normes présentes dans (1.116). En utilisant la définition (1.94) de A ε ,

A ε L 1 (L ∞ ) ≤ ε ∇u 1 L 1 (L ∞ ) + ϕ ∂ z v + √ ε∂ 2 v L 1 (L ∞ ) ≤ εT |∇ū| L ∞ + 2αC(T, h) |ϕ | ∞ |θ| ∞ + √ ε|θ | ∞ , (1.119) 
où on utilise que u 1 (t, •) ≡ 0 pour t ≥ T et le Lemme 9 (et l'injection

H 2 (R + ) → W 1,∞ (R + )).
Pour F ε , en utilisant (1.95) on a :

F ε L 1 (L 2 ) ≤ ε 1/4 ∂ 22 v + 2ϕ ε -1/4 ∂ 2z v + ε 3/4 ∆u 1 L 1 (L 2 ) ≤ 4αε 1/2 |θ | ∞ C(T, h) + 4α|θ | ∞ |ϕ | ∞ C(T, h) + ε 3/4 T |∆ū| L 2 , (1.120)
où on a utilisé les Lemmes 9 et 10. Pour estimer G ε défini par (1.96) on a :

G ε L 1 (L 2 ) ≤ ε 3/4 u 1 • ∇ u 1 + ε 1/4 (v • ∇)u 1 + ε 1/4 u 1 2 ∂ 2 v + ε -1/4 u 1 2 ϕ ∂ z v L 1 (L 2 ) ≤ ε 3/4 T |ū| L 2 |∇ū| L ∞ + 4αε 1/2 |θ| ∞ |∇ū| L ∞ C(T, h) + 4α |ū| L ∞ ε 1/2 |θ | ∞ + |ϕ | ∞ |θ| ∞ C(T, h).
( 

Perspectives méthodologiques

Dans cette thèse, on a introduit deux méthodes que l'on envisage d'appliquer par la suite à d'autres systèmes : Schrödinger, Korteweg de Vries, Navier-Stokes.

Méthode "du noyau asymptotique"

Cette méthode a été utilisée pour étudier l'équation de Burgers avec un seul contrôle interne u(t) et obtenir une obstruction à la contrôlabilité locale en temps petit. De manière plus générale, elle est destinée à étudier la contrôlabilité locale en temps petit lorsque seul un contrôle scalaire est utilisé et que le système linéarisé n'est pas contrôlable.

En un certain sens, cette méthode a déjà été utilisée par Coron dans [START_REF] Coron | On the small-time local controllability of a quantum particle in a moving one-dimensional infinite square potential well[END_REF] puis par Beauchard et Morancey dans [START_REF] Beauchard | Local controllability of 1D Schrödinger equations with bilinear control and minimal time[END_REF] pour étudier une équation de Schrödinger. Par rapport à cette situation, le cas de Burgers est beaucoup plus complexe. En effet, on démontre que la méthode est applicable même lorsque : la coercivité de l'opérateur n'est pas évidente et doit être établie en passant par l'étude de l'opérateur limite, la norme dans laquelle s'exprime la coercivité par rapport au contrôle est extrêmement faible, les résidus doivent être estimés avec précision. De plus, dans notre cas, la coercivité obtenue ne correspond pas à la présence d'un crochet de Lie bloquant connu, mais à un phénomène quadratique nouveau.

On note formellement ẏ = F (y, u). Formulée de manière systématique, la méthode se déroule ainsi :

1. Considérer le linéarisé au voisinage de zéro ȧ = ∂ y F |0,0 • a + u(t)∂ u F |0,0 .
2. Calculer l'espace contrôlable pour le système linéarisé. 

(T, •); ρ = 1 0 1 0 K ε (t,

Méthode "de la dissipation préparée"

En substance, c'est la méthode qu'on a initiée pour étudier la couche limite de l'équation de Burgers et améliorée pour l'équation de Navier-Stokes dans cette thèse.

Cette méthode semble entièrement nouvelle et très efficace pour obtenir des résultats de contrôlabilité globale en temps petit dans des systèmes de mécanique des fluides pour lesquels on n'a pas accès à l'ensemble du bord. On considère un domaine Ω dans lequel évolue un fluide et une partie Γ de ∂Ω sur laquelle s'exerce le contrôle. Des couches limites vont apparaître près des parois non contrôlées ∂Ω \ Γ. À l'intérieur du domaine, le fluide obéit à une équation visqueuse issue de la mécanique des fluides. Formulée de manière systématique, la méthode se déroule ainsi :

1. Fixer la donnée initiale à contrôler y 0 et un temps imparti 2T pour revenir à l'état d'équilibre.

2. Si nécessaire, consacrer une partie de l'intervalle de temps à régulariser la donnée initiale.

Réserver l'intervalle de temps final [T, 2T

] au contrôle local de l'équation. Déterminer la taille du voisinage δ qu'il faut atteindre à l'instant T pour pouvoir conclure. La contrôlabilité locale s'obtient généralement par des estimations de type Carleman et repose souvent sur l'utilisation de la partie visqueuse de l'équation.

4. S'attacher à démontrer la contrôlabilité globale approchée vers zéro depuis des états initiaux grands mais réguliers en temps T (à appliquer sur l'intervalle [0, T ]).

5. Introduire une deuxième échelle de temps ε 1 (même si T est déjà moralement petit).

6. Faire le changement d'échelle standard en mécanique des fluides en posant y ε (t, x) := εy(εt, x). La nouvelle inconnue est définie sur [0, T /ε] et a une donnée initiale asymptotiquement petite εy 0 . Elle obéit à une équation avec une viscosité évanescente ε.

7. Décomposer y ε en profils : y 0 + εy 1 + v ε + R, où y 0 est un profil de référence de taille O(1), y 1 contient la donnée initiale et satisfait une équation linéaire autour de la référence y 0 et v ε est un profil de couche limite.

8. Choisir pour y 0 une trajectoire particulière, de type méthode du retour, permettant de contrôler y 1 à 0 sur l'intervalle [0, T ] (en variable redimensionnée, c'est-à-dire sur [0, εT ] dans le domaine temporel initial). Cette trajectoire est construite à partir de l'équation non visqueuse limite correspondant au cas ε = 0. Attention au changement de nature des conditions aux limites.

Chapitre 2

Contrôle de l'équation de Burgers en présence d'une couche limite 2.1 Introduction

Description of the system and our main result

Let T > 0 be a positive time, possibly small. We consider the line segment x ∈ [0, 1] and the following one-dimensional viscous Burgers' controlled system :

       y t + yy x -y xx = u(t) in (0, T ) × (0, 1), y(t, 0) = v(t) in (0, T ), y(t, 1) = 0 in (0, T ), y(0, x) = y 0 (x)
in (0, 1).

(

The scalar controls are u ∈ L 2 (0, T ) and v ∈ H 1/4 (0, T ). The right-hand side control term u(•) plays a role somewhat similar to that of a pressure for multi-dimensional fluid systems. Unlike some other studies, our control term u(•) depends only on time and not on the space variable.

For any initial data y 0 ∈ L 2 (0, 1) and any fixed controls in the appropriate spaces, it can be shown that system (2.1) has a unique solution in the space X = L 2 ((0, T ); H 1 (0, 1)) ∩ C 0 ([0, T ]; L 2 (0, 1)). This type of existence result relies on standard a priori estimates and the use of a fixed point theorem. Such techniques are described in [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]. One can also use a semi-group method as in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]. Our main result is the following small time global null controllability theorem for system (2.1) : Theorem 1. Let T > 0 be any positive time and y 0 by any initial data in L 2 (0, 1). Then there exists a control pair u ∈ L ∞ (0, T ) and v ∈ H 1/4 (0, T ) such that the solution y ∈ X to system (2.1) is null at time T : y(T, •) ≡ 0.

An open-problem for Navier-Stokes as a motivation

As a motivation for our study, let us introduce the following challenging open problem. Take some smooth connected bounded domain Ω in R 2 or R 3 . Consider some open part Γ of its boundary ∂Ω. This is the part of the boundary on which our control will act. We consider the following Navier-Stokes system :

       y t -∆y + (y • ∇)y = -∇p in (0, T ) × Ω, div y = 0 in (0, T ) × Ω, y = 0 on (0, T ) × (∂Ω \ Γ), y(0, •) = y 0 (•)
in Ω.

(2.2)

We consider this system as an underdetermined system. Our control will be some appropriate trace of a solution on the controlled boundary Γ.

Open problem 1. Is system (2.2) small time globally null controllable ? That is to say, for any T > 0 and y 0 in some appropriate space, does there exist a trajectory of system (2.2) such that y(T, •) ≡ 0 ? Many works have be done in this direction. Generally speaking, one can distinguish two approaches. First, one can think of the nonlinear term as a perturbation term and obtain the controllability by means of the Laplacian term. For instance, Fabre uses in [START_REF] Fabre | Uniqueness results for Stokes equations and their consequences in linear and nonlinear control problems[END_REF] a truncation method for the Navier-Stokes equation. In [START_REF] Lions | Exact boundary controllability of Galerkin's approximations of Navier-Stokes equations[END_REF], Lions and Zuazua use Galerkin approximations for various fluid systems. Of course, this approach is very efficient for local results. The most recent result concerning local controllability for system (2.2) is the one contained in [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF] by Fernández-Cara, Guerrero, Imanuvilov and Puel. Their proof uses Carleman estimates.

Ω ∂Ω \ Γ Γ y = 0
The other approach goes the other way around. Indeed, in finite dimension, it is known that if ẏ = F (y) + Bu where F is quadratic is controllable, then ẏ = F (y) + Ay + Bu is controllable too (see [START_REF] Coron | On the controllability of nonlinear partial differential equations[END_REF]Theorem 3.8]). Likewise, for fluid systems, trying to get a small time controllability result implies to work at high Reynolds number (ie. with big fluid velocities, or low viscosity) inside the domain. Therefore, inertial forces prevail and the fluid system behaves like its null viscosity hyperbolic limit system. In our case, we expect to deduce results for Navier-Stokes from the Euler sytem. For Euler, global controllability has been shown in [START_REF] Coron | Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels[END_REF] by Coron for the 2D case (see also [START_REF] Coron | On the controllability of 2-D incompressible perfect fluids[END_REF]) and by Glass for the 3D case in [START_REF] Glass | Exact boundary controllability of 3-D Euler equation[END_REF]. Their proofs rely on the return method introduced by Coron in [START_REF] Coron | Global asymptotic stabilization for controllable systems without drift[END_REF] (see also [START_REF] Coron | de Mathematical Surveys and Monographs[END_REF]Chapter 6]). For Navier-Stokes, things get harder. In [START_REF] Coron | Fursikov : Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary[END_REF], Coron and Fursikov show a global controllability result in the case of a 2D manifold without boundary. In [START_REF] Fursikov | Exact controllability of the Navier-Stokes and Boussinesq equations[END_REF], Fursikov and Imanuvilov show a global exact controllability result for 3D Navier-Stokes with a control acting on the whole boundary (ie. Γ = ∂Ω).

Other approaches exist. Let us mention for instance the work [START_REF] Agrachev | Navier-Stokes equations : controllability by means of low modes forcing[END_REF], where Agrachev and Sarychev control Navier-Stokes equations by means of low modes. They use methods of differential geometric / Lie algebraic control theory for finite dimensional control systems.

The main difficulty of Open problem 1 is the behavior of the system near ∂Ω \ Γ. Indeed, although inertial forces prevail inside the domain, viscous forces play a crucial role near the uncontrolled boundary, and give rise to a boundary layer. An example of such a phenomenon can be found in [START_REF] Coron | On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions[END_REF] where Coron derives an approximate controllability result and highlights the creation of a boundary residue. Hence, the key question is whether one can handle such a boundary layer by means of the control. Some authors have tried to study simplified geometries for Open problem 1. In [START_REF] Chapouly | On the global null controllability of a Navier-Stokes system with Navier slip boundary conditions[END_REF], Chapouly studies a Navier-Stokes equation on a rectangle with Navier-slip boundary conditions on the uncontrolled part of the boundary. She obtains small time global null controllability. In [START_REF] Guerrero | Remarks on global approximate controllability for the 2-D Navier-Stokes system with Dirichlet boundary conditions[END_REF] and [START_REF] Guerrero | A result concerning the global approximate controllability of the Navier-Stokes system in dimension 3[END_REF], Guerrero, Imanuvilov and Puel prove approximate controllability for a Navier-Stokes system in a square (resp. in a cube) where one side (resp. one face) is not controlled and has zero Dirichlet boundary condition.

Burgers' equation has been extensively used as a toy model to investigate properties of more complex systems in a rather simple setting. This equation was introduced in the seminal paper [START_REF] Burgers | Application of a model system to illustrate some points of the statistical theory of free turbulence[END_REF] by Burgers. Both from a theoretical and a numerical point of view, it already exhibits some key behaviors (such as interaction between the non-linearity and the smoothing effect). Therefore, our Theorem 1 can be seen as an example for small time global null controllability despite the presence of a Dirichlet boundary layer. Moreover, despite the simplicity of Burgers' equation, the analogy between systems (2.1) and (2.2) is quite striking. We can interpret our scalar control u(t) as some one-dimensional counterpart of a pressure gradient for 2D or 3D.

Previous works concerning Burgers' controllability

Concerning the controllability of the inviscid Burgers' equation, some works have be carried out. In [START_REF] Ancona | On the attainable set for scalar nonlinear conservation laws with boundary control[END_REF], Ancona and Marson describe the set of attainable states in a pointwise way for the Burgers' equation on the half-line x ≥ 0 with only one boundary control at x = 0. In [START_REF] Thierry Horsin | On the controllability of the Burgers equation[END_REF], Horsin describes the set of attainable states for a Burgers' equation on a line segment with two boundary controls. Thorough studies are also carried out in [START_REF] Adimurthi | Exact controllability of scalar conservation laws with strict convex flux[END_REF] by Adimurthi et al. In [START_REF] Perrollaz | Exact controllability of scalar conservation laws with an additional control in the context of entropy solutions[END_REF], Perrollaz studies the controllability of the inviscid Burgers' equation in the context of entropy solutions with the additional control u(•).

Let us recall known results concerning the controllability of the viscous Burgers' equation. We start with some positive results.

First, Fursikov and Imanuvilov have shown in [START_REF] Fursikov | Controllability of evolution equations[END_REF] a small time local controllability result. It concerns local controllability in the vicinity of trajectories of system (2.1) and it only requires one boundary control (either y(t, 0) or y(t, 1)). Their proof relies on Carleman estimates for the parabolic problem obtained by seeing the non-linear term yy x as a small forcing term.

Global controllability towards steady states of system (2.1) is possible in large time both with one or two boundary controls. Such studies have be carried out by Fursikov and Imanuvilov in [START_REF] Fursikov | On controllability of certain systems simulating a fluid flow[END_REF] for large time global controllability towards all steady states, and by Coron in [START_REF] Coron | Some open problems on the control of nonlinear partial differential equations[END_REF] for global null-controllability in bounded time (ie. bounded with respect to the initial data).

When three scalar controls (namely u(t), y(t, 0) and y(t, 1)) are used, Chapouly has shown in [START_REF] Chapouly | Global controllability of nonviscous and viscous Burgers-type equations[END_REF] that the system is small time exactly controllable to the trajectories. Her proof relies on the return method and on the fact that the corresponding inviscid Burgers' system is small time exactly controllable (see [START_REF] Coron | de Mathematical Surveys and Monographs[END_REF]Chapter 6] for other examples of this method applied to Euler or Navier-Stokes).

Some studies have also been carried out in a two-dimensional setting. In [START_REF] Yu | On global controllability of 2-D Burgers equation[END_REF], Imanuvilov and Puel study the global controllability of a 2D-Burgers system, where the control only acts on a part Γ 1 of the boundary. They derive geometric conditions on Γ 1 for small time controllability to hold. Some negative results have also been obtained.

In the context of only one boundary control y(t, 1), first obstructions where obtained by Diaz in [START_REF] Jesús | Obstruction and some approximate controllability results for the Burgers equation and related problems[END_REF]. He gives a restriction for the set of attainable states. Indeed, they must lie under some limit state corresponding to an infinite boundary control y(t, 1) = +∞.

Still with only one boundary control, Fernández-Cara and Guerrero derived an asymptotic of the minimal null-controllability time T (r) for initial states of H 1 norm lower than r (see [START_REF] Et | Null controllability of the Burgers system with distributed controls[END_REF]). This shows that the system is not small-time controllable.

Guerrero and Imanuvilov have shown negative results in [START_REF] Guerrero | Remarks on global controllability for the Burgers equation with two control forces[END_REF] when two boundary controls y(t, 0) and y(t, 1) are used. They prove that neither small time null controllability nor bounded time global controllability hold. Hence, controlling the whole boundary does not provide better controllability.

Strategy for steering the system towards the null state

In view of these results, it seems that the pressure-like control u(t) introduced by Chapouly is the key to obtaining small time global controllability results. In order to take advantage of both hyperbolic and parabolic behaviors of system (2.1), our strategy consists in splitting the motion in three stages :

Hyperbolic stage : Small time and approximate control towards the null state. During this very short stage t ∈ [0, εT ] where 0 < ε 1, the systems behaves like the corresponding hyperbolic one, as the viscous term does not have enough time to act. This hyperbolic system is small time null controllable. During this first stage, we will use both u(•) and v(•) to try to get close to the null state, except for a boundary layer at x = 1.

Passive stage : Waiting. At the end of the first stage, we reach a state whose size is hard to estimate due to the presence of a boundary layer. During this stage, we use null controls v(t) = u(t) = 0. Regularization properties of the viscous Burgers equation dissipate the boundary layer and the size of y(t, •) decreases. We show that it tends to zero in L 2 (0, 1) when ε → 0. This is a crucial stage as is enables us to get rid of the boundary residue. It seems to be a new idea and could also be applied for other boundary layers created when trying to get small time global controllability results.

Parabolic stage : Local exact controllability in the vicinity of zero. After the two first stages, we succeed in getting very close to the null state. The non-linear term becomes very small compared to the viscous one, and the system now behaves like a parabolic one. We use a small time local exact controllability result to steer the system exactly to zero. During this last stage, we only need the control v(•).

Most of the work to be done consists in deriving precise estimates for the creation and the dissipation of the boundary layer. We will use the Cole-Hopf transform and Fourier series to overcome this difficulty. The Cole-Hopf transform was introduced in [START_REF] Cole | On a quasi-linear parabolic equation occurring in aerodynamics[END_REF] and [START_REF] Hopf | The partial differential equation u t + uu x = µu xx[END_REF] and was used for the first time in control theory by El Badia and Ain Seba in [START_REF] Badia | eddine Ain Seba : Contrôlabilité exacte de l'équation de Burgers[END_REF].

First, we will investigate the hyperbolic limit system (see Section 2.2). Then we will derive estimates for the creation of the boundary layer during our hyperbolic stage (see Section 2.3) and estimates for its dissipation during the passive stage (see Section 2.4). This will achieve the proof of a small time global approximate null controllability result for our system (2.1). In Section 2.5, we will explain the parabolic stage and the local exact controllability.

A comparison lemma for controlled Burgers' systems

Throughout our work, we will make an extensive use of the following comparison lemma for our Burgers' system, in order to derive precise estimates. When the viscosity is null, this comparison principle still holds for entropy solutions (as they are obtained as a limit of low viscosity solutions).

Lemma 1. Let T, ν > 0 and consider y 0 , ŷ0 ∈ L 2 (0, 1), u, û ∈ L 2 (0, T ), v 0 , v0 , v 1 , v1 , ∈ H 1/4 (0, T ).
Assume these data satisfy the following conditions : y 0 ≤ ŷ0 and u ≤ û and v 0 ≤ v0 and v 1 ≤ v1 .

Consider the following system (which is a generalized version of system (2.1) :

       y t + yy x -νy xx = u(t) in (0, T ) × (0, 1), y(t, 0) = v 0 (t) in (0, T ), y(t, 1) = v 1 (t) in (0, T ), y(0, x) = y 0 (x)
in (0, 1).

(2.3)

Then the associated solutions y, ŷ ∈ X to system (2.3) are such that :

y ≤ ŷ on (0, T ) × (0, 1).
One can find many comparison results in the literature (see for instance the book [START_REF] Pucci | The maximum principle[END_REF] and the references therein). However we give the proof of Lemma 1 both for the sake of completeness and because with have not found this precise version anywhere.

Démonstration. We introduce w = ŷ -y. Thus, w ∈ X is a solution to the system :

       w t -νw xx = (û -u) -1 2 (wŷ + wy) x in (0, T ) × (0, 1), w(t, 0) = v0 (t) -v 0 (t) in (0, T ), w(t, 1) = v1 (t) -v 1 (t)
in (0, T ), w(0, x) = ŷ0 (x) -y 0 (x) in (0, 1).

We want to study the negative part of w : δ = min(w, 0). Hence, δ(t, 0) = δ(t, 1) = 0. Now we multiply the evolution equation by δ ≤ 0 and integrate by parts for x ∈ [0, 1] to get a L 2 -energy estimate for δ :

1 2 d dt 1 0 δ 2 + ν 1 0 δ 2 x = (û -u) 1 0 δ + 1 2 1 0 δ(ŷ + y)δ x ≤ ν 4 1 0 δ 2 x + 1 4ν 1 0 δ 2 (ŷ + y) 2 ≤ ν 4 1 0 δ 2 x + 1 4ν ŷ(t, •) + y(t, •) 2 ∞ • 1 0 δ 2 .
Thus, we can incorporate the first term of the right-hand side in the left-hand side :

1 2 d dt 1 0 δ 2 ≤ 1 4ν ŷ(t, •) + y(t, •) 2 ∞ • 1 0 δ 2 .
Since y, ŷ ∈ L 2 (0, T ); H 1 (0, 1) , we have that :

t → ŷ(t, •) + y(t, •) 2
∞ belongs to L 1 (0, T ). Hence we can use Grönwall's lemma. Since δ(0, •) ≡ 0, we deduce that δ ≡ 0 and y ≤ ŷ.

Analysis of the hyperbolic limit system 2.2.1 Small time versus small viscosity scaling

Let us choose some ε > 0. We want to study what happens during the time interval [0, εT ]. To study this very short first stage, we perform the following change of scale. For t ∈ [0, T ] and x ∈ [0, 1], let : ȳ(t, x) = εy(εt, x).

(2.4)

Hence, ȳ ∈ X is now the solution to the small viscosity system :

       ȳt + ȳ ȳx -εȳ xx = ū(t) in (0, T ) × (0, 1), ȳ(t, 0) = v(t) in (0, T ), ȳ(t, 1) = 0 in (0, T ), ȳ(0, x) = ȳ0 (x) in (0, 1), (2.5) 
where we performed the following scalings : ū(t) = ε 2 u(εt), v(t) = εv(εt) and ȳ0 (x) = εy 0 (x). This scaling is fruitful because it highlights the fact that, when small time scales are considered, the non-linear term is the key term. We want to understand the behavior of the limit system when ε = 0. Therefore, let us consider that ū(•), v(•) and ȳ0 (•) are fixed data, and let ε go to zero.

Obtaining the entropy limit

When one considers the entropy limit ε → 0 for system (2.5), it is not possible to keep on enforcing strong Dirichlet boundary conditions. A boundary layer appears and it is necessary to weaken the boundary conditions. Otherwise, the system would become over-constrained. The pioneer work concerning the derivation of such weak boundary conditions is the one by Bardos, Le Roux and Nédélec in [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF]. In our particular setting, one gets the following system :

       ȳt + 1 2 (ȳ 2 ) x = ū(t) in (0, T ) × (0, 1), ȳ(t, 0) ∈ E(v(t))
in (0, T ), ȳ(t, 1) ≥ 0 in (0, T ), ȳ(0, x) = ȳ0 (x) in (0, 1),

where

E(α) = ] -∞; 0] if α ≤ 0, ] -∞; -α] ∪ {α} if α > 0.
Let us explain the physical meaning of the set E(•). On the one hand, when one tries to enforce a negative boundary data on the left side, characteristics instantly flow out of the domain, and our actions are useless. On the other hand, if we set a positive boundary data, then : either it is satisfied, or a greater negative wave overwhelms it.

Without getting into the details of entropy solutions (for that subject, refer to the definition given in [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF] or to the book [START_REF] Serre | Systems of conservation laws[END_REF]), we will use the following theorem that guarantees that system (2.6) is well-posed.

Theorem 2 (Bardos, Le Roux and Nédélec in [START_REF] Bardos | First order quasilinear equations with boundary conditions[END_REF]). For any initial data y 0 ∈ BV (0, 1) and any pair of controls u ∈ L 1 (0, T ), v ∈ BV (0, T ), system (2.6) has a unique entropy solution ȳ in the space BV ((0, 1) × (0, T )).

Small time null controllability

We are going to show a small time null controllability result for the hyperbolic limit system. However, this will not imply small time global controllability since the system is not time reversible. Indeed, even though the PDE seems time-reversible, the definition of an entropy solution is not.

Theorem 3. System (2.6) is small time globally exactly null controllable.

Let us start by giving the intuition of the proof. In a first step, we enforce a constant left boundary data H > 0. It moves towards the right and overrides the initial data ȳ0 (•) provided that the shocks' propagation speed is sufficient. Therefore, H is chosen by using the Rankine-Hugoniot formula. shows a simulation of this first step for some smooth initial data ȳ0 . At the end of this step, we have ȳ(•) ≡ H. During the second step, we use some constant negative ū to get back down to the null state. Now let us give a rigorous proof using the comparison principle.

Démonstration. Let ȳ0 (x) ∈ BV (0, 1) and T > 0. Let us choose H such that :

1 2 (H -ȳ0 L ∞ ) ≥ 2 T .
(2.7)

We enforce the following controls :

v(t) = H for t ∈ [0, T /2], 2H 1 -t T for t ∈ [T /2, T ], ū(t) = 0 for t ∈ [0, T /2], -2H T for t ∈ [T /2, T ].
From Theorem 2, we know that there exists a unique entropy solution ȳ ∈ BV ((0, 1) × (0, T )) for these data. Let us show that ȳ(T /2, •) ≡ H. Therefore, we will easily deduce ȳ(T, •) ≡ 0.

Let us extend our initial data from [0, 1] to R. Since Theorem 2 guarantees the uniqueness of the solution, the restriction to x ∈ [0, 1] of our global solution will be the unique solution to (2.6). Therefore we consider ŷ0 ∈ BV (R) :

ŷ0 (x) =    H for x < 0, ȳ0 (x) for 0 < x < 1, 0 for 1 < x.
(2.8)

Let us introduce ŷ the weak entropy solution defined on R × [0, T ] associated to this initial data. Thanks to Rankine-Hugoniot formula and (2.7), we know that :

y(t, x) = H for x < t • (H -y 0 ∞ ) 2 .
Hence, ŷ(T /2, x) = H for x ∈ [0, 1], and y(t, 0 + ) ≡ H. If we want the restriction of ŷ to be a solution to (2.6), we need to check that y(t, 1 -) ≥ 0. Let us use the comparison principle for solutions to inviscid Burgers' equation. It can be obtained by taking the null viscosity limit in our Lemma 1. Hence ŷ(t, x) ≥ w(t, x) where w is the solution associated to the initial data :

w 0 (x) =    H for x < 0, -ȳ0 ∞ for 0 < x < 1, 0 for 1 < x.
(2.9)

We have two Riemann problems. Near x = 1, we have a rarefaction wave. Hence x → w(t, x) is continuous near x = 1 as long as the H shock wave has not reached x = 1. Hence w(t, 1 -) = 0 before T * = 1/(2H -2 ȳ0 ∞ ), then w(t, 1 -) = H. This is why w(t, 1 -) ≥ 0. Thus ŷ(t, 1 -) ≥ w(t, 1 -) ≥ 0. The restriction ŷ[0,1] is the unique solution to (2.6) and it is equal to H at time t = T /2.

This proof uses the comparison principle for Burgers' equation. Since we consider a 1-D system, this is not a problem. However, if we wanted to be able to handle multi-dimensional systems, we could use the generalized characteristics method from Dafermos (see [START_REF] Dafermos | Generalized characteristics and the structure of solutions of hyperbolic conservation laws[END_REF]). This technique has been successfully used by Perrollaz in [START_REF] Perrollaz | Exact controllability of scalar conservation laws with an additional control in the context of entropy solutions[END_REF].

Hyperbolic stage and settling of the boundary layer

Thanks to the analysis of the hyperbolic limit system, we were able to exhibit controls steering the system towards the null state from any initial data. Now we want to apply the same strategy to the slightly viscous system (2.5) by using very similar controls. However, a boundary layer is going to appear. Our goal in this section is to derive bounds for the boundary layer at the end of this stage.

Steady states of system (2.5)

From now on, the viscosity is positive. Hence, since we have a zero Dirichlet boundary condition ȳ(1) = 0, we cannot hope to reach a constant state ȳ(x) ≡ H > 0 . However, we expect that we can get very close to the corresponding steady state. Let us introduce the following steady state of system (2.5) :

h ε (x) = H tanh H 2ε (1 -x) .
(2.10)

Lemma 2.
For any H > 0 and any ε > 0, h ε defined by (2.10) is a stationary solution to system (2.5) with controls : ū(t) = 0 and v(t) = H tanh H 2ε . Démonstration. The proof is an easy computation. In fact, it is possible to compute explicitly all the steady states for system (2.5), at least when ū = 0. This is done in [START_REF] Fursikov | On controllability of certain systems simulating a fluid flow[END_REF] with viscosity ε = 1.

We have chosen a boundary data v(t) = H tanh H 2ε for the definition of our steady state h ε , but we will use a control v(t) = H for the motion. This technical trick will lighten some computations and is relevant since both terms are exponentially close as ε goes to zero. However, some proofs require the use of the exact steady state corresponding to a boundary data v(t) = H. Therefore, we introduce :

k ε (x) = K tanh K 2ε (1 -x) , (2.11) 
where K > 0 is given by the implicit relation K tanh (K/(2ε)) = H.

Lemma 3.

For any H > 0 and any ε > 0, k ε defined by (2.11) is a stationary solution to system (2.5) with controls : ū(t) = 0 and v(t) = H. Moreover, we have the estimate :

k ε -h ε L ∞ (0,1) ≤ 2He -H/ε . (2.12)
Démonstration. Lemma 2 gives us that k ε is a steady state. For the estimate, we write :

k ε -h ε L ∞ (0,1) ≤ K tanh K 2ε -H tanh H 2ε ≤ H 1 -tanh H 2ε ≤ 2He -H/ε .

First step : overriding the initial data

In order to get close to the steady state h ε , it is necessary to choose H in such a way that a Rankine-Hugoniot type condition is satisfied. Once we get close enough to the steady state, the solution will very quickly converge to the steady state. Indeed, the eigenvalues of the linearized system around this steady state are real, negative, and of size at least 1/ε. This guarantees very quick convergence to the steady state. Such a study of the linearized problem around a steady state for the Burgers' equation can be found in [START_REF] Kreiss | Convergence to steady state of solutions of Burgers' equation[END_REF]. We give the following lemma describing the settling of the limit layer. Lemma 4. Let T > 0, H > 0 and y 0 ∈ H 1 0 (0, 1) be given data. Then for ε > 0 small enough, there exists a boundary control v ∈ H 3/4 (0, T ) such that v(•) ≤ H and such that the solution ȳ ∈ X to system (2.5) with initial data ȳ0 = εy 0 and controls ū = 0 and v satisfies :

ȳ(T, •) -h ε (•) L 2 (0,1) = O ε→0 ε -1/2 e -H 4ε (HT -2) .
(2.13) Let us postpone the proof of Lemma 4 for the moment. We start by giving a few remarks concerning this statement and its proof. The intuition is to choose a boundary control v(t) ≡ H, just like we have done for the hyperbolic case. Moreover, we want to use the Cole-Hopf transform and Fourier series to compute explicitly ȳ(T, •). Let us introduce the Cole-Hopf transform :

h ε (x) x = 1 ȳ(t, x) ȳ0 (x) 
Z(t, x) = exp - 1 2ε x 0 ȳ(t, s)ds .
This leads to the following heat system for the new unknown Z :

       Z t -εZ xx = -1 4ε ȳ2 (t, 0) -1 2 ȳx (t, 0) Z on (0, T ) × (0, 1), Z(t, 0) = 1 on (0, T ), Z x (t, 1) = 0 on (0, T ), Z(0, x) = Z 0 (x)
on (0, 1), (2.14) where the initial data Z 0 is computed from the initial data ȳ0 = εy 0 :

Z 0 (x) = exp - 1 2
x 0 y 0 (s)ds .

