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Introduction

L’objectif de cette thése est de contribuer a la modélisation mathématique et numérique
dans le domaine fréquentiel de la diffraction d’ondes, acoustiques ou électromagnétiques,
par des obstacles recouverts par des revétements minces qui sont fortement hétérogénes
parce que leurs caractéristiques physiques varient rapidement, typiquement de fagon péri-
odique, le long du revétement, c’est a dire parallélement a la surface de 'obstacle.

Ce type de revétement se rencontre dans nombre d’applications, notamment en furtiv-
ité radar ot la combinaison de plusieurs types de matériaux permet d’améliorer les pro-
priétés d’invisibilité par rapport & des ondes radars. On le rencontre aussi dans les
revétements destinés a protéger des composantes électroniques des radiations externes.
Notre travail pourrait également étre d’intérét pour le contréle non destructif de com-
posants optiques ou nano-optiques périodiques (voir les exemples des nano-grass ou de
métamatériaux Fig. 1) ot la longueur d’onde utilisée pour sonder le milieu est plus grande
que la périodicité du milieu.
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Figure 1: Exemples de “nanograss”’ (gauche) et de métamatériaux (droite)

Compte tenu des petites échelles spatiales mise en jeu, la modélisation numérique
directe de tels phénoménes s’avére extrémement coiiteuse voire impossible (en 3D notam-
ment). Il est alors souhaitable, dans une phase de modélisation mathématique préalable
de proposer un modéle approché consistant & remplacer la présence du revétement mince
par une condition aux limites dite équivalente ou effective. De telles conditions sont com-
munément appelées dans la littérature conditions d’impedance généralisées (Generalized
Impedance Boundary Conditions (GIBC’s) en anglais [64]).

Si on aborde la question avec l'oeil du mathématicien, la construction préalable d’une
telle condition aux limites approchée s’appuie tout naturellement sur un développement
asymptotique de la solution recherchée par rapport a la petite échelle  qui représente a
la fois I’épaisseur de la couche mince et la période du revétement.

Dans certaines asymptotiques, résolument différentes de celles considérées ici, le pe-
tit parameétre de l'analyse est la longueur d’onde lambda, qui peut le cas échéant étre



proportionnel au paramétre 0 |20, 24, 52, 53, 8]. Ce n’est pas cette situation que nous
considérons ici : la longueur d’onde restera grande devant 1’échelle §.

De nombreux travaux ont déja été effectués dans cette direction. Dans le cas de
revétements a caractéristiques physiques homogénes, la littérature est abondante : voir
par exemple [40, 14, 13, 2, 42, 11] et [44, 39, 17, 27| et les références qu’elles contiennent.
On s’appuie typiquement sur des techniques de “rescaling” par rapport & la cordonnée
normale & la surface de I'obstacle, des equations a l'intérieur de la couche mince.

Le cas de revétements a caractéristiques périodiques a également été abordé dans la
littérature : voir par exemple |65, 7, 62, 61, 37, 32, 56, 30, 23| et les références qu’elles
contiennent pour le probléme scalaire et voir [38, 36] pour le probléme de Maxwell. Dans
ce cas, le probléme est beaucoup plus difficile d’'un point de vue technique car le com-
portement de la solution est par nature hautement multi-echelle et il faut donc combiner
différents types de développements asymptotiques : typiquement - c’est le choix qui
sera fait dans cette thése - on s’intéressera a combiner des techniques d’homogénéisation
dans la couche mince, avec des développements réguliers en puissances de 0 loin de cette
couche, le couplage se faisant par une méthode de développements asymptotiques rac-
cordés [48, 49]. Les résultats disponibles dans la littérature sont d’une certaine fagon
incomplets car limités a des geometries simples (cylindriques [37] ou 2D [61, 7]) voire
a des equations simplifiées [56, 30, 23|). Par ailleurs les travaux cités précédemment
s'intéressent rarement au développement asymptotique complet de la solution, lequel
permet pourtant a priori de construire une hiérarchie de conditions d’impedances de plus
en plus précises.

Cette thése a notamment pour but de combler ces lacunes en attaquant le problémes de
revétements périodiques sur des surfaces 3D quelconques (réguliéres toutefois) et ce, tant
pour les ondes acoustiques (équation de Helmholtz) que pour les ondes électromagnétiques
(equations de Maxwell en régime harmonique). Notons que le probléme présente des
difficultés nouvelles et substantielles :

1. Du point de vue conceptuel, la définition de fonctions périodiques le long d’une
surface quelconque est loin d’étre évidente et certainement non intrinséque. Nous ap-
porterons une réponse possible, qui nous parait raisonnable vis a vis des applications,
dans le premier chapitre de la thése : la notion de revétement périodique ne fait plus
référence seulement a la géométrie de la surface de 'obstacle mais & un fonction supplé-
mentaire censée expliquer la conception du revétement périodique.

2. Du point de vue purement technique, la tache est sensiblement plus délicate dans
la mesure o1, & la manipulation des techniques de développements de type multi-échelles
il faut adjoindre le maniement d’outils de la géométrie différentielle.

Du point de vue de la démarche, nous nous sommes trées largement inspirés des travaux
de thése de Bérangére Delourme [34] et notre travail, qui se veut complet du point de vue
scientifique, respectera les étapes suivantes :

a. Etablissement d'un développement asymptotique formel de la solution du probléme
exact.

b. Justification mathématique de ce développement au travers d’estimations d’erreur.
c. Construction de conditions aux limites approchées.

d. Etude de la stabilité des problémes approchés.
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e. Etude mathématique de I'erreur entre la solution exacte et la solution approchée.

f. Approximation numérique des modeéles approchés et validation numérique de ces
modeles.

La thése comporte trois parties. Les deux premiéres sont consacrées a ’équation de
Helmholtz scalaire, la derniére aux equations de Maxwell.

La partie I est dédiée au développement asymptotique de la solution du probléeme de
Helmholtz avec revétement mince périodique.

Au chapitre 1, nous présentons le probléme dit exact qui fera 'objet d’une analyse
asymptotique. Nous introduisons notamment la notion de W périodicité qui permet de
donner un sens a la notion de fonction périodique le long d’une surface. Comme déja
dit plus haut, cette notion fait implicitement référence & un processus de fabrication des
revétements minces. Elle est de ce fait non intrinséque.

Au chapitre 2, trés technique et calculatoire, nous établissons le développement asymp-
totique multi-échelle formel de la solution du probléme exact. Nous établissons également
par récurrence l’existence des termes de ce développement.

Le chapitre 3 est consacré a la justification rigoureuse du développement asymptotique
établi au chapitre 2, ce qui passe par I’étude préliminaire de la stabilité par rapport au
petit parameétred de la solution du probléme exact.

La partie I est consacrée a la construction, la justification mathématique et I’'approximation
numérique de conditions d’impédance approchées. En I’occurrence nous nous limitons aux
conditions d’ordre 1 et 2 par rapport au petit parameétre 9.

Au chapitre 4, nous construisons et analysons ces conditions approchées. Cela passe
par une représentation plus explicite (par rapport a la fagon dont ils sont définis au
chapitre 3) des trois premiers termes du développement asymptotique (sections 4.3 et
4.4) et 'analyse de la stabilité des problémes approchés (section 4.5).

Dans les chapitres 5 a 7, dédies au calcul numérique, nous nous sommes limités a la
dimension deux.

Le chapitre 5 est consacré aux aspects numériques de l’exploitation des conditions
d’imédance ce qui passe notamment par la détermination préalable des coefficients effectifs
apparaissant dans ces conditions, ce qui améne a résoudre des problémes dits problémes
de cellule (phase de pré-traitement)

Le chapitre 6 s’écarte un peu du droit fil de la démarche : il est simplement con-
sacré a la présentation d’'une méthode d’éléments finis fiables pour le calcul d’'une bonne
approximation de la solution exacte. Cette étape est nécessaire pour valider numérique-
ment les modeéles approchés ce qui est l'objet du chapitre suivant. Cette présentation
s’accompagne d’une étude théorique prenant en complet la co-existence de deux petits
parameétres géométriques : la petite échelle ¢ et le pas de maillage h.

Comme annoncé plus haut, le chapitre 7 est destiné a la validation numérique des
modeéles approchés en utilisant les méthodes utilisées aux chapitres 5 et 6. Il s’agit
notamment de vérifier que les expériences numériques sont cohérentes avec les estimations
d’erreur du chapitre 4.

La partie III est consacrée aux ondes électromagnétiques. Elle s’appuie notamment
sur les notions du chapitre 1 et consiste essentiellement a reprendre la démarche des deux
premiéres parties de la thése (& I'exception des aspects numériques qui n’ont pu étre
abordés faute de temps) dans le cas plus difficile des équations de Maxwell 3D.
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Ainsi, aprés une bréve présentation du probléme étudié au chapitre 8, le chapitre 9
- équivalent du chapitre 3 - est consacré au développement asymptotique formel de la
solution.

Le chapitre 10 est consacré a la justification rigoureuse de ce développement. II faut
noter qu’un des points particuliérement délicat de I’analyse est ’étude de la stabilité de
la solution du probléme approché (section 11.4).

Enfin, au chapitre 11, pendant du chapitre 4, nous établissons et justifions rigoureuse-
ment une premiére condition d’impédance approchée, dite d’ordre 1.
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Chapter 1

Presentation of the problem

As we said in the introduction of the thesis, our purpose is to find “equivalent” or "ef-
fective" boundary conditions for the diffraction of electromagnetic waves by an object
having a regular surface I' with a thin periodic coating, i. .e a thin layer C° (the meaning
of ¢ is explained hereafter), of ferromagnetic material for instance, sticked of the bound-
ary of a perfectly reflecting object O. This is the model problem presented in section 1.1.
More precisely, we are interested in the case where the thin layer is highly heterogeneous
in the sense that its physical characteristics oscillate periodically along the surface.

One difficulty in the case of a general function is to give a precise sense to the above
notion of periocicity. The approach that we follow in sections 1.2 is the following:

e First, we give in section 1.2.1 a rigorous mathematical definition to a periodic
function along the on the surface I' when I' can be described as the image of a part
of a plane by some smooth transformation. More precisely, we assume the existence
of r : I' = R? and say that a function f is periodic on I if there exists a periodic
function f : R2 — R i. e. for all (m,n) € Z2 and (z,y) € R, f(m +z,n +y) =
f (x,y)) such that f = fotr . Note that this definition is not intrinsic .

o We will extend in section 1.2.2 this definition for function definintion on the thin
coating C°.

o We give illustrate in section 1.2.3 this defintion in the case of classical geome-
tries(torus, sphere, cylinder).

e The above description is in general (in fact as soon as I' does not have the same
topology as the torus) not possible globally but only piecewise (in local zones,
called periodic zones).(section 1.2.4) To overcome this difficulty we propose a slight
modification of our definition that relies on a specific treatment of the transition
regions between periodic zones.(section 1.2.5)

Next we reformulate in section 1.3, the diffraction problem in order to facilitate the
method that we shall use for the aymptotic analysis in §, namely a combination of matched
asymptotics and homogenization. Since this will rely on the use on local coordinates at
the neighborhood of I', we reformulate the original exterior problem in R3\ O, into
an equivalent one posed in a fixed tubular neighborhood of T' ( see [19, 2.7. Normal

15



Figure 1.1: Illustration of the geometry

Bundles and Tubular Neighborhoods| for instance ), denoted €2, in which local normal
and tangential coordinates can be used (as in [14, 17, 45] for instance). The inner surface
of  is I and whose outer surface is treated via a transparent boundary condition. This
condition is abstract and in general non explicit but, this s the important fact for the
anaysis, it is independent of 9.

1.1 The model scalar problem

Let us start with a quick description of the geometry of our problem and a presentation
of the model problem.

Let O be a bounded domain of R? such that R?\ O is connected with regular boundary
I' and let § > 0. We call the “thin coating of width " the following subset C° of O:

C° = {z € O, dist(z,T) < §}.
Here the quantity dist(z,T") is the distance of x from the surface I' defined by

dist(x,T") := inf |z — 2|,
zrel

and |.| is the classical Euclidean norm of R®. We need to introduce the complement
of Oin R* Q := R\ O and Q° := QU (%  We refer the reader to the Figure 1.1
for an illustration in 2D. The problem that we are interested in is the following: Find
u® € HE.(Q°) such that:

{ div(p6 Vué) + k2l b = f, in Q°, (11.1)

d,sus =0 on 90,

and us satisfies the Sommerfeld radiation condition:

lim 10,u° — iku’|* = 0.

Here n° and n are the outward unit normal vectors to 9Q° and €2 respectively, k& € R is
the wave-number and f denotes a given source term.

Moreover p°, ;° denote the acoustical characteristics of the medium supposed to be
equal to 1 in 2 and §— periodic in the thin coating C°. This is the main feature of our
problem. The definition of periodicity in the thin coating C° will be given later.
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Figure 1.2: Illustration of periodic plate
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Figure 1.3: The covering process

1.2 Notion of periodic coating

The definition is inspired from practical considerations. Imagine that a manufacturer has
a 0-periodic plate in the sense that the acoustic coefficients p, p are d periodic and assume
that the width if this plate is . Figure 1.2 is an illustration of a such plate. Then the
plate is deformed in order to stick on the surface of the 3D object O. This process is
illustrated in Figure 1.3. This procedure is repeated until there is a covering of all the

surface 00.

1.2.1 Definition of periodic functions on I

Let ¢p : I = R? be a given function defined from the surface of the object I' = 9O into
the plane R2. Intuitively this function represents the inverse of the deformation of the
plane shown in Figure 1.2 and Figure 1.2.1. Thanks to ¢r we can give a first definition
of periodicity for functions defined on the surface I'. Let us emphasize that the notion of
periodicity that we introduce is relative to a family of functions depending on the small
parameter 9, not to a single function.
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Figure 1.4: The application ¢r
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Yr(zr) =60
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[0, 27

Figure 1.5: The circle
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/ Y\ Yr(ar) = (0,p)
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7 [0,27[x] —
0
[4

Figure 1.6: the sphere
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(NJE]

Definition 1.2.1 (¢r —6—periodicity on a surface I'). Let u’ : T — R be a sequence
of functions indexed by 6 and defined on the surface I'. We say that us is yr —0—periodic
if there exists a reference function i : R? — R, I-periodic i.e.

ﬂ(i’l + ml,ii'z + mg) = ﬂ(i’l,.@g), V((il,.’i'g), (ml,mg)) € RQ X Z2,

such that we have for all xr € T" :

Remark 1.2.2. IfI" = R? and ¢r is the identity then the r —6—periodicity is equivalent
to the classical 6—periodicity i.e.

Ué(fﬁl + 57511,@2 + 57?12) = Ué(i'l,li'g)7 V((Zi’l, CE’Q), (ml,mg)) c RQ X ZQ

Thus the ¥r —d—periodicity is a generalization of classical d—periodicity for curved sur-
face. Let us give some examples of ¢r for some simple geometries.

e For the circle ' = S' := {z € R? |z| = 1} we can choose ¢r defined for z € T' by
tr(x) := 0 where 0 is the unique solution in [0, 27| of © = (cos#,sin ). (See figure

Figure 1.5)
e For the unit sphere I' := S? := {x € R3, |z| = 1} we can choose ¢r defined for
x €l by
Ur(z) = (0, 9), (1.2.2)
where (6, ¢) is the unique solution in [0, 27[x [—F, T[ of = (cos ¢ cos #, cos ¢ sin f, sin ¢).(See
Figure 1.6)

e For the torus I' := {((R+r cosu) cosv, (R+rsinu) cosv, rsinv)} we can choose ¢r
defined for (z1,x9,23) € I' by ¢r(ar) := (u,v) where (u,v) is the unique solution

18



Yr

P "/}F(xr‘) = (% %—)

3

0,1

3=

Figure 1.7: The torus

Figure 1.8: The partition (I';)o<,<s of C?% and the point zp associated to the point xr,

in [0, 27[? of
x1 = (R + rcosu)cosw,
e = (R 4+ rsinu) cosv,

T3 = sinv.

We refer the reader to Figure 1.7 for this example.

1.2.2 Extension of ¢r —§—periodicity for functions defined on C°

One can extend the 2D ¢ —d—periodicity to 3D by taking advantage of the function r.
Indeed, one interpret a thin coat as a superposition of 2D surfaces. More precisely we
have for all 79 > 6 > 0 the following partition of C?: (1, is the real number which appear
in (1.2.3))

where we define for » > 0 the surface I', := {z € O,dist(x,I") = r}. This partition is
illustrated in Figure 1.8. Now let us construct from the function ¢r : I' — R? a new
function ¢r, : T, — R?. First we recall from [19, 2.7. Normal Bundles and Tubular
Neighborhoods| that the following result holds:

Proposition 1.2.3. If T is a C? surface(d = 3) or curve (d = 2) then there exists
no > 0 such that for all x € R3 if dist(x,T) < no then the minimizer of the functional
xr > | — xp| is unique.

Assume that r < 7o, then thanks to Proposition 1.2.3 we can define the function ¢r, :
[, — R? for zr, € T, by:

Yr, (or,) = ¥r(zr),

19



Figure 1.9: Illustration of local coordinate

where xr is the unique minimizer of the functional zr — |x — xp|. We refer the reader
to Figure 1.8 for a graphical illustration of this last point . Thus, we can give the first
most intuitive definition of ¥r —6— periodicity on C°.
Definition 1.2.4. We say that a sequence of function (us)s defined on C° isbr —0—periodic
iof for all 0 < r < 0 the sequence of restriction ((U(S)‘FT)5>O s Y, — d—periodic.
However, although this last definition is very intuitive it is not practical for our analysis.
Therefore hereafter we give an equivalent characterization. First define the local coor-
dinates mapping(See for instance |14, 39, 52, 53| ) L : C,, — I'x] — no,0] for = € C,,
by:

L(x) := (zp,v),

where xp is the unique minimizer of xp — |z — xp| and v := (x — xp,n(xp)). Here
n : T+ R? is the unit outward normal. We refer the reader to Figure 1.9 for a graphical
illustration of all these quantities. Thus we can state the following reformulation of the
r —0d periodicity:

Definition 1.2.5. Let (us)s=o be a sequence of functions defined on C°. This sequence is
called 1Yr —d—periodic if and only if there exists a reference function  : Q= RZx]—1,0]
satisfying:

A~ ~ ~

(2 +m,0) = a(2,0), V(r,m) € R* x Z* and v €] — 1,0],

such that for all x € C° we have:

(Yr(zr),v)
)

us(z) = a(2,0)  with (&,0) =

and (zr,v) = L(x).

1.2.3 Example of the yr —)— periodicity for simple geometries

Here we show some examples of the ¥r —d periodicty for simple geometries in order to
illustrate this definition.

1.2.3.1 The cylinder

The cylinder is the following set:
I:= {(cos(@),sin(@),z),@ € [0,27r] and z € R}.
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In this case, one can easily show that for a point € R? of the form:

rcos(6)
x = | rsin(d) |,
z

for some (6,7,2) € [0,2n[xR; x R that the local coordinate map L is given by:

cos(0)
L(z) = (xr,v) with ar = | sin(f) and v=r—1. (1.2.3)
2

See Figure 1.11 for an illustration. Thus from this we directly have that:
Cs = {T(COS(@),rsin(Q),z),Q ef0,2r,1-d<r<landze€ ]R} )

See Figure 1.11 for an illustration.
Assume first that ¢r is the map defined for zr € T' of the form (cos(6),sin(6), z) by:

Yr(zr) = (0, 2). (1.2.4)

Then in this case, thanks to (1.2.3), the ¢r —d—periodicity is equivalent to the existence
of a reference function (&, Z9,7) — p(Z1, 1, 7) one periodic in (&1, 2) such that:

0 2 r—1
4 N B

In the two following particular cases, this last property is more simple to imagine:

o If the reference function (Zi,s,7) — p(1,21,7) only depends of #; then the
Yr —d—periodicity is equivalent to the existence of a d —periodic function ps : R — R
such that:

p(x) = ps(0) and VO € R, ps(8 +8) = ps(¢).

See Figure 1.10(a) for a graphical illustration of this case.

e If the reference function (%1,Z2,7) — p(Z1,21,7) only depends of %5 then the
1r —d—periodicity is equivalent to the existence of a d —periodic function ps : R — R
such that:

p(x) = ps(z) and V' €R, ps(2' +0) = ps(2).

See Figure 1.10(b) for a graphical illustration of this case.

More generally, if we keep (1.2.4) as a definition of the map ¢r and assume that the
reference function (21,29, 7) — p(Z1,21,7) depends of the two arguments (Z1, Z9) then
the 1r —d—periodicity is equivalent to the existence of a d—periodic function p;s : R? — R
such that:

pt;(x) = ﬁ5(07 Z) and v(elu Z,) S sz pé(elv Zl) = p(S(el + 57 Z,) = p5<9/7 2+ 5)
See Figure 1.10(c) for a graphical illustration of this case.
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(a) (b) () (d)

Figure 1.10: Example of the ¢r —d—periodicity for the cylinder

Figure 1.11: Ilustration of the map £ and the thin coat Cy in the case of the cylinder

Now let us illustrate the dependence of the notion of ¢ —d—periodicity with respect
to the choice of the map . Then we replace the definition (1.2.4) by the following one:

Yr(ar) = (0,2 +nd),

for some 1 > 0 and we assume that the reference function does not depend of the argument
v. Then in this case the Y —d—periodicity is equivalent to the existence of a function
ps : R? = R satisfaying:

0

Va' € R?, V¥(m,n) € Z*, ps(z'+muy+nvy) = ps(z’)  with vy := (_(7575) and vy = <5

such that p’(z) = ps(0, 2). See Figure 1.10(c) for a graphical illustration of this case.
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(a) (b) ()

Figure 1.12: Example of the ¢)r —d—periodicity for the cylinder

1.2.3.2 The sphere

The unit sphere is the following set:
[={zeR’ |z|=1}.
One can easily show that for all z € R® we have £(z) = (zr, ) where:

T = and v =|z|— L.

x
|z]
See Figure 1.13 for an illustration. Thus from this, we directly have the following char-
acterisation if the thin coating:

Co={zeR’, 1-6<|z| <1}.

See Figure 1.13 for an illustration.
Assume that the map ¢ : I' = R? is defined for zp € T by:

Yr(ar) = (0,9),

where (6, ¢) is the unique solution of of z = (cos ¢ cos 0, cos ¢ sin 8, sin ¢).(See Figure 1.13)
Figure 1.12(a) is an illustration when the reference function (21, Z2, ) — p(Z1, T2, 7) only
depends of the argument Z;. Figure 1.12(a) is an illustration when the reference function
(%1, Z2,0) — p(&1,22,7) only depends of the argument Z5. Finally Figure 1.12(a) is an
illustration for general function p.

1.2.4 The problem of fast cell contractions

Assume that T is the unit sphere and chose the map vr as the polar coordinates (1.2.2)
then we get Figure 1.2.4. Let us define the deformed cells as the images of the cells in
the plane through the map ¥ '. If we reduce the small parameter (see Figure 1.2.4)
we graphically see that the deformed cells shrink faster around the poles of the sphere.
This phenomena is not consistent with the intuitive idea of a periodic coating. Moreover
it induces difficulties in the analysis. Let us explain more precisely this problem. The
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Figure 1.13: Illustration of the map £ and the thin coat Cs in the case of the unit sphere

Figure 1.14: Problem of cell contraction

%

Figure 1.15: Transformation of a microscopic cell
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microscopic cell on zp € I' denoted Yx‘sr is mathematically defined by (see Figure 1.15):

Yfr = E_l(l/Jr_l (z,+]0,0[%) x] — 5,0[) with  x, := ¢r(ar).

For the sequel some elements from differential geometry are required. We assume that
O is a C™r*1 domain for some mr + 1 > 2 in the sense of [60, 2.5.2 Surfaces and Sobolev
spaces|. We summarize in the following result the most useful properties of boundaries
I' with this type of regularity:

There exists a collection of functions (¢ay. : Vo (0) C R* = W, (ay)), op Where
V. (0) and W,.(x,.) are neighborhoods of respectively 0 in R? and z,,. in T' in
the sense of subspace topology of I'. (We recall that the subspace topology of T is
defined by {X NT, X is a open set of R3}.)

For all zr € T, if we see the function ¢,. as a map ¢, : V,.(0) C R? — R? then
this last function is of class C™r+1,

For all zr € T the application ¢, : V,.(0) C R? — W, (zr) is bijective. In other

term, one has a local system of coordinates around zr for wich ¢,.(0,0) = zr and

Gup (U1, us) is a point in the neighborhood of xr, which coordinate are in R? are:
dr (U1, ug)

zI‘ (uly UQ)

ir (U]_, ,U’Q)

(See Figure 1.17).

For all xr € T the linear application D ¢,.(0) € L(R? R?) is injective where D is
the classical differential operator defined for map:

Xt (ur,u2) € Vo (0) = (X1 (ur, u2), Xo(u, ug), Xz(ur, us)),
and (u1, uz) € V,.(0) by the following matrix:

3u1X1(U17U2) ax2X1(U17U2)
DX(’LLl,U,Q) = Gung(ul,uQ) auQXQ(Ul,Ug)
aung(ub UQ) auQXg(Ub UQ)

The tangent space of I' at the point xr is the following space:
T,.I':=ImD ¢,.(0).

(See Figure 1.16). We emphasize that since by assumption D ¢,.(0) is an injective
map then the space T,.I" is a 2—dimensional and we have the basis (e1(xr), ea(zr))
where:

au1 qb‘]’ir (0) auZ - ;[‘ (0)
€1 (l‘p) = au1¢3cp (0) and eQ(xF) aU2¢a2cl~ (0)
a"-Ll ¢§F (0) 8“2 ¢33[‘ (0)

The orthogonal of the space T,.I" is the the linear span of the vector n(zr):

T,.T' = n(zr)*t
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Figure 1.16: Illustration of the space T,.I"

War (2r) Tr = Gup (0)(%F

(u1,uz)

=}

R? S (ur,u2) € Vi (0)
Var (0)

Figure 1.17: Illustration of manifold in the 2D case

e For all (ar,yr) € I'? if W, (xr) N Wy, (yr) # 0 then the map:
;pl © gbﬂ?r : d):;pl (Wﬂlr (CL’F) N Wyr (yf)) = Wyr (yF)7
is of class C™r*1(See Figure 1.18).

We now give the defintion of differential for functions f defined on the surface I'.
Indeed we say that an application f : I' — R? is of class C* with d € N if for all zp € T
the application:

fodap i Vap = RY,

Wl"l“ (.’EF) Tr WIF (‘TF) N Wyr (yF)
<

yr Wer (331“) N Wy (yF)

—1
¢yr

1o g, is CmrHl 2
(0) yr R \V

Figure 1.18: Illustration of the change of chart
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is of class C*. Under this last condition we define the differential symbol D f(zr) :
T,. T — R? by:
D f(wr) = D(f 0 ¢2)(0) - (D 6:(0)) "

Since (e1(zr),es(zr)) is a basis of the space T,.I', this last definition is equivalent to
define D f(zr) as the unique linear operator on 7,.I" such that:

Ouy by, (0) Ouy by, (0)
D f('rF) ’ 8u1¢§r (0) = 8ul (fO¢IF>(O) and D f(SUF) ’ au2¢ir‘ (O) = au2<fo¢$r)(0>
Oy &5, (0) Ous &5, (0)

Thus thanks to these definitions if ¢ is differentiable and locally injective at the point
xpr € T', we can introduce the quantity G : I' — R(called the determinant of the metric
tensor associated with ) defined by

N

G(zr) := det <D¢p(xp) Dl/}lt(a:p)>

(See (1.2.14) for an example of this last quantity when I' is the unit sphere.) For a
Banach space F, we denote by F' the dual of F' and for an operator A : E — F we
denote by A" the dual operator FT — ET associated with the duality products <, >p+_p
and <, >pgi_p . Thanks to the change of variable formula for integrals we get that if ¢
is differentiable and locally injective at the point xr then the Lebesgue-measure of }A/gfr
satisfies :

a (?x‘;) 530 Glar) - 3,

If the quantity G is not bounded from below and above by positive constants then this
corresponds with the first problem we previously stated. We shall see that G is needed to
be bounded from below by a positive constant in order to prove the convergence of the
asymptotic expansions.

Proposition 1.2.6. If one of the connected component of I' is diffeomorphic to the unit
sphere S? and yr is C' then there exists at least one point x} € T' such that:

det (Dr(a}) Dof(ar)) = 0.

The proof of this result is a direct application of the hairy ball theorem that we recall
hereafter. First we introduce for zp the tangent space of I' at the point zr denoted 7}, .I".
Definition 1.2.7. Let X : I' — R3. We say that X is a tangent vector field if for all
zr € I' we have:

X(zr) € T, T

Theorem 1.2.8 (Hairy ball theorem). Let n € N\ {0}, S*" C R**! be the unit
sphere and X be a continuous tangent vector field on S** then X(x}) = 0 for some
ap el

Proof of Proposition 1.2.6. By hypothesis there exists a diffecomorphism from I' into S?
that we denoted by ¢ : I' — S2. Then introduce the vector field X; on S? defined for
rg2 € S? by:

X(asa)s = D ofer) D (ar)' ().
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Figure 1.19: The plate for patching solution

Pentagon

Hexagon

Figure 1.20: Paving with hexagon and pentagon of soccer balls

where zr := ¢~'(xg2). Thus we can apply the hairy ball theorem, we have that there
exists zg2 € S? such that X (zg2); = 0. Define z} := ¢! (xg2) then we have:

0 =D ¢(z1) Der(ar)’ - (1,0)7,

and using that D ¢(z}) is invertible yields (D ¢r(z}) Dr(z})") - (1,0)T = 0. Therefore
we finished the proof.

1.2.5 The patching solution

In order to avoid the problem of vanishing G we shall assume that the periodicity is
defined on subsets of I' that are glued together. An example of patching is Figure 1.19,
Figure 1.21(a), Figure 1.21(b) and Figure 1.22 The matching process is be modeled by
the way we construct the map ¥r. Since the surface I' is compact we can define Ny € N
by the smallest number such that there exists a family of points (zf,- - L Ty e rAr
such that we have:

Nr
T =W, (at). (1.2.5)
=0
Next we introduce a smooth partition of unity (Xi)1 <i<Np associated to the open cover
<Wz¢ (:L’f)) . Finally define our map ¢r : I' — R? for 21 € " by:
r 1<i<Np

r(zr) = Z Xi(zr)o  (xr) with I(zp) = {1 <i¢< Np,ar € szr(a:})}

b
iEI(:CF)
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(a) a hexagon (b) a pentagon

Figure 1.21: Cut plate

Figure 1.22: The ¢ —§— periodicity for soccer ball
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We recall that the problem comes from the region where D ¢r becomes singular, i.e. G
vanishes. We introduce for arbitrary G, > 0 and G.x the following open set of non
singular points:

'y := {fL’F € F,g(l‘r) > Gmin and ’D@DF(JZFH < gmax}. (126)
Proposition 1.2.9. If G, is small enough then we have for all 1 < i < Nr that:

Proof. Let 1 <i < Np. We introduce the following set:

we (mU ).

i#i

and a sufficient condition to our stated result is to show that for some choice of G, we
have:

Indeed if we have W; = () then we have:
i

which contradicts that Np is the small number such that we have (1.2.5). Thanks to
(1.2.5) we have:

Nr
i (U e) AU ot = w6\ U, o)
j=1 J#i el
which leads to:

) v
Wi € W, (at). (1.2.8)
Now let us prove that :
inf G(zr) > 0. (1.2.9)
zreW;

Indeed we have for all zp € W; that x;(zr) = 1 and x;(zr) = 0 for all j # ¢. Since 0 and 1
are the minimal and max values that for all j the function x; we also have D x;(zr) = 0.
Thus we have thanks to Leibniz formula that:

D - ,—.1> - <—_1 1ty —1) — Do Mt
Yr(zr)= Y D (wx]r (wr) = > (6, DK +x:Dg)) (wr) =D (o),
jel(ar) jel(xr)
which leads to :
G(zp) = det (ch;l(:cr) Df qb;}(xr)). (1.2.10)
r r
Moreover we recall that ¢! : Was (zk) V,:(0) is a diffeomorphism and combining with
r

the compactness of the set W; yields:

inf det (D qﬁ;:(:vr) D ¢;1F1(95F)>

aTFEWi
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Combining with(1.2.10), we conclude the proof of (1.2.9).
Now assume that:
0 < Gumin < inf G(ar).

zreW;
Thus we directly get that W; C I'yy and combining with (1.2.8) conclude the proof of
(1.2.7) which in turn, concludes the whole proof. O

Let P(2) be the set of functions (&, 7) — @(Z, ) defined on € such that @ is one periodic
in the variable 7 i.e.

(& +m, D) = a(z, D), V(& 0,m) e Qx Z2 (1.2.11)

Definition 1.2.10. Let @ : ' — P(S2) be a reference function we say that @ is patching-
Yr-admissible if for all xr ¢ Ty the function 4(xr) only depends on the argument ©
1.€.

VQTF ¢ FM, Elﬁ,;(xp) Z} — 1,0[l—> R st V(Zi‘,ﬁ) € RQX] — 1,0[ ﬁ(ﬂ?p;ii‘,ﬁ) = ’&g(iﬁp;ﬁ).

Let u € P(Q2) and x be a smooth function vanishing on I' \ I'yy then the function ,,
defined for (zr,z,0) € T' x Q by Uy (2r; 2, 0) == x(zr)a(z, V) is an example of a patching
admissible function.

For the remainder of our work the initial definition of ¥r —d—periodicity is now re-
placed by the following one:
Definition 1.2.11. Let (u®)s=q be a sequence of function defined on the thin coating C°.
We say that (u®)s=o is Yr —0—periodic if there exists a function @ : T P(Q) patching-
Yr-admissible such that for all 6 > 0

Vo € C°) u'(z) = a(xp;:%, 19) where  (xp,v) = L(z) and (2,7) := (wr(l(’sr)ﬂ/).

The example of the sphere:
Now let us illustrate the exemple of the sphere, when v is the spherical coordinate
system. This mean that the map ¢ : I' — R? is defined for ar € I" by:

Q/JF(J:F) = (07 (b)v

where (6, ¢) is the unique solution of of z = (cos ¢ cos 6, cos ¢ sin 6, sin ¢).(See Figure 1.13).

Define:
0

0

0],1 0 ;

1 —1

and define the map ¢r : [0,2n[x] — §, Z[— I'™* for (6, ¢) € [0,27[x] — 5, 5[ by:

o

The map ¢r is a C* function and its differential is given for 6, ¢ by:

—cos(¢) sin(#) —sin(¢) cos(0)
Dor(0,¢) = | cos(¢)cos(d) —sin(¢)sin(f) | . (1.2.12)
0 cos()
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Figure 1.23: Tllustration of the set I'y; in the case a the unit sphere

From this we have that:

D 6r(6,6)! D o6, 6) = (COS;(Q) (1)> | (1.2.13)

Thus from this, we can see that if § ¢ {—7, 7} then the matrix D ¢p(60, )T D ér (0, ¢) is
injective where zr := ¢r(6,¢). Thus in this case the operator D ¢r(6, ¢) : R? — T,.T
is bijective. Therefore one can deduce that the map ¢r : [0,27[x] — 7, Z[— I'" is a C*°
diffeomorphism.

Therefore the map ¢rp : I'* = [0,27[x] — 7, [ is a diffeomorphism and we have for all
zr € I'* that:

D ¢r(ar) Débr(er)f = (D or(6,¢)' Dor(6.9) " = (00502@ (1)> ,

where (0, ¢) := ¥r(zr). Thus we have:

)
)

G(zr) = cos2(6), (1.2.14)
and then according to the definition (1.2.6) of the set I'y;, one has:
'y = {(cos g cosb, cospsinb, sing), 6 € [0,2n] and —n < ¢ <n}, (1.2.15)

where 1 > 0 is a the unique solution in [0, 5[ of cos™?(n) = Gumax. Here we have chosen

Gmin = 1. One can easily check that we can rewrite the set I'y; as follow:

FM:{<x7y>z)era_\/1_gr;;x<z< 1_gr;z§x}'

See Figure 1.23 for a graphical illustration of this last set. Finally, Figure 1.24 is a
graphical illustration of a ¢r —d— periodic function associated to a patching admissible
reference function.

1.3 Reformulation of the Helmholtz equation in the
surface local coordinates

We recall the problem that we are interested in: Find u® € H (%) such that:
div(p5 Vu‘;) + k2wl = f, in Q°,
Dpsus =0 on 98,
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Figure 1.24: Tllustration of the {r —d—periodicity in the case of the unit sphere.

Figure 1.25: £ : Cyp — I'x] — 6, m0]

and 1° satisfies the Sommerfeld radiation condition:

lim 10,u° — iku’|* = 0.
We remark that the dependence of our geometry with respect to the small parameter o

does not seems trivial. However from the definition of the mapping £ we directly get the
following characterization of our boundary:

00 = LY x {—0}) and T =LY x {0}).

Moreover from [19, 2.7. Normal Bundles and Tubular Neighborhoods|, we get the fol-
lowing result:

Proposition 1.3.1. If " have C" regularity for some n € N then for all 0 < § < ng, the
application L : Cs,y > I'xX] = 8, m0 is a C"1 diffeomorphism and its inverse is given for
(xp,v) € I'x] — d,m0] by (see Figure 1.9):

L (zp,v) = 2r +vn(zr).
Thus the local coordinates seem to be a better coordinate system to describe the
thin coating. Indeed the dependence with respect to the small parameter § of the set

['x] —4, 0] is more explicit than the one of the thin coating Cs = {z € O, dist(x,I') < §}.
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Figure 1.26: Hlustration of the maximum value of § and 7,

Nevertheless our problem is posed on the whole exterior ° and the application £ is only
defined on C°. According to Proposition 1.3.1, we assume that § < 7y and the application
L is now defined on the the set (See Figure 1.25)

Csmo i= {z € Q, dist(z,T') <o} UC.

We also assume that supp(f) C R*\ Cs,, which is possible for 7 small enough because
we assumed that supp(f) N T = 0.

Let us explain why the expression of the inverse £7! is more practical than the one
of the map £ for the sequel: Indeed, we recall that the map £ : Cs,y — I' =] — 0,7] is
given for z € Cy,,, by L(z) := (zr,v) where zr is the unique minimizer of the functional:

xzr €' |z — 2p|,
and:

v =dist(z,I') = inf |z —ar| if 2r € Q and v := —dist(z,I') = — inf |z —ap| if x ¢ Q.
zrel zrel

This last definition is not explicit because we directly see that wee need to solve a problem

of optimization:

inf |z — zrp|.
zrel

Therefore we cannot yet compute the derivative of the map £ and we will this in the
sequel that we will need to compute the quantity D £(See Proposition 1.3.3 for example).
The expression of L7 (xr,v) = xr + vn(xr) is more explicit because it only requires to
compute for zr € I' the normal unit vector n(zr). Moreover thanks to the definition of
the tensor curvature R(xr) = Dn(zr), we can easily establish that the differential of the
inverse L1 is given for (zr,v) € I'x] — d,m9[ by the only linear operator on T,.I' x R
defined for (vr,v,) € T,,.I' X R by:

DL Yap,v) - (Zi) = (I+ vR(zr))vr + n(zr)v,. (1.3.16)

Therefore we chose to derive a partial differential equation posed on the domain
I'x] — &, no| where the new unknown

us = u’ o L7
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L £~
z € Csy ——>(ap,v) € Tx] =8, (xp,v) € T'x] — §,no[ —> x € Cs

T e

A®(z) = As(r) A% (z) = As(r)

Figure 1.27: The maps A° and A;

will be the solution. We emphasize our notation convention: function with upper-script
§ are defined on Cj,, while function with subscripts ¢ are defined on I'x] — 9, 7.
Moreover, if A? is a function defined on Cs o then As is defined by:

As = A%o L7

Before obtaining a partial differential equation satisfied by the function us we first need
to reduce our problem (1.1.1) on the bounded domain C,, .

1.3.1 Reduction of the exterior problem to the bounded domain
067770

We use a classical way of reduction to a bounded domain through the Dirichlet to Neu-
mann operator (See [43, 60]). Nevertheless a difficulty is that the support of the source
term f might not be included into Cj,,,. To solve this problem we introduce an auxiliary
function us : Q\ Cs,, — C defined as the unique solution of: Find uy € H (2\ Cs,y)
such that :

{ Aus+kup = f, in Q\ G,

up =0, on X,
and uy satisfies the Sommerfeld radiation condition, where (see Figure 1.25):
Y = {z € Q,dist(z,T") = no}.
The Dirichlet to Neumann map on X, :
DN : H? (S,,) — H ™2 (S,,),
is defined for g € H2 (X,,) by DtN g := 0,u, where u, is the unique solution of: Find

u, € HL.(2\ Cs,,) such that :

(1.3.17)
Ug =g on X,

{ Aug+ k*uy =0, in Q\ Cs,p,,

and u, satisfies the Sommerfeld radiation condition. Finally we define:

<'> '>Eno = <.’ ‘>H_%(Eno)_H%(Z”0).

Let us explain why this last operator is well defined. Indeed, when the boundary %, is
at least Lipschitz, then according to the scattering theory, the problem (1.3.17) is well
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Non-Lipschitz curve for 79, too large

no\small enough

Figure 1.28: Regularity of ¥, with respect to 17

posed(]|60]). Moreover, according to Proposition 1.3.1 if 1 is small then ¥, is a Lipschitz
surface. (See Figure 1.28 for a graphical illustration and a graphical illustration about
what appends when 7 is too large). Therefore if we choose 1y small enough then the
Dirichlet to Neumann map is well defined. Then thanks to these two definitions, we can
state the following result:

Proposition 1.3.2. If supp(f) C R*\ Cj,, then the function u’ is the unique solution
of : Find u® € H*(Cs,,) such that for all v* € H'(Cs.,,):

a’(u’,v°) = (9,uy — DtN uf,v‘5>Z , (1.3.18)
10

where a’ is the sesquilinear form defined for (u®,v°) by:

a®(ul,v?) = / P°Vul - Vo — kPl -0’ + <DtN ul, v5>
Cs

) o

Proof. From the definition of the function uy we directly get that the function u — uy
satisfies A(u—uy)+k*(u—uy) = 0 and the Sommerfeld radiation condition. Thus u—u;
satisfies on the boundary ¥, :

Oy(u —uyp) = DtN(u — uy).

and then u satisfies on ¥, the boundary condition d,u — DtNu = 9,uy — DtNuy. Thus
the proof is finished. O

1.3.2 The problem posed in I'x] — 4, 7]

1.3.2.1 Variational formulation

Here we will transform (1.3.18) into a variational formulation in the volume Q5 := I'x| —
d,mo[- Let us summarize how we proceed to rewrite our problem:

1. We describe a new sesquilinear form as : H'(5) x H'(s) — C such that for all
functions wus, u’°, vs and v® we have :

W =usol and v =vsoLl = as(us,vs) = a’(u’,v%). (1.3.19)
To do it we proceed with the following steps:
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(a) We prove that for all functions us and u’ linked by u® = us o £ the following

equivalence holds:
us € H'(Qs) <= v’ € H'(Cs,), (1.3.20)

and there exists C' > 0 that does not depend on us and ¢ such that the following
equivalence of norms property holds:

C™ Wl cy,y) < sl < C - 16 lancs,,): (1.3.21)

(b) We use the expression of the gradient in local coordinates

(c) We use the change of variables £ for integrals.

2. We seek an element fx, € H~2 (T x {n}) such that for vs and v°:

U(S = Vg5 O L = <f2no’v(5>r><{770} = <8Vuf — DtN uf, U6>I‘><{770} ’

where we defined (-, *)px(no} = (- '>H—%(rx{no})—H%(rx{no})' We emphasize that the
function f, ~depends on the choice of rjg and on the right hand-side f. This function

is a distribution on I',, which itself depend of 7.

3. We deduce that (1.3.18) is equivalent to: Find us; € H'({s) such that for all
vs € H'(Q5) we have:
as(us, vs) = (fs,,> V6)Tx {no}-

To state the results for parts (a) and (b) some elements are needed:

e We extend the unit outward normal application n : I' = R? for x satisfyaing:
dist(x, I") < no,

(no is the quantity appearing in Proposition 1.3.1) which takes the form x = ap +
vn(zr) by n(x) := n(xr)(see Proposition 1.3.1 for existence and uniqueness of
(zr,v)). Thanks to Proposition 1.3.1, since we assumed that I" is at least C?, this
last extension 7 is a C* function. Therefore thanks to this last regularity property,
we now can define the tensor curvature R and the mean curvature H for zr € by :

aﬂclnl 81:2”1 8:(33”1
R(zr) :=Dn(0) with Dn:=[0,ny Opng Orno (1.3.22)
axl ns a:ﬂg ns 813 ns

and H(xr) = tr(R(mF)). A second definition of the tensor R(zr) is the following
2

one: Let (¢ , 02,92 ) : Vi (0) C R? — W, (zr) C I be a chart. Then define the

map N for (uy,uy) € V,.(0) by:

N (ur, ug) = n(¢y. (ur, ug), o2 (ur, uz), ¢35 (u, uz)).

We recall that:

O, 03 (0)\ [0y (0)
T,.I' = Vect 00, 02.(0) |, | 02,02.(0) (1.3.23)

Oz, 03, (0) Oz, 03, (0)
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and T,.I't = Vect{n(xr)}. Thus the tensor R(zr) is defined as the unique linear
operator on R3 such that:

Oy 9. (0) O, 91, (0)
R('xF) 8:l:1 ¢a25p (0) = arlN(O? O)? R(xl") angbir (0) = azzN(()? 0)
NR() Oz, 05, (0)

and R(zr)n(zr) = 0.

We recall that for all zr € I' we have Im (R(2zr)) C T,..I' and R(xr) : T, T — T, .T
is a symmetric tensor.

e We define the surface Vi operator for a function u € H'(T') as follows: We extend
the function u for x satisfying dist(x,I") < ng by 4(x) := u(zr) where (zr, v) is the
unique solution of x = xr +n(xr)r. Thanks to Proposition 1.3.1, since we assumed
that I is at least C?, this last extension @ is a C'* function. Then for zr € T', we now
can define the surface gradient by Vru(zr) := Va(zr). A second definition of the
surface gradient is the following one: We define the function U for (uy, us) € V,..(0)
by:

Ulur, ug) i=u(oh (ur,uz), 5 (ur,uz), ¢35 (ur,uz)).

Thus thanks to (1.3.23), the surface gradient Vi u(zr) can be defined as the unique
element of 7,.I'" such that

Oz, 0. (0) Oz, b7, (0)
VFu(mF) 8$1¢1%1" (0) = amU(O? 0)7 VF u(xF) a"cngzp(o) = 8962U(07 O)
Oz, 07,.(0) Oz, 02, (0)

e Thus we can introduce the operator V defined for us € H'(Qs) by:

Vi us :== Vrus + no,us.

Thanks to these definitions and gradient formula used in [14, Some notations and
recalls of differential geometry| and [57, Theorem 3.23], and the expression of differencial
of the map £ given by (1.3.16), we can easy establish the following result:

Proposition 1.3.3. The equivalence (1.3.20) and (1.3.21) holds true. Moreover for all
us € HY(Q5) the following expression for gradient of u® := us o L holds:

V' = (I+vR)™" - Vous) oL,

where 1 is the identity matriz of R3.
The change of variable formula
We introduce for convenience the function C': I' — R for (zp,v) € Qs by:

C(zr,v) := det(I + vR(zr)) = 1 + 2vH (ar) + V*G(ar), (1.3.24)

where G(zr) := det(R(zr)) is the Gaussian curvature and H(zr) := tr(R(zr))/2 is
the mean curvature. In order to illustrate these last quantity, let us introduce the
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principal curvature x; and ko which are defined as the eigenvalues of the operator
R(zr) : T, I — T,.T'(We recall R(zr) is a endomorphism of 7,.I' ). In other word,
there exists a isomorphism P(xr) : T,.I' — R? such that:

K1 0

Rler) = Plar) (730} Plar) ™

K2
Then by using this notation, we can rewrite the Gaussian curvature and the mean cur-

vature as follows:
K1 + Ko

2 Y

G(zr) = ki1ke and H(zr) =
and rewrite (1.3.24) as follows:
C(zr,v) := (1 +vk)(1 +vry) or COlar,v) =1+ v(k + ka) + Kikar?.

We choose an arbitrary 7, satisfying:
Mo < min (dist (supp(f),F), VG2 — H? — H)

in order to get that that the matrix field (xp,v) — 1+ vR(zr) is uniformly definite-
positive on I'. This mean that we have existence of C’ > 0 such that for all zr € I and
p € R3 we have:

(I+ vR(zr)) - p,p) > C'|p|*.

Under this last condition we get C' > (C")%.
Thanks to this last definition and [14, Theorem 3.23| we can state the following result:
Proposition 1.3.4. Let As be in L'(s) then A° := Aso L € LY(Cs,,) and we have:

J

The Dirichlet to Neumann map DtN,
As a direct consequence of Proposition 1.3.3 the following sesquilinear form:

Addx = / AsCdldy.

5,10 Qs

(ﬂg, TN)(;) —> <DtN ag o E, 175 o £>Eno s

is continuous on H2 (2770)2‘ Therefore there exists an operator DtN, : H 3 (T x {no}) —
H~z (I x {n}) such that for all is, 55 € H2 (I' x {ny}) we have:

<DtN5 115, 65>F><{n0} = <DtN ﬂg 9] [,, 175 o £>2n0 . (1.3.25)

The sesquilinear form a; The sesquilinear form a; is defined for (us, vs) € H(£25)? by:
as(us, vs) := / psCVeus - Vevs — ps Cus - vs 4 (DENg s, Us)xfno}»
Qs

where the linear operator C : ' x R — L(R?) is defined for (zr,v) € Qs by the only linear
operator such that for all vp € T, .T"

{ C(xr,v) -vur:

C(xzp,v) - n(zr) ==

(zr,v) - (I+ I/R(xp)y2 - ur,

(zr) - n(zr).

C
1.3.26
. (1.3.26)

39



As second way to define this last operator is the following one: The restriction of this
last operator of the tangent space T,.I" is defined by:

1+ VKo
Clar,V)|ryr = Plar) | 1 HVR | Plar)™
1 + VKo

This opeator is defined for n(zI") by:
C(ar,v)n(zr) := (1 + vk1)(1 + vry)n(zr).

Moreover we introduce the coefficient ps := p? o £7! and ps := p° o £71 and then we can
state the following result:
Proposition 1.3.5. The property (1.3.19) holds.
Proof. Let us,vs € H'(Qs), v := v5 0 L and u® := v5 o L. Thanks to Proposition 1.3.3
we get:

Vi’ - Vo’ = (C7'CVrus - Vi vs + Oyus - dus) o L.

From the definition of V. and C this last quantity become:
Vil - Vol = [Cfl(C Veus Ve v(;)} oL.

This lead to :
/ PPV’ -Vl — kRl v = / (C'Q)oL
C(S,no C(SWIO
where () defined on 5 by:
Q = (C VC us - VL Ug) - ]{32/L§CU5 + Us-

Thanks to Proposition 1.3.4 we have:

J

/ PPVl - Vol — okl v = / ps (CVus - Vovs) — s Cug - vs.
Cs.m0 Qs

(c'Q)oL= | o
Qs

3,m0

and then we get:

Thus we can conclude.

The right-hand-side [y,
As a direct consequence of (1.3.3) the linear form fy, ~defined by:

¥5 =+ (Dyus — DEN uf, G5 0 LY o)

is continuous on the space H2 (I' x {ny}). Thus combining Proposition 1.3.5, with Propo-
sition 1.3.2 yields the following result:

Lemma 1.3.6. The function us :== u’ o L™ is the unique solution of the problem: Find
us € HY(Qs) such that for all vs € H'(Qs):

(l5(U5,U5) = <fgn0,1)5(-,770)>r><{n0}. (1.3.27)
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1.3.2.2 Interpretation as a partial differential equation

Here we will transform the formulation (1.3.27) into a volume formulation. We introduce
the operator div, defined for u: I' — R? by:

divyu ;= divrur + d,u,,

where divr is the surface divergence operator, u, := u-n and for all zr, ur(ar) is
the projection of u on the tangent space T,.I'. According to [60, equation 2.5.205] the
divergence operator divr is defined for all xr € I' by:

1
div
\/det(D ¢:(0) - D ¢, (0)) (

Vaer(D ol Do) Do uro 0 ) 0

din U(ZL’F) =

and thanks to [60, Theorem 2.5.19] this last operator satisfies the green formula:
Yu, v, /u -Vr9oudl = —/dinu-@dF,
r r

From this last formula we get that ugs satisfies:
div, (,056 \Y: U5) + k2u5 Cus =0 1in Q;s.

Moreover since for all xzr € ', n(xr) is an eigenvector of C, us satisfies the boundary
condition:

Oyus =0 on T x{-0d}.

Finally our solution us satisfies the following boundary condition:

Oyus —DtNgus = fg,  on ' x {no}.
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Chapter 2

Formal asymptotic expansion

We wish to construct here a (formal) approximation of the solution u° of (1.1.1) of the
form u® + du' + 5%u? 4 --- where for all i, v’ : Q — C. Numerical simulation show
that the true solution u’ strongly oscillates in the neighborhood of the boundary I'(See
Figure 2.1). Such a phenomenon is what we call a boundary layer phenomenon. Hence
u® + du' + 0%u? + -+ will be only valid far from the interface I'. (See Figure 2.1) To
take into account this boundary layer phenomenon, we chooze to apply the matched
asymptotic expansion method. For an example this method is explained, for instance, in
[33, 70, 46, 54, 41, 1, 68] and applied in [48, 49, 31, 16, 47, 15, 37, 34, 35, 38|.

First we will assume that the expansion:
u = ul + ou' + 6%+ (2.0.1)

is valid far from the interface I'. We will formally see that for all 7, u’ is a solution of the
Helmholtz equation and then it remains to determine the trace of u; on the interface I
in order to completely determine the term wu;.

Secondly, to represent the strong oscillations of the function u° in the neighbourhood
of I', we will assume for x near the interface that:

u(z) = tg(xr; &, 0) + 0ty (xr; &, D) + 0%g(xp; 2,0) + - - -, (2.0.2)

where (z,7) = (wp(xp),l/) /6 and zr is the nearest point in I' from z and v is the
distance of = from I'. According to Proposition 1.3.1, the quantity (zr,v) is also the
unique solution of z = xr + vn(zr) and the local coordinates is a diffeomorphism.

The function ;(zr; &, V) are searched as periodic of period T'=1 in & for all ¢ : This
is the ansatz of homogenization theory (see [4, 3, 5, 6, 12, 18, 29, 66]). Inserting this
expansion into the Helmholtz equation yields for all n € N a recursive equation between
U (zr; &, 0) and the previous terms t,_1(zr;Z,7),--. Nevertheless this equation will
not completely determine the near field (zr;z,0) — 4, (zr; &, 0): the operator Ty to be
inverted at each step of rhe recurrence has a on trivial kernel namely the space of function
(zr, &, 0) — v(zr, T,7) which are independent of (z,7) i.e.

AV xp — V(ar), Yar, ¥(z,0), v(zr; z,0) = V(er).

The two expansions (2.0.1) and (2.0.1) have to be both valid in what we call the

matching zone which brings us equation between the Taylor expansion u™, u™ !, --- and
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Figure 2.1: The boundary layer phenomenon

the asymptotic behavior of 4, (zr; %, ) for large ». In particular these equations will fix
the function of zr in the kernel of T for the term 4,. These equations are called the
“matching conditions”.

Finally we will construct an explicit recursive algorithm that construct iteralively the
two sequence (uy,), and (U, ),.

2.1 Equations of the problem

We recall that the goal of this work is to construct approximations of the unique solution
ug : Qs — C of:
diVL(p(;CV£ U5) +k2u50u5 =0 in Qy, (2.1.3)

with the following boundary condition:
dyus =0 on I x {0} (2.1.4)
and
dyus —DtNgus = fs,  on T x {m}. (2.1.5)
We recall that the operator DtN is defined by (1.3.25).

2.2  Quick presentation of the matched asymptotic ex-
pansion method

This method consists in seeking two asymptotic expansions of the solution. One(called
far-field expansion) is valid near the boundary called the near-field expansion and the
other one is valid far from the boundary . Firstly let us chose a function 1 : 6 — 7(d)
such that:

lim () =0 and lim @ = 00, (2.2.6)

d—00 d—00

and define the following zones(see Figure 2.2 for a graphical illustration of these regions):
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) o Matching zone
Near field zone A S \\:5\{@, ¢ 0, 2n(6) < dist(z,T)}
{z e RY, dist(z,T) < n(&) "\ \ N0\

b Far field zone
Nz ¢ 0, n(0) < dist(z,T) < 2n(d)}

Figure 2.2: The three zones

e The near-field zone is defined by: I'x] —d,n[. In this zone we formally assume that
ugs is a series of ¢r —d—periodic functions(See Theorem 1.2.5 for the defintion of
the 1)r —d—periodicity) in the sense that for all N € N there exists a constant Cy
such that the following estimate holds:

lus — ug'|| < CnoN*, (2.2.7)
where u) is defined for (zr,v) € I'x] — 4, 5[ by:

(¢F(xF)7 V) )

N
ud (zp,v) = Z(S”ﬂn(xp;fv, v) with (z,0):= 5

n=0

A

In this last defintion, for all n in N the application 4, : I' — P(Q) is defined

from T into P() and we recall that P(Q) is the set of functions defined on ) :=
R%x] — 1, 00 and one periodic on the variable .

e The far-field zone is defined by: I'x]2n, n9[. In this zone we assume that us admits
the following asymptotic expansion: For all N € N there exists a constant Cy > 0
such that the following estimate holds:

Jus — uy' || < O™, (2.2.8)

where v is defined for (zr,v) € T'x]2n, o[ by:

N
uf (wp,v) = Z 3" Uy (xr, v),
n=0

and for all n € N the function u,, is defined on €.

e The overlapping zone is defined by: I'x]n,2n[. In this zone expansions (2.2.7) and
(2.2.8) are assumed to be both valid and then should be equivalent.

2.3 Identification of the required equations for the ansatz

2.3.1 Equations of the near-field

We require that the near field satisfies (2.1.3) and the Neumann condition (2.1.4). Fol-
lowing [37] and [34] we chose that:

Vn €N, dyti, =0 on T x 9| (2.3.9)
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In the homogenization theory in [5, 4, 3], in order to perform a formal computation, the
authors strongly use the following property : For all u’, A% of the form:

SN €z 50\ x
u’ () —u(:v, (5> and A’(z)=A (w, 5)
we have for all x that:
div (A°Vu’) (z) = 6 *div, (A(z, y) Vyu)(z,y)

+ 07 divy (A(z,y)Vou) (z,y) + 0 div, (A(z, y) Vyu) (z,y)  (2.3.10)
+ div, (A(z, y)Vau) (2, y)

where y := x/5. They formally deduce from these equalities that if a function u® takes
the form .
1 n
= d n < ) _> )
u’(z) E Un \ 2,5
neN

and satisfies div(A°u’) = f then the sequence u,, satisfies the following induction equality:

0 =div, (A(x, y)Vyun) (z,y)+
div, (A(z, y)Vyun—1) (2, y) + divy (A(z, y) Votn_1) (z, )+ (2.3.11)
div, (A(z, y) Vatun—2) (2, y).

