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Abstract

This research is motivated by the need to find out new methods to optimize a
power system. In this field, traditional management and investment methods are
limited when confronted with highly stochastic problems which occur when in-
troducing renewable energies at a large scale. After introducing the various facets
of power system optimization, we discuss the continuous black-box noisy opti-
mization problem and then some noisy cases with extra features.

Regarding the contribution to continuous black-box noisy optimization, we are
interested into finding lower and upper bounds on the rate of convergence of vari-
ous families of algorithms. We study the convergence of comparison-based algo-
rithms, including Evolution Strategies, when confronted with different strengths
of noise (small, moderate and big). We also extend the convergence results in the
case of value-based algorithms when dealing with small noise. Last, we propose a
selection tool to choose, between several noisy optimization algorithms, the best
one on a given problem.

For the contribution to noisy cases with additional constraints, the delicate
cases, we introduce concepts from reinforcement learning, decision theory and
statistic fields. We aim to propose optimization methods which are closer to reality
(in terms of modelling) and more robust. We also look for less conservative power
system reliability criteria.
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Résumé

Ces recherches s’inscrivent dans la nécessité de développer de nouvelles méthodes
d’optimisation des systèmes électriques. Optimisation du contrôle d’un système
électrique, mais aussi optimisation des investissements à réaliser: nouvelles
connexions, unités de production et nouveaux stockages. En particulier,
l’introduction massive d’énergies renouvelables rend caduques les méthodes
usuelles de contrôle qui ne traitent pas efficacement le caractère fortement
aléatoire de la production (éolien, solaire).

Le chapitre 1 introduit les enjeux de la transition énergétique: enjeux envi-
ronnementaux, politiques et technologiques. Le problème d’optimisation d’un
système électrique est formalisé sous la forme d’une équation à 5 variables:
les investissements, les incertitudes non stochastiques telles que les incertitudes
géopolitiques et technologiques, les politiques de contrôle, les configurations du
réseau et les incertitudes stochastiques telles que la demande en électricité, la
production éolienne ou l’arrivée d’eau dans un barrage pour un jour donné. Les
méthodes les plus classiques d’optimisation sont ensuite présentées et discutées. 4
questions de recherche, développées et étudiées dans cette thèse, sont formulées:

• Question de recherche #1: Comment résoudre le problème d’Unit Commit-
ment sans supposer la linéarité ou la convexité de la fonction de coût et sans
simplifier excessivement le processus aléatoire ?
• Question de recherche #2: Comment approximer, en un temps de calcul

raisonnable, un équilibre de Nash dans un cadre stochastique ?
• Question de recherche #3: Comment réduire le biais induit par l’utilisation

d’un échantillon de taille modeste dans un problème de planification de
développement de capacités ?
• Question de recherche #4: Quels sont les taux de convergence optimaux de

différentes familles d’algorithmes d’optimisation continue dans un contexte
bruité et boı̂te noire ?

3



4

La première partie est dévolue à la question de recherche #4. Le chapitre
2 commence par définir l’optimisation continue dans un contexte bruité et boı̂te
noire et dresse la revue de littérature. En particulier, une partition est faite en-
tre deux grands types d’algorithmes: les algorithmes basés sur les évaluations et
les algorithmes basés sur les comparaisons. Le chapitre 3 étudie le comportant
des stratégies d’évolutions, un cas particulier d’algorithmes basés sur les com-
paraisons, face à un bruit faible: au prix d’un petit nombre de réévaluations,
cette famille d’algorithme converge aussi vite que dans le cas non bruité. Le
chapitre 4 montre, dans le cas d’un bruit fort (additif), une borne inférieure sur
le taux de convergence1 des algorithmes basés sur les comparaisons lorsqu’ils
échantillonnent toujours dans un domaine restreint, près de l’approximation
courante de l’optimum. Sous ces hypothèses, le taux de convergence n’est jamais
plus petit que −1/2, alors que les algorithmes basés sur les évaluations atteignent
un taux de −1. Le chapitre 5 prouve que, néanmoins, les algorithmes basés sur
les comparaisons peuvent égaler ceux basés sur les évaluations en terme de taux
de convergence, si l’on effectue des ré-échantillonnages ‘loin’ de l’optimum, tou-
jours dans le cas d’un bruit additif. Le chapitre 6 s’intéresse aux algorithmes
basés sur les évaluations, et propose l’étude simultanée d’un bruit faible, modéré
et fort. On retrouve les résultats déjà connus dans le cas d’un bruit fort, et des nou-
velles bornes sont démontrées pour les autres types de bruit. Le chapitre 7 propose
une méthode de sélection d’algorithmes dans le cadre bruité: sélection d’un type
d’algorithme (basé sur des évaluations ou des comparaisons) et sélection de la
paramétrisation d’un algorithme. Pour cela, on considère un portfolio qui, no-
tablement, sélectionne un algorithme en se basant sur les itérations passées, et
non pas courantes. Cette subtilité est essentielle pour obtenir une convergence; il
est prouvé que le portfolio sélectionne alors presque toujours un des algorithmes
les plus performants.

La seconde partie regroupe les cas bruités plus délicats. Le chapitre 8 traite
la question de recherche #1, où le problème est bruité et dépend du temps. Ce
chapitre présente et étudie une méthode qui permet de mieux prendre en compte
des coûts non linéaires et non convexes, ainsi qu’un processus stochastique non
markovien. Une étude théorique démontre que cette méthode peut atteindre une
politique optimale et plusieurs expériences (sur un problème de gestion de mul-
tiples batteries et deux problèmes hydroélectriques) montrent ses bons résultats
en pratique. Le chapitre 9 adresse la question de recherche #2, i.e. optimisa-
tion bruitée et adversariale. Plusieurs variantes de l’algorithme de Grigoriadis

1i.e. une borne supérieure sur la vitesse maximale de convergence.
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et Khachiyan adaptées au cas bruité sont proposées et étudiées. Le chapitre 10
porte sur la question de recherche #3, autour de l’optimisation bruitée et à taille
d’échantillon réduite. Des méthodes de bootstrap et de validation croisée sont
utilisées sur un cas test artificiel, permettant de réduire le biais issu du petit nom-
bre d’échantillons collectés.

La troisième partie conclut et met l’accent sur des points intéressants à appro-
fondir lors de futures recherches.
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Chapter 1

A beautiful application: power
systems

1.1 Motivations
Energy concerns are already in the spotlight since a few years. Opening your
favourite newspaper or social network, chances are good for you to find an article
related to energy transition.

Environmental issue & climate change. Fossil energies - oil, coal and nat-
ural gas - contribute for a large part to premature deaths across the world, up
to 8 millions deaths per year according to [World Health Organization, 2015],
notably through air pollution; see also [Conca, 2012] for an interesting discus-
sion on the rate of deaths per source of energy. Along with the air pollu-
tion, public opinion worldwide worries about the use of nuclear energy which
raises the matters of long time storage of the wastes, accidents or terrorist threat.
Energy production is also by far the first source of greenhouse gas emission
[International Energy Agency, 2015].

Economic weight. Economy and energy are intrinsically linked
[Stern and Enflo, 2013], think e.g. about the energy crisis of the 1970s. In
particular, [Giraud, 2015] discussed the correlation between GDP and energy. A
dynamic economy relies heavily on the access to a cheap and abundant source of
energy [Fonteneau, 2015].
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Political response. Confronted with these challenges, we encounter local re-
sponses - at the scale of a country - such as fixing the electricity price, sub-
siding a given energy source, looking for energetic independence or allowing
or not shale gas exploitation. Some structures are in charge of the studies
and development of concrete new solutions, such as the ADEME1 in France,
which gave me the opportunity to work on this topic through the Post project2.
At a regional level, a group of countries can agree on some common pol-
icy such as the so-called (N − 1) standard3, voted by the European parlia-
ment [Official Journal of the European Union, 2010]. Global decisions are also
discussed within international conferences, resulting into some accords - the
last one being the Paris Agreement, where the members agreed to try to re-
duce their greenhouse gas emissions in order to not exceed 2◦C of global
warming [United Nations, 2015]. On the other hand, this resolution will be
difficult to follow since the demand for energy keeps growing, notably from
the emerging countries, and could increase by 37% by 2040 according to
[International Energy Agency, 2014].

With new needs come new technologies. Renewable energies are signifi-
cantly cleaner - in terms of CO2 and particulate matter - than fossil energy
[International Energy Agency, 2015, Ohlström et al., 2000]. However, apart from
specific sources such as hydroelectricity, they are highly stochastic and diffi-
cult to forecast. Even with a small percentage of renewable energy involved in
the power network, problems arise in case of sudden changes (e.g. in luminos-
ity). Thus, solar production is impacted very quickly and globally by an eclipse
[SolarPower Europe, 2015]. Through domino effect, such phenomenon might
cause a global black-out without a careful and coordinated planning of the differ-
ent electrical grid’s operators, since such an event is particularly easy to predict.

The massive introduction of renewable energy implies changes in the design
of the power grid, e.g. additional storage capacities and use of smart grids, able
to drive accurately the consumption. In particular, it has been pointed out that the
extensive use of renewable energy implies a paradigm shift: instead of adapting
the production to the demand - as it is done nowadays - the demand should be
smoothed in order to fit the current production [Marchal, 2015]. Large parks of

1http://www.ademe.fr/en
2http://www.post.artelys.com/
3This standard requires each member state to be able to tackle an unexpected outage of their

single largest piece of gas infrastructure, i.e., satisfying the demand with the remaining network
[Ralf et al., 2014].

http://www.ademe.fr/en
http://www.post.artelys.com/
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electric vehicles could support this smoothing via a smart control of the batteries
loading. Space smoothing could also be applied thanks to long distance con-
nections (High Voltage Direct Current - HVDC); see also the ambitious global
grid concept [Ernst, 2015b, Chatzivasileiadis et al., 2013]. On the contrary, mi-
crogrids, small networks of the size of one house or a few streets, are also under
study. Microgrids are composed of various renewable energy sources and a bat-
tery, possibly completed with a diesel generator [Ernst, 2015a] - they might be or
not be connected to the grid.

Where does computer science stand in all of this? As [MacKay, 2009] says,
“we need numbers, not adjectives.” And these numbers should be reliable and
meaningful.

Simulating and optimizing power systems is crucial for testing the validity and
cost of some scenarios:

• What are the costs (economical, ecological) of a purely renewable system?

• Consider a limited budget (bound on investments) over the next 50 years:
what is the best investment planning?

• What is the ecological/economical benefit, if we can relax the constraint of
national independence?

• What is the impact of a given gas supply cut-off / what is the best adaptation
strategy to such a gas supply interruption?

An important task is to build reliable power system modelling tools. Big power
system companies use such modelling platforms but they are not available in open
source. It is possible to find some platforms such as the Artelys Crystal Super
Grid4 and some libraries, such as Simscape Power Systems in Matlab5 or Model-
ica PowerSystems library6.

Along with modelling, we need detailed data, either archive or simulation.
When wind and solar power are involved in a power grid, we need time and space
series in order to forecast accurately the wind speed and daylight, especially we
need to measure their correlation. Some benchmarks have been developed in order

4https://www.artelys.com/en/applications/artelys-crystal-energy/

artelys-supergrid
5http://fr.mathworks.com/products/simpower/
6https://github.com/modelica/PowerSystems

https://www.artelys.com/en/applications/artelys-crystal-energy/artelys-supergrid
https://www.artelys.com/en/applications/artelys-crystal-energy/artelys-supergrid
http://fr.mathworks.com/products/simpower/
https://github.com/modelica/PowerSystems
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to test and compare various optimization algorithms, such as the COCO/BBOB
platform7 for continuous optimization or OpenAI8 for reinforcement learning, see
also [Castronovo et al., 2016].

Once we have both tools at hand, i.e. power system modelling and data, we
want to optimize this system. The subject of this thesis is precisely this opti-
mization side. Especially, as it will be discussed below, the increase in volatility
production requires new models of energy management. We study optimization
processes able to handle stochastic effects.

1.2 Optimization in power systems
A power grid consists of a transmission network, a distribution network, loads
and power plants. Optimizing this power system means optimizing a given cost
function under constraints. The cost function includes economical costs, mainte-
nance costs and environmental costs. Economical costs take into account risks of
failure [Autorita per l’Energia Elettrica e il Gas, 2004] and maintenance costs in-
corporate risks for workers. The constraints are operational constraints of power
systems and demand satisfaction.

We propose through Eq. 1.2 an optimization problem for power systems. We
present the motivations behind the variables choices involved in this equation.
Especially, we do not detail the modelling aspect, i.e., the physical laws such as
the Kirchhoff law, which govern the current and voltage of an electrical network,
but give some references for the interested reader. We focus on the optimization
aspect. We review the different optimization solutions at hand and the challeng-
ing facets arising, such as high dimensionality, stochasticity, non-convexity, non-
linearity or non-Markovianity. We aim to study and develop principled methods
able to deal with such problems - thus our contribution is mainly theoretical and
the scope of this thesis is not exclusive to power systems, but might be useful in
every application dealing with similar difficulties.

1.2.1 Parameters of the cost function
The cost function depends on investments, non stochastic uncertainties, manage-
ment policy (unit commitment), network configuration, and ‘real’ stochastic un-
certainties. We detail below these parameters.

7http://coco.gforge.inria.fr/
8https://openai.com/blog/openai-gym-beta/

http://coco.gforge.inria.fr/
https://openai.com/blog/openai-gym-beta/
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Investments I .

Investments regard the new capacities - storages, connections, plants - that should
be added to the power grid. Where should they be added? Which kind of capac-
ities: HVDC connection or not, storage, solar plant, wind plant, thermal plant,
etc...? What dimension/size is optimal? Quantifying the optimal connection ca-
pacities and storage capacities at the scale of a continent or more is an important
optimization problem, with budget in dozens or hundreds of billions of euros.
There are high level facts which are well known: in the European grid, conditions
are better for wind power in the north, for solar power in the south, for addi-
tional hydroelectric storage in Scandinavia. Also, Africa is not that far - there are
already connections between Europe and Africa [SYSTINT Workgroup, 2007],
and increasing these connections is a possibility.

Non-stochastic uncertainties U .

In the setting of long term planning, i.e. a time horizon of several decades, non-
stochastic uncertainties must be included. It encompasses uncertainties which can
not be modelled, such as

• political uncertainties: real CO2 penalization or not, cut off of Russian gas
exportation, energy sources subsidies, oil prices;

• technological uncertainties: solar and wind plants efficiency, power to gas
efficiency, large use of electric cars or not;

• climate change uncertainty: how many degrees of global warming?

As a first approximation, it seems reasonable to assume that everyone collabo-
rates: countries of the same geographical area develop a common power grid such
that the costs (economical, environmental, ...) are minimum; in this case, the op-
timization in Eq. 1.2 over U would be a minimum. However, it often occurs that
countries or areas want to have some autonomy in case of problems: we set a
maximum over U in Eq. 1.2, so that we pessimistically consider the worst case.

Management policy P1.

Given a power network, the energy producer needs to satisfy the de-
mand. This is the management policy, or unit commitment [Padhy, 2004,
Sheble and Fahd, 1994]. This problem involves deciding which power plants are
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switched on/off and the dispatch, i.e., deciding the power output for each plant.
On the power grid, different power plants are available: thermal plants, nuclear
power plants, hydroelectric power stations (dams), solar power plants, wind tur-
bines, etc... Each plants needs to satisfy some constraints such as maximum ramp-
ing rate, stock management constraints, start up costs, minimum water flows (see
e.g. [Bertsimas et al., 2013]). The details of the unit commitment problem are
beyond the scope of this thesis, we refer to [Decock, 2014] for more informa-
tion regarding the constraints and specific costs. We invite the reader interested
in hydrothermal scheduling to read more in [Couëtoux, 2013]. The unit commit-
ment problem is a sequential decision making problem, also termed multistage
optimization problem or dynamic programs, see [Bertsekas, 1995, Powell, 2007].

Network configuration P2.

In regard to short term management, security and costs concerns invite to deal
with the network reconfiguration. In case of line outage (cf. the N − 1 stan-
dard in Section 1.1), it is cheaper and faster to change the topology of the net-
work, i.e., to switch the transmission line, rather than re-dispatching the power
output for each plant in order to avoid overloading of lines. Afterwards, the
new topology can be reversed if the line failure is fixed or after a generator
dispatch. This problem involves some load flow feasible constraints (e.g. the
flow should satisfy the Kirchhoff law and not exceed the line capacity) and is
highly relevant in the context of terrorism threat [The Telegraph, 2015]. Fur-
thermore, with the increasing integration of renewable energy- more likely to
cause sharp load changes - comes the need to increase the flexibility and ef-
ficiency of the power grid. This topic is beyond the scope of this thesis, see
[Li et al., 2012, Kezunovic et al., 2014, Hedman et al., 2011, Zaoui et al., 2005]
for more details.

Stochastic uncertainties ω ∼Π.

The stochastic uncertainties designate the random variables which are generated
by an underlying (possibly unknown) probability distribution function Π. In par-
ticular, it does not depend on human decisions such as political uncertainties. In
the context of energy management, it is, typically (non exhaustively), luminosity,
wind speed, inflows [Siqueira et al., 2006] in a dam and demand [RTE-ft, 2014].

We bring the attention to the assumptions on the random variables: are the
random variable realizations independent or not? are they Markovian or not? do
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they have a finite variance? These assumptions will be discussed throughout this
thesis.

The knowledge about this random process varies from one problem to the
other. Mainly, we can distinguish between problems where we have a finite sam-
ple of random values realizations and those for which we have a generative model
available. Between these two extreme settings, one can try to infer the hidden
distribution from a sample of realization.

Optimizing against a finite sample of realization is termed Sample Average
Approximation (SAA); this is discussed in Chapter 10.

When a generative model is at hand, we consider several strategies. A first
approximation is to optimize the cost function over the expectation of the random
process, i.e. replace ω with Eω∼Π(ω) in Eq. 1.2. It amounts to performing de-
terministic optimization, which is already very challenging since power system
optimization involves high dimensional problems. As a drawback, this might cost
a lot in case of extreme events - drought, heatwave, very cold winter. We aim at
encompassing the whole stochastic aspect. That is, we want to optimize taking
into account the random process. In this case, we want to optimize the expected
costs, computed with respect to the probability distribution of the random process,
as in Eq 1.2.

1.2.2 Optimization problem
Consider a function, denoted by COST. It is a measure, economical, eco-
logical, social, of the efficiency of the power system. This function results
from some physical laws and/or is given by some experts; see [Decock, 2014,
Couëtoux, 2013] for some examples. Consider the set of variables introduced
above: investments I , non stochastic uncertainties U , management policy P1,
network configuration P2 and stochastic uncertainties ω following an unknown
probability distribution Π. Then, the following equation can be used to choose the
suitable investments:

i∗ = argmin
i∈I

Eω∼Π max
u∈U

min
p∈P1

min
p′∈P2

COST(i,u, p, p′,ω). (1.1)

However, to compute the min over P1 and P2 in Eq. 1.1, we make the as-
sumption that ω is known. That is, to assume that failures and weather conditions
are perfectly forecast. This is an anticipativity assumption, which is less than
satisfactory in a stochastic setting with limited forecasts. We propose a better
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formulation of the optimization problem, without assuming perfect forecasts, as
follows:

i∗ = argmin
i∈I

max
u∈U

min
p∈P1

min
p′∈P2

Eω∼Π COST(i,u, p, p′,ω). (1.2)

We aim to bring some elements of response to this equation, significantly more
difficult to solve than Eq. 1.1.

1.2.3 How to handle this?
As each variable has different features (dimension, domain, constraints,... ), each
part of Eq. 1.2 is handled differently. We review briefly these methods and discuss
their advantages and drawbacks.

Cutting plane method

The cutting plane method can be used to optimize the sub-equation:

i∗ = argmin
i∈I

min
p∈P1

Eω∼Π COST(i, p,ω)

within a moderate computational cost.
The cost function must be convex and have some sub-gradient, but

not necessary any gradient. Kelley’s method [Cheney and Goldstein, 1959,
J. E. Kelley, 1960], bundle method [de Oliveira and Sagastizàbal, 2014] or Ben-
ders decomposition [Benders, 1962] are classical variants of the cutting plane
method. It consists in approximating the cost function by a convex piecewise
linear function APPROX:

∀i ∈I , APPROX(i) = max
1≤ j≤d

l j(i),

where l j is a linear function ∀ j ∈ {1, . . . ,d} and d an integer.
It is assumed that the optimum of APPROX is a good approximation of the

optimum of the cost function. The piecewise linear function is obtained by adding
at each iteration a new plane, using the sub-gradient of the cost function computed
at the current approximation of the optimum (see Fig. 1.1). The strength of this
method is that it can be coded in a linear problem: it is solvable in polynomial
time [Karmarkar, 1984]. Hence it is very fast in theory and usually solved in a
reasonable time in practice.
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Figure 1.1: Cutting plane method. The blue plain curve is the function to optimize.
We first compute a given number of planes big enough to be able to have a first
approximation, here 2 (C1 and C2 in red ‘+’) in Figure 1.1a. They are computed
using the subgradient of the cost function. Their minimum x1 is the estimate of the
optimum of the cost function. Then, at each iteration, we add one cut and update
the approximation; Figure 1.1b displays the 2nd iteration.

Example 1.2.1 (Lagrangian relaxation). Solving the Unit Commitment Problem,
i.e. solving the minimization over P1 in Eq. 1.2 consists in solving a mini-
mization problem under constraints. For handling this, Lagrangian relaxation
[Bertsimas and Tsitsiklis, 1997] is a common method. The dual problem obtained
is then possibly solved with the cutting plane method. See [Belloni et al., 2003]
for a beautiful application of this method to the Brazilian Power System. We point
out also that in this case, the Lagrangian multipliers represent the marginal costs
of the various power plant under study.
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Example 1.2.2 (Stochastic Dual Dynamic Programming (SDDP)). Stochastic
Dual Dynamic Programming9 [Pereira and Pinto, 1991] is another method to
tackle the Unit Commitment Problem. In particular, it handles the Markov De-
cision Processes. The cutting plane method is the central idea behind the SDDP
algorithm (used in the backward path). Note that SDDP handles the stochastic
uncertainties, but requires convex Bellman values and a moderate complexity of
random processes state.

Nonetheless, convexity assumption is a strong condition, which might not hold
in practice when it comes to power system. We give three arguments which sup-
port this remark.

• Hydroelectricity. The efficiency in the dam depends of the height of fall.
Hydroelectricity also implies various turbines with different outputs. This
results in some non-convex cost function, see [Couëtoux, 2013].

• Gas turbine. Non-convex effects similar to the hydroelectric case might
occur in the gas turbine case.

• Economies of scale. Generally, costs per kilowatt of capacity de-
crease as size increases, e.g. for CHP10 or for solar power
[International Renewable Energy Agency, 2012]. This is why we expect
non-convex cost functions.

Reinforcement Learning & Control

The unit commitment sub-problem:

p∗ = argmin
p∈P1

Eω∼Π COST(p,ω)

can be modelled in the following way.
Given an initial state s0, a policy p, a transition function T, a final step time T

and a sequence of random variables ω0, . . . ,ωT−1, we define:

a = p(s, t): the decision at t,
s = T(s, t,a,ωt): the state at t,

ct = Ct(s,a) ∈ R : the cost at time t,
COSTp = ∑

t
ct ∈ R : the total cost function.

9See Chap. 8 for the unknown vocabulary of this example.
10https://www.wbdg.org/resources/chp.php

https://www.wbdg.org/resources/chp.php
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This is a Reinforcement Learning Problem [Sutton and Barto, 1998]. The vari-
ables a (resp. s) stand for ‘action’ (resp. ‘state’). The policy p, given a state and
a time, provides the next action. Given a state, an action and a time, the function
T provides the new state of the system, which depends of a random value ω . The
total cost of the policy p over the T time steps is then COSTp. Note that we do
not define formally the state and action spaces as the goal of the introduction is to
give the main ideas and intuition behind the power systems challenges. A formal
definition can be found in Chap. 8.

When ω0, . . . ,ωT−1 are Markovian random values, the problem above is
termed Markov Decision Process (MDP). Many techniques have been developed
to tackle such problem [Bertsekas, 1995, Couëtoux, 2013]. The Markovian prop-
erty of the random variables is a key point in some of these techniques named
below. Note that when the process is non-Markovian, it can be made Markovian
by enlarging the complexity of the random processes state. For example, if the
random variable ωt depends on the 10 last random variables ωt−1, . . . ,ωt−10, we
define a new random variable: Ωt = (ωt , . . . ,ωt−9), and we rewrite the decision
process with this new variable Ω: the process is Markovian.

[Saravanan et al., 2013] provides clear review on the optimization techniques
used to solve the unit commitment problem. Among them, Stochastic Dy-
namic Programming (SDP) [Bellman, 1957], Stochastic Dual Dynamic Pro-
gramming (SDDP) [Pereira and Pinto, 1991], Model Predictive Control (MPC)
[Bertsekas, 2005] or Direct Policy Search (DPS) [Schoenauer and Ronald, 1994]
are used to deal with MDP. However, each of them is limited:

• MPC is suboptimal by nature (deterministic approximation);

• SDP needs a moderate size of state space;

• SDDP requires convexity of Bellman values and a moderate complexity of
random processes state (that is, either the random process is Markovian or
it can be made Markovian as described above without increasing to much
the random processes state).

SDP and SDDP generally use some linear optimization method (see Sec-
tion 1.2.3). We would like to have a representation of the unit commitment prob-
lem closer from the reality and still have a method which reaches the optimal
policy. That is, we need to relax the assumptions on the model. Namely, we want
to get rid of the convexity conditions, to have an arbitrary large state space and an
arbitrary random process.
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How can we handle the Unit Commitment Problem without assuming:

• the convexity or linearity of the cost function;

• the Markovianity (or equivalently, as discussed above, the moderate
size complexity) of the random process?

Research Question #1

Decision theory

The sub-equation
i∗ = argmin

i∈I
max
u∈U

COST(i,u) (1.3)

falls within decision theory.
If I = {i1, . . . , in} (resp. U = {u1, . . . ,um}) is the finite set of possible invest-

ments (resp. non-stochastic uncertainties), i.e. using the vocabulary of decision
theory, the set of policies or strategies (resp. scenarios), then Eq. 1.3 is called
Wald criterion [Liu, 2015]. As explained in Section 1.2.1, this is the worst case
scenario. “Typically the worst case is a nuclear war and everybody is dead ... so
that there is no point in optimizing anything” c©11. More formally, the assump-
tion behind the use of this criterion is that the Nature12 knows in advance what
will be our strategy. This is overall a very conservative criterion and the price for
this robustness might be high [Bertsimas and Sim, 2004]. So it is worth taking a
look at other tools for decision under uncertainties, such as the Savage criterion
or scenario-based planning. We refer to [Liu, 2015] for a good introduction of
these notions.

Instead of the Wald criterion (Eq. 1.3), investments against non-stochastic un-
certainties can be modelled as an adversarial zero-sum matrix game. Given a
n×m matrix

(
M j,k

)
j,k:

• we choose (privately) an investment strategy i j ∈ {i1, . . . , in}, i.e. a row
j ∈ {1, . . . ,n};

• the Nature chooses a scenario uk ∈ {u1, . . . ,um} (i.e. a column k ∈
{1, . . . ,m}) without observing i j;

11Olivier Teytaud.
12In decision theory, the choice of u can be called Nature’s choice.
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• we receive a reward13 M j,k and the Nature receives reward 1−M j,k.

In this setting, interesting policies are often not deterministic. We play a
stochastic policy p ∈ [0,1]n (∑n

j=1 p j = 1) and Nature plays a stochastic policy
q ∈ [0,1]m (∑K

k=1 qk = 1). That is, we actually play j with probability p j and k
is (independently) played by Nature with probability qk. Our expected payoff is
therefore ptMq = ∑ j,k p jM j,kqk, and the expected payoff for Nature is 1− ptMq.
A Nash equilibrium is a pair (p,q) such that

∀(p′,q′), p′tMq≤ ptMq≤ ptMq′.

Intuitively speaking, at a Nash equilibrium, neither Nature nor us can improve
our expected payoff by changing our strategy. It is known, see [Nash, 1951], that
with n and m finite,

• there is always at least one Nash equilibrium;

• it is not necessarily unique;

• all Nash equilibria (p,q) lead to the same value v = ptMq.

A classical problem is thus the evaluation of a Nash equilibrium, or an approx-
imation thereof in a reasonable time. We want furthermore include the stochastic-
ity ω . In this setting, instead of getting a fix reward M j,k, we will get a stochastic
reward M j,k(ω) (see formal definition in Chap. 9).

How can we approximate in a reasonable computational time a Nash equi-
librium in the stochastic adversarial case?

Research Question #2

However, we point out that a resulting Nash strategy is in general a mixed
strategy, i.e. a probability distribution over the strategies in I opposed to a pure
strategy which is a mixed strategy with probability 1 over one element of I . This
is classical in games theory. However, in the context of power system invest-
ments, it seems difficult to prescribe “huge investment of offshore wind power
with probability 1/3”, so that a reflection has to be carried out on the adaptivity
of such criterion to the power system setting.

13we keep the vocabulary of game theory, so that the reward corresponds to −COST



CHAPTER 1. A BEAUTIFUL APPLICATION: POWER SYSTEMS 32

Statistics and Noisy Black-Box Optimization

Last but not least, we need to handle the operator E. As pointed out in Sec-
tion 1.2.1, either we have access only to some finite archive, i.e. (ω1, . . . ,ωn)
realizations of the random variable ω of unknown probability distribution Π, or a
generative model is available.

In the first case, optimizing against this finite sample leads to a bias. It is then
interesting to estimate this bias, using methods coming from the statistical com-
munity such as Bootstrap (BS) [Efron, 1982], Jackknife (JK) [Quenouille, 1949],
Cross-Validation (CV) [Arlot and Celisse, 2010], and then provide a better, cor-
rected, expertise. This is explained in Chap 10.

In the context of capacities expansion planning, how can we reduce the bias
resulting from a finite (small) archive?

Research Question #3

Regarding the latter case, this means that, given an investment i and a policy
p, we can get a value COST(i, p,ω), where ω is for example a weather realiza-
tion that we do not know in advance. This kind of optimization is called black-box
noisy continuous optimization, as we do not assume anything on the cost function.
Black-box noisy continuous optimization is formalized in Chap. 2. We focus on
black-box noisy optimization algorithms, comparing their optimal rates of con-
vergence.

What are the optimal convergence rates of various families of black-box
noisy continuous optimization algorithms?

Research Question #4

In particular, continuous black-box noisy optimization will be used in Chap 8,
and it can be seen as a substitution of the classical cutting plane method. Another
field of application of this method, related to power systems, is the Direct Policy
Search method, i.e. the search for an optimal parameter x∗ of a parametric function
fx, see [Kormushev and Caldwell, 2012]. This justifies the extensive interest for
this optimization method in this thesis: we need a fast and robust black-box noisy
optimization algorithm!
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1.3 Structure of the thesis & contributions
Chap. 1 provides the motivations behind this Ph.D. thesis and the fields of ap-
plication. Afterwards, this document is divided in three parts. Part I targets the
continuous black-box noisy optimization problem and Part II concerns uncertain-
ties, termed noise, with other kinds of features. Part III concludes and gives some
perspectives. Appendix A summarize the main notations of the thesis. In the
rest of this section, text in bold indicates the notions that will be defined in the
following chapters.

1.3.1 Contribution in noisy AND black-box continuous opti-
mization

Part I is dedicated to the study of continuous black-box noisy optimization algo-
rithms. It handles the 4th research question:

What are the optimal convergence rate of various families of black-box
noisy continuous optimization algorithms?

Research Question #4

Chap. 2 introduces the continuous black-box noisy optimization setting, that
is, defines this problem, summarizes the state of the art and enlightens a few
challenging questions of this field. Chap. 3 studies the rate of convergence of
a given family of algorithms - Evolution Strategies (ESs) - in the case of small
noise. Chap. 4 exhibits a lower bound for a large family of comparison-based
algorithms in the additive noise setting. Chap. 5 discusses the possibility for
a comparison-based algorithm to be as fast as a value-based algorithm in the
black-box continuous noisy framework. Chap. 6 analyses the rates of conver-
gence of a value-based algorithm, the Newton-like algorithm, when confronted
with different kind of noises (small, moderate, big). Last, Chap. 7 proposes a
method to select, among different noisy optimization algorithms, the one with an
optimal rate of convergence for the optimization problem at hand.

1.3.2 Delicate cases
Part II handles arduous cases, when the optimization, still black-box and noisy,
has additional constraints.
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Contribution in noisy AND time-dependent optimization

Chap. 8, regards the 1st research question.

How can we handle the Unit Commitment Problem without assuming:

• the convexity or linearity of the cost function;

• the Markovianity (or equivalently, as discussed above, the moderate
size complexity) of random process?

Research Question #1

In addition to be noisy and black-box, we aim at tackling long term effects in
Model Predictive Control (MPC is deterministic, see Section 1.2.3). We study a
Reinforcement Leaning method, called Direct Model Predictive Control (DMPC).
Assuming the convergence of the noisy optimization routine, it provably reaches
an optimal policy without linearity or convex assumptions on the cost and transi-
tion functions, and without requiring moderate complexity of the random values
state. We also compare the performances of DMPC and MPC on a multiple-
battery management problem, and two hydroelectric problems.

Contribution in noisy AND adversarial optimization

We consider the 2nd research question in Chap. 9.

How can we approximate in a reasonable computational time a Nash equi-
librium in the stochastic adversarial case?

Research Question #2

Chap. 9 analyses the adaptation of the Grigoriadis & Khachiyan algorithm
[Grigoriadis and Khachiyan, 1995] to the stochastic case, in the setting where the
complexity measure is the number of evaluations. We also introduce variants of
this algorithm and a new algorithm, proving their theoretical validity and testing
their experimental efficiency.

Contribution in noisy AND finite-sample optimization

Last, Chap. 10 treats the 3rd research question,



In the context of capacities expansion planning, how can we reduce the bias
resulting from a finite (small) archive?

Research Question #3

The optimization of capacities in large scale power systems is a stochastic
problem, because the need for storage and connections varies a lot from one
week to another and from one winter to another. It is usually tackled through
Sample Average Approximation (SAA). However, in many cases, data is high-
dimensional: the sample complexity increases linearly with the number of pa-
rameters and can be scarcely available at the relevant scale. This leads to an
underestimation of capacities. We suggest the use of bias correction in capacity
estimation.
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Chapter 2

Background review

Numerical optimization or simply optimization of a real-valued function f , termed
objective function, is the research of a point, such that the value of f at this point,
called fitness value, is optimal. Without loss of generality, we will assume that
the optimum is a minimum1, since minimizing f is equivalent to maximizing − f .
Hence we are looking for the minimizer x∗ - supposed to be unique - such that for
all x in the search space D ⊂ Rd ,

f (x)≥ f (x∗). (2.1)

Among the classical challenges encountered by continuous optimization, we
identify multi-modality, non differentiability or non continuity, ill-conditioning,
non-separability, high dimensionality, noise and constraints [Chotard, 2015,
Auger, 2016].

2.1 The different flavours of optimization

2.1.1 White, gray or black?
When optimizing an objective function, the optimizer can have access to different
amounts of information. The white-box optimization problem is the best possible
scenario: given a search point, one can get the fitness value at this point, as well
as the gradient and the Hessian. More generally, we have access to the source

1unless specified otherwise.

37
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code of the objective function. First (resp. second) order methods denote algo-
rithms using the gradient (resp. the gradient and Hessian) of the objective function
[Nesterov, 2004].

However, this ideal scenario is not often encountered in practice. More often,
the practitioner has at best some partial information about the structure of the
objective function, e.g. the smoothness or the separability property. This is the
gray-box optimization problem [Whitley, 2015].

In a real world optimization problem, a common setting is to obtain only the
fitness values of the objective function: this is the black-box problem. No knowl-
edge about the internal process involved in the objective function can be exploited:
given a point, an oracle returns the corresponding fitness value. The black-box set-
ting is natural in many industrial applications, where the fitness value results of
some heavy simulation or some executable file. Black-box algorithms belong to
zero order methods, also known as derivative free optimization methods. Note
that in the literature, fitness-value based algorithms approximating the gradient
(resp. Hessian) by finite differences are considered either as first (resp. second)
order methods or as zero order methods.

2.1.2 Global or local?
It is classical to make a dichotomy between global and local optimization. The ob-
jective of global optimization is to find the global optimum from any starting point
whereas local optimization is the search of a minimum in the vicinity of a starting
point. In particular, local optimization faces the risk to be stuck in local extrema.
Evolutionary algorithms2 are often labelled as global optimization algorithms in
contrast to gradient-descent algorithms, assumed to be local optimization meth-
ods. The global convergence can be trivial to prove, e.g. grid search. However,
what matters in our studies is precisely the speed of convergence, as we can not be
satisfied with a slow one. In the present document, we consider smooth objective
functions with a unique optimum - thus local convergence.

2.1.3 Noisy or noise-free?
The setting of Eq. 2.1 assumes that the oracle returns the exact value of f in x: this
is the so called noise-free setting. However, the returned fitness value might be

2see Section 2.3 for an introduction to these algorithms.
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perturbed or inaccurate, due to some measurement errors, to the sensor’s sensitiv-
ity or to other stochastic effects such as random simulations in games or stochastic
weather in power systems. This is termed noise, and the optimization problem is
then a noisy optimization problem. Formally, the noisy objective function can be
modelled by a stochastic process. Given a search point x ∈D , the oracle provides
the fitness value f (x,ω), where ω is a random variable independently sampled
at each call to the black-box. In this setting, the optimization in the manner of
Eq. 2.1 does not make any sense. The optimization of a noisy objective function
is the search for the minimizer x∗ such that for all x ∈D ,

Eω f (x,ω)≥ Eω f (x∗,ω), (2.2)

where Eω denotes the expectation operator over ω .
Note that what we term noisy optimization in the present document is some-

times called stochastic optimization in the literature. This is misleading since
stochastic optimization also refers to optimization algorithms relying on internal
stochastic processes, such as evolutionary algorithms.

Models of noise

In the presentation of the different noise models below, we denote by ω a random
variable, sampled independently with a given probability distribution at each new
evaluation of a search point.

Actuator noise. When the search point is corrupted by noise, this is termed
actuator noise. The noisy objective function is then:

f (x,ω) = f (x+ω) (2.3)

The study of the actuator noise is beyond the scope of this thesis, however an
extended analysis can be found in [Jin and Branke, 2005, Beyer, 2004].

Additive noise. The additive model of noise is by far the most natural and stud-
ied noise model. To the best of our knowledge, it has been formulated for the first
time in [Hotelling, 1941], motivated by some practical applications in agriculture,
industry and economy. It is formalized in the following way:

f (x,ω) = f (x)+ω. (2.4)
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In this model, the noise has lower bounded variance, even in the neighbour-
hood of the optimum. In most cases, ω is a standard normal variable, and this
is termed Gaussian noise [Arnold and Beyer, 2002, Astete-Morales et al., 2014,
Arnold and Beyer, 2001]. Cauchy and χ2 distributions have also been studied
[Arnold and Beyer, 2006, Arnold and Beyer, 2003]. They conclude that there is
no significant differences between a Gaussian and Cauchy noise, but the dynam-
ics of the χ2 is distinct, due to the asymmetry of the distribution. Other studies
simply assume that the variance of ω is bounded by a constant [Fabian, 1967,
Shamir, 2013] - this is called heavy tail noise.

In discrete noisy optimization3, [Dang and Lehre, 2015] found similar be-
haviour of Evolutionary Algorithm, independently of the Gaussian, uniform or
exponential distribution of the additive noise. [Akimoto et al., 2015] studied dis-
crete noisy objective functions with Gaussian noise and heavy tail noise.

Multiplicative noise. The multiplicative noise has been studied in
[Arnold and Beyer, 2002, Jebalia et al., 2011]. It refers to:

f (x,ω) = f (x)(1+ω). (2.5)

If the probability distribution of ω is conveniently lower bounded, then some
standard (1+1)-Evolution Strategy4 converges to the optimum. If arbitrary neg-
ative values can be sampled with non-zero probability, then it does not converge
[Jebalia et al., 2011].

Bernoulli setting. Another branch of noisy optimization (here maximization)
involves Bernoulli variable as objective functions: for a given search point x,

f (x,ω) =

{
1 with probability Eω f (x,ω),
0 otherwise. (2.6)

For example, if f (x,ω) is a Bernoulli variable of parameter ‖x− x∗‖, then
f (x,ω) = 1 with probability ‖x− x∗‖.

Optimizing is then finding x such that Eω f (x,ω) is maximum. This frame-
work is particularly relevant in games [Coulom, 2011, Chaslot et al., 2008]. If
x is a parameter of a game strategy, playing one match with this parametriza-
tion will result in a win (1), or a loss (0) and the random variable ω states

3Discrete optimization is the setting in which the objective function f has discrete variables,
usually, f : {0,1}d → R or f : {0,1, . . . ,n}d → R.

4see the definition in Section 2.3.2.



CHAPTER 2. BACKGROUND REVIEW 41

for the stochasticity in the game (e.g. in case of randomized policy). We
then aim to find x with maximizes the probability of win. Problems tackled
by Direct Policy Search, such as viability problems or binary control problems
[Aubin, 2009, Chapel and Deffuant, 2006], involve this kind of optimization. In
particular, if the optimal policy has a success rate of 100%, then the variance
decreases to zero in the neighbourhood of the optimum.

Generalization of additive and multiplicative models of noise. A more gen-
eral model of noise can be formalized in the following way:

f (x,ω) = f (x)+( f (x)− f (x∗))z
ω, (2.7)

When z = 0 (resp. z = 1 and f (x∗) = 0), we get the additive (resp. multi-
plicative) noise. When z > 0, the noise decreases to zero near the optimum. This
setting is not artificial as we can observe this behaviour in many real problems, as
explained for the Bernoulli noise. Three chapters are devoted to the study of ad-
ditive noise, one chapter focuses on small noise - multiplicative and more (z≥ 1),
and one chapter encompasses several kinds of noise (z ∈ 0,1,2).

Adaptation to the noise

Three main features emerge to cope with noise: adjusting the population parame-
ters vs. averaging the search points vs. using a surrogate model.

A classical scheme of optimization algorithms is to generate a population
of search points from a central point at each iteration. We can increase this
population size to tackle the effect of noise. It is also possible to increase
its variance or mutation strength. This latter technique prevents prema-
ture convergence. Importantly, the population can escape some sub-optimal
search regions. We refer to [Hansen et al., 2009, Arnold and Beyer, 2001,
Arnold, 2002, Arnold and Beyer, 2000b, Arnold and Beyer, 2000a,
Fitzpatrick and Grefenstette, 1988, Arnold and Beyer, 2006] for more details.

Resampling means that the query to the black-box is repeated several
times for a given search point [Aizawa and Wah, 1993, Aizawa and Wah, 1994,
Beyer, 1993, Hammel and Bäck, 1994]. Afterwards, some statistic of the repeated
sample is used as the approximate fitness function of the point. In general, it is the
average. For a given point x ∈D and an integer r, the approximate fitness value y
is:
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y =
1
r

r

∑
i=1

f (x,ωi),

where (ωi)1≤i≤r are r i.i.d realizations of the random variable ω . Av-
eraging decreases the variance - denoted Var - of the fitness value. There-
fore, if Var( f (x,ω)) = σ2 > 0, then Var(y) = σ2

r . Resampling is then a
way to reduce the uncertainty of the fitness value. The key point is how
to choose optimally r, the number of resamplings, as increasing the num-
ber of calls to the black-box increases the computational burden. This
number can be fixed, or can increase exponentially with the iteration index
[Astete-Morales et al., 2014], or can be adaptive [Astete-Morales et al., 2014,
Branke and Schmidt, 2003, Branke and Schmidt, 2004, Cantú-Paz, 2004]. Re-
sampling can be viewed as an averaging over time. An alternative method,
which can be seen as an averaging over space, consists in evaluating the fit-
ness by averaging over the neighbourhood of the search point [Fabian, 1967,
Jin and Branke, 2005]. This is based on the assumptions that the objective func-
tion is smooth and that the noise distribution is the same at least in the neighbour-
hood of a point.

Contradictory results are found in the literature regarding the problem to
choose between increasing the population size or resampling. So far, it
seems that the relevance of one method or the other is problem-dependent
[Jin and Branke, 2005, Chotard, 2015]. Merging the two methods is also a so-
lution [Miller, 1997, Miller and Goldberg, 1996].

A third trend is to build a model - called surrogate model [Ong et al., 2003,
Zhou et al., 2004] - of the noisy objective function by using the previous search
points. [Branke et al., 2001] uses local regression. Confident Local Optimiza-
tion (CLOP) [Coulom, 2011] also performs local regression. In practice, it is
robust to high noise and does not require specific parameter tuning. However,
we are not aware of a mathematical analysis. NEWUOA has been developed
by Powell [Powell, 2004, Powell, 2008]. It performs some quadratic interpola-
tion in order to draw a model of the objective function. It is very efficient in
the noise-free case, but slower in the noisy setting (see [Moré and Wild, 2009]).
QLR - for Quadratic Logistic Regression - is based on a Bayesian quadratic local
regression. In particular, it can sample points far from the current recommen-
dation, which is a crucial point. It is designed for Bernoulli noise, thus very
efficient on such a setting - it can then be considered as a gray-box optimization
method. We refer to [Chaloner, 1989, Fackle Fornius, 2008, Khuri et al., 2006,
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Schein and Ungar, 2007] for more on this algorithm.

2.2 Convergence(s): what makes an algorithm
‘good’?

An optimization algorithm must provide a ‘good’ approximation of the optimum.
What does it mean? Contrarily to discrete optimization, a continuous optimization
algorithm does not in general reach the optimum. It outputs successive estimations
of the optimum, which should converge toward to optimum in a ‘reasonable’ time,
i.e. as ‘fast’ as possible. But being fast or not depends on which measure we
consider to be important. Regarding some industrial applications, a call to the
black-box might be expensive, requiring heavy computations. Thus, the goal is
to find a good approximation of the optimum within a number of calls as small
as possible. That is why from now on, unless specified otherwise, the variable
indexation in the document is always in the number of evaluations, i.e. calls to the
oracle.

2.2.1 Exploration vs. exploitation
In the noisy black-box scenario, an optimization algorithm generates several se-
quences:

• x1,x2, . . . ,xn, . . . , the successive search points, or evaluation points;

• y1,y2, . . . ,yn, . . . , their corresponding noisy fitness values: ym = f (xm,ω);

• x̃1, x̃2, . . . , x̃n, . . . , the successive recommendations or approximations of the
optimum x∗, where x̃m is provided after m fitness evaluations have been
performed.

