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Stabilité et stabilisation de systemes linéaires a commutation en
dimensions finie et infinie

Motivée par des travaux précédents sur la stabilisation de systémes a excitation persistante,
cette these s’intéresse a la stabilité et a la stabilisation de systémes linéaires a commutation
en dimensions finie et infinie. Aprés une introduction générale présentant les principales
motivations et les résultats importants de la littérature, on aborde quatre sujets.

On commence par I’étude d’un systeme linéaire en dimension finie a commutation aléa-
toire. Le temps passé en chaque sous-systeme i est choisi selon une loi de probabilité ne dé-
pendant que de i, les commutations entre sous-systemes étant déterminées par une chaine
de Markov discrete. On caractérise les exposants de Lyapunov en appliquant le Théoreme
ergodique multiplicatif d’Oseledets a un systéme associé en temps discret, et on donne une
expression pour l’exposant de Lyapunov maximal. Ces résultats sont appliqués a un sys-
teme de controle a commutation. Sous une hypothése de controlabilité, on montre que ce
systeme peut étre stabilisé presque surement avec taux de convergence arbitraire, ce qui est
en contraste avec les systemes déterministes a excitation persistante.

On considére ensuite un systéme de N équations de transport avec amortissement in-
terne a excitation persistante, couplées linéairement par le bord a travers une matrice M,
ce qui peut étre vu comme un systéme d’EDPs sur un réseau étoilé. On montre que, si
l'activité de I'amortissement intermittent est déterminée par des signaux a excitation per-
sistante, alors, sous des bonnes hypotheses sur M et sur la rationalité des rapports entre les
longueurs des arétes du réseau, ce systeme est exponentiellement stable, uniformément par
rapport aux signaux a excitation persistante. Ce résultat est montré grace a une formule ex-
plicite pour les solutions du systeme, qui permet de bien suivre les effets de I'amortissement
intermittent.

Le sujet suivant que 'on considére est le comportement asymptotique d’équations aux
différences non-autonomes. On obtient une formule explicite pour les solutions en termes
des conditions initiales et de certains coefficients matriciels dépendants du temps, qui gé-
néralise la formule obtenue pour le systeme de N équations de transport. Le comportement
asymptotique des solutions est caractérisé a travers les coefficients matriciels. Dans le cas
d’équations aux différences a commutation arbitraire, on obtient un résultat de stabilité qui
généralise le critere de Hale-Silkowski pour les systéemes autonomes. Grace a des trans-
formations classiques d’EDPs hyperboliques en équations aux différences, on applique ces
résultats au transport et a la propagation d’ondes sur des réseaux.

Finalement, la formule explicite précédente est généralisée a une équation aux diffé-
rences controlée, dont la controlabilité est alors analysée. La controlabilité relative est carac-
térisée a travers un critere algébrique sur les coefficients matriciels de la formule explicite,
ce qui généralise le critere de Kalman. On compare également la controlabilité relative pour
des retards différents en termes de leur structure de dépendance rationnelle, et on donne
une borne sur le temps minimal de controlabilité. Pour des systémes avec retards commen-
surables, on montre que la controlabilité exacte est équivalente a I'approchée et on donne
un critére qui les caractérise. On analyse également la controlabilité exacte et approchée de
systéemes en dimension 2 avec deux retards sans I’hypothése de commensurabilité.

Mots-clés. Systéemes a commutation, stabilité, stabilisation, excitation persistante, expo-
sants de Lyapunov, commutation aléatoire, équation de transport, équation des ondes, équa-
tions aux différences, controlabilité, réseaux.
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Stability and stabilization of linear switched systems in finite and
infinite dimensions

Motivated by previous work on the stabilization of persistently excited systems, this thesis
addresses stability and stabilization issues for linear switched systems in finite and infinite
dimensions. After a general introduction presenting the main motivations and important
results from the literature, we analyze four problems.

The first system we study is a linear finite-dimensional random switched system. The
time spend on each subsystem i is chosen according to a probability law depending only
on i, and the switches between subsystems are determined by a discrete Markov chain. We
characterize the Lyapunov exponents by applying Oseledets’ Multiplicative Ergodic The-
orem to an associated discrete-time system, and provide an expression for the maximal
Lyapunov exponent. These results are applied to a switched control system, showing that,
under a controllability hypothesis, almost sure stabilization can be achieved with arbitrarily
large decay rates, a situation in contrast to deterministic persistently excited systems.

We next consider a system of N transport equations with intermittent internal damping,
linearly coupled by their boundary conditions through a matrix M, which can be seen as a
system of PDEs on a star-shaped network. We prove that, if the activity of the intermittent
damping terms is determined by persistently exciting signals, then, under suitable hypothe-
ses on M and on the rationality of the ratios between the lengths of the network edges, such
system is exponentially stable, uniformly with respect to the persistently exciting signals.
The proof of this result is based on an explicit representation formula for the solutions of the
system, which allows one to efficiently track down the effects of the intermittent damping.

The following topic we address is the asymptotic behavior of non-autonomous differ-
ence equations. We obtain an explicit representation formula for their solutions in terms
of their initial conditions and some time-dependent matrix coefficients, which generalizes
the one for the system of N transport equations. The asymptotic behavior of solutions is
characterized in terms of the matrix coefficients. In the case of difference equations with
arbitrary switching, we obtain a stability result which generalizes Hale-Silkowski criterion
for autonomous systems. Using classical transformations of hyperbolic PDEs into difference
equations, we apply our results to transport and wave propagation on networks.

Finally, we generalize the previous representation formula to a controlled difference
equation, whose controllability is then analyzed. Relative controllability is characterized in
terms of an algebraic property on the matrix coefficients from the explicit formula, general-
izing Kalman criterion. We also compare the relative controllability for different delays in
terms of their rational dependence structure, and provide a bound on the minimal control-
lability time. Exact and approximate controllability for systems with commensurable delays
are characterized and proved to be equivalent. We also describe exact and approximate con-
trollability for two-dimensional systems with two delays not necessarily commensurable.

Keywords. Switched systems, stability, stabilization, persistent excitation, Lyapunov expo-
nents, random switching, transport equation, wave equation, difference equations, control-
lability, networks.

2010 Mathematics Subject Classification. 93C30, 93D05, 93D15, 39A30, 35B35, 35R02,
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Estabilidade e estabilizacao de sistemas chaveados lineares em
dimensoes finita e infinita

Esta tese, motivada por trabalhos anteriores sobre a estabilizacao de sistemas a excitagao
persistente, se interessa a estabilidade e a estabilizagdo de sistemas lineares chaveados em
dimensoes finita e infinita. Apds uma introducao geral apresentando as principais motiva-
¢oes e os resultados importantes da literatura, quatro problemas sao analisados.

O primeiro sistema estudado é um sistema chaveado aleatorio linear em dimensao finita.
O tempo passado em cada sub-sistema i é escolhido segundo uma lei de probabilidade de-
pendente apenas de 7, e as comutagoes entre os sub-sistemas provéem de uma cadeia de Mar-
kov discreta. Os expoentes de Lyapunov do sistema sao caracterizados através da aplicagao
do Teorema Ergoddico Multiplicativo de Oseledets a um sistema a tempo discreto associado,
obtendo-se igualmente uma expressao para o expoente de Lyapunov maximo. Os resulta-
dos sao aplicados a um sistema de controle chaveado, mostrando que, sob uma hipoétese
de controlabilidade, pode-se efetuar estabilizacao quase certa com taxas de convergéncia
arbitrarias, uma situacao em contraste com sistemas a excitacao persistente deterministas.

Em seguida, considera-se um sistema de N equagoes de transporte com amortecimento
interno intermitente, acopladas linearmente pela fronteira através de uma matriz M. Este
sistema pode ser visto como um sistema de EDPs numa rede estrelada. Mostra-se que, se a
atividade dos termos de amortecimento intermitentes for determinada por sinais a excita-
cao persistente, entao, sob hipoteses adequadas sobre M e sobre a racionalidade das razoes
entre os comprimentos das arestas da rede, o sistema é exponencialmente estavel, unifor-
memente em relagdo aos sinais a excitagao persistente. A demonstracao deste resultado se
baseia numa féormula de representacgao explicita das solugoes do sistema, permitindo anali-
sar claramente os efeitos do amortecimento intermitente.

O topico seguinte a ser considerado é o comportamento assint6tico de equagoes a dife-
rencas nao-autonomas. Obtém-se uma férmula explicita para suas solu¢des em funcao das
condigOes iniciais e de coeficientes matriciais dependentes do tempo, generalizando assim
a féormula explicita obtida para o sistema de N equacOes de transporte. O comportamento
assintotico das solugoes é caracterizado através dos coeficientes matriciais. No caso de equa-
¢Oes a diferengas com chaveamento arbitrario, obtém-se um resultado de estabilizacao que
generaliza o critério de Hale-Silkowski para sistemas autonomos. Transformagoes classi-
cas de EDPs hiperbolicas em equagoes a diferengas sao usadas para se aplicar os resultados
obtidos a equagdes de transporte e a propagacao de ondas em redes.

Finalmente, a férmula explicita anterior é generalizada a uma equacao a diferencas con-
trolada, cuja controlabilidade é entao analisada. A controlabilidade relativa é caracterizada
através de uma propriedade algébrica dos coeficientes matriciais da formula explicita, o que
generaliza o critério de Kalman. Compara-se também a controlabilidade relativa para atra-
sos diferentes em termos de suas estruturas de dependéncia racional, e obtém-se um limite
superior ao tempo minimo de controlabilidade. Para sistemas com atrasos comensuraveis,
mostra-se que a controlabilidade exata e a aproximada sao equivalente, fornecendo um cri-
tério para ambas. Também se descreve a controlabilidade exata e a aproximada de sistemas
bidimensionais com dois atrasos nao necessariamente comensuraveis.

Palavras-chave. Sistemas chaveados, estabilidade, estabilizacao, excitagao persistente, ex-
poentes de Lyapunov, chaveamento aleatdério, equagao de transporte, equacao de onda,
equagoes de diferencas, controlabilidade, redes.
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Notations

Xmins Xmax

Lx], Tx]

XA
log x

Rez, Imz
Md,m(K)

Mg4(K)
GLy(K)
1d,

Od,m

diag(ay,...,a,)

Sets of non-negative and positive integers, respectively.

[0,+00) and (0, +o0), respectively.

[a,b]NZ, where a,b e Rand [a,b] =0 if a>b.

[1,N], where N € IN*.

Closure of the subset F of a topological space.

Complex conjugate of z € C.

{x+y|lyeF}forxeRand F CR.

Cardinality of the set F.

Kronecker symbol of i, j.

max(+x,0) if x € R, extended componentwise to vectors x € R?.
Smallest and largest components of the vector x € RY, respectively.

Floor and ceiling functions, denoting the unique integers satisfying x—1 <
[x]<xand x <[x]<x+1forxelR.

x—|¥y]y for x € R and y > 0. Written simply as {x} when y = 1 and there
is no possibility of confusion with the set contaning only the point x.

n! .
—  forn,meIN with m < n.
ml(n—m)!

Characteristic function of the set A.
Natural logarithm of x € R}.
Real and imaginary parts of z € C, respectively.

Set of d x m matrices with coefficients in K C C. The set Mj ; (IR) is canon-
ically identified with IR, and similarly for M ;(C).

Mg,a(K).
General linear group in K for K € {RR, C}.
Identity matrix in M;(RR) or My (C).

Zero matrix in My ,,(R) or M ,,(C), denoted simply by 0 when d and m
are clear from the context.

Diagonal matrix in M;(C) whose diagonal elements are ay,...,a; € C, or
block-diagonal matrix in M,,; ,,,4(C) with blocks ay,...,a; € M,,(C) along
the main diagonal.



Notations

AT, A*
C(A, B)

p(A)
detA
TrA
RanA
KerA
rk A

C(X,Y)
or C%(X,Y)

ek(1,X)

ek(1,x)
ek(r), ek

Transpose and Hermitian transpose of the matrix A € My ,,(C), respec-
tively.

Controllability matrix of the pair (A, B) € My (K)x My ,,(K) for K € {R, C},
givenby €(A,B)=(B AB A’B A%1B) € My g(K).

Spectral radius of the matrix A € M,(C).

Determinant of the matrix A € M;(C).

Trace of the matrix A € M;(C).

Range of the matrix A € My ,,(IK), seen as a K vector space, for K € {R, C}.
Kernel of the matrix A € M ,,(K), seen as a K vector space, for K € {R, C}.
Dimension of Ran A.

Canonical basis of R? or C¥.

¢, norm of a vector in R? or C? and the induced matrix norm in M4 m(R)
or My ,,(C). When p is omitted, it is assumed to be equal to 2.

Ordered product A1A,--- Ay of the matrices Ay,..., Ay € My(C).

Inner product in the (real or complex) Hilbert space H. When H is com-
plex, (-,-)y is assumed to be anti-linear in the first variable and linear in
the second one. The index H is omitted when clear from the context.

(x,9)ga for x,y € R%.

Norm in a (real or complex) Banach space X. The index X is omitted when
clear from the context.

The sequence (x,),cn converges weakly to x € X as n — +c0 in a Banach
or Hilbert space X. Also used for weak-* convergence in the dual X'.

Domain of the linear operator T : D(T) C X — Y from the Banach space X
to the Banach space Y.

Banach space of all bounded operators from the Banach space X to the
Banach space Y, endowed with its usual induced norm.

L(X,X) for X a Banach space.
Usual Lebesgue space of p-integrable functions.
Set of all locally p-integrable functions.

Usual Sobolev space of k-times weakly differentiable functions with
derivatives in LP, denoted by H* when p = 2.

Set of continuous functions from the topological space X to the topologi-
cal space Y.

Set of k times differentiable X-valued functions defined on the interval
I CR, for k e N and X a Banach space with its strong topology.

Subset of C¥(I,X) of all the compactly supported functions.
€k(I,R) and CX(I,R), respectively.



Chapter 1

Introduction

1.1 Switched systems

In the past decades, several works have considered systems whose behavior is described by
discrete and continuous variables in interaction, known as hybrid systems [12,61,75,115,
121,158]. Hybrid systems have attracted much research effort from different areas, such
as engineering, computer science, and mathematics, due to both the interesting theoretical
questions that their analysis arises and their numerous applications, for instance in process
control, the automotive industry, power systems, air traffic control, or chemical processes.
Typically, hybrid systems are a useful model whenever one considers a continuous physi-
cal process controlled by a discrete switching logic, usually implemented as an algorithm
programmed in some embedded control device, which explains the increasing importance
given to the study of hybrid systems recently.

A simple example of hybrid system is the temperature regulation system of a room
[12,121], which, in a simplified description, can be modeled in terms of two variables,
the (continuous) temperature 6 and the (discrete) state of the heater g, either “on” or “oft”.
The state of the heater determines the evolution of the temperature, and a switching logic
controls when the heater is automatically switched on or off in terms of certain prescribed
thresholds in the temperature. Another example, of greater practical interest, is a four-
stroke gasoline automotive engine [22], in which the continuous physical variables repre-
senting power-train and air dynamics interact with a discrete variable describing in which
of the four possible modes of operation the engine piston is.

In several applications, one is mostly interested in the behavior and properties of the
continuous variable, neglecting the precise details of the dynamics driving the evolution
of the discrete variable. In order to reflect such preference for the continuous variable in
the mathematical model, one may regard the discrete variable only as modes or subsystems
defining the evolution of the continuous variable and ignore its full dynamics by consid-
ering instead a certain class of switching patterns. These continuous systems with discrete
switching events are known as switched systems [113,114,123,158,166]. Hence, in a switched
system model, one is not interested in the time evolution of the discrete variable itself, but
only on the effects of such evolution on the continuous variable.

Mathematically, a switched system in R? can be described by a family of vector fields
fr : R - RY, k € J, where J is a set of indices (usually assumed to be finite), and by a
piecewise constant function a : IR, — 7, as

£(1) = fu(x(t),  tER,. (1.1)

The continuous state x(t) is a vector in R, or, more generally, belongs to some manifold M
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or some Banach space X. The signal «a is called switching signal. It is usually assumed to
be piecewise constant (with finitely many discontinuities on any bounded interval), deter-
mining, for every time interval in which it is constant, which one among the vector fields
fx is driving the dynamics of the system. In general, a is not precisely known and one is
interested instead in obtaining robust properties of the system (1.1) with respect to a certain
class G of switching signals @. The mathematical model (1.1) can be modified to take into
account state-dependent switching signals or possible discontinuities in the state variable
x in some discrete set of times, among others (see, e.g., [113,121]). One can also consider
switched control systems, under the form

X(t) = fa(x(t),u(t)),  teR,, (1.2)

where u(t) € R™ denotes a control input.

Switched systems have been studied in the literature from several different points of
view, such as modeling [22], verification [50], controllability [174], observability [16], opti-
mal control [30], stability, and stabilization [114]. In switched system models, the switching
signal a can be assumed to be controlled, meaning that it can be imposed by the designer
in order to achieve some prescribed goal, or uncontrolled, meaning that it is imposed by
some external factor and cannot be modified by the designer. In the first case, one is usu-
ally interested in obtaining results guaranteeing the existence and characterizing switching
signals that achieve a certain goal, such as controlling the system to a final state, designing
a switching sequence in order to observe the state of the system, or stabilizing the system to
the origin. In the second one, the aim is to obtain properties of the system that hold for all
switching signals in a certain class, that may or may not contain constraints on the switching
behavior.

The main and most interesting feature of switched systems (1.1) is that the interaction
between the continuous dynamics and the switching signal may produce effects that are not
present in the isolated continuous subsystems x(t) = f¢(x(t)). The following example, which
is classical in the literature of switched systems, shows that switching between exponen-
tially stable linear subsystems may lead to unstable behavior.

Example 1.1. Consider the linear switched system
X(t) = Ag(ryx(t) (1.3)

with a : R, — {1, 2} piecewise constant and Ay, A, € M,(RR) given by

-1 9 -1 -1
S O
One immediately verifies that A; and A, are Hurwitz matrices, sharing the same eigenvalues

Ay =-1+3iand A, = -1 - 31, and hence both subsystems x(t) = A;x(t) and x(t) = A,x(t) are
exponentially stable. Let a : R, — {1,2} be the switching signal given by

1 ifte[kﬂ,k%nL%)forsomekeIN,
a(t)= (1.4)

2 ifte [k%+%,(k+l)%) for some k € IN.

The solution of (1.3) with initial condition xy = (0, 1) associated with such switching signal
is given by

k —¢[3sin(3t) .

(-9)%e t( cos(3t) ), ifte [kﬂ,k% + %) for some k € N,

x(t) = o (1.5)
_gyk,—t[ S : T g

3(-9)%e (—3cos(3t))’ 1fte[k3+6,(k+1)3)forsomek€]N.
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Since 9 > ¢™3, one has |x(t)] — +oo as t — +00, and thus the switched system (1.3) is unstable.

The trajectory (1.5) is represented in Figure 1.1.

X3

A

> X|

Figure 1.1: Trajectory of (1.3) with initial condition xy = (0, 1) associated with the switching
signal a given by (1.4).

Example 1.1 can be easily modified to show that switching between unstable systems
may lead to exponentially stable trajectories, and is only one among several examples de-
picting the fact that the dynamics of a switched system can differ much from those of its
isolated subsystems.

Despite the major advances in the theory of switched systems, several important ques-
tions concerning their behavior remain open, even in the linear case. This is particularly true
for switched systems with random switching signals and for infinite-dimensional switched
systems, which have attracted much research effort recently (7,17, 27, 28,76,79,90, 111,
118,149,169]. This thesis presents, in Chapters 2, 3, and 4, new results on the stability of
switched systems, both in infinite dimension with deterministic switching signals and in
finite dimension with random switching signals, also considering the stabilization problem
in the latter framework. We focus here on linear switched systems and assume that the
switching signals are uncontrolled.

1.2 Persistently excited systems

An important class of switched systems, whose study was the main motivation for this the-
sis, is that of persistently excited systems. The introduction to such systems provided in this
section is based on that of [46].

Consider a switched control system under the form (1.2) where the switching signal
only affects the control input of the system by switching it on or off. This corresponds to the
control system x(t) = f(x(t), a(t)u(t)), where @ : R, — {0,1}, or @ : R, — [0,1] if one allows
different levels of activation for the control input. When f is a linear map in (x, u), this
system becomes

X(t) = Ax(t) + a(t)Bu(t), teR,,

for some matrices A € M;(IR) and B € M, ,,(R). If a takes its values in {0, 1}, this is a switched
system between the controlled dynamics x = Ax + Bu and the uncontrolled one x = Ax.
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The signal @ may model several different phenomena, such as failure in the transmission
from the controller to the plant, leading to instants of time at which the control is switched
off; time-varying parameters affecting the control efficiency, leading to the effective appli-
cation of a rescaled control a(t)u(t); allocation of control resources, activating the control
only up to a certain fraction of its designed value, or only on certain time intervals; among
other possible situations. Such issues are important from a practical point of view, in par-
ticular in systems controlled by wireless networks [93,101,102], where packet dropouts or
communication constraints may degrade the control performance.

We assume here that the switching signal a is uncontrolled and that the only informa-
tion one has on « is that it belongs to a certain class § € L*(IR,[0,1]). In order to have an
interesting problem from the control point of view, the class G should be chosen in such a
way that all signals a € G ensure a sufficient amount of action of the control u on the system.
A condition normally used for this purpose (cf. e.g. [46,49,116,135,164]), which arises
naturally in identification and adaptive control problems, is that of persistence of excitation,
defined as follows.

Definition 1.2. Let T, u be two positive constants with T > p > 0. A function a € L*(RR,
[0,1]) is said to be a (T, u)-persistently exciting signal if, for every t € R, one has

t+T
L a(s)ds > p. (1.6)

The set of all (T, pu)-persistently exciting signals is denoted by G(T, p). The family of linear
control systems
x(t) = Ax(t) + a(t)Bu(t), a€S(T,p), (1.7)

is called a persistently excited system.

Remark 1.3. Since the signal « in (1.7) is evaluated only on non-negative times, one may
replace R by IR, in Definition 1.2 and consider §(T, u) as a class of signals defined on IR,.
However, it is convenient in some statements and proofs to consider persistently exciting
signals a as defined on the whole real line in order to avoid cumbersome notations (this is
the case, for instance, of Theorem 3.18 and Proposition 3.24).

The persistence of excitation condition (1.6) finds its origins in problems stemming from
identification and adaptive control [9-11,37]. In such situations, one is lead to consider the
stability of linear systems of the kind x(t) = —P(t)x(t), x(t) € R?, where the matrix P(t) is
symmetric positive semi-definite for every t € R,. If P is also bounded and has a bounded
derivative, a necessary and sufficient condition for the global exponential stability of x(t) =
—P(t)x(t), proved in [135], is that P is also persistently exciting, in the sense that there exist
T > p> 0 such that

t+T
|, ETPe)eds > p

for all unitary vectors & € R? and all ¢ > 0.

Still in the context of identification and adaptive control, the condition of persistence
of excitation is useful when analyzing the convergence of certain identification methods
for linear systems, where the identification error satisfies an equation of the form x(t) =
—u(t)u(t)Tx(t) [9,11,37,162]. In this case, it can be shown that, under some regularity
hypothesis on u, exponential stability of this system is equivalent to the existence of positive
constants py, pp, and T such that

t+T

ui1d, < L u(s)u(s)Tds < pp1dy. (1.8)
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A question of practical importance in this case is to estimate the rate of exponential conver-
gence to zero [9,37,162] and to compare different estimates [11]. It is also important to note
that the right-hand side inequality in (1.8) is a necessary condition for the convergence to
the origin of the trajectories of x(t) = —u(t)u(t)"x(t) [23].

Several interesting problems involve the study of some generalized form of the persis-
tently excited system (1.7) [116]. One such problem is the control of spacecrafts with mag-
netic actuators [117], which can be described in a simplified form by the system

@(t) = S(w(t))w(t) + g(t)u(t),

where w(t) € R3 is the state variable, u(t) is the control input, S(w) € M3(RR) is a matrix
depending linearly on w € R3, and g(t) is a time-varying matrix with rk g(¢) < 3 for all time
t and satisfying some generalized persistent excitation condition. A feedback control for
such system has been designed in [117] using persistence of excitation arguments. Further
examples of systems similar to (1.7) where the persistent excitation condition appears are
given in [116].

Before introducing the main problems of interest for the persistently excited system
(1.7), let us recall some classical results concerning the linear time-invariant system

X(t)= Ax(t)+ Bu(t), xeR%, ueR" (1.9)

(cf. [36,163]). Such system is said to be controllable in time T > 0 if, for every xo,x; € R,
there exists a control u : [0,T] — R” such that the unique solution of (1.9) with initial
condition x; and control u satisfies x(T) = x;, and, according to Kalman controllability
criterion, this is equivalent to requiring that the controllability matrix

C(A,B)=(B AB A’B -+ A"!B)eMgqm(R)

has full rank. In this case, we also say that the pair of matrices (A, B) € M;(RR) x My ,,,(IR)
is controllable. We say that (1.9) is stabilizable by a linear feedback (or that the pair of
matrices (A, B) is stabilizable) if there exists K € M,, ;(IR) such that the closed-loop system
X(t) = (A+BK)x(t) is asymptotically stable, which is equivalent to requiring the matrix A+BK
to be Hurwitz. This is the case if and only if, up to a linear change of variables, A and B can

be written under the form
_ (A1 A _(B1
a=(v 2) #=(5)

with A3 Hurwitz and (A;, B;) controllable. We also recall the following result, which is
an immediate consequence of the Pole-shifting Theorem and Kalman decomposition (see,
e.g., [163, Lemma 3.3.3 and Theorem 13]).

Proposition 1.4. Let (A, B) € M;(IR) x My ,,,(R). The following assertions are equivalent.
(a) (A, B) is controllable.

(b) For every monic polynomial x of degree d, there exists K € M,, 4(IR) such that x is the
characteristic polynomial of A+ BK.

(c) For every y >0, there exist K € M, ;(IR) and C > 0 such that every solution x of the closed-
loop system x(t) = (A + BK)x(t) satisfies

[x(t)] < Ce 7" |x(0)], VteR,.
(d) For every y >0, there exist K € M, 4(IR) and C > 0 such that every solution x of the closed-
loop system x%(t) = (A + BK)x(t) satisfies
|x(t)] > Ce?"|x(0)]|, VteR,.
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1.2.1 Finite-dimensional persistently excited systems

We review in this section several results for the persistently excited system (1.7) in finite
dimension. Notice first that, thanks to Carathéodory’s Theorem (see, e.g., [83, Section 1.5]),
for every T, > 0 satisfying T > pu, a € §(T, p) (or, more generally, for every a € Li’(‘)’c(HL,IR)),
ue Llloc(IRMIRm), and xy € RY, (1.7) admits a unique absolutely continuous solution x : R, —
R? with initial condition x(0) = x,. Carathéodory’s Theorem can also be applied to the
closed-loop system x(t) = (A + a(t)BK)x(t), obtained by choosing u(t) = Kx(t) for some K €
M, 4(R), yielding existence and uniqueness of its solutions.

1.2.1.1 The controllability problem
The first problem we consider is the controllability of (1.7), defined as follows.

Definition 1.5. Let 7, T,y € R} be such that T > p. We say that (1.7) is controllable in time
7 if, for every a € §(T, ) and x¢,x; € R, there exists u € L!((0,7), R") such that the unique
solution x of (1.7) with initial condition x(0) = xy and control u satisfies x(7) = x;.

This is a simple formulation of the controllability problem for (1.7), where one assumes
having full knownledge of the signal a. A necessary condition for the controllability of
(1.7) in some time 7 > 0 is the controllability of the pair (A, B) € M;(R) x M, ,,,(R), since
the persistently exciting signal constantly equal to 1 is in the class §(T, ) for every T, u €
IR}, with T > py. Moreover, since there exist signals a € §(T, u) that are identically zero on
(0, T—p), another necessary condition for the controllability of (1.7) in time 7 is that 7 > T—p.
These conditions turn out to be sufficient as well, as shown by the following result from [39],
whose proof is very similar to the classical proof of the Kalman controllability criterion.

Proposition 1.6 [39, Proposition 4]. Let 7, T, € R’ be such that T > p and (A, B) € M;(IR) x
M4 m(R). Then (1.7) is controllable in time T if and only if the pair (A, B) is controllable and
t>T-p.

1.2.1.2 The stabilizability problem

A much more interesting and less trivial problem is that of the uniform stabilization of (1.7)
by a linear feedback law, which consists on finding K € M,, ;(IR), depending only on A, B,
T, and p, such that the closed-loop system

x(t) = (A+ a(t)BK)x(t) (1.10)
is globally exponentially stable for every a € (T, u).

Definition 1.7. Let A € M;(R), Be M, ,,(RR), and T, u € R}, be such that T > p. We say that
K eM,, 4(R)is a (T, p)-stabilizer for (1.7) if there exist constants C,y > 0 such that, for every
xo€R% and a € §(T, 1), the unique solution x of (1.10) satisfies

[x(t)] < Ce "' |xol, VteR,.

Remark 1.8. Thanks to Fenichel’s Uniformity Lemma (see, e.g., [52, Lemma 5.2.7]), K €
M, 4(R) is a (T, p)-stabilizer for (1.7) if and only if, for every x, € R? and a € (T, H), the
unique solution x of (1.10) satisfies limsup,_,,  |x(t)| = 0.

The uniform stabilizability of (1.7) by linear feedback laws has been addressed in several
works in the literature [38,39,45,49,126,128]. We review here the most important results
on this problem, which served as motivation and starting point for this thesis.
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Notice that, if there exists a (T, p)-stabilizer K for (1.7), then in particular the linear
time-invariant system x(t) = (A + BK)x(t) is asymptotically stable, which means that the sta-
bilizability of the pair (A, B) is a necessary condition for the existence of a (T, y)-stabilizer for
(1.7). The first result providing a sufficient condition for the existence of a (T, u)-stabilizer
is the following, proved in [38, 39] (see also [10]). Recall that a matrix A € My(R) is said
to be neutrally stable if its eigenvalues have non-positive real part and those with real part
zero have trivial corresponding Jordan blocks, which is equivalent to the stability (possibly
non-asymptotic) of the linear system x(t) = Ax(t).

Theorem 1.9 [39, Theorem 7]. Let A € My(RR) and B € My ,,,(R). Suppose that the pair (A, B)
is stabilizable and that the matrix A is neutrally stable. Then there exists a matrix K € M,, ;(IR)
such that, for every T,y € R, with T > y, K is a (T, p)-stabilizer for (1.7).

The first step of the proof of Theorem 1.9 is to reduce to the case where (4, B) is control-
lable and A is skew-symmetric, which is possible since one only has to stabilize the system
on the sum of all the eigenspaces of A associated with eigenvalues of real part zero, in which
the restriction of A can be put under a skew-symmetric form by a linear change of variables.
Thus, Theorem 1.9 follows from the following result.

Proposition 1.10. Let A € M4(R), Be M, ,,(R), and T, u € IR’ be such that T > p. Suppose that
the pair (A, B) is controllable and that the matrix A is skew-symmetric. Then K = -BT € M,,,.4(R)
is a (T, p)-stabilizer for (1.7).

The choice of K in Proposition 1.10 leads to the system x = (A — a(t)BBY)x, for which
one may prove that V(x) = |x|> is a weak Lyapunov function. One computes %V(x(t)) =

—2a(t) IBTx(t)I2 and uses a Lasalle-type argument to conclude; for the details of the proof,
we refer to [39].

An interesting feature of Theorem 1.9 is that the feedback matrix K does not depend
on T or y, which comes from the fact that K = —BT stabilizes (1.7) for every T,u € R}, with
T > p under the hypotheses of Proposition 1.10. However, Theorem 1.9 deals only with with
control systems whose uncontrolled dynamics x = Ax are already stable, and it is obviously
also interesting to consider the stabilizability of systems whose uncontrolled dynamics are
not necessarily stable. This has been done in [49], where the following improvement of
Theorem 1.9 has been proved.

Theorem 1.11 [49, Theorem 3.2]. Let A € My(R), B € My ,,(R), and T,u € R’ be such that
T > p. Suppose that the pair (A, B) is stabilizable and that the eigenvalues of A have non-positive
real part. Then there exists a (T, p)-stabilizer for (1.7).

Theorem 1.11 has been proved for controllable pairs (A, B) and in the single-input case
m =1 in [49, Theorem 3.2]. The multi-input case follows by an induction on the number
of inputs [46, Theorem 2.9], and the fact that one can reduce the case of stabilizable pairs
(A, B) to that of controllable pairs follows, e.g., from [126, Lemma B.1]. It improves Theorem
1.9 in the sense that A is no longer assumed to be neutrally stable, and hence trajectories of
the uncontrolled system x(t) = Ax(t) may diverge, even though such divergence can only be
polynomial in time. However, the feedback matrix K depends in general on T and p.

The proof of Theorem 1.11 provided in [49] relies on a time-contraction procedure and
on the compactness of L*(IR,[0,1]) with respect to the weak-x topology of L*(IR,IR). The
time-contraction procedure transforms the integral condition of persistence of excitation
(1.6) into a pointwise one in the limit as the time-contraction parameter tends to +co. One
can define a limit system, which can be shown to be stable via a suitable Lyapunov function,
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and an approximation result allows one to conclude the stability of a time-contracted system
from the stability of the limit system.

The time-contraction technique used in [49] is also well-adapted to take into account
delays in the feedback loop, since such delays are reduced by the time-contraction procedure
and vanish in the limit as the time-contraction parameter tends to +co. More precisely,
consider (1.7) and assume that, instead of applying an instantaneous feedback u(t) = Kx(t),
one applies a delayed feedback u(t) = Kx(t — 7(t)), where 7 € L(IR, 7) for some bounded set
T C R,. The closed-loop system (1.10) becomes

#(t) = Ax(t) + a()BKx(t—T(t)),  a€S(T, ), TeL®(R,T). (1.11)

Thanks to Carathéodory’s Theorem for delayed equations (see, e.g., [86, Section 2.6 and
Chapter 6, Theorem 1.1]), for every T,y € R} with T > u, @ € (T, p), T € L*(R,T), and
xo € CO([-r,0],R?), where r = supT, (1.11) admits a unique continuous solution x defined
on [-7,+00), which is absolutely continuous on R,, coincides with xq on [-r, 0], and satisfies
(1.11) for almost every t € IR,. One can then extend the definition of (T, u)-stabilizer to
(1.11) as follows.

Definition 1.12. Let A € M4(R), B € M, ,,(R), T,u € R, be such that T > y, T C R, be
bounded, and r = supT. We say that K € M,, 4(R) is a (T, u, T)-stabilizer for (1.11) if there
exist constants C,y > 0 such that, for every x € C?O([—r, 0],IRd), a€9(T,u),and 7 € L*(R,7),
the unique solution x of (1.11) satisfies

Ix(t)] < Ce™”" sup |xo(s)|, VteR,.
s€[-r,0]

Notice that the dynamics of (1.11) is infinite-dimensional, taking place in the Banach
space C([-r,0],R?), and hence, differently from Remark 1.8, Fenichel’s Uniformity Lemma
cannot be applied here.

The following generalization of Theorem 1.11 holds.

Theorem 1.13 [126, Theorem 2.5]. Let A € M4(IR), B € My ,,,(R), and T,u € IR’ be such that
T > p. Suppose that the pair (A, B) is stabilizable and that the eigenvalues of A have non-positive
real part. Then, for every Ty > 0, there exists a neighborhood T of tg in R, and a (T, u, T)-stabilizer
for (1.11).

In order to highlight the time-contraction argument used in the proofs of Theorems
1.11 and 1.13, we provide the proof of the latter in the particular case of the d-integrator,

T
corresponding to A = J; and B = (0 - 0 1) , where J; denotes the d x d Jordan block
01 00 00
0010 0 0
0 0 01 0 0
Ji= 00 0 O 0 0 (1.12)
0 00 ... 01
000 ... 00

(see [126, Theorem 3.1]). This particular case is interesting since it contains most of the
difficulties of the general case. Furthermore, we can give in this case a stronger result,
showing the existence of a (T, y, T)-stabilizer for any bounded interval T C R,, and not only
for perturbations around a certain value as in the general case of Theorem 1.13.

10
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T
Proposition 1.14 [126, Theorem 3.1]. Let A=];, B = (0 - 0 1) € M4,1(R), r >0, and
T,u € R} be such that T > p. Then there exists a (T, p, [0, r])-stabilizer K € My 4(IR) for (1.11).

In order to prove Proposition 1.14, we need the following continuity result for solutions
of delayed equations.

Lemma 1.15[126, Lemma A.1]. Let A € M(R), B € L*°(R,My(R)), r = 0, and T € L*(RR, [0, r]).
Consider the system

x(t) = Ax(t) + B(t)x(t — t(t)). (1.13)
Denote by x(-;,x¢, B) its solution with initial condition x, € CO([-r,0L, RY). Let (t,)pen: be a
sequence on L*(RR, [0, r]) such that t,(t) — 0 as n — +oco uniformly on IR. Suppose that (xgn))new
is a sequence of functions in CO([—r,0],R?) and (B,,),cn- is a bounded sequence on L (IR, M 4(IR))

satisfying

(a) lim xgl)(O) = x}, for some x} € RY;

n—-+00
(b) there exists A > 0 such that ’x(on)(t)’ <AforallneN*andall t € [-r,0];

(c) B, — By weakly-k as n — +oo, for some B, € L(R, My(IR)).
Then x(t;T,, xgn), B,) — x(t;0,x3, B,) as n — +oo, uniformly on compact time intervals in R,.

The proof we provide below for Proposition 1.14 is that of [126].

Proof of Proposition 1.14. The proof follows the same idea of that of [49, Theorem 3.1]:
we first perform a change of variables corresponding to a time contraction in order to relate
(T, u, [0, r])-stabilizers to (T/v,u/v,[0,r/v])-stabilizers for v > 0. We then study the stabi-
lizability of a certain limit system, and this allows us to conclude the stabilizability of the
original system for a certain v > 0 large enough, thanks to Lemma 1.15. In this proof,
the unique solution x of (1.11) associated with the delay T € L*(IR, [0, r]), the initial condi-
tion xq € C%([-r,0],IRY), the persistently exciting signal & € §(T, u), and the feedback matrix
K € My 4(R), is denoted by x(-; T, x¢, @, K).

Step 1. Time contraction.

For v > 0, define Dy ,, = diag(vd‘l,..., v,1) € M;(IR), which satisfies the relations vD;’lvdid,v
=Js and D, ,, B = B. Noting, for simplicity, x(t) = x(¢; 7, x¢, «, K), and defining x,(t) = D;’lv
x(vt), one obtains that x,, satisfies

4.
dat™V

(1.14)

(£) = Jax, (1) + a(vt)vBKDd,vxv(t— T(:t))

and hence

x,(t) =x|t; @,D;’lvxo(%), av,vKDd,v)

with a,,(t) = a(vt), whichis a (T/v, y/v)-signal. Thus K is a (T, 1, [0, r])-stabilizer for (1.11) if
and only if vKD, ,, is a (T/v, u/v,[0, r/v])-stabilizer. This equivalence is crucial in the sequel:
instead of looking for a (T, u, [0, r])-stabilizer for (1.11), we look for a (T/v,u/v,[0,r/v])-
stabilizer for a certain v > 0 large enough. The technique is thus to study a certain limit
system obtained as v — +oo, find a stabilizer for such non-delayed system, and finally show
that such stabilizer is a (T/v, pu/v,[0,r/v])-stabilizer for (1.11) if v is large enough.

11



1. Introduction

Step 2. Limit system.
Consider the system

#(t) = Jax(t) + a () BKx(t),  ay € L°(R,[/T,1)). (1.15)

It has been proved in [49, Theorem 3.1], using a result from [71] attributed to W. Dayawansa
(see also [72, Lemma 2.1]), that one can find K € M 4(IR) and a positive definite matrix
S € M;(R), both independent of the particular signal a, € L*(R,[u/T,1]), such that (1.15)
is globally uniformly exponentially stable and V(x) = xTSx decreases along all trajectories
of (1.15), uniformly with respect to a,. In particular, there exists a time ¢ such that every
trajectory of (1.15) starting in B} = {x € R? |V(x) < 2} at time 0 lies in B{ = {x e R? |V (x) < 1}
for every time larger than o.

Step 3. Study of (1.14) through the limit system.

We wish to deduce from the conclusion obtained in the previous step that (1.11) admits a
(T/v,u/v,[0,r/v])-stabilizer for some v > 0 large enough. We claim that, for some v > 0 large
enough, every trajectory of

x(t) = Jax(t) + a(t)BKx(t — (1)), ae€SG(T/v,u/v), teL¥(R,[0,r/v]),

with initial condition x4 € GO([—r/v,O],B;/) stays in BY for every time larger than 20. In
particular, by homogeneity, this will imply that K is a (T/v, u/v,[0,r/v])-stabilizer of (1.11)
and thus v’lKD;}/ is a (T, u, [0, r])-stabilizer, concluding the proof. To prove this, assume,

by contradiction, that for every n € IN* there exist 7, € L*(RR,[0,7/n]), xgn) € Co([-r/n, O],B‘{),

a, € 9(T/n,u/n), and t, € [20,40] such that
x(tn;Tn,xgn),an,K) ¢ BY. (1.16)

Up to the extraction of a subsequence, we can suppose that, as n — +oo, t,, — t, € [20,40],
xf)n)(O) — x5 € Bg, and a, — a, € L°(IR, [0, 1]) weakly-*; we also note that 7,,(t) > 0as n —

+oo uniformly on t € R,. Then, by Lemma 1.15, we obtain that x (tn; Tn,xgn), a,, K) converges

t0 x(t4; 0, Xy, ax, K) as 1 — +o0o0. We also note that, by [49, Lemma 2.5], a,(t) > /T almost
everywhere in R, and so, by our previous study of (1.15), since t, > 20, by homogeneity, we
have

V (x(t4; 0, x5, ax, K)) <

N =

This contradicts (1.16), establishing the desired result. [

Let us now provide a sketch of the proof of Theorem 1.13. It suffices to consider the
case where (A, B) is controllable, m = 1, and all the eigenvalues of A have real part zero [126,
Appendix B]. In such situation, up to a linear change of coordinates transforming A into its
real Jordan canonical form, (1.11) becomes

xo(t) =y, xo(t) + a(t)bKx(t — (1)), xo(t) € R,
1) = (@AY + J9)x; () + a(8)b Kx(t - (1), xj(t) e R¥i, je[1,h],

where the spectrum of A is 0(A) = {+iwj, j = jo, jo+1,..., h} with all the w; > 0 distinct, jo =1
if 0 € 0(A), jo = 0 and wy = 0 otherwise; r; is the algebraic multiplicity of the eigenvalue

12



1.2. Persistently excited systems

iw; (with rg = 0if 0 € 0(A)); J;, is the real Jordan block defined in (1.12); J$ € My, (IR) is the
Jordan block for complex eigenvalues,

022 Idy 0252 02k -+ 02x2 Oy
022 02 Idy 02 -+ 0O2x2 02
O2x2 022 O2x2 Idy -+ 0202 Oy
J€ =102x2 022 Ozx2 022 ==+ 022 Opnaf,
022 0252 0252 022 -+ 02 1dy
02x2 O2x2 O2x2 O2x2 -+ O2x2 O2x2

ie., JS =J,®1d, in terms of the Kronecker product; AY) = diag(A,,...,Ag) € Mer(JR) with

0 1
welS o)

and b° and b/ are respectively the vectors of R" and R*"i with all the coordinates equal to
zero except the last one that is equal to one. The idea now follows the case of the d-integrator

considered in Proposition 1.14. We write K = (KO K; ... Kh) with Ko € My, (R), K; €
Ml’Zr]_(IR), j €[[1,h], and perform the change of variables given by

yO(t) = Dr_o}va(Vt)l
1 —vtw; AW .
yj(t):(Dg’v) Levtoitlyi(vt),  jel1,h],

with Dg}v =Dy,y ®1Id,. The system satisfied by the new variables v, ...,y is

Yo(t) = I, o(t) + ay (£)b°

T(vt) h © T(vt)
KO,VyO (t - v ) + ZKZ’Ve(Vt—T(Vt))CUCA yg (t _ )] ,

.
=1
), T(vt) h ¢ (vt)
Yi(t) = ]r(;yj(t) +a, (e i [ Ko 0 (t - )+ ZK&ve(W_T(W))M( Ve (f - )]
v = v
j €L, hl,
(1.17)
with a,(t) = a(vt), Ko, = vKoD, ,, and K¢, = vKnglv for ¢ € [1,h]. As in the case of
the d-integrator, K = (KO Ky - Kh) is a (T, p, J)-stabilizer for (1.11) if and only if K,, =
(KO,,, Ky - Kh,v) isa (T/v,u/v,T/v)-stabilizer for (1.17), where T/v = {t/v |t € T}.
We look for a (T/v, u/v,T/v)-stabilizer of (1.17) under the form K, = (Ko,v Kh,,,)

with
Kj,v = fK] ® bgeTOijO, fK] € Ml,rj(IR)

T .
for j € [[1,h] and Ky, = Ky, where by = (O 1) . We have that ijve(”t‘T(”))“’fAm =X;j®
bgthwaO +X;® [bge‘”t‘“ﬁAO (e_(T(”)_T")“’fAO _Id2)]. Denoting by b/ € R" the vector with all

coordinates equal to zero except the last one that is equal to one, we have b/ = b/ ® b, and

13



1. Introduction

thus e~t<iA” pi = Z;j ® e Viwido by. We finally write, for j,€ € [1,h]],

clt) = ay(t),

C(V)(t) — av(t)bg€Vtij0,

0j
C(t) = a (e b,
() = a (e obgbler s,
By ()= By (£) =0,
By} (1) = a ()bt e okt 1y ]

P](;)(t) _ av(t)e—vta)jAo bobgevtngo [e—(T(Vt)—To)wao _ Idz],

and thus (1.17) can be written under the form

[bOJCg@)(C(()?(t) +pé;)(t))] 3}g(t_ T(vt))’

v
(1.18)

[EjﬂCg(X)(C](.Z)(t) +Pj(;)(t))]yg(t— T(V”)), j e, h].

We can arrange all the matrices C](.Z) ina (2h+1-jg)x(2h+1—jy) symmetric matrix and all

the matrices Pj(;) ina (2h+1-jp) x(2h+1 —jy) matrix respectively as

cO(t) = (c‘;’(t)) . P = (pF;’(t)) .
I jo<j,t<h ] jo<j,t<h

We are now in a situation similar to the case of the d-integrator, where the scalar switching
signal a is replaced by the matrix Cc) 4 p), Taking T under the form T = [ty—r, g +7]NIR,
for a certain r > 0 to be chosen, one has

P].(;)(t)| < |e‘(T(”t)‘TO)“’fA0 —Id2| = \/2[1 —COS((T(Vt) —To)a)j)] < |(T(Vt) —To)a)j| <rQ

with Q = max{a)j |j = jo,...,h}, and, in particular, if r > 0 is small, P is also small.
As in the proof of Proposition 1.14, we can define a limit system for (1.18) as v — +oo,
which is stabilizable by a similar argument if » > 0 is small enough, and Lemma 1.15
allows one to conclude in the same manner as for the d-integrator that (1.17) admits a
(T/v, u/v,T/v)-stabilizer for some v > 0 large enough and some r > 0 small enough.

Theorems 1.9 and 1.11 require more assumptions than the stabilizability of the pair
(A, B) in order to conclude the existence of a (T, u)-stabilizer for (1.7). However, since the
class §(T,T) contains only the function equal to 1 almost everywhere on R, such extra as-
sumptions are not necessary for the existence of (T, T)-stabilizers for (1.7), and a natural
question is whether one really needs any extra assumption at all in order to obtain the exis-
tence of (T, u)-stabilizers for (1.7). Such question has been addressed in [49] in the single-
input case and the answer turns out to depend on the ratio p/T.

Proposition 1.16 [49, Propositions 4.4 and 4.5].
(a) Let d € N*. There exists p* € (0,1) depending only on d such that, for every T,u € R}
with T > pand p/T > p* and (A, B) € M4(R) x My 1 (R) controllable, (1.7) admits a (T, p)-
stabilizer.

14



1.2. Persistently excited systems

(b) There exists py € (0,1) such that, for every T,y € R} with u/T < py and (A, B) € M;,(IR) x
M, 1(IR) controllable, if A > 0 is large enough, then the system x(t) = (A + AId,)x(t) +
a(t)Bu(t) does not admit a (T, p)-stabilizer.

The main idea for the proof of Proposition 1.16(a) is that, if K asymptotically stabilizes
the closed-loop system x(t) = (A + BK)x(t), a quadratic Lyapunov function V(x) = xT Px for
such system can still be used as a Lyapunov function for (1.10) if /T is large enough, and
the uniformity of p* follows by taking (A, B) under some normal form. On the other hand,
Proposition 1.16(b) is proved by explicitly constructing, for each K € M; »(IR), a periodic
persistently exciting signal « taking values in {0, 1} that destabilizes the closed-loop system
x(t) = (A+ Ald, +a(t)BK)x(t), where A is chosen only in terms of A and B.

Let us point out that another interesting and related stabilization problem is to find
out whether (1.7) can be stabilized by feedback laws more general than the linear feedback
u(t) = Kx(t) for a constant matrix K. Such problem has been considered in several works in
the literature [151,164,165,173], where one generally observes or estimates the signal a and
constructs a time-varying feedback law depending on «a or its estimation. Such stabilization
results usually require more assumptions on the signal a, such as C* regularity for some
k € N and boundedness of some of its derivatives, which are not needed in the above results.
As an example, we provide here the stabilization result from [164].

Consider the single-input control system

x(t) = Ax(t) + a(t)Bu(t) (1.19)
with x(t) e RY, u(t) e R, A € My(R), and B € M, 1(R). Assume that a : R — IR is measurable

and that there exist T, uy, yp > 0 such that «a satisfies the persistence of excitation condition

t+T 2
1 SL la(s)Pds <py,  VteR (1.20)

Notice that, with respect to (1.6), the upper bound is also necessary in (1.20) since one
assumes here that « takes its values in R instead of the bounded interval [0,1].

Theorem 1.17 [164, Theorem 8]. Assume that (A, B) is controllable and that a € @~ (R,R) is
bounded, has bounded derivatives up to order d —1, and satisfies (1.20) for some T, pq, pp > 0. Let
P € GL4(R) be such that (PAP~!, PB) is in the controllable canonical form

o 1 0o 0 - O 0

o o 1 0 - O 0

o o o 1 - 0 0
pApt={ . . . | PB=

o o o o0 - 1

a; a, as 4ag -+ ag 1

Let k = max{2,2ﬂ°g2d] . Then there exists Ay > 0, depending only on A, B, and d, such that, for
every A > Ao, the feedback control law

a;:

wi(t)=2zi(t)  wg(t)—24(t) a(t)!
oalty

- wa(t) (1.21)

ult) = a(t) 20(8)

d
j=2
renders the system (1.19) globally exponentially stable, where z(t) = Px(t), r is the solution of

#(t) = —=Ar(t) + a(t)k,
{T(O) =To,
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1. Introduction

with some initial condition ro > 0, and w1(t),...,w4(t) are defined by
w1 (t) = 21 (),

a)j(t):a')]-,l(t)+ 210 u)]',l(t), jE M2, 4].

Notice that the control law (1.21) is well-defined since, thanks to [164, Remark 6], w;(t)—
zj(t), j € [2,d], and wg4(t) - 24(t) all depend on a(t) homogeneously, with an homogeneity
degree at least one, which means that one can give a canonical meaning to the divisions in
(1.21) when the denominator becomes zero (see also [164, Remark 9] for more details). The
constant A is also explicitly characterized in [164, Theorem 8] in terms of only ay,...,a;
and the dimension d. The result of Theorem 1.17 was generalized in [165] to multi-input
systems, where one also shows that arbitrary convergence rates can be achieved by such
time-dependent feedback laws.

1.2.1.3 Maximal rates of convergence and divergence

As recalled in Proposition 1.4, when considering the linear time-invariant system (1.9), sta-
bilization by linear feedback laws u = Kx at arbitrary rates of convergence, as described in
Proposition 1.4(c), is equivalent to destabilization by linear feedback laws u = Kx at arbi-
trary rates of divergence, as described in Proposition 1.4(d), and both properties are equiv-
alent to the controllability of the pair (A, B) and to the pole-shifting property from Propo-
sition 1.4(b). A natural question, which has been addressed in [45, 49,53, 128], is whether
such properties, or at least some of them, also hold for the persistently excited system (1.7).
Definition 1.18. Let (A, B) € M;(R) x My ,,(R) and T, u € R} with T > u. For K € M,,, 4(IR),
xo €R?, and a € §(T, u), we denote the unique solution of (1.10) with initial condition x, by
x(+;x0, @, A, B,K).

(a) For KeM,, 4(R)and a € (T, u), we define

1
A (a,A,B,K)= sup limsup—log|x(t;xo, @, A, B,K)|,

XOEJRd\{O} t—+o00

1
A (a,AB,K)= inf liminf—log|x(¢;xg,a, A, B,K)|.
xeRA\(0) FoFoo f

(b) For K € M,, 4(RR), the rate of convergence and rate of divergence of (1.10) are defined
respectively by

rc(A,B,K,T,y)=— sup A'(a,A BK), rd(A,B,K,T,u)= inf A (a,A BK).
aeS(T,u) ae§(T,p)

(c) The maximal rate of convergence and maximal rate of divergence of (1.10) are defined
respectively by

RC(A,B,T,uy)= sup rc(ABK,T,p), RD(A,B, T,u)= sup rd(A,BK,T,p).
KeM,, 4(R) KeM,, 4(R)

Notice that K is a (T, u)-stabilizer for (1.7) if and only if rc(A,B,K, T, u) > 0. Moreover,
rc, rd, RC, and RD are all invariant under linear changes of variables, i.e.,
rc(A,B,K, T, u) = rc(PAP™Y, PBQ™Y,QKP™, T, ),
rd(A,B,K, T, u) =rd(PAP~',PBQ™},QKP™L, T, p),
RC(A,B, T, ) =RC(PAP™Y, PBQ7L, T, n),
RD(A,B, T, u) = RD(PAP™!,PBQ™L, T, p),

(1.22)
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1.2. Persistently excited systems

for all P € GL4(RR), Q € GL,,,(IR). One also obtains immediately that, for every A € R,
RC(A+AIdy, B, T,u) =RC(A,B, T, u)- A, RD(A+AIdy, B, T,u) =RD(A,B, T, )+ A, (1.23)

and that both RC(A, B, T, u) and RD(A, B, T, u) are non-decreasing functions of p.

Statements (c) and (d) from Proposition 1.4 can be rephrased simply as RC(A,B, T, T) =
+o00 and RD(A, B, T, T) = +o0, respectively, and hence Proposition 1.4 states that both these
properties are equivalent, and they hold if and only if (A, B) is controllable. A first gener-
alization of this result to the case of persistently excited systems is the following, proved
in [49].

Proposition 1.19 [49, Proposition 4.3]. Let (A,B) € M,(R) x M, 1(R) and T, u € R}, be such
that T > p. Assume that (A, B) is controllable. Then RC(A, B, T, u) = +oo if and only if RD(A, B,
T,p) = +oo.

The main ideas of the proof of Proposition 1.19 in [49] are the following. Using (1.22)
and (1.23), one first reduces to the case

SR

for some a € R. The result is proved by showing that, if C > 0 is large enough and K =
(kl k2) € M, »(IR) is such that rc(A,B,K, T, u) > C, then one has rd(A,B,K_, T, u) > C, where

K_ = (kl —kz). One notices that solutions of x(t) = (A + a(t)BK_)x(t) can be regarded as
solutions of x(t) = (A+a(t)BK)x(t) going backwards in time, in the sense that, for 7 € R, and
te[0,t],

x(t;x9,a,A,B,K_) = Dx(t — t;x1, (Tt —+), A, B,K), (1.24)

where x; = Dx(7;x9,a,A,B,K_) and D = diag(1,—1). This remark allows one to relate the
growth a solution of x(t) = (A + a(t)BK_)x(t) on the interval [0, 7] to the decay of the corre-
sponding solution of x(t) = (A + a(t — t)BK)x(t) according to (1.24). However, such compar-
ison can only be performed on finite time intervals.

The technique of [49] to overcome this difficulty and obtain information on the asymp-
totic behavior of solutions of x(t) = (A+a(7—t)BK)x(t) from (1.24) is to modify a backwards
in time on an interval [~c,0) for some o > 0, in such a way that a|_, ) can be extended
by periodicity to a (T, p)-persistently exciting signal a, and such that the projection of the
solution of %(t) = (A + @(t — t)BK)x(t) on the unit circle $' becomes periodic. Such periodic-
ity of the projected trajectory allows one to obtain information on the asymptotic behavior
of the solution only from its decay on a finite time interval corresponding to a period. In
order to show that the required modification of a on [-0,0) can be performed, [49] proves
the controllability in finite time of the control system on $' obtained by the projection of
the control system x(t) = (A + &(t)BK_)x(t), where &(t) € [0,1] is regarded as a control input
constrained to satisfy the condition of persistence of excitation (1.6).

The idea of comparing convergence and divergence rates using time reversal and study-
ing a projected system with periodic trajectories has been generalized in [45] to systems in
higher dimensions, obtaining the following result.

Theorem 1.20 [45, Theorem 5.4]. Let (A,B) € My(R) x My ,,(R) and T,u € R’ be such that

T > p. Assume that there exists K € M, ;(IR) such that the Lie algebra generated by {A — % Id,,

BK - wldd} is equal to sl(d,R) = {M € M4(R) | Tr M = 0}. Then

RC(A,B, T, ) = RD(-A,-B, T, ).
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The Lie algebraic condition in Theorem 1.20 finds its origin in the study of the control
system on the real projective space RIP“"! obtained by the projection of the control system
x(t) = (A+&(t)BK)x(t), where &(t) is regarded as a control input. Such condition is equivalent
to a Lie algebraic condition for vector fields in RIP?~!, and also to a simpler Lie algebraic
condition for vector fields R? if d is at least three. In the next result, for M € My(R), [TM
denotes the vector field on RIPY~! obtained by the canonical projection of the vector field
X Mx.

Proposition 1.21 [45, Proposition 5.1]. Let (A, B) € My(R)xMy ,,(IR). The following statements
are equivalent.

(a) There exists K € M, 4(IR) such that the Lie algebra generated by {A— % Id;, BK - Tr(gK) Id,;}
is equal to sl(d,R).

(b) There exists K € M,, 4(R) such that, for every q € RIP~!, the evaluation at q of the Lie
algebra generated by {I1A,T1BK} is equal to the tangent space quRlPd_l.

Moreover, when d > 3, the above statements are also equivalent to the following one.
(c) There exists K € M,, 4(R) such that the Lie algebra generated by {A, BK} is equal to M;(IR).

With respect to Proposition 1.19, Theorem 1.20 replaces the controllability hypothesis
on (A, B) by a Lie algebraic condition. A natural question is whether there is any relation
between such conditions. This question has been addressed in [45], where it is shown that
the Lie algebraic condition from Theorem 1.20 “almost” implies the controllability of (A, B),
and that, at least in the single-input case m = 1, a converse also holds.

Proposition 1.22 [45, Proposition 5.3 and Theorem 6.1]. Let (A, B) € My (R) x My ,,,(R).

(a) If (A, B) is not controllable and there exists K € M, 5(R) such that the Lie algebra generated

by {A - %Idd,BK - %Idd} is equal to sl(d,R), then B =0, d = 2, and the eigenvalues
of A are non-real.

(b) If (A, B) is controllable and m = 1, then there exists K € M, 4(IR) such that the Lie algebra
Tr(BK)

generated by {A — % Id,;, BK — (Tldd} is equal to sl(d,R).

Thanks to this result, one can also see that Theorem 1.20 provides a generalization of
Proposition 1.19. Indeed, if (A, B) € M,(R) x M, ;(RR) is controllable, Proposition 1.22(b)
shows that the Lie algebraic hypothesis of Theorem 1.20 is satisfied. Thanks to (1.23), it
suffices to prove Proposition 1.19 for traceless matrices and, when d = 2, any traceless matrix
A is similar to its opposite —A, which shows, using (1.22), that Proposition 1.19 can be
obtained from Theorem 1.20.

Proposition 1.19 and Theorem 1.20 consider the relations between the maximal conver-
gence and divergence rates RC and RD, but another interesting question is to characterize
the cases where one has RC(A, B, T,u) = +oo or RD(A, B, T, ) = +oco. For the linear time-
invariant system (1.9), which corresponds to taking y = T in (1.7), Proposition 1.4 shows
that both conditions are equivalent to the controllability of (A, B). However, the situation is
different for persistently excited systems, as shown in the following result from [49].

Proposition 1.23 [49, Propositions 4.4 and 4.5].
(a) Let d € N*. There exists p* € (0,1) depending only on d such that, for every T,y € R}, with
T > pand u/T > p* and (A, B) € My(R) x My 1(R) controllable, one has RC(A,B, T, ) =
RD(A,B, T, p) = +o0.
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(b) There exists py € (0,1) such that, for every T,y € R} with u/T < py and (A, B) € M;,(IR) x
M, 1 (IR) controllable, one has RC(A, B, T, u) < +00 and RD(A, B, T, ) < +oco.

Notice that Propositions 1.16 and 1.23 are equivalent, due to (1.23) and to the fact that,
if (A, B) is controllable, then (A + A1dy, B) is also controllable for every A € R.

The proof of Proposition 1.23(b) given in [49] provides some insight on the origin of the
phenomenon of non-stabilizability at arbitrary rate of convergence. Indeed, the idea of such
proof is to actually construct, for some A € R and for each feedback matrix K € M »(IR), a
(T, u)-signal @ which destabilizes the system x = (A + A1d; +a(t)BK)x(t). This construction
exploits the overshoot phenomenon that happens when switching between systems x = Ax
and x = (A+BK)x, which consists on the fact that the norm of a solution of an asymptotically
stable system may increase before decreasing, a fact also used in Example 1.1, for instance.
Hence, switching after the increase of the norm and before its decrease can have a desta-
bilizing effect. It is also interesting to note that the overshoot prevents stabilization in the
case where y/T is small, but not for y/T large. The signal a constructed in such proof takes
its values on {0, 1}, is periodic, and oscillates faster between 0 and 1 as K increases in norm.

This technique of proof led to the conjecture, formulated in [49], that, if one imposes
additional constraints on the signal a preventing fast switching, it might be possible to
recover stabilizability at arbitrary rates of convergence. This conjecture was first proved to
be true for two-dimensional systems in [128], by considering Lipschitz continuous signals
a.

Theorem 1.24 [128, Theorem 3.1]. Let (A, B) € M,(IR) x M, 1 (IR) be controllable and T, u, M €
IR, be such that T > p. Then, for every y > 0, there exists K € My 5(R) and C > 0 such that,
for every a € G(T, u) Lipschitz continuous with Lipschitz constant M, every solution x of (1.10)
satisfies

|x(t)] < Ce 7! |x(0)], VteR,.

The proof of this result relies on the planar dynamics and cannot be directly generalized
to higher dimensions. The time is separated into “good” time intervals, where the feedback
is sufficiently active in order to stabilize the system, and “bad” time intervals, where the
feedback is not enough active and an explosive behavior may occur. Such explosive behavior
is due not only to the dynamics of A, but it may also come from the dynamics of A + aBK
when «a is too small. A technique of worst-case trajectory, similar to that of [20,32,125], is
used to analyze the maximal rate of explosion on “bad” time intervals, showing that it is
compensated by the convergence on “good” ones.

Arbitrary rate of convergence can also be retrieved if one assumes that the persistently
exciting signal a has a uniformly bounded total variation on bounded time intervals and
takes values in {0, 1}, as shown in the following result from [46].

Theorem 1.25 [46, Theorem 4.3]. Let (A, B) € M;(IR)xMy ,,,(IR) be controllable and T, u, M € IR,
be such that T > p. Then, for every y > 0, there exists K € M, ;(IR) and C > 0 such that, for every
a € (T, p) taking values in {0,1} and with total variation on [t,t + T| bounded by M for every
t € IR, every solution x of (1.10) satisfies

Ix(t) < Ce 7' x(0)],  VteR..

A key point in the proof of Theorem 1.25 is that, if (A, B) is controllable and y > 1, one
can choose a feedback matrix K such that the constant C from Proposition 1.4(c) depends
polynomially on y, a fact which is proved, e.g., in [42, 43], with improved bounds provided

n [99]. This allows one to estimate the overshoot on time intervals where « is active but not
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for long enough in order to induce a decrease of the norm of the solution, and show that it
can be counteracted by the decrease of the solution on time intervals where « is active for
longer.

Another situation where one can also obtain stabilizability at an arbitrary rate of conver-
gence is when rk B = d (see [46, Theorem 4.4]).

All the previous results concerning stabilizability at an arbitrary rate of convergence
require the stabilizability of the persistently excited system (1.7) for all persistently exciting
signals a in §(T, u) or in a subset of §(T, u). In particular, (1.10) should be stable even for
the worst possible signals a, that is, those a which give the slowest decay rates. However,
as highlighted in the proof of [49, Proposition 4.5], or also on related works on switched
systems [20, 32], such worst trajectories are typically very specific, corresponding to very
fast switching or to switching at very precise times. It is natural to imagine that, in practical
situations, such specific behavior is very unlikely to occur, and that the typical practical
behavior should be much better than the worst theoretical behavior.

These ideas motivate the study of the stabilizability of (1.7) where, instead of consider-
ing that a satisfies the persistence of excitation condition (1.6) and trying to stabilize the
system for all a € §(T, p) as in Definitions 1.7 and 1.18, one assumes that « is generated by
a certain random process, which, as (1.6), ensures that the control u is active often enough,
and considers the stabilizability of (1.7) for almost all such signals a. The intuition is that,
under some rather mild hypotheses on the random process generating «, one should avoid
the particular situations impairing stability in Proposition 1.16(b) and recover stabilization
at arbitrary convergence rates. Such study has been carried out in [53] and is the subject of
Chapter 2.

We consider, in Chapter 2, the more general framework of a switched system with N
subsystems and with a random switching signal obtained from a discrete Markov chain,
driving the switches between the subsystems, and from probability laws on (0, +c0) with
finite expected value, defining the time spent on each subsystem. We characterize its Lya-
punov exponents by applying the Multiplicative Ergodic Theorem to an associated discrete-
time system, and, as an application of such characterization, we prove that a controllability
condition for a switched control system implies that arbitrary exponential decay rates for
almost sure stabilization can be obtained by linear feedback laws (see Theorem 2.36 and
also Remark 2.38 for the relation with the persistence of excitation condition (1.6)).

1.2.2 Infinite-dimensional persistently excited systems

The work presented in Chapters 3 and 4 of this thesis were motivated by the study of per-
sistently excited systems in infinite dimension. Even though infinite-dimensional switched
systems have attracted much research effort in the past few years [7,79,92,111, 124, 149],
very few works have considered persistently excited systems in infinite dimension [47,91].
This section presents the most important results of [91,92], which considers the generaliza-
tion of Theorem 1.9 and Proposition 1.10 to infinite-dimensional systems. The paper [47] is
the subject of Chapter 3.
For T > pu > 0, consider the persistently excited control system

2(t) = Az(t) + a(t)Bu(t), z(t)eH, u(t)eU, a € §(T, p), (1.25)

where H, U are Hilbert spaces, the linear operator A : D(A) C H — H generates a strongly con-
tinuous semigroup {e'};50, and B € £(U,H). As in Section 1.2.1, we are interested in asymp-
totically stabilizing (1.25) by means of a linear feedback u(t) = Kz(t) for some bounded op-
erator K € £(H,U). Notice that, for every K € £L(H,U), a € (T, u), and z, € H, the closed-loop
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system
2(t) = (A + a(t)BK)z(t) (1.26)

admits a unique mild solution z € C(R,,H) (see, e.g., [21]), i.e., z is the unique function in
C(IR,, H) satisfying, for every t > 0,
t
z(t) = ezg + fo =94 (s)BK z(s)ds.

The paper [91] has considered the problem of whether (1.25) can be asymptotically sta-
bilized by the linear feedback u(t) = —B*z(t) when A generates a strongly continuous contrac-
tion semigroup {e‘4};s, i.e., etA”L(H) <1 for every t > 0. The interesting case is when the

uncontrolled evolution z(t) = Az(t) does not generate a strict contraction, i.e., when ||etA“ =1
for every t > 0, so that the norm of solutions may remain constant in the absence of control.
Notice that an immediate generalization of Proposition 1.10 to infinite-dimensional systems
does not hold, as shown in the following example.

Example 1.26 [91, Example 2.1]. Let us consider a damped wave equation on a string of
unitary length with fixed endpoints, whose dynamics are described by

2v(t,x) = d2 v(t,x) — a(t)C(x)*dw(t, x), t €[0,+00), x €[0,1],

v(0,x) = vo(x), x€[0,1], (1.27)
2:v(0,x) = v1(x), x€[0,1],

v(t,0)=v(t,1)=0, t €[0,+c0),

where C € L*((0,1),R) and a € L*(RR,,[0,1]). This can be written under the form (1.26) by
setting the real Hilbert spaces H and U to be H = H&((O, 1),R)x L?((0,1),R), U = L?((0,1), R),
with the usual scalar product in L?((0,1),IR) and the scalar product in Hé((O, 1),R) defined
by (v, W)yl ((0,1),R) = (9xv, dxw)2((0,1),R)- We define the operators A and B by

D(A) = (H?((0,1),R) N H3((0,1), R)) x Hy ((0, 1), R),

0 1 z
A:(dz ) ie., A(zl):(dzil),
dx? 0 22 dx?

we set z = (v, d;v) and take K = —B".

A straightforward computation shows that D(A*) D D(A) and that A* and —A coincide in
D(A). Since A is surjective, it follows that A* = —A, and thus A is skew-adjoint. By Stone’s
theorem (see, for instance, [170, Theorem 3.8.6]), A generates a strongly continuous unitary
group {eAt}tE]R, and, in particular, ||etA|| =1 for every t € R. Notice also that, if C is not
identically zero, the control system z(t) = Az(t)+ Bu(t) is exactly controllable in time greater
than 2 (see, e.g., [55, Theorem 2.55]).

However, in general, (1.27) is not asymptotically stable. Indeed, assume that ¢ = x(, ) is
the characteristic function of a proper subinterval (a4,b) ¢ (0,1), where we assume, without
loss of generality, that b < 1. Then there exist T, u € R} with T > p, a persistently exciting
signal a € §(T, ), and a corresponding nonzero periodic solution of (1.27). This follows
from the results in [124] (see also [92]) and can be illustrated by an explicit counterexample.
Set b’ = #. Take T =2 and p=1-"b". Then

a= ZX[Zk—y,Zkﬂz) (1.28)
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is a (T, p)-persistently exciting signal and

Z X[b+2k,1+2k) (X + 1) = X[—1-2k,—b'—2k] (X — 1)) (1.29)
k=0

is a periodic, nonzero, mild solution of (1.27) corresponding to the signal a. Notice, in
particular, that this solution does not converge to zero, even in the weak sense. We also
remark that one can replace the characteristic functions in (1.29) by translations of a smooth
function in order to obtain a smooth solution for (1.27).

Example 1.26 shows that Proposition 1.10 cannot be immediately generalized to infinite-
dimensional persistently excited systems. The paper [91] provide extra conditions under
which one can guarantee the asymptotic stability of

2(t) = (A— a(t)BB")z(t). (1.30)

A first such result proves that exponential stability holds if a generalized observability in-
equality is satisfied.

Theorem 1.27 [91, Theorem 3.2]. Let A: D(A) C H — H be the generator of a strongly contin-
uous contraction semigroup, B € L(U,H), and T, € IR’ be such that T > . Suppose there exist
two constants ¢, T > 0 such that

Jyato)

Then there exist C > 1 and y > 0 such that, for every initial condition zy € H and a € §(T, p), the
corresponding solution z of (1.30) satisfies

Bz dt>cllzoly,  Vzo€H, a e (T, p). (1.31)

lz(t)lly < Ce*izolly,  VtER,. (1.32)

The proof of Theorem 1.27 relies on the study of the Lyapunov function V(z) = %||z||ﬁ,
for which the following estimate can be shown.

Lemma 1.28 [91, Lemma 2.1]. Let a,b € R, be such that b > a. Then, for every measurable
function a : R, — [0, 1], every mild solution z of (1.30) satisfies

B* tA

@l

V(2(b)) - V(z(a)) < ! o |
(2(0)) - <z<a>)_—2+2(b_a)2”3”4j0 at+a)

Thanks to Lemma 1.28, one can provide a proof for Theorem 1.27.

Proof of Theorem 1.27. Fix a € §(T,u) and s > 0, and let V(z) = %||z||a Lemma 1.28 with
a=sand b =s+ 7 yields

1

V(z(s+ 1)) = V(z(s) < —————— | a(t+5)||B* ez
2(1+72|B|* )f | ©l
and so (1.31) implies
c
Vi(z(s+ 1)) = V(z(s)) £ ————5 V(z(s)).
(2(s + 7)) = V(2(5)) T (2(s)
The desired estimate (1.32) follows from standard arguments. ]
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1.2. Persistently excited systems

Notice that (1.31) is a generalization of the usual observability inequality for the exact
controllability of the system z(t) = A*z(t)+ Bu(t) (see, e.g., [55, Theorem 2.42]). In particular,
by taking a to be constant and equal to 1 in (1.31), one obtains that a necessary condition
for (1.31) to hold is the exact controllability of z(¢) = A*z(t) + Bu(t) in some time 7 > 0. It has
been proved in [91, Example 3.1] that the generalized observability inequality (1.31) holds,
for instance, for the wave equation

= Av(t,x) - a(t)C(x)*dw(t,x), te[0,00), x€Q,

dv(t,x)

v(0,x) = vo(x), xeQ, (1.33)
2:v(0,x) = vy(x), x€Q,

v(t,x) =0, t€[0,00), x € dQ,

where Q) is a bounded domain of R? and { € L®(Q, ) satisfies |{(x)| > {, for some (o > 0 and
almost every x € Q). This result has been proved in [91] by means of a spectral decomposition
of the Dirichlet Laplacian, with t = T.

Another stability result for (1.30) proved in [91] is the following, which shows that a gen-
eralized unique continuation property is a sufficient condition for weak asymptotic stability
of (1.30).

Theorem 1.29 [91, Theorem 3.2]. Let A: D(A) C H — H be the generator of a strongly contin-
uous contraction semigroup, B € L(U,H), and T,y € R}, be such that T > p. Suppose there exists
T > 0 such that, for every a € (T, p) and zy € H,

Jy el

Then, for every zy € Hand a € G(T, p), the corresponding solution z of (1.30) converges weakly to
0OinHast— +oo.

Betiz|ldi=0 = z=o0. (1.34)

Theorem 1.29 is proved by first showing that, for every zy € H and a € §(T, p), the weak
w-limit set

w(zp, a) = {zo, € H| there exists a sequence (s,,),en With s,, — +co such that the solution

z of (1.30) associated with zy and « satisfies z(s,) — z., as n — +oo}

is non-empty. This follows from the fact that the norm of a solution decreases along trajec-
tories, since A generates a contraction semigroup, and so any trajectory admits a weak limit
point. The main part of the proof consists on establishing that, if z, € w(zy, a), then there
exists @, € §(T, ) such that
T
fo a‘x’(t)|

and thus the assertion of the theorem follows from (1.34). We refer to [91] for the detailed
proof of (1.35).

Similarly to (1.31), (1.34) is a generalization of the usual unique continuation property
for the approximate controllability of the system z(t) = A*z(t) + Bu(t) (see, e.g., [55, Theo-
rem 2.43]), and, in particular, a necessary condition for (1.34) to hold is the approximate
controllability of z(t) = A*z(t) + Bu(t) in some time 7 > 0. According to [91, Example 4.1],
the generalized unique continuation property (1.34) holds, for instance, for the Schrodinger
equation

Bretiz || dt =0, (1.35)

id,v(t,x) = —Av(t, x) — ia(t)C(x)*v(t, x), te[0,00), x€Q,
v(0,x) = vo(x), xeQ, (1.36)
v(t,x) =0, t €[0,00), x € 0Q),
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where Q is a bounded domain of R? and { € L®(Q, R) satisfies |{(x)| > {, for some (o > 0 and
almost every x € w for some non-empty open set w C Q. This result has been proved in [91]
by a spectral decomposition of the Dirichlet Laplacian and a combination of Privalov’s and
Holmgren’s uniqueness theorems (see, e.g., [107, Chapter III, Section D] or [177, Chapter
XIV, Theorem 1.9] for the former and [96, Theorem 8.6.8] for the latter), in a technique
similar to that of [150].

Another problem treated in [91] is to obtain sufficient conditions for the asymptotic
stability of (1.30) when a is not a persistently exciting signal, but satisfies instead some
other condition guaranteeing a persistent action of the control on the system. One such
condition is the following.

Definition 1.30 [91, Definition 5.1]. Let A : D(A) C H — H be the generator of a strongly
continuous contraction semigroup, B € £(U,H), and T,c > 0. The set of all signals a €
L*([0,T],[0,1]) satisfying

Jy att]

is denoted by K(A, B, T, c).

2
Bezo|| dt = cllzollf, Vzo €H (1.37)

One of the stability results presented in [91] using this definition is the following crite-
rion for the strong convergence to zero of solutions of (1.30).

Theorem 1.31 [91, Theorem 5.3]. Let A: D(A) C H — H be the generator of a strongly continu-
ous contraction semigroup and B € L(U,H). Suppose that there exist p, Ty € R, and a continuous
function ¢ :(0,00) = (0,00) such that, for all T € (0,Ty], if @ € L*([0,T],[0,1]) is such that
fo (t)dt > pT, then & € X(A,B, T,c(T)).

Let ((ay,b,))uen be a sequence of disjoint intervals in R, with ) ,.nc(b, —a,) = +oo and
a € L®(R,,[0,1]) be such that

Lb a(tydt>p(b,—a,), YneNl. (1.38)

n

Then any mild solution z of (1.30) satisfies ||z(t)||y — 0 as t — +co.

Notice that (1.38) is a generalization of the persistence of excitation condition (1.6),
where one requires a lower bound on the integral of & not on all intervals of length T,
but only on a sequence of intervals ((a,, b,)),en Which do not become too small too fast, in
the sense that } , (b, —a,) = +co.

Even if the hypotheses of Theorem 1.31 are quite technical, it has been shown in [91, Ex-
ample 5.2] that it can be applied to the wave equation (1.33), where, as before, one assumes
that ¢ € L*(Q, R) satisfies |C(x)| > Cy for some Cy > 0 and almost every x € (), but without
the assumption that a is persistently exciting. In this case, the sufficient condition for the
strong convergence to zero of solutions of (1.30) obtained from Theorem 1.31 in [91, Ex-
ample 5.2] is that there exists p > 0 and a sequence of disjoint intervals ((a,,b,)),en With
Y sen(by — a,)? = +oo such that a € L®(RR,, [0, 1]) satisfies (1.38). As in the previous cases,
this result is also shown using spectral methods.

Another consequence of Theorem 1.31 is the following improvement of Proposition 1.10
for finite-dimensional systems, where one no longer assumes «a to be persistently exciting.

Proposition 1.32 [91, Corollary 5.5]. Let A € My(R) and B € My ,,(R). Assume that A is
skew-symmetric and (A, B) is controllable, and let r € IN be the smallest non-negative integer such
that rk(B AB - ArB) =d. Let p> 0, ((a,, b,))nen be a sequence of disjoint intervals in R,

with Y 521 (by, —a,)**! = +00, and a € L*(R,, [0, 1]) be such that (1.38) is satisfied. Then every
solution of (1.30) satisfies |z(t)] — 0 as t — +oo.
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The stability of infinite-dimensional systems more general than (1.30) with time-varying
damping parameters satisfying some condition guaranteeing a persistent action on the sys-
tem have also been considered in other works in the literature. For instance, [92] analyzes
the stability of the second order system

Z(t)+ B(t)z(t) + Az(t) = 0,
z(0)=zg €V, (1.39)
Z(O) =21 € H,

where A : D(A) C H — H is a linear self-adjoint coercive operator with dense domain, V
denotes the Hilbert space V = D(A/?), and the time-dependent (and a priori unbounded
and non-linear) operator B satisfies B(t)0 = 0 and B € L} (RR,,Lip(W,W’)), where Lip(W,W’)
denotes the set of Lipschitz continuous functions from the Hilbert space W to its dual W’.
One also assumes that V < W < H = H’ < W’ < V’ with dense embeddings, and that there
exist C,Cy,Ag >0 and b € LIZOC(JRJH R, ) such that, for every A € [0,1¢], (Idw+AA)~! € £(W)
with
[[(dw +24)7]| .y, < Co.

and, for every t € R, and v,w e W,

(B(thw=B(t)v,w = v)yyw 2 0,
(B(tyw, whyw = b(1) [wligy,
|IB(t)w = B(t)vlly, < Cb(t)|[w =]}y

Under these assumptions, the existence and uniqueness of the solutions of (1.39) have been
proved in [92, Theorem 2.1] in the function space L?((0,T),V) N H'((0,T),H)nH?((0,T),V’),
proving that solutions belong to the space €°([0, T],V)N€!([0, T],H). The main result of [92]
is the following stability criterion, which relies on an estimate of the energy decay on short
intervals of time established in [92, Theorem 3.1].