This last formula completely defines all term wu,, and then builds the expansion u’ ~

Ug + 5U1 4+ e

Since the Y —d—periodicity is a generalization of the periodicity, we will draw on
this last idea for the construction of the near field. More precisely, we now extend the
expression (2.3.10) for ¢r —d—periodic function and the operator:

dng(p(sc Vg ) + kQ,u(; C .

and that will be the object of the formula (2.3.23). In order to simplify notation we

~

introduce the operator Zs defined for @ : I' — P(Q2) and (zr,v) € €5 by:

(Yr(ar),v)
5

Isu(xr,v) = u(zxr;z,0) with (2,0) =
The formula (2.3.10) is a combination of the two following formula:
Vo, u’(z) = u (I, %) — Vo, Vu'(z) = Vyu(r,y) + 6 V,u(z, y), (2.3.12)
and
Vo, u’(z) = u (:1:, %) = Vo, dive’(z) = diveu(r, y) + 6 divyu(z, y), (2.3.13)
where y := x/9.
Thus we will extend these two formulas for function ¢r —d—periodic. That is the

object of Proposition 2.3.1 which is an extension of (2.3.12) and Proposition 2.3.2 which
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R -n(zr) AR -n(yr)

@u(yp; T1,29,0) \

//\\ yFGF\FM /

\\\\\\ - P \ FM///(/,,

Figure 2.3: Illustration of the operator v

is an extension of (2.3.13). To state these two results, one needs to introduce the operator
V defined for 4 € I' x Q@ — R and (zr,2,7) € I'yy X2 by :

Vi(zr; #,0) = Dipp(ar) Vaa(ar; &,0) + dpii(xr; 2, 0) - n(xr). (2.3.14)

Here V; is the classical gradient with respect to 2 defined by:

. (0n1
Viu = (85:2&) .
Nevertheless, the function ¢r is a priori non regular for zr ¢ I'y; and then the quantity
D #r(zr) is not defined. Hence (2.3.14) does not have sense . However, according to
the “patching solution” our coefficients vary slowly in (I'\ T'y) x] — 6,0[ and then we
can prove that the same applies for the solution us. Therefore for all zr € '\ T'y; and
(z,v) € Q) all quantity t(zr; &, ) will not depend of the variable z. Then we extend Vi
for (zr,2,0) € T'\ I'u xQ) by Va(zr: #,0) = Opi(xr;2,0). (See Figure 2.3) Next we
define the operator div for a vector function 4@ : T’ x € s R3 for (zr,z,v) € I'u x ) by:

div (@(zr; &, 0)) = divs (D (er, &, 0)ar(zr, & 0)) + S5, (xr; 2, D). (2.3.15)

Here we defined u, (zr; Z,7) := a(xr; z,7) - n(zr) and ar(zr; , 7) is the projection of 0
on the tangent space T,.I" and div; is the classical divergence with respect to z defined
for function w := (uy, us) by divgu := 0z, u1 + Oz, us.

Nevertheless, since the function ¢r is a propri non regular for xp € I'\ Ty (2.3.15)
then (2.3.15) does not have sense. However we have seen that for (&,7) € Q all quan-

tity @(xr;z,7) will not depend of the variable #. Then we extend (ﬂ:f’ltl,(l'f‘;i',ﬁ) for
(xp,z,0) € (I'\ T'n) x Q by diva(xr; 2, 0) := Oyt (2r; 2, D).
Now let us give the expressions of these two operators in the case of the unit sphere

when the map r is the spherical coordinate. We recall that it mean that the map ¢r is
defined for zr € T" by:

Yr(ar) = (0, 9),

where (0, ¢) is the unique solution of of zr = (cos¢cosf,cos ¢sinb,sin ¢).(See Fig-
ure 1.13).
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In this case, thanks to (1.2.12), we can prove that the map D¢y is given for zp € T
by:

cos(¢) sin(0)

Do o) - COS(sg))z —sin(¢) cos(6) e COS((ZZ)) Céség))
cos(0) — sin(¢) sin(0) sin(¢)
0 cos(9)

Therefore in this case, thanks to (1.2.15), if —p < ¢ < n then we have for v : I' x Yoo
smooth enough:

A~

(Vu)(xr; ) = 0103, u(zr; -) + v20z,u(xr; ) + vp0pu(zr; -),

where:
_ cos(¢) sin(6)
cos(6)? — sin(¢) cos(0) cos(¢) cos()
vy = cos(9) , Vg := | —sin(¢)sin(6) and vy := [ cos(¢)sin(h)
coso(é) cos(¢) sin(¢)

else one has: R
(Vu)(zr; ) = v0u.

For vector field w : I' x Q) smooth enough, if —n < ¢ < n then
div(w)(ars ) = 05, (01, uler: ) + O, (va, ulars ) + 05 (g, ular: ),

else &Rf(u)(wp; ) = Op(vp, u(ar;-)).

Thus thanks to these definitions we can state the following result:
Proposition 2.3.1. Let i € CY(T x Q) be a function patching-yr-admissible then the
following equality holds:

V(Zy ) = Ty (vwwﬂ%).

L\ 3
Proposition 2.3.2. Let u € (Cl(F X Q)) patching-yr-admissible then the following
equality holds:
diVﬁ(I(; ﬁ) = I(; <diVF ﬁp + 5_1 div ﬁ),
where for all xr, ur(zr;-) is the projection of u(zr;-) on the tangent space T,.T.
Proof of Proposition 2.3.1. First let us prove that for all (zr,v) € {25 we have:

Vr (Zs5(4)) (zr, v) = V() (2r; 2, 7) + 6 Dapr(ar) Va(ar; 2, ), (2.3.16)
(Yr(r),v) '

Indeed, assume first that zr € I'y;. Then from the definition of I'y; the application ¢
is differentiable and bijective from a neighborhood V' (zr) C I of zr into a neighborhood

where: (Z,7) :=
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V(z,) € R? of 2, := tp(xr). Thus its inverse ¢r := ¢ : V(z,) +— V(zr) is a local
parameterization of the surface I' and the family (e;)ic(1,9y defined for i = 1,2 by:

€; ‘= D¢r($r)éi, (2317)

is a basis of T,.I". Here (&;);=1 is the canonical basis of R?.
For all v €] — §,no[ the following decomposition of the map xr + Zs(u)(xr, ) holds:

Ig('&)(, y) = ufpp,u o Yr,

where uf, , is defined for « € V(x,) by:

5 . T
any(aﬁ’) =u <¢F($), 5’ V) ) (2318)
which yields for all ¢ € {1, 2}:

Vr(Zsa)(zr,v) - e; = (9miuz”,(x7«). (2.3.19)

~

We define the function 1y, , for (z,z) € V(z,) x Q by:

Upp (2, 2) := U(or(x), T). (2.3.20)

Thanks to this definition, we can rewrite (2.3.18) for all z € V(z,) as follow:

R T
ufz;p,z/(x) = Ugpp,v <$, 5) )
which leads to:
Doty () = Oty (T, ) + 00, Uy (1, 2) (2.3.21)

From (2.3.20), we get the following decomposition of the map zr — @(xr; Z, v):

which leads to:
Vra(zr; 2,0) - e; = Oy, lyy o (T, T). (2.3.22)

Thanks to (2.3.20) we get 9, Gy (2, 2) = O, a(ar; 4, 0) = (Vat(er; &,0)) - é; and using
(2.3.17) yields:
Oz, Uppe (T, &) = @iﬂ(xp; z,v) - (pr(xp)ei) = (Dl/Jp(a:p)T@ja) (xr;Z,0) - €

Combining this with (2.3.22), (2.3.21) and (2.3.19) conclude the proof of (2.3.16) when
xp € T'y. For ap ¢ T'y; this result is trivial because u(xr;-) only depend of .
Finally, we have, V(zp,v) € Qs:

A ,Tﬂr(ﬂfr) v _ 519 4 P
0, (u(xp, 5 ,5> =0 Opu(xr;z,0),

and multiplying this last identity by n(zr) and combining with (2.3.16) conclude the
proof. O]
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Proof of Proposition 2.3.2. The proof use similar calculations. Indeed it is sufficient to
replace (2.3.19) by

. 1 i
divy (I5 up) (xr) = Z — 0Oy, (ﬂ(u?r) )(xr)

= VI
Here, we defined on V' (z,) the scalar functions /g as the determinant of the matrix whose

coefficient are given for all ¢, j = 1,2 by 0, ¢r - 0,,¢r. and (ug’r)i are the unique scalars

such that: )

wt = usopr =Y (uf") 'O, or

i=1

Our goal is to give a formula which is the equivalent of formula (2.3.10) in the case of the

~

plane and k = 0; i.e. to give formula of the form for all @ : I — P(§2) smooth enough:
dive (ps C Ve (Ts ) + K ps CLs o = I (Tsu), (2.3.23)

where 75 is an operator to be determined at least formally. If C and C were a constant,
using:

VeTsa) =Ty (Vra+67' Vi) and dive(Za) = 7y (diveap + 07 diva).

(See Proposition 2.3.1 and Proposition 2.3.2), we would get, since CZs = ZsC and CZs =
Zs C (C and C both commute with Zs):

To = (07 divdivr) (€ (671 ¥+ Vr)) + K% C. (2.3.24)

In the general case, one has:

C(xr,v)Zsa(zr,v) = Clar,v)a <xp; ¢FE$$F), %) ,

= ¢ (o ) (s 0 )
= T5(C%a) (xp, v),

where C°(zp; &, 0) := C(zp; 60). Posing C°(zp; &, 0) := C(zp; 09), we also have:
C(ar,v) Is a(xp, v) = Zs(C° @) (xp, v).
Hence (2.3.24) becomes in the general case:
To = (07 divrdive) (€7 (57 Y+ Vi) ) + k2 C° (2.3.25)
Our next goal will be to express an expansion of 75 in power of § in the form:

T=> 0T, (2.3.26)

kEZ
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and we want to identify the 7. For this, using the Taylor expansion formula, we write:

C(xr;v ZV"”C and C(ar;v Zuk (k

keN keN

Here we defined for k£ € Z and xr € I'; the following quantity:

C® (zp) := E@fC(IF, 0) if >0 else C®(zp):=0, (2.3.27)
and
B (zp) = E(‘?ff C(xp,0) if E>0 else ¥ (zp):=0. (2.3.28)

Then according to the definition of C° and C°, we have:

Colar;p) = 6" 0¥ (xr) and  Clap;0) =) 0 P (ar).

keN keN
Thanks to these to equalities, (2.3.25) formally becomes:
To=T, + k0 808P (ar),
keN
where we defined for u smooth enough:
TP =y (67 div+divy ) (89°CH) (@r) (67 V + Vr) ).
keN

Thus it remains to express an expansion of 7, in powers of ¢ of the form:

= Z SF2Te. (2.3.29)
keZ

Using an index rearrangement, we have for u:

S (Vrat 07 Vi) = 3 6 (C Vra + oD G a),

keZ kEZ
which leads to :

Tra=Y o ( divp 4671 Ji?) (pﬁ)kC(’“) Vpa + pottieEr) u) .
keZ

Therefore a second index rearrangement in this last expression yields:

Tra=3 s ( divy (pC®2F Vi) + div (512502 § a)) ,

kEZ

+ > 6 (dive (51 pC 4 T ) + div (¢ Vi) ),

kEZ

(2.3.30)
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Defining for k € Z and @ : T’ x Q2 — C the operator Tlro by

L0 = dive ()CMDF V) + div (552pc* D T @),
+divy (050D Vi) + div (4 et V),

we can rewrite (2.3.30) as follow:

Tra =Y 6 Tla,

which is (2.3.29). Hence by introducing for k& € Z the operator:

we get the expansion (2.3.26).

Now we will use this formula to extend the induction formula (2.3.11) and that will be
the object of (2.3.31). By inserting expansion (2.2.7) into the Helmholtz equation (2.1.3)
and combining with (2.3.23), we formally get:

k
0= 3 Y6 = S T 3 ()
kEZ €T kEZ €7, kEZ 1=0
A series of the variable ¢ is zero for all values of ¢ if every coefficient is zero. Therefore
k
> T =0, Vk >0,
1=0

that can be rewritten as follows:

k
Totr = — S Thag_y, Yk > 0. (2.3.31)
=1

Thus, in order to define u; we first need to invert the operator 7,. If a function u :
(xr; Z,7) — R does not depend of & and » then this function belong to the kernel of the
operator 7Ty i.e.

Tou = 0.
Moreover, we will later see in a functional framework that we have the equivalence:
Vu, Tou =0 <= 30U : T = C¥(zr,2,) € I x Qu(ar; &,0) = U(zr),

and this last result is stated in Proposition 2.5.2. Thus the equation (2.3.31) define the
near-field 4, up to a function which only depends to the variable zr.
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2.3.2 Equations for the far-field
Inserting (2.2.8) into (2.1.3) and (2.1.5) yields for all n € N:

dive(CVeu,) +k*Cu, =0, in Qo, (2.3.32)

with the boundary condition on I" x {n}:

Co,u, = DtN,u,, if n > 0,
(2.3.33)

Cyug = DN ug + f,, else .

We recall that the operator DtN is defined by (1.3.25) and (C, C') are defined by (1.3.26)
and (1.3.24). Nevertheless the boundary conditions on T" x {0} for these problems are
missing.

By using the arguments of Proposition 1.3.2,Proposition 1.3.3 and Proposition 1.3.5,
we directly have that (2.3.32) and (2.3.33) are equivalent to have for all n € N that

A’ + k2’ = f in Q, if n > 0 then Au™ +k*u" =0 in €,

and the function u” satisfies the Sommerfeld radiation condition:

lim |0,u™ — iku™|? = 0.

2.3.3 Matching condition

This part is inspired from [34] and [37]. Indeed, we will later prove the existence of a
sequence of polynomials p,(zr,.) € C,[7], where p,(xr,.) € C,[7] is the set of polynomial
functions whose degree is smaller than n, such that the near field has the following
expansion uniformly with respect to xr and z:

lim u,(xr; 2, 0) — p™(zr; v) = 0. (2.3.34)

U—00

Let pi be the ¢ coefficient of p”, then replacing » by ¥ formally yields for v € [n, 21]
the following expansion for us:

us(zp, v) ~ Z Z 5" R (p ) VF.
n=0 k=0

Moreover for v € [n,2n], using the far field expansion (2.2.8) and Taylor series formally
yields the following expansion:



Then we formally get:

225" kpk (xr) a— ZZ&”k'afun xr, )Vk,

n=0 k=0 n=0 k=0

and identifying each power of  and v of both expansion yields formally the following
identity:

pit*(wr) = $05un (2r, 0). (2.3.35)

In particular one has:

py(zr) = up(2r,0) and pi(zr) = dyun_1(zr,0).
2.3.4 Summary of the required equations for the ansatz

2.4 Technical assumptions on our physical coefficients

To ensure coercivity properties, we assume that the coefficient p is bounded from below
by a positive constant p. > 0 i.e.
P> Pe- (2.4.36)

For convenience we introduce the infinite strip Yo :=]0,1[2x] — 1,00[. Moreover we
define for m < mp and any normed vector space V(Y,,) of function defined on Y, the
following normed vector spaces: if m € N then

Cory, (F; V(SA/OO)) = {u e C™(I',V(Yy)), u patching-¢r-admissible } :
and
Hyp, (F; V(YOO)> = {u € H™(T',V(Ys)), u patching-yp-admissible } .

Finally we recall that we assumed that our surface I' is at least C™r*! and have the
following regularities:

(1) € Cx (r L®(Vae )) and ¢Feomr+1(m), (2.4.37)

where for m € N, C™(Ty) is the space of restrictions to I'y; of functions with C™ regularity
on the whole surface I'.

2.5 Explicit construction of the ansatz

2.5.1 Solution of equation (2.3.31)
2.5.1.1 Functional framework for the strip Voo

We will see later that for all n and zr our far field @, (zr; -) belongs to the space H(Yoo) +
C[v] where we defined the following space:
/ udx
>

2

< 0o and u is one periodic in x}

H(YOO> = {“ € Hy, (%), HUH2 /|Vu| dzdp +
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where X :=]0, 1[*x{0}. We remark from Poincaré-Wirtinger inequality that H()A/oo) is a
Hilbert space and for all compact K there exists C'x > 0 such that for all u € ]HI(YOO) the
following estimate holds:

[ull 2y + Jull 2y < CKHU”H(YOO)' (2.5.38)
Moreover we will see that the right hand-side of (2.3.31) belongs to the space:
C[] & H(Va)'. (2.5.39)
To define this last space we proceed as follow:

1. We introduce the space:
Hcomp(ffw) = {gb e H(Yw), Jc > 0 such that ¢ = 0 on R?x]c, oo[} ,

and we emphasize that we do not need to provide this last space with topology.

2. We remark that Heomp (f/oo) is dense in H(Yoo)
3. Thus we can identify the dual space H(YOO)T as a subset of the dual space Heomp (YOO)T

with the canonical injection I defined for (u,v) € H(YOO)T X Heomp (Y/oo) by :

(Tu,v) = (U, )y

Hcomp (Yoo) T—Hcomp (YOO)
Here we have chosen to compactify the dual bracket (-, -)yx = (- '>H(y )T—H(Y )

4. We identify the space C[P] as a subspace of ]I-]I(ff/;o)T with the inclusion map I :
C[2] = Heomp (Yao) " for (p, ¢) € C[5] X Heomp (Vao):

<Iu’U>Hc01np(?m)T—Hcomp(Ym) ::/p(ﬁ)gb(fu, v)dzdp.

5. Thus we can write:
H(Vao) UH (Vo) C Heomp(Vao)' and  C[2] € Heomp (Vao) ',

which give a meaning of (2.5.39).

2.5.1.2 Extension of div to the space L? (Yao)

loc

The operator div; ; is naturally defined as a linear operator div s : ng’mp(fl)?’ — C’é’;’mp(Q)
but we will see in the sequel that we need to extend this last operator. Let us explain
how we proceed: According to the definition of the space Heomp (Yoo) the quantity V; ;¢

is well defined and have compact support and we have:
/ V002 dY < occ. (2.5.40)
supp(¢)
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Let v € L? (YOO), then since supp(¢) is compact we have:

loc

/ [uldY < oo. (2.5.41)
supp(¢)
Therefore according the Cauchy-Schwarz inequality, (2.5.40) an (2.5.41) leads to:
/ "LL . V@7V¢’d? < Q.
supp(¢)
Moreover by using that supp(u - Vz 5¢) C supp(¢), this imples:

/ | - V;@,f/(ﬁ’dff < o0,

and then we now can define the extension of the operator the operator div; ; : Lfoc(ffoo) —
Heomp (Vo) for (u,6) €: L2, (Vac) X Heomp (Yao) by
diV@,}(’U; ,¢ NN . = —/ u i, 19), Vi,,,;gb dzdp. (2542)
< ) >Hcomp (Yoo) _Hcomp (Yoo) Y/ ( ( )

According to the definition of the operator div (see (2.3.15)), this last operator is naturally

defined for u : T +— HL _(Ys)? by the map divu : I — L2 (Ys,) defined for zp € T by:

loc
div (w) (zr; ) := divgs (M (zr)u),
where M is given for xr € I'y; by:
M (zr) = (dl/)r‘(l’[‘),ﬂ(l’r)),

and M (zr) := (0,n(zr)). By using the same idea, the operator div is extended for

~

u:l — L2 (Yy) by (CTI:I’U,) (xr;-) € Heomp (YOO)T which is defined for ¢ € Heomyp (YOO)
by:

<(JR,U) (2r; ), ¢>Hcomp(?M)T_mep(%®) = — /y (u(zr; 2, D), (@ ¢)(zr; &, 0))didp.
(2.5.43)

Now let explain why the integral appearing in the righ hand-side of this last definition
have a sense: According to the definition of the space Hecomp (Yoo), V:0¢ have a sense.
Thus we can give a sense to M (zr)V; »¢. Then according to the definition of the operator

v (see (2.3.14)) and the one of the matrix M (zr) we have:
(V @) (xr; &, ) = M(2r) V0.

According to the definition of the space Heomp (Yoo) the quantity V; ;¢ is well defined
and have compact support and we have:

/ " Vz502dY < . (2.5.44)
supp
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Morover, since supp(¢) is compact and u(zr;-) € L? (}700), we have
/ (s )Y < oo, (2.5.45)
supp(¢)
Therefore according the Cauchy-Schwarz inequality, (2.5.44) an (2.5.45) leads to:
/ lu(zr; ) - Vipo|dY < oco.
supp(¢)
Moreover by using that supp(w(zr;-) - Vzp¢) C supp(¢), this implies:

/ lu(zr; ) - VippldY < oo.
.

2.5.1.3 Construction of a right inverse 7, ' of the operator 7,

In order to solve (2.3.31), we construct here a right inverse 7, * of the operator 7. That
means that this operator should satisfy:

ToTo 'f =1,

for all element f of some space specified later. Let us prove the following result to simplify
the expression of the operator 7:
Proposition 2.5.1. We have that :

For all k € N, we have C¥) € C™(T'; £) and for all zr € I’ we have:
C®(xp) - Tyl C TpoT' and  CW¥(zp) - n(zr) = ¥n(ap). (2.5.46)

o For k=0, these terms are given by C© =1 and ¢® = 1.
o Fork =1 and all zr € T, the operator CY(xr) is the only one such that:
\V/UF & Tszy C(l) (ZEF) s Ur = 2- (H(CL’F) — R(J}F)) - Ur,

and ¢V =2 H.
Proof. Since the idea is the same as the one of [14| we just give the outline of the proof.

We first observe that:
DLDL = (T4 vR). (2.5.47)

Combining this last identity with Leibniz formula and the following equalities:

1 —2

Lo ((ﬂ +vR) )
directly yields our result. The properties (2.5.46) are direct consequence of (2.5.47) and:
Var € T, R(ar)TyI C T, T. O

Indeed, thanks to this last result, the operator 7y is given for @ : I — P(R?) and zr € T
by:

=(k+1)-(-=1)"R" and det(I+vR)=1+2vH +°G,
v=0

(Tow) (wr; -) == To(wr)a(zr),
where To(zr) is defined for u € Q — C by:
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o If up € 'y
76(%’{‘)@ = diV@y,} <p1/11“ ($F; )Vﬁ), (2548)

o If Ir ¢ FMZ
To(xr)a := 0y (par; -)dpi(zr; -)). (2.5.49)

Here we defined the map py,. : T' x Q = L(R?) for (zp;4,7) € T' x Q by:

~ A~ pr(.il?p)pr(iLT)T O)

Py (T3 T, 0) := plar; &, D) ( 0 1 (2.5.50)

and 8, is extended for function v : O — C by the element of Homp (YOO)T defined for
¢ € Heomp (Yoo) by:
(Opv, P)y = —/v&;qﬁdi:dﬁ.

Let us illustrate this defintion through the example of the unit sphere: In this case we
have I' := §? := {z € R®, |z| = 1} and tr is defined for z € T’ by

Ur(zr) == (0,9), (2.5.51)

where (6, ¢) is the unique solution in [0, 27[x [0, 7[ of z = (cos ¢ cos B, cos ¢ sin b, sin ¢).
We have seen in the previous chapter that we can choose:

Iy o= {(cosgbcos@,cos¢sin9,sin¢), (0,9) € [0,27[x] — g + 1, g + 77[} ,
and the matrix D ¢ (zr) D ¢r(zp)(zr) is given by:
1
D ¢r(zr)D ¢p(xp)T = | cos?(¢)
0 1

Hence definition (2.5.50) becomes:

1

——F 0 0
o . - oy | cos?(o)
p¢r($p;x,l/) = p(xp;x,u) 0 1 0]
0 1

0

First, we assume that xp belongs to I'y; and we construct now an operator 7o(zr) such
that:

To(xr)Ty ' (zr) f = f. (2.5.52)

Hence if xzr € 'y then the operator To(xr) is the linear operator associated to the
following sesquilinear form:

. 1
(Tou,v) Yoo = /f(l’r; T1, To, 1) (w&gluajﬁjt 03,03,V + 8,;u8,;6) dzdp,
and if or ¢ 'y then
(Tos Ve = [ ploriin 0,9) (00,7 + 0,u0,0) dio.

oo
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Proposition 2.5.2. Let u : I' — (H(Ym) + (C[l?]) be patching admissible such that we

have:

Tou = 0.
Then one has the existence of a function U : I' — C such that :
Vep € I, Y(2,0), u(er; 2,0) = U(zr).

Proof. Let xr € I' and let us prove that u(zr;-) is a constant function. By assumption
there exist a polynomial vy € C[P] and a function v; € H(Yoo) such that:

u(zr; ) = vy + vs. (2.5.53)

We can assume that vo(2 = 0) = 0. Indeed, since spaces ]HI(YOO) and C[7] both contain
constant functions then we can replace v; and vy by vy + v9(2 = 0) and vy — vo(2 = 0) in
(2.5.53) respectively:

U(ZL‘F; ) = \(Ul + ’Uz(ﬁ = 0))14—\(1)2 — Ug(ﬁ = 0))}

en(7.) €Cl

First we prove that vy = 0 and finally we prove that v; is an constant function.
Proof of v, = 0:
Since we have v3(0) = 0, one can prove by using the jump formula:

0yl,~0 = ¢ in the sens of distributions

or Proposition 2.5.5 that:

0? 0 . N
To(zr) (vollp>o) = ]L>>owvz + %7&(0)52 in Heomp (Yoo)T~

For convenience, we rewrite this last equality as follows:

02 0

Hp>0ﬁvg = %(ﬁp) (’lig]L;>0) — %UZ(O)(SZ n Hcomp (}A/OO)T (2554)

Thanks to v2(0) = 0, we prove by using the jump formula that vsll,<o € H(Yoo) Com-
bining this with the continuity of Tq(zr) : H(YOO) — ]HI()A/OO)T yields:

To(zr) (01 + Ly<ovs) € H(Vao)'. (2.5.55)

(See (2.5.48) and (2.5.49) for the definition of the operator To(zr)). Thanks to (2.5.53)
we have u(zr;-) = v1 + voll<o + voll59. Therefore:

To(zr) (vals=0) = To(zr)u(zr; ) — Tolzr) (vi + vals<o) -
Combining this with 7o(zr)u(zr;-) = 0 and (2.5.55) yields:
%(IF) (’UQ]IQ>0) S H(}A/OO)T
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Combining this with dyx, € H(?OO)T(See (2.5.61) for the definition of dyx) and (2.5.54) leads

to:
2

0 >\
Hp>0ﬁ’l}2 € H(YOO) . (2

t

56)

Since ]L;S()g—;vg has a compact support, this last quantity belongs to the space H(YOO)T.
Combining this with (2.5.56) and aa—;w = Hggoaa—;vz + ]LQ>068—;2U2 leads to:

0? -
5302 € H(Va)'.
2
Morover since vy is a polynomial then the same applies for the function ——w, which
ov?
leads to:
82

aﬂwe@mmmmgf

We will later prove that C[] N IHI(SA/OO)Jr = {0}(See Proposition 2.5.9). Thus we deduce
that:

82
ot =
which combined with v5(0) = 0 leads to:
vy = 2y (0)5 (2.5.57)
9 = a]}’l)g V. 0.

Thus, thanks to To(zr)(Iy»02) = dx(See Proposition 2.5.5) we have:

0

~ U2
ov

To(xr) (Lsove) =

(0)3s..

Combining this with 7o(zr)u(zr;-) = 0 and vy + Ly<ova = u(zr; ) — Lrsove yields:
0

To(wr) (U1 + Uﬂagoﬁ) = _aﬁ'UQ

(0)ds. (2.5.58)

Moreover by using the jump formula and v; € H(f/oo), we obtains that:

0 R N
v + aﬁ?&(())y]lggo € H(YOO)

Combining this with the continuity of To(zr) : H(Va) IHI()A/OO)T yields (See (2.5.48)
and (2.5.49) for the definition of the operator 7y(zr)):

To(r) (vl L9 v2(0)ﬁ]19<0) e H(Yx)"

ov

Thus we can apply this last distribution to the test function 1 € H(YOO) Therefore:

0
<76(371") (Ul + aﬁU2(0>ﬁHg<0) 71>YOO =0.
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Combining this with (0s;, 1)y =1 and (2.5.58) yields

0
ov
and then by combining this with (2.5.57), we concludes the proof of vy = 0.
Proof of v; is a constant function:
Thanks to vy = 0, To(ar)u(zr;+) = 0 and u(xr;-) = v1 + v, we have To(ar)v; = 0.
Morover by assumption, one has vy € H(YOO) Thus we have:

UQ(O) = O,

(To(ar)on, vr)g, = — / plars &, 9)| 9 o (er, &, 0)|2didi = 0.

Voo
Therefore @vl(xp; -) = 0. Let us prove that

Assume first that zr € I'y;. Then according to the definition of the operator @(see
(2.3.14)) Vvy(xr;-) = 0 becomes:

0=D wr‘<l‘r)TV§ﬂ)1 + Oyvy - n(l‘r)
Projecting this last equality on the tangent space T;,.I" yields:
0 = Dr(zr) Vs (2.5.60)

Since zr € 'y, one can prove that the linear function D ¢p(ap)" : R? — T),.T is injective.
Hence we deduce that Vzv; = 0. If xp ¢ T’y then using that w is patching admissible
directly yields Vzv; = 0. Therefore we finished the proof of (2.5.59). According to the
definition of the operator V (see (2.3.14)), we deduce by projecting (2.5.60) on n(zr)
that dyv; = 0. Combining this with (2.5.59) concludes the proof that v; is a constant

function. O

First we assume that f is an element of H(Y )t in this last equation. Consider the

anti-linear form dy, € ]HI( ) defined for ¢ € H( ) by:
(55, &) / bdz, (2.5.61)

and define the operator oy, ® oy, € L (H(Yw),H(Ym)T) defined by:

V( ) € H( ) <(52 (%9 52’& U) <52, ’LL>YOO . <(52,U>Yw. (2562)

Introduce the following constant:

rrelym \ (£,0)eVe

where we define for matrix A the quantity Ay, (A) as the smallest eigenvalue of A. Thus,
thanks to these definitions we can state and prove the following result:
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Proposition 2.5.3. The operator —Ty+0x®Jy; : H(Yoo) — ]HI(YOQ)Jr is uniformly coercive
on T'vi: For all w € H(Ys):

(~Tolwr)u + 85 @ dsu,uy,_ > C%”;Hulﬁ(yw),

and the quantity C’K\FA 18 strictly positive.
Proof. Let u € H(ffoo) From the definition (2.5.61) and (2.5.62) we have:

2
(=To(zr)u + 0y ® dsu,u)y = (=To(wr)u, u)y_ + ‘<5g,u)yw ‘2 = (—To(xr)u,u) +

/ udZ
x

Thanks to (2.5.48) and (2.5.42) this becomes:

2

(=To(zr)u + 0y ® dsu,u)y = /(pwF (xr)Vu, Vu)dzdo +

e}

/ udx
)

> [l o) VaPaia -+ | [ vas
Yoo b

2
> C#BFAHUH;H(?OO)-

Thus it remains to prove inf A, (pw) > 0. Indeed from (4.5.79) we get that for all

. rr€l'm
(xr;2,0) € T X Yoo
A s A D D 0
Amin (P (215 %, 2)) > Pe * Amin ( wr(xr)o Yr(zr) 1)
> pemin (17 inf )‘min(DwF<Ii‘) DQ/JF(J}/F)T))j

wi—*GFM
Thus, we now prove that:

inf Ain ( D ¢or(21) Door(af)') > 0.

I%EFM

From (2.4.37), D4¢r D @AFT is a restriction of a continuous function to a compact set I'y;.
Thus there exists xr € 'y such that:

inf Ain (D 9r(27) Dr(20)") = Amin (D ¢or(2r) D ¢or(zr)),

CCIF el'mv

Since we assumed that D¢r(xr) is injective for all zr € 'y then this last quantity is
strictly positive. O]

Thanks to this last result we can deduce that the operator —7Tq(zr) 4 dg ® Oy : H(}A@o) —
]HI(}A/'OO)Jr is invertible and we can solve (2.5.52) with the operator (— 7To(zr) + 65 ® 62)_1 :
H(YOO)T — ]HI(}A/OO) when f € IHI(EA/’OO)Jr satisfies the following compatibility condition:

(f, Dy =0. (2.5.63)

To give a sense of this last equality, we emphasize that the function 1 surely belongs to
the space ]HI(YOO).
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Proposition 2.5.4. If f € IHI(}A/OO)Jr and satisfies (2.5.63) then:

Tolar) - (Tolar) = b @ 62) ™ f = f.
Proof. Let u := (To(xr) — 0s ® 8s) " f, then from (2.5.62) we have:
To(zr)u — (Js, u)ds = f. (2.5.64)
Therefore it remains to prove:
(0x,u)y._ = 0.

Applying (2.5.64) to the test function 1 yields (To(zr)u, 1)y — (s, u)y._ = (f,1)y_ and
thanks to (2.5.63) this becomes (ds;, u)y._ = (To(wr)u, 1)y Moreover from the expression
(2.5.48) of the operator To(zr), we directly get (To(zr)u, 1) .. = 0 which ends the proof.[J

Nevertheless 0y, is an element of ]I-]I(}A/OO)T that fails to satisfies (2.5.64) because we have
from (2.5.61):
(65, 1)y = 1. (2.5.65)

However we have the following results:
Proposition 2.5.5. For all xr € I' we have in the space Heomp (YOO)T:

%(xF)ﬁ+ = 627
where vy =0 if v <0 and V4 = U if not.
Proof. We only give the proof for xr € I'\; because the one in the contrary case is similar.

Let (Z,7) — &(Z,7) € Heomp ()A/oo) Applying the definitions (2.5.48) and (2.5.42) yields:

<76($F)ﬁ+’¢>Hcomp(YM)tH(Ym) —(pyp (xr) VL, Vo) Comp( )tH(yoo);

/y 0, ¢didi = / od,

which ends the proof. O
Corollary 2.5.6. If f € H(Vx,)" and define:
To (o) f = (f, Dy s + (Tolar) — 0s ® 0) 7 (f — (f, D)y 0s), (2.5.66)

then (2.5.52) holds and Ty *(zr)f € ]HI( %) + Cp.
Proof. The following decomposition holds:

F={ Dy 05+ (f = (f 1)y 0s). (2.5.67)

Thanks to (2.5.65), we have that (f — (f,1)y_ds) satisfies (2.5.63). Thus we can apply
Proposition 2.5.4 which yields:

To(wr)(To(ar) — s @ d) ™ (f — (f, 1)y 0s) = f — (f. )y_0x. (2.5.68)
Moreover, from Proposition 2.5.5 we have T5((f,1)y. 74) = (f,1)y._ds. Combining this
with (2.5.68) and (2.5.67) conclude the proof. O
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Now, we assume that f is a polynomial of degree n € N. In the case of p = 1, the
operator d;? : C,[0] — C,2[¢] defined for p € C,[?] by d;,*p := u by the unique solution

u of: P p
u u
5z = D u(0) =0 and E<_1) =0, (2.5.69)

satisfies for all p € C,[?], Tod,*(vr)p = p. Nevertheless when p fails to be equal to the
constant one we could have:

To(ar)d;*f — f #0.
However, we have the following result:
Proposition 2.5.7. For all p € C,[0] we have:

To(zr)d,’p —p € IHI(SA/OO)Jr and  (To(zr)d;*p — p, 1>?Oo = 0.

Moreover To(zr)d; *p — p is given for ¢ € Heomp (YOO) by:

(To(zr)d,?p — p, §) i = —/ p(D) - (2, 0)dadp
Y_

e (52) o (5)
= [ dlarsa, 01040, 0)0) - 083, )i
(2.5.70)
+ [ outd; ) -3t )

where Y_ :=]0,1[?x] — 1,0[ and Y, =)0, 1[2x]0, oo[.
Proof. Let ¢ € Heomp(Yoo) and let us prove (2.5.70). Applying (2.5.48) and (2.5.42)
yields:

T =0, () = [P D0 ) 009,50, )i

. / f(a) o(i, v)didp,

and splitting these two integrals yields:

(To(xr)d;?p —p, @) Nt ) :—/ p(D) - ¢(ar; &, 0)didD
Y_

Heomp (Vo) ~Heomp (Vo0 )
- /Y plars &, )0, (d;2p) (V) - OypdidD,
(2.5.71)
— /Y +a 5 (d52p) (0)0:0(&, v)dedD — /Y ) p(2,0)p(, D)didD.

Moreover, doing an integration by parts and using (2.5.69), yields:
ﬁ 05 (dy?p) (0)0, (2, D) didD + / p(2,0)p(2, 0)didD = — / (92 (d;?p) (2 oY p(2, ) didD,
Vi vy
/ 0pd;%p - 4(,0)d
which concludes the proof of (2.5.70) by combination with (2.5.71). [
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Corollary 2.5.8. If f € C,[¢] and define:
Ty Har)f = (To(ar) = 8s @ 8s) ™" (Tolar)d;>f — f) +d;°F, (2.5.72)
then (2.5.52) holds and Ty *(zr)f € H( ) + Crpa[D].
Proof. Using Proposition 2.5.7 and Proposition 2.5.4 yields:
To(zr) (To(ar) — 05 @ 65) ™" (To(er)d,* f = f) = Tolwr)d,*f — f,

which directly conclude the proof of (2.5.52). Ty '(ap)f € H( ) + Cn+2[u] is a direct
consequence of the definition of d;%f € C,42[?] and (To(zr) — 0y ® 6x) " (76($F>d;2f —

f) € H(Yx). O
Now, we assume that f takes the forms:

f=h+/, (2.5.73)

for some (fi, f2) € H( ) x C,[7]. This decomposition is unique because we have the

following result:

Proposition 2.5.9. The space H—]I(ffoo)T and C[D] satisfies H(YOO)T NCr] = {0}.

Proof. Define the sequence of function (1,) defined for o €] — 1, 00[ by 1,(?) = x(¥ — n)
where y is a regular function such that y = 1 on |—o00,0[ and x = 0 on |1, co[. Since for all
n < 0 the function 1,, and its gradient has compact support, we have that 1,, € Heomy, (Yoo)
for all n and we have for large n

Il \/ /|X )|2ds. (2.5.74)

First, we prove for all £ € N the followmg equivalence:

N n
(0% 1)y, = /1/ 1,dzdv e i T

k+1

(2.5.75)

[e'e]

Indeed on the one hand we have:

n n+1 nktl _ (_1)k+1 n+1
/ o1, dedp = / s*ds + / s¥1,ds = + / s¥1,,ds.
?oo -1 n k + 1 n

On the other hand we have:

1 Z
/n *Inds| < /n s = F+13 (k ;r 1) "= 2L

Let p € ]I-]I( ) N C[7]. Since from (2.5.74) the sequence 1, is bounded in the space
H(Y ) thus we should have:

sup |(p, 1n)y, | < oo (2.5.76)

neN
Assume by contradiction that p # 0. Let k be the degrees of p. By the definition of the
degree we have p;, # 0. Nevertheless the equivalence (2.5.75) implies that:

nk+1

which contradicts (2.5.76). O

<p7 1n>Yoo Pk,
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Thanks to the last result we can write ]I-]I()A/oo)T @® C[?] and define T, ' (ar) f by:

To Har) f =Ty ar) fr + Ty H(ar) fo,

where we recall from (2.5.66) and (2.5.72) that:

To Har) fr = (fi. Dy s + (To(ar) — 65 ® 0g) ' (f1 — (f1, 1)y_0x),
Ty '(wr) fo = (To(ar) — 65 @ 0s) ™ (To(ar)d;? fo = fo) + d;* fo.

Therefore thanks to Corollary 2.5.6, Corollary 2.5.8 if zp € 'y then we have 7, ' (zr) :
H(Ys)' & C[7] = H(Yao) + C[2] and (2.5.52) holds.

Now consider zr ¢ I'y; and let us study the invertibility of 7o(zr). In this case we
emphasize that for all n € N the near field @, (zr;-) and coefficient appearing in the
definition of the operator 7o(xr) are independent of the variable . We identify the set
of functions defined on Y., independent of the variable # with the set of function defined
on I, :=] — 1, 00| with the following inclusion map:

(ﬁ eloms f(a)) o ((5@, b) € Vi f(ﬁ)) .
We introduce the following space:

A

H(/x) == {U € Hy, (1), ||u||]?{(foo) = |u(0)[* +/j |Opul*dir < OO}

Let 6y € H(foo)T be defined for ¢ € H(I,,) by:

(00, 0) .. = 6(0),

~

where (-,-); is the dual bracket in H(/.). We define dp @ 0y € L <H(foo),H(foo)T>
defined for u € H(Yx) by:
50 &® 50 U= U(O)(So

A~ ~

Then from (4.5.79) it is trivial that the operator To(zr) — dp ® & : H(Is) — IHI(IOO)T is
coercive with coercivity constant p.. Thus in the same way than for xpr € I'y; we can

define the operator 7, *(zr) for f € IHI(_foQ)T @ C[7] by:

To H(ar)f = (To—dy® 50)_1<f1 —(f1,1).00 — To(ar)d;? fo + f2> +{fi, 1) 0y +d;% fo,
(2.5.77)

with f = fi+ fo and (f1, fa) € ]HI(!COO)Jr x C[r]. Following the same way we easily get the
following result:

Proposition 2.5.10. For all xr ¢ T'y; the operator Ty *(zr) : IHI(]COO)T OC[P] — H(I) +
C[P] defined by (2.5.77) is a right inverse of the operator To(zr) i.e.
N . _
Vf € H(lx) @ C[Z], To(xr)Ty ' (ar)f = f.
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Now let us investigate regularity of xr + Ty '(ar)f(xr) for a given f. For convenience
we introduce the application u() defined for f € C[v] & ]I-]I(}A/oo)T by:

/f1 Vo4 (fa L)y with (f1, f2) € H(Va) x C[3]. (2.5.78)

Proposition 2.5.11. Letm < mp, d € N and f := fi+fy with (f1, f2) € Hg,, (F ]I-]I(f/ ) )
H™ <F; (Cd[ﬁ]>. We have the following reqularity:

wi=T e H™ (r; <Cd+2[ﬁ]> +HY (r; H(Yw)> . (2.5.79)

Moreover 76_1u takes the form 76_1 = uy + up with uy € Hyp,, <F;H(YOO)> and for all
xr € I the polynomial us(zr;-) is the unique solution of:

dUg(l‘r; 0)

d*us(zr; ) = fo(zr;+), wua(2r;0) =0 and —a M(f(l’F; )) (2.5.80)

dp?
Before the proof of this proposition we prove an intermediate result.
Proposition 2.5.12. We can extend the application G := D¢ D! : Ty — R? to an
application G € C™ (T'; L(R?)) satisfying:
Gmin
2 )

inf Amin (G(a;p)) > (2.5.81)

zrel

where G s defined by Guin = inlf Amin (G (2r)).
zrelm
Proof. From (2.4.37) we deduce that G is the restriction to 'y of some G' € C™r (T, L(R?)).

Thus we can introduce the following open subset of I

Ly := {azp € T, Auin (G (ar)) < Ggﬁ“}.
First, we prove existence of a function ¢; € C"(I'; [0, 1]) satisfying:
¢r=1 on Lr and ¢;=0 on I'y. (2.5.82)
Let us prove by contradiction that:
n := dist(C'y, Lr) > 0. (2.5.83)
Let (z2);, and (2)x be sequence of I'y; and Ly such that:
lim |z§) — 23| = 0. (2.5.84)

Since T'y and Ly are compact there exist (zg,71) € I'y X Lr such that (z{), and (z})x
respectively converge up to a sub-sequence. Thanks to (2.5.84) we have zy = x; which
leads to the existence of z € LrNTy. We can prove that the map 2} € I' = Apin (é’ (az’F))
is smooth. Therefore from the definition of G,,;, and the set Lr we have:

Gmin
9 )

)\min(é/(xf)) 2 Gmin and )\min(é/(xf)) S
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which is contradictory. From the definition of Ly we have: Lr NTy = 0. Let (¢;);en be a
partition of unity of R with C°° regularity such that for all i € N and (z,y) € supp(¢;)

we have:

z —y| < g (2.5.85)
The existence of (¢;);cy is a direct consequence of [57, Theorem 3.21|. Define the following
set of indexes

I:={ieN, supp(¢;) N Lr # 0},

and choose the function ¢; as the restriction on I' of the function:

¢r=> ¢ (2.5.86)

icl

Let us show that for all xr € T'yy we have ¢ (xr) = 0. Assume that ¢p(xr) # 0. Then
there exists ¢ € [ such that xr € supp(¢;). From the definition of the set I there exists
y € supp(¢) N Ly. Since zr and y both belong to supp(¢;), we have from (2.5.85):

lzr —y| < g
Therefore from zp € I'yy and y € L, we have dist(I'yy, Lr) < g which contradict (2.5.83).

Now let us prove that for all xp € Ly we have ¢;(xzr) = 1. Since (¢;);en is a partition of

unity we have
Z ¢i(ar) =1
ieN

and then from (2.5.86) it is sufficient to prove that:

Indeed, we have from the definition of I for all ¢ ¢ I supp(¢;) N Lr = (). Therefore Since
xr € Lr we have or ¢ ¢;(zr) which conclude the proof of (2.5.82).

Moreover since I is a C™F manifolds and for all i, ¢; is a C* function on R? then the
function ¢; belongs to C™r (I").

Thanks to the function ¢;, we now can define the map G by:

G(min
2

é:(l_¢j)é,+¢j I

and prove that this last function satisfies the desired property.
The regularity of ¢ and G’ implies that G belongs to C™r (", £(R?)). By construction,
the function ¢; satisfies ¢y = 0 on I'y; which implies that we have well G = G on 'y
Finally it remains to prove (2.5.81). Indeed let xr € I' if xr ¢ Lr then by definition
of Lr we have:

=~ G(min
/\min(G (J:F)) Z 2
and combining with 0 < ¢; < 1 yields:
~ =~ Gmln Gmln
Amin (G(xp)) = (1= ér(2r)) - Amim (G’(l‘p)) + oplar) - T3 > (2.5.87)
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If xr € Lr we have ¢;(zr) = 1 which leads to:

= Gmin

G(SL’F) = I

Y

and this matrix clearly satisfies (2.5.87). O]

We also need a second intermediate result. It is easy to adapt the proof of [57, Theorem
3.20] to get the following generalization:
Proposition 2.5.13. Let m < mp and two Hilbert spaces E, F'. Then:

V(A,u) € C™ (I L(E, F)) x H™(I; E), Aue H™(I', F),

where Au : T' — F is the map defined for xpr by A(xr)u(zr). Moreover there exists
Cy, > 0 independent from A and K such that:

[ Avl| g ) < CmHAHCmF (riceer) [ull )

Proof of Proposition 2.5.11. We recall that u := T, ' f is defined by u := u; + uy where:

e The quantity u(zr;-) is given for for all xp € I'y by:

w () = (Toler) = s @ 05) ™" (filers) = (filars ), Dy b ).
+ (Tolar) — 6 @ 65) " (%(xp)dEQfQ(xF; ) = folar; .>>, (2.5.88)
+(filzr;), Dy (04 = D),

and for all zp € T'\ Ty

U1<£L'F; ) ’ (76<:LT _50®50 ( :UF? fl Ir; )>1>f0050)7
+ (Tolor) = 80 @ 80) ™" (Toler)d folons ) — falars ), (2989)
+(fi(or;-), Dy_ (04 — D).

e The quantity us(xr;-) is given for xp € I' by:
us(wrs-) = (filers ), Dy v+ d5 2 folrs ). (2.5.90)

First, from the expression (2.5.90) of uy , the property (2.5.69) satisfied by the operator
d;? and the definition of u given by (2.5.78) we directly conclude the proof of (2.5.80).

Moreover, thanks to (f1, f2) € Hg'r,, (F;H(YOO)T> x H™ (F; (Cd[ﬁ]> we have from (2.5.90)

that uy € H™(I'; Cpy2[P]). Thus it remains to prove u; € Hyy,, (I‘; H(f/oo))

We emphasize that the map zr +— Ty '(2r) is piece-wise defined by (2.5.48) and
(2.5.49) and then this complicates the proof of regularity of the map zr € I' — u;(xr; )
on the interface dI'y;. Therefore, we introduce the map:

To: T > £ (Bl (Vo) + €10 oy (Vo) ' & €191

69



defined for zr € T' as the linear operator To(zr). This operator is defined for v €
Heomp (Yoo ) + C[2] by:

Tolar)v := divs (ﬁ(xr; ) (é(oxr) ?) vwv> : (2.5.91)

The reason why we introduced this operator is that it can replace the operator 7y in
(2.5.88) and (2.5.89) which solves the problem of piece-wise definition of 7y. Indeed,
firstly, thanks to Proposition 2.5.12, the similitude of the definition of 7Ty(zr) given for
zp € Ty by (2.5.48)-(2.5.50) and the one of the operator Ty given for zr € I' by (2.5.91),
we directly can extend the proof of Proposition 2.5.3 for Ty and xr € I'. Thus for all zr,
the operator 76(271") — 0y ® Oy : ]HI(}A/OO) — IHI(}A/OO)T is invertible and we have:

sup
xpel

(To(zr) — 0 ® 52)_1Hc(m(m¢)*,ﬂ(?®o)) < oo0. (2.5.92)

Therefore it make a sense to write (76(.171") — 0y ® (52)_1.

Secondly, from the expression of these two operators given by (2.5.91) and (2.5.49),
we have for all v independent of 7:

Vaer € '\ Ty, Tolzr)v = 76(%’{‘)1),
and by applying Proposition 2.5.12, we have for all v:
Var € Ty, To(zr)v = To(ar)v.
Thus (2.5.88) and (2.5.89) can be rewritten as follow:
uy (ap;-) = (76(%) —0x ® 52)_1y($r; )+ (filwrs ), 1>§,00(19+ - 1),
where we defined y : ' — H(YOO)T for zr € I' by:
y(or;-) = filzr;-) — (filzr; ), 1>f/oo52 + 7~6(37F)d,>_2f2($r; ) = falr; ).

Thanks to this last expression and Proposition 2.5.13 it remains to prove:

wr €D (Tolar) — b @ 65) ' € 0™ (£(H(Va)  H(V20)) ). (2.5.93)
y e Hyp, (TH(V)'), (2.5.94)
zr € D (fiars ), Dy, (04 = 9) € Hip, (T (V) ). (2.5.95)

Indeed, thanks Proposition 2.5.12 and (2.5.91) we have that the map zr € T’ — Tg(2r)
belongs to C™ (E(H(YOO)7H(YOO)T)> Therefore thanks to (2.5.92), re-solvent identity
and the Leibniz formula, we conclude the proof of (2.5.93).

From the assumption f; € Hgr,| <F; H(YOO)T>, we directly have that:

xr = fi(zr;-) = (fi(zr; ), 1)y, 0s € Hyh, (F;H(f@*) : (2.5.96)
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Thanks to Proposition 2.5.12 and the similitude of the definition of 7To(zr) given for
ar € I'y by (2.5.48)-(2.5.50) and the one of the operator To(zr) given for zr € I' by
(2.5.91), we directly can extend the proof of Proposition 2.5.7 for 7y and zr € I'. Then

from (2.5.70), the map R: T'— L ((Cn[ﬁ], H(YOO)> defined for xp by the linear operator
R(zr) defined for p € C,[7] by:

R(xr)p := To(wr)d,*p — p,

belongs to C™ (F L’(C (7], (f/ ) )) Thus by applying Proposition 2.5.13 and using
(2.5.96) we conclude the proof (2.5.94).

From the assumption f; € Hg',, (F;H(f/oo)T) and U — v, € ]HI(}A/OO), we directly
conclude the proof of (2.5.95). Thus whole the proof is finished. O]

2.5.1.4 Existence of the near field

According to Proposition 2.5.11, to be able to assert that problem (2.3.31) is well posed,
we have to show that:

Var € T, rp(ar;-) € H( ) ® C[v] where 7y, := Zﬁ@k—l- (2.5.97)

=1

However to do so, we have to face a technical problem, namely the fact that LZ(YOO)
are not stable by multiplication with C[#]. For instance, the operator Ty is given for
b e HY(I;H(Yx)) by:

Tio = div (2pCY V8) + divr (5V0) + div (p Vi ),

N L \3
and 7 is given by: 7o = Ty + Tatly. We cannot easily see that 7pC™M V4, € (L2(Y )>
) and

Thus we can not yet conclude that for all zr € T, div (ﬁ,ﬁc(l) v 111) (xr;-) € (

so we also can not prove (2.5.97).

Nevertheless, this difficulty can be overcome by the following procedure: The property
(2.5.97) will be proven by induction on k : this is the object of the forthcoming propo-
sition Proposition 2.5.17, which will itself be a consequence of the next two propositions
Proposition 2.5.15 and Proposition 2.5.16.

To state these propositions, we need to introduce a new notation. More precisely.
Definition 2.5.14. Let m < mpr and u : I' = Heomy (YOO)T. We say that u satisfies the
Py property if there exists d € N, a sequence (u;)iez2\(0y € Hp,, (I'; Ca[P]) such that:

V(wr; &,0) €T x Yy, u(wr;&,0) = Y wlwr; 0)oi(er; &, 0), (2.5.98)
lez2\{0}

where we defined the sequence of functions (¢1)icz2\foy for (ar,@,0) € T' x Y+ by:
di(zr, &, D) = P 2N yith N (zp) = | Dabp(arp)l|. (2.5.99)
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Moreover, the sequence of polynomial are required to satisfies:
> Ul ricgge < oo (2.5.100)
1€72\{0}

In this last definition if u is not a function then (2.5.98) means: For all ¢ € D([0, 1]*x]0, oo[)N
Hcomp (Yoo) :

Z /ul xr; D)y (zr; T, V)¢( v)dzdp.
1€22\{0}
(2.5.101)
Then we have:
Proposition 2.5.15. Let 1 < m < mr, d € N* and assume that u = u; + uy for some:

(u, us) € HYY, (F;]I—]I(?OO)>  H™ <F;Cd[ﬁ]>, (2.5.102)

and vy satisfies P° property. For all k € N* the following decomposition of f* := Tru
holds:

fF=r+1,
where:

o 1= 05 (MR dpup) + divy (CED5¢D Vpup) + K2k Dy,

o fI € Hg’FM (F;H(YM)T) satisfies the P;° property where we defined q = m —

min(2, k).
o Ifk+d>2 then
fs € H (F; Ck+d_2[ﬁ]). (2.5.103)
o [fu, =0 ord=0 then:
fy =0. (2.5.104)

The second useful proposition is the following one:

Proposition 2.5.16. If the quantity f1 appearing in Proposition 2.5.11 satisfies the PgY
property then the quantity wy appearing in Proposition 2.5.11 also satisfies the P>’ prop-
erty.

Indeed, thanks to Proposition 2.5.15 and Proposition 2.5.16 we can prove (2.5.97). More-
over, thanks to these last propositions we can easily prove the following result.
Proposition 2.5.17. If the traces of far fields have the following reqularity:

VO<i<n, ar €T — w(zr,0) € H™ 274(T), (2.5.105)
then:
o The sequence of near fields (U;)o<i<n can be defined for xp € I' with the following
induction:
Uo(zr; &, ) == up(xr, 0),
V1 <k < mr, d(2r;2,0) = ug(zr, 0 i (T5 ' Titue—s) (ar; 2, D). (2:5.106)
i=1
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e There exists for all 0 < k < mp:

mp-l—%—k

(a},p") € How (P;H(ffoo)> x Hmrtyk (P; Ck[ﬁ]> such that iy, = i + p
(2.5.107)

e U, satisfies the P;’fﬁ%_k property.

e The required equation (2.3.31) is satisfied for all 0 < k < mp.

Proof. We prove the result by induction on . Let 0 < i < mp. The result is true for ¢« = 0
because from (2.5.106) we have for all zr € T" 4g(zr;-) = ug(zr,0) and from (2.5.105)
this last quantity belongs to iy € H™ 2 (T).

Assume now for all 0 < k£ <7 — 1, that (2.5.107) holds and 4}, satisfies the P iy
property. Therefore, applying Proposition 2.5.15, yields for all 1 < k < ¢ the existence
of:

(ri’“ r’%ai) < ngFkM (F; H(Y/OO)T> X H* (F; (Cmax(i—zo) [ﬂ) )

such that
Telii, =T, + 1oy (2.5.108)
with g;  := mp + % + k — i — min(k, 2), 7"11;,; satisfies the Po° property and for 7 = 1:
rhy = 0. (2.5.109)

Moreover we recall that: ,
(2
Ty = E Tithi—k,
k=1

and we emphasize that for all 1 <k < that ¢;, > mr + % — 4. Thus thanks to (2.5.108)
we have existence of:

(rhr2) € Hyp o
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(F; H(YOO)T> x [tz (F; Comax(i—2,0) [19]) such that r; = r} + 77,

and thanks to (2.5.109) we have for ¢ = 1, r} = 0. Therefore according to Proposi-
tion 2.5.16 we can define ©° := 7, 'r;. Thus we can define 4; by replacing k = i in
(2.5.106). Moreover there exist:

(al,p!) € B2 (F;H(Yoo)*) w [mrE (r;ci[pD such that ; := ! + p,
and 4} satisfies the 77;?; 1 property.
Using the hypothesis (2.5.105) yields that the map: p’ : T+ C;[¢] defined for zr by:
p'(zr;+) = w(wr, 0) + 07 (r; -),
belongs to H mFJr%’i(F; Ci[ﬁ]>. We conclude our induction by remarking that & = ¢ in
(2.5.106) implies a; := u} + p'.
Since (2.3.31) is a direct consequence of Proposition 2.5.10 then the proof is finished.[

A third useful result is the following one. It will be used in the proof of Proposition 2.5.15
and, later, for the derivation of our error estimates (cf. Chapter 3 ).

