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{q} column matrix of generalized displacements.

{q̇} column matrix of generalized velocities.

{q̈} column matrix of generalized accelerations.

The vector {q} of generalized displacements is often decomposed as follows (identically
for generalized velocities and generalized accelerations):
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{θ} generalized rotations.
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~x unit vector along x axis.

~y unit vector along y axis.

~z unit vector along z axis.

Subscript a Reference frame or vector associated to body a.

Subscript Ri inertial reference frame or reference frame associated to i-th body when speci-
fied.

Subscript RG reference frame at point G.

The equations of motion and figures may include the following elements:

[K] square matrix of system generalized stiffness.

[D] square matrix of system generalized damping coefficients.

[M ] square matrix of system generalized masses.

{F} column matrix of generalized loads.

[ φ̄ R ] matrix of rigid-body modes.

xxi



[ φ̄ C ] matrix of constraint modes.

[ φ̄ N ] matrix of natural modes.

{Fc} vector of externally applied forces at the constraint degrees of freedom.

{F̃e} vector of loads acting on a substructure as a result of its connection to adjacent sub-
structure at the constraint degrees of freedom.

{Fr} vector of externally applied forces at the rigid-body degrees of freedom.

{F̃r} vector of loads acting on a substructure rigid body degrees of freedom as a result of
its connection to adjacent substructure.

where the vectors of loads are usually decomposed in the following sub-vectors:

{FP } Applied point force at point P .

{TP } Applied torque at point P .

{η} column matrix of normalized displacements.

Nr or subscript r dimension of rigid body modes.

Ne or subscript e dimension of redundant constraint modes.

Nn or subscript n dimension of fixed-constraint modes.

N dimension of total degrees of freedom.

[τPG] kinematic model between points P and G.

[DA
G] Inverse dynamics rigid-body model of a structure A at point G.

(∗PG) Skew-symmetric matrix associated to the vector {PG}.

The TITOP model uses the following notations:

{FA/P,P } vector of loads exerted by a substructure A to a substructure P at point P .

{fA/P,P } force exerted by a substructure A to a substructure P at point P .

{tA/P,P } torque exerted by a substructure A to a substructure P at point P .

[GAP (s)] one-connection-point TITOP model of substructure A at point P .

[GAP,C(s)] two-connection-point TITOP model of substructure A at points P and C.

[JAP ] rigid body matrix or direct dynamic model of substructure A at point P .

[LP ] modal participation matrix of natural modes at point P .



[HAP,C(s)] two-connection-point TITOP model of substructure A at points P and C with a
revolute joint at point P .

Other mathematical notations are:

In Identity matrix of size n× n.

0n Zeros matrix of size n× n.
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Chapter 1
Introduction

“Start by doing what’s necessary; then do what’s possible; and suddenly you are doing the impossible.”
- Francis of Assisi

The objective of this PhD thesis is to perform integrated attitude control/structure design of a large
flexible satellite using structured H∞ synthesis, by modeling flexible multibody structures and

developing a control strategy for the controller’s synthesis of flexible multibody systems. This chapter
introduces in Sec. 1.1 the problematic of the control of flexible structures to the reader, and explains
in Sec. 1.2 in which way this problem has been addressed in the field of attitude control. Finally, Sec.
1.3 states the main guidelines of the thesis.

1.1 Control of Flexible Space Structures: A Brief History

Since the beginning of the space era, spacecraft have been sent into space to satisfy a wide variety of
technological challenges, scientific researches, commercial requirements and defense necessities. His-
torically, spacecraft attitude control has been considered as the primary objective to be achieved by the
spacecraft control system. Spacecraft dynamics are controlled to strict requirements which depend on
the pointing budget, spacecraft function mode, orbit environment and onboard sensors and actuators.

During the last decades, space science has been looking for new ways of discovering and analyzing
celestial objects in the Universe to understand some aspects of Einstein’s theory of relativity, such
as gravitational waves or the origin of the Big Bang. Analysis of the Universe’s most violent events
is needed in order to improve our current understanding of physics. The most violent events in the
Universe are related to black holes, black holes collisions, supernovas remmants or galaxy clusters,
among others. The study of these high-energy celestial objects requires X-ray and Γ-ray instruments
which can only work outside Earth’s atmosphere. These instruments require long focal lengths to
improve image quality, which can vary from 4 m to more than 20 m long.

There are two ways of fulfilling the requirement of long focal lengths: satellite formation flying and
distributed instrumentation. In satellite formation flying the focal distance is equal to the distance
between the two satellites, each one containing different parts of the instrumentation, but this require
a high-precision attitude control, which considerably increases the spacecraft’s costs. The distributed
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(a) Sketch of Explorer I (Source: NASA) (b) Illustration of Alouette I (Source: CSA)

Figure 1.1: First experiences with flexible interaction in space

instrumentation approach uses different deployable parts of the spacecraft to increase the focal length
of the instruments, such as extensible benches or deployable booms. This solution is less expensive and
more robust since only one satellite is needed and attitude control performances are not prohibitive.
In addition, the relatively gentle environment of space, with no air-friction and no self-weight loads,
allows the design and construction of spacecraft with complex geometries and large dimensions. As a
result, distributed instrumentation is often the final solution.

Added to the requirement of long extendable parts, satellites need more and more power supply
for the correct functioning of the onboard systems. This is translated into an augmentation of the
solar panel’s surface, making the satellite larger. Moreover, antennas are becoming larger as well
since larger size increase its sensibility for detecting radio waves. As a result, spacecraft structure is
discretized in “modules” or substructures which allow a simplification of system’s modeling, analysis,
production, assembly and integration. Nowadays, a spacecraft is a Flexible Multibody System (FMS)
composed of a platform or rigid hub, to which several substructures are attached such as antennas,
deployable booms, solar arrays or extendable masts. The mass increase, however, is minimized since
satellites’ weight is limited to a few tones due to launching rocket maximum take-off weight. Hence,
there is a structural tendency of enlarging spacecraft’s dimensions and lightening its structure, which
makes the spacecraft large and flexible.

Elastic behavior of spacecraft structure is a well known problem since the beginnings of the space
race. Flexible interaction with the control of spacecraft dynamics can occur in numerous and subtle
ways, worsening the spacecraft dynamics or structure’s flexible deformations. The control system
designer must be aware of it and consider flexibility in his synthesis models. Although engineers have
always been aware of these interactions, some of them may go undetected and may even provoke
spacecraft’s loss. The first records about flexible interactions go back to the Explorer I and Alouette
I, the first artificial satellites of USA and Canada, respectively.

Explorer I (1958) was an Earth-orbiting spacecraft with a long cylindrical body with four flexible
antennas extending laterally (see Fig. 1.1a). The vehicle was to be passively spin stabilized about
its principal axis of minimum moment of inertia. However, after one orbit it started experiencing
precessional motion and after a week the vehicle was stabilized rotating about its axis of maximum
moment inertia, which was not suspected before the flight. Rotation about either the maximum or
minim moment of inertia is stable for a rigid body, so engineers started searching which mechanism
provoked that change in the rotation axis. The answer was that Explorer I was not rigid because of
the whip antennas. The antennas have an associated bending motion coupled with the precessional
motion, provoking an energy dissipation process until the minimum-energy state (rotation about the
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(a) Artist concept of OGO-III
(Source: NASA)

(b) Sketch of OGO-III (Source: NASA)

Figure 1.2: OGO-III was the first active controlled satellite experiencing boom-bending difficul-
ties

maximum moment of inertia) was achieved [Tutt 69]. Since then, the destabilizing effects of structural
energy dissipation in spin-stabilized spacecraft are counterbalanced by an active nutation damper
system.

Flexibility can also interact with the environment, as experienced by Alouette I (1962). This
vehicle had a compact central body and four antennas, two of them 22.9 meters long and the other
two 11.4 meters long (see Fig. 1.1b). The antennas were extendable booms which were deployed after
launch. The spacecraft was spin stabilized about its axis of maximum moment of inertia, but since its
launch a rate of spin decay was detected. After three years the satellite stopped spinning. Research
revealed that the spin brake mechanism was caused by the interaction of the flexible boom with solar
and radiation pressure. The solar radiation provoked the asymmetrical bending of the booms by
thermal distortion which, with the interaction of the solar pressure, induced a net torque to the body
[Tutt 69]. The torque might either help or oppose the spin depending on the vehicle’s geometry, but
in the case of Alouette I the spin rate was opposed. The following missions solved this problem by
adding small metallic reflectors at the ends of the booms, which provided a compensating torque.

When three-axis active attitude control started being implemented, control engineers continued
encountering flexible interaction problems. Due to the large dimension and low mass density of some
satellites, flexible modes are in the low-frequency band and they may interfere with the attitude
control system’s bandwidth. Therefore, the control system has to be modified due to nonnegligible
structural flexibility, otherwise the action of the spacecraft control system may worsen the structural
deformations as well as the spacecraft dynamics. Despite engineers’ awareness, some satellites have
experienced control-system/structure interaction which caused the failure of their mission.

The first Control-Structure Interaction (CSI) problem was experienced by the OGO-III (Orbiting
Geophysical Observatory, 1966) satellite. This vehicle, depicted in Fig. 1.2, had two 6.10-meter boom
parallel to the pitch axis and one 9.14-meter boom parallel to the roll axis. In addition, two solar
arrays were mounted along the roll axis. It had an active feedback system to control roll attitude,
using reaction wheels and gas jets to unload momentum saturation. Ground control noticed that when
the satellite approached perigee, roll-axis oscillations of 0.42 Hz were detected, increased in amplitude
until the reaction wheels, gas jets and solar-array drive were all excited. However, reaction-wheel
and solar-array oscillations were sustained until the vehicle approached apogee of its orbit. Control-
system/boom-flexibility was suspected as the cause of the oscillations. Analysis showed that there
was a discrepancy in the amount of structural damping assumed in the preflight closed-loop stability
analysis. Sustained oscillation of 0.42 Hz could be possible if boom damping ratios of 0.3 % were used,
and not the preflight values of 1 % and 2 % [Tutt 69]. The next missions used a different delay logic
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Figure 1.3: Artist concept of the NuSTAR mission

Figure 1.4: Thermal distortion of NuSTAR’s optical axis (Source: NuSTAR Observatory Guide)

for the reaction wheel control and improved the dynamic model for synthesis.

Yet, many lessons can be drawn from these examples and these lessons retain their value today.
Understanding of CSI problems has helped to significantly improve satellite’s reliability and life limit.
Indeed, there are very few records about CSI problems during the 80s and the 90s, even if modern
spacecraft is more complex. An example of the improved know-how is the NuSTAR mission (Nuclear
Spectroscopic Telescope Array, 2012), the first focusing high energyX-ray space observatory. NuSTAR
employs grazing incidence optics to be able to focus X-rays. For this, a 10.15-meter focal length Wolter
telescope is held at the end of a long deployable mast. A laser metrology system is used to determine
the exact relative positions of the optics and the focal plane at all times. The spacecraft attitude
control system is designed to actively control the attitude to within 1 arcsec during an observation,
performing adjustments to keep the spacecraft z axis oriented towards the science target. For that,
the control system has been conceived to reject disturbances in a maximized bandwidth subject to
maintain gain and phase stability margins in the range of 6-8 dB and 30-45 degrees [Ruth 10]. The
mission is achieving all its scientific objectives, even though the induced vibrations due to the thermal
flexing of the mast (see Fig. 1.4).

Despite the recent technological advances in control/structure design, even nowadays the attitude
control system can fail and provoke spacecraft loss. This is the case of the Hitomi satellite (ASTRO-
H, 2016). ASTRO-H (Fig. 1.5) was conceived to reveal the structure and evolution of the universe
by observing high-energy objects that are visible in the X-ray and Γ-ray bands. It consisted of an
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Figure 1.5: Artist concept of the Hitomi (ASTRO-H) satellite (Source: JAXA)

Figure 1.6: ASTRO-H debris spinning at 5.2 revolutions per second as seen by the Subaru
Telescope (Source: National Astronomical Observatory of Japan)

octagonal platform containing all the basic sensors and actuators (star trackers, reaction wheels, etc),
two solar array pads attached and an extensible optical bench up to 12 meters long. One month after
launch, on March 26th 2016, the unexpected behavior of the attitude control system caused incorrect
determination of its attitude as rotating, although the satellite was not rotating actually. In the
result, the reaction wheel was activated and lead to the rotation of satellite. In addition, the magnetic
torque believed to avoid the reaction wheel’s saturation did not work properly. Judging the situation
as critical, the safe hold mode switched on automatically, using the thrusters to stop the rotation.
However, the attitude control system provided an atypical command and the spacecraft’s rotation was
indeed accelerated. Once the satellite’s speed exceeded the design values, the most vulnerable parts of
the spacecraft (solar arrays, the deployable mast) separated off from the satellite, as it was observed by
the Subaru Telescope (see Fig. 1.6). The causes of the attitude control system anomaly are still being
inquired, but the lost of all communication with the satellite have made this task almost impossible.

The history of flexible satellite control has demonstrated to be plenty of challenges and techno-
logical advances. The larger and lighter modular spacecrafts often imply a rigorous study of the CSI
problem in order to minimize the probability of failure. Although a significant improvement has been
made since the launch of the first flexible satellites, robust and reliable attitude control systems are
needed in order to accomplish successfully future scientific missions. Approaches which simultane-
ously take into account the structural behavior and the control system actions are an added value
when dealing with the CSI problem.
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1.2 Thesis Context

In the field of attitude control of large flexible satellites, the main objective is to guarantee system
stability against low-frequency perturbations and induced vibrations. Nevertheless, new generation
satellites must accommodate high-precision scientific experiments and reduce launching costs, what is
making the design of their structure larger and lighter. More precisely, new generation space science
experiments need X-ray interferometer benches and long-range telescopes with long focal lengths, both
needing long masts clamped to the spacecraft platform. Furthermore, large flexible satellites are now
discretized or modularized in several substructures in order to recycle its design for other satellite
platforms. The large size and lightness imply low-frequency flexible modes that may interfere with the
controller’s bandwidth, destabilize the system and eventually provoke its loss, in what is called the
Control Structure Interaction (CSI) problem. On the other hand, system modularity implies a lack of
knowledge to predict the dynamic behavior of the entire assembled system and, consequently, impedes
working directly in pre-design phases of the control/structure system.

In the space sector, this problem is solved with a loop of crossed-information between the control
and the structure departments, who have to establish the minimal specifications for each system in
order to achieve a successful integration. These specifications include determining a minimum value
for frequency of the first flexible mode, fixing a maximal mass for the whole system, a maximal size
for several substructures, etc. For these specifications, performance barriers are imposed for each
system, ensuring a successful final integration. Nevertheless, these barriers do not allow exploiting the
maximum optimal capacities of the two systems working together.

That is the reason why new conception methods, which tie together spacecraft structural dynamics
and attitude control laws design, were born. Messac and Malek [Messac 92] designed the structure
and the control system of a rotatory flexible spacecraft, addressing system’s disturbance rejection and
system’s command following performance, while optimizing the profile of the flexible appendage for
minimum mass. The model used was a FE-model of a simplified flexible spacecraft, controlled by
a hub-torque commanded with a full-order controller. Both the structure and the controller were
optimized with an algorithm developed by the authors. Messac and Malek thereby demonstrated that
control/structure optimization gives better results than control optimization alone in terms of mass
costs and control performances. However interesting, their approach had limitations when dealing with
real design scenarios and robustness. The authors modeled the whole system without taking account
the advantages of modularity, and the controller optimization did not use robust synthesis techniques.

Alazard et al. [Alazard 13b] performed integrated attitude control/structure design of an Earth
Obervation satellite using a genetic algorithm for the system’s optimization. The modeling technique
allowed modular system assembly by interconnecting the different parts of the system such as the
hub and flexible appendages. The models were FE-based, in LFR representation for the optimization
of structural parameters. The attitude control system consisted of a low-order controller for each
stabilization axis and a roll-off filter. This study supposed the first step to a generic approach to
integrated control/structure design since it provided tools for flexible multibody system modeling
and an approach for attitude control. However, the proposed modeling technique did not allow the
interconnection of different substructures among them. In addition, the optimization process was
iterative and several software were involved: NASTRAN for re-computing the FE-models, the genetic
algorithm and the µ synthesis. This made the co-design study complex and time-consuming.

Taking advantage of the structured H∞ form, Alazard [Alazard 13a] used a multi-model H∞
synthesis scheme to design a fixed-structure controller of an earth-observation satellite. Simultaneously,
avionic parameters (sensors and actuators delay) were optimized in order to select the ideal actuator
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for challenging requirements or standard requirements. This supposed the first study in integrated
control/avionics design using structured H∞ tools. The study demonstrated that the same level
of performance could be achieved with less expensive actuators and sensors when optimizing the
control/avionic system simultaneously. Nevertheless, the modeling technique was the same as in
[Alazard 13b] and thus the interconnection among flexible substructures was not possible.

Thanks to the aforementioned studies, integrated attitude control/structure design is feasible and
useful. Feasibility is the result of the studies using the most modern algorithms for structure/control
optimization, such as genetic algorithms or non-smooth H∞ optimization. Usefulness since these
studies demonstrate that there is always additional benefits when considering the control system
and the structure simultaneously for control law and structural design. However, no study provided
a modeling technique which takes into account the modularity of flexible multibody systems. In
addition, no study has performed integrated control/structure design of flexible multibody systems
using structured H∞ tools.

1.3 Thesis Overview

The objective of this research is to perform integrated attitude control/structure design of a large flex-
ible satellite using structured H∞ synthesis, by modeling flexible multibody structures and developing
a control strategy for the controller’s synthesis of flexible multibody systems. This study involves a
multidisciplinary research in which the modeling of mechanical systems, control law synthesis and con-
trol law validation must be integrated. Furthermore, the approach must be able to isolate and manage
the parameters to be optimized, either mechanical parameters or control law parameters. Therefore,
the thesis approach starts dealing with the modeling techniques of large flexible structures, the mod-
eling of actuators and sensors for control of flexible structures and the implementation of parametric
variation in those models. The thesis continues with the evaluation of the different control strategies
which can be used using the models provided in this study, to conclude with the implementation of
the integrated/control design scheme in structured H∞ form and the application of this scheme to a
flexible satellite.

Chapters 1, 2 and 3 recall the background of this study. Chapter 2 explains and situates the
different studies carried on modeling, control and integrated design of flexible structures. Chapter 3
recalls briefly some concepts of general mechanics, structural mechanics and control theory which are
used in this study.

Chapter 4 is entirely devoted to setting the framework for the modeling of FMS. The objective is
to propose a general theoretical framework for the modeling of FMS using finite element (FE) data
and use it for integrated control/structure design. The foundations of the framework are developed
according to the needed kinematic description, the needed overlapping mechanism and the required
form of equation of motion. This chapter has motivated the publication of [Alazard 15].

Chapter 5 uses the framework stated in Chap. 4 to develop the theory for the modeling of FMS
for use in automatic control. The chapter provides straightforward mechanical models for modeling
starlike or chainlike flexible structures, piezoelectric substructures and revolute joints. Parameteri-
zation possibilities are also evaluated. A part of the results of this chapter have been published in
the ASME Journal of Dynamic Systems, Measurement and Control [Perez 16b] and in several inter-
national conferences: EURO GNC 2015 [Perez 15a], IFAC ACNAAV 2015[Perez 15b] and IFAC ACA
2016 [Perez 16a].
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Chapter 6 provides a set of applications of the developed modeling technique for FMS stated
in Chap. 5. The modeling method is explained and validated in representative examples of FMS
modeling. A comparison of the proposed modeling technique with the Assumed Modes Method (AMM)
is provided and its advantages are highlighted. These examples can also be found in the produced
publications [Perez 16b], [Perez 15a], [Perez 15b] and [Perez 16a].

Chapter 7 evaluates the different control strategies that can be applied for the attitude con-
trol/vibration suppression of flexible multibody structures. Collocated/non-collocated damping and
centralized/decentralized synthesis schemes are compared and discussed. The control strategies are
explained through an academic example and applied for the developed models of Chaps. 5 and 6 in
order to chose the most adequate control architecture for the integrated control/structure design.

Chapter 8 is devoted to explain how to implement the integrated control/structure design problem
in structured H∞ form. The general framework is explained and guidelines for imposing the rigid-body
motion and the flexible motion specifications are given. Other utilities, as minimization of command
energy and roll-off specification, are illustrated. The implementation is illustrated with the co-design
of an academic model of a flexible spacecraft.

Chapter 9 uses the knowledge developed in the precedent chapters to perform the integrated atti-
tude control/structure design of a flexible satellite. The flexible satellite is modeled with the proposed
flexible multibody system technique, performing integrated design according to mission specifications.
Part of the results have been published in the international conference IFAC ACA 2016 [Perez 16c].

The last part, consisting of Chaps. 10 and 11, is dedicated to discuss and resume the main
contributions of the PhD, and to provide the guidelines that may help other future studies in the
domain. The manuscript is supplemented by a set of appendixes which provide further notions in
finite elements, more figures and the Matlab code of the most used functions during the study.



Chapter 2
Literature Review

“Be sure you put your feet in the right place, then stand firm.”
- Abraham Lincoln
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Integrated Control/Structure Design is a vast domain which comprehends two major
engineering fields: modeling and control of flexible structures. This chapter aims to
explain the different modeling approaches which can be used and the main applications
in control of flexible structures. The chapter reviews and merges these two different
domains with the discussion of what has been accomplished so far in the integrated
design domain.
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In this chapter, the state-of-the-art of the problematic associated with integrated con-
trol/structure design is summarized. Integrated control/structure design comprehends

two clearly distinguished areas: modeling and control. First, the existing modeling tech-
niques that deal with large flexible structures are explained. In addition, the modeling of
the actuators and sensors used to control these kind of systems is addressed. Second, studies
on control of large flexible structures are presented, focusing on attitude control and vibra-
tion suppression applications. Finally, a review of the integrated structure/control design is
explained.

2.1 Studies on the Modeling of Large Flexible Structures

Modeling of large flexible structures has been a major concern in control applications for the
last thirty years due to the development of larger and lighter structures [Wasfy 03]. Large
size and reduced mass imply lower natural frequencies which are typically closely spaced
[Schoen 09]. Low natural frequencies may interfere with controller’s bandwidth, affecting
the whole dynamical behavior of the system. Simple and accurate models for large flexible
structures which predict these characteristics are indispensable for designing, optimizing and
controlling engineering systems. In Sec. 2.1.1, the method for dealing with the modeling of
large flexible structures and a widely used classification of modeling techniques are established.
Next, Secs. 2.1.2 and 2.1.3 present the most representative studies of the different modeling
types. In Sec. 2.1.4, a short review of the different existing models of actuator and sensors
for flexible structure control is presented.

2.1.1 General Framework

The study of large flexible structures implies dealing with large dynamics models. This
is mainly attributed to the high amount of degrees of freedom (DOF) which have to be
considered for an accurate modeling of the structure, making their analysis complex and
time-consuming. In order to reduce the complexity and facilitate structural understanding,
the so-called substructuring techniques are used, consisting of the macrodiscretization of the
large system into a set of subsystems known as substructures, appendages or modules, which
in turn are separately modeled. This strategy considers then the large flexible structures as
a Flexible Multibody System (FMS) or Flexible Multibody Structure (FMS); i.e, a group of
interconnected rigid and deformable components, each of which undergoing translational and
rotational motions [Wasfy 03].

In order to analyze the dynamic response of FMS due to external conditions, it is necessary
to compute the Flexible Multibody Dynamics (FMD). FMD has a significant importance for the
design, optimization and control of many practical systems such as space vehicles [Masoudi 11,
Guy 14] or robot manipulators [Chatlat. 09, Boscariol 10]. In design, FMD can be used
to calculate the system parameters such as dimensions, configuration, and materials that
minimize the system cost while satisfying the design safety constraints such as strength,
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rigidity, and static/dynamic stability. FMD is used in control applications for predicting the
response of the multibody system to a given control action and for calculating the changes in
control actions necessary to direct the system towards the desired response.

However, obtaining the FMD of a FMS is not a simple task. It is the result of a long and
tedious process. First, it is mandatory to chose the kinematic description of the motion of the
different elastic bodies experiencing small or large displacements. This kinematic description
can be done in three different ways according to the chosen reference frame: using either a
floating frame, a corotational frame or an inertial frame. Second, the semi-discrete equations
governing the elastic and rigid motion of each substructure are derived, depending on the
particular nature of each component: beam models are used for 1D components, plate and
shell models for 2D members and continuum models for 3D components. The equations can
be obtained either analytically, semi-analytically or using any kind of discretization method,
like the finite element (FE) discretization. Third, the constraints between the different sub-
structures are established as constraint equations. These constraints can be in the form of
prescribed motion (one or several DOF are forced to follow a given motion), joints (several
DOF are related) or contact/impact (one or several DOF are constrained to a value within
a given interval). To conclude, implicit or explicit solution assembly procedures are used to
solve the semi-discrete equations of motion along with the constraint equations, obtaining the
desired FMD.

As it has been shown, getting the FMD is the result of the multiple possible choices to
derive the model. In this review the publications on FMD are mainly divided according to the
kinematic description of the motion (floating frame, corotational frame or inertial frame) since
they are directly related to the different type of applications. Other categories can be done
according to the different steps along the FMD computation, but they are not revised here.
The reader might head to [Shabana 97] or [Wasfy 03] if a more detailed review of modeling
of multibody systems is desired.

2.1.2 FMD using floating rotating frame

The floating frame is currently the most widely used method in the simulation of FMD.
Developed in the early 1970s, the floating frame is an intermediate reference frame which is
attached to a flexible component and follows the average local rigid body motion. The total
displacement is evaluated by superimposing small elastic deformations on the large rigid body
motion. This simplifies the calculation of the internal forces, leading to rapid computation
of the FMD. It is the most efficient method for the simulation of FMS undergoing small
elastic deformations and slow rotational speeds such as satellites and space structures, a
domain in which it has been systematically applied. In [Kane 80], Kane and Levinson made
use of the floating frame to derive the FMD of a complex spacecraft with seven different
kinematic formulations (momentum principle, Lagrange’s equations, D’Alambert Principle or
Hamilton Canonical Equations, among others) and then in [Kane 81] they added the elastic
displacements considering constrained and unconstrained beam elements in order to analyze
and simulate large displacements. In [Likins 69], Likins also made use of the floating frame
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to derive the kinematic description of flexible space vehicles. Since then, Kane’s and Likin’s
formulations have been applied in many studies. For example, in [Masoudi 11] Masoudi and
Mahzoon applied the Kane’s approach in order to derive a model of a free-floating space robot
with four linkages and to perform maneuvering and vibration control.

The main advantage of the floating frame approach resides on its usage to extend modal
analysis and experimental modal identification techniques to FMS. This is performed by iden-
tifying the mode shapes and frequencies of each flexible component. Then, the first n modes
(where n is determined by the required accuracy and the nature of the problem) are super-
posed on the rigid body motion of the component represented by the motion of the floating
frame. This is what is called the Assumed Modes Method (AMM). In [Likins 67], Likins was
one of the first authors which used the modal analysis within a floating reference frame in
order to derive the equations of motion of a free rotating spacecraft. In [Hughes 74], Hugues
superimposed the natural modes and constrained modes of the different flexible appendages
to the rigid motion of a space vehicle in order to study the implications of the flexibility
on the attitude dynamics, and obtained the so-called impedance matrix of the spacecraft,
a tool to analyze the influence of spacecraft flexibility. In [Pascal 88], Pascal extended the
work of [Hughes 74] by performing the dynamic analysis of a system of hinge-connected flex-
ible bodies, obtaining the reduced dynamic impedance matrix of a generic tree-structure. In
[Turner 80], Turner and Junkins also used the AMM in addition to a kinematic description
obtained with the Hamilton’s Principle in order to compute the optimal single-axis reorien-
tations of a flexible vehicle.

Furthermore, the effect of inertial forces, as the centrifugal stiffness, can be taken into ac-
count in this approach in a non-linear way, because accelerations are measured with respect
to a rotating frame (the floating frame attached to the appendage). In [Likins 73] this is per-
formed for a spinning flexible spacecraft, and showed the influence of centrifugal stiffness on
the flexible appendage modes shapes and natural frequencies. Besides flexible space vehicles
modeling, other uses of the floating frame approach include modeling of flexible robot manip-
ulators [Chatlat. 09, Boscariol 10, Usoro 86] and rotorcraft modeling [Zhu 97, Choura 91].

However, in the majority of FMD literature on floating frame approach, the flexible com-
ponents are discretized using the FE method. FE-based models are the most powerfull tool for
structural analysis [Usoro 86, Rong 11, Bokhari 08]. This has lead to develop direct substruc-
turing techniques based on the FE method, taking for granted the use of a floating frame to
superpose rigid and elastic displacement, and with constraint equations established through
boundary conditions to the FE models. Among these techniques, two methods have drawn
researchers’ attention for decades: the Finite Element Transfer Matrix (FE-TM) method and
the Component Modes Synthesis (CMS) Method. It should be noticed that in the litera-
ture, these techniques are not directly mentioned as floating-frame-based techniques, they are
conceived as independent techniques for substructuring large FE models.
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2.1.2.1 Component Modal Synthesis Techniques

The CMS method has received significant attention in the aerospace industry since its idea
of matrix condensation lends itself particularly well to the concept of substructuring. It
is an extension of modal analysis that is particularly applicable to large flexible systems
[Ersal 08]. First, it uses modal analysis to obtain a proper model of each subsystem. Then
it assembles these subsystem models conforming the whole structure, taking into account the
different frames for the different substructures. Among the available dynamic substructuring
methods, CMS stands the most systematic and efficient procedure for developing a satisfactory
decomposed model [Dhingra 94, Craig Jr 00, Ersal 08].

CMS techniques are divided in three main categories, depending on the selection of com-
ponent modes for the substructure’s assembly. There is a wide choice of component modes
[Craig Jr 00]: normal modes (which can be fixed-interface normal modes, free-interface normal
modes and loaded-interface normal modes) constraint modes, rigid-body modes, attachment
modes, residual flexibility modes and residual flexibility attachment modes. The reader might
head to [Craig Jr 00] if more information about component modes is required. The three main
categories are:

• Methods based on constraint and fixed-interface normal modes. These approaches use
a combination of constraint modes (which include rigid-body modes) and fixed-interface
normal modes for substructure coupling. The most known methods are the Hurty’s
method [Hurty 65] and the Craig-Bampton’s method [Craig 68]. The Imbert’s method
(also called effective-mass method, [Imbert 79, Alazard 08]) is included in this category
as well. The main aspects of these methods will be discussed and compared in Chap.
4.

• Methods based on ressidual flexibility and free-interface normal modes. More difficult
to implement, especially when a substructure has rigid-body freedom. Hintz [Hintz 75]
and Macneal [MacNeal 71] have developed methods which fall into this category.

• Methods based on loaded-interface normal modes. Mainly used for acquisition of the
substructure’s data for FE model verification.

CMS techniques have been a widely used for modeling and assembling flexible substruc-
tures. Several research articles have studied how to obtain representations of substructures
modeled with FE. In [Young 90], Young substructured the complete FE model of a two-
dimensional truss in order to synthesize a distributed control law. Nevertheless, here the
substructure assembly process was mainly based on the overlapping between the inertia and
stiffness matrices provided by the substructures’ FE model. This required deep knowledge
of the FE theory and impeded straightforward concatenation of complex structures. Shortly
after, Sunar [Sunar 92] started studying FE models substructuing at a more general level
applying Guyan static condensation, a specific type of CMS. Later, Su [Su 95] proposed a
CMS-based method to decompose a structure into a collection of substructures to synthe-
size decentralized controllers, and called it Substructural Controller Synthesis. However, the
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overlapping between systems was done at the matrix level, presenting the same practical
disadvantages as in [Young 90].

The aforementioned studies did not compute the substructure’s state-space representation
and did not develop a more intuitive overlapping method. Guy [Guy 14], based on Alazard
[Alazard 08] and Cumer [Cumer 01], came up with a state-space representation from the sub-
structure’s FE model in order to represent the linear dynamics of a spacecraft with flexible
appendages in star-like structure. Imbert’s method was used in order to transfer the influence
of flexible appendages to the spacecraft main hub. However, it did not allow for the repre-
senting of flexible substructures in chain-like assembly and the results were not compared
with other methods.

2.1.2.2 Finite Element Transfer Matrix Method

The FE-TM method has not enjoyed the same degree of application as the CMS method, but
it has been proved a powerful tool for the analysis of structures. Leckie [Leckie 60] stated
the fundamentals of the transfer matrix method, which can be seen as a continuity function
for a flexible system with transferable boundaries among the substructures. Later, Dokainish
[Dokainish 72] merged the FE method with the transfer matrix method for the dynamic
analysis of plates and presented it as the FE-TM method. Since then, many researchers
extended the technique and used it for many different applications. MacDaniel [McDaniel 77]
applied the method for orthogonally stiffened structures and demonstrated the efficiency of the
FE-TM by computing the frequency response of a two row-five span plate structure. Sankar
[Sankar 80] used the method to show fast convergence for obtaining natural frequencies of
a cantilevered plate. Ohga [Ohga 83] extended and applied the method for the dynamic
analysis of space frame structures, demonstrating the accuracy and efficiency of the method
with numerical examples compared to classic FE substructure assembly. Rong [Rong 11]
modified the FE-TM Method and its algorithms to solve the eigenvalue problem simply and
conveniently, validating it on a plane wing model.

Other authors, like Yousuff [Yousuff 86] and Tan [Tan 90], modified the FE-TM method
in order to create suitable models for flexible structures control. This method continues being
improved by the works of authors such as Rui [Rui 08], who partially uses FE-TM to compute
FMD of FMS, and enriched with other control applications as in Krauss [Krauss 10], where
a non-collocated feedback is applied using the transfer matrix method.

2.1.3 FMD using corotational rotating frame and inertial frame

The corotational frame follows an average rigid body motion of an individual finite element
within the flexible component. In this approach, the motion of a finite element is divided into
a rigid body motion and natural deformation modes. The approach is used for static modeling
of structures undergoing large displacements and small deformations. Some non-linear effects
such as centrifugal stiffness are naturally included, and it has no limits on the magnitude
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of angular velocities. Representative works with this kinematic description are the ones of
Housner in [Housner 84], where he analyzed the maneuver and deployment of flexible multi-
member trusses and frames with convected coordinate frame, and in [Housner 88], where
Housner developed a three dimensional finite element formulation of truss-like structures
without superimposing the rigid modes thanks to the convected coordinate frame.In [Wu 92],
Wu and Housner continued to enlarge the approach of convected coordinate system to joint-
dominated structures. Banerjee and Nagarajan [Banerjee 97] also made advantage of the
corotational frame in order to simulate the large overall motion of flexible beams undergoing
large deflections.

In many articles, intermediate frames are not used, instead the global inertial frame is
directly used for measuring deformations. In this approach, the motion of an element consists
of a combination of rigid body motion and deformation and the two types of motion are
not separated. Vu-Quoc and Simo [Vu-Quoc 87] were one of the first authors to formulate
this type of kinematic description for FMS experiencing large deformations. Wasfy and Noor
[Wasfy 00] used this approach to compute the numerical model for simulation of a large space
telescope. Dignath and Schiehlen [Dignath 00] computed the model of a tethered satellite
system with this approach in order to perform vibration control. Leamy [Leamy 01] simulated
the dynamic response of a tethered satellite system using this technique.

2.1.4 Actuator/Sensor Models for Flexible Structures Control

Actuators and sensors are an essential part of a control system because they produce the
necessary forces to move the FMS and the necessary measurements to compute command
actions. Actuators convert a form of energy such as electrical, chemical, or mechanical into
mechanical energy that produces forces or moments on the FMS. Among all types of actuators,
piezoelectric actuators and sensors (PEAs) have been the most used in control design of
large flexible structures. The design of control systems involving PEAs requires an accurate
knowledge of the electro-mechanical behavior of the system for vibration dynamics, transfers
between the inputs and the outputs and non-linear effects such as hysteresis and creep effect.
In order to integrate PEAs in the controlled structure, a design procedure including virtual
prototyping of piezoelements integrated with the structure needs to be developed. This is
why they have been meticulously studied in the literature of FMS.

Macroscopic PEAs models are divided in two main categories. In the first category,
the behavior of a PEAs is decoupled in several contributions such as hysteresis, vibration
dynamics and creep based on physical laws. The most well-known model structure of PEAs
is the electro-mechanical model proposed by Goldfarb and Celanovic[Goldfarb 97], where
piezoelectric stack actuators for control manipulation where modeled using a Maxwell resistor
capacitor to represent hysteresis. Inspired by this approach, Adriaens [Adriaens 00] modified
the model with charge steering to avoid the necessity of including hysteresis effects.

In the category of decoupled dynamics models, other models only consider vibration dy-
namics with FE models [Piefort 01] or transfer matrix models [Worak. 11]. In [Piefort 01],
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Piefort and Preumont modeled piezoelectric shell structures with finite elements and validated
the model experimentaly. Worakitjaroenphon [Worak. 11] derived the transfer function of a
piezoelectric material from its FE formulation. Other models only include static behaviour,
as in Smits [Smits 91], where a bimorph piezoelectric component is modeled. However, this
review has not found piezoelectric actuator/sensor modeling in the form of state space repre-
sentation.

The second category does not decouple the different behaviors of the PEA, all effects
are considered simultaneously. However, they are only accurate over small frequency ranges,
what seriously limits their usage. One example of this kind of models is the one of Dang and
Tan [Dang 05], wherea rate-dependent neural-network-based hysteresis model is directly used
as a model of the PEA.

2.2 Studies on Control of Large Flexible Structures

The area of control of large flexible structures has been and continues to be a very active
research area due to its applications in flexible robotic manipulators and large space structures.
The control laws implemented must account for control/structure interaction, and thereby
account for the modification of the system dynamics stability and performance due to the
presence of structural flexibility.

As it has been stated before, the modeling of large flexible structures plays a crucial
role to accomplish this objective. The modeling process has to include the necessary control
inputs/outputs that vary the dynamical behavior of the system in order to be controlled,
as well as the most accurate dynamical behavior. Once the FMD has been derived, control
techniques can be applied in order to find the most suitable control law for the required
application. The FMD model can be used in two ways: to design a centralized control
law or to design a decentralized control law. In the centralized approach, the controller is
designed based on a reduced version of the entire FMD model. In the decentralized approach,
the system to be controlled is viewed as a collection of subsystems. Controller design is
carried out on the subsystem level, and the individual controllers are then applied in some
manner to the complete system. The decentralized approach takes greater advantage of the
substructured nature of the FMD model, while the centralized approach only uses the final
assembled model of the FMD.

Either with a centralized or decentralized architecture, the control applications which
are performed on space structures comprehend retargetting of flexible appendages, active
vibration control, attitude control and deployment control. In this review, only attention to
attitude and vibration control is paid, since they are the closest applications to this study.
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2.2.1 Attitude Control of Large Flexible Structures

In attitude control applications, the orientation of the entire space structure should be con-
trolled at all time to maintain the desired orientation. Disturbances are typically caused by
the motion of an onboard appendage, the docking or separation of another structure, ther-
mal deflections or solar radiation pressure. The action of the attitude control system on the
spacecraft must not worsen the structural deformation as well as the spacecraft attitude dy-
namics. Attitude control is achieved using control moment gyros or reaction control jets. The
orientation of the space structure is obtained either by referring to a fixed earth target (Earth
Sensors), fixed stars (Star Trackers), or by using high-speed gimballed inertial navigation
gyros.

Therefore, the attitude control system ensures system orientation against perturbations.
Many authors have focused their research efforts on this subject, particularly in the flexible
case. Park [Park 02] developed a modified positive position feedback control to reduce ther-
mally induced attitude disturbances for a spacecraft with a flexible boom. For the Shuttle
Radar Topography Mission in[Hamelin 01], Hamelin modified the attitude control system of
the Shuttle to mitigate the impact of the 200-foot deployable mast on the stability and per-
formance. They modified the control system to control the damper system which ensured
that mast tip motion remained within the limits of the outboard antenna that mapped the
Earth. Zheng [Zheng 05] performed the complex task of optimal attitude control of a flexible
spacecraft with time-varying LQR taking into account non-linearities. Meiyu [Meiyu 10] also
performed optimal attitude control of a flexible spacecraft, but this time ensuring minimum
vibration by the implementation of an optimal forward position feedback controller.

Many controller synthesis techniques can be used: PID, adaptive control, pseudo - lin-
earization, LQR, fuzzy control, etc. However, most studies opt for robust control techniques
such as the H∞ synthesis. For instance, it was used by Bennani [Bennani 11] as the ro-
bust control synthesis technique for the attitude control system of the BIOMASS Satellite.
However, H∞ synthesis often results in high-order controllers which must be reduced later,
complicating the design task.

The development of structured H∞ control [Gahinet 11, Burke 06] opened the gates for
a new age in robust attitude control. This technique allowed to synthesize robust low-order
structured controllers, which is very pertinent in attitude control since the problematic often
implies structured solutions (PIDs, roll-off filters). Guy [Guy 12] demonstrated its suitability
for flexible structures control. Alazard [Loquen 12] used a structured H∞ approach to syn-
thesize the attitude control system of a satellite with cantilevered flexible appendages. Falcoz
[Falcoz 15] succesfully applied structured H∞ control to refine the Rosseta’s orbit controller.

2.2.2 Vibrations Suppression of Large Flexible Structures

In vibration suppression applications, the control system must be able to damp structure os-
cillations due to disturbances because they can reduce the precision of onboard instruments.
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Although active control of structural vibrations can be considered an independent control
application domain by itself, it is intimately related with attitude control in particular and
control of large flexible structures in general. Indeed, damping could enhance stability and
performance of the attitude control system since the spacecraft behave somewhat like a rigid
spacecraft [Woerkhom 93]. Active control of structural vibrations is called simply stabiliza-
tion, as the deformations are to be stabilized with respect to their steady state values.

Stabilization is closely related to the concept of possitivity, a characteristic which ensures
system stability when the system is closed with negative feedback. Benhabib [Benhabib 81]
explained this concept and deduced that the transfer matrix of a structure is positive real
if collocated actuators and sensors are used. With this result, he designed controllers for
vibration suppression of a large flexible structure. McLaren and Slater [McLaren 87] also
made advantage of the possitivity concept and applied it to design robust controllers for
the DRAPER space telescope, a large space structure. This has immediately separated the
control strategies in two large domains: collocated and non-collocated control.

Collocated approaches have been largely used in the literature for damping of space struc-
tures. Fanson [Fanson 90] demonstrated the feasibility of using Positive Position Feedback
(PPF) as a vibration control strategy for damping of large space structures. Preumont com-
pared in [Preumont 02] collocated acceleration feedback and collocated integral force feedback
for active damping of flexible structures, demonstrating that integral force feedback guaran-
teed closed-loop stability in all circumstances. Lately, Preumont used integral force feedback
in [Preumont 11] for active vibration damping of a flexible space truss. Robust H∞ control
synthesis has also been used for active damping of space structures by authors as Safonov
[Safonov 91], who, using collocated sensors/actuators, designed a robust multivariable con-
troller for active vibration suppression of a large space structure. On the contrary, fewer stud-
ies exit about non-collocated active damping of large space structures. Damaren [Damaren 00]
studied the possibilities of achieving possitivity of non-collocated FMS, obtaining a theory for
controlling flexible structures with non-collocated feedback. Krauss [Krauss 10] also studied
the problem of non-collocated feedback with the transfer matrix modeling technique. Smith
[Smith 94] designed H∞ controllers for active vibration damping of a space truss with non-
collocated actuators/sensors, developing an eigenvalue perturbation model.

It should be mentioned that it is within this field where the greatest efforts for decentral-
ized control have been made. Many works have made advantage of using the CMS technique
in FMD for decentralized vibration control purposes. One of the first authors who merged FE
modeling of FMS, state-space modeling and decentralized control was Young [Young 90], who
substructured the complete FE model of a two-dimmensional truss in order to synthesize a
distributed control law. Young demonstrated the feasibility of controlled component synthe-
sis for structures with an open chain topology. Subsequently, Su [Su 95] proposed a method
to decompose a structure into a collection of substructures in order to design a controller
for each substructure, called Substructural Controller Synthesis, and applied the method to
a plane truss example. Finally, Butler and Dhingra [Butler 03] studied integrated structure
and control design using substructure decomposition based on CMS as well, designing LQR
controllers for each substructure.
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2.3 Studies on Integrated Control/Structure Design

Integrated Control/Structure Design (ICSD) arises as a solution in early design phases of large
space structures. As previously stated, increasing complexity of large space structures makes
Control-Structure Interaction (CSI) problem more critical, urging the need of developing new
methods which tie together spacecraft structural dynamics and control laws. These methods
are also called Plant-Controller Optimization (PCO) or co-design (CD). In the majority of
ICSD studies, the structure model and the control techniques are closely related: FMD model
is used in model-based control as an integral part of the controller as well as in controller
design for optimizing the controller/FMS parameters. Therefore, this field merges modeling
and control theory, the control system does not deal anymore with a fixed structure, it can
be modified and optimized in order to achieve higher performances such as maximized di-
mensions, lighter materials that minimize the system cost, increment of strength and robust
static/dynamic stability.

ICSD methods began being studied in the 80s as an opposite technique to the current
method of separated iterative sequences within the structural and control disciplines. The
first integrated design methodologies were those which used optimization algorithms in Hale
[Hale 85], Onoda [Onoda 87] and Khot [Khot 88]. Hale [Hale 85] performed optimal simulta-
neous structural and control design of a maneuvering flexible spacecraft, minimizing a cost
function composed of the weighted mass and control force, deducing the necessary and suffi-
cient conditions for an optimum. Later, Onoda and Haftka [Onoda 87], developed an approach
using nested optimization technique for optimization of total cost of a flexible structure and
control system, constraining at the same time the magnitude of response to a given distur-
bance. Khot [Khot 88] also developed an optimization algorithm with nonlinear mathemati-
cal programming approach for designing an optimal damping law and optimizing structural
parameters of a truss structure, finding that the optimized truss had a better closed-loop
behavior than the nominal truss.

Optimization algorithms continued to be improved in the 90s using nonlinear dynamics
and optimizing more complicated structures. Messac and Malek [Messac 92] designed the
structure and the control system of a rotatory flexible spacecraft, addressing disturbance re-
jection and command following performance of the system, while optimizing the profile of the
flexible appendage for minimum mass of the system. Messac and Malek thereby demonstrated
that control/structure optimization gives better results than control optimization alone in
terms of mass costs and control performances. Maghami [Maghami 96] posed the ICSD prob-
lem as a nonlinear programming problem to minimize the control effort required to maintain
a specified line-of-sight pointing performance, under persistent white noise disturbance, of an
evolutionary model called CEM. CEM was composed of eight flexible substructures (trusses)
and the pointing performance was validated numerically and experimentally. Ou and Kikuchi
[Ou 96] extended the application building an independent modal space control algorithm for
an integrated design procedure composed of structural design, control design, and actuator
locations design. Oliver and Asokanthan [Oliver 97] performed ICSD for a satellite undergo-
ing maneuvers modeled including the nonlinear orbital dynamics and analyzed the influence
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of parameters such as the mass in the final dynamic behavior of a maneuver.

In the late 90s ICSD methods started using H∞ control approach to design robust con-
trollers against parameter uncertainties. Tsujioka [Tsujioka 96] used genetic and nonlinear
optimization algorithms to compute the H∞ control system and optimize structure param-
eters and actuator/sensor location of a FE model. Savant [Savant 99] proposed an iterative
method to bound the truncation errors and to optimize robustness margin of the closed loop
system changing structural design parameters, finding controllers of lower order than those
obtained with standard µ-synthesis methods, achieving the same robust-performance. Kaji-
wara and Nagamatsu [Kajiwara 99] also performed ICSD with H2 and H∞ optimization for
vibration control mechanisms. This approach continues to be used nowadays in studies as
Alazard et al. [Alazard 13b], where optimization of the attitude control system of an Earth
Observation satellite and the FE model where performed using a genetic algorithm.

However, the aforementioned general algorithms for integrated design were constructed
under the premise of a full-order and unstructured control law (eg., LQ, H2 and H∞ control
laws) which could be obtained in an analytic manner. The integrated design problem with a
specified controller structure (e.g., a low-order PID and decentralized controllers etc) had not
been studied that far except for a quite limited and simple control laws like velocity feedback
control. In real control problems, like large space structures, the structure (or the order) of
the controller is limited since the scale of the controlled system itself is high-order dimension.
With the development of the Linear Matrix Inequality (LMI) approach [Boyd 94, Scherer 97],
structured control laws began being feasible in ICSD. Hiramoto [Hiramoto 06, Hiramoto 09]
described the ICSD problem as polynomial matrix on the Laplace variable s and constrained
the closed-loop stability region of the feedback system by solving LMIs. Hiramoto was able to
optimize an arbitrary (low-order, PID and decentralized control) structure for the feedback
controller, while ensuring robustness against parameter uncertainty given in the standard H∞
based control schemes. In [Hiramoto 06], the algorithm and the methodology are presented
and demonstrated through illustrative examples. In [Hiramoto 09] the complexity of the de-
sign was increased by adding optimal actuator/sensor placement, and ICSD was performed to
compute optimal structural parameters, collocated actuator placement and vibration control
of a supported beam.

Nowadays, the structuredH∞ synthesis algorithms developed in [Gahinet 11] or [Burke 06],
allow to optimize structured controllers and other tuneable parameters of the system. The
ICSD problem is posed in a multi-chanel H∞ scheme where constraints to controller structure
and parameters variability are set in the frequency domain. Taking advantage of this form,
Alazard [Alazard 13a] used a multi-model H∞ synthesis scheme to design a fixed-structure
controller of an earth-observation satellite. Simultaneously, avionic parameters (sensors and
actuators delay) were optimized in order to select the ideal actuator for challenging require-
ments or standard requirements.
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This chapter has reviewed the state-of-the-art of the methods concerning the modeling,
control and co-design of large flexible structures. As stated in Chap. 1, the field lacks of
studies which involve simultaneously modeling and integrated control/structure design
of flexible multibody structures. Regarding the modeling of FMS, only a few studies
(those in [Guy 14], [Alazard 08] and [Cumer 01]) provided state-space representations of
FE-based models of substructures. These studies only can assemble substructures in star-
like configuration. Furthermore, there is also a shortage of linear models of substructures
actuated through piezoelectric materials for control purposes. Concerning the integrated
attitude control/structure design, only one study has been done using structured H∞
synthesis [Alazard 13a], where only the actuator avionics were optimized. The study of
this thesis is focused on providing the necessary foundations for performing integrated
control/structure design of flexible multibody structures, with strong emphasis on the
flexible spacecraft application.
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“What we observe is not nature itself, but nature exposed to our method of questioning.”
- Werner Heisenberg
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This chapter explains the main methods and preliminary concepts that somehow are used
throughout the study. Since the thesis seeks to perform integrated design developing a
flexible multibody linear modeling technique and to use structured H∞ synthesis, the
main concepts on mechanics and control theory are recalled.
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An integrated control/design study requires merging the knowledge of two complex fields:
rigid and flexible system mechanics and linear control theory. This chapter recalls in Sec.

3.1 the main mechanical concepts that are used for satellite attitude dynamics and flexible
dynamics. In Sec. 3.2, the main aspects of robust control theory are exposed with special
emphasis on the structured H∞ theory, the method which is used throughout the entire study.