Theorem 1.33 [92, Theorem 3.2]. Consider System (1.39) with the previous assumptions. Let
((an, by))nen be a sequence of non-empty disjoint open intervals in (0,+o00). Assume that there
exist sequences (m,),eN and (M) ,eN of positive real numbers satisfying

+o00
Zmn(bn - an)min((bn - an)zf L = +00,
= M, +m,

and such that, for every t € (a,, b,) and v € W, one has
my [[vlly < (B(t)v, V) w < My B[y -
Then every solution z of (1.39) satisfies ||z(t)|ly — 0 and ||2(t)||y — 0 as t — +co.

The previous results from [91, 92] consist in a great contribution for the study of per-
sistently excited and switched systems in infinite dimension. However, several problems
concerning the infinite-dimensional persistently excited system (1.25) remain open, such as
the case of control laws other than u(t) = —B*z(t), unbounded control operators B, operators
A for which e is not necessarily a contraction, or dynamics on Banach spaces.

Motivated by the several open problems on infinite-dimensional persistently excited sys-
tems, this thesis analyzes the behavior of one such system in Chapter 3. More precisely, we
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are interested in the asymptotic behavior of the system of transport equations

e (t,x) + dyu; (8, x) + a;(t) xi (x)u;(t,x) = 0, t>0, x€[0,L;], i € [1,Ny],
dpui(t,x) + dyu;(t, x) = 0, t>0,xe[0,L;], i € [Ng+1,N],
N
. 1.40
u;(t,0) = Zmijuj(t,Lj), t>0,ie[1,N], (1.40)
j=1
u;(0,x) = uj o(x), x€[0,L;], i €[[1,N],

where, for i € [1,N], x; is the characteristic function of an interval [a;,b;] C [0,L;] with
a; < bj, a; is a persistently exciting signal, and M = (m;;); jef1,v] € Mn(R) is called the
transmission matrix. The main result of Chapter 3 is Theorem 3.1, which provides sufficient
conditions for the exponential stability of (1.40).

The analysis carried out in Chapter 3 does not use the results from [91], since one is
interested in studying (1.40) in the Banach space ]_[?21 LP([0,L;],R) for p € [1,+00], which
is not a Hilbert space unless p = 2, and, even in that case, the operator A associated with
(1.40) may not be a contraction. We rely rather on an explicit formula for the solutions of
(1.40), expressing the solution at time ¢ in terms of the initial condition and some coefficients
computed recursively. The stability analysis is performed by studying the behavior of such
coefficients. The application of such technique to more general problems is also the main
motivation for Chapter 4.

It is also interesting to note that the stability result obtained in Chapter 3 cannot be
obtained from a result similar to Theorem 1.27 using a generalized observability inequal-
ity, since Theorem 3.1 in Chapter 3 guarantees the stability for some situations where it is
known that such generalized observability inequality does not hold. Indeed, consider the
case N=2,N;=1,L;/L, € Q, and my = myp = iy = Myy = %, in which exponential stabil-
ity of (1.40) is guaranteed by Theorem 3.1. If u; o(x) = ¢(L; —x) and u; o(x) = —@p(L, — x) for
some @ € C*(R,IR) compactly supported in (0, ) for some small ¢ > 0, then one immediately
obtains that the solution of the undamped system

dsu;(t, x) + dyui(t,x) = 0, t>0, xe[0,L;], i €{1,2),
1

u,-(t,O):E(ul(t,L1)+u2(t,L2)), t>0,i€{l,2},

u;(0,x) = uj o(x), xe[0,L;], ie{1,2},

satisfies u;(t,x) = 0 for every i € {1,2}, x € [0,L;], and t > 6. Hence, if T —p > 6, one can always
find non-zero initial conditions and some a € §(T, ) for which the left-hand side of (1.31)
is zero, which proves that (1.31) cannot be satisfied.

1.3 Systems of partial differential equations on networks

The study of System (1.40) carried out in Chapter 3 is motivated by the several open prob-
lems on infinite-dimensional persistently excited systems, but also by the fact that (1.40) can
be seen a simple case of a multi-body or multi-link structure. These type of problems model
strings, membranes, or plates, by partial differential equations defined on several coupled
domains, and are an active research subject since the 1980s [4,5,119,120,137,138]. Such
research activity is motivated by the applications of multi-body structures and the interest-
ing mathematical questions that arise from their analysis (see, e.g., [6,110] and references
therein). The particular case of (1.40) can be seen as a system of transport equations on a
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network, whose edges are identified with the N intervals [0, L;] for i € [1, N], the connection
of such edges being described by the matrix M. Notice that the case considered in Chapter
3, where one assumes m;; = 0 for every i,j € [1, N] (see Section 3.2.3 and Hypothesis 3.11),
corresponds to a network containing a single node O from where all the edges start and end.

Systems of partial differential equations on networks are a particular kind of multi-
body systems which have attracted much research effort recently [35, 63]. Such systems
are modeled by several PDEs on one-dimensional domains, each domain being identified
with an edge of a given graph, with interactions between the PDEs occurring at the vertices
of the graph. Despite the simplification provided by the one-dimensional dynamics on
each edge, the interactions on the vertices render the analysis of such systems far from
trivial. For instance, several properties of systems of wave equations on networks depend
on the topology of the network or on rationality relations of the lengths of its edges [48,63].
Consider, for instance, the following system of wave equations on a network

2 2
aa:;e(t,x) = %(t,x), ee€&, te[0,+00), x€[0,L,],
e, (t,9) =1, (t,9), g€V, e1,e2€ &y, t €[0,+00), (1.41)
Z du, (t,q) =0, q € Ving, t €[0,+00),
on,
ecé

q

with either Dirichlet controls

ue(t,q) = vy(t), g€ Vexpy €€ &y, t €[0,+00), (1.42)
or Neumann controls
du, 3 v
W(t,q)_vq(t), q € Vexry €&y, t €[0,+00), (1.43)

where N is a connected network, € it its set of edges, V is its set of vertices, L, > 0 is the
length of the edge ¢, £, denotes the set of edges containing the vertex g € V, Vi is the set
of all vertices of N belonging to at least two different edges, called interior vertices, Vey;
is the set of all vertices of N belonging to only one edge, called exterior vertices, and, for
q € Vext, vq are control inputs. The following result from [63] highlights the dependence of
the controllability of (1.41) on the rationality relations of the lengths of the edges.

Theorem 1.34 (63, Corollary 5.38]. Consider the system of wave equations (1.41) with Dirichlet
controls (1.42). Assume that Vi, contains only one node and that there exists qo € Vey such that
v, = 0 for every g € Vin \{qo}- Let eq be the only edge in €, and set Ly =} _,e¢ Le. Then (1.41) is

approximately controllable in some time T > 2Ly if and only if ILﬂ ¢ Q for every e, e; € €\ {eg}
€2
with e #ep.

Theorem 1.34 illustrates the fact that the rationality relations of the lengths of the edges
have an influence in the behavior of the system. Several other results exist where such
dependency is more subtle; for more details, we refer to [62,63,171]. Another property
that influences the behavior of (1.41) is the topology of the network, which is illustrated, for
instance, in the following stabilization result, whose proof is given in Chapter 4, Theorem
4.65, in a more general setting.

Theorem 1.35 [48, Theorem 5.16]. Consider the system of wave equations (1.41) with Neu-
mann controls (1.43) given by vy(t) = -1, ng (t,q) for q € Vey, where 11, € [0,+00) is a damping
coefficient. Then (1.41) is exponentially stable if and only if N is a tree and 1, = 0 for at most one

q € Vext-
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We refer to Chapter 4 for a more precise definition of systems of wave equations on
networks and the sense in which one considers their solutions.

Several different systems of partial differential equations on networks have been consid-
ered in the literature, such as systems of Euler-Bernoulli beam equations [8,130,157], usu-
ally motivated by problems in mechanics; of wave equations [2,25,62,63,139,176] or con-
servations laws [24, 145], usually motivated by propagation phenomena; or of Schrodinger
equations [26, 98], motivated for instance by the applications to the study of quantum
graphs [3,108,109]. Several works analyze only some simple network topologies, such as
star-shaped networks (i.e., networks with a central vertex belonging to all edges, as in The-
orem 1.34) [62,79] or tree-shaped networks (i.e., networks without cycles) [2, 26, 98, 145],
but, despite such simplification, the dynamics in these cases are sufficiently rich to present
several interesting phenomena due to the network structure, and their study is still of much
mathematical and practical interest. Notice that the system of transport equations (1.40)
studied in Chapter 3 is defined on a star-shaped network.

The main technique used in the study of (1.40) in Chapter 3 is an explicit formula for its
solutions (see Theorem 3.18), obtained using the method of characteristics and an iterative
argument. The main idea for retrieving such formula is the following. Let (uy,...,uy) be
a solution of (1.40), assumed here to be sufficiently regular (see Section 3.2.1 for the well-
posedness of (1.40)). Notice that, for i € [1,N]], x € [0,L;], and t > x, one has, by the method
of characteristics, that

u;(t,x) = u;(t—x,0)e = Jo ailt=s)xix=s)ds

where we set x; =0 for i € [N;+1,N], with a similar equation expressing u;(t, x) in terms of
the initial condition u; o when 0 <t < x. In particular, u;(¢,x) can be computed if one knows
u;(t,0) for t > 0. Using the third equation of (1.40), one obtains that, for t > L.y,

J(£,0) = Zm” uj(t—Lj,0)e ~Jy a9z, L=s)ds. (1.44)
j=1

Such equation expresses u;(t,0) in terms of u;(-,0) evaluated at previous times for j € [1, N].
The explicit formula for the solution of (1.40) is obtained in Chapter 3 by iterating (1.44) in
order to express u;(t,0) in terms of the initial conditions u; ¢, j € [1, N].

Notice that, by setting v(t) = (u;(t, 0))ie|11,N]] € RN, one obtains that v(t) satisfies

N
= ZA]-(t)v(t—Lj), (1.45)
=1
. N 0)) :
where A;(t) € My(RR) is given by A;(t) = (akg(t))k,fe[[l,N]] with

a(])(t) mk]e fO t S)XJ(L S)ds, lf g — ]-)
kt
0, if€=j.

The techniques used in Chapter 3 turn out to be also applicable to analyze the stability of
more general systems under the form (1.45). Moreover, other systems of hyperbolic equa-
tions on networks, more general than (1.40), can also be put under the form (1.45), such
as linear wave equations on networks (see Section 4.4 for more details). This motivates the
study of systems of the form (1.45), known as difference equations, which is the main subject
of Chapters 4 and 5 of this thesis.
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1.4. Difference equations

1.4 Difference equations
Consider the system

x(t) =

-

A]‘X(t—A]‘), t>0, (146)

j=1

where x(t) € €%, and, for j € [1,N], Aj € My(C) and A;j > 0 is a delay. System (1.46) is
called an autonomous difference equation and its analysis has attracted much interest since
the 1970s [14, 60, 64, 84,94, 129] (see also [86, Chapter 9] and references therein) and to
this day [48,87,127,132]. The well-posedness of such system can be easily established in
several different function spaces (see Sections 4.2.1 and 5.2), such as the Lebesgue spaces
LP, the Sobolev spaces WX?, or the € spaces, possibly with compatibility conditions being
prescribed in order to ensure the desired regularity. In order to fix the ideas, we consider in
this introduction the Banach spaces X; and X defined by

X = C([-r,0],C%),

N
Xo=1xeX[x(0)= ) Apx(-A))},
j=1

with the usual L* norm, where r > A,,,. For every initial condition x, € X, there exists
a unique x € C([-r,+00),C") satisfying (1.46) and such that x(t) = xy(t) for t € [~Amax 0]
and x; = x(t+ ')l[—Amax,O] € Xp for every t > 0, the map t — x; € Xy being continuous (see,
e.g., Proposition 5.2 and Remark 5.4 in Chapter 5, or also [86, Chapter 9, Theorem 1.1 and
Lemma 2.1]). Notice that one may also consider (1.46) with x(t) € R? and Aj € My(R),
but we choose complex-valued states and matrices in this section following the approach
of [48,127], used in Chapters 4 and 5 below, which is motivated by the fact that classical
results for difference equations are more naturally written down in such framework.

1.4.1 Stability of difference equations

The stability of (1.46) has been studied through spectral methods and Laplace transform
techniques, leading to several stability criteria, such as the following one from [60, 86, 94].

Theorem 1.36 [86, Chapter 9, Theorem 3.5]. The following statements are equivalent.
(a) System (1.46) is uniformly asymptotically stable in X.

(b) There exist C,y > 0 such that, for every xo € X, the solution x of (1.46) with initial condition
X satisfies
x(t) < Ceixolly,,  VteR,.

(c) One has
N

Idd — Ze_/\AfA]‘

=1

sup{ReA |1 eC, det =0;<0. (1.47)

In practical applications, the coefficients of the matrices A; and the delays A; may be
known only up to a certain precision, and it is thus important to known the effects that small
perturbations have in the behavior of (1.46). The fact that the stability of (1.46) is preserved
under small perturbations of the matrices A; can be easily established from (1.47) (see,
e.g., [86, Section 9.6]). However, the left-hand side of (1.47) is not continuous in general with
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respect to the delays Aq,..., Ay, which means that the stability of (1.46) is not preserved
under small perturbations of the delays, a fact that has been already remarked in [94, 129,
134] and that we illustrate with the following example, which is adapted from [86, Section
9.6].

Example 1.37. Consider the difference equation
1
() =-x(t-1)->x(t-2),  t20. (1.48)

In order to study its stability using Theorem 1.36, we study the zeroes of the characteristic
equation 1 + e~ + %e‘z’\ = 0. A straightforward computation shows that such equation is

satisfied if and only if e! = —% + % or e} = —% - % In particular, for every A € C solution of

1+e*+5e72) =0, one has ¢?Re = |e/‘|2 = %, which yields Re A = -3 log2. Hence (1.47) is
satisfied, and, by Theorem 1.36, (1.48) is uniformly asymptotically stable.
Consider now, for n € IN*, the difference equation

x(t):—x( —jfo)—%x(t—z), £>0. (1.49)
Notice that ifj% — 1 as n — +o0, and hence, for large n, (1.49) is a perturbation of (1.48).
Let 0, € R} be the unique positive real number satisfying e IO 4 %6_20" = 1. Notice that
o0, is well-defined, since the function f, : R, — R given by f,(0) = e HTO 4 %6_26 —1 satisfies
£,(0) = %, lim, ;o fu(0) = -1, and f,/(0) < 0 for every o > 0. Moreover, one has f,(c) >
%e‘z" —1 for every n € N* and o € R,, since iﬁf% < 2. In particular, f, (11—0) > %e‘l/S -1>0,

which proves that o, > % for every n € N*. Let w,, = 4”2’ L7t and consider the function

x(t) = e sin(w,t).

A straightforward computation shows that x is a solution of (1.49). Hence, for every n € IN*,
(1.49) is unstable, admitting an unbounded solution x which grows faster than e,

Example 1.37 shows that small perturbations on the delays may drastically change the
stability of (1.46). An important question is, therefore, to characterize the situations where
the stability of (1.46) is preserved under perturbations on the delays. For that purpose, the
following definition has been introduced in [86-88].

Definition 1.38 [86, Chapter 9, Definitions 6.1 and 6.2]. Let Ay,..., Ay € M;(C) and Ay, ...,
AN € (0,+OO).

(a) System (1.46) is said to be locally strongly stable if there exists a neighborhood V of
A =(Ay,...,Ay)in (0,+c0)N such that, for every L = (Ly,...,Ly) € V, the system

N
x(t) = ZA]-x(t—Lj), >0, (1.50)
j=1

is uniformly asymptotically stable.

(b) System (1.46) is said to be globally strongly stable (or simply strongly stable) if, for every
L=(Ly,...,Ly) € (0,+00)N, (1.50) is uniformly asymptotically stable.

The following result, known as the Hale-Silkowski criterion, characterizes the strong
stability of (1.46).
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Theorem 1.39 [14, Theorem 5.2]. Let Ay,...,Any € M4(C). The following assertions are equiv-
alent.

(a) Omne has pys(A) <1, where

(1.51)

(b) Thereexist Ay,...,An € (0,+o0) rationally independent such that (1.46) is uniformly asymp-
totically stable.

(c) There exist Ay,..., Ay € (0,+00) such that (1.46) is locally strongly stable.
(d) System (1.46) is globally strongly stable.

Hence, global and local strong stability are equivalent, a striking fact first proved in
[82]. Moreover, they are equivalent to the uniform asymptotic stability of (1.46) for fixed
A1,...,AN € (0,+00) with rationally independent components, and can be characterized by
the condition pyg(A) < 1, a fact first proved in [159]. Theorem 1.39 was already known to
hold in the one-dimensional case since [129]. Another interesting feature of Theorem 1.39
is that pyg(A) does not depend on the delays Ay,...,Ay. This result has been generalized
in [132] to the case where one assumes to have some rational dependence structure on the
delays, which is important since, in some practical situations, the delays cannot be chosen
independently. The stability of (1.46) with time-varying matrices A; has been considered
in [48,136] and is the subject of Chapter 4. Stability issues for time-varying delays A; have
been addressed in [15].

1.4.2 Neutral functional differential equations

A major motivation for analyzing the stability of (1.46) is that it is deeply related to proper-
ties of more general neutral functional differential equations of the form

d N
E[x(t)—;ij(t—Aj) = Lx,, (1.52)

.....

bounded linear map. Notice that (1.52) can also be written as
N N ,
x(t) - Zij(t ~Aj)=x(0)- Zij(—Aj) + jo Lx.ds,
j=1 j=1

highlighting the link between (1.46) and (1.52). For every x; € X, (1.52) admits a unique
solution x € €([—r,+00),C?) satisfying x(t) = x((t) for t € [-r,0] (see, e.g., [86, Chapter 9,
Theorem 1.1]). The fact that the analysis of (1.46) can provide information on (1.52) is
illustrated by the following result, which provides some properties of (1.52) that can be
obtained when (1.46) is strongly stable.

Theorem 1.40 [86, Chapter 9, Theorems 7.1 and 7.3]. Let Ay,..., Ay € M4(C), Aq,..., AN €
(0,+c0), and assume that (1.46) is strongly stable. Let xy € X and denote by y*(xq), w(xq) C X,
the sets

¥ (x0) = {x; | x is the solution of (1.52) with initial condition x,, t > 0},
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w(xq) = m {x; | x is the solution of (1.52) with initial condition xg, t > s},
5>0

called respectively the positive orbit and the w-limit set of x,.
(a) The positive orbit y*(x) is relatively compact if and only if it is bounded.
(b) If y*(xq) is bounded, then w(xq) is a nonempty, compact, connected, analytic, invariant set.
(c) If x € C((—co,a],C?) is a solution of (1.52), then it is analytic.

Some conclusions of Theorem 1.40 also hold when the linear operator L is replaced by a
continuous function f : Q — C* for some open subset Q of X (see [86, Section 9.7]).

One can also provide relations on the spectra of the strongly continuous semigroups
associated with (1.46) and (1.52) [94]. For t > 0, let Ty(t) € £(X() be the operator given by
To(t)xg = x;, where x is the unique solution of (1.46) with initial condition x, and define
T(t) € L(X) by T(t)xg = x;, where x denotes now the unique solution of (1.52) with initial
condition xy. Then {Ty(t)};>9 and {T(t)};>o are strongly continuous semigroups in X, and
X, respectively, whose generators correspond to transport operators [85]. Notice that, since
L: X — € is a bounded linear operator, it follows by Riesz representation theorem that
there exists a function of bounded variation # : [-r,0] — My(C) such that, for every x € X,

Lx= f_ordn(s)x(s), (1.53)

where we also denote by 7 the Lebesgue—Stieltjes measure associated with the function of
bounded variation 7.

Recall that, for a closed linear operator A: D(A) C Y — Y in a Banach space Y, its spectrum
0(A) is the set of all A € C such that A — A is not bijective. It is decomposed into the point
spectrum op,(A), which is the set of A € C such that A -A is not injective, the residual spectrum
0(A), which is the set of A € C such that A —A is injective but its range is not dense in Y, and
the continuous spectrum o.(A), which is the set of A € C such that A — A is injective and its
range is dense in Y but not equal to Y. Hence 0(A) = 0,(A) U 0:(A) U 0.(A), the unions being
pairwise disjoint. The essential spectrum oes(A) of A is the part of the spectrum of A that
cannot be removed by compact perturbations of A, i.e., 0qs5(A) =g compact 0(A +K). When
o(A) is non-empty, the spectral radius of A is defined by p(A) = sup ., (4)|Al, the spectral
radii pp(A), p.(A), p.(A), and p,(A) being defined similarly.

The next theorem, which gathers several results from [94] (see also [87]), provides sev-
eral links between the spectra of (1.46) and (1.52).

Theorem 1.41 [94]. Let t > 0 and set

[ N
Idd—ZA]‘e_/\Aj] =0 ,
L j=1

[ N
0
Z={1eC|de /\[Idd—E Aje—Mi]—f e/\sdq(s)]:O .
—-r
_ =1

ZOI AeC|de

—+

-+

(a) The point spectra of Ty(t) and T (t) satisfy
op(To(\ (0} ={eM [ X eZo),  op(T(1)\ {0} ={e [AeZ}.
(b) The residual spectra of Ty(t) and T(t) are both empty.
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(c) The continuous spectra of Ty(t) and T(t) satisfy

o(To()\ (0} c{A e C|A| = e, peReZo}, oe(T(H)\{0)C{1eC|lA|=e", peReZ).

(d) The essential spectra of Ty(t) and T(t) coincide outside 0, i.e., Tegs(T(£))\{0} = Tess(To(#))\{0}.

(e) The spectral radius of Ty(t) is given by p(Ty(t)) = Pess(To(t)) = Pess(T(t)) = e*!, where a =
supRe Z,.

f) The spectral radius of T(t) is given by p(T(t)) = po(T(t)) = eP!, where p = supRe Z.
p given by p Pp p =sup

Notice that Theorem 1.41(c) provides the same bound on the continuous spectra of Ty(t)
and T(t), which depends only on the set Z;, associated with the difference equation (1.46).
Moreover, thanks to Theorem 1.41(e), the exponential stability of (1.46) is a necessary con-
dition for the exponential stability of the solutions of (1.52).

1.4.3 Hyperbolic partial differential equations

Another important motivation for the study of (1.46) is that several systems of hyperbolic
partial differential equations can be put under the form (1.46) or (1.52). This standard
approach to the analysis of hyperbolic PDEs relies on the method of characteristics and has
been widely used in the literature, since at least the 1960s [33, 34, 54,74,133,160] and to
this day [48,56,57,70,79,106]. The following example, extracted from [160], exhibits such
transformation for a hyperbolic system stemming from an electric circuit connected by a
transmission line.

Example 1.42 [160]. Consider the electric circuit from Figure 1.2, where a voltage source
of voltage E with internal resistance r is connected by a lossless transmission line of unit
length to a load, composed of a capacitor of capacitance C connected in parallel to a non-
linear element described by the function f relating the voltage and the current across this
element, which usually models a tunnel diode. The voltage v and current i along the trans-
mission line are determined by the system of telegrapher’s equations

Lod;i(t,x) = —d,v(t, x), t>0,x€[0,1],
Codsv(t, x) = —d,i(t, x), t>0,x€[0,1], (154)
v(t,0)+19i(t,0) =E, t>0,
i(t,1)=Coyv(t,1) = f(v(t,1)), t>0,

where Ly and Cj are the specific inductance and capacitance of the transmission line, re-
spectively.

Let Z = é_?) be the characteristic impedance and ¢ = the propagation speed of

\/L Co
waves on the transmission line. For regular solutions of (1.54), one has that

d d
%[v(t,x+ct)+Zi(t,x+ct)]:0 and %[v(t,x—ct)—Zi(t,x—ct)]:O,
which proves that solutions of (1.54) must be of the form

[p(x—ct)+P(x+ct)], i(t,x) = %[qb(x—ct)—lp(x+ct)], (1.55)

1
v(t,x) = 5
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Figure 1.2: Electric circuit from Example 1.42. The generator on the left is connected to the
load on the right by a lossless transmission line of unit length.

for some regular functions ¢ : (—co,1] = C and ¥ : [0,+00) — C. Using this transformation,
[160] shows that the voltage v (t) = v(t,1) on the load satisfies the equation

= ZerEro ‘%[Vl(t)—Pvl(f—T)]—f(vl(t))—pf(vl(t—r)), (1.56)

Co (0 + pu (i)

where T = 2/c is the time a wave takes to travel twice the length of the transmission line and
p= :g;g is the reflection coefficient at the extremity x = 0. Equation (1.56) is a neutral func-
tional differential equation, being a non-linear generalization of (1.52). Moreover, (1.56) is
a non-linear generalization of (1.46) when the load is made only of the non-linear element
f,i.e., when C =0, reducing to (1.46) when f is linear.

Notice that it suffices to study (1.56) in order to obtain the behavior of (1.54), in the sense
that, if one knows the solution vy (t) of (1.56) for every t > 0, then it is possible to reconstruct
the solution of (1.54) for every t > 1/c. Indeed, thanks to the last equation of (1.54), one can
obtain i(¢,1) from v(t,1) for every t > 0, and hence, using (1.55), one can obtain ¢(¢&) for
every & € (—oo,1] and (&) for every & € [1,400). Another application of (1.55) allows one
to reconstruct v(t,x) and i(t,x) for every x € [0,1] and t > 1/c. In particular, the asymptotic
behaviors of (1.54) and (1.56) can be obtained one from the other.

Motivated by the previous literature on the difference equation (1.46) and its applica-
tions, we analyze, in Chapter 4, the stability of the non-autonomous difference equation

x(t) = A]'(t)x(t—A]'), (1.57)

-

j=1

where A; : R — My(C) for j € [1,N]. Thanks to a suitable representation formula for its
solutions, generalizing the one obtained in Chapter 3 for (1.40), we characterize the ex-
ponential behavior of (1.57) in terms of some time-dependent matrix coefficients, taking
into account the rational dependence structure of the delays Ay,..., Ay. We also provide a
generalization of the Hale-Silkowski criterion, Corollaries 4.31 and 4.37 below, characteriz-
ing the exponential stability of (1.57) uniformly with respect to A = (A44,...,AN) € L°(R, D)
for some non-empty bounded set 1 ¢ M,(C)N. Notice that this situation corresponds to
regarding (1.57) as a switched system under arbitrary 1»-valued switching signals. By ex-
ploiting the link between (1.57) and linear hyperbolic PDEs with time-varying coefficients,
we apply our results to the stability analysis of systems of transport and wave propagation
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on networks, obtaining in particular a characterization of the stability of systems of wave
equations on networks with switching damping at exterior vertices in terms of the topology
of the network and the number of damped vertices, which generalizes a known result for
constant damping.

1.4.4 Control of difference equations

Difference equations and neutral functional difference equations have also been considered
in the literature from the point of view of control and stabilization [87,88,140,141,143,154].
In such situations, one is interested in the controlled difference equation

N
x(t) = Zij(t—Aj)+Bu(t) (1.58)
j=1
or in the controlled neutral functional differential equation

d N
E |:X(t) - ZA]X(t —A])
=1

where u(t) € C™ is the control input and B € M ,(C). The stabilizability of (1.58) by a
linear feedback law of the form u(t) = Z?Ll Kjx(t—A;) has been addressed in [87], where the
following result is shown.

= Lx; + Bu(t), (1.59)

Theorem 1.43 [87, Theorem 3.1]. Let Ay,...,Ax € My(C), B € My ,,(C), and Aq,...,AN €
(0,+00)N. The following assertions are equivalent.

(a) There exist Ky,...,Ky € My, 4(C) such that the system

N

x(t) = Z(A]- + BK;)x(t - A;)

j=1
is strongly stable.

(b) For every Ly,...,Ly € (0,+o0), there exists € > 0 such that, for every A € C with Re A > —¢,

one has N
rk[B Id, - ZA]-e‘“f] —d. (1.60)

j=1

Notice that (1.60) is a reminiscent of Hautus test for controllability (see, e.g., [163,
Lemma 3.3.7]). The stabilizability of (1.59) by a linear feedback law of the form u(t) =
% [Zﬁ\lzl Kjx(t —A]-)]+ Gx;, where K; € M, 4(C) for j € [1,N] and G € £(X,C™), has also been
addressed in [87].

Theorem 1.44 [87, Theorem 3.2]. Let Ay,..., Ay € My(C), B € My,,(C), L € L(X,C4), and
Ay,...,Ayn €(0,+00)N, and write L as in (1.53). The following assertions are equivalent.

(a) There exist Ky,...,Ky € M,, 4(C) and G € L(X,C™) such that the system

N
x(t) - Z(Aj +BK)x(t—Aj)| = (L + BG)x,
j=1

4
dt

is strongly stable.
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(b) For every Ly,...,Ly € (0,+00), there exists € > 0 such that, for every A € C with Re A > —¢,
one has

N
rk[B /\{Idd =) Ajeth

_IO Mdi(s)| = d,
j=1 -

N
rk[B 1d, —ZAje—*Lf] =d.

=1

The controllability problem for (1.58) and (1.59) is also of much interest. Notice that,
since the dynamics of such equations are infinite-dimensional, taking place in the Banach
spaces Xy and X, respectively, several different notions of controllability can be used, such
as exact, approximate, spectral, or relative controllability [51,154].

Relative controllability consists in controlling only the final state x(T) € C?, instead of
the whole state xp = x(T +:) in Xy or X. This notion has been originally introduced in
the study of control systems with delays in the input [19, 51,105, 142], having been later
extended to systems with delays in the state [66,148] and also to more general frameworks,
such as stochastic control systems [103] or fractional integro-differential systems [18]. The
relative controllability of (1.58) in a particular situation has been considered in [148], where
the following theorem, generalizing a result from [66], is shown.

Theorem 1.45 [148, Theorem 4]. Consider the difference equation
x(t) =x(t—1)+ Ax(t — A) + Bu(t), (1.61)

where A € N*, A € M;(C), and B e My ,,,(C). Assume that tkB =m € [1,d]. Let T € N. Then
the following assertions are equivalent.

(a) For every xo:[-A,0) — C? and x, € C%, there exists u : [0, T] — C" such that the unique
solution x of (1.61) with initial condition xy and control u satisfies x(T) = x;.

(b) One has T > Ty, and
k(B AB A’B .- A1B)=d,

where Tyin = [% - 1]/\ and q = % = [% - 1-|.

Other notions of controllability for (1.58) and (1.59) are less present in the literature,
with the remarkable exception of [141,154] and references therein.

Chapter 5 considers the controllability problem for (1.58). We provide relative control-
lability criteria in some different function spaces, generalizing the criterion from Theorem
1.45 to the general situation of (1.58) in Theorems 5.12 and 5.13. We also compare relative
controllability for different delays in terms of their rational dependence relations and char-
acterize the minimal time for relative controllability. Chapter 5 also considers the exact and
approximate controllability of (1.58), showing some general results for commensurable de-
lays, in which case exact and approximate controllability are equivalent, before completely
characterizing exact and approximate controllability of (1.58) for a two-dimensional system
with two delays and one control input.

1.5 Structure of the thesis

This thesis presents the work carried out in the following articles.
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[47] Y. Chitour, G. Mazanti, and M. Sigalotti. Persistently damped transport on a network
of circles. Trans. Amer. Math. Soc., to appear.

[48] Y. Chitour, G. Mazanti, and M. Sigalotti. Stability of non-autonomous difference
equations with applications to transport and wave propagation on networks. Netw.
Heterog. Media, to appear.

[53] F. Colonius and G. Mazanti. Lyapunov exponents for random continuous-time swit-
ched systems and stabilizability. Preprint arXiv: 1511.06461, 2015.

[127] G. Mazanti. Relative controllability of linear difference equations. Preprint arXiv:
1604.08663, 2016.

Chapter 2 presents the work from [53]. Motivated by the previous study of finite-
dimensional persistently excited systems recalled in Section 1.2.1, we investigate the asymp-
totic behavior of a switched system in continuous time with random switching signals in
terms of its Lyapunov exponents. After characterizing such exponents in Theorem 2.31 and
providing a formula for the largest Lyapunov exponent in Corollary 2.35, we apply these
results to show the stabilizability of a control system with arbitrary rate of convergence in
Section 2.6.

Chapter 3 contains the work carried out in [47]. We analyze the exponential stability of
(1.40), which is a system of N transport equations with intermittent damping on a network.
Such network can be identified with several circles intersecting at a single point O, the cou-
pling between the N equations being a linear mixing of their values at O, described by the
transmission matrix M. The activity of the intermittent damping is determined by persis-
tently exciting signals, all belonging to a fixed class G(T, #). The main result is Theorem 3.1,
which proves that, under suitable hypotheses on M and on the rationality of the ratios be-
tween the lengths of the circles, such system is exponentially stable, uniformly with respect
to the persistently exciting signals. The proof relies on an explicit formula for the solutions
of this system, which allows one to track down the effects of the intermittent damping.

The technique used in the proof of Theorem 3.1 was generalized in [48] to the stability
analysis of non-autonomous difference equations of the form (1.57), and the corresponding
results are presented in Chapter 4. We provide a suitable representation of their solutions in
terms of their initial conditions and some time-dependent matrix coefficients, generalizing
the technique used in Chapter 3. This enables us to characterize the asymptotic behavior of
solutions in terms of such matrix coefficients. In the case of difference equations with arbi-
trary switching, we obtain a delay-independent generalization of Hale-Silkowski stability
criterion. Using the classical transformations of hyperbolic PDEs into difference equations,
we apply our results to transport and wave propagation on networks, obtaining, as a conse-
quence, that exponential stability of such systems is robust with respect to variations of the
lengths of the network edges preserving their rational dependence structure. We then prove
that the wave equation on a network with arbitrarily switching damping at external vertices
is exponentially stable if and only if the network is a tree and the damping is bounded away
from zero at all external vertices but at most one.

Finally, Chapter 5 considers the controllability of the difference equation (1.58). We
first consider the relative controllability of (1.58), presenting the work from [127]. This is
done by using a suitable formula for the solutions of such systems in terms of their initial
conditions, their control inputs, and some matrix-valued coefficients obtained recursively
from the matrices defining the system, which is a version of the representation formula
from Chapter 4 adapted to the case of the control system (1.58). Thanks to such formula,
we characterize relative controllability in time T in terms of an algebraic property of the
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1. Introduction

matrix-valued coefficients, which reduces to the usual Kalman controllability criterion in
the case of a single delay, and also generalizes Theorem 1.45. Relative controllability is
studied for solutions in the set of all functions and in the function spaces LP and €k. We
also compare the relative controllability of the system for different delays in terms of their
rational dependence structure, proving that relative controllability for some delays implies
relative controllability for all delays that are “less rationally dependent” than the original
ones, in a sense that we make precise. Moreover, we provide an upper bound on the minimal
controllability time for a system depending only on its dimension and on its largest delay.

Chapter 5 also presents, in Secion 5.4, some results on the exact and approximate con-
trollability of (1.58) in L?. We first consider the case of commensurable delays, in which
exact and approximate controllability are equivalent. We prove that a Kalman condition
obtained by an augmentation of the state of the system coincides with another controlla-
bility criterion obtained from the explicit formula for the solutions of (1.58). We then turn
to the case of a two-dimensional system with two delays and one control, for which we
completely characterize exact and approximate controllability in Theorem 5.51.

A summary of the main results of this thesis in French is provided in Annexe A.
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Chapter 2

Lyapunov exponents for random
continuous-time switched systems
and applications to the stabilizability
of control systems

2.1 Introduction

Linear systems with switching coefficients are of considerable interest in theory and appli-
cations. The present chapter considers systems in continuous time with random switching
and develops methods to describe the exponential growth rates, i.e., the Lyapunov expo-
nents. This is used to analyze stabilizability properties of control systems with random
switching.

Systems with deterministic switching have been extensively studied, cf., e.g., the mono-
graph [113] and the surveys [114,158]. An important motivation for our work comes from
the theory of persistently excited control systems, where switching means that the control
is put on or off. These deterministic systems have been studied in a number of papers, with
many results in special situations, cf. [39,49]. In particular, it is known that here, con-
trary to the situation for autonomous linear control systems, controllability does not imply
stabilizability with arbitrary decay rates, as recalled in Proposition 1.23.

The analysis of random switched systems in the present chapter is based on the clas-
sical Multiplicative Ergodic Theorem due to Oseledets (see, e.g., [13]). It turns out that a
direct application of this theorem to systems in continuous time with random switching
is not feasible, since in general they do not define random dynamical systems in the sense
of [13] (cf. Example 2.6). Instead, we apply the Multiplicative Ergodic Theorem to an asso-
ciated system in discrete time and then deduce results for the Lyapunov exponents of the
continuous-time system. We remark that Lyapunov exponents for continuous-time systems
with random switching are also considered in [112], where one assumes from the beginning
that one has random dynamical systems, using hence the classical Multiplicative Ergodic
Theorem.

The considered linear equations with random switching form Piecewise Deterministic
Markov Processes (PDMP). These processes were introduced by Davis in [65] and have since
been extensively studied in the literature. For further references and an analysis of their
invariant measures, and in particular their supports, see, for instance, [17,29]. An important
particular case which also attracts much research interest is that of Markov Jump Linear
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2. Lyapunov exponents for random switched systems

Systems (MJLS), in which one assumes that the random switching signal is generated by a
continuous-time Markov chain. For more details of such systems, we refer to [31,41,58,59,
68]. The case of nonlinear switched systems with random switching signals has also been
considered in the literature, such as in [40], where multiple Lyapunov functions are used to
derive a stability criterion under some slow switching condition that contains as a particular
case switching signals coming from continuous-time Markov chains. We also remark that
several different notions of stability for systems with random switching have been used in
the literature; see, e.g., [69] for a comparison between the usual notions in the context of
MJLS. The one considered in this chapter is that of almost sure stability.

The main results of this chapter are (a) a Multiplicative Ergodic Theorem, Theorem 2.31,
for linear continuous-time switching systems. This is based on a careful analysis of the
relations between the Lyapunov exponents for an associated discrete-time system — which
does define a random dynamical system — and those for the system in continuous time;
and (b) Theorem 2.36 showing that arbitrary decay rates may be achieved for linear control
systems with random switching by choosing appropriate linear feedback laws. This is in
contrast to the situation for deterministic switching by persistent excitations, as mentioned
above.

The contents of this chapter is as follows. Section 2.2 constructs the random signals
acting on the coefficients of the continuous-time system. Example 2.6 shows that, in general,
one does not obtain a random dynamical system and Remark 2.7 discusses the relation to
previous works in the literature. Section 2.3 introduces an associated system in discrete
time, shows that it defines a random dynamical system, and discusses the relations between
the Lyapunov exponents for continuous and discrete time. This leads to the formulation
of a Multiplicative Ergodic Theorem for the continuous-time system in Section 2.4. Section
2.5 derives a formula for the maximal Lyapunov exponent. Finally, Section 2.6 presents the
application to almost sure stabilization with arbitrary decay rate of linear control systems
with random switching signals.

2.2 Continuous-time linear switched system and random switch-
ing signals

Let N,d € N* and A;,..., Ay € M4(RR). This chapter considers the continuous-time linear
switched system
X(t) = Ag(nx(t), (2.1)

where the switching signal a belongs to the set P defined by
P={a:R, — N piecewise constant and right continuous}.

Recall that a piecewise constant function has only finitely many discontinuity points on
any bounded interval. Given an initial condition x;, € R? and a € P, (2.1) admits a unique
solution defined on IR,, which we denote by ¢(-;xp, @). In order to simplify the notation,
for i € N, we denote by ®' the linear flow defined by the matrix A;, i.e., ®! = e4i* for every
teR.

We consider in this chapter that the signal a is randomly generated according to a
Markov process which we describe now. Let M € My/(IR) be a stochastic matrix, i.e., M
has nonnegative entries and Z;il M;; =1 for every i € N. Let p be a probability vector

in RV, ie., pE [0,1]N and Zﬁl p; = 1. When necessary, we will regard p as a row vector
p=(p1,.--,pN) € My Ny(R). We assume in this chapter that p is invariant under M, i.e., that
pM = p. Finally, let py,..., uy be probability measures on IR, with the Borel o-algebra 13 and
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2.2. Continuous-time linear switched system and random switching signals

with finite expectation, i.e., IIR’; tdu;(t) < co for every i € N. Whenever necessary, we will
use that p,..., uy define probability measures on R, with its Borel o-algebra, that we also
denote by 1 for simplicity.

The random model for the signal @ can be described as follows. We choose an initial
state i € N according to the probability law defined by p. Then, at every time the system
switches to a state 7, we choose a random positive time T according to the probability law y;
and stay in 7 during the time T, before switching to the next state, which is chosen randomly
according to the probability law corresponding to the i-th row (Mij)?]:l of the matrix M. Let
us perform this construction more precisely. Recall the construction of product o-algebras
(see, e.g., [89, §§38 and 49]).

Definition 2.1. Let Q = (N x R,)N" and provide Q with the product c-algebra F = (P(N)
x B)N'. Endow (Q, F) with the probability measure IP defined, for n € N*, iy,...,i, € N, and
U],...,Un Ebby
P (i) x Uy x fia) x Uy =+ x i) x Uy x (N xR, N2
= pi, ti, (UM i, piy (Ua) - M opi (Uy).

For a given measurable space X, we denote by Pr(X) the set of all probability measures
on X. The next result shows that the construction from Definition 2.1 is actually a Markov
chain in the state space N xIR,. For the definitions of Markov process and its transition
probability, initial law, and transition operator, we refer to [80].

Proposition 2.2. For n € IN*, let x,,: Q = (N x R, )N — N xR, denote the canonical projection

onto the n-th coordinate. Then (x,);., is the unique Markov process in N x R, with transition

probability P: N xR, — Pr(N xR, ) defined by
P, t)({j} x U) = M;jp;(U), Vi, jeN,VteR,, VU e DB, (2.2)
and with initial law v, given by
vil{j}xU)=pju;(U), VjeN, VU e b. (2.3)

The transition operator T : Pr(N xR, ) — Pr(N xR, ) of this chain is given by

1=

Tv({jixU)= Y v({i}xR)M;jp;(U), VjeN,VUeB. (2.4)

i=1

Proof. Observe that N x R, is a complete separable metric space. Then by [80, Proposition
2.38], it suffices to show that, for every n € N*, iy,...i, € N, and Uy,..., U, € B,

IP({ll}X Ul X{iz}x UZX"‘X{in}X UnX(MXR+)N*\E)

- Lil}XUl j{iz}XUz.”j{in-l}XU P(Zn_b tn—l)({ln} 8 Un)

n-1

AP(iy_p, ty_2)iy_1,ty—1)---dP(iy, t1)(iz, tp)d vy (i1, ty). (2.5)

The definitions (2.2) and (2.3) of P and v, immediately give

Lil}XUl J‘{iz}XUz‘ . .Lin—l}XUn—l P(ln_l’ tn—l)({ln} % Un)
AP(iy_p, ty_2)(ipy_1,ty—1)---dP(iy, t1)(i2, t2)d vy (i1, 1)
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2. Lyapunov exponents for random switched systems

le fUz f U, 1,, 1in ,”z )Mz,, Py ldﬂzn 1( ) Mlllzd,ulz(tZ)pl]d”lll(tl)
=M; i i (U)M; i pi  (Up1) M i, i, (Us)pi, pi, (Uy),

and thus (2.5) holds. The expression of the transition operator follows immediately from its
definition (see, e.g., [80, Definition 2.31]). [

Remark 2.3. The canonical projection of N xR, onto N transforms the Markov chain from
Proposition 2.2 into a discrete Markov chain in the finite state space N with transition ma-
trix M and initial distribution p.

To construct a random switching signal a from a certain w = (i,, t,);>; € Q, we regard
(iy);—; as the sequence of states taken by a and t, as the time spent in the state i,. For this
construction to be well-defined, one needs to check that the switching times of such a tend
to co. The next proposition shows that this is the case in a subset of () of full measure.

Proposition 2.4. The subset Q) of Q) defined by

Q0 {(1111 ) 1EQ

Zt =ooand t, >0f0reveryneIN}

n=1
satisfies IP(Q)g) = 1.

Proof. We write Qy = Q' NnQ”, with

Q= {(1n, 2, €Q

)
Q" ={(ip ty);2, €Q | t, > 0 for every n € N"}.

Then it follows that

(o)

ﬂ 1eQ|t>0}] 1,

n=1

since for every n

(i}, 1j)72, € Q| t, > 0} = Z pi, Mji,---M; i pi ((0,00))=1.

Denoting by QQ”° the complement of ()’ in QO, we have

Zt <oo} {zn,t) *,€Q

f, < %} (2.6)

lim ¢, —0}

n—-oo

Q°= {(zn, >, €Q

b < %} = (N XR,)"™ x (N x [0, 1/K))K 1 x (N x R, )N
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x[0,1/k)) x (N x R, )N"K,

C
:|w

(i1,rix)ENK j=1 ]=r

This union is disjoint, and thus

K K
H’(Elrék) = Z Pi, ]_[Mi]-,li]- l_[ﬂz‘j([O, 1/k)) < ymax(k)K—Hl’
j=2 j=r

(ilv-"iK )GMK

where pimax(k) = max;en pi([0,1/k)). Then ppmay(k) — 0 as k — oo, and hence there exists
k. € IN* such that pp,,,(k.) < 1. Since, for every r,k € IN*, the sequence of sets (E]rék):ﬁ is

decreasing, we obtain that

()

m=r

1 . rk.\ _
)= () =0
This shows that IP(QQ") = 1 thanks to (2.6). [

We now associate to each w € () a signal a € P.

Definition 2.5. We define the map a : Qy — P as follows: for w = (i, t,);>; € Qp, we set
s0=0,5, =) y_; tx for n€IN*, and a(w)(t) = i, for every n € N*and t € [s,_1,5,).

Notice that a is well-defined since } ;2 t, = co for every w = (i, t,);2; € Qp. When
necessary, we regard a as a function a : (3 — P defined almost everywhere.

In order to consider solutions of (2.1) for signals @ chosen randomly according to the
previous construction, we use the solution map ¢, of (2.1) to define the map

(2.7)

[ R, xRixQ, — R?
o (tx0, ) = @c(t;xp,a(w)).

A natural idea to study the exponential behavior of the switched system with random
switching signals described by ¢,. would be to apply the continuous-time Oseledets” Mul-
tiplicative Ergodic Theorem (see, e.g., [13, Theorem 3.4.1]) to obtain information on the
Lyapunov exponents for ¢,.. To do so, ¢,. should define a random dynamical system on
R x Q, i.e., one would have to provide a metric dynamical system 6 on () — a measurable
dynamical system 0 : R, x () — Q on (€, F,IP) such that 6, preserves IP for every t > 0 — in
such a way that ¢, becomes a cocycle over 0 (for the precise definitions of random dynam-
ical system, metric dynamical system, and cocycle, see, e.g., [13]). However, in general the
natural choice for 6 to obtain the cocycle property for ¢,., namely the time shift, does not
define such a measure preserving map, as shown in the following example.

Example 2.6. For t > 0, let 6, : QO — () be defined for almost every w € () as follows. For
w = (ij, tj)]f";l €y, setsg =0, s = Z j=1 t] for k € IN*. Let n € IN" be the unique integer such
that t € [s,_1,5,). We define 0;(w) = ( i, ) L by 7 1 =ipyj1 for jeIN', t] =5, - t, t]*. = tyyjo1
for j > 2. One immediately verifies that Qt corresponds to the time shift in P, i.e., that, for
every t,s > 0 and w € ), one has

a(0,w)(s) = a(w)(t+s).

However, the map 6; in (€}, F) does not preserve the measure IP in general. Indeed, suppose
that p; = 01 for every i € N, where 0, denotes the Dirac measure at 1. In particular, a set
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E € F has nonzero measure only if E contains a point (i}, t]-);-";l with t; = 1 for every j € N™.
For r e N* and iy,...,i, € N, let

E = {ip}x {1} x> {i,} x {1} x (N x RN

Then P(E) = p; M
setting sy = 0, s, = Z;f:l t]*- for k € IN*, and n € IN* the unique integer such that t € [s;_l,s;),
one hass;—t =1, t;+j—1 =1forj=2,...,r,and i;+]._1 = ij forjer.Ift ¢ N, thens;, =t+1¢N,
and thus there exists j € n such that t; # 1. We have shown that, if t ¢ IN, then, for every
W= (i;, t]*-)]?’il € 0;1(E), there exists j € IN* such that t; # 1, and thus IP(6;1(E)) = 0, hence 0,
does not preserve the measure P.

~M; ;,and, fort >0, 6;1(E) is the set of points (i;, t]*-)]?";l such that,

iiip”

Remark 2.7. For some particular choices of y,..., py, the time-shift 6; may preserve IP, in
which case the continuous-time Multiplicative Ergodic Theorem can be applied directly to
(2.7). This special case falls in the framework of [112]. An important particular case where
0, preserves IP is when py,..., uyn are chosen in such a way that @ becomes a homogeneous
continuous-time Markov chain, which is the case treated, e.g., in [31, 68]. Our stability
results from Section 2.5 generalize the corresponding almost sure stability criteria from
[31,68,112].

2.3 Associated discrete-time system and Lyapunov exponents

Example 2.6 shows that in general one cannot expect to obtain a random dynamical system
from @, in order to apply the continuous-time Oseledets” Multiplicative Ergodic Theorem.
Our strategy to study the exponential behavior of ¢, relies instead on defining a suitable
discrete-time map ¢,q associated with ¢,, in such a way that ¢,4 does define a discrete-time
random dynamical system — to which the discrete-time Oseledets” Multiplicative Ergodic
Theorem can be applied (see, e.g., [13, Theorem 3.4.1]) — and that the exponential behavior
of ¢, and ¢4 can be compared.

2.3.1 Associated discrete-time deterministic system

In this subsection we define a discrete-time deterministic system from the continuous-time
system (2.1) determined by its solution map ¢.

Definition 2.8. We say that an increasing sequence o = (s,);_, of nonnegative real numbers
with sg = 0 and lim,,_,, s, = co is compatible with a signal a € P if aj, s, ) is constant for
every n € IN, and we denote

Q={(a,0) e PxRYN |0 is compatible with a}.

[ee)

For (a,0) € Q with o = (s,);.,, we consider the difference equation
Xpp1 = eAa(sn)(Sn-v-l_sn)xn_ (2.8)
System (2.8) is obtained from (2.1) by taking the values of a continuous-time solution at the

discrete times s,. The sequence (s,);_, contains all the discontinuities of a and may also
contain times with trivial jumps. The solution of (2.8) associated with (a,0) € Q and with
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initial condition xo € R is denoted by @q4(-;x9, @, 0). Notice that the solution maps ¢. and
g satisfy, for every x, € R? and (a,0) € Q,

(PC(O;XO; 0() = X0,

Pelt;x0,@) = DL (0o (5,5%0, @), 1 £ € (5,,541] for some n €N, (2.9)
and

¢4(0;x0, @, 0) = x,

a(s

Qa(n+1;x9,a,0) = CDSM'QSH((pd(n; Xg,@,0)), for n € IN. (2.10)

It follows immediately that, for every n € IN,

Pc(sn3x0, @) = @a(1;x0, @, 0). (2.11)

We characterize the asymptotic behavior of systems (2.1) and (2.8) by considering the
associated Lyapunov exponents defined as follows.

Definition 2.9. Let (a,0) € Q and x, € R? \ {0}. The Lyapunov exponent for the continuous-
time system (2.1) is

Ac(xg, @) zlimsuplloglqoc(t;xo,a)l (2.12)

t—o0 t

and the Lyapunov exponent for the discrete-time system (2.8) is

1
Adq(xg, @, 0) = limsup Elogl(pd(n;xo, a,o)|. (2.13)

n—-oo

The main difference between (2.12) and (2.13) lies in the terms % and % In order to be
able to compare them asymptotically, one needs an additional hypothesis.

Definition 2.10. Let (a,0) € Q with 0 = (s,);_,- We say that (a, o) is regular if the limit

m(a,o) = lim 2 (2.14)

n—oo 1

exists and is a positive real number.

Theorem 2.11. Suppose that (a,0) € Q is regular. Then, for every xy € R \ {0}, the Lyapunov
exponents of the continuous- and discrete-time systems (2.1) and (2.8) are related by

Ad(xg, @, 0) = m(a, 0) A (%0, @).

Proof. Write o = (s,);—,. Let us first show that A4(xp, @, 0) < m(a,0)A(x, ). For every
n € IN*, one has, by (2.11),

1 s, 1
;logl(pd(n;xo,a,o)I = anlogkpc(snixoﬂﬂ'

One clearly has limsup,,_, ilog|(pc(sn;x0,a)| < limsuptﬁoo%log|(pc(t;x0,a)| and then the
conclusion follows since ** — m(a, 0).
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2. Lyapunov exponents for random switched systems

We now turn to the proof of the inequality A4(xq, @, 0) > m(a, 0)Ac(x, ). Let C,y >0 be
such that |(Dt’x| < Ce?*|x| for every i € N, x € R, and t > 0. For xo € R?\ {0} and t > 0, let

n; € IN be the unique integer such that t € (snt,snﬁl]. Then

alsn)
w (@d(nx0,0,0))

1
~ 1oglec(t;xo, @ )=—10g‘ ts,, (Pc(sanOI ))’=

2.1
log C t=s, 1 (2.13)
< . + I + ?logkpd(nt;xo, a,o0)|.
Since t € (Sn,;sn,+l]! one has
t—s S
0t g 2mtl g 0, (2.16)
t Sy t—o00

t

r1t+1

where we use (2.14) to obtain that — 1 as t — oco. We write % = . Since t € (sn ,snt+1]

tn

one has “t € [5 ) Now
ng+1 snt
. h 1 . n . [+ 1 1 1
lim —% = and lim —— = lim [ - - = ,
=00 5y, m(a,o) f=00 Sy 11 12\ Syt Skt m(a,o)
and thus 1; — m(é 5y as t — oo Using this fact and inserting (2.16) into (2.15), one obtains

the conclusion of the theorem by letting t — oo. [

2.3.2 Discrete-time random dynamical system

We have constructed, in Section 2.3.1, the discrete-time system (2.8) associated with the
continuous-time system (2.1). In this subsection, we use (2.8) and the probabilistic setting
from Section 2.2 to construct a random dynamical system in discrete time, to which we will
apply Oseledets” Multiplicative Ergodic Theorem in Section 2.4. Thanks to Theorem 2.11,
this will allow us also to get information on the Lyapunov exponents of the continuous-
time system. In order to perform this construction, one needs to choose, for each w € Q, a
sequence o compatible with a(w).

A sequence o that is compatible with a certain a € P corresponds to a sequence of times
where we observe the continuous-time solution map ¢, to define the discrete-time map ¢g4.
A natural choice, considering the fact that the probabilistic model from Definition 2.1 is a
Markov chain, is to choose o as the sequence of transition times of this chain, as follows.

Definition 2.12. We define the map s : Qy — RY as follows: for w = (i, tw)oey € Qp, we set
s(w) = (sy(w))52, with sp(w) =0, s,(w) = Y_{_; tx for n € N*.

Notice that, for every w € )y, s(w) is compatible with a(w). We define the random
discrete-time system ¢,q4 by

NxR'xQ, — R4
qord:{ ‘ (2.17)

(m3x0, @) = @a(n;x0,@(w),s(w)).

We also define the random Lyapunov exponents A,. and A4 for xo € R? \ {0} and almost
every w € () by

Arc(xg, w) = )\C(xo,a((u)), /\rd<x01w) = Ad(xOra(w)ls(w))' (2.18)
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2.3. Associated discrete-time system and Lyapunov exponents

A natural way to define a discrete-time metric dynamical system on (2, F,P) is to con-
sider the shift operator. Let 0 : O — Q) be defined by

9((inl tn)zozl) = (in+1rtn+1);o:1- (2-19)
Proposition 2.13. The measure P is invariant under 6.

Proof. It suffices to show that P(0~!(E)) = IP(E) for every set E of the form
E = (i) x Uy x-x {i) x Uy x (N xRN
for some n € N*, iy,...,i, € N, and Uy,..., U, € B. For such a set E, we have

N
6071 (E) = Ui} xRy x (i} x Uy x -+ x i} x Uy x (N xRy NV
i=1

and the previous union is disjoint, so that

N n N
PO (E) = ) pigni(R )M, i, (UN) | [ M1, (Uj) = (ZpiMﬁl
i=1 i

j=2

n
= pi, i, (U1) HMij,lijﬂij(Uj) =IP(E),
j=2

since pM = p. |

Thanks to Proposition 2.13, 6 is a discrete-time metric dynamical system in (Q,F,IP).
Moreover, since the shift operator 0 : O — Q satisfies 0(Qg) = Q, O also defines a metric
dynamical system in (Q, F,IP) (where F and IP are understood to be restricted to Q).

An important question regarding the metric dynamical system 60 in (€, F,IP) is to deter-
mine whether it is ergodic. To characterize the cases where such ergodicity holds, we start
by providing the following definition.

Definition 2.14. Let (), F) be the measurable space from Definition 2.1 and v € Pr(N xR,).
We define the probability measure IP,, in ((2, F) by requiring that, for every n € IN*, iy,...,i, €
N,and Uy,...,U, € DB,

P (i) x Uy x iz} x Uz x - x i) x Uy x (N X R)N2)
=v({it} x Up)M;, i, piy(Up) - M; i pi (Uy).

Remark 2.15. If v({i} x U) = p;p;(U) for every i € N and U € B, then IP,, coincides with the
measure [P from Definition 2.1. Moreover, as in Proposition 2.2, for every v € Pr(N x R,),
P, is the probability measure associated with a Markov process in N x IR, with transition
probability P given by (2.2), transition operator T given by (2.4), and with initial law v.

(2.20)

Lemma 2.16. The measure P, is invariant under the shift 0 if and only if v({i} x U) = v({i} x
R, )u;(U) for every i e N, U € B, and (v({i} x IR+))f-\i1 is a left eigenvector of M associated with
the eigenvalue 1.

Proof. Notice that IP,, is invariant under 6 if and only if Tv = v. Hence IP,, is invariant under
0 if and only if

N
v({j}x U) = Zv({i} xR,)M;;ui(U),  VjeN,VUeDb. (2.21)
i=1
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2. Lyapunov exponents for random switched systems

If (2.21) holds, we apply it to U = R, to get that (v({i} x 1R+))£\i1 is a left eigenvector of M
associated with the eigenvalue 1, and it then follows that v({j} x U) = v({j} x Ry )p;(U) for
every j € N and U € B. The converse is immediate. ]

Let

V:{qe [0,11N

N
Zqi =land gM = q}, (2.22)
i=1

which is a non-empty convex subset of RNY. An element g € V is said to be extremal if it
cannot be written as g = tq; + (1 —t)gq, for some t € (0,1) and g1,9, € V with g; # g,. With
each g € V, we associate a probability measure v, € Pr(N x R, ) by setting

va({i} x U) = q;p; (U), VieN, Ueb. (2.23)

As a consequence of Lemma 2.16, the map q — v, is a linear bijection between V and the set
of all probability measures v in N xR, for which P, is invariant under the shift 6. Hence,
one obtains immediately from [80, Theorem 5.7] the following result.

Proposition 2.17. Let q € V. The metric dynamical system 6 is ergodic in (Q, F, IPVq) if and only
if q is an extremal of V.

Remark 2.18. When M is irreducible, V contains only one point g and hence 6 is ergodic
for the measure P, .

Now that we have defined the random discrete-time system (2.17) and provided the
metric dynamical system 6, we can show that the pair (6, ¢,q) defines a random dynamical
system.

Proposition 2.19. (0, ¢.q) is a discrete-time random dynamical system over (CQ, F,IP).

Proof. Since 6 is a discrete-time metric dynamical system over (Q, F,IP), one is only left to
show that ¢4 satisfies the cocycle property

a1+ 15%0, ) = Pra (15 9pa (15 X0, @), 0™(w)), Vm,meN, Vxg e RY, Vo € Qp.  (2.24)

Let w = (iy, t,);~; € Q. Then it follows immediately from the definitions of @ and s that for
n,melN,

n m+n
$u(0™(@) =) tam= ) 1= (@) = sp(@),
k=1 k=m+1

(0" ())(5,(0™ () = fpsm = (W) (Spym(w)).

We prove (2.24) by induction on n. When n =0, (2.24) is clearly satisfied for every m € IN,
xo € R?, and w € Q. Suppose now that 1 € N is such that (2.24) is satisfied for every m € N,
xo € R?, and w € Q. Using (2.10), we obtain

67}‘1 " em
Pra(in+ 1 pra(m;x0, ), 0" (w)) = DX ST B0 (ra (11 pra (330, @), 0™ (@)

a(@)(sypm(w))

sn+m+l(w)_5n+m(w) (q)rd(n + 1 xO’ (1))) = (Prd(n tmt ].;X(), a))’

which concludes the proof of (2.24). [
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2.3. Associated discrete-time system and Lyapunov exponents

Since our goal is to compare the asymptotic behavior of (2.7) and (2.17) using Theorem
2.11, we need to show that (a@(w),s(w)) is regular for almost every w € 3. To do so, we
first consider the structure of the matrix M, using classical notation for Markov chains (see,
e.g., [156]).

Definition 2.20. Let M € My(R) be a stochastic matrix. For 7,j € N, we say that i leads to
jif i = j or there exist r € N" and iy,...,i, € N such that M;; M; ;,---M; ; > 0. We say that
i and j communicate if i leads to j and i leads to j. This is an equivalence relation and we
decompose N into the corresponding R’ € N* equivalence classes Cy,...,Cg.. Fori,j € R, we
say that C; leads to C; if there exist i* € C; leading to some j* € C;. A class C; is said to be
essential if it does not lead to another class, and inessential otherwise.

At least one essential class exists. Up to a permutation in the sets of indices N and R’, we
can assume that C; ={1,2,...,m}, Co={n1 +1,n1 +2,...,n1+ny},..., Cppr={n; +---+ngp_1 +
1,...,n1 ++--+np} for some ny,...,np € IN*¥, and that M can be written as

B0 0 - 0
0 P 0 - 0
0 0 P - 010
M= e , (2.25)
0 0 0 - Py
Q

where R is the number of essential classes, P; is the square matrix corresponding to the es-
sential class C; for i € R, and Q is the square matrix corresponding to all inessential classes.
The following proposition recalls some classical properties of stochastic matrices. Its proof
can be found in textbooks on the subject, such as [156, §4.2].

Proposition 2.21. Let M be a stochastic matrix decomposed as (2.25).

(a) Fori€R, P;eM, (R)isan irreducible stochastic matrix with a unique invariant probability
p' € R". We extend p' to a vector in RN by setting to 0 its components not in C;, and write

. N

P =Y,

(b) Every probability vector g € RN invariant under M can be decomposed as q = a;p' +--- +
agp® for some ay,...,ag €[0,1] with 25:1 a; =1.

Remark 2.22. If follows from this proposition that the set V defined in (2.22) is the convex
hull of {p!,...,pR}, and that g € V is an extremal of V if and only if g = p’ for some i € R.

For a probability vector g € [0,1]N, we define the probability measure P in the mea-
surable space ((),F) by setting IP1 = P, , where v, is defined in (2.23) and IP,, is given in
Definition 2.14. Thanks to Lemma 2.16, IPY is invariant under 0 if and only if gM = g. Let
@141 +---+axqi be a convex combination of probability vectors g1, ...,qx € [0,1]V. Thanks to
Definition 2.14 and (2.23), one obtains that, for every E € F,

P49+ 0dk(E) = @ PN (E) + -+ + a P (E). (2.26)

As a consequence of Proposition 2.17 and Remark 2.22, one immediately obtains the fol-
lowing result.
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2. Lyapunov exponents for random switched systems

Corollary 2.23. Let g € RN be a probability vector with gM = q and pl,: ..,pR be as in Proposi-
tion 2.21(a). The map O is ergodic for the measure IP9 if and only if q = p' for some i € R.

We now provide a decomposition of the space () according to the essential classes Cy, ...,
Cg. For i e R, we set

Q' = {w = (ip, t,)°2, € Q|Ang € N* such that i, € C; for n > n),
and

Q'=Q\| |Q.

(=

i=1
Then clearly Q = [JX,Qf and the union is disjoint. For i € R, the set Q' is the set of all
sequences (i, t,)>" such that (i,,);, eventually enters the class C; and remains in this class.
Proposition 2.24. Let q = ayp' +---+agpR € V be as in Proposition 2.21(b). Then, for every
i € R, PYQF) = a;. In particular, P1(Q°%) =0
Proof. Since the components of p/ corresponding to indices not in C; are all zero and M has

the form (2.25), one obtains that i ((Cj xR, )N) =1, and thus

PP (Q) = P (Qfm(cjx&)w):aij, (2.27)

where 6;; denotes the Kronecker delta. The conclusion follows immediately from (2.26) and
(2.27). n

We can now prove that (a(w),s(w)) is regular for almost every w € Q).

Proposition 2.25. The map w > m(a(w),s(w)) is invariant under 6 and, for every i € R such
that IP(Q)") # 0 and almost every w € (',

m(a Zp]f tdpj (1) (2.28)

jeC;

where, for i € R, p' = (p;) | are the probability vectors from Proposition 2.21(a). In particular,
]:

(a(w),s(w)) is regular for almost every w € Q).

Proof. Consider the map f : Qy — R} given by f((i,,t,);2,) = t;. For every k €N, fo
0k ((i,, th)peq) = tkr1- By Birkhoff’s Ergodic Theorem (see, e.g., [146, Chapter 2, Theorem
2.3]), there exists a function f* € Ll(Q,R+), invariant under 6, such that, for almost every
we),

n—1
tim 24 _ i lZfoek(w) = f*(w),

n—o0 n n—oo n

and, moreover, f* is the conditional expectation of f given the o-algebra of invariant sets
over 0, i.e., for every set A € F with 6’1(A) =A,

[ fl@)dP@) = | f(w)

Write p = a;p! +---+agpR as in Proposition 2.21. Since, for every i € R, the set Q' is invariant

under 0, we have
Jo fl@dP(@) = [ f(w
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2.3. Associated discrete-time system and Lyapunov exponents

By Corollary 2.23, 6 is ergodic with respect to PP’ for every i € R, and thus f* is constant
PP -almost everywhere on (); since ]Ppi(Qi) = 1 and the restriction of IP to Q' is precisely
az-]PPi, one obtains that f* is constant IP-almost everywhere in Q'. Hence, for every i € R and
almost every w € ()7,

o :fQif(w)le( aj Sf(w)dPP (w aIZp]f tdp;(t)

jeC;

which proves (2.28). Since its right-hand side is a positive real number and the sets Q' for
which P(Q*) = 0 cover (2 except for a set of measure zero, the regularity of (a(w),s(w)) for
almost every w € Q) follows. ]

An immediate consequence of Theorem 2.11 and Proposition 2.25 is the following.

Theorem 2.26. For every xo € R \ {0} and almost every w € Q, the Lyapunov exponents of the
continuous- and discrete-time systems (2.7) and (2.17), given by (2.18), are related by

/\rd(XOr a)) = m(a(w)r S(a)))/\rc(xO! w)'

As a final result in this section, we prove the following proposition, which evaluates the
average time spent in a certain state k.

Proposition 2.27. Let k € N. For every i € R such that P(Q') # 0 and almost every w € Qf,

. L{te[0,T]|a(w)(t) =k} Xc(k)P;cf td p(t)
lim T — )

o Z,p]f tdp;(t)

jeC;

where £ denotes the Lebesgue measure in IR.

Proof. Fix k € N. Let ¢ : ( — R, be given by

P tn)nz1) _{ 0, otherwise.

Then, by Birkhoff’s Ergodic Theorem, there exists a function ¢} € L'(Q,R,) invariant under
0 such that, for almost every w € Q,

lim — Z(pk (6lw) = pl(w), (2.29)

n—oo 1

and, for every i e R,
[o, PH@AP@) = [ ¢} (@)dP(@)

As in the proof of Proposition 2.25, one shows that, for every i € R, (PZ is constant almost
everywhere on Q. Writing p = ap! +--- + agp® as in Proposition 2.21, we get, for i € R and
almost every w € Q%

api(w) = J o, eH@AP@)=a; )_p} [ 10j0dpi(t) = aiie, (KIp [t (230)

jeC;
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2. Lyapunov exponents for random switched systems

By definition of a, for every w = (i,, t,);~; € (2,

n—1 n
Y prOlw)=) =Ll e[0,s,(@)]|a(w)(t) =k}
j=0 j=1

l]:k

Hence, using Proposition 2.25 and combining (2.29) and (2.30), we obtain that, for every
i € Rwith P(QQ") # 0 and almost every w € (O},

C Llte[0 s )]le@)®) =k . on 1S xe(Rp Jg tdp(t)
1 1 - 6l w) = Ry L@
2o Su(w) 1500 s, (@) 1 ]._ZO(Pk( <) Yjec, P} Jr, tdp;(t) (2.30)

Let w € Q) be such that (2.31) holds and take T € R,. Choose nt € N such that s, (w)<T <
Spp+1(@). Then

1
=L{t [0, T]|a(w)(t) =k} < @) {t €[0,sn,41 ()] @(w)(t) = k}
nr
and ) .
=L{te[0,T]|a(w)(t) =k} > ——L{t€[0,s,. (w)] |a(w)(t) = k}.
P 0T alw)) =K = s tlr € 10,5, () [atw)) =K
The conclusion of the proposition then follows since, by Proposition 2.25, Mli}? — 1 as
n — oo for almost every w € Q). [

Remark 2.28. The choice of the compatible sequence in this section is not unique, and
one might be interested in other possible choices. The times s,(w) in the sequence s(w)
correspond to the transitions of the Markov chain from Proposition 2.2. However, if some
of the diagonal elements of M are non-zero, then the discrete part of the Markov chain,
i.e., its component in N, may switch from a certain state to itself. In practical situations,
it may be possible to observe only switches between different states, and another possible
choice for the sequence s(w) that may be of practical interest is to consider only the times
corresponding to such non-trivial switches. This can be done if M;; # 1 for every i € N,
i.e., if the Markov chain in the discrete space N has no absorbing states, in which case we
have almost surely an infinite number of switches between different states. Defining 6 as
the shift to the next different state, 6 defines a metric dynamical system if we suppose that,

instead of having pM = p, we have pM = p, where M;; M for i,j € N with i # j and

M;; = 0 for i € N. The counterparts of the previous results can be proved in this framework
with no extra difficulty.

Remark 2.29. Even though we only consider in this chapter the case where p is invariant
under M, our results can be generalized to the case of any probability vector p by using
the following three facts. First, for any probability vector g € [0, 1]V, the Cesaro mean of
the sequence (gM")>", namely ] qM converges as 1 — oo to an invariant probability
vector (see, e.g., [131, Chapter 8]) Secondly, if (g,);~, is a sequence of probability vectors
in [0,1]N converging to some probability vector g € [0,1]V, then IP%(E) — IP4(E) uniformly
in E € F (which can be shown directly from (2.20)). Finally, if g € [0,1]N is a probability
vector and ¢q( = lim,, o, + " qM] then IP9(E) = IP9°(E) for every set E € F invariant under
0 (which follows from the fact that IP9(6~1(E)) = PYM(E) for every E € F). With these three
properties, when the probability vector p € [0,1] is not invariant under M, it can be re-
placed in the previous results by the invariant probability vector given by the Cesaro mean
g=1 Z] o pPM/ and the proofs can be adapted accordingly without much extra effort.
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Remark 2.30. The fact that systems (2.1) and (2.8) are linear has been used only in the proof
of Theorem 2.11, where one uses an exponential bound on the growth of the flows ®; = edit)
namely that there exist constants C,y > 0 such that |eAit| <Ce’' foreveryt>0andieN.If

we consider, instead of system (2.1), the nonlinear switched system
X(t) = fa(r)(x(t)),

where fi,..., fy are complete vector fields generating flows ®1,...,®", and modify the dis-
crete-time system (2.8) accordingly, all the previous results remain true, with the same
proofs, under the additional assumption that there exist constants C,y > 0 such that |CI>t"(x)|
< Ce”'|x| for every t >0,i € N, and x € R?. However, the results from the next sections do
not generalize to the nonlinear framework.

2.4 Multiplicative Ergodic Theorem

In this section, we apply the discrete-time Oseledets” Multiplicative Ergodic Theorem (see,
e.g., [13, Theorem 3.4.1]) in the one-sided invertible case to system (2.17) and we use Propo-
sition 2.25 and Theorem 2.26 to obtain that several of its conclusions also hold for the
continuous-time system (2.7).

Recall that, for i € N, we consider A; € My, (RR) and <Dti =edit, Let A: Q — M,(IR) be the
function defined for w = (i,, t,,);>; by A(w) = ¢! so that Pra(1;%, w) = A(O" ' w)prq(n—1;
xo, ) for every xy € R?, w € Qy, and n € IN*. For w € Q and n € IN, we denote ®(11,w) the
linear operator defined by @(n, w)x = @.q(1;x, w) for every x € R?, which is thus given by
D(n,w) = elintn ... el for @ = (i, tj)]?'il € Qpand neIN".

Theorem 2.31. There exists an invariant measurable subset Q C Q) of full P-measure such that,
for every w € (),

1/2
(a) the limit ¥V(w) =1lim,,_,, (CD(n,a))T(P(n, a))) " exists and is a positive definite matrix;

(b) there exist an integer q(w) € d and q(w) vector subspaces Vi(w),..., Vyw)(w) with respective
dimensions dy(w) > -+ > dy(,,)(w) such that

d

V(w)(a))CmCVl(a)):IR ,

q

and A(w)Vi(w) = Vi(6(w)) for every i € q(w);

(c) for every xo € R?\ {0}, the Lyapunov exponents A.q(xo, w) and A (xo, w) exist as limits, i.e.,

.1
Ara(xo, @) = lim —1ogpra(m;xo, @),

o1
/\rc(xO! w) = tlgg ? log |(Prc(t;x01 w)l;

(d) there exist real numbers /\Cli(a)) >..o> )\

q(w)(a)) and A{(w) > - > )\;

(w)(a)) such that, for

every i € q(w),

Ard(x0, ) = A (w) & Ae(xg, 0) = A5 (w) &= xg € Vi(w)\ Viyi (@),

where V(y)1(w) = {0};
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2. Lyapunov exponents for random switched systems

(e) the eigenvalues of W(w) are M@ s s e’\s(m)(“’);
(f) q(0(w)) = q(w) and, for i € q(w), di(O(w)) = di(w), A{(O(w)) = A (w), and A(O(w)) =
A5 (w);

(g) if O is ergodic, q is constant on Q, and so are d;, /\?, and A; fori € q.

Proof. Let us show that Oseledets’” Multiplicative Ergodic Theorem can be applied to the
random dynamical system (6, ¢,q). Recall that there are C > 1, y > 0 such that, for every
ieNandte€R, |eAit| < Cel!l. Then, for @ = (i, t,)°2, € Qq, log” |A(cu)i1| <logC +yty, so
that

N
jQ log* |A(w)*!|dP(w) < log C + y Zpi LR td p;(t) < co.
i=1 "

Then Oseledets” Multiplicative Ergodic Theorem can be applied to (6, ¢,4), yielding all the

conclusions for W, g, d;, V;, A4(xg, w), and /\?. The conclusions concerning A,.(xp, @) and
d

Af(w) in (d), (), and (g) follow from Theorem 2.26, with A% (w) = Wﬁ)@)) One is now left

to show that the Lyapunov exponent A,.(xg, w) exists as a limit.

Notice that |e‘Aitx| < Ce?'|x| for every i € N, x € R? and t > 0, and hence |eAitx| >
C~le7!|x|. Let t > 0 and choose 1, € N such that t € (snt(a)), snt+1(w)]. Then, proceeding as
in (2.15), one gets

logC  t=s, 1
-8y log i (130, @)

1
? log |(Prc(t;x01 w)l 2

Using (2.16), we thus obtain that

oo
h?_l)g)lf? IOg |(Prc(t;x01w)| 2 Ard(x0, ) = /\rc(XOJ w),

m(a(w),s(w))

which yields the existence of the limit. [

2.5 The maximal Lyapunov exponent

We are interested in this section in the maximal Lyapunov exponents for systems (2.7) and
(2.17), i.e., the real numbers A{(w) and /\‘f(a)) from Theorem 2.31(d). We denote these num-
bers by A<, (w) and A4, (w), respectively. Before proving the main results of this section,
we state the following lemma, which shows that the Gelfand formula for the spectral radius
p holds uniformly over compact sets of matrices. This follows from the estimates derived
in [73, Section 3.3]. For the reader’s convenience, we provide a proof.

Lemma 2.32. Let A C My(IR) be a compact set of matrices. Then the limit

lim |A"["/" = p(A)

n—-o0
is uniform over A.

Proof. Let ¢ > 0 and define a continuous function F : A — M;(R) by
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2.5. The maximal Lyapunov exponent

p(A)
p(A)+e

A € A. Then there is a norm |, in R? with [F(A)], < 228D (see, e.g., [97, Lemma 5.6.10]).
Hence, for all B in a neighborhood U of A

Then F(A) is compact and for every F(A) € F(A) its spectral radius is p(F(A)) = < 1. Fix

L+p(F(A)

F(B)l < —

Since all norms on M,(IR) are equivalent, there is 4 > 0 such that for all Be U

L+p(F(4) )

FUBY' < BaIF(BY < BalF(BI < a5

Then there is N € IN*, depending only on A and ¢, such that forall n > N and all Be U,

1

p(B) — |Bn|1/7’l — |F(B)n|1/n < 1’

implying |B"|'" < p(B) + ¢. Since this holds for every B in a neighborhood U of A and
|B"|V" > p(B) for every n € IN*, one obtains the uniformity of the convergence in U, and the
assertion follows by compactness of A. ]

We can now prove our first result regarding the characterization of AS,,, and A4, .

Theorem 2.33. For almost every w € (3, we have

A4 (w) = lim —log|CD(n w)|. (2.32)

n—oo 1

If 6 is ergodic, then A8, is constant almost everywhere and its constant value satisfies

.1
A< inf —f log|®(1, w)| dP(w) = JLIEOEIQ log|®(1, )| dP(w). (2.33)
Proof. Notice that (2.32) and (2.33) do not depend on the norm in M,(IR). We fix in this
proof the norm induced by the Euclidean norm in R?, given by |A| = \P(ATA). Notice that,
ATA| = p((ATA)?) = p(ATA) = |A]%.
By Theorem 2.31(e), e Anax(@) is the spectral radius p(W(w)) of W(w). Using the continuity
of the spectral radius and Theorem 2.31(a), one then gets that

in this case,

eMmax(@) = lim p[( (n,a))quJ(n,a)))

n—oo

1/2n]

By Gelfand’s Formula for the spectral radius,

k/2n 1/k

e/\anax(w) = llm llm (@(n’a))T(P(Tl,CL)))

n—00 k—o0

(2.34)

1/2n\*°
The sequence of matrices (((D(n, w) T D(n, a))) n) converges to W(w), hence this sequence
=1

is bounded in M;(RR). By Lemma 2.32, the limint_in Gelfand’s Formula is uniform, which
shows that one can take the limit in (2.34) along the line k = 2n to obtain

= lim |@(n, w)|"".

n—-oo

eMmax(@) = Jim |CD (1, ) D(n, w)

n—-oo

|1/2n

Hence (2.32) follows by taking the logarithm.
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2. Lyapunov exponents for random switched systems

If 0 is ergodic, then, by Theorem 2.31(g), A4

thax 18 constant almost everywhere. Let m €
IN*. By (2.32), for almost every w € Q),

. 1
Ad = Lim —log|P(nm, w)|. (2.35)
One has @(nm, w) = P(m, O D"w) ... O(m, 0™ w)D(m, w), and thus
1 1 n—1
- - mk
— log|P(nm, w)| < — k§010g|<1'3(m,9 ). (2.36)

Since 0™ preserves IP and log|®(m,-)| € L}(Q, R), Birkhoff’s Ergodic Theorem shows that

n—1

. 1 mk | 1
;111—{20% ;logkb(m,@ a))| = EIQ log|®P(m, w)|dP(w). (2.37)
Combining (2.35), (2.36), and (2.37), one obtains the inequality in (2.33). The sequence
(fQ 10g|CD(n,w)|le(w))n is subadditive, since @(n + m,w) = P(m, 0" w)P(n, w) for n,m € N
and 6 preserves IP. This subadditivity implies that the equality in (2.33) holds. [

Under some extra assumptions on the probability measures y;, i € N, one obtains that
the inequality in (2.33) is actually an equality.

Theorem 2.34. Suppose that O is ergodic and that there exists r > 1 such that, for every i € N,

LO,W) t"dp;(t) < co. Then AL, is constant almost everywhere and given by

1 1
d _ . 1 1 1
Afax = inf — jQ log|P(n, )| dP(w) = lim ~ jQ log | (1, )| dP(w).
Proof. One clearly has, using (2.32), that
o1
Mhar = J Mbax(@)dP(@) = [ lim ~log|(n,w)|dP(w).

The theorem is proved if we show one can exchange the limit and the integral in the above
expression, which we do by applying Vitali’s convergence theorem (see, e.g., [152, Chapter
6]). We are thus left to show that the sequence of functions (%log|q)(n,-)|):o:1 is uniformly
integrable, i.e., for every ¢ > 0, there exists o > 0 such that, for every E € F with IP(E) < 0, one
has 1| [ log|®(n, )| dP(w)| < e.