Proposition 2.5.18. Let 4 : I' — ]chomp(ffoo)T and m < mp. If 4 satisfies the PgY
property then for all e > 0 and r € N we have :

Vr €N, exp (Tgmnt) @ € H™(I; C;([0,1]% x [¢,00])).
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2.5.1.5 Proof of Proposition 2.5.18

Let @ satisfying the P;° property. Thanks to the Sobolev embedding theorem, it is
sufficient to show that:

Vr €N, exp (mgmn?) & € H™(I'; H™(]0, 1[*x[€, o0])). (2.5.110)

To prove (2.5.110), we will use Proposition 2.5.13. Indeed, we can rewrite (2.5.98) as
follow:
Var € I, 1AL<$1"; ) = A(xp)u(xp), (25111)

where u = (u;)1ez2\ {0y is the sequence appearing in (2.5.98) and the map xp — A(xr) is
defined for zr € I' and sequence of polynomial p = (p;)iez2\ (01 by:

V(&,0) €Yy, (Alxr)p)(2,0) = > p(0)éi(ar; @, 0). (2.5.112)
1ez2\{0}

In order to have the convergence of the sum appearing in (2.5.112), the sequence of
polynomial p is required to belongs to the following space:

172 a
E:=qpeCyo" M pl = > |1plld,m < oo
leZ2\{0}

where o and d are defined in the definition of the P2° property. Moreover, (2.5.110) is
equivalent to:

€ C™ (T, F) with F :=exp (—gmnmed) - H"(]0, 1[*x]e, o0), (2.5.113)
and from (2.5.100) we have
uwe H™(T; E). (2.5.114)

According to Proposition 2.5.13, (2.5.111) and (2.5.114), a sufficient condition to prove
(2.5.113) is:
AeC™ (I L(E,F)). (2.5.115)

Therefore if we succeed to prove (2.5.115) then we will directly get (2.5.110). Hence, this
will conclude our proof.

To prove (2.5.115), we apply now the following result:
Lemma 2.5.19. Let F' be a Hilbert space and o = (ay)en such that:

e Foralll €N, oy € C™ (I'; F) and for all (zr,z}) € T2

V(I,I) e N 1 #£ 1 = (ay(ar), ap(ay)) . = 0. (2.5.116)

F

o There exists ¢ € N such that :

> 1l oul|Emr gy < 00 (2.5.117)
leN
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Define the space:
E, = {p e CN, HpHQEq = Zl’q\plﬁ < oo} .
leN

Then the map xr — To(zr) defined for xr and p € E, by:

To(or)p = > pmau(ar), (2.5.118)
leN

belongs to C™ (I'; L(E,, F)).
Proof. First, we emphasize that it is classical that F, is a complete space. Then from the
assumption of that F' is complete, we deduce that [,(Eq, F ) is a Banach space. Therefore
Cmr(I; L(E,, F)) is a Banach space.

Thus it remains to prove that the sequence (TY)yey defined for zr € T',p € E, and
N € N by:

N
TN (zr)p =Y piou(ar), (2.5.119)
=0

is a Cauchy sequence in C™r (F; L(E,, F) . We recall that it mean:

lim sup HT;’”” - TSH

= =4
n—00 1 >( cmr (F;ﬁ(EWF)) = 0. (2.5.120)

For all [ € N we assumed that a; € C(I'; F') and the sum appearing in (2.5.119) has
a finite number of terms. Therefore for all N € N, we have T € C™ (T'; L(E,, F)) and

N
VO <y <mp, Y(p,ar) € By x T, (Dw Tév)(l‘r)p = Zpl D, ay(zr).
1=0

Combining this with (2.5.116) yields for all (m,n,xr,p) € N> x ' x E, and 0 < v < mr:

n+m
(D, T2+ (@r)p — (D, T2) (wr)pl [ = D Ilpi Dy cular) |3,
l=n-+1
n+m
<D P Y Dy (a3
leN l=n+1

Thanks to the definition of the norm of the space E, this yields for all (m,n) € N? and
0 <~ <mp:

n+m

(D, T2 (wr)p — (D T2) ()| < llplle, Y 11Dy caular) |13
l=n-+1

V(p,ar) € E, x T,

Thus by using the definition of the norm of the space L(E,, F), this becomes :

n+m

Y(m,n) € N2, Yar € DJ|(Dy T2) or) — (D, T2) )2 iy < D0 10D e ey

I=n+1
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By using the definition of the norm of the space C™r (F; L(E, F )) this yields:

n+m
¥(m,n) € N2, ||+ — T, Hc'mr (vc(am) I;HMH ZHZWF (tetin ) (2.5.121)
Moreover thanks to (2.5.117), we have:
n+m
B 2 e ) -
Combining this with (2.5.121) conclude the proof of (2.5.120). O

Indeed, thanks to the definition (2.5.118), we can rewrite for all xp € T" the definition of

A(zr) as follow:
d

Vu € E, A(zr)u = ZT¢k (zp)uF. (2.5.122)
k=0

Here (u*)o<p<q = ((Uf)leZQ\{o})KKd is the unique element of (E,)**! such that:

Vie 72\ {0}, u = Zu, ,

and (¢")o<k<ad = ((¢f)1622\{0})0§k§d is defined for 0 < k < d, 1 € Z*\ {0}, (ar;2,0) €
' x Y+ by:
oF (xr; &, D) := Dy (ar; 2, D).

Thanks to (2.5.122) a sufficient condition to prove (2.5.115) is
VO <k <d, Ty € C(T; L(E,, F)). (2.5.123)

Let 0 < k < d. According to Lemma 2.5.19 with a@ = ¢%, to prove (2.5.123), we now
proceed as follow:

1. We prove for all 0 < v < myp the existence of a multivariate polynomial P, , such
that
vl € Z°\ {0}, D" ¢ = P q(N, DN, -+, DTN, D). (2.5.124)

2. We prove that for all ¥ € N we have the existence of a multivariate polynomial P,
such that for all [ € Z? we have:

f)v(exp (TGgmin?) @7) = Py (A, 1, 0) 1 €xp (T Gunin) - (2.5.125)
3. We deduce that for all [ € Z*\ {0}:
oF € C"r (T, F), (2.5.126)

with the existence of C' > 0 independent of [ such that :

™
6 leme iy < Cexp (= Segumlil) (2.5.127)
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4. From (2.5.127) we directly have that (2.5.117) holds:

> Pll¢rllomr i < oo (2.5.128)
1e22\{0}

5. We prove that (2.5.116) holds: For all (ar,z}) € I'? : and:
VL) € (), 1AL = (b ) dblats ) =0, (25.120)

Proof of (2.5.124). We prove this result with an induction on . The result is trivial
for v = 0. Let « such that (2.5.124) holds. Let r € I and v € T,.I". We define for any
quantity f differentiable at the point zr:

Opf(zr) :==D f(ar) - v. (2.5.130)
Let [ € Z%\ {0}. Tt is classical that O, satisfies the the Leibniz formula. Therefore
(2.5.124) yields:
0u(D7 ) () = By Pya(h, D vy -+, D7, ) ()0 (s ),
+ Pya(M, DA -+ DY N, 0) ()0 (07 (2rs ), (2.5.131)

According to the chain rule formula and (2.5.130), we have:

8’U<P’y,d()\l7D)\l7 -, DT\, D) ) = Py a(A, DA, -+, DY N, D)) (ar) - 8, DT Ny (2r),

-
q:O

P71+1 dAuD AL DTN D) (2r) s, (2.5.132)
where we defined for (Xo,---,X,41) and t € T, .I':

Y

Pw1+1,d(X07" , X1, U ) b= Z (DXq P%d(Xov"' 7X7=ﬁ)> '(Xq+1't)

=0
Moreover from the definition of ¢F, we have 9,(¢f)(xr; -) = =270, \¢f (zr;-). Therefore:
Pya(A, DA DY AL 0)0,(6F) = (PR g(AM DA+ DAL D) -0) ¢f,  (2.5.133)
where we defined for (Xo,---,X,41) and t € T, .I':
P2y a(Xo, - X, 0) -t o= =20 Py g(Xo, -+, Xy, 0) - (X7 - 8)
Thus combining (2.5.131), (2.5.132) and (2.5.133) yields:
Vo € T, L, 0,(D7 ¢f) (ars+) = Posra(MNs D Ay - -+, DT N, 0)(2r) @) (2rs ) - v.

where we defined Py114:= P, ;4+P7,, ;. Therefore according to the definition (2.5.130),
we have:
D™ (¢7) (wr;+) = Pygra(M, DA, -+, DY N, 0) gy,

which conclude the proof of our induction.

Proof of (2.5.125). The proof of this result is exactly the same as the proof of
(2.5.124). Therefore we do not present it here.

Proof of (2.5.126) and (2.5.127)

We need the following result:
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Lemma 2.5.20. There exists C' > 0 such that for alll € Z*\ {0} the following estimate
holds:
Al @y < ClE-

Proof. We recall that for all [ € Z*\ {0} the function ); is given by:

A=/ (D¢rl, D yrl).

We introduce the function A : S x Ty defined for (I,zr) € S* x Ty by | D ¢ri| in order
to have the following rewriting:

Let us proof that A € C™r(I'). Indeed on one hand the regularity of function ¢r implies
that the function defined for (I,zr) € S* x Ty by (D ¢pl, D ¢rl) belongs to C™(S* x T).
On the other hand we get thanks to the definition of the set I'y; and the regularity of the
function ¢r existence of a constant ¢ > 0 such that:

~

V(l,zr) € S* x Tye™, < (Dop(ar)l, Dyr(zr)l) < c

Moreover the square-root is of class C* on the interval [¢7!, ¢] and the function lambda
is the composition of this last function with the square root which conclude the proof of
Ae(Cmr (FM)

Combining this with the compactness of I'y; x S* yields :

sup [|Agllemr iy = sup | D Aiar)] < [ lome sty
lest (lxp)eS xTy,m/<mp

Thus combining this last estimate with (2.5.134) yields the following result:

[Ailleme vy < A e (510 121

which is the stated result. O

Thanks to (2.5.124) and (2.5.125), for all 0 < v < mr and 7' € N we have the
existence of N € N and C' > 0 such that for all [ € Z?\ {0} and (ar;Z,0) €T x Y, :

N 2
‘Dva’(exp(wgmma)¢f)(xr;§;,a) < C (02 + 1Y) exp(—27|l|guin®).  (2.5.135)

Moreover, by using the following proposition:
VN €N, lim 2" exp(—2) =0,
T—00

we can prove that

T Gmin

Cne = sup (02N + [1]*Y) exp (—

m) < .
(D,1)€e,00[x [1,00[

Thus there exists C' > 0 such that for all 7 > € and | € Z?:

(ﬁ2N + |l|2N) exp(—27|l|gmin?) < C exp(—m€gmin|l|) exp (—Wg;m ﬁ) )
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Combining this with (2.5.135) yields the existence of C' > 0 such that for all [ € Z*\ {0}:

/ sup |D? D" (exp (7 gmin?) ¢ ) (2r; 2, ﬁ)‘zdidﬁ < Cexp(—Tgminll]). (2.5.136)
10,1[2x]e,00[ zr€l’
According to the Dominated convergence theorem, this last estimate concludes the proof
of (2.5.126). The estimate (2.5.127) is also a direct consequence of (2.5.136).

Proof of (2.5.129). This property is a direct consequence of (2.5.125) and orthogo-
nality on L?(]0, 1[?) of the family (Z — exp(2mil - &),1 € Z?).

Since we succeeded to prove (2.5.128) and (2.5.129), we now can apply Lemma 2.5.19.
Therefore we conclude the proof of (2.5.115) and we have seen that (2.5.115) is was a suffi-
cient condition to prove (2.5.110). Therefore we conclude the proof of Proposition 2.5.18.

2.5.1.6 Proof of Proposition 2.5.16

Let zr € T'. Since we have by construction a(xr;-) — Us(ar; ) € H(}Afoo) then we have
a(xr;-) € L2 (Q). Therefore according to the Fubini theorem we have for all # > 0 that
the map & €]0, 12~ a(xr;2,0) € L]0, 1[*). Moreover, we recall (Z — exp(2mil - &)1 €

72) is a Hilbert basis of L?(]0,1[2). Therefore for all (&, ) € Ya we have:
W(zr; T, 0) = Z exp (A\i(zr))@(zr; D) + to(zr; D), (2.5.137)
lez?2\{0}
where we defined for [ € N, 2 € I the following quantity :
ty(zr; 0) :=exp (— N(ar)D) / exp(—i2nlz)u(zr; &, v)dz. (2.5.138)
10,1[>x {2}

Therefore, we now prove that for all [ € Z*\ {0}:

Oty (wr; ) — 2w\ () Dyl (wr; ) = filar; ), (2.5.139)
y(xp; ) € 4[], (2.5.140)
zr — w(zr;v) € C™ (T CylD]), (2.5.141)
18 o (1,c001101) <€ (1 sl U111 (F;Cdm)) : (2.5.142)

In (2.5.142), C is a constant independent of [. Finally, we will prove the existence of

¢ € 7Z such that:
1 a2, | < 0. (2.5.143)
leZQZ\{o} ome (ricanis)
Proof of (2.5.139). We emphasize that according to Proposition 2.5.18 and (2.5.101)

A

that f(zp;-) € L2 (Q) and this function is defined for (z, ) € Ya by:
fler;z,0) Z filer; 0)y(xr; 2, 0), (2.5.144)

1€72\{0}

and for all [ € Z? we have:

fulwr, 9) = exp (= (er)?) / exp(—i2nli) f (xr: &, ) di. (2.5.145)
10,1[2x{#}
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Therefore thanks to To(zr)u(zr; ) = f(zr;-), (2.5.48) and (2.5.50) the following equality
holds:

V(&,0) € Q, Opilar; &, 0) + > 05 (Gij0s,(ar; &,9)) = f(ar; 2,0), (2.5.146)
ij
where G = (G,-j)ij is given by:

Thanks to f(zr;-) € L? (Q) and (2.5.146), the result of regularity for elliptic operators

loc

vields that @ (zr;-) € HZ.(Q). Thus, using that 4(zr;-) and & — exp(2mil - ) are both
one periodic on the variable z yields for all 7, j:

0z, (Gij0s,4(xr; &, 0)) exp(—2mil - #)dE = /ﬂ(xp; &, 0)0, (Gij0s, exp(—2mil - &))dz.
10,1[*x {2} 10,1[>x {2}
(2.5.148)

Moreover, thanks to (2.5.147) and the definition of ); given in (2.5.99), we have
03, (Gij0s, exp(—2mil - &)) = —(2m)*(GL,1) = —(27T/\l(a7p))2.

Combining this with (2.5.138) yields that (2.5.148) becomes:
/ 05, (GO, (s &, D)) exp(—2mil - #)dd = — (2m N (ar)) exp (Mi(wp) D)y (ar; D).
10,1[>x{w}

Combining this with (2.5.146), (2.5.138) and (2.5.145) leads to the following differential
equation:

93 (exp (Ni(ar)D) ty(ar; 0)) — (27r)\l(xp))2 exp (A\i(zr)D)w(ar; 0) = exp (Ni(ar)?) fi(@r; D).

From this last equation we directly get (2.5.139).
Proof of (2.5.140).
We now build a particular solution @™ (zr; 2) of (2.5.139) taking the form:

~

W™ (wr; 0) = Ry(ar) filzr; D),

for some R;(zr) € L(Cy[D], Cara[?]).
We denote for d € N by Dy the derivative operator on the space Cy[P] in order to
rewrite (2.5.139) as follow:

(Dq — 27 \(zr))Dagrtu(ar; 0) = fi(zr; D). (2.5.149)

Since Dy is nilpotent of order d + 1, the operator Dy — 2w\ (zr) : Cy[p] — Cy[P] is
invertible and its inverse is given by:

(D —2nh(zr)) " = =3 (2ehi(ar)) DR, (2.5.150)

p=0
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We introduce the integrator operator Int, € L(Cy4[v],Cyyq[P]) defined for polynomial
P € C,4[7] by the unique solution of: Find @ such that

Q' = P with the initial condition Q(0) = 0. (2.5.151)
Thus we now can define R;(zp) € £(Cg4[i], Cqa[?]) by:

d
Ry(ar) == ~Intg > (2eh(ar)) " D2, (2.5.152)

p=0
and thanks to (2.5.150) and (2.5.151) this last operator satisfies:

(Dd — QWAZ(QJF))Dd+1@l($F§ ﬁ)]%l(xl“> = Ic,f)-

Thus @b, (zr; 7) := Ry(zr) fi(xr; ©) is a solution (2.5.149). Therefore Uy (wr; ) satisfies
(2.5.139). Since @y(zr; ») and @b, (xr; ) are both solutions of 2.5.139 then there exists A

and B such that: 4, = A+ Bexp(2r0);) + ﬁfart. Since 4 (zr;) € H(f/oo) we directly have
that B = 0. From the initial condition (2.5.151), we have @l (2r;0) = 0. Therefore:

ty(zr; 0) = y(2r; 0) + 4 (wp; D), (2.5.153)
where we recall that:
w(zr; 0) = /Eexp(—iQWli)ﬂ(:vp;i:, 0)dz.
Proof of (2.5.141) and (2.5.142). Let us prove that:
Ri=ar € T s Ri(ar) € O™ (r; £(C4lp], <cd+1[z>])) (2.5.154)

with the existence of C' > 0 independent of [ such that

~

R

<l (2.5.155)
cmr (r;c (Cal?).Casa [a]))

Indeed, (2.5.154) is a direct consequence of A\; € C"(I") and (2.5.152). Moreover we can
prove by induction on mr the existence of C' > 0 independent of [ such that:

VO <p<d, A" lomer) < ClAlomr ).

Combining this with Proposition 2.5.20 and (2.5.152) conclude the proof of (2.5.155).
Now let us prove that:

) := zr v 4 (7r; 0) € O™ (T), (2.5.156)
with the existence of C' > 0 independent of [ such that:
14|l cme ) < C. (2.5.157)

Indeed, we have:
Var € T, ) (wr) := (Ly, @(ar; )y
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where L; € IHI(YOO)Jr is defined for v € H(Yoo) by:
(Li,v)y, = / exp(—i2nlz)v(z,0)dz.
b

Thanks to the continuity of the trace operator H(}Afoo) — L*(T'), we have existence of
C > 0 independent of [ such that:

HLZHH(?my <C.

According to Proposition 2.5.13, combining this with o € C’mF(F;H(YOO)) conclude the
proof (2.5.156) and (2.5.157).
According to Proposition 2.5.13, combining (2.5.154)-(2.5.155) with f; € C™r (T"; Cy4[7])
yields:
Uy € C"T (15 Cyya [D]), (2.5.158)

with the existence of C' > 0 independent of [ such that:
e lleme ooy < ClUfillome @cam- (2.5.159)

Combining (2.5.158) and (2.5.156) with (2.5.153) conclude the proof of (2.5.141).
Combining (2.5.157) and (2.5.159) with (2.5.153) conclude the proof of (2.5.142).
Proof of (2.5.143). This a direct consequence of (2.5.142) and the assumption:

Jgez, D |IIAI

cmr (ricqlo]) < 00
1€72\{0} ’

2.5.1.7 Proof of Proposition 2.5.15

The property (2.5.103) and (2.5.104) are direct consequence of the expression of the
quantity f¥. For the rest of the proof Proposition 2.5.15 we proceed as follow:

1. We prove for all € > 0, that:
XfF e (F;H(Ym)*> , (2.5.160)

where (x¢)c is a sequence of C™ cut off function such that for all € > 0 we have
X“=1lon[—1,¢ and x*=0on [2-¢ 00

2. We prove that fF satisfies the P.° property.

3. We prove :
(1= x)ff € Hyr, <F;H(YOO)T) : (2.5.161)

4. We deduce that fF € Hp (r;H(ffoo)T) from (2.5.160) and (2.5.161).
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Proof of (2.5.160). Let € > 0. Using that supp(x¢) = [—1,2 - €] yields that this last
quantities is equal to:

3
N (TisO ) = fF) with Ty =2 Tix

Here we defined for © smooth enough:

(

T, = div (LpCWi* Vo),

k4 P

Tiyt o= divy (1€ 0951V 0),

7',2#21 —dIV(]pC(k Dkl vy v),

\7;37#1} = leF( IpC*=2pk=2 g, )+k21uc(p D) pk=2p,

and I, is the indicator function of [—1,2 - €. From the assumption (2.5.102) and the
regularity of the function x?¢ we can easily prove that:

X*u € Hy, (P;]H[(YOO)) . (2.5.162)

For all p we recall that the quantity C® and ¢ both belong to C™¢ (F; LOO(YOO)).
Therefore for the quantity I.pC® P and I.ic”PH both belong to C™¢ (F; LOO(SA/OO)).
Therefore, by using Proposition 2.5.13, we can prove that:
VO<p<2,TP, € L(HQ}FM (F;H(YOO)> HJ! (r;H(YOO)T> )
and R R
Ty € £(Hgr, (TH(V)) B2 (T E()') ).

Moreover we recall that 713# = 0. Therefore by using the definition of ¢, we have:

Tiw € L(H, (TH()) B, (TiH)') ).
Combining this with (2.5.162) yields:

Tr (X°u) € Hip,, (F; H(YOO)T) : (2.5.163)

Moreover, thanks to (2.5.103) and (2.5.104), we can prove Y¢fy € Hg’FM (F;H(YOO)T) )
Combining this with (2.5.163) conclude the proof of (2.5.160).

Proof of: fF satisfies the P2° property. According to (2.5.101) we take a test
function ¢ € D (T x [0,1]*%]0, 0o[) one periodic in # with compact support an we have
to prove the existence of a sequence (ff;)cz2 of elements of C%(I'; Cqyp[P]) and 6 € Z?
such that:

Z ‘”972Hff,lH%‘Z(F;Cd%[ﬁ]) < 00, (2.5.164)
1€22\{0}
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and
(Teu(wrs ) = fE (@), ) = ) fllwr, )i (wr; #, D)9 (&, D)dddD,  (2.5.165)
lez2\{0}

where (-,-) = (-,-) . By using the definition of f§ and 7 and the

Heomp (ono) ' ~Hecomp (ono)

supp(¢) \ [0, 1]*x]0, oo,
we can prove that (Truy — f¥, 1) = 0. Therefore:
(Tow— f3.0) = (Tour, ¥) -

Since u; satisfies the P;° property, there exists a sequence (u1,)iez2\foy of element of
C1T; Cy[r]) and O € Z such that:

property:

Z mgHul,lH%m(r;Cd[p}) < o0, (2.5.166)
1€72\{0}
and for all (zp;2,0) € T X Yao:
uy(xr;2,0) = Z wy(zr; V) py(ar; 2, D). (2.5.167)
lez2\{0}

Now let us prove that for all zr € I":
(Tow (2rs ), ) = > <77c(¢lul,l)(xr; -),w>. (2.5.168)
1€72\{0}

According to Proposition 2.5.18, we have in the space:
exp (=7 gmim?) H™ (F; C2([0,1)% X [ny, oo|)) with 7y := inf{0, 3% st (&,7) € supp(¢)},

the following convergence:

U = A}lm Z ORTENE (2.5.169)

—00
1ez?\{0},l|<M

We can prove from the expression of the operator 7, and the definition of ¢ that:
Tr - exp (=7 gmn?) H™ (L3 C3 ([0, 1]% X [y, 00[)) = HY(T; C5([0,1]% x [, 00])).

Combining this with (2.5.169) yields the following convergence:

Tyur = lim > Tlduay),

1€22\{0},)l|<M

in the space H?(T'; CZ([0, 1]* x [y, o0[)). Combining this with the compactness of supp ()
conclude the proof of (2.5.168).
Therefore, if we success to construct a sequence (f1;)ez2\ (o} such that:

Vi€ Z2\ {0}, fru¢n = Ti(druy)

then we will conclude the proof of (2.5.165). Therefore let us prove the following result:
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Lemma 2.5.21. For alll € Z*\ {0} there exists an operator
T e L (Hy,, (T;Calp]), Hyp,, (T; Cag[P))) (2.5.170)
such that for all py € Hg, (I'; CqlP]) we have:
Teldp) = T (p). (2.5.171)
Moreover, there exists C' > 0 such that:

Vi e 7*\ {0}, ymkuﬁ( < C|I)%. (2.5.172)

Hy'y (DCalo)), HE  (DiCarpl91]))

To prove Lemma 2.5.21 we need the following intermediate result:
Proposition 2.5.22. For alll € Z?\ {0} there exists:

( Tiwe € £(Hi, (T Calf]) , (Hy5! (T Can 7))
Tiaive € L (Hyt,, (I Cl [2]))?, Hg)ner (I;Caza 7)) ),

9

(2.5.173)

Y

JI;EC

\/\/\ D g

(
Tos € £(Hgp, (T Cald))  (Hg,, (T Cara[o]))
((

0oy (03 Cal2)))?, Hipy, (T3 Caa[2]) ),

\

such that for all py € HJv (T;Ca[2]) and p; € (Hyp,, (T Ca[2]))? the following identities

hold:
Vr(pg) = d'livep, Vo) = 0T opi
dive(pin) = O\ Toawe Bt div(picn) = &7, g
Moreover there exists C' > 0 such that for all | € Z? the following estimates hold:

(2.5.174)

( )

Tivr

)

£<H6V’LFM (T5Cal2]),(Hg'r, L (TiCaa[2]))3 )

v H£<H(TFM (T5Cal?]), (Hg'ry ) (TiCa1[2]) ) 7
max < C|l]. (2.5.175)
ﬁ,diVF

c((Hg}pM<r;<cdm>)3,Hg}pM<r;<cd+1[r>1>) ’

s

\ c ((Hg}FM (DCalo)) Hyp, (DCas m) '

Proof. Let | € Z*\ {0}. We have

Vs

. & D yp! 27il
Vr g = —2n(Vr \)ogr and wl:( z_”gﬂfz)@.

Therefore according to the Leibniz formula, we have for all p € Hgt, (T; C,[7]) that:
. S 0 D rf 2mil
Vr(pg) = Vep —2n(Vr A)ipgr and  V(pgy) = = vr 2mi p) o
ov 271')\1
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Thus the following choice:

) 0 D ¢! 27il
Tive = Vr=2r(VrA)r and T o= (ap) _( g;AZWZ)’

yields the first line of (2.5.174). Furthermore two first lines of (2.5.175) are a direct
consequence of Proposition 2.5.20 and Proposition 2.5.13.
For the divergence operators the proof is similar. O

Proof of Proposition 2.5.21. We recall that for all p € N we have

Ti(pign) 272 (pir), (2.5.176)

where we defined the following operators for v smooth enough:
Trov = div (C(k)ﬁk @v) , Tpav := divp (C(k_l)ﬁk_l @v) ,
Trov = div (C* VP Vr0) | Tpg0 = divy (CH D552 Vo) + K2 0-2)pr—2y,
Moreover thanks to (2.5.174), we have:
V0 <i <3, Tea(mon) = T, (2.5.177)
where we defined for v € H™(I'; C4[7]):

77!’02) = 7?(11 (C(k kT v) 7;{11} = Tl divy (C(k_l)ﬁk_l’ﬁﬁv> ,

’77!’21) = 7;’@ (C(’“’1 l/kflﬂ,vrv) , 7;[731) = Tl divy (C(k’z)ﬁk’Qﬁvrv) + K2k ph=2y,

Combining (2.5.176) and (2.5.177) and define T;! := Z T4 ; conclude the proof of (2.5.171).

Now let us prove (2.5.170) and (2.5.172). Indeed thanks to Proposition 2.5.22, we
have for all 0 <7 < 2:

T ( 0,l'm (I Cal?]) Hg}r}i (F§Cd+k;[ﬁ])) g (2.5.178)
with the existence of C' > 0 independent of [ such that
< Ol)*. (2.5.179)

1
||77f,i||z:(ngFM(r;cd[u]) HYE L (D5Capilo))) =
Moreover if k = 1 then ;'3 = 0. Combining this with (2.5.178) and (2.5.179) yields
k=1= T € L(H,, T;Cy0]), HY: (T Capi[D])) (2.5.180)

with the existence of C' > 0 independent of [ such that:

— 1 2
If £ > 2 then thanks to Proposition 2.5.22, we have:
Tis € £ (Hg,, (T3 Cal2))  Hi2 (T3 Cavi[2])) (2.5.182)
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with the existence of C' > 0 independent of [ such that:

2 ‘
17551, £ (g (o) 2 (MiCannl) S < CJIj%. (2.5.183)

Combining (2.5.182) and (2.5.183) with (2.5.178) and (2.5.179) yields:
k>2= T} € L(Hyy, (T;Cald]), Hyv2 (T; Carnl2])) (2.5.184)
with the existence of C' > 0 independent of [ such that:

k>2=— Hm\ﬁ(w < Ci. (2.5.185)

1 (T3Cali]) ' 2 (DiCask[91) )

Thanks to the definition of ¢ and the implications (2.5.180), (2.5.181), (2.5.184) and
(2.5.185) we conclude the proof of (2.5.170) and (2.5.172). O

Lemma 2.5.21 has been proved, we now can apply this result. Therefore for all I € Z*\ {0},
we have

Te(druiy) = frad,  with  fig = Tluy.

Therefore it remains to prove (2.5.164) and f1; € Hgp,, (I'; Cqy[?]). Indeed thanks to
Lemma 2.5.21 we have: fi; € Hip.  (I'; Cqy[P]) and the existence of C' > 0 independent
of [ such that:

HfllHHOF (T;Cqyr[P]) CW ”UllHH v LiCarr[P])

Combining this with (2.5.166) conclude the proof of (2.5.164).
Proof of (2.5.161). It is a direct consequence of Proposition 2.5.18 and that ff
satisfies the P property.

2.5.2 Matching conditions

Taking k£ = 1 in the matching conditions (2.3.35) implies:
Var € T,V1 < n < mr, Opt,_1(zr,0) = pp(2r). (2.5.186)

Here, we prove that under regularities conditions on our ansatz that (2.5.186) combined
with (2.5.106) is equivalent to (2.3.35).

Proposition 2.5.23. If we have (2.5.105) and (2.5.106) then for all 2 < k' < n < mr
we have for all xpr € T':

k/ . . i . s
. (K — i) (k' — 1)cDpp" + divp (CO2 Vppl %) + k22 pr
pilar) = =3 ( Sy o)

=1

Proof. Let 0 < n < mp. We have seen that the hypothesis (2.5.105) and expression
(2.5.106) imply that:
i=0
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Moreover thanks to Proposition 2.5.15, there exist (A4,, B,) € Hmrts—n (F; Crnax(n—2,0) [ﬁ]) X
Hmrty—n (T ]HI(YOO)T) such that:

i 7;’&7171' = An + Bna

1=0

with:

A, = Z <8,;(c(i)ﬁi8 (pi " )) + divp (C(Z VAN (i N ) + K2 Dpnip ZAk/) .
0<i<n
0<k' <n—i

Using Proposition 2.5.9 yields A,, = 0. Therefore:

0= 3 (AR ) + dive (0D T ) 4 R D)

0<i<n
0<k’<n—i

= Z (k: (i + K — 1)cDp =2t 4 divy (C(i—Q)yi—Qv (D" )) + K2 Dpnip wk’) :
0<i<n
0<k <n—i

= Z (K =) (K — 1)cDpp + dive (CU2 Vr(p ) + k22 pi ) =2,
2<k’'<n
0<i<k'

Therefore, by identifying the coefficient in front of the #*~2 term with zero, we get for
all 2 < k <n.

ST (K = (K — Dy + dive (€2 Vr(ph) + Rl ) =0,

which leads to:

k/
KK —Dpp==> ((K = i) (k' = 1)eDp=; + dive (€072 Vrpp) + K22 pr)
i=1
and then conclude the proof. O

Proposition 2.5.24. Let 0 < m < mp v € H™(I'x]0,m0[) satisfying (2.3.32) then for
all 2 < K < m we have:

, / . i Blflfiu . i ak/ i— 8 iy
oF E (K =) (K = 1)el G + dive (CO2) Vi Gy ) + B iy

@0 =3 IS (zr,0).

=1

Proof. Let 2 < k < m. We recall that (2.3.32) means:
L := 00(C 9vu) + divp(C Vi u) + k* Cu = 0. (2.5.187)
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Thanks to the Leibniz formula, we have an explicit expression of 8’;/’2[1:

O 2L = 95 ~H(C dyu) + divr (95 72(C Vru)) + 95 2(k* Cu),
ST
=0

K2 1,
+y (k z 2) (divr (05 =271C) Vi (k) + k(9 12 C)a;u) .

=0
Therefore:
Yok -1
W-2p - K=l ()l
ot ; (l_1>(ay C)obu
k'—2 k'/ _9
+Z< z )(divr ((BF-2"¢) vp@u))+k2(a’;’—l—20)agu),
=0
72 z- 1) (051 C)dLu

+ Z k, o z o (dm (05271 C) Tr(@hw)) + k(3 -2 C)dhu)

_(k’—l) , (/4-2)!
U SR I!

We recall for o € T, the definition (2.3.27) of ¢ and C¥

(divp c®-2-0 g +k20<k’—l—2>> .

C™ (xrp) —EﬁffC(:ﬁp, 0) if k>0 else C®(xp):=0,

and ¢®(zr) := (C®(zr) - n(zr)) - n(zr). Therefore for all zr € I':

k,/
. K =2/ —=1) 4
k' —2 _ (K'—1) !
05 ~*L(xr,0) = lgl 0 c (zr)0zu(zr, 0)
-« (K =2)t /. k' —2-1) ! 2 (k' —1-2) 5l
+ ZZEO I <le1" (C( OV (0u) + k W' =t= )0ﬁu> (xr,0).

Combining this with (2.5.187) yields for all xp:

kl
’ ’_ 84/1,6
0 =D UK = 1)l () 2= (w1, 0)
=1 '

— : k' —2—1 8{ 2 (K'—1-2 al
+Z (leF (C( —2-0) VF( 1T )) + kc ( ) 1T ) (Z’F,O).
=0
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Therefore:
K —1

8k/ ’ 3,éu
(zr,0 Z [(K = 1) (%)T(xr, 0)

KK - 1)

-1

z z
- Z (din (=270 Vr(%))(ﬁcrao) + K2 8““( F70>) ;
1=0 '

which conclude the proof. ]
Corollary 2.5.25. [f the reqularity conditions (2.5.105) hold and (2.5.106) is verified
then (2.5.186) is a sufficient condition for (2.3.35).

Proof. Define the two sequences (Uy), and (V%) by for k£ and zr € I by:

U(zr) i= pp™(zr) and  Vi(ar) := 8un(xp,0).

k!
From (2.5.186) we easily get Uy = V and U; = V;. Since u,, satisfies the assumption of
Proposition 2.5.24 then we have for all 2 < k < n:

k
1 , , .
- - E — ik — 1)e(@) ; ((i—2)) 2,.((i-2)) ,
Vie = ke — 1) 2 ((k i)(k— 1) +divp C Vr +k“c ) Vi_i.
Moreover if the assumption of Proposition 2.5.23 holds then we have for all 2 < k < n:
k
1 , , .
- - — ik — 1)@ ; ((i—2)) 2,.((i-2)) .
Uy = RE—T) ;:1 ((k —4)(k — 1)) + divr C Vr +k%c ) Ug—i.

Thus U,, and V,, satisfy the same recurrence relation. Therefore these sequence are equal,
which conclude the proof. O

2.5.3 Final explicit definition of the ansatz

We have seen that the far and near field sequences are linked via (2.5.186). But these
relations do not yet provide an explicit definition of our ansatz. Indeed from this last
relation the quantities pl are found to depend on 4,,; and this last relation does not
provide an explicit definition of the sequence of far fields (u,,),en. Using Proposition 2.5.11
yields that this last relation becomes:

Vapr € T, Oyun(zr,0) = —u(Z (ﬁﬂnﬂ_i)(xp; )> (2.5.188)

=0
Combining (2.5.188) with (2.5.106) enables us to obtain the following explicit relation:
Var € F, 8nun($€1",0) = ln(LUF), (25189)

where we define for n the following quantity:

N

- Z: “((ﬁunﬂ—j)(xﬂ )>

(2.5.190)
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Indeed this last quantity can be computed with the knowledge of g ---,_1. Proposi-
tion 2.5.17 and Proposition 2.5.25 require some regularity assumptions on the far field
traces and thus it remains to prove that these assumptions hold. Thus let us prove the
following result:
Proposition 2.5.26. Let —1 < n < mp—1 such that (2.5.105) and (2.5.106) are satisfied
then we have the reqularity .

lnt1 € H™ " 2(1), (2.5.191)

and then we can define for n+ 1 the far field u,1 as the unique solution of (2.3.32) and
(2.3.33) with the boundary conditions:

Var € T, Opunii(zr, 0) = Ly (2r).

Moreover this last solution have the regularity w,1 € H™ ~™({).
Proof. First prove (2.5.191). We define for for all 1 < i < n and xr € T the following

quantity:
n+1l—1

Qi(zr;+) == upt1-i(zr,0) — Z (75 ' Tt s1—i—j) (s -),

in order to have the following rewriting:

M-

u(TQi(ers ). (2.5.192)

ln-i—l (xl_‘) =
=1

Thanks to Proposition 2.5.17 we get for all 1 < i < n that the following quantity defined
for xr € I': belongs to the space:

V1<i<n, Qe Hpn (P;H(f/oo)) @ HmrH (=) (r; Cpots [a]).
Then using Proposition 2.5.15 yields that for all 2 < 7 <n+1—:
TiQi € Hywra vy <F;H(Ym)> @ [ (n42-D) (F;Cn+2_1[ﬁ]>,
TiQ; € Hyw 2 (P;H(Yo@)> @ [t —(nt3—i) (r; Cn[ﬁ]),
which leads to:

ZTQ, € Hy ey (r; H(YOO)> @ gt =) (r; Cn+1[ﬁ]). (2.5.193)

Thus by using that f — ,u(f) doesn’t depend on zr € I', we obtain that combining

(2.5.193) and (2.5.192) yields (2.5.191).

The rest of the result is a direct consequence of regularity results for Helmholtz equa-
tion (see [60, Theorem 2.5.21|, [60, Theorem 2.6.7] and [57, Theorem 4.21|) we can apply
because I" has C™r regularity. O]

Thus can state the first main result of this work which is a direct consequence of this last
result:
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Lemma 2.5.27. Let 0 < n < mp. We can define the far and near fields (i, u,) with
the knowledge of (U, Up Jo<n'<n—1 bY:

o The near field is defined for (zr;&,0) € T' x Ya by:

i (5 2, 0) o= wp (20, 0) = Y (Tg  (Titin—s)) (2 &, D).

i=1

o The far field is defined by the unique solution of: Find u, € H () satisfying

(2.3.32), (2.3.33) and
Opun(xr,0) := 1, (zr), (2.5.194)

where l,, is defined by (2.5.190).
We have that:
o The near field (Uy,)o<n<my satisfies (2.3.31).

e Forall0 <n < mr, there exist (p,,rs) € Hg?;i_n (F;H(Y@J) x {mr+s—n (F; (C,JD])

such that:
Up = Pn + 7.

e Forall 0 <n < mr, we have:

U, € H™ Q). (2.5.195)

e The matching conditions (2.3.35) holds.
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Chapter 3

Theoretical justification of the
asymptotic expansion

The existence of (u;, 1;);en of the formal asymptotic expansion has been proved for 0 <
n < mr (see Lemma 2.5.27). We therefore can construct the far field

Ups = Uy + -+ 0"uy
and the near field
Ups i=TUg+ -+ + 0"y,

Then we construct a global function on €:

tns = (L= xp)us + Xy Ls tin s, (3.0.1)

where x; () := x(%) and x is a regular cutoff truncate function such that for all s € R,
x(s)=1if s <1land x(s)=0is s> 2.

Here we prove that u; ; converges to the exact solution us and prove estimates of the
error convergence rate in terms of §. Although we strongly draw on [4, 3, 5, 6, 12, 18| for
the formal construction, we do not use the two-scale convergence method (See [6]). We
have inspired by [37, 34, 35]. For this part, we proceed as follow:

e To give a sense of the quantity €(d,n) we need to prove that uy,; € HY(Qs). A
sufficient condition is to prove some continuity property of the operator Zs and this
continuity property is not trivial.

e We prove that

vl 105 < C sup MNU& € H' ().

vet (25 |0]l ()
e We prove estimate of a kind of consistent error:

€(d,n) == sup a(;,n(u% — Us, V).
HUHHI(QB)ZI

This quantity measure how wu; 5 fails to satisfies our problem.
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e We deduce that:
g5 — sl iy < Ce(d,m).

This procedure will yields a result of justification and error estimate Theorem 3.4.1. This
result requires strong assumption on the regularity on our manifold I'. The error estimate
are not valid for point near the surface I' because there is an phenomenon of boundary
layer. We emphasize that there is the same phenomenon in (37, 34, 35|.

3.1 Continuity properties of the scaling operator Z;

Here a is a large parameter that will be later replaced by n/d. C' > 0 is a generic constant
independent of a and 4. Introduce the following space:

Li(f{l) = {u e L2 _(Q,), one periodic on Z, HuHi2 (%) ::/ lu(Z, 0)|*dedp < oo},
Ya

loc 2 v,
where Y, :=]0,1[>x] — 1,a[ and Q, := R?x] — 1,a[. We also introduce for € > 0 the set

Q&,e = FX] — 5, 6[.
Proposition 3.1.1. Let ¢ > 1. The operator Ls satisfies:

Ts: Hip,, (T3 L3(V2)) = L3950,
and for all u € Hjr (T; L (SA/G)> we have:

1 Zs ull 205 ,50) < C5é|lu||Hq (F;Li(@)' (3.1.2)

0,I'vp
Proof. Let u € Hg’FM <F; Li (f@)) The following estimate is trivial:
125l (g ,,) = o llzzcriennsg-sas) + | Zo wll2rae s as)- (3.1.3)

Estimate of || Zs ul| 2(r\ry)x]-s.as)- We have on I' \ 'y that u(zr, 2, 0) = U(ap, 0)
for some U in HY (F; L*(] -1, a[)). Therefore using the change of variable formula yields:
ERTR——

U <Q3F, Z)
M\I'm x]—6,9a[ 0

== / \U(zp, 0)| depdp,
F\F]\/I ><]—1,a[

2
d;deV,

which yields:

T;L>2

1
1 Zs ull c2evey x)-s.6a) < 0% - [, (
#

0,

(?a)>. (3.1.4)

Estimate of L?( Ty x] — d,ad|). Let us prove that:

N

1 Zs wll 2oy x)-0.0ap < 02 - [|ul] (F%Li(’?a))' (3.1.5)

0,I'np
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Indeed, according to the definition of the set I'y; and the inverse function theorem applied
to 9r, there exist for all xp € I'yy an open subset w,,. C R? and 'y, C 'y with 2p € I',.
such that ¢r : I';. — w,,. is a diffeomorphism. Thus we have the following open covers:

I\M - U F:Jcra

rzrelv

and using the compactness of I'y yields the existence of N € N and z}., - - - , #& such that

N
Ty C (T
=1

Therefore we have:

N N

Ur(zr) v
Tsul|7 _ssa) < | Zs ul)? < / u (IBF; ;< || drrdy,
H HLQ(FM x]—é,0a[) ; ‘ HL2 (Fw%x]fé,éa[) =7 JT,i x]—8,8d] 0 )
T
and then:
N 2
Yr(zr) v
| Zs w2 Cssan < C / sup ||u (yp; ——= — ||| derdv.  (3.1.6)
12(I'y x]—6,6al) ; r X1l €l 5 6

Moreover, since ¢ > 1, Sobolev embedding results imply H4(I") C L>°(T") with continuous
injection. Therefore for all xr € I"y; we have:

(= ) = (2525)

where we defined the function N : Q — R* for (2,0) € Q by N(z,0) := ||u(; 2, ﬁ)||§{q(r).
Combining this with (3.1.6) yields:

sup
yrel'm

2 < N (@/JF(%F)7
Lo (r) 0

SRS

N
||I<5U||%2(FM x]—8da]) = CZL‘, (3.1.7)

i=1

where we defined for 1 <3 < N:

I; = / N (¢F(£F) : Z) dxrdy. (3.1.8)
T ; x]=6,0a[ 0 0

*t

Let 1 < i < N and let us now estimate I;. We introduce the map ¢! : Iy x] =6, da[—
(wz%/d) x] — 1, a[ defined for (zr,v) € ',y x| — 4, da[ by:

@ (wp) = <¢F(;F)’ %) with (wx%/é) = {%,x € wx%},

Since we have seen that ¥r : Lpi = wyi is a diffeomorphism, we have:

N

Vor € T, det (D ¢(zr) "D (zr) ') < CH% (3.1.9)
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Thanks to the definition of ¢, we get the following rewriting of (3.1.8):

I = / (N o ¢9)(xr, v)dzrdy.
T ; x]=6,dq]

According to the change of variable formula and (3.1.9), we have:

I; < C6* N (&, D)didD. (3.1.10)

wgc%/(SX]fl,a[

Let L be an arbitrary number, large enough in order to have for all 1 < i < N the
inclusion w,i CJ0, L[. Thus (3.1.10) becomes:

I, <C8* | N(& 0)didp, (3.1.11)

]—NL7NL[2><]—1,(1[

where Nj, := 1 + Ent(%) and Ent is the floor function. Using periodicity on & of the
function (z,7) — N(Z,7) yields:

N(z,0)didp = 4N? - / N(z,0)didp. (3.1.12)
Yo

]—NL,NLPX]—LQ[

Moreover, from the definition of the map N, we have:
/ N(&,0)didp = / [ (5 &, D) [[3ary ddD. (3.1.13)
Yo Yo

According Fubini theorem and the definition of the space Hg}FM (F; Lf{7é (f/a)), we have:

0,y

PPN s 2
[ 9y d = (s )

Combining this with (3.1.13), (3.1.12) and (3.1.11) yields the following estimate:

;L2

I < Col|ul? (

q
Ho,FM

(1))

Combining this with (3.1.7) conclude the proof of (3.1.5). Combining (3.1.4) and (3.1.5)
with (3.1.3) conclude the proof. O

To state Corollary 3.1.2, we need to introduce the following space:

H(Y.) = {ue I3(V.), Vue, (I2(%)°},

and the norm of this space is defined for u € H(SA/Q) by ||u||H<Ya) = |Jull oy, +

||VU||L2(Y/G)3-
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Corollary 3.1.2. Let q. For all 6 > 0 the operator Ls satisfies:

Ts: HiT. (F;H(ffan = H' (Qs.60).
For all u € Hg}i{ (F; H(ﬁ)) we have:

< O6 7 ull

(H'(©554)) HIRL (F;H(YQ)> '

1 Zs u (3.1.14)

and

vﬁzéu:z(;(vruw—l%u). (3.1.15)

Proof. Let u € Hg}i/[ (F; H(%)) and let us prove (3.1.15). Let ¢ € D(Q&ga)g and let us
prove that:

— / Ts udivy(¢)dordy = / Ts (vp u+0'V u) ¢dzrdy. (3.1.16)
Qs5.6a Q5,5a

We can prove that C7 (T XY_G) ﬂHg}L <F; H(ﬁ)) is dense in the space HS}L <F; H(f@)) :
Therefore there exist, (u")neny € C7H(D x ffa) N Hg};[ <F; ]HI(?;)) such that:

u” > U (3.1.17)

+1 (pm(y
Hg»FM (F,H (Ya)>

Let n € N, since u" is smooth enough, we can apply Proposition 2.3.1 to u". Therefore
for all n € N, we have:

V£Igun :Ig (VFU? + (571 @u”),
which leads to:

- / Ts udiv (¢)dardy = / s (vp ut+ 51V u”) ddzrdv. (3.1.18)
Q5,50 Q5,50

Moreover (3.1.17) imply:

Veu" + 6V Vreu+6'Vu
Hip (F;(Li (v.) )3)

Thus using Proposition 3.1.1 implies that the sequences Zs u™ and Zs <Vp W41V u”)

converge in L?(Qs44) to Zsu and Zs <Vp w61V u) respectively. Thus we have:

—(Zs u, dived) 2(0;5,) = <Ia (Vr TR Y U) : ¢) ;
L2(Q5,5a)

which conclude the proof of (3.1.15).
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Thanks to (3.1.15) we directly get that Zsu € H'(Qs,5.). Now let us prove the estimate
(3.1.14). From the definition of Hg}; (I‘; H(}A/a)> we have:

Vru+d Vue (Hp, (T L;(Ya)))g.
Therefore, according to Proposition 3.1.1 we have:
Ts (Vp u400" @) € L*(Qs54a),
with the existence of C' > 0 independent of v and § such that:

HZ; (vpuﬂrlﬁ) < 063

H Vpu+5*1§uH
12( 50) (Hg

()

From this equality we get that Zsu belongs to H 1(9575(1) and we have thanks to the
estimation which appear in Proposition 3.1.1:

1 Zs ull i @5,50) = 1 Zs ull2(0550) + HIJ ' (VF up 07 €“> ’

Q5,60

< Clfu]

HY (F;Li (ffa)> + HVF ur + C6! v u . (F;(Li (Ya))?’)

<! .
<90 “uHHgHA (F;L2 (Y/a))

Thus the proof is finished. ]

To state Corollary 3.1.3 we need to introduce the two following spaces:

o M, (Ya) C H(YG) is the space of function u € H(Ya) such that u = 0 on ]0, 1[*x{a}.
The norm of this last space is defined for u € Hy (}A{l) by:

Il ) = /Y Vu(d, 0)Pdid. (3.1.19)

o H'9(Qs5.) is the space of function u € H'(Qs4,) such that u =0 on I' x {da}. The
norm in this space is defined for u € H"*(Q;s4,) by:

[l 210005 50) ;:/ | V. u|*dzrdv. (3.1.20)
5,0a

For the sequel we identify L?(Qs44) as a subset of H%(Q;5,)" with the following canonical
injection:

(U, V) F1.0(Q5.50) 1 = HLO(Q5.50) = / vodzrdy.
Q5,60
Thanks to the Cauchy Schwartz inequality, we can prove:

Jull oy 50t < Cllullz2(s5)- (3.1.21)
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Hereafter
diVl; : Lz(Qg,M)g — HI’O(Q&M)T, (3.1.22)

is the adjoint of the operator — V : HY0(Qs44) — (L2(Qs50))" and we have:
HdiVEHE(Lz(95,511)3?1;]1’0(95,50.)1.) <C (3'1'23)

Corollary 3.1.3. Let ¢ > 1. For all 6 > 0 the operator Is satisfies:

R i
g, (28 5)) o (1 0)'

For all u € Hg}; (F; L (f/a)> we have

17500 (0, < OO s (rn(32)') (3.1.24)
Moreover this extension satisfies for all u € HiT. (F; (L% (}%1))3)> :
div, Tsu = T, (divr ur+5—1cﬁvu>. (3.1.25)
Proof. Let us summarize our proof:
1. We define a map T; Hg}id (F; H, (YQ)T> — <1’-]1’0(Q(;75a)>T such that:
vue iR, (NIA (%)), IZoul (moonn)’ CégHuHHSHA (150 (5)') (3.1.26)
2. We prove that this map is well extension of Zs in the sense that:
vue mi, (N3 (%)), Tou=Tou. (3.1.27)

3. We prove that:
Vu e HIEL (r; (L2 (1@))3)) , dive Ty u = T (divr up 407! <fvu>. (3.1.28)

Definition of Z; and proof of estimate (3.1.26). To define Zs, we first need to
introduce the operator S, : Hé’}ll\4 <F;]HI0 (%)T) — HS}L (F;Ho (Ya)) defined for v €

Hg}i{ (F;Ho (Ya) T) and zr € I by:
Sau(zp; ) ==V,

where V' is the the unique solution of: Find V' € H (}Afa) such that for all ¢ € Hy (}Afa):

— | VV(er;2,0)-Vlar; 2, 0)dedo = (u(zr;-), ¢)

. o(52) B (52)’ (3.1.29)
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: o\ T
By using 2.5.13 we can prove that we well have for all u € Hg}; (F; Hy (Ya) ):
Syu € HIEL <F;]HI0 (Ya)) , (3.1.30)

and according to the definition of the norm of the space Hj (f/a) given in (3.1.19), we
have:

el

g (raz () = Vg (o (7)) 1y
We now prove that we can define Z; for u € Hg}iﬂ (F; Hy (ffa)T> by:
Tsu =6 (divE(Ig (ﬁ(Sau))) — s (divr (@(Sﬂt)))) . (3.1.32)
Indeed, by construction of S, and thanks to (3.1.30) we have:
V(Sau) € HItL (F;Li(ffa))?) and  divy (V(S,0)) € Hip,, (T L3 (Ya)) . (3.1.33)

Thanks to (3.1.31) we have:

Y, < 1.
H V<Sau>HHg}i/[ (F;Li (Y(L))B ~ CHUHH&};\/I (F;HO (Va)T>’ (3 1 34)
and: R
e (V8D ez 1)) < Py () 4199
Thus, thanks to (3.1.33), we can apply Proposition 3.1.1, which leads to:
Is (@(Sau)) € L2(Qg’5a) and Is (din (6(5@71))) € L2(Qg75a), (3136)
and the estimate (3.1.34) and (3.1.35) leads to:
1T (Pt <Ol
and R )
Hz(; (dwF ( V(Sau))) gy S 08 HuHH&?L (0 (5)') (3.1.37)
Thanks to L*(Qs44) C HY0(Q56,)7 and (3.1.22), (3.1.36) leads to:
~ ~ 2
(s (dive (V(Sau))), dive (T (V(Saw)) ) € (H ()" (3.1.38)
Moreover combining (3.1.21) and (3.1.23), with the estimate (3.1.37) yields:
: S 1
o) £y O
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and

< C82 ||u

Hl’O(Q&éa)T — Hg}i/l (F;Ho (f/a)’f) . (3140)

HI(; (divr (@(Sau)))‘

Thanks to (3.1.38), the quantity Zsu can well be defined by (3.1.32) and belongs to
HLO(Q&&I)T.

Combining (3.1.32) with the estimate (3.1.39) and (3.1.40) conclude the proof of the
estimate (3.1.26).

Proof of (3.1.27). Thanks to (3.1.26) and Proposition 3.1.1, we have:

~ N 2
(T3, Zs) € £ <H§}L (r; %) (Ya)> ,HLO(QW)T) . (3.1.41)

Moreover, we can prove that the following space:

Cirl (0;C0%,,)  with €25, = C™(Q,) N Hy(Y,)

per,a per,a

is dense into Hg}L <F; H, (%)T) Therefore it remains to prove (3.1.27) for u € C’g}; (F; (Ofiox )

per,a
Regularity results for elliptic operator (see [60, Theorem 2.5.21|, [60, Theorem 2.6.7]
and [57, Theorem 4.21]) lead to S,u € 03}14 (T;Cc2,.). Thus we have:

per,a

V(Swu) € Catl (T;¢55.,)  and  (V(S,u))n=0onTx]0,1Px{-1}.  (3.1.42)

per,a

Thus, we can apply Proposition 2.3.2 which leads to:

dive(Zs (V(Saw) ) = T (dive (V(Sa)), ) + 07" div (V(S,u)) ) in L)
(3.1.43)
From the boundary conditions that appear in (3.1.42) we get (Zsv).,n =0on ' x {—0d}.
Therefore (3.1.43) becomes:

div£<I(5 (ﬁ(sau») - <divp ((ﬁ(sam)r) o div (%(sau») in (H"(Q550))".
Thanks to (3.1.29), we have div(V S,u) = u, which leads to:
dive (15 (%(sau))) - (divr (( @(Sau))r> 46 Ty in (HY(Qs50),
an then:
Tsu=36 (divL<Ig (@(Sau))> y (divF ((@(SaU))p)) in (H"(Q5a))"-

Combining this with (3.1.32) conclude the proof of (3.1.27).
Proof of (3.1.25). Define the two operators A, B for u € H{f.. (F; (L% ()A/a))‘o’)) by:

Au = div, (I}u) and Bu:= fg(din ur +6°¢ gi;u>,

and (3.1.25) is equivalent to prove A = B. Let us prove A = B. Indeed thanks to (3.1.41)
we have:

(A.B) e £ (HgL, (T (23(7))9) ,HLO(Q&M)T)Q . (3.1.44)
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Let D4(Y,) be the space of function ¢ in L (Ya) such that supp(¢) C Y,. Thanks to
Proposition 2.3.2 and (3.1.27) , we have:

Yu € CIEL (r;p#(ffa)> , Au = Bu. (3.1.45)

Moreover we can prove that Cgi. (F;D#(Ya)> is dense into HIf. <F; (L% (Ya))3))
Therefore (3.1.44) and (3.1.45) conclude the proof of (3.1.25). O

3.2 Stability of the exact problem

Lemma 3.2.1. There exists C' > 0 such that for all 6 > 0 the following estimate hold:

lus|| @5 < € sup M

,Vugs € H! (Qé)
HEH(Qs) ||¢||H1(Qa)

Proof. 1t is a proof by contradiction where we are inspired from [37]. Indeed assume that
there exists a sequence (ug)s such that:

|usl| iy =1 and  lim  sup as(us,9) (3.2.46)

30 4 i) 1Dl a1 ()

The difficulty is that our domains €25 depend on §. That is why we introduce for any
sequence of function (f5)s defined on €, the sequence of function (fs) defined for (2r,v) €
QQ by

fs = fs(zr,v- (L+6/n0) —0).

Using the change of variable formula for integrals yield:

Hﬂ(SHJ%Il(Qo) =(1+0/no)"" - (H Vr f6’|i2(95) + ”f5|’%2(95)) +
(1+6/no) - |\3uf5|!%2(95).

Therefore we have the following equivalence:

| f51] 21 (20 ~ | fsllzs)  and || fsll 22 q0) ol | /51l 22 02s)- (3.2.47)

0

Thus, thanks to (3.2.46), the sequence (ug)s>o is bounded in H' (). Thus, there exists
iy € H'(€p). such that up to a sub-sequence the sequence (is)s~o weakly converge to g
in H'(Qp).
First, prove that @y = 0. Let ¢ € H'(Qp) with [¢||i(ay) = 1 and ¢° defined for
(xzp,v) € Q5 by:
¢°(xr, ) == ¢ (xr, (v +0) /(1 +6/m0)) -

Then from (3.2.47) we get the equivalence ||¢°|72(q;) 0 1 and combining with (3.2.46)
—

yields:
a5(u57¢5> — 0.
6—0
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Thus we have

0= (1513(1)/ (ps(CV us, Vi ¢s) — k* C psusds) dUdv + (DtNg s, @) fno}s
Qs

6—0

= lim | (5(C Vr-us, V1 0) + Cisdrusdyd — K*Ciigiis ) T + (DN s, &)1
0
Next using the dominated convergence theorem yields that the sequence of vector:
Us i= (€ V65 55C0,6; ~k*Cpiso))
strongly converges in L?(Qg) to:

Up == (CVr¢;CO,¢; —k* C ).

Thus using that (Vi as; 0,s; iis) weakly converges in L?()3 to (Vr tg; 0, 1o; Uis) we get:

Yo € H'(Q), / ((C Ve, Ve d) — k? Cﬁoa) dl'dv + (DtN s, ) rx oy = 0.

Qo

Therefore @ is a solution of the Helmholtz with outgoing condition on I" x {1y} with a
zero as right hand-side. Since this problem is well this conclude the proof of @y = 0.