3.1 Introduction to Mechanics

In order to understand the attitude control/structure interaction problem, previous concepts
about flexible mechanics and attitude dynamics are needed. The first section, Sec. 3.1.1,
recalls the linearized equations used to express the attitude dynamics of a satellite with the
approach and notation of [Alazard 08]. In Sec. 3.1.2 the most fundamental equations and
properties of flexible structures are presented.

3.1.1 Satellite Attitude Dynamics

Generally speaking, the satellite attitude dynamics equations are three second-order non-
linear equations. Automatic control theory does not provide exact analytical solutions and
design procedures for such dynamic plants, so linearization of these equations is necessary
if the satellite control engineer wishes to use standard automatic control techniques. The
linearization used throughout this study is based on the equations of motion proposed in
[Alazard 08], where a 6-DOF model which describes the rotations and translations of the hub
of a multi-body spacecraft are described as follows at its center of mass G:

{
FG
TG

}
=
[
DH
G

]{ẍG
θ̈G

}
=
[
mHI3 0

0 JHG

]{
ẍG
θ̈G

}
(3.1)

In Eq. (3.1) the hub’s three translational accelerations,{ẍG}, and the three angular ac-
celerations, {θ̈G} , are considered together. Note that for the rotation dynamics, the relation
TG = JHG θ̈G is a linear approximation of the actual nonlinear dynamic equation which reads:

{TG} = d{LHG}
dt

|Ri (3.2)

where {LHG} = [JHG ]{θ̇G} is the angular momentum of the hub H at point G. Then, using
time domain derivation in the body frame of the hub H (in which JHG is constant) it comes:

{TG} = {LHG} = [JHG ]{θ̇G}+ {θ̇} × ([JHG ]{θ̇G}) (3.3)

The nonlinear term ([JHG ]{θ̇G}) in Eq. (3.3) can be neglected for small angular velocities
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{θ̇G}, which is a common characteristic of spacecraft dynamics.

The relation between velocities between the hub’s points P and G is given by:

{ẋP } = {ẋG}+ {PG} × {θ̇G} (3.4)

{θ̇G} = {θ̇P } (3.5)

and with the notation given in [Alazard 08], Eqs. (3.4) and (3.5) can be expressed in the
following compact form:

{
ẋG
θ̇G

}
=
[
I3 (∗GP )
0 I3

]
︸ ︷︷ ︸

τGP

{
ẋP
θ̇P

}
(3.6)

where τGP is called the 6×6 kinematic model between points G and P and (∗GP ) is the
skew-symmetric matrix associated with the vector {PG} = {x y z}T |RG :

(∗GP ) =

 0 −z y

z 0 −x
−y x 0


RG

; (∗PG) =

 0 z −y
−z 0 x

y −x 0


RG

(3.7)

If the dynamic equations have to be derived in another point of the hub, as for example
point P , the acceleration at that point, {ẍP } reads:

{ẍP } = {ẍG}+ {θ̈G} × {GP}+ {θ̇G} ×
(
d{GP}
dt

|RG + {θ̇G} × {GP}
)

(3.8)

where d{GP}/dt = 0 for a rigid body. For small angular rates the nonlinear terms in the
right side of Eq. (3.8) can be neglected. The acceleration at point P is then deduced from
the acceleration at point G by the linear relation:

{ẍP } = {ẍG}+ (∗PG){θ̈G} (3.9)

from which the following kinematic relationship can be derived:

{
ẍG
θ̈G

}
=
[
I3 (∗GP )
0 I3

]
︸ ︷︷ ︸

τGP

{
ẍP
θ̈P

}
(3.10)

Expressing the external force power, Pext, computed along a virtual velocity field:
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Pext =
{
ẋG
θ̇G

}T {
FG
TG

}
=
{
ẋP
θ̇P

}T {
FP
TP

}
(3.11)

Combining Eqs. (3.10) and (3.11) the relation between loads at different points of the
hub can be expressed as:

{
FP
TP

}
= [τTGP ]

{
FG
TG

}
=
[

I3 0
−(∗GP ) I3

]{
FG
TG

}
(3.12)

Finally, using Eq. (3.12) in Eq. (3.1) the linearized equation of motion at point P is
derived:

{
FP
TP

}
= [τTGP ]

[
mHI3 0

0 JHG

]
[τGP ]

{
ẍG
θ̈G

}
= [DH

P ]
{
ẍG
θ̈G

}
(3.13)

where the transport of the inverse dynamic model of the hub H from a the point G to
point P is written as follows:

[DH
P ] = [τTGP ][DH

G ][τGP ] =
[

mHI3 mH(∗GP )
−mH(∗GP ) JHG −mH(∗GP )2

]
(3.14)

Expressions in Eqs. (3.1) and (3.13) are useful to model the system as interconnected
subsystems. Let suppose that a rigid appendage or subsystem, named A, is characterized by
its own dynamic model DA

P at point P :

{
FH/A

TH/A,P

}
= [DA

P ]
{
ẍP
θ̈P

}
(3.15)

where FH/A is the reaction force transmitted from the hub H to the appendage A and
TH/A,P is the reaction torque transmitted from the hub H to the appendage A at point P .
The hub experiences the same loads in opposite senses, giving

{
FG − FH/A

TG − TH/A,P

}
= [DH

P ]
{
ẍP
θ̈P

}
(3.16)

and introducing Eq. (3.15) in Eq. (3.16) the equation of motion of the whole system at
point P is obtained:
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Figure 3.1: Block diagram of the direct dynamic model of a satellite composed of a hub H and
an appendage A

{
FP
TP

}
=
(
[DA

P ] + [DH
P ]
){ẍP

θ̈P

}
=
(
[DA

P ] + [τTGP ][DH
G ][τGP ]

){ẍP
θ̈P

}
(3.17)

It is more practical to express the whole dynamic model at the center of mass G of the
hub H, since the external forces {FG} and torques {TG} will correspond to the outputs of
the Attitude and Orbit Control System (AOCS) which is mounted in the hub. Then, the
transporting Eq. (3.17) to point G one gets

{
FG
TG

}
=
(
[DH

G ] + [DA
G]
){ẍG

θ̈G

}
=
(
[DH

G ] + [τTPG][DA
G][τPG]

){ẍP
θ̈P

}
(3.18)

Equation (3.18) introduces the inverse dynamics model of the satellite (accelerations as
inputs, forces as outputs). For AOCS purposes, it is more convenient to derive the direct
dynamic model (forces as inputs, accelerations as outputs):

{
ẍG
θ̈G

}
=
(
[DH

G ] + [DA
G]
)−1

{
FG
TG

}
= [Dsatellite

G ]−1
{

FG
TG

}
(3.19)

This formulation can be represented as a block diagram scheme (see Fig. 3.1) and it can be
easily used with a graphical programming environment (Mathworks Simulink) for simulation
purposes. Once the system is assembled, the relation between the external loads (FG and TG,
like thrust force or reaction wheel torque) applied to the system and the system’s acceleration
is set, describing the linearized attitude and translation dynamics. In practice, the attitude
dynamics equations of the satellite are more complicated than those shown in Eqs.(3.1), (3.13)
and (3.19). There may exist side effects such as structural dynamics of the body or of the
appended solar panels, sloshing effects in the fuel tanks, and sensor noise. The consideration
of structural dynamics of the different bodies is addressed in this study. Concerning the
remaining effects, although the basic form of these equations remains unaffected, the control
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equations will need filters to handle them.

3.1.2 Flexible Structural Dynamics

The general form of the equation of motion describing the dynamic balance between the
external, elastic, inertia and damping forces acting on a discrete flexible structure with a
finite number of degrees of freedom (DOF) is:

[M ]{q̈}+ [D]{q̇}+ [K]{q} = {F} (3.20)

where {q} and {F} are the vectors of generalized displacements (translations and rota-
tions) and forces (point forces and torques) and [M ], [K] and [D] are respectively the mass,
stiffness and damping matrices; they are symmetric and semi positive definite. Matrices [M ]
and [K] are obtained from the discretization of the structure, usually with finite elements
(FE). The damping matrix [D] represents the various dissipation mechanisms in the struc-
ture. It is generally assumed that the existence of damping does not cause coupling of the
undamped natural modes of vibration [Hurty 65, Kraker 93]. Natural modes are obtained
considering the free response of the following undamped (conservative) equation:

[M ] {q̈}+ [K] {q} = 0 (3.21)

Trying solutions of the form q = φie
jωit, φi and ωi must satisfy the following eigenvalue

problem:

(
K − ω2

iM
)
φi = 0 (3.22)

Since [M ] and [K] are symmetric and semi definite positive (or definite positive) the
eigenvalue ω2

i is real and non negative. The eigenvalue ω2
i is called the natural frequency and

φi it is called the mode shape associated with that frequency. The number of modes is lower
or equal to the number of DOF, and the number of mode shapes are equal to the number of
DOF.

The mode shapes of distinct natural frequencies are orthogonal with respect the orthogonal
matrix, φTj [M ]φi = 0, and the they are also orthogonal with respect to the stiffness matrix.
The orthogonality conditions are often written as follows:

{φTi }[M ]{φj} = µiδij (3.23)

{φTi }[K]{φj} = µiω
2
i δij (3.24)

where δij is the Kronecker delta index and µi is the model mass of mode i. Since mode
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shapes can be scaled arbitrarily, it is usual to normalize the mode shapes in such a manner
that µi = 1. The orthogonality properties of mode shapes are used in order to derive the
modal decomposition of the EOM in Eq. (3.20). Performing a change of variables from the
physical coordinates {q} to modal coordinates {η} according to the following relation:

{q} = [φ]{η} (3.25)

where [φ] is the matrix of mode shapes defined as [φ] = [φ1φ2 . . . φn]. Substituting Eq.
(3.25) in Eq. (3.20) and premultiplying by [φ]T the following transformation is obtained:

diag(µi){η̈}+ [φ]T [D][φ] + diag(µiω2
i ){η} = [φ]T {F} (3.26)

Modal decomposition is the most general transformation of the EOM of a flexible struc-
ture. However, it must be applied in different approach either if rigid body modes (ωi = 0)
are considered or not in the flexible structures. A different approach is needed in order to
model flexible multibody systems and include the influence on the linearized attitude dynam-
ics described in Eq. (3.19). This study uses a technique for transforming the EOM based on
the component modes synthesis, which classifies the different mode shapes depending on their
nature. The understanding of the modal synthesis decomposition is crucial for understanding
the component mode synthesis approach.

3.2 Introduction to Robust Control Theory

This study demonstrates the applicability of structured robust control tools for integrated
design. Thus, the basic concepts of robust control theory have to be recalled. Robust control
is a type of optimal control synthesis which ensures performance and stability of a system
encountering environment perturbations or model uncertainties. Robust control synthesis
was first introduced by Doyle and Glover [Doyle 81, Doyle 89], and since then it has evolved
into several fields: robust control using H2 norm, robust control using H∞, structured H∞
synthesis, µ-analysis, etc. This section presents the main results on robust control theory and
explains the structured H∞ so that the reader can be familiar with this method hereafter.

In robust control, the dynamic model is set into the standard form (see Fig. 3.2), which
includes the following inputs/outputs:

• The transfers between the inputs wperf and the outputs zperf which characterize the
channel to optimize.

• The commands u and the measurements y which are used for the control law K(s)

The matrix transfer of the standard form of a dynamic model P (s) can be decomposed
in the following manner:
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P (s)

zperfwperf

u y

K(s)

Figure 3.2: Standard form representation

{
zperf
y

}
=
[
P11(s) P12(s)
P21(s) P22(s)

]{
wperf
u

}
(3.27)

The objective is then to optimize the control law K(s) such as the closed loop is stabi-
lized according to the optimization channel wperf → zperf . However, a system can present
uncertainties which can be the result of neglected dynamics and non-linearities, which in the
standard form they are represented by the block ∆. Closed-loop stability is sensitive to these
uncertainties, compromising the stability of the system. It is then imperative to guarantee
the stability of all the models derived from the possible perturbations of ∆. This is called
robust stability. The small-gain theorem allows ensuring closed-loop stability under certain
conditions:

Theorem 3.1. Assume two stable systems with transfer functions P1(s) and P2(s) are con-
nected in a feedback loop, then the closed loop system is input-output stable if ||P1(s)|| ·
||P2(s)|| < 1.

The norm can be the H∞ norm, that is the size of the largest singular value of the transfer
function over all frequencies. Also any induced norm will lead to the same results. If the
system P2 is identified as the uncertainty block ∆(s) and it is restricted to the domain of
stable linear systems of norm ||∆(s)||∞ < 1, then the system P1(s) is stable if and only if
||P2(s)||∞ < 1.

In the illustration provided in Fig. 3.3, closed loop stability is guaranteed against every
uncertainty ∆(s) satisfying ||∆(s)||∞ < 1 if and only if ||G(s)K(s)(I +G(s)K(s))−1||∞ < 1.
Thus, the robust stability of this system implies the transfer T = G(s)K(s)(I+G(s)K(s))−1,
called the complementary sensitivity function. Minimizing the complementary sensitivity
function will make the system robust stable, but since the sensitivity function takes the form
S = (I+G(s)K(s))−1, it results that always T +S = 1, which obliges to find a good trade-off
between robustness and performance.

Finding the control law u = K(s)y which robustly stabilizes the system is called the
standard H∞ problem. For that, it minimizes the H∞ norm between wperf and zperf of
the closed loop, i.e., it minimizes the impact of the perturbations wperf on the performance
outputs zperf while ensuring the internal stability of the system.
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G(s)

∆(s)

-
K(s)

u
y

Figure 3.3: Small-gain theorem diagram when P1(s) = K(s)G(s) and P2(s) = ∆(s)

Definition 3.2. Optimal H∞ Problem. It minimizes ||F(P,K)||∞ among the set of con-
trollers K(s) which internally stabilize the system. The minimum is noted γopt and it is called
“H∞-optimal” gain.

Definition 3.3. Sub-Optimal H∞ Problem. It finds the compensator K(s) which inter-
nally stabilizes the system and at the same time ensures ||F(P,K)||∞ < γ with γ > 0.

This synthesis approach obtains a full-order compensator, i.e., the order of the compen-
sator is equal to the order of the system plus the order of the weighting filters needed with
such synthesis approaches. This in an important inconvenient for large flexible structures,
since their associated models are usually high-order due to the presence of flexible modes. To
avoid this inconvenient, structured H∞ synthesis was developed [Gahinet 11, Burke 06]. This
technique allows the imposition of the controller’s order and its architecture, the selection the
transfers to be minimized and the use of several models at the same time.

As in the standard H∞ problem, the structured H∞ problem also uses the standard form.
Therefore, it can be found:

• A linear time invariant model (LTI), P (s).

• A structured controller K(s) = diag(K1(s), . . . ,KN (s)) which combines all the modifi-
able elements of the controller. Each controller’s element Kj(s) is supposed to be a LTI
with a given structure (proportional gain, proportional-derivative, second-order transfer
function, state-space of a fixed order m, etc).

With this, two kind of synthesis can be performed: the multi-channel synthesis and the
multi-model synthesis. Let consider the synthesis of a controller of a model with two channels
for the performance inputs/outputs:

wperf =
{
w1
w2

}
zperf =

{
z1
z2

}
(3.28)

Whereas the standard H∞ problem has to minimize γ such that:
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P1(s)

P2(s)

[
K1(s) 0
0 K2(s)

]

εK1(s)

w1 z1

w2 z2

u1

u2

y1

y2

Figure 3.4: Standard form for multichannel H∞ synthesis

∥∥∥∥∥F(P,K)11 F(P,K)12
F(P,K)21 F(P,K)22

∥∥∥∥∥
∞
< γ (3.29)

the structured H∞ problem minimizes γ such that

∥∥∥∥∥F(P,K)11 0
0 F(P,K)22

∥∥∥∥∥
∞
< γ (3.30)

since the crossed terms F(P,K)12 = Tw1→z2 and F(P,K)21 = Tw2→z21 do not supposes
performance specifications. Therefore, the structured H∞ synthesis search the minimum of

max(||F(P,K)11||∞, ||F(P,K)22||∞) (3.31)

This feature can be exploited in many different manners. Besides already imposing con-
troller’s structure and architecture, controller’s stability can be forced as well by adding a new
fictive channel with a static gain ε(see Fig. 3.4). Furthermore, the controller’s frequency re-
sponse (roll-off) can also be established substituting the static gain by a filter with the desired
frequency response. In the same manner, given two different systems P1(s) and P2(s), the
structured H∞ multi-model synthesis allows getting a controller K(s) with ensures stability
and performance of both systems (see Fig. 3.4).
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Chapter 4
Setting the Modeling Framework of
Flexible Multi-Body Structures in
Automatic Control

“High achievement always takes place in the framework of high expectation.”
- Charles Kettering

Contents
4.1 Selection of the Motion’s Kinematic Description . . . . . . . . . 39
4.2 The Double-Port Approach as an Overlapping Mechanism . . . 41
4.3 Substructure’s EOM Manipulation . . . . . . . . . . . . . . . . . 48

4.3.1 Hurty’s Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 The Craig-Bampton’s Method . . . . . . . . . . . . . . . . . . . . 52
4.3.3 Imbert’s Method or Effective Mass Method . . . . . . . . . . . . . 54
4.3.4 EOM’s Transformations Discussion . . . . . . . . . . . . . . . . . 55

The first step for developing a control-oriented flexible multibody system modeling tech-
nique is to determine the modeling framework. This framework is the starting point
since it sets the reference frames, equations of motion and constraints that are used in
order to derive flexible substructure models for automatic linear control. The setting of
the framework allows the development and use of the models in the next chapters.
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This chapter develops, explains and discusses the different foundations which form the
general framework created for the control-oriented modeling of flexible multibody sys-

tems (FMS). The foundations of the modeling framework have to meet several requirements,
such as the available data for the equations of motion, the model’s simplicity and the needed
properties for integrated control/structure design.

In Fig. 4.1, a generic flexible substructure of a FMS is depicted. The flexible body
(substructure), named A, is linked to the parent structure, named P, at the point P and
to a child substructure, named C, at the point C. Therefore, only two connection points
are assumed in this study. The external loads applied to A are the interactions with P at
point P and with C at point C. The equations of motion (EOM) of the flexible substructure
are obtained through the finite element (FE) modeling technique which, written in terms of
generalized coordinates q, have the following matrix form:

[M ]
{
q̈
}

+ [D]
{
q̇
}

+ [K]
{
q
}

=
{
F
}

(4.1)

Equation (4.1) describing the dynamics of the substructure alone, the flexible substruc-
ture’s model for FMS assembly has to transform Eq. (4.1) in order to take into account the
interactions with the neighboring substructures P and C, preserving a state-space form so that
linear control tools can be used. In addition, for integrated control/structure design purposes
the models should be parameterized with the variables that are required for optimization,
such as mass, length, surface, density or Young’s modulus.

These requirements introduce a set of difficulties that the modeling technique must be
able to manage. These problems are described as follows:

• Substructure interconnection: the assembly between the different substructures must
describe the interactions between them. This is what is named the overlapping prob-
lem.

• Substructure linear independence and completeness: the substructure’s model must
contain all the necessary information so that the model can be used independently of
the other substructures to which it is connected. This implies:

– The substructure’s boundary conditions must be externalized outside the model.
– The substructure’s model must be defined by its own dynamic parameters.

• Substructure parameterization: variables liable to be optimized in an integrated con-
trol/structure design should be traceable.

• Substructure linear model with the required properties: linear control tools (such the
ones that use structured H∞ optimization) need models in state-space representation or
equivalent transfer matrices. Therefore, the EOM, obtained with FE analysis, must be
cast into a state-space representation which includes the aforementioned properties.
This model must include the rigid and flexible motion of the substructure so that the
FMS has all the degrees of freedom required for integrated control/structure design.
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FA/C,C =
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}

q̈P =
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ẍP
θ̈P
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}
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Figure 4.1: Substruture A linked to structure P and substructure C in chain-like assembly

In this chapter a framework which helps solving these issues is proposed. The frame-
work consists of three pillars: the chose of the modeling frame, the selection of the inter-
action mechanism which allows the substructure’s assembly and the study of the different
EOM’s transformations to cast the model in state-space form. First, the modeling frame
is chosen. Second, the interactions among substructures are translated in acceleration-load
transfer among substructures, in what is called the Double-Port Approach (DPA), solving
the substructure’s interconnection and independence issue. Third, several transformation of
the substructure’s EOMs have been analyzed in order to find the most suitable one for state-
space representation and variable parameterization. This chapter has allowed the publication
of the Double-Port Approach in [Alazard 15]. Moreover, the discussion of the component
modes synthesis techniques is the base of other publications of the thesis.

4.1 Selection of the Motion’s Kinematic Description

The first step for flexible substructure modeling is the selection of the modeling frame in
which the kinematic description of the system is going to be developed. The study’s ap-
proach searches models that reproduce the rigid body motion taking into account the small
perturbations due to the flexible motion of the system. This motion is described using FE
models as input data. The modeling approach will be done in a floating rotating frame.
Thus, the total displacement is computed by superimposing small elastic deformations on the
large rigid body motion. In addition, as stated in Chap. 2, this is the most efficient method
for the simulation of flexible multibody systems undergoing small elastic deformations and
slow rotational speeds, such as satellites and space structures.

The floating frame approach is illustrated in this work in a simplified way without deriving
the kinematic description directly. The objective here is simply to highlight the main points
of the modelling framework and to show why it is well-suited to our modelling problem. If
a more rigourus floating frame approach is desired, the reader might consult [Shabana 97].
Let us consider a generic FMS such as the one depicted in Fig. 4.2, in which substructures
are linked using one connection point among them. Let us consider the inertial global frame



40 Chapter 4. Modeling Framework

Ai−1
Ai Ai+1

X

Z

YO

Oi−1
Oi

Oi+1

Oi+2
xi

zi

yi

xi+1

zi+1

yi+1

Ai

Oi

Oi+1

xi

zi

yi

xi+1

zi+1

yi+1

{
rOi

}

{
OiOi+1

} {
qOi+1

}

Figure 4.2: Generic FMS with floating frame approach notation

{
O,X, Y, Z

}
in which the absolute coordinates {r} of a point are expressed. Let us consider

the set of body reference frames attached to each substructure Ai, {Oi, xi, yi, zi} as depicted
in Fig. 4.2. Each body reference frame is related to the global inertial frame through the
rotation matrix [Ri]. Given the absolute position of the connection point Oi of a substructure
Ai, the absolute position of the connection point Oi+1, {rOi+1}, can be written as:

{
rOi+1

}
=
{
rOi

}
+
[
Ri
] {{

OiOi+1
}

+
{
qOi+1

}}
; Oi+1 ∈ Ai (4.2)

where {rOi} is the absolute position of the connection point Oi, {OiOi+1} is the body
frame position of the connection point Oi without elastic displacement and {qOi+1} is the
vector of elastic displacements around the equilibrium/rigid position of point Oi+1, which
can be extracted from the FE formulation of the substructure’s EOM in Eq. (4.1). The
absolute position of point Oi+1 is imposed as a constraint for the next substructure of the
FMS, Ai, but if the orientation is different the following coordinate change must be performed:

{
rOi+1

}
|i+1 =

[
Ri+1

]−1 {
rOi+1

}
; Oi+1 ∈ Ai+1 (4.3)

In Sec 4.2 the interest of using accelerations as interconnection constraints is highlighted.
In a floating reference frame, accelerations can be written as follows:

{
r̈Oi+1

}
=
{
r̈Oi

}
+
[
Ri
] {
q̈Oi+1

}
; Oi+1 ∈ Ai (4.4)

under the hypothesis of neglecting the nonlinear terms, such as the Coriolis contribution,
since the framework supposes small elastic displacements and slow rigid body motion, what
is the case of satellites and space structures. The same frame change can be applied for the
acceleration of point Oi+i as in Eq. (4.3).
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The floating frame approach sets a framework that enables the achievement of several
requirements. First, a linear model can be derived since small elastic displacements are
added to large rigid body motion, with no coupling terms. Second, each substructure’s is
independent from the others since they have they own body reference frame and is defined
by its own EOM. Therefore, the choice of using a floating frame approach for the modeling
framework is made. The next section sets the overlapping technique that interconnects the
different substructures of a FMS under the floating frame assumption.

4.2 The Double-Port Approach as an Overlapping Mechanism

When dealing with models of substructures forming a FMS, the main difficulty lies on the
consideration of the mechanical interactions among them. This is what is named the overlap-
ping among substructures: the constraints which express the relations between the various
components of the FMS. The overlapping among substructures has been addressed in litera-
ture in three different ways:

• Through the introduction of additional constraint equations [Shabana 97, Wasfy 03].
Constraint equations express the relations between the various components of the sys-
tem. They have the form φ(q, q̇, t) ≥ 0 where φ is the vector of algebraic constraint
equations, q is the vector of generalized system coordinates, t is the time, and q̇ its time
derivative. In the floating frame approach, constraint equations are usually written such
that the flexible body coordinates are expressed in a floating frame and the rigid body
coordinates (which define the motion of the floating frames) are expressed in the inertial
frame as in Eq. (4.4).

• Through the overlapping of the mass and stiffness matrices [Young 90, Sunar 92]. The
FE models of the different substructures are assembled by adding the different contri-
butions of the mass and stiffness matrices to the interface nodes. In a floating frame
approach, this method is equivalent as the constraint equations, but it is performed at
the matrix level.

• Through the transfer matrix method [Leckie 60, Mucino 81]. Described in Sec 2.1.2.2,
this method allows to transfer the imposed displacements and velocities to the neigh-
boring substructures through the substructure’s transfer matrix.

• Through a transfer of linear momentum and power when using Port Hamiltonian sys-
tems [Schaft 06]. This method is recommended for nonlinear systems where different
physic descriptions are involved, such as fluid mechanics, electromagnetism or elasticity.

The above overlapping approaches are suitable for mechanical applications, but they are
not suitable for applications in automatic control. The pursued technique must express the
interactions between structures in a simple and intuitive way, in a single block in which there
is no need of additional equations, manipulating mass and stiffness matrices or determining
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q̈P

q̈C

FA/P,P

[
GA

P,C(s)
]

FC/A,C

Figure 4.3: Block diagram of a model in Double-Port form

linear momentum or mechanic power. This has been accomplished by developing the Double-
Port (DP) approach.

The DP approach uses a double input-output port transfer to model each substructure.
The overlapping mechanism is expressed as an acceleration/load transfer between the con-
nection points. The double input-output port model is a multi-input multi-output transfer
with two channels. The first channel represents the direct dynamic model (forces as inputs
and accelerations as outputs) at the connecting point between the substructure and the child
structure. The second channel represents the invert dynamic model (accelerations on in-
put and forces on output) at the connecting point between the substructure and the parent
structure. The generic form of a substructure’s model using the DP approach is written as:

{
q̈C

FA/P,P

}
=
[
GAP,C(s)

]{FC/A,C
q̈P

}
(4.5)

where {q̈C} is the substructure’s acceleration at the connection point C, {FA/P,P } is the
load exerted at connection point P by the substructure, {q̈P } is the substructure’s acceleration
at the connection point P and {FC/A,C} is the load received by the substructure at connection
point C. This transfer is also depicted as a block diagram in Fig. 4.3.

In the DP approach, the rigid body motion is imposed to the substructure by the ac-
celeration input of the inverse dynamic channel, {q̈P }, coming from the parent structure P.
The rigid body motion plus the flexible motion induced by the substructure are transmitted
with the transferred acceleration at point C, {q̈C}, to the child substructure C. In the oppo-
site direction, the load received by the substructure at point C from the child structure C,
{FC/A,C}, enters through the direct dynamic model channel and, after interacting with the
substructure, the load {FA/P,P } is transmitted to the parent structure P. This mechanism
is repeated throughout the chain of substructures to the end.

The morphology of a model using the DP approach offers straightforward means to meet
a wide set of the established requirements. The DP approach allows, with the correct trans-
formation of the EOM:

• The externalization of the substructure’s boundary conditions. The computation of the
model does not require specific boundary conditions (clamped-free, pinned-clamped,
etc) since they are imposed by the connections to other substructures, which constraint
the transfer channels.

• The modeling of each substructure’s behavior by its own dynamic parameters.
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Figure 4.4: A simplification of a flexible pointing system composed of a rigid hub and two
flexible appendages

• An intuitive and automatic assembly process by interconnecting the transferred loads
and accelerations to the neighboring substructures.

Therefore, the DP approach will be used as the overlapping mechanism to perform sub-
structure interconnection. It should be noted that the DP approach also fixes the necessary
inputs/outputs for the state-space representation of the model. The next step is to look for an
appropriate way of transforming the EOM so that they can be cast in a state-space representa-
tion with the inputs/outputs required by DP. A study of the possible EOM transformations is
presented in Sec. 4.3. The following paragraphs are dedicated to show an illustrative example
of the DP model.

Illustrative Example on DP form: the flexible pointing system

As an illustrative example of the DP form for flexible substructure modeling, let consider the
simplified flexible pointing system depicted in Fig. 4.4. This system is composed of a rotatory
hub with inertia Jh, solidary with a disc of inertia J1. The disc J1 is a part of the Appendage
1 (gray color), composed of the disc, a flexible bar attached to the disc and a lumped mass at
the end of the bar, m1. The mass of the bar can be neglected with respect to m1. Appendage
2 (yellow) is connected to Appendage 1 at m1 through a spring of stiffness k2 and its mass is
modeled as m2.

The system can be decomposed (or separated) in different substructures (or appendages),
as illustrated in Fig. 4.5 . The objective is to model the modular system by interconnecting
the different appendages using a double-port approach. A double port dynamic model [Z1(s)]
is developed to represent the middle appendage, Appendage 1. The block-diagram represen-
tation of this dynamic model is presented in Fig. 4.6 and highlights that acceleration and
force are both on the inputs or the outputs of [Z1(s)]:
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Figure 4.5: Decomposition in hub and appendages of the flexible pointing system

{
Ÿabs(s)
F1/h(s)

}
=
[
Z1(s)

]{F2/1(s)
θ̈h(s)

}
(4.6)

where F1/h(s) = L[f1/h(t)] is the force applied by Appendage 1 on the parent substruc-
ture h, the rotatory hub; F2/1(s) = L[f2/1(t)] is the force applied by the child substructure,
Appendage 2, to the Appendage 1; θ̈h(s) = L[θ̈h(t)] is the inertial acceleration of the connect-
ing point (interface) between the rotatory hub and Appendage 1; Ÿabs(s) = L[ÿabs(t)] is the
inertial acceleration of the connecting point between Appendage 1 and the child substructure
Appendage 2; i.e, ÿabs = ÿ1 + θ̈hL.

In order to get the relation between the desired inputs/outputs, the system’s EOMmust be
derived. Using either the Newton principle or the Lagrange method, the following equations
that govern the dynamical behavior of each system’s substructure are derived:

Jhθ̈h = uh + F1/h (4.7)

[
J1 +m1L

2 m1L

m1L m1

]{
θ̈h
ÿ1

}
+
[
0 0
0 c1

]{
θ̇h
ẏ1

}
+
[
0 0
0 keq

]{
θh
y1

}
=
[
1 L 0
0 1 1

]
Fh/1
um1

ua

 (4.8)

F2/1 = m2ÿ2 + c2ẏ2 + k2y2 +m2ÿ1 (4.9)

Equation (4.7) corresponds to the rotatory hub’s dynamics, Eq. (4.8) to the Appendage
1 dynamics and Eq. (4.9) to the Appendage 2 dynamics. The parameter keq = 12EI/l3 is
the equivalent stiffness at the end of the beam. Thus, for the Appendage 1 dynamics, [Z1(s)]
is a second order transfer and can be represented by the following equivalent DP forms:

• The state-space representation associated to the state x = {y1 ẏ1}T , with the input-
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s/outputs depicted in Fig. 4.6:
ẏ1
ÿ1
ÿabs
F1/h

 =


0 1 0 0

−keq/m1 −c1/m1 1/m1 −L
−keq/m1 −c1/m1 1/m1 0
keqL c1L 0 −J1




y1
ẏ1

F2/1 = um1

θ̈h

 (4.10)

• The matrix of transfers between the acceleration-load transmission at points P and C:

[
Z1(s)

]
=

[
s2 L(keq + c1s)

L(keq + c1s) −(J1m1s
2 + c1(m1L

2 + J1)s+ keq(m1L
2 + J1))

]
m1s2 + c1s+ keq

(4.11)

where the pulsations ωf =
√

keq(m1L2+J1)
J1m1

and ωpc =
√

keq
m1

can be distinguished as
the zero and pole pulsations respectively. The pulsation ωf is the free pulsation of
Appendage 1, whereas ωpc is the parent cantilevered pulsation; i.e, when the disc J1 is
clamped to the inertial frame and it cannot rotate.

Equations (4.10) and (4.11) can be represented by the block diagram depicted in Fig.
4.6. The lower channel of [Z1(s)] (from θ̈h to F1/h) is equivalent to the inverse dynamic
model and can be expressed in kg·m and the upper channel of [Z1(s)] (from F2/1 to ÿabs)
is equivalent to the direct dynamic model and can be expressed in kg−1. Regarding the
overlapping mechanism, the interactions with other substructures are carried by the channels
wired to other blocks. These interactions are in fact the constraints or boundary conditions
on the inputs of the [Z1(s)] block. Since both channels are invertible, two additional models
can be extracted:

• The inversion of the upper channel, [Z1(s)]−1u , gives the inverse dynamic model of
Appendage 1, where applied forces can be computed from the induced accelerations:

[
Z1(s)

]−1u
/


ẏ1
ÿ1
F2/1
F1/h

 =


0 1 0 0
0 0 1 −L
keq c1 m1 0
keqL c1L 0 −J1




y1
ẏ1
ÿabs
θ̈h

 . (4.12)

• The inversion of the lower channel, [Z1(s)]−1l , which gives the direct dynamic model
of Appendage 1, where the resulting accelerations can be computed from the applied
forces:

[
Z1(s)

]−1l
/


ẏ1
ÿ1
ÿabs
θ̈h

 =


0 1 0 0
−ω2

f −c1w
2
f/keq

J1+m1L2

J1m1
L/J1

−keq/m1 −c1/m1
J1+m1L2

J1m1
0

keqL/J1 c1L/J1 0 −1/J1




y1
ẏ1
F2/1
F1/h

 .

(4.13)
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Figure 4.6: Block diagram representation of the DP model of Appendage 1, Z1(s)

The lower channel inversion in Eq. (4.13) is the most used form in control design since it
provides the dynamic response for the applied external forces F2/1 and F1/h. The matrix of
transfers can be written as follows:

[
Z1(s)

]−1l =

[
J1+m1L2

J1
(J1s

2 + cL2s+ keqL
2) −L(keq + c1s)

LJ1+m1L2

J1
(keq + c1s) −(m1s

2 + c1s+ keq)

]
J1m1s2 + (J1 +m1L2)c1s+ (J1 +m1L2)keq

(4.14)

In Eq. (4.14) the child cantilevered pulsation ωcc =
√

keqL2

J1
(when mass m1 is clamped in

the inertial frame) can be found as a zero of the transfer F2/1 → ÿabs . The free pulsation
ωf appears as a pole in this case and the parent cantilevered pulsation ωpc appears as a zero
of the transfer F1/h → θ̈h. These pulsations are consistent with [Preumont 11], where it is
stated that transmission zeros are identical to the natural frequencies of a modified system
in which a support has been added instead of an actuator. Consequently, when the transfer
F2/1 → ÿabs is observed, the transmission zeros are the same ones as if the system was clamped
at the DOF ÿ1.

The DP model together with the inversion operations allow the management of various
constraints and boundary conditions. Indeed, these constraints and boundary conditions must
be specified on the inputs of the subsystem model. The following conditions can be imposed:

• The substructure is clamped to the parent structure and loaded or connected to another
substructure on the side of the child structure. In this case, the DP model of Eq. (4.10),
[Z1(s)], can be used directly.

• The substructure is clamped to the child structure and loaded or connected to another
substructure on the side of the parent structure. This case is provided by the inverse
DP model of Eq. (4.10), [Z1(s)]−1.

• The substructure is clamped to the parent structure and to the child structure. This
case is solved by using the upper channel inversion model [Z1(s)]−1u . The forces are
now free outputs and they represent the lock force.

• The substructure is loaded at both connection points. This case is solved by using the
lower channel inversion model [Z1(s)]−1l . The accelerations are now free outputs and
they can be used to compute the system’s trajectory.
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Figure 4.7: Block diagram representation of the interconnection among the different system’s
substructures

In order to model the whole system, the dynamics of the hub and Appendage 2 must be
expressed in terms of acceleration-load transfer. However, the hub and Appendage 2 cannot
be modeled with DP form since they are only connected to Appendage 1, being considered as
terminal substructures (one connection point only). An analog acceleration-load transfer can
be build for the one-connection-point case, which in the case of the hub it results in a static
gain:

θ̈h =
[
1/Jh 1/Jh

]{ uh
F1/h

}
(4.15)

For Appendage 2, it results in a Single-Input Single-Output (SISO) system which receives
the acceleration at the base and gives the induced force at the connection point:

[
Z2(s)

]
/


ẏ2
ÿ2
ÿabs2
F2/1

 =


0 1 0

−k2/m2 −c2/m2 −1
−k2/m2 −c2/m2 0
k2 c2 0



y2
ẏ2
ÿ1

 (4.16)

Then, the model of the flexible pointing system presented in Fig. 4.4 can be described by
a block diagram interconnection (see Fig. 4.7) involving three blocks: 1/Jh, Z1 and Z2(s).
The interactions among these three blocks are directly transmitted by the channels between
the blocks as accelerations-loads. The interconnection presented in Fig. 4.7 results in the
direct dynamic model of the flexible pointing system. The corresponding inversions in the
upper or lower channels can be performed as well in order to impose different constraints or
boundary conditions to the whole system.
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4.3 Substructure’s EOM Manipulation

The interconnection mechanism and consequently the desired input/outputs of the substruc-
ture’s model have been established in Sec 4.2. Nevertheless, the mechanism requires a formu-
lation in which the invert and direct dynamics of the substructure can be extracted without
losing the flexible and rigid motion behavior. This implies a formulation of the equations of
motion which allows establishing the correct relation between applied forces and accelerations
to the substructure under study.

Since it is generally assumed that the existence of damping does not cause coupling of the
undamped natural modes of vibration [Hurty 65], Eq. (4.1) can be rewritten in an undamped
form:

[M ]
{
q̈
}

+ [K]
{
q
}

=
{
F
}

(4.17)

Equation (4.17) will be used across this section to apply the different possibilities in
EOM manipulation. In this research the re-formulation of the equations of motion has been
studied through component modal synthesis techniques, particularly those techniques based
on constraint and fixed-interface modes for substructure coupling. Three re-formulations have
been analyzed in order to chose the most appropiate one: the Hurty’s Method [Hurty 65], the
Craig-Bampton decomposition [Craig 68] and the Imbert’s Method [Imbert 79, Alazard 08].
These methods are discussed in the following sections.

4.3.1 Hurty’s Method

The Hurty’s Method [Hurty 65] proposes a component modes synthesis method using rigid-
body modes, redundant-interface constraint modes and fixed-constraint modes. If the sub-
structure is not constrained, six independent rigid-body displacements modes exist, corre-
sponding to three translations and three rotations with respect to a set of fixed orthogonal
coordinate axes (the set R = {ri}). The modes produced in this way are called rigid-body
modes. Fewer than six rigid modes may exist if the substructure is partially or totally con-
strained. The constrained system is statically indeterminate with the redundant constraints
(denoted by the set E = {ei} ). These constraints are the cause of the attachment to other
substructures of the system, and they produce the called constraint modes. Finally, the dis-
placements of other points of the structure relative to the constraints are given by a set of
independent modes in which all constraints are fixed, called fixed-constraint natural modes
of vibration of the structure (set I = {ii}). Therefore, an arbitrary displacement of the
constraints can be divided into rigid-body, constrained and fixed-constraint displacements.

This decomposition is exemplified in Fig. 4.8, where the different displacements are shown
for a rectangular plate at the middle point A. In three dimensions, the plate has six rigid
degrees of freedom (three displacements, three rotations) and they are determined by the set
ri, located at the front corners of the plate. The displacements of point A can be derived using
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Figure 4.8: Decomposition of a substructure’s displacements; adapted from [Hurty 65]

the theory of solid mechanics (Fig. 4.8-a). If these DOF are constrained, the plate cannot
translated as a rigid body and the remaining possible displacements are the ones given by
the theory of elasticity. If the plate is redundantly constrained in the remaining two corners,
the set ei, the motion of the plate given by the elasticity theory will vary since the boundary
conditions are no longer the same. For example, if the displacement e3 is set to 1, point A
will be displaced according to the plate’s corner bending (Fig. 4.8-b). Either constrained or
unconstrained, there are always interior points, denoted by i, which can move according to
elasticity theory if a load is applied on them. If a displacement is imposed at the interior
point i, point A will move accordingly (Fig. 4.8-c).

Consequently, the displacement of any point P (x, y, z) is given by the the superposition
of these three displacements:

q̄(x, y, z) = q̄ R(x, y, z) + q̄ E(x, y, z) + q̄ N (x, y, z) (4.18)

When the equations of motion are obtained with FE analysis, which is the case in this
study, the substructure is discretized so that the displacements are defined at only a set of
points. In this case the displacement at each point can be written as a component of a column
vector, and Eq. (4.18) becomes:

{
q
}

=
{
qr
}

+
{
qe
}

+
{
qn
}

(4.19)

The number of coordinates in these sets are Nr for rigid-body modes, Ne for redundant
constraint modes and Nn for natural vibration modes, respectively, with N = Nr +Ne +Nn.
In component-mode synthesis, each of these displacements is expressed as a superposition
of discretized mode functions in the form of modal matrices [φ̄] and a set of generalized
coordinates {η}. Thus, the term [φ̄ij ] represents the displacement at point i in the jth mode.
Consequently the three types of displacements take the following matrix form in what is called
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the Rayleigh-Ritz coordinate transformation:

{qr} = [ φ̄ R ]{ηr}
{qe} = [ φ̄ E ]{ηe}
{qn} = [ φ̄ N ]{ηn}

(4.20)

The substructure’s physical displacements can be expressed in terms of substructure gen-
eralized coordinates {η} by the substituting Eq. (4.20) into Eq. (4.19). Then, the total
displacement may be written as

{
q
}

=
[
φ̄
] {
η
}

(4.21)

where the complete transformation matrix reads as follows:

[
φ̄
]

=
[
φ̄ N φ̄ E φ̄ R

]
(4.22)

The component-mode matrix [φ̄] is a matrix of preselected component modes including:
fixed-constraint modes, constraint modes and rigid-body modes. Then the matrix [φ̄] is
obtained as follows:

a) Using a set of Nn substructure fixed-constraint normal modes, [φ̄N ], obtained from the
solution of the eigenproblem:[

Knn − ω2
jMnn

] {
φn
}
j

=
[
0
]
, j = 1, 2, . . . , Nn (4.23)

[
φ̄N
]

N×Nn

=

φnN0eN
0rN

 (4.24)

b) Using a set of redundant constraint modes, defined relative to the redundant boundary
coordinate set:

[
φ̄E
]

N×Ne

≡

φneIee
0re

 =

−K
−1
nnKne

Iee
0re

 (4.25)

c) Using a set of rigid-body modes, obtained by solving the equation resulting from re-
straining the rigid-body motion of the substructure:
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[
φ̄R
]

N×Nr

≡

φnrφer
Irr

 =

−
[
Knn Kne

Ken Kee

]−1 [
Knr

Ker

]
Irr

 (4.26)

The set of Nn fixed - interface normal modes can be reduced to a smaller set of kept
normal modes, denoted as [φk]. The combined set [φ̄R φ̄E ] spans the static response of
the substructure to interface loading and allows for arbitrary interface displacements {qb}.
These interface displacements can be accompanied by the displacements of the interior of the
substructure as shown in Fig. 4.8.

As a consequence of classifying the modes in three categories, namely, rigid-body modes,
constraint modes, and normal modes, the Eq. (4.17) can be partitioned as follows:

Mnn Mne Mnr

Men Mee Mer

Mrn Mre Mrr


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 =


Fn

Fe + F̃e
Fr + F̃r

 (4.27)

where [M ], [K], {q} and {F} are the substructure’s mass matrix, stiffness matrix, vector
of generalized coordinates and vector of externally applied forces, respectively. The “tilde”
load term denotes the force resulting from the connection to adjacent structures at the bound-
ary points [Craig Jr 00]. Applying the modal transformation given in Eq. (4.21) and pre-
multiplying by [φ̄T ], and considering that neither interior forces nor external forces apply
(Fn = Fe = Fr = 0) Eq. (4.27) yields:
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 (4.28)

Equation (4.28) is the partitioned transformed form of the equations of motion. It should
be noted that for the transformed stiffness matrix several submatrices are null matrices. The
submatrix [K̂rr] is null since the work done by a self-equilibrating force system on a rigid-body
displacement is zero [Hurty 65]. The same occurs to the submatrix [K̂en] since the work done
by the constraint forces on a normal mode displacement is zero because in normal mode the
constraints are fixed. In the same way, submatrix [K̂er] is a null matrix.

In consequence of the foregoing results, the partitioned transformed equation of motion
takes on a simpler form:
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Equation (4.29) presents then submatrices which are more attractive for modeling pur-
poses since the stiffness matrix is no longer coupled with the rigid body motion. Physical
interpretations can be derived from several submatrices. The square submatrix [K̂nn] is a
diagonal matrix containing the fixed-constraint natural vibration modes, and related with
[M̂nn] by the relationship of Eq. (4.23). The square submatrix [K̂ee] is the stiffness matrix
associated with the redundant constraints, and its order is equal to the number of redundant
constraints. The square matrix [M̂rr] is the rigid body matrix; i.e, the mass matrix if the
substructure is considered as rigid. It contains the whole mass of the system, gravity center
position and rotatory inertia with respect to the rigid body boundaries. The submatrices
[M̂rn] and [M̂re] are the modal participation matrices of the natural modes and constraint
boundaries on the rigid-body motion ; i.e, how the natural modes and constraint boundaries
affect the rigid dynamics.

If damping is taken into account, the damping matrix [D] may be partitioned in the same
way as the mass and stiffness matrices:

[
D̂
]

=

D̂nn D̂ne D̂nr

D̂en D̂ee D̂er

D̂rn D̂re D̂rr

 (4.30)

In general, all of the submatrices are not null as in the case of the mass matrix. However,
if all damping forces are internal, then rigid body motions are not damped and in this case
the third row and the third column of Eq. (4.30) are null matrices [Hurty 65]. In this case,
Eq. (4.29) is written with viscous damping as:
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(4.31)

Equation (4.31) is the final form of the EOM transformed with the Hurty’s Method. This
equation shows a clear distinction between the rigid body motion, the redundant constraint
motion and the fixed-constraint modes. Since the rigid-body motion’s contribution to the
stiffness matrix has been uncoupled, it is easy to establish a relation between the intercon-
nection loads and transmitted accelerations, as desired in a DP model.

4.3.2 The Craig-Bampton’s Method

The Craig-Bampton’s Method [Craig 68] is a simplification of the Hurty’s Method. It consid-
ers the rigid-body modes and the redundant-constraint modes as a single block, simplifying
the transformation process. Following the dynamic substructuring explained in [Craig 68],
the set of the substructure’s DOF, noted as {q} can be partitioned in two sets: interfaced or
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supported boundary nodes (j index) and the interior elastic nodes (i index). Therefore the
corresponding dynamic matrices vectors can be rewritten in this case as follows:

{
q
}

=
{
qi
qj

} {
F
}

=
{
Fi
Fj

} [
K
]

=
[
Kii Kij

KT
ij Kjj

] [
M
]

=
[
Mii Mij

MT
ij Mjj

]
(4.32)

The Craig-Bampton transformation transforms the set of elastic physical coordinates {qi}
to a set of modal coordinates {ηm} as in the Hurty’s method. The set of physical coordinates
{q} is transformed to a hybrid set of physical coordinates at the interface, {qj}, and modal
coordinates at the interior, {ηm}, as stated in Eq. (4.33). Thus, the coordinate transformation
can be written as:

{
q
}

=
{
qi
qj

}
=
[
φij ϕim
I 0

]{
qj
ηm

}
=
[
Ψ
]{ qj

ηm

}
(4.33)

with the Craig-Bampton Transformation [Ψ] which can be partitioned as:

[
Ψ
]

=
[
Φj Φm

]
; Φj =

[
φij
I

]
Φm =

[
ϕim

0

]
(4.34)

where [Φj ] is usually referred to as the Interface Node Functions and [Φm] to as the Fixed
Base Mode Shapes [Young 00]. These modes are similar to the ones employed in the Hurty’s
method but with the difference that this time there is no distinction between rigid-body
modes and fixed-constraint modes:

• The Interface Node Functions, [Φj ], where [φij ] is the Static Constraint Modes Matrix,
relate physical displacements at the interface, {qj}, to physical displacements of the
elastic degrees of freedom, {qi}. It describes the static response of the substructure
to excitation coming from neighbouring substructures through the interface degrees
of freedom. It can be obtained by the following expression, obtained with the static
problem of Eq. (4.1): [

φij

]
= −K−1

ii Kij (4.35)

Rigid modes are embedded in these functions. Thus, for a substructure with an isostatic
interface (exactly 6 degrees of freedom) the Static Constraint Modes Matrix will lapse
into the rigid modes matrix at the interface point.

• The Fixed Base Mode Shapes, [Φm], with [ϕim] relating the modal responses {ηm} to
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the physical displacements of the elastic degrees of freedom {qi}. They have the same
meaning as the fixed-constraint modes in the Hurty’s method. They are obtained from
the equations of motion with the interface degrees of freedom (qj = 0) constrained and
with no force acting in the interior points (Fi = 0):

[
Kii

] [
ϕim

]
= ω2

[
Mii

] [
ϕim

]
(4.36)

Solving the substructure eigenvalues ω2 and mode shapes [ϕim] the transformation
of physical displacements to modal responses is accomplished by the relation {qi} =
[Φij ]{qj}+ [ϕim]{ηm}.

The Craig-Bampton method rewrites the substructure motion in Eq. (4.17) from the set
of physical coordinates to a set of coordinates consisting of physical coordinates of physical
interface points and modal or generalized coordinates, so the equation of motion of a linear
substructure is:

[
Mii Mij

MT
ij Mjj

]{
q̈i
q̈j

}
+
[
Kii Kij

KT
ij Kjj

]{
qi
qj

}
=
{
Fi
Fj

}
(4.37)

Equation (4.37) can be rewritten using the Craig-Bampton Transformation Matrix Ψ
and obtaining a new linear system in terms of the physical boundary displacements qj and
generalized coordinates ηm. Therefore, introducing (4.33) in Eq. (4.37), pre-multiplying by
ΨT the equation becomes:

[
M̄jj M̄jm

M̄T
jm mm

]{
q̈j
η̈m

}
+
[
K̄jj 0
0 km

]{
qj
ηm

}
=
{
φTijFi + Fj
ϕTimFi

}
(4.38)

Equation (4.38) decouples the interior elastic nodes stiffness contribution from the inter-
face nodes stiffness contribution, which is useful for establishing an acceleration-load transfer
between boundaries. This decoupling is similar to the one expressed in Eq. (4.31) by the
Hurty’s Method, but in this case interface nodes contain the rigid body motion and the
redundant constraint motion.

