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Introduction

L’objectif de cette thèse est de contribuer à la modélisation mathématique et numérique
dans le domaine fréquentiel de la diffraction d’ondes, acoustiques ou électromagnétiques,
par des obstacles recouverts par des revêtements minces qui sont fortement hétérogènes
parce que leurs caractéristiques physiques varient rapidement, typiquement de façon péri-
odique, le long du revêtement, c’est à dire parallèlement à la surface de l’obstacle.

Ce type de revêtement se rencontre dans nombre d’applications, notamment en furtiv-
ité radar où la combinaison de plusieurs types de matériaux permet d’améliorer les pro-
priétés d’invisibilité par rapport à des ondes radars. On le rencontre aussi dans les
revêtements destinés à protéger des composantes électroniques des radiations externes.
Notre travail pourrait également être d’intérêt pour le contrôle non destructif de com-
posants optiques ou nano-optiques périodiques (voir les exemples des nano-grass ou de
métamatériaux Fig. 1) où la longueur d’onde utilisée pour sonder le milieu est plus grande
que la périodicité du milieu.

Figure 1: Exemples de “nanograss” (gauche) et de métamatériaux (droite)

Compte tenu des petites échelles spatiales mise en jeu, la modélisation numérique
directe de tels phénomènes s’avère extrêmement coûteuse voire impossible (en 3D notam-
ment). Il est alors souhaitable, dans une phase de modélisation mathématique préalable
de proposer un modèle approché consistant à remplacer la présence du revêtement mince
par une condition aux limites dite équivalente ou effective. De telles conditions sont com-
munément appelées dans la littérature conditions d’impedance généralisées (Generalized
Impedance Boundary Conditions (GIBC’s) en anglais [64]).

Si on aborde la question avec l’oeil du mathématicien, la construction préalable d’une
telle condition aux limites approchée s’appuie tout naturellement sur un développement
asymptotique de la solution recherchée par rapport à la petite échelle δ qui représente à
la fois l’épaisseur de la couche mince et la période du revêtement.

Dans certaines asymptotiques, résolument différentes de celles considérées ici, le pe-
tit paramètre de l’analyse est la longueur d’onde lambda, qui peut le cas échéant être
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proportionnel au paramètre δ [20, 24, 52, 53, 8]. Ce n’est pas cette situation que nous
considérons ici : la longueur d’onde restera grande devant l’échelle δ.

De nombreux travaux ont déjà été effectués dans cette direction. Dans le cas de
revêtements à caractéristiques physiques homogènes, la littérature est abondante : voir
par exemple [40, 14, 13, 2, 42, 11] et [44, 39, 17, 27] et les références qu’elles contiennent.
On s’appuie typiquement sur des techniques de “rescaling” par rapport à la cordonnée
normale à la surface de l’obstacle, des equations à l’intérieur de la couche mince.

Le cas de revêtements à caractéristiques périodiques a également été abordé dans la
littérature : voir par exemple [65, 7, 62, 61, 37, 32, 56, 30, 23] et les références qu’elles
contiennent pour le problème scalaire et voir [38, 36] pour le problème de Maxwell. Dans
ce cas, le problème est beaucoup plus difficile d’un point de vue technique car le com-
portement de la solution est par nature hautement multi-echelle et il faut donc combiner
différents types de développements asymptotiques : typiquement - c’est le choix qui
sera fait dans cette thèse - on s’intéressera à combiner des techniques d’homogénéisation
dans la couche mince, avec des développements réguliers en puissances de δ loin de cette
couche, le couplage se faisant par une méthode de développements asymptotiques rac-
cordés [48, 49]. Les résultats disponibles dans la littérature sont d’une certaine façon
incomplets car limités à des geometries simples (cylindriques [37] ou 2D [61, 7]) voire
à des equations simplifiées [56, 30, 23]). Par ailleurs les travaux cités précédemment
s’intéressent rarement au développement asymptotique complet de la solution, lequel
permet pourtant a priori de construire une hiérarchie de conditions d’impedances de plus
en plus précises.

Cette thèse a notamment pour but de combler ces lacunes en attaquant le problèmes de
revêtements périodiques sur des surfaces 3D quelconques (régulières toutefois) et ce, tant
pour les ondes acoustiques (équation de Helmholtz) que pour les ondes électromagnétiques
(equations de Maxwell en régime harmonique). Notons que le problème présente des
difficultés nouvelles et substantielles :

1. Du point de vue conceptuel, la définition de fonctions périodiques le long d’une
surface quelconque est loin d’être évidente et certainement non intrinsèque. Nous ap-
porterons une réponse possible, qui nous parait raisonnable vis a vis des applications,
dans le premier chapitre de la thèse : la notion de revêtement périodique ne fait plus
référence seulement à la géométrie de la surface de l’obstacle mais à un fonction supplé-
mentaire censée expliquer la conception du revêtement périodique.

2. Du point de vue purement technique, la tâche est sensiblement plus délicate dans
la mesure où, à la manipulation des techniques de développements de type multi-échelles
il faut adjoindre le maniement d’outils de la géométrie différentielle.

Du point de vue de la démarche, nous nous sommes très largement inspirés des travaux
de thèse de Bérangère Delourme [34] et notre travail, qui se veut complet du point de vue
scientifique, respectera les étapes suivantes :

a. Etablissement d’un développement asymptotique formel de la solution du problème
exact.

b. Justification mathématique de ce développement au travers d’estimations d’erreur.

c. Construction de conditions aux limites approchées.

d. Etude de la stabilité des problèmes approchés.

4



e. Etude mathématique de l’erreur entre la solution exacte et la solution approchée.

f. Approximation numérique des modèles approchés et validation numérique de ces
modèles.

La thèse comporte trois parties. Les deux premières sont consacrées à l’équation de
Helmholtz scalaire, la dernière aux equations de Maxwell.

La partie I est dédiée au développement asymptotique de la solution du problème de
Helmholtz avec revêtement mince périodique.

Au chapitre 1, nous présentons le problème dit exact qui fera l’objet d’une analyse
asymptotique. Nous introduisons notamment la notion de ΨΓ périodicité qui permet de
donner un sens à la notion de fonction périodique le long d’une surface. Comme déjà
dit plus haut, cette notion fait implicitement référence à un processus de fabrication des
revêtements minces. Elle est de ce fait non intrinsèque.

Au chapitre 2, très technique et calculatoire, nous établissons le développement asymp-
totique multi-échelle formel de la solution du problème exact. Nous établissons également
par récurrence l’existence des termes de ce développement.

Le chapitre 3 est consacré à la justification rigoureuse du développement asymptotique
établi au chapitre 2, ce qui passe par l’étude préliminaire de la stabilité par rapport au
petit paramètreδ de la solution du problème exact.

La partie II est consacrée à la construction, la justification mathématique et l’approximation
numérique de conditions d’impédance approchées. En l’occurrence nous nous limitons aux
conditions d’ordre 1 et 2 par rapport au petit paramètre δ.

Au chapitre 4, nous construisons et analysons ces conditions approchées. Cela passe
par une représentation plus explicite (par rapport à la façon dont ils sont définis au
chapitre 3) des trois premiers termes du développement asymptotique (sections 4.3 et
4.4) et l’analyse de la stabilité des problèmes approchés (section 4.5).

Dans les chapitres 5 à 7, dédies au calcul numérique, nous nous sommes limités à la
dimension deux.

Le chapitre 5 est consacré aux aspects numériques de l’exploitation des conditions
d’imédance ce qui passe notamment par la détermination préalable des coefficients effectifs
apparaissant dans ces conditions, ce qui amène à résoudre des problèmes dits problèmes
de cellule (phase de pré-traitement)

Le chapitre 6 s’écarte un peu du droit fil de la démarche : il est simplement con-
sacré à la présentation d’une méthode d’éléments finis fiables pour le calcul d’une bonne
approximation de la solution exacte. Cette étape est nécessaire pour valider numérique-
ment les modèles approchés ce qui est l’objet du chapitre suivant. Cette présentation
s’accompagne d’une étude théorique prenant en complet la co-existence de deux petits
paramètres géométriques : la petite échelle δ et le pas de maillage h.

Comme annoncé plus haut, le chapitre 7 est destiné à la validation numérique des
modèles approchés en utilisant les méthodes utilisées aux chapitres 5 et 6. Il s’agit
notamment de vérifier que les expériences numériques sont cohérentes avec les estimations
d’erreur du chapitre 4.

La partie III est consacrée aux ondes électromagnétiques. Elle s’appuie notamment
sur les notions du chapitre 1 et consiste essentiellement à reprendre la démarche des deux
premières parties de la thèse (à l’exception des aspects numériques qui n’ont pu être
abordés faute de temps) dans le cas plus difficile des équations de Maxwell 3D.
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Ainsi, après une brève présentation du problème étudié au chapitre 8, le chapitre 9
- équivalent du chapitre 3 - est consacré au développement asymptotique formel de la
solution.

Le chapitre 10 est consacré à la justification rigoureuse de ce développement. II faut
noter qu’un des points particulièrement délicat de l’analyse est l’étude de la stabilité de
la solution du problème approché (section 11.4).

Enfin, au chapitre 11, pendant du chapitre 4, nous établissons et justifions rigoureuse-
ment une première condition d’impédance approchée, dite d’ordre 1.
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Chapter 1

Presentation of the problem

As we said in the introduction of the thesis, our purpose is to find “equivalent” or "ef-
fective" boundary conditions for the diffraction of electromagnetic waves by an object
having a regular surface Γ with a thin periodic coating, i. .e a thin layer Cδ (the meaning
of δ is explained hereafter), of ferromagnetic material for instance, sticked of the bound-
ary of a perfectly reflecting object O. This is the model problem presented in section 1.1.
More precisely, we are interested in the case where the thin layer is highly heterogeneous
in the sense that its physical characteristics oscillate periodically along the surface.

One difficulty in the case of a general function is to give a precise sense to the above
notion of periocicity. The approach that we follow in sections 1.2 is the following:

• First, we give in section 1.2.1 a rigorous mathematical definition to a periodic
function along the on the surface Γ when Γ can be described as the image of a part
of a plane by some smooth transformation. More precisely, we assume the existence
of ψΓ : Γ 7→ R2 and say that a function f is periodic on Γ if there exists a periodic
function f̂ : R2 7→ R i. e. for all (m,n) ∈ Z2 and (x, y) ∈ R2, f̂(m + x, n + y) =
f̂(x, y)) such that f = f̂ ◦ ψΓ . Note that this definition is not intrinsic .

• We will extend in section 1.2.2 this definition for function definintion on the thin
coating Cδ.

• We give illustrate in section 1.2.3 this defintion in the case of classical geome-
tries(torus, sphere, cylinder).

• The above description is in general (in fact as soon as Γ does not have the same
topology as the torus) not possible globally but only piecewise (in local zones,
called periodic zones).(section 1.2.4) To overcome this difficulty we propose a slight
modification of our definition that relies on a specific treatment of the transition
regions between periodic zones.(section 1.2.5)

Next we reformulate in section 1.3, the diffraction problem in order to facilitate the
method that we shall use for the aymptotic analysis in δ, namely a combination of matched
asymptotics and homogenization. Since this will rely on the use on local coordinates at
the neighborhood of Γ, we reformulate the original exterior problem in R3 \ O, into
an equivalent one posed in a fixed tubular neighborhood of Γ ( see [19, 2.7. Normal
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Figure 1.1: Illustration of the geometry

Bundles and Tubular Neighborhoods] for instance ), denoted Ω, in which local normal
and tangential coordinates can be used (as in [14, 17, 45] for instance). The inner surface
of Ω is Γ and whose outer surface is treated via a transparent boundary condition. This
condition is abstract and in general non explicit but, this s the important fact for the
anaysis, it is independent of δ.

1.1 The model scalar problem

Let us start with a quick description of the geometry of our problem and a presentation
of the model problem.

Let O be a bounded domain of R3 such that R3\O is connected with regular boundary
Γ and let δ > 0. We call the “thin coating of width δ” the following subset Cδ of O:

Cδ := {x ∈ O, dist(x,Γ) < δ}.

Here the quantity dist(x,Γ) is the distance of x from the surface Γ defined by

dist(x,Γ) := inf
xΓ∈Γ
|x− xΓ|,

and |.| is the classical Euclidean norm of R3. We need to introduce the complement
of O in R3 Ω := R3 \ O and Ωδ := Ω ∪ Cδ. We refer the reader to the Figure 1.1
for an illustration in 2D. The problem that we are interested in is the following: Find
uδ ∈ H1

loc(Ω
δ) such that:{

div
(
ρδ ∇uδ

)
+ k2µδ uδ = f, in Ωδ,

∂nδuδ = 0 on ∂Ωδ,
(1.1.1)

and uδ satisfies the Sommerfeld radiation condition:

lim
R→∞

∫
|x|=R

|∂ruδ − ikuδ|2 = 0.

Here nδ and n are the outward unit normal vectors to ∂Ωδ and Ω respectively, k ∈ R is
the wave-number and f denotes a given source term.

Moreover ρδ, µδ denote the acoustical characteristics of the medium supposed to be
equal to 1 in Ω and δ− periodic in the thin coating Cδ. This is the main feature of our
problem. The definition of periodicity in the thin coating Cδ will be given later.
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Figure 1.2: Illustration of periodic plate

Figure 1.3: The covering process

1.2 Notion of periodic coating

The definition is inspired from practical considerations. Imagine that a manufacturer has
a δ-periodic plate in the sense that the acoustic coefficients ρ, µ are δ periodic and assume
that the width if this plate is δ. Figure 1.2 is an illustration of a such plate. Then the
plate is deformed in order to stick on the surface of the 3D object O. This process is
illustrated in Figure 1.3. This procedure is repeated until there is a covering of all the
surface ∂O.

1.2.1 Definition of periodic functions on Γ

Let ψΓ : Γ 7→ R2 be a given function defined from the surface of the object Γ = ∂O into
the plane R2. Intuitively this function represents the inverse of the deformation of the
plane shown in Figure 1.2 and Figure 1.2.1. Thanks to ψΓ we can give a first definition
of periodicity for functions defined on the surface Γ. Let us emphasize that the notion of
periodicity that we introduce is relative to a family of functions depending on the small
parameter δ, not to a single function.

Figure 1.4: The application ψΓ
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Figure 1.5: The circle

Figure 1.6: the sphere

Definition 1.2.1 (ψΓ−δ−periodicity on a surface Γ). Let uδ : Γ 7→ R be a sequence
of functions indexed by δ and defined on the surface Γ. We say that uδ is ψΓ−δ−periodic
if there exists a reference function û : R2 7→ R, 1-periodic i.e.

û(x̂1 + m̂1, x̂2 + m̂2) = û(x̂1, x̂2), ∀
(
(x̂1, x̂2), (m̂1, m̂2)

)
∈ R2 × Z2,

such that we have for all xΓ ∈ Γ :

uδ(xΓ) = û(x̂) and x̂ :=
ψΓ(xΓ)

δ
.

Remark 1.2.2. If Γ = R2 and ψΓ is the identity then the ψΓ−δ−periodicity is equivalent
to the classical δ−periodicity i.e.

uδ(x̂1 + δm̂1, x̂2 + δm̂2) = uδ(x̂1, x̂2), ∀
(
(x̂1, x̂2), (m̂1, m̂2)

)
∈ R2 × Z2

Thus the ψΓ−δ−periodicity is a generalization of classical δ−periodicity for curved sur-
face. Let us give some examples of ψΓ for some simple geometries.

• For the circle Γ = S1 := {x ∈ R2, |x| = 1} we can choose ψΓ defined for x ∈ Γ by
ψΓ(x) := θ where θ is the unique solution in [0, 2π[ of x = (cos θ, sin θ). (See figure
Figure 1.5)

• For the unit sphere Γ := S2 := {x ∈ R3, |x| = 1} we can choose ψΓ defined for
x ∈ Γ by

ψΓ(x) := (θ, φ), (1.2.2)

where (θ, φ) is the unique solution in [0, 2π[×[−π
2
, π

2
[ of x = (cosφ cos θ, cosφ sin θ, sinφ).(See

Figure 1.6)

• For the torus Γ := {((R+r cosu) cos v, (R+r sinu) cos v, r sin v)} we can choose ψΓ

defined for (x1, x2, x3) ∈ Γ by ψΓ(xΓ) := (u, v) where (u, v) is the unique solution

18



Figure 1.7: The torus

Figure 1.8: The partition (Γr)0<r<δ of Cδ and the point xΓ associated to the point xΓr

in [0, 2π[2 of 
x1 = (R + r cosu) cos v,

x2 = (R + r sinu) cos v,

x3 = sin v.

We refer the reader to Figure 1.7 for this example.

1.2.2 Extension of ψΓ−δ−periodicity for functions defined on Cδ

One can extend the 2D ψΓ−δ−periodicity to 3D by taking advantage of the function ψΓ.
Indeed, one interpret a thin coat as a superposition of 2D surfaces. More precisely we
have for all η0 ≥ δ > 0 the following partition of Cδ: (η0 is the real number which appear
in (1.2.3))

Cδ =
⋃

0<r<δ

Γr,

where we define for r > 0 the surface Γr := {x ∈ O, dist(x,Γ) = r}. This partition is
illustrated in Figure 1.8. Now let us construct from the function ψΓ : Γ 7→ R2 a new
function ψΓr : Γr 7→ R2. First we recall from [19, 2.7. Normal Bundles and Tubular
Neighborhoods] that the following result holds:
Proposition 1.2.3. If Γ is a C2 surface(d = 3) or curve (d = 2) then there exists
η0 > 0 such that for all x ∈ R3 if dist(x,Γ) ≤ η0 then the minimizer of the functional
xΓ 7→ |x− xΓ| is unique.
Assume that r < η0, then thanks to Proposition 1.2.3 we can define the function ψΓr :
Γr 7→ R2 for xΓr ∈ Γr by:

ψΓr(xΓr) := ψΓ(xΓ),
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Figure 1.9: Illustration of local coordinate

where xΓ is the unique minimizer of the functional xΓ 7→ |x − xΓ|. We refer the reader
to Figure 1.8 for a graphical illustration of this last point xΓ. Thus, we can give the first
most intuitive definition of ψΓ−δ− periodicity on Cδ.
Definition 1.2.4. We say that a sequence of function (uδ)δ defined on Cδ is ψΓ−δ−periodic
if for all 0 < r < δ the sequence of restriction

(
(uδ)|Γr

)
δ>0

is ψΓr − δ−periodic.
However, although this last definition is very intuitive it is not practical for our analysis.
Therefore hereafter we give an equivalent characterization. First define the local coor-
dinates mapping(See for instance [14, 39, 52, 53] ) L : Cη0 7→ Γ×] − η0, 0[ for x ∈ Cη0

by:
L(x) := (xΓ, ν),

where xΓ is the unique minimizer of xΓ 7→ |x − xΓ| and ν :=
(
x − xΓ, n(xΓ)

)
. Here

n : Γ 7→ R3 is the unit outward normal. We refer the reader to Figure 1.9 for a graphical
illustration of all these quantities. Thus we can state the following reformulation of the
ψΓ−δ periodicity:
Definition 1.2.5. Let (uδ)δ>0 be a sequence of functions defined on Cδ. This sequence is
called ψΓ−δ−periodic if and only if there exists a reference function û : Ω̂ := R2×]−1, 0[
satisfying:

û(x̂+ m̂, ν̂) = û(x̂, ν̂), ∀(x,m) ∈ R2 × Z2 and ν̂ ∈]− 1, 0[,

such that for all x ∈ Cδ we have:

uδ(x) = û(x̂, ν̂) with (x̂, ν̂) :=
(ψΓ(xΓ), ν)

δ
and (xΓ, ν) = L(x).

1.2.3 Example of the ψΓ−δ− periodicity for simple geometries

Here we show some examples of the ψΓ−δ periodicty for simple geometries in order to
illustrate this definition.

1.2.3.1 The cylinder

The cylinder is the following set:

Γ :=
{(

cos(θ), sin(θ), z
)
, θ ∈ [0, 2π[ and z ∈ R

}
.
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In this case, one can easily show that for a point x ∈ R3 of the form:

x =

r cos(θ)
r sin(θ)

z

 ,

for some (θ, r, z) ∈ [0, 2π[×R+ × R that the local coordinate map L is given by:

L(x) = (xΓ, ν) with xΓ =

cos(θ)
sin(θ)
z

 and ν = r − 1. (1.2.3)

See Figure 1.11 for an illustration. Thus from this we directly have that:

Cδ =
{
r
(

cos(θ), r sin(θ), z
)
, θ ∈ [0, 2π[, 1− δ < r < 1 and z ∈ R

}
.

See Figure 1.11 for an illustration.
Assume first that ψΓ is the map defined for xΓ ∈ Γ of the form

(
cos(θ), sin(θ), z

)
by:

ψΓ(xΓ) := (θ, z). (1.2.4)

Then in this case, thanks to (1.2.3), the ψΓ−δ−periodicity is equivalent to the existence
of a reference function (x̂1, x̂2, ν̂) 7→ ρ̂(x̂1, x̂1, ν̂) one periodic in (x̂1, x̂2) such that:

ρδ(x) = ρ̂

(
θ

δ
,
z

δ
,
r − 1

δ

)
.

In the two following particular cases, this last property is more simple to imagine:

• If the reference function (x̂1, x̂2, ν̂) 7→ ρ̂(x̂1, x̂1, ν̂) only depends of x̂1 then the
ψΓ−δ−periodicity is equivalent to the existence of a δ−periodic function ρδ : R 7→ R
such that:

ρδ(x) = ρ̂δ(θ) and ∀θ′ ∈ R, ρδ(θ′ + δ) = ρδ(θ
′).

See Figure 1.10(a) for a graphical illustration of this case.

• If the reference function (x̂1, x̂2, ν̂) 7→ ρ̂(x̂1, x̂1, ν̂) only depends of x̂2 then the
ψΓ−δ−periodicity is equivalent to the existence of a δ−periodic function ρδ : R 7→ R
such that:

ρδ(x) = ρ̂δ(z) and ∀z′ ∈ R, ρδ(z′ + δ) = ρδ(z
′).

See Figure 1.10(b) for a graphical illustration of this case.

More generally, if we keep (1.2.4) as a definition of the map ψΓ and assume that the
reference function (x̂1, x̂2, ν̂) 7→ ρ̂(x̂1, x̂1, ν̂) depends of the two arguments (x̂1, x̂2) then
the ψΓ−δ−periodicity is equivalent to the existence of a δ−periodic function ρδ : R2 7→ R
such that:

ρδ(x) = ρ̂δ(θ, z) and ∀(θ′, z′) ∈ R2, ρδ(θ
′, z′) = ρδ(θ

′ + δ, z′) = ρδ(θ
′, z′ + δ).

See Figure 1.10(c) for a graphical illustration of this case.
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(a) (b) (c) (d)

Figure 1.10: Example of the ψΓ−δ−periodicity for the cylinder

Figure 1.11: Illustration of the map L and the thin coat Cδ in the case of the cylinder

Now let us illustrate the dependence of the notion of ψΓ−δ−periodicity with respect
to the choice of the map ψΓ. Then we replace the definition (1.2.4) by the following one:

ψΓ(xΓ) := (θ, z + ηθ),

for some η > 0 and we assume that the reference function does not depend of the argument
ν̂. Then in this case the ψΓ−δ−periodicity is equivalent to the existence of a function
ρδ : R2 7→ R satisfaying:

∀x′ ∈ R2, ∀(m,n) ∈ Z2, ρδ(x
′+mv1+nv2) = ρδ(x

′) with v1 :=

(
δ
−ηδ

)
and v2 :=

(
0
δ

)
.

such that ρδ(x) = ρ̂δ(θ, z). See Figure 1.10(c) for a graphical illustration of this case.
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(a) (b) (c)

Figure 1.12: Example of the ψΓ−δ−periodicity for the cylinder

1.2.3.2 The sphere

The unit sphere is the following set:

Γ :=
{
x ∈ R3, |x| = 1

}
.

One can easily show that for all x ∈ R3 we have L(x) = (xΓ, ν) where:

xΓ =
x

|x|
and ν = |x| − 1.

See Figure 1.13 for an illustration. Thus from this, we directly have the following char-
acterisation if the thin coating:

Cδ =
{
x ∈ R3, 1− δ < |x| < 1

}
.

See Figure 1.13 for an illustration.
Assume that the map ψΓ : Γ 7→ R2 is defined for xΓ ∈ Γ by:

ψΓ(xΓ) := (θ, φ),

where (θ, φ) is the unique solution of of x = (cosφ cos θ, cosφ sin θ, sinφ).(See Figure 1.13)
Figure 1.12(a) is an illustration when the reference function (x̂1, x̂2, ν̂) 7→ ρ̂(x̂1, x̂2, ν̂) only
depends of the argument x̂1. Figure 1.12(a) is an illustration when the reference function
(x̂1, x̂2, ν̂) 7→ ρ̂(x̂1, x̂2, ν̂) only depends of the argument x̂2. Finally Figure 1.12(a) is an
illustration for general function ρ̂.

1.2.4 The problem of fast cell contractions

Assume that Γ is the unit sphere and chose the map ψΓ as the polar coordinates (1.2.2)
then we get Figure 1.2.4. Let us define the deformed cells as the images of the cells in
the plane through the map ψΓ

−1. If we reduce the small parameter (see Figure 1.2.4)
we graphically see that the deformed cells shrink faster around the poles of the sphere.
This phenomena is not consistent with the intuitive idea of a periodic coating. Moreover
it induces difficulties in the analysis. Let us explain more precisely this problem. The
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Figure 1.13: Illustration of the map L and the thin coat Cδ in the case of the unit sphere

Figure 1.14: Problem of cell contraction

Figure 1.15: Transformation of a microscopic cell
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microscopic cell on xΓ ∈ Γ denoted Ŷ δ
xΓ

is mathematically defined by (see Figure 1.15):

Ŷ δ
xΓ

:= L−1
(
ψΓ
−1
(
xr+]0, δ[2

)
×]− δ, 0[

)
with xr := ψΓ(xΓ).

For the sequel some elements from differential geometry are required. We assume that
O is a CmΓ+1 domain for some mΓ + 1 ≥ 2 in the sense of [60, 2.5.2 Surfaces and Sobolev
spaces]. We summarize in the following result the most useful properties of boundaries
Γ with this type of regularity:

• There exists a collection of functions (φxΓ
: VxΓ

(0) ⊂ R2 7→ WxΓ
(xxΓ

))xΓ∈Γ where
VxΓ

(0) and WxΓ
(xxΓ

) are neighborhoods of respectively 0 in R2 and xxΓ
in Γ in

the sense of subspace topology of Γ. (We recall that the subspace topology of Γ is
defined by {X ∩ Γ, X is a open set of R3}.)

• For all xΓ ∈ Γ, if we see the function φxΓ
as a map φxΓ

: VxΓ
(0) ⊂ R2 7→ R3 then

this last function is of class CmΓ+1.

• For all xΓ ∈ Γ the application φxΓ
: VxΓ

(0) ⊂ R2 7→ WxΓ
(xΓ) is bijective. In other

term, one has a local system of coordinates around xΓ for wich φxΓ
(0, 0) = xΓ and

φxΓ
(u1, u2) is a point in the neighborhood of xΓ, which coordinate are in R3 are:φ1

xΓ
(u1, u2)

φ2
xΓ

(u1, u2)
φ3
xΓ

(u1, u2)

 .

(See Figure 1.17).

• For all xΓ ∈ Γ the linear application DφxΓ
(0) ∈ L(R2,R3) is injective where D is

the classical differential operator defined for map:

X : (u1, u2) ∈ VxΓ
(0) 7→

(
X1(u1, u2), X2(u1, u2), X3(u1, u2)

)
,

and (u1, u2) ∈ VxΓ
(0) by the following matrix:

DX(u1, u2) :=

∂u1X1(u1, u2) ∂x2X1(u1, u2)
∂u1X2(u1, u2) ∂u2X2(u1, u2)
∂u1X3(u1, u2) ∂u2X3(u1, u2)

 .

• The tangent space of Γ at the point xΓ is the following space:

TxΓ
Γ := Im DφxΓ

(0).

(See Figure 1.16). We emphasize that since by assumption DφxΓ
(0) is an injective

map then the space TxΓ
Γ is a 2−dimensional and we have the basis (e1(xΓ), e2(xΓ))

where:

e1(xΓ) :=

∂u1φ
1
xΓ

(0)
∂u1φ

2
xΓ

(0)
∂u1φ

3
xΓ

(0)

 and e2(xΓ)

∂u2 = φ1
xΓ

(0)
∂u2φ

2
xΓ

(0)
∂u2φ

3
xΓ

(0)

 .

The orthogonal of the space TxΓ
Γ is the the linear span of the vector n(xΓ):

TxΓ
Γ = n(xΓ)⊥
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Figure 1.16: Illustration of the space TxΓ
Γ

Figure 1.17: Illustration of manifold in the 2D case

• For all (xΓ, yΓ) ∈ Γ2 if WxΓ
(xΓ) ∩WyΓ

(yΓ) 6= ∅ then the map:

φ−1
yΓ
◦ φxΓ

: φ−1
xΓ

(
WxΓ

(xΓ) ∩WyΓ
(yΓ)

)
7→ WyΓ

(yΓ),

is of class CmΓ+1(See Figure 1.18).

We now give the defintion of differential for functions f defined on the surface Γ.
Indeed we say that an application f : Γ 7→ Rd is of class Ck with d ∈ N if for all xΓ ∈ Γ
the application:

f ◦ φxΓ
: VxΓ

7→ Rd,

Figure 1.18: Illustration of the change of chart
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is of class Ck. Under this last condition we define the differential symbol D f(xΓ) :
TxΓ

Γ 7→ Rd by:
D f(xΓ) := D(f ◦ φxΓ

)(0) · (DφxΓ
(0))−1 .

Since
(
e1(xΓ), e2(xΓ)

)
is a basis of the space TxΓ

Γ, this last definition is equivalent to
define D f(xΓ) as the unique linear operator on TxΓ

Γ such that:

D f(xΓ) ·

∂u1φ
1
xΓ

(0)
∂u1φ

2
xΓ

(0)
∂u1φ

3
xΓ

(0)

 = ∂u1(f ◦φxΓ
)(0) and D f(xΓ) ·

∂u2φ
1
xΓ

(0)
∂u2φ

2
xΓ

(0)
∂u2φ

3
xΓ

(0)

 = ∂u2(f ◦φxΓ
)(0).

Thus thanks to these definitions if ψΓ is differentiable and locally injective at the point
xΓ ∈ Γ, we can introduce the quantity G : Γ 7→ R(called the determinant of the metric
tensor associated with ψΓ) defined by

G(xΓ) := det
(

DψΓ(xΓ) Dψ†Γ(xΓ)
)− 1

2
.

(See (1.2.14) for an example of this last quantity when Γ is the unit sphere.) For a
Banach space F, we denote by F † the dual of F and for an operator A : E 7→ F we
denote by A† the dual operator F † 7→ E† associated with the duality products <,>F †−F
and <,>E†−E . Thanks to the change of variable formula for integrals we get that if ψΓ

is differentiable and locally injective at the point xΓ then the Lebesgue-measure of Ŷ δ
xΓ

satisfies :
µ
(
Ŷ δ
xΓ

)
∼
δ→0
G(xΓ) · δ3,

If the quantity G is not bounded from below and above by positive constants then this
corresponds with the first problem we previously stated. We shall see that G is needed to
be bounded from below by a positive constant in order to prove the convergence of the
asymptotic expansions.
Proposition 1.2.6. If one of the connected component of Γ is diffeomorphic to the unit
sphere S2 and ψΓ is C1 then there exists at least one point x∗Γ ∈ Γ such that:

det
(

DψΓ(x∗Γ) Dψ†Γ(x∗Γ)
)

= 0.

The proof of this result is a direct application of the hairy ball theorem that we recall
hereafter. First we introduce for xΓ the tangent space of Γ at the point xΓ denoted TxΓ

Γ.
Definition 1.2.7. Let X : Γ 7→ R3. We say that X is a tangent vector field if for all
xΓ ∈ Γ we have:

X(xΓ) ∈ TxΓ
Γ.

Theorem 1.2.8 (Hairy ball theorem). Let n ∈ N \ {0}, S2n ⊂ R2n+1 be the unit
sphere and X be a continuous tangent vector field on S2n then X(x∗Γ) = 0 for some
x∗Γ ∈ Γ.
Proof of Proposition 1.2.6. By hypothesis there exists a diffeomorphism from Γ into S2

that we denoted by φ : Γ 7→ S2. Then introduce the vector field X1 on S2 defined for
xS2 ∈ S2 by:

X(xS2)1 := Dφ(xΓ) DψΓ(xΓ)†
(

1
0

)
,
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Figure 1.19: The plate for patching solution

Figure 1.20: Paving with hexagon and pentagon of soccer balls

where xΓ := φ−1(xS2). Thus we can apply the hairy ball theorem, we have that there
exists xS2 ∈ S2 such that X(xS2)1 = 0. Define x∗Γ := φ−1(xS2) then we have:

0 = Dφ(x∗Γ) DψΓ(x∗Γ)† · (1, 0)†,

and using that Dφ(x∗Γ) is invertible yields
(
DψΓ(x∗Γ) DψΓ(x∗Γ)†

)
· (1, 0)† = 0. Therefore

we finished the proof.

1.2.5 The patching solution

In order to avoid the problem of vanishing G we shall assume that the periodicity is
defined on subsets of Γ that are glued together. An example of patching is Figure 1.19,
Figure 1.21(a), Figure 1.21(b) and Figure 1.22 The matching process is be modeled by
the way we construct the map ψΓ. Since the surface Γ is compact we can define NΓ ∈ N
by the smallest number such that there exists a family of points

(
x1

Γ, · · · , x
NΓ
Γ

)
∈ ΓNΓ

such that we have:

Γ =

NΓ⋃
i=0

WxiΓ

(
xiΓ
)
. (1.2.5)

Next we introduce a smooth partition of unity
(
χi
)

1≤i≤NΓ
associated to the open cover(

WxiΓ

(
xiΓ
))

1≤i≤NΓ

. Finally define our map ψΓ : Γ 7→ R2 for xΓ ∈ Γ by:

ψΓ(xΓ) :=
∑

i∈I(xΓ)

χi(xΓ)φ−1
xiΓ

(xΓ) with I(xΓ) :=
{

1 ≤ i ≤ NΓ, xΓ ∈ WxiΓ
(xiΓ)

}
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(a) a hexagon (b) a pentagon

Figure 1.21: Cut plate

Figure 1.22: The ψΓ−δ− periodicity for soccer ball
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We recall that the problem comes from the region where DψΓ becomes singular, i.e. G
vanishes. We introduce for arbitrary Gmin > 0 and Gmax the following open set of non
singular points:

ΓM :=
{
xΓ ∈ Γ,G(xΓ) > Gmin and |DψΓ(xΓ)| < Gmax

}
. (1.2.6)

Proposition 1.2.9. If Gmin is small enough then we have for all 1 ≤ i ≤ NΓ that:

ΓM ∩WxiΓ

(
xiΓ
)
6= ∅.

Proof. Let 1 ≤ i ≤ NΓ. We introduce the following set:

Wi :=

(
Γ \
⋃
j 6=i

WxjΓ

(
xjΓ
))

,

and a sufficient condition to our stated result is to show that for some choice of Gmin we
have:

Wi 6= ∅ and Wi ⊂ ΓM ∩WxiΓ

(
xiΓ
)
. (1.2.7)

Indeed if we have Wi = ∅ then we have:

Γ =
⋃
j 6=i

WxjΓ

(
xjΓ
)
,

which contradicts that NΓ is the small number such that we have (1.2.5). Thanks to
(1.2.5) we have:

Wi =

(
NΓ⋃
j=1

WxjΓ

(
xjΓ
))
\
⋃
j 6=i

WxjΓ

(
xjΓ
)

= WxiΓ

(
xiΓ
)
\
⋃
j 6=i

WxjΓ

(
xjΓ
)
,

which leads to:
Wi ⊂ WxjΓ

(
xjΓ
)
. (1.2.8)

Now let us prove that :
inf

xΓ∈Wi

G(xΓ) > 0. (1.2.9)

Indeed we have for all xΓ ∈ Wi that χi(xΓ) = 1 and χj(xΓ) = 0 for all j 6= i. Since 0 and 1
are the minimal and max values that for all j the function χj we also have Dχj(xΓ) = 0.
Thus we have thanks to Leibniz formula that:

DψΓ(xΓ) =
∑

j∈I(xΓ)

D
(
χiφ

−1

xjΓ

)
(xΓ) =

∑
j∈I(xΓ)

(
φ−1

xjΓ
��
�Dχi + χi Dφ−1

xjΓ

)
(xΓ) = Dφ−1

xiΓ

(
xiΓ
)
,

which leads to :
G(xΓ) = det

(
Dφ−1

xiΓ
(xΓ) D† φ−1

xiΓ
(xΓ)

)
. (1.2.10)

Moreover we recall that φ−1
xiΓ

: WxiΓ
(xiΓ) 7→ VxiΓ(0) is a diffeomorphism and combining with

the compactness of the set Wi yields:

inf
xΓ∈Wi

det
(

Dφ−1
xiΓ

(xΓ) D† φ−1
xiΓ

(xΓ)
)
.
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Combining with(1.2.10), we conclude the proof of (1.2.9).
Now assume that:

0 < Gmin < inf
xΓ∈Wi

G(xΓ).

Thus we directly get that Wi ⊂ ΓM and combining with (1.2.8) conclude the proof of
(1.2.7) which in turn, concludes the whole proof.
Let P (Ω̂) be the set of functions (x̂, ν̂) 7→ ũ(x̂, ν̂) defined on Ω̂ such that ũ is one periodic
in the variable x̂ i.e.

ũ(x̂+m, ν̂) = ũ(x̂, ν̂), ∀(x̂, ν̂,m) ∈ Ω̂× Z2. (1.2.11)

Definition 1.2.10. Let û : Γ 7→ P (Ω̂) be a reference function we say that û is patching-
ψΓ-admissible if for all xΓ /∈ ΓM the function û(xΓ) only depends on the argument ν̂
i.e.

∀xΓ /∈ ΓM, ∃ûν̂(xΓ) :]− 1, 0[7→ R st ∀(x̂, ν̂) ∈ R2×]− 1, 0[ û(xΓ; x̂, ν̂) = ûν̂(xΓ; ν̂).

Let u ∈ P (Ω̂) and χ be a smooth function vanishing on Γ \ ΓM then the function ûχ
defined for (xΓ, x̂, ν̂) ∈ Γ× Ω̂ by ûχ(xΓ; x̂, ν̂) := χ(xΓ)û(x̂, ν̂) is an example of a patching
admissible function.

For the remainder of our work the initial definition of ψΓ−δ−periodicity is now re-
placed by the following one:
Definition 1.2.11. Let (uδ)δ>0 be a sequence of function defined on the thin coating Cδ.
We say that (uδ)δ>0 is ψΓ−δ−periodic if there exists a function û : Γ 7→ P (Ω̂) patching-
ψΓ-admissible such that for all δ > 0

∀x ∈ Cδ, uδ(x) := û
(
xΓ; x̂, ν̂

)
where (xΓ, ν) := L(x) and (x̂, ν̂) :=

(ψΓ(xΓ), ν)

δ
.

The example of the sphere:
Now let us illustrate the exemple of the sphere, when ψΓ is the spherical coordinate

system. This mean that the map ψΓ : Γ 7→ R2 is defined for xΓ ∈ Γ by:

ψΓ(xΓ) := (θ, φ),

where (θ, φ) is the unique solution of of x = (cosφ cos θ, cosφ sin θ, sinφ).(See Figure 1.13).
Define:

Γ∗ := Γ \


0

0
1

 ,

 0
0
−1

 ,

and define the map φΓ : [0, 2π[×]− π
2
, π

2
[ 7→ Γ∗ for (θ, φ) ∈ [0, 2π[×]− π

2
, π

2
[ by:

φΓ

(
θ
φ

)
:=

cosφ cos θ
cosφ sin θ

sinφ

 .

The map φΓ is a C∞ function and its differential is given for θ, φ by:

DφΓ(θ, φ) =

− cos(φ) sin(θ) − sin(φ) cos(θ)
cos(φ) cos(θ) − sin(φ) sin(θ)

0 cos(φ)

 . (1.2.12)
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Figure 1.23: Illustration of the set ΓM in the case a the unit sphere

From this we have that:

DφΓ(θ, φ)†DφΓ(θ, φ) =

(
cos2(θ) 0

0 1

)
. (1.2.13)

Thus from this, we can see that if θ /∈ {−π
2
, π

2
} then the matrix DφΓ(θ, φ)†DφΓ(θ, φ) is

injective where xΓ := φΓ(θ, φ). Thus in this case the operator DφΓ(θ, φ) : R2 7→ TxΓ
Γ

is bijective. Therefore one can deduce that the map φΓ : [0, 2π[×] − π
2
, π

2
[ 7→ Γ∗ is a C∞

diffeomorphism.
Therefore the map ψΓ : Γ∗ 7→ [0, 2π[×]− π

2
, π

2
[ is a diffeomorphism and we have for all

xΓ ∈ Γ∗ that:

DψΓ(xΓ) DψΓ(xΓ)† =
(
DφΓ(θ, φ)†DφΓ(θ, φ)

)−1
=

(
cos−2(θ) 0

0 1

)
,

where (θ, φ) := ψΓ(xΓ). Thus we have:

G(xΓ) = cos−2(θ), (1.2.14)

and then according to the definition (1.2.6) of the set ΓM, one has:

ΓM = {(cosφ cos θ, cosφ sin θ, sinφ), θ ∈ [0, 2π[ and − η < φ < η} , (1.2.15)

where η > 0 is a the unique solution in [0, π
2
[ of cos−2(η) = Gmax. Here we have chosen

Gmin = 1. One can easily check that we can rewrite the set ΓM as follow:

ΓM =
{

(x, y, z) ∈ Γ,−
√

1− G−1
max < z <

√
1− G−1

max

}
.

See Figure 1.23 for a graphical illustration of this last set. Finally, Figure 1.24 is a
graphical illustration of a ψΓ−δ− periodic function associated to a patching admissible
reference function.

1.3 Reformulation of the Helmholtz equation in the
surface local coordinates

We recall the problem that we are interested in: Find uδ ∈ H1
loc(Ω

δ) such that:{
div
(
ρδ ∇uδ

)
+ k2µδ uδ = f, in Ωδ,

∂nδuδ = 0 on ∂Ωδ,
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Figure 1.24: Illustration of the ψΓ−δ−periodicity in the case of the unit sphere.

Figure 1.25: L : Cδ,η0 7→ Γ×]− δ, η0[

and uδ satisfies the Sommerfeld radiation condition:

lim
R→∞

∫
|x|=R

|∂ruδ − ikuδ|2 = 0.

We remark that the dependence of our geometry with respect to the small parameter δ
does not seems trivial. However from the definition of the mapping L we directly get the
following characterization of our boundary:

∂Ωδ = L−1(Γ× {−δ}) and Γ = L−1(Γ× {0}).

Moreover from [19, 2.7. Normal Bundles and Tubular Neighborhoods], we get the fol-
lowing result:
Proposition 1.3.1. If Γ have Cn regularity for some n ∈ N then for all 0 < δ < η0, the
application L : Cδ,η0 7→ Γ×]− δ, η0[ is a Cn−1 diffeomorphism and its inverse is given for
(xΓ, ν) ∈ Γ×]− δ, η0[ by (see Figure 1.9):

L−1(xΓ, ν) = xΓ + νn(xΓ).

Thus the local coordinates seem to be a better coordinate system to describe the
thin coating. Indeed the dependence with respect to the small parameter δ of the set
Γ×]−δ, 0[ is more explicit than the one of the thin coating Cδ = {x ∈ O, dist(x,Γ) < δ}.
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Figure 1.26: Illustration of the maximum value of δ and η0

Nevertheless our problem is posed on the whole exterior Ωδ and the application L is only
defined on Cδ. According to Proposition 1.3.1, we assume that δ < η0 and the application
L is now defined on the the set (See Figure 1.25)

Cδ,η0 :=
{
x ∈ Ω, dist(x,Γ) < η0

}
∪ Cδ.

We also assume that supp(f) ⊂ R3 \ Cδ,η0 which is possible for η0 small enough because
we assumed that supp(f) ∩ Γ = ∅.

Let us explain why the expression of the inverse L−1 is more practical than the one
of the map L for the sequel: Indeed, we recall that the map L : Cδ,η0 7→ Γ 7→]− δ, η0[ is
given for x ∈ Cδ,η0 by L(x) := (xΓ, ν) where xΓ is the unique minimizer of the functional:

xΓ ∈ Γ 7→ |x− xΓ|,

and:

ν := dist(x,Γ) = inf
xΓ∈Γ
|x− xΓ| if xΓ ∈ Ω and ν := − dist(x,Γ) = − inf

xΓ∈Γ
|x− xΓ| if x /∈ Ω.

This last definition is not explicit because we directly see that wee need to solve a problem
of optimization:

inf
xΓ∈Γ
|x− xΓ|.

Therefore we cannot yet compute the derivative of the map L and we will this in the
sequel that we will need to compute the quantity DL(See Proposition 1.3.3 for example).
The expression of L−1(xΓ, ν) = xΓ + νn(xΓ) is more explicit because it only requires to
compute for xΓ ∈ Γ the normal unit vector n(xΓ). Moreover thanks to the definition of
the tensor curvature R(xΓ) = Dn(xΓ), we can easily establish that the differential of the
inverse L−1 is given for (xΓ, ν) ∈ Γ×] − δ, η0[ by the only linear operator on TxΓ

Γ × R
defined for (vΓ, vν) ∈ TxΓ

Γ× R by:

DL−1(xΓ, ν) ·
(
uΓ

uν

)
=
(
I + νR(xΓ)

)
vΓ + n(xΓ)vν . (1.3.16)

Therefore we chose to derive a partial differential equation posed on the domain
Γ×]− δ, η0[ where the new unknown

uδ := uδ ◦ L−1
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Figure 1.27: The maps Aδ and Aδ

will be the solution. We emphasize our notation convention: function with upper-script
δ are defined on Cδ,η while function with subscripts δ are defined on Γ×]− δ, η0[.