(2.15)

Hence we see that it will not be possible to carry on explicit computations if we do choose ȳ(t, 0) ≡ H. Indeed, in that case, we would not know explicitly ȳx (t, 0) (which is needed to compute the solution to system (2.14)). However, we are confident that this term is very small. Hence, we are going to go the other way around : we will choose our control explicitly in the Cole-Hopf domain and use it to compute our control v(•). Therefore, we are interested in the following heat system :

       Z t -εZ xx = -H 2 4ε Z on (0, T ) × (0, 1), Z(t, 0) = 1 on (0, T ), Z x (t, 1) = 0 on (0, T ), Z(0, x) = Z 0 (x)
on (0, 1).

(2.16)

If we go back to the Burgers' domain, this means that we somehow use the following boundary condition at x = 0 : ȳx (t, 0) = 1 2ε ȳ2 (t, 0) -H 2 .

(2.17)

We expect that the solution Z will converge towards H ε (•), where H ε (•) is the Cole-Hopf transform of the steady state h ε :

H ε (x) = cosh H 2ε (1 -x) cosh H 2ε .
(2.18) Indeed, we have the following lemma.

Lemma 5. Let T > 0 and Z 0 ∈ H 2 (0, 1) such that Z 0 (0) = 1 and Z 0 x (1) = 0. Then system (2.16) has a unique solution Z in the space L 2 ((0, T ); H 3 (0, 1)) ∩ H 1 ((0, T ); H 1 (0, 1)). Moreover, there exists a constant C(Z 0 ) > 0 depending only on Z 0 H 1 such that :

Z(T, •) -H ε (•) H 1 (0,1) ≤ ε -1/2 C(Z 0 )e -H 2 T 4ε . (2.19)
Démonstration. Using standard techniques, it is classical to show that system (2.16) has a unique solution in the space L 2 ((0, T ); H 3 (0, 1)) ∩ H 1 ((0, T ); H 1 (0, 1)). One can even get more smoothness if needed. An efficient method is the semi-group method that one can find for instance in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]. To compute the dynamics of system (2.16), we introduce the adequate Fourier basis of L 2 :

f n (x) = √ 2 sin n + 1 2 πx for n ≥ 0.
Hence f n (0) = f n (1) = 0. We will use the notation λ n = (n + 1 2 )π. Thus, f n = -λ 2 n f n . Let us give the following scalar products, which can easily be computed using integration by parts :

1|f n = √ 2 λ n , H ε |f n = √ 2λ n H 2 4ε 2 + λ 2 n , ( 2.20) 
Z 0 |f n ≤ √ 2 λ n 1 + 1 2 Z 0 H 1 . (2.21)
In these equations •|• denotes the standard scalar product in L 2 (0, 1). Let us write Z = 1 + w. Hence w will satisfy w(t, 0) = w x (t, 1) = 0. Easy computations lead to the following ordinary differential equations for the components of w on our Fourier basis :

ẇn (t) = -ε λ 2 n + H 2 4ε 2 w n (t) - H 2 4ε 1|f n .
It is easy to see that the fixed points for these ODEs are the expected coefficients H ε -1|f n . We can solve these ODEs with our initial condition :

w n (t) = α n e -ε λ 2 n + H 2 4ε 2 t + H ε -1|f n ,
where :

α n = Z 0 |f n -H ε |f n . Now we can estimate Z(T, •) -H ε (•) : Z(T, •) -H ε (•) 2 H 1 (0,1) = n≥0 λ 2 n α 2 n e -2ε λ 2 n + H 2 4ε 2 T .
From the expression of α n , (2.20) and (2.21) we get the easy bound :

λ 2 n α 2 n ≤ 16 + Z 0 2 H 1 (0,1) , ∀n ∈ N.
Thus, we get

Z(T, •) -H ε (•) 2 H 1 (0,1) ≤ 16 + Z 0 2 H 1 (0,1) e -H 2 T 2ε n≥0 e -2ελ 2 n .
Now we split the sum in two parts : n ≤ N = 1/ε and n ≥ N . We get :

Z(T, •) -H ε (•) 2 H 1 (0,1) ≤ 16 + Z 0 2 H 1 (0,1) e -H 2 T 2ε   N + k≥0 e -2ε(N +k+ 1 2 ) 2 π 2   ≤ 16 + Z 0 2 H 1 (0,1) e -H 2 T 2ε N + 1 1 -e -4εN π 2 e -2εN 2 π 2 .
Hence, for ε small enough, we have :

Z(T, •) -H ε (•) 2 H 1 (0,1) ≤ 1 ε + 1 16 + Z 0 2 H 1 (0,1) e -H 2 T 2ε .
This concludes the proof of Lemma 5.

Now we can prove Lemma 4.

Proof of Lemma 4. Definition of the control : Using Lemma 5, we start by considering the solution Z ∈ L 2 ((0, T ); H 3 (0, 1)) ∩ H 1 ((0, T ); H 1 (0, 1)) to system (2.16) with the initial data (2.15). Since Z 0 (•) > 0, the usual strong maximum principle (see [START_REF] Serre | Systems of conservation laws[END_REF]) guarantees that Z(t, x) > 0. Thus, we can define :

ȳ(t, x) = -2ε Z x (t, x) Z(t, x) . (2.22)
Hence ȳ ∈ X is a solution to (2.5) with initial data εy 0 and boundary control v(t) = -2εZ x (t, 0). Since Z ∈ L 2 ((0, T ); H 3 (0, 1)) ∩ H 1 ((0, T ); H 1 (0, 1)), we can show that its boundary trace Z x (t, 0) belongs to H 3/4 (0, T ). Hence v ∈ H 3/4 (0, T ).

Proof of an L ∞ bound on the solution : If ε is small enough, then ε y 0 ∞ ≤ H. Moreover, we know that v ∈ H 3/4 (0, T ). Hence, v ∈ C 0 [0, T ]. Assume that sup [0,T ] v > H. Let T 0 be a time such that v(T 0 ) = sup [0,T ] v > H. On the one hand, by the comparison principle from Lemma 1, we know that : ȳ ≤ v(T 0 ) on (0, T ) × (0, 1).

(2.23)

On the other hand, we recall relation (2.17) :

ȳx (t, 0) = 1 2ε ȳ2 (t, 0) -H 2 .
Hence, since v(T 0 ) > 0, we get ȳx (T 0 , 0) > 0. Thus,there exists x > 0 such that ȳ(T 0 , x) > v(T 0 ) = sup [0,T ] v. This is in contradiction with assertion (2.23). Hence, if ε is small enough, v(•) ≤ H and ȳ(T, •) ≤ H. Derivation of the L 2 estimate at time T : Now we want to prove estimate (2.13) from Lemma 4. We want to use estimate (2.19) from Lemma 5. We perform the following computation at time T and for any x ∈ [0, 1] :

|ȳ -h ε | = 2ε Z x Z - H ε x H ε = 2ε Z (Z x -H ε x ) + Z x (H ε -Z) ZH ε ≤ 2ε Z x -H ε x H ε + 2ε Z x Z • Z -H ε H ε .
Thus, we get :

ȳ(T, •) -h ε (•) L 2 (0,1) ≤ (2ε + ȳ(T, •) ∞ ) × sup [0,1] 1 H ε × Z(T, •) -H ε (•) H 1 (0,1) . Now we use that ȳ(T, •) ∞ ≤ H and sup [0,1] 1/H ε ≤ e +H/2ε
. Hence , using also (2.19),

ȳ(T, •) -h ε (•) L 2 (0,1) ≤ 1 √ ε (2ε + H) C(Z 0 )e -H 4ε (HT -2) .
This estimate concludes the proof of Lemma 4.

Remark 1.

In Lemma 4, we take an initial data y 0 ∈ H 1 0 (0, 1). This is a technical assumption that enables us to use stronger solutions. We will get rid of it later on, by letting the Burgers' equation smooth our real initial data which is only in L 2 (0, 1).

Second step : going back to the null state

Once we have reached the steady state h ε , we wish to go back to the null state. This is done by applying a suitable negative interior control ū. The control v will only be following the global movement. The intuitive idea is to apply some negative control ū on [0, T ] such that T 0 u(t)dt = -H. Thus, we hope to reach some state that is below 0 and above a boundary residue h ε -H. However, this last statement is only true up to some small L 2 function (small as T → 0). The key will be to choose the duration T of this step small enough (with respect to ε). Lemma 6. Let ε > 0 and H > 0 be given data. Assume that 2ε ≤ H. We consider the evolution of an initial data ȳ1 ∈ L 2 (0, 1). For any T > 0, we consider the following controls for t ∈ [0, T ] :

0 x = 0.97 x = 1 k ε (x) -H ȳ(T, x) k ε (x) ȳ(t, x) H 0 x = 0.9 x = 1 Focus δ(T, x)
ū(t) = - H T , (2.24) v(t) = H + t 0 u(s)ds. ( 2 

.25)

Then the associated solution ȳ ∈ X to system (2.5) satisfies :

ȳ(T, •) -k ε (•) + H ≥ δ(T, •), (2.26) 
where δ ∈ X is the solution to some Burgers-like system given below and is such that :

δ(T, •) L 2 ≤ e H 2 T /4ε ȳ1 -k ε L 2 + 2H e H 2 T /2ε -1 . (2.27)
Démonstration. Let T > 0 and consider the controls defined by (2.24) and (2.25). Let us consider the associated solution ȳ ∈ X to (2.5). We compare ȳ to the solution z ∈ X to the following system :

       z t + zz x -εz xx = ū(t) in (0, T ) × (0, 1), z(t, 0) = v(t) in (0, T ), z(t, 1) = v(t) -H in (0, T ), z(0, x) = ȳ0 (x)
in (0, 1).

(2.28)

The comparison principle from Lemma 1 tells us that y(T, •) ≥ z(T, •). Now we want to derive precise estimates for the solution z ∈ X. We write :

z(t, x) = k ε (x) + t 0 ū(s)ds + δ(t, x), (2.29)
where δ ∈ X is thus the solution to the following system :

         δ t -εδ xx + k ε δ x + δ + t 0 ū(s)ds (k ε + δ) x = 0 in (0, T ) × (0, 1), δ(t, 0) = 0 in (0, T ), δ(t, 1) = 0 in (0, T ), δ(0, x) = ȳ1 (x) -k ε (x)
in (0, 1).

(2.30)

Note that it is convenient in this proof to use k ε in order to get exact zero boundary conditions δ(t, 0) = δ(t, 1) = 0. We multiply the evolution equation of (2.30) by δ and integrate by parts for x ∈ [0, 1] to get a L 2 -energy estimate on δ :

1 2 d dt 1 0 δ 2 + ε 1 0 δ 2 x = - 1 0 k ε δδ x - 1 0 δ + t 0 ū(s)ds (k ε + δ) x δ = 1 2 1 0 δ 2 (k ε ) x - 1 0 δ + t 0 ū(s)ds δ(k ε ) x = - 1 2 1 0 δ 2 (k ε ) x - t 0 ū(s)ds 1 0 δ(k ε ) x .
Now we use definition (2.11) and the assumption 2ε ≤ H :

k ε x ∞ ≤ K 2 2ε ≤ H 2 2ε tanh(1) 2 ≤ H 2 ε . Moreover, t 0 ū(s)ds ≤ H. Hence, 1 2 
d dt 1 0 δ 2 ≤ H 2 2ε 1 0 δ 2 + H 3 ε 1 0 δ 2 1/2 . (2.31) Let us denote E(t) = δ(t, •) L 2 .
Hence, one has :

Ė(t) ≤ H 2 2ε E + H 3 ε . (2.32)
From Grönwall's lemma, we get :

E(T ) ≤ (E(0) + 2H) e H 2 T /2ε -2H. (2.33)
This concludes the proof of Lemma 6. This is the end of the hyperbolic stage. We need to perform the reverse scaling of (2.4) to go back to y (and not ȳ). We have shown that we are above some boundary residue h ε -H. Hence, we have to study the evolution of the following initial data :

Φ ε (x) = 1 ε (h ε (x) -H) = H ε tanh H 2ε (1 -x) -1 . (2.34)
One should be scared by the size of this boundary residue that we are left with. Indeed, its L 2 size grows like 1/ √ ε. However it has the important feature that its typical wavelength is ε. Hence, its spectral decomposition will mostly involve high frequencies that will decay rapidly during the passive stage thanks to smoothing effects of Burgers' equation.

Passive stage and dissipation of the boundary layer

The goal of this section is to prove the following estimate concerning the dissipation of the boundary residue Φ ε created in the previous section. Indeed, although its L 2 -norm increases as ε goes to zero, regularization effects of the Burgers equation will dissipate it in any positive time T . Lemma 7. Let T > 0 be a fixed positive time. For any ε > 0, let us consider φ ∈ X the solution to the following system :

       φ t + φφ x -φ xx = 0 in (0, T ) × (0, 1), φ(t, 0) = 0 in (0, T ), φ(t, 1) = 0 in (0, T ), φ(0, x) = Φ ε (x) in (0, 1),
where Φ ε (x) is the boundary residue defined by (2.34). Then for any δ > 0, we have the estimate : 

φ(T, •) L 2 (0,1) = O ε→0 ε 1-δ . (2.35) 0 y(t, x) Φ ε (x) -3 x = 0.5 x = 1

Cole-Hopf transform

Once again, we are going to use the Cole-Hopf transform to derive precise estimates. Therefore, let us introduce the following change of unknown for x ∈ [0, 1] and t ∈ [0, T ] :

z(t, x) = exp - 1 2 x 0 φ(t, s)ds .
This leads to the following heat system for the new unknown z :

       z t -z xx = 0 on (0, T ) × (0, 1), z x (t, 0) = 0 on (0, T ), z x (t, 1) = 0 on (0, T ), z(0, x) = Z ε (x)
on (0, 1), (2.36) where the initial data Z ε is computed from the initial data Φ ε :

Z ε (x) = exp - 1 2 x 0 Φ ε (s)ds = 1 + e H ε (x-1)
1 + e -H ε .

(2.37)

An important remark is that Φ ε ≤ 0. Thus, by the comparison principle from Lemma 1, φ ≤ 0 on [0, T ] × [0, 1] and z ≥ 1 on [0, T ] × [0, 1]. The backwards Cole-Hopf transform will give us :

φ(T ) = -2 z x (T ) z(T ) .
Hence, using the fact that z ≥ 1, we will have the following estimate :

|φ(T, •)| ≤ 2 |z x (T, •)| . (2.38)
All we have to do is to study the L 2 -norm of z x (T ). To ease computations, let us introduce :

w = (1 + e -H ε )z x , (2.39)
such that w is the solution to :

       w t -w xx = 0 on (0, T ) × (0, 1), w(t, 0) = 0 on (0, T ), w(t, 1) = 0 on (0, T ), w(0, x) = H ε e H ε (x-1)
on (0, 1).

Fourier series decomposition

We use Fourier series to compute w(T, •). We will use the following Hilbert basis of L 2 made of the eigen-functions for the Laplace operator with Dirichlet boundary conditions on [0, 1] :

e n (x) = √ 2 sin(nπx) for n ≥ 1.
Let us compute the decomposition of w(0, •) on this basis. We integrate by parts twice :

w(0, •)|e n = √ 2 H ε e -H ε 1 0 sin(nπx)e H ε x dx = √ 2e -H ε sin(nπx)e H ε x 1 0 - √ 2nπe -H ε 1 0 cos(nπx)e H ε x = - ε √ 2 H nπe -H ε cos(nπx)e H ε x 1 0 - εnπ H 2 w(0, •)|e n = √ 2 H εnπ 1 + ε 2 n 2 π 2 H 2 (-1) n+1 + e -H ε .
Now we can estimate the size of w(T, •) in L 2 (0, 1) :

w(T, •) 2 L 2 = n≥1 w(0, •)|e n • e -n 2 π 2 T 2 ≤ 8 n≥1 ε 2 n 2 π 2 H -2 (1 + ε 2 n 2 π 2 H -2 ) 2 e -2n 2 π 2 T .
For α ∈ R, the following easy inequality holds :

α 2 (1 + α 2 ) 2 ≤ min α 2 , 1 4
.

Hence we split the sum and cut at a level N (ε) :

w(T, •) 2 L 2 ≤ 8 N -1 n=1 ε 2 n 2 π 2 H 2 + 2 k≥0 e -2(N +k) 2 π 2 T ≤ 8ε 2 N 3 π 2 3H 2 + 2e -2N 2 π 2 T k≥0 e -4N kπ 2 T ≤ 8ε 2 N 3 π 2 3H 2 + 2 e -2N 2 π 2 T 1 -e -4N π 2 T .
We want to choose N (ε) → +∞ such that ε 2 N 3 → 0. For instance, we can take N = ε -η , where η > 0 is small enough. For ε small enough, we have : 

w(T, •) 2 L 2 ≤ 8π 2 3H 2 ε 2-3η + 4e -2ε -2η π 2 T = O ε 2-3η . ( 2 

Approximate controllability towards the null state

First, let us prove the following technical lemma. Indeed, we have proven that the particular boundary layer Φ ε dissipates, but all we also want to know what would happen if we were very close to it. Lemma 8. Let us change the initial data from Lemma 7 to Φ ε (x) + 1 ε δ ε . We assume :

Φ ε (x) + 1 ε δ ε ≤ 0, (2.41 
)

δ ε (•) L 2 (0,1) = O ε→0 (ε 3 ). (2.42)
Then, the conclusion of Lemma 7 still holds.

Démonstration. We follow the same scheme than for the proof of Lemma 7. Hence, we start by taking the Cole-Hopf transform of the new initial data Φ ε (x) + 1 ε δ ε . Therefore, after the Cole-Hopf transform we have the following initial data :

Z ε (x) + Z ε (x) • exp - 1 2ε x 0 δ ε -1 .
From our previous computation (2.37) of Z ε , we know that |(Z ε ) x | = O(1/ε). Hence, using condition (2.42), we have :

Z ε (x) • exp - 1 2ε x 0 δ ε -1 H 1 (0,1) = O ε→0 (ε).
Let us use the fact that our heat system (2.36) is linear. Therefore, using the conclusion of Lemma 7 we have :

z(T, •) H 1 (0,1) = O ε→0 (ε 1-δ ) + O ε→0 (ε).
Once again we apply the backwards Cole-Hopf transform. We use the fact that z ≥ 1 (this comes from the comparison principle and the hypothesis (2.41)). Hence,

φ(T, •) L 2 (0,1) ≤ 2 z(T, •) H 1 (0,1) .
Thus, the conclusion (2.35) of Lemma 7 still holds with this new initial data. Now everything is ready for us to show the following small time approximate controllability result for system (2.1). We have to combine the different estimates. Theorem 4. Let T, r > 0 and y 0 ∈ L 2 (0, 1) be given data. Then there exists u, v ∈ L ∞ (0, T ) × H 1/4 (0, T ) such that the associated solution y ∈ X to system (2.1) on [0, T ] satisfies :

y(T, •) L 2 (0,1) ≤ r.
Démonstration. Take T, r > 0 and y 0 ∈ L 2 (0, 1) given data. Let us take a small ε > 0 and break down our time interval into four parts. We introduce T 1 = T /3, T 2 = T 1 + ε and T 3 = T 2 + ε 4 . The first part [0, T 1 ] of length T /3 is designed to smooth the initial data. The second part [T 1 , T 2 ] of length ε is the part where the settling of the boundary layer takes place. The third part [T 2 , T 3 ] of length ε 4 is the quick push down to zero. The fourth part [T 3 , T ] of length at least T /3 (when ε is small enough) is the passive stage for the dissipation of the boundary layer. Let us give some details. Smoothing of the initial data : First, for t ∈ [0, T 1 ], we choose u(t) = v(t) = 0. The system evolves freely. Regularization effects of the Burgers' equation smooth our initial data y 0 ∈ L 2 (0, 1). We have y(T 1 , •) ∈ H 1 0 (0, 1). There are many ways to prove such a result. For instance, one can take the Cole-Hopf transform and use well-known regularization properties of the heat equation.

u(t) v(t)
Settling of the boundary layer : Next, for t ∈ [T 1 , T 2 ], we perform the scaling (2.4). We want to apply Lemma 4 for a duration 1. Hence, let us choose some H such that H -2 > 0. We take v ∈ H 3/4 (0, T ) the control from Lemma 4. For t ∈ [T 1 , T 2 ], we use :

u(t) = 0, v(t) = 1 ε v t -T 1 ε .
From Lemma 4, we know that :

y(T 2 , •) - 1 ε h ε (•) L 2 (0,1) = O ε→0 ε -3/2 e -H 4ε (H-2) . ( 2 

.43)

Push-down towards zero : Then, still in the context of scaling (2.4), we want to apply Lemma 6 during a very short duration ε 3 . Hence, for t ∈ [T 2 , T 3 ], we choose the controls found in Lemma 6 (with a total time ε 3 ), and we scale them appropriately. That is to say :

u(t) = 1 ε 2 ū t -T 2 ε , v(t) = 1 ε v t -T 2 ε .
Combining (2.43) and Lemma 6, we get that, at the end of this hyperbolic stage :

0 ≥ y(T 3 , •) ≥ Φ ε + 1 ε δ(ε 3 , •) - 1 ε h ε -k ε ∞ ,
where (using estimate (2.12)) :

δ(ε 3 , •) L 2 + h ε -k ε ∞ = O ε→0 (ε 3 ).

Dissipation of the boundary residue :

Now we enter the passive stage. We choose v(t) = u(t) = 0 for t ∈ [T 3 , T ]. Since ε goes to zero, T -T 3 ≥ T /3. Hence we can apply Lemma 8 on a time interval independent of ε. By using the comparison principle from Lemma 1 we can conclude that :

y(T, •) L 2 = O ε→0 (ε 1-η ),
for any η > 0. For instance, one can choose η = 1 2 . Then we choose ε small enough to ensure that y(T, •) L 2 ≤ r. This concludes the proof of Theorem 4.

Remark 2. In the proof of Theorem 4, we concatenate different controls found in different parts. This could be a problem for smoothness because we did not check compatibility conditions at the jointures. However, the proof provides a control v ∈ H 1/4 (0, T ) and this doesn't require compatibility conditions. If one wants smooth controls, it is also possible. One can choose a smooth control close to our control for the approximate controllability, then end with a smooth control for the exact controllability.

Parabolic stage and exact local controllability

Theorem 4 takes care of the small time global approximate controllability towards the null state. To get Theorem 1, we need to combine it with a small time local exact controllability result in the vicinity of the null state. We give in this section two different approaches for this type of result.

Fursikov and Imanuvilov's theorem

The following theorem is due to Fursikov and Imanuvilov. Indeed, the techniques they expose in their book [START_REF] Fursikov | Controllability of evolution equations[END_REF] can be applied to show the following result. However, the proof of this precise statement is not written, and one has to work to show that the control can be chosen to be smooth.

Theorem 5. Let T > 0.

There exists r > 0 such that, for any initial data y 0 ∈ L 2 (0, 1) satisfying :

y 0 L 2 (0,1) ≤ r, (2.44)
there exists a control v ∈ C 1 [0, T ] such that the solution y ∈ X to the system :

       y t + yy x -y xx = 0 in (0, T ) × (0, 1), y(t, 0) = v(t)
in (0, T ), y(t, 1) = 0 in (0, T ), y(0, x) = y 0 (x) in (0, 1), (2.45) satisfies y(T, •) ≡ 0.

The full theorem is in fact more general since one obtains local exact controllability to the trajectories of system (2.45). The proof relies on Carleman estimates for parabolic equations. It is an extension of a previous result with two boundary controls whose proof can be read in [START_REF] Fursikov | On controllability of certain systems simulating a fluid flow[END_REF].

Using Cole-Hopf and a moments method

In this section we give a proof of Theorem 5 (both for the sake of completeness and for avoiding Carleman estimates). It relies on the Cole-Hopf transform and a moments method introduced in [75] by Fattorini and Russell.

Démonstration. Let T > 0. First, we consider the following heat system :

       z t -z xx = 0 in (0, T ) × (0, 1), z(t, 0) = α(t)
in (0, T ), z x (t, 1) = 0 in (0, T ), z(0, x) = z 0 (x) in (0, 1).

(2.46) This is typically a setting for which we can apply the moments method of Fattorini and Russel exposed in [START_REF] Fattorini | Exact controllability theorems for linear parabolic equations in one space dimension[END_REF]. They prove this system is null controllable for any positive time by means of very smooth controls.

Let us use some control α ∈ C 1 [0, T ]. They also prove that there exists some constant C T such that the size of the control is bounded from above by C T × z 0 L 2 . Therefore, if z 0 is small enough in L 2 , one can steer it to zero with a control α(•) such that α(•) ∞ < 1. Now we get back to our Burgers' system. For y 0 ∈ L 2 (0, 1), let us choose :

z 0 (x) = exp - 1 2 1 0 y 0 (s)ds -1.
Thus, if y 0 (•) is small in L 2 (0, 1) then z 0 (•) too. If they are small enough, then we can steer z 0 to 0 with a control such that α(•) ∞ < 1. In that setting, we have z(•) > -1 thanks to the maximum principle for the heat equation. Hence, if we let y = -2z x /(1 + z), we get a solution y ∈ X to (2.45) such that y(T, •) ≡ 0 provided that condition (2.44) is satisfied for some r > 0 depending only on T .

Conclusion and perspectives

In our work, we want to underline two important ideas. The first one is the rigorous analysis of the hyperbolic limit system and of the adequate weak boundary conditions. These weak boundary conditions somehow describe the behavior of the boundary layer and what it will be able to do or not. The second idea is the dissipation of the boundary layer by the fluid system itself during the passive stage. Once a boundary layer is created, will the system be able to dissipate it in short time or not ?

These two ideas might be important for the analysis of more complex problems such as the Navier-Stokes Open problem 1. For instance, one could try to see if the boundary layer appearing in [START_REF] Coron | On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions[END_REF] when trying to control the 2D Navier-Stokes system with Navier slip boundary conditions can be dissipated in small time by the system itself. Another idea would be to investigate specific geometries (for example 2D rectangle domains). Indeed, one can then hope that the localization of the boundary layers can be analyzed in the same spirit.

The author would like to thank his advisor Jean-Michel Coron for having attracted his attention on this control problem, Claude Bardos, Sergio Guerrero, for fruitful discussions and Vincent Perrollaz for his advice concerning the hyperbolic system.

Chapitre 3

Contrôle de l'équation de Burgers avec un unique contrôle scalaire

Introduction

Description of the system and our main result

For T > 0 a small positive time, we consider the line segment x ∈ [0, 1] and the following onedimensional viscous Burgers' controlled system :

         y t -y xx + yy x = u(t)
in (0, T ) × (0, 1), y(t, 0) = 0 in (0, T ), y(t, 1) = 0 in (0, T ), y(0, x) = y 0 (x) in (0, 1).

(

The scalar control u ∈ L 2 (0, T ) plays a role somewhat similar to that of a pressure for multi-dimensional fluid systems. Unlike some other studies, our control term u depends only on time and not on the space variable. It is supported on the whole segment [0, 1]. For any initial data y 0 ∈ H 1 0 (0, 1) and any fixed control u ∈ L 2 (0, T ), it can be shown (see Lemma 16 below) that system (3.1) has a unique solution in the space X T = L 2 ((0, T ); H 2 (0, 1)) ∩ H 1 ((0, T ); L 2 (0, 1)). We are interested in the behavior of this system in the vicinity of the null equilibrium state. Definition 3. We say that system (3.1) is small time locally null controllable if, for any small time T > 0, for any small size of the control η > 0, there exists a region δ > 0 such that :

∀|y 0 | H 1 0 ≤ δ, ∃u ∈ L 2 (0, T ), |u| 2 ≤ η such that y(T, •) = 0, (3.2) 
where y ∈ X T is the solution to system (3.1) with initial condition y 0 and control u.

Theorem 6. System (3.1) is not small time locally null controllable. Indeed, there exist T, η > 0 such that, for any δ > 0, there exists y 0 ∈ H 1 0 (0, 1) with |y 0 | H 1 0 ≤ δ such that, for any control u ∈ L 2 (0, T ) with |u| 2 ≤ η, the solution y ∈ X T to (3.1) satisfies y(T, •) = 0. We will see in the sequel that our proof actually provides a stronger result. Indeed, we prove that, for small times and small controls, whatever the small initial data y 0 , the state y(t) drifts towards a fixed direction. Of course, this prevents small time local null controllability as a direct consequence.

Motivation : small time obstructions despite infinite propagation speed

As an example, let us consider the following transport control system :

     y t + M y x = 0 in (0, T ) × (0, L), y(t, 0) = v 0 (t) in (0, T ), y(0, x) = y 0 (x) in (0, L), (3.3) 
where T > 0 is the total time, M > 0 the propagation speed and L > 0 the length of the domain. The control is the boundary data v 0 . No condition is imposed at x = 1 since the characteristics flow out of the domain. For system (3.3), small time local null controllability cannot hold. Indeed, even if the initial data y 0 is very small, the control is only propagated towards the right at speed M . Thus, if T < L/M , controllablity does not hold. Of course, if T ≥ L/M , the characteristics method allows to construct an explicit control to reach any final state y 1 at time T . In this context, the obstruction to controllability comes from the fact that the information propagation speed is bounded. Indeed, let us modify slightly system (3.3) into :

         y t -νy xx + M y x = 0 in (0, T ) × (0, L), y(t, 0) = v 0 (t) in (0, T ), y(t, 1) = 0 in (0, T ), y(0, x) = y 0 (x) in (0, L), (3.4) 
where ν > 0 is a (very small) viscosity. This system is small time globally null controllable, for any ν > 0.

Of course, the cost of controllablity must explode as ν → 0 if T is too small (see [START_REF] Coron | Singular optimal control : a linear 1-D parabolichyperbolic example[END_REF] for a precise study of the cost of controllability for (3.4)). What we want to underline here, is that the infinite information propagation speed yields (at least in this context) small time local controllability. Therefore, there is a strong interest for systems where small time local controllability does not hold despite an infinite information propagation speed.