4.3.3 Imbert’s Method or Effective Mass Method

The Imbert’s Method has been the first component modes technique used in automatic control
modeling [Imbert 79, Alazard 08]. It can be considered as a simplification of either the Craig-
Bampton’s Method or the Hurty’s Method. In this case the interface node functions, [Φj ],
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only consider the isostatic case (three degrees of freedom for a 2D problem, six degrees of
freedom for a 3D problem) the static constraint modes matrix [φij ] lapses into the rigid modes
matrix at the connection point, making j = r, what leads to the following rigid body modes:

[
φir
]

= −K−1
ii Kir (4.39)

With the same process as in the Craig-Bampton’s Method in Sec 4.3.2, the EOM can be
partitioned in rigid body DOF and interior DOF:

[
Mii Mir

MT
ir Mrr

]{
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}
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]{
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}
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}
(4.40)

Equation (4.40) is rewritten using the Imbert Transformation Matrix [Ψ] (with the same
form as the Craig-Bampton’s one but with using [φir] instead) and obtaining a new linear
system in terms of the physical boundary displacements associated to the rigid body motion,
{qr}, and generalized coordinates {ηm}. Therefore, introducing Eq. (4.33) in Eq. (4.40),
pre-multiplying by [ΨT ] the equation becomes:

[
M̄rr M̄rm

M̄T
rm mm

]{
q̈r
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}
+
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0 km
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ηm

}
=
{
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}
(4.41)

In this case the resulting term [Kjj ] = [Krr] is null for the same reasons explained in Sec
4.3.1. With this formulation, only interactions between the rigid body motion and the interior
body motion can be analyzed, since the redundant constraint motion is not considered in this
method.

4.3.4 EOM’s Transformations Discussion

Three component modes synthesis techniques using fixed-interface modes for substructure
coupling have been presented throughout this section: the Hurty’s Method, the Craig -
Bampton’s Method and the Imbert’s Method. In this section, the three transformations are
evaluated in order to choose the most suitable one for flexible substructure model derivation.

The Imbert’s Method has been the most used EOM form for flexible substructure mod-
eling until now. The studies [Alazard 08, Guy 14] have been based on this form of EOM’s
transformation in order to evaluate the loads of a flexible appendage connected to a central
rigid body. It offers means for the parameterization of the substructure since the transfor-
mation shows the substructure’s rigid body matrix [Mrr] and the natural frequencies [km].
However, this kind of transformation only allows the assembly of FMS in star-like structures
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or chain-like structures where only the last appendage can be flexible. Indeed, redundant con-
straint motion is not taken into account. As this study aims at assembling FMS with flexible
substructures in chain-like structure, this transformation is not suitable for a DP form.

The Craig-Bampton’s Method is largely used in FE substructuring techniques [Craig Jr 00]
since it takes into account the physical displacements of the interface for both the isostatic
and not-isostatic constraints. Nevertheless, the embedding of the rigid modes in the Interface
Nodes Functions [Φj ] makes more difficult the task of distinguishing the rigid body motion
from the redundant constraint motion. This formulation also complicates the finding of the
rigid body matrix for parameterization. The interface DOF {qj} are coupled and the resulting
EOM is more difficult to manipulate to build a DP model. An additional manipulation is
needed in order to impose a rigid body constraint among the displacements {qj}, as performed
in [Perez 15a], making the transformation even more tedious.

The Hurty’s Method is the most general approach for EOM transformation. Indeed, all
the previous methods can be derived from it with the pertinent simplifications. In addition,
it offers a clear distinction between the motions that will be assigned to a DP model: rigid
body motion, redundant constraint motion and interior displacements. The stiffness and
damping matrices are decoupled and the rigid-body motion can be transferred from one point
to another without additional manipulation since the transformation naturally includes this
constraint. The rigid body matrix [Mrr], fixed constraint frequencies [Knn] and the kinematic
model from connection point P (parent structure) to connection point C (child structure),
[φer] are accessible for future parameterization in integrated control/structure optimization.

Therefore, the Hurty’s Method is the EOM’s transformation which will be used for the
FMS modeling proposed in this study. The choice is based on the trade-off between its
generality and the possibilities of casting the uncoupled equations in a DP form. This form
of EOM is used in order to derive the state-space representation of flexible substructures in
Chap. 5.

This chapter has established the framework for FMS modeling. The kinematic descrip-
tion is done under the floating frame approach hypothesis. The interconnection among
substructures (overlapping) is performed with the double-port approach, which allows
the consideration of different constraints (boundary conditions) in the substructure using
acceleration-load transfer. In order to find the most suitable EOM form for the double-
port model, different component modes synthesis techniques have been pondered and the
Hurty’s Method has been selected. The following chapter uses the concepts developed
here to explain the FMS modeling technique.



Chapter 5
Modeling of Flexible Multibody Structures
for Integrated Control/Structure Design

“There are no rules, no models; rather, there are no rules other than the general laws of Nature.”
- Victor Hugo
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With the modeling framework established in Chap. 4, the modeling technique for FMS
is developed. FMS could have star-like or chain-like substructures, revolute joints or
embedded piezoelectric actuators. A set of generic flexible substructure models are de-
veloped in order to provide all the required tools for automatic control and integrated
design of FMS. These models conform the Two-Input Two-Output Port (TITOP) mod-
eling technique, which allows the assembly of FMS for automatic linear control purposes.
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The properties of the partitioned equations of motion in Eq. (4.31), obtained in Sec. 4.3,
can be used for simple, accurate and intuitive modeling of FMS. The advantages of this

transformation are maximized when they are applied to build the model of a substructure
with one connection point or two connection points with other substructures. More connection
points are possible to model as well, but this case is not illustrated in this study since the
connection complexity obliges to manipulate the FE model itself and the problem becomes
rather a structural problem than a control modeling problem.

The different usages of Hurty’s EOM are explained in this chapter. First, the case of one
connection point is explained. Second, the case of two connection points is addressed. Third,
the modeling case of a revolute joint at a connection point is described. Next, the method is
expanded to take into account piezoelectric effects, allowing the modeling of piezo-actuated
substructures. The parameterization possibilities are explained as well in order to gauge the
potential of this modeling technique for integrated control/structure design. To conclude the
chapter, the assembly technique of FMS is described.

5.1 One Connection Point

In this section, the modeling of a flexible substructure connected to another structure through
one connection point is explained. As shown in Fig. 5.1, let us consider a flexible body
(substructure) A linked to the parent structure P at the point P . It is assumed that the only
external loads applied to A are the interactions with P at point P .

The problem is thus how to consider the coupling between structures P and A. As stated
in Sec. 4.2, the coupling is made by an exchange between loads and accelerations through
the connection point. Therefore, the coupling transfer between P and A is expressed as
an acceleration-load transfer through the connection point P . Equation (4.31) offers the
advantage of casting the FE Model of substructure A in the state-space representation using
accelerations and loads as inputs and outputs through the boundaries. This is possible thanks
to the decoupling of the stiffness matrix when CMS transformation is performed. In the case of
one connection point, there are no redundant constraint displacements besides the rigid-body
displacements. This implies that the rigid body displacements (translations and rotations)
are directly associated with point P , which constraints the substructure A to be always fixed
to P, sharing the rigid-body motions of the ensemble. As there are not redundant constraint
displacements, second row and second column of Eq. (4.31) can be removed leading to:

[
M̂nn M̂nr

M̂rn M̂rr

]{
η̈n
η̈r

}
+
[
D̂nn 0

0 0

]{
η̇n
η̇r

}
+
[
K̂nn 0

0 0

]{
ηn
ηr

}
=
{

0
F̃r

}
(5.1)

The coupling is established as an exchange acceleration-load through the connection point:

{
FA/P,P

}
=
[
GAP (s)

] {
q̈P
}

(5.2)
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Figure 5.1: Substruture A linked to structure P

where {FA/P,P } is the load transmitted to the structure P by the appendage A, [GAP (s)]
is the linear model of the appendage A when connected at point P , and {q̈P } the acceleration
of the displacements, {ẍP }, and rotations, {θ̈P }, at point P . In the 3D case, where 6 degrees
of freedom are needed to describe rigid body motion, [GAP (s)] is a 6 × 6 transfer matrix (i.e
r = 6). The loads experienced by A due to adjacent connections, {F̃r}, are in the opposite
direction of the loads experienced by P, {FA/P,P }. Identifying terms of Eq. (5.2) with Eq.
(5.1):

{
F̃r
}

=
{
−FA/P,P

}
;
{
η̈r
}

=
{
q̈P
}

;
[
M̂rn

]
=
[
LTP

]
;
[
M̂rr

]
=
[
JAP

]
(5.3)

In the case of one connection point, normalized rigid-body accelerations are equal to the
acceleration at point P . The matrix [LP ] is the modal participation matrix of natural modes
at point P ; i.e, it expresses how the motion of P is affected by the natural modes of vibration
and vice-versa. The square matrix [JAP ] is the direct dynamic model, at point P , of the
substructure A assumed rigid [Alazard 15] taking the following form for r = 6:

[
JAP

]
=
[
τTAP

] [ mAI3 03
03 IAA

] [
τAP

]
(5.4)

where mA is the substructure’s total mass, IAA is the substructure’s total inertia at its
mass center and matrix [τAP ] is the kinematic model between the mass center of substructure
A, point A, and the connection point P , written as:

[
τAP

]
=
[
I3 (∗AP )
03 I3

]
(5.5)

with [(∗AP )] being the skew-symmetric matrix associated to the vector {AP}. Consid-
ering that the natural vibration modes are normalized with respect to the mass matrix, the
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Figure 5.2: Block diagram representation of the connections of appendage A, projected in the
frame Ra

submatrix [M̂nn] becomes the identity matrix, [K̂nn] is a diagonal matrix containing the nat-
ural modes (fixed-constraint natural frequencies squared, ω2

n) and [D̂nn] a diagonal matrix
expressed with a damping ratio ξn. Consequently, the linear model of the appendage A reads:



{
η̇n
η̈n

}
=
[

0n In
−ω2

nIn −2ωnξnIn

]{
ηn
η̇n

}
+
[

0
−LP

]{
q̈P
}

[
FA/P,P

]
= LTP

[
−ω2

nIn −2ωnξnIn
]{ηn

η̇n

}
−
[
JAP − LTPLP

]
︸ ︷︷ ︸

JAP0

{
q̈P
} (5.6)

The physics lying within Eq. (5.6) can be interpreted from the control domain point of
view. The rigid-body displacements of the appendage A are transmitted by its connection
point P through the whole of the appendage, and that excites the fixed-boundary natural
modes (the modes obtained when clamping the appendage at point P ) through the modal
participation matrix [LP ]. This natural modes produce a load transmitted to substructure
P modifying the load that appendage A will induce to P, which is the residual mass of
the appendage [JAP0

] times the acceleration at point P . This can be seen schematically as
the rigid-body displacement of appendage A perturbed with a feedback of its own natural
vibration modes as shown in Fig. 5.2.

The model in Eq. (5.6) is commonly used in space engineering to connect a flexible ap-
pendage to a rigid body considered as the main hub [Alazard 08]. Nevertheless, the model
does not take into account what happens if substructure A is connected to another substruc-
ture at the opposite end, since there is no information about its displacement. In Sec. 5.2 an
approach is proposed for the case of two connection points, which is sufficient for modeling
chain-like substructures.
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Figure 5.3: Substruture A linked to structure P and substructure C

5.2 Two Connection Points

In this section, the modeling of a substructure connected to two different structures through
two connection points, one for each structure, is explained. As shown in Fig. 5.3, the flexible
body (substructure) A is linked to the parent structure P at the point P and to a child
substructure C at the point C. It is assumed that the only external loads applied to A are
the interactions with P at point P and with C at point C.

As seen in Sec. 5.1, the main problem is how to consider the coupling between sub-
structures P, A and C. Again, the overlapping between substructures is expressed as an
acceleration-load transfer through the common boundaries under the framework of a DP
model seen in Sec. 4.2. In this case, both points, P and C, suffer an acceleration-load trans-
fer, in such a way that the acceleration is transferred to the next substructure in the chain (C
in this case) and the load is transmitted to the previous substructure in the chain ( the parent
P structure). Therefore the objective is to build a double-port model of the substructure A
such that:

{
q̈C

FA/P,P

}
=
[
GAP,C(s)

]{FC/A,C
q̈P

}
(5.7)

As there are only two connection points, the assignment of degrees of freedom is simple:
rigid-body displacements to connection point P and the redundant constraint displacements
to connection point C. Thus the accelerations read:

{q̈P } = {η̈r}; {q̈C} = {η̈e}+ [φer]{η̈r} (5.8)

where [φer] is described in Eq. (4.26) and it has the same form as the kinematic model
between connection point P and connection point C, [τPC ]. Equation (5.8) implies that the
rigid motion is supported by point P and the constrained motion of connection point C is a
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result of the rigid body motion in P transported to point C ([φer]{η̈r}) plus the constrained
motion due to flexibility ({η̈e}). In the same way, loads are received and transmitted by
appendage A with the following directions:

FA/P,P = −F̃r
FC/A,C = F̃e

(5.9)

Using the relations given in Eq. (5.8) and (5.9) in combination with Eq. (4.31), a state-
space representation can be obtained for the substructure A:




η̇n
η̇e
η̈n
η̈e

 = A


ηn
ηe
η̇n
η̇e

+B

{
FC/A,C
q̈P

}

{
q̈C

FA/P,P

}
= C


ηn
ηe
η̇n
η̇e

+ (D +Dδ)
{
FC/A,C
q̈P

} (5.10)

where A, B, C, D andDδ are the short hand notation of the following state-space matrices:

A =
[

0n+e In+e
−M̂−1

Q K̂Q −M̂−1
Q D̂Q

]
(5.11)

B =

 0n+e,e+r

M̂−1
Q

[
0ne −M̂nr

Iee −M̂er

] (5.12)

C =

[0en Iee
] [
−M̂−1

Q K̂Q −M̂−1
Q D̂Q

][
M̂rn M̂re

] [
M̂−1
Q K̂Q M̂−1

Q D̂Q

]  (5.13)
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q̈P

q̈C

FA/P,P

[
GA

P,C(s)
]

FC/A,C

Figure 5.4: Block diagram of the Two-Input Two-Output Port (TITOP) Model

D =


[
0en Iee

]
M̂−1
Q

[
0ne −M̂nr

Iee −M̂er

]

−
[
M̂rn M̂re

]
M̂−1
Q

[
0ne −M̂nr

Iee −M̂er

]
 (5.14)

with

M̂Q =
[
M̂nn M̂ne

M̂en M̂ee

]
; K̂Q =

[
K̂nn 0

0 K̂ee

]
;

D̂Q =
[
D̂nn D̂ne

D̂en D̂ee

]
; Dδ =

[
0er φer
φTer −M̂rr

]
;

(5.15)

Equation (5.10) with Eqs. (5.11), (5.12), (5.13), (5.14) and (5.15) form the double-port
model,

[
GAP,C(s)

]
, of the flexible substructure A in chain-like assembly, called Two-Input

Two-Output Port (TITOP) model. This model allows to interconnect different flexible
substructures in chain-like assembly taking into account flexible motions. A simplified scheme
of the TITOP model is shown in Fig. 5.4. In the six degrees of freedom case, [GAP,C(s)], of
the flexible substructure A is a 12×12 state-space model (that is, r = 6, e = 6). The TITOP
model explained here, being derived from the Hurty’s Method, uses fixed-constraint natural
modes. A different type TITOP model, using cantilevered modes and the mode shapes at
connection point C, is derived in [Alazard 15], showing another form of building TITOP
models. The transformation of the FE equations and the computation of the state-space
model can be easily encoded in any programming language, as shown in Sec. D.2, where a
matlab function performing this task is described.

The physical interpretation of Eq. (5.10) is similar to the one connection point case. In
this case rigid-body displacements of the appendage A are transmitted by its connection point
P through the whole of the appendage, and this excites the fixed-boundary natural modes
(the modes obtained when clamping the appendage at point P and C) through the modal
participation matrices, [M̂rn] and [M̂re], and thus the constraint point C. These natural
modes produce a load transmitted to substructure P modifying the load that appendage A
will induce to P, which depends on the load received at point C, {FC/A,C}, the acceleration
received at point P , {q̈P } and the natural modes. It can be observed that the rigid-body
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matrix of substructure A, [M̂rr], influences the transfer as well.

As stated in Sec. 4.2, the DP form allows the consideration of different boundary condi-
tions on the substructures by inversion of the upper or lower channels. By setting inputs to 0,
[GAP,C(s)] represents the clamped (at P )- free (at C) model of A. In the same way, [GAP,C(s)]−1

represents the free (at P ) - clamped (at C) model of A. Both channels are invertible and
thus the following equations

[
GAP,C(s)

]−1u
→
{
FC/A,C
FA/P,P

}
=
[
GAP,C(s)

]−1u
{
q̈C
q̈P

}
(5.16)

[
GAP,C(s)

]−1l
→
{
q̈C
q̈P

}
=
[
GAP,C(s)

]−1l
{
FC/A,C
FA/P,P

}
(5.17)

can be used to take into account boundary conditions at P or C. Indexes u and l are
used to describe the “upper” channel and “lower” channel respectively. It should be noted
that removing connection point C the same model as for the one connection point case is
found. Thus Eqs. (5.16) and (5.17) correspond to the clamped-clamped and free-free models,
respectively.

The TITOP model of a flexible substructure is the most general model for FMS assembly.
Given the FE model of a substructure and selecting the corresponding nodes for connection
to other substructures, a TITOP model can be derived for control purposes. In the following
sections extensions of the TITOP technique are presented for the revolute joint modeling,
piezoelectric coupling and substructure’s parameterization. A wide variety of examples using
this model are shown in Chap. 6.

5.3 Extension to Revolute joint

The double-port approach allows taking into account constraints at the connection points
by simply restricting or releasing degrees of freedom. Taking advantage of this property, a
revolute joint at the connection point P between the bodies A and P, as depicted in Fig. 5.5,
can be modeled for the two connection point case.

For this purpose, the double port model [GAP,C(s)]Ra of the body A projected in its asso-
ciated frame Ra must be augmented. Let {ea} = {xeayeazea}TRa be a unit vector along the
revolute joint axis, then:


{

q̈C
FA/P,P

}
Ra

trj,P

 =
[
I12
Ea

] [
GAP,C(s)

]
Ra

[
I12 ETa

]
︸ ︷︷ ︸[

HAP,C(s)
]
Ra


{
FC/A,C
q̈P

}
Ra

α̈

 (5.18)
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Figure 5.5: Appendage A connected to P through a revolute joint along ~ea

with the selection matrix:

Ea = −
[
01×9 xea yea zea

]
(5.19)

where [HAP,C(s)]Ra is the double port model augmented with a 13th input: α̈, the angular
acceleration inside the revolute joint and a 13th output: trj,P the torque applied by an
actuator located inside the revolute joint. Therefore, the state-space model [HAP,C(s)]Ra is
the Two-Input Two-Output Port (TITOP) model of a flexible substructure with a revolute
joint at the connection point P .

This augmentation allows to release the desired degrees of freedom (setting trj,P = 0) or
to take into account the model K(s) of a local mechanism inside an actuated revolute joint
as it can be seen in Fig. 5.6. In this case, the system [HAP,C(s)]Ra has to be inverted between
its 13th input and its 13th output, defining a new inversion operation: [HAP,C(s)]−1p

Ra , the
operation corresponding to the inversion of the 13-th input output channel of [HAP,C(s)]Ra
such that:


{

q̈C
FA/P,P

}
Ra

α̈

 =
[
HAP,C(s)

]−1p

Ra


{
FC/A,C
q̈P

}
Ra

trj,P

 (5.20)

The effect of K(s) on the boundary condition at point P is strictly taken into account. An
application of this modeling extension is shown in Chap. 6 for the case of a two-link flexible
manipulator driven by actuators at its joints. It should be highlighted that the obtained
TITOP model for the revolute joint is valid for small variations around a given configuration
of the revolute joint.
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[
HAP,C(s)

]−1p
Ra

q̈P

FC/A,C

α̇α̈ αtrj,P 1
s

1
s

K(s)

q̈C

FA/P,P

Figure 5.6: Local mechanism model K(s) in the double port model of a body A

5.4 Extension to Piezoelectric Actuators

The TITOP modeling technique explained in the precedent sections can be expanded to
the case in which the flexible substructure presents an embedded piezoelectric material for
vibration control. As stated in [IEEE 88], the constitutive linear equations of an element
piezoelectric material read:

{T} = [cE ]{S} − [e]T {E} (5.21)

{D} = [e]{S}+ [εS ]{E} (5.22)

where {T} is the stress vector, {S} the deformation vector,{E} the electric field, {D} the
electric displacement, [c] the elasticity constants matrix, [ε] the dielectric constants matrix,
[e] the piezoelectric constants, with superscripts E , S and T indicating static conditions for
E, S and T respectively.

The dynamic equations of a piezoelectric continuum can be discretized in elements and
written in the finite element formulation as follows [Piefort 01]:

[Mxx]{ẍ}+ [Kxx]{x}+ [Kxφ]{φ} = {f} (5.23)

[Kφx]{x}+ [Kφφ]{φ} = {γ} (5.24)

where the element coordinates {x}, the applied voltage {φ}, the electric charge {γ} and
external forces {f} are related through the element mass matrix, [Mxx], the element stiffness
matrix, [Kxx], the piezoelectric coupling matrix [Kxφ] and the capacitance matrix [Kφφ]. Upon
carrying out the assembly of each piezoelectric element, we get the global system of equations:

[Mqq]{q̈}+ [Kqq]{q}+ [Kqv]{v} = {F} (5.25)
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[Kvq]{q}+ [Kvv]{v} = {g} (5.26)

where the global coordinates {q}, the global applied voltage {v}, the electric charge {g}
and external forces {F} are now related through the global mass matrix, [Mqq], the global
stiffness matrix, [Kqq], the piezoelectric coupling matrix [Kqv] = [Kvq]T and the capacitance
matrix [Kvv].

In order to obtain the TITOP model of the piezo-actuated substructure, the global coor-
dinates {q} are then partitioned into three main sets: rigid-body coordinates, r, redundant
boundary coordinates, e, and fixed-interface normal modes, n. Applying this division, Eqs.
(5.25) and (5.26) result:

Mnn Mne Mnr

Men Mee Mer

Mrn Mre Mrr


qq


q̈n
q̈e
q̈r

+

Knn Kne Knr

Ken Kee Ker

Krn Kre Krr


qq


qn
qe
qr

+

Knv

Kev

Krv

 {v} =


Fn

Fe + F̃e
Fr + F̃r

 (5.27)

[
Kvn Kve Kvr

]
qn
qe
qr

+ [Kvv]{v} = {Q} (5.28)

where [M ], [K], {q} and {F} have been partitioned into their contributions to rigid-body,
redundant boundaries and fixed-boundary displacements. The “tilde” load term, {F̃r} and
{F̃e}, denotes the force resulting from the connection to adjacent structures at the boundary
points. Proceeding like in the Hurty’s Method, Eq. (4.21) is substituted into Eqs. (5.27) and
(5.28), which are pre-multiplied by [ΦT ]. Considering that neither interior forces nor external
forces apply (Fn = Fe = Fr = 0), Eq. (5.27) yields:

M̂nn M̂ne M̂nr

M̂en M̂ee M̂er

M̂rn M̂re M̂rr


ηη


η̈n
η̈e
η̈r

+

K̂nn 0ne 0nr
0en K̂ee 0er
0rn 0re 0rr


ηη


ηn
ηe
ηr

+

K̂nv

K̂ev

K̂rv

 {v} =


0
F̃e

F̃r + φTerF̃e


(5.29)

[
K̂nv K̂ev K̂rv

]
ηn
ηe
ηr

+ [Kvv]
{
v
}

= {G} (5.30)

with the new coupling matrix coefficients:

K̂nv = φnnKnv (5.31)
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Figure 5.7: Illustration of a generic substructure with bonded piezoelectric material

K̂ev = Kev + φenKnv (5.32)

K̂rv = Krv + φreKev + φrnKnv (5.33)

Equations (5.29) and (5.30) are the most generalized expression for a FE model of a
piezoelectric component transformed through the Hurty’s method. No previous studies have
been found regarding the application of a component modes synthesis technique to the FE
EOM of a piezoelectric material. This is probably the first time that the Hurty’s method is
applied to the FE model of a piezoelectric component.

In order to derive the state-space representation, a substructure as the one shown in Fig.
5.7 is considered. The flexible piezoelectric component A is linked to the parent structure
P at the point P and to a child substructure C at the point C. It is assumed that the only
external loads applied to A are the interactions with P at point P and with C at point C, as
hypothesis on Eq. (5.29) states. Voltage v can be applied to the piezo in order to provoke a
electric field, and the electric charge g is an available measurement.

The main problem is how to consider the electro-mechanical coupling between P, A, C
and electric states. The mechanical overlapping between substructures is expressed as an
acceleration-load transfer through the common boundaries, always respecting the DP form.
With this approach, both points, P and C, suffer an acceleration-load transfer, in such a way
that the acceleration is transferred to the next substructure in the chain (C in this case) and
the load is transmitted to the previous substructure in the chain ( the parent P structure).
The existing electro-mechanical coupling between loads-accelerations and voltage-charge is
considered through the augmentation of the classic double-port model with an additional
electric input, the applied voltage v, and with an additional electric output, the electric
charge, g, such that:


q̈C

FA/P,P
g

 =
[
GAP,C(s)

]
FC/A,C
q̈P
v

 (5.34)

Therefore Eq. (5.34) relates the accelerations suffered at connection point P , loads at con-
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nection point C and the applied voltage v to the acceleration at connection point C, transmit-
ted force to the previous substructure P and the measured electric charge g. An assignment of
the different degrees of freedom is performed in order to distribute the acceleration-load trans-
fer: rigid-body displacements are those of connection point P and the redundant constraint
displacements those of connection point C. Thus the accelerations read:

q̈P = η̈r

q̈C = η̈e + φerη̈r
(5.35)

Equation (5.35) implies that the rigid motion is supported by point P and the constrained
motion of connection point C is a result of the rigid body motion in P transported to point
C (φerη̈r) plus the constrained motion due to flexibility (η̈e).

In the same way, loads are received and transmitted by appendage A with the following
directions:

FA/P,P = −F̃r
FC/A,C = F̃e

(5.36)

Using the relations given in Eqs. (5.35) and (5.36) in combination with Eq. (5.29), a
state-space representation can be obtained for the piezoelectric component A:




η̇n
η̇e
η̈n
η̈e

 = A


ηn
ηe
η̇n
η̇e

+B


FC/A,C
q̈P
v




q̈C
FA/P,P
gc

 = C


ηn
ηe
η̇n
η̇e

+ (D +Dδ)


FC/A,C
q̈P
v


(5.37)

where A, B, C, D andDδ are the short hand notation of the following state-space matrices:

A =
[

0n+e In+e
−M̂−1

Q K̂Q −M̂−1
Q D̂Q

]
(5.38)
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B =

 0n+e,e+r+v

M̂−1
Q

[
0ne −M̂nr −K̂nv

Iee −M̂er −K̂ev

] (5.39)

C =


[
0en Iee

] [
−M̂−1

Q K̂Q −M̂−1
Q D̂Q

][
M̂rn M̂re

] [
M̂−1
Q K̂Q M̂−1

Q D̂Q

][
K̂vn K̂ve

] [
In+e,n+e 0n+e,n+e

]
 (5.40)

D =



[
0en Iee

]
M̂−1
Q

[
0ne −M̂nr −K̂nv

Iee −M̂er −K̂ev

]
[
M̂rn M̂re

]
M̂−1
Q

[
0ne −M̂nr −K̂nv

Iee −M̂er −K̂ev

]
0ve 0vr Kvv

 (5.41)

with

M̂Q =
[
M̂nn M̂ne

M̂en M̂ee

]
; K̂Q =

[
K̂nn 0ne
0en K̂ee

]
;

D̂Q =
[
D̂nn 0ne
0en D̂ee

]
; Dδ =

 0ee φer 0ev
−φTer M̂rr K̂rv

0ve 0vr 0vv

 ;
(5.42)

Equation (5.37) with Eqs. (5.38), (5.39), (5.40), (5.41) and (5.42) form the double-port
model,

[
GAP,C(s)

]
, of the flexible piezoelectric component A in chain-like assembly, called

actuated Two-Input Two-Output Port (TITOP) model. This model allows to inter-
connect different flexible substructures in chain-like assembly taking into account flexible
motions. A simplified scheme of the TITOP model is shown in Fig. 5.8. In the 6 degrees of
freedom case with one piezoelectric strip,

[
GAP,C(s)

]
, of the flexible substructure A is a 13×13

state-space model (that is, r = 6, v = 1, e = 6, g = 1). It should be noticed that the measured
charge is denoted gc and not g because only relative displacement between connection point
P and connection point C is measured for the sake of input/output simplicity.

The physical interpretation of Eq. (5.37) is as follows. The rigid-body displacements of the
appendage A are transmitted by its connection point P through the whole of the appendage,
and this excites the fixed-boundary natural modes (the modes obtained when clamping the
appendage at point P and C) through the modal participation matrices, [M̂rn] and [M̂re], and
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GA
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q̈Cq̈P
Fext/piezo,CFpiezo/ext,P

Figure 5.8: Block diagram of TITOP modeling of a substructure actuated with piezoelectric
materials

thus the constraint point C. These natural modes produce a load transmitted to substructure
P modifying the load that appendage A will induce to P, which depends on the load received
at point C, FC/A,C , the acceleration received at point P , {q̈P } and the natural modes. In
addition, voltage v modifies these transfers by increasing or reducing the transferred loads at
P and C, and the measured electric charge gc responds to displacements changes either by
mechanical interaction (through load application) or by electric field application (voltage).
This behavior is illustrated in Chap. 6 with the modeling of flexible beam with bonded
piezoelectric material.

5.5 Implementation of Parametric Variations

This section underlines another attribute of the TITOP model which relates it to integrated
control/structure design. The model can be parameterized as a function of structural con-
figuration parameters open to vary along an optimization process or uncertainty analysis.
For a structure with varying configuration or varying mass and stiffness properties, like most
space structures, the TITOP modeling technique may be especially efficient since it can take
into account such variations (see [Guy 14] as an illustrative example). It can also be used
for structural/control integrated design allowing structural sizing parameters to be simulta-
neously optimized with the attitude control gains [Murali 15].

The explicit form of the EOM transformed with the Hurty’s Method allows the identifica-
tion of sensitive parameters of optimization/ uncertainty analysis such as the mass, position
of the mass center, geometric dimensions, frequency modes, damping coefficients, etc. The
identification is followed by the creation of a LFT form of the TITOP model in order to use
it either for integrated design or for uncertainty analysis. The LFT form is converted into a
set of tuneable parameters for integrated control/structure design.

5.5.1 Localization of Varying Parameters

Physical parameters are accessible in the TITOP model through the rigid-body matrix, de-
noted as [M̂rr] or [JAP ] in Eq. (5.4). Indeed, total system mass, mA, the substructure’s inertia,
IAA , and the center of mass’ position, {AP}, can be parameterized by accessing to this matrix:
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[
M̂rr

]
=
[
JAP

]
=
[
τTAP

] [ mAI3 03
03 IAA

] [
τAP

]
=
[

mAI3 mA(∗AP )
−mA(∗AP ) IAP

]
(5.43)

where IAP = IAA − mA(∗AP )2 is the appendage’s inertia at connection point P . These
variations change the behavior of the direct feed-through matrix of the TITOP model, Dδ,
so the variations are transmitted across the whole FMS.

Matrix [φer] reflects the geometric properties of the appendage, since it transports the
kinematics from point P to C. It is strictly equivalent to the transport kinematic matrix
[τPC ]T , but in FE notation. The parameter which can be varied is the relative position from
the connection point P to the connection point C, which can be seen as the length of a mast,
for example.

[
φre

]
=
[
τP C

]
=
[
I3 (∗PC)
03 I3

]
=



1 0 0 0 −(zC − zP ) yP − yC

0 1 0 zC − zP 0 −(xC − xP )
0 0 1 −(yP − yC) xC − xP 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (5.44)

Natural modes can be parameterized by accessing to matrix [K̂nn] in the two-connection-
point case or [Inωn] in the one-connection-point case. Usually, after applying the Hurty’s
method transformation, the modes appear diagonally ordered from the lowest frequency to
the highest one. Lowest frequency modes are the most open to be varied since they are the
ones that may interfere with the controller’s bandwidth. This is also useful for frequency mode
truncation: the highest flexible modes can be removed for model simplification when their
associated mass function can be neglected [Imbert 79]. Furthermore, if the natural modes
have an explicit equation which relates its value to other geometric or mass parameters, it is
straightforward to vary the natural modes as a function of those parameters. For example, the
natural fixed modes of a cantilevered square plate of side a and thickness h are well known:

ωn = βn
a2

√
Eh2

12(1− ν2)ρ (5.45)

So if the size of a solar array has to be varied with a value of δa in an integrated con-
trol/structure design and its influence on the first flexible mode has to be taken into account,
the varied frequency can be written as follows:

ω1(δa) = ω1
a2

(a+ δa)2 (5.46)
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Figure 5.9: The TITOP LFR model, which takes into account parametric variations inside the
block ∆

Equation (5.47) shows the simplest way to include parametric variations in already known
data such as the frequency modes. From this it is deducted that it is not absolutely necessary
to know the exact expression of the flexible modes. For example, if modes are known to vary
proportionally to the root of the appendage’s cross section inertia Iz (such in the case of a
mast), the insertion of the parameter variation will read as follows:

ω1(δI) = ω1

√
Iz√

Iz + δI
(5.47)

The damping coefficients can also be parameterized when the values across the diagonal of
matrix [D̂nn] are managed. The damping coefficients associated to each flexible mode appear
in the form of 2ξnωn. Adding variations to ξn will take into account damping variation
through [D̂nn]. However, if flexible modes are varied through [K̂nn], variations must be added
to [D̂nn] as well in order to properly variate the system.

It can be noticed that not all parameters are easily accessible in the TITOP formulation,
as for example the cross-section area or the Young’s modulus. Furthermore, there is no full
parameterization; i.e, it is no possible to know before hand how parameter variations will
affect other submatrices which compose the TITOP model. This is the case of modal partic-
ipation matrices ([M̂rn], [M̂en]) or crossed-stiffness matrix ([K̂ee]). However, for elementary
substructures like a mast or a boom, Murali [Murali 15] proposes the analytic TITOP model
which can be used to obtain a fully parameterized model with length, cross-section inertia,
young modulus, etc. Parameter variations are taken into account at all system levels, guaran-
teeing all the dynamic variations. This model, called superelement and recalled in Appendix
A, is used in Sec. 6.2 for parameter variations of the masts of a rotatory spacecraft.

5.5.2 Obtaining the LFT Model of the Substructure

When a parameter is varied inside the substructure’s TITOP model, either for integrated
design or for uncertainty analysis purposes, the next step is to transform the model into LFT
(Linear Fractional Transformation) form. The TITOP LFT model will then be composed of
a nominal model, without variations, and the ∆ block, which takes into account the model’s
variations. An example is provided for better understanding of the process.

If length L has to be varied to analyze its influence in the FMS, its variation δ can be



74 Chapter 5. Modeling of Flexible Multibody Structures

modelled in the skew symmetric matrix (∗PC) associated with the vector {PC} (see Fig.
5.3) in the following way:

(∗PC)(δ) = (L+ δ)~xa =

0 0 0
0 0 −(L+ δ)
0 L+ δ 0


Ra

= Fl(


0 0 0 0 0
0 0 −L 1 0
0 L 0 0 1
0 0 −1 0 0
0 1 0 0 0

 ,∆) (5.48)

where Fl(N,∆) is the lower Linear Fractional Transformation (LFT) of N by ∆, and
∆ = δI2 [Belcastro 99]. Such a Linear Fractional Representation (LFR) of (∗PC)(δ) can
be propagated in [φcr(δ)] = [τPC(δ)] and in the whole state-space model using standard
functions of robust control theory [Balas 05]. The final LFR model contains the nominal
model, [GAP,C(s)], and the ∆ block, as depicted in Fig. 5.9. Such a formalism of parametric
variations is commonly used in control system theory for sensitivity analysis [Ferreres 99,
Belcastro 99]. Therefore, the variations inside the model are contained in the ∆ block, which
changes the system’s dynamics when the nominal parameters are modified.

5.5.3 Tunable Block Transformation

The ∆ block obtained in Sec. 5.5.2 is used in the literature as a tool for robust analysis (µ-
analysis tools), worst case determination or robust control synthesis. It is a diagonal matrix
containing all the system’s variations, known or unknown.

If these variations cannot be managed, then the problem can be seen as a robust control
problem: uncertainty analysis, robust performance, worst case, etc. However, if variations
are consciously applied to the system, that is, the variations are known, then the problem can
be regarded as an optimization problem: finding the optimal variation which improves the
system’s performance. This is what is called the integrated control/structure design problem.

Therefore, if integrated design is desired, the ∆ block has to be regarded as a set of
tuneable parameters. The ∆ block has to be treated then with different tools, mainly those
provided in [Gahinet 11] where tuneable gains, state-space models and transfer functions
are developed in order to apply structured H∞ schemes to the models. The tuneable block
transformation is then a problem of tools for manipulation, not a conceptual problem.

5.6 TITOP Modeling of Flexible Multibody Systems

The state-space realizations found for FE models transformed with the Hurty’s decompo-
sition in the double-port form serve as elemental bricks for building FMS undergoing small
deflections. Indeed, the one-connection-point TITOP model can be used to model flexible sys-
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Figure 5.10: Example of Flexible Multibody System (FMS)

tems in star-like structures or to end chain-like structures. The two-connection-point TITOP
model can be used to connect every type of chain-like structures between them, taking into
account its flexibility. The revolute joint model can be used to model rotating substructures
of the FMS, such as solar panels or pointing antennae. The piezoelectric model can be used
to take into account the influence of bonded piezoelectric materials along booms or masts in
the substructure’s dynamics. The channels which connect the substructures among them can
be modified to add perturbations to acceleration measurements or load disturbances at the
connection points.

For instance, the FMS shown in Fig. 5.10 can be modeled as different TITOP models in-
teracting among them as depicted in Fig. 5.11. The flexible multibody spacecraft is composed
of a rigid main body or hub in which other appendages are attached such as an antenna, masts
and solar panels. For control purposes, it is useful to choose as inputs the loads applied to the
hub, FG and as outputs the induced accelerations at the hub, {q̈G}, which comprehend the
rigid body motion of the spacecraft. These accelerations are transported to the connection
point Pi (P1 for the antenna connection point, P2 for one of the masts) through the kinematic
model [τPiG] [Alazard 08], where they are transmitted to the TITOP models of the flexible
appendages. For the masts, the masts’ TITOP models transfer the acceleration q̈Mast/SP to
the solar panels and they receive the corresponding connection force FSP/Mast. This transfer
results in a “disturbance” load applied to the hub which is added to FG. Eventually, rotation
matrices [Ri] as the ones explained in Sec. 4.1 can be included in the diagram in order to
change from the hub’s frame to the appendage’s frame.

The TITOP assembly maps the dynamic interactions of the FMS. This is an advantage
at all levels: modeling, control and integrated control design:

• Modeling. The substructures’ TITOP models are linear, self-completed and are ob-
tained with FE data. No additional data other than the substructure’s FE model is
needed. If a substructure is no longer needed, it can be removed from the diagram
and the FMS will be modified accordingly without further analysis of the remaining
substructures. Furthermore, the assembly process lend itself particularly well-suited for
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Figure 5.11: FMS assembly using TITOP models (mast II is not represented for simplicity)

implementation in a graphical programming environment for modeling, simulating or
analyzing multidomain dynamic systems, such as Marthworks Simulink.

• Control. The TITOP scheme of a FMS offers straightforward means for analyzing
centralized or decentralized control schemes. Furthermore, it allows the simulation
of accelerator and force measurements, the introduction of system’s disturbances at
different points of the FMS and to take into account other control mechanisms such as
revolute joints or piezoelectric actuators.

• Integrated Design. The TITOP models can be used independently of the boundary
conditions linking the FMS. In addition, the models can be parameterized in order to
be optimized in an integrated control/structure design.

This chapter has presented the Two-Input Two-Output Port (TITOP) modeling tech-
nique for modeling of FMS in star-like or chain-like configuration. Star-like configurations
can be assembled using one-connection-point TITOP models. Chain-like configurations
are assembled using two-connection-point TITOP models. The models have been ex-
tended to take into account the effect of a revolute joint and a bonded piezoelectric
material, which offers even more possibilities for the modeling of FMS. The next chap-
ter will use these models in a variety of applications so that the utility of the TITOP
modeling technique can be gauged.



Chapter 6
Application and Validation of the TITOP
Technique for the Modeling of Flexible
Multibody Systems

“My powers are ordinary. Only my application brings me success.”
- Isaac Newton
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This section shows the most representative cases of the many different FMS modeling
problems that the TITOP modeling method can solve. Three kinds of FMS modeling
problems are explained: beam-like substructures, a system composed of rigid and flexible
bodies (rotatory flexible spacecraft) and a system with revolute joints (two-link flexible
arm). All problems are validated with respective reference models and in two of them
parameterization is performed.

77



78 Chapter 6. Application and Validation of the TITOP Technique

Once the TITOP modeling framework has been developed in Chaps. 4 and 5, the technique
has been applied to several illustrative examples in order to gauge its potential. Three

different FMS modeling problems are presented within this chapter to estimate the accuracy of
the method when compared to other FMS linear models, non-linear models and parameterized
models.

The first example consists of the application of the TITOP technique to beam-like sub-
structures. These examples aim at showing how the modeling technique can be applied to
one of the most used shapes in structure assembly. Concatenation between several beams in
chain-like assembly is explained and the resulting model is validated with a reference model.
Then, another example using beams with bonded piezoelectric materials is addressed as seen
in Sec. 5.4. Finally, a study involving several parameterization approaches is performed in
order to figure the potential of parameterization of the TITOP technique.

The second example is a rotatory spacecraft with four flexible masts with lumped masses
located at their ends. This example shows the application of the TITOP modeling technique
when the substructures involved in the FMS have different behavior (flexible masts, rigid
hub and rigid lumped masses). The modeling process is addressed with the TITOP modeling
method and then compared with the model provided by a widely used approach, the Assumed
Modes Method (AMM). Then, accuracy between both methods is evaluated for different
boundary conditions. Finally, parametric variations are induced to the system to analyze the
system’s behavior.

The third example is a planar two-link flexible arm, a conventional FMS modeling problem
where kinematic nonlinearities can be large. This modeling technique is applied to a revolute
joint as seen in Sec. 5.3, extending it to the case of a joint with associated mass and inertia.
The accuracy of the modes in different configurations is compared with a non-linear model,
and a dynamic simulation of the system driven by actuators is performed in order to evaluate
the differences between the TITOP model and the non-linear model.

6.1 Beam-like Substructures

6.1.1 Beam Concatenation

As an illustrative and validation example of the TITOP modeling technique, a chain of flexible
beams attached to a hub is considered. The main objectives are (i) to model the dynamics
of the flexible FMS chain and (ii ) express the dynamic coupling between the chain and the
hub. The system is depicted in Fig. 6.1. Let a 3D beam of length L be substructured in
four parts or child-beams 1, 2, 3 and 4 of lengths L/8, L/4, L/2 and L/8 respectively. Each
substructure has identical cross-section properties (rectangular section of width b and height
h) and identical material composition (density ρ and constant elastic module E). For each
child-beam a 7-element FE model is derived for obtaining the input data for the TITOP
modeling technique.
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Figure 6.1: Chain of Flexible Beams for TITOP Modeling and the corresponding parametrization
of the FE model
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Figure 6.2: TITOP modeling of a chain of flexible beams

The TITOP models of each substructure, once concatenated, must present the same dy-
namic behavior as an entire beam of length L and must transmit an identical load to the
connection point located at the hub. The system is assembled as shown in Fig. 6.2. The
child-beams’ TITOP models are connected following the transfer load/acceleration of each
model. The transmitted acceleration at point C of the i-th child-beam is the acceleration
at point P of the i + 1-th child beam. In the same manner, the transmitted load at point
P of the i-th childbeam is the load at point C of the i1-th child-beam. All the child-beams
are two-connection-points TITOP models except for the fourth child-beam, which is a one
connection-point TITOP model. The resulting model is compared with a complete 50-element
FE model of the beam of length L.

The frequency response of the transfer q̈P → FA,P,P , which represents the transfer be-
tween the hub dynamics and the induced loads of the chain, is compared. Particularly, the
transfer between the angular acceleration induced to the chain’s root, ω̈y, and the force Fz
and torque My received by the hub is analyzed. Figure 6.3 shows the dynamic behavior of
the system: when the hub rotates counter-clockwise, the flexible chain of appendages follows
the movement, and by the action-reaction principle a load is induced to the hub, opposed to
this movement.

In Fig. 6.4 the frequency response of the induced torqueMy and force Fz to a counter-wise
rotation around the y axis (the fifth element of the coordinate vector {q̈P }, ω̈y) is shown. As
it can be evaluated, the frequencies of the resonances and anti-resonances of both systems are
in perfect agreement for the first nine modes. For the static case (f = 0 Hz), the exact gain
values are obtained, which demonstrates that the assembled system has identical total mass,
total inertia and center of mass as the reference model. For frequencies beyond the tenth
mode, the TITOP modeling technique shifts with respect to the reference model. This is
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Figure 6.3: Illustration of the dynamic behavior of a chain of flexible beams connected to a hub
when inducing a counter-clockwise rotation along the y axis to the root
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Figure 6.4: Frequency Response of the transmitted torque and force to the hub by the chain of
flexible beams when spun counter-clockwise along the y axis (see Fig. 6.3)

caused by the less quantity of input data used by the TITOP models, a 7-element FE model
for each child-beam. If more elements were used, the TITOP modeling technique would
behave exactly as the reference model for high frequencies.

Identical results are found when analyzing the transfer of the acceleration of the vertical
translation of the hub, q̈y, and the received force Fy and torque Mz. The dynamics are
illustrated in Fig. 6.5 and the frequency response is shown in Fig. 6.6.

The TITOP modeling technique has been applied and validated for a chain of flexible 3D
beams. This exemplifies the use of the TITOP modeling technique to model FMS undergoing
small displacements and rotations. The beam configuration proposed in this section can be
changed in order to model more complex systems. For instance, if the orientation of the
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Figure 6.5: Illustration of the dynamic behavior of a chain of flexible beams connected to a hub
when vertical accelerations are applied to the root

T
o:

 b
ea

m
F

r y

-50

0

50

100

150
From: beamAr

y

10-1 100 101 102 103 104 105

T
o:

 b
ea

m
M

r z

-100

-50

0

50

100

150

FEM model
TITOP model

Bode response Bqy ! FY ;MZ

Frequency (Hz)

M
ag

n
it
u
d
e

(d
B
)

Figure 6.6: Frequency Response of the transmitted torque and force to the hub by the chain of
flexible beams when vertical accelerations are applied to the root (see Fig. 6.5)

child-beams is changed through the addition of rotation matrices at the connection points,
[Ri], a more complex geometry can be obtained. The introduction of rotation matrices is
better shown in the two-link flexible arm example provided in Sec. 6.3.

6.1.2 Beam with Bonded Piezoelectric Material

As an illustrative example of the extension to piezoelectric materials, let us consider a beam
linking two substructures at both ends with a piezoelectric strip which has been appropriately
bonded to one side, as seen in Fig. 6.7. The thickness of the piezoelectric strip is tp, with
a width denoted by wp, Young’s modulus Ep, density ρp and cross-section inertia Ip. The
piezoelectric strip is used as an actuator by controlling the voltage v applied to the electrodes‚
creating a constant electric field E3 = v/tp across the thickness of the laminate.
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Figure 6.7: Piezoelectric beam element

Beam Parameters Symbol Value
Number of Elements n 3

Total length L 0.50 m
Element length l = L/n 0.17 m

Thickness t 9.53 mm
Width w 30.00 mm

Volumetric Density ρ 2600 kg/m3

Elastic modulus E 60 GPa
Piezo Parameters Symbol Value

Number of Elements n 0.5
Element length l = L/n 0.17 m

Thickness tp 2 mm
Width wp 30 mm

Volumetric Density ρp 7600 kg/m3

Elastic modulus Ep 50 GPa
Piezoelectric Constant d31 -150×10−12 m/V
Dielectric Constant εT33 1.59×10−12 F/m

Table 6.1: Table of beam and piezoelectric parameters

The beam is modeled with a classic FE decomposition in several beam elements of length
l. The beam has the same geometric properties as the piezoelectric strip but denoted without
the p subindex: t,w,E,ρ and I. Since the piezoelectric laminate is glued to the beam, the
mass and stiffness matrices of a beam element can be obtained as a sum of the contributions
of the beam and the piezoelectric material. Thus:

[
Mqq

]
=
[
Mqq

]
beam

+
[
Mqq

]
piezo

(6.1)

[
Kqq

]
=
[
Kqq

]
beam

+
[
Kqq

]
piezo

(6.2)

The matrices of Eqs. (6.1) and (6.2) are detailed in Appendix B, computed with classical
FE decomposition with beam elements. With further FE decomposition to the piezoelectric
strip, the following coupling matrix and capacitance matrix are obtained:

[
Kqv

]
=



−d31Epwp
0

−d31Epwp(t+ tp
2 )

d31Epwp
0

d31Epwp(t+ tp
2 )


[
Kvv

]
= wpl

tp
(εT33 − d2

31Ep) (6.3)

where d31 is the piezoelectric constant under constant stress which relates the shrink-
age observed in the direction 1 when an electric field E3 is applied along the direction of
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polarization 3. The coefficient εT33 is the dielectric constant of the material.

The global mass, stiffness, coupling and capacitance matrices are obtained by appending
the elements matrices along the diagonal. Common node points between two points are simply
added together. As an example the casting of stiffness matrices is given bellow for a 2 × 2
case:

[
Kqq

]1
=
[
k1

11 k1
12

k1
21 k1

22

]
;
[
Kqq

]2
=
[
k2

11 k2
12

k2
21 k2

22

]
→
[
Kuu

]
=

k
1
11 k1

12 0
k1

21 k1
22 + k2

11 k2
12

0 k2
21 k2

22

 (6.4)

Obtaining the global piezoelectric coupling matrix is more complicated since it depends
on the desired profile of voltages for the piezoelectric strips. If the same voltage is applied
among all the strips then the assembly is straightforward:

[
Kqv

]1
=
[
k1

1v
k1

2v

]
;
[
Kqv

]2
=
[
k2

1v
k2

2v

]
→
[
Kuv

]
=

 k1
1v

k1
2v + k2

1v
k2

2v

 (6.5)

[
Kvv

]1
=
[
k1
vv

]
;
[
Kvv

]2
=
[
k2
vv

]
→
[
Kvv

]
=
[
k1
vv + k2

vv

]
(6.6)

However, if a different voltage is applied for each strip on each element then one has:

[
Kqv1

]1
=
[
k1

1v1

k1
2v1

]
;
[
Kqv2

]2
=
[
k2

1v2

k2
2v2

]
→
[
Kuv

]
=

k
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1v1 0
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0 k2
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 (6.7)

[
Kvv

]1
=
[
k1
vv

]
;
[
Kvv

]2
=
[
k2
vv

]
→
[
Kvv

]
=
[
k1
vv 0
0 k2

vv

]
(6.8)

In this last case, the applied voltage is a vector containing the different voltages applied
along the assembled beam, whereas in the first case voltage is a scalar. The second option
might be more suitable when a voltage profile has to be applied along the beam.