Moreover, if Aδ is a function defined on Cδ,η0 then Aδ is defined by:

Aδ = Aδ ◦ L−1.

Before obtaining a partial differential equation satisfied by the function uδ we first need
to reduce our problem (1.1.1) on the bounded domain Cδ,η0 .

1.3.1 Reduction of the exterior problem to the bounded domain
Cδ,η0

We use a classical way of reduction to a bounded domain through the Dirichlet to Neu-
mann operator (See [43, 60]). Nevertheless a difficulty is that the support of the source
term f might not be included into Cδ,η0 . To solve this problem we introduce an auxiliary
function uf : Ω \ Cδ,η0 7→ C defined as the unique solution of: Find uf ∈ H1

loc(Ω \ Cδ,η0)
such that : {

∆uf + k2uf = f, in Ω \ Cδ,η0 ,

uf = 0, on Ση0

and uf satisfies the Sommerfeld radiation condition, where (see Figure 1.25):

Ση0 := {x ∈ Ω, dist(x,Γ) = η0}.

The Dirichlet to Neumann map on Ση0 :

DtN : H
1
2 (Ση0) 7→ H−

1
2 (Ση0) ,

is defined for g ∈ H 1
2 (Ση0) by DtN g := ∂νug where ug is the unique solution of: Find

ug ∈ H1
loc(Ω \ Cδ,η0) such that :{

∆ug + k2ug = 0, in Ω \ Cδ,η0 ,

ug = g on Ση0

(1.3.17)

and ug satisfies the Sommerfeld radiation condition. Finally we define:

〈·, ·〉Ση0 := 〈·, ·〉
H−

1
2 (Ση0 )−H 1

2 (Ση0 )
.

Let us explain why this last operator is well defined. Indeed, when the boundary Ση0 is
at least Lipschitz, then according to the scattering theory, the problem (1.3.17) is well
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Figure 1.28: Regularity of Ση0 with respect to η0

posed([60]). Moreover, according to Proposition 1.3.1 if η0 is small then Ση0 is a Lipschitz
surface. (See Figure 1.28 for a graphical illustration and a graphical illustration about
what appends when η0 is too large). Therefore if we choose η0 small enough then the
Dirichlet to Neumann map is well defined. Then thanks to these two definitions, we can
state the following result:
Proposition 1.3.2. If supp(f) ⊂ R3 \ Cδ,η0 then the function uδ is the unique solution
of : Find uδ ∈ H1(Cδ,η0) such that for all vδ ∈ H1(Cδ,η0):

aδ(uδ, vδ) =
〈
∂νuf −DtNuf , v

δ
〉

Ση0
, (1.3.18)

where aδ is the sesquilinear form defined for (uδ, vδ) by:

aδ(uδ, vδ) :=

∫
Cδ,η0

ρδ∇uδ · ∇vδ − µδk2uδ · vδ +
〈

DtNuδ, vδ
〉

Ση0

.

Proof. From the definition of the function uf we directly get that the function u − uf
satisfies ∆(u−uf )+k2(u−uf ) = 0 and the Sommerfeld radiation condition. Thus u−uf
satisfies on the boundary Ση0 :

∂ν(u− uf ) = DtN(u− uf ).

and then u satisfies on Ση0 the boundary condition ∂νu−DtNu = ∂νuf −DtNuf . Thus
the proof is finished.

1.3.2 The problem posed in Γ×]− δ, η0[

1.3.2.1 Variational formulation

Here we will transform (1.3.18) into a variational formulation in the volume Ωδ := Γ×]−
δ, η0[. Let us summarize how we proceed to rewrite our problem:

1. We describe a new sesquilinear form aδ : H1(Ωδ) × H1(Ωδ) 7→ C such that for all
functions uδ, uδ, vδ and vδ we have :

uδ = uδ ◦ L and vδ = vδ ◦ L =⇒ aδ(uδ, vδ) = aδ(uδ, vδ). (1.3.19)

To do it we proceed with the following steps:
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(a) We prove that for all functions uδ and uδ linked by uδ = uδ ◦ L the following
equivalence holds:

uδ ∈ H1(Ωδ)⇐⇒ uδ ∈ H1(Cδ,η), (1.3.20)

and there exists C > 0 that does not depend on uδ and δ such that the following
equivalence of norms property holds:

C−1 · ‖uδ‖H1(Cδ,η0 ) ≤ ‖uδ‖H1(Ωδ) ≤ C · ‖uδ‖H1(Cδ,η0 ). (1.3.21)

(b) We use the expression of the gradient in local coordinates
(c) We use the change of variables L for integrals.

2. We seek an element fΣη0
∈ H− 1

2 (Γ× {η0}) such that for vδ and vδ:

vδ = vδ ◦ L =⇒ 〈fΣη0
, vδ〉Γ×{η0} =

〈
∂νuf −DtNuf , v

δ
〉

Γ×{η0} ,

where we defined 〈·, ·〉Γ×{η0} := 〈·, ·〉
H−

1
2 (Γ×{η0})−H

1
2 (Γ×{η0})

. We emphasize that the
function fΣη0

depends on the choice of η0 and on the right hand-side f . This function
is a distribution on Γη0 which itself depend of η0.

3. We deduce that (1.3.18) is equivalent to: Find uδ ∈ H1(Ωδ) such that for all
vδ ∈ H1(Ωδ) we have:

aδ(uδ, vδ) = 〈fΣη0
, vδ〉Γ×{η0}.

To state the results for parts (a) and (b) some elements are needed:

• We extend the unit outward normal application n : Γ 7→ R3 for x satisfyaing:

dist(x,Γ) < η0,

(η0 is the quantity appearing in Proposition 1.3.1) which takes the form x = xΓ +
νn(xΓ) by ñ(x) := n(xΓ)(see Proposition 1.3.1 for existence and uniqueness of
(xΓ, ν)). Thanks to Proposition 1.3.1, since we assumed that Γ is at least C2, this
last extension ñ is a C1 function. Therefore thanks to this last regularity property,
we now can define the tensor curvature R and the mean curvature H for xΓ ∈ by :

R(xΓ) := D ñ(0) with D ñ :=

∂x1n1 ∂x2n1 ∂x3n1

∂x1n2 ∂x2n2 ∂x3n2

∂x1n3 ∂x2n3 ∂x3n3

 (1.3.22)

and H(xΓ) :=
tr
(
R(xΓ)

)
2

. A second definition of the tensor R(xΓ) is the following
one: Let

(
φ1
xΓ
, φ2

xΓ
, φ3

xΓ

)
: VxΓ

(0) ⊂ R2 7→ WxΓ
(xΓ) ⊂ Γ be a chart. Then define the

map N for (u1, u2) ∈ VxΓ
(0) by:

N(u1, u2) := n
(
φ1
xΓ

(u1, u2), φ2
xΓ

(u1, u2), φ3
xΓ

(u1, u2)
)
.

We recall that:

TxΓ
Γ = Vect


∂x1φ

1
xΓ

(0)
∂x1φ

2
xΓ

(0)
∂x1φ

3
xΓ

(0)

 ,

∂x2φ
1
xΓ

(0)
∂x2φ

2
xΓ

(0)
∂x2φ

3
xΓ

(0)

 (1.3.23)
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and TxΓ
Γ⊥ = Vect{n(xΓ)}. Thus the tensor R(xΓ) is defined as the unique linear

operator on R3 such that:

R(xΓ)

∂x1φ
1
xΓ

(0)
∂x1φ

2
xΓ

(0)
∂x1φ

3
xΓ

(0)

 := ∂x1N(0, 0), R(xΓ)

∂x2φ
1
xΓ

(0)
∂x2φ

2
xΓ

(0)
∂x2φ

3
xΓ

(0)

 := ∂x2N(0, 0)

and R(xΓ)n(xΓ) = 0.

We recall that for all xΓ ∈ Γ we have Im (R(xΓ)) ⊂ TxΓ
Γ and R(xΓ) : TxΓ

Γ 7→ TxΓ
Γ

is a symmetric tensor.

• We define the surface ∇Γ operator for a function u ∈ H1(Γ) as follows: We extend
the function u for x satisfying dist(x,Γ) < η0 by ũ(x) := u(xΓ) where (xΓ, ν) is the
unique solution of x = xΓ +n(xΓ)ν. Thanks to Proposition 1.3.1, since we assumed
that Γ is at least C2, this last extension ũ is a C1 function. Then for xΓ ∈ Γ, we now
can define the surface gradient by ∇Γ u(xΓ) := ∇ũ(xΓ). A second definition of the
surface gradient is the following one: We define the function U for (u1, u2) ∈ VxΓ

(0)
by:

U(u1, u2) := u
(
φ1
xΓ

(u1, u2), φ2
xΓ

(u1, u2), φ3
xΓ

(u1, u2)
)
.

Thus thanks to (1.3.23), the surface gradient ∇Γ u(xΓ) can be defined as the unique
element of TxΓ

Γ such that

∇Γ u(xΓ)

∂x1φ
1
xΓ

(0)
∂x1φ

2
xΓ

(0)
∂x1φ

3
xΓ

(0)

 := ∂x1U(0, 0), ∇Γ u(xΓ)

∂x2φ
1
xΓ

(0)
∂x2φ

2
xΓ

(0)
∂x2φ

3
xΓ

(0)

 := ∂x2U(0, 0).

• Thus we can introduce the operator ∇L defined for uδ ∈ H1(Ωδ) by:

∇L uδ := ∇Γ uδ + n∂νuδ.

Thanks to these definitions and gradient formula used in [14, Some notations and
recalls of differential geometry] and [57, Theorem 3.23], and the expression of differencial
of the map L given by (1.3.16), we can easy establish the following result:
Proposition 1.3.3. The equivalence (1.3.20) and (1.3.21) holds true. Moreover for all
uδ ∈ H1(Ωδ) the following expression for gradient of uδ := uδ ◦ L holds:

∇uδ =
(
(I + νR)−1 · ∇L uδ

)
◦ L,

where I is the identity matrix of R3.
The change of variable formula

We introduce for convenience the function C : Γ 7→ R for (xΓ, ν) ∈ Ωδ by:

C(xΓ, ν) := det(I + νR(xΓ)) = 1 + 2νH(xΓ) + ν2G(xΓ), (1.3.24)

where G(xΓ) := det(R(xΓ)) is the Gaussian curvature and H(xΓ) := tr
(
R(xΓ)

)
/2 is

the mean curvature. In order to illustrate these last quantity, let us introduce the
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principal curvature κ1 and κ2 which are defined as the eigenvalues of the operator
R(xΓ) : TxΓ

Γ 7→ TxΓ
Γ(We recall R(xΓ) is a endomorphism of TxΓ

Γ ). In other word,
there exists a isomorphism P (xΓ) : TxΓ

Γ 7→ R2 such that:

R(xΓ) = P (xΓ)

(
κ1 0
0 κ2

)
P (xΓ)−1.

Then by using this notation, we can rewrite the Gaussian curvature and the mean cur-
vature as follows:

G(xΓ) = κ1κ2 and H(xΓ) =
κ1 + κ2

2
,

and rewrite (1.3.24) as follows:

C(xΓ, ν) := (1 + νκ1)(1 + νκ2) or C(xΓ, ν) := 1 + ν(κ1 + κ2) + κ1κ2ν
2.

We choose an arbitrary η0 satisfying:

η0 < min
(

dist
(

supp(f),Γ
)
,
√
G2 −H2 −H

)
in order to get that that the matrix field (xΓ, ν) 7→ I + νR(xΓ) is uniformly definite-
positive on Γ. This mean that we have existence of C ′ > 0 such that for all xΓ ∈ Γ and
p ∈ R3 we have:

((I + νR(xΓ)) · p, p) ≥ C ′|p|2.
Under this last condition we get C ≥ (C ′)2.

Thanks to this last definition and [14, Theorem 3.23] we can state the following result:
Proposition 1.3.4. Let Aδ be in L1(Ωδ) then Aδ := Aδ ◦ L ∈ L1(Cδ,η0) and we have:∫

Cδ,η0

Aδdx =

∫
Ωδ

AδCdΓdν.

The Dirichlet to Neumann map DtNL
As a direct consequence of Proposition 1.3.3 the following sesquilinear form:

(ũδ, ṽδ) 7→ 〈DtN ũδ ◦ L, ṽδ ◦ L〉Ση0 ,

is continuous on H
1
2

(
Ση0

)2. Therefore there exists an operator DtNL : H
1
2 (Γ× {η0}) 7→

H−
1
2 (Γ× {η0}) such that for all ũδ, ṽδ ∈ H

1
2 (Γ× {η0}) we have:

〈DtNL ũδ, ṽδ〉Γ×{η0} := 〈DtN ũδ ◦ L, ṽδ ◦ L〉Ση0 . (1.3.25)

The sesquilinear form aδ The sesquilinear form aδ is defined for (uδ, vδ) ∈ H1(Ωδ)
2 by:

aδ(uδ, vδ) :=

∫
Ωδ

ρδ C ∇L uδ · ∇L vδ − µδ Cuδ · vδ + 〈DtNL uδ, vδ〉Γ×{η0},

where the linear operator C : Γ×R 7→ L(R3) is defined for (xΓ, ν) ∈ Ωδ by the only linear
operator such that for all vΓ ∈ TxΓ

Γ{
C(xΓ, ν) · vΓ := C(xΓ, ν) ·

(
I + νR(xΓ)

)−2 · vΓ,

C(xΓ, ν) · n(xΓ) := C(xΓ) · n(xΓ).
(1.3.26)
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As second way to define this last operator is the following one: The restriction of this
last operator of the tangent space TxΓ

Γ is defined by:

C(xΓ, ν)|TxΓ
Γ := P (xΓ)

1 + νκ2

1 + νκ1

0

0
1 + νκ1

1 + νκ2

P (xΓ)−1.

This opeator is defined for n(xΓ) by:

C(xΓ, ν)n(xΓ) := (1 + νκ1)(1 + νκ2)n(xΓ).

Moreover we introduce the coefficient ρδ := ρδ ◦ L−1 and µδ := µδ ◦ L−1 and then we can
state the following result:
Proposition 1.3.5. The property (1.3.19) holds.
Proof. Let uδ, vδ ∈ H1(Ωδ), uδ := vδ ◦ L and uδ := vδ ◦ L. Thanks to Proposition 1.3.3
we get:

∇uδ · ∇vδ =
(
C−1 C ∇Γ uδ · ∇Γ vδ + ∂νuδ · ∂νuδ

)
◦ L.

From the definition of ∇L and C this last quantity become:

∇uδ · ∇vδ =
[
C−1(C ∇L uδ · ∇L vδ)

]
◦ L.

This lead to : ∫
Cδ,η0

ρδ∇uδ · ∇vδ − µδk2uδ · v =

∫
Cδ,η0

(
C−1Q

)
◦ L

where Q defined on Ωδ by:

Q := (C ∇L uδ · ∇L vδ)− k2µδ Cuδ · vδ.

Thanks to Proposition 1.3.4 we have:∫
Cδ,η0

(
C−1Q

)
◦ L =

∫
Ωδ

Q,

and then we get:∫
Cδ,η0

ρδ∇uδ · ∇vδ − µδk2uδ · v =

∫
Ωδ

ρδ (C ∇L uδ · ∇L vδ)− µδ Cuδ · vδ.

Thus we can conclude.
The right-hand-side fΣη0

As a direct consequence of (1.3.3) the linear form fΣη0
defined by:

ṽδ 7→ 〈∂νuf −DtNuf , ṽδ ◦ L〉Γ×{η0},

is continuous on the space H
1
2 (Γ× {η0}). Thus combining Proposition 1.3.5, with Propo-

sition 1.3.2 yields the following result:
Lemma 1.3.6. The function uδ := uδ ◦ L−1 is the unique solution of the problem: Find
uδ ∈ H1(Ωδ) such that for all vδ ∈ H1(Ωδ):

aδ(uδ, vδ) = 〈fΣη0
, vδ(·, η0)〉Γ×{η0}. (1.3.27)
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1.3.2.2 Interpretation as a partial differential equation

Here we will transform the formulation (1.3.27) into a volume formulation. We introduce
the operator divL defined for u : Γ 7→ R3 by:

divLu := divΓ uΓ + ∂νuν ,

where divΓ is the surface divergence operator, uν := u · n and for all xΓ, uΓ(xΓ) is
the projection of u on the tangent space TxΓ

Γ. According to [60, equation 2.5.205] the
divergence operator divΓ is defined for all xΓ ∈ Γ by:

divΓ u(xΓ) :=
1√

det(Dφ†xΓ(0) ·DφxΓ
(0))

div

(√
det(Dφ†xΓ ·DφxΓ

) Dφ−1
xΓ
· uΓ ◦ φ−1

xΓ

)
(0),

and thanks to [60, Theorem 2.5.19] this last operator satisfies the green formula:

∀u, v,
∫

Γ

u · ∇Γ vdΓ = −
∫

Γ

divΓ u · vdΓ,

From this last formula we get that uδ satisfies:

divL
(
ρδ C ∇L uδ

)
+ k2µδ Cuδ = 0 in Ωδ.

Moreover since for all xΓ ∈ Γ, n(xΓ) is an eigenvector of C, uδ satisfies the boundary
condition:

∂νuδ = 0 on Γ× {−δ}.

Finally our solution uδ satisfies the following boundary condition:

∂νuδ −DtNL uδ = fΣη0
on Γ× {η0}.
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Chapter 2

Formal asymptotic expansion

We wish to construct here a (formal) approximation of the solution uδ of (1.1.1) of the
form u0 + δu1 + δ2u2 + · · · where for all i, ui : Ω 7→ C. Numerical simulation show
that the true solution uδ strongly oscillates in the neighborhood of the boundary Γ(See
Figure 2.1). Such a phenomenon is what we call a boundary layer phenomenon. Hence
u0 + δu1 + δ2u2 + · · · will be only valid far from the interface Γ. (See Figure 2.1) To
take into account this boundary layer phenomenon, we chooze to apply the matched
asymptotic expansion method. For an example this method is explained, for instance, in
[33, 70, 46, 54, 41, 1, 68] and applied in [48, 49, 31, 16, 47, 15, 37, 34, 35, 38].

First we will assume that the expansion:

uδ = u0 + δu1 + δ2u2 + · · · , (2.0.1)

is valid far from the interface Γ. We will formally see that for all i, ui is a solution of the
Helmholtz equation and then it remains to determine the trace of ui on the interface Γ
in order to completely determine the term ui.

Secondly, to represent the strong oscillations of the function uδ in the neighbourhood
of Γ, we will assume for x near the interface that:

uδ(x) = û0(xΓ; x̂, ν̂) + δû1(xΓ; x̂, ν̂) + δ2û2(xΓ; x̂, ν̂) + · · · , (2.0.2)

where (x̂, ν̂) :=
(
ψΓ(xΓ), ν

)
/δ and xΓ is the nearest point in Γ from x and ν is the

distance of x from Γ. According to Proposition 1.3.1, the quantity (xΓ, ν) is also the
unique solution of x = xΓ + νn(xΓ) and the local coordinates is a diffeomorphism.

The function ûi(xΓ; x̂, ν̂) are searched as periodic of period T = 1 in x̂ for all i : This
is the ansatz of homogenization theory (see [4, 3, 5, 6, 12, 18, 29, 66]). Inserting this
expansion into the Helmholtz equation yields for all n ∈ N a recursive equation between
ûn(xΓ; x̂, ν̂) and the previous terms ûn−1(xΓ; x̂, ν̂), · · · . Nevertheless this equation will
not completely determine the near field (xΓ; x̂, ν̂) 7→ ûn(xΓ; x̂, ν̂): the operator T0 to be
inverted at each step of rhe recurrence has a on trivial kernel namely the space of function
(xΓ, x̂, ν̂) 7→ v(xΓ, x̂, ν̂) which are independent of (x̂, ν̂) i.e.

∃V : xΓ 7→ V (xΓ), ∀xΓ, ∀(x̂, ν̂), v(xΓ; x̂, ν̂) = V (xΓ).

The two expansions (2.0.1) and (2.0.1) have to be both valid in what we call the
matching zone which brings us equation between the Taylor expansion un, un−1, · · · and
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Figure 2.1: The boundary layer phenomenon

the asymptotic behavior of ûn(xΓ; x̂, ν̂) for large ν̂. In particular these equations will fix
the function of xΓ in the kernel of T for the term ûn. These equations are called the
“matching conditions”.

Finally we will construct an explicit recursive algorithm that construct iteralively the
two sequence (un)n and (ûn)n.

2.1 Equations of the problem

We recall that the goal of this work is to construct approximations of the unique solution
uδ : Ωδ 7→ C of:

divL
(
ρδ C ∇L uδ

)
+ k2µδ Cuδ = 0 in Ωδ, (2.1.3)

with the following boundary condition:

∂νuδ = 0 on Γ× {0} (2.1.4)

and
∂νuδ −DtNL uδ = fΣη0

on Γ× {η0}. (2.1.5)

We recall that the operator DtNL is defined by (1.3.25).

2.2 Quick presentation of the matched asymptotic ex-
pansion method

This method consists in seeking two asymptotic expansions of the solution. One(called
far-field expansion) is valid near the boundary called the near-field expansion and the
other one is valid far from the boundary . Firstly let us chose a function η : δ 7→ η(δ)
such that:

lim
δ→∞

η(δ) = 0 and lim
δ→∞

η(δ)

δ
=∞, (2.2.6)

and define the following zones(see Figure 2.2 for a graphical illustration of these regions):
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Figure 2.2: The three zones

• The near-field zone is defined by: Γ×]− δ, η[. In this zone we formally assume that
uδ is a series of ψΓ−δ−periodic functions(See Theorem 1.2.5 for the defintion of
the ψΓ−δ−periodicity) in the sense that for all N ∈ N there exists a constant CN
such that the following estimate holds:

‖uδ − uNδ ‖ ≤ CNδ
N+1, (2.2.7)

where uNδ is defined for (xΓ, ν) ∈ Γ×]− δ, η[ by:

uNδ (xΓ, ν) =
N∑
n=0

δnûn(xΓ; x̂, ν̂) with (x̂, ν̂) :=
(ψΓ(xΓ), ν)

δ
.

In this last defintion, for all n in N the application ûn : Γ 7→ P (Ω̂) is defined
from Γ into P (Ω̂) and we recall that P (Ω̂) is the set of functions defined on Ω̂ :=
R2×]− 1,∞[ and one periodic on the variable x̂.

• The far-field zone is defined by: Γ×]2η, η0[. In this zone we assume that uδ admits
the following asymptotic expansion: For all N ∈ N there exists a constant CN > 0
such that the following estimate holds:

‖uδ − uNδ ‖ ≤ CNδ
N+1, (2.2.8)

where uNδ is defined for (xΓ, ν) ∈ Γ×]2η, η0[ by:

uNδ (xΓ, ν) =
N∑
n=0

δnun(xΓ, ν),

and for all n ∈ N the function un is defined on Ω0.

• The overlapping zone is defined by: Γ×]η, 2η[. In this zone expansions (2.2.7) and
(2.2.8) are assumed to be both valid and then should be equivalent.

2.3 Identification of the required equations for the ansatz

2.3.1 Equations of the near-field

We require that the near field satisfies (2.1.3) and the Neumann condition (2.1.4). Fol-
lowing [37] and [34] we chose that:

∀n ∈ N, ∂ν̂ ûn = 0 on Γ× ∂Ω̂ . (2.3.9)
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In the homogenization theory in [5, 4, 3], in order to perform a formal computation, the
authors strongly use the following property : For all uδ, Aδ of the form:

uδ(x) = u
(
x,
x

δ

)
and Aδ(x) = A

(
x,
x

δ

)
we have for all x that:

div
(
Aδ∇uδ

)
(x) = δ−2divy

(
A(x, y)∇yu

)
(x, y)

+ δ−1divy
(
A(x, y)∇xu

)
(x, y) + δ−1divx

(
A(x, y)∇yu

)
(x, y)

+ divx
(
A(x, y)∇xu

)
(x, y)

(2.3.10)

where y := x/δ. They formally deduce from these equalities that if a function uδ takes
the form

uδ(x) =
∑
n∈N

δnun

(
x,
x

δ

)
,

and satisfies div(Aδuδ) = f then the sequence un satisfies the following induction equality:
0 =divy

(
A(x, y)∇yun

)
(x, y)+

divx
(
A(x, y)∇yun−1

)
(x, y) + divy

(
A(x, y)∇xun−1

)
(x, y)+

divx
(
A(x, y)∇xun−2

)
(x, y).

(2.3.11)

This last formula completely defines all term un, and then builds the expansion uδ ≈
u0 + δu1 + · · · .

Since the ψΓ−δ−periodicity is a generalization of the periodicity, we will draw on
this last idea for the construction of the near field. More precisely, we now extend the
expression (2.3.10) for ψΓ−δ−periodic function and the operator:

divL
(
ρδ C ∇L ·

)
+ k2µδ C ·,

and that will be the object of the formula (2.3.23). In order to simplify notation we
introduce the operator Iδ defined for û : Γ 7→ P (Ω̂) and (xΓ, ν) ∈ Ωδ by:

Iδ û(xΓ, ν) := û(xΓ; x̂, ν̂) with (x̂, ν̂) :=
(ψΓ(xΓ), ν)

δ
.

The formula (2.3.10) is a combination of the two following formula:

∀x, uδ(x) = u
(
x,
x

δ

)
=⇒ ∀x, ∇uδ(x) = ∇xu(x, y) + δ−1∇yu(x, y), (2.3.12)

and

∀x, uδ(x) = u
(
x,
x

δ

)
=⇒ ∀x, divuδ(x) = divxu(x, y) + δ−1divyu(x, y), (2.3.13)

where y := x/δ.
Thus we will extend these two formulas for function ψΓ−δ−periodic. That is the

object of Proposition 2.3.1 which is an extension of (2.3.12) and Proposition 2.3.2 which
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Figure 2.3: Illustration of the operator ∇̂

is an extension of (2.3.13). To state these two results, one needs to introduce the operator
∇̂ defined for û ∈ Γ× Ω̂→ R and (xΓ, x̂, ν̂) ∈ ΓM×Ω̂ by :

∇̂ û(xΓ; x̂, ν̂) := DψΓ(xΓ)†∇x̂û(xΓ; x̂, ν̂) + ∂ν̂ û(xΓ; x̂, ν̂) · n(xΓ). (2.3.14)

Here ∇x̂ is the classical gradient with respect to x̂ defined by:

∇x̂û :=

(
∂x̂1û
∂x̂2û

)
.

Nevertheless, the function ψΓ is a priori non regular for xΓ /∈ ΓM and then the quantity
DψΓ(xΓ) is not defined. Hence (2.3.14) does not have sense . However, according to
the “patching solution” our coefficients vary slowly in (Γ \ ΓM)×] − δ, 0[ and then we
can prove that the same applies for the solution uδ. Therefore for all xΓ ∈ Γ \ ΓM and
(x̂, ν̂) ∈ Ω̂ all quantity û(xΓ; x̂, ν̂) will not depend of the variable x̂. Then we extend ∇̂ û
for
(
xΓ, x̂, ν̂

)
∈ Γ \ ΓM×Ω̂ by ∇̂ û(xΓ; x̂, ν̂) = ∂ν̂ û(xΓ; x̂, ν̂). (See Figure 2.3) Next we

define the operator d̂iv for a vector function û : Γ× Ω̂ 7→ R3 for (xΓ, x̂, ν̂) ∈ ΓM×Ω̂ by:

d̂iv
(
û(xΓ; x̂, ν̂)

)
:= divx̂ (DψΓ(xΓ, x̂, ν̂)ûΓ(xΓ, x̂, ν̂)) + ∂ν̂ ûν(xΓ; x̂, ν̂). (2.3.15)

Here we defined uν(xΓ; x̂, ν̂) := û(xΓ; x̂, ν̂) · n(xΓ) and ûΓ(xΓ; x̂, ν̂) is the projection of û
on the tangent space TxΓ

Γ and divx̂ is the classical divergence with respect to x̂ defined
for function u := (u1, u2) by divx̂u := ∂x̂1u1 + ∂x̂2u2.

Nevertheless, since the function ψΓ is a propri non regular for xΓ ∈ Γ \ ΓM (2.3.15)
then (2.3.15) does not have sense. However we have seen that for (x̂, ν̂) ∈ Ω̂ all quan-
tity û(xΓ; x̂, ν̂) will not depend of the variable x̂. Then we extend d̂iv û(xΓ; x̂, ν̂) for
(xΓ, x̂, ν̂) ∈ (Γ \ ΓM)× Ω̂ by d̂iv û(xΓ; x̂, ν̂) := ∂ν̂ ûν(xΓ; x̂, ν̂).

Now let us give the expressions of these two operators in the case of the unit sphere
when the map ψΓ is the spherical coordinate. We recall that it mean that the map ψΓ is
defined for xΓ ∈ Γ by:

ψΓ(xΓ) := (θ, φ),

where (θ, φ) is the unique solution of of xΓ = (cosφ cos θ, cosφ sin θ, sinφ).(See Fig-
ure 1.13).
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In this case, thanks to (1.2.12), we can prove that the map DψΓ
† is given for xΓ ∈ Γ

by:

DψΓ(xΓ)†(xΓ) =


−cos(φ) sin(θ)

cos(θ)2
− sin(φ) cos(θ)

cos(φ)

cos(θ)
− sin(φ) sin(θ)

0 cos(φ)

 and n(xΓ) =

cos(φ) cos(θ)
cos(φ) sin(θ)

sin(φ)

 .

Therefore in this case, thanks to (1.2.15), if −η < φ < η then we have for u : Γ × Ŷ∞
smooth enough:

(∇̂u)(xΓ; ·) = v1∂x̂1u(xΓ; ·) + v2∂x̂2u(xΓ; ·) + vν̂∂ν̂u(xΓ; ·),

where:

v1 :=


−cos(φ) sin(θ)

cos(θ)2

cos(φ)

cos(θ)
0

 , v2 :=

− sin(φ) cos(θ)
− sin(φ) sin(θ)

cos(φ)

 and vν̂ :=

cos(φ) cos(θ)
cos(φ) sin(θ)

sin(φ)



else one has:
(∇̂u)(xΓ; ·) = vν̂∂ν̂u.

For vector field u : Γ× Ω̂ smooth enough, if −η < φ < η then

d̂iv(u)(xΓ; ·) = ∂x̂1(v1, u(xΓ; ·)) + ∂x̂2(v2, u(xΓ; ·)) + ∂ν̂(vν̂ , u(xΓ; ·)),

else d̂iv(u)(xΓ; ·) = ∂ν̂(vν̂ , u(xΓ; ·)).
Thus thanks to these definitions we can state the following result:

Proposition 2.3.1. Let û ∈ C1(Γ × Ω̂) be a function patching-ψΓ-admissible then the
following equality holds:

∇L(Iδ û) = Iδ
(
∇Γ û+ δ−1 ∇̂ û

)
.

Proposition 2.3.2. Let û ∈
(
C1(Γ × Ω̂)

)3

patching-ψΓ-admissible then the following
equality holds:

divL
(
Iδ û

)
= Iδ

(
divΓ ûΓ + δ−1 d̂iv û

)
,

where for all xΓ, uΓ(xΓ; ·) is the projection of u(xΓ; ·) on the tangent space TxΓ
Γ.

Proof of Proposition 2.3.1. First let us prove that for all (xΓ, ν) ∈ Ωδ we have:

∇Γ

(
Iδ(û)

)
(xΓ, ν) = ∇Γ(û)(xΓ; x̂, ν̂) + δ−1 DψΓ(xΓ)†∇̂û(xΓ; x̂, ν̂), (2.3.16)

where: (x̂, ν̂) :=
(ψΓ(xΓ), ν)

δ
.

Indeed, assume first that xΓ ∈ ΓM. Then from the definition of ΓM the application ψΓ

is differentiable and bijective from a neighborhood V (xΓ) ⊂ Γ of xΓ into a neighborhood
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V (xr) ⊂ R2 of xr := ψΓ(xΓ). Thus its inverse φΓ := ψΓ
−1 : V (xr) 7→ V (xΓ) is a local

parameterization of the surface Γ and the family (ei)i∈{1,2} defined for i = 1, 2 by:

ei := DφΓ(xr)êi, (2.3.17)

is a basis of TxΓ
Γ. Here (êi)i=1,2 is the canonical basis of R2.

For all ν ∈]− δ, η0[ the following decomposition of the map xΓ 7→ Iδ(û)(xΓ, ν) holds:

Iδ(û)(·, ν) = uδψΓ,ν
◦ ψΓ,

where uδψΓ,ν
is defined for x ∈ V (xr) by:

uδψΓ,ν
(x) := û

(
φΓ(x),

x

δ
, ν̂
)
, (2.3.18)

which yields for all i ∈ {1, 2}:

∇Γ(Iδ û)(xΓ, ν) · ei = ∂xiu
δ
ψΓ,ν

(xr). (2.3.19)

We define the function ûψΓ,ν for (x, x̂) ∈ V (xr)× Ω̂ by:

ûψΓ,ν(x, x̂) := û(φΓ(x), x̂). (2.3.20)

Thanks to this definition, we can rewrite (2.3.18) for all x ∈ V (xr) as follow:

uδψΓ,ν
(x) = ûψΓ,ν

(
x,
x

δ

)
,

which leads to:
∂xiu

δ
ψΓ,ν

(xr) = ∂xiûψΓ,ν(xr, x̂) + δ−1∂x̂iûψΓ,ν(xr, x̂) (2.3.21)

From (2.3.20), we get the following decomposition of the map xΓ 7→ û(xΓ; x̂, ν̂):

û(·; x̂, ν̂) = ûψΓ,ν(·, x̂) ◦ ψΓ,

which leads to:
∇Γ û(xΓ; x̂, ν̂) · ei = ∂xiûψΓ,ν(xr, x̂). (2.3.22)

Thanks to (2.3.20) we get ∂x̂iûψΓ,ν(xr, x̂) = ∂x̂iû(xΓ; x̂, ν̂) =
(
∇̂x̂û(xΓ; x̂, ν̂)

)
· êi and using

(2.3.17) yields:

∂x̂iûψΓ,ν(xr, x̂) = ∇̂x̂û(xΓ; x̂, ν̂) ·
(

DψΓ(xΓ)ei
)

=
(

DψΓ(xΓ)†∇̂x̂û
)
(xΓ; x̂, ν̂) · ei

Combining this with (2.3.22), (2.3.21) and (2.3.19) conclude the proof of (2.3.16) when
xΓ ∈ ΓM. For xΓ /∈ ΓM this result is trivial because u(xΓ; ·) only depend of ν̂.

Finally, we have, ∀(xΓ, ν) ∈ Ωδ:

∂ν

(
û
(
xΓ;

ψΓ(xΓ)

δ
,
ν

δ

))
= δ−1∂ν̂ û(xΓ; x̂, ν̂),

and multiplying this last identity by n(xΓ) and combining with (2.3.16) conclude the
proof.
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Proof of Proposition 2.3.2. The proof use similar calculations. Indeed it is sufficient to
replace (2.3.19) by

divΓ

(
Iδ uΓ

)
(xΓ) =

2∑
j=1

1
√
g
∂xi

(√
g
(
uψΓ

δ

)i)
(xr).

Here, we defined on V (xr) the scalar functions
√
g as the determinant of the matrix whose

coefficient are given for all i, j = 1, 2 by ∂xiφΓ · ∂xjφΓ. and
(
uψΓ

δ

)i are the unique scalars
such that:

uψΓ

δ := uδ ◦ φΓ =
2∑
i=1

(
uψΓ

δ

)i
∂xiφΓ

Our goal is to give a formula which is the equivalent of formula (2.3.10) in the case of the
plane and k = 0; i.e. to give formula of the form for all û : Γ 7→ P (Ω̂) smooth enough:

divL
(
ρδ C ∇L(Iδ û)

)
+ k2µδ C Iδ û = Iδ

(
Tδû
)
, (2.3.23)

where Tδ is an operator to be determined at least formally. If C and C were a constant,
using:

∇L(Iδ û) = Iδ
(
∇Γ û+ δ−1 ∇̂ û

)
and divL

(
Iδ û

)
= Iδ

(
divΓ ûΓ + δ−1 d̂iv û

)
.

(See Proposition 2.3.1 and Proposition 2.3.2), we would get, since C Iδ = Iδ C and C Iδ =
Iδ C (C and C both commute with Iδ):

Tδ =
(
δ−1 d̂iv + divΓ

) (
C
(
δ−1 ∇̂+∇Γ

))
+ k2µ̂C . (2.3.24)

In the general case, one has:

C(xΓ, ν) Iδ û(xΓ, ν) = C(xΓ, ν)û

(
xΓ;

ψΓ(xΓ)

δ
,
ν

δ

)
,

= Cδ
(
xΓ,

ν

δ

)
û

(
xΓ;

ψΓ(xΓ)

δ
,
ν

δ

)
,

= Iδ(Cδû)(xΓ, ν),

where Cδ(xΓ; x̂, ν̂) := C(xΓ; δν̂). Posing Cδ(xΓ; x̂, ν̂) := C(xΓ; δν̂), we also have:

C(xΓ, ν) Iδ û(xΓ, ν) = Iδ(Cδ û)(xΓ, ν).

Hence (2.3.24) becomes in the general case:

Tδ =
(
δ−1 d̂iv + divΓ

) (
Cδ
(
δ−1 ∇̂+∇Γ

))
+ k2µ̂Cδ . (2.3.25)

Our next goal will be to express an expansion of Tδ in power of δ in the form:

Tδ =
∑
k∈Z

δk−2Tk, (2.3.26)
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and we want to identify the Tk. For this, using the Taylor expansion formula, we write:

C(xΓ; ν) =
∑
k∈N

νkC(k)(xΓ) and C(xΓ; ν) =
∑
k∈N

νkc(k)(xΓ).

Here we defined for k ∈ Z and xΓ ∈ Γ, the following quantity:

C(k)(xΓ) :=
1

k!
∂kν C(xΓ, 0) if k ≥ 0 else C(k)(xΓ) := 0, (2.3.27)

and
c(k)(xΓ) :=

1

k!
∂kν C(xΓ, 0) if k ≥ 0 else c(k)(xΓ) := 0. (2.3.28)

Then according to the definition of Cδ and Cδ, we have:

Cδ(xΓ; ν̂) =
∑
k∈N

δkν̂kC(k)(xΓ) and Cδ(xΓ; ν̂) =
∑
k∈N

δkν̂kc(k)(xΓ).

Thanks to these to equalities, (2.3.25) formally becomes:

Tδ = T ρδ + k2µ̂
∑
k∈N

δkν̂kc(k)(xΓ),

where we defined for u smooth enough:

T ρδ û :=
∑
k∈N

(
δ−1 d̂iv + divΓ

) (
δkν̂kC(k)(xΓ)

(
δ−1 ∇̂+∇Γ

))
.

Thus it remains to express an expansion of T ρδ in powers of δ of the form:

T ρδ =
∑
k∈Z

δk−2T ρk . (2.3.29)

Using an index rearrangement, we have for û:∑
k∈Z

δkν̂kC(k)
(
∇Γ û+ δ−1 ∇̂ û

)
=
∑
k∈Z

δk
(
ν̂kC(k)∇Γ û+ ν̂k+1C(k+1) ∇̂ û

)
,

which leads to :

T ρδ û =
∑
k∈Z

δk
(

divΓ +δ−1 d̂iv
)(
ρ̂ν̂kC(k)∇Γ û+ ρ̂ν̂k+1C(k+1) ∇̂ û

)
.

Therefore a second index rearrangement in this last expression yields:

T ρδ û =
∑
k∈Z

δk
(

divΓ

(
ρ̂C(k)ν̂k∇Γ û

)
+ d̂iv

(
ν̂k+2ρ̂C(k+2) ∇̂ û

))
,

+
∑
k∈Z

δk
(

divΓ

(
ν̂k+1ρ̂C(k+1)∇Γ û

)
+ d̂iv

(
ρ̂C(k+1)∇Γ û

))
,

(2.3.30)
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Defining for k ∈ Z and û′ : Γ× Ω̂ 7→ C the operator T ρk+2 by:

T ρk+2û
′ : = divΓ

(
ρ̂C(k)ν̂k∇Γ û

′)+ d̂iv
(
ν̂k+2ρ̂C(k+2) ∇̂ û′

)
,

+ divΓ

(
ν̂k+1ρ̂C(k+1) ∇̂ û′

)
+ d̂iv

(
ν̂k+1ρ̂C(k+1)∇Γ û

′),
we can rewrite (2.3.30) as follow:

T ρδ û =
∑
k∈Z

δk−2T ρk û,

which is (2.3.29). Hence by introducing for k ∈ Z the operator:

Tk := T ρk+2 + k2µν̂kc(k),

we get the expansion (2.3.26).
Now we will use this formula to extend the induction formula (2.3.11) and that will be

the object of (2.3.31). By inserting expansion (2.2.7) into the Helmholtz equation (2.1.3)
and combining with (2.3.23), we formally get:

0 =
∑
k∈Z

∑
l∈Z

δk+lTkûl =
∑
k∈Z

∑
l∈Z

δkTlûk−l =
∑
k∈Z

δk

(
k∑
l=0

Tlûk−l

)
.

A series of the variable δ is zero for all values of δ if every coefficient is zero. Therefore

k∑
l=0

Tlûk−l = 0, ∀k ≥ 0,

that can be rewritten as follows:

T0ûk = −
k∑
l=1

Tlûk−l, ∀k ≥ 0. (2.3.31)

Thus, in order to define ûk we first need to invert the operator T0. If a function u :
(xΓ; x̂, ν̂) 7→ R does not depend of x̂ and ν̂ then this function belong to the kernel of the
operator T0 i.e.

T0u = 0.

Moreover, we will later see in a functional framework that we have the equivalence:

∀u, T0u = 0⇐⇒ ∃U : Γ 7→ C∀(xΓ, x̂, )̂ ∈ Γ× Ω̂u(xΓ; x̂, ν̂) = U(xΓ),

and this last result is stated in Proposition 2.5.2. Thus the equation (2.3.31) define the
near-field ûk up to a function which only depends to the variable xΓ.
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2.3.2 Equations for the far-field

Inserting (2.2.8) into (2.1.3) and (2.1.5) yields for all n ∈ N:

divL
(
C ∇L un

)
+ k2 Cun = 0, in Ω0, (2.3.32)

with the boundary condition on Γ× {η0}:{
C ∂νun = DtNL un if n > 0,

C ∂νu0 = DtNL u0 + fΣη0
else .

(2.3.33)

We recall that the operator DtNL is defined by (1.3.25) and (C, C) are defined by (1.3.26)
and (1.3.24). Nevertheless the boundary conditions on Γ × {0} for these problems are
missing.

By using the arguments of Proposition 1.3.2,Proposition 1.3.3 and Proposition 1.3.5,
we directly have that (2.3.32) and (2.3.33) are equivalent to have for all n ∈ N that

∆u0 + k2u0 = f in Ω, if n > 0 then ∆un + k2un = 0 in Ω,

and the function un satisfies the Sommerfeld radiation condition:

lim
R→∞

∫
|x|=R

|∂run − ikun|2 = 0.

2.3.3 Matching condition

This part is inspired from [34] and [37]. Indeed, we will later prove the existence of a
sequence of polynomials pn(xΓ, .) ∈ Cn[ν̂], where pn(xΓ, .) ∈ Cn[ν̂] is the set of polynomial
functions whose degree is smaller than n, such that the near field has the following
expansion uniformly with respect to xΓ and x̂:

lim
ν̂→∞

ûn(xΓ; x̂, ν̂)− pn(xΓ; ν̂) = 0. (2.3.34)

Let pni be the ith coefficient of pn, then replacing ν̂ by ν
δ
formally yields for ν ∈ [η, 2η]

the following expansion for uδ:

uδ(xΓ, ν) ≈
∞∑
n=0

n∑
k=0

δn−kpnk(xΓ)νk.

Moreover for ν ∈ [η, 2η], using the far field expansion (2.2.8) and Taylor series formally
yields the following expansion:

uδ(xΓ, ν) ≈
∞∑
n=0

∞∑
k=0

δn
1

k!
∂kνu

n(xΓ, 0)νk.
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Then we formally get:
∞∑
n=0

n∑
k=0

δn−kpnk(xΓ)νk =
∞∑
n=0

∞∑
k=0

δn
1

k!
∂kνun(xΓ, 0)νk,

and identifying each power of δ and ν of both expansion yields formally the following
identity:

pn+k
k (xΓ) = 1

k!
∂kνun(xΓ, 0). (2.3.35)

In particular one has:

pn0 (xΓ) = un(xΓ, 0) and pn1 (xΓ) = ∂νun−1(xΓ, 0).

2.3.4 Summary of the required equations for the ansatz

2.4 Technical assumptions on our physical coefficients

To ensure coercivity properties, we assume that the coefficient ρ̂ is bounded from below
by a positive constant ρ̂c > 0 i.e.

ρ̂ ≥ ρ̂c. (2.4.36)

For convenience we introduce the infinite strip Ŷ∞ :=]0, 1[2×] − 1,∞[. Moreover we
define for m ≤ mΓ and any normed vector space V (Ŷ∞) of function defined on Ŷ∞ the
following normed vector spaces: if m ∈ N then

Cm
0,ΓM

(
Γ;V (Ŷ∞)

)
:=
{
u ∈ Cm(Γ, V (Ŷ∞)), u patching-ψΓ-admissible

}
,

and

Hm
0,ΓM

(
Γ;V (Ŷ∞)

)
:=
{
u ∈ Hm(Γ, V (Ŷ∞)), u patching-ψΓ-admissible

}
.

Finally we recall that we assumed that our surface Γ is at least CmΓ+1 and have the
following regularities:

(ρ̂, µ̂) ∈ CmΓ
0,ΓM

(
Γ;L∞(Ŷ∞)

)
and ψΓ ∈ CmΓ+1

(
ΓM

)
, (2.4.37)

where form ∈ N, Cm(ΓM) is the space of restrictions to ΓM of functions with Cm regularity
on the whole surface Γ.