Each search point xm is the output of a computable function of the previ-
ous search points and their respective function values. The computation of the
search point may involve random processes if the algorithm is randomized or
the objective function is stochastic. Even though in most cases, the recommen-
dation and the search points are exactly the same, it is crucial to distinguish
between these two types of points. In particular, in the noisy setting, ignor-
ing this difference can lead to poor results [Fabian, 1967, Coulom, 2011]. The
sequence (x1,x2, . . . ,xn, . . .) represents the exploration phase and the sequence
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(x̃1, x̃2, . . . , x̃n, . . .) corresponds to the exploitation one. A key point is how to al-
locate resources (i.e. number of calls to the black-box in our setting) to each of
them - especially how to guarantee an efficient exploration - and how to choose
these sequences.

2.2.2 Convergence criteria
We review some general criteria, which can be applied to any optimization algo-
rithm. Note that measurements specific to one type of algorithm, such as progress
rate for Evolution Strategy (ES) (see [Beyer, 2001]), are not discussed here.

Uniform Rate (UR)

Looking at the distance to the optimum is the first criterion that comes to mind. It
is called Uniform Rate. The term rms - for root mean square - is also encountered
in the literature.

Definition 2.2.1 (Uniform Rate (UR)). Using the previous notations, the Uniform
Rate is defined by:

URn := ‖xn− x∗‖. (2.8)

In particular, we consider the search points. As a consequence, having a ‘good’
Uniform Rate implies to sample the search points only close to the optimum. Ad-
ditionally, due to some randomization of the optimization algorithm, the Uniform
Rate can be a random variable.

Regrets

The concept of Regret is widely used in the bandit literature. It is also used in the
optimization framework, sometimes under other names or without specific name.
Basically, the regret accounts for the ‘loss’ or ‘cost’ of choosing the search or ap-
proximation point instead of the optimum. Therefore, we measure the difference
between the point used or recommended by the algorithm and the optimum in
terms of objective function.

The most usual form of regret is termed Simple Regret (SR). It is widely used,
possibly without this name [Bubeck et al., 2009]. It focuses only on approximat-
ing, with recommendations, the optimum in terms of fitness values.
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Definition 2.2.2 (Simple Regret (SR)). Using the previous notations, the Simple
Regret is defined by:

SRn := Eω( f (x̃n,ω)− f (x∗,ω)) = f (x̃n)− f (x∗). (2.9)

The expectation operates only on the noise ω in f (x̃n,ω), and not on x̃n. As a
consequence, SRn is a random variable due to the stochasticity of the noisy evalu-
ations of the search points or the possible internal randomization of the optimiza-
tion algorithm. In the noise-free case, it can be used to determine the precision of
a method, by ensuring that the algorithm outputs a recommendation x̃m satisfying
SRm ≤ ε , for a given ε > 0.

Some benchmarks, notably the Bbob/Coco framework in the first version, did
not allow the distinction between search points and recommendations, so that the
Simple Regret can not be checked. An alternative definition, that aims to measure
the precision in a similar way to SR, is the Approximate Simple Regret.

Definition 2.2.3 (Approximate Simple Regret (ASR)). Using the previous nota-
tions, the Approximate Simple Regret is defined by:

ASRn := min
m≤n

f (xn)− f (x∗). (2.10)

It is used in the Bbob/Coco framework [Auger et al., 2010a,
Auger et al., 2010b, Auger et al., 2010c, Finck and Beyer, 2010, Ros, 2010a,
Ros, 2010b, LaTorre et al., 2010, Tran and Jin, 2010, Hansen and Ros, 2010],
and in some theoretical papers [Dang and Lehre, 2015]. ASR takes into account
the ‘best’ evaluations among all the search points.

Another form of regret is the Cumulative Regret (CR). This criterion keeps
track of the loss of every search point, not only the best.

Definition 2.2.4 (Cumulative Regret (CR)). Using the previous notations, the Cu-
mulative Regret is defined by:

CRn :=
n

∑
i=1

( f (xi)− f (x∗)) . (2.11)

The Cumulative Regret is relevant for, e.g., online optimization of a factory,
online optimization of medical treatments, and all cases in which each function
evaluation is an actual loss and not only a simulated loss.
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Expected running and hitting time

When testing algorithms, it is common to use some hitting time, i.e. to consider
the first time that the sequence of points ‘hits’ a given subset of the search space.
We distinguish the first hitting time and the running time.

Definition 2.2.5 (First hitting time). For a precision ε > 0, the first hitting time τε

is a random variable defined by:

τε := min{n ∈ N| ‖x̃n− x∗‖ ≤ ε} (2.12)

Definition 2.2.6 (Running time). For a precision ε > 0, the running time ρε is a
random variable defined by:

ρε := min{n ∈ N| max
m≥n

f (x̃m)− f (x∗)≤ ε} (2.13)

The running time refers to the first ‘stable’ hitting time, i.e. the next recom-
mendation is at least as good as the previous one. In the noise-free setting, if
the recommendation is defined as x̃n = xi(n) with i(n) = argmin

1≤i≤n
SRi, then this is

equivalent to finding the smallest integer n such that SRn ≤ ε . It is reasonable to
assume that the recommendation is the optimal search point in the noise-free set-
ting, as maintaining a best search point so far is easy and cheap. Unfortunately, in
the case of noisy optimization, there is no such equivalence and there is no natural
extension of running time without checking the infinitely many values SRm for
m≥ n.

[Corus et al., 2014, He and Yao, 2003, Akimoto et al., 2015] are devoted to
the study of the expected hitting time and the expected running time.

2.2.3 Type of convergence
Regarding the regrets and the Uniform Rate, we distinguish two typical rates of
convergence. The log-log convergence and the log-linear convergence, for which
lower and upper bounds will be discussed in this thesis. In the following, when we
do not specify the mode of convergence (a.s. or in expectation), then the definition
or property holds for every mode.

Definition 2.2.7 (log-log convergence). The sequence of random variables
(Rn)n∈N is said to converge log-logarithmically (or logarithmically):

• almost surely if lim
n→+∞

log(Rn)
log(n) exists almost surely and is negative.



CHAPTER 2. BACKGROUND REVIEW 47

• in expectation if lim
n→+∞

log(E(Rn))
log(n) exists and is negative.

If the limits above exist but are positive, then we say that the algorithm di-
verges log-logarithmically.

Terminology & Notations. When limsup
n∈N

log(Rn)
log(n) =−α , with α > 0, it is equiv-

alent to write Rn = O
( 1

nα

)
or to say that Rn is in O

( 1
nα

)
. If liminf

n∈N

log(Rn)
log(n) =−α ,

with α > 0, it is equivalent to write Rn = Ω
( 1

nα

)
or to say that Rn is in

Ω
( 1

nα

)
. We called this number α the slope of Rn, denoted s(R), and use this

different notations throughout the present document. We discuss the optimal
value of this slope α for UR, SR and CR, depending on the characteristic of
the optimization algorithm and on the objective function. The log-log conver-
gence is typical in the noisy optimization setting with lower bounded variance
[Arnold and Beyer, 2002, Astete-Morales et al., 2014, Chen, 1988, Fabian, 1967,
Coulom, 2011, Shamir, 2013, Decock and Teytaud, 2013].

Asymptotic & non-asymptotic regime. We distinguish two different regimes.
The asymptotic one holds when

∃C > 0, ∃ n0 such that ∀ n≥ n0, Rn &
C
nα

,

where & stands for ≤ or ≥ and this inequality can be in expectation or a.s.
The non-asymptotic regime holds when

∃C > 0, ∀ n ∈ N, Rn &
C
nα

.

In Definition 2.2.7, we adopted the asymptotic setting. However, non-asymptotic
results will be discussed in the review of literature below (Section 2.3), in Chap-
ters 4 and 5 and in Appendix B. By default, rates of convergence are asymptotic.

Definition 2.2.8 (log-linear convergence). The sequence of random variables
(Rn)n∈N is said to converge log-linearly (or linearly):

• almost surely if lim
n→+∞

log(Rn)
n exists almost surely and is negative.

• in expectation if lim
n→+∞

log(E(Rn))
n exists and is negative.
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When the limits above exist but are positive, then we say that the algo-
rithm diverges log-linearly. The log-linear convergence is sometimes called ex-
ponential convergence since the sequence (Rn)n decreases exponentially fast in
the number of calls to the oracle. Log-linear convergence is classical in noise-
free zero-order optimization [Auger, 2005, Beyer, 2001, Teytaud et al., 2005].
[Hansen et al., 2015] has shown a link between the expected hitting time and the
rate of convergence in case of log-linear convergence: Eτε ∼ log(1/ε)/α , where
α > 0, with lim

n→+∞

log(Rn)
n =−α .

The log-linear convergence is faster than the log-logarithmic one, however, we
can encounter even faster rates of convergence.

Definition 2.2.9 (Super-linear convergence). We say that an algorithm converges
super-linearly of order α when:

lim
n→+∞

URn = 0

and lim
n→+∞

URn

URα
n−1

= µ > 0.

In particular, when lim
n→+∞

log(URn)
n = −∞, the super-linear convergence should

be investigated. It is classical in the noise-free case with surrogate model
[Auger et al., 2005]. If α = 2, the convergence is quadratic. In the noise-free set-
ting, Newton’s algorithm is quadratic [Nesterov, 2004] and quasi-Newton meth-
ods such as BFGS are superlinear [Nesterov, 2004].

2.2.4 Discussion
UR and SR. By definition, a good slope for the Uniform Rate (s(UR)) is harder
to reach than for the SR because all search points must verify the bound, not only
the recommended ones. For any problem, if for some algorithms, s(UR)≤ c, then
for the same problem there is an algorithm such that s(SR)≤ c. A slope 0 for UR
and SR can be trivially reached by an algorithm with constant (xn, x̃n).

CR and SR. An algorithm with constant (xn, x̃n) will similarly provide a trivial
slope 1 for CR. On the other hand, optimality between s(SR) and s(CR) can not
be reached simultaneously. In discrete settings, this so called trade-off is proved
by [Bubeck et al., 2011]. They show that in the framework of stochastic multi-
armed bandit problems, the smaller the CR, the larger the SR. This trade-off is
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also observed in continuous optimization algorithms, see Section 2.3.1. Using
the vocabulary of the multi-armed bandit community, this is the trade-off between
exploration and exploitation.

UR and CR. We are not aware of differences between algorithms specialized on
optimizing s(UR) criterion and s(CR) criterion.

2.3 Algorithms and state of the art
We introduce in this section some zero-order noisy optimization algorithms and
discuss their performance regarding the criteria of Section 2.2.2. This review
is not exhaustive as it is centred on the algorithms studied later in this thesis.
[Chotard, 2015] provides a more complete overview, emphasizing the opposition
between deterministic and stochastic algorithms. Stochastic algorithms generate
recommendations through the use of random processes. This makes them more
likely to escape local minima and provides them some sort of robustness - that
will be discussed - when confronted with noise. In contrast, we are particularly
interested in the dichotomy between comparison-based algorithms and algorithms
using an approximate gradient or Hessian: value-based algorithms.

2.3.1 Value-based algorithms

Kiefer-Wolfowitz method

[Kiefer and Wolfowitz, 1952] have made a pioneering work to find numeri-
cally the optimum of a unidimensional noisy objective function such that
Eω( f (x,ω)) = f (x) with Var( f (x,ω)) bounded. In particular, this covers the
additive case of noise, but it is more general. The optimum was initially a max-
imum, but we write below the results in minimization. Their method derives
from the work of [Robbins and Monro, 1951] one year before, devoted to solve
the equation Eω f (x,ω) = α . The Kiefer-Wolfowitz algorithm is a gradient de-
scent algorithm, where the gradient is approximated by finite differences. Given
two sequences of positive numbers (an)n≥1 and (cn)n≥1, and an initial recommen-
dation x̃0 ∈ R, the successive recommendations x̃n follow the Kiefer-Wolfowitz
scheme.
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Kiefer-Wolfowitz scheme
∣∣∣∣x̃n+1 = x̃n−angn,

gn := approximate gradient, estimated by finite differences.

(2.14)

In the original method, [Kiefer and Wolfowitz, 1952] proposes to estimate gn
as follows:

gn =
f (x̃n + cn,ω)− f (x̃n− cn,ω)

cn
.

Note that in this part (Section 2.3.1), the recommendation x̃n is indexed in the
number of iterations, and not in the number of calls to the black-box, as formalized
in Section 2.2.1. This does not change the results on the rate of convergence,
because there is a fixed number of calls to the oracle. It just adds a multiplicative
constant in the upper bound, which does not modify the asymptotic slope.

Assuming that cn decreases to 0 and that:

+∞

∑
n=1

an =+∞,
+∞

∑
n=1

ancn <+∞ and
+∞

∑
n=1

a2
nc−2

n <+∞; (2.15)

under some strong regularity conditions of the objective (unidimensional) func-
tion, Kiefer and Wolfowitz proved the convergence in probability of the se-
quence (x̃n)n≥1 toward the optimum x∗, without a specific rate of convergence
though. [Blum, 1954a, Blum, 1954b, Burkholder, 1956, Dvoretzky, 1956] succes-
sively broadened this convergence result to the multidimensional case and weak-
ened the regularity conditions. The first optimal convergence rate was shown in
[Dupač, 1958], using some inequalities from [Chung, 1954]. The expected Sim-
ple Regret has slope O(n−1/2) when the objective function is twice differentiable
and O(n−2/3) when it is three times differentiable. However, this rate is not im-
proved for functions with higher derivatives. It is formalized in Theorem 2.3.1.

Theorem 2.3.1 ([Dupač, 1957], Simple Regret of Kiefer-Wolfowitz algorithm).
The (unidimensional) objective function has a unique minimizer x∗ and satisfies:

• ∀ε > 0, ∃ K > 0, K′ > 0 such that ∀ x ∈ B(x∗,ε),
K|x− x∗| ≤ | f ′(x)| ≤ K′|x− x∗|;

• f ′′(x∗)> 0 exists.
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If the noise satisfies Eω( f (x,ω)) = f (x) and Var( f (x,ω)) is bounded, if an =
a
n

and cn =
c

n1/4 with a > 0 big enough and c > 0 small enough, then

E(x̃n− x∗)2 = O
(

1√
n

)
(2.16)

and this is the optimal rate. Additionally, if f ′′′ exists and is bounded in the neigh-
bourhood of x∗, then with an as previously and cn =

c
n1/6 ,

E(x̃n− x∗)2 = O
(

1
n2/3

)
(2.17)

and this rate is optimal. In particular, when f is smooth enough, we get
s(SR) =−2/3.

Note also that [Dupač, 1957] has shown that if the objective function is an-
alytic and symmetric in the neighbourhood of x∗, then for any arbitrary ε > 0,
E(x̃n− x∗)2 = O

(
1

n1−ε

)
. We refer to [Schmetterer, 1961] for a good survey of the

early Kiefer-Wolfowitz-like algorithms.

Fabian’s algorithm.

[Fabian, 1967] uses the same pattern as Kiefer and Wolfowitz, but computes the
approximate gradient using averaging over space, which improves the rate of
convergence. Fabian’s algorithm follows the Kiefer-Wolfowitz scheme as in
Eq. 2.14, and given an even integer s, the gradient gn = (g(i)n )1≤i≤d is updated
as follows:

∀ i ∈ {1, . . . ,d}, g(i)n =
1
cn

s/2

∑
k=1

vk ( f (x̃n + cnukei,ω)− f (x̃n− cnukei,ω)) , (2.18)

where (ei)1≤i≤d is the standard basis and (uk)1≤k≤s/2 are such that
0 < u1 < · · ·< us/2 ≤ 1. (vk)1≤k≤s/2 are some weights, see [Fabian, 1967] for
their computation. It has been shown in [Fabian, 1967] that this algorithm has
SR arbitrarily close to O(1/n) in expectation and also a.s., as formalized in Theo-
rem 2.3.2.

Theorem 2.3.2 ([Fabian, 1967], Simple Regret of Fabian’s algorithm). Let s be
an even positive integer and ε > 0. Let x∗ be the unique minimizer of the objective
function f . The objective function f satisfies the following properties:
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• its (s+1)th derivative exists on B(x∗,2ε) and is bounded there;

• its Hessian exists, is bounded in norm on Rd and it is positive definite and
continuous at x∗;

• its first derivative is zero at x∗;

• ∀ ε > 0, there exist ρ(ε) > 0 such that f (x) − f (x∗) ≥ ρ(ε) and
‖D f (x)‖ ≥ ρ(ε) ∀x ∈ Rd \B(x∗,ε).

Assume that the noise satisfies Eω( f (x,ω)) = f (x) and that Var( f (x,ω)) is
bounded. Assume that an = a

n and cn = c
nγ , with a > 0, c > 0 and 0 < γ < 1/2.

Assume that 2λ0a > β0 where λ0 is the smallest eigenvalue of the Hessian and
β0 = min(2sγ,1−2γ). Then, with x̃n obtained by Kiefer-Wolfowitz scheme
(Eq. 2.14) with Eq. 2.18, a.s.:

lim
n→+∞

nβ (x̃n− x∗) = 0 ∀ β < β0/2 (2.19)

In particular, when f is smooth enough, we get s(SR) =−2β .

Note that SR is optimal when γ = 1
2(s+1)−1. In this case, β0 =

s
s+1 →s→∞

1: β0

can be made arbitrarily close to 1, so 2β also, but then γ goes to 0.
Depending on the value of γ , we get a good SR or a good CR, but never both

simultaneously. In the case of quadratic functions with additive noise

• γ → 1
4 leads to SR = O(n−1/2) and CR = O(n1/2) a.s. and in expectation;

• γ → 0 leads to SR = O(n−1) and CR = O(n) a.s. and in expectation.

We incidentally find out the trade-off discussed above.
On the computational side, the number of calls to the oracle per iteration is

2× s× d, which might become intractable in practice for large dimension and
when s goes to infinity.

Spall’s algorithm

[Spall, 1987] developed a method, called SPSA for Simultaneous Perturbation
Stochastic Approximation, which alleviates by far this burden. It requires only
2 calls to the black-box at each iteration. Spall’s algorithm follows the Kiefer-
Wolfowitz scheme to update the recommendation as in Eq. 2.14 and the approxi-
mate gradient gn = (g(i)n )1≤i≤d is estimated in the following way:
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∀ i ∈ {1, . . . ,d}, g(i)n =
f (x̃n + cn∆,ω)− f (x̃n− cn∆,ω)

2cn∆(i)
(2.20)

where ∆ ∈ Rd is a vector of d mutually independent random variables. The
(∆(i))1≤i≤d have mean zero and satisfy others assumptions; in particular, first and
second inverse moments must be bounded (see [Spall, 1992]). Incidentally, it
excludes uniform and normal random variables. Usually, we consider Bernoulli
random variables, see more in [Kleinman et al., 1999, Spall, 2000]. In terms of
calls to the black-box, variants of Spall’s algorithms have the same optimal con-
vergence rate as Kiefer-Wolfowitz algorithm, i.e. O(n−2/3) for the expected SR;
it is formalized in Theorem 2.3.3.

Theorem 2.3.3 ([Gerencsér, 1999], Simple Regret of Spall’s algorithm). Let
β = min(4γ,1−2γ)> 0, an =

a
n and cn =

c
nγ with a > 0 and c > 0. Assume that

the smallest eigenvalue of the Hessian matrix of the objective function f at x∗,
denoted by α satisfies aα > β/2. The objective function satisfies the following
conditions:

• it has a unique minimizer x∗ and is 3 times continuously differentiable in
the neighbourhood of x∗;

• its gradient is defined in the neighbourhood of x∗ and has continuous partial
derivative up to second order5.

Assume that the noise is additive: ∀x ∈D , f (x,ω) = f (x)+ω , with ω a bounded
random variable. Assume that the components of ∆ are i.i.d, symmetrically dis-
tributed, bounded and the inverses of its higher moment are bounded. Then, with
x̃n obtained by the Kiefer-Wolfowitz scheme (Eq. 2.14) with Eq. 2.20, it follows:

E‖x̃n− x∗‖2 = O
(

1
nβ

)
. (2.21)

This rate is optimal for γ = 1/6, which give β = 2/3. In particular, when f is
smooth enough, we get s(SR) =−2/3.

It was shown in [Spall and Cristion, 1998] that this rate is tight.

5The whole assumption involves some condition on the solution of a differential equation im-
plying the gradient, we refer to [Gerencsér, 1999] for the details.
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Spall also proposed some algorithms using additionally some approximate
Hessian, i.e. approximated by finite differences, without improvement of the rate
of convergence [Spall, 2000].

Spall’s algorithms are also efficient in the noise-free setting, providing non-
trivial rates of convergence.

Polyak-Tsybakov’s algorithm

[Polyak and Tsybakov, 1990] proposed a method to merge the good properties
of Fabian and Spall’s algorithms - that is a SR in O(n−

s
s+1 ) with only 1 or 2

evaluations per iteration. They update the recommendation following the Kiefer-
Wolfowitz scheme (Eq. 2.14) and estimate the gradient through the use of a ker-
nel:

gn = K(∆)
f (x̃n + cn∆,ω)− f (x̃n− cn∆,ω)

2cn
. (2.22)

K is a differential kernel. In practice, it is determined by using Legendre
polynomials and ∆ is a random vector uniformly distributed in [−1/2,1/2]d . With
this method, the algorithm reaches an expected SR in O(n−1) asymptotically for a
wide family of functions, see Theorem 2.3.4.

Theorem 2.3.4 ([Polyak and Tsybakov, 1990], Simple Regret of Polyak-Tsy-
bakov’s algorithm). Assume that the objective function has a unique optimum at
x∗( f ) and satisfies:

1. f has continuous partial derivatives up to order s inclusive, which satisfy
the Hölder condition of order α ∈ (0,1];

2. ∀ x ∈ Rd , (D f (x),x− x∗)≥ A1‖x− x∗‖2;

3. ∀ x,x′ ∈ Rd , ‖D f (x)−D f (x′)‖ ≤ A2‖x− x′‖,
where A1 and A2 are finite positive constants, A2 > A1. Let F denote the family of
functions with a unique optimum satisfying these 3 conditions. Let β = s+α ≥ 2,
an =

a
n and cn =

c
n1/2β

, c > 0, a > (β−1)/2A1β . Assume that the noise is additive,
i.e. E( f (x,ω) = f (x)), with E(ω) = 0 and E(ω2) bounded. Assume that x̃n is
obtained by the Kiefer-Wolfowitz scheme (Eq. 2.14) with Eq. 2.22, it follows:

sup
n

sup
f∈F

n(β−1)/β E‖x̃n− x∗( f )‖2 < ∞ (2.23)

In particular, when f is smooth enough, we get s(SR) =−(β −1)/β .
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Note that SR is optimal when β → +∞, i.e. s→ +∞. In this case, s(SR) can
be made arbitrarily close to −1. The asymptotic rate of convergence is then the
same as for Fabian’s algorithm, but [Polyak and Tsybakov, 1990] results comprise
a larger class of functions: the class s of the function can be odd (whereas s has to
be even in Theorem 2.3.2), and the sth derivative has to satisfy Hölder’s condition,
but it is not required for it to be bounded.

On the practical side, [Granichin, 2003] investigates optimal values of a and c
(constants in the sequences (an)n and (cn)n).

In a setting related to Polyak-Tsybakov’s algorithm and assumptions (see The-
orem 2.3.4), [Bach and Perchet, 2016] provides additional results, generalizing
Theorem 2.3.4. The optimization algorithm in [Bach and Perchet, 2016] follows
the general framework of Polyak-Tsybakov’s algorithm (Eqs. 2.14 and 2.22) but
they average the recommendation, which is:

x̃′n :=
1

(n+1)

n

∑
k=0

x̃k in the unconstrained case, (2.24)

x̃′n :=
2

(n+1)(n+2)

n

∑
k=0

(k+1)x̃k in the constrained case. (2.25)

Especially, they provide results directly in terms of Simple Regret and specify
the dependence in the dimension d. Their method relaxes the conditions on the
kernel K (see Eq. 2.22). They provide explicit optimal values of a, α , c and γ

(see Eqs. 2.14 and 2.22), depending on the order of differentiability s, the strong-
convexity constant A1, the 2nd-order smoothness A2 and the dimension d (see
Theorem 2.3.4). Notably, they distinguish:

• convex and strongly-convex functions, the latter corresponding to assump-
tion 3 of Theorem 2.3.4. To the best of our knowledge, it is the first analysis
of the convergence rate of an objective function only convex in the Kiefer-
Wolfowitz optimization scheme;

• constrained and unconstrained optimization, the latter being as in the
Polyak-Tsyakov setting with recommendation x̃′n (see Eq. 2.24) and the for-
mer being as Polyak-Tsybakov framework with an extra projection of x̃n
on a compact convex set in Eq. 2.14 and recommendation x̃′n (see Eq. 2.25)
instead of x̃n;

• asymptotic and non-asymptotic regime, see Section 2.2.3.
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Table 2.1: Upper bound on the Simple Regret using Polyak-Tsybakov’s
algorithm, analysed by [Bach and Perchet, 2016] in the non-asymptotic
regime. Strongly convex function satisfies conditions 1-3 of Theorem 2.3.4.
[Bach and Perchet, 2016] also provide results when the objective function is only
convex.

Degree of smoothness s Convex function Strongly convex function

s = 2
(

d2

n

)1/3 √
d2

A1n

s > 2
(

d2

n

) s−1
2s 1

A2
1

(
d2

n

) s
s+1

The noise is such that Eω( f (x,ω)) = f (x) and has a bounded variance. They
found out that constrained or unconstrained optimization has no impact on the
upper bound of the Simple Regret.

Under the conditions of Theorem. 2.3.4, they prove that, asymptotically, i.e.
for n big enough, E(SRn) = O

(
1

A2
1
(d2

n )
s

s+1

)
. We recover s(SR) = s

s+1 → 1 when
s→ +∞ as in [Fabian, 1967] and [Polyak and Tsybakov, 1990]. Table 2.1 pro-
vides [Bach and Perchet, 2016]’s results in the non-asymptotic case, i.e. for a
fixed n (possibly small).

Note that it is possible to approximate the gradient using only one call
to the black-box per iteration, see e.g. [Granichin, 2003, Shamir, 2013,
Polyak and Tsybakov, 1990], leading to similar convergence rates. Nonetheless,
this method requires to project the recommendation x̃n obtained by Eq. 2.14 on a
convex compact set containing x∗ and an additional assumption on the objective
function. We report also that most of the literature cited previously contains some
results in term of limit distribution of the estimate.

Local regression algorithms

To the best of our knowledge, well tuned regression algorithms such as CLOP
or QRL (see Section 2.1.3) can reach experimentally a rate O(1/n) on smooth
functions [Coulom, 2011, Coulom et al., 2011]. However, we are not aware of
rigorous theoretical results.
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2.3.2 Comparison-based algorithms
Among the algorithms designed to tackle the black-box noisy optimization prob-
lem, we find also the family of population-based algorithms. A population-based
algorithm generates, at each iteration, a population of search points - or indi-
viduals - and then selects an approximation for the optimization problem. The
selection is in general performed thanks to the ranking or comparisons between
the search points, but not the direct use of the fitness values. In this last case,
the algorithm is termed comparison-based algorithm or Fitness Value Free. Es-
pecially, the comparison-based feature confers some robustness. For example,
some very small or high values will not affect the optimization process. A key
point is that a comparison-based algorithm is invariant to translation, rotations
and strictly increasing transformations6 [Auger, 2016, Chotard, 2015]. Inciden-
tally, some non-convex or some non-smooth functions can be optimized as easily
as convex ones. Typically optimizing the composition x ∈ Rd 7→ g(‖x− x∗‖2) is
as easy as optimizing the sphere for comparison-based algorithms as soon as g is
increasing, even if g is non-differentiable or if the composed function is not con-
vex. Evolutionary Algorithms are a subset of comparison-based algorithms where
the population is generated randomly, inspired by biological processes.

One can also choose this family of algorithms by necessity. As a refinement of
the black-box problem, we might encounter some optimization problems where
the fitness value itself is unknown. In this case, an oracle only provides a ranking
of a given set of points, but not the fitness values of these points. For example
in games, an operator can compare two agents, but not directly provide a level
evaluation. In design, with the human in the loop, a user preference is a compari-
son between two search points. Searching a Pareto front might also involve a user
providing her preferences. In the noisy optimization setting, some misranking of
individuals might result in poor recommendations. If we consider 2 individuals
x1 and x2, due to the noise perturbation, we might obtain f (x1,ω1) > f (x2,ω2)
whereas actually the real ordering between the individuals is the opposite, i.e.
f (x1)< f (x2).

We review some families of comparison-based algorithms. We are particu-
larly interested in Evolution Strategies, their convergence rates being already well
studied in the noise-free case. Among the other comparison-based algorithms
for continuous noisy optimization, we find e.g. Differential Evolution or Parti-
cle Swarm Optimization for which very few is know theoretically in terms of UR

6i.e. the algorithm behave the same on the original objective function and on the composition
of this objective function with a translation, a rotation or a strictly increasing function.
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or regrets. On the contrary, the behaviour of ES in the noise-free case has been
investigated through the use of Markov Chain Theory (see Chap. 3).

Evolution Strategy (ES)

Vanilla Algorithm. Evolution Strategies are one of the very first Evolutionary
Algorithms, introduced by [Rechenberg, 1965]. A specific (1,λ )-Self Adaptive
Evolution Strategy is presented in Algorithm 2.1 and variants of ES are discussed
below.

Algorithm 2.1 (1,λ )-Self Adaptive Evolution Strategy. The point(s) used to
generate the offspring, here only xn−1, is/are called parent(s).
Input:

population size λ ∈ N; real τ > 0; initial recommendation x0; initial step-size
σ0; Gaussian random vector G ; objective function f .

Output:
an approximation of the optimum x∗ of the objective function f

1: n← 1
2: while not finished do
3: ∀i ∈ {1, . . . ,λ}, σ i

n−1← σn−1 exp(τG ) . Step-size
4: ∀i ∈ {1, . . . ,λ}, xi

n← xn−1 +σ i
n−1G . Offspring

5: Rank xi1
n , . . . ,x

iλ
n such that f (xi1

n )≤ f (xi2
n )≤ ·· · ≤ f (xiλ

n ). Evaluation step
6: xn← xi1

n . Selection step
7: σn← σ

i1
n . Update Step-size

8: n← n+1
9: end while

return xn

In the black-box setting, the offspring are generally generated through the use
of a normal distribution as in Alg. 2.1. However in the gray-box setting (e.g. sep-
arability of the objective function) other distributions (e.g. Cauchy distribution)
are relevant, see [Hansen et al., 2006]. Instead of one parent as in Alg. 2.1, an-
other classical variant - denoted (µ,λ )-ES - is to keep a population of µ parents
for each generation. The recommendation is then the best offspring or a weighted
recombination of these points. (µ,λ )-ES is called non-elitist. Elitist Evolution
Strategy, denoted (µ + λ )-ES, is an ES version in which, during the evaluation
step, the λ offspring are ranked together with the µ parents, and the selection is
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performed on these µ+λ points. Many works are devoted to the search of optimal
population sizes λ and µ [Beyer, 2001]. A key point to obtain an efficient ES is to
adapt the step size σ (said self-adaptive in Alg. 2.1) and the covariance matrix of
the Gaussian vector G . We find a rich literature on this topic [Hansen et al., 2015]
- see notably the Cumulative Step-size Adaptation - Evolution Strategy (CSA-ES)
and the Covariance Matrix Adaptation - Evolution Strategy (CMA-ES) methods.
[Arnold and Beyer, 2006] experimentally shows that an ES without any adapta-
tion to the additive noisy setting stagnates at some distance of the optimum, it
does not converge.

“Mutate Large, But Inherit Small”. [Rechenberg, 1994, Beyer, 1998] have
proposed variants of Evolution Strategy using large mutations and small inher-
itance. Under specific conditions, when the variance of the noise decreases to
zero in the vicinity of the optimum, the dynamics7 of such a modified algorithm
asymptotically approaches the performance of a classical ES without noise. It is
asymptotic since it is only when the dimension goes toward infinity.

Resampling for ES. We already discussed the different methods to deal with
noisy objective functions in Section 2.1.3. We develop here the resampling tech-
nique. When using an Evolution Strategy in a context with additive Gaussian
noise, [Astete-Morales et al., 2014] has shown mathematically that an exponen-
tial number of resamplings (number of resamplings scaling exponentially with
the index of iterations) or an adaptive number of resamplings (scaling as a poly-
nomial of the inverse step-size) can both lead to a log-log convergence rate with
high probability for the Simple Regret over the objective functions of the form
x 7→ ‖x−x∗‖p, with p a positive integer. [Astete-Morales et al., 2014] experimen-
tally showed that a polynomial number of resamplings (number of resamplings
scaling polynomially with the index of iterations) also leads to a log-logarithmic
rate of convergence with high probability for SR over the same family of objective
functions.

Uncertainty Handling - Covariance Matrix Adaptation - Evolution Strategy
(UH-CMA-ES). [Hansen et al., 2009] developed a specific variant of the CMA-
ES [Hansen and Ostermeier, 2001] to handle uncertainty. More specifically, it
uses an adaptive number of resamplings in order to reduce the noise. It com-
bines the traditional CMA-ES algorithm with an Uncertainty-Handling tool. The

7dynamics in term of progress rate, which is not detailed here.
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Uncertainty-Handling tool is made of two parts. The first part measures the uncer-
tainty due to the noise and the second part handles the uncertainty. The treatment
of the uncertainty is twofold. If the measurement of the uncertainty exceeds a
given threshold, then the computation time (typically the number of resamplings)
increases and/or the variance (the step-size) of the population increases. Whereas
if the uncertainty is below the threshold, the computation time decreases. UH-
CMA-ES was successfully applied to the online optimization of feedback con-
trollers of thermoacoustic instabilities of gas turbine combustors. To the best of
our knowledge, there are no theoretical results regarding the convergence of UH-
CMA-ES. However, it seems to perform poorly when confronted with high levels
of noise [Coulom et al., 2011].

It results from above that the best ES adaptations to additive noise are able to
reach a log-log converge for the SR. However, we are not aware of any known
bounds (upper or lower) on this rate of convergence.

Bernstein races.

Some methods are based on Hoeffding or Bernstein inequalities in order to find
adaptively the number of resampling necessary to distinguish between several
points at each iteration [Mnih et al., 2008].

Using this method, [Coulom et al., 2011] handled the specific case of
Bernoulli random variables. Their algorithm, termed Racing-based Estimation
of Distribution Algorithms (R-EDA), reaches a UR in O(1/n1/p) with high prob-
ability up to logarithmic factor when the objective function is x 7→ λ‖x− x∗‖p.
The rate is O(1/n1/2p) when the sphere is translated: x 7→ λ‖x−x∗‖p+c. Even if
R-EDA is suboptimal from a theoretical point of view (see discussion about lower
bound below), it is in practice quite efficient.

2.3.3 General lower bound

The fastest algorithms described previously have a SR in O(n−
s

s+1 ), where s is the
order of differentiability of the objective function. [Chen, 1988] has proved that it
is actually the optimal rate of convergence, see Theorem 2.3.5 below.

Theorem 2.3.5 (Chen’s lower bound). Let I be a bounded interval of R. Assume
that the querying algorithm satisfies:

• the nth search point xn ∈ I is a computable function of the previous search
points x1, . . . ,xn−1 and their corresponding evaluations y1, . . . ,yn−1, and
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only of these data;

• each estimate x̃n is a function (possibly randomized) of x1, . . . ,xn and
y1, . . . ,yn.

Assume that the noisy estimation yn has a conditional density equal to
g(·,xn, f (xn)) with respect to the Lebesgue measure µ , where g(u,v,w) is such
that:

• g is positive;

• g′ and g′′, derivatives with respect to w exist ∀ w ∈ R;

• g′′ and (logg)′′ (derivatives with respect to w) are integrable ∀ v,w.

Let s > 1 be odd and δ0 > 0. Assume that F is a family of objective functions on
I satisfying:

• ∀ f ∈F , x∗( f ) is a point of global maximum of f ;

• ∀δ ∈ [0,δ0], ∀ n ∈ N∗, the function

fnδ (x) =−x∗+2δn−1/2arctan(n1/2s(x−δn−(s−1)/(2s))) (2.26)

is in F .

Then ∀η ∈ (0,1), ∃c > 0 such that ∀n,

inf
f∈F

P(|x̃n− x∗( f )|2 ≥ cn−(s−1)/s)≥ η . (2.27)

In particular, for δ sufficiently small, fnδ is concave. [Chen, 1988] also states
that this result can be extended to functions in Id and to infinite intervals I.

[Polyak and Tsybakov, 1990] widened this results to a larger class of func-
tions.

Theorem 2.3.6 (Polyak-Tsybakov’s lower bound). Let x̃n be any Borel function
of x1, . . . ,xn,y1, . . . ,yn where:

• x1 = h1(ζ ), with ζ a random variable of arbitrary probability Pζ and h1 a
measurable function;

• ∀ i∈ {2, . . . ,n}, xi+1 = hi(x1, . . . ,xi,y1, . . . ,yi,ζ ), with ζ a random variable
of arbitrary probability Pζ and hi a measurable function;
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• ∀ i∈ {2, . . . ,n}, yi = f (xi)+ωi, with ω1, . . . ,ωn identically distributed with
the distribution function g such that∫

ln(dg(u)/dg(u+ t))dg(u)≤ I0t2 |t| ≤ t0, (2.28)

for some 0 < t0 ≤ ∞ and 0 < I0 < ∞.

Let F be the family of functions as in Theorem 2.3.4, i.e., ∀ f ∈F , f satisfies:

• f has a unique optimum at x∗( f );

• f has continuous partial derivatives up to order s inclusive, which satisfy
the Hölder condition of order α ∈ (0,1];

• ∀ x ∈ Rd , (D f (x),x− x∗)≥ A1‖x− x∗‖2;

• ∀ x,x′ ∈ Rd , ‖D f (x)−D f (x′)‖ ≤ A2‖x− x′‖,
where A1 and A2 are finite positive constants, A2 > A1 and β = s+α ≥ 2. Then

inf
n

inf
x̃n

sup
f∈F

n(β−1)/β E(‖x̃n− x∗( f )‖2)> 0. (2.29)

In particular, this lower bound holds for the family of strongly convex objec-
tive functions with partial derivatives smooth enough, and contrarily to Chen, β

can be odd or even.
When the noise is additive with bounded variance, [Jamieson et al., 2012] ex-

hibited a lower bound in Ω(n−1/2) on the family of strongly convex functions with
Lipschitz gradient on a convex subset of Rd . However this is not in contradiction
with Chen and Polyak-Tsybakov’s results, as the setting in [Jamieson et al., 2012]
is slightly different: it allows queries for search points only at distance O(n−1/4)
of the optimum.

[Shamir, 2013] recovers this lower bound Ω(n−1) in the case of the quadratic
functions, and a bound Ω(n−1/2) for the family of strongly convex and smooth
functions. Here again, this might appear as a contradiction with Chen and Polyak-
Tsybakov’s bounds, however, the setting in [Shamir, 2013] is non-asymptotic. We
discuss this difference in Appendix B.

On the other hand, [Shamir, 2013] shows that the optimal expected CR for
quadratic, strongly convex and smooth objective functions is in Ω(n1/2), a bound
which is reached by various algorithms [Fabian, 1967, Shamir, 2013].

In the specific case of the Bernoulli noise, [Rolet and Teytaud, 2010b] showed
that for every monotonic transformation of the sphere function, URn = Ω(1/n)
with high probability.
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2.4 Contributions in noisy black-box continuous op-
timization

2.4.1 Comparison-based algorithms
Evolution Strategies & small noise. [Jebalia et al., 2011] studied the case of
multiplicative noise for ES. Chapter 3 investigates the case of a noise decreasing
faster than the multiplicative setting (i.e. z > 1 in Eq. 2.7). We show that by
slightly modifying a classical ES - adding some resamplings - we can recover the
same rate of convergence of a classical ES in the noise-free case.

Evolution Strategies & additive noise: a lower bound. Several adaptations
of Evolution Strategies have been proposed to tackle the additive noise prob-
lem. Theoretical and experimental results show a log-log convergence of the
Simple Regret. However, we are not aware of some bounds on this convergence
rate s(SR). This question will be addressed in Chapter 4, where we prove that
s(SR)≥−1/2 in expectation for some algorithms fitting a specific framework. In
particular, the theoretical study covers a wide family of ESs - but not all - and
possibly other optimization algorithms.

Comparison-based algorithms & additive noise: an upper-bound. A natural
question that arises is then to know if comparison-based algorithms can be as
fast as value-based algorithms (which can get s(SR)→−1) in the additive noise
setting. We provide in Chapter 5 a comparison-based algorithm performing as fast
as a value-based algorithm. That is, it might be possible for an ES to be fast when
confronted with big noise, however it must satisfy some particular design in the
mutation step.

2.4.2 Value-based algorithms and small noise
Performances of value-based algorithms, such as Kiefer-Wolfowitz algorithms,
are well known in the context of additive noise. Chap. 6 describes a generic
framework which covers different optimization algorithms - among them Kiefer-
Wolfowitz algorithms but also Newton’s algorithms (using an approximate Hes-
sian) - as well as various strength of noise, from additive to multiplicative case.
Concerning additive noise, we recover the results previously proven. We extend
these results to smaller strengths of noise.
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2.4.3 Right algorithm? Right parameters?
It already appeared in the literature review that the performances of an algorithm
depend on:

• the noise: additive, multiplicative, ...;

• the objective function: differentiable, smooth, invariant to translations, ...;

• the starting point: first search point(s) near to the global optimum or near to
a local optimum;

• the parameters of the algorithm: budget, step-size, ...;

• ...

When facing a noisy black-box optimization problem, without any idea or intu-
ition of the objective function properties and/or of the model of noise, which al-
gorithm should one use? and how should the parameters be set? Chap. 7 presents
a solution under the form of a portfolio: we can set different algorithms in the
portfolio: an ES, a Fabian’s algorithm, ... . This method guarantees to provide
an approximation of the optimum following the convergence rate of the best of
the algorithms contained in the portfolio. In particular, we can set several times
the same algorithm with different parametrizations or even several times the same
algorithm with the same parametrization to avoid a ‘bad luck’ starting point. Port-
folios in the noise-free case are well studied. However, we will see that in the
noisy setting, the selection among the different optimization algorithms is far from
being straightforward.



Chapter 3

Evolution Strategies confronted with
small noise

This chapter is based on:
Cauwet, M. (2014). Noisy optimization: Convergence with a fixed number

of resamplings. In Applications of Evolutionary Computation - 17th European
Conference, EvoApplications 2014, Granada, Spain, April 23-25, 2014, Revised
Selected Papers, pages 603–614

As discussed in Chapter 2, Evolution Strategies in continuous domains might
not converge in the presence of noise. Under mild assumptions, and using an
increasing number of resamplings, one can mitigate the effect of additive noise
and recover a logarithmic convergence:

limsup
n

log‖x̃n− x∗‖
logn

=−A < 0 a.s. (3.1)

Robustness of ESs confronted with multiplicative noise - without any need of
an adaptation scheme - has also been investigated. We study in this chapter the
model of noise for which variance decreases around the optimum slightly faster
than in the multiplicative noise model. This noise model is described in Eq. 2.7
with z > 1. We recall it:

f (x,ω) = f (x)+( f (x)− f (x∗))z
ω. (2.7)

65
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We assume that ω has a zero-mean and a bounded variance, that
f (x∗) = infx∈D f (x) = 0, so that1 Var( f (x,ω)) = O(E f (x,ω)2z); w.l.o.g, we as-
sume that Var(ω)≤ 1 and Var( f (x,ω))≤ (E f (x,ω))2z. We show new sufficient
conditions for the convergence of an Evolution Strategy with a constant number
of resamplings in this noise setting. In particular, we get faster rates - log-linear
convergence - than in the case of additive noise:

limsup
n

log‖x̃n− x∗‖
n

=−A < 0 a.s. (3.2)

3.1 Log-linearity

3.1.1 Preliminary: noise-free case
We recall that a (1,λ )-Evolution Strategy at iteration n:

• generates λ individuals using the current estimate x̃n−1 of the optimum x∗

and the so-called mutation strength (or step-size) σn−1;

• provides a pair (x̃n,σn) where x̃n is a new estimate of x∗ and σn is a new
mutation strength.

From now on, for the sake of notation simplicity, we assume that x∗ = 0.
For some ESs and in the noise-free case, we know (see e.g. Theorem 4 in

[Auger, 2005]) that there exists a constant A such that :

log(‖xn‖)
n

a.s−−−→
n→∞

−A (3.3)

log(σn)

n
a.s−−−→

n→∞
−A (3.4)

This chapter discusses cases in which an ES with a convergence rate as in Eqs.
3.3 and 3.4 in the noise-free case also has this convergence rate in a noisy setting.

In the general case of arbitrary ESs, we don’t know if A is positive. However,
through the study of an underlying Markov chain, it has been possible to show
that:

1In the present document, we slightly modified the modelization of [Cauwet, 2014] in order to
fit the general model of Eq. 2.7. Hence the reader should not be confused by the shift of a factor 2
in all the chapter compared to the original paper.
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• for a (1 + 1)-ES with generalized one-fifth success rule ap-
plied to scale invariant positively homogeneous functions, A > 0,
[Auger and Hansen, 2013];

• for a (1,λ )-Self Adaptive Evolution Strategy (SA-ES) with Gaussian mu-
tations to optimize the sphere function, the estimate of A by Monte-Carlo
simulations is positive [Auger, 2005].

• in the case of a (1,λ )-CSA-ES on linear functions, it was shown in
[Chotard et al., 2012] that if λ ≥ 3 and c = 12, then A < 0 and the algo-
rithm diverges log-linearly. Furthermore, the rate A is provided explicitly.

Property 3.1.1. For some δ > 0, for any α , α ′ such that α < A and α ′ > A, there
exist C > 0, C′ > 0, V > 0, V ′ > 0, such that with probability at least 1−δ

∀n≥ 1,C′ exp(−α
′n)≤ ‖xn‖ ≤C exp(−αn); (3.5)

∀n≥ 1,V ′ exp(−α
′n)≤ σn ≤V exp(−αn). (3.6)

Proof. For any α < A, almost surely, log(‖xn‖) ≤ −αn for n sufficiently large.
So, almost surely, supn≥1 log(‖xn‖)+αn is finite. Consider V the quantile 1− δ

4
of exp

(
supn≥1 log(‖xn‖)+αn

)
. Then, with probability at least 1− δ

4 , ∀n ≥ 1,
‖xn‖ ≤V exp(−αn). We can apply the same trick for lower bounding ‖xn‖, and
upper and lower bounding σn, all of them with probability 1− δ

4 , so that all bounds
hold true simultaneously with probability at least 1−δ .

3.1.2 Noisy case
If some Evolution Strategies converge log-linearly as in Eqs. 3.3 and 3.4 in the
noise free-case, then just by considering Y resamplings for each search point as
explained in Alg. 3.1, they will also be fast in the noisy case. This is formalized
in Theorem 3.1.1.

Our theorem holds for any Evolution Strategy satisfying the following con-
straints:

• At each iteration n, a search point xn is defined and λ search points are
generated and have their fitness values evaluated.

• The noisy fitness values are averaged over Y (a constant) resamplings.

2specific parameter of CSA-ES
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• The jth individual evaluated at iteration n is randomly drawn by xn +σnGd
with Gd a d-dimensional standard Gaussian variable.