For w = (i, t,);~; € Qp and n € IN*, one has P(n, w) = eAintn ...t Let C,y > 0 be such
that |eAit| < Ce?! for every i € N and t > 0. Then

n
log|P(n, w)| < nlog C +y th =nlogC+ys,(w),
i=1

where s(w) = (s,(w));,- Hence, it suffices to show that the sequence (%”):o_l is uniformly
integrable.
For n e N* and E € F, we have, by Holder’s inequality,

[, apy = Ly [ papor< Y ([, ave) et <kiped, @)

n

j=1 j=1
where % + % =land K = maxieﬂf(o’m) t"dp;(t) < co. Equation (2.38) establishes the uniform
integrability of (%):1, which yields the result. |
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2.6. Application to the stabilization of control systems with arbitrary decay rate

As an immediate consequence of Proposition 2.25, Theorem 2.26, Theorem 2.33, and
Theorem 2.34, we obtain the following result.

Corollary 2.35. Suppose that 0 is ergodic. Then AS,,, and A3 .. are constants almost everywhere

max max
satisfying
1
d . -
Afpax < inf — j@ log|®(1, w)| dP(w), (2.39)
TR

YN pi Jg, tdpi(t)

In particular, if
there exists n € IN* such that IQ log|®(n, w)|dP(w) < 0, (2.40)

then systems (2.7) and (2.17) are almost surely exponentially stable.

If we have further that there exists r > 1 such that [ t"dp;(t) < oo for every i € N, then (2.39)
is an equality and (2.40) is equivalent to the almost sure exponential stability of (2.7) and to the
almost sure exponential stability of (2.17).

2.6 Application to the stabilization of control systems with arbi-
trary decay rate

In this section, we consider the linear control system
X(t) = Ax(t) + Ba(ryar(t), (2.41)

where x(t) e R?, A € My(R), a : R, — N belongs to the class P of right continuous, piecewise
constant switching signals, and, for j € N, u;(t) € R" for some positive integer m; and
B; € Md,m],(IR). System (2.41) is a switched control system with dynamics given by the N
equations x = Ax + Bju;, j € N.

Our main motivation to consider (2.41) comes from the analysis of persistently excited
systems, described in Definition 1.2. In this framework, one is interested in stabilizing the
system by a linear feedback u = Kx with K depending on A,B, T, u but chosen uniformly
with respect to the (T, y)-persistently exciting signal a. It is also of interest to determine
the decay rates that can be achieved by such feedback laws K. In particular, as recalled in
Proposition 1.23, [49, Proposition 4.5] shows that there are (two dimensional) controllable
systems for which the achievable decay rates are bounded below, even when we consider
only PE signals a taking values in {0,1} instead of [0,1]. Our main result, Theorem 2.36,
implies that, in the probabilistic setting defined below, one can get arbitrarily large (almost
sure) decay rates for the generalization (2.41) of (1.7), which is in contrast to the situation
for persistently excited systems. An explanation for this fact is that the probability of having
a signal a with very fast switching for an infinitely long time, such as the signals used in
the proof of [49, Proposition 4.5], is zero, and hence such signals do not interfere with the
behavior of the (random) maximal Lyapunov exponent.

Let M € My (IR) be an irreducible stochastic matrix, p be its unique invariant probability
vector, py,..., N be probability measures on R, with its Borel o-algebra, and consider the
probability space (€2, F,IP) from Definition 2.1. We consider system (2.41) in a probabilistic
setting by taking random signals a(w) as in Definition 2.5, i.e., the random control system
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2. Lyapunov exponents for random switched systems

X(t) = Ax(t) + Ba(w)(1) Ha(w)(r)(t)- The problem treated in this section is the arbitrary rate sta-
bilizability of this system by linear feedback laws u; = K;x, j € N. More precisely, consider
the closed-loop random switched system

x(t) = (A + Ba(w)(t)Ka(w)(t))x(t)- (2.42)

We wish to know if, given A € IR, there exist matrices Kj € Mm]_,d(IR), j € N, such that the
maximal Lyapunov exponent Ay ., of the continuous-time system (2.42), defined as in Sec-
tion 2.5, satisfies A5, (w) < A for almost every w € (). Notice that, since we assume that M
is irreducible, the discrete-time metric dynamical system 6 defined in (2.19) is ergodic (see
Remark 2.18), and hence, by Corollary 2.35, A§,,, is constant almost everywhere in Q).

For j e N, let

_ d-1
V;=Ran(B; AB; --- A%lB). (2.43)

Notice that, by Cayley—Hamilton theorem, for every n € IN, all columns of A"B]- belong to
V;. Some of the spaces V; may have dimension zero.

Theorem 2.36. Let A € My(R), B; € Md,mj(IR)forj € N and some m; € N*, and suppose that the
spaces Vy,...,Vy defined in (2.43) satisfy V1 @--- @ Vy = R¥. Then, for every A € IR, there exist
matrices K; € Mm]_,d(IR), j € N, such that the maximal Lyapunov exponent A, of the closed-loop

max
random switched system (2.42) satisfies Ag, (@) < A for almost every w € Q).

Proof. For j € N, let n; = dimV;. Up to a linear change of variables in RY, we can suppose

that Vi ={ey,...,e, L, Vo ={en 11, nyembr- - VN = {0 tny_ 415+ -1 €n 4. 4ny - In this case,
for j € N, the matrices A and B; have the block structure

A, 0 -« 0 - 0 0
0 Ay - 0 - 0 0

A= 0 0 - A - 0] Bj = bi | (2.44)
0 0 -+ 0 - Ay 0

with A; € Mn]_(IR) and b; € Mn]_,m]_ (R). Whenever n; = 0, it follows immediately from the def-
inition of V; that the pair (A}, b;) is controllable. Denoting by P; = (en1+...+n]._1+1, SR )T
€ Mn].,d(lR), we have that b; = P;B; and A; = PjAP].T.

Let C > 1, B > 0 be such that, for every j € N and every ¢t > 0, |eA/t| < CePt. Thanks to (42,
Proposition 2.1], we may assume that C is chosen large enough such that the following
property holds: there exists L € IN* such that, for every y > 1 and j € N, there exists a matrix
kj € My,,n;(R) with

Attt < Cyte !, VieR,. (2.45)
Let Kj =k;P; € Mm],,d(IR). With this choice of feedback laws, we have

AL O 0 0
0 A, 0 0
A+BjK;= 0 0 - Aj+bikj - 0|
0 0 0 Ay
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2.6. Application to the stabilization of control systems with arbitrary decay rate

and thus, for every t € R,

edit 0 0
0 et 0 0
A+B:K;
e(+]])t: O 0 e(A]+bk) 0
0 0 - 0 RN

Since M is irreducible and p is invariant under M, we have p; > 0 for every j € N.
The irreducibility of M also provides the existence of » > N and (i,...,i;) € N" such that
{i],...,ir} =N and M5 ---M;»_;» > 0. In order to apply Corollary 2.35, consider

f 10g|€D r,w |dIP Z pzl ipip *” 1,11,

()N (2.46)
.f(o oo)rlogle A+B; K )ty | o(A+B; Ki) t1|d1/‘1 ()" dl/‘i,(tr)-

Since Zﬁ-\le P]TP] =1d; and P]-e(AJrBin)thT = 0 if j # k, we have, for every (iy,...,i,) € N" and
(t1,...,t,) ERL,

o A+Bi Ki )ty J(A+B; Ky )ty _ [} :PTP ] (A+B; K )t, .

Jr—1

T A+B K T
PhPh] [ZPJOPJO]

— ZPTP6A+B K;, _Pij o\ A+B;y K,l)tLPTP

=1

_ ZPT (Aj+6ji, bikj)t, . o(Aj+05i b]k])tlp].. (2.47)

Since, for every j € N and t > 0, we have |eAft| < CePt and |e(Af+bfkf)t| < C)/Le_Vt, we get, for

every (iy,...,i,) € N" and (ty,...,t,) e R},

|elA+Bi ki) (4B K| < NCTy LeP L, (2.48)

When (iy,...,i,) = (i],...,i;), we can obtain a sharper bound than (2.48). For j € N, denote
by N(j) the nonempty set of all indices k € r such that i} = j, and denote by n(j) € IN* the
number of elements in N(j). Then

|P]T (Aj+0jizbjki)te . (Ai+0ji; biky) thj‘ < CTy" )L emy Lueni fi of Lieriniy f
which shows, using (2.47), that

'e<A+B1;K1;)tY o (A+B K

ZCV n(j)L, =7 Lken(j tkengker\N

5 (2.49)

< Ncrere—yminkq ty erﬂmaxkEZ tk.
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2. Lyapunov exponents for random switched systems

Let

E,= tdu;(t),
0 r{éﬁf(o,w) pi(t)

Emin = LO oo)" min tkd”lif(tl)"'dﬂi:(tr) >0,

ker

Emax = *[(0 oo)" max tkdl"if(tl)"'dlf‘i;*(tr) < oo.

ker

Then, combining (2.48) and (2.49), we obtain from (2.46) that

fQ log|P(r, w)|dP(w) < N" (log(NC")+rLlogy + rBE)
+pirMjsjs - M« i (log(NC") + rLlogy — Y Emin + 7BEmax) - (2.50)
The right-hand side of (2.50) tends to —co as ¥ — oo, which can be achieved by (2.45). Hence

it follows from Corollary 2.35 that the maximal Lyapunov exponent of (2.42) can be made
arbitrarily small. ]

Remark 2.37. By writing the matrices A and Bj, j € N, in the form (2.44), system (2.41)
can be seen as N independent control systems such that, at each time, only one of them is
controlled, while the others follow their uncontrolled dynamics.

Remark 2.38. In order to establish a more precise link between Theorem 2.36 and the case
of deterministic persistently excited systems treated in [39, 45,46, 49, 128] and recalled in
Section 1.2.1, consider the case of (2.41) with a(t) €{0,1}, By =0, B; = B, and (A, B) control-
lable. Moreover, in order to simplify, we assume that, in the probabilistic model of a, trivial
switches do not occur, which amounts to choosing

0 1
M=)

with unique invariant probability vector p = (%, %) In general, such signals a(w) cannot be

persistently exciting. In fact, suppose that p satisfies y((0, T]) < 1 for every T > 0. Then
P{w € Q|3T > p> 0 such that a(w) € §(T, )} = 0. (2.51)

Indeed, since a (T, p)-persistently exciting signal is also a (T, p’)-persistently exciting signal
for every T’ > T and 0 < p’ < p, we have

{we QAT > u> 0 such that a(w) € (T, p)} = U U {weQ|a(w)eS(T,u)
T>0 ue(0,T)

= U U {weQ|a(w)e (T, p)).

If @ € §(T, p), the persistence of excitation condition implies that a cannot remain zero
during time intervals longer than T — y, and thus

lweQla(w)e YT, p)} clw=">i,t,);q €Q|VneN", i,=0 = t,<T—p}. (2.52)

Since i, takes the value 0 infinitely many times for almost every w € (Q and p(((0, T —p]) <1,
the right-hand side of (2.52) has measure zero, and thus (2.51) holds.
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2.6. Application to the stabilization of control systems with arbitrary decay rate

However, one can link the random signals a(w) with a weaker, asymptotic notion of
persistence of excitation. A (deterministic) measurable signal a : R, — [0,1] is said to be
asymptotically persistently exciting with constant p > 0 if

1 pt
litminf— o a(s)ds > p.
It follows easily from (1.6) that every (T, p)-persistently exciting signal is also asymptotically
persistently exciting with constant p = &. Proposition 2.27 implies that, for almost every
weQ,

1t Jr. tdm(t)
lim — | a(w)(s)ds = - ,
t—oo t JO ﬁm tdpg(t) + f]R+ tdpy (t)
and thus, in particular, almost every signal a(w) is asymptotically persistently exciting with

flR+ tdpy (t)

TR AT IR

constant p = T
Ry
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Chapter 3

Persistently damped transport on a
network of circles

3.1 Introduction

Consider the following system of N > 2 coupled transport equations,

drui(t,x) + dyui(t,x) + @i (t)x;(x)u;(t,x) =0, >0, xe€[0,L;], i € [1,Ng]l,
dru;(t, x) + dyu;(t,x) = 0, t>0,xe[0,L;], i €[N;+1,N],
N
3.1
ui(t,0) = Zmijuj(t,Lj), t>0,ie[1,N], (3.1)
=
u;(0,x) = u; o(x), x€[0,L;], i € [1,N].

For i € [[1,N]), the corresponding transport equation is defined in the space domain [0, L;]
with L; > 0. The integer N; denotes the number of equations with a damping term. For
i € [[1,Ny], the activity of the damping of the i-th equation in space is determined by the
function x;, which is assumed to be the characteristic function of an interval [a;, ;] C [0, L;]
with a; < b;, whereas its activity in time is determined by the function «;, which is assumed
to be a signal in L*(IR, [0, 1]). The coupling between the N transport equations is determined
by the coefficients m;; € R for 1 <i,j < N. The goal of this chapter consists in studying the
stability properties of (3.1) when the signals a; are persistently exciting, as described in
Definition 1.2.

System (3.1) is a system of N transport equations defined on intervals [0,L;], 1 < i <
N, which may be identified with circles C;,C,,...,Cy of respective lengths Lq,L,,...,Ly.
Moreover, there exists a point O such that any two distinct circles only intersect at O (see
Figure 3.1). The transmission condition at O can be written as

ul(t’O) ul(tl 1)
us(t,0) M uz(f; 2) , (3.2)
un(t,0) un(t,Ly)

where M = (m;}); ie[1,n] is called the transmission matrix of the system. The topology of the
network considered in this chapter is star-shaped with respect to the point O. Note that
any other network configuration falls into the present framework by a suitable choice of
transition matrix M, namely, the fact that two circles C; and Cj are not inward-outward

63



3. Persistently damped transport on a network of circles

adjacent translates to m;; = 0. For i € [1,N4], the transport equation of u; is damped on
the support [a;,b;] of x;, represented in Figure 3.1. The damping is subject to the signal a;,
which can be zero on certain time intervals. When all the «; take their values in {0,1}, (3.1)
can be seen as a switched system, where the switching signal «; controls the damping action
on the interval [a;, b;] of the circle C;.

Figure 3.1: Network corresponding to N =5 and N, = 3.

Switching occurs in several control applications, motivating the study of systems with
switched or intermittent actuators, as presented in Section 1.1. In this context, the activity
of the actuator is guaranteed by appropriate conditions, for instance existence of a positive
dwell-time or average dwell-time [113]. In this chapter we rely instead on the integral
condition (1.6) to guarantee the damping activity. As recalled in Section 1.2.1, this condition
finds its origin in problems of identification and adaptive control [9-11], where it is used
in a more general form as a necessary and sufficient condition for the global exponential
stability of some linear time-dependent systems. Persistently excited systems, as described
in Definition 1.2, have been considered in the literature in the finite-dimensional setting
in [38,39,45,46,49,126,128], dealing mostly with problems concerning stabilizability by a
linear feedback law. In such systems, the persistently exciting signal a is a convenient tool to
model several phenomena, such as failures in links between systems, resource allocation, or
other internal or external processes that affect control efficiency. Their infinite-dimensional
counterparts are much less present in the literature, due to the fact that finite-dimensional
results cannot be straightforwardly generalized, as illustrated by Example 1.26.

System (3.1) is a “toy model” to study infinite-dimensional systems under persistent
excitation. It is a simple case of a multi-body structure, as remarked in Section 1.3 (see
also [1,6,24,35,110,119] and references therein). Notice that (3.1) is related to systems
of wave propagation on networks. Indeed, by decomposing each one-dimensional wave
equation intro traveling waves according to D’Alembert decomposition, one can replace
an edge of the graph by a pair of oriented edges and consider the transport equation in
each edge. Hence, when (3.1) is undamped (i.e., when N; = 0), it actually represents the
D’Alembert decomposition of a star-shaped network of strings. The damping term in (3.1)
does not come from the above decomposition of the wave equation and thus the results of
this chapter cannot be directly applied to wave propagation on networks.

This chapter addresses the issue of exponential stability of (3.1), uniformly with respect
to the signals a; in a class §(T, pu): given T > p > 0, is system (3.1) uniformly exponentially
stable with respect to a; € §(T, u), i € [1, N;]]? The answer clearly depends on the transmis-
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sion matrix M, since this matrix can amplify or reduce the solutions when they pass through
O, as well as on the rationality of the ratios Li/Lj, since periodic solutions may exist when
they are rational (see Sections 3.2.2 and 3.2.3 below). The main result of this chapter is the
following.

Theorem 3.1. Suppose that N > 2, Ny > 1, [M|pn <1, m;j # 0 for every i,j € [1,N], and that
there exist i,, j. € [1,N] such that L; /L; & Q. Then, for every T > p >0, there exist C,y > 0 such
that, for every p € [1,+o00], every initial condition u;y € LP(0,L;), i € [1,N], and every choice of
signals a; € (T, p), i € [1,Ny]|, the corresponding solution of (3.1) satisfies

N N
Zl|ui(t>|lU’(O,L,~) < Ce 7t Z”ui'O”U’(O,L,-)’ VtelR,.
i=1 i=1

Our argument is based on explicit formulas for the solutions of system (3.1), which allow
one to efficiently track down the effects of the persistency of the damping. This approach
can be worked out since system (3.1) consists of constant-speed transport equations with
local damping. On the other hand, the usual techniques from PDE control, such as Car-
leman estimates, spectral criteria, Ingham estimates or microlocal analysis, do not seem
well-adapted here, since they do not allow to handle the effects due to the time-dependency
induced by the persistently exciting signals «;. Extensions of our result to the case of state-
dependent speed of transport and non-local damping would probably require more refined
techniques.

The idea of relying on explicit representations for solutions of (3.1) to address control
and identification issues has already been used in [77,168]. Note, however, that, in these
two references, rational dependence assumptions were necessary to derive tractable explicit
formulas, which is not the case in this chapter.

The chapter is organized as follows. In Section 3.2, we give some definitions used
through this chapter, discuss the well-posedness of (3.1), and explain the role of the hy-
potheses of Theorem 3.1. Section 3.3 provides the explicit representation formula for the
solutions of (3.1), first in the undamped case, where the notations are simpler and the for-
mulas easier to write, and then in the general case. Our main result is proved in Section 3.4,
where we study the asymptotic behavior of coefficients appearing in the explicit solution
obtained in Section 3.3. We finally collect in a series of appendices various technical results
used in the chapter.

3.2 Definitions and preliminary facts

All Banach and Hilbert spaces considered in this chapter are supposed to be real. We shall
refer to linear operators in a Banach space X simply as operators.

We refer to System (3.1) as being undamped by setting a; = 0 for every i € [1,Ny], in
which case it is written as

dui(t,x)+ dyu;(t,x)=0, telR,, xe[0,L;], ic[1,N],
N

u;(t,0) = Zmijuj(t,Lj), telR,, iE[[l,N]], (3.3)
j=1

1;(0,x) = uj o(x), x€[0,L;], i €[[1,N].

We say that System (3.1) has an always active damping if a; = 1 for every i € [1, N;]|, in which
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case it becomes

osui(t,x) + dyu;(t, x) + xi(x)u;(t,x) =0, teR,, xe[0,L;], i €[[1,Ny],
osui(t,x)+ dyu;(t,x) =0, teR,, xe[0,L;], i €e[[N;+1,N]J,
N
. 3.4
Mi(f,O):Zmi]‘Mj(t,L]‘), telR,, le[[l,N]], ( )
j=1
u;(0,x) = uj o(x), x€[0,L;], i €[[1,N].
The general case of (3.1) can be written as
deui(t,x) + dyu; (£, x) + a;(t) x;(t)u;(t, x) = 0, teR,, xe[0,L;], ie[1,N],
N
ui(£,0)= ) myjuj(t, L), teR,, ic[L,N], (3.5)
j=1

ui(orx):ui,()(x); XG[O,LZ'], iE[[l,N]],

with the convention that a; = 1 and a; = b; = L; for i € [Ny + 1,N], implying that x; = 0
almost everywhere in [0, L;] for i € [Nz +1,N]. In the case where aj, ..., ay, belong to a class
G(T, p) for the same fixed T > pu > 0, (3.5) is referred to as a persistently damped system.

Remark 3.2. Assuming that all the persistently exciting signals ay,...,ay,, in (3.5) belong
to the class §(T, u), with the same constants T > u > 0, is not actually a restriction. Indeed,
if a; € §(T;, p;) with T; > p; > 0 for i € [[1,N,]], then we clearly have, for every i € [1,Ny],
a; € §(T, p) with T = max;eqy,n,) T; and p = minjeqy N, #i-

3.2.1 Formulation and well-posedness of the Cauchy problem

The goal of this section consists in providing a rigorous definition for a solution of (3.5)
and in guaranteeing that, given any initial data, the required solution exists, is unique and
depends continuously on the initial data.

Definition 3.3. Let p € [1,+00). We set X, = ﬂfil LP(0,L;), endowed with the usual norm

1p
lzllx, = (TR Millfpgp)) for 2= (up.. ) € Xy
We define the operator A : D(A) C X, — X, on its domain D(A) by

N N
D(A) =3 (uy,...,un) € [ [WHP(0,Ly) | Vi€ [LNT, i(0) = ) myjuy(L))t,
i=1 j=1

(3.6)
du du
A(ug,...,uy) = (——dxl,...,——d;\’).

For i € [1,Ny]|, we define the operator B; € £(X,) by
Bi(ul,...,uN) = (0,...,0,—)(1'1/!1',0,...,0),
where the term —x;u; is in the i-th position.

Remark 3.4. Even though Theorem 3.1 is stated for every p € [1,+o0], we restrict ourselves
in the sequel to the case p € [1,4+00). The main reason for this is that, when p = +oo, the
domain D(A) of the operator A defined by (3.6) is not dense in ]_[f\il L*=(0,L;), and thus some
of our arguments given for p finite do not apply. However, once we prove Theorem 3.1
for p € [1,4+00), we obtain the case p = +oco by suitable continuity arguments, as detailed in
Remark 3.26.
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With the operators A and B; defined above, System (3.5) can be written as
Ny
Z(t) = Az(t) + a;(t)B;z(t),
(1 <>;1<>1<> 57)
z(0) = zo,

with zy = (uy,9,...,un,) and ay,...,ay, € L¥(R,[0,1]). The case of the undamped system
(3.3) can be written as

(t) = Az(t),
2(t) = Az(t) (3.8)
z(0) = zq,
and the system with an always active damping (3.4) becomes
Ny
2(t) = Az(t) Zl 20 (3.9)

z(0) = zy.

The well-posedness of (3.7) is established in the sense of the following theorem, whose
proof is deferred in Appendix 3.A.

Theorem 3.5. Let p € [1,+00) and a; € L*(IR,[0,1]) for i € [1,Ny]. There exists a unique
evolution family {T (t,s)};>s>0 of bounded operators in X, such that, for every s > 0 and z; € D(A),
t — z(t) = T(t,5)z is the unique continuous function such that z(s) = zy, z(t) € D(A) for every t >
s, z is differentiable for almost every t > s, 2 € Ly ([s,+00),X,,), and 2(t) = Az(t)+2?idl a;(t)B;z(t)
for almost every t > s.

The definition of an evolution family is recalled in Appendix 3.A. The function z in
Theorem 3.5 is said to be a regular solution of (3.7) with initial condition z5 € D(A). When
zg € X, \ D(A), the function t > z(t) = T(¢,s)zp is still well-defined and continuous, and is
said to be a mild solution of (3.7). We use the word solution to refer to both regular and mild
solutions, according to the context.

Theorem 3.5 also provides solutions to (3.8) and (3.9) as particular cases. Since these
equations are time-independent, we can actually obtain more regular solutions, thanks to
the fact that A and A + Zidl B; generate strongly continuous semigroups, as we detail in
Appendix 3.A.

Theorem 3.6. Let p € [1,+00). The operators A and A + Xi\fl B; generate strongly continuous

N,
semigroups (e}~ and {et(A+Zi:dl Bi)}tzo. In particular, for every zo € D(A), the function t —
etz is the unique function in CO(R,, D(A)) N Gl(IRJr,Xp) satisfying (3.8) and the function t —

HA+Y 4By, - : 0 1 i
e =171z is the unique function in C°(R,, D(A)) N €' (R, X)) satisfying (3.9).

3.2.2 Some examples of asymptotic behavior

It is useful to have in mind some illustrative examples of the asymptotic behaviors of (3.1)
under no damping, an always active damping and a persistent damping, respectively.

Example 3.7. Consider the case of a single transport equation on a circle of length L,

diu(t,x)+ dyu(t,x)+ a(t)x(x)u(t,x)=0, teR,, x€[0,L]

u(t,0) = u(t,L), teR,,

(3.10)
u(0,x) = ug(x), x€[0,L],
a€§(T,p),
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3. Persistently damped transport on a network of circles

where yx is the characteristic function of the interval [4,b] C [0,L]. This corresponds to (3.5)
with persistent damping, N; = N =1, and m; = 1. Due to the condition u(t,0) = u(t,L), it
can be seen as a transport equation on a circle of length L.

When (3.10) is undamped, all its solutions are L-periodic. Indeed, for u, € X, = LP(0, L),
the corresponding solution of (3.10) is u(t,x) = up({x — t}), where we recall that {x}, = x -
[%v]v, and this function is clearly L-periodic.

When (3.10) has an always active damping, all its solutions converge exponentially to
zero. Indeed, every solution of (3.10) satisfies u(t,x) = e~ "= u(t-L,x) for every x € [0, L] and
t > L, so that [|u(t)l|ps(q ) = €O u(t = L)llpp (o p)- It is also clear that [[u(£)1s(o 1) < lliollzs(o,1)

forevery t > 0, and so |[u(t)l|pp (o) < Ce 7t lluollze(o,z) for every t > 0, with p = % and C = e?L.
When (3.10) has a persistent damping and the damping interval [a, b] is a proper subset

of [0,L], there exist T > u > 0, a persistently exciting signal @ € §(T,y) and a nontrivial

initial condition uy € LP(0,L) such that the corresponding solution of (3.10) is L-periodic.

Indeed, suppose that a = 0 and b < L. Take ug € C*®([0,L]) \ {0} such that the support of u is

contained in [b, “TL] Take a € L*(RR,[0,1]) defined by

L-b

2 )

[SSVA

t _{1, if 0.<{t};

0, if(t}; > Lt

Thenae§ (L, LT’b) and one can easily verify that the corresponding solution u(t,x) of (3.10)
is equal to ug({x —t};). Hence (3.10) admits a L-periodic solution.

Example 3.7 shows that the asymptotic behavior of (3.5) can be different if the damping
is always active or if it is submitted to a persistently exciting signal, and this is due to the
fact that the support of the solution may not be in the damping interval [a,b] when the
damping is active. Notice that Example 3.7 can be seen as a version of Example 1.26 in the
framework of transport equations.

We now consider a second example showing that, when we have more than one circle,
the rationality of the ratios L;/L; for i # j plays an important role in the asymptotic behavior.

Example 3.8. Consider the case of System (3.5) with persistent damping, N =2, N; =1, and
mij = 1/2fori,je{l,2},ie.,

deuy (t,x) + duy (t,x) + a(t)x(x)uy(t,x) =0, teR,, x€[0,L],

iy (t,x) + dyuy(t,x) =0, teR,, x€[0,L,],

t,L t,L
uy(t,0) = uy(t,0) =  ( 1);”2( 2), teR,, (3.11)
u;(0,x) = u;(x), x€[0,L;], ie{1,2},

ae€S(T,p),

where y is the characteristic function of the interval [a,b] C [0,L]. In order to simplify the
discussion, let us fix p = 2 and set X, = L?(0,L;) x L?(0,L,).

When (3.11) is undamped its asymptotic behavior depends on the rationality of the ratio
Ly/L,, as stated in the next theorem, which is proved in Appendix 3.B.

Theorem 3.9. Consider (3.11) with x = 0.
(a) If Li/L, ¢ Q, each solution converges to a constant function (A, 1) € X, with A € R.

(b) If L/L, € Q, there exists a non-constant periodic solution.
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3.2. Definitions and preliminary facts

When (3.11) has an always active damping all solutions converge exponentially to zero,
independently of the rationality of the ratio L,/L,, as it follows, for instance, from Re-
mark 3.33.

When (3.11) has a persistent damping, the rationality of the ratio L;/L, plays once again
a role in the asymptotic behavior of the system: if Li/L, ¢ Q, all its solutions converge
exponentially to zero, as it follows from our main result, Theorem 3.1. However, if L;/L, € Q
and the damping interval [a, b] is small enough, there exist T > y > 0, a persistently exciting
signal a € §(T, u) and a nontrivial initial condition uy € L?(0, L) such that the corresponding
solution of (3.11) is periodic, as we show in Appendix 3.B.4.

Both in Example 3.7 and in Example 3.8 in the case L,/L, € Q, the lack of exponential
stability is illustrated by the existence of a periodic solution for the persistently damped
system which is actually a solution to the undamped one for which a persistently exciting
signal « inactivates the damping whenever the support of the solution passes through the
damping interval. The heuristic of the proof of Theorem 3.1 is that, under an irrationality
hypothesis, the support of every initial condition spreads with time and eventually cov-
ers the entire network. Hence every solution of the persistently excited system eventually
passes through a damping interval at a time where the damping is active.

3.2.3 Discussion on the hypotheses of Theorem 3.1

Recall that the two main assumptions of Theorem 3.1 are the following.
Hypothesis 3.10. There exist i, j, € [1,N] such that L; /L; € Q.
Hypothesis 3.11. The matrix M satisfies [M|, <1 and m;; # 0 for every i,j € [1,N].

At the light of Example 3.8, one cannot expect exponential stability of (3.5) with persis-
tent damping in general if L;/L; € Q for every i,j € [1,N]. This is why it is reasonable to
make Hypothesis 3.10.

Even though the well-posedness of (3.5) discussed in Section 3.2.1 and the explicit for-
mula for its solutions given later in Section 3.3 are obtained for every M € My(R), the
asymptotic behavior of System (3.5) clearly depends on the choice of the matrix M, since
this matrix determines the coupling among the N transport equations.

The hypothesis [M|;1 <1 can be written as

N

mi|<1,  Vje[L,N] (3.12)
D lmi
i=1

The coefficient m;; can be interpreted as the proportion of mass in the circle C; that goes to
the circle C; as it passes the contact point O. Hence, (3.12) states that, for every j € [1,N],
the total mass arriving at the circles C;, i € [1, N, from the circle C; is less than or equal the
total mass leaving the circle C;, which means that the mass never increases while passing
through the junction.

The hypothesis m;; # 0 for all 7,j can be seen as a strong mixing of the solutions at the
junction. It is designed to avoid reducibility phenomena which may be an obstruction to
uniform exponential stability. Consider for instance the case M = Idy with N > 2. Then
(3.5) is reduced to N uncoupled transport equations on circles, each of them of the form
(3.10). In that case, if there exists at least one index i € [1, N] such that b;—a; < L;, then there
exist solutions not converging to 0 as t — +oo, even if there is damping, cf. Example 3.7.
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3. Persistently damped transport on a network of circles

Remark 3.12. Equation (3.12) is satisfied when M is left stochastic, i.e., m;; > 0 for every i,j €
[1,N]and ¥V, m;; = 1 for every j € [1,N]. Note that left stochasticity of M is equivalent

for the undamped system (3.3) to the preservation of Zl 1 fo i(t,x)dx and monotonicity of
the solutions with respect to the initial conditions.

3.3 Explicit solution

This section provides a general formula for the explicit solution of (3.5). We first prove
our formula in Section 3.3.1 in the simpler case of the undamped system (3.3), before turn-
ing to the general case in Section 3.3.2. The coefficients appearing in the formula will be
characterized in Section 3.3.3.

3.3.1 The undamped system

Remark that, in order to obtain an explicit formula for u;(t,x) for i € [I,N], + > 0 and
€ [0,L;], it suffices to obtain a formula for u;(t,0) for i € [1,N] and ¢t > 0. Indeed, it is
immediate to derive the following.

Lemma 3.13. Let (uy,...,un ) € D(A) and let (uy,...,uy) € C%(R,, D(A)) N (?1(1R+,Xp) be the
corresponding solution of (3.3). Then, for every i € [1,N], t >0, and x € [0,L;], we have

ui(t,x):{ui’O(x_t)’ if0<t<x, (3.13)

ui(t-x,0), ift>x

In order to express u;(t,0) in terms of the initial condition (u g,..., uy ) € D(A), we need
to introduce some notation.

Definition 3.14. ‘ ‘
(a) We define N =INN and, for i e [1,N], R; = N~ x {0} x INN—,

(b) We write 0 = (0,0,...,0) € N and, for every j € [1,N] and n = (ny,...,ny) € 1, 1; =
(51']')1':1’._.’[\160.&11(1 ﬁ]':(111,112,...,1’1]'_1,0,1’[]'+1,...,TIN):H—njl]'ED]'.

(c) We define the function L: 2 — R, by

L(ny,...,ny)= ) n;L;.

-

i=1

With these notations, the general formula for the solutions of (3.3) can be written as
follows.

Theorem 3.15. Let (uy,...,uy,9) € D(A). The corresponding solution (uy,...,uy) of (3.3) is
given by

ui(t’x):{uw(x—t), if0<t<x, (3.14)

uj(t—x,0), ift>x,

with

J(£,0) = ZZ ]n+ ]-,O(Lj—{t—L(n)}Lj), (3.15)

j=1 nen;
L(n )<t
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3.3. Explicit solution

and where the coefficients /3](1])l are defined by the relations

Blo=mij  ije[L,N], (3.16a)
and

. N .
By = Y miBeny, i €[LN], nen\{o). (3.16b)
k=1

nkzl

The above result follows by iterating Equations (3.13) together with Equation (3.2). In-
deed, using the notations of the theorem, one has for i € [1,N]],

N
ui(t,O):Zmijuj(t,Lj). (3.17)
=1

According to Equation (3.13), each u;(t,L;) is either equal to u;o(L; —t) or uj(t-L;,0), ac-
cording to whether £ < L; or not. In the latter case, we express u;(t — L;,0) by using Equa-
tion (3.17) and we repeat the procedure a finite number of times until obtaining u;(t,0) as a
linear combination involving only evaluations of the initial condition at finitely many points
on the circles. This yields Equation (3.15) with an explicit expression of both the coefficients
of this linear combination and the points on the circles.

The complete proof of Theorem 3.15 is provided in Appendix 3.C and consists in veri-
tying that the explicit formula given in the above statement is indeed the solution of (3.3).

Figure 3.2: Geometric construction for the explicit formula for the solution of (3.3) in the
case N = 2.
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3. Persistently damped transport on a network of circles

We next provide with Figure 3.2 a geometric interpretation of (3.15) in the case N = 2.
The point O is identified with the origin of the plane (x;, x;) and the horizontal (resp.
vertical) segments in the grid represented in Figure 3.2 correspond to identical copies of the
circle Cy (resp. the circle C,). The intersection of the dashed line I; : x; + x, =t and the
grid exactly represents the set of points of the circles where the initial condition (u; g, 1;,)
is evaluated in Equation (3.15). Note that the coefficients in Equation (3.15) appearing in
front of the evaluation of the initial condition at P can be expressed as a sum of products of
the m;;’s, each product corresponding to a path on the grid between P and O.

3.3.2 Formula for the explicit solution in the general case

We first notice that, as in Lemma 3.13, it suffices to study u;(t,0) for every t > 0and i € [1,N]|
in order to obtain the whole solution (u;(t),..., ux(t)). Recall that by convention we have set
a; =1 and a; = b; (and thus x; = 0 almost everywhere) for i € [N; + 1, N].

Proposition 3.16. Let (ujq,...,un,) € D(A). Then the corresponding solution (uy,...,uy) of
(3.5) satisfies, for i € [[1,N]),

ujo(x—t)exp (_Lo,t]ﬂ[t—x+ai,t—x+bi] ai(s)ds), if0<t<x,

u;(t—x,0)exp (_I[O,t]m[t7x+a,-,t—x+bi] ai(s)ds), ift >x.

Proof. Let i € [[1, N]. Equation (3.18) is obtained by integrating the differential equation

ui(t,x) = (3.18)

%ui(t+s,x+s) =—a;(t+s)xi(x+s)u;(t+s,x+s),

on the interval [—¢,0] if  <x and on [-x,0] if £ > x. [

Thanks to the fact that all the exponential decays appearing in (3.18) are upper bounded
by 1, one obtains trivially the following corollary.

Corollary 3.17. If (uy,...,uy) is the solution of (3.5) with an initial condition (uyg,...,UN ),
then, for i € [1,Ny4]|, u; satisfies the estimate

(6, 3)] < {'“"0 =l

|ui(t—x,0)|, ift>x.

ifOStSX;

For every pe[1,+00], i € [1,N], and t > L;, we have

[l (2, )”LP 0L) S [l (-, )”LP(th,-,t)’
with equality if i € [Ny +1,N].

This corollary allows us to replace the spatial LP-norm of u; at a given time ¢t by its
LP-norm in a time interval of length L; at the fixed position x = 0.

We can now write the explicit formula for the solutions of (3.5) using the notations from
Definition 3.14. The proof follows the same steps as that of Theorem 3.15.

Theorem 3.18. Let (uy,...,uy,9) € D(A). The corresponding solution (uy,...,uy) of (3.5) is
given by (3.18), where u;(t,0) is given for t > 0 by

;(£,0) = u;iol(L; —{t—L(n 3.19
ZZ 8 o0 (1 =00 (319)

j=1 nen;
L(n)<t
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and the coefficients W are defined for i,j € [1,N], nenN, x€[0,L;]and t e R by

Jmx,t
@ _ . (1)
Sj,n,x,t = éj,n,x,t‘9]',11,L].,p (3.20a)
with
€jmxt = eXp(—fI aj(S)dS), (3.20b)
Jmx,t
where Ij,u,x,t = [t —L(n) - Lj +max(x, a]'), t—L(n)— L]' + b]'], and
(i) _
S0, = Mijy (3.20¢)
(i) - (i)
i i
Sj,n,L]-,t = Z mk]"gk,n—lk,o,t' (3.20d)
k=1
le21
X2
N 1 1 1 1 1 1 1 1 1 1 1 1 1 1
A N
AN
N
N
\
N
— — — — — — —
AN
N
N\
N
N
N
N N\
N \P
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N
N
N
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N
N
- [ | [ — — ' N X
O \

Figure 3.3: Geometric interpretation of the explicit formula (3.19) for the solution of (3.5)
in the case N = 2.

Let us provide a geometrical interpretation of the above theorem in the case N = 2,
N, =1 with damping on the circle C;. With respect to Figure 3.2, Figure 3.3 now includes
segments corresponding to the intervals [a;,b;] in C;, on which the solution is damped.
Similarly to (3.15), the new explicit formula (3.19) expresses u;(t,0) as a linear combination
involving only evaluations of the initial condition at finitely many points on the circles. The
coefficients, which in (3.15) were sum of products of the m;;’s, each product corresponding
to a path between P and O, have now an analogous expression, with the following modifi-
cation: each factor of the original product is multiplied by an additional term of the type
€jn,xt» Which takes into account the effect of the damping along the path.
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3. Persistently damped transport on a network of circles

Remark 3.19. The explicit formula for the solution of the undamped equation (3.3) given
in Theorem 3.15 can be obtained as a particular case of Theorem 3.18 by setting a; = 0 for
every j € [[1,Ny]. Similarly, we can obtain the explicit formula for the solution of (3.4) as
a particular case of Theorem 3.18 by setting a; = 1 for every j € [1,N,], yielding &; ., =

g—meas([a;,b;]N[x,b;])

Remark 3.20. In the general case (uy,,...,uyn,0) € X,, the mild solution (uy,...,uy) of (3.5)
can still be characterized by (3.18) and (3.19) (yielding an equality in X, for every t > 0).
This follows by a simple density argument of D(A) in X,,.

3.3.3 Recursive formula for the coefficients

We now wish to determine a recursive formula with K steps for the coefficients 8] nxt ap-

pearing in the expression of the explicit solution (3.19). For v € [1,N]X and k € [1,N]], we
denote

Pr k(v Zakv—#se[[l K] v, =k},

and, for n € N with |n|; > K, we 1ntroduce the set
D (n) = {v € [LLN]X |n; > @; x(v) for all j € [1,NT)}.
Then we have the following result.

Proposition 3.21. Let K € IN* and suppose that n € 12 is such that |n|, > K. Then, for every
i,je[1,N] and t € R, we have

K K
T [ [ S I
V1] VsVs-1 vsrn*Zr:I lvr,O,t VK'H_Zf:I lvg’LVK’t ‘
s=2 ’

s=1

M _
Vinty = )

veDy ()

(3.21)

Proof. The proof is done by induction on K. If K =1, we have
DOy (n)={ve[[1,N]|n;>0;, forall je[1,N]}={ve[l,N]|n, >1},
and so, by (3.20a) and (3.204d),

]—]V

N
§ (1) _ X (1) _ qld)
[mvjev,n—lv,O,t‘gv,n—lv,Lv,t - mvj‘('V,H—lv,O,tSv,n—ly,Lv,t - Sj,n,Lj,t'

ved; (n) J/:>11
>

Suppose now that K € IN* with K < |n|, and (3.21) holds true for K — 1. Then we have,
by (3.20d),

[ K-1
(1) _ (1)
= Y &wrwmjﬁkmz$mk%nkl%wl

v eDy_1(n) L s=1
[ K- K-1
= : | | ssl | |Evn2r11v'0t
v'e®g_1(n) L =2 s=1
N
E My, € K-1 S(i)
ka*l k'n_Zs:I lv;_lk’O’t k,ﬁ—zfz_ll lvs'_lk'Lk't
k=1

n>@p -1 (V')

K K ] ]
M, i m € s \9(1)
v VsTs-1 Vo= Lo L0t VK’H_Zle lvs’LvK;f !
) s=2 ]

veDy (n s=1
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3.3. Explicit solution

where we take v = (v/,vy = k) = (v{,...,v}_,k) and notice that ¢; (v, k) = @;j x_1(v') + Ojk
for every j € [1,N], so that

{(v', k) € Py () x [, N] [ 1 > g g1 (v')}
={(v’, k) e [1, N]* ' x[[1,N] |n; > @jx-1(v)) forall j € [[1,N] and 1y > @y k-1 (v')}
={v e [LLN]¥ |nj > ¢;x(v) for all j € [1, N} = D (n).

This proves (3.21) by induction. [
XJ( QP
*
*
*
*

>

b

L, X

°
O L
Figure 3.4: Here N =2,n=(11,9) and K = 8.

Remark 3.22. In terms of the construction of Figure 3.3, each v € @k (n) corresponds to a
path between P and a point represented by a cross in Figure 3.4. The term

K

| | gvs'n_Zi:I lv,ro’t

s=1
in (3.21) represents the total decay along this path.

Remark 3.23. Under Hypothesis 3.11, the terms m,, ; ]_[f:2 My, in (3.21) satisfy

K
: mvlj | |mvsvs—1
s=2

vED (1)

<1. (3.22)

Indeed, we have

K K
: mvlj | | mvsvs—l mvlj | | mvsvs—l
s=2 s=2

veDy (1)
by applying iteratively (3.12). We also remark that Proposition 3.21 implies that the coeffi-
. (i) . (1)
cient Sj,n,Lj,t belongs to the convex hull of the points iva,n—Zil Lol

< ¥

ve[1,N]K

N N
= Z Z IvavK—l|.”’m’U1j' <1,
v1=1

7/](21

, for v in @k (m).
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3. Persistently damped transport on a network of circles

3.4 Proof of the main result

We now study the asymptotic behavior of the solutions of (3.5) with persistent damping,
through their explicit formula obtained in Section 3.3. We first show that, in order to ob-

tain the exponential stability of the solutions of (3.5), it suffices to obtain the exponential

(

convergence as |n|,; — +oo of the coefficients i n + of the explicit formula (3.19).

3.4.1 Convergence of the coefficients implies convergence of the solution
The section is devoted to the proof of the following result.

Proposition 3.24. Let § C L™(IR, [0, 1]). Suppose that there exist constants Cy, Yo > 0 such that,
for every ay € F, k € [1,Ny]|, we have

|9 < Coe Ml Vi je[1,N], Vnen, Vxe[0,L;], Vt € R.

jmx,t

Then there exist constants C,y > 0 such that, for every p € [1,+c0) and every initial condition
zg € X, the corresponding solution z of (3.5) satisfies

lz(D)llx, < Ce ™ lzollx,,  VtER,. (3.23)

Remark 3.25. The conclusion (3.23) of Proposition 3.24 can be written, in terms of the
evolution family {T(¢,s)};>s>0 associated with (3.5), as

||T(t/0)||5(xp) < Ce, VteR,.

When the class J is invariant by time-translation (e.g., for 3 = §(T, p)), this is actually equiv-
alent to
IT ()l x,) < Ce ) ViseR, witht>s.

Proof. Take zg = (u1,9,...,4n,0) € X, and denote by z(t) = (u(t),..., un(t)) the corresponding
solution of (3.5). By Corollary 3.17, Theorem 3.18, and Remark 3.20, we have, for t > L.y,

()1 —Znu [ <Z||u [ (3.24)

with u;(t,0) given by (3.19). Denoting Y;(t) = #{n € 12; | L(n) < t}, we have

t
45, Oy = |, Itils,0)P ds

p
<N 8" wio(Li— (s L)L,)| ds
ZL L; n; ]n+ L(n) ~ls— (“)}Lj,s 1 ] i
L(m)<s
t (i) p
<N vty |8 uj0(L;— (s~ Ln)y,)| ds
;L_Li ] HEZD; ]n+\\ (n Jl L {S L(n)}L]-rS ]’ ] 1
L(n)<s
LY 1 t {"’LLF”J) o
< NP~ COZYj(t)P_ Z L_L.e j |u]-’0(L]-—{5—L(n)}L],) ds
j=1 nen; !
L(n)<t
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3.4. Proof of the main result

< NP1CP 2yt Z oty L ) Li—{s—Lm))| ds, (3.25)
j= nen;
Lin)<t

‘max

where we use that

s—L(n
nly +
|1 { L

formeN; with L(n) <tandse€[t-L;t]
According to its definition, Y;(¢) can be upper bounded as follows

Lmax Lmax max max

TR s—Lm)|_ L) |s—-L(n) s t
J_;nk+{ L Jz J{ JzL 122,

Yj(t) <#nen;nL; <t forallie[1,N]\{j})

t t t t t N=1"(3.26)
#(HO,L—IHXWXHO,EHX{O}XHO,mH |[0 EH)<(Lmin+l) .

We next estimate ftt_L |u]- o(Lj—{s—L(m)}g )| ds with j € [[1, N]|. Notice that [t — Lyax, 1)
cums [Ln)+kLj, L(m)+ (k+1)L;) with

kmin = max{k € Z |L() + kL < t Loy}, Kmay = min{k € Z | L(n) + (k + 1)L; > ¢},
We deduce that
kmax
t
14
2, Jmoti—ts -z [ ds < Xf 100" 0 = (ma = ki + 1) s50ll

min

Lmax

< F 2 ol (327)
]

Inserting (3.26) and (3.27) into (3.25) finally gives (3.23) thanks to (3.24). Notice that
the coefficients y and C can be chosen to be independent of p. ]

Remark 3.26. Even though the well-posedness of (3.7) was considered in Section 3.2.1 only
for p € [1,+0), we extend it here below to the case p = +oco and we verify that Proposi-
tion 3.24 still holds true in this case.

First set X, = ﬂg\il L*(0,L;) with its usual norm |lzllx = maxeqi,nylltillz=(o,r,) for z =
(up,...,uN) € Xo. Fix zg € Xi. Since zy € X, for every p € [1,+00), then (3.7) admits a
unique mild solution z(t) = T(t,0)z; in ﬂpe[Lﬂo) CO(H{+,XP) with initial condition z(0) = z.
As noticed in Remark 3.20, z(t) is characterized as an element of X, by equations (3.18) and
(3.19). Hence z(t) € X, for every t > 0. We can thus refer to z(-) as the solution of the Cauchy
problem (3.7) in X..

Suppose now that the hypotheses of Proposition 3.24 are satisfied and let C,y > 0 be as
in its statement. By (3.23), we have

N\
I(8)llx, < Ce" llzollx, < C[ZLZ-] e |zl -

i=1

Since ||y||xm =limp 1 ||y||xp for every y € X, we conclude that
lz(D)lix,, < Ce™"llzollx, -
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3. Persistently damped transport on a network of circles

3.4.2 Preliminary estimates of S] .y

In this section we establish estimates on the growth of S](-ll)l ot
ments.

based on combinatorial argu-

Proposition 3.27. For every i,j € [1,N], n € R, x € [0,L;], t € R, and ay € L*(R,[0,1]),
k e [[1,Ny]l, we have

1+1

|s <Mt (3.28)

jmx,t

Proof. We show (3.28) by induction on |n|,. For every i,j € [1,N], x € [0,L;], t € R, and
ar € L®(R,[0,1]), k € [1,N,4]], we have, by (3.20),

|s

7,0,x,t| = |‘9]0L t| |mi]'|§|M|€1'

If R € N is such that (3.28) holds for every i,j € [1,N], n € 2 with [n|n =R, x € [0,L;], t € R,
and ay € L*®(R,[0,1]), k € [1,N,4]], then, for n € N with [n|, = R+ 1, we have, by (3.20),

+1 R+2
|‘9]nxt ‘S]HL t‘ Z| r]| ru 1,L, t’ Z|mf]||M|€ <|M| ’
nrzl
since |[M|p = maxjci,N] Zﬁil |mrj|. The result thus follows by induction. [ |

As a consequence of Propositions 3.24 and 3.27 and Remark 3.26, we deduce at once the
following corollary.

Corollary 3.28. Suppose that |M|, < 1. Then there exist C,y > 0 such that, for every p € [1,+o0]
and every initial condition zy € X, the corresponding solution z(t) of the undamped equation
(3.3) satisfies

lz(t)llx, < Ce ™ llzollx,,  VtER,.

Another trivial but important consequence of Proposition 3.27 is that, if [M|s < 1, the

coefficients 8] nx are all bounded in absolute value by 1.

Corollary 3.29. Suppose that |M|, < 1. Then, for every i,j € [1,N], neN, xe€[0,L;], t € R,
and ay € L®(R,[0,1]), k € [1,Ny]], we have

<1. (3.29)

jmxt| =

|9

Our second estimate on the coefficients 8](-11)1 .1 is the following.

Lemma 3.30. Suppose that Hypothesis 3.11 is satisfied. Then there exists v € (0,1) such that, for
everyi,j,k € [L,N],nen, xe[0,L;], t e R and a, € L(R,[0,1]), r € [1,Ny]|, we have

|9

Xt =

(Inlel)vmm_ (3.30)

g

Proof. Up to a permutation in the set of indices, we can suppose, without loss of generality,
that k = N. Let

= il

= max
eﬂl N]]
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3.4. Proof of the main result

By Hypothesis 3.11, we have both Zﬁ‘ll |mi]~| <1 and |mN]-| < 1. Hence uy, vy €(0,1).
We prove by induction on |n|,: that

B

(lnlgl )M'ﬁ"l_”N v, (3.31)

Jmxt| = 1k

Foreveryi,je[[1,N],x€[0,L;],t € R,and a, € L*(R,[0,1]), r € [1,N,4]|, we have, by (3.20),

’9

7,0xt) = |‘9]0L t' |mij|sl’

so that (3.31) is satisfied for n = 0.

Suppose now that R € IN is such that (3.31) is satisfied for every i,j € [1, N], n € D with
nlp =R, x€[0,L;], t € R, and a, € L*(R,[0,1]), r € [1,Ny].. If n € NN is such that [n|p = R+1,
we have, by (3.20),

N-1
(i) (i) (i) 1lqt
|‘9j,n,xt = Sj,n,Lj,t < |mfj| Sr,n—l,,L,,t +|mN]| SN,H—IN,LN,t
r=1
n,>1
N-1
< ((Inler =1 Inla=mg=1 ny Il =1\ Infi-ny _ny-1
= |mr]| Bn +| | -1 N VN
- N nN
r=1
n,>1
|H|gl—1 [nlp—ny  ny |II|51—1 [np—nn  ny |II|g1 [nl—ny  ny
5( ; 5N vyt _1 PN VN = KN YN
N N N

with the convention that SI(G{H_IN]LNJ =0 if n)y = 0. Hence (3.31) holds for n, which proves
the result by induction. We conclude by taking v = max{py, v¢ | k € [1,N]}. [ |

3.4.3 Exponential decay of s\

7,m,x,t

in 2(p)
(1)

The proof of the exponential decay of the coefficients 9, . ,

as |nj; — 400, uniformly with
respect to ay € G(T, u), k € [1,Ny], is split into two cases. We first estimate S](-f;’xlt
a subset Ny(p) of N, namely when one of the components of n is much smaller than the

others. The parameter p € (0,1) is a measure of such a smallness and will be fixed later. For

]( 1)1x , does not result from the presence of the persistent

damping but solely from combinatorial considerations. We then proceed in Section 3.4.4 to

for n in

n € Ny(p), the exponential decay of 9

estimate 8 nxt i the set N (p) = N\ Ny(p), where the decay comes from the persistent

damping i 1n (3.5).
Definition 3.31. For k € [1,N] and p € (0,1), we define

Db(P:k) ={n=(ny,...,ny) €N [n < plﬁlgl},

N
Nulp) =l k), Melp) =N A(p)

We now deduce from Lemma 3.30 the exponential decay of ‘9](11)1x ; in the set 12;(p).
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3. Persistently damped transport on a network of circles

Theorem 3.32. Suppose that Hypothesis 3.11 is satisfied. There exist p € (0,1/2) and constants
C,y > 0 such that, for every i,j € [1,N], n € Ny(p), x € [0,L;], t € R, and a, € L*(R,[0,1]),
re€[1,N4], we have

[c| < Cmle, (3.32)

Proof. Let v € (0,1) be as in Lemma 3.30. According to Lemma 3.60 in Appendix 3.D, there
exist p € (0,1/2), C,y > 0 such that for every n € IN and k € [0, pn]], we have (})v" < Ce™ ™.
Take 7,j € [1,N], n € Ry(p), x € [0,L;], and a, € L*(IR, [0, 1]) for r € [1, N4]. Since n € Ny(p),
there exists k € [1,N] such that n € Ny(p, k), i.e., ny < p|njyr. Then, by Lemmas 3.30 and
3.60, we have

&

jomx,t

<(Mer) i < oy n
ng

Remark 3.33. The above estimate is actually sufficient to derive the conclusion of Theo-
rem 3.1 when the damping is always active; indeed, in this case, one can easily deduce by
an inductive argument using (3.20) that

](fI)T.,Lj,t — ﬁ;fl)le*nl(blfal)efnz(bzﬂlz) e Ny (bny—any)
and the exponential decay in 2.(p) follows straightforwardly. Notice that in this case Hy-
pothesis 3.10 is not necessary.

3.4.4 Exponential decay of !

]nxt

in N.(p)

In this section, we establish the exponential decay of 9] nxt in the set N (p). The main
difficulty in proving it lies in the fact that «;(t) can be equal to zero for certain time intervals,

so that the term ¢; , . ; defined by (3.20b) can be equal to 1. Recall that

t—L(m) L+b

d
Ejmot = f: L(n)-Lj+a; aj(s) 5‘ (3.33)

Our goal consists in showing in Lemma 3.38 that ¢; , o ; is smaller than a certain value “often
enough”. The first step in this direction is the following lemma.

Lemma 3.34. Let T > u>0and j € [[1,N;]. For p>0and o € §(T, p), define

j”bf a(s)ds > p}. (3.34)

T+{1]‘

jj,p,a = {T eR

There exist p; > 0 and {; > 0, depending only on p, T and b; — a;, such that, for every t € R and
a€S(T,pu) I pa [t,t + T contains an interval of length ¢;.

Proof. We set pj = y(sz;aj), €j = min{p]', T}. Take a € §(T, p) and define the function A: IR — R
by

A(t) = j”bf a(s)ds.

T+ﬂj

Since a € L*(IR,[0,1]), A is 1-Lipschitz continuous. We also have, for every t € R,

IHT dt = fHTI a(s+t)dsdt = j IHHT T)dtds > p(b; - a;). (3.35)
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3.4. Proof of the main result

Take t € IR. There exists t, € [t,t + T| such that A(t,) > ”(b?af) = 2pj, for otherwise (3.35)

would not be satisfied. Since A is 1-Lipschitz continous, we have A(t) > p; for 7 € [t, -
Pj t« + p;jl, and thus

[te=pjtet o] N[t +TICT; 0 o N[t t+T].

But, since t, € [t,t + T], [ty — pj, tx + pj| N [t,t + T] is an interval of length at least ¢;, which
concludes the proof. []

Lemma 3.34 translates the persistence of excitation of a into a property on the integrals
appearing in (3.33).

As remarked in Section 3.2.3, one cannot expect to obtain a general result concerning the
exponential stability of (3.5) without taking into account the rationality of the ratios L;/L;.
The following lemma uses the irrationality of L;/L; for certain i,j € [1,N] to give a further
step into the understanding of ¢; ;, g ¢-

Lemma 3.35. Let T > p>0and let p; >0, j € [1,N4]|, be as in Lemma 3.34. There exists K € N

such that, for every ki € [1,N], k € [1,Ng]l with Ly /Ly, € Q, t € R, n € N, and a € §(T, ),

there exists v € N with nj<ri<K+mnj je {k1, ko), and rj=n; for j e [[1, N\ {ky,k;}, such that
t—L(r) e jkzrpkzra'

Proof. We shall prove the following simpler statement: for every k; € [1,N] and k, € [1, Ny]|
with Ly, /Ly, € Q, there exist Ny = Ny (k, k) € N and N, = N;(ky,k;) € IN such that, for every
teR,neN, and a € (T, p), there exist r € N with Mg, ST < N+ Mk, j€{1,2}, and rj = n;
for j € [1,N]\ {ky, kp}, such that

t—L(r) e jkz’szr“‘

From this result, one can easily obtain the statement of the lemma by taking

L
K = max {Nl(kl,kz), No(ky, ko) | kg € [1,N], k, € [1,N,] such that L—" ¢ Q}.

kz
We decompose the argument into two steps.
Step 1. Definition of the points x; and y);.

Let pr, > 0 and ¢, > 0 be obtained from y, T and by, —ay, as in Lemma 3.34. Let x = 3 [T/Kkz-l
and set

xj = %T, jel0,«],

which satisfy x; —x;_; = < % for j € [1,x]. Hence, for every interval | of length ¢},
contained in [0, T'], there exists j € [[1, k] such that Xj_1,Xj €].

We now construct intermediate points between the X}, j €0, «]. Since Ly, /Ly, € Q, the set
{nLy, + Ly, | ny,n, € Z) (3.36)

is dense in R. Hence we can find ny j, 15 ; € Z, j € [1,«]|, such that the numbers y; = ny ;L +
ny,;Ly, satisfy
0=x0<pP; <X <P <xp <+ <P <xpe =T, (3.37)

As a consequence, for any interval ] of length £}, contained in [0, T], there exists j € [1,x]]
such that y; €].

81



3. Persistently damped transport on a network of circles

Step 2. Characterization of v € ) and conclusion.
Let NT" = max{|ny 1l,...,|n |}, Ny = max{lnyl,...,|ny|} and Ny = 2N}, N, = 2Nj. Take t € R
and n € N. For j € [[1,«]|, definer; = (ryj,...,7n,;) €2 by

_ ) * L ) *
Tky,j = Nk, + 11 + N7, Tkyj = Nk, + 12, + N5,

and r;; = n; for i € [1, N]\ {ky, k,}; it is clear, by this definition, that ny, <7y, ; < N; +ny, for
ie{l,2}and j e [1,«]. Set
zj =t—L(rj), jell «];

we thus have
Z]' =f— 1’11’ij1 - 112,ij2 7%= t—7* —y]

with Z* = L(n) + N{*Lk1 + N;Lkz. Since, by construction, y; € (0,T) for j € [1,«], we have
Zi€[t-2"-T,t-2Z*].

Take a € §(T, p). By Lemma 3.34, Jg, 5, . N [t—Z*—T,t—Z*] contains an interval J of length
{,. Consider the interval J" = -] + t — Z*, which is a subinterval of [0, T] of length ¢;,. By
Step 1, there exists j € [1,«] such that y; € J’, and thus z; € ] C jkz,pkzla' Since z; =t - L(t;),
we obtain the desired result with r =1;. [

Remark 3.36. The only instance in the proof of Lemma 3.35 where we use the fact that
Ly, /Ly, € Q is when we establish the existence of numbers y;, j = 1,..., %, of the form y; =
ny,iLy, +ny Ly, with ny j,n, ; € Z satisfying (3.37), which we do by using the density of the
set (3.36). When Ly, /Ly, € Q and we write Ly, /Ly, = p/q for coprime p,q € IN¥, the set given

in (3.36) is, by Bézout’s Lemma,
L
Tll,i’l2€Z}:{ % kEZ}

Hence the construction of y; = ny jLy, + ny Ly, with ny j,n,; € Z satisfying (3.37) is still
possible if Ly, /q < «/T, i.e., if ¢ > Ly, x/T, and thus Lemma 3.35 still holds true if Ly, /Ly, =
p/q with coprime p,q € N and g large enough.

{Lk2 nip+nrq

Recalling that ¥ = 3 [T/&(J with £, = min {%, T}, we can even give a more explicit

sufficient condition on g to still have Lemma 3.35: if

> 3L ( { 2T ! }+ ! )
g>3Lg |max{ ———, =+ = |,
’ plbg,—ay,) T) T
then one can easily check that g > L;, x/T and hence we are in the previous situation.
More explicitly, we can replace Hypothesis 3.10 by the following one.

Hypothesis 3.37. There exist i € [1,N] and j € [1,N,] for which we have either L;/L; ¢ Q
or L;/L; = p/q with coprime p,q € IN" satisfying

g > 3L;j|max L,l +l . (3.38)

Notice that condition (3.38) only depends on the constants T, pu of the persistence of
excitation condition, on the length b; —a; of the damping interval j and on the length L;.

As a consequence of the previous lemma we deduce the following property.
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3.4. Proof of the main result

Lemma 3.38. Let T > pu > 0. There exist 11 € (0,1) and K € IN such that, for every k; € [1,N]],
ky € [1,Ng]l with Ly, /Ly, € Q, t € R, n € 1, and ay, € G(T, p), there exists t € D with n; <r; <
K+mnj, j€lky, ky}, and rj = nj for j € [1, N\ {ky, kp}, such that

€kyr,0, =1.

Proof. Take p; >0, j € [1,Ny], as in Lemma 3.34 and K € N as in Lemma 3.35. Define
1 = maxjepin,q¢ ¥ € (0,1). Take k; € [1,N] and k; € [[1,Ny] with Ly /Ly, € Q. Let t € R,
n e, and a, € (T, ). Applying Lemma 3.35 at t — Ly,, we deduce the existence of r €
such that

- Lkz - L(I‘) € sz:szrakz'

By the definition (3.34) of ijrszrakz’ this means that

t—L(l‘)—Lk +bk
L P ay, (s)ds > py,.

—L(r)—Lk2+uk2
By (3.33), we thus obtain that e, , o, < e P <. ]
Remark 3.39. Notice that the hypothesis that Ly, /Ly,  Q is only used to apply Lemma 3.35,

and thus, by Remark 3.36, Lemma 3.38 still holds true if k; and k, are chosen as in Hypoth-
esis 3.37.

Nca3 6
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N\
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Figure 3.5: Interpretation of Lemma 3.38 in the case N =2 and N; = 1.
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3. Persistently damped transport on a network of circles

Remark 3.40. Figure 3.5 helps illustrating Lemma 3.38 in the case N = 2. Taking N; =1,
the lemma states that there exists K € IN (K = 7 in the picture) such that every rectangle of
size (K+1)Ly, x(K+1)Ly, that we place in the grid pictured in Figure 3.5 contains at least one
horizontal segment (highlighted in the picture) where ¢, ;o < 77. Let us remark that K and
1 do not depend on ay € §(T, u): hence the position of the highlighted segments may change
if we change the persistently exciting signal, but we can guarantee that on every rectangle
there exists at least one such segment.

We now apply Lemma 3.38 to obtain the following property, which is a preliminary step
towards the exponential decay of 8 in Nc(p).

jomx,t

Lemma 3.41. Suppose that Hypotheses 3.10 and 3.11 are satisfied. Let T > y> 0 and p € (0,1).
Then there exist A € (0,1) and K € IN* such that, for every n € 2.(p) with min;ep; N1 = K,
i,je[1,N], teR, and ay € S(T, p), k € [1,Ny], we have

(1) (i)
S <A max S .
I jLjt pen ||l =K s,n—p,Lg,t
pr<n,, Vre[[1,N]

se[1L,N] | ps>0

Proof. Let 17 € (0,1) and Ky € IN* be as in Lemma 3.38. Let Ly, = min;ey L. We take
K = 2K0 +1.

Take n € N (p) with min;epnyn; 2 K and let k; € [1,N], k; € [[1,N4]] be such that
Ly, /Ly, € Q. Since n € (p), one has ny, > p[n|x for i € {1,2}. Take i,j € [1,N]], t € R and
ay € (T, p) for k € [1,N4]. Since [n|; > min;epy N7 = K, we can apply Proposition 3.21
and deduce from (3.21) the estimate

K
|8] nL; t| Z [(|mv1]| l—l |mv Vs 1 ][I_Igvs,n—zj_l 1,,7,0,t]]; (3.39)

'UE':DK 1
where
i)
0= max 8< .
pen |fpla=k | oot
p,<n,, ¥Vre[1,N]
se[L,N] | ps>0

Let us now apply Lemma 3.38 to the point n’ = n— K1y, — (Ko + 1)1j,. Notice that n” € 2
since 1y, 1, > Ko. Hence there exists r € 12 with

ng, — Ko <1, <y,
g, —Kog—1<r, <ng, -1,
= Tl]‘ fOI'jE [[1’N]]\{k1;k2};

such that € ;0 < 7.

We next show that there exists vy = (vq,1,...,vg k) € Px(n) and s¢ € [1, K] such that vy, =
kyandn-Y ', 1,,
ky and Vo, 1y +1 = VO —r +2 = *°* = VO,K = ky. Such a v is well-defined in ®g(n) since
0 < ng, — 1, < Ko < K. By construction, @i, x(vo) = ng, — 1y, < g, @k, x(vo) = K= (ng, —
1) < K < ny, and @ x(vg) = 0 < ny for k € [1,N]\ {ky, k,}. Hence v is in ®g(m). Taking
80 = g, — 1k, + 1k, — 1k, € [1, K]}, we have vy s = k; and n— Zi():l 1, =r.

= 1. For that purpose, take vy € [1, N]X with vy =vgy =+ = Vo, -1y, =

0,
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3.4. Proof of the main result

Let 6 = min; jeq1,n7 |mij| >0and A =1-06%(1-7#). One clearly has that A is in (0, 1), since
1,0 €(0,1). Using (3.22), we get from (3.39) that

i K K
i) . | | }
|‘9j,n,L]-,t <® |mvo.1j| | | |mVo,sVo,571 g eem-L2, Ly,/0.t Evp =Y 1y, 0t
5=2 s=1
S#S)
K K
+ : |mvlj| | | |mvsvs—1 | | EVS,H—Zi:l lv,rort
veDy(m)\(vo) s=2 s=1
[ K K
<O ImV0,1j| | | |mv0,sv0,s—l n+ z |m7/1j| | | |m7/s7/571
L s=2 veDg (n)\{vo} §=2

[ K K

=0 [|mVo,1j|I_[|mVo,sVo,s-1 ](’7_1)4— Z |mv1j|]_[|m7/svs-1 ]}
| = veDg(n) 5=2

<ol n-1+ ) [|mm|ﬂ| ) <0[1-s5(1-n)]=1e. n

VECDK(

We now obtain the exponential decay of ‘9](',i1)1,Lj, ; in the set 2.(0).

Theorem 3.42. Suppose that Hypotheses 3.10 and 3.11 are satisfied. Let T > y> 0and o € (0,1).
Then there exist C > 1, y > 0 and K € IN* such that, for every n € 2 (o) with min;e; ny1; > K,
i,je[[L,N], x€[0,L;], t € R, and ay € §(T, p), k € [1,Ny]|, we have

< Ce VIl (3.40)

JLX,E

|s

Proof. Take p = 9/2 and let A € (0,1) and K € IN* be as in Lemma 3.41. For n € N.(p) with
min;ep N1 = K, we set

dmax(n) =max{g € N |n—-r1 €N (p) for every r € N with [r| = gK}.

From Lemma 3.41, one deduces by an immediate inductive argument that for every q €
(L gmax(m)], i,j € [L,N], t € R, and ay € (T, p), k € [[1,N,]], we have

(i)
SS,H—D,LS,t :

<M max
peN ||plo =qK
p.<n,, Yre[1,N]
se[1,N] | ps>0

|‘9]nL t‘

By Corollary 3.29, it holds |9] nl, fl <1 foreveryi,je[1,N],neN and t € R. Therefore,
for every n € N (p) with min;ep nyn; 2 K, 7,7 € [1,N], t € Rand a; € §(T, p), k € [1, Ng]], we
obtain

’s < Nmax(n), (3.41)

JmLjt

Notice now that, by definition of gy,,x, one also has that

minf{ln -1l |t €p(p)},

(m)+1> 1
qmax - K
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3. Persistently damped transport on a network of circles

where, according to Definition 3.31, 2;(p) = 2 \2(p). One deduces at once that there exists
& > 0 such that, for every ne N.(0),

Gmax(m) + 1 > &|nfpr . (3.42)

Since A € (0,1), setting ¥ = —&logA > 0 and C = 1/A one concludes by inserting (3.42) into
(3.41) and then using (3.20a). [

3.4.5 Exponential convergence of the solutions

To conclude the proof of Theorem 3.1, it suffices to combine Proposition 3.24 with the esti-

]('fr)m,x,t for n € 2y(0) and n € 2 (p) given by Theorems 3.32 and 3.42, respectively.

Proof of Theorem 3.1. Let C;,; > 0 and p > 0 be as in Theorem 3.32. Take 0 = p in
Theorem 3.42 and let Cy,, > 0 and K € IN* be as in that theorem. Let

mates of 9

y =min{y;,y5},  C=max{Cy,C,, e’ /P}.

Takei,je[[1,N],nenN,xe[0,L;],t € Rand ey € §(T, p), k € [1, Ng]. If n € N2y(p) or me N(p)
with min;e; np7; 2 K, then one concludes directly from Theorems 3.32 and 3.42. Finally, if
n € N(p) with min;ep, vy < K, note that [nf, < K/p. Then, by Corollary 3.29, one has

<1<CeVKlp < CevIla

Theorem 3.1 now follows from Proposition 3.24. [ ]

Remark 3.43. By Remark 3.36, Hypothesis 3.10 can be replaced by Hypothesis 3.37 in Lem-
ma 3.41 and Theorem 3.42, and so the same is also true for Theorem 3.1. We recall that the
case p = +oo also follows from Proposition 3.24 thanks to Remark 3.26.

3.A Well-posedness of the Cauchy problems (3.7), (3.8), and (3.9)

We are interested in this section in the proof of Theorem 3.5, which states the well-posedness
of the Cauchy problem (3.7). This is done in two steps. First, we show that the opera-
tor A defined in (3.6) is the generator of a strongly continuous semigroup {e'};so, thus
establishing the well-posedness of the undamped system. We then consider the operator
B(t) = Zf\i‘il a;(t)B; as a bounded time-dependent perturbation of A in order to conclude the
well-posedness of (3.7).

3.A.1 Preliminaries

Let X be a Banach space and let A : D(A) C X — X be an operator in X. The definitions
of strong and weak solutions for the Cauchy problem associated with A can be found for
instance in [144]. Recall that if A is densely defined with a non-empty resolvent set, then
the Cauchy problem associated with A has a unique strong solution for each initial condition
zo € D(A) if and only if A is the generator of a strongly continuous semigroup {e'?};5o. In
this case, the solution is given by z(t) = ez, (see, for instance, [144, Chapter 4, Theorem
1.3]). Then, t > e'4z; is a well-defined continuous function for every z; € X and it is the

unique weak solution of the Cauchy problem associated with A.

Definition 3.44. A family of operators {T(t,5)};>s>0 C £(X) is an evolution family on X if
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3.A. Well-posedness of the Cauchy problems (3.7), (3.8), and (3.9)

(a) T(s,s) =1dx for every s > 0,

(b) T(t,s)=T(t,t)T(7,s) foreveryt>1>5>0,

(c) for every z e X, (t,s) — T(t,s)zis continuous for every t > s > 0.
An evolution family is exponentially bounded if it satisfies further the following property.
(d) There exist M >1 and w € R such that [|T(t,s)]|;(x) < Me®(t=5) for every t > s > 0.

For references on evolution families see, for instance, [44,104, 147]. We are interested
here in a family of the form A(t) = A+ B(t) where A is the generator of a strongly continuous
semigroup and B € L*(IR,, £(X)). We shall use here the following notions of solution.

Definition 3.45. Consider the problem

{Z(t) =(A+B(t))z(t), t=s20, (3.43)

2(s) = 2o,
where A is the generator of a strongly continuous semigroup {¢!4},5¢ and B € L*®(R,, £(X)).

(a) We say that z : [s,+00) — X is a regular solution of (3.43) if z is continuous, z(s) = zg,
z(t) € D(A) for every t > s, z is differentiable for almost every t > s, 2 € L} ([s, +00),X)
and z(t) = (A + B(t))z(t) for almost every t > s.

(b) We say that z : [s,+c0) — X is a mild solution of (3.43) if z is continuous and, for every

t > s, we have
t
2(t) = ez, +I eIAB(1)z(1)d.

N

Here, the integrals of X-valued functions should be understood as Bochner integrals; see,
for instance, [175]. In the following proposition, we summarize the main facts needed for
the present chapter.

Proposition 3.46. Let A be the generator of a strongly continuous semigroup (€4}, and B €
L®(R,, L(X)). Then, the following holds true:

(a) every regular solution of (3.43) is also a mild solution;

(b) there exists a unique family {T(t,s)};>s>0 of bounded operators in X such that (t,s) — T(t,s)z
is continuous for every z € X and

t
T(t,s)z ="Mz + j e OAB(T)T (v, 5)zd, VzeX. (3.44)

S

Furthermore, this family is an exponentially bounded evolution family;

(c) forevery zg € X, (3.43) admits a unique mild solution z, given by z(t) = T(t, s)z.

3.A.2 Proof of Theorem 3.6

Since Zg\i"l B; is a bounded operator, it suffices to show Theorem 3.6 for A.

Proposition 3.47. Let p € [1,+00). The operator A is closed and densely defined. Moreover, D(A)
endowed with the graph norm is a Banach space compactly embedded in X,.
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3. Persistently damped transport on a network of circles

Proof. The proposition follows straightforwardly by the remark that the graph norm on
D(A) coincides with the usual norm in ]_[f-\il WLP(0,L;), that is,

N

el = D (Nl +

i=1

p
LP(0,L;)
for z = (uy,...,uy) € D(A). [ |

Proposition 3.48. Let p € [1,+00). The resolvent set p(A) of A is nonempty.

Proof. Since A is closed, we have A € p(A) if and only if A — A is a bijection from D(A) to X,,.
A direct computation based on explicit formulas yields that A — A is a bijection as soon as

/\eIRwith/\>l°%|—lez. [ |

min

We now turn to a result of existence of solutions of (3.8) when z; € D(A).

Theorem 3.49. For every zy = (u1,9,...,Un,0) € D(A), there exists a unique strong solution z =
(u,...,un) € CORy, D(A)) N EY(R,, X,) of (3.8).

Proof. Let T > 0 be such that T, < L,,;,- Note that it suffices to show the theorem for
solutions in C%([0, T,], D(A)) N €([0, T], Xp), since Ty does not depend on zy; € D(A). Let
2o = (u1,0,...,uN,0) € D(A). It follows easily from the transport equation and the transmission
condition (3.2) that a solution ¢ + z(t) = (uy(t),...,un(t)) of (3.8) necessarily satisfies

N
ml'ju]',()(L]' —t+x) if0<x<t,

u;(t,x) = p (3.45)

ujo(x—t) if x > t.

Conversely, if z = (uy,...,uy) is given by (3.45), then it solves (3.8) and has z; as initial con-
dition. Moreover, one checks by direct computations that z fulfills the required regularity
properties. n

Proof of Theorem 3.6. From Propositions 3.47 and 3.48 and Theorem 3.49, we obtain
that A generates a strongly continuous semigroup {e’4},5¢ (see, for instance, [144, Chapter
4, Theorem 1.3]). Since Zf.\fl B € L(X,), A+ Zi\idl B; also generates a strongly continuous
semigroup (see [144, Chapter 3, Theorem 1.1]). ]

Remark 3.50. In the particular case p = 2 and |M|,» < 1, one may conclude more easily that A
is the generator of a strongly continuous semigroup {e/4},, without having to construct the
explicit formula (3.45) for the solution as we did in Theorem 3.49. Indeed, a straightforward
computation shows that, for any M € My (R), the adjoint operator A* of A is given by

N N
D(A*) = (ul,...,uN) S ]_[HI(O,LZ) ui(Li) = Zmﬂu](O) ,
i=1 j=1

. du du
A(ul,...,uN):(—1 N).

dx’7 dx

Also, for any z = (uy,...,un) € D(A), we have
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3.A. Well-posedness of the Cauchy problems (3.7), (3.8), and (3.9)

since, by (3.2), we have Zfil {(0)? < |M|€2 1 u;(L;)?. Thus, if [M|,2 < 1, we have (z,Az) <0
for every z € D(A), so that A is d13$1patlve A similar computation holds for A*, with M
replaced by its transpose MT, showing that A* is also dissipative. Hence A generates a
strongly continuous semigroup of contractions {e4},5( (see, for instance, [144, Chapter 1,
Theorem 4.4]).

3.A.3 Proof of Theorem 3.5

Thanks to Theorem 3.6 and Proposition 3.46(b) and (c), there exists a unique evolution
family {T(t,s)}>5>0 associated with (3.7) such that, for every zy € X,, t = T(f,5)zg is the
unique mild solution of (3.7) with initial condition z(s) = zy. In order to complete the proof
of Theorem 3.5, it suffices to show that this solution is actually regular when z, € D(A). To
do so, we study the explicit formula for the solutions of (3.7) for small time, as we did with
the undamped system (3.8) in Theorem 3.49.

Proof of Theorem 3.5. Let Ty > 0 be such that Ty < L,;,. As in Theorem 3.49, it suffices to
show the theorem for solutions in C%([s,s + To], Xp). Since the class L*(RR, [0, 1]) is invariant
by time-translation, we can also suppose without loss of generality that s = 0. In order to
simplify the notations, we define the function ¢; : R, xR — IR* for i € [1,N] by

@i (t X) —e fo (8)xi(x—t+s)ds ,

where we extend the function x; to R by 0 outside its interval of definition [0,L;]. (In par-
ticular, ; = 1 for i € [Ny + 1,N].) We have that both ¢; and 1/¢; belong to L*(R, x R) N
CO(R, xR) and to WI*(RR, x R).

Let zy = (uy,0,...,un,0) € D(A). We claim that, for 0 < t < Ty, the function t — z(t) =
(uy(t),...,un(t)) given by

(pl tx .
E m —x,Li)ujo(x+Lj—t), if0<x<t,
(1, %) = Pi(t—x,0) ijj(t j1%5.0

(Pi(t,x)u,-,o( —t), if x>t

is in €°([0, Tol, Xp), 2(0) = 2o, z(t) € D(A) for every t € [0, Tp], z is differentiable for almost
every t € [0,Ty], 2 € L*([0, Tp], X,) and 2(t) = Az(t) + Zi\i"l a;(t)B;z(t) for almost every t €
[0, Ty]. Indeed, it is clear that z is well-defined, z(0) = z,, and z(t) € X, for every t € [0, Ty].
It is also clear, thanks to the regularity properties of ¢;, that, for every t € [0, Ty], u;(t) €
WULP(0,t) and u;(t) € WYP(t, Ty), and, since x — u;(t,x) is continuous at x = t, we conclude
that u;(t) € WYP(0,L;). Furthermore,

N N
Lli(t,O) = Zml]qoj(t, L])M]’O(L] - t) = Zmijuj(t,L])
=1 =

and thus z(t) € D(A) for every t € [0,Ty]. By the same argument, we also obtain that
u;(-,x) € WhP(0, Ty) for every x € [0,L;]. Computing u;(t + h,x) — u;(t,x) for t,t + h € [0, Ty]
also shows, by a straightforward estimate, that ||u;(t + h) - ui(t)||Lp(O’Li) — 0ash— 0, and
thus z € ([0, Tol, Xp)-

Since u;(-,x) € WP (0, T,) for every x € [0,L;], one can also compute d;u;(t,x), and it is
easy to verify that d;u; € L*([0,Ty],LP(0,L;)). Hence z is differentiable almost everywhere,
with z = (atul,. cey 8tuN) € LOO([O, TO]lXp)'
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3. Persistently damped transport on a network of circles

Notice now that z(t) — Az(t) = (dyuy () + dxuq(t),..., dsun(t) + deun(t)) is given by

21 i(t, x) + A, @;i(t, x) )
m; olx+L;—t), if0<x<t,
at”i(txx)‘f‘axui(tlx) — (Pl t_x 0 Z ](P] ) ],0( j )
[Drpi(t, x) + ax(Pi(t:x)]ui,O( —t), if x>t

and one can compute that d;¢@;(t,x) + d,@;(t,x) = —a;(t) x;(x)@;(t,x) almost everywhere, so
that
drui(t, x) + dxui(t,x) = —a;(t) x; (X)u; (¢, x).