Secondly, we now prove that (us)sso strongly converge in H*(£2;) to zero. We remark
that the sequence (is)s-o weakly converge to 0 in H'(€)y). Thus Rellich theorem yields
that (@s)so strongly converges to zero in L?(£2). Therefore combining this with (3.2.47)
yields that:

lim [ —(k*us C+1)|us|*dTdy = 0. (3.2.48)
6—0 Q§

We define the operator DtNE~ : Hz (I x {no}) — H~z (I' x {no}) for @s, o5 € Hz (I x {no})
by:
k=i & — k=i ~ -
<DtN£ Uus, U§>F><{no} = <DtN Ugs © ﬁ, Us © £>Eno

where DtN*=" : Hz (%) — H~2(3) is the Dirichlet to Neumann map on ¥, associated
to the wave-number i. Thanks to [60, Theorem 2.6.4], [51, appendix| and |25, Proposition
3.4], we get the compactness of the operator:

DtN, — DINE= - H2 (T x {no}) — H = (T x {no}).
. k=i\ ~ ~ .. . .
Therefore (151E>I(1)<(DtN£ — DtN7: )u(;,u(;>rx{m} = 0. Thus combining this with (3.2.48),
(3.2.46) leads to
0 = lim ag(U5,u5) = lim/ (pg(C V[; Us, V[; U5) -+ U(;u_(;) dl'dv + <DtN]Z:i u(;,u(;)px{m}.
6—0 6—0 Qs

Since the operator DtN*= is positive (see[60, Theorem 2.6.4], [51, appendix| and [25,
Proposition 3.4]) then DtN%= is a positive operator in the sense that for all us €
Hz (T x {ny}) we have (DtNE= Us, Us)rx{ne} = 0. Thus we have:

lim (ps(CV pus, Vo us) + usts) dldv = 0,

6—0 Q§

and combining this with (4.5.79) yields the final contradiction ||us|| g1, — 0. O
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3.3 Error decomposition

For what follows in this work n is an arbitrary positive number. Moreover, thanks to
Lemma 3.2.1 a sufficient condition is a uniform estimate in v € H' (€5) with 0]l g1y = 1

of as(u’ — up 5,v). For all v € H' (), we have the following decomposition of the error:

o n L r c
as(u’ =ty 5,0) =Dy 5, + Dy 55

where D ;. is so-called "matching error" (it measures the mismatch between the trun-
cated expansions (2.2.7) and (2.2.8):

D:],(S,n = / p(s(un,(g —Is ﬁn,(;)VXnVE — / p(S [V(um(g —1Is ﬂm(g)VXn] v
Qs Qs

and where Dy 5 is so-called "consistency error" (it measures how much the truncated
expansion (2.2.7) fails to satisfy the original Helmholtz equation):

76775>n = a5 ("Z‘-(S an,ﬁ; Xq’]/U) .

This error decomposition is exactly the same as in [37]. Thanks to Proposition 2.5.15
and Lemma 2.5.27, we have:

Thiing € H™ 577 (T Ho (Vr0)' ). (3.3.49)

We assume that n < mpr — 4 because this implies mr + % —n > 2 and according to
Corollary 3.1.3, (3.3.49) leads to:

Ig(ﬁﬂnﬁ) S (HLO(Q&n)) T.

Therefore we now can define the following quantity:

D;:gvn = Z 572+k <I5<77€an,6)7 XWIU>Q[;’U 9

k=0

which is so-called “first consistency error”.
The “second consistency error” is defined by

D:;:(ls,n = a5 (I5 ﬁnﬁ) XUU) - Z 6_2+k <I5(77cﬁn,5)a XUU>QL§,"7
k=0

+ DC,I

so that the total consistency error has the decomposition D¢, = DY nén:

n’67n 17’67’,7’

3.3.1 Estimate of the first consistency error

Here we prove the following result:
Lemma 3.3.1. The first consistency error satisfies the following estimate:

Dy < O ol ay)-
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For all that follow, C' > 0 is a constant independent of § and 7. The proof of Lemma 3.3.1
is a direct consequence of Proposition 3.3.2 and Proposition 3.3.3. We recall the following
useful result(see [67, Lemma 3.10] and [34, equation (3.9.10)] )

_1
||XnU||H1(95,,]) < O~z ||v|| gy (3.3.50)

We define <', .>Q5ﬂ7 = <', '>H1(95771)T_H1(Q<5m)'
Proposition 3.3.2. The first consistency error can be rewritten as follow:

2n n
Dyg, =072 ( > 5Z<Ia(77€ﬂl_k),xnv>95m> , (3.3.51)

l=n+1 \k=l—-n

Proof. By definition we have:

D;gn Z 572+k <I<5 (ﬁﬁnﬁ)a X77/U>Q(5’7]7
k=0

Z 5_2+k<16(77c5lal)7Xnv>95m7

(k,l)eNy

where Ny := {(k,l) € Z?>, 0<k<n and 0<I[<n}. Let N :Z?— Z? be defined for
(k,1) € Z* by:
N (k1) = (k, 1+ ),

which is a bijective application. From the following equivalence:

5 0<k<n 0<k<Il+k I+k—n<k<n
V(k,1) e Z, = or ,
0<1i<n 0<I+k<n n+1<l+k<2n
we get that Ny = N 71(NJ U N2) with Ny N N? = ) and:

N{ ={(k,1)€Z’, 0<k<l and 0<I1<n},
Ny ={(k,l)eZ’, l-n<k<n and n+1<I1<2n}.

Thus we have:

Z § IS (Tid' W), xov) s, = Z 0 UL (Trd k), Xg) 05,

(k,l)eN1 (k,)EN (N1)

D> UL (Trtur), X0)os,,

m=1,2 (k,l)eNJ"

where here (-,-) = (-, ) gro(,) —m1.0(0,). Moreover from the relation Tot; + Trty—y +- -+
Tiig = 0, VI € N, we have:

> U (Trtu—s), Xov)ay, = 0,
(k,l)EN}
which leads to:

2n n
Df]gn =52 Z ( Z 5l<16(77cﬁl—k)vxnv>96m> ‘

l=n+1 \k=l-n
Thus the proof is finished. O]
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Proposition 3.3.3. Foralln+1<1<2n andl —n < k < 2k we have the following

estimate: )

. 0%
{(Tetu—k)’, Xg0) 5, < Oﬁﬁl (0]l 1 025)-
Proof. Thanks to Lemma 2.5.27, 4;_; take the form u;_, = p;_ + R;_ with :

(pr—k, Ri—x) € et — (k) (F;Cl_k[ﬁD X Hg'fﬁf_”_k) (F;H(Yoo)) ; (3.3.52)
and R;_j satisfies the Pﬁr ek property. Therefore thanks to Proposition 2.5.15 there
exists:

(A, Byy,) € H™r3—n=2 (r; Conax(—20) [19]) x Hmr+%—”—2<P;H(YOO)*),
such that:

Tty = A + B (3.3.53)

Moreover, since we supposed n < mr — 4, we have g5 := mr + % —n —2 > 0. Therefore
thanks to Corollary 3.1.2 we have:

. 3 ) -
1Zs (Telir-) | a1 < O NTil@-0)l .. (o)) (3.3.54)
Let us prove:
2 ..
Hz‘ll,kHHq“C <F7HO (Yn/g)T> <C (5) , (3.3.55)
and
”Bl,k:Hqu’k (F,HO (Yn/a)f) <C. (3.3.56)

Indeed, let us prove (3.3.55). For all 0 < j7 <[ — 2, we have thanks to the integral part

~

formula that for all ¢ € Hy (Y77 /5):

, pitl (_5)j+1
/ Y o(ar; &, 0)didy = — / : 0o p(zr; &, 0)didD,
Yass Va/s j+1
pitl (_5)j+1

AN
196l a7, 0 < C () 1901z, -

j+1 L2(%,5)

Combining this with the definition of the norm of the space Hy (er/é) given in (3.1.19)

yields the following estimate:

1

. -1
Vo< <l—2 || T§C<g>

Ho (Yn/fs)

Combining this with A4;, € H%* (F; Crnax(i—2,0) [ﬁ]) conclude the proof of (3.3.55). The
estimate (3.3.56) is a direct consequence of A;, € H* <F;]HI(YOO)T> and the definition
of the norms of space H(YOO) and H, (37,7/5).
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Combining (3.3.53), (3.3.54), (3.3.55) and (3.3.56) yields:

3

~ 2 ,r] l_%
1Zs (T (i) || s, < €0 (5) '

Combining this with (3.3.50) yields:

l—

N
N

3 (1
vl o,y < 02 ()

which concludes the proof. O]

_1
n: ||U||H1(Q5,,7)7

~ 3 /M —
|<(77€ul—k)6,XnU>Q5m| < (62 <g>

3.3.2 Estimate of the second consistency error

Lemma 3.3.4. ]f then the second consistency error satisfies the following

estimate:
Dc,l

n,6,n S CnnJrldilH/UHHl(Qé)‘

We first prove that we can give for u a rigorous meaning to the following equation:
[e.e]
div, (p5 CV.Ts u) + k2 C s Iy u = Ty <52 > 5”Tnu> ,
n=0
by giving for all n € N an estimate of the following quantity:

E, = . (3.3.57)

(H0(Q5,5))

divp (ng ViZs u) + k?C s Is u — Ly (5_2 Z 5"7Eu>

1=0

with the following result:
Proposition 3.3.5. Foralln > 0 there exists C,, > 0 such that for allu € H&lf; (F; H(YQ/(;))
the following estimate holds:

E, < Cé_%nn+1||uHH%+2 (F_H(Y /5))’ (3.3.58)
’ n

0,T'
Proof. Let n > 0. Thanks to the Taylor expansion with integral there exists bounded
maps: (R, R,) : Qs — L(R?) x R such that for all (zr,v) € Qs we have:
C(xr,v) = ZC(”V" + V"R, (zp,v) and CO(ap,v) = Zc(i)yi + V"M R, (2r,v).
i=0 i=0

Hence, we have the following decomposition:
div, <p5 CV. T, u) K2 CusTsu = P(Tsu) + R(Zs ), (3.3.59)

where we defined P, R for v € H*(Qs,,) by:

Pv = Z divp (p‘SC(i)p(sl/i Ve v) + k2l Dy,
=0 (3.3.60)

Rv :=div, (Rn(y)V"H Ve U) + B Ry () .
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Since u belongs to H 3+3 (F ]HI(Y )), we can prove by using Proposition 3.1.1, Corol-
lary 3.1.3 and Corollary 3.1.2 and doing similar computation as in “Recursive equations
for the near field” (see chapter 2) that:

P(Zs u) <5 Z 6’7’u> .
Combining this with (3.3.59) leads to:
En = [[R(Zs u)|| a1yt (3.3.61)

Thanks to (3.1.23) we have:

Thus using that R, is a bounded function and —§ < v <7 yields:

div, <Rn(y)yn+1 V. ZIs u) ‘

< | Ru(v)p" ™ V. Iy UHLQ(Q

Hl(Q(g,n)T S,n) )

Hdivz (Rn(l/)yn+1 \Ws u) H < O™ s ull oy, )- (3.3.62)
HY(Q5)1 "

By using similar argument, we prove that:

H162,1/51%71(11)1/"“||H1(QM)T < Cn" ™M Zs ull o) (3.3.63)
Moreover since u € H;; 2+2 (F; ]H[(Yn /5)> we have from Proposition 3.1.3 that:

_1
1 Z5 ull 05,y < CO2|ul

Ho%:; (FiH (%/6)) .

Combining this with (3.3.62), (3.3.63) and (3.3.60) yields:

I )l < O Ml o

n/5)> ‘

Combining this (3.3.61) conclude the proof. O
Proof of Lemma 3.3.4. Since we have n < mpr — 3 we can apply Lemma 2.5.27 which
yields 4,5 € H(i;r; (F; H(}A/n /5)>. Therefore we can apply Proposition 3.3.5 which leads
to:

Dyysn < Cnn"+15§!|’lln,a|\Hér+M (F_H(?W&)), (3.3.64)
where we recall that:
D;};n = |a(Zy U5y XnU) — i5—2+k<15(77€dm5), XnU>H1,0(QM)f_H1,0(QM) )
k=0
Let us prove that: )
H%,sHHOg:; (F H(Yn/a)) =¢ (g) 5 (3.3.65)
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We recall from Lemma 2.5.27 the existence of (R;); € H2t2 (T; H(YOO)) such that:
un5_25R *ZZ& (3.3.66)
=0 7=0
and for all 0 < i < n, p; € H>*2(T'; C;[¢]). Thus from Proposition 2.5.18 we get:

IR <c. (3.3.67)

H22 FH(Y/ )) -
Moreover we have:

>3 o

i=0 j=0

< C sup ||pz||H2+§ (CCaol) (ZZ&HMH ) (g

1<i<n
H2+2(FH( /6)) =0 j=0

Combining this with (3.3.64), (3.3.66) and (3.3.67) conclude the proof of (3.3.65). Com-
bining (3.3.65) with (3.3.64) conclude the proof. O

3.3.3 Estimate of matching error

Lemma 3.3.6. ]f then the matching error satisfies the following estimate:
<ol o
n&n 1"+ exp nglné ||U||H1(Q§)'

Proof. We recall that this quantity is given by:

D= | = TUDTVT— [ F V(0 =T 03) V)7
9

Qs

The support of the function Vy,, is given by: C) := {(xp,v), n < v < 2n}. Thus thanks
to the Holder inequality we get:

r Crin . § )
Dy sn < 7 (H% — T Un,(s”LOO(Cn) Vol e,y + 110, (us —Zs u”ﬁ)HLw(cn) HUHLl(Cn)> )
(3.3.68)
Let us prove the following estimates
n ~ 77 n
|ug — Zs un,5||Loo(Cn) <(Chn (exp <_7rgming> +1 > :
(3.3.69)

n ~ 77 n
||61/ (U(S - I(S u"76)||L°°(Cn) S C (exp (—nging> + i > .

From mr >n+3 we have forall 0 <i<n, mp+1—17> %+(1+n—z’). Thus we
can use the Sobolev embedding results:

V1 <i<n, H"™HH(Qy) € C"HH(Qy).
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Therefore thanks to Lemma 2.5.27 we get for all 1 < i < n that u; € C"~F1(Qy).
Therefore we can use the Taylor expansion with integral reminder, which yields get for
all 1 <i < n the existence of (R}, R%) € C°(Q)? such that for all (zr,v) € Qp:

& Giug(ap, 0) L
ul(xrj I/) — Z Myﬂ + l/n_l—i_lRZl(xl“, I/),
— g!
J:
4 .
n—i—1 A,
oI+ 0
dpui(ar,v) = wlﬂ + "0, R (wp, v).
( =0 T
Thanks to (2.3.35) we have:
( n n—i a
ENED B) BUAL U S
i=0 7=0 =0
_ Z Zajp;—i-j(xr)yi + Zéz‘yn—iHRih
i=0 j=0 i=0
(T) n n—i—1 ay_l_
duf(ar,y) =3 Y gt :”F’ Vi~ 1+25l neiRl
=0 j=0
D I) BTN LES RS S
\ 1=0 j=1 i=0

where for all 0 < n/ < n, (pf (zr) is the coefficient of the polynomial p,(zr) appearing
in Lemma 2.5.27. Moreover thanks to Lemma 2.5.27 for all 1 < ¢ < n there exists
R; € H™2=i(T; H(Y.)) satisfying the P .1_; property such that for all:

V(xr;@,0) € T € Yoo, ty(ar; &,0) = pi(ar; 0) + Ri(ar; &, ).

Therefore:
Iaun(s—zfs Zs R —i—ZZ(Sk : Y n_léjpjﬂyj—iriéiﬂs&,
(i k=0 1=0 i=0 j=0 i=1
0y (Ty iy 5) = Z& LT5(05 R;) +ZZ(5’€ kTt ZZ(SJ]pH]V] Ly Z(sl Y T5(0,R;).
\ k=0 l=1 =0 7=0

Doing the difference between (1) and (1) yields:

n n
—Ts ’IAL,M; = E (sanilJrlRll — E 0"'ZIs R
=0 i=1
n n

0, (uf — Tyiing) = » 6" "Ry — > 6" T;(05 )

=0 i=1

(3.3.70)
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On C, we have v < 27 and we recall that 6 < 7. Therefore we have:

n

Z 57, Vn—i—&-er’zi

n

< O™ and Z(Siyn_iRé < Cn". (3.3.71)

i=1 Lo (Cy) =0 Lo (Cy)
Let us prove that for all 1 < i < n we have:
Ui o -
I(Ri, 0 Rl i,y < Cexp ( - nging>. (3.3.72)

Indeed let 1 < ¢ < n. We recall that that R; satisfies P;’fr_n
according to Proposition 2.5.18 we get that:

1 property. Therefore
2

exp(Tgmin?)(R;, 05 R;) € HZ;LFFI\;“Jr§ (T; C’O([O, 1] x [1, oo[)) )

Moreover, we have mpr > n + 3. Therefore, we have thanks to Sobolev injection results

~

H ™ (0 Co([0,1)2 x [1, 001)) € L=(T x Vac).

Therefore for all 1 < i <n and (zr,v) € I'x]n, 2n[ we have:

Y

exb (7guin? ) [T (R, 0R) ) (wr, v)| < exp (mgumin’s ) [T ((Ri, 05 R0) ) ar,v)
Yr(2r) V) ) 7

14

exXp (nging> (Ri, 0p R;) (xn 5 '3

< |lexp(m gmin?) (Ri, Op B [| oo (v »

<

which conclude the proof of (3.3.72).
Combining (3.3.72) and (3.3.71) with (3.3.70) conclude the proof of (3.3.69).
Combining ||Vv||r1c,) < Cllv|| g1 ox)—smp With (3.3.69) yields:

C n .
E (H% —1s Unﬁ”Loo(c,,)

A
’VUHLl(Cn)) < (eXp (—wgming) +1 ) 0]l 1 (0 x)-.m0])-
(3.3.73)

Moreover thanks to Cauchy-Schwartz we get ||v][1(c,) < Cnz ||| 12(c,)- Combining this
with the classical estimate (3.3.50) that we recall here:

1
]2,y < Cn2 vl

yields the estimate [|v]|L1(c,) < Onl|v|| g1 (rx)—smop- Combining this with (3.3.69) yields:

n ~ 77 n
(100 (5 = Zs )l iy ol ey ) < (05D (=mgminy ) +0") [olarest-somy-

(3.3.74)
The proof is finished because combining (3.3.73) and (3.3.74) with (3.3.68) yields the
desired estimate.

¢
U
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3.4 Justification theorem

Theorem 3.4.1. [f then for all ¢ > O there exists C' > 0 such that the

following estimate holds:
s = tnsl| i1 (0xjeaop < C™HE
Proof. Since we have

. ntl . ntl
limén2 ' =00 and limdntz =0,
6—0 6—0

the following choice:
n+1

N = dnt2,

is suitable in the sense that it satisfies (2.2.6). Since we have n + 3 < mp — 3 we can
apply Lemma 3.3.1, Lemma 3.3.4, Lemma 3.3.6 and Lemma 3.2.1 with n = n + 3 which
leads to

(n+4)(n+1) _

s — a5 () < C (5”“ 45 yexp <—7rgmm5—%+z)) . (3.4.75)

Moreover we can prove that
(n+4)(n+1) 4
(n+2)

< ot (3.4.76)

Moreover since the exponential function is strongly decreasing a infinity we have:
exp (—7r57%+2> < o5t (3.4.77)
Therefore combining (3.4.75), (3.4.76) and (3.4.77) yields:
l|lus — qug3||H1(pX},5,n0[) < Ot (3.4.78)
Since 7 tend to zero we can assume that ¢ > 2n which leads to:
[ts — tnis sl exiemon = llus — w1 @ xiemoD -

Thus we have thanks to triangular inequality:

n+1

s — tn sl 1 (xtemop) < s — v 52|t (0xjemop + 6" Z w5 1 (1ol -
i=n-+1

Combining this last estimate with (3.4.78) yields the desired estimate and then the proof
is finished. O
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Part 11

Construction and analysis of
approximate boundary conditions and
numerical results
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Chapter 4

Construction and analysis of
approximate boundary conditions

In the previous part we succeed to construct for all n € N an approximation of the form
u® + dul + -+ 4 6"u". The procedure of computation of each u’ stated in the previous
part is not yet useable. First we will the recall result of the first part. Secondly we will
simplify the expressions of the terms u°, u! and u?. Afterward we will deduce from these
simplified expression a second approximated model using impedance boundary condition.
Next we will prove that the models with impedance boundary condition are well posed
and stable with respect to the small parameter 9. Finally we will deduce error estimates.

To compute the coefficients appearing in the first order impedance boundary con-
dition, one needs to compute for all zr, two functions wy(zr;-) and wy(zr;-) which are
solution of partial differential equation on a semi infinite bands (See Figure 4.2). The cur-
vature of our surface I' will appears in the coefficient in the second impedance boundary
condition.

The expression of the second order impedance condition is not very useable. However
we found an assumption of symmetric on the reference functions associated to our physical
coefficients such that the expressions of the second order impedance boundary conditions
are simplified. In this case we do not need to compute other solution of partial differential
equation than wi(xr;-) and wy(zr;-).

We can refer the reader to [9, 10], [40], [14], [13] ,[11]and [63] for use of impedance
boundary conditions to approximate for an example homogeneous thin coat. Moreover
we can also refer the reader for the study inverse problem with impedance boundary
conditions to [25, 50, 26, 21, 22|.

4.1 Results of Part 1

Let us recall the geometry of our problem. The obstacle O is a bounded domain of R?
such that R?\ O is connected with boundary T with mr + 1 regularity. The “thin coating
of width 4” is the following subset C° of O:

C? = {z € O, dist(x,T') < 6},
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Figure 4.1: Illustration of the geometry

[\]
v

Figure 4.2: Mlustration the of infinite strip

where § > 0 is a small parameter. Here the quantity dist(x, ") is the distance of = from
the surface I' defined by
dist(z,I") := inf |z — xp|,
xrel’

and |.| is the classical euclidean norm of R3. We need to introduce the complementary of

O inR? Q := R3\ O and ° := QUC?. We refer the reader to Figure 4.1 for an illustration
in 2D. The function u is defined as the unique solution of: Find u® € H} () such that:

loc

{dww V) + R = f, i@ (4.1

dsus =0 on 997,

and wu; satisfies the Sommerfeld radiation condition:

lim 10,u° — iku’|* = 0.

Here n and n are respectively the unit outward normal to 9§2° and €2, k € R is the
wave-number and f denotes a given source term. Moreover p°, ;° denote the acoustical
characteristics of the medium supposed to be equal to 1 in 2 and d— periodic in the thin
coating C°. We do not need for this part to recall the definition of the 1p —5—periodicity.

In chapter 3, we succeed to construct an approximation of our exact solution through
function @ : (zr;2,7) € I’ X Yoo + G(xr; &, V) where we introduced the infinite strip (see
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Figure 4.2): A
Y, :=]0, 1[*x] — 1, oq].

Functions defined on I' x Yoo are seen as functions defined on I' that values are function
xr € I'— u(xr; ).

In what follow, we recall useful differential operators that apply of functions defined
on I' x }A/oo. R -

First we define the operators V and div that only concern the variables Z and ».
(That means that xp plays essentially the role of a parameter).

The operator V is defined for u : T' — H}_(Ys) by the function Vu : T' = L2 (V5.
defined as follow:

e For xpr € Ty and (2,7) € Yo.:

A~

Vu(zr; #,0) := Dor(er) Vau(er; &, ) + n(ar)pu(er; 2, ), (4.1.2)
GTTJ;F ET:;FJ-

where we recall that T, := n(xp)*, Dp(2r) : Tp T+ R? and DY p(zp) : R?
T,.T.
e For ar ¢ T\

A~

Vu(zr; z,v) := n(zr)Opu(zr; T, 0).

Then, we recall that the operator div is defined for u : T~ L2 and xr € I' by the

loc

~

element of D (YOO>T defined for ¢ € D <YOO> by:

—

(div u(xr; '>7“>D(g)lp(g> = — /Y/u(xp; ) -V vdidp. (4.1.3)

We define a family of differential operators with respect to all variable (xr, &, ) (Com-

bination of 3D differential operators in (&,2) : V and div that are referred with a hat
with tangential differential operators in the variable zr : divp and Vi that are referred
with a subscript I'). We recall that the sequence of operator (7 )ien is defined for k € N
by:

2
Te =Y Thys (4.1.4)
7=0

where (Tr;)o<j<o are defined for @ : (zp;2,0) € T X Yoo > @(xp;2,0) and (xp;4,0) €
I' x Y, by:

Trat(zr; &, ) ==divy (pkflp(xp; &, 9)CH D (20) ¥ a(ar; 4, ﬁ)) ,
+div (04 plar; &, 0)C* D (ap) Vi d(ar; 2, 0))
Trati(zr; &, ) == div (ﬁkﬁ(xp; 2, 9)C® (2p) V a(ar; 4, 19)) .

\
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Here, for all k € Z, (C®, ™) are elements of C™™1=*(T; L(R?)) x C™r*17#(T") defined
for zpr € I" by:

C® (zp) := Eaﬁc(xp, 0) if >0 else C®(zp):=0,

and ¢®(zr) := (C®(zr,0) - n(zr)) - n(zr). The linear operator C : I' x R +— L(R?) is
defined for (zp,v) € I' x R by the only linear operator such that for all vp € T,..I'

C(zr,v) - vp := Clar,v) - (I+ yR(xp))_2 -op and  C(zr,v) - n(zr) ;= C(zr) - n(zr),

and R(zr) is the tensor curvature defined as follow: We extend the unit outward normal
application n : I' — R3 for z near from the boundary I" which takes the form z =
xr + vn(zr) by n(z) := n(zr). Then the tensor curvature R is defined for zr by:

R(zr) :== Dn(zr),

where D is the classical differential 3 x 3 matrix. We recall that for all xr € I' we have
Im (R(zr)) C T,.I" and R(zr) : T,.I' — T,.I" is a symmetric tensor. In particular we
recall that for all zp € I':

where H(xr) = w

We recall the following definition:

2

H (VL) ::{ LT, Il = [ 19wt +

/ udZ
by

where ¥ :=]0, 1[?x{0}. We recall that 1 € ]HI(f/oo) and then p is defined for ¢ € H(YM)T@
C[v] by:

< oo and u is one periodic in & } ,

u(q) = (q1, 1)y + /_O gdD, (4.1.6)

with ¢ = ¢ + g2 for some (q1,q2) € ]HI( ) x C[p] (We recall that Proposition 2.5.9
(cf Chapter 2) states that this decomposition is unique). In (4.1.6) and hereafter (-, )y

is the dual bracket between H(Y )T and H( % ) We recall that we constructed an

operator 7, ! defined for map f : I' — ]HI( ) ® Clp ] H( oo) x C[7] such that for
all f: Fl—)]HI( )XC[]Wehave%f F»—>H( ) ® C[D] — (OO)X(C[Q]and
ToTo 'f = [

Finally, thanks these last reminders, we can recall that the sequences (u,)nen and
(Gin)nen are defined by induction. Now we present the process of construction of u,, and
Uy, from the knowledge of (ug,ux) for k=0,1,...,n— 1.
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4.1.1 Construction of the far field u,,

The far fields u, : Qy — C is defined as the unique solution of: Find u, € H* (QO) such
that for all v € T x H'(Q) we have:

U ifn=0,
ao(tn,v) = g V)t _ (4.1.7)
—(ln, V)rxqoy if 0 # 0,
where we recall that:
o O :=TIx]0,n[, ' x{0}:=T x {0}, T' x {mo} :=T x {nm}. (see Figure 4.3)

e For all 0 <n < mr:
u, € H™"TH(Qy). (4.1.8)

o (rxqoy = ¢ '>H—%(rx{o})_H%(rx{o}) and (-, Jrxm) = (- '>H—%(rx{o})—H%(rx{nO})'

e The function [,, : I' — C is defined for 2r € I" by:

ln(2r) = iﬂni_iu((ﬁﬁ_lﬁ@nﬂ—i—j)(fr; ')) - §M<(ﬁ“n+1—j)(xr; '))-

(4.1.9)
To give a sense of this last definition, we emphasize that forallzp € I, 1 < i < n+1
and 1 < j < n+1—ithat (7}76’17}12%1_1-_3-) (xr;-) and (ﬁunﬂ_j) (xr;-) are element
of H(Va)' @ C[2).

e The sesquilinear form ag : H* (90)2 > C is defined for (u,v) € H! (Q0)2 by:
ag(u,v) := / (V[;u -V,ev— kQuE) dl'dv + (DtNz w, v)rx o1
Qo

where:
— For allu € H'(Q), Vo u = Vru+ ndyu
— The inverse of the map £ is defined by £71 : Qs — CX, is given for (zr,?) by
L (zp,v) == xr + n(ar)y,

where C%, = {z € Q,dist(z,T") < no} and this last application is a C™r dif-

feomorphism. (see Figure 4.3)

— DtNg: H2 (T x {no}) — H~2 (' x {no}) is defined for (u,v) € Hz (I’ x {ny})*
by:
<DtN Ug O /:, Ug 0 £>Eno ;
where the Dirichlet to Neumann map on %, := {x € Q° dist(x,T) = 7]0}3
DIN: H2 (S,,) — H 7 (3,,)

121



Figure 4.3: The map £

is defined for g € H 2 (X,,) by DtN g := 0,u, and u, is the unique solution of:
Find u, € H (2 \ Cs,,) such that :

ext)

{A%+k%fza in Q\ C™

Ug =g on X,
and u, satisfies the Sommerfeld radiation condition.
o fx,, € H % (I x {n}) is defined for u € Hz (T x {no}) by:
U5 = (Opuy — DtNuy, 05 0 L)y (no}

where us : Q\ CX

0.+ C defined by the unique solution of: Find uy € HL_(Q\ CX,)
such that :

up =0, on X,

{AW+WW:ﬁiMNQ%
and uy satisfies the Sommerfeld radiation.

4.1.2 Construction of the near field u,

The near field is defined for (zr, &,7) € T X Ya:

i (1 2, 0) o= wp (2, 0) = Y (Tg Titin—s) (2 &, D). (4.1.10)

i=1

4.1.3 Construction of an approximation of u°

We construct an approximation of the function u; := u’ o £ defined by:

n
k
Up,s = E 0" uy,
s
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We assume that mr > 8 and:
N2
(p, j1) € C™r (r; LOO(YOO)) . (4.1.11)
To assure that the exact problem is well posed we assume that:

inf plar;z,v) > 0. (4.1.12)

(wp,2,0)€TX Voo

Finally, we recall that in Chapter 3, we succeed to prove the following fundamental result:
Theorem 4.1.1. If and supp(f) C Q then for all ¢ > 0 there exists C > 0
such that the following estimate holds:

s — tns || 11 (e < C™H

4.2 Effective boundary conditions

The objective of this work is to find an operator Z which is defined on some space of
function defined on I' and takes values in some space of function defined I' such that if we
delete from our geometry the thin coat Cs and we replace by what we call the impedance
boundary condition:

aul + Z’you‘s =0,

where 7 is the classical trace operator on I' then the new scattered field are good ap-
proximation of the exact field. The case of uniform coefficient in the thin coat has been
already studied in [14].

4.3 Explicit construction of the terms (ﬂo(xp; T,0), ug(xr, V))
and (ﬁl(:cp;i,ﬁ),ul(xp,y)).

4.3.1 The terms (ao(xp;:%,ﬁ),uo(xp,l/))

Taking n =0 in (4.1.7) and (4.1.10) directly yields the following result:
Lemma 4.3.1. The term ug is the unique solution of: Find ug € H* (Qo) such that for
allv € Hl(QO):

ao(u(), U) = <fz:n0 ) U>F><{770}7

and the term g is given for (zp,2,0) € T X Yoo by tg(xp, &, ) = ug(zr, 0).

4.3.2 The terms (4 (zr;2,0), ui(2r,v))

Thanks to (4.1.7) the only quantity required to compute u; is [;. However, We compute
here the quantity u; because this last one is required to compute the quantity us. Taking
n=11n (4.1.9) yields for all zp € I" :

L(zr) = u((ﬂnflﬂao)(;@; .)) _ u(ﬁao(xp; .)), (4.3.13)
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and taking n = 1 in (4.1.10) yields for all (zp,&,0) € T X Vi
@ (zr, ,0) = ui(zr,0) — (Ty " Tido) (zr, 2, D). (4.3.14)

The goal of this part is to find an explicit expression of these last terms. We emphasize
that we identify for all s € R the space H*(I') with the space of function in H*(I'; Yy.)
independent of the variables  and 7 with the following injection:

(u car €l u(xp)) > (u (op; 2, 0) U(l‘r))

We see that Ty *Tiug(-,0) appears in (4.3.13) and (4.3.14). Let us detail the expression of
the restriction on H'(I") of the operator 7, 7}, more precisely of Ty ' Tiu for u € H*(T)
that only depend of zr. That will be the object of Proposition 4.3.2.

We introduce for convenience the vector fields (e, es) on I'y defined for zr € T and
1=1,2 by:

ei(zxr) == (D ¢p(xp))_1 ¢ if xp €'y and  e;(zr) = 0 else, (4.3.15)

where (éi)izl , 18 the canonical basis of R?. For all xr in Ty, (€;)i=12 is a basis of the
tangent space T,,.I'.  Moreover we can introduce for zr € T'y the dual basis (€'(xr))i=1 2

of (e;(zr))i=1.2 defined as the unique element of (7,.T")? such that for all (i, 7) € {1,2}*:
(¢'(zr), ej(zr)) = b, (4.3.16)

where §;; is the Kronecker symbol. For zr ¢ I'\y; we define these last vectors by zero. For
all that follow in this work we use in this work Einstein notation. According
to this convention, when an index variable appears twice in a single term it implies
summation of that term over all the values of the index. For an example the following

expression:
3

y= Z Cili,

i=1
is reduced by this convention to y = ¢;x;.
We introduce for i € {1,2} and zr € 'y the function w;(zr;-) € ]HI(YOO) as the

unique solution of that we call the "cell problem": Find w;(zr;-) € H(YOO) such that for
all v € H(YOO) we have:

/ (/3(6 wi,%)> (wr; &, 0)didi = / Pl &, )05, vdad, (4.3.17)
Voo v
with:
/ w;(xr; T, v)dz = 0.
s

Thanks to (4.1.12) this last quantity is well defined. Thanks to (4.1.11) w; belongs
to the space C™r (I‘; H(}A/oo)> because is trivial from (4.1.11) that the field of anti-linear
form 0;,p defined for zr and v € ]HI(YOO) by:

oo

(0, p(xr; ), v)y- ::—/ plar; T, 0)0z,0(2, 0)dzdy
v
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belongs to the space C"™r (F; H(YOO)T> and (4.3.17) can be rewritten as follow:

w; = (=85 @ s+ To) " Oap (4.3.18)

where g ® Jy, : ( ) ]I-]I(}A/OO)T is defined for (u,v) € H(YOO) by:

0y, ® b u, v)y /udx/ vdz.

Thanks to these last definitions we can state the following result: R
Proposition 4.3.2. For u in H(T'), we have for all (zr,2,0) € T X Y:

To (Tiw)(r; &, 0) = wi(wr; &, 0) (¢ (zr), Vi ular)).

Proof. Since u does not depend of & and 7, we have from the definition of the operator
71 given in (4.1.4):

’Hu:({i:f(ﬁvpu) on Ty xY, and Tiwu=0onT\Ty XYoo (4.3.19)

From (4.3.16) we have Vru = ¢;(e’, Vi u). Combining this last equality with (4.3.19) and
using that (e, Vr U) only depend on the variable zp yields:

To " Tiu=Tg ! (div(pes) (¢!, Vi w)) = (¢!, Ve u) 5 (div(per)). (4:3.20)

Moreover, recalling the definitions of the operator div and the vector e; given by (4.1.3)
and (4.3.15) , yields for all 7 € {1, 2}:

div(pe;) = diva (pD vr ;) = divs (PDUpBoF)e;) = 0., (4.3.21)

Combining this last equality with (4.3.20) yields Ty ' Tiu = (¢!, Vo u)Ty '0z,p = (¢!, Vr u)w;
by (4.3.18), which ends the proof. O

To simplify 4.3.13, we now seek, for u in H'(T") an explicit expression for xp € T of the
quantity:

u((’ﬂ%’lﬂu) (zr; -));
through the function zr € T' — M{(xr) € L(T,.I") defined as follows:
e For zr € 'y, M§(xr) is the unique element of £(7,.T") such that for all (i,j) €
{1,2}* we have:

(M{(zr) e;(zr), ej(zr)) ::/ <p@wi,@wj> (xr; &, 0)dzdp. (4.3.22)

oo

e For zr € T'\ 'y, M{(ar) := 0.

The reason for the introduction of this tensor lies in the following form:
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Proposition 4.3.3. Let u in H'(T), one has:
Var €T, u((ﬂ’]{fl’ﬁu)(aﬁp; )) = divp (Mg Vr u)(:cp)

Before proving this last result, we need to prove the following intermediate identity:
Proposition 4.3.4. For alli = 1,2 and xr € Ty, M§(xr) is the only element of T,,.T
such that:

Vi € {1,2}, M§(zr) - e;(zr) = €j($r)/

Y_

(ej WAV wz-) (zr; &, 0)didD.

Proof. Let xp € T'y. First, we prove that, for all (i,5) € {1,2}?, the following identity
holds:

/ (ﬁﬁwiﬁwj> (wr; &, 9)didi _/ (90, w;) (xp; &, ) didp. (4.3.23)
Voo v
Indeed, we have from the definition of the operator div given by (4.1.3):

/ (ﬁ@wi, @u@) (xr; 2, 0)dzdy = — <((TR/'(,5§U]Z))(ZL'[‘, ), w;(zr; )> o
Yoo Y-

(oo}

and thanks to the definition of the operator 7Tq given by (4.1.4) this last equality becomes:

/}}OO(,ﬁ%wi,%wj) (xr; &, 0)dzdy = —<(76w,~)(xp; -), wj(xr; )> o

oo

Combining this last equality with (4.3.18) yields:
[ (5909 w) (ars, )iy = — (T T @0m ol e )y
Yoo

= /ﬁ(xp;i, )0z, w;i(xr; &, 0)dzdp.

oo

Moreover, thanks to the periodicity on & of the function w;(xr;-), we have:
Oz, wi(xr; &, 0)dzdy = 0,
Vi
and using that p(zr;-) =1 on Y, yields (4.3.23).
Next, for all j € {1,2}, using the definition of the operator V given by (4.1.2) and
(ej(zr),n(zr)) = 0 yields:

/ ((ﬁﬁwi)(xr;f,ﬁ)aej(xr)>dfdﬁ :/ p(xr; &, 0) (Dor(or) ' Vawi(ar; &, D), e(ar)) dido.
v

Using the definition of the vector e;j(xr) given by (4.3.15) yields that this last equality
becomes:

/ ((ﬁ@wi)(xp;i,y) e;( xp dxdy —/ &, 0) pr (xr)Viw;(ar; 2, 0), prfl(xp)éj(a:p)) dzdp,
v

Y_

/ plar; &, 0) iji(xp;i,ﬁ),D T (xp)éj(xp)>d§:dﬁ,
v

p@ wl (xr; &, 0)dzdp.

~<\
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Combining this with (4.3.23) yields for all j € {1,2}:

which ends the proof. O

Before we need to recall a notion that we define in Chapter 2, :

Definition 4.3.5. Letm < mpr andu : I' — H(f/oo) oru:l'— H(YOO)T . We say that u
satisfies the Py property if there evists d € N, a sequence (u;)iez2\(oy € Hy'r,, (I'; Ca[D])
such that:

V(er;d,0) € T x Yy, ulers&,0) = > wlar; 0)gu(ers &, 0), (4.3.24)
1€72\{0}

where we defined the sequence of functions (¢;)icz2\joy for (wr,@,0) € T' x Y. by:
bi(xp, &, 0) = P72 NEDTih N (zp) == | D (zr)l|.

Moreover, the sequence of polynomial are required to satisfies:

>l < o
lez2\{0}

In this last definition if u is not a function then (4.3.24) mean: For all b € D([0, 1]*>%]0, oo[)N

A

Hcomp (Yoo) :

<u($r;')’chomp(?oo)T—Hcomp(?w) = Z /uz(:l?r;ﬁ)ﬁbl(xr;ﬂ%,ﬁ)?ﬂ(f,ﬁ)didﬁ.

lez?\{0}

From Proposition 2.5.15 and Proposition 2.5.16 (See Chapter 2), we recall the following
result:
Proposition 4.3.6. For all2 <n < mp:

o forallveC™ (F; H(YOO)) satisfying the PpY property we have:
vi>1, Twe ™ (NH(Yx)'),
and T;v satisfy the P>, property.
o Forall f eC™ (r;H(YOO)*) if for all zr, (f(xr,-), 1)y =0 then
Vi>1, TLf e Cm (P;H(Ym)) ,
and Ty v satisfy the P property.
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Proof of Proposition 4.3.3. Thanks to Proposition 4.3.2 we have:
Ty ' Tiu = wi(e’, Vi u).

By using (4.1.11), we can prove that for all i € {1,2} w; € C™r (F;H(Ym)) Moreover

since 9z, p = 0 on I'x]0, 1*xR% and (9;,p, 1)y then thanks to Proposition 4.3.6, we have
that w; satisfies Py, property. Thus thanks to Proposition 4.3.6 we deduce that: for all

zr € T the quantity (7;(w;(e’, Vru)))(zr;-) belong to the space H(YOO)T. Therefore
thank to (4.1.6) we have:

p((Ti(wi(e', Vew) (i o)) = ((Tiwile’, Veu) (wrs ), 1)y,

Moreover using the definition of 7; given by (4.1.4) and the definition of the operator div
given by (4.1.3) yields:

u((ﬂ(wi(ei,vp u)))(mp;-)> — divp ((ei(xp),vpu(xr)) / (ﬁwl) (xp;-)dfvdﬁ) ,
Yo
and using Proposition 4.3.4 and (4.3.16) this becomes:

,u(('Tl(wi(ei, Vr u)))(xp, )) = divp ((Mg-ei(ei, Vr u))(xﬂ) = divp (M§(zr) - Vru(zr)) .

This conclude the proof. n

Let us introduce the averages py, fi, : I' — R on cells of quantities p and /i defined for xp
by:

Po(zr) ::/ plxr; &, 0)dzdy  and  Tiy(zr) ::/ f(xr; &, 0)dzdp. (4.3.25)
v

Y_

Then, we have the following result:
Proposition 4.3.7. For all u € HY(T') independent of (Z,7) we have for all xr:

,u((ﬁu) (wr; )) = divr (p(zr) Ve u(zr)) + K myu(ar). (4.3.26)
Proof. Since u does not depend on the variable (z, 7) we have:
Trouw = divp (p Vr u) + k2, Trau = div (ﬁpC(l) Vr u) and Trou =0,
which leads combined with (4.1.4) to the following decomposition:
Tou= A+ B, (4.3.27)
where A, B are given by:

A = Aru + K,
B := divp ((ﬁ —1)Vr u) + k(o — Du+ div <ﬁpC(1) Vr u),
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and (A(zr), B(ar;-)) € C[7] x ]I-]I(YOO)T for all zp. On the on hand we have:

/0 A(zr)dd = Apu(zr) + ku(ar). (4.3.28)

1

On the other hand we have:

(B(xr;-), )y, =

(oo}

—l—(&i;ﬁp T ru(er), 1)y,

— divp (( /?(ﬁ(xp; i, 0) — 1)didp) vpu(a;p))
+k? (/?(p(xp; &) — 1)d@dﬁ) u(zr),
which leads combined with the definition of p, and 7z, given by (4.3.25) to
(Bler: ), 1y, = dive ((Boler) = 1) Veu(er) ) + ¥ (y(ar) = Du(ar).

Thanks to this last equality, (4.3.28) and the decomposition (4.3.27), we can apply the
definition of u given by (4.1.6) which yields (4.3.26) and so ends the proof. O

Finally, we introduce the tensor field:
pers = Pol — MY, (4.3.29)
the operator 2, : HY(I') — H~Y(T") defined for v € H*(T):
Ziu = divp (pgff Vr u) + k2 figu,

and the trace operator v : H* (QO) — H3 (F) in order to state the following result:
Lemma 4.3.8. The term u, is the unique solution of the problem: Find u; € H* (QO)
such that for all v € H! (QO) :

ao(u1,v) = <ZWFU0,U>Fx{o},
and the term u, is given for (xp,z,0) € I' X Yoo by:

Uy (zr; 2, 0) = uy(ar,0) — w;(2r; T, f/)(ei(a:p), Vruo(zr,0)).

4.4 Explicit construction of the term uy(xr, v).
Thanks to (4.1.7), the only quantity we need to compute the term wuy is 5.
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4.4.1 Decomposition of the term [,

Dues to the complexity of the quantity /s, one need to introduce for convenience the
following quantity defined for xr € I' by

(

15 (er) = = (TT5 TiTy Tiews) (v ))
15 (wr) = M( (i Ty ' Taruo) (ar; )) + M( (275 ' Tivruo) (2 ))a e
13(zr) = —N<(75’Yruo)(13r; )>7 s
| Ben) = p( (BT Tovew) (ors)) = (T (s ).
Indeed, we have the following result:
Proposition 4.4.1. The quantity Iy can be rewritten as follow:
ly =15+ 15 +13 +13, (4.4.31)

Proof. Taking n =2 in (4.1.9) yields that the term [ is given for zr € T by

bar) = > n((FT Tisn-ig) (or5) = n( (Toww) (ari)) + B o).
(i.7)€{1,2}?
The sum appearing in this last equality can be rewritten as follow:
> w5 Tiosiy) (e ) = n( (BT i) (ars)) + Blar)  (4.4.32)
(i.9)€{1,2}?

Moreover from (4.3.13) we have 4, = yru; — Ty Tiyrue which yields:
u( (W75 Toi) (i) = (T T3 (e = T3 T (s -)).
=I5 (2r) + M( (TiT5 ' Tivrun) (wr; ))

Finally combining this last equality with (4.4.32) ends the proof of our result. ]

Dues to the complexity of this last expressions we have chosen to explain the computation
of terms l,, (3,1, and [s into several parts.

4.4.2 The term I5(zr)

Since u; only depend of the variable xp, we can apply Proposition 4.3.3 and Proposi-
tion 4.3.7 which leads to:
lg = —Zl’}/l"ul.

4.4.3 The term [y (zr)

Let us define the 1-average on cells of quantities p and i for xp € I' by:

Py (xr) ::/ 2vp(xr; T, v)dedv  and [ (ar) ::[ 2vf(xr; T, v)dzdr,
v v

in order to state the following result:

130



Proposition 4.4.2. The term I3 can be rewritten as follow:
[ = divr <p1(H —R)Vp fypuo) + k2T, Hoyro.
Proof. Since 1, only depend of zr we have from (4.1.4):

75’&0 = CTI:/' (192,66(2) VF ’}/FUO> + diVF (ﬁﬁC(l) VF '7Fu0) + ]CQI)/EC(I)’}/FUQ . (4433)

Q1 érz

Qu = div (#(p — 1)C? Vryru) + div (22621700, (4.4.3)

Therefore for all zr € we have Q1 (zr;-) € ]HI(YOO)T and then according to (4.1.6) we have
forall zr € I

We have:

M(Ql(l’r; )) = <<(T1:’ (172(,5 - 1)6(2) Vr ’Yruo)>($r; s 1>y )

oo

= —/ (2(p — 1)C? Vi yrug) (xr; -) - ¥ 1didir = 0.
Y.

We proceed as the same way as the end of proof of Proposition 4.3.7 to show that:

divy (7,CY Vi ug(zr, 0)) + k25, D (20 )uo (o, 0
N<Q2($r§')> = - r(/)1 r to(r 2 et (r)uo(zr )

Combining this last equation with Proposition 2.5.1, (4.4.34) and (4.4.33) yields the
desired result: O

4.4.4 The others terms 1 (xr), 1) (xr)

One of the biggest difficulty we encountered for the computation of the term [y is the
apparition of 1 and 3 order tangential differential operators in the expression of the terms
[§ and 55 when we compute them with straightforward development. However, we remark
that for all smooth function a : R + R the operator T,, : H'(R) C L*(R) — L*(R) defined
for u € H'(R) by T,u := [ - O,u satisfies the following identity:

0,a
2

VYu € H'(R), ReTu= ——u,

where we defined for any linear operator A the operator:

T
ReA := A;A . (4.4.35)

4.4.4.1 The real part of a an odd differential operator and the x operator

The following result is a first extension of (4.4.35) for vector field a : T’ — R3:
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Proposition 4.4.3. Let a € C™ (I;R3?) be a vector field and define T, : HY(T') =
D(T,) c L*(T) — L*(T) for u € HY(T) by:

Tou := (a,Vru),

then for all u € L*(T") we have:

Proof. Thanks to Leibniz formula we have:

Tiu = — divry (au) = —(Vpu,a) — divp(a)u = —T,u — divp(a)u,

a

which directly yields our stated result. O

We want a similar result for 3 order differential tangential operators that take the forms:
Taﬁgu = diVF (5 diVF<Oé VF U)),

where o and 3 are respectively a tensor field and vector field with at least C! regularities
such that these quantities vanish on ' \ I'y;. From these last quantities we define a new
tensor field named « * 5. First this quantity is defined by 0 on I' \ I'y;. Now let us
explain the way we defined this quantity on I'y;. Moreover we define for smooth quantity
u defined on T" the following notation:

Var € Tw, Opou(ar) = 0y (wotvr ) (¢r(zr)) and Vap € T\ Iy Oyu(zr) := 0.
(4.4.36)
We define for (i,7) € {1,2}* the quantities:
= (B,e") and a" := (ae’,€").

Thus the tensor field a % § is defined on I'y; by the unique tensor field such that for all
(i,7) € {1,2}*

(a* B e") = % (0., (Va(o* 8" — BFa?) + /9o, 87 — B0y, (/90™)],  (4.4.37)

and this last tensor is defined by zero on I'\ I'y;. The reason that we introduced « lies in
the following forms:
Proposition 4.4.4. The real part of T, 5 operator is given for u € H3(T') by:

1
Re(Ty p)u = 5 divp (a * BV u)

Proof. The Einstein summation convention is taken for whole this proof. We recall that
the followings expression of V and divr holds on I' \ T'yp:

Vu, Vru =¢€'0,,u and Vudivp(u'e;) = ﬁaxi (Vou') (4.4.38)
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where u is a regular tangential field and (u;)1<i<2 is the unique scalar field such that
u = u'e;. Let u € H3(T'). Thanks to (4.4.38) we have:

) 1
T, pu = ﬁ’“a%. (\/ﬁoﬂzﬁxiu» and T(Iﬂu = ——

7 (02 v/507 (0,801, ) ).

1
5, (
VI
Leibniz formula yields that for all u:

{ VAT = /G5 070, (8, (0010)) + Or, (V3B 7)., (Du10) + By, (501, (v/G07)D,0)
—VIT! gu = \/g07 850, (0., (D)) + Dr, (/G0 B5)0,, (D) + Br, (/507D B (D))

Doing the difference between these last equalities yields:

(VOTop + VI, 5)u = s, (Vg0 B*) 0z, (D, 1) — D, (/G5 ') O, (D)
+ Or, (02, (Vg0 )0 t) — i, (800, (v/907) O, 0)

(
= Os, (0, (Vg0 B%) s 1) — 00, (0, (v/g8" )
+ 0, (02, (/GO B¥) Dy tt) — Dy (8501, (v/G0) 1),

and an index permutation yields:

1
V9
Thanks to the definition of x given in (4.4.37) and the ones of the operator divr and Vr
given in (4.4.38), this becomes:

(Top+T! )= axl( [0, (V307" 87 — B507)) + \/Gak 0, 37 — B0, (/G )] axju).

1 . ,
(Ta75+Totﬁ)u = ﬁﬁmi (ﬁ(a*ﬂ)”@ju> = divp (ax Be'(ej, Vru)) = divy (o x 8 Vru),
which ends the proof. O

4.4.4.2 The term [$(ar)

Let us prove the following intermediate result:
Proposition 4.4.5. Let L € Hl(F;H(YOO)T) satisfying the P° property. For all xp € T
we have:

(75718 (o)) = =dive (o) (Elars ) wars )y, _)

and for all P € HY(T; C[p]):
u( (751 P) (ar; )) = —divp (ei(xp)/ w;(xp; T, ) P(xr; ﬁ)di‘dﬁ) :
Vo
Proof. First prove the result for L. We assume first that for all xp € " we have

(L(zr;-), 1)y =0 (4.4.39)
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Thus using Proposition 4.3.6 yields that for all zr ((7:7, ')L)(zr;-) € IHI(YOO)Jf satisfies
Fg© property which leads to

M( (Ti757'L) (ar; )> = < (75 'L) (zr; ), 1> .

Yoo

Thanks to the definition of the operator 77 given in (4.1.4) and the one of the operator
div given in (4.1.3) yields:

p((TTL) (ers) = ((TT'L) (s ), 1)

Yoo

_ dive (eim) [ (697 1) e a>,ei<xr>)dmﬁ>,
= —divp ( "z )<d1v( (zr;-)ei(zr)), Ty " Lzr; ')>?Oo) :

Therefore using d/l;/([’)el) = 0;,p(see the proof of Proposition 4.3.2) yields that for all
or € I'u:

p( (T3 L) (ers2)) = = dive (€ (or) (D, p(ars ), T (o) Elars )y, ) - (4.4.40)

Since the quantity L(zr;-) are assumed to belongs to ]I-]I(}A/oo) , the quantity 7, ' (2r)L(xr; -)
is given by (— Iy ® Oy, +76(xp))_1L(xp; -) where (—(52 ® s, +76(:L‘p)) ! is seen as a contin-

uous linear operator from H(YOO)T into ]HI(YOO) Moreover this last operator is self-adjoint
because p takes values in R and hence (4.4.40) becomes:

M( (Ti75 L) (ar; .>) — —divp (ei(xp)@(xp; 3, (= 0s ® 65 + Tolwr)) s, p(ar; .)>Y ) .
Thus using the definition of the function w;(zr;-) given in (4.3.18) yields:

u( (75 ' Lwrs ) (s ~)> = —divr (ei(&?r)@(aﬁr; ), wiar; ~)>mo)-

Therefore we success to prove the following implication: If for all zr € I we have (4.4.39)
then :

u((ﬂﬁ;lL)(l«F; ->) — —divy (ei(xp)u;(xp; ), wi(zp; -)m). (4.4.41)

Now, we assume that:
e H(T)sq L=1-6s, (4.4.42)

where Oy, € H(YOO)T is defined for u € ]HI(}A/OO) by:

(s, u)y. ::/udj:.
5

Thanks to Proposition 2.5.5(See Chapter 2) we have 7, 'L = #, - [. Thus on the one
hand we have:

(divFﬁﬁerTvﬁvp).m-z:div =om) + div (4 p Vi) = 0y (0, T 1)) = 0.
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On the other hand we have the following decomposition:
div (,aacm v m) — div (ﬁC(l) v m) = 0y (0 H) =1, () - H=1—1x_(9) - H,

which leads to for all xr € I':
e N 0
p( (v (o Vi) ) (ar; ) ) = / i — (1p_(0) - Bar) T)y. = 0.

Therefore we get ,u( (75 'L) (wr; )) = 0. Moreover, we recall that (4.3.17) states that
for all 7 € {1,2} we have (s, w;(wr; "))y, = 0 which leads to:

u((&i\v (poC™ ¥ m) (zr; ->) — divr (ei(xpxwi(xp; ), Liar; -)>yw) ~0.

Therefore we success to prove the following implication: (4.4.42) = (4.4.41).

Now we can combine this last implication with the first implication we proved: (4.4.39)
= (4.4.41). Indeed, we have for all L € H*(I'; H(Yx)) the following decomposition holds
of L:

Var € T, L(zr) = (L(zr), 1)y - 0 + (L(zr) — (L(zr), 1)y, - 0s),

[\ J/

4y pe
where A; and A, respectively satisfy (4.4.39) and (4.4.42). Then these two last quantities
both satisfies (4.4.41) and we can conclude thanks to the the linearity of u() and so

ends the proof of the result for the quantity L.
Now let us investigate the case for the quantity P. Introduce the quantity:

Q:=P—"Ty -d;*P, (4.4.43)
where we recall that for all zp, d;*P(xr;-) is defined as the unique solution of:

d2

W(dEQP(xF;y)) =P,

d?P(xr;0) = 0,

d
E(dfp(xp; -1)) = 0.

Thanks to Corollary 2.5.7 (See Chapter 2) we have that Q belongs to H'(T’; H(YOO)T)
which leads from what we have shown for the case of L to:

H((757) ) - s (@ mtors) (40

Now let us prove that:

M( (T2d;*P) (ar; )) = divr <€i($r)/ P(xr; )w;(ar; &, ﬁ)dfdﬁ>

— divp (e"(:cp) (Q(ars & 9), wilars &, ). ) (4.4.45)
=0.
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To prove this last equality, we first prove the following equality:
/L(&Rf (ﬁﬁC(l) v d5*P) (xr; )) + u<(§1?/ (pVrd;?P)(zr; )) =0. (4.4.46)

Indeed we have div ((/3 —1)COV d;2P> (2p; ) +div ((p — 1) Vi d;2P) (ar; ) € H(Ya),
which leads combined with the definition of the operator div given by (4.1.3) to

u(&i\v ((p— 1)9CN ¥V d5? P) (wps ) + div ((p — 1) Vi d;2P) (ar; -)) —0  (4.4.47)

Moreover, on the one hand we have for all zr € T’ (Vp d; 2P) (xr) € T,.I" and using that
this last quantity only depend on 7 yields

div (pVr d;?P) = 0. (4.4.48)
On the other hand combining this last equality with the green formula and :

pCW0,d;* P(ar; )| =0, (4.4.49)

-1
vields div (0CW;d, 2 P) (wr;-) = 0y (V2H (z1)0pd, > P(zr; 0)) in C[D]. Therefore reusing
(4.4.49) leads to:

/\ 0
u(div (acﬂ)apdgzp)(xp;-)) — / 0y (1€, d; 2 P(ar; ) dir = [9C W0,

v=—1

Combining this with (4.4.48) and (4.4.47) conclude the proof of (4.4.46).
Now let us prove that for all 1 = 1, 2:

A(zr) == /Y P(xr; D)wi(zr; 2, 0)didb — (Q(wr;-), wi(zr;-))y_ = 0. (4.4.50)

Indeed, from (4.4.43), applying Corollary 2.5.7 (See Chapter 2) with ¢ = w;(xr;-) yields:

A(l‘p) = / ﬁ(l‘r; i, ﬁ)&;d;QP(a:p; ﬁ) . &;wi(xp; i’, lA/)di’dﬁ (4451)
Y.

Let x :] — 1, 00[ [0, 1] be a C* cut off function such that y =1 on [—1,0] and ¢ = 0 on
12, 00[. We recall that w; satisfy the P{° property. Thus w; satisfies (4.3.24), which leads
to:

Vi > 0, / w;(ar; &, 0)dd = 0. (4.4.52)
10

APx{D}
Moreover x - d;*P does not depend on . Combining this with (4.4.52) yields:
/Y 0 (X(2)d;2P(ar: &, ) - Dywy(ap; &, 0)ddi = 0.
Adding this with (4.4.51) yields:
Afzr) = / plar; &, )0, (x(0)d; 2 P(wr; ) - Opw;(ar; &, 0)didD,

= —((Towy) (wrs ), x - d5* Plars )y,
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Combining this with the definition of w; given in (4.3.18) yields:

A(ZEF) = <a§;“5($p, '), X - d;QP(iL‘F; ')>}”/oo = /ﬁ(l‘r;[i’, ﬁ)X(ﬁ)aﬂdTQ T, L, I?)di’dl} =0,

oo

which conclude the proof of (4.4.50). Since for all zr € the quantity d,?P(xr) only
depend on 2 then the vector pV d; 2 is co-linear to the normal n which leads to:

u(divr (ﬁ@d;%’) (xr; )> = 0.