2.5 Explicit construction of the ansatz

2.5.1 Solution of equation (2.3.31)

2.5.1.1 Functional framework for the strip Ŷ∞

We will see later that for all n and xΓ our far field ûn(xΓ; ·) belongs to the space H
(
Ŷ∞
)

+
C[ν̂] where we defined the following space:

H
(
Ŷ∞
)

:=

{
u ∈ H1

loc(Ω̂), ‖u‖2

H
(
Ŷ∞

):=∫
Ŷ∞

|∇u|2dx̂dν̂ +

∣∣∣∣∫
Σ

udx̂

∣∣∣∣2 <∞ and u is one periodic in x̂

}
,
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where Σ :=]0, 1[2×{0}. We remark from Poincaré-Wirtinger inequality that H
(
Ŷ∞
)
is a

Hilbert space and for all compact K there exists CK > 0 such that for all u ∈ H
(
Ŷ∞
)
the

following estimate holds:

‖u‖L2(K) + ‖u‖L2(Σ) ≤ CK‖u‖H
(
Ŷ∞

). (2.5.38)

Moreover we will see that the right hand-side of (2.3.31) belongs to the space:

C[ν̂]⊕H
(
Ŷ∞
)†
. (2.5.39)

To define this last space we proceed as follow:

1. We introduce the space:

Hcomp

(
Ŷ∞
)

:=
{
φ ∈ H

(
Ŷ∞
)
, ∃c > 0 such that φ ≡ 0 on R2×]c,∞[

}
,

and we emphasize that we do not need to provide this last space with topology.

2. We remark that Hcomp

(
Ŷ∞
)
is dense in H

(
Ŷ∞
)
.

3. Thus we can identify the dual spaceH
(
Ŷ∞
)† as a subset of the dual spaceHcomp

(
Ŷ∞
)†

with the canonical injection I defined for (u, v) ∈ H
(
Ŷ∞
)† ×Hcomp

(
Ŷ∞
)
by :

〈Iu, v〉
Hcomp

(
Ŷ∞

)†
−Hcomp

(
Ŷ∞

) := 〈u, v〉Ŷ∞ .

Here we have chosen to compactify the dual bracket 〈·, ·〉Ŷ∞ := 〈·, ·〉
H
(
Ŷ∞

)†
−H
(
Ŷ∞

).
4. We identify the space C[ν̂] as a subspace of H

(
Ŷ∞
)† with the inclusion map I :

C[ν̂] 7→ Hcomp

(
Ŷ∞
)† for (p, φ) ∈ C[ν̂]×Hcomp

(
Ŷ∞
)
:

〈Iu, v〉
Hcomp

(
Ŷ∞

)†
−Hcomp

(
Ŷ∞

) :=

∫
Ŷ∞

p(ν̂)φ(x̂, ν̂)dx̂dν̂.

5. Thus we can write:

H
(
Ŷ∞
)
∪H

(
Ŷ∞
)† ⊂ Hcomp

(
Ŷ∞
)† and C[ν̂] ⊂ Hcomp

(
Ŷ∞
)†
,

which give a meaning of (2.5.39).

2.5.1.2 Extension of d̂iv to the space L2
loc(Ŷ∞)

The operator divx̂,ν̂ is naturally defined as a linear operator divx̂,ν̂ : C∞comp(Ω̂)3 7→ C∞comp(Ω̂)
but we will see in the sequel that we need to extend this last operator. Let us explain
how we proceed: According to the definition of the space Hcomp

(
Ŷ∞
)
the quantity ∇x̂,ν̂φ

is well defined and have compact support and we have:∫
supp(φ)

|∇x̂,ν̂φ|2dŶ <∞. (2.5.40)
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Let u ∈ L2
loc(Ŷ∞), then since supp(φ) is compact we have:∫

supp(φ)

|u|2dŶ <∞. (2.5.41)

Therefore according the Cauchy-Schwarz inequality, (2.5.40) an (2.5.41) leads to:∫
supp(φ)

|u · ∇x̂,ν̂φ|dŶ <∞.

Moreover by using that supp(u · ∇x̂,ν̂φ) ⊂ supp(φ), this imples:∫
Ŷ∞

|u · ∇x̂,ν̂φ|dŶ <∞,

and then we now can define the extension of the operator the operator divx̂,ν̂ : L2
loc(Ŷ∞) 7→

Hcomp

(
Ŷ∞
)† for (u, φ) ∈: L2

loc(Ŷ∞)×Hcomp

(
Ŷ∞
)
by:

〈divx̂,ν̂(u), φ〉
Hcomp

(
Ŷ∞

)†
−Hcomp

(
Ŷ∞

) := −
∫
Ŷ∞

(
u(x̂, ν̂),∇x̂,ν̂φ

)
dx̂dν̂. (2.5.42)

According to the definition of the operator d̂iv (see (2.3.15)), this last operator is naturally
defined for u : Γ 7→ H1

loc(Ŷ∞)3 by the map d̂ivu : Γ 7→ L2
loc(Ŷ∞) defined for xΓ ∈ Γ by:

d̂iv
(
u
)
(xΓ; ·) := divx̂,ν̂

(
M †(xΓ)u

)
,

where M is given for xΓ ∈ ΓM by:

M(xΓ) :=
(
dψΓ(xΓ), n(xΓ)

)
,

and M(xΓ) :=
(
0, n(xΓ)

)
. By using the same idea, the operator d̂iv is extended for

u : Γ 7→ L2
loc(Ŷ∞) by

(
d̂ivu

)
(xΓ; ·) ∈ Hcomp

(
Ŷ∞
)† which is defined for φ ∈ Hcomp

(
Ŷ∞
)

by:〈(
d̂ivu

)
(xΓ; ·), φ

〉
Hcomp

(
Ŷ∞

)†
−Hcomp

(
Ŷ∞

) := −
∫
Ŷ∞

(
u(xΓ; x̂, ν̂), (∇̂φ)(xΓ; x̂, ν̂)

)
dx̂dν̂.

(2.5.43)
Now let explain why the integral appearing in the righ hand-side of this last definition
have a sense: According to the definition of the space Hcomp

(
Ŷ∞
)
, ∇x̂,ν̂φ have a sense.

Thus we can give a sense toM(xΓ)∇x̂,ν̂φ. Then according to the definition of the operator
∇̂ (see (2.3.14)) and the one of the matrix M(xΓ) we have:

(∇̂φ)(xΓ; x̂, ν̂) = M(xΓ)∇x̂,ν̂φ.

According to the definition of the space Hcomp

(
Ŷ∞
)
the quantity ∇x̂,ν̂φ is well defined

and have compact support and we have:∫
supp(φ)

|∇x̂,ν̂φ|2dŶ <∞. (2.5.44)
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Morover, since supp(φ) is compact and u(xΓ; ·) ∈ L2
loc(Ŷ∞), we have∫

supp(φ)

|u(xΓ; ·)|2dŶ <∞. (2.5.45)

Therefore according the Cauchy-Schwarz inequality, (2.5.44) an (2.5.45) leads to:∫
supp(φ)

|u(xΓ; ·) · ∇x̂,ν̂φ|dŶ <∞.

Moreover by using that supp(u(xΓ; ·) · ∇x̂,ν̂φ) ⊂ supp(φ), this implies:∫
Ŷ∞

|u(xΓ; ·) · ∇x̂,ν̂φ|dŶ <∞.

2.5.1.3 Construction of a right inverse T −1
0 of the operator T0

In order to solve (2.3.31), we construct here a right inverse T −1
0 of the operator T0. That

means that this operator should satisfy:

T0T −1
0 f = f,

for all element f of some space specified later. Let us prove the following result to simplify
the expression of the operator T0:

Proposition 2.5.1. We have that :

For all k ∈ N, we have C(k) ∈ CmΓ(Γ;L) and for all xΓ ∈ Γ we have:

C(k)(xΓ) · TxΓ
Γ ⊂ TxΓ

Γ and C(k)(xΓ) · n(xΓ) = c(k)n(xΓ). (2.5.46)

•• For k = 0, these terms are given by C(0) = I and c(0) = 1.

• For k = 1 and all xΓ ∈ Γ, the operator C(1)(xΓ) is the only one such that:

∀vΓ ∈ TxΓ
Γ, C(1)(xΓ) · vΓ = 2 ·

(
H(xΓ)−R(xΓ)

)
· vΓ,

and c(1) = 2 ·H.
Proof. Since the idea is the same as the one of [14] we just give the outline of the proof.
We first observe that:

DLDL† = (I + νR)−2 . (2.5.47)

Combining this last identity with Leibniz formula and the following equalities:

1

k!
∂kν

((
I + νR

)−2
)∣∣∣∣

ν=0

= (k + 1) · (−1)nRn and det(I + νR) = 1 + 2νH + ν2G,

directly yields our result. The properties (2.5.46) are direct consequence of (2.5.47) and:
∀xΓ ∈ Γ, R(xΓ)TxΓ

Γ ⊂ TxΓ
Γ.

Indeed, thanks to this last result, the operator T0 is given for û : Γ 7→ P (R2) and xΓ ∈ Γ
by:

(T0û) (xΓ; ·) := T0(xΓ)û(xΓ),

where T0(xΓ) is defined for u ∈ Ω̂ 7→ C by:
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• If xΓ ∈ ΓM:
T0(xΓ)û = divx̂,ν̂

(
ρψΓ

(xΓ; ·)∇û
)
, (2.5.48)

• If xΓ /∈ ΓM:
T0(xΓ)û := ∂ν̂

(
ρ̂(xΓ; ·)∂ν̂ û(xΓ; ·)

)
. (2.5.49)

Here we defined the map ρψΓ
: Γ× Ω̂ 7→ L(R3) for (xΓ; x̂, ν̂) ∈ Γ× Ω̂ by:

ρψΓ
(xΓ; x̂, ν̂) := ρ̂(xΓ; x̂, ν̂)

(
DψΓ(xΓ) DψΓ(xΓ)† 0

0 1

)
, (2.5.50)

and ∂ν̂ is extended for function v : Ω̂ 7→ C by the element of Hcomp

(
Ŷ∞
)† defined for

φ ∈ Hcomp

(
Ŷ∞
)
by:

〈∂ν̂v, φ〉Ŷ∞ = −
∫
Ŷ∞

v∂ν̂φdx̂dν̂.

Let us illustrate this defintion through the example of the unit sphere: In this case we
have Γ := S2 := {x ∈ R3, |x| = 1} and ψΓ is defined for x ∈ Γ by

ψΓ(xΓ) := (θ, φ) , (2.5.51)

where (θ, φ) is the unique solution in [0, 2π[×[0, π[ of x = (cosφ cos θ, cosφ sin θ, sinφ).
We have seen in the previous chapter that we can choose:

ΓM :=
{

(cosφ cos θ, cosφ sin θ, sinφ), (θ, φ) ∈ [0, 2π[×
]
− π

2
+ η,

π

2
+ η
[}
,

and the matrix DψΓ(xΓ) DψΓ(xΓ)†(xΓ) is given by:

DψΓ(xΓ) DψΓ(xΓ)† =

 1

cos2(φ)
0

0 1

 .

Hence definition (2.5.50) becomes:

ρψΓ
(xΓ; x̂, ν̂) := ρ̂(xΓ; x̂, ν̂)


1

cos2(φ)
0 0

0 1 0
0 0 1

 ,

First, we assume that xΓ belongs to ΓM and we construct now an operator T0(xΓ) such
that:

T0(xΓ)T −1
0 (xΓ)f = f. (2.5.52)

Hence if xΓ ∈ ΓM then the operator T0(xΓ) is the linear operator associated to the
following sesquilinear form:

〈T0u, v〉Ŷ∞ =

∫
Ŷ∞

ρ̂(xΓ; x̂1, x̂2, ν̂)

(
1

cos2(φ)
∂x̂1u∂x̂1v + ∂x̂2u∂x̂2v + ∂ν̂u∂ν̂v

)
dx̂dν̂,

and if xΓ /∈ ΓM then

〈T0u, v〉Ŷ∞ =

∫
Ŷ∞

ρ̂(xΓ; x̂1, x̂2, ν̂) (∂x̂2v + ∂ν̂u∂ν̂v) dx̂dν̂.
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Proposition 2.5.2. Let u : Γ 7→
(
H
(
Ŷ∞
)

+ C[ν̂]
)
be patching admissible such that we

have:
T0u = 0.

Then one has the existence of a function U : Γ 7→ C such that :

∀xΓ ∈ Γ, ∀(x̂, ν̂), u(xΓ; x̂, ν̂) = U(xΓ).

Proof. Let xΓ ∈ Γ and let us prove that u(xΓ; ·) is a constant function. By assumption
there exist a polynomial v2 ∈ C[ν̂] and a function v1 ∈ H

(
Ŷ∞
)
such that:

u(xΓ; ·) = v1 + v2. (2.5.53)

We can assume that v2(ν̂ = 0) = 0. Indeed, since spaces H
(
Ŷ∞
)
and C[ν̂] both contain

constant functions then we can replace v1 and v2 by v1 + v2(ν̂ = 0) and v2− v2(ν̂ = 0) in
(2.5.53) respectively:

u(xΓ; ·) =
(
v1 + v2(ν̂ = 0)

)︸ ︷︷ ︸
∈H
(
Ŷ∞

) +
(
v2 − v2(ν̂ = 0)

)︸ ︷︷ ︸
∈C[ν̂]

.

First we prove that v2 = 0 and finally we prove that v1 is an constant function.
Proof of v2 = 0:

Since we have v2(0) = 0, one can prove by using the jump formula:

∂ν̂Iν̂>0 = δ in the sens of distributions

or Proposition 2.5.5 that:

T0(xΓ) (v2Iν̂>0) = Iν̂>0
∂2

∂ν̂2
v2 +

∂

∂ν̂
v2(0)δΣ in Hcomp

(
Ŷ∞
)†
.

For convenience, we rewrite this last equality as follows:

Iν̂>0
∂2

∂ν̂2
v2 = T0(xΓ) (v2Iν̂>0)− ∂

∂ν̂
v2(0)δΣ in Hcomp

(
Ŷ∞
)†
. (2.5.54)

Thanks to v2(0) = 0, we prove by using the jump formula that v2Iν̂≤0 ∈ H
(
Ŷ∞
)
. Com-

bining this with the continuity of T0(xΓ) : H
(
Ŷ∞
)
7→ H

(
Ŷ∞
)† yields:

T0(xΓ) (v1 + Iν̂≤0v2) ∈ H
(
Ŷ∞
)†
. (2.5.55)

(See (2.5.48) and (2.5.49) for the definition of the operator T0(xΓ)). Thanks to (2.5.53)
we have u(xΓ; ·) = v1 + v2Iν̂≤0 + v2Iν̂>0. Therefore:

T0(xΓ) (v2Iν̂>0) = T0(xΓ)u(xΓ; ·)− T0(xΓ) (v1 + v2Iν̂≤0) .

Combining this with T0(xΓ)u(xΓ; ·) = 0 and (2.5.55) yields:

T0(xΓ) (v2Iν̂>0) ∈ H
(
Ŷ∞
)†
.
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Combining this with δΣ ∈ H
(
Ŷ∞
)†(See (2.5.61) for the definition of δΣ) and (2.5.54) leads

to:
Iν̂>0

∂2

∂ν̂2
v2 ∈ H

(
Ŷ∞
)†
. (2.5.56)

Since Iν̂≤0
∂2

∂ν̂2v2 has a compact support, this last quantity belongs to the space H
(
Ŷ∞
)†.

Combining this with (2.5.56) and ∂2

∂ν̂2v2 = Iν̂≤0
∂2

∂ν̂2v2 + Iν̂>0
∂2

∂ν̂2v2 leads to:

∂2

∂ν̂2
v2 ∈ H

(
Ŷ∞
)†
.

Morover since v2 is a polynomial then the same applies for the function
∂2

∂ν̂2
v2 which

leads to:
∂2

∂ν̂2
v2 ∈ C[ν̂] ∩H

(
Ŷ∞
)†
.

We will later prove that C[ν̂] ∩ H
(
Ŷ∞
)†

= {0}(See Proposition 2.5.9). Thus we deduce
that:

∂2

∂ν̂2
v2 = 0,

which combined with v2(0) = 0 leads to:

v2 =
∂

∂ν̂
v2(0)ν̂. (2.5.57)

Thus, thanks to T0(xΓ)
(
Iν̂>0ν̂

)
= δΣ(See Proposition 2.5.5) we have:

T0(xΓ) (Iν̂>0v2) =
∂

∂ν̂
v2(0)δΣ.

Combining this with T0(xΓ)u(xΓ; ·) = 0 and v1 + Iν̂≤0v2 = u(xΓ; ·)− Iν̂>0v2 yields:

T0(xΓ)
(
v1 + v2Iν̂≤0ν̂

)
= − ∂

∂ν̂
v2(0)δΣ. (2.5.58)

Moreover by using the jump formula and v1 ∈ H
(
Ŷ∞
)
, we obtains that:

v1 +
∂

∂ν̂
v2(0)ν̂Iν̂≤0 ∈ H

(
Ŷ∞
)
.

Combining this with the continuity of T0(xΓ) : H
(
Ŷ∞
)
7→ H

(
Ŷ∞
)† yields (See (2.5.48)

and (2.5.49) for the definition of the operator T0(xΓ)):

T0(xΓ)

(
v1 +

∂

∂ν̂
v2(0)ν̂Iν̂≤0

)
∈ H

(
Ŷ∞
)†
.

Thus we can apply this last distribution to the test function 1 ∈ H
(
Ŷ∞
)
. Therefore:〈

T0(xΓ)

(
v1 +

∂

∂ν̂
v2(0)ν̂Iν̂≤0

)
, 1

〉
Ŷ∞

= 0.
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Combining this with 〈δΣ, 1〉Ŷ∞ = 1 and (2.5.58) yields

∂

∂ν̂
v2(0) = 0,

and then by combining this with (2.5.57), we concludes the proof of v2 = 0.
Proof of v1 is a constant function:

Thanks to v2 = 0, T0(xΓ)u(xΓ; ·) = 0 and u(xΓ; ·) = v1 + v2, we have T0(xΓ)v1 = 0.
Morover by assumption, one has v1 ∈ H

(
Ŷ∞
)
. Thus we have:

〈T0(xΓ)v1, v1〉Ŷ∞ = −
∫
Ŷ∞

ρ̂(xΓ; x̂, ν̂)| ∇̂ v1(xΓ, x̂, ν̂)|2dx̂dν̂ = 0.

Therefore ∇̂ v1(xΓ; ·) = 0. Let us prove that

∇x̂v1 = 0. (2.5.59)

Assume first that xΓ ∈ ΓM. Then according to the definition of the operator ∇̂(see
(2.3.14)) ∇̂ v1(xΓ; ·) = 0 becomes:

0 = DψΓ(xΓ)†∇x̂v1 + ∂ν̂v1 · n(xΓ).

Projecting this last equality on the tangent space TxΓ
Γ yields:

0 = DψΓ(xΓ)†∇x̂v1. (2.5.60)

Since xΓ ∈ ΓM, one can prove that the linear function DψΓ(xΓ)† : R2 7→ TxΓ
Γ is injective.

Hence we deduce that ∇x̂v1 = 0. If xΓ /∈ ΓM then using that u is patching admissible
directly yields ∇x̂v1 = 0. Therefore we finished the proof of (2.5.59). According to the
definition of the operator ∇̂ (see (2.3.14)), we deduce by projecting (2.5.60) on n(xΓ)
that ∂ν̂v1 = 0. Combining this with (2.5.59) concludes the proof that v1 is a constant
function.
First we assume that f is an element of H

(
Ŷ∞
)† in this last equation. Consider the

anti-linear form δΣ ∈ H
(
Ŷ∞
)† defined for φ ∈ H

(
Ŷ∞
)
by:

〈δΣ, φ〉Ŷ∞ :=

∫
Σ

φdx̂, (2.5.61)

and define the operator δΣ ⊗ δΣ ∈ L
(
H
(
Ŷ∞
)
,H
(
Ŷ∞
)†) defined by:

∀(u, v) ∈ H
(
Ŷ∞
)2
, 〈δΣ ⊗ δΣu, v〉Ŷ∞ := 〈δΣ, u〉Ŷ∞ · 〈δΣ, v〉Ŷ∞ . (2.5.62)

Introduce the following constant:

CψΓ

ΓM
:= min

(
1, inf

xΓ∈ΓM

(
inf

(x̂,ν̂)∈Ŷ∞
λmin

(
ρψΓ

(xΓ; x̂, ν̂)
)))

where we define for matrix A the quantity λmin(A) as the smallest eigenvalue of A. Thus,
thanks to these definitions we can state and prove the following result:
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Proposition 2.5.3. The operator −T0+δΣ⊗δΣ : H
(
Ŷ∞
)
7→ H

(
Ŷ∞
)† is uniformly coercive

on ΓM: For all u ∈ H
(
Ŷ∞
)
:

〈−T0(xΓ)u+ δΣ ⊗ δΣu, u〉Ŷ∞ ≥ CψΓ

ΓM
‖u‖2

H
(
Ŷ∞

),
and the quantity CψΓ

ΓM
is strictly positive.

Proof. Let u ∈ H
(
Ŷ∞
)
. From the definition (2.5.61) and (2.5.62) we have:

〈−T0(xΓ)u+ δΣ ⊗ δΣu, u〉Ŷ∞ = 〈−T0(xΓ)u, u〉Ŷ∞ +
∣∣〈δΣ, u〉Ŷ∞

∣∣2 = 〈−T0(xΓ)u, u〉+

∣∣∣∣∫
Σ

udx̂

∣∣∣∣2 .
Thanks to (2.5.48) and (2.5.42) this becomes:

〈−T0(xΓ)u+ δΣ ⊗ δΣu, u〉Ŷ∞ =

∫
Ŷ∞

〈ρψΓ
(xΓ)∇u,∇u〉dx̂dν̂ +

∣∣∣∣∫
Σ

udx̂

∣∣∣∣2
≥
∫
Ŷ∞

λmin

(
ρψΓ

(xΓ; x̂, ν̂)
)
|∇u|2dx̂dν̂ +

∣∣∣∣∫
Σ

udx̂

∣∣∣∣2 ≥ CψΓ

ΓM
‖u‖2

H
(
Ŷ∞

).
Thus it remains to prove inf

xΓ∈ΓM

λmin

(
ρψΓ

)
> 0. Indeed from (4.5.79) we get that for all

(xΓ; x̂, ν̂) ∈ Γ× Ŷ∞:

λmin

(
ρψΓ

(xΓ; x̂, ν̂)
)
≥ ρ̂c · λmin

(
DψΓ(xΓ) DψΓ(xΓ)† 0

0 1

)
≥ ρ̂c min

(
1, inf

x′Γ∈ΓM

λmin

(
DψΓ(x′Γ) DψΓ(x′Γ)†

))
,

Thus, we now prove that:

inf
x′Γ∈ΓM

λmin

(
DψΓ(x′Γ) DψΓ(x′Γ)†

)
> 0.

From (2.4.37), DψΓ DψΓ
† is a restriction of a continuous function to a compact set ΓM.

Thus there exists xΓ ∈ ΓM such that:

inf
x′Γ∈ΓM

λmin

(
DψΓ(x′Γ) DψΓ(x′Γ)†

)
= λmin

(
DψΓ(xΓ) DψΓ(xΓ)†

)
,

Since we assumed that DψΓ(xΓ) is injective for all xΓ ∈ ΓM then this last quantity is
strictly positive.
Thanks to this last result we can deduce that the operator −T0(xΓ) + δΣ⊗ δΣ : H

(
Ŷ∞
)
7→

H
(
Ŷ∞
)† is invertible and we can solve (2.5.52) with the operator

(
−T0(xΓ)+ δΣ⊗ δΣ

)−1
:

H
(
Ŷ∞
)† 7→ H

(
Ŷ∞
)
when f ∈ H

(
Ŷ∞
)† satisfies the following compatibility condition:

〈f, 1〉Ŷ∞ = 0. (2.5.63)

To give a sense of this last equality, we emphasize that the function 1 surely belongs to
the space H

(
Ŷ∞
)
.
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Proposition 2.5.4. If f ∈ H
(
Ŷ∞
)† and satisfies (2.5.63) then:

T0(xΓ) · (T0(xΓ)− δΣ ⊗ δΣ)−1 f = f.

Proof. Let u := (T0(xΓ)− δΣ ⊗ δΣ)−1 f , then from (2.5.62) we have:

T0(xΓ)u− 〈δΣ, u〉δΣ = f. (2.5.64)

Therefore it remains to prove:
〈δΣ, u〉Ŷ∞ = 0.

Applying (2.5.64) to the test function 1 yields 〈T0(xΓ)u, 1〉Ŷ∞ − 〈δΣ, u〉Ŷ∞ = 〈f, 1〉Ŷ∞ and
thanks to (2.5.63) this becomes 〈δΣ, u〉Ŷ∞ = 〈T0(xΓ)u, 1〉Ŷ∞ .Moreover, from the expression
(2.5.48) of the operator T0(xΓ), we directly get 〈T0(xΓ)u, 1〉Ŷ∞ = 0 which ends the proof.

Nevertheless δΣ is an element of H
(
Ŷ∞
)† that fails to satisfies (2.5.64) because we have

from (2.5.61):
〈δΣ, 1〉Ŷ∞ = 1. (2.5.65)

However we have the following results:
Proposition 2.5.5. For all xΓ ∈ Γ we have in the space Hcomp

(
Ŷ∞
)†:

T0(xΓ)ν̂+ = δΣ,

where ν̂+ = 0 if ν̂ ≤ 0 and ν̂+ = ν̂ if not.
Proof. We only give the proof for xΓ ∈ ΓM because the one in the contrary case is similar.
Let (x̂, ν̂) 7→ φ(x̂, ν̂) ∈ Hcomp

(
Ŷ∞
)
. Applying the definitions (2.5.48) and (2.5.42) yields:

〈T0(xΓ)ν̂+, φ〉
Hcomp

(
Ŷ∞

)†
−H
(
Ŷ∞

) = −〈ρψΓ
(xΓ)∇ν̂+,∇φ〉

Hcomp

(
Ŷ∞

)†
−H
(
Ŷ∞

),
= −

∫
Ŷ+

∂νφdx̂dν̂ =

∫
Σ

φdx̂,

which ends the proof.
Corollary 2.5.6. If f ∈ H

(
Ŷ∞
)† and define:

T −1
0 (xΓ)f := 〈f, 1〉Ŷ∞ ν̂+ + (T0(xΓ)− δΣ ⊗ δΣ)−1

(
f − 〈f, 1〉Ŷ∞δΣ

)
, (2.5.66)

then (2.5.52) holds and T −1
0 (xΓ)f ∈ H

(
Ŷ∞
)

+ Cν̂.
Proof. The following decomposition holds:

f = 〈f, 1〉Ŷ∞δΣ +
(
f − 〈f, 1〉Ŷ∞δΣ

)
. (2.5.67)

Thanks to (2.5.65), we have that
(
f − 〈f, 1〉Ŷ∞δΣ

)
satisfies (2.5.63). Thus we can apply

Proposition 2.5.4 which yields:

T0(xΓ)(T0(xΓ)− δΣ ⊗ δΣ)−1
(
f − 〈f, 1〉Ŷ∞δΣ

)
= f − 〈f, 1〉Ŷ∞δΣ. (2.5.68)

Moreover, from Proposition 2.5.5 we have T0

(
〈f, 1〉Ŷ∞ ν̂+

)
= 〈f, 1〉Ŷ∞δΣ. Combining this

with (2.5.68) and (2.5.67) conclude the proof.
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Now, we assume that f is a polynomial of degree n ∈ N. In the case of ρ̂ = 1, the
operator d−2

ν̂ : Cn[ν̂] 7→ Cn+2[ν̂] defined for p ∈ Cn[ν̂] by d−2
ν̂ p := u by the unique solution

u of:
d2u

dν̂2
= p, u(0) = 0 and

du

dν̂
(−1) = 0, (2.5.69)

satisfies for all p ∈ Cn[ν̂], T0d
−2
ν̂ (xΓ)p = p. Nevertheless when ρ̂ fails to be equal to the

constant one we could have:
T0(xΓ)d−2

ν̂ f − f 6= 0.

However, we have the following result:
Proposition 2.5.7. For all p ∈ Cn[ν̂] we have:

T0(xΓ)d−2
ν̂ p− p ∈ H

(
Ŷ∞
)† and

〈
T0(xΓ)d−2

ν̂ p− p, 1
〉
Ŷ∞

= 0.

Moreover T0(xΓ)d−2
ν̂ p− p is given for φ ∈ Hcomp

(
Ŷ∞
)
by:

〈T0(xΓ)d−2
ν̂ p− p, φ〉

Hcomp

(
Ŷ∞

)†
−Hcomp

(
Ŷ∞

) = −
∫
Ŷ−

p(ν̂) · φ(x̂, ν̂)dx̂dν̂

−
∫
Ŷ−

ρ̂(xΓ; x̂, ν̂)∂ν̂(d
−2
ν̂ p)(ν̂) · ∂ν̂φ(x̂, ν̂)dx̂dν̂,

(2.5.70)

+

∫
Σ

∂ν̂(d
−2
ν̂ p)(ν̂) · φ(x̂, ν̂)dx̂,

where Ŷ− :=]0, 1[2×]− 1, 0[ and Ŷ+ :=]0, 1[2×]0,∞[.
Proof. Let φ ∈ Hcomp

(
Ŷ∞
)
and let us prove (2.5.70). Applying (2.5.48) and (2.5.42)

yields:

〈T0(xΓ)d−2
ν̂ p− p, φ〉

Hcomp

(
Ŷ∞

)†
−Hcomp

(
Ŷ∞

) =−
∫
Ŷ∞

ρ̂(xΓ; x̂, ν̂)∂ν̂(d
−2
ν̂ p)(ν̂)∂ν̂φ(x̂, ν̂)dx̂dν̂

−
∫
Ŷ∞

p(ν̂) · φ(x̂, ν̂)dx̂dν̂,

and splitting these two integrals yields:

〈T0(xΓ)d−2
ν̂ p− p, φ〉

Hcomp

(
Ŷ∞

)†
−Hcomp

(
Ŷ∞

) =−
∫
Ŷ−

p(ν̂) · φ(xΓ; x̂, ν̂)dx̂dν̂

−
∫
Ŷ−

ρ̂(xΓ; x̂, ν̂)∂ν̂
(
d−2
ν̂ p
)
(ν̂) · ∂ν̂φdx̂dν̂,

(2.5.71)

−
∫
Ŷ+

∂ν̂
(
d−2
ν̂ p
)
(ν̂)∂ν̂φ(x̂, ν̂)dx̂dν̂ −

∫
Ŷ+

p(x̂, ν̂)φ(x̂, ν̂)dx̂dν̂.

Moreover, doing an integration by parts and using (2.5.69), yields:∫
Ŷ+

∂ν̂
(
d−2
ν̂ p
)
(ν̂)∂ν̂φ(x̂, ν̂)dx̂dν̂ +

∫
Ŷ+

p(x̂, ν̂)φ(x̂, ν̂)dx̂dν̂ = −
((((

(((
((((

(((
((((

((∫
Ŷ+

(
∂2
ν̂

(
d−2
ν̂ p
)
(ν̂)− p(ν̂)

)
φ(x̂, ν̂)dx̂dν̂,

−
∫

Σ

∂ν̂d
−2
ν̂ p · φ(x̂, ν̂)dx̂ = 0,

which concludes the proof of (2.5.70) by combination with (2.5.71).
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Corollary 2.5.8. If f ∈ Cn[ν̂] and define:

T −1
0 (xΓ)f = (T0(xΓ)− δΣ ⊗ δΣ)−1 (T0(xΓ)d−2

ν̂ f − f
)

+ d−2
ν̂ f, (2.5.72)

then (2.5.52) holds and T −1
0 (xΓ)f ∈ H

(
Ŷ∞
)

+ Cn+2[ν̂].

Proof. Using Proposition 2.5.7 and Proposition 2.5.4 yields:

T0(xΓ) (T0(xΓ)− δΣ ⊗ δΣ)−1 (T0(xΓ)d−2
ν̂ f − f

)
= T0(xΓ)d−2

ν̂ f − f,

which directly conclude the proof of (2.5.52). T −1
0 (xΓ)f ∈ H

(
Ŷ∞
)

+ Cn+2[ν̂] is a direct
consequence of the definition of d−2

ν̂ f ∈ Cn+2[ν̂] and (T0(xΓ)− δΣ ⊗ δΣ)−1 (T0(xΓ)d−2
ν̂ f −

f
)
∈ H

(
Ŷ∞
)
.

Now, we assume that f takes the forms:

f = f1 + f2, (2.5.73)

for some (f1, f2) ∈ H
(
Ŷ∞
)† × Cn[ν̂]. This decomposition is unique because we have the

following result:
Proposition 2.5.9. The space H

(
Ŷ∞
)† and C[ν̂] satisfies H

(
Ŷ∞
)† ∩ C[ν̂] = {0}.

Proof. Define the sequence of function (1n) defined for ν̂ ∈]− 1,∞[ by 1n(ν̂) = χ(ν̂ − n)
where χ is a regular function such that χ ≡ 1 on ]−∞, 0[ and χ ≡ 0 on ]1,∞[. Since for all
n ≤ 0 the function 1n and its gradient has compact support, we have that 1n ∈ Hcomp

(
Ŷ∞
)

for all n and we have for large n

‖1n‖H
(
Ŷ∞

) =

√
1 +

∫ 1

0

|χ′(s)|2ds. (2.5.74)

First, we prove for all k ∈ N the following equivalence:

〈ν̂k, 1n〉Ŷ∞ =

∫
Ŷ∞

ν̂k1ndx̂dν̂ ∼
n→∞

nk+1

k + 1
. (2.5.75)

Indeed on the one hand we have:∫
Ŷ∞

ν̂k1ndx̂dν̂ =

∫ n

−1

skds+

∫ n+1

n

sk1nds =
nk+1 − (−1)k+1

k + 1
+

∫ n+1

n

sk1nds.

On the other hand we have:∣∣∣∣∫ n+1

n

sk1nds

∣∣∣∣ ≤ ∫ n+1

n

skds =
1

k + 1

k∑
q=0

(
k + 1
q

)
nq = o

n→∞
(nk+1).

Let p ∈ H
(
Ŷ∞
)† ∩ C[ν̂]. Since from (2.5.74) the sequence 1n is bounded in the space

H
(
Ŷ∞
)
thus we should have:

sup
n∈N
|〈p, 1n〉Ŷ∞| <∞. (2.5.76)

Assume by contradiction that p 6= 0. Let k be the degrees of p. By the definition of the
degree we have pk 6= 0. Nevertheless the equivalence (2.5.75) implies that:

〈p, 1n〉Ŷ∞ ∼
n→∞

nk+1

k + 1
pk,

which contradicts (2.5.76).
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Thanks to the last result we can write H
(
Ŷ∞
)† ⊕ C[ν̂] and define T −1

0 (xΓ)f by:

T −1
0 (xΓ)f := T −1

0 (xΓ)f1 + T −1
0 (xΓ)f2,

where we recall from (2.5.66) and (2.5.72) that:{
T −1

0 (xΓ)f1 := 〈f1, 1〉Ŷ∞ ν̂+ + (T0(xΓ)− δΣ ⊗ δΣ)−1
(
f1 − 〈f1, 1〉Ŷ∞δΣ

)
,

T −1
0 (xΓ)f2 := (T0(xΓ)− δΣ ⊗ δΣ)−1 (T0(xΓ)d−2

ν̂ f2 − f2

)
+ d−2

ν̂ f2.

Therefore thanks to Corollary 2.5.6, Corollary 2.5.8 if xΓ ∈ ΓM then we have T −1
0 (xΓ) :

H
(
Ŷ∞
)† ⊕ C[ν̂] 7→ H

(
Ŷ∞
)

+ C[ν̂] and (2.5.52) holds.
Now consider xΓ /∈ ΓM and let us study the invertibility of T0(xΓ). In this case we

emphasize that for all n ∈ N the near field ûn(xΓ; ·) and coefficient appearing in the
definition of the operator T0(xΓ) are independent of the variable x̂. We identify the set
of functions defined on Ŷ∞ independent of the variable x̂ with the set of function defined
on Î∞ :=]− 1,∞[ with the following inclusion map:(

ν̂ ∈ Î∞ 7→ f(ν̂)
)
7→
(

(x̂, ν̂) ∈ Ŷ∞ 7→ f(ν̂)
)
.

We introduce the following space:

H(Î∞) :=

{
u ∈ H1

loc(Î∞), ‖u‖2
H(Î∞)

:= |u(0)|2 +

∫
Î∞

|∂ν̂u|2dν̂ <∞
}
.

Let δ0 ∈ H(Î∞)
†
be defined for φ ∈ H(Î∞) by:

〈δ0, φ〉Î∞ := φ(0),

where 〈·, ·〉Î∞ is the dual bracket in H(Î∞). We define δ0 ⊗ δ0 ∈ L
(
H(Î∞),H(Î∞)

†)
defined for u ∈ H

(
Ŷ∞
)
by:

δ0 ⊗ δ0 · u := u(0)δ0.

Then from (4.5.79) it is trivial that the operator T0(xΓ) − δ0 ⊗ δ0 : H(Î∞) 7→ H(Î∞)
†
is

coercive with coercivity constant ρ̂c. Thus in the same way than for xΓ ∈ ΓM we can
define the operator T −1

0 (xΓ) for f ∈ H(Î∞)
†
⊕ C[ν̂] by:

T −1
0 (xΓ)f := (T0− δ0⊗ δ0)−1

(
f1− 〈f1, 1〉Î∞δ0−T0(xΓ)d−2

ν̂ f2 + f2

)
+ 〈f1, 1〉Î∞ ν̂+ + d−2

ν̂ f2,

(2.5.77)
with f = f1 + f2 and (f1, f2) ∈ H(Î∞)

†
×C[ν̂]. Following the same way we easily get the

following result:
Proposition 2.5.10. For all xΓ /∈ ΓM the operator T −1

0 (xΓ) : H(Î∞)
†
⊕C[ν̂] 7→ H(Î∞) +

C[ν̂] defined by (2.5.77) is a right inverse of the operator T0(xΓ) i.e.

∀f ∈ H(Î∞)
†
⊕ C[ν̂], T0(xΓ)T −1

0 (xΓ)f = f.
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Now let us investigate regularity of xΓ 7→ T −1
0 (xΓ)f(xΓ) for a given f . For convenience

we introduce the application µ
(
.
)
defined for f ∈ C[ν̂]⊕H

(
Ŷ∞
)† by:

µ
(
f
)

:=

∫ 1

0

f1(ν̂)dν̂ + 〈f2, 1〉Ŷ∞ with (f1, f2) ∈ H
(
Ŷ∞
)† × C[ν̂]. (2.5.78)

Proposition 2.5.11. Letm ≤ mΓ, d ∈ N and f := f1+f2 with (f1, f2) ∈ Hm
0,ΓM

(
Γ;H

(
Ŷ∞
)†)×

Hm
(

Γ;Cd[ν̂]
)
. We have the following regularity:

u := T −1
0 f ∈ Hm

(
Γ;Cd+2[ν̂]

)
+Hm

0,ΓM

(
Γ;H

(
Ŷ∞
))
. (2.5.79)

Moreover T −1
0 u takes the form T −1

0 = u1 + u2 with u1 ∈ Hm
0,ΓM

(
Γ;H

(
Ŷ∞
))

and for all
xΓ ∈ Γ the polynomial u2(xΓ; ·) is the unique solution of:

d2u2(xΓ; ·)
dν̂2

= f2(xΓ; ·), u2(xΓ; 0) = 0 and
du2(xΓ; 0)

dν̂
= µ

(
f(xΓ; ·)

)
. (2.5.80)

Before the proof of this proposition we prove an intermediate result.
Proposition 2.5.12. We can extend the application G := DψΓ DψΓ

† : ΓM 7→ R2 to an
application G̃ ∈ CmΓ(Γ;L(R2)) satisfying:

inf
xΓ∈Γ

λmin

(
G̃(xΓ)

)
≥ Gmin

2
, (2.5.81)

where Gmin is defined by Gmin := inf
xΓ∈ΓM

λmin(G(xΓ)).

Proof. From (2.4.37) we deduce thatG is the restriction to ΓM of some G̃′ ∈ CmΓ
(
Γ,L(R2)

)
.

Thus we can introduce the following open subset of Γ:

LΓ :=

{
xΓ ∈ Γ, λmin

(
G̃′(xΓ)

)
<
Gmin

2

}
.

First, we prove existence of a function φI ∈ CmΓ(Γ; [0, 1]) satisfying:

φI ≡ 1 on LΓ and φI ≡ 0 on ΓM . (2.5.82)

Let us prove by contradiction that:

η := dist(ΓM, LΓ) > 0. (2.5.83)

Let (x0
k)k and (x0

k)k be sequence of ΓM and LΓ such that:

lim |x0
k − x1

k| = 0. (2.5.84)

Since ΓM and LΓ are compact there exist (x0, x1) ∈ ΓM × LΓ such that (x0
k)k and (x1

k)k
respectively converge up to a sub-sequence. Thanks to (2.5.84) we have x0 = x1 which
leads to the existence of x ∈ LΓ∩ΓM. We can prove that the map x′Γ ∈ Γ 7→ λmin

(
G̃′(x′Γ)

)
is smooth. Therefore from the definition of Gmin and the set LΓ we have:

λmin(G̃′(xΓ)) ≥ Gmin and λmin(G̃′(xΓ)) ≤ Gmin

2
,
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which is contradictory. From the definition of LΓ we have: LΓ ∩ΓM = ∅. Let (φi)i∈N be a
partition of unity of R3 with C∞ regularity such that for all i ∈ N and (x, y) ∈ supp(φi)
we have:

|x− y| ≤ η

2
. (2.5.85)

The existence of (φi)i∈N is a direct consequence of [57, Theorem 3.21]. Define the following
set of indexes

I := {i ∈ N, supp(φi) ∩ LΓ 6= ∅} ,

and choose the function φI as the restriction on Γ of the function:

φI :=
∑
i∈I

φi. (2.5.86)

Let us show that for all xΓ ∈ ΓM we have φL(xΓ) = 0. Assume that φL(xΓ) 6= 0. Then
there exists i ∈ I such that xΓ ∈ supp(φi). From the definition of the set I there exists
y ∈ supp(φ) ∩ LΓ. Since xΓ and y both belong to supp(φi), we have from (2.5.85):

|xΓ − y| ≤
η

2
.

Therefore from xΓ ∈ ΓM and y ∈ LΓ, we have dist(ΓM, LΓ) ≤ η

2
which contradict (2.5.83).

Now let us prove that for all xΓ ∈ LΓ we have φI(xΓ) = 1. Since (φi)i∈N is a partition of
unity we have ∑

i∈N
φi(xΓ) = 1

and then from (2.5.86) it is sufficient to prove that:

∀i /∈ I, φi(xΓ) = 0.

Indeed, we have from the definition of I for all i /∈ I supp(φi) ∩ LΓ = ∅. Therefore Since
xΓ ∈ LΓ we have xΓ /∈ φi(xΓ) which conclude the proof of (2.5.82).

Moreover since Γ is a CmΓ manifolds and for all i, φi is a C∞ function on R3 then the
function φI belongs to CmΓ(Γ).

Thanks to the function φI , we now can define the map G̃ by:

G̃ := (1− φI) · G̃′ + φI ·
Gmin

2
I

and prove that this last function satisfies the desired property.
The regularity of φ and G̃′ implies that G̃ belongs to CmΓ(Γ,L(R2)). By construction,

the function φI satisfies φI ≡ 0 on ΓM which implies that we have well G ≡ G̃ on ΓM.
Finally it remains to prove (2.5.81). Indeed let xΓ ∈ Γ if xΓ /∈ LΓ then by definition

of LΓ we have:

λmin(G̃′(xΓ)) ≥ Gmin

2

and combining with 0 ≤ φI ≤ 1 yields:

λmin

(
G̃(xΓ)

)
= (1− φI(xΓ)) · λmin

(
G̃′(xΓ)

)
+ φE(xΓ) · Gmin

2
≥ Gmin

2
. (2.5.87)
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If xΓ ∈ LΓ we have φI(xΓ) = 1 which leads to:

G̃(xΓ) =
Gmin

2
I,

and this matrix clearly satisfies (2.5.87).
We also need a second intermediate result. It is easy to adapt the proof of [57, Theorem
3.20] to get the following generalization:
Proposition 2.5.13. Let m ≤ mΓ and two Hilbert spaces E,F . Then:

∀(A, u) ∈ CmΓ
(
Γ;L(E,F )

)
×Hm

(
Γ;E

)
, Au ∈ Hm(Γ, F ),

where Au : Γ 7→ F is the map defined for xΓ by A(xΓ)u(xΓ). Moreover there exists
Cm > 0 independent from A and K such that:

‖Au‖Hm(Γ,F ) ≤ Cm‖A‖
CmΓ

(
Γ;L(E,F )

) · ‖u‖Hm(Γ,E).

Proof of Proposition 2.5.11. We recall that u := T −1
0 f is defined by u := u1 + u2 where:

• The quantity u1(xΓ; ·) is given for for all xΓ ∈ ΓM by:

u1(xΓ; ·) := (T0(xΓ)− δΣ ⊗ δΣ)−1
(
f1(xΓ; ·)− 〈f1(xΓ; ·), 1〉Ŷ∞δΣ

)
,

+ (T0(xΓ)− δΣ ⊗ δΣ)−1
(
T0(xΓ)d−2

ν̂ f2(xΓ; ·)− f2(xΓ; ·)
)
,

+〈f1(xΓ; ·), 1〉Ŷ∞(ν̂+ − ν̂),

(2.5.88)

and for all xΓ ∈ Γ \ ΓM:

u1(xΓ; ·) := (T0(xΓ)− δ0 ⊗ δ0)−1
(
f1(xΓ; ·)− 〈f1(xΓ; ·), 1〉Î∞δ0

)
,

+ (T0(xΓ)− δ0 ⊗ δ0)−1
(
T0(xΓ)d−2

ν̂ f2(xΓ; ·)− f2(xΓ; ·)
)
,

+〈f1(xΓ; ·), 1〉Ŷ∞(ν̂+ − ν̂).

(2.5.89)

• The quantity u2(xΓ; ·) is given for xΓ ∈ Γ by:

u2(xΓ; ·) := 〈f1(xΓ; ·), 1〉Ŷ∞ ν̂ + d−2
ν̂ f2(xΓ; ·). (2.5.90)

First, from the expression (2.5.90) of u2 , the property (2.5.69) satisfied by the operator
d−2
ν̂ and the definition of µ given by (2.5.78) we directly conclude the proof of (2.5.80).