An example of such a system is the control of a quantum particle in a moving potential well (box). This is a bilinear controllability problem for the Schrödinger equation. For such system, it can be shown that large time controllablity holds (see [11] if only the particle needs to be controlled or [START_REF] Beauchard | Controllability of a quantum particle in a moving potential well[END_REF] to control both the particle and the box). For small times, negative results have been obtained by Coron in [START_REF] Coron | On the small-time local controllability of a quantum particle in a moving one-dimensional infinite square potential well[END_REF] (when one tries to control both the particle and the position of the box), by Beauchard, Coron and Teissman in [START_REF] Beauchard | Minimal time for the bilinear control of Schrödinger equations[END_REF] for large controls (but smooth potentials) and by Beauchard and Morancey in [START_REF] Beauchard | Local controllability of 1D Schrödinger equations with bilinear control and minimal time[END_REF] (under an assumption corresponding to a Lie-bracket condition [f 1 , [f 1 , f 0 ]] = 0). This last paper is related to ours since their proof relies on a coercivity estimate involving the H -1 norm of the control. This is natural as we will see in paragraph 3.1.5. We refer the reader to these papers for more details and surveys on the controllability of Schrödinger equations.

Theorem 6 can be seen as another example of a situation (in the context of fluid dynamics) where small time local controllability fails despite an infinite propagation speed.

Previous works concerning Burgers' controllability

Let us recall known results concerning the controllability of the viscous Burgers' equation. More generally, we introduce the following system :

         y t -y xx + yy x = u(t)
in (0, T ) × (0, 1),

y(t, 0) = v 0 (t) in (0, T ), y(t, 1) = v 1 (t) in (0, T ), y(0, x) = y 0 (x) in (0, 1), (3.5) 
where v 0 and v 1 are seen as additional controls with respect to the single control u of system (3.1). Various settings have been studied (with either one or two boundary controls, with or without u). Once again, here u only depends on t and not on x. Some studies have been carried out with v 0 = v 1 = 0 and a source term u(t, x)χ [a,b] for 0 < a < b < 1. However, these studies are equivalent to boundary controls thanks to the usual domain extension argument. Up to our knowledge, Theorem 6 is the first result concerning the case without any boundary control and a scalar control u. We start with results involving only a single boundary control (either v 0 or v 1 by symmetry) and u = 0.

In [START_REF] Fursikov | Controllability of evolution equations[END_REF], Fursikov and Imanuvilov prove small time local controllability in the vicinity of trajectories of system (3.5). Their proof relies on Carleman estimates for the parabolic problem obtained by seeing the non-linear term yy x as a small forcing term.

Global controllability towards steady states of system (3.5) is possible in large time. Such studies have been carried out by Fursikov and Imanuvilov in [START_REF] Fursikov | On controllability of certain systems simulating a fluid flow[END_REF] for large time global controllability towards all steady states, and by Coron in [START_REF] Coron | Some open problems on the control of nonlinear partial differential equations[END_REF] for global null controllability in bounded time (ie. bounded independently on the initial data).

However, small time global controllability does not hold. The first obstruction was obtained by Diaz in [START_REF] Jesús | Obstruction and some approximate controllability results for the Burgers equation and related problems[END_REF]. He gives a restriction for the set of attainable states starting from 0. Indeed, they must lie under some limit state corresponding to an infinite boundary control v 1 = +∞.

Fernández-Cara and Guerrero derived an asymptotic of the minimal null-controllability time T (r) for initial states of H 1 norm lower than r (see [START_REF] Et | Null controllability of the Burgers system with distributed controls[END_REF]). This shows that the system is not small time globally null controllable.

We move on to two boundary controls v 0 and v 1 , still with u = 0. Guerrero and Imanuvilov prove in [START_REF] Guerrero | Remarks on global controllability for the Burgers equation with two control forces[END_REF] that neither small time null controllability nor bounded time global controllability hold in this context. Hence, controlling the whole boundary does not provide better controllability properties.

When three scalar controls (namely u(t), v 0 and v 1 ) are used, Chapouly has shown in [START_REF] Chapouly | Global controllability of nonviscous and viscous Burgers-type equations[END_REF] that the system is small time globally exactly controllable to the trajectories. Her proof relies on the return method and on the fact that the corresponding inviscid Burgers' system is small time exactly controllable (see [START_REF] Coron | de Mathematical Surveys and Monographs[END_REF]Chapter 6] for other examples of this method applied to Euler or Navier-Stokes).

When v 1 = 0, but u and v 0 are controlled, the author proved in [START_REF] Marbach | Small time global null controllability for a viscous Burgers' equation despite the presence of a boundary layer[END_REF] that small time global null controllability holds. Indeed, although a boundary layer appears near the uncontrolled part of the boundary at x = 1, precise estimation of the creation and dissipation of the boundary layer allows to conclude.

Concerning the controllability of the inviscid Burgers' equation, some works have be carried out. In [START_REF] Ancona | On the attainable set for scalar nonlinear conservation laws with boundary control[END_REF], Ancona and Marson describe the set of attainable states in a pointwise way for the Burgers' equation on the half-line x ≥ 0 with only one boundary control at x = 0. In [START_REF] Thierry Horsin | On the controllability of the Burgers equation[END_REF], Horsin describes the set of attainable states for a Burgers' equation on a line segment with two boundary controls. Thorough studies are also carried out in [START_REF] Adimurthi | Exact controllability of scalar conservation laws with strict convex flux[END_REF] by Adimurthi et al. In [START_REF] Perrollaz | Exact controllability of scalar conservation laws with an additional control in the context of entropy solutions[END_REF], Perrollaz studies the controllability of the inviscid Burgers' equation in the context of entropy solutions with the additional control u(•) and two boundary controls.

A quadratic approximation for the non-linear system

Starting now, we introduce ε = T to remember that the total allowed time for controllability is small. Moreover, we want to use the well-known scaling trading small time with small viscosity for viscous fluid equations. Therefore, we introduce, for t ∈ (0, 1) and x ∈ (0, 1), ỹ(t, x) = εy(εt, x). Hence, ỹ is the solution to :

         ỹt -εỹ xx + ỹ ỹx = ũ(t)
in (0, 1) × (0, 1), ỹ(t, 0) = 0 in (0, 1), ỹ(t, 1) = 0 in (0, 1), ỹ(0, x) = ỹ0 (x) in (0, 1),

where ũ(t) = ε 2 u(εt) and ỹ0 = εy 0 . This scaling is widely used for controllability results since small viscosity developments are easier to handle. As we will prove in section 3.6, system (3.6) can help us to deduce results for system (3.1). To further simplify the computations in the following sections, let us drop the tilda signs and the initial data. Therefore, we will study the behavior of the following system near y ≡ 0 :

        
y t -εy xx + yy x = u(t) in (0, 1) × (0, 1), y(t, 0) = 0 in (0, 1), y(t, 1) = 0 in (0, 1), y(0, x) = 0 in (0, 1).

(3.7) Properties proven on system (3.7) will easily be translated into properties for system (3.1) in Section 3.6. Moreover, since we are studying local null controllability, both the control u and the state y are small. Thus, if η describes the size of the control as in Definition 3, let us name our control ηu(t), with u of size O(1). We expand y as y = ηa + η 2 b + O(η 3 ), and we compute the associated systems :

         a t -εa xx = u(t) in (0, 1) × (0, 1), a(t, 0) = 0 in (0, 1), a(t, 1) = 0 in (0, 1), a(0, x) = 0 in (0, 1) (3.8) and          b t -εb xx = -aa x in (0, 1) × (0, 1), b(t, 0) = 0 in (0, 1), b(t, 1) = 0 in (0, 1), b(0, x) = 0 in (0, 1). (3.9)
It is easy to see that system (3.8) is not controllable. Indeed, the control u(t) can actually be written as u(t)χ [0,1] , and χ [0,1] is an even function on the line segment [0, 1]. Thus, the control only acts on even modes of a. In the linearized system (3.8), all odd modes evolve freely. This motivates the second order expansion of our Burgers' system in order to understand its controllability properties using b. Given systems (3.8) and (3.9), we know that a is even and b is odd.

A finite dimensional counterpart

Systems (3.8) and (3.9) exhibit an interesting structure. Indeed, the first system is fully controllable (if we consider that a lives within the subspace of even functions), while the second system is indirectly controlled through a quadratic form depending on a. Let us introduce the following finite dimensional control system :

ȧ = M a + u(t)m in (0, T ), ḃ = Lb + Q(a, a) in (0, T ), (3.10) 
where the states a(t), b(t) ∈ R n × R p , M is an n × n matrix, m is a fixed vector in R n along which the scalar control acts, L is a p × p matrix and Q is a quadratic function from R n × R n into R p . Moreover, we assume that the pair (M, m) satisfies the classical Kalman rank condition (see [START_REF] Coron | de Mathematical Surveys and Monographs[END_REF]Theorem 1.16]). Hence, the state a is fully controllable. We consider the small time null controllability problem for system (3.10). We want to know, if, for any T > 0, for any initial state (a 0 , b 0 ), there exists a control u : (0, T ) → R such that the solution to (3.10) satisfies a(T ) = 0 and b(T ) = 0. As proved in [START_REF] Brockett | Controllability with quadratic drift[END_REF] for the case L = 0, the answer to this question is always no in finite dimension, whatever M, m, L and Q. System (3.10) is a particular case of the more general class of control affine systems. Indeed, if we let x(t) = (a(t), b(t)) ∈ R n+p , we can write system (3.10) as :

ẋ = f 0 (x) + u(t)f 1 (x), (3.11) 
where f 0 (x) = (M a, Lb + Q(a, a)) and f 1 (x) = (m, 0). The controllability of systems like (3.11) is deeply linked to the iterated Lie brackets of the vector fields f 0 and f 1 (see [55, Section 3.2] for a review).

Let us give a few examples with n = 3. We write a = (a 1 , a 2 , a 3 ) and we consider the system :

ȧ1 = a 2 , ȧ2 = a 3 , ȧ3 = u. (3.12)
Although the strong structure of equation (3.12) can seem a little artificial, it is in fact the general case. Indeed, up to a translation of the control, controllable systems can always be brought back to this canonical form introduced by Brunovsky in [START_REF] Brunovský | A classification of linear controllable systems[END_REF] (for a proof, see [START_REF] Trélat | Contrôle optimal[END_REF]Theorem 2.2.7]). The resulting system is flat. We can express the full state as derivatives of a single scalar function. Indeed, if we let θ = a 1 , we have a 2 = θ , a 3 = θ and u = θ . If we choose an initial state (a 0 , b 0 ) with a 0 = 0, we obtain θ(0) = θ (0) = θ (0) = 0. Moreover, if we assume that the control u drives the state (a, b) to (0, 0) at time T , we also have θ(T ) = θ (T ) = θ (T ) = 0. These conditions allow integration by parts without boundary terms.

To keep the examples simple, we choose p = 1 (hence b = b 1 ∈ R) and we let L = 0. First example. We consider the evolution ḃ = a 2 2 + a 1 a 3 . If the initial state is (a 0 , b 0 ) where a 0 = 0, we can compute b(T ) = b 0 + T 0 θ 2 (t) + θ(t)θ (t)dt = b 0 . Hence, null controllability does not hold since any control driving a from 0 back to 0 has no action on b. This obstruction to controllability is linked to the fact that dimL(0) = 3, where L is the Lie algebra generated by f 0 and f 1 . The system is locally constrained to evolve within a 3 dimensional manifold of R 4 . Indeed, the evolution equation can be rephrased as ḃ = d dt (a 1 a 2 ). Thus, the quantity b -a 1 a 2 is a constant (conservation law of the system). Second example. We consider the evolution ḃ = a 2 3 . Thus, b(T ) = b 0 + T 0 θ (t) 2 dt. This is also an obstruction to null controllability. Indeed, all choices of control will make b increase. In this setting, we recover the well known second order Lie bracket condition discovered by Sussmann (see [START_REF] Sussmann | Lie brackets and local controllability : a sufficient condition for scalar-input systems[END_REF]Proposition 6.3]). Indeed, here, [

f 1 , [f 1 , f 0 ]] = (0 R 3 , Q(m, m)) = (0 R 3 , 1). System (3.11) drifts in the direction [f 1 , [f 1 , f 0 ]
] and the control cannot prevent it because this direction does not belong to the set of the first order controllable directions (m, 0), (M m, 0) and (M 2 m, 0) (Lie brackets of f 0 and f 1 involving f 1 once and only once).

Third example. We consider ḃ = a 2 2 . Thus, b(T

) = b 0 + T 0 θ 2 (t)dt. Again, b can only increase. Here, the first bad Lie bracket [f 1 , [f 1 , f 0 ]] vanishes for x = 0. However, we can check that [f 1 , [f 0 , [f 0 , [f 1 , f 0 ]]]] = (0 R 3 , Q(M m, M m)) = (0 R 3 , 1)
. Compared with the second example, the increase of b is weaker. Indeed, in the second example, we had b(T

) = b 0 + |u| 2 H -1 (0,T ) . In this third example, b(T ) = b 0 + |u| 2 H -2 (0,T ) .
Although these examples may seem caricatural, they reflect the general case. In finite dimension, systems like (3.10) are never small time controllable. Either because they evolve within a strict manifold, or because some quantity depending on b increases. Moreover, the amount by which b increases is linked to the order of the first bad Lie bracket and can be expressed as a weak norm depending on the control. One of the goals of our work is thus also to investigate the situation in infinite dimension, where Lie brackets are harder to define and compute.

Therefore, the first natural question is to compute the Lie bracket [f 1 , [f 1 , f 0 ]](0) for systems (3.8) and (3.9). As we have seen in finite dimension, this Lie bracket is (0, Q(m, m)). In our setting, m is the even function χ [0,1] and Q(a, a) = -aa x . Thus Q(m, m) is null. This can be proved computationally using Fourier series expansions. Let us give a much simpler argument inspired by the formal fact that ∂ x 1 = 0. For any a ∈ L 2 (0, 1) and any smooth test function φ such that φ(0) = φ(1) = 0, we have :

1 0 Q(a, a)φ = 1 2 1 0 a 2 (x)φ x (x)dx. (3.13)
Hence, even if q := Q(1, 1) was defined in a very weak sense, (3.13) yields :

q, φ = 1 2 1 0 φ x = 1 2 φ(1) - 1 2 φ(0) = 0 (3.14)
Since (3.14) is valid for any smooth φ null at the boundaries, we conclude that indeed, q = Q(1, 1) is null. Therefore, the classical [f 1 , [f 1 , f 0 ]] necessary condition by Sussmann does not provide an obstruction to small time controllability for our system. This also explains why the coercivity property we are going to prove is in a weaker norm than H -1 .

Strategy for the proof

Most of this paper is dedicated to the asymptotic study of systems (3.8) and (3.9) as the viscosity ε tends to zero. In Section 3.6, we prove that this study is sufficient to conclude about the local null controllability for system (3.1). In order to prove that system (3.1) is not small time locally null controllable, we intend to exhibit a quantity depending on the state y(t, •) that cannot be controlled. For ρ ∈ H 1 (0, 1), we will consider quantities of the form ρ, y(t, •) .

Looking at system (3.9) when ε is very small, we get the idea to consider ρ(x) = x -1 2 . Indeed, we obtain : d dt

1 0 ρ(x)b(t, x)dx = 1 2 1 0 a 2 (t, x)dx + ε 2 (b x (t, 1) -b x (t, 0)) . (3.15)
Formally, if we let ε = 0 in equation (3.15), it is very encouraging because it shows that the quantity ρ, b can only increase, whatever is the choice of the control. Moreover, since we can compute the amount by which it increases, we have a kind of coercivity and we can hope to be able to use it to overwhelm both residues coming from the fact that ε > 0 and residues between the quadratic approximation and the full non-linear system. Sadly, the second term in the right-hand side of equation (3.15) is hard to handle.

However, as a depends linearly on u, and b depends quadratically on a, we expect that we can find a kernel K ε (s 1 , s 2 ) such that :

ρ, b(1, •) = 1 0 1 0 K ε (s 1 , s 2 )u(s 1 )u(s 2 )ds 1 ds 2 . (3.16)
Thanks to equation (3.15), we expect that (3.16) actually defines a positive definite kernel acting on u, allowing us to use its coercivity to overwhelm various residues. In Section 3.2, we recall a set of technical well-posedness estimates for heat and Burgers systems. In Section 3.3, we show that formula (3.16) holds and we give an explicit construction of the kernel K ε . Moreover, we compute formally its limit K 0 as ε → 0.

In Section 3.4, we prove that the kernel K 0 is coercive with respect to the H -5/4 (0, 1) norm of the control u, by recognizing a Riesz potential and a fractional laplacian.

In Section 3.5, we use weakly singular integral operator estimates to bound the residues between K ε and K 0 and thus deduce that K ε is also coercive, for ε small enough.

In Section 3.6, we use these results to go back to the controllability of Burgers.

In Appendix 3.8, we give a short presentation of the theory of weakly singular integral operators and a sketch of proof of the main estimation lemma we use.

Preliminary technical lemmas

In this section, we recall a few useful lemmas and estimates, mostly concerning the heat equation and Burgers equation on a line segment. Throughout this section, ν is a positive viscosity and T a positive time. To lighten the computations, we will use the notation to denote inequalities that hold up to a numerical constant. We will not attempt to keep track of these numerical constants. We insist on the fact that these constants do not depend on any parameter (neither the time T , nor the viscosity ν, the control u, or any other unknown).

Properties of the functional space

We recall the definition given in the introduction and state without proof the following classical lemmas which can be proved using either interpolation theory or Fourier transforms with respect to time and space. Definition 4. We define the functional space :

X T = L 2 (0, T ), H 2 (0, 1) ∩ H 1 (0, T ), L 2 (0, 1) .
(3.17)

We endow the space X T with the scaling invariant norm :

z X T := T -1/2 z 2 + T -1/2 z xx 2 + T 1/2 z t 2 . (3.18) Lemma 9. X T → C 0 ([0, T ], H 1 (0, 1)). Moreover, for any function z ∈ X T , sup t∈[0,T ] |z(t, •)| H 1 (0,1) z X T . (3.19)
In particular,

z ∞ z X T . (3.20)
Lemma 10. For any z ∈ X T , the boundary traces of z x satisfy :

T -1/4 |z x (•, 0)| H 1/4 (0,T ) + T -1/4 |z x (•, 1)| H 1/4 (0,T ) z X T . (3.21)

Smooth setting for the heat equation

We start by recalling standard estimates in a smooth (strong) setting for one dimensional heat equations that will be useful in the sequel. We state all results for standard forward heat equations, but the same results hold for backwards heat equations with final time conditions. Lemma 11. Let f ∈ L 2 ((0, T ) × (0, 1)) and z 0 ∈ H 1 0 (0, 1). We consider the system :

         z t -νz xx = f in (0, T ) × (0, 1), z(t, 0) = 0 in (0, T ), z(t, 1) = 0 in (0, T ), z(0, x) = z 0 (x) in (0, 1). (3.22)
There is a unique solution z ∈ X T to system (3.22). Moreover, it satisfies the estimate :

ν z xx 2 + √ ν z x 2 + z t 2 f 2 + √ ν|z 0 x | 2 . (3.23)
Démonstration. The proof of the existence and uniqueness is standard. Let us recall how we can obtain estimate (3.23). We multiply equation (3.22) by z xx and integrate by parts over x ∈ (0, 1). Thus,

d dt 1 2 1 0 z 2 x + ν 1 0 z 2 xx = - 1 0 f z xx . (3.24)
For any T < T , we can integrate (3.24) over t ∈ (0, T ). Hence, we obtain :

1 2 |z x (T )| 2 2 + ν T 0 1 0 z 2 xx = - T 0 1 0 f z xx + 1 2 z 0 x 2 2 . (3.25)
From (3.25), we easily deduce that : Lemma 12. Let z 0 ∈ H 1 0 (0, 1) and consider z ∈ X T the solution to system (3.22) with a null forcing term (f = 0). It satisfies :

ν z xx 2 f L 2 + √ ν|z 0 x | 2 , (3.26) √ ν z x L ∞ (L 2 ) f L 2 + √ ν|z 0 x | 2 . ( 3 
z ∞ ≤ z 0 ∞ . (3.28)
Démonstration. Although (3.28) is not a direct consequence of the combination of (3.20) and (3.23) (which would yield a weaker conclusion), it can be obtained via a standard application of the maximum principle, which can be applied in this strong setting.

Weaker settings for the heat equation

Let us move on to weaker settings for the heat equation. Moreover, we introduce inhomogeneous boundary data as we will need them in the sequel.

Definition 5. Let f ∈ (X T ) , v 0 , v 1 ∈ H -1/4 (
0, T ) and z 0 ∈ H -1 (0, 1). We consider :

         z t -νz xx = f in (0, T ) × (0, 1), z(t, 0) = v 0 (t) in (0, T ), z(t, 1) = v 1 (t) in (0, T ), z(0, x) = z 0 (x) in (0, 1). (3.29)
We say that z ∈ L 2 ((0, T ) × (0, 1)) is a weak solution to system (3.29) if, for all g ∈ L 2 ((0, T ) × (0, 1)),

z, g L 2 ,L 2 = f, ϕ (X T ) ,X T + z 0 , ϕ(0, •) H -1 (0,1),H 1 0 (0,1) + ν v 0 , ϕ x (•, 0) H -1/4 (0,T ),H 1/4 (0,T ) -ν v 1 , ϕ x (•, 1) H -1/4 (0,T ),H 1/4 (0,T ) , (3.30)
where ϕ ∈ X T is the solution to the dual system :

         ϕ t + νϕ xx = -g in (0, T ) × (0, 1), ϕ(t, 0) = 0 in (0, T ), ϕ(t, 1) = 0 in (0, T ), ϕ(T, x) = 0 in (0, 1). (3.

31)

Lemma 13. There exists a unique weak solution z ∈ L 2 ((0, T ) × (0, 1)) to system (3.29). Moreover :

z 2 T -1/2 ν -1 f (X T ) + |z 0 | H -1 + T -1/4 (|v 0 | H -1/4 + |v 1 | H -1/4 ) . (3.32)
Démonstration. For any g ∈ L 2 ((0, T ) × (0, 1)), Lemma 11 asserts that system (3.31) admits a unique solution ϕ ∈ X T such that ϕ

X T T -1/2 ν -1 g L 2 .
Moreover, thanks to estimates (3.19) and (3.21), the right-hand side of equation (3.30) defines a continuous linear form on L 2 . The Riesz representation theorem therefore proves the existence of a unique z ∈ L 2 satisfying estimate (3.32). Lemma 14. Let f ∈ L 2 ((0, T ) × (0, 1)). We consider the following heat system :

         z t -νz xx = f x in (0, 1) × (0, 1), z(t, 0) = 0 in (0, 1), z(t, 1) = 0 in (0, 1), z(0, x) = 0 in (0,

1). (3.33)

There is a unique solution z ∈ L 2 ((0, T ) × (0, 1)) to system (3.33). Moreover, it satisfies the estimate :

ν 1/2 z L ∞ (L 2 ) + ν z x L 2 f L 2 . (3.34)
Démonstration. For f ∈ L 2 , it is easy to check that f x ∈ X T . Hence, we can apply Lemma 13 and system (3.33) has a unique solution z ∈ L 2 . In fact, this solution is even smoother. Estimate (3.34) is obtained as usual by multiplying equation (3.33) by z and integration by parts.

Burgers and forced Burgers systems

We move on to Burgers-like systems. For the sake of completeness, we provide a short proof of the existence of a solution to system (3.1) and a precise estimate for forced Burgers-like systems that will be necessary in the sequel. Lemma 15. Let w ∈ X T , g ∈ L 2 ((0, T ), H 1 (0, 1)) and y 0 ∈ H 1 0 (0, 1). We consider y ∈ X T a solution to the following forced Burgers-like system :

         y t -νy xx = -yy x + (wy) x + g x in (0, T ) × (0, 1), y(t, 0) = 0 in (0, T ), y(t, 1) = 0 in (0, T ), y(0, x) = y 0 (x) in (0, 1). (3.35)
Then,

ν y xx 2 + √ ν y x 2 + y t 2 g x 2 + e γ w x L 2 (L ∞ ) ν -1/2 g 2 + y 0 2 2 + (1 + √ γe γ ) w ∞ ν -1 g 2 + ν -1/2 y 0 2 2 + 1 + √ γe 6γ e γ g L 2 (L ∞ ) ν -3/2 g 2 + ν -1 y 0 2 + 1 + √ γe 6γ ν -1/2 y 0 2 4 + ν 1/2 y 0 x 2 .
(3.36)

where we introduce γ = 1 ν w 2 L 2 (L ∞ ) .
Démonstration. L 2 estimates for y and y x . We start by multiplying equation (3.35) by y, and integrate by parts over (0, 1) :

1 2 d dt 1 0 y 2 + ν 1 0 y 2 x = - 1 0 wyy x - 1 0 gy x ≤ 2 2ν 1 0 w 2 y 2 + ν 4 1 0 y 2 x + 2 2ν 1 0 g 2 + ν 4 1 0 y 2 x .
(3.37)

From (3.37), we deduce :

d dt 1 0 y 2 + ν 1 0 y 2 x ≤ 2 ν |w(t, •)| 2 ∞ 1 0 y 2 + 2 ν 1 0 g 2 . (3.38)
We apply Grönwall's lemma to (3.38) to obtain : 

y 2 L ∞ (L 2 ) ≤ e 2γ 2 ν g 2 2 + y 0 2 2 . ( 3 
y 4 + 6ν 1 0 y 2 y 2 x ≤ 12 ν |w(t, •)| 2 ∞ 1 0 y 4 + 12 ν |g(t, •)| 2 ∞ 1 0 y 2 . (3.41)
We apply Grönwall's lemma to (3.41) to obtain : Lemma 16. For any initial data y 0 ∈ H 1 0 (0, 1) and any control u ∈ L 2 (0, T ), system (3.1) has a unique solution y ∈ X T . Moreover :

y 4 L ∞ (L 4 ) ≤ e 12γ 12 ν g 2 L 2 (L ∞ ) y 2 L ∞ (L 2 ) + y 0 4 4 . ( 3 
y xx 2 + y t 2 |u| 2 + |u| 2 2 + |y 0 | 2 4 + |y 0 x | 2 , (3.44) y ∞ ≤ |y 0 | ∞ + |u| L 1 . (3.45)
Démonstration. This type of existence result relies on standard a priori estimates and the use of a fixed point theorem. Such techniques are described in [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF]. One can also use a semi-group method as in [START_REF] Pazy | Semigroups of linear operators and applications to partial differential equations[END_REF]. The quantitative estimate is obtained by applying Lemma 15 with w = 0 (hence γ = 0) and g(t, x) = xu(t). Equation (3.36) yields (3.44). The second estimate (3.45) is a consequence of the maximum principle, which can be applied in this strong setting.

From Burgers to a kernel integral operator

A general method for evaluating a projection

As we mentionned in the introduction, we are going to consider a projection of the state b against some given profile ρ(x) at the final time t = 1. Since a depends linearly on u and b depends quadratically on a, it is natural to look for this projection as a quadratic integral operator acting on our control u. Indeed, let us prove the following result. Lemma 17. Let ρ ∈ L 2 (0, 1) and ε > 0. There exists a symmetric kernel K ε ∈ L ∞ ((0, 1) 2 ) such that, for any u ∈ L 2 (0, 1), the solution to system (3.8)-(3.9) satisfies :

1 0 b(1, x)ρ(x)dx = (0,1) 2 K ε (s 1 , s 2 )u(s 1 )u(s 2 )ds 1 ds 2 .
(3.46)

The key point of the proof is to convert the pointwise in time projection of b into an integrated projection over the time interval (0, 1). Indeed, we start with the proof of the following lemma. Lemma 18. Let f ∈ L 2 ((0, 1) 2 ), ε > 0 and z ∈ X 1 be the solution to :

         z t -εz xx = f in (0, 1) × (0, 1), z(t, 0) = 0 in (0, 1), z(t, 1) = 0 in (0, 1), z(0, x) = 0 in (0, 1). (3.47)
Take ρ ∈ L 2 (0, 1). The final time projection of z against ρ satisfies :

1 0 z(1, x)ρ(x)dx = (0,1) 2 Φ(1 -t, x)f (t, x)dxdt, (3.48)
where Φ ∈ X 1 is the solution to :

         Φ t -εΦ xx = 0 in (0, 1) × (0, 1), Φ(t, 0) = 0 in (0, 1), Φ(t, 1) = 0 in (0, 1), Φ(0, x) = ρ(x) in (0, 1). (3.49)
Démonstration. Let us introduce Ψ ∈ X 1 , the solution to :

        
Ψ t -εΨ xx = ρ in (0, 1) × (0, 1), Ψ(t, 0) = 0 in (0, 1), Ψ(t, 1) = 0 in (0, 1), Ψ(0, x) = 0 in (0, 1).

(3.50)

Using this system, we can convert the time punctual projection of the state z against ρ into a projection of the source term f onto the full square : Let us come back to the proof of Lemma 17. We apply Lemma 18 to the state b. Thus, from (3.9) and (3.48) we deduce that :

1 0 z(1, x)ρ(x)dx = d dT T 0 1 0 z(t, x) • ρ(x)dxdt T =1 = d dT T 0 1 0 z(t, x) • {Ψ t -εΨ xx }(T -t, x)dxdt T =1 = d dT T 0 1 0 {z t -εz xx }(t, x) • Ψ(T -t, x)dxdt T =1 = d dT T 0 1 0 f (t, x) • Ψ(T -t, x)dxdt T =1 = 1 0 1 0 f (t, x)Ψ t (1 -t, x)dxdt.
1 0 b(1, x)ρ(x)dx = 1 0 1 0 Φ(1 -t, x)[-aa x ](t, x)dxdt = 1 2 1 0 1 0 Φ x (1 -t, x)a 2 (t, x)dxdt. (3.52)
In order to express our projection directly using u, we need to eliminate a from (3.52). This can easily be done using an elementary solution of the heat system. Therefore, we introduce G the solution to :

         G t -εG xx = 0 in (0, 1) × (0, 1), G(t, 0) = 0 in (0, 1), G(t, 1) = 0 in (0, 1), G(0, x) = 1 in (0, 1). (3.53)
Using the initial condition a(t = 0, •) ≡ 0 from system (3.8), we can expand a as :

a(t, x) = t 0 G(t -s, x)u(s)ds. (3.54)
Pluging (3.54) into (3.52) yields :

1 0 b(1, x)ρ(x)dx = 1 2 1 0 1 0 Φ x (1 -t) t 0 G(t -s 1 )u(s 1 )ds 1 t 0 G(t -s 2 )u(s 2 )ds 2 dt = 1 2 1 0 1 0 u(s 1 )u(s 2 ) 1 s1∨s2 1 0 Φ x (1 -t)G(t -s 1 )G(t -s 2 )dt ds 1 ds 2 .
(3.55)

Finally, equation (3.55) proves (3.46) with :

K ε (s 1 , s 2 ) = 1 2 1 s1∨s2 1 0 Φ x (1 -t, x)G(t -s 1 , x)G(t -s 2 , x)dxdt. (3.56)
Thus, we have proved Lemma 17 and we have a very precise description of the kernel that is involved. This kernel depends on the projection profile ρ(x) by means of Φ defined in (3.49). This kernel also strongly depends on the viscosity ε which is involded in the computation of both Φ and of the elementary solution G. Moreover, it is clear that K is a symmetric kernel and since all terms are bounded thanks to the maximum principle, we know that K ∈ L ∞ . In fact, K is even smoother as we will see later on.

Choice of a projection profile

As we have seen in the introduction, a natural choice in the low viscosity setting would be ρ(x) = x- 1 2 . We think that our proof could be adapted to work with this profile. However, the computations are tough because it does not satisfy null boundary conditions. Thus, we are going to make a choice which is more intrinsic to the Burgers system.