This framework is presented in Alg. 3.1.

Theorem 3.1.1. Consider the following assumptions:

(i) the fitness function f satisfies E f (x,ω) = ‖x‖p and has a limited variance:

Var( f (x,ω))≤ (E f (x,ω))2z for some z > 1; (3.7)

(ii) in the noise-free case, the ES with population size λ under consideration is
log-linearly converging, i.e. for any δ > 0, for some α > 0, α ′ > 0, there
exist C > 0, C′ > 0, V > 0, V ′ > 0, such that with probability 1-δ , Eqs. 3.5
and 3.6 hold;

(iii) the number Y of resamplings per individual is constant.

Then, if z > max
(

pα ′−(α−α ′)d
pα

, 2α ′−α

α

)
, for any δ > 0, there is Y0 > 0 such that

for any Y ≥Y0, Eqs. 3.5 and 3.6 also hold with probability at least (1−δ )2 in the
noisy case.

Corollary 3.1.1. Under the same assumptions, with probability at least (1−δ )2,

limsup
n

log(‖x̃n‖)
n

≤− α

λY

Proof of Corollary 3.1.1. Immediate consequence of Theorem 3.1.1, by applying
Eq. 3.5 and using limsup

n

log(‖x̃n‖)
n = limsup

n

log(‖xn‖)
λY n .

Informally speaking, our theorem shows that if an algorithm converges in the
noise-free case, then it also converges in the noisy case with the resampling rule,
at least if z and Y are large enough. We show a log-linear convergence rate as
in the noise-free case. This means that we get log‖x̃n‖ linear in the number of
function evaluations. This is as Eq. 3.2, and faster than Eq. 3.1 which is typical
for noisy optimization with constant variance.

Notice that we can choose constants α and α
′

very close to each other. Then
the assumption z > max

(
pα ′−(α−α ′)d

pα
, 2α ′−α

α

)
is equivalent to z > 1.
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Algorithm 3.1 A general framework for Evolution Strategies. For simplicity, it
does not cover all Evolution Strategies, e.g. mutations of step-sizes as in self-
adaptive algorithms are not covered; yet, our proof can be extended to a more
general case (xn,i distributed as xn + σG for some noise G with exponentially
decreasing tail). The case Y = 1 is the case without resampling.
Input:

Population size λ ; initial recommendation x̃0; initial step-size σ0; Gaussian
random vector G , objective function f .

Output:
an approximation of the optimum x∗ of the objective function f

1: n← 1
2: while not finished do
3: for i ∈ {1, . . . ,λ} do
4: xn,i← x̃n +σnGd .
5: yn,i← 1

Y ∑
Y
k=1 f (xn,i,ωk).

6: end for
7: (x̃n+1,σn+1)←update(xn,1, . . . ,xn,λ ,yn,1, . . . ,yn,λ ,σn).
8: n← n+1
9: end while

return x̃n

In the previous hypothesis, the new individuals are drawn following x̃n+σnGd
with Gd a d-dimensional standard Gaussian variable, but we could substitute Gd
for any random variable with an exponentially decreasing tail.

Sketch of proof: Consider an arbitrary δ > 0 and δn = exp(−γn) for some
n≥ 1 and γ > 0. Lemma 3.1.2 gives the probability that at least two generated
points xn,i1 and xn,i2 at iteration n are “close”, i.e. are such that | ‖xn,i1‖p −
‖xn,i2‖p | ≤ δn; then the probability that the noise of at least one of the λ eval-
uated individuals of iteration n is bigger than δn

2 is provided in Lemma 3.1.3.
Thus, we can conclude in Lemma 3.1.4 by estimating the probability that at least
two individuals are misranked due to noise.
We first begin by showing a technical lemma.

Lemma 3.1.1. Let u ∈ Rd be a unit vector and Gd a d-dimensional standard nor-
mal random variable. Then for S > 0 and ` > 0, there exists a constant M > 0
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such that :

max
v≥0

P(| ‖u+SGd‖p− v| ≤ `)≤MS−d max
(
`,`d/p

)
.

Proof of Lemma 3.1.1. For any v≥ `, we denote Ev≥` the set :

Ev≥` = {x ; | ‖x‖p− v | ≤ `}=
{

x ;(v− `)
1
p ≤ ‖x‖ ≤ (v+ `)

1
p

}
.

We first compute µ(Ev≥`), the Lebesgue measure of Ev≥` :

µ(Ev≥`) = Kd

{
(v+ `)

d
p − (v− `)

d
p

}
,

with Kd = (2π)d/2

2×4×···×d if d is even, and Kd = 2(2π)(d−1)/2

1×3×···×d otherwise. Hence, by Tay-

lor expansion, µ(Ev≥`)≤Kv
d
p−1`, where K = Kd

2d
p + sup

v≥`
sup

0<ζ< `
v

q′′(ζ )
2

`
v

, with

q(x) = (1+ x)
d
p .

• If v≥ `:

P(| ‖u+SGd‖p− v| ≤ `) = P(u+SGd ∈ Ev≥`),

≤ S−d sup
x∈Ev≥`

(
1√
2π

exp
(
−‖S

−1(x−u)‖2

2

))
µ(Ev≥`),

≤ M1S−d`,

≤ M1S−d max
(
`,`d/p

)
,

where M1 =
K√
2π

sup
v≥`

sup
x:‖x‖≤(v+`)

1
p

[
v

d
p−1 exp

(
−‖S−1(x−u)‖2

2

)]
.

• If v < `, P(| ‖u+SGd‖p− v| ≤ `)≤M2S−d`d/p ≤M2S−d max
(
`,`d/p

)
,

where M2 = 2
d
p Kd√

2π
. Hence the result follows by taking M = max(M1,M2).

Lemma 3.1.2. Let us denote by P(1)
n the probability that, at iteration n, there exist

at least two points xn,i1 and xn,i2 such that | ‖xn,i1‖p−‖xn,i2‖p | ≤ δn. Then

P(1)
n ≤ Bλ

2 exp(−γ
′n),

for some B > 0 and γ ′ > 0 depending on γ , d, p, C, C′, V , α , α ′.
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Proof of Lemma 3.1.2. Let us first compute the probability P(0)
n that, at iteration n,

two given generated points xn,i1 and xn,i2 are such that | ‖xn,i1‖p−‖xn,i2‖p | ≤ δn.
Let us denote by G 1

d and G 2
d two d-dimensional standard independent random

variables, u ∈ Rd a unit vector and Sn =
σn
‖xn‖ .

P(0)
n = P

(
| ‖xn +σnG

1
d ‖p−‖xn +σnG

2
d ‖p | ≤ δn

)
,

= P

(
| ‖u+SnG

1
d ‖p−‖u+SnG

2
d ‖p | ≤ δn

‖xn‖p

)
,

≤ max
v≥0

P

(
| ‖u+SnG

1
d ‖p− v| ≤ δn

‖xn‖p

)
.

Hence, by Lemma 3.1.1, there exists a M > 0 such that P(0)
n ≤ MS−d

n

(
δn
‖xn‖p

)m
,

where m is such that
(

δn
‖xn‖p

)m
= max

(
δn
‖xn‖p ,

(
δn
‖xn‖p

)d/p
)

. Moreover

Sn ≥V ′C−1 exp(−(α ′−α)n) by Assumption (ii). Thus P(0)
n ≤ Bexp(−γ ′n),

with B = MV ′−dCdC′−mp and γ ′ = d(α − α
′
) + mγ − mpα ′. In particu-

lar, γ ′ is positive, provided that γ is sufficiently large. By union bound,
P(1)

n ≤ (λ−1)λ
2 P(0)

n ≤ Bλ 2 exp(−γ ′n).

We now provide a bound on the probability P(3)
n that the fitness value of at least

one search point generated at iteration n has noise (i.e. deviation from expected
value) bigger than δn

2 in spite of the Y resamplings.

Lemma 3.1.3.

P(3)
n := P

(
∃i ∈ {1, . . . ,λ} ;

∣∣∣∣∣ 1Y Y

∑
j=1

f (xn,i,ω j)−E f (xn,i,ω j)

∣∣∣∣∣≥ δn

2

)

≤ λB′ exp(−γ
′′n)

for some B′ > 0 and γ ′′ > 0 depending on γ , d, p, z, C, Y , α , α ′.

Proof of Lemma 3.1.3. First, for one point xn,i0 , i0 ∈ {1, . . . ,λ} generated at iter-
ation n, we write P(2)

n the probability that when evaluating the fitness function at
this point, we make a mistake bigger than δn

2 .

P(2)
n = P(| 1Y ∑

Y
j=1 f (xn,i0,ω j)− E

[
f (xn,i0,ω j)

]
| ≥ δn

2 ) ≤ B′ exp(−γ ′′n) by using
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Chebyshev’s inequality, where B′ = 4Y−1C2pz and γ ′′ = α2zp− 2γ . In particu-
lar, γ ′′ > 0 if z > mpα ′−(α−α ′)d

pαm ; hence, if z ≥ max
(

pα ′−(α−α ′)d
pα

, 2α ′−α

α

)
, we get

γ ′′ > 0. Then, P(3)
n ≤ λP(2)

n by union bound.

Lemma 3.1.4. Let us denote by Pmisranking the probability that in at least
one iteration, there is at least one misranking of two individuals. Then, if
z > max

(
pα ′−(α−α ′)d

pα
, 2α ′−α

α

)
and Y is large enough, Pmisranking ≤ δ .

Proof of Lemma 3.1.4. We consider the probability P(4)
n that two individuals xn,i1

and xn,i2 at iteration n are misranked due to noise, so

‖xn,i1‖p ≤ ‖xn,i2‖p (3.8)

and
1
Y

Y

∑
j=1

f (xn,i1,ω j) ≥
1
Y

Y

∑
j=1

f (xn,i2,ω j) (3.9)

Eqs. 3.8 and 3.9 occur simultaneously if either two points have very similar
fitness (difference less than δn) or the noise is big (larger than δn

2 ). Therefore,

P(4)
n ≤ P(1)

n +P(3)
n ≤ λ 2P(0)

n +λP(2)
n ≤ (B+B′)λ 2 exp(−min(γ ′,γ ′′)n).

Pmisranking is upper bounded by ∑n≥1 P(4)
n < δ if γ ′ and γ ′′ are positive and

constants large enough. γ ′ and γ ′′ can be chosen positive simultaneously if
z > max

(
pα ′−(α−α ′)d

pα
, 2α ′−α

α

)
.

Proof of Theorem 3.1.1. This lemma implies that with probability at least 1− δ ,
provided that Y has been chosen large enough, we get the same rankings of points
as in the noise free case. In the noise free case Eqs. 3.5 and 3.6 hold with proba-
bility at least 1−δ - this proves the convergence with probability at least (1−δ )2,
hence the expected result; the proof of the theorem is complete.

3.2 Experiments: how to choose the right number
of resampling?

We consider in our experiments a version of multi-membered Evolution Strate-
gies, the (µ ,λ )-ES, where µ denotes the number of parents and λ the number of
offspring (µ ≤ λ ; see Alg. 3.2). We denote (x1

n, . . . ,x
µ
n ) the µ parents at iteration

n and (σ1
n , . . . ,σ

µ
n ) their corresponding step-size. At each iteration, a (µ ,λ )-ES
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noisy algorithm: (i) generates λ offspring by mutation on the µ parents, using
the corresponding mutated step-size, (ii) selects the µ best offspring by ranking
the noisy fitness values of the individuals. Thus, the current approximation of the
optimum x∗ at iteration n is x1

n.
Experiments are performed on the fitness function f (x,ω) = ‖x‖p + ‖x‖pzG ,

with x ∈ R15, p = 2, z = 1.05, λ = 4, µ = 2, and G a standard Gaussian random
variable, using a budget of 500000 evaluations. The results presented here are
the mean and the median over 50 runs. The positive results are proved above, in a
slightly different setting, for a given quantile of the results. This explains the good
performance in Fig. 3.1 (median result) as soon as the number of resamplings
is enough. The median performance is optimal with just 12 resamplings. On
the other hand, Fig. 3.2 shows the mean performance of Alg. 3.2 with various
numbers of resamplings. We see that a limited number of runs diverge so that the
mean results are bad even with 16 resamplings; results are optimal (on average)
for 20 resamplings.

Results are safer with 20 resamplings (for the mean), but faster (for the me-
dian) with a smaller number of resamplings.

3.3 Conclusion
We have shown that applying Evolution Strategies with a finite number of resam-
plings when the noise in the function decreases quickly enough near the optimum
provides a convergence rate as fast as in the noise-free case. More specifically, if
the noise decreases slightly faster than in the multiplicative model of noise, using a
constant number of revaluation leads to a log-linear convergence of the algorithm.
The limit case of a multiplicative noise has been analyzed in [Jebalia et al., 2011]
where they consider a scale-invariant (1+ 1)-ES; a fixed number of resamplings
is not sufficient for convergence when the noise is unbounded.

Further work. We did not provide any hint for choosing the number of re-
samplings. Proofs based on Bernstein races [Mnih et al., 2008] might be used for
adaptively choosing the number of resamplings.
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Figure 3.1: Convergence of Self Adaptive Evolution Strategy: Median results.
Dimension d = 15, p = 2, z = 1.05, λ = 4, µ = 2, over 50 runs.
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Figure 3.2: Convergence of Self Adaptive Evolution Strategy: Mean results. Di-
mension d = 15, p = 2, z = 1.05, λ = 4, µ = 2, over 50 runs.
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Algorithm 3.2 An Evolution Strategy, with constant number of resamplings. If
we consider Y = 1, we obtain the case without resampling. Gk is a k-dimensional
standard normal random variable.
Input:

number of resamplings Y > 0; λ ≥ µ > 0; a dimension d > 0; µ initial points
x1

1, . . . ,x
µ

1 ∈ Rd and initial step size σ1
1 > 0, . . . ,σ µ

1 > 0; Gaussian random
vector G ; objective function f

Output:
an approximation of the optimum x∗ of the objective function f

1: n← 1
2: while not finished do
3: Generate λ individuals independently using :

σ j ← σ
(( j−1) mod µ)+1
n × exp

(
1

2d
×G1

)
i j ← x(( j−1) mod µ)+1

n +σ jGd

4: ∀ j ∈ {1, . . . ,λ}, evaluate i j Y times. Let y j be the averaging over these Y
evaluations.

5: Define j1, . . . , jλ so that y j1 ≤ y j2 ≤ ·· · ≤ y jλ .
6: Compute σ k

n+1 and xk
n+1 for k ∈ {1, . . . ,µ}:

σ
k
n+1 ← σ jk

xk
n+1 ← x jk

7: n← n+1
8: end while

return x1
n



Chapter 4

Convergence rate of Evolution
Strategies with additive noise: a
lower bound

This chapter is based on:
Astete-Morales, S., Cauwet, M.-L., and Teytaud, O. (2015b). Evolution strate-

gies with additive noise: A convergence rate lower bound. In Proceedings of the
2015 ACM Conference on Foundations of Genetic Algorithms XIII, FOGA ’15,
pages 76–84, New York, NY, USA. ACM

Chapter 2 presented some lower bounds for zero-order value-based algo-
rithms. It was stated that in the case of additive noise, the Simple Regret (SR)
converges at best logarithmically with a slope asymptotically closed to −1. The
logarithmic type of convergence of the Simple Regret has also been shown for
Evolution Strategies in the presence of additive noise, however, no bound - upper
or lower - has been shown on the rate of convergence. We address this question in
the present chapter, where we consider the SR in expectation.

We recall the definition of the model of noise under study:

∀ x ∈D ⊂ Rd, f (x,ω) = f (x)+ω. (2.4)

We assume that E(ω) = 0 and Var(ω) = 1.
For any integer n, xn is the nth search point, yn is its noisy evaluation and x̃n

is the (n− 1)th recommendation. The sequence of search points and their noisy
evaluation is:

77
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Zn = ((x0,y0), . . . ,(xn−1,yn−1)) (4.1)

We say that the slope−α is verified on a family F of noisy objective functions
if α is such that:

∀ f ∈ F, ∃C > 0, ∀n ∈ N, ESRn ≤C/nα . (4.2)

This means that several different slopes might be verified. Note that the important
is the supremum of such α .

In the following the inner product in Rd is represented by 〈·, ·〉 and sgn() refers
to the sign function.

4.1 Theoretical analysis
This section consists of the formalization of the algorithms and the main re-
sult of the chapter. We present on one side the formalization of the concept
of a black-box noisy optimization algorithm (Algorithm 4.1, Section 4.1.1) and
on the other side a formalization of “classical” ES (Def. 4.1.1, Section 4.1.1).
Notably, the ESs covered by the formalization of ES in Definition 4.1.1 corre-
spond to a wide family but not all of them. The condition on Eq. 4.5 refers to
the evolution of the step-size and the approximation to the optimum. The lat-
ter condition holds provably for some ESs, and probably for much more, but
not necessarily for e.g. ESs with surrogate models or ESs with large mutations
[Ong et al., 2003, Zhou et al., 2004, Beyer, 1998]. Also algorithms using several
Gaussian distributions simultaneously or multimodal random variables for gener-
ating individuals are not covered. Thus, we mainly consider here ESs with one
Gaussian distribution which scales roughly as the distance to the optimum.

In Section 4.1.2 we prove the theorem that states that the family of Evolu-
tion Strategies described by the formalization converges at best with rate −1/2
(tightness comes from [Coulom et al., 2011]).

4.1.1 Formalization of algorithms

General optimization framework

Basically, an optimization algorithm samples some search points, evaluates them
and proposes a recommendation (i.e. an approximation of the optimum) from this
information. We formalize a general optimization algorithm in Algorithm 4.1.
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Algorithm 4.1 General optimization framework.
Input:

random seed s; parameter p; initial internal state I ; objective function f .
Output:

an approximation of the optimum of the objective function.

1: n← 0
2: while not finished do
3: r← rand(s)
4: x̃n← R(Zn,r,n, p,I ). . Recommend
5: xn← SP(Zn,r,n, p,I ). . Search
6: yn← f (xn,ωn) . Evaluate f in search point
7: n← n+1.
8: end while

The procedures R and SP correspond to the Recommendation and Search Point
stages of the algorithm. R outputs a feasible point that stands as the approximate
optimum of the respective iteration and SP generates new search points to be eval-
uated. I represents the internal state of the algorithm, possibly modified inside
SP. The sequence Zn is as defined in Eq. 4.1.

When n = 0, Zn is void and the points x0 and x̃0 are initialized depending on
the parameters of the algorithm and on the random seed s. Starting from n = 1,
both the R and the SP functions return values depending on the results of previous
iterations.

The presented framework is in fact very general. First, if we consider algo-
rithms that make use of populations for the optimization process, this characteris-
tic can be simulated in the framework even when apparently the population size
in Algorithm 4.1 is always 1. For example, let us say we want to check if an
algorithm that uses a population of size λ (λ -population-based) can fit the frame-
work. Then, an iteration on the λ -population-based algorithm can be “split” into
several iterations in the framework, so that the λ individuals can be generated by
λ iterations of a population size 1, just by adapting the R and SP functions.

Second, thanks to r, randomized algorithms are included. We propose differ-
ent algorithms which match this framework in Section 4.21.

The framework presented encodes black-box algorithms and therefore both

1 In particular Algorithm 4.2 in Section 4.2.1 is presented as an explicit example of an algorithm
written to fit the framework described by Algorithm 4.1.
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Evolution Strategies and algorithms reaching fast rates as those presented in
[Fabian, 1967, Shamir, 2013]. Note that there is no restriction regarding the dis-
tance between xn and x̃n. In particular, in the case of [Fabian, 1967, Shamir, 2013,
Coulom, 2011] the search points and the recommendation points can be far from
each other (it is even desirable). On the contrary, ESs have a search point proce-
dure that dictates that xn should not be very far from the x̃n.

Perimeter covered by general optimization framework

We provide some observations to clarify the scope of Algorithm 4.1, and how it
covers the usual definitions of black-box optimization algorithms.

In general, a black-box optimization algorithm uses the objective function as
an oracle. Since we consider a black-box setting, there is no access to any internal
characteristic of the objective function.

On the other side, a black-box optimization algorithm has a state that is either
its initial state (in case we are at the first time step) or a function of its internal
state and of the results of requests to the oracle.

And since the algorithm is an algorithm for optimization, it must provide an
approximation of the optimum. Such an approximation is termed “recommenda-
tion”. We here decide that the approximation of the optimum should not change
between two calls to the objective (i.e. oracle) function.

Therefore, an optimization algorithm is a sequence of internal computations,
which modify an internal state. This sequence is sometimes interrupted by a call
to the oracle function, or by a change in the recommendation.

We can then rewrite the algorithm, hiding all internal transformations of the
internal state I between two calls to the oracle in some SP function. The al-
gorithm then evaluates the objective function at xn (call to the oracle). Next, it
proposes a new approximation of the optimum; this computation is encoded in R.
We have specified that this does not modify I ; but the procedure R can be dupli-
cated inside SP, which is allowed to modify the internal state, if necessary, so this
is not a loss of generality. The random seed is available for all functions so that
there is no limitation around randomization.

We have assumed that the algorithm never spends infinite computation times
between two calls to the oracle, and does not stop. We can just decide that in such
a case we report the same output for R and the same output for SP.

All the elements discussed in this section allow us to use the general opti-
mization framework described in Algorithm 4.1 to represent many of black-box
optimization algorithms
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Simple Evolution Strategies definition

ESs are black-box optimization algorithms and they fit the framework in Algo-
rithm 4.1. Nonetheless, one important feature that characterizes them is the way
to generate search points. Normally, the sampling of new search points is made
“around” the recommendation point of the previous generation. This means that
the SP procedure is defined by:

SP(Zn) = R(Zn)+σ(Zn)Ψ(Zn) (4.3)

where, for short, Zn = (Zn,r,n, p,I ). The step-size σ(Zn) is usually updated
at each generation. Ψ(Zn) is an independent d-dimensional zero-mean random
variable, not necessarily Gaussian, with

E‖Ψ(Zn)‖2 = d. (4.4)

Also, we consider that the ESs should satisfy the following condition on the evo-
lution of the step-size with regards to the recommendation points. In the following
section we will explain with more details the reasons behind this condition:

∃D > 0, ∀n≥ 0, E[σ(Zn)
2]≤ DE[‖x̃n− x∗‖2]. (4.5)

Now we can state the definition of ES covered by the theorem in Section 4.1.2.

Definition 4.1.1. Simple Evolution Strategy. A Simple Evolution Strategy is an
algorithm that matches the framework of Alg. 4.1 and satisfies both Eq. 4.3 and
Eq. 4.5.

Perimeter covered by Simple Evolution Strategy definition

Let us discuss the assumptions in our Evolution Strategy framework above.
Eq. 4.4 is not a strong constraint, as one can always rephrase the algorithm for

moving multiplicative factors from Ψ(Zn) to σ(Zn) so that E‖Ψ(Zn)‖2 = d.
The assumption in Eq. 4.3 is easy to understand. It is verified for a classical

ES with a single parent or a µ/µ recombination (i.e. parent equal to the average
of selected offspring), including weighted recombinations.

The assumption in Eq. 4.5 is more difficult to grasp. It means that x̃n and
σ(Zn) decrease at the same rate towards the optimum. The literature provides the
following cases:
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• The scale-invariant algorithm obviously verifies the assumption, by defi-
nition. The scale-invariant algorithm is however essentially a theoretical
algorithm, used for theoretical proofs rather than for real applications.

• Related results are proved for some ESs in the noise-free case, as shown
in [Auger, 2005]; σ(Zn)/‖x̃n − x∗‖ converges to some distribution. The
work in [Astete-Morales et al., 2014] shows that it is also true for some
provably convergent noisy optimization evolutionary algorithm with resam-
plings. However, it is not clear that these results imply Eq. 4.5.

• Beyond mathematical proofs (indeed there are many evolutionary al-
gorithms for which we have no convergence proof at all), Eq. 4.5
is widely verified in experimental results when algorithms converge,
in the (1 + 1)-ES [Rechenberg, 1973], in self-adaptive algorithms
[Beyer and Schwefel, 2002], in Covariance Matrix Adaptations variants
[Hansen and Ostermeier, 2001], and indeed most ESs [Beyer, 2001].

What would be an EA which does not verify Eq. 4.5? A natural example is
an Evolutionary Algorithm which samples far from the current estimate x̃n of the
optimum, e.g. for building a surrogate model. Interestingly, all optimization al-
gorithms which are fast in noisy optimization with constant noise variance in the
vicinity of the optimum verify such a property, namely sampling far from the op-
timum [Fabian, 1967, Shamir, 2013, Coulom, 2011]. This suggests that modified
ESs which include samplings far from the optimum, might be faster.

4.1.2 Lower bound for Simple Evolution Strategies
We now state our main theorem, namely the proof that Evolution Strategies, in
their usual setting without mutations far from the optimum, can not reach a rate
as good as algorithms without such restrictions.

Theorem 4.1.1. Let F be the set of quadratic functions f : D → R defined on
D =Rd by f (x) = 1

2‖x‖2−〈x∗,x〉 for some ‖x∗‖≤ 1
2 . Consider a simple Evolution

Strategy as in definition 4.1.1 and the noisy optimization of f ∈ F corrupted by
some additive noise with variance 1 in the unit ball: f (x,ω) = f (x)+ω such that
E(ω) = 0. Then, for all α > 1

2 , the slope −α is not reached.

Remark 4.1.1. (Tightness in the framework of Evolution Strategies.) The
work in [Coulom et al., 2011] shows that, within logarithmic factors, an Evolu-
tion Strategy with Bernstein races (with modified sampling in order to avoid huge
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numbers of resamplings due to individuals with almost equal fitness values) can
reach a slope −α arbitrarily close to −α =−1

2 . To the best of our knowledge, it
is not known whether we can reach α = 1

2 .

Remark 4.1.2. (Scope of the lower bound) Note that Theorem 4.1.1 considers
a particular set of quadratic functions, but the result is valid for any family of
functions that includes sphere functions.

Proof. Let us assume, in order to get a contradiction, that a slope α > 1
2 is reached.

Then, ESRn ≤C/nα for some α > 1/2 and C > 0.
Notations are similar to Section 4.1.1: for any i ∈ {1, . . . ,n}, xi = SP(Zi),
x̃i = R(Zi), σi = σ(Zi), Ψi = Ψ(Zi), where Ψi are centered independent random
variables in Rd with E‖Ψi‖2 = d. Let us evaluate the Cumulative Regret:

2ECRn = 2
n

∑
i=1

(E f (xi,ωi)− f (x∗))by definition in Eq. 2.11.

=
n

∑
i=1

E[‖xi‖2−2〈x∗,xi〉+‖x∗‖2]

=
n

∑
i=1

E[‖xi− x∗‖2]

=
n

∑
i=1

E[‖x̃i− x∗+σiΨi‖2] by Eq. 4.3

≤
n

∑
i=1

(
E‖x̃i− x∗‖2 +Eσ

2
i EΨ

2
i
)

by independence

≤
n

∑
i=1

(
E‖x̃i− x∗‖2 +dEσ

2
i
)

by Eq. 4.4

≤ 2(1+dD)
n

∑
i=1

E[SRi] by Eq. 4.5

The last equation leads to

ECRn ≤C(1+dD)n1−α (4.6)

[Shamir, 2013, Theorem 6] has shown that, for any optimization algorithm as de-
fined in Section 4.1.1, there is at least one function in f ∈ F for which the Cumu-
lative Regret is CRn ≥ 0.02min(1,d

√
n), which contradicts Eq. 4.6.
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4.2 Experimental verification of the lower bound
This section is devoted to the verification of the lower bound on the convergence
rate for ESs stated in Theorem 4.1.1 and the comparison with the convergence
rate of a “fast” algorithm: Shamir’s algorithm [Shamir, 2013].

We show experimentally that the rate −1 promised by the results in
[Shamir, 2013] is visible on experiments, even with moderate budgets in terms
of numbers of function evaluations. We then show that, consistently with theory,
we could not do better than slope −1/2 with ESs (Section 4.2.2). The experimen-
tal results presented on this section use an approximation of the slope of Simple
Regret (Eq. 3.1)2:

log(ESRn/d)/ log(n)

4.2.1 Fast convergence: Shamir’s algorithm
[Shamir, 2013] designed an optimization algorithm using stochastic approxima-
tion methods ([Polyak and Tsybakov, 1990, Spall, 2000]). At each iteration, it
computes an approximate gradient and uses it to update the estimate of the opti-
mum. This algorithm is described in Algorithm 4.2 and is named Shamir’s algo-
rithm in the following. Note that the search points defined in the procedure SP

can be far from the current approximation thanks to the random direction r. This
algorithm provably asymptotically reaches some slope arbitrarily close to α = 1
in the quadratic case. Importantly, we present the algorithm in the framework of
Section 4.1.1, however, neither Eq. 4.3, nor Eq. 4.5 are satisfied so that this cannot
be considered a Simple Evolution Strategy as in Def. 4.1.1.

2 Note that dividing by d does not matter asymptotically and both theory [Shamir, 2013] and
experiments show that it is a good normalization for convergence rates.
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Algorithm 4.2 Shamir’s algorithm, written in the general optimization frame-
work.

procedure R(x0, . . . ,xn−1,y0, . . . ,yn−1,r,n, p = (λ ,ε,B,d),I )
x̃n← 2

n ∑
n
j=dn/2e,...,n I j . I is a vector of n elements in the domain.

return x̃n
end procedure
procedure SP(x0, . . . ,xn−1,y0, . . . ,yn−1,r,n, p = (λ ,ε,B,d),I )

if n = 0 then
I ← (0)

return x0 = 0
end if

xn← xn−1 +
ε√
d

r

g̃←
√

dyn−1
ε

r
if ‖xn−1− 1

λn g̃‖ ≥ B then

xn−1− 1
λn g̃← B

xn−1− 1
λn g̃

‖xn−1− 1
λn g̃‖

end if
I ← (I ,xn−1− 1

λn g̃)
return xn

end procedure

Input:
p= (λ ,ε,B,d)∈R+×(0,1]×R+×N∗, s= random seed, objective function f .

Output:
approximation of the optimum x∗ of the objective function f

n← 0
while not finished do

Generate r ∈ {−1,1}d , uniformly and randomly
x̃n← R(x0, . . . ,xn−1,y0, . . . ,yn−1,r,n, p,I )
xn← SP(x0, . . . ,xn−1,y0, . . . ,yn−1,r,n, p,I )
yn← f (xn,ω)
n← n+1

end while
return x̃n

We compare the performance of Shamir’s algorithm on the noisy sphere func-
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tion: x 7→ ‖x−0.5‖2 +G (0,1), where G (0,1) is a standard Gaussian.
Results are presented in Figure 4.1. Experiments are performed in various

dimensions: 2, 4, 8 and 16. We observe that independently of the dimension, the
algorithm’s slope is clearly smaller than −1/2 (i.e. faster than the bound we have
proved for the Simple Evolution Strategies).
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Figure 4.1: Shamir’s algorithm [Shamir, 2013] on the sphere function
x 7→ ‖x‖2 +G (0,1) where G (0,1) is an independent Gaussian standard random
variable. X-axis: number of function evaluations. Y-axis: estimate of the slope
(see Eq. 4.2). The maximum standard deviation for all averages presented here
(experiments are averaged over 21 runs) is 10−3.

4.2.2 Slow convergence: UH-CMA-ES and (1+1)-ES
We here experiment with the UH-CMA-ES algorithm introduced in Chapter 2 on
f (x) = ‖x− x∗‖2 +0.3G (0,1), where G (0,1) is a standard Gaussian random vari-
able and with x∗ = 0.5. In these experiments, we use all the default parametriza-
tions of UH-CMA-ES3. Results are shown in Figure 4.2. Even though the rate of
convergence to the optimum decreases as the dimension increases, we can observe
rates of between −0.1 and −0.3, all of them greater than −0.5.

Now let us consider a Simple Evolution Strategy, namely the (1+1)ES with
one-fifth rule [Rechenberg, 1973, Schwefel, 1974], with additional revaluations,
implemented as shown in Algorithm 4.3.

3 See settings at URL https://www.lri.fr/~hansen/cmaes.m.

https://www.lri.fr/~hansen/cmaes.m
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Figure 4.2: UH-CMA-ES algorithm [Hansen et al., 2009] on the sphere function
x 7→ ‖x‖2 + 0.3G (0,1) where G (0,1) is an independent Gaussian standard ran-
dom variable. The maximum standard deviation for all averages presented here
(experiments are averaged over 21 runs) is 1.

A way to slightly improve Algorithm 4.3 is to improve the computation of the
fitness value of the current best recommendation by averaging the current estimate
with the previous estimates of the same search point, when the mutation has not
been accepted and xn = xn−1. We propose such a modification in Algorithm 4.4
by using a weighted average in the estimate fitness value of the current best search
point.

Experiments on the noisy sphere function ‖x− x∗‖2 +G (0,1), where G (0,1)
is a standard Gaussian, are provided, using Algorithm 4.4. Results are presented
in Figure 4.3 in various dimensions (2, 4, 8, 16 respectively). Seemingly both
exponential and polynomial resamplings lead to a slope −1/2.

4.3 Conclusion
We have shown that Evolution Strategies, at least in their most common form, can
not reach the same rate as noisy optimization algorithms which use evaluations of
the objective function farther from the approximate optimum in order to obtain ex-
tra information on the function. On the contrary, ESs use evaluations of objective
functions only in the neighborhood of the optimum. Therefore, usual ESs cannot
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Figure 4.3: Results (1+ 1)-ES for dimension 2, 4, 8 and 16. First row of plots
presents Polynomial resampling and the second row Exponential resampling. The
maximum standard deviation for all averages presented here (experiments are av-
eraged over 400 runs) is 0.025. Note that (nbEval) is the number of evaluations, n.
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Algorithm 4.3 (1+1)−ES for noisy optimization with resamplings. G (0,1)
is a standard Gaussian. The function ‘number of revaluations’ depends on the
current iteration and on a parameter p. Typically the number of revaluations
is polynomial: np or exponential: pn.
Input:

Initial search point x = (0, . . . ,0); initial step-size σ = 1; coefficient p; func-
tion ‘number of revaluations’; objective function f .

Output:
an approximation of the optimum of the objective function.

1: n← 0
2: while not finished do
3: x′← x+σG (0,1)
4: n← n+1
5: r← number of revaluations(n, p)
6: y← 1

r ∑
r
i=1 f (x,ωi)

7: y′← 1
r ∑

r
i=1 f (x′,ωi)

8: if y′ < y then
9: x← x′ and σ ← 2σ

10: else
11: σ ← .84σ

12: end if
13: end while

return x

reach rates as the ones in [Fabian, 1967, Shamir, 2013] (Shamir [Shamir, 2013] in
the quadratic case non-asymptotically, Fabian [Fabian, 1967] in the general case
but asymptotically). The latter type of algorithms reach a slope −1, whereas we
have a limit at −1/2 with Evolution Strategies. This also shows the optimality
of the rate−1/2 obtained by Racing-based Estimation of Distribution Algorithms
(R-EDA) [Rolet and Teytaud, 2010a], in the framework of local sampling only.

It is important to note that the result in this chapter indeed covers not only
Evolutionary Algorithms, but also, for example, many pattern search methods. We
proved the results for algorithms which perform sampling within some distance
of the approximate optimum, this distance scaling roughly as the distance to the
optimum. This property is satisfied by a large family of ESs (see Section 4.1.1).
However, for many algorithms it is verified only experimentally and not formally
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proved.
ESs with surrogate models are not concerned by our lower bound. More pre-

cisely, if we include strong surrogate modelling with large mutations (and so con-
tradicting Eq. 4.5), then we can recover fast rates with slope −1. An extreme
example of this situation is the case in which the sampling/surrogate model is ex-
actly the algorithm in [Fabian, 1967], [Shamir, 2013] or [Coulom, 2011]. Using
them as to obtain surrogate models within an ES will ensure a fast convergence
rate for the ES. Obviously, it is desirable to verify if such result can also be ob-
tained with more “evolutionary” approaches.

The bound presented in this chapter does not cover evolutionary algorithms
that would use very large mutations [Beyer, 1998]. Maybe this is a good path to
follow for designing fast evolutionary noisy optimization algorithms.

For all experiments we check convergence rates on the sphere function with
additive noise.
We consider an algorithm with theoretical fast rate, the Shamir’s algorithm, and
two ESs: UH-CMA-ES and (1+1)-ES. For Shamir’s algorithm we have achieved
a successful implementation of the algorithm 4 and confirmed empirically the fast
convergence rate proved in [Fabian, 1967, Shamir, 2013] (i.e. slope of SR =−1).
For UH-CMA-ES and (1+1)-ES we have shown that ESs can approximate slope
of SR−0.5 using (1+1)-ES. UH-CMA-ES also reaches linear convergence in the
log-log scale but with a slower rate (slope of SR around −0.2).

Further work. A first further work consists in proving the result in a wider set-
ting, this is, weakening the assumption in Eq. 4.5. We might also check other cri-
teria than non-asymptotic expected Simple Regret, e.g. almost sure convergence.
Another further work is investigating which optimization algorithms, other than
Evolution Strategies, are concerned by our result or by similar results. In the case
of strongly convex functions with a lower bound on eigenvalues of the Hessian, we
conjecture that the asymptotic rate −1 can also not be reached by the considered
family of evolutionary algorithms.

4[Shamir, 2013] delivers only the theoretical analysis of his algorithm.
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Algorithm 4.4 Slightly improved (1+ 1)−ES for noisy optimization with
resamplings.
Input:

Initial search point x = (0, . . . ,0); initial step-size σ = 1; coefficient p; func-
tion ‘number of revaluations’; objective function f .

Output:
an approximation of the optimum of the objective function.

1: n← 0
2: k← 0
3: y← 0
4: while not finished do
5: x′← x+σG
6: n← n+1
7: r← number of revaluations(n, p)
8: y← k× y+ r× 1

r ∑
r
i=1 f (x,ωi)

9: k← k+ r
10: y← y/k
11: y′← 1

r ∑
r
i=1 f (x′,ωi)

12: if y′ < y then
13: x← x′

14: σ ← 2σ

15: y← 0
16: k← 0
17: else
18: σ ← .84σ

19: end if
20: end while



Chapter 5

Comparison-based algorithms can
be fast!

This chapter is based on:
Cauwet, M.-L. and Teytaud, O. (2016b). Noisy optimization: Fast convergence

rates with comparison-based algorithms. In Proceedings of the 2016 on Genetic
and Evolutionary Computation Conference, Denver, CO, USA, July 20 - 24, 2016,
pages 1101–1106

In the previous chapter, we have shown that a wide range of comparison-based
algorithms without large mutations have a Simple Regret at best in O(1/

√
n) in

expectation. Stochastic gradient descent can reach (tightly) a Simple Regret in
O(1/n) (see Chapter 2). It has been conjectured in [Shamir, 2013] that gradient
approximation by finite differences (hence, not a comparison-based method) is
necessary for reaching such a O(1/n). We answer this conjecture in the nega-
tive, providing a comparison-based algorithm as good as gradient methods, i.e.
reaching O(1/n) - under the condition, however, that the noise is Gaussian. Ex-
perimental results confirm the O(1/n) Simple Regret, i.e., squared rate compared
to many published results at O(1/

√
n).

In this chapter, we assume that the objective function is perturbed by a centred
Gaussian noise:

∀x ∈D , f (x,w) = f (x)+G (0,b),

where G (a,b) is a Gaussian random variable with mean a and standard deviation
b > 0. As usual x∗ denotes the minimum of the noise-free function f .

92
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Section 5.1 describes the key idea to get a fast comparison-based algorithm
in a noisy setting. The theoretical aspects and a precise description of a fast op-
timization algorithm is given in Section 5.2 for the specific case of the sphere
function. In this case, the technicality in the proof is lighter and allowed a good
insight of what we will use when switching to a larger family of functions: the
quadratic functions in Section 5.3. Last, we address the experimental aspects in
Section 5.4.

5.1 Comparison procedure
The main idea is to estimate the parameters of the objective function. The algo-
rithm hence builds a model of the function and provides an approximation of the
optimum. Specifically, comparing 2 search points n times provides an estimation
at distance O(1/

√
n) of one parameter of the function. This estimation is made

possible through the frequency at which the fitness values of one of the search
points is better than the other. In particular, it is crucial to know the model of
noise. Hence, the optimization algorithms of Sections 5.2 and 5.3 consist in a
sequence of calls to COP, given below.

Comparison procedure (COP).
1: procedure COP(n, x, y, f (·,ω))
2: for i = 1 to n do
3: f i

x← f (x,ω2i)
4: f i

y← f (y,ω2i+1)
5: end for
6: F ← 1

n2 ∑
1≤i, j≤n

1 f i
x< f j

y

return F
7: end procedure

Importantly, this operator can be computed faster than the apparent
O(n2) complexity. Using sorting algorithm, the complexity is O(n logn).
[Jamieson et al., 2012] have presented a bound for a comparison-based operator,
using a number of comparisons quadratic O

(
1
ε2

)
for ensuring precision ε in the

Simple Regret - whereas we only need O
(1

ε
log 1

ε

)
comparisons.
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5.2 Sphere function

5.2.1 In dimension 1

We first propose in Alg. 5.1 an algorithm (COPS1) achieving regret O(1/n) on the
noisy sphere problem in dimension 1.

Algorithm 5.1 Comparison procedure for sphere function in dimension 1
(COPS1).
Input:

oracle f (·,ω) : x ∈ R 7→ G (|x− x∗|2,1); even budget n.
Output:

approximation x̃ of the optimum x∗ ∈ [−1,1] of the objective function
f : x 7→ |x− x∗|2

1: K← n/2
2: F ← COP(K,1,−1, f (·,ω))
3: Define x̃ such that P

(
G (0,1)<

√
8x̃
)
= F

4: x̃←max(−1,min(1, x̃))
return x̃

Theorem 5.2.1. Let f (x,ω) = |x− x∗|2 + G (0,1) be the noisy sphere function
in dimension 1, where x∗ ∈ [−1,1]. Then the Simple Regret of COPS1 after n
evaluations satisfies:

ESRn = O(1/n). (5.1)

Proof. Consider COPS1 on such an objective function. By definition of f (·,ω)
and f ,

p = P( f (1,ω)< f (−1,ω))

= P
(
|1− x∗|2 +G (0,1)< |−1− x∗|2 +G (0,1)

)
= P

(√
2G (0,1)< (1+ x∗)2− (1− x∗)2

)
= P(G (0,1)<

√
8x∗). (5.2)
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Step 1: Expectation and Variance of F .
With the notations of COP, let us define:

∀ i, j ∈ {1, . . . ,n}2, 1i, j =

{
1 if f i

1 < f j
−1

0 otherwise

1i, j is Bernoulli distributed with probability of success p.
F is the output of the COP procedure. By definition,

F =
1

K2 ∑
1≤i, j≤K

1i, j.

The expectation and variance of F are then:

EF = p

Var(F) =
1

K4

K

∑
i=1

K

∑
j=1

Cov

(
K

∑
k=1

1i,k,
K

∑
k′=1

1 j,k′

)

=
1

K4

K

∑
i=1

K

∑
j=1

K

∑
k=1

K

∑
k′=1

Cov(1i,k,1 j,k′) (5.3)

If i 6= j and k 6= k′, Cov(1i,k,1 j,k′) = 0 by independence. If i = j (or k = k′), by
Cauchy-Schwarz:

Cov(1i,k,1i,k′)≤
√

Var(1i,k)Var(1i,k′)≤
1
4

This together with Eq. 5.3 give:

Var(F) =
1

K4

(
K

∑
i=1

K

∑
k=1

K

∑
k′=1

Cov(1i,k,1i,k′)+

K

∑
i=1

K

∑
j=1

K

∑
k=1

Cov(1i,k,1 j,k)

)
,

≤ 1
K4 ×

K3

2
,

≤ 1
n
.
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Step 2: Lipschitz. We denote by Φ the cumulative distribution func-
tion of the standard Gaussian: Φ(x) = P(G (0,1)< x) and m and M such that
Φ
−1
[m,M]

: [m,M]→ [−1,1] is the inverse of Φ over these intervals. Let us define

h(x) =


Φ
−1
[m,M]

(x) if m≤ x≤M

−1 if x < m
1 if M < x

Let us evaluate the Lipschitz coefficient L(h) of h. Φ
−1
[m,M]

is differentiable

over [m,M] since Φ is differentiable over [−1,1] hence its Lipschitz L(Φ−1
[m,M]

) is
bounded. h is continuous, and h is constant over (−∞,m] and [M,∞); hence the
Lipschitz of h is L(Φ−1

[m,M]
) over [m,M].

Step 3: Concluding. We have, by definition of COPS1 for x̃ and by Eq. 5.2
for x∗,

x̃ =
h(F)√

8
and x∗ =

h(p)√
8
, (5.4)

By definition of the Simple Regret in Eq. 2.9,

ESRn = E|x̃− x∗|2

≤ EL(h)2|F− p|2/8 by Step 2

≤ L(h)2

8n
by Step 1.

Remark 5.2.1. The result of Theorem 5.2.1 is based on the fact that the noise is
a standard Gaussian. However, this result still holds as soon as the noise distri-
bution has expectation 0, finite variance (possibly unknown, see Section 5.3) and
a bounded Lipschitz. The distribution of the noise, on the other hand, must be
known.

5.2.2 Multidimensional sphere function
Alg. 5.2 (COPS) presents a straightforward extension to the noisy multidimen-
sional sphere. Bd(c,r) denotes the ball of center c and radius r in dimension d,
and ‖.‖ is the Euclidean norm.
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Algorithm 5.2 Comparison procedure for the sphere function (COPS).
Input:

oracle f (·,ω) : x ∈ Rd 7→ G (‖x− x∗‖2,1); budget n (multiple of 2d).
Output:

approximation x̃ of the optimum x∗ ∈ Bd(0,1) of the objective function
f : x 7→ ‖x− x∗‖2

1: K← n/2d
2: for i = 1 to d do
3: Apply COPS1 with a budget K on the unidimensional restriction of f (·,ω)

to {0}i−1× [−1,1]×{0}d−i

4: x̃i be the obtained approximation of the optimum in [−1,1].
5: end for

return x̃ = (x̃1, . . . , x̃d).

Theorem 5.2.2. Let f (x,ω) = ‖x− x∗‖2 +G (0,1) be the noisy sphere function,
with x∗ ∈ Bd(0,1)⊂ Rd . Then the Simple Regret of COPS after n evaluations is:

ESRn = O(d/n).

Proof. The conditions of Theorem 5.2.1 are verified for each application of
COPS1. The Simple Regret for the multidimensional case is the sum of the Simple
Regrets of each restrictions.

5.3 General quadratic forms
Alg. 5.3 extends the principle of Section 5.2 to the optimization of a wider
class of quadratic functions. ‖ · ‖2 denotes the matrix norm induced by ‖ · ‖, i.e
‖A‖2 = sup

x 6=0

‖Ax‖
‖x‖ and ‖ ·‖F is the Frobenius norm. (ei) is the standard basis and At

is the transpose of matrix A.