Combining this last equation with (4.4.46) and (4.4.50) yields (4.4.45). Finally adding
(4.4.44) and (4.4.45) yields the stated results which ends the proof. ]
To state a new result of simplification of the quantity [$, one need to introduce some
quantities defined on the surface I'. First we introduce w : ' — (H (Yoo))3 defined by:

w = w;e'. (4.4.53)

Then we define the function Wr : I' — ]1-]1(3700)T by Wr = ﬂ(w-vp uo). Finally we
define Vr : T — R? as the unique tangential field such that for all i € {1,2} and zr € T
we have:

(Vo(ar), ei(ar)) = (Wr(zr; ), w'(@r; )y -

oo

Now we can state the following result:
Corollary 4.4.6. For all xr € I' we have:

p( (RT3 75 Tiruo) (s ) ) = = dive (Vo))

Proof. Thanks to Proposition 4.3.2 we have 75’17]%110 = wi(ei, Vr 9rug) and then acord-
ing to the definition of W this becomes (7]76’17'1)%% = Wr. Thus applying Proposi-
tion 4.4.5 directly yields our result. O]

We define for zp € I" the tensor MY ; if 2p € I'yt by the unique element of £(T,.I') such
that for all (z,7) € {1,2}*

(MT70<J]F)€Z'(ZEF),6]'(JIF)) ::/p(xp)ﬁ(c(l)@wi(xp;j, ﬁ),@wj(xp;i,ﬁ))djdﬁ, (4.4.54)

e}

else if zr ¢ 'y this last quantity is defined by 0. R
Finally, we introduce the "density of tensor field" V w defined for zr € I'y by:

A~

Vi € {1,2}, Vw(zr; )e(zr) =V w;(zr; ). (4.4.55)

and then we can state the followings result:
Proposition 4.4.7. We have for all xr € T':

I3(zr) = —divr <(M/1J,o($r) - /(ﬁ@w*w)(xp;f, ﬁ)dfdﬁ) Vr VFU0($F)> :

oo

137



Proof. Thanks to Corollary 4.4.6 we get:

13 (zr) = divr(Qo + Q1 + Q2)(zr), (4.4.56)

where Qq(zr), Q1(zr) and Qs(xr) are the unique element of 7,,.I' such that for all 7 in
{1,2}:

(

—

(Qo(xr)ﬂfi(xr)) = <diV (ﬁﬁc(l) ﬁ(Wa Vr 7FU0)> (zr; ), wi(zr; )> o
3 (Quar).exfar) = (dive (o V(w, Vrapw)) (i), wilars )

(Qa2(2r), ei(ar)) = <(TR’ (pVr(w, Vrru)) (wr; -), wi(zr; ')>A

Vo

\

First prove that:
Qo = —MY , Vr uy. (4.4.57)

Indeed, according to the definition (4.4.55), we obtain:

(Qo(xr)aez‘(xr)) = <&R’ (ﬁﬁc(l) §wi($r; )) s wi(r; )>Y (¢’ (zr), Ve yruo(ar)).

oo

According to the definition of the operator div given by (4.1.3), this becomes:
(QQ(ZL’F), 61‘(1,}‘)) = — (€j (ZL’F), VF ’}/FU()(J]F)) / (ﬁﬁ(c(l) % w;, 6 ’U)j>) (ZL’F, i‘, l))dfﬁdﬁ
Yoo

Thus thanks to (4.4.54), we obtain:

(Qo(ar); eslar)) = (M7 - ¢5,e:)(¢/, Vruo)) (ar) = = (M7, Ve puo)(ar), es(ar)),

which concludes the proof of (4.4.57).
Now, let us prove that for all zr € I' we have:

divp(Q1 + Q2)(zr) = divp ((/(ﬁ%w *w)(xr; T, ﬁ)d:%dl?) Vr 7pu0(xp)) . (4.4.58)

oo

For convenience we introduce the density of operator A : Yo, — (E (H 3(T); LQ(F))) given
for (z,7) by:

A(Z,7) == u > divp <W(.; t,v)divp (,(3 V(w(.;#, D), Vr u))) , (4.4.59)
in order to get the following rewriting:

Yoo

This last quantity is well defined because thanks to (4.1.8) we have yruy € H?(T'). Let
us prove the following identity:

divp(Q2) = | A'(&,D)d2dD - yruo, (4.4.61)
Yoo
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in the sense that for all v € H3(T") we have:

/I;diVF (QQ(ZL‘F))U(Z‘F)CZIF = /’}/FUO(J/’F) A ./4(?2’, ﬁ) : ’U(l’r)di'dﬁdl'r (4462)

r Yoo

Let v € H3(T"). Thanks to (4.1.3) and Fubini’s theorem, we have:

_:A(Qﬂxﬂ’VFU@TDdxF:u/

r

<dTV (pVr(w, Vr(yru))) (2r; -), wizr; -)> _ Gi(zr)dar,

Yoo

—/ ) (pAVF(W,V[‘(’}/[‘UO)%ﬁwi)(l'[‘;i?, V)G, (zr)dxrdidp.
r

XYoo

where we defined for zr € T' Gy(zr) := (Vrov(ar),e'(zr)). Thanks to (4.1.3) and the
surface Green formula for the YV operator, this becomes

—/F (Q2(ar), Vrv(ar))der = —/ (W, Vr(yrug)) (zr; &, 0)dive (p

I'x Yoo

(Gywy)) (wr; &, 0)dxrdzdp,

v
:/ ruo(zr)dive (Wdin V(G; wZ ) (zr; &, v)drrdidy.
FXYOO
Thanks to (4.4.59), this can rewritten as follow:

—/F(Qz(ifr),vrv(ifr))diUFZ/ ruo(rr)A(Z, )v(zr)drrdidp.

I'xYo

From this equality and the surface Green formula and the Fubini theorem we can easily
conclude the proof of (4.4.62).
Adding (4.4.60) and (4.4.61) yields:

divr(Qy + Qo) = / 2. Re(A(#, 0))didD - yrup.

According to Proposition 4.4.4, this last equality becomes (4.4.58). Combining (4.4.58)
with (4.4.56) and (4.4.57) yields the stated result. O

4.4.4.3 The term [ (zy)
We introduce for convenience the following tensor field defined for xr € I" as follow

o If xp € Ty, MY 5(2r) is the unique element of T,.T" such that for all i € {1,2}:

Vie {1,2}, MY 3(ar) - ei(ar) = [ﬁ(xp;:f:,ﬁ)ﬁ@wi(:ﬁp;i,ﬁ)dizdﬁ (4.4.63)

oo

o If Ir §é FM, M/1173<$F) =0.

Moreover, we introduce the scalar field M; defined for zr € ' by:
M1($F) = / diVF (/l(ZCF; .i', ﬁ)w(xp; :IAZ', ZA/))dilAZ'dﬁ, (4464)
v
in order to state the following result:
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Proposition 4.4.8. We have for all xr € T :

5 (zr) = divp (((C<I>M€,3+(cmMig)*)(er / ﬁ(:cr;raﬁ)ﬂ*w(xr;f,ﬁ)d:fsdﬁ) VFVFUO(%)),

+ ]{72./\/11 (LCF)’)/FUO(.TF).

Proof. We recall that for all i € {1,2}, w; satisfies the Py property. Therefore by
combining, (4.3.24) with the property of decreasing of the functions (¢;),cz2\j0}, We can
prove that for all xr € I':

—~ ~ . o~ . N 2
(div (5C 202V wi(e', Vrug)) (xr; ), div (500 Vi wi(el, Vi uo))(xp;-)) e (H(Ym)*> .

Thus, we have from the definition of the operator div and  respectively given by (4.1.3)
and (4.1.6) that:

p((dv (55 T wi(e!, Vo)) (ar:)) = (v (HC20° T wileh, Vr w)) (ars-). 1y, = 0.
M(JR’ (ﬁc(l)ﬁ Vr w;(e', Vr uo)) (xr; )) = <(§1:/ (ﬁC(l)ﬁ Vrw;(e', Vi ug)) (xr;-), 1>Yoo =0.

Thus we have from the definition of the operator 75 given in (4.1.4) and Proposition 4.3.2
that:

M( (7576_17—171““0) (zr; )) :,u( (75 (wi(ei, Vr ’YFUO))) (xr; ))

= pC(Q) ~2 ' ru()))(wr; .))

(d
—i—,u( ivp (pC" oV wi(e i,VFVFUO))(JUF%'))

div
+,u(d1vr pVrw;(e', Vr Wruo))(l'r;')>
+E%. u( (frw;(e’, Vi ug)) (ar; ~)),

Moreover, by using Proposition 2.5.15 and Proposition 2.5.16 (See Chapter 2), we can
prove that the following distributions

divy (ﬁC(l)ﬁ @wi(ei, Vr uo))(:cp; -, divp (/3 Vrw;(e', Vi uo)) (xr;-),

and (fiw;(e’, Vi ug)) (xr; -) belong to the space H(YOO)T. Therefore according to the defi-
nition of the operator div and u respectively given by (4.1.3) and (4.1.6), we have:

/L( (7}76_1717pu0) (zr; )) :[ divp (ﬁC(l)ﬁ§wi(ei, Vr vpu(]))(:vp; T, 0)dzdv

Yoo

+ / diVF (ﬁ VF wi(ei, VF ’}TU0> (QZ’F; i’, ﬁ)d.’fidﬁ

(oo}

+k* / (Aw;(e’, Vi yruo) ) (wr; 2, 0)didp.
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Thanks to the definition of the tensor field MY ; given in (4.4.63), this becomes:
M( (7576_1717FU0) (xr; )) = divp (C(DMﬁ),g Vr 'YFUO) (wr)

Y-

where we defined the density of operator B : Ya, — (L(H3(T); L*(T"))) given for (z,D)
by:

(4.4.65)

A~

B(z,v) = u > divp (ﬁ(.;i, V)V (V(w(.; t,v),Vr u))) + k- p(w(.;2,0), Vru).

We emphasize that B(#, 7) is well defined because 4.1.8 states that yrug € H?(T). Thanks
to Proposition 4.4.5 we have:

M( (TiT5 " Taryruo) (ar; -)> = —divr (ei(fr) <CTR, (P Ve Aruo) (ars ), wilars ')>Voo>

— din ( R W(ﬂ?r; .f?, 19) din (ﬁ(.ﬁlﬁp; .QA?, 19) VF ’}TUO(Z’F))dQATdI}> s

Yoo

— E*divyp ( w(zr; &, 0)j(ar; &, ﬁ)ypuod:%dﬁ) ,
Yoo

and thanks to the definition of B and 4.1.3 this becomes
M( (ﬂ%_1757FU0) (zr; )) = divp (ei(fF)/ (ﬁ(c(l)ﬁ Vr yru, 6w1)> (zr; 2, ﬁ)d:%dz?)
v,

+ (/ Bi(z, ﬁ)didﬁ%uo) (zr),
Y.
which leads combined with the definition of the tensor field MY ; given in (4.4.63) to:
M( (i Ty " Tayruo) (zr; ')) = divy ((C MY 5)" Vi yrug) (ar)
(4.4.66)
+ < B(&,0)- ’ypuod:f:dﬁ) (zr),

Yoo

On the other hand, thanks to Proposition 4.4.3 and Proposition 4.4.4 we have for all
(Z,7) € Yo

2ReB(z, U)yrup = divr ((,5]1* w)(.;&,0) Vr 'ypu()) — k> dive(a(.; (2, 0) w(.; (2, D)) yruo

(4.4.67)
Adding (4.4.65) and (4.4.66) yields that the function zp u( (7275 ' Tivruo) (zr; )) +

u( (TT5 Tarruo) (wrs-) ) s given by:
divp (2Re(c<1>M§’,3) Vr ypuo) + / 2Re(B'(2, 7)) yruodidp,
Yoo
and combining this with (4.4.67) yields the desired result. O
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4.4.5 Final boundary conditions of us and the operator 2,

To summarize Proposition 4.4.2, Proposition 4.4.7 and Proposition 4.4.8, we recall that
for all xr we have:

1§ (xr) = —divyp ((M’f’o(xp) - /Y(ﬁﬁw*w)(xp;f, ﬁ)d:i“dﬁ) Vr ’}/FU,O(ZEF)) :

5 (wr) = divp (((C(I)Mf,s +(CY MY )N (ar) + /Y plar; &, 0)x w(wr; 2, ﬁ)dfd79> Vr %m(%)) :
+ B2 M (zr)yrue(or),
[ = divr <ﬁ1(H ~R)Vp ypuo) + k2, Hyruo.
We introduce the tensor field :
Pes = M + N{+p,(H — R),
where we defined :
MY = —M{ +CO ML+ CVME )T and NY = / Pl 2, 0) (]IKOJH@ w)rw(-; 7, ﬁ))dﬁ:dﬁ,

oo

because we have the following rewriting:
5 + 15 + 1] =divp (piff Vr ’ypuo) + k¥ Hyrug + K> My (zr)yruo(or). (4.4.68)

We recall that the operators x, w and ¥V w are respectively defined in (4.4.37), (4.4.53)
and (4.4.55). We recall that MY , and MY ; are defined through to the solution (w;)1<i<2
of cell problems (4.3.17) as follow:

e For zr € I'y, these tensors are the unique elements of £(7,.I") such that for all
ie{1,2):
(M7 () ei(ar), e;(xr)) / po(C VwZ,VwJ)) (zp;-)didp,
(MT,3($F) ~ei(rr), e5( $r / VVwZ, ej (zr;-)dzdp,

e Forzp ¢ T', MY j(2r) := 0 and M7 5(zr) :=
Finally, we recall that we defined for xr € I":

By (zr) ;:/ 2 0p(ar; &, 0)dadp, i (xr) ;:/ 2 Dfi(xr; &, 0)didp,
Y- Y_

and
Ml(xf) = / divp (ﬂ(l‘r,jﬁ,ﬁ)’lﬂ(l’p,.’i’,ﬁ))di’dﬁ,
Y-

Thus we can introduce the operator Z, : H' — H~(T) defined for v in H*(T") by:
Zou = divp (plff Vr u) + k2. (Hpy — My) u.

Thanks to (4.4.68), we obtain the followings result:
Lemma 4.4.9. The term uy is the unique solution of: Find uy € H! (Qo) such that for
all v € Hl(QO):

ap(ug,v) = (ZWFU1,U>rx{o} + (Z27yruo, U)FX{O}-
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4.4.5.1 Case of symmetric cells
Definition 4.4.10. We says that the cells of the thin coat are symmetric if for all zr € T
and (z,0) € Yoo we have:

pA(IF;j;7V> /A)(xf‘v Aaﬁ> and /l(xfa-%aﬁ) :ﬂ<xl—‘)_§:7ﬁ)

Under this last condition the following property of functions (w;); holds:
Proposition 4.4.11. If the cells of the thin coat are symmetric then for all xr € I' and
(z,7) € Yo we have:

Vi e {1,2}, wi(zr; &, 0) = —w;(xr; =, D).

Proo[. For all function f defined on I' x Yoo we define the function S(f) for (zr;z,0) €
I'x Yoo
S(f)(xr;2,0) = f(or; =2, 7).

Thanks to this notation the symmetry property can be rewritten as:
5(p) = p.
Prove that for all ¢ € H(YOO) and xr € I' we have:
/ ( (V S(w;), V¢))(xp; T, 0)dzdy = / (ﬁa@i><$[‘; T, 0)pdid (4.4.69)
Yoo Yoo

Indeed from S(p) = p we have:
AV S(w:),V ) = S (ﬁ(ﬁwi, @qﬁ’)) with S(¢) := ¢ € H(Va),
which leads to:

[(ﬁ(%S(wi),ﬁgb))(xr;@,ﬁ)d@dﬁ:[ (ﬁ(@wi,§¢'))(1‘p;i,ﬁ)didﬁ

oo oo

Next, using Tow; = 0;,p yields that this last equality become:

[ (69 8.9 0)) (ars . 9)ddi =~ [ plari, )06 2. ) dids,
Yoo

Yoo

= [ S()eri,2)0.,5(6) 3, 7)dids.

e}

Thus reusing S(p) = p and S(¢') = ¢ yields that this last equality become (4.4.69).
Therefore we have ToS(w;) = —0,,p and we clearly have d5(S(w;)) = 0 which leads
to

S(w;)— = (=62 @ 6s + To) ' 0uip

Thanks to (4.3.18) this becomes S(w;) = —w; which conclude the proof. O
Thanks to this result we get the following one:
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Corollary 4.4.12. If the cells of the thin coat are symmetric then we have (See (4.4.63)
and (4.4.64) for definition of these quantities):

N?=0 and M;=0.
Proof. We only give the proof of:
/ (hV w *w)(; &, 0)did = 0,
because the arguments for the other quantities are the same. A sufficient condition is to
prove that for all (zp,z,0) € Ty XYo:
PV w*w(ar; &,0) = —pV w x w(zr; —, D). (4.4.70)

Indeed, both quantities appearing in this last equation vanishes if zr € I'\ I'y; and thanks
to (4.4.37) we have for all (i, ) € {1,2}? that:
1

(pVw*wel,e') = ﬁ (0., (v/g0* W' —\/gw* o) + \/ga* D, W —w' D, (\/gaM)]
(4.4.71)

where for all (i,5) € {1,2}2 o := (p V we’, ¢'). We recall that d,, is defined in (4.4.36).
From Proposition 4.4.11 we get that for all (7,5, k) € {1,2}® and (zp,#,7) € Ty XYoo

(a7 W) (zr; 2,0) = — (o W¥) (zp; —2, ).
Therefore we get for all [ € {1,2}:
O, (a7 W*) (2r;2,0) = =0y, (a7 W) (2r; -3, D).

Combining this last identity with (4.4.71) yields the sufficient condition (4.4.70) which
ends the proof. O

4.5 Construction of the effective boundary conditions
and convergence

4.5.1 Formal construction of the effective boundary conditions

Thanks to Lemma 4.3.1, Lemma 4.3.8 and Lemma 4.4.9 we have on I' x {0}:
8,,u7; + Z Zj’ypul-,j =0.
j=0
Therefore, we introduce the operator Zf := Z;:o 87 Z7 because we formally get from this

last equality that for all 7 € {0, 1,2} the quantity u;s := Y 6’u; formally satisfies on I':
=0

Oyiis + Ziruis = O (6") (4.5.72)
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Moreover, we recall that this last quantity is an approximation of order i of us o £}
which leads formally to for all i € {0, 1,2} the exact solution u° satisfies on I':

oul + ngpua =0 (5”1) )
Thus we define for i € {0, 1,2} the function u : Q + C as the unique solution of:

Aud + Kl = f and Oul + Ziyrul =0 on T, (4.5.73)
and u! satisfies the Sommerfeld radiation condition. We refer the reader to [25] to prove
that this last problem is well posed in H}}.(2). We now prove some estimate which take
the following form for all 7 € {0, 1, 2}:

u’ =ul +0 (6", (4.5.74)
and we proceed as follow:
1. We rewrite (4.5.73) as follow:
P (o) = f,.
where P2 - H' () — H* (Q)" and fginso e H' (Q)" is defined for v € H* (Q) by:

bis .__ [ fbis
< E"o’fU)Hl(Qo)Tle(QQ) = < 7,O’U>F><{770}‘

2. We prove existence of C' > 0 independent of § such that we have the following
estimate:

and this last property is called the "Consistence of the effective boundary condi-
tions"

1 bis i+1
pi ui,é - fzno < 05 )

Hl(Qo)f -

3. We prove existence of C' > 0 independent of § > 0 such that the following estimate
holds:
)|
c(m

and this last property is called the "Stability of the effective boundary conditions".

<
(Q0)",H ()

4. We deduce the following estimate:

|wis —ulo L™ = cott (4.5.75)

e

5. We deduce (4.5.74) by combining (4.5.75) and Theorem 4.1.1 with the Triangle
inequality.
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4.5.2 Consistences of the effective boundary conditions
We give in this part a rigorous sense of the estimate (4.5.72). Flrst we chose to define for

i =0, 1,2 the operator the operator as follow Z{ : H(T') — (F) Then, we introduce
the space:

Vz = {u c H'(Qy), yru € Hl(F)} ,
and we provide this last space with the following norm:
Vu € Vz, |[ulli, = lullfn + lullfn @xgoy -k

Therefore for i = 0,1,2 we can define the sesquilinear form on Vz x Vz for (u,v) € V2
by:

aj(u,v) == —(Ziru, ) g-1ry— i) + ao(u, v). (4.5.76)

Thanks to these last definitions we can state the following result:
Lemma 4.5.1. For all © = 0,1,2, the function u;s belongs to the space Vz and there
exists C' > 0 such that for allv € Vz and 1 = 0,1,2 the following estimate holds:

ag(u;5,v) — <f§1:0 V) Q) —H ()| S C'5ZH||U||H1 Qo)
Proof. From (4.1.8) we have:
Vi € {0,1,2}, yru; € H2 (D), (4.5.77)
and using that H2(I') ¢ H'(I) yields u; € V.
We have seen that from (4.1.11) and (4.1.12), we have proved for all i € {1,2} that

w; € C™Mr (F;H(}Afoo)) Moreover we recall that pgff and p;ff, Iy are defined through

these function. Thus we can easily prove that pgff, péff, o and 7i; are O™ functions.
Therefore (4.5.77) leads to:

W(i,j) € {0,1,2}%, Zjyru; € H (1) (4.5.78)

In the previous section we proved that for all 7 € {0, 1,2}:

ao (Ui, v) = 60i(f, V) i1 (agyt—mrag) + Z<Zj71“ui—ja YPU) H-1(1)— H(T)-
j=1
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Thus we have:

/

aO(ui,5> ) <f2blnso >H1 Qo) —H(Q0) + ZZ Zjé Yy ]afYFU> H(T)—HY(T)>»
=0 5=0

‘/

<f1231,so >H1 (Q0)T—H(Q0) +ZZ (2" g 7F“J=7F”>H HI)—HY(I);

1—0] 0

<f]zo‘,fo V) H (00! - 1 (52) +ZZ (26" ypuj, Arv) sy -a ),
7=0 i'=

]

<f12317$0 >H1 (Q0)f—H1(Q0) +ZZ ZZ o' +J7FUJ’7FU>H HI)—HY(T),
7=0 =0

<f2blﬁso >H1 QO) —H(Qo) + <Z§7Fui,57P)/FFU>H—1(F)_H1(F),
+ Z Z <Zi/5i,+j'}/f‘uja VFU>H*1(F)—H1(F)-
J=0 i'=i—j+1

Thus we get

< Z Z ‘<Zi/5i/+j71“uja'YFU>H*1(F)7H1(F)’ :

=0 i'=i—j+1

< 5i+1 Z Z ‘<Zi/’71"uj’ ')/FU>H71(F)—H1(F)‘ .

§=0 i'=i—j+1

ap (ui,§7 U) - <f2b;so ) U>H1(QO)T—H1(Q())

and thanks to (4.5.78) there exists C' > 0 such that we have:
Z Z‘@” ’YI‘uijFU)H—l(F)le(F)’ < C||UHH1(QO),
=0 i'=i—j+1

which ends the proof. O

4.5.3 Stability

First prove the following intermediate result:
Proposition 4.5.2. The tensor field pgff is positive-definite in the sense that for all
zr €I and w € T, .T" we have:

u(zr) # 0 = (poss(zr)u(zr), u(zr)) > 0. (4.5.79)

Moreover for 6 small enough the tensor field:

5P2ff + 52piff7

15 positive in the sense that for all xp € I' and w € T,.I" we have:

((5pgff(xr) +82pL; (ar) u) > 0. (4.5.80)
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Proof. Proof of (4.5.79) . Let xr € I" and w € T,.I". Assumes first that zp ¢ I’y or
w' Vw;(zr) = 0. In these two cases we have M?(zr) = 0 which leads combined with
(4.1.12) to:
(ngf(xr)u(ifr)au(fcr)) = Po(r)|z> > 0,

and then concludes the proof of (4.5.79).

Assume now that xr € I'y and uiﬁwi(:pp) # 0. Thanks to (4.3.16), we have
u=u'e;(zr) with u’ := (u, e (zr)). First prove that in this case the family (v’ Y wi(zr: ), w)
is linearly independent. Indeed, in the contrary case the contrary case there would exists

A # 0 such that: R
u' Vw(zr;-) = \u (4.5.81)

Since w;(xr;-) is & periodic, we have from Green formula for all j = 1,2 that:
/ (u' ¥ w;(wr; 2, D), ¢ (xr))didp = 0.
v

Combining this with (4.5.81) yields that for all j = 1,2 we have (u,e’(zr)) = 0 . There-
fore using that u belongs to T,,.I" and that (e’(xr)); is a basis of T,.T" yields that u = 0
which bring a contradiction and we now use this result. In order to apply Cauchy Schwartz
inequality, we provide the space LQ(?OO)3 with following dot product:

V(u,v) € L*(Yao)®, (1, V) 2oy = /ﬁ(xp;:%, v)(u(z,0),v(z,0))dzdp. (4.5.82)

Y.

Thanks to Proposition 4.3.4 we have:

Mj(oryu = [ plori,) € uilars b 0)didond
Y_

which leads combined with (4.5.82) to:

A~

(M4 (zr)u,u) = (Vw;(zr; )u’,u)( (4.5.83)

LQ(YOO))S'

Since we proved that v w;(xr : -)u’ and w are not co-linear then Cauchy Schwartz com-
bined with (4.5.83) yields:

(MG (er)u,w) < || Vw(er)a'l? o ] (4.5.84)
(£2(%0))
Moreover, according to the definition of M (zr) and py(zr) respectively given by (4.3.22)
and (4.3.25), we have the two following rewriting:

2 A~ A A 2 34 1A — 2
Il e = oo Dl = e,
2

Hsz‘(xr)u’ (LQ(Y’OO))

3 =/ par; 2, 0)| V wi(xr; &, D)l Pdidp < (M(zr)u, w).
Y-

Therefore combining this two last inequalities with (4.5.84) leads to (M§(xr)u,u) <
Po(zr)|ul* and combining this with the definition of p,; given in (4.3.29) yields:

0 < polr) [uf? — (My(ar)u, u) = (pl (rr)u, ).
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which concludes the proof of (4.5.79).
Proof of (4.5.80): Thanks to (4.5.79), we can deduce that Ay, (p®) > 0. Thus by using
the compactness of I and the continuity of Ay, (p°) (see proof of Lemma 4.5.1 ) we have:

Ty = inf ()\mln(p(e)ff)) > 0.

Moreover since Amax(pf;) is a smooth function on I' (see proof of Lemma 4.5.1 ), we
have:

r— = sup (Amax(pesys)) < 0.
Therefore for § < r,/(2r_) we have:

A (6% + 82pL ) > 61 — 62 > 5 = 0
(0pess +07peyp) = Ory r—z5 ;

which concludes the proof of (4.5.80). O

Corollary 4.5.3. There exist a compact operator Ty, : H*(Qg) — H*(Q)" such that for
allu € Vz, 0 >0 and i = 0,1,2 the following estimate holds:

|ag(u7u)| > ||u||%11(§20) - <Tku’u>H1(QO)T—H1(QO) . (4585)

Proof. For this proof (-,-) is the dual product (-, '>H1(QO)T—H1(Qo)' Let u € Vz then we
have:
as(u,u) = ((C + Ti)u, u), (4.5.86)

where C' : HY(Q) — HY(Qp)" and Ty, : H(y) — H'(Q)" are the only linear operators
such that for all (u,v) € H*(£)? we have:

(

(Qu,v) :== Z 6J(p;?fl Vru, Vi) + / ((CVeu, Vo) +ut)dldy + (DINF=2 1, 0) py o1

j=1 o

(Thu,v) == —/Q (14 k* C)uvdQy + k* - Z 8 (T1;_yyru, )2y + ((DENg — DtNE=)y, V)Dx {no}
0

\ J=1

where DEINE= © Hz (I x {no}) — H™2 (I x {n}) is defined for (u,v) € Hz (I x {n})*
by:
k=t o k=i
<DtN£ u,v>rx{m} = <DtN uoL,vo £>En0 ,

and DtNF=" : H32 (%) — H2(%,) is the Dirichlet to Neumann map on Y associated to
the wave-number .
Then we now prove the following coercivity property of the operator @:

<QU’U>H1(QO)T7H1(QO) Z ||U||%.]1(QO) (4587)

Indeed, from the positivity of DEN¥=7, one can show that for all u € Hz(I' x {ng}) we
have:

(DENE" u, u) 0. (4.5.88)

I'x{no} =
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Thanks to Proposition 4.5.2 we have that ) 5j(p£]7} Vru,Vru) > 0. Combining this
7j=1

with (4.5.88) concludes the proof of (4.5.87).

Now let us prove the compactness of the operator Tj. Indeed the operator DtN — DtN*=1
is compact (Seed [60, Theorem 2.6.4|, [51, appendix| and [25, Proposition 3.4]). Morover,
thanks to Rellich lemma, the linear operator associated to the sesquilinear form defined
for (u,v) € H' (90)2 by:

_/ (14 &2 C)uvdQy + k* - Z 0" ({1, v) L2(r),
Qo

j=1

is compact which concludes the proof of the compactness of 7.
The estimate (4.5.85) is a direct consequence of (4.5.87) and (4.5.86) which concludes
the proof. n

Lemma 4.5.4. The effective boundary conditions are stable in the sense that there exists
C > 0 such that for all u € Vz the following estimate holds:

lull <C  sup laj(u,9)|-

Hd)”Hl(QO):l
Proof. Let us prove this result by contradiction. Let us such that

lusl[mie) =1 and lim  sup  aj(us, @) = 0. (4.5.89)
§—0 —
H¢)”H1(QO) 1

Therefore the sequence us is bounded in H'()y) and then up to a sub-sequence there
exists 1o such that u; weakly converge to ug. First prove that for all ¢ € C*®(Qy) we
have:

ao(u, @) =0, (4.5.90)

and using the fact that this last variational formulation is well posed and using density
of the space C*°(€)) into H'(Qp) will deduce that ug = 0.
Indeed thanks to (4.5.89) and the definition (4.5.76) we have:

lim sup ag(us, @) < lim inf (Ziyrus, V@) -1 (r)—mr(ry = lim inf (ypus, Z§7F¢>H-1(F),H1(F).
§—0 6—0 6—0
Moreover the function ¢ is regular on I' x {0} and so thanks to the regularities of coeffi-
cients which appears on the operators Z; and Z, we have:

lim gg%(zﬁru&7F¢>H*1(F)—H1(F) < lim }gf;z;5j||U6HL2(r><{o})IIZi¢||L2(rx{o}) = 0.
]:

Therefore we success to prove that us weakly converge to 0.

Then we now use this weak convergence to prove a contradiction with (4.5.89). Indeed
the compactness of the operator T}, implies that Tjus — 0 strongly congerve to zero. Then
according to Corollary 4.5.3, (4.5.89) leads to the strong convergence of u® to zero. This
contradict (4.5.89). O
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Figure 4.4: Mlustration of the Final Convergence Theorem

4.5.4 FError estimate

Now we back to the initial geometry 2% and define for i € {0, 1,2} the function u¢ : Q + C
by the unique solution of:

Aud + k! = f and 9ud = Ziul on T,

and u? satisfies the Sommerfeld radiation condition. We refer the reader to [25] to prove
that this last problem is well posed in H}. (). Thanks to all this work we can state the
final result of this work.

Theorem 4.5.5 (Final Convergence Theorem). For all i € {0,1,2}, if mpr < 6 +1
and supp(f) NT = () then for all K open bounded subset of Q such that K NT = () there
exists C' such that for all 6 > 0 we have:

[0’ — || ey < CSH (4.5.91)

We refer the reader to Figure 4.4 for an illustration of assumptions of this last theorem.
Proof. With the same way of the proof Proposition 1.3.2 (See Chapter 1), we show that:

ul =150 L, (4.5.92)
where 1, 5 is the unique solution of: Find 4, 5 € Vz such that for all v € Vz we have:
as(u, ) (s, v) = (fx,,, v)-
Hereafter for this proof C' > 0 is a generic constant independent of 4. Thanks to

Lemma 4.5.1 we have: , ~
|aj(uis — Uis, @)

sup < C6t
seva\) 19l (q)
Therefore using Lemma 4.5.4 yields:
lwis — sl () = o (4.5.93)

Let K C Qs be a bounded open subset of € such that ' N K = (. Therefore from
I' N K = () and the compactness of I" and K we have:

 dist(T, K)

5 > 0.

C:
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Thus by applying Theorem 4.1.1, we have:

lus — wisll i (xgemep < C8F

Moreover combining this last estimate with (4.5.93) yields:
s = @isl| i (xjemep < COT,
Combining this with u’ = u;s o £, (4.5.92) and [57, Theorem 3.20] yields:
[0 = || 2 =1 (oo < COF (4.5.94)
Moreover we recall that K N Cj,,, C LT x]e, no[), which leads to:

[0’ =l || i e,y < OO (4.5.95)

Let us prove now:

3C >0, Y6 > 0, [[u’ = || g sy < OO (4.5.96)

Indeed we introduce the open bounded set O := Cj,,, U O.
Thanks to Proposition 1.3.1 (See Chapter 1),

90 = L7YT x {no}). (4.5.97)

From the regularity of the map £ and I’ we deduce from (4.5.97) that O is a Lipschitz
domain. Therefore we can apply classical theory of scattering for Helmholtz equation

which leads to:

[t ) < Cllw® =l (4.5.98)

HY(K\O H3(90)"
Moreover from (4.5.97) we have 0 C 8 (L~ (I'x]e,m0[))) and combining with (4.5.94)
yields:

5,38 it+1 -

||u® — uiHH%(aO) < OO (4.5.99)
Since K N O = ) we have K \ O0=K \ Cso- Therefore combining (4.5.98) and (4.5.99)
yields the desired result (4.5.96).

Adding (4.5.95) and (4.5.96) yields the desired result which ends the proof. O
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Chapter 5

Numerical approximation of the
approximate solution

This chapter contains two steps. We first, give a numerical procedure to compute a
numerical approximation of the solution approximate model in the two dimensional case.
That is the object of the section 5.3. Finally we will prove error estimates independent
of the small parameter § that only depends one the mesh size h. That is the object of
section 5.4 and Theorem 5.4.2. We will see that it has an advantage compared to the
exact model.

5.1 Two dimensional configuration

Hereafter, the dimension of our problem is two. We assume that our obstacle O is included
on the ball B3 := {p € R2, |p| < 1/3}. For the sequel our domain is Q := B3 \ O. (See
Figure 5.1) We assume that the boundary I is a parametric curve in the sense that there
exists a function: P : [0, 1] — R? with P(0) = P(1) such that:

r={P(), tel0,1]},

and this last function is supposed to be injective on [0,1[. To ensure that I" is a C'*
manifold, we assume that P is a C*° function and the velocity ‘Z—It) does not vanishe on

[0,1]. The function ¢r is defined by P~' : T' + [0,1[. The coefficient p(xr;Z,7) and

Figure 5.1: Illustration of the geometry
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f(xr; , ) are supposed independent of zr and we will write:

~ A

,O(l'p;l',ﬁ) = ﬁ(:%7 lA/) and //:L(xr;'/’%’ﬁ) = ﬂ(i.a ﬁ)

We assume that our cell is symmetric in the sense that for all (z,7) € Q :=]0, 1[x]—1, 00|
we have:

5.2 Reminder of the approximated problem

We recall that for all i € {0,1,2}, the function u? is defined by the unique solution of:
Find ! €:

V= {u € HI(Q),/ (Jul* + | Vrul?) dT +/ (Jul* + [Vul?) d©2 < 0o and u =0 on 81531} :
r Q

such that for all v € V we have: af(u,v) = (f,v)2(q). The sesquilinear form af and a}

are defined by:

a¢15 ‘= ag +9da; and ag = qg + daq + 6%as,

where ag, a; and ay are defined for (u,v) € V x V by:
ao(u,v) = / (Vu- Vo —Kuv)dQ and  a;(u,v) = / (pé}} Vru-Vro — ki qu)dl i = 1,2.
Q r

Here we define for all zp € T":

ngf(xr) i=py — M{§(g(ar)) and ngf = —c(zr)py + c(zr) MY (g(zr))

where ¢(zr) is the curvature of I' at the point zr,
B, = / i1 p(8, 0)d2dp and T, == / i p (&, 0)dado,
v v

Vi :=]0,1[x] — 1,00[ and Y_ :=]0, 1[x] — 1,0[ (see Figure 5.2) and g : T’ ~ R’ is given

for xr by
-2

dP

g(xr) == %(t) with ¢ := P (ar).

The functions M{, MY : R* + R are computed through solutions w of “cell problems”.
These functions are defined for g € R7 by:

Mi(g) =g - / p(a,0) (g\afw(g;:e, D)|* + 9w (g; 2, ) \2) didp,

[e's}

and:

M?(g) =g -/ﬁ(j:, 5) (—g|8§;w(g;i, )|+ ’&;w(g;i,ﬁ”?) dadi + Zg/ﬁ(f,ﬁ)ﬁﬁiw(g;fc, P)didp.

oo oo
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(1,-1) 0,1 %

(0, —1) (0,0)

Figure 5.2: Mlustration of the infinite strip

bn
B, B1/3,n

Lj
Figure 5.3: Hlustration of the domain 2, and the map ¢,

Finally the function w is defined for g > 0 by w(g; -) which is the unique solution of (up

~

to a constant): Find w(g;-) € H(Y4) such that for all v € H(Y,,) we have:
/ﬁ(a%, D) (90:w(g; 2, 0)030(2, D) + Opw(g; &, 0) Opv (&, 1)) didi = /ﬁ(i, 0)0zv(Z, V).dzdv
Y. Y.

In this formulation we recall that

H(Yoo) = {u € L2 (Yy),Vu € L*(Ys), u is one periodic on the variable i‘} .

5.3 Construction of an approximation u/; of the exact
5

function u

Let A > 0 be a small number. Let I';, and 0B, 3, be the triangulations of the surfaces I
and B, /3 such that for all j € [0,1/h] "N we have

[;:=P(jh) €T and 1/3(cos(2mjh),sin(27jh)) € OBy 3,

and €, be the polygonal open set such that 0Q;, =I'y, U0B/3;, (See Figure 5.3).
Let T}, be triangulation of the domain €2, and V}, the space of P1 function of the mesh
T}. We construct here an approximation uf’h : Oy, — R of the function u¢. This function

depends of a vector of small parameter h := (h, h,1/L, AT) — 0 where:

e h is the is the maximum of size of triangles of the mesh T} of the domain 2,
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(1,-1) (0,1) » @ (1,L)

(0,-1) (0,0) o, L)

Figure 5.4: The strip truncated Y7, and the mesh "

Y

e L is a large number to approximate the infinite strip Y. with a truncated one
defined by Y7 :=]0,1[x] — 1, L[(see Figure 5.4).

e /i is the maximum of size of triangles of some mesh T} (L) of the truncated strip. (see
Figure 5.4.) We will use this mesh in order to compute for j € {1,2} an approxi-
mation M?le/L of the map M

. . . . . . . p p
e AT is a step of discretization of linear interpolation ij“l/L’AT of the map Mj,fz,l/L

for all j € {1,2}. We have chosen to interpolate in order to reduce the number of
solutions of cell’s problem.

5.3.1 The discrete problem

For ¢« = 0,1,2, the function uﬁfé defined by the unique element of V) such that for all
v, € Vj, we have:
a?,h(uzls,’lfh) = (fn, vn)L2(02p)- (5.3.1)

In this formulation the sesquilinear form af’h is given for i € {1,2} by:
afé = al +0a” and agﬁ = al + 0al + 5%al,
where:

e al is defined for (u,v) € H' () x H'(Qy,) by:

ap(u,v) == /Q (Vu - Vo — Ku-0)dy,

e and a is defined for (u,v) € V}, x Vj, and i € {1,2} by:

al(u,v) = / (pi}}(h)vphu,va) — K pgu - vdly,

Ty

° péff(h) is a numerical approximation of pif - These approximations are given for
x, €1, by:

ngf(h)(iﬂh) =Py — IATngL’l/L (gn(zn)),
Peys(tn) == —cnl(wn)py + cn(wn)Iar MY, | (9n(n))-
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f((n + l)AT)

(n— 1)AT t nAT (n+ 1)AT

Figure 5.5: Hlustration of Iar

® gn,cp: S — RY are elements of V}, such that for all j:
gn(Ty) = Vi and  cu(T;) := det(A;, V;)/|V;)?
where we posed:

P((j+1)-h)—=P((j—1)-h) P((j+1)-h)—2~P(j~h)+P((j—1)~h).

V; = 5 7 and A;:=

2
e /a7 is the classical linear interpolator of step AT(See Figure 5.3.1).

Now let us explain how we compute the maps M g hi/L and M ’1) hayL These maps are
defined for g € R7 by:

* |Gy (058, 0) 2) didp,

MS,B,I/L(Q) =4g- /};f];((i',ﬁ) (g|ajwﬁ71/[,(gu‘%; I))
and:
M 9) =9 /yﬁﬁ(fc’ 7) <_9|8fvw;;,1/L (g:2,9)

—|—29/,06;1(%,&)&8@10;%1@@;@, ﬁ)didﬁ.

oo

"+ ‘8ﬁwﬁ,1/L(g§§3a 19) 2) dzdy

Here p; is an approximation of p such that:
||,5il - ﬁHLoo(Yq) < Ch,
where C' is independent of h.
5.3.2 Numerical approximation of the map w(g,-) with the finite
element method

To introduce the function wy, ; ,, (9;-), we need to introduce the space H#(}A/L) constituted
of functions of H 1(57,;) one periodic on z. Furthermore we provide this last space with

the subspace of discretization V#f e H#(?L) of P, function on Tj(L) one periodic on
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. Then the function wy,, (g; -) is defined (up to a constant) by the unique solution of:

Find wy, 4, (g; )€ V#f’h such that for all v;, € Vi’ﬁ we have:

gy (Wi (97),03) = Ly (w3)- (5.3.2)
In this variational formulation the sesquilinear form aj; , /L and the linear form [; , /1, are
defined for (vj,,w;) € V#h X Vi’h by:

1, (Vg wy) = / 5, (2, ) (90;v; (2, ) 0zw; (T, 0) + Opv;, (2, ) Opw; (T, D)) ddD,

and [y, (w3) == / b (2, 9)050(&, D) divdo.

Yz

5.4 Convergence of the method

Since I is a smooth curve then we have Q # . Hence the function u¢ and ul's have
not the same domains definition. However from |28, Finite Element Methods for Second
Order Problems Posed over Curved Domains | and [55, Approximation par éléments finis
isoparamétriques dans les domaines a bords courbes| we get the following result:
Proposition 5.4.1. If vertex of the discretization I'y, of I' belongs to I then there exists
a sequence of bijective functions {¢p, : Q — Q"},>0 such that for all h > 0 we have:

() =Q" and ¢n(I) =T",
and there exists C' > 0 such that for all h > 0 we have the following estimations:
1T = @nllwos(e) < C-h* and |[I— ¢pllwioory < C -
Moreover this last sequence of functions satisfies for all h > 0:

sup(I — ¢p) C {x € Qy, dist(z,T) < h}.

We refer the reader to Figure 5.3 for an illustration of this result. Thus we now can state
the following result that we now prove:

Theorem 5.4.2. There exists C' > 0 independent of h such that for all i = 0,1,2 the
following estimate holds:

1 1
63w =y, 0 nlln ) + Il =y, 0 Gnllin oy < C(h+ %e(h)).

This result is a direct consequence of Proposition 5.4.1 and upcomes results: Lemma 5.4.3,
Lemma 5.4.4, Lemma 5.4.5, Lemma 5.4.7 and Lemma 5.4.8. We prove now these results.
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5.4.1  Stability of the discretization of the effective boundary
conditions

We introduce for convenience the norm N/ defined for v € H*(T';) N H() by:

1
Nip(u) := 0% ||ull e, + [[ull e

We have a useful result of stability of our numerical approximation:
Lemma 5.4.3. There exists hy > 0 and ny > 0 independent of 6 and h such that for all
xp € Vi, we have:

|lh| <hy = N(x,) <m sup a?,h(%,yh)-
thVh
NP (yp)=1

Proof. We prove this result by contradiction. The contradiction of our stated result
implies that for all 7 > 0 there exists d, > 0, h" with |h'| <7 and x, € V}, such that:

)

N,/ (zy) =1 and sup af’}l,(:ﬂn,yn) <, (5.4.3)
0 eV )
Nf:é(?/n)zl

and let us prove that this last proposition is absurd.

First let us prove that the set of the weak limit point in the space H'() of the
sequence (7, © ¢p )y>o is reduced to the singleton {0}. Let o be a weak limit point of
this last sequence and dy be a limit points of the sequence (6,),>0-

o If 6y > O then the sequence (x, 0 ¢h6)n>0 is bounded in the space Vz. Therefore this
last sequence weakly converge to z in the space Vz and xg € Vz. Therefore com-
bining this last convergence property with and Proposition 5.4.1 and Lemma 5.4.8
yields the following implication:

S > 0= Vy e C™(Q), }lll_)r% afﬁh,(:nn,y o ¢;§) = a2 (0, y). (5.4.4)

e If §o = 0 then the quantity (z, o ¢p;),>0 could eventually not be bounded in the
1
space H'(T"). However from N,i’,’o (zy) = 1 we get that 67z, o ¢y, is bounded in the

1
space H'(I') which leads that for all j € {1,2} the quantity 02a’(z,,y o (b’:()l) is
bounded which leads to

lim 5%a§b/ (xy,yo0 gzﬁ}:é) = 0.

—0
n =1

Combining this last convergence with the weak convergence of (z,)p in the space
in H*(Q2) and Proposition 5.4.1 yields the following implication:

—
(@
=
Ut

S~—

0= 0=y € C=(Q), lim a;t,(y,y) = ad (0, y).
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Now let us prove that we have for all smooth function y:
; by =1\ _ =4 ¢
71712% a;"(xy,yo qb%) =0. (5.4.6)
Indeed since y is a smooth function then we have existence of y, € Vj,; such that:
3 —1
Nhg (y © ¢h6 - yn) S 0777

where C' > 0 is independent of 1 which leads to lin(l) af” (xy,y o0 gb}:él — y,) = 0. Therefore
n—

to prove (5.4.6) it remains to show that:
L5
tim o () = 0

which is a direct consequence of (5.4.3). Thus combining (5.4.4), (5.4.5) with (5.4.6)
leads to that for all smooth function y we have:

a‘so(:co, y) =0.

i

Therefore xg is a solution of the approximate problem order of i with § = §y with f =0
and using that this last problem is well posed implies that z¢y = 0.

Now we succeed to prove that x, weakly converges to 0 in the space H'(2). Therefore
we get that () 0 ¢py )y>0 strongly converges to 0 in the space L*(€2). Moreover we have
it is clear that there exists C' > 0 independent of n we have:

1)
N£6(xn) < a;" (T, y) + CHan%%Q)

Combining this last estimate with (5.4.3) yields which bring a contradiction contradiction
with the assumption N 56 (x,) = 1 and therefore ends our proof. ]

5.4.2 Decomposition of the error

We introduce the two following quantities:
e The interpolation error is defined by:
Dinterp 1= N}f (u;s o qﬁ;l — H;phui-S o qﬁ;l) .
This error measures how ul o ¢, ' fails to be in the space V.

e The consistency error is defined by:

é 1) — 1 1)
Deonsistence := Sup - a;p (uz © ¢h 17 yh) —a, (uz »Yn © ¢h) .
YR EV
N (yp)=1

This error is due to error of approximation of the map w and our geometry.

Lemma 5.4.4. One has

6 (,0 -1 0
Nh (U’z © ¢h - ui,h) S Dinterp + Dconsistence-
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Proof. Since Iy, uf o ¢, ' — ul), € Vi, we have thanks to Lemma 5.4.3 that:

) 4 -1 é é § -1 1 4 4 -1 4 -1
Ny, (“z o, — ui,h) < Ny (HThui o, — uz‘,h) + Ny (Uz o ¢, — ln,u; o ¢y ) )
S To sSup a?,h (HThu? © qb;l - u?,h? yh) + Dinterpa

YhE€Vh
N (yp)=1

§ 1) -1 8
S o Sup az’,h (uz o ¢h - u@ha yh) + Dinterp-

Yh €V
Ny (yp)=1

Combining this last estimate with (5.3.1) yields:

6 6 —1 1 é ) -1
Nh (uz © ¢h - ui,h) < Mo Slél‘I/) i p (uz © ¢h 7yh) - (fa Yn © (bh) + Dinterpa
Yh€Vh
N (yp)=1

< To sSup a?,h (U’f © ¢f_Ll> yh) - (Ig (ufa Yn © ¢h) + Dinterpa

YhE€Vh
NY (yp)=1

which concludes the proof. O

5.4.3 Estimate of the interpolation error

Lemma 5.4.5. There exists C' > 0 independent of h,d such that:
Dinterp < C, (5.4.7)

This result is a direct consequence of:
Proposition 5.4.6. There exists C' > 0 such that for alln < mp and § > 0 we have for
all i € {1,2}:
1
42 ||U?||Hn+1(1") + ||U?||Hﬂ+l(9) < C. (548)
Proof. To simplify the writing of the proof we assume that £ = 0 because the generaliza-

tion for k # 0 is trivial. By using chart and unit partition of unity we can assume that
[is R x {0}, Q = Rx]0,1[ and u? is the unique solution of: Find u} € Vz such that:

div (PVquM) = finQ and 9Ju = §divp (,0;S Vr uf) on I,

where P is a C"" matrix valued function of the form P = diag(l, P,;) and {P;}; €
C™r(T') such that there exist Pf > 0 such that for all z € I' we have P;(x) > Pf. We will
prove the estimate (5.4.8) by a recurrence on n. Thanks to stability result Lemma 4.5.4,
the result the result is trivial for n = 0. Let n such that (5.4.8) is true and let us prove
the following estimate: .

(55HufHHn+z(p) + HU(SHHM—Q(Q) < C. (549)

First let us prove that we have 99’ € H'(2) N HY(T) and the following estimate:
1

Thanks to the Leibniz formula we get that for all o < n that 9%u° is the unique solution
of: Find 9%u® € H*(Q) N HY(T') such that we have:

« (o)

div (PVOSu’) = f2 and 0,00u’ — §divr (p) Vi 92u’) = g2 (5.4.11)
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where we defined the following quantity:

f=arf -y div ((8§*Q'P)V8§'u‘5> and g2 := Y ddivy ( (a;;*a’p;?) Vi o u).

o' <a o' <a

Thanks to the recurrence hypothesis (5.4.8) we get that f° € L*(Q) and ¢’ € L*(T") with
the following estimate:

HfiHLQ(Q) < ¢ and HgiHLQ(F) < 05% (5412)

Now we introduce for h > 0 the translation operator T}, defined for all function u defined
on Q and (z,y) € Q by Thu(x,y) = u(x + h,y) in order to write for all A > 0

T fo — 2 = div (T, P)VOeTiu’) — div (PVLu’)
= div (TP — P)VOSTyu’) + div (PV(T3,0%u° — 02u’)) ,

which leads to:
Vh >0, div (PVD,0%u’) = Dy, f2 — div ((D,P)VOu’) | (5.4.13)

where we defined the operator Dy, := (1}, — I)/h. Moreover we have with the same idea
that:

Vh >0, 0,05 Dpu’ — §divr (p) Vi 02 Dyu’) = g + d dive (Dppl) Ve 0%u®) . (5.4.14)

Now let us prove that we have existence of C' > 0 independent of h > 0 and ¢ > 0 such
that the following estimate holds:

[Dwfs = div (DR P)VOZU) || 1y 077 || Dngl + 3 dive (Dupl) Vi 95) ||y < C-
(5.4.15)

Indeed thanks to the recurrence hypothesis (5.4.8) we get that:
020 || iy <€ and |35 gy < CO72 (5.4.16)

Moreover the regularity on P and p¢ imply existence of C' > 0 independent of § > 0 such
that:
||8xP||Loo(Q) S O and ||ax,0?||Loo(p) S C,

which leads combined with (5.4.16) to:
: o, 8 : 5 o, 6 -3
|div ((8,P)Vsu )H(Hl(Q))T < C and ||divr ((0:)) Vr 05u )”H—l(r) < Co 2.
Therefore combining these last estimate with (5.4.12) yields:

i 7072 (|08, + 3 dive ((9up}) Vi 050

v~

A B

o -1y < C

-

10,12 — div ((8,P)VOu®)

and combining this last estimate with the mean value theorem end the proof of (5.4.15).
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Moreover combing (5.4.14) and (5.4.13) leads to
D05 1y + 0| D s oy <A DA g + OB 1 D00 [

VAT 0B/ | D |1 gy + 6 | a2 s

and then combining this last estimate with (5.4.15) leads to the existence of C' > 0
independent of ¢ such that the following estimate holds:

Vh >0, || Drdge’|| g g + 07 [ Dad2 ||y < C-

Therefore there exists an element Q° € H'(Q) N HY(T) such that there exists C' > 0
independent of § such that

5 L1~ =
1) i1y + 92 1@y < © (5.4.17)
and such that we have the weak convergence in the sense that for all smooth function ¢ :
. 5 5 . a, b 5
“ = (@ 4 fim (Dioato) = (@0)
]lzlg% (Dham “ ¢) L2(Q) (Q gb) L2(Q) ame 5 ndz’, @ L2(T) @0 L2(r)

(5.4.18)
Now let us prove that in the sense of the distribution

9oty = Q% in D'(Q) and 9°T'’ = Q% in D/(I). (5.4.19)

Indeed for all smooth function ¢ € C* () we have the following strong convergence in
the space C*°(92)

lim D¢ = 0,.¢.

h—0

Therefore combining with (5.4.18) yields that for all ¢ € D(€2) we have
(ot 0.0) = (@0) ,, md (0 00) = (@)
12(9) 12(Q) L2( L2(r)’

which end the proof of (5.4.19). Thus combining (5.4.17) with (0.4.19) end the proof of
(5.4.10).

Since we success to prove (5.4.10) we first get the existence of C' > 0 independent of
0 such that following estimates hold:

5%||U?||H'ﬂ+2(l") <C and VYg<n+1, |00 20 < C. (5.4.20)

Thus in order to end whole the proof it is sufficient to prove that 972u® € L?(2) and
existence of C' > 0 independent of § such that:

0020 || o ) < C- (5.4.21)
This result is a direct consequence of taking o = (n,0) in (5.4.11) leads to
;200 + 8y (Pea(0,000°)) = fn)
which leads to:
e A O o

N~~~ . .
in L2(Q) thanks to (5.4.12) in L?() thanks to (5.4.20)
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5.4.4 Decomposition of the consistency error

Lemma 5.4.7. One has the following decomposition of the error estimate:

Dcon51stence S C (HD CbthQZShT’ det ngh ‘ — ]IH + max

p—
L=@Q)  je{0,1} ’peff On = Pegs(R) Lo(T'p)

Proof. To simplify the writing of the proof we assume that £ = 0 because the generaliza-

tion for k # 0 is obvious. Thanks to variable change formula for the gradient operator
we get that for all y, € V), we have:

alp (U] 0 6y un) Zéﬂ / pLr(R)Vr, (] 0 6,"), Vi, yn) ATy + / (V(f 0.6,"), Yy )dc,

Qp

_253/( ¢h D¢h pu?,D¢;TVF(yho¢h)> |det(D¢h)‘dF+
[ (D5 1Vu D6 1900 60) | det(D )

=5 /F (D" - plys(R) 0 61 - D6, "Vrud, iy o 6n) ) | det(D gy |dr+
j=1

/ (D ¢ D ¢ "Vl Yy, o ¢h)> | det(D ¢)|d2.
Q

Therefore for all y, € V), we have:

ay, (uf o ¢yt yn)—ag (ul, yn o dn) = /

r

(DFVFU VF( Yp, © (bh)) dF+/

Q

<DQVU V(y h0¢h)>,

where we defined on I' and €2 the following tensors field

ri= > 8 (Dt plyy(R) 0 6 Doy der(Don)| - ply)
j=1
Do :=D ¢, D, | det(D )| — 1
Therefore we have for all y, € V},

a?,h (Uf © ¢1:17?/h) - a‘f (uf,yh © Qbh) < ||DF||L<>0(F) HU?HH1(F) ||yh”H1(r) +
Dol Lo Huc'sHHl(Q 1yall 1.y -

< (04 1D0l ooy 16 10y + 1Dy 1162 1y ) Vo)

Thus applying Proposition 5.4.6 with n = 1 and the trace theorem we get that the
1
quantity 02 ||u?|| g1y is bounded when 6 — 0. Therefore we have:

aéh (U O¢h 7yh) —a; ( z7yho¢h) <C 52 HDFHLwI‘ +HDQHL°°Q N}f(yh), (5422)
) Q)
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where C' > 0 is a constant independent of h and §. Moreover, we can prove that:

(5% 1D ey + ||DQ||LOO(Q)) Ni(yn) < C <HD 7 Doy 1| det(D )| — ]IHLOO(Q))

j€{0,1}

. 1 j
+C ( o1 ‘piff o — piff(h)HLOO(FM) '

Combining this with (5.4.22) concludes the proof. O

5.4.5 Error estimate of the approximation of the effective coeffi-
cient

Lemma 5.4.8. There exists C' > 0 independent of h, h, AT and L such that the following
holds:

where we defined e(h) := h? + h + AT? + exp(—21 - L - \/Gmim)-
This result is a direct consequence of Proposition 5.4.12 and Proposition 5.4.13. We
introduce the following interval:

Plpo o = plyyh)| < Cen),

pgff © ¢}:1 - ngf(h)H < Ce(h) and ‘
Leo(Ty,)

Loo(Ty)

I := [inf(g),sup(g)],

and we emphasize that inf(g) > 0. ) A
Proposition 5.4.9. We havew € C™ (I; H'(Yy)) andw),;, , € C™ (I; H'(Yy)). More-

over there exists C' > 0 independent of h, h and L such that the following estimate holds:

Hw—HTiLwH < Ch,

cmr (11 (1))

where Tjis the P1 interpolator on the mesh T;;(YL)-
Proof. First prove that:

we C™(LH (Yx)) and wyy), € C™ (1 HY (YD), (5.4.23)

in order to give a sense of the estimate appearing in our result. We introduce for conve-
nience the operators:

4; € O (LL(HY(V), HY(V))) and A e 0™ (1 £(H(V), H(Yac)) )
(

A; (g, > — ﬂ(Mt@ v )dAdA dﬂ/ dz,
<h,L()UL VL) s 5t ) /th (t)Vur, Vo )didD + | widd - | vidd

(A, ) = /p(M(t)%u,%)dgedm /E udi /E vdi.