Moreover, thanks to (f1, f2) ∈ Hm
0,ΓM

(
Γ;H

(
Ŷ∞
)†)×Hm

(
Γ;Cd[ν̂]

)
we have from (2.5.90)

that u2 ∈ Hm(Γ;Cn+2[ν̂]). Thus it remains to prove u1 ∈ Hm
0,ΓM

(
Γ;H

(
Ŷ∞
))

.
We emphasize that the map xΓ 7→ T −1

0 (xΓ) is piece-wise defined by (2.5.48) and
(2.5.49) and then this complicates the proof of regularity of the map xΓ ∈ Γ 7→ u1(xΓ; ·)
on the interface ∂ ΓM. Therefore, we introduce the map:

T̃0 : Γ 7→ L
(
Hcomp

(
Ŷ∞
)

+ C[ν̂],Hcomp

(
Ŷ∞
)† ⊕ C[ν̂]

)
,

69



defined for xΓ ∈ Γ as the linear operator T̃0(xΓ). This operator is defined for v ∈
Hcomp

(
Ŷ∞
)

+ C[ν̂] by:

T̃0(xΓ)v := divx̂,ν̂

(
ρ̂(xΓ; ·)

(
G̃(xΓ) 0

0 1

)
∇x̂,ν̂v

)
. (2.5.91)

The reason why we introduced this operator is that it can replace the operator T0 in
(2.5.88) and (2.5.89) which solves the problem of piece-wise definition of T0. Indeed,
firstly, thanks to Proposition 2.5.12, the similitude of the definition of T0(xΓ) given for
xΓ ∈ ΓM by (2.5.48)-(2.5.50) and the one of the operator T̃0 given for xΓ ∈ Γ by (2.5.91),
we directly can extend the proof of Proposition 2.5.3 for T̃0 and xΓ ∈ Γ. Thus for all xΓ,
the operator T̃0(xΓ)− δΣ ⊗ δΣ : H

(
Ŷ∞
)
7→ H

(
Ŷ∞
)† is invertible and we have:

sup
xΓ∈Γ

∥∥∥(T̃0(xΓ)− δΣ ⊗ δΣ

)−1
∥∥∥
L
(
H
(
Ŷ∞

)†
,H
(
Ŷ∞

)) <∞. (2.5.92)

Therefore it make a sense to write
(
T̃0(xΓ)− δΣ ⊗ δΣ

)−1.
Secondly, from the expression of these two operators given by (2.5.91) and (2.5.49),

we have for all v independent of ν̂:

∀xΓ ∈ Γ \ ΓM, T0(xΓ)v = T̃0(xΓ)v,

and by applying Proposition 2.5.12, we have for all v:

∀xΓ ∈ ΓM, T0(xΓ)v = T̃0(xΓ)v.

Thus (2.5.88) and (2.5.89) can be rewritten as follow:

u1(xΓ; ·) :=
(
T̃0(xΓ)− δΣ ⊗ δΣ

)−1
y(xΓ; ·) + 〈f1(xΓ; ·), 1〉Ŷ∞(ν̂+ − ν̂),

where we defined y : Γ 7→ H
(
Ŷ∞
)† for xΓ ∈ Γ by:

y(xΓ; ·) := f1(xΓ; ·)− 〈f1(xΓ; ·), 1〉Ŷ∞δΣ + T̃0(xΓ)d−2
ν̂ f2(xΓ; ·)− f2(xΓ; ·).

Thanks to this last expression and Proposition 2.5.13 it remains to prove:

xΓ ∈ Γ 7→
(
T̃0(xΓ)− δΣ ⊗ δΣ

)−1 ∈ Cm
(
L
(
H
(
Ŷ∞
)†
,H
(
Ŷ∞
)))

, (2.5.93)

y ∈ Hm
0,ΓM

(
Γ;H

(
Ŷ∞
)†)

, (2.5.94)

xΓ ∈ Γ 7→ 〈f1(xΓ; ·), 1〉Ŷ∞(ν̂+ − ν̂) ∈ Hm
0,ΓM

(
Γ;H

(
Ŷ∞
))
. (2.5.95)

Indeed, thanks Proposition 2.5.12 and (2.5.91) we have that the map xΓ ∈ Γ 7→ T̃0(xΓ)

belongs to Cm
(
L
(
H
(
Ŷ∞
)
,H
(
Ŷ∞
)†)). Therefore thanks to (2.5.92), re-solvent identity

and the Leibniz formula, we conclude the proof of (2.5.93).
From the assumption f1 ∈ Hm

0,ΓM

(
Γ;H

(
Ŷ∞
)†), we directly have that:

xΓ 7→ f1(xΓ; ·)− 〈f1(xΓ; ·), 1〉Ŷ∞δΣ ∈ Hm
0,ΓM

(
Γ;H

(
Ŷ∞
)†)

. (2.5.96)
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Thanks to Proposition 2.5.12 and the similitude of the definition of T0(xΓ) given for
xΓ ∈ ΓM by (2.5.48)-(2.5.50) and the one of the operator T̃0(xΓ) given for xΓ ∈ Γ by
(2.5.91), we directly can extend the proof of Proposition 2.5.7 for T̃0 and xΓ ∈ Γ. Then
from (2.5.70), the map R : Γ 7→ L

(
Cn[ν̂],H

(
Ŷ∞
))

defined for xΓ by the linear operator
R(xΓ) defined for p ∈ Cn[ν̂] by:

R(xΓ)p := T̃0(xΓ)d−2
ν̂ p− p,

belongs to Cm
(

Γ;L
(
Cn[ν̂],H

(
Ŷ∞
)†)). Thus by applying Proposition 2.5.13 and using

(2.5.96) we conclude the proof (2.5.94).
From the assumption f1 ∈ Hm

0,ΓM

(
Γ;H

(
Ŷ∞
)†) and ν̂ − ν̂+ ∈ H

(
Ŷ∞
)
, we directly

conclude the proof of (2.5.95). Thus whole the proof is finished.

2.5.1.4 Existence of the near field

According to Proposition 2.5.11, to be able to assert that problem (2.3.31) is well posed,
we have to show that:

∀xΓ ∈ Γ, rk(xΓ; ·) ∈ H
(
Ŷ∞
)† ⊕ C[ν̂] where rk :=

k∑
l=1

Tlûk−l. (2.5.97)

However to do so, we have to face a technical problem, namely the fact that L2(Ŷ∞)
are not stable by multiplication with C[ν̂]. For instance, the operator T1 is given for
v̂ ∈ H1(Γ;H

(
Ŷ∞
)
) by:

T1v̂ := d̂iv
(
ν̂ρ̂ C(1) ∇̂ v̂

)
+ divΓ

(
ρ̂ ∇̂ v̂

)
+ d̂iv

(
ρ̂∇Γ v̂

)
,

and r2 is given by: r2 = T1û1 +T2û0. We cannot easily see that ν̂ρ̂C(1) ∇̂ û1 ∈
(
L2(Ŷ∞)

)3

.

Thus we can not yet conclude that for all xΓ ∈ Γ, d̂iv
(
ν̂ρ̂C(1) ∇̂ û1

)
(xΓ; ·) ∈ H

(
Ŷ∞
)† and

so we also can not prove (2.5.97).
Nevertheless, this difficulty can be overcome by the following procedure: The property

(2.5.97) will be proven by induction on k : this is the object of the forthcoming propo-
sition Proposition 2.5.17, which will itself be a consequence of the next two propositions
Proposition 2.5.15 and Proposition 2.5.16.

To state these propositions, we need to introduce a new notation. More precisely.
Definition 2.5.14. Let m ≤ mΓ and u : Γ 7→ Hcomp

(
Ŷ∞
)†. We say that u satisfies the

P∞m property if there exists d ∈ N, a sequence (ul)l∈Z2\{0} ∈ Hm
0,ΓM

(Γ;Cd[ν̂]) such that:

∀(xΓ; x̂, ν̂) ∈ Γ× Ŷ+, u(xΓ; x̂, ν̂) =
∑

l∈Z2\{0}
ul(xΓ; ν̂)φl(xΓ; x̂, ν̂), (2.5.98)

where we defined the sequence of functions (φl)l∈Z2\{0} for (xΓ, x̂, ν̂) ∈ Γ× Ŷ+ by:

φl(xΓ, x̂, ν̂) := ei2πlx̂e−2πλl(xΓ)ν̂ with λl(xΓ) := |DψΓ(xΓ)l|. (2.5.99)
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Moreover, the sequence of polynomial are required to satisfies:∑
l∈Z2\{0}

|l|q‖ul‖Hm(Γ;Cd[ν̂]) <∞. (2.5.100)

In this last definition if u is not a function then (2.5.98) means: For all ψ ∈ D([0, 1]2×]0,∞[)∩
Hcomp

(
Ŷ∞
)
:

〈u(xΓ; ·), ψ〉
Hcomp

(
Ŷ∞

)†
−Hcomp

(
Ŷ∞

) =
∑

l∈Z2\{0}

∫
Ŷ∞

ul(xΓ; ν̂)φl(xΓ; x̂, ν̂)ψ(x̂, ν̂)dx̂dν̂.

(2.5.101)
Then we have:
Proposition 2.5.15. Let 1 ≤ m ≤ mΓ, d ∈ N∗ and assume that u = u1 + u2 for some:

(u1, u2) ∈ Hm
0,ΓM

(
Γ;H

(
Ŷ∞
))
×Hm

(
Γ;Cd[ν̂]

)
, (2.5.102)

and u1 satisfies P∞m property. For all k ∈ N∗ the following decomposition of fk := Tku
holds:

fk = fk1 + fk2 ,

where:

• fk2 := ∂ν̂
(
c(k)ν̂k∂ν̂u2

)
+ divΓ

(
C(k−2)ν̂(k−2)∇Γ u2

)
+ k2c(k−2)ν̂(k−2)u2.

• fk1 ∈ Hq
0,ΓM

(
Γ;H

(
Ŷ∞
)†) satisfies the P∞q property where we defined q := m −

min(2, k).

• If k + d ≥ 2 then
fk2 ∈ Hq

(
Γ;Ck+d−2[ν̂]

)
. (2.5.103)

• If u2 = 0 or d = 0 then:
f 1

2 = 0. (2.5.104)

The second useful proposition is the following one:
Proposition 2.5.16. If the quantity f1 appearing in Proposition 2.5.11 satisfies the P∞m
property then the quantity u1 appearing in Proposition 2.5.11 also satisfies the P∞m prop-
erty.
Indeed, thanks to Proposition 2.5.15 and Proposition 2.5.16 we can prove (2.5.97). More-
over, thanks to these last propositions we can easily prove the following result.
Proposition 2.5.17. If the traces of far fields have the following regularity:

∀0 ≤ i ≤ n, xΓ ∈ Γ 7→ ui(xΓ, 0) ∈ HmΓ+ 1
2
−i(Γ), (2.5.105)

then:

• The sequence of near fields (ûi)0≤i≤n can be defined for xΓ ∈ Γ with the following
induction:

û0(xΓ; x̂, ν̂) := u0(xΓ, 0),

∀1 ≤ k ≤ mΓ, ûk(xΓ; x̂, ν̂) := uk(xΓ, 0)−
k∑
i=1

(
T −1

0 Tiûk−i
)

(xΓ; x̂, ν̂).
(2.5.106)
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• There exists for all 0 ≤ k ≤ mΓ:

(û1
k, p

k) ∈ HmΓ+ 1
2
−k

0,ΓM

(
Γ;H

(
Ŷ∞
))
×HmΓ+ 1

2
−k
(

Γ;Ck[ν̂]
)
such that ûk = û1

k + pk

(2.5.107)

• û1
k satisfies the P∞

mΓ+ 1
2
−k property.

• The required equation (2.3.31) is satisfied for all 0 ≤ k ≤ mΓ.
Proof. We prove the result by induction on i. Let 0 ≤ i ≤ mΓ. The result is true for i = 0
because from (2.5.106) we have for all xΓ ∈ Γ û0(xΓ; ·) = u0(xΓ, 0) and from (2.5.105)
this last quantity belongs to û0 ∈ HmΓ+ 1

2 (Γ).
Assume now for all 0 ≤ k ≤ i − 1, that (2.5.107) holds and û1

k satisfies the P∞
mΓ+ 1

2
−k

property. Therefore, applying Proposition 2.5.15, yields for all 1 ≤ k ≤ i the existence
of: (

r1
k,i, r

2
k,i

)
∈ Hqi,k

0,ΓM

(
Γ;H

(
Ŷ∞
)†)×Hqi,k

(
Γ;Cmax(i−2,0)[ν̂]

)
,

such that
Tkûi−k = r1

k,l + r2
k,l : (2.5.108)

with qi,k := mΓ + 1
2

+ k − i−min(k, 2), r1
k,l satisfies the P∞qi,k property and for i = 1:

r2
k,1 = 0. (2.5.109)

Moreover we recall that:

ri =
i∑

k=1

Tiûi−k,

and we emphasize that for all 1 ≤ k ≤ i that qi,k ≥ mΓ + 1
2
− i. Thus thanks to (2.5.108)

we have existence of:(
r1
i , r

2
i

)
∈ HmΓ+ 1

2
−i

0,ΓM

(
Γ;H

(
Ŷ∞
)†)×HmΓ+ 1

2
−i
(

Γ;Cmax(i−2,0)[ν̂]
)
such that ri = r1

i + r2
i ,

and thanks to (2.5.109) we have for i = 1, r2
1 = 0. Therefore according to Proposi-

tion 2.5.16 we can define v̂i := T −1
0 ri. Thus we can define ûi by replacing k = i in

(2.5.106). Moreover there exist:(
û1
i , p

i
)
∈ HmΓ+ 1

2
−i

0,ΓM

(
Γ;H

(
Ŷ∞
)†)×HmΓ+ 1

2
−i
(

Γ;Ci[ν̂]
)
such that v̂i := û1

i + pi,

and û1
i satisfies the P∞mΓ+ 1

2
−i property.

Using the hypothesis (2.5.105) yields that the map: pi : Γ 7→ Ci[ν̂] defined for xΓ by:

pi(xΓ; ·) := ui(xΓ, 0) + v̂2
i (xΓ; ·),

belongs to HmΓ+ 1
2
−i
(

Γ;Ci[ν̂]
)
. We conclude our induction by remarking that k = i in

(2.5.106) implies ûi := û1
i + pi.

Since (2.3.31) is a direct consequence of Proposition 2.5.10 then the proof is finished.
A third useful result is the following one. It will be used in the proof of Proposition 2.5.15
and, later, for the derivation of our error estimates (cf. Chapter 3 ).
Proposition 2.5.18. Let û : Γ 7→ Hcomp

(
Ŷ∞
)† and m ≤ mΓ. If û satisfies the P∞m

property then for all ε > 0 and r ∈ N we have :

∀r ∈ N, exp (πgminν̂) û ∈ Hm
(
Γ;Cr

b ([0, 1]2 × [ε,∞[)
)
.
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2.5.1.5 Proof of Proposition 2.5.18

Let û satisfying the P∞m property. Thanks to the Sobolev embedding theorem, it is
sufficient to show that:

∀r ∈ N, exp (πgminν̂) û ∈ Hm
(
Γ;Hr(]0, 1[2×[ε,∞[)

)
. (2.5.110)

To prove (2.5.110), we will use Proposition 2.5.13. Indeed, we can rewrite (2.5.98) as
follow:

∀xΓ ∈ Γ, û(xΓ; ·) = A(xΓ)u(xΓ), (2.5.111)

where u = (ul)l∈Z2\{0} is the sequence appearing in (2.5.98) and the map xΓ 7→ A(xΓ) is
defined for xΓ ∈ Γ and sequence of polynomial p = (pl)l∈Z2\{0} by:

∀
(
x̂, ν̂
)
∈ Ŷ+,

(
A(xΓ)p

)
(x̂, ν̂) :=

∑
l∈Z2\{0}

pl(ν̂)φl(xΓ; x̂, ν̂). (2.5.112)

In order to have the convergence of the sum appearing in (2.5.112), the sequence of
polynomial p is required to belongs to the following space:

E :=

p ∈ Cd[ν̂]Z
2\{0}, ‖p‖2

E :=
∑

l∈Z2\{0}
|l|α‖pl‖2

Cd[ν̂] <∞

 ,

where α and d are defined in the definition of the P∞m property. Moreover, (2.5.110) is
equivalent to:

û ∈ CmΓ(Γ;F ) with F := exp (−gminπεν̂) ·Hr(]0, 1[2×]ε,∞[), (2.5.113)

and from (2.5.100) we have
u ∈ Hm(Γ;E). (2.5.114)

According to Proposition 2.5.13, (2.5.111) and (2.5.114), a sufficient condition to prove
(2.5.113) is:

A ∈ CmΓ(Γ;L(E,F )). (2.5.115)

Therefore if we succeed to prove (2.5.115) then we will directly get (2.5.110). Hence, this
will conclude our proof.

To prove (2.5.115), we apply now the following result:
Lemma 2.5.19. Let F be a Hilbert space and α = (αl)l∈N such that:

• For all l ∈ N, αl ∈ CmΓ
(
Γ;F

)
and for all (xΓ, x

′
Γ) ∈ Γ2:

∀(l, l′) ∈ N2, l 6= l′ ⇒
(
αl(xΓ), αl′(x

′
Γ)
)
F

= 0. (2.5.116)

• There exists q ∈ N such that :∑
l∈N

lq‖αl‖2
CmΓ (Γ;F ) <∞. (2.5.117)
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Define the space:

Eq :=

{
p ∈ CN, ‖p‖2

Eq :=
∑
l∈N

l−q|pl|2 <∞

}
.

Then the map xΓ 7→ Tα(xΓ) defined for xΓ and p ∈ Eq by:

Tα(xΓ)p :=
∑
l∈N

plαl(xΓ), (2.5.118)

belongs to CmΓ
(
Γ;L(Eq, F )

)
.

Proof. First, we emphasize that it is classical that Eq is a complete space. Then from the
assumption of that F is complete, we deduce that L

(
Eq, F

)
is a Banach space. Therefore

CmΓ
(
Γ;L(Eq, F )

)
is a Banach space.

Thus it remains to prove that the sequence (TNα )N∈N defined for xΓ ∈ Γ, p ∈ Eα and
N ∈ N by:

TNα (xΓ)p :=
N∑
l=0

plαl(xΓ), (2.5.119)

is a Cauchy sequence in CmΓ
(
Γ;L(Eq, F ) . We recall that it mean:

lim
n→∞

sup
m≥0

∥∥Tm+n
α − T nα

∥∥
CmΓ

(
Γ;L(Eq ,F )

) = 0. (2.5.120)

For all l ∈ N we assumed that αl ∈ C(Γ;F ) and the sum appearing in (2.5.119) has
a finite number of terms. Therefore for all N ∈ N, we have TNα ∈ CmΓ (Γ;L(Eα, F )) and

∀0 ≤ γ ≤ mΓ, ∀(p, xΓ) ∈ Eq × Γ,
(

Dγ T
N
α

)
(xΓ)p :=

N∑
l=0

pl Dγ αl(xΓ).

Combining this with (2.5.116) yields for all (m,n, xΓ, p) ∈ N2 × Γ×Eq and 0 ≤ γ ≤ mΓ:

∥∥(Dγ T
m+n
α

)
(xΓ)p−

(
Dγ T

n
α

)
(xΓ)p

∥∥2

F
=

n+m∑
l=n+1

‖pl Dγ αl(xΓ)‖2
F ,

≤
∑
l∈N
|pl|2l−q

n+m∑
l=n+1

lq‖Dγ αl(xΓ)‖2
F .

Thanks to the definition of the norm of the space Eq this yields for all (m,n) ∈ N2 and
0 ≤ γ ≤ mΓ:

∀(p, xΓ) ∈ Eq × Γ,
∥∥(Dγ T

m+n
α

)
(xΓ)p−

(
Dγ T

n
α

)
(xΓ)p

∥∥2

F
≤ ‖p‖Eq

n+m∑
l=n+1

lq‖Dγ αl(xΓ)‖2
F .

Thus by using the definition of the norm of the space L(Eq, F ), this becomes :

∀(m,n) ∈ N2, ∀xΓ ∈ Γ
∥∥(Dγ T

m+n
α

)
(xΓ)−

(
Dγ T

n
α

)
(xΓ)

∥∥2

L(Eq ,F )
≤

n+m∑
l=n+1

lq‖Dγ αl(xΓ)‖2
C0(Γ;F ).
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By using the definition of the norm of the space CmΓ
(
Γ;L(Eq, F )

)
this yields:

∀(m,n) ∈ N2,
∥∥Tm+n

α − T nα
∥∥2

CmΓ

(
Γ;L(Eq ,F )

) ≤ n+m∑
l=n+1

lq‖αl‖2

CmΓ

(
Γ;L(Eq ,F )

). (2.5.121)

Moreover thanks to (2.5.117), we have:

lim
n→∞

sup
m≥0

n+m∑
l=n+1

lq‖αl‖
CmΓ

(
Γ;L(Eq ,F )

) = 0.

Combining this with (2.5.121) conclude the proof of (2.5.120).
Indeed, thanks to the definition (2.5.118), we can rewrite for all xΓ ∈ Γ the definition of
A(xΓ) as follow:

∀u ∈ E,A(xΓ)u =
d∑

k=0

Tφk(xΓ)uk. (2.5.122)

Here (uk)0≤k≤d =
(
(ukl )l∈Z2\{0}

)
0≤k≤d is the unique element of (Eα)d+1 such that:

∀l ∈ Z2 \ {0}, ul =

q∑
k=0

ukl ν̂
k,

and (φk)0≤k≤d =
(
(φkl )l∈Z2\{0}

)
0≤k≤d is defined for 0 ≤ k ≤ d, l ∈ Z2 \ {0}, (xΓ; x̂, ν̂) ∈

Γ× Ŷ+ by:
φkl (xΓ; x̂, ν̂) := ν̂kφl(xΓ; x̂, ν̂).

Thanks to (2.5.122) a sufficient condition to prove (2.5.115) is:

∀0 ≤ k ≤ d, Tφk ∈ C
(
Γ;L(Eα, F )

)
. (2.5.123)

Let 0 ≤ k ≤ d. According to Lemma 2.5.19 with α = φq, to prove (2.5.123), we now
proceed as follow:

1. We prove for all 0 ≤ γ ≤ mΓ the existence of a multivariate polynomial Pγ,ν such
that

∀l ∈ Z2 \ {0}, Dγ φkl = Pγ,d
(
λl,Dλl, · · · ,Dγ λl, ν̂)φkl . (2.5.124)

2. We prove that for all γ ∈ N we have the existence of a multivariate polynomial Pγ
such that for all l ∈ Z2 we have:

D̂
γ(

exp (πgminν̂)φkl
)

= Pγ(λl, l, ν̂)φl exp (πgminν̂) . (2.5.125)

3. We deduce that for all l ∈ Z2 \ {0}:

φkl ∈ CmΓ(Γ;F ), (2.5.126)

with the existence of C > 0 independent of l such that :

‖φkl ‖CmΓ (Γ;F ) ≤ C exp
(
−π

2
εgmin|l|

)
. (2.5.127)
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4. From (2.5.127) we directly have that (2.5.117) holds:∑
l∈Z2\{0}

lα‖φkl ‖CmΓ (Γ;F ) <∞. (2.5.128)

5. We prove that (2.5.116) holds: For all (xΓ, x
′
Γ) ∈ Γ2 : and:

∀(l, l′) ∈
(
Z2 \ {0}

)2
, l 6= l′ ⇒

(
φkl (xΓ; ·), φql′(x

′
Γ; ·)
)
F

= 0. (2.5.129)

Proof of (2.5.124). We prove this result with an induction on γ. The result is trivial
for γ = 0. Let γ such that (2.5.124) holds. Let xΓ ∈ Γ and v ∈ TxΓ

Γ. We define for any
quantity f differentiable at the point xΓ:

∂vf(xΓ) := D f(xΓ) · v. (2.5.130)

Let l ∈ Z2 \ {0}. It is classical that ∂v satisfies the the Leibniz formula. Therefore
(2.5.124) yields:

∂v
(

Dγ φkl
)
(xΓ; ·) = ∂v

(
Pγ,d

(
λl,Dλl, · · · ,Dγ λl, ν̂)

)
(xΓ)φkl (xΓ; ·),

+ Pγ,d
(
λl,Dλl, · · · ,Dγ λl, ν̂)(xΓ)∂v(φ

k
l )(xΓ; ·), (2.5.131)

According to the chain rule formula and (2.5.130), we have:

∂v

(
Pγ,d

(
λl,Dλl, · · · ,Dγ λl, ν̂)

)
(xΓ) :=

γ∑
q=0

(
DXq Pγ,d

(
λl,Dλl, · · · ,Dγ λl, ν̂)

)
(xΓ) · ∂v Dq λq(xΓ),

= P 1
γ+1,d

(
λl,Dλl, · · · ,Dγ+1 λl, ν̂)(xΓ) · v, (2.5.132)

where we defined for (X0, · · · , Xγ+1) and t ∈ TxΓ
Γ:

P 1
γ+1,d

(
X0, · · · , Xγ+1, ν̂

)
· t :=

γ∑
q=0

(
DXq Pγ,d

(
X0, · · · , Xγ, ν̂

))
· (Xq+1 · t)

Moreover from the definition of φkl , we have ∂v(φkl )(xΓ; ·) = −2πν̂∂vλlφ
k
l (xΓ; ·). Therefore:

Pγ,d
(
λl,Dλl, · · · ,Dγ λl, ν̂

)
∂v(φ

k
l ) =

(
P 2
γ+1,d

(
λl,Dλl, · · · ,Dγ+1 λl, ν̂

)
· v
)
φkl , (2.5.133)

where we defined for (X0, · · · , Xγ+1) and t ∈ TxΓ
Γ:

P 2
γ+1,d

(
X0, · · · , Xγ+1, ν̂) · t := −2πν̂Pγ,d

(
X0, · · · , Xγ, ν̂) · (X1 · t)

Thus combining (2.5.131), (2.5.132) and (2.5.133) yields:

∀v ∈ TxΓ
Γ, ∂v

(
Dγ φkl

)
(xΓ; ·) = Pγ+1,d

(
λl,Dλl, · · · ,Dγ λl, ν̂)(xΓ)φkl (xΓ; ·) · v.

where we defined Pγ+1,d := P 1
γ+1,d+P

2
γ+1,d. Therefore according to the definition (2.5.130),

we have:
Dγ+1

(
φkl
)
(xΓ; ·) = Pγ+1,d

(
λl,Dλl, · · · ,Dγ λl, ν̂)φkl ,

which conclude the proof of our induction.
Proof of (2.5.125). The proof of this result is exactly the same as the proof of

(2.5.124). Therefore we do not present it here.
Proof of (2.5.126) and (2.5.127)
We need the following result:
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Lemma 2.5.20. There exists C > 0 such that for all l ∈ Z2 \ {0} the following estimate
holds:

‖λl‖CmΓ (ΓM) ≤ C|l|.
Proof. We recall that for all l ∈ Z2 \ {0} the function λl is given by:

λl =
√

(DψΓl,DψΓl).

We introduce the function λ : S1 × ΓM defined for (l̂, xΓ) ∈ S1 × ΓM by |DψΓl̂| in order
to have the following rewriting:

∀l ∈ N, λl(xΓ) = |l|λ
(
l

|l|
, xΓ

)
. (2.5.134)

Let us proof that λ ∈ CmΓ(Γ). Indeed on one hand the regularity of function ψΓ implies
that the function defined for (l̂, xΓ) ∈ S1×ΓM by (DψΓl̂,DψΓl̂) belongs to CmΓ(S1×Γ).
On the other hand we get thanks to the definition of the set ΓM and the regularity of the
function ψΓ existence of a constant c > 0 such that:

∀(l̂, xΓ) ∈ S1 × ΓM c−1, ≤ (DψΓ(xΓ)l̂,DψΓ(xΓ)l̂) ≤ c.

Moreover the square-root is of class C∞ on the interval [c−1, c] and the function lambda
is the composition of this last function with the square root which conclude the proof of
λ ∈ CmΓ(ΓM).

Combining this with the compactness of ΓM × S1 yields :

sup
l̂∈S1

‖λl̂‖CmΓ (ΓM) = sup
(l̂,xΓ)∈S1×ΓM,m′≤mΓ

|Dm′

xΓ
λl̂(xΓ)| ≤ ‖λ‖CmΓ (S1×ΓM).

Thus combining this last estimate with (2.5.134) yields the following result:

‖λl‖CmΓ (ΓM) ≤ ‖λ‖CmΓ (S1×ΓM)|l|,

which is the stated result.
Thanks to (2.5.124) and (2.5.125), for all 0 ≤ γ ≤ mΓ and γ′ ∈ N we have the

existence of N ∈ N and C > 0 such that for all l ∈ Z2 \ {0} and (xΓ; x̂, ν̂) ∈ Γ× Ŷ+ :∣∣∣Dγ D̂γ′
(

exp (πgminν̂)φkl
)
(xΓ; x̂, ν̂)

∣∣∣2 ≤ C
(
ν̂2N + |l|2N

)
exp(−2π|l|gminν̂). (2.5.135)

Moreover, by using the following proposition:

∀N ∈ N, lim
x→∞

xN exp(−x) = 0,

we can prove that

CN,ε := sup
(ν̂,l)∈[ε,∞[×[1,∞[

(
ν̂2N + |l|2N

)
exp

(
−πgmin

2
ν̂l
)
<∞.

Thus there exists C > 0 such that for all ν̂ > ε and l ∈ Z2:(
ν̂2N + |l|2N

)
exp(−2π|l|gminν̂) ≤ C exp(−πεgmin|l|) exp

(
−πgmin

2
ν̂
)
.
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Combining this with (2.5.135) yields the existence of C > 0 such that for all l ∈ Z2 \ {0}:∫
]0,1[2×]ε,∞[

sup
xΓ∈Γ

∣∣Dγ D̂γ′
(

exp (πgminν̂)φkl
)
(xΓ; x̂, ν̂)

∣∣2dx̂dν̂ ≤ C exp(−πgmin|l|). (2.5.136)

According to the Dominated convergence theorem, this last estimate concludes the proof
of (2.5.126). The estimate (2.5.127) is also a direct consequence of (2.5.136).

Proof of (2.5.129). This property is a direct consequence of (2.5.125) and orthogo-
nality on L2(]0, 1[2) of the family (x̂→ exp(2πil · x̂), l ∈ Z2).

Since we succeeded to prove (2.5.128) and (2.5.129), we now can apply Lemma 2.5.19.
Therefore we conclude the proof of (2.5.115) and we have seen that (2.5.115) is was a suffi-
cient condition to prove (2.5.110). Therefore we conclude the proof of Proposition 2.5.18.

2.5.1.6 Proof of Proposition 2.5.16

Let xΓ ∈ Γ. Since we have by construction û(xΓ; ·) − û2(xΓ; ν̂) ∈ H
(
Ŷ∞
)
then we have

û(xΓ; ·) ∈ L2
loc(Ω̂). Therefore according to the Fubini theorem we have for all ν̂ > 0 that

the map x̂ ∈]0, 1[2 7→ û(xΓ; x̂, ν̂) ∈ L2(]0, 1[2). Moreover, we recall (x̂→ exp(2πil · x̂), l ∈
Z2) is a Hilbert basis of L2(]0, 1[2). Therefore for all (x̂, ν̂) ∈ Ŷ∞ we have:

û(xΓ; x̂, ν̂) =
∑

l∈Z2\{0}
exp

(
λl(xΓ)

)
ûl(xΓ; ν̂) + û2(xΓ; ν̂), (2.5.137)

where we defined for l ∈ N, xΓ ∈ Γ the following quantity :

ûl(xΓ; ν̂) := exp
(
− λl(xΓ)ν̂

) ∫
]0,1[2×{ν̂}

exp(−i2πlx̂)û(xΓ; x̂, ν̂)dx̂. (2.5.138)

Therefore, we now prove that for all l ∈ Z2 \ {0}:

∂2
ν̂ ûl(xΓ; ν̂)− 2πλl(xΓ)∂ν̂ ûl(xΓ; ν̂) = fl(xΓ; ν̂), (2.5.139)
ûl(xΓ; ν̂) ∈ Cd[ν̂], (2.5.140)
xΓ 7→ ul(xΓ; ν̂) ∈ CmΓ

(
Γ;Cd[ν̂]

)
, (2.5.141)

‖ûl‖
CmΓ

(
Γ;Cd+1[ν̂]

) ≤ C

(
1 + |l|‖fl‖

CmΓ

(
Γ;Cd[ν̂]

)) . (2.5.142)

In (2.5.142), C is a constant independent of l. Finally, we will prove the existence of
q′ ∈ Z such that: ∑

l∈Z2\{0}
|l|q′‖ûl‖2

CmΓ

(
Γ;Cd+1[ν̂]

) <∞. (2.5.143)

Proof of (2.5.139). We emphasize that according to Proposition 2.5.18 and (2.5.101)
that f(xΓ; ·) ∈ L2

loc(Ω̂) and this function is defined for (x̂, ν̂) ∈ Ŷ∞ by:

f(xΓ; x̂, ν̂) =
∑

l∈Z2\{0}
fl(xΓ; ν̂)φl(xΓ; x̂, ν̂), (2.5.144)

and for all l ∈ Z2 we have:

fl(xΓ, ν̂) := exp
(
− λl(xΓ)ν̂

) ∫
]0,1[2×{ν̂}

exp(−i2πlx̂)f(xΓ; x̂, ν̂)dx̂. (2.5.145)
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Therefore thanks to T0(xΓ)u(xΓ; ·) = f(xΓ; ·), (2.5.48) and (2.5.50) the following equality
holds:

∀(x̂, ν̂) ∈ Ω̂, ∂2
ν̂ û(xΓ; x̂, ν̂) +

∑
ij

∂x̂j
(
Gij∂x̂iû(xΓ; x̂, ν̂)

)
= f(xΓ; x̂, ν̂), (2.5.146)

where G =
(
Gij

)
ij
is given by:

G := DψΓ(xΓ) DψΓ(xΓ)†. (2.5.147)

Thanks to f(xΓ; ·) ∈ L2
loc(Ω̂) and (2.5.146), the result of regularity for elliptic operators

yields that û(xΓ; ·) ∈ H2
loc(Ω̂). Thus, using that û(xΓ; ·) and x̂ 7→ exp(2πil · x̂) are both

one periodic on the variable x̂ yields for all i, j:∫
]0,1[2×{ν̂}
∂x̂j
(
Gij∂x̂iû(xΓ; x̂, ν̂)

)
exp(−2πil · x̂)dx̂ =

∫
]0,1[2×{ν̂}
û(xΓ; x̂, ν̂)∂x̂j

(
Gij∂x̂i exp(−2πil · x̂)

)
dx̂.

(2.5.148)
Moreover, thanks to (2.5.147) and the definition of λl given in (2.5.99), we have

∂x̂j
(
Gij∂x̂i exp(−2πil · x̂)

)
= −(2π)2(Gl, l) = −

(
2πλl(xΓ)

)2
.

Combining this with (2.5.138) yields that (2.5.148) becomes:∫
]0,1[2×{ν̂}
∂x̂j
(
Gij∂x̂iû(xΓ; x̂, ν̂)

)
exp(−2πil · x̂)dx̂ = −

(
2πλl(xΓ)

)2
exp

(
λl(xΓ)ν̂

)
ûl(xΓ; ν̂).

Combining this with (2.5.146), (2.5.138) and (2.5.145) leads to the following differential
equation:

∂2
ν̂

(
exp

(
λl(xΓ)ν̂

)
ûl(xΓ; ν̂)

)
−
(
2πλl(xΓ)

)2
exp

(
λl(xΓ)ν̂

)
ûl(xΓ; ν̂) = exp

(
λl(xΓ)ν̂

)
fl(xΓ; ν̂).

From this last equation we directly get (2.5.139).
Proof of (2.5.140).
We now build a particular solution ûpart

l (xΓ; ν̂) of (2.5.139) taking the form:

ûpart
l (xΓ; ν̂) = R̂l(xΓ)fl(xΓ; ν̂),

for some R̂l(xΓ) ∈ L
(
Cd[ν̂],Cd+1[ν̂]

)
.

We denote for d′ ∈ N by Dd′ the derivative operator on the space Cd′ [ν̂] in order to
rewrite (2.5.139) as follow:(

Dd − 2πλl(xΓ)
)
Dd+1ûl(xΓ; ν̂) = fl(xΓ; ν̂). (2.5.149)

Since Dd is nilpotent of order d + 1, the operator Dd − 2πλl(xΓ) : Cd[ν̂] 7→ Cd[ν̂] is
invertible and its inverse is given by:

(
Dd − 2πλl(xΓ)

)−1
= −

d∑
p=0

(
2πλl(xΓ)

)−(p+1)
Dp
d. (2.5.150)
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We introduce the integrator operator Intd ∈ L(Cd[ν̂],Cd+1[ν̂]) defined for polynomial
P ∈ Cd[ν̂] by the unique solution of: Find Q such that

Q′ = P with the initial condition Q(0) = 0. (2.5.151)

Thus we now can define R̂l(xΓ) ∈ L(Cd[ν̂],Cd+1[ν̂]) by:

R̂l(xΓ) := −Intd

d∑
p=0

(
2πλl(xΓ)

)−(p+1)
Dp
n, (2.5.152)

and thanks to (2.5.150) and (2.5.151) this last operator satisfies:(
Dd − 2πλl(xΓ)

)
Dd+1ûl(xΓ; ν̂)R̂l(xΓ) = ICd[ν̂].

Thus ûlpart(xΓ; ν̂) := R̂l(xΓ)fl(xΓ; ν̂) is a solution (2.5.149). Therefore ûlpart(xΓ; ν̂) satisfies
(2.5.139). Since ûl(xΓ; ν̂) and ûlpart(xΓ; ν̂) are both solutions of 2.5.139 then there exists A
and B such that: ûl = A+B exp(2πν̂λl) + ûpart

l . Since û(xΓ; ) ∈ H
(
Ŷ∞
)
we directly have

that B = 0. From the initial condition (2.5.151), we have ûlpart(xΓ; 0) = 0. Therefore:

ûl(xΓ; ν̂) = ûl(xΓ; 0) + ûpart
l (xΓ; ν̂), (2.5.153)

where we recall that:

ûl(xΓ; 0) =

∫
Σ

exp(−i2πlx̂)û(xΓ; x̂, 0)dx̂.

Proof of (2.5.141) and (2.5.142). Let us prove that:

R̂l := xΓ ∈ Γ 7→ R̂l(xΓ) ∈ CmΓ

(
Γ;L

(
Cd[ν̂],Cd+1[ν̂]

))
(2.5.154)

with the existence of C > 0 independent of l such that∥∥R̂l

∥∥
CmΓ

(
Γ;L
(
Cd[ν̂],Cd+1[ν̂]

)) ≤ C|l|. (2.5.155)

Indeed, (2.5.154) is a direct consequence of λl ∈ CmΓ(Γ) and (2.5.152). Moreover we can
prove by induction on mΓ the existence of C > 0 independent of l such that:

∀0 ≤ p ≤ d, ‖λ−(p+1)
l ‖CmΓ (Γ) ≤ C‖λl‖CmΓ (Γ).

Combining this with Proposition 2.5.20 and (2.5.152) conclude the proof of (2.5.155).
Now let us prove that:

û0
l := xΓ 7→ ûl(xΓ; 0) ∈ CmΓ(Γ), (2.5.156)

with the existence of C > 0 independent of l such that:

‖û0
l ‖CmΓ (Γ) ≤ C. (2.5.157)

Indeed, we have:
∀xΓ ∈ Γ, û0

l (xΓ) := 〈Ll, û(xΓ; ·)〉Ŷ∞
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where Ll ∈ H
(
Ŷ∞
)† is defined for v ∈ H

(
Ŷ∞
)
by:

〈Ll, v〉Ŷ∞ :=

∫
Σ

exp(−i2πlx̂)v(x̂, 0)dx̂.

Thanks to the continuity of the trace operator H
(
Ŷ∞
)
7→ L2(Γ), we have existence of

C > 0 independent of l such that:

‖Ll‖
H
(
Ŷ∞

)† ≤ C.

According to Proposition 2.5.13, combining this with û ∈ CmΓ(Γ;H
(
Ŷ∞
)
) conclude the

proof (2.5.156) and (2.5.157).
According to Proposition 2.5.13, combining (2.5.154)-(2.5.155) with fl ∈ CmΓ(Γ;Cd[ν̂])

yields:
ûlpart ∈ CmΓ(Γ;Cd+1[ν̂]), (2.5.158)

with the existence of C > 0 independent of l such that:

‖ûlpart‖CmΓ (Γ;Cd+1[ν̂]) ≤ C|l|‖fl‖CmΓ (Γ;Cd[ν̂]). (2.5.159)

Combining (2.5.158) and (2.5.156) with (2.5.153) conclude the proof of (2.5.141).
Combining (2.5.157) and (2.5.159) with (2.5.153) conclude the proof of (2.5.142).

Proof of (2.5.143). This a direct consequence of (2.5.142) and the assumption:

∃q ∈ Z,
∑

l∈Z2\{0}
|l|q‖fl‖2

CmΓ

(
Γ;Cd[ν̂]

) <∞.
2.5.1.7 Proof of Proposition 2.5.15

The property (2.5.103) and (2.5.104) are direct consequence of the expression of the
quantity fk2 . For the rest of the proof Proposition 2.5.15 we proceed as follow:

1. We prove for all ε > 0, that:

χεfk1 ∈ H
q
0,ΓM

(
Γ;H

(
Ŷ∞
)†)

, (2.5.160)

where (χε)ε is a sequence of C∞ cut off function such that for all ε > 0 we have
χε ≡ 1 on [−1, ε] and χε ≡ 0 on [2 · ε,∞[.

2. We prove that fk1 satisfies the P∞q property.

3. We prove :
(1− χε)fk1 ∈ H

q
0,ΓM

(
Γ;H

(
Ŷ∞
)†)

. (2.5.161)

4. We deduce that fk1 ∈ H
q
0,ΓM

(
Γ;H

(
Ŷ∞
)†) from (2.5.160) and (2.5.161).
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Proof of (2.5.160). Let ε > 0. Using that supp(χε) = [−1, 2 · ε] yields that this last
quantities is equal to:

χε
(
Tk,#(χ2εu)− fk2

)
with Tk,# :=

3∑
i=0

T ik,#.

Here we defined for v̂ smooth enough:

T 0
k,#v̂ := d̂iv

(
Iερ̂C(k)ν̂k ∇̂ v̂

)
,

T 1
k,#v̂ := divΓ

(
Iερ̂C(k−1)ν̂k−1 ∇̂ v̂

)
,

T 2
k,#v̂ := d̂iv

(
Iερ̂C(k−1)ν̂k−1∇Γ v̂

)
,

T 3
k,#v̂ := divΓ

(
Iερ̂C(k−2)ν̂k−2∇Γ v̂

)
+ k2Iεµ̂c

((p−2))ν̂k−2v̂,

and Iε is the indicator function of [−1, 2 · ε]. From the assumption (2.5.102) and the
regularity of the function χ2ε we can easily prove that:

χ2εu ∈ Hm
0,ΓM

(
Γ;H

(
Ŷ∞
))
. (2.5.162)

For all p we recall that the quantity C(p) and c(p) both belong to CmΓ

(
Γ;L∞(Ŷ∞)

)
.

Therefore for the quantity Iερ̂C(p)ν̂p and Iεµ̂c
(p)ν̂pv̂ both belong to CmΓ

(
Γ;L∞(Ŷ∞)

)
.

Therefore, by using Proposition 2.5.13, we can prove that:

∀0 ≤ p ≤ 2, T pk,# ∈ L
(
Hm

0,ΓM

(
Γ;H

(
Ŷ∞
))
, Hm−1

0,ΓM

(
Γ;H

(
Ŷ∞
)†))

,

and
T 3
k,# ∈ L

(
Hm

0,ΓM

(
Γ;H

(
Ŷ∞
))
, Hm−2

0,ΓM

(
Γ;H

(
Ŷ∞
)†))

.

Moreover we recall that T 3
1,# = 0. Therefore by using the definition of q, we have:

Tk,# ∈ L
(
Hm

0,ΓM

(
Γ;H

(
Ŷ∞
))
, Hq

0,ΓM

(
Γ;H

(
Ŷ∞
)†))

.

Combining this with (2.5.162) yields:

Tk,#(χ2εu) ∈ Hq
0,ΓM

(
Γ;H

(
Ŷ∞
)†)

. (2.5.163)

Moreover, thanks to (2.5.103) and (2.5.104), we can prove χεfk2 ∈ H
q
0,ΓM

(
Γ;H

(
Ŷ∞
)†)

.

Combining this with (2.5.163) conclude the proof of (2.5.160).
Proof of: fk1 satisfies the P∞q property. According to (2.5.101) we take a test

function ψ ∈ D (Γ× [0, 1]2×]0,∞[) one periodic in x̂ with compact support an we have
to prove the existence of a sequence (fk1,l)l∈Z2 of elements of Cq(Γ;Cd+k[ν̂]) and θ ∈ Z2

such that: ∑
l∈Z2\{0}

|l|θ−2‖fk1,l‖2
Cq(Γ;Cd+k[ν̂]) <∞, (2.5.164)
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and

〈Tku(xΓ; ·)− fk2 (xΓ; ·), ψ〉 =
∑

l∈Z2\{0}

∫
Ŷ∞

fk1,l(xΓ; ν̂)φl(xΓ; x̂, ν̂)ψ(x̂, ν̂)dx̂dν̂, (2.5.165)

where 〈·, ·〉 := 〈·, ·〉
Hcomp

(
Ŷ∞

)†
−Hcomp

(
Ŷ∞

). By using the definition of fk2 and Tk and the

property:
supp(ψ) \ [0, 1]2×]0,∞[,

we can prove that 〈Tku2 − fk2 , ψ〉 = 0. Therefore:〈
Tku− fk2 , ψ

〉
= 〈Tku1, ψ〉 .