Theorem 5.3.1. Let ε ∈]0,1[. Consider an objective function
f (x,ω) = xtAx+Bx+C+DG (0,1), with optimum x∗ in Bd(0,1 − ε) ⊂ Rd ,
and D > 0. Assume that 1

D‖B‖ ≤ 1 and 1
D |C| ≤ 1. If A is symmetric positive defi-

nite such that its eigenvalues are lower bounded by some c > 0 and ‖ 1
DA‖2 ≤ 1,

then, when applying COPQUAD, ESRn = O(max((λmax/λmin)
2,λ 2

max)D
2/n),
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Algorithm 5.3 Comparison procedure for quadratic functions (COPQUAD).
Input:

oracle f (·,ω) : x ∈ Rd 7→ G (xtAx+Bx+C,D); budget n (multiple of d(d +3)−2).
Output:

approximation x̃ of the optimum x∗ ∈ Bd(0,1) of the objective function
f : x 7→ xtAx+Bx+C

1: K← n
d(d+3)−2

2: for i = 1 to d do
3: F−ei,ei ← COP(K,−ei,ei, f (·,ω))

4: Define B̂i(D) such that P
(
G (0,1)<

√
2B̂i(D)

)
= F−ei,ei

5: B̂i(D)←max(−5,min(B̂i(D),5)) . Estimate of Bi/D

6: F0,ei ← COP(K,0,ei, f (·,ω))

7: Define θii(D) such that P
(
G (0,1)< θii(D)/

√
2
)
= F0,ei

8: θii(D)←max(−5,min(θii(D),5))
9: Âi,i(D)← θii(D)− B̂i(D) . Estimate of Ai,i/D

10: end for
11: for i = 1 to d do
12: for j = i+1 to d do
13: F0,ei+e j ← COP(K,0,ei + e j, f (·,ω))
14: Define θi j(D) such that

P(G (0,1)< θi j(D)/
√

2) = F0,ei+e j

15: θi j(D)←max(−5,min(θi j(D),5))
16: Âi, j(D)← 1

2(θi j(D)− B̂i(D)
17: −Âi,i(D)− B̂ j(D)− Â j, j(D))
18: Â j,i(D)← Âi, j(D) . Estimate of Ai, j/D and A j,i/D
19: end for
20: end for
21: Â(D)← (Âi, j(D))
22: B̂(D)← (B̂i(D))
23: if Â(D) is not singular then
24: x̃←−1

2 B̂(D)t Â(D)−1

25: else
26: x̃← 0
27: end if

return x̃← projection of x̃ on Bd(0,1).
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where λmax is the maximum eigenvalue of 1
DA, and λmin > 1

Dc is the minimum
eigenvalue.

Proof. Let x and y be two points to be compared in COPQUAD:
(x,y) ∈ C := {(ei,−ei)i,(0,ei)i,(0,ei + e j)i6= j}. We denote by ∆x,y the
value ∆x,y := E( f (y,ω)− f (x,ω)) = f (y)− f (x) and by Fx,y the frequency
Fx,y := 1

K2 ∑1≤i, j≤K 1 f i
x< f j

y
, where f i

x and f j
y are as in Section 5.1.

Step 1: Mean Squared Error of frequencies.
Similarly to step 2 of Theorem 5.2.1, and using the notation

Φ(x) = P(G (0,1)< x),

E(Fx,y) = Φ

(
∆x,y√

2D

)
E

(
Fx,y−Φ

(
∆x,y√

2D

))2

=Var(Fx,y) = O(1/n). (5.5)

Step 2: Mean Squared Error of Â(D) and B̂(D).
As in Step 3 of the proof of theorem 5.2.1, we denote by Φ̃

−1
[m̃,M̃]

: [m̃,M̃]→
[−5,5] the inverse of Φ over these intervals:

h̃(x) =


Φ̃
−1
[m̃,M̃]

(x) if m̃≤ x≤ M̃

−5 if x < m̃
5 if M̃ < x

By assumption, (x,y)∈C , 1
D‖A‖2≤ 1 and 1

D‖B‖≤ 1, ∆x,y/
√

2D∈ [−5,5] and
then, as in Step 3 and 4 of Theorem 5.2.1,

E

(
h̃(Fx,y)−

∆x,y√
2D

)2

≤ E

(
h̃(Fx,y)− h̃

(
Φ

(
∆x,y√

2D

)))2

≤ L(h̃)2E

(
Fx,y−Φ

(
∆x,y√

2D

))2

= O(1/n) by Eq. 5.5. (5.6)

By applying Eq. 5.6, we then estimate the mean squared error of Â(D) and
B̂(D):
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• B̂i(D) =
√

2h̃(F−ei,ei)/2 and Bi/D = ∆−ei,ei/2D ∀i ∈ {1, . . . ,d},
then E(B̂i(D)−Bi/D)2 = O(1/n) by Eq. 5.6, hence
E‖B̂(D)−B/D‖2 = O(1/n).

• Âi,i(D) =
√

2h̃(F0,ei)− B̂i(D) and Ai,i/D = ∆0,ei/D−Bi/D, then
E(Âi,i(D)−Ai,i/D)2 = O(1/n) using Eq. 5.6, and

E(B̂i(D)−Bi/D)2 = O(1/n).

If i 6= j, then

Âi, j(D) =
1
2

(√
2h̃(F0,ei+e j)

−B̂i(D)− Âi,i(D)− B̂ j(D)− Â j, j(D)
)
,

and
Ai, j/D =

1/2
(
∆0,ei+e j/D−Bi/D−Ai,i/D−B j/D−A j, j/D

)
hence, by proceeding as above,

E(Âi, j(D)−Ai, j/D)2 = O(1/n)

and
E‖Â(D)−A/D‖2

F = O(1/n).

Step 3: with probability at least 1−O(1/n), COPQUAD returns an esti-
mate x̃ solution of 2x̃Â(D) =−B̂t(D).

By definition of COPQUAD , 2x̃Â(D) 6=−B̂t(D) only if x̃ could not be properly
defined because Â(D) is singular or if we use the projection.

The eigenvalues are continuous (see e.g. [Zedek, 1965]); therefore in a neigh-
bourhood of A/D, Â(D) has eigenvalues lower bounded by some δ > 0. There-
fore, Â(D) is singular only out of this neighbourhood; this occurs, by Markov’s
inequality, with probability O(1/n). Therefore, the first case occurs with proba-
bility at most O(1/n).

With probability at least 1−O(1/n), the solution x̃ of 2x̃Â(D) = −B̂t(D) is
therefore the projection of −1

2 B̂(D)t Â(D)−1. For Â(D) close enough to A/D
and B̂(D) close enough to B/D, this is close to x∗, and therefore it is inside
Bd(0,1− ε).
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Step 4: concluding when 2x̃Â(D) =−B̂(D)t .
Define B′ = B/D− B̂(D) and A′ = A/D− Â(D). We have 2x∗A = −Bt and

2x̃Â(D) =−B̂(D)t .
By substraction, we get

2(x̃Â(D)− x∗A/D) = (B/D)t− B̂(D)t

i.e. 2(x̃A/D− x̃A′− x∗A/D) = B′t , using definitions of A′ and B′.
By step 2, all terms in A′ and B′ have expected squared norm O(1/n); and by

step 3 x̃ is bounded, therefore

2(x̃A/D− x∗A/D) = B′t +2x̃A′

has expected squared norm O(1/n), and

(x̃− x∗) =
1
2

uA−1D

with E‖u‖2 = O(1/n).
With λmin > 0 the smallest eigenvalue of 1

DA, we get E‖x̃− x∗‖2 = O(λ−2
min/n).

Note that f can be rewritten as

f (x) = (x− x∗)tA(x− x∗)+C′,

where x∗ =−1
2BtA−1 and C′ =C− x∗tAx∗.

Then SRn = ‖ f (x̃)− f (x∗)‖2 = ‖(x̃− x∗)tA(x̃− x∗)‖2

≤ λ
2
max‖x̃− x∗‖2

Hence SRn = O

((
λmax

λmin

)2 D2

n

)
, which is the expected result.

Step 5: General conclusion
Let us denote by S the event “COPQUAD returns an estimate x̃ solution of

2x̃Â(D) =−B̂(D)t” and S̄ its complement. In the following, diam denotes the
diameter. By definition,

ESRn = E( f (x̃,ω)− f (x∗,ω))

= E( f (x̃,ω)− f (x∗,ω)|S )︸ ︷︷ ︸
=O
((

λmax
λmin

)2 D2
n

)
by step 4

P(S )︸ ︷︷ ︸
≤1

+E( f (x̃,ω)− f (x∗,ω)|S̄ )︸ ︷︷ ︸
≤λ 2

max×D2×diam(Bd(0,1−ε))

P(S̄ )︸ ︷︷ ︸
=O(1/n)by step 3

Hence the expected result.
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5.4 Experiments
For each experiment, parameters A, B and C satisfying assumptions in Theo-
rem 5.3.1 are randomly generated. COPQUAD then returns an approximation of
the optimum of the noisy quadratic function F(x) = xtAx+Bx+C+DG (0,1).
Results are obtained over 50 runs.

COPQUAD to tackle strong noise. Fig. 5.1 presents results of COPQUAD in
dimension 2 when the standard deviation D satisfies the assumptions in Theo-
rem 5.3.1, i.e. ‖B‖/D≤ 1, |C|/D≤ 1 and ‖A‖2/D≤ 1. The linear rate (in log-log
scale) with slope −1 is clearly visible. We obtained similar graphs (not presented
here) for dimension 5.

COPQUAD with small noise. Figure 5.2 then shows the case of a smaller
noise D for dimension 2. Along with the theory ( ‖A/D‖2 does not satisfy the
assumptions), we lose the O(1/n) rate. In the early stages, COPQUAD still seems
to converge, but it eventually stagnates around the optimum. It is counter-intuitive
that an algorithm performs worse when noise decreases; nonetheless, in the case
D→ 0, the COP operator always return 0 or 1, thus the estimated parameters
are −5 or 5, and the algorithm does not converge. Incidentally, this is consistent
with the bandit literature, where the hardest cases are when optimal arms have
close values. Providing an algorithm able to cope with D ≤ ‖A‖2 is possible -
asymptotically, as for bandit algorithms mentioned above. Progressively widening
the projection interval [−b(n),b(n)] instead of keeping [−5,5] fixed makes this
possible; if we have a slow enough function b : n 7→ b(n) for defining the interval
[−b(n),b(n)], then we get:

• e.g. log(log(log(n))) in Eq. 5.6,

• and asymptotically we still get a probability 1/n in Step 3 of Theorem 5.3.1.

So that, for n > n0, we get Theorem 5.3.1 (up to the slight increase in the
bound, depending on the choice of the b function) independently of D ≤ ‖A‖2 -
but n0 depends on 1

DA.

5.5 Conclusion

We have shown that comparison-based algorithms can reach a regret O(1/n)
on quadratic forms. This partially solves (negatively) a conjecture in
[Shamir, 2013], and improves results proposed in [Decock and Teytaud, 2013,
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(a) D = 1
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(b) D = 10

Figure 5.1: Dimension d = 2, over 50 runs. Mean, median and quantiles 10% and
90% are displayed.



CHAPTER 5. COMPARISON-BASED ALGORITHMS CAN BE FAST! 104

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

S
im

p
le

 R
eg

re
t

Number of evaluations

mean(SR)
median(SR)

quantile 10%
quantile 90%

Figure 5.2: d = 2, D = 0.65.

Rolet and Teytaud, 2010a]. Our main assumption is the Gaussian nature of the
noise. We do not assume that the variance is known, but it is supposed to be
constant.

Future work. We assume an exactly quadratic function; maybe rates in
O(1/n2/3) can be reached for non-quadratic functions under smoothness assump-
tions. Also we might extend the present results to non-Gaussian noise.



Chapter 6

Newton’s method: upper bounds

This chapter is based on:
Astete-Morales, S., Cauwet, M.-L., Liu, J., and Teytaud, O. (2015a). Simple

and Cumulative Regret for Continuous Noisy Optimization. Journal of Theoreti-
cal Computer Science (TCS), 617:12–27

Up to now, we studied comparison-based algorithms. We have shown that
Evolution Strategies with a fixed number of resampling converge log-linearly
when the noise perturbing the objective function is small enough. We found a
lower bound for the Simple Regret on a large family of Evolution Strategies. Last,
we proved that it is possible for a comparison-based algorithm to be fast, i.e.,
to have a Simple Regret in O(1/n). We now turn our attention toward value-
based algorithms. Chapter 2 enlightened the thorough results regarding the ad-
ditive model of noise. We are interested into studying a larger model of noise,
defined in Eq. 2.7, that we recall here:

f (x,ω) = f (x)+( f (x)− f (x∗))z
ω, (2.7)

The noise ω satisfies E(ω) = 0 and

Var( f (x,ω)) = O
(
(Eω f (x,ω)−Eω f (x∗,ω))2z).

We focus on the three cases1 z = 0, z = 0.5 and z = 1. We will refer to them
1In the present document, we slightly modified the modelization of

[Astete-Morales et al., 2015a] in order to fit the general model of Eq. 2.7. Hence the reader should
not be confused by the shift of a factor 2 in all the chapter compared to the original paper.
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respectively as the case where the variance of the noise is constant, linear and
quadratic as a function of the Simple Regret.

Notations. Depending on the study that one is carrying out, there are arguments
for indexing the sequences by iterations or by function evaluations. In Chapter 2,
we adopted the first alternative. It occurs often in the case of optimization of
noisy functions, that it is more convenient to have multiple evaluations per itera-
tion. In particular, a classical scheme is to generate a population of search points
from a central point at each iteration [Fabian, 1967, Dupač, 1957, Coulom, 2011,
Shamir, 2013]. This mechanism is used in the present chapter. Therefore, it
is more convenient to introduce the iteration index rather than indexing the se-
quences by the number of evaluations, when we describe algorithms - but we use
indexations by evaluations (i.e. notations described in Chapter 2) when we evalu-
ate convergence rates, and in particular for the slopes of the convergence defined
later. We then describe the “dual” notations, with iteration index, and we explain
how to switch from an indexation to the other. xm,1, . . . ,xm,rm denote the rm search
points at iteration m. When we need to access to the mth evaluated search point,
we define x′m the mth evaluated search point, i.e. x′m = xi,k with m = ∑

i−1
j=1 r j + k

and k ≤ ri. On the other hand, xopt
m , with only one subscript, is the recommended

point at iteration m. x̃n will always denote the recommendation after n evalua-
tions. Hence, when the approximations of the optimum are defined per iteration
rather than per evaluation, the sequence of recommended points is redefined as
follows: for all n≥ 1, x̃n = xopt

k , where k is maximal such that ∑
k−1
i=1 ri ≤ n.

Criteria. We will consider simultaneously three criteria: the Uniform Rate, the
Simple Regret and the Cumulative Regret respectively defined in Eqs. 6.1, 6.2
and 6.3.

s(UR) = limsup
i

log(URi)

log(i)
(6.1)

s(SR) = limsup
i

log(SRi)

log(i)
(6.2)

s(CR) = limsup
i

log(CRi)

log(i)
(6.3)

where URi is the 1 − δ quantile of ‖x′i − x∗‖, SRi is the 1−δ

quantile of Eω f (x̃i,ω) − Eω f (x∗,ω), CRi is the 1 − δ quantile of
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∑ j≤i

(
Eω f (x′j,ω)−Eω f (x∗,ω)

)
. x′i denotes the ith evaluated search point

and x̃i denotes the recommendation after i evaluations. We have expectation
operators Eω above with respect to ω only, therefore Eω f (x̃i,ω) is not determin-
istic. Quantiles are with respect to all remaining stochastic parts such as noise in
earlier fitness evaluations and possibly internal randomness of the optimization
algorithm.

Summary of results. We here extend the state of the art in the case of z = 1 for
all criteria, and z = 0.5 for more general families of functions (published results
were only for sphere functions), and get all the results with the same algorithm.
We also generalize existing results for UR or SR or CR to all three criteria. On
the other hand, we do not get Fabian’s s(SR) arbitrarily close to −1 on smooth
non-quadratic functions with enough derivatives, which require a different schema
for finite differences and assume the existence of a large number of additional
derivatives.

We propose and study a noisy optimization algorithm, which possibly uses a
Newton-style approximation, i.e. a local quadratic model. Importantly, our algo-
rithm is not limited to optimization with black-box approximations of gradients
and Hessian; we consider more general algorithms with Low-Squared Error (LSE)
(Def. 6.1.1).

6.1 The Iterative Noisy Optimization Algorithm
(INOA)

Section 6.1.1 presents a general iterative algorithm, which uses a sampling
tool and an optimum estimator. It relies on a Low-Squared Error assumption
(Def. 6.1.1) which is central in the assumptions for the main theorem. Sec-
tion 6.1.2 provides examples of sampling tools, called SAMPLER functions, and
examples of optimum estimators, given by OPT functions, which match the as-
sumptions in Section 6.1.1.

6.1.1 General framework
The Iterative Noisy Optimization Algorithm (INOA) is presented in Alg. 6.1. It
uses a pair of functions (SAMPLER,OPT). Specific tasks and properties of these
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functions are described below and examples of such functions are given in Sec-
tion 6.1.2.

Algorithm 6.1 Iterative Noisy Optimization Algorithm (INOA).
Input:

Step-size parameters α > 0 and A > 0; number of revaluations parameters
β ≥ 0 and B > 0; initial points xopt

1 = x̃1; objective function; sampler function
SAMPLER(·); optimizer function OPT(·).

Output:
approximations (xopt

n )n≥1, recommendations (x̃m)m≥1, evaluation points
(xn,i)n≥1,i∈{1,...,rn}, fitness evaluations (yn,i)n≥1,i∈{1,...,rn}

1: n← 1
2: while not finished do
3: σn = A/nα . Compute step-size
4: rn = Bdnβ e . Compute revaluations number
5: for i = 1 to rn do
6: xn,i = SAMPLER(xopt

n ,σn, i)
7: yn,i = fitness evaluation at xn,i
8: end for
9: xopt

n+1 = OPT(xopt
n ,(xn,i,yn,i)i∈{1,...,rn}) . Compute next approximation

10: n← n+1
11: end while

SAMPLER is the element of the algorithm that provides new search points:
given a point x in the search space, SAMPLER provides new search points that
lie in the neighborhood of x. More precisely, ∀i ∈ {1,2, . . .}, SAMPLER(x,σ , i)
outputs a point xi such that it satisfies ‖xi− x‖ ≤ 2σ , with σ a given step-size.
Notice that we do not make any assumptions on how the new search points are
chosen, we only ask for them to be within a given maximal distance from the
generator point x. OPT corresponds to the optimum estimator of the algorithm:
given x, x1, . . . ,xr and y1, . . . ,yr with yi = f (xi,ωi) (with ωi independent copies of
ω), OPT provides an estimate xopt := OPT(x,(xi,yi)i∈{1,...,r}) of x∗, the argmin of
E f . Additionally, for the sake of convergence, the pair (SAMPLER,OPT) verifies
a property defined in Def. 6.1.1 and called the Low-Squared Error assumption.

The algorithm provides the sequence (xopt
n )n≥1, indexed with the number of

iterations, but the recommendations (x̃n)n≥1 in the definitions of Chapter 2 have to
be indexed by the number of evaluations. Hence, for m≥ 1, the recommendation
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x̃m are defined by x̃m = xn(m) with n(m) = max{n;∑
n−1
i=1 ri ≤ m}, since there are ri

evaluations at iteration i.

Definition 6.1.1 (Low-Squared Error (LSE) assumption). Given a domain
D ⊆ Rd , an objective function f : D → R corrupted by noise. We assume that
f is such that Eω f (x,ω) has a unique optimum x∗. Let C > 0, U > 0, and
z ∈ {0,0.5,1}. Then, we say that (SAMPLER,OPT) has a (4z− 2)-Low-Squared
Error for f , C, U, S if ∀(r,σ) ∈ S

‖x− x∗‖ ≤Cσ =⇒ for any positive integer r, E(‖xopt− x∗‖2)≤U
σ4z−2

r
,

(6.4)
where xopt is provided by the OPT function, which receives as input

• the given x,

• r search points (xi)i∈{1,...,r}, outputs of SAMPLER,

• and their corresponding noisy fitness values.

In the latter definition, z is related to the intensity of the noise. Recall that we
consider three types of noise, namely constant, linear or quadratic in function of
the SR. More precisely, we consider that

Var( f (x,ω)) = O
(
[Eω f (x,ω)−Eω f (x∗,ω)]2z

)
with z ∈ {0,0.5,1}.

The rate O(1/r) for a squared error is typical in statistics, when estimating
some parameters from r samples. We will see in examples below that the scaling
with σ is also relevant, as we recover, with the LSE as an intermediate property,
many existing rates.

We can work with the additional assumption that x∗ = 0 without loss of gen-
erality. Hence from now on, examples, proofs and theorems are displayed with
x∗ = 0.

6.1.2 Examples of algorithms verifying the LSE assumption
In this section we provide two examples of pairs (SAMPLER, OPT) which verify
Def. 6.1.1. Not only SAMPLER and OPT are important, but also the type of func-
tions we consider (conditions for expectation and variance on the properties that
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show the verification of LSE). The first example uses an estimation of the gradient
of the function to produce an approximation of the optimum. The idea is simple:
if we have x, a current approximation to the optimum, we sample around it and
use these points to estimate the gradient and obtain the next approximation.

Let (e j)
d
j=1 be the standard basis of Rd . SAMPLER will output search points

x±σe j for some j ∈ {1, . . .d}. Therefore, the set of points that SAMPLER has
access to is E ′ := E ′+ ∪ E ′− where E ′+ = (x + σe j)

d
j=1, E ′− = (x−σe j)

d
j=1 and

E ′ is ordered2. In this example, when SAMPLER is queried for the i-th time it
will output the i-th point of E ′. For the case i > 2d = |E ′|, to simplify the nota-
tion we define a slightly different version of the usual modulo operation, denoted
“ mod ”, such that for any i, d, i mod d = 1+((i− 1) mod d). Therefore, when
i > 2d = |E ′|, SAMPLER will output the (i mod 2d)-th point of E ′. We assume
that SAMPLER outputs at the end a sample of r points, all belonging to E ′. Note
that as soon as r > 2d the search points are sampled several times. However, the
values of the objective function of the same search point evaluated two or more
times will differ due to the noise in the evaluation. On the other hand, OPT takes
this regular repeated sample around x and its corresponding objective function
values to compute an average value for each of the points in E ′. Hence, the aver-
age is done over at least br/(2d)c function evaluations and it allows to reduce the
noise and obtain a more confident - still noisy - evaluation. With these averaged
values, OPT computes the approximated optimum. Let us consider

Y j+ = {all evaluations of x+σe j} and Y j− = {all evaluations of x−σe j}

and use the notation x( j) to refer to the j-th coordinate of x. Also, when we use
∑Yj+, with Yj+ a set, it will simply denote that we sum over all the elements of
the multiset Yj+.

2E ′ = {x+σe1, . . . ,x+σed ,x−σe1, . . . ,x−σed}
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Example 1 Gradient based method verifying the LSE assumption (Def. 6.1.1).
Given x ∈ Rd and σ > 0, SAMPLER and OPT are defined as follows.

function SAMPLER(x, σ , i)

j← i mod 2d (6.5)

xi← the j-th point in E ′ (6.6)

return xi
end function

function OPT(x,(xi,yi)i∈{1,...,r})
for j = 1 to d do

ŷ j+←
1
|Yj+|∑

Y j+, ŷ j−←
1
|Yj−|∑

Yj− (6.7)

ĝ( j)← ŷ j+− ŷ j−
2σ

(6.8)

end for

xopt← x− 1
2

ĝ

return xopt

end function

Property 6.1.1 enunciates the fact that the pair (SAMPLER, OPT) defined in
Example 1 satisfies the Low-Squared Error assumption (Def. 6.1.1).

Property 6.1.1. (SAMPLER, OPT) in Example 1 satisfy (4z− 2)-LSE for the
sphere function.

Let f be the function to be optimized, and z ∈ {0,0.5,1}. We assume that:

Framework 1

∣∣∣∣∣Eω f (x,ω) = ‖x‖2

Var( f (x,ω)) = O(‖x‖4z) for some z ∈ {0,0.5,1}
(6.9)

(6.10)

Then there is C > 0, such that if x and σ verify ‖x‖ ≤Cσ , then

E(‖xopt‖2) = O(σ4z−2/r). (6.11)

where xopt is the output of OPT(x,(xi,yi)i∈{1,...,r}), (xi)i∈{1,...,r} is the output of
SAMPLER and (yi)i∈{1,...,r} their respective noisy fitness values.
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Proof. We know that E(‖xopt‖2) = ∑
d
j=1

{
Var(xopt( j)

)− (E(xopt( j)
))2
}

. For all

j ∈ {1, . . .d}, using the definition of ĝ( j) in Eq. 6.8 and using Eq. 6.9 we obtain

E(ĝ( j)) = 2x( j)⇒ E(xopt( j)
) = 0.

Now, using the variance of the noisy function in Eq. 6.10 and the fact that
‖x‖ ≤Cσ ,

Var(ĝ( j)) = O
(

σ4z−2

r

)
⇒ E(‖xopt‖2) = O

(
σ4z−2

r

)
.

The method using gradients described above is already well studied, as well as
improved variants of it with variable step-sizes, (see [Fabian, 1967, Chen, 1988,
Shamir, 2013]).

Therefore, we now switch to the second example, including the computation of
the Hessian. As in the Example 1, we consider a set of search points that are avail-
able for SAMPLER to output. Let us define E ′′ = {x±σei±σe j;1≤ i < j ≤ d}.
And so the sample set will be E, which includes the set E ′′ defined above and the
sample set E ′ defined for Example 1. Therefore, |E| = 2d2 (E ′ has cardinal 2d
and E ′′ has cardinal 2d(d−1)). Also, we define naturally the sets of evaluations
of the search points as follows:

Yj+,k+ = {all evaluations of x+σe j +σek},
Yj+,k− = {all evaluations of x+σe j−σek},
Yj−,k+ = {all evaluations of x−σe j +σek},
Yj−,k− = {all evaluations of x−σe j−σek}.
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Example 2 Noisy-Newton method verifying the (4z− 2)-LSE assumption.
Given x ∈ Rd , σ > 0 and c0 > 0, SAMPLER and OPT are defined as follows.
Mt denotes the transpose of matrix M.

function SAMPLER(x, σ , i)

j← i mod 2d2 (6.12)

xi← the j-th point in E (6.13)

return xi
end function

function OPT(x,(xi,yi)i∈{1,...,r})
for j = 1 to d do

ŷ j+←
1
|Yj+|∑

Yj+, ŷ j−←
1
|Yj−|∑

Yj− (6.14)

ĝ( j)← ŷ j+− ŷ j−
2σ

(6.15)

end for
for 1≤ j,k ≤ d do

ŷ j+,k+← 1
|Y j+,k+|∑Yj+,k+, ŷ j+,k−← 1

|Y j+,k−|∑Yj+,k−
ŷ j−,k+← 1

|Y j−,k+|∑Yj−,k+, ŷ j−,k−← 1
|Y j−,k−|∑Yj−,k−

ĥ( j,k)← (ŷ j+,k+−ŷ j−,k+)−(ŷ j+,k−−ŷ j−,k−)
4σ2

end for

ĥ← ĥ+ ĥt

2

if ĥ is positive definite with least eigenvalue greater than c0 then

xopt← x− (ĥ)−1ĝ (6.16)

else

xopt← x (6.17)

end if
return xopt

end function
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Note that in Example 2, the output of SAMPLER(x,σ , i) are equally dis-
tributed over E so that each of them is evaluated at least br/2d2c times. The
pair (SAMPLER, OPT) defined in Example 2 verifies the LSE assumption (Prop-
erty 6.1.2) when the noisy objective function is approximately quadratic (Eq 6.18)
and the noise follows the constraint given by Eq. 6.19.

Property 6.1.2. (SAMPLER, OPT) in Example 2 satisfy LSE. Let f be the func-
tion to be optimized, z ∈ {0,0.5,1}. We assume that:

Framework 2

∣∣∣∣∣∣∣∣∣∣∣

Eω f (x,ω) = ∑
1≤ j,k≤d

c j,kx( j)x(k)

+ ∑
1≤ j,k,l≤d

b j,k,lx( j)x(k)x(l)+o(‖x‖3), with c j,k = ck, j

Var( f (x,ω)) = O(‖x‖4z) where z ∈ {0,0.5,1}.

(6.18)

(6.19)

Assume that there is some c0 > 0 such that h is positive definite with least
eigenvalue greater than 2c0, where h is the Hessian of E f at 0, i.e. h =
(2c j,k)1≤ j,k≤d .

Then there exists σ0 > 0, K > 0, C > 0, such that for all σ that satisfies

(i) σ < σ0 and (ii) σ
6−4z ≤ K/r,

and for all x such that
‖x‖ ≤Cσ , (6.20)

we have

E ‖xopt‖2 = O
(

σ4z−2

r

)
,

where xopt is the output of OPT(x,(xi,yi)
r
i=1), (xi)

r
i=1 are the output of

SAMPLER(x,σ , i) and the (yi)
r
i=1 are their respective noisy fitness values.

Proof. The event E c0
ĥ

denotes the fact that the matrix ĥ is positive definite with

least eigenvalue greater than c0, and E c0
ĥ

is the complementary event.

E ‖xopt‖2 = E(‖xopt‖2|E c0
ĥ
)︸ ︷︷ ︸

A1

P(E c0
ĥ
)︸ ︷︷ ︸

A2

+E(‖xopt‖2|E c0
ĥ
)︸ ︷︷ ︸

A3

P(E c0
ĥ
)︸ ︷︷ ︸

≤1

where A1 ≤ (Cσ)2 using Eqs. 6.17 and 6.20; A2 = O
(

σ4z−2

rσ2

)
by Lemma C.0.2;

A3 = O
(

σ4z−2

r

)
by Lemma C.0.3. Therefore E ‖xopt‖2 = O

(
σ4z−2

r

)
, which is the

expected result.
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Remark 6.1.1. Using the expressions of σ and r given by INOA, if (6−4z)α ≥ β ,
and given A > 0, then there exists a constant B0 > 0 such that if B > B0 then the
condition σ6−4z

n ≤ K/rn is satisfied.

6.2 Convergence rates of INOA
Sections 6.2.1 and 6.2.2 provide, respectively, the main result and its applica-
tions, namely Cumulative Regret analysis and Simple Regret analysis for various
models of noise. The special case of twice-differentiable functions is studied in
Section 6.2.3.

6.2.1 Rates for various noise models
In this section, we present the main result, i.e. the convergence rates of INOA.

Theorem 6.2.1 (Rates for various noise models). Consider some A > 0 and con-
sider the iterative noisy optimization algorithm (INOA, Alg. 6.1, with parameters
A,B,α,β ). Assume that (SAMPLER,OPT) has a (4z−2)-Low-Squared Error as-
sumption (LSE, Def. 6.1.1) for some f , C, U, S. Assume that B > B0, where B0
depends on α , β and A only. Let us assume that INOA provides (rn,σn) always in
S, and let us assume that

1 < β +α(4z−4). (6.21)

Consider δ > 0. Then there is C > 0, such that if xopt
1 = x̃1 satisfies ‖xopt

1 ‖ ≤CA,
then with probability at least 1−δ ,

∀n, ‖xopt
n ‖ ≤Cσn, (6.22)

∀n,∀i≤ rn, ‖xn,i‖ ≤ (C+2)σn. (6.23)

Remark 6.2.1. It is assumed that given x, SAMPLER provides a new search point
xi such that ‖xi− x‖ ≤ 2σ (see Section 6.1.1). This together with Eq. 6.22 gives
‖xn,i‖ ≤ ‖xn,i− xopt

n ‖+ ‖xopt
n ‖ ≤ (C + 2)σn. Hence Eq. 6.23 holds if Eq. 6.22

holds; we just have to show Eq. 6.22.

General organization of the proof of Eq. 6.22: Assume that Eq. 6.21
holds. Consider a fixed C > 0 and 1 > δ > 0. Consider hypothesis Hn: for any
1≤ i≤ n, ‖xopt

i ‖ ≤Cσi with probability at least 1−δn, where

δn =
n

∑
i=1

ci−β−α(4z−4). (6.24)
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c is chosen such that ∀n≥ 1, δn ≤ δ . By Eq. 6.21, ∑
∞
i=1 i−β−α(4z−4) = ∆ < ∞, and

c = δ/∆ is suitable. We prove that for any positive integer n, Hn holds. The proof
is by induction on Hn. H1 is true since xopt

1 is chosen such that ‖xopt
1 ‖ ≤CA, i.e.

‖xopt
1 ‖ ≤Cσ1.

Proof. Assume that Hn holds for a given integer n. We will show that Hn+1 holds.
Step 1: concentration inequality for xn+1.
By design of INOA, Alg. 6.1, Line 9, xopt

n+1 = OPT(xopt
n ,(xn,i,yn,i)

rn
i=1). When

Hn is true, with probability at least 1−δn, ‖xopt
n ‖ ≤Cσn.

This together with the LSE imply that conditionally to an event with probabil-
ity at least 1−δn,

E(‖xopt
n+1‖2) ≤ U

σ4z−2
n
rn

≤ U
(

A
nα

)4z−2 1
Bdnβ e

≤ U
A4z−2

B

(
n

n+1

)−α(4z−2)−β

(n+1)−α(4z−2)−β

≤ M(n+1)−α(4z−2)−β (6.25)

where M = U
A4z−2

B

(
sup
n≥1

(
n

n+1
)−α(4z−2)−β

)
. (6.26)

Step 2: applying Markov’s inequality. By Markov’s inequality,

P
(
‖xopt

n+1‖>Cσn+1

)
= P

(
‖xopt

n+1‖2 >C2
σ

2
n+1

)
≤ E‖xopt

n+1‖2

C2σ2
n+1

.

We apply Eq. 6.25:

P
(
‖xopt

n+1‖>Cσn+1

)
≤ M

C2A2 (n+1)α(2−(4z−2))−β

≤ c(n+1)−β−α(4z−4) = εn+1 if B > B0,

where B0 =
UA4z−4(supn≥1(

n
n+1 )

−α(4z−2)−β)
cC2 , using Eq. 6.26. Then, with proba-

bility (1−δn)(1− εn+1), ‖xopt
n+1‖ ≤Cσn+1. Hence with probability at least

1−δn− εn+1 = 1−δn+1, ‖xopt
n+1‖ ≤Cσn+1. This is Hn+1. The induction is com-

plete.
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6.2.2 Application: the general case
Theorem 6.2.1 ensures some explicit convergence rates for SR and CR depending
on parameters α , β and z.

Corollary 6.2.1. Consider the context and assumptions of Theorem 6.2.1, in-
cluding some (SAMPLER,OPT) which has a (4z − 2)-LSE (Def. 6.1.1) for
some f , C, U, S such that for all n, (rn,σn) ∈ S, and let us assume that
Ew f (x,ω)−Eω f (x∗,ω) = O(‖x− x∗‖2).

Then, the Simple Regret of INOA of has slope s(SR) ≤ −α(4z−2)−β

β+1 and the

Cumulative Regret has slope s(CR)≤ max(0,1+β−2α)
1+β

.
Quadratic case: in the special case z = 0 and if E f is quadratic (i.e.

Eω f (x,ω) = ∑
1≤ j,k≤d

c j,kx( j)x(k)), we get s(SR)≤ 2α−β

β+1 .

Proof. The number of evaluations until the end of iteration n, before recommend-
ing xopt

n+1, is m(n) = ∑
n
i=1 ri = O(nβ+1).

• By assumption, Eω f (x,ω)− Eω f (x∗,ω) = O(‖x− x∗‖2). Markov’s in-
equality applied to ‖x− x∗‖2 gives: P

(
‖x− x∗‖2 > E‖x−x∗‖2

δ

)
< δ . Hence,

the Simple Regret SRn after iteration n, when recommending x̃m(n) = xopt
n+1,

is the 1−δ quantile of ‖xopt
n+1−x∗‖2, this is O

(
E‖xopt

n+1− x∗‖2
)

. Using step

1 of Theorem 6.2.1, it follows that SRn = O
(

n−(4z−2)α−β

)
.

• the Cumulative Regret CRn until iteration n is the 1 − δ quantile
of ∑

1≤i≤rm,1≤m≤n
Eω f (xi,m,ω)−Eω f (x∗,ω) = ∑

1≤i≤rm,1≤m≤n
O
(
‖xi,m− x∗‖2).

By Theorem 6.2.1, Eq. 6.23:

O

(
n

∑
i=1

ri(C+2)2/i2α

)
= O

(
n

∑
i=1

iβ (C+2)2/i2α

)

=


O
(

n1+β−2α

)
if β −2α >−1,

O(log(n)) if β −2α =−1
O(1) otherwise.

Dividing the log of Simple Regret at iteration n by the logarithm of the number of
evaluations until iteration n leads to the expected result (slope) for Simple Regret.
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Dividing the log of Cumulative Regret until iteration n by the logarithm of the
number of evaluations until iteration n leads to the expected result for Cumulative
Regret.

6.2.3 Application: the smooth case
Table 6.1 presents optimal s(SR) and s(CR) in the more familiar case of smooth
functions, with at least two derivatives. All results in this table can be obtained by
INOA with OPT and SAMPLER as in Example 2 and the provided parametrizations
for α and β , except the result by [Fabian, 1967] assuming many derivatives.

In all cases except the quadratic case with z = 0, we assume (6− 4z)α >
β , so that the LSE assumption holds for INOA with OPT and SAMPLER as in
Example 2 (see Property 6.1.2) and we assume 1 < β +α(4z− 4) so that Eq.
6.21 in Theorem 6.2.1 holds. Regarding the special case of z = 0 and quadratic
function, the equation to satisfy is 1 < β − 4α . Please note that in this last case,
the assumption (6−4z)α > β is not necessary. We then find out values of α and
β such that good slopes can be obtained for CR and SR. Algorithms ensuring a
slope s(CR) in this table also ensure a slope s(UR) = 1

2(s(CR)−1). It follows that
the optimal parametrization for UR is the same as the optimal parametrization for
CR.

We consider parameters optimizing the CR (left) or SR (right) - and both si-
multaneously when possible. These results are for B constant but large enough.
Infinite values mean that the value can be made arbitrarily negatively large by
choosing a suitable parametrization. X+ denotes a value which should be made
arbitrarily close to X by superior values, in order to approximate the claimed rate.

Results are not adaptive; we need a different parametrization when z = 0,
z = 0.5, z = 1. Also, for z = 0, we need a different parametrization depending
on whether we are interested in CR or SR.

6.3 Conclusion
We have shown that estimating the Hessian and gradient can lead to fast conver-
gence results. In fact, with one unique algorithm we obtain many of the rates
presented by

• [Spall, 2000, Shamir, 2013] in the case of a constant variance noise for Sim-
ple Regret and Cumulative Regret respectively.
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Table 6.1: s(SR) and s(CR) for INOA for various values of α and β , in the case
of twice-differentiable functions. The references mean that our algorithm gets the
same rate as in the cited paper. No reference means that the result is new.

z
optimized for CR optimized for SR

s(SR) s(CR) s(SR) s(CR)

α ' ∞,β ' 4α +1+ β = 6α,α = ∞

0 1/2 −2/3
(constant var) −1/2 [Fabian, 1967] [Dupač, 1957] 2/3

[Shamir, 2013]

0 and −1
∞-differentiable [Fabian, 1967]

[Polyak and Tsybakov, 1990]

α = 0,β ' ∞

0 and −1
quadratic [Dupač, 1957]

0.5
α ' ∞,β ' 2α +1+

(linear var) −1 0 −1 0
[Rolet and Teytaud, 2010b]

1
α ' ∞,β > 1

(quadratic var) −∞ 0 −∞ 0
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• [Coulom et al., 2011] (z = 0.5) and [Auger, 2005] (z = 1) for a larger space
of functions than in these papers, where sphere functions are considered.

In summary, we observe in Table 6.1 that results obtained here recover most pre-
vious results discussed in Chapter 2. And also the results presented here cover all
the analysed criteria: Simple Regret, Cumulative Regret, Uniform Rate.

Compared to [Spall, 2000, Polyak and Tsybakov, 1990], our algorithm uses
more evaluations per iteration. This has advantages and drawbacks. The pos-
itive part is that it is therefore more parallel. For example, for z = 0, and an
algorithm optimized for SR, we get s(SR) = −2/3; this rate is the same as
the one in [Spall, 2000] in terms of number of evaluations, i.e. the number of
evaluations is proportional to (1/sr)2/3 for a Simple Regret sr, but our eval-
uations are grouped into a small number of iterations. On the other hand, it
is far less convenient in a sequential setting as the optimization process starts
only after an iteration is complete, which takes a significant time in our case.
Our algorithm is proved for z = 0.5, z = 1; these cases are not discussed in
[Shamir, 2013, Fabian, 1967, Spall, 2000, Polyak and Tsybakov, 1990].

Our algorithm is not limited to functions with quadratic approximations;
quadratic approximations are a natural framework, but the success of various sur-
rogate models in recent years suggests that other approximation frameworks could
be used. Our theorems are not specific for quadratic approximations and only re-
quire that the LSE approximation holds. The LSE assumption is natural in terms
of scaling with respect to r - the 1/

√
r typical deviation is usual in e.g. maximum

likelihood estimates, and therefore the method should be widely applicable for
general surrogate models.

More generally, our results show a fast rate as soon as the estimator of the lo-
cation of the optimum has squared error O(σ4z−2/r), when using r points sampled
adequately within distance O(σ) of the optimum.

Further work. On the theoretical side, further work includes writing detailed
constants, in particular depending on the eigenvalues of the Hessian of the ex-
pected objective function at the optimum and the dimension of the search space.
In the case of infinite slope (see Table 6.1, z = 1), we conjecture that the conver-
gence is log-linear, i.e. the logarithm of the Simple Regret decreases as a function
of the number of evaluations. On the other hand, future study consists of exten-
sive experiments - but we refer to [Cauwet et al., 2014, Cauwet et al., 2016b] for
significant artificial experiments and [Liu and Teytaud, 2014] for the application
which motivated this work.
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Part of the agenda is to extend the algorithm by providing other examples of
estimators to be used for approximating the location of the optimum (other than
Examples 1 and 2, but verifying the LSE assumption); in particular, classical sur-
rogate models, and applications to piecewise linear strongly convex functions as
in [Rolet and Teytaud, 2010a]. A way to improve the algorithm is to use quasi-
Newton estimates of the Hessian, from the successive gradients, rather than using
directly finite differences. Last, making algorithms more adaptive by replacing
the constants by adaptive parameters depending on noise estimates is under con-
sideration.



Chapter 7

Algorithm Portfolio

This chapter is based on:
Cauwet, M.-L., Liu, J., and Teytaud, O. (2014). Algorithm portfolios for noisy

optimization: Compare solvers early. In Pardalos, M. P., Resende, G. M., Vo-
giatzis, C., and Walteros, L. J., editors, Learning and Intelligent Optimization: 8th
International Conference, Lion 8, Gainesville, FL, USA, February 16-21, 2014.
Revised Selected Papers, pages 1–15. Springer International Publishing, Cham

Cauwet, M.-L., Liu, J., Rozière, B., and Teytaud, O. (2016b). Algorithm port-
folios for noisy optimization. Annals of Mathematics and Artificial Intelligence,
76(1-2):143–172

So far, we have studied a wide range of algorithms, showing that both fam-
ilies - comparison-based and value-based algorithms - can reach optimal perfor-
mance. Their efficiency depends on some parameters, which change depending
on the parameters of the objective function and on the model of noise. Opti-
mization algorithms might also be sensitive to the starting point. Given a noisy
optimization black-box problem, it is then natural to wonder which algorithm to
use. In the absence of information about the characteristic of the objective func-
tion, should we choose a variant of an Evolution Strategy or Fabian’s algorithm,
Polyak-Tsybakov’s algorithm? And which parameters should we choose? We
address these questions through the use of a portfolio.

A portfolio of solvers is a set of solvers equipped with an algorithm selection
tool for distributing the computational power among them. Portfolios are widely
and successfully used in combinatorial optimization [Kotthoff, 2014].

122
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In this work, we study portfolios of noisy optimization solvers. We ob-
tain mathematically proved performance (in the sense that the portfolio performs
nearly as well as the best of its solvers) by an ad hoc portfolio algorithm ded-
icated to noisy optimization. A somehow surprising result is that it is better to
compare solvers with some lag, i.e., propose the current recommendation of best
solver based on their performance earlier in the run. An additional finding is a
principled method for distributing the computational power among solvers in the
portfolio.

Algorithm Selection (AS) consists in choosing, in a portfolio of solvers, the
one which is approximately the most efficient on the problem at hand. AS can
mitigate the difficulties for choosing a priori the best solver among a portfolio of
solvers. This means that AS leads to an adaptive version of the algorithms. In
some cases, AS outperforms all individual solvers by combining the good prop-
erties of each of them, with information sharing or with chaining, as discussed
later. It can also be used for the sake of parallelization or parameter tuning, or for
mitigating the impact of bad luck in randomized solvers. In this chapter, we apply
AS to the black-box noisy optimization problem.

7.1 Algorithm selection
Combinatorial optimization is probably the most classical application domain
for AS [Kotthoff, 2014]. However, machine learning is also a classical test
case [Utgoff, 1989]; in this case, AS is sometimes referred to as meta-learning
[Aha, 1992].

No free lunch. [Wolpert and Macready, 1997] proves that it is not possible to do
better, on average (uniform average) on all optimization problems from a given fi-
nite domain to a given finite codomain. This implies that no AS can outperform
existing algorithms on average on this uniform probability distribution of prob-
lems. Nonetheless, reality is very different from a uniform average of optimiza-
tion problems, and AS does improve performance in many cases.

Chaining and information sharing. Algorithm chaining
[Borrett and Tsang, 1996] means switching from one solver to another dur-
ing the AS run. More generally, a hybrid algorithm is a combination of existing
algorithms by any means [Vassilevska et al., 2006]. This is an extreme case of
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sharing. Sharing consists in sending information from some solvers to other
solvers; they communicate in order to improve the overall performance.

Static portfolios & parameter tuning. A portfolio of solvers is usually static,
i.e., combines a finite number of given solvers. SATzilla is probably the most well
known portfolio method, combining several SAT-solvers [Xu et al., 2008]. Samu-
lowitz and Memisevic have pointed out in [Samulowitz and Memisevic, 2007] the
importance of having “orthogonal” solvers in the portfolio, so that the set of
solvers is not too large, but approximates as far as possible the set of all feasible
solvers. AS and parameter tuning are combined in [Xu et al., 2011]; parameter
tuning can be viewed as an AS over a large but structured space of solvers. We re-
fer to [Kotthoff, 2014] and references therein for more information on parameter
tuning and its relation to AS; this is beyond the scope of this chapter.