Here we defined:

M(t) = (é (1’) .

The linear forms L; , € C™r (I; H;(YL)Q and L € Cmr (J;H(YOO)*> defined for ¢ € I
and (vg,v) € H#(YL) x H(Ys) by:

L; (1), > = [ p;(t;-)0zvpdadp,
< h,L( ), VL H, (V)1 H, (V) /Yooph( )0zvddD

<L7U>H(YM)T—H(YOO) = /Y[)(t;-)afvdidﬁ.

With these last definitions we get that for all ¢ the functions wy, , ;(¢;) and w(t;-) are
the unique element of Vi’h and H(YOO) such that: for all (v,vy,) € Vi’h X ]H[(YOO) we have:

a0, 01 ~(Laatt ) |
< palt) - Wy t5), v HY, (Vi) —H, (V) ha(t):er H, (V)T =H (V1)

(5.4.24)
<A(t) ' w(t7 ')7U>H(?OO)T*H<YOO> - <L(t)7U>H<?oo)T7H(YOO) .
These last equations can be rewritten as below:
restriction -1 —1
wi ) = (AT @) L) and w(t) = ABTLE,  (5.4.25)

where A;szt;“ion(t) € E(Vi’ﬁ, (V#’E)T) is the operator defined for u,v € V#ﬁ by:

Are§tiction t) - ,U>
< hohiL Q HY, (V)1 —HL (VL)

= <AE,L(t) : u,v> .

HY, (V)i —HL (VL)

Moreover thanks to the assumption (4.1.12) the operators A;Le%“ztion and A are uni-

formly coercive on I which implies that their inverse belong to C™r (E(V# ’B)T, Vi ’ﬁ) and
cmr (H (YOO)T, ]HI(YOO)> Thus combing this last property with (5.4.25) and the regularity
of L and Lj; ; end the proof of (5.4.23). Thus now we prove that

~

< Ch.

Hw B HTﬁw‘ cmr (I;Hl(YL))

Thanks to |28, Theorem 15.3| a sufficient condition for this last estimate is to prove that:

w e O™ (I; HA(Yy)) N O™ (I HA (Ve \ Y0)). (5.4.26)
First we prove that
0w € C™ (I H(Ya)). (5.4.27)

Indeed using same methods than proof of [57, Theorem 4.21] ) we get that for all () we
have d;w(t;-) € H(YOO). Let v € ]HI(YOO) such that Ozv € H(Yoo) then taking v = J;v in
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(5.4.24) yields:

=_ / (M(t) (hV Bzw(t;)), €v> didp
Yoo
—/ (M(t) (0:0) ¥ w(t; -)),%)d@da.

)%
Moreover is clear that we have [ d;w(t;-)d& = 0 and then we have that for all ¢, ¢ the
function d;w(t;-) is given by:

Oyw(t;:) = A@t)™' - L'(t), (5.4.28)

where we defined the linear form field L’ defined for (¢) € Ix]0,1[ and v € H(f/oo) by:

(LY 5y fr) = / iy - /Y Oo(M(t)(%ﬁ)@w(t;j),@v)didﬁ.

Moreover thanks to w € C™r (I;H(ffoo)) we show that L € C'™r (I; ]I-]I(}A/OO)T> and then

combining with (5.4.28) end the proof of (5.4.27). Therefore to end the proof of (5.4.26)
it is sufficient to proof that:

Q2w € O™ (I; L3 (Yy)) and 02w € C™ (I; LA (Yo \ Y0))- (5.4.29)
Indeed we have for all t € I in the sense of distribution:
0o pOpw(t; ) = 0zp — Oapt' Ozw(t; ).
Combining this last identity with p =1 on |0, 1[x]0, oo first yields that:
OPw=—tPw on Ix (]0, 1[><]o,oo[). (5.4.30)

Moreover also combining with the regularity of the function p in I x (]0, 1[x]1, O[> yields

that we can use Leibniz formula and then we get:
02w = — (9 In(p)) - dw — 5 DappOsw  on I x (]0, 1[x] — 1,0[). (5.4.31)

Moreover thanks to (5.4.27) we have that 2w and d;pd;w belongs to C™r (I; L*(Y;)) and
C™r(I; L3(Ya \ Y5)). Thus combining these last properties with (5.4.30) and (5.4.31) end
the proof of (5.4.29) and so the the proof of (5.4.26). Thus we finished the proof of whole
the proposition. O

We introduce for convenience the operator:



Proposition 5.4.10. There exists C' > 0 independent of h, il, L such that we have the
following estimate:

H 611) - 117<L ° 610;1’1/11

)SC-GL—Fexp(—Zw-L-\/gm_hJ).

Proof. We precise that for whole this proof C' designate a generic positive constant which
is independent of A and L.
We can prove that:

94

cmr (1512 (Vo)

) < C-exp(=27 - L \/Gumin), (5.4.32)

cmr (L2 (Vao\ V1)

and then it remains to establish the following estimate to end our proof:

—w; < C e 5.4.33
Hw wh’l/L‘ cmr (LH (1)) ~ ‘ © )
with € := fH—eXp( —27- L+ /gmm)- We emphasize that this result is just a simple extension
of Cea’s lemma(see [28, Theorem 13.1]) . This last estimate exactly means that P(«) is

true for a € N? with || < mp where we defined for o the proposition

Pla) | <C-e

8a(w - wﬁ,l/L)’ o (I;Hl(YL))

We prove this result by recurrence on mr in the sense that we show that P(0) is true and
for all a with |a| < mp we have the implication:

(‘v’o/ <a,d #a, P(a')) = P(a)

Indeed assume that o = 0 or for all o < o with a # « and prove that P(«) is true.
Thanks to the uniform coercivity property of the operator A, ; ;. a sufficient condition
is to estimate the following quantity:

Q1) = (A, (VE®), B())

where we defined E(t) := Oa(w(t;-) — Wy, 11, (t; -)). Thus this last quantities can be
rewritten in the following form:

Q) = (44, (OB(), da(w(t; ) — Tigyw(t; ) + Baai(t) )

N ~ 9
H,(Yr)t—H}(YL)

N ~ 9
Hy,(Yr)t—H}(Yr)

where we defined g, := Iz, w(t; ) —wy,, ,,(t) and thanks to Proposition 5.4.23 we get the
following estimate:

Q) < Q1)+ |Ew)|

. h (5.4.34)
H(YL)

where we defined the quantity Q'(t) = ‘ <A;L’L(t)E(t),8aqh(t)> . Classi-

HY (V)T —HL, (V1)
cally in the proof of cea’s lemma this last quantities vanishes and then we will estimate
this last quantity:

Q1) | (A5 (Bwh10(8:7) = Alb)w(t; ), Extrduan(t))

1\t gl (v
Hap () = (0) (5.4.35)

Y

(A = Al ), 0Bt s 5,1 52
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where Exty, : H'(Y,) — H'(Ya) is a simple extension operator defined for ¢ € H'(Yy)
and (i, ) €]0,1[x]L, oo| by Exty, <¢(§;, f/)) = ¢(2- L — #)x(i — L) where x is a smooth
cut off function satisfying x = 1 on ]0,1/2[ and x = 0 on |1/2, 1] and it is easy to prove
that we have existence of C' > 0 independent of L such that

Bl <. (5.4.36)

VL) H (Vao)) =

Moreover thanks to Proposition 5.4.23 we get [|0aqnl| g1 (v,) C’(HE(t) H 8 )—f-h). Thus
H\(V1,
combining this last estimate with (5.4.35), (5.4.36) and (5.3.1) yields:

Q') < C- (Q”(t) Y ht ﬁ) (HE(t)]

o+ h), (5.4.37)
H(YL)

where we defined:

Q” (t) := sup ‘ <A;1’L(t)w;l71/L(t; ) = Aw(t; ), ExtLaavh>

vneVy " lonevy =1

HY, (V)T -HY () |

Now let us estimate the quantity Q" ().

2
First we extend for convenience the binomial coefficients for (p,q) € (Nq) for the

() =11(;).

because we have the following useful extension of Leibniz formula for function defined on

RY:
) =X () 9p-at -0 (5.4.35)

q<p

dimension 2 by:

where ¢ < p means for all 7, ¢; < p;(The proof of this result is a simple recurrence on the
dimension). Combining this last identity with (5.4.24) yields:

(A5,..0) - Gy 11 (8:2), vL> = Qu,

H%&(YL)T HL (Y1)
(A(t) - Oaw(t H(Yoo) H( ) = Qo

where we defined:

,
o
Q== 3 (a) oAb Qi)

o <a,o/ #a

OuLj t,v> ) o
(OeLialt) 12 HY (V1)1 (¥7)

Q2 = — Z (O/) <8a_a/A(t) . aa/w(t; '), U>H(1A’OO)T—H(Y/OQ) +

o' <a,a/#a

(OaL(t)

\ PO (1) ()
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Subtracting these two last lines yields for o # 0:

Q(ty<Ch+ Y C sup (Bors ) ey 71— iy 1E @ £ 0, (5.4.39)

o/ <a,al #a thV#’hvﬂvhevi’hH:l

where we defined the anti-linear form S, for v;, € V%f h by (B, vn) HL (V)i HL (V) "=

<8a_a/A,;7L(t) w1 () = Damar AL) - Dt ), ExtLvh>

~ ~ Y
Hy(Yp)t—H} (Y1)

and Q" (t,t) < Ch if @ = 0 on the one hand. On the other hand thanks to our recurrence
hypothesis we get the following estimate for all o/ < a with o’ # a:

)<ﬁa/, ”h>H;<?L>T—H;(YL>’ SK&W’AE,L“) (Ot (1) = Dt -)), “h>H1 L (V2)f—HL (1)
‘<(6Q,Q/A,}’L(t) — 0w A(t)) - Darto(t; ), Bt )

Sﬂaa/wﬁ,l//:(t) — darw(t H HUhHHl(YL)+

Y

H#(Y/L)T*H#(YL)

<Ce by indu(;;iron hypothesis
‘ (O A3 1 (1) = Do A®)) - Ot ), Bixtr, )

<Cellvnll gy, +

\/yL <a“‘“'<(ﬁﬁ B ﬁ)M@)) 00 Vwlt; ), ﬁvh> didp| +

J/

Y

HY (V)T —H} (V1)

-~
§Ce||vh||H1(YL> thanks to (5.3.1)

/ <(8a_a/M(t)) o v w(t), v ExtLvh>
Yoo \VZ

~
SCEHU’l”Hl(YL) thanks to (5.4.32)

< Cellonll gy,

which leads combined with (5.4.39) to the estimate Q" (t) < Ce is also satisfied for a # 0.
Next combining this last estimate with (5.4.34) and (5.4.37) yields:

|| )
HY(YL)

<Ce<

‘E(t))

H(YL)

Using the Young inequality leads to:
¥ > 0, 2 B2, < Cn et Ca(ht EO] agy,) < On 420 (R H B0 g, )
which leads to
(2 200) - | E()|2, 5, < c(n—le2 + 2077h2> < C(n—le2 + 207762>.
Now we chose 1 small enough to have (2 — 2Cn) > 0 and then we have:
|E@)|2 5, < C- 2 =207 (07! +20)

which leads to the desired result ||E (t)| 12y, < Ce. Therefore we finish our proof. [
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Corollary 5.4.11. There exists C > 0 independent of h, iL,L such that the following
estimates hold:

P p o
HMO B Mo,iz,1/LHcmF(I) <C- (h +h+exp(—2r - L- \/gmin)>7
and )
p - p . —_— . . .
HM1 lez,l/L e <C (h +h+exp(—27- L ,/gmm)>,

Proof. 1t is a direct consequence of Proposition 5.4.10 and the expression of the quantity
MY and M. O
Since mr > 2, we directly have the following result: )

Proposition 5.4.12. There exists C > 0 independent of h, h, AT, L such that the fol-
lowing estimates hold:

HMS B [ATMS,E,l/L‘ ome (1) s¢ <h o exp(=2m - L /Gin) + ATZ)’
and
P p A ra 2
HMI B [ATML;};/L‘ ome (1) =C- <h ot exp(=2m - L /Guin) + AT )

Proposition 5.4.13. There exists C' > 0 independent of h such that the following esti-
mate holds:

<C-h.

co (ﬁ,:l — ¢y <
Lee(Ty)

_|_

Hg ° 0 — o Leo(T'n)

Proof. This result is obvious. O
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Chapter 6

Numerical approximation of the exact
solution

Here, we present an error estimate for the approximation of the exact solution. Since the
exact solution have fast oscillations near the boundary I', we will use a mesh which is
finer near the boundary I' and small compared to the small parameter. This notion of
“refinement” is mathematically written in (6.5.18). Theorem 6.6.1 gives an error estimate
in function of the small parameter 9, the size of mesh near the boundary and the size
of mesh far from the boundary I'. The size of mesh near the boundary has to be small
compared to the small parameter . This explain why the approximate model is more
efficient than the exact one.

6.1 The mesh of the domain Q°

Let ny, : I', — R? be an approximation of the normal unit n in the sense that we have
existence of C' > 0 such that for all A > 0 the followings estimate holds:

thogzﬁh—nHWl,oo(p) S C-h and ||nh0¢h—n|lwo,oo(p) S Oh2 (611)

From this last approximation of the normal unit we build an approximation of the surface
I's defined by the unique polygonal surface whose corner are:

{Fﬁfa =T, - 5~nh(F,-)} .

7

Hence the polygon QF is given by the unique open set whose boundary is T# U 8183,11/ 5, (See
Figure 6.1).

6.2 Finite element method
Let V)2 be the space of discretization P, on the mesh T} and let p) and u defined by 1

in €, and defined by the P; interpolation in the numerical thin coat Qf; \ Q. Then the
function u{ by the unique solution of: Find u € V}? such that for all v§ € V}? we have:

/ P (Vud, Vb)) — KAl ud ol dQf = / f o ¢rdQ. (6.2.2)
Qh Q
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Figure 6.1: Tllustration of the ¢? application

6.3 Construction of a map Qbi Q0 Qi

Since we have 0 # Q2 we need prove the following extension of Proposition 5.4.1:
Proposition 6.3.1. For all §,h > 0 there exists a bijective application ¢ : QF — Q such
that we have

on(Ls) =T and ¢(I)=T"
and we have

&) = Q5 and  $(Q) = Q"
Moreover there exists C' > 0 independent of & and h such that the following estimate

holds:
1T — @) lwossiay < C-h* and ||I— ¢i||wl,m(96) < C-h. (6.3.3)

Proof. First we introduce an intermediate function ¢, defined on €. Let y be a smooth
cut-off function such that x(x) = 0 for  <; and x = 1 for x > 0 and this function is
defined for x = xr 4+ vn(xr) by:

v

On() == +x (3 ) (@n(ar) = ar + (malar) = nar)) -v).

where ¢y, is the function appearing in Proposition 5.4.1. We introduce this last function
because this last one transforms the corner of the triangulation of I" into the corner of I';
ie.

Vi, ¢ (T; — on(ly)) =Ty,
and we easy have: ¢p(I") = I',. Moreover we will later prove that this function satisfies
similar to the required (6.3.3):

|6 -1 <C-n and (g -1 <C-h (6.3.4)

W00 (Qs) Wioo(Qs)

Unfortunately this function does not not transform the set I'y into a polygon i.e.

On(Ts) # T4

However using Proposition 5.4.1 with I' = gzgh(I’(;) yields existence of a function CiD;i :
on(Qs) — QF satisfying existence of C' > 0 independent of h, § such that:

| 1]
WO (35 (S25))

<C-R* and Hég—ﬂH . <C-h (6.3.5)
WL (3,(05))
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and we have the following property:
‘fi(&h(ﬂs)) =T} and ‘i)?z (&h(”) =1
Therefore now we can define the application ¢9 by:
0 = B}, 0 6,

and this last application well satisfies the desired property (6.3.3). Indeed on the one
hand we have for all z € Qjs:

(85000) (0) — o] = B304 (2)) — o] < |BLBh(w)) = Fia)| + | (2) — o] <2002
which leads combined with (6.3.4) and (6.3.5) to

&2 040 — ]IH <2012 6.3.6
H ° ¢h WDoo (Qs) ( )
On the other hand we have for all x € Q;s:

D () 06) (@)~ 1| = [D&}(F(2) - D) 1]

IN

D &}(6(x)) - D} (x) ~ Dh()| + D (@) 1]
< [P (@) -1 - D& (@)| + D) ~1| <20 h,

which leads combined with (6.3.4) and (6.3.5) to

<i>50~5—]1H <920 - h.
H hoGh Wioo(Q5)

Thus combining this last estimate with the estimate (6.3.6) and the invertibility of P?
and ¢9 ends the proof of (6.3.3). Therefore it remains to prove estimate (6.3.4). Indeed
we have the following decomposition:

op—I=Apo0L, (6.3.7)
where Ay, : I'x| — §,no| is defined for (zp,v) € I'x] — d, [ by:

14

Ap(zr,v) == x (E) (¢n(zr) — ar + (np(ar) —n(zr)) - v).

Thus using Leibniz formula yields:

14
I 8ulhwrmrt-sm < [x () Nn(ar) = o+ Guaen) = ner) - vlwose s+

HW“"’(FX]—&m[)
v
- . xr) —or + (nplar) — nla % ,00 _ ,
Hx(h>Hwo,oo(pX]_5mOD Hﬁbh( F) r ( h( F) ( F)) HWI (I'x]—=6,m01)

<Ch M|¢n(zr) — xr + (np(xr) — n(2r)) - v||wos rx)—smn+

Cllgn(ar) = e + (na(zr) = n(er)) - vlwie@xg-smp

< (11on = Tlworeqey + 1 = )y ) +

O (llén = Llwoeqry + 11 = mllwroeqr) ).
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Thus thanks to Proposition 5.4.1 and the assumption (6.1.1) this last estimate becomes:
| Anllwiooxi—smop < C -

Moreover thanks to Proposition 5.4.1 and the assumption (6.1.1) we get:
AR lwroerxi=smop < C - B2,

Thus combining these two last estimates with the regularity of the function £ and the
decomposition (6.3.7) end the proof of (6.3.4) and so the proof is finished. O

6.4 Explosion of the H° norm of the function u;

Unfortunately the exact solution have the following explosion behavior of its H® norm
for s > 1:
Proposition 6.4.1. If the function p and fi belongs to C™r (TI'x[0, 1]2) then for all ¢ < my
and 6 > 0 we have us € H1(Cys) N HI(QY) and there ezists C' > 0 independent of § such
that:

[0 || ragy) < CO™0. (6.4.8)

Proof. The proof of us € H1(Cs)NHY(Q) is already made in [57, Theorem 4.21]. Therefore
it is sufficient to prove the estimate (6.4.8)

By using charts and unit partition of unity, we can assume that I" is R x {0} and
s = Rx] — §,1]. Thanks to Leibniz formula we have:

div (p’Vo,u’) = ¢° and 9,0,u’ = 0 on 9y, (6.4.9)

with ¢° := 9, f — div(9,p°)VI,u’ — k?d,(u’u®) and it is easy to prove existence of C' > 0
independent of § such that the following estimate holds:

19° | eyt < CO71,

and thanks to (6.4.9) we get existence of C' > 0 independent of § such that we have
Haguéu wis) < €671 We can prove by recurrence that in fact we can extend this last
estimate in the sense that there exists C' > 0 independent of § such that for all ¢ < mp—1

we have:
b)| 0%’ || pr1ay) < CE7 (6.4.10)

Now let us prove by recurrence that we have for all 1 < ¢ < mr existence of C' > 0
independent of ¢ such that:

Hag_lai“lsuﬂ(cé) + |0, <cs Y, (6.4.11)

s HL2(Q)

Thanks to (6.4.10) we first get the initialization ¢ = 1. Indeed thanks to this estimate
we get existence of C' > 0 such that:

18,0 2(05) + 1020, 0| r2(025) < Ol [l 10y < CO~17Y,
Now let ¢ > 2 such that we have for all ¢/ < ¢ — 1 that

<05, (6.4.12)

Vi<q ’
=0 L2(®)

o husl| ]

ok

L2(Cs)
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and let us prove that this last estimate implies:

Vi <gq, |00,

U5HL2(C,;) T HagilaalvutsHLz(Q) <csah, (6.4.13)

Inside this recurrence we do a second recurrence for a fixed ¢ < on 0 <[ < ¢'. First let
us study the case of [ = and [ = 1. Indeed thanks to (6.4.10) we get

1056’ || 12(05) + 10205 4’ [l 12(0,) < CINOF [l () < CO107D.
Therefore it remains to prove that for all 0 <1 < g —2 we have the following implication:

vz'gz,)

ool < Com = Jlog a2 | < oo (6.4.14)
Indeed assume that we have:

vz'gz,(

01" 9l H < ¢olaD), (6.4.15)

We have from the equation satisfied by our solution u’: 9,p°9,u’ +9,0°0,u’ + k*pi’u’ = f
the following useful equality:

P’ = A0 +67'B° - Vi’ + D°u’ + (¢°) 7 f,
where A% B® and C? are function p —d—periodic, which leads to the following useful
identity:
85’“”@;” 5 _ 85*“2)8; (8§u5),
= 95719 (A0’ +67'B° - Vu' + D°u’ + (¢°) ' f) .

Moreover combining with the identity (5.4.38) yields existence of C' > 0 independent of
0 such that we have:

[og- Pl <y (Q;’“”“ FOQY + QY + 5—<q—2>> (6.4.16)

a'<qg—(1+2)a<l

where we defined the following quantities:

Y

]

oa g—(I4+2)—a’ gl—a 46 24+a’ qa, 6
Qe = o o= 40| x [|oz+ gou

o«

—(+2)—a’ gl—a Rd o Ha é
2 = (o1 R glma ol |1 9% 00V

/ _ A _ ’
7 = |or- o x o o

Moreover using that {A° B° D°}s are 9r —d-periodic sequences implies that these last
estimates become:

i

Qo' < O« grHlaas2) o ||gpeal oy

g < 0 gt o |

o ol + |

o5 o5l

)

! _ / ’
G < gt o oo’
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which also can be rewritten in the following forms:

Qs < € gt |

2+d'+a)—aqa, é
9, agu’|l,

Y

Qgc N <C- 6—q+(a+a +2) % (’ A

8(0/-&-04-&-1)—048?“6“ + ‘

aéa’+a+1)—(a+1)a§+1u5H>

2/704 <C- 5*Q+(a+a’+2) X Halga+o/)fa’8xau§H ,

Thanks to our recurrence hypothesis (6.4.12) and (6.4.15) these last estimates become:

(Q < ¢ .5 ateta't2) o g-Chata’-1) < g5-la-),
bo/,a <O (57q+(a+a’+2) « () a(a’+a+l)*0¢a§u5H 4 ”a@ga'JraJrl)*(O‘*l)a?*lu‘sH> ,

Yy
< C- 5*q+(a+a’+2) x 57(a+a’+171) < C(sf(qu),

/ /
e < O §at(ata’+2) o ‘ !

3(0‘“‘,)’0‘,8?@” <C. §at(eta’+2) o s—(a+a’) < 05(q71)’

which leads to Q2" + 5*1QZ‘,’& + Qg/’a < C6~@ Y. Thus combing this last estimate
with (6.4.16) end the proof of the implication (6.4.14). Therefore we succeed (6.4.13),
which concludes the proof the induction step of the proof of (6.4.11). Therefore we can
conclude. ]

Unfortunately the classical approach require the following very restrictive condition:
Existence of C' > 0 such that for all 6, h > 0 we have for all hy € T},:

hy < C65 - h. (6.4.17)

6.5 Technique of mesh refinement near the boundary
I

It is however possible to replace the very restrictive condition (6.4.17) by a less restrictive
one which is existence of C' > 0 such that for all § and h > 0 (see Figure 6.2)

he < C((S + dist(Th, r)) h, (6.5.18)

where we defined for all subset w C €:

dist(w,I') := inf dist(z, ).

rTEW

Indeed we succeed to prove the following result:
We are inspired by the famous result of interior regularity for the Laplacian operator:

Au=01in Q = u e C™(Q). (6.5.19)

Let us prove the following extension of this result of interior regularity (that can quantify
how the regularity of the solution decreases when we approach the boundary T'.)
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(a) Brute force mesh (b) Mesh with refinement method

Figure 6.2: Mesh refinement

Proposition 6.5.1. Let u € H(Cy,,) and s < mp — 2 such that:
Au+ku=f e H(Cy,) and Qu=gE¢c HS_%(EWO),
and let v : Cy,, — R defined for x € Cy,,, by:
v(x) = dist(z, ).

Then we have 7**tu € H2(Cy ) with existence of C > 0 such that:

17l es2(cin gy < C (1 lae(chng) + 190 o35, ) (6.5.20)

and for all open subsets w C Cj,,, we have the following bound of the H*** norm of u
when w approachs the boundary I':

|ul| vy < C - sup ||ﬁ5/+1u||Hs/+2(w) - dist(w, )=+, (6.5.21)
s'<s

Let us give somme comment about this result. Indeed (6.5.19) states that the function u
appearing in this belongs to C*°(Q2). Thanks to the sobolev embedding theorem, this is
equivalent to: For all open bounded w C 2 satisfying dist(w, ') > 0, we have u € H*"?(w)
for all s > 0.

However, the restriction ur of v on I' might be discontinuous. Figure 6.3 is a graphical
illustration of a numerical approximation of the unique solution of Au = 0 satisfaying
w=0on %, and for all (z,y) € T

u(z,y) =1ifzy >0 and wu(x,y) = —1 else.
Then in this case we a priori have:

lim [l ) = oo.
dist(w,I')—0
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Figure 6.3: Illustration of a function satisfaying Au = 0 discontinuous on I'.

Hence the estimate (6.5.21) appearing Proposition 6.5.1 give an estimate of how the
quantity ||u|/ s tends to infinty when dist(w,I") — 0.

A second commentary is that we will strongly use this last result in the proof of Propo-
sition 6.6.1. More precisely we use it to estimate the error u° and its P! interpolation on
each cell of the mesh. We recall that for each cell T}, of the mesh, one has:

[0’ — T1’| g1 7y < O 2 (my) s

where II is the P! interpolator and hy is the diameter of the cell Tj,.
Proof of Proposition 6.5.1. Thanks to results of regularity we can assume that f = 0 and
g = 0. First we prove by recurrence that for all —1 < s’ < s we have 7**u € H**2(Cy,,)
with existence of C' > 0 independent of u such that:

17 | sy ) < Clltll it ng)-

The result is clear for s = —1 and let s’ < s such that this last property is verified.
Thanks to Proposition 1.3.1 (See Chapter 1), we get that the function 7 is at least C?
and u is C*° on the interior which leads that we strongly have in Cj s:

(A + k) (772u) = P42 (A R2u) + 2V 2 Vu o+ udi 2,
= 2(s' +2)5" - Vir - Vu + u - div ((s +2)0 S“vu)
=(s'+2) ( 20 Vi Vu4u- " A + (5 + 1)0° |Vﬂ|2u>
Combining this last identity with |V7| = 1 leads to:
(A + k) (175/+2u> = (s'+2) ( 20" VD Vu+ u- ¥ A + (s + 1) u)
Moreover we have:
Vi " NMVu =V V() — (s + )5 u
which leads to the following identity:

(A + k%) <~S Hu) = (s +2) (2 Vi V(0¥ ) + uo¥ A — (s + 1)ﬂslu)
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Combining our recurrence hypothesis with 7 € WS/JFZ(C’O,(;) yields existence of C' > 0 such
that:

V(ﬁ8/+1u) E Hsl+1<007770) Wlth HV(I;S,—H[U/)H g CHUHHI(CO,TIO)’

H¥'+1(Co,n)
and ur* TTAD — (' + 1) 'u € H¥+Y(Cy,,,) with

HuﬁS’HAﬂ (8 + 1) < Cllullm(co,,):

H5/+1(CO,770)
yields existence of C' independent of u such that:

(A+K?) (572u) € B (Coy) with [|(A+K2) (74| < Cllullmcy.).

H'+2(Cy 5)

Since the function 7* 2w satisfies the homogeneous Dirichlet condition on I' then regu-
larity result for the laplacian operator yields this last one belongs to H*+3 with existence

of C' > 0 such that:
~s'+2 ‘

|7
Thus to finish the proof of this proposition it remains to prove estimate (6.5.21). First
let us prove this last result when I' is the plane R? x {0} because the expression of
the function 7 is explicit. Indeed in this case we have for all (z,v) € R%x]0,no| that
v(x,v) = v. Thus in this plane case the estimate (6.5.21) is a direct consequence of the
following result: For all ¢ € N there exists C; > 0 such that for all © smooth enough we
have:

<
HS’+3(C 5) CHUHHl 005)

‘Q?Hu < Cu i ( max |07 (V7 u)‘) (6.5.22)

0<q¢'<q

Let us prove this last result by recurrence. Indeed this result is clear for ¢ = 0 and then
assume that the result is true for all 0 < ¢’ < ¢ and let us prove that the result is true
for ¢ + 1. Thanks to Leibniz formula we have:

q+2
/ ! 1 !

q'=1 1

which leads to:
q+1

Vq+laq+2u _ aq+2 VQ+1 + E qulqu q u,

where we posed for 1 < ¢’ < ¢+ 1 the quantity:

N q+2 41 (Q+1)'
Cor 1= ( q ) STV

Thus combining this last identity with our recurrence hypothesis yields:

q+1
VIt 2y < 1092 (0T )| + <Z C’qq/> : C'q< max |8q o u)‘),
q'=1

0<q'<q

q+1
< (1 +Cy Y qu,> X max |07 (17w,

q'=1
N -~ 7

=g+l
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which end the proof of (6.5.22). Now assume that I' is not the plane and bring us back
to the plane case. To do that, first prove existence of C"" partition of unity of Cy,, and
collection of diffeomorphism ¢; : w; — w! x]0, no[ where w; is the interior of the support
of the function y; and w} is an open bounded subset of R? such that we have the following
property:
vog;,=0r in w. (6.5.23)

Let (x}); be a C™ ™! unit partition of unity of the boundary I and for all i the set T;
is the interior of supp(x}) . From this unit partition of unity , we can define a new one
of the domain Cp,, defined for x = zr + vn(ar) and i by x;(z) := xi (zr) and this unit
partition is C"™T.

We can chose the unit partition (x;); such that for all ¢ there exists an open bounded
set wl C R? and a C™r ! diffeomorphism ¢! : w C R* — T'; C I'. Then the interior of
the support of the function y; is given by:

w; = {ilfr +vn(ar), ar € Ty, v 6]0,770[},
and from this last set we can define the map ¢;w; — w} x]0, o[ for x = zp +vn(zr) € w;
by
¢i(x) = (67 (2:),).

It is clear that this last function satisfies by construction the property (6.5.23).
Since (x); is a unit partition of Cj,, we have:

) < ) vl

%

(|| Hs+2(wnw;) >

and using that for all 4 the function y; is C**2 and ¢; is a C*2 diffeomorphism yields
existence of C' independent of u such that:

||u||Hs+2(w) S CZ ||<Xlu) o ¢;1||Hs+2(w;), (6.5.24)

where we defined for convenience the set w) := ¢;(w N w;) Moreover since w; is an open
subset of R?x]0, o[ we can apply (6.5.21) which leads that for all i

1(xiu) 0 7'

Ho2(w) < C dist(w}, R* x {0})~ ) sup ||v® +1(x, )o ,L-_1||Hs+2(w£).

0<s'<s
Combining this last estimate with the property (6.5.23) yields that for all :

| (xiu) o ¢;1‘|Hs+2(w;) < Cdist(w Nw;, 1)~ sup ||(7° +1 Xit) o gzﬁ;lHHs-rz(w;),

0<s'<s
and using that w N w; C w = dist(w Nw;, ') > dist(w, I") leads to:

1(xiw) 0 67 Ml srauyy < O dist(w, D)=+ sup ||+ xpu) 0 67|

0<s’'<s

Hs+2 (w;) .

Moreover reusing that ¢; is a C**2 diffeomorphism leads existence of C' independent of u
such that for all ¢ we have:

1(xiu) 0 67|

Hs+2(w)) < C dist(w, )~ sup ||7° HX‘UHHH?(W),
0<s'<s
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and combining with the regularity of x; leads that this last estimate become:

1(xiu) © 677

He+2(w)) < Cdist(wjr>*(8+l) sup H175’+1u‘
0<s’'<s

Hs+2 (wz) .

Thus combining this last estimate with (6.5.24) end the proof of estimate (6.5.21). [

6.6 Convergence of the method

Theorem 6.6.1. If (6.5.18) is satisfied then the following estimate holds:
[u® — ud o &)|| gy < Ch.

Proof. Let TI;, : C°(923) + Vj, be the Pl-interpolation operator and I, : C%(Q;) — Vj, 1=
{X o ¢, X €V} defined for u € C°(Qs) by:

ﬁhX =11, (X o (ﬁ;l) o ¢h-

First let us prove existence of C' > 0 such that for all h,d > 0 the following estimate
holds: .
|u® — g, ul|| < C - h. (6.6.25)

Thanks to [28, Theorem 15.3] for all 7" € Tj, the following estimate holds:

|8 = T?|| < Chrfu (6.6.26)
i (T)

[z

Thus thanks to Proposition 6.4.1 we get existence of C' > 0 such that for all §,~ > 0 we
have:
<Clw

HY(T) ~

dist(T,T) < § = st - f[Thu‘S‘ h. (6.6.27)

'uéHHQ(T)

Moreover thanks to Proposition 6.5.1 we get existence of C' > 0 such that for all h,é > 0
we have:

VT €T, ||u < Cdist(T,T) 7" - ||

6HH2(T) = 'u6HH2(T)’

which leads combined with (6.6.25) and the constraint (6.5.18) to:

- -1
<O(5dlst(T,F) +1

VT €Ty, <
HY(T) 2

) i1
|77 U(SHHQ(T) ~h

|

‘Ué — ﬂThU
Therefore we get the following implication:

VT €Ty, dist(T,I') > § = Hu5 - fIThu‘S’

<C|7-u h,

5 .
HY(T) HHQ(T)
and combining this implication with (6.6.27) end the proof of the estimate (6.6.25).
Using similar argument from the proof of Proposition 5.4.3 yields existence of hg > 0

and 79 > 0 independent of § and h such that for all 2§ € V}? we have:

|h| < ho = H-fiHHl(Qg) < 1o sup ai(ﬂfi,yi),
vnEVY

é
195 511 ()1
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which leads to:

(IR CAREE

s (v1. .6 ~1 5 .0
+ su a (H u’ o —uy, ) .
Hl(Q(;) 770 yhe‘% h Ty (¢h) h yh

9
193 511 ()1

< -
HY(QF)

Combining this last estimate with (6.6.25) and the uniform continuity of the sesquilinear
form ¢ yields:

Juro 6ty -

<Ch+ny sup a (u’o(gn)" —uj,yp),

Hl(Qg) thV}‘f

uy;inHl(Qg):l
which leads combined with (6.2.2) to:

[yt —ul < Chm swpal(u oo u) — (v o o))

Hl(Q(;) thVfE

é
1930 41 )1

<Ch+mny sup a) (uo(¢n) " yp) —a’ (W, yp o))

5
thVh

Hygqu(ng):l
Therefore it remains to prove that the following estimate holds:

sup aj (u’ o (¢n) 7" 4p) — d’(u’,yp 0 47) < Ch. (6.6.28)
thVh

é
195 511 )1

To simplify the writing we assume that k& = 0 because the generalization for k& # 0 is

obvious. For all y, € V? we have that the quantity: E(yp) := a (v’ o (o) ', yp) —
()8 216 o A

a’(u’, yj, © ¢}

E(yp) :/Qh ooV (u’ o (o)) -VyidQ?—/Q PPV (u®) -V (yh o ¢1)dSs,
2/ (DQVu‘s,V(yio@))ng
Qs

where we defined the tensor field Dg := p$ o ¢, - D¢, ' - D ng,;T |det(D ¢p,)| — p°. Therefore
it is sufficient to prove that:
| Dall o0y < Ch. (6.6.29)

Indeed from Proposition 5.4.1 we get that
HD 67 Dy |det(D éy)| — 1H oy SO (6.6.30)
L>®(Qgs
Moreover to (6.5.18) and the regularity at least C(T;[0,1] x [—,0]) of the reference
function p we have:

||pi ) Qbh — p6||Loo(Q6) S C||p6||woo(05) sup hT S 05_1 sup hT S Ch.
TETS TCQM\Q, TET) TCU\Qp

Thus combining this last estimate with (6.6.30) end the proof of (6.6.29) which conclude
whole the proof. n
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Chapter 7

Numerical validation of the
approximate boundary conditions

Here we present numerical comparison between the exact model and the approximate
model.

7.1 Algorithm for construction of mesh and computa-
tion of local coordinate

We emphasize difficulties to mesh our geometry and computing our coefficient. Indeed
the thin coat and the function p° and u’ are defined from the local coordinate function
L. Indeed we recall that:

Cs = L71(T'x] — 4,0]),

and for all z € Cj :

iy Yr(zr) v
p(l’)—p(l’r, 5 7(5)7

with (zr,v) = L(z). We recall that this last function is implicitly defined by its inverse
L1 given by:
LY (xr,v) = xr + vn(ar).

Although the quantity xr can be explicitly defined by the minimizer of the functional
defined on I" by

xr — | — or|,

and v be defined by:

v=(x—axr,v),

it is easy to see that a brute-force using this last formula will be very slow. Indeed let N
be the number of point of discretization of C's. Then for x € Cy, an exhaustive research
of the closest point zr € I' has a average times proportional to N. Since the method will
do it for each point of the discretization we get that the complexity of this brute-force
method is O(N?). Moreover if we assume that § is very small, therefore N will must very
large compared to 1/5. We will see that we typically take N = 10000 x 20 and then the
computer will do 40 000 000 000 operations.
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Figure 7.1: The rectangular triangulation
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0,0

PO,M = PN,M PO,O = PN70

Figure 7.2: The transformation of mesh

Now this last difficulty is described, let us explain the way we use to overcome it.
First define for 6, N, M T n s the rectangular triangulation by the mesh of |0, 1[x] -4, 0]
whose vertex is the collection (P;;)o<i<no<j<m defined for 0 <i < N,0 < j < M by:

pij = (Z/Na _]5/M)7

and the triangles which are the collection (777, Ti;)ogig N-1,0<j<m—1 defined for 0 < i <
N—-1,0<j <M —1 by (see Figure 7.1):

T = {(i,j), (i+1,7), (0,7 + 1)} and T = {(7; +1,5+ 1), (i+1,7), (i, + 1)}.

Thus from this last mesh, we construct a new mesh 7 y 5s defined by the transformation
by the function £79 : [0, 1[x] — §,0[— Cs defined for (¢,v) € [0,1][x] — 6,0] by :

L5t v) = S(t) —v-n(S()),

of the mesh T(;, ~.m- More precisely the vertex of this mesh is defined by the mesh whose
vertex is the following collection:

(Py)ij = (L75(Py))is,
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Figure 7.3: Example of meshing of the thin coat

and the triangles are the same as the initial mesh T(;, ~n. (see Figure 7.2).

We implemented a little program written in C++ that take an initial mesh 7}, of the
domain © whose format is “.msh” and builds a new mesh T} of the domain Q; with
same format. We refer the reader to Figure 7.3 for an example of application of this last
algorithm.

The initial mesh 7}, is represented by a triplet (V},, Ty, ') where:
e N/ and N} are the number of vertex and triangle of the mesh T},.

o V), € (R*)Ni is a finite sequence of point of R? containing the vertex of the mesh
Th.

e The triangles are represented by element of Ps which the set of subset of ({1, -, N}'})
whose cardinal is 3. All {iy,i9,i3} € Ps represent the triangle whose corners are
Vh(il), Vh(lg) and Vh(’Lg)

o T € (Ps({1,-, ;{}))Nﬁ is a finite sequence of P3({1, -, N/}) containing the triangle
of the mesh T},.

e N} is the number of point of discretization of the boundary T.

o I'y e {1, N;j}NfE is a finite sequence such that for all ¢ € {1,-, N/} the point V}(7)
belongs to I

For any set F and natural n, the concatenation operator - is defined for all (Ly,--- , L,) €
E™and L,y € Eby (L1, ,Ly) - Lpy1 := (L1, -+, Ly, Lypy1). We introduced this last
operator in order to represent the insertion operation. Therefore we can give the algorithm
we use to construct the new mesh (V2,77 T9):
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Data: (Vh; Th, Fh)

Result: (V}f, T]f, th, I/h)

(VO T?) < (Vi, Ty); Initialization with copying the initial mesh;
for 1 <i < N} do

P Via(T'h(d)) ;

N < normal(V,,(I'y(i — 1)), Vi(I'n(? + 1)); Approximation of the unit
normal ;

for 1 <j < N.do

Vj <= = ]/Nc )

P, < P+v;-N;

V2« VPP, ;We push the the vertex on the mesh T};
(I, 1o, I3, 1) < Carre(Vy,1,7) ;

t}ll < {]1, I, ]3},

tl2z < {]2, I3, ]4},

Th — Th : t}L;

Th — Th : Zf,%;

Xrp(lh) < i/ Ny;

vi(h) < v;

end

end

Data: (P_y, P)

Result: N

DP «+ Vh(Fh(i + 1)) - Vh(Fh(i - 1)) ;
DP <« DP/|DP|;

N (_DPZaDpl)

Data: (P_, P)

Result: N

if j =1 then

Il <—Vh(Fh(z),

IQ < Vh(Fh(z + 1),

else

L < N/ 4+(i—1)-N.+j—1;
Iy N/ +1-N.+j—1;
end

I3 N/ +(i—1)-N.+7;
Iy« N/ +1-N.+j;

7.2 Configuration
e The reference function function are defined by u = 1 and for (zr, z,7) € T' x [0, 1] X
[—1,0] by:
plxr; &, 0) = 1.25 4 cos(27).
e The function g is defined for z := (cos(6),sin(0)) € OB by g(z) := cos(56).
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e The kite is the region in the case where the application P : [0,1] — R? is defined
for ¢t € [0, 1] by:
P(t) := (cos(t) + 0.3 - cos(2 - t),sin(t))

e The ellipse is the form in the case where the application P : [0,1] — R? is defined
for ¢t € [0, 1] by:
P(t) := (0.6 - cos(t),0.4 - sin(t))

e For meshing the domain €25 we always take 1500 point for the discretization of JB.

e For meshing the domains €25 we always take 60000 x 30 of discretization of the thin
coat Cj

7.3 Graphical comparison for thin mesh of the approx-

imated solutions
Here we take to approximate the domain €2, 10000 points of discretization on the boundary
I'. We present numerical results in Figure 7.4 for £ = 10 in the case of a kite. In this
case we don’t see difference between the exact solution, the first order solution and the
second order solution for two values of §. For the two values of ¢ figures are very similar

but present small differences. Finally we do not see a difference in the case of the ellipse
presented in Figure 7.6.

7.4 Graphical plot of the error:

Let n > 0 and K, := {z € Q, dist(z,I') > n}. We introduce a regular third mesh 7™ of
the domain K. Let II;™ : H'(R?) — Vier be an projection application the space Vier of
Py function on this last mesh. The error is defined for n > 0 and ¢ = 1,2 by:

6% = Hf]rr(ui — uf’h)

7.5 Numerical rate of convergence

We seek to numerically show the estimate (4.5.91). To do that emphasize this last
estimate is equivalent to the existence of C' such that we have for all : = 1,2 and 6 > 0
the following estimate:

In (|u’ = | m)) < (84 1) - In(8) + C.

Thus we produce for the same geometry and right hand-side several simulation for sev-

eral small (J;); and we do a linear regression between vector (In(d;)); and (ln (JJub —

ufj | a1 K)))j and we compare the slope with the theoretical slope ¢ + 1. From Figure 7.7

the slope comparison for a kite looks good but looks worst for an ellipse.
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I ———

(a) exact solution, 6 = 0.01 (b) order 1, 6 = 0.01 (c) order 2, § = 0.01

(d) exact solution § = 0.02 (e) order 1, § = 0.02 (f) order 2, 6 = 0.02

Figure 7.4: Graphical comparison for the kite and k£ = 10
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(a) exact solution, 6 = 0.01 (b) order 1, 6 = 0.01 (c) order 2, 6 = 0.01

~0.000 ~6.00 ~3.000 0.000 +3.000 +6.000 40,000 SR000 6000 4000 2000 0000 42000 44000 46.000 8000 SRON G000 4000 2000 0000 42000 41000 46000 43,000

(d) exact solution 6 = 0.02 (e) order 1, § = 0.02 (f) order 2, 6 = 0.02

Figure 7.5: Graphical comparison for the kite and k£ = 20
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:I

(a) exact solution, 6 = 0.01 (b) order 1, 6 = 0.01 (c) order 2, § = 0.01

(d) exact solution § = 0.02 (e) order 1, § = 0.02 (f) order 2, 6 =0.02

Figure 7.6: Graphical comparison for the ellipse and k£ = 10
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Part 111

The case of 3D Maxwell equations
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Chapter 8

Description of the Maxwell’s equations
and objective

We have extended part I and II for the scalar case to the vectorial case.

8.1 Description of the studied problem

Let us start with a quick description of the geometry of our problem and a presentation
of the model problem. Let O be a bounded domain of R? such that R\ O is connected
with C'*° boundary I" and 6 > 0. We call the “thin coating of width §” the following
subset C? of O:

C° = {z € O, dist(z,T) < §}.

Here the quantity dist(z, ") is the distance of x from the surface I' defined by

dist(x,T") := inf |z — zr|,
zpel
and |.| is the classical euclidean norm of R3. We need to introduce the complement of
OinR?Q:=R3\ O and Q° := QU (% We refer the reader to the Figure 8.1 for an
illustration in 2D. The electric and magnetic fields are respectively denoted by E° and
H?. We introduce the curl operator defined for vector field:

Ei (21, x2, 2)
E : (x1,29,29) — | Ea(x1,29,22) |,
E3($1,5U2,1'2)

Figure 8.1: Illustration of the geometry
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y x =xr + vn(ar)

0

Figure 8.2: Illustration of (zr,v)

a:thQ - a$2E3
rotF = | 0,,E3 — 0.,
anEl - 8:ElEI2

The problem that we are interested in is the following: Find (E°, H°) € H..(rot)? such
that:
rotE° = —ikp’H®° and  rotH’ = ike® E° + Jyuree in €, (8.1.1)

with the following boundary conditions:
E°xn’=0 and p’H°-n°=0 on Is:=09° (8.1.2)

and E°, H° satisfy the Silver-Muller radiation condition (See [59] and [69]):

lim |z| (Hé(x) x L E‘S(x)) = 0. (8.1.3)
Here n and n are respectively the unit outward normal to 99° and €2, k € R is the
wave-number and Jyoumee denotes a given current source. Moreover €, u denote the
characteristics of the medium supposed to be equal to 1 in €2. These function are supposed
to be ¢r —d— periodic in the thin coating C° associated to reference function ¢ and ji.
We recall that it means that for all € C° we have

() = é(zr; &,0) and  p’(x) = ji(ar; 2,0)

where (xp,v) € I'x] — §,0[ are the unique solution of x = zr + vn(zr) and (Z,0) :=

(¢r(zr),v)

problem. We recall that (8.1.2) means that we use a model of perfect conductor and
(8.1.3) mean that the scattered waves is outgoing.

. (see Figure 8.2). In this work the map ¢r : I' — R? is a data of our

8.2 Assumption on the coefficient and the map r

We assume for technical reason that:
infé >0 and infj >0, (8.2.4)

to ensure that our problem is well posed. (See [58]). We will see that the following
regularity well simplify our analysis:

(é,f1) € C <F;L°°(YOO))2 and ¢ € C®(D)?, (8.2.5)
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1

Figure 8.3: lustration the of infinite strip

V)

~ \\\\\\\\\‘
W (ir )

R2

Figure 8.4: Illustration of the map v : I' — R?

where we introduced the infinite strip Y, :=]0, 1[2x]—, oo[. (see Figure 8.3). We assume
the existence of a open set I'y; C T such that for all yp € Ty there exist neighborhoods
V(yr) € T, W(¥r(zr)) € R? of yr and 0 such that ¢r : V(yr) — W(¢r(yr)) is a
C* diffeomorphism.(See Figure 8.4). Our coefficient ¢ and i are supposed “patching
admissible”. We recall that it mean that for all zr ¢ I' the map (Z,7) — é(xr; 2, 7) does
not depend of Z.

Finally we impose that supp(Jsource) N T = 0.

8.3 Effective boundary conditions

The objective of this work is to find an operator Z defined on some space of functions
defined on I' and takes values in some space of functions defined I such that if we delete
from our geometry the thin coat Cj and we replace by what we call the impedance
boundary condition:

WE® = ikZ(yrH’),

where we define for function u :  — C3 the two traces for xr € " by:
yru(rr) := (n(xp) x uler)) x n(zr) and  yu(rr) = u(zr) x n(er),
then the new scattered fields (E°, H°) are a good approximation of the exact field.
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The case of uniform coefficient in the thin coat has already been studied in [44] and

[14].

8.4 Summary of the work

The main steps of our work are as follows:

1.

By using the method of matched asymptotic expansions, we construct a sequence
of vector fields (E™, H"),en such that we have for all n € N the following estimate:

E° =) 6*E* =0(5"") and H° =) §*H* =0(5"), (8.4.6)
k=0

k=0

. We identify an operator Z; such that we have for all 0 <n’ <n

wE' =ikZypH® and vE°=0onT.

. We emphasize that this last equality yields:

Y (E*+ 0E") —ikZ) (vr(H® + 6H")) = O(5?). (8.4.7)

. We prove that the approximated boundary condition is stable. This means that

there exists C' > 0 independent of § such that for all E, H : Q — C3 satisfying the
Maxwell equation (8.1.1) with Jyouwee = 0 and the radiating condition (8.1.3), we
have estimates of the form:

VB + |H] < Cllgrll with gr = %E — 6ikZ, (yrH) . (3.48)

. We introduce the function (ES, H{) : Q + C? defined as the unique solution of the

Maxwell equation (8.1.1) and the radiating condition (8.1.3) such that we have on
I
WEY — §ikZyyp H? = 0. (8.4.9)

. We combine (8.4.8) with (8.4.9) which leads to

Ve (E° + 0E° — E)) — ik 2y (vr(E° + 0E° — EY)) = O(6?). (8.4.10)
Combining this with (8.4.7) yields:

|E® +6E" — EY|| + ||H® + 0H" — E}|| = O(67).

. We combine this last estimate with (8.4.6) which yields by using the triangle in-

equality the final estimate:

E°— E) =0(5*) and H°— H!=0(5").
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Chapter 9

Formal asymptotic expansion

9.1 Summary of the matching expansion method in the
Maxwell case

This method consists in seeking two asymptotic expansions of the solution. One is valid
near the boundary called the near-field expansion and the other is valid far from the
boundary called far-field expansion. Firstly let us chose a function 1 : § +— 7(d) such
that:

lim () =0 and lim @ = 00, (9.1.1)

d—00 d—00

and define the following zones (see Figure 9.1 for a graphical illustration of these regions):

e The far-field zone is defined by {z € Q, dist(z,I") > 2n}. For all point x in this zone
we assume that our field take the following form:

=> §"E"(z) and H°(z)=)» 6"H"(v) (9.1.2)
neN neN

where for all n € N the functions E™ and H"™ are defined on 2.

e The near-field zone is defined by CsU {x € Q,dist(z,T) < 770} In this zone we have
to take into account the 1r —d—periodicity of our physu:al coefficient p?, €®. That is
why we use a more complicated ansatz inspired from the periodic homogemzatlon

5]
In this zone we formally assume that E° and H? are a series of 1p —d—periodic
function. That means that for all point x in this zone we have:

:Zé"ﬁn(asp;:ﬁj) and H°(x 25” (zr;z, D), (9.1.3)

where (xp,v) are the unique solution of x = xr + vn(zr) (see Figure 8.2) and

(z,0) := %;)’V) (9.1.4)
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Matching zone

(o ¢ 0, 20(0) < dist(x. )

Near field zone B
{z € RY, dist(z,I) < n(8)} "\ \

o N ]
E(z) = 205"E (zr; T .
n= L [

Figure 9.1: Illustration of the three zones

) ‘ \ Far field zone
/. Az ¢ 0, n(s) < dist(z,T) < 2n(6)}

E(x)= Y "E"(x)

n=0

Here for all n in N the function E"H" :T — P(Q) is defined from I" into P(Q)
and we recall that P(£2) is the set of function defined on €2 := R?*x] — 1, 00| and
one periodic on the variable z.

e The overlapping zone is defined by {x € Q,n < dist(z,T') < 25} . In this zone expan-
sions (9.1.3) and (9.1.2) are assumed to be both valid and then should be equivalent.

We now built a system of equations in order to determine the sequences (E™, H™, E'H n).

9.1.1 The far field

Identifying formally each coefficient of (8.1.1) and the radiating condition (8.1.3) as an
individual equation yields that for all n > 0 that:

rot H° = ik E° + Jurce,

I (9.1.5)
rotH" =ikE" if n > 0.

rotF" = —ikH" =0 and {

The fields E™ and H™ are required to satisfy the radiating condition (8.1.3). Thanks
to the time harmonic Maxwell scattering theory(see [58]), we get that a necessary and
sufficient missing information as this time to construct the field E™ is the knowledge of
the tangential trace 7, E™. However we will see later that this last quantity is linked with
the asymptotic behavior of the near field thanks to the matching condition.

9.1.2 The near field

For technical reasons of computation, we prefer to replace the expansion (9.1.3) by the
following one:

E(z) = Zé”([ + I/Rp(xp))_lﬁn(xp;f, ),

el L (9.1.6)
H(x) =Y 6"(I +vRr(ar)) H"(wr; &, 9).

neN

Here for all n € N, E, and H, are function defined on I' x {2 and one periodic on .
These series are required to formally satisfy the following equation:

rotE° = —ikp’H® and rotH’ = iku’E°, (9.1.7)
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with the boundary condition: For all n € N if (zp, #,7) € T' x 9 then:
Eo(xr:2,0) xn(zp) =0  and  f(er; &, 0)Hy(er; &, 0) - n(ar) = 0, (9.1.8)

The detail of the analysis of this last expansion will be given later.

9.1.3 Matching condition

We will later see that the formal analysis of the required equation (9.1.7) implies for all
n € N the existence of polynomials (P, P*) € C* (I'; C,[2])* such that:

A

E™Mar;&,0) ~ PMap;p) and H"(zp;2,0) ~ Pper; i), (9.1.9)

U—00 U—00

where (zr,2,7) are defined by (9.1.4). For all 0 < j < n, Pp’ and Pj” are respectively
the j-th coefficient of the polynomial P} and Pj;. By inspiring from [37], we impose that:
azZ/En (‘Irv O)

af/f{n<xra 0)
7! ’

2!

Here, the functions (E™, H") are defined for (z.,/) € I'x] — §,2n[ b

PR (ap) = and Py (ap) = (9.1.10)

E™(xh, V) = (I +v'Rr(zp))En(2') and H™(2h, V) = (I + V' Rr(zp))Ha(2'),

where we defined 2’ := 2 +v'n(z}). The equalities (9.1.10) are what we call the matching
conditions. Let us recall now the reason of these relations: From (9.1.6) we have:

(I + vRr(2r)) E°(2) Zé”E” xr; &, 0),

n=0

(I +vRr(wr)) 25"1{" (zr: &, D).

We recall that in the matching zone we have v > n: Therefore from this, (9.1.4) and
(9.1.1), we get that © tends to infinity when § tends to zero. Therefore we can use the
expansions (9.1.9):

(I+ VRF ZEF an z(snw ZPg,i(sn—jyi’

o 9.1.11
(I +vRr(ar)) ZP'”(W” > PRt O

Moreover, v tends to zero in the matching zone. Thus we can use the Taylor expansion
formula:

aziEn(xI‘a 0)
7!
(9},H (LL'F, )
1!

(I +vRr(zr))E° (2r + vn(ar)) ~ Z 5"

n,i

([ + VT\’,p(xp))H‘S (xp + yn(a:p)) ~ Z

n,t

6”1

Finally, identifying each coefficient power of § and v of these last expansions and the
expansions in (9.1.11) yields the matching condition (9.1.10).
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9.2 Analysis of the formal equation (9.1.7)

Here we will formally show that (9.1.7) implies a relation between the quantities (E™, Em)
and the previous quantities (E"1, E"71) ... (E° E°) that we will impose for all n € N
for further.

9.2.1 Curl of yr —-periodic field E°.

Here, we seek an expression of rot(E°) where:

e Forallx € Q% E°(z) = (I+pr(a:p))71E(xr; z,0) where (zr, z, ) are defined by
(9.1.4).

e E is an element of O™ (F; Hoc(rot; Q)) We recall that:

~

Hy,.(rot; Q) = {H Qo CP, yu € H(rot, Q),VX €D (Q) } )

That will be the object of Proposition 9.2.3. To state and prove this result we need to
introduce the following notation:

Definition 9.2.1. Let u : I' — C3 be a vector field. We says that u is a tangential field
if for all xr we have u(xr) € T,.I' where T,.I" is the tangent space of xr at the point xr.
We also need to introduce differential operators on the surface I' and the infinite strip
Y.:

e The operator rotr is defined for all V(zr; z,7) € I' x Q by:
rotr(E)(zr; &, D) := rotr(E(xr; &, 0) - n(xr)) + rotr (EY) (ar; &, 0)n(zr),
with EV(zp;&,0) = E(ar; &,0) — E(zr; &,0) - n(zr).  The vectorial surface rota-
tional rotr and the scalar rotational rotr are surface tangential differential operators

that only concerns the variable xp. They are defined for tangential ur and scalar

ur fields defined on I' by:
rotp(ur) := divp(n x up) and rotp(ur) :==n x Vp(ur).
We recall that the surface gradient Vr is defined for v : I' — R and xp € T by:
Vru(ar) = Vi(ar),

where @ is an extension of u on C° such that for all (zp,v) € I'x] — 4, 0[ we have
u(zr) = @(zr + n(zr)v). The surface divergence is the unique differential operator
such that for all tangential field ur : ' +— R3 and v : ' — R:

/divr(uF)vdxp = — /ur - Vrovdar.
r

e The operator rot is a three dimensional differential operator that only concerns the
variable Z and ». This operator is defined for (zr,z,0) € T' x €2 by:
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— If ar € I'\; then:
rot(E)(zr; ,0) == Sr(ar) - <rot£71; (Z}(xp) . E(xr; &, ﬁ))) , (9.2.12)

where we defined the matrix X for xr € I'y; by:

Sr(zr) == \/det (anfgx(fi)) (D' (zr), n(ar)). (9.2.13)

We emphasize that Yp(zr) is well defined because we assumed that ¢r is a
diffeomorphism at the point zr. We recall that for all smooth map 1 : I" + C¢
for some d € N, D4(ar) : T,.I' = C? is the differential defined for v € T,.T
by:
~1
D¢ (ar) :=D (0 $)(0)(Dp(0)) v,

in the right hand-side of this equality D is the classical differential(the matrix
containing the partial derivatives). Here ¢ : V/(0) — V(zr) is a local parame-
terization of T' and V(0) C R? and V (xr) C are respectively neighborhood of
0 and ar.