After FE assembly, the complete FE model of the beam with bonded piezoelectric material
is obtained. The Hurty’s Method is applied to the FE model as explained in Sec 5.4 and the
TITOP model is obtained. Properties are extracted from the data of Table 6.1. Three beam
segments with piezoelectric strips are concatenated in two different manners: one considering
the same voltage applied to the strips (single-voltage case), the other one considering that
different voltages can be applied to the strips (multi-voltage case).
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Figure 6.8: Transfer functions of the single voltage case

Figures 6.8a and 6.8b show the frequency response of the beam when one single-voltage
is applied. Figure 6.8a shows the frequency response of the measured electric charge when
a force/torque is applied at the end C of the concatenation of beams. Figure 6.8b shows
the frequency response of the transmitted force/load at point P when voltage is applied .
The first resonant frequency appears at 68 Hz, fast enough for the majority of large flexible
systems. It can be evaluated that the transfer voltage/load is non-collocated (no alternance
of poles/zeros) whereas the transfer load/charge is. This will affect the evaluation of control
strategies in Chap. 7.

Figures 6.9a and 6.9b show the frequency response of the beam for the multi-voltage case.
The first resonant frequency continues to be 68 Hz, but this time versatility is increased
because there are more different voltage profiles which can be used. Figure 6.9a shows the
frequency response of the electric charge of the i-th strip, gi, when a vertical force is applied
at the end, FC/A. Figure 6.9b shows the frequency response of the transmitted vertical force
at point P , FA/P , when applying a voltage vi to the i-th piezoelectric strip. In Fig. 6.9b, it
can be evaluated that the strip located near connection point P (associated voltage v1) has
the highest gain, whereas the one located near connection point C (associated voltage v3) has
the lowest gain.

Finally, the transfer between the measured electric charges and the applied voltages can
be computed. This is shown in Fig. 6.10a for the single-voltage case and in Fig. 6.10b for
the multi-voltage case. It can be seen that the poles/zeros alternate, offering possibilities of
collocated control schemes. However, the separation between poles and zeros is negligible,
so the system does not present a good controllability with this strategy. This concept will
be recalled in Chap. 7, and it is a direct consequence of the DP form of the TITOP model.
Since the beam is symmetric, the poles of the system, which is considered as clamped-free,
coincide with the transmission zeros, which correspond to the system free-clamped. Other
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Figure 6.10: Charge-Voltage transfer functions of the concatenated flexible piezoelectric beam

measurements should be used if an increased controllability is desired.

6.1.3 Beam Parametric Variations

This section studies the parameterization possibilities of beam-like structures using the TITOP
modeling technique. This is needed to gauge the potential use of this model for integrated
control/structure design purposes. The parameterization is done in two different ways: con-
sidering length variation without constraints (length variation of a single flexible beam) and
restraining total length variation (length variation of a chain of flexible beams). Complemen-
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Figure 6.11: Transfer Functions at point C for small variations on the beam’s length

tary figures for this section can be found in Appendix E. Only the most representatives are
presented hereafter for the two cases.

Length Variation of a Single Beam

For this case, the length variation of a single beam in TITOP model form is studied with
different approaches. One approach is the one stated in Sec. 5.5, localizing the different
matrices where the length L appears as a parameter. This approach is called manual LFR,
since the parameterization is done “manually”. Another approach is the one called “full LFR”,
where a classic 3rd order analytic FE model is derived as a function of L. The last approach
for comparison is the superelement technique (see Appendix A), which uses analytic 5th order
FE decomposition to derive the parametric TITOP model of a beam.

Simulations are run for a beam of total length L = 1 m, which can vary freely within
the interval δl ∈ [0.5, 1.5], that is, a 50% of variation range. LFR models are derived for
each approach (manual, full and superelement), sampled for a set of different random lengths
and then compared with a reference model which consists of a FE model developed for each
sampled length. A set of one hundred samples was used to evaluate the approaches’ error in
Table 6.2. The mean error, µ, and the standard deviation, σ, have been computed for the
first five frequencies of the beam. As it can be evaluated, the full and superelement LFR
models are more accurate than the manual LFR, as expected. Particular attention has been



6.1. Beam-like Substructures 87

T
o:

 b
ea

m
A

e
y

-300

-200

-100

0

100

200
From: beamFe

y

10-4 10-2 100 102 104

T
o:

 b
ea

m
G

e
z

-300

-200

-100

0

100

200

300

From: beamMe
z

10-4 10-2 100 102 104

Full LFR

Manual LFR

Superelement

Reference

Bode response transfers at point C for / = 50 %

Frequency (Hz)

M
ag
n
it
u
d
e
(d
B
)

Figure 6.12: Transfer Functions at point C for large variations on the beam’s length

Value Reference Full LFR Manual LFR Superelement
Mean Error µ - 0.002 0.0654 0

Standard Deviation σ - 0.41·10−8 0.05 0.13·10−8

∆ size - 28 20 19
f1 (L = 1.05 m) 6.71 6.71 6.71 6.71
f1 (L = 1.50 m) 3.29 3.29 2.84 3.29

Table 6.2: Error analysis single beam parameterization for 100 samples

given to the computation of the first flexible mode, f1, since in control applications it may
interfere with the system’s bandwidth. It is noticed that for small variations (10% range) all
models predict almost the exact frequency. However, for large variations (maximum range
variation) the manual LFR approach completely misses the targeted first flexible mode.

The importance of small/large variations is depicted in Figs. 6.11 and 6.12. Figure 6.11
shows the transfer functions load-acceleration at connection point C for small variations. In
this case, all approaches are in agreement. However, when large variations are desired (see
Fig. 6.12) manually added parameterization fails to predict the exact behavior of the system.
Full and superelement models are more desirable when accuracy is required in a large variation
range.
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Figure 6.13: Transfer Functions at point P for small variations on the beam’s length inside the
chain of beams

Constrained Length Variation in a Chain of Beams

This illustration is motivated by a future usage of varying the length L of a beam: piezoelectric
strip placement along a deployable mast, while the total mast’s length is constant. For this
purpose, a fixed total length of L = 2 m is considered for the linking of two flexible beams, i.e.,
the connection among the beams must always be equal to 2 m. Two different configurations
are proposed: two and three flexible beams concatenation.

For the case of concatenation of two flexible beams while the total length is restricted to
L = 2 m, one beam is allowed to vary within the range of δl ∈ [0.5, 1.5], while the other one
is parameterized as L − δl. Obviously, since the two beams sum up L = 2 m, the flexible
modes must always be the same ones and the variation of δl indicates only at what point one
beam ends and the next one starts. The three flexible beams concatenation consists of three
flexible beams, one can vary with δl ∈ [0.5, 1.5], the one at the middle of the chain has a fixed
length of lp = 0.2 m and the remaining one is parameterized as L − δl − lp. Since all beams
have identical properties, flexible modes must be always equal, and the parameterization only
indicates at what location the beam of length lp can be found in the chain.

Figures 6.13 and 6.14 show the frequency response at connection point P (the root of the
chain) for small and large variations respectively. The parameterized models are obtained
with full parameterization approach. The reference model is a 10-nodes FE model of a beam
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Figure 6.14: Transfer Functions at point P for large variations on the beam’s length inside the
chain of beams

two meters long. It is shown that flexible modes are always located at the same values
for both large and small variations of δl. Therefore, varying δl is equivalent as translating
longitudinally the beam of length lp. This can be useful for parameterizing piezoelectric
strips location along a mast, for example. However, the size of the associated ∆ blocks of the
associated LFR models is larger than the ones of the single beam variation. The two-beams
case has a ∆ block with 48 occurrences of δl, while the three-beams case has 51. Indeed, these
values are the almost the double of the single beam case.

Other possible variations

Only length variation has been explained throughout this section since it is the most repre-
sentative parameter for beam-like structures. Varying this parameter not only significantly
affects the first flexible modes, but also the total mass of the system. In addition, this parame-
terization can be constrained to a constant value of total length so that different distributions
of the child beams can be modeled.

Other parameters can be variated as well. The most interesting ones are the geometric
properties of the beam’s cross-section, since they are directly correlated with the stiffness and
total mass. The geometric shape of the cross-section (solid rectangular, solid circular, hollow
cylindrical, I-section, etc) play a crucial role on the value of the parameter EI and the total
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mass. Beam’s density or Young’s modulus can also be varied, but these parameters have
usually have been set before hand.

However, these parameters could imply a larger ∆ block, which can quickly become com-
putationally expensive. For example, the parameterization of a solid rectangular cross-section
of height t and width b gives a LFR model with a 71× 71 ∆ block, 52 occurrences for t and
19 occurrences for b. If length variation is desired as well, the ∆ block results in a more than
100× 100 ∆ block.

6.2 Planar Rotatory Flexible Spacecraft

To demonstrate the validity of the TITOP modeling method for a FMS modeling problem
with rigid and flexible bodies, a maneuvering flexible spacecraft is presented. A rotating
flexible spacecraft is often modeled as a coupled rigid hub and flexible beam-like structures
with tip masses at their ends. This section provides a generic approach for modeling such a
system, which can be expanded to every kind of FMS. Results will be compared with another
modeling approach based on the largely accepted AMM [Junkins 93], demonstrating the less
sensitivity of the TITOP modeling method to changes in boundary conditions.

6.2.1 Spacecraft System description

The system is composed of a rigid main hub with four identical cantilevered flexible ap-
pendages and tip masses as shown in Fig. 6.15. The configuration parameters are provided
in Table 6.3. Under normal operation, the spacecraft undergoes planar rotational maneuvers
about the inertially fixed axis ~z. The spacecraft body frame is attached to the center of mass
of the rigid hub, and it is denoted by a right-handed triad ~x, ~y and ~z. The rotation about the
axis ~z is denoted by the angle θ and the translational deformation of each tip by wi

tip, with
superscript i denoting the beam number.

The system is actuated by three different torques. The main torque, thub is provided by
the main hub about the axis ~z. Two additional input torques, ttip,1 and ttip,2, are applied at
the tip masses 1-3 and 2-4 respectively. These torques can be applied purposely for control
reasons or can be the result of environment disturbances.

6.2.2 Spacecraft System modeling

The modeling problem of a single axis rotating flexible spacecraft is addressed extensively
using two modeling schemes: TITOP method and AMM method.
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Figure 6.15: Rotatory Flexible Spacecraft

Parameters Symbol Value
Hub radius r 0.31 m
Hub mass mh 233.50 kg
Hub inertia Jh 10.85 kg/m2

Beam Mass Density ρ 1.30 kg/m
Beam Elastic modulus E 75.84 GPa

Beam length L 1.22 m
Beam thickness t 3.18 mm
Beam height h 0.15 m
Tip mass mt 2.29 kg

Tip mass inertia Jt 2.44 g/m2

Nodes beam FEM nod 11
Number of AM asm 13

Table 6.3: Spacecraft configuration parameters

TITOP approach

The TITOP approach needs two sets of data. The first one corresponds to structural data:
rigid body matrices of the hub and tip masses, and a FE model for the beams. The second one
corresponds to connection matrices: for each appendage, the kinetic transportation matrix
τGP and the rotation frame matrix R must be provided.

The rigid body matrices are straightforward for the planar case:

JHubG =

mh 0 0
0 mh 0
0 0 Jh

 JT ipQ =

mt 0 0
0 mt 0
0 0 Jt

 (6.9)

The kinematic models between points G and Pi, being i the appendage number i, are in
the planar case:

τP1G =

1 0 0
0 1 r

0 0 1

 τP2G =

1 0 0
0 1 −r
0 0 1

 τP3G =

1 0 −r
0 1 0
0 0 1

 τP4G =

1 0 r

0 1 0
0 0 1

 (6.10)

and the rotation matrices can be written as follows:

Ri =

cosβi − sin βi 0
sin βi cosβi 0

0 0 1


App→Hub

(6.11)
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Figure 6.16: TITOP Modeling of the rotatory spacecraft

where βi is the angle of the ith appendage i with ~x. Beam’s FE model is obtained with
classical FE discretization in five elements. Mass and stiffness matrices are transformed as
explained in Sec. 5.2 to get the TITOP model of the beam. As the tip mass is considered
as rigid, there is no need of applying CMS to this substructure, Eq. (6.9) is used for such a
purpose.

The assembly for each appendage is done as shown in Fig. 6.16a. Accelerations at the
hub are transmitted to the attachment point Pi through the kinematic model τPiG, and then
changed to the appendage frame through RTi . The acceleration of the hub, together with the
load exerted by the tip mass at the opposite end, are the inputs of the beam TITOP model,
which delivers the acceleration transmitted to the tip mass and the load transmitted to the
hub, which has to be transported to the hub and change its frame.

TITOP being a generic six degrees of freedom approach, it is restricted to the three planar
degrees of freedom. Thus, the acceleration and loads vectors used in Figs. 6.16a and 6.16b
have three components corresponding to the two translations in the plane π(~x, ~y) and one
rotation around ~z.

The same process is performed to the four appendages, obtaining the final assembly shown
in Fig. 6.25b. It can be observed that the resulting system, (JSatG )−1, has the applied torques
as inputs when the following inputs are assigned the following values: (Fext =

{
0 0 thub

}T
),

and the hub accelerations as outputs (q̈G = θ̈). Tip acceleration can be observed through the
signal transmitted from the beam to the tip and tip torques ttip,1 and ttip,1 can be added to
Ftip/beam,Ci loads with the help of a sum block.
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AMM Approach

For the comparison objective, the classical assumed modes (AM) solution is exploited. Al-
though AMM can be applied in many different ways, the most general case is deriving the
hub-beam-tip equations.

The AMM assumes a decoupled spatial and time deformation approximated by the series:

w(x, t) =
asm∑
i=1

φi(x)qi(t) (6.12)

where φi(x) denotes the assumed mode shape, qi(t) denotes the i-th generalized coordinate,
asm denotes the number of terms retained in the approximation and x the distance from the
considered point in the beam to the attachment point.

Then, the kinetic and potential energy of the spacecraft, containing space and time partial
derivatives of w(x, t), are derived using the approximation in Eq. (6.12) and performing the
integration with respect to x, writing the kinetic energy and potential energy in the quadratic
forms:

T (t) = 1
2

asm∑
i=1

asm∑
j=1

Mij q̇i(t)q̇j(t) = 1
2{q̇(t)}

T
[
M
]
{q̇(t)} (6.13)

V (t) = 1
2

asm∑
i=1

asm∑
j=1

Kijqi(t)qj(t) = 1
2{q(t)}

T
[
K
]
{q(t)} (6.14)

where Mij denotes the (i, j)-th element of the symmetric mass matrix [M ] (respectively
for the stiffness matrix [K]). The equations of motion follow on introducing T and V into
Lagrange’s equations:

d

dt
( δT
δq̇r

)− δT

δqr
+ δV

δqr
= Qr, r = 1, . . . , asm (6.15)

where Qr denotes the generalized non-conservative forces, the applied torques. The fol-
lowing equations of motion are obtained:

asm∑
j=1

Mrj q̈j(t) +
asm∑
j=1

Krjqj(t) = Qr, r = 1, . . . , asm (6.16)

which written in matrix compact form gives:
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[M ]{q̈(t)}+ [K]{q(t)} = {Q(t)} (6.17)

The analytic formulation of mass and stiffness submatrices in Eq. (6.17) for the rotatory
spacecraft can be found in Junkins [Junkins 93], which have been developed with the following
admissible functions satisfying the boundary conditions for clamped-free appendages:

φi(x) = 1− cos(jπx
L

) + 1
2(−1)j+1(jπx

L
)2 (6.18)

The admissible functions in Eq. (6.18) are known to produce very accurate results and
have been adopted widely [Elgohary 15]. Equation (6.17) provides thus the desired equations
of motion in which the time-varying amplitudes are generalized coordinates. Given the in-
stantaneous vector {q(t)}, the instantaneous deformation of the structure is approximated by
the assumed modes expansion.

6.2.3 Comparison of the Modeling Methods

A comparison between the TITOP modeling technique and the numerical AMM is presented.
The TITOP model uses FE models of five elements for each beam, and the AMM uses 13
modes per beam. Both methods are compared with the reference FE model (FEM) of the
whole structure which can be found in [Junkins 93], considered to be the most accurate.

Accuracy

First, the accuracy of the proposed TITOP modeling technique is verified. A comparison of
all methods (AMM, TITOP and FEM) among the first six flexible modes is shown in Table
6.4. The computed frequencies converge accurately for the 8-DOF per appendage TITOP
solution, whereas the AMM solutions are not accurate for modes 4-6, as previously seen in the
frequency response. The Relative Mean Square (RMS) error of these values is shown in Fig.
6.21, showing that for the same number of degrees of freedom the TITOP modeling technique
is slightly more accurate. Therefore, the TITOP modeling is able to provide accurate models
which have less degrees of freedom and achieves more accurate results than the AMM.

Robustness to variations in boundary conditions

Figure 6.19a presents the effect of flexible appendages on the main hub motion, θ̈hub. Figure
6.19b shows the dynamic response of the tip accelerations to the hub torque, thub. Both figures
are in perfect agreement with the frequency response of the reference model, FEM, until the
fourth flexible mode, located at around 50 Hz. At that point, the response thub → ẅtip of the
AMM presents a significant error in the first anti-resonance frequency.
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Mode AMM TITOP Reference
No N = 5 N = 10 N = 15 N = 8 N = 18 N = 28 N = 100
1 4.3731 4.3723 4.3722 4.3722 4.3722 4.3722 4.3722
2 7.9084 7.9070 7.9067 7.9066 7.9066 7.9066 7.9066
3 51.7234 51.4518 51.4259 51.4286 51.3999 51.3989 51.3987
4 53.0829 52.8066 52.7797 52.7819 52.7525 52.7515 52.7513
5 160.2661 157.5591 156.7351 156.4701 155.7516 155.7257 155.7203
6 161.0962 158.3683 157.5382 157.2609 156.5407 156.5147 156.5094

Table 6.4: Table showing the natural frequencies (ωi, rad/s) corresponding to the first six
flexible modes for each modeling method. N denotes the number of degrees of freedom per
appendage. The reference frequency (ωref

i ) is obtained with a FE model of 100 degrees of
freedom per appendage.
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Figure 6.17: Frequency response comparison for Mt = 2.290 kg

As it can be evaluated, the AMM is no longer accurate for frequencies beyond the third
flexible mode for this spacecraft configuration. The TITOP method, however, is accurate for
the considered frequency range. This difference is due to the AMM assumption of clamped-
free mode shapes, whereas real mode shapes of a hub-beam-mass system are different from a
clamped-free system, as theoretically demonstrated in Elgohary [Elgohary 15]. The TITOP
modeling technique does not make any approximation of mode shapes, they naturally arise
when the whole system is assembled. This demonstrates that the TITOP method is less
sensitive to the imposed boundary conditions, while AMM remains more sensitive due to
the choice of the mode shapes. As a result, the TITOP method is valid for every type of
configuration, whereas AMM is limited by the selected mode shapes.

Such sensitivity to boundary conditions is highlighted by studying the influence of a mass
at the tip of each beam. Figure 6.18 shows the frequency response thub → ẅtip when there
is no mass at the tip of the beam, Mt = 0 kg, whereas Fig. 6.19 shows the same frequency
response with a heavy mass at the tip, Mt = 114.5 kg. When there is no tip mass, the AMM
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Figure 6.18: Frequency response comparison for Mt = 0.00 kg

is perfectly valid and coincides with the reference model, since its admissible functions fully
respect the clamped-free boundary conditions. However, when a heavy mass is located at
the tip, the clamped-free boundary conditions no longer apply, which makes AMM fail in
predicting the frequency response. On the other hand, the TITOP method perfectly fits the
frequency response of the reference model in all cases.

6.2.4 Spacecraft System Parameterization

The TITOP modeling technique allows taking into account the variations of certain structural
parameters inside the model, since they can be easily found inside the state-space representa-
tion of the substructures. In this section parametric variations are performed to the rotatory
spacecraft, including variations on beams’ lengths and tip masses.

Considering the appendage as a beam, its length variations are introduced through the
superelement model explained in Murali [Murali 15] and recalled in Appendix A. As demon-
strated in Sec. 6.1.3, a full LFR parameterization will have the same accuracy. Tip mass
variations are introduced through the rigid-body matrix of the tip mass, Eq. (6.9), as follows:

JT ipC (δm) =

mt + δm 0 0
0 mt + δm 0
0 0 Jt(δm)

 (6.19)

After assembly, the system appears as the model shown in Fig. 6.20, with variations in
tip mass ∆mi and beam’s length ∆Li included in the ∆-block.
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(a) Hub torque to hub acceleration
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Figure 6.19: Frequency response comparison for Mt = 114.5 kg

Rotatory Spacecraft

Nominal Model

∆ =


 ∆Li

0
0 ∆mi




{
Fext

}
Hub

{
q̈G

}
Hub

(JSat
G )−1

Figure 6.20: Rotatory spacecraft with variations
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Using this approach, dynamic behavior sensitivity analysis can be performed. As it can
be seen in Fig. 6.22, the first natural frequency of the system decreases by either increasing
length or increasing tip mass in all appendages in the same manner.

Nevertheless, the most interesting remark can be done when only one appendage varies
its beam’s length and tip’s mass. As it can be appreciated in Fig. 6.23, a new frequency
mode appears, not present in the case where all appendages varied their length and tip mass
simultaneously. Indeed, if all appendages are identical the symmetric modes of the appendages
are uncontrollable from the hub’s torque and they do not appear in the frequency response.
In the case of only one appendage variation, however, the asymmetry due to the variation of
one single appendage makes these modes now controllable and can be found in the frequency

1Root Mean Square Error RMSE =
√

1
6
∑6

i=1(ωi−ω
ref
i

ω
ref
i

)2



98 Chapter 6. Application and Validation of the TITOP Technique

10-1 100 101

M
ag
n
it
u
d
e
(d
B
)

-100

-50

0

50

100
From: satMrz  To: satGrz

Nominal Length
L + 30%
L - 30%

Bode response thub ! B3hub for di,erent lenghts

Frequency (Hz)

10-1 100 101

M
ag
n
it
u
d
e
(d
B
)

-100

-50

0

50

100
From: satMrz  To: satGrz

Nominal Tip Mass
Mt + 30%
Mt - 30%

Bode response thub ! B3hub for di,erent tip masses

Frequency (Hz)

Figure 6.22: Bode system comparison when varying length and tip mass for all the appendages
simultaneously

response.

As it has been demonstrated, parametrization can be easily taken into account with the
TITOP method. For this problem AMM approach of Junkins [Junkins 93] considers several
simplifications for the model, such as symmetric displacements between appendages. If such
kind of variations were done with the AMM approach, the whole model would have been
changed, re-initializing the modeling process. On the contrary, this step is avoided with
the TITOP modeling technique. The TITOP model does not require re-formulating the
problem since all the variations are considered from the beginning of the modeling process and
individually for each appendage. The TITOP model represents simultaneously the spacecraft
nominal configuration with all the possible parameter variations, whereas the AMM approach
needs to compute a new model for each parameter variation.

6.3 Two-Link Flexible Manipulator

In this section, the TITOP modeling technique is compared to a nonlinear modeling technique
for the case of a planar two-link flexible arm, a flexible multi-chain example where the kine-
matic non-linearities can be large. The objective is to evaluate the accuracy of the TITOP
linear model for a control application and to determine if the non-linear terms could restrict
its usage. In addition, the modeling process is explained for taking into account the revolute
joint’s actuator with mass and inertia at the connection points.
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Figure 6.23: Bode system comparison when varying length and tip mass for one appendage
only

The nonlinear model of the planar two-link flexible arm can be found in its explicit closed-
form in Luca [Luca 91]. It consists of two flexible arms with a payload at the end of the second
arm. This system is illustrated in Fig. 6.24 and its corresponding parameters are described
in Table 6.5.

6.3.1 TITOP modeling of the planar two-link flexible arm

The TITOP modeling of a n-link flexible arm composed of a chain of n link flexible segments
and joints starts with the individual assembly of each flexible segment to the joint. The rigid
body matrix of the joint can be derived straightforward for the planar case as stated in Sec.
6.2.2:

JJointiGi
=

mhi 0 0
0 mhi 0
0 0 Jhi

 (6.20)

The inverse dynamics TITOP model of the flexible link i is obtained as depicted in Fig.
6.25a. The connections follow the same principles explained in Sec. 5.3, where the angular
acceleration induced by the revolute joint to the system is added to the angular acceleration of
the hub (the joint’s rigid body matrix). The total acceleration (the one received by the joint
and the one imposed by the joint’s rotation) is transmitted to the channel which corresponds
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Figure 6.24: The planar two-link flexible arm

Parameters Symbol Value
Link 1 Inertia Jh1 0.1 kg/m2

Link 2 Inertia Jh2 0.1 kg/m2

Link 2 Mass mh2 1.0 kg
Beam 1 Density ρ1 0.2 kg/m
Beam 2 Density ρ2 0.2 kg/m

Beam 1 Cross section EI1 1 N·m2

Beam 2 Cross section EI2 1 N·m2

Beam 1 length l1 0.5 m
Beam 2 length l2 0.5 m
Payload Mass mp 0.1 kg
Payload Inertia Jp 0.5 g/m2

Table 6.5: Arm configuration parameters

to the acceleration at point P of the i-th flexible arm’s TITOP model. The load transmitted
by the i-th flexible arm to the joint at point P is subtracted from the inertial load obtained
at the joint to get the resulting load to the i− 1-th flexible arm, Fi/i−1,Pi . It is assumed that
the flexible arm is perfectly connected to the center of the joint; i.e., no kinematic transport
matrix is needed since Gi ≡ Pi. Finally, the applied joint’s torque, tri,Pi , is obtained as
the third component of the transmitted loads for the planar case. The second channel, the
one which exchanges acceleration-load at the other end of the segment (point Ci) remains
unchanged for future connection to the next flexible link.

Once the TITOP models of the n flexible links have been derived, they can be assembled
following the same patterns as in Secs. 5.6 and 6.2.2. The connections between the flexible
arms are preceded by the rotation matrices Ri−1→i or RTi−1→i, which take into account the
orientation of one segment respect to the previous one. Since the TITOP technique is linear,
these matrices are set with a constant value corresponding to the orientation of the structure
in nominal configuration, αi(0).

Ri−1→i =

 cos(αi(0)) sin(αi(0)) 0
− sin(αi(0)) cos(αi(0)) 0

0 0 1

 (6.21)

In Fig. 6.25, the particular case for n = 2 is depicted. The payload effect is fed back as in
the case of the rotatory spacecraft’s tip mass as in section 6.2.2. The assembled model gives
the inverse dynamic model of the two-link flexible arm:

{
tr1,P1

tr2,P2

}
=
[
JarmP1,P2

(s)
]{α̈1

α̈2

}
(6.22)

The direct dynamics of the two-link flexible arm can be obtained with the inversion of
Eq. (6.22).
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Figure 6.25: TITOP asembly of the inverse dynamics model of the two-link flexible arm

Mode Nonlinear TITOP
No α2(0) = 0◦ α2(0) = 30◦ α2(0) = 90◦ α2(0) = 0◦ α2(0) = 30◦ α2(0) = 90◦
1 8.8335 8.8348 8.8392 8.9215 8.9227 8.9284
2 16.6209 16.3947 15.7827 16.6341 16.4060 15.7884
3 101.2585 100.9695 100.2199 101.4696 101.1769 100.4178
4 144.3649 144.3386 144.2713 140.2959 140.2595 140.1671

Table 6.6: Table showing the natural frequencies (ωi, rad/s) corresponding to the first fourth
flexible modes for each modeling method of the two-link flexible arm. Three initial configurations
are considered: α2(0) = 0◦, α2(0) = 30◦ and α2(0) = 90◦

6.3.2 Modeling and simulation results

In order to test the system’s TITOP model, the planar two-link flexible arm with the physical
parameters described in Table 6.5 is compared with the nonlinear closed-form model found in
Luca [Luca 91]. The TITOP model uses a two-element FE model for each flexible segment.
The FE model takes into account translations along the x and y axis of the segment, and
rotations around the z axis. The model of [Luca 91] only considers translations along the y
axis and the rotation around z, and it uses two assumed modes for each segment.

First, the natural frequencies of the system are compared for different nominal configura-
tions. The comparison is shown in Table 6.6. It can be noticed that the error is not larger
than 1.0% of the non-linear value for the first frequency mode, 0.01% for the second frequency
mode and 0.2 % for the third frequency mode. The fourth frequency shows a discrepancy of
2.8 %. However, nothing can be concluded regarding the accuracy of the frequency modes
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Figure 6.26: Dynamic evolution of link 1 (α1) and link 2 (α2) under step input (αref1 = 60◦)
and fully extended arm (α2(0) = 0◦)

since the non-linear model uses four assumed modes computed for the nominal configuration
α2(0) = 0◦. This could be an error source for the highest frequency modes. On the other
hand, the TITOP model considers translations along the x axis, which might explain the dif-
ferences, and it is more robust to changes in the nominal configuration (since it is equivalent
to changes in the boundary conditions).

Once the models have been proved to have the same dynamics, a numerical simulation is
performed to validate the direct dynamics TITOP model with the non-linear direct dynamics
model in controlled evolution. The joints’ rotation of the flexible arm is controlled through a
Proportional-Derivative (PD) controller for each joint, taking the angular position and rate
as inputs as shown in Eq. (6.23) and Fig. 5.6.

tr1,P1 = kp1(αref1 − α1)− kv1α̇1

tr2,P2 = kp2(αref2 − α2)− kv2α̇2
(6.23)
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A numerical simulation has been performed for a αref1 = 60◦ step command given to the
first joint when the arm is fully extended (α2(0) = 0◦). The controller’s gains are kp1 = 160
N·m, kv1 = 11 N·m·s, kp2 = 60 N·m and kv2 = 1.1 N·m·s. The non-linear equations of motion
have been integrated via a fourth order adaptive Runge-Kutta (Dormand-Prince) method.
Figure 6.26 shows the dynamic response of the joints for the first four seconds. The non-
linear model and the TITOP model are in perfect agreement, even when the non-linearites
are expected to be large (α̇ � 1 rad/s). In the sub-plot corresponding to α̇2, an additional
frequency can be observed at the peaks over the first cycle, which it is not present in the
non-linear model.

Therefore, the linear model provided by the TITOP modeling technique can be used as
an approximation even when the non-linear terms can be large, as in the case of a two-link
flexible arm. Furthermore, for the same level of modeling complexity, the TITOP model is
able to provide additional frequency modes which have a more significant impact than the
non-linear terms in the system’s response.

This chapter has developed three representative examples of FMS modeling with the
TITOP technique. The assembly, the introduction of piezoelectric effects and the con-
sideration of parametric variations have been explained and validated for beam-like sub-
structures. The assembly of rigid and flexible bodies has been explained throughout
the flexible rotatory spacecraft example, validated through comparison with the AMM,
and parameterized to evaluate the influence of asymmetric and symmetric variations in
its flexible appendages. In addition, the TITOP model has demonstrated being more
robust against changes in boundary conditions. Finally, assembly of substructures in-
cluding revolute joints has been addressed through the example of a two-link flexible
manipulator. The TITOP modeling technique has demonstrated, again, being accurate
even when kinematic non-linearities are expected to be large. Chapters 4, 5 and 6 have
stated and applied the modeling framework for FMS. The next chapters will be focused
on developing the framework for integrated control/structure design by evaluating the
different control strategies which can be studied with the TITOP modeling technique,
setting the desired specifications for integrated control/structure design with H∞ control
and finally applying all the concepts in the case of a flexible satellite.
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Control Strategies Evaluation for Control
of Flexible Multibody Structures

“However beautiful the strategy, you should occasionally look at the results. ”
- Winston Churchill
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This chapter is devoted to the evaluation of different control strategies which lead to the
synthesis of a controller satisfying spacecraft dynamics’ specifications. A discussion of the
different procedures for controlling rigid body and flexible motion is provided throughout
the chapter, highlighting the control architectures that could be more advantageous for
integrated control/structure design.
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Since the structured H∞ synthesis allows the choice of controller’s architecture, a set of
different control strategies must be evaluated in order to select the architecture which

offers more possibilities for successful optimization. The controller architecture has to address
the control of rigid and flexible motion in order to ensure attitude control pointing performance
and robustness. This chapter shows the main strategies for controlling rigid body motion and
damping of flexible modes, applying them to practical examples and piezoelectric TITOP
models. In Sec. 7.1 the control of the rigid body motion is explained, where standard, robust
and centralized/decentralized synthesis techniques are discussed and evaluated. In Sec. 7.2,
the active damping of flexible modes with collocated actuator/sensor pairs is evaluated with
several strategies and tested against pole/zero flipping and real actuator dynamics.

7.1 Control of Rigid Body Motion

The attitude control of a flexible space structure implies, in the first place, controlling space-
craft’s motion as a rigid body, i.e., the control of the angles about the roll, ϕ, pitch, θ, and
yaw, ψ, axis. In addition, the analysis must include the effects that structural flexibility could
have in those angles so that they can always meet pointing requirements. Sometimes only the
control of the rigid body motion via the use of reaction wheels, thrusters and magnetotorquers
located at the satellite’s platform is enough for the mission’s success. However, when flexibil-
ity starts being highly coupled with the rigid body motion, additional active damping control
could be required in order to satisfy pointing requirements. In this section, the different ways
of improving the control of the rigid body motion are highlighted with the help of the flexible
pointing system described in Sec. 4.2.

7.1.1 Standard Synthesis Techniques

As stated before, the attitude control is performed by controlling the angle position about
the roll, yaw and pitch axis. This is achieved by using proportional-derivative (PD) or
proportional-derivative-integral (PID) controllers. These controllers allow the control of the
time-response (proportional term), damping (derivative term) and tracking error (integral
term) of the dynamic response. They can be combined with filters in order to make more
emphasis on controlling a specified frequency or notching flexible modes.

Attitude control pointing specifications are usually four: two specifications that state the
closed-loop dynamic response and two specifications concerning the robustness of the control
law. Hence, desired damping ξdes and desired bandwidth ωdes are specified to determine the
closed-loop second order dynamics. Gain and phase stability margins, GM and PM, of the
open loop are specified to ensure an adequate level of robustness of the closed-loop response.
Usually pitch, roll and yaw dynamics are uncoupled, which allows addressing the different
specifications separately. However, there is a trade-off between robustness specifications and
dynamic performance specifications: although high gains imply a more reactive and agile
system, they cause a loss of robustness against noise and torque perturbations. A compromise
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Figure 7.1: PD controller applied to the rigid flexible pointing system

must be chosen in order to propose the optimal solution.

The presence of flexible modes affects the achievement of these specifications. When the
frequencies of the flexible modes are placed near the closed-loop desired bandwidth, robustness
specifications can be significantly altered. Adding a control law which provides additional
flexible modes damping could benefit the attitude control system’s performance.

To demonstrate that damping of flexible modes can improve attitude control’s robustness,
let us consider the example of the simplified flexible pointing system illustrated in Fig. 4.4
and modeled in Sec. 4.2. The flexible pointing system can be governed through two actuators,
one reaction wheel located at the hub providing the torque uh , and one piezoelectric stack
providing an internal force ua used to isolate tip vibrations (m1) from the payload (m2).
Therefore, there is one actuator for each type of motion (the attitude of the hub and the
vibration of the tip).

The control of the hub’s rotation θh is performed by introducing a PD which exploits
θh and θ̇h as measurements to compute the command torque uh. In a standard controller
synthesis, the gains are computed considering the desired closed-loop dynamics, CLdes, of the
system considered as rigid:

den(CLdes) = s2 + 2ξdesωdess+ ω2
des (7.1)

Figure 7.1 shows the controller interconnection with the rigid model. Identifying terms
with Eq. (7.1) the gains Kp and Kv of the PD controller can be determined as follows:

Kp = Jtω
2
des; Kv = 2Jtξdesωdes (7.2)

where Jt is the total system inertia (Jt = Jh + Jb + L2(m1 + m2) in this example).
According to Eq. (7.2), the proportional gain depends quadratically on the desired bandwidth
ωdes, being very sensitive to its augmentation. Indeed, the augmentation proportional gain
is strongly correlated with the loss of robustness, since the controller risks to increase the
unknown outcomes (noise, unmodeled dynamics) of the system when its proportional gain is
high. An evaluation of the system’s robustness depending on the chosen bandwidth is done
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Figure 7.2: Root Locus of the transfer uh → uc

in the following paragraphs.

Let us suppose that a low frequency bandwidth is desired, i.e, much lower than the first
flexible mode. In a numerical application of the flexible pointing system, with m1 = 0.6 kg,
m2 = 0.4 kg, Jh = 0.05 kg/m2, Jb = 0.005 kg/m2, L = 0.56 m, k1 = 16.8 N·m, k2 = 50 N·m
and c1 = c2 = 1.0× 10−4 N·m·s, the resulting flexible modes pulsations are ω1 = 10.09 rad/s
and ω2 = 15.17 rad/s. Hence, a bandwidth ten times lower is chosen, giving ωdes = 1 rad/s.
When considering a desired damping of ξdes = 0.5 the gains result in Kp = 0.3686 N·m and
Kv = 0.3686 N·m·s.

The corresponding tuning in the root locus is depicted in Fig. 7.2a, where the rigid body
poles are located at the desired dynamics and the gain margin is infinite since the root locus
always remains on the left-half of the complex plane. This is due to the collocation between
the hub’s actuator and sensor. As previously mentioned in Sec. 4.2, it can be evaluated
that the poles are located at the free pulsations of the system, ωf , and the zeros at the
corresponding cantilevered pulsations, ωpc, corresponding to the natural pulsations of the
modified system in which supports have been added instead of accelerometers at ÿabs1 and
ÿabs2.

Now let us consider the case of a very high bandwidth in which the first flexible mode
interferes, ωdes = 12 rad/s. The resulting gains are Kp = 53.0784 N ·m and Kv = 4.4232
N·m·s. The root locus is shown in Fig. 7.2b, and again the gain margin is infinite, since
the root locus is always located in the left-half of the complex plane. However, the rigid
mode is not assigned to the specification and exhibits a low damping ratio which can create
oscillations on the spacecraft rigid motion.

From the point of view of stability, nothing will impede the augmentation of the gains
in order to achieve a faster closed-loop response. However, the introduction of real actuator
dynamics shows that higher gains result in a less robust system. Figure 7.3 shows the Nichols
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Figure 7.4: PD controller robust synthesis applied to the flexible pointing system

plot for the low-bandwidth controller and the high-bandwidth controller when the torque
actuator has a delay of 10 ms. It can be evaluated that robustness performances have been
more degraded in the high-bandwidth controller case (GM = 5.35 dB, PM = 15.5 degrees )
than in the low-bandwidth controller case (GM = 27.4 dB, PM = 49.5 degrees).

7.1.2 Robust Synthesis Techniques

The standard controller synthesis technique is therefore limited by the bandwidth require-
ments in presence of flexible modes and real actuator dynamics. Robust control techniques
give more robust controllers since they search for the maximization of robust specifications.
Let us consider a structured H∞ synthesis of the same PD controller which minimizes the
transfer between the disturbance torque w and the performance output z corresponding to
the hub angular acceleration as seen in Fig. 7.4.
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Figure 7.5: Nichols plots comparing robust synthesis with standard rigid approach

The open loop response of the obtained controllers, considering torque delay of 10 ms,
is shown in Fig. 7.5a for the low bandwidth case and in Fig. 7.5b for the high bandwidth
case. A comparison with the controllers obtained by the standard technique is also depicted.
There is no improvement for the low-bandwidth case, but there is an enhancement of gain
and phase margins of the high bandwidth case. For a required bandwidth of ωdes = 12 rad/s,
there is a gain of 5 dB in the gain margin and of 30 degrees in the phase margin (GM = 10.5
dB, PM = 44.8 degrees). It can be concluded that robust synthesis can be more beneficial
for bandwidth requirements near the flexible modes.

7.1.3 Synthesis Techniques Including Active Damping

The foregoing sections did not employ any particular damping technique, only the rigid body
motion was controlled. This section highlights the importance of active damping to improve
the attitude control response and robust performance.

Now let us suppose an active damping control law is used to command the torque ua of
the flexible pointing system. Among all the laws which could be used, described in Sec. 7.2,
direct velocity feedback is used for this case. The feedback gain is tuned to maximize the
damping of the first flexible mode, giving a value of Ka =2.44 :

ua = Ka

s
ÿabs1 (7.3)

The resulting dynamic behavior of the commanded response is shown in Fig. 7.6. Again,
there is no improvement for the low bandwidth requirement (see Fig. 7.6a) but the high
bandwidth requirement exhibits a slight enhancement of 15 degrees in the phase margin (PM
= 35.2 degrees, see Fig. 7.6b). Active damping can thus be an interesting approach to achieve
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Figure 7.6: Nichols plots comparing standard rigid approach alone and with closed-loop active
damping

challenging bandwidth requirements of the attitude control system.

7.1.4 Decentralized VS Centralized Control and Optimization

Since flexible substructures are not in the satellite’s platform, a new control dilemma arises:
decentralized or centralized control. In the conventional approach to structure control, a
controller is designed based on a centralized control model that is created by reducing a
larger evaluation model. The final controller is then verified with the evaluation model.

Another approach for designing controllers for flexible structures is through decentralized
control. In this approach, the system to be controlled is viewed as a collection of subsystems.
Controller design is carried out on the subsystem level, and the individual controllers are then
applied in some manner to the complete system. FMSs lead themselves particularly well to
decentralized control approaches since the system has already been decomposed in several
subsystems.

Although decentralized control schemes are suitable for FMS control, system’s stability is
not guaranteed after interconnecting all the controllers and substructures. This is the main
problem of decentralized control [Siljak 11]. Furthermore, attempts to formulate decentralized
control strategies by extending standard optimization concepts and methods have not been
successful; the simple reason is that nonclassical decentralized information structure does
not lend itself to a manageable formulation of any kind of optimality principle. This fact is
responsible for a relatively large gap between theory and practice of optimal decentralized
control.

In this thesis, the theoretical requirements for decentralized control stability and optima
are not addressed since they are out of the scope. The approach, however, consists of using
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decentralized control architectures and guaranteeing the stability of the FMS through the
optimization performed with structuredH∞ techniques. Therefore, the approach is centralized
regarding the optimization process (the entire model is used) but decentralized regarding the
controller’s architecture (each subsystem has its own independent controller).

The advantage of this hybrid approach is shown in Fig. 7.7. Three different approaches
have been applied to control the hub’s rotation of the flexible pointing system through the
hub’s torque uh. All the three approaches had low bandwidth requirements (ωdes = 1 rad/s).
The black solid line represents an approach without active damping, presenting the worst
robust performance (GM = 24.5 dB , PM = 62.2 degrees). The blue solid line represents an
approach with decentralized active damping, tuned to maximally damp the first flexible mode
(GM = 24.5 dB, PM = 63.3 degrees). The green solid line represents open loop response of the
system with a controller synthesized with simultaneous (centralized) optimization of the rigid
body motion controller and the active damping controller. The simultaneous optimization
improves the robust performances (GM= 26.2 dB, PM = 83.5 degrees), even if in the foregoing
sections the improvement of robust performances in the low bandwidth requirements was
demonstrated to be harder.

Hence, a decentralized controller architecture merged with a centralized optimization ap-
proach can be beneficial in order to improve system robust performance. Using structured
H∞ synthesis, the controllers’ values of the decentralized architecture can be optimized glob-
ally for the required dynamic behavior and performance of the FMS. If an architecture is
“suitable” for optimization (i.e., a stabilizing solution can be found for the proposed archi-
tecture), then the synthesis will be able to find a solution for the optimization problem. The
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next section will give guidelines in order to propose the most “suitable” architectures for the
active damping of flexible modes.

7.2 Control of Flexible Modes

Structural vibrations are an essential characteristic in the dynamics of large flexible spacecraft.
The question arises whether they can be damped out by active control. If successful, the
spacecraft thus damped would behave somewhat more like a rigid spacecraft. This could lead
to simplified and robust design of the attitude controller for the spacecraft, as exemplified in
the foregoing section. Thus, attitude control performance, in terms of closed-loop dynamics
and robustness, could be enhanced by the active damping of the flexible modes. In this
section, a set of control architectures for active damping is explained and applied to the
TITOP models developed in Chaps. 5 and 6. Only attention is paid to control strategies
with guaranteed stability. They can be implemented in a decentralized manner, with each
actuator interacting only with the collocated sensor. In this case, the control system consists
of independent SISO loops, whose stability can be established from the root locus of

K(s)Gf (s) (7.4)

where Gf (s) is the structure transfer function between the actuator and the collocated
sensor and K(s) is the active damping controller. According to Preumont [Preumont 11], for
practical reasons the active damping K(s) should have enough roll-off at high frequency, so
that vibrations are not amplified beyond actuator’s bandwidth. Another important aspect is
the collocation between actuators and sensors.

Collocated actuator and sensor pairs always lead to alternating poles and zeros near the
imaginary axis, which is translated into an unconditionally stable system. This is because
the root locus plot keeps the same general shape, and remains entirely within the left half
plane when the system parameters are changed from their nominal values. In order to take
advantage of this property, this section revises collocated control strategies. However, it will
be shown that a noncollocated configuration can occur if the designer is not aware of the
chosen inputs/outputs. Noncollocated control is not the most adequate strategy since it is
related to poor robust performance, but in some applications it can be the only available
option for flexible mode damping (not all systems can have collocated actuator and sensor
pairs).

The different possibilities for K(s) are presented as follows. In Sec. 7.2.1, acceleration
feedback controllers are explained. In Sec. 7.2.2, integral force feedback is explained. In Sec.
7.2.3, other strategies which cannot be directly applied to the TITOP model are explained.
Finally, in Secs. 7.2.4 and 7.2.5 these control strategies are tested against the collocation/non
collocation of the internal forces and measurements and the presence of real actuator dynam-
ics.
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Figure 7.8: Acceleration Feedback applied to the different systems

Throughout this section the control strategies are illustrated with their application to
the flexible pointing system and a flexible beam modeled with the TITOP technique. The
values used for the flexible pointing system are m1 = 0.6 kg, m2 = 0.4 kg, Jh = 0.05 kg/m2,
Jb = 0.005 kg/m2, L = 0.56 m, k1 = 16.8 N·m, k2 = 50 N·m and c1 = c2 = 1.0 × 10−3

N·m·s. The properties of the flexible beam modeled with TITOP are length L = 1.5 m,
Young’s modulus E = 60 × 109 N/m2, section thickness t = 9.53 mm, section width b = 30
mm, volumetric density ρ = 2600 kg/m3. The properties of the piezoelectric material bonded
to the flexible beam are piezoelectric constant d31 = −150 × 10−12 m/V, dielectric constant
T
33 = 1.59 × 10−12 F/m, laminate thickness tp = 2 mm, laminate width wp = 30 mm, elastic
modulus Ep = 50× 109 and volumetric density ρp = 7600 kg/m3.

7.2.1 Acceleration Feedback

In a control law based on acceleration feedback, the measured output is an acceleration and
the control input is a force. Measuring acceleration in translations is easier than measuring
velocities or displacements, specially when the structure is stiff. This is not the case however
for angular accelerations, where an angular accelerometer is much more expensive than a
gyroscope. The acceleration feedback can be implemented in two ways: direct rate feedback
and second order filter feedback.

Direct Rate Feedback

In the direct rate feedback, the measured acceleration is integrated and multiplied by a gain
in order to increase the system’s damping. The control law is written as follows:
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Figure 7.9: Root locus of the second order filter applied to the different systems

K(s) = Kv

s
; u = −K(s)ÿ (7.5)

The active damping mechanism is guaranteed since the power is being dissipated (uT · ẏ ≤
0). In Fig. 7.8a, rate feedback root locus is depicted for the flexible pointing system example.
In Fig. 7.8b, rate feedback is applied to a piezoelectric beam, feeding the applied voltage
with the measurement of the tip’s vertical acceleration, q̈y. The stability properties of this
controller are guaranteed in both cases thanks to the root locus being always in the left-half of
the complex plain, but the TITOP case seems more efficient for damping the flexible modes.

Second Order Filter

This controller passes the acceleration signal through a second order filter with damping
to generate a force feedback proportional to the measured output. This controller enjoys
guaranteed stability as well, increasing roll-off at high frequencies. The control law can be
written as follows:

K(s) = Kp

s2 + 2ξfωfs+ ω2
f

; u = −K(s)ÿ (7.6)

where ξf and ωf are respectively the damping coefficient and the natural pulsation of the
filter. They are tuned to maximize the damping of a targeted flexible mode. In Fig. 7.9a
two second order filters are presented for the flexible pointing system, one targeting mode 1
and the other targeting mode 2. Sometimes, a pair of complex auto-conjugate zeros can be
added to the filter to improve the controllability of the targeted mode. This is the case of the
TITOP beam model depicted in Fig. 7.9b.
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Figure 7.10: Root locus of the positive Integral Force Feedback IFF

7.2.2 Integral Force Feedback

This decentralized control strategy considers local controllers connecting their actuators with
their collocated force sensor. The controller of a positive Integral Force Feedback (IFF) takes
the following form:

K(s) = − Kp

Ka(s+ ε) ; u = −K(s)F (7.7)

where Kp and Ka are proportional gains of the controller and ε is the forgetting factor to
avoid saturation that could lead a full integral action. This scheme is unconditionally stable
for all values of Kp/Ka since it leads to alternating pole and zeros along the imaginary axis.
The negative sign in Eq. (7.7) is combined with the negative sign in the feedback loop to
produce a positive feedback.

IFF is applied to the case of the flexible pointing system in Fig. 7.10a. It is shown that
the control strategy leads to alternating poles and zeros and therefore it is unconditionally
stable. It should be noted as well that the zeros are not located in the same places as in the
acceleration feedback, since now the transmission zeros, obtained by enforcing a zero force at
the connecting DOF, are identical to the natural frequencies of the system when the controller
is disconnected from the system, identical to the natural frequencies of the free system. The
transmission zero in the rate feedback case is located at 11 rad/s, whereas the transmission
zero in the IFF case is nearby 14 rad/s.

The IFF applied to the TITOP beam is shown in Fig. 7.10b. It can be noted that the
root locus is not unconditionally stable, there are no alternating poles and zeros and the
root locus steps into the right-half complex plane. The double port form of the TITOP is
what causes this disadvantage. Indeed, a TITOP model can have two kinds of IFF: the one
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which measures the transmitted load, FA/P,P , and the one which measures the received load,
FA/C,C . It appears to be that the first one is not a collocated effort, leading to unstable
configuration. The second one cannot be implemented yet for a single beam since there is
no received force to measure, it will be explained in Sec. 7.2.4 where a concatenation case is
presented.

7.2.3 Other Controller Architectures

This section revises other collocated control strategies which can be applied for active damping
control. Nevertheless, they cannot be directly applied to a TITOP model because they involve
measurement of relative displacements and velocities. As a reminder, a TITOP model has as
inputs/outputs inertial accelerations and loads transferred through the boundaries of other
substructures in the chain. A manipulation of the obtained TITOP’s outputs is required in
order to obtain relative velocities and displacements.