Fair or unfair distribution of computation budgets. In
[Pulina and Tacchella, 2009], different strategies are compared for distribut-
ing the computation time over different solvers. The first approach consists in
running all solvers for a finite time, then selecting the best performing one, and
then keeping it for all the remaining time. Another approach consists in running
all solvers with the same time budget independently of their performance on the
problem at hand. Surprisingly enough, they conclude that uniformly distributing
the budget is a good and robust strategy. The situation changes when a training
set is available, and when we assume that the training set is relevant for the
future problems to be optimized; [Kadioglu et al., 2011], using a training set of
problems for comparing solvers, proposes to use 90% of the time allocated to
the best performing solver, the other 10% being equally distributed among other
solvers. In [Gagliolo and Schmidhuber, 2005, Gagliolo and Schmidhuber, 2006],
it is proposed to use 50% of the time budget for the best solver,
25% for the second best, and so on. Some AS algorithms
[Gagliolo and Schmidhuber, 2006, Armstrong et al., 2006] do not need a
separate training phase, and perform entirely online solver selection; a weakness
of this approach is that it is only possible when a large enough budget is available,
so that the training phase has a minor cost. A portfolio algorithm, namely Noisy
Optimization Portfolio Algorithm (NOPA), designed for noisy optimization
solvers, and which distributes uniformly the computational power among them, is
proposed in [Cauwet et al., 2014]. We extend it to Improved Noisy Optimization
Portfolio Algorithm (INOPA), which is allowed to distribute non-uniformly the



CHAPTER 7. ALGORITHM PORTFOLIO 125

budget. It is proved that INOPA reaches the same convergence rate as the best
solver, within a small (converging to 1) multiplicative factor on the number
of evaluations, when there is a unique optimal solver - thanks to a principled
distribution of the budget into (i) running all the solvers; (ii) comparing their
results; (iii) running the best performing one. The approach is anytime, in the
sense that the computational budget does not have to be known in advance.

Parallelism. We refer to [Hamadi, 2013] for more on parallel portfolio algo-
rithms (though not in the noisy optimization case). Portfolios can naturally bene-
fit from parallelism; however, the situation is different in the noisy case, which is
highly parallel by nature (as noise is reduced by averaging multiple resamplings,
see Chap. 2 Section 2.1.3).

Best solver first. [Pulina and Tacchella, 2009] point out the need for a good or-
dering of solvers, even if it has been decided to distribute nearly uniformly the
time budget among them: this improves the anytime behavior. For example, they
propose, within a given scheduling with same time budget for each optimizer, to
use first the best performing solver. We will adapt this idea to our context; this
leads to INOPA, improved version of NOPA.

Bandit literature. During the last decade, a wide literature on bandits
[Lai and Robbins, 1985, Auer, 2002, Bubeck et al., 2009] has proposed many
tools for distributing the computational power over stochastic options to be
tested. The application to our context is however far from being straight-
forward. In spite of some adaptations to other contexts (time varying as in
[Kocsis and Szepesvári, 2006] or adversarial [Grigoriadis and Khachiyan, 1995,
Auer et al., 1995]), and maybe due to strong differences such as the very
non-stationary nature of bandit problems involved in optimization portfolios,
these methods did not, for the moment, really find their way to AS. An-
other approach consists in writing this bandit algorithm as a meta-optimization
problem; [St-Pierre and Liu, 2014] applies the differential evolution algorithm
[Storn and Price, 1995] to some non-stationary bandit problem, which outper-
forms the classical bandit algorithm on an AS task.

The main contributions of this chapter can be summarized as follows. First,
we prove positive results for a portfolio algorithm, termed NOPA, for AS in noisy
optimization. Second, we design a new AS, namely INOPA, which (i) gives the
priority to the best solvers when distributing the computational power; (ii) ap-
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proximately reaches the same performance as the best solver; (iii) possibly shares
information between the different solvers. We then prove the requirement of se-
lecting the solver that was apparently the best some time before the current itera-
tion - a phenomenon that we term the lag. Finally, we provide some experimental
results.

7.2 Algorithms
Section 7.2.1 introduces some notations. Section 7.2.2 provides some background
and criteria. Section 7.2.3 describes two portfolio algorithms, one with fair distri-
bution of budget among solvers and one with unfair distribution of budget. Section
7.3 then provides theoretical guarantees.

7.2.1 Notations
We recall that (see Appendix A) N∗ = {1,2,3, . . .}. o(.),O(.),Θ(.) are the stan-
dard Landau notations. G denotes a standard Gaussian distribution, in dimension
given by the context.

The noisy objective function is denoted by f (·,ω) and its optimum x∗.
Ês [ f (x,ω)] denotes the empirical evaluation of E [ f (x,ω)] over s ∈ N∗ resam-
plings, i.e., Ês [ f (x,ω)] = 1

s ∑
s
j=1
(

f (x,ω j)
)
, where (ω1, . . . ,ωs) denotes a sample

of independent identically distributed random variables, copies of ω .

7.2.2 Definitions and criteria
Simple Regret criterion for portfolio. For a portfolio algorithm in the black-
box setting, ∀i ∈ {1, . . . ,M}, x̃i,n denotes the point

• that the solver number i recommends as an approximation of the optimum;

• after this solver has spent n evaluations from the budget.

The Simple Regret corresponding to solver number i after n evalua-
tions (i.e., after solver number i has spent n evaluations), is denoted by
SRi,n := E( f (x̃i,n,ω)− f (x∗,ω)). For n ∈ N∗, i∗n denotes the solver chosen by
the selection algorithm when there are at most n evaluations per solver.1

1This is not uniquely defined, as there might be several time steps at which the maximum num-
ber of evaluations in a solver is n; however, the results in the rest of this chapter are independent
of this subtlety.
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Another important concept is the difference between the two kinds of terms in
the regret of the portfolio. We distinguish these two kinds of terms in the next two
definitions:

Definition 7.2.1 (Solvers’ regret). The solvers’ regret with index n, denoted by
SRSolvers

n , is the minimum Simple Regret among the solvers after at most n evalua-
tions each, i.e., SRSolvers

n = min
i∈{1,...M}

SRi,n.

Definition 7.2.2 (Selection regret). The selection regret with index n, de-
noted by SRSelection

n includes the additional regret due to mistakes in
choosing among these M solvers after at most n evaluations each, i.e.,
SRSelection

n = E
(

f (x̃i∗n,n,ω)− f (x∗,ω)
)
.

Similarly, ∆i,n quantifies the regret for choosing solver i at iteration n.

Definition 7.2.3. For any solver i ∈ {1, . . . ,M} and any number of evaluations
n ∈ N∗, we denote by ∆i,n the quantity: ∆i,n = SRi,n− min

j∈{1,...,M}
SR j,n.

Finally, we consider a function that will be helpful for defining our portfolio
algorithms.

Definition 7.2.4 (LAG function). A lag function LAG : N∗ → N∗ is a non-
decreasing function such that for all n ∈ N∗, LAG(n)≤ n.

7.2.3 Portfolio algorithms
In this section, we present two AS methods. A first version shares the computa-
tional budget uniformly; a second version has an unfair sharing of computational
budget.

Simple Case: Uniform Portfolio NOPA

We present in Algorithm 7.1 a simple Noisy Optimization Portfolio Algorithm
(NOPA) which does not apply any sharing and distributes the computational bud-
get equally over the noisy optimization solvers.

In this NOPA algorithm, we compare, at iteration rn, recommendations chosen
at iteration LAG(rn), and this comparison is based on sn resamplings, where n
is the number of algorithm selection steps. We have designed the algorithm as
follows:
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Algorithm 7.1 Noisy Optimization Portfolio Algorithm (NOPA).
Input:

noisy optimization solvers Solver1,Solver2, . . . ,SolverM
lag function LAG : N∗ 7→ N∗ . As in Definition 7.2.4
non-decreasing integer sequence r1,r2, . . . . Periodic comparisons
a non-decreasing integer sequence s1,s2, . . . . Number of resamplings

Output:
approximation x̃ of the optimum x∗ of the objective function.

1: n← 1 . Number of selections
2: m← 1 . NOPA’s iteration number
3: i∗← null . Index of recommended solver
4: x̃← null . Recommendation
5: while not finished do
6: if m≥ rn then
7: i∗ = argmin

i∈{1,...,M}
Êsn[ f (x̃i,LAG(rn),ω)] . Algorithm selection

8: n← n+1
9: else

10: for i ∈ {1, . . . ,M} do
11: Apply one evaluation for Solveri
12: end for
13: m← m+1
14: end if
15: x̃ = x̃i∗,m . Update recommendation
16: end while

return x̃
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• A stable choice of solver: The selection algorithm follows the recommen-
dation of the same solver i∗ at all iterations in {rn, . . . ,rn+1−1}. This choice
is based on comparisons between old recommendations (through the lag
function LAG).

• The chosen solver updates are taken into account. For iteration indices
m < p in {rn, . . . ,rn+1− 1}, the portfolio chooses the same solver i∗, but
does not necessarily recommends the same point because possibly the solver
changes its recommendation, i.e., possibly x̃i∗,m 6= x̃i∗,p.

Effect of the lag. Due to the LAG(.) function, we compare the x̃i,LAG(rn) (for
i ∈ {1, . . . ,M}), and not the x̃i,rn . This is the key point of this algorithm. Com-
paring the x̃i,LAG(rn) is much cheaper than comparing the x̃i,rn , because the fitness
values are not yet that good at iteration LAG(rn), so they can be compared faster
- i.e., with less evaluations - than recommendations at iteration rn. We will make
this more formal in Section 7.3, and see under which assumptions this lag has
more pros than cons, namely when algorithms have somehow sustained rates. In
addition, with lag, we can define INOPA, which saves up significant parts of the
computation time.

The first step for formalizing this is to understand the two different kinds of
evaluations in portfolio algorithms for noisy optimization. Contrarily to noise-
free settings, comparing recommendations requires a dedicated budget, which is
far from negligible. It follows that there are two kinds of evaluations:

• Portfolio budget (Algorithm 7.1, Lines 10-12): this corresponds to the M
evaluations per iteration, dedicated to running the M solvers (one evaluation
per solver and per iteration).

• Comparison budget (Algorithm 7.1, Line 7): this corresponds to the sn
evaluations per solver at the nth algorithm selection. This is a key difference
with deterministic optimization. In deterministic optimization, this budget
is zero as the exact fitness value is readily available.

We have M ·rn evaluations in the portfolio budget for the first rn iterations. We
will see below (Section 7.3) conditions under which the other costs (i.e. compari-
son costs) can be made negligible, whilst preserving the same regret as the best of
the M solvers.
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INOPA: Improved Noisy Optimization Portfolio Algorithm, with unequal
budget

Algorithm 7.2 proposes a variant of NOPA, which distributes the budget in an
unfair manner. The solvers with good performance receive a greater budget. The
algorithm is designed so that it mimics the behavior of NOPA, but without spend-
ing the evaluations which are useless for the moment, given the lag - i.e. we
use the fact that evaluations prior to the lagged index are useless except for the
selected algorithm.

7.3 Analysis
We here show

• a bound on the performance of NOPA;

• a bound on the performance of INOPA;

• that the lag term is necessary.

Preliminary

We define 2 extra properties which are central in the proof.

Definition 7.3.1 (P(i)
as ((εn)n∈N∗)). For any solver i∈ {1, . . . ,M}, for some positive

sequence (εn)n∈N∗ , we define P(i)
as ((εn)n∈N∗):

P(i)
as ((εn)n∈N∗) : a.s. ∃n0, ∀n1 ≥ n0, ∆i,n1 < 2εn1 =⇒ ∀n2 ≥ n1, ∆i,n2 < 2εn2.

Informally speaking, if P(i)
as ((εn)n∈N∗) is true, then almost surely for a large

enough number of evaluations, the difference between the Simple Regret of solver
i ∈ {1, . . . ,M} and the optimal Simple Regret is either always at most 2εn or al-
ways larger - there is no solver infinitely often alternatively at the top level and
very weak.

Definition 7.3.2 (Pas((εn)n∈N∗)). For some positive sequence (εn)n∈N∗ , we define
Pas((εn)n∈N∗) as follows:

∀i ∈ {1, . . . ,M} , P(i)
as ((εn)n∈N∗) holds.
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Algorithm 7.2 Improved Noisy Optimization Portfolio Algorithm (INOPA).
Input:

noisy optimization solvers Solver1,Solver2, . . . ,SolverM
lag function LAG : N∗ 7→ N∗ . As in Definition 7.2.4
non-decreasing integer sequence r1,r2, . . . . Periodic comparisons
a non-decreasing integer sequence s1,s2, . . . . Number of resamplings

Output:
approximation x̃ of the optimum x∗ of the objective function.

1: n← 1 . Number of selections
2: m← 1 . INOPA’s iteration number
3: i∗← null . Index of recommended solver
4: x̃← null . Recommendation
5: while not finished do
6: if m≥ LAG(rn) or i∗ = null then
7: i∗ = argmin

i∈{1,...,M}
Êsn[ f (x̃i,LAG(rn),ω)] . Algorithm selection

8: m′← rn
9: while m′ < rn+1 do

10: Apply one evaluation to solver i∗

11: m′← m′+1
12: x̃ = x̃i∗,m′ . Update recommendation
13: end while
14: n← n+1
15: else
16: for i ∈ {1, . . . ,M}\i∗ do
17: Apply LAG(rn)− LAG(rn−1) evaluations for Solveri
18: end for
19: m← m+1
20: end if
21: end while

return x̃
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Remark 7.3.1. In Definitions 7.3.1 and 7.3.2, we might choose slightly less re-
strictive definitions, for which the inequalities only hold for integers n such that
∃i, LAG(ri) = n or ri = n.

Definitions above can be applied in a very general setting. The Simple Regret
of some noisy optimization solvers, for instance Fabian or Polyak-Tsybakov’s
algorithm, is almost surely SRn ≤ (1+ o(1)) C

nα after n ∈ N∗ evaluations (C is a
constant), for some constant α > 0 arbitrarily close to 1; see more in Section 2.3,
Chap. 2 and Chap. 4 and 5 for Evolution Strategies.

We prove the following proposition for such a case; it will be convenient for
illustrating “abstract” general results to standard noisy optimization frameworks.

Property 7.3.1. Assume that each solver i ∈ {1, . . . ,M} has almost surely Simple
Regret (1+o(1)) Ci

nαi after n ∈ N∗ evaluations.
We define C, α∗, C∗:

C =
1
3

min
{
|Ci−C j| | 1≤ i, j ≤M;Ci−C j 6= 0

}
. (7.1)

α
∗ = max

i∈{1,...,M}
αi. (7.2)

C∗ = min
i∈{1,...,M} s.t. αi=α∗

Ci. (7.3)

We also define the set of optimal solvers:

SetOptim = {i ∈ {1, . . . ,M}|αi = α
∗}

and SubSetOptim = {i∗ ∈ SetOptim|Ci∗ =C∗} (7.4)
= {i ∈ {1, . . . ,M}|αi = α

∗ and Ci =C∗}. (7.5)

With these notations, if almost surely, ∀i ∈ {1, . . . ,M}, the Simple Regret for
solver i after n ∈ N∗ evaluations is SRi,n = (1+ o(1)) Ci

nαi , then Pas((εn)n∈N∗) is
true with εn defined as follows:

εn =
C

nα∗ . (7.6)

Moreover, if i0 ∈ {1, . . . ,M} satisfies: (∃n0 ∈ N∗, ∀n≥ n0, ∆i0,n ≤ 2εn), then
i0 ∈ SubSetOptim.

Informally speaking, this means that if the solver i0 is close, in terms of Simple
Regret, to an optimal solver (i.e., a solver matching α∗ and C∗ in Equations 7.2
and 7.3), then it also has an optimal slope (αi0 = α∗) and an optimal constant
(Ci0 =C∗).
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Proof. For any solver i ∈ {1, . . . ,M} and any solver i∗ ∈ SubSetOptim,

SRi,n−SRi∗,n = (1+o(1))
Ci

nαi
− (1+o(1))

C∗

nα∗ . (7.7)

By Equations 7.6 and 7.7,

SRi,n−SRi∗,n

εn
=

Ci

C
·nα∗−αi · (1+o(1))−C∗

C
· (1+o(1)). (7.8)

• If i 6∈ SetOptim, i.e., αi < α∗, the first term in Equation 7.8 tends to ∞,
which leads to

lim
αi<α∗,n→∞

SRi,n−SRi∗,n

εn
= ∞.

So for all i 6∈ SetOptim, ∃n0 ∈ N∗ s.t. ∀n ≥ n0,
∆i,n = SRi,n− min

j∈{1,...,M}
SR j,n > 2εn and, therefore, P(i)

as ((εn)n∈N∗) is

true.

• If i ∈ SetOptim, i.e., αi = α∗, Equation 7.8 becomes

SRi,n−SRi∗,n

εn
=

Ci−C∗

C
+

Ci

C
o(1)−C∗

C
o(1)

and therefore
lim
n→∞

SRi,n−SRi∗,n

εn
=

Ci−C∗

C
.

– If i ∈ SubSetOptim, i.e., Ci = C∗, lim
n→∞

SRi,n−SRi∗,n
εn

= 0. Therefore,

P(i)
as ((εn)n∈N∗) is true.

– if i /∈ SubSetOptim, lim
n→∞

SRi,n−SRi∗,n
εn

≥ 3 by definition of C (Equation

7.1). Therefore, P(i)
as ((εn)n∈N∗) is true.

So for all i ∈ {1, . . . ,M}, P(i)
as ((εn)n∈N∗) is true, hence Pas((εn)n∈N∗) holds.

Moreover, it shows that ∃n0 ∈ N∗, ∀n ≥ n0,
SRSolvers

n = min
j∈{1,...,M}

SR j,n = SR j∗,n where j∗ ∈ SubSetOptim.
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The log(M)-shift for NOPA

We can now enunciate the first main theorem, stating that there is, with fair sharing
of the budget as in NOPA, a log(M)-shift, i.e., on a log-log scale (x-axis equal to
the number of evaluations and y-axis equal to the log of the Simple Regret), the
regret of the portfolio is just shifted by log(M) on the x-axis.

Theorem 7.3.1 (Regret of NOPA: the log(M) shift). Let (rn)n∈N∗ and (sn)n∈N∗ be
two non-decreasing integer sequences. Assume that:

• ∀x ∈D , Var f (x,ω)≤ 1;

• for some positive sequence (εn)n∈N∗ , Pas((εn)n∈N∗) (Definition 7.3.2) is
true.

Then, there exists n0 such that:

∀n≥ n0, SRSelection
rn

< SRSolver
rn

+2εrn (7.9)

with probability at least 1− M
snε2

LAG(rn)

after en = rn ·M ·
(

1+
n

∑
i=1

si

rn

)
evaluations.

Moreover, if (sn), LAG(n), (rn) and (εn) satisfy ∑
∞
j=1

1
s jε

2
LAG(r j)

<∞, then, almost

surely, there exists n0 such that:

∀n≥ n0, SRSelection
rn

< SRSolver
rn

+2εrn (7.10)

after en = rn ·M ·
(

1+
n

∑
i=1

si

rn

)
evaluations.

Remark 7.3.2. Please notice that Equation 7.9 holds with a given probability
whereas Equation 7.10 holds almost surely. The almost sure convergence in the
assumption is proved for some noisy optimization algorithms [Fabian, 1967].

Proof. First, the total number of evaluations, up to the construction of x̃i∗rn ,rn at
iteration rn, is en = M (rn +∑

n
i=1 si); at this point, each solver has spent rn evalua-

tions.
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Step 1: Proof of Equation 7.9.
By Chebyshev’s inequality, for a given i ∈ {1, . . . ,M},

P(|E
[

f (x̃i,LAG(rn),ω)
]
−Êsn

[
f (x̃i,LAG(rn),ω)

]
|> εLAG(rn))<

Var f
(
x̃i,LAG(rn)

)
snε2

LAG(rn)

≤ 1
snε2

LAG(rn)

.

By union bound,

P(∃i ∈ {1, . . . ,M}; |E
[

f (x̃i,LAG(rn),ω)
]
− Êsn

[
f (x̃i,LAG(rn),ω)

]
|> εLAG(rn))<

M
snε2

LAG(rn)

.

With notation i∗ = i∗rn
= argmin

i∈{1,...,M}
Êsn

[
f (x̃i,LAG(rn),ω)

]
, it follows that, with

probability 1− M
snε2

LAG(rn)
:

E
[

f (x̃i∗,LAG(rn),ω)
]

< Êsn

[
f (x̃i∗,LAG(rn),ω)

]
+ εLAG(rn);

E
[

f (x̃i∗,LAG(rn),ω)
]

< Êsn

[
f (x̃ j,LAG(rn),ω)

]
+ εLAG(rn), ∀ j ∈ {1, . . . ,M};

E
[

f (x̃i∗,LAG(rn),ω)
]

< E
[

f (x̃ j,LAG(rn),ω)
]
+2εLAG(rn), ∀ j ∈ {1, . . . ,M};

E
[

f (x̃i∗,LAG(rn),ω)
]
−E [ f (x∗,ω)] < min

j∈{1,...,M}
SR j,LAG(rn)+2εLAG(rn);

So, with probability at least 1− M
snε2

LAG(rn)
,

∆i∗,LAG(rn) < 2εLAG(rn). (7.11)

Using Pas((εn)n∈N∗), Equation 7.11 yields ∆i∗,rn < 2εrn for LAG(rn) large enough,
which is the expected result.

Step 2: Proof of Equation 7.10.
We denote by En the event “∆i∗,rn ≥ 2εrn” (equivalent to

SRSelection
rn

≥ SRSolver
rn

+2εrn). By Equation 7.9, there exists n0 ∈ N∗ such
that, ∀n≥ n0, P(En)≤ M

snε2
LAG(rn)

.

Therefore
∞

∑
j=1

P(E j)≤
n0−1

∑
j=1

P(E j)+M
∞

∑
j=n0

1
s jε

2
LAG(r j)

< ∞.

According to Borel-Cantelli lemma, almost surely, for n large enough,

SRSelection
rn

< SRSolver
rn

+2εrn

and the number of evaluations is still en = rn ·M ·
(

1+∑
n
i=1

si
rn

)
.
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We now use Proposition 7.3.1 to apply Theorem 7.3.1 on a classical case with
almost sure convergence.

Application 7.3.1 (log(M) shift). Assume that for any solver i ∈ {1, . . . ,M}, the
Simple Regret after n∈N∗ evaluations is SRi,n = (1+o(1)) Ci

nαi . We define εn =
C

nα∗
(where C and α∗ are defined as in Equations 7.1 and 7.2). Assume that ∀x ∈ D ,
Var f (x,ω)≤ 1 and that (sn), (LAG(n)) and (rn) satisfy:

∑
∞
j=1

1
s jε

2
LAG(r j)

< ∞

and ∑
n
i=1 si = o(rn).

Then, almost surely,

i) for n large enough, SRSelection
rn

< SRSolver
rn

+ 2εrn after en = rn · M ·(
1+∑

n
i=1

si
rn

)
function evaluations;

ii) for n large enough, SRSelection
rn

≤ max
i∈SubSetOptim

SRi,rn after en = rn · M ·(
1+∑

n
i=1

si
rn

)
function evaluations;

iii) the slope of the selection regret verifies lim
n→∞

log(SRSelection
rn )

log(en)
=−α∗.

SRSelection
rn

corresponds to the Simple Regret at iteration rn of the portfolio,

which corresponds to en = rn ·M ·
(

1+∑
n
i=1

si
rn

)
evaluations in the portfolio -

hence the comment “after en function evaluations”.

Proof. By Property 7.3.1 and Theorem 7.3.1, i) holds.
By Equation 7.11, and Property 7.3.1, SRSelection

rn
= SRi,rn , with

i ∈ SubSetOptim and ii) follows. We obtain:

a.s. log(SRSelection
rn

) = log(SRi,rn), where i ∈ SubSetOptim.

By the definition of SubSetOptim (Equation 7.5):

lim
n→∞

log(SRSelection
rn

)

log(en)
= lim

n→∞

log(SRi∗,rn)

log(M)+ log(rn)+ log
(

1+∑
n
i=1

si
rn

)
= lim

n→∞

log(SRi∗,rn)

log(rn)
=−α

∗.

Hence iii) holds.
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Example 7.3.1. The following parametrization matches the conditions in Appli-
cation 7.3.1.

rn = dn3+r+r
′
e;

LAG(n) = dlog(n)e;
sn = dn1+r

′
e, r > 0 and r

′ ≥ 1, n ∈ N∗.

The log(M′)-shift for INOPA

We now show that INOPA, which distributes the budget in an unfair manner, can
have an improvement over NOPA. Instead of a factor M (number of solvers in the
portfolio), we get a factor M′, number of approximately optimal solvers. This is
formalized in the following theorem:

Theorem 7.3.2 (log(M′) shift). Let (rn)n∈N∗ and (sn)n∈N∗ two non-decreasing
integer sequences.

Assume that:

• ∀x ∈D , Var f (x,ω)≤ 1;

• for some positive sequence (εn)n∈N∗ , Pas((εn)n∈N∗) (Definition 7.3.2) holds.

We define S = {i|∃n0 ∈ N∗,∀n≥ n0,∆i,n < 2εn} and M′ denotes the cardinality of
the set S, i.e., M′ = |S|. Then, there exists n0 such that:

∀n≥ n0, SRSelection
rn

< SRSolver
rn

+2εrn (7.12)

with probability at least 1− M
snε2

LAG(rn)

after en = rn ·M′ ·
(

1+
M
M′

n

∑
i=1

si

rn

)
+(M−M′)LAG(rn) evaluations.

Then, if (sn), (LAG(n)), (rn) and (εn) satisfy ∑
∞
j=1

1
s jε

2
LAG(r j)

< ∞,

LAG(n) = o(n) and ∑
n
j=1 s j = o(rn), then, almost surely, there exists n0 such that:

∀n≥ n0, SRSelection
rn

< SRSolver
rn

+2εrn (7.13)

after en = rn ·M′ · (1+o(1)) evaluations.
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Proof. For a given number of comparisons n, the INOPA algorithm makes the
same comparisons and recommends the same value as the NOPA algorithm.
Therefore all the results in Theorem 7.3.1 still hold, hence Eqs. 7.12 and 7.13
hold - but we have to prove the number en of evaluations.

As the algorithm chooses a solver which is not in S a finite number of times,
there exists n1 such that, for all n ≥ n1, the portfolio chooses a solver in S at the
nth comparison. We consider n0 ≥ n1 such that LAG(n0)≥ rn1 . For n≥ n0 the new
number of evaluations after n comparisons is:

en ≤ M′ · rn +M ·
n

∑
i=1

si +(M−M′)LAG(rn)

= M′ · rn ·
(

1+
M
M′

n

∑
i=1

si

rn
+

M−M′

M′
LAG(rn)

rn

)
= M′ · rn · (1+o(1)) .

Using Proposition 7.3.1, we apply Theorem 7.3.2 above to the case of linearly
convergent optimization solvers (linear in a log-log scale, with x-axis logarithmic
of the number of evaluations and y-axis logarithmic of the Simple Regret).

Application 7.3.2 (log(M′)shift). Assume that ∀x ∈ D , Var f (x,ω) ≤ 1 and
for any solver i ∈ {1, . . . ,M}, the Simple Regret after n ∈ N∗ evaluations is
SRi,n = (1+ o(1)) Ci

nαi . We define εn = C
nα∗ with C and α∗ defined as in Eq. 7.1

and 7.2. If (sn)n∈N∗ , LAG(n)n∈N∗ , (rn)n∈N∗ and (εn)n∈N∗ are chosen such that
∑

∞
j=1

1
s jε

2
LAG(r j)

< ∞, LAG(n) = o(n) and ∑
n
j=1 s j = o(rn), then, almost surely, there

exists n0 such that:

i) ∀n ≥ n0, SRSelection
rn

< SRSolver
rn

+ 2εrn after en = M′ · rn(1+ o(1)) evalua-
tions;

ii) ∀n≥ n0, SRSelection
rn

≤ max
i∈SubSetOptim

SRi,rn after en = M′ · rn(1+o(1)) evalu-

ations;

iii) the slope of the selection regret verifies lim
n→∞

log(SRSelection
rn )

log(en)
=−α∗.

As usual, SRSelection
rn

corresponds to the Simple Regret at iteration rn of the
portfolio, which corresponds to en = rn ·M′ ·(1+o(1)) evaluations in the portfolio
- hence the comment “after en function evaluations”.
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Proof. See proof of Application 7.3.1.

Example 7.3.2. (log(M’) shift) The parametrization of Example 7.3.1 also
matches the assumptions of Application 7.3.2.

The lag is necessary

In this section, we show that, if there is no lag (i.e., ∀n, LAG(n) = n) whenever
there are only two solvers, and whenever these solvers have different slopes, the
portfolio algorithm might not have a satisfactory behavior, in the sense that, in the
example below, it will select infinitely often the worst solver - unless sn is so large
that the comparison budget is not small compared to the portfolio budget.

Example 7.3.3 (The lag is necessary). Let us consider the behavior of NOPA
without lag. We assume the following:

• no lag: ∀n ∈ N∗, LAG(rn) = rn.

• the noise is an additive standard normal distribution G ;

• there are M = 2 solvers and the two solvers of the portfolio are such that,
almost surely, SRi,m = (1+ o(1)) Ci

mαi after m ∈ N∗ evaluations, i ∈ {1,2},
with α1 = 1− e and α2 = 1−2e, where e ∈ [0,0.5) is a constant.

• The comparison budget is moderate compared to the portfolio budget, in the
sense that

sn = O(rβ
n ) (7.14)

with β ≤ 2−4e.

Then, almost surely, the portfolio will select the wrong solver infinitely often.

Proof. Let us assume the scenario above. Let us show that infinitely often, the
portfolio will choose the wrong solver. Consider Y1,n and Y2,n defined by

Yi,n =
1
sn

sn

∑
`=1

f (x̃i,rn,G
(i,`)) = EG [ f (x̃i,rn,G )]+Zi, i ∈ {1,2},

where

• The G (i,`) are independent Gaussian random variables,

• Zi =
1
sn

∑
sn
`=1 G (i,`),
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• x̃i,rn is the search point recommended by solver i after rn evaluations,

i.e., Yi,n is the average of sn evaluations of the noisy fitness function at x̃i,rn .
We denote for all n ∈ N∗,

δn = EG [ f (x̃2,rn ,G )]−EG [ f (x̃1,rn,G )] = SR2,rn−SR1,rn.

δn is a random variable, because the expectation operator operates on G ; the
random dependency in (x̃1,rn, x̃2,rn) remains.

v1,n =Var Y1,n and v2,n =Var Y2,n.

Definition 7.3.3 (MRn). Let MRn (misranking at iteration n) be the event “the
portfolio chooses the wrong solver at decision step n ∈ N∗”.

Remark 7.3.3. From the definitions of solvers 1 and 2, solver 1 is the best
in terms of Simple Regret. As a result, if n is big enough, a.s., we get
SR1,rn < SR2,rn , i.e., EG [ f (x̃1,rn,G )] < EG [ f (x̃2,rn,G )]. Then it is straightforward
that, if a.s. EG [ f (x̃2,rn,G )]+Z2 < EG [ f (x̃1,rn,G )]+Z1, i.e., δn < Z1 − Z2, the
portfolio chooses solver 2 whereas solver 1 is the best: a.s. MRrn occurs.

Step 1: constructing independent events related to wrong solver choices.
Let us define δ ′n = 2(C2/r1−2e

n −C1/r1−e
n ). We have

δ
′
n = O

(
C2

r1−2e
n

)
(7.15)

Almost surely, δn = (1+ o(1)) C2
r1−2e

n
− (1+ o(1)) C1

r1−e
n

, for n sufficiently large,
δn < δ ′n.

τn denotes the event: “Z1−Z2 > δ ′n”. So, almost surely, for n sufficiently large,
the event MRn includes the event τn, i.e.

almost surely, for n sufficiently large, τn ⊂MRn. (7.16)

Step 2: Almost surely, τn occurs infinitely often.
The τn are independent, so we apply the converse of Borel-Cantelli lemma.

First, compute the probability of τn;

P(τn) = P
(√

v1,n + v2,nG > δ
′
n
)
,

= P
(

G >
δ ′n√

v1,n + v2,n

)
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By definition of v1,n and v2,n, ∃C > 0, s.t.
√

v1,n + v2,n =
C√
sn

, so by Equation 7.14,

∃C̃ > 0, 1√
v1,n+v2,n

=
√

sn
C ≤ C̃rβ/2

n .

By 7.15, ∃C′ > 0 s.t. δ ′n√
v1,n+v2,n

≤ C′ C2
r1−2e

n
C̃rβ/2

n , with β/2 = 1− 2e. Hence

P
(
G >

δ ′n√
v1,n+v2,n

)
≥ P(G > D), with D > 0.

We get P(τn) = Ω(1), as the τn are independent, Borel-Cantelli’s lemma (con-
verse) implies that almost surely, τn occurs infinitely often.

Step 3: Concluding.
Step 2 has shown that almost surely, τn occurs infinitely often. Equation 7.16

implies that this is also true for MRn.
Therefore, infinitely often, the wrong solver is selected.

7.4 Conclusion
We have seen that noisy optimization provides a very natural framework for port-
folio methods. Different noisy optimization algorithms have extremely different
convergence rates (different slopes) on different test cases, depending on the noise
level, on the multimodalities, on the dimension. We proposed two versions of such
portfolios, NOPA and INOPA, the latter using an unfair distribution of the bud-
get. Both have theoretically the same slope as the best of their solvers, with better
constants for INOPA (in particular, no shift, if SubSetOptim (see Eq. 7.4) has
cardinal 1).

We show mathematically an asymptotic log(M) shift when using M solvers,
when working on a classical log-log scale (classical in noisy optimization); see
Section 7.3. Contrarily to noise-free optimization (where a log(M) shift would
be a trivial result), such a shift is not so easily obtained in noisy optimization.
Importantly, it is necessary (Section 7.3), for getting the log(M) shift, that:

• the AS algorithm compares old recommendations (and selects a solver from
this point of view);

• the portfolio recommends the current recommendation of this selected
solver.

Additionally, we improve the bound to a log(M′) shift, where M′ is the number of
optimal solvers, using an unfair distribution of the computational budget (Section
7.3). In particular, the shift is asymptotically negligible when the optimal solver
is unique.



A careful choice of portfolio parameters (function LAG(·), specifying the lag;
rn, specifying the intervals rn+1 − rn between two comparisons of solvers; sn,
specifying the number of resamplings of recommendations for selecting the best)
leads to such properties; we provide principled tools for choosing these parame-
ters. Sufficient conditions are given in Theorem 7.3.1, with examples thereafter.

Regarding the experiments, we refer to [Cauwet et al., 2014,
Cauwet et al., 2016b] for a portfolio of optimization algorithms with the al-
gorithms discussed previously and [Liu and Teytaud, 2014] for multimodal
test case. They show (i) the efficiency of portfolios for noisy optimization, as
solvers have very different performances for different test cases and NOPA has
performance close to the best or even better when the random initialization has a
big impact; (ii) the clear and stable improvement provided by INOPA, thanks to
an unfair budget distribution; (iii) that the lag is usually beneficial, though this is
not always the case. Importantly, without lag, INOPA could not be defined.

In noisy frameworks, we point out that portfolios might make sense even
when optimizers are not orthogonal. Even with identical solvers, or closely re-
lated optimizers, the portfolio can mitigate the effect of unlucky random con-
tributions. This is somehow related to restarts (i.e. multiple runs with random
initializations). See [Cauwet et al., 2016b] for cases with very close solvers, and
[Liu and Teytaud, 2014] with identical solvers.

Sharing information in portfolios of noisy optimization algorithms is not so
easy. Our empirical results are mitigated; but we only tested very simple tools for
sharing - just sharing the current best point. A further work consists in identifying
better relevant information for sharing; maybe the estimate of the asymptotic fit-
ness value of a solver is the most natural information for sharing; if a fitness value
A is already found and a solver claims that it will never do better than A, then we
can safely stop its run and save up computational power.
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Chapter 8

A Consistent Model Predictive
Control

This chapter is based on:
Cauwet, M.-L., Christophe, J.-J., Decock, J., Liu, J., and Teytaud, O. (2016a).

A Consistent Model Predictive Control. To be submitted.

Experiments of this chapter have been conducted by Jérémie Decock
(Fig, 8.1) and Olivier Teytaud (Fig 8.2) on the top of a Artelysa code.

ahttps://www.artelys.com/en/home

Disclaimer

Various methods, among them Stochastic Dynamic Programming (SDP),
Stochastic Dual Dynamic Programming (SDDP), Model Predictive Control
(MPC) or Direct Policy Search (DPS) have been developed to tackle the Markov
Decision Process (MDP) Problem. We design Direct Model Predictive Control
(DMPC)1, a variant of MPC. Assuming the convergence of the noisy optimiza-
tion routine, DMPC provably reaches an optimal policy for a wider class of MDP
(nonlinear cost and transition functions) than those resolved by MPC (suboptimal
by nature), SDP (which needs a moderate size of state space) or SDDP (which

1Note that DMPC is also termed Direct Value Search (DVS), e.g. in [Decock, 2014].
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requires convexity of Bellman values and a moderate complexity of the random
values state) in an acceptable computation time. DMPC clearly outperforms MPC
on a multiple-battery management problem, and two hydroelectric problems. The
algorithm is easy to implement on top of a classical MPC methodology.

8.1 Introduction

8.1.1 Formalism of Markov Decision Processes
Consider a dynamical system. The system is in a state, and evolves to a new
state, depending on random variables and decisions. After a given number of such
transitions, the dynamical system is stopped. Each transition provides a cost, and
the cost is cumulated from the initial state to this stopping time.

More formally, given an initial state s0, a policy Π, a transition function Tnl ,
a random transition function RT, a final step time T and a sequence of random
variables ω0, . . . ,ωT−1 ∈Ω (the set of random variables), we define:

∀(st , t) ∈S ×D , at = Π(st , t) ∈ Lt(st): the decision at t (8.1)

∀ (st , t,at) ∈S ×D×Lt(st), st+1 = Tnl(st , t,at) ∈S (8.2)

∀(st , t,ωt) ∈S × D̄×Ω, st+1 = RT(st , t,ωt) ∈S (8.3)

∀(st ,at) ∈S ×Lt(st), ct = Cnl,t(st ,at) ∈ R: the cost at time t (8.4)

CΠ = ∑
t∈D

ct ∈ R: the total cost function. (8.5)

Eq. 8.2 refers to decision-based transitions, whereas Eq. 8.3 refers to random-
ized transitions. D is the set of time steps at which a decision is made and D̄ is
the set of time steps at which we do not make a decision. S ⊂ Rd is the set of
states and Lt(st) is the set of legal actions in state st ∈S at time t. Π is designed
to ensure Π(st , t) ∈ Lt(st).

In all the chapter, we consider:

• a given transition function Tnl : S ×D ×Lt(s)→S and a linear approxi-
mation T;

• a given cost function Cnl,t : S ×Lt(s)→ R and a linear approximation Ct ;

• a final step time T ;

• an initial state s0.



CHAPTER 8. A CONSISTENT MODEL PREDICTIVE CONTROL 146

Then CΠ is a random variable, only depending on Π. Dynamic optimization
is the search for an approximation of Π∗ such that E[CΠ∗] is as small as possible:

Π
∗ ∈ argmin

Π

E[CΠ] (8.6)

8.1.2 State of the art in dynamic optimization
We provide an overview of the best known algorithms dedicated to dynamic opti-
mization with continuous state variables and their weaknesses.

Stochastic Dynamic Programming (SDP) goes back to [Bellman, 1957]; it is
based on computing, backwards in time, a value function. For a given state, the
value function, also termed Bellman function, provides the expected reward that
an agent will get, if it starts in this state and makes optimal decisions. Without
enhancements, SDP is only tractable for simple problems.

Dual SDP (SDDP), see [Pereira and Pinto, 1991], is the best known improved
variant of SDP. Convexity of Bellman values and a random process of moderate
state space size [Shapiro, 2011] are required for applying this method. It consists
in approximating the value function by linear cuts. Assuming that the Bellman
function is convex, a piecewise linear approximation can be obtained thanks to
subgradient values at various locations in the state space. SDDP runs simula-
tions and computes subgradients in the visited states. The moderately sized state
space of the random process is a key assumption. The Bellman function should
be indexed by all state variables, including the variables describing the state of
the random process. This is often intractable, hence the random process is often
heavily simplified, in particular by stagewise independence [Shapiro, 2011], or at
least the random process is replaced by a small Markovian representation.

Model Predictive Control (MPC) is a methodology detailed in
[Bertsekas, 2005]. The principle is as follows. In a state s, apply forecast-
ing modules for estimating the random variables of the next h time steps, where
h is the tactical horizon. Then, remove all uncertainties - just assume that the
forecasts are exact for the next h time steps. Then, make the decision which
optimizes the reward over the next h time steps. This methodology is quite simple
and the assumptions are clearly understood: we assume that the forecasts are
perfect and that the effects beyond the horizon h can be neglected. There are
many methods for mitigating these two assumptions. Regarding the first one,
it is customary to replace forecasts by pessimistic estimates in order to reduce
the risk or to restart the optimization as soon as you get new observations. On
the other hand, adding an approximate value function for the reward beyond the
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horizon h mitigates the effect of the second assumption. MPC is quite convenient,
robust, simple and remains a main tool in spite of theoretical shortcomings. In
particular, it often outperforms [Zambelli et al., 2011] the far more sophisticated
SDDP which relies on a modelization by a usually stagewise independent random
process [Shapiro, 2011] or at least a Markov process with moderate size.

Tree-Based Model Predictive Control (TB-MPC) [Raso, 2013] is an adaptive
control method which constructs a tree of possible futures as a forecast and uses
this tree to set up a Multi-stage Stochastic Programming (MSP) problem, con-
sidering both present uncertainty and its time resolution. The uncertainty will
be reduced along the control horizon, and the optimal control strategy (of each
branch of tree) after uncertainty reduction will change according to the occurring
forecast. TB-MPC therefore also relies on discretization, and has the same short-
comings as MPC for the long term management, but is optimal in the limit of a
huge tree-based model.

The principle of Direct Policy Search (DPS) is to optimize a parametric func-
tion, to be used as a policy (e.g. [Schoenauer and Ronald, 1994]). The parametric
function can be more or less problem specific. Compared to the above approaches,
DPS has the strength that it does not need a simplified model; simulation-based
optimization can be applied as soon as simulations are possible. On the other
hand, traditional DPS fails when confronted with huge action spaces whereas the
fact that all above approaches can deal with huge constrained action spaces pro-
vided that all involved functions are linear or can be encoded in linear program-
ming, or in other frameworks with moderate complexity. This is rarely the case
for DPS, so that except more specialized DPS, it has little relevance to the huge
constrained problems from the power systems industry.

8.2 Direct Model Predictive Control (DMPC)
In this chapter, we study Direct Model Predictive Control (DMPC)
[Christophe et al., 2014], a variant aimed at bringing consistency into MPC.

8.2.1 DMPC: Formulation
We use Πθ , the specific policy used in DMPC and parametrized by θ , defined as
follows:

∀ (st , t) ∈S ×D , Πθ (st , t) ∈ argmin
at∈Lt(st)

Ct(st ,at)+Nθ [st ,T(st , t,at), t] (8.7)
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where Nθ is a mapping parametrized by θ , such that for all
(st ,s′t , t) ∈S ×S ×D , Nθ [st ,s′t , t] ∈ R. In particular, we perform the op-
timization using the approximations C and T, and not the ‘real’ transition and
cost functions Cnl,. and Tnl respectively. We will see later how this a priori
suboptimality can be mitigated thanks to the valorization term Nθ [.].

When Nθ is handcrafted rather than optimized, this is MPC. When Nθ is
computed backwards, this is SDP. When Nθ is approximated by linear cuts built
on subgradients extracted from simulations, this is SDDP.

In our experiments, Nθ is a neural network. The mathematical analysis just
assumes that Nθ can approximate any necessary function, provided that θ is cor-
rectly chosen. This assumption will be formalized in Theorem 8.3.1.

θ is then optimized as follows:

θ
∗ = argmin

θ

CΠθ
(8.8)

where CΠθ
is defined by Eqs. 8.1-8.5. CΠθ

is a random variable depending on θ ;
this is therefore a black-box noisy optimization problem. Eq. 8.8 can be optimized
by noisy optimization methods, see Part I.

In addition, we assume that Lt(st) is defined by linear constraints, i.e.,
∀(st , t) ∈S ×D , there exist some matrix A = A(t,st) and B = B(t,st) such that
Lt(st) = {at ;Ast ≥ at and Bst = b}.

8.2.2 DMPC brings consistency into MPC
First and foremost, no assumption on the convexity of the reward is required,
contrarily to SDDP and variants of dynamic programming based on convex piece-
wise linear functions. Also there is no assumption on the Markovian nature of
the stochastic processes involved (contrarily to SDDP). Besides, we work in a
stochastic setting, contrarily to brute force conformant planning or simple forms
of MPC.

We provide a detailed mathematical analysis in Section 8.3 and some large-
scale experiments are presented in Section 8.4.

8.3 Consistency analysis
We show that the DMPC structure includes optimal policies under the following
linearity assumptions on the approximations T and C of Tnl and Cnl,. respectively:
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(A1) ∀(st , t) ∈S ×D , at 7→ T(st , t,at) is linear;

(A2) ∀(st , t) ∈S ×D , at 7→Ct(st ,at) is linear.

Theorem 8.3.2 states that the DMPC method is optimal under the extra as-
sumptions that the ‘real’ transition function and cost functions are linear, i.e.,
T = Tnl and Ct = Cnl,t respectively. Then, Section 8.3.2 (Theorem 8.3.3) shows
that under an additional technical hypothesis, these extra assumptions can be re-
laxed.

8.3.1 Optimality of DMPC
We recall that ‖.‖ denotes the standard Euclidean norm and 〈., .〉 denotes the scalar
product. In Section 8.3.1, and only in this section, T= Tnl and Ct =Cnl,t .

Definition 8.3.1. A mapping p : S ×D →S will be termed consistent if for all
(st , t) ∈S ×D , there exists an action at ∈ Lt(st , t) such that T(st , t,at) = p(st , t).

Theorem 8.3.1 (DMPC policies can follow arbitrary prescriptions). Under as-
sumptions (A1) and (A2), for all consistent mapping p : S ×D→S , there exists
a mapping Nθ such that:

∀(st , t)∈S ×D , ∀ a∈ argmin
a∈Lt(st)

Ct(st ,a)+Nθ [st ,T(st , t,a), t], T(st , t,a)= p(st , t).

Furthermore, Nθ [s, ., t] can be written as a max of (d+1) linear functions, where
d is the dimension of S . The mapping p is termed prescription function.

Proof. Let p be a prescription function. In the following, we use Lemma 8.3.1
(see Appendix D for the proof).

Lemma 8.3.1. There exist d +1 unit vectors w1, . . . ,wd+1 in Rd , and there exists
a constant c > 0 such that, for any unit vector u∈ Rd , there exist i∈ {1, . . . ,d+1}
such that 〈u,wi〉> c.