For any fixed control value ū ∈ R, we want to compute the associated steady state (ā(x), b(x)) of systems (3.8) and (3.9). Thus, we solve the following system : 

-εā xx = ū in (0, 1), -ε bxx = -āā x in (0, 1), ( 3 
ā(x) = 1 2ε x(1 -x)ū and b(x) = 1 8ε 3 x 5 5 - x 4 2 + x 3 3 - x 30 ū2 . (3.58)
Of course, b depends quadratically on ū. Thus equation (3.58) gives the idea of considering :

ρ(x) = x 5 5 - x 4 2 + x 3 3 - x 30 . (3.59)
This choice of ρ may seem strange because is has been obtained using an infinite viscosity limit. However, since both ρ and ρ xx satisfy null boundary conditions, the computations of the different kernel residues turn out to be easier. In the sequel, we assume that ρ is defined by (3.59).

Rough computation of the asymptotic kernel

In this paragraph, we apply Lemma 17 to compute the kernel associated to the choice of ρ given in (3.59). More specifically, we are interested in computing a rough approximation of K ε when ε → 0. This approximation will serve as a motivation for the following sections where we will need to estimate all the residues that will be leaving aside for the moment. Since formula (3.56) defining K ε involves both Φ and G, we need to choose approximations of these quantities as ε → 0. Looking at system (3.49) defining Φ, we choose to use :

Φ x (t, x) ≈ ρ x (x).
(3.60)

Moreover, for G defined by (3.53), we will use the approximation G ≈ 1 inside (0, 1). Stopping here would not yield anything useful. Indeed, since 1) -ρ(0) = 0, we would obtain K ε = 0. Hence, we need to choose an approximation of G that is more accurate near the boundary, eg :

1 0 ρ x = ρ(
G(t, x) ≈ erf x √ 4εt , ( 3.61) 
which we will use near x = 0. Note that equation (3.61) corresponds to the solution of a heat equation on the real line with an initial data equal to -1 for x < 0 and +1 for x > 0. Thus, it satisfies the boundary condition G(t, 0) ≡ 0 and serves as a boundary layer correction. We compute the integrand inside equation (3.56) :

A ε (t, s 1 , s 2 ) := 1 2 1 0 Φ x (1 -t, x)G(t -s 1 , x)G(t -s 2 , x)dx = 1 2 1 0 Φ x (1 -t, x) (G(t -s 1 , x)G(t -s 2 , x) -1) dx since Φ x = 0 = 1 2 0 Φ x (1 -t, x) (G(t -s 1 , x)G(t -s 2 , x) -1) dx by parity, ≈ 1 2 0 ρ x (x) erf x 4ε(t -s 1 ) erf x 4ε(t -s 2 ) -1 dx (3.60), (3.61), ≈ 2 √ ε 1 4 √ ε 0 ρ x 2 √ εx erf x (t -s 1 ) erf x (t -s 2 ) -1 dx ∼ -2 √ ερ x (0) +∞ 0 1 -erf x (t -s 1 ) erf x (t -s 2 )
dx.

(3.62) To carry on with the computation, we need the following integral calculus lemma.

Lemma 19. Let α, β > 0. Then, +∞ 0 (1 -erf(αx)erf(βx)) dx = 1 αβ α 2 + β 2 π . (3.63)
Démonstration. We can find an explicit primitive for the integrand. Indeed, for any X > 0,

X 0 (1 -erf(αx)erf(βx)) dx =X (1 -erf(αX)erf(βX)) - erf(αX) exp(-β 2 X 2 ) β √ π - erf(βX) exp(-α 2 X 2 ) α √ π + α 2 + β 2 αβ √ π erf α 2 + β 2 X .
(3.64) Equation (3.64) can be checked by differentiation. Taking its limit as X → +∞ yields (3.63).

We return to the computation of the asymptotic kernel as ε → 0. We note that ρ x (0) = -1 30 . Combined with (3.56), (3.62) and Lemma 19, we obtain :

K ε (s 1 , s 2 ) = 1 s1∨s2 A ε (t, s 1 , s 2 )dt ≈ √ ε 15 √ π 1 s1∨s2 (t -s 1 ) + (t -s 2 )dt ≈ √ ε 45 √ π • (2t -s 1 -s 2 ) 3 2 1 s1∨s2 ≈ √ ε 45 √ π K 0 (s 1 , s 2 ), (3.65) 
where we introduce the asymptotic kernel :

K 0 (s 1 , s 2 ) = (2 -s 1 -s 2 ) 3/2 -|s 1 -s 2 | 3/2 . (3.66)
At this stage, equation (3.65) is not rigorous. The meaning of the ≈ sign has to be made precise. This is the goal of Section 3.5 where we prove that this asymptotic formula does make sense. Indeed, we estimate the kernel residues between K ε and √ εK 0 . They turn out to be both small (with respect to ε) and smooth (with respect to the spaces on which they define continuous quadratic forms).

Coercivity of the asymptotic kernel

In this section, our goal is to prove the coercivity of the kernel K 0 (x, y). This is a symmetric realvalued kernel defined on (0, 1) × (0, 1). Note that, since no confusion is possible, we will use (x, y) instead of (s 1 , s 2 ) for the variables of the kernel to lighten notations of this section. We will prove the following theorem.

Lemma 20. The integral operator associated to K 0 is coercive in the space H -5/4 (0, 1). There exists γ > 0 such that, for any f ∈ L 2 (0, 1), the following inequality holds :

1 0 1 0 K 0 (x, y)f (x)f (y)dxdy ≥ γ F 2 H -1/4 (0,1) , (3.67)
where F is the primitive of f such that F (0) = 0.

Thanks to the change of variables (x, y) → (1 -x, 1 -y), the kernel K 0 behaves exactly like :

N (x, y) = (x + y) 3/2 -|x -y| 3/2 . ( 3.68) 
In this section, we will thus study the properties of N whose expression is easier to handle.

The limite kernel is positive definite

This section uses results and notions from [START_REF] Berg | Harmonic analysis on semigroups[END_REF]. We will say that a matrix A is positive semidefinite (psd) when Ax|x ≥ 0 for any x ∈ R m . We will say that A is positive definite if the inequality is strict for any x = 0. We will say that A is conditionnaly negative semidefinite (cnsd) when Ax|x ≤ 0 for any x such that

x i = 0. We will use similar definitions for operators.

Lemma 21. For any f ∈ L 2 (0, 1), 

1 0 1 0 N (x, y)f (x)f (y)dxdy ≥ 0. ( 3 
ψ(x, y) = -(x + y) 3/2 + |x -y| 3/2 (3.70)
defines a cnsd. kernel. Thus, since :

N (x, y) = ψ(x, 0) + ψ(y, 0) -ψ(x, y) -ψ(0, 0), (3.71) 
this kernel is psd. thanks to [START_REF] Berg | Harmonic analysis on semigroups[END_REF]Lemma 2.1]. This proves inequality (3.69).

Even though it is true that the kernels involved in the proof of Lemma 21 are striclty negative (or positive), we cannot adapt the proof to prove that N is definite. Indeed, Mercer's theorem (which allows us to take the step from matrices to continuous kernels) doesn't preserve strict inequalities. Thus, we have to look for another proof.

Some insight and facts

Our main insight is that the kernel N is made up of two parts. The most singular one should explain its behavior. Indeed, kernels which can be expressed as a function r (|x -y|) have been extensively studied. For example, [START_REF] Widom | Asymptotic behavior of the eigenvalues of certain integral equations[END_REF] and [START_REF] Rosenblatt | Some results on the asymptotic behavior of eigenvalues for a class of integral equations with translation kernels[END_REF] prove asymptotic formulas for the eigenvalues of the -|x -y| 3/2 part of our kernel :

λ n ∼ 3 √ 2 4π 2 1 n 5 2 . ( 3.72) 
Moreover, some papers have also studied the eigenvectors of such kernels. For example, in [START_REF] Vasil | Asymptotic behavior of the spectrum and eigenfunctions of convolution operators a finite interval with the kernel having a homogeneous Fourier transform[END_REF], one can find asymptotic developments for eigenvectors of kernels of the form |x -y| -α , where α ∈ (0, 1).

Combining the insight that the eigenvectors of N should asymptotically behave like oscillating sinuses and formula (3.72), we expect that it should be possible to prove Lemma 20 by means of such an asymptotic study. However, we have not been able to prove it using this method. Instead, we give below a proof based on Riesz potentials.

Highlighting the singular part of the kernel

The kernel N (x, y) is rather smooth. In order to prove its coercivity, we will need to isolate it's most singular part. In the following lemma, we use integration by parts twice to show that studying the behavior of N is equivalent to studying a more singular kernel. By choosing adequatly the primitive, we show that we can also cancel boundary terms.

Lemma 22.

Let f ∈ L 2 (0, 1) and F be the primitive of f such that F (1) = 0. Then :

(N f, f ) = 3 4 1 0 1 0 (x + y) -1 2 + |x -y| -1 2 F (x)F (y)dxdy. (3.73) 
Démonstration. Let f ∈ L 2 (0, 1) and F be the primitive of f such that F (1) = 0. We start with :

- 1 0 1 0 |x -y| 3 2 f (x)f (y)dxdy = - 1 0 f (x) x 0 (x -y) 3 2 f (y)dy + 1 x (y -x) 3 2 f (y)dy dx = F (0) 1 0 x 3 2 f (x)dx + 3 2 1 0 1 0 |x -y| 1 2 sg(y -x)f (x)F (y)dxdy = F (0) 1 0 x 3 2 f (x)dx + 3 2 1 0 F (y) y 0 (y -x) 1 2 f (x)dx - 1 y (x -y) 1 2 f (x)dx dy = F (0) 1 0 x 3 2 f (x) - 3 2 x 1 2 F (x) dx + 3 4 1 0 1 0 |x -y| -1 2 F (x)F (y)dxdy. (3.74) 
We continue with the other half of the kernel N (x, y) :

1 0 1 0 (x + y) 3 2 f (x)f (y)dxdy = -F (0) 1 0 x 3 2 f (x)dx - 3 2 1 0 1 0 (x + y) 1 2 f (x)F (y)dxdy = F (0) 1 0 3 2 x 1 2 F (x) -x 3 2 f (x) dx + 3 4 1 0 1 0 (x + y) -1 2 F (x)F (y)dxdy. (3.75) 
Summing the two previous equalities proves Lemma 22.

Riesz potential and fractional laplacian

In this section, we focus on the most singular part of the kernel. We recognize a Riesz potential of order 1 2 . Using the fractional laplacian, we can compute the quantity as a usual norm.

Lemma 23. There exists C > 0 such that, for any h ∈ L 2 (0, 1),

1 0 1 0 |x -y| -1 2 h(x)h(y)dxdy ≥ C h 2 H -1/4 (0,1) . ( 3.76) 
Démonstration.

1 0 1 0 |x -y| -1 2 h(x)h(y)dxdy = R R |x -y| -1 2 h(x)h(y)dxdy = (-∆) -1/4 h, h = (-∆) -1/8 h, (-∆) -1/8 h = (-∆) -1/8 h 2 L 2 = h 2 Ḣ-1/4 ≥ h 2 H -1/4
(3.77)

More information on such techniques can be found in [START_REF] Menachem | Singular integrals and differentiability properties of functions[END_REF] or posterior works.

Positivity of the smooth part

To conclude the proof of Lemma 20, we show that the smooth part of our kernel is of positive type. We could also rely on smoothness arguments to prove that its behavior doesn't modify the asymptotic behavior of eigenvectors and eigenvalues of the singular part.

Lemma 24.

For any h ∈ L 2 (0, 1),

1 0 1 0 (x + y) -1 2 h(x)h(y)dxdy ≥ 0. (3.78)
Démonstration. We use definitions and theorems found in [START_REF] Berg | Harmonic analysis on semigroups[END_REF]Chapter 3]. Thanks to [26, result 1.9, page 69], the kernel given on (0, 1) 2 by (x, y) → x + y is conditionnaly negative semidefinite (cnsd). Hence, using [26, corollary 2.10, page 78], the kernel given by (x, y) → √ x + y is also cnsd. Eventually, [26, exercise 2.21, page 80] proves that the kernel (x, y) → 1/ √ x + y is positive semidefinite. This means that, for any n > 0 and any c 1 , . . . c n ∈ R and any x 1 , . . . x n ∈ (0, 1),

n i=1 n j=1 c i c j √ x i + x j ≥ 0. (3.79) 
Using Mercer's theorem (see [START_REF] Mercer | Functions of positive and negative type, and their connection with the theory of integral equations[END_REF]), we deduce that, for any h ∈ L 2 (0, 1),

1 0 1 0 (x + y) -1 2 h(x)h(y)dxdy ≥ 0. (3.80)

Conclusion of the proof

Now we can prove Lemma 20. Indeed, combining Lemmas 22, 23 and 24 proves that there exists C > 0 such that, for any f ∈ L 2 (0, 1),

(N f, f ) ≥ C F 2 H -1/4 (0 ,1) , (3.81) 
where F is the primitive of f such that F (1) = 0. Thanks to the change of variables already mentionned, the same property holds true for K 0 with the symmetrical condition F (0) = 0.

Exact computation of the kernel and estimation of residues

In this section, we give a detailed and rigorous expansion of the main kernel K ε . Our goal is to be able to estimate with precision the size and the smoothness of all the residues that build up the difference between the asymptotic kernel √ εK 0 and the true kernel. As above, we write :

K ε (s 1 , s 2 ) = 1 s1∨s2 A(t, s 1 , s 2 )dt, where (3.82) 
A(t, s 1 , s 2 ) = 1 2 0 Φ x (1 -t, x)G(t -s 1 , x)G(t -s 2 , x)dx. ( 3.83) 
In equations (3.82) and (3.83), it is implicit that A, Φ x and G depend on ε. Moreover, in equation (3.83), we use the fact that G and Φ x are even to write the integral over x ∈ 0, 1 2 . This breaks the symmetry but will allow us to use a one-sided expansion of G, thereby focusing on its behavior near x = 0.

Smoothness of weakly singular integral operators

We know that the asymptotic kernel K 0 is coercive with respect to the H -5/4 norm of the control u. Thus, in order for the full kernel to remain coercive for ε > 0, we need to prove that the residues can be bounded with the same norm. In this paragraph, we give conditions on a kernel residue L that are easy to check and imply that :

∀u ∈ L 2 (0, 1), | Lu, u | U 2 H -1/4 (0,1) , (3.84) 
where U is the primitive of u such that U (0) = 0. In the following paragraphs, we will check that these conditions are satisfied by our residues. We start with the following lemma, which allows us to express Lu, u directly as a function of U .

Lemma 25. Let Γ be the triangular domain {(x, y) ∈ (0, 1) × (0, 1), s.t. x ≤ y}. Let L ∈ W 2,1 (Γ). We see L as the restriction to Γ of a symmetric kernel on (0, 1) × (0, 1) that is smooth on each triangle but not necessarly accross the first diagonal. Assume that L(•, 1) ≡ 0. Let u ∈ L 2 (0, 1) and U be the primitive of u such that U (0) = 0. Then :

Γ L(x, y)u(x)u(y)dxdy = Γ ∂ 12 L(x, y)U (x)U (y)dxdy + 1 2 1 0 (∂ 1 L -∂ 2 L) (x, x)U 2 (x)dx. (3.85) 
In equation (3.85), it is worth to be noted that ∂ 1 L and ∂ 2 L are evaluated on the first diagonal and must thus be computed using points within Γ.

Démonstration. We use integration by parts and the boundary conditions U (0) = 0 and L(•, 1) = 0. Equation (3.85) includes a boundary term evaluated on the diagonal, which looks like the L 2 norm of U . This would forbid us to prove any estimate like (3.84). However, all our kernel residues satisfy the condition ∂ 1 L -∂ 2 L = 0 along the diagonal and this term thus vanishes. Hence, our task is to check that the new kernel ∂ 12 L generates a bounded quadratic form on H -1/4 (0, 1).

Γ L(x, y)u(x)u(y)dxdy = 1 0 u(x) 1 x L(x, y)u(y)dydx = 1 0 u(x) [L(x, y)U (y)] 1 x - 1 x ∂ 2 L(x, y)U (y)dy dx = - 1 0 L(x, x)U (x)u(x)dx - 1 0 U (y) y 0 ∂ 2 L(x, y)u(x)dx = 1 0 d dx {L(x, x)} • U 2 2 (x)dx - 1 0 U (y) [U (x)∂ 2 L(x, y)] y 0 - y 0 ∂ 12 L(x, y)U (x)dx dy = Γ ∂ 12 L(x, y)U (x)U (y)dxdy + 1 2 1 0 (∂ 1 L -∂ 2 L) (x, x)U 2 (x)dx. 

Lemma 26.

Let L be a continuous function defined on Ω = {(x, y) ∈ (0, 1) × (0, 1), s.t. x = y}. Assume that there exists κ > 0 and 1 2 < δ ≤ 1, such that, on Ω :

|L(x, y)| ≤ κ|x -y| -1 2 , (3.87) |L(x, y) -L(x , y)| ≤ κ|x -x | δ |x -y| -1 2 -δ , for |x -x | ≤ 1 2 |x -y|, (3.88) 
|L(x, y) -L(x, y )| ≤ κ|y -y | δ |x -y| -1 2 -δ , for |y -y | ≤ 1 2 |x -y|. (3.89)
Then L defines a continuous quadractic form on H -1/4 (0, 1). Moreover, there exists a constant C(δ) depending only on δ (and not on L) such that, for any U ∈ L 2 (0, 1) :

| LU, U | ≤ C(δ)κ|U | 2 H -1/4 (0,1) . (3.90)
This technical lemma is very important for our proof because it gives a quantitative estimate, through κ, of the action of kernels against controls. This Lemma can be deduced from the works of Torres [START_REF] Torres | Boundedness results for operators with singular kernels on distribution spaces[END_REF] and Youssfi [168]. We give a proof skeleton in Appendix 3.8. The starting point is to prove that a kernel satisfying estimates (3.87), (3.88) and (3.89) defines a weakly singular integral operator, which is continuous from H -1/4 to H +1/4 . Indeed, such kernels are smoother then standard Cálderon-Zygmund operators and it is reasonable to expect that they exhibit some smoothing properties.

We end this section with two useful formulas. Let a : (0, 1) 3 → R be a function such that a(t, s 1 , s 2 ) = a(t, s 2 , s 1 ). We consider the kernel generated by a :

L(s 1 , s 2 ) = 1 s1∨s2 a(t, s 1 , s 2 )dt. ( 3.91) 
Lemma 25 can be applied to such kernels because they satisfy the condition L(•, 1) ≡ 0. We compute :

∂ 1 L(s, s) -∂ 2 L(s, s) = a(s, s, s), for s ∈ (0, 1), (3.92) 
∂ 12 L(s 1 , s 2 ) = -∂ s1 a(s 2 , s 1 , s 2 ) + T s2 ∂ s1 ∂ s2 a(t, s 1 , s 2 )dt, for s 1 < s 2 . ( 3.93) 
Formulas (3.92) and (3.93) will be used extensively in the following sections. Moreover, as soon as a(s, s, s) ≡ 0, we see that the boundary term ∂ 1 L -∂ 2 L vanishes.

Asymptotic expansion of the kernel

In this section, we make our rough expansions more precise. Therefore we decompose G and Φ using the same first order terms as for the heuristic, but this time we introduce and compute the residues.

Expansion of G

Recall that we only need to approximate G for x ∈ (0, 1/2). Keeping our approximation introduced in (3.61), we expand G as :

G(t, x) = erf x √ 4εt + H(t, x), (3.94) 
where H ∈ C ∞ ((0, 1) × (0, 1/2)) is the solution to :

         H t -εH xx = 0 in (0, 1) × (0, 1/2), H(t, 0) = 0 in (0, 1), H x (t, 1/2) = σ(εt) in (0, 1), H(0, x) = 0 in (0, 1/2), (3.95) 
where the source term σ comes from the boundary condition G x (t, 1/2) = 0 and balances out the trace of the erf() part :

σ(s) = - ∂ ∂x erf x √ 4s x= 1 2 = - 1 √ sπ exp - 1 16s . ( 3.96) 
Lemma 27. Let 0 < γ < 1 16 . There exists C(γ) > 0 such that :

H t ∞ + H tx ∞ + H tt ∞ + H ttx ∞ ≤ C(γ)e -γ/ε . (3.97)
Démonstration. This lemma is due to the exponentially decaying factor within the source term σ defined by (3.96), which allows as many differentiations with respect to x or t as needed to be done. Estimate (3.97) could in fact be derived for further derivatives. Let us give a sketch of proof. First, note that H (3) := H ttt is the solution to a similar system as (3.95) with the boundary condition H [START_REF] Ancona | On the attainable set for scalar nonlinear conservation laws with boundary control[END_REF] x (t, 1/2) = ε 3 σ (3) (εt). We can convert this boundary condition into a source term by writing

H (3) (t, x) = xε 3 σ (3) (εt) + H(3)
, where H( 3) is now the solution to a heat equation with homogeneous mixed boundary conditions and a source term -xε 4 σ (4) (εt). Applying the maximum principle yields an estimate of the form H(3)

∞ ≤ C(γ)e -γ/ε . Since εH ttxx = H (3) , we obtain an L ∞ estimate of the same form for H ttxx . By integration with respect to time and space, we obtain (3.97).

Expansion of Φ as ε → 0

Guided by our rough computations, we decompose Φ ∈ X 1 , the solution to (3.49) as :

Φ(t, x) = ρ(x) + εφ(t, x).
(3.98) Thus, we introduce the partial differential equation satisfied by φ ∈ X 1 :

         φ t -εφ xx = ρ xx in (0, 1) × (0, 1), φ(t, 0) = 0 in (0, 1), φ(t, 1) = 0 in (0, 1), φ(0, x) = 0 in (0 , 1). (3.99) 
Lemma 28. The following estimates hold :

Φ x ∞ 1, (3.100) 
φ x ∞ 1, (3.101) 
Φ tx ∞ = εφ tx ∞ ε. (3.102)
Démonstration. Estimates (3.100), (3.101) and (3.102) can be proved using a Fourier series decomposition for heat equations. As an example, let us prove (3.102). We introduce the basis e n (x) = √ 2 sin(nπx). Since φ t is the solution to a heat equation with initial data ρ xx ∈ H 1 0 , we have :

φ t (t, x) = +∞ n=1 e -εn 2 π 2 t ρ xx , e n e n (x). (3.103) 
Thanks to the choice of ρ in (3.59), we have ρ xx (0) = ρ xx (1) = 0. Thus,

ρ xx , e n = - 1 n 2 π 2 ρ xxxx , e n = 12 √ 2 n 3 π 3 ((-1) n -1) = O 1 n 3 .
(3.104)

Combining equations (3.103) and (3.104) yields :

φ tx ∞ ≤ +∞ n=1 nπ| ρ xx , e n | +∞ n=1 1 n 2 . (3.105)
Equation (3.105) concludes the proof of (3.102). A similar method can be applied to prove (

.

Five stages expansion of the full kernel

Using expansions (3.94) and (3.98), and the fact that Φ x = 0, we break down the generator A(t, s 1 , s 2 ) into 6 smaller kernel generators, A 1 through A 6 , defined by :

A 1 (t, s 1 , s 2 ) = 1 2 0 ρ x (0) erf x 4ε(t -s 1 ) erf x 4ε(t -s 2 ) -1 dx, (3.106) 
A 2 (t, s 1 , s 2 ) = 1 2 0 (ρ x (x) -ρ x (0)) erf x 4ε(t -s 1 ) erf x 4ε(t -s 2 ) -1 dx, (3.107) 
A 3 (t, s 1 , s 2 ) = 1 2 0 εφ x (1 -t, x) erf x 4ε(t -s 1 ) erf x 4ε(t -s 2 ) -1 dx, (3.108) 
A 4 (t, s 1 , s 2 ) = 1 2 0 Φ x (1 -t, x)H(t -s 1 , x)erf x 4ε(t -s 2 ) dx, (3.109) 
A 5 (t, s 1 , s 2 ) = 1 2 0 Φ x (1 -t, x)H(t -s 2 , x) • erf x 4ε(t -s 1 ) dx, (3.110) 
A 6 (t, s 1 , s 2 ) = 1 2 0 Φ x (1 -t, x)H(t -s 1 , x)H(t -s 2 , x)dx. ( 3.111) 
It can be checked that A defined in (3.83) is indeed equal to the sum of A 1 through A 6 . For each 1 ≤ i ≤ 6, we consider the associated kernel generated by A i :

K i (t, s 1 , s 2 ) = T s1∨s2 A i (t, s 1 , s 2 )dt. (3.112) 
A first remark is that, for each 1 ≤ i ≤ 6, A i (s, s, s) ≡ 0 on (0, 1). Thus, equation (3.92) tells us that there will be no boundary term involving |u| H -1 .

Proof methodology

The six following paragraphs are dedicated to estimates for K 1 through K 6 . In order to organize the computations that will be carried out for each of these six kernels, we introduce the notations :

T i (s 1 , s 2 ) = ∂A i ∂s 1 (t, s 1 , s 2 )| t=s2 , (3.113) 
Q i (t, s 1 , s 2 ) = ∂ 2 A i ∂s 1 ∂s 2 (t, s 1 , s 2 ), (3.114) 
R i (s 1 , s 2 ) = 1 s2 Q i (t, s 1 , s 2 )dt. (3.115) 
Using formula (3.93),

∂ 12 K i = R i -T i .
Therefore, thanks to Lemma 26 and Lemma 25, we need to prove that each T i and each R i satisfies the conditions (3.87), (3.88) and (3.89). For a kernel L, we will denote κ(L) the associated constant in Lemma 26. In the following paragraphs, we investigate the behavior of κ(∂ 12 K i ) with respect to ε. We end this paragraph with a useful estimation lemma.

Lemma 29. For any k > 0 there exists c k > 0 such that, for any λ > 0, for any ε > 0,

+∞ 0 x k exp - x 2 4ελ dx ≤ c k (ελ) k+1 2 . (3.116)
Démonstration. Use a change of variables introducing x = x/ √ 4ελ.

In the following paragraphs, similarly as we use the sign, we will use the ≈ sign to denote equalities that hold up to a numerical constant (independent on all variables) of which we will not keep track.

Handling the first kernel

The kernel K 1 contains the main coercive part of K ε discovered in Section 3.3. Starting from its definition in (3.106), we decompose it using a scaling on x :

A 1 (t, s 1 , s 2 ) = ρ x (0) 1 2 0 erf x 4ε(t -s 1 ) erf x 4ε(t -s 2 ) -1 dx = √ ε 15 1 4 √ ε 0 1 -erf x √ α erf x √ β dx = √ ε 15 +∞ 0 1 -erf x √ α erf x √ β dx - √ ε 15 +∞ 1 4 √ ε 1 -erf x √ α erf x √ β dx. (3.117) 
The first integral gives rise to the main coercive part of the kernel and has already been computed exactly in Section 3.3. The second part is a residue and has to be taken care of. Let us name it Ã1 :

Ã1 (t, s 1 , s 2 ) = - √ ε 15 +∞ 1 4 √ ε erf x √ α erf x √ β -1 dx. ( 3.118) 
Therefore, equation (3.117) yields :

K 1 (s 1 , s 2 ) = √ ε 45 √ π K 0 (s 1 , s 2 ) + K1 (s 1 , s 2 ). ( 3 

.119)

Lemma 30. There exist c > 0 and γ > 0 such that, for any ε > 0,

κ(∂ 12 K1 ) ≤ c • exp - γ ε , (3.120) 
where κ(∂ 12 K1 ) is the constant associated to the weakly singular integral operator K1 in Lemma 26.

Démonstration. Recalling notations (3.113), (3.114) and (3.115), we compute :

T1 (s 1 , s 2 ) = ∂ s1 Ã1 | t=s2 ≈ ε 1/2 ∆ -3/2 +∞ 1 4 √ ε x exp - x 2 ∆ dx, (3.121) 
Q1 (t, s 1 , s 2 ) = ∂ s1 ∂ s2 Ã1 (t, s 1 , s 2 ) ≈ ε 1/2 (αβ) -3/2 +∞ 1 4 √ ε x 2 exp -x 2 1 α + 1 β dx, (3.122) 
R1 (s 1 , s 2 ) = 1 s2 Q1 (t, s 1 , s 2 ) ≈ ε 1/2 1 s2 (αβ) -3/2 +∞ 1 4 √ ε x 2 exp -x 2 1 α + 1 β dxdt, (3.123) 
where we introduce ∆ = s 2 -s 1 , that will also be used in the sequel. We claim that both T1 and R1 are C ∞ kernels on (0, 1) × (0, 1). Moreover, all their derivatives are bounded by e -γ/ε for any γ < 1/16, thanks to the exponential terms in (3.121) and (3.123). We omit the detailed computations in order to focus on the tougher kernels.