Since u1 satisfies the P∞m property, there exists a sequence (u1,l)l∈Z2\{0} of element of
Cq(Γ;Cd[ν̂]) and θ ∈ Z such that:∑

l∈Z2\{0}
|l|θ‖u1,l‖2

Cm(Γ;Cd[ν̂]) <∞, (2.5.166)

and for all (xΓ; x̂, ν̂) ∈ Γ× Ŷ∞:

u1(xΓ; x̂, ν̂) =
∑

l∈Z2\{0}
u1,l(xΓ; ν̂)φl(xΓ; x̂, ν̂). (2.5.167)

Now let us prove that for all xΓ ∈ Γ:

〈Tku1(xΓ; ·), ψ〉 =
∑

l∈Z2\{0}

〈
Tk
(
φlu1,l

)
(xΓ; ·), ψ

〉
. (2.5.168)

According to Proposition 2.5.18, we have in the space:

exp (−πgminν̂)Hm
(
Γ;C2

b ([0, 1]2 × [ηψ,∞[)
)
with ηψ := inf{ν̂, ∃x̂ st (x̂, ν̂) ∈ supp(ψ)},

the following convergence:
u1 = lim

M→∞

∑
l∈Z2\{0},|l|≤M

φlu1,l. (2.5.169)

We can prove from the expression of the operator Tk and the definition of q that:

Tk : exp (−πgminν̂)Hm
(
Γ;C2

b ([0, 1]2 × [ηψ,∞[)
)
7→ Hq

(
Γ;C2

b ([0, 1]2 × [ηψ,∞[)
)
.

Combining this with (2.5.169) yields the following convergence:

Tku1 = lim
M→∞

∑
l∈Z2\{0},|l|≤M

Tk(φlu1,l),

in the spaceHq
(
Γ;C2

b ([0, 1]2×[ηψ,∞[)
)
. Combining this with the compactness of supp(ψ)

conclude the proof of (2.5.168).
Therefore, if we success to construct a sequence (f1,l)l∈Z2\{0} such that:

∀l ∈ Z2 \ {0}, f1,lφl = Tk
(
φlu1,l

)
then we will conclude the proof of (2.5.165). Therefore let us prove the following result:
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Lemma 2.5.21. For all l ∈ Z2 \ {0} there exists an operator

T kl ∈ L
(
Hm

0,ΓM
(Γ;Cd[ν̂]) , Hq

0,ΓM
(Γ;Cd+k[ν̂])

)
, (2.5.170)

such that for all pl ∈ Hm
0,ΓM

(Γ;Cd[ν̂]) we have:

Tk(φlpl) = φlT kl (pl). (2.5.171)

Moreover, there exists C > 0 such that:

∀l ∈ Z2 \ {0}, ‖T kl ‖L
(
Hm

0,ΓM
(Γ;Cd[ν̂]),Hq

0,ΓM
(Γ;Cd+p[ν̂])

) ≤ C|l|2. (2.5.172)

To prove Lemma 2.5.21 we need the following intermediate result:
Proposition 2.5.22. For all l ∈ Z2 \ {0} there exists:

Tl,∇Γ
∈ L

(
Hm

0,ΓM
(Γ;Cd[ν̂]) , (Hm−1

0,ΓM
(Γ;Cd+1[ν̂]))3

)
,

Tl,divΓ
∈ L

(
(Hm

0,ΓM
(Γ;Cd[ν̂]))3, Hm−1

0,ΓM
(Γ;Cd+1[ν̂])

)
,

Tl,∇̂ ∈ L
(
Hm

0,ΓM
(Γ;Cd[ν̂]) , (Hm

0,ΓM
(Γ;Cd+1[ν̂]))3

)
,

Tl,d̂iv ∈ L
(

(Hm
0,ΓM

(Γ;Cd[ν̂]))3, Hm
0,ΓM

(Γ;Cd+1[ν̂])
)
,

(2.5.173)

such that for all pl ∈ Hm
0,ΓM

(Γ;Cd[ν̂]) and ~pl ∈ (Hm
0,ΓM

(Γ;Cd[ν̂]))3 the following identities
hold: {

∇Γ(plφl) = φlTl,∇Γ
pl, ∇̂(plφl) = φlTl,∇̂pl,

divΓ(~plφl) = φlTl,divΓ
~pl, d̂iv(~plφl) = φlTl,d̂iv~pl.

(2.5.174)

Moreover there exists C > 0 such that for all l ∈ Z2 the following estimates hold:

max



∥∥∥Tl,∇Γ

∥∥∥
L
(
Hm

0,ΓM
(Γ;Cd[ν̂]),(Hm−1

0,ΓM
(Γ;Cd+1[ν̂]))3

),∥∥∥Tl,∇̂∥∥∥L(Hm
0,ΓM

(Γ;Cd[ν̂]),(Hm−1
0,ΓM

(Γ;Cd+1[ν̂]))3

),∥∥∥Tl,divΓ

∥∥∥
L
(

(Hm
0,ΓM

(Γ;Cd[ν̂]))3,Hm
0,ΓM

(Γ;Cd+1[ν̂])

),∥∥∥Tl,d̂iv

∥∥∥
L
(

(Hm
0,ΓM

(Γ;Cd[ν̂]))3,Hm
0,ΓM

(Γ;Cd+1[ν̂])

).


≤ C|l|. (2.5.175)

Proof. Let l ∈ Z2 \ {0}. We have

∇Γ φl = −2π(∇Γ λl)ν̂φl and ∇̂φl =

(
DψΓ

† 2πil
−2πλl

)
φl.

Therefore according to the Leibniz formula, we have for all p ∈ Hm
0,ΓM

(Γ;Cn[ν̂]) that:

∇Γ(pφl) = ∇Γ p− 2π(∇Γ λl)ν̂pφl and ∇̂(pφl) =

((
0
∂ν̂

)
p−

(
DψΓ

† 2πil
2πλl

)
p

)
φl.
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Thus the following choice:

Tl,∇Γ
:= ∇Γ−2π(∇Γ λl)ν̂ and Tl,∇̂ :=

(
0
∂ν̂

)
−
(

DψΓ
† 2πil

2πλl

)
,

yields the first line of (2.5.174). Furthermore two first lines of (2.5.175) are a direct
consequence of Proposition 2.5.20 and Proposition 2.5.13.

For the divergence operators the proof is similar.
Proof of Proposition 2.5.21. We recall that for all p ∈ N we have

Tk(plφl) =
3∑
i=0

Tk,i(plφl), (2.5.176)

where we defined the following operators for v smooth enough: Tk,0v := d̂iv
(
C(k)ν̂k ∇̂ v

)
, Tp,1v := divΓ

(
C(k−1)ν̂k−1 ∇̂ v

)
,

Tk,2v := d̂iv
(
C(k−1)ν̂k−1∇Γ v

)
, Tp,3v := divΓ

(
C(k−2)ν̂k−2∇Γ v

)
+ k2c((p−2))ν̂p−2v.

Moreover thanks to (2.5.174), we have:

∀0 ≤ i ≤ 3, Tk,i(plφl) = T lk,i(pl)φl, (2.5.177)

where we defined for v ∈ Hm(Γ;Cd[ν̂]): T
l
k,0v := Tl,d̂iv

(
C(k)ν̂kTl,∇̂v

)
, T lp,1v := Tl,divΓ

(
C(k−1)ν̂k−1Tl,∇̂v

)
,

T lk,2v := Tl,d̂iv

(
C(k−1)ν̂k−1Tl,∇Γ

v
)
, T lk,3v := Tl,divΓ

(
C(k−2)ν̂k−2Tl,∇Γ

v
)

+ k2c(k−2)ν̂k−2v.

Combining (2.5.176) and (2.5.177) and define T lk :=
3∑
i=0

T lk,i conclude the proof of (2.5.171).

Now let us prove (2.5.170) and (2.5.172). Indeed thanks to Proposition 2.5.22, we
have for all 0 ≤ i ≤ 2:

T lk,i ∈ L
(
Hm

0,ΓM
(Γ;Cd[ν̂]) , Hm−1

0,ΓM
(Γ;Cd+k[ν̂])

)
, (2.5.178)

with the existence of C > 0 independent of l such that

‖T lk,i‖L
(
Hm

0,ΓM
(Γ;Cd[ν̂]),Hm−1

0,ΓM
(Γ;Cd+k[ν̂])

) ≤ C|l|2. (2.5.179)

Moreover if k = 1 then T lk,3 = 0. Combining this with (2.5.178) and (2.5.179) yields

k = 1 =⇒ T lk ∈ L
(
Hm

0,ΓM
(Γ;Cd[ν̂]) , Hm−1

0,ΓM
(Γ;Cd+k[ν̂])

)
, (2.5.180)

with the existence of C > 0 independent of l such that:

k = 1 =⇒ ‖T lk‖L
(
Hm

0,ΓM
(Γ;Cd[ν̂]),Hm−1

0,ΓM
(Γ;Cd+k[ν̂])

) ≤ C|l|2. (2.5.181)

If k ≥ 2 then thanks to Proposition 2.5.22, we have:

T lk,3 ∈ L
(
Hm

0,ΓM
(Γ;Cd[ν̂]) , Hm−2

0,ΓM
(Γ;Cd+k[ν̂])

)
, (2.5.182)
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with the existence of C > 0 independent of l such that:

‖T lk,3‖L
(
Hm

0,ΓM
(Γ;Cd[ν̂]),Hm−2

0,ΓM
(Γ;Cd+k[ν̂])

) ≤ C|l|2. (2.5.183)

Combining (2.5.182) and (2.5.183) with (2.5.178) and (2.5.179) yields:

k ≥ 2 =⇒ T lk ∈ L
(
Hm

0,ΓM
(Γ;Cd[ν̂]) , Hm−2

0,ΓM
(Γ;Cd+k[ν̂])

)
, (2.5.184)

with the existence of C > 0 independent of l such that:

k ≥ 2 =⇒ ‖T lk‖L
(
Hm

0,ΓM
(Γ;Cd[ν̂]),Hm−2

0,ΓM
(Γ;Cd+k[ν̂])

) ≤ C|l|2. (2.5.185)

Thanks to the definition of q and the implications (2.5.180), (2.5.181), (2.5.184) and
(2.5.185) we conclude the proof of (2.5.170) and (2.5.172).

Lemma 2.5.21 has been proved, we now can apply this result. Therefore for all l ∈ Z2\{0},
we have

Tk
(
φlu1,l

)
= f1,lφl, with f1,l := T lku1,l.

Therefore it remains to prove (2.5.164) and f1,l ∈ Hq
0,ΓM

(Γ;Cd+k[ν̂]). Indeed thanks to
Lemma 2.5.21 we have: f1,l ∈ Hq

0,ΓM
(Γ;Cd+k[ν̂]) and the existence of C > 0 independent

of l such that:
‖f1,l‖Hq

0,ΓM
(Γ;Cd+k[ν̂]) ≤ C|l|2‖u1,l‖Hm

0,ΓM
(Γ;Cd+k[ν̂]).

Combining this with (2.5.166) conclude the proof of (2.5.164).
Proof of (2.5.161). It is a direct consequence of Proposition 2.5.18 and that fk1

satisfies the P∞q property.

2.5.2 Matching conditions

Taking k = 1 in the matching conditions (2.3.35) implies:

∀xΓ ∈ Γ,∀1 ≤ n ≤ mΓ, ∂ν̂un−1(xΓ, 0) = p1
n(xΓ). (2.5.186)

Here, we prove that under regularities conditions on our ansatz that (2.5.186) combined
with (2.5.106) is equivalent to (2.3.35).
Proposition 2.5.23. If we have (2.5.105) and (2.5.106) then for all 2 ≤ k′ ≤ n ≤ mΓ

we have for all xΓ ∈ Γ:

pnk′(xΓ) = −
k′∑
i=1

(
(k′ − i)(k′ − 1)c(i)pn−ik′−i + divΓ

(
C(i−2)∇Γ p

n−i
k′−i
)

+ k2c(i−2)pn−ik′−i
k′(k′ − 1)

)
(xΓ).

Proof. Let 0 ≤ n ≤ mΓ. We have seen that the hypothesis (2.5.105) and expression
(2.5.106) imply that:

n∑
i=0

Tiûn−i = 0.
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Moreover thanks to Proposition 2.5.15, there exist (An, Bn) ∈ HmΓ+ 1
2
−n(Γ;Cmax(n−2,0)[ν̂]

)
×

HmΓ+ 1
2
−n(Γ;H

(
Ŷ∞
)†) such that:

n∑
i=0

Tiûn−i = An +Bn,

with:

An =
∑

0≤i≤n
0≤k′≤n−i

(
∂ν̂
(
c(i)ν̂i∂ν̂(p

n−i
k′ ν̂

k′)
)

+ divΓ

(
C(i−2)νi−2∇Γ(pn−ik′ ν̂

k′)
)

+ k2c(i−2)pn−ik′ ν̂
k′
)
.

Using Proposition 2.5.9 yields An = 0. Therefore:

0 =
∑

0≤i≤n
0≤k′≤n−i

(
∂ν̂
(
c(i)ν̂i∂ν̂(p

n−i
k′ ν̂

k′)
)

+ divΓ

(
C(i−2)νi−2∇Γ(pn−ik′ ν̂

k′)
)

+ k2c(i−2)pn−ik′ ν̂
k′
)
,

=
∑

0≤i≤n
0≤k′≤n−i

(
k′(i+ k′ − 1)c(i)ν̂i+k

′−2pn−ik′ + divΓ

(
C(i−2)νi−2∇Γ(pn−ik′ ν̂

k′)
)

+ k2c(i−2)pn−ik′ ν̂
k′
)
,

=
∑

2≤k′≤n
0≤i≤k′

(
(k′ − i)(k′ − 1)c(i)pn−ik′−i + divΓ

(
C(i−2)∇Γ(pn−ik′−i)

)
+ k2c(i−2)pn−ik′−i

)
ν̂k
′−2.

Therefore, by identifying the coefficient in front of the ν̂k′−2 term with zero, we get for
all 2 ≤ k ≤ n.

k′∑
i=0

(
(k′ − i)(k′ − 1)c(i)pn−ik′−i + divΓ

(
C(i−2)∇Γ(pn−ik′−i)

)
+ k2c(i−2)pn−ik′−i

)
= 0,

which leads to:

k′(k′ − 1)pnk′ = −
k′∑
i=1

(
(k′ − i)(k′ − 1)c(i)pn−ik′−i + divΓ

(
C(i−2)∇Γ p

n−i
k′−i
)

+ k2c(i−2)pn−ik′−i
)
,

and then conclude the proof.

Proposition 2.5.24. Let 0 ≤ m ≤ mΓ u ∈ Hm(Γ×]0, η0[) satisfying (2.3.32) then for
all 2 ≤ k′ ≤ m we have:

∂k
′

ν̂ u

k′!
(xΓ, 0) = −

k′∑
i=1

(k′ − i)(k′ − 1)c(i) ∂
k′−i
ν̂ u

(k′−i)! + divΓ

(
C(i−2)∇Γ

∂k
′−i
ν̂ u

(k′−i)!
)

+ k2c(i−2) ∂
k′−i
ν̂ u

(k′−i)!
k′(k′ − 1)

 (xΓ, 0).

Proof. Let 2 ≤ k ≤ m. We recall that (2.3.32) means:

L := ∂ν̂(C ∂ν̂u) + divΓ(C ∇Γ u) + k2 Cu = 0. (2.5.187)
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Thanks to the Leibniz formula, we have an explicit expression of ∂k
′−2
ν̂ L:

∂k
′−2
ν̂ L = ∂k

′−1
ν̂ (C ∂ν̂u) + divΓ

(
∂k
′−2
ν̂ (C ∇Γ u)

)
+ ∂k

′−2
ν̂ (k2 Cu),

=
k′−1∑
l=0

(
k′ − 1

l

)
(∂k

′−1−l
ν̂ C)∂l+1

ν̂ u

+
k′−2∑
l=0

(
k′ − 2

l

)(
divΓ

(
(∂k

′−2−l
ν̂ C)∇Γ(∂lν̂u)

)
+ k2(∂k

′−l−2
ν̂ C)∂lν̂u

)
.

Therefore:

∂k
′−2
ν̂ L =

k′∑
l=1

(
k′ − 1

l − 1

)
(∂k

′−l
ν̂ C)∂lν̂u

+
k′−2∑
l=0

(
k′ − 2

l

)(
divΓ

(
(∂k

′−2−l
ν̂ C)∇Γ(∂lν̂u)

)
+ k2(∂k

′−l−2
ν̂ C)∂lν̂u

)
,

=
k′∑
l=1

(k′ − 1)!

(k′ − l)!(l − 1)!
(∂k

′−l
ν̂ C)∂lν̂u

+
k′−2∑
l=0

(k′ − 2)!

(k′ − 2− l)!l!

(
divΓ

(
(∂k

′−2−l
ν̂ C)∇Γ(∂lν̂u)

)
+ k2(∂k

′−l−2
ν̂ C)∂lν̂u

)
,

=
(k′ − 1)!

(l − 1)!
c(k′−l)∂lν̂u+

(k′ − 2)!

l!

(
divΓ C(k′−2−l)∇Γ +k2c(k′−l−2)

)
∂lν̂u.

We recall for xΓ ∈ Γ, the definition (2.3.27) of c(l) and C(l):

C(k)(xΓ) :=
1

k!
∂kν C(xΓ, 0) if k ≥ 0 else C(k)(xΓ) := 0,

and c(k)(xΓ) :=
(
C(k)(xΓ) · n(xΓ)

)
· n(xΓ). Therefore for all xΓ ∈ Γ:

∂k
′−2
ν̂ L(xΓ, 0) =

k′∑
l=1

l(k′ − 2)!(k′ − 1)

l!
c(k′−l)(xΓ)∂lν̂u(xΓ, 0)

+
k′−1∑
l=0

(k′ − 2)!

l!

(
divΓ

(
C(k′−2−l)∇Γ(∂lν̂u)

)
+ k2c(k′−l−2)∂lν̂u

)
(xΓ, 0).

Combining this with (2.5.187) yields for all xΓ:

0 =
k′∑
l=1

l(k′ − 1)c(k′−l)(xΓ)
∂lν̂u

l!
(xΓ, 0)

+
k′−1∑
l=0

(
divΓ

(
C(k′−2−l)∇Γ(

∂lν̂u

l!
)
)

+ k2c(k′−l−2)∂
l
ν̂u

l!

)
(xΓ, 0).
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Therefore:

k′(k′ − 1)
∂k
′

ν̂ u

k′!
(xΓ, 0) =−

k′−1∑
l=2

l(k′ − 1)c(k′−l)(xΓ)
∂lν̂u

l!
(xΓ, 0)

−
k′−1∑
l=0

(
divΓ

(
C(k′−2−l)∇Γ(

∂lν̂u

l!
)
)
(xΓ, 0) + k2c(k′−l−2)∂

l
ν̂u

l!
(xΓ, 0)

)
,

which conclude the proof.
Corollary 2.5.25. If the regularity conditions (2.5.105) hold and (2.5.106) is verified
then (2.5.186) is a sufficient condition for (2.3.35).
Proof. Define the two sequences (Uk)k and (Vk) by for k and xΓ ∈ Γ by:

Uk(xΓ) := pn+k
k (xΓ) and Vk(xΓ) :=

1

k!
∂kνun(xΓ, 0).

From (2.5.186) we easily get U0 = V0 and U1 = V1. Since un satisfies the assumption of
Proposition 2.5.24 then we have for all 2 ≤ k ≤ n:

Vk = − 1

k(k − 1)

k∑
i=1

(
(k − i)(k − 1)c((i)) + divΓ C((i−2))∇Γ +k2c((i−2))

)
Vk−i.

Moreover if the assumption of Proposition 2.5.23 holds then we have for all 2 ≤ k ≤ n:

Uk = − 1

k(k − 1)

k∑
i=1

(
(k − i)(k − 1)c((i)) + divΓ C((i−2))∇Γ +k2c((i−2))

)
Uk−i.

Thus Un and Vn satisfy the same recurrence relation. Therefore these sequence are equal,
which conclude the proof.

2.5.3 Final explicit definition of the ansatz

We have seen that the far and near field sequences are linked via (2.5.186). But these
relations do not yet provide an explicit definition of our ansatz. Indeed from this last
relation the quantities p1

n are found to depend on ûn+1 and this last relation does not
provide an explicit definition of the sequence of far fields (un)n∈N. Using Proposition 2.5.11
yields that this last relation becomes:

∀xΓ ∈ Γ, ∂nun(xΓ, 0) = −µ
( n∑
i=0

(
Tiûn+1−i

)
(xΓ; ·)

)
. (2.5.188)

Combining (2.5.188) with (2.5.106) enables us to obtain the following explicit relation:

∀xΓ ∈ Γ, ∂nun(xΓ, 0) = ln(xΓ), (2.5.189)

where we define for n the following quantity:
ln(xΓ) :=

n+1∑
i=1

n+1−i∑
j=1

µ
((
Ti
(
T −1

0 (Tjûn+1−i−j)
))

(xΓ; ·)
)

−
n+1∑
i=1

µ
(

(Tiun+1−j)(xΓ; ·)
)
.

(2.5.190)
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Indeed this last quantity can be computed with the knowledge of û0 · · · ûn−1. Proposi-
tion 2.5.17 and Proposition 2.5.25 require some regularity assumptions on the far field
traces and thus it remains to prove that these assumptions hold. Thus let us prove the
following result:
Proposition 2.5.26. Let −1 ≤ n ≤ mΓ−1 such that (2.5.105) and (2.5.106) are satisfied
then we have the regularity

ln+1 ∈ HmΓ−n− 1
2 (Γ), (2.5.191)

and then we can define for n+ 1 the far field un+1 as the unique solution of (2.3.32) and
(2.3.33) with the boundary conditions:

∀xΓ ∈ Γ, ∂nun+1(xΓ, 0) = ln+1(xΓ).

Moreover this last solution have the regularity un+1 ∈ HmΓ−n(Ω0).
Proof. First prove (2.5.191). We define for for all 1 ≤ i ≤ n and xΓ ∈ Γ the following
quantity:

Qi(xΓ; ·) := un+1−i(xΓ, 0)−
n+1−i∑
j=1

(
(T −1

0 Tj)ûn+1−i−j
)
(xΓ; ·),

in order to have the following rewriting:

ln+1(xΓ) =
n∑
i=1

µ
(
TiQi(xΓ; ·)

)
. (2.5.192)

Thanks to Proposition 2.5.17 we get for all 1 ≤ i ≤ n that the following quantity defined
for xΓ ∈ Γ: belongs to the space:

∀1 ≤ i ≤ n, Qi ∈ H
mΓ+ 1

2
−(n+1−i)

0,ΓM

(
Γ;H

(
Ŷ∞
))
⊕HmΓ+ 1

2
−(n+1−i)

(
Γ;Cn+1−i[ν̂]

)
.

Then using Proposition 2.5.15 yields that for all 2 ≤ j ≤ n+ 1− i:
T1Q1 ∈ H

mΓ+ 1
2
−(n+2−1)

0,ΓM

(
Γ;H

(
Ŷ∞
))
⊕HmΓ+ 1

2
−(n+2−1)

(
Γ;Cn+2−1[ν̂]

)
,

TiQi ∈ H
mΓ+ 1

2
−(n+3−i)

0,ΓM

(
Γ;H

(
Ŷ∞
))
⊕HmΓ+ 1

2
−(n+3−i)

(
Γ;Cn[ν̂]

)
,

which leads to:
n∑
i=1

TiQi ∈ H
mΓ+ 1

2
−(n+1)

0,ΓM

(
Γ;H

(
Ŷ∞
))
⊕HmΓ+ 1

2
−(n+1)

(
Γ;Cn+1[ν̂]

)
. (2.5.193)

Thus by using that f 7→ µ
(
f
)

doesn’t depend on xΓ ∈ Γ, we obtain that combining
(2.5.193) and (2.5.192) yields (2.5.191).

The rest of the result is a direct consequence of regularity results for Helmholtz equa-
tion (see [60, Theorem 2.5.21], [60, Theorem 2.6.7] and [57, Theorem 4.21]) we can apply
because Γ has CmΓ regularity.
Thus can state the first main result of this work which is a direct consequence of this last
result:
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Lemma 2.5.27. Let 0 ≤ n ≤ mΓ. We can define the far and near fields (ûn, un) with
the knowledge of (ûn′ , un′)0≤n′≤n−1 by:

• The near field is defined for (xΓ; x̂, ν̂) ∈ Γ× Ŷ∞ by:

ûn(xΓ; x̂, ν̂) := un(xΓ, 0)−
n∑
i=1

(
T −1

0 (Tiûn−i)
)
(xΓ; x̂, ν̂).

• The far field is defined by the unique solution of: Find un ∈ H1(Ω0) satisfying
(2.3.32), (2.3.33) and

∂ν̂un(xΓ, 0) := ln(xΓ), (2.5.194)

where ln is defined by (2.5.190).

We have that:

• The near field (ûn)0≤n≤mΓ
satisfies (2.3.31).

• For all 0 ≤ n ≤ mΓ, there exist (pn, rn) ∈ HmΓ+ 1
2
−n

0,ΓM

(
Γ;H

(
Ŷ∞
))
×HmΓ+ 1

2
−n
(

Γ;Cn[ν̂]
)

such that:
un = pn + rn.

• For all 0 ≤ n ≤ mΓ, we have:

un ∈ HmΓ+1−n(Ω0). (2.5.195)

• The matching conditions (2.3.35) holds.
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Chapter 3

Theoretical justification of the
asymptotic expansion

The existence of (ui, ûi)i∈N of the formal asymptotic expansion has been proved for 0 ≤
n ≤ mΓ (see Lemma 2.5.27). We therefore can construct the far field

un,δ := u0 + · · ·+ δnun

and the near field
ûn,δ := û0 + · · ·+ δnûn.

Then we construct a global function on Ωδ:

unη,δ := (1− χη)unδ + χη Iδ ûn,δ, (3.0.1)

where χη(x) := χ(xν
η

) and χ is a regular cutoff truncate function such that for all s ∈ R,
χ(s) = 1 if s ≤ 1 and χ(s) = 0 is s ≥ 2.

Here we prove that unη,δ converges to the exact solution uδ and prove estimates of the
error convergence rate in terms of δ. Although we strongly draw on [4, 3, 5, 6, 12, 18] for
the formal construction, we do not use the two-scale convergence method (See [6]). We
have inspired by [37, 34, 35]. For this part, we proceed as follow:

• To give a sense of the quantity ε(δ, η) we need to prove that unη,δ ∈ H1(Ωδ). A
sufficient condition is to prove some continuity property of the operator Iδ and this
continuity property is not trivial.

• We prove that

‖vδ‖H1(Ωδ) ≤ C sup
φ∈H1(Ωδ)

aδ(vδ, φ)

‖φ‖H1(Ωδ)

,∀uδ ∈ H1 (Ωδ) .

• We prove estimate of a kind of consistent error:

ε(δ, η) := sup
‖v‖H1(Ωδ)=1

aδ,η(u
n
η,δ − uδ, v).

This quantity measure how unη,δ fails to satisfies our problem.
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• We deduce that:
‖unη,δ − uδ‖H1(Ωδ) ≤ Cε(δ, η).

This procedure will yields a result of justification and error estimate Theorem 3.4.1. This
result requires strong assumption on the regularity on our manifold Γ. The error estimate
are not valid for point near the surface Γ because there is an phenomenon of boundary
layer. We emphasize that there is the same phenomenon in [37, 34, 35].

3.1 Continuity properties of the scaling operator Iδ
Here a is a large parameter that will be later replaced by η/δ. C > 0 is a generic constant
independent of a and δ. Introduce the following space:

L2
#

(
Ŷa
)

:=

{
u ∈ L2

loc(Ω̂a), one periodic on x̂, ‖u‖2

L2
#

(
Ŷa

) :=

∫
Y a
|u(x̂, ν̂)|2dx̂dν̂ <∞

}
,

where Ŷa :=]0, 1[2×] − 1, a[ and Ω̂a := R2×] − 1, a[. We also introduce for ε > 0 the set
Ωδ,ε := Γ×]− δ, ε[.
Proposition 3.1.1. Let q > 1. The operator Iδ satisfies:

Iδ : Hq
0,ΓM

(
Γ;L2

#

(
Ŷa
))
7→ L2(Ωδ,δa),

and for all u ∈ Hq
0,ΓM

(
Γ;L2

#

(
Ŷa
))

we have:

‖ Iδ u‖L2(Ωδ,δa) ≤ Cδ
1
2‖u‖

Hq
0,ΓM

(
Γ;L2

#

(
Ŷa

)). (3.1.2)

Proof. Let u ∈ Hq
0,ΓM

(
Γ;L2

#

(
Ŷa
))

. The following estimate is trivial:

‖ Iδ u‖
L2
(

Ωδ,δa

) ≤ ‖Iδ u‖L2((Γ\ΓM)×]−δ,aδ[) + ‖ Iδ u‖L2(ΓM×]−δ,aδ[). (3.1.3)

Estimate of ‖ Iδ u‖L2((Γ\ΓM)×]−δ,aδ[). We have on Γ \ ΓM that u(xΓ, x̂, ν̂) = U(xΓ, ν̂)
for some U in Hq

(
Γ;L2(]− 1, a[)

)
. Therefore using the change of variable formula yields:

‖ Iδ u‖2
L2(Γ\ΓM×]−δ,δa[) =

∫
Γ\ΓM×]−δ,δa[

∣∣∣U (xΓ,
ν

δ

)∣∣∣2 dxΓdν,

= δ

∫
Γ\ΓM×]−1,a[

|U(xΓ, ν̂)|2 dxΓdν̂,

which yields:
‖ Iδ u‖L2(Γ\ΓM×]−δ,δa[) ≤ δ

1
2 · ‖u‖

Hq
0,ΓM

(
Γ;L2

#

(
Ŷa

)). (3.1.4)

Estimate of L2
(

ΓM×]− δ, aδ[
)
. Let us prove that:

‖ Iδ u‖L2(ΓM×]−δ,δa[) ≤ δ
1
2 · ‖u‖

Hq
0,ΓM

(
Γ;L2

#

(
Ŷa

)). (3.1.5)
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Indeed, according to the definition of the set ΓM and the inverse function theorem applied
to ψΓ, there exist for all xΓ ∈ ΓM an open subset ωxΓ

⊂ R2 and ΓxΓ
⊂ ΓM with xΓ ∈ ΓxΓ

such that ψΓ : ΓxΓ
7→ ωxΓ

is a diffeomorphism. Thus we have the following open covers:

ΓM ⊂
⋃

xΓ∈ΓM

ΓxΓ
,

and using the compactness of ΓM yields the existence of N ∈ N and x1
Γ, · · · , xNΓ such that

:

ΓM ⊂
N⋃
i=1

ΓxiΓ .

Therefore we have:

‖ Iδ u‖2
L2(ΓM×]−δ,δa[) ≤

N∑
i=1

‖ Iδ u‖2

L2

(
Γ
xi
Γ
×]−δ,δa[

) ≤
N∑
i=1

∫
Γ
xi
Γ
×]−δ,δa[

∣∣∣∣u(xΓ;
ψΓ(xΓ)

δ
,
ν

δ

)∣∣∣∣2 dxΓdν,

and then:

‖ Iδ u‖2
L2(ΓM×]−δ,δa[) ≤ C

N∑
i=1

∫
Γ
xi
Γ
×]−δ,δa[

sup
yΓ∈ΓM

∥∥∥∥u(yΓ;
ψΓ(xΓ)

δ
,
ν

δ

)∥∥∥∥2

dxΓdν. (3.1.6)

Moreover, since q > 1, Sobolev embedding results imply Hq(Γ) ⊂ L∞(Γ) with continuous
injection. Therefore for all xΓ ∈ ΓM we have:

sup
yΓ∈ΓM

∥∥∥∥u(yΓ;
ψΓ(xΓ)

δ
,
ν

δ

)∥∥∥∥2

=

∥∥∥∥u(.; ψΓ(xΓ)

δ
,
ν

δ

)∥∥∥∥2

L∞(Γ)

≤ N̂

(
ψΓ(xΓ)

δ
,
ν

δ

)
,

where we defined the function N̂ : Ω̂ 7→ R+ for (x̂, ν̂) ∈ Ω̂ by N̂(x̂, ν̂) := ‖u (.; x̂, ν̂)‖2
Hq(Γ).

Combining this with (3.1.6) yields:

‖ Iδ u‖2
L2(ΓM×]−δ,δa[) ≤ C

N∑
i=1

Ii, (3.1.7)

where we defined for 1 ≤ i ≤ N :

Ii :=

∫
Γ
xi
Γ
×]−δ,δa[

N̂

(
ψΓ(xΓ)

δ
,
ν

δ

)
dxΓdν. (3.1.8)

Let 1 ≤ i ≤ N and let us now estimate Ii. We introduce the map φδi : ΓxiΓ×] − δ, δa[7→(
ωxiΓ/δ

)
×]− 1, a[ defined for (xΓ, ν) ∈ ΓxiΓ×]− δ, δa[ by:

φδi (xΓ) :=

(
ψΓ(xΓ)

δ
,
ν

δ

)
with

(
ωxiΓ/δ

)
:=
{x
δ
, x ∈ ωxiΓ

}
.

Since we have seen that ψΓ : ΓxiΓ 7→ ωxiΓ is a diffeomorphism, we have:

∀xΓ ∈ Γ, det
(

Dφδi (xΓ)−†Dφδi (xΓ)−1
) 1

2 ≤ Cδ2. (3.1.9)
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Thanks to the definition of φδi , we get the following rewriting of (3.1.8):

Ii =

∫
Γ
xi
Γ
×]−δ,δa[

(N̂ ◦ φδi )(xΓ, ν)dxΓdν.

According to the change of variable formula and (3.1.9), we have:

Ii ≤ Cδ2

∫
ω
xi
Γ
/δ×]−1,a[

N̂(x̂, ν̂)dx̂dν̂. (3.1.10)

Let L be an arbitrary number, large enough in order to have for all 1 ≤ i ≤ N the
inclusion ωxiΓ ⊂]0, L[. Thus (3.1.10) becomes:

Ii ≤ Cδ2

∫
]−NL,NL[2×]−1,a[

N̂(x̂, ν̂)dx̂dν̂, (3.1.11)

where NL := 1 + Ent(L
δ
) and Ent is the floor function. Using periodicity on x̂ of the

function (x̂, ν̂) 7→ N(x̂, ν̂) yields:∫
]−NL,NL[2×]−1,a[

N̂(x̂, ν̂)dx̂dν̂ = 4N2
L ·
∫
Ŷa

N̂(x̂, ν̂)dx̂dν̂. (3.1.12)

Moreover, from the definition of the map N̂ , we have:∫
Ŷa

N(x̂, ν̂)dx̂dν̂ =

∫
Ŷa

‖u (.; x̂, ν̂)‖2
Hq(Γ) dx̂dν̂. (3.1.13)

According Fubini theorem and the definition of the space Hq
0,ΓM

(
Γ;L2

#

(
Ŷa
))

, we have:∫
Ŷa

‖u (.; x̂, ν̂)‖2
Hq(Γ) dx̂dν̂ = ‖u‖2

Hq
0,ΓM

(
Γ;L2

#

(
Ŷa

)).
Combining this with (3.1.13), (3.1.12) and (3.1.11) yields the following estimate:

Ii ≤ Cδ‖u‖2

Hq
0,ΓM

(
Γ;L2

#

(
Ŷa

)).
Combining this with (3.1.7) conclude the proof of (3.1.5). Combining (3.1.4) and (3.1.5)
with (3.1.3) conclude the proof.
To state Corollary 3.1.2, we need to introduce the following space:

H
(
Ŷa
)

:=
{
u ∈ L2

#

(
Ŷa
)
, ∇u ∈,

(
L2

#

(
Ŷa
))3
}
,

and the norm of this space is defined for u ∈ H
(
Ŷa
)

by ‖u‖
H
(
Ŷa

) := ‖u‖L2(Ŷa) +

‖∇u‖L2(Ŷa)3 .
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Corollary 3.1.2. Let q. For all δ > 0 the operator Iδ satisfies:

Iδ : Hq+1
0,ΓM

(
Γ;H

(
Ŷa
))
7→ H1(Ωδ,δa).

For all u ∈ Hq+1
0,ΓM

(
Γ;H

(
Ŷa
))

we have:

‖ Iδ u‖(
H1(Ωδ,δa)

)† ≤ Cδ−
1
2‖u‖

Hq+1
0,ΓM

(
Γ;H
(
Ŷa

)). (3.1.14)

and
∇L Iδ u = Iδ

(
∇Γ u+ δ−1 ∇̂u

)
. (3.1.15)

Proof. Let u ∈ Hq+1
0,ΓM

(
Γ;H

(
Ŷa
))

and let us prove (3.1.15). Let φ ∈ D
(
Ωδ,δa

)3 and let us
prove that:

−
∫

Ωδ,δa

Iδ udivL(φ)dxΓdν =

∫
Ωδ,δa

Iδ
(
∇Γ u+ δ−1 ∇̂u

)
φdxΓdν. (3.1.16)

We can prove that Cq+1
(
Γ×Ŷa

)
∩Hq+1

0,ΓM

(
Γ;H

(
Ŷa
))

is dense in the spaceHq+1
0,ΓM

(
Γ;H

(
Ŷa
))

.

Therefore there exist, (un)n∈N ∈ Cq+1
(
Γ× Ŷa

)
∩Hq+1

0,ΓM

(
Γ;H

(
Ŷa
))

such that:

un −−−−−−−−−−→
Hq+1

0,ΓM

(
Γ;H
(
Ŷa

)) u (3.1.17)

Let n ∈ N, since un is smooth enough, we can apply Proposition 2.3.1 to un. Therefore
for all n ∈ N, we have:

∇L Iδ un = Iδ
(
∇Γ u

n
Γ + δ−1 ∇̂un

)
,

which leads to:

−
∫

Ωδ,δa

Iδ undivL(φ)dxΓdν =

∫
Ωδ,δa

Iδ
(
∇Γ u

n + δ−1 ∇̂un
)
φdxΓdν. (3.1.18)

Moreover (3.1.17) imply:

∇Γ u
n + δ−1 ∇̂un −−−−−−−−−−−−−→

Hq
0,ΓM

(
Γ;(L2

#

(
Ŷa

)
)3

) ∇Γ u+ δ−1 ∇̂u

Thus using Proposition 3.1.1 implies that the sequences Iδ un and Iδ
(
∇Γ u

n+ δ−1 ∇̂un
)

converge in L2(Ωδ,δa) to Iδ u and Iδ
(
∇Γ u+ δ−1 ∇̂u

)
respectively. Thus we have:

−(Iδ u, divLφ)L2(Ωδ,δa) =
(
Iδ
(
∇Γ u+ δ−1 ∇̂u

)
, φ
)
L2(Ωδ,δa)

,

which conclude the proof of (3.1.15).
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Thanks to (3.1.15) we directly get that Iδ u ∈ H1(Ωδ,δa). Now let us prove the estimate
(3.1.14). From the definition of Hq+1

0,ΓM

(
Γ;H

(
Ŷa
))

we have:

∇Γ u+ δ−1 ∇̂u ∈
(
Hq

0,ΓM

(
Γ;L2

#

(
Ŷa
)))3

.

Therefore, according to Proposition 3.1.1 we have:

Iδ
(
∇Γ u+ δ−1 ∇̂

)
∈ L2(Ωδ,δa),

with the existence of C > 0 independent of u and δ such that:∥∥∥Iδ (∇Γ u+ δ−1 ∇̂
)∥∥∥

L2(Ωδ,δa)
≤ Cδ

1
2

∥∥∥∇Γ u+ δ−1 ∇̂u
∥∥∥(

Hq
0,ΓM

(
Γ;L2

#

(
Ŷa

)))3 .

From this equality we get that Iδ u belongs to H1(Ωδ,δa) and we have thanks to the
estimation which appear in Proposition 3.1.1:

‖ Iδ u‖H1(Ωδ,δa) = ‖ Iδ u‖L2(Ωδ,δa) +
∥∥∥Iδ ·(∇Γ uΓ + δ−1 ∇̂u

)∥∥∥
Ωδ,δa

≤ C‖u‖
Hq

0,ΓM

(
Γ;L2

#

(
Ŷa

)) +
∥∥∥∇Γ uΓ + Cδ−1 ∇̂u

∥∥∥
Hq

0,ΓM

(
Γ;(L2

#

(
Ŷa

)
)3

)
≤ δ−1‖u‖

Hq+1
0,ΓM

(
Γ;L2

#

(
Ŷa

)).
Thus the proof is finished.
To state Corollary 3.1.3 we need to introduce the two following spaces:

• H0

(
Ŷa
)
⊂ H

(
Ŷa
)
is the space of function u ∈ H

(
Ŷa
)
such that u = 0 on ]0, 1[2×{a}.

The norm of this last space is defined for u ∈ H0

(
Ŷa
)
by:

‖u‖2

H0

(
Ŷa

) :=

∫
Y a
|∇u(x̂, ν̂)|2dx̂dν̂. (3.1.19)

• H1,0(Ωδ,δa) is the space of function u ∈ H1(Ωδ,δa) such that u = 0 on Γ×{δa}. The
norm in this space is defined for u ∈ H1,0(Ωδ,δa) by:

‖u‖2
H1,0(Ωδ,δa) :=

∫
Ωδ,δa

| ∇L u|2dxΓdν. (3.1.20)

For the sequel we identify L2(Ωδ,δa) as a subset of H1,0(Ωδ,δa)
† with the following canonical

injection:

〈u, v〉H1,0(Ωδ,δa)†−H1,0(Ωδ,δa) :=

∫
Ωδ,δa

uvdxΓdν.

Thanks to the Cauchy Schwartz inequality, we can prove:

‖u‖H1,0(Ωδ,δa)† ≤ C‖u‖L2(Ωδ,δa). (3.1.21)
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Hereafter
divL : L2(Ωδ,δa)

3 7→ H1,0(Ωδ,δa)
†, (3.1.22)

is the adjoint of the operator −∇L : H1,0(Ωδ,δa) 7→ (L2(Ωδ,δa))
3 and we have:

‖divL‖L(L2(Ωδ,δa)3,H1,0(Ωδ,δa)†) ≤ C. (3.1.23)

Corollary 3.1.3. Let q > 1. For all δ > 0 the operator Iδ satisfies:

Iδ : Hq+1
0,ΓM

(
Γ;H0

(
Ŷa
)†) 7→ (

H1,0(Ωδ,δa)
)†
.

For all u ∈ Hq+1
0,ΓM

(
Γ;L2

#

(
Ŷa
))

we have

‖ Iδ u‖(
H1,0(Ωδ,δa)

)† ≤ Cδ
3
2‖u‖

Hq+1
0,ΓM

(
Γ;H0

(
Ŷa

)†). (3.1.24)

Moreover this extension satisfies for all u ∈ Hq+1
0,ΓM

(
Γ; (L2

#

(
Ŷa
)
)3)
)
:

divL Iδ u = Iδ
(

divΓ uΓ + δ−1 d̂ivu
)
. (3.1.25)

Proof. Let us summarize our proof:

1. We define a map Ĩδ : Hq+1
0,ΓM

(
Γ;H0

(
Ŷa
)†) 7→ (

H1,0(Ωδ,δa)
)†

such that:

∀u ∈ Hq+1
0,ΓM

(
Γ;L2

#

(
Ŷa
))
, ‖Ĩδu‖(

H1,0(Ωδ,δa)
)† ≤ Cδ

3
2‖u‖

Hq+1
0,ΓM

(
Γ;H0

(
Ŷa

)†). (3.1.26)

2. We prove that this map is well extension of Iδ in the sense that:

∀u ∈ Hq+1
0,ΓM

(
Γ;L2

#

(
Ŷa
))
, Ĩδu = Iδ u. (3.1.27)

3. We prove that:

∀u ∈ Hq+1
0,ΓM

(
Γ; (L2

#

(
Ŷa
)
)3)
)
, divL Iδ u = Iδ

(
divΓ uΓ + δ−1 d̂ivu

)
. (3.1.28)

Definition of Ĩδ and proof of estimate (3.1.26). To define Ĩδ, we first need to
introduce the operator Sa : Hq+1

0,ΓM

(
Γ;H0

(
Ŷa
)†) 7→ Hq+1

0,ΓM

(
Γ;H0

(
Ŷa
))

defined for v ∈

Hq+1
0,ΓM

(
Γ;H0

(
Ŷa
)†) and xΓ ∈ Γ by:

Sau(xΓ; ·) := V,

where V is the the unique solution of: Find V ∈ H0

(
Ŷa
)
such that for all φ ∈ H0

(
Ŷa
)
:

−
∫
Ŷa

∇̂V (xΓ; x̂, ν̂) · ∇̂φ(xΓ; x̂, ν̂)dx̂dν̂ = 〈u(xΓ; ·), φ〉
H0

(
Ŷa

)†
−H0

(
Ŷa

). (3.1.29)
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By using 2.5.13 we can prove that we well have for all u ∈ Hq+1
0,ΓM

(
Γ;H0

(
Ŷa
)†):

Sau ∈ Hq+1
0,ΓM

(
Γ;H0

(
Ŷa
))
, (3.1.30)

and according to the definition of the norm of the space H0

(
Ŷa
)
given in (3.1.19), we

have: ∥∥∥∇̂(Sau)
∥∥∥
Hq+1

0,ΓM

(
Γ;L2

#

(
Ŷa

)) ≤ C‖u‖
Hq+1

0,ΓM

(
Γ;H0

(
Ŷa

)†). (3.1.31)

We now prove that we can define Ĩδ for u ∈ Hq+1
0,ΓM

(
Γ;H0

(
Ŷa
)†) by:

Ĩδu := δ
(

divL
(
Iδ
(
∇̂(Sau)

))
− Iδ

(
divΓ

(
∇̂(Sau)

)))
. (3.1.32)

Indeed, by construction of Sa and thanks to (3.1.30) we have:

∇̂(Sau) ∈ Hq+1
0,ΓM

(
Γ;L2

#

(
Ŷa
))3

and divΓ

(
∇̂(Sau)

)
∈ Hq

0,ΓM

(
Γ;L2

#

(
Ŷa
))
. (3.1.33)

Thanks to (3.1.31) we have:

‖ ∇̂(Sau)‖
Hq+1

0,ΓM

(
Γ;L2

#

(
Ŷa

))3 ≤ C‖u‖
Hq+1

0,ΓM

(
Γ;H0

(
Ŷa

)†), (3.1.34)

and:
‖ divΓ

(
∇̂(Sau)

)
‖
Hq

0,ΓM

(
Γ;L2

#

(
Ŷa

)) ≤ C‖u‖
Hq+1

0,ΓM

(
Γ;H0

(
Ŷa

)†). (3.1.35)

Thus, thanks to (3.1.33), we can apply Proposition 3.1.1, which leads to:

Iδ
(
∇̂(Sau)

)
∈ L2(Ωδ,δa) and Iδ

(
divΓ

(
∇̂(Sau)

))
∈ L2(Ωδ,δa), (3.1.36)

and the estimate (3.1.34) and (3.1.35) leads to:

‖ Iδ
(
∇̂(Sau)

)
‖L2(Ωδ,δa) ≤ Cδ

1
2‖u‖

Hq+1
0,ΓM

(
Γ;H0

(
Ŷa

)†),
and ∥∥∥Iδ ( divΓ

(
∇̂(Sau)

))∥∥∥
L2(Ωδ,δa)

≤ Cδ
1
2‖u‖

Hq+1
0,ΓM

(
Γ;H0

(
Ŷa

)†). (3.1.37)

Thanks to L2(Ωδ,δa) ⊂ H1,0(Ωδ,δa)
† and (3.1.22), (3.1.36) leads to:(

Iδ
(

divΓ

(
∇̂(Sau)

))
, divL

(
Iδ
(
∇̂(Sau)

)))
∈
(
H1,0(Ωδ,δa)

†
)2

. (3.1.38)

Moreover combining (3.1.21) and (3.1.23), with the estimate (3.1.37) yields:∥∥∥divL
(
Iδ
(
∇̂(Sau)

))∥∥∥
H1,0(Ωδ,δa)†

≤ Cδ
1
2‖u‖

Hq+1
0,ΓM

(
Γ;H0

(
Ŷa

)†), (3.1.39)
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and ∥∥∥Iδ ( divΓ

(
∇̂(Sau)

))∥∥∥
H1,0(Ωδ,δa)†

≤ Cδ
1
2‖u‖

Hq+1
0,ΓM

(
Γ;H0

(
Ŷa

)†). (3.1.40)

Thanks to (3.1.38), the quantity Ĩδu can well be defined by (3.1.32) and belongs to
H1,0(Ωδ,δa)

†.
Combining (3.1.32) with the estimate (3.1.39) and (3.1.40) conclude the proof of the

estimate (3.1.26).
Proof of (3.1.27). Thanks to (3.1.26) and Proposition 3.1.1, we have:

(Iδ, Ĩδ) ∈ L
(
Hq+1

0,ΓM

(
Γ;L2

#

(
Ŷa
))
, H1,0(Ωδ,δa)

†
)2

. (3.1.41)

Moreover, we can prove that the following space:

Cq+1
0,ΓM

(
Γ;C∞per,a

)
with C∞per,a := C∞(Ω̂a) ∩H0

(
Ŷa
)

is dense intoHq+1
0,ΓM

(
Γ;H0

(
Ŷa
)†). Therefore it remains to prove (3.1.27) for u ∈ Cq+1

0,ΓM

(
Γ;C∞per,a

)
.