Thus z(t) — Az(t) = —Zf\]"l a;(t)B;z(t) for almost every t € [0, Ty], which concludes the proof
of existence. Uniqueness results from the fact that every regular solution is in particular a
mild solution, which is unique, according to Proposition 3.46. ]

3.B Asymptotic behavior of (3.11)

We consider here System (3.11) from Example 3.8. Let X, be the Hilbert space X, = L?(0,L;)

L?(0,L,). The goal of this section is to prove Theorem 3.9 concerning the asymptotic be-
havior of (3.11) when x = 0, and also to show the existence of periodic solutions to (3.11)
with a persistent damping when L,/L, € Q and b —a is small enough. The proof of Theo-
rem 3.9(a) being based on LaSalle Principle, we recall its formulation in a Banach space in
Section 3.B.1.

3.B.1 LaSalle Principle in a Banach space

In this section, X denotes a Banach space and A: D(A) € X — Xis a linear operator in X that
generates a strongly continuous semigroup {e'};50.

Definition 3.51.

(a) For zj € X, the w-limit set w(z) is the set of z € X such that there exists a nondecreasing
sequence (t,),en in R, with t,, — +00 as n — oo such that e"zy — zin X as n — co. A
set M C X is positively invariant under {et4),s if, for every z; € M and t > 0, we have
e'4zy € M. For E C X, the maximal positively invariant subset M of E is the union of all
positively invariant sets contained in E.

(b) A Lyapunov function for {e'4};s is a continuous function V : X — R, such that

. %
V(z) = limsup <0, VzeX

t—0+ t

The following results can be found in [81,95,161].

Theorem 3.52.
(a) Suppose that {edzy |t > 0} is precompact in X. Then w(zy) is a nonempty, compact, con-
nected, positively invariant set.

(b) Let V be a Lyapunov function on X, define E = {z € X| V(z) = 0} and let M be the maximal
positively invariant subset of E. If {e'4zy | t > 0} is precompact in X, then w(zy) C M.
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3.B. Asymptotic behavior of (3.11)

3.B.2 Asymptotic behavior when L,/L, ¢ Q

Let us turn to the proof of Theorem 3.9(a). We consider the undamped system

dyui(t, x) + dyu;(t, x) = 0, teR,, xe[0,L;], ie{1,2},

t,L t,L
u(£,0) = uy(t,0) = Gl 1);”2< 2), teR,, (3.46)
u;(0,x) = u; o(x), x€[0,L;], i€{1,2).

Let V : X, — IR be the function V(z) = ||z||>2<2 and A be the operator given in Defini-
tion 3.3 in the case p =2, N =2 and mij = 1/2 for i, j € {1, 2}, which is the operator associated
with System (3.46). By Theorem 3.6, A is the generator of a strongly continuous semigroup

{etA}tzo-

Lemma 3.53. The function V is a Lyapunov function for {e"4};s0. If z = (u1,u,) € D(A), we have

V(2) = 2(z, Azy = -0 - 5(L2))°

Proof. Notice first that, for z = (uy,u;) € D(A), we have (z,Az) = —(u;(Ly) — uy(L,))?/4 < 0.
Take z € D(A), so that t > ez is continuously differentiable in RR,; thus t > V(ef4z) is
continuously differentiable in R, with % V(etz) = 2<etAz,AetAz>. Hence, for every z € D(A),
V(z) = 2(z,Az) < 0. This also shows that ||etAz||x <|lzllx, for every z € D(A) and t > 0, and,
2
by the density of D(A) in X,, we obtain that ||etAZ||X < |lzllx, for every z € X, and £ > 0, i.e.,
2
{e'),50 is a contraction semigroup. Thus V(z) < 0 for every z € X,, and so V is a Lyapunov
function for {e*},s. ]
It is then immediate to prove the following.
Lemma 3.54. For every z € D(A), {etAz |t > 0} is precompact in X, and w(z) C D(A).
Set E = {z€ X, | V(z) = 0} and let M be the maximal positively invariant subset of E.

Lemma 3.55. Suppose L1/L, ¢ Q. Then
D(A)NM ={(A\,A) € L*(0,L;) x L*(0,L,) | A € R},
i.e., D(A)N M is the set of constant functions on L?(0,L;) x L?(0,L,).

Proof. Take zy = (1,9, up,0) € D(A) N M. By the positive invariance of M, etdzy e D(A)N M
for every t > 0.

Let us denote z(t) = (u;(t), us(t)) = e"zy, which is a strong solution of (3.46) with ini-
tial condition z,. Since z(t) € M, we have V(z(t)) = 0 for every t > 0, which means, by
Lemma 3.53, that u;(t,L;) = u,(t,L,) for every t > 0. Then we have that

uy(t,Ly)+us(t, Ly)
2

Ml(t,O):uz(t,O): :Ml(t,Ll)ZMQ(t,Lz), VtGIR_,_.

Without any loss of generality, we can suppose that L; < L,. For t > L and x € [0,L;], we
have that
up(t,x) =u(t—x,0) = uy(t —x,0) = uy(t,x),

and so uq(t,x) = uy(t,x). Now, for t > L; and x € [0, L; ], we have that

u(t+Ly,x)=uy(t+L1—x0)=u(t+L; —x,Ly) = up(t —x,0) = uy (£,x)
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and thus [L{,+c0) 3 t + uy(t,x) is a L;-periodic function for every x € [0,L;]. Similarly, for
t>L, and x € [0,L,], we have that

Us(t+ Lo, x) =uts(t+Ly—x,0)=us(t+Ly—x,Ly) = ts(t —x,0) = up(t, x)

and thus [Ly,+00) 3 t > u;(t,x) is a L,-periodic function for every x € [0, L,]. Since u;(t,x) =
u,(t,x) for t > Ly, x € [0,L,], we obtain that [L,,+o0) 3 t > u;(t,x) is both L;-periodic and
L,-periodic for every x € [0,L; ], and the fact that L,/L, ¢ Q thus implies that [Ly,+c0) 3 t >
uy(t,x) = uy(t,x) =t A(x) is constant for every x € [0,L;]. Clearly, A(x) does not depend on x
since

A(x) = uq(t,x) = uy(t —x,0) = A(0), Vt>L,+ Ly, Vx€[0,L;],

and so we shall denote this constant value simply by A. We thus have that
up(t,x) = uy(t,x) = A, Vt>1L, Yxe€[0,L;].
We deduce at once that u; o and u, o are both equal to the constant function A and hence
D(A)NM c {(A,A) € L?(0,L;)xL?*(0,L,) | A € R}.
The converse inclusion is trivial and this concludes the proof. [

Suppose now that z; € D(A). By Lemma 3.54 and Theorem 3.52(b), we have that w(zy) C
D(A) "M and thus, by Lemma 3.55, if L;/L, ¢ Q, we get that every function in w(zg) is
constant. We now wish to show that w(z;) contains only one point in X;, which will imply
that ez, converges to this function as t — +c0. To do so, we study a conservation law for
(3.46).

We define U : X, — R by

U(uq,uy) = L (ILI ul(x)alx+fOL2 uz(x)dx).

Ll +L2 0

Notice that U is well defined and continuous in X, since we have the continuous embedding
X5 <> LY(0,L1) x LY(0, L,).

Lemma 3.56. For every z € X, and t > 0, we have U(e'z) = U(z).

Proof. By the density of D(A) in X, and by the continuity of U, it suffices to show this
for z € D(A). In this case, the function t — U(e*4z) is differentiable in R,, and, noting

e'4z = (u1(t), uy(t)), we have by a trivial computation that % U(et4z) = 0. [ ]

Define the operator L on X; by Lz = (U(z), U(z)) and notice that L € £(X;). The main
result of this section is the following, which proves Theorem 3.9(a) and gives the explicit
value of the constant A.

Theorem 3.57. Suppose L,/L, Q. Then, for every zy € X, lim;_,, o, "4z = Lz,

Proof. Since L is a bounded operator and the semigroup {e'},s( is uniformly bounded, it
suffices by density to show this result for zy € D(A). By Lemma 3.54 and Theorem 3.52(b),
we have w(zp) C D(A)NM and thus, by Lemma 3.55, every function in w(z;) is constant. Let
z=(AA) € w(zg) with A € R and take (t,),cn @ nondecreasing sequence in IR, with ¢, — +oo
as 1 — oo such that ef*z; — z in X, as n — co. By the continuity of U and by Lemma 3.56,
we obtain that

A =U(z) = lim U(e"*zy) = U(zy)

n—-oo

and thus z = Lzy. Hence w(z)) = {Lzo} and, by definition of w(z), this shows that e/4z; — Lz
as t — +oo, which gives the desired result. [
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3.B.3 Periodic solutions for the undamped system

We now turn to a constructive proof of Theorem 3.9(b).

Proof of Theorem 3.9(b). Take p,q € IN* coprime such that L,/L, = p/q. Let £ =L{/p = L,/q.
Take ¢ € C°(R) with support included in (0,¢). For x € [0,L; ], we define u; o by

1 o(x) = Z P(x —kb). (3.47)
k=—c0

Notice that, for each x € R, there exists at most one k € Z such that ¢(x—k¢) # 0. In particular,
uy 9 € €*([0,L;]). Similarly we define u; o € C*([0,L;]) by the same expression

1,0(x) = Z P(x—kl), xe[0,L,]. (3.48)
k=—00

,

Define u;(t,x) = ujo(x—t) for j =1,2. Since L, = pl, L, = g, we have
up(t,Ly) = us(t,Ly) = uy(t,0) = uy(t,0).

Thus, (u1,u,) is the unique solution of (3.46) with initial data zy = (u; g, u). It is periodic
in time, and non-constant if ¢ is chosen to be non-constant. ]

3.B.4 Periodic solutions for the persistently damped system

Sections 3.B.2 and 3.B.3 present the asymptotic behavior of (3.46) in the cases L1/L, ¢ Q
and L{/L, € Q, showing that all solutions converge to a constant in the first case and that
periodic solutions exist in the second one. When considering System (3.11) with a persistent
damping, the fact that all its solutions converge exponentially to the origin when L,/L, ¢ Q
is a consequence of our main result, Theorem 3.1. However, if L,/L, € Q and the damping
interval [a,b] is small enough, one may obtain periodic solutions, thus showing that Theo-
rem 3.1 cannot hold in general for L,/L; € Q and any length of damping interval.

Theorem 3.58. Suppose that L1/L, € Q. Then there exists £y > 0 such that, if b—a < €, there
exists a € G(4€y,€y) for which (3.11) admits a non-zero periodic solution.

Proof. We consider here the construction of a periodic solution for (3.46) done in the proof
of Theorem 3.9(b). Take p,q € IN* coprime such that L,/L, = p/q and note { = L,/p = L,/q.
Take ¢ € C(IR) not identically zero with support included in (0,£¢/2). By proceeding as in
Theorem 3.9(b) we get a periodic non-zero solution (1, u;) of (3.46) given by

uy(t,x) = i p(x—t—k¢), Uy (t,x) = i p(x—t—kC). (3.49)
k=—00 k=—c0

Take ¢y = ¢/4 and suppose that b —a < ;. We construct a periodic signal a : R — {0, 1}

defined by

0, ifte U [a—(n+12)€,b-nt],

a(t) = nez

1, otherwise.
This defines a periodic signal & with period T = ¢ = 4¢; which belongs to §(4¢y,¢;). One
then easily checks that a(t)x(x)u,(t,x) = 0 for every (t,x) € R, x[0,L,], and so (3.49) satisfies
(3.11). [

93



3. Persistently damped transport on a network of circles

3.C Proof of Theorem 3.15

From now on, we use the convention ﬂ](ll)l = 0if n = (n,...,ny) € ZV is such that n < 0 for
some index k € [1, N]], so that (3.16b) can be written as

(i)
MiiPr v,

gk

(i) _
ﬁj,n -

>~
Il

1

One then gets by a trivial induction the following result.

Lemma 3.59. Foreveryi,je[[1,N] and n=(ny,...,ny) €2\ {0}, we have

k
mikﬁ]("n)_lk- (3.50)

™=

(i) _
ﬁ]’,n -

=~
Il

1

We can now turn to the proof of Theorem 3.15.

Proof of Theorem 3.15. Let zy = (u1,,...,uUn,0) € D(A) and let z = (uy,...,uy) be defined
by (3.14), with u;(t,0) given by (3.15). Notice that u;(-,0) is defined everywhere on R, and
is measurable, so that u; is defined everywhere on R, x [0, L;] and is measurable. Note also
that u; is well defined, since

thanks to the fact that /Sj(-f(), =m;; and zy € D(A).

Let Ty > 0 be as in the proof of Theorem 3.49. The unique solution of (3.3) with initial
condition z, is then given by (3.45) for 0 <t < Tj, and, in order to prove the theorem, it
suffices to show that, for every t,7 with 0 <7 <t <7+ T, we have

N
miui(t,Li—(t-1)+x), if0<x<t-r,
u;(t,x) = ]:ZI’ (3.51)
(T, x—t+1), ifx>t-r.

Indeed, if this is proved, we apply it to 7 = 0 to obtain that z is the solution of (3.3) with
initial condition zy for 0 <t < Ty, and also that z(t) € D(A) for every t € [0, T], and a simple
induction allows us to conclude.

We prove (3.51) by considering three cases.

Casel. 0<t-t<xandt<x. By(3.14), we have u;(t,x) = u; o(x —t) = u;(T,x — t + 7).

Case 2. 0 <t-t<xandt>x. Since x—1t+ 71 <7, we have in this case u;(t,x —t+ 1) =
u(t—x+t-1,0)=u;(t —x,0) = u;(t,x).

Case 3. t— 1 > x. We notice first that it suffices to consider the case x = 0. Indeed, if
t—t > x, then t > x, and it follows clearly by the definition (3.14) of u; that u;(t,x) = u;(t—x,0)
for t > x > 0. On the other hand, let us denote

N
Zmijuj(T,L]-—(t—T)+x) ifo<x<t-rt,

Vi,r(txx) ==l

(T, x—t+71) ifx>t—r.
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3.C. Proof of Theorem 3.15

It is also clear that v; .(£,x) = v; .(t — x,0), and thus it suffices to show that u;(t,0) = v; .(t,0)
for every t € [7,7 + Tj] in order to conclude that u;(t,x) = u;(t —x,0) = v; . (t —x,0) = v; (t,x)
for every t € [t,7+ Ty] and x € [0, L;] with t — 7 > x.

For t € 1,7+ Ty], we have v; .(¢,0) = Zﬁil m;jui(t,Lj —t + T). Furthermore

M]"()(L]'—t), if t SL],

uj(T,Lj—t+T): .
Ll]'(t—Lj,O), ift> L]',

and so

N N N
vi,r(tr 0) = Zmij“j(Tij —t+ T) = Zmijuj(t—Lj,O) + Zmijuj,O(Lj - t)
j=1 j=1 j=1

LJ'St Lj>t

M=
E
™=z
™1

k,n+

Lg

I
—_
o~
Il

N
(7)
p’ ety | ugo(Ly —{t—Lj—L(n)},) + Zmij”j,O(Lj —t)
1 neny [ J k 2:1
j>t

.
.

IN

£
=
a2

A

T

—~

I
Mz
.MZ
™1
3
=

n+{t—L'—L(n)J1kuk,0(Lk —{t- Lj - L(n)}Lk)

]
L

N N _ N o
) ) Y mbatolli=(=L= L)+ ) fpuolly =)
]j=

Lj>t

Set
Ai(t)={(k,j,m) e[l N x[[L, N x| Ly < t, Li<t neny, L(n) < t—L]-},

Ax(t) ={(k,j,n) € [LN] x[L, N x 2 |Ly >t, L; <t, me Ny, L(n) <t-Lj},

so that we can write

Vi,f(t; 0) = Z mijﬂ]((]r)ﬁr-L--L(n)Jl uk,O(Lk - {t - Lj - L(n)}Lk)
M+ —— |1,

(k,jm)eA(t) ]L
N (3.52)

b Y (L= (= L= L)+ Y piouio(Li—1)

(k,jm)€A,(t) j=1
L]‘>t
Set
By(t) = {(k, j,m) € [LN] x [LN] x| Ly < £, m € N,
t—L(m)

L(m)St,m+{
k

Jlk:(rl,...,TN)With 1’]' > 1},

By(t) ={(k,j,m) € [L, N[ x [LN] x| L > £, m = (my,...,my) €\ {0}, m;j > 1, L(m) < t},
and define the functions ¢, : [1, N x[L, N x2 — [1, N]| x[[1,N]|x2, A =1,2, by

(k,jm+1;) ifk=j,

k,i,n)=(k,jn+1;).
(k. j,m) ifk=j, p2(k, j,n) = (k, j i)

p1(k, j,n) :{
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3. Persistently damped transport on a network of circles

We claim that ¢, is a bijection from A,(¢) to B,(t), A = 1,2. Indeed, it is easy to verify that
the image of A)(t) by ¢, is included in B)(t) and that ¢, : A,(t) — B,(t) is injective for
A =1,2. Let us check that these functions are surjective.

If (k,j,m) € By(t), we note (ry,...,ry) =m+ | (t — L(m))/Li | 1 and we set n = m if k = j and
n=m-1;if k # j. Notice first that, if k # j, then m; =r; > 1, so that m —1; € 1, and thus,
in both cases k = j and k # j, we have (k,j,n) € [1,N] x[[1,N]| x 2, and clearly ¢;(k,j,n) =
(k, j,m), so that, in order to conclude that ¢, : A;(t) — B(t) is surjective, it suffices to show
that (k,j,n) € Ay (t). We clearly have Ly <t and n € ;. If j =k, we have L; = Ly <t and, since
rj =1, =[(t—L(m))/Ly| and r; > 1, we have (t - L(m))/Ly > 1,i.e., L(n) = L(m) <t - Ly =t - L,
so that (k,j,n) € Ay(t). If j # k, we have m; =r; > 1, so that L; < m;L; < L(m) < £; also,
L(n) = L(m)—-L; <t-Lj, sothat (k,j,n) € A;(t). Hence (k, j,n) € A () in both cases, and thus
@1 : Ay (t) — By (t) is surjective.

If (k,j,m) e By(t), we set m=m— 1;,s0 that n € N and @, (k, j,n) = (k, j,m). Now, it is clear
that Ly >t and n € 1, and we have L; <m;L; <L(m) <t and L(n) = L(m)—-L; <t-L;. Hence
(k,j,m) € Ay(t), and thus ¢, : A,(t) — B,(t) is surjective.

Thanks to the bijections ¢, : A)(t) = B,(t), A = 1,2, we can rewrite (3.52) as

ValtO)= ) Bl koL - L),

(k,j,m)eB (t)

N
w0 ) myBy eo(Le—(t=Lm))+ ) BluiolLi— 1),
(k,j,m)€By(t) I{:lt
]‘>
and so, by applying Lemma 3.59, we obtain
N N "
vib0)=) ) ) By i g,y 0L = (0= Lm}L,)
k=1 men; j=1 Lk /

LAt LmSt 1,) 21

+Z Z Zmljﬁkm— g o(Ly — (£ = L( Zﬂko”ko Li—1)

k=1 menN;\{0} j=1
Lt pm)<t mj>1 Lk>t

=) D Byt Bl (= L)

+Z Z ﬁkmukOLk—t— m)) ZﬁkoukoLk—t

=1 mEDk\{O}

Lk>t L(m)<t Lk>t
—Z > ﬂkm+ koL = £ = L))z, ) = (8, 0).
=1 meny
L(m)<t

Hence v; .(t,0) = u;(t,0) for every t € [t,7 + Ty], which thus concludes the proof of (3.51). m

3.D A combinatorial estimate

In order to estimate the right-hand side of (3.30), one needs the following lemma.
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3.D. A combinatorial estimate

Lemma 3.60. Let v € (0,1). There exist p € (0,1/2), C,y > 0 such that, for every n € IN and
k € [0, pn]|, we have

(Z)v” <Cem, (3.53)

Proof. For n € N, consider the function f,(k) = (;)v" defined for k € [0,n]. Since k > (}) is
increasing for k € [0,72]), if k € [0, pn] for a certain p € (0,1/2), then

falk) < fullon)). (3.54)

Let us estimate f,(|pn]) for n large. As n — +oo, using Stirling’s approximation logn! =
nlogn—n+ O(logn), we get

n

log fu(lpn]) = log(Lan
=nlogn—pnlog(pn) — (1 — p)nlog[(1 — p)n] + nlogv + O(logn)

=n[g(p)+0(1°§n)],

where the function g : (0,1) — R is defined by

)+nlogv

g(p) = plog(%) +(1 —p)log(li—p)+logv.

It is a continuous function of p € (0,1) and lim,_,og(p) = logv < 0, hence there exists p €
(0,1/2) depending only on v such that g(p) < 1 logv < 0. For this value of p, we have

log f,(lpn]) < glogv +O(logn) < glogv +0(1).

The result follows by combining the above with (3.54). ]
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Chapter 4

Stability of non-autonomous
difference equations with applications
to transport and wave propagation on
networks

4.1 Introduction

As we have presented in Section 1.3, dynamics on networks has generated in the past
decades an intense research activity within the PDE control community [6, 35, 63, 78, 90].
In particular, stability and stabilization of transport and wave propagation on networks
raise challenging questions on the relationships between the asymptotic-in-time behavior
of solutions on the one hand and, on the other hand, the topology of the network, its in-
terconnection and damping laws at the vertices, and the rational dependence of the tran-
sit times on the network edges [2,24,47,56,171,176]. A case of special interest is when
some coefficients of the system are time-dependent and switch arbitrarily within a given
set [7,79,149].

In this chapter, we address stability issues first for transport systems with time-de-
pendent transmission conditions and then for wave propagation on networks with time-
dependent damping terms. When the time-dependent coefficients switch arbitrarily in a
given bounded set, we prove that the stability is robust with respect to variations of the
lengths of the edges of the network preserving their rational dependence structure (see
Corollary 4.48 for transport and Corollary 4.64 for wave propagation). Such robustness
enables us to get the main result of the chapter, namely a necessary and sufficient criterion
for exponential stability of wave propagation on networks: exponential stability holds for a
network if and only if it is a tree and the damping is bounded away from zero at all external
vertices but at most one (Theorem 4.65).

We address these issues by formulating them within the framework of non-autonomous
linear difference equations

N
u(t)=) Aju(t-Ay),  u(t)eC (Ay,..., Ay) e (RN, (4.1)
j=1

This standard approach relies on the d’Alembert decomposition and classical transforma-
tions of hyperbolic systems of PDEs into delay differential-difference equations [33, 54,70,
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4. Stability of difference equations and applications

106,133,160] (see also Example 1.42). Here, stability is meant uniformly with respect to the
matrix-valued function A(-) = (A;(-),...,An(:)) belonging to a given class A.

In the autonomous case, Equation (4.1) has a long history and its stability is completely
characterized using spectral and Laplace transform techniques by the celebrated Hale—
Silkowski criterion, recalled in Theorem 1.39 in Section 1.4.1. This criterion can also be
used to evaluate the maximal Lyapunov exponent associated with u(t) = Z;\il Aju(t—Aj),
i.e., the infimum over the exponential bounds for the corresponding semigroup. A remark-
able feature of the Hale-Silkowski criterion is that, contrarily to the maximal Lyapunov
exponent, it does not involve taking limits as time tends to infinity. An extension of these
results has been obtained in [132] for the case where Aq,..., Ay are not assumed to be ratio-
nally independent.

The non-autonomous case turns out to be more difficult since one does not have a general
characterization of the exponential stability of (4.1) not involving limits as time tends to
infinity. To illustrate that, consider the simple case N =1 of a single delay and A = L*(IR, )
where 1 is a bounded set of d x d matrices. Then the stability of (4.1) is equivalent to that
of the discrete-time switched system u,,; = A, u,, where A, € 13, and it is characterized by
the joint spectral radius of 1 (see for instance [100, Section 2.2] and references therein) for
which there is not yet a general characterization not involving limits as n tends to infinity.

Up to our knowledge, the only results regarding the stability of non-autonomous dif-
ference equations were obtained in [136], where sufficient conditions for stability are de-
duced from Perron-Frobenius Theorem. Our approach is rather based on a trajectory anal-
ysis relying on a suitable representation for solutions of (4.1), which expresses the solution
u(t) at time t as a linear combination of the initial condition u, evaluated at finitely many
points identified explicitly. The matrix coefficients, denoted by O, are obtained in terms
of the functions Ay(-),...,An(:) and take into account the rational dependence structure of
Aq,...,AN (Proposition 4.14). This representation provides a correspondence between the
asymptotic behavior of solutions of (4.1), uniformly with respect to the initial condition
uy and A(-) € A, and that of the matrix coefficients ©® uniformly with respect to A(-) € A
(Theorem 4.22). In the case where A = L*(IR, B) for some bounded set 1 of N-tuples of
d x d matrices, we extend the results of [132], replacing pys in the Hale-Silkowski criterion,
Theorem 1.39, by a generalization u of the joint spectral radius. As a consequence of our
analysis, and despite the lack of a closed and delay-independent formula for p analogous
to (1.51), we are able to show that stability for some N-tuple A = (A4,...,Ay) is equiva-
lent to stability for any choice of N-tuple (L;,...,Ly) having the same rational dependence
structure as A (Corollaries 4.31 and 4.37).

The structure of the chapter goes as follows. Difference equations of the form (4.1) are
discussed in Section 4.2. We start by establishing the well-posedness of the Cauchy problem
and a representation formula for solutions in Sections 4.2.1 and 4.2.2. Stability criteria are
given in Section 4.2.3 in terms of convergence of the coefficients and specified to the cases
of shift-invariant classes A and arbitrary switching. In the latter case, we provide the above
discussed generalization of the Hale—Silkowski criterion. Applications to transport equa-
tions are developed in Section 4.3 by exhibiting a correspondence with difference equations
of the type (4.1). Thanks to the d’Alembert decomposition, results for transport equations
are transposed to wave propagation on networks in Section 4.4. The topological characteri-
zation of exponential stability is given in Section 4.4.3.

Notations and definitions. All Banach and Hilbert spaces in this chapter are assumed to
be complex.
A subset A of LY°

loc

(R, M, (C)N) is said to be uniformly locally bounded if, for every compact
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4.2. Difference equations

time interval I, sup sc 4 [|Allz(1,,(c)v) is finite. We say that A is shift-invariant if A(-+t) € A
forevery Ac Aand te R

Throughout the chapter, we will use the indices 9, T and w in the notations of systems
and functional spaces when dealing, respectively, with difference equations, transport sys-
tems and wave propagation.

4.2 Difference equations

Let N,d € IN*, A = (Ay,...,Ay) € (R})N, and consider the system of time-dependent differ-
ence equations

Ts(AA): ut)=) A

]

-

(u(t—A;). (4.2)
j=1

Here, u(t) € C% and A = (A4,...,An) : R = My (C)V.

4.2.1 Well-posedness of the Cauchy problem

In this section, we show existence and uniqueness of solutions of the Cauchy problem as-
sociated with (4.2). We also consider the regularity of these solutions in terms of the initial
condition and A().

Definition 4.1. Let u : [-Apa,0) = €4 and A = (Ay,...,Ay) : R = M4 (C)N. We say that
Ut [~Apax, +00) = C is a solution of X5(A,A) with initial condition u, if it satisfies (4.2)
for every t € R, and u(t) = uy(t) for t € [-Anax,0). In this case, we set, for t > 0, u; =
U( + D= A e 0)-

We have the following result.

Proposition 4.2. Let 11 : [~Amay, 0) = C% and A= (Aq,...,An) : R — M4 (C)N. Then T5(A,A)
admits a unique solution u : [~Amay, +00) — C% with initial condition u.

Proof. It suffices to build the solution # on [—A .y, Amin) and then complete its construction
on [Apin, +o0) by a standard inductive argument.

Suppose that # : [-Apax, Amin) — C4 is a solution of ¥5(A,A) with initial condition u.
Then, by (4.2), we have

N
ZA]'(t)uO(t ~Aj), i 0<t<Apmin,
M(t) =3 i=1

o(t), if — Apax <t <0.

(4.3)

PN

Since the right-hand side is uniquely defined in terms of 1y and A, we obtain the uniqueness
of the solution. Conversely, if # : [-A a0, Amin) — C? is defined by (4.3), then (4.2) clearly
holds for t € [~Apax, Amin) and thus u is a solution of (A, A). [ |

Definition 4.3. For p € [1,+00], we use Xg to denote the Banach space Xg = LP([~Amax, 0], C9)
endowed with the usual LP-norm denoted by ||-[|,,.

Remark 4.4. If 1y, vy : [~Amax, 0) = C? are such that uy = vy almost everywhere on [-A .y,
0) and A,B : R — My(C)N are such that A = B almost everywhere on IR,, then it follows
from (4.3) that the solutions u,v : [~Apax, +00) = C¥ associated respectively with A, uy and
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4. Stability of difference equations and applications

B, vg satisfy u = v almost everywhere on [~Ap,y, +o0). In particular, for initial conditions
in Xg, p € [1,+00], we still have existence and uniqueness of solutions, now in the sense
of functions defined almost everywhere. If moreover A € L (R, My (C)V), it easily follows

loc
from (4.3) that the corresponding solution u of X5(A, A) satisfies u € L ([~ A maxs +00), CY).

loc

Proposition 4.5. Let p € [1,+00), uy € X3, A € Ly (R, M4(C)N), and u be the solution of T5(A,

A) with initial condition uy. Then the Xg—valued mapping t — u, defined on R, is continuous.

Proof. By Remark 4.4, u; € Xg for every t € R,. Since u,(s) = u(s +t) for s € [-Apay, 0), the
continuity of ¢ — u; follows from the continuity of translations in L? (see, for instance, [152,
Theorem 9.5]). [ |

Remark 4.6. The conclusion of Proposition 4.5 does not hold for p = +co since translations
in L* are not continuous.

4.2.2 Representation formula for the solution

When t € [0, Apin), Equation (4.3) yields u(t) in terms of the initial condition ug. If t > A,
we use (4.2) to express the solution u at time t in terms of its values on previous times
t—Aj, and, for each j such that t > A;, we can reapply (4.2) at the time t — A; to obtain the
expression of u(f—A;) in terms of u evaluated at previous times. By proceeding inductively,
we can obtain an explicit expression for u in terms of ug. For that purpose, let us introduce
some notations.

Definition 4.7.
(a) An increasing path (in NV) is a finite sequence of points (qk)y_, in INYN such that, for

ke[[1,n—-1], qxs+1 is obtained from q; by adding 1 to exactly one of the coordinates of

qx- For n € N* and v = (vq,...,v,) € [1,N]", we use (pv(k));jg to denote the increasing

path defined by

(b) For n e NN\ {0}, we use V,, to denote the set

Vy = {(Vl""’vlnll) € [[1,N]]Inll |pv(|n|1 +1)= n}, (4.4)
i.e., V, can be seen as the set of all increasing paths from 0 to n.

(c) For A = (A,...,AN) : R = My(CO)N, A = (Ay,...,Ax) € (R))N, n € ZN and t € R, we
define the matrix EII} ’tA € M,;(C) inductively by

0, ifnezN \INV,
Idd, ifn= 0,
—~AA
‘:’n,t = N (45)
—~AA .
ZAk(t)an_ek’t_ Ay ifneNY\{o}
k=1

We omit A, A or both from the notation EII} ’tA when they are clear from the context.

The following result provides a way to write &, ; as a sum over V}, and as an alternative
recursion formula.
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Proposition 4.8. For every n € NN \ {0} and t € R, we have

[n]y
=AA _

galt = Y [ [Au (- A-puk) (4.6)
veV, k=1
and
N
—~AA —~AA
Snr = ‘:‘n—ek,tAk(t_A'n+Ak) (47)
k=1
Proof. We prove (4.6) by induction over |n|;. If n = ¢; for some i € [1, N[, we have
2. l_lAvk

[1]

Let R € IN* be such that (4.6) holds for every n € NN with |n|; = Rand t € R. If n € NV

such that [n|; = R+1 and t € R, we have, by (4.5) and the induction hypothesis, that

N N
nt = ZAk( E‘n e t—Ap = Z

In|;-1
Z Aty [ ] Ay, (1= A=A -py(r)
e IR =
n|
- Z]_[ (t=A-py(r),
eV, r=1

where we use that V,, =
This establishes (4.6)

{(k,v) [k € [1,N], ng 21, v € V., } and that e + p,(r)

P(k,v)(r + 1)-
For n € NV with |n|; > 2, the set V, can be written as

r) =
We now turn to the proof of (4.7). Since Eejt = Aj(t), (4.7) is satisfied forn =¢;, j € [1, N].
n

={(v,k) [k e[, N], me>1,ve Vy,}
and thus, by (4.6), we have

N [In], -1
=) ) | [ [Ave-aponia
k=1 veV,_, | r=1
i/lkZl k-

(t=A-py(inly))
I, -1

o
]

=
\%

k

v,(t_A'pv(r))
| V- e L r=1

N
U—A»n+Am:§:Em@ﬂ%U—A n+A;). m
k=1

In order to take into account the relations of rational dependence of A,
the representation formula for the solution of ¥5(A,A), we set

AN €R: in
Z(A)={neZN|A-n=0
VIA)={LeRY |Z(A)C Z(L)}),  Vi(A)=V(A)N(R)Y, (4.8)
W(A) ={LeRN [Z(A)=Z(L)}, W.(A)=W(A)N (RN,
Notice that W(A)Cc V(A)and W(A)={Le V(A)|V(L)=V(A)}.
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The point of view of this chapter is to prescribe A = (A1,...,Ay) € (R%)N and to describe
the rational dependence structure of its components through the sets Z(A), V(A), and W(A).
Another possible viewpoint, which is the one used for instance in [132], is to fix B € My ;(IN)
and consider the delays A = (Ay,...,Ay) € RanBN (IR%)N. We show in the next proposition
that the two points of view are equivalent.

Proposition 4.9. Let A = (Ay,...,Ay) € (R%)N. There exist h € [1,N], € = (¢4,...,¢;) € (R:)"
with rationally independent components, and B € My ,(IN) with rk(B) = h such that A = B(.
Moreover, for every B as before, one has

V(A) =RanB,

4.9
W(A) ={B((y,...,€;) |{y,..., €, are rationally independent}. (49)

In particular, W(A) is dense and of full measure in V(A).

Proof. Let V = Spang{Ay,...,An}, h = dimqgV, and {A4,..., A} be a basis of V with positive
elements, so that A = Au for some A = (a;;) € My ,(Q) and u = (Ay,...,Ap) € (R%)". For
v € R"\ {0}, we denote by P, the orthogonal projection in the direction of v, i.e., P, = va/lv|§.
Since Q" is dense in R", there exists a sequence of vectors u, = (ry ..., 7,,) in (Q})"
converging to u as n — +oo, and we can further assume that the sequence is chosen in such
a way that |PM” - Pu|2 < 1/n? for every n € IN*.
For n € IN*, we define T, = P, + %(Idh -P,, ) This operator is invertible, with inverse

T, ' = b, + n(Idh —Pu,,)~ Furthermore, both T, and T,! belong to M(Q). For i € [1,k]), we
have
(Tn_lel-)Tu = e;rPunu + nel-T(Idh -P, )u= el-TPunu + ne;r(Pu —-P, )u

n

and thus (T, 'e;)Tu — eiTu = A; as n — +oo. Since Ay,..., Ay > 0, there exists ny € IN* such that
(T Ye))Tu>0,  Vie[1,h], Vu> n,. (4.10)

For i € [1,N], let a; = (a;)jeq,n] € Q". For each i € [[1,N]], we construct the sequence
(i) en- N Q" by setting a; , = T,,a;. It follows from the definition of T, that a; , converges

uu «;
to P,a; = il :

positive, we conclude that there exists ny > ng such that a; ,,, € (Q.)" for every i € [1,N].

Let £ = (Tn_ll)Tu. By (4.10), ¢; = (Tn_lle,-)Tu > 0 for every i € [[1,h]]. Since the components
of u are rationally independent, {y,...,{; are also rationally independent. Let b;; € Q,,
i €[1,N], j €[1,h], be such that a; ,, = (b;j)e[1,n]- Hence, for i € [1,N],

as n — +oo. Since ula; = Z;’:l a;jjAj = A; > 0 and the components of u are

=

h
T Tp-1 § Tp-1 E
Ai =u a;=u Tn1 Ajp, = bi]-u Tn1 €]' = b1]€]
j=1 j=1

We then get the required result up to multiplying B = (b;;) by a large integer and modifying
{ in accordance.

We next prove that (4.9) holds for every B as before. (Our proof actually holds for every
B € My, ,(Q) with rk(B) = h such that A = Bl for some ¢ € (R%)" with rationally independent
components.) First notice that Z(A) = {n € ZN |n € Ker B'}. Indeed, n € Z(A) if and only if n
is perpendicular in RN to B¢, which is equivalent to n*B = 0 since ¢4, ...,{}, are rationally in-
dependent. Moreover, remark that Ker BT = (Ran B)* admits a basis with integer coefficients
since Ran B admits such a basis. To see that, it is enough to complete any basis of Ran B in
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4.2. Difference equations

QY by N - h vectors in QY and find a basis of (Ran B)* by Gram-Schmidt orthogonaliza-
tion. We finally deduce that Spang(Z(A)) = (RanB)*. Since by definition V(A) = Z(A)+,
we conclude that V(A) = Ran B. As regards the characterization of W(A), an argument goes
as follows. Let L € V(A), so that L = B¢’ for a certain ¢’ € R". The components of ¢’ are
rationally dependent if and only if dimg Spang{Ly,...,Ly} <h, i.e., dimg V(L) <dimg V(A),
which holds if and only if L ¢ W(A). [ |

We introduce the following additional definitions.

Definition 4.10. Let A = (A4,...,Ay) € (R%)N. We partition [1,N] and ZN according to the

equivalence relations ~ and ~ defined as follows: i ~ jif A; = Ajand n ~n"if An=A-n". We

use [-] to denote equivalence classes of both ~ and ~ and we set J = [1,N]/ ~and Z = ZN/ .
For A:R — M4(C)N,Le V.(A),[n]€Z,[i]€J, and t € R, we define

SLAA =LA

Crayat S Yo =) A, (4.11)
n’e[n] jeli]

and
LAA _ SLAA TA
I Z 2R Al (E=L-n+L;) (4.12)
[j1€d

L'H—L]'St

Remark 4.11. The expression for = [L/]\t given in (4.11) is well-defined since, thanks to (4.5),

all terms in the sum are equal to zero except finitely many. The expression for G)[Lr’lsz given

in (4.12) is also well-defined since, for T every LeV,(A)ifi~jandn~n’,onehasL; =L;and

L-n=L-n’. In addition, notice that 2 B []\ # 0 only if [n] "INV is nonempty, and, sumlarly,

@)[Ln? A 20 only if [n] N (NN \ {0}) is nonempty. Another consequence of the above fact and

(4.12) is that @[L ?tA # 0 only if t > 0, since [n —¢;] NINN =@ whenever [n] € Z and [j] € J are

such that L-n-L; <0.
Notice, moreover, that the matrices 2, A and © depend on A only through Z(A). Hence,
if A”e W, (A) (i.e., Z(A') = Z(A)), then

SLAA _ SLALA A o TN LAA _ SLAA
Eppr =8my o AR =4Ap0. O =0,

From now on, we fix A = (Ay,...,Ay) € (R%)N and our goal consists of deriving a suitable
representation for the solutions of ¥4(L,A) for every L € V,(A). Even though the above
definitions depend on A, L € V, (A) and A, we will sometimes omit (part of) this dependence
from the notations when there is no risk of confusion.

Let us now provide further expressions for & _[L /]\tA.

Proposition 4.12. For every L€ V,(A), A: R — M4(C)N, n e NN \ {0}, and t € R, we have

ALAA ALAA =LAA _ =LAA ZTA )
“[nt ZA[ ) n- ¢jlt-Lj’ “[n]t _[] “[n- ]tA[]]( —L-n+Lj), (4.13)
jled

and
[n’[;

gt Y ZI_[Avk —L-p,(k)). (4.14)

n’e[n]NINN veVy

105



4. Stability of difference equations and applications

Proof. We have, by Definition 4.10 and Equation (4.5), that

N
=n'—ejt-Lj = ZA](t) En’—ej t-L;
n’e[n] j=1 j=1 n’e(n]
N N .
=) A ) Emer =) AD)
j=1 me[n—e¢;|

[jlediel]]

) ; i E"[n—e]-],t—L
Ze; =1
Y Y AOEna

A[i](t)g
The second expression is obtained similarly from Definition 4.10 and Equation (4.7) and the
last one follows immediately from (4.6) and (4.11)

N,A

Let us give a first representation for solutions of X5(L, A)
Lemma 4.13. Let L € (IR%) =(A4,.

corresponding solution u : [~Lyay, +00) — €% of (L, A) is given for t > 0 by
u(t) = Bl A

AN): R = M4(C)N, and ug : [~Liax, 0) — C. The
(LA is g

Ence, t jit=L-n+Lj)ug(t—L-n)
(n,j)eNNx[[1,N]
-L;<t-Ln<0

Proof. Let u : [~Lyay, +00) — C% be given for t > 0 by (4.15) and u(t) (t) for t € [-Linax, 0)
N
ZAj(t)u(t—
=1
N

:;Z

k)eNNx[[1,N]]
t2L; L, <t-L;—L-n<0

Fix t > 0 and notice that

(4.15)

=LA
A](t) n—ey,t-L;

Ap(t—L;—L-n+Ly)ug(t—L;—L

-n)
Uop - (416)

j=1

t<LJ
Consider the sets
By(t) ={(n,k,j) e NN x[1,N]?|t>L;, Ly <t—L;—=L-n <0, ng >1},
By(t)={je[[LN] It <Lj},
Ci(t) ={(n,k ])elNNx[[l,N]]2 | Ly <t-L-n<0,n>1,nj>1+06j, n=e
Co(t) = {(m, k) e NN x[1,N]]| -Ly <t—L-n<0, n=e¢
and the functions ¢; : B;(t) — C;(t), i € {1,2}, given by
P10,k j)=m+ekj),  @a(f) = (ej j)-

One can check that ¢; and ¢, are well-defined and injective. We claim that they are also

bijective. For the surjectivity of ¢;, we take (n,k, j) € C;(f) and set m = n —e;.
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4.2. Difference equations

one has m € NV, Since n; > 1, nj>1+0j,onehast>L-n-Lg>Lj+Ly—Lg=L; The
inequalities —Ly < t—L; - L-m < 0 and n; > 1 are trivially satisfied, and thus (m,k, j) €
By (t), which shows the surjectivity of ¢ since one clearly has ¢;(m,k, j) = (n,k,j). For the
surjectivity of ¢,, we take (n, k) € C,(t), which then satisfies n = ¢y and t < L-n = L. This
shows that k € B,(t) and, since ¢, (k) = (n, k), we obtain that ¢, is surjective.

Thanks to the bijections ¢1, ¢,, and (4.5), (4.16) becomes

N

,—\LA
ZAj(t)u(t—Lj): Z Z DE g e, Ak(E =L+ LJug(t ~ L -m)
=1

(n,k)eNNx[1,N] j=1
—Ly<t-Ln<0 121+
n>1, nzey

+ Z Ap(t—=L-n+Ly)ug(t—L-n)
(n,k)eNNx[[1,N]]

—Ly<t-Ln<0,
n=ey

~L,A
= Z B Ag(t—L-n+Lyug(t—L-n)

(n,k)eNN x[[1,N]|
—Ly<t-L-n<0
n>1, nzey

+ Z EPAL(t—L-n+ Ly)ug(t—L-n)
(n,k)eNNx[[1,N]]

—Lkst—L~n<O,
n=ej

=) B At —Lon+ Lug(t—Lon) = u(t),

(n,k)eNNx[1,N]
—Ly<t-L-n<0

which shows that u satisfies (4.2). [
We can now give the main result of this section.
Proposition 4.14. Let A € (R.)N, Le V,(A), A: R — M4(C)N, and ug : [~Limay, 0) — C. The

corresponding solution u : [—Ly,yx, +00) — c of Xs5(L,A) is given for t > 0 by

u(t) = Z O ug(t-L-m), (4.17)
[n]ez
t<L-n<t+Lp

where the coefficients © are defined in (4.12).

Proof. Equation (4.17) follows immediately from (4.15) and from the fact that the function
@ :INN x[[1,N] - ZxINN xJ x[[1,N] given by ¢(n ,]): [n],n,[j],j) is a bijective map from
{(m,j) e NN x[1, N] | -Lj <t-L-n<0}to{(fm]n,[i]; GZXINNXHX[[I N]Ine[m], je
[i, t<L-n<t+Lp,, L-n—L;<t}foreverytelR. [

Remark 4.15. Using the link between transport and difference equations highlighted in
Section 1.3, it follows that Lemma 4.13 and Proposition 4.14 generalize Theorems 3.15 and
3.18.

4.2.3 Asymptotic behavior of solutions in terms of the coefficients

Let us fix a matrix norm |-| on M, (C) in the whole section. Let C;,C, > 0 be such that

CilAl, <|A|< CylAl,, YA eMy(C), Vpe[l, +ool. (4.18)
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4. Stability of difference equations and applications

Let A be a uniformly locally bounded subset of L (R, My(C)N). The family of all sys-

loc

tems Xs5(L,A) for A € A is denoted by X5(L,A). We wish to characterize the asymptotic
behavior of ¥5(L, A) (i.e., uniformly with respect to A € A) in terms of the behavior of the
coefficients E,}; and O[y);. For that purpose, we introduce the following definitions.

Definition 4.16. Let L € (R%)V.

(a) For p €[1,+o0], we say that X5(L,A) is of exponential type y € R in Xg if, for every € > 0,
there exists K > 0 such that, for every A € A and u; € Xg, the corresponding solution u
of X5(L, A) satisfies, for every t > 0,

el < Kel™ ¥ gl
We say that X5(L, A) is exponentially stable in Xg if it is of negative exponential type.

(b) Let A € (R;)N be such that L € V,(A). We say that X5(L,.A) is of (8, A)-exponential type
y € R if, for every ¢ > 0, there exists K > 0 such that, for every A € A, n € NV, and
almost every t € (L-n — Ly,,,, L-n), we have

ot ke

(c) Let A € (R%)N be such that L € V,(A). We say that X5(L,A) is of (E,A)—exponential type
y € R if, for every ¢ > 0, there exists K > 0 such that, for every A € A, n € NV, and
almost every t € R, we have

=LAA (y+e)Ln
En)t | <Ke .

(d) For p €[1,+co], the maximal Lyapunov exponent of Xs(L, A) in Xg is defined as

: log [[a]l,
Ap(L,A) =limsupsup sup ————,
totoo A€ ypexy
lluoll,=1

where u denotes the solution of ¥X5(L, A) with initial condition u,,.

Remark 4.17. Let L € (R%)N and y € R. For every A : R — My(C)N and u solution of X5(L, A),
it follows from (4.2) that t +> e u(t) is a solution of the system Xs(L, (ett1A1,..., etV Ay)).
As a consequence, if A c L2 (R,M4(C)N) and

loc
Ay ={(e1Ay,.. e AN) |A=(Ay,..., AN) € A},
one has A, (L, A,) = Ap(L,A) + p.

The link between exponential type and maximal Lyapunov exponent of ¥5(L, A) is pro-
vided by the following proposition.

Proposition 4.18. Let L € (R})N, A be uniformly locally bounded, and p € [1,+co]. Then
Ap(L,A) =inf{y € R|X5(L,A) is of exponential type y in Xg}.

In particular, ¥5(L, A) is exponentially stable if and only if A,(L, A) <O0.
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4.2. Difference equations

Proof. Let ¥ € R be such that ¥4(L, A) is of exponential type y in Xg. It is clear from the
definition that A,(L, A) < y. We are left to prove that (L, A) is of exponential type A,(L, A)
when the latter is finite. Let ¢ > 0. From the definition of A,(L,.A), there exists t5 > 0 such

that, for every t > ty, A€ A, and ug € Xg, one has

LA)+e)t
lugll, < eAoEA g

Since A is uniformly locally bounded, by using (4.15) and (4.6), one deduces that there exists
K > 0 such that, for every t € [0,ty], A € A, and ug € Xg, one has [|u||, < K||uol|,. Hence the
conclusion. [

Remark 4.19. Similarly, one proves that, for A € (R*)N and L € V,(A),

log | ®L A, A|
limsupsup esssup —— — =inf{y e R|Xs(L,A)is of (©,A)-exponential type y}
L'n—+co AeA te(L-n—L,,,,L-m) t
and
LA, A|
limsupsupesssup [ M =inf{y e R|X4(L, A) is of (_,A)—exponential type 7}.
Ln—+co AeA  teRR L.

4.2.3.1 General case

The following result, which is a generalization of Proposition 3.24, uses the representa-
tion formula (4.17) for the solutions of ¥5(L,A) in order to provide upper bounds on their
growth.

Proposition 4.20. Let L € V (A). Suppose that there exists a continuous function f : R — R}
such that, for every A € A, n € NN, and almost every t € (L-n— Lp,,,L-n), one has

| LAA|<f (4.19)

Then there exists C > 0 such that, for every A € A, p € [1,+0c0], and uy € Xg, the corresponding
solution u of X5(L, A) satisfies, for every t > 0,

llugll, < Ct+ 1N o ax ]f(s)”u()”p' (4.20)
Proof. Let Ac A, pel,+), ug € Xg, and u be the solution of ¥ 5(L, A) with initial condition

uy. For t e R,, we write Y, ={[n]€ 2|t <L-n <t+ Ly, [n]NINN =0} and Y, = #Y,. Thanks
to Proposition 4.14, Remark 4.11, and (4.19), we have, for t > L.y,

p
1
||z tllp_LL Z@n]suo s—L-n)| ds< Yp Z|®[n sUg(s— -n)|§d5
™ {[n]ey, [n]ey,
- 1
SClpLi Ysp Z|u0 (s—L- n|pd5

[n]eY,
B t _
<GP max f(sf [ VI Y jugls—Lon)fds.

SE[t—LmaX,t] t=Lmax [n]EH
s
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4. Stability of difference equations and applications

We clearly have V; < #{n e NN |t <L-n < t+ Ly,,). For n € NV, we denote C,, = {x €
RN | n; < x; < n;+ 1 foreveryi € [1,N]]}. This defines a family of pairwise disjoint open
hypercubes of unit volume. Thus

Y, < Z Vol€p =Vol| | ] @a|<Volfxe (RN [£<Lox <t 4Ll + L.
nelNV nelNN
t<L-n<t+Lx t<L-n<t+L

Then there exists C3 > 0 only depending on L and N such that Y; < C3(t +1)V~1. Thus,

P o PP (4 1)y N-Dp-D) P (! —L-n)f
gl < CPCE 7 (t+1) max L_Lm[% Jug(s —L-n)[) ds
nleYy,

— -1 — — 0
= O e NI max £y oo ) s

[n]eyt—LmaX—s

Similarly, there exists C4 > 0 only depending on L and N such that, for every t € R, and
$ € [~Lmax, 0], Yip,  —s < Cylt+ 1)N-1, yielding (4.20) for t > Ly,y. One can easily show that,
for 0 <t < Liay, we have [|uyl|, < C’[|ug|, for some constant C” independent of p and ug, and
so (4.20) holds for every t > 0. The case p = +oo is treated by similar arguments. [ ]

When L € W, (A), we also have the following lower bound for solutions of X4(L, A).

Proposition 4.21. Let L € W, (A) and f : R — R} be a continuous function. Suppose that there
exist A € A, ng € NN, and a set of positive measure S C (L-ng— Ly, L-ng) such that, for every

seSs,
o

> £(s). (4.21)

Then there exist a constant C > 0 independent of f, an initial condition uy € L®([~Lax, 0], C%),
and t > 0, such that, for every p € [1,+o0], the solution u of ¥5(L,A) with initial condition u
satisfies

luall, >C__min f(Slual,

- max't]

Proof. According to Remark 4.11, one has @ﬁ;fs’A = @ﬁ;i’sA

therefore we assume for the rest of the argument that A = L and we drop the upper index
L LA.

For s € S, one has |®[n0]'s|oo > C5'f(s), where C, is defined in (4.18). Using (4.21) and
Remark 4.11, one derives that S C [0, +o0).

For every s € S, one has

for every [n] € Z and s € R, and

d

C5' f(5) <Oy, < Z|@[no],sej|oo'
j=1

and thus there exist jj € [1,d]] and a subset S C S of positive measure such that, for every
se S and p €[1,+0], one has

S IDRS SR NES CIWFUA (4.22)

In order to simplify the notations in the sequel, we write S instead of S.
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Let ty € S \ {0} be such that, for every € > 0, (ty —¢,ty + ¢) N S has positive measure. Let
0 > 0 be such that

20 <min{ 2tg,L-ng—tg,tg—L-np+ Ly min  [L-(n—ng)|;.
nelNV

L-(n—n)=0

Such a choice is possible since ty € (L -1y — Ly, L-1g), to € S\ {0} CR%, and {L-n|n € NV}
is locally finite.
Let S; = (S —tp) N (-9,0), which is, by construction, of positive measure, and p: R —
R be any non-zero bounded measurable function which is zero outside S;. Define u :
[_Lmax’ 0) - Cd by
ug(s) = u(s —to+L-mp)e;j,

and let u be the solution of X 5(L, A) with initial condition uy. For s € (-0, 9), we have ty+s >0
since ty > 0. By Proposition 4.14, one has

u(ty+s) = Z Ofn 1y ssi(s + L+ (ng—n))ej,. (4.23)

[n]ez
to+s<L-n<tg+s+Lax

If L-n=L-ny wehave |L-(n—ng)|>20,and so |s+L-(ny—n)|> 9, which shows that p(s+L-

(ng—n)) = 0. Hence, Equation (4.23) reduces to u(tg +5) = O[n )+, +s#(s)ej,- We finally obtain,
using (4.22) and letting t =ty + 0, that, for p € [1, +c0),

ol = [l [ o 1000 2 [ Vet + 905 ds = [ [@ngpnscisff )] ds

—P 4- p =P 4- : p
>C,"d pjslf(to+s)p|pt(s)| ds>C,'d pse[g£X,t]f(s)p||uo||p.

A similar estimate holds in the case p = +c0, yielding the result. |

As a corollary of Propositions 4.20 and 4.21, by taking f of the type f(t) = Ke?*9)*, one
obtains the following theorem. The last equality follows from Proposition 4.18 and Remark
4.19.

Theorem 4.22. Let A € (R%)N and A be uniformly locally bounded. For every L € V.(A), if
Ys(L,A) is of (©,A)-exponential type y then, for every p € [1,+00], it is of exponential type y in
Xg. Conversely, for every L € W, (A), if there exists p € [1,+co] such that ¥5(L, A) is of exponential
type y in X3, then it is of (©, A)-exponential type y. Finally, for every L € W.(A) and p € [1,+c0),

log ;1|

Ap(L,A) =limsupsup esssup (4.25)

Ln—+oo AeA te(L-n—L,,,,L-n) t

maxs+"

Remark 4.23. It also follows from Proposition 4.20 that, in the first part of the theorem, the
constant K > 0 in the definition of exponential type of X5(L, A) can be chosen independently
of p € [1,+o0]. Moreover, the left-hand side of (4.25) does not depend on p and its right-hand
side does not depend on A.

4.2.3.2 Shift-invariant classes

We start this section by the following technical result.
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4. Stability of difference equations and applications

Lemma 4.24. For every A € (R})N, Le V.(A), A: R — My(C)N, ne ZN, and t,7 € R, we have

=LA —~LA(+7) =LAA _ SLAA(+T)

Snt+r T Sngt and Snlt+r — Z[n)t

Proof. The first part holds trivially if n € ZN \INN or if n = 0, for, in these cases, it follows

from (4.5) that £ Hnt A does not depend on t and A. If n ¢ NV \ {0}, the conclusion follows as a

consequence of the explicit formula (4.6) for = "LA . The second part is a consequence of the

first and (4.11). [

We next provide a proposition establishing a relation between the behavior of /E.\[n],t and
On),+- Notice that, if a subset A of L}® (R, M4(C)N) is shift-invariant, then A is uniformly

locally bounded if and only if it is bounded.

Proposition 4.25. Let A be a bounded shift-invariant subset of L°(R,My4(C)N), L € V. (A), and
f :IR — R% be a continuous function. Then the following assertions hold.

If'@LAA| < f(t) for every A € A, n € NV, and almost every t € (L-n — Ly, L-n), then, for

every A € A, n € NN\ {0}, and almost every t € R, one has 'H ’ < maXge(pn-L,,, Ln]f(5)

(b)

”Ln/]\tA| f(L-n) for every A € A, n € NV, and almost every t € R, then there exists a

constant C > 0 such that, for every Ae A, n € NN, and almost every t € (L-n— Ly, L-n),

one has ’@ | < CmaXe[s Lmax,t+Lmax]f(s)'

Proof. We start by showing (a). Let A € A and n € NV \ {0}. For every k € Z, there exists a
set Ny C [L-n— Ly, L-n) of measure zero such that, for every t € [L-n— Ly, L-n)\ N,

:LjArA('_kLmin)

- =LAA(— LAA(—kLy;,)
=[n]t

= E[ﬁ-;j] o Aﬁ]( ~kLmin —L-n+Lj)| =01 < f(t),
[jled

where we use Proposition 4.12, the fact that L-n~L; <L-n— Ly, <t for every [j] € J, and
Equation (4.12).

Let N = Uiez(Nk — kLpyin), which is of measure zero. For t e R\ N, let k € Z be such that
te[L-n—(k+1)Lyin, L -n—kLyin), sothat t +kLyin € [L-n — Lyin, L-n). Since t € N, we have
t + kLpin € Ni, and so, using Lemma 4.24, we obtain that

AL A A LAA(-—kL i)
| |_ L+kL | S f(t+kLpin) < se[L.nr{lLa;(WL.n]f(s).

Let us now show (b). Without loss of generality, the norm || is sub-multiplicative. Since
A is bounded, there exists M > 0 such that, for every A € A, j € [1,N], and ¢t € R, we

have |A- t | < M. Let A € A. For every n € NV, let Niq) be a set of measure zero such that

H[LAA' < f(L-n) holds for every t € R\ Njg}. Let N = Upeny Nin), which is of measure zero.

IfneNNandte(L-n—Ly,,L-n)\N,then

|®L,A,A‘S Z :LAA HA L.n+Lj)'gNMZf(L-n—Lj)SC max  f(s),

[n],t _
[]]63 []]EH SE[f Lmafo'Lmax]
L n—L]‘St
where C = N2M. ]
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4.2. Difference equations

As an immediate consequence of the previous proposition and Theorem 4.22, we have
the following theorem, which improves Theorem 4.22 by replacing (©, A)-exponential type
by (&, A)-exponential type.

Theorem 4.26. Let A € (R:)N and A be a bounded shift-invariant subset of L (R, M4(C)N). For
every L€ V. (A), Xs(L,A) is of (2, A)-exponential type y if and only if it is of (©, A)-exponential
type y. _

As a consequence, for every L € V. (A), if £5(L, A) is of (E,A)-exponential type y then, for
every p € [1,+o00), it is of exponential type y in Xg. Conversely, for every L € W, (A), if there exists
p €[1,+o0] such that £5(L, A) is of exponential type y in Xg, then it is of (E,A)—exponential type
y. Finally, for every L € W, (A) and p € [1,+c0],

SLAA
. log Eja)x|
Ap(L,A) = limsupsupesssup (4.26)
Ln—+co AeA  teR L-n
Remark 4.27. Theorem 4.26 improves Theorem 4.22 in the sense that the coefficients E,Ll’f

SLAA . . . LAA .
and Ep)e arein general easier to compute or estimate than @)[n] ;" thanks to the recursion

formulas (4.5), (4.7), and (4.13). Notice that, using the link between transport and difference

equations highlighted in Section 1.3, the estimates carried out in Sections 3.4.2, 3.4.3, and

3.4.4 correspond to estimates on the coefficients Eﬁf.

4.2.3.3 Arbitrary switching

We consider in this section A of the type A = L*(R, B) with 1 a nonempty bounded subset
of M4(C)N. In this case, ¥4(L,.A) corresponds to a switched system under arbitrary B-valued
switching signals (for a general discussion on switched systems and their stability, see e.g.
[113,167] and references therein).

Motivated by formula (4.14) for /E\[n],t, we define below a new measure of the asymptotic
behavior of ¥5(L,.A). For this, we introduce, for A € (R%)N and x € R,,

LA)={A-n|neNY} and L, (A)=L(A)N[0,x). (4.27)
Definition 4.28. We define

1
X
n[;

H(A, B) =limsup sip Z Z ]_[Bﬁk.pu(k)

X—>+00 r
N —
Y€L(A) for ret, (A) [REN VeV k=1

Note that p(A, D) is independent of the choice of the norm |-| and u(A, B) = ,u(A,E). The
main result of this section is the following.

Theorem 4.29. Let A € (R%)N, L € V,(A), B be a nonempty bounded subset of My(C)N, A =
L*(R,B3), and p € [1,+0o]. Set m; = minje[1,N] % and my = max;e[1,N] % if u(A,B) <1, and
7 ]

My = max;c[i,N] [L\—]J and my = minjep; Ny /L\—J’ if W(A, ) > 1. Then the following assertions hold:
(a) Ap(L,A) < mylogu(A,B);

(b) if L€ W.(A), then myA, (A, A) < Ap(L,A) < myd,(A,A);

(c) Ap(AA) =logu(A, D).
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4. Stability of difference equations and applications

Proof. Notice that (b) follows from (a) and (c) by exchanging the role of L and A, since
A eV, (L) for every L€ W (A).
A-

. . A A .
Let us prove (a). Since minje[,n] L—j’ < T < Maxje[iN] L—/’ for every n € NN \ {0}, it

suffices to show that, for every ¢ > 0, there exists C > 0 such that, forevery Ae A,n e INN\{O},

and t € IR, we have
Af]AtA' < C(u(A,B) + )™, (4.28)

By definition of (A, 1), there exists X, € £L(A) such that, for every x € L(A) with x > X,
we have

sup | Y Y [ [BRP < (ua ) ey

B’ed N veV, k=1
for reL(A) I}\Eﬁ\ix n

Since B is bounded, the quantity

n,

-, g | L2 [ e

B'eld N
for reL(A) R?g\ixvev k=1

is finite. Setting C = max{1,C’, C’(u(A, ) + £)~%0}, we have, for every x € L(A),

n;

sup BN < C(u(A, 1) + ). (4.29)
> 2|

NveV, k=1
for reL(A) I}\Egir

Define ¢; : L(A) — L(L) by ¢ (A -n) = L-n. This is a well-defined function since L €
V.(A). Let A€ A,n e NV \ {0}, and t € R. By Proposition 4.12,

Eat= ) ) [ [Awt-Lepoti. (4.30)

n’e[n]NINN veVyr k=1

For r € Lpn(A), we set B" = A(t — @(r)) € B. Thus, for every n’ € [n]nINV, v € V,,,, and
k € [[1,|n’[, ], we have, by definition of ¢y,

BaP ) 2 AL (£—pp (A py(K) = Ay, (E—L-py(K)). (4.31)

We thus obtain (4.28) by combining (4.29), (4.30) and (4.31).
In order to prove (c), we are left to show the inequality log u(A, 1) < A,(A,A). Let x €
L(A)and A% € B3. For r € £,(A), let B" € 5. We define

C= min |y1 y2|>0

1
2 y13,6L, (A
V1#Y2

Let A=(Ay,...,AN) € A be defined for t € R by

e {BA'm, ifmeINNissuchthatA-m<xandte(—A-m—C,—A-m+C),

A, otherwise.
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4.2. Difference equations

The function A is well-defined since the sets (—A-m —,—A -m + () are disjoint for m € NV
with A-m < x. For everyn e NN with A-n=x, everyv e Vy,,te(-C,C),and k € [[1,|n]; ]|, we
have

Ay, (E=A-py (k) = By, P,

and then, for every n’ € NN with A -n’ = x, we have

n|; A n|;
Ppulk =\ A A
E > I |B > > I |Avk —-A-pylk)) = I
ne]I\]N 'UEV k=1 neNN 'UEV k=1
An=x An=x

Hence, for every n’ € NN with A -n’ = x, we have

1
X
]y

A- = An’
Z Z]_[B Polk §supesssup|a[/;’,/]x't‘4 "

ne]NN VEV k=1 AeA telR

An=x
Since this holds for every choice of B € 13, r € £L,(A), and x € L(A), we deduce from (4.26)
that log u(A, B) < A, (A, A). [

Remark 4.30. Since u(A, 1) = u(A, B), one has Ap(AA) = Ap(A, L(R, B)).

As regards exponential stability of X5(L,A), we deduce from the previous theorem and
Remark 4.17 the following corollary.

Corollary 4.31. Let A € (R%)N, 1 be a nonempty bounded subset of My(C)N, and A = L®(R, 13).
The following statements are equivalent:

(a) p(A,B)<1;
(b) Xs(A,A) is exponentially stable in Xg for some p € [1,4+00];
(¢) X5(L, A) is exponentially stable in Xg for every Le V,(A)and p € [1,+o0].
Moreover, for every p € [1,+o0],
Ap(AA) =infly e R|u(A, B_,) < 1},

where B_, = {(e7"MBy,...,e " ABy) | (By,...,By) € B).

Corollary 4.31 is reminiscent of the well-known characterization of stability in the au-
tonomous case proved by Hale and Silkowski when A has rationally independent compo-
nents (see Theorem 1.39) and in a more general setting by Michiels et al. in [132]. In such a
characterization, (1,...,1) is assumed to be in V(A) and u(A, 1) is replaced in the statement

of Corollary 4.31 by
ZA e'i

where V(A) is the image of V(A) by the canonical projection from RN onto the torus TN =
(R/2nZ)N. (Notice that V(A) is compact since the matrix B characterizing V(A) in Proposi-
tion 4.9 has integer coefficients.)

We propose below a generalization of pyg(A, A) to the non-autonomous case defined as
follows.

pus(A,A) = max
(01,..,08)EV (A
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4. Stability of difference equations and applications

Definition 4.32. For A € (R*)Y, 13 a nonempty bounded subset of M;(C)N, and £(A) given
by (4.27), we set

pus(A, B) = limsup sup sup Z I_IBA p.(k
T (01 OV (A FED e LN k=1

Let us check in the next proposition that ppg actually extends pys.

Proposition 4.33. Let A = (Ay,...,Ax) € My(C)N and 1> = {A}. Then one has ups(A,B) =
Pus(A, A).

Proof. One has

N
max_ p ZAjeief = max _ lim ZA]-eief
(01,-,05)eV(A) | S5 (0,05 )EV(A) 10 || £
n
(01,-,08)eV(A) =

n

n
= lim sup E | |Avk€16"k ,
n—+oo =
(01,--,0N)EV(A) lve[[1,N]" k=1

where the second equality is obtained as consequence of the uniformity of the Gelfand limit
on bounded subsets of M;(C) (see Lemma 2.32). [

In the sequel, we relate pys(A,B) to a modified version of the expression (4.26) of
Ay(L,A).
p

Definition 4.34. For L € V,(A) and A a set of functions A : R — My (C)N, we define

log ‘,:L,A,A|

. ~[n]t

Aps(L, A) = limsupsupesssup [n)
In|,—>+co A€A  teR Inf;

nelNVN

Remark 4.35. Since Ly, [n|; < L-n < Ly, |n|; for every L € V,(A) and n € NV, it follows
immediately from (4.26) that, for every p € [1, +0],

LminAp(LA) < Aps(LA) < Ly Ap(LA),  if A,(L,A) 20,
LinaxAp(LA) < Aprs(LoA) < Lin Ay (LA),  if A,(L,A) <O0.

In particular, the signs of Apg(L,A) and A,(L,A) being equal, they both characterize the
exponential stability of X5(L,A).

Theorem 4.36. Let A € (R:)N, B be a nonempty bounded subset of My(C)N, and A = L*(R, B).

Set m = inf{1, E=h ‘ z€ ZIN\ {0} if pus(A, ) < 1 and m = sup {1, =1t | 2 € Z(A)\ 0}} if s (A
B) > 1. Then the following assertions hold:
(a) for every L € V. (A), Ags(L, A) < mlog uys(A, B);
b) if (1 )e V(A)and L € W, (A), one has Ays(L, A) =log puys(A, D).

116



4.2. Difference equations

Proof. We start by proving (a). It is enough to show that, for every ¢ > 0 small enough, there
exists C > 0 such that, forevery Ae A,ne NN\ {0}, and t € R, we have

ELAA] < C(L+ Inl) (uss (A, 1) + )17

Let L € V,(A) and ¢ > 0 be such that pyg(A, B) + € < 1 if pyg(A,B) < 1. We can proceed
as in the proof of Theorem 4.29 to obtain a finite constant Cy > 0 such that, for every n € IN¥,

sup sup | ) I_[BA"” 6% < Colps(A B)+e)". (432)

01,..,08)EV(A B'el -
(01 N)EV( )fOFTGLnAmaX(A) ve[1,N]" k=

Let A€ A, t € R, and ¢y be as in the proof of Theorem 4.29. For r € £,5__(A), we
set B = A(t — ¢(r)), and similarly to the proof of Theorem 4.29, (4.31) holds for every
v€[[1,N]" and k € [1, n]. Thus (4.32) implies that, for every n € N* and 60 € V(A),

Z ]_[A”k —L-py(k) %] < Co (pps(A, B) +£)".

ve[[1L,N]" k=
Since

n[;

Y [ [An-Lopipe® = Y Y[ JAutetpne

ve[[1,N]" k=1 nelNN veV, k=
[n|;=n
[n],
1n9 1n 6»—~LA
=) ) [ [awt-Lptiy =) emozyl,
nelNN veV, k=1 nelNN
[n|;=n In|,=n

we obtain that, for every n € IN* and 6 € V(A),

Y em02L < Co (ups(A, B) +e)" (4.33)

nelNV

In|,=n
Following Proposition 4.9, fix h € [1,N] and B € My j,(Z) with rk(B) = h such that A =
B¢, for £, € (R:)" with rationally independent components. Let M € GLj(IR) be such that

¢y = Me;, where e; is the first vector of the canonical basis of R”, in such a way that A =
BMe;. For n € IN, we define the function f, : R" — M,(C) by

fn(V) = Z ein'BMVEﬁ”?.

nelNN
In|,=n
We claim that, for every ny € NV,
. 1 —inn-BM ~LA
A Ry g O =) 2 (439
neng JNINN
I, =n
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4. Stability of difference equations and applications

Indeed, we have

L ~iny: a1 o
(2R)" j[—R,R]’* fulwpe B dy = Z HLA(2R) j[—R,R]h g/ nmo) BMY gy

nelNVN
In|,=n

If n € NV is such that A -n = A -ng, then A-(n—-ng) = 0, and therefore n —ny € Z(A) C
V(A)* = (RanB)L. One gets (n—ng) - BMv = 0 for every v € R", implying that

i(n-ny)-BMv _
2RthR dv=1.

If now A-n#A-ng, set £ =A-(n—-ny), which is nonzero. Then

eV sin(&R)
<sx U dv l

i(n-ng)- BMvdV
&R

thI R,R]"

R—+00

which gives (4.34).
We can now combine (4.33) and (4.34) to obtain that, for every n € IN* and n, € NV \ {0},

Y B Colpms(A B) + o).
ne[nyJNINN
[n|;=n

Set my, =sup{ aE I

zeZ(A )\{O}} and notice that, since Z(A) = —Z(A), one has mlo = inf

{1 l2.; |z eZ(A )\{0}}. We claim that, if n,np € NY and A-n = A -ng, then mio ngl; < Inj; <

7 z_]y

mg|ng|;. Indeed, let z=n—-ny € Z(A) and n; =ngy—z_ € NV, Then one has

Inly _ |zl +mhy [ 1 ]

= ec|l— mo|.
noly  |z—|; +myly my’

Hence, for every ny € NN \ {0},

ALAA =LA
“n,t~’

=0 N N
ne[ny]NIN ne[[|"0|1 ) m0|n0|1]]n€[no]ﬂ]N
n|;=n o In|,=n

and we conclude that

ELM|S D Colpus(A 1) +€)" < C(1+ gl ) (s (A, B) + )",

[no],t
0
ne[[ | m(|)1 mgng|, ]]

for some C > 0. This concludes the proof of (a).

Suppose now that (1,...,1) € V(A). Then |z,|; = |z_|; for every z € Z(A), and hence (a)
yields Ays(L,A) < log uys(A, B) for every L € V, (A). We claim that it is enough to prove (b)
only for L = A. Indeed, assume that Ayg(A,A) = log puys(A, B). In particular,

Ans(LA) < As(A,A) (4.35)

for every L € V. (A). Since A € V(L) if L € W,(A), by exchanging the role of L and A in
(4.35), we deduce that Ayg(L, A) = Ags(A,A) for every L € W, (A), and hence (b).
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4.3. Transport system

Let n € N* and B" € B for r € £,,p__ (A). As in the argument for (c) in Theorem 4.29,
there exist ¢ > 0 and a function A: R — Md(C)N such that, for every v € [1,N]", t € (-C,C),
and k € [[1,n]], we have

Ap, (k Ap, nOmA,
Avk(t—A-pv(k)):kaP() and Z ]_[B Polk) i0y Zemedﬁfl.

ve[[1,N]" k= neNV
In|,=n

Denote Z, ={[n] € Z |[n]ﬂINN #0}. Since (1,...,1) € V(A), one deduces that, if n,n’ € NN
are such that n ~ n’, then /™ = ¢™"? for every 0 € V(A) and |n|; = |n’|;. We set |[n]|, = |n]
for every n ¢ NN. Then

om0 =AA om0 =AA _ ein~97;7/\,/\,A
“nt — “n’t — “[n]t °

nelNV [n]eZ, n’€[n]nNN [n]eZ,
Infy=n |[n]l,=n In]ly=n
We clearly have #{[n] € Z, | |[n]l; = n} <#{ne NV | |n|; = n} = ("{Y]") < (n+ DN7!, and we
get that, for every 0 € V(A) and n € NV with n|; = n,
1

n

A- N-1 =
]_[B Polk <(n+1)  supesssup |:f;’]’At'A
T/E[[l,N]]" -1 AeA telR

Since the above inequality holds for every choice of B" € B, r € Lo __ (A), n € N*, we deduce
that log pps(A, B) < Ags(A, A). This concludes the proof of Theorem 4.36. [

The next corollary, which follows directly from the above theorem and Remarks 4.17
and 4.35, generalizes the stability criterion from Theorem 1.39 and its counterpart in [132]
to the nonautonomous case (see Proposition 4.33).

Corollary 4.37. Let A € (R%)N, 1 be a nonempty bounded subset of My(C)N, and A = L®(R, 13).
Consider the following statements:

(a) pns(A,B) <1
(b) Xs(A,A) is exponentially stable in Xg for some p € [1,+c0];

(c) X5(L, A) is exponentially stable in Xg for every Le V,(A)and p €[1,+o0].

Then (a) = (c) = (b). If moreover (1,...,1) € V(A), we also have (b) = (a) and, for every
pE [1,+oo],
AP(A,A) = inf{v eR |]4H5(A, B—v) < 1},

where B_, = {(e"MBy,...,e " By) | (By,...,By) € B

4.3 Transport system

For L = (Ly,...,Ly) € (R})N and M = (mi)ijeqi,ng * R = My (C), we consider the system of
transport equations
du; du; .
8_tl(t'x)+8_xl(t'x):0' i€[[1,N], t€[0,+c0), x €[0,L;],
T .(L,M): N (4.36)
u;(t,0) = Zmi]-(t)uj(t,Lj), ie[[1,N], t [0, +c0),
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4. Stability of difference equations and applications

where, for i € [1,N]], u;(-,-) takes values in C.

The time-varying matrlx M represents transmission conditions and in particular it may

encode an underlying network for (4.36), where the graph structure is determined by the
non-zero coefficients of M. When no regularity assumptions are made on the function
M, we may not have solutions for (4.36) in the classical sense in C!(R, x [0,L;]) nor in
COR,, WP([0,L;],C)) N C}(R,,LP([0,L;],C)). We thus consider the following weaker def-
inition of solution.
Definition 4.38. Let M : R — My(C) and u; : [0,L;] — C for i € [1,N]. We say that
(4;)ieq1,n7 s @ solution of ¥ (L, M) with initial condition (u; o)ie1,n if #; : Ry x[0,L;] = C,
i € [1,N]), satisfy the second equation of (4.36), and, for every i € [1,N], t >0, x € [0,L;],
s € [-min(x,t),L; —x], one has u;(t +s,x +s) = u;(t,x) and 1;(0,x) = u; o(x).

4.3.1 Equivalent difference equation

Forie[1,N] and M : R — My(C), define the orthogonal projection P; = eie;r and set A;(-) =
M(-)P;. Consider the system of difference equations

N
v(t) = ZA]-(t)v(t—L]-). (4.37)
i=1

This system is equivalent to (4.36) in the following sense.

Proposition 4.39. Suppose that u = (u;)icq1,N is a solution of (4.36) with initial condition
(ui0)ieq1,ny and let v : [=Lpay, +00) — CN be given for i € [[1,N] by

0, th € [_ max’ _Li);
vi(t) =3 u;o(-t), ifte[-L;0), (4.38)
u;(t,0), ift>0.
Then v is a solution of (4.37).

Conversely, suppose that v : [~Lyay, +00) — CN is a solution of (4.37) and let u = (4i)ieq1,N]
be given for i € [1,N]], t > 0 and x € [0, L;] by u;(t,x) = v;(t —x). Then (u;)ieq1,n7 s a solution of
(4.36).

Proof. Let (u;)icq1,n] be a solution of (4.36) with initial condition (u;)ief1,n] and let v :
[~Lmax, +00) — CN be given by (4.38). Then, for t > 0,

N
£) = u;(t,0) = Zml-]-(t)u (t,L;)
j=1

and, by Definition 4.38, u;(t,L;) = vj(t—L;) since uj(t,L;) =u;(t—L;,0)if t > L; and uj(t,L;) =
ujo(Lj—t)if 0<t<L;. Hence vl(t) Z?Ll m;;(t) ](t L]) and thus v(t) = Z?LlAj(t)v(t—Lj).

Conversely, suppose that v : [~Lyax, +00) — CV is a solution of (4.37) with initial condi-
tion vy and let (u;);ieq1,n7 be given for i € [1,N]], t > 0 and x € [0, L;] by u;(t,x) = v;(t - x).
It is then clear that u;(t +s,x +s) = u;(t,x) for s € [-min(x,t),L; — x|, and, since v;(t) =
Zﬁl m;;(t)vi(t—Lj),

N
;(£,0) = v;( Zml] t—L;)= Zmij(t)u](t L
j=1

and so (u;)ie[1,n7 is a solution of (4.36). [

120



4.3. Transport system

The following result follows immediately from Proposition 4.2.
Proposition 4.40. Let u;o: [0,L;] = C for i € [1,N] and M : R — My(C). Then L(L,M)
admits a unique solution (u;)ieq1,Ny, 4i : Ry x[0,L;] = C for i € [1,N]], with initial condition
(14,0)ie1,N]-

4.3.2 Invariant subspaces

For p € [1,+00], consider (4.36) in the Banach space

N
XE = ]_[LP([O,Li],(E)
i=1

endowed with the norm

1/p
(Z“ l“LP ([0,L;].C ] ’ ifp€[1,+oo),

efﬁllaiil]]”u illis(or,c)r i p=+oco.
It follows from Proposition 4.39 and Remark 4.4 that, if M € L7 (R, My(C)) and ug € X,
then the solution ¢ — u(t) of X,(L, M) with initial condition 1, takes values in X} for every
t>0.

In Section 4.4, we study wave propagation on networks using transport equations via
the d’Alembert decomposition. For that purpose, we need to study transport equations in
the range of the d’Alembert decomposition operator, which happens to take the following
form (see Proposition 4.52). For r € N and R = (p;j)ie[1,1],jef1.N] € Mr,n(C), let

llull, =

N
. L
Y,(R) = u:(ul,...,uN)eX; Vie[l,r], E pi]-jojuj(x)dxzo .
j=1

This is a closed subspace of X?, which is thus itself a Banach space.

Remark 4.41. Let r € N, Re M, y(C), and M € L5 (IR, My (C)). Note that, if 1 <p < g < +oo,
Y4(R) is a dense subset of Y,(R) since Xg is a dense subset of X,T,. As a consequence, by a
density argument, Propositions 4.14 and 4.39, one obtains that, if Y,(R) is invariant under

the flow of X;(L, M) for some p € [1,+c0], then Y,(R) is invariant for every g € [1, +co].

The following proposition provides a necessary and sufficient condition for Y,(R) to be
invariant under the flow of (4.36).

Proposition 4.42. Let r €N, R € M, N(C), (u;,0)icq1,n] € Yp(R), and M € L5 (IR, My/(C)). Then

the solution u = (u;)ieq1,N] of (L, M) with initial conditzon (4i,0)ieq1,ny belongs to Y,(R) for
every t > 0 if and only if
R(M(t)-Idy)w(t)=0

for almost every t > 0, where w = (w;)ie1,n] and w;(t) = u;(t, L;).

Proof. Let v : [~Lpyay, +00) — CN be the solution of (4.37) corresponding to u, given by
(4.38), and let w = (wi)ie[[l N]] be defined by w;(t) = v;i(t — L;) = u;(t,L;). Let A = (A;)ic1,,] be

given for i € [1,7] by A;(¢t) ] 1p1] fo j(t,x)dx. Since 1;(0) = 0, we have

Zpl][f (£ x)dx — f dx] ZpZ]U x)dx—jOL"vj(—x)dx]
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4. Stability of difference equations and applications

N
Z I[Zm s)vr(s—Lx)—vi(s—L ]ds_zpl]jz o vk(s_Lk)ds’

so that A fo —Idy)w(s)ds. The conclusion follows immediately. [ |

Definition 4.43. Let L € (R*)N and M be a subset of L
the set

o (R, My (C)). We denote by Inv(M)

Inv(M) = {ReM, N(C) |r € N, Y,(R) is invariant under
the flow of X (L,M), VM e M, Vp € [1,+o0]}.