Handling the second kernel

Using the definition of ρ given in (3.59), we rewrite A 2 defined in (3.107) as :

A 2 (t, s 1 , s 2 ) = 1 2 0 (ρ x (x) -ρ x (0)) erf x √ 4εα erf x √ 4εβ dx = 1 2 0 x 2 (x -1) 2 erf x √ 4εα erf x √ 4εβ dx. (3.124) 
First part. Remembering that erf(+∞) = 1, we consider the first order derivative :

T 2 (s 1 , s 2 ) = (∂ s1 A 2 )| t=s2 ≈ ε -1/2 ∆ -3/2 1 2 0 x 3 (x -1) 2 exp - x 2 4ε∆ dx. (3.125) 
Using Lemma 29 and differentiating gives :

|T 2 (s 1 , s 2 )| ε 3/2 ∆ 1/2 , |∂ s1 T 2 (s 1 , s 2 )| ε 3/2 ∆ -1/2 , |∂ s2 T 2 (s 1 , s 2 )| ε 3/2 ∆ -1/2 . ( 3.126) 
Estimates (3.126) prove that κ(T 2 ) ε 3/2 . In fact, T 2 is a smoother than the weakly singular integral operators studied in Lemma 26, since such operators allow degeneracy like ∆ -1/2 along the diagonal. Moreover, we proved that T 2 is Lipschitz continuous, whereas Lemma 26 only requires C p with p > 1 2 . Second part. Now we consider the second order derivative. Let us compute :

Q 2 (t, s 1 , s 2 ) = ∂ s1 ∂ s2 A 2 (t, s 1 , s 2 ) ≈ ε -1 (αβ) -3/2 1 2 0 x 4 (x -1) 2 exp - x 2 4ε 1 α + 1 β dx. (3.127) 
Thanks to Lemma 29, we estimate the size of Q 2 :

|Q 2 (t, s 1 , s 2 )| ε 3/2 (αβ) -3/2 1 α + 1 β -5/2 = ε 3/2 αβ (α + β) 5/2 . ( 3.128) 
Writing α = ∆ + τ and β = τ , we can estimate :

|R 2 (s 1 , s 2 )| = 1 s2 Q 2 (t, s 1 , s 2 )dt ε 3/2 1 0 τ (∆ + τ ) (∆ + 2τ ) 5/2 dτ ε 3/2 ∆ -1/2 . ( 3.129) 
We should now move on to computing ∂ s1 R 2 and ∂ s2 R 2 , to establish the missing estimates on R 2 . However, the computations associated to R 2 are very similar to the ones that we carry out for R 3 . Since R 3 is a little harder, we skip the proof for R 2 and refer the reader to the proof of R 3 , which is fully detailed in the next paragraph. Therefore, we claim that :

κ(∂ 12 K 2 ) ε 3/2 .
(3.130)

Handling the third kernel

In this section, we consider :

A 3 (t, s 1 , s 2 ) = ε 1 2 0 φ x (1 -t, x) erf x 4ε(t -s 1 ) erf x 4ε(t -s 2 ) -1 dx. ( 3.108) 
First part. Remembering that erf(+∞) = 1, we consider the first order derivative :

T 3 (s 1 , s 2 ) := (∂ s1 A 3 )| t=s2 ≈ ε 1/2 ∆ -3/2 1 2 0 φ x (1 -s 2 , x) • x exp - x 2 4ε∆ dx. (3.131) 
Thanks to Lemma 28 and Lemma 29, we have :

|T 3 (s 1 , s 2 )| ε 1/2 ∆ -3/2 φ x ∞ • 1 2 0 x exp - x 2 4ε∆ dx ε 3/2 ∆ -1/2 . ( 3.132) 
Moreover,

|∂ s1 T 3 (s 1 , s 2 )| ε 1/2 ∆ -5/2 φ x ∞ • 1 2 0 x exp - x 2 4ε∆ dx + ε 1/2 ∆ -3/2 φ x ∞ • 1 2 0 x 3 4ε∆ 2 exp - x 2 4ε∆ dx ε 3/2 ∆ -3/2 . ( 3.133) 
and

|∂ s2 T 3 (s 1 , s 2 )| ε 1/2 ∆ -3/2 φ xt ∞ • 1 2 0 x exp - x 2 4ε∆ dx + ε 1/2 ∆ -5/2 φ x ∞ • 1 2 0 x exp - x 2 4ε∆ dx + ε 1/2 ∆ -3/2 φ x ∞ • 1 2 0 x 3 4ε∆ 2 exp - x 2 4ε∆ dx ε 3/2 ∆ -3/2 . ( 3.134) 
Putting together estimates (3.132), (3.133) and (3.134) proves that κ(T 3 ) ε 3/2 . Second part. Let us move on to the second order derivative part. We compute :

Q 3 (t, s 1 , s 2 ) = ∂ s1 ∂ s2 A 3 ≈ (αβ) -3/2 1 2 0 x 2 φ x (1 -t, x) exp - x 2 4ε 1 α + 1 β dx. (3.135) 
Combining Lemma 29 and Lemma 28 yields :

|Q 3 (t, s 1 , s 2 )| ε 3/2 (α + β) 3/2 . ( 3.136) 
Writing α = ∆ + τ and β = τ , we can estimate :

|R 3 (s 1 , s 2 )| = 1 s2 Q 3 (t, s 1 , s 2 )dt 1 0 ε ∆ + 2τ 3/2 dτ ε 3/2 ∆ -1/2 .
(3.137) Now we will prove similar estimates for the first order derivatives of R 3 . Differentiating equation (3.135) with respect to s 1 (or similarly α) yields :

∂ s1 Q 3 (t, s 1 , s 2 ) ≈ - 3 2 α -5/2 β -3/2 1 2 0 x 2 φ x (1 -t, x) exp - x 2 4ε 1 α + 1 β dx + (αβ) -3/2 1 α 2 1 2 0 x 4 4ε φ x (1 -t, x) exp - x 2 4ε 1 α + 1 β dx. (3.138) 
Combining Lemma 29 and Lemma 28 gives :

|∂ s1 Q 3 (t, s 1 , s 2 )| α -5/2 β -3/2 ε 3/2 1 α + 1 β 3/2 + α -7/2 β -3/2 ε 3/2 1 α + 1 β 5/2 ε 3/2 α -5/2 . (3.139)
Integration with respect to t yields an estimate of ∂ s1 R 3 :

|∂ s1 R 3 (s 1 , s 2 )| 1 s2 |∂ s1 Q 3 (t, s 1 , s 2 )| dt ε 3/2 1 s2 dt α 5/2 ε 3/2 ∆ -3/2 . ( 3.140) 
From this, we deduce that :

|R 3 (s 1 , s 2 ) -R 3 ( s1 , s 2 )| ε 3/2 ∆ -3/2 |s 1 -s1 | . ( 3.141) 
Eventually, we finish with the smoothness of R 3 with respect to s 2 . We compute the difference for

s 1 < s 2 < s2 with s2 -s 2 ≤ 1 2 (s 2 -s 1 )
:

|R 3 (s 1 , s 2 ) -R 3 (s 1 , s2 )| = 1 s2 Q 3 (t, s 1 , s 2 )dt - 1 s2 Q 3 (t, s 1 , s2 )dt = s2 s2 Q 3 (t, s 1 , s 2 )dt - 1 s2 (Q 3 (t, s 1 , s2 ) -Q 3 (t, s 1 , s 2 )) dt ≤ s2 s2 ε 3/2 ∆ 3/2 dt + 1 s2 s2 s2 ∂ s2 Q 3 (t, s 1 , s)dsdt ≤ ε 3/2 ∆ 3/2 |s 2 -s2 | + s2 s2 1 s2 |∂ s2 Q 3 (t, s 1 , s)| dtds. (3.142) 
The first term is already in the correct form. We need to work on the second term. Proceeding as above, differentiating equation (3.135) with respect to s 2 (or similarly β), then combining Lemma 29 and Lemma 28 gives :

|∂ s2 Q 3 (t, s 1 , s)| ε 3/2 1 t -s 1 (t -s + t -s 1 ) 3/2 . ( 3.143) 
We compute :

s2 s2 1 s2 |∂ s2 Q 3 (t, s 1 , s)| dtds ≤ ε 3/2 s2 s2 1 s2 1 t -s 1 (t -s 1 ) 3/2 dtds ≤ ε 3/2 ∆ -3/2 s2 s2 1 s2 dt t -s ds ≤ ε 3/2 ∆ -3/2 s2 s2 |ln ( s2 -s)| ds ≤ ε 3/2 ∆ -3/2 |s 2 -s2 | (1 + ln |s 2 -s2 |) . (3.144) 
This last estimate does not give Lipschitz smoothness, but it does provide C p smoothness for any p < 1, which is enough. Together, estimates (3.137), (3.141) and (3.144) prove that κ(R 3 ) ε 3/2 .

Handling the fourth kernel

In this section, we consider :

A 4 (t, s 1 , s 2 ) = 1 2 0 Φ x (1 -t, x)H(t -s 1 , x)erf x 4ε(t -s 2 ) dx. (3.109) 
First part. We consider the first order derivative :

T 4 (s 1 , s 2 ) = (∂ s1 A 4 )| t=s2 = 1 2 0 Φ x (1 -s 2 , x)H t (s 2 -s 1 , x)dx, (3.145) 
where we used the fact that erf(+∞) = 1. The following estimates are straight forward :

|T 2 (s 1 , s 2 )| ≤ Φ x ∞ H t ∞ , (3.146) |T 2 (s 1 , s 2 ) -T 2 (s 1 , s 2 )| ≤ |s 1 -s1 | • Φ x ∞ H tt ∞ , (3.147) |T 2 (s 1 , s 2 ) -T 2 (s 1 , s2 )| ≤ |s 2 -s2 | • Φ x ∞ H tt ∞ (3.148) + |s 2 -s2 | • Φ tx ∞ H t ∞ . (3.149)
Second part. We move on to the second order derivative part. We compute : 

Q 4 (t, s 1 , s 2 ) = ∂ s1 ∂ s2 A 4 (t, s 1 , s 2 ) ≈ ε -1/2 β -3/2
|Q 4 (t, s 1 , s 2 )| ε -1/2 β -3/2 H tx ∞ Φ x ∞ 1 2 0 x 2 exp - x 2 4εβ dx ε H tx ∞ Φ x ∞ .
(3.151)

By integration over t ∈ (s 2 , 1), we obtain :

|R 4 (s 1 , s 2 )| ε H tx ∞ Φ x ∞ . (3.152)
Now we establish the smoothness of Q 4 with respect to s 1 . Differentiating equation (3.150) with respect to s 1 (or α), and applying the same techniques yields the estimate :

|∂ s1 Q 4 (t, s 1 , s 2 )| ε H ttx ∞ Φ x ∞ . ( 3.153) 
This proves that :

|R 4 (s 1 , s 2 ) -R 4 ( s1 , s 2 )| ε H ttx ∞ Φ x ∞ • |s 1 -s1 |. (3.154) 
Finally, we consider the smoothness of Q 4 with respect to s 2 . We know that : 

|R 4 (s 1 , s 2 ) -R 4 (s 1 , s2 )| ≤ s2 s2 |Q 4 (t,
∂ s2 Q 4 (t, s 1 , s)(t, s 1 , s) ≈ - 3 2 ε -1/2 β -5/2 1 2 0 xΦ x (t, x)H t (α, x) exp - x 2 4εβ dx + ε -1/2 β -3/2 1 4εβ 2 1 2 0 x 3 Φ x (t, x)H t (α, x) exp - x 2 4εβ dx. (3.156) 
Similar estimates yield :

|∂ s2 Q 4 (t, s 1 , s)| ε H tx ∞ Φ x ∞ • 1 t -s . ( 3.157) 
Therefore :

s2 s2 1 s2 |∂ s2 Q 4 (t, s 1 , s)| dtds ε H tx ∞ Φ x ∞ • s2 s2 1 s2 dtds t -s ε H tx ∞ Φ x ∞ • s2 s2 |ln( s2 -s)| ds ε H tx ∞ Φ x ∞ • | s2 -s 2 | (1 + ln | s2 -s 2 |) . (3.158)
Therefore, for any fixed p < 1, we have :

|R 4 (s 1 , s 2 ) -R 4 (s 1 , s2 )| ε H tx ∞ Φ x ∞ • | s2 -s 2 | p . (3.159)
Thanks to Lemma 27 and Lemma 28, this proves that, for any γ < 1 16 ,

κ(∂ 12 K 4 ) exp - γ ε .
(3.160)

Handling the fifth kernel

Recall that A 5 was defined by :

A 5 (t, s 1 , s 2 ) = 1 2 0 Φ x (1 -t, x)H(t -s 2 , x)erf x 4ε(t -s 1 )
dx. (3.110) First part. The first order derivative T 5 is null. Indeed,

T 5 (s 1 , s 2 ) = (∂ s1 A 5 )| t=s2 = 1 2 √ πε 1 2 0 Φ x (1 -s 2 , x)H(0, x) • x (s 2 -s 1 ) 3 2 exp - x 2 4ε(s 2 -s 1 ) dx = 0. (3.161)
Second part. We consider the second order derivative : 

Q 5 (t, s 1 , s 2 ) = ∂ s2 ∂ s1 A 5 (t, s 1 , s 2 ) ≈ ε -1/2 α -3/2
|Q 5 (t, s 1 , s 2 )| ε -1/2 α -3/2 H tx ∞ Φ x ∞ 1 2 0 x 2 exp - x 2 4εα dx ε H tx ∞ Φ x ∞ . (3.163)
By integration over t ∈ (s 2 , 1), we obtain :

|R 5 (s 1 , s 2 )| ε H tx ∞ Φ x ∞ . ( 3.164) 
Differentiating (3.162) with respect to α and proceeding likewise yields :

|∂ s1 Q 5 (t, s 1 , s 2 )| ε H tx ∞ Φ x ∞ • 1 α . (3.165) Thus, |R 5 (s 1 , s 2 ) -R 5 ( s1 , s 2 )| ε H tx ∞ Φ x ∞ • ∆ -1 | s1 -s 1 | . (3.166)
Differentiation with respect to β is even easier and gives :

|∂ s2 Q 5 (t, s 1 , s 2 )| ε H ttx ∞ Φ x ∞ , (3.167) 
from which we easily conclude that R 5 is Lipschitz with respect to s 2 . Thanks to Lemma 27 and Lemma 28, this proves that, for any γ < 1 16 ,

κ(∂ 12 K 5 ) exp - γ ε .
(3.168)

Handling the sixth kernel

Recall that A 6 was defined by :

A 6 (t, s 1 , s 2 ) = 1 2 0 Φ x (1 -t, x)H(t -s 1 , x)H(t -s 2 , x)dx. (3.111)
First part. The first order derivative T 6 is null. Indeed :

T 6 (s 1 , s 2 ) = (∂ s1 A 6 )| t=s2 = 1 2 0 Φ x (0, x)H t (s 2 -s 1 , x)H(0, x)dx = 0. (3.169)
Second part. We consider the second order derivative :

Q 6 (t, s 1 , s 2 ) = ∂ s2 ∂ s1 A 6 (t, s 1 , s 2 ) = 1 2 0 Φ x (1 -s 2 , x)H t (t -s 1 , x)H t (t -s 2 , x)dx. (3.170)
For any t ∈ (0, 1), we estimate :

|Q 6 (t, s 1 , s 2 )| ≤ Φ x ∞ H t 2 ∞ , |Q 6 (t, s 1 , s 2 ) -Q 6 (t, s1 , s 2 )| ≤ |s 1 -s1 | • Φ x ∞ H tt ∞ H t ∞ , |Q 6 (t, s 1 , s 2 ) -Q 6 (t, s 1 , s2 )| ≤ |s 2 -s2 | • Φ x ∞ H t ∞ H tt ∞ + |s 2 -s2 | • Φ tx ∞ H t 2 ∞ .
(3.171) Hence, we can extend these estimates to :

R 6 (s 1 , s 2 ) = 1 s2 Q 6 (t, s 1 , s 2 )dt (3.172)
The only non immediate extension is :

|R 6 (s 1 , s 2 ) -R 6 (s 1 , s2 )| ≤ 1 s2 |Q 6 (t, s 1 , s 2 ) -Q 6 (t, s 1 , s2 )| dt + s2 s2 |Q 6 (t, s 1 , s2 )| dt ≤ |s 2 -s2 | ( Φ x ∞ H t ∞ H tt ∞ + Φ tx ∞ H t 2 ∞ + Φ x ∞ H t 2 ∞ (3.173)
Thanks to Lemma 27 and Lemma 28, this proves that, for any γ < 1 16 ,

κ(∂ 12 K 6 ) exp - γ ε .
(3.174)

Conclusion of the expansion of the asymptotic kernel

Lemma 31. There exists ε 1 > 0 and k 1 > 0 such that, for any 0 < ε ≤ ε 1 and any u ∈ L 2 (0, 1),

K ε u, u ≥ k 1 √ ε|U | 2 H -1/4 . (3.175)
Démonstration. Thanks to the previous paragraphs, we have shown that Equation (3.175) gives a very weak coercivity, both because the norm involved is a very weak H -5/4 norm on the control u, and because the coercivity constant k 1 √ ε decays when ε → 0. However, this is enough to overcome the remaining higher order residues, as we prove in the following section.

K ε = √ ε 45 √ π K 0 + R, where R = K1 + K 2 + K 3 + K 4 + K 5 + K 6 is such that κ(∂ 12 R) ε 3/2 . From

Back to the full Burgers non-linear system

In the first part of this work, we studied a second order approximation of our initial Burgers' system. Thanks to the careful study of an integral kernel, we proved that the projection ρ, b of the state is coercive with respect to the control u, for a given norm. Now, we want to prove that the same fact holds true for the full non-linear system, ie. for the projection ρ, y . In order to do this, we need to provide estimates showing that the projections of the higher order terms in the expansion of the state are smaller than the coercive quantity obtained above. Therefore, we need to prove estimates of a, b and the higher order residues involving the weak |u| H -5/4 norm.

Preliminary estimates on the first orders

Estimating the first order term

In order to compute a (defined by system (3.8)), a natural idea is to introduce U the primitive of u such that U (0) = 0. Neglecting the impact of the boundary Dirichlet conditions gives the approximation a(t, x) ≈ U (t). To make this exact, we introduce ã which is the solution to :

         ãt -εã xx = 0
in (0, 1) × (0, 1), ã(t, 0) = -U (t) in (0, 1), ã(t, 1) = -U (t) in (0, 1), ã(0, x) = 0 in (0, 1).

(3.176)

Hence, a(t, x) = U (t) + ã(t, x), without any approximation. This decomposition is useful because we write a as the sum of a term which does not depend on x (thus, a x = ãx ) and a term whose size is controlled by the desired quantity |U | H -1/4 . Indeed, Lemma 32. The following estimates hold : The third inequality stems from Lemma 11. Since a is even, a x (•, 1/2) ≡ 0. Thus :

ã 2 |U | H -1/4 , (3.177) a ∞ + ã ∞ |u| 2 , (3.178) ε a x L 2 (L ∞ ) |u| 2 . ( 3 
a x 2 L 2 (L ∞ ) = 1 0 sup x∈(0,1) |a x (t, x)| 2 dt = 1 0 sup x∈(0,1) x 1 2 a xx (t, x )dx 2 dt ≤ 1 0 1 0 a 2 xx (t, x )dx dt. (3.180) 
Combined with (3.23), this proves (3.179).

Estimating the second order term b

Lemma 33. The following estimate holds :

ε 1/2 b L ∞ (L 2 ) + ε b x L 2 |u| L 2 • |U | H -1/4 , (3.181) ε 3/2 b ∞ |u| 2 2 , (3.182) ε 3/2 b x L 2 (L ∞ ) |u| 2 2 . (3.183)
Démonstration. For the first inequality, we want to apply Lemma 14. Hence, we want to write the source term in equation (3.9) as a spatial derivative. Writing -aa x = -∂ x (a 2 /2) would not lead to the required estimates. In order for the weak H -1/4 norm to appear, we need to introduce ã. Indeed, using the decomposition a(t, x) = U (t) + ã(t, x), we can write :

-

aa x = -aã x = - d dx aã - 1 2 ã2 . (3.184)
The term under the derivative can easily be estimated in L 2 : 

aã - 1 2 ã2 L 2 ≤ ã L 2 • ( a ∞ + ã ∞ ) |u| L 2 • |U | H -1/4 , ( 3 

Non-linear residue

Let us expand y as a + b + r, where a stands for the first order linear approximation, b stands for the second quadratic order and r is a (small) residue. Therefore, r is the solution to :

             r t -εr xx = -rr x -[(a + b)r] x -ab + 1 2 b 2
x in (0, 1) × (0, 1), r(t, 0) = 0 in (0, 1), r(t, 1) = 0 in (0, 1), r(0, x) = 0 in (0, 1).

(3.186)

Lemma 34. System (3.186) admits a unique solution r ∈ X 1 . Moreover, under the assumption :

|u| 2 ≤ ε 3/2 , (3.187)
the following estimate holds :

r 2 + r t 2 ε -3/2 |u| 2 2 |U | H -1/4 (3.188)
Démonstration. The existence of r ∈ X 1 can be deduced directly from the equality r = y -a -b. To prove the estimate, we will use Lemma 15 with a null initial data, w = -(a + b) and g = -ab -1 2 b 2 . To apply estimate (3.36), we start by computing the norms of w and g that we need. We start with w = -(a + b). Combining (3.178), (3.182) and (3.187) gives :

w ∞ ≤ a ∞ + b ∞ |u| 2 + ε -3/2 |u| 2 2 |u| 2 .
(3.189)

In particular, (3.189) and (3.187) yield :

γ = 1 ε w 2 L 2 (L ∞ ) ≤ 1 ε w 2 ∞ ≤ 1 ε |u| 2 2 1. (3.190) 
Finally, combining (3.179) and (3.183) :

w x L 2 (L ∞ ) ≤ a x L 2 (L ∞ ) + b x L 2 (L ∞ ) ε -1 |u| 2 + ε -3/2 |u| 2 2 ε -1 |u| 2 . (3.191)
We move on to g = -ab - 

g 2 ≤ ( a ∞ + b ∞ ) b 2 ≤ |u| 2 + ε -3/2 |u| 2 2 ε -1/2 |u| 2 |U | H -1/4 ≤ ε -1/2 |u|
g L 2 (L ∞ ) ≤ ( a ∞ + b ∞ ) • b L 2 (L ∞ ) ≤ ( a ∞ + b ∞ ) • b x 2 ε -1 |u| 2 2 |U | H -1/4 . ( 3 
g x 2 ≤ a x L 2 (L ∞ ) b L ∞ (L 2 ) + a ∞ b x 2 + b ∞ b x 2 ε -3/2 |u| 2 2 |U | H -1/4 + ε -1 |u| 2 2 |U | H -1/4 + ε -5/2 |u| 3 2 |U | H -1/4 ε -3/2 |u| 2 2 |U | H -1/4 .
| ρ, r(1, •) | ε -3/
ρ, r(1, •) = 1 0 1 0 Φ x ab + 1 2 b 2 + (a + b)r + 1 2 r 2 = 1 0 1 0 Φ x (1 -t, x)U (t)r(t, x)dxdt + 1 0 1 0 Φ x 1 2 b 2 + (ã + b)r + 1 2 r 2 .
(3.197)

We used the fact that a = U + ã and the fact that Φ x ab is an odd function, whose space integral is thus null. The second term is easy to estimate, because we know how to estimate ã, b and r in L 2 using |U | H -1/4 . Thus, we know it will be smaller than |U | 2 H -1/4 . The first term needs more care.

1 0 U (t) 1 0 Φ x (1 -t, x)r(t, x)dxdt = U, v H -1 ,H 1 0 , ( 3.198) 
where we introduce v(t) = 1 0 Φ x (t, x)r(t, x)dx for t ∈ (0, 1). Since Φ(0, •) ≡ 0 and r(0, •) ≡ 0, v(0) = v(1) = 0. Now we compute its H 1 0 norm :

1 0 v t (t) 2 dt = 1 0 1 0 Φ tx (1 -t, x)r(t, x) + Φ x (1 -t, x)r t (t, x)dx 2 dt ≤ 2 1 0 1 0 Φ 2 tx r 2 + Φ 2 x r 2 t ≤ 2 Φ tx 2 ∞ r 2 2 + Φ x 2 ∞ r t 2 2 ε 2 r 2 2 + r t 2 2 r t 2 2 , (3.199) 
where we used estimates (3.100) and (3.102) to estimate Φ. Let us finish the proof. 

| ρ, r(1, •) | ≤ U, v H -1 ,H 1 0 + 1 0 1 0 Φ x 1 2 b 2 + (ã + b)r + 1 2

A first drifting result concerning reachability from zero

The null reachability problem consists in computing the set of states that can be reached in time T , starting from y(0, x) ≡ 0 using a control u. Of course, when dealing with viscous equations like (3.1), one may only hope to reach sufficiently smooth states. Theorem 7 tells us that, if the time T is too small, we can never reach a state y 1 (x) in time T if ρ, y 1 < 0, whatever the control u (and the smoothness of y 1 ). In some sense, the state drifts towards the direction +ρ, as a result of the action of the control. Theorem 7. There exist T 2 , k 2 > 0 such that, for any 0 < T < T 2 and any u ∈ L 2 (0, T ) such that |u| L 2 (0,T ) ≤ 1, the solution y ∈ X T to system (3.1) starting from the null initial condition y(0, x) ≡ 0 satisfies : ρ, y(T,

•) ≥ k 2 |U | 2 H -1/4 (0,T ) , (3.201)
where U , as above, is the primitive of u such that U (0) = 0.

Démonstration. We are going to use the scaling argument introduced in paragraph 3.1.4. Thus, from now on, we reintroduce the tilda signs for functions defined on the scaled time interval (0, 1). From Lemma 31, we know that, for ε < ε

1 , K ε ũ, ũ ≥ k 1 √ ε| Ũ | 2 H -1/4 .
From Lemma 35, we know that there exists c 2 such that, as soon as

|ũ| 2 ≤ ε 3/2 , | ρ, r(1, •) | ≤ c 2 ε 3/2 | Ũ | 2 H -1/4
. Hence, if we consider ỹ the solution to (3.7), write ỹ = a + b + r, for any 0 < k 2 < k 1 , there exists

ε 2 > 0 such that, for ε < ε 2 , ρ, ỹ(1, •) ≥ k 2 √ ε| Ũ | 2 H -1/4 .
Recalling that ũ(t) = ε 2 u(εt) and ỹ(t, x) = εy(εt, x), we obtain :

ρ, y(ε, •) = 1 ε ỹ(1, •), ρ ≥ k 2 ε -1/2 | Ũ | 2 H -1/4 (0,1) ≥ k 2 |U | 2 H -1/4 (0,ε) , (3.202)
under the assumption : 

|ũ| L 2 (0,1) ≤ ε 3/2 ⇔ |u| L 2 (0,ε) ≤ 1. ( 3 

Persistance of projections in absence of control

We start by remarking that, when no control is used, the projection of the state against any fixed profile µ ∈ L 2 (0, 1) remains almost constant in small time.

Lemma 36. Let T > 0, µ ∈ L 2 (0, 1) and y 0 ∈ H 1 0 (0, 1) ∩ H 2 (0, 1). Assume that |y 0 | H 2 ≤ 1. Consider y ∈ X T the solution to system (3.1) with initial data y 0 and null control (u = 0). Then,

µ, y(T, •) = µ, y 0 + O T 1/2 |µ| 2 |y 0 | H 2 .
(3.204)

Démonstration. We decompose y = y 0 + z. Hence, z is the solution to :

         z t -z xx + zz x = (y 0 z) x + y 0 xx -y 0 y 0 x in (0, T ) × (0, 1),
z(t, 0) = 0 in (0, T ), z(t, 1) = 0 in (0, T ), z(0, x) = 0 in (0, 1).

(3.205) Thus, we can apply Lemma 15 with w(t, x) = y 0 (x) and g(t, x) = y 0 x -1 2 (y 0 ) 2 to system (3.205). Estimate (3.36) tells us that z t 2 |y 0 | H 2 . Here, we need the assumption that |y 0 | H 2 ≤ C, where C is any fixed constant, in order to avoid propagating non-linear estimates (involving exponentials). Since z(0, x) ≡ 0, we can write :

| µ, z(T, •) | = T 0 1 0 z t µ ≤ T 1/2 z t 2 |µ| 2 .
(3.206)

The conclusion (3.204) follows from (3.206).

Proof of Theorem 6

Let us finish the proof of Theorem 6. We consider an initial data of the form y δ = δρ, where δ > 0 can be picked as small as we need and ρ is defined in (3.59). Please note that many other initial data cannot be driven back to zero in short time with small controls. However, to prove Theorem 6, it is sufficient to exhibit a single sequence.

For T > 0, u ∈ L 2 (0, T ) and δ > 0, we consider y ∈ X T , the solution to system (3.1) with initial data y δ and control u. To isolate the different contributions, we decompose y as ȳ + y u + z, where :

        
ȳtȳxx + ȳ ȳx = 0 in (0, T ) × (0, 1), ȳ(t, 0) = 0 in (0, T ), ȳ(t, 1) = 0 in (0, T ), ȳ(0, x) = y δ in (0, 1),

(3.207)          y u t -y u xx + y u y u x = u(t) in (0, T ) × (0, 1), y u (t, 0) = 0 in (0, T ),
y u (t, 1) = 0 in (0, T ),

y u (0, x) = 0 in (0, 1), (3.208)          z t -z xx + zz x = -[(ȳ + y u )z] x -[ȳy u ]
x in (0, T ) × (0, 1), z(t, 0) = 0 in (0, T ), z(t, 1) = 0 in (0, T ), z(0, x) = 0 in (0, 1).

( 

y u xx 2 + y u x 2 + y u t 2 |u| 2 , y u ∞ ≤ |u| 2 .
(3.211)

Next, we look at system (3.209). We apply Lemma 15 with w = -(ȳ + y u ), g = -ȳy u and a null initial data. Combining (3.210) and (3.211) yields the necessary estimates : 

g 2 + g x 2 + g L 2 (L ∞ ) δ |u| 2 , (3.212) w ∞ + w L 2 (L ∞ ) w L 2 (L ∞ ) δ + |u| 2 . ( 3 
y(T, •), ρ ≥ δ|ρ| 2 2 + k 2 |U | 2 H -1/4 + O T 1/2 δ(1 + |u| 2 ) . (3.216)
From (3.216), we deduce that ρ, y(T, •) > 0 as soon as T is small enough and under the assumption |u| 2 ≤ 1. Thus, we have proved Theorem 6 with η = 1.

Conclusion and perspectives

We expect that the methodology followed in this paper can be used for a wide variety of non-linear systems involving a single scalar control. Indeed, when studying small time local controllability for some formal system ẏ = F (y, u(t)), the first step is always to consider the linearized system, ȧ = ∂ y F (0)a + ∂ u F (0)u. When this system is controllable, fixed point or inverse mapping theorems often allow us to deduce that the non-linear system is small time locally controllable. When the linearized system is not controllable, we can decompose the state y as a + b, where the (linear) component a is controllable and the second component b is indirectly controlled through a quadratic source term involving a (and/or, sometimes, u).

What our proof demonstrates, is that it is possible, even for infinite dimensional systems, to express projections of the second order part b as kernels acting on the control. The careful study of these kernels can then lead ever to negative results (like it is the case here, because we prove a coercivity lemma), or to positive results (if the kernel is found to have both positive and negative eigenvalues, we can hope to prove that the system can be driven in the two opposite directions).

It is worth to be noted that the coercivity used in this paper, although it involves a weak H -5/4 norm of the control u, is in fact pretty strong. Indeed, it was obtained for any small u ∈ L 2 . It would have been sufficient to prove the coercivity of the kernel K ε on the strict subspace :

V ε = u ∈ L 2 (0, 1), a(t = 1, •) ≡ 0,
where a is the solution to system (3.8) .

(3.217)

For other systems, it may be easier (or necessary) to restrict the study of the integral operator K ε to the subspace V ε in order to obtain a conclusion. As a perspective, an example of such an open problem is the small time controllability of the non-linear Korteweg de Vries equation for critical domains. Indeed, in [START_REF] Rosier | Exact boundary controllability for the Korteweg-de Vries equation on a bounded domain[END_REF], Rosier proved that the KdV equation was small time locally controllable for non critical domains using the linearized system. Then in [START_REF] Coron | Exact boundary controllability of a nonlinear KdV equation with critical lengths[END_REF], Coron and Crépeau proved that, for the first critical length, small time local controllability holds thanks to a third order expansion. In [START_REF] Cerpa | Exact controllability of a nonlinear Korteweg-de Vries equation on a critical spatial domain[END_REF] and [START_REF] Cerpa | Boundary controllability for the nonlinear Korteweg-de Vries equation on any critical domain[END_REF], Cerpa then Cerpa and Crépeau proved that large time local controllability holds for all critical lengths. It remains an open question to know whether small time local controllability holds for the second critical length. Maybe our method could be adapted to this setting or inspire a new proof.

The author thanks Sergio Guerrero for having attracted his attention on this control problem and his advisor Jean-Michel Coron for his support and ideas all along the elaboration of this proof.

Weakly singular integral operators

This appendix is devoted to an explanation of Lemma 26. Although a full proof would exceed the scope of this article, we provide here a brief overview of a general method introduced by Torres in [START_REF] Torres | Boundedness results for operators with singular kernels on distribution spaces[END_REF] to study the regularization properties of weakly singular integral operators. Our presentation is also inspired by a posterior work of Youssfi, who states a very closely related lemma in [168, Remark 6.a].

Let n ≥ 1. Singular integral operators on R n have been extensively studied since the seminal works of Calderón and Zygmund (see [START_REF] Pedro | On the existence of certain singular integrals[END_REF] and [START_REF] Pedero | On singular integrals[END_REF]). These integral operators are defined by the singularity of their kernel along the diagonal by an estimate of the form :

|K(x, y)| ≤ C |x -y| -n . (3.218)
In estimate (3.218), the exponent -n is critical. Indeed, the margins of such kernels are almost in L 1 loc . Here, we are interested in a class of integral operators for which the singularity along the diagonal is weaker. Thus, we expect that they exhibit better smoothing properties. Throughout this section, we denote Ω = {(x, y) ∈ R n × R n , x = y}. Definition 6 (Weakly singular integral operator). Let 0 < s < 1 and 0 < δ ≤ 1. Consider a kernel K, continuous on Ω, satisfying :

|K(x, y)| ≤ κ |x -y| -n+s , (3.219) |K(x , y) -K(x, y)| ≤ κ |x -x| δ |x -y| -n+s-δ , for |x -x| ≤ 1 2 |x -y| , (3.220) |K(x, y ) -K(x, y)| ≤ κ |y -y| δ |x -y| -n+s-δ , for |y -y| ≤ 1 2 |x -y| . (3.221)
We introduce the associated integral operator T K , continuous from D (R n ) to D (R n ), by defining :

∀f ∈ D (R n ) , ∀x ∈ R n , T K (f )(x) = K(x, y)f (y)dy. (3.222)
Under these assumptions, we write T K ∈ WSIO(s, δ).