Regularity results for elliptic operator (see [60, Theorem 2.5.21], [60, Theorem 2.6.7]
and [57, Theorem 4.21]) lead to Sau ∈ Cq+1

0,ΓM

(
Γ;C∞per,a

)
. Thus we have:

∇̂(Sau) ∈ Cq+1
0,ΓM

(
Γ;C∞per,a

)
and (∇̂(Sau)).n = 0 on Γ×]0, 1[2×{−1}. (3.1.42)

Thus, we can apply Proposition 2.3.2 which leads to:

divL
(
Iδ
(
∇̂(Sau)

))
= Iδ

(
divΓ

((
∇̂(Sau)

)
Γ

)
+ δ−1 d̂iv

(
∇̂(Sau)

))
in L2(Ωδ,δa).

(3.1.43)
From the boundary conditions that appear in (3.1.42) we get (Iδ v).n = 0 on Γ× {−δ}.
Therefore (3.1.43) becomes:

divL
(
Iδ
(
∇̂(Sau)

))
= Iδ

(
divΓ

((
∇̂(Sau)

)
Γ

)
+ δ−1 d̂iv

(
∇̂(Sau)

))
in (H1,0(Ωδ,δa))

†.

Thanks to (3.1.29), we have d̂iv(∇̂Sau) = u, which leads to:

divL
(
Iδ
(
∇̂(Sau)

))
= Iδ

(
divΓ

((
∇̂(Sau)

)
Γ

)
+ δ−1 Iδ u in (H1,0(Ωδ,δa))

†,

an then:

Iδ u = δ
(

divL
(
Iδ
(
∇̂(Sau)

))
− Iδ

(
divΓ

((
∇̂(Sau)

)
Γ

))
in (H1,0(Ωδ,δa))

†.

Combining this with (3.1.32) conclude the proof of (3.1.27).
Proof of (3.1.25). Define the two operators A,B for u ∈ Hq+1

0,ΓM

(
Γ; (L2

#

(
Ŷa
)
)3)
)
by:

Au := divL
(
Ĩδu
)

and Bu := Ĩδ
(

divΓ uΓ + δ−1 d̂ivu
)
,

and (3.1.25) is equivalent to prove A = B. Let us prove A = B. Indeed thanks to (3.1.41)
we have:

(A,B) ∈ L
(
Hq+1

0,ΓM

(
Γ; (L2

#

(
Ŷa
)
)3)
)
, H1,0(Ωδ,δa)

†
)2

. (3.1.44)
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Let D#(Ŷa) be the space of function ψ in L2
#

(
Ŷa
)
such that supp(ψ) ⊂ Ŷa. Thanks to

Proposition 2.3.2 and (3.1.27) , we have:

∀u ∈ Cq+1
0,ΓM

(
Γ;D#(Ŷa)

)
, Au = Bu. (3.1.45)

Moreover we can prove that Cq+1
0,ΓM

(
Γ;D#(Ŷa)

)
is dense into Hq+1

0,ΓM

(
Γ; (L2

#

(
Ŷa
)
)3)
)
.

Therefore (3.1.44) and (3.1.45) conclude the proof of (3.1.25).

3.2 Stability of the exact problem

Lemma 3.2.1. There exists C > 0 such that for all δ > 0 the following estimate hold:

‖uδ‖H1(Ωδ) ≤ C sup
φ∈H1(Ωδ)

aδ(uδ, φ)

‖φ‖H1(Ωδ)

,∀uδ ∈ H1 (Ωδ) .

Proof. It is a proof by contradiction where we are inspired from [37]. Indeed assume that
there exists a sequence (uδ)δ such that:

‖uδ‖H1(Ωδ) = 1 and lim
δ→0

sup
φδ∈H1(Ωδ)

aδ(uδ, φ)

‖φδ‖H1(Ωδ)

= 0. (3.2.46)

The difficulty is that our domains Ωδ depend on δ. That is why we introduce for any
sequence of function (fδ)δ defined on Ω0, the sequence of function (f̃δ) defined for (xΓ, ν) ∈
Ω0 by

f̃δ := fδ
(
xΓ, ν · (1 + δ/η0)− δ

)
.

Using the change of variable formula for integrals yield:

‖ũδ‖2
H1(Ω0) =(1 + δ/η0)−1 ·

(
‖∇Γ fδ‖2

L2(Ωδ)
+ ‖fδ‖2

L2(Ωδ)

)
+

(1 + δ/η0) · ‖∂νfδ‖2
L2(Ωδ)

.

Therefore we have the following equivalence:

‖f̃δ‖H1(Ω0) ∼
δ→0
‖fδ‖H1(Ωδ) and ‖f̃δ‖L2(Ω0) ∼

δ→0
‖fδ‖L2(Ωδ). (3.2.47)

Thus, thanks to (3.2.46), the sequence (ũδ)δ>0 is bounded in H1(Ω0). Thus, there exists
ũ0 ∈ H1(Ω0). such that up to a sub-sequence the sequence (ũδ)δ>0 weakly converge to ũ0

in H1(Ω0).
First, prove that ũ0 = 0. Let φ ∈ H1(Ω0) with ‖φ‖H1(Ω0) = 1 and φδ defined for

(xΓ, ν) ∈ Ωδ by:
φδ(xΓ, ν̂) := φ (xΓ, (ν + δ)/(1 + δ/η0)) .

Then from (3.2.47) we get the equivalence ‖φδ‖L2(Ωδ) ∼
δ→0

1 and combining with (3.2.46)
yields:

aδ(uδ, φ
δ) →

δ→0
0.
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Thus we have

0 = lim
δ→0

∫
Ωδ

(
ρδ(C ∇L uδ,∇L φδ)− k2 Cµδuδφδ

)
dΓdν + 〈DtNL uδ, φ〉Γ×{η0},

= lim
δ→0

∫
Ω0

(
ρ̃δ(C̃ ∇Γ uδ,∇Γ φ) + C̃ρ̃δ∂νuδ∂νφ− k2C̃µ̃δũδφ

)
dΓdν + 〈DtNL ũδ, φ〉Γ×{η0},

Next using the dominated convergence theorem yields that the sequence of vector:

Uδ :=
(
ρ̃δC̃ ∇Γ φ; ρ̃δC̃∂νφ;−k2C̃µ̃δφ

)
strongly converges in L2(Ω0) to:

U0 :=
(
C ∇Γ φ; C ∂νφ;−k2 Cφ

)
.

Thus using that (∇Γ ũδ; ∂ν ũδ; ũδ) weakly converges in L2(Ω0)3 to (∇Γ ũ0; ∂ν ũ0; ũδ) we get:

∀φ ∈ H1(Ω0),

∫
Ω0

(
(C ∇L ũ0,∇L φ)− k2 C ũ0φ

)
dΓdν + 〈DtNL ũδ, φ〉Γ×{η0} = 0.

Therefore ũ0 is a solution of the Helmholtz with outgoing condition on Γ × {η0} with a
zero as right hand-side. Since this problem is well this conclude the proof of ũ0 = 0.

Secondly, we now prove that (uδ)δ>0 strongly converge in H1(Ωδ) to zero. We remark
that the sequence (ũδ)δ>0 weakly converge to 0 in H1(Ω0). Thus Rellich theorem yields
that (ũδ)δ>0 strongly converges to zero in L2(Ω0). Therefore combining this with (3.2.47)
yields that:

lim
δ→0

∫
Ωδ

−(k2µδ C +1)|uδ|2dΓdν = 0. (3.2.48)

We define the operator DtNk=i
L : H

1
2 (Γ× {η0}) 7→ H−

1
2 (Γ× {η0}) for ũδ, ṽδ ∈ H

1
2 (Γ× {η0})

by: 〈
DtNk=i

L ũδ, ṽδ
〉

Γ×{η0} :=
〈
DtNk=i ũδ ◦ L, ũδ ◦ L

〉
Ση0

where DtNk=i : H
1
2 (Σ0) 7→ H−

1
2 (Σ0) is the Dirichlet to Neumann map on Σ0 associated

to the wave-number i. Thanks to [60, Theorem 2.6.4], [51, appendix] and [25, Proposition
3.4], we get the compactness of the operator:

DtNL−DtNk=i
L : H

1
2 (Γ× {η0}) 7→ H−

1
2 (Γ× {η0}) .

Therefore lim
δ→0

〈
(DtNL−DtNk=i

L )ũδ, ũδ
〉

Γ×{η0} = 0. Thus combining this with (3.2.48),
(3.2.46) leads to

0 = lim
δ→0

aδ(uδ, uδ) = lim
δ→0

∫
Ωδ

(ρδ(C ∇L uδ,∇L uδ) + uδuδ) dΓdν + 〈DtNk=i
L uδ, uδ〉Γ×{η0}.

Since the operator DtNk=i is positive (see[60, Theorem 2.6.4], [51, appendix] and [25,
Proposition 3.4]) then DtNk=i

L is a positive operator in the sense that for all uδ ∈
H

1
2 (Γ× {η0}) we have 〈DtNk=i

L uδ, uδ〉Γ×{η0} ≥ 0. Thus we have:

lim
δ→0

∫
Ωδ

(ρδ(C ∇L uδ,∇L uδ) + uδuδ) dΓdν = 0,

and combining this with (4.5.79) yields the final contradiction ‖uδ‖H1(Ωδ) → 0.
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3.3 Error decomposition

For what follows in this work n is an arbitrary positive number. Moreover, thanks to
Lemma 3.2.1 a sufficient condition is a uniform estimate in v ∈ H1 (Ωδ) with ‖v‖H1(Ωδ)

= 1

of aδ(uδ − unη,δ, v). For all v ∈ H1 (Ωδ), we have the following decomposition of the error:

aδ(u
δ − unη,δ, v) := Drη,δ,n +Dcη,δ,n,

where Drη,δ,n is so-called "matching error" (it measures the mismatch between the trun-
cated expansions (2.2.7) and (2.2.8):

Drη,δ,n :=

∫
Ωδ

ρδ(un,δ − Iδ ûn,δ)∇χη∇v −
∫

Ωδ

ρδ [∇(un,δ − Iδ ûn,δ)∇χη] v

and where Dcη,δ,n is so-called "consistency error" (it measures how much the truncated
expansion (2.2.7) fails to satisfy the original Helmholtz equation):

Dcη,δ,n := aδ(Iδ ûn,δ, χηv).

This error decomposition is exactly the same as in [37]. Thanks to Proposition 2.5.15
and Lemma 2.5.27, we have:

Tkûn,δ ∈ HmΓ+ 1
2
−n
(

Γ;H0

(
Ŷη/δ

)†)
. (3.3.49)

We assume that n ≤ mΓ − 4 because this implies mΓ + 1
2
− n > 2 and according to

Corollary 3.1.3, (3.3.49) leads to:

Iδ(Tkûn,δ) ∈
(
H1,0(Ωδ,η)

)†
.

Therefore we now can define the following quantity:

Dc,0η,δ,n :=
n∑
k=0

δ−2+k〈Iδ(Tkûn,δ), χηv〉Ωδ,η ,

which is so-called “first consistency error”.
The “second consistency error” is defined by

Dc,1η,δ,n := aδ(Iδ ûn,δ, χηv)−
n∑
k=0

δ−2+k〈Iδ(Tkûn,δ), χηv〉Ωδ,η ,

so that the total consistency error has the decomposition Dcη,δ,n = Dc,0η,δ,n +Dc,1η,δ,n.

3.3.1 Estimate of the first consistency error

Here we prove the following result:
Lemma 3.3.1. The first consistency error satisfies the following estimate:

Dc,0η,δ,n ≤ Cηn−1‖v‖H1(Ωδ).

104



For all that follow, C > 0 is a constant independent of δ and η. The proof of Lemma 3.3.1
is a direct consequence of Proposition 3.3.2 and Proposition 3.3.3. We recall the following
useful result(see [67, Lemma 3.10] and [34, equation (3.9.10)] )

‖χηv‖H1(Ωδ,η) ≤ Cη−
1
2‖v‖H1(Ωδ). (3.3.50)

We define 〈·, ·〉Ωδ,η := 〈·, ·〉H1(Ωδ,η)†−H1(Ωδ,η).
Proposition 3.3.2. The first consistency error can be rewritten as follow:

Dc,0η,δ,n = δ−2

2n∑
l=n+1

(
n∑

k=l−n
δl〈Iδ(Tkûl−k), χηv〉Ωδ,η

)
, (3.3.51)

Proof. By definition we have:
Dc,0η,δ,n =

n∑
k=0

δ−2+k〈Iδ(Tkûn,δ), χηv〉Ωδ,η ,

=
∑

(k,l)∈N1

δ−2+k〈Iδ(Tkδlûl), χηv〉Ωδ,η ,

where N1 := {(k, l) ∈ Z2, 0 ≤ k ≤ n and 0 ≤ l ≤ n}. Let N : Z2 7→ Z2 be defined for
(k, l) ∈ Z2 by:

N (k, l) := (k, l + k),

which is a bijective application. From the following equivalence:

∀(k, l) ∈ Z2,

{
0 ≤ k ≤ n

0 ≤ l ≤ n
⇐⇒

({
0 ≤ k ≤ l + k

0 ≤ l + k ≤ n
or

{
l + k − n ≤ k ≤ n

n+ 1 ≤ l + k ≤ 2n

)
,

we get that N1 = N−1(N1
2 ∪N2

2 ) with N1
2 ∩N2

2 = ∅ and:{
N1

1 :=
{

(k, l) ∈ Z2, 0 ≤ k ≤ l and 0 ≤ l ≤ n
}
,

N1
2 :=

{
(k, l) ∈ Z2, l − n ≤ k ≤ n and n+ 1 ≤ l ≤ 2n

}
.

Thus we have:∑
(k,l)∈N1

δ−2+k〈Iδ(Tkδlûl), χηv〉Ωδ,η =
∑

(k,l)∈N (N1)

δ−2+l〈Iδ(Tkδlûl−k), χηv〉Ωδ,η ,

=
∑
m=1,2

∑
(k,l)∈Nm

2

δ−2+l〈Iδ(Tkûl−k), χηv〉Ωδ,η ,

where here 〈·, ·〉 = 〈·, ·〉H1,0(Ωδ)†−H1,0(Ωδ). Moreover from the relation T0ûl + T1ûl−1 + · · ·+
Tlû0 = 0, ∀l ∈ N, we have:∑

(k,l)∈N1
2

δ−2+l〈Iδ(Tkûl−k), χηv〉Ωδ,η = 0,

which leads to:

Dc,0η,δ,n = δ−2

2n∑
l=n+1

(
n∑

k=l−n
δl〈Iδ(Tkûl−k), χηv〉Ωδ,η

)
.

Thus the proof is finished.
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Proposition 3.3.3. For all n + 1 ≤ l ≤ 2n and l − n ≤ k ≤ 2k we have the following
estimate:

|〈(Tkûl−k)δ, χηv〉Ωδ,η | ≤ C
δ2

δl
ηl−2‖v‖H1(Ωδ).

Proof. Thanks to Lemma 2.5.27, ûl−k take the form ûl−k = pl−k +Rl−k with :

(pl−k, Rl−k) ∈ HmΓ+ 1
2
−(l−k)

(
Γ;Cl−k[ν̂]

)
×HmΓ+ 1

2
−(l−k)

0,ΓM

(
Γ;H

(
Ŷ∞
))
, (3.3.52)

and Rl−k satisfies the P∞mΓ+ 1
2
−(l−k)

property. Therefore thanks to Proposition 2.5.15 there
exists:

(Al,k, Bl,k) ∈ HmΓ+ 1
2
−n−2

(
Γ;Cmax(l−2,0)[ν̂]

)
×HmΓ+ 1

2
−n−2

(
Γ;H

(
Ŷ∞
)†)

,

such that:
Tkûl−k = Al,k +Bl,k. (3.3.53)

Moreover, since we supposed n ≤ mΓ − 4, we have ql,k := mΓ + 1
2
− n− 2 > 0. Therefore

thanks to Corollary 3.1.2 we have:∥∥Iδ (Tk(ûl−k))∥∥H1(Ωδ,η)†
≤ Cδ

3
2 ‖Tk(ûl−k)‖

H
ql,k

(
Γ,H0

(
Ŷη/δ

)†) . (3.3.54)

Let us prove:

‖Al,k‖
H
ql,k

(
Γ,H0

(
Ŷη/δ

)†) ≤ C
(η
δ

)l− 1
2
, (3.3.55)

and
‖Bl,k‖

H
ql,k

(
Γ,H0

(
Ŷη/δ

)†) ≤ C. (3.3.56)

Indeed, let us prove (3.3.55). For all 0 ≤ j ≤ l − 2, we have thanks to the integral part
formula that for all φ ∈ H0

(
Ŷη/δ

)
:∫

Ŷη/δ

ν̂jφ(xΓ; x̂, ν̂)dx̂dν̂ = −
∫
Ŷη/δ

ν̂j+1 − (−δ)j+1

j + 1
∂ν̂φ(xΓ; x̂, ν̂)dx̂dν̂,

≤
∥∥∥∥ ν̂j+1 − (−δ)j+1

j + 1

∥∥∥∥
L2(Ŷη/δ)

‖∇φ‖L2(Ŷη/δ)
3 ≤ C

(η
δ

)j+ 3
2 ‖∇φ‖L2(Ŷη/δ)

3 .

Combining this with the definition of the norm of the space H0

(
Ŷη/δ

)
given in (3.1.19)

yields the following estimate:

∀0 ≤ j ≤ l − 2, ‖ν̂j‖
H0

(
Ŷη/δ

)† ≤ C
(η
δ

)l− 1
2
.

Combining this with Al,k ∈ Hql,k

(
Γ;Cmax(l−2,0)[ν̂]

)
conclude the proof of (3.3.55). The

estimate (3.3.56) is a direct consequence of Al,k ∈ Hql,k

(
Γ;H

(
Ŷ∞
)†) and the definition

of the norms of space H
(
Ŷ∞
)
and H0

(
Ŷη/δ

)
.
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Combining (3.3.53), (3.3.54), (3.3.55) and (3.3.56) yields:∥∥Iδ (Tk(ûl−k))∥∥H1(Ωδ,η)†
≤ Cδ

3
2

(η
δ

)l− 1
2
.

Combining this with (3.3.50) yields:

|〈(Tkûl−k)δ, χηv〉Ωδ,η | ≤ Cδ
3
2

(η
δ

)l− 1
2 ‖χηv‖H1(Ωδ,η) ≤ δ

3
2

(η
δ

)l− 1
2
η−

1
2 ‖v‖H1(Ωδ,η) ,

which concludes the proof.

3.3.2 Estimate of the second consistency error

Lemma 3.3.4. If n ≤ mΓ − 3 then the second consistency error satisfies the following
estimate:

Dc,1η,δ,n ≤ Cηn+1δ−1‖v‖H1(Ωδ).

We first prove that we can give for u a rigorous meaning to the following equation:

divL
(
ρδ C ∇L Iδ u

)
+ k2 Cµδ Iδ u = Iδ

(
δ−2

∞∑
n=0

δnTnu

)
,

by giving for all n ∈ N an estimate of the following quantity:

En :=

∥∥∥∥∥divL
(
ρδ C ∇L Iδ u

)
+ k2 Cµδ Iδ u− Iδ

(
δ−2

n∑
i=0

δiTiu

)∥∥∥∥∥
(H1,0(Ωδ,η))†

, (3.3.57)

with the following result:
Proposition 3.3.5. For all n > 0 there exists Cn > 0 such that for all u ∈ H

1
2

+3

0,ΓM

(
Γ;H

(
Ŷη/δ

))
the following estimate holds:

En ≤ Cδ−
1
2ηn+1‖u‖

H
1
2 +2

0,ΓM

(
Γ;H
(
Ŷη/δ

)), (3.3.58)

Proof. Let n > 0. Thanks to the Taylor expansion with integral there exists bounded
maps: (Rn, Rn) : Ωδ 7→ L(R3)× R such that for all (xΓ, ν) ∈ Ωδ we have:

C(xΓ, ν) =
n∑
i=0

C(i)νi + νn+1Rn(xΓ, ν) and C(xΓ, ν) =
n∑
i=0

c(i)νi + νn+1Rn(xΓ, ν).

Hence, we have the following decomposition:

divL
(
ρδ C ∇L Iδ u

)
+ k2 Cµδ Iδ u = P (Iδ u) +R(Iδ u), (3.3.59)

where we defined P,R for v ∈ H1(Ωδ,η) by:
Pv :=

n∑
i=0

divL
(
ρδC(i)ρδνi∇L v

)
+ k2µδc(i)νiv,

Rv := divL
(
Rn(ν)νn+1∇L v

)
+ k2µδRn(ν)νn+1v.

(3.3.60)
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Since u belongs to H3+ 1
2

(
Γ,H

(
Ŷ∞
))
, we can prove by using Proposition 3.1.1, Corol-

lary 3.1.3 and Corollary 3.1.2 and doing similar computation as in “Recursive equations
for the near field” (see chapter 2) that:

P (Iδ u) = Iδ

(
δ−2

n∑
i=0

δiTiu

)
.

Combining this with (3.3.59) leads to:

En = ‖R(Iδ u)‖H1(Ωδ,η)† . (3.3.61)

Thanks to (3.1.23) we have:∥∥∥divL
(
Rn(ν)νn+1∇L Iδ u

)∥∥∥
H1(Ωδ,η)†

≤
∥∥Rn(ν)νn+1∇L Iδ u

∥∥
L2(Ωδ,η)

.

Thus using that Rn is a bounded function and −δ ≤ ν ≤ η yields:∥∥∥divL
(
Rn(ν)νn+1∇L Iδ u

)∥∥∥
H1(Ωδ,η)†

≤ Cηn+1‖ Iδ u‖H1(Ωδ,η). (3.3.62)

By using similar argument, we prove that:∥∥k2µδRn(ν)νn+1
∥∥
H1(Ωδ,η)†

≤ Cηn+1‖ Iδ u‖H1(Ωδ,η). (3.3.63)

Moreover since u ∈ H
1
2

+2

0,ΓM

(
Γ;H

(
Ŷη/δ

))
we have from Proposition 3.1.3 that:

‖ Iδ u‖H1(Ωδ,η) ≤ Cδ−
1
2‖u‖

H
1
2 +2

0,ΓM

(
Γ;H
(
Ŷη/δ

)).
Combining this with (3.3.62), (3.3.63) and (3.3.60) yields:

‖R(Iδ u)‖H1(Ωδ,η)† ≤ Cδ−
1
2‖u‖

H
1
2 +2

0,ΓM

(
Γ;H
(
Ŷη/δ

)).
Combining this (3.3.61) conclude the proof.
Proof of Lemma 3.3.4. Since we have n ≤ mΓ − 3 we can apply Lemma 2.5.27 which
yields ûn,δ ∈ H

1
2

+3

0,ΓM

(
Γ;H

(
Ŷη/δ

))
. Therefore we can apply Proposition 3.3.5 which leads

to:
Dc,1η,δ,n ≤ Cnη

n+1δ−
1
2‖ûn,δ‖

H
1
2 +2

0,ΓM

(
Γ;H
(
Ŷη/δ

)), (3.3.64)

where we recall that:

Dc,1η,δ,n :=

∣∣∣∣∣aδ(Iδ ûn,δ, χηv)−
n∑
k=0

δ−2+k〈Iδ(Tkûn,δ), χηv〉H1,0(Ωδ,η)†−H1,0(Ωδ,η)

∣∣∣∣∣ .
Let us prove that:

‖ûn,δ‖
H

1
2 +2

0,ΓM

(
Γ;H
(
Ŷη/δ

)) ≤ C
(η
δ

) 1
2 (3.3.65)
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We recall from Lemma 2.5.27 the existence of (Ri)i ∈ H
1
2

+2
(
Γ;H

(
Ŷ∞
))

such that:

ûn,δ =
n∑
i=0

δiRi +
n∑
i=0

i∑
j=0

δipji ν̂
j, (3.3.66)

and for all 0 ≤ i ≤ n, pi ∈ H2+ 1
2 (Γ;Ci[ν̂]). Thus from Proposition 2.5.18 we get:

‖Ri‖
H2+ 1

2 (Γ;H
(
Ŷη/δ

)
)
≤ C. (3.3.67)

Moreover we have:∥∥∥∥∥
n∑
i=0

i∑
j=0

δipji ν̂
j

∥∥∥∥∥
H2+ 1

2 (Γ;H
(
Ŷη/δ

)
)

≤ C sup
1≤i≤n

‖pi‖H2+ 1
2 (Γ;Ci[ν̂])

(
n∑
i=0

i∑
j=0

δi‖ν̂j‖
H
(
Ŷη/δ

)) ≤ C
(η
δ

) 1
2
.

Combining this with (3.3.64), (3.3.66) and (3.3.67) conclude the proof of (3.3.65). Com-
bining (3.3.65) with (3.3.64) conclude the proof.

3.3.3 Estimate of matching error

Lemma 3.3.6. If n ≤ mΓ − 3 then the matching error satisfies the following estimate:

Drη,δ,n ≤ C
(
ηn + exp

(
−πgmin

η

δ

))
‖v‖H1(Ωδ).

Proof. We recall that this quantity is given by:

Drη,δ,n :=

∫
Ωδ

ρδ(unδ − Iδ Un
δ )∇χη∇v −

∫
Ωδ

ρδ [∇(unδ − Iδ Un
δ )∇χη] v

The support of the function ∇χη is given by: Cη := {(xΓ, ν), η < ν < 2η}. Thus thanks
to the Hölder inequality we get:

Drη,δ,n ≤
C

η

(
‖unδ − Iδ ûn,δ‖L∞(Cη) ‖∇v‖L1(Cη) + ‖∂ν (unδ − Iδ ûn,δ)‖L∞(Cη) ‖v‖L1(Cη)

)
.

(3.3.68)
Let us prove the following estimates

‖unδ − Iδ ûn,δ‖L∞(Cη) ≤ Cη
(

exp
(
−πgmin

η

δ

)
+ ηn

)
,

‖∂ν (unδ − Iδ ûn,δ)‖L∞(Cη) ≤ C
(

exp
(
−πgmin

η

δ

)
+ ηn

)
.

(3.3.69)

From mΓ ≥ n + 3 we have for all 0 ≤ i ≤ n, mΓ + 1 − i > 3
2

+ (1 + n − i). Thus we
can use the Sobolev embedding results:

∀1 ≤ i ≤ n, HmΓ+1−i(Ω0) ⊂ Cn+1−i(Ω0).
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Therefore thanks to Lemma 2.5.27 we get for all 1 ≤ i ≤ n that ui ∈ Cn−i+1(Ω0).
Therefore we can use the Taylor expansion with integral reminder, which yields get for
all 1 ≤ i ≤ n the existence of (Ri

1,Ri
2) ∈ C0(Ω0)2 such that for all (xΓ, ν) ∈ Ω0:

ui(xΓ, ν) =
n−i∑
j=0

∂jνui(xΓ, 0)

j!
νj + νn−i+1Ri

1(xΓ, ν),

∂νui(xΓ, ν) =
n−i−1∑
j=0

∂j+1
ν ui(xΓ, 0)

j!
νj + νn−i∂νRi

2(xΓ, ν).

Thanks to (2.3.35) we have:

(†)



unδ (xΓ, ν) =
n∑
i=0

n−i∑
j=0

δi
∂jνui(xΓ, 0)

j!
νj +

n∑
i=0

δiνn−i+1Ri
1

=
n∑
i=0

n−i∑
j=0

δjpi+jj (xΓ)νi +
n∑
i=0

δiνn−i+1Ri
1,

∂νu
n
δ (xΓ, ν) =

n∑
i=0

n−i−1∑
j=0

δi
∂j+1
ν ui(xΓ, 0)

j!
νj−1 +

n∑
i=0

δiνn−iRi
2

=
n∑
i=0

n−i∑
j=1

δjjpi+jj (xΓ)νj−1 +
n∑
i=0

δiνn−iRi
2.

where for all 0 ≤ n′ ≤ n, (pn
′

k (xΓ)k is the coefficient of the polynomial pn(xΓ) appearing
in Lemma 2.5.27. Moreover thanks to Lemma 2.5.27 for all 1 ≤ i ≤ n there exists
Ri ∈ HmΓ+ 1

2
−i(Γ;H

(
Ŷ∞
)
) satisfying the P∞

mΓ+ 1
2
−i property such that for all:

∀(xΓ; x̂, ν̂) ∈ Γ ∈ Ŷ∞, ûi(xΓ; x̂, ν̂) = pi(xΓ; ν̂) +Ri(xΓ; x̂, ν̂).

Therefore:

(††)


Iδ ûn,δ =

n∑
i=1

δi Iδ Ri +
n∑
k=0

k∑
l=0

δk−lpkl ν
l =

n∑
i=0

n−i∑
j=0

δjpi+jj νj +
n∑
i=1

δi Iδ Ri,

∂ν(Iδ ûn,δ) =
n∑
i=1

δi−1 Iδ(∂ν̂Ri) +
n∑
k=0

k∑
l=1

δk−lpkl lν
l−1 =

n∑
i=0

n−i∑
j=0

δjjpi+jj νj−1 +
n∑
i=1

δi−1 Iδ(∂ν̂Ri).

Doing the difference between (†) and (††) yields:
unδ − Iδ ûn,δ =

n∑
i=0

δiνn−i+1Ri
1 −

n∑
i=1

δi Iδ Ri

∂ν (unδ − Iδ ûn,δ) =
n∑
i=0

δiνn−iRi
2 −

n∑
i=1

δi−1 Iδ(∂ν̂Ri)

(3.3.70)
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On Cη we have ν ≤ 2η and we recall that δ ≤ η. Therefore we have:∥∥∥∥∥
n∑
i=1

δiνn−i+1Ri
1

∥∥∥∥∥
L∞(Cη)

≤ Cηn+1 and

∥∥∥∥∥
n∑
i=0

δiνn−iRi
2

∥∥∥∥∥
L∞(Cη)

≤ Cηn. (3.3.71)

Let us prove that for all 1 ≤ i ≤ n we have:

‖(Ri, ∂ν̂Ri)‖L∞(Cη) ≤ C exp
(
− πgmin

η

δ

)
. (3.3.72)

Indeed let 1 ≤ i ≤ n. We recall that that Ri satisfies P∞mΓ−n+ 1
2

property. Therefore
according to Proposition 2.5.18 we get that:

exp(πgminν̂)(Ri, ∂ν̂Ri) ∈ H
mΓ−n+ 1

2
0,ΓM

(
Γ;C0

(
[0, 1]× [1,∞[

))
.

Moreover, we have mΓ ≥ n+ 3. Therefore, we have thanks to Sobolev injection results

H
mΓ−n+ 1

2
0,ΓM

(
Γ;C0

(
[0, 1]2 × [1,∞[

))
⊂ L∞(Γ× Ŷ∞).

Therefore for all 1 ≤ i ≤ n and (xΓ, ν) ∈ Γ×]η, 2η[ we have:

exp
(
πgmin

η

δ

) ∣∣∣Iδ ((Ri, ∂ν̂Ri)
)

(xΓ, ν)
∣∣∣ ≤ exp

(
πgmin

ν

δ

) ∣∣∣Iδ ((Ri, ∂ν̂Ri)
)

(xΓ, ν)
∣∣∣ ,

≤
∣∣∣∣exp

(
πgmin

ν

δ

)
(Ri, ∂ν̂Ri)

(
xΓ,

ψΓ(xΓ)

δ
,
ν

δ

)∣∣∣∣ ,
≤‖exp(πgminν̂)(Ri, ∂ν̂Ri)‖L∞(Γ×Ŷ∞) ,

which conclude the proof of (3.3.72).
Combining (3.3.72) and (3.3.71) with (3.3.70) conclude the proof of (3.3.69).
Combining ‖∇v‖L1(Cη) ≤ C‖v‖H1(Γ×]−δ,η0[) with (3.3.69) yields:

C

η

(
‖unδ − Iδ ûn,δ‖L∞(Cη) ‖∇v‖L1(Cη)

)
≤
(

exp
(
−πgmin

η

δ

)
+ ηn

)
‖v‖H1(Γ×]−δ,η0[).

(3.3.73)
Moreover thanks to Cauchy-Schwartz we get ‖v‖L1(Cη) ≤ Cη

1
2‖v‖L2(Cη). Combining this

with the classical estimate (3.3.50) that we recall here:

‖v‖L2(Cη) ≤ Cη
1
2‖v‖H1(Cη),

yields the estimate ‖v‖L1(Cη) ≤ Cη‖v‖H1(Γ×]−δ,η0[). Combining this with (3.3.69) yields:

C

η

(
‖∂ν (unδ − Iδ ûn,δ)‖L∞(Cη) ‖v‖L1(Cη)

)
≤
(

exp
(
−πgmin

η

δ

)
+ ηn

)
‖v‖H1(Γ×]−δ,η0[).

(3.3.74)
The proof is finished because combining (3.3.73) and (3.3.74) with (3.3.68) yields the
desired estimate.
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3.4 Justification theorem

Theorem 3.4.1. If n ≤ mΓ − 6 then for all c > 0 there exists C > 0 such that the
following estimate holds:

‖uδ − un,δ‖H1(Γ×]c,η0[) ≤ Cδn+1.

Proof. Since we have

lim
δ→0

δ
n+1
n+2
−1 =∞ and lim

δ→0
δ
n+1
n+2 = 0,

the following choice:
η := δ

n+1
n+2 ,

is suitable in the sense that it satisfies (2.2.6). Since we have n + 3 ≤ mΓ − 3 we can
apply Lemma 3.3.1, Lemma 3.3.4, Lemma 3.3.6 and Lemma 3.2.1 with n = n+ 3 which
leads to

‖uδ − un+3
η,δ ‖H1(Ωδ) ≤ C

(
δn+1 + δ

(n+4)(n+1)
(n+2)

−1 + exp
(
−πgminδ

− 1
n+2

))
. (3.4.75)

Moreover we can prove that
δ

(n+4)(n+1)
(n+2)

−1 ≤ δn+1. (3.4.76)

Moreover since the exponential function is strongly decreasing a infinity we have:

exp
(
−πδ−

1
n+2

)
≤ Cδn+1. (3.4.77)

Therefore combining (3.4.75), (3.4.76) and (3.4.77) yields:

‖uδ − un+3
η,δ ‖H1(Γ×]−δ,η0[) ≤ Cδn+1. (3.4.78)

Since η tend to zero we can assume that c ≥ 2η which leads to:

‖uδ − un+3,δ‖H1(Γ×]c,η0[) = ‖uδ − un+3
η,δ ‖H1(Γ×]c,η0[).

Thus we have thanks to triangular inequality:

‖uδ − un,δ‖H1(Γ×]c,η0[) ≤ ‖uδ − un+3
η,δ ‖H1(Γ×]c,η0[) + δn+1

n+1∑
i=n+1

‖uj‖H1(Γ×]c,η0[).

Combining this last estimate with (3.4.78) yields the desired estimate and then the proof
is finished.
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Part II

Construction and analysis of
approximate boundary conditions and

numerical results
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Chapter 4

Construction and analysis of
approximate boundary conditions

In the previous part we succeed to construct for all n ∈ N an approximation of the form
u0 + δu1 + · · · + δnun. The procedure of computation of each ui stated in the previous
part is not yet useable. First we will the recall result of the first part. Secondly we will
simplify the expressions of the terms u0, u1 and u2. Afterward we will deduce from these
simplified expression a second approximated model using impedance boundary condition.
Next we will prove that the models with impedance boundary condition are well posed
and stable with respect to the small parameter δ. Finally we will deduce error estimates.

To compute the coefficients appearing in the first order impedance boundary con-
dition, one needs to compute for all xΓ, two functions w1(xΓ; ·) and w2(xΓ; ·) which are
solution of partial differential equation on a semi infinite bands (See Figure 4.2). The cur-
vature of our surface Γ will appears in the coefficient in the second impedance boundary
condition.

The expression of the second order impedance condition is not very useable. However
we found an assumption of symmetric on the reference functions associated to our physical
coefficients such that the expressions of the second order impedance boundary conditions
are simplified. In this case we do not need to compute other solution of partial differential
equation than w1(xΓ; ·) and w2(xΓ; ·).

We can refer the reader to [9, 10], [40], [14], [13] ,[11]and [63] for use of impedance
boundary conditions to approximate for an example homogeneous thin coat. Moreover
we can also refer the reader for the study inverse problem with impedance boundary
conditions to [25, 50, 26, 21, 22].

4.1 Results of Part I

Let us recall the geometry of our problem. The obstacle O is a bounded domain of R3

such that R3 \O is connected with boundary Γ with mΓ + 1 regularity. The “thin coating
of width δ” is the following subset Cδ of O:

Cδ := {x ∈ O, dist(x,Γ) < δ},
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Figure 4.1: Illustration of the geometry

Figure 4.2: Illustration the of infinite strip

where δ > 0 is a small parameter. Here the quantity dist(x,Γ) is the distance of x from
the surface Γ defined by

dist(x,Γ) := inf
xΓ∈Γ
|x− xΓ|,

and |.| is the classical euclidean norm of R3. We need to introduce the complementary of
O in R3 Ω := R3\O and Ωδ := Ω∪Cδ. We refer the reader to Figure 4.1 for an illustration
in 2D. The function uδ is defined as the unique solution of: Find uδ ∈ H1

loc(Ω
δ) such that:{

div
(
ρδ ∇uδ

)
+ k2µδ uδ = f, in Ωδ,

∂nδuδ = 0 on ∂Ωδ,
(4.1.1)

and uδ satisfies the Sommerfeld radiation condition:

lim
R→∞

∫
|x|=R

|∂ruδ − ikuδ|2 = 0.

Here nδ and n are respectively the unit outward normal to ∂Ωδ and Ω, k ∈ R is the
wave-number and f denotes a given source term. Moreover ρδ, µδ denote the acoustical
characteristics of the medium supposed to be equal to 1 in Ω and δ− periodic in the thin
coating Cδ. We do not need for this part to recall the definition of the ψΓ−δ−periodicity.

In chapter 3, we succeed to construct an approximation of our exact solution through
function û : (xΓ; x̂, ν̂) ∈ Γ× Ŷ∞ 7→ û(xΓ; x̂, ν̂) where we introduced the infinite strip (see
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Figure 4.2):
Ŷ∞ :=]0, 1[2×]− 1,∞[.

Functions defined on Γ× Ŷ∞ are seen as functions defined on Γ that values are function
xΓ ∈ Γ 7→ û(xΓ; ·).

In what follow, we recall useful differential operators that apply of functions defined
on Γ× Ŷ∞.

First we define the operators ∇̂ and d̂iv that only concern the variables x̂ and ν̂.
(That means that xΓ plays essentially the role of a parameter).

The operator ∇̂ is defined for u : Γ 7→ H1
loc(Ŷ∞) by the function ∇̂u : Γ 7→ L2

loc(Ŷ∞)
defined as follow:

• For xΓ ∈ ΓM and (x̂, ν̂) ∈ Ŷ∞:

∇̂u(xΓ; x̂, ν̂) := DψΓ(xΓ)†∇x̂u(xΓ; x̂, ν̂)︸ ︷︷ ︸
∈TxΓ

Γ

+n(xΓ)∂ν̂u(xΓ; x̂, ν̂)︸ ︷︷ ︸
∈TxΓ

Γ⊥

, (4.1.2)

where we recall that TxΓ
Γ := n(xΓ)⊥, DψΓ(xΓ) : TxΓ

Γ 7→ R2 and D† ψΓ(xΓ) : R2 7→
TxΓ

Γ.

• For xΓ /∈ ΓM:
∇̂u(xΓ; x̂, ν̂) := n(xΓ)∂ν̂u(xΓ; x̂, ν̂).

Then, we recall that the operator d̂iv is defined for u : Γ 7→ L2
loc and xΓ ∈ Γ by the

element of D
(
Ŷ∞
)†

defined for ψ ∈ D
(
Ŷ∞
)
by:

〈d̂iv u(xΓ; ·), v〉
D
(
Ŷ∞
)†
−D
(
Ŷ∞
) := −

∫
Ŷ∞

u(xΓ; ·) · ∇̂ vdx̂dν̂. (4.1.3)

We define a family of differential operators with respect to all variable (xΓ, x̂, ν̂) (Com-
bination of 3D differential operators in (x̂, ν̂) : ∇̂ and d̂iv that are referred with a hat
with tangential differential operators in the variable xΓ : divΓ and ∇Γ that are referred
with a subscript Γ). We recall that the sequence of operator (Tk)k∈N is defined for k ∈ N
by:

Tk :=
2∑
j=0

Tk,j, (4.1.4)

where (Tk,j)0≤j≤2 are defined for û : (xΓ; x̂, ν̂) ∈ Γ × Ŷ∞ 7→ û(xΓ; x̂, ν̂) and (xΓ; x̂, ν̂) ∈
Γ× Ŷ∞ by:

Tk,0û(xΓ; x̂, ν̂) := divΓ

(
ρ̂(xΓ; x̂, ν̂)C(k−2)(xΓ)ν̂k−2∇Γ û(xΓ; x̂, ν̂)

)
,

+k2µ̂(xΓ; x̂, ν̂)ν̂k−2c(k−2)(xΓ)û(xΓ; x̂, ν̂),

Tk,1û(xΓ; x̂, ν̂) := divΓ

(
ν̂k−1ρ̂(xΓ; x̂, ν̂)C(k−1)(xΓ) ∇̂ û(xΓ; x̂, ν̂)

)
,

+ d̂iv
(
ν̂k−1ρ̂(xΓ; x̂, ν̂)C(k−1)(xΓ)∇Γ û(xΓ; x̂, ν̂)

)
,

Tk,2û(xΓ; x̂, ν̂) := d̂iv
(
ν̂kρ̂(xΓ; x̂, ν̂)C(k)(xΓ) ∇̂ û(xΓ; x̂, ν̂)

)
.
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Here, for all k ∈ Z,
(
C(k), c(k)

)
are elements of CmΓ+1−k(Γ;L(R3)

)
×CmΓ+1−k(Γ) defined

for xΓ ∈ Γ by:

C(k)(xΓ) :=
1

k!
∂kν C(xΓ, 0) if k ≥ 0 else C(k)(xΓ) := 0,

and c(k)(xΓ) :=
(
C(k)(xΓ, 0) · n(xΓ)

)
· n(xΓ). The linear operator C : Γ × R 7→ L(R3) is

defined for (xΓ, ν) ∈ Γ× R by the only linear operator such that for all vΓ ∈ TxΓ
Γ

C(xΓ, ν) · vΓ := C(xΓ, ν) ·
(
I + νR(xΓ)

)−2 · vΓ and C(xΓ, ν) · n(xΓ) := C(xΓ) · n(xΓ),

and R(xΓ) is the tensor curvature defined as follow: We extend the unit outward normal
application n : Γ 7→ R3 for x near from the boundary Γ which takes the form x =
xΓ + νn(xΓ) by n(x) := n(xΓ). Then the tensor curvature R is defined for xΓ by:

R(xΓ) := Dn(xΓ),

where D is the classical differential 3 × 3 matrix. We recall that for all xΓ ∈ Γ we have
Im (R(xΓ)) ⊂ TxΓ

Γ and R(xΓ) : TxΓ
Γ 7→ TxΓ

Γ is a symmetric tensor. In particular we
recall that for all xΓ ∈ Γ:{

C(0)(xΓ) = I, c(0)(xΓ) = 1,

C(1)(xΓ) = 2
(
H(xΓ)−R(xΓ)

)
, c(1)(xΓ) = 2H(xΓ)

, (4.1.5)

where H(xΓ) :=
tr(R(xΓ))

2
.