The remaining strategies are the PD controller and the Positive Position Feedback (PPF),
both of them based on the measurement of relative position and velocity. In the PD strategy,
relative position and velocity are fed back with a proportional gain and a derivative gain
respectively in order to produce the control force, as follows:

u = Kpyrel +Kvẏrel = [Kp Kv]
{
y

ẏ

}
rel

(7.8)

A PD controller does not have a good roll-off at high frequencies since the derivative term
can amplify noise at high frequencies. A PPF controller uses a second order filter to improve
the roll-off of the control system, allowing high frequency gain stabilization:

K(s) = −Kp

s2 + 2ξfωfs+ ω2
f

; u = −K(s)yrel (7.9)

where the pulsation ωf is tuned to have a roll-off -40 dB beyond the desired bandwidth.
Both approaches are shown in Fig. 7.11 where they have been applied to the flexible point-
ing system example. Both approaches are unconditionally stable since they are collocated
strategies.

Regarding the TITOP model, another control strategy can be used if the measured charge
output signal, gc is used for applied voltage feedback, v. However, as mentioned in Sec. 6.1.2,
this configuration offers poor controllability (poles and zeros nearly cancel out). This fact
obliges the use of the actuated TITOP model electric inputs and outputs either for control
or measurement, but not both at the same time.
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Figure 7.11: Root locus of the PD and PPF controllers

7.2.4 Robustness to Pole/Zero Flipping

In the foregoing sections, the collocation of actuator/sensor pairs has been taken for granted
in all the control strategies. However, it should be noted that the actuators and sensors were
not strictly collocated. The theorem states that the transfer matrix of a structure is positive
real (i.e., dissipates energy) if collocated actuators and rate sensors are used, this result being
totally independent of the numerical values of the modal frequencies and the mode shapes
of the structure [Benhabib 81]. This collocation must be done at the ultimate level, that
is, if inertial accelerations are measured, the applied loads must be inertial, and if relative
accelerations are measured, the control forces must be internal. If this requirement is not
respected, pole/zero flipping may occur, i.e., there are no longer alternating poles and zeros
along the imaginary axis.

As it can be noted, the control strategies of Secs. 7.2.1 and 7.2.3 were not truly strictly
collocated systems, since an inertial measurement (absolute acceleration) was taken to drive
an internal applied force, ua. Nevertheless, for the given values of the system alternating
poles and zeros were obtained since the flexible pointing system was stiff enough. Now let us
suppose that the value ofm2 is changed to a heavier one,m2 = 1.2 kg, making the systemmore
flexible. The new root locus of the acceleration feedback and IFF are shown in Fig. 7.12.
It can be observed that the transmission zeros of the acceleration feedback controller are
located at a lower frequency (see Fig. 7.12a), since now the cantilevered frequency associated
to Appendage 2, ωcc =

√
k2/m2, decreases as the mass m2 increases. As a consequence, the

alternating scheme of poles and zeros is broken and the acceleration feedback is no longer
collocated. This is also observed for other acceleration feedback based controllers (See Figs.
E.5 and E.6 in Appendix E), due to the fact that the acceleration is measured in the inertial
frame whereas the applied force is internal, thus not being truly collocated. In the other
hand, IFF remains collocated and unconditionally stable (see Fig. 7.13b), since the controller
uses truly collocated inputs/outputs (measured force, internal force actuator).
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Figure 7.12: Root locus of the flexible pointing system with heavier appendage(m2 = 1.2 kg)

The TITOP model experiences the pole/zero flipping effect when the structure is flexible
enough. If a second flexible beam is linked to the flexible beam used in the foregoing sections,
acceleration feedback is no longer collocated, even if it is applied at the same location (see
Fig. 7.13). This issue is solved either by using relative rate feedback (Fig. 7.14a ) or IFF
using the measured received force from segment 2 to segment 1 (Fig. 7.14b).

It can be concluded that only strictly collocated inputs/outputs lead to unconditionally
stable active damping strategies. The term strictly refers to the couple inputs/outputs being
inertial or non-inertial, but they cannot be mixed. An IFF controller is more robust to
pole/zero flipping since the measured output (internal force) is strictly collocated with the
applied force.

It should be highlighted that there are other causes for pole/zero flipping. If a controller
has zeros near the system’s poles, pole zero flipping may occur if the system’s model has
uncertainties which can vary the position of the pole. This is particularly important when
a the controller contains a notch filter [Preumont 11], a filter specially designed to induce
artificial collocation in a non-collocated system. Other source for pole/zero flipping are actu-
ator/sensor configurations with poor controllability/observability, where the presence of small
uncertainties can shift the order of poles and zeros due to their proximity.

7.2.5 Real Actuator/Sensor Dynamics

Actuators play a crucial role in the design of the control system and, in many cases, they con-
stitute the limiting factor. They can be ground-based or structure-based actuators. Ground-
based actuators react on a fixed support, e.g. force motors, torque motors or tendons. The
structure-based actuators do not have ground support and some examples are reaction wheels,
control moment gyros, proof-mass actuators, piezoelectric strips, piezoelectric stacks or other
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active members (revolute joints, extendable parts). All actuating devices involving only inter-
nal‚ self-equilibrating forces‚ such as piezoelectric actuators, cannot influence the rigid body
motion of the structure.

Sensors also play a very important role in the control system. They can limit the control
design in three different ways: imposing the measurements which can be measured because
not all the variables are within the normally available sensors, limiting the measurement
precision because of noise reasons or altering the dynamic behavior of the system.

Due to their importance, actuators and sensors must be modeled in order to take into
account their influence on the system’s behavior. Throughout this section, it has been as-
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Figure 7.15: Illustration of the changes in the root locus of a collocated control when real
actutator dynamics are considered

sumed that actuators and sensors have perfect dynamics. In practice, however, the dynamic
behavior of the piezoelectric actuators can be modeled as a pass-band filter in the range of
frequencies ω ∈ (ωl, ωh) within they can operate:

A(s) = s2

s2 + 2ξlωls+ ω2
l

ω2
h

s2 + 2ξhωhs+ ω2
h

(7.10)

Actuator dynamics A(s) adds four extra poles which are translated in two asymptotes
which significantly alter the root locus for ω < ωl and ω > ωh. Thus, active damping is
no longer unconditionally stable beyond that range of frequencies since it has a destabilizing
influence beyond that range (see Fig. 7.15); system’s positivity is lost due to the actuator’s
limited bandwidth. Nevertheless, the controller can still operate at small gains thanks to the
natural damping of the structure, which places the poles slightly to the left of the imaginary
axis.

An evaluation of the different control strategies for controlling the rigid body motion and
the flexible modes of a FMS has been done throughout this chapter. The interest of per-
forming a centralized optimization of a decentralized control system has been highlighted
with an example. Since active damping has demonstrated to be beneficial for attitude
control performance and robustness, a set of collocated active damping strategies has
been presented, and their application to TITOP models has been discussed. The strate-
gies have been focused on collocated actuator/sensor approaches. Acceleration feedback
appears to be more problematic than positive integral feedback because of the not strict
collocation of actuators and sensors. This problem being discovered, the presented con-
trol architectures can be carefully applied later in the integrated control/structure design
of FMS, performed in Chaps. 8 and 9.
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Implementation of Integrated
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H∞ Form

“Ideas are easy. Implementation is hard.”
- Guy Kawasaki
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This chapter explains how to put an integrated control/structure design problem in
structured H∞ form so that the synthesis can be performed using structured robust
control functions, available in the Matlab Robust Control Toolbox. The specifications
for rigid body and flexible motion as well as structure and controller specifications are
translated in H∞ constraints and applied to the integrated control/structure design of a
rotatory spacecraft.
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In this chapter, the main objective is to show the use of structured H∞ synthesis as a
tool to perform integrated design studies, with special emphasis on the control/structure

application, i.e. transform the structured H∞ synthesis as explained in Chap. 3, in a tool to
solve co-design problems. The specifications for the control of the system’s dynamics and the
structural specifications are converted in H∞ constraints so that structured H∞ tools can be
used. First, an overview of the implementation procedure is described in Sec. 8.1. In Sec.
8.2 the conversion of system’s specifications in H∞ constraints is shown for the specifications
on the system’s dynamics, structure and controller. Finally, the co-design of the rotatory
flexible spacecraft is performed in Sec. 8.3 to illustrate the concepts explained throughout
the chapter.

8.1 General Procedure and Scheme for Integrated Design

The integrated control/structure design (ICSD) method of this study uses structured robust
control synthesis. A thorough explanation of structured H∞ controller synthesis is given in
[Gahinet 11] and [Burke 06], where it is shown how it is possible to impose the order, the
structure and stability of the controller thanks to the structured H∞ synthesis. Some aspects
of this theory have been recalled in Chap. 3 and this section presents the needed modifications
to perform integrated design. The integrated control/structure problem needs five steps for
implementation under H∞ form:

Step 1 : Obtain a LFT model of the system. The FMS under study has to be modeled
following the TITOP modeling technique or other preferred approach. The model has to
contain the sizing parameters to be tuned, which will result in a LFT with an associated ∆
block including parametric variations. The channels of the FMS modeling scheme have to be
“broken” in order to incorporate the perturbation inputs w and performance z outputs that
will be used lately for requirements implementation in Secs. 8.2.1 and 8.2.2.

Step 2: Conversion of the ∆ block into tunable parameters. Once the LFT model
of the FMS is obtained, it is separated into the nominal LTI model G(s) and the ∆ block.
Depending on the software being used, the block ∆ is often presented as a lfr object. This is
the case, for example, of Matlab Robust Control Toolbox functions. Since the block ∆ has to
be presented as a set of tunable parameters instead of an uncertainty block as used by robust
analysis tools, the full block is converted into a diagonal matrix ∆i with tunable parameters
δi, respecting the number of occurrences for each parameter. In Sec. D.1 an example of a
matlab code to perform this task is presented.

Step 3: Selection of the controller’s architecture and creation of an augmented
controller. Depending on the controller’s architecture, C(s), the nominal system G(s) will
have to provide to the synthesis scheme of Fig. 8.1 the needed control inputs, y, and the needed
control outputs, u that will be used by the controller to stabilize the system in the feedback
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Fl(G(s), C(s)). An augmented controller, K(s) = diag(C(s),∆i), is created incorporating the
set of tunable parameters, ∆i, that will act as a feedback between the system outputs y∆ and
system inputs u∆, and C(s) being a structured controller that will act as a feedback between
the system outputs y and system inputs u.

Step 4: Selection of the weighting functions. A set of weighting filters [Wz,WC ,Wk]
has to be obtained in order to state the dynamic behavior of the system, shape the frequency
response of the controller and optimize structural parameters. The form of these weighting
functions is explained in the next sections.

Step 5: Build the multi-channel H∞ synthesis scheme. With the elements obtained
in the precedent steps, the synthesis scheme is build by establishing the feedback of the
augmented controller K(s) with the corresponding inputs/outputs of the nominal system
G(s). Additional channels are added in order to weight the controller’s frequency response
and structural variations.

Figure 8.1 shows the standard multi-channelH∞ synthesis problem for ICSD of the system
G(s). The synthesis scheme has three different channels:

• One multidimensional channel which connects the perturbations of the system, w, to
the performance outputs, z.

• One multidimensional channel which connects the inputs of the control system, yc, to
the outputs, uc.

• One multidimensional channel which connects the inputs of the constraints of the vary-
ing parameters fk(δi) block, wk, to its outputs zk.

Structured H∞ synthesis computes the sub-optimal tuning of the free parameters of C(s)
and ∆i embedded in K(s) to enforce closed-loop internal stability, Fl(G(s),K(s)), such that:

min
K(s)
{max{‖Wk(s)fk(δi)‖∞, ‖WC(s)C(s)‖∞}}

such that
‖Wz(s)Tw→z(s)‖∞ < γperf

i.e., it minimizes the H∞ norm between the transfer of the perturbation input w and the
performance output z, Tw→z(s), such that it is constrained to be below γperf > 0 to meet
the required performances. The problem is in the form of multi-channel H∞ synthesis, and
it allows the set of desired properties to the augmented controller such as its internal sta-
bility [Alazard 13a], frequency template [Loquen 12] or maximum gain values. In substance,
the structured H∞ integrated design synthesis tunes the free parameters contained in the
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Figure 8.1: Block Diagram of Integrated Design Optimization

augmented controller K(s) = diag(C(s),∆i) to ensure closed loop internal stability and meet
normalized H∞ requirements throughWz, WC andWk. The main difficulty lies on how to set
the correct normalizedH∞ requirements so that successful integrated design synthesis is guar-
anteed. Guidelines for the selection of the needed filters to convert the system’s specifications
in H∞ requirements for the flexible spacecraft case are given in the next section.

8.2 Implementation of Specifications and Constraints

The basic large flexible spacecraft design objectives for the control system are:

1. To obtain sufficiently high bandwidth and satisfactory closed-loop damping ratios for
rigid-body structural modes. This arises from the need to provide sufficient error decay
when a disturbance torque occurs (such as a sudden thermal distortion when entering
in Earth’s shadow or a gravity gradient torque)

2. To achieve satisfactory pointing errors. This design objective arises from mission per-
formance requirements (such as alignment specification between two different on-board
instruments, Radio Frequency specifications of a large antenna)

These two objectives may not necessarily be compatible: increased feedback gains for
obtaining higher bandwidth or damping will in general lead to higher pointing errors since
they may have an amplifying effect on sensor noise. In this method, control design objectives
are addressed as frequency domain specifications on rigid-body modes and then expanded
to the rest of the FMS where flexible motions have to be damped. The rigid modes are
assigned to a specific part of the spacecraft, likely the hub or platform, in which rigid-body
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actuators, such as reaction wheels or control moment gyros, are usually placed to control
attitude motion. The center of gravity of the hub is used as the origin of the frame for
the rest of the constraints. Then the constraints which can be imposed to the controller or
structural parameters are explained.

8.2.1 Rigid Motion Specifications

Controlling the rigid body motion is the most important task of the attitude control system,
keeping the angle position between maximum misalignment values for any given torque dis-
turbance. Such disturbances are produced by aerodynamic drag effects in low-Earth orbits,
solar radiation and solar wind torques, parasitic torques created by the propulsion thrusters,
gravity gradient torque or thermal distortion torque, which can perturb the attitude posi-
tion when an observation is being made. The specifications are given in the form of a desired
bandwidth in which the disturbance torques have to be rejected, ωdes, and a desired damping,
ξdes, to ensure enough error decay and maximum value when a disturbance occurs.

In order to impose the desired closed-loop rigid body motion, determined with the couple
(ωdes, ξdes) for each attitude angle (roll ϕ, pitch θ and yaw ψ), the synthesis scheme uses the
acceleration sensitivity function as the performance output of the rigid body DOF:

Definition 8.1. Acceleration Sensitivity Function. Given the equations of motion of
a system as the generic second order differential equation Mq̈ + Dq̇ + Kq = Fu where M ,
D and K are respectively the mass, damping and stiffness matrices, then the acceleration
sensitivity function, Sq̈, is defined as the transfer q̈ = q̈real + w, where w is the perturbation
acceleration.

The Acceleration Sensitivity Function (ASF), Sq̈, was introduced and used by [Fezans 08]
in a H∞ synthesis scheme which was named Second Order Template on Acceleration Sensi-
tivity (SOTAS). In this scheme, each DOF contained in the vector q has a weighting function
Wq̈ on the ASF in order to set its closed-loop dynamic response. The obtained controller can
thus reject low-frequency acceleration disturbances on the DOF. Furthermore, the robustness
of the synthesis is enforced since it will have to minimize the effects of the perturbations in
q and q̇, variables used by the controller. A block diagram of the SOTAS synthesis scheme is
depicted in Fig. 8.3. Hence, the synthesis has to minimize the H∞ norm of the transfer

Twq̈→z = Wq̈Sq̈ (8.1)

The frequency weighting functionWq̈ is a second order transfer function obtained straight-
forward from the rigid body specifications, being a low-pass filter with the specified bandwidth
and damping as parameters:

Wq̈ = s2 + 2ξdesωdes + ω2
des

s2 (8.2)
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Figure 8.2: Second order template W−1
q̈ sets the wished frequency response of the transfer

Tw→z (ωdes = 1 rad/s, ξdes = 0.6)

The shape of the weighting function (see Fig. 8.2) obliges the ASF to attenuate the
sensitivity to acceleration disturbances in the desired bandwidth. Under these conditions,
the optimal solution of the SOTAS scheme is defined as follows:

Theorem 8.2. SOTAS Optimal Solution. Given a second order system G(s) and P (s)
its associated SOTAS problem, consisting of the system G(s) and a feedback controller using q
and q̇ as control inputs, a controller K(s) is considered as the optimal solution of the problem
P (s) if and only if ||Fl(P,K)||∞ = 1

This property is the main advantage of the SOTAS synthesis scheme, since by definition
the optimal norm γopt is equal to 1 and therefore any additional constraint implies γperf ≥ 1,
being the distance to 1 considered as a distance to the objective. Therefore, a feedback which
gives a performance value close to 1 would fulfill the closed-loop dynamic specifications and
will ensure perturbation rejection. Hence the controller can be either rejected or accepted if
its associated γperf is either much greater or less greater than 1.

The SOTAS scheme allows the synthesis of controllers which control the rate and position
of the attitude angles against disturbances, which is achieved with PD controllers. If a PID
controller is desired in order to ensure null steady-state error, an integral term of the variable
q can be added to the weighting function and as control input. The integral term will then
considered the integral effect on the ASF:

Wq̈ = s2 + 2ξdesωdess+ ω2
des

s2 · s+ λi
s

(8.3)

where λi determines the desired integral effect, and it is often chosen as one tenth of
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the desired bandwidth. The SOTAS scheme with the integral term is depicted in Fig. 8.4.
The additional integrators addded by the SOTAS scheme through the weighting function
can make the synthesis process fail. Particularly, the function hinfstruct needs a minimal
representation of the SOTAS problem, i.e., a representation which avoids uncontrollable poles
and unobservable zeros. The representation of this minimal form is explained with detail in
[Guy 12]. Modern structured robust synthesis functions, such as systune, can impose the
frequency constraints without needing a minimal representation of the weighting functions.

Once the SOTAS scheme has been explained for generalized second order systems, it
can be implemented in the more particular TITOP modeling scheme of flexible multibody
spacecraft. Following the FMS TITOP modeling example given in Sec. 5.6, the scheme is
modified in order to accomodate the SOTAS scheme for controlling the rigid body motion of
the platform at its center of gravity G, {q̈G} (see Fig. 8.5). A perturbation disturbing the
acceleration measurements at point G, wG, is introduced before the transfer of acceleration
to the flexible appendage. By doing this, the synthesis process takes into account the flexible
motion since the perturbation excites the flexible modes. Then the total acceleration (the
real one plus the perturbation) is weighted by the filter Wq̈G to give the performance output
zG.
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Fig. 5.11 (the antenna is not represented for simplicity)

Therefore, the TITOP modeling scheme is used in the SOTAS template in order to control
the rigid body dynamics (attitude position) of the spacecraft’s platform. One weighting filter
is used for each output control axis i, being three the number of filters needed to state the
control specifications for the spacecraft’s orientation in 3D motion, one filter only for in-plane
2D motion. Hence, the rigid motion specifications form the sub-set WzG of the performance
output weighting functions Wz :

WzG = diag(Wzθ ,Wzψ ,Wzϕ) (8.4)

8.2.2 Flexible Motion Specifications

The constraints for damping the flexible motion of the FMS are derived from the SOTAS
scheme. The specifications regarding the control of flexible modes (e.g. maximum line-sight
misalignment or damping for vibration attenuation) are implemented as an extension of the
rigid body motion field to the rest of the system. Therefore, constraints in other points of the
FMS are assigned as the desired behavior of the point if the structure was rigid. Hence, for
a point P of the FMS located with the position vector {GP} in the spacecraft’s frame, the
desired acceleration would be the one corresponding to the rigid body field associated to the
spacecraft, i.e., the acceleration that point P would have if the spacecraft was infinitely rigid.
Since the transmission of the rigid body motion is given by the kinematic transport matrix
φGP , the weighting filter for a given point on a FMS can be written as follows:

WzP = φGP ·W−1
zG

= φGP ·
s2

s2 + 2ξdesωdess+ ω2
des

(8.5)
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Equation (8.5) automatically constraints the controller to increase the system’s natural
damping, since only a rigid structure is able to satisfy the template. The weighting function
can be relaxed with a factor greater than 1 in order to simplify the search of a stabilizing
controller. As in the rigid body motion case, the acceleration perturbation wP is added at
the measurement of the acceleration of point P , the sum is retrieved and weighted with WzP

to obtain the performance output zP , as depicted in Fig.8.6.

An additional constraint can be added in order to ensure the damping effect against
disturbance loads. As depicted in Fig. 8.6, a disturbance load wF is added on the channel of
the force transmission from the solar pannels to the mast, which is retrieved up-stream at the
measured acceleration at point P . This load perturbation-acceleration transfer excites the
flexible modes of Mast I. If the desired damping for the flexible modes of the mast is ξ, the
filter Wq̈F,P is a constant value corresponding to the infinity norm of a second order function
with the desired damping:

Wq̈F,P =
∣∣∣∣∣∣ ω2

s2+2ξωs+ω2

∣∣∣∣∣∣−1

∞
(8.6)

It should be noted that the value in Eq. (8.6) does not depend on the parameter ω, the
value is the inverse of the maximum peak of the second order transfer function, which is
directly related with the desired damping ξ. Hence, the filter states an upper limit for the
resonances of the transfer function wF → zF .
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Although theoretically an infinite number of constraints to flexible motion can be imposed
(as much as available sensors in the required points), the author’s experience reveal that
only one or two constraints per substructure are enough. More constraints increase the
number of failed searches of a stabilizing controller and the optimization time. Furthermore,
some constraints can be ill-conditioned or could be incompatible with other substructure’s
constraints.

8.2.3 Structural Specifications

The structural specifications can be established by adding channels that provide additional
constraints for the variations included in the ∆i block. The normalization process expresses
the parameter’s variation within the δi ∈ [−1,+1] interval, with the 0 value indicating the
nominal configuration of the plant G(s).

A structural constraint k which involves a set of structural parameters δi are imposed
through the weighting filter Wk and a cost function consisting of one or several parameter
variations δi, fk(δi). Only maximization or minimization can be imposed since the structured
H∞ only allows the minimization of the performance outputs, so other different types of
constraints (as for example equality with other parameters) cannot be implemented. If a
parameter δi has to be maximized, the constraint k is expressed to the transfer zk → wk as:

fk(δi) = (1− δi); Wk = βk (8.7)

where βk ≥ 1 is a user-defined value which gives more or less emphasis for the maximization
of the associated variation of a parameter i, δi. Therefore, since structured H∞ synthesis will
attempt the minimization of the H∞ norm of the channel zk/wk to achieve a value below
βk, the parameter δi is constrained to have positive values to reduce the coefficient (1 − δi)
below βk. Negative values are thus penalized since they make the sum greater than βk. The
increase of βk augments the sensibility of that constraint since the value will be farther from
the objective. A minimization can be expressed in the opposite sense with fk(δi) = δi, where
the synthesis will look for the minimum value of δi for the transfer. Another function for
maximization can be written if the parameter variations can be presented as a percentage of
[−p%,+p%]:

fk(δi) = 1
1 + δi

p
100

; Wk = βk (8.8)

Equation (8.8) also constraints the parameter δi to be maximized, but in this case the
slope of the function is lower than the slope of the linear expression in Eq. (8.7), as seen in
Fig. 8.7. Therefore, for positive values of δi, the ones which maximize the i-th parameter, the
constraint of Eq. (8.8) gives higher value of the performance index for the same parameter
variation, encouraging the optimization process to look for a large maximization for reducing
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Figure 8.7: Comparison of the cost functions expressed in Eq. (8.7) and Eq. (8.8)

that value.

It should be highlighted that there is no additional cost function associated to the op-
timization of structural parameters. The cost of optimizing one parameter in relation to
another will depend on how the parameter affects the dynamic behavior of the system, which
is constrained by the rigid and flexible constraints that have been established in Secs. 8.2.1
and 8.2.2. If the variation of the parameter significantly affects the fulfillment of rigid body
or flexible body requirements, stability or robustness, it will be penalized by the synthesis
process.

8.2.4 Controller Specifications

Added to the constraints in the rigid motion, flexible motion and structural parameters, the
frequency response of the rigid body motion controller can be improved through the addition
of a roll-off channel in the synthesis scheme. This may be necessary to add a cut-off effect
in the controller, avoiding the interaction with flexible frequencies which are close to the
controller’s bandwidth and that have not been damped by the active damping controller (the
spill-over effect). Within the controller’s channel, a weighting filter is added in order to shape
the controller’s frequency response. For each controlled axis the filter can be set as:

Wro = 1√
2JGiω2

des

· s+ ωro
s/100 + ωro

(8.9)

where ωro is the desired roll-off pulsation of the controller (ωro > ωdes) and JGi is the
system’s inertia at its center of gravity around the i-th axis. If the cut-off effect has to be
improved, a second order template can be used:



134 Chapter 8. Integrated Design Implementation in H∞ Form

Wro = 1√
2JGiω2

des

· s2 + 1.4ωros+ ω2
ro

(s/100)2 + 1.4ωro(s/100) + ω2
ro

(8.10)

The reader might have guessed that a standard damping of ξ = 0.7 was assigned for com-
pletion of the required second order parameters. These roll-off templates can be modified in
order to satisfy the roll-off requirements of the active damping controller. Then the controller
must incorporate a roll-off filter in order to satisfy the roll-off constraint:

C(s) = C0(s) a0
s2 + b1s+ b0

(8.11)

where C0(s) is the original controller, and the roll-off filter parameters a0, b1, b0 are to
be tuned by the function for structured H∞ synthesis. Once the roll-off filters have been
assigned for each type of controller, the weighting function for the controller channel will be
a diagonal matrix of roll-off filters one for each output control axis:

WC = diag(Wro1 ,Wro2 . . .Wron) (8.12)

Added to the roll-off specification, the applied commands computed by the controller can
be minimized taking advantage of a particular constraint that can only be implemented in
the systune matlab tool. This exclusivity resides on the fact that the constraint for energy
minimization involves a H2 norm, and the mixing of H2 and H∞ constraints (time and
frequency domains) can only be implemented with the systune function. The constraint to
minimize the applied commands is:

‖Tw→u‖2 ≤ e (8.13)

where Tw→u is the transfer between the perturbation w, u is the applied control command
and e the maximum value of the integral of the transfer with t → ∞. To implement this
constraint is necessary to modify the integrated design scheme in order to incorporate the
channel u as an output.

8.3 Co-Design of a Rotatory Spacecraft

As an academic application, ICSD (Integrated Control/Structure Design) is performed to the
rotatory spacecraft modeled in Sec. 6.2. The main objective is to control the rigid body
mode associated to the hub’s rotation, provide additional damping with the incorporation of
a piezoelectric laminate and to maximize the length and payload mass of one appendage only.
The ICSD of the rotatory spacecraft is then performed following the five steps described in
Sec. 8.1.
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Figure 8.8: Rotatory Flexible Spacecraft with the appendage i = 1 actuated with a laminate of
piezoelectric material

8.3.1 LFT Model for Co-Design

The derivation of the LFT model of the rotatory spacecraft is done by changing the model of
appendage 1 into a piezo-actuated TITOP model, as depicted in Fig. 8.8. The piezoelectric
material has the same characteristics as the ones used in Sec. 6.1.2. All appendage TITOP
models include their lengths (Li) as variable parameters, as well for the tip massesMi located
at their ends, all with an allowed variation of 30 % of its nominal value. The LFT TITOP
models are assembled to the hub following the same guidelines as in Sec. 6.2. After assembly ,
the system has a block ∆ of 125×125 size, that is, 2 parameter occurrences for each tip mass,
29 parameter occurrences for the non-actuated TITOP models and 30 parameter occurrences
for the actuated TITOP of appendage i = 1.

The TITOP assembly scheme is changed as shown in Figs. 8.5 and 8.6 in order to have the
acceleration disturbance inputs whub and wtipi and the performance outputs zhub and ztipi .
The system is thus expressed in a TITOP assembly configuration with the required sets of
inputs and outputs to perform ICSD. The system results in a state-space system with a ∆
bock of size 125×125, 11 inputs, 11 outputs and 50 states.

It should be highlighted that the ICSD of the rotatory spacecraft strongly demands a
modeling technique such as the TITOP modeling technique, since the boundary conditions
of the flexible beams are to be changed when varying the mass located at their tips. Thus,
by using the TITOP modeling technique, the impact of mass variation in the whole system
will be taken into account when ICSD is performed with structured H∞ synthesis.

8.3.2 Block ∆ Transformation

The final ∆ block after LFT TITOP assembly results in a block of size 125× 125 containing
the parametric variations (uncertainties) of Li and Mi, being the suffix i the i-th appendage.
Since this block contains the data as a LFT object, it needs to be converted into a set of
tunable parameters which can be used with the function systune.
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In the Robust Control Toolbox, the variations of the variable parameters are normalized
within the interval [−1, 1], with 0 corresponding to the nominal value. Therefore, the ∆ block
is initially a diagonal matrix containing sub-matrix blocks with the normalized parametric
variations δi repeated as much as it is indicated by the number of occurrences. The ∆ block
of this problem can be written as follows:

[∆] =



[δL1 ]30×30 0 0 0 0 0 0 0
0 [δM1 ]2×2 0 0 0 0 0 0
0 0 [δL2 ]29×29 0 0 0 0 0
0 0 0 [δM2 ]2×2 0 0 0 0
0 0 0 0 [δL3 ]29×29 0 0 0
0 0 0 0 0 [δM3 ]2×2 0 0
0 0 0 0 0 0 [δL4 ]29×29 0
0 0 0 0 0 0 0 [δM4 ]2×2


(8.14)

Each subblock has to be converted in a subblock of tunable parameters for ICSD with the
same number of occurrences as in the lft object. In Sec. D.1 an example of a matlab code to
perform this task is described.

8.3.3 Augmented Controller Architecture

The augmented controller is formed by concatenating the block of tunable parameters ∆ with
the real controller of the system, C(s). Since the ∆ block has been defined in the foregoing
section, in this section the structure of C(s) is addressed.

The system needs to reject low frequency disturbances in the rigid body DOF, the sys-
tem’s rotation around the hub, and can be helped by inducing active damping through the
piezoelectric laminate installed on appendage 1. Thus, the control system will consist of two
decentralized loops: one for the rigid body rotation of the hub, θhub, and the other to damp
the first appendage’s tip vibrations, ÿtip1 .

The control of the rigid body motion is achieved with a PD to compute the control torque
provided by the reaction wheel located at the hub. The active damping controller will be
a simple rate feedback, integrating the first appendage’s vertical acceleration (acceleration
feedback strategy). Therefore the control law is structured as follows:

{u} = [C(s)]{y} =
{
thub
V

}
=

kv 0 0
0 kp 0
0 0 ka/s



θ̇hub
θhub
ÿtip1

 (8.15)

The proportional control gain kp, the derivative control gain kv and the damping gain ka,
together with the tunable parameters of the ∆ block, are to be optimized with structured



8.3. Co-Design of a Rotatory Spacecraft 137

10-2 10-1 100 101 102 103 104
-90

-80

-70

-60

-50

-40

-30

-20

-10

0

10

Rotatory Spacecraft

ICSD Hard Requirement W!1
B3hub

Frequency (Hz)

M
a
g
n
it
u
d
e

(d
B
)

(a) Constraint (yellow) on the hub’s dynamics (blue)

10-2 10-1 100 101 102 103 104
-100

-80

-60

-40

-20

0

20

40

Rotatory Spacecraft

ICSD Soft Requirement WBqP

Frequency (Hz)

M
a
g
n
it
u
d
e

(d
B
)

(b) Constraint (yellow) on the tip’s dynamics (blue)

Figure 8.9: Dynamic specifications template and system response before optimization

H∞ synthesis. The values of the PD controller are initialized using the standard synthesis of
Sec. 7.1.1 giving kp = 633.33 N·m and kv = 231.21 N·m·s.

8.3.4 Implementation of Design Specifications

As previously specified, the control of the hub rotation must be able to reject low frequency
disturbance torque. The desired closed-loop dynamics for perturbation rejection are ω = 1
rad/s and ξ = 0.7, which leads to the following weighting filter:

Wθ̈hub
= s2 + 1.4s+ 1

s2 (8.16)

The damping of the flexible modes is imposed by weighting the transfer between the hub’s
acceleration disturbance whub and the performance output ztip1 with Wq̈P = L ×W−1

θ̈hub
. A

constant filter as the one in Eq. (8.6) is added in the transfer Ftip1 → ztip1 to add additional
damping. In Fig. 8.9 the frequency response of the system is compared with the desired
frequency response imposed through the templates before ICSD optimization. It is seen that
the flexible modes are badly damped and the PD controller gains have a larger value than
the needed to respect the template on the ASF of the hub position θhub.

Once the constraints for rigid and flexible motion have been defined, additional chan-
nels can be added to constraint the variation of structural parameters. The constraints for
the maximization of the length and tip mass of appendage 1, L1 and M1 respectively, are
implemented as follows:

fM1(δM1) = 1
1 + 0.3δM1

; WM1 = 0.75 (8.17)
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Parameters COA ICSD
Controller PD + AF PD + AF

Lengths L1 & L2 1.22 m L1 =1.59 m & L2 = 1.36 m
Masses M1 & M2 2.29 kg M1 =2.98 kg & M2 = 1.60 kg
Lengths L3 & L4 1.22 m L3 =1.59 m & L4 = 1.54 m
Masses M3 & M4 2.29 kg M3 =1.75 kg & M4 = 1.60 kg

Total Appendages Mass 15.51 kg 15.83 kg

Table 8.1: Structural data before optimization (COA) and after performing ICSD to the rotatory
flexible spacecraft

fL1(δL1) = 1
1 + 0.3δL1

; WL1 = 0.75 (8.18)

where the βk values have been fixed to 0.75, a value which can never be reached with the
allowed maximal variation, in order to encourage the maximum possible value for δL1 and
δM1 . The constraint for minimum total mass is:

fMtotal
(δi) = LnomρS(4 + 0.3

4∑
i=1

δLi) +Mnom(4 + 0.3
4∑
i=1

δMi); WMtotal
= M0 (8.19)

where M0 = 15.51 kg is the nominal total mass of all the appendages. Equation (8.19) is
a combination of all the structural parameters that can be varied, weighted by their impact
on the system total mass (total beams mass for the lengths, total tip mass for the tip masses).

8.3.5 Optimization and Results

The optimization of the controller and the structural parameters is performed using the
structured H∞ synthesis tool systune. The results of the ICSD solution are compared with
those of a solution with control optimization alone (COA). Table 8.1 shows the optimized and
nominal structural parameters. It can be seen that the length and tip mass of appendage 1
have been increased the maximum allowed, 30 %. For appendages 2, 3 and 4 the tip masses
have been minimized while the lengths have been increased almost to the maximum, with
the exception of appendage 2. Appendage 3 and its opposite appendage 4 are no longer
symmetric since they lengths are slightly different and the tip masses difference is around
0.15 kg. The structural optimization meets the specifications: maximization of mass and
length of appendage 1 while minimizing the impact on the total system’s mass.

Figure 8.10 shows the resulting frequency response for the ASF of θhub and qP compared
with the desired templates Wθ̈hub

and Wÿtip1
after optimization. The gains of the PD con-

troller have been adjusted to fit the frequency template and flexible modes are shifted and
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Figure 8.10: Dynamic specifications template and system response after optimization

more damped when comparing with the response given in Fig. 8.9b. The shift of flexible
modes is a consequence of the structural optimization, since tip masses and lengths have
been modified. The damping is provided by the active damping provided by the piezoelectric
material controlled with an acceleration feedback control law.

The ICSD solution enjoys the same robust performance as the COA solution for the hub
position control. The Nichols diagram of the open loop thub → tcom response in Fig. 8.11a
shows that the ICSD solution has satisfactory phase and gain margins (GM = 20.5 dB, PM =
69.1 deg) which are as good as the COA solution (GM = 13.5 dB, PM = 69.1 deg). However,
this is achieved by the ICSD solution with longer appendages which are not symmetric.
Indeed, the first flexible mode, located at ω = 4.4 rad/s appears to be uncontrollable in
nominal configuration, corresponding to the symmetric bending of the system’s appendages.
However, the ICSD solution has tuned the system to be completely asymmetric so that the
first flexible mode can be governed with the hub torque as well. This is confirmed in Fig.
8.11b, where the bode diagram of the open loop response shows that the first flexible mode
appears as a resonance frequency in the ICSD solution and as an anti-resonance frequency
for the COA solution.

The uncontrollability of the first symmetric bending mode at ω = 4.4 rad/s is also verified
in the time domain response. Figure 8.12 shows the closed-loop response of the hub’s acceler-
ation θ̈hub and the first appendage tip’s acceleration ÿtip1 to an asymmetric torque disturbance
at tips 1 and 3. This input excites the symmetric bending mode of appendages 3 and 4, which
cannot be damped by the COA solution. It can be seen as well that the acceleration of the
COA solution has a higher overshoot than the ICSD solution, even if the ICSD solution has
higher tip mass and length. On the other hand, the ICSD solution needs two times more time
for damping the tip vibrations and hub’s position oscillations.

The results show that ICSD using structured H∞ synthesis can be achieved by imple-
menting the desired specifications in H∞ form. The structured H∞ synthesis optimizes the
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Figure 8.12: Comparison of ICSD and COA solutions in the time-domain, response to an
asymmetric torque disturbance at appendages 3 and 4

controller and the structural parameters to better fit the dynamic specifications, while re-
specting the structural constraints imposed to the varying parameters. The same level of
performance can be achieved with a modified structure, discovering new configurations which
can improve control performance. The optimization process has provided an intuitive fact:
the maximization of the mass of one appendage will decrease the total mass of the others.
The optimization has provided a counter-intuitive fact as well: system’s asymmetry can help
to increase controllability of system’s modes and to improve system’s performance. Therefore,
integrated design is possible and it takes into account the issues and tradeoffs of the physical
system.
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The implementation of dynamic, structural and controller specifications for the integrated
control/structure design have been explained throughout this chapter. The specifications
for the rigid body motion are implemented using a SOTAS scheme, while the flexible mo-
tion damping is achieved by projecting the rigid body motion template at different points
of the FMS. The structural constraints for structured optimization are implemented with
additional channels which included the cost functions and weighting filters applied to the
varying parameters involved in the constraints. Controller frequency shaping can be
stated through a roll-off filter. Finally, the implementation has been exemplified by per-
forming the ICSD of the rotatory flexible spacecraft of Chap. 6. The next chapter uses
the same H∞ constraints to perform the ICSD of a more complex system, a flexible
satellite.
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This chapter applies the concepts developed in the foregoing chapters to a single complex
application: the integrated attitude control/structure design of a flexible spacecraft. The
flexible spacecraft is in preliminary design phases and, being a FMS with few available
data. The modeling and integrated design frameworks developed in this study can be
applied to it in order to derive conclusions for its future design.
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The precedent chapters have proposed, developed and applied the models, strategies and
specifications needed to perform integrated attitude control/structure design with struc-

tured H∞ synthesis. In this chapter, all the acquired knowledge is applied to the case of a
highly flexible spacecraft, the Extra Long Mast Observatory (ELMO). The proposed system
is complex and requires a detailed analysis, what will show the advantages and limitations of
the proposed ICSD approach.

The objective is to perform a preliminary study about the different tradeoffs between the
control system and the structure of the satellite by obtaining a reliable model with the TITOP
modeling technique and by performing ICSD with H∞ synthesis. The spacecraft’s geometry
and specifications are explained in Sec. 9.1. In Sec. 9.2, the flexible satellite is modeled using
the TITOP approach. The implementation of system’s specifications is explained in Sec. 9.3.
Finally, the integrated design study is done in Sec. 9.4.

9.1 System Description

The Extra Long Mast Observatory (ELMO, Fig. 9.1) is the name provided to a virtual
interferometry mission. To improve the instrument’s performance, the focal length of the
X-ray telescope is increased by introducing a long mast which will be deployed in orbit. The
mast characteristics are based on a prototype developed by CNES (Centre National d’Etudes
Spatiales). The aim is to study and test the feasibility of such a complex technology, that
will require improvements on structure conception and attitude control system design. The
study can be considered as a preliminary design phase of a large space structure.

The construction of the mast is in its preliminary design phase. Much researches have
been done in order to study the feasibility of lighter and more resistant configurations for the
onboard deployable mast. Based on previous know-how, the mechanical department has built
a 4-meter prototype that is intended to form one of the segments of the deployable mast. The
mast takes advantage of the elastic properties of composite materials (such as high-resistance
carbon fiber, EC 2216 resin) to build a mast with low weight, thermal resistant and stiff which
can be compacted in a few inches and be deployed up to 20 meters [CNES 10b, CNES 10a].
However, up to date the only data available is the one provided by the prototype, other kind
of properties of the full deployed mast will have to be predicted with other models.

ELMO is composed of a rigid platform, with center of mass at G, to which a long de-
ployable mast is cantilevered at a point P at which end Q the instrument for the required
mission is located (depiction shown in Fig. 9.2). The mast is discretized in three mast
segments, each one with the same properties as the prototype. Due to the mast’s length,
ELMO is predicted to have a highly-directional inertia tensor, with a very high magnitude
of the moment-of-inertia in the perpendicular plane to the mast. Thus the main challenge
in science-mode control design is to provide just-enough bandwidth to adequately mitigate
low-frequency disturbances while minimizing the effects of end displacement and maximiz-
ing instrument mass. The integrated attitude control system (ACS)/ Structure design study
aims at providing valuable control strategies for the required bandwidth and to maximize the
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Figure 9.1: Illustration of the Extra Long Mast Observatory (ELMO)

instrument mass located at the end of the mast.

The difficulties of the integrated design study are two-folded: on one hand, there is no
available model of the whole assembled system, on the other hand, there is no previous
knowledge of what the control system will need in order to achieve the desired specifica-
tions. Therefore, the integrated control/structure design of ELMO is exploited to explore the
following issues:

1. The computation of a model which takes into account the system’s flexibility and which
can be used for controller synthesis with structured H∞ synthesis.

2. Study of the possibility of increasing the payload mass.

3. The evaluation of the different control architectures that will be needed in order to fulfill
mission requirements (pointing specifications)

4. Evaluate the influence of the position of the piezoelectric actuators along the mast

All these problems, addressed either simultaneously or one after each other, should help
design engineers to gauge the system’s needs and capabilities in the preliminary development
phase.
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Figure 9.2: Simplified sketch of ELMO

Parameters Symbol Value
Hub Inertia JH 250 kg/m2

Hub Mass mH 500.0 kg
Hub Dimension R 1.0 m
Payload Inertia Jtip 0.0 kg/m2

Payload Mass mtip 61.0 kg
Length MI , MII , MIII L 4.06 m

i-th PEA length li 0.2 m

Table 9.1: ELMO configuration parameters

9.2 System Modeling

As stated before, the main difficulty of the ELMO study lies on being a FMS of which a full
dynamic model is not available. The model of the full FMS has to be obtained by assembly
of the different substructures which form it, that is, the platform, the mast segments and the
payload. Only data of a single mast segment is available. To overcome this difficulty, the
TITOP modeling technique is used to find a coherent model which can be used to perform
integrated design.

The mast prototype has a complex geometry. It can be approximated by a cylindrical
shell, of a diameter of 140 mm and variable thickness along the longitudinal axis due to the
different layers of materials. The total length of the prototype is 4.06 m. The cylindrical
shell consists of meticulously interlaced tiles, in such a manner that, once deployed, only a
high compressible effort along the mast longitudinal axis can compress the mast to its initial
position. The full FE-model of the mast segment has provided the first bending mode with
the mast’s tip uncharged at around 5 Hz and a tip displacement does not exceeds 5 mm under
a thermal gradient of [−150◦C,+150◦C] (see Fig. 9.3).

A simplified FE-model consisting of beam elements has been computed and some variables
have been tuned in order to reproduce the same dynamic behavior for charged and uncharged
configuration. In order to consider the improvement of the attitude control system by damping
the flexible modes of the mast, piezoelectric laminates of 0.2 m length have been added. In
nominal configuration, the piezoelectric actuators are located at x1 = 2.8 m for the first mast
segment, mast I, x2 = 2.5 m for mast II and x3 = 2.5 m for mast III. The actuator placement
is depicted in a simplified manner in Fig. 9.2. The FE-model of each obtained mast has been
computed and set into an actuated TITOP model as explained in Sec. 5.4. Therefore, for each
mast the available inputs/outputs are the ones needed for mechanical coupling (acceleration-
load transfer between connection points) and the ones needed for vibration damping (voltage
vi as control input, and output fi as a collocated output, either force or acceleration).

Once all the TITOP models of the mast segments have been derived, the assembly of
the whole system is addressed as in Fig. 9.4 in the needed LFT form for integrated design.
Mast segments are connected as actuated TITOP models, which exchange acceleration-loads
through their connection points until the end of the mast, where the payload is placed. The
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(a) First Mode (bending) (b) Thermal bending [−150◦C,+150◦C]

Figure 9.3: Mast prototype FE analysis for the first bending mode and thermal bending (Source:
CNES and Latecoere)

masts can be actuated through the input of voltages vi. The payload has been parametrized
so that the mass variation is taken into account through a tunable block ∆Mt for the payload
maximization purpose. The whole chain of flexible substructures is connected to the platform
as a force feedback, previously transported by the transport dynamics matrix φTPG which
relates the connection point P to the platform center of mass G.

The TITOP modeling technique provides a coherent plant model from which ICSD can
be performed. The inputs correspond to forces and torques applied to the platform (FG,TG),
the forces and torques applied at other points of the structure and the applied voltages in
the piezoelectric actuators (vi). The outputs correspond to the measured accelerations of the
platform and payload misalignment. Displacement information is extracted from the electric
charge in the piezoelectric components. Final state-space assembly results in a first flexible
bending mode at 0.62 Hz, close to the desired bandwidth of 0.182 Hz obtained in Sec. 9.3, a
resulting inertia of 11294 kg·m2, a system’s total mass of 568.15 kg and the center of mass of
the whole system located at 1.504 m from the platform’s center, G.
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Figure 9.4: TITOP modeling technique applied to ELMO

The obtained LFT results in a large model of 110 states, with 48 outputs, 27 inputs and 2
occurrences of the varying parameter δmtip . Since the size of the model is too large, the model
is reduced using gramian-based input/output balancing for keeping the most significant 35
states. Therefore, the synthesis model is a reduced model of 35 states while the validation
model (VM) remains the original one, which will be used to test the control strategies as well.

9.3 System Specifications

This section explains the specifications that the augmented controller (real controller plus
structural parameters) has to achieve. First, different control architectures subject to study
are explained, specifying which kind of constraints (roll-off) are imposed to each architecture.
The estimation and implementation of dynamic specifications is then explained, together with
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the specification for payload mass maximization.

9.3.1 Controller Architectures and Controller Specifications

The controller, as stated in Sec. 7.1.4, has a decentralized architecture, with a PD controller
governing rigid body motions and an active damping system controlling the flexible motion,
either based on an acceleration feedback (AF) or integral force feedback (IFF) approach. The
architectures to be tested for ICSD of the system are:

1. PD controller alone for controlling the rigid body motion of the platform, θH (PD
Alone).

2. PD for rigid body motion, IFF for active damping (PD + IFF).

3. PD for rigid body motion, AF for active damping (PD + AF).

4. PD with roll-off filter for rigid body motion, IFF with a roll-off filter in order to limit
the actuation of the active damping system between 1 Hz and 1000 Hz (PDro + IFFro).

5. PD for rigid body motion, IFF with a noncollocated measurement, the tip velocity ẏtip,
to see if available measurements at the tip of the mast can be used to improve system’s
performance (PD + IFFnc).

Moreover, architectures 1,2,3 and 5 have two different versions: one with a single PD
controller and another incorporating a roll-off filter to the PD controller. The objective is to
evaluate the improvement of the control system performance when a roll-off filter is added to
the PD rather than only ensuring minimum control gains.

The weighting filter for the PD roll-off is the same as in Eq. (8.9), with a roll-off frequency
one or two decades ahead of the control bandwidth, ωro =100 rad/s. The weighting filter for
the IFF with roll-off of the fourth control strategy is a pass-band filter 1 Hz and 1000 Hz.
The roll-off channels are added as explained in Sec. 8.2.4. When roll-off constraint was
not considered for the rigid-body motion, a channel was added in order to impose minimum
controller gains.

9.3.2 Rigid, Flexible and Structural Specifications

The mission specifications are stated as low-frequency torque disturbance rejection dynamic
requirements for the pointing specifications. The required bandwidth for disturbance rejection
of the angle position can be estimated as follows:

ωdes =
√

Tpert
Jtθspec

(9.1)
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where Tpert is the estimated amplitude of the torque perturbation, Jt is the system’s
inertia around the axis under study and θspec is the pointing specification. The total inertia
around the axis, Jt, can be computed from the system model trough the direct gain of transfer
load-acceleration channel, and its value has been computed in Sec. 9.2 as 11294 kg ·m2 . The
pointing specification θspec is given by the mission requirements. The torque perturbation,
however, can be difficult to estimate because it also depends on spacecraft’s properties.

The estimated perturbation torque has to be computed with the maximum expected value.
The largest deflections that the mast may undergo will be caused by the bending moment due
to the internal thermal couple. The expected internal bending moment due to temperature
gradient is computed as in [Johnston 98] (see Appendix C), giving an expected value of 19.03
N·m for the estimated cross-section values of the mast. This result has been computed under
the hypothesis that there is no thermal control hardware on the mast, which lead to the
highest temperature gradients (232◦ C/m).

The payload misalignment with the line of sight of the platform must not exceed 288 arcsec
(0.08 degrees) during observation, which given the total length of the deployable mast can be
translated to 17 mm of maximum tip displacement. The mass of the payload is expected to be
around 60 kg, but a maximization can be foreseen if this does not affect mission requirements.

These results, together with the system’s total inertia computed in Sec. 9.2, leads to a
required bandwidth of ωdes = 1.14 rad/s or fdes = 0.182 Hz. A classical damping coefficient
to avoid overshoot is taken as ξ = 0.7 to impose the closed loop dynamics of the attitude
control system. It might be possible that the torque value has induced an overestimation of
the required control bandwidth. The torque, however, is not instantly applied; it depends on
the thermal time constant of the appendage, τapp, as follows:

Tterm(t) = |Tterm|(1− e
− t
τapp ) (9.2)

where τapp is roughly 32 s and |Tpert| has the previously mentioned value (the computation
of these parameters is shown in Appendix C). The response of the thermal torque results in
a signal of a bandwidth of 0.915 rad/s or 0.146 Hz, the same order of magnitude as the
previously computed value. The most restrictive value is taken, which is fdes = 0.182 Hz,
leading to the following weighting filter for the rigid body DOF of ELMO, θH :

W−1
θ̈H

= s2

s2 + 1.601s+ 1.308 (9.3)

The damping of the flexible modes is imposed by weighting the transfer between the
hub’s acceleration disturbance wG and the performance output zQ with Wq̈P = 3 · L ·W−1

θ̈H
.