Definition 6 can be extended for s ≥ 1. Conditions (3.219), (3.220) and (3.221) must then be extended to the derivatives ∂ α x ∂ β y K for α + β ≤ s. We restrict ourselves to the simpler setting 0 < s < 1 as it is sufficient for our study. Note that we define the operator T K from its kernel K (as this is the case for our applications). Proceeding the other way around is possible but would require more care in the sequel (namely, the so-called weak boundedness property to ensure that (3.222) holds ; see [168]).

Atomic and molecular decompositions for Triebel-Lizorkin spaces

We recall the definitions of classical functional spaces involved in this appendix. Let ϕ ∈ S (R n ) be such that ϕ(ξ) = 0 for |ξ| ≥ 1 and ϕ(ξ) = 1 for |ξ| ≤ 1 2 . We introduce ψ(ξ) = ϕ(ξ/2) -ϕ(ξ). Hence, ψ ∈ S (R n ) and is supported in the annulus { 1 2 ≤ |ξ| ≤ 2}. We will denote ∆j and Ṡj the convolution operators with symbols ψ(2 -j ξ) and ϕ(2 -j ξ). Definition 7 (Homogeneous Besov space). For α ∈ R, 1 ≤ p, q ≤ ∞, the homogeneous Besov space Ḃα,q p is defined by the finiteness of the norm (with standard modification for q = ∞) :

f Ḃα,q p =   j∈Z 2 αqj ∆j f q p   1/q . (3.223)
Definition 8 (Homogeneous Triebel-Lizorkin space). For α ∈ R, 1 ≤ p, q < ∞, the homogeneous Triebel-Lizorkin space Ḟ α,q p is defined by the finiteness of the norm :

f Ḟ α,q p =   j∈Z 2 αqj | ∆j f | q   1/q p . (3.224)
Frazier and Jawerth introduced atoms and molecules both in the context of Besov spaces ( [START_REF] Frazier | Decomposition of Besov spaces[END_REF]) and Triebel-Lizorkin spaces ( [START_REF] Frazier | The φ-transform and applications to distribution spaces[END_REF] and [START_REF] Frazier | A discrete transform and decompositions of distribution spaces[END_REF]). They proved that the norms on these spaces are then translated into sequential norms on the sequence of coefficients of the decomposition. A linear operator will be continuous between two Triebel-Lizorkin spaces if and only if it maps smooth atoms of the first to smooth molecules of the second. The following definitions are borrowed from [START_REF] Torres | Boundedness results for operators with singular kernels on distribution spaces[END_REF]. For simplicity, we restrict them to the case 1 ≤ p, q ≤ +∞. 

x γ a(x)dx = 0, ∀|γ| ≤ max{0, [-α]}, (3.226) |∂ γ x a(x)| ≤ -|γ| Q , ∀|γ| ≤ max{0, [α]} + 1. (3.227) 
In condition (3.225), 3Q denotes the cube with same center as Q but a tripled side length. It is worth to be noted that multiple normalization choices are possible for condition (3.227). We choose to only include the decay corresponding to the smoothness of the atom. This choice only impacts the formula to compute the size of a function from its decomposition on atoms. We have the following representation theorem :

Lemma 37 (Theorem 5.11, [83]). Let α ∈ R, 1 ≤ p, q < ∞. Let f ∈ Ḟ α,q
p . There exists a sequence of reals (s Q ) Q∈Q indexed by the set Q of dyadic cubes of R n and a sequence of atoms

(a Q ) Q∈Q such that f = Q s Q a Q . Moreover, there exists a constant C independent on f such that :   Q -αq Q |s Q | q |χ Q (x)| q   1/q p ≤ C f Ḟ α,q p . ( 3 

.228)

The reciprocal inequality to (3.228) is true even for a wider class of functions, the class of molecules. 

Definition 10 (Smooth molecule). Let α ∈ R, M > n and α -[α] < δ ≤ 1. Let Q be a dyadic cube in R n of side length Q and center x Q . A (δ, M ) smooth α-molecule associated with Q is a function m satisfying : |m(x)| ≤ 1 + -1 Q |x -x Q | -max{M,M -α} , (3.229) x γ m(x)dx = 0, ∀|γ| ≤ [-α], (3.230) |∂ γ x m(x)| ≤ -|γ| Q 1 + -1 Q |x -x Q | -M , ∀|γ| ≤ [α], (3.231) |∂ γ x m(x) -∂ γ x m(x )| ≤ -|γ|-δ Q |x -x | δ sup |z|≤|x-x | 1 + -1 Q |z -(x -x Q )| -M , ∀|γ| = [α]. ( 3 
). Let α ∈ R, M > n and α -[α] < δ ≤ 1. Consider a sequence of reals (s Q ) Q∈Q indexed by the set Q of dyadic cubes of R n and a sequence of (δ, M ) smooth α-molecules (m Q ) Q∈Q . Let f = Q s Q m Q . There exists a constant C independent on f such that : f Ḟ α,q p ≤ C   Q -αq Q |s Q | q |χ Q (x)| q   1/q p .
(3.233)

Circumventing the null average condition

When dealing with singular integral operators, difficulties arise when T (1) = 0. Most regularity results involve some smoothness condition on T (1) (see, for example the early paper [START_REF] David | A boundedness criterion for generalized Calderón-Zygmund operators[END_REF]). To circumvent this difficulty when handling weakly singular integral operators, we will write T K = TK + π where TK satisfies the same regularity estimates as T K but is such that TK (1) = 0 and π is defined as a paraproduct, for which we can get direct smoothing estimates in the appropriate spaces. For two functions f, g, we introduce the following paraproduct π, inspired by ideas of J.-M. Bony (see the seminal work [START_REF] Bony | Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires[END_REF], the nice introduction to paraproducts [START_REF] Bényi | What is . . . a paraproduct ? Notices[END_REF] for a quick overview or [4, Section 2.6.1] for a complete detailed presentation) :

π g (f ) = j∈Z ∆j (g) Ṡj-2 (f ). (3.234) Lemma 39 (Lemma 4, [168]). Let 0 < s < δ ≤ 1 and T K ∈ WSIO(s, δ). Then, T K (1) ∈ Ḃs,∞ ∞ . Moreover, there exists C = C(s, δ) such that : T K (1) Ḃs,∞ ∞ ≤ Cκ(T K ) where κ(T K ) is the constant associated to T K in Definition 6. Lemma 40 (Remark 2, [168]). Let 1 ≤ p, q < ∞, t < 0 and s ∈ R. There exists C = C(p, q, t, s) such that, for any b ∈ Ḃs,∞ ∞ , π b is continuous from Ḟ t,q p to Ḟ t+s,q p
and the following estimate holds : Combining these lemmas allows us to circumvent the T (1) = 0 condition. Indeed : Lemma 42. Let 0 < s < δ ≤ 1 and 1 ≤ p, q < ∞. Let t ∈ R be such that -s < t < 0. There exists a constant C such that, for T K ∈ WSIO(s, δ), T K is continuous from Ḟ t,q p into Ḟ t+s,q p and we have :

∀f ∈ Ḟ t,q p , π b (f ) Ḟ t+s,q p ≤ C b Ḃs,∞ ∞ f Ḟ t,q p . ( 3 
∀f ∈ Ḟ t,q p , T K (f ) Ḟ t+s,q p ≤ Cκ(T K ) f Ḟ t,q p , ( 3.236) 
where κ(T K ) is the constant associated to T K in Definition 6.

Démonstration. Let T K ∈ WSIO(s, δ). Thanks to Lemma 39, T K (1) ∈ Ḃs,∞ ∞ and T K (1) Ḃs,∞ ∞ κ(T K ). Thanks to Lemma 41, π T K (1) ∈ WSIO(s, δ) and κ(π T K (1) ) κ(T K ). Hence, we can define TK := T Kπ T K [START_REF] Adimurthi | Exact controllability of scalar conservation laws with strict convex flux[END_REF] and TK ∈ WSIO(s, δ), with a constant κ( TK ) κ(T K ). Moreover, since π b (1) = b for any b, TK (1) = 0. Thanks to Lemma 40, proving the continuity of TK is sufficient to obtain (3.236).

Let a Q be a smooth t-atom. We consider m Q = TK (a Q ). The next step is to prove that m Q is almost a (δ, M ) smooth (t + s)-molecule, with M = n + s -δ > n. As noted above, since t + s > 0, we only need to check (3.231) and (3.232). Indeed, lengthy computations and the essential condition TK (1) = 0 provide the existence of a constant D independent on the atom a Q such that :

|m Q (x)| ≤ D s Q 1 + -1 Q |x -x Q | -M , (3.237) |m Q (x) -m Q (x )| ≤ D s Q -δ Q |x -x | δ sup |z|≤|x-x | 1 + -1 Q |z -(x -x Q )| -M . (3.238) Hence mQ := D -1 -s Q m Q is a molecule.
For examples of proof techniques to prove (3.237) and (3.238), we refer the reader to [START_REF] Torres | Boundedness results for operators with singular kernels on distribution spaces[END_REF] and [168]. To conclude the proof, we use Lemma 37 and 38. For f ∈ Ḟ t,q p , we write f

(x) = Q s Q a Q (x) and each mQ = D -1 -s Q T K (a Q
) is a molecule. Thus, thanks to Lemma 37 and Lemma 38, Triebel-Lizorkin spaces offer a natural framework for atomic and molecular decompositions. Of course, setting p = q = 2 in the results above also yields results for the more classical homogeneous Sobolev spaces Ḣα . Thus, Lemma 42 tells us that operators of WSIO(s, δ) continuously map Ḣt into Ḣt+s for -s < t < 0. In particular, this is valid for s = 1/2 and t = -1/4.

T K (f ) Ḟ t+s,q p = Q (D s Q s Q ) • m Q (x) Ḟ t+s,q p   Q -(t+s)q Q D q sq Q |s Q | q |χ Q (x)| q   1/q p   Q -tq Q |s Q | q |χ Q (x)| q   1/q p f Ḟ t,q p . ( 3 

Kernels defined on bounded domains

Most results involving singular integral operators concern kernels defined on the full space R n × R n . Here, for finite time controllability, we need to adapt these results to a setting where the kernels are defined on squares, eg. [0, 1] × [0, 1]. Atoms and molecules are localized functions. Thus, it would be possible to carry on the same proof as above for bounded domains, providing that the analogs of the representation lemmas 37 and 38 exist for Triebel-Lizorkin spaces on bounded domains. In this paragraph, we give another approach, which consists in proving that a kernel defined on a bounded domain can be extended while satisfying the same estimates. Lemma 43. Let n = 1, 0 < s < 1 and 0 < δ ≤ 1. Consider a kernel K, defined and continuous on

Ω 1 = (x, y) ∈ [0, 1] 2 , x = y , satisfying : |K(x, y)| ≤ κ |x -y| -1+s , (3.240) |K(x , y) -K(x, y)| ≤ κ |x -x| δ |x -y| -1+s-δ , for |x -x| ≤ 1 2 |x -y| , (3.241) |K(x, y ) -K(x, y)| ≤ κ |y -y| δ |x -y| -1+s-δ , for |y -y| ≤ 1 2 |x -y| . ( 3 

.242)

Then there exists a kernel K on R × R, continuous on Ω, such that : -K is an extension of K : K| Ω1 = K, -K is a weakly singular integral operator of type (s, δ) on Ω, -K is associated a constant κ( K) ≤ Cκ(K), where C is independent of K, s and δ.

Démonstration. We start by defining K(x, y) on the infinite strip -1 < y -x < 1. For (x, y) ∈ Ω 1 , we set K(x, y) = K(x, y). Outside of the initial square, we extend by continuity the values taken on the sides of the square and we choose an extension that is constant along all diagonal lines. Therefore, we define K(x, y) as :

K(1 + x -y, 1) for 1 ≤ y, 0 < y -x < 1, K(0, y -x) for x ≤ 0, 0 < y -x < 1, K(1, 1 + y -x) for 1 ≤ x, 0 < x -y < 1, K(x -y, 0) for y ≤ 0, 0 < x -y < 1. (3.243)
Outside of the strip, we set : 2 |x -y|. If both points belong to the same subdomain, then the Hölder regularity estimate in the x direction for K is a direct consequence either of (3.244) on H, of (3.243) on H ± and of the hypothesis on K on H 1 . If the two points belong to different subdomains, we use a triangular inequality involving a point at the boundary separating the two subdomains. As an example of such a situation, if x < 0 < x and y < x + 1, then (x, y) ∈ H -and (x , y) ∈ H 1 . We have : 

K(x, y) = K(0, 1)|x -y| -1+s , for y -x ≥ 1, K(x, y) = K(1, 0)|x -y| -1+s , for x -y ≥ 1. ( 3 
= {(x, y) ∈ R × R, y -x > 0}. We write H = H ∪ H 1 ∪ H -∪ H + , where : H = {(x, y) ∈ H, y -x > 1},
K(x, y) -K(x , y) = |K(0, y -x) -K(x , y)| ≤ |K(0, y -x) -K(0, y)| + |K(0, y) -K(x , y)| ≤ κ|x| δ |x -y| -1+s-δ + κ|x | δ |x -y| -1+s-δ ≤ 5κ|x -x | δ |x -y| -1+s-δ .

Known results and previous works

Local results

A first approach to study the controllability of Navier-Stokes is to see the quadratic term as a perturbation term and obtain results using mostly the Laplacian. Of course, this kind of approach is mostly efficient for local results, where the quadratic term is indeed small.

For the Dirichlet boundary condition, Imanuvilov proves in [START_REF] Yu | Imanuvilov : Remarks on exact controllability for the Navier-Stokes equations[END_REF] small time local controllability to the trajectories. This result has since been improved in [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF] by Fernández-Cara, Guerrero, Imanuvilov and Puel. Their proof uses Carleman estimates and weakens the regularity assumed on the trajectories.

For Navier boundary conditions, [105] proves a local controllablity result in 2D domains. In [START_REF] Guerrero | Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions[END_REF], Guerrero, proves small time local null controllability for 2D and 3D domains, with general non-linear Navier-type boundary conditions.

Global results

The second approach goes the other way around : see the viscous term as a perturbation of the inviscid dynamic and try to deduce the controllability of Navier-Stokes from the controllability of Euler. However, if one does not control the full boundary, boundary layers appear near the uncontrolled boundaries ∂Ω\Γ. Thus, most known results try to avoid this situation.

In [START_REF] Coron | Fursikov : Global exact controllability of the 2D Navier-Stokes equations on a manifold without boundary[END_REF], Coron and Fursikov prove a small time global exact null controllability result when the domain in a manifold without border (in this setting, the control is a source term located in a small subset of the domain). Likewise, in [START_REF] Fursikov | Exact controllability of the Navier-Stokes and Boussinesq equations[END_REF], Fursikov and Imanuvilov prove small time global exact null controllability when the control is supported on the whole boundary (i.e. Γ = ∂Ω). In both cases, there is no boundary layer.

Another method to avoid the difficulties is to choose more gentle boundary conditions. In a simple geometry (a 2D rectangular domain), Chapouly proves in [START_REF] Chapouly | On the global null controllability of a Navier-Stokes system with Navier slip boundary conditions[END_REF] small time global exact null controllability for Navier-Stokes under the boundary condition ∇×u = 0 on uncontrolled boundaries. Let [0, L]×[0, 1] be the considered rectangle. Her control acts on both vertical boundaries at x 1 = 0 and x 1 = L. Uncontrolled boundaries are the horizontal ones at x 2 = 0 and x 2 = 1. She deduces the controllability of Navier-Stokes from that of Euler by linearizing around an explicit reference trajectory u 0 (t, x) = (h(t), 0), where h is a smooth profile. Hence, the Euler trajectory already satisfies all boundary conditions and there is no boundary layer.

For Navier boundary conditions in 2D, Coron proves in [START_REF] Coron | On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions[END_REF] a small time global approximate null controllability result. He proves that an excellent result can be obtained in the interior of the domain. However, this is not the case near the boundaries. The approximate controllability is obtained in the space W -1,∞ ; which is not a strong enough space to be able to conclude to global exact null controllability using a local result. The residual boundary layers are too strong and have not been sufficiently handled during the control strategy.

For Dirichlet boundary conditions, Guerrero, Imanuvilov and Puel prove in [START_REF] Guerrero | Remarks on global approximate controllability for the 2-D Navier-Stokes system with Dirichlet boundary conditions[END_REF] (resp. [START_REF] Guerrero | A result concerning the global approximate controllability of the Navier-Stokes system in dimension 3[END_REF]) for a square (resp. a cube) where one side (resp. one face) is not controlled, a small time result which looks like global approximate null controllability. Their method consists in adding a new source term (a control supported on the whole domain Ω) to absorb the boundary layer. They prove that this additional control can be chosen small in L p ((0, T ); H -1 (Ω)), for 1 < p < 4/3 (in 3D). However, this norm is too weak to take the limit and obtain a true global result (without this fully supported additional control as required in Open Problem 2).

All the examples detailed above tend to indicate that a new method is needed, which truly takes into account the boundary layer.

The well-prepared dissipation method

In [START_REF] Marbach | Small time global null controllability for a viscous Burgers' equation despite the presence of a boundary layer[END_REF], the second author proves small time global exact null controllability for the Burgers equation on the line segment [0, 1] with a Dirichlet boundary condition at x = 1 (implying the presence of a boundary layer near the uncontrolled boundary x = 1). The proof relies on a method involving a wellprepared dissipation of the boundary layer. The sketch of the method is the following :

1. Scaling argument. Let T > 0 be the small time given for the control problem. Introduce ε 1 a very small scale. Perform the usual small-time to small-viscosity fluid scaling u ε (t, x) := εu(εt, x), yielding a new unknown u ε , defined on a large time scale [0, T /ε], satisfying a vanishing viscosity equation. Split this large time interval in two parts : [0, T ] and [T, T /ε].

2. Inviscid stage. During the finite segment [0, T ], use (up to the first order) the same controls as if the system was inviscid. This leads to good interior controllability (far from the boundaries, the system already behaves like its inviscid limit) but creates a boundary layer residue near uncontrolled boundaries.

3. Dissipation stage. During the long segment [T, T /ε], choose null controls and let the system dissipate the boundary layer by itself thanks to its smoothing term. As ε → 0, the long time scale compensates exactly for the small viscosity. However, as ε → 0, the boundary layer gets thinner and dissipates better.

The key point in this method is to separate steps 2 and 3. Trying to control both the inviscid dynamic and the boundary layer at the end of step 2 is too hard. Instead, one chooses the inviscid controls with care during step 2 in order to prepare the self-dissipation of the boundary layer during step 3. This method will be used in this paper and enhanced to prove our result. In order to apply this method, we will need a very precise description of the boundary layers involved.

Plan of the paper

The paper is organized as follows :

-In Section 4.2, we give a short introduction to boundary conditions and boundary layers for the Navier-Stokes equation. We recall known expansions for boundary layers that will be used in the sequel and we introduce the slip boundary condition. -In Section 4.3, we consider the special case of the slip boundary condition. This case is easier to handle because no boundary layer appears. We prove Theorem 8 in this setting to expose some elements of our method. -In Section 4.4, we introduce the boundary layer profile that we will be using to handle the general case and we prove that we can apply the well-prepared dissipation method to ensure that it is small at the final time. -In Section 4.5, we introduce technical terms in the asymptotic expansion of the solution and we use them to carry out energy estimates on the remainder. We prove that the remainder is small. -In Section 4.6 we finish the proof of Theorem 8 by taking care of : the initial smoothing phase, the final smoothing phase, estimates on the remainder and a local null controllability argument.

Boundary conditions and boundary layers

Physically, boundary layers are the fluid layers in the immediate vicinity of the boundaries of a domain, where viscous effects prevail. Mathematically, they appear when studying vanishing viscosity limits while maintaining strong boundary conditions. There is a huge litterature about boundary conditions for partial differential equations and the associated boundary layers. In this section, we give a short overview of some relevant references in our context for the Navier-Stokes equation.

Adherence boundary condition

The strongest and most commonly used boundary condition for Navier-Stokes is the full adherence (or no-slip) boundary condition u = 0. This condition is most often refered to as the Dirichlet condition although it was introduced by Stokes in [START_REF] Gabriel | On the effect of the internal friction of fluids on the motion of pendulums[END_REF]. Under this condition, fluid particles must remain at rest near the boundary. This generates large amplitude boundary layers.

In 1904, Prandtl proposed an equation describing the behavior of boundary layers for this adherence condition in [START_REF] Prandtl | Uber flussigkeits bewegung bei sehr kleiner reibung[END_REF]. Although his equations have been extensively studied, much is still to be learned. Prandtl himself knew the validity of his equations was probably weak. Both physically and numerically, there exists situations where the boundary layer separates from the border : see [START_REF] Cowley | Computer extension and analytic continuation of Blasius' expansion for impulsive flow past a circular cylinder[END_REF], [START_REF] Guyon | Hydrodynamique physique[END_REF], [START_REF] Van Dommelen | The spontaneous generation of the singularity in a separating laminar boundary layer[END_REF], or [START_REF] Van Dommelen Et Stephen | On the Lagrangian description of unsteady boundary-layer separation[END_REF]. Mathematically, it is known that solutions with singularities can be built [START_REF] Weinan | Blowup of solutions of the unsteady Prandtl's equation[END_REF] and that the linearized system is ill-posed in Sobolev spaces [START_REF] Gérard | On the ill-posedness of the Prandtl equation[END_REF].

Most positive known results fall into two families. First, when the initial data satisfies a monotonicity assumption, introduced by Oleinik in [START_REF] Oleȋnik | On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid[END_REF], [START_REF] Oleinik | Samokhin : Mathematical models in boundary layer theory[END_REF]. See also [START_REF] Xin | On the global existence of solutions to the Prandtl's system[END_REF]. Second, when the inital data are analytic, it is both proved that the Prandtl equations are well-posed [START_REF] Sammartino | Zero viscosity limit for analytic solutions, of the Navier-Stokes equation on a half-space. I. Existence for Euler and Prandtl equations[END_REF] and that Navier-Stokes converges to an Euler+Prandtl expansion [START_REF] Sammartino | Zero viscosity limit for analytic solutions of the Navier-Stokes equation on a half-space. II. Construction of the Navier-Stokes solution[END_REF]. For a review of known results, see [START_REF] Weinan | Boundary layer theory and the zero-viscosity limit of the Navier-Stokes equation[END_REF] or [START_REF] Nickel | Prandtl's boundary-layer theory from the viewpoint of a mathematician[END_REF].

Physically, the main difficulty is the possibility that the boundary layer separates and penetrates into the interior of the domain (which is prevented by the Oleinik monotonicity assumption). Mathematically, Prandtl equations lack regularization in the tangential direction (which can be circumvented by using an analytic setting). Heuristically, these boundary layers are of amplitude O(1) and of thickness O( √ ε) for a vanishing viscosity ε.

Friction boundary conditions

Historically speaking, the adherence condition is posterior to another condition stated by Navier in [START_REF] Navier | Mémoire sur les lois du mouvement des fluides[END_REF] which involves friction. The fluid is allowed to slip along the boundary but undergoes friction near the impermeable walls. Originally, it was stated as :

u • n = 0 and [D(u)n + αu] tan = 0, (4.7) 
where α is a scalar positive coefficient. Mathematically, α can depend (smoothly) on the position and be a matrix without changing much the nature of the estimates. This condition has been justified from the boundary condition at the microscopic scale in [START_REF] Coron | Derivation of slip boundary conditions for the Navier-Stokes system from the Boltzmann equation[END_REF] for the Boltzmann equation. See also [START_REF] Golse | From the Boltzmann equation to the Euler equations in the presence of boundaries[END_REF] or [START_REF] Masmoudi | From the Boltzmann equation to the Stokes-Fourier system in a bounded domain[END_REF] for other examples of such derivations.

Altough the adherence condition is more popular in the mathematical community, the slip-withfriction condition is actually well suited for a large range of applications. For instance, it is an appropriate model for turbulence near rough walls [START_REF] Edward | Lectures in mathematical models of turbulence[END_REF] or in acoustics [START_REF] Geymonat | On the vanishing viscosity limit for acoustic phenomena in a bounded region[END_REF]. It is used by physicists for flat boundaries but also for curved domains (see [START_REF] Einzel | Boundary condition for fluid flow : curved or rough surfaces[END_REF], [START_REF] Guo | Slip boundary conditions over curved surfaces[END_REF] or [START_REF] Panzer | The effects of boundary curvature on hydrodynamic fluid flow : calculation of slip lengths[END_REF]). Physically, α is homogeneous to 1/b where b is a length, named slip length. Computing this parameter for different situations, both theoretically or experimentaly is important for nanofluidics and polymer flows (see [START_REF] Barrat | Large slip effect at a nonwetting fluid-solid interface[END_REF] or [START_REF] Bocquet | Flow boundary conditions from nano-to micro-scales[END_REF]).

Mathematically, the convergence of the Navier-Stokes equation under the Navier condition to the Euler equation has been studied by many others. For 2D, this subject is studied in [START_REF] Thierry Clopeau | On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions[END_REF] and [START_REF] Kelliher | Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane[END_REF]. For 3D, this subject is treated in [START_REF] Gung | Boundary layer analysis of the Navier-Stokes equations with generalized Navier boundary conditions[END_REF] and [START_REF] Masmoudi | Uniform regularity for the Navier-Stokes equation with Navier boundary condition[END_REF]. To obtain more precise convergence results, it is necessary to introduce an asymptotic expansion of the solution u ε to the vanishing viscosity Navier-Stokes equation involving a boundary layer term. In [START_REF] Iftimie | Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions[END_REF], Iftimie the third author prove a boundary layer expansion. This expansion is easier to handle than the Prandtl model because the main equation for the boundary layer correction is linear and well-posed.

Slip boundary conditions

When the physical friction between the inner fluid and the solid boundary is very small, one may want to study an asymptotic model describing a situation where the fluid perfectly slips along the boundary. Sadly, the perfect slip situation is not yet fully understood in the mathematical litterature.

2D

In the plane, the situation is easier. In 1969, Lions introduced in [START_REF] Lions | Quelques méthodes de résolution des problèmes aux limites non linéaires[END_REF] the free boundary condition ω = 0. This condition is actually a special case of (4.7) where α depends on the position and α(x) = 2κ(x), where κ(x) is the curvature of the boundary at x ∈ ∂Ω. With this condition, good convergence results can be obtained from Navier-Stokes to Euler for vanishing viscosities.

3D

In the space, for flat boundaries, slipping is easily modeled with the usual impermability condition u • n = 0 supplemented by any of the following equivalent conditions :

∂ n [u] tan = 0, (4.8) 
[D(u)n] tan = 0, (4.9)

[∇ × u] tan = 0. (4.10)
For general non-flat boundaries, these conditions cease to be equivalent. This situation gives rise to some confusion in the litterature about which condition correctly describes a true slip condition. Formally, condition (4.9) can be seen as the limit when α → 0 of the usual Navier slip-with-scalar-friction condition (4.7).

The pressure is also expanded as :

p ε (t, x) = p 0 (t, x) + εp 1 (t, x) + επ ε (t, x). (4.15)
Let us provide some insight behind expansion (4.14)-(4.15). The first term (u 0 , p 0 ) is the solution to an Euler equation. It models a smooth reference trajectory around which we are linearizing the Navier-Stokes equation. This trajectory will be chosen in such a way that it flushes the initial data out of the domain in time T . The second term (u 1 , p 1 ) takes into account the initial data u * , which will be flushed out of the domain by the flow u 0 . Eventually, R ε contains higher order residues. We need to prove 1) in order to be able to conclude with local results.

|R ε (T, •)| L 2 (Ω) = o(

Euler's equation

At order O(1), the first part (u 0 , p 0 ) of our expansion is a solution to the Euler equation. Hence, the pair (u 0 , p 0 ) is a return-method-like trajectory of the Euler equation on [0, T ] :

           ∂ t u 0 + u 0 • ∇ u 0 + ∇p 0 = 0, on (0, T ) × Ω, div u 0 = 0 on (0, T ) × Ω, u 0 • n = 0 on (0, T ) × ∂Ω \ Γ, u 0 (0, •) = u 0 (T, •) = 0 in Ω. (4.16)
We want to use this reference trajectory to flush everything outside of our domain within the fixed time interval [0, T ]. To make this statement precise, let us introduce the flow Φ associated with u 0 . This flow is defined by : d dt Φ(t, x) = u 0 (t, Φ(t, x)) and Φ(0, x) = x. (4.17)

Hence, we look for trajectories satisfying :

∀x ∈ Ω, Φ(T, x) / ∈ Ω. ( 4 

.18)

At this stage, note that equation (4.18) does not make much sense. Indeed, we need to start by introducing O, a smooth extension of Ω such that ∂Ω \ Γ ⊂ ∂O and Γ ⊂ O. Outside of the physical domain Ω, we choose any smooth extension of the reference trajectory u 0 (we do not assume that the extension is divergence-free in O \ Ω since this set may have a smaller volume). However, we extend u 0 such that u 0 • n = 0 on the whole of O. This gives sense to (4.17) and (4.18) since the characteristics starting inside Ω can now leave Ω (but all characteristics remain within O). This extension procedure is standard and can be justified by elementary methods. Indeed, we can assume that the restriction of Γ to each connected component of ∂Ω is simply connected (if this is not the case, we can shrink it until this condition is met).

Ω ∂Ω \ Γ u • n = 0 [D(u)n + Au] tan = 0 Γ O Figure 4.

-Extension of the physical domain Ω.

Lemma 45. There exists a solution pair (u 0 , p 0 ) ∈ C ∞ ([0, T ] × Ω, R d × R) to system (4.16) such that the flow Φ defined in (4.17) satisfies (4.18). Moreover, u 0 can be chosen such that :

∇ × u 0 = 0 in [0, T ] × Ω. ( 4 

.19)

Démonstration. This lemma is the key argument of multiple papers concerning the small time global exact controllability of Euler equations. We refer to the following references for detailed statements and construction of these reference trajectories. First, Coron used it in [START_REF] Coron | Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles bidimensionnels[END_REF] for 2D simply connected domains, then in [START_REF] Coron | On the controllability of 2-D incompressible perfect fluids[END_REF] for general 2D domains when Γ interesects all connected components of ∂Ω. Glass adapted the argument for 3D domains (when Γ intersects all connected components of the boundary), for simply connected domains in [START_REF] Glass | Contrôlabilité exacte frontière de l'équation d'Euler des fluides parfaits incompressibles en dimension 3[END_REF] then for general domains in [START_REF] Glass | Exact boundary controllability of 3-D Euler equation[END_REF]. He also used similar arguments to study the obstructions to approximate controllability in 2D when Γ does not intersect all connected components of the boundary in [START_REF] Glass | An addendum to a J. M. Coron theorem concerning the controllability of the Euler system for 2D incompressible inviscid fluids[END_REF] for general 2D domains. Here, we use the assumption that our control domain Γ intersects all connected parts of the boundary ∂Ω. The fact that condition (4.19) can be achieved is a direct consequence of the construction of the reference profile u 0 as a potential flow : u 0 (t, x) = ∇θ 0 (t, x), where θ 0 is smooth.