4.3.3 Stability of solutions on invariant subspaces

We next provide a definition for exponential stability of (4.36).

Definition 4.44. Let p € [1,+00], L € (R%)N, M be a uniformly locally bounded subset of
Ly (R,My(C)), and R € Inv(M). Let X, (L,M) denote the family of systems ¥ (L, M) for
M € M. We say that X.(L, M) is of exponential type y in Y,(R) if, for every € > 0, there exists
K > 0 such that, for every M € M and ug € Y,(R), the corresponding solution u of ¥.(L, M)
satisfies, for every t > 0,
I (1), < Ke* " [ugll, .

We say that ¥ (L, M) is exponentially stable in Y,(R) if it is of negative exponential type.

The next corollaries translate Propositions 4.20 and 4.21 into the framework of transport
equations.

Corollary 4.45. Let A € (R,)N, L € V.(A), and M be a uniformly locally bounded subset of

L5 (R, My (C)). Suppose that there exists a continuous function f : R — IR} such that, for every
MeM, neNN, and almost every t € (L-n—Ly ., L-n), (4.19) holds with A = (Ay,...,AN) given
by A; = MP,. Then there exists a constant C > 0 such that, for every M € M, p € [1,+o0], and
ug € Xy, the corresponding solution u of X..(L, M) satisfies

lu(®)ll, < C(t+ DN max  fS)lluoll,,  VEeR,.

~maxs ]

Proof. Let C > 0 be as in the Proposition 4.20. Let M € M, p € [1,+o0], ug € X;, and u be
the solution of X (L, M) with initial condition u,. Let v be the corresponding solution of
(4.37), given by (4.38), with initial condition vy. Notice that ||u0||p ||v0||p and, for every
t>0,||u(t )|| <|[v¢ll,- By Proposition 4.20, we have, for every ¢ > 0,

()l < vl < C(¢+ 1N maxf(s)|voll, =Ct+ 1N max f(s)lluoll,,

~Fmaxs S ~Fmaxs

which is the desired result. [ ]

Corollary 4.46. Let A € (R})N, L € W,(A), M be a uniformly locally bounded subset of Ly (R
My (C)), and f : R — R be a continuous function. Suppose that there exist M € M, ng € NN
and a set of positive measure S C (L-ng — Ly, L-ng) such that, for every t € S, (4.21) is satisﬁed
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4.3. Transport system

with A = (Ay,...,AN) given by A; = M P,. Then there exist a constant C > 0 independent of f, an
initial condition uy € X%, and t > 0 such that, for every p € [1,+o0] and R € Inv(M), the solution
u of ¢ (L, M) with initial condition u satisfies u(s) € Y,(R) for every s > 0 and

lu(oll, > C_ min _ £(s)luol,

~Fmaxs

Proof. As in Proposition 4.21, since L € W, (A), we can assume for the rest of the argument
that A = L.

Let C > 0 be as in Proposition 4.21. We construct an initial condition v, € Xg as follows:
choose t and jy as in Proposition 4.21 and verifying in addition ¢y # L -ng - L;,. Then pick
0 > 0 as in Proposition 4.21 and satisfying in addition 6 < 'to —L-ng+ L]-0| and 6 < Lpyin/2.
Next, take p € L*°(IR,IR) as in Proposition 4.21 and satisfying in addition fbé u(s)ds = 0.
Finally, consider the initial condition vg(s) = p(s — o + L -ng)e;j . As in (4.24), we still obtain
that the solution v of (4.37) with initial condition v satisfies, for pe(l,+],

||vto+5||p 2 ”vto”Lp([—a,a],q:N) > Cse[tw;}lfiwtow]f(s) Ilvollp- (4.39)
Let u be the solution of (4.36) corresponding to v, in the sense of Proposition 4.39,
and denote by ug = (u;0)ic[1,N] its initial condition. Since u;(x) = v;(-x), we have ug €
]_[f\il L*([0,L;],C). Furthermore, u; o = 0 for i # jo and u;, o(x) = vj (-x) = (L -ng - o — x). By
definition of 6, we must have either (L-ng—tg—0, L-ng—fo+0) C [0, L;j ] or (L-ng—tg—6, L-ng—to+
0)N[0,L; ] =0, but the latter case is impossible since we would then have u; o = 0, and thus
v(s) = 0 for every s > —Lp,y, which contradicts (4.39). Hence (L-ng—ty—0, L-ng—ty+0) C [0, L]
and

L; o
fo " ujo0(x)dx = f_é u(x)dx = 0.

We thus have clearly ug € Y(R), and in particular u(s) € Y,(R) for every s > 0 and p € [1, +oo].
Furthermore, |[vg||, = [|uoll, and, for p € [1,+00),

' . N - N
ol s mpey = [ ottosibds = 7Y luitto+s, 00 ds = [ luilto +6,5) ds
([-0,0].€Y) 5 5 0
i=1 i=1
< Zj ui(to+6,5)P ds = [|u(to + 8)|[h,

with a similar estimate for p = +oc0. Hence, it follows from (4.39) that, for every p € [1, +o0],

lu(e)l, > € _min _ f©)lluol,

with t = to + 0. |
As a consequence of the previous analysis, we have the following result.

Theorem 4.47. Let M be a uniformly locally bounded subset of L5 (R, My(C)), A € (RN, and
={A=(Ay,...,AN) : R - My(C)N | A; = MP;,,M € M}. For every L € V,(A), if X5(L, A) is of
(©, A)-exponential type y then, for every p € [1,+co] and R € Inv(M), (L, M) is of exponential
type ¥ in Y,(R). Conversely, for every L € W, (A), if there exist p € [1,+oo] and R € Inv(M) such
that (L, M) is of exponential type y in Y,(R), then £5(L, A) is of (©, A)-exponential type .

123



4. Stability of difference equations and applications

It follows from Theorem 4.47 that the exponential type y for (L, M) in Y,(R) is inde-
pendent of p € [1,+o00] and R € Inv(M). When M is shift-invariant, thanks to Theorem 4.26,
one can replace (®, A)-exponential type by (E,A)—exponential type for X5(L, A) in Theorem
4.47.

Assume now that M = L*(IR,13), where 1 is a bounded subset of My(C). Let A =
{A=(A,...,AN) : R > My(C)N |A; = MP, M € M}, ie.,, A = L®°(R,A) where A = {A =
(Ay,...,AN) € My (C)N | A; = MP, M € B3}. We can thus transpose the results from Section
4.2.3.3, and in particular Corollary 4.31, to the transport framework.

Corollary 4.48. Let A € (R%)N, B be a nonempty bounded subset of My (C), M = L*(RR, B). The
following statements are equivalent.

(@) X(A,M) is exponentially stable in Y ,(R) for some p € [1,+0o] and R € Inv(M).
(b) X((L, M) is exponentially stable in Y,(R) for every L € V. (A), p € [1,+00], and R € Inv(M).

Remark 4.49. In accordance with Remark 4.30, the exponential stability of X.(A,M) is
equivalent to that of X (A, L®(R, B)).

4.4 Wave propagation on networks

We consider here the problem of wave propagation on a finite network of elastic strings.
The notations we use here come from [63].
A graph G is a pair (V, £), where V is a set, whose elements are called vertices, and

Ecllg.ptlapeV, q=p}

The elements of € are called edges, and, for e = {g,p} € €, the vertices q,p are called the
endpoints of e. An orientation on G is defined by two maps a,w : € — V such that, for every
ec &, e={ale),w(e)}. Given q,p €V, a path from q to p is a n-tuple (9 = q4,...,9, =p) € V"
where, for every j € [1,n—1], {g;,9;;1} € €. The positive integer n is called the length of the
path. A path of length n in § is said to be closed if g = q,;; simple if all the edges {q;,9;.1},
j € [1,n —1]], are different; and elementary if the vertices q,,...,q, are pairwise different,
except possibly for the pair (q;,9,). An elementary closed path is called a cycle. A graph
which does not admit cycles is called a tree. We say that a graph G is connected if, for every
q,p €V, there exists a path from g to p. We say that G is finite if V is a finite set. For every
q €V, we denote by &, the set of edges for which g is an endpoint, that is,

Eg=leel|qgeel

The cardinality of £, is denoted by n,. We say that g € V is exterior if £, contains at most one
element and interior otherwise. We denote by V., and V;,; the sets of exterior and interior
vertices, respectively. We suppose in the sequel that V,,; contains at least two elements, and
we fix a nonempty subset V4 of Ve, such that V;, = Ve, \ Vg4 is nonempty. The vertices of
V4 are said to be damped, and the vertices of V,, are said to be undamped. Note that V is the
disjoint union V =V, UV, UVy.

A network is a pair (G, L) where § = (V, €) is an oriented graph and L = (L,),c¢ is a vector of
positive real numbers, where each L, is called the length of the edge e. We say that a network
is finite (respectively, connected) if its underlying graph G is finite (respectively, connected).
If ee &and u:[0,L,] — C is a function, we write u(a(e)) = u(0) and u(w(e)) = u(L,). For
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4.4. Wave propagation on networks

every elementary path (q1,...,4,), we define its signature s : € — {—1,0,1} by

1, if e=1{q;,9i;1)} for some i €[[1,n—1] and a(e) = q;,

s(e)={ -1, ife=1{qg;,qi;1}forsomeie[1,n—1] and a(e) =q;;1,
0, otherwise.
The normal derivatives of u at a(e) and w(e) are defined by gTM(a(e)) = —‘;—’;(0) and j;‘ (w(e)) =
du
E(Le)-

In what follows, we consider only finite connected networks. In order to simplify the
notations, we identify € with the finite set [1,N]], where N = #£. We model wave prop-
agation along the edges of a finite connected network (9,L) by N displacement functions
u;:[0,+00) x[0,L;] = C, j € [1,N]), satisfying

82uj 821/[]‘ .
W(t,X):W(t,X), ]E[[l,N]], tE[O,'l‘OO),XE[O,L]‘],
u;j(t,q) = u(t,q), qeV, jke&, te[0,+00),
au]-
(S L) d 25, (LD =0, 9 € Vinp, t € [0, +00), (4.40)
jeg,
—; (b4)= —nq(t)a—nj(t,q), q€Vq4, jEEy t€[0,+00),
uj(t,q) =0, qeVy, j€&y t€[0,+00).

Each function 7, is assumed to be nonnegative and determines the damping at the vertex
q € V4. We denote by 7 the vector-valued function 1 = (1,)4ev,-

Remark 4.50. Let (G, L) be a finite connected network with € =[[1,N] and (ay, wy), (a2, w5)
be two orientations of §. If (u;);c[1,n] satisfies (4.40) with orientation (a1, w1) and (v})e[1,n]
is given by v; = u; if ay(j) = a,(j) and vj(x) = u;(L; — x) otherwise, we can easily verify that
(vj)jef1,n7 satisfies (4.40) with orientation (@,, w;). Hence the dynamical properties of (4.40)
do not depend on the orientation of §.

For p € [1,+00], consider the Banach spaces LP(S,L) = [T, LP([0,L;],C) and
p p j=1 j

N

Wy P (G,L) = (uy,...,uy) € ]_[Wl'P([O,L-],C)
j=1

uj(q) = ug(q), Vg €V, Vj,k € Eui(q) =0, Vg eVy, Vj € eq}, (4.41)

endowed with the usual norms

N 1
[Z”ui“ILJP([O,Li],C)] , ifpe[l,+o0),
”u”LP(g’L) = =
i&fﬁﬂWAhﬂmiﬁcw if p = +oo,
y ]
71|P )
[Z|Iui|ILP([O,L,~],C)] , ifpe[l,+),
||u”W0LP(91L) = p
zgl[le,ll)\cl]] ||ui||L°°([0,Li],([j)’ if p = +oo.
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4. Stability of difference equations and applications

We will omit (G, L) from the notations when it is clear from the context.
Let X7 = Wol’p x LP, endowed with the norm ||-||p defined by

1

P

1P i g HWEngy) i Lo4oo),

W,(S,L

I, ), = (

max ([lullyo gy Wlligr)) i p = +oo,
and, for every t € R, define the operator A(t) by

N
D(A(t) = (u,v) € [wol"’ n[ [w*(o.L;),€)

j=1

1,p
x W,

duj . du]
vj(q) = ()T Ha), Vg eVa, Vi€ e ) L (@)= 0, Vg € Vin
]

j€€, ]
u v
A (s)=()
One can then write (4.40) as an evolution equation in X} as

U(t) = A(t)U(t) (4.42)

where U = (u, a—”)

4.4.1 Equivalence with a system of transport equations

In order to make a connection with transport systems, we consider, for p € [1,+o0], the
Banach space

2N
Xt = ]_[LP([O,L]?],C),
j=1

where ng—l = ng =L; for je[[1,N].

Definition 4.51 (D’Alembert decomposition operator). Let T : X7 — X7 be the operator gi-
ven by T(u,v) = f, where, for j €[1,N], x€[0,L;],

hj-1(x) =ui(Lj—x)+vi(Lj=x),  frj(x) = uj(x) - vj(x). (4.43)

In order to describe the range of T, we introduce the following notations. Let r € IN be
the number of elementary paths (qy,...,9,) in § with g, = g, or q1,9,, € V,,. The set of such
paths will be indexed by [[1,r]. We denote by s; the signature of the path corresponding to
the index i € [[1,r]. We define R = (p;;); ; € M, on(C) by setting

Pi2j-1 = pi2j = si(j) for i € [1,r], j € [1,N].
We then have the following proposition.

Proposition 4.52. The operator T is a bijection from X3’ to Y,(R). Moreover, T and T are
continuous.
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4.4. Wave propagation on networks

Proof. Let (u,v) € X7’ and let f=T(uv)e Xy Let (q1,...,q,) be an elementary path in §
with q; = g, or q1,9, € Vy and let s be its signature. For i € [1,n— 1], let j; be the index
corresponding to the edge {g;,4;.1}. We have

N _ N
Y ) [ (fojor (0 + foy ) dx = zZ ) [ e =2 s(7) (5(L;) - w;(0))
j=1 i=1

n—1
= 2Z(uji(qi+1)_uj,~(qi)) = 2(ujn,1(qn) (6]1)) =
i=1

and thus f € Y,(R).

Conversely, take f € Y,(R). For j € [1,N]], define v; : [0,L;] — C by

faj-1(Lj = x) = fo;(x)

: (4.44)

vj(x) =

One clearly has v; € LP([0, L;], C). We define u; as follows: let e € € be the edge corresponding
to the index j. Let (gy,...,9,) be any elementary path with g; € V, and g, = a(e). Let
s: & — {-1,0,1} be the signature of that path and, for i € [[1,n— 1], let j; be the index
associated with the edge {g;,9;.1}. For x € [0,L;], set

n—1
S
i=1

ILJ, faji-1 +f2;‘,-(5)dé N fox frj-1(Lj = &) + fr;(&)

5 > dé. (4.45)
This definition does not depend on the choice of the path (qy,...,49,) with g, € V, and g, =
a(e) thanks to the definition of the matrix R. It is an immediate consequence of (4.45)
that (u,v) € XJ. The map f — (u,v) defines an operator S : Y,(R) — X;. We clearly have
ToS =Idy,g and SoT =Idxy, and thus T is bijective. The continuity of T and S follows
immediately from (4.43), (4.44), and (4.45). [

Remark 4.53. When p = 2, one easily checks that \/LET : X§ = Y,(R) is unitary.

Remark 4.54. The operator T corresponds to the d’Alembert decomposition of the solutions
of the one-dimensional wave equation into a pair of traveling waves moving in opposite
directions. For every j € [1,N]), f,j-1 and f; correspond to the waves moving from w(j) to
a(j) and from a(j) to w(j), respectively (see Figure 4.1).

faj1

Figure 4.1: D’Alembert decomposition of the wave equation on the edge j € [1, N].

Let us consider the operator B(f) in Y,(R) defined by conjugation as

={f€Y,(R)| T feD(A(t)}, B(t)f =TAMNT'f.

In order to give a more explicit formula for B(t), we introduce the following notations.
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4. Stability of difference equations and applications

Definition 4.55 (Inward and outward decompositions). The inward and outward decomposi-
tions of C*N are defined respectively as the direct sums

C2N = @ s C2N = @ 4

qev qev

where, for every g € V, we set

Wl = Span({eo; |w(j) = 9} Uleaj1 | a(j) = q}),
Wt = Span ({e; | (j) = g} U fezj1 | w(j) = g}).

For every g € V, we denote by Hq and I1! , the canonical projections of C2N onto Wl‘zl and

Wgut, respectively, which we 1dent1fy with matrices in an,2N(C)~

For n € NN, let ], denote the n x n matrix with all elements equal to 1. Define D =
diag((=1)/)jeq1,2ny- For g € Vand t € R, we set

2 .
(ITa) ( " ]nq)nﬁn, if g € Ving,
T .
Mi(t) = (H ut) m, ifgeV,,
1-1g(t) g g .
1+ Mg (t) (Hout) Hln’ if qe vd'

We define the time-dependent matrix M = (m;}); ic[1,2n7 by

D ZMq D

qev

(4.46)

Remark 4.56. If the components of 1 are nonnegative measurable functions, then M is
measurable and its components take values in [-1, 1].

Remark 4.57. Notice that ng and Wi?f are orthogonal whenever q; # gq,, and similarly
for the outward decomposition. Moreover, for each g € V, the spaces W, and WJ, are

invariant under D. We finally notice that the image of M(t) is contained in W, . From
these observations, we deduce that, for everyge Vand t € R,

ngtDM( )_ _ngth( )D

We finally obtain the following expression for B(t).

Proposition 4.58. For t € R and p € [1,+00], the operator B(t) is given by

2N 2N
D(B(t)) = erp(R)meLp([o,L}],a:) ﬁ(O):Zmij(t)fj(L;), Vie[1,2N]}, (4.47)

j=1
B(t)f =—f". (4.48)
Proof. Let f € Y,(R) and (u,v) =T ' f € Xy and notice that
W) = faj-1( —2x + foj(x) v faj-1(Lj —2x) - f2j(x) (4.49)
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4.4. Wave propagation on networks

It follows from (4.43) and (4.49) that f; € W!P([0,L7],C) for every i € [1,2N] if and only if
u; € W2P([0,L;],C) and v; € WLP([0,L;],C) for every i € [1,N].

We suppose from now on that f; € WP([0,L}],C) for every i € [1,2N]. Take Fy =
(fi(0))ie1,2ny and Fr = (fi(L]))ief1,2n7- The condition

= Zmij(t)fj(L;), Vie[1,2N] (4.50)
j=1

CZN

can be written as Fy = M(t)F;. Thanks to the outward decomposition of this is equiv-

alent to TT! ,DFy = TI! ,DM(t)F; for every q € V. By Remark 4.57, we have IT] ,DM(t) =
—11! MA(t)D, and thus (4.50) is equivalent to
11!, ,DFy + 11, ,M9(t)DF, = 0, VqeV. (4.51)

If g € Vg4, let j be the index corresponding to the unique edge in &,. To simplify the
notations, we consider here the case a(j) = ¢q, the other case being analogous. Then

I—IoutDFO + Hout (t)DPL = ngtDFO ﬂqz ;H
1_17 (t) u 1 —114(2)
=£(0) ! . f2] 1 u;(0)—v;(0) - 1+172(t) (u](0)+vj(0))
2
=m(ﬂq(t)u}(0)—vj(0)),

which shows that the left-hand side is equal to zero if and only if one has v;(q) = —nq(t)%(q).
]
If g € V,, the same argument shows that the left-hand side is equal to zero if and only if
vj(gq) = 0.
Finally, if g € V;,(, one easily obtains that

d du;
MLDF = (G @-v(e) . TuDFo=(-7@-vla) .
j€€, ] j€€y
Since ITJ (ngt)T =Idyy , one has
du:
1}, DFo + T3, MI0DE, = (~520) - vy0)  +(1d, s (@@ -vito)
j€€y j€E,

= (— i(q) - Z:keg (dnk( ) - vk(ﬂ)))

The right-hand side is equal to zero if and only if v;(q) = vi(q) for every j,k € &, and

duy
Zkeé‘ d”k( ) 0.
Collectmg all the equivalences corresponding to the identities in (4.51), we conclude
that (4.47) holds.
Let now f € D(B(t)) and denote (u,v) = T~' f € D(A(t)), g = B(t)f. Then

g=TAMT 1f TA(t)(w,v) = T(v,u”),
and so, by (4.43), for every j € [[1,2N]],

j€€,

d
82j-1(x) = vj(Lj =)+ 1 (Lj =) =~ (v(L; =) + w{(L; =x)) = ~f3
d
82j(x) = vj(x) = ] (x) = =~ (vj(x) - u}(x)) = = f3;(x),
which shows that (4.48) holds. [
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4. Stability of difference equations and applications

The operator T : X — Y,,(R) transforms (4.42) into

This evolution equation corresponds to the system of transport equations

i ofi

9t (t,x )+8_ (t,x)=0, i€[1,2N], t €[0,+0c0), x€[0,L7],
(4.52)
£i(t,0) = Zmij(t)fj(t,L;), i €[[1,2N], t €[0,+00),
where F(t) = (f;(t))ie[1,2n7- The following property of the matrix M(t) will be useful in the

sequel.

Lemma 4.59. For every t € R,

Proof. Notice that, for every g € V, M(t) can be written as
MA(t) = (o) (Aq(tn " 2 S, )

where A4(t) = - qq( ; if ¢ € Vq and A4(t) = 1 otherwise, while 6, = 1 if g € Vi and 6, = 0

otherwise. By a stralghtforward computation, one verifies that, for every g €V,

T
2 2
Aq(1)1dy, _n_qéq]”q) (/\q(t)ldnq _n_qéq]”‘?) = /\q(t)Z Id,,, .
Noticing furthermore that, for every q;,q, € V, T2 (T1{2,)T = 04,9, 1d 11 , one deduces that
M(t D[ Ag(ty () I,
qev
Since the term between brackets in the above equation is diagonal and /\q(t)2 =1- %
q
for g € V4, the conclusion follows. ]

4.4.2 Existence of solutions

Thanks to the operator T : Xi7 — Y,(R), one can give the following definition for solutions
of (4.40).

Definition 4.60. Let Uy € X7’ and 11 = (17y)4¢v, be a measurable function with nonnegative
components. We say that U : R, — X;;’ is a solution of X,(G, L, ) with initial condition Uj, if

T~'U : R, — Y,(R) is a solution of (4.52) with initial condition T~ Uy € Y,(R).

For every Fg € Y,(R), it follows from Proposition 4.40 that (4.52) admits a unique solu-
tion F : R, — X7. In order to show that this solution remains in Y,(R) for every t > 0, one
needs to show that Y, (R) is invariant under the flow of (4.52).
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4.4. Wave propagation on networks

Proposition 4.61. For every t € R, RM(t) = R.

Proof. Thanks to the inward decomposition of C*V, we prove the proposition by showing
that for everyge Vand t € R,

2
)" [Aq(D)1d,,, =—0,],, | = RD(IT)T, (4.53)

—RD(IT!
g

out

where A,(t) and 9, are defined as in the proof of Lemma 4.59. Without loss of generality, it
is enough to consider the case where R is a line matrix, i.e., we consider a single elementary
path (qy,...,9,) in Gwith g = g, or g1, 9, € V,,, with signature s. Then R = (p;)jc[1,2n7 is given
by p2j_1 = p2j = s(j) for j € [1,N]. For i € [1,n—1]], denote by j; the edge corresponding to
{9i,9i+1}- Let us write R = Z:-’:_ll s(ji)(ezj—1 + ezjl.)T and notice that

n—1

RD = Zs(ji)(_eri—l +e57,)"

i=1
By definition of the signature s, one has, for i € [1,n—1]),
T _ T Qi+1\Ty19i+ qi\Ty714i
=s(ji)es_y = e3j_y [T T — (I 'TT |,
(]1)62] _ 62] [ ‘71+1 )THqu _ (H?A)Tnﬁzl],

and qi qi qi q
. T i T i i+1\T i+l
—s(ji)eyj_1 = 62] -1 [ Moue) Moy = Moyt Hth]

H _ qi T qi 4i+1\Ty149i+1

5(]1') j 62] [ Ioue) Moue = (Mot Hogt]

One deduces that

n—1
RD = Z(e2ji—l + 62] ) [(qu+l )Tl—[q:ﬂ _ (H?;I)Tl—[ﬁzl]

=1
1

=

(e2j—1 +e2j.)" [(tht)THq'

out
1

(qu+l )THq1+l ]

out out

By using the above relations, Equation (4.53) can be rewritten as

n—1

/\q(t)ld __6 ] outZ 51%+1_ 62] 1+62])
i=1
-1

Z g —Ogq: ) (€21 +€25). (4.54)

i=1

Such an identity is trivially satisfied if g ¢ {q1,...,4,}. Assume now that either q = g; for
some i € [2,n—1] or g = q; = q,, (and in the latter case set i = n and define j,,; = j;). In
particular, g € Vi and A4(t) = 6, = 1. We therefore must prove that

_ 1714
[ ——]n ] M0 (e2j 1 +e2j, —exjo1—e2;) =TI (e2j, 1 +€2j,, —€2j—1 —€25). (4.55)
My,

By definition of Hq’ and ITY ,, one has that

ai 4 —
Iou(e), -1 +e2j, , —ezj1 =€) =Tl (o), 1 +e2j, | —€zj1 —e2j) = w,
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4. Stability of difference equations and applications

where w € C"i has all its coordinates equal to zero, except two of them, one equal to 1 and
the other one equal to —1. Hence ]nq,w =0 and (4.55) holds true.

It remains to treat the case q € {q1,9,} C Vy. In this case, A,(t) =1 and o, = 0, and we
furthermore assume, with no loss of generality, that g = ;. We can rewrite (4.54) as

q q
Ioui(ea)—1 +e2j,) =TT (€2, -1 + €2,

which holds true by definition of IT!! and I1{}

out*

The main result of the section, given next, follows immediately from Propositions 4.42
and 4.61.

Proposition 4.62. Let (G, L) be a network, p € [1,+00], and 1 = (114)4ev, be a measurable function
with nonnegative components. Then, for every Uy € X3, the system X ,(G,L, 1) defined in (4.40)
admits a unique solution U : R, — X7'.

4.4.3 Stability of solutions

We next provide an appropriate definition of exponential type for (4.40).

Definition 4.63. Let (G,L) be a network, p € [1,+o0], and D be a subset of the space of
measurable functions 1 = (11;),cv, with nonnegative components. Denote by ¥,(5,L, D) the
family of systems ¥,,(5,L, 1) for 1 € D. We say that X,(5,L, D) is of exponential type y in X7
if, for every € > 0, there exists K > 0 such that, for every 17 € D and ug € X7, the corresponding
solution u of ¥ (5, L, 1) satisfies, for every t > 0,

()], < Kel? " Jug]l,-
We say that £,,(5, L, D) is exponentially stable in X7 if it is of negative exponential type.
Given D as in the above definition, we define
M={M:R— M,N(R)|M is given by (4.46) for some 1 € D}.

Thanks to the continuity of T and T~! established in Proposition 4.52, we remark that
E0(5,L,D) is of exponential type y in X7’ if and only if ¥,(L, M) is of exponential type y
in Y,(R). As a consequence of Corollary 4.48, we have the following result in the case of
arbitrarily switching dampings 7,, g € Vg.

Corollary 4.64. Let (G, A) be a network, d = #V4, D be a subset of (R,)?, and D = L®(R, D).
The following statements are equivalent.

(a) X,(9, A, D) is exponentially stable in X for some p € [1,+o0].
(b) £4(5,L, D) is exponentially stable in X3’ for every L € V,(A) and p € [1,+0c0].

We can now provide a necessary and sufficient condition on § and D for the exponential
stability of £,(9, A, L®(R, D)).

Theorem 4.65. Let (G, A) be a network, d = #V4, D be a bounded subset 0f(R+)d, and D = L®(R,
D). Then X,(G, A, D) is exponentially stable in X3’ for some p € [1,+oco] if and only if G is a tree,

V, contains only one vertex, and D C (IR%)%.
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4.4. Wave propagation on networks

Corollary 4.64 allows one to easily prove the “only if” part of Theorem 4.65. The “if”
part follows from a standard energy estimate and an observability inequality, which can be
obtained as in [63, Chapter 4, Section 4.1] (see also [155]). For the sake of completeness,
we provide here a complete proof of Theorem 4.65, the “if” part being proved following the
arguments from [63,155]. We start with a few preliminary results needed for the energy
estimates in the “if” part.

For U = (u,v) a solution of ¥,(9,A,D) in X7, t € R,, and j € [1, N], we define the energy

Ej(t):ﬁ) ( Ju;

dx
In particular, ||U(t )||2 = Z] 1 Ej(t). Notice that, by setting f = TU one has ||f(t My, r) =
IlU(#)]|, thanks to Remark 4.53 and

B = [ (6.0 + |t ) .

Lemma 4.66. Let U = (u,v) be a solution of X,(3,A, D) in X5 and f = TU Then, for every
jelL,N]and t > Aj, the energy (4.56) satisfies

(tx

+|vj(t,x)|2]dx. (4.56)

Ej(t)SIHA (|f2] (7,0 |2+|f2]-(T,A]~)|2)dT. (4.57)
Proof. We have
Ej(t):foAf(|f2]-_1(t,x)|2+|f2j(t,A]-—x)|2)dx—j (|f2] L(E=x,0)[ + [fos(t+x,A)| )d
t 2 t+A;
:f |f2]-_1(r,0)| dHf i, Ap)| e
J”A (122 00 st 4 .

Lemma 4.67. Let U = (u,v) be a solution of)Z (G, A, D) in X and f = TU Let g € Ving,

j € &g, and suppose that w(j) = q and a(i) = q for every i € &, \ {j}. For every a > 0 and
t > a+maxiee \(j) A;, we have

7 O +aste Apf e < amg =10 Y [ (1fics (0, 007 + s AP e
ie€ \{j}

Proof. Thanks to (4.46), we have

-2 2
f2j-1(7,0) = it Aj)+— Z frii(T,A)),
g Mg et
i€ \j)
n,—2 2
At A) === (1,00+ = ) f(t,0)
1 1 iee,\lj)
Hence 2
n n, —
fzj—1(7;0)=2(n—q_l) Z [fZi—l(TlAi)+ qnq fzi(T;O)]:

1 i€, \(j}

_ ”_‘7_1) S [fzi(T,O)+

q i€, \(j)

2
friz1 (T,Ai)]«
q
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4. Stability of difference equations and applications

We finally obtain

L:u (|f2j-1 (T, O)|2 +|f(t, Aj)|2)dT

ng J‘t+a Z [f ( A —2f ( O):|2
= 2i-1\T 2i\T,
4(nq—1)2 t—a iESq\{j} ! !
2
-2
+ Z [fZi(T;0)+ fZi—l(T:Ai)] dt
i€, \{j} q
t+a
<dig=1) ) [ (foia (6 AP+ Ifai (. 0) ) d
€€ \{j}
t+a—-A; t+
4= Y ([T w0 T+ [ Vi AP )
icg,\(j)

<dlng=1) ) L”“A'(|f2i_1<r,0>|2+|le~<r,Ai>|2)dT. .

a-A
ie€ \j)

Lemma 4.68. Let U = (u,v) be a solution of £,(9,A,D) in X3 and f = \/LETU. Let g € Vg,
j € &4, and suppose that w(j) = q. For every a> 0 and t > a, we have

Jt+a(|f2] 1(7,0 | |f2] (t,A )d’L’<ZI |f2] (t,A j)|2dT.

. 1
Proof. Since f,;_1(7,0) = 1+Z’4 : frj(t,Aj), we get

Lo (1@l + gt A ) = LTZ[

<2 [ |y, A dx. .

1 —=114(7) ?
1+77q(T)

¥ 1]|f2j(T,A]-)|2dT

We can now turn to the proof of Theorem 4.65.

Proof of Theorem 4.65. Similarly to Remark 4.49, the exponential stability of ¥,,(G,A,D)
is equivalent to that of X,(G, A, L®(R,D)). We therefore assume with no loss of generality
that D is compact.

Suppose that either G is not a tree, V,, contains more than one vertex, or D contains a
point 77 with 7=0 for some g € Vy4. Let (q1,...,9,,) be an elementary path in § with q; =g,
41,9, € Vy, or q; € V, and g, =q. Let s be its signature and, for i € [1,n— 1], let j; be the
index corresponding to the edge {g;,g;.1}. Take L € V,(A) NINY, which is possible thanks to
Proposition 4.9. For j € [[1,N]], we define

(t,%) s(j;)sin(2mt)sin(2mx), if j = j; for a certaini € [[1,n—1],
0, otherwise.

One easily checks that (u;);cq1,n is a solution of X,,(5,L, 1) for every nn € D. Since it is
periodic and nonzero, ¥,(5,L, D) is not exponentially stable in X{’ for any p € [1,+0c0], and
so, by Corollary 4.64, ¥,(9, A, D) is not exponentially stable in X";’ for any p € [1,+o0].

134



4.4. Wave propagation on networks

Suppose now that § is a tree, V, contains only one vertex, and D = D C (0, +c0)?. Then
#V = N + 1 and, for every pair of points g,p € V, there exists a unique elementary path
from g to p (see, for instance, [67]). Denote by g, the only vertex in V,, set Vo =7V, and,
for k € N, let V be the set of vertices g € V such that the unique elementary path from
g to go has length k + 1. Let K € IN* be the largest index for which Vi # 0; notice that
Vk # ( for every k € [0,K]] and that {vk}ke[[O,K]] forms a partition of V. For k € [1,K], let
Ek ={{g,p}elge Vk_l, pe ’\7;(}; hence {/gk}ke[[l,K]] is a partition of €. Up to changing the
orientation of the graph, we suppose that, for every k € [1,K]and e € &}, we have a(e) € Vy_;
and w(e) € V. See Figure 4.2 for an illustration of these notations.

For q,p eV, let (9 =91,92,-..,9, = p) be the unique elementary path from g to p and, for
ie[[1,n—1], let j; be the index corresponding to the edge {g;,9;.1}. We set

n—1

AP = A and A =max A%,
q Ji v q
i=1 9€

For j € €, let Q; be the set of g € V such that j is an edge in the unique elementary path from
q to qq.

q0 —
Vo

&
Vi

&
V,

&
V3

&y
Vs

&s
Vs

&
Vs

Figure 4.2: A tree § with N = 28 illustrating the notations used in this proof. Vertices in Vg4
are marked in blue, the one in V, is marked in red and those in V;,; are marked in black.
For the edge j represented in the figure, green circles were put around the vertices in Q;.

Let #)min = min,epmingey, 7, > 0 and #max = max,epmaxyey, 1, > 0. Let U = (u,v) be
a solution of X,(5,A,D) in X§ and f = %TU. Notice that ||f(t)||Y2(R) = ||U(t)|l, thanks to

Remark 4.53. For t > 0, denote Fy(t) = (fi(t,0))ieq1,2n7 and Fo(t) = (fi(t, A]))ie[1,2n7], SO that
Fo(t) = M(t)FA(t). For t > 0 and s € [0, Apn |, we have, by Lemma 4.59,

2N 2N
AT AT s
U+s)l3=) [ It+s0Pdx=) " [ Ifitx=s)Pdx+ | |Fo(t+s—x)3dx
i:l 1:1
2N AT s
:ZJ '|fi(t,x—s)|2dx+j0 IFa(t+s—x)dx
S
i=1
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4. Stability of difference equations and applications

4114(t +5—x) AP d
IZZW, e it Fs A d

geVq i€,
tts 417q 5
SIOE=) ) J, G e Al
qudZEE

and, since this holds for every t > 0 and every s € [0, Ay;,], one can easily obtain by an
inductive argument that, for every t >0 and s > 0,

trs  41,(T
W= 10O ==)_) [, e e AP de

geVqieg, 1 + 17
Thus, for every t >0 and s > 0,
1711111’1
IU(t+s)ll5 - 11U(H)l5 < i (T, A d. (4.58)
2 2 77max Z ZI f21

qeVqieé,

In particular, t — ||U(t)||§ is nonincreasing.
Let j € €. If w(j) € Vq, then, by combining Lemmas 4.66 and 4.68, we obtain that

t+A; 2
) < 2L_AA’ (T A d. (4.59)
]

Otherwise, we have w(j) € Vin;. Let k € [1,K]] be such that j € Ek and let g = a)(]) Vk

Clearly, k < K since VK C V4. We claim that, for every ¢ € [k,K] and t > maxeq, AY wli )), we
have
Ej(t) <@N)F| ) L |fz, (T, 0 +1foi(r, A ) d
168[
w(i)eQ;
VS (4.60)
(-1
S N e TAeo|
r=k+1 ic€,
w(l)GQ]ﬂVd

Let us show (4.60) by induction on ¢ € [k, K]]. For € =k, (4.60) reads

(0= [ (1ra(m 0+ s A

A

which is exactly (4.57). Suppose now that ¢ € [k, K—1] is such that (4.60) holds and let i X7
be such that w(i) € Q;. If w(i) € Vg4, then, by Lemma 4.68,

jf (|f21 (.0 +|fail(z, A dr<2J" 3o (e, AP (4.61)

A

Otherwise, w(i) € Vi, and then, by Lemma 4.67,

t+

t— A

(lfal (1,00 +1fai(t, Ap)) d
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4.4. Wave propagation on networks

<4N X |f25 1(T,0) + | fas(T, AP ) dt

seé

()(1

Al
e (st (0O + 1 fas(T, AP ) d. (4.62)
se€p\i)

Combining (4.60), (4.61), and (4.62) gives

=4N

(u(s

Ei(f)<(4N)F1aN ) Z L (lfoor (4,0 I +1fos(T, AP ) d
€\

1685 S€
( )EQ rﬂ7mt
2 ) f |le T, A |dr+zz ) jA ol A
ic€, r=k+1 i€€,
( )EQ ﬂvd ( )GQ ﬂvd

< (4N) ZL Ilelr, I+ 1foi(r, AP ) d

1€8i+1
w(i)€Q
l
+ZZ Z A”'lle T, A dr|,
r=k+1 i€,
w(i)eQ;NVy

which establishes (4.60) for every ¢ € [k, K] by induction.
Applying (4.60) for £ = K and using the fact that Vg € V4 and Lemma 4.68, we obtain

that, for t > A,
K
t+A wli)
Ej(t) < 2(4N)KF Z Z o fz, T, A dt
r=k+1  jeg, /()
wliIenVs (4.63)

4N ZZI |fi(T, A |dT

geVqieg,

Equation (4.63) was established for j € [[1, N] such that w(j) € Vjy;, but it also holds when
w(j) € Vq thanks to (4.59). Hence, summing (4.63) over j € [1,N]), we get, for t > 0,

UG+ R, < 22K Nk Y ZLMK foi(, AP dr. (4.64)
geVqieg,

We now combine (4.58) with (4.64) to obtain, using the fact that ¢t — ||U(t)||§ is nonin-
creasing, that, for every t > 0,

U+ 28)|[; - IlU (01 <~ | Ut + 2|

with C = “ir;—m‘“)QZ’ZK’lN ~K'> 0. This yields the required exponential convergence in X¢,
and hence in X7’ for every p € [1, +oo] thanks to Corollary 4.64. ]
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Chapter 5

Controllability of linear difference
equations

5.1 Introduction

This chapter characterizes the controllability of the difference equation

-

Y(A,B,A): x(t)= ) Ajx(t-Aj)+Bu(t), (5.1)

j=1

where x(t) € €% is the state, u(t) € C™ is the control input, N,d,m € N*, A = (A4,...,AN) €
(0,+00)N is the vector of positive delays, A = (A4,...,Ay) € My(C)N is a N-tuple of d x d
complex-valued matrices, and B € My ,,(C) is a d x m complex-valued matrix.

As presented in Section 1.4.1, the study of the autonomous difference equation

N
x(t) = Zij(t—A]-) (5.2)
j=1

has a long history and its analysis through spectral methods has led to important stability
criteria, such as those in Theorems 1.36 and 1.39 (see also [14,60,64,84,94,129], (86, Chapter
9], and references therein).

A major motivation for analyzing the stability of (5.2) is that it is deeply related to prop-
erties of more general neutral functional differential equations of the form

d N
E[x(t)—j_Zfij(t—Aj)

where x, : [-7,0] — €% is given by x,(s) = x(t +s), r > max;e(,. . N)Aj, and f is some function
defined on a certain space (typically €*([-r,0],C%) or WKP((—r,0),C%)); see Section 1.4.2
and also [60, 64, 84, 136], [86, Section 9.7]. Another important motivation is that, using
d’Alembert decomposition and classical transformations of hyperbolic PDEs into differen-
tial or difference equations with delays based mainly on the method of characteristics, some
hyperbolic PDEs can be put under the form (5.2) [48,54,70,106,160]. In particular, this has
been done in the previous chapter in order to obtain stability results for transport and wave
equations on networks with time-varying parameters from corresponding stability results
for (5.2) with time-varying matrices A;.

= f(x)
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5. Controllability of linear difference equations

Several works in the literature have addressed the questions of control and stabilization
of neutral functional differential equations [87,140, 141,143, 154] (see also Section 1.4.4),
including for controlled difference equations of the form (5.1), such as the stabilization
result from Theorem 1.43.

Concerning the controllability problem, due to the infinite-dimensional nature of the
dynamics of difference equations and neutral functional differential equations, several dif-
ferent notions of controllability can be used, such as exact, approximate, spectral, or rela-
tive controllability [51, 154]. Relative controllability has been originally introduced in the
study of control systems with delays in the control input [51, 105, 142], but this notion
has later been extended and used to study also systems with delays in the state [66, 148]
and in more general frameworks, such as for stochastic control systems [103] or fractional
integro-differential systems [18]. The main idea of relative controllability is that, instead of
controlling the state x, : [-r,0] — C¢ of (5.1), defined by x,(s) = x(t +5), in a certain function
the final state x(f) = x;(0). We defer the precise definition of relative controllability used in
this chapter to Definition 5.15, after having proved in Theorems 5.12 and 5.13 criteria for
several equivalent or closely related notions of relative controllability.

Despite the long history of the study of relative controllability, up to the author’s knowl-
edge, no general criterion allowing to characterize the relative controllability of (5.1) is
available in the literature. The goal of this chapter is to fill this gap by providing necessary
and sufficient conditions for the relative controllability of (5.1) in some different function
spaces. We also discuss the dependence of such controllability on the delays Ay,..., Ay, and,
more precisely, on their rational dependence structure, and provide an upper bound on the
minimal time for controllability in terms of the dimension d of the system and its largest
delay. Notice that some of these questions have already been addressed for particular sys-
tems under the form (5.1) in the literature, such as in Theorem 1.45 (see, e.g., [66,148]). The
main results of this chapter generalize those of these works.

We also consider in this chapter the exact and approximate controllability of (5.1) in the
function space L?((—Amax, 0), C%). Such problem is largely absent from the literature, with
the notable exception of [154] and references therein, where duality arguments are used in
order to characterize some controllability notions in terms of corresponding observability
properties. The main results of this chapter concerning exact and approximate control-
lability are algebraic characterizations of such properties, first for commensurable delays,
and then without the commensurability hypothesis for two-dimensional systems with two
delays.

The main tool used in the analysis of the controllability of (5.1) in this chapter is a
suitable representation formula for its solutions, describing a solution in time ¢ in terms
of its initial condition, the control input, and some matrix-valued coefficients computed
recursively (see Proposition 5.8). Such formula generalizes the ones from Theorems 3.15
and 3.18, used in Chapter 3 to analyze the stability of a system of transport equations on a
network under intermittent damping, and the one from Proposition 4.14, used in Chapter
4 to obtain stability criteria for (4.1), providing in particular a generalized version of the
Hale-Silkowski stability criterion.

The plan of the chapter is as follows. After some general discussion on the well-posed-
ness of (5.1) and the derivation of the explicit representation formula for its solutions in
Section 5.2, we characterize relative controllability for some fixed final time T > 0 in Sec-
tion 5.3.1 in the set of all functions and in the function spaces L? and C*. For given A =
(Aq,...,AN) € M4(C)N and B € M4,m(C), Section 5.3.2 compares the relative controllability
of (5.1) for different delays Ay,...,Ay and Ly,...,Ly in terms of their rational dependence
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5.2. Well-posedness and explicit representation of solutions

structure. Section 5.3.3 provides a uniform upper bound on the minimal time for the rela-
tive controllability of (5.1), an alternative proof of such result being provided in Appendix
5.A. The exact and approximate controllability of (5.1) in L? are the subject of Section 5.4,
where we treat first the case of commensurable delays in Section 5.4.1, before characteriz-
ing exact and approximate controllability of (5.1) in dimension 2 with two delays under no
commensurability assumptions in Section 5.4.2.

Notice that all the results in this chapter also hold, with the same proofs, if one as-
sumes A = (Aq,...,Ay) € My(R)N and B e M4 (R) with the state x(t) € R? and the control
u(t) € R™. We choose complex-valued matrices, states, and controls for (5.1) in this chapter
following the approach of Chapter 4, which is mainly motivated by the fact that classical
spectral conditions for difference equations such as those from Theorems 1.36, 1.39, 1.41,
1.43, or 1.44 are more naturally written down in such framework.

5.2 Well-posedness and explicit representation of solutions

This sections establishes the well-posedness of (5.1) and provides an explicit representation
formula for its solutions. The proofs of the main results of this section, Propositions 5.2 and
5.8, are very similar to the ones from Proposition 4.2 and Lemma 4.13 for the corresponding
uncontrolled system. We start by providing the definition of solution used in this chapter.

Definition 5.1. Let A = (Ay,...,Ay) € My(C)N, B € My,,(C), A = (Ay,...,AN) € (0,+c0)V,
T>0,x: [~Amax, 0) = €%, and u : [0, T] — C™. We say that x : [~Am,y, T] — C* is a solution
of ¥(A, B, A) with initial condition x; and control u if it satisfies (5.1) for every t € [0, T] and
x(t) = xo(t) for t € [=Apay, 0). In this case, we set, for t € [0, T], x; = x(t +-)|[-__,0)-

Notice that, similarly to Definition 4.1, this notion of solution contains no regularity
assumptions on x(, u, or x. Nonetheless, such weak framework is enough to guarantee
existence and uniqueness of solutions.

Proposition 5.2. Let A = (Ay,...,Ay) € My(C)N, B¢ Mgm(C), A =(Ay,...,AN) € (0, +00)N,
T >0, X : [~Amax,0) = C4, and u : [0,T] — C™. Then (A, B,A) admits a unique solution
X : [-Amax, T] — C% with initial condition x and control u.

The proof of Proposition 5.2 is very similar to that of Proposition 4.2. We provide it here
for the sake of completeness.
Proof. Let T* > 0 be such that T* < T and T* < A;,. It suffices to build the solution x on
[-Amax T*] and then complete its construction on (T*, T] by a standard inductive argument.
Suppose that x : [~Amay, T*] = €7 is a solution of X(A, B, A) with initial condition x, and
control u. Then

N
Aixo(t—A;)+Bu(t), if0<t<Tr,
j*0 j
x(t) = ]_Zl' (5.3)
xo(t), if —Apax <t<0.

Since the right-hand side is uniquely determined by x,, u, A, and B, we obtain the unique-
ness of the solution. Conversely, if x : [~Apay, T*] — € is defined by (5.3), then (5.1) clearly
holds for t € [0, T*] and thus x is a solution of X(A, B, A). ]

Remark 5.3. Let T > 0. If x0, %) : [~Amax, 0) = €% and u, 7 : [0, T] — C™ are such that x, = X
and u = u almost everywhere on their respective domains, it follows from (5.3) that the

solutions x,X : [-Anao T] — C? of Y(A, B, A) associated respectively with xg, u, and Xy, u,
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5. Controllability of linear difference equations

satisfy x = X almost everywhere on [-A,.y, T]. In particular, one still obtains existence and
uniqueness of solutions of (A, B, A) (in the sense of functions defined almost everywhere)
for initial conditions in LP((—Apay, 0), C?) and controls in LP((0, T),C™) for some p € [1,+oo].
Moreover, it follows easily from (5.3) that, in this case, solutions x of ¥(A, B, A) satisfy x €
LP((~Amax T),C%), and hence x; € LP((~=Apax, 0), C%) for every t € [0, T].

Remark 5.4. If xy € CX([~A a0 0), C%) and u € €K([0, T],C™) for some k € N, it follows from
(5.3) that the corresponding solution x of X(A, B, A) belongs to C*([=Apay, T],C%) if and only
if xo and u satisfy the compatibility condition

limx!/ (¢ ZA xy)(~A;)+Bu(0),  Vre[0,k], (5.4)

t—0

where xg) and u(") denote the r-th derivatives of x; and u, respectively.

Due to the compatibility condition (5.4) required for obtaining solutions x in the space
C*([=Amax, T], €%), we find it useful to introduce the following definition.

Definition 5.5. Let A = (Ay,...,Ay) € My(C)N, B € My ,(C), A = (Ay,...,Ax) € (0,+c0)N,
X0 ¢ [-Amax,0) = €%, and k € N. We say that x is Ck-admissible for system X(A,B,A) if
x0 € C¥([=Apmax, 0),C%) and, for every r € [0, k], lim,_, xg)(t) exists and

lim x0 ZA xo —A;) eRanB.

t—0

In order to provide an explicit representation for the solutions of X(A,B,A), we first
provide a recursive definition of the matrix coefficients 2, appearing in such representation.

Definition 5.6. For A = (A;,...,Ay) € M;(C)N and n € ZN, we define the matrix 2, € M;(C)
inductively by

0, ifneZN\INV,
Id,, ifn=0,
En={y (5.5)
ZAkEn_ek, if n e NN\ {0}.
k=1

Notice that this is the same definition as (4.5), but the matrix coefficients =, from (5.5)
do not depend on the time t nor on the delay vector A = (Ay,...,Ay), since we assume in
this chapter that Ay,..., Ay are constant. We also omit from the notation the dependence of
EaonA=(Aq,...,AN).

Remark 5.7. It follows from Proposition 4.8 that, for n = (ny,...,ny) € NV \ {0}, the matrices
E, also satisfy the recurrence relation

N
= E En-e Ak

k=1
and they can be explicitly computed from A = (A4,...,Ay) by

_
Hn = > Ale,,z- Uiy ?

veV,

where V,, is defined in (4.4) and can also be described by V,, = {v € [1, N]™h | for every k €
[LN], #j € [LIn ] [v; = k} = mi}.
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We now provide an explicit representation for the solutions of ¥(A, B,A), which is a
generalization of Lemma 4.13 to the case of the controlled difference equation (5.1).

Proposition 5.8. Let A = (Ay,...,Ay) € My(C)N, B e My ,(C), A = (Ay,...,Ay) € (0,+00)V,
T >0, xg: [~Amax,0) = €%, and u : [0, T] — C™. The corresponding solution x : [~Amay, T] —
C” of X.(A, B, A) is given for t € [0, T] by

()= ) EagAixo(t-A-m)+ ) EnBu(t-A-n) (5.6)
(n,/)eNNx[[1,N] nelNV
-Aj<t-An<0 A<t

Proof. By linearity, it suffices to show that the function x; defined by

EneAjxo(t—=A-m), if0O<t<T,
_ ) (n,j)eNNx[1,N]
X1(t) = 472X <t-Anko
xo(t), if ~Apax <t <0,

is the solution of X(A, B, A) with initial condition x; and control 0, and that the function x,
defined by

Z E Bu(t—-A-n), if0<t<T,

x(t) = {neNY (5.7)

0, if —Apa <t<0,
is the solution of ¥(A, B, A) with initial condition 0 and control u. The first part has already

been shown in Lemma 4.13, we are thus left to show that x, satisfies (5.1) for t € [0, T'].
Let je[[1,N]. For t € [0, T], we have

xXp(t—Aj) = Z EpBu(t—Aj—A-n)= Z Em-e,Bu(t - A -m),
nelNV meNV
A-nst—/\j A-m<t, m;j=1

where we extend u by zero outside the interval [0, T]. Hence, using (5.5), we obtain that

N N
;AjXQ(t—Aj):;Aj Y EmeeBu(t-A-m)= ) Z’Aume (t—A-m)
1= j=

meNN meNVN j=1
A-m<t, m;>1 A-m<t m]-zl

which shows that x, satisfies (5.1). [ |

Remark 5.9. When A = (A4,...,Ay) and B are time-varying, i.e. A:[0,T] — M;(C)" and
B:[0,T] - My ,(C), the counterpart of Proposition 5.2 also holds with the same proof,
and Remark 5.3 also applies, in the sense that solutions corresponding to A, B and A, B are
equal almost everywhere if A = A and B = B almost everywhere. The conclusion that x €
LP((~Amaxr T),C%) when xg € LP((~Amax, 0), C%) and u € LP((0, T),C™) holds under the extra
assumption that A € L*((0, T), M4 (C)N) and B € L®((0, T), Mg,,(C)). Moreover, the explicit
formula from Proposition 5.8 becomes

()= ) ERAjt-AmeA)xg(t-A-m)+ ) E}B(E-A-n)u(t-A-n), (5.8)
(n,/)eNNx[1,N] nelNV
~A;<t-An<0 An<t
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5. Controllability of linear difference equations

where the matrix coefficients Efl\ ; are defined in (4.5).

Remark 5.10. Let p € [1,4c0]. For t > 0, we define the bounded linear operator S(t) :
Lp((_AmaXI 0), Cd) - Lp((_Amaxr 0)1 Cd) by

(S(txo)s)= )

(n,/)eNNx[[1,N]
—A]-St+s—A-n<0

(1]

n—ejijO(t +s—A-n).

The operator S(t) maps an initial condition x( to the state x; = x(f + )|( “Ap0) where x is
the solution of ¥(A, B, A) at time t with initial condition x; and control 0. For p € [1,+00),
the family {S(¢)};>0 is a strongly continuous semigroup in LP((—A .y, 0), C) (see Proposition
4.5).

The controllability results we establish in Section 5.3.1 are based on the explicit repre-
sentation for the solutions from Proposition 5.8. Notice that the control u only affects the
second term of (5.6). Since, in this term, u is evaluated only at times t — A - n, one should
pack together coefficients &, corresponding to different n,n” € N for which A-n=A-n’, in
the same manner as in Definition 4.10.

Definition 5.11. Let A = (Ay,...,Ay) € (0,+00)N. We partition NV according to the equiv-
alence relation ~ defined by writing n ~n’ if A-n = A-n’. We use [-]5 to denote the
equivalence classes of ~ and we set Ny = NN/ ~. The index A is omitted from the notation
of [-]o when the delay vector A is clear from the context. We define

By = Z B (5.9)

n’e[n]

Thanks to Definition 5.11, the representation formula (5.6) for the solutions of ¥(A, B, A)
can be written as

()= ) EngAixot-A-m)+ ) EBu(t-A-n). (5.10)
(n,j/)eNNx[[1,N] [n]eN,
—-Aj<t-An<0 An<t

5.3 Relative controllability

5.3.1 Relative controllability criteria

This section presents the main relative controllability criteria from the chapter, Theorems
5.12 and 5.13 below. Theorem 5.12 provides a criterion for relative controllability in the set
of all functions and in the LP spaces, whereas the criterion in Theorem 5.13 characterizes
relative controllability in the G spaces. Both algebraic criteria we obtain are expressed in
terms of the coefficients /E\’}l and the matrix B and are generalizations of the usual Kalman
condition for the controllability of a discrete-time system. Their proofs are based on the

explicit representation for solutions (5.10).

Theorem 5.12. Let A = (Ay,...,Ax) € My(C)N, B € My u(C), A = (Ay,...,Ay) € (0,+c0)N,
T >0, and p € [1,+o0]. Define Ef}l] as in (5.9). Then the following assertions are equivalent.

(a) One has
Span{é\f}l]Bw“n]eNA, A-n<T, weCm}:Cd. (5.11)
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5.3. Relative controllability

(b) For every xg : [~Amax,0) — C? and x; € C%, there exists u : [0,T] — C™ such that the
solution x of (A, B, A) with initial condition xq and control u satisfies x(T) = x;.

(c) There exists €y > 0 such that, for every € € (0, &g), Xg : [~Amax, 0) = C4, and x, :[0,e] —» C4,
there exists u : [0, T + ] — C™ such that the solution x of X(A, B, A) with initial condition
xo and control u satisfies x(T + ‘)|[o,e] =X1.

(d) There exists ey > 0 such that, for every e € (0, &), X9 € LP((~Amax, 0), C%), and x; € LP((0, &),
C?), there exists u € LP((0,T + €),C™) such that the solution x of X(A, B,A) with initial
condition xq and control u satisfies x € LP((—Amax, T + €),C%) and x(T + -)|[O’£] =x;.

Proof. For T >0, let NT = {[n] € NA |A-n < T} and ny = #NT. The proof is carried out as
follows. Clearly, (c) = (b). We will show the equivalences by proving that (b) = (a), (a)
— (c¢)and (d), and (d) = (a).

Assume that (b) is satisfied, which shows, using (5.10) and considering a zero initial
condition, that, for every x; € C?, there exists u : [0, T] - C" such that

(EﬁllB)[n]eNr(u(T—A‘“))[n]ew = Z EmBu(T—An)=x, (512)
[n]eNT

where (Eﬁl]B)[n]eNT denotes the d xmnt matrix composed of the np blocks gﬁl]B of size dxm

and (u(T -A- n)) denotes the mnp x 1 matrix composed of the ny blocks u(T —A-n) of

[n]eNT
size m x 1. This means that the map C""7 5 U ("f}l]B
(a) is satisfied.

Assume now that (a) is satisfied and let

)[ JENT UeC?is surjective, and thus

&y =min{ min |A n-A- n| min (A-n—-T)} > 0.
[n'],[n]eNT neNV
[n’]#[n] Amn>T

Let € € (0,£0), X0 : [~Amax,0) = €%, and x; : [0,¢] — C%. Thanks to (a), the map C"™"7 3 U >

(Hf\]B)[ JeNT

inverse M € M, 4(C). Let U = (U[n])[n]eNT :[0,e] —> €™M = (€N " be given by

U e € is surjective, and hence the d x mny matrix ( f}l]B)[n]eNT admits a right

U(t)= M| x,(t) - Z Ene,Ajxo(T+t-A-n)|. (5.13)
(n,j)eNNx[1,N]
—AjST+t—A~n<O
Define u : [0, T + ¢] —» C™ by

Un)(A-n+t-T), ifte[T-A-n,T-A-n+e]forsome [n] eNT,
u(t) = 0 (5.14)

otherwise.

Thanks to the definition of ¢, u is well-defined, and one has u(T +t - A -n) = Upy(t) for
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5. Controllability of linear difference equations

every [n] € NT and t € [0, ¢]. Hence, it follows from (5.13) that, for every t € [0, €],

x1(t)— Z

(n,j/)eNNx[1,N]
—A]'ST+t—A~n<0

[1]

n_e]_A]'xO(T +t—A-n)= (/E\[A B)[n]eNT (u(T +t-A- n))[n]eNT

n]

= Z Sy Bu(T+t-A-n)= Z Sy Bu(T+t-A-n), (5.15)
NT N
inle Ameti

where we use that, thanks to the definition of ¢, one has
NT ={n]eNA|A-n<T+t), Vie[0¢] (5.16)

It now follows from (5.10) and (5.15) that the solution x of ¥(A, B, A) with initial condition
xo and control u satisfies x(T + -)|[0,€] = x1, and hence (c) holds. Notice moreover that, if
we assume xg € LP((~Apnax 0),C%) and x; € LP((0,¢),C%), it follows from (5.13) that U €
LP((0,¢),C™"1), and thus, by (5.14), u € LP((0, T + ¢),C™). Hence, the solution x of £(A, B, A)
with initial condition xy and control u satisfies x € LP((=Amax, T + €), C?), thanks to Remark
5.3, and x(T + -)|[0'£] = x1, which shows that (d) also holds.

Finally, assume that (d) holds, take ¢y > 0 as in (d) and fix € € (0, &y). Then, considering a
zero initial condition, for every constant final state x; € €, there exists u € LP((0, T + ¢), C"™)
such that, for almost every t € (0, ¢), one has, as in (5.12),

(E[An]B)[n]eNT (w(T+t-A- n))[n]eNT =xy,

where we use that (5.16) holds, up to choosing a smaller ¢ € (0,&y). Hence, as in (5.12),

one also obtains that the map C""T 5 U (_.f}l U e C* is surjective, and thus (a) is

]B)[n]eNT
satisfied. n

The next result presents a relative controllability criterion for C¥ solutions of X(A, B, A),
which is slightly different from (a) in Theorem 5.12 due to the compatibility condition (5.4)
required for the existence of ¥ solutions.

Theorem 5.13. Let A = (Ay,...,Ax) € My(C)N, B € My u(C), A = (Ay,...,Ay) € (0,+c0)N,
T >0, and k € N. Define Ef}l] as in (5.9). Then the following assertions are equivalent.

(a) One has
span{E[An]Bw'[n] eNp A-n<T, weC") =% (5.17)

(b) For every x Ck-admissible for (A, B,A) and x; € C%, there exists u € CX([0, T],C") such
that the solution x of X.(A,B,A) with initial condition xy and control u satisfies x € CF
([~Amax, T, C?) and x(T) = x;.

(c) There exists ey > 0 such that, for every € € (0,¢g), xo CX-admissible for ¥.(A,B,A), and x, €
Ck([0,£],C%), there exists u € C*([0, T + &],C™) such that the solution x of ¥.(A, B, A) with

initial condition x and control u satisfies x € CX([=Amax, T + €], C%) and x(T + Nio,e) = *¥1-

Proof. Let NI = {[n]y € N5 |A-n < T} and n} = #NI. We begin the proof by noticing that
(c) implies (b). Assume now that (b) holds and let us show that (a) is satisfied. For every
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x; € €%, there exists u € CX([0, T],C™) such that the solution x of £(A, B, A) with zero initial
condition and control u satisfies x € C¥([—~A ., T], €%) and, from (5.10),

Z /E\f}l]Bu(T—A-n):xl. (5.18)
[n]eN,
An<T

Moreover, since x € CX([—A a0 T, €%), it follows from Remark 5.4 that (5.4) is satisfied, and
thus, for every r € [0,k]], Bu(")(0) = 0. Thus (5.18) becomes

Z EpBu(T-A n)=xi,
[n]eN,
An<T

and we conclude, as in the proof of Theorem 5.12, that the map C""1 5 U > (A&]B)[H]ENT U

€ €’ is surjective, and thus (a) is satisfied.
Finally, assume that (a) is satisfied and let

1
€)= —-minq min mm IA-n—-T|}>0.
2 [n],[n]eNT

wiln Ao

Let € € (0,&q), xo Ck-admissible for X(A, B, A), and x; € €¥([0,¢],C%). Since x, is C*-admissi-
ble, there exists u € €%([0,¢],C™), with a compact support inside [0, ¢), such that, for every
r e [[0,k],

hrnxO ZA xo -A +By )( 0). (5.19)

t—0
If T = A-n for some n € NV, we set 7 = 1 and 7 = [n]; otherwise, we set 57 = 0 and 7 = [0].
As in the proof of Theorem 5.12, it follows from (a) that the d x mn} matrix ( f}l] )[ JenT

admits a right inverse M € M,z 4(C). Let U = (U[n])[n]eNT :[0,e] > €™ = (€™ ' be given
by )

U(t) = M| x,(t) - Z Ene, Ajxo(T +t— A1) = 57ENBy(t) |- (5.20)
(n,j)eNNx[[1,N]]
—AjST+t—A-n<0

Notice that the sum in (5.20) can be taken over the set
Gi(t)={m=(ny,....,nN), ) ENNX[LN]| =A; <T+t-A-n<0, n;>1},

since E, = 0 if n € ZN \ INN. Moreover, thanks to the definition of ¢;, one has G (t) = G;(0)
for every t € [0, ¢], and thus U can be written for t € [0, ¢] as

U(t) = M| x;(t) - Z e, Ajxo(T+t—A-n)=57ELBu(t) .

(n,/)eNNx[1,N]
—-Aj<T-An<0
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In particular, one obtains that U e CX([0,¢], C""1). We extend U into a C function on the
e 3¢ £ 3¢

interval [—7, 7] with a compact support in (—7, 7). Define u : [0, T + ¢] —» C" by

Un)(A-n+t-T), ifte[T—A~n—%,T—A-n+%]forsome [n] e NT,
u(t) = u(t), if t €[0,¢],

0, otherwise,

which is well-defined thanks to the choice of ¢y, and satisfies u € CX([0, T + ¢], C") thanks to
the construction of U and p. Moreover, one has u(T +t — A -n) = Upy,(t) for every [n] € NI
and, thanks to (5.19), it follows from Remark 5.4 that the unique solution x of ¥(A, B, A)
with initial condition xo and control u satisfies x € C¥([~A . T + €], C%). It follows from
(5.20) that, for every t € [0, €],

x1(t) - Z

(n,j)eNNx[1,N]
—Aj<T+t-An<0

= OrER Bu(t) + (’E\ﬁl] )[n]eNI (”(T ti-A n))[n]eNI

= Z S Bu(T+t-A-n)= Z Sy Bu(T +t-A-n),

[n]eN, [n]eNA
An<T An<T+t

(1

IHaJ_A]'xO(T +t—-A-n)

and hence the solution x of X(A, B, A) with initial condition x, and control u satisfies x(T +
)ljo,e] = x1, which shows that (c) holds. [

Remark 5.14. When N = 1, the controlled difference equation (5.1) becomes x(t) = Ax(t —

A) + Bu(t), with A = A; and A = A;. It follows from Definitions 5.6 and 5.11 that, for

n =n € N, one has Efl\ﬂ = A", and thus condition (a) from Theorem 5.12 reduces to

rk(B AB A?B ... ALT/AJB):d,

which is the usual Kalman condition for controllability of discrete-time linear systems (see,
e.g., [163, Theorem 2]). Moreover, condition (a) from Theorem 5.13 reduces to

k(B AB A?B ... AIT/A-1B)=d,
which is the same as the previous one when T/A ¢ IN*.

Notice that (b), (c), and (d) from Theorem 5.12 and (b) and (c) from Theorem 5.13 could
all be used to define relative controllability in different function spaces. Motivated by the
equivalences established in Theorems 5.12 and 5.13, we provide the following definition.

Definition 5.15. Let A = (Aj,...,Ay) € My(C)N, Be My,,(C), A € (0,+00)N,and T > 0.

(a) We say that X(A, B, A) is relatively controllable in time T if

Span{iﬁl]Bw | [n]eNp, An<T,we (Em} =
(b) If X(A, B, A) is relatively controllable in some time T > 0, we define the minimal control-
lability time Ty, for £(A, B, A) by T = inf{T > 0 | £(A, B, A) is relatively controllable

in time T}.
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Remark 5.16. Contrarily to the situation for linear control systems of the form x(¢) = Ax(t)+
Bu(t) or x(t) = Ax(t — 1) + Bu(t), relative controllability for some time T > 0 does not imply
stabilizability by a linear feedback law. Indeed, for N =d = 2 and m = 1, consider the system
Y(A,B,A) with A =(Ay,A;), B, and A = (A1, A;) given by

a —al™t 01 0
Al‘(o o /) AZ_(O 0 B= 1)'
A1:1, A2:€,

with € € (0,1) and a > 1. Clearly, £(A, B,A) is relatively controllable in time T > ¢ since
Span{B, A,B} = C%. However, for A € C, one has

1—ae? aql-fte _e/\€)
’

_ -A_ -\l —
Idz Ale Aze ( 0 1

and the first row of this matrix is zero for A = loga. Hence (1.60) does not hold for A =
loga > 0, and it follows from Theorem 1.43 that ¥(A, B, A) cannot be strongly stabilized by
a linear feedback law.

5.3.2 Rational dependence of the delays

This section compares relative controllability of ¥(A, B, A) for different delay vectors A in
terms of their rational dependence structure. We start by recalling the definition of rational
dependence and commensurability.

Definition 5.17. Let A = (Aq,...,Ay) € RN.

(a) We say that the components of A are rationally dependent if there exists n € ZN \ {0} such
that A -n = 0. Otherwise, the components of A are said to be rationally independent.

(b) We say that the components of A are commensurable if there exist A € R and k € ZN
such that A = Ak.

Notice that the set ZVN can be replaced by QV in Definition 5.17 without changing the
definitions of rational dependence and commensurability. We next introduce a preorder in
the set of all possible delay vectors (0,+00)N, which describes when one delay vector is “less
rationally dependent” than another.

Definition 5.18. For A € (0,+00)V, we define Z(A) = {n € ZN | A-n = 0}. For A,L € (0,+c0)N,
we write A < L or, equivalently, L > A, if Z(A) Cc Z(L). We write A=~ Lif A<Land L<A.

Notice that the sets V, (A) and W, (A) defined in (4.8) can be written, in terms of the pre-
order <, as V. (A)={L € (0,+00)N |[A< L} and W, (A) ={L € (0,+0)N |[A = L}. If A € (0, +c0)N
has rationally independent components, then one immediately computes Z(A) = {0}, and
hence A < L for every L € (0,+co)V, that is, delay vectors with rationally independent com-
ponents are minimal for the preorder <. Notice also that, for A € (0,+c0)", the set Z(A) en-
codes the structure of the equivalence classes [n]a for n € NV, in the sense that, for n’ € NV,
one has n’ € [n], if and only if n’ —n € Z(A), which shows that [n], = (n+ Z(A))NINN. The
next proposition gathers some immediate properties that follow from Definition 5.18.

Proposition 5.19. Let A,L € (0,+c0)N. If A < L, then, for every n € NV, one has [n], C [n];

and N _
B = Z EA. (5.21)

TENA
TC[n];

=L

In particular, if A =~ L, then, for every n € NV, one has [n], = [n]; and Eﬁl] =B
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Proof. If A <L and n € NV, the inclusion [n], C [n]; follows immediately from the fact that
Z(A) c Z(L) and that [n], = (n+ Z(1)) N INY for every n € NY and A € (0, +c0)"N. Moreover,
the set {t € Ny |t C [n];} is a partition of [n];, since, for every n’ € [n];, one has [n'], C
[n’]; = [n]; and all equivalence classes in N are disjoint. Hence

IEED NP S

TeN) teN, n’er n’e[n];
tC[n]; tC[n];
The statements in the case A ~ L follow immediately. [

The first main result of this section is the following theorem.

Theorem 5.20. Let A = (A4,...,AN) e Md(C) BeMy,,(C), A,L€(0,+c0)N, and T > 0 be
such that A < L. Set k¥ = max;e[1,n] L . If ¥(A, B, L) is relatively controllable in time T, then
Y(A, B, A) is relatively controllable in tzme xT.

. A; Lin;
Proof. Notice that, for every n = (1,...,1ny) € NN \ {0}, one has Zﬁ\ll L—]L]—ZJ < «x, and
]

thus A -n < xL-n for every n € NV. Using Proposition 5.19, one obtams that

Span {E[Ln]Bw | [n]eN, L-n<T,we (Em}

= Span Z ZABw|[n]eN, L-n<T, weC"”

TENA
7C[n]p

C Span[’E\/T\Bw | TeENp, TC[n], [n] €N, L-n<T, we Cm}
= Span{iﬁl]Bw | [n]eNA, L-n<T, we Cm}

C Span{gf}l]Bw | [n]eNp, A-n<«kT,we Cm},

which proves the statement. ]

Theorem 5.20 proves that relative controllability of ¥(A, B,L) implies that of ¥(A, B,A)
for all delay vectors A such that A <L (with different controllability times). The converse
of this result does not hold, as illustrated in the following example.

Example 5.21. Consider the system X(A,B,A) with N =2,d =3, m=1, A =(1,7) for some
Ae(0,1),and

00 -1 010 0
Ar=lo o of  A,=|lo 0o 1|, B=|o].
00 0 000 1

1]
I
SN
N
=
=
I

A%, if n =(0,2),

0, otherwise.
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5.3. Relative controllability

If A ¢ Q, one has gﬁl] =&, foreveryne IN?, and thus, for every T > 1,

Span{gf;]Bw | [n]eNp, An<T,we (E} = Span{EnB |n = (n1,n3) € N?, ny + An, < T}

D Span{Z&g,0)B,E(1,0)B, E(0,1)B} = c’,

which shows that (A, B, A) is relatively controllable for every T > 1 when A ¢ Q. However,
for A = %, one computes

1ds, if [] =[(0,0)],
Epy =442 if[n]=[01)],

0, otherwise.

Thus, for every T >0,
Span {gﬁl]Bw | [n]eNA, An<T,we (E} C Span|{B,A,B} ¢ C3,

and hence X(A, B, A) is not relatively controllable for any T > 0 when A = 5

Even if the converse of Theorem 5.20 does not hold in general, one can still obtain that
relative controllability with a delay vector A € (0,+c0)N implies relative controllability for
another delay vector L > A with commensurable components and sufficiently close to A.

Theorem 5.22. Let A = (Ay,...,Ay) € M4(C), B€ My ,,(C), A = (Ay,...,Ay) € (0,+c0)N, and
T > 0. For every € > 0, there exists L = (Ly,...,Ly) € (0,+00)N with commensurable components
satisfying L > A and 1 < A < 1+ ¢ for every j € [1,N] such that, if X(A,B,A) is relatively
controllable in time T, then Z(A B,L) is also relatively controllable in time T.

Before proving Theorem 5.22, let us show the following result.

Lemma 5.23. Let A = (Ay,...,Ay) € (0,+00)N and T > 0. For every € > 0, there exists L =
(Ly,...,Ly) € (0, +00)N with commensurable components such that L > A, 1 < A« 1 +¢ for every
j €[[1,N], and, for everyn,n’ € NN with A-n < T, one has A-n = A-n’ if and only ifLn=L-n'.

Proof. Write A = M{¢, with M = € My, 1(IN) for some h € [1,N] and ¢ =

(mjk)je[[l,N]],ke[[l,hl]
(€1,...,45) € (0,+00)" with rationally independent components, chosen according to Propo-

sition 4.9. For n € IN*, we define L") = (L(ln),...,Lx;)) € [O,+oo)N by L = %M |n€], where

|nl] = (\nly],...,|n€y]). We claim that L") satisfies the required properties for n € IN* large
enough.

Notice first that, if n > 1/€mm, then all the components of [nl] are positive, and hence
L ¢ (O,+<>o)N. Moreover, L ¢ QV, and thus L has commensurable components. If
n € Z(A), one has A -n = 0, which yields nTM¢ = 0 and, since ¢ has rationally independent
components and the row vector nT M has integer components, one obtains that nTM = 0,
which implies that L") .n = —nTM |n€] = 0, and hence n € Z(L"), proving that L™ > A.

For j € [1,N]], since nf; -1 < [anJ < n{;, one obtains from the definition of L™ that

=1 Zk 1 mjkn€x] < Aj and that L( >Aj- 1 Zk 1 Mjk = Aj— M| /n. Hence, for n >
IMI

(n
] A;
1/€in, one has 1 < —% T S 1+
] J'
L;n) — Aj as n — +oco. Hence there exists Ny > 1/€;, such that, for n > Nj, L;n) > A;/2 for

. Notice that, by construction, for every j € [[1,N]], one has
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5. Controllability of linear difference equations

every j € [1,N]. Thus, for n > Ny, one has 1 <

<1+ 2l <14 2= Tetting N, > N be

L‘” A, min

such that N, > l |°° , one obtains that 1 < A,f) <1+e¢foreveryje[1,N] and n> N,.
L
To prove the last part of the lemma, notice that, for every n > 1/€,;,, since A < LM if
n,n’ € NV are such that A-n =A-n’, thenn—n’ € Z(A) and thus L .n = L") .n’. Let F
denote the finite set F={n e N¥ | A -n < (1 +¢)T} and define

6= min{ '} > 0.

Since L™ — A as n — +oo and F is finite, there exists N3 > N, such that, for n > N3, one has

LW .n—-A -n| < % for every n € F. Let n > Nj. Assume, to obtain a contradiction, that n,n’ €

NV are such that A-n < T, A-n#A-n’,and L") .n = L") .n’. Then, using that 1 < Iix <l+e
]

for every j € [1, N, one computes A-n" < (1 +£)L(”) n’ = (1 +£)L(”) ML (1+e)An<(1+6)T,

which shows that n’ € . But

20
3[

b<|An An|<|An L n|+|L .n—LM

|L -n’—

which is a contradiction since & > 0. Hence, if n,n’ € NV are such that A-n < T and
A-nzA-n"onehas L™ .n=LM .0’ ]

Proof of Theorem 5.22. Let ¢ > 0 and take L as in Lemma 5.23. If n € NV is such that
A -n < T, then [n]p = [n];, since it follows from Proposition 5.19 that [n], C [n]; and, if
n’ € [n];, Lemma 5.23 shows that n’ € [n], since A-n < T. In particular, the only equivalence
class from Ny contained in [n]; is [n],. Hence, Proposition 5.19 shows that, for n € NV with

A-n <T,onehas
=L _ A _ A
\_J[n]_ —r —u[n],

TENA
©C[n];

and thus
S { B m =L N m
pan{E,Bw neNy,, AAn<T,weC } Span{ [] nelNY, A‘\n<T,weC }

C Span{a[n]Bw |n eNN, L.n<T,we Cm},

since L-n < A -n for every n € NN, Hence relative controllability of ¥(A,B,A) in time T
implies relative controllability of (A, B,L) in time T. ]

5.3.3 Minimal time for relative controllability

As stated in Remark 5.14, when N =1 and (5.1) is written as x(t) = Ax(t —A)+ Bu(t), relative
controllability in time T is equivalent to Kalman condition rk (B AB A’B ... ALT/AJB) =
d. Thanks to Cayley-Hamilton Theorem, for every T > (d —1)A, one has

rk(B AB A’B ... ALT/AJB)zrk(B AB A’B ... Ad—lB).

Hence, if the system is relatively controllable for some time T > 0, it is also relatively con-
trollable in time T = (d — 1)A, which proves that its minimal controllability time T,,;, satis-
fies Tinin < (d—1)A. The uniformity of this upper bound on the matrices A and B is important

152



5.3. Relative controllability

for practical applications, since, if one is interested in finding out whether a given system is
relatively controllable for some time T > 0, it suffices to verify whether it is relatively con-
trollable in time T = (d —1)A, which can be done algorithmically in a finite number of steps
upper bounded by a constant independent of A and B. The goal of this section is to gen-
eralize this upper bound on the minimal controllability time T, for systems with larger
N.

We start by considering the case of systems with commensurable delays. In this case,
by considering an augmented system in higher dimension, one can characterize the relative
controllability of X(A,B,A) in terms of a certain output controllability of the augmented
system, as shown in the next lemma.

Lemma 5.24. Let A = (Ay,...,Ay) € Mu(C)N, Be My,,(C), A = (Ay,...,AN) € (0,+c0)N, and
T > 0. Assume that A has commensurable components and let A > 0 and ky,...,ky € IN* be
such that (Aq,...,AN) = Aky,..., ky). Denote K = maxje1,nkj. Then (A, B,A) is relatively
controllable in time T > 0 if and only if, for every X, : [-A,0) — CK? and x; € C?, there exists
u:[0,T] = C" such that the unique solution X : [-A, T] — CX? of
X(t) = AX(t - A) + Bu(t), telo0,T],
(1) = AX(t = A)+ Bu) [0.7] 5.2
X(t) = Xo(t), te[-A,0),
satisfies 6X(T) = x,, where the matrices A € Mka4(C), B e Mk 4.m(C), and Ce My x4q(C) are
given by

A A, Ay - Ag B
d; 0 0 - 0 0
A=[ 0 Idg 0 - 0 |eMyy(O), B=|0]eMkgm(C),
0 0 - Id; 0 0 (5.23)
N
C=(dg 0 0 - 0)eMyq(C), Ek:ZAj for k e [1,K],
j=1
ki=k

]

Proof. It is immediate to verify that x : [~Ap.y, T] — C¢ is the solution of X(A, B, A) with
initial condition x : [~Amax, 0) = C“ and control u : [0, T] — C™ if and only if the function
X :[-A, T] — CK9 defined by

x(t)
x(t—A)
X(t)=| x(t-21)
x(t—(K-1)1)
is the solution of (5.22) with control u and with initial condition X, : [-A, 0) — CK4 given by

Xo(t)

xo(t—A)

Xo(t)=| Xo(t—24)

Yot — (K = 1)A)

Since EX(t) = x(t) for every t € [-A, T], the statement of the lemma follows immediately
from Theorem 5.12. [
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5. Controllability of linear difference equations

Since (5.22) is a controlled difference equation with a single delay, we use Lemma 5.24
to characterize the relative controllability of (A, B, A) in terms of a Kalman rank condition.

Corollary 5.25. Let A = (Ay,...,Ax) € M4(C)N, B e Mgm(C), A =(Ay,...,AN) € (0, +00)N,
and T > 0. Assume that A has commensurable components. Then ¥(A, B, A) is relatively control-
lable in time T if and only if

tk(CB CAB CA’B --- CAU/MB)=d, (5.24)

where A, B, C, and A are as in the statement of Lemma 5.24.

Proof. Notice that, by Proposition 5.8, the solution X : [-A, T] — CX? of (5.22) with initial
condition X; : [-A,0) — €KX and control u : [0, T] — C™ is given by

Lt/A]
_ 714/ 3 t TR
X(t)=A Xo(t (1+M)A)+§A Bu(t-nA).