A constant filter as the one in Eq. (8.6) is added in the transfer wF → zF to add additional
damping, tuned to have a 5% of damping ratio. In Fig. 9.5 the frequency response of the
system is compared with the given templates before ICSD optimization. As in the flexible
rotatory spacecraft example, flexible modes are badly damped and the initial PD controller
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Figure 9.5: Template requirements and ELMO frequency response

gains have a larger value than the needed to respect the template on the ASF of the platform’s
position θH . Figure 9.5 also shows that the most influential flexible modes are the three first
bending modes at ω1 = 3.89 rad/s, ω2 = 17.6 rad/s and ω3 = 53.8 rad/s.

With the constraints for rigid and flexible motion already defined, the additional channel
for payload mass maximization can be added. The constraint for the maximization of the
payload mass is implemented as follows:

fmtip(δmtip) = 1− δmtip ; Wmtip = 0.5 (9.4)

where the βk value has been fixed to 0.5 in order to encourage the maximum possible
value for mtip.

9.4 Integrated Design Study

The TITOP model of ELMO in LFT form is used in the co-design scheme for structured
H∞ synthesis. Several attempts were realized for each control strategy, keeping the one
which presented the lowest disparity with the rigid body motion template (introduced as
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Index PD Alone PD + IFF PD + AF PDro + IFFro PD + IFFnc

γperf 0.9876 1.1190 0.9884 0.9954 1.1377
Opt Mt 69.78 kg 63.56 kg 75 kg 66.55 kg 75 kg
Real RW 7
Real PEAs - 7 7 7

Real RW & Real PEAs 7 7 7
Validation Model (VM) 7 7

VM & real RW 7 7
VM & real RW & PEAs 7 7 7 7

Table 9.2: Summary of the results of the ICSD of ELMO

hard constraint in the systune Matlab function). The obtained controllers are tested in the
reduced model and in the validation model computed with the modified payload mass.

Throughout the section the robustness of the synthesized control systems are tested con-
sidering real dynamics of reaction wheels (RWs) and piezoelectric actuators (PEAs). The
transfer function of the reaction wheel will be considered as a low-pass filter of 10 Hz band-
width. The transfer function of the piezoelectric actuators are considered as pass-band filters
in the range between 0.1 Hz and 1000 Hz.

9.4.1 Robustness Analysis

The optimization driven by the structured H∞ synthesis gives controllers which respect the
template for the rigid body motion (Fig. 9.6) with a γperf index close to the unit value. Some
strategies have found γperf below one due to the changes in the nominal structure (payload
mass variation). The robustness of the attitude control loop when closing the active damp-
ing loop is tested considering real reaction wheel dynamics and real piezoelectric actuators
dynamics. A summary of the results is presented in Table 9.2. The acceleration feedback
strategy has been removed from the discussion of the results since, being noncollocated, has
not given any satisfactory results when compared with the rest of the strategies.

The improvement of the attitude control system robust performance by adding active
damping is highlighted in Figs. 9.7a and 9.7b. Considering perfect piezoelectric actuator
dynamics, the closed-loop of the active damping control system leads to an increase of the
robust performance of the attitude control system. Using a limited bandwidth RW, the PD
alone only offers a GM of 3.85 dB and a PM of 10.2 deg, whereas the IFF or IFFro active
damping strategies increase the robust performance to GMs larger than 10 dB and PMs larger
than 50 deg. In addition, the active damping strategies are stable in the validation model
(with perfect actuators dynamics) whereas the PD alone is not.

When comparing the robust performance of the active damping strategies among them
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(c) Strategy IV
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(d) Strategy V

Figure 9.6: Acceleration Sensitivity Function Template (yellow background) and the obtained
controlled system transfers

(Fig. 9.8a), values show that the IFF without roll-off gives the highest robustness to the
attitude control loop (GM = 48.1 dB, PM = 68.7 deg). IFF with roll-off is even less robust
(GM = 11.13 dB, PM = 56 deg) than the noncollocated IFF (GM = 38.1 dB, PM = 73.8
deg). However, this statement is proved wrong when comparing with models with real PEA
dynamics (limited bandwidth between 0.1 Hz and 1000 Hz). The active damping loops
without roll-off result in unstable attitude control loops, as seen in Fig. 9.8b, whereas the
IFF with roll-off remains stable with almost the same performance (GM = 11.3 dB, PM =
56.6 deg). This conclusion could have been predicted from the fact that the optimization
algorithm, having no constraints for the active damping control loop gains, has tuned the
control gains of IFF and IFFnc to high values which in turn are not achievable. This is also
noticed in Figs. 9.7a and 9.7b, where the Nichols diagram of the IFF exhibits unrealistic
damping of the flexible modes and the Nichols diagram of the IFFro still exhibits the loops
caused by the flexible modes.

It appears to be that no significant improvements in robust performance or stability are
found when adding roll-off filters to the controller of the rigid body motion, either in the re-
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Figure 9.7: Nichols Comparison with/without active damping strategies

duced or the validation model. Constraining the PD controller to have minimum control gains
is enough to ensure attitude control system robustness, without the drawback of increasing
the order of the controller to be optimized. Figure 9.9 shows that the robust performance of
the attitude control system using roll-off filter (GM = 21.7 dB, PM = 27.8 deg) is equivalent
to the one which only has minimized attitude controller gains (GM = 11.3 dB, PM = 56 deg),
having decreased phase margin to increase the gain margin.

9.4.2 Performance Analysis

The robustness analysis has been performed using the reduced model. Now theH∞-synthesized
controllers are tested with the VM in the time domain, either with perfect and real dynamics
of actuators.

Considering perfect actuator dynamics, the response to impulse disturbance torques at
the platform and at the tip of the mast has been analyzed. Figure 9.10 shows the hub and tip
response to an impulse disturbance torque at the hub, and Fig. 9.11 the hub and tip response
to an impulse disturbance torque at the tip. It can be noticed that tip displacements with
the PD alone strategy are more sensitive to hub or tip disturbance torques than the rest of
the strategies. The strategies presenting the highest damping of the flexible modes, IFF and
IFFnc, rapidly damp tip vibrations but have a large overshoot of the hub’s position. On the
contrary, low damping of the flexible modes avoids large overshoot of the hub’s position but
needs for time for damping the tip’s vibrations. Therefore, there is a tradeoff between the
flexible modes damping and the control of rigid body modes. The IFFro strategy exhibits a
smooth response without large overshoot of the hub’s position and with tip’s vibrations which
are less large than the PD alone case.

When considering real RW dynamics, all systems are stable except for the one with control
optimization. Gains have large values and the limitation of the RW bandwidth is translated
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Figure 9.8: Nichols Diagram of the attitude control open loop, closing the active damping loop,
comparing active damping strategies

into system’s instability, as shown in the impulse responses in Fig. 9.12. If real PEA dynamics
are considered for the active damping loop, the only controller capable of stabilizing the system
is the IFF with roll-off, the others fail in stabilizing the system as already anticipated with
the reduced model.

Finally, the performance of the IFFro strategy is tested with real actuator dynamics in the
VM with a more realistic disturbance input, the thermal torque of Eq. (C.6). The application
of an internal bending moment is equivalent to applying the same moment at the hub and at
the tip but in opposite senses, so two disturbance torques are applied simultaneously at the
hub and at the tip, but with opposite signs. The module of the applied torque is |Tperf | =
19.03 N·m and the thermal time constant of the mast has been estimated to be τmast = 32 s
[Johnston 98].

In Fig. 9.13a it can be seen that the hub attitude is stabilized using the validation model
and real actuator dynamics without exceeding the pointing requirement specification (0.08
deg), with higher overshoot that an ideal situation (standard synthesis of the PD controller
with perfect actuator dynamics). Figure 9.15b shows that the tip exhibits the same behavior
and it does not exceed the 17 mm of maximum misalignment.

Regarding payload maximization, the results show that no general conclusion can be
extracted. It appears clear that for the IFFro strategy the mass can be increased up to 66.5
kg and the system remains stable and with acceptable robust margins in all circumstances.
However, the other strategies which have failed at some point of the study have presented a
maximization of the payload as well. It is particularly interesting the case of the worst robust
performance controllers (AF), which has maximized the payload at the maximum allowed,
75 kg. The PD alone strategy has maximized the payload mass as well, but up to 70 kg. It
appears to be that somehow the augmentation of the tip mass, taking into account the drop
of the first flexible mode, is more beneficial in terms of reducing the flexible behavior of the
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Figure 9.9: Comparison of the IFFro active damping with/without roll-off filter of the attitude
control system

0 10 20 30 40 50 60 70 80 90 100

#10-4

-2

0

2

4

6

8

10

12

14

16
From: Uhz  To: YhDz

PD
PD + IFF
PD + IFF ro
PD + IFF nc

Hub Moment Impulse (perfect dynamics,validation model)

Time (s) (seconds)

3
h
u
b
(r

a
d
)

(a) Hub position response to hub impulse

0 10 20 30 40 50 60

#10-5

-10

-5

0

5
From: Uhz  To: YM3Dy

PD
PD + IFF
PD + IFF ro
PD + IFF nc

Hub Moment Impulse (perfect dynamics,validation model)

Time (s) (seconds)

y t
ip
(m

)

(b) Tip position response to hub impulse

Figure 9.10: Time domain responses of the hub and tip positions for impulse disturbance torque
at the hub

system. This fact is confirmed in Sec. 9.4.4 where it is shown that the first flexible mode is
smoother for a 75-kg tip mass than for a 61-kg tip mass (Fig. 9.16b). This can be the reason
why the optimization tends to increase the tip mass with worse control strategies, in order
to have mode shapes which are more favorable (flatter bending) for reducing the impact of
the bending modes. However, this maximization penalizes the stability and robustness in the
validation model.
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Figure 9.11: Time domain responses of the hub and tip positions for impulse disturbance torque
at the tip
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Figure 9.12: Unstability of the PD alone strategy in the validation model with real RW dynamics

9.4.3 Computing Cost

The tools for the modeling of ELMO and the structured H∞ synthesis were performed in
a desktop computer using a dual-core processor Intel Xeon 2.80 GHz with 6 Gb RAM. The
modeling and synthesis functions were run in Matlab R2014a with Windows 7 as operating
system.

The computing time of LTI TITOP models (those which are not parameterized) can be
neglected since the maximum value, corresponding to FE models up to 80 elements, is around
0.20 s. The time employed for TITOP assembly is also negligible. The computation of a LFT
TITOP model strongly depends on the number of parameters being varied and if they are
included manually or as a part of a full parameterization. For ELMO, the modeling computing
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Figure 9.13: Tip damping against thermal torque disturbance

time for describing the piezo position for each mast took around 5 s when three nodes where
employed for each sub-segment.

The computing time of the structured H∞ synthesis for the system’s integrated design
varies depending on the number of constraints and the size of the model. For the ELMO
case, the optimization of the five strategies takes around 20 minutes, with each strategy being
run 8 times to ensure the best result. In average, each optimization took around 1 min since
parallel computing was performed using the two processor cores.

9.4.4 Analysis of Actuator Placement

Finally, the influence of PEAs position along the mast is studied. In Sec. 6.1.3 the TITOP
model for parameterizing the position of piezoelectric strips along a beam is explained. This
model has been used as a substitute of the nominal TITOP models of the mast in order to find
the optimal position of the piezoelectric strips. However, after several tests, the structured
H∞ synthesis reveals that the system could not be stabilized with the proposed controllers.
This was due to the fact that the LFT model of the parameterized beam presented unstable
real poles at very high frequencies. Unstable high frequency poles do not appear in the real
system, and they do not appear with a regular LTI assembly in the desired configuration.
The error might be the result either of an incorrect simplification of a varying parameter in
the LFT assembly process or of a propagated numeric error. Regardless the source of error,
the solution seems to be considering all the parameters without simplification, what makes
the model unusable due to its high order.

Therefore, the influence of PEAs position has been analyzed manually. Several models
have been created with different piezoelectric configurations. For each i mast, the piezo
component has been placed at xi = 1, 2, 3, 4 m (the 4-m position was 3.8 m in reality due to the
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x1 =2 x3 = 1 x3 = 2 x3 = 3 x3 = 4
x2 = 1 7 7
x2 = 2 7
x2 = 3 - - - -
x2 = 4 - - - -

Table 9.3: Fail/success summary of PEAs location

x1 =3 x3 = 1 x3 = 2 x3 = 3 x3 = 4
x2 = 1 7 7 7
x2 = 2
x2 = 3 7 7
x2 = 4 7 7 7 7

Table 9.4: Fail/success summary of PEAs location
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Figure 9.14: Comparison of the IFFro active damping strategies when varying the second piezo
between x2 =1 m and x2 =3 m

strip length). Optimization results which gave unstable loops in the VM were automatically
rejected. There are configurations which have always failed to find controllers that stabilized
the system using the VM, while others always give a solution. Results are summarized in
Tables 9.3 and 9.4, where x1 is fixed to 2 and 3 m since they are the positions which find
stabilizing controllers.

The configurations which succeed in finding stable solutions usually involve placements at
x2 ∈ [2, 3] m and x3 =2 or 4 m. The IFFro strategy of the obtained configurations varying the
position of the second PEA with x1 =3 m and x3 =4 m is compared with the one obtained
in nominal configuration (x1 =2.8 m, x2 =2.5 m, x3 =2.5 m). Figure 9.14 shows that they
all have the same level of robust performance, with GM between 15-25 dB and PM of 35-50
deg. Hence, the piezo component position does not exhibit a significant impact on the robust
performance index of the attitude control system.

The performance of each configuration has been tested using the thermal torque distur-
bance in Sec. 9.4.2. Results are shown in Figs. 9.15a and 9.15b. The x334 configuration
(x1 =3 m, x2 =3 m, x3 =3.8 m) exhibits the lowest hub position overshoot and tip misalign-
ment, while the x314 configuration has the largest overshoot and the largest tip misalignment.
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Figure 9.15: Hub and tip position for different placements of the second PEA under thermal
torque disturbance
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Figure 9.16: Mode Shapes of a flexible beam (rigid mode, RM, flexible mode, FM) with tip
masses of 500 kg at x = 0 and 61/75 kg at x = L

This is directly related to the effectiveness of the PEAs at certain positions.

It appears to be that PEAs are more effective on reducing attitude overshoot and tip
displacement when they are placed where the mode shape to be controlled presents the largest
values or higher slope. As seen in Sec. 9.3, the three first bending modes are the ones which
interfere the most the frequency templates. Figure 9.16a shows the mode shapes of the system
(approximated by a beam charged at its ends with masses of 500 kg and 61 kg respectively).
It can be evaluated that the second flexible mode (FM) has its maximum at approximately
x2 = 3 m, with deflections which are larger than the first FM. The PEA position seems to
modify the mode shapes and to be more efficient in order configurations, that is why all the
successful optimizations always have PEAs locations for x2 =3 m and x3 = 1m to 2 m, since
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Figure 9.17: Hub and tip position comparison between the nominal PEA configuration and the
optimized PEA configuration

they coincide with the maximum of the second and the third mode shapes.

The nominal configuration has exhibited a good performance as well since the piezoelectric
component are located at favorable positions. The position of the first piezo is near the first
and third FM maximum, the position of the second piezo is at the maximum of the second
flexible mode and the position of the third piezo is near the maximum of the third flexible
mode. Another optimization is run with a piezo position which might be the optimal one:
x1 = 3.5 m, x2 = 3.24 and x3 = 1.45 m. Although the robust performance was found to be
similar (GM = 10.2 dB, PM = 53.6 deg for real actuator dynamics), the performance was
slightly better than the nominal configuration (lower hub position overshoot in Fig. 9.17a,
same order of tip displacement in Fig. 9.17b) but the maximized payload mass was 63 kg,
3 kg less than the nominal configuration. This short gain of performance might be due to
fact that the PEA placement modifies the mode shapes shown in Fig. 9.16a due to the added
mass and stiffness, which in turn changes the optimal position.
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This chapter has performed integrated control/structure design of a flexible satellite by
modeling its structure with the TITOP modeling technique and by optimizing the con-
trollers and structure using structured H∞ synthesis. The modeling technique has been
proved successful for predicting the dynamic behavior of ELMO once its substructures
are assembled. The most used parameters of the structure (total mass, center of mass
position, total system inertia and flexible mode frequencies) can be derived in order to
estimate other specifications such as pointing requirements. Integrated design has been
performed using different controller architectures and maximizing the payload mass. The
most robust architecture is the PD controller with roll-off filter for controlling the hub’s
position and an integral force feedback with roll-off, stable either in the reduced model
and the validation model, with perfect and real actuator dynamics. Moreover, this archi-
tecture offers one of the lowest hub position overshoot and the less tip displacement for
the nominal piezoelectric configuration. Manual placement of PEAs at different positions
has determined that the piezoactuators should be placed where the mode shapes exhibit
maximum displacement or higher slope.
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Chapter 10
Discussion

“The aim of an argument or discussion should not be victory but progress.”
- Joseph Joubert

Although throughout the study the majority of the results have been discussed and
assessed, this chapter offers a the general overview of the main contributions of the

study, highlightening their advantages and limitations. The main contributions have been
classified in two types: findings concerning the linear modeling of flexible multibody systems
and findings concerning integrated control/structure design using structured H∞ synthesis.

10.1 Results in Flexible Multibody Systems Modeling

One of the main contributions and intermediary result for integrated control/structure design
has been the development of a flexible multibody linear modeling technique. The linear and
block-diagram-based technique proposed by [Alazard 08] has been expanded in order to link
flexible substructures among them and to add piezoelectric actuators and revolute joints. In
addition, theoretical foundations have been established and comparisons with other modeling
techniques have been performed for the first time.

The FMS linear modeling approach, called the TITOP modeling technique, allows the
assembly of star-like and chain-like structures, actuated either with piezoelectric materials
or revolute joints at their connection points. This is a step forward in the FMS modeling
oriented to linear control, increasing the capabilities of the models proposed in [Alazard 08,
Guy 14, Cumer 01]. The models can be derived with FE as input data, and can be assembled
using block diagrams of Matlab Simulink, using as overlapping mechanism the DP form,
a clear advantage for system assembly when comparing with other substructural assembly
techniques such as the ones in [Young 90, Sunar 92]. However, the method is limited to two
connection points. More connecting points are possible but it requires a further expansion
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of the modeling technique. Another drawback is that the TITOP model uses discretized
equations of motion, usually derived with FE analysis, and there is no possibility of including
other structural models based on the theory of continuous structures governed by partial
differential equations.

The provided models are independent and self-contained, since the substructure’s bound-
ary conditions are externalized and the model does not depend on external parameters. This
characteristic makes the TITOPmodels more robust to boundary conditions than other widely
accepted modeling techniques such as the Assumed Modes Method, as demonstrated with the
flexible rotatory spacecraft example of [Junkins 93]. Nevertheless, the externalization of the
boundary conditions is limited by the available two connection points. If a substructure is
clamped to more connection points, the current TITOP model will not be able to take it
directly into account.

The TITOPmodels also offer several parameterization degrees for integrated control/struc-
ture design. Structural parameters such as the substructure’s total mass, center of mass,
inertia and flexible modes are accessible in the substructure’s state-space representation of
the TITOP model. Unlike other integrated design studies where the parameterization was
achieved using analytic equations [Messac 92, Onoda 87], the TITOP models offer the possi-
bility of finding several varying parameters in the already assembled model, obtained using
FE as input data. However, this is not as powerful as the analytic equations or analytic
models, as demonstrated in Sec. 6.1.3, since the variability is only accurate for small ranges
of variation.

The TITOP model is an efficient method for the simulation of FMS undergoing small
elastic deformations and slow rotational speeds such as satellites and space structures. Fur-
thermore, the modeling technique can also be applied to nonlinear systems, such as in the
two-link flexible manipulator of Sec. 6.3 where the expected large nonlinearities did not caused
a distinct dynamic behavior from the model of [Luca 91]. However, this characteristic must
be claimed with caution since the mechanical characteristics two-link flexible manipulator of
[Luca 91] could have shadowed the expected large nonlinearities. For example, using denser,
thicker and unequal lengths of the flexible beams might increase the centrifugal stiffness effect
and making the TITOP model inaccurate.

The comparisons with the AMM approach and with a nonlinear model have been published
in the ASME Journal of Dynamic Systems, Measurement and Control [Perez 16b], where an
similar description of the TITOP modeling technique is provided as well. The modeling work
is complemented in [Perez 16b], where FMS modeling is performed with an approach based
on the Craig-Bampton’s method.

10.2 Results in Integrated Design

The second part of the study has been devoted to perform integrated control/structure design
using structured H∞ synthesis. The different possible control architectures have been eval-
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uated, showing the advantages and disadvantages of centralized/decentralized control and of
active damping control. The framework for performing integrated control/structure design
with structured H∞ synthesis has been defined and it has been applied to two examples of
flexible spacecraft, one academic and the other inspired from real data.

The study has shown that system dynamic specifications and structural constraints can be
imposed through H∞ constraints. These constraints are in the form of frequency templates
that shape the desired response of the rigid body DOF and flexible modes, the frequency
response of the controller and the gains of the varying parameters. The constraints are
implemented in a more straightforward manner than in other studies such as [Messac 92,
Onoda 87, Hiramoto 09] since they arise directly from the system’s specifications (desired
bandwidth, desired flexible modes damping). However, they are limited by the fact that the
H∞ framework only allows the norm minimization of the performance channels and other
constraints such as parameter equality cannot be implemented. In addition, the addition of
too many constraints (more than two per substructure) increases considerably the computing
time and compromises the finding of a stabilizing controller.

The integrated control/structure design methodology has been used in two systems: the
flexible rotatory spacecraft of [Junkins 93] and the Extra Long Mast Observatory (ELMO).
The systems were previously modeled using the TITOP modeling technique to take into
account the systems’ modularity, giving accurate dynamic systems. The controller and struc-
ture optimization performed with structured H∞ synthesis showed that the method takes
into consideration the system’s physical response, increasing or decreasing parameters if the
dynamic and structural constraints were compromised. Integrated design with structured H∞
synthesis has proven to be more general and practical than the other user-owned algorithms of
[Messac 92, Onoda 87, Hiramoto 09]. However, the structural optimization is less impressive
than in other studies like [Tsujioka 96, Ou 96] because the possibilities are limited by the
model’s size.

In addition, thanks to the TITOP modeling technique, an integrated control/structure de-
sign method has been applied taking into account the system’s modularity, as in [Alazard 13a].
This is the first time that integrated design is applied to a modular structure composed of
flexible substructures in chain-like assembly, thanks to the properties of the TITOP modeling
technique. For example, the robustness of the TITOP models to changes in boundary condi-
tions has allowed the consideration of payload mass variation without lose of accuracy. The
assembly process, as simple as a block diagram scheme, has helped to establish the different dy-
namic specifications between the channels which link the different substructures among them.
Since system’s modularity has only been considered in the studies of [Young 90, Sunar 92]
for control synthesis, showing that integrated design is possible using this decomposition is a
step forward.

The structured H∞ optimization has allowed the study of different control strategies for
the control of large flexible structures. Decentralized control architectures, with one active
damping per substructure, are possible to implement in a centralized synthesis scheme, and
they have proven to increase the system’s robustness thanks to the active damping of the
flexible modes. Feedback control laws for active damping have been studied and implemented
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in the available models. The integral force feedback appears to be more robust than the
acceleration feedback, even more if it is augmented with a roll-off filter to prevent the limited
bandwidth of the PEAs. These conclusions have also been confirmed when applied to the
integrated design of ELMO. However, these strategies are usually based on SISO systems.
Other MIMO active damping strategies, based on state feedback, have to be explored in
order to look for the most suitable strategy.

Other potential uses of the integrated design method combined with the TITOP modeling
technique could not be addressed, either limited by the problem’s size or limited by the
model’s nature. Optimal actuator placement could not be accomplished as expected in Sec.
6.1.3 since the model for optimal placement have positive real poles at high frequencies. Other
optimizations, such optimizing the mass profile of a flexible appendage [Messac 92] cannot be
performed as well due to the large size of the required LFT TITOP with full parameterization.

The results and methods which have allowed the realization of integrated design using H∞
synthesis have been published in several international conferences. In [Perez 15b] the general
description of the approach was described and parameter variation was performed to the
satellite Taranis. In [Perez 16a] and [Perez 16c] the results of the combination of the TITOP
modeling and integrated control/structure design were presented for the ELMO spacecraft.



Chapter 11
Conclusion

“You only live once, but if you work it right, once is enough.”
- Greg Plitt

This study has addressed the integrated attitude control/structure design of a large flexible
satellite using structured H∞ synthesis, by modeling flexible multibody structures and

developing a control strategy for the controller’s synthesis of flexible multibody systems. The
study has provided two main contributions for the field of attitude control of large flexible
satellites.

The study has allowed the development of models for flexible multibody system modeling
oriented to linear control. The models are provided in the form of a state-space represen-
tation, are obtainable from FE data and allow star-like or chain-like assembly among them.
They are as accurate as other widely used modeling methods and provide the added advan-
tage of being robust to changes in the boundary conditions of the substructures, a crucial
feature for integrated control/structure design. In addition, the models have been expanded
to substructures actuated through piezoelectric materials or revolute joints, and being applied
in a wide variety of examples. The development of these models has allowed the modeling of
a flexible spacecraft in preliminary design phase, ELMO, and the utilization of the model to
perform integrated control/structure design.

The study has set the framework for integrated control/structure design using H∞ syn-
thesis. Dynamic specifications for rigid and flexible modes have been established through
H∞ constraints. In the same manner, specifications for structural specifications have been
also converted to the H∞ framework and the synthesis scheme of the structured H∞ problem
has been modified in order to optimize the required structural parameters. Since structured
H∞ synthesis allows the definition of the controller’s architecture, several architectures for
rigid body control and flexible modes damping have been evaluated in order to use them in
the integrated design applications of a flexible rotatory spacecraft and the ELMO flexible
satellite. The introduction of the integral force feedback and the addition of roll-off filters
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have provided the most reliable controller when facing real actuator dynamics and full-order
validation models. In all the applications the integrated design method was proven success-
ful on finding solutions for the proposed controllers and the required payload maximization.
The solutions for the controller respect the given specifications and are valid even in large
validation models. The solutions for structural parameters respond to the structural needs
and the dynamic behavior of the system, maximizing or decreasing parameters to respect the
imposed dynamics.

Future work in this field will have to seriously consider the expansion of the modeling
method to tree-like assembly of flexible structures, which will result in models which require
three or more connection points. The research should focus as well on the extension of the
technique to closed-loop mechanisms and on the consideration of distributed loads along the
substructure. Further research has to be performed to gauge the limits of the modeling tech-
nique when dealing with large nonlinear effects, such as in flexible manipulators or spacecraft
with high rotation rates. The integrated design aspect could be improved by analyzing other
controller architectures for flexible modes damping, such as centralized ones using state feed-
back, and other control laws for the large rigid body motion. The approach will also benefice
from additional constraints for structural optimization and flexible dynamic motion which
can be directly incorporated from the specifications. Further improvements of the parame-
terization problem are needed in order to perform optimal actuator and sensor placement.
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Chapter 12
Résumé en Français de la Thèse

12.1 Introduction, état de l’art et méthodes

Dans le domaine du contrôle de satellites flexibles de grande dimension, l’un des objectifs
principaux est de garantir la stabilité du système face aux perturbations basse fréquence
et des vibrations. Néanmoins, la nouvelle génération de satellites devra composer avec des
instruments scientifiques de haute précision et réduire les coûts du lancement, ce qui stimule
la fabrication de structures de plus en plus larges et de plus en plus légères. Par exemple, la
nouvelle génération d’expériences scientifiques spatiales a besoin d’interféromètres à rayons-X
et télescopes de grand ligne de vision avec des distances focales très longues, les instruments
étant tous deux encastrés à la plateforme du satellite. De plus, les satellites de grande
dimension sont souvent modulaires, c’est-à-dire, décomposés en plusieurs sous-structures ou
sous-corps pouvant être réutilisés pour d’autres plateformes. D’un coté, sa grande dimension
et légèreté impliquent des modes flexibles basse-fréquence qui peuvent interférer avec la bande
passante du contrôleur, déstabiliser le système et provoquer éventuellement provoquer la perte
du système. Ce problème est appelé Interaction Control-Structure (en anglais : Control-
Structure Iteraction, CSI). De l’autre coté, la modularité du système implique de pouvoir
prédire le comportement dynamique du système une fois assemblé et, en conséquence, empêche
de travailler directement sur le dimensionnement des systèmes control/structure.

Dans le secteur spatial, ce problème est résolu en bouclant les informations croisées entre
les départements de control et structure, qui établissent des spécifications pour chaque système
(ou sous-système) afin d’aboutir à son intégration complète. Les spécifications peuvent être la
limitation du premier mode flexible, limitation de la masse maximale ou la largeur maximale
d’une sous-structure. Néanmoins, ces contraintes ne permettent pas d’exploiter les capacités
optimales de deux systèmes travaillant ensemble.

C’est pour quoi des méthodes de conception nouvelles, qui intègrent simultanément le
design de la dynamique de structures flexibles et la conception de lois de contrôle d’attitude,
sont nécessaires. L’une des premières approche fut celle de Messac and Malek [Messac 92],
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qui développèrent un algorithme pour optimiser simultanément le design de la structure et la
loi de commande d’un satellite flexible, en cherchant à contrôler le système face aux pertur-
bations et pour le suivi de consigne, pendant que le profil de l’appendice fut optimisé pour
obtenir une minimisation de la masse. Ils utilisèrent un modèle FE du satellite flexible et
un contrôleur d’ordre plein pour contrôler la commande en couple. Ils démontrèrent que le
co-design mécanique/ contrôle d’attitude était possible et pouvait donner de meilleurs résul-
tats que la seule optimisation du contrôleur. Ensuite les études de Alazard [Alazard 13a] ont
montré la possibilité d’utiliser des méthodes de synthèse robuste pour le co-design. Partic-
ulièrement, dans [Alazard 13a] la synthèse multi-modèle H∞ est utilisée pour co-designer le
système de contrôle d’attitude d’un satellite d’observation et les paramètres de son avionique
(le retard des actionneurs et capteurs). C’est, à ma connaissance, la première étude à utiliser
la commande robuste structurée à une telle fin.

L’objectif principal de cette étude est de réaliser le co-design contrôle d’attitude/mécanique
d’un satellite flexible en utilisant la synthèse H∞ structurée et en développant une méthode
pour la modélisation de systèmes multi-corps flexibles. Cette étude implique une recherche
multidisciplinaire à laquelle la modélisation de systèmes mécaniques et la synthèse de lois de
contrôle doivent être intégrées. De plus, cette approche doit être capable d’isoler et manip-
uler les paramètres à optimiser, qu’ils soient mécaniques ou de contrôle. Par conséquent, la
thèse commence en adressant la modélisation de systèmes flexibles, la modélisation des action-
neurs et capteurs pour le contrôle de structures flexibles et l’implémentation des variations
paramétriques dans ces modèles. La thèse continue avec l’évaluation des différentes stratégies
de contrôle qui peuvent être utilisées avec les modèles développés lors de cette étude. Pour
conclure la mise en oeuvre du co-design avec H∞ structuré et son application pour le cas d’un
satellite flexible est proposée.

12.2 Cadre pour la Modélisation de Structures Flexibles Multi-
Corps

Ce chapitre situe le cadre pour la modélisation de structures flexibles multi-corps (en anglais:
Flexible Multibody Systems, FMS) orientée aux applications de contrôle linéaire. Pour cela,
nous supposons une sous-structure flexible qui fait partie d’un FMS comme celle de la Fig. 4.1.
La sous-structure, appelée A, est liée à la structure parent, nommée P, au point de connexion
P , et à une sous-structure fils, nommée C, au point de connexion C. Les efforts extérieurs à A
sont ajoutés aux efforts avec P au point P et aux efforts avec C au point C. Les équations du
mouvement (en anglais : EOM) de la sous-structure flexible sont obtenues à partir du modèle
d’éléments finis (en anglais: FEM) et s’expriment en fonction des coordonnées généralisées
avec la équation matricielle Eq. (4.1). Le modèle qui utilise la Eq. (4.1) doit être modifié
afin de prendre en compte les interactions avec les structures P et C, et être sous une forme
de représentation d’états pour que les outils de contrôle linéaire puissent être utilisés. De
plus, pour les objectifs du co-design, le modèle doit pouvoir se paramétrer en fonction des
variables susceptibles à optimiser telles que les propriétés massiques (masse, densité, inertie,..),
propriétés géométriques (longueur, aire des sections. . . ) ou les propriétés mécaniques (module
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de Young, coefficient de poisson. . . ).

Les prérequis pour la conception d’un tel modèle sont:

• Interconnexion de la sous-structure : l’assemblage entre les différentes sous-structures
doit décrire les interactions entre eux. Cette interconnexion s’appelle overlapping.

• Indépendance et complétude de la sous-structure : le modèle doit contenir toute l’information
nécessaire afin qu’il puisse être utilisé indépendamment des autres sous-structures auxquelles
il est connecté. Cela implique que :

• Les conditions de contour doivent être extériorisées, afin de pouvoir utiliser le modèle
indépendamment si la sous-structure est encastrée, appuyée ou libre.

• Le modèle de la sous-structure doit être défini par ses propres paramètres dynamiques.

• Paramétrisation de la sous-structure : les variables susceptibles d’être optimisées doivent
être localisables dans le modèle.

• Modèle linéaire avec les propriétés requises : les modèles de sous-structures doivent être
linéaires afin de pouvoir appliquer les outils de contrôle linéaire (notamment les outils
H∞ structurée). Par conséquent, les EOM obtenus à partir des modèles de FE doivent
être insérés dans un modèle de représentation d’états avec les propriétés mentionnées
précédemment.

Dans ce chapitre, un cadre pour la modélisation est proposé afin de satisfaire ces con-
traintes. Le cadre est basé sur trois piliers : le choix du repère de référence, le choix du
mécanisme qui permet d’établir les interactions entre les sous-structures et l’étude des dif-
férentes transformations que nous pouvons appliquer aux EOM pour les façonner en modèle
d’états. Premièrement, le repère de référence est choisi. Deuxièmement, les interactions entre
les sous-structures sont traduites par des échanges accélération-effort entre les sous-structures,
ce que nous appellerons l’approche double-port (en anglais : double port approach, DPA).
Dernièrement, plusieurs transformations des EOM sont présentées afin de choisir la plus ap-
propriée pour une représentation d’états paramétrée. Ce chapitre a permis la publication de
l’approche double-port dans [Alazard 15].

Le repère de référence choisi pour dériver les modèles des sous-structures flexibles, en vue
d’une synthèse linéaire, est le repère flottant (en anglais : floating frame). La raison vient
du fait que l’étude cherche à reproduire la dynamique du solide rigide en prenant compte les
petites perturbations dues à la dynamique flexible du système. Le repère flottant permet de
calculer le déplacement total en superposant les petites déformations élastiques à la dynamique
rigide. Ce repère est illustré dans la Fig. 4.2, où les repères attachés à chaque sous-structure
A, {Oi, xi, yi, zi} sont liés aux repère inertiel fixe

{
O,X, Y, Z

}
par la matrice de rotation [Ri].

Avec cette formulation, en négligeant les termes non linéaires, l’accélération absolue d’un
point Oi+1 peut être exprimée en superposant l’accélération du point Oi et les accélérations
dues à la dynamique flexible, comme montré dans l’ Eq. (4.4).
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De cette façon, le choix du repère flottant permettra de dériver les petits déplacements
flexibles à partir des modèles d’éléments finis et les ajouter à la dynamique rigide, sans
terme de couplage. De plus, étant donné que chaque sous-structure a son propre repère, elle
sera indépendante du reste du FMS et le seul requis pour l’incorporer sera de connaître son
orientation, [Ri], par rapport aux autres sous-structures.

Pour établir le mécanisme d’interaction entre les sous-structures, l’approche double-port,
DPA, est choisie. Cette approche utilise un double-port pour les entrées/sorties du système.
Le mécanisme d’interaction est établi travers un transfert accélération-effort entre les deux
points de connexion de la structure. Le premier canal représente le modèle dynamique direct
du système (forces comme entrées, accélérations comme sorties) au point de connexion C entre
la sous-structure avec la structure fils. Le deuxième canal représente le modèle dynamique
inverse (accélérations comme entrées, forces comme sorties) au point de connexion P entre la
sous-structure et la structure parent. La forme générique d’un modèle avec DPA est donnée
par l’Eq. (4.5).

Dans le DPA, la dynamique rigide est imposée à la sous-structure travers l’entrée en
accélération du canal de la dynamique inverse, {q̈P }, qui vient de la structure parent P. La
dynamique rigide plus la dynamique flexible générée par la sous-structure sont transmises à
la structure fils avec l’accélération au point C, {q̈C}. Dans la direction opposée, les efforts
reçus par la sous-structure au point C dès la structure fils, {FC/A,C}, sont transmis à la
structure parent P comme l’effort {FA/P,P }. Le mécanisme est répété travers la chaîne de
sous-structures jusqu’à la fin.

La morphologie de l’approche double-port permet d’aborder directement les besoins du
modèle pour sous-structures flexibles et l’application du co-design. D’un coté, les conditions
limites de la sous-structure sont extériorisées, puisque elles sont imposées par les connexions
à travers les canaux de transfert. De l’autre coté, chaque sous-structure continue à être
indépendante des autres et le processus d’assemblage est automatisé par l’interconnexion
intuitive des transferts accélération-effort entre les sous-structures voisines. Ces propriétés
sont illustrées travers l’exemple du système de pointage flexible, où un modèle double-port
est créé pour un appendice intermédiaire et les principaux caractéristiques sont montrées
(mise en forme sous modèle d’états, pulsations encastrées et libres en fonction des conditions
limites, inversions des canaux pour obtenir des différents modèles, etc). Par conséquent,
l’approche double-port sera utilisée comme mécanisme d’interconnexion entre les différentes
sous-structures. La prochaine étape est de transformer les EOM pour qu’elles puissent former
un modèle d’états avec les entrées/sorties requises par la DPA.

La manipulation des équations de la dynamique ou EOM est étudiée afin de choisir la
meilleure approche pour la DPA. Le but est de transformer l’Eq. (4.1) afin que, une fois
mise sous forme de représentation d’états, on reconnaisse un modèle double-port. Pour cela,
trois méthodes de transformation basées sur l’analyse modale ont été étudiées: la méthode
d’Hurty, la méthode de Craig-Bampton et la méthode d’Imbert.

La méthode d’Hurty utilise trois types de modes pour transformer les EOM: les modes
rigides, les modes à contraintes redondantes et les modes à interfaces fixées. Une transforma-
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Figure 12.1: Figure 5.2 montrant les connexions pour l’appendice A, projetées dans le repère
Ra

tion avec tels modes amène à l’Eq. (4.31), dans laquelle on peut distinguer la contribution de
la dynamique rigide, la dynamique des contraintes redondantes et la dynamique des modes
encastrés. Comme la contribution de la dynamique rigide et la dynamique des modes con-
traints sont découplées dans la matrice de raideur [K], il est plus facile d’établir une relation
entre l’interconnexion des efforts-accélérations, comme requis dans le modèle DP.

Les autres deux méthodes, Craig-Bampton et Imbert, ne permettent pas une claire parti-
tion de la dynamique pour imposer facilement une structure double port. La transformation
de Craig-Bampton amène à l’Eq. (4.41), mais dans ce cas la dynamique des modes contraints
redondants n’est pas découplée et il faut des manipulations additionnelles pour établir la
forme DP. Avec la méthode d’Imbert, on retrouve le même désavantage. Par conséquent, ces
types des transformations ne seront pas utilisés et dorénavant on ne parlera que de la méthode
d’Hurty.

12.3 Modélisation de Systèmes Multi-Corps Flexibles pour le
Co-Design

Le Chap. 5 utilise le cadre de modélisation établi dans le Chap. 4 afin de développer des
modèles pour l’analyse et contrôle de systèmes multi-corps flexibles, FMS. Pour cela, les
EOM transformées avec la méthode de Hurty sont manipulées afin de dériver les modèles à
un point de connexion et à deux points de connexion. Ensuite, la méthode est étendue pour
les modèles avec un joint pivot au point de connexion P et pour prendre en compte les effets
électromécaniques lors de l’insertion des matériaux piézoélectriques dans la structure.

Le modèle à un point de connexion est nommé [GAP (s)] vient décrire le modèle linéaire de
l’Eq. (5.6):
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Dans cette équation, la dynamique du corps rigide est imposée au point de connexion P ,
ce qui excite les modes flexibles de la structure à travers la matrice de participation modale
[LP ]. Ces modes flexibles induisent un effort à la structure parent P qui modifie l’effort que la
structure A aurait induite à P si elle était rigide ([JAP0

] fois l’accélération au point P ). Ce fait
peut être présenté schématiquement comme le déplacement rigide de l’appendice A perturbé
par un feedback de ses propres modes de vibration comme vu dans la Fig. 5.2.

Le modèle à deux points de connexion est nommé [GAP,C(s)] et est décrit par le modèle
linéaire en forme double port de l’Eqs. (5.10 – 5.15) :
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où A, B, C, D and Dδ sont la notation courte des matrices de répresentation d’états
suivantes:

A =
[

0n+e In+e
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Q K̂Q −M̂−1
Q D̂Q

]

B =
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Iee −M̂er

]
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Figure 12.2: Figure 5.4 qui montre le diagram du modèle Two-Input Two-Output Port (TITOP)
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Ces équations décrivent le modèle de la sous-structure A en assemblage enchaîné, et
elles forment ce qu’on appelle le modèle TITOP (en anglais : Two-Input Two-Output Port
model). Ce modèle permet d’interconnecter les différentes sous-structures en prenant compte
la dynamique flexible. Le diagramme du modèle TITOP est montré dans la Fig. 5.4. Dans ce
modèle, les déplacements du corps rigide sont imposés au point P de la sous-structure A et
ils excitent les modes de la structure au travers des matrices de participation modale [M̂rn] et
[M̂re] jusqu’à point de connexion C, où l’accélération totale (celle due au mouvement rigide
et celle due à la dynamique flexible) est transmise à l’appendice suivant avec {q̈C}. L’effort
transmis à la structure parent P, {FA/P,P }, dépend de l’effort reçu au point C, {FC/A,C},
l’accélération reçue au point P , {q̈P }, et les modes flexibles.

Étant donné que le modèle TITOP a une forme DP, nous pouvons considérer plusieurs
conditions limites de la sous-structure A en inversant les canaux supérieurs et inférieurs du
modèle. En imposant les entrées à zéro, [GAP,C(s)] représente le modèle encastré au point
P et libre au point C de la sous-structure. De la même manière, [GAP,C(s)]−1 représente
le modèle encastré au point C et libre au point P de la sous-structure. Les deux canaux
sont inversibles comme montré dans les Eqs. (5.16) et (5.17), ce qui permet de prendre en
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compte différentes conditions limites au point P et au point C. L’équation (5.16) représente
le modèle encastré-encastré de la sous-structure, tandis que l’équation (5.17) représente le
modèle libre-libre.

Le modèle TITOP d’une structure flexible est le modèle le plus général pour modéliser un
système flexible multi-corps. En enlevant le deuxième canal, celui du transfert au point C,
nous retrouvons le modèle de connexion à un point. Le modèle peut être enrichi pour inclure
un joint pivot ou des matériaux piézoélectriques, ce qui étend son domaine d’application.

Pour modéliser un joint pivot au point de connexion P , il suffit de considérer que le
degré de liberté associé à la rotation α est imposé, ce qui équivaux à appliquer un couple
trj,P . Pour prendre cela en compte, le modèle TITOP est augmenté avec une entrée et une
sortie additionnelle, et manipulé comme montré dans l’Eq. (5.18) pour prendre en compte
l’imposition de la nouvelle contrainte. Cela donne le modèle dynamique inverse du joint
pivot. Si le modèle dynamique direct est souhaité, il suffit d’inverser le canal α → trj,P .
Cette modélisation permet de prendre en compte aussi n’importe quel mécanisme de contrôle
pour agir sur le joint, K(s), comme montré dans la Fig. 5.6.

La prise en compte des effets piézoélectriques a aussi été développée. En manipulant, avec
la méthode de Hurty, les équations de la dynamique d’une sous-structure flexible actionnée par
des matériaux piézoélectriques, Eqs. (5.25) et (5.26), elles sont transformées en représentation
d’états DP pour retrouver un modèle TITOP augmenté, Eqs. (5.37)-(5.42), lequel contient
une entrée additionnelle, le voltage appliqué, et une sortie additionnelle, la charge électrique.
Ce modèle permettra de prendre en compte les efforts internes induits à une sous-structure
lorsqu’on applique un voltage pour contrôler les vibrations.

De plus, le modèle TITOP offre des possibilités de paramétrisation afin d’effectuer un co-
design. En effet, la structure de la représentation d’états permet de repérer certaines matrices
qui contiennent des variables susceptibles d’être optimisées par le processus de design intégré.
Dans la structure du modèle d’états on peut distinguer la matrice du corps rigide, [Mrr], où
on repère l’inertie, la masse totale et la position du centre de gravité. On peut paramétrer
aussi la distance entre les points de connexion en manipulant la matrice [τPC ] = [φer]. De
plus, les modes flexibles et ses amortissements peuvent être paramétrés en intervenant dans
les matrices [Knn] et [Dnn].

Finalement, la modélisation de structures flexibles multi-corps est faite avec les modèles
TITOP. Les représentations d’états en double-port, qui utilisent des modèles d’éléments finis
transformés avec la méthode de Hurty, servent comme briques élémentaires pour construire
modèles de systèmes flexibles multi-corps qui suivent des petites déformations. D’une part, le
modèle TITOP à un point de connexion peut être utilisé pour modéliser des systèmes flexibles
en forme d’étoile ou pour modéliser le système qui termine la chaîne de plusieurs corps flexibles
enchaînés. De l’autre part, le modèle TITOP à deux points de connexion peut être utilisé
pour connecter tout type de chaîne cinématique ouverte de corps flexibles enchaînés. Le
modèle avec joint pivot peut être utilisé pour modéliser des sous-structures tournantes du
FMS, comme des panneaux solaires ou antennes. Le modèle avec effet piézoélectrique peut
être utilisé pour considérer des structures avec des actionneurs piézoélectriques. Les canaux
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Figure 12.3: Figure 5.11 qui montre l’assemblage entre différents modèles TITOP

qui relient les sous-structures peuvent être modifiés pour ajouter des perturbations ainsi que
pour les mesures d’accélération ou des perturbations de forces aux points de connexion.

De cette façon, un satellite flexible de grande dimension, comme celui de la Fig. 5.10, peut
être modélisé en enchaînant des blocs élémentaires, comme montré dans la Fig. 5.11. Par
conséquent, le modèle TITOP offre trois avantages principaux pour le co-design mécanique/-
contrôle :

• Modélisation. Les modèles TITOP des sous-structures sont linéaires, indépendants et
obtenus à partir des donnés FE. Il n’y a pas besoin d’informations additionnelles pour le
processus de modélisation. Si une sous-structure ne fait plus parti du système, elle peut
être enlevée du diagramme et le FMS sera modifié en conséquence sans analyse addition-
nelle des sous-structures qui restent. De plus, la méthode peut être facilement mise en
œuvre dans un environnement de programmation graphique comme Matlab/Simulink.

• Contrôle. Le schéma TITOP permet de considérer des architectures de contrôleurs
centralisées ou décentralisées. De plus, elle permet la simulation des mesures d’efforts et
accélération, l’introduction des perturbations dans les différents points de connexion et
la prise en compte des mécanismes de contrôle comme les joints pivot ou les actionneurs
piézoélectriques.

• Co-Design. Les modèles TITOP peuvent s’utiliser indépendamment des conditions lim-
ites du FMS. De plus, les modèles peuvent être paramétrés avec les variables d’intérêt



182 Chapter 12. Résumé en Français

pour l’optimisation.

12.4 Application et Validation de la Technique TITOP aux
FMS

Le Chap. 6 est dédié à l’application et la validation de la technique de modélisation TITOP
dans différents exemples de systèmes flexibles multi-corps afin de juger le potentiel de la
technique TITOP. Trois types de systèmes sont modélisés: structures en forme de poutre,
systèmes composés de parties rigides et flexibles et systèmes avec un joint pivot.

Premièrement, la technique TITOP est appliquée dans des sous-structures de type poutre.
Le premier test consiste à enchaîner plusieurs tronçons d’une poutre en 3D et retrouver le
même modèle dynamique que la poutre complète. Les Figs. 6.4 et 6.6 montrent l’effort trans-
mis au point P due aux accélérations induites au point P du système de tronçons enchaînés,
qui coïncide avec la réponse du modèle de poutre complète.

Ensuite, une couche de matériaux piézoélectrique est ajoutée et le modèle TITOP actionné
est dérivé, en analysant les fonctions de transfert entre le voltage appliqué et les efforts internes
dans les Figs. 6.8, 6.9 et 6.10. Finalement, afin de montrer les possibilités de paramétrage
avec le modèle TITOP, la longueur d’une poutre est paramétrée avec un modèle analytique
d’éléments finis et en repérant la longueur manuellement dans la représentation d’états. Les
Figs. 6.11, 6.12, 6.13 et 6.14 montrent que les variations sont bien prises en compte pour des
petits rangs, tandis que pour des grandes plages de variation la méthode manuelle est moins
précise.

Un des objectifs principaux a été également de comparer la technique TITOP avec des
autres méthodes utilisées dans le domaine de modélisation de corps flexibles. Pour cela, le
modèle d’un satellite tournant de [Junkins 93], obtenu en utilisant la technique des modes
assumés (en anglais : assumed modes method, AMM), est comparé avec le modèle du même
système obtenu avec la méthode TITOP. La modélisation TITOP est autant précise que
l’AMM pour trouver les fréquences propres du système assemblé (voir Table 6.4), et elle
présente une meilleure robustesse face aux variations des conditions limites, comme montré
dans les Figs. 6.18 et 6.19.

Finalement, la méthode est appliquée à un problème de modélisation classique qui peut
présenter des fortes nonlinearités: un bras manipulateur flexible. Pour cela, le modèle non-
linéaire de [Luca 91] d’un bras manipulateur flexible à deux segments est utilisé comme modèle
de référence. Le bras manipulateur est modélisé avec la méthode TITOP en ajoutant des li-
aisons pivot et les mêmes modes propres sont retrouvés, comme montré dans la Table 6.6.
Une simulation numérique avec des contrôleurs PD montre que les réponses des deux modèles
sont identiques. Le modèle TITOP montre ainsi sa capacité pour modéliser aussi des systèmes
nonlineaires (Fig. 6.26).
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Figure 12.4: Figure 6.19 qui montre la robustesse du modèle TITOP face aux variations des
conditions limites (Mt = 114.5 kg)

12.5 Evaluation des Stratégies de Contrôle pour les FMS

Le Chap. 7 étudie les possibles architectures de contrôleur pour des satellites flexibles de
grande dimension, afin d’évaluer la plus pertinente pour trouver un correcteur stabilisant du
système. L’architecture du contrôleur doit adresser le contrôle de la dynamique rigide et
la dynamique flexible afin d’assurer la performance et la robustesse du système de contrôle
d’attitude. Par conséquent, ce chapitre montre les principales stratégies pour contrôler la
dynamique rigide et amortir la dynamique flexible.