Convective term and flushing of the initial data

We move on to order O(ε). Here, the initial data u * comes into play. Let u 1 be the solution to :

           ∂ t u 1 + u 0 • ∇ u 1 + u 1 • ∇ u 0 + ∇p 1 = ∆u 0 ,
in Ω for t ≥ 0, div u 1 = 0 in Ω for t ≥ 0, In this paragraph, we exlain how we can use our control to reach u 1 (T, •) = 0. Remember that, thanks to the choice of u 0 , the initial data will be fully flushed outside of the domain. Equation (4.20) also takes into account a residual term ∆u 0 . The easiest path to prove that it is possible to control u 1 is to introduce w 1 := ∇ × u 1 and to write (4.20) in vorticity form : Note that the term w 1 • ∇ u 0 is specific to the 3D setting and does not appear in 2D (where the vorticity is merely transported). Nevertheless, even in 3D, the support of the vorticity is transported. Thus, thanks to hypothesis (4.18), w 1 will vanish inside Ω at time T provided that we choose null boundary conditions for w 1 on the controlled boundary Γ. Hence, we can build a trajectory of (4.20) such that ∇×u 1 (T, •) = 0. Since, we can choose the boundary controls on Γ to be null at time T , U := u 1 (T, •) satisfies :

u 1 • n = 0 in ∂Ω \ Γ for t ≥ 0,
∂ t w 1 + u 0 • ∇ w 1 + w 1 • ∇ u 0 = 0, in Ω for t ≥ 0,
     ∇ • U = 0 in Ω, ∇ × U = 0 in Ω, U • n = 0 on ∂Ω. (4.22)
For simply connected domains, this implies U ≡ 0. For multiply connected domains, the situation is more complex. We refer to the demonstrations given in [START_REF] Coron | On the controllability of 2-D incompressible perfect fluids[END_REF] and [START_REF] Glass | Exact boundary controllability of 3-D Euler equation[END_REF] which prove that, thanks to careful choices of the control and the reference trajectory, we can still reach u 1 (T, •) = 0. The interested reader can also start with the nice introduction given by Glass in [START_REF] Glass | Contrôlabilité de l'équation d'Euler tridimensionnelle pour les fluides parfaits incompressibles[END_REF]. Moreover, if we assume that u * ∈ H 3 (Ω) (which can be done without loss of generality as exposed in Section 4.6), u 1 can be constructed in L ∞ ([0, T ]; H 3 (Ω)).

Size of the remainder

The equation for the remainder reads :

               ∂ t R ε -ε∆R ε + (u ε • ∇) R ε + A ε R ε + ∇π ε = F ε -G ε , in (0, T ) × Ω, div R ε = 0 in (0, T ) × Ω, [∇ × R ε ] tan = -∇ × u 1 tan in (0, T ) × ∂Ω \ Γ, R ε • n = 0 in (0, T ) × ∂Ω \ Γ, R ε (0, •) = 0 in Ω at t = 0, (4.23) 
where :

A ε R ε = (R ε • ∇) u 0 + εu 1 , F ε = ε∆u 1 , G ε = ε(u 1 • ∇)u 1 . (4.24)
We want to establish a standard L ∞ (L 2 ) ∩ L 2 (H 1 ) energy estimate for the remainder. Let g 1 := ∇ × u 1 tan . As usual, we multiply equation (4.23) by R ε and integrate by parts. Let us recall that R ε • n = 0 and div u ε = div R ε = 0, which simplifies most terms. We obtain :

1 2 d dt Ω |R ε | 2 + 2ε Ω |D(R ε )| 2 = Ω (F ε + G ε )R ε + Ω A ε R ε R ε -2ε ∂Ω (g 1 + M R ε )R ε . (4.25)
To integrate (∆R ε )R ε by parts, we used the formula :

-

Ω ∆f • g = 2 Ω D(f )D(g) -2 ∂Ω D(f )n • g, (4.26)
which is valid as long as f is divergence-free (see [START_REF] Gung | Boundary layer analysis of the Navier-Stokes equations with generalized Navier boundary conditions[END_REF]Lemma C.1]). Let us estimate the boundary integral by transforming it into an interior term. Choosing a smooth extension M of M to Ω, we write :

2ε ∂Ω (g 1 + M R ε )R ε = 2ε Ω div (g 1 + M R ε ) • R ε n ≤ εC |R ε | L 2 + |g 1 | H 1 |R ε | H 1 ≤ εC |R ε | L 2 + |g 1 | H 1 (|R ε | L 2 + |D(R ε )| L 2 ) ≤ εC |R ε | 2 L 2 + |g 1 | 2 H 1 + ε|D(R ε )| 2 L 2 , ( 4.27) 
where we used the second Korn inequality to estimate the H 1 norm of R ε using D(R ε ) (see [127, Theorem 10.2, page 299]) and the constants C depends on the domain and C 1 norms of n and M . Plugging (4.27) into (4.25) yields :

1 2 d dt Ω |R ε | 2 + ε Ω |D(R ε )| 2 ≤ |A ε | ∞ + 1 2 + εC Ω |R ε | 2 + ε|g 1 | 2 H 1 + Ω |F ε | 2 + |G ε | 2 . ( 4.28) 
Applying the Gronwall inequality by integrating over (0, T ) and using the null initial condition gives :

|R ε | 2 L ∞ (L 2 ) + ε |D(R ε )| 2 L 2 (L 2 ) ≤ εC, ( 4.29) 
where C depends on ∇u 0 ∞ , ∇u 1 ∞ , ∆u 1 L 1 (L 2 ) and g 1 L 1 (H 1 ) . Hence, |R ε (T, )| L 2 = O( √ ε) and this concludes the proof of the approximate null controllability since u 0 (T ) = u 1 (T ) = 0.

Boundary layer expansion and dissipation

As in Section 4.3, T is fixed, we introduce ε 1 and we perform the usual scaling u ε (t, x) := εu(εt, x) and p ε (t, x) := ε 2 p(εt, x). Now, (u ε , p ε ) is the solution to the following system : Here again, we do not expect to reach exactly zero at the final time. However, we would like to build a sequence of solutions such that |u(T, •)| L 2 (Ω) = o(1). This will allow us to apply a local result on the remaining time interval with a small initial data, a fixed time and a fixed viscosity. Due to the scaling chosen, we need to prove that we can obtain |u ε (T /ε, The pressure is also expanded as :

         ∂ t u ε + (u ε • ∇) u ε -ε∆u ε + ∇p ε =
p ε (t, x) = p 0 (t, x) + εp 1 (t, x) + . . . + επ ε (t, x). (4.32)

Compared with expansion (4.14), expansion (4.31) introduces a boundary correction v. Indeed, u 0 does not satisfy the Navier slip-with-friction boundary condition on ∂Ω \ Γ. The purpose of the second term v is to recover this boundary condition by introducing the tangential boundary layer generated by u 0 . In equations (4.31) and (4.32), the missing terms are technical terms which will help us prove that the remainder is small. We give the details of this technical part in Section 4.5.

Remark 4.

The boundary layer term is not small and needs to be controlled. Indeed, even though its amplitude is √ ε and even though we will win a ε 1 4 factor when evaluating its L 2 size due to the fast variable, we will also need to divide it by ε in order to return to the original scale. Thus, some care is needed and we need to use the controls to do something with v.

Boundary layer profile

Since the Euler system is a first-order system, we have only been able to impose one scalar boundary condition in (4.16) (namely, u 0 • n = 0 on ∂Ω \ Γ). Hence, the full Navier slip-with-friction boundary condition is not satisfied by u 0 . Therefore, at order O( √ ε), we introduce a boundary layer correction v. This correction if fully tangential and has no normal part. As already seen in (4.31), this profile is expressed in terms both of the slow space variable x ∈ Ω and a fast scalar variable z = ϕ(x)/ √ ε. For x ∈ Ω, ϕ(x) ≥ 0. Thus, z lives in R + . As in [START_REF] Iftimie | Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions[END_REF], v is the solution to :

     ∂ t v + (u 0 • ∇)v + (v • ∇)u 0 tan + u 0 z∂ z v -∂ zz v = 0, in R + × Ω for t ≥ 0, ∂ z v(t, x, 0) = g 0 (t, x) in {0} × Ω for t ≥ 0, v(0, •, •) = 0 in R + × Ω at t = 0, (4.33) 
where we introduce the following definitions : In (4.35), we introduce a smooth truncature function χ, satisfying χ = 1 on ∂Ω. This is intended to help us guarantee that v is compactly supported near ∂Ω, while ensuring that v compensates the Navier slip-with-friction boundary trace of u 0 . Moreover, as noted in [START_REF] Iftimie | Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions[END_REF], even though ϕ vanishes on ∂Ω, u 0 is not singular near the boundary because of the impermability condition u 0 • n = 0.

Remark 5. The profile v is tangential. For any x ∈ Ω, z ≥ 0 and t ≥ 0, v • n = 0. Indeed, the source term is tangential and the main equation propagates the orthogonality with n.

Remark 6. The boundary layer system (4.33) is defined for any t ≥ 0. Indeed, we will need this expansion on the large time interval [0, T /ε]. Thus, we prefer to define it directly on R + . Is it implicit that, for t ≥ T , u 0 is extended by 0. Hence, after T , system (4.33) reduces to a heat equations on the half line z ≥ 0 (where the slow variable x plays the role of a parameter) : 

∂ t v -∂ zz v = 0, in R + × Ω for t ≥ T, ∂ z v(t

Estimations using Fourier transform in the fast variable

We will perform all computations in a small neighborhood of ∂Ω. In paragraph 4.4.3, we show how we can make sure that v stays in this neighborhood. For now, we assume that this is the case. In this neighborhood, the normal n(x) is well defined. In order to perform computations within the Fourier space, we want to get rid of the Neumann boundary condition at z = 0. This can be done by lifting the non-homogeneous boundary condition g 0 to turn it into a source term. We choose the simple lifting -g 0 (t, x)e -z . The homogeneous boundary condition will be preserved by extending by parity the source term. Let us introduce V (t, x, z) ∈ R d defined for t ≥ 0, x ∈ Ω and z ∈ R such that : v(t, x, z) = V (t, x, z) -g 0 (t, x)e -z (4.37)

Now we can work with the field V . Easy computations lead to the following equation for V (which we extend by parity for z < 0) :

∂ t V + (u 0 (t, x) • ∇ x )V + B(t, x)V + u 0 (t, x)z∂ z V -∂ zz V = G 0 (t, x)e -|z| + G 1 (t, x)|z|e -|z| , ( 4.38) 
where we introduce :

B i,j = ∂ j u 0 i -∂ j u 0 • n n i for 1 ≤ i, j ≤ d, ( 4.39) 
G 0 = ∂ t g 0 + (u 0 • ∇)g 0 + Bg 0 -g 0 , (4.40)

G 1 = -u 0 g 0 . (4.41)
We compute the partial Fourier transform V (t, x, ζ) := R V (t, x, z)e -iζz dz. We obtain :

∂ t V + (u 0 • ∇ x ) V + B + ζ 2 -u 0 V + u 0 ζ∂ ζ V = 2G 0 1 + ζ 2 + 2G 1 (ζ 2 -1) (1 + ζ 2 ) 2 . (4.42)
To obtain the decay we are seeking, we will need to consider a finite number of derivatives of V at ζ = 0. Thus, we introduce :

Q k (t, x) := ∂ k ζ V (t, x, ζ = 0). (4.43) 
Let us compute the evolution equations satisfied by these quantities. Indeed, differentiating equation (4.42) k times with respect to ζ yields :

∂ t ∂ k ζ V + (u 0 • ∇)∂ k ζ V + A + ζ 2 -u 0 ∂ k ζ V -2kζ∂ k-1 ζ V -k(k -1)∂ k-2 ζ V + (u 0 ζ∂ ζ + k)∂ k ζ V = ∂ k ∂ζ k 2G 0 1 + ζ 2 + 2G 1 (ζ 2 -1) (1 + ζ 2 ) 2 .
(4.44)

Now we can evaluate at ζ = 0 and obtain :

∂ t Q k + (u 0 • ∇)Q k + (A -u 0 )Q k -k(k -1)Q k-2 + kQ k = ∂ k ∂ζ k 2G 0 1 + ζ 2 + 2G 1 (ζ 2 -1) (1 + ζ 2 ) 2 ζ=0
. (4.45)

In particular :

∂ t Q 0 + (u 0 • ∇)Q 0 + (A -u 0 )Q 0 = 2G 0 -2G 1 (4.46) ∂ t Q 2 + (u 0 • ∇)Q 2 + (A -u 0 + 2)Q 2 = 2Q 0 -8G 0 -24G 1 (4.47)
These equations can be brought back to ODEs using the characteristics method, by following the flow Φ. Our goal is thus to choose the initial data for V (outside of the physical domain) in order to guarantee that Q k (T, •) = 0 inside Ω for 0 ≤ k ≤ K, where K is a fixed order to be chosen later on. This is possible due to the cascade structure of these equations. Indeed, at this stage, u 0 is fixed so the source terms are known and the equations is linear. Moreover, thanks to condition (4.18), we are free to choose the initial condition for V outside of Ω. Moreover, the profile v has the same smoothness as u 0 .

How to stay in the good neighborhood ?

We consider the larger domain O. Its boundary is defined as the set {x ∈ R d ; ϕ(x) = 0}. For any δ ≥ 0, we define V δ := {x ∈ R d ; ϕ(x) ≤ δ}. Hence, V δ is a neighborhood of O. As mentioned above, ϕ was chosen such that |∇ϕ| = 1 and ϕ(x) = d(x, ∂O) in a neighborhood of ∂O. Let us introduce η > 0 such that this is true on V η . Hence, within this neighborhood of ∂O, the extension n(x) = ∇ϕ(x) of the outwards normal to ∂O is well defined (and of unit norm). Note also that, for δ large enough, V δ = O.

Considering the evolution equation (4.42), we see it as an equation defined on the whole of O. Thanks to its structure, we see that the support of V is transported by the flow of u 0 . Moreover, V can be triggered either by the right-hand side source term or by its initial data. We want to determine the supports of these sources such that V vanishes outside of V η .

Thanks to definitions (4.35), (4.40) and (4.41), the right-hand side source term of (4.42) is supported within the support of χ. Let us introduce η χ such that supp(χ) ⊂ V ηχ . We also introduce η c such that the initial data of V is supported within V ηc \ Ω (note that we need to restrict the support to be outside of Ω as we cannot choose the initial data of v inside the physical domain of interest).

In order for the support of V to stay within V η , we can check that : First, since u 0 is smooth, Φ is smooth. Moreover, ϕ is smooth. Hence, S is a smooth function of δ. Second, due to the condition u 0 • n = 0, the characteristics cannot leave or enter the domain and thus follow the borders. Hence, S(0) = 0. Therefore, once η has been fixed, this condition is guaranteed as long as η χ and η c are small enough.

In order for the initial data of V to satisfy our needs, it needs to be defined everywhere we need it. We look at the final time T . Take x ∈ Ω. If : inf ϕ(Φ -1 T (t, x)); t ∈ [0, T ] ≤ η χ , (4.49

)
then there is a chance that V has received an unwanted source term. Thus, we must be able to choose the initial data where it originated from, that is to say in Φ -1 T (0, x). This leads to the constraint :

η c ≥ sup ϕ(Φ -1 T (0, x)); x ∈ O, ∃t ∈ [0, T ], ϕ(Φ -1 T (t, x)) ≤ η χ . (4.50)
Now, thanks the the impermeability condition on u 0 , the right-hand side is null for η χ = 0. Since it is continuous, we can choose η χ small enough in order to guarantee that η c and η χ are both small enough to satisfy S(η c ) ≤ η and S(η χ ) ≤ η. We do this and assume all these parameters are fixed from now on.

Large time decay of the boundary layer profile

Thanks to the controls chosen (by means of the initial condition on v outside of the physical domain), we can obtain an arbitrarily good polynomial decay for the boundary layer profile V . This decay will be used both to prove that the boundary profile v at the final time is small enough to apply a local controllability result and that the source terms generated by v in the equation satisfied by the remainder are integrable with respect to time.

Lemma 46.

Let n ∈ N and V 0 ∈ H 2 (R) be an even real valued function satisfying : R z p V 0 (z)dz = 0, ∀p < n, (4.51)

M k := R 1 + z 2 k |V 0 (z)| 2 + |∂ z V 0 (z)| 2 + |∂ zz V 0 (z)| 2 dz < ∞, ∀k ∈ N. (4.52)
Consider V the solution to the heat equation on R with initial data V 0 : Démonstration. For small times (say t ≤ 1), the right-hand side of (4.54) is bounded below by a constant. Thus, inequality (4.54) holds because of assumption (4.52) at the initial time and because the considered energy decays under the heat equation. Let us move on to large times, e.g. assuming t ≥ 1. As an example, we prove the lemma in the case k = 0. Using Fourier transform we have : 

∂ t V -∂ zz V = 0, in R, for t ≥ 0, V (0, •) = V 0 in R,
|V (t, •)| 2 H 2 = R 1 + ζ 2 2 e -2tζ

Estimation of the residues and technical lemmas

In the previous sections, we presented the construction of u 0 (the Euler reference flushing trajectory), v (the boundary layer correction for u 0 and the Navier slip-with-friction boundary condition) and u 1 (the transported term involving the initial data). In this section, we follow on with the expansion and introduce technical terms whose physical meaning is less important. The purpose of the technical decomposition we propose is to help us prove that the remainder we obtain is indeed small. We will use the following expansion : 

u ε (t, x) = u 0 (t,

Expansions of constraints

In this paragraph, we are interested in the formulation of the boundary conditions and the incompressibility condition for the full expansion. We plug expansion (4.60) into these conditions and identify the successive orders of power of √ ε.

Impermeability boundary condition

On ∂O, we have the impermability boundary condition u ε • n = 0. By identification for each power of ε in the expansion, this condition translates to the following conditions for our expansion : 

u 0 • n = 0, ( 4 
ρ ε • n = -w|z=0 • n. (4.67)

Incompressibility condition

Similarly, the divergence-free condition on u ε translates to : The profiles w • n, w • n and ũ2 are meant to catch up the unwanted divergences of previous profiles.

div u 0 + n • ∂ z v = 0, (4.68) 

Slip-with-friction boundary condition

Now, we look at the slip-with-friction boundary condition on ∂O : [D(u ε )n + Au ε ] tan = 0. To lighten the notations, let us introduce an operator N defined as :

N (f ) := [D(f )n + Af ] tan .
(4.75)

Note that, for functions also depending on the fast variable, D also denotes the derivatives with respect to the slow variables in definition (4.75). Identifying the first orders of the expansion yields : The main boundary profile v was built to lift N (u 0 ). We choose a basic lifting for N (v) by the profile w.

N (u 0 ) - 1 2 ∂ z v = 0, ( 4 
Other terms are seen as a source term in the equation for the remainder :

-N (R ε ) = g ε := N (u 1 ) + N (∇ x θ1 ) + N (w) + √ εN (ρ ε ) + √ εN ( w). (4.79)

Note that w is normal and has no tangential component so we can drop it.

Definitions of technical profiles

Let us recall that, at this stage, the three main terms u 0 , v and u 1 are defined. In this paragraph, we explain step by step how we build the following terms of the expansion.

Boundary layer pressure

Equation (4.33) only involves the tangential part of the symmetrical convective product between u 0 and v. Hence, to compensate its normal part, we introduce as in [START_REF] Iftimie | Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions[END_REF] the pressure q as the unique solution vanishing as z → +∞ to :

(u 0 • ∇)v + (v • ∇)u 0 • n = -∂ z q. (4.80)
Note that the support of q is included in the support of v. Now, we can write :

∂ t v + (u 0 • ∇)v + (v • ∇)u 0 + u 0 z∂ z v -∂ zz v + n∂ z q = 0. (4.81)
Note that this pressure profile vanishes for t ≥ T (i.e., once u 0 vanishes).

Second boundary correction

The first boundary condition v generates a non vanishing slow divergence and a non vanishing normal boundary flux. The role of the profile w is to lift to unwanted terms that would be too hard to handle directly in the equation of the remainder. In order to satisfy (4.72) and (4.77), we define w by : w(t, x, z) • n := Since v is compactly supported near the boundary, so is w. Moreover, w depends smoothly on v.

Boundary flux correction

The shape of w • n is imposed by equation (4.72). The bad consequence is that w • n = 0 on ∂O. Thus, we must introduce a dedicated correction ∇ x θ1 to ensure (4.66). Therefore, for t ≥ 0, we define θ1 as the solution to : ∆ θ1 = 0, in O,

∂ n θ1 = -w(t, •, 0) • n, in ∂O. (4.84)
It can be check that the compatibility condition is indeed satisfied. This instantaneous defintion is important because it guarantees that ũ1 := ∇ x θ1 will inherit decay properties proven for w. This profile solves : It can be check that the compatibility condition is indeed satisfied. Thus, the profile solves the evolution equation

           ∂ t ũ1 + u 0 • ∇ ũ1 + ũ1 • ∇ u 0 + ∇p 1 =
           ∂ t ∇ x ρ ε + u 0 • ∇ ∇ x ρ ε + (∇ x ρ ε • ∇) u 0 + ∇µ ε = 0, in O for t ≥ 0, div ∇ x ρ ε = -div slow w in O for t ≥ 0, ∇ x ρ ε • n = -w|z=0 • n in ∂O for t ≥ 0, ∇ x ρ ε (0, •) = 0 in O at t = 0, (4.88) 
where µ ε := ∂ t ρ ε -u 0 • ∇ x ρ ε .

Equation for the remainder

The equation for the remainder reads : Before introducing the source terms, we define the following shortened notations : Now we can introduce :

               ∂ t R ε -ε∆R ε + (u ε • ∇) R ε + A ε R ε + ∇π ε = F ε -G ε -H ε -I ε , in Ω for t ≥ 0, div R ε = 0 in Ω for t ≥ 0, [D(R ε )n + AR ε ] tan = g ε in ∂Ω \ Γ for t ≥ 0, R ε • n = 0 in ∂Ω \ Γ for t ≥ 0,
W ε (t
A ε R ε := (R ε • ∇) u 0 + εU ε + (R ε • ∇ x ) √ εv + εW ε + (R ε • n) ∂ z v + √ ε∂ z W ε , ( 4.92 
)

F ε := [∆ϕ∂ z v + 2∂ nz v + ∂ zz W ε ] + √ ε [∆ x v + ∆ϕ∂ z W ε + 2∂ nz W ε ] + ε [∆ x W ε + ∆U ε ] , (4.93 
)

G ε := u 0 • n ϕ z∂ z w + (W ε + U ε ) • n∂ z v + √ εW ε + ∇ x u 0 • W ε + v 2 2 + √ ε∇ x [v • (W ε + U ε )] + ε 2 ∇ x (W ε + U ε ) 2 (4.94)
H ε := ∇ x q. (4.95)

I ε := ∂ t W ε . (4.96)
Functions depending on z are evaluated at z = ϕ(x)/ √ ε. Moreover, all the source terms are small when ε is small. Indeed, the natural L 2 scaling on the fast variable yields ε 1/4 factors.

  20). On la prolonge de manière régulière en ỹ0 définie sur [0, 4]. On va considérer que l'on contrôle la zone x ∈ [2, 3]. Par contrôlabilité de (1.19), on considère ỹ une solution sur [0, T ] × [0, 4] telle que ỹ(T ) = 0. La restriction y = ỹ[0,1] fournit une solution de (1.20) telle que y(T ) = 0. Le contrôle à utiliser v 1 (t) est déduit comme étant la trace ỹ(t, 1). Réciproquement, supposons que (1.20) est globalement contrôlable à zéro. On découpe l'intervalle [0, 1] en trois segments : [0, a], [a, b] et [b, 1]. On scinde aussi la donnée initiale. On sait que le sous-système sur [0, a] (respectivement [b, 1]) est contrôlable via d'un contrôle au bord v a (t) = y(t, a) à droite (resp. v b (t) = y(t, b) à gauche). Entre a et b, on relie v a (t) et v b (t) par un prolongement régulier (en espace et en temps). Le contrôle f (t, x) est obtenu comme l'écart entre la solution construite et la dynamique libre.

(1. 70 )

 70 Dans l'équation (1.70), l'équation d'évolution ne porte que sur la composante tangentielle u de la vitesse.

  u a et u b deux états réguliers de (1.72) et T > 0. On souhaite trouver une trajectoire régulière reliant u a au temps initial 0 à u b au temps final T . L'équation (1.7) étant réversible en temps, il suffit de s'intéresser au cas où u b = 0 (en effet, pour relier u a à u b quelconque, on pourra alors passer par zéro et utiliser la réversibilité en temps, quitte a travailler en temps T := T /2). De plus, si u est une solution de (1.72) sur [0, T ] et ε 1, on peut introduire ũε (t, x) := εu(εt, x) et pε (t, x) := ε 2 p(εt, x), définis sur [0, T /ε]. Ainsi, ũε est encore une solution d'Euler, mais sur un temps long et avec une donnée initiale εu a petite.

3 .

 3 Décomposer l'état y sous la forme ηa + η 2 b ; où a est contrôlable et b libre à l'ordre linéaire, et η est un petit paramètre représentant la taille du contrôle. 4. Développer l'équation de b au second ordre de sorte à écrire ḃ = ∂ y F |0,0 b + Q(a, a). 5. Choisir une projection de b et l'exprimer au temps final petit T = ε comme un opérateur intégral, dépendant de ε, appliqué au contrôle mis à l'échelle en temps sur [0, 1] : b
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 21 Figure 2.1 -Setting of the Navier-Stokes control problem (2.2).
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 222 Figure 2.2 -Overriding of an initial data ȳ0 (x) by some constant state ȳ(x) ≡ H for system (2.6).
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 23 Figure 2.3 -Example of evolution from an initial data towards a steady state.
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 24 Figure 2.4 -Numerical simulation of the push-down towards the null state and the creation of a boundary residue. The final state ȳ(T, •) is almost above the residue k ε (•) -H.
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 25 Figure 2.5 -Numerical simulation of the dissipation of the boundary residue Φ ε (•). At time t = 0, the boundary residue was of size Φ ε (•) ∞ = 100.
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 26 Figure 2.6 -Approximate null-controllability strategy.

. 42 )yy x 2 2 ≤ 1 + 12γe 12γ 12 ν g 2 L 2 (L ∞ ) y 2 L ∞ (L 2 ) + y 0 4 4 . ( 3 . 43 )

 422122224343 Once again, plugging back estimate (3.42) into (3.41) gives : 6ν Conclusion. To conclude the proof, we use Lemma 11, with a source term f = g x + w x y + wy x -yy x . Estimate (3.36) comes from the combination of (3.23) with equations (3.39), (3.40) and (3.43).

(3. 51 )

 51 The integrations by parts performed above are valid because of the null boundary and initial conditions chosen in systems (3.47) and(3.50). Equation (3.48) is a direct consequence of (3.51) since Ψ t = Φ.

. 57 )

 57 with boundary conditions ā(0) = ā(1) = b(0) = b(1) = 0. Integrating (3.57) with respect to x yields the following family of steady states :

(3. 86 )

 86 Equation chain (3.86) concludes the proof of equation(3.85).

  Lemma 26, we deduce that there exists C 0 such that, for any u ∈ L 2 (0, 1),| Ru, u | ≤ C 0 ε 3/2 |U | 2 H -1/4. Moreover, thanks to Lemma 20, there exists c 0 such that K 0 u, u ≥ c 0 |U | 2 H -1/4 . Hence, for any k 1 < c 0 /(45 √ π), equation (3.175) holds for ε small enough.

1 0

 1 b x (t, x)dx = b(t, 1) -b(t, 0) = 0 for any t ∈ (0, 1), the mean value of b x (t, •) is 0. Thus, |b x (t, •)| ∞ ≤ |b xx (t, •)| 2 . Hence, b x L 2 (L ∞ ) ≤ b xx 2. This proves estimate (3.183).

2 2

 2 |U | H -1/4 . (3.192) Combining (3.178), (3.181), (3.182) and (3.187), we obtain :

  .193) Lastly, mixing (3.178), (3.179), (3.181), (3.182) and (3.187) gives :

( 3 . 2 2Lemma 35 .

 3235 194)Eventually, plugging estimates (3.189)-(3.194) into the main estimation (3.36), yields :r t 2 ε -3/2 |u| |U | H -1/4 .(3.195)From(3.195) and the initial condition r(0, •) = 0, we conclude(3.188). Under the assumption (3.187), we have :

1 0 z t ρ T 1 / 2 δ

 112 .213) Hence, (3.213) yields γ 1. Therefore, plugging (3.212) and (3.213) into (3.36) gives :z xx 2 + z t 2 δ |u| 2 .(3.214)Once again, we use the initial condition z(0, •) ≡ 0 and (3.214) to compute :| ρ, z(T, •) | = T 0 |u| 2 . (3.215)Now, assuming T ≤ T 2 , we can combine Theorem 7 and Lemma 36 with (3.215) to obtain :

Definition 9 (

 9 Smooth atom). Let α ∈ R and Q be a dyadic cube in R n of side length Q . A smooth α-atom, associated with the cube Q is a function a ∈ D (R n ) satisfying : supp(a) ⊂ 3Q, (3.225)

  .232) In the definition of a molecule, conditions (3.231) and (3.232) are void by convention if α < 0. When α ≥ 0, condition (3.231) implies (3.229). When α > 0, condition (3.230) is void. We have : Lemma 38 (Theorem 5.18, [83]

.235) Lemma 41 (

 41 Lemma 2, [168]). Let 0 < s < 1 and0 < δ ≤ 1. Take b ∈ Ḃs,∞ ∞ . Then, the operator π b ∈ WSIO(s, δ). Moreover, there exists a constant C(s) independent of b such that, κ(π b ) ≤ C(s) b Ḃs,∞∞ , where κ(π b ) is the constant in Definition 6 associated to the operator π b .

  .239) Equation (3.239) concludes the proof.

H 1 =

 1 {(x, y) ∈ H, 0 ≤ x and y ≤ 1}, H + = {(x, y) ∈ H, y -x ≤ 1 and 1 < y}, H -= {(x, y) ∈ H, y -x ≤ 1 and x < 0}. (3.245) Let (x, y) ∈ H and (x , y) ∈ H with |x -x | ≤ 1

( 3 .