Hence
LT/A]

CX(T) = CAMLT/Alx, (T - (1 + EJ)A) + Y CA"Bu(T -nd). (5.25)
n=0

If (A, B, A) is relatively controllable in time T, then, by Lemma 5.24, taking X, = 0, one
obtains that, for every x; € C¢, there exists u : [0, T] — C" such that Zg:/o/u CA"Bu(T —nl) =
x1, which shows that (5.24) holds. Conversely, if (5.24) holds, it follows that the matrix
(EE CAB - EAIT//‘Jg) admits a right inverse M € M 1/1j+1)m,qd(C). For Xg : [-1,0) —

T/A
CX4and x; e €%, let U = (U]- );—0 ! e CULT/A+Dm be given by
Uy T
u=[ : |=M [x1 - E:WHT/“XO(T —(1 + {IJ))\)]
Ult/a)

and take u : [0, T] — C" satisfying u(T —nA) = U,, for every n € [0, T/A]]. It follows imme-
diately from (5.25) that the solution of (5.22) with initial condition Xy and control u satisfies
CX(T) = x1, and hence, by Lemma 5.24, ¥(A, B, A) is relatively controllable in time T. [

Thanks to Cayley-Hamiltion Theorem, Corollary 5.25 allows one to obtain an upper
bound on the minimal controllability time for (A, B, A) with commensurable delays.

Lemma 5.26. Let A = (Ay,...,Ax) € Ma(C)N, Be My,,(C), and A = (Ay,...,AN) € (0,+c0)N.
Assume that A has commensurable components. If there exists T > 0 such that ¥(A,B,A) is

relatively controllable in time T, then its minimal controllability time Ty, satisfies Ty < (d —
1) Amax-

Proof. For j € [[1,K], set
Ej = (Od,(j—l)d Idg Od,(K—j)d) € My,xa(C).

In particular, C; = C. For every j € [2,K], one has Ejg: Ej_l, and thus C = CxAX~1. Hence,
for every k € IN, one has

(CB CAB CA?B - CA'B)=(CkAX"'B CyAXB CxAX*B ... CyAX*-1B).
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5.3. Relative controllability

Moreover, since Cx Al = GK_]- for every j € [[0,K-1], one computes, for j € [0,K-2]), CxA/B =
C K_jE: 0, which shows that

t(CE CAB CA’F .. CA'B)=1k(GeB CyAB CyA’F - CxAXH1B). (5.26)

Let T > 0 be such that (A, B, A) is relatively controllable in time T. If T < (d — 1)Apnax,
one has immediately that T, < (d —1)Apax. If T > (d —1)Anax, one has, by Corollary 5.25
and (5.26), that

ik(CxB CxAB CxA?B - CyAKUTAFIG)=d
By Cayley—Hamilton Theorem, since A € M 4(C), this implies that

d:rk(6K§ 61(@ 6KA7§ EKA\KH_T//\J—IE)
:I‘k(EK/B\ EKA\B\ EKA\Z/B\ EKA\Kd_IB\)

since K+|T/A]—-1 > Kd — 1. Hence, by Corollary 5.25 and (5.26), it follows that ¥(A, B, A)
is relatively controllable in time T = K(d — 1)1 = (d — 1)Aax, Which proves that T, <
(d - 1)Amax- u

Now that Lemma 5.26 has established a uniform upper bound on the minimal control-
lability time for (A, B, A) with commensurate delays, one can use Theorems 5.20 and 5.22
in order to deduce a uniform upper bound for all delay vectors A € (0, +c0)N.

Theorem 5.27. Let A= (Ay,...,Ax) € Mg(C)N, Be My,,(C), and A = (A4,...,Ay) € (0,+c0)N.
If there exists T > 0 such that ¥.(A, B, ) is relatively controllable in time T, then its minimal
controllability time Ty, satisfies Tynin < (d — 1)Apax.

Proof. Let ¢ > 0 and choose L € (0,+c0)" according to Theorem 5.22. Then X(A,B,L) is
relatively controllable in time T. Thanks to Lemma 5.26, the minimal controllability time

Téﬁ; for X(A, B, L) satisfies Téﬁ; < (d — 1)Ly, and, in particular, ¥(A, B, L) is relatively con-
trollable in time (d — 1)L,,,«. Hence, by Theorem 5.20, (A, B, A) is relatively controllable in
time (1+¢)(d—1)Lax, Which proves that the minimal controllability time T,,;,, for (A, B, A)
satisfies Tynin < (14 &)(d —1)Lax < (1 +¢€)(d — 1)Apax. Since € > 0 is arbitrary, one concludes

that Ty < (d = 1)A pay. n

Theorem 5.27 shows that, given A = (Ay,...,Ax) € M4(C)N, B € My m(C), and A €
(0,+00)N, if one wants to check whether (A, B, A) is relatively controllable in some time
T > 0, it suffices to verify whether it is relatively controllable in time (d — 1)A., i-€., if

Span{/E\f;]Bw ' [m]eNA, An<(d—1)Apay wE (Em} =
or, equivalently, if
Span {2} Be; | (] €Na, A1 < (d~1)Amgy j €[1,m]}=C, (5.27)
where ey,...,e,, is the canonical basis of C”. The set whose span is evaluated in the left-
hand side of (5.27) is finite, its cardinality being upper bounded by m#{n € NV | |n|, <
(d — 1)Amax/Amin}, which is large when A,,./Apni, is large. The next results provides a

way of improving such upper bound, and hence reducing the number of elements to be
evaluated in order to study the relative controllability of ¥(A, B, A).
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5. Controllability of linear difference equations

Theorem 5.28. Let A = (Aq,...,Ax) € M (C)N, Be My m(C), and A, L € (0, +00)N with A < L.
Then X(A, B, A) is relatively controllable in some time T > 0 if and only if

Span (E0),Be; | (0] €Np, L0 < (d— DLinay, j € [1,m]} = €% (5.28)

Proof. If (5.28) is satisfied, then, since A -n < /2“‘?" L-n for every n € NV, one obtains that

c? = Span{gﬁl]Bej ' n]eNp, L-n<(d—1)Lya j € [[1,m]]}

C Span {Ef}l]Bej

(] €Np, A-n < (d—1)Ap, 202 e [[1,m]]}

Lmin
which proves that (A, B, A) is relatively controllable in time T = (d — 1)Apax %max (and also
in time T = (d — 1)A .« thanks to Theorem 5.27).

Let ¢ > 0. Write A = M{, with M € My ,(IN) for some h € [1,N] and ¢ = ({y,...,
;) € (0,+00)" with rationally independent components, chosen according to Proposition
4.9. Since A < L, it follows from Proposition 4.9 that L € RanM, and thus there exists
r € R" such that L = Mr. Take r, € R" with rationally independent components satisfying
|r —re|, < &/|M|,, and set L, = Mr.. Then |L-L,|, < € and, in particular, L, € (0,+oo)N
for ¢ small enough. Notice that L, ~ A, since A < L, by construction and, if n € NV is
such that L, -n = 0, then nTMr, = 0, which implies, from the fact that r, has rationally
independent components and that nTM is a row vector of integers, that nTM = 0, yielding
A-n=nTM¢=0,and thus L, < A. Since A ~ L,, it follows from Theorem 5.20 that (A, B, A)
is relatively controllable in some time T > 0 if and only if ¥(A, B, L,) is relatively controllable
in some time, i.e.,

=L .
Span{:,[n]Bej | [n]eN;, Ly n<(d-1)Lemax, j € [[l,m]]} =
By Proposition 5.19, this is equivalent to
Span{E1), Be; ] (0] €Np, Lo n < (d — 1)L may, j € [1,m]} = €% (5.29)

Notice that, if ¢ is small enough, then, for every n € NN, L. -n < (d — 1)L, max implies
L-n < (d—-1)Ly,y. Indeed, assume that, for every ¢ > 0, there exists n, € INN such that
Len, <(d-=1)Lg pax and L-n, > (d—1)Lyax. Then (d—1)Lay < Lng < (d—1)L; max+(L—L¢)-ng,
which implies that (d —1)Lyax <L-n. <(d — 1)Ly +6(d —1+|n.|;) and so

(d—1)LmaX<L.n€s(d—l)Lmax+e(d—1)(1+@) (5.30)
£ min
Since the set {L-n |n € NV} N[0,7] is finite for every T > 0, one obtains that, for every
K >0, theset (n € NN |K < L-n < K + 6} is empty if 6 > 0 is small enough. Hence, since
L¢ max/Le min = Lmax/Lmin @s € — 0, one obtains that, for ¢ > 0 small enough, (5.30) cannot
be satisfied, which proves that L, -n < (d — 1)L, . implies L-n < (d — 1)L, for € > 0 small
enough.

If (A, B,A) is relatively controllable in some time, then (5.29) is satisfied. Hence, for
€ >0 small enough,

¢’ = span{E]\ Be; | [n] € Np, Len < (d = 1)L mas j € [1,m])
C Span{gﬁl]Bej I [n]eNp, L-n<(d-1)Lya j € [[1,m]]},

which proves (5.28). [
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Notice that the set whose span is evaluated on the left-hand side of (5.28) has at most
m#{n € NV | |n|; < (d —1)Lyay/Limin) elements, which is an improvement with respect to the
upper bound obtained previously for the set whose span is evaluated on the left-hand side of
(5.27) as soon as Ly ax/Limin < Amax/Amin- Hence Theorem 5.28 allows one to algorithmically
check whether ¥(A, B, A) is relatively controllable in less steps than by using (5.27). In
particular, since we have A <(1,1,...,1) for every A € (0,+oo)N with rationally independent
components, one obtains the following improvement of (5.27) in this case.

Corollary 5.29. Let A = (Ay,...,Ay) € My(C)N, Be My m(C), and A € (0, +00)N. Assume that
A has rationally independent components. Then X(A, B, A) is relatively controllable in some time
T > 0 if and only if

Span{EnBe; [ne NV, [n|; <d -1, j € [1,m]} =C".

In the case A < (1,1,...,1), one can also provide an alternative proof for Theorem 5.27
and Corollary 5.29, which, instead of relying on the augmented system from Lemma 5.24
and the approximation argument in the proof of Theorem 5.28, uses rather a technique quite
similar to the proof of Theorem 4.36. Due to the interesting features of such alternative
proof, we provide it in Appendix 5.A.

Remark 5.30. The statements and proofs of the results from this section and the previous
one can be slightly modified to show that, for every A = (A4,...,Ay) € My(C)N, B¢ My m(C),
A=(Aq,...,AN)€(0,400)N, and T > (d — 1)A .y, One has

Span{gﬁl]Bw | [n]eNA, A-n<T,we Cm}

= Span{gfl\l]Bw | n]eNp, An<(d-1)Apay we Cm}.

The set V = Span {Eﬁl]Bw | [M]eNA, An<(d—1)Apax WE Cm} is the set of all states x| €

C“ that can be reached by the system (A, B, A) after time T > (d — 1)A . Starting from a
zero initial condition.

When N =1 and the controlled difference equation (5.1) becomes x(t) = Ax(t—A)+ Bu(t)
with A = A; and A = A, Kalman decomposition (see, e.g., [163, Lemma 3.3.3]) states that
there exists P € GL;(C) such that

A A B
-1 _ [A11 12 _ b1
PAP _(0 22), PB_(O)

with Ay € M,(C), Ay, € My_,(C), By € M, ,,,(C), where r = dimV, the pair (A1, By) is con-
trollable, and PV = C" x {0}4~" = Span{ey, ..., e,}.

Such decomposition does not hold for larger N in general, i.e., one cannot find in general,
for A = (Ay,...,Ay) € My(C)N, B € My,,(C), and A € (0,+00)N for which ¥(A,B,A) is not
relatively controllable in any time T > 0, a matrix P € GL;(C) for which one would have, for
every j € [[1,N],

AL A

PA: P! = .
e :

, PB:(Bl) (5.31)

with AY) e M,(C), AY) e M,y_,(C), B; € M,,,(C), with r € [1,d — 1] and such that (A, ..,

A(ﬁ]),Bl,A) is relatively controllable in time T > (r—1)A,.x. Indeed, consider the case N = 2,
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d=4,m=1, A =(1,€) for some € € (%,1), and

0 1 00 7 0 -10 0

2 0 00 0 m+1 0 1 0
el R | Az‘o 0 1 ol B‘o’

-3 V2 0 0 V3 o0 0 2 1

Notice that

Span{Z,B |n = (1n;,1;) € N?, ny +€n, < 3}
= Span{E(o’O)B,3(0'1)8,3(0’2)3,3(0'3)8,E(Lo)B,E(l'l)B,E(Lz)B,8(2’0)8,3(2’1)3,8(3’0)8}

0\ (0 0 0 0 0 0
n+3||m?+4n+7 0 V2 0
o | 0 N1V +30 |2 +4n+ 7| V2

0 — {0} x C3,
4 8 o)\ v2 )l +mv2 ) o

= Span

7

o O
N O =

1

and thus, by the definition of relative controllability and Theorem 5.27, one obtains that
Y(A, B,A) is not relatively controllable in any time T > 0. We claim that this system cannot
be decomposed under the form (5.31). If it were the case, one immediately verifies from
(5.31) that the vector space V = P~1(C" x {0}*") would contain B and be invariant under left
multiplication by A; and A,. Such invariance implies in particular that Z,B € V for every
n € IN?, and thus {0} x C3 C V. Such invariance then also implies that

O =

which shows that V = C%, contradicting the fact that V = P~1(C" x {0}*~") for P € GL4(C) and
r€[1,3]. Hence X(A, B, A) cannot be put under the form (5.31).

5.4 Exact and approximate controllability in L?

This section considers the problem of the exact and approximate controllability of the state
Xy = x(t+ ')l[—Amax,O) of (5.1) in the function space L?((~Amax, 0), C%). We start with the nota-
tions that will be used here.

Definition 5.31. Let T € (0, +c0). We define the Hilbert spaces X and Y1 by X = L?((=Amax, 0),
C%) and Y1 = L%((0, T),C™) endowed with their usual inner products.

Recall that, thanks to Remark 5.3, if xy € X and u € Y, then the unique solution x of
(5.1) satisfies x; € X for every t € [0, T]. We now provide the definitions of the controllability
notions used in this section.

Definition 5.32. Let T € (0, +c0).

(a) We say that (5.1) is exactly controllable in time T if, for every x(,x € X, there exists u € Yp
such that the solution x of (5.1) with initial condition xy and control u satisfies x1 = x.

(b) We say that (5.1) is approximately controllable in time T if, for every xy, X € X and ¢ > 0,
there exists u € Yt such that the solution x of (5.1) with initial condition x; and control
u satisfies ||x —x||x < €.
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5.4. Exact and approximate controllability in L?

(c) We define the bounded linear operator E(T): Yt — X by

(E(T)u)(t) = Z EnBu(T +t-A-n). (5.32)

nelNVN
An<T+t

Exact or approximate controllability in time T implies the same kind of controllability
for every time T’ > T, since one can take a control u equal to zero in the interval (0,7 - T)
and control the system from T’ — T until T’. Moreover, one clearly has that exact controlla-
bility in time T implies approximate controllability in time T.

A useful result for studying exact and approximate controllability is the following lem-
ma, which states that such properties are preserved under linear change of coordinates,
linear feedback, and changes of the time scale.

Lemma 5.33. Let T >0, A > 0, K; € M, 4(C) for j € [1,N], P € GL4(C), and consider the

system
N

A
-1 J
x(t) = Z{P(Aj+BK]-)P x(t—T)+PBu(t). (5.33)
]:
Then
(a) (5.1) is exactly controllable in time T if and only if (5.33) is exactly controllable in time %;

(b) (5.1) is approximately controllable in time T if and only if (5.33) is approximately control-
T

lable in time 3.
Proof. Let us prove (b), the proof of (a) being similar. Assume that (5.1) is approxi-
mately controllable in time T and take xy,x € LZ((—Amax//\,O), C%) and ¢ > 0. Let Xy, x €
L?((~Amax, 0),C%) be given by Xy(t) = P~'x((t/A) and X(t) = P"'X(t/A). Since (5.1) is ap-
proximately controllable in time T, there exists i € L?((0, T),C™) such that the solution X

eV
||L2<<—Amax,0>,o:d> < Jp, - Let

of (5.1) with initial condition X, and control u satisfies |7T -7

u e L?((0,T/A),C™) and x € L>((—Apmax/A, T/ M), (Ed) be given by
N
u(t) = @A) - ) KFAt-Ap),  x(t)= PE).
j=1

A straightforward computation shows that x is the solution of (5.33) with initial condi-
tion x( and control u, and that xp/,(t) = Pxp(At) for t € (—Aa/A 0). Hence one has that
||xT/,\ —E”Lz((_[\ Jaonct) <& and thus (5.33) is approximately controllable in time % The
converse is prO\n;and in a similar way. [

The operator E(T) maps a control u to the corresponding solution at time T of (5.1) with
initial condition 0. It follows immediately from Proposition 5.8 that, for every T > 0, xq € X,
and u € Yr, the corresponding solution x of (5.1) satisfies

x7 =S(T)xg+ E(T)u, (5.34)

where {S(f)};>0 is the semigroup defined in Remark 5.10. Equation (5.34) allows one to
immediately obtain the following classical characterization of exact and approximate con-
trollability in terms of the operator E(T) (cf. [55, Lemma 2.46]).

Proposition 5.34. Let T € (0,+00).
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5. Controllability of linear difference equations

(a) System (5.1) is exactly controllable in time T if and only if E(T) is surjective.

(b) System (5.1) is approximately controllable in time T if and only if Ran E(T) is dense in X.

We recall in the next proposition the classical characterizations of exact and approximate
controllability in terms of the adjoint operator E(T)*, whose proofs can be found, e.g., in [55,
Section 2.3.2].

Proposition 5.35. Let T € (0, +00).

(a) System (5.1) is exactly controllable in time T if and only if there exists ¢ > 0 such that, for
every x € X,
£ 112
IE(T)"xlly, = cllxllk-

(b) System (5.1) is approximately controllable in time T if and only if E(T)" is injective, i.e., for
every x € X,
E(T))x=0 = x=0.

In order to apply Proposition 5.35, we provide in the next lemma an explicit formula for

E(T)*, which can be obtained directly from the definition of adjoint operator.

Lemma 5.36. Let T € (0,+c0). The adjoint operator E(T)* : X — Y is given by
(E(T)x)(t) = Z B'Eix(t-T+A n). (5.35)
nelNV
—Apax<t-T+A-n<0

Proof. Let u € Y7, x € X. In order to simplify the notations, we extend x and u by zero
outside their intervals of definition. We have

(E(T)u,x)x :j Z (EpBu(T +s—-A-n),x(s))gads

nelNVN
= ZJ u(T+s—A-n)'B'E;x(s)ds
nen
T-An
= ZI (t)B*Eix(t—T + A -n)dt
T-An- Amax
nelNN
:f < ZB*”* (t-T+A- n)> dt,
nelNN Ccm
where we use that the above infinite sums have only finitely many non-zero terms. [

Remark 5.37. One can provide a graphical representation for the operators E(T) and E(T)"
as follows. In a plane with coordinates (&, (), we draw in the domain [0, T) X [-Apax, 0), for
n € NV, the line segment o, defined by the equation { = & — T + A - n (see Figure 5.1). We
associate with the line segment o, the matrix coefficient Z,B.

For u € Y7, (5.32) can be interpreted as follows. For s € [-Aax, 0), we draw the horizon-
tal line C = s. Each intersection between this line and a line segment o, gives one term in
the sum for (E(T)u)(s). This term consists of the matrix coefficient corresponding to the line
on multiplied by u evaluated at the £-coordinate of the intersection point.

Similarly, for x € X, (5.35) can be interpreted as follows. For t € [0,T), we draw the
vertical line £ = t. As before, each intersection between this line and a line segment o,, gives
one term in the sum for (E(T)"x)(t). This term consists of the Hermitian transpose of the
matrix coefficient corresponding to the line o, multiplied by x evaluated at the C-coordinate
of the intersection point.
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Y
™~

e e e e == - _y\]

- = -

Figure 5.1: Graphical representation for E(T) and E(T)" inthecase N =3, A; =2, A, = \/52“ )
A3z =m—-2,and T = e? - 2. The matrix coefficients associated with the line segments o, are
given in the picture forn =(0,0,0),n=(0,0,1), and n = (0, 1,0).

5.4.1 Commensurable delays

We consider in this section the problem of characterizing exact and approximate control-
lability of (5.1) in the case where the delays Aj,...,Ay are commensurable. A classical
procedure in such situation is to perform an augmentation of the state of the system — as it
was done in Lemma 5.24 to study relative controllability — to obtain an equivalent system
with a single delay, whose controllability can be easily characterized using Kalman criterion
for discrete-time systems. For the sake of completeness, we detail such approach in Lemma
5.38 and Proposition 5.40. An important limitation of this technique is that it cannot be
generalized to the case where A4,..., Ay are not assumed to be commensurable.

Proposition 5.34 provides another approach to the controllability of (5.1), through the
range of the operator E(T). In this section, we also characterize the operator E(T) in Lemma
5.46 in order to obtain a controllability criterion for (5.1) in Proposition 5.47. It turns out
that this criterion is the same as the one from Proposition 5.40, as we prove in Theorem
5.49.

The main goal of this section is thus to show that studying the controllability of (5.1)
for commensurable delays Ay,..., Ay through the operator E(T) leads to the same control-
lability criterion as the classical approach of augmenting the state of the system. However,
differently from the latter, the operator E(T) can be defined regardless of the commensura-
bility of Ay,...,Ap.

Let us first consider the augmentation of the state of (5.1). The next lemma, whose
proof is straightforward, provides the construction of the augmented state and the differ-
ence equation it satisfies.

Lemma 5.38. Let T € (0,+c0), u : [0,T] — C™, and suppose that (Ay,...,Ay) = AMky,..., ky)
with A>0and ky,...,ky € N*. Let K = maxje[1 Ny k-

(a) If x : [~Amax, T] = C% is the solution of (5.1) with initial condition xq : [~Amax, 0) = C4,
then the function X : [-), T) — CX? defined by

x(t)
x(t—A)
X(t)=| x(t-21) (5.36)
x(t - (k— 1)A)
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5. Controllability of linear difference equations

satisfies _ .
X(t)=AX(t— )+ Bu(t) (5.37)
with A and §given by (5.23) and with initial condition X : [-A,0) — ckd given by
xo(t)
xo(t=A)
Xo(t)=| Xo(t=21) | (5.38)

%ot — (K = 1)A)

(b) If X:[-A,T]— CX4 is the solution of (5.37) with initial condition X, : [-A,0) — CX?, with
A, B, and C given by (5.23), then the function x : [-Apax, T] — c defined by

t)_{5X(t), ift[0,T],
- XO(t)f ift € [_AmaX!O)r

is the solution of (5.1) with initial condition xq : [~Amayx, 0) = C%, where x, is the unique
function satisfying (5.38) for every t € [-A,0).
Remark 5.39. Lemma 5.38 considers solutions of (5.1) and (5.37) in the sense of Definition

5.1, i.e., with no regularity assumptions. However, one immediately obtains from (5.36)
that, for every t € [0, T], x; € X if and only if X; € L?((-A,0),CX%), and in this case ||x;||x =

IXellz2((<a,0),cx)-
As an immediate consequence of Lemma 5.38, we obtain the following criterion.
Proposition 5.40. Let T € (0, +o0) and suppose that (AI, JAN) = Ak, ... ky) with A >0 and

ki,...,kny € N*. Let K = maxjci nkj and define A and Bfrom Aq,...,AN,Basin (5.23). Then
the following assertions are equzvalent

(a) System (5.1) is exactly controllable in time T;

(b) System (5.1) is approximately controllable in time T;
(c) T=(xk+1)A, where x = inf{n eN |rk(§ AB A’B - X”E) = Kd} € IN U {oo}.

Proof. Notice first that the solution X : [-A, T] — €K% of (5.37) with initial condition X, :
[-A,0) — €K and control u : [0, T] — C" is given by

X(t) = A X, (t - (1 + EJ)A)JF L%E”ﬁu(t —nl). (5.39)

We will prove that (a) = (b) = (¢) = (a). The first implication is trivial due
to the definitions of exact and approximate controllability. Suppose now that (b) holds,
let M = HJ, p=(M+1)A-T >0, take w € CX¥ and ¢ > 0, and write w = (wlT,...,wE)T
with wy,...,wg € C?. Let X € X be defined by the relations X(t) = w; for t € [-jA,—(j - 1)A),
j € [1,K]. By (b), there exists u € Yr such that the solution x of (5.1) with zero initial
condition and control u satisfies ||x; — X||x < pe. Defining X € L%((-A, T), CK4) by (5.36), we
obtain that || X —wl|;2((-1,0),cxe) < p€. Using Lemma 5.38 and (5.39), we obtain that

Ma M-1 . [t/A]
ny; _ _ n _
J‘Tﬂ\ ZA Bu(t—nl) dt Sf ZA Bu(t—n})— dt < pe,
n=0 CKd n=0 Ckd
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5.4. Exact and approximate controllability in L?

and, in particular, there exists a set of positive measure | C (T — A, M A) such that

2

<&
Ckda

M-1
ZA”Bu(t —nA)—w
n=0

for t € J. Hence, we have shown that, for every w CK4 and ¢ > 0, there exist u,...,up_1 €
~ 2

C™ such that |ZQ/I;01A”Bun —w| < ¢, which in particular implies that M > 1. This proves

that the range of the matrix (E AB A?’B .- AM‘IE) € Mgg,mm(C) is dense in CK4, and

hence is equal to CX9, leading to ¥ < M —1 by definition of k. Thus T > M A > (x+1)A, which
proves (c).

Assume now that (c) holds. In particular, since T < +o0, one has k¥ € IN. We will prove
the exact controllability of (5.1) in time Ty = (kx + 1)A, which in particular implies its exact
controllability in time T. Let x(,X € X. Define Xy, X € L?((—A,0), CX9) from x, X respectively
as in (5.38). Let C = (E AB - ;\\KE) € Mg, (x+1)m(C), which, by (c), has full rank, and
thus admits a right inverse C* € Mx+1)ym,xd(C). Let u € Y7, be the unique function defined
by the relation

u(t+(x+1)A)

u(t+xld) — —
) =C* (X(t) —AK”XO(t)) for almost every t € (-1, 0).

l/l(tl'i-/\)

A straightforward computation shows, together with (5.39), that the unique solution X of
(5.37) with initial condition X, and control u satisfies Xr, = X, and hence, by Lemma 5.38,
the unique solution of (5.1) with initial condition xy and control u satisfies xr, = X, which
proves (a). [

Remark 5.41. A first important consequence of Proposition 5.40 is that exact and approx-
imate controllability are equivalent for systems with commensurable delays. As it follows
from the results in Section 5.4.2, this is no longer true without the commensurability hy-
pothesis.

Remark 5.42. It follows from Cayley-Hamilton theorem that x from Proposition 5.40 is ei-
ther infinite or belongs to [0, Kd—1]. In particular, (c) is satisfied for some T € (0, +o0) if and
only if the controllability matrix G(K, E) € Mg, xdm(C) has full rank. Moreover, condition (c)
is satisfied for some T € (0, +o0) if and only if it is satisfied for every T € [(kx + 1)\, +o0), and
thus (exact or approximate) controllability in time T > (x + 1)\ is equivalent to (the same
kind of) controllability in time T = (x + 1)A.

Remark 5.43. When m = 1, it follows from the definition of x that x > Kd — 1 and thus,
from Remark 5.42, k € {Kd — 1,+o0}. It follows that a system with a single input is either
(exactly and approximately) controllable in time T = d A, or not controllable in any time
T €(0,+00).

In the remainder of this section, we characterize the controllability of (5.1) using the
operator E(T) from (5.32) instead of the augmented system from Lemma 5.38.

Definition 5.44. Let T € (0,4+c0) and suppose that (Aq,...,Ay) = A(ky,...,ky) with A >0
and ky,...,ky € N*. Let K = maxjep,npkj, M = HJ, and 0 =T - AM € [0, ). We define the
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operators R; : X — L*((=A,0),CH)X and R, : Y7 — L?((=,0),C™M x L?((-9,0),C™) by

(Rix(t)),, =x(t—(n—1)A), forte(-A,0)and n € [[1,K],
te(=A,0)if ne[1,M],

(Royu(t)), =u(t+T—(n-1)4),  for { te(-5,0)if n=M+1.

Remark 5.45. It follows immediately from the definitions of R; and R, that these operators
are unitary transformations.

Lemma 5.46. Let T € (0,+00) and suppose that (Aq,...,AN) = AMky,..., ky) with A > 0 and
ki,...,kny € N*. Let K, M, 6, Ry, and R, be as in Definition 5.44. Then, for every u € L*>((-A,0),
C"M x L2((-96,0),C"),

R, E(T)R,'u = CPyu +EP,u,

where Py : L*>((=,0), C™M x L?((=6,0),C™) — L?((—A,0),C™M is the projection in the first M
coordinates, Py : L?((—A,0),C™M x L?((=6,0),C™) — L%((=A,0),C"™) is the projection in the last
coordinate composed with an extension by zero in the interval (-1, —0), and C € Mg 4 pm(C),E €
Mk 4.m(C) are given by

C= (Cje)]'E[[l,K]],Ze[[l,M]]’ Cje = Z EnB forje[LK] C[1LM],

nelNN
kn=0-j

E:(E]-)]_E[DK]], Ej = Z E.B  forj€[LK].
n=M+1-j

(5.40)

Proof. Let u € Yy and extend u by zero in the interval (-0, 0). From (5.32) and Definition
5.44, we have that, for j € [[1,K] and t € (-1, 0),

(R E(T)u(t)); = Z EnBu(t+T—A-n—(j—1)1)

= Z EnBu(t+T—(k-n+j-1)1)

nelNV
kn<TH—(j-1)
M
:Z Z E Bu(t+T—(C—1)A)+ Z B, Bu(t+T—MM)
(=1 IIEH\IN HGNN
kn=_0-j kn=M+1-j

which gives the required result. [

Proposition 5.47. Let T € (0,+c0) and suppose that (Aq,...,AN) = Aky,...,ky) with A > 0
and ky,...,ky € N*. Let K, M, and C € Mgy prm(C) be as in Lemma 5.46. Then the following
assertions are equivalent.

(a) System (5.1) is exactly controllable in time T;

(b) System (5.1) is approximately controllable in time T;
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(¢) The matrix C has full rank.

Proof. We will prove that (a) = (b) = (¢) = (a). The first implication is trivial.
Suppose now that (b) holds, which means, from Proposition 5.34(b), that Ran E(T) is dense
in X. Since Ry and R; are unitary transformations, Lemma 5.46 shows that the range of the
operator CP, + EP, : L?((=A,0),C™M x L?((-6,0),C™) — L*((—A,0),C%)K is also dense. Let
IT:L%((-A,0),CHK - L2((-A,-6),C%)K be the restriction to the non-empty interval (-1, —6),
which is surjective. Thus the range of II(CP; + EP,) is dense in L?((—-),-6),C%)X, and one
has, from the definition of I and P,, that ITEP, = 0, which shows that the range of TICP, is
dense in L2((-A,-¢8),C*)K. But (TICPu(t)); = Y31, Cjeu(t) for every u € L*((~A,0),C™)M x
L?((-95,0),C™), je[[1,M], and t € (-A,—9), and hence the density of the range of IICP; in
L%((=A,-6),C%)K implies that C has full rank, which proves (c).

Suppose now that (c) holds. Then the operator CP, : L?((—A,0), C™)yM x L?((-9,0),C™) —
L%((=A,0),CHX is surjective, which implies, using Lemma 5.46 and the fact that R; and R,
are unitary transformations, that E(T) is surjective. Thus, by Proposition 5.34(a), (5.1) is
exactly controllable in time T. ]

Remark 5.48. One can use the graphical representation of E(T) from Remark 5.37 to con-
struct the matrices C and E from Lemma 5.46. Indeed, when (Aq,...,Ayn) = Aky,..., kN)
for some A > 0 and ky,...,ky € IN¥, one can consider a grid in [0,T) x [-Apay, 0) defined
by the horizontal lines C = —jA, j € [1,K]], and by the vertical lines £ = T - (€ -1)A, € €
[1,M + 1], where K = max;cp; nykj and M = [%J This grid contains square cells Sj, =
(T-€AT—-(€-1)A)x(—jA,—(j—1)A) for j € [1,K], € € [1,M + 1], and rectangular cells
Rj=(0,T—=MA)x(=jA,—(j —1)A), the latter being empty when T is an integer multiple of A
(see Figure 5.2).

CA T

> &

_Amax

Figure 5.2: Graphical representation for E(T) in the case N = 3, A = (1, %, %), A= %, and
Te(2,2+2).

Consider the line segments o, from Remark 5.37. Due to the commensurability of
the delays Aj,..., Ay, the intersection between each line segment o, and a square Sj, is
either empty or equal to the diagonal of the square from its bottom-left to its top-right
edge, and, similarly, the intersection between each o, and a rectangle R; is either empty
or equal to a line segment starting at the top-right edge of the rectangle. The matrix

C= (ng)je[[l’K]]’ tepmy <0 thus be constructed as follows. For j € [1,K] and ¢ € [1,M],

the matrix C;¢ is the sum over alln € INN such that o, intersects the square Sj¢ of the matrix

coefficients corresponding to such o,. Similarly, E = (E]) is constructed by defining,

jelL,K]

165



5. Controllability of linear difference equations

for j € [1,K], E; as the sum over all n € INY such that o, intersects the rectangle R; of the
matrix coefficients corresponding to such oy,.

Figure 5.2 represents this construction in the case N = 3, A = (1, %, %), A= 11—0, and
T €(2,2+ A). The first 5d lines and 9m columns of the matrix C are

B 0 0 EqonB 0 0 E002B Z(0,1,0B 0
0 B 0 0 E(0,01)B 0 0 E002B Z(0,1,0B

oo 0 0 B 0 0 E(0,01)B 0 0 E(0,02)B ,
0 0 0 B 0 0 E(0,01)B 0 0
0 0 0 0 B 0 0 E(0,01)B 0

and the first 6d lines of E are

where the square cells leading to the first 5d lines and 9m columns of C are highlighted
in Figure 5.2, as well as the rectangular cells leading to the first 6d lines of E. Notice, in
particular, that C is a block-Toeplitz matrix, which is clear from its definition in (5.40).

Propositions 5.40 and 5.47 provide two criteria for the controllability of (5.1) for com-
mensurable delays Aq,...,Ay. The first one is obtained by the usual augmentation of the
state and corresponds to a Kalman condition on the augmented matrices A and B from
(5.23), whereas the second one uses the characterizations of controllability in terms of the
operator E(T) from Proposition 5.34 in order to provide a criterion in terms of the matrix
C constructed from the matrix coefficients Z,B. The main result of this section is that both
criteria are actually the same.

Theorem 5.49. Let T € (0,+co0) and assume that (Ay,...,Ay) = A(ky,...,ky) with A > 0 and
ki,....,kn € N*. Let K, A, B be as in Proposition 5.40 and M, C as in Proposition 5.47. Then

C=(B AB AF ... AF),

Proof. For j € [1,K] and ¢ € [[1, M]], let C;, be defined as in (5.40) and set C, = (C ) el K]]
Mk 4,m(C). We will prove the theorem by showing that C; = B and that Cpi1 = ACg for
le[1,M-1].

By (5.40), Cj; = 1 ne]NN EnB for j € [1,K]), and thus, since E, = 0 for n € ZVN \ NV, we

kn=1-j

obtain that C;; = 0 for j € [2,K]| and C;; = E¢B = B, which shows that C; =
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Let ¢ € [1,M —1]. For j € [2,K], we have Cjyyy = ¥ penv EnB = Cj_ip = (ch)j.
kn=0+1-j
Moreover, it follows from (5.5) that

N
Ciesi= ) EnB= ) ) AEn,
=1

nelNVN nelNVN nelNVN
kn=¢ kn= kn=0

S
I

M =~
M
M z
=

>
"o

m=1 neNN j=1 m=1
kn=0-m kj=m
where A,, is defined as in (5.23). Hence ACy, = Cy, 1, as required. [ |

Remark 5.50. Lemma 5.46 shows that, when Ay,..., Ay are commensurable, the operator
E(T) can be represented by the matrices E and C, and Proposition 5.47 shows that the con-
trollability of (5.1) is encoded only in the matrix C. The representation of E(T) by the matrix
C is also highlighted in Remark 5.48. Hence, the fact that C coincides with the Kalman ma-
trix (§ AB - ;1'7\/1—135‘) for the augmented system (5.37) shows that E(T) generalizes the
Kalman matrix for difference equations without the commensurability hypothesis on the
delays.

5.4.2 Two-dimensional systems with two delays

Section 5.4.1 presented a controllability criterion for difference equations under the as-
sumption of commensurability of the delays. It is also interesting to investigate the con-
trollability of (5.1) without such assumption. However, this is a much more subtle problem,
since the technique of state augmentation from Lemma 5.38 in order to obtain an equivalent
system with a single delay cannot be applied without the commensurability hypothesis, and
a deeper analysis of the operator E(T) is necessary to study the controllability of (5.1). In
this section, we carry out such analysis in the particular case N =d = 2 and m = 1, obtaining
necessary and sufficient conditions for exact and approximate controllability. This simple-
looking low-dimensional case already presents several non-trivial features that illustrate
the difficulties stemming from the non-commensurability of the delays, including the fact
that, contrarily to Propositions 5.40 and 5.47, exact and approximate controllability are no
longer equivalent.
Consider the difference equation

x(t) = Ayx(t —Ay)+ Ayx(t — Ay) + Bu(t), (5.41)

where x(t) € C?, u(t) € C, Aj,A; € M,(C), and B € M, ((C), the latter set being canonically
identified with C?. Without loss of generality, we assume that A; > A,. The main result of
this section is the following controllability criterion.

Theorem 5.51. Let T € (0,+co) and (Ay,A,) € (0,+00)? with A; > A,.

(a) If (A1, B) is not controllable, then (5.41) is neither exactly nor approximately controllable in
time T.

(b) If (Ay,B) is controllable and (A,, B) is not controllable, then the following are equivalent.

(i) System (5.41) is exactly controllable in time T.
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5. Controllability of linear difference equations

(ii) System (5.41) is approximately controllable in time T.
(iii) T > 2A;.

(c) If (A, B) and (A,, B) are controllable, take Z € C?\ Span{B} and set

g detCALB) det(B (A, -pAy)Z)
~ detC(Ay, B)’ - det(B Zz)

(5.42)

Then a does not depend on Z. Let C C C be the set of all possible complex values of the

A

expression f+a 1.

(i) System (5.41) is exactly controllable in time T if and only if T > 2A, and 0 & C.

(ii) System (5.41) is approximately controllable in time T if and only if T > 2A; and
0¢C.

The remainder of this section is dedicated to the proof of Theorem 5.51. The first step is
the following characterization of the numbers a, f defined in (5.42).

Lemma 5.52. Let Aj,A; € My(C), B € M,(C), Z € C*\ Span(B}, assume that (A, B) and
(A,, B) are controllable, and let a, p be given by (5.42). Let

0 1
R= (_1 0). (5.43)

Then (A1 — BA,, B) is not controllable, B is a right eigenvector of Ay — pA,, and « is an eigenvalue
of Ay — BA, associated with the left eigenvector BYR. In particular, a does not depend on Z.

Proof. Notice that det €(A;—BAy, B) =det(B (A; - pA;)B) =det(B A;B)-pdet(B A,B)=
0 by definition of §, and thus (A; — BA,, B) is not controllable. Moreover, since one has
det(B (A - ﬂAz)B) =0, the vectors (A; — fA,)B and B are colinear, and thus (A; — fA;)B =
AB for some A € C. Finally, notice that, for every X,Y € M, ;(C), det (X Y) = XTRY, and
thus

B'R(A, - BA,)Z = aB'RZ. (5.44)

Moreover, one has BTRB = det (B B) =0and BTR(A; - BA,)B = ABTRB = 0, which shows in
particular that BTR(A; —BA,)B = aBTRB. Together with (5.44), this gives BTR(A, - BA,)(aZ+
bB) = aB"R(aZ + bB) for every a,b € C, which shows that

BTR(A, - pA,) = aB'R
and thus BTR is a left eigenvector of A; — A, associated with the eigenvalue a. [ ]

We next show, thanks to the characterization of a, f from Lemma 5.52, that a and f are
invariant under linear change of variables and linear feedbacks. Before proving this fact
in the following lemma, recall that, for any pair of matrices (A, B) € M;(C) x M, ,,(C), the
controllability of (A, B) implies the controllability of (P(A+BK)P~!, PB) for every P € GL4(C)
and K € M, 4(C). This classical result from the theory of linear control systems follows from
the fact that G(P(A + BK)P~!,PB) = PC(A, B), which can be verified by a straightforward
computation.
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Lemma 5.53. LetAl,Az (S Mz((]:), Be MQ’I(C), Ze CZ\Span{B}, Pe GLz(C), KI,KQ € Ml,Z(C)r
and set _
B=PB,  A;=P(A;+BK)P™" forje(l,2).

Suppose that (A1, B) and (A, B) are controllable. Let a,p € C be defined by (5.42) and define
a,peCby
5 de eA,B) det(B (A, -pA,)Z)
det €(~2,~)’ det(§ Z)

for some Z € C?\ Span(B). Then @ = a and § = B.

Proof. Since G(Xj,g) = PC(A;, B) for j € {1,2}, one obtains immediately from the definitions
of f and f that § = p. Let R be given by (5.43). By Lemma 5.52, @ is an eigenvalue of A;—A,

associated with the left eigenvector BTR and @ is an eigenvalue of A; — /?Xz associated with
the left eigenvector BTR. Using that (PB)'R(PB) = 0 and that PTRP = (det P)R, we get

B"R(A; - BA;) = B'PTRP ((A; - BAy) + B(K; — BK2)) P~ = (det P)BTR(A; — pA,)P™!
= a(detP)BTRP™! = aBTPTRPP™! = aBR,

which shows that @ = a. ]

Remark 5.54. Let F,G be two sets with ¥ § C {(A;,A,,B,A1,Ay) € (Mz(([l))2 x My 1(C) x
(0,+00)? | A > A,} and satisfying the following condition: for every (A;,A, B, A, A,) €
G, there exists P € GL,(C), K;,K; € M; »(C), and A > 0 such that (P(A; + BK; )P~L,P(A, +
BK,)P~1,PB,AA,AA;) € F. Tt follows from Lemmas 5.33 and 5.53 that it suffices to prove
Theorem 5.51 for every (Ay,A;, B,A1,A;) € F in order to obtain its conclusions for every
(Al,Az,B,Al,Az) € 9

In particular, in order to prove Theorem 5.51 for every A}, A; € M,(C), Be M, ;(C), and
A1, Ay €(0,+00) with Ay > A, it suffices to prove it for

Aj= (“(f)l “62) forjef{l,2), B= (?) (A1, Ay) = (1,L) (5.45)
with aj, € C for j,k € {1,2} and L € (0,1). Indeed, given Aj,A; € M,(C), B € M,,;(C), and
A1, Ay € (0,+00) with Ay > A, it suffices to take A = 1/A;, P € GL,(C) satisfying PB =
T
(0 1) , and, for j € {1,2}, K; € M »(C) such that —K]-P_1 is equal to the second row of
PAjP‘l, and in this case P(A; + BK;{)P~!, P(A, + BK,)P~!, PB, and (AA;, AA,) are under the
form (5.45).
We will thus prove Theorem 5.51 for (Ay,A,, B, A1, A,) € G, with

9 = {(AI,AQ,B,AI,AQ) S (Mz(([:))z X MZ,](C) X (0,+OO)2 |A1,A2,B, and (Al,Az) satisfy (545)}

Our strategy is to decompose G into four sets, according to the three parts (a), (b), and (c) of
Theorem 5.51. We set

Sa1 ={(A1,A2,B,A1,A5) € G| (A, B) and (A,, B) are not controllable},

Sa2 ={(A1,A2,B,A1,Ay) € G| (Aq, B) is not controllable and (A,, B) is controllable},
Sy, ={(A1,Ay,B,A1,Ay) € §|(Aq, B) is controllable and (A,, B) is not controllable},
9:.=1{(A1,A,,B,A1,Ay) € G| (A1, B) and (A,, B) are controllable}.
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5. Controllability of linear difference equations

For (Ay,A B, A1, A3) € Gu1, since aj, = —detC(A}, B) for j € {1,2}, it follows that a;, =
ay; = 0, and thus every (A;,A,, B,A1,A;) € G, is of the form

0

1

Ajz(”él 8)forje{1,2}, B:(), (A1, Ay) = (1,L). (5.46)

Concerning G,,, let F,, € §,, be the set of Ay, A,, B, and (A, A,) under the form

Alzty a’ ‘%:(83} B:(ﬂl (A1, Az) = (1,L). (5.47)

Then it suffices to prove Theorem 5.51 for (Ay,A,,B,A;,A,) € F,;, in order to obtain its
results for (A;,A,,B,A1,Ay) € G,n. Indeed, if (A],A,,B,A1,A;) € G40, then, since (A,, B) is
controllable, there exists P € GL,(C) and K, € M, »(C) such that P(A, + BK,)P~!, PB are
under the form (5.47) (see, e.g., [163, Definition 5.1.5]). It now suffices to take K; € M ,(C)
such that —K;P~! is equal to the second row of PA;P~! and one immediately obtains that
P(A; +BK{)P~!, P(A, + BK,)P~!, PB, and (A, A;) are under the form (5.47). Notice that the
coefficient in the first row and second column of A; is equal to zero since it must be equal
to —det C(A4, B).

Similarly, for G;, we consider the set 7, C §;, of all Ay, A,, B, and (A, A,) under the form

Al:@ é) Az:(? 3' BZG) (A1, Az) = (L,L). (5.48)

As before, it suffices to prove Theorem 5.51 for (A, A,,B,A1,A,) € F}, in order to obtain its
results for (Aq,A,, B, A1,A;) € Gp.
Finally, for G, we consider the set . C G, of all A, A;, B, and (A1, A;) under the form

Al:tg %ﬂ’ Af{S 3’ B:G) (A1, Az) = (L,L). (5.49)

It also suffices to prove Theorem 5.51 for (Ay,A;, B, A1, A,) € I, in order to obtain its results
for (A;,A,, B,A1,A;) € G.. Moreover, by a straightforward computation, one obtains in this
case o =4y, f=ap.

We now prove parts (a) and (b) of Theorem 5.51.
Proof of Theorem 5.51(a) and (b). Suppose that (A;,B) and (A,, B) are not controllable.
According to Remark 5.54, we can assume that A}, A, B, and (A, A;) are under the form
(5.46). Hence one immediately computes

_ B ifn=0,
E.B= .
0 otherwise.

Then, for every u € Yy and t € (—1,0), one has (E(T)u)(t) = Bu(T+t)if T+t > 0and (E(T)u)(t)
= 0if T+t < 0. In particular, the range of E(T) is contained in the set L?>((~1, 0), Ran B), which
is not dense in X. Hence the system is neither exactly nor approximately controllable in any
time T > 0.

Assume now that (Aj, B) is not controllable and (A,, B) is controllable, in which case,
according to Remark 5.54, we can assume that A, A,, B, and (A, A,) are under the form
(5.47). Hence

B ifn=0,

nB:(a ifn=(0,1),

0 otherwise.

[1]
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5.4. Exact and approximate controllability in L?

Then, for every u € Yr, one has

0 if-1<T+t<0,
0 .
(E(T)u)(t) = (u<T+t>) f0<T+e<l, (5.50)
u(T+t-L)\ .
( (T +1) ) if T+t>1L.

If T <1+L, then, for every u € Y, the first component of E(T)u vanishes in the non-empty
interval (-1,L — T), and hence the range of E(T) is not dense in X, which shows that the
system is neither exactly nor approximately controllable in time T <1+L. If T > 1+L, then,
for every u € Yp, if x = E(T)u = (x1,x;), we have x;(¢t) = u(T +t—L) and x,(t) = u(T + )
for every t € (—1,0), which implies that x,(¢t) = x;(t + L) for t € (—1,—L). Hence the range of
E(T) is not dense in X, which shows that the system is neither exactly nor approximately
controllable in time T > 1 + L either. This concludes the proof of (a).

Concerning (b), assume that (Ay, B) is controllable and (A;, B) is not controllable. Ac-
cording to Remark 5.54, we can assume that Ay, A,, B, and (A, ;) are under the form
(5.48). One computes

B ifn=0,

[1]

B= ((1)) ifn=(1,0), (5.51)

0 otherwise.

Hence, for every u € Yr,

0 if-1<T+t<0,
0 )
(E(T)u)(t) = (u<T+t>) H0<T+i<l, (5.52)
u(T+t-1)\ .
( (T +1) ) ifT+t>1.

If T < 2, then, for every u € Yr, the first component of E(T)u vanishes in the non-empty
interval (-1,1 — T), and hence the range of E(T) is not dense in X, which shows that the
system is neither exactly nor approximately controllable in time T < 2. If T > 2, the system
is exactly controllable. Indeed, take x € X and write x = (xq,x;). Define u € Y1 by
x(t=T), ifT-1<t<T,
u(t)=3x1(t-T+1), ifT-2<t<T-1,
0, otherwise.

Such u is clearly well-defined and, by (5.52), one immediately has that E(T)u = x. Hence
E(T) is surjective, and thus the system is exactly controllable. [

Let us now turn to the proof of Theorem 5.51(c). Notice first that, for A;, A,, B, and
(A1,A;) under the form (5.49), a straightforward computation shows that

B ifn=m=0,
n-1
(aoﬁ) ifm=0,n>1,
EnmB = (a” (5.53)
ifm=1
) ,
0 ifm>2,
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5. Controllability of linear difference equations

where one uses that a = 4y, and § = ay,. Hence, for every u € Y, (E(T)u)(t)=0for T+t €
(-1,0)and, for T+t >0,

| T+t-1] | T+t-L]
E(TYu)(t) = ZO a"pu(T+t—n—1)+ ZO a"u(T+t-n-L)| (5.54)
) u(T+t)_

Moreover, for every x = (x1,x;) € Xand t € (-T,0), one computes from (5.35) that

x5(1), if -L<t<0,
(E(T)*x)(t+T) =3 x2(t) +x1 (t + L), if -1<t<-L, (5.55)
a 2B () - ) +a U ((r+ L) - 1), ifr< -1

With (5.54) and (5.55), one can prove Theorem 5.51(c) in the case T < 2A;.

Proof of Theorem 5.51(c) for T < 2A;. Assume that (A;, B) and (A,, B) are controllable, in
which case, according to Remark 5.54, we can assume that Ay, A;, B, and (A, A,) are under
the form (5.49), and thus E(T) and E(T)" are given by (5.54) and (5.55), respectively.

If T <1+1L, it follows from (5.54) that, for every u € Y, the first component of E(T)u
vanishes in the non-empty interval (-1,L — T), and hence the system is neither exactly nor
approximately controllable in time T <1 + L.

For 1+L < T < 2, we will show that approximate controllability does not hold (and hence
that exact controllability does not hold either) by showing that E(T)* is not injective. For
x = (x1,x,) € X, it follows from (5.55) that E(T)*x = 0 in Y7 if and only if

x,(t) =0, -L<t<0,
xz(t)+x1(t+L) =0, -l1<t<-L,
— 5.56
Bxi(t+1—-L)+x(t) =0, -1<t<-1+1L, ( )

Bxi(t—L)+ax;(t)=0, 1+L-T<t<0.

Since the first two equations of (5.56) define x, uniquely in terms of x;, showing that
E(T)*x = 0 for some nonzero function x € X amounts to showing that there exists y €
L?((-1,0),C) nonzero such that
By(t+1-L)+y(t)=0, ~l<t<-1+1L,
By(t—L)+ay(t)=0, 1+L-T<t<O.

(5.57)

Define f : [-1,0) —» [-1,0) by f(t)=t+1-Lif -1 <t<L-land f(t)=t—-Lif L-1<
t < 0; notice that f is a translation of 1 — L modulo 1. For n € N, set t, = f"(-1) and let
K =min{n e N | f"*1(-1) € [-1,1-T)}. K is clearly well-defined: if L is rational, all orbits of
f are periodic and hence K + 1 is upper bounded by the period of the orbit starting at —1,
and, if L is irrational, all orbits of f are dense in [-1,0) and hence they intersect [-1,1—T)
infinitely many times. Moreover, all the points t,...,tx are distinct. For n € [0,K], we
define y, € C inductively as follows. We set ¥y = 1 and, for n € [1,K], we set y,, = —% if
~1<t,;<L-1andy, :-% if L-1<t,;<0.

Take 6 > 0 small enough such that all the intervals (t,,t, + 9), n € [[0,K]], are pairwise
disjoint, contained in (-1,0), and do not contain any of the points 1 -T, L—-1,1+L-T,

and —L (these points may possibly be an extremity of the interval). Let y € L?((~1,0),C) be
defined by

K
Y= Takis, o)1) (5.58)
n=0
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We claim that y satisfies (5.57). Consider first the case t € (1 + L —T,0), in which we have
f(t)=t—Lsince (1+L-T,0)C[L-1,0). Since f(1+L—-T)=1-T and ty = -1, it follows
by construction of 0 that f(t) & (tg,tg+0). If t Ul,fzo(tn, t,+0), then f(t) ¢ UI;:O(tn, t,+0);
indeed, f(t) € (t,,t, + 0) for some n € [[1,K]] implies immediately, by construction of f and
o, that t € (t,_1,t,_1 +96). Hence, if t e (1+L—T,0)\ Ufzo(tn, t,+0), one immediately has that
y(t) = y(t — L) = 0 and hence the second equation of (5.57) is satisfied for such t. Notice that
f(tx) =tgy1 <1-T, so that tx <1+ L—-T, and thus, by construction of o, (tg,tx +9)N (1 +
L-T,0)=0.1If t € (t,,t,+0) for some n € [[0,K — 1], one has t, € (1+L—-T,0) C [L-1,0) by
construction of ¢ and f(t) € (t,,11,t,4+1 + 0), which shows, by the construction of (Vn)l,f:o: that

@y(t)+Py(t—L) = @y, + PVus1 = 0.

Hence the second equation of (5.57) is satisfied for every t e (1+L—T,0).

Consider now the case t € (—~1,L—1), in which we have f(t) = t+1-L. Since f (o, to+9) =
(L-=1,L—1+9), one has f(t) & (ty,to + 0). Again, the same argument as before shows that, if
té Uf:o(tn; t,+0), then f(t) ¢ Uf:o(tn; t,+9), and thus, for such t, y(t) = p(t+1-L) = 0 and the
first equation of (5.57) is satisfied. Since f(tg) = tg,1 € [-1,1-T),one has tx € [L-1,1+L-T),
and hence (tg,tx +0)N(-=1,L—-1)=0. If t € (¢, t,+9)N(-1,L—1) for some n € [0,K — 1], one
has t, € (-1,L—1) and f(t) € (t,41,ty+1+9), which shows, by the construction of (7/”)5:0, that

By(t+1=L)+(t) = fPus1 +Vn = 0.

Hence the first equation of (5.57) is satisfied for every t € (-1,L —1). Thus E(T)" is not
injective, yielding that approximate controllability does not hold. [ ]

Remark 5.55. The construction of the function x = (x1,x,) in the kernel of E(T)* carried out
in the previous proof for the case 1 + L < T < 2 can be interpreted in terms of the graphical
representation for E(T)* from Remark 5.37. Notice first that, thanks to (5.53), the only line
segments o, from Remark 5.37 lying inside the domain [0, T) x [-1,0) and associated with
non-zero coefficients are 0(g,0), 0(0,1), (1,0, and o(y,1) (see Figure 5.3).

T

> &

| [l ] ] |
T T T

Figure 5.3: Graphical representation for E(T)* used to construct a nontrivial function x in
the kernel of E(T)* when 1+L<T <2.

The interval [0, T) can be decomposed in four subintervals J, = [T -L,T),J, = [T -1,T),
J3=[T-L-1,T-1),and J4, =[0,T — L —1), these subintervals being associated respectively
with the four equations of (5.56), thanks to Remark 5.37. Intervals J; and J, are associated
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5. Controllability of linear difference equations

with the first and second equations of (5.56), which are only used to compute x, once x; is
constructed.

The construction of x; goes as follows. One wishes x; to be equal to 75 = 1 on a small
interval (tg,tg + 0) from ty = —1. By looking at the intersection of the horizontal line C = ¢,
with the line segments o,, inside the region (J3UJ4)x[-1,0), one notices that it only intersects
the line segment 0 ), highlighted in blue in Figure 5.3, this intersection happening at
the point denoted by p in the figure. From Remark 5.37, the point p, corresponds to the
term x;(t) for t = —1 in the third equation of (5.56), and hence, for this equation to be
satisfied in a small interval (—1,—~1+§), one needs x; to be equal to 37 = —¥,/p in the interval
(=L, —L+96) corresponding to the other term of this equation. This other term can be obtained
graphically by finding the intersection of the vertical line passing through p, with another
of the segments o,, which happens at the point p;, when the vertical line intersects the
segment o(; ), highlighted in red in the figure. The point p; has a C-coordinate of #; =
—L, which means that x; must be equal to | in the interval (-L,-L + 6). However, the
horizontal line ¢ = t; also intersects another segment, o(;,1), at the point p,, and so one
repeats the construction from t;, until one arrives at a point tx (K = 4 in Figure 5.3) such
that the horizontal line C = tx only intersects one segment o, in (J3 UJy) x [-1,0), which
will necessarily be the segment o(; ). This corresponds to the condition tg € [L-1,L+1-T).
When x; is constructed up to this point, the third and fourth equations of (5.56) are satisfied
at all times, and hence x; satisfies the required properties.

Notice also that one can modify the previous construction to obtain a smooth function
x € €X([-1,0),C?) in the kernel of E(T)", simply by replacing the characteristic functions
X(t,t,+5) in (5.58) by (- —t,) for a certain C* function ¢ compactly supported in (0,0).

We are now left to prove Theorem 5.51(c) in the case T > 2A. The next lemma shows
that it suffices to consider the case T = 2A;.

Lemma 5.56. Let Ay, Ay € My(C), B € My((C), and (A1, Ay) € (0,+00)> with Ay > Ay, and
assume that (A1, B) and (A,, B) are controllable. Then the following assertions hold.

(a) System (5.41) is exactly controllable in some time T > 2Ay if and only if it is exactly con-
trollable in time T = 2A;.

(b) System (5.41) is approximately controllable in some time T > 2A if and only if it is approx-
imately controllable in time T = 2A;.

Proof. Thanks to Remark 5.54, it suffices to consider the case where Ay, A,, B, and (A1, A»)
are given by (5.49), in which case E(T)" is given by (5.55).

It is trivial that exact controllability in T = 2 implies exact controllability for larger time.
To prove the converse, it suffices to show that, for every T > 2, there exists Cy > 0 such that,
for every x € X,

IE(T)*xll§, < CrllE2)*xly, .

Indeed, let T > 2, x = (x1,x;) € X. Since the right-hand side of (5.55) does not depend on T,
one obtains that, for t € (-2,0), (E(T)*x)(t + T) = (E(2)"x)(t + 2). Hence

IETY xR, = [ ET)@Rde= [ (ETy s TP dr
~EQ) %2, + j_f (E(T)"x)(¢ + T) dt

-2 _
:||E(z)*x||$2+j_T [@ U128y (1) = 1)+ @ Uy (e Ly = 1)t

174



5.4. Exact and approximate controllability in L?

[T]-2

_ . _ 2
<|IEQ)*xlig, + ZI . | 2By (= 1)+ @ g (e + Ly = 1)| d

m 2

-1 _
= |IEQ)"xI, + Z |a|"f2 @ V2B, (1) — 1)+ @ U (e + Ly — 1)t

[T1-2

<||EQ)x, Z jaft,

and one can thus conclude the proof by taking Cr = Zfﬂ 2

Concering approximate controllability, it is also trivial that approximate controllability
in T = 2 implies approximate controllability for larger time. Suppose now that the system is
approximately controllable in time T > 2 and take x € X such that E(2)*x = 0 in Y,. Thanks
to (5.55), this means that, for almost every t € (-2,0),

x5(t) =0, if —L<t<0,
() +x(t+L)=0, if —1<t<-L,
a2 (-1 +a g (rr L) - =0, if —2<r<-L.

k
laf.

Multiplying the last equation by @* for k € N* shows that, for almost every t € (o0, 0),
X(t)

Xz(t) + Xl(t + L)

a g () -+ (e ) - 1)

0, if —L<t<0,
0, if —1<t<-L,
0, if t<-1.

In particular, E(T)*x = 0 in Y, and thus x = 0 in X, which shows the approximate controlla-
bility in time 2. ]

In order to prove Theorem 5.51(c) in the case T = 2A;, we introduce some notation.

Definition 5.57. Let a, p € C and p,q € IN* with p,q coprime. We define the bounded linear
operator S : L?((~1,0),C) — L?((~1,0),C) by

Bx(t)+x(t+L—-1) if —L<t<0,
Sx(t)=4{_ (5.59)
Bx(t)+ax(t+L) if —1<t<-L,
and the matrix M = (m;;); jef1,4] € My(C) by
B, ifj=i,
T ifi=ip,
ml-]-: % BJ=i7p (560)

1, ifj=i+q-p,
0, otherwise.

By a straightforward computation, one obtains that the adjoint operator S*: L?((~1,0),C)
— L?((~1,0),C) is given, for x € L?((—1,0),C), by

. Bx(t)+ax(t-L), ifL-1<t<0,

S*x(t) = . (5.61)
Bx(t)+x(t—-L+1), if-1<t<L-1.

The operator S allows one to characterize exact and approximate controllability for (5.41),

as shown in the next lemma.
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5. Controllability of linear difference equations

Lemma 5.58. Let Al,Az € MQ(C), B e Mz’l((]:), and (AI,AQ) € (0,+OO)2 with Al > A2, and
assume that (Aq, B) and (A,, B) are controllable. Then the following assertions hold.

(a) System (5.41) is exactly controllable in some time T > 2A; if and only if S* is surjective
or, equivalently, if there exists ¢ > 0 such that ||Sx||r2(-1,0,c) = clI*ll2((-1,0),c) for every
x € L?((-1,0),C).

(b) System (5.41)is approximately controllable in some time T > 2y if and only if S is injective.

Proof. Thanks to Remark 5.54, we can assume that A, A,, B, and (A, A,) are under the
form (5.49), in which case E(T) and E(T)" are given respectively by (5.54) and (5.55).

Let us first prove (b). Combining Lemma 5.56 and Proposition 5.35, one obtains that
(5.41) is approximately controllable in some time T > 2 if and only if E(2)* is injective.
Thanks to (5.55) and (5.59), x = (x1,x;) € X satisfies E(2)*x = 0 if and only if

x,(t) =0, if —L<t<O,
Xo(t) = —x1(t+ L), if —1<t<-L, (5.62)
Sx1(t) =0, if —1<t<0.

Assume that E(2)* is injective and let w € L?((~1,0),C) be such that Sw = 0. Defining x =
(x1,x2) € Xby x1 =w, x,(t) =0 for t € (-L,0), and x,(t) = —w(t+L) for t € (-1,—L), one obtains
from (5.62) that E(2)*x = 0, which implies that x = 0 and hence w = 0, yielding the injectivity
of S. Assume now that S is injective and let x = (xq, x,) € X be such that E(2)*x = 0. Then, by
the third equation of (5.62), one has Sx; = 0, which shows that x; = 0, and thus the first two
equations of (5.62) show that x, = 0, yielding the injectivity of E(2)*. Hence the injectivity
of E(2)" is equivalent to that of S.

Let us now prove (a). Combining Lemma 5.56 and Proposition 5.34, one obtains that
(5.41) is exactly controllable in some time T > 2 if and only if E(2) is surjective. Thanks to
(5.54), one has, for u €Y,

(ﬁu(t+1)+au(t+l —L)+u(t+2—L))’ fL_1<t<0,
u(t+2)
(E(2)u)(t) = (5.63)
(ﬁu(t+1)+u(t+2—L)), fol<t<l1.
u(t+2)

Assume that E(2) is surjective and take w € L?((~1,0),C). Let x = (w,0) € X and take u € Y,
such that E(2)u = x. Hence, by (5.63), one has that u(t+2) =0 for t € (-1,0), i.e., u(t) = 0 for
€(1,2). Hence u(t+2—-L)=0for L—1<t<0, and one obtains from (5.63) that

Bu(t+1)+au(t+1-L)=w(t), ifL-1<t<0,
{ Bu(t+1)+u(t+2-L)=w(t), if —-1<t<L-1.

This shows that S*u(- + 1) = w, and thus S is surjective. Assume now that S* is surjective
and take x = (x1,x;) € X. Let i € L?((-1,0),C) be such that

S*ﬁ(t):{XI(t)_xz(t_L), ifL-1 <t<0, (564)

x1(%), if-1<t<L-1,
and defineu € Y, by u(t) =u(t-1)if 0 <t <1 and u(t) = x,(t—2)if 1 <t < 2. Then, combining
(5.61), (5.63), and (5.64), one obtains that E(2)u = x, which yields the surjectivity of E(2).
Hence the surjectivity of E(2) is equivalent to that of S*. The fact that the latter is equivalent
to the existence of ¢ > 0 such that ||Sx||;2(-1,0),c) = cl|¥llL2((-1,0),c) for every x € L?*((-1,0),C) is
a classical result in functional analysis (see, e.g., [153, Theorem 4.13]). ]
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5.4. Exact and approximate controllability in L?

Remark 5.59. Asin Remark 5.37, one can provide a graphical representation for the opera-
tors S and S*. Notice first that, as in Remark 5.55, for A;, A,, B, and (A1, A,) under the form
(5.49), the only line segments o, from Remark 5.37 lying inside the domain [0, 2)x[—-1,0) and
associated with non-zero coefficients are 0/ 0), 0(0,1), 0(1,0), and oy1,1), which are associated

respectively with the coefficients ((1)), (é), (g), and (g)

Figure 5.4: Graphical representations of the operators (a) E(2) and E(2)*, and (b) S and S*.

Figure 5.4(a) provides the graphical representation for E(2) and E(2)* given in Remark
5.37. One can decompose the domain [0,2) x [-1,0) in two parts, &; = [1,2) x [-1,0) and
€, =1[0,1)x[-1,0). The value of E(2)*x(t) for t € [0,1), which corresponds to the region &,,
only depends on x;, and S is defined as the operator that, to each x;, associates the value
of E(2)*x(t) for t € (0,1), translated by 1 in order to obtain as a result a function defined in
(=1,0). Hence S can be seen as the part of E(2) corresponding to the region &,, which is
represented in Figure 5.4(b). It turns out that this part of E(2)* is enough to characterize
its injectivity and the surjectivity of its adjoint, as shown in Lemma 5.58. The intuition
behind this fact is that, if, for instance, one is interested in studying the injectivity of E(2),
by looking for non-trivial solutions x = (x1,x;) € X of E(2)*x = 0, the part of E(2)" in &,
corresponding to E(2)*x(t) for t € [1,2), provides the equations x,(¢) = 0 for ¢t € (-L,0) and
x5(t) = —x1(t+ L) for t € (—1,—L), thanks to (5.55). These equations completely characterize
X, once x; is computed, and hence looking for non-trivial solutions of E(2)*x = 0 amounts to
considering only the part of this equation corresponding to €, and the variable x;. A similar
argument holds for the surjectivity of E(2).

The matrix M defined by (5.60) corresponds to a representation of S when L = %, similar
to the construction of C and E from E(T) performed in Remark 5.48. Indeed, by decom-

posing (-1,0)? into squares Sij = (—é,—i‘Tl) X (—é,—%) for i,j € [[1,4], one remarks that the
intersection between one of the line segments representing S and the square §;; is either
empty or equal to the diagonal of the square from its bottom left corner to its top right
corner, the coefficient M;; being zero in the first case or the conjugate of the coefficient cor-
responding to the intersecting line in the second case. Figure 5.5 provides this construction

in the case L = %

We next gather some properties of the matrix M defined in (5.60).

Lemma 5.60. The characteristic polynomial of M is P(A) = (/\ —B)q -at™P.
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SO~ O O O™
O~ O O o™
—_ O O OoO™o ©
o o™o o ] ©

o o ow™o o ]

o™o o ] oo
=Io © ] o o o

(a) (b)

Figure 5.5: Construction of the matrix M from S in the case L = 2.

Proof. We have P(1) = det(Ald, —M). Setting My = Ald, —M and writing M = (mg-;\))i,je[[l,q]]'
we have

A-pB, ifj=i,
@ ifi=i-p,
A (5.65)
I -1, ifj=i+q-p,
0, otherwise.

Let S, denote the group of permutations of [1,4] and €(o) denote the signature of an ele-
ment o € S,. Leibniz formula for the determinant gives

q

P()=detM; = ) e(0)] | Mt (5.66)

o€, i=1

Thanks to (5.65), the product l"[ﬁll mgi)(i)

(1,41,

is nonzero only if o € 3, satisfies, for every i €

o i)e{{l.'l.+q_p}’ Tfl.e[[l'p]]' (5.67)
{i,i—p}, ifieflp+1,4].

Let 7 € S, be the translation by ~1 modulo g, i.e., (i) =i -1 if i € [2,4] and 7(1) = q. We

have e(7) = (-1)77!, and thus e(7P) = (=1)9-VP. Since p,q are coprime, one has pg=p +q+1

mod 2 and thus (—1)p =g+ 1 mod 2, which gives e(7?) = (-1)7*!. Notice, moreover, that

(5.67) can be written as o(i) € {i, 7P(i)} for every i € [1,4].

We claim that the only permutations ¢ € 5, satisfying (5.67) are Idg and 7”. Indeed,
it is clear that these two permutations satisfy (5.67). Suppose now that ¢ is a permuta-
tion satisfying (5.67) such that o = Idsq. Hence there exists iy € [[1,¢]] such that o(iy) = i,
and thus, by (5.67), o(iy) = TP(iy). We claim that o(T*P(i, )) 7*+DP () for every k € IN.
Indeed, this holds for k = 0, and, if k € IN is such that o(t*P(io)) = t**1P(i;), then, since

7® P (i) = TP (i), one has o (t**DP(ig)) = o (T*P(ip)) = T*+DP(iy), whlch implies by (5.67)
that o (t*VP(iy)) = o (v*+DP (i) = ©*+2P (i), which concludes the proof by induction that
o (%P (ig)) = T*+ VP (i;) for every k € N. Now, since p,q are coprime, {t*P(iy) |k € N} = [1, 4],
and thus o(i) = 7P(i) for every i € [1,g]], which shows that ¢ = 7”.

It now follows from (5.66) that

q q
A q —g— —\1 —g-
p /\):l |m§i)+ 1)7+1 mﬂp ) +(=1)T (=1)T@ P :(/\_ﬁ) —alP,
= i=1

1
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5.4. Exact and approximate controllability in L?

which concludes the proof. [

Corollary 5.61. The determinant of M is detM = B% — (~1)4@97P.

Proof. Letting P be the characteristic polynomial of M, one has from Lemma 5.60 that
detM = (—1)7det(-M) = (-1)7P(0) = BT — (-1)7a@?P. |

We can now prove Theorem 5.51(c)(ii) in the case T > 2A;.
Proof of Theorem 5.51(c)(ii). Assume that (A;,B) and (A,, B) are controllable, in which
case, according to Remark 5.54, we can assume that A, A, B, and (A1, A;) are under the
form (5.49). Since one has already proved that approximate controllability does not hold
for T <2, it suffices to show that, for T > 2, the system is approximately controllable if and
only if 0 ¢ C. Thanks to Lemma 5.58, one is left to show that the operator S defined in (5.59)
is injective if and only if 0 ¢ C. We write in this proof a = |a|e'? for some 0 € (-1, 7].

Consider first the case L € (0,1) N Q and write L = % for p,q € N* coprime. Define the

operator R: L?((~1,0),C) — L*((~1/4,0),C1) by

n—1
q

(Rx(t))n:x(t— ), —%<t<0, nell,4].

One immediately verifies from its definition that R is a unitary transformation and that, for
every x € L? ((-1/9,0),€C9),
(RSR™1x)(t) = Mx(t), (5.68)

where M is the matrix defined in (5.60). One has
co {ﬁ 4 Jaf' 5 £HO2k0(1-F) ’ ke[0,q- 1]]}_ (5.69)

Notice that 0 € C if and only if det M = 0. Indeed, from Corollary 5.61, one has detM =0
if and only if (-p)7 = a97P, i.e,, if and only if —p is a g-th root of a?7P, which means that
- = |a|q7p o/ OFKTE for some k € [0,q9 — 1], this being equivalent to 0 € C. Since R is a
unitary transformation, one obtains in particular that the injectivity of S is equivalent to
that of RSR™!, which, thanks to (5.68), is equivalent to that of M. Since M is injective if and
only if det M = 0, one concludes that S is injective if and only if 0 ¢ C, as required.

Assume now that L € (0,1)\ Q. Let x € Lz((—l, 0),C) be such that Sx = 0. Then

1
—Ex(t+L—1), if -L<t<0,
x(t) = =
—=x(t+1L), if -1<t<-L.

Let ¢ :[-1,0) > [-1,0) be defined by ¢(t) =t+Lif t € [-1,—-L) and @(t) =t+L-11if t € [-L,0).
The function ¢ is a translation by L modulo 1 on the interval [-1,0), and can also be seen as
an interval exchange transformation. Since L is irrational, ¢ is ergodic with respect to the
Lebesgue measure in [-1,0) (see, e.g., [122, Chapter II, Theorem 3.2]). We have

ax-1,-n)(t)+ X0t
x(t)=— AL L)()_ XLol )xo<p(t) for —1<t<0.

p

Choose y € C such that ¢?!1"l) = —8; when 0 € C, we impose further that y satisfies
e’ =a. This choice is possible in the latter case since the condition 0 € C means that there
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5. Controllability of linear difference equations

exists k € Z such that g +|a|! L /(0+2k1(1-L) = 0, which implies in particular that a = 0 since
B # 0 by its definition. He_nce it sufﬁces to take y =log|a|—i(6 + 2km) and one immediately
has e =@ and e?(1-1) = —B. Let y € L?((~1,0),C) be defined by y(t) = e?’x(t). Then y satisfies

v(t) = (@e? x(-1,-0)(t) + X(-L0)(t ))yo(p( ) for —1<t<0. (5.70)

If 0 € C, then @e™” =1, and thus p satisfies y = y o ¢. Since ¢ is ergodic with respect to
the Lebesgue measure in [-1,0), the set of functions y € L?((~1,0),C) satisfying y =y o ¢
is the set of functions constant almost everywhere (see, e.g., [122, Chapter II, Proposition
2.1]). Hence the solutions of Sx = 0 are the functions of the form x(t) = Ce™?! for C € C,
which shows that S is not injective and hence (5.41) is not approximately controllable in
time T > 2.

If 0 ¢ C, notice that, from (5.70),

||y||L2 ~1,0),C = [ae 7|’ le | dt+j i | dt,

(1 —|ae—7|2)L°_1 y(t)>dt=0

If [@e™”| # 1, then p is zero in the interval (L —1,0). By (5.70), it follows that p is zero
in @%(L —1,0) for every k € IN, which shows that y = 0 in (~1,0) since ¢ is ergodic (see,
e.g., [172, Theorem 1.5]). Hence x = 0 is the unique solution of Sx = 0, and thus (5.41)

Zm L

which shows that

is approx1mate1y controllable in time T > 2. If |ae Y| =1, write ae™? = ¢'T- TT for some
2n(y—n)L 2myL
ne [0 . Notice that, for every n € Z, one has e’~TT #1; indeed, one has @ = e’ 7T

and hence the possible complex values of @!* are

1 -L _ e)/(1 L)+i(2mnL+2mk(1-L)) ﬂez2nL(q k) keZ. (5.71)
—n)L
If ¢ “T7" = 1 for some 1 Z,then 1 =n mod £ L and, since % = 1 — 1, we conclude that

there exists k € Z such that 7 =k mod . For such k, e?2™01=K) = 1, which is not possible

2m(y-m)L
due to (5.71) since we are in the case 0 ¢ C. Hence, for every n € Z, one has ¢! "TT #1. The

function p satisfies

}’(f)=(ei2‘n'qLLX(— () + X (-L,0)(t ))yO(p( ) for —1<t<0.

Thus, for every ne Z,

0 mn Uy L . dmn
f_ly(t)e i gy = oI T j_l p(t+L)e' Ltdt+f y(t+L- )e’%fdt

2nn :2mn

i 2n(n-n)L 0 ¢ L-1 ¢
— e jL_ly(t)e & dt+f_l y(t)e T dt,

which implies that
(n—n 0 n
(1—e2(1]L))I_1y( )ethdt— VneXZ.

Zn(r -n)L
Since ¢! 1T # 1 for every n € Z, we conclude that

0 Znnt
ij( el Tildt =0, VneZ,

which shows that all the Fourier coefficients of y|;_1 ) vanish. Thus y is zero in the interval
(L—-1,0) and, as before, this implies that p is zero in the interval (-1,0). Hence S is injective,
and thus (5.41) is approximately controllable in time T > 2. [ ]
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Remark 5.62. One can also obtain from the previous proof that, if L = % for some p,q € IN*

coprime, then approximate and exact controllability in time T > 2 are equivalent for (5.41).
Indeed, notice that, when (5.41) is approximately controllable in time T > 2, then 0 ¢ C, M

is invertible, and hence, by (5.68), one has ||RSR_1x”LZ((—l/q,O),C‘i) > |M‘1|;1 %[ 22((=1/4,0),c2)

for every x € L?((~1/g,0),C1), which shows that ||Sx||;2(_1,0,¢c) > |M‘1|;1 lIxll2((-1,0).c) for
every x € L%((~1,0),C), thus giving the exact controllability of (5.41) in time T > 2 thanks
to Lemma 5.58. This agrees with the general result of Proposition 5.47 for commensurable
delays. Moreover, one obtains from (5.69) that the set C is finite, which shows that C = C
and hence conditions 0 ¢ C and 0 & C are equivalent. This proves Theorem 5.51(c)(i) in the
case where A and A, are commensurable, i.e., ﬁ—f e Q.

Remark 5.63. When 0 € C and L ¢ Q, this proof also shows that the kernel of S is the vector
space spanned by the function x(t) = e?’ with ¥ € C chosen as in the proof of the theorem.
Thanks to (5.55), this means that the kernel of E(2)* is the vector space spanned by the
function
eVt
x(t) —\_ _Y(HL)X(—l,—L)(t) :

e

Remark 5.64. When 0 € C, L ¢ Q, and &, € R, one can always choose y € R, obtaining thus
a real-valued nonzero solution to Sx = 0, and hence to E(2)*x = 0. Indeed, notice first that
one can only have 0 € C with a, € Rif a > 0 (in which case < 0), since @ = 0 implies f =0,
which is not possible, and for a < 0, the equality B +a'~t =0 for some complex value of
a'~Limplies that - = a'~L = |a|' L/ (m+21m)(1-L) for some 1 € Z, but such expression cannot
be real for any n € Z since L ¢ Q. Now, when a > 0, it suffices to take ¥ = loga € R and the
conditions required for y in the proof are satisfied.

In order to complete the proof of Theorem 5.51, one only needs to show part (c)(i) for
T > 2A;. Before doing so, let us provide some more properties of the matrix M defined in
(5.60).

Lemma 5.65. Let p,q € IN* be coprime with p < q and set r = q—p. Assume that a = 0 and write
a = |ale'? for some O € (1, . The eigenvalues of the matrix M defined in (5.60) are

-Or . 2mjr

Aj= B+ |a|§ e e, jellql (5.72)
For j € [[1,q]], a right eigenvector v; € C1 =M, ;(C) of M associated with A; is
k _jok ;2mjk\g
v]:(|a|qe ¢ 4 )
k=1
and a left eigenvector w; € My 4(C) of M associated with A; is
1 _k jok _;2mik\g
wjz—(|a| 1ede 4 ) .
q k=1
Moreover, for every j, k € [1,q]], we have wiv; = djy.

Proof. Formula (5.72) for the eigenvalues of M follows immediately from the expression of
the characteristic polynomial of M given in Lemma 5.60.
Let j € [1,q]. For k € [1,p],

— K 1% ; 2k k+9-p _'G(kﬂafp) j 2mitk+q-p)
(Mvj)p =Blalie e @ +|a| e 1
k l% j2nik P _'G(q-p) ;1 25a-p)
:|a|'?e q (/3+|a|q e 1 ):/\j(v]')k,
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5. Controllability of linear difference equations

and, for ke [[p+1,4],

— f)k 2an k—p i O(k=p) lan(k—p)
(Mvj)k:ﬁlaw i 1 +alal T e’ e
ko _j0k ZHJk P ,~9(w) j2ita-p)
=lalt T (B lal ) 2 4w

which shows that Mv; = A;v;, and hence v; is a right eigenvector of M associated with A;.
Now, for k € [[1,q - p]]

1— Qk - 2njk 1 _k+p - O(ktp) _ . 2mj(k+p)

—1 — — 11—
(wiM)k = —Bla|” qe 7e 4 +—dla] 1e T e q
q q

0k Z'M a-p _;04-p) ;2mj(a-p)
“lal e e (Blal T e ) =

and, forkelq—-p+1,4],

1-
w:M), = —Bla qeqelq +—lal 1 e 1 e
! q q

ok _:2mjk ] _ktp=q ;Oktp=q) _;2mj(k+p=q)
q

j0k _;2mjk ap  _;94-p) ;2mj(q-p)
—la|” qe 7e 4 (ﬁ+|a| e 9 e ):/\j(wj)k,
which shows that w;M = A;w;, and hence w; is a left eigenvector of M associated with A;.
2n(/ k)¢
Finally, for j,k €[[1,4]], one evaluates immediately wvj = ZZ 1 e = 6J-k. ]

Let V,W,D € M, (C) be defined by
V' =(Vir)j ke[1,q] W = (Wjk)j ke[ L] D = (Djk)j ke[1q]r
with, for j,k € [1,4]
Vik = (vk)j, Wit =(wj)e,  Djr=A;0j.