Le contrôle de la dynamique rigide est focalisée sur le contrôle de la position des angles de
roulis, dérapage et tangage qui déterminent l’attitude du satellite, ce qui est fait en utilisant un
contrôleur proportionnel-dérivé (PD) ou proportionnel-intégral-dérivé (PID), combinés avec
des filtres pour ajuster son action sur un domaine de fréquences particulier. Les spécifications
de pointage sont données par quatre valeurs : deux concernant la dynamique en boucle fermée
et deux concernant la robustesse du système face aux perturbations. La dynamique fermée
est déterminée par l’amortissement désiré, ξdes, et la bande passante requise, ωdes. La marge
de gain et de phase (en anglais : GM et PM) de la boucle ouverte sont spécifiées pour assurer
un niveau adéquat de robustesse de la réponse en boucle fermée.

L’amortissement des modes flexibles peut améliorer la performance robuste du système
de contrôle d’attitude. Pour prouver cela, une loi proportionnelle-dérivée est synthétisée
en utilisant des stratégies différentes dans le cas d’un système simplifié de pointage flexible.
Premièrement, le système est synthétisé en utilisant une méthode de réglage de gains classique
qui fixe la dynamique en boucle fermée souhaitée en considérant le satellite rigide. Ce réglage
est effectif lorsque la bande passante est beaucoup plus basse que le premier mode flexible,
mais pour des bandes passantes proches au premier mode flexible ce réglage n’est pas robuste.
Cela est du au fait que les gains nécessaires pour ce réglage augmentent avec le carré de la
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Figure 12.5: Figure 6.26 qui compare l’évolution temporelle du modèle non-linéaire et le modèle
TITOP du bras manipulateur flexible

bande passante souhaitée. La synthèse avec des méthodes robustes comme H∞ permet de
trouver des réglages qui sont plus robustes face aux perturbations de mesures d’accélération.
Cependant, l’introduction d’un système d’amortissement actif dans le système de contrôle
permet, au premier coup, d’augmenter la robustesse du système. Un retour d’accélération
pour amortir le premier mode flexible, réglé soit à la main soit par des synthèses robustes,
permet de trouver des réglages plus robustes que ce soit pour des courtes ou larges bandes
passantes. Les lieux de Black-Nichols de ces réglages sont montrés dans les Figs. 7.3, 7.5 et
7.6.

Deuxièmement, la comparaison entre architectures centralisées et décentralisées est faite.
Dans une architecture centralisée, qui est l’approche conventionnelle, le contrôle est synthétisé
en se basant sur un contrôleur du modèle complet du système, réduit. Le contrôleur final
est vérifié en utilisant un modèle d’évaluation. Par contre, l’approche décentralisée regarde
le système comme un ensemble de sous-systèmes, où la synthèse du contrôleur est réalisée au
niveau du sous-système et tous les contrôleurs individuels sont appliqués au système complet.
Les FMS sont particulièrement adaptés pour des architectures décentralisées car ils sont déjà
discrétisés en plusieurs sous-structures ou sous-systèmes. Cependant, la stabilité du système
n’est pas assurée une fois tous les contrôleurs et toutes les sous-structures connectés, ce
qui implique une large différence entre les possibilités théoriques et pratiques. Dans cette
étude les prérequis théoriques pour une architecture décentralisée stabilisante ne sont pas
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étudiés car ils sont hors du sujet. Par contre, l’approche développée ici consiste à utiliser
des architectures de contrôle décentralisées et à garantir la stabilité du FMS au travers de
l’optimisation de tout le système avec la technique H∞ structurée. Par conséquent, notre
approche est centralisée concernant le processus d’optimisation, mais décentralisée concernant
l’architecture du contrôleur. L’avantage de synthétiser un contrôleur avec cette approche est
montré dans la Fig. 7.7, où un contrôleur réglé avec l’optimisation simultanée du PD et le
système d’amortissement est comparé avec d’autres méthodes (sans amortissement actif ou
avec un amortissement actif réglé séparément), en trouvant un réglage plus robuste.

Dernièrement, plusieurs architectures pour l’amortissement des modes flexibles sont mon-
trées et testées dans le modèle du système de pointage flexible et dans un modèle TITOP. Les
stratégies montrées sont implémentées de manière décentralisée, avec un actionneur interagis-
sant avec son propre capteur colocalisé. Des techniques avec retour d’accélération et retour
de intégral de force sont revisitées et appliquées aux différent systèmes, en trouvant toujours
de retours asymptotiquement stables grâce à la colocation actionneur-capteur. Cependant,
une étude plus approfondie du changement de l’alternance pôle-zéro montre que pour sys-
tèmes plus flexibles le retour d’accélération n’est plus robuste. En effet, les Figs. 7.12 et
7.13 montrent que les stratégies basées dans le retour d’accélération ne sont plus robustes
lorsque les systèmes sont moins raides. Cela vient du fait que en vérité l’approche en re-
tour d’accélération n’est pas vraiment colocalisée en tant que les efforts appliqués (intérieurs)
utilisent une mesure inertielle (l’accélération absolue). En revanche, le retour de force inté-
gral est colocalisé, car l’effort intérieur appliqué est colocalisé avec la mesure, qui est la force
interne subie par la sous-structure. Finalement, l’effet de la dynamique réelle des actionneurs
et capteurs est illustré, en montrant que sa dynamique peut être toujours approximée par
un filtre passe-bande qui vient déstabiliser les modes flexibles lorsqu’ils tombent dehors le
domaine d’influence (Fig. 7.15).

12.6 Mise en œuvre du Co-Design sous Forme H∞ structuré

Le Chap. 8 a pour objectif de montrer l’utilisation de la synthèse H∞ structurée comme
un outil pour réaliser des études de co-design, en mettant l’accent sur l’application contrôle
d’attitude/ mécanique. De cette manière, l’outil pour effectuer H∞ structurée est transformé
afin de réaliser le co-design. Les spécifications pour le contrôle de la dynamique du système et
pour les variables mécaniques sont transformées en contraintes H∞ afin de pouvoir appliquer
les outils de H∞ structurée. Premièrement, le chapitre donne une vue de l’ensemble pour
la mise en œuvre du problème du co-design sur un problème H∞ structurée multi-modèles.
Dans la Sec. 8.2, nous montrons comment transformer les spécifications pour le système dans
contraintes H∞. Finalement, un exemple de co-design du satellite flexible tournant du Chap.
6 est montré pour appliquer les concepts développés au long du chapitre.

La méthode pour le co-design de cette étude utilise des outils de commande robuste
structurée. Cette méthode comprend cinq étapes:
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1. L’obtention d’un modèle LFT du système. La FMS doit être modélisée en utilisant la
méthode TITOP ou autre technique de modélisation préférée. Le modèle doit compren-
dre les paramètres variables qu’il faut optimiser, ce qui résulte dans un modèle LFT
avec le bloc ∆ incluant les variations paramétriques. Les canaux du schéma du modèle
FMS doivent être modifiés afin d’inclure les perturbations en entrée w et les sorties de
performance z qui seront utilisées plus tard pour la mise en ouvre des spécifications.

2. Conversion du bloc ∆ des paramètres ajustables. Une fois que le modèle LFT de la FMS
a été obtenu, il doit être décomposé en un modèle nominal LTI (en anglais, Linear Time
Invariant) et un bloc ∆. En fonction du software utilisé, le bloc ∆ est souvent présenté
comme un objet LFR, comme c’est le cas dans la Matlab Robust Control Toolbox.
Comme le bloc ∆ doit être présenté comme un ensemble de paramètres ajustables au lieu
d’un bloc d’incertitudes, le bloc est converti dans une matrice diagonal ∆i composée de
paramètres ajustables δi, qui respectent le nombre d’occurrences pour chaque paramètre.

3. Sélection de l’architecture du contrôleur et création du contrôleur augmenté. En fonction
de l’architecture du contrôleur, C(s), le système nominal G(s) devra fournir dans le
schéma de synthèse de la Fig. 8.1 les entrées de contrôle nécessaires, y, et les sorties de
contrôle nécessaires, u, qui seront utilisées par le contrôleur afin de stabiliser le système
avec le feedback Fl(G(s), C(s)). Un contrôleur augmenté, K(s) = diag(C(s),∆i), est
crée en incorporant l’ensemble de paramètres ajustables, ∆i, qui seront utilisés pour le
feedback entre les sorties y∆ et les entrées u∆, et C(s) étant un contrôleur structuré qui
liera les sorties et entrées pour le contrôle, y et u respectivement.

4. Sélection des fonction de pondération. Un ensemble de filtres de pondération [Wz,WC ,Wk]
doit être obtenu afin d’imposer le comportement dynamique souhaité, donner la forme
de la réponse fréquentielle du contrôleur et optimiser les paramètres structuraux.

5. Construction du schéma de synthèse multi-canaux. Avec les éléments obtenus dans les
étapes précédentes, le schéma de synthèse est construit en établissant le feedback entre
le contrôleur augmenté K(s) avec les entrées/sorties correspondantes avec le système
nominal G(s).

La Fig. 8.1 montre le schéma standard H∞ multi-canaux pour le co-design du système
G(s), où il y a trois types de canaux différents. Le premier canal multidimensionnel lie les
perturbations du système, w, aux sorties de performance, z. Le deuxième canal multidimen-
sionnel connecte les entrées du système de contrôle, yc, aux sorties uc. Le troisième canal
multidimensionnel lie les entrées pour les contraintes des variations paramétriques du bloc
fk(δi), wk, à ses sorties, zk. De cette façon, la synthèse H∞ structurée appliquée à ce schéma
calcule un réglage sub-optimal des paramètres contenus dans C(s) et δi intégrés dans K(s)
pour imposer la stabilité interne en boucle fermée Fl(G(s),K(s)) tel que:

min
K(s)
{max{‖Wk(s)fk(δi)‖∞, ‖WC(s)C(s)‖∞}}

sous la contrainte
‖Wz(s)Tw→z(s)‖∞ < γperf
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C’est-à-dire, elle minimise la norme H∞ du transfert entre l’entrée en perturbation w et
la performance de la sortie z, Tw→z(s), tel que γperf > 0 pour respecter les spécifications.
Essentiellement, le co-design avec H∞ structurée ajuste les paramètres contenus dans K(s)
pour imposer la stabilité interne de la dynamique en boucle fermée et respecter les contraintes
H∞ travers les filtres Wz, WC et Wk. La difficulté principale demeure comment établir des
contraintes H∞ correctes à partir des spécifications, ce qui est illustré par la suite. Pour cela,
les spécifications sont divisées den quatre grand groupes: spécifications sur la dynamique
rigide, spécifications sur la dynamique flexible, spécifications sur le contrôleur et spécifications
sur la structure à optimiser.

Le contrôle de la dynamique rigide est l’aspect le plus important pour le système de
contrôle d’attitude, car elle est la principale responsable de la position de l’angle de pointage
face à n’importe quelle type de perturbation. Ces perturbations sont souvent des couples
perturbateurs tel que le gradient de gravité, la couple du à la pression solaire ou un couple
du à la distorsion thermique. Les spécifications sont souvent données sous la forme d’une
bande passante dans laquelle la perturbation doit être rejetée, ωdes, ainsi que sous la forme
d’un coefficient d’amortissement, ξdes, pour assurer une décroissance de l’erreur et une valeur
maximale de celui-ci quand la perturbation a lieu. La dynamique en boucle fermée désirée
pour la dynamique rigide du système avec le couple (ωdes,ξdes) pour chaque angle d’attitude
(roulis, ϕ, tangage, θ, et dérapage ψ) est imposée à partir de la fonction de sensibilité en
accélération (en anglais : acceleration sensitivity function, ASF) comme sortie de performance
de chaque DOF de la dynamique rigide. En utilisant le principe du schéma SOTAS (Second
Order Template on Acceleration Sensitivity), un filtre de pondération Wq̈ sur les ASF des
différents DOF afin de pénaliser la plage de basse fréquences de perturbations en accélération.
Le filtre est décrit par l’Eq. (8.2), et il s’agit d’un filtre passe-bas qui ne dépend que des
spécifications ωdes et ξdes. Les modifications pertinentes pour arriver au schéma SOTAS
depuis une modélisation TITOP d’un FMS sont montrées dans la Fig. 8.5.

Les contraintes pour l’amortissement des modes flexibles du FMS sont dérivées en utilisant
également le schéma SOTAS. Les spécifications concernant le contrôle des modes flexibles
sont mises en oeuvre comme une extension du champ d’accélération de la dynamique rigide
du système. Par conséquent, les contraintes en d’autres points du FMS sont vues comme
le comportement désiré du point si la structure était rigide. Donc, pour un point P du
FMS localisé avec le vecteur de position {GP} dans le repère satellite, l’accélération désirée
serait celle qui correspondrait au cas de la dynamique rigide associé au satellite. Le filtre de
pondération pour un point P quelconque d’un FMS est écrit comme dans l’Eq. (8.5). Une
autre contrainte additionnelle peut être imposée pour empêcher le déplacement maximal, celle
de l’Eq. (8.6). Graphiquement, les contraintes sur la dynamique flexible sont montrés dans
la Fig. 8.6.

Les spécifications structurelles peuvent être établies en ajoutant des canaux qui apportent
contraintes additionnelles pour les variations inclues dans le bloc ∆. Une contrainte struc-
turelle k qui comprend un ensemble de paramètres structuraux δi est imposée au travers d’un
filtre de pondération Wk et une fonction de coût fk(δi). La minimisation d’un paramètre
peut s’exprimer comme dans l’Eq.(8.7) ou comme dans l’Eq. (8.8), en fonction de la pente
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Figure 12.6: Figure 8.11 qui compare la réponse frequentielle obtenu d’une structure avec opti-
misation contrôle/structure et une structure avec optimisation du système de contrôle seulement

souhaitée (plus de pente, plus facile pour l’algorithme de chercher l’optimisation).

En plus de contraintes dans la dynamique rigide, la dynamique flexible et les paramètres
structuraux, de contraintes sur la réponse fréquentielle du contrôleur peuvent aussi être im-
posées en ajoutant un canal de roll-off. Cela peut être nécessaire pour éviter l’interaction du
système de contrôle avec des fréquences des modes flexibles qui ne sont pas amorties (l’effet
spill-over). De cette façon, le contrôleur est maintenant le contrôleur structuré multiplié par
la composante de roll-off (par exemple, une fonction de transfert d’ordre deux comme celle
de l’Eq. (8.11)), auquel on vient imposer des filtres de roll-off comme montré dans les Eqs.
(8.9) et (8.10).

Finalement l’exemple du co-design d’un satellite tournant flexible est abordé. Il s’agit du
même exemple que celui du Chap. 6 mais cette fois en ajoutant un actionneur piézoélectrique
pour pouvoir contrôler les modes flexibles. Le co-design a pour objectif de synthétiser un
contrôleur pour contrôler la dynamique rigide en rotation, amortir les oscillations du premier
appendice, prolonger l’appendice 1, maximiser la masse de la charge utile située au bord de
l’appendice 1 et minimiser la masse totale du système. L’étude de co-design montre que le
processus d’optimisation a bien répondu aux contraintes imposées et qu’elle a été menée à
bien en tenant compte des contraintes dynamiques du système.

12.7 Co-Design Contrôle/Structure d’un Satellite Flexible

Les chapitres précédents ont proposé, développé et appliqué les modèles, stratégies et spé-
cifications nécessaires pour réaliser le co-design du système de contrôle d’attitude et une
structure flexible avec H∞ structuré. Ce chapitre est consacré à l’application des connais-
sances développés pour le cas d’un satellite très flexible, le ELMO (en anglais : Extra Long
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Mast Observatory). L’objectif est de réaliser une étude préliminaire des différents compro-
mis entre le système de contrôle et la structure du satellite, en obtenant son modèle avec la
modélisation TITOP et en utilisant la synthèse H∞ structurée.

Le satellite ELMO (Fig. 9.1) est une mission fictive pour le développement d’un satel-
lite qui utilisera des technologies d’interférométrie. Pour améliorer les performances de
l’instrument, la longueur focale du télescope de rayons X est augmentée avec l’introduction
d’un long mât qui sera déployé en orbite. Les caractéristiques du mât sont basées sur un
prototype développé par le CNES. L’objectif de l’étude est d’étudier et tester la faisabilité
de cette technologie, qui nécessitera des améliorations au niveau conception de structure et
système de contrôle d’attitude.

Le satellite est composé d’une plateforme rigide, avec centre de masse G, auquel on vient
encastrer au point P un mât déployable dont l’extrémité est nommée comme point Q (Fig.
9.2). Le mât est discrétisé en plusieurs segments, chacun avec les mêmes propriétés que le mât
prototype et avec une longueur 4.06 m chacun. Due à la longueur totale du mât (12 mètres
approximativement), il est prévu pour ELMO d’avoir un tenseur d’inertie très directionnel,
avec une magnitude très élevée du moment d’inertie perpendiculaire au plan du mât. Le défi
principal est de apporter une bande passante suffisamment large pour mitiger les perturbations
basse fréquence pendant que les déplacements au bout du mât sont minimisés ainsi que la
masse de la charge utile située au bout est maximisée. Le co-design AOCS/structure devra
donc apporter des stratégies de contrôle pour la bande passante requise et maximiser la masse
de la charge utile située au bout du mât.

Pour cela, un modèle TITOP du satellite est obtenu, étant donné qu’il est composé de
plusieurs sous-structures rigides (la plateforme et la charge utile) et flexibles (les segments de
mât). Un modèle TITOP est dérivé pour chaque tronçon de mât à partir d’un modèle FE
modifié pour ajouter des actionneurs piézoélectriques de 0.2 m de longueur qui permettront
dans la future étude d’analyser l’influence d’un contrôle actif du mât. Tous les blocs sont
assemblés comme montré dans la Fig. 9.4, et le modèle final prévoit une structure avec une
inertie en rotation de 11294 kg·m2, un premier mode flexible au 0.62 Hz et une masse totale
de 568.15 kg. Le centre de masse de tout l’ensemble est situé à 1.504 m à partir du centre de
masses G de la plateforme. En tenant compte de la variation paramétrique de la charge utile,
les modèle LFT résultant a 110 états, 48 sorties, 27 entrées et 2 occurrences du paramètre
ajustable δmtip . Comme le modèle est très large, le modèle est réduit aux 35 états le plus
significatifs selon la méthode du gramian. Par conséquent, le modèle de synthèse est le modèle
réduit de 35 états tandis que le modèle de validation (en anglais : validation model, VM)
reste l’original, et qui sera utilisé pour tester les stratégies de contrôle.

Les spécifications pour le co-design sont données par les stratégies de contrôle à tester, les
exigences pour la dynamique rigide, les exigences pour la dynamique flexible et les contraintes
structurales. Les architectures de contrôleurs décentralisées proposées sont composées d’un
contrôleur PD pour gouverner la dynamique rigide et un système d’amortissement actif de
la dynamique flexible. Les architectures à tester sont un PD seulement, un PD avec un IFF
(retour de force intégral, en anglais, integral force feedback), un PD avec un AF (retour en
accélération, en anglais, acceleration feedback), un PD avec un filtre de roll-off et un IFF
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Figure 12.7: Figure 9.17 qui montre la réponse du système contrôlé avec le meilleur contrôleur
(IFF avec roll-off) face à un moment perturbateur

avec un filtre de roll-off aussi, et un PD avec un IFF qui utilise des mesures noncolocalisées,
notamment la vitesse au bout du mât. Les spécifications pour la dynamique rigide sont une
bande passante de 0.182 Hz pour rejeter les perturbations thermiques, un amortissement du
0.7 et un amortissement du mât qui permet d’approximer les déplacements du bout du mât le
plus possible au mouvement rigide. La charge utile située au bout du mât doit être maximisée
dans une plage du 60 kg au 75 kg.

Toutes les architectures trouvent des solutions au problème du co-design, sauf celle basée
sur le retour d’accélération. Les résultats du co-design pour les architectures basées sur l’IFF
sont analysés en suivant deux axes différents : robustesse et performance en simulation. La
meilleure robustesse, même en tenant compte d’une dynamique réelle pour les roues d’inertie
et les actionneurs piézoélectriques, est celle montrée par le PD –IFF avec roll-off (GM =
11.3 dB, PM = 56.6 deg). Les autres stratégies ont des gains très grands car elles n’ont
pas eu des contraintes fréquentielles pour limiter leur valeurs, ce qui provoque une perte de
robustesse. Pour tester la performance, les lois ont été testées avec le modèle de validation.
Un compromis entre les déplacements de la plateforme et les déplacements du bout est trouvé
: une action pour empêcher le déplacement d’un côté, l’autre expérimente un déplacement
plus important. La seule stratégie à fonctionner même en tenant compte d’une dynamique
actionneur sur le modèle de validation est la stratégie PD-IFF avec roll-off, où le déplacement
maximal de l’angle de position de la plateforme est respecté ainsi que le déplacement du bout
du mât.

Finalement, une étude sur le placement des actionneurs piézoélectriques est faite manuelle-
ment. L’objectif est de voir si un placement alternatif des actionneurs piézoélectriques peut
améliorer les performances du système, étant donné qu’il ne semble pas affecter la robustesse
de la loi de commande. Il se trouve que les optimisations qui réussissent à trouver une so-
lution stabilisante sont celles qui placent les actionneurs au points où les déformées modales
ont les plus grands déplacements, notamment la première et la troisième déformé modale. Le
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placement nominal des actionneurs étant très proche du placement optimal, aucun placement
n’a été trouvé qui réussit à améliorer tous les aspects du meilleur contrôleur nominal (notam-
ment maximisation de la charge utile, déplacement au bout et le dépassement en position de
la plateforme). Une étude avec un modèle LFT qui paramétrise la position des actionneurs
n’a pas pu être développée du aux contraintes de taille du système et de consistance avec le
modèle physique.

12.8 Conclusion

Cette étude a consisté à réaliser le co-design contrôle d’attitude/mécanique d’un satellite
flexible en utilisant les outils de la commande robuste structurée et en développant une méth-
ode de modélisation pour des systèmes multi-corps flexibles. Les contributions principales
reposent sur deux grands domaines: la modélisation et le co-design.

L’étude a développé une méthode pour la création des modèles de systèmes multi-corps
flexibles en vue d’un contrôle linéaire. Les modèles sont présentés sous une forme de représen-
tation d’états, sont obtenus à partir des donnés FE et peuvent être assemblés en forme de
chaîne ou d’étoile. Ils sont aussi précis que d’autres techniques de modélisation utilisées et ils
ont l’avantage d’être robustes aux changements des conditions limites. De plus, les modèles
ont été étendus pour considérer l’introduction des joints pivot et des matériaux piézoélec-
triques, et ils ont été appliqués sur une large variété d’exemples : des enchaînement des
poutres, satellites flexibles et bras robotique manipulateur.

L’étude a établi le cadre pour réaliser du co-design control/structure avec la synthèse H∞
structurée. Les spécifications sur la dynamique rigide et flexible du système ont été établies sur
forme de contraintes de norme H∞. De la même manière, les spécifications structurelles ont
été aussi converties au cadre H∞ et la synthèse du problème H∞ structurée a été également
modifiée. Comme la synthèse H∞ structurée permet le choix de l’architecture du contrôleur,
plusieurs architectures pour le contrôle de la dynamique rigide et la dynamique flexible ont
été évaluées afin de les utiliser pour les études du co-design. L’introduction du retour de force
intégral et l’addition de filtres roll-off a apporté au contrôleur plus de robustesse face aux
dynamiques réelles des actionneurs et modèles de validation. Dans toutes les applications la
méthode du co-design a prouvé être adéquate pour trouver des solutions qui respectent les
spécifications données.

Pour le futur, les travaux devraient étendre la technique de modélisation pour considérer
des systèmes flexibles en forme d’arbre, ce qui nécessitera plus de deux points de connexion.
La recherche devra se focaliser aussi sur l’expansion de la technique aux chaînes cinématiques
fermées et la considération de charges distribuées au long de la sous-structure. Également, des
études pour calibrer la limite de la modélisation des effets nonlinéaires doivent être conduites
afin de bien comprendre les limitations de la méthode. De l’autre côté, l’étude de co-design
contrôle/structure peut se voir enrichi en cherchant d’autres architectures de contrôle, d’autres
spécifications pour l’optimisation de la structure et avec des améliorations dans le paramétrage
pour le placement optimal des actionneurs.
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Appendix A
Superelements

When a substructure linking two other substructures has a beam-like shape, a model called
“superlement” can be used. This model provides a full parametric representation for the
length, section surface, section inertia and material properties of the beam-like structure.
Main aspects of this model are recalled thereafter. The interested reader can refer to [Murali 15]
for a complete description.

The superelement model uses a FE approach that exploits the uniformity of the beam,
using a polynomial function of higher order than the conventional finite element for beams.
Conventional elements have 3rd order while superelement is 5th order, leading to more accu-
rate mode shapes for a single superlement than for two conventional elements sequence. With
this polynomial approximation, the mass and stiffness matrices of the beam superelement in
planar deflection read:

M̃ = ρsl

55440



55440 27720 l 462 l2 27720 −5544 l 462 l2
27720 l 18480 l2 198 l3 19800 l −3432 l2 264 l3
462 l2 198 l3 6 l4 181 l2 −52 l3 5 l4
27720 19800 l 181 l2 21720 −3732 l 281 l2
−5544 l −3432 l2 −52 l3 −3732 l 832 l2 −69 l3
462 l2 264 l3 5 l4 281 l2 −69 l3 6 l4


(A.1)

K̃ = EIz
70 l3



0 0 0 0 0 0
0 0 0 0 0 0
0 0 6 l4 −30 l2 8 l3 l4

0 0 −30 l2 1200 −600 l 30 l2
0 0 8 l3 −600 l 384 l2 −22 l3
0 0 l4 30 l2 −22 l3 6 l4


(A.2)
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Figure A.1: Parameterization of the superelement’s degrees of freedom

being the time-dependent kinematic vector of the superelement (see Fig. A.1):

ũ(t) =



xP (t)
θP (t)

TbP (t)/(EIz)
xC(t)− xP (t)− lθP (t)

θC(t)− θP (t)
TbC(t)/(EIz)


(A.3)

which is the same one as a standard beam element but adding the curvature of the deflected
geometry, Tb(t)/(EIz), and the relative motion between the two beam tips.

It should be noted that vertical displacement, rotation, force and torque at points P and
C, respectively yP /yC , θP /θC , fP /fC and tP /tC are the following projections in the deflection
plane π( ~xa, ~ya):

yP = ~ya.
{
xP
}

; yC = ~ya.
{
qC
}

θP = ~za.
{
θP
}

; θC = ~za.
{
θC
}

fP = ~ya.
{
fA/P

}
; fC = ~ya.

{
fC,A

}
tP = ~za.

{
tA/P,P

}
; tC = ~za.

{
tC/C,C

}
(A.4)

Murali [Murali 15] uses Eq.(A.1) and the expressions in Eq.(A.4) and (A.2) to arrange the
following state-space representation of the double-port model TyRz(s) of the beam restricted
to bending in the plane π( ~xa, ~ya):

˙̃u(3:6)
¨̃u(3:6){
q̈Q
θ̈Q

}
{
fP
tP

}


=
[
ATy,Rz BTy,Rz
CTy,Rz DTy,Rz

]
︸ ︷︷ ︸

TyRz(s)



ũ(3:6)
˙̃u(3:6){
fQ
tQ

}
{
q̈P
θ̈P

}


(A.5)

with:



197

ATy,Rz =
[

04×4 I4
−M̃−1

(3:6,3:6)K̃(3:6,3:6) 04×4

]
(A.6)

BTy,Rz =
[

04×2 04×2
M̃−1

(3:6,3:6) ΦT −M̃−1
(3:6,3:6)M̃(3:6,1:2)

]
(A.7)

CTy,Rz =
[

−Φ M̃−1
(3:6,3:6)K̃(3:6,3:6) 02×4

M̃T
(3:6,1:2) M̃

−1
(3:6,3:6)K̃(3:6,3:6) 02×4

]
(A.8)

DTy,Rz =
[

D11
Ty,Rz D12

Ty,Rz

(D12
Ty,Rz)T D22

Ty,Rz

]
(A.9)

The complete form of Eq. (A.9) can be found in Eq.(A.12).Since the beam can be bended
in the planes π(~xa, ~ya) and λ(~xa, ~ya), the model can be expanded to a full degree of free-
dom representation, taken into account bending on both planes, TyRz(s) and TzRy(s), tor-
sion Tx(s), and translation in ~xa, Rx(s). This leads to the double-port model superelement[
SAP,Q(s)

]
of the 6 d.o.fs beam is (in projection in the frame Ra = (P, ~xa, ~ya, ~za)):


{
üQ
}
Ra{

FA/P,P
}
Ra

 =
[
SAP,Q(s)

]
Ra


{
FQ/A,Q

}
Ra{

üP
}
Ra

 (A.10)

where:

[
SAP,Q(s)

]
Ra

= T T


TyRz(s)

TzRy(s)
Rx(s)

Tx(s)

T (A.11)

with T being a permutation matrix of the inputs/outputs computed in Eq. (A.15) de-
scribed in Appendix B.

As it can be appreciated, the parametrization is more thoroughful since length, section
area, cross inertia or density appear at all the levels of the system, having a more accurate
influence on the dynamics.

Previously, the following matrices were used:

D11
Ty,Rz = Φ M̃−1

(3:6,3:6) ΦT (A.12)

D1
Ty,Rz2 =

(
τ − Φ M̃−1

(3:6,3:6)M̃(3:6,1:2)
)

(A.13)

D22
Ty,Rz = −M̃(1:2,1:2) + M̃T

(3:6,1:2) M̃
−1
(3:6,3:6) M̃(3:6,1:2) (A.14)
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T is a permutation matrix defined by:

T =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0



(A.15)



Appendix B
Beam Finite Elements

The mass and stiffness matrices of each piezo element are written as:

[
Mqq

]
piezo

= ρpApl



1
3 0 0 1

6 0 0
0 156

420
22
420 l 0 54

420 − 13
420 l

0 22
420 l

4
420 l

2 0 13
420 l − 3

420 l
2

1
6 0 0 1

3 0 0
0 54

420 l
13
420 l 0 156

420 − 22
420 l

0 − 13
420 l −

3
420 l

2 0 − 22
420 l

4
420 l

2


(B.1)

[
Kqq

]
piezo

= EpIp
l3



Apl2

Ip
0 0 −Apl2

Ip
0 0

0 12 6l 0 −12 6l
0 6l 4l2 0 −6l 2l2

−Apl2

Ip
0 0 Apl2

Ip
0 0

0 −12 −6l 0 12 −6l
0 6l 2l2 0 −6l 4l2


(B.2)

where Ip = wptp(t2 + tpt+ tp
2 ). The mass and stiffness matrices of each beam element are

written as:

[
Mqq

]
beam

= ρAl



1
3 0 0 1

6 0 0
0 156

420
22
420 l 0 54

420 − 13
420 l

0 22
420 l

4
420 l

2 0 13
420 l − 3

420 l
2

1
6 0 0 1

3 0 0
0 54

420 l
13
420 l 0 156

420 − 22
420 l

0 − 13
420 l −

3
420 l

2 0 − 22
420 l

4
420 l

2


(B.3)
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[
Kqq

]
beam

= EI

l3



Al2

I 0 0 −Al2

I 0 0
0 12 6l 0 −12 6l
0 6l 4l2 0 −6l 2l2

−Al2

I 0 0 Al2

I 0 0
0 −12 −6l 0 12 −6l
0 6l 2l2 0 −6l 4l2


(B.4)

Note that the mass and stiffness matrices of the beam element are identical as the ones
denoted in Eqs. (B.3) and (B.4) but substituting the piezoelectric strip parameters by those
of the beam. The 3D beam elements used in Chap. 6 can be extracted from [Imbert 79] and
they have been included in the Matlab routines as follows:

L = beam .L ; % beam length
I z = beam . I z ; % Z−c r o s s s e c t i o n i n e r t i a
Iy = beam . Iy ; % Y c ro s s s e c t i o n i n e r t i a
Ix = beam . Ix ; % t o r s i o n a l i n e r t i a
k_S = beam . k_S ; % f o r f a c t o r o f the s e c t i o n
S = beam . S ; % s e c t i o n su r f a c e
E = beam .E; % Young Modulus
G = beam .G ; % t o t a l e l a s t i c modulus
nu = beam . nu ; % po i s son c o e f f i c i e n t
rho = beam . rho ; % beam volumetr i c dens i ty
x i = beam . x i ; % damping r a t i o

EIz = E∗ I z ;
EIy = E∗ Iy ;

% Beam d i s c r e t i z a t i o n :

n = nodes−1; % number o f e lements

dof = 6 ; % each node can t r a n s l a t e in x , y , z and ro t a t e around x , y , z

% node= [ u v w thetaX thetaY thetaZ ]

% 3D beam element

l = L/n ; % element l ength
m_e = rho∗S∗ l ; % mass o f the element

phi_Y = 12∗EIz /(k_S∗G∗S∗ l ^2) ; % Y shear e f f o r t
phi_Z = 12∗EIy /(k_S∗G∗S∗ l ^2) ; % Y shhear e f f o r t

% S t i f f n e s s matrix K

K_e = zeros ( dof ∗2 , dof ∗2) ;

K_e(1 , 1 ) = E∗S/ l ;
K_e(1 , 7 ) = −E∗S/ l ;

K_e(2 , 2 ) = 12∗EIz /( l ^3∗(1+phi_Y) ) ;
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K_e(2 , 6 ) = 6∗EIz /( l ^2∗(1+phi_Y) ) ;
K_e(2 , 8 ) = −12∗EIz /( l ^3∗(1+phi_Y) ) ;
K_e(2 ,12 )= 6∗EIz /( l ^2∗(1+phi_Y) ) ;

K_e(3 , 3 ) = 12∗EIy /( l ^3∗(1+phi_Z) ) ;
K_e(3 , 5 ) = −6∗EIy /( l ^2∗(1+phi_Z) ) ;
K_e(3 , 9 ) = −12∗EIy /( l ^3∗(1+phi_Z) ) ;
K_e(3 ,11 ) = −6∗EIy /( l ^2∗(1+phi_Z) ) ;

K_e(4 , 4 ) = G∗ Ix / l ;
K_e(4 ,10 ) = −G∗ Ix / l ;

K_e(5 , 3 ) = −6∗EIy /( l ^2∗(1+phi_Z) ) ;
K_e(5 , 5 ) = (4+phi_Z) ∗EIy /( l ∗(1+phi_Z) ) ;
K_e(5 , 9 ) = 6∗EIy /( l ^2∗(1+phi_Z) ) ;
K_e(5 ,11 )= (2−phi_Z) ∗EIy /( l ∗(1+phi_Z) ) ;

K_e(6 , 2 ) = 6∗EIz /( l ^2∗(1+phi_Y) ) ;
K_e(6 , 6 ) = (4+phi_Y) ∗EIz /( l ∗(1+phi_Y) ) ;
K_e(6 , 8 ) = −6∗EIz /( l ^2∗(1+phi_Y) ) ;
K_e(6 ,12 )= (2−phi_Y) ∗EIz /( l ∗(1+phi_Y) ) ;

K_e(7 , 1 ) = −E∗S/ l ;
K_e(7 , 7 ) = E∗S/ l ;

K_e(8 , 2 ) = −12∗EIz /( l ^3∗(1+phi_Y) ) ;
K_e(8 , 6 ) = −6∗EIz /( l ^2∗(1+phi_Y) ) ;
K_e(8 , 8 ) = 12∗EIz /( l ^3∗(1+phi_Y) ) ;
K_e(8 ,12 )= −6∗EIz /( l ^2∗(1+phi_Y) ) ;

K_e(9 , 3 ) = −12∗EIy /( l ^3∗(1+phi_Z) ) ;
K_e(9 , 5 ) = 6∗EIy /( l ^2∗(1+phi_Z) ) ;
K_e(9 , 9 ) = 12∗EIy /( l ^3∗(1+phi_Z) ) ;
K_e(9 ,11 ) = 6∗EIy /( l ^2∗(1+phi_Z) ) ;

K_e(10 ,4 ) = −G∗ Ix / l ;
K_e(10 ,10) = G∗ Ix / l ;

K_e(11 ,3 ) = −6∗EIy /( l ^2∗(1+phi_Z) ) ;
K_e(11 ,5 ) = (2−phi_Z) ∗EIy /( l ∗(1+phi_Z) ) ;
K_e(11 ,9 ) = 6∗EIy /( l ^2∗(1+phi_Z) ) ;
K_e(11 ,11)= (4+phi_Z) ∗EIy /( l ∗(1+phi_Z) ) ;

K_e(12 ,2 ) = 6∗EIz /( l ^2∗(1+phi_Y) ) ;
K_e(12 ,6 ) = (2−phi_Y) ∗EIz /( l ∗(1+phi_Y) ) ;
K_e(12 ,8 ) = −6∗EIz /( l ^2∗(1+phi_Y) ) ;
K_e(12 ,12) = (4+phi_Y) ∗EIz /( l ∗(1+phi_Y) ) ;

% Mas matrix M

M11 = zeros ( 6 , 6 ) ;
M11(1 , 1 ) = 1/3 ;
M11(2 , 2 ) = 13/35 + 6∗ I z /(5∗S∗ l ^2) ;
M11(3 , 3 ) = 13/35 + 6∗ Iy /(5∗S∗ l ^2) ;
M11(4 , 4 ) = Ix /(3∗S) ;



202 Appendix B. Beam Finite Elements

M11(5 , 5 ) = l ^2/105 + 2∗ Iy /(15∗S) ;
M11(6 , 6 ) = l ^2/105 + 2∗ I z /(15∗S) ;
M11(6 , 2 ) = 11∗ l /210 + Iz /(10∗S∗ l ) ;
M11(2 , 6 ) = M11(6 , 2 ) ;
M11(5 , 3 ) = −11∗ l /210 − Iy /(10∗S∗ l ) ;
M11(3 , 5 ) = M11(5 , 3 ) ;

M22 = −M11 + 2∗diag (diag (M11) ) ;

M21 = zeros ( 6 , 6 ) ;
M21(1 , 1 ) = 1/6 ;
M21(2 , 2 ) = 9/70 − 6∗ I z /(5∗S∗ l ^2) ;
M21(3 , 3 ) = 9/70 − 6∗ Iy /(5∗S∗ l ^2) ;
M21(4 , 4 ) = Ix /(6∗S) ;
M21(5 , 5 ) = − l ^2/140 − Iy /(30∗S) ;
M21(6 , 6 ) = − l ^2/140 − I z /(30∗S) ;
M21(6 , 2 ) = −13∗ l /420 + Iz /(10∗S∗ l ) ;
M21(2 , 6 ) = −M21(6 , 2 ) ;
M21(5 , 3 ) = 13∗ l /420 − Iy /(10∗S∗ l ) ;
M21(3 , 5 ) = −M21(5 , 3 ) ;

M_e = m_e∗ [M11, M21 ’ ; M21, M22 ] ;



Appendix C
Thermal Induced Vibrations

Throughout the study the performance of the control system facing thermal disturbances has
been tested. In Sec. 9.3 the bending moment of the deployable mast due to thermal gradient
is computed in order to estimate the required system’s bandwidth for perturbation rejection.
This estimation is based on [Johnston 98], and it is recalled here for better understanding.

Thermal disturbances are the result of temperature differences through the cross section of
appendages lead to differential thermal expansion, i.e., the hot side of the appendage expands
more than the cold side, which results in structural deformations. Slowly developing tem-
perature differences lead to quasistatic deformations, whereas rapidly changing temperature
differences may lead to dynamic structural motions. Depending on the structural dynamics of
the appendage, the deformations induced by thermal disturbances may lead to the excitation
of the system’s natural frequencies, inducing slightly damped frequencies. Motions of flexible
appendages result in rigid-body rotations of the entire spacecraft, because the total angu-
lar momentum of the system is conserved (see Fig. C.1a). These potentially large attitude
disturbances can violate mission pointing accuracy requirements. This phenomena can be
experienced by booms and solar arrays.

The thermally induced dynamic response can be foreseen by a key parameter called the
Boley parameter, given by Boley and Weiner [Boley 60]. The Boley parameter is defined as
the square root of the ratio of the characteristic thermal and structural response times of the
system:

B =
√
tT
tS

(C.1)

where the characteristic thermal response time tT is given Eq. (2), described later in this
section, and the characteristic structural response time tS is the period of the fundamental
mode of vibration for the appendage. A dynamic amplification factor is built in order to
relate the maximum dynamic displacement to the maximum quasistatic displacement:
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Flexible Boom

Rigid Hub

Tip Mass

ytip(L, t)
x

Heat Flux, S

θhub(t)

θtip(t)

xi

Bending Moment, M(t)

(a) Spacecraft model under thermal bending

Thot

Tcold

h

Heat Flux, S

R
∆T = Thot − Tcold

(b) Spacecraft boom cross-sectional ge-
ometry

Figure C.1: Thermally induced vibrations of a flexible spacecraft

νdyn
νsta

= 1 + 1√
1 +B2

(C.2)

In structures with large values of B, B >> 1, the quasistatic thermal-structural analysis
is justified. For structures with small values of B, the inertial terms should be included in the
thermal-structural analysis since the amplification factor is greater than one. For values of B
in the order of one, structures may experience thermal induced vibrations when subjected to
rapid heating.

The system under study in Chap. 9, the ELMO spacecraft, is suspected to experience
thermal induced vibrations since its Boley parameter value is around B = 7, which gives
an amplification factor greater than one, that is νdyn/νsta = 1.14. The boley parameter
has been computed according to the thermal time constant of an appendage with cilindrical
cross-section (see Fig. C.1b), which according to [Johnston 98] is written as follows:

tT = τapp =
[

k

ρcR2 + 4σoε
ρch

· ( αSo
πσoε

)
3
4

]−1
(C.3)

where k = 2.165 · 10−4 m2/s is the thermal diffusivity, ρ the volumetric density of the
appendage, c the appendage’s specific heat, R is the radius of the appendage, σo = 5.670373 ·
10−8 W/m2 · K−4 is the Stefan-Boltzman constant, ε the appendage’s emissivity, α the
appendage’s absorptivity, h the cross-section thickness and So = 1366 W/m2 is the solar heat
flux. When using the CNES mast values, the thermal time constant is around τapp = 32 s.
The first term in Eq. (C.3) is associated with conduction heat transfer and the second term
corresponds to radiation heat transfer. For typical metallic spacecraft booms the first term
dominates the thermal time constant, but in a composite spacecraft boom the second term is
the more dominant. This parameter dominates the transient response of the system

The order of the thermal bending moment experienced by the appendage due to the
heat flux depends on the temperature’s distribution along the cross-section of the appendage.
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Assuming one-dimensional conduction around the circumference of the appendage and heat
loss from emitted radiation on its external surface, an approximate analytical solution for the
temperature distribution is given by:

∆T (t) = αSoτapp
ρch︸ ︷︷ ︸

∆TSS

(1− e
t

τapp ) (C.4)

The temperature distribution ∆T (t) determines the thermal bending moment, which can
be computed across the cross-sectional area as follows:

M(t) =
∫
A
Eαcte∆T (t)ydA (C.5)

where E is the Young’s modulus of the cross-sectional area and αcte is the coefficient of
thermal expansion. Integrating Eq. (C.5) over the cross-section of the appendage results in
the following general expression for the thermal moment:

M(t) = 1
2πEαctehR

2∆TSS(1− e
t

τapp ) (C.6)

Because the temperature does not vary along the length of the appendage, the thermal
moment is a function only of time. The mast model used in the numerical study of Chap.
9 gives a thermal moment of an amplitude of 19.03 N·m. This corresponds to an internal
coupling moment that will perturb the satellites position due to the mast’s deformation, as
depicted in Fig. C.1a.
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This appendix shows the corresponding matlab code of the most used and most important
matlab functions of the study.

D.1 Conversion of ∆ block

This function converts the uncertain block ∆ in a diagonal matrix with tunable parameters,
with the same parameters and the same occurrences as the uncertain block.