 3 246)The last inequality comes from the fact that |x|, |x| ≤ |x -x | and |x -y| -1+s-δ ≤ 4|x -y| -1+s-δ for |x -x | ≤ 1 2 |x -y|.The details of the other situations are left to the reader.

u 1

 1 (0, •) = u * in Ω at t = 0. (4.20)

w 1 (

 1 0, •) = ∇ × u * in Ω at t = 0. (4.21)

  0 on (0, T /ε) × Ω, div u ε = 0 on (0, T /ε) × Ω, [D(u ε )n + Au ε ] tan = 0 on (0, T /ε) × ∂Ω \ Γ, u ε | t=0 = εu * on Ω.

u 0

 0 (t, x) = u 0 (t, x) • n(x) ϕ(x) , in [0, T ] × Ω, (4.34) g 0 (t, x) = 2χ(x) D u 0 (t, x) n(x) + Au 0 (t, x) tan in [0, T ] × Ω. (4.35) 

S

  (η χ ) ≤ η and S(η c ) ≤ η, where S(δ) := sup {ϕ(Φ(t, x)); t ∈ [0, T ], ϕ(x) ≤ δ} .(4.48) 

u 1

 1 + ∇ x θ1 + w + R ε • n = 0,(4.64)(ρ ε + w) • n = 0. (4.65)By construction of the Euler trajectory u 0 , equation (4.62) is true. Since the boundary profile v is tangential, equation (4.63) is also satisfied. By construction, we also already have u1 • n = 0. In order to be able to carry out integrations by part for the estimates of the remainder, we also would like to impose R ε • n = 0. Thus, (4.64) yields :∂ n θ1 = -w |z=0 • n. (4.66) Moreover, we see (4.65) as a definition of u 2 once w is known :

71 )

 71 div slow v + n • ∂ z w = 0,(4.69)divu 1 + div ∇ x θ1 + div slow w + div R ε + n • ∂ z w = 0Here again, by construction div u 0 = div u 1 = n • ∂ z v = 0 and we would like to work with div R ε = 0. We also build θ1 such that ∆ θ1 = 0. Thus, we read equations (4.69), (4.70) and (4.71) as :n • ∂ z w = -div slow

  w] tan = 0. (4.77)The remaining terms are left with the remainder :N (u 1 ) + N (∇ x θ1 ) + N (w) + N (R ε ) -1 2 [∂ z w] tan + √ ε (N (ρ ε ) + N ( w)) = 0. (4.78) 

  , x, z )dz , (4.82) [w(t, x, z)] tan := -2 [D x (v(t, x, 0))n + Av(t, x, 0)] e -z .(4.83)

  0, in O for t ≥ 0, div ũ1 = 0 in O for t ≥ 0, ũ1 • n = -w |z=0 • n in ∂O for t ≥ 0, ũ1 (0, •) = 0 in O at t = 0,(4.85)where p1 := ∂ t θ1 -u 0 • ∇ x θ1 .Last instantaneous correctionsEventually, we define :w(t, x, z) • n := +∞ z div slow w(t, x, z )dz , (4.86)which is only normal. Here again, we need to lift its normal trace. For t ≥ 0, we define ρ ε as the solution to :∆ρ ε = -div slow w(t), in O, ∂ n ρ ε = -w(t, •, 0) • n, in ∂O.

  Ce lemme est assez subtil. D'abord, l'existence d'une solution U ∈ C ∞ ([0, T [×[0, 1]) au système (1.37) et vérifiant la condition initiale au sens faible H -1 peut être obtenue en suivant une démarche telle que proposée dans[START_REF] Mikhail | On approximating properties of solutions of the heat equation[END_REF] par Belishev. Il faut ensuite expliciter les fonctions de Green associées à des sources initiales ponctuelles δ s . Enfin, il faut calculer les flux sortants correspondants.

1) aux bords du domaine soient strictement positifs pour 0 < t < T . Démonstration.

  .38) Les deux premiers termes de (1.38) sont négatifs. D'après le Lemme 5, on a U x (0, 0) > 0 et U

x [0, 1] < 0. Donc il est possible de construire z 0 suffisamment concentré près des bords tel que le troisième terme soit aussi strictement négatif. D'où la contradiction.

Perspective 1. La démonstration proposée par Guerrero et Imanuvilov n'utilise que très indirectement le comportement hyperbolique du système de Burgers. La dynamique dans l'espace physique est masquée par la transformation de Hopf-Cole. Il serait intéressant de chercher à établir une démonstration du

Théorème 3 qui repose sur cette dynamique hyperbolique en temps petit ; par exemple en suivant l'idée du balancier ou la méthode des caractéristiques. Ceci permettrait peut-être en outre d'avoir une description de l'espace des états contrôlables à zéro en temps petit.

  On démontre qu'en imposant un contrôle H à gauche, l'état ỹ converge très vite vers ce profil stationnaire k ε . Puis, on utilise le contrôle interne pour redescendre vers zéro. A l'issue de cette phase, il reste un résidu de couche limite près du bord non contrôlé (toujours sur une épaisseur ε). On pourrait espérer conclure en disant que ce résidu est petit. Cependant, dans le domaine initial, y = 1 ε ỹ. Ainsi, cet écart est plutôt de taille O(1) et ressemble à un dirac. Il n'est donc pas possible de conclure tout de suite avec un argument local.

	.46)
	L'équation différentielle ordinaire (1.46) se résout explicitement et fait apparaître une couche limite
	d'épaisseur ε.

  U (s 1 )U (s 2 )ds 1 ds 2 ,

				(1.55)
	où l'on a introduit U la primitive de u s'annulant en 0. Il est alors classique de vérifier que le premier
	terme définit la norme H -1/4 de U et que le second est positif. Ainsi, on est tenté de conjecturer que :
	K ε u, u ≥	√	ε|u| 2 H -5/4 .	(1.56)
	L'établissement rigoureux de (1.56) demande en réalité beaucoup de travail car l'asymptotique (1.54)
	n'était que formel. Il faut vérifier que les noyaux résiduels sont petits (en ε) et réguliers (au sens des
	espaces de fonctions sur lesquels ils sont continus). Techniquement, il est possible d'exprimer la différence R ε (s 1 , s 2 ) := K ε (s 1 , s 2 )-√ εK 0 (s 1 , s 2 ) comme une fonction de s 1 et s 2 . Il faut alors disposer d'un critère,
	vérifiable sur un noyau quelconque A(s 1 , s 2 ), permettant de démontrer l'existence d'une constante telle
	que | Au, u | ≤ C|u| 2 H -5/4 et la constante C doit être calculable (ou au moins estimable) à partir de
	quantités dépendant relativement explicitement de A. On démontre ainsi que | R ε u, u | ≤ Cε 3/2 |u| 2 H -5/4

  .66) où n est la normale extérieure à la paroi du domaine, D(u) est le tenseur de déformation du fluide (la partie symétrique du gradient) donné par D(u) i,j = 1 2 (∂ i u j + ∂ j u i ), [•] tan désigne la partie tangentielle d'un champ de vecteur et α est un coefficient positif.

  Ce travail laisse entrevoir de nombreuses extensions très intéressantes. Le résultat est énoncé comme un résultat d'existence d'une solution faible qui relie la donnée initiale u * à 0. On déduit alors le contrôle à utiliser sur le bord Γ en considérant la trace de la trajectoire construite. En notant λ = u |Γ ce contrôle, on aimerait savoir s'il y a unicité de solution au problème complètement déterminé avec donnée initiale u * et donnée au bord λ. Autrement dit, on aimerait savoir si la trajectoire construite est une solution forte de Navier-Stokes ; au moins dans le cas où la donnée initiale est assez régulière (mais de taille quelconque). A priori, l'existence de solutions fortes pour des données grandes est une grande question ouverte. Cependant, comme ici on utilise un contrôle et on construit explicitement une grande partie de la solution, on peut espérer démontrer qu'il s'agit d'une solution forte. On note que le développement approché u 0 + √ εv + εu 1 est très régulier. La question est donc de vérifier la régularité du reste. On espère pouvoir démontrer que la solution construite est effectivement forte. On a fait dès le début l'hypothèse que le domaine de contrôle Γ rencontrait toutes les composantes connexes du bord ∂Ω. Cette hypothèse vient naturellement dans le cadre de l'étude de la contrôlabilité de l'équation d'Euler. En effet, dans le cas contraire, on peut démontrer que les circulations le long de courbes supportées par les composantes connexes libres de la paroi sont constantes (et donc non contrôlables). Glass a étudié cette obstruction au contrôle d'Euler dans[START_REF] Glass | An addendum to a J. M. Coron theorem concerning the controllability of the Euler system for 2D incompressible inviscid fluids[END_REF]. Dans le cas d'Euler, cette condition est donc nécessaire. Dans le cas de Navier-Stokes, on peut imaginer qu'une telle situation donnerait plutôt naissance à un autre type de couche limite, qu'il pourrait être possible de traiter avec des méthodes similaires. On espérerait démontrer que le résultat reste vrai en supposant uniquement que Γ est un ouvert non vide de la paroi. Enfin, l'extension la plus ambitieuse est celle du passage des conditions de Navier avec frottement aux conditions de Dirichlet. Formellement, la stratégie resterait la même : partir avec une trajectoire de référence inspirée d'Euler, calculer le profil de la couche limite, s'assurer qu'il soit dissipé, puis démontrer que le reste est petit. La mise en oeuvre présente quelques difficultés majeures. D'abord, si l'épaisseur de la couche limite est la même, son amplitude devient beaucoup plus grande. Le bon développement fait intervernir le profil v t, x, ϕ(x) √

	Remarques et perspectives				
	Perspective 5. Perspective 6. Perspective 7.				
					1.121)
	Enfin, en injectant les estimées (1.119), (1.120) et (1.121) dans (1.116) on démontre l'existence d'une
	constante C dépendant de T , h, ū, θ, ϕ (mais pas de ε) telle que :	
	R ε T ε	, •	L 2	≤ C.	(1.122)

Cette estimation conclut la démonstration. En effet, on a prouvé que tous les termes étaient nuls ou petits à l'instant final dans L 2 (Ω). Pour conclure à la contrôlabilité exacte, il suffit d'utiliser un résultat de contrôle local. ε à l'amplitude O(1) à la place de O( √ ε). La principale conséquence de cette modification est l'apparition d'un terme singulier 1 √ ε R ε 2 ∂ z v dans l'équation d'évolution du reste. Physiquement, ce terme n'est pas si singulier qu'il n'en a l'air. En effet, R ε 2 s'annule sur les parois horizontales non contrôlées (par imperméabilité). Le terme complet se comporte donc essentiellement comme ∂ 2 R ε 2 • z∂ z v. La singularité en ε a disparu mais il faut désormais gérer la difficulté technique liée à la présence d'un terme dérivé. Il faut sans doute se placer dans un cadre analytique pour espérer conclure.

  s)u(t)u(s)dtds. 6. Prendre formellement la limite du noyau K ε lorsque le temps imparti temps vers zéro et calculer le noyau asymptotique K 0 . 7. Étudier la coercivité de ce noyau. S'il est coercif, on espère démontrer un résultat négatif. S'il n'a pas de signe, on espère un résultat de contrôle positif. Si besoin, restreindre l'étude du noyau aux seuls contrôles u qui sont dans l'espace de la méthode du retour pour la partie principale donnée par a. En effet, un contrôle complet doit à la fois contrôler l'ordre linéaire et l'ordre quadratique. Déterminer la norme correspondante.

8. Vérifier que le noyau K ε se comporte comme K 0 pour ε assez petit, en estimant la taille des noyaux résiduels, par exemple grâce à des méthodes de type opérateurs intégraux faiblement singuliers. 9. Conclure pour l'approximation quadratique du système.

10. Revenir si possible au système non linéaire initial en contrôlant les restes. Ici, la limite η → 0 (contrôlabilité locale) peut aider à justifier le développement.

  .[START_REF] Weinan | Blowup of solutions of the unsteady Prandtl's equation[END_REF] Démonstration. All necessary arguments can be found in[START_REF] Berg | Harmonic analysis on semigroups[END_REF] Chapter 3]. Indeed, the kernel -(x + y) 3/2 is cnsd. as is proved in [26, Corollary 2.11]. Moreover, the kernel |x -y| 3/2 is also cnsd. (see [26, Remark 1.10] and [26, Corollary 2.10]). Hence, letting :

  |H t (t, x)| ≤ x H tx ∞ .Using Lemma 29, we obtain :

	0	1 2	xΦ x (1 -t, x)H t (α, x) exp -	x 2 4εβ	dx.	(3.150)
	Since H t (t, 0) ≡ 0,					

  s 1 , s 2 )| dt +

	s2	1
		|∂ s2 Q 4 (t, s 1 , s)| dtds.	(3.155)
	s2	s2
	This first part obviously gives rise to a Lipschitz estimate. As for the second part, we compute ∂ s2 Q 4 by
	differentiating (3.150) with respect to β. We obtain	

  |H t (t, x)| ≤ x H tx ∞ .Using Lemma 29, we obtain :

	0	1 2	xΦ x (t, x)H t (β, x) exp -	x 2 4εα	dx.	(3.162)
	Since H t (t, 0) ≡ 0,					

  .179) Démonstration. The first inequality (3.177) is a direct application of estimate (3.32) from Lemma 13. The second inequality is a consequence of the maximum principle. Indeed, thanks to (3.176), ã ∞ is smaller than |U | ∞ . Since a = U + ã, a ∞ is smaller than 2 |U | ∞ . Estimate (3.178) follows because |U | ∞ ≤ |u| 2 .

  .185) where the last inequality comes from Lemma 32. Thus, we can apply Lemma 14 to prove(3.181).For the second and third inequalities, thanks to Lemma 11, a x 2 ε -1/2 |u| 2 . Moreover, thanks to Lemma 32, a ∞ |u| 2 . Thus, aa x 2 ε -1/2 |u| 2 2 . We can apply Lemma 11 to show that b X1 ε -3/2 |u| 2 2 . Inequality (3.182) follows from the injection X 1 → L ∞ (see (3.20) from Lemma 9).

	Moreover, since

  Démonstration. This lemma is not a direct consequence of Lemma 34. Indeed, estimate (3.188) only involves |U | H -1/4 with an exponent of 1. To obtain estimate(3.196), we need to work a little more. Using Lemma 18 and equation (3.186), we can compute :

	2 |u| 2 2 |U | 2 H -1/4 .	(3.196)

  .203) Theorem 7 follows from (3.202) and (3.203) with T 2 = ε 2 . Equation (3.203) is obtained via a direct change of variable. To establish (3.202), one can compute the weak H -1/4 norms using Fourier transforms.

  .209) Hence, ȳ captures the free movement starting from the initial data y δ while y u corresponds to the action of the control starting from a null initial data. Systems (3.207)-(3.209) allow us to decouple these two contributions. The term z is a small residue with homogeneous boundary and initial data.First, let us apply Lemma 16 to system (3.207). Estimates (3.44) and (3.45) yield :ȳxx 2 + ȳx 2 + ȳt 2 δ, ȳ ∞ ≤ |y 0 | ∞ δ. (3.210)Similarly, we apply Lemma 16 to system (3.208). If we assume that |u| 2 ≤ 1 and T ≤ 1, we obtain :

  .244) This completes the definition of K on Ω. By construction, it is easy to check that K is continuous on Ω. By construction, K also satisfies (3.240) on Ω 1 , on the whole strip -1 ≤ y -x ≤ 1 thanks to (3.244) and on the half spaces y -x ≥ 1 and y -x ≤ -1 thanks to the decay chosen in(3.244).The Hölder regularity estimates (3.241) and (3.242) are a little tougher. First, note that, by symmetry, one only needs to prove, for example, (3.241) on the half place H

  •)| L 2 (Ω) = o(ε). Following closely the original boundary layer expansion for Navier slip-with-friction boundary conditions proved by Iftimie and Sueur in[START_REF] Iftimie | Viscous boundary layers for the Navier-Stokes equations with the Navier slip conditions[END_REF], we introduce the following expansion for u

ε : u ε (t, x) = u 0 (t, x) + √ εv t, x, ϕ(x) √ ε + εu 1 (t, x) + . . . + εR ε (t, x). (

4

.31) 

  The energy contained at high frequencies decays very fast. For low frequencies, we need to use assumption (4.51). We introduce ρ > 0 and we split the energy integral at a cutting threshold where e -ζ 2 t ≤ t -ρ , ie. where |ζ| ≥ ρ ln t t 1/2 . Note that the right-hand side tends to zero as t → +∞, enabling us to isolate only asymptotically small frequencies. Let us estimate the high frequencies energy : Hence, choosing ρ = 1 2 +n in equation (4.56) and summing with equation (4.59) proves (4.54). Extensions for k > 0 are straightforward with Fourier computations.

			W # (t) :=	|ζ|≥| ρ ln t t |	2 1	1 + ζ 2 2 e -2tζ 2 V0 (ζ)	2	dζ
			≤ t -2ρ		1 + ζ 2 2 V0 (ζ)	2	dζ	(4.56)
					R				
			≤ M 0 t -2ρ .				
	We move on to low frequencies energy :					
			W (t) :=	|ζ|≤| ρ ln t t |	2 1	1 + ζ 2 2 e -2tζ 2 V0 (ζ)	2	dζ
				ρ ln t t	1 2	•	|ζ|≤| ρ ln t t | sup	1 2	V0 (ζ)	2	.	(4.57)
	Thanks to assumption (4.51), a Taylor expansion at ζ = 0 of V0 yields :
										1
	V0 (ζ) ≤	1 n!	|ζ| n ∂ n ζ V0							2	.	(4.58)
	Combining (4.57) with (4.58) gives :						
				W (t) M n+2	ρ ln t t	1 2 +n	.	(4.59)
										2
										dζ.	(4.55)

2 V0 (ζ) ∞ |ζ| n R z n |V 0 (z)|dz |ζ| n R (1 + z 2 ) n+1 |V 0 (z)| 2 dz

Remerciements

Description of the fluid system

Let d = 2 or 3. We consider a smooth bounded connected domain Ω in R d . Although some drawings will show Ω as a very simple domain, we do not make any other topological assumption on Ω. Inside this domain, an incompressible viscous fluid evolves under the Navier-Stokes equations. We will name u its velocity and p the associated pressure. Hence, (u, p) satisfies :

We assume that we are able to act on the fluid flow on a open part Γ of the boundary of ∂Ω. We also assume that Γ intersects all connected components of ∂Ω (this hypothesis is used in the proof of Lemma 45). On the remaining part of the boundary, ∂Ω \ Γ, we assume that we cannot control the fluid flow and that it satisfies Navier slip boundary conditions :

Here and in the sequel, n denotes the outward normal to ∂Ω. For a vector field f , we introduce [f ] tan its tangential part and D(f ) the rate of strain tensor (or shear stress) which are defined by :

Eventually, in (4.2), A is a smooth matrix valued function on ∂Ω, describing the friction near the boundary. This is a generalization of the usual condition involving a single scalar parameter α ≥ 0 (i.e. A = αI d ). For flat boundaries, such a scalar coefficient measures the amount of friction. When α = 0 and the boundary is flat, the fluid slips along the boundary without friction and there is no boundary layers. When α → +∞, the friction is so intense that the fluid is almost at rest near the boundary ; condition (4.2) converges to the Dirichlet condition as shown in [START_REF] Kelliher | Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane[END_REF]. In Section 4.2 we give a short introduction to boundary conditions and boundary layers for the Navier-Stokes equation.

Controllability problem and main result

Let T > 0 be a positive time (possibly very small) and u * an initial data (possibly very large). The question of small time global exact null controllability asks whether, for any T and any u * (in some Chapitre 4. Navier-Stokes appropriate space), there exists a trajectory u defined on [0, T ] × Ω, which is a solution to (4.1)-(4.2) satisfying u(0, •) = u * and u(T, •) = 0. In this formulation, we see system (4.1)-(4.2) as an underdetermined system. The controls used are the (implicit) boundary conditions on Γ and can be recovered from the constructed trajectory u itself. We define the space L 2 σ (Ω) as the closure in L 2 (Ω) of the space of smooth divergence free vector fields which are tangent to ∂Ω \ Γ. For T > 0 and u * ∈ L 2 σ (Ω), we say that u ∈ C 0 ([0, T ]; L 2 σ (Ω)) ∩ L 2 ((0, T ); H 1 (Ω)) is a weak Leray solution to (4.1)-(4.2) with initial data u * when,

for any ϕ ∈ C ∞ ([0, T ] × Ω) which is divergence free, tangent to ∂Ω, vanishes at t = T and vanishes on the controlled boundary Γ. With these definitions, we prove : Remark 3. Even though a unit viscosity is used in equation (4.1), Theorem 8 remains true for any fixed positive viscosity ν thanks to a straightforward scaling argument. Some works also consider the case when the friction matrix A depends on ν (see [START_REF] Paddick | Stability and instability of Navier boundary layers[END_REF] or [START_REF] Wang | Boundary layers in incompressible Navier-Stokes equations with Navier boundary conditions for the vanishing viscosity limit[END_REF]). Note that this does not impact our proofs in the sense that we could still prove that : for any ν > 0, for any T > 0, for any smooth A ν , for any initial data u * , one can find boundary controls (depending on all these quantities) driving the initial data back to the null equilibrium state.

A challenging open problem as a motivation

The small time global exact null controllability problem for the Navier-Stokes equation was first suggested by Jacques-Louis Lions in the late 80's. It is mentionned in [START_REF] Lions | Exact controllability for distributed systems. Some trends and some problems[END_REF] in a setting where the control is a source term supported within a small subset of the domain (this situation is equivalent to controlling only part of the boundary). In Lions' original statement, the boundary condition is the Dirichlet boundary condition :

Open problem 2. For any T > 0 and u * in L 2 div (Ω) (the closure of smooth compactly supported divergence free vector fields in L 2 (Ω)), does there exist a trajectory of system (4.1) satisfying (4.6) such that u(0, •) = u * and u(T, •) = 0 ? This is a very challenging open problem because the Dirichlet boundary condition (4.6) gives rise to boundary layers that have a larger amplitude than Navier-friction boundary layers. However, we expect that the methods we introduce here can be adapted to the more difficult case of the Dirichlet boundary condition, at least for some simple geometries.

As for condition (4.10) in can be seen as the natural extension in 3D of the 2D Lions free boundary condition. Let x ∈ ∂Ω. We note T x the tangent space to ∂Ω at x. The Weingarten map (or shape operator) M (x) at x is defined as a linear map from T x into itself such that M (x)τ = ∇ τ n for any τ in T x . Note that the image of M (x) is contained in T x . Indeed, since |n| 2 = 1 in a neighborhood of ∂Ω, 0 = ∇ τ (n 2 ) = 2n • ∇ τ n for any τ . Lemma 44 ([17], [START_REF] Gung | Boundary layer analysis of the Navier-Stokes equations with generalized Navier boundary conditions[END_REF]). If Ω is smooth, the shape operator M is smooth. For any x ∈ ∂Ω it defines a self-adjoint operator with values in T x . Moreover, for any divergence free vector field u satisfying u • n = 0 on ∂Ω, we have :

Even though it is a little unusual, it seems that condition (4.10) actually better describes the situation of a fluid slipping along the boundary. The convergence of the Navier-Stokes equation to the Euler equation under this condition has been extensively studied. In particular, let us mention the works by Beirao da Veiga, Crispo et al. (see [START_REF] Beirão | On the sharp vanishing viscosity limit of viscous incompressible fluid flows[END_REF], [START_REF] Beirão | Sharp inviscid limit results under Navier type boundary conditions. An L p theory[END_REF], [START_REF] Beirão | Concerning the W k,p -inviscid limit for 3-D flows under a slip boundary condition[END_REF], [START_REF] Beirão | The 3-D inviscid limit result under slip boundary conditions. A negative answer[END_REF], [START_REF] Beirão | A missed persistence property for the Euler equations and its effect on inviscid limits[END_REF], [START_REF] Beirão Da Veiga | Reducing slip boundary value problems from the half to the whole space. Applications to inviscid limits and to non-Newtonian fluids[END_REF] and [START_REF] Crispo | On the zero-viscosity limit for 3D Navier-Stokes equations under slip boundary conditions[END_REF]), by Berselli et al. (see [START_REF] Berselli | Some results on the Navier-Stokes equations with Navier boundary conditions[END_REF], [START_REF] Carlo | On the vanishing viscosity limit of 3D Navier-Stokes equations under slip boundary conditions in general domains[END_REF]) and by Xiao, Xin et al. (see [START_REF] Wang | Vanishing viscous limits for 3D Navier-Stokes equations with a Navier-slip boundary condition[END_REF], [START_REF] Wang | Boundary layers in incompressible Navier-Stokes equations with Navier boundary conditions for the vanishing viscosity limit[END_REF], [START_REF] Xiao | On the vanishing viscosity limit for the 3D Navier-Stokes equations with a slip boundary condition[END_REF], [START_REF] Xiao | Remarks on vanishing viscosity limits for the 3D Navier-Stokes equations with a slip boundary condition[END_REF] and [START_REF] Xiao | On the inviscid limit of the 3D Navier-Stokes equations with generalized Navier-slip boundary conditions[END_REF]).

Most of the ambiguity and difficulty comes from the fact that the Euler equation is only associated with the u • n = 0 boundary condition. Any other supplementary condition will be violated for some initial data. Indeed, as show in [START_REF] Beirão | A missed persistence property for the Euler equations and its effect on inviscid limits[END_REF], even the persistence property is false for condition (4.10) for the Euler equation : choosing an initial data such that (4.10) is satisfied does not guarantee that it will be satisfied at time t > 0. Therefore, only very specific choices of Euler trajectories will allow to prove strong convergence, whatever the slip boundary condition.

A special case with no boundary layer : the slip condition

In this section, we prove Theorem 8 in the particular case where the friction coefficient A is the shape operator M . In this setting, we can choose an Euler trajectory such that there is no boundary layer and the proof is thus much easier. This allows us to present some elements of our method in a simple setting before moving on to the general case which involves boundary layers. We consider the slip boundary condition on the uncontrolled boundary :

(4.12)

As in [START_REF] Coron | On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions[END_REF], our strategy is to deduce the controllability of the Navier-Stokes equation in small time from the controllability of the Euler equation. In order to use this strategy, we are willing to trade small time against small viscosity using the usual fluid dynamics scaling. Note that, even in this easier context, Theorem 8 is new for multiply connected 2D domains and for all 3D domains since [START_REF] Coron | On the controllability of the 2-D incompressible Navier-Stokes equations with the Navier slip boundary conditions[END_REF] only concerns simply connected 2D domains.

Small viscosity asymptotic expansion

The global controllability time T is small but fixed. Let us introduce a positive parameter ε 1. We will be even more ambitious and try to control the system during the shorter time interval [0, εT ]. We perform the scaling : u ε (t, x) := εu(εt, x) and p ε (t, x) := ε 2 p(εt, x). Now, (u ε , p ε ) is the solution to the following system for t ∈ (0, T ) :

Due to the scaling chosen, we need to prove that we can obtain |u ε (T, •)| L 2 (Ω) = o(ε) if we want to achieve global approximate null controllability. Since ε is small, we expect u ε to converge to the solution of the Euler equation. Hence, we introduce the following asymptotic expansion for u ε :

Size of the remainder

We want to prove that the remainder is sufficiently small at the final time. Since our expansion of u ε involves εR ε , we need to prove here that R ε (T /ε, •) = o [START_REF] Adimurthi | Exact controllability of scalar conservation laws with strict convex flux[END_REF]. As usual, we multiply equation (4.89) by R ε and integrate by parts. Since we are controlling the equation on Γ, we can assume that our controls simulate the presence of a Navier slip-with-friction boundary condition on Γ as well (thus, on the whole of ∂Ω). We use [108, Lemma 3, page 150] to win a ε 1 4 factor when evaluating L 2 norms of functions involving the fast variable. We can also perform the estimates on ∂O in the same way.

We proceed as we have done in the case of the shape operator. This basic energy method works because with have built enough technical profiles and the following estimates hold : 1), (4.97) 4 ), (4.98) 4 ), (4.99) 4 ), (4.100) 4 ). (4.101)

Hence, we obtain :

Proof of Theorem 8

In this section, we explain how to chain our arguments in order to prove Theorem 8. Let T > 0 be the allowed control time and u * ∈ L 2 σ (Ω) the (potentially large) initial data to be controlled. -We start by extending Ω into O as explained in Section 4.3. We also extend the initial data u * to all of O. Note that this extension does not need to be divergence-free outside of Ω. We use the small-time well-posedness of the Navier-Stokes equation to deduce the existence of a time T 1 ∈ (0, T /4) such that the state is smoother at time T 1 . Say u(T 1 , •) ∈ H 3 (O). -Starting from this new initial data u(T 1 , •), we proceed with the small-time global approximate controllability method explained above on a time interval of size T /2 -T 1 ≥ T /4. For any δ > 0, we know that we can build a trajectory starting from u(T 1 , •) and such that u(T /2, •) is smaller than δ in L 2 (Ω). -Repeating the smoothing argument used above, we deduce the existence of a time

-We apply a small-time local null controllability result on the last time interval of size T /4. We use [START_REF] Guerrero | Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions[END_REF]. Some results concerning the small time local exact controllability (to the trajectories, which includes null controllability) have been proved for the Navier-Stokes equation. In [105], the authors prove a result for 2D with Navier boundary conditions which assumes that the initial data is small in H 1 (Ω). In [START_REF] Guerrero | Local exact controllability to the trajectories of the Navier-Stokes system with nonlinear Navier-slip boundary conditions[END_REF], the author proves a result with more general non linear Navier boundary conditions which assumes that the initial data is compatible with the boundary conditions and small in H 3 (Ω) in 2D and 3D. In [START_REF] Fernández-Cara | Local exact controllability of the Navier-Stokes system[END_REF], the authors prove a result with Dirichlet boundary conditions which assumes that the initial data is small in L 2d-2 (Ω). It should be possible to combine ideas of these works and prove that a similar result holds for Navier boundary conditions, with a small L 2 (Ω) initial data.

Perspectives

We expect that the well-prepared dissipation method can be applied to other fluid mechanics systems to obtain small-time global controllability results, as soon as asymptotic expansions for the boundary layers are known.

We also expect, at least for simple geometric settings, that our method can be applied to the adherence boundary condition u = 0 on ∂Ω \ Γ. In this case, the amplitude of the boundary layer is O(1) instead of O( √ ε) for the Navier slip-with-friction condition. The main consequence is that the evolution equation satisfied by the remainder now involves a singular term, looking like 1

Well-posedness and size estimates for the remainder are thus much harder and might involve analytic techniques. Indeed, as recalled in Section 4.2, it is known that the Prandtl expansion is sometimes ill-posed.
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Sujet : Contrôle en mécanique des fluides et couches limites Résumé : Cette thèse est consacrée à l'étude du contrôle de quelques équations aux dérivées partielles non linéaires issues de la mécanique des fluides. On s'intéresse notamment à l'équation de Burgers et à l'équation de Navier-Stokes. L'objectif principal est de démontrer des résultats de contrôle globaux en temps petit y compris en présence de couches limites. On montre que cela est possible en introduisant une nouvelle méthode dite « de la dissipation bien préparée ». Cette méthode consiste à procéder en deux phases : une phase très courte non visqueuse suivi d'une phase plus longue d'auto-dissipation de la couche limite. Aussi bien pour Burgers que pour Navier-Stokes avec des conditions au bord de glissement avec frottement, on démontre que cette dissipation est suffisante si elle a été bien préparée. De plus, on étudie une question de contrôlabilité locale pour l'équation de Burgers lorsqu'un seul contrôle scalaire est utilisé. On démontre en améliorant une technique de noyau quadratique que le système n'est pas localement contrôlable en temps petit.

Mots clés : théorie du contrôle, équations aux dérivées partielles, contrôle non linéaire, Burgers, Navier-Stokes, condition de Navier, couches limites, développement quadratique

Subject : Control in fluid mechanics and boundary layers

Résumé : This thesis is devoted to the study of the controllability of non linear partial differential equations in fluid mechanics. We are mostly interested in Burgers equation and Navier-Stokes equation. Our main goal is to prove small-time global results, even in the presence of boundary layers. We prove that it is possible to obtain such results by introducing a new method named: "well prepared dissipation". This method proceeds in two phases: first, a quick phase using the inviscid behavior of the system, then a longer phase during which the boundary layer dissipates all by itself. Both for Burgers and for Navier-Stokes with Navier slip-with-friction boundary conditions, we prove that this dissipation is sufficient if it has been well prepared. Moreover, we study a question of local null controllability for the Burgers equation with a single scalar control. We prove by enhancing a second order kernel approach that the system is not small time locally null controllable.