We first prove Eqs. 8.9, 8.10 and 8.11.
For all s ∈S , we define v(s) = max

i∈{1,...,d+1}
〈s,wi〉, where (wi)i∈{1,...,d+1} are as

in Lemma 8.3.1. By Lemma 8.3.1, there exists c > 0 such that,

∀s ∈S \{0}d,v(s)> c‖s‖. (8.9)
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Under assumptions (A1) and (A2), by applying [Schrijver, 1986, Theorem
10.5 P126-127], the function s′ 7→ min

a|s′=T(st ,t,at)
Ct(st ,at) is Lipschitzian, i.e. there

exists a constant D = D(st)> 0 such that ∀ (s1,s2) ∈S ×S ,

∣∣∣∣ min
at∈Lt(st)|s1=T(st ,t,at)

Ct(st ,at)− min
at∈Lt(st)|s2=T(st ,t,at)

Ct(st ,at)

∣∣∣∣≤ D‖s1− s2‖. (8.10)

For a constant D > 0 fixed in Eq. 8.10, we define:

∀ (s,s′, t) ∈S ×S ×D , Nθ [s,s′, t] :=
2D
c

v(s′− p(s, t)). (8.11)

Then the minimum of s′ 7→Nθ [s,s′, t] is reached in s′ = p(s, t) and Nθ [s, ., t]
is written as a max of (d +1) linear functions.

Define f (a) =Ct(st ,a)+Nθ [st ,T(st , t,a), t]. Define

a∗ ∈ argmin
at∈Lt(st)|T(st ,t,at)=p(st ,t)

Ct(st ,at)+Nθ [st ,T(st , t,at), t].

Such an a∗ exists because we have assumed that the prescription is consistent.
Then f (a∗) =Ct(st ,a∗)+Nθ [st , p(st , t), t] =Ct(st ,a∗).

Let a′ ∈ Lt(st) be an action satisfying:

a′ ∈ argmin
at∈Lt(st)

f (at)

Define s′ = T(st , t,a′). To conclude, we need to prove that s′ = p(st , t). By
definition, a′ minimize f on Lt(st) and a∗ minimize f on a subset of Lt(st), there-
fore,

f (a∗) ≥ f (a′)
≥ Ct(st ,a′)+Nθ [st ,s′, t]
≥ f (a∗)−D‖s′− p(s, t)‖+Nθ [st ,s′, t] by Eq. 8.10
≥ f (a∗)−D‖s′− p(s, t)‖+2D‖s′− p(s, t)‖ by Eq. 8.11 and Eq. 8.9
≥ f (a∗)+D‖s′− p(s, t)‖

Hence s′ = p(s, t), which is the expected result.
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Theorem 8.3.2 (The structure of DMPC policies includes optimal policies). Let
us assume (A1) and (A2), and let us assume that Ct = Cnl,t and T = Tnl . Let us
assume that an optimal policy exists2. Then there exists a mapping Nθ such that
Πθ minimizes Π→ E[CΠ] i.e. ∀Π,E[CΠ]≥ E[CΠθ

]. In addition, Nθ [s, ., t] can be
written as a max of (d +1) linear functions, where d is the dimension of S .

Proof. By assumption, there exists Π∗ which minimizes Π→ E[CΠ].
Let p∗ : S ×D →S be the prescription function defined by:

∀(st , t) ∈S ×D , p∗(st , t) = T(st , t,Π∗(st , t)). (8.12)

Then, by Theorem 8.3.1, there exists N ∗
θ

such that

∀(st , t) ∈S ×D ,∀ admpc
t ∈ argmin

at∈Lt(st)

Ct(st ,at)+N ∗
θ [st ,T(st , t,at), t],

T(st , t,a
dmpc
t ) = p∗(st , t). (8.13)

Let a∗t be the action chosen by a given optimal policy Π∗ at (st , t), i.e. a∗t =
Π∗(st , t) ∈ argmin

Π

E[CΠ] and by definition, CΠ = ∑t∈D ct . By Eq. 8.12,

p∗(st , t) = T(st , t,Π∗(st , t)) = T(st , t,a∗t ).

Together with Eq. 8.13, T(st , t,a
dmpc
t ) = T(st , t,a∗t ). Then

N ∗
θ [st ,T(st , t,a

dmpc
t ), t] = N ∗

θ [st ,T(st , t,a∗t ), t]. (8.14)

Hence, by definition of admpc
t ,a∗t and Eq. 8.14, ∀ (st , t) ∈S ×D ,

Ct(st ,a
dmpc
t )+N ∗

θ [st ,T(st , t,a
dmpc
t ), t] ≤ Ct(st ,a∗t )+N ∗

θ [st ,T(st , t,a∗t ), t]

Ct(st ,a
dmpc
t ) ≤ Ct(st ,a∗t ). (8.15)

By Theorem 8.3.1, the distribution of s0, . . . ,sT is the same with actions chosen
by Π∗ and with actions chosen by Πθ . We show this by induction on the step time
t:

• The initialization s0 is the same in both cases.
2An optimal policy exists, by Bellman principle of optimality, as soon as relevant extrema in

Bellman’s equation are reached.
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• Induction:

(I1) By Eq. 8.13, st+1|st is the same in both cases when t ∈D .

(I2) Both are Markov chains, hence st+1|st is the same in both cases when
t 6∈D .

The expected cost for Bellman’s policy Π∗ is therefore

E ∑
t∈D

Ct(st ,a∗t )

whereas for DMPC it is
E ∑

t∈D
Ct(st ,a

dmpc
t ).

These two summations are over the same distribution for st , and for each st , Eq.
8.15 shows that DMPC has a less or equal cost. This concludes the proof of
Theorem 8.3.2.

8.3.2 Nonlinear Setting
In the previous section, Theorem 8.3.2 states that the DMPC methodology pro-
vides an asymptotically optimal solution to the Markov Decision Process Prob-
lem. To achieve this, it was assumed that the transition and cost functions Tnl
and Cnl,. defined in Eqs. 8.2 and 8.4 are linear in the action variable. How-
ever, in real word applications, it happens that these assumptions are not satisfied
[Frangioni, 2006, Virmani et al., 1989, Najafi and Pourjamal, 2012]. With many
algorithms, there is no solution for using nonlinear transition and cost. Usually,
to mitigate the computational cost, a linear approximation is used instead of the
nonlinear original version. In this section, we want to emphasize that, while a
linear approximation is necessary for having a polynomial computational cost,
the advantage of simulation-based algorithms (such as DMPC) is that there is no
need for simulating with the linear functions. Just the function used inside the
decision function (Eqs. 8.7 and 8.8) has to be linear. Thanks to the use, in the
simulation part (Eqs. 8.1 to 8.5), of the real (nonlinear) transition and cost func-
tions, we get an optimal policy on the real problem, in spite of the use (for the
sake of polynomial decision time) of linear functions in the policy function Πθ .
We show that DMPC can thereby accommodate such a case under some injectiv-
ity condition detailed in Theorem 8.3.3. We can still have an optimal policy if
the Nθ function is ad hoc. In some sense (made precise in Theorem 8.3.3), the
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simulations, performed with the “true” transition Tnl and cost Cnl,., can offset the
linear approximations of the nonlinear functions.

Theorem 8.3.3 (DMPC can counterbalance the bias induced by its linear approx-
imations). Under assumptions (A1) and (A2), and if for some optimal policy Π∗,

∀ (st , t) ∈ S×D ,∃! at ∈ Lt(st),T(st , t,at) = T(st , t,Π∗(st , t)) (8.16)

where “∃!” stand for “there exists a unique”, then for all cost functions
c0, . . . ,cT−1, there exists a mapping Nθ such that the corresponding policy Πθ

minimizes Π 7→ E [CΠ]. Furthermore, Nθ [s, ., t] can be written as a max of (d+1)
linear functions, where d is the dimension of S .

Proof. Let us define Π∗ the optimal policy, for the real transitions and costs (i.e.
Tnl and Cnl,t , and not their linear counterparts T and Ct). The proof of Theorem
8.3.2 applies, except that instead of the prescription p(st , t) = Tnl(st , t,Π∗(st , t))
we use the prescription p(st , t) = T(st , t,Π∗(st , t)).

The proof of Theorem 8.3.2 can be applied until Eq. 8.13. Eq. 8.13 and Eq.
8.16 imply that Πθ plays optimal moves, and therefore it is optimal.

8.4 Experiments

8.4.1 Experiments with a 10 batteries problem
We first provide experiments on a battery management problem with 10 batteries,
as follows: the commands are the power in and power out of each of the 10 bat-
teries; 168 time steps of one hour are considered; operational horizon of 5 hours,
tactical horizon of 5 hours; the electricity is sold/bought on a market.

Two algorithms are compared:

• A constant marginal valorization of the stock; we use a battery when-
ever it saves up more than C euros per MWh. More formally, this means
Nθ (s,s′, t) =−C ∑i s′i in Eq. 8.7; s is the stock level of the batteries.

• DMPC, with a penalization (as Nθ in Eq. 8.7) provided by a fully connected
neural network, with various numbers of neurons on the hidden layer. The
inputs to the neural network are the stock levels of the batteries, plus a co-
sine and a sine function of time with periodicity corresponding to 24 hours.

Results are presented in Fig. 8.1. Results are satisfactory, but need a long
optimization time, hence new policies (not a neural network) are designed before
switching to large-scale problems in the next section (Section 8.4.2).
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8.4.2 Experiments on a real-world hydroelectric problem

Problem description

We here focus on a real world problem, the management of a hydroelectric dam,
for national consumption, optimized jointly with many thermal power plants. The
naive MPC algorithm does not perform well on this problem, due to the necessary
long term management: a valorization term is necessary in the unit commitment,
so that water is stored when the stock is low and/or there are still load peaks in the
forthcoming months. Two algorithms are compared:

• The MPC improved by a Long Term Management (LTM) constraint on
stock level, optimized offline. This is the baseline (horizontal curve in our
results), and needs an offline optimization phase (in the present case, com-
bined with human expertise).

• The DMPC approach, with a handcrafted policy rather than a neural net-
work. The handcrafted policy is described in Eq. 8.17:

Nθ (s,s′, t) = (θ1cos(t/T0)+θ2sin(t/T0)+θ3 +θ4s/S0) · s′. (8.17)

where t is the time step, T0 is one year, S0 is a stock constant, s is a stock
level, and Nθ (s,s′, t) is the valorization as in Eq. 8.7. The two first terms
can represent any sinusoid of period 2πT0, the third is a constant marginal
cost of stocks, and the fourth term is a first order approximation of the de-
crease of marginal costs when a stock increases (law of diminishing re-
turns).

The Long Term Management (LTM) constraint

When applying MPC to a real world problem with long term dependencies (e.g. an
hydroelectric stock), it is clearly visible that using a tactical horizon corresponding
to the horizon at which forecasts are excellent is not sufficient: costs become
huge, because hydroelectric stocks are used way too early. Simulating such a
system with 48 hours tactical horizon, without dealing with long term storage, is
unrealistic - estimating the cost of a fictitious system with such a simple tool leads
to overestimating its cost, in particular if it needs storage.

On the other hand, using a large tactical horizon is unrealistic; we do not
have excellent long term forecasts for wind, load and market prices. The cost of
a system simulated with one month anticipation is underestimated, in particular
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when there are many uncertainties - typically, the cost of a system with a lot of
renewable energies is underestimated.

A simple solution is to use human expertise: define a constraint (LTM con-
straint), lower bound on stock levels, so that you are sure that some energy is
saved up in dams. The LTM constraint used in our experiments has been defined
by collecting human expertise. This approach leads to MPC costs empirically
close to the real world costs; however, this method has the following drawbacks:

• The LTM constraint (extracted by humans by analysis of data) is not effec-
tive when the system is modified, and we need to simulate fictitious systems
for making investment decisions.

• The one month tactical horizon used in the version designed by human ex-
perts is not realistic, as we certainly not have high precision forecasts over
one month.

• A pernicious effect is that the LTM constraint is designed over data, and
tested on the same data; this is typically an example of overfitting. Nothing
guarantees that performance will be the same on other data than those used
for designing the LTM constraint.

An alternate solution would be optimizing a LTM constraint on top of the
MPC. However, this leads to an unprincipled hard constraint on the stock. Indeed,
the present work is motivated by the decision to get rid of the LTM constraint and
its difficult assumptions.

Experiments on a real-world problem with hydroelectricity

The problem in this section is a nation-wide power system management problem.
We consider two frameworks, one with 1 hydroelectric stock and one with 10
hydroelectric stocks are included. Results are presented in Fig. 8.2 (top right,
bottom left, bottom right).

We observe that DMPC always outperforms the baselines (horizontal curves).
In addition, the results are, to a large extent, independent of the LTM constraint af-
ter the optimization by DMPC, whereas the LTM constraint methodology without
DMPC had a big impact on the result.
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8.5 Conclusion
We have theoretically studied Direct Model Predictive Control. The approach
has various advantages and can in particular mitigate the difficulties of high scale
dynamic optimization. High scale action spaces can be handled thanks to polyno-
mial decision making, because the neural network provides the parameters of the
decision problem but is not involved in the optimization loop (see Eq. 8.7).

Nonlinear transitions can be mitigated by the use of a nonlinear model in sim-
ulations (in Eq. 8.8), as shown by Theorem 8.3.3. We can still have an optimal
solution. Therefore, we combine polynomial time decision making, and consis-
tency.

Theorem 8.3.2 shows that with a limited number of cuts in the representa-
tion (Eq. 8.7) we have approximately optimal policies, outperforming classical
MPC. Prior to any optimization, our algorithm is equal to a MPC with, possibly, a
handcrafted valorization. It is therefore easy to use, on top of an existing MPC im-
plementation; MPC might be the most efficient usual approach in such contexts,
due to its handling of arbitrary complex stochastic processes; we indeed modify
it by including a Direct Policy Search layer, so that we preserve the polynomial
decision making, while handling nonlinear effects.

The main drawback is the heavy computation of θ ∗ as in Eq. 8.8. This how-
ever can be mitigated by warm starts and parallelization - as noisy optimization
is highly parallel. At the cost of a few hours or days of optimization, we get a
solution which takes into account nonlinear and stochastic effects. Admittedly,
our method is slower than MPC, by far - but we have a principled management of
stochastic effects.
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Figure 8.1: Experimental results with 0, 1, 2, 4 neurons over 1000 scenarios (the
optimization algorithm is a Self Adaptive Evolution Strategy (4.2.2) with number
of resamplings n2 at iteration n) compared to two baselines: a myopic model (no
penalization of stock usage, i.e., Eq. 8.7 with Nθ = 0) and an optimal constant
stock usage, i.e., Eq. 8.7 with Nθ [st ,T(st , t,at), t] =−C ∑iT(st , t,at)i for an opti-
mal constant C. 0 neuron is almost immediately better than the baselines; later, 2
neurons perform well; 4 neurons need more computation time for outperforming
baselines but eventually works well.
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Figure 8.2: Experiments with 1 stock (top left), and 10 stocks (top right: including
the LTM constraint designed offline (see Section 8.4.2) by optimization; bottom
left: including this constraint on the stocks, but relaxed by 20%; bottom right:
constraint completely removed except for the last time step). The horizontal line
is, in each case, the performance with the constraint designed offline. The opti-
mization algorithm is a very simple random search, but the structure of the policy
is carefully designed (see text). We see that our algorithm has the same result
independently of the offline constraint. The X-axis is in all cases the number of
evaluations in the optimization of θ . The default methods have no computation of
θ ; their offline computational costs are larger than time constants here and human
expertise is involved in the loop.



Chapter 9

Stochastic zero-sum games

This chapter is based on:
Cauwet, M.-L., St-Pierre, D. L., and Teytaud, O. (2016c). Stochastic zero-sum

games. To be submitted.

Experiments of this chapter have been conducted by David Lupien St-
Pierre. We have chosen to let them in the present chapter as an illustration
of the theoretical part.

Disclaimer

This article was initially written within a games theory orientation. We keep
here the usual vocabulary and definitions of the games theory. However, as
explained in Chap 1 Section 1.2.3, this setting and therefore these results are
perfectly relevant in a power system context.

It is known (see [Grigoriadis and Khachiyan, 1995]) that an approximate
solution of a Nash equilibrium can be computed in sublinear time with reinforce-
ment learning algorithms. The most efficient algorithm in a parallel setting has
been proposed for approximately K processors, considering a K×K matrix. In
this chapter we investigate the extension to stochastic zero-sum games, and the
parallelization with more than K processors. First we show the validity of the
current state-of-the-art approach (AdaptedGK) for the stochastic adversarial case.

159
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Second we propose variants of these algorithms for parallel Nash computation
(ParaGK). Third we introduce a new algorithm (ParaNash) and show both
theoretically and empirically its efficiency for approximating a Nash equilibrium
in a setting with more than K processors.

9.1 Introduction
The bandit literature is quite rich. For Cumulative Regret in the stochastic
setting, [Lai and Robbins, 1985, Auer et al., 2002, Cappé et al., 2013] is close
to an optimal solving in the sequential case - though the parallel case
remains somehow unexplored. The Simple Regret case was studied in
[Bubeck et al., 2011]; basically, it boils down to noisy optimization on fi-
nite unstructured domains (i.e. the set of options is finite and has no sim-
ilarity matrix) with algorithms which are highly parallel - as a consequence,
both the sequential and the parallel case are essentially solved. Another re-
search trend is the adversarial case, with [Grigoriadis and Khachiyan, 1995,
Auer et al., 1995]. [Auer et al., 1995] has advantages in terms of genericity, but
we will here focus on [Grigoriadis and Khachiyan, 1995] because it is provably
parallel. This chapter is devoted to this adversarial case and extends results in
[Grigoriadis and Khachiyan, 1995] to (i) the stochastic adversarial case (i.e. there
is an opponent, and the outcome is stochastic) and (ii) a larger number of proces-
sors.

9.1.1 Adversarial Matrix Games & Nash Equilibrium
First, we define adversarial (zero-sum) matrix games. Without loss of generality,
throughout the chapter we focus on zero-sum matrix games rather than constant-
sum. We remind the definition and properties of the Nash criterion introduced in
Chap. 1. Given a K×K matrix M with coefficients in [−1,1], a game is defined
as follows:

• Player 1 chooses (privately) a row i ∈ {1, . . . ,K};

• Player 2 chooses a column j ∈ {1, . . . ,K} (without observing i);

• Player 1 receives reward Mi, j and Player 2 receives reward 1−Mi, j.

If Player 2 could see i before choosing j, then the game would be trivial:
Player 2 would play j minimizing Mi, j, whereas Player 1 would play (earlier) i
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maximizing min j Mi, j. However, here i is not observed by Player 2. In this set-
ting, interesting policies are often not deterministic [Nash, 1952]; Player 1 plays
a stochastic policy p ∈ [0,1]K (∑K

i=1 pi = 1) and Player 2 plays a stochastic policy
q ∈ [0,1]K (∑K

i=1 qi = 1). i is actually played by Player 1 with probability pi and j
is (independently) played by Player 2 with probability q j. The expected payoff for
Player 1 is therefore ptMq = ∑i, j piMi, jq j, and the expected payoff for Player 2 is
1− ptMq. A Nash equilibrium is a pair (p,q) such that

∀(p′,q′), p′tMq≤ ptMq≤ ptMq′.

Intuitively speaking, at a Nash equilibrium, neither Player 1 nor Player 2 can
improve her expected payoff by changing her strategy. It is known that, with
K finite, (i) there is always at least one Nash equilibrium; (ii) it is not necessarily
unique; (iii) all Nash equilibria (p,q) lead to the same value v= ptMq. A classical
problem is thus the evaluation of a Nash equilibrium, or an approximation thereof.

It is known that an exact Nash equilibrium can be computed in polynomial
time [von Stengel, 2002]. However, the degree of this polynomial is large, so that
approximate solutions have been proposed. A solution (p,q) is ε-optimal1 if

∀(p′,q′), p′tMq− ε ≤ ptMq≤ ptMq′+ ε.

In [Grigoriadis and Khachiyan, 1995], a reinforcement learning (bandit style,
randomized, with exponential weights) algorithm is proposed for computing an ε-
optimal solution in time O(log(K)2/ε2) on a machine with K/ log(K) processors,
with probability 1− δ . This is essentially the same complexity K log(K)2/ε2 as
EXP3 [Auer et al., 1995] when applied on a sequential machine (single processor).

In the present chapter, due to the large number of processors available nowa-
days, we also consider parallel machines with more than K processors. Also, as
most of the computation time is usually spent in the evaluation of game results,
we consider the number of readings in the matrix instead of time as a complex-
ity measure. Finally, we consider a stochastic setting, in which Mi, j is not a real
number but a random variable - in this sense, we consider a stochastic adversarial
setting.

We adapt existing results to this setting and propose a parallel oracle com-
plexity log(K)/ε on a machine with K processors. We also show bounds with K2

processors and compare experimentally several algorithms in this context.

1also termed “ε-approximate Nash equilibrium”.
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9.1.2 Outline
Section 9.2 introduces the state-of-the-art algorithm, its extension to the stochastic
case, its extension to the parallel case with more then K processors, and another
proposed algorithm. Section 9.3 analyses theoretically the validity of these algo-
rithms. Section 9.4 shows the experimental results and Section 9.5 concludes.

9.2 Algorithms and settings
In many problems, it makes sense to consider the cost of its request to some black-
box oracle instead of the computation time of the algorithm. We justify and ex-
plain such setting in Section 9.2.1. Then, Section 9.2.2 presents the state-of-the-
art Grigoriadis’s algorithm, its extensions to the parallel case with more then K
processors and our proposed algorithm.

9.2.1 Settings & motivations
The setting considered in [Grigoriadis and Khachiyan, 1995] is the following:

• The input is a K×K matrix; it is a fixed matrix. Reading Mi, j several
times provides the same measurement.

• The complexity measure is the computation time on a parallel machine
(EREW-PRAM).

• The goal is to output an ε-approximation of a Nash equilibrium, with
probability 1−δ .

Setting 1: approximate Nash equilibria of matrix games on
parallel machines.

The setting we consider, below, is different for the following reasons:

• A first modification consists in considering an oracle as input. The oracle
reads (i, j), and outputs a realization of Mi, j; several calls to the oracle with a
same (i, j) will provide independent random realizations of some unknown
random variable Mi, j.
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• A second modification is that we consider as a measure of complexity the
number of readings in the matrix M.

This new setting is very relevant when Mi, j is the result of a game between
strategy i for Player 1 and strategy j for Player 2 and either the game itself, or any
of the strategies, is stochastic.

As a summary, we consider the following setting:

• The input is a K×K oracle, which outputs a random realization of
Mi, j when its input is (i, j).

• The complexity measure is the number of times the oracle is called,
given that the oracle can compute C outputs simultaneously, for C in-
puts (i1, j1), . . . ,(iC, jC). We refer to this complexity as parallel oracle
complexity.

• The goal is to output an ε-approximation of a Nash equilibrium, with
probability 1−δ .

Setting 2: approximate Nash equilibria of stochastic oracles
on parallel machines.

This is realistic in various situations:

1. Scenario planning: Mi, j is the reward when making the technological de-
cision i and an expensive simulator provides a (randomized) outcome for
scenario j. Typically,

(a) the random part (i.e. the fact that Mi, j is a random variable) comes
from some random process within the oracle, e.g. when optimiz-
ing power systems investments on average over possible weather out-
comes.

(b) the different scenarios are political (e.g. problems in gas supply)
and technological (improvements in solar power or electricity stor-
age). An example of scenario-based power systems optimization is
[Dong et al., 2011].

2. Choice of opening books in games: Mi, j is the reward when choosing
opening book i and when the opponent chooses the opening book j. In
[Gaudel et al., 2011], Mi, j is obtained by simulations with Monte Carlo Tree
Search, which is stochastic.
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3. Choice of parameters for an agent playing a game: Mi, j is the reward when
choosing parametrization i and when the opponent chooses parametrization
j. This is for example done in [St-Pierre and Teytaud, 2014].

We present algorithms in the case of symmetric games, as in
[Grigoriadis and Khachiyan, 1995]. This means that M is a square matrix
and ∀i, j, Mi, j =−M j,i.

9.2.2 Algorithms
[Grigoriadis and Khachiyan, 1995] propose a parallel randomized algorithm spe-
cific to Setting 1 that we adapt to Setting 2 (labeled AdaptedGK) and present in
Algorithm 9.1. The key point is to provide a reliable stopping criteria. In the
original framework, the algorithm stops when a given variable (namely Ui/t, see
Alg. 9.1) is small enough. In Setting 2, this variable is stochastic, hence it does
not make any sense to keep the same criteria. We then fix in advance the number
of iterations (see Theorem 9.3.1) so that with high probability, the output of the
algorithm is an ε-optimal strategy.

We also propose 2 variants of AdaptedGK for the parallel case with C proces-
sors. The first variant is called NaiveParaGK. The idea behind NaiveParaGK is
to basically resample n times each request to M, with n = dC/Ke. Algo-
rithm 9.2 presents such a variant. The second variant is labeled ParaGK. While
NaiveParaGK focuses on reading n times the same entry, ParaGK chooses simul-
taneously n columns rather than just one. Thus, it evaluates and updates them all
simultaneously (in parallel). Algorithm 9.3 presents this variant.

Moreover we propose ParaNash (Algorithm 9.4), a different approach de-
signed for a parallel machine with K2 processors. The idea is to read each element
of the matrix per iteration and update our knowledge of the matrix M accordingly.
As for AdaptedGK , the stopping criteria is also the key point of this algorithm, see
Theorem 9.3.2. In terms of implementation, this algorithm is simple and elegant.

For the sake of readability, the algorithms’ pseudocodes are presented at the
end of this chapter.

9.3 Theory
We consider Setting 2 (see Section 9.2.1), namely the complexity in terms of
the number of requests to the matrix M only. Section 9.3.1 investigates the perfor-
mance of AdaptedGK, the Grigoriadis and Khachiyan’s original algorithm adapted
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to Setting 2, and shows that we recover existing rates for this more general case.
Section 9.3.2 then investigates the performance of ParaNash.

9.3.1 Extension of Grigorias and Khachiyan’s result to set-
ting 2

As a reminder, the setting is different from [Grigoriadis and Khachiyan, 1995]
because in this work we consider Mi, j as an oracle, providing realization(s) of a
random variable Mi, j with expectation ai, j, whereas in Grigoriadis’ work Mi, j are
constants. We show that AdaptedGK remains valid within such a framework.

Theorem 9.3.1. Given a symmetric game, for δ ∈ (0,1),ε > 0, with probability
1−δ , Algorithm 9.1 with parameter t∗ =

⌈
3log(4K/δ )

ε2

⌉
provides x such that (x,x)

is at most 3ε-optimal.

Proof. The proof in [Grigoriadis and Khachiyan, 1995] cannot be directly ap-
plied to our framework, because they consider a deterministic matrix M. In
[Grigoriadis and Khachiyan, 1995], each call to the oracle requesting Mi, j gets ex-
actly the same value, whereas we assumed a probability distribution: each call to
Mi, j returns an independent realization of some random variable, with expectation
ai, j = E[Mi, j].

However, the proof in [Grigoriadis and Khachiyan, 1995] can be adapted to
this setting, using a slightly adapted algorithm, AdaptedGK (Alg. 9.1).

Let A = (ai,k)(i,k)∈{1,...,K}2 be such that ∀(i,k) ∈ {1, . . . ,K}2, E[Mi,k] = ai,k.
The notations follows those of Alg. 9.1 and ‖.‖ denotes the maximum norm. Pi(t)
(resp. Ui(t), (AX)i(t)) denotes the i-th coordinate of vector P (resp. U , AX) at the
end of iteration t ≥ 1.

As the game is symmetric, proving the 3ε-optimality of x with probability
1−δ boils down to prove that ‖Ax‖ ≤ 3ε with probability 1−δ .

Step 1: First we prove that with probability 1− δ/2,
∥∥∥U(t)

t −
AX(t)

t

∥∥∥ ≤ 2ε

provided that t is big enough.
Assume that the algorithm selects an index k ∈ {1, . . . ,K} at iteration t. First,

∀i ∈ {1, . . . ,K}, (Ui(t)− (AX)i(t)) is a martingale:

∀i ∈ {1, . . . ,K}, Ui(t)− (AX)i(t) =Ui(t−1)− (AX)i(t−1)+(Mi,k−ai,k),

Hence, E[Ui(t)− (AX)i(t)|t−1] =Ui(t−1)− (AX)i(t−1).
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Second, for all i and k, |Mi,k − ai,k| ≤ 2. So, Azuma-Hoeffding in-

equality2 leads to P
(∣∣∣Ui(t)−(AX)i(t)

t

∣∣∣≥ 2ε

)
≤ 2exp

(
−tε2

2

)
. By union bound,∥∥∥U(t)

t −
AX(t)

t

∥∥∥≤ 2ε with probability 1−δ/2 if t ≥ 2log(4K/δ )
ε2 .

Step 2: Then we prove that with probability 1−δ/2,
∥∥∥U(t)

t

∥∥∥≤ ε if t is conve-
niently chosen.

From Lines 8 and 11 in Alg. 9.1, for all i∈{1, . . . ,K}, Pi(t) = φi(t)/∑
K
j=1 φ j(t)

where φi(t) = exp(εUi(t)/2). The potential function Φ(t) is defined by: Φ(t) =
∑

K
i=1 φi(t). If the algorithm selects the index k ∈ {1, . . . ,K}, then:

Φ(t +1) = Φ(t)
K

∑
i=1

Pi(t)exp
(
εMi,k/2

)
and E[Φ(t +1)|Φ(t)] = Φ(t)

K

∑
i,k=1

Pi(t)Pk(t)exp
(
εMi,k/2

)
.

As Mi,k ∈ [−1,1], ∀ε ∈ (0,1], exp
(
εMi,k/2

)
≤ 1+ ε

2Mi,k +
ε2

6 . Furthermore,
∑

K
i,k=1 Pi(t)Pk(t)ai,k = 0 (as ai, j =−a j,i) and ∑

K
i,k=1 Pi(t)Pk(t) = 1.

As a result, E[Φ(t + 1)] ≤ E[Φ(t)]
(

1+ ε2

6

)
, which implies that

E[Φ(t)]≤ K exp{tε2/6}.

Hence, by Markov’s inequality, with probability 1−δ/2, Φ(t)≤
2K exp

(
tε2
6

)
δ

.

Then by definition of Φ(t), with probability 1−δ/2, φi(t)≤
2K exp

(
tε2
6

)
δ

for all
i ∈ {1, . . . ,K}, which leads to:

exp(εUi(t)/2)≤
2K exp

(
tε2

6

)
δ

Ui(t)/t ≤ 2
εt

log

2K exp
(

tε2

6

)
δ

 .

Then, with probability 1−δ/2, Ui(t)/t ≤ ε if t ≥ 3log(2K/δ )
ε2 .

To conclude, by triangular inequality, the result holds as soon as

2Azuma-Hoeffding inequality is a generalization of Hoeffding’s inequality for martingales.
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t∗ ≥max
{

2log(4K/δ )
ε2 , 3log(2K/δ )

ε2

}
, that is, t∗ =

⌈
3log(4K/δ )

ε2

⌉
as stated in the

theorem.

Definition 9.3.1 (Exploitability). Let (p∗,q∗) be a Nash equilibria and v= p∗Mq∗

its corresponding value. Then, the exploitability of p, mixed policy for the row
player, is v−minq′ pMq′ (q′ non-negative vector summing to 1). The exploitability
of q, mixed policy for the column player, is maxp′ p′Mq−v (p′ non-negative vector
summing to 1). The exploitability of (p,q) is the average of the exploitability of p
and of the exploitability of q. In particular, an ε-approximate Nash equilibrium is
at most 2ε-exploitable.

Corollary 9.3.1 (Logarithmic parallel time for AdaptedGK with K processors). If
t∗ is such that

t∗/ logK→ ∞ as K→ ∞,

and

ε =

√
3log(4K/δ )

t∗
, (9.1)

then the exploitability of (x,x) proposed by Alg. 9.1 converges weakly to 0 as
K→ ∞.

Proof. Theorem 9.3.1 shows a bound for the precision ε of the form
O(t∗/ log(K)), hence the expected result.

NaiveParaGK is similar to Alg. 9.1; it only reduces the variance by averaging
over additional resamplings. Therefore the result also applies to this case, using
K2 processors instead of K processors.

9.3.2 Another algorithm with K2 processors: ParaNash

Theorem 9.3.2 (Performance of ParaNash with K2 processors). Assume
δ ∈ (0, 1

2) and K > 1. Then with time budget

t∗ =

⌈
4log(K)−2log(−11log(1−δ )

24 )

ε2

⌉
,

Alg. 9.4 provides a 2ε-approximated Nash equilibrium (p,q) with probability at
least 1−δ .
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Proof. The notations are those of Algorithm 9.4. Let us assume that

t∗ ≥ 4log(K)−2log(−11log(1−δ )
24 )

ε2 . (9.2)

Step 1: A precision ε on the matrix ensures a 2ε-optimality for the approxi-
mate Nash.

Define ε = supi, j |M′i, j− ai, j|, and assume that (p,q) is the Nash equilibrium
for M′.

We prove that (p,q) is at most 2ε-optimal for A = (ai, j)(i, j)∈{1,...,K}2 such that
E[Mi, j] = ai, j.

Define fZ(p,q) = ∑1≤(i, j)≤K piZi, jq j. Then, for any strategy p′,

fA(p,q)≥ fM′(p,q)− ε ≥ fM′(p′,q)− ε ≥ fA(p′,q)−2ε.

Symmetrically, fA(p,q) ≤ fA(p,q′) + 2ε for any strategy q′, which shows that
(p,q) is 2ε-optimal.

Therefore, it is sufficient to show that supi, j |M′i, j−ai, j| ≤ ε .
Step 2: We show that with probability at least 1−δ , we have a precision ε on

the matrix, i.e. supi, j |M′i, j−ai, j| ≤ ε .
Define δ ′ = P(supi, j |M′i, j−ai, j|> ε); we have to show that δ ′ ≤ δ .
Define d = supi, j P(|M′i, j−ai, j|> ε). Then by independence and union bound

δ
′ ≤ 1− (1−d)K2

. (9.3)

We recall that M
′
i, j =

∑
t∗
k=1 Mi, j,k

t∗ , where Mi, j,k ∈ [−1,1] is an independent random
variable with expectation ai, j, ∀ k ∈ {1, . . . , t∗}. By Hoeffding’s inequality, we get

d ≤ 2exp
(
−2t∗ε2

22

)
. (9.4)

By Eq. 9.3 and Eq. 9.4, δ ′ ≤ 1−
{

1−2exp
(
−2t∗

(
ε

2

)2
)}K2

,

{
1−2exp

(
−2t∗

(
ε

2

)2
)}K2

≤ 1−δ
′,

log
{

1−2exp
(
−2t∗

(
ε

2

)2
)}
≤ log(1−δ ′)

K2 ,

1−2exp
(
−2t∗

(
ε

2

)2
)
≤ exp

(
log(1−δ ′)

K2

)
. (9.5)
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Using Eq. 9.2,

1−2exp
(
−2t∗

(
ε

2

)2
)
≥ 1+

11log(1−δ )

12K2 .

Combined with Eq. 9.5, this provides

1+
11log(1−δ )

12K2 ≤ 1−2exp
(
−2t∗

(
ε

2

)2
)

≤ exp
(

log(1−δ ′)
K2

)
. (9.6)

We now use, for x ∈ [log(1
2)/4,0], exp(x)≤ 1+ 11

12x.
0 < δ ≤ 1

2 and K > 1 imply that x ∈ [log(1
2)/4,0] with x = log(1− δ )/K2.

Therefore,

exp
(

log(1−δ )

K2

)
≤ 1+

11log(1−δ )

12K2 . (9.7)

Eq 9.6 and Eq. 9.7 imply

exp
(

log(1−δ )

K2

)
≤ exp

(
log(1−δ ′)

K2

)
.

which leads to δ ′ ≤ δ .

Corollary 9.3.2 (Logarithmic parallel time for ParaNash with K2 processors). If
t∗ is defined as a function of K and

t∗/ logK→ ∞ as K→ ∞,

then the exploitability of (p,q) proposed by Alg. 9.4 converges weakly to 0 as
K→ ∞.

Proof. Theorem 9.3.2 shows a bound for the precision ε of the form
O(t∗/ log(K)), hence the expected result.

ParaNash does not have a better bound than NaiveParaGK. However, we have
the same bound in the general adversarial stochastic case, and ParaNash has triv-
ially a time bound O(1) for finding the exact solution when the variance vanishes,
whereas other algorithms do not. In this sense, we have a better bound in the
noise-free case, and we expect better results empirically due to this better behav-
ior in some cases.
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9.4 Experiments
In this section we evaluate the performance of approximating a Nash equilib-
rium with the 4 algorithms introduced previously. The first one is the adapted
Grigoriadis and Khachiyan algorithm (AdaptedGK), which serves as the baseline;
it does not use the additional processors. The second and the third one under
study are the variants of Grigoriadis and Khachiyan presented in Section 9.2,
namely NaiveParaGK and ParaGK. Fourth and last is our main algorithm, labeled
ParaNash.

Note that our experiments are performed with non-symmetric games, which
is not a problem as algorithms can be easily adapted to such a setting by a simple
reduction presented in [Dantzig, 1963, Grigoriadis and Khachiyan, 1995]; if M
is a matrix K×K

′
, then we can build the following matrix M ′:

M ′ =

 0 M −e
−M t 0 e

et −et 0


with e a (K×1)-matrix with all coefficients equal to 1 and with t the transposition
operator. This (K +K′+ 1)× (K +K′+ 1) matrix verifies M ′t

i, j = −M ′
j,i and

has values in [−1,1] if M has values in [−1,1]. Additionally, an ε-approximate
Nash equilibrium of M can be easily recovered from an ε-approximate Nash
equilibrium of M ′, as follows:

• Assume that (w,w) is a Nash equilibrium of M ′; w is a vector of length
K +K′+1.

• Then, split w = (y,x,u) where y has length K, x has length K′, u is a real
number.

• Then, (x,y) is a O(ε)-approximate Nash equilibrium of M , as explained in
[Dantzig, 1963, Grigoriadis and Khachiyan, 1995].

Section 9.4.1 evaluates the performance of the algorithms on randomly uni-
formly drawn Bernoulli parameters, Section 9.4.2 studies other distributions and
Section 9.4.3 exhibits some results on the Pokémon problem.

9.4.1 Randomly uniformly drawn Bernoulli parameters
In this section, we consider Bernoulli rewards. At the beginning of each exper-
iment, for each (i, j), ai, j is randomly drawn uniformly in [0,1]; then, for each
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(i, j), the reward Mi, j when Player 1 plays i and Player 2 plays j is randomly uni-
formly drawn as a Bernoulli random variable with parameter ai, j. The budget is
fixed to t∗ = d(logK)αe. The X-axis represents the number of possible choices K
and the Y-axis shows the exploitability. Figure 9.1a uses α = 2.5 and Figure 9.1b
uses α = 1.5 which discriminates better among the algorithms. Each experiment
is repeated 1 000 times and standard deviations are of the order of magnitude of
10−5. Results are displayed in Figure 9.1.
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(b) α = 1.5

Figure 9.1: Results for a fixed t∗ = dlog(K)αe with α = 2.5 and α = 1.5 respec-
tively. X-axis: K. Y-axis: exploitability.

Based on the Corollaries 9.3.1 and 9.3.2, we should observe that each algo-
rithm converges toward 0. We observe in Figure 9.1a that all algorithms have their
exploitability converging to 0. There is however a discrepancy in the quality of
the performance, with ParaNash and ParaGK being superior to AdaptedGK and
NaiveParaGK. Thus, it clearly appears that ParaGK is the best variant of the
Grigoriadis and Khachiyan ones in the parallel case. Moreover, the ParaNash al-
gorithm introduced in this paper seemingly outperforms any of the other algo-
rithms when α > 2.

We observe in Figure 9.1b that AdaptedGK and NaiveParaGK seem to con-
verge very slowly toward 0, almost plateauing around 0.25. Again, it appears that
ParaGK is the best variant of the Grigoriadis and Khachiyan ones in this setting
for the parallel case. The ParaNash algorithm introduced in this paper seems to
outperforms any of the Grigoriadis and Khachiyan variants when α < 2.
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9.4.2 Other distributions
We provide experiments with different distributions in Figure 9.2. Figure 9.2a is
similar to Figure 9.1b, but with Bernoulli parameters uniformly drawn in [.45, .55]
rather than [0,1]. In Figure 9.2b, for each (i, j), ai, j is uniformly drawn in
[5/12,7/12]. Then, rewards Mi, j (when Player 1 plays i and Player 2 plays j)
are drawn uniformly in [ai, j−5/12,ai, j +5/12] at each request to the oracle. The
X-axis represents the number of possible choices K and the Y-axis shows the ex-
ploitability. In both cases, the budget is fixed to t∗ = d(logK)αe, with α = 1.5.
Each experiment is repeated 1 000 times and standard deviations are of the order
of magnitude of 10−5.

Both Figure 9.2a and 9.2b confirm the good behaviour of ParaNash over other
problems. In both cases, it clearly appears that ParaGK is the best variant in the
parallel case, outperforming ParaNash in Figure 9.2a. Moreover, we observe
similar albeit slower convergence rate to Section 9.4.1. These problems are harder
to learn than the previous one (Section 9.4.1) because, for the same budget, their
range is smaller. This in turns makes it more difficult to separate based on the
observed values between the rows (and columns). This can explain the slower
convergence rate.
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Figure 9.2: Results for a fixed t∗ = dlog(K)αe with α = 1.5. X-axis: K. Y-axis:
exploitability.
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9.4.3 Experiments on the Pokémon problem

The variant of the Pokémon game used in this experiment3 contains 23 Pokémon,
each of them characterized by its type (12 possibilities), its initial and current
health points, its attacks (the strength of the attack and the requested energy - 5
energy types - to attack), its weakness (12 possibilities, same as type) and its re-
quested energy to escape. Players 1 and 2 both secretly choose 2 Pokémon among
the 23, possibly the same. They choose between 3 actions during the duel: attack,
add an energy type or escape. This game can be split into 2 parts: strategic and tac-
tical. The strategic part consists of choosing a set of Pokémon and the tactical part
represents the actual combat against an opponent. We used an α −β algorithm
for the tactical part with a maximum depth of 8 attacks. For the strategic part,
we further test our approach by computing a probability distribution over K dif-
ferent combinations of couple of Pokémon using the algorithms presented in this
paper. Hence, Mi, j is the result (win (+1), loss (-1) or draw(0)) of the duel between
deck i (containing 2 Pokémon) and deck j (containing 2 Pokémon as well); Mi, j
is stochastic, as the same set of Pokémon can lead to different output, depending
on the policy followed during the tactical part. We use δ = 0.05, and tested sev-
eral values of ε for Alg. 9.1, including the one from Corollary 9.3.1. Results are
presented in Fig. 9.3 for the ε in Corollary 9.3.1 (Eq. 9.1); manually tuning ε did
not provide clear improvement. It clearly appears that the ParaNash algorithm
again outperforms any of the Grigoriadis and Khachiyan variants.

9.5 Conclusion
We have studied the sequential parallel computation time of approximate Nash
equilibria in stochastic adversarial problems. Grigoriadis and Khachiyan, in the
adversarial deterministic case, propose an algorithm which efficiently uses K pro-
cessors (they get a number K/ log(K) of processors with time complexity log(K)2,
but with the parallel oracle complexity they can easily switch to K processors with
parallel oracle complexity log(K)).

Adaptation to the stochastic case
In this chapter, we have proposed variants of Grigoriadis & Khachiyan algorithm,
adapted to Setting 2 (Section 9.2.1), i.e.: (i) Stochastic setting, namely when Mi, j

3We use the implementation from [Tao Group, 2008]
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Figure 9.3: Results on the Pokémon game, with t∗ = dlog(K)αe where α = 2.5
and α = 1.5 respectively. Results are averaged over 1000 runs. X-axis: K. Y-axis:
exploitability.

is a randomized oracle. (ii) More than K processors. AdaptedGK is our adaptation
to Setting 2, using only K processors; we prove (Theorem 9.3.1) that it performs
well in such a case, with the same O(log(K)) bound (parallel oracle complex-
ity with K processors) as in the standard case of Mi, j deterministic (Setting 1).
Corollary 9.3.1 proposes a scaling of ε as a function of t∗ and K. It leads to a
convergence to the optimum; we therefore get a parameter-free version, where the
only parameter is the available computation time and the number K.

Adaptation to K2 processors

We have considered the case of C = K2 processors. First, we have investigated
variants of AdaptedGK for such a case. One of our variants, labelled ParaGK,
outperformed AdaptedGK and NaiveParaGK by far on all our experiments. We
have, however, no proof of the improvement. In terms of theoretical bound, the
comparison is as follows.

Stochastic adversarial case. The proved worst case parallel oracle complexity
is the same (up to constant factors) with C = K2 processors for NaiveParaGK and
ParaNash (Theorem 9.3.2); and it is the same (within constant factors) as
AdaptedGK with only K processors. Therefore the parallelization is moderately
efficient (in terms of proved bounds) if we have no assumption on the noise.
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Deterministic adversarial case. The parallel oracle complexity is O(1) for
ParaNash in the deterministic case with C = K2 processors (because, in this case,
∀(i, j), M′i, j = ai, j), whereas AdaptedGK still has runtime Ω(log(K)) in the deter-
ministic case (see tightness in [Grigoriadis and Khachiyan, 1995]).
The additional processors (K2 instead of K) are therefore (in terms of rates in
the proved bounds) useless in the stochastic case (at least, in terms of exponents
in the rate) and very efficient in the deterministic case. This chapter did not
investigate the intermediate case with low variance. In all our experiments on
hard test cases (randomly drawn matrices, with very little structure to be learnt),
ParaNash and ParaGK significantly outperforms the other algorithms. When the
variance is large, ParaGK performed best; but ParaNash is better for other cases,
including the real-world one (the Pokémon game).

Further work
An immediate further work is the extension of Theorem 9.3.1 to ParaGK, which
is a quite intuitive algorithm, performing well in case of small variance, and for
which we did not prove anything. Exp3 [Auer et al., 1995] might also benefit from
a parallelization similar to ParaGK. Another challenge is the optimality proof in
Theorem 9.3.2, i.e. the complexity in the stochastic adversarial case: with K2

processors, the parallel oracle complexity is O(log(K)) in the general stochastic
case but we did not prove tightness. Another further work is the extension of
presented results to C = dKce processors for c≥ 1,c 6= 2.
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Algorithm 9.1 Grigoriadis and Khachiyan’s algorithm with K processors,
where K ≥ 1, adapted to the case of a stochastic oracle: AdaptedGK.
Input:

an accuracy ε ∈ (0,1], a risk δ ∈ (0,1), K ≥ 1
an oracle M with K rows and K columns. For i, j ∈ {1, . . . ,K}2, Mi, j is an
independent output ∈ [−1,1] with expectation ai, j.