— If xp ¢ Ty then:
rot(E)(xr; 2, 0) == n(ar) x 0B (xr; &, D). (9.2.14)

We need to recall a new notation:

~

Definition 9.2.2. Let 4 : ' — P()) be a reference function. We say that u is patching-
Yr-admissible if for all xp ¢ Ty the function u(xr;-) only depends on the arqgument v
1.€.

VJTF ¢ FM, Eiﬁ,,)(l’p; ) Z] — 1,0[i—> R st V([i’,ﬁ) € RQX] — 1,0[ ’&(ZL‘F;[Z', I)) = ﬁp(&?p; Ij)
Proposition 9.2.3. If E is patching admissible then for all x € Csy we have:
rot(E°)(z) = det ([—l—l/Rp(xp))_l (I+vRr(ar)) (5_1r6t(E(xp; &, 0)+rotp(E)(xr; 7, ),

where (zr, Z,0) are defined by (9.1.4).

Before giving the proof of this result, we introduce the map £ defined for x near enough the
boundary I' by L(z) = (zr,v) where (zr,v) are the unique solution of x = zr + vn(zr).
Proof. We only give the proof for xp € I'y; because the extension to xp € I'y is easy. We
will use the change variable formula for the curl operator in [58]. First we introduce the
transformation L. : Q0+ ¢p(T')x] — 4, 7| defined for = € Q° by:

Ly (z) = (@Z)F(a:p),y) with  (zr,v) := L(x),

and the vector field R° : ¢p(I')x]| — 6, n[— R® by F° := D L;IT o E;Fl -E°o Llpl Applying
the result [58, Corollary 3.58| with this last vector field and the transformation £,,. that

rot(E°) = det(D Ly,.) D£;F1 -Tot (F?), (9.2.15)
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Moreover using the formula of differential of the map £ yields:
_ D r -1 b e Dot

D Ly.0L™" = ( 1 >.(1+VRF) and DL loL7! = < o) UFvRe). (9.2.16)

Therefore for all (z,,v) € ¥r(I')x] — §,n] we have:
s - e v
F(z,,v) .—F(:pr, 5 5),

where we defined F : ¢p(T) X Yoo = R3 for (2,2, ) € ¢p(T) X Yae — R? by:
F(z,;2,0) =D (xr)'EF (wr;2,0)+es (E (rr;2,0) 771(%)) with  zr == '(z,).
Thus we have for all (x,,v) € ¥r(I')x] — 0, n| that:

rot(F°)(z,,v) = rot,, (ﬁ(xr;i,ﬁ)) + 6 'rot; (ﬁ(xr;:ﬁ,ﬁ)) with (z,70) := G V).

On the one hand combining this last equation with the definition of the operator rot:

A A

rot; 5 (F(z,;2,0)) = rot:,g,,;<(pr(xp)’l, n)Jr - E(xr; , ﬁ)) with  ap = r ' (x,)
yields:
det (¢r(zr)) (Dr(zr)™!, n) -rots,(F(v,;4,7)) = rot(E)(ar; 2, D). (9.2.17)

On the other hand since the map ¢r : I' = R is locally a chart then we have the following
expression of the operator rotr and rotr for all tangential and scalar field E* and E,, (see
[60]):

rotr Ep = det <anf(rggf)r)) rotge (D 4r T Ep o ¢r ™) o 4y,

rotrF, = det <anf(rggf)r)> (D Ur n(xp)) . rStRz(EV o1hr~1) oy,

which leads to det (¢r(zr)) (D ¢r(zr) ™", n)rot,, (F(:z:r; T,0)) = rotr(E)(zr; , 7). Com-
bining this last equation with (9.2.16), (9.2.15) and (9.2.17) concludes the proof. O

9.2.2 Equation of the near field
Thanks to Proposition 9.2.3, (9.1.7) formally becomes for all n € N:
rot(E") = ff and rot(H") = fZ, (9.2.18)
where we defined:
e The two following right hand-side:
fE = —rotr (E") + ikj1 Zn: M, T H

i=1

f = —rotp (H"') —ike Y M0/ 'E".

i=1
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e The map M : T’ x R+ L(R?) for (zr,v) €T X R by:

M(l’p, I/) = det ([ + VRF(I’F)) ([ + VRF(QZF))72 . (9219)

81’;/\/l(xp, 0)

e For all zp € I' and ¢ € N the quantity M;(xr) := y
il

In (9.2.18) we have taken the convention £~ (xp; &, ) = H ' (xr; &) = 0. We only give
the detail for the first line of this system because the computations for the second line
are similar. Indeed from (9.1.6), we have for = near the boundary:

E(x) =Y 6"(I + vRe(ar)) " (ar; 2, D).

neN

Therefore by applying Proposition 9.2.3, we formally have:

rot(E%)(z) = Y _ 6" det (I+vRr(ar)) " (I+vRe(zr)) (07 ot (B™)(zr; &, b)+rotr(E™) (xr; &, 7).

neN

By using the definition (9.2.19) of the function M and (9.1.7), this becomes

ikp(wr; &, 0)Q° (xr; 2,0) = Y 6" (rot(E")(xr; &, D) + rotp(E™ ") (ar; &,2)),  (9.2.20)

neN

where we defined:
Q°(xr; &, 0) == M(wr,v) (I + vRp(ar)) " Ho(z)
Moreover from the definition of the quantities M, (zr), we formally have:
M(zr,v) = Z VI M(ar) = Z &0 M (ar).
=0 =0

Combining this with (9.1.6), yields:

Q(zp; 2, 0) = Z(S"Mj(xp)ﬁ"ﬁ”(xp; T,0).
neN
Combining this with (9.2.20) yields:
> 0" (vot(E")(xr @, 0) + rotp(E" ) (ar; 2,0)) = Y 0" M(ar) 0" H" (ar; &, D).
neN neN

Identifying each power 0" in this last equation conclude the proof of the first line of
(9.2.18).
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9.3 Explicit construction of a solution of the equation
of the ansatz

Here we will give a process of construction of the sequence (E™, H", E", H ")nen such that
this sequence satisfies (9.1.5), (9.1.8), (9.1.9), (9.1.10) and (9.2.18). Let us summarize
this section:

1. We construct operators Sg and Sy defined for one periodic function on Z function
(f,g) : Q — C3 x R satisfying some compatibility conditions then Sg(f,g) and
Su(f,g) are respectively solution of the two following problems:

e Find ugp with ug x n = 0 on 9 such that:
rot(ug) = f and (fl:/(euE) = ¢ in Q. (9.3.21)
e Find uy with pug -n =0 on 0 such that:

rot(uy) = f and (TR/(MUH) = g in (), (9.3.22)

in order to solve the system (9.2.18). We recall that the operator div is given for
u:T x Yy~ R®and (zp,2,0) € T x Q by:

e If zp € I'y then:

&R/(U)(Ir;jf,ﬁ) =divzp <Dn?/21;zgr)gr) (xr;2,0). (9.3.23)

o If zp ¢ I'y then:
div(u) (zr; &, 0) := 85 (n(zr) - u) (or; &, ). (9.3.24)

Here we can directly see that one of necessary compatibility conditions is
div(f) = 0. We will see after that a second necessary conditions are required.

2. We will give the values of the divergence div (€E”) and div (€E”) such that we have

the necessary conditions : div(fE™") = div(f*) = 0 for the next step.

3. We will give the algorithm of construction of the sequence (E", H", E”, [:I”)neN.

4. We prove that this definition well satisfies the required equations (9.1.5), (9.1.8),
(9.1.9), (9.1.10) and (9.2.18). Moreover we will summarize in Lemma 9.3.11 the
required property to prove the error estimate.
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9.3.1 Construction of the solver operator S and Sy

9.3.1.1 Kernel of the electrostatic problem
We need to introduce the space:

2

/ udZ
x

where ¥ :=]0, 1[*x{0}. We introduce the following subspace:

]HI(YOO) = {u e H (), HUH%(Y )::/ \Vul2didp + < oo and u is one periodic in jj} ,
oo Yoo

HO(Y/OO) = {u € H(YOO), u =0 on 8(2} ,
and the norm of this space is defined for u € Hy(Y) by HuHHO () = [[Vull g2,y We
need to introduce the operator V defined for u : I x Q— R and (xp,z,7) € T x Q by:

A~

Vu(zr;z,0) := D ¢p! Visu(xr; &,0) + n(zr)Opu(xr; &,0) if zp € Ty,
and:
Vu(zr; &, 0) := n(xr)dpu(ar; T, 0) else.

Hence we now can introduce for zr € I' the function w.(zr;-) € Hy (YOO) which is the
solution of what we call the first cell problem: Find w*(xr;-) € Hy (YOO) such that for all
v € Hy (YOO) we have:

A~

[@(xp;fn, DYV w (xp; 2, 0) - V u(ar; &, 0)didD = / v(zr; &,0)dz. (9.3.25)
Y. >

Thus we now can define the vector N : T' — L2 _(Q) defined for (zr,#,7) € T x € by:

loc
Ne(zr; 2, 0) = n(zr)loso(D) + V we(ar; &, D). (9.3.26)

Proposition 9.3.1. The vector N is an element of the kernel of the electrostatic prob-
lem in the sense that we have:

rot(Ng) =0 and  div(eNg) =0, (9.3.27)

with the boundary condition Ng x n = 0 on T X Q).  Moreover we have Ng —n €
A3

oo (F;LZ(YOO)) .

Proof. Proof of (9.3.27). First prove that rot(ANg) = 0 and Nz x n = 0 on ' x 9.

Indeed this last vector can be rewritten in the following form:

NE = 6 (])ng>0 + wﬁ),

and using that rot - V = 0 concludes the proof of rot(AN%) = 0. Moreover the function
Vly~0 + w* vanishes on I'" x 0Q which leads to V(I;~o +w®) x n =0 on I' x 0.
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Let zp € T'. Let us show that div (Nge(zr;+)) =0 in Q. Indeed, for all ¢ € D(Ys),
we have from (9.3.25) that:

(div (Na(2r57)) s D) pi (4 )ity = / (N -V 6) (ars 2, 9)did,

/ve V(b(a:p,a: ud;t:du—l—/ Op0(Z, v)dzdp,
Yy

:/ eV w Y F;x,z&)dﬁ:dﬁ—/gb 7, 0) = 0.

Therefore we succeed in proving that div (N re(xr; )) — 0 in Y. The extension to
is a consequence of the periodicity on # of the map Ng(zr;-) : The periodicity of this
vector implies that the normal derivative are continuous on each |0, 1[x{m}x] — 1, 00|
and {m}x]0,1[x] — 1, 00] for all m € Z and div (NVpe(rr;-)) = 0in Yo, +1 for all | € Z2.

Proof of Ny —n € C% (F; LQ(YOO)>. We have N — n = Vw,. Moreover, thanks
to (8.2.4) and (8.2.5) we can prove by using similar argument as the scalar case that
we € C (F; H, (YOO)> We can conclude from the definition of the space Hy (}A/oo) O

We have a reciprocal result:
Proposition 9.3.2. Let u € C(I'; L}

1OC(Q)) one periodic on the variable & and patching
admissible satisfying

rot(u) =0 and &i\v(eu):() and uxn=0onT xdQ,

then there exists U € C*(T") such that u=U - Ng.
Proof. We can prove by using a method of decomposition on the basis ((@, V) — exp(i2ni-

l))l€Z2 existence of a patching admissible function ¢ € C°°(I'; H (YOO)) and U € C>(I)

such that we have: u = @qb + Un. This last identity can by rewritten in the following
form:

w="yv (¢ (0 + Do + 1[,>>0) 4 Uloon. (9.3.28)

-~

¢

Moreover we can easily prove that:
6 e (NHp(Yar)) (9.3.29)

Now we use &Rf(éu) = 0. Let ¢ € H (f/oo) and zpr € I'. Thanks to the periodicity of u
and (9.3.29) we can apply the Green formula:

0= / G (eu)(wr: &, )b (&, ) didd = — / H(ar: &, D)l 2, 9) - ¥ (s , 0)dido,

oo

= / é(zr; 2, 0)u(zr; 2,0) - Y ¢(xr; &, 0)didp — Ular /8V¢dxdu
Combining this with (9.3.28), yields:
Vi € Ho(Ya), [é(xp;fc,ﬁ)%(z}(xp;:&, D) -V (ar:; &, 0)didy = U(xp)/¢(:z D)di
oo Z
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Thanks to the uniqueness of the solution of (9.3.25) and the linearity of this problem, we
directly deduce that ¢(zr;,0) = U(xr)w(xr; &,7). Combining this last identity with
(9.3.28) conclude the proof of our proposition. O

9.3.1.2 Kernel of the magneto-static problem
We introduce for zr € T'y; and @ € {1,2} the function w;(zr; &, ) € H(YOO) which is the
unique of: Find w;(xr; Z,7) € ]HI(YOO) such that for all v € H()Afoo) we have:

~ A~

[ﬂ(xp;ge,ﬁ)vm(xp;;ﬁ,ﬁ)-W(xr;.@,ﬁ)daedﬁz —/ﬂ(xp;:%,ﬁ)ajiv(“,ﬁ)d:i:dﬁ,
Y- Y.
(9.3.30)

and to have uniqueness we impose that:

3

We introduce the map Ny : T' x Yo — L(R?). This matrix is defined for (zp;,0) €
I' x Y, by:

o If xp ¢ T'y then

o If zp € T'y then for all 7 € {1,2} :
Ni(ar; &, 0)ei(zr) = ei(ar) + Vw; and  Nyg(ar; &, 9)n(zr) =0,  (9.3.32)
where (ei(:vp))i:m is defined for ¢ € {1,2} by:
ei(zr) := Dr(zr) e, (9.3.33)
and (é;); is the canonical basis of R2.

Proposition 9.3.3. For all vp € C* (TI';R3) tangential field, the vector Ngur is well an
element of the kernel of the magneto-static problem in the sense that we have:

rét(Nva) —0 and div (u(Nva)) =0,
with the boundary condition i(Nyvr)-n =0 on T X 9. Moreover we have:
Nigvp — vp € C (F; L2(ffoo)> . (9.3.34)

Proof. Let vp € C™ (I';R?) be tangential field. The result is trivial for zp ¢ Ty Let
xr € T'. The property rot(Nyuvr) = 0 is a direct consequence of the definition (9.3.31),
(9.3.32) and rot V = 0.

Now let us prove that we have div (A(Ngor)) (zr; ) = 0. Let ¢ € D(Ys) then for all
i € {1,2} we have:

<(§R/ (/)(NH€Z))([L'F, jj? ﬁ)? w>D(Yw)T_D(}7OO) = _/: <ﬂ<NH€1) ’ ﬁiﬂ) (’Z‘F; 3?7 ﬁ)dfdﬁa

A~

= —[ <ﬂ(§UJi + ei) .V@b) (zp; 2, 0)dadD.
Yoo
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Combining this with (9.3.33) yields:
(div (/l(NHez'»(xF%@ ﬁ)7w>D(Ym)T—D(Ym) = _/ (ﬂ§wz : 61#) (2r; &, 0)dzdD,
Yoo

+ / f(xr; &, 0)0:,00 (2, v)dzdp.
Thanks to (9.3.30) yields for all ¢ € {1,2} that d/i:/(ﬂ./\/}{ei)(xp; -) = 0. Moreover vr(zr)
is a linear combination of e;(xr) which conclude the proof of al\v(/l/\f mor)(zr;-) = 0 in
Vao. The argument for the extension to () are the same as the one of Proposition 9.3.1.
Now let us prove that ji(zr; &, )u(zr; &, ) -n(zr) = 0 on T x Q. Indeed from (9.3.30),
we can prove that V w;(zp: #,0) - n(zr) = 0. Moreover since vp is a tangential field, we
have vr(zr)-n(zr) = 0. Combining these two properties with (9.3.32) conclude the proof.
The proof of (9.3.34) takes the same argument than the one of Proposition 9.3.1. [

We have a reciprocal result: R
Proposition 9.3.4. Let u € C* (F; L? (Yoo)) patching admissible satisfying

loc
rot(u) =0 and al\v(/)u) =0 and ju-n=0onT x O,

then there exists a tangential field Ur € C* (T';R3) such that u = NgUr.

Proof. From rot(u) = 0 and (fl?/(ﬂu) = 0, we can prove by using technique of de-
composition on the function ((2,7) — exp(i2nd - 1)) jeze the existence of a function
¢ € C(T; H(YOO)) patching admissible, a tangent vector field vr € C* (I'; R3)

u=V¢+ur. (9.3.35)
Thus it remains to prove that:

6@5(.@1‘;@, V) = Z@U%(ﬂ;p)wi(wr;:ﬁ, v)if zr € 'y  and @gb(azp;i;,ﬁ) =0 else .

(9.3.36)
Here, if zp € Dy, (vf(zr)), are the unique scalar such that: vr(zr) = Y vf:(zr)e;(2r).

Indeed, let ¢ € H(Yoo) Thanks to the condition &R/(ﬂu)(xp, ) =0, f(zr;)u(er;-) -

n(zr) = 0 and the periodicity property, we can apply Green formula:

:/ (,ﬁgﬁﬁw) (xr;:z,ﬁ)dﬁzdwer;(xF)/ﬂ(xr;:z,ﬁ)ams(:z,ﬁ)dg:«da.

[e o]

If zp ¢ 'y then this becomes:

Vip, H(YVo), 0:/

Voo

Hence V ¢ = 0. If xp € I'y; then we can use the use the uniqueness of the solution and
the linearity of the problem (9.3.30). Therefore we conclude the proof of (9.3.36). Thus
the proof is concluded. O
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9.3.1.3 Construction of a right inverse Sy and Sy when the right hand-side
satisfies the P> property

Let f: T'xQ— R3and ¢ : I'xQ — R be two periodic in the variable #. Here we construct
two operator Sg and Sy such that under condition on f and g that ug := Sg(f,¢) and
ug = Su(f,g) are respectively solution of (9.3.21) and (9.3.22). We first succeed to
construct such operator when our right hand-side satisfies the P>:

Definition 9.3.5. Let u : T' — L2 _(Q) one periodic on the variable &. We say that u

loc
satisfies the P> property if there exists d € N, a sequence (u)iez2\q0p € C* (F; Cd[ﬁ])
such that:

V(wr; &,0) € T x Vi, u(wrs &,0) = Y wler; 2)(ar; £, 0),
1€72\{0}

where we defined the sequence of functions (¢1)icz2\joy for (ar,@,0) € T' x YJF by:
Gz, &, 0) = P 2mNE ik N\ (zp) = | Dabp(ap)l].

Moreover, the sequence of polynomial are required to satisfies:

Vg eN, Y |l wllam ey < oo
lez2\{0}

We introduce for convenience the following vectorial space of function defined on I' x Yoo
./T(Fxffoo) = {u e C™ (F; Lz(ffoo)> ,u is patching admissible and satisfies the P> property} )

We first assume here that:

e The right hand-side of (9.3.21) belongs to:

~

Fe(I' xYy) = {u e F(I' x Yw)3,<fi:/(u) =0 and w-n=0onl x GQ}.

e The right hand-side of (9.3.22) belongs to:

Fu(T x Vi) i= {u € F(T x Yao)?, div(u) = o} .

Indeed, we have the following result:
Proposition 9.3.6. There exist operators S and Sy defined for functions

(fe, i, 9) € Fp(T x Yoo) x Fu(T x Vo) x F(L x Yo,
such that:

o ug = Sp(fg,g) is a solution of (9.3.21). The map defined for (xp,#,0) € T x €
by:
ug(xr; &, 0) —/ flxr;2,0) x n(zr)dzdy,
v

~

belongs to the space F(T' x Yoo )?.
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o ug :=3S8u(f,g) is a solution of (9.3.22). The map defined for (zr,z,0) € I' x Q by:

ug(zr; &, 0) — </ g(xp;:i“,ﬁ)didﬁ) n(zr),
v

~

belongs to the space F(I' x Y).

We also need an intermediate result. It is easy to adapt the proof of [57, Theorem 3.20)|
to get the following generalization:
Proposition 9.3.7. Let m < mrp and two Hilbert spaces E, F. Then:

V(A,u) € C™ (I L(E,F)) x H™(I'; E), Aue H™(I, F),

where Au : T' — F is the map defined for xpr by A(xr)u(zr). Moreover there exists
Cy, > 0 independent from A and K such that:

[Aullgmr.r) < CnllAll ..., (ricer) [ull )
Proof of Proposition 9.3.6. We only give the proof for the operator Sg. Let xp € T.
Assume first that 2 ¢ T'y;. Since f is patching admissible then we can construct ug(xr;-)
that only depends on #. In this case our equations are equivalent to:

n(zr) X dpup(rr;-) = f(zr;-) and 0, (é(xﬂ Jug - n(ﬁr)) = g(zr;-).
We can easily see that this equation can be solved because we assumed that f(zr;-) -

n(xzr) = 0. The solution is given by:

1 1
ug(rr;&,0) = [ f(er;2,0') x n(wr)dd’ + n(zr) /é_l(xﬂf? V) g(xr; ,0")dv.
p=—1 /=0

This last function well satisfies the boundary condition ug(zr;-) x n(zr) = 0 on 9. We
have:

0
UE(Q?F;QA?, 19) - f(l'r,{fﬁ,ﬁ/) Xn('xF)dﬁ/ :R<£L'F,i', ﬁ)a
v=—1
where:
1 1%
R(Il_‘a ‘@7 ﬁ) = f(371‘7 i‘a ﬁl) X n(‘rr)dﬁl + n('rF) /gl(‘rrv :i‘7 ﬁ/)g<$r, jja ﬁ/)dﬁ/
=0 /=0

Since f and g satisfy the P> then f(zr;-) and g(2r;-) vanishes on Y,. Thus the same
holds for R(zr;-). Thanks to the assumption f € C*°(T \ Ty; LQ(YOO))g, g€ C=(T\
T L2(Ys)) 5 (8.2.4) and (8.2.5), we deduce that R € C (" \ Ty; LQ(YOO))B.

Now we investigate the case of xp € I'y;. Thanks to our assumption on ¢ there exists
an open subset I'y* of I' such that I'yy € I'y™

(Zr, 551 € C®(Tw™; L(R)?),
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where we recall that ¥p is defined by (9.2.13). Thus we can introduce the following
auxiliary functions:

ug == ETFUE, i = Eglf and é = det (DTZTDF) E;TZ;1€

Thanks to (9.3.23), (9.3.24), (9.2.12) and (9.2.14) our equations are equivalent to: Find
ugp one periodic on Z such that:

rot (ug(zr;+)) = f, div(e(zr; Jug(zr;-)) = g(ar;-) and  ug(ar;-) X es =0 on o9,

where ej : (O 0 1) Our new right hand-side f(zr; ) is well one periodic on Z satisfies
the P> property and:

div(f(zr;-)) =0 and f(zr;-)- e on Q.

Thus by inspiring from the planar 3D Maxwell case (see [35]), we can build a solution u},
of:

rot(ug*(zr;-)) = f, div(ug™(er;-)) =0 and ug*(zr;-) X e5 =0 on a9,  (9.3.37)

and the map R : ['y* xQ — R3 defined for zr € ['y* by:
R(xr;-) == ug”(or;-) — / flar; &, 0)dido X es,
v

satisfies the P> property and R € C* ( I'v™; LQ(YOO)). However the field ug does not yet
satisfy div (u_E*) = g. That is why we introduce the function ¢(zr;-) which is the unique

solution of: Find ¢(wr;-) € Hy (YOO) such that:

div (éwrs ) Volars ) ) = —div(é(ers up(eri) ) + glars ). (9.3.38)

This problem is well posed because it is equivalent to the following variational formulation:
Find ¢(ar;-) € Ho(Y) such that:

A(zr)¢(ar; &,0) = L(xr) in H()(YOO)T, (9.3.39)

where A(xr) and L(zr) are defined for (u,v) € Hy (Y )2 by:

Ao, 0 ) / (e(ars &, )V (2, 9), Vb &, 0))didi

o0

and

(L(zr), ) )= —[E(xr;az, ﬁ)-V¢(£,ﬁ)didﬁ+[g(mr;fc,ﬁ)gf)(i, D)didD.

oo ]

Ho (YOO) Tf]HIO (Yoo

The equation (9.3.39) is well posed because thanks to (8.2.4) we have that A(zr) :
H, (YOO) — H (YOO)T is invertible. Moreover, since g satisfies the P°°, the function
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g(zr;-) decrease enough to have vg(ar;-) € L2(Ya). We can prove that it is a sufficient
condition to have g(zr;-) € Hy (YOO)T. Moreover we have:

g€ C™(Ta"; Ho(Vao) ). (9.3.40)

Combining this with R(zp;-) € L*(Ya) yields L(zp) € H (YOO)T. Therefore (9.3.39) is
well posed. We now define @y for xr € I'y* by:

ug(zr;-) = up(rr;-) + Vo(rr; ). (9.3.41)
Indeed, thanks to rotV = 0 and (9.3.37) we have:
rotup(rr;-) = f(ar;-).
Combining (9.3.38) and ¢(xr;-) = 0 on 9 with (9.3.37) yields:

div(u_E(xFQ )) = g(zr;-) and U_E($r; ) X e3 =0 on 9.

Now let us prove that the map R : ' x 2 defined for zr € T'y/* by
Riars-) = uplar: ) — / F(aps &, 0)didd x ey,
o L

belongs to C*°(T'y*; LQ(XA/OO)?’) and satisfies the P> property. Indeed we first prove that:
¢ € O (T Ho(Ya)). (9.3.42)

Indeed, thanks to (8.2.4) we have:

sup
zrely™

A_l(xF)HL(Ho(?oo)T,HO( ) <% (9.3.43)
0( Aoo

Y.
),HO (YOO)T)> Combining this with
(9.3.43) yields A~ € C’OO(FM*; E(HO (YOO)T, H, (Yoo))> Moreover thanks to:

Thanks to (8.2.5) we have A € C”(FM*;E(H

R C(Tw*; L*(Yao)?),
and (9.3.40) we have L € C* < '™ Hy (YOO)T). Therefore according to Proposition 9.3.7,

we have A7'L € C‘X’(FM*; H, (YOO)>, which conclude the proof of (9.3.42).
Combining (9.3.42) with R € C°°<FM*; L2(1A/oo)3> conclude the proof of:
R e 0™ ( Dar'; LQ(?OO)?’). (9.3.44)
Now let us prove that this last quantity satisfies the P> property. Indeed, g and u},
both satisfy and the P> property. We refer the reader to the scalar case to get that it

is a sufficient condition to have that V¢ satisfies the P> property. Combining this with
(9.3.41) and that E satisfies the P> property conclude the proof. O
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9.3.1.4 Extension of S and Sy in the polynomial space

Although Proposition 9.3.6 only yields the existence of suitable operators Sg and Sp,
we do not need for the sequel to have an explicit expression of these operators. Indeed,
for the sequel, we will only use that these operator can solve (9.3.21), (9.3.22) and more
precisely all the stated property in (9.3.6) to construct our ansatz. Thus hereafter Sg
and Sy denote two operators satisfying the property appearing in Proposition 9.3.6.
Proposition 9.3.8. Let (I1¥,1%,1)) € Fp(I' x Yoo) x Fu(I' x Yoo) x F(I' x Y), d € N
and (pg,p,) € C> (T Ca[D])? x €= (I; Cy4[p]) satisfying:

Var € I, pg(ar;-) - n(zr) =0,

Define fg = Z}E—{—pf, fo = lf +ps and g =l +py. There exist extension of Sg and Sy
for (fe,g) and (fu,g) such that:

o The function ug := Sg(fr,g) is a solution of (9.3.22). There exist:
(pp:1p) € F(T x Yoo) x O (I'; Cas[2])
such that ug = pg + lg. For all xp € T, pg(xr;-) is the unique solution of:
Ospe(ar;-) = n(wr) X pp(er;-) + pg(zr; )n(zr), (9.3.45)

with the initial condition:

pi(r: 0) = n(er) x / Far: &, 0)did. (9.3.46)
Y_

o The function ug := Sy(fu,g) is a solution of (9.3.22). There exist:
(P 111) € F(I X Yoo) x C (I Caa[7])
such that ug = py + ly. For all xpr € T, py(xr;-) is the unique solution of:
Oppn (xrs-) = n(r) X py(ars-) + pglzr; -)nler), (9.3.47)

with the initial condition:

pu(xr;0) = n(xp)/ g(xr; &, 0)didp. (9.3.48)
v

Proof. We emphasize that:
Fu(T X Yaoo) N C® (T;Cyin[7])? = Fu(T x Yoo) N C™ (T; Cyiq [7])? = {0},

and

F(T % Yao) N C™ (5 Cysa[2]) = {0}.

Therefore it remains to give a suitable definition of our operators for (f, g) € C* (T'; Cd[ﬁ])S X
C*> (I'; C4[7]). We have:

]L;<0f - .FE(F X ym) ﬂfH(F X Yoo) and Hg<og - }"(F X Yoo)
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Therefore thanks to Proposition 9.3.6, we have:
rot(uk) = rot(uk) = fIy<o, div (éup) = div (fug) = gls<o, (9.3.49)
and for all z € T" the following boundary conditions:
ub(zr;-) X n(zp) =0 and  uh(zr;-) - n(zr) = 0 on 99, (9.3.50)

where we defined ul, := Sg(fI;<0g) and uk; := Sp(fI;<0g). Moreover the maps Rp and
Ry defined for xr € T" by:

Ri(zr;-) i= up(or;-) — / flzr; 2,0) x n(zr)dzdy,
v

Ruters) = y(ars) = ([ glors,0)dia0 ) ntor),

satisty: A R
(Re(zr;-), Ru(zr;-)) € F(I' x Yaoo) x F(I' x V) (9.3.51)
Define p : I' = Cyy1[P] for zp € T' by the unique solution of:
pp(ar;-) = n(zr) X f(zr;-) + g(zr;)n(zr) and  p(zr;0) = 0. (9.3.52)

Thanks to this we have:
rot (I;»op) = Irsof, div (ly~0p) =Iy509 and div (ils>0p) = 509, (9.3.53)
(

and it is trivial that Iy~ op(2zr;-) X n(zr) = 0 and j(zr; ) L=op(ar;-) - n(zr) = 0 on o0,
Combining this with (9.3.49) and (9.3.50) yields:

rot(ug) = rot(ug) = f, div (éup) = div (fug) =g, (9.3.54)
and for all z € T" the following boundary conditions:
ug(zr;-) X n(zr) =0 and  wug(zr;-) - n(zr) = 0 on 99, (9.3.55)

where we defined up := uk + I,op and ug := ul; + I,~op. Therefore defining Sg(f, g) :=
ug and Sy(f,g) := uy is a suitable choice.
Therefore it remains to prove that:

(ug — pe,ug — pr) € F(T x Vo) x F(D x Yao). (9.3.56)

Indeed, combining (9.3.45), (9.3.47), (9.3.46) and (9.3.48) with (9.3.52) yields for all
zr € I that:

poler: ) = pler: ) + / flar;,0) x n(er)dids,
Y_

(9.3.57)
pu(xr;-) = plar; ) + /Y g(xr; &, 0)n(xr)didp.
Therefore we have:
up —pg = Rp —lhcop and  up —py = Ry — L<op.
Combining this with (9.3.51) conclude the proof of (9.3.56). O
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We later see that the following result is required:
Proposition 9.3.9. For all sp € C* (I';R) and C*> (I';R?) tangential field

(NESF — SFH,NHUF — Ur) € F(F X YOO)S X ,7:(1_‘ X }700)3.
Proof. We have: R o
Ngsr —srn = Vw® and vy Vw;,
where (vh); are C™ scalar field such that we have on 'y : vr = vhe;. Therefore it remains
to prove that Vw* and (V w;); satisfy the P> property. Indeed on the one hand we have

seen that w® € C* <F;H0(YOO)> and w; € O (F;H(?Oo)) for all « € {1,2}. On the
other hand thanks to (9.3.25) and (9.3.30) we have for all (zr,#,7) € T' x R* x R* that:

Vi e {1,2}, div (Vw)(zr; &, 0) = div (Vw) (zp; 2,0) = 0,

and these function are one periodic on the variable z. O

9.3.2 Values of the divergence div (€E”) and div (ﬂf[”)

Thanks to (9.2.18) we know by induction the values of rot £, and rot H" with the knowl-
edge of Eﬁ:l ... and ]:I/”:l ... . According to Proposition 9.3.8, we need to impose a
value for div(éE™) and div(aH™).

To give these values we need to introduce the surface divergence operator divr defined
for u € C°°(T';R3) and zr € T by:

1
divp u(xr) :=

_ div
\/det(D ¢5(0) - D ¢,(0)) (

\/det(D ¢t - Do) Dot uro ¢;1) (0),

where ¢, : V(0) — V(zr) is a local parameterization of I'. Here V(0) C R? and V (zr) C
are respectively neighborhood of 0 and zr.
We impose the following condition:

div (éE") = ¥ and  div (aH") = g, (9.3.58)

where we defined for all n’ € N:

( n' n’
E . ni—1 2 ! —i—1 T i fn!—i
G = — E divp (Mi_lu D ) — E div (/\/lil/ ) ),
i=1

i=1

gt = =3 dive (Mo 1) = S i (M),
\ i=1 i—1

The reasons of this choice lies in the following form:
Proposition 9.3.10. If we have :

div(eE" Y =gP, and div (") =gl ,, (9.3.59)
and A )
rot(E"') = fF, and rot(H"') = fI, (9.3.60)

then div(f¥) = div(f}1) = 0.
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Proof. We have the following equality for all distribution u on I" x §2:

—~

div(rotru) = — divp(rotu). (9.3.61)

This last equality is a direct consequence of: For all u € C* (F x Q; R3) and (xp, z, 19) €
I'm x () we have that:

p v () o .9 i det <Dn2£€éf)p)> div,, ( det <D wp(a:r)> ! <D wr(:):r)) u(xr; &, 19))

nf(zp) nf(zp)

Gv(u)(@r: 3, 9) = divsy ((D Wm) w(or: 2, a)) ,

n(xr)

r6tr (u) (s &, 9) = det (Df{éf;)) (D v (ar). n(ar)) rot,, ((
rot(u)(zr; &, ) = det (D W”)) (Dyr~(ar), n(zr)) rots, ((

Y

zr=tr(zr)

-,
3 &
]
8
S5

o
3 &
—+ =
=
!
N~ —
N
N——
=
8
=
8
>
N——

\ nf(xl“)

and div; srot,, + divmrrét@ﬁ = 0. Thanks to (9.3.61) we have

le(f ) leF (rotE" 1) —|—’Lk‘d1v (MZMZ 1VZ 1Hn z) .

=1

Combining this with (9.3.60), yields:

d/l:/'(ff) = —W—l—’lkler< ZM, DTLHT Z)—delv <,u2/\/l, WD z)

=1

Combining this with (9.3.59) concludes the proof of div(fZ) = 0. The proof of div(f)
0 is exactly the same, which conclude the proof.

LIl

9.3.3 Algorithm of construction

The nears field (E”, ﬁn)neN and the far field (F,, H,)nen are recursively defined. These
quantities are defined for n = —1 by zero. Now let us explain how we define for
some n € N the quantities (E", H") and (E", H") from the knowledge of the quanti-
ties (En/, Hnl)ognlgn_l and (En/, Hn/)[)gnlgn_l.
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9.3.3.1 Right-hand-side of the cell problem

We recall for the convenience that:

£ = —rotp (E"") + ikt Y Mo H"
i=1

fil = —rotp (H"') —ike Y M0/ 1B,

i=1

gf ==Y divp (Mg p/ BT 4 div (M DB,
=1

g = = 3 dive (Mo~ 7Y 4 div (Mo ).
=1

\

9.3.3.2 Definition of the far field

The far field (E,,, H,,) are defined by the unique solution of: Find (E,,, H") € Hy(rot; Q2)?
such that:

rotE" = —kH" and rot H" = ik E" + 0,0 Jsources (9.3.62)
with the boundary condition for all zr, E™(zr) X n(xr) = / fE(xp; &, 0)didd and the
v

far field have to satisfies the radiating condition (8.1.3).

9.3.3.3 Definition of the near field

e The electric near field E™ is defined for (zr;2,7) € T x Q by:

A

EMar; 2,0) = (E"(zr),n(zr))Ne(zr; &,0) + (Se(fr, g7)) (zr; £,0).  (9.3.63)

e The magnetic near field H™ is defined by:

H™(xr; 2, 0) := Ny(or; &, 0)H™(zr) + (Su(f. ah) (ar; 2, D). (9.3.64)

Here we prove that we have the following result of construction of the ansatz.
Lemma 9.3.11. The nears field (E", H")en and the far field (E™, H")pen well satisfy
the required property. More precisely we have for all n € N that:

o The far field (E,, H,) belongs to C*(£2).
o The functions E™ and H™ take the following form.:
E"=PE+RE and H"=PH 4 RH (9.3.65)
for some (RE, RF) € F(T x Ya)? and (PR, Pg) € C=(T;C,[9]) x C=(T;C,[7]).
e For all E™(xr;-) x n(zr) = 0 and H(zr;-) - n(zr) = 0 on 9.
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e The matching condition are satisfied:

a}szn—z (xl—V 0)

8zﬁn_i(xr7 0)
il ' '

YO<i<n, Py = '
1!

and Pp' = (9.3.66)

e The equation (9.2.18) and (9.3.58) are satisfied.

We prove this last lemma with an induction on the number n’. The result is trivial for
n' = —1. Let n’ € N such that we have for all n < n’ such that all quantity an property
appearing in Lemma 9.3.11 is well defined and true. We prove now that this implies that
the same holds for n’ = n.

Proposition 9.3.12. There exists functions

~

(12,182 dE, d?) € Fp(T' x Yaoo) X Fu(D X Yao) x F(I' x Yao) x F(I' X Yao)

n’y ‘n’> YnlH Yn/
and polynomials

2

(EE, ¥, GE,GH) € ¢ (15 Co 1 [0%)? x C(s s 0,

such that the following decompositions of our right hand-side hold:

fi=Fo+15, f=Ff+1, g =Gh+dl and gl = G +d)).

n

The polynomials FL, FIT. GE and GE are given by:

( n'—1
Fl = —8,(n x Py=") —rotp(Py =) —ik Y Mipd Py ~UFY,
7=0
n'—1 '
Fll = —0;(nx Py~") —rotp(Py ") +ik Yy MIpiPg U,
j=0
GE .n=-0, (Z M PE n) — divp (Z M7 x PRI x n) :
j=1 j=1
GH .n=—-0, (Z M Pl n) — divy (Z M1 (n x P x n) .
\ Jj=1 Jj=1
Proof. We refer the reader for the scalar case because the proof of Proposition 2.5.15 (See
Chapter 2), have similar arguments. H
Proposition 9.3.13. The right-hand-side f5 and fH satisfy the compatibility condi-
tions:
div(fE) =div(ffy =0 and p%-n=p-n=0. (9.3.67)

Moreover we have on T x 9 that:

fEon=0. (9.3.68)



Proof. The proof of d/l:/( B = &1\\/( 1) =0 is already given in Proposition 9.3.10.
Projecting the equation (9.3.62) yields on the normal yields:
0 = rotr(n x (Bp—p xn)) + ik(MH,_, - n)

YVO<p<n-—1 - -
== {o — votr(n x (Fy_p x n)) — ik(MBEw_, ).

and differentiate p times in the variable v these last equations yields:

;

O:rotp(nxaf( n—1—p X M) +zk2( ) M, 00F Hn,lfp.n),

O—rotp(nx8( n—1—p X M) —zk:Z( ) /\/lpal’,’ /1_p-n).
Combining this last equality with the recurrence hypothesis (9.3.66) yields:

( p
0 = rotr(n X (Pr=hP n)) + ik Z M, Py
/ p'=0

VO S b S wd ’ P ’ ’ ’

0 = rotr(n x (Py P n)) — ik Z My Pp PPy

\ p'=0

which can be rewritten:

7

p
0 = rotr(n x (Pp ' x n)) + ik (Z My o? Py n) ,
/=0
VO<p<n—1 v

p
0 = rotr (n X (Pg_l’p X n)) — ik (Z Mp/ﬁp’pg'—l—l” n) :

/ —.
\ p'=0 P

Combining this last equation with Proposition 9.3.12 concludes the proof of (9.3.67).
The property (9 3. 68) is due to the boundary condition on I' x o) satisfied by the
previous term E"~'... E% and H"~'... H°. Indeed we have for all (zr;#,0) € T x 9%

ffj(xp;i,O) n = (—I‘Otp(En/1> + Zk/:LZMz 1VZ 1Hn Z> ($F;i’,0> . n(l’r),
=1

= —din Em’—l : A7 X n(l’r)) + Zkﬂwz 0.

Corollary 9.3.14. For n = n' the equations (9.2.18) and (9.3.58) are well satisfied.
There exist (P, Py, R, Riy) € C (I;Cp[9])* x F(I x Yao)? such that

E" =Py +Ry and H" =P} + R},
where we defined for all (xp,&,0) € T x Q:

{ E"(2r;#,0) = (Ey(2r), n(zr) ) Ne(zr; &,0) + (Sp(fE, ¢5)) (2r; 2, ), (9.3.69)

’

H" (wr;2,0) := Ny (wr; ) Hy (xr) + (Su (£, 92)) (wr; &, 0).
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The coefficients are given for all 1 < p < n’ by:

4 p—1
(Pg/ X n)p =— 11'0_{:1" (Pg_l’p_1 -n)p - @kl ( M;(n x (P imae=lmd n))) ,
p r \ = .
p—1

1

(P}}/ X n)p =— ]—91'0_{31" (1[’2,,_1’1”_1 -n)p + ik M;(n x (Pr=tmae=l=d n))p,

hel =
Il
(en)

J

1
Pg n)y = ZM P”_“’ J. —%pZdwF@\/lJ(nx(Pn —imipls an))) ,
7=0
Z (

p

le[‘(Man(Pn “leaes 1]><n))) :

p

(9.3.70)

PH n), = ZM —pr

\

and for p =0 we have for all xr € T that:
Py (zr;0) = E"(xr) and PV (xp;0) = H" (zr). (9.3.71)

Proof. Thanks to Proposition 9.3.12 and Proposition 9.3.13 we can apply Proposition 9.3.8
which leads that Sg(f%,¢%) and Su(fE,g%) are solution of (9.2.18) and (9.3.58) for
n = n'. Moreover combining the definition (9.3.69) with Proposition 9.3.1 and Proposi-
tion 9.3.3 which conclude the proof of (9.2.18) and (9.3.58).

Applying Proposition 9.3.8 yields the existence of

(R, Ry, P, Piig) € F(I x Yae)? x C (I Coo])?,
such that:
Sp(fiom) = Ry + Py and - Su(fif, aif) = Ry + Pio,
and the polynomials (Pg, Pjy o) € C* (I';Cpy [9])? are the unique solutions of:
6,;Pg:0 =GE xn+GEn and 0, PHO =T xn+Gln, (9.3.72)
with the initial conditions for all zp € I':

ngo(xp;O):/ fE(xp; &, 0)didixn(zr) and P}}:O(:UF;O):(/ g,?(xp;ge,ﬁ)dﬁdﬁ) n(zr).
Y_ Y-

Thanks to the definition (9.3.69), Proposition 9.3.9, Proposition 9.3.1 and Proposition 9.3.3,
there exist A
(R, Riy, Py, Pii) € F(I x Yoo)? x C (I Co[2))°,
such that: ) R
E" =Ry +Py and H" =R}y + Py,
and P2 and P} are the unique polynomials satisfying (9.3.72) and the initial conditions
for all xr € I':

P (2r:0) = ( /Y nlar) x filens ﬁ)d:i:dz?) + E" (ar) - n(ar)n(ar), 0573

Py ars0) = ( [ affars,9)dido ) nter) -+ nlor) x (2" or)  n(ar)
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Thus integrating one time on the variable © the equation (9.3.72) conclude the proof of
(9.3.70). With computation we show that we have:

divp (/ e, ﬁ)d@dﬁ) = zk:/ g2 (- &, 0)didp,
Yo Y
and we recall that we thanks to the definition of the far field E™ that for all zp € I':
[ fE(xp; &, 0)didp = E™ (xr) x n(xr). (9.3.74)
V.
These two last equalities lead to:
Vaor € T, zk/ 95 (xr; &, 0)didp = rot(E™ ) (zr) - nlar).
Vo
Combining this with the Maxwell equations that £ and H" satisfy yields:
Var, Z’k// 95 (xp; &, 0)didp = #H™ (zr) - n(zp).
v

Combining this last equation and (9.3.74) with (9.3.73) concludes the proof of (9.3.71).00

Proposition 9.3.15. The far field (E™ H™) defined by the unique solution of the problem
(9.3.62) belongs to C°(K) for all open subset of 2 such that K C (.

Proof. 1t is a direct consequence of regularity results of the Maxwell equation. O]
Proposition 9.3.16. We have for all 0 < i < n' that:

ali,Enlii(fL‘F, O)

alijf{nlfi(l'r, 0)
7! )

n/’/[:_
and Py = q

VO <i<n/ PVi= 9.3.75
E

Proof. Using the PDE (9.3.62) yields:

/ ~ — /

-p . n) - zl{;,/\/l(n X (]:In/_p X n)),
0,(H"™? x n) = —rotr (H"™7 - n) +ikM(n x (E" 7 x n)),

\

For all p € N\ {0}, differentiating these last equations p —1 times on the variable v yields
on I' x {0}:

( p—1
OY(E™ ™ x n) = —rotr (O (E" 7 n)) —ik» (p ; 1) FIMGOPT (n x (H" 7P x n)),
j=0
p—1 1
OD(H™ ™ x n) = —rotr (O (H" ™7 -n)) +ik » (p; ) FIMGOET (n X (E™ P x n)),

\ j=0
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and

p

\

For the sequel, all quantity that will appear will be evaluated in (zr,0). We can rewrite

e == 3 (§) oMo -

p p—1
OE"™ n)==>" (7;) O (FIMGE™ P ) = <p; 1) divp (j!Mjagflfﬂ' (nx (B"7P x n)))

J=1

<

—0
p 1

3

j=1

<.

the last lines in the following forms:

and

COR(EY P x ) = — rotp (92 (B0 )

v

p—1

—ik Yy (p ; 1) GIMGOETI (n x (HM 19~ 07170) ),

J=0

p
OP(E"P.p)=— (p) I (JIM,EI==0) )
p—1 1
— (p; ) divp (j!./\/ljﬁ,’j_l_j (n x (En—tmi=(p=1=i) n))) ,
7=0
- p
OP(H™ P .n) = — "\ g (M I 0)
i == (F) o D
—~(p—1 )
— ( ; ) divp (j!./\/ljafflfj (n x (Antmi=p=1=d) o n))) .
=0

Moreover injecting recurrence hypothesis (9.3.75) in these last equalities yields:

((OB(E™P x n) =—rotr((p— 1)!PE """ n)

p—1
— zk:z (p; 1) JIM;(p—1 =) (n x (Pt mopm1oT n)),
=0
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and

%@%ﬂm:—fXS@—wwMﬁﬁmim
— (p B 1) (p— 1= j)dive (jIM? (n x (P31 77771 7 xn)))
(

J
%m“mb—zpypﬁwMW”Jm

J
o
— (p; 1) (p— 1 — ) dive (jIM? (n x (P77 71 xn)))
=0

,
<

Therefore thanks to the definition of binomial coefficient, we have for all 1 < p < n that
these last equalities simplify in the the following forms:

(

p—1
ﬁﬁﬁ(En_p Xmn)=— %ro_{:p(Pg_l’p_l ‘n) — zk% ZMj (n x (P 179771 xon)),
]:O
ﬁﬁﬁ(ﬁ”_p X n) :—%ro_fp(Pg_l’p_l ) + ik— ZM n x (Pp ==t xn)),
j =0
;!5’(E"p n) Z./\/l (PP . ——Zdwp (M (n x (P19 xn))),
] 0
1 15
p@(H”p n) Z./\/l PPy ——Zdwr Mj(nx(Pnljpljxn)))
\ ’ ] =0

Therefore combining these last lines with Corollary 9.3.14 conclude the proof of (9.3.75).0
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Chapter 10

Theoretical justification of the
asymptotic expansion

Let n € N. We construct global function on ©° defined by:
E:;L,é = (1— X77)EZ$1 + Xn ng(Eg),
where:

o Bl =3 6E and B} := > 0 K"

=0 i=0

e The so called “scaling operator” Zs, is defined for E : T x Q ~ C3 by the map
Is, E : Cs, +— C3. This map is defined for z € Cj,, by:

Tsy E(z) == (I+ VRp(mp))_lE(xp;f,ﬁ),
where (zr,v) is the unique solutin of = zp + vn(zr) and (2,0) := (¢r(ar),v)/d.

o x, is defined for x € Cjs,, by x,(z) := x (%) with (zr,v) is the unique solutin of
x = zp + vn(ap) if 2p € Cs,,. This last map is extended by zero for z ¢ Cy,,.

e Here y is a smooth cut off function such that x = 1 on | — 0o, 1[ and y = 0 on
2, o0l.

We will estimate in this chapter for all n € N the error E° — Eys.

10.1 Stability of the exact problem

For all open set Q C R3, we define:
H(rot; Q) := {u e LX), rot(u) € L2(95>3} ,

and the norm of this space is given for u € H(rot; Q) by:

2

HUHH(rot;Q) = Hu|’i2(m)3 + HrOt(u)|’i2(Qé)3-
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We introduce the spaces: L2 _ () := {f € L2(29)3, supp(f) is compact} and

comp

loc comp

V§ — {(E5 H(5) c L2 (Q(S)Q <rOtE§+ikM6H67)

2 5N\2 70 . . )
FObHO — ifed B cL (Q°)%, E° x n =0 on I's satisfaying (8.1.3)}

Next we define introduce the operator P° : VO — L2 (9°)? defined for (E°, H°) € V°
by:

ps E?\  (rotE’ +iku’H®
H®) ~ \rotH® —ike®E° )~

Thanks to these notations, we can rewrite our exact problem in the following form: Find

(E‘s, H‘s) € V9 such that:
E? f
(i) = (0)

Thanks to the classical maxwell theory of time harmonics scattering (see [58]) we easily
get existence of the inverse of this last operator. However we need a uniform continuity
property with the small parameter ¢ > 0:
Lemma 10.1.1. For all R > 0 with Q C Bpg there exist Cr > 0 independent of 6 > 0
such that for all f € L2 (Q°)% we have:

comp

supp(f) € Br N = [|P5" - fl ot sy < CllFlliz(sanon,

where Br s the open ball of radius R centered at zero.
The proof of this result is made by contradiction. We have chosen to split the proof in
several propositions in order to to clarify its main steps.

If this result is false then: There exist R > 0 and a sequence (E°, H°) € V? such that

we have:
}Si_r% HP(S(E(S, H(S)HL2(BRQQ5) =0 and HE(SHH(romBRmQ“) T HH&HH(?OEBR“Q(S) =1
(10.1.1)

and we will prove during whole this section that this last proposition bring a contradiction.

First let us prove that we can reduce to the fixed domain 2. We can easily prove
(with the local coordinate transformation £) the existence of a sequence of transformation
I5 : Q — Qs such that:

and
Vo € Q, dist(z,I') > 6 = [;(z) = =. (10.1.3)

From this last transformation we define the two vectors field:
ES .= D' - (E5 o 115> and H®:=D'I;. <H5 o ]L;>,
the tensor field of coefficients:
& = (& ol;)det(DI;) DI;* - DI;T and 4 := (u ol;) det(DIs) DIt - DI T,

and the vector field of right-hand side:
2 g i=rotE} +ikp)H, and f, :=rotH] — ike]E. (10.1.4)
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GoEr :=nx H

rotE +ikH =0
rotH —1kE =0

Figure 10.1: Tllustration of the Calderon map

Proposition 10.1.2. There exists C > 0 such that:

C < | E) | HY <C. (10.1.5)

HH(rot,Q HH(rot,Q) —

and we have:
lim f°, =0 and lim f°, =0 in L*(BrNQ), (10.1.6)
6—0 7 d—0 77

Proof. Tt is a direct consequence of change variable formula for rotational operator(see
[58, Corollary 3.58|), (10.1.1) and (10.1.2). O

Since our domain €2 is not bounded, we introduce the Calderon operator
Ge : H_%(diVaBR; 0BR) — H_%(diVaBR; 0BR),
(see [58, 9.4 Electromagnetic Calderon operators| ) where:
H’%(divaBR; 0Bg) = {u €H: (0Bg)” , u is tangential and divyp, (u) € H 2 (833)} :

We introduced this operator to reduce our analysis in the bounded domain Br N €. We
recall that this last operator is defined for B € H _%(diVaBR; 0BRr) by Geur :=n x H
where E, H is the unique solution of: Find (E, H) € He(rot,2)? such that we have:

rotE +ikH =0 and rotH —ikE =0 with E x n = Er on I satisfying (8.1.3).
Moreover we introduce the following space:
X :={ue€ H(rot,QN Bg),uxn=0onTI},

equipped with the norm of H(rot, 2N Bg).
Proposition 10.1.3. The following proposition.:

lim E® =0 in X (10.1.7)
6—0

contradicts the proposition (10.1.5).
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Proof. 1t is a direct consequence of (10.1.4) and Proposition 10.1.2 O

Hereafter (-,-) is the dual bracket (-,-) where:

H™ 3 (divopy,:0Br)—H 2 (rotop ;:0BR)
H’%(rotaBR; 0BR) = {u cH: (0Bgr)” ,u is tangential and rotyp,,(u) € H 2 (833)} )

and (-, -) is the classical dot product on L?(0Bg). The normal unit u is extended to O Bg.
Then we can introduce the sesquilinear form a® : X x X + C defined for (u,v) € X x X
by:

al(u,v) = ((yi)_lrotu, rotv) — k*(€u,v) + ik(Ge(n x u), (n x v) x n).

*

Proposition 10.1.4. We have:

1 E6
lim sup M =0.
=0gex  ||0llx

Proof. We have for all ¢ € X that:

al(E),0) = (I°,9),
where we defined the anti-linear form I° € X' for ¢ € X by:

(10.1.8)

(. 6) = —ik / 8 B0+ K / (1) 12 . Tt (6))d2.
BrNQ BRrNQ

Thanks to (10.1.6) we easily get (lsin% I =0 in X' which conclude the proof. O
_>

Nevertheless the sesquilinear form is not coercive and we can not now deduce the con-
vergence (10.1.7). However we have the following result:
Proposition 10.1.5. The following proposition.:

lim £° = 0 weakly in X and lim E° =0 in L*(Bg N Q°),
6—0 6—0

is a sufficient condition to the proposition (10.1.7).
Proof. From [58, Lemma 10.5,Theorem 10.6] we get that the operator G, takes the fol-
lowing decomposition:

G. =Gl +G?,

where ikGL : H 2 (divgp,; OBr) — H2(divep,; Bg) is a positive operator and G2 is
an operator such that the following sesquilinear form defined on X x X:

(u,v) = (G2(n x u), (n X v) X n),
is compact. Therefore the sesquilinear form a? takes the following decomposition:
al=c+ K,

where we defined for (u,v) € X x X the sesquilinear form:
A (u,v) == / ((,ui)’lrotu, rotv) + (Su,v)dQ + ik(GL(n x u), (n x v) x n),
BRrNQ

K (u,v) := /B . —(1+ k%) (du, v)dQ + ik(GZ(n x u), (n X v) X n).
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The positivity property of the operator G! and the assumption (8.2.4) yields that a the
sesquilinear form ¢ is uniformly coercive with the small parameter. Therefore a sufficient
condition for (10.1.7) is:

lim ¢ (E°, E%) = 0. (10.1.9)
0—0
Let us prove now Since E? is bounded on X then (10.1.8) leads to (lsin% al(ES, E?) = 0.
—
Now let us prove that:
lim K(E?, E°) = 0. (10.1.10)
_>

On the one hand, thanks to (lsiH(l) E? in L}(Br N Q) we have:
—}

lim —(1+ k) (SES, E2)dQ = 0.
On the other hand, thanks to <15iH(l) E? weakly in the space X and the compactness property
_>

of the operator G2 we have:

lim ik(G?(n x E?), (n x E2) x n) =0,

d—0

which concludes the proof of (10.1.10). Combining this with (10.1.10) and (10.1.8) con-
cludes the proof of (10.1.9) which ends the proof. O
Proposition 10.1.6. We have the following convergence:

lim E° = 0 weakly in X
6—0

Proof. Let C be the subspace of X constituted of the element v € X such that v =0 in
the neighborhood of T'. Let ¢ € C. Thanks to (10.1.3), we have for ¢ small enough we
have:

ai(Ef7 ¢) = ag(Efa ¢)
Combining this with (10.1.8) yields that

lim a?(E?, ¢) = 0. (10.1.11)
6—0

Since the sequence (E?)sso is bounded in the space X then there exits £ € X such that
(E?)ss0 weakly converge up to a subsequence to E? € X. Using the continuity of the
sesquilinear form a? and the weak convergence yields:

lim a?(E?, ¢) = a°(E?, ¢). (10.1.12)
0—0

Combining this last convergence with (10.1.11) yields:
ad(E? ¢) =0, (10.1.13)

and using that C' is dense in the space X yields that this last equality remains valid for
all ¢ € X. Thanks to [58, Reduction to a bounded domain| we get that (10.1.13) implies
that E? = 0 which concludes the proof. ]
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Thanks to [58, Theorem 10.2] we can introduce the potential ¢° defined by the unique
solution of: Find ¢° € S such that for all 1) € S we have:

ay(Vel, V) = a;(E;, Vi), (10.1.14)
where we defined the following closed subspace of H'(Bg N Q):
S:={ue H(BrNQ),u=0o0nT}.

We emphasize that we have VS C X.
Proposition 10.1.7. We have the following convergence:

. 5 .
(lslir(l) ¢ =01inS
Proof. Assume that the result is false. Then the sequence (?)s-¢ defined for & by:

s
< ol

is bounded and weakly converge up to a subsequence to some 1! € S. We define the
sesquilinear form a% : S x S — C for (u,v) € S x S by:

(8

8 (u,v) = a(Vu, V),
and thanks to (10.1.8) we get:

19 19
lim sup X W= 9) (10.1.15)

0-04es  [|9lls

Let us prove that ¢° = 0. Indeed for all ¢ smooth function vanishing in the neighborhood
of I we have for small § that a(¥?, ¢) = a%(¢?,¢). Combining with the continuity of

the sesquilinear form a{ , the weak convergence and (10.1.15) that:
& (6,6) = lm a (42, 6) = 0.

Using an argument of density yields that this last equality remains true for all ¢ € S and
thanks to |58, Theorem 10.2] we get that 12 = 0.