It follows from classical results from linear algebra (and also from straightforward compu-
tations from Lemma 5.65) that

M=VDW and V=wl

Hence, if M is invertible, then M~! = VD~!W. One can now provide the following upper
bound on the norm of the inverse of M.

Lemma 5.66. Let p,q € IN* be coprime with p < q, set r = q —p, and let M be given by (5.60). If

a=0and |ﬁ| # ||, then M is invertible and
max (||, |a|™"

IRRLLULE

18]

Proof. By Corollary 5.61, M is invertible if and only if Eq —(-1)7a" # 0, and thus M is
invertible when a # 0 and |ﬁ| # |a|7. In this case, M~! = VD~!W and thus, for j,k €[[1,4],

J

& q 271[
(M_l)jk Z(W) A (wee = |6¥| Z/\fl ’ =

(=1
| |% _1.9% q imf(qj-k) | |] & lgjqk q 2nc(q] K (5.73)
al e Z e a Z e
N - © ;0 jamlr T
1 g:1ﬁ+|a|qelqelq (=1 1 4 lalfe T 15
B
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We claim that, for every z € C such that z9 # 1, we have

- 27l (j—k)
i d:
e 1 Z" ik
mlr 1 4 (5'74)
i 1—2z49
=1 1—ze ¢

where d; i is the unique integer in [[0,q — 1] such that rd; ; + j—k =0 mod g, which is well-
defined since g and r are coprime.

To show that (5.74) holds for every z € C such that z7 = 1, it suffices to show that it
holds for z € C with |z| < 1, since both left- and right-hand sides of (5.74) are meromorphic
functions with simple poles at the g roots of z7 = 1. If z € C is such that |z| < 1, then

el q 1 i 2ml(j-k) s i 2mlrs 20 s 1 i 2nl(rs+j—k) d. 0 ; qzdj’k
E —— = e q z°e 1 = E z E e q =qz ok E 7t — ,
j2nlr 1 _ Zq

=1 1—-ze 1 =1 s=0 s=0 =1 =0
)

- 21l(rs+j—k
where we use that Zzzl e 7 =gqifrs+j—k=0 mod g and is equal to zero otherwise,

and that {se N|rs+j—k=0 mod q} ={d; +tq |t € N}. Hence (5.74) is proved.
Ler\4

Since |ﬁ| # |a|§ implies Bq # (—1)7a’, we have (—W%) # 1. Hence, combining (5.73)

and (5.74), we obtain that

where 1 € Z is the unique integer satisfying rd; + j — k = n; xg; moreover, since d;; €
[0,g-1] and j,k € [[1,9], we have n;; € [[0,r].

Notice that, for j,k € [1,4], % =1+ kq ,and hence n; = { dq]"kJ + 05k, where 95 =1
if j >k and 0j5k =0 otherwise. Thus, for k € [[1,4],

| 1 4 {’%*Jmpk
(M )jk‘_|/3q_(—1)4af|j;|a| p

Since d; ; is defined as the unique integer in [[0,q — 1] satisfying rd; ; +j -k =0 mod q and
r,q are coprime, we obtain that, for fixed k € [1,4]), the map j > d; ; is a bijection between
[1,9]] and [[0,g — 1]. Hence, when |a| >1,

|‘]*1*dj,k

-

=1

! ql] |||ﬂ|q1 & Ly a-i

JX ‘ i rD a9 D of* g
_ Iallﬁl‘“ L-lal B[] jal ||ﬁ|q—|a|| _ Ll
|ﬂq—(—1)’1ar| 1—|a|§|[5|_1 ||ﬁ|— ‘1—(—1)an| h “/3|_

and, similarly, when 0 < |a| < 1,

()< e 5ol < NN i § o
K |- (-1ytar| |7 - (-1)10"] 5

j=1
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which shows that
max (|al,|a|™")

< 7
[

(v,

A similar argument also shows that

q

-1 _ -1
i ’w_jgllfiz(u,;(M )J'k(é 18] 1o

and the result follows since |M‘1 |2 <. /|M‘1 |1 |M‘1 |OO. [

Lemma 5.66 allows one to finally conclude the proof of Theorem 5.51.

Proof of Theorem 5.51(c)(i). Assume that (A;,B) and (A,, B) are controllable, in which
case, according to Remark 5.54, we can assume that A;, A, B, and (A{,A;,) are under the
form (5.49). Since one has already proved that exact controllability does not hold for T < 2,
it suffices to show that, for T > 2, the system is exactly controllable if and only if 0 ¢ C.
Remark 5.62 has already shown the result when L € (0,1) N Q, and thus one is left to prove
only the case L € (0,1) \ Q. Thanks to Lemma 5.58, one is left to show that 0 ¢ C if and
only if S* is surjective or, equivalently, if there exists ¢ > 0 such that the operator S defined
in (5.59) satisfies ||Sx||r2((-1,0),c) = ¢lIXllz2((-1,0),c) for every x € L?((~1,0),C). We write in this
proof a =|a|e'® for some 0 € (-m, 7).
Take L € (0,1) \ Q. Notice first that 0 € C if and only if |ﬁ| = |a|' . Indeed, one has

max (jal,|a] ™)

’

C= {ﬁ + |a|1—Lei(9+2kT[)(l—L) |k c Z},

and, since L is irrational, one immediately computes that C is the circle in C of center f and
radius |a|' L. Hence 0 € C if and only if |ﬁ| =|a|' L.

Let us first treat the case a = 0. Since  # 0, one has 0 ¢ C in this case. We will prove the
exact controllability of (5.41) by showing the surjectivity of S*. Take x € L?((~1,0),C) and
define u € L?((~1,0),C) by

—

Lo k
u(t) = (_k1+)1 x(t+k(1=L)).
= P

Then, for L-1 <t <0, one has S*u(t) = pu(t) = x(t) and, for -1 <t <L -1, one has

S*u(t)=pu(t)+u(t—L+1)

L] =y k

=) (‘ﬁlk) x(t+k(1-L)+ ) %x(t—uuk(l%»
k=0 k=0
FE SERPIRIS

= (‘ﬁlk) x(t+k(1-L))+ (_;)k 1x(t+k(1—L))=X(t),
k=0 k=1

which shows that S*u = x and thus S* is surjective.

Consider now the case a # 0. Suppose that 0 ¢ C, which means that |ﬁ| = o', Let
(pn), (q,) be two sequences of positive integers such that p,, and g, are coprime for every
n € N and % — Lasn— oo. Let r,, = q, — p,. Up to eliminating a finite number of terms

n
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in the sequence, we can assume that |[5| # |a|% for every n € N. Let S, : L?((~1,0),C) —
L?((~1,0),C) be given by

Ex(t)+x(t+p—”—l) if ~Pn i<,

S, x(t) = dn qn
Ex(t)+5x(t+&) if ~1<t<-Pn
qn n

and S : L%((~1,0),C) — L?((-1,0),C) be defined by (5.59). One easily verifies (using, e.g.,
[152, Theorem 9.5]) that, for every x € L?((~1,0),C), one has S,x — Sx as n — co. Since

|ﬁ| # |a|ﬁ for every n € IN, we obtain, from Remark 5.62, that

_11-1
ISuxllL2((<1,0),0) 2 |Mn1|2 Xl 22((-1,0),c)

where M, is given by (5.60) with p and q replaced respectively by p, and q,,. Hence, by
Lemma 5.66,

'n
18] laf®
> 1

ISuxllz2((-1,0,c) = lIxllz2((-1,0),0)

max (|a,|a| ™)

and, letting n — oo,

18]l
IS x[lz2((-1,0),c) = — IIxllz2((-1,0),0)-
max (|al,|a| ™)

which proves that (5.41) is exactly controllable in time T > 2.
Suppose now that 0 € C, i.e., that |ﬁ| = |a|'t. For a,b € C, let Sapb: L?*((-1,0),C) —
L?((~1,0),C) be defined by

bx(t)+x(t+L-1) if —L<t<0,

Sapx(t) =4
‘ {bx(t)+ax(t+L) if —1<t<-L.

In particular, for every A € C, one has S;;, —A =S, 7. Let 0,(S, ) denote the set of eigen-
values of S, ;. Thus A € 0,(S,p) if and only if 0 € 0,(S, ;,_7), which, by the proof of Theorem

5.51(c)(ii), is the case if and only if b-A+a'"t =0 for some complex value of a'L. Hence
0p(S) is the set of all possible values of E+51_L, and, since L is irrational and thanks to the
condition |[5| = |a|' %, we conclude that 0 € m. Hence there exists a sequence (1,,),eN
in 0p(S) such that A, — 0 as n — co. For n € IN, let x,, be an eigenfunction of S associ-
ated with the eigenvalue A, and with [[x,[[;2((_1,0,c) = 1. Hence Sx, = A,x, — 0 as n — +oo,
which shows that there does not exist ¢ > 0 such that [|Sx||;2(-1,0),¢) = ¢I¥llz2((-1,0),c) for every

x € L?((~1,0),C), and thus (5.41) is not exactly controllable. [ |

5.A Alternative proof of Theorem 5.27

The proof of Theorem 5.27 relies on the corresponding result for delay vectors A with com-
mensurable components from Lemma 5.26 — which is proved using the augmented system
from Lemma 5.24 — and on Theorems 5.20 and 5.22, relating the relative controllability
of systems with different delays in terms of their rational dependence structure. When
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(1,1,...,1) > A, one can give an alternative, more direct proof of Theorem 5.27, through
a technique very similar to the one used in Theorem 4.36 to prove a generalization of the
Hale-Silkowski criterion to the case of time-varying matrices A;. We provide below such
alternative proof, which also yields Corollary 5.29.

Theorem 5.67. Let A= (Aq,...,Ay) e M (C)N, Be My m(C), and A= (Ay,...,AN) € (0, +00)N
and suppose that (1,1,...,1) > A. Then X(A, B, A) is relatively controllable in some time T > 0 if
and only if

Span{gﬁl]Bw ' [n]eNQ, In|; <d-1, we Cm} =C. (5.75)
Moreover, in such case, its minimal controllability time Ty.;, satisfies Tpin < (d —1)Anax-

Proof. Let V(A) be defined as in (4.8). It follows from Proposition 4.9 that there exists
he[[1,N]and M € My ;(IN) such that rk M = i, A = M{ for some ¢ € (0, +co)" with rationally
independent components, and V(A) = RanM.

Notice that, since (1,1,...,1) > A, for every n,n’ € INN such that A -n = A -n’, one has
In|; =(1,1,...,1)-n=(1,1,...,1)-n’ = |n’];. We set |[n]5]; = |n|, for every n € NV. Moreover,
for every 0 = (04,...,0y) € V(A), if n,n’ € NV are such that A-n=A-n’,then 6-n=6-n’,
and thus we set 6 -[n], = 6 -n for every n € NV,

For k € N, let

Ay =Span {Eﬁl]

[n] € Ny, [nl; = k}.

Since Apin|nl; <A -n < Ay |n|; for every n € NV, one has, for every T > 0,

T
Span{EBw EeA k< J, we([:m}
max

cSpan (E,Bw ‘ [n]€Na, An<T, weC” (5.76)

T
CSpan{EBw EeA k< J,weCm}.
min

In particular, ¥(A, B,A) is relatively controllable in some time T > 0 if and only if there
exists K € IN such that

Span{ZBw |Z € Ay, k<K, we C"} =",

or, equivalently,
Span{/E\fl\i]Bw ‘ [n]eNp, n|; <K, we Cm} = (5.77)

Define F : V(A) - M,;(C) by

F(0)=) ¢%A;. (5.78)

-

j=1
We claim that, for k € N, Ay = Span {P(@)k | 0e V(A)}. Indeed, notice that

k

— Z ei@-nEn: Z €i9~[n] Z E‘n’: Z ei&[n]’éﬁl]'

nel [m]EN, n'en] [m]EN,
Inly =k In]], =k lInl, =k

N
F(O)k = [zeif’fAj

j=1

186



5.A. Alternative proof of Theorem 5.27

Hence Ay D Span {P(G)k | 0e V(A)}. Let P € M,(IR) be an invertible matrix such that £ = Peq,
where e; denotes the first vector of the canonical basis of R". Then A = MPe,. For k € N,
define f; : R" — M4(C) by

fetv) = Z emMPVE,

nelNV
In|, =k

Hence fi(v) = F(MPv)* for every v € R". One has that, for every n e NV, if k = [[n]Al;, then
it follows from (4.34) that

(v)e mMPv gy, — Z By = Ef}l]
n’e[n],
[n’|, =k

1
R R) f[—R,R]h Ji

(notice that the hypothesis (1,1,...,1) > A is crucial here). Since Span {F(G)k |6 € V(A)} is
closed and contains fi(v) for every v € R", it follows that ’E\f;] € Span {F(@)k | 0 e V(A)} for

every [n] € Ny such that |[n]|; = k, which yields Ay = Span {P(G)k | 0 e V(A)}.

Since F(0) € M;(C) for every 6 € V(A), it follows from Cayley-Hamilton Theorem that
A C U?;é A; for every k € N. That (5.75) is equivalent to the relative controllability of
Y(A,B,A) in some time T > 0 is thus a consequence of the fact that the latter is equivalent to
(5.77) for some K € IN.

In order to obtain the bound on the minimal controllability time from the statement,
assume that (A, B, A) is relatively controllable in time T for some T > 0. Then, by (5.76),
one has

min

Span{EBw

EeAk,ks{ J,weCm}:Cd,
and, since UIL(Z)A““J.A;{ C UZ;(I) Ak, one has

Span{EBw

d-1
Ee UAk, weCm}:Cd,
k=0

which, by (5.76), shows that Span {gﬁ’]Bw | [M]eNA, A-n<(d—1)Apax WE (Em} =C% and
thus X(A, B, A) is relatively controllable in time (d — 1)A .y, which proves that T, < (d -
1)Amax- [ ]
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Annexe A

Résume des résultats de 1a these

A.1 Introduction

A.1.1 Systémes a commutation

Au cours des dernieres décennies, plusieurs travaux de recherche se sont intéressés a des
systemes dont le comportement peut étre décrit par des variables continues et discrétes
en interaction, les systémes hybrides [12,61,75,115,121,158]. A cause de leurs nombreuses
applications, par exemple dans le controle de systemes mécaniques ou de processus indus-
triels, I'industrie automobile, les systemes électriques de puissance, le controle du trafic aé-
rien, les processus chimiques, ou encore les systemes de transport, les systemes hybrides ont
attiré l'attention des chercheurs non seulement en mathématiques mais aussi dans d’autres
domaines, tels que les sciences de I'ingénieur ou l'informatique.

Les systémes a commutation correspondent au point de vue sur les systemes hybrides ou
I'intérét central est la dynamique continue, la variable discrete étant vue comme des modes
ou des sous-systémes qui déterminent 1’évolution de la variable continue. Ses applications
sont a l'origine du trés grand intérét de recherche qui leur a été porté récemment [113,114,
123,158,166]. Mathématiquement, un systéme a commutation dans R peut s’écrire sous la
forme

X(t) = fa(t)(X(t)), teR,, (A.1)

ot1 x(t) est un vecteur dans R? ou, plus généralement, dans une variété M ou dans un espace
de Banach X, fi est un champ de vecteurs pour tout k dans un certain ensemble d’indices
J, et @ : R, — J est une fonction constante par morceaux (avec un nombre fini de discon-
tinuités sur tout intervalle borné), appelée signal de commutation. En général, a n’est pas
completement connu, 'objectif étant donc d’obtenir des propriétés de (A.1) qui soient ro-
bustes par rapport a une certaine classe § de signaux a commutation. Il est aussi important
en pratique de considérer des systemes de controle a commutation, du type

X(0) = fun(x(t)u(r),  tER, (A.2)

ou u(t) € R™ est une entrée de controle.

L'une des principales caractéristiques des systemes a commutation est le fait que ses pro-
priétés peuvent étre assez différentes de celles des sous-systémes isolés x(t) = fx(x(t)). Par
exemple, il est possible que des systemes a commutation composés de sous-systemes asymp-
totiquement stables puissent avoir des trajectoires instables et, inversement, des systémes
instables peuvent parfois étre stabilisés par un choix approprié de signal a commutation.

Méme si la théorie des systémes a commutation s’est considérablement développée, plu-
sieurs questions importantes sur leur comportement demeurent ouvertes, méme dans le cas

189



A. Résumé des résultats de la these

linéaire. Cela est particulierement le cas pour les systéemes avec signaux de commutation
aléatoire et pour les systéemes a commutation en dimension infinie, qui ont été l'objet de
plusieurs travaux de recherche récents [7,17,27,28,76,79,90,111,118,149,169]. Cette these
présente, dans ses Chapitres 2, 3 et 4, de nouveaux résultats sur la stabilité de systémes
a commutation linéaires, en dimension infinie avec des signaux de commutation détermi-
nistes dans les Chapitres 3 et 4, et en dimension finie avec des signaux de commutation
aléatoires dans le Chapitre 2, ou 'on s’intéresse également au probleme de la stabilisation
de systémes de controle a commutation.

A.1.2 Systéemes a excitation persistante

Une classe importante de systémes a commutation, dont ’étude a été la motivation princi-
pale pour cette these, est celle des systémes d excitation persistante. Il s’agit de systemes sous
la forme (A.2) ou le signal de commutation n’affecte que le terme de controle, en l'activant
ou le désactivant. Dans le cadre linéaire, ce type de systeme s’écrit

X(t) = Ax(t) + a(t)Bu(t),  teR,, (A.3)

ou A€ My(R), Be My ,,(R), et @ : R, — {0,1}, ou a : R, — [0,1] si 'on autorise des niveaux
d’activation intermédiaires pour u.

Plusieurs phénomeénes peuvent étre représentés par le signal a, tels que des problemes
de transmission de l’actionneur au systeme, entrainant une action intermittente de la com-
mande u; des parametres dépendants du temps qui affectent l'efficacité de la commande
u, entrainant l'application effective d’'une commande a(t)u(t); 1’allocation des ressources de
controle, choisissant d’agir sur le systéme uniquement dans des certaines fenétres de temps
ou jusqu’a une certaine valeur de la commande ; parmi d’autres situations possibles. Ces mo-
deles sont particulierement utiles dans les systémes controlés par des réseaux [93,101,102].

On fait I’hypotheése que la seule information connue sur a est qu’il appartient a une
certaine classe de signaux de commutation § C L*(IR,[0, 1]). Pour avoir un probléme inté-
ressant du point de vue de la théorie du controle, il est important que la classe § garantisse
une action suffisante du controle u sur le systeme. Une fagon courante de le faire (voir, par
exemple, [46,49,116,126,128,135,164,165]) est de supposer que la classe G est une classe
de signaux a excitation persistante.

Définition A.1. Soient T,y € R} avec T > p. On dit que la fonction a € L*(IR,[0,1]) est un
signal a excitation persistante (T, u) si, pour tout t € R, on a

t+T
L a(s)ds > p. (A.4)

L’ensemble de tous les signaux a excitation persistante (T, u) est noté par G(T, u). La famille
de systemes
x(t) = Ax(t) + a(t)Bu(t), ae€S(T,p), (A.5)

est appelé un systéme a excitation persistante.

La condition d’excitation persistante (A.4) provient de problemes d’identification et de
controdle adaptatif [9-11,37,135], dans lesquels la stabilité asymptotique de l’erreur d’iden-
tification de certains parameétres est équivalente, sous certaines hypothéses de régularité, a
une condition similaire a (A.4). Néanmoins, 'intérét de ’étude des systémes a excitation
persistante va bien au dela de ces probléemes, puisque plusieurs autres modeles issus de
situations pratiques peuvent s’écrire sous la forme (A.5) ou une généralisation de celle-ci,
comme décrit dans [116].
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Une partie importante de la littérature sur les systemes a excitation persistante s’inté-
resse au probleme de leur stabilisation par des retours d’état linéaires u(t) = Kx(t) [39, 45,
49,128]. Il s’agit de savoir si, étant données A € M;(R), Be My ,(R), et T,y € R} avec T > p,
il existe une matrice K qui rend le systeme

X(t) = (A + a(t)BK)x(t) (A.6)

exponentiellement stable, uniformément par rapport a a € §(T, u). Le résultat le plus im-
portant dans ce sens est le suivant, montré dans [49]. Rappelons qu'une paire de matrices
(A,B) € My(R) x My ,,(R) est dite stabilisable s’il existe K € M,, 4(R) tel que x(t) = (A +
BK)x(t) soit asymptotiquement stable, et contrdlable si la matrice de controlabilité C(A, B) =
(B AB A?B .- A"'B)eMyg4,(R) arang plein.

Théoreme A.2 [49, Théoreme 3.2]. Soient A € My(R), Be My ,,(R), et T,y € R} avec T > p.
Supposons que la paire (A, B) soit stabilisable et que les valeurs propres de A aient toutes partie
réelle négative ou nulle. Alors il existe K € M,, 4(IR) et des constantes C,y > 0 telles que, pour
tout a € G(T, p) et toute solution x de (A.6), on a

Ix(t) < Ce 7' x(0)],  VteR..

Le Théoreme A.2 a été montré d’abord dans le cas des paires controlables (A, B) a une
entrée, m = 1, dans [49, Théoréme 3.2], le cas général des systémes a plusieurs entrées avec
la paire (A, B) stabilisable pouvant étre obtenu par la décomposition de Kalman et par une
récurrence sur le nombre d’entrées (voir, par exemple, [46, Théoreme 2.9] et [126, Lemme
B.1]). Dans le cas particulier ou le systeme non-controlé x(t) = Ax(t) est déja stable (pas
nécessairement asymptotiquement), la matrice K peut étre choisie indépendante de T et
p [39]. Le résultat du Théoreme A.2 a été généralisé dans [126] au cas d’un retour d’état
avec retard u(t) = Kx(t — 7(t)). D’autres travaux se sont également intéressés a des retours
d’état sous des formes plus générales [151,164,165,173].

L’hypothese spectrale faite sur A dans ’énoncé du Théoreme A.2 n’est pas nécessaire
pour la stabilisation de systémes linéaires du type x(t) = Ax(t)+Bu(t). Il a été démontré dans
[49, Propositions 4.4 et 4.5] qu’elle n’est pas nécessaire non plus dans le Théoréme A.2 si le
rapport p/T est suffisamment grand, mais, si p/T est petit, il existe des paires stabilisables
(A, B), ou A admet au moins une valeur propre a partie réelle strictement positive, telles que
le systéme (A.5) ne peut pas étre stabilisé asymptotiquement par des retours d’état linéaires.

Une autre question intéressante qui a été traitée dans la littérature est celle de la stabili-
sation de (A.5) a taux de convergence arbitraire. Il s’agit de savoir si, étant donné y > 0, on
peut choisir K de tel sorte que le retour d’état u(t) = Kx(t) rende (A.5) exponentiellement
stable, ses solutions convergeant vers zéro au moins aussi vite que e 7!, Pour les systémes
linéaires du type x(t) = Ax(t) + Bu(t), la stabilisation a taux arbitraire est équivalente a la
controlabilité de la paire (A, B), ce qui est une conséquence du Théoréme de placement de
poles (voir, par exemple, [163, Théoréme 13]). Dans le cas des systéemes a excitation per-
sistante, la réponse a cette question a été donnée dans [49, Propositions 4.4 et 4.5], ou l'on
montre que la stabilisation a taux de convergence arbitraire dépend du rapport u/T.

Proposition A.3 [49, Propositions 4.4 et 4.5].
(a) Soit d € IN*. Il existe p* € (0,1), ne dépendant que de d, tel que, pour tous T,p € R, avec
T > pet u/T > p*, toute paire (A, B) € My(R) x My 1 (R) contrélable, et tout y > 0, il existe
K e My 4(R) et C > 0 tels que, pour tout a € (T, p), toute solution x de (A.6) satisfait

[x(t)] < Ce 7! |x(0)], VteR,.
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(b) 1l existe p, € (0,1) tel que, pour tous T, u € R, avec pu/T < p, et (A,B) € My(IR) x M, 1 (IR)
contrdlable, il existe y > 0 tel que, pour tout K € My (IR), il existe a € G(T, p) et une solution
x de (A.6) pour laquelle t +— e?"|x(t)| n'est pas borné sur R,.

La démonstration de la Proposition A.3(b) dans [49] construit, pour chaque matrice
K e M,, 4(IR), apres une transformation pour se ramener au cas y = 0, un signal a € §(T, p)
a valeurs dans {0,1} qui déstabilise le systeme (A.6). Cette construction utilise le phéno-
mene d’overshoot qui a lieu lors de la commutation entre les sous-systémes x = Ax et X =
(A + BK)x, correspondant a une possible augmentation de la norme d’une solution d’un
systéeme asymptotiquement stable avant qu’elle ne décroisse. Une commutation du sous-
systeme x = (A + BK)x vers x = Ax apres la croissance de la norme due a l’overshoot mais
avant la décroissance due a la stabilité de x = (A + BK)x peut ainsi avoir un effet déstabili-
sant. Les signaux a déstabilisants construits dans cette preuve sont périodiques et oscillent
d’autant plus rapidement que la norme de K est grande.

Cette preuve a conduit a la conjecture, formulée dans [49], que, sous des hypotheses sup-
plémentaires empéchant les commutations trop rapides du signal a excitation persistante
a, il pourrait étre possible d’obtenir des taux de convergence exponentielle arbitraires pour
(A.6). Cette conjecture a été démontrée pour des signaux «a lipschitziens et des systemes en
dimension 2 avec une borne uniforme sur la constante de Lipschitz dans [128, Théoréme
3.1], pour des signaux a valeurs dans {0,1} avec une borne uniforme sur leur variation to-
tale sur tout intervalle de temps de longueur T dans [46, Théoreme 4.3], et dans le cas ou
rk B = d dans [46, Théoréme 4.4].

Le fait que les signaux a excitation persistante déstabilisant (A.6) construits dans la
preuve de la Proposition A.3(b) dans [49] soient des signaux a commutation assez rapide
et a des instants de temps tres spécifiques a également conduit a la conjecture que, si l'on
considere (A.5) avec des signaux a issus d’un processus aléatoire, sous des hypotheses assez
raisonnables sur celui-ci, ce serait possible de retrouver la stabilisation presque sure de (A.6)
avec taux de convergence exponentielle arbitraire. L’étude de cette conjecture est la motiva-
tion principale du Chapitre 2 de cette these, qui fait d’abord une étude du comportement
asymptotique de systemes a commutation avec signaux de commutation aléatoires, carac-
térisant leurs exposants de Lyapunov par le Théoréme ergodique multiplicatif d’Oseledets
appliqué a un systeme associé en temps discret, avant de montrer un résultat de stabilisation
de systemes de controle a commutation aléatoire avec des taux de convergence arbitraires,
ce qui donne en particulier une réponse positive a cette conjecture. Un résumé des résultats
du Chapitre 2 est donné dans la Section A.2.

Malgré la vaste littérature sur les systéemes a commutation en dimension infinie [7,79,
92,111,124,149], peu de travaux se sont intéressés a des systémes a excitation persistante en
dimension infinie [47,91]. En particulier, [91] analyse la stabilité de systemes du type (A.6)
avec A un opérateur (typiquement non-borné) sur un espace de Hilbert H qui engendre un
semi-groupe fortement continu de contractions, B € £(U,H) pour un certain espace de Hil-
bert U, K = —B", et @ un signal a excitation persistante, montrant qu’une inégalité d’obser-
vabilité généralisée est suffisante pour la stabilité exponentielle de (A.6) et qu'une propriété
de continuation unique est suffisante pour la convergence faible des solutions de (A.6) vers
zéro. Des résultats de stabilité de (A.6) pour des signaux «a satisfaisant d’autres conditions
plus générales que celle d’excitation persistante (A.4), garantissant toujours une action suf-
fisante du controle sur le systeme, sont aussi donnés dans [91, 92]. Par contre, plusieurs
problemes restent ouverts, notamment le cas des opérateurs de controle non-bornés, des
semi-groupes qui ne sont pas des contractions, ou des dynamiques sur des espaces de Ba-
nach.

Motivé par ces problemes ouverts en dimension infinie, le Chapitre 3 de cette these
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s’intéresse a la stabilité du systéme d’équations de transport linéaires

deui(t, x) + dyutj(t, x) + aj(t) xi(x)u;(t,x) =0,  t>0, xe[0,L;], i €[1,N],
dui(t, x) + dyu;(t, x) = 0, t>0, x€[0,L;], i €[Ns+1,NT,
N
A7
ui(t,O):Zmijuj(t,L]-), t>0,i€[1,N], (A7)
)
u;(0,x) = u; o(x), x€[0,L;], i €[1,N],

ou, pour i € [1,N]], x; est la fonction caractéristique d’un intervalle [a;,b;] C [0,L;] avec
a; <bj, a; est un signal a excitation persistante, et la matrice M = (m;;); jc[1,n] € My (R), qui
détermine les conditions aux bords, est appelée matrice de transmission. Le résultat principal
du Chapitre 3 est le Théoréme 3.1, qui donne des conditions suffisantes pour la stabilité de
(A.7) en termes de la matrice de transmission et de la rationalité des rapports de longueurs
Li/L; pouri,j € [1,N]. Un résumé des résultats du Chapitre 3 est donné dans la Section A.3.

A.1.3 Systemes d’équations aux dérivées partielles sur des réseaux

L’étude du systeme d’équations de transport traité dans le Chapitre 3 est motivé non seule-
ment par I’étude des systemes a excitation persistante en dimension infinie mais également
par le fait qu’il s’agit d’'un modele tres simple de systéme multi-corps. Il s’agit de systemes ou
cordes, membranes ou plaques interconnectées sont décrites par des équations aux dérivées
partielles sur plusieurs domaines couplés, qui ont été beaucoup étudiés depuis les années
1980[4,5,119,120,137,138]. Cette activité de recherche est motivée par les applications des
systemes multi-corps et les questions mathématiques intéressantes qu’ils soulévent (voir,
par exemple, [6,110] et leurs références).

Un cas particulier tres important, qui comprend le systeme d’équations de transport
étudié dans le Chapitre 3, est celui des systémes d’équations aux dérivées partielles sur
des réseaux unidimensionnels [35, 63]. Il s’agit de systemes d’EDPs sur des domaines uni-
dimensionnels, chaque domaine étant identifié a une aréte d’un graphe, les interactions
entre les EDPs ayant lieu aux nceuds du graphe. Malgré la simplification provenant de la
dynamique unidimensionnelle dans chaque aréte, I’analyse de ces systémes est loin d’étre
triviale a cause des interactions aux nceuds. Par exemple, [63, Corolaire 5.38] montre que
la controlabilité approchée d’un systeme d’équations d’ondes sur un réseau étoilé, controlé
par un contrdle de Dirichlet dans un de ses nceuds extérieurs et avec des conditions de
Dirichlet homogenes sur les autres, est équivalente a 'irrationalité de tous les rapports de
longueurs de deux arétes non-controlées différentes. La topologie du réseau peut aussi avoir
une influence sur le comportement du systéeme, comme l'illustre [48, Théoreme 5.16], ou
l'on montre qu’'un systeme d’équations d’'ondes sur un réseau amorti dans ses nceuds exté-
rieurs est exponentiellement stable si et seulement si le réseau est un arbre et tous les nceuds
extérieurs sont amortis sauf au plus un.

Plusieurs types de systéemes d’EDPs sur des réseaux ont été traités dans la littérature,
comme les systémes d’équations des poutres d’Euler-Bernoulli [8, 130, 157], d’équations
d’ondes [2, 25,62,63,139,176], de lois de conservation [24, 145], ou d’équations de Schro-
dinger [26, 98]. Dans plusieurs cas, ’analyse n’est faite que pour certaines topologies de
réseau, comme les réseaux étoilés (des réseaux avec un noeud central appartenant a toutes
les arétes) [62,79] ou les arbres (des réseaux sans cycles) [2,26,98,145], mais, malgré cette
simplification topologique, ces systémes présentent encore plusieurs phénomenes intéres-
sants dus a la structure du réseau.
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L’analyse du systeme (A.7) dans le Chapitre 3 est faite grace a une formule explicite pour
ses solutions, obtenue a travers la méthode des caractéristiques et un argument itératif. En
effet, on remarque que toute solution réguliere de (A.7) satisfait, pour i € [1,N], x € [0,L;],
ett>x,

u;(t,x) = u;(t—x,0)e” Jy ailt=s)xi(x=s)ds (A.8)

ou x; =0 pour i € [Ny +1,N], avec une formule similaire pour exprimer (¢, x) en fonction
de la condition initiale u; ; lorsque 0 < t < x. En utilisant la troisieme équation de (A.7), on
obtient ainsi que, pour t > L.,

N L
M,'(t, 0) = Zmijuj(t - L], O)E_IOJ aj(t—s))(]-(L]-—s)ds. (A9)
j=1

La formule explicite pour u;(t,0) est obtenue en itérant (A.9) afin de remonter dans le temps
et exprimer u;(t,0) en fonction des conditions initiales u;, j € [1,N], la formule explicite
pour u;(t,x) pouvant étre obtenue a partir de celle-ci et de (A.8).

On remarque également que la fonction v : R, — RN définie par v(t) = (u;(t, O))ie[[LN]] €
RV satisfait

v(t) = Aj(t)V(t—Lj), (A.10)

1=

(/)

ou la matrice A;(t) € My(RR) est définie par Aj(t) = (akg(t) Ul

)k,éelll,N]]) avec ay,(t) = 0 pour
{+jet agj)(t) = My exp(—fOLj aj(t—s)x;(Lj —s)ds). L'équation (A.10) est appelée une équa-
tion aux différences. Motivé par le fait que d’autres systemes d’EDPs hyperboliques sur des
réseaux plus généraux que (A.7) peuvent également s’exprimer comme des équations aux
différences du type (A.10) et que les techniques utilisées dans le Chapitre 3 peuvent aussi
s’appliquer a des équations aux différences plus générales, les Chapitres 4 et 5 de cette these
s’intéressent, respectivement, a ’analyse de la stabilité de (A.10) et ses conséquences pour
des systémes de transport et d’ondes sur des réseaux, et a I’étude de la controlabilité d’un
systeme d’équations aux différences.

A.1.4 Equations aux différences

L’analyse des équations aux différences autonomes a été 1’'objet de plusieurs travaux de re-
cherche depuis les années 1970 [14, 60, 64, 84, 94, 129] (voir aussi [86, Chapitre 9] et ses
références) et jusqu’a nos jours [48,87,127,132]. Il s’agit de I’étude des équations du type

N
x(t):Zij(t—Aj), t>0, (A.11)
j=1

avec x(t) € C%, et, pour j € [1,N], Aj € My(C) et Aj > 0. On considéere comme état du sys-
teme la fonction x; = x(t +-)[_5__ o), qui évolue donc dans un espace de dimension infinie.
Ce systéme peut étre étudié dans plusieurs espaces fonctionnels différents, tels que les es-
paces de Lebesgue LP, les espaces de Sobolev WP, ou les espaces €, avec possiblement des
conditions de compatibilité a prescrire pour garantir la régularité voulue. Dans ce qui suit,
nous considérons l’espace de fonctions continues €°.

La stabilité de (A.11) a été étudiée par des méthodes spectrales et en utilisant des trans-
formées de Laplace, conduisant a des critéres de stabilité a Ay,..., Ay et Aq,..., Ay fixés,
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comme ceux de [60, 86,94]. Cependant, si I'on peut montrer assez aisément que cette sta-
bilité est robuste par rapport a des perturbations dans les matrices Ay,...,Ay, la situa-
tion est assez différente par rapport a des perturbations sur les retards Ay,..., Ay, comme
constaté dans [94, 129, 134], puisque des perturbations dans les retards peuvent changer
drastiquement la stabilité de (A.11). Le résultat suivant, connu sous le nom de critére de
Hale-Silkowski, donne un critere de stabilisation robuste par rapport a des perturbations
sur les retards, mettant aussi en évidence un lien entre une telle robustesse et les relations
d’irrationalité entre les retards.

Théoréme A.4 [14, Théoreme 5.2]. Soient Ay,...,Any € M4(C). Les affirmations suivantes sont
équivalentes.

(a) Onapys(A)<1,ou
N

A) = ma e9iA A.12
pus(A) P v ]; j (A.12)

(b) Il existe Ay,...,AN € (0,+00) rationnellement indépendants tels que (A.11) est uniformé-
ment asymptotiquement stable.

(c) Il existe A = (Ay,...,Ay) € (0,+00)N et un voisinage V de A dans (0,+oco)N tels que, pour
tout L=(Ly,...,Ly) €V, le systéme

j=1
est uniformément asymptotiquement stable.
(d) Pour tous Ay,...,AN € (0,+00), (A.11) est uniformément asymptotiquement stable.

La propriété (c) du Théoreme A.4 est appelée stabilité forte locale de A.11, et (d) est ap-
pelée stabilité forte globale, ou tout simplement stabilité forte. L’équivalence entre (c) et (d) a
été démontrée par Jack K. Hale dans [82], le théoréeme complet étant par la suite montré par
Richard A. Silkowski dans [159]. Ce résultat a été généralisé a des situations ou l'on a une
structure de dépendance rationnelle des retards dans [132] et a des matrices A; dépendantes
du temps dans [48,136]. Le cas des équations aux différences avec retards dépendants du
temps a aussi été traité, par exemple, dans [15].

L'une des motivations pour 1’étude des équations aux différences (A.11) est le lien entre
celles-ci et les équations différentielles fonctionnelles neutres du type

d N
= x(t)—Zij(t—A]') = Lx,, (A.13)
]:

ou x; = x(t+ ~)|[_r,0], r > maxje,. Ny Aj, et L: CO([-r,0],C%) — C? est un opérateur linéaire
borné. Plusieurs résultats sur (A.13) peuvent étre obtenus a partir de propriétés de (A.11).
Par exemple, [86, Chapitre 9, Théoremes 7.1 a 7.3] donnent des propriétés des orbites et des
ensembles w-limites des équations du type (A.13) valables lorsque I’équation aux différences
associée (A.11) est fortement stable. Il y a aussi des liens entre les spectres des semi-groupes
engendrés par (A.11) et (A.13), comme décrit dans [94], qui montre en particulier que la
stabilité exponentielle de (A.11) est une condition nécessaire pour la stabilité exponentielle
de (A.13).
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Une autre motivation pour 1’étude de (A.11) est le fait que plusieurs systémes d’équa-
tions aux dérivées partielles hyperboliques peuvent s’écrire sous cette forme. Il s’agit d’'une
approche classique pour 1’étude des EDPs hyperboliques, basée sur la méthode des caracté-
ristiques, qui est utilisée dans la littérature depuis au moins les années 1960 [33, 34, 54,74,
133,160] et jusqu’a présent [48,56,57,70,79,106].

Motivé par les résultats sur les équations aux différences autonomes et ses applications,
le Chapitre 4 de cette these s’intéresse a I’équation aux différences non-autonome

N
x(t) = ZAj(t)x(t—Aj), (A.14)

j=1

ou 4; : R — My(C) pour j € [1,N]. Grace a une formule explicite pour ses solutions, qui
généralise celle obtenue dans le Chapitre 3 pour (A.7), nous caractérisons le comporte-
ment exponentiel de (A.14) en termes de certains coefficients matriciels dépendants du
temps, prenant également en compte la structure de dépendance rationnelle des retards
Aq,...,AN. Nos résultats généralisent le critere de Hale-Silkowski, y compris sa généra-
lisation au cas de retards satisfaisant une structure de dépendance rationnelle considéré
dans [132], caractérisant la stabilité exponentielle de (A.14) uniformément par rapport a
A= (Ay,...,Ay) € L°(R, ) pour un certain ensemble borné non-vide 1 ¢ M4(C)N. Grace
a des transformations d’EDPs hyperboliques a coefficients variables dans le temps en équa-
tions aux différences non-autonomes, nous appliquons nos résultats a I’analyse de stabilité
de systemes d’équations de transport et d’ondes sur des réseaux. Un résumé des résultats du
Chapitre 4 est donné dans la Section A.4.

Les équations aux différences et les équations différentielles fonctionnelles neutres ont
également été traitées dans la littérature du point de vue de la théorie du controle [87, 88,
140,141,143,154], auquel cas on s’intéresse a des systemes du type

x(1)= Y Ajx(t-Aj)+Bu(t) (A.15)

=

=1

ou a une équation différentielle fonctionnelle neutre controlée correspondante. Dans (A.15),
u(t) € C" représente le contrdle et B € M ,,,(C).

L'un des problémes considérés dans la littérature pour ce type de systéme est la stabili-
sation forte par des retours d’état linéaires du type u(t) = Z;il Kjx(t = Aj). Il a été montré
dans [87] que cette propriété est équivalente a l’existence, pour tous Li,...,Ly € (0, +c),
d’un € > 0 pour lequel on a

N
tk|B 1dg-) Ajei|=d
j=1
pour tout A € C avec Re A > —¢, une condition qui rappelle le critére de controlabilité de
Hautus (voir, par exemple, [163, Lemme 3.3.7]). Une condition correspondante a également
été donnée dans [87] pour les équations différentielles fonctionnelles neutres controlées.
La controlabilité de (A.15) est aussi un probléme qui suscite beaucoup d’intérét. Puisque
la dynamique de (A.15) a lieu dans un espace de dimension infinie, plusieurs notions diffé-
rentes de controlabilité peuvent étre introduites, telles que la controlabilité exacte, appro-
chée, spectrale, ou relative [51,154].
La controlabilité relative consiste a controler uniquement I’état final x(T) € C%, a 1a place
de tout I'état x7 = x(T + ')|[—Amax,0)' Cette notion a été introduite pour étudier des systemes
avec un retard dans le terme de controle [19,51,105,142], ayant ensuite été utilisée aussi
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pour des systemes avec retard dans 1’état [66, 148]. Le critére de controlabilité relative sui-
vant a été donné dans [148] pour caractériser la controlabilité relative d’un cas particulier
de (A.15).

Théoreme A.5 [148, Théoreme 4]. Considérons I'équation aux différences controlée
x(t) =x(t—1)+ Ax(t — A) + Bu(t), (A.16)

o A € N, A e My(C), et Be My ,,(C). Supposons que tk B =m € [1,d]. Soit T € IN. Alors les
affirmations suivantes sont équivalents.

(a) Pour tout xq : [-A,0) — C% et x; € €, il existe u : [0, T] — C™ tel que 'unique solution x
de (A.16) avec condition initiale x( et controle u satisfait x(T) = x;.

(b) Ona T = Tyq, et
rk(B AB A2B .- AqB) —d,

ou Tmin:[%—l—‘/\etq:%:[%—l-l.

D’autres notions de controlabilité pour (A.15) sont aussi traitées dans la littérature, par
exemple dans [141, 154].

Le Chapitre 5 de cette these s’intéresse a la controlabilité de (A.15). On traite d’abord
a la controlabilité relative, que I'on caractérise dans quelques espaces fonctionnels a l'aide
d’une formule explicite pour les solutions de (A.15), généralisant celle du Chapitre 4 pour
(A.14). On compare également la controlabilité relative pour des retards différents en fonc-
tion de leur structure de dépendance rationnelle, caractérisant aussi le temps minimal pour
la controlabilité relative. Ces résultats contiennent le Théoréeme A.5 comme cas particu-
lier. La contrdlabilité exacte et approchée de (A.15) dans I'espace L?((—Amayx, 0), C%) est aussi
I'objet du Chapitre 5, qui les étudie d’abord pour des retards commensurables avant de
les caractériser completement pour des systemes en dimension deux avec deux retards et
un controle, sans I’hypotheése de commensurabilité des retards. Un résumé des résultats du
Chapitre 5 est présenté dans la Section A.5.

A.2 Exposants de Lyapunov pour systemes a commutation aléa-
toires en temps continu et applications a la stabilisabilité de
systemes de controle

A.2.1 Systémes a commutation aléatoires en temps continu

Motivé par le probleme de la stabilisation a taux arbitraire de systémes a excitation per-
sistante décrit dans la Section A.1.2 et ’étude des processus de Markov déterministes par
morceaux [17, 27, 29, 65], le Chapitre 2 s’intéresse a 1’analyse de la stabilité de systémes
linéaires a commutation du type

x(t) :Aa(t)x(t), (A.17)

ou N,d € IN*, Ay,..., Ay € My(R), et le signal de commutation a appartient a la classe P
des signaux a valeurs dans N, continus a droite et constants par morceaux (avec un nombre
fini de discontinuités sur chaque intervalle de temps borné). Pour x, € R? et a € P, 'unique
solution de (A.17) avec condition initiale x( et signal de commutation « est notée ¢.(-;x¢, a).

Soient M € My (R) une matrice stochastique (i.e., Z;il M;; =1 pour touti € N et M;; >0

pour tous i,j € N), p € RN un vecteur de probabilité (i.e., p; > 0 pour tout i € N et Xﬁl pi=
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1), vu comme un vecteur ligne dans M; y(IR) et satisfaisant pM = p, et py,..., yun des mesures
de probabilité boréliennes sur R} a espérance finie (étendues a IR, de fagon canonique).
On choisit 1’état i, € N aléatoire selon la loi de probabilité p. Pour n € IN* et iy,...,i, € N,
ti,...,ty—1 € IR, construits, on choisit le temps ¢, € R, aléatoire selon laloi y; et1’état suivant
ins1 € N est choisi selon la loi (M; ;)jcn définie par la i,-éme ligne de la matrice M.

Cette construction définit une loi de probabilité IP dans I'espace Q = (N x R, )N muni
de la tribu produit provenant de la tribu des boréliens dans R, et de la tribu de toutes
les parties de N, déterminant aussi un processus de Markov a temps discret dans Q (cf.
Définition 2.1 et Proposition 2.2). A @ = (instn)yey € Q, on associe le signal a commutation
a(w) € P qui vaut i, sur l'intervalle [ZZ;% tk» 2_g— tx) pour tout n € N*. L'application & : QO —
P est définie pour presque tout w € Q) (cf. Proposition 2.4 et Définition 2.5) et 'on considere
(A.17) comme un systeme a commutation aléatoire avec signaux de commutation a(w). Pour
xo € R et presque tout w € Q, on définit @,.(-;xy, ) = Pc(-x, a(w)).

En général, ¢, ne définit pas un systeme dynamique aléatoire (dans le sens de [13]) avec
la translation en temps usuelle 0, sur Q) satisfaisant a(60,w)(s) = a(w)(t + s) pour t,s € R,
et presque tout w € Q (cf. Exemple 2.6), puisque cette translation en temps ne préserve
pas la mesure IP. Cela empéche I'application du Théoréme ergodique multiplicatif d’Osele-
dets [13, Théoreme 3.4.1] pour pouvoir analyser le comportement asymptotique du systeme
dynamique aléatoire (A.17). La stratégie pour surmonter cette difficulté est d’étudier un sys-
teme associé en temps discret.

A.2.2 Systéme associé en temps discret et Théoreme ergodique multiplicatif

On définit I'application @4 : N x RY x QO — R¥ pour n € N, x5 € R?, et presque tout
W = (iyt,);2; Par @rg(n;xp,w) = %(Z,’Ll tk;xo,a)), avec la convention t; = 0. Il s’agit de
ne regarder la dynamique de (A.17) qu'aux instants de temps correspondant aux commuta-
tions de a(w) (certaines de ces commutations pouvant étre triviales, puisque I'on peut avoir
i,41 = i, pour certains n € IN¥). L'application ¢,q représente ainsi la solution du systeme a
commutation en temps discret

Xppq = €ty (A.18)
avec condition initiale x.

Le principal avantage dans 1’étude du systéme a temps discret (A.18) par rapporta (A.17)
est que, puisque (i,,t,);~; est un processus de Markov a temps discret et pM = p, la transla-
tion en temps discret 0 : (O — () définie par O((i,, t,);~1) = (int1,tn+1)5; Préserve la mesure
IP, et ainsi ¢4 définit un systéme dynamique aléatoire a temps discret sur Q, puisque cette
application satisfait la propriété de cocycle

Qra(n+m;xg, @) = Qrq(1; Qg (M; x9, 0), 0™ (w)), Yn,melN, Vxq € RY, presque tout w € Q,

(cf. Propositions 2.13 et 2.19).
L’analyse du comportement asymptotique de (A.17) et (A.18) est faite a travers leurs
exposants de Lyapunov, définis pour x, € R \ {0} et presque tout w € Q par

. 1
Ard(Xp, w) = limsup ;108|<Prd(”}x0; w)l,

n—-oo

. 1
Arc(xp, w) = limsup n log |(Prc(t; xg, w)|.

t—o0

Le lien entre A4 et A,. est donné par le résultat suivant.
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Théoréme A.6 (Théoréme 2.26). Pour tout xo € R \ {0} et presque tout w € Q, on a
Ard (X0, w) = m(w)Arc(xp, ),

o m(w) est défini pour w = (i, t,);", par

n
)= fim 1t

k=1
et cette limite existe et appartient a (0,+o0) pour presque tout w € Q).

La valeur de m(w) peut étre caractérisée en termes des lois de probabilité p et uy,..., un
(cf. Proposition 2.25). En particulier, si 0 est ergodique par rapport a la mesure IP (cf. Pro-
position 2.17), m est constante presque partout et vaut

"= Zplf td i (t) (A.19)

Puisque ¢.q définit un systéme dynamique aléatoire en temps discret, on peut carac-
tériser le comportement asymptotique du systeme a temps discret (A.18) par le Théoreme
ergodique multiplicatif d’Oseledets et, grace au Théoreme A.6, cela peut étre utilisé pour
caractériser le comportement asymptotique du systéeme a temps continu (A.17). On obtient
ainsi le résultat suivant.

Théoréme A.7 (Théoréme 2.31). Il existe un sous-ensemble Q C Q invariant par O et de mesure
totale tel que, pour tout = (i, t,);-; € Q,

1/2n
.o . AT ¢t .
(a) la limite W(w) = lim,,_, (e it At it oA tl)

positive;

existe et est une matrice définie

(b) il existe un entier q( ) € d et q(w) sous-espaces vectoriels Vi(w),..., Vy(w)(w) de dimensions

respectives di(w) > -+ > dy()(w) tels que
Vo(w)(@) €+ C Vi(w) = RY,
et M Vi(w) = Vi(0(w)) pour tout i € g(w);

(c) pour tout xo € RY \ {0}, les exposants de Lyapunov Aq(xo, ) et Awc(xo, w) sont des limites,
ie.,

. 1
/\rd(xOl w) = r}l_{lc}o ; IOg |(prd(n;x01 a))|,

1
/\rc(xOIw) = tll)n;?logkprc(t;x&w)l ’

(d) il existe des nombres réels /\‘f(a)) > > /\3(0))(“)) et Aj(w)>---> /\Z(w)(w) tels que, pour tout
i€q(w),

Ard (X0, ) = /\?(ﬂ)) = Ai(xg,0) = Aj(0) &= x € Vi(w)\ Vi1 (w),

199



A. Résumé des résultats de la these

d
(e) les valeurs propres de W (w) sont M@ 5 s e’\q(m)(“’);

(f) 9(6(w)) = q(w) et, pour i € g(w), d;(8(w)) = dj(w), AT (B(w)) = A (@), et A{(B(w)) = Af(w);

(g) si O est ergodique, q est constante sur Q, ainsi que d;, )\?, et Aj pouri€q.

Les résultats qui concernent le systéme a temps discret (A.18) sont obtenus directement
par une application du Théoreme ergodique multiplicatif d’Oseledets a ce systéme, et ceux
pour le systéme a temps continu (A.17) proviennent du Théoreme A.6. Ainsi, méme si @,
ne définit pas un systeme dynamique aléatoire en temps continu en général, les conclusions
du Théoréeme ergodique multiplicatif d’Oseledets restent vraies pour ce systeme.

Dans le Chapitre 2, on caractérise également les exposants de Lyapunov maximaux /\?

et A{, que l'on note respectivement Ad et AS .

Corolaire A.8 (Corolaire 2.35). Supposons que O est ergodique. Alors AS,, et A3 sont cons-
tants presque partout sur Q) et satisfont

1
d b Ai tn A,' t . (o]
A< nlenng*;jo log |einfr - it | dP((ig, 1)52.)), (A.20)
/\C — /\?nax
max m 4

ot m est donné par (A.19). En particulier, si
il existe n € N" tel que fQ log|eAint"---eA"1 h | AP((i, tx)pey) <0, (A.21)

alors les systémes (A.17) et (A.18) sont presque surement exponentiellement stables.

Si en plus il existe r > 1 tel que fIR+ t"dp;(t) < oo pour tout i € N, alors (A.20) est une égalité
et (A.21) est une condition nécessaire et suffisante pour la stabilité exponentielle presque sure de
(A.17) et pour celle de (A.18).

A.2.3 Application a la stabilisation de systemes de contrdle

Le Corolaire A.8 est utilisé, dans la Section 2.6, pour étudier la stabilisation par retour d’état
linéaire du systeme de controle a commutation

x(t) :Ax(t)+Ba(t)ua(t)(t), (A.22)

ou x(t) e R, A € My(R), a : R, — N est un signal de commutation aléatoire comme avant, et,
pour j €N, uj(t) € R™ pour un entier mj €N et B; € Md,m]_(IR). Cette étude est motivée par
I'analyse de la stabilisation des systemes a excitation persistante présentée dans la Section
A.1.2,le systeme (A.22) pouvant s’écrire sous la forme (A.3) dans le cas particulier ou N = 2,
By =B, B, =0, u; = u, et que l'on considere que a prend ses valeurs dans {0,1} a la place
de {1,2}. Pour simplifier I’étude, on suppose que la matrice M est irréductible, et ainsi le
vecteur de probabilité p satisfaisant pM = p est unique et 0 est ergodique par rapport a la
mesure [P. Le résultat de stabilisation obtenu a partir du Corolaire A.8 est le suivant.

Théoreme A.9 (Théoreme 2.36). Soient A € My(RR) et, pour j € N, B; € Md]mj(IR) pour un

certain m; € IN* et V; = Ran €(A, B;). Supposons que V1 ®---@®Vy = RY. Alors, pour tout A € R,
il existe des matrices Kj € My, 4(R), j € N, telles que I'exposant de Lyapunov maximal AL,y du
systéme a commutation aléatoire a boucle fermée

X(t) = (A + Ba(w)(t) Ka(w) (1)) x(t)

satisfait A5, (w) < A pour presque tout w € Q).

max

200



A.3. Equations de transport avec amortissement persistant sur un réseau

La démonstration de ce résultat repose sur le Corolaire A.8 et sur le fait que, pour une
paire de matrices (A, B) € M;(RR) x My ,,(IR) controlable et tout y > 1, il existe K € M, 4(IR)
telle que |e(A+BK)t| < Cyte™7!, avec L € N ne dépendant que de la dimension d et C > 0 ne
dépendant que de A, B, et d [42, Proposition 2.1]. En particulier, il montre que, dans le cas
du systéme (A.3) avec a un signal de commutation aléatoire selon le modeéle précédent et
a valeurs dans {0,1}, on peut obtenir une stabilisation presque sure a taux de convergence
arbitraire, ce qui est en contraste avec les systémes a excitation persistante déterministes
(A.5). Cela confirme l'intuition que les signaux de commutation déstabilisant (A.6) dans
le cadre de la Proposition A.3(b) sont trés particuliers et correspondent a un ensemble de
mesure nulle. Un lien plus précis entre (A.22) et (A.5) est établi dans la Remarque 2.38.

A.3 Equations de transport avec amortissement persistant sur un
réseau

Le Chapitre 3 de cette theése s’intéresse au systeme d’équations de transport

ot (t,x) + dyu;(t, x) + a;(t) xi (x)u;(t,x) = 0, t>0,x€[0,L;], i €[[1,Ny4],
dyui(t,x) + dyu;(t,x) = 0, t>0,xe[0,L;], ie[Ns+1,N],
N
A.23
”i(tlo)zzmijuj(tij), t>0,i€[1,N], ( )
i=1
u;(0,x) = u;(x), x€[0,L;], i € [1,N],

ou N; € IN est le nombre d’équations de transport amorties et, pour i € [[1,N;]], x; est la
fonction caractéristique d’un intervalle [a;,b;] C [0,L;] avec a; < b; et ; est un signal a ex-
citation persistante dans §(T, u) pour certaines constantes T,y € R} avec T > u. La matrice
M = (m;)i jieq1,n] € Mn(R) détermine les conditions aux bords et est appelée matrice de
transmission. Ce systeme peut étre vu comme un systéeme défini sur un graphe, avec un seul
neceud central et N arétes orientées reliant ce noeud a lui-méme (cf. Figure 3.1). Son étude est
motivé d’une part par l'analyse de systemes a excitation persistante en dimension infinie,
introduite dans la Section A.1.2, et, d’autre part, par ’analyse de systemes d’EDPs sur des
réseaux, introduite dans la Section A.1.3.

Le résultat principal du Chapitre 3 est le théoréme suivant.

Théoreme A.10 (Théoreme 3.1). Supposons que N > 2, Ny > 1, [M|pn < 1, m;j = 0 pour tous
i,j € [1L,N], et qu’il existe i,, j. € [1,N] tels que Li/L; ¢ Q. Alors, pour tous T,u € R, avec
T > p, il existe C,y > 0 tels que, pour tout p € [1,+00], toute condition initiale u; o € LP(0,L;),
i € [1,N], et tout choix de signaux a; € §(T, p), i € [1,Ny]l, la solution correspondante de (A.23)
satisfait

N N
Z””i(t)“LP(O,L,») <Ce Z,||ui'0||LF(O,L,~)’ VteR,.
o1 i1

A.3.1 Existence et unicité des solutions

Avant de montrer le Théoreme A.10, le Chapitre 3 montre l’existence et l'unicité des solu-
tions de (A.23) dans l’espace de Banach X, = ]_[fil LP(0,L;) pour p € [1,+00) (le cas p = +o0
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est traité séparément dans la Remarque 3.26). Cela est fait en écrivant (A.23) sous la forme
Ny
+) ai(Biz(t)
i=1

ou zg = (ug,,---,Un,0), 2(t) = (ur(t,7),..., un(t,-)), Vopérateur A : D(A) C X, — X, est défini
par

N N
D(A) = (ul,...,uN)e]_[WLp(O,L,-) Vie[1,N], u,-(O):Zmijuj(Lj) ,
i=1 =1

du du
A(ul,...,uN):( dxl ooy d}i’\r)

et, pour i € [[1,Ny]|, B; € £(X,) est défini par
B;(uy,...,un)=1(0,...,0,—x;u;,0,...,0),

avec le terme —x;u; dans la i-éme composante. L'existence et l’unicité des solutions ont lieu
dans le sens suivant.

Théoreme A.11 (Théoreme 3.5). Soient p € [1,+00) et a; € L°(RR,[0,1]) pour i € [1,N4]. II
existe une unique famille d’évolution {T(t,5)};»s»0 d’opérateurs bornés dans X, telle que, pour
tous s > 0 et zg € D(A), t — z(t) = T(t,5)zg est 'unique fonction continue satisfaisant z(s) = z,
z(t) € D(A) pour tout t > s, z est dérivable pour presque tout t >s, z € L5 ([s,+00),X,), et

loc
2(t) = Az(t) + Zfi"l a;(t)B;z(t) pour presque tout t >s.
Ce théoréme est montré dans ’Appendice 3.A, ou l'on rappelle également la définition

d’une famille d’évolution. On considére également la fonction continue t — T(t,5)z; comme
une solution de (A.23) méme dans le cas ou zg € X, \ D(A).

A.3.2 Formule explicite

Apres une discussion sur l'origine et 'importance des hypotheses du Théoreme A.10, le
Chapitre 3 établit, dans la Section 3.3, une formule explicite pour la solution de (A.23) en
termes des conditions initiales u; ¢, i € [1,N]|, et de certains coefficients obtenus a partir
de la matrice M et des signaux «;, i € [1,Ny]. Cette formule est montrée d’abord dans le
cas d’un systéme sans les termes d’amortissement (cf. Théoréeme 3.15), ou les notations sont
plus simples, avant de passer au cas général, dont I’énoncé est le suivant.

Théoreme A.12 (Théoreme 3.18). Soit (uy,g,...,uN,0) € D(A). La solution correspondante (uy,
., uy) de (A.23) satisfait, pour i € [[1,N],

ui’O(x 1) xp (_ LO,t]ﬁ[t—x+ai,t—x+bi]

At — _ . [ >
u;(t x,O)eXp( j[O,t]ﬂ[t—x+a,-,t—x+bi] az(s)ds), sit2x,
et, pour t > 0, u;(t,0) est donné par

(,0) = Z > 9]n+ T wio(Lj =1t = Lm)}y, ),

j=1 nen;
L(n)<t

ai(s)ds), si0<t<x,
u;(t,x) =
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ot N = NV, Nj={n=(ny,...,ny) €N [n; =0}, L(n) = Z?leLjn]- pour n = (ny,...,ny) € 1,
)

{11,...,1y) est la base canonique de RN, et les coefficients ‘9](‘,111

neN, xe[0,Lj]etteR, par

1 Sont définis, pour i,j € [1,N]],

@ _ (i)
Sj,n,x,t - gj,n,x,t‘gj,n,L].,t' (A24)
avec
Ejnxt = eXP(—L aj(S)dS), (A.25)
jmx,t

ot Ij g v = [t —L(n) - Lj + max(x,a;j), t = L(n) = L; + b;], et

(i)
Sj’olelt ml]’
(1) < (i)
i i
Sj,n,Lj,t = Z mkjsk,n—lk,o,t‘
k=1
ne=>1

A.3.3 1Idée de la démonstration du Théoréme A.11

L’idée principale de la preuve du Théoréme A.11 est d’étudier le comportement asymp-
(i)

Xt
lorsque |n|; — +oo. En effet, la Proposition 3.24 utilise la formule explicite du Théoreme
A.12 pour montrer que la convergence exponentielle de ces coefficients lorsque |n|; — +oo

implique celle des solutions lorsque t — +oco. Une fois cela établi, le Théoréeme A.11 est

totique des solutions de (A.23) par le comportement asymptotique des coefficients 9

montré a travers une analyse des coefficients S](-II)I .- Cela est fait en décomposant 12 en deux
parties, a l'laide d’un parametre p € (0,1), comme suit.

Définition A.13 (Définition 3.31). Pour k € [1,N] et p € (0,1), on définit

Ny(p k) ={n=(ny,...,n5) €N [ne < plulp},

(=

Ny(p) = JNwlp. k),  Nelp) =N\ Ny(p)

k=1

L'ensemble N;(p) représente les points de 12, qui ont une composante beaucoup plus
U dans Ny(p) est

nxt
montrée dans le Théoreme 3.32, pour un certain p € (0,1) sufﬁsammen’g petit, par des argu-
ments combinatoires (cf. Appendice 3.D), qui n’utilisent pas 'amortissement de 1’équation
mais uniquement le fait que la matrice M ne fait pas croitre la masse de la solution (dans le
sens ou |[M|, < 1) et mélange les composantes de la solution au point central (dans le sens

ot m;; # 0 pour tous i,j € [1,N]).

petite que les autres. La décroissance exponentielle des coefficients 9

)
jmx,t
N.(p), puisque, a cause des signaux a excitation persistante «;, i € [[1,N;], qui peuvent
étre zéro sur certains intervalles de temps, on peu avoir pas ou peu de décroissance due
aux termes ¢&; , ., définis dans (A.25) et apparaissant dans (A.24). L'idée principale est donc
d’utiliser les hypotheses d’excitation persistante des «; et d’irrationalité du rapport de lon-
gueurs L; /L; € Q pour certains i, j, € [1,N] pour garantir que ¢;, ,; donne une décrois-
sance “suffisante” “assez souvent”, ce qui est établi dans le Lemme 3.38 (cf. aussi la Re-
marque 3.40). Grace a ce résultat, on montre la décroissance exponentielle des coefficients
dans 2. (p) dans le Théoreme 3.42, ce qui permet de conclure la démonstration du Théoreme
A.11.

La décroissance exponentielle des coefficients 9 est plus délicate a établir dans
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A.4 Stabilité d’équations aux différences non-autonomes et appli-
cations au transport et a la propagation d’ondes sur des re-
seaux

Dans le Chapitre 4, cette thése s’intéresse a la stabilité d’équations aux différences non-
autonomes du type

Ts(AA): u(t) =Y A,

J(Dult-A;), (A.26)

P

ot u(t) € C¥, A = (Aq,...,Ax) € (RO)N, et A = (Ay,...,Ax) : R = M4(C)N, ainsi qu’a ses
applications a des équations de transport et d’ondes sur des réseaux. Cette étude est moti-
vée par le fait que plusieurs systemes d’équations aux dérivées partielles hyperboliques a
coefficients variables dans le temps, et notamment des systemes d’EDPs hyperboliques sur
des réseaux, peuvent s’écrire sous la forme (A.26), et aussi par le fait que les équations aux
différences autonomes, i.e., avec A = (Ay,..., Ay) constant, ont été beaucoup étudiés dans la
littérature avec plusieurs résultats importants de stabilité, comme rappelé dans la Section
A.l1.4.

A.4.1 Equations aux différences

Le premier résultat du Chapitre 4 est la Proposition 4.2, qui montre 'existence et 'unicité
des solutions de Y 5(A,A) dans l'espace de toutes les fonctions de [—Ap .y, +00) a valeurs
dans C“. Lorsque A € Lf;’c(lR,Md(C)N), on a aussi existence et unicité de solutions pour
Y5(A,A) dans I'espace de Banach Xg = LP([~Amax, 0], C%) muni de sa norme usuelle II-ll, pour
p €[1,+o0] (cf. Remarque 4.4).

Dans la suite, on obtient une formule explicite pour les solutions de ¥5(A,A), dans l'es-

prit de celle du Théoréeme A.12 pour (A.23).

Lemme A.14 (Lemme 4.13). Soient A € (R:)N, A= (Ay,...,Ay) : R — M4(C)N, et une condi-
tion initiale ug : [~Amax, 0) — €. La solution correspondante u : [—A oy, +00) — C de £5(A, A)
est donnée, pour t > 0, par

u(t) = Z Eﬁfé}_,tAj(t—A-n+A]')u0(t—A-n), (A.27)

(n,j)eNNx[1,N]
—A]‘St—A~n<0

ot les coefficients EMA sont définis, pour A = (Ay,...,Ax) : R = M4(C)N, A = (Ay,...,Ay) €

n,t

(RN, neZN et t € R, par

0, sineZN\INV,
Id,, sin=0,
—~AA
AR (A.28)
—~AA .
ZAk(t):n_ek’t_ Ay SineNV\{o}
k=1

Afin d’étudier la stabilité de (A.26), il est utile de regrouper dans (A.27) les termes ou la
condition initiale u( est évaluée a un méme instant de temps. Remarquons que u est évalué
dans un méme instant de temps dans deux termes différents de (A.27), correspondant a
des indices n,n” € INV, si et seulement si A-n = A -n’. Cela indique que la structure de
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dépendance rationnelle de A joue un role important dans ce regroupement de termes. Pour
A=(A4,...,Ay) € (RY)N, on définit ainsi

Z(A)={nezZN|A-n=0},
V(A ={LeRN |Z(A)c Z(L)}),  V.(A)=V(A)N (RN, (A.29)
W(A)={LeRN|Z(A)=Z(L)}, W,(A)=W(A)N(R)".

L’ensemble V(A) peut étre vu comme l’ensemble des points de RN qui sont au moins aussi
rationnellement dépendants que A, W(A) étant le sous-ensemble contenant les points qui
ont exactement la méme structure de dépendance rationnelle que A. On introduit également
la définition suivante.

Définition A.15 (Définition 4.10). Soit A = (Aq,...,Ay) € (R})N. On partitionne les en-
sembles [[1,N] et ZN selon les relations d’équivalence ~ et ~ définies comme suit : i ~ j si
Aj=Ajetnxn’si A-n=A-n". On dénote par [-] les classes d’équivalence de ~ et ~, et on
définit J = [1,N]/ ~et 2 =ZN/ ~.

Pour A: R — M,(C)N, Le V,(A), [n] €2, [i] €], et t € R, on définit

=LAA _ =LA A g )
‘:'[n],t - =n’t’ A[i](t)— ZA](t)l
n’e[n] jeli]
et A A
LAA _ SLAA TA 7. .
Omt= ) Bl ANt-Lon+Ly)
[jled
L~n7L]-St

Grace a (A.29) et a la Définition A.15, la formule explicite du Lemme A.14 peut s’écrire
sous la forme suivante.

Proposition A.16 (Proposition 4.14). Soient A € (R)N, L € V.(A), A: R — M4(C)V, et une
condition initiale ug : [~Lyayx, 0) — C%. La solution correspondante u : [~Lyay, +00) — C? de
Ys(L,A) est donnée, pour t > 0, par

u(t) = Z O ug(t—L-m). (A.30)
[n]ez
t<L-n<t+L

Une fois la formule explicite (A.30) établie, 'objectif de la suite de la Section 4.2 est
de l'utiliser pour caractériser le comportement exponentiel de Xs(L,A). On cherche, en
plus, a caractériser ce comportement uniformément par rapport a A dans une classe A C
Ly (R, M4(C)N). On suppose ici que la classe A est uniformément localement bornée, dans le
sens ou, pour tout I C R compact, sup s 4 ||Allz(r,n,(c)v) est fini, et on note par X5(L,A) la
famille de systéemes Xs(L,A) pour A € A. On caractérise le comportement asymptotique de
Ys(L,A) a travers (A.30) en termes de son type exponentiel et de son exposant de Lyapunov

maximal.

Définition A.17 (Définition 4.16). Soit L € (R*)N.

(a) Pour p € [1,+00], on dit que X4(L,A) est de type exponfentiel 7 € R dans Xg si, pour tout
€ >0, il existe K > 0 tel que, pour tous A € A et ugy € Xg, la solution correspondante u de
Ys(L, A) satisfait, pour tout t > 0,

t
lluell, < Ke? o [ug]],

O/n d1tf que Ys(L, A) est exponentiellement stable dans Xg s’il est de type exponentiel
negatit.
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(b) Soit A € (R%)N tel que L € V,.(A). On dit que 5(L,.A) est de (©,A)-type exponentiel
¥ € R si, pour tout ¢ > 0, il existe K > 0 tel que, pour tous A€ A, n e NN, et presque
toutte(L-n—Ly,,L-n),ona

LAA t
o] < kel
(c) Soit A € (R%)N tel que L € V. (A). On dit que 5(L,.A) est de (E,A)—type exponentiel y € R
si, pour tout ¢ > 0, il existe K > 0 tel que, pour tous A € A, n € NV, et presque tout ¢ € R,
on a

=LAA (y+e)Ln
|u[n], ; | <Ke .

(d) Pour p €[1,+c0], 'exposant de Lyapunov maximal de ¥5(L, A) dans Xg est défini par

log |||
Ap(L,A) =limsupsup sup — 7
t—+00 AeA uoex;? t
lluoll,=1

ou u est la solution de X 5(L, A) avec condition initiale u.

Apres remarquer que l'exposant de Lyapunov maximal A,(L,A) est le plus petit type
exponentiel de ¥5(L,A) dans Xg (cf. Proposition 4.18), on établit le lien entre le type expo-
nentiel et le (O, A)-type exponentiel pour Xs(L,A).

Théoréme A.18 (Théoréme 4.22). Soient A € (R%)N et A un ensemble uniformément localement
borné. Pour tout L € V. (A), si X5(L, A) est de (0, A)-type exponentiel y alors, pour tout p €
[1,+00], £5(L, A) est de type exponentiel y dans Xg. Réciproquement, pour tout L € W, (A), s’il
existe p € [1,+oc0] pour lequel Y 5(L, A) est de type exponentiel y dans Xg, alors X5(L, A) est de
(©, A)-type exponentiel y. Finalement, pour tous L € W, (A) et p € [1,+00],

log ;1|

Ap(L,A) =limsupsup  esssup .
Ln—+co AeA te(L-n—Ly,,,L-n)

max’ "

Ce théoréme est montré a ’aide de la formule explicite (A.30). A I'image de la Propo-
w17
conduit a une borne exponentielle sur les solutions de X5(L, A) lorsque L € V,(A), ce qui est
un résultat attendu a cause de (A.30), mais aussi que la réciproque est vraie si L € W, (A),
car dans ce cas les termes L-n dans (A.30) sont différents pour des classes d’équivalence [n]
différentes.

Lorsque A est un ensemble invariant par translation, i.e., A(t +-) € A pour tout A € A et
t € R, on peut également comparer le (0, A)-type exponentiel et le (£, A)-type exponentiel.

Théoréme A.19 (Théoréme 4.26). Soient A € (R})N et A un sous-ensemble borné de L°(RR,
M4(C)N) invariant par translation. Pour tout L € V,(A), Xs(L,.A) est de (E,A)—type exponentiel
y si et seulement s’il est de (O, A)-type exponentiel y.

Par conséquent, pour tout L € V. (A), si X5(L,A) est de (E,A)—type exponentiel y alors, pour
tout p € [1,4+00], 5(L, A) est de type exponentiel y dans Xg. Réciproquement, pour tout L €
W, (A), s’il existe p € [1,+0c0] tel que X5(L,.A) est de type exponentiel v dans X, alors Ys(L,A)

sition 3.24 du Chapitre 3, on montre qu’'une borne exponentielle sur les coefficients ©

est de (E,A)—type exponentiel y. Finalement, pour tous L € W, (A) et p € [1,+00],

log |[BLAA
. 08 |=[n),t
Ap(L,A) = limsupsupesssup
Ln—+co AcA  teR L-n
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L'avantage du Théoreme A.19 par rapport au Théoreme A.18 est qu’il est en général plus
. : . =LA _ SLAA . LAA _ .
simple de calculer ou estimer les coefficients 2}’ ou By que les coefficients ®[n] ., grace
a la formule de récurrence (A.28) (voir aussi (4.7) et (4.13)).
La derniere partie de la Section 4.2 s’intéresse au cas particulier ou A = L*(IR, 13) pour
un certain sous-ensemble borné non-vide 1 € My (C)N. Ce cas correspond a regarder (A.26)
comme un systéeme a commutation avec signaux de commutation arbitraires a valeurs dans

B. Motivé par la formule explicite (4.14), on pose la définition suivante.

Définition A.20 (Définition 4.28). Soient A € (R%)N et B ¢ My(C)N un ensemble borné
non-vide. On définit

[n],

H(A, B) =limsup sup Z Z I_[BvAk'Pv(k) )

;CCE_L)-U\O) poufrg?x(/\) Rel].ll\i]l veVn k=1
ou L(A) ={A-n|ne NV}, L (A) = L(A)N[0,x) pour x € R, et, pourn € NV, V,, = {v €
[1,N] | pour tout k € [1,N], #{j € [LInl ] |v; =k} = ).

On établit, dans le Théoreme 4.29, le lien entre y(A, 1) et 'exposant de Lyapunov maxi-
mal /\p(L,.A), ce qui conduit au critere de stabilité suivant.

Corolaire A.21 (Corolaire 4.31). Soient A € (R*)N, B c My (C)N un ensemble borné non-vide
et A =L%°(IR, B). Les affirmations suivantes sont équivalentes.

(@) p(A,DB)<1.

(b) Xs(A,A) est exponentiellement stable dans Xg pour un certain p € [1,+o0].

(c) Xs(L, A) est exponentiellement stable dans Xg pour tous Le V,(A) et pe[1,+c0].

Le Corolaire A.21 généralise le critéere de Hale-Silkowski, Théoréme A.4, et le résul-
tat correspondant de [132], aux équations aux différences non-autonomes a commutation
arbitraire, puisque I'on montre que la stabilité exponentielle pour un certain A € (R)N et
p €[1,+00] est équivalente a la stabilité exponentielle pour tout L au moins aussi rationnelle-
ment dépendant que A, dans le sensou L € V,(A), et pour tout p € [1,+00]. En plus, cette sta-
bilité exponentielle est caractérisée par u(A, ) < 1, ce qui généralise la condition pyg(A) <1
du Théoreme A.4. Par contre, on n’a pas 1’égalité entre u(A, {A}) et pys(A) lorsque les compo-
santes de A sont rationnellement indépendantes, comme on pourrait s’attendre. On propose
ainsi, dans la Définition 4.32, une autre quantité, uys(A, D), qui généralise pyg(A) (cf. Pro-
position 4.33), et pour laquelle on peut montrer un résultat similaire au Corolaire A.21,
mais avec une hypothese supplémentaire (cf. Corolaire 4.37).

A.4.2 Equations de transport

Dans la suite du Chapitre 4, les résultats présentés dans la Section A.4.1 pour les équa-
tions aux différences sont appliqués a des systemes d’équations de transport. Pour L =
(Ly,...,Ly) € (RE)N et M = (mij)ijeq1,n] : R = My (C), on considere le systeme

Qui Qui _ . ]
W(t,x)'f'g(t,?(f)—o, lE[[l,N]], tE[O,‘l‘OO),XE[O,LZ],

T (L,M): (A.31)

N
u;(t,0) = Zmij(t)u]-(t,L]-), ie[1,N], t€[0,+c0),
j=1
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A. Résumé des résultats de la these

ou u,(+,-) prend ses valeurs dans C pour i € [1,N].

Apres avoir donné une définition de solution de ¥ (L, M) dans un sens faible en utilisant
les caractéristiques (cf. Définition 4.38), on établit le lien entre ce systéme et le systeme
d’équations aux différences X5(L,A) dans la Proposition 4.39, ce qui donne en particulier
l’existence et I'unicité des solutions de X, (L, M).

Comme pour les équations aux différences, on dénote par ¥ (L, M) la famille de sys-
temes Y. (L, M) pour M € M, ou M C L5 (R, My(R)) est un ensemble uniformément locale-
ment borné. On s’intéresse au comportement asymptotique de X,(L, M) uniformément par
rapporta M € M.

Au lieu d’étudier le comportement de (L, M) dans l'espace X; = ﬂﬁlLP([O,Li],C)
pour p € [1,+0c0], on s’intéresse aux sous-espaces Y,(R) définis, pour R = (p;;)ie[1,],je[1,N] €
M, N(C) et r € N, par

N
L.
Yp(R) =3 u=(uy,...,uy) € Xy [Vie[L,r], Zpl-]- foju]-(x)dx =0
=1

(remarquons que Xj est obtenu comme cas particulier en prenant R = 0). En effet, lorsque
l'on traite le cas des systémes d’équations d’ondes sur des réseaux dans la Section 4.4, on
montre que ces systémes peuvent s’écrire sous la forme X (L, M) dans un espace du type
Y,(R), ou chaque ligne de la matrice R représente un cycle ou un chemin entre deux nceuds
extérieurs non-amortis du réseau. On caractérise d’abord les matrices R pour lesquelles
Y, (R) est invariant par le flot de ¥.(L, M) (cf. Proposition 4.42), et, pour M C LS (R, My/(C))
uniformément localement borné, on dénote par Inv(M) I'ensemble de toutes les matrices
R e M, y(C) invariantes par le flot de ¥,(L, M) pour tout M € M.

On montre ensuite que les résultats de stabilité pour X5(L, A) présentés dans la Section
A.4.1 peuvent étre transposés aux systémes du type (A.31) (cf. Théoréme 4.47 et Corolaire
4.48; voir aussi la Définition 4.44). En particulier, lorsque M = L*(RR, ) pour un certain
B c My(C) borné, on obtient comme conséquence du Corolaire A.21 le résultat suivant sur
la stabilité exponentielle de la famille ¥ (L, M).

Corolaire A.22 (Corolaire 4.48). Soient A € (R*)N, B c My/(C) borné, et M = L*(RR,13). Les
affirmations suivantes sont équivalentes.

(@) X(A,M) est exponentiellement stable dans Y ,(R) pour un certain p € [1,+oo] et R € Inv(M).

(b) X((L, M) est exponentiellement stable dans Y ,(R) pour tous L € V. (A), p € [1,+0c0], et R €
Inv(M).

Ainsi, la stabilité de X;(L, M) ne dépend pas de l'espace Y,(R) dans lequel on considere
les solutions, et, a I'image du critére de Hale-Silkowski, la stabilité pour un certain A €
(R%)N est équivalente a la stabilité pour tout L € (R%)N au moins aussi rationnellement
dépendant que A, dans le sens ou L € V. (A).

A.4.3 Equations d’ondes sur des réseaux

La derniere partie du Chapitre 4 transpose les résultats présentés dans la Section A.4.1 aux
systemes d’équations d’ondes sur des réseaux. On commence par un rappel des notations
élémentaires pour les graphes et les réseaux.

Un graphe G est une paire (V,€), ou V est un ensemble, dont les éléments sont appelés
neeuds, et

EcllaptlapeV, q=p}
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Les éléments de € sont appelés arétes, et, pour e = {q,p} € &, les nceuds g, p sont appelés les
extremités de e. Une orientation sur G est définie par deux fonctions a,w : € — 'V telles que,
pour toute € €, e = {a(e), w(e)}. Pour g,p € V, un chemin de q a p est un n-uplet (9 = qy,...,q9, =
p) € V" ou, pour tout j € [1,n-1]], {g;,9;:+1} € €. Lentier positif n est appelé la longueur du
chemin. Un chemin de longueur n dans G est dit fermé si q; = gq,,; simple si toutes les arétes
{4j,9j+1}, 7 € [1,n—1]], sont différentes; et élémentaire siles nceuds qy, ..., q, sont deux a deux
différents, sauf possiblement pour la paire (41,4,). Un chemin fermé élémentaire est appelé
un cycle. Un graphe sans cycles est appelé un arbre. On dit qu’'un graphe G est connexe si,
pour tous q,p €V, il existe un chemin de g a p. On dit que § est fini si V est un ensemb]e fini.
Pour tout g4 € V, on dénote par £, I'ensemble des arétes pour lesquelles g est une extrémite,
ie.,
Eg=1leel|gee}

La cardinalité de &, est notée n,. On dit que q € V est extérieur si £, contient au plus un
élément et intérieur sinon. On dénote par V., et Vi, les ensembles de noeuds extérieurs
et intérieurs, respectivement. On suppose dans ce qui suit que I’ensemble V.,; contient au
moins deux éléments, et ['on fixe un sous-ensemble non-vide V4 de Ve tel que V, = Vo \ Vg
soit non-vide. Les nceuds de Vg sont dits amortis, et ceux de V, non-amortis. On remarque
que V est I’'union disjointe V = V;,, UV, U Vg.