Output:
with probability at least 1− δ , an ε-optimal strategy x for E[M] in parallel
oracle complexity O(ε−2 logK)

1: t∗←
⌈

3log(4K/δ )
ε2

⌉
2: t← 0
3: X ←U ← 0 ∈ RK

4: ∀k ∈ {1, . . . ,K}, Pk← 1/K
5: while t < t∗ do
6: t← t +1
7: Pick a random k ∈ {1, . . . ,K} with probability Pk
8: Xk← Xk +1
9: for i = 1 to K do

10: Ui←Ui +Mi,k
11: end for
12: for i = 1 to K, in parallel do

13: Pi← exp( ε

2Ui)/
K
∑
j=1

exp( ε

2U j)

14: end for
15: end while

return x = X/t
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Algorithm 9.2 NaiveParaGK with C ≥ K2 processors, where K ≥ 1.
Input:

an accuracy ε ∈ (0,1], a risk δ ∈ (0,1), K ≥ 1, C ≥ 1
an oracle M with K rows and K columns. For i, j ∈ {1, . . . ,K}2, Mi, j is an
independent output ∈ [−1,1] with expectation ai, j

Output:
with probability 1− δ , an ε-optimal strategy x for E[M] in parallel oracle
complexity O(ε−2 logK)

1: t∗←
⌈

3log(4K/δ )
ε2

⌉
2: t← 0
3: n← dC/Ke
4: X ←U ← 0 ∈ RK

5: ∀k ∈ {1, . . . ,K}, Pk← 1/K
6: while t < t∗ do
7: t← t +1
8: Pick a random k ∈ {1, . . . ,K} with probability Pk
9: Xk← Xk +1

10: for i = 1 to K do
11: Uik← 0
12: for l = 1 to n in parallel do
13: Uikl ← an independent realization of Mi,k
14: end for
15: for l = 1 to n in parallel do
16: Uik←Uik +Uikl
17: end for
18: Ui←Ui +Uik/n
19: end for
20: for i = 1 to K in parallel do

21: Pi← exp( ε

2Ui)
K
∑
j=1

exp( ε

2U j)

22: end for
23: end while

return x = X/t
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Algorithm 9.3 ParaGK with C ≥ K2 processors, where K ≥ 1.
Input:

an accuracy ε ∈ (0,1], a risk δ ∈ (0,1), K ≥ 1, C ≥ 1
an oracle M with K rows and K columns. For i, j ∈ {1, . . . ,K}2, Mi, j is an
independent output ∈ [−1,1] with expectation ai, j

Output:
an ε-optimal strategy x for E[M] in parallel oracle complexity O(ε−2 logK)

1: t∗←
⌈

3log(4K/δ )
ε2

⌉
2: t← 0
3: n← dC/Ke
4: X ←U ← 0 ∈ RK

5: ∀k ∈ {1, . . . ,K}, Pk← 1/K
6: while t < t∗ do
7: t← t +1
8: for l = 1 to n in parallel do
9: Pick a random k ∈ {1, . . . ,K} with probability Pk

10: Xk← Xk +1/n
11: for i = 1 to K in parallel do
12: Ui←Ui +Mi,k
13: end for
14: end for
15: for i = 1 to K in parallel do

16: Pi← exp( ε

2Ui)/
K
∑
j=1

exp( ε

2U j)

17: end for
18: end while

return x = X/t
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Algorithm 9.4 ParaNash with K2 processors.
Input:

an accuracy ε ∈ (0,1), a risk δ ∈ (0,1/2), K > 1
an oracle M with K rows and K columns. For i, j ∈ {1, . . . ,K}2, Mi, j is an
independent output ∈ [−1,1] with expectation ai, j.

Output:
an ε-optimal strategy (p,q) for E[M] with probability at least 1−δ , in parallel
oracle complexity O(ε−2 logK)

1: t∗←
⌈

4log(K)−2log(− 11log(1−δ )
24 )

ε2

⌉
2: for t = 1 to t∗ do
3: ∀i, j ∈ {1, . . . ,K}2 sample Mi, j in parallel using K2 processors, get Mi, j,t
4: end for
5: M′← the average obtained matrix, i.e. M′i, j =

1
t∗ ∑

t∗
t=1 Mi, j,t

6: (p,q)← a Nash equilibrium of M′

return (p,q)



Chapter 10

Multivariate bias reduction in
capacity expansion planning

This chapter is based on:
Cauwet, M.-L. and Teytaud, O. (2016a). Multivariate bias reduction in capac-

ity expansion planning. In Power Systems Computation Conference, PSCC 2016,
Genoa, Italy, June 20-24, 2016, pages 1–8

To end on the topic of difficult noisy cases, we propose in this chapter a sta-
tistical method for handling a finite - and small - data sample. Especially, this
is the only part of the present document which does not assume that we have a
generative model at hand. We recall in Section 10.1 the setting and challenges of
this particular case, introduced in Chap. 1 Section 1.2.3.

10.1 Optimization of power systems capacities:
Sample Average Approximation & bias

Quantifying the optimal connection and storage capacities at the scale of a con-
tinent or more is a multistage, stochastic and high-dimensional problem. It is
multistage due to coupling constraints between time steps, such as stock consis-
tency and warm up costs. Stochasticity comes from the limited precision fore-
casts: the need for storage and connections varies a lot from one week to another
(e.g. power generation is subject to the vagaries of wind) and from one winter to

180
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another (e.g. water inflows due to snow melting). Moreover, the recent years have
seen an increase in production volatility, due to the raising use of renewable ener-
gies [Pinson, 2013]. It is high-dimensional also since large scale power systems
deal with power grid at the continental scale. On the other hand, the sample com-
plexity, i.e. the amount of data necessary for a relevant optimization of capacities,
increases linearly with the number of parameters and can be scarcely available at
the relevant scale.

Using optimization on average (or risk-aware variants, as well) over a proba-
bility distribution is a standard procedure for such problems. The method heavily
depends on random processes, modelling weather and consumption. Typically,
histories are used, and the objective function is the average cost over this archive
of possible weather scenarios [Shapiro, 2011]: such approaches are termed Sam-
ple Average Approximation (Section 10.2.1). This method is based on the as-
sumption that the performance of a system can be reliably estimated by checking
its performance on the finite set of available past data. They help for fine tuning
power systems capacity expansion planning, because they use statistical effects,
rather than hard N−1 constraints.

We discuss the shortcomings of this approximation (Section 10.2.2) and pro-
pose alternate methods. Section 10.3 details some generic resampling tools, then
model selection (Section 10.4) is considered in order to mitigate the instability of
the resampling method. Section 10.5 presents experimental results.

10.2 M-estimators and bias

In all the chapter, Ês∈Sk(s) is the average 1
n ∑

n
i=1 k(si) if S is a sample S =

(s1, . . . ,sn). ÊN,Sk(s) is the empirical average 1
N ∑

N
i=1 k(si) where (s1, . . . ,sN) is

a random independently identically drawn sample from S. ES denotes the expec-
tation over the random process S. |Ω| denotes the cardinality of a set Ω.

10.2.1 Sample Average Approximation (SAA)
We denote by f (s,x) the cost when choosing investment x and s is a realization
of the random process S. We want to find x∗ such that ES f (s,x∗) is minimal.
The Sample Average Approximation (SAA) consists in tackling this optimization
problem through the use of samples, as the random process is rarely available. We
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consider x̂(S) = x̂1 minimizing:

x 7→ Ês∈S f (s,x) =
1
n

n

∑
i=1

f (si,x),

with S = (s1, . . . ,sn) a sample of independent realizations of the random pro-
cess S. Commonly S is an archive. This means that x̂ is a M-estimator; it approx-
imates a minimum over a finite sample. When it is obtained by minimizing an
empirical estimate as above, it is termed an Empirical Risk Minimizer (ERM) -
but not all M-estimators are ERM. For power systems, we need detailed informa-
tion, which is available for moderate values of n. n is typically between 5 and 100
depending on problems [NERC, 2013, Whitmarsh et al., 2012]. 100 is optimistic
as old data is less relevant due to climate change (though corrections are possible),
erroneous measurements and missing values.

10.2.2 Bias & Simple Regret
Let us discuss the precision of the SAA in terms of quality of the obtained rec-
ommendation. The amount of data samples necessary to estimate properly the
parameters of a system increases with the VC-dimension [Vapnik, 1995], which
is linear in the number of parameters in smooth cases [Devroye et al., 1997]. The
amount of data requested for a given precision is termed the sample complexity. It
also increases with the time constants of the problem; if the random processes are
only approximately independent when they are 10 years apart from each other,
the sample complexity might be multiplied by 10. The sample complexity also
increases, typically, quadratically in the inverse precision. Hence, optimizing ca-
pacities (both generation capacities and network capacities) against a finite sam-
ple can lead to a bias. This bias is usually termed overfitting in machine learn-
ing [Vaart and Wellner, 1996, Vapnik and Chervonenkis, 1968]. Typically, when
SAA is applied, risks are underestimated, and therefore capacities dealing with
uncertainties are underestimated, while uncertain assets are overestimated. SAA
leads to invest too much in volatile production capacities, but not enough in net-
work and storage capacities.

Let e be an estimate of a quantity x∗, depending on some stochastic random
variable S. Then, the bias b of e is defined by:

b = ESe(S)− x∗.

1When needed, the sample S on which the estimate is computed will be specified.
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The stochastic random variable S is the sample (i.e. S in Section 10.2.1). In many
cases, the bias of the ERM estimate x̂ defined in Section 10.2.1 is significantly non
zero, though it goes to zero asymptotically in the data size [Devroye et al., 1997].

The concept of bias is less widely used in optimization, in particular in the
field of large scale power systems, where the huge size of optimization problems
makes deterministic optimization already quite hard. However it turns out that,
in a renewable energy world, stochasticity really matters [Pinson, 2013]. So this
chapter proposes to estimate the bias, and to take it into account in order to im-
prove estimates of x∗.

We define a criterion that measures the quality of an estimate of x∗. The Simple
Regret of an estimate e is:

SRe = ES f (s,e)−ES f (s,x∗).

This is a random variable: the expectation operators operate on s with distribu-
tion S, and SRe therefore depends only on the (possible) internal randomization
of the estimator e. An estimate of the Simple Regret of estimator e will be denoted
ŜRe.

The ERM estimate x̂ introduced in Section 10.2.1 is not necessarily the op-
timal one; the purpose of this chapter is to propose some estimates with Simple
Regret less than SRx̂. For this, we propose in Section 10.3.1 the use of bias cor-
rection tools, namely Jackknife (JK) and Bootstrap (BS). In addition, we reduce
the variance of these resampling estimators by a so called dimension reduction
method in Section 10.3.2.

10.3 Bias reduction
This section presents resampling estimates, i.e. tools for estimating the bias based
on subsamples. Consider a sample S = (s1, . . . ,sn) of n realizations of a random
process S. Resampling consists in splitting S into Ŝ and Ŝ′, usually disjoint. Sev-
eral such splits could be considered, leading to Ŝ1, . . . , ŜN , and their counterparts
Ŝ′1, . . . , Ŝ

′
N .

10.3.1 Resampling estimates for bias reduction
Jackknife (JK) or Leave-One-Out (LOO). The Jackknife resam-
pling [Quenouille, 1949], also known as leave-one-out, uses the n subfamilies
Ŝ1, . . . , Ŝn of cardinal n − 1 defined by Ŝi = (s1, . . . ,si−1,si+1, . . . ,sn). The
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complementary family Ŝ′i is Ŝ′i = (si) = S \ Ŝi. When not all these Si are required,
we can consider a random sample. Ŝ is then randomly uniformly distributed
among Ŝ1, . . . , Ŝn and Ŝ′ is the complementary family. Let us consider ˆ̂x = x̂(Ŝ)
and still x̂ = x̂(S). ˆ̂x depends on Ŝ; it is randomized. This means that in ˆ̂x, we
consider the classical M-estimator, but applied to Ŝ instead of S. The proper
bias-corrected estimator for Jackknife x̂JK is [Quenouille, 1949, Efron, 1982]:

x̂JK = nx̂− (n−1)ÊN,Ŝ
ˆ̂x = nx̂− (n−1)

[
1
N

N

∑
j=1

x̂(Ŝ j)

]
,

where Ŝ is the random variable defined previously and (Ŝ1, . . . , ŜN) are N realiza-
tions of Ŝ.

Bootstrap (BS). With n the cardinality of the sample S, Bootstrap considers Ŝ a
family of n points, randomly drawn in S, with replacement. Without replacement,
this would not make any sense, as Ŝ would be equal to S; but with replacement,
it is known that the difference between Ŝ and S can provide information on the
difference between S and the original random process S [Efron, 1982]. In Boot-
strap, Ŝ′ can also be defined (it is the complementary family of Ŝ in S); however we
do not need it in the present chapter. In the case of Bootstrap, the bias-corrected
estimator is:

x̂BS = 2x̂− ÊN,Ŝ
ˆ̂x = 2x̂−

[
1
N

N

∑
j=1

x̂(Ŝ j)

]
,

where Ŝ is the random variable defined in the Bootstrap resampling and
(Ŝ1, . . . , ŜN) are N realizations of Ŝ.

x̂JK is usually a better estimate than x̂BS, though it is also sometimes men-
tioned that Bootstrap is more versatile [Wellner, 2014]. We will term these es-
timates bias-corrected estimates. However, the bias, after this correction, is not
necessarily zero; it is just, in general, smaller than the bias of x̂. The variance, on
the other hand, is larger [Scholz, 2007].

10.3.2 Dimension reduction for bias reduction
Let us consider x̂r a bias-corrected estimate based on resamplings (r stands for re-
sampling), either x̂BS (Bootstrap) or x̂JK (Jackknife). x̂r has a smaller bias than the
original estimate x̂, but possibly a larger variance. In high-dimension, x̂r might be
very noisy, and, due to this, we might have ESRx̂r > ESRx̂, where the expectation
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refers to the random sample S and to the internal randomization of the estimators,
including the resampling step.

We define the absolute dimension reduction as follows:

x̂′r =
µ(x̂r)

µ(x̂)
x̂, (10.1)

with µ(v) the average of a vector v. This only makes sense if the different
capacities have some sort of homogeneity: (x̂)1,. . . ,(x̂)d have the same unit and
similar biases, where we denote by (x̂)i the ith component of vector x̂ ∈ Rd .

We also define the relative dimension reduction as follows:

x̂′′r = µ(x̂r/x̂)x̂, (10.2)

where u = v/w denotes the componentwise division of vector v by vector w,
i.e. (u)i = (v)i/(w)i for i ∈ {1,2, . . .d} if v ∈ Rd and w ∈ Rd .

We will see in our experiments (Section 10.5.3) that the absolute version works
better than the relative one.

10.4 Model selection

When several estimates are available, e.g. x̂A1(S), x̂A2(S), . . . , x̂Ak(S), it makes
sense to “guess” which one is the best for the data at hand, in order to get a meta-
estimate x̂meta(S), which is, depending on some decision rule, equal to x̂Ai∗ (S) for
a i∗ ∈ {1, . . . ,k}. In our case, model selection can be used for determining which
tool, between bias correction methodology and more classical tool such as ERM,
should be preferred.

We consider several variants for model selection: classical Cross-Validation
(Section 10.4.1) and a recent modification of Cross-Validation, namely Penalized-
CV (Section 10.4.2). Using these tools, we combine several estimates into a meta-
estimate (Section 10.4.3). The margin method is then proposed for robustification
purpose (Section 10.4.4).

As in Section 10.3, we consider a sample S = (s1, . . . ,sn) of n realizations
of the random process S, a subfamily Ŝ of S and its complementary subfamily
Ŝ′ = S\ Ŝ.
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10.4.1 Leave-k-out (Lk) for model selection

Cross-Validation in which the cardinal of Ŝ′ is k is termed leave-k-out (Lk). Lk
considers the random variable Ŝ uniformly distributed among the subfamilies of S
of cardinal n− k. Leave-one-out is a special case of Cross-Validation, with k = 1.
For model selection, it is classical to use Ŝ′ for testing the estimate built on
Ŝ. Given an estimate e(S), depending on a sample S, we define the Lk Cross-
Validation error estimate ˆ̂fLk(e) by:

ˆ̂fLk(e) = Êl,(Ŝ,Ŝ′)Ês∈Ŝ′ f (s,e(Ŝ))

=
1
l

l

∑
j=1

1
|Ŝ′j|

∑
s∈Ŝ′j

f (s,e(Ŝ j)),

This means that we randomly draw Ŝ and its complementary family Ŝ′, l times,
and each time we build an estimate e(Ŝ) which is tested on Ŝ′. The average result
is an estimate of ES f (s,e(S)).

For l large enough, increasing k in Lk reduces the variance of ˆ̂fLk(e) as an
estimate of the real loss ES f (s,e(S)), but increases the bias. Penalization (intro-
duced in Section 10.4.2) is a tool for reducing the bias of Cross-Validation, with a
moderate increase of the variance.

10.4.2 Penalized-Cross-Validation for model selection (penk-F)
Cross-Validation is classical; we present the Penalized-Cross-Validation method,
which, interestingly, is a recent method necessary for making our tool effective in
practice.

The Cross-Validation estimates ˆ̂fLk(e) is biased since the training data set Ŝ is
smaller than the real data set S. Penalized-Cross-Validation [Arlot, 2008] has been
designed to counteract this effect. Informally, it consists in adding a penalization
to the current estimated cost. The penalization penk-F is built on S and Ŝ. Given
an estimate e, and a sample S, we define:
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ˆ̂fpenk-F(e) = Ês∈S f (s,e(S))+C · pen(S,e). (10.3)

with pen(S,e) = Êl,Ŝ

[
Ês∈S f (s,e(Ŝ))− Ês∈Ŝ f (s,e(Ŝ))

]
,

=
1
l

l

∑
j=1

 1
|S|∑s∈S

f (s,e(Ŝ j))−
1
|Ŝ j| ∑

s∈Ŝ j

f (s,e(Ŝ j))

 .
Ŝ is a random variable as in the Cross-Validation section and C is an overpe-

nalization constant. In other words, we randomly draw l times a subsample (of
size n− k) Ŝ from S, each time we build an estimate e(Ŝ) which is tested both on
S and Ŝ. The average difference between these costs is the penalization, and the
estimate of ES f (s,e(S)) is given by Equation 10.3; it is provably optimal in some
simple cases [Arlot, 2008].

10.4.3 Meta-estimate using model selection
Typically, we will define for example

x̂meta,Lk(x̂, x̂JK) =

{
x̂ if ˆ̂fLk(x̂)<

ˆ̂fLk(x̂JK) (i.e. ŜRx̂ < ŜRx̂JK )
x̂JK otherwise

We use the Jackknife-corrected estimator if it is seemingly better (i.e. with a
smaller estimate Simple Regret) than the simple M-estimator for the Leave-k-out
Cross-Validation. More generally, given k estimators x̂A1, . . . , x̂Ak , and a model se-
lection MS, x̂meta,MS(x̂A1 , . . . , x̂Ak) is equal to the estimate x̂Ai∗ which is considered

the best by the model-selection MS, i.e. such that ˆ̂fMS(x̂Ai∗ ) is minimum.

10.4.4 The margin method
Let us consider the case in which we have k estimators (x̂A1 , . . . , x̂Ak). Let us
assume that A1 is the default solution (ERM, in our case), that we wish to outper-
form with our new estimate. We use Penalized-Cross-Validation for selecting one
of them. Let us call x̂meta the resulting estimate, equal to x̂Ai∗ , for a i∗ ∈ {1, . . . ,k},
depending on the Penalized-Cross-Validation results. The result is satisfactory in
most cases, but there are test cases in which x̂A1 is better than x̂Ai∗ with 1 6= i∗,
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because the Penalized-Cross-Validation fails in finding the best among the k esti-
mates. Then, we propose the following method, termed margin method: instead
of comparing the estimated Simple Regrets (ŜRA1, . . . , ŜRAk), of (x̂A1, . . . , x̂Ak) re-
spectively, compare ((1− γ)ŜRA1, ŜRA2 , . . . , ŜRAk), for some γ ∈ (0,1). Then, we
expect the estimator x̂meta to be more robust, in the sense that it is rarely worse
than the original x̂A1 - the (k− 1) others estimates (x̂A2 , . . . , x̂Ak) are used only if
the model selection considers x̂A1 to be outperformed by far.

10.5 Experiments
Section 10.5.1 presents the experimentation framework, Section 10.5.2 lists the
estimators considered and Section 10.5.3 presents the experimental results.

10.5.1 Test case
Let us consider an electric grid, connected to d distinct areas. An area
i ∈ {1, . . . ,d} is connected to the main grid only through one connection, with
capacity x(i). The connection must be large enough so that the flow does not ex-
ceed the capacity, but larger connections are more expensive. Hence we should
find a good compromise.

The cost function, when the maximum consumption over the year is
s =

(
s(1), . . . ,s(d)

)
, for a non-negative x =

(
x(1), . . . ,x(d)

)
, is

f (s,x) = p×
(

d

∑
i=1

1s(i)>x(i)

)
+

d

∑
i=1

x(i), (10.4)

where

• p is a parameter: it is the penalty in case of fault, compared to the cost of 1
unit of network capacity.

• x(i) is the ith network capacity, i.e. the capacity connecting area number i to
the main grid.

Faults have long lasting consequence, far beyond the time during which the flow
exceeds the capacities; hence the “binary” nature of the penalization. It is a com-
mon practice in power systems [NERC, 2013, Whitmarsh et al., 2012] to consider
the maximum over the year, and not the number of times or number of hours an
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overflow occurs. This is because overflows can lead to various problems, with an
impact lasting long after the overflow itself, thus it does not make sense to con-
sider that an overflow is less important just because it is short or occurred just
once.

For this artificial experiment, the random process s is a discrete distribution
(with support of cardinal 1500) generated as follows: cov standard centered Gaus-
sian random variables are independently randomly drawn, in dimension d, with
cov an integer. Let us define their covariance by V ; hence, V is the identity if
cov→ ∞ but might be far from identity when cov is small. s (resp. log(s) in the
heavily-tailed case) is the d dimensional centered Gaussian with covariance V .

The greater cov, the simpler the problem. Roughly speaking, cov large makes
all areas i ∈ {1, . . . ,d} more similar. Here, log refers to the logarithm with natural
basis. log(x), when x is a d-dimensional vector, refers to (log(x(1)), . . . , log(x(d))).

10.5.2 Estimators
We compare the estimators of Table 10.1. For the meta versions (section 10.4.3),
we also test the version with the penalization method (Section 10.4.2) and with
the “margin” method (Section 10.4.4).

10.5.3 Experimental results
Results with Bias Reduction and Model Selection only. In this section, re-
samplings for model selection are based on #samples/k (see Figs. 10.1, 10.2
and 10.3) random splits of the data into Cross-Validation folds of size k. Sup-
plementary experimental results are presented in the extended material (https:
//www.lri.fr/~cauwet/liste.pdf). We here provide a sample of results.

Figs. 10.1, 10.2 and 10.3 present the Simple Regret(averaged over 200 inde-
pendent runs) of the various estimators in function of the sample size. god refers
to the optimal solution; it has regret 0, by definition. ERM denotes the classical
M-estimator x̂. resample refers to an estimate with bias reduction: x̂BS or x̂JK .
sideRS (resp. sideRS2) refers to x̂′BS or x̂′JK (resp. x̂′′BS or x̂′′JK). CV refers to
x̂meta,L1 (top left and right) or x̂meta,L3 (bottom left and right). For each subfigure:
on the left (both top and bottom) resample, sideRS and sideRS2 are performed
with Bootstrap; on the right (both top and bottom) resample, sideRS and sideRS2
are performed with Jackknife.

In Fig. 10.1 there is a strong bias in the M-estimator, due to the strong penalty
(the loss function has a strong third derivative at the optimum). In this case:

https://www.lri.fr/~cauwet/liste.pdf
https://www.lri.fr/~cauwet/liste.pdf
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Figure 10.1: d = 10, cov = 11, p = 3000, 15 resamplings for the bias corrections,
heavy tail.
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Figure 10.2: d = 10, cov = 11, p = 3, 15 resamplings for the bias correction,
heavy tail.
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Figure 10.3: d = 2, cov = 3, p = 100, 15 resamplings for the bias reduction, heavy
tail.
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Name bias model dim.
correction selection reduction

x̂ none none none
x̂BS Bootstrap none none
x̂′BS Bootstrap none absolute
x̂′′BS Bootstrap none relative
x̂JK Jackknife none none
x̂′JK Jackknife none absolute
x̂′′JK Jackknife none relative

x̂meta,L1(x̂, x̂JK, x̂′JK) Jackknife L1 absolute
x̂meta,L1(x̂, x̂BS, x̂′BS) Bootstrap L1 absolute
x̂meta,L2(x̂, x̂JK, x̂′JK) Jackknife L2 absolute
x̂meta,L2(x̂, x̂BS, x̂′BS) Bootstrap L2 absolute
x̂meta,L3(x̂, x̂JK, x̂′JK) Jackknife L3 absolute
x̂meta,L3(x̂, x̂BS, x̂′BS) Bootstrap L3 absolute

Table 10.1: Estimators compared in the experiments.

• L3 outperforms L1;

• Jackknife outperforms Bootstrap for bias-reduction;

• dimension reduction works well, in particular the absolute variant
(Eq. 10.1).

Then Fig. 10.2 presents a case with a small penalty; the situation is far less
satisfactory, though leave-three-out successfully often selects the naive ERM es-
timator. Compared to Fig. 10.1, the objective function is less skewed, hence the
bias is much smaller and ERM performs well.

In Fig. 10.3, we see that model selection outperforms each of the models: this
shows that the best estimate depends on the drawn sample, and that leave-three-
out was able to “grasp” this effect.

A detailed analysis shows that Jackknife performs better than Bootstrap for
bias reduction when bias correction was already not that bad; on the other hand, it
makes results much worse in some cases in which they were already poor. This is
somehow consistent with the literature (see Section 10.3.1).

L3 performs better than L1 (see Section 10.4.1).
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The dimension reduction performs well in many cases. x̂′rs outperforms the
simple bias reduction x̂rs. So far, x̂′′rs is less efficient. This works even with
cov small, i.e. inhomogeneous areas, as shown by Fig. 10.1. A small penalty
p = 3 (Fig. 10.2) makes it hard for any algorithm to outperform the simple x̂ esti-
mate.

CV & margin method. With the simple Cross-Validation, results are usually
positive, but robustness is a main issue. The new method (i.e. bias reduction
estimates) should never be significantly worse than the old one (i.e. ERM). Typi-
cally, we want to reduce the risk of something going wrong as in Fig. 10.2, where
the best result is indeed the simple ERM. The Penalized-Cross-Validation (Sec-
tion 10.4.2) seems to be a good candidate to perform a reliable selection among
the estimates. Furthermore, to ensure that the bias reduction method is always bet-
ter or equal to ERM, we propose a third ingredient in the selection method, so that
it has a bias in favour of ERM in case of doubt - this is the “margin” methodology
(Section 10.4.4). This will automatically disable the bias correction for problems
which are less risk sensitive - i.e. for which the bias of ERM is lower.

Hence, three model selection methods are compared in the setting of Sec-
tion 10.5.1 to choose among x̂ (default ERM method), x̂JK (ERM estimate cor-
rected by Jackknife), and x̂′JK (ERM estimator corrected by Jackknife with di-
mension reduction as described in Section 10.3.2). These three selection method
are (i) the classical CV (Section 10.4.1); (ii) the Penalized-Cross-Validation de-
scribed in Section 10.4.2 and (iii) the Penalized-CV with margin described in
Section 10.4.4.

There are 24 frameworks, combining dimension d ∈ {2,3,5,10}; cov = d+1,
cov = 10(d+1), cov = 3000(d+1); 15 or 150 resamplings for the bias reduction,
where d is the number of capacities to be estimated. Each dot in Figures 10.4 and
10.5 corresponds to one of the 24 corresponding frameworks, with results aver-
aged over the different sample sizes, namely 6, 12, 18 and 24 samples. Each figure
corresponds to 1 (top), 4 (middle) or 16 (bottom) splits in the Cross-Validation as-
sociated to the “meta” part (model selection); and we distinguish L1 (left), L2
(middle) or L3 (right). Figure 10.4 displays results of the CV method versus the
Penalized-CV method. We use the default C = 5/4× ((#samples/k)− 1). Here
k ∈ {1,2,3} corresponds to the Lk considered. C is used as in Equation 10.3,
overpenalization constant proposed in [Arlot, 2008].

In Fig.10.4, we see that difficult cases (Y-axis above 1) are ◦ and +, namely
penalty 3 and 10 respectively: the classical method sometimes more than doubles
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the SR (X-axis is limited at 2). With the Penalized-CV, the worst cases are around
1.5. The fact that problems occur around these values is reasonable: they are the
cases in which ERM and Jackknife have comparable performance, so that CV
might make a bad choice. In Fig.10.5, we see that the obtained CV method (Y-
axis) is almost always < 1 (hence beneficial), though there are still a few cases
with SR more than in the ERM case. The margin is applied in both cases (CV, and
Penalized-CV.)

The Penalized-Cross-Validation outperforms the standard Cross-Validation -
but there are still cases in which the simple ERM is the best, in particular for
intermediate values of the penalty, when it is difficult to know the best among
ERM and the bias-corrected variants.

It ensues that the best method is the Penalized-CV with 16 splits, L3, Jack-
knife, with 10% margin. Additional results are displayed in Table 10.2. These
results indicate that ERM is the best for intermediate penalties. This fact is not
surprising, these are the cases in which it is hard for CV methods to guess which
estimator is the best. ERM is vastly outperformed in other cases (Fig. 10.5 and
numbers in Table 10.2).

Table 10.2: Performance of Penalized-CV on various values of the penalty p in
Eq. 10.4. The average normalized Simple Regret refers to the expected Simple
Regret obtained by Penalized-CV divided by the expected Simple Regret of the
ERM. Results are averaged over all 24 experiments for each value of p (all possi-
bilities with d ∈ {2,3,5,10} , cov ∈ {(d +1),10(d +1),3000(d +1)}, 15 or 150
resamplings for the bias reduction). The standard deviations are at most 0.015.

penalty 0.1 1 3 10 30 100 3000
average

normalized .90 .98 1.03 1.04 .88 .66 .63
Simple Regret

10.6 Conclusion
This chapter is devoted to the bias correction in empirical risk minimizers, includ-
ing the multivariate case. Many studies are dedicated to capacity expansion plan-
ning for power systems [Saisirirat et al., 2013, Chaudry et al., 2014, NERC, 2013,
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Figure 10.4: Experiments on Penalized-Cross-Validation. X-axis: SR obtained by
the CV method divided by the SR of the naive ERM. Y-axis: SR obtained by the
Penalized-CV method divided by the SR of the naive ERM. Each dot corresponds
to one test case, averaged over the different sample sizes (6, 12, 18, 24). The
markers ×, ∗, ◦, +, �, ˆ , ♦, stand for penalties p = 0.1,1,3,10,30,100,3000
respectively.
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Figure 10.5: Similar to Figure 10.4, but the CV gives a 10% bonus (i.e. “margin”
method) to ERM (i.e. γ = 0.1). Each dot corresponds to one test case, averaged
over the different sample sizes (6, 12, 18, 24). The markers ×, ∗, ◦, +, �, ˆ , ♦,
stand for penalties p = 0.1,1,3,10,30,100,3000 respectively.
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Whitmarsh et al., 2012, Vassena et al., 2003, SYSTINT Workgroup, 2007]. To
the best of our knowledge, bias correction has not been considered. Bias might
be an overlooked serious issue in capacity estimation studies, which are a crucial
part of power system optimization. We have investigated resamplings methods to
reduce this bias.

In our experiments, Jackknife performed better than Bootstrap for correcting
the bias. We improved the results thanks to a dimension reduction methodology.
In high-dimensional cases, with homogeneous capacities to be estimated, averag-
ing the bias correction over multiple capacities leads to a more efficient capacity
correction than estimating each univariate correction alone. This technique pro-
vides an improved bias correction, and does not change the computational cost.
The first variant of dimension reduction, termed absolute, was usually better in
our experiments (Eq. 10.1, compared to Eq. 10.2).

For selecting estimators, Penalized-Cross-Validation outperformed the simple
Cross-Validation. Furthermore, we developed the margin method for ensuring that
the model selection is almost always better than the Sample Average Approxima-
tion method. Admittedly, this can reduce the average performance of the system;
but it leads to the property that the meta-estimate is, in a stable manner, better or
at least equal to the traditional estimate. We believe that such tricks are important
for the acceptance of non-trivial statistical corrections.

Overall, statistical methods such as resampling can greatly increase the per-
formance of capacity estimates - both for bias correction and for model selection.
But there is a huge computational overhead. 100 samples for bias correction and
100 samples for model selection lead to a factor 10 000 on the computational cost.
This is fortunately highly parallel, but the cost is far from being negligible.

Further work. The bias correction methods we propose are adaptations, to opti-
mization, of general principles. A mathematical analysis exists for these tools. On
the other hand, the margin method and the dimension reduction methods are new.
Dimension reduction methods need mathematical analysis; maybe there are better
solutions than the two extreme cases (absolute, as in Eq. 10.1, and relative, as in
Eq. 10.2), for instance by considering groups of related capacities. Mathematical
analysis might help to understand the bias/variance compromise in multivariate
bias reduction of M-estimators (Eq. 10.1). The constant C in Eq. 10.3 is sug-
gested only in a specific setting [Arlot, 2008]; we did not try any optimization
of this constant, so that our results are principled, but improvements might be
possible.



Considering years, in our archive of data, as independent, is an approxima-
tion. This is a reasonable assumption for some parts of the world but not for oth-
ers: studying the impact of this lack of independence is another important further
work [Yu, 1994].

Additional experiments are part of the agenda, including high-dimensional
cases with hundreds of capacities.
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Chapter 11

Summary, Discussion, Perspectives

This Ph.D. thesis deals with noisy optimization problems that can be found in the
context of power systems. It is divided into two parts. The first part is devoted
to the continuous black-box noisy optimization problem. We have discussed the
optimal rates of convergence of comparison-and-value-based algorithms and we
have proposed a way to choose between different noisy optimization algorithms.
The second part is dedicated to the treatment of ‘delicate’ black-box noise. The
chapters in Part II are independent from each other and each of them handles
a different aspect of optimization with respect to uncertainties. We review our
results and propose some extensions. The end of the previous chapters already
contains some conclusion and further work discussion. Thus, we discuss here
broader topics for future research.

11.1 Part I: Summary and Discussion

11.1.1 Summary
Part I is dedicated to the handling of the expectation operator in Eq. 1.2, that we
recall here:

i∗ = argmin
i∈I

max
u∈U

min
p∈P1

min
p′∈P2

Eω∼Π COST(i,u, p, p′,ω). (1.2)

The continuous black-box noisy problem takes an important place, in general,
and in power system optimization, in particular, such as in Direct Policy Search

201
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and Direct Model Predictive Control (see Chap. 8). We worked around the fol-
lowing research question:

What are the optimal convergence rates of various families of black-box
noisy continuous optimization algorithms?

Research Question #4

The case of value-based algorithms in the framework of additive noise was
already well-studied, as described in Chap. 2. We extended it to linear and mul-
tiplicative noise and detailed results regarding Cumulative Regret in Chap. 6. We
incidentally recovered the known results in the additive case. In the linear and
multiplicative cases, Simple and Cumulative Regrets can be optimal at the same
time (with the same parametrization), contrarily to the additive case. In the linear
case, s(SR) = −1 and s(CR) = 0 are optimal whereas in the multiplicative case,
s(SR) = −∞ and s(CR) = 0. In the latter case, we conjecture that the Simple
Regret has a log-linear behaviour.

The case of comparison-based algorithms is more delicate: even in the noise-
free setting, theoretical studies are tedious. We first showed in Chap. 3 that when
dealing with small noise - smaller than multiplicative noise - it is easy to recover
the same rate of convergence as in the noise-free case for an Evolution Strategy,
provided that each search point is resampled.

We then determined a lower bound on the Simple Regret for a large class
of comparison-based algorithms when confronted with additive noise, including
the classical ESs. It was already known (see [Astete-Morales et al., 2014]), that
ESs adapted to noise (resampled-ESs, with polynomial or exponential number of
resamplings in function of the number of iterations) have a log-logarithmically
convergence rate:

s(SR) =
log(SRn)

log(n)
→−α, α > 0.

However, no information was available about the optimal value of α . In this
framework, we have shown in Chap. 4 that this slope −α can not be better than
−1/2 if the search points are sampled ‘close’ to the optimum, i.e. satisfying Eq.
4.5.

Was this lower bound universal, i.e. for every comparison-based algorithm?
We found in Chap. 5 that, on the contrary, comparison-based algorithms can be
fast: −α = −1 for an optimization algorithm which samples far from the opti-
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mum. We expect to find some ESs with such rate of convergence, as long as it
samples search points far from the optimum.

Finally, we proposed a portfolio method to choose between different algo-
rithms. This method guarantees the selection of the algorithm with the optimal
rate of convergence for the noisy optimization problem at hand. It can also miti-
gate the possible ‘bad luck’ in the first iterations; this can be done by creating such
a portfolio using several times the same algorithm, so that ‘lucky runs’ get rid of
‘unlucky runs’. Importantly, detecting the best algorithm so far is very different
from the noise-free case, see the LAG concept.

11.1.2 Perspectives & discussion
Adaptivity. As discussed previously, working on the adaptivity of an algo-
rithm’s parameters (e.g. step-size parameters, noise-related parameters) is an
important task. We have suggested the use of a portfolio to select the best
parametrization at hand. However, it is worth investigating other adaptation meth-
ods. We highlight the original work of [Massé and Ollivier, 2015] in the noise-free
setting. They propose to adapt the step-size of a gradient descent by performing
an online gradient descent on the step-size itself.

Surrogate model. We already mentioned that the use of surrogate models looks
promising. In the noise-free case, [Auger et al., 2005] couples a quasi-random
exploration and a local surrogate algorithm. It was shown that this memetic al-
gorithm is super-linear, but not implementable in practice due to its prohibitive
computational cost. We believe that taking the best of both worlds (evolution-
ary algorithms and value-based methods) could be relevant. However, we are not
aware of any interesting results in the noisy setting.

Parallelization & quasi-random. Adapting efficient tools of the noise-free op-
timization framework is another possibility for improvement.

First of all, when an optimization algorithm calls the oracle several times
within the same iteration step-size, it can be relevant to use parallelization. There-
fore, p simultaneous calls to the objective function are possible when p is the
number of processors or cores. This is particularly relevant if the computa-
tional cost is mainly in the objective function and is constant. In the noise-free
case, [Fournier and Teytaud, 2010, Cauwet et al., 2015] have shown that Evolu-
tion Strategies, Differential Evolution and Particle Swarm Optimization have at



CHAPTER 11. SUMMARY, DISCUSSION, PERSPECTIVES 204

best a linear (in the number of processors) speed-up1 when the order of magnitude
of the population size is the same as the dimension and a logarithmic speed-up oth-
erwise. Extending these results, especially implementing such a parallelization,
to value-free and value-based noisy optimization algorithms could be a pertinent
piece of work.

Regarding ESs in the noise-free setting, it is empirically efficient to re-
place random processes (in the mutation steps) by some quasi-random processes
[Teytaud, 2008]. We believe that applying this technique to their noisy counterpart
could bring some improvement as well.

Evaluation criteria. Relating to evaluation criteria (Simple Regret, Cumulative
Regret, hitting point) of an algorithm, we want to point out some deep discrepan-
cies between noisy and noise-free optimization. As it can be seen in Chap. 7 for
instance, where one unique evaluation does not allow to choose the best of two
noisy optimization algorithms (leading to the LAG concept) whereas comparisons
in the noise-free setting are straightforward. Similar problems arise when we want
to evaluate a noisy optimization algorithm within a testbed setting. How to eval-
uate when a precision is reached? In the noise-free framework, we can decide to
stop the optimization once the algorithm reaches a given precision (e.g. optimal
fitness within precision 10−8). However in a noisy framework, we might have
an excellent recommended point at a certain moment, and then move to a worse
recommendation.

For example, in a noisy discrete setting, with domain D = {0,1} and a noisy
objective function f defined by:

• f (0) = G ,

• f (1) = ε +G ,

where G is a standard Gaussian random variable. Consider the optimization
algorithm which randomly chooses 0 with probability 1/2 and 1 otherwise. Then
the first hitting time is 1.5 on average, whereas for ε small, the time before ‘know-
ing’ which point among 0 and 1 is the best takes an arbitrarily large time.

Hence, it is necessary to find out good criteria in the context of
noisy optimization. A discussion on this topic has been carried out in
[Astete-Morales et al., 2016].

1The speed-up is the factor by which speed is improved when using p2 processors instead of
p1.
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Sampling far vs. sampling close to the optimum. In the noise-free case, the
optimal strategy of a (1+1)-ES on the sphere function is to sample search points
using a step-size proportional to the distance to the optimum. However, we con-
jecture that in the noisy additive case, an optimal rate of convergence can be
reached if we sample ‘far’ from the optimum. In fact, in the noisy additive case,
the closer we are to the optimum, the bigger the noise is. Sampling far from the
optimum cancels this effect and gives more precise information. This conjecture
is supported by the following observations:

• [Jamieson et al., 2012], when sampling at distance no more than O(n−1/4),
have a lower bound on the Simple Regret in Ω(n−1/2) on the family of
strongly convex functions;

• Chap. 4 has shown that Evolution Strategies which sample ‘close’ to the
optimum (proportional to the distance to the optimum) can not do better
than a Simple Regret in Ω(n−1/2) on the family of quadratic functions;

• [Beyer, 1998] advises to ‘mutate large but inherit small!’ in a noisy setting;

• Chap. 5 provides a fast comparison-based algorithm - Simple Regret in
O(n−1) on quadratic functions - which samples ‘far’ from the optimum.

This feature is somehow the continuous optimization counterpart of the explo-
ration vs. exploitation trade-off in multi-armed bandits.

Smart-grids and discrete optimization. A smart grid is composed of various
electric appliances. Various challenging problems arise when dealing with it;
among others, the need to maintain the same frequency for every component.
There is a way to handle this problem with discrete optimization algorithms, such
as (1+ 1)-EA, as follows. Each component is an agent, which can do an action
among K possible actions. The objective function is the deviation to the target
frequency. It depends on the actions of the n different components. In the asyn-
chronized setting (the more realistic), at each iteration,

• play randomly uniformly among the K possible actions with a given proba-
bility;

• play the best action so far otherwise.

This is exactly the (1+ 1)-EA. We need to study the Cumulative Regret (which
is the target in this setting) of such procedure2. What happens if the problem is

2Note that the Simple Regret is already provided by the literature.
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modified, e.g. by adding new components into the grid or if the optimal reward
changes? An insight could come from [Kötzing et al., 2015].

11.2 Part II: Summary and Discussion

11.2.1 Summary
Part II handles, independent of each other, the unit commitment problem in
Chap. 8, non-stochastic uncertainties in Chap. 9 and investment problems with
finite archive in Chap. 10.

Unit commitment problem

Chap. 8 focuses on the sub equation:

p∗ = argmin
p∈P1

Eω∼Π COST(p,ω).

The corresponding problem is recalled:

How to handle the Unit Commitment Problem without assuming:

• the convexity or linearity of the cost function;

• the Markovianity (or equivalently, as discussed above, the moderate
size complexity) of random process?

Research Question #1

We investigated the Direct Model Predictive Control method to address this
question. We proved that this method is able to recover the optimal policy without
requiring linear or convex cost and transition functions and without requiring a
Markovian, simple, random process. From an experimental point of view, this
method is easy to implement on top of a classical MPC algorithm, anytime, stable
and works in a polynomial time.

Non-stochastic uncertainties

Chap. 9 takes place in the setting of Eq 1.3:

i∗ = argmin
i∈I

max
u∈U

COST(i,u), (1.3)
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and is related to the 2nd research question:

How to approximate in a reasonable computational time a Nash equilibrium
in the stochastic adversarial case?

Research Question #2

We adapted in this chapter the Grigoriadis and Khachiyan’s algorithm to the
noisy setting with parallelization. The Nash criterion has the advantage of being
less conservative than the Wald criterion, hence it is relevant in our power system
optimization problem. However, as discussed in Section 1.2.3, a reflection has to
be carried out to adapt such criterion in the power system setting.

Finite archive

Chap. 10 describes a method to tackle the problem of a finite, small archive when
optimizing the capacities of a power system network. This problem was formu-
lated in the following way:

In the context of capacities expansion planning, how to reduce the bias
resulting from a finite (small) archive?

Research Question #3

We proposed to apply existing statistical methods, designed to reduce the bias,
but they were never applied to such a problem, to the best of our knowledge.
We then used a Penalized-Cross-Validation method which guarantees to always
recommend an investment at least as good as the one that would be selected by
the classical method used nowadays.

11.2.2 Perspectives & discussion
Model error vs. optimization error. In an optimization work, the error comes
from two sides: the problem modelling and the optimization process. Whereas
most works focus on reducing the optimization error, the problem modelling is
often neglected and oversimplified models are used (convex costs, Markovian ran-
dom processes). As developed in [Decock, 2014], it is crucial to optimize using a
model as close as possible to the real model. This is the DMPC approach, covered
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in Chapter 8. This approach should be generalized in optimization problems with
similar features. A first step is to optimize using the simplified model but evaluate
the cost of the resulted solution using the real model.

The importance of Cross-Validation. In power systems, the huge dimension
and heavy constraints of the problem lead to a big computational cost, even with a
smart optimization procedure. That is why, once the procedure returns an answer,
the Cross-Validation part is often omitted. However, this phase should always be
taken into account. If the complete method of Chap. 10 is too expensive for the
problem at hand, we suggest to proceed as follows:

• increase the capacities returned by the optimization algorithm by 10%;

• test both the original capacities recommendation and the augmented by 10%
one on some new scenarios/data;

• compare their respective cost.

In optimization against a finite number of scenarios, the capacities are often un-
derestimated due to the bias - which is why we propose to increase them by 10%.
This previous method allowed a Cross-Validation at a little cost.

Further experiments. This thesis is essentially theoretical. However, we be-
lieve that it is worth carrying out further experiments on the DMPC and the Cross-
Validation method. Regarding DMPC, it would be interesting to compare it to
SDDP in a setting where the cost and/or transition function are not linear/convex
and/or the random process is non-Markovian. We would be interested in testing
the validity of the Penalized-Cross-Validation method on real data. Note that it is
relevant not only in optimizing a power system’s capacities, but in other settings
with similar characteristics. For instance, dimensioning capacities in a gas storage
problem could benefit from this method as well.

11.3 Reflections on power systems optimization
In conclusion, we would like to emphasize a specificity of power systems that
makes their optimization even more delicate: their confidential nature. It is indeed
extremely difficult to obtain the required data (demands, weather, good modelling
of a given power system network, etc ...) in order to test an optimization algorithm.