Let us prove the existence of a coercive (with a constant of coercivity independent of
§ > 0) sesquilinear form ¢, and compact sesquilinear form k¢ such that the following
decomposition holds:

ad = —c& + ky. (10.1.16)

Indeed, thanks to [58, Lemma 9.23, Theorem 10.2| there exists an operator G, : H: (divopy; OBR) —
H~2(divyp,; Bg) such that the sesquilinear form kS defined for (u,v) € S:

ky(u,v) =ik <(Ge +ikG.)(n x Vu),n x (Vo x n)> .
is compact. Moreover [58, Lemma 9.23, Theorem 10.2| also states that for all u € S we
have:

k? <(~}’e(n x Vu),n x (Vu x n)> <0.
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Combining this with the assumption (8.2.4), yields that the sesquilinear form 0‘5V defined
for (u,v) € S? by:

& (u,v) == E*(€Vu, Vu) — k2 (Go(n x Vu),n x (Vu x n) ),
v

is well uniformly coercive with the parameter o which concludes the proof.
Since we have proved ¢ = 0, the compactness of the sesquilinear form ky leads to:

lim kg (47, 97) = 0.
6—0
Combining this last convergence with (10.1.15) and the decomposition (10.1.16) yields:
lim ¢ (48 %) = 0.
61—I>I(1) CV( *7 w*) 0
Using the uniform coercivity property of the sesquilinear form ¢ yields that:
. 5 A
(151_r>r(1) Y, =01in 5,

which is absurd. O

Proposition 10.1.8. Up to a subsequence we have that the sequence (E? — Vé°)ss0
converge in the space L*(Br N Q).

Proof. We will use the existing compactness properties found in [35, Lemma 2.3| and |58,
Lemma 10.4] of the two following space:

X3 := {u € Hy(rot, 2N By), div(elu) = 0},
X; = {u € X,Vy €8, a’(u,Vip) = 0} ,

that we recall here:

e For all bounded sequence (Us)sso in the space X if for all § > 0 we have Us € X}
then there exists a subsequence of 6 > 0 such that (Us)s~o converge in the space
L*(BrN Q).

e The space X} is compactly embedded in the space L?(Bg N ).

Nevertheless the vector E2 — V¢? neither belongs to the space X2 or the space X{.
However we succeed to prove that this last vector take the following forms:

BS = Vg — (s — Voly) + (o8 — Vi) + V(6o + 60, (10.1.17
where we now prove that:
1. The function qﬁio and ¢f71 converge up to a subsequence in the space S.
2. The sequence (v) — V@l ;)s>0 is bounded in X and belongs to X} for all §.

3. () = V@i 1)s>0 is bounded in X and belongs to X for all 4.
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The vector field v and v are defined by

v = (B —¢)) and v = (1—x)- (E) —¢)).
where y is a C'™ cut off function function such that y =1 in the neighborhood of I" and

X = 0 in the neighborhood of dBg and the functions (¢ o, ¢%,) € Hy(Br N Q) x S are
defined by the unique solution of the two following problems:

e Find ¢}, € H}(Br N Q) such that for all ¥ € Hj(Br N Q) we have:
( 5v¢* ,00 ¢) = (li,07 w)
e Find ¢i,1 € S such that for all 1) € S we have:
( (b* 1 w) = (li,17¢)'
Here the anti-linear forms (19,1 ,) € Hj(Br N Q)t x ST for (¢°,¢*) € Hj(BrN Q) x S
by:
(li,OJ ¢) (6 Uo, vw) and (li,h Q/}) = (12(1)?, Vw)
Now let us prove the proposition 1.
Thanks to the hypothesis (8.2.4) and [58, Theorem 10.2] a sufficient condition is to
prove that the sequence (lf 0)s=0 and (l* 1)s>0 converge up to a subsequence in the spaces
H}(BrRN Q)" and ST. Accordmg to the Rellich lemma, a sufficient condition is to prove

that these two sequences of anti-linear forms are bounded in the space L?(Bg N Q).
Indeed thanks to (10.1.14), we have for all ¢ € S that:

al(ES — V¢, V(xy)) =0 and a (Ef — Ve, V((1- xw)) = 0. (10.1.18)
Therefore for all ¢ € H} (Br N %) we have

(20, 0) = (€dx - (B — V&), Vib) = ()(ES — V&), x - Vi),
(B2 — V), V(xv))

— (&(EP = V¢ -V, )
— (B = (X)) = (€(E = V) - Vx, ),

) —
Wthh leads to 12, = €)(E? — V¢)) - Vy in (H1 (Br N Q))T Moreover the sequence
(B — V¢?)sso is bounded in L*(Bgr N Q) which conclude the proof for 1¢,. Thanks to
(1() 1.18) we have for all ¢ € S:

(.1,6) =200 = x) - (B = V), V) + (Gel(1 = )(BS = V), n x (Vo x ),

H(EL = Vo), (L= 0Ve) + (Gel(BL = Vél),mx (V(1 = X)) x ),
(B2 = 960), V(1= x)9) ) + {Gel (B2 = Ve, n x (V((1 = X)) x n) )+
(S = V) - V(1 =), %),

—a(BL == )v) + (B - Vo) - V(1 =), )

which leads to I} = €2(E? — V¢?) - V(1 — x) in ST and conclude the proof for 19 |
The proposition 2 and 3 are direct consequence of the definition of the function gbio
and gbf,l and then we have finished our proof. ]
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Proof of Lemma 10.1.1. Combining Proposition 10.1.7 with Proposition 10.1.8 yields that
the sequence (E?)sso converges in the space L?(Br N Q). Therefore thanks to Proposi-

tion 10.1.6 we get:
lim E° = 0 in L*(Br N Q),
0—0

and using Proposition 10.1.5 yields that (10.1.7) is fulfilled. Therefore thanks to Propo-
sition 10.1.3 we get that (10.1.5) is false which bring a contradiction. Therefore we finish
our proof. n

10.2 Error decomposition
Thanks to Lemma 10.1.1 it remains to estimate the following quantities:
Qri' = |[rot(E” — Ey) + ihys’ (1 -
Q) = ||rot(H® — H'5) — ike’(E° —

5)HL2(Q5)’
6)HL2 (Q9) "

We only give the proof of estimate for the quantity Q because the one of Q 5 Is
exactly the same. We split this last quantity into the followmg form: Qn,

Q D7c7(5n+D776n7

where Dy 5, is so-called "consastency error" (it measures how much the truncated expan-
sion (9.1. 6) fails to satisfy the original Maxwell equation):

Di 5, = 106 (T (B7)) + ik To (117)

L2(Co.p)
where D ;. is so-called "matching error" (it measures the mismatch between the trun-
cated expansions (9.1.6) and (9.1.2)):

D! . = ||vot(xy(Zsy Ef — E})) + ikp’x, (Zs, HY — HY)

n,0,n

L2 (CU«?W) )

10.3 Estimate of the consistency error

We have the following decomposition of the consistency €error:
175n <C- ( nén +Dn5n)
Here, we defined:

e The "first consistency error” by:

DY = Hrot(l};,n E) + ikI" i Ty, HY

I
LQ(Cé,n)

where we defined for x € Cj,, the function Z"(z) :== M~ (zr,v) Y M;(zr)v? where
=0
(xp,v) € I'x] — 0,n[ is the unique solution of x = xr + vn(xr).

e The "second consistency error” by:

D;’;’n = ||ik(Z" — V) s, HY

L2(C§,n)
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10.3.1 Estimate of the first consistency error

We introduce the following quantity:

2n n
Q° = —§"rot (E”“) Pk S 6 S MR,

j=n+1  k=l—j

because we have the following result:
Proposition 10.3.1. One has for all v € Cs,:

<I‘0t(I5,,7 E(?) + z'kI”,u5 Ls HQ) (x) = M(ar, V)_l(zé,n be) (z),

where (zp,v) € I'x] — §,n| is the unique solution of v = xr + vn(zr).
Proof. Thanks to Proposition 9.2.3, we have:

<rot(I5,77 Eg) + ikZ”,u‘; Is 1{[?) (x) = M(ar, 1/)’1(157,, Qi) (x),
where we defined:

Q% =6 'rot <E§> + rotp <E§> + ikuZMjﬁjéjflg.
§=0
Therefore it remains to prove that sz = @°. Indeed we have:
Q° =0"'rot (Eg) + rotp (Eg) + ikuZMjﬁjéjﬁ(’;,
§=0

n

= Z 5 1rot (E]> - Z §rotr <EJ> + ikuz M Z SR,
=0 =0 j=0

k=0
n—1 n
= Z Srot (Ej+1) + Z5jrotp <E3) + ikp Z Mjﬁj6j+k1-:fk,
Jj=-1 J=0 (k,j)eN1

where Ny := {(k,1) €Z? 0<k<n and 0<I[<n}. Let N :Z?+— Z? defined for
(k,1) € Z* by:
N (k1) = (k, 1+ k),

and we remark that this application is bijective. From the following equivalence:

0<k<n 0<Ek<I+k l+k—n<k<n
0<l<n 0<i+k<n 0 Yn4l<i+k<o2n)’

V(k,1) € 72, {

we get that N'(N;) = Ny U N2 with Ny N N2 = () and:

Ny ={(k,1)€Z’, 0<k<l and 0<I<n},
NQ::{(k,l)€Z2, [l—n<k<n and n+1§l§2n}.
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Z M5 T = Z SM P = Z Z 59 Mk 17

(kvj)eNl (kvj)EN(Nl) m:1’2 (]{,‘J)EN;’L
Moreover combining with (9.2.18) which is stated Lemma 9.3.11 yields:
~ n—1 n
Q) = Z d’rot (EJH) + Z5Jrotp (EJ> + ikp Z Z S M RHITF,
j=—1 =0 m=1,2 (k,j)ENJ"

a :Z Srot ( Bt EJ) — d"rot (E"H)

WVHE ik Y Mt HITE,
(k.j)ENS
2n n
— _5"rot (E”“) tiku Y &Y MFETR = Q)
j=n+1  k=l—j
which conclude the proof. m
Proposition 10.3.2. For all m € N the following estimate holds:

n ntle_1
||Q6||Cm(F;L2(]071[2X]_177I/5[)) S CT] +25 2
Proof. We recall that:

2n n
Qi = —0"rot (™) +iky S 8 30 M,

j=n+1  k=l—j

and thanks to the decomposition (9.3.65) found in Lemma 9.3.11 we have:

2n n
Q = —d"rot (Rp + Pptt) +ikp > & Y My (R + P,

j=n+1  k=l—j

2n n
= —d"rot (RE™) +ikp Y 6 > M (RY ") -

j=n+1  k=l—j
2n n
"0y (nx PE) +ikp > 60> M (P,
j=n+1  k=l—j

which leads to the following decomposition:

Q= 6"Qy" + Q) (10.3.19)

where we defined:

(

2n n
0 ot (R +ikp Y 0 Y M (BRI,

j=n+1 k=l—j

2n n
=" x 0, PR ik Z & Z M * (PR,

X j=ntl k=l—j
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We can easily prove that for all m the quantity QZ’O satisfies the P>° property which leads
to:
n,0
HQé HCW(F;L2(]0,1[2x}—1,q7/5[)) =C. <10'3'20)
Moreover we have existence of Py € O (T'; C,[?]) and (Ppt!, .-, P¥) € C* (I'; Cpyq[P]) x
- x O (I'; Cyy, [P]) such that we have:
2n .
pl=0"Py+ikp Y &P
j=n+1
In the scalar case we have already shown that for all p € N and P € C* (I';C,[V]) we
have:

m n p+% .
IDY Pll g r.r2qoapx)-1m/50) < C (5) : (10.3.21)

which to leads the following estimate:

2n L1
n,1 n (7 n+% e It ntic 1
195 v goaent 1oy sc(a G) "+ 2 () )s&v o
j=n+1

Combining this last estimate with (10.3.19) and (10.3.20) conclude our proof. O
Corollary 10.3.3. The first consistency error satisfies the following estimate:

c,0 n—‘,—l
Dnﬁm <Ot

Proof. Tt is a direct consequence of Proposition 10.3.2 and Proposition 3.1.1 (See Chapter
3), ]

10.3.2 Estimate of the second consistency error

Proposition 10.3.4. We have for all m € N the following estimate:

< CpEoe.

[
Cm (502 (10,12 x]=1,n/4[))

Proof. Tt is a direct consequence of (9.3.65) found in Lemma 9.3.11 and the estimate
(10.3.21). O

Corollary 10.3.5. The first consistency error satisfies the following estimate:

1 3
DTC/(; n < Cnn+2 :

Proof. Since (zr,v) — M™(xr,v) is the Taylor expansion of order n in v of the function

M™", we have that the function:

Z(x)—1
T

where (zr,v) € I'x|—4,n[ is the unique solution of x = xr+n(xr)v is bounded. Moreover
the function i’ is bounded then we have existence of C' > 0 independent of § such that:

c,1
Dn,&n

L2(T'x]—=d,n[)

- Hz‘k:(I" — 1)’ Ty(H)

< Ot HIJ(H?)

Lz(rx]_évn[)
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Combining this last estimate with Proposition 3.1.1 (See Chapter 3), and Proposition 10.3.4
yields:
Dc,l

n+3
n,6,n < Cn'e

< Cnn—&-l(;% I:.,:; <

Y

C3(T3L2(J0,1[2 x]—1,n/[))
which conclude the proof. O

10.3.3 Total estimate of the consistency error

Thanks to Corollary 10.3.3 an Corollary 10.3.5 we get the following result:
Lemma 10.3.6. There exists C' > 0 independent of 6 such that the following estimate
holds:

Dy, < Cn'ts

n,0,n —

10.4 Estimate of matching error

Lemma 10.4.1. There exists C' > 0 independent of 6 such that the followings estimate
holds:

mon < C(n”+% + 6 exp (—ngmg> )

Proof. We skip the proof as it is similar to the one of Lemma 3.3.4 (See Chapter 3). We
recall that this result is a consequence of the C'*° regularity of the far field and the identi-
ties (9.1.10). In this case, proceeding as previously a 6! term appears, intrinsically due
to Maxwell equation equation(oscillating term already appears in the term o contrary
to the term 4y = ug(v = 0). O

10.5 Justification and error estimate theorem

Theorem 10.5.1. For all bounded open set K C Q satisfying K N T = 0 there exists
Ck > 0 such that the following estimate holds:
6 n n n+1
HE o E&nHH(rot,K) + {1 Hs — H; ||H(r0t7K) < G0
Proof. First we emphasize that we can chose the function & — 7(d) := §"*% as it last one
well satisfies the required property that we recall above:

. )

1 o) = d lim—= =

51—I>I(1>n( )=0 an 550 4 >
Then we prove that for this specific choice we have existence of C' > 0 such that for all
bounded open set K the following estimate holds.

|E° [ Hs - , < Com. (10.5.22)

mn n
EémHH(rot,K H&WHH(rot,K

Let K C © be a bounded open set. Thanks to the result of consistence error estimate
Lemma 10.4.1, the result of matching error estimate Lemma 10.3.6 and the stability result
Lemma 10.1.1 we first get the following estimate:

HE6 B Egﬁ”H(rotJ() + HHJ B HQWHH(rot,K) S C(UWF% + 5_1 exXp (_ﬂ-gming> ) (10523)
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Thanks to these last property we get existence of C' > 0 independent of § > 0 such that:

(n+1)?
exp <_7Tgming) < C (%) = 06n+1a

and combining this last estimate with (10.5.23) conclude the proof of the estimate (10.5.22).
Now that we proved this estimate we now use the hypothesis K NI'. In this case it is easy
to prove that for ¢ small enough that we have x, = 0 and then the estimate (10.5.22)
becomes:

||E6 - ) + HH5 - H(?HH(rot,K) S co".

EELHH(rot,K

Since the proof is true for all n then this last one is also true for n + 1 which yields:

15— B3 sy 1Hs — H3 ¥ ) < O

rot, K rot,K) —

Therefore we have:

HE6 o EELHH(rot,K) + ||H5 o HgLHH(I‘Ot,K) < HEJ B EgLJrlHH(rot,K) + ||H§ B H§L+1HH(rot,K) +
HH oz + 0 IE™ o ) < O™
which is the stated estimate in this theorem. O
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Chapter 11

Effective boundary condition of order 1

11.1 Explicit construction of the far field and the near
field for n =0

11.1.1 The far field

Applying the formula (9.3.62), yields that the far field (E°, H°) are defined by the unique
solution of: Find (E°, HY) € Hyec(rot; 2)? such that:

rotE° = —ikH" and rotH’ = ik E° + Jsources

satisfying the boundary condition v E° = 0 on I' and the radiating condition (8.1.3).

11.1.2 The near field
Applying (9.3.63) and (9.3.64) with n = 0 yields for all (zp;&,0) € T' x Q:

E(xr; 2, 0) = (E°(ar) - n(xr) ) Ne(er; &,0), (11.1.1)
and

H(xr; 2,0) = Ny (zr; 2, 0) (n(xp) x (H"(zr) x n(:z:p))> (11.1.2)

11.2 Explicit construction of the far field for n =1
We introduce for convenience the normal trace operator for u : Q — C? and ar € ' by:
Ynu(zr) == u(zr) - n(ar).

Thanks to (11.1.1) and (11.1.2), we have for n = 1 and all (zr,#,0) € T x  that :

fE(ar;2,0) = —rotp((EO(xp) -n(xr))Ng(zr; 2, 19)) (11.2.3)

—ikjur; &, )Ny (zp; 2, D) (nm) x (H(zr) % n(xp))). (11.2.4)

245



Applying (9.3.62) yields that the far field (E', H') are defined by the unique solution of:
Find (E', H') € Hyo(rot; Q)? such that:

rotE' = —ikH! and rotH' = ikE"' in Q,

satisfying the boundary condition:
E'(ar) x nar) = [ fE(ers,0)dids,
v

and the radiating condition (8.1.3). To express more explicitly this last quantity we
introduce the scalar field €4 defined for zr € T by:

alan) = [ )|V wrlors 2,0 i,

oo

and the tensor field p 4 defined for xp € I' by:

e If zp € 'y then pg(zr) is the unique element of £(7,.I') such that for all (i, j) €
{1,2}? we have:

A~ A~

(Beg(zr)ei(zr), ej(zr)) :/[L((ei(xp),ej(mp))—k(Vwi(mp;i,ﬁ),ij(xp;i, ﬁ)))didﬁ.

Y-

o If zp ¢ 'y then:
e (2r) == fﬂ(xp;i’,ﬁ)d:i"dﬁ]l.

[e o]

Finally we define the operator Z; for u by:
Zyu = k%rotr (e;fflrotpu) — Mol

The space of definition of this last operator will be given later.
Proposition 11.2.1. For all zr € ', we have

/ fE(xp; 2, 0)didy = ik Z,(yvp HO)(2r).
V.
Proof. First we prove that we have:
/ rotr <7nEONE(.; Z, ﬁ))dfcdﬁ = —(ik)"'roty (e;ﬂlrotp (VTHO)) (11.2.5)
v
To prove this last equality we need to prove that we have:
Var €T, | Ng(ar; &, 0)dzdr = ey (xr; &, 0)n(zr). (11.2.6)

Y_

Indeed, let zr € I'. Using the periodicity of the function w® and the definition of the
vector N given in (9.3.26) yields:

/ Ng(ar; &, 0)didy = / Y w (zr; &, 7)didp = n(zr) - / Opw (ar; &, 0)didp,
Y_ Y_ Y_
(11.2.7)
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and using (9.3.25) with w® as a test function yields:

/we(:vp;i,ﬁ)di: :/é(%ws(mp;i,ﬁ),@we(mp;:ﬁ,ﬁ))daﬁdﬁ =€ (zr).
s Y.

Therefore combining this last equality with (11.2.7) end the proof of (11.2.6). Thus using
(11.2.6) yields:

rotr (/ Y ENg (- 2, ﬁ)di:dl?) — rotr (mE e ) -
v

Moreover thanks to the equation rot E® = —ikH" we have v, E° = —(ik) ‘rotr (y7H°).
Secondly we prove that for all xr we have:

zk/y fi(xr; &, 0) Ny (zr; &, 0)H® (xr)d2dD = ikpeg (n(zr) x (H(zr) X n(zr))). (11.2.8)

Indeed, for zr € I'yy we have for all i € {1,2}:
[ (s &, )N (s &, D)es(wr)dadi = fug(zr)es(or), (11.2.9)
Vo

because applying (9.3.30) with w;(zr;-) as a test function yields:

A~ A~

(/ ,&(xp;ir,ﬁ)NH(:L'p;:%,ﬁ)ei(xp)dfdﬁ,ej(xp)) :/ f(xr; z, ﬁ)(Vwi(:Ep;i,ﬁ),ij(zp;i,ﬁ))didﬁ,
v Vo

+ / fixr; &, 0)did (e;(zr), ej(zr)),
v

= (Meg(wr)es(zr), e;(ar)).

The case of zr ¢ I' is trivial Finally combining (11.2.5) and (11.2.8) with (11.2.3) ends
the proof. O

11.3 Deduction to an effective boundary condition

11.3.1 Formal deduction
From the previous section we recall that
wE=0 and ~E'=ikZ, (’yTHO),

which leads to:
Y (E° + 0E") m ikdZy (v (H® + 6H")). (11.3.10)

More precisely we have
Y (E°+6E") =62, (yr(H® + 0H")) + O(6°) with  O(8°) := —ik6*Z, (vp H').

Thus we introduce the field (E?, H?) as the unique solution of (8.1.1) and (8.1.3) satisfying
the following boundary condition(the study of this problem will be done further):

WE] = ik6 2, (yrHY).
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11.3.2 Variational formulation

We introduce for 6 > 0 the following Hilbert space:
V?:={U € H(rot; By N Q),rotr(U) € L*(T')},
and we provide this last with the norm defined for U € V? by:
1T s == 87 (Ul 2y + lIxote(U)l]z2ey) + U1 wot, Bare)-

We define on this last space the sesquilinear form a§ defined for (H, H') € V?° by:
aS(H,H') =6 / (e;fgrotp(ﬂ) -rotr(H') — k* (peg H, H’))dr+,
r
/ ((rotH, rotH') — k*(H, H') )dQ + ik(Ge(n x H), (n x H) x n)
BRrNQ

We introduce this last sesquilinear because we can easily prove that the restriction the
function H? on the domain Br N is the unique solution of: Find HY € Vj such that we
have for all H' € V5 we have:

aS(H! H') = / Jsource - TOt(H').

BrnQ

11.3.3 Consistency error

We need to introduce the two following space:
H_%(din; I):= {u €H (T, u is tangential and divpu € Hz (F)} :

and
H’%(rotp; I'):= {u cH > (I')?,u is tangential and rotru € H: (F)} :

We recall that:
1 1 T 1 T
H3 (divp; T) = (H’E(rotp;l“)) and H~3(rotp;T) = (H*a(divp;r)) (11.3.11)

Lemma 11.3.1. There exists C' > 0 independent of 6 such that we have the following
consistency error:
al(H° + 0H' — HY, H')
sup

H'eVs ||H,”V6

< 6

Proof. Let H' € V° satisfying ||H'||ys = 1. We will show an uniform estimate to the small
parameter § and H' of the quantity a{(H° + dH' — H?, H'). Indeed thanks to (11.3.10)
and (11.3.11) we have:

a)(H® + 6H' — H}, H') = 6> (Ir, vy H') 121 »
<4’ HZFHH 2 (divp;T)

< Co*||ir||

A H N 4 o

H™ 3 (divp;D) H ||H(rot;Q),
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where we posed the quantity I := rotr (ee’ﬁlrotp (’yTu)) — k% gyru. Therefore combining
this with [[H'|| g rot:0) < [|H'||vs = 1 leads to :
5 5
al(H°+6H' — H) H') < OH[F”H—%(rot;r)‘
Therefore it remains to prove that ir € H —3 (divp; I'). This result is a direct consequence
of the regularity of the far field H' and the effective coefficients €7 and pi.g-. O

11.4 Stability of the effective boundary condition
Lemma 11.4.1. There exists C > 0 independent of § such that we have for all H € V?°:

) !
al(H,H')
[Hllys < C sup ———r—=.
v H'eV? ||H/||V5
As the proof of Lemma 10.1.1, we will prove this lemma by contradiction. If this result
is false then there exists a sequence H? € V? such that we have:

d H(S H/
lim sup —al( 1)

=0 and H?
00 greys || H'||ys |

s =1 (11.4.12)

Nevertheless, we do not have compactness result of the injection from V? into L2(Q2) N
L3(T"). However, we have a compactness result stated Proposition 11.4.3 for the following
space:

Xy :={H eV’ a{(H, V) =0, Vip € 5°},

where we defined the following space:
S° .= H' (BN Q)N H(T).
We emphasize that from the relation rotr Vi = 0 that we have the following inclusion:
VS cve.

Although we do not have H° € XJ, we can reduce to this last case by using the the
following result:

Proposition 11.4.2. There exists C' > 0 independent of § > 0 such that the sesquilinear
form al satisfies the following inf —sup condition:

o} (Vo V) o} (Ve v)
inf sup ————=>C and inf sup ————= > C.
ves? yegs || H||gs||H'||ss ves® yegs |[H || gsl|H' || ss

Proof. The proof is exactly the same than the one of the stability result for the Helmholtz
equation stated in Lemma 4.5.4 (See Chapter 4). It is sufficient to replace the Dirichlet
to Neumann map by the following sesquilinear forms defined for (u,v) € H'(Br N Q)?
by:

ik(G. - (n x Vu),n x (Vv x n)).

Indeed this last sesquilinear satisfies the same required properties than DtN we used to
do the proof of Lemma 4.5.4 (See Chapter 4). O
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Indeed thanks to this last result we have existence and uniqueness of a sequence ¢ € S°
such that we have:
al (Vo , V') = —aS(H?, V'), (11.4.13)

satisfying the the following estimate:

_ al(H°, V'
[0 lgs < O sup AU V)

11.4.14
vess W lss ( )

where C' > 0 is the constant appearing in Proposition 11.4.2. Combining the estimate
(11.4.14) with (11.4.12) yields that:

. ) .
lim [Vl = 0,

and thanks to (11.4.13) we directly get that H° + Vi € XJ.
Proposition 11.4.3. Let (H%)s-0 be a sequence of element of X such that there exists
C > 0 independent of 6 with:

| H||ys < C, (11.4.15)

Then there exists H € L*(BrNQ) and Hr € L*(T) such that we have up to a sub-sequence
the following convergence:

lim H® = H in L*(Q) and lim 62 H® = Hy in LA(I). (11.4.16)
6—0 6—0

Moreover there exists gr such that up to a sub-sequence we have:

lim G%(n x H°) = gr. (11.4.17)
0—0
The proof is inspired from the one of [38, Lemma 15]. We introduce the half space
P := R?X] — 00,0[. We denote for vector u : P — C? the tangential trace by ugp.
Moreover divgp and rotgp are the surface divergence and scalar curl on JP. We need also
to define the following assumptions for (M, P) € C* (0P; My(R)) x C* (P; M3(R)), n > 0
and u € L*(P)3:

(I) There exists Cyp,C’ > 0 such that for all v € H'(P)® with div(v) = 0 and
vop € H'(OP)? we have:

—Re/ diVa]P(M’Uap)diVap(Ua]p)d(aP) S CM,PH(PU)(?PHZ( + HPUHH(rot,P)
oP

rotyp ,8IP)

= € (Il oys + Nooe 3 omye ) -

(IT) We have the estimate : ||P — ]I||C1 (ms(m) <n.

(III) The matrix field M is uniformly definite positive. That means the existence of
C > 0 such that: for all (v,z) € C* x 9P we have

(M(z)v, v)

jol?

> C.
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(IV) For all z € P and v € R? x {0}: P(x)v € R? x {0}.
(V) (rot(Pu),rotap(Pu)se) € L2(P)° x L2(0P) and (u,usp) € L2(P)? x L2(OP)>.

(VI) For all ¢ : T — R with (V¢, Vgpo) € L? (IP’)S x L2 ((91?)2 we have:

Mu - Vopdd(OP) + / u- VodP = 0.
oP P

To prove Proposition 11.4.3, one need the three following results:

Lemma 11.4.4. Let (M, P) € C'(9P; M2(R)) x C*(P; M5(R)) and n > 0 satisfying
(I), (1), (III) and (IV). Then if n is small enough, we have for all u € L*(P)? satisfying
(V), (VI) that w € H(P)® and the following estimate holds:

lulli @) < 201 PullZ ot p) + 4Cu,p Il (P)opllZi rotyy op)- (11.4.18)

We will also use the following result which is found in [38, Lemma 14].

Lemma 11.4.5. Let M be a definite positive matriz of size 2 x 2 and P =13. Then (I),
(III) and (IV) holds in this case.

Lemma 11.4.6. The set of matrix field (M, P) € C*! (8IP’; MQ(R)) x C1 (IP’; Mg(R)) sat-
isfying (1) and (III) is an open subset of C*(9P; Ma(R)) x C*(P; M5(R)).

Proof of Lemma 11.4.4. Let us prove first that u € H'(P)? and (u)sp € H'(OP)? implies
the estimate (11.4.18). In this case we can apply [60, Lemma 5.4.2|, which leads to:

Irot(u)Z2(e) + Ildiv(u)||Z2e) = | VullZa@) + 2Re(divr (ur), u - n)op, (11.4.19)

where (,)gp := (-, ) X Thanks to (II) if 7 is small enough then:

H™ 3 (OP)—H 3 (JP

1
[rot(Pu)lia) > Ilrot(w)llzae — 5llwlie)-
Combining this last estimate with (11.4.19) leads to:
: 1 :
lellze @)+ Irot(Pu)llZzge + div(w)[Fae > Fllullbe +2Re(dive(ur), u-n)ge. (11.4.20)
The assumption (VI) leads to:
div(u) =0in P and w-n = divp(Mur) in OP. (11.4.21)
Hence (11.4.20) becomes:
1 : .
lullZ2@) + ot (Pu)lZ2e) > 5 llulline) + 2Re(divr(ur), dive(Mur))op, — (11.4.22)
2

Thanks to the assumption (I), this becomes:

1 2 2 2 2
§HUHHI(P) < Jullzz@) + lrot(Pu) |72 + QCM,PH(PU)BPHH<M8P7BP>a

which concludes the proof of the implication: u € H'(P) and (u)op € H'(OP)® =
(11.4.18).
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Therefore it remains to prove u € H'(P) and (u)sp € H'(0P)3. Indeed thanks to (V),
there exists a sequence (u;); with u; € H(P) and (u;)sp € H*(9P)? such that:

Pu = lim Pu; in H(rot;P) and (Pu)gp = lim (u;)gp in H(rotsp; OP).  (11.4.23)
j—o0

J—00

Nevertheless this sequence a priory does not satisfies the assumption (VI). That is why
we introduce for j a function 9; of the space:

V©P)i= {6 € Lu®)/C lull = | [Vula®+ [ [VomaPd(oP) < .
oP P

This function is the unique solution of: Find ¢; € V(9P) such that for all ¢ € V(OP) we
have:

a(¥;, @) = 1;(). (11.4.24)

In this variational formulation, the sesquilinear form a and the anti-linear form [; are

defined for (v,v') € V(9P)? by:
a(v,v") = / (MP ™ YVapv - Vapv'd(IP) + /(P1VU) - Vu'dP,
P P

and:
Lj(v)=— [ Mu; Vap'd(OP) — /uj - Vo'dP = 0.
P P

This last problem is well posed when 7 is small enough. Indeed, on the one hand we
assumed that M is uniformly coercive on 0P. Combining this with (II) yields that if n is
small enough then the matrix field M P~ is also uniformly coercive on OP. Moreover P~*
is also uniformly coercive on P. Then the sesquilinear a form is well coercive in V(OP).
On the other hand the anti-linear form [; is clearly continuous.

Thus we now can introduce the field:

ij = u; + P~V (11.4.25)

Thanks to (11.4.24), this field well satisfies (VI). Thanks to the regularity of u; and M,
by inspiring from the proof of [57, Theorem 4.21], we can prove that: V¢; € H'(P) and
(V(bj)a[p S H1(8P)3.

Therefore for all j, k, u; —ax € H'(P)® and (u; — tx)op € H'(OP)? . Moreover thanks
to the properties rotV = 0 and rotgspVgp = 0 we have by construction:

rot(P(a; — i) = rot(P(u; — uy)) € L*(P)*, (11.4.26)

and
rotyp (P(t; — ix)) = rotop(P(u; — ug)) € L*(P). (11.4.27)

Moreover, by linearity @; — @, satisfies (V) and (VI). Thus we can apply the estimate
(11.4.18) which leads to:

||ﬂ’] - ﬂk”%ﬂ(ﬂm) < 2||P(ﬂ] - ak)”?f(rot,]?) + 4CM,P||(P(1~L] - ak))ap”?ﬁ((rotapﬁP)'
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Thanks to (11.4.26) and (11.4.27) this last estimate becomes:
@; — || Fr ) < Eji + Ey,s (11.4.28)
where we defined for j, k:

Ejlk = 2||I‘Ot (P(u] — Uk)) ||%2(1p)3 + 4CM7P||I'Ota]p(P(Uj — uk))a}p”%ﬂ(aﬂ”)?

and
E3 = 2|[(aj — @) |72y + 4Cup | (5 — Gr)opl| 72 op)-
Now let us prove that:
lim sup E = lim sup Efk 0. (11.4.29)
J= koo J=0 koo

Indeed, thanks to (11.4.23) we directly get that (because all convergent sequence are
Cauchy sequence):
lim sup Ejlk =0.

J=0 k0o

Thanks to (VI), we can rewrite for v € V(0P) the definition of I; as follow:

Liw)=— [ M(u; —u) - Vapv'd(OP) — /(u] —u) - Vo'dP = 0.
P P
Combining this with (11.4.23), yields that: lim [; = 0 in V(0P)'. Combining this (11.4.24),
j—00
yields:
lim ¢; = 0 in V(OP). (11.4.30)

]—}OO

Hence lim sup E7, = lim sup 2[|(uj —ug) | 22(pys +4Cn,pl(uj —ur)op||72 o) Combining
J=00 k00 J20 koo

this with (11.4.23) conclude the proof of (11.4.29). Thanks to (11.4.29) and (11.4.28), w.
directly get that (a;); is a Cauchy sequence in H'(P)®. Therefore there exists & € H 1(IF’)3
such that:

@ = lim 4, in H'(P)?,
J—00

and thanks to (11.4.30) and (11.4.25) this becomes:

i = lim u; in L*(P)®.
j—00
Combining this with (11.4.23) yields u = u € H*(P)?® which concludes the proof. O
Proof of Lemma 11.4.6. Let M, C' and C’ satisfying (I). Let M’ be an element of
C!(R?, M5 (IR?)) such that
Cl
2

Then thanks to the Leibniz’s formula, we can prove that for all u € H'(IP)? with ugp €
H'(P)? and div(u) = 0, we have:

| M — M||crop) <

. T2 C, . .
Re/ divr (M ugp)divr (ugp)d(OP) > _7”“6]}9”%[1(81?) +Re/ divp(Mugp)divr (uge)d(OP).
oP R2
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Combining this last line with (I) leads to:

_Re/ diVap(MUQP>diVap(UQ[p)d(aP) S CM,PH(PU)(?IF’“Z( + ”PUHH(rot,P)
oP

C’ {
= 5 (s oy + lwoe B oz ) - (11.4.31)

rota]p,(?IP’)

Let P’ an element of C* (P, M5(IR?)) then if ||P’ — P||c1(p) is small then we have:
2 2 e
/
CliPullorr) = CllPUlr oty — — 1ull ey
Adding this last estimate with (11.4.31) which conclude the proof. O

Proof of Proposition 11.4.3. By using truncation function and correction with gradient(see
proof of Lemma 10.1.1), we can prove that we can reduce to the case of H? satisfying:

H® xn =0 on 0B, (11.4.32)

which conclude the proof of (11.4.17). Let (x¥)i<i<ny be an arbitrary smooth partition
of unity. Thanks to the Rellich lemma, a sufficient condition of (11.4.16) is the following
one: If this last unit partition is fine enough then for all 1 < i < N the quantity Y~ H’ is
bounded in H*(BrN). Therefore, let 1 <4 < N and let us prove that this last property
holds for this i.

Assume first that supp(x¥) N T = (). In this case we have by the definition of the
space X that:

div(XfVH‘s) = fov CH® + X?M and rot(foH‘s) = Vxﬁv - H® + Xfrot(H5),

which directly leads that x¥ H? is bounded in the space H(rot; BrNQ) N H(div; BRN ).
Moreover this last quantities vanishes in the neighborhood of I'. Thus thanks to (11.4.32)
and [60, Lemma 5.4.2| we directly get that this last quantity is bounded in H'(Br N Q).

Assume now that supp(x¥) N T # 0. Since our manifold ' is smooth enough then
there exists O diffeomorphism ¥; : R? — R? such that we have:

U (supp(x; ) NQ) CP and ;' (supp(x;)NT) C OP. (11.4.33)

We refer the reader to Figure 11.1 for an illustration of this map. From this last appli-
cation we introduce the vector sequence H? : P+ C? defined for z € P by:

H!(z) :=det (DW;(2)) DV;(z) "x;(¢/)H(2') with 2’ :=U;(z) €Q,  (11.4.34)

and we now prove by using Lemma 11.4.4 that this last quantity is bounded in H'(PP).
We introduce for convenience the tensor field defined for z € ;' (supp(x) by:

pir(x) == i, (z) det (D \Ili(a:))_l DU (2) e (") DWy(z) with 2 := Uy(x) € Q,

where p,, : OP — T is a smooth function such that for all F : supp(x¥) N T — C we

have:
/ F(9(2)) pu; (z)dw = / F(zr)dzr.
‘P;l(SUPP(XfV)mF) supp(x¥)Nr
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supp(x))NQ N
.__\_‘\“'"‘IDD(X@ )nT o, (supp(x¥) N )
_ P ST
Q ) v; ;g
/ :
—1( N
y W, (supp(xY) NT)

supp(x{)
Figure 11.1: Illustration of W;

We can prove that we can extend the tensor field p; for all x € P and hereafter pg is
this extension.
Thanks to [58, Corrally 3.58| the curl of the following vector field defined for = € P
by:
det (D W;(2)) DUl (2)xi(2)H'(z') with o' = ¥;(a),

is bounded in L?(IP). Therefore there exists C' > 0 independent of § such that:

Hrot([\pin) <C and §2 “I'Otr([\pin) ) < C, (11.4.35)

HL2(]P) HL?(@P

where we defined the tensor field on P by Iy, := D \III D w,.

If we were able to apply Lemma 11.4.4 to the sequence of vector field (H?)s and tensor
fields pig and Iy, then we could conclude our proof. Indeed this result would provide
that the sequence fields (H?); is bounded in H'(P). Nevertheless, if H® assumption
satisfied (VI) then the anti-linear form [ € V(P)" (the space V(P) defined one the proof
of Lemma 11.4.4)

<l?, U>V(P)JT—V(]P)) = /Hf . VU + 5/ /”L:ﬂ' (Hf)ap . V]}DU7 (11436)
P oP
should vanish. To counter this problem, one adds a potential to H?:

0= H)+ 1!V, (11.4.37)

where V¢° € V(P) is uniquely defined by the solution of the problem: Find ¢ € V(P)
such that for all v € V/(P)

Vo € V(P), A(¢l,v) = —<Z§S,U>V(P)LV(P), (11.4.38)
and A : V(P) x V(P) — C is defined for by for (u,v) € V(P)? by:
A’ (u,v) = /]\ESVu -Vou+ 5/ ugﬂlq_,ilvapu - Vopv.
P P

In the later we prove this last problem is well posed when the diameter of supp(xY) is
small enough. Then one directly get that H? satisfies:

Vv € V(P), /ﬂf Vv + 5/ g (HY) o - Vv = 0. (11.4.39)
P opP
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To prove that (11.4.38) is well posed, we now apply the Lax Milgram theorem. Thus we
now prove the two following proposition:

e If the diameter of the support of the function ¥ is small enough then the sesquilin-
ear form A° is uniformly to the small parameter 6 coercive on the space V(P) in the
sense that there exists a constant C' > 0 independent of ¢ such that for all u € V (P)
we have:

ReA (u,u) > C (||vu||ig(m + 5||vapu||22®) . (11.4.40)

e The anti-linear form 12 is well an element of V (P)'.

Thanks to the regularity of our boundary I' and the regularity of the tensor field p.g on
I we have for all n > 0 that: If the diameter of the support of the function y¥ is small
enough then we can chose the application ¥; such that:

[y, = Ilcvey < and - lpgg — pgller oy <, (11.4.41)

where puf is a constant positive definite hermitian matrix. Thus if 7 is small enough then
the matrix Iy," and p’z /" are definite positive and then we can casily conclude the proof
of (11.4.40). Now let us prove that ¢ is well continuous. Indeed, thanks to (11.4.15) |
the smoothness of the map W, and (11.4.34) we have existence of C' > 0 independent of
0 such that:

VIHE 220y + 01 (H2) 122y < C.
Combining this with (11.4.36), yields that for all v € V(IP) we have:

(2, vveyi-ve \<\/HWH pe T I Vel Zaop) (11.4.42)

Therefore we concluded the proof of the continuity of 12. Hence we well can apply the
Lax Milgram theorem and then ¢? is well defined and (11.4.39) holds.
Now let us prove that V¢? € H'(P) and Vgpe) € H'(9P) with the existence of C' > 0
such that we have: )
”V¢i”Hl(p)2 +02 Hva[p?(biHHl(ap)Q <C. (11.4.43)

Combining (11.4.40) with (11.4.42), yields the existence of C' > 0 independent of § such
that: .
IV 2@y + 62 [ Vordll r2op) < C. (11.4.44)

Now let us prove the existence of functions L} : P+ C and L3 : 9P + C such that for
all v € V(P) we have:

12, v)y @y v = /Lg o406 [ LS., (11.4.45)
P oP
with the existence of C' > 0 independent of ¢ such that we have
1L\l 2y < C and 87| L oy < C. (11.4.46)
Moreover the support of this last function satisfies:

supp(Lg) C Wy (supp(x;') N Q) and  supp(Lj) C U (supp(x;') NT).  (11.4.47)
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Indeed, for all v € V(PP), we have:
B, v)vey-ve = /pr Vo + 5/31@ peg (HY) g - Ve

:/ H? . V(f}o\I/i)—i—(S/ Meff]sHé - Vp(0 0 ),
L v )T

supp(x)NQ) 7 (supp(xN)

:/ Hf-D\IfI-VT)o\I’H-(S/ Meff’\g .D\IJZT-VPi’)o\I'i,
v

7 (supp(xY)NQ) ! (supp(x

:/ DW;-H) VoV, +5/ DV,- ueﬁ(Hﬁ) - Vpi o ¥,
v

supp(x; )NQ) (supp(xj¥)NI’)
Replacing H? and p’g by their definition in these last line leads to:

<lfvv>V(P)T—V(]P’) = / det (DW;) (x;H’ - V) o U; + 5/ Mwlglueﬂ“XzH VF“) oWy,
ik

. (supp(xY)NQ2) (supp(x

= /QXzH(; -V + 5/F,ueffX1H1é : VF67

:/H5~V(Xiz7 ot Hp - Vr(xi0) /Vxl H‘5v+6/ fes X HP - Vrxi)0,
0

T

— / (Vi HO)T+ 6 / (e .- Vr)F,
(supp(x¥)NQ supp(x¥)Nr

= / det (D ‘I’Z) (Vxi-H®) o U;D + 5/ Faoy (HemrXi HP - Vrx:) o U0,
vyl

7 (supp(x [ )N9) W7 (supp(x{Y)NT)
which conclude the proof of (11.4.45) and (11.4.47) if we chose:
Lg = det (D ‘IIZ-)(VXZ- -H°) oW, and L°:= Mwi(ﬂeﬂXng -Vrxi) o V,.

The estimate (11.4.46) are direct consequences of (11.4.15) and the definition of L and
e

Thanks to the smoothness of the maps p.q and Iy,, by using similar argument as the
proof of [57, Theorem 4.21], we can prove that for all j € {1,2} we have:

0z, 02 € V(P),

where (1, 2, z3) is the variable of the map ¢?. Thus for all ¢ € P, taking ,,¢ as a test
function in (11.4.38) yields:

A0y, 0%, 0) = (125, B)veyi—v (), (11.4.48)

where we defined the anti-linear form I ; for v € V(P) by:

<l23,¢ V(P) -V (P) * —/8% VU VU+5 8%(/%5] )Vapu Vg)pv—/ Lg-@zjﬂ—é/ L‘lsamﬁ
oP P

Thanks to the smoothness of the maps peg and Iy, (11.4.46) and (11.4.44), we get the
existence of C' > 0 independent of ¢ such that for all v € V(P) we have:

@5 v vl < JIVolan + 81 Ve0l2a e
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Combining this with (11.4.48) and (11.4.40), yields the existence of C' > 0 independent
of ¢ such that for all j € {1,2} we have:

IV, 021132 (pys + 011 VEDa, 621720y < C. (11.4.49)

Moreover, by using there is an argument in the proof of |57, Theorem 4.21] which state
that combining (11.4.49) and

—div(1;'Ve)) = L) in P,
yields 92, ¢2 € L*(P) the existence of C' > 0 such that:
105,821 22y < C.

Combining this with (11.4.49) concludes the proof of (11.4.43).

(11.4.45) and (11.4.46) are sufficient condition to have Thus we succeed to properly
construct the function V¢¢ and the required property (11.4.39) is a direct consequence
of (11.4.38).

Thanks to (11.4.35), (11.4.43), the identity identity rotV = 0 and rotsppVap = 0, we
directly get the existence of C' > 0 independent of § such that the following estimate

holds:
\ 4@3 <c,
L2(P) L2(P)
1 (11.4.50)
&( )ga
L2(0P)

Thus thanks to (11.4.50) and (11.4.39), H? satisfies (V) and (VI). Moreover we have seen
that we can have 1 as small as we want in (11.4.41). Therefore to to apply Lemma 11.4.4
to H? it remains to prove that the tensor Iy, and p satisfies (I), (ITI) and (IV)

Indeed, thanks to Lemma 11.4.5, since pug is a positive constant hermitian matrix,
ws and I3 satisfies (I), (IIT) and (IV). Moreover, since we have seen that we can get 7
as small as we want in (11.4.41) we can apply Lemma 11.4.6 which yields that Iy, and
wxg also satisfies (I), (III). The property (IV) is a consequence of (11.4.33). We can
easily prove that Iy, and du’s also satisfies (I), (III) and (IV), by replacing Cyp by
Csuzg 1y, = 0Cy p. Therefore thanks to (11.4.50) and Lemma 11.4.4, H? ¢ H'(P)® and
there exists C' > 0 independent of > 0 such

Hrot (Iq;iﬁf)

f{é

rotr ([\pz [j[f)

—

Combining this with (11.4.43) and (11.4.37) conclude the proof of H € HY(P) and
|H ||y < C. Therefore we can now conclude our proof. O

Corollary 11.4.7. We have the following convergence:

: ) . 1 5 s
B | || 2(n0) = lim 0% || HY | 2y = | G2(n > H))| 0.

1
H™2(divapp;0BR)

Proof. Thanks to Proposition 11.4.3 a sufficient condition is to prove that H? weakly
1
converge to 0 in the space H(rot; Bx N Q) and 62 H® weakly converge to 0 in L2(T).
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Indeed let H' be a smooth vector field then thanks to the regularity of the coefficient e_;
and pegq we have:

rotr (e;ﬁ}rotFH') — pegH' € H_%(diVagR; OBR).
Therefore the following quantity:

/GeﬂcertFH(S‘rOtFHl — / (,uegH‘;,H')
r r
is bounded in § which leads to:

lim5/€;fflrotpH6 -rotr H' — 5/ (MeﬁH(S,H/) =0.
r r

d—0
Thus combining this last convergence with (11.4.12) leads to:
lim ag(H’, H') = 0. (11.4.51)
0—0

Moreover the sequence H° is bounded in H(rot; Br N Q) and then this last sequence
converge up to a sub-sequence. We emphasize that (11.4.51) is true for all smooth vector
H' and then we directly yields that the the weak limit of (H%)ss is zero. Moreover the
sequence (H?)s¢ is bounded in H~3 (divgpy,; 0BR) which leads to (5%H‘5)5>0 converge to
zero in the space H ’%(divaBR; 0Bpg). Thus using that this last sequence is bounded in
L2(T") conclude the proof of the weak convergence (62 H)s_,o to zero in the space L(I).00
Proof of Lemma 11.4.1. We have the following decomposition:
al(H°, H®) = C° + K°,
where we defined:

C? = [ |rotH’[2dQ + 5/ e |rotr HP2AT + (ikGL(n x H®), (n x H®) x n),
T

BrNQ

K= —k?* [ |H°)? — 5/(ueﬁH‘5,H‘s)dF + (ikG?(n x H®), (n x H°) x n)
I

BrnQ
Thus taking H' = H° in (11.4.12) yields: (lsirr(l) C? + K° = 0. On the other thanks to
4>
Corollary 11.4.7 we have <lsin(1) K% = 0 which leads to:
_>

lim C° = 0. (11.4.52)
6—0
Thanks to [58, Lemma 10.5,Theorem 10.6] we have:
Re(ikG*(n x H®),(n x H®) x n) > 0.

Moreover we recall that the function e is inferiorly bounded by a strictly positive

constant. Therefore (11.4.52) leads to:
. 5 . d
tim [0t (H)] 22500y = i [rote ()| 2qc) = 0.
Combining these last convergence with Corollary 11.4.7 leads to:
lim || H’|[ys =
lim |15 = 0.

which contradict (11.4.12) and then conclude the proof. ]
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Conclusion et perspective

A Tissue de cette thése, il est intéressant de faire le point sur le travail réalisé. La
définition de la ir —d—périodicité, nous a apporté une généralisation de la périodicité
pour des fonctions définie une surface I'. Cette définition n’est pas intrinséque a la
surface I' car elle dépend du choix de 'application ¢r. Cependant cette définition nous
apporte une modélisation de couche mince fortement hétérogéne: si 'on se donne une
fonction trés oscillante (donnée du probléme) i dans la couche mince et que 'on arrive a
identifier un d, fonction 1r et une fonction pd qui est ¥r ——périodique tel que p’ = fi.
Nous pourrons alors utiliser notre modéle de couche ¢r —d—périodique. Les simulation
numériques de couches minces Yr —0 périodiques sont cotiteuses car il faut mailler &
I’échelle du petit paramétre 6. Nous avons réussi durant cette thése a construire des
approximations d’ordre 1 pour les équations de Maxwell et d’ordre 2 pour I’équation
de Helmholtz . La couche mince trés hétérogéne est alors remplacée par une condition
d’impédance. Les coefficients apparaissant dans les opérateurs d’impédance dépendent
du choix de 'application ¢r . Ces approximations nous permettent de réduire le temps
de calcul car 'implémentation de ces conditions ne requiert pas de maillage aussi fin que
ceux des couches minces ¢r —)—périodiques. Nous avons réussi a valider numériquement
nos approximations dans le cas 2D. Le temps de calcul pour la résolution du probléme
approché est trés inférieur a celui nécessaire pour la résolution du probléme initial : ainsi
le calcul numérique de la solution exacte a pour ordre de grandeur d’une journée et celui
du models approchée a pour ordre de grandeur de une heure.

Donnons pour terminer quelques perspectives de notre travail. Tout d’abord, une pre-
miére perspective est I'implémentation, puis la validaion, d’une méthode numérique pour
"approximation des conditions d’impédance en 3D (Helmholtz et Maxwell). Nous avons
déja mis au point un code scalaire en 3d qui calcule la solution exacte ainsi que la solution
approchée avec la conditions aux limites équivalente d ordre 1 lorsque la surface I' est
homéomorphe a un tore. Les résultats correspondant n’on pu étre présentés dans cette
these car il y a encore des bugs dans ces codes : les deux programmes sont déja implémen-
tés mais nous sommes actuellement en cours de débogage. Une deuxiéme perspective de
notre travail est d’étudier le cas de couche mince ¥r —d—périodique contenant des méta-
matériaux (changement de signe des coeflicients) ou des matériaux fortement conducteurs
(coefficient de I'ordre de 1/6%). On s’attend & observer dans ces deux cas des phénoménes
de résonance dans la couche mince. La derniére perspective est d’étendre notre travail
a des surfaces I' contenant des coins afin d’affaiblir nos hypothéses de régularité sur la
surface de 1'obstacle.
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Nomenclature

HO(YOO) {u € H(Yoo), u =0 on 8@}, page 211

S¢ HYBrN Q)N HYT), page 249

X9 {H e V% ai(H,Vy) =0, Vo € 55}, page 249

H_%(rotaBR; 0BR) {u € H 2 (0Bg)*,u is tangential and rotop, (u) € H 2 (833)}, page 234
X

{u € H(rot,Q2N Br),u x n =0 on I'}, page 233

Z,7) The microscopic variables, page 18

(
(¢'(xr)); The dual basis of (e(zr));, page 124
(ei(2r
(

xr,v) The local coordinates, page 20

))i A basis of T,.I", page 124

Ve o ]0,1[2x] — 1, 00], page 54

Y. ]0,1[2x] —1,0[, page 64

Y, 10,1[2x]0, oo, page 64

€7 (zr) Scalar to used to define Z;, page 246

e (zr) Element of £(T,.I") used to define Z;, page 246
pisr(er) Element of £(T,.T') used to define 2, page 142
M{(zr) Element of T,,.I' used to compute p?;, page 125
MY, Element of L(T,.I') used to compute MY , page 137
MY 5 Element of L(T;.I') used to compute MY , page 139
M7 (zr) Element of £(T,.I') used to define p(,, page 142
N{(zp) Element of £(T,.I") used to define pl;,, page 142
) The small parameter, page 16

0% Dirac distribution on the surface ¥, page 61
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0ij The Kronecker symbol, page 124

P R2x] — o0, 0[, page 250

I'vi  Set where ¥r is smooth, page 28

D f  Differential for functions f defined on I' | page 27

D X (u1,uz) The differential for functions defined on a open subset of R?, page 25
dist The distance function to I', page 16

div Divergence with respect to the microscopic variables, page 47

divp  The surface divergence, page 41

dive  Divergence for functions defined on I'x] — 4, 0, page 41

DtN Dirichlet to Neumann map on 7, page 35

DtN, Dirichlet to Neumann for functions defined on I' x {1y}, page 39

H(ffoo) Functional space of periodic function defined on £, page 54

Heomp (ffoo) Space of functions of H(ffoo) that vanishe for 7 large enough, page 55
F(I x 1700) Space of exponentially decreasing vector with respect to v , page 215
Fu(T x Ya) Subspace of F(I' x Y) for the electro-static problem in Y., page 215

Fu(T x ffoo) Subspace of F(I" x SA/OO) for the magneto-static problem in Y., page 215

Hyr, (F; V(}Afoo)> Set of function patching admissible, page 54
Ciry, <F; V(}A/OO)) Set of function patching admissible, page 54

H~2(divyp,; OBg) {u € H 2 (0Bg)*,u is tangential and divyp, (u) € H™ 2 (833)}, page 233

n Positive parameter used to define the near-field zones, the far field zones and the
overlapping zones , page 44

Mo Positive number where dist(supp, I') > 79, page 34

v Gradient with respect to the microscopic variables, page 47
Vr  The surface gradient, page 38

V.  Gradient for functions defined on I'x] — 4, 70[, page 38

vy 0 if 7 <0 and 7 if not , page 63

Q R2x] — 1, 00[, page 45
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Ng  Solution of the electrostatic problem , page 211

Ny Kernel of the magneto-static problem, page 213

A(zr) Norm of Dor(zr)l, | € Z?, page T2

(-, *)rx{noy Dual bracket on Hz (T x {ny}), page 37

(-,+)s,, Dual braket on H> (2,,), page 35

L The local coordinate map, page 20

M (zr) scalar used to define Z,, page 142

Z} Z;:o 87 27, page 144

Z Impedance operator for the first order condition, page 129

Zy Operator used to define Z39, page 142

M(zr,v) Element of L(R?), page 209

M,  Terms of the Taylor expansion of M (zr, ) with respect to the variable v, page 209

¢y(ar, &, D) 22N page 72

1 Distribution defined for elements in ]I-]I(EA/’OO)Jr ® C[P], page 67
The exterior domain, page 16

Q0 Q\C? page 16

Qo T'x]0,n[, page 121

Po(xr), Tig(zr) Average on Y_ of j and fi, page 128

7y (xr), Ty (xr) Average on Y_ of 2 0p(ar; &, 0) and 2 - Dfi(xr; &, 0) , page 142

¢z The chart at zp, page 25

T,.I' The Tangent space, page 25

rot  The curl operator, page 200

rotr  The scalar surface curl, page 206

rotr Curl in the variable (zr, ), page 206

rotr The vectorial surface curl, page 206

Zs, Scaling operator for Electromagnetism, page 231

Ls The scaling operator, page 46

) 10,1[>x {0}, page 55
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)y Boundary where DtN is defined, page 35

70
* Operator defined for a tensor field and vector field, page 132
0y ® 0y, Dirac distribution on ¥ x ¥, page 61

C Tensor appearing in the definition of as, page 39

C®(zr), ™ (xp) Terms appearing in the taylor expansions with respect to v of C and C,
page 51

Y The normal trace, page 245
v, yr The tangential traces , page 201
To Elliptic operator with respect to the variables (z, /), page 58
o Differential operator with respect to the variable zr and (Z,7), page 52
Tr Differential operator with respect to the variable zr and (z,7), page 52
a Sesquilinear form for the problem posed in Cs,,, page 36
ab Sesquilinear form for the GIBC, page 146
al Sesquilinear form for the 1 order condition GIBC for Electromagnetism, page 248
as Sesquilinear form for the problem posed in T x {ny}, page 39
Br  Open ball of radius R centered at zero, page 232
C Function appearing in the definition of as, page 38
C°  The thin coating, page 16
Csy  Reduced domain for scattering problem, page 34
G(zr) Gaussian curvature, page 38

G.  The Calderon map, page 233

H(rot; Q) {u e L2(P), rot(u) € L?(Qé)S} , page 232

H(zr) The mean curvature, page 37

H2 (divp: T) {u € H 2 (I)*,u is tangential and divpu € H™z (F)}, page 248
Hz(rotr; T) {u € H™z ('), u is tangential and rotru € H™2 (F)} ., page 248

n Normal unit vector to €2, page 16

ng Normal unit vector to (25, page 16
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O The obstacle, page 16
R(zr) The tensor curvature, page 37
U The new unknown defined on I'x] — 4, 1o[, page 34

ug Intermediate function to define the righ handside of the problem posed in I'x] —
d,m0[, page 35

V%  Functional space for the 1 order condition GIBC for Electromagnetism, page 248
Vz Functional space for the GIBC, page 146

Ve (0) Domain of the function ¢, , page 25

we Solution of the “cell problem”, page 211

w;(xr; T, ) Solutions of the “cell problem”, page 124

W (22.) Image of ¢,., page 25
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