We recall the following definition:

H
(
Ŷ∞
)

:=

{
u ∈ H1

loc(Ŷ∞), ‖u‖2

H
(
Ŷ∞

):=∫
Ŷ∞

|∇u|2dx̂dν̂ +

∣∣∣∣∫
Σ

udx̂

∣∣∣∣2 <∞ and u is one periodic in x̂

}
,

where Σ :=]0, 1[2×{0}. We recall that 1 ∈ H
(
Ŷ∞
)
and then µ is defined for q ∈ H

(
Ŷ∞
)†⊕

C[ν̂] by:

µ
(
q
)

:= 〈q1, 1〉Ŷ∞ +

∫ 0

−1

q2dν̂, (4.1.6)

with q = q1 + q2 for some (q1, q2) ∈ H
(
Ŷ∞
)† × C[ν̂] (We recall that Proposition 2.5.9

(cf Chapter 2) states that this decomposition is unique). In (4.1.6) and hereafter 〈·, ·〉Ŷ∞
is the dual bracket between H

(
Ŷ∞
)† and H

(
Ŷ∞
)
. We recall that we constructed an

operator T −1
0 defined for map f : Γ 7→ H

(
Ŷ∞
)† ⊕ C[ν̂] 7→ H

(
Ŷ∞
)
× C[ν̂] such that for

all f : Γ 7→ H
(
Ŷ∞
)† × C[ν̂] we have T −1

0 f : Γ 7→ H
(
Ŷ∞
)
⊕ C[ν̂] 7→ H

(
Ŷ∞
)
× C[ν̂] and

T0T −1
0 f = f .

Finally, thanks these last reminders, we can recall that the sequences (un)n∈N and
(ûn)n∈N are defined by induction. Now we present the process of construction of un and
ûn from the knowledge of (ûk, uk) for k = 0, 1, . . . , n− 1.
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4.1.1 Construction of the far field un

The far fields un : Ω0 7→ C is defined as the unique solution of: Find un ∈ H1
(
Ω0

)
such

that for all v ∈ Γ×H1(Ω0) we have:

a0(un, v) =

{
〈fΣη0

, v〉Γ×{η0} if n = 0,

−〈ln, v〉Γ×{0} if n 6= 0,
(4.1.7)

where we recall that:

• Ω0 := Γ×]0, η0[, Γ× {0} := Γ× {0}, Γ× {η0} := Γ× {η0}. (see Figure 4.3)

• For all 0 ≤ n ≤ mΓ:
un ∈ HmΓ−n+1(Ω0). (4.1.8)

• 〈·, ·〉Γ×{0} := 〈·, ·〉
H−

1
2 (Γ×{0})−H 1

2 (Γ×{0}) and 〈·, ·〉Γ×{η0} := 〈·, ·〉
H−

1
2 (Γ×{0})−H 1

2 (Γ×{η0})
.

• The function ln : Γ 7→ C is defined for xΓ ∈ Γ by:

ln(xΓ) :=
n+1∑
i=1

n+1−i∑
j=1

µ
((
TiT −1

0 Tjûn+1−i−j
)
(xΓ; ·)

)
−

n+1∑
i=1

µ
((
Tiun+1−j

)
(xΓ; ·)

)
.

(4.1.9)
To give a sense of this last definition, we emphasize that for all xΓ ∈ Γ, 1 ≤ i ≤ n+1
and 1 ≤ j ≤ n+1−i that

(
TiT −1

0 Tjûn+1−i−j
)
(xΓ; ·) and

(
Tiun+1−j

)
(xΓ; ·) are element

of H
(
Ŷ∞
)† ⊕ C[ν̂].

• The sesquilinear form a0 : H1
(
Ω0

)2 7→ C is defined for (u, v) ∈ H1
(
Ω0

)2 by:

a0(u, v) :=

∫
Ω0

(
∇L u · ∇L v − k2uv

)
dΓdν + 〈DtNL u, v〉Γ×{η0},

where:

– For all u ∈ H1
(
Ω0

)
, ∇L u := ∇Γ u+ n∂ν̂u

– The inverse of the map L is defined by L−1 : Ωδ 7→ Cη0
ext is given for (xΓ, ν̂) by

L−1(xΓ, ν̂) := xΓ + n(xΓ)ν,

where Cη0
ext := {x ∈ Ω, dist(x,Γ) < η0} and this last application is a CmΓ dif-

feomorphism. (see Figure 4.3)

– DtNL : H
1
2 (Γ× {η0}) 7→ H−

1
2 (Γ× {η0}) is defined for (u, v) ∈ H 1

2 (Γ× {η0})2

by:
〈DtN ũδ ◦ L, ũδ ◦ L〉Ση0 ,

where the Dirichlet to Neumann map on Ση0 :=
{
x ∈ Ωδ, dist(x,Γ) = η0

}
:

DtN : H
1
2 (Ση0) 7→ H−

1
2 (Ση0)
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Figure 4.3: The map L

is defined for g ∈ H 1
2 (Ση0) by DtN g := ∂νug and ug is the unique solution of:

Find ug ∈ H1
loc(Ω \ Cδ,η0) such that :{

∆ug + k2ug = 0, in Ω \ Cη0
ext,

ug = g on Ση0

and ug satisfies the Sommerfeld radiation condition.

• fΣη0
∈ H− 1

2 (Γ× {η0}) is defined for u ∈ H 1
2 (Γ× {η0}) by:

ṽδ 7→ 〈∂νuf −DtNuf , ṽδ ◦ L〉Γ×{η0},

where uf : Ω \Cη0
ext 7→ C defined by the unique solution of: Find uf ∈ H1

loc(Ω \C
η0
ext)

such that : {
∆uf + k2uf = f, in Ω \ Cη0

ext,

uf = 0, on Ση0

and uf satisfies the Sommerfeld radiation.

4.1.2 Construction of the near field un

The near field is defined for (xΓ, x̂, ν̂) ∈ Γ× Ŷ∞:

ûn(xΓ; x̂, ν̂) := un(xΓ, 0)−
n∑
i=1

(
T −1

0 Tiûn−i
)
(xΓ; x̂, ν̂). (4.1.10)

4.1.3 Construction of an approximation of uδ

We construct an approximation of the function uδ := uδ ◦ L defined by:

un,δ =
n∑
k=0

δkuk,
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We assume that mΓ ≥ 8 and:

(ρ̂, µ̂) ∈ CmΓ

(
Γ;L∞(Ŷ∞)

)2

. (4.1.11)

To assure that the exact problem is well posed we assume that:

inf
(xΓ,x̂,ν̂)∈Γ×Ŷ∞

ρ(xΓ; x̂, ν̂) > 0. (4.1.12)

Finally, we recall that in Chapter 3, we succeed to prove the following fundamental result:
Theorem 4.1.1. If n ≤ mΓ − 6 and supp(f) ⊂ Ω then for all c > 0 there exists C > 0
such that the following estimate holds:

‖uδ − un,δ‖H1(Γ×]c,η0[) ≤ Cδn+1.

4.2 Effective boundary conditions

The objective of this work is to find an operator Z which is defined on some space of
function defined on Γ and takes values in some space of function defined Γ such that if we
delete from our geometry the thin coat Cδ and we replace by what we call the impedance
boundary condition:

∂νu
δ + Zγ0u

δ = 0,

where γ0 is the classical trace operator on Γ then the new scattered field are good ap-
proximation of the exact field. The case of uniform coefficient in the thin coat has been
already studied in [14].

4.3 Explicit construction of the terms
(
û0(xΓ; x̂, ν̂), u0(xΓ, ν)

)
and

(
û1(xΓ; x̂, ν̂), u1(xΓ, ν)

)
.

4.3.1 The terms
(
û0(xΓ; x̂, ν̂), u0(xΓ, ν)

)
Taking n = 0 in (4.1.7) and (4.1.10) directly yields the following result:
Lemma 4.3.1. The term u0 is the unique solution of: Find u0 ∈ H1

(
Ω0

)
such that for

all v ∈ H1
(
Ω0

)
:

a0(u0, v) = 〈fΣη0
, v〉Γ×{η0},

and the term û0 is given for (xΓ, x̂, ν̂) ∈ Γ× Ŷ∞ by û0(xΓ, x̂, ν̂) = u0(xΓ, 0).

4.3.2 The terms
(
û1(xΓ; x̂, ν̂), u1(xΓ, ν)

)
Thanks to (4.1.7) the only quantity required to compute u1 is l1. However, We compute
here the quantity û1 because this last one is required to compute the quantity u2. Taking
n = 1 in (4.1.9) yields for all xΓ ∈ Γ :

l1(xΓ) = µ
((
T1T −1

0 T1û0

)
(xΓ; ·)

)
− µ

(
T2û0(xΓ; ·)

)
, (4.3.13)
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and taking n = 1 in (4.1.10) yields for all (xΓ, x̂, ν̂) ∈ Γ× Ŷ∞

û1(xΓ, x̂, ν̂) = u1(xΓ, 0)−
(
T −1

0 T1û0

)
(xΓ, x̂, ν̂). (4.3.14)

The goal of this part is to find an explicit expression of these last terms. We emphasize
that we identify for all s ∈ R the space Hs(Γ) with the space of function in Hs(Γ; Ŷ∞)
independent of the variables x̂ and ν̂ with the following injection:(

u : xΓ ∈ Γ 7→ u(xΓ)
)
7→
(
u : (xΓ; x̂, ν̂) 7→ u(xΓ)

)
We see that T −1

0 T1u0(·, 0) appears in (4.3.13) and (4.3.14). Let us detail the expression of
the restriction on H1(Γ) of the operator T −1

0 T1, more precisely of T −1
0 T1u for u ∈ H1(Γ)

that only depend of xΓ. That will be the object of Proposition 4.3.2.
We introduce for convenience the vector fields (e1, e2) on ΓM defined for xΓ ∈ Γ and

i = 1, 2 by:

ei(xΓ) := (DψΓ(xΓ))−1 êi if xΓ ∈ ΓM and ei(xΓ) = 0 else, (4.3.15)

where
(
êi
)
i=1,2

is the canonical basis of R2. For all xΓ in ΓM, (ei)i=1,2 is a basis of the
tangent space TxΓ

Γ. Moreover we can introduce for xΓ ∈ ΓM the dual basis (ei(xΓ))i=1,2

of (ei(xΓ))i=1,2 defined as the unique element of (TxΓ
Γ)2 such that for all (i, j) ∈ {1, 2}2:

(ei(xΓ), ej(xΓ)) = δij, (4.3.16)

where δij is the Kronecker symbol. For xΓ /∈ ΓM we define these last vectors by zero. For
all that follow in this work we use in this work Einstein notation. According
to this convention, when an index variable appears twice in a single term it implies
summation of that term over all the values of the index. For an example the following
expression:

y =
3∑
i=1

cixi,

is reduced by this convention to y = cixi.
We introduce for i ∈ {1, 2} and xΓ ∈ ΓM the function wi(xΓ; ·) ∈ H

(
Ŷ∞
)
as the

unique solution of that we call the "cell problem": Find wi(xΓ; ·) ∈ H
(
Ŷ∞
)
such that for

all v ∈ H
(
Ŷ∞
)
we have:∫

Ŷ∞

(
ρ̂(∇̂wi, ∇̂ v)

)
(xΓ; x̂, ν̂)dx̂dν̂ =

∫
Ŷ−

ρ̂(xΓ; x̂, ν̂)∂x̂ivdx̂dν̂, (4.3.17)

with: ∫
Σ

wi(xΓ; x̂, ν̂)dx̂ = 0.

Thanks to (4.1.12) this last quantity is well defined. Thanks to (4.1.11) wi belongs
to the space CmΓ

(
Γ;H

(
Ŷ∞
))

because is trivial from (4.1.11) that the field of anti-linear

form ∂x̂i ρ̂ defined for xΓ and v ∈ H
(
Ŷ∞
)
by:

〈∂x̂i ρ̂(xΓ; ·), v〉Ŷ∞ := −
∫
Ŷ−

ρ̂(xΓ; x̂, ν̂)∂x̂iv(x̂, ν̂)dx̂dν̂
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belongs to the space CmΓ

(
Γ;H

(
Ŷ∞
)†) and (4.3.17) can be rewritten as follow:

wi :=
(
− δΣ ⊗ δΣ + T0

)−1
∂x̂i ρ̂ (4.3.18)

where δΣ ⊗ δΣ : H
(
Ŷ∞
)
7→ H

(
Ŷ∞
)† is defined for (u, v) ∈ H

(
Ŷ∞
)
by:

〈δΣ ⊗ δΣu, v〉Ŷ∞ :=

∫
Σ

udx̂

∫
Σ

vdx̂.

Thanks to these last definitions we can state the following result:
Proposition 4.3.2. For u in H1(Γ), we have for all (xΓ, x̂, ν̂) ∈ Γ× Ŷ∞:

T −1
0 (T1u)(xΓ; x̂, ν̂) = wi(xΓ; x̂, ν̂)

(
ei(xΓ),∇Γ u(xΓ)

)
.

Proof. Since u does not depend of x̂ and ν̂, we have from the definition of the operator
T1 given in (4.1.4):

T1u = d̂iv
(
ρ̂∇Γ u

)
on ΓM×Ŷ∞ and T1u = 0 on Γ \ ΓM×Ŷ∞. (4.3.19)

From (4.3.16) we have ∇Γ u = ei(e
i,∇Γ u). Combining this last equality with (4.3.19) and

using that (ei,∇Γ U) only depend on the variable xΓ yields:

T −1
0 T1u = T −1

0

(
d̂iv(ρ̂ei)(e

i,∇Γ u)
)

= (ei,∇Γ u)T −1
0

(
d̂iv(ρ̂ei)

)
. (4.3.20)

Moreover, recalling the definitions of the operator d̂iv and the vector ei given by (4.1.3)
and (4.3.15) , yields for all i ∈ {1, 2}:

d̂iv(ρ̂ei) = divx̂
(
ρ̂DψΓ ei

)
= divx̂

(
ρ̂((((

((((DψΓ(DψΓ)−1êi
)

= ∂x̂i ρ̂, (4.3.21)

Combining this last equality with (4.3.20) yields T −1
0 T1u = (ei,∇Γ u)T −1

0 ∂x̂i ρ̂ = (ei,∇Γ u)wi
by (4.3.18), which ends the proof.

To simplify 4.3.13, we now seek, for u in H1(Γ) an explicit expression for xΓ ∈ Γ of the
quantity:

µ
((
T1T −1

0 T1u
)
(xΓ; .)

)
,

through the function xΓ ∈ Γ 7→M ρ
0(xΓ) ∈ L(TxΓ

Γ) defined as follows:

• For xΓ ∈ ΓM, M ρ
0(xΓ) is the unique element of L(TxΓ

Γ) such that for all (i, j) ∈
{1, 2}2 we have:

(
M ρ

0(xΓ) ei(xΓ), ej(xΓ)
)

:=

∫
Ŷ∞

(
ρ∇̂wi, ∇̂wj

)
(xΓ; x̂, ν̂)dx̂dν̂. (4.3.22)

• For xΓ ∈ Γ \ ΓM, M ρ
0(xΓ) := 0.

The reason for the introduction of this tensor lies in the following form:
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Proposition 4.3.3. Let u in H1(Γ), one has:

∀xΓ ∈ Γ, µ
((
T1T −1

0 T1u
)
(xΓ; ·)

)
= divΓ

(
M ρ

0∇Γ u
)
(xΓ).

Before proving this last result, we need to prove the following intermediate identity:
Proposition 4.3.4. For all i = 1, 2 and xΓ ∈ ΓM, M ρ

0(xΓ) is the only element of TxΓ
Γ

such that:

∀i ∈ {1, 2}, M ρ
0(xΓ) · ei(xΓ) = ej(xΓ)

∫
Ŷ−

(
ej, ρ̂ ∇̂wi

)
(xΓ; x̂, ν̂)dx̂dν̂.

Proof. Let xΓ ∈ ΓM. First, we prove that, for all (i, j) ∈ {1, 2}2, the following identity
holds: ∫

Ŷ∞

(
ρ̂ ∇̂wi, ∇̂wj

)
(xΓ; x̂, ν̂)dx̂dν̂ =

∫
Ŷ−

(ρ̂∂x̂iwj) (xΓ; x̂, ν̂)dx̂dν̂. (4.3.23)

Indeed, we have from the definition of the operator d̂iv given by (4.1.3):∫
Ŷ∞

(
ρ̂ ∇̂wi, ∇̂wj

)
(xΓ; x̂, ν̂)dx̂dν̂ = −

〈(
d̂iv(ρ̂ ∇̂wi)

)
(xΓ; ·), wj(xΓ; ·)

〉
Ŷ∞
,

and thanks to the definition of the operator T0 given by (4.1.4) this last equality becomes:∫
Ŷ∞

(
ρ̂ ∇̂wi, ∇̂wj

)
(xΓ; x̂, ν̂)dx̂dν̂ = −

〈(
T0wi

)
(xΓ; ·), wj(xΓ; ·)

〉
Ŷ∞
.

Combining this last equality with (4.3.18) yields:∫
Ŷ∞

(
ρ̂ ∇̂wi, ∇̂wj

)
(xΓ; x̂, ν̂)dx̂dν̂ = −

〈
((((

((((T0(xΓ)T −1
0 (xΓ)∂x̂i ρ̂(xΓ; ·), wj(xΓ; ·)

〉
Ŷ∞
,

=

∫
Ŷ∞

ρ̂(xΓ; x̂, ν̂)∂x̂iwj(xΓ; x̂, ν̂)dx̂dν̂.

Moreover, thanks to the periodicity on x̂ of the function wj(xΓ; ·), we have:∫
Ŷ+

∂x̂iwj(xΓ; x̂, ν̂)dx̂dν̂ = 0,

and using that ρ̂(xΓ; ·) ≡ 1 on Ŷ+ yields (4.3.23).
Next, for all j ∈ {1, 2}, using the definition of the operator ∇̂ given by (4.1.2) and(

ej(xΓ), n(xΓ)
)

= 0 yields:∫
Ŷ−

((
ρ̂ ∇̂wi

)
(xΓ; x̂, ν̂), ej(xΓ)

)
dx̂dν̂ =

∫
Ŷ−

ρ̂(xΓ; x̂, ν̂)
(
DψΓ(xΓ)†∇x̂wi(xΓ; x̂, ν̂), ej(xΓ)

)
dx̂dν̂.

Using the definition of the vector ej(xΓ) given by (4.3.15) yields that this last equality
becomes:∫
Ŷ−

((
ρ̂ ∇̂wi

)
(xΓ; x̂, ν̂), ej(xΓ)

)
dx̂dν̂ =

∫
Ŷ−

ρ̂(xΓ; x̂, ν̂)
(
DψΓ

†(xΓ)∇x̂wi(xΓ; x̂, ν̂),DψΓ
−1(xΓ)êj(xΓ)

)
dx̂dν̂,

=

∫
Ŷ−

ρ̂(xΓ; x̂, ν̂)
(
∇x̂wi(xΓ; x̂, ν̂),

((((
((((

(((
DψΓ(xΓ) DψΓ

−1(xΓ)êj(xΓ)
)
dx̂dν̂,

=

∫
Ŷ−

(
ρ̂∂x̂jwi

)
(xΓ; x̂, ν̂)dx̂dν̂.
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Combining this with (4.3.23) yields for all j ∈ {1, 2}:∫
Ŷ−

((
ρ̂ ∇̂wi

)
(xΓ; x̂, ν̂), ej(xΓ)

)
dx̂dν̂ = (M ρ

0(xΓ) · ei(xΓ), ej(xΓ)) ,

which ends the proof.

Before we need to recall a notion that we define in Chapter 2, :
Definition 4.3.5. Let m ≤ mΓ and u : Γ 7→ H

(
Ŷ∞
)
or u : Γ 7→ H

(
Ŷ∞
)† . We say that u

satisfies the P∞m property if there exists d ∈ N, a sequence (ul)l∈Z2\{0} ∈ Hm
0,ΓM

(Γ;Cd[ν̂])
such that:

∀(xΓ; x̂, ν̂) ∈ Γ× Ŷ+, u(xΓ; x̂, ν̂) =
∑

l∈Z2\{0}
ul(xΓ; ν̂)φl(xΓ; x̂, ν̂), (4.3.24)

where we defined the sequence of functions (φl)l∈Z2\{0} for (xΓ, x̂, ν̂) ∈ Γ× Ŷ+ by:

φl(xΓ, x̂, ν̂) := ei2πlx̂e−2πλl(xΓ)ν̂ with λl(xΓ) := |DψΓ(xΓ)l|.

Moreover, the sequence of polynomial are required to satisfies:∑
l∈Z2\{0}

|l|q‖ul‖Hm(Γ;Cd[ν̂]) <∞.

In this last definition if u is not a function then (4.3.24) mean: For all ψ ∈ D([0, 1]2×]0,∞[)∩
Hcomp

(
Ŷ∞
)
:

〈u(xΓ; ·), ψ〉
Hcomp

(
Ŷ∞

)†
−Hcomp

(
Ŷ∞

) =
∑

l∈Z2\{0}

∫
Ŷ∞

ul(xΓ; ν̂)φl(xΓ; x̂, ν̂)ψ(x̂, ν̂)dx̂dν̂.

From Proposition 2.5.15 and Proposition 2.5.16 (See Chapter 2), we recall the following
result:
Proposition 4.3.6. For all 2 ≤ n ≤ mΓ:

• For all v ∈ Cm
(

Γ;H
(
Ŷ∞
))

satisfying the P∞m property we have:

∀i ≥ 1, Tiv ∈ Cm−2
(

Γ;H
(
Ŷ∞
)†)

,

and Tiv satisfy the P∞m−2 property.

• For all f ∈ Cm
(

Γ;H
(
Ŷ∞
)†) if for all xΓ, 〈f(xΓ, ·), 1〉Ŷ∞ = 0 then

∀i ≥ 1, T 1
0 f ∈ Cm

(
Γ;H

(
Ŷ∞
))
,

and T −1
0 v satisfy the P∞m property.
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Proof of Proposition 4.3.3. Thanks to Proposition 4.3.2 we have:

T −1
0 T1u = wi(e

i,∇Γ u).

By using (4.1.11), we can prove that for all i ∈ {1, 2} wi ∈ CmΓ

(
Γ;H

(
Ŷ∞
))

. Moreover
since ∂x̂i ρ̂ = 0 on Γ×]0, 1[2×R∗+ and 〈∂x̂i ρ̂, 1〉Ŷ∞ then thanks to Proposition 4.3.6, we have
that wi satisfies P∞mΓ

property. Thus thanks to Proposition 4.3.6 we deduce that: for all
xΓ ∈ Γ the quantity

(
T1(wi(e

i,∇Γ u))
)
(xΓ; ·) belong to the space H

(
Ŷ∞
)†. Therefore

thank to (4.1.6) we have:

µ
((
T1(wi(e

i,∇Γ u))
)
(xΓ; ·)

)
=
〈(
T1(wi(e

i,∇Γ u))
)
(xΓ; ·), 1

〉
Ŷ∞

Moreover using the definition of T1 given by (4.1.4) and the definition of the operator d̂iv
given by (4.1.3) yields:

µ
((
T1(wi(e

i,∇Γ u))
)
(xΓ; ·)

)
= divΓ

((
ei(xΓ),∇Γ u(xΓ)

) ∫
Ŷ∞

(
ρ̂ ∇̂wi

)
(xΓ; ·)dx̂dν̂

)
,

and using Proposition 4.3.4 and (4.3.16) this becomes:

µ
((
T1(wi(e

i,∇Γ u))
)
(xΓ; ·)

)
= divΓ

((
M ρ

0·ei(ei,∇Γ u)
)
(xΓ)

)
= divΓ (M ρ

0(xΓ) · ∇Γ u(xΓ)) .

This conclude the proof.
Let us introduce the averages ρ0, µ0 : Γ 7→ R on cells of quantities ρ̂ and µ̂ defined for xΓ

by:

ρ0(xΓ) :=

∫
Ŷ−

ρ̂(xΓ; x̂, ν̂)dx̂dν̂ and µ0(xΓ) :=

∫
Ŷ−

µ̂(xΓ; x̂, ν̂)dx̂dν̂. (4.3.25)

Then, we have the following result:
Proposition 4.3.7. For all u ∈ H1(Γ) independent of (x̂, ν̂) we have for all xΓ:

µ
((
T2u
)
(xΓ; ·)

)
= divΓ

(
ρ0(xΓ)∇Γ u(xΓ)

)
+ k2µ1u(xΓ). (4.3.26)

Proof. Since u does not depend on the variable (x̂, ν̂) we have:

Tk,0u = divΓ

(
ρ∇Γ u

)
+ k2µu, Tk,1u = d̂iv

(
ν̂ρC(1)∇Γ u

)
and Tk,2u = 0,

which leads combined with (4.1.4) to the following decomposition:

T2u = A+B, (4.3.27)

where A,B are given by: A := ∆Γu+ k2u,

B := divΓ

(
(ρ̂− 1)∇Γ u

)
+ k2(µ̂− 1)u+ d̂iv

(
ν̂ρC(1)∇Γ u

)
,
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and
(
A(xΓ), B(xΓ; ·)

)
∈ C[ν̂]×H

(
Ŷ∞
)† for all xΓ. On the on hand we have:∫ 0

−1

A
(
xΓ

)
dν̂ = ∆Γu(xΓ) + k2u(xΓ). (4.3.28)

On the other hand we have:

〈B(xΓ; ·), 1〉Ŷ∞ =
〈

divΓ

(
(ρ̂(xΓ; ·)− 1)∇Γ u(xΓ)

)
, 1
〉
Ŷ∞

+
〈
k2(µ̂(xΓ; ·)− 1)u(xΓ), 1

〉
Ŷ∞

+
((((

(((
((((

(((
(((

〈d̂iv ν̂ρ(xΓ; ·)C(1)∇Γ u(xΓ), 1〉Ŷ∞ ,

= divΓ

(( ∫
Ŷ−

(ρ̂(xΓ; x̂, ν̂)− 1)dx̂dν̂
)
∇Γ u(xΓ)

)
+k2

(∫
Ŷ−

(µ̂(xΓ; x̂, ν̂)− 1)dx̂dν̂

)
u(xΓ),

which leads combined with the definition of ρ0 and µ0 given by (4.3.25) to

〈B(xΓ; ·), 1〉Ŷ∞ = divΓ

(
(ρ0(xΓ)− 1)∇Γ u(xΓ)

)
+ k2(µ0(xΓ)− 1)u(xΓ).

Thanks to this last equality, (4.3.28) and the decomposition (4.3.27), we can apply the
definition of µ given by (4.1.6) which yields (4.3.26) and so ends the proof.

Finally, we introduce the tensor field:

ρ0
eff = ρ0I −M

ρ
0, (4.3.29)

the operator Z1 : H1(Γ) 7→ H−1(Γ) defined for u ∈ H1(Γ):

Z1u := divΓ

(
ρ0
eff ∇Γ u

)
+ k2µ̂0u,

and the trace operator γΓ : H1
(
Ω0

)
7→ H

1
2

(
Γ
)
in order to state the following result:

Lemma 4.3.8. The term u1 is the unique solution of the problem: Find u1 ∈ H1
(
Ω0

)
such that for all v ∈ H1

(
Ω0

)
:

a0(u1, v) = 〈Z1γΓu0, v〉Γ×{0},

and the term û1 is given for (xΓ, x̂, ν̂) ∈ Γ× Ŷ∞ by:

û1(xΓ; x̂, ν̂) = u1(xΓ, 0)− wi(xΓ; x̂, ν̂)(ei(xΓ),∇Γ u0(xΓ, 0)).

4.4 Explicit construction of the term u2(xΓ, ν).

Thanks to (4.1.7), the only quantity we need to compute the term u2 is l2.
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4.4.1 Decomposition of the term l2

Dues to the complexity of the quantity l2, one need to introduce for convenience the
following quantity defined for xΓ ∈ Γ by

lα2 (xΓ) := −µ
( (
T1T −1

0 T1T −1
0 T1γΓu0

)
(xΓ; ·)

)
,

lβ2 (xΓ) := µ
( (
T1T −1

0 T2γΓu0

)
(xΓ; ·)

)
+ µ
( (
T2T −1

0 T1γΓu0

)
(xΓ; ·)

)
,

lγ2(xΓ) := −µ
((
T3γΓu0

)
(xΓ; ·)

)
,

lδ2(xΓ) := µ
( (
T1T −1

0 T1γΓu1

)
(xΓ; ·)

)
− µ

((
T2γΓu1

)
(xΓ; ·)

)
.

(4.4.30)

Indeed, we have the following result:
Proposition 4.4.1. The quantity l2 can be rewritten as follow:

l2 = lα2 + lβ2 + lγ2 + lδ2, (4.4.31)

Proof. Taking n = 2 in (4.1.9) yields that the term l2 is given for xΓ ∈ Γ by

l2(xΓ) =
∑

(i,j)∈{1,2}2
µ
( (
TiT −1

0 Tjû2+1−i−j
)

(xΓ; ·)
)
− µ

(
(T2γΓu1) (xΓ; ·)

)
+ lγ2(xΓ).

The sum appearing in this last equality can be rewritten as follow:∑
(i,j)∈{1,2}2

µ
( (
TiT −1

0 Tjû2+1−i−j
)

(xΓ; ·)
)

= µ
( (
T1T −1

0 T1û1

)
(xΓ; ·)

)
+ lβ2 (xΓ) (4.4.32)

Moreover from (4.3.13) we have û1 = γΓu1 − T −1
0 T1γΓu0 which yields:

µ
( (
T1T −1

0 T1û1

)
(xΓ; ·)

)
= µ

( (
T1T −1

0 T1

(
γΓu1 − T −1

0 T1γΓu0

))
(xΓ; ·)

)
,

= lα2 (xΓ) + µ
( (
T1T −1

0 T1γΓu1

)
(xΓ; ·)

)
.

Finally combining this last equality with (4.4.32) ends the proof of our result.
Dues to the complexity of this last expressions we have chosen to explain the computation
of terms lα, lβ, lγ and lδ into several parts.

4.4.2 The term lδ2(xΓ)

Since u1 only depend of the variable xΓ, we can apply Proposition 4.3.3 and Proposi-
tion 4.3.7 which leads to:

lδ2 = −Z1γΓu1.

4.4.3 The term lγ2(xΓ)

Let us define the 1-average on cells of quantities ρ̂ and µ̂ for xΓ ∈ Γ by:

ρ1(xΓ) :=

∫
Ŷ−

2ν̂ρ̂(xΓ; x̂, ν̂)dx̂dν̂ and µ1(xΓ) :=

∫
Ŷ−

2ν̂µ̂(xΓ; x̂, ν̂)dx̂dν̂,

in order to state the following result:
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Proposition 4.4.2. The term lγ2 can be rewritten as follow:

lγ2 = divΓ

(
ρ1(H −R)∇Γ γΓu0

)
+ k2µ1HγΓu0.

Proof. Since û0 only depend of xΓ we have from (4.1.4):

T3û0 = d̂iv
(
ν̂2ρ̂C(2)∇Γ γΓu0

)︸ ︷︷ ︸
Q1

+ divΓ

(
ν̂ρ̂C(1)∇Γ γΓu0

)
+ k2ν̂µ̂c(1)γΓu0︸ ︷︷ ︸

Q2

. (4.4.33)

We have:
Q1 = d̂iv

(
ν̂2(ρ̂− 1)C(2)∇Γ γΓu0

)
+((((

((((
(((

d̂iv
(
ν̂2C(2)∇Γ γΓu0

)
, (4.4.34)

Therefore for all xΓ ∈ we have Q1(xΓ; ·) ∈ H
(
Ŷ∞
)† and then according to (4.1.6) we have

for all xΓ ∈ Γ

µ
(
Q1(xΓ; ·)

)
=
〈(

d̂iv
(
ν̂2(ρ̂− 1)C(2)∇Γ γΓu0

))
(xΓ; ·), 1

〉
Ŷ∞
,

= −
∫
Ŷ∞

(
ν̂2(ρ̂− 1)C(2)∇Γ γΓu0

)
(xΓ; ·) ·��∇̂ 1dx̂dν̂ = 0.

We proceed as the same way as the end of proof of Proposition 4.3.7 to show that:

µ
(
Q2(xΓ; ·)

)
= −

divΓ

(
ρ1C(1)∇Γ u0(xΓ, 0)

)
+ k2µ1c

(1)(xΓ)u0(xΓ, 0)

2
.

Combining this last equation with Proposition 2.5.1, (4.4.34) and (4.4.33) yields the
desired result:

4.4.4 The others terms lα2 (xΓ), lβ2 (xΓ)

One of the biggest difficulty we encountered for the computation of the term l2 is the
apparition of 1 and 3 order tangential differential operators in the expression of the terms
lα2 and lβ2 when we compute them with straightforward development. However, we remark
that for all smooth function a : R 7→ R the operator Ta : H1(R) ⊂ L2(R) 7→ L2(R) defined
for u ∈ H1(R) by Tau := l · ∂xu satisfies the following identity:

∀u ∈ H1(R), ReTu = −∂xa
2
u,

where we defined for any linear operator A the operator:

ReA :=
A+ A†

2
. (4.4.35)

4.4.4.1 The real part of a an odd differential operator and the ? operator

The following result is a first extension of (4.4.35) for vector field a : Γ 7→ R3:
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Proposition 4.4.3. Let a ∈ CmΓ(Γ;R3) be a vector field and define Ta : H1(Γ) =
D(Ta) ⊂ L2(Γ) 7→ L2(Γ) for u ∈ H1(Γ) by:

Tau := (a,∇Γ u),

then for all u ∈ L2(Γ) we have:

Re(Ta)u :=
Ta + T †a

2
u = −divΓ a

2
u.

Proof. Thanks to Leibniz formula we have:

T †au = − divΓ (au) = −(∇Γ u, a)− divΓ(a)u = −Tau− divΓ(a)u,

which directly yields our stated result.
We want a similar result for 3 order differential tangential operators that take the forms:

Tα,βu := divΓ

(
β divΓ(α∇Γ u)

)
,

where α and β are respectively a tensor field and vector field with at least C1 regularities
such that these quantities vanish on Γ \ ΓM. From these last quantities we define a new
tensor field named α ? β. First this quantity is defined by 0 on Γ \ ΓM. Now let us
explain the way we defined this quantity on ΓM. Moreover we define for smooth quantity
u defined on Γ the following notation:

∀xΓ ∈ ΓM, ∂xku(xΓ) := ∂xk
(
u ◦ ψΓ

−1
)(
ψΓ(xΓ)

)
and ∀xΓ ∈ Γ \ ΓM ∂xku(xΓ) := 0.

(4.4.36)
We define for (i, j) ∈ {1, 2}2 the quantities:

βi := (β, ei) and αij := (αej, ei).

Thus the tensor field α ? β is defined on ΓM by the unique tensor field such that for all
(i, j) ∈ {1, 2}2 :

(α ? βej, ei) :=
1
√
g

[
∂xk
(√

g(αjkβi − βkαji)
)

+
√
gαki∂xkβ

j − βi∂xk(
√
gαkj)

]
, (4.4.37)

and this last tensor is defined by zero on Γ \ΓM. The reason that we introduced ? lies in
the following forms:
Proposition 4.4.4. The real part of Tα,β operator is given for u ∈ H3(Γ) by:

Re(Tα,β)u =
1

2
divΓ

(
α ? β∇Γ u

)
.

Proof. The Einstein summation convention is taken for whole this proof. We recall that
the followings expression of ∇Γ and divΓ holds on Γ \ ΓM:

∀u, ∇Γ u = ei∂xiu and ∀u divΓ(uiei) =
1
√
g
∂xi
(√

gui
)
, (4.4.38)
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where u is a regular tangential field and (ui)1≤i≤2 is the unique scalar field such that
u = uiei. Let u ∈ H3(Γ). Thanks to (4.4.38) we have:

Tα,βu =
1
√
g
∂xk

(
βk∂xj

(√
gαji∂xiu

))
and T †αβu = − 1

√
g

(
∂xi
√
gαji

(
∂xjβ

k∂xku
))
.

Leibniz formula yields that for all u:{ √
gT †αβu =

√
gβkαji∂xk

(
∂xj(∂xiu)

)
+ ∂xk(

√
gβkαji)∂xj(∂xiu) + ∂xk

(
βk∂xj(

√
gαji)∂xiu

)
−√gT †α,βu =

√
gαjiβk∂xi

(
∂xj(∂xku)

)
+ ∂xi(

√
gαjiβk)∂xj(∂xku) + ∂xi

(√
gαji∂xjβ

k(∂xku)
)

Doing the difference between these last equalities yields:(√
gTα,β +

√
gT †α,β

)
u = ∂xi(

√
gαjiβk)∂xj(∂xku)− ∂xk(

√
gβkαji)∂xj(∂xiu)

+ ∂xi
(
∂xj(
√
gαjiβk)∂xku

)
− ∂xk

(
βk∂xj(

√
gαji)∂xiu

)
,

= ∂xk
(
∂xi(
√
gαjiβk)∂xju

)
− ∂xi

(
∂xk(
√
gβkαji)∂xju

)
+ ∂xi

(
∂xj(
√
gαjiβk)∂xku

)
− ∂xk

(
βk∂xj(

√
gαji)∂xiu

)
,

and an index permutation yields:(
Tα,β + T †α,β

)
u =

1
√
g
∂xi

( [
∂xk
(√

g(αjkβi − βkαji)
)

+
√
gαki∂xkβ

j − βi∂xk(
√
gαkj)

]
∂xju

)
.

Thanks to the definition of ? given in (4.4.37) and the ones of the operator divΓ and ∇Γ

given in (4.4.38), this becomes:

(
Tα,β +T †α,β

)
u =

1
√
g
∂xi

(√
g(α?β)ij∂xju

)
= divΓ

(
α ? βei(ej,∇Γ u)

)
= divΓ (α ? β∇Γ u) ,

which ends the proof.

4.4.4.2 The term lα2 (xΓ)

Let us prove the following intermediate result:
Proposition 4.4.5. Let L ∈ H1(Γ;H

(
Ŷ∞
)†

) satisfying the P∞1 property. For all xΓ ∈ Γ
we have:

µ
( (
T1T −1

0 L
)

(xΓ; ·)
)

= − divΓ

(
ei(xΓ)

〈
L(xΓ; ·), wi(xΓ; ·)

〉
Ŷ∞

)
,

and for all P ∈ H1(Γ;C[ν̂]):

µ
( (
T1T −1

0 P
)

(xΓ; ·)
)

= − divΓ

(
ei(xΓ)

∫
Ŷ−

wi(xΓ; x̂, ν̂)P (xΓ; ν̂)dx̂dν̂

)
.

Proof. First prove the result for L. We assume first that for all xΓ ∈ Γ we have

〈L(xΓ; ·), 1〉Ŷ∞ = 0 (4.4.39)
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Thus using Proposition 4.3.6 yields that for all xΓ

(
(T1T −1

0 )L
)
(xΓ; ·) ∈ H

(
Ŷ∞
)† satisfies

P∞0 property which leads to

µ
( (
T1T −1

0 L
)

(xΓ; ·)
)

=
〈 (
T1T −1

0 L
)

(xΓ; ·), 1
〉
Ŷ∞
.

Thanks to the definition of the operator T1 given in (4.1.4) and the one of the operator
d̂iv given in (4.1.3) yields:

µ
( (
T1T −1

0 L
)

(xΓ; ·)
)

=
〈 (
T1T −1

0 L
)

(xΓ; ·), 1
〉
Ŷ∞
,

= divΓ

(
ei(xΓ)

∫
Ŷ∞

((
ρ̂ ∇̂ T −1

0 L
)
(xΓ; x̂, ν̂), ei(xΓ)

)
dx̂dν̂

)
,

= − divΓ

(
ei(xΓ)

〈
d̂iv
(
ρ̂(xΓ; ·)ei(xΓ)

)
, T −1

0 L(xΓ; ·)
〉
Ŷ∞

)
.

Therefore using d̂iv(ρ̂ei) = ∂x̂i ρ̂(see the proof of Proposition 4.3.2) yields that for all
xΓ ∈ ΓM:

µ
( (
T1T −1

0 L
)

(xΓ; ·)
)

= − divΓ

(
ei(xΓ)

〈
∂x̂i ρ̂(xΓ; ·), T −1

0 (xΓ)L(xΓ; ·)
〉
Ŷ∞

)
. (4.4.40)

Since the quantity L(xΓ; ·) are assumed to belongs toH
(
Ŷ∞
)
, the quantity T −1

0 (xΓ)L(xΓ; ·)
is given by

(
−δΣ⊗δΣ +T0(xΓ)

)−1
L(xΓ; ·) where

(
−δΣ⊗δΣ +T0(xΓ)

)−1 is seen as a contin-
uous linear operator from H

(
Ŷ∞
)† into H

(
Ŷ∞
)
. Moreover this last operator is self-adjoint

because ρ̂ takes values in R and hence (4.4.40) becomes:

µ
( (
T1T −1

0 L
)

(xΓ; ·)
)

= − divΓ

(
ei(xΓ)

〈
L(xΓ; ·),

(
− δΣ ⊗ δΣ + T0(xΓ)

)−1
∂x̂i ρ̂(xΓ; ·)

〉
Ŷ∞

)
.

Thus using the definition of the function wi(xΓ; ·) given in (4.3.18) yields:

µ
( (
T1T −1

0 L(xΓ; ·)
)

(xΓ; ·)
)

= − divΓ

(
ei(xΓ)〈L(xΓ; ·), wi(xΓ; ·)〉Ŷ∞

)
.

Therefore we success to prove the following implication: If for all xΓ ∈ Γ we have (4.4.39)
then :

µ
((
T1T −1

0 L
)
(xΓ; ·)

)
= − divΓ

(
ei(xΓ)〈L(xΓ; ·), wi(xΓ; ·)〉Ŷ∞

)
. (4.4.41)

Now, we assume that:
∃l ∈ H1(Γ) sq L = l · δΣ, (4.4.42)

where δΣ ∈ H
(
Ŷ∞
)† is defined for u ∈ H

(
Ŷ∞
)
by:

〈δΣ, u〉Ŷ∞ :=

∫
Σ

udx̂.

Thanks to Proposition 2.5.5(See Chapter 2) we have T −1
0 L = ν̂+ · l. Thus on the one

hand we have:(
divΓ ρ̂ ∇̂+ d̂iv ρ̂∇Γ

)
· ν̂+ · l =((((

(((
((

divΓ (l · ρ̂χν>0n) + d̂iv (ν̂+ρ̂∇Γ l) =((((
((((

(
∂ν̂ ((n, ν̂+ρ̂∇Γ l)) = 0.
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On the other hand we have the following decomposition:

d̂iv
(
ρ̂ν̂C(1) ∇̂ ν̂+

)
= d̂iv

(
ν̂C(1) ∇̂ ν̂+

)
= ∂ν̂ (ν̂+H) = 1R+(ν̂) ·H = 1− 1R−(ν̂) ·H,

which leads to for all xΓ ∈ Γ:

µ
((

d̂iv
(
ρ̂ν̂C(1) ∇̂ ν̂+

))
(xΓ; ·)

)
=
��

��
��
�∫ 0

−1

H(xΓ)dν̂ −
((((

(((
((((

(
〈1R−(ν̂) ·H(xΓ), 1〉Ŷ∞ = 0.

Therefore we get µ
( (
T1T −1

0 L
)

(xΓ; ·)
)

= 0. Moreover, we recall that (4.3.17) states that
for all i ∈ {1, 2} we have 〈δΣ, wi(xΓ; ·)〉Ŷ∞ = 0 which leads to:

µ
((

d̂iv
(
ρ̂ν̂C(1) ∇̂ ν̂+

))
(xΓ; ·)

)
= divΓ

(
ei(xΓ)〈wi(xΓ; ·), L(xΓ; ·)〉Ŷ∞

)
= 0.

Therefore we success to prove the following implication: (4.4.42) ⇒ (4.4.41).
Now we can combine this last implication with the first implication we proved: (4.4.39)

⇒ (4.4.41). Indeed, we have for all L ∈ H1(Γ;H
(
Ŷ∞
)
) the following decomposition holds

of L:
∀xΓ ∈ Γ, L(xΓ) = 〈L(xΓ), 1〉Ŷ∞ · δΣ︸ ︷︷ ︸

A1

+
(
L(xΓ)− 〈L(xΓ), 1〉Ŷ∞ · δΣ

)︸ ︷︷ ︸
A2

,

where A1 and A2 respectively satisfy (4.4.39) and (4.4.42). Then these two last quantities
both satisfies (4.4.41) and we can conclude thanks to the the linearity of µ

(
.
)

and so
ends the proof of the result for the quantity L.

Now let us investigate the case for the quantity P . Introduce the quantity:

Q := P − T0 · d−2
ν̂ P, (4.4.43)

where we recall that for all xΓ, d−2
ν̂ P (xΓ; ·) is defined as the unique solution of:
d2

dν2

(
d−2
ν̂ P (xΓ; ν)

)
= P,

d−2
ν̂ P (xΓ; 0) = 0,

d

dν

(
d−2
ν̂ P (xΓ;−1)

)
= 0.

Thanks to Corollary 2.5.7 (See Chapter 2) we have that Q belongs to H1(Γ;H
(
Ŷ∞
)†

)
which leads from what we have shown for the case of L to:

µ
( (
T1T −1

0 Q
)

(xΓ; ·)
)

= − divΓ

(
ei(xΓ)〈Q(xΓ; ·), wi(xΓ; ·)〉Ŷ∞

)
(4.4.44)

Now let us prove that:
µ
( (
T1d

−2
ν̂ P

)
(xΓ; ·)

)
= divΓ

(
ei(xΓ)

∫
Ŷ−

P (xΓ; ν̂)wi(xΓ; x̂, ν̂)dx̂dν̂

)
− divΓ

(
ei(xΓ) 〈Q(xΓ; x̂, ν̂), wi(xΓ; x̂, ν̂)〉Ŷ∞

)
= 0.