Power system interlocutors put forward two arguments: security and competitive-
ness. Regarding the first point, it is argued that, especially in the present context
of e.g. terrorist threat, these sets of data in the wrong hands could lead to dis-
asters. However, others actors of this sector acknowledge that someone highly
determined to cause harm could find out enough information to do so anyway,
so that the releasing of this data would not be that determinant. Regarding the
second point, it takes place in a context of privatisation policy. An energy com-
pany releasing its data for free gives a competing company the opportunity to use
it against them. That is, releasing data for free is incurring a loss. We advocate
that the scope of power system challenges reaches beyond the commercial profit
of a few companies, as the related pollution issues are costing society as a whole.
We defend ‘open source’ and ‘open data’ systems, as we believe that if any re-
searcher was able to easily test his ideas for the improvement of power system
optimization, this field of research could jump forward several years.
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Appendix A

Summary of Notations

The main notations are summarized below. Note that some local notations, used
only in one chapter, will be defined only locally, and not reported in the present
Appendix. The main notations might as well be recalled through out the docu-
ment.

R := set of real numbers
R+ := set of positive real numbers
N := {0,1,2, . . .} set of natural numbers

N∗ := {1,2, . . .} set of positive natural numbers
f := objective function
f ′ := first derivative of function f , when f is unidimensional

D f (x) := first derivative of function f at x (multidimensional case)
f ′′ := second derivative of function f , when f is unidimensional
d := dimension of the search domain

Bd(x,r) := ball of radius r > 0 centered at x in dimension d
(the dimension might be omitted)

D ⊂ Rd := search domain of the objective function
x∗ := optimum of the objective function
xn := search point used by the algorithm at iteration n or

after n calls to the black-box, depending on the setting
yn := fitness value of xn, possibly noisy
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x̃n := recommendation of the optimum after n evaluations
ω := random variable
G := Gaussian variable or vector (dimension, mean and

standard deviation are sometimes specified)
‖ · ‖ := Euclidean norm
| · | := Absolute value when applied to a real number

Cardinality when applied to a set
〈·, ·〉 := Inner product

P, (resp. P(·|·)) := Probability (resp. conditional probability)
E, (resp. E(·|·)) := Expectation (resp. conditional expectation)

Eω := Expectation on the random variable ω

Var := Variance of a random variable
Q1−δ := Quantile 1−δ of a random variable

URi := ‖xi− x∗‖ Uniform Rate
SRi := (Eω f (x̃i,ω)−Eω f (x∗,ω)) Simple Regret
CRi := ∑

j≤i

(
Eω f (x j,ω)−Eω f (x∗,ω)

)
Cumulative Regret

s(∗R) := limsup
i

log(∗Ri)

log(i)
, ∗R stand for SR, CR or UR,

slope of the corresponding regret
O(·), o(·), Ω(·),Θ(·) := Landau notations

(e j)
d
j=1 := canonical orthonormal basis

d·e (resp. b·c) := ceiling (resp. floor) function

x(i) := ith coordinate of vector x
M−1 := inverse of matrix M, when M is invertible

Mt (resp. xt) := transpose of matrix M (resp. of vector x)
Mi, j := entry in the ith row and jth column of matrix M

k mod l := remainder of the Euclidian division of k by l



Appendix B

Lower bound in Ω(n−1) or Ω(n−1/2):
a discussion

We recall briefly the setting. f is a continuous noisy function for which, given a
search point, an oracle returns the fitness value:

f (x,ω) = f (x)+ω

where E(ω) = 0 and E(ω2)≤ σ2. x∗ denotes the optimum of the objective func-
tion, n the number of evaluations performed by the algorithm and x̃n is the approxi-
mation of x∗ given by the optimization algorithm after spending n evaluations. We
consider the Simple Regret:

SRn = E( f (x̃n,ω)− f (x∗,ω))

and its corresponding slope: s(SR) = limsupn log(SRn)/ log(n). In a noisy black-
box continuous framework, what is the optimal lower bound of the Simple Regret?

B.1 Polyak-Tsybakov vs. Shamir
We recall Theorem 2.3.4, which states that for objective functions smooth enough,
we can get a Simple Regret s(SR)→−1, using the Polyak and Tsybakov algo-
rithm.

Theorem 2.3.4 ([Polyak and Tsybakov, 1990], Simple Regret of Polyak-Tsy-
bakov’s algorithm). Assume that the objective function has a unique optimum at
x∗( f ) and satisfies:
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1. f has continuous partial derivatives up to order s inclusive, which satisfy
the Hölder condition of order α ∈ (0,1];

2. ∀ x ∈ Rd , (D f (x),x− x∗)≥ A1‖x− x∗‖2;

3. ∀ x,x′ ∈ Rd , ‖D f (x)−D f (x′)‖ ≤ A2‖x− x′‖,
where A1 and A2 are finite positive constants, A2 > A1. Let F denote the family of
functions with a unique optimum satisfying these 3 conditions. Let β = s+α ≥ 2,
an =

a
n and cn =

c
n1/2β

, c > 0, a > (β−1)/2A1β . Assume that the noise is additive,
i.e. E( f (x,ω) = f (x)), with E(ω) = 0 and E(ω2) bounded. Assume that x̃n is
obtained by the Kiefer-Wolfowitz scheme (Eq. 2.14) with Eq. 2.22, it follows:

sup
n

sup
f∈F

n(β−1)/β E‖x̃n− x∗( f )‖2 < ∞ (2.23)

In particular, when f is smooth enough, we get s(SR) =−(β −1)/β .

The optimality of this algorithm is also shown in the same paper
[Polyak and Tsybakov, 1990]. We recall it as well.

Theorem 2.3.6 (Polyak-Tsybakov’s lower bound). Let x̃n be any Borel function
of x1, . . . ,xn,y1, . . . ,yn where:

• x1 = h1(ζ ), with ζ a random variable of arbitrary probability Pζ and h1 a
measurable function;

• ∀ i∈ {2, . . . ,n}, xi+1 = hi(x1, . . . ,xi,y1, . . . ,yi,ζ ), with ζ a random variable
of arbitrary probability Pζ and hi a measurable function;

• ∀ i∈ {2, . . . ,n}, yi = f (xi)+ωi, with ω1, . . . ,ωn identically distributed with
the distribution function g such that∫

ln(dg(u)/dg(u+ t))dg(u)≤ I0t2 |t| ≤ t0, (2.28)

for some 0 < t0 ≤ ∞ and 0 < I0 < ∞.

Let F be the family of functions as in Theorem 2.3.4, i.e., ∀ f ∈F , f satisfies:

• f has a unique optimum at x∗( f );

• f has continuous partial derivatives up to order s inclusive, which satisfy
the Hölder condition of order α ∈ (0,1];



• ∀ x ∈ Rd , (D f (x),x− x∗)≥ A1‖x− x∗‖2;

• ∀ x,x′ ∈ Rd , ‖D f (x)−D f (x′)‖ ≤ A2‖x− x′‖,
where A1 and A2 are finite positive constants, A2 > A1 and β = s+α ≥ 2. Then

inf
n

inf
x̃n

sup
f∈F

n(β−1)/β E(‖x̃n− x∗( f )‖2)> 0. (2.29)

However, [Shamir, 2013, Theorem 7] states that:

Theorem B.1.1 ([Shamir, 2013], Theorem 7). Let the number of rounds n be fixed.
Then for any (possibly randomized) querying strategy, there exists a function f
over Rd which is 0.5-strongly convex and 3.5-smooth; is 4-Lipschitz over the unit
Euclidean ball; has a global minimum in the unit ball; and such that the resulting
x̃n satisfies

E[ f (x̃n)− f (x∗)]≥ 0.0004min

{
1,

√
d2

n

}
. (B.1)

This suggests that s(SR) ≥ −1/2, which seems at first sight in contradiction
with Theorem 2.3.4. Does it come from a difference in the family of functions
under consideration in the two settings? We will see that it, in fact, comes from
another divergence of framework, that is called asymptotic vs. non asymptotic
setting.

B.2 Asymptotic vs. non asymptotic setting
Let us investigate the family of functions in Theorem B.1.1. The proof in
[Shamir, 2013] is carried out on the function:

fe(x) = ‖x‖2−
d

∑
i=1

eixi

1+
(

xi
ei

)2 ,

where e is uniformly distributed on {−µ,+µ}d , µ being a ‘small’ number, spec-
ified in the proof.

Property B.2.1. Function fe satisfies conditions of Theorem 2.3.4 with β > 2.
Hence, when applying Polyak and Tsybakov’s Algorithm, we get s(SR) < −1/2
for this function.



Proof. As it is stated in [Shamir, 2013], fe(x) = ∑
d
i=1 gei(xi), where

ga(x) = x2− ax
1+( x

a)
2 .

Hence, w.l.o.g, let us consider fe in dimension 1: fe(x) = x2− ex
1+( x

e )
2 .

We need to show that:

1. fe has a unique minimum at the point x∗;

2. fe is differentiable to order 3 inclusive;

3. f ′e(x)(x− x∗)≥ A1|x− x∗|2;

4. | f ′e(x)− f ′e(x
′)| ≤ A2|x− x′|,∀x,x′ ∈ Rd .

1. fe is minimized at ce where c can be computed explicitly (compute the real
root of the polynomial function given by f ′e(x) = 0).

2. fe is infinitely differentiable, as a rational function which denominator is
never zero. Thus fe is differentiable to order 3 inclusive.

3. [Shamir, 2013, Lemma 10] states that fe is 0.5 strongly convex. Hence:

fe(x∗)≥ fe(x)+ f ′e(x)(x
∗− x)+0.25|x− x∗|2

f ′e(x)(x− x∗)≥ fe(x)− fe(x∗)+0.25|x− x∗|2

f ′e(x)(x− x∗)≥ 0.25|x− x∗|2 as x∗ is the minimum of fe.

Hence the inequality holds with A1 = 0.25.

4. [Shamir, 2013, Lemma 10] states that ∀x, | f ′′e (x)| ≤ 3.5, hence we get
| f ′e(x)− f ′e(x

′)| ≤ A2|x− x′|,∀x,x′ ∈ Rd with A2 = 3.5.

So fe satisfies condition of Theorem 2.3.4 with β = 3 (and actually β → ∞),
hence for n big enough, optimizing fe with the Polyak and Tsybakov’s algorithm
will provide a Simple Regret satisfying E[ fe(x̃n)− fe(x∗)] = O(n−2/3). Where
does this contradiction come from? A careful check of the proof of Theorem B.1.1
show that µ = n−1/4, (remember that fe depends on e ∈ {−µ,+µ}d). That is,
fe := fe(n).



Let us denote by Sn the set of functions which satisfies: ∀ f ∈ Sn, for any
(possibly randomized) querying strategy,

E[ f (x̃n)− f (x∗)]≥
√

d2

n
. (B.2)

Theorem B.1.1 states that for any n, Sn contains at least one strongly convex
and smooth function. However, it does not contradict the fact that, for any strongly
convex and smooth function f , ∃no s.t.∀n≥ n0, f /∈Sn.

That is, both theorems hold, but differ from their settings. Polyak-Tsybakov’s
lower bound holds in an asymptotic setting whereas Shamir’s lower bound holds
for a fix number of evaluations n - i.e. a non asymptotic setting.

B.3 Illustration
In practice, we expect to observe, asymptotically, a slope−1 on a log− log graph.
We used Polyak-Tsybakov’s algorithm to optimize the function:

fe(T )(x) = ‖x‖2−
d

∑
i=1

eixi

1+
(

xi
ei

)2 ,

where e is uniformly distributed on {−µ,+µ}d , µ = T−1/4 for

T ∈ {10,50,100,200,300,400,500,600,103,5×103,104,5×104,105,2×105,3×105,5×105}.

However, it appeared that this parameter has no impact on the converge rate
(though in theory, for a number of evaluations n smaller than T , the rate should not
be better than −1/2), hence we display in Fig. B.1 the Simple Regret of fe(T ) (in
function of the number of evaluations) only for T = 5000. Function fe(T ) should
be similar to a sphere function x 7→ ‖x‖2 for T big enough. We also display the
Simple Regret of the sphere. We observe a slope −1 for both functions. Graphs
are similar for other values of T .
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Figure B.1: Results of Polyak-Tsybakov’s algorithm. Results are averaged
over 11 runs in dimension d = 2. Parameters (see Theorem. 2.3.4) are:
a = 1, c = 1, 1/2β = 0.1 and the kernel K is chosen as described in
[Polyak and Tsybakov, 1990] with l = 3. We observe a Simple Regret s(SR) =−1
for a number of evaluations big enough. Function fe(T ) globally behaves as the
sphere function.



Appendix C

Proofs of Sections 6.1.2 and 6.2.2 in
Chapter 6

The following Lemmas are used to prove property 6.1.2. In this Section, con-
sider functions SAMPLER and OPT as is Example 2, and an objective function
f described by Eqs. 6.18 and 6.19. h denotes the Hessian of E f at 0, i.e.
h = (2c j,k)1≤ j,k≤d . All results hold for C sufficiently small, and x verifying
Eq. 6.20.

Lemma C.0.1 (Approximation lemma). With the definitions of Example 2, for any
j ∈ {1, . . . ,d}, the approximate gradient verifies:

ĝ( j) =


2 ∑

1≤k≤d
c j,kx(k)+ ω1√

rσ
if Eω f (x,ω) = ∑

1≤ j,k≤d
c j,kx( j)x(k)

2 ∑
1≤k≤d

c j,kx(k)+O(σ2)+ ω1√
rσ

otherwise
(C.1)

where ω1 is an independent noise, with E(ω1) = 0 and Var(ω1) = O(σ4z),
z ∈ {0,0.5,1}.

For any ( j,k) ∈ {1, . . . ,d}2, the approximate Hessian verifies:

ĥ j,k =

2c j,k +
ω2√
rσ2 if Eω f (x,ω) = ∑

1≤ j,k≤d
c j,kx( j)x(k)

2c j,k +O(σ)+ ω2√
rσ2 otherwise

(C.2)

where ω2 is an independent noise, independent of ω1, with E(ω2) = 0 and
Var(ω2) = O(σ4z), z ∈ {0,0.5,1}.
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Proof. We provide a proof for the natural gradient ĝ( j). The proof is similar for
natural Hessian. There are br/(2d2)c revaluations per point. 〈., .〉 is the inner
product. By definition of the noisy objective function f in Property 6.1.2,

f (x,ω) = Eω f (x,ω)+ω,

with Eω f (x,ω) as in Eq. 6.18 and ω a random variable s.t. Eω = 0 and Var(ω) =
O(‖x‖4z), z ∈ {0,0.5,1}. In the same way,

ĝ( j) = Eĝ( j)+ω
′

where ω ′ is a random variable s.t. Eω ′= 0 and variance to calculate. By definition
of the natural gradient in Ex. 2,

Eĝ( j) = E
ŷ j+− ŷ j−

2σ

=
1

2σ

(
Eω f (x+σe j,ω)−Eω f (x−σe j,ω)

)
,

Eω f (x+σe j,ω) = ∑
1≤i,k≤d

ci,kx(i)x(k)+2σ ∑
1≤k≤d

c j,kx(k)+ c j, jσ
2

+ ∑
1≤i,k,l≤d

bi,k,lx(i)x(k)x(l)+σ ∑
1≤k,l≤d

(b j,k,l +bk, j,l +bk,l, j)x(k)x(l)

+σ
2

∑
1≤k≤d

(b j, j,k +bk, j, j +b j,k, j)x(k)+σ
3b j, j, j +o(‖x+σe j‖3)

Eω f (x+σe j,ω)−Eω f (x−σe j,ω) =

4σ ∑
1≤k≤d

c j,kx(k)+2σ ∑
1≤k,l≤d

(b j,k,l +bk, j,l +bk,l, j)x(k)x(l)︸ ︷︷ ︸
=O(‖x‖2)

+2σ
3b j, j, j +o(‖x+σe j‖3)−o(‖x−σe j‖3).

By Eq. 6.20, O(‖x‖2) = O(σ2) and o(‖x±σe j‖3) = O(σ3). Then,

Eĝ( j) =


2 ∑

1≤k≤d
c j,kx(k) if E f (x,ω) = ∑

1≤ j,k≤d
c j,kx( j)x(k),

2 ∑
1≤k≤d

c j,kx(k)+O(σ2) otherwise.



Now compute Var(ω ′) =Var(ĝ( j)).

Var(ĝ( j)) =Var
(

ŷ j+− ŷ j−
2σ

)
=

Var
(

f (x+σe j,ω)− f (x−σe j,ω)
)

4σ2br/(2d2)c

=
Var

(
f (x+σe j,ω)

)
+Var

(
f (x−σe j,ω)

)
4σ2br/(2d2)c

Var
(

f (x+σe j,ω)
)
≤ R‖x+σe j‖4z, z∈ {0,0.5,1} for a given R > 0 by Eq. 6.19.

Var ( f (x+σe j,ω)) ≤


R if z = 0,
R(‖x‖2 +2〈x,σe j〉+σ2) if z = 0.5,
R(‖x‖4 +4(σ2 +‖x‖2)〈x,σe j〉+

4〈x,σe j〉2 +2σ2‖x‖2 +σ4) if z = 1.

Hence using Eq. 6.20 and Cauchy-Schwarz inequality: |〈x,σe j〉| ≤ ‖x‖σ ,
Var

(
f (x+σe j,ω)

)
= O(σ4z) and Var

(
f (x−σe j,ω)

)
= O(σ4z) . Then

Var(ω ′) = O( σ4z

rσ2 ) and the expected result is obtained by putting ω ′ = ω1√
rσ

with

Var(ω1) = O(σ4z).

Lemma C.0.2. There is σ0 > 0 such that for all σ < σ0, ĥ is positive definite with
its least eigenvalue greater than c0 with probability at least 1−O

(
σ4z−4

r

)
, where

c0 is as in the assumptions in Property 6.1.2.

Proof. By Lemma C.0.1 (Eq. C.2), for any ( j,k) ∈ {1, . . . ,d}2, E ĥ j,k = h j,k +

O(σ), where ĥ is the approximation of the Hessian h, defined in Example 2 and
σ is the step-size. So there exists a function σ 7→ fh(σ) and a constant R > 0 such
that E ĥ j,k = h j,k− fh(σ) with fh(σ) ≤ R|σ |. Let c0 be as in the assumptions in
Property 6.1.2 and d the dimension. Then,

P(|ĥ j,k−h j,k| ≥ c0/d) = P(|ĥ j,k−h j,k + fh(σ)− fh(σ)| ≥ c0/d)

≤ P(|ĥ j,k−h j,k + fh(σ)|+ fh(σ)≥ c0/d)

= P(|ĥ j,k−Eĥ j,k| ≥ c0/d− fh(σ))

≤ Var(ĥ j,k)

(c0/d− fh(σ))2 by applying Chebyshev’s inequality



Also by Lemma C.0.1 (eq. C.2), Var(ĥ j,k) =Var( ω2√
rσ2 ) = O( σ4z

rσ4 ), where r is

the number of revaluations. Furthermore, (c0/d− fh(σ))2 ≥ (c0/d−R|σ |)2 > 0
for all σ < c0

dR := σ0. So, ∀( j,k) ∈ {1, . . . ,d}2 we know that
P(|ĥ j,k−h j,k| ≥ c0/d) = O(σ4z−4

r ). Or equivalently

P(|ĥ j,k−h j,k| ≤ c0/d) = 1−O
(

σ4z−4

r

)
Since ĥ− h is a symmetric matrix, then we deduce from Theorem 1 case

(ii) in [Zhan, 2005] that λd(ĥ− h) ≥ −c0 with probability 1−O
(

σ4z−4

r

)
, where

we denote for any d × d matrix M its eigenvalues in decreasing order by
λ1(M)≥ ·· · ≥ λd(M). Using this and the fact that we assumed in Property 6.1.2
λd(h)≥ 2c0, we have ∀x ∈ Rd , x 6= 0,

〈ĥx,x〉= 〈(ĥ−h)x,x〉+ 〈hx,x〉 ≥ −c0‖x‖2 +2c0‖x‖2

⇔ 〈ĥx,x〉
〈x,x〉 ≥ c0

Since ĥ is a Hermitian matrix, by the min−max Theorem we know that
λd(ĥ) = min

{
〈ĥx,x〉
〈x,x〉 ,x 6= 0

}
. Hence for all σ > σ0, we have that λd(ĥ)≥ c0 with

probability 1−O
(

σ4z−4

r

)
.

Lemma C.0.3. (Good approximation of the optimum with the second order
method) Consider the context of Property 6.1.2. Then there exists a constant
K > 0 such that for any pair of step size and number of revaluation (σ ,r) that
satisfies σ6−4z ≤ K/r, we have E(‖xopt‖2|E c0

ĥ
) = O

(
σ4z−2

r

)
.

Proof.

E(‖xopt‖2|E c0
ĥ
) = E(‖ĥ−1(ĥx− ĝ)‖2|E c0

ĥ
) by definition of xopt,

≤ (1/c0)
2E(‖ĥx− ĝ‖2|E c0

ĥ
)

using that ∀x ∈ Rd, x 6= 0, ‖Mx‖2 ≤ (λ1(M))2 ‖x‖2 and λ1(M−1) = 1
λd(M) , where

M is a real symmetric matrix. Under E c0
ĥ

, using Eqs. C.1 and C.2,

E(‖ĥx− ĝ‖2) = E

 ∑
1≤ j≤d

(
∑

1≤k≤d
ĥ j,kx(k)−g( j)

)2
 ,



= E

 ∑
1≤ j≤d

 ω2√
rσ2 ∑

1≤k≤d
x(k)︸ ︷︷ ︸

=O(‖x‖)

+O(σ) ∑
1≤k≤d

x(k)︸ ︷︷ ︸
=O(‖x‖)

+O(σ2)+
ω1√
rσ


2

= dE

{(
O(σ2)+

ω1√
rσ

+
ω2√
rσ

)2
}

using ‖x‖ ≤Cσ ,

= O(σ4)+O
(

σ4z

rσ2

)
using E(ω1) = E(ω2) = 0,

Var(ω1) =Var(ω2) = O(σ4z) and independence,

= O

(
σ (4z−2)

r

)
if σ4−(4z−2) ≤ K/r,

which is the expected result.

Remark C.0.1. In Lemma C.0.3, if E f is simply quadratic, i.e.
∀( j,k, l) ∈ {1, . . . ,d}3, b j,k,l = 0, the assumption σ6−4z = O(1/r) is unnec-
essary.



Appendix D

Appendix: Proof of Lemma 8.3.1

Lemma 8.3.1. There exist d +1 unit vectors w1, . . . ,wd+1 in Rd , and there exists
a constant c > 0 such that, for any unit vector u∈ Rd , there exist i∈ {1, . . . ,d+1}
such that 〈u,wi〉> c.

Proof. x(k) is the k-th coordinate of vector x.
Consider S = {x ∈ Rd+1 | ∑

d+1
i=1 (x

(i))2 = d2 + d and ∑
d+1
i=1 x(i) = 0}. S is the

intersection of a d-dimensional sphere of Rd+1 and of a hyperplane in dimension
d + 1; it is therefore a (d− 1)-dimensional sphere of a d-dimensional Euclidean
space (which is the hyperplane H = {x;∑

d+1
i=1 x(i) = 0} of Rd+1). We show the

result in this d-dimensional Euclidean space.
Let us consider w1, . . . ,wd+1 defined by:

∀i ∈ {1, . . . ,d +1}, wi ∈ Rd+1

and ∀ j ∈ {1, . . . ,d +1}, w( j)
i =

{
d if j = i,
−1 otherwise.

The wi are elements of S. They are a regular simplex. For any x∈ S, we define
v(x) = max

i∈{1,...,d+1}
〈x,wi〉. Let us show that for any x ∈ S, v(x)> 0.

Without loss of generality, let us assume that x(1) > x( j), for any
j ∈ {2, . . . ,d +1} (otherwise just permute coordinates, the problem is invariant
by such permutations).

〈x,w1〉= (d +1)x(1)−
d+1

∑
i=1

x(i)︸ ︷︷ ︸
0, because S⊂H

,
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so for any x ∈ S, v(x) = (d + 1) max
i∈{1,...,d+1}

x(i). By definition of S,

max
i∈{1,...,d+1}

x(i) > 0, therefore v(x) > 0. Since S is a compact Hausdorff space,

v reaches its lower bound on S: there exists c > 0 such that ∀x ∈ S, v(x)≥ c.
We have the above conclusion for the hyperplane ∑

d+1
i=1 x(i) = 0 of Rd+1, thus

we have the same conclusion for the domain Rd . We have concluded the proof for
x such that ‖x‖2 = d2 +d; a fortiori the result holds for x such that ‖x‖= 1.
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neau, R. (2016). Benchmarking for Bayesian Reinforcement Learning. PLoS
ONE, 11(6):1–25.

[Cauwet, 2014] Cauwet, M. (2014). Noisy optimization: Convergence with a
fixed number of resamplings. In Applications of Evolutionary Computation -
17th European Conference, EvoApplications 2014, Granada, Spain, April 23-
25, 2014, Revised Selected Papers, pages 603–614.

[Cauwet et al., 2016a] Cauwet, M.-L., Christophe, J.-J., Decock, J., Liu, J., and
Teytaud, O. (2016a). A Consistent Model Predictive Control. To be submitted.

[Cauwet et al., 2016b] Cauwet, M.-L., Liu, J., Rozière, B., and Teytaud, O.
(2016b). Algorithm portfolios for noisy optimization. Annals of Mathemat-
ics and Artificial Intelligence, 76(1-2):143–172.

[Cauwet et al., 2014] Cauwet, M.-L., Liu, J., and Teytaud, O. (2014). Algorithm
portfolios for noisy optimization: Compare solvers early. In Pardalos, M. P.,
Resende, G. M., Vogiatzis, C., and Walteros, L. J., editors, Learning and In-
telligent Optimization: 8th International Conference, Lion 8, Gainesville, FL,
USA, February 16-21, 2014. Revised Selected Papers, pages 1–15. Springer
International Publishing, Cham.

[Cauwet et al., 2016c] Cauwet, M.-L., St-Pierre, D. L., and Teytaud, O. (2016c).
Stochastic zero-sum games. To be submitted.

[Cauwet and Teytaud, 2016a] Cauwet, M.-L. and Teytaud, O. (2016a). Multivari-
ate bias reduction in capacity expansion planning. In Power Systems Compu-
tation Conference, PSCC 2016, Genoa, Italy, June 20-24, 2016, pages 1–8.



[Cauwet and Teytaud, 2016b] Cauwet, M.-L. and Teytaud, O. (2016b). Noisy op-
timization: Fast convergence rates with comparison-based algorithms. In Pro-
ceedings of the 2016 on Genetic and Evolutionary Computation Conference,
Denver, CO, USA, July 20 - 24, 2016, pages 1101–1106.

[Cauwet et al., 2015] Cauwet, M.-L., Teytaud, O., Chiu, S.-Y., Lin, K.-M., Yen,
S.-J., Saint-Pierre, D. L., and Teytaud, F. (2015). Parallel Evolutionary Algo-
rithms Performing Pairwise Comparisons. In He, J., Jansen, T., Ochoa, G., and
Zarges, C., editors, Foundations of Genetic Algorithms, Foundations of Genetic
Algorithms, pages 99–113, Aberystwyth, United Kingdom. ACM.

[Chaloner, 1989] Chaloner, K. (1989). Bayesian design for estimating the turning
point of a quadratic regression. Communications in Statistics - Theory and
Methods, 18(4):1385–1400.

[Chapel and Deffuant, 2006] Chapel, L. and Deffuant, G. (2006). SVM viability
controller active learning. In Kernel machines and Reinforcement Learning
Workshop, Pittsburgh, PA.

[Chaslot et al., 2008] Chaslot, G. M. J.-b., Win, M. H. M., and Herik, H. J. V. D.
(2008). Parameter tuning by the cross-entropy method. In Proceedings of the
8th European Workshop on Reinforcement Learning.

[Chatzivasileiadis et al., 2013] Chatzivasileiadis, S., Ernst, D., and Andersson, G.
(2013). The global grid. Renewable Energy, 87:372–383.

[Chaudry et al., 2014] Chaudry, M., Jenkins, N., Qadrdan, M., and Wu, J. (2014).
Combined gas and electricity network expansion planning. Applied Energy,
113(C):1171–1187.

[Chen, 1988] Chen, H. (1988). Lower rate of convergence for locating a maxi-
mum of a function. The Annals of Statistics, 16(3):1330–1334.

[Cheney and Goldstein, 1959] Cheney, E. W. and Goldstein, A. A. (1959). New-
ton’s method for convex programming and Tchebycheff approximation. Nu-
merische Mathematik, 1(1):253–268.

[Chotard, 2015] Chotard, A. (2015). Markov chain Analysis of Evolution Strate-
gies. Thesis, Université Paris Sud - Paris XI.
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Bundle methods in the XXIst century: A bird’s-eye view. Pesquisa Opera-
cional, 34(3):647–670.

[Decock, 2014] Decock, J. (2014). Hybridization of dynamic optimization
methodologies. Thesis, Université Paris Sud - Paris XI.
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Esparcia-Alcazar, A. I., Goh, C.-K., Merelo, J. J., Neri, F., Preuß, M., Togelius,
J., and Yannakakis, G. N., editors, Applications of Evolutionary Computation,
volume 6024 of Lecture Notes in Computer Science, pages 592–601. Springer
Berlin Heidelberg.

[Rolet and Teytaud, 2010b] Rolet, P. and Teytaud, O. (2010b). Bandit-Based Es-
timation of Distribution Algorithms for Noisy Optimization: Rigorous Run-
time Analysis. In Blum, C. and Battiti, R., editors, Learning and Intelligent
Optimization: 4th International Conference, LION 4, Venice, Italy, January 18-
22, 2010. Selected Papers, pages 97–110. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[Ros, 2010a] Ros, R. (2010a). Black-box optimization benchmarking the IPOP-
CMA-ES on the noisy testbed: comparison to the BIPOP-CMA-ES. In
GECCO (Companion), pages 1511–1518.

[Ros, 2010b] Ros, R. (2010b). Comparison of NEWUOA with different numbers
of interpolation points on the BBOB noisy testbed. In GECCO (Companion),
pages 1495–1502.

[RTE-ft, 2014] RTE-ft (2014). RTE forecast team: Electricity Con-
sumption in France: Characteristics and Forecast method. http:

//clients.rte-france.com/lang/an/clients_producteurs/vie/

courbes_methodologie.jsp. Accessed: 2016-09-05.

[Saisirirat et al., 2013] Saisirirat, P., Chollacoop, N., Tongroon, M., Laoonual,
Y., and Pongthanaisawan, J. (2013). Scenario Analysis of Electric Vehicle
Technology Penetration in Thailand: Comparisons of Required Electricity with
Power Development Plan and Projections of Fossil Fuel and Greenhouse Gas
Reduction. Energy Procedia, 34(0):459 – 470. 10th Eco-Energy and Materials
Science and Engineering Symposium.

http://clients.rte-france.com/lang/an/clients_producteurs/vie/courbes_methodologie.jsp
http://clients.rte-france.com/lang/an/clients_producteurs/vie/courbes_methodologie.jsp
http://clients.rte-france.com/lang/an/clients_producteurs/vie/courbes_methodologie.jsp


[Samulowitz and Memisevic, 2007] Samulowitz, H. and Memisevic, R. (2007).
Learning to Solve QBF. In Proceedings of the 22Nd National Conference
on Artificial Intelligence - Volume 1, AAAI’07, pages 255–260, Vancouver,
British Columbia, Canada. AAAI Press.

[Saravanan et al., 2013] Saravanan, B., Das, S., Sikri, S., and Kothari, D. P.
(2013). A solution to the unit commitment problem—a review. Frontiers in
Energy, 7(2):223–236.

[Schein and Ungar, 2007] Schein, A. I. and Ungar, L. H. (2007). Active learning
for logistic regression: an evaluation. Machine Learning, 68(3):235–265.

[Schmetterer, 1961] Schmetterer, L. (1961). Stochastic Approximation. In Pro-
ceedings of the Fourth Berkeley Symposium on Mathematical Statistics and
Probability, Volume 1: Contributions to the Theory of Statistics, pages 587–
609. University of California Press.

[Schoenauer and Ronald, 1994] Schoenauer, M. and Ronald, E. (1994). Neuro-
genetic truck backer-upper controller. Proceedings of the First IEEE Confer-
ence on Evolutionary Computation, 1994. IEEE World Congress on Computa-
tional Intelligence, 2:720–723.

[Scholz, 2007] Scholz, F. (2007). The Bootstrap Small Sample Properties. Tech-
nical report, Boeing Computer Services, Research and Technology.

[Schrijver, 1986] Schrijver, A. (1986). Theory of Linear and Integer Program-
ming. John Wiley & Sons, Inc., New York, NY, USA.

[Schwefel, 1974] Schwefel, H.-P. (1974). Adaptive Mechanismen in der biolo-
gischen Evolution und ihr Einfluss auf die Evolutionsgeschwindigkeit. Interner
Bericht der Arbeitsgruppe Bionik und Evolutionstechnik am Institut für Mess-
und Regelungstechnik Re 215/3, Technische Universität Berlin.

[Shamir, 2013] Shamir, O. (2013). On the complexity of bandit and derivative-
free stochastic convex optimization. In COLT 2013 - The 26th Annual Con-
ference on Learning Theory, June 12-14, 2013, Princeton University, NJ, USA,
pages 3–24.

[Shapiro, 2011] Shapiro, A. (2011). Analysis of stochastic dual dynamic pro-
gramming method. European Journal of Operational Research, 209(1):63–72.



[Sheble and Fahd, 1994] Sheble, G. B. and Fahd, G. N. (1994). Unit commitment
literature synopsis. IEEE Transactions on Power Systems, 9(1):128–135.

[Siqueira et al., 2006] Siqueira, T. G., Zambelli, M., Cicogna, M., Andrade, M.,
and Soares, S. (2006). Stochastic dynamic programming for long term hy-
drothermal scheduling considering different streamflow models. In Probabilis-
tic Methods Applied to Power Systems, 2006. PMAPS 2006. International Con-
ference on, pages 1–6.

[SolarPower Europe, 2015] SolarPower Europe (2015). The succesful stress test
of Europe’s power grid - more ahead. http://www.solarpowereurope.

org/fileadmin/user_upload/documents/Policy_Papers/entsoe_

spe_pp_solar_eclipse_2015_web_FINAL.pdf. Accessed: 2016-04-18.

[Spall, 1987] Spall, J. C. (1987). A stochastic approximation technique for gen-
erating maximum likelihood parameter estimates. In Proceedings of the Amer-
ican Control Conference, pages 1161–1167. IEEE Transactions on Automatic
Control.

[Spall, 1992] Spall, J. C. (1992). Multivariate stochastic approximation using a
simultaneous perturbation gradient approximation. Automatic Control, IEEE
Transactions on, 37(3):332–341.

[Spall, 2000] Spall, J. C. (2000). Adaptive stochastic approximation by the si-
multaneous perturbation method. IEEE Transactions on Automatic Control,
45(10):1839–1853.

[Spall and Cristion, 1998] Spall, J. C. and Cristion, J. A. (1998). Model-free con-
trol of nonlinear stochastic systems with discrete-time measurements. IEEE
Transactions on Automatic Control, 43(9):1198–1210.

[St-Pierre and Liu, 2014] St-Pierre, D. L. and Liu, J. (2014). Differential Evo-
lution Algorithm Applied to Non-Stationary Bandit Problem. In 2014 IEEE
Congress on Evolutionary Computation (IEEE CEC 2014), pages 2397–2403.

[St-Pierre and Teytaud, 2014] St-Pierre, D. L. and Teytaud, O. (2014). The Nash
and the Bandit Approaches for Adversarial Portfolios. In Proceedings of the
international conference on Computational Intelligence in Games (CIG) 2014,
pages 1–7.

http://www.solarpowereurope.org/fileadmin/user_upload/documents/Policy_Papers/entsoe_spe_pp_solar_eclipse_2015_web_FINAL.pdf
http://www.solarpowereurope.org/fileadmin/user_upload/documents/Policy_Papers/entsoe_spe_pp_solar_eclipse_2015_web_FINAL.pdf
http://www.solarpowereurope.org/fileadmin/user_upload/documents/Policy_Papers/entsoe_spe_pp_solar_eclipse_2015_web_FINAL.pdf


[Stern and Enflo, 2013] Stern, D. I. and Enflo, K. (2013). Causality between en-
ergy and output in the long-run. Energy Economics, 39:135 – 146.

[Storn and Price, 1995] Storn, R. and Price, K. (1995). Differential Evolution- A
Simple and Efficient Adaptive Scheme for Global Optimization over Continu-
ous Spaces. Technical report, CA, 1995, Tech. Rep. TR-95–012.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforcement
Learning - An Introduction. MIT Press, Cambridge, MA, USA, 1st edition.

[SYSTINT Workgroup, 2007] SYSTINT Workgroup (2007). European, CIS and
Mediterranean Interconnection: State of Play 2006. Ucte–Eurelectric.

[Tao Group, 2008] Tao Group (2008). Tao games axis. http://www.lri.fr/

~teytaud/games.html. [Online; accessed 12-October-2016].

[Teytaud, 2008] Teytaud, O. (2008). When does quasi-random work ? In Parallel
Problem Solving from Nature – PPSN X: 10th International Conference, Dort-
mund, Germany, September 13-17, 2008. Proceedings, pages 325–336, Berlin,
Heidelberg. Springer Berlin Heidelberg.

[Teytaud et al., 2005] Teytaud, O., Jebalia, M., and Auger, A. (2005). Algorithms
(X,sigma,eta) : quasi-random mutations for Evolution Strategies. In Evolution
Artificielle, pages 296–307, Lille, France. Springer (Artificial Evolution).

[The Telegraph, 2015] The Telegraph (2015). State of emergency
declared in Crimea after activists ‘blow up’ electricity pylons.
http://www.telegraph.co.uk/news/worldnews/europe/ukraine/

12010289/Crimea-plunged-into-darkness.html. Accessed: 2016-04-
21.

[Tran and Jin, 2010] Tran, T.-D. and Jin, G.-G. (2010). Benchmarking real-coded
genetic algorithm on noisy black-box optimization testbed. In GECCO (Com-
panion), pages 1739–1744.

[United Nations, 2015] United Nations (2015). Adoption of the Paris Agree-
ment. http://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf.
Accessed: 2016-04-18.

[Utgoff, 1989] Utgoff, P. E. (1989). Perceptron Trees: A Case Study in Hybrid
Concept Representations. Connection Science, 1(4):377–391.

http://www.lri.fr/~teytaud/games.html
http://www.lri.fr/~teytaud/games.html
http://www.telegraph.co.uk/news/worldnews/europe/ukraine/12010289/Crimea-plunged-into-darkness.html
http://www.telegraph.co.uk/news/worldnews/europe/ukraine/12010289/Crimea-plunged-into-darkness.html
http://unfccc.int/resource/docs/2015/cop21/eng/l09.pdf


[Vaart and Wellner, 1996] Vaart, A. V. D. and Wellner, J. (1996). Weak Conver-
gence and Empirical Processes. Springer series in statistics.

[Vapnik and Chervonenkis, 1968] Vapnik, V. and Chervonenkis, A. (1968). On
the uniform convergence of frequencies of occurence events to their probabili-
ties. Soviet Mathematics-Doklady 9, 915-918.

[Vapnik, 1995] Vapnik, V. N. (1995). The Nature of Statistical Learning. Springer
Verlag.

[Vassena et al., 2003] Vassena, S., Mack, P., Rousseaux, P., Druet, C., and We-
henkel, L. (2003). A Probabilistic Approach to Power System Network Plan-
ning under Uncertainties. IEEE Bologna Power Tech Conference Proceedings,
2:6.

[Vassilevska et al., 2006] Vassilevska, V., Williams, R., and Woo, S. L. M.
(2006). Confronting Hardness Using a Hybrid Approach. In Proceedings of
the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA
’06, pages 1–10, Philadelphia, PA, USA. Society for Industrial and Applied
Mathematics.

[Virmani et al., 1989] Virmani, S., Adrian, E. C., Imhof, K., and Mukherjee, S.
(1989). Implementation of a Lagrangian relaxation based unit commitment
problem. Power Systems, IEEE Transactions on, 4(4):1373–1380.

[von Stengel, 2002] von Stengel, B. (2002). Computing equilibria for two-person
games. Handbook of Game Theory, 3:1723 – 1759.

[Wellner, 2014] Wellner, J. (2014). Bootstrap and Jackknife Estimation of Sam-
pling Distributions.

[Whitley, 2015] Whitley, D. (2015). Mk Landscapes, NK Landscapes, MAX-
kSAT: A Proof That the Only Challenging Problems Are Deceptive. In Pro-
ceedings of the 2015 Annual Conference on Genetic and Evolutionary Compu-
tation, GECCO ’15, pages 927–934, New York, NY, USA. ACM.

[Whitmarsh et al., 2012] Whitmarsh, A., Bojanowski, S., and Barber, W. (2012).
Gas security of supply report. Technical report, Ofgem.

[Wolpert and Macready, 1997] Wolpert, D. H. and Macready, W. G. (1997). No
Free Lunch Theorems for Optimization. Trans. Evol. Comp, 1(1):67–82.



[World Health Organization, 2015] World Health Organization (2015).
World Health Assembly closes, passing resolutions on air pollution and
epilepsy. http://www.who.int/mediacentre/news/releases/2015/

wha-26-may-2015/en/. Accessed: 2016-04-18.

[Xu et al., 2008] Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2008).
SATzilla: portfolio-based algorithm selection for SAT. Journal of Artificial
Intelligence Research, 32:565–606.

[Xu et al., 2011] Xu, L., Hutter, F., Hoos, H. H., and Leyton-Brown, K. (2011).
Hydra-MIP: Automated algorithm configuration and selection for mixed in-
teger programming. In RCRA workshop on Experimental Evaluation of Algo-
rithms for Solving Problems with Combinatorial Explosion at the International
Joint Conference on Artificial Intelligence (IJCAI), pages 16–30.

[Yu, 1994] Yu, B. (1994). Rates of convergence for empirical processes of sta-
tionary mixing sequences. Ann. Probab., 22(1):94–116.

[Zambelli et al., 2011] Zambelli, M., Soares Filho, S., Toscano, A., Santos, E. d.,
and Silva Filho, D. d. (2011). NEWAVE versus ODIN: comparison of stochas-
tic and deterministic models for the long term hydropower scheduling of the
interconnected brazilian system. Sba: Sociedade Brasileira de Automatica,
22:598 – 609.

[Zaoui et al., 2005] Zaoui, F., Fliscounakis, S., and Gonzalez, R. (2005). Cou-
pling OPF and topology optimization for security purposes. In 15th Power
Systems Computation Conference, pages 22–26.

[Zedek, 1965] Zedek, M. (1965). Continuity and Location of Zeros of Linear
Combinations of Polynomials. Proceedings of the American Mathematical So-
ciety, 16(1):78–84.

[Zhan, 2005] Zhan, X. (2005). Extremal eigenvalues of real symmetric matrices
with entries in an interval. SIAM J. Matrix Analysis Applications, 27(3):851–
860.

[Zhou et al., 2004] Zhou, Z., Ong, Y. S., and Nair, P. B. (2004). Hierarchical
surrogate-assisted evolutionary optimization framework. In IEEE Congress on
Evolutionary Computation 2004, volume 2, pages 1586–1593.

http://www.who.int/mediacentre/news/releases/2015/wha-26-may-2015/en/
http://www.who.int/mediacentre/news/releases/2015/wha-26-may-2015/en/

	A beautiful application: power systems
	Motivations
	Optimization in power systems
	Parameters of the cost function
	Optimization problem
	How to handle this?

	Structure of the thesis & contributions
	Contribution in noisy AND black-box continuous optimization
	Delicate cases


	I Contributions in Continuous Black-Box Noisy Optimization
	Background review
	The different flavours of optimization
	White, gray or black?
	Global or local?
	Noisy or noise-free?

	Convergence(s): what makes an algorithm `good'?
	Exploration vs. exploitation
	Convergence criteria
	Type of convergence
	Discussion

	Algorithms and state of the art
	Value-based algorithms
	Comparison-based algorithms
	General lower bound

	Contributions in noisy black-box continuous optimization
	Comparison-based algorithms
	Value-based algorithms and small noise
	Right algorithm? Right parameters?


	Evolution Strategies confronted with small noise
	Log-linearity
	Preliminary: noise-free case
	Noisy case

	Experiments: how to choose the right number of resampling?
	Conclusion

	Convergence rate of Evolution Strategies with additive noise: a lower bound
	Theoretical analysis
	Formalization of algorithms
	Lower bound for Simple es

	Experimental verification of the lower bound
	Fast convergence: Shamir's algorithm
	Slow convergence: uhcmaes and (1+1)-es

	Conclusion

	Comparison-based algorithms can be fast!
	Comparison procedure
	Sphere function
	In dimension 1
	Multidimensional sphere function

	General quadratic forms
	Experiments
	Conclusion

	Newton's method: upper bounds
	The iternoa
	General framework
	Examples of algorithms verifying the lse assumption

	Convergence rates of iternoa
	Rates for various noise models
	Application: the general case
	Application: the smooth case

	Conclusion

	Algorithm Portfolio
	Algorithm selection
	Algorithms
	Notations
	Definitions and criteria
	Portfolio algorithms

	Analysis
	Conclusion


	II Contributions to Delicate Cases
	A Consistent Model Predictive Control
	Introduction
	Formalism of mdp
	State of the art in dynamic optimization

	dmpc
	dmpc: Formulation
	dmpc brings consistency into mpc

	Consistency analysis
	Optimality of dmpc
	Nonlinear Setting

	Experiments
	Experiments with a 10 batteries problem
	Experiments on a real-world hydroelectric problem

	Conclusion

	Stochastic zero-sum games
	Introduction
	Adversarial Matrix Games & Nash Equilibrium
	Outline

	Algorithms and settings
	Settings & motivations
	Algorithms

	Theory
	Extension of Grigorias and Khachiyan's result to setting 2
	Another algorithm with K2 processors: ParaNash

	Experiments
	Randomly uniformly drawn Bernoulli parameters
	Other distributions
	Experiments on the Pokémon problem

	Conclusion

	Multivariate bias reduction in capacity expansion planning
	Optimization of power systems capacities: saa & bias
	M-estimators and bias
	saa
	Bias & sr

	Bias reduction
	Resampling estimates for bias reduction
	Dimension reduction for bias reduction

	Model selection
	Leave-k-out (Lk) for model selection
	Penalized-cv for model selection (penk-F)
	Meta-estimate using model selection
	The margin method

	Experiments
	Test case
	Estimators
	Experimental results

	Conclusion


	III Summary, Discussion and Perspectives
	Summary, Discussion, Perspectives
	Part I: Summary and Discussion
	Summary
	Perspectives & discussion

	Part II: Summary and Discussion
	Summary
	Perspectives & discussion

	Reflections on power systems optimization

	Appendix Summary of Notations
	Appendix Lower bound in (n-1) or (n-1/2): a discussion
	Polyak-Tsybakov vs. Shamir
	Asymptotic vs. non asymptotic setting
	Illustration

	Appendix Proofs of Sections 6.1.2 and 6.2.2 in Chapter 6
	Appendix Appendix: Proof of Lemma 8.3.1
	Bibliography