% Extract o f unce r ta in parameters in fo rmat ion :
[ satelliteLFT_nom , de l ta ,BLKSTRUCT,NORMUNC] = l f t d a t a ( s a t e l l i t eLFT ) ; % de l t a

i s normal ized between −1 and +1
[ n_delta_notact , m_delta ] = s ize ( d e l t a ) ;

% False Cont r o l l e r augmentation or v a r i ab l e to be opt imized
nDelta = length (BLKSTRUCT) ;

uncertNames = struct_upFie ld (BLKSTRUCT, ’Name ’ ) ;
uncertOccurrences = struct_upFie ld (BLKSTRUCT, ’ Occurrences ’ ) ;

% Create the de l taCont ro l matrix o f tunable parameters from uncer ta in
in fo rmat ion :

% I n i t i a l i z e de l taCont ro l with the f i r s t unce r ta in ty Name and s i z e
% " Occurrences "
iDe l t a = 1 ;
tuningParameter ( iDe l t a ) = l t i b l o c k . ga in ( s t r c a t ( ’d ’ , uncertNames ( iDe l ta , : ) ) , 0 ) ;
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tuningParameter ( iDe l t a ) . Blocks . ( s t r c a t ( ’d ’ , uncertNames ( iDe l ta , : ) ) ) . Gain .Minimum
= −1;

tuningParameter ( iDe l t a ) . Blocks . ( s t r c a t ( ’d ’ , uncertNames ( iDe l ta , : ) ) ) . Gain .Maximum
= +1;

de l taCont ro l = eye ( uncertOccurrences ( iDe l t a ) ) ∗ tuningParameter ( iDe l t a ) ;
% Aggregate other un c e r t a i n t i e s :
for iDe l t a = 2 : nDelta

tuningParameter ( iDe l t a )= l t i b l o c k . ga in ( s t r c a t ( ’d ’ , uncertNames ( iDe l ta , : ) ) , 0 )
;

tuningParameter ( iDe l t a ) . Blocks . ( s t r c a t ( ’d ’ , uncertNames ( iDe l ta , : ) ) ) . Gain .
Minimum = −1;

tuningParameter ( iDe l t a ) . Blocks . ( s t r c a t ( ’d ’ , uncertNames ( iDe l ta , : ) ) ) . Gain .
Maximum = +1;

de l taCont ro l = blkd iag ( de l taContro l , eye ( uncertOccurrences ( iDe l t a ) ) ∗
tuningParameter ( iDe l t a ) ) ;

end
% de l taCont ro l i s the matrix with the tunable parameters

D.2 Derivation of the TITOP Model

The most used function of the study, getTITOP obtains a TITOP model from raw FE data,
by specifying which nodes correspond to the rigid body motion and which nodes correspond
to the redundant boundary nodes. Th FE model in MDKF form is then converted into a
double-port state-space representation.
function TITOP = getTITOP( appendageData , rr , ee , i i )
%−−−−−−−−−−−−−−−−−−TITOP = getTITOP( appendageData , rr , ee , i i )
−−−−−−−−−−−−−−−−−−−−−

%
% Function f o r bu i l d i ng a proper Two−Input Two−Output Port (TITOP) model o f a
% f i n i t e element model o f a subs t ruc tu r e
%
% INPUTS:
%
% − appendageData : St ruc ture conta in ing a l l nece s sa ry data f o r
% appendage mode l i za t ion :
%
% ∗ appendageData . name : subs t ruc tu r e name ( s t r i n g )
% ∗ appendageData .M: Mass Matrix o f the subs t ruc tu r e
% ∗ appendageData .K: S t i f f n e s s Matrix o f the subs t ruc tu r e
% ∗ appendageData .C: Damping Matrix o f the subs t ruc tu r e
% ∗ appendageData . nodes : Number o f nodes o f the subs t ruc tu r e
% − r r : l o c a t i o n o f r i g i d body coo rd ina t e s dof
% − ee : l o c a t i o n o f redundant boundary coo rd ina t e s dof . ee = [ ] d e c l a r e s

the re are
% not redundant boundary coo rd ina t e s ( te rmina l appendage : r ightmost
% or l e f tmos t appendage )
% − i i : l o c a t i o n o f i n t e r n a l degree s o f freedom
%
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% OUTPUTS:
%
% − TITOP: s t a t e space model f o r the subs t ruc tu r e . [ AccR , Fe]−>[Fr , AccE ]
%
%
% NOTES: nodes are supossed ordered as f o l l ow s : q = {ux , uy , uz , thetax , thetay ,

thetaz }
%
% Last r e v i s i o n :
% J . Alvaro Perez 18 th February 2016
%
% % Ve r i f i c a t i o n examples : f i l e s TEST_FESS_ULTIMATE.m, TEST_FESS.m (TITOP i s

the new ve r s i on o f FESS with arranged i /o )
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

%% Perform Checks
% Check f o r Mass Matrix
i f i s f i e l d ( appendageData , ’M’ )

M = appendageData .M;
else

error ( ’A Mass Matrix has to be provided to bu i ld the s tate−space model ’ )
end
% Check f o r S t i f f n e s s Matrix
i f i s f i e l d ( appendageData , ’K ’ )

K = appendageData .K;
else

K = zeros ( s ize (M) ) ;
disp ( ’Warning : No S t i f f n e s s Matrix Found . Computing as r i g i d model ’ )

end
% Check f o r Damp Matrix
i f i s f i e l d ( appendageData , ’C ’ )

C = appendageData .C;
else

C = zeros ( s ize (M) ) ;
end

nodes = appendageData . nodes ;
%% Build TITOP model

i f isempty ( ee ) == 0 % Chain− l i k e appendage

Nr = length ( r r ) ;
Ne = length ( ee ) ;
n = length ( i i ) ;
dof = (n+Ne+Nr) /nodes ;

% Writt ing outputs / inputs :
i f dof == 6

name = s t r c a t ( appendageData . name , ’_ ’ ) ;
inputs = [ s t r c a t (name , ’ {Fe_x} ’ ) ; s t r c a t (name , ’ {Fe_y} ’ ) ; s t r c a t (name , ’ {

Fe_z} ’ ) ; s t r c a t (name , ’ {Me_x} ’ ) ; s t r c a t (name , ’ {Me_y} ’ ) ; s t r c a t (name , ’
{Me_z} ’ ) ;
s t r c a t (name , ’ {Ar_x} ’ ) ; s t r c a t (name , ’ {Ar_y} ’ ) ; s t r c a t (name , ’ {Ar_z} ’ )

; s t r c a t (name , ’ {Gr_x} ’ ) ; s t r c a t (name , ’ {Gr_y} ’ ) ; s t r c a t (name , ’ {
Gr_z} ’ ) ] ;
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outputs = [ s t r c a t (name , ’ {Ae_x} ’ ) ; s t r c a t (name , ’ {Ae_y} ’ ) ; s t r c a t (name , ’
{Ae_z} ’ ) ; s t r c a t (name , ’ {Ge_x} ’ ) ; s t r c a t (name , ’ {Ge_y} ’ ) ; s t r c a t (name ,
’ {Ge_z} ’ ) ;
s t r c a t (name , ’ {Fr_x} ’ ) ; s t r c a t (name , ’ {Fr_y} ’ ) ; s t r c a t (name , ’ {Fr_z} ’ )

; s t r c a t (name , ’ {Mr_x} ’ ) ; s t r c a t (name , ’ {Mr_y} ’ ) ; s t r c a t (name , ’ {
Mr_z} ’ ) ] ;

e l s e i f dof == 3
i f Ne == dof && Nr == dof
name = s t r c a t ( appendageData . name , ’_ ’ ) ;
inputs = [ s t r c a t (name , ’ {Fe_x} ’ ) ; s t r c a t (name , ’ {Fe_y} ’ ) ; s t r c a t (name , ’ {

Me_z} ’ ) ;
s t r c a t (name , ’ {Ar_x} ’ ) ; s t r c a t (name , ’ {Ar_y} ’ ) ; s t r c a t (name , ’ {Gr_z} ’ )

] ;
outputs = [ s t r c a t (name , ’ {Ae_x} ’ ) ; s t r c a t (name , ’ {Ae_y} ’ ) ; s t r c a t (name , ’

{Ge_z} ’ ) ;
s t r c a t (name , ’ {Fr_x} ’ ) ; s t r c a t (name , ’ {Fr_y} ’ ) ; s t r c a t (name , ’ {Mr_z} ’ )

] ;
else

name = s t r c a t ( appendageData . name , ’_ ’ ) ;
inputs_r = s t r c a t (name , ’ {Arx} ’ ,num2str (1 ) ) ;
outputs_r = s t r c a t (name , ’ {Arx} ’ ,num2str (1 ) ) ;

for i 1 = 0 : dof : Nr−dof
coord = c e i l ( i 1 / dof +0.1) ;
inputs_r ( i 1 +1 , : ) = s t r c a t (name , ’ {Arx} ’ ,num2str( coord ) ) ;
inputs_r ( i 1 +2 , : ) = s t r c a t (name , ’ {Ary} ’ ,num2str( coord ) ) ;
inputs_r ( i 1 +3 , : ) = s t r c a t (name , ’ {Arz} ’ ,num2str( coord ) ) ;
outputs_r ( i 1 +1 , : ) = s t r c a t (name , ’ {Frx} ’ ,num2str( coord ) ) ;
outputs_r ( i 1 +2 , : ) = s t r c a t (name , ’ {Fry} ’ ,num2str( coord ) ) ;
outputs_r ( i 1 +3 , : ) = s t r c a t (name , ’ {Frz} ’ ,num2str( i 1 ) ) ;
end

inputs_e = s t r c a t (name , ’ {Arx} ’ ,num2str (1 ) ) ;
outputs_e = s t r c a t (name , ’ {Arx} ’ ,num2str (1 ) ) ;
for i 1 = 0 : dof :Ne−dof
coord = c e i l ( i 1 / dof +0.1) ;

inputs_e ( i 1 +1 , : ) = s t r c a t (name , ’ {Fex} ’ ,num2str( coord ) ) ;
inputs_e ( i 1 +2 , : ) = s t r c a t (name , ’ {Fey} ’ ,num2str( coord ) ) ;
inputs_e ( i 1 +3 , : ) = s t r c a t (name , ’ {Fez} ’ ,num2str( coord ) ) ;
outputs_e ( i 1 +1 , : ) = s t r c a t (name , ’ {Aex} ’ ,num2str( coord ) ) ;
outputs_e ( i 1 +2 , : ) = s t r c a t (name , ’ {Aey} ’ ,num2str( coord ) ) ;
outputs_e ( i 1 +3 , : ) = s t r c a t (name , ’ {Aez} ’ ,num2str( coord ) ) ;
end
inputs = [ inputs_e ; inputs_r ] ;
outputs = [ outputs_e ; outputs_r ] ;

end
e l s e i f dof == 2

i f Ne == dof && Nr == dof

name = s t r c a t ( appendageData . name , ’_ ’ ) ;
inputs = [ s t r c a t (name , ’ {Fe_y} ’ ) ; s t r c a t (name , ’ {Me_z} ’ ) ;

s t r c a t (name , ’ {Ar_y} ’ ) ; s t r c a t (name , ’ {Gr_z} ’ ) ] ;
outputs = [ s t r c a t (name , ’ {Ae_y} ’ ) ; s t r c a t (name , ’ {Ge_z} ’ ) ;

s t r c a t (name , ’ {Fr_y} ’ ) ; s t r c a t (name , ’ {Mr_z} ’ ) ] ;
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else
name = s t r c a t ( appendageData . name , ’_ ’ ) ;
% I n i t i a l i z e inputs / outputs
inputs_r =s t r c a t (name , ’ {Arx} ’ ,num2str (1 ) ) ;
outputs_r = s t r c a t (name , ’ {Arx} ’ ,num2str (1 ) ) ;

for i 1 = 0 : dof : Nr−dof
coord = c e i l ( i 1 / dof +0.1) ;
inputs_r ( i 1 +1 , : ) = s t r c a t (name , ’ {Arx} ’ ,num2str( coord ) ) ;
inputs_r ( i 1 +2 , : ) = s t r c a t (name , ’ {Ary} ’ ,num2str( coord ) ) ;
outputs_r ( i 1 +1 , : ) = s t r c a t (name , ’ {Frx} ’ ,num2str( coord ) ) ;
outputs_r ( i 1 +2 , : ) = s t r c a t (name , ’ {Fry} ’ ,num2str( coord ) ) ;
end
% I n i t i a l i z e inputs / outputs
inputs_e = s t r c a t (name , ’ {Arx} ’ ,num2str (1 ) ) ;
outputs_e = s t r c a t (name , ’ {Arx} ’ ,num2str (1 ) ) ;
for i 1 = 0 : dof :Ne−dof
coord = c e i l ( i 1 / dof +0.1) ;

inputs_e ( i 1 +1 , : ) = s t r c a t (name , ’ {Fex} ’ ,num2str( coord ) ) ;
inputs_e ( i 1 +2 , : ) = s t r c a t (name , ’ {Fey} ’ ,num2str( coord ) ) ;
outputs_e ( i 1 +1 , : ) = s t r c a t (name , ’ {Aex} ’ ,num2str( coord ) ) ;
outputs_e ( i 1 +2 , : ) = s t r c a t (name , ’ {Aey} ’ ,num2str( coord ) ) ;
end
inputs = [ inputs_e ; inputs_r ] ;
outputs = [ outputs_e ; outputs_r ] ;

end

else
error ( ’ Please , i n s e r t a model with 2−3 d . o . f per node (2D case ) or 6 d .

o . f per node (3D case ) ’ )
end
% % Load Matrix : t h i s i s the nece s sa ry shape f o r the TITOP model ( load
% matrix which ac t s in the redundant nodes and and the r i g i d nodes
Q = [ eye ( dof ) ; zeros ( nodes∗dof−2∗dof , dof ) ; eye ( dof ) ] ;

Mii = M( i i , i i ) ; Mie = M( i i , ee ) ; Mir = M( i i , r r ) ;
Mei = M( ee , i i ) ; Mee = M( ee , ee ) ; Mer = M( ee , r r ) ;
Mri = M( rr , i i ) ; Mre = M( rr , ee ) ; Mrr = M( rr , r r ) ;

Ki i = K( i i , i i ) ; Kie = K( i i , ee ) ; Kir = K( i i , r r ) ;
Kei = K( ee , i i ) ; Kee = K( ee , ee ) ; Ker = K( ee , r r ) ;
Kri = K( rr , i i ) ; Kre = K( rr , ee ) ; Krr = K( rr , r r ) ;

C i i = C( i i , i i ) ; Cie = C( i i , ee ) ; Cir = C( i i , r r ) ;
Cei = C( ee , i i ) ; Cee = C( ee , ee ) ; Cer = C( ee , r r ) ;
Cri = C( rr , i i ) ; Cre = C( rr , ee ) ; Crr = C( rr , r r ) ;

% New Indexes ( Normalized )
r r = [ n+Ne+1 : n + Ne + Nr ] ;
ee = [ n + 1 : n+Ne ] ;
i i = [ 1 : n ] ;

% Fixed−i n t e r f a c e normal modes :
[ phi_in ,D] = eig ( Kii , Mii ) ;
PHI_n = [ phi_in ; zeros (Ne , n) ; zeros (Nr , n) ] ;
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% Redundant−i n t e r f a c e c on s t r a i n t modes :
phi_ie = −inv ( Ki i ) ∗Kie ;
PHI_e = [ phi_ie ; eye (Ne) ; zeros (Nr ,Ne) ] ;

% Rigid body modes :
PHI_r = [−inv ( [ Ki i Kie ; Kei Kee ] ) ∗ [ Kir ; Ker ] ; eye (Nr) ] ;
phi_er = PHI_r( ee , : ) ;

% Component Modes Matrix
PHI = [PHI_n PHI_e PHI_r ] ;

% Reshaping Matr ices :

K = [ Ki i Kie Kir ; Kei Kee Ker ; Kri Kre Krr ] ; M = [ Mii Mie Mir ; Mei Mee Mer ;
Mri Mre Mrr ] ;

C = [ Ci i Cie Cir ; Cei Cee Cer ; Cri Cre Crr ] ;

Knorm = PHI ’∗K∗PHI ;
Mnorm = PHI ’∗M∗PHI ;
Cnorm = PHI ’∗C∗PHI ;
Qnorm = PHI ’∗Q;

%% Normalized Matr ices

Miinorm = Mnorm( i i , i i ) ; Mienorm = Mnorm( i i , ee ) ; Mirnorm = Mnorm( i i , r r ) ;
Meinorm = Mnorm( ee , i i ) ; Meenorm = Mnorm( ee , ee ) ; Mernorm = Mnorm( ee , r r ) ;
Mrinorm = Mnorm( rr , i i ) ; Mrenorm = Mnorm( rr , ee ) ; Mrrnorm = Mnorm( rr , r r ) ;

Kiinorm = Knorm( i i , i i ) ; Kienorm = Knorm( i i , ee ) ; Kirnorm = Knorm( i i , r r ) ;
Keinorm = Knorm( ee , i i ) ; Keenorm = Knorm( ee , ee ) ; Kernorm = Knorm( ee , r r ) ;
Krinorm = Knorm( rr , i i ) ; Krenorm = Knorm( rr , ee ) ; Krrnorm = Knorm( rr , r r ) ;

Ciinorm = Cnorm( i i , i i ) ; Cienorm = Cnorm( i i , ee ) ; Cirnorm = Cnorm( i i , r r ) ;
Ceinorm = Cnorm( ee , i i ) ; Ceenorm = Cnorm( ee , ee ) ; Cernorm = Cnorm( ee , r r ) ;
Crinorm = Cnorm( rr , i i ) ; Crenorm = Cnorm( rr , ee ) ; Crrnorm = Cnorm( rr , r r ) ;

% Build Matrix Blocks
MIE = [ Miinorm Mienorm ; Meinorm Meenorm ] ;
KIE = [ Kiinorm Kienorm ; Keinorm Keenorm ] ;
CIE = [ Ciinorm Cienorm ; Ceinorm Ceenorm ] ;
QIE = [ zeros (n ,Ne) −Mirnorm ; eye (Ne) −Mernorm ] ;

%% Build State Space Representat ion :
AA = [ zeros (n+Ne) eye (n+Ne) ;

−inv (MIE) ∗KIE −inv (MIE) ∗CIE ] ;
BB = [ zeros (n ,Ne) zeros (n , Nr) ;

zeros (Ne ,Ne) zeros (Ne , Nr) ;
inv (MIE) ∗QIE ] ;

CC_nue = [ zeros (Ne , n) eye (Ne ,Ne) ]∗ [− inv (MIE) ∗KIE −inv (MIE) ∗CIE ] ;
DD_nue = [ zeros (Ne , n) eye (Ne ,Ne) ] ∗ [ inv (MIE) ∗QIE ] ;

CC_ue = CC_nue ;
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DD_ue = DD_nue + [ zeros (Ne , Nr) phi_er ] ;

CC_fr = −1∗[Mrinorm Mrenorm ]∗ [−inv (MIE) ∗KIE −inv (MIE) ∗CIE ] ;
DD_fr = −1∗[−phi_er ’ Mrrnorm ] − [ Mrinorm Mrenorm ] ∗ [ inv (MIE) ∗QIE ] ;

CC = [CC_ue ; CC_fr ] ;
DD = [DD_ue; DD_fr ] ;

TITOP = ss (AA,BB,CC,DD, ’ inputname ’ , inputs , ’ outputname ’ , outputs ) ;

% Re−arrange i /o : [ AccR , Fe]−>[Fr , AccE ] ( with t h i s form LFT concatenat ion i s
s t r a i gh t f o rwa rd )

TITOP = TITOP( [ Ne+1 : Nr+Ne , 1 :Ne ] , [ Ne+1 : Ne+Nr , 1 :Ne ] ) ;

e l s e i f isempty ( ee )==1 % Appendage at the end o f the chain

Nr = length ( r r ) ;
n = length ( i i ) ;
dof = (n+Nr) /nodes ;

% Extract Matr ices :
Q = [ eye ( dof ) ; zeros ( nodes∗dof−2∗dof , dof ) ; eye ( dof ) ] ; % Load Matrix

Mii = M( i i , i i ) ; Mir = M( i i , r r ) ;
Mri = M( rr , i i ) ; Mrr = M( rr , r r ) ;

Ki i = K( i i , i i ) ; Kir = K( i i , r r ) ;
Kri = K( rr , i i ) ; Krr = K( rr , r r ) ;

C i i = C( i i , i i ) ; Cir = C( i i , r r ) ;
Cri = C( rr , i i ) ; Crr = C( rr , r r ) ;

% New Indexes ( Normalized )
r r = [ n+1 : n + Nr ] ;
i i = [ 1 : n ] ;

% Fixed−i n t e r f a c e normal modes :
[ phi_in ,D] = eig ( Kii , Mii ) ;
PHI_n = [ phi_in ; zeros (Nr , n) ] ;

% Rigid body modes :
PHI_r = [−inv ( Ki i ) ∗Kir ; eye (Nr) ] ;

% Component Modes Matrix
PHI = [PHI_n PHI_r ] ;

% Reshaping Matr ices :

K = [ Ki i Kir ; Kri Krr ] ; M = [ Mii Mir ; Mri Mrr ] ; C = [ C i i Cir ; Cri Crr ] ;

Knorm = PHI ’∗K∗PHI ;
Mnorm = PHI ’∗M∗PHI ;
Cnorm = PHI ’∗C∗PHI ;
Qnorm = PHI ’∗Q;
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%% Normalized Matr ices

Miinorm = Mnorm( i i , i i ) ; Mirnorm = Mnorm( i i , r r ) ;
Mrinorm = Mnorm( rr , i i ) ; Mrrnorm = Mnorm( rr , r r ) ;

Kiinorm = Knorm( i i , i i ) ; Kirnorm = Knorm( i i , r r ) ;
Krinorm = Knorm( rr , i i ) ; Krrnorm = Knorm( rr , r r ) ;

Ciinorm = Cnorm( i i , i i ) ; Cirnorm = Cnorm( i i , r r ) ;
Crinorm = Cnorm( rr , i i ) ; Crrnorm = Cnorm( rr , r r ) ;

% Build Matrix Blocks
MIE = Miinorm ;
KIE = Kiinorm ;
CIE = Ciinorm ;
QIE = −Mirnorm ;

%% Build State Space Representat ion :
AA = [ zeros (n) eye (n) ;

−inv (MIE) ∗KIE −inv (MIE) ∗CIE ] ;
BB = [ zeros (n , Nr) ;

inv (MIE) ∗QIE ] ;

CC_fr = −1∗[Mrinorm ]∗ [−inv (MIE) ∗KIE −inv (MIE) ∗CIE ] ;
DD_fr = −1∗[ Mrrnorm ] − [ Mrinorm ] ∗ [ inv (MIE) ∗QIE ] ;

CC = CC_fr ;
DD = DD_fr ;

% Writt ing outputs / inputs :
i f dof == 6

name = s t r c a t ( appendageData . name , ’_ ’ ) ;
inputs = [ s t r c a t (name , ’ {Ar_x} ’ ) ; s t r c a t (name , ’ {Ar_y} ’ ) ; s t r c a t (name , ’ {

Ar_z} ’ ) ; s t r c a t (name , ’ {Gr_x} ’ ) ; s t r c a t (name , ’ {Gr_y} ’ ) ; s t r c a t (name , ’
{Gr_z} ’ ) ] ;

outputs = [ s t r c a t (name , ’ {Fr_x} ’ ) ; s t r c a t (name , ’ {Fr_y} ’ ) ; s t r c a t (name , ’ {
Fr_z} ’ ) ; s t r c a t (name , ’ {Mr_x} ’ ) ; s t r c a t (name , ’ {Mr_y} ’ ) ; s t r c a t (name , ’
{Mr_z} ’ ) ] ;

e l s e i f dof == 3

name = s t r c a t ( appendageData . name , ’_ ’ ) ;
inputs = [ s t r c a t (name , ’ {Ar_x} ’ ) ; s t r c a t (name , ’ {Ar_y} ’ ) ; s t r c a t (name , ’ {

Gr_z} ’ ) ] ;
outputs = [ s t r c a t (name , ’ {Fr_x} ’ ) ; s t r c a t (name , ’ {Fr_y} ’ ) ; s t r c a t (name , ’ {

Mr_z} ’ ) ] ;

e l s e i f dof == 2

name = s t r c a t ( appendageData . name , ’_ ’ ) ;
inputs = [ s t r c a t (name , ’ {Ar_y} ’ ) ; s t r c a t (name , ’ {Gr_z} ’ ) ] ;
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outputs = [ s t r c a t (name , ’ {Fr_y} ’ ) ; s t r c a t (name , ’ {Mr_z} ’ ) ] ;

else
error ( ’ Please , i n s e r t a model with 2−3 d . o . f per node (2D case ) or 6 d .

o . f per node (3D case ) ’ )
end

i f Nr == dof ;
TITOP = ss (AA,BB,CC,DD, ’ inputname ’ , inputs , ’ outputname ’ , outputs ) ;
else

disp ( ’Warning : The number o f r i g i d dof does not correspond to the node
dof ’ )

TITOP = ss (AA,BB,CC,DD) ;
end

else
error ( ’No mathing ca s e s have been found : enchained appendage or f i n a l

appendage ’ )

end
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E.1 Complementary Figures from Chapter 6

The following figures correspond to results shown in Chap. 6, mainly to the parameter varying
section.
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Figure E.1: Transfer Functions at point P for small variations on the beam’s length
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Figure E.2: Transfer Functions at point P for large variations on the beam’s length
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Figure E.3: Transfer Functions at point C for small variations on the beam’s length inside the
chain of beams
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Figure E.4: Transfer Functions at point C for large variations on the beam’s length inside the
chain of beams
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E.2 Complementary Figures from Chapter 7

When testing the collocated/noncollocated systems in Chap. 7, the following figures were not
included due to their redundancy:
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Figure E.5: SOF controller applied to the flexible pointing system with heavy flexible appendage
(m2 = 1.2 kg)
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Figure E.6: SOF controller with complex zero applied to the flexible pointing system with heavy
flexible appendage (m2 = 1.2 kg)



Bibliography

[Adriaens 00] Han Adriaens, Willem L De Koning & Reinder Banning. Modeling Piezo-
electric Actuators. IEEE/ASME Transactions on Mechatronics, vol. 5, no. 4,
pages 331–341, 2000. 17

[Alazard 08] Daniel Alazard, Christelle Cumer & K. Tantawi. Linear Dynamic Modeling
of Spacecraft with Various Flexible Appendages and On-Board Angular Mo-
mentums. In 7th ESA Guidance, Navigation and Control Conference, Tralee
(Ireland), June 2008. 15, 16, 23, 26, 27, 48, 54, 55, 60, 75, 165

[Alazard 13a] Daniel Alazard, Thomas Loquen, Henry De Plinval & Christelle Cumer.
Avionics/Control Co-Design for Large Flexible Space Structures. In AIAA
Guidance, Navigation, and Control (GNC) Conference, Boston, Mas-
sachusetts, USA, August 2013. 8, 22, 23, 125, 167, 174

[Alazard 13b] Daniel Alazard, Thomas Loquen, Henry De Plinval, Christelle Cumer,
C. Toglia & P. Pavia. Optimal Co-Design for Earth Observation Satel-
lites with Flexible Appendages. In AIAA Guidance, Navigation, and Control
(GNC) Conference, 2013. 8, 9, 22

[Alazard 15] Daniel Alazard, Jose Alvaro Perez, Thomas Loquen & Christelle Cumer.
Two-Input Two-Output Port Model for Mechanical Systems. In AIAA Science
and Technology Forum and Exposition, Kissimmee , Florida, January 2015.
9, 39, 59, 63, 175

[Balas 05] Gary Balas, Richard Chiang, Andy Packard & Michael Safonov. Robust
Control Toolbox. For Use with Matlab. User’s Guide, vol. 3, 2005. 74

[Banerjee 97] A.K. Banerjee & S. Nagarajan. Efficient Simulation of Large Overall Motion
of Beams undergoing Large Deflection. Multibody System Dynamics, vol. 1,
no. 1, pages 113–126, 1997. 17

[Belcastro 99] Christine M. Belcastro, Kyong B. Lim & Eugene A. Morelli. Computer-Aided
Uncertainty Modeling of Nonlinear Parameter-Dependent Systems. II. F-I6

221



222 Bibliography

example. In Computer Aided Control System Design, 1999. Proceedings of
the 1999 IEEE International Symposium on, pages 16–23. IEEE, 1999. 74

[Benhabib 81] R.J. Benhabib, R.P. Iwens & R.L. Jackson. Stability of Large Space Structure
Control Systems Using Positivity Concepts. J. of Guidance and Control,
vol. 4, no. 5, sept-oct 1981. 20, 118

[Bennani 11] Samir Bennani, Finn Ankersen, Marco Arcioni, Massimo Casasco, Luca
Massotti & Pierluigi Silvestrin. Robust Attitude Control Design for the
BIOMASS satellite (Earth explorer core mission candidate). In 18th IFAC
World Congress, 2011. 19

[Bokhari 08] Syed Fawad Raza Ali Bokhari, Saulat Shuja Chughtai & Herbert Werner. A
Tool for Converting FEM Models into Representations Suitable for Control
Synthesis. In 17th IFAC World Congress, volume 17, pages 6066–6071, 2008.
14

[Boley 60] Bruno A Boley & Jerome H Weiner. Theory of thermal stresses. Wiley, 1960.
203

[Boscariol 10] Paolo Boscariol, Alessandro Gasparetto & Vanni Zanotto. Active Position
and Vibration Control of a Flexible Links Mechanism using Model-Based Pre-
dictive Control. ASME Journal of Dynamic Systems, Measurement, and Con-
trol, vol. 132, no. 1, page 014506, 2010. 12, 14

[Boyd 94] Stephen P. Boyd, Laurent El Ghaoui, Eric Feron & Venkataramanan Balakr-
ishnan. Linear Matrix Inequalities in System and Control Theory, volume 15.
SIAM, 1994. 22

[Burke 06] J.V. Burke, D. Henrion, A.S. Lewis & M.L. Overton. HIFOO A Matlab
Package for Fixed-Order Controller Design and H∞ Optimization. In 5th
IFAC Symposium on Robust Control Design, 2006. 19, 22, 33, 124

[Butler 03] S.L. Butler & A.K. Dhingra. Integrated Structure and Control Design of
Actively Controlled Structures using Substructure Decomposition. Journal of
Engineering Optimization, vol. 35, no. 4, pages 325–340, 2003. 20

[Chatlat. 09] Withit Chatlat. & Peter H. Meckl. Model-Independent Control of a Flexible-
Joint Robot Manipulator. ASME Journal of Dynamic Systems, Measurement,
and Control, vol. 131, no. 4, page 041003, 2009. 12, 14

[Choura 91] Slim Choura, Suhada Jayasuriya & Matthew A Medick. On the Modeling,
and Open-Loop Control of a Rotating Thin Flexible Beam. ASME Journal of
Dynamic Systems, Measurement, and Control, vol. 113, no. 1, pages 26–33,
1991. 14

[CNES 10a] CNES. Patent B0808-FR: Mât déployable à ossature repliée déployable se
verrouillant par construction à l’état déployé. Mât déployable gonflable., 2010.
144



Bibliography 223

[CNES 10b] CNES. Patent B0825-FR: Mât déployable à ossature repliée spontanément
déployable et rigide a l’état déployé.Mât déployable précontraint, 2010. 144

[Craig Jr 00] Roy R. Craig Jr. A Brief Tutorial on Substructure Analysis and Testing.
In Proceedings of the International Modal Analysis Conference-IMAC, vol-
ume 1, pages 899–908, 2000. 15, 51, 56

[Craig 68] R. Craig & M. Bampton. Coupling of Substructures for Dynamic Analysis.
AIAA Journal, vol. 6, no. 7, 1968. 15, 48, 52

[Cumer 01] Christelle Cumer & J.P. Chretien. Minimal LFT Form of a Spacecraft Built
Up from Two Bodies. In AIAA Guidance, Navigation and Control Confer-
ence., Montreal, Canada, 2001. 16, 23, 165

[Damaren 00] C.J. Damaren. Passivity and Noncollocation in the Control of Flexible Multi-
body Systems. J. of Dynamic Systems, Measurement and Control, vol. 122,
pages 11–17, March 2000. 20

[Dang 05] X. Dang & Y. Tan. An Inner Product Based Dynamic Neural Network Hys-
teresis Model for Piezoceramic Actuators. Sensors and Actuators A: Physical,
vol. 121, no. 2, pages 535–542, 2005. 18

[Dhingra 94] A.K. Dhingra & B.H. Lee. Optimal Placement of Actuators in Actively Con-
trolled Structures. J. of Engineering Optimization, vol. 23, pages 99–118,
1994. 15

[Dignath 00] F. Dignath & W. Schiehlen. Control of the Vibrations of a Tethered Satellite
System. Journal of Applied Mathematics and Mechanics, vol. 64, no. 5, pages
715–722, 2000. 17

[Dokainish 72] M.A. Dokainish. A New Approach for Plate Vibrations: Combination of
Transfer Matrix and Finite Element Technique. Transactions of the American
Society of Mechanical Engineers, Journal of Engineering for Industry, vol. 94,
pages 526–530, 1972. 16

[Doyle 81] John C Doyle & Gunter Stein. Multivariable feedback design: Concepts for a
classical/modern synthesis. In IEEE Trans. on Auto. Control. Citeseer, 1981.
31

[Doyle 89] John C Doyle, Keith Glover, Pramod P Khargonekar & Bruce A Francis.
State-space solutions to standard H2 and H∞ control problems. IEEE Trans-
actions on Automatic control, vol. 34, no. 8, pages 831–847, 1989. 31

[Elgohary 15] Tarek A. Elgohary, James D. Turner & John L. Junkins. Analytic Transfer
Functions for the Dynamics & Control of Flexible Rotating Spacecraft Per-
forming Large Angle Maneuvers. The Journal of the Astronautical Sciences,
vol. 62, no. 2, pages 168–195, 2015. 94, 95



224 Bibliography

[Ersal 08] T. Ersal, H.K. Fathy, D.G. Rideout, L.S. Louca & J.L. Stein. A Review of
Proper Modeling Techniques. ASME Journal of Dynamic Systems, Measure-
ment, and Control, vol. 130, no. 6, page 061008, 2008. 15

[Falcoz 15] Alexandre Falcoz, Christelle Pittet, Samir Bennani, Anne Guignard, Cedric
Bayart & Benoit Frapard. Systematic Design Methods of Robust and Struc-
tured Controllers for Satellites. CEAS Space Journal, vol. 7, no. 3, pages
319–334, 2015. 19

[Fanson 90] J.L. Fanson & T.K. Caughey. Positive Position Feedback Control for Large
Space Structures. AIAA Journal, vol. 28, no. 4, pages 717–724, 1990. 20

[Ferreres 99] Gilles Ferreres. A practical approach to robustness analysis with aeronautical
applications. Springer Science & Business Media, 1999. 74

[Fezans 08] Nicolas Fezans, Daniel Alazard, N. Imbert & B. Carpentier. H∞ Control De-
sign for Generalized Second Order Systems based on Acceleration Sensivity
Function. In 16th IEEE Mediterranean Conference on Control and Automa-
tion, 2008. 127

[Gahinet 11] P. Gahinet & Pierre Apkarian. Structured H∞ Synthesis using MATLAB. In
18th IFAC World Congress, Milano, Italy, August 2011. 19, 22, 33, 74, 124

[Goldfarb 97] Michael Goldfarb & Nikola Celanovic. Modeling Piezoelectric Stack Actuators
for Control of Micromanipulation. Control Systems, IEEE, vol. 17, no. 3,
pages 69–79, 1997. 17

[Guy 12] Nicolas Guy, Daniel Alazard, Christelle Cumer & C. Carbonnel. Reduced
Order H∞ Controller Synthesis for Flexible Structures Control. In 7th IFAC
Symposium on Robust Control Design, Aalborg, Denmark, June 2012. 19,
129

[Guy 14] Nicolas Guy, Daniel Alazard, Christelle Cumer & C. Charbonnel. Dy-
namic Modeling and Analysis of Spacecraft With Variable Tilt of Flexible
Appendages. J. of Dynamic Systems, Measurement and Control, vol. 136,
2014. 12, 16, 23, 55, 71, 165

[Hale 85] A.L. Hale, R. J. Lisowski & W.E. Dahl. Optimal Simultaneous Structural and
Control Design of Maneuvering Flexible Spacecraft. J. of Guidance, vol. 8,
no. 1, 1985. 21

[Hamelin 01] Jennifer L. Hamelin, Mark C. Jackson, Christopher B. Kirchwey &
Roberto A. Pileggi. STS-99 Shuttle Radar Topography Mission Stability and
Control. Quebec City; Canada, 30 Jul. - 2 Aug. 2001 2001. AAS/AIAA
Conference. 19

[Hintz 75] Robert Morris Hintz. Analytical Methods in Component Modal Synthesis.
AIAA Journal, vol. 13, no. 8, pages 1007–1016, 1975. 15



Bibliography 225

[Hiramoto 06] K. Hiramoto & K.M. Grigoriadis. Integrated Design of Structural and Control
Systems with a Homotopy Like Iterative Method. International Journal of
Control, vol. 79, no. 9, page 1062–1073, September 2006. 22

[Hiramoto 09] K. Hiramoto, J. Mohammadpour & K.M. Grigoriadis. Integrated Design of
System Parameters, Control and Sensor Actuator Placement for Symmetric
Mechanical Systems. In 48th IEEE Conference on Decision and Control,
Shanghai, China, December 2009. 22, 167

[Housner 84] Jerrold M. Housner. Convected Transient Analysis for Large Space Structures
Maneuver and Deployment. In Proceedings of 25th Structures, Structural
Dynamics and Materials Conference, numéro No 84-1023, pages 616–629,
1984. AIAA Paper. 17

[Housner 88] Jerrold M. Housner, S.C. Wu & C.W. Chang. A Finite Element Method
for Time Varying Geometry in Multibody Structures. In Proceedings of 29th
Structures, Structural Dynamics and Materials Conference, numéro 88-2234,
1988. AIAA Paper. 17

[Hughes 74] Peter C. Hughes. Dynamics of Flexible Space Vehicles with Active Attitude
Control. Celestial Mechanics, vol. 9, no. 1, pages 21–39, March 1974. 14

[Hurty 65] Walter C. Hurty. Dynamic Analysis of Structural Systems Using Component
Modes. AIAA Journal, vol. 3, no. 4, pages 678–685, 1965. 15, 30, 48, 49, 51,
52

[IEEE 88] Institute of Electrical IEEE & Electronics Engineers. IEEE Standard on
Piezoelectricity. ANSI/IEEE Std 176-1987, 1988. 66

[Imbert 79] J.F. Imbert. Analyse des Structures par Elements Finis. ENSTA. CEPAD,
cepaudes edition, 1979. 15, 48, 54, 72, 200

[Johnston 98] John D Johnston & Earl A Thornton. Thermally Induced Attitude Dynamics
of a Spacecraft with a Flexible Appendage. Journal of Guidance, Control, and
Dynamics, vol. 21, no. 4, pages 581–587, 1998. 150, 155, 203, 204

[Junkins 93] J. L. Junkins & Y. Kim. Introduction to Dynamics and Control of Flexible
Structures. AIAA, 1993. 90, 94, 98, 166, 167, 182

[Kajiwara 99] Itsuro Kajiwara & Akio Nagamatsu. Integrated Design of Structure and Con-
trol System considering Performance and Stability. In Proceedings of the 1999
International Conference on Control Applications, Hawai, USA, August 1999.
22

[Kane 80] Thomas R. Kane & David A. Levinson. Formulation of Equations of Motion
for Complex Spacecraft. Journal of Guidance, Control, and Dynamics, vol. 3,
no. 2, pages 99–112, 1980. 13



226 Bibliography

[Kane 81] Thomas R. Kane & David A. Levinson. Simulation of Large Motions of
Nonuniform Beams in Orbit. Part I - The Cantilever Beam, Part II: The
Unrestrained Beam. J. Astronaut. Sci., vol. 29, no. 3, pages 213–276, 1981.
13

[Khot 88] N.S. Khot. Structure/Control Optimization to Improve the Dynamic Re-
sponse of Space Structures. Computational Mechanics, vol. 3, pages 179–186,
1988. 21

[Kraker 93] B. Kraker. Generalization of the Craig-Bampton CMS Procedure for General
Damping. Technical report, Technische Universiteit Eindhoven, Eindhoven,
1993. 30

[Krauss 10] R.W. Krauss & W. J. Book. Transfer Matrix Modelling of Systems with
Noncollocated Feedback. J. of Dynamic Systems, Measurement and Control,
vol. 132, 2010. 16, 20

[Leamy 01] Michael J. Leamy, Ahmed K. Noor & Tamer M. Wasfy. Dynamic Simulation
of a Tethered Satellite System using Finite Elements and Fuzzy Sets. Com-
puter Methods in Applied Mechanics and Engineering, vol. 190, no. 37, pages
4847–4870, 2001. 17

[Leckie 60] F. Leckie & E. Pestel. Transfer Matrix Fundamentals. International Journal
of Mechanical Sciences, vol. 2, pages 137–167, 1960. 16, 41

[Likins 67] Peter W. Likins. Modal Method for Analysis of Free Rotations of Spacecraft.
AIAA Journal, vol. 5, no. 7, pages 1304–1308, 1967. 14

[Likins 69] Peter W. Likins. Dynamics and Control of Flexible Space Vehicles. Technical
Report 32-1329, California Institute of Technology, Pasadena, California,
1969. 13

[Likins 73] Peter W. Likins, J. Barbera & Victor Baddeley. Mathematical Modeling of
Spinning Elastic Bodies for Modal Analysis. AIAA journal, vol. 11, no. 9,
pages 1251–1258, 1973. 14

[Loquen 12] Thomas Loquen, Henry De Plinval, Christelle Cumer & Daniel Alazard. Atti-
tude Control of Satellite with Flexible Appendages: Structured H∞ Approach.
In AIAA Guidance, Navigation, and Control (GNC) Conference, Mineapolis
(Minesota), August 2012. 19, 125

[Luca 91] Alessandro De Luca & Bruno Siciliano. Closed-Form Dynamic Model of
Planar Multilink Lightweight Robots. IEEE Transactions on Systems, Man
and Cybernetics, vol. 21, no. 4, pages 826–839, 1991. 99, 101, 166, 182

[MacNeal 71] Richard H. MacNeal. A Hybrid Method of Component Mode Synthesis. Com-
puters & Structures, vol. 1, no. 4, pages 581–601, 1971. 15



Bibliography 227

[Maghami 96] Peiman G. Maghami, Sandeep Gupta, Kenny B. Elliot & Suresh M. Joshi.
Integrated Controls-Structures Design Methodology: Redesign of an Evolu-
tionary Structure. Journal of Guidance, Control and Dynamics, vol. 19, no. 2,
March-April 1996. 21

[Masoudi 11] Ramin Masoudi & Mojtaba Mahzoon. Maneuvering and Vibrations Con-
trol of a Free-Floating Space Robot with Flexible Arms. ASME Journal of
Dynamic Systems, Measurement, and Control, vol. 133, no. 5, page 051001,
2011. 12, 14

[McDaniel 77] T. J. McDaniel & K.B. Eversole. A combined Finite Element - Transfer
Matrix Structural Analysis Method. Journal of Sound and Vibration, vol. 51,
no. 2, pages 157–169, 1977. 16

[McLaren 87] M.D. McLaren & G.L. Slater. Robust Multivariable Control of Large Space
Structures Using Positivity. J. of Guidance, vol. 10, no. 4, July-August 1987.
20

[Meiyu 10] Cui Meiyu & Xu Shijie. Optimal Attitude Control of Flexible Spacecraft with
Minimum Vibration. In AIAA Guidance, Navigation and Control Conference,
AIAA-2010-8201. AIAA Toronto, 2010. 19

[Messac 92] Achille Messac & Kamal Malek. Control Structure Integrated Design. AIAA
Journal, vol. 30, no. 8, pages 2124–2131, August 1992. 8, 21, 166, 167, 168,
173

[Mucino 81] V. H. Mucino & V. Pavelic. An Exact Condensation Procedure for Chain-
Like Structures Using a Finite Element - Transfer Matrix Approach. Journal
of Mechanical Design, vol. 103, pages 295–303, 1981. 41

[Murali 15] H. Murali, D. Alazard, L. Massotti, F. Ankersen & C. Toglia. Mechanical-
Attitude Controller Co-design of Large Flexible Space Structures. In EURO
Guidance, Navigation and Control Conference, Toulouse, France, 2015. 71,
73, 96, 195, 196

[Ohga 83] M. Ohga, T. Shigematsu & T. Hara. Structural Analysis by a combined Finite
Element - Transfer Matrix Method. Computers & Structures, vol. 17, no. 3,
pages 321–326, 1983. 16

[Oliver 97] R.I. Oliver & S.F. Asokanthan. Control/Structure Integrated Design for Flex-
ible Spacecraft Undergoing On-Orbit Maneuvers. J. of Guidance, Control and
Dynamics, vol. 20, no. 2, 1997. 21

[Onoda 87] J. Onoda & Raphael T. Haftka. An Approach to Structure/Control Simul-
taneous Optimization for Large Flexible Spacecraft. AIAA, vol. 25, pages
1133–1138, 1987. 21, 166, 167

[Ou 96] J.-S. Ou & N. Kikuchi. Integrated Optimal Structural and Vibration Control
Design. Structural Optimization, vol. 12, pages 209–216, 1996. 21, 167



228 Bibliography

[Park 02] Sang-Young Park. Thermally Induced Attitude Disturbance Control for Space-
craft with a Flexible Boom. Journal of Spacecraft and Rockets, vol. 39, no. 2,
pages 325–328, 2002. 19

[Pascal 88] Madeleine Pascal. Dynamics analysis of a system of hinge-connected flexible
bodies. Celestial mechanics, vol. 41, no. 1-4, pages 253–274, 1987/1988. 14

[Perez 15a] Jose Alvaro Perez, Daniel Alazard, Thomas Loquen, Christelle Cumer &
Christelle Pittet. Linear Dynamic Modeling of Spacecraft with Open-Chain
Assembly of Flexible Bodies for ACS/Structure Co-Design. In Advances in
Aerospace Guidance, Navigation and Control, pages 639–658. Springer, 2015.
9, 10, 56

[Perez 15b] Jose Alvaro Perez, Christelle Pittet, Daniel Alazard, Thomas Loquen &
Christelle Cumer. A Flexible Appendage Model for Use in Integrated Con-
trol/Structure Spacecraft Design. In IFAC Workshop on Advanced Control
and Navigation for Autonomous Aerospace Vehicles, Seville, Spain, 2015. 9,
10, 168

[Perez 16a] Jose Alvaro Perez, Daniel Alazard, Thomas Loquen & Christelle Pittet. Lin-
ear Modeling of a Flexible Substructure Actuated through Piezoelectric Com-
ponents for Use in Integrated Control/Structure Design. In 20th IFAC Sym-
posium on Automatic Control in Aerospace, 2016. 9, 10, 168

[Perez 16b] Jose Alvaro Perez, Daniel Alazard, Thomas Loquen, Christelle Pittet &
Christelle Cumer. Flexible Multibody System Linear Modeling for Control us-
ing Component Modes Synthesis and Double-Port Approach. ASME Journal
of Dynamic Systems, Measurement and Control, vol. 138, no. 12, December
2016. 9, 10, 166

[Perez 16c] Jose Alvaro Perez, Christelle Pittet, Daniel Alazard & Thomas Loquen. Inte-
grated Control/ Structure Design of a Large Space Structure using Structured
H∞ Control. In 20th IFAC Symposium on Automatic Control in Aerospace,
2016. 10, 168

[Piefort 01] V. Piefort & André Preumont. Modeling of Smart Piezoelectric Shell Struc-
tures with Finite Elements. In Proceedings of the International Seminar on
Modal Analysis, volume 2, pages 869–876. KU Leuven; 1998, 2001. 17, 66

[Preumont 02] André Preumont, Arnaud François, Frédéric Bossens & A. Abu-Hanieh. Force
Feedback versus Acceleration Feedback in Active Vibration Isolation. Journal
of Sound and Vibration, vol. 257, no. 4, pages 605–613, 2002. 20

[Preumont 11] André Preumont. Vibration Control of Active Structures: An Introduction,
volume 179. Springer Science & Business Media, 2011. 20, 46, 113, 119

[Rong 11] B. Rong, X. Rui & G. Wang. Modified Finite Element - Transfer Matrix
Method for Eigenvalue Problem of Flexible Structures. Journal of Applied
Mechanics, vol. 78, 2011. 14, 16



Bibliography 229

[Rui 08] X. Rui, G. Wang, Y. Lu & L. Yun. Transfer Matrix Method for Linear
Multibody System. Multibody System Dynamics, vol. 19, pages 179–207,
2008. 16

[Ruth 10] Mike Ruth, Ken Lebsock & Cornelius Dennehy. What’s New is What’s Old:
Use of Bode’s Integral Theorem (circa 1945) to Provide Insight for 21st Cen-
tury Spacecraft Attitude Control System Design Tuning. In AIAA Guidance,
Navigation, and Control Conference, August 2010. 6

[Safonov 91] M.G. Safonov, R.Y. Chiang & H. Flashner. H∞ Robust Control Synthesis
for a Large Space Structure. J. of Guidance, vol. 14, no. 3, May-June 1991.
20

[Sankar 80] S. Sankar & S. V. Hoa. An extended Transfer Matrix - Finite Element Method
for Free Vibration of Plates. Journal of Sound and Vibration, vol. 70, no. 2,
pages 205–211, 1980. 16

[Savant 99] S.V. Savant & H.H. Asada. Integrated Structure/Control Design Based on
Model Validity and Robustness Margin. In Proceedings of the American
Control Conference, San Diego, California, June 1999. 22

[Schaft 06] Arjan Schaft. Port-Hamiltonian systems: an introductory survey. In Pro-
ceedings of the International Congress of Mathematicians, pages 1339–1365,
2006. 41

[Scherer 97] Carsten Scherer, Pascal Gahinet & Mahmoud Chilali. Multiobjective Output-
Feedback Control via LMI Optimization. Automatic Control, IEEE Transac-
tions on, vol. 42, no. 7, pages 896–911, 1997. 22

[Schoen 09] Marco P. Schoen, Randy C. Hoover, Sinchai Chinvorarat & Gerhard M.
Schoen. System Identification and Robust Controller Design using Genetic
Algorithms for Flexible Space Structures. ASME Journal of Dynamic Sys-
tems, Measurement, and Control, vol. 131, no. 3, page 031003, 2009. 12

[Shabana 97] Ahmed A. Shabana. Flexible Multibody Dynamics: Review of Past and Recent
Developments. Multibody System Dynamics, vol. 1, pages 189–222, March
1997. 13, 39, 41

[Siljak 11] Dragoslav D Siljak. Decentralized control of complex systems, volume 138 of
Mathematics in Science and Engineering. Georgia Institute of Technology,
2011. 111

[Smith 94] R.S. Smith, C. Chu & J. L. Fanson. The Design of H∞ Controllers for an
Experimental Non-Collocated Flexible Structure Problem. IEEE Transactions
on control systems technology, vol. 2, no. 2, June 1994. 20

[Smits 91] Jab G. Smits, Susan I. Dalke & Thomas K. Cooney. The Constituent Equa-
tions of Piezoelectric Bimporphs. Sensors and Actuators, vol. 28, pages 41–61,
1991. 18



230 Bibliography

[Su 95] T. Su, V. Babuska & R.R. Craig. Substructure-Based Controller Design
Method for Flexible Structures. J. of Guidance, Control and Dynamics,
vol. 18, no. 5, September-October 1995. 15, 20

[Sunar 92] M. Sunar & S.S. Rao. A Substructure-Decomposition Method for the Control
Design of Large Flexible Structures. AIAA Journal, vol. 30, no. 10, pages
2573–2575, 1992. 15, 41, 165, 167

[Tan 90] T.M. Tan, A. Yousuff, L.Y. Bahar & M. Konstantinidis. A modified Finite
Element - Transfer Matrix for control design of space structures. Computers
& Structures, vol. 36, no. 1, pages 47–55, 1990. 16

[Tsujioka 96] K. Tsujioka, I. Kajiwara & A. Nagamatsu. Integrated Optimum Design of
Structure and H-infinity Control System. AIAA Journal, vol. 34, no. 1, pages
159–165, January 1996. 22, 167

[Turner 80] James D. Turner & John L. Junkins. Optimal Large-Angle Single-Axis Ro-
tational Maneuvers of Flexible Spacecraft. Journal of Guidance, Control, and
Dynamics, vol. 3, no. 6, pages 578–585, 1980. 14

[Tutt 69] G.E. Tutt & W.S. Widnall. Effects of Structural Flexibility on Spacecraft
Control Systems. Technical Report N69-37030, National Aeronautics and
Space Administration, NASA, April 1969. 5

[Usoro 86] P.B. Usoro, R. Nadira & S.S. Mahil. A Finite Element/Lagrange Approach
to Modeling Lightweight Flexible Manipulators. ASME Journal of Dynamic
Systems, Measurement, and Control, vol. 108, no. 3, pages 198–205, 1986. 14

[Vu-Quoc 87] L. Vu-Quoc & Juan C. Simo. Dynamics of Earth-Orbiting Flexible Satellites
with Multibody Components. Journal of Guidance, Control, and Dynamics,
vol. 10, no. 6, pages 549–558, 1987. 17

[Wasfy 00] Tamer M. Wasfy & Ahmed K. Noor. Multibody Dynamic Simulation of the
Next Generation Space Telescope using Finite Elements and Fuzzy Sets. Com-
puter Methods in Applied Mechanics and Engineering, vol. 190, no. 5, pages
803–824, 2000. 17

[Wasfy 03] Tamer M. Wasfy & Ahmed K. Noor. Computational Strategies for Flexible
Multibody Systems. ASME Journal of Applied Mechanics, vol. 56, no. 6,
November 2003. 12, 13, 41

[Woerkhom 93] P. Th. L. Woerkhom. Synthesis and Survey of Control Laws for Large Flexible
Spacecraft. Control-Theory and Advanced Technology, vol. 9, no. 3, pages 639
– 669, 1993. 20

[Worak. 11] C. Worak. & A. Oonsivilai. Transfer Function of Piezoelectric Material.
World Academy of Science, Engineering and Technology, vol. 5, 2011. 17, 18



Bibliography 231

[Wu 92] Shih-Chin Wu, Che-Wei Chang & Jerrold M. Housner. Finite Element Ap-
proach for Transient Analysis of Multibody Systems. Journal of Guidance,
Control, and Dynamics, vol. 15, no. 4, pages 847–854, 1992. 17

[Young 90] K. D. Young. Distribute Finite - Element Modeling and Control Approach
for Large Flexible Structures. J. of Guidance, vol. 13, no. 4, pages 703–713,
July-August 1990. 15, 16, 20, 41, 165, 167

[Young 00] J.T. Young. Primer on Craig-Bampton CMS Procedure Method : An Intro-
duction to Boundary Node Functions, Base Shake Analyses, Load Transfor-
mation Matrices, Modal Synthesis and Much More. Technical report, NASA,
October 2000. 53

[Yousuff 86] A. Yousuff. Controller Design via Structural Modeling by FETM. Techni-
cal report, Drexel University, Dep. of Mechanics, Philadelphia, Pennsylvania
19104, 1986. 16

[Zheng 05] Jianhua Zheng, Stephen P. Banks & Hugo Alleyne. Optimal Attitude Control
for Three-Axis Stabilized Flexible Spacecraft. Acta astronautica, vol. 56, no. 5,
pages 519–528, 2005. 19

[Zhu 97] W.D. Zhu & C.D. Mote. Dynamic Modeling and Optimal Control of Rotating
Euler-Bernoulli Beams. ASME Journal of Dynamic Systems, Measurement,
and Control, vol. 119, no. 4, pages 802–808, 1997. 14





Résumé — Dans cette étude de thèse, le problème du co-design mécanique/contrôle d’attitude avec méth-
odes de la commande robuste structurée est considéré. Le problème est abordé en développant une technique
pour la modélisation de systèmes flexibles multi-corps, appelé modèle Two-Input Two-Output Port (TITOP).
En utilisant des modèles d’éléments finis comme données d’entrée, ce cadre général permet de déterminer, sous
certaines hypothèses, un modèle linéaire d’un système de corps flexibles enchaînés. De plus, cette modélisation
TITOP permet de considérer des variations paramétriques dans le système, une caractéristique nécessaire pour
réaliser des études de co-design contrôle/structure. La technique de modélisation TITOP est aussi étendue
pour la prise en compte des actionneurs piézoélectriques et des joints pivots qui peuvent apparaître dans les
sous-structures.

Différentes stratégies de contrôle des modes rigides et flexibles sont étudiées avec les modèles obtenus
afin de trouver la meilleure architecture de contrôle pour la réjection des perturbations basse fréquence et
l’amortissement des vibrations. En exploitant les propriétés d’outils de synthèse H∞ structurée, la mise en
œuvre d’un schéma de co-design est expliquée, en considérant les spécifications du système (bande passante
du système et amortissement des modes) sous forme de contraintes H∞. L’étude d’un tel co-design contrôle
d’attitude/mécanique d’un satellite flexible est illustré en utilisant toutes les techniques développées, optimisant
simultanément une loi de contrôle optimisée et certains paramètres structuraux.

Mots clés : H∞ structuré, systèmes flexibles multi-corps, co-design, contrôle d’attitude, contrôle de
vibrations, modélisation TITOP.

Abstract — In this PhD thesis, the integrated control/structure design of a large flexible spacecraft is
addressed using structured H∞ synthesis. The problem is endeavored by developing a modeling technique for
flexible multibody systems, called the Two Input Two Output Port (TITOP) model. This general framework
allows the assembly of a flexible multibody system in chain-like or star-like structure, using finite element
models as input data. Additionally, the TITOP modeling technique allows the consideration of parametric
variations inside the system, a necessary characteristic in order to perform integrated control/structure design.
In contrast to another widely used method, the assumed modes method, the TITOP modelling technique is
robust against changes in the boundary conditions which link the flexible bodies. Furthermore, the TITOP
modeling technique can be used as an accurate approximation even when kinematic nonlinearities can be
large. The TITOP modeling technique is extended to the modeling of piezoelectric actuators and sensors for
the control of flexible structures and revolute joints.

Different control strategies, either for controlling rigid body and flexible body motion, are tested with
the developed models for obtaining the best controller’s architecture in terms of perturbation rejection and
vibration damping. The implementation of the integrated control/structure design in the structured H∞
scheme is developed considering the different system’s specifications, such as system’s bandwidth or modes
damping, in the form of H∞ weighting functions. The integrated attitude control/structure design of a flexible
satellite is performed using all the developed techniques and the optimization of the control law and several
structural parameters is achieved.

Keywords: structured H∞, flexible multibody systems, integrated design, attitude control, vibration
control, TITOP modeling.
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