Un réseau est une paire (9,L) ou G = (V, €) est un graphe orienté et L = (L,).c¢ est un vec-
teur de nombres réels positifs, chaque L, étant appelé la longueur de I'aréte e. On dit qu'un
réseau est fini (respectivement connexe) si le graphe G est fini (respectivement connexe). Si
ee&etu:[0,L,] > C est une fonction, on écrit u(a(e)) = u(0) et u(w(e)) = u(L,). Pour un
chemin élémentaire (qy,...,4,), sa signature s : € — {-1,0, 1} est définie par

1, si e =1{g;,qi+1} pour un certaini € [1,n—1] et a(e) =¢q;,
s(e)=4 —1, sie=1{q;,qiy1} pour un certainie[[1,n—1] et a(e) =q;;1,
0, sinon.
Les dérivées normales de u dans a(e) et w(e) sont définies par j—y’l‘e(a(e)) = —Z—z(O) et ;n“e (w(e)) =

d
v (Le)-

Dans la suite, on ne considére que des réseaux finis connexes. Pour simplifier les nota-
tions, € est identifié a [1,N]], ou N = #E. Le systeme auquel on s’intéresse est

821/[]' 821/[]' .
ﬁ(t,x): 2 (t,x), jEeLN], te[0,+00), x€[0,L;],
uj(t,q) = u(t,q), geV, jke &, t€[0,+00),
au]-
Ew(gjL)U) . %(th) =0, q€ Vint! te [07""00); (A32)
jeg,
ey 02 (¢ Vg, je€o, teo
7(,q)——11q( )a—nj(;q), qeVa, J€cy E[ ,+00),
uj(t,q) =0, qgeVy, je&y t€[0,+00),

ou uj : [0,+00) x [0,L;] — C pour j € [1,N]. On suppose que la fonction 7, est positive ou
nulle, déterminant I'amortissement au nceud g € V4, et on note 17 = (14)4ev,- On s’intéresse

a la dynamique de ¥,(G,L,7) dans I'espace X;;’ = Wol’p(Q,L) x LP(G,L) pour p € [1,+0c0], ou
LP(S,L) = [T, LP([0,L;],€) et Wy * (G, L) est défini dans (4.41).
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On montre d’abord 1'équivalence entre X ,(9,L,#) et un systéme d’équations de trans-
port ¥.(L,M) dans l'’espace Y,(R) pour un certain R € M, 5n(C), a travers l'opérateur de
décomposition de d’Alembert (cf. Définition 4.51 et Proposition 4.58). Cette équivalence est
utilisée ensuite, dans la Définition 4.60, pour définir les solutions de ¥,(G, L, 7) dans un sens
faible, et ’existence et l'unicité de solutions est une conséquence du fait que l'espace Y,(R)
est invariant par le flot de I’équation de transport correspondante (cf. Proposition 4.61).

Comme dans les Sections A.4.1 et A.4.2, on s’intéresse a la famille de systéemes X,(9, L, 1)
pour 1 € D, notée X,(G,L,D), ou D est un sous-ensemble de I'espace de fonctions me-
surables 77 = (14)4ev, @ composantes positives ou nulles. Les résultats de la Section A.4.2
peuvent ainsi étre transposés au cadre de (A.32), ce qui conduit en particulier au résultat sui-
vant (voir la Définition 4.63 pour la définition de stabilité exponentielle dans ce contexte).

Corolaire A.23 (Corolaire 4.64). Soient (G, A) un réseau, d = #V4, D C (R,)%, et D = L2(RR, D).
Les affirmations suivantes sont équivalents.

(@) 2, (G, A, D) est exponentiellement stable dans X! pour un certain p € [1,+0c0].
(b) £4(5,L, D) est exponentiellement stable dans Xy pour tous L€ V,(A) et p € [1,+0c0].

Comme dans le cas des Corolaires A.21 et A.22, le Corolaire A.23 montre que la stabilité
pour un certain A € (R*)N est équivalente a la stabilité pour tout L € (R*)N au moins aussi
rationnellement dépendant que A, dans le sens ou L € V, (A). Il permet, en plus, de montrer
le critére de stabilité suivant.

Théoréme A.24 (Théoréme 4.65). Soient (S, A) un réseau, d = #Vq, D C (R,)? borné, et D =
L®(R, D). Alors £,,(G, A, D) est exponentiellement stable dans X pour un certain p € [1,+o0] si

et seulement si G est un arbre, V, contient un seul neeud, et D C (R%)4.

La partie “si” du Théoréme A.24 peut étre montrée par des méthodes classiques comme
celles de [63, Chapitre 4, Section 4.1] (voir aussi [155]), en obtenant une inégalité d’ob-
servabilité a partir d’estimations d’énergie pour le systeme. D’autre part, le Corolaire A.23
permet de donner une démonstration simple de la partie “seulement si” du Théoreme A.24.
En effet, si G n’est pas un arbre, V,, contient deux nceuds ou plus, ou 0 € D, on montre
que X,(G,A, D) n’est pas exponentiellement stable en construisant une solution périodique
pour ¥,(9,L, L*(R, D)) pour un certain L € V,(A)NINN. Le fait de prendre L & coefficients
entiers permet de construire assez simplement une solution périodique pour ce systéeme, et
la conclusion pour X,,(G, A, D) est alors une conséquence du Corolaire A.23.

A.5 Controlabilite d’équations aux différences linéaires

Motivé par les résultats sur les équations aux différences présentés dans la Section A.1.4, le
Chapitre 5 de cette these s’intéresse a la controlabilité de I’équation aux différences

N
Y(A,BA):  x(t)= ZAJ-x(t—A]-)JrBu(t), (A.33)
j=1

ou x(t) € C? est ’état, u(t) € C" est le contrdle, N,d,m € N*, A = (Aq,...,Ay) € (0,+c0)N,
A= (A...,AN) € MZ(C)N, et B € M4,,(C). On aborde les questions de la controlabilité
relative, exacte et approchée de (A.33).

On commence par une étude de l’existence et I'unicité des solutions de ¥(A, B, A), qui
sont d’abord établies, comme au Chapitre 4, dans I’ensemble de toutes les fonctions dans
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la Proposition 5.2, le cas de controle et état dans des espaces LP et ek étant traités dans
les Remarques 5.3 et 5.4. En particulier, la régularité CX des solutions n’est garantie que
sous une condition de compatibilité entre la condition initiale et le controle a I'instant 0
(voir (5.4)). On dit qu’une condition initiale xq € CX([=Aax, 0), C%) est CX-admissible lorsqu’il
existe un controle u pour lequel la condition de compatibilité pour I'existence de solution C*
est satisfaite. A I'image du Lemme A.14, on donne une formule explicite pour les solutions
de (A, B,A).

Proposition A.25 (Proposition 5.8). Soient A = (Ay,...,Ay) € M4(C)N, B € Mg m(C), A =
(Aq,...,AN) € (0,+oo)N, T>0,xp:[-Amax, 0) = C4 etu: [0,T] — C™. La solution correspon-
dante x : [~Amax, T] = C% de X(A, B, A) est donnée, pour t € [0, T], par

x(t) = Z Ene, AjXo(t—A-n)+ Z E. Bu(t—A-n), (A.34)
(n,j)e]Nlell,N]] nelNN
—A]-St—A-n<0 A-n<t

o, pour n € NV, E, est défini comme dans (A.28).

Remarquons que, différemment de (A.28), on note ici les coefficients matriciels simple-
ment par Z, a la place de EﬁtA puisque ceux-ci ne dépendent ni de ¢ ni de A, les matrices
Ay,..., Ay étant constantes. L'indice A est supprimé de la notation par souci de simplifica-
tion. Comme dans la Section A.4.1, on regroupe dans cette formule les termes ou le controle
u est évalué au méme instant de temps, a I’aide de la définition suivante.

Définition A.26 (Définition 5.11). Soit A = (Ay,...,Ay) € (0,+00)N. On partitionne NV se-
lon la relation d’équivalence ~ définie comme suit : on dit quen ~n’si A-n=A-n". On

utilise [-]o pour noter les classes d’équivalence de ~ et on définit Ny = NN/ ~. L’indice A
est omis de la notation de [-]5 lorsque le vecteur des retards A en question est clair dans le

contexte. On définit _
B = Z B (A.35)
n’€[n]

Avec cette définition, (A.34) s’écrit

x(t) = Z EneAjxo(t—A-n)+ Z :ﬁl]Bu(t_A.n),

]
(n,j)eNNx[1,N] [n]eN,
-Aj<t-An<0 A-n<t

[x

A.5.1 Controlabilité relative

La controlabilité relative de X(A,B,A) en temps T > 0 consiste a savoir, étant donnés la
condition initiale xg : [~Apa 0) = C et I’état final voulu x; € C%, sil est possible de trou-
ver un controle u : [0,T] — C™ tel que la solution x de ¥(A,B,A) avec condition initiale
Xy et controle u satisfasse x(T) = x;. Cette propriété peut aussi étre posé dans d’autres es-
paces fonctionnels que I’ensemble de toutes les fonctions. On donne, dans le Chapitre 5, une
caractérisation de la controlabilité relative dans les Théoremes 5.12 et 5.13.

Théoréme A.27 (Théorémes 5.12 et 5.13). Soient A = (Ay,...,Ayn) € Mg(C)N, B € My,,(C),
A= (Ay,...,AN) € (0,+00)N, T >0, et p € [1,+0c0]. On définit Ef;] par (A.35). Les quatre affir-
mations suivantes sont équivalentes.
(a) Ona
Span{/E\f}l]Bw | [n]eNp, A-n<T,we (Em} = (A.36)
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(b) Pour tous xg : [~Amax, 0) = C% et x; € C4, il existe u : [0, T] — C" tel que la solution x de
Y(A, B, A) avec condition initiale x et controle u satisfait x(T) = x;.

(c) Ilexiste ey > 0 tel que, pour tous € € (0,€p), Xg : [~Amax, 0) = C4, et x; : [0,e] > €7, il existe
u:[0,T +¢e] — C™ tel que la solution x de ¥(A, B, A) avec condition initiale x et contrile u
satisfait x(T + ')|[0’£] = x7.

(d) Il existe e > O tel que, pour tous € € (0,€g), Xo € LP((—Amax, 0), C?), et x; € LP((0,¢),C?), il
existe u € LP((0, T + ¢€), C™) tel que la solution x de X(A, ,A) avec condition initiale x, et
controle u satisfait x € LP((~Amax, T + €),C?) et x(T +- )(0,¢) = X1-

En plus, les trois affirmations suivantes sont équivalentes.

(e) Ona
Span{gﬁl]Bw ' [n]eNp, An<T,we (Em} =c. (A.37)

(f) Pour tous x, CX-admissible pour ¥.(A,B,A) et x; € C%, il existe u € €X([0, T],C™) tel que la
solution x de X(A, B, A) avec condition initiale x et contréle u satisfait x € CX([~Amax, T],
C4) et x(T) = x;.

(g) II existe ey > O tel que, pour tous € € (0,&q), xo Ck-admissible pour ¥.(A,B,A), et x, €
Ck([0,&],€%), il existe u € CK([0, T +¢],C"™) tel que la solution x de X.(A, B, A) avec condition
initiale x, et contréle u satisfait x € CX([~Amax, T + €], C%) et x(T + -)|[0]€] = X;.

Le Théoreme A.27 montre ainsi que controler I’état final a un instant T est équivalent
a le controler sur un petit intervalle de temps [T, T + ¢]. La subtile différence entre (a) et
(e) provient du fait que, pour controler dans l'espace €, il faut aussi choisir un contrdle
garantissant les conditions de compatibilité. On remarque également que les conditions (a)
et (e) se réduisent au critére de Kalman lorsque N = 1, puisque, dans ce cas, Eﬁl] =2,=A"
pourtoutn=neIN,ou A=A;.

Motivé par le Théoreme A.27, on donne la définition suivante de contrdlabilité relative.

Définition A.28 (Définition 5.15). Soient A = (A4,...,Ayx) € M4(C)N, B e My m(C), A € (0,
+oo)N, et T > 0.

(a) On dit que X(A, B, A) est relativement controlable en temps T si

Span(E ABw| JeNA, An<T, weC"=C".

(b) Si X(A,B,A) est relativement controlable en temps T > 0, on définit son temps mini-
mal de controlabilité Ty, par Thnin = inf{T > 0 | £(A, B, A) est relativement controlable
en temps T}.

La suite de 1'étude de la controlabilité relative dans le Chapitre 5 consiste a étudier
comment cette propriété dépend de la structure de dépendance rationnelle des composantes
du vecteur de retards A et a caractériser le temps minimal de controlabilité T,,;,,. On définit
un préordre sur I'ensemble des vecteurs de retards (0,+c0)N qui détermine la structure de
dépendance rationnelle de la fagon suivante.

Définition A.29 (Définition 5.18). Pour A € (0,+00)N, on définit Z(A) = n€ ZN |A -n = 0}.
Pour A, L € (0,+c0)N, on écrit A < L ou, de fagon équivalente, L > A, si Z(A) C Z(L). On écrit
AxLsiA<LetL<A.

212



A.5. Controlabilité d’équations aux différences linéaires

Ainsi, la relation A < L donne un sens a I’idée que L est “au moins aussi rationnellement
dépendant” que A et correspond a dire que L € V,(A) dans les notations de la Section A.4.1
introduites dans (A.29). Le premier résultat que 'on montre est que la controdlabilité relative
de X(A, B,L) implique la controlabilité relative (en un temps différent) de ¥(A, B, A) pour
tout vecteur de retards A < L (cf. Théoreme 5.20). La réciproque de ce résultat n’est pas vraie,
comme illustré dans I’Exemple 5.21. On montre néanmoins que, pour tout A € (0,+oo0)V, il
existe un vecteur de retards L > A a composantes commensurables et aussi proche que I'on
veut de A de telle sorte que la controlabilité relative de ¥(A, B, A) implique celle de (A, B,L)
en méme temps (cf. Théoreme 5.22).

Concernant le temps minimal de controlabilité, on montre le résultat suivant, qui gé-
néralise le fait que, lorsque N = 1, le temps minimal de controlabilité T,;, du systeme
x(t) = Ax(t—A)+Bu(t) satisfait, par le critéere de Kalman et le Théoréme de Cayley—Hamilton,
Tin < (d -1)A.

Théoréme A.30 (Théoréme 5.27). Soient A = (A4,...,Ax) € M4(C)N, B € My m(C), et A =
(A1,...,AN) €(0,+00)N. S’il existe T > 0 tel que X(A, B, A) est relativement contrélable en temps
T, alors sont temps minimal de contrélabilité T, satisfait Ty, < (d —1)Apax.

Le Théoreme A.30 est montré d’abord pour un systeme avec retards commensurables
(cf. Lemme 5.26), par une technique d’augmentation de 1’état du systéme pour obtenir une
équation aux différences a un seul retard, a laquelle on peut appliquer le critere de Kalman
et le Théoreme de Cayley—Hamilton. Les résultats comparant la controlabilité relative pour
des retards différents en termes de leurs structures de dépendance rationnelle sont ensuite
utilisés pour en déduire le cas général. Le Théoreme 5.28 donne un autre critere de contro-
labilité relative qui peut permettre de calculer moins de coefficients iﬁl 1B, qui, dans le cas
particulier des retards a composantes rationnellement indépendantes, montre qu’il suffit de
calcules ces coefficients pour |n|; <d —1 (cf. Corolaire 5.29).

A.5.2 Controlabilité exacte et approchée dans L?

On considere ensuite le probléeme de la controlabilité exacte et approchée de (A.33) dans
I’espace de Hilbert X = L2((=Amax, 0),C%) avec controdles dans 'espace Y = L?((0,T),C™)
pour T > 0. Pour x une solution de (A.33) et t > 0, on écrit x; = x(t + N=A,,,,0) €t ON re-
marque que, si xo € X et u € Yp, alors la solution x de (A.33) avec condition initiale x; et
controle u satisfait x; € X pour tout t € [0, T].

Définition A.31 (Définition 5.32). Soit T € (0, +o0).

(a) On dit que (A.33) est exactement contrdlable en temps T si, pour tous xg,X € X, il existe
u € Yr tel que la solution x de (A.33) avec condition initiale x, et controle u satisfait
XT = X.

(b) On dit que (A.33) est approximativement contrélable en temps T si, pour tous x,x € X et
€ >0, il existe u € Y tel que la solution x de (A.33) avec condition initiale x( et controle
u satisfait ||xp —x||x < €.

(c) On définit l'opérateur linéaire borné E(T): Y — X par

(E(T)u)(t) = Z E.Bu(T+t-A - n).

nelNVN
An<T+t

213



A. Résumé des résultats de la these

Comme usuellement en théorie du contrdle, ces notions de controlabilité sont inva-
riantes par changement de variables linéaire, changement d’échelle de temps, et retour
d’état linéaire (cf. Lemme 5.33). En plus, la controlabilité exacte en temps T est équiva-
lente a la surjectivité de E(T) et a l'existence de ¢ > 0 tel que ||E(T)*x||$T > c||x||>2< pout tout
x € X; et la controlabilité approchée en temps T est équivalente a la densité de I'image de
E(T) et a l'injectivité de E(T)* (cf. Propositions 5.34 et 5.35). L'opérateur adjoint E(T)* peut
étre caractérisé par un calcul simple (cf. Lemme 5.36).

On traite d’abord la controlabilité exacte et approchée dans le cas ou les retards Ay, ...,
Ay sont commensurables par deux techniques différentes. On considére d’abord une aug-
mentation de I’état du systeme (cf. Lemme 5.38), qui le transforme dans un systéme a un
seul retard, pour lequel les controlabilités exacte et approchée peuvent étre caractérisées
par une condition du type Kalman (cf. Proposition 5.40). On obtient en particulier I’équiva-
lence entre controlabilités exacte et approchée dans ce cas. La deuxiéme méthode consiste a
étudier 'opérateur E(T), que 'on représente par deux matrices C et E (cf. Lemme 5.46). On
obtient a nouveau que les controlabilités exacte et approchée sont équivalentes et on les ca-
ractérise maintenant a ’aide du rang de la matrice C (cf. Proposition 5.47). Le lien entre ces
deux résultats est montré dans le Théoreme 5.49, qui établit que la matrice C est la matrice
de Kalman du systeme augmenté du Lemme 5.38.

La suite du Chapitre 5 étudie la controlabilité sans ’hypotheése de commensurabilité
sur les retards. Cette étude étant beaucoup plus délicate, on se restreint au cas N =d =2 et
m =1, qui, malgré I'apparence simple, présente déja plusieurs caractéristiques non-triviales.
On s’intéresse ainsi au systéme

X(t):AIX(t—Al)+A2X(t—A2)+BM(t), (A38)

ou x(t) € C%, u(t) e C, A;,A, € My(C), et B e M;,1(C), ce dernier ensemble étant identifié
canoniquement a C?. Sans perte de généralité, on suppose A; > A,. Le résultat principal
obtenu pour le systéme (A.38) est le suivant.

Théoréme A.32 (Théoréme 5.51). Soient T € (0,+c0) et (A, A;) € (0,4+00)% avec Aj > A,.

(a) Sila paire (Ay,B) n’est pas controlable, alors (A.38) n'est ni exactement ni approximative-
ment contrélable en temps T.

(b) Si la paire (A1, B) est controlable et (A,, B) ne Uest pas, alors les affirmations suivantes sont
équivalents.
(i) Le systeme (A.38) est exactement controlable en temps T.
(ii) Le systeme (A.38) est approximativement controlable en temps T.
(iii) T > 2A;.

(c) Si les paires (A1, B) et (A,, B) sont toutes les deux contrélables, on fixe Z € C?\ Span{B} et
on définit

. detC(A;,B) e det(B (A —ﬁAz)Z)
- detC(Ay, B)’ - det(B Z)

Alors a ne dépend pas de Z. Soit C C C I'ensemble de toutes les valeurs complexes possibles

(A.39)

A
. 1-72
de l'expression p+a 1.

(i) Le systéme (A.38) est exactement controlable en temps T si et seulement si T > 2Aq et
0eC.
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A.5. Controlabilité d’équations aux différences linéaires

(ii) Le systeme (A.38) est approximativement controlable en temps T si et seulement si
T>2A1et0gC.

Remarquons que a et § sont invariants par changement de variables linéaire et retour
d’état linéaire (cf. Lemme 5.53). En utilisant des changements de variables, des retours
d’état et des changements d’échelle de temps, on réduit la démonstration du Théoreme
A.32 a certaines formes canoniques (cf. Remarque 5.54). La démonstration des parties (a)
et (b) est assez simple, reposant sur une étude de I'image de E(T). Pour la partie (c), la non-
controlabilité pour T < 2A; est démontrée en construisant une fonction dans le noyau de
E(T)".

La partie la plus intéressante de la preuve du Théoréme A.32 est le cas (c) lorsque T >
2A1. On se réduit d’abord au cas T = 2A; (cf. Lemme 5.56), et on montre ensuite qu’il suffit
d’étudier l'opérateur S : L?((—1,0),C) — L*((~1,0),C) défini par

{Bx(t)+x(t+L—1) if —-L<t<0,
Sx(t)=1{— _
Bx(t)+ax(t+L) if —1<t<-L,

oul= ﬁ—f € (0,1). En effet, (A.38) est exactement controlable en temps T = 2A; si et seule-
ment si S* est surjectif ou, de facon équivalente, s’il existe ¢ > 0 tel que ||Sx|[z2((-1,0)c) =
c|Ixllz2((-1,0,c) pour tout x € L?((~1,0),C); et la controdlabilité approchée de (A.38) en temps
T = 2A, est équivalente a l'injectivité de S (cf. Lemme 5.58).

La démonstration de la partie (c)(ii) dans le cas T > 2A; est décomposée en deux parties,
selon que L = %f est rationnel ou pas. Dans le premier cas, S est équivalent a une matrice M
(dans le sens de (5.68)), dont le déterminant s’annule si et seulement si 0 € C, ce qui donne le
résultat. Dans le deuxiéme cas, si 0 € C, on montre, en utilisant I'ergodicité de la translation
par L modulo 1, que le noyau de S est I'ensemble des fonctions du type x(t) = Ce?! pour C €
C et y un logarithme de @. Si 0 ¢ C, on montre l'injectivité de S a ’aide d’un raisonnement
sur la transformée de Fourier d’une fonction dans le noyau de S.

Pour la partie (c)(i) dans le cas T > 2A4, on fait une étude précis de la matrice M qui est
équivalente a l'opérateur S dans le sens de (5.68) lorsque L est rationnel, afin de montrer
que, si 0 ¢ C, la norme de son inverse reste bornée lorsque L s’approche d’un irrationnel, ce
qui montre ainsi la controlabilité exacte de (A.38). Si 0 € C, on montre que alors 0 est une
valeur propre ou un point d’accumulation de valeurs propres de S, ce qui implique que 'on
n’a pas la controlabilité exacte de (A.38).

215



216



Bibliography

[1] F. Alabau-Boussouira and M. Léautaud. Indirect controllability of locally coupled
wave-type systems and applications. J. Math. Pures Appl. (9), 99(5):544-576. ISSN
0021-7824, 2013.

[2] F. Alabau-Boussouira, V. Perrollaz, and L. Rosier. Finite-time stabilization of a net-
work of strings. Math. Control Relat. Fields, 5(4):721-742, 2015.

[3] S. Alexander. Superconductivity of networks. A percolation approach to the effects of
disorder. Phys. Rev. B (3), 27(3):1541-1557. ISSN 0163-1829, 1983.

[4] F. Ali Mehmeti. A characterization of a generalized C*-notion on nets. Integral Equa-
tions Operator Theory, 9(6):753-766. ISSN 0378-620X, 1986.

[5]

. Regular solutions of transmission and interaction problems for wave equa-
tions. Math. Methods Appl. Sci., 11(5):665-685. ISSN 0170-4214, 1989.

[6] F. Ali Mehmeti, ]J. von Below, and S. Nicaise, editors. Partial differential equations
on multistructures, vol. 219 of Lecture Notes in Pure and Applied Mathematics. Marcel
Dekker, Inc., New York. ISBN 0-8247-0565-3, 2001.

[7] S. Amin, F. M. Hante, and A. M. Bayen. Exponential stability of switched linear hyper-
bolic initial-boundary value problems. IEEE Trans. Automat. Control, 57(2):291-301.
ISSN 0018-9286, 2012.

[8] K. Ammari. Asymptotic behavior of some elastic planar networks of Bernoulli-Euler
beams. Appl. Anal., 86(12):1529-1548. ISSN 0003-6811, 2007.

[9] B. D. O. Anderson. Exponential stability of linear equations arising in adaptive iden-
tification. IEEE Trans. Automatic Control, AC-22(1):83-88. ISSN 0018-9286, 1977.

[10] B.D.O. Anderson, R. R. Bitmead, C. R. Johnson Jr., P. V. Kokotovi¢, R. L. Kosut, . M. Y.
Mareels, L. Praly, and B. D. Riedle. Stability of adaptive systems. Passivity and averaging
systems, vol. 8 of MIT Press Series in Signal Processing, Optimization, and Control. MIT
Press, Cambridge, MA. ISBN 0-262-01090-9, 1986.

[11] S. Andersson and P. S. Krishnaprasad. Degenerate gradient flows: a comparison study
of convergence rate estimates. In Proceedings of the 41st IEEE Conference on Decision
and Control, vol. 4, pp. 4712-4717, 2002.

[12] P.J. Antsaklis. A brief introduction to the theory and applications of hybrid systems.
Proceedings of the IEEE, 88(7):879-887. ISSN 0018-9219. Special Issue on Hybrid
Systems: Theory and Applications, 2000.

217


http://dx.doi.org/10.1016/j.matpur.2012.09.012
http://dx.doi.org/10.1016/j.matpur.2012.09.012
http://dx.doi.org/10.3934/mcrf.2015.5.721
http://dx.doi.org/10.3934/mcrf.2015.5.721
http://dx.doi.org/10.1103/PhysRevB.27.1541
http://dx.doi.org/10.1103/PhysRevB.27.1541
http://dx.doi.org/10.1007/BF01202515
http://dx.doi.org/10.1002/mma.1670110507
http://dx.doi.org/10.1002/mma.1670110507
http://dx.doi.org/10.1201/9780203902196
http://dx.doi.org/10.1201/9780203902196
http://dx.doi.org/10.1109/TAC.2011.2158171
http://dx.doi.org/10.1109/TAC.2011.2158171
http://dx.doi.org/10.1080/00036810701734113
http://dx.doi.org/10.1080/00036810701734113
http://dx.doi.org/10.1109/TAC.1977.1101406
http://dx.doi.org/10.1109/TAC.1977.1101406
http://dx.doi.org/10.1109/CDC.2002.1185122
http://dx.doi.org/10.1109/CDC.2002.1185122
http://dx.doi.org/10.1109/JPROC.2000.871299

Bibliography

[13] L. Arnold. Random dynamical systems. Springer Monographs in Mathematics.
Springer-Verlag, Berlin. ISBN 3-540-63758-3, 1998.

[14] C. E. de Avellar and J. K. Hale. On the zeros of exponential polynomials. J. Math.
Anal. Appl., 73(2):434-452. ISSN 0022-247X, 1980.

[15] C. E. de Avellar and S. A. S. Marconato. Difference equations with delays depending
on time. Bol. Soc. Brasil. Mat. (N. S.), 21(1):51-58. ISSN 0100-3569, 1990.

[16] M. Babaali and G. J. Pappas. Observability of switched linear systems in continuous
time. In M. Morari and L. Thiele, editors, Hybrid systems: Computation and control,
vol. 3414 of Lecture Notes in Computer Science, pp. 103-117. Springer. ISBN 978-3-
540-25108-8. Proceedings of the 8th International Workshop, HSCC 2005, Zurich,
Switzerland, March 9-11, 2005.

[17] Y. Bakhtin and T. Hurth. Invariant densities for dynamical systems with random
switching. Nonlinearity, 25(10):2937-2952. ISSN 0951-7715, 2012.

[18] K. Balachandran, S. Divya, L. Rodriguez-Germa, and J. J. Trujillo. Relative control-
lability of nonlinear neutral fractional integro-differential systems with distributed
delays in control. Math. Methods Appl. Sci., 39(2):214-224. ISSN 0170-4214, 2016.

[19] K. Balachandran and D. Somasundaram. Relative controllability of nonlinear systems
with time varying delays in control. Kybernetika (Prague), 21(1):65-72. ISSN 0023-
5954, 1985.

[20] M. Balde, U. Boscain, and P. Mason. A note on stability conditions for planar switched
systems. Internat. J. Control, 82(10):1882-1888. ISSN 0020-7179, 2009.

[21] J. M. Ball, J. E. Marsden, and M. Slemrod. Controllability for distributed bilinear
systems. SIAM J. Control Optim., 20(4):575-597. ISSN 0363-0129, 1982.

[22] A. Balluchi, L. Benvenuti, M. D. Di Benedetto, C. Pinello, and A. L. Sangiovanni-
Vincentelli. Automotive engine control and hybrid systems: Challenges and oppor-
tunities. Proceedings of the IEEE, 88(7):888-912. ISSN 0018-9219. Special Issue on
Hybrid Systems: Theory and Applications, 2000.

[23] N. Barabanov, R. Ortega, and A. Astolfi. Is normalization necessary for stable model
reference adaptive control? [EEE Trans. Automat. Control, 50(9):1384-1390. ISSN
0018-9286, 2005.

[24] G. Bastin, B. Haut, J.-M. Coron, and B. d’Andréa Novel. Lyapunov stability analysis
of networks of scalar conservation laws. Netw. Heterog. Media, 2(4):751-759. ISSN
1556-1801, 2007.

[25] L. Baudouin, E. Crépeau, and J. Valein. Global Carleman estimate on a network for
the wave equation and application to an inverse problem. Math. Control Relat. Fields,
1(3):307-330. ISSN 2156-8472, 2011.

[26] L. Baudouin and M. Yamamoto. Inverse problem on a tree-shaped network: unified
approach for uniqueness. Appl. Anal., 94(11):2370-2395. ISSN 0003-6811, 2015.

[27] M. Benaim, F. Colonius, and R. Lettau. Supports of invariant measures for piecewise
deterministic Markov processes. Preprint arXiv: 1604.06219, 2016.

218


http://dx.doi.org/10.1007/978-3-662-12878-7
http://dx.doi.org/10.1016/0022-247X(80)90289-9
http://dx.doi.org/10.1007/BF01236279
http://dx.doi.org/10.1007/BF01236279
http://dx.doi.org/10.1007/978-3-540-31954-2_7
http://dx.doi.org/10.1007/978-3-540-31954-2_7
http://dx.doi.org/10.1088/0951-7715/25/10/2937
http://dx.doi.org/10.1088/0951-7715/25/10/2937
http://dx.doi.org/10.1002/mma.3470
http://dx.doi.org/10.1002/mma.3470
http://dx.doi.org/10.1002/mma.3470
http://www.kybernetika.cz/content/1985/1/65
http://www.kybernetika.cz/content/1985/1/65
http://dx.doi.org/10.1080/00207170902802992
http://dx.doi.org/10.1080/00207170902802992
http://dx.doi.org/10.1137/0320042
http://dx.doi.org/10.1137/0320042
http://dx.doi.org/10.1109/5.871300
http://dx.doi.org/10.1109/5.871300
http://dx.doi.org/10.1109/TAC.2005.854625
http://dx.doi.org/10.1109/TAC.2005.854625
http://dx.doi.org/10.3934/nhm.2007.2.751
http://dx.doi.org/10.3934/nhm.2007.2.751
http://dx.doi.org/10.3934/mcrf.2011.1.307
http://dx.doi.org/10.3934/mcrf.2011.1.307
http://dx.doi.org/10.1080/00036811.2014.985214
http://dx.doi.org/10.1080/00036811.2014.985214
http://arxiv.org/abs/1604.06219
http://arxiv.org/abs/1604.06219

Bibliography

[28] M. Benaim, S. Le Borgne, F. Malrieu, and P.-A. Zitt. On the stability of planar ran-
domly switched systems. Ann. Appl. Probab., 24(1):292-311. ISSN 1050-5164, 2014.

[29]

. Qualitative properties of certain piecewise deterministic Markov processes.
Ann. Inst. Henri Poincaré Probab. Stat., 51(3):1040-1075. ISSN 0246-0203, 2015.

[30] S. C. Bengea and R. A. DeCarlo. Optimal control of switching systems. Automatica J.
IFAC, 41(1):11-27. ISSN 0005-1098, 2005.

[31] P.Bolzern, P. Colaneri, and G. De Nicolao. On almost sure stability of continuous-time
Markov jump linear systems. Automatica J. IFAC, 42(6):983-988. ISSN 0005-1098,
2006.

[32] U. Boscain. Stability of planar switched systems: the linear single input case. SIAM J.
Control Optim., 41(1):89-112. ISSN 0363-0129, 2002.

[33] R. K. Brayton. Bifurcation of periodic solutions in a nonlinear difference-differential
equations of neutral type. Quart. Appl. Math., 24(3):215-224. ISSN 0033-569X, 1966.

[34]

Nonlinear oscillations in a distributed network. Quart. Appl. Math.,
24(4):289-301. ISSN 0033-569X, 1967.

[35] A.Bressan,S. Cani¢, M. Garavello, M. Herty, and B. Piccoli. Flows on networks: recent
results and perspectives. EMS Surv. Math. Sci., 1(1):47-111. ISSN 2308-2151, 2014.

[36] A. Bressan and B. Piccoli. Introduction to the Mathematical Theory of Control, vol. 2
of AIMS Series on Applied Mathematics. American Institute of Mathematical Sciences
(AIMS), Springfield, MO. ISBN 978-1-60133-002-4; 1-60133-002-2, 2007.

[37] R. Brockett. The rate of descent for degenerate gradient flows. In Proceedings of the
Fourteenth International Symposium on Mathematical Theory of Networks and Systems
(MTNS), 2000.

[38] A. Chaillet, Y. Chitour, A. Loria, and M. Sigalotti. Towards uniform linear time-
invariant stabilization of systems with persistency of excitation. In Proceedings of
the 46th IEEE Conference on Decision and Control, pp. 6394-6399, 2007.

. Uniform stabilization for linear systems with persistency of excitation: the
neutrally stable and the double integrator cases. Math. Control Signals Systems,
20(2):135-156. ISSN 0932-4194, 2008.

[40] D. Chatterjee and D. Liberzon. On stability of randomly switched nonlinear systems.
IEEE Trans. Automat. Control, 52(12):2390-2394. ISSN 0018-9286, 2007.

[41] J. R. Chavez-Fuentes, J. E. Mayta, E. FE. Costa, and M. H. Terra. On the solvability
and almost sure stability of discrete-time Markov jump linear singular systems. In
Proceedings of the 54th IEEE Conference on Decision and Control, pp. 5067-5072, 2015.

[42] D. Cheng, L. Guo, Y. Lin, and Y. Wang. A note on overshoot estimation in pole place-
ments. J. Control Theory Appl., 2(2):161-164. ISSN 1672-6340, 2004.

[43] . Erratum to: “A note on overshoot estimation in pole placements” [J. Control
Theory App. 2(2):161-164, 2004]. J. Control Theory Appl., 3(3):258. ISSN 1672-6340,

2005.

219


http://dx.doi.org/10.1214/13-AAP924
http://dx.doi.org/10.1214/13-AAP924
http://dx.doi.org/10.1214/14-AIHP619
http://dx.doi.org/10.1016/j.automatica.2004.08.003
http://dx.doi.org/10.1016/j.automatica.2006.02.007
http://dx.doi.org/10.1016/j.automatica.2006.02.007
http://dx.doi.org/10.1137/S0363012900382837
http://www.jstor.org/stable/43635617
http://www.jstor.org/stable/43635617
http://www.jstor.org/stable/43634984
http://dx.doi.org/10.4171/EMSS/2
http://dx.doi.org/10.4171/EMSS/2
http://dx.doi.org/10.1109/CDC.2007.4434374
http://dx.doi.org/10.1109/CDC.2007.4434374
http://dx.doi.org/10.1007/s00498-008-0024-1
http://dx.doi.org/10.1007/s00498-008-0024-1
http://dx.doi.org/10.1109/TAC.2007.904253
http://dx.doi.org/10.1109/CDC.2015.7403012
http://dx.doi.org/10.1109/CDC.2015.7403012
http://dx.doi.org/10.1007/s11768-004-0062-2
http://dx.doi.org/10.1007/s11768-004-0062-2
http://dx.doi.org/10.1007/s11768-005-0045-y
http://dx.doi.org/10.1007/s11768-005-0045-y

Bibliography

[44] C.Chicone and Y. Latushkin. Evolution semigroups in dynamical systems and differential
equations, vol. 70 of Mathematical Surveys and Monographs. American Mathematical
Society, Providence, RI. ISBN 0-8218-1185-1, 1999.

[45] Y. Chitour, F. Colonius, and M. Sigalotti. Growth rates for persistently excited linear
systems. Math. Control Signals Systems, 26(4):589-616. ISSN 0932-4194, 2014.

[46] Y. Chitour, G. Mazanti, and M. Sigalotti. Stabilization of persistently excited linear
systems. In J. Daafouz, S. Tarbouriech, and M. Sigalotti, editors, Hybrid Systems with
Constraints, chap. 4. Wiley-ISTE, London, UK. ISBN 9781848215276, 2013.

[47]

. Persistently damped transport on a network of circles. Trans. Amer. Math.
Soc., to appear.

48]

. Stability of non-autonomous difference equations with applications to trans-
port and wave propagation on networks. Netw. Heterog. Media, to appear.

[49] Y. Chitour and M. Sigalotti. On the stabilization of persistently excited linear systems.
SIAM ]. Control Optim., 48(6):4032-4055. ISSN 0363-0129, 2010.

[50] A. Chutinan and B. H. Krogh. Computational techniques for hybrid system verifica-
tion. IEEE Trans. Automat. Control, 48(1):64-75. ISSN 0018-9286, 2003.

[51] D. H. Chyung. On the controllability of linear systems with delay in control. IEEE
Trans. Automatic Control, 15(2):255-257. ISSN 0018-9286, 1970.

[52] F. Colonius and W. Kliemann. The dynamics of control. Systems & Control: Foun-
dations & Applications. Birkhauser Boston, Inc., Boston, MA. ISBN 0-8176-3683-8,
2000.

[53] E. Colonius and G. Mazanti. Lyapunov exponents for random continuous-time
switched systems and stabilizability. Preprint arXiv: 1511.06461, 2015.

[54] K. L. Cooke and D. W. Krumme. Differential-difference equations and nonlinear
initial-boundary value problems for linear hyperbolic partial differential equations.
J. Math. Anal. Appl., 24:372-387. ISSN 0022-247x, 1968.

[55] J.-M. Coron. Control and nonlinearity, vol. 136 of Mathematical Surveys and Mono-
graphs. American Mathematical Society, Providence, RI. ISBN 978-0-8218-3668-2;
0-8218-3668-4, 2007.

[56] J.-M. Coron, G. Bastin, and B. d’Andréa Novel. Dissipative boundary conditions for
one-dimensional nonlinear hyperbolic systems. SIAM J. Control Optim., 47(3):1460-
1498. ISSN 0363-0129, 2008.

[57] J.-M. Coron and H.-M. Nguyen. Dissipative boundary conditions for nonlinear 1-D
hyperbolic systems: sharp conditions through an approach via time-delay systems.
SIAM ]. Math. Anal., 47(3):2220-2240. ISSN 0036-1410, 2015.

[58] O. L. V. Costa, M. D. Fragoso, and R. P. Marques. Discrete-time Markov jump linear
systems. Probability and its Applications (New York). Springer-Verlag London, Ltd.,
London. ISBN 1-85233-761-3, 2005.

[59] O.L. V. Costa, M. D. Fragoso, and M. G. Todorov. Continuous-time Markov jump linear
systems. Probability and its Applications (New York). Springer, Heidelberg. ISBN
978-3-642-34099-4; 978-3-642-34100-7, 2013.

220


http://dx.doi.org/10.1090/surv/070
http://dx.doi.org/10.1090/surv/070
http://dx.doi.org/10.1007/s00498-014-0131-0
http://dx.doi.org/10.1007/s00498-014-0131-0
http://dx.doi.org/10.1002/9781118639856.ch4
http://dx.doi.org/10.1002/9781118639856.ch4
http://arxiv.org/abs/1406.0731
http://arxiv.org/abs/1504.01116
http://arxiv.org/abs/1504.01116
http://dx.doi.org/10.1137/080737812
http://dx.doi.org/10.1109/TAC.2002.806655
http://dx.doi.org/10.1109/TAC.2002.806655
http://dx.doi.org/10.1109/TAC.1970.1099416
http://dx.doi.org/10.1007/978-1-4612-1350-5
http://arxiv.org/abs/1511.06461
http://arxiv.org/abs/1511.06461
http://dx.doi.org/10.1016/0022-247X(68)90038-3
http://dx.doi.org/10.1016/0022-247X(68)90038-3
http://dx.doi.org/10.1090/surv/136
http://dx.doi.org/10.1137/070706847
http://dx.doi.org/10.1137/070706847
http://dx.doi.org/10.1137/140976625
http://dx.doi.org/10.1137/140976625
http://dx.doi.org/10.1007/b138575
http://dx.doi.org/10.1007/b138575
http://dx.doi.org/10.1007/978-3-642-34100-7
http://dx.doi.org/10.1007/978-3-642-34100-7

Bibliography

[60] M. Cruz A. and ]. K. Hale. Stability of functional differential equations of neutral
type. J. Differential Equations, 7:334-355. ISSN 0022-0396, 1970.

[61] J. Daafouz, S. Tarbouriech, and M. Sigalotti, editors. Hybrid Systems with Constraints.
Wiley-ISTE, London, UK. ISBN 9781848215276, 2013.

[62] R. Dager and E. Zuazua. Controllability of star-shaped networks of strings. C. R.
Acad. Sci. Paris Sér. I Math., 332(7):621-626. ISSN 0764-4442, 2001.

[63]

. Wave propagation, observation and control in 1-d flexible multi-structures, vol. 50
of Mathématiques & Applications (Berlin) [Mathematics & Applications].  Springer-
Verlag, Berlin. ISBN 978-3-540-27239-9; 3-540-27239-9, 2006.

[64] R. Datko. Linear autonomous neutral differential equations in a Banach space. J. Diff.
Equations, 25(2):258-274. ISSN 0022-0396, 1977.

[65] M. H. A. Davis. Piecewise-deterministic Markov processes: a general class of nondif-
fusion stochastic models. ]. Roy. Statist. Soc. Ser. B, 46(3):353-388. ISSN 0035-9246,
1984.

[66] J. Diblik, D. Y. Khusainov, and M. Ruzi¢kova. Controllability of linear discrete sys-
tems with constant coefficients and pure delay. SIAM J. Control Optim., 47(3):1140-
1149. ISSN 0363-0129, 2008.

[67] R. Diestel. Graph theory, vol. 173 of Graduate Texts in Mathematics. Springer-Verlag,
New York, second ed. ISBN 0-387-95014-1, 2000.

[68] Y. Fang and K. A. Loparo. Stabilization of continuous-time jump linear systems. IEEE
Trans. Automat. Control, 47(10):1590-1603. ISSN 0018-9286, 2002.

[69] X. Feng, K. A. Loparo, Y. Ji, and H. J. Chizeck. Stochastic stability properties of jump
linear systems. IEEE Trans. Automat. Control, 37(1):38-53. ISSN 0018-9286, 1992.

[70] E. Fridman, S. Mondié, and B. Saldivar. Bounds on the response of a drilling pipe
model. IMA J. Math. Control Inform., 27(4):513-526. ISSN 0265-0754, 2010.

[71] J.-P. Gauthier and I. A. K. Kupka. Observability and observers for nonlinear systems.
SIAM ]. Control Optim., 32(4):975-994. ISSN 0363-0129, 1994.

[72]

. Deterministic observation theory and applications. Cambridge University Press,
Cambridge. ISBN 0-521-80593-7, 2001.

[73] J.J. Green. Uniform Convergence to the Spectral Radius and Some Related Properties in
Banach Algebras. Ph.D. thesis, University of Sheffield, 1996.

[74] J. M. Greenberg and T. T. Li. The effect of boundary damping for the quasilinear wave
equation. J. Differential Equations, 52(1):66-75. ISSN 0022-0396, 1984.

[75] R. L. Grossman, A. Nerode, A. P. Ravn, and H. Rischel, editors. Hybrid Systems, vol.
736 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Heidelberg. ISBN
978-3-540-57318-0, 1993.

[76] M. Gugat. Optimal switching boundary control of a string to rest in finite time.
ZAMM Z. Angew. Math. Mech., 88(4):283-305. ISSN 0044-2267, 2008.

221


http://dx.doi.org/10.1016/0022-0396(70)90114-2
http://dx.doi.org/10.1016/0022-0396(70)90114-2
http://dx.doi.org/10.1002/9781118639856
http://dx.doi.org/10.1016/S0764-4442(01)01876-6
http://dx.doi.org/10.1007/3-540-37726-3
http://dx.doi.org/10.1016/0022-0396(77)90204-2
http://www.jstor.org/stable/2345677
http://www.jstor.org/stable/2345677
http://dx.doi.org/10.1137/070689085
http://dx.doi.org/10.1137/070689085
http://dx.doi.org/10.1007/b100033
http://dx.doi.org/10.1109/TAC.2002.803528
http://dx.doi.org/10.1109/9.109637
http://dx.doi.org/10.1109/9.109637
http://dx.doi.org/10.1093/imamci/dnq024
http://dx.doi.org/10.1093/imamci/dnq024
http://dx.doi.org/10.1137/S0363012991221791
http://dx.doi.org/10.1017/CBO9780511546648
http://soliton.vm.bytemark.co.uk/pub/jjg/pdf/thesis.pdf
http://soliton.vm.bytemark.co.uk/pub/jjg/pdf/thesis.pdf
http://dx.doi.org/10.1016/0022-0396(84)90135-9
http://dx.doi.org/10.1016/0022-0396(84)90135-9
http://dx.doi.org/10.1007/3-540-57318-6
http://dx.doi.org/10.1002/zamm.200700154

Bibliography

[77] . Contamination source determination in water distribution networks. SIAM

J. Appl. Math., 72(6):1772-1791. ISSN 0036-1399, 2012.

[78] M. Gugat, M. Herty, A. Klar, G. Leugering, and V. Schleper. Well-posedness of net-
worked hyperbolic systems of balance laws. In Constrained optimization and optimal
control for partial differential equations, vol. 160 of Internat. Ser. Numer. Math., pp. 123—
146. Birkhauser/Springer Basel AG, Basel, 2012.

[79] M. Gugat and M. Sigalotti. Stars of vibrating strings: switching boundary feedback
stabilization. Netw. Heterog. Media, 5(2):299-314. ISSN 1556-1801, 2010.

[80] M. Hairer. Ergodic properties of Markov processes. Lecture notes from the University
of Warwick, Spring 2006.

[81] J. K. Hale. Dynamical systems and stability. J. Math. Anal. Appl., 26:39-59. ISSN
0022-247x, 1969.

[82] Parametric stability in difference equations. Boll. Un. Mat. Ital. IV, 11(3,
suppl.):209-214. Collection of articles dedicated to Giovanni Sansone on the occasion

of his eighty-fifth birthday, 1975.

[83]

. Ordinary differential equations. Dover, Mineola, NY. ISBN 978-0486472119.
Republication of the second edition, originally published by Robert E. Krieger Pub-
lishing Co., New York, 1980, 2009.

[84] J. K. Hale, E. F. Infante, and F. S. P. Tsen. Stability in linear delay equations. J. Math.
Anal. Appl., 105(2):533-555. ISSN 0022-247X, 1985.

[85] J. K. Hale and K. R. Meyer. A class of functional equations of neutral type. Memoirs of the
American Mathematical Society, No. 76. American Mathematical Society, Providence,
R.I., 1967.

[86] J. K. Hale and S. M. Verduyn Lunel. Introduction to functional-differential equations,
vol. 99 of Applied Mathematical Sciences. Springer-Verlag, New York. ISBN 0-387-
94076-6, 1993.

87]

. Strong stabilization of neutral functional differential equations. IMA J. Math.
Control Inform., 19(1-2):5-23. ISSN 0265-0754. Special issue on analysis and design
of delay and propagation systems, 2002.

88]

. Stability and control of feedback systems with time delays. Internat. J. Systems
Sci., 34(8-9):497-504. ISSN 0020-7721. Special issue: Time delay systems: theory and
control, 2003.

[89] P. R. Halmos. Measure Theory, vol. 18 of Graduate Texts in Mathematics. Springer-
Verlag, 1974.

[90] E. M. Hante, G. Leugering, and T. I. Seidman. Modeling and analysis of modal switch-
ing in networked transport systems. Appl. Math. Optim., 59(2):275-292. ISSN 0095-
4616, 2009.

[91] E. M. Hante, M. Sigalotti, and M. Tucsnak. On conditions for asymptotic stability
of dissipative infinite-dimensional systems with intermittent damping. J. Differential
Equations, 252(10):5569-5593. ISSN 0022-0396, 2012.

222


http://dx.doi.org/10.1137/110859269
http://dx.doi.org/10.1007/978-3-0348-0133-1_7
http://dx.doi.org/10.1007/978-3-0348-0133-1_7
http://dx.doi.org/10.3934/nhm.2010.5.299
http://dx.doi.org/10.3934/nhm.2010.5.299
http://www.hairer.org/notes/Markov.pdf
http://dx.doi.org/10.1016/0022-247X(69)90175-9
http://dx.doi.org/10.1016/0022-247X(85)90068-X
http://dx.doi.org/10.1090/memo/0076
http://dx.doi.org/10.1007/978-1-4612-4342-7
http://dx.doi.org/10.1093/imamci/19.1_and_2.5
http://dx.doi.org/10.1080/00207720310001609039
http://dx.doi.org/10.1007/978-1-4684-9440-2_2
http://dx.doi.org/10.1007/s00245-008-9057-6
http://dx.doi.org/10.1007/s00245-008-9057-6
http://dx.doi.org/10.1016/j.jde.2012.01.037
http://dx.doi.org/10.1016/j.jde.2012.01.037

Bibliography

[92] A. Haraux, P. Martinez, and J. Vancostenoble. Asymptotic stability for intermittently
controlled second-order evolution equations. SIAM ]. Control Optim., 43(6):2089—
2108. ISSN 0363-0129, 2005.

[93] W. P. M. H. Heemels, A. R. Teel, N. van de Wouw, and D. Nesi¢. Networked control
systems with communication constraints: tradeoffs between transmission intervals,
delays and performance. IEEE Trans. Automat. Control, 55(8):1781-1796. ISSN 0018-
9286, 2010.

[94] D. Henry. Linear autonomous neutral functional differential equations. J. Differential
Equations, 15:106-128. ISSN 0022-0396, 1974.

[95] . Geometric theory of semilinear parabolic equations, vol. 840 of Lecture Notes in

Mathematics. Springer-Verlag, Berlin-New York. ISBN 3-540-10557-3, 1981.

[96] L. Hormander. The analysis of linear partial differential operators I. Distribution theory
and Fourier analysis. Classics in Mathematics. Springer-Verlag, Berlin. ISBN 3-540-
00662-1. Reprint of the second edition [Springer, Berlin, 1990], 2003.

[97] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge University Press, Cam-
bridge, second ed. ISBN 978-0-521-54823-6, 2013.

[98] L. 1. Ignat, A. F. Pazoto, and L. Rosier. Inverse problem for the heat equation and the
Schrodinger equation on a tree. Inverse Problems, 28(1):015011, 30. ISSN 0266-5611,
2012.

[99] Z.]i, X. Guo, and S. Xu. A further note on overshoot estimation in pole placements.
J. Control Theory Appl., 5(1):57-59. ISSN 1672-6340, 2007.

[100] R.Jungers. The joint spectral radius. Theory and applications, vol. 385 of Lecture Notes
in Control and Information Sciences. Springer-Verlag, Berlin. ISBN 978-3-540-95979-3,
20009.

[101] R. M. Jungers, A. D’Innocenzo, and M. D. Di Benedetto. Modeling, analysis and de-
sign of linear systems with switching delays. IEEE Trans. Automat. Control, to appear.

[102] R. M. Jungers and W. P. M. H. Heemels. Controllability of linear systems subject to
packet losses. IFAC-PapersOnLine, 48(27):80-85. Special issue: Analysis and Design
of Hybrid Systems (ADHS). Atlanta, GA, USA, October 14-16, 2015.

[103] S.Karthikeyan, K. Balachandran, and M. Sathya. Controllability of nonlinear stochas-
tic systems with multiple time-varying delays in control. Int. J. Appl. Math. Comput.
Sci., 25(2):207-215. ISSN 1641-876X, 2015.

[104] T. Kato. Linear evolution equations of “hyperbolic” type. II. ]J. Math. Soc. Japan,
25:648-666. ISSN 0025-5645, 1973.

[105] J. Klamka. Relative controllability of nonlinear systems with delays in control.
Automatica—]. IFAC, 12(6):633-634, 1976.

[106] B. Kldss. The flow approach for waves in networks. Oper. Matrices, 6(1):107-128.
ISSN 1846-3886, 2012.

[107] P. Koosis. Introduction to H, spaces, vol. 115 of Cambridge Tracts in Mathematics. Cam-
bridge University Press, Cambridge, second ed. ISBN 0-521-45521-9. With two ap-
pendices by V. P. Havin [Viktor Petrovich Khavin], 1998.

223


http://dx.doi.org/10.1137/S0363012903436569
http://dx.doi.org/10.1137/S0363012903436569
http://dx.doi.org/10.1109/TAC.2010.2042352
http://dx.doi.org/10.1109/TAC.2010.2042352
http://dx.doi.org/10.1109/TAC.2010.2042352
http://dx.doi.org/10.1016/0022-0396(74)90089-8
http://dx.doi.org/10.1007/bfb0089647
http://dx.doi.org/10.1007/978-3-642-61497-2
http://dx.doi.org/10.1007/978-3-642-61497-2
http://dx.doi.org/10.1017/CBO9781139020411
http://dx.doi.org/10.1088/0266-5611/28/1/015011
http://dx.doi.org/10.1088/0266-5611/28/1/015011
http://dx.doi.org/10.1007/s11768-005-5291-5
http://dx.doi.org/10.1007/978-3-540-95980-9
http://arxiv.org/abs/1401.1673
http://arxiv.org/abs/1401.1673
http://dx.doi.org/10.1016/j.ifacol.2015.11.156
http://dx.doi.org/10.1016/j.ifacol.2015.11.156
http://dx.doi.org/10.1515/amcs-2015-0015
http://dx.doi.org/10.1515/amcs-2015-0015
http://dx.doi.org/10.2969/jmsj/02540648
http://dx.doi.org/10.1016/0005-1098(76)90046-7
http://dx.doi.org/10.7153/oam-06-08
http://dx.doi.org/10.1017/cbo9780511470950

Bibliography

[108] P. Kuchment. Quantum graphs: an introduction and a brief survey. In Analysis on
graphs and its applications, vol. 77 of Proc. Sympos. Pure Math., pp. 291-312. Amer.
Math. Soc., Providence, RI, 2008.

[109] P. Kuchment and O. Post. On the spectra of carbon nano-structures. Comm. Math.
Phys., 275(3):805-826. ISSN 0010-3616, 2007.

[110] J. E. Lagnese, G. Leugering, and E. J. P. G. Schmidt. Modeling, analysis and control of
dynamic elastic multi-link structures. Systems & Control: Foundations & Applications.
Birkhauser Boston, Inc., Boston, MA. ISBN 0-8176-3705-2, 1994.

[111] P.-O. Lamare, A. Girard, and C. Prieur. Switching rules for stabilization of linear
systems of conservation laws. SIAM J. Control Optim., 53(3):1599-1624. ISSN 0363-
0129, 2015.

[112] C. Li, M. Z. Q. Chen, J. Lam, and X. Mao. On exponential almost sure stability of
random jump systems. IEEE Trans. Automat. Control, 57(12):3064-3077. ISSN 0018-
9286, 2012.

[113] D. Liberzon. Switching in systems and control. Systems & Control: Foundations &
Applications. Birkhauser Boston, Inc., Boston, MA. ISBN 0-8176-4297-8, 2003.

[114] H. Lin and P. J. Antsaklis. Stability and stabilizability of switched linear systems: a
survey of recent results. IEEE Trans. Automat. Control, 54(2):308-322. ISSN 0018-
9286, 2009.

[115]

. Hybrid dynamical systems: Stability and stabilization. In W. S. Levine, editor,
The Control Handbook: Control System Advanced Methods, chap. 30. CRC Press, Boca
Raton, Florida, 2nd ed., 2010.

[116] A. Loria, A. Chaillet, G. Besang¢on, and Y. Chitour. On the PE stabilization of time-
varying systems: open questions and preliminary answers. In Proceedings of the 44th
IEEE Conference on Decision and Control, pp. 6847-6852, 2005.

[117] M. Lovera and A. Astolfi. Global spacecraft attitude control using magnetic actua-
tors. In S. Sivasundaram, editor, Advances in dynamics and control, vol. 2 of Nonlinear
Systems in Aviation, Aerospace, Aeronautics, and Astronautics, pp. 1-13. Chapman &
Hall/CRC, Boca Raton, FL. ISBN 0-415-30852-6, 2004.

[118] Q. Lt and E. Zuazua. Robust null controllability for heat equations with unknown
switching control mode. Discrete Contin. Dyn. Syst., 34(10):4183-4210. ISSN 1078-
0947, 2014.

[119] G. Lumer. Connecting of local operators and evolution equations on networks. In
Potential theory, Copenhagen 1979 (Proc. Colloq., Copenhagen, 1979), vol. 787 of Lecture
Notes in Math., pp. 219-234. Springer, Berlin, 1980.

[120] Equations de diffusion sur des réseaux infinis. In Séminaire Goulaouic-

Schwartz, 1979-1980, p. Exp. No. 18. Ecole Polytechinque, Palaiseau, 1980.

[121] J. Lunze and F. Lamnabhi-Lagarrigue, editors. Handbook of hybrid systems control.
Theory, tools, applications. Cambridge University Press, Cambridge. ISBN 978-0-521-
76505-3, 20009.

224


http://dx.doi.org/10.1090/pspum/077/2459876
http://dx.doi.org/10.1007/s00220-007-0316-1
http://dx.doi.org/10.1007/978-1-4612-0273-8
http://dx.doi.org/10.1007/978-1-4612-0273-8
http://dx.doi.org/10.1137/140953952
http://dx.doi.org/10.1137/140953952
http://dx.doi.org/10.1109/TAC.2012.2200369
http://dx.doi.org/10.1109/TAC.2012.2200369
http://dx.doi.org/10.1007/978-1-4612-0017-8
http://dx.doi.org/10.1109/TAC.2008.2012009
http://dx.doi.org/10.1109/TAC.2008.2012009
http://dx.doi.org/10.1201/b10384-35
http://dx.doi.org/10.1109/CDC.2005.1583263
http://dx.doi.org/10.1109/CDC.2005.1583263
http://dx.doi.org/10.1201/9780203298916.ch1
http://dx.doi.org/10.1201/9780203298916.ch1
http://dx.doi.org/10.3934/dcds.2014.34.4183
http://dx.doi.org/10.3934/dcds.2014.34.4183
http://dx.doi.org/10.1007/BFb0086338
http://www.numdam.org/item?id=SEDP_1979-1980____A19_0
http://dx.doi.org/10.1017/CBO9780511807930
http://dx.doi.org/10.1017/CBO9780511807930

Bibliography

[122] R. Mané. Ergodic theory and differentiable dynamics, vol. 8 of Ergebnisse der Mathematik
und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-
Verlag, Berlin. ISBN 3-540-15278-4. Translated from the Portuguese by Silvio Levy,
1987.

[123] M. Margaliot. Stability analysis of switched systems using variational principles: an
introduction. Automatica J. IFAC, 42(12):2059-2077. ISSN 0005-1098, 2006.

[124] P. Martinez and J. Vancostenoble. Stabilization of the wave equation by on-off and
positive-negative feedbacks. ESAIM Control Optim. Calc. Var., 7:335-377 (electronic).
ISSN 1292-8119, 2002.

[125] P. Mason, U. Boscain, and Y. Chitour. Common polynomial Lyapunov functions for
linear switched systems. SIAM J. Control Optim., 45(1):226-245 (electronic). ISSN
0363-0129, 2006.

[126] G. Mazanti. Stabilization of persistently excited linear systems by delayed feedback
laws. Systems Control Lett., 68:57—-67. ISSN 0167-6911, 2014.

[127] Relative controllability of linear difference equations. Preprint arXiv:

1604.08663, 2016.

[128] G.Mazanti, Y. Chitour, and M. Sigalotti. Stabilization of two-dimensional persistently
excited linear control systems with arbitrary rate of convergence. SIAM J. Control
Optim., 51(2):801-823. ISSN 0363-0129, 2013.

[129] W. R. Melvin. Stability properties of functional difference equations. J. Math. Anal.
Appl., 48:749-763. ISSN 0022-247x, 1974.

[130] D. Mercier and V. Régnier. Spectrum of a network of Euler-Bernoulli beams. ]. Math.
Anal. Appl., 337(1):174-196. ISSN 0022-247X, 2008.

[131] C.Meyer. Matrix analysis and applied linear algebra. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA. ISBN 0-89871-454-0, 2000.

[132] W. Michiels, T. Vyhlidal, P. Zitek, H. Nijmeijer, and D. Henrion. Strong stability of
neutral equations with an arbitrary delay dependency structure. SIAM J. Control Op-
tim., 48(2):763-786. ISSN 0363-0129, 2009.

[133] W. L. Miranker. Periodic solutions of the wave equation with a nonlinear interface
condition. IBM J. Res. Develop., 5:2-24. ISSN 0018-8646, 1961.

[134] C.]J.Moreno. The zeros of exponential polynomials (I). Compositio Math., 26(1):69-78.
ISSN 0010-437X, 1973.

[135] A. P. Morgan and K. S. Narendra. On the stability of nonautonomous differential
equations X = [A + B(t)]x, with skew symmetric matrix B(t). SIAM J. Control Optimiza-
tion, 15(1):163-176. ISSN 0363-0129, 1977.

[136] P.H. A. Ngoc and N. D. Huy. Exponential stability of linear delay difference equations
with continuous time. Vietnam J. Math., 43(2):195-205. ISSN 2305-221X, 2015.

[137] S. Nicaise. Spectre des réseaux topologiques finis. Bull. Sci. Math. (2), 111(4):401-413.
ISSN 0007-4497, 1987.

225


http://dx.doi.org/10.1007/978-3-642-70335-5
http://dx.doi.org/10.1016/j.automatica.2006.06.020
http://dx.doi.org/10.1016/j.automatica.2006.06.020
http://dx.doi.org/10.1051/cocv:2002015
http://dx.doi.org/10.1051/cocv:2002015
http://dx.doi.org/10.1137/040613147
http://dx.doi.org/10.1137/040613147
http://dx.doi.org/10.1016/j.sysconle.2014.03.006
http://dx.doi.org/10.1016/j.sysconle.2014.03.006
http://arxiv.org/abs/1604.08663
http://dx.doi.org/10.1137/110848153
http://dx.doi.org/10.1137/110848153
http://dx.doi.org/10.1016/0022-247X(74)90149-8
http://dx.doi.org/10.1016/j.jmaa.2007.03.080
http://dx.doi.org/10.1137/1.9780898719512
http://dx.doi.org/10.1137/080724940
http://dx.doi.org/10.1137/080724940
http://dx.doi.org/10.1147/rd.51.0002
http://dx.doi.org/10.1147/rd.51.0002
http://eudml.org/doc/89153
http://dx.doi.org/10.1137/0315013
http://dx.doi.org/10.1137/0315013
http://dx.doi.org/10.1007/s10013-014-0082-2
http://dx.doi.org/10.1007/s10013-014-0082-2

Bibliography

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

226

. Elliptic operators on elementary ramified spaces. Integral Equations Operator
Theory, 11(2):230-257. ISSN 0378-620X, 1988.

S. Nicaise and J. Valein. Stabilization of the wave equation on 1-D networks with a
delay term in the nodal feedbacks. Netw. Heterog. Media, 2(3):425-479. ISSN 1556-
1801, 2007.

D. A. O’Connor and T. J. Tarn. On stabilization by state feedback for neutral
differential-difference equations. IEEE Trans. Automat. Control, 28(5):615-618. ISSN
0018-9286, 1983.

On the function space controllability of linear neutral systems. SIAM ]J.
Control Optim., 21(2):306-329. ISSN 0363-0129, 1983.

A. W. Olbrot. On controllability of linear systems with time delays in control. IEEE
Trans. Automatic Control, AC-17(5):664-666. ISSN 0018-9286, 1972.

L. Pandolfi. Stabilization of neutral functional differential equations. J. Optimization
Theory Appl., 20(2):191-204. ISSN 0022-3239, 1976.

A. Pazy. Semigroups of linear operators and applications to partial differential equations,
vol. 44 of Applied Mathematical Sciences. Springer-Verlag, New York. ISBN 0-387-
90845-5, 1983.

V. Perrollaz and L. Rosier. Finite-time stabilization of 2x2 hyperbolic systems on tree-
shaped networks. SIAM ]. Control Optim., 52(1):143-163. ISSN 0363-0129, 2014.

K. Petersen. Ergodic theory, vol. 2 of Cambridge Studies in Advanced Mathematics. Cam-
bridge University Press, Cambridge. ISBN 0-521-38997-6. Corrected reprint of the
1983 original, 1989.

R. S. Phillips. Perturbation theory for semi-groups of linear operators. Trans. Amer.
Math. Soc., 74:199-221. ISSN 0002-9947, 1953.

M. Pospisil, J. Diblik, and M. Feckan. On relative controllability of delayed difference
equations with multiple control functions. In Proceedings of the International Confer-
ence on Numerical Analysis and Applied Mathematics 2014 (ICNAAM-2014), vol. 1648,
p. 130001. AIP Publishing, 2015.

C. Prieur, A. Girard, and E. Witrant. Stability of switched linear hyperbolic systems
by Lyapunov techniques. IEEE Trans. Automat. Control, 59(8):2196-2202. ISSN 0018-
9286, 2014.

F. Reifler and A. Vogt. Unique continuation of some dispersive waves. Comm. Partial
Differential Equations, 19(7-8):1203-1215. ISSN 0360-5302, 1994.

N. Roy Chowdhury and S. Sukumar. Persistence based analysis of consensus protocols
for dynamic graph networks. In IEEE European Control Conference (ECC), pp. 886—
891. ISBN 978-3-9524269-1-3, 2014.

W. Rudin. Real and complex analysis. McGraw-Hill Book Co., New York, third ed.
ISBN 0-07-054234-1, 1987.

. Functional analysis. International Series in Pure and Applied Mathematics.
McGraw-Hill, Inc., New York, second ed. ISBN 0-07-054236-8, 1991.


http://dx.doi.org/10.1007/BF01272120
http://dx.doi.org/10.3934/nhm.2007.2.425
http://dx.doi.org/10.3934/nhm.2007.2.425
http://dx.doi.org/10.1109/TAC.1983.1103286
http://dx.doi.org/10.1109/TAC.1983.1103286
http://dx.doi.org/10.1137/0321018
http://dx.doi.org/10.1109/TAC.1972.1100090
http://dx.doi.org/10.1007/BF01767451
http://dx.doi.org/10.1007/978-1-4612-5561-1
http://dx.doi.org/10.1137/130910762
http://dx.doi.org/10.1137/130910762
http://dx.doi.org/10.1017/cbo9780511608728
http://dx.doi.org/10.2307/1990879
http://dx.doi.org/10.1063/1.4912420
http://dx.doi.org/10.1063/1.4912420
http://dx.doi.org/10.1109/TAC.2013.2297191
http://dx.doi.org/10.1109/TAC.2013.2297191
http://dx.doi.org/10.1080/03605309408821051
http://dx.doi.org/10.1109/ECC.2014.6862201
http://dx.doi.org/10.1109/ECC.2014.6862201

Bibliography

[154] D. Salamon. Control and observation of neutral systems, vol. 91 of Research Notes in
Mathematics. Pitman (Advanced Publishing Program), Boston, MA. ISBN 0-273-
08618-9, 1984.

[155] E.].P. G. Schmidt. On the modelling and exact controllability of networks of vibrating
strings. SIAM ]. Control Optim., 30(1):229-245. ISSN 0363-0129, 1992.

[156] E. Seneta. Non-negative matrices and Markov chains. Springer Series in Statistics.
Springer, New York. ISBN 978-0387-29765-1; 0-387-29765-0. Revised reprint of
the second edition (1981), 2006.

[157] F. Shel. Exponential stability of a network of beams. J. Dyn. Control Syst., 21(3):443-
460. ISSN 1079-2724, 2015.

[158] R. Shorten, E. Wirth, O. Mason, K. Wulff, and C. King. Stability criteria for switched
and hybrid systems. SIAM Rev., 49(4):545-592. ISSN 0036-1445, 2007.

[159] R. A. Silkowski. Star-shaped regions of stability in hereditary systems. Ph.D. thesis,
Brown University, 1976.

[160] M. Slemrod. Nonexistence of oscillations in a nonlinear distributed network. J. Math.
Anal. Appl., 36:22-40. ISSN 0022-247x, 1971.

[161]

. The LaSalle invariance principle in infinite-dimensional Hilbert space. In
F. M. A. Salam and M. L. Levi, editors, Dynamical systems approaches to nonlinear prob-
lems in systems and circuits (Henniker, NH, 1986), pp. 53-59. SIAM, Philadelphia, PA,
1988.

[162] M. M. Sondhi and D. Mitra. New results on the performance of a well-known class of
adaptive filters. Proc. IEEE, 64(11):1583-1597. ISSN 0018-9219, 1976.

[163] E. D. Sontag. Mathematical control theory, vol. 6 of Texts in Applied Mathematics.
Springer-Verlag, New York, second ed. ISBN 0-387-98489-5. Deterministic finite-
dimensional systems, 1998.

[164] S. Srikant and M. R. Akella. Persistence filter-based control for systems with time-
varying control gains. Systems Control Lett., 58(6):413-420. ISSN 0167-6911, 2009.

[165] . Arbitrarily fast exponentially stabilizing controller for multi-input, persis-
tently exciting singular control gain systems. Automatica J. IFAC, 54:279-283. ISSN

0005-1098, 2015.

[166] Z. Sun and S. S. Ge. Switched Linear Systems. Control and Design. Communications
and Control Engineering. Springer-Verlag, London. ISBN 978-1-85233-893-0, 2005.

[167] . Stability theory of switched dynamical systems. Communications and Control
Engineering Series. Springer, London. ISBN 978-0-85729-255-1; 978-0-85729-256-8,

2011.

[168] M. Suzuki, J.-i. Imura, and K. Aihara. Analysis and stabilization for networked linear
hyperbolic systems of rationally dependent conservation laws. Automatica J. IFAC,
49(11):3210-3221. ISSN 0005-1098, 2013.

[169] M. H. Terra, J. Y. Ishihara, G. Jesus, and J. P. Cerri. Robust estimation for discrete-
time Markovian jump linear systems. IEEE Trans. Automat. Control, 58(8):2065-2071.
ISSN 0018-9286, 2013.

227


http://dx.doi.org/10.1137/0330015
http://dx.doi.org/10.1137/0330015
http://dx.doi.org/10.1007/0-387-32792-4
http://dx.doi.org/10.1007/s10883-014-9257-0
http://dx.doi.org/10.1137/05063516X
http://dx.doi.org/10.1137/05063516X
http://dx.doi.org/10.1016/0022-247X(71)90016-3
https://books.google.fr/books?id=7j--iPbO6RcC
http://dx.doi.org/10.1109/PROC.1976.10378
http://dx.doi.org/10.1109/PROC.1976.10378
http://dx.doi.org/10.1007/978-1-4612-0577-7
http://dx.doi.org/10.1016/j.sysconle.2009.01.010
http://dx.doi.org/10.1016/j.sysconle.2009.01.010
http://dx.doi.org/10.1016/j.automatica.2015.02.008
http://dx.doi.org/10.1016/j.automatica.2015.02.008
http://dx.doi.org/10.1007/1-84628-131-8
http://dx.doi.org/10.1007/978-0-85729-256-8
http://dx.doi.org/10.1016/j.automatica.2013.08.016
http://dx.doi.org/10.1016/j.automatica.2013.08.016
http://dx.doi.org/10.1109/TAC.2013.2246475
http://dx.doi.org/10.1109/TAC.2013.2246475

Bibliography

[170] M. Tucsnak and G. Weiss. Observation and control for operator semigroups. Birkhduser
Advanced Texts: Basler Lehrbticher. [Birkhduser Advanced Texts: Basel Textbooks].
Birkhauser Verlag, Basel. ISBN 978-3-7643-8993-2, 2009.

[171] J. Valein and E. Zuazua. Stabilization of the wave equation on 1-D networks. SIAM J.
Control Optim., 48(4):2771-2797. ISSN 0363-0129, 2009.

[172] P. Walters. An introduction to ergodic theory, vol. 79 of Graduate Texts in Mathematics.
Springer-Verlag, New York-Berlin. ISBN 0-387-90599-5, 1982.

[173] A. Weiss, 1. Kolmanovsky, and D. S. Bernstein. Forward-integration Riccati-based
output-feedback control of linear time-varying systems. In IEEE American Control
Conference (ACC), pp. 6708-6714. ISBN 978-1-4577-1095-7, 2012.

[174] G.Xie, D. Zheng, and L. Wang. Controllability of switched linear systems. IEEE Trans.
Automat. Control, 47(8):1401-1405. ISSN 0018-9286, 2002.

[175] K. Yosida. Functional analysis, vol. 123 of Grundlehren der Mathematischen Wis-
senschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin-
New York, sixth ed. ISBN 3-540-10210-8, 1980.

[176] E. Zuazua. Control and stabilization of waves on 1-d networks. In Modelling and
optimisation of flows on networks, vol. 2062 of Lecture Notes in Math., pp. 463—-493.
Springer, Heidelberg, 2013.

[177] A. Zygmund. Trigonometric series. Vol. I, II. Cambridge Mathematical Library. Cam-
bridge University Press, Cambridge, third ed. ISBN 0-521-89053-5. With a foreword
by Robert A. Fefferman, 2002.

228


http://dx.doi.org/10.1007/978-3-7643-8994-9
http://dx.doi.org/10.1137/080733590
http://dx.doi.org/10.1109/ACC.2012.6315010
http://dx.doi.org/10.1109/ACC.2012.6315010
http://dx.doi.org/10.1109/TAC.2002.801182
http://dx.doi.org/10.1007/978-3-642-61859-8
http://dx.doi.org/10.1007/978-3-642-32160-3_9
http://dx.doi.org/10.1017/cbo9781316036587




Ecole doctorale

e .
UnlveI’SIte de mathématiques

PARIS-SACLAY i Hadamard (EDMH)

Stabilité et stabilisation de systémes linéaires a commutation en dimensions finie et infinie

Mots-clés. Systémes a commutation, stabilité, stabilisation, excitation persistante, exposants de Lyapunov, commutation aléatoire,
équation de transport, équation des ondes, équations aux différences, controlabilité, réseaux.

Résumé. Motivée par des travaux précédents sur la stabilisation de systémes a excitation persistante, cette thése s’intéresse a la
stabilité et a la stabilisation de systémes linéaires a commutation en dimensions finie et infinie. Apres une introduction générale
présentant les principales motivations et les résultats importants de la littérature, on aborde quatre sujets.

On commence par ’étude d’un systéme linéaire en dimension finie a commutation aléatoire. Le temps passé en chaque sous-
systéme i est choisi selon une loi de probabilité ne dépendant que de i, les commutations entre sous-systemes étant déterminées
par une chaine de Markov discréte. On caractérise les exposants de Lyapunov en appliquant le Théoréme ergodique multiplicatif
d’Oseledets a un systeme associé en temps discret, et on donne une expression pour l’exposant de Lyapunov maximal. Ces résultats
sont appliqués a un systéme de contrdle a commutation. Sous une hypothese de controlabilité, on montre que ce systéme peut étre
stabilisé presque surement avec taux de convergence arbitraire, ce qui est en contraste avec les systemes déterministes a excitation
persistante.

On considére ensuite un systéme de N équations de transport avec amortissement interne a excitation persistante, couplées
linéairement par le bord a travers une matrice M, ce qui peut étre vu comme un systéme d’EDPs sur un réseau étoilé. On montre
que, si lactivité de 'amortissement intermittent est déterminée par des signaux a excitation persistante, alors, sous des bonnes
hypotheses sur M et sur la rationalité des rapports entre les longueurs des arétes du réseau, ce systeme est exponentiellement
stable, uniformément par rapport aux signaux a excitation persistante. Ce résultat est montré grace a une formule explicite pour
les solutions du systéme, qui permet de bien suivre les effets de 'amortissement intermittent.

Le sujet suivant que 'on considere est le comportement asymptotique d’équations aux différences non-autonomes. On obtient
une formule explicite pour les solutions en termes des conditions initiales et de certains coefficients matriciels dépendants du temps,
qui généralise la formule obtenue pour le systéme de N équations de transport. Le comportement asymptotique des solutions
est caractérisé a travers les coefficients matriciels. Dans le cas d’équations aux différences a commutation arbitraire, on obtient
un résultat de stabilité qui généralise le critere de Hale-Silkowski pour les systémes autonomes. Grace a des transformations
classiques d’EDPs hyperboliques en équations aux différences, on applique ces résultats au transport et a la propagation d’ondes
sur des réseaux.

Finalement, la formule explicite précédente est généralisée a une équation aux différences controlée, dont la controélabilité
est alors analysée. La controlabilité relative est caractérisée a travers un criteére algébrique sur les coefficients matriciels de la
formule explicite, ce qui généralise le critere de Kalman. On compare également la contrdlabilité relative pour des retards différents
en termes de leur structure de dépendance rationnelle, et on donne une borne sur le temps minimal de contrdlabilité. Pour des
systémes avec retards commensurables, on montre que la controlabilité exacte est équivalente a l'approchée et on donne un critére
qui les caractérise. On analyse également la controlabilité exacte et approchée de systémes en dimension 2 avec deux retards sans
I’hypothése de commensurabilité.

Stability and stabilization of linear switched systems in finite and infinite dimensions

Keywords. Switched systems, stability, stabilization, persistent excitation, Lyapunov exponents, random switching, transport equa-
tion, wave equation, difference equations, controllability, networks.

Abstract. Motivated by previous work on the stabilization of persistently excited systems, this thesis addresses stability and sta-
bilization issues for linear switched systems in finite and infinite dimensions. After a general introduction presenting the main
motivations and important results from the literature, we analyze four problems.

The first system we study is a linear finite-dimensional random switched system. The time spend on each subsystem i is
chosen according to a probability law depending only on i, and the switches between subsystems are determined by a discrete
Markov chain. We characterize the Lyapunov exponents by applying Oseledets’ Multiplicative Ergodic Theorem to an associated
discrete-time system, and provide an expression for the maximal Lyapunov exponent. These results are applied to a switched
control system, showing that, under a controllability hypothesis, almost sure stabilization can be achieved with arbitrarily large
decay rates, a situation in contrast to deterministic persistently excited systems.

We next consider a system of N transport equations with intermittent internal damping, linearly coupled by their boundary
conditions through a matrix M, which can be seen as a system of PDEs on a star-shaped network. We prove that, if the activity of
the intermittent damping terms is determined by persistently exciting signals, then, under suitable hypotheses on M and on the
rationality of the ratios between the lengths of the network edges, such system is exponentially stable, uniformly with respect to the
persistently exciting signals. The proof of this result is based on an explicit representation formula for the solutions of the system,
which allows one to efficiently track down the effects of the intermittent damping.

The following topic we address is the asymptotic behavior of non-autonomous difference equations. We obtain an explicit
representation formula for their solutions in terms of their initial conditions and some time-dependent matrix coefficients, which
generalizes the one for the system of N transport equations. The asymptotic behavior of solutions is characterized in terms of
the matrix coefficients. In the case of difference equations with arbitrary switching, we obtain a stability result which generalizes
Hale-Silkowski criterion for autonomous systems. Using classical transformations of hyperbolic PDEs into difference equations,
we apply our results to transport and wave propagation on networks.

Finally, we generalize the previous representation formula to a controlled difference equation, whose controllability is then
analyzed. Relative controllability is characterized in terms of an algebraic property on the matrix coefficients from the explicit
formula, generalizing Kalman criterion. We also compare the relative controllability for different delays in terms of their rational
dependence structure, and provide a bound on the minimal controllability time. Exact and approximate controllability for systems
with commensurable delays are characterized and proved to be equivalent. We also describe exact and approximate controllability
for two-dimensional systems with two delays not necessarily commensurable.
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