(4.4.45)
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To prove this last equality, we first prove the following equality:

µ
(

d̂iv
(
ρ̂ν̂C(1) ∇̂ d−2

ν̂ P
)
(xΓ; ·)

)
+ µ
(

d̂iv
(
ρ̂∇Γ d

−2
ν̂ P

)
(xΓ; ·)

)
= 0. (4.4.46)

Indeed we have d̂iv
(

(ρ̂− 1)ν̂C(1) ∇̂ d−2
ν̂ P

)
(xΓ; ·)+d̂iv

(
(ρ̂− 1)∇Γ d

−2
ν̂ P

)
(xΓ; ·) ∈ H

(
Ŷ∞
)
,

which leads combined with the definition of the operator d̂iv given by (4.1.3) to

µ
(

d̂iv
(
(ρ̂− 1)ν̂C(1) ∇̂ d−2

ν̂ P
)
(xΓ; ·) + d̂iv

(
(ρ̂− 1)∇Γ d

−2
ν̂ P

)
(xΓ; ·)

)
= 0 (4.4.47)

Moreover, on the one hand we have for all xΓ ∈ Γ
(
∇Γ d

−2
ν̂ P

)
(xΓ) ∈ TxΓ

Γ and using that
this last quantity only depend on ν̂ yields

d̂iv
(
ρ̂∇Γ d

−2
ν̂ P

)
= 0. (4.4.48)

On the other hand combining this last equality with the green formula and :

ν̂C(1)∂ν̂d
−2
ν̂ P (xΓ; ν̂)

∣∣
ν̂=−1

= 0, (4.4.49)

yields d̂iv
(
ν̂C(1)∂ν̂d

−2
ν̂ P

)
(xΓ; ·) = ∂ν̂

(
ν̂2H(xΓ)∂ν̂d

−2
ν̂ P (xΓ; ν̂)

)
in C[ν̂]. Therefore reusing

(4.4.49) leads to:

µ
(

d̂iv
(
ν̂C(1)∂ν̂d

−2
ν̂ P

)
(xΓ; ·)

)
=

∫ 0

ν̂=−1

∂ν̂
(
ν̂C(1)∂ν̂d

−2
ν̂ P (xΓ; ν̂)

)
dν̂ =

((((
(((

((((
((([

ν̂C(1)∂ν̂d
−2
ν̂ P (xΓ; ν̂)

]ν̂=0

ν̂=−1
= 0.

Combining this with (4.4.48) and (4.4.47) conclude the proof of (4.4.46).
Now let us prove that for all i = 1, 2:

A(xΓ) :=

∫
Ŷ−

P (xΓ; ν̂)wi(xΓ; x̂, ν̂)dx̂dν̂ − 〈Q(xΓ; ·), wi(xΓ; ·)〉Ŷ∞ = 0. (4.4.50)

Indeed, from (4.4.43), applying Corollary 2.5.7 (See Chapter 2) with φ = wi(xΓ; ·) yields:

A(xΓ) =

∫
Ŷ−

ρ̂(xΓ; x̂, ν̂)∂ν̂d
−2
ν̂ P (xΓ; ν̂) · ∂ν̂wi(xΓ; x̂, ν̂)dx̂dν̂ (4.4.51)

Let χ :]− 1,∞[ 7→ [0, 1] be a C∞ cut off function such that χ ≡ 1 on [−1, 0] and φ ≡ 0 on
]2,∞[. We recall that wi satisfy the P∞1 property. Thus wi satisfies (4.3.24), which leads
to:

∀ν̂ > 0,

∫
]0,1[2×{ν̂}
wi(xΓ; x̂, ν̂)dx̂ = 0. (4.4.52)

Moreover χ · d−2
ν̂ P does not depend on x̂. Combining this with (4.4.52) yields:∫

Ŷ+

∂ν̂
(
χ(ν̂)d−2

ν̂ P (xΓ; x̂, ν̂)
)
· ∂ν̂wi(xΓ; x̂, ν̂)dx̂dν̂ = 0.

Adding this with (4.4.51) yields:

A(xΓ) =

∫
Ŷ∞

ρ(xΓ; x̂, ν̂)∂ν̂
(
χ(ν̂)d−2

ν̂ P (xΓ; ν̂)
)
· ∂ν̂wi(xΓ; x̂, ν̂)dx̂dν̂,

= −〈(T0wi) (xΓ; ·), χ · d−2
ν̂ P (xΓ; ·)〉Ŷ∞ .
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Combining this with the definition of wi given in (4.3.18) yields:

A(xΓ) = 〈∂x̂i ρ̂(xΓ; ·), χ · d−2
ν̂ P (xΓ; ·)〉Ŷ∞ =

∫
Ŷ∞

ρ̂(xΓ; x̂, ν̂)χ(ν̂)((((
((((

(
∂x̂id

−2
ν̂ P (xΓ; x̂, ν̂)dx̂dν̂ = 0,

which conclude the proof of (4.4.50). Since for all xΓ ∈ the quantity d−2
ν̂ P (xΓ) only

depend on x̂ then the vector ρ̂ ∇̂ d−2
ν̂ is co-linear to the normal n which leads to:

µ
(

divΓ

(
ρ̂ ∇̂ d−2

ν̂ P
)

(xΓ; ·)
)

= 0.

Combining this last equation with (4.4.46) and (4.4.50) yields (4.4.45). Finally adding
(4.4.44) and (4.4.45) yields the stated results which ends the proof.
To state a new result of simplification of the quantity lα2 , one need to introduce some
quantities defined on the surface Γ. First we introduce w : Γ 7→

(
H
(
Ŷ∞
))3 defined by:

w := wie
i. (4.4.53)

Then we define the function WΓ : Γ 7→ H
(
Ŷ∞
)† by WΓ := T1

(
w · ∇Γ u0

)
. Finally we

define VΓ : Γ 7→ R3 as the unique tangential field such that for all i ∈ {1, 2} and xΓ ∈ Γ
we have:

(VΓ(xΓ), ei(xΓ)) = 〈WΓ(xΓ; ·), wi(xΓ; ·)〉Ŷ∞ .

Now we can state the following result:
Corollary 4.4.6. For all xΓ ∈ Γ we have:

µ
( (
T1T −1

0 T1T −1
0 T1γΓu0

)
(xΓ; ·)

)
= − divΓ (VΓ(xΓ)) .

Proof. Thanks to Proposition 4.3.2 we have T −1
0 T1γΓu0 = wi(e

i,∇Γ γΓu0) and then acord-
ing to the definition of WΓ this becomes

(
T1T −1

0 T1

)
γΓu0 = WΓ. Thus applying Proposi-

tion 4.4.5 directly yields our result.
We define for xΓ ∈ Γ the tensor M ρ

1,0 if xΓ ∈ ΓM by the unique element of L(TxΓ
Γ) such

that for all (i, j) ∈ {1, 2}2:

(
M ρ

1,0(xΓ) ei(xΓ), ej(xΓ)
)

:=

∫
Ŷ∞

ρ(xΓ)ν̂(C(1)∇̂wi(xΓ; x̂, ν̂), ∇̂wj(xΓ; x̂, ν̂))dx̂dν̂, (4.4.54)

else if xΓ /∈ ΓM this last quantity is defined by 0.
Finally, we introduce the "density of tensor field" ∇̂w defined for xΓ ∈ ΓM by:

∀i ∈ {1, 2}, ∇̂w(xΓ; ·)ei(xΓ) := ∇̂wi(xΓ; ·). (4.4.55)

and then we can state the followings result:
Proposition 4.4.7. We have for all xΓ ∈ Γ:

lα2 (xΓ) = − divΓ

((
M ρ

1,0(xΓ)−
∫
Ŷ∞

(ρ̂ ∇̂w ?w)(xΓ; x̂, ν̂)dx̂dν̂
)
∇Γ γΓu0(xΓ)

)
.
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Proof. Thanks to Corollary 4.4.6 we get:

lα2 (xΓ) = divΓ(Q0 +Q1 +Q2)(xΓ), (4.4.56)

where Q1(xΓ), Q1(xΓ) and Q2(xΓ) are the unique element of TxΓ
Γ such that for all i in

{1, 2}: 

(
Q0(xΓ), ei(xΓ)

)
:=
〈

d̂iv
(
ρ̂ν̂C(1) ∇̂(w,∇Γ γΓu0)

)
(xΓ; ·), wi(xΓ; ·)

〉
Ŷ∞
,(

Q1(xΓ), ei(xΓ)
)

:=
〈

divΓ

(
ρ̂ ∇̂(w,∇Γ γΓu0)

)
(xΓ; ·), wi(xΓ; ·)

〉
Ŷ∞
,(

Q2(xΓ), ei(xΓ)
)

:=
〈

d̂iv
(
ρ̂∇Γ(w,∇Γ γΓu0)

)
(xΓ; ·), wi(xΓ; ·)

〉
Ŷ∞
.

First prove that:
Q0 = −M ρ

1,0∇Γ u0. (4.4.57)

Indeed, according to the definition (4.4.55), we obtain:(
Q0(xΓ), ei(xΓ)

)
=
〈

d̂iv
(
ρ̂ν̂C(1) ∇̂wi(xΓ; ·)

)
, wj(xΓ; ·)

〉
Ŷ∞

(ej(xΓ),∇Γ γΓu0(xΓ)).

According to the definition of the operator d̂iv given by (4.1.3), this becomes:(
Q0(xΓ), ei(xΓ)

)
= −

(
ej(xΓ),∇Γ γΓu0(xΓ)

) ∫
Ŷ∞

(
ρ̂ν̂(C(1) ∇̂wi, ∇̂wj)

)
(xΓ; x̂, ν̂)dx̂dν̂.

Thus thanks to (4.4.54), we obtain:(
Q0(xΓ), ei(xΓ)

)
= −

(
(M ρ

1,0 · ej, ei)(ej,∇Γ u0)
)
(xΓ) = −

(
(M ρ

1,0∇Γ γΓu0)(xΓ), ei(xΓ)
)
,

which concludes the proof of (4.4.57).
Now, let us prove that for all xΓ ∈ Γ we have:

divΓ(Q1 +Q2)(xΓ) = divΓ

((∫
Ŷ∞

(ρ̂ ∇̂w ?w)(xΓ; x̂, ν̂)dx̂dν̂
)
∇Γ γΓu0(xΓ)

)
. (4.4.58)

For convenience we introduce the density of operator A : Ŷ∞ 7→
(
L
(
H3(Γ);L2(Γ)

))
given

for (x̂, ν̂) by:

A(x̂, ν̂) := u 7→ divΓ

(
w(.; x̂, ν̂) divΓ

(
ρ̂ ∇̂(w(.; x̂, ν̂),∇Γ u)

))
, (4.4.59)

in order to get the following rewriting:

divΓ(Q1) =

∫
Ŷ∞

A(x̂, ν̂)dx̂dν̂ · γΓu0. (4.4.60)

This last quantity is well defined because thanks to (4.1.8) we have γΓu0 ∈ H3(Γ). Let
us prove the following identity:

divΓ(Q2) =

∫
Ŷ∞

A†(x̂, ν̂)dx̂dν̂ · γΓu0, (4.4.61)
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in the sense that for all v ∈ H3(Γ) we have:∫
Γ

divΓ

(
Q2(xΓ)

)
v(xΓ)dxΓ =

∫
Γ

γΓu0(xΓ)

∫
Ŷ∞

A(x̂, ν̂) · v(xΓ)dx̂dν̂dxΓ. (4.4.62)

Let v ∈ H3(Γ). Thanks to (4.1.3) and Fubini’s theorem, we have:

−
∫

Γ

(
Q2(xΓ),∇Γ v(xΓ)

)
dxΓ =

∫
Γ

〈
d̂iv
(
ρ̂∇Γ(w,∇Γ(γΓu0))

)
(xΓ; ·), wi(xΓ; ·)

〉
Ŷ∞
Gi(xΓ)dxΓ,

=

∫
Γ×Ŷ∞

(
ρ̂∇Γ(w,∇Γ(γΓu0)), ∇̂wi

)
(xΓ; x̂, ν̂)Gi(xΓ)dxΓdx̂dν̂.

where we defined for xΓ ∈ Γ Gi(xΓ) :=
(
∇Γ v(xΓ), ei(xΓ)

)
. Thanks to (4.1.3) and the

surface Green formula for the ∇Γ operator, this becomes

−
∫

Γ

(
Q2(xΓ),∇Γ v(xΓ)

)
dxΓ = −

∫
Γ×Ŷ∞

(
w,∇Γ(γΓu0)

)
(xΓ; x̂, ν̂)divΓ

(
ρ̂ ∇̂(Giwi)

)
(xΓ; x̂, ν̂)dxΓdx̂dν̂,

=

∫
Γ×Ŷ∞

γΓu0(xΓ)divΓ

(
w divΓ

(
ρ̂ ∇̂(Giwi)

))
(xΓ; x̂, ν̂)dxΓdx̂dν̂.

Thanks to (4.4.59), this can rewritten as follow:

−
∫

Γ

(
Q2(xΓ),∇Γ v(xΓ)

)
dxΓ =

∫
Γ×Ŷ∞

γΓu0(xΓ)A(x̂, ν̂)v(xΓ)dxΓdx̂dν̂.

From this equality and the surface Green formula and the Fubini theorem we can easily
conclude the proof of (4.4.62).

Adding (4.4.60) and (4.4.61) yields:

divΓ(Q1 +Q2) =

∫
Ŷ∞

2 · Re
(
A(x̂, ν̂)

)
dx̂dν̂ · γΓu0.

According to Proposition 4.4.4, this last equality becomes (4.4.58). Combining (4.4.58)
with (4.4.56) and (4.4.57) yields the stated result.

4.4.4.3 The term lβ2 (xΓ)

We introduce for convenience the following tensor field defined for xΓ ∈ Γ as follow

• If xΓ ∈ ΓM, M ρ
1,3(xΓ) is the unique element of TxΓ

Γ such that for all i ∈ {1, 2}:

∀i ∈ {1, 2}, M ρ
1,3(xΓ) · ei(xΓ) :=

∫
Ŷ∞

ρ̂(xΓ; x̂, ν̂)ν̂ ∇̂wi(xΓ; x̂, ν̂)dx̂dν̂ (4.4.63)

• If xΓ /∈ ΓM, M ρ
1,3(xΓ) = 0.

Moreover, we introduce the scalar fieldM1 defined for xΓ ∈ Γ by:

M1(xΓ) :=

∫
Ŷ−

divΓ

(
µ̂(xΓ; x̂, ν̂)w(xΓ; x̂, ν̂)

)
dx̂dν̂, (4.4.64)

in order to state the following result:
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Proposition 4.4.8. We have for all xΓ ∈ Γ :

lβ2 (xΓ) = divΓ

(((
C(1)M ρ

1,3 + (C(1)M ρ
1,3)†

)
(xΓ) +

∫
Ŷ−

ρ̂(xΓ; x̂, ν̂)I ?w(xΓ; x̂, ν̂)dx̂dν̂
)
∇Γ γΓu0(xΓ)

)
,

+ k2M1(xΓ)γΓu0(xΓ).

Proof. We recall that for all i ∈ {1, 2}, wi satisfies the P∞mΓ
property. Therefore by

combining, (4.3.24) with the property of decreasing of the functions (φj)j∈Z2\{0}, we can
prove that for all xΓ ∈ Γ:(

d̂iv
(
ρ̂C(2)ν̂2 ∇̂wi(ei,∇Γ u0)

)
(xΓ; ·), d̂iv

(
ρ̂C(1)ν̂∇Γwi(e

i,∇Γ u0)
)
(xΓ; ·)

)
∈
(
H
(
Ŷ∞
)†)2

.

Thus, we have from the definition of the operator d̂iv and µ respectively given by (4.1.3)
and (4.1.6) that: µ

(
d̂iv
(
ρ̂C(2)ν̂2 ∇̂wi(ei,∇Γ u0)

)
(xΓ; ·)

)
= 〈d̂iv

(
ρ̂C(2)ν̂2 ∇̂wi(ei,∇Γ u0)

)
(xΓ; ·), 1〉Ŷ∞ = 0,

µ
(

d̂iv
(
ρ̂C(1)ν̂∇Γwi(e

i,∇Γ u0)
)
(xΓ; ·)

)
= 〈d̂iv

(
ρ̂C(1)ν̂∇Γwi(e

i,∇Γ u0)
)
(xΓ; ·), 1〉Ŷ∞ = 0.

Thus we have from the definition of the operator T2 given in (4.1.4) and Proposition 4.3.2
that:

µ
( (
T2T −1

0 T1γΓu0

)
(xΓ; ·)

)
=µ
( (
T2

(
wi(e

i,∇Γ γΓu0)
))

(xΓ; ·)
)

=
((((

((((
((((

(((
((((

(

µ
(

d̂iv
(
ρ̂C(2)ν̂2 ∇̂wi(ei,∇Γ u0)

)
(xΓ; ·)

)
+µ
(

divΓ

(
ρ̂C(1)ν̂ ∇̂wi(ei,∇Γ γΓu0)

)
(xΓ; ·)

)
+
(((

((((
(((

((((
(((

(((

µ
(

d̂iv
(
ρ̂C(1)ν̂∇Γwi(e

i,∇Γ u0)
)
(xΓ; ·)

)
+µ
(

divΓ

(
ρ̂∇Γwi(e

i,∇Γ γΓu0)
)
(xΓ; ·)

)
+k2 · µ

( (
µ̂wi(e

i,∇Γ u0)
)

(xΓ; ·)
)
,

Moreover, by using Proposition 2.5.15 and Proposition 2.5.16 (See Chapter 2), we can
prove that the following distributions

divΓ

(
ρ̂C(1)ν̂ ∇̂wi(ei,∇Γ u0)

)
(xΓ; ·), divΓ

(
ρ̂∇Γwi(e

i,∇Γ u0)
)
(xΓ; ·),

and
(
µ̂wi(e

i,∇Γ u0)
)
(xΓ; ·) belong to the space H

(
Ŷ∞
)†. Therefore according to the defi-

nition of the operator d̂iv and µ respectively given by (4.1.3) and (4.1.6), we have:

µ
( (
T2T −1

0 T1γΓu0

)
(xΓ; ·)

)
=

∫
Ŷ∞

divΓ

(
ρ̂C(1)ν̂ ∇̂wi(ei,∇Γ γΓu0)

)
(xΓ; x̂, ν̂)dx̂dν̂

+

∫
Ŷ∞

divΓ

(
ρ̂∇Γwi(e

i,∇Γ γΓu0

)
(xΓ; x̂, ν̂)dx̂dν̂

+k2 ·
∫
Ŷ∞

(
µ̂wi(e

i,∇Γ γΓu0)
)
(xΓ; x̂, ν̂)dx̂dν̂.
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Thanks to the definition of the tensor field M ρ
1,3 given in (4.4.63), this becomes:

µ
( (
T2T −1

0 T1γΓu0

)
(xΓ; ·)

)
= divΓ

(
C(1)M ρ

1,3∇Γ γΓu0

)
(xΓ)

+

(∫
Ŷ∞

B(x̂, ν̂) · γΓu0dx̂dν̂

)
(xΓ),

(4.4.65)

where we defined the density of operator B : Ŷ∞ 7→
(
L
(
H3(Γ);L2(Γ)

))
given for (x̂, ν̂)

by:

B(x̂, ν̂) := u 7→ divΓ

(
ρ̂(.; x̂, ν̂)∇Γ

(
∇̂(w(.; x̂, ν̂),∇Γ u)

))
+ k2 · µ̂(w(.; x̂, ν̂),∇Γ u).

We emphasize that B(x̂, ν̂) is well defined because 4.1.8 states that γΓu0 ∈ H3(Γ). Thanks
to Proposition 4.4.5 we have:

µ
( (
T1T −1

0 T2γΓu0

)
(xΓ; ·)

)
= − divΓ

(
ei(xΓ)

〈
d̂iv
(
ρ̂C(1)ν̂∇Γ γΓu0

)
(xΓ; ·), wi(xΓ; ·)

〉
Ŷ∞

)
− divΓ

(∫
Ŷ∞

w(xΓ; x̂, ν̂) divΓ

(
ρ̂(xΓ; x̂, ν̂)∇Γ γΓu0(xΓ)

)
dx̂dν̂

)
,

− k2 divΓ

(∫
Ŷ∞

w(xΓ; x̂, ν̂)µ̂(xΓ; x̂, ν̂)γΓu0dx̂dν̂

)
,

and thanks to the definition of B and 4.1.3 this becomes

µ
( (
T1T −1

0 T2γΓu0

)
(xΓ; ·)

)
= divΓ

(
ei(xΓ)

∫
Ŷ∞

(
ρ̂(C(1)ν̂∇Γ γΓu0, ∇̂wi)

)
(xΓ; x̂, ν̂)dx̂dν̂

)
+

(∫
Ŷ∞

B†(x̂, ν̂)dx̂dν̂γΓu0

)
(xΓ),

which leads combined with the definition of the tensor field M ρ
1,3 given in (4.4.63) to:

µ
( (
T1T −1

0 T2γΓu0

)
(xΓ; ·)

)
= divΓ

(
(C(1)M ρ

1,3)†∇Γ γΓu0

)
(xΓ)

+

(∫
Ŷ∞

B†(x̂, ν̂) · γΓu0dx̂dν̂

)
(xΓ),

(4.4.66)

On the other hand, thanks to Proposition 4.4.3 and Proposition 4.4.4 we have for all
(x̂, ν̂) ∈ Ŷ∞:

2ReB(x̂, ν̂)γΓu0 = divΓ

((
ρ̂I ?w

)
(.; x̂, ν̂)∇Γ γΓu0

)
− k2 divΓ(µ̂(.; (x̂, ν̂)w(.; (x̂, ν̂)))γΓu0

(4.4.67)
Adding (4.4.65) and (4.4.66) yields that the function xΓ 7→ µ

( (
T2T −1

0 T1γΓu0

)
(xΓ; ·)

)
+

µ
( (
T1T −1

0 T2γΓu0

)
(xΓ; ·)

)
is given by:

divΓ

(
2Re(C(1)M ρ

1,3)∇Γ γΓu0

)
+

∫
Ŷ∞

2Re
(
B†(x̂, ν̂)

)
γΓu0dx̂dν̂,

and combining this with (4.4.67) yields the desired result.
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4.4.5 Final boundary conditions of u2 and the operator Z2

To summarize Proposition 4.4.2, Proposition 4.4.7 and Proposition 4.4.8, we recall that
for all xΓ we have:

lα2 (xΓ) = − divΓ

((
M ρ

1,0(xΓ)−
∫
Ŷ∞

(ρ̂ ∇̂w ?w)(xΓ; x̂, ν̂)dx̂dν̂
)
∇Γ γΓu0(xΓ)

)
,

lβ2 (xΓ) = divΓ

(((
C(1)M ρ

1,3 + (C(1)M ρ
1,3)†

)
(xΓ) +

∫
Ŷ−

ρ̂(xΓ; x̂, ν̂)I ?w(xΓ; x̂, ν̂)dx̂dν̂
)
∇Γ γΓu0(xΓ)

)
,

+ k2M1(xΓ)γΓu0(xΓ),

lγ2 = divΓ

(
ρ1(H −R)∇Γ γΓu0

)
+ k2µ1HγΓu0.

We introduce the tensor field :

ρ1
eff := M ρ

1 +N ρ
1 + ρ1(H −R),

where we defined :

M ρ
1 := −M ρ

1,0+C(1)M ρ
1,3+(C(1)M ρ

1,3)† and N ρ
1 :=

∫
Ŷ∞

ρ̂(·; x̂, ν̂)
(
Iν̂<0I+∇̂w

)
?w(·; x̂, ν̂)

)
dx̂dν̂,

because we have the following rewriting:

lα2 + lβ2 + lγ2 = divΓ

(
ρ1
eff ∇Γ γΓu0

)
+ k2µ1HγΓu0 + k2M1(xΓ)γΓu0(xΓ). (4.4.68)

We recall that the operators ?, w and ∇̂w are respectively defined in (4.4.37), (4.4.53)
and (4.4.55). We recall thatM ρ

1,0 andM ρ
1,3 are defined through to the solution (wi)1≤i≤2

of cell problems (4.3.17) as follow:

• For xΓ ∈ ΓM, these tensors are the unique elements of L(TxΓ
Γ) such that for all

i ∈ {1, 2}:
(
M ρ

1,0(xΓ) ei(xΓ), ej(xΓ)
)

:=

∫
Ŷ∞

(
ρ̂ν̂(C(1)∇̂wi, ∇̂wj)

)
(xΓ; ·)dx̂dν̂,

(
M ρ

1,3(xΓ) · ei(xΓ), ej(xΓ)
)

:=

∫
Ŷ∞

(
ρ̂ν̂ ∇̂wi, ej

)
(xΓ; ·)dx̂dν̂,

• For xΓ /∈ Γ, M ρ
1,0(xΓ) := 0 and M ρ

1,3(xΓ) := 0.

Finally, we recall that we defined for xΓ ∈ Γ:

ρ1(xΓ) :=

∫
Ŷ−

2 · ν̂ρ̂(xΓ; x̂, ν̂)dx̂dν̂, µ1(xΓ) :=

∫
Ŷ−

2 · ν̂µ̂(xΓ; x̂, ν̂)dx̂dν̂,

and
M1(xΓ) :=

∫
Ŷ−

divΓ (µ̂(xΓ; x̂, ν̂)w(xΓ; x̂, ν̂)) dx̂dν̂,

Thus we can introduce the operator Z2 : H1 7→ H−1(Γ) defined for u in H1(Γ) by:

Z2u := divΓ

(
ρ1
eff ∇Γ u

)
+ k2 · (Hµ1 −M1)u.

Thanks to (4.4.68), we obtain the followings result:
Lemma 4.4.9. The term u2 is the unique solution of: Find u2 ∈ H1

(
Ω0

)
such that for

all v ∈ H1
(
Ω0

)
:

a0(u2, v) = 〈Z1γΓu1, v〉Γ×{0} + 〈Z2γΓu0, v〉Γ×{0}.
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4.4.5.1 Case of symmetric cells

Definition 4.4.10. We says that the cells of the thin coat are symmetric if for all xΓ ∈ Γ
and (x̂, ν̂) ∈ Ŷ∞ we have:

ρ̂(xΓ; x̂, ν̂) = ρ̂(xΓ;−x̂, ν̂) and µ̂(xΓ; x̂, ν̂) = µ̂(xΓ;−x̂, ν̂).

Under this last condition the following property of functions (wi)i holds:
Proposition 4.4.11. If the cells of the thin coat are symmetric then for all xΓ ∈ Γ and
(x̂, ν̂) ∈ Ŷ∞ we have:

∀i ∈ {1, 2}, wi(xΓ; x̂, ν̂) = −wi(xΓ;−x̂, ν̂).

Proof. For all function f defined on Γ× Ŷ∞ we define the function S(f) for (xΓ; x̂, ν̂) ∈
Γ× Ŷ∞

S(f)(xΓ; x̂, ν̂) := f(xΓ;−x̂, ν̂).

Thanks to this notation the symmetry property can be rewritten as:

S(ρ̂) = ρ̂.

Prove that for all φ ∈ H
(
Ŷ∞
)
and xΓ ∈ Γ we have:∫

Ŷ∞

(
ρ̂(∇̂S(wi), ∇̂φ)

)
(xΓ; x̂, ν̂)dx̂dν̂ =

∫
Ŷ∞

(
ρ̂∂x̂i

)
(xΓ; x̂, ν̂)φdx̂dν̂ (4.4.69)

Indeed from S(ρ̂) = ρ̂ we have:

ρ̂(∇̂S(wi), ∇̂φ) = S
(
ρ̂
(
∇̂wi, ∇̂φ′

))
with S(φ) := φ′ ∈ H

(
Ŷ∞
)
,

which leads to:∫
Ŷ∞

(
ρ̂(∇̂S(wi), ∇̂φ)

)
(xΓ; x̂, ν̂)dx̂dν̂ =

∫
Ŷ∞

(
ρ̂
(
∇̂wi, ∇̂φ′

))
(xΓ; x̂, ν̂)dx̂dν̂

Next, using T0wi = ∂x̂i ρ̂ yields that this last equality become:∫
Ŷ∞

(
ρ̂(∇̂S(wi), ∇̂φ)

)
(xΓ; x̂, ν̂)dx̂dν̂ = −

∫
Ŷ∞

ρ̂(xΓ; x̂, ν̂)∂xiφ
′(x̂, ν̂)dx̂dν̂,

=

∫
Ŷ∞

S(ρ̂)(xΓ; x̂, ν̂)∂xiS(φ′)(x̂, ν̂)dx̂dν̂.

Thus reusing S(ρ̂) = ρ̂ and S(φ′) = φ yields that this last equality become (4.4.69).
Therefore we have T0S(wi) = −∂xi ρ̂ and we clearly have δΣ(S(wi)) = 0 which leads

to
S(wi)− = (−δΣ ⊗ δΣ + T0)−1∂xi ρ̂

Thanks to (4.3.18) this becomes S(wi) = −wi which conclude the proof.
Thanks to this result we get the following one:
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Corollary 4.4.12. If the cells of the thin coat are symmetric then we have (See (4.4.63)
and (4.4.64) for definition of these quantities):

N ρ
1 = 0 and M1 = 0.

Proof. We only give the proof of:∫
Ŷ∞

(
ρ̂ ∇̂w ?w

)
(; x̂, ν̂)dx̂dν̂ = 0,

because the arguments for the other quantities are the same. A sufficient condition is to
prove that for all (xΓ, x̂, ν̂) ∈ ΓM×Ŷ∞:

ρ̂ ∇̂w ?w(xΓ; x̂, ν̂) = −ρ̂ ∇̂w ?w(xΓ;−x̂, ν̂). (4.4.70)

Indeed, both quantities appearing in this last equation vanishes if xΓ ∈ Γ\ΓM and thanks
to (4.4.37) we have for all (i, j) ∈ {1, 2}2 that:

(ρ̂ ∇̂w ?wej, ei) =
1
√
g

[
∂xk(
√
gαjkwi−√gwk αji) +

√
gαki∂xk w

j −wi ∂xk(
√
gαkj)

]
,

(4.4.71)
where for all (i, j) ∈ {1, 2}2 αij := (ρ̂ ∇̂wej, ei). We recall that ∂xk is defined in (4.4.36).

From Proposition 4.4.11 we get that for all (i, j, k) ∈ {1, 2}3 and (xΓ, x̂, ν̂) ∈ ΓM×Ŷ∞:(
αij wk

)
(xΓ; x̂, ν̂) = −

(
αij wk

)
(xΓ;−x̂, ν̂).

Therefore we get for all l ∈ {1, 2}:

∂xl
(
αij wk

)
(xΓ; x̂, ν̂) = −∂xl

(
αij wk

)
(xΓ;−x̂, ν̂).

Combining this last identity with (4.4.71) yields the sufficient condition (4.4.70) which
ends the proof.

4.5 Construction of the effective boundary conditions
and convergence

4.5.1 Formal construction of the effective boundary conditions

Thanks to Lemma 4.3.1, Lemma 4.3.8 and Lemma 4.4.9 we have on Γ× {0}:

∂νui +
i∑

j=0

ZjγΓui−j = 0.

Therefore, we introduce the operator Z iδ :=
∑i

j=0 δ
jZj because we formally get from this

last equality that for all i ∈ {0, 1, 2} the quantity ui,δ :=
i∑

j=0

δjuj formally satisfies on Γ:

∂νui,δ + ZjδγΓui,δ = O
(
δi+1

)
. (4.5.72)
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Moreover, we recall that this last quantity is an approximation of order i of uδ ◦ L−1

which leads formally to for all i ∈ {0, 1, 2} the exact solution uδ satisfies on Γ:

∂νu
δ + ZjδγΓu

δ = O
(
δi+1

)
.

Thus we define for i ∈ {0, 1, 2} the function uδi : Ω 7→ C as the unique solution of:

∆uδi + k2uδi = f and ∂νu
δ
i + Z iδγΓu

δ
i = 0 on Γ, (4.5.73)

and uδi satisfies the Sommerfeld radiation condition. We refer the reader to [25] to prove
that this last problem is well posed in H1

loc(Ω). We now prove some estimate which take
the following form for all i ∈ {0, 1, 2}:

uδ = uδi +O
(
δi+1

)
, (4.5.74)

and we proceed as follow:

1. We rewrite (4.5.73) as follow:

P δ
i

(
uδi ◦ L−1

)
= fΣη0

,

where P δ
i : H1 (Ω0) 7→ H1 (Ω0)† and fbis

Ση0
∈ H1 (Ω0)† is defined for v ∈ H1 (Ω0) by:

〈fbis
Ση0
, v〉H1(Ω0)†−H1(Ω0) := 〈fbis

Ση0
, v〉Γ×{η0}.

2. We prove existence of C > 0 independent of δ such that we have the following
estimate: ∥∥∥P δ

i ui,δ − fbis
Ση0

∥∥∥
H1(Ω0)†

≤ Cδi+1,

and this last property is called the "Consistence of the effective boundary condi-
tions"

3. We prove existence of C > 0 independent of δ > 0 such that the following estimate
holds: ∥∥∥(P δ

i

)−1
∥∥∥
L(H1(Ω0)†,H1(Ω0))

≤ C.

and this last property is called the "Stability of the effective boundary conditions".

4. We deduce the following estimate:∥∥ui,δ − uδi ◦ L−1
∥∥
H1(Ω0)

≤ Cδi+1 (4.5.75)

5. We deduce (4.5.74) by combining (4.5.75) and Theorem 4.1.1 with the Triangle
inequality.
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4.5.2 Consistences of the effective boundary conditions

We give in this part a rigorous sense of the estimate (4.5.72). First, we chose to define for
i = 0, 1, 2 the operator the operator as follow Z iδ : H1(Γ) 7→ H−1(Γ). Then, we introduce
the space:

VZ :=
{
u ∈ H1(Ω0), γΓu ∈ H1(Γ)

}
,

and we provide this last space with the following norm:

∀u ∈ VZ , ‖u‖2
VZ

:= ‖u‖2
H1(Ω0) + ‖u‖2

H1(Γ×{0}).k

Therefore for i = 0, 1, 2 we can define the sesquilinear form on VZ × VZ for (u, v) ∈ V 2
Z

by:

aiδ(u, v) := −〈Z iδγΓu, γΓv〉H−1(Γ)−H1(Γ) + a0(u, v). (4.5.76)

Thanks to these last definitions we can state the following result:
Lemma 4.5.1. For all i = 0, 1, 2, the function ui,δ belongs to the space VZ and there
exists C > 0 such that for all v ∈ VZ and i = 0, 1, 2 the following estimate holds:

∣∣∣aiδ(ui,δ, v)− 〈fbis
Ση0
, v〉H1(Ω0)†−H1(Ω0)

∣∣∣ ≤ Cδi+1‖v‖H1(Ω0).

Proof. From (4.1.8) we have:

∀i ∈ {0, 1, 2}, γΓui ∈ H
3
2 (Γ), (4.5.77)

and using that H
3
2 (Γ) ⊂ H1(Γ) yields ui ∈ VZ .

We have seen that from (4.1.11) and (4.1.12), we have proved for all i ∈ {1, 2} that
wi ∈ CmΓ

(
Γ;H

(
Ŷ∞
))

. Moreover we recall that ρ0
eff and ρ1

eff , µ0 are defined through
these function. Thus we can easily prove that ρ0

eff , ρ1
eff , µ0 and µ1 are CmΓ functions.

Therefore (4.5.77) leads to:

∀(i, j) ∈ {0, 1, 2}2, ZjγΓui ∈ H−
1
2 (Γ) (4.5.78)

In the previous section we proved that for all i ∈ {0, 1, 2}:

a0(ui, v) = δ0i〈f, v〉H1(Ω0)†−H1(Ω0) +
i∑

j=1

〈ZjγΓui−j, γΓv〉H−1(Γ)−H1(Γ).
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Thus we have:

a0(ui,δ, v) = 〈fbis
Ση0
, v〉H1(Ω0)†−H1(Ω0) +

i∑
i′=0

i′∑
j=0

〈Zjδi′γΓui′−j, γΓv〉H−1(Γ)−H1(Γ),

= 〈fbis
Ση0
, v〉H1(Ω0)†−H1(Ω0) +

i∑
i′=0

i′∑
j=0

〈Z i′−jδi′γΓuj, γΓv〉H−1(Γ)−H1(Γ),

= 〈fbis
Ση0
, v〉H1(Ω0)†−H1(Ω0) +

i∑
j=0

i∑
i′=j

〈Z i′−jδi′γΓuj, γΓv〉H−1(Γ)−H1(Γ),

= 〈fbis
Ση0
, v〉H1(Ω0)†−H1(Ω0) +

i∑
j=0

i−j∑
i′=0

〈Z i′δi′+jγΓuj, γΓv〉H−1(Γ)−H1(Γ),

= 〈fbis
Ση0
, v〉H1(Ω0)†−H1(Ω0) + 〈Z iδγΓui,δ, γΓv〉H−1(Γ)−H1(Γ),

+
i∑

j=0

i∑
i′=i−j+1

〈Z i′δi′+jγΓuj, γΓv〉H−1(Γ)−H1(Γ).

Thus we get∣∣∣a0(ui,δ, v)− 〈fbis
Ση0
, v〉H1(Ω0)†−H1(Ω0)

∣∣∣ ≤ i∑
j=0

i∑
i′=i−j+1

∣∣∣〈Z i′δi′+jγΓuj, γΓv〉H−1(Γ)−H1(Γ)

∣∣∣ ,
≤ δi+1

i∑
j=0

i∑
i′=i−j+1

∣∣∣〈Z i′γΓuj, γΓv〉H−1(Γ)−H1(Γ)

∣∣∣ .
and thanks to (4.5.78) there exists C > 0 such that we have:

i∑
j=0

i∑
i′=i−j+1

∣∣∣〈Z i′γΓuj, γΓv〉H−1(Γ)−H1(Γ)

∣∣∣ ≤ C‖v‖
H1
(

Ω0

),
which ends the proof.

4.5.3 Stability

First prove the following intermediate result:
Proposition 4.5.2. The tensor field ρ0

eff is positive-definite in the sense that for all
xΓ ∈ Γ and u ∈ TxΓ

Γ we have:

u(xΓ) 6= 0⇒ (ρ0
eff (xΓ)u(xΓ),u(xΓ)) > 0. (4.5.79)

Moreover for δ small enough the tensor field:

δρ0
eff + δ2ρ1

eff ,

is positive in the sense that for all xΓ ∈ Γ and u ∈ TxΓ
Γ we have:(

(δρ0
eff (xΓ) + δ2ρ1

eff (xΓ))u,u
)
≥ 0. (4.5.80)
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Proof. Proof of (4.5.79) . Let xΓ ∈ Γ and u ∈ TxΓ
Γ. Assumes first that xΓ /∈ ΓM or

ui ∇̂wi(xΓ) = 0. In these two cases we have M ρ
0(xΓ) = 0 which leads combined with

(4.1.12) to:
(ρ0

eff (xΓ)u(xΓ),u(xΓ)) = ρ0(xΓ)|x|2 > 0,

and then concludes the proof of (4.5.79).
Assume now that xΓ ∈ ΓM and ui ∇̂wi(xΓ) 6= 0. Thanks to (4.3.16), we have

u=uiei(xΓ) with ui :=
(
u, ei(xΓ)

)
. First prove that in this case the family (ui ∇̂wi(xΓ; ·),u)

is linearly independent. Indeed, in the contrary case the contrary case there would exists
λ 6= 0 such that:

ui ∇̂wi(xΓ; ·) = λu (4.5.81)

Since wi(xΓ; ·) is x̂ periodic, we have from Green formula for all j = 1, 2 that:∫
Ŷ−

(ui ∇̂wi(xΓ; x̂, ν̂), ej(xΓ))dx̂dν̂ = 0.

Combining this with (4.5.81) yields that for all j = 1, 2 we have (u, ej(xΓ)) = 0 . There-
fore using that u belongs to TxΓ

Γ and that (ei(xΓ))i is a basis of TxΓ
Γ yields that u = 0

which bring a contradiction and we now use this result. In order to apply Cauchy Schwartz
inequality, we provide the space L2(Ŷ∞)3 with following dot product:

∀(u, v) ∈ L2(Ŷ∞)3, (u, v)L2(Ŷ∞)3 :=

∫
Ŷ∞

ρ̂(xΓ; x̂, ν̂)(u(x̂, ν̂), v(x̂, ν̂))dx̂dν̂. (4.5.82)

Thanks to Proposition 4.3.4 we have:

M ρ
0(xΓ)u =

∫
Ŷ−

ρ̂(xΓ; x̂, ν̂) ∇̂wi(xΓ; x̂, ν̂)dx̂dν̂ui,

which leads combined with (4.5.82) to:

(M ρ
0(xΓ)u,u) = (∇̂wi(xΓ; ·)ui,u)(

L2(Ŷ∞)
)3 . (4.5.83)

Since we proved that ∇̂wi(xΓ : ·)ui and u are not co-linear then Cauchy Schwartz com-
bined with (4.5.83) yields:

|(M ρ
0(xΓ)u,u)|2 < ‖ ∇̂wi(xΓ)ui‖2(

L2(Ŷ∞)
)3 · ‖u‖2. (4.5.84)

Moreover, according to the definition ofM ρ
0(xΓ) and ρ0(xΓ) respectively given by (4.3.22)

and (4.3.25), we have the two following rewriting:
‖u‖2(

L2(Ŷ∞)
)3 =

∫
Ŷ−

ρ̂(xΓ; x̂, ν̂)|u|2dx̂dν̂ = ρ0(xΓ)|u|2,∥∥∥∇̂wi(xΓ)ui
∥∥∥2(

L2(Ŷ∞)
)3 =

∫
Ŷ−

ρ̂(xΓ; x̂, ν̂)| ∇̂wi(xΓ; x̂, ν̂)ui|2dx̂dν̂ ≤ (M ρ
0(xΓ)u,u).

Therefore combining this two last inequalities with (4.5.84) leads to (M ρ
0(xΓ)u,u) <

ρ0(xΓ)|u|2 and combining this with the definition of ρ0
eff given in (4.3.29) yields:

0 < ρ0(xΓ)|u|2 − (M ρ
0(xΓ)u,u) =

(
ρ0
eff (xΓ)u,u

)
.

148



which concludes the proof of (4.5.79).
Proof of (4.5.80): Thanks to (4.5.79), we can deduce that λmin(ρ0) > 0. Thus by using
the compactness of Γ and the continuity of λmin(ρ0) (see proof of Lemma 4.5.1 ) we have:

r+ := inf
(
λmin(ρ0

eff )
)
> 0.

Moreover since λmax(ρ1
eff ) is a smooth function on Γ (see proof of Lemma 4.5.1 ), we

have:
r− := sup

(
λmax(ρ1

eff )
)
<∞.

Therefore for δ ≤ r+/(2r−) we have:

λmin(δρ0
eff + δ2ρ1

eff ) ≥ δr+ − δ2r− ≥
r+

2
> 0,

which concludes the proof of (4.5.80).
Corollary 4.5.3. There exist a compact operator Tk : H1(Ω0) 7→ H1(Ω0)† such that for
all u ∈ VZ , δ > 0 and i = 0, 1, 2 the following estimate holds:

|aiδ(u, u)| ≥ ‖u‖2
H1(Ω0) −

∣∣∣〈Tku, u〉H1(Ω0)†−H1(Ω0)

∣∣∣ . (4.5.85)

Proof. For this proof 〈·, ·〉 is the dual product 〈·, ·〉H1(Ω0)†−H1(Ω0). Let u ∈ VZ then we
have:

aiδ(u, u) = 〈(C + Tk)u, u〉, (4.5.86)

where C : H1(Ω0) 7→ H1(Ω0)† and Tk : H1(Ω0) 7→ H1(Ω0)† are the only linear operators
such that for all (u, v) ∈ H1(Ω0)2 we have:
〈Qu, v〉 :=

i∑
j=1

δj(ρj−1
eff ∇Γ u,∇Γ v) +

∫
Ω0

((C ∇L u,∇L v) + uv) dΓdν + 〈DtNk=iL u, v〉Γ×{η0},

〈Tku, v〉 := −
∫

Ω0

(1 + k2 C)uvdΩ0 + k2 ·
i∑

j=1

δi(µi−1γΓu, γΓv)L2(Γ) + 〈(DtNL−DtNk=i
L )u, v〉Γ×{η0},

where DtNk=i
L : H

1
2 (Γ× {η0}) 7→ H−

1
2 (Γ× {η0}) is defined for (u, v) ∈ H 1

2 (Γ× {η0})2

by: 〈
DtNk=i

L u, v
〉

Γ×{η0} :=
〈
DtNk=i u ◦ L, v ◦ L

〉
Ση0

,

and DtNk=i : H
1
2 (Σ0) 7→ H−

1
2 (Σ0) is the Dirichlet to Neumann map on Σ0 associated to

the wave-number i.
Then we now prove the following coercivity property of the operator Q:

〈Qu, u〉H1(Ω0)†−H1(Ω0) ≥ ‖u‖
2
H1(Ω0). (4.5.87)

Indeed, from the positivity of DtNk=i, one can show that for all u ∈ H 1
2 (Γ × {η0}) we

have: 〈
DtNk=i

L u, u
〉

Γ×{η0} ≥ 0. (4.5.88)
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Thanks to Proposition 4.5.2 we have that
i∑

j=1

δj(ρj−1
eff ∇Γ u,∇Γ u) ≥ 0. Combining this

with (4.5.88) concludes the proof of (4.5.87).
Now let us prove the compactness of the operator Tk. Indeed the operator DtN−DtNk=1

is compact (Seed [60, Theorem 2.6.4], [51, appendix] and [25, Proposition 3.4]). Morover,
thanks to Rellich lemma, the linear operator associated to the sesquilinear form defined
for (u, v) ∈ H1

(
Ω0

)2 by:

−
∫

Ω0

(1 + k2 C)uvdΩ0 + k2 ·
i∑

j=1

δi(µi−1u, v)L2(Γ),

is compact which concludes the proof of the compactness of Tk.
The estimate (4.5.85) is a direct consequence of (4.5.87) and (4.5.86) which concludes

the proof.
Lemma 4.5.4. The effective boundary conditions are stable in the sense that there exists
C > 0 such that for all u ∈ VZ the following estimate holds:

‖u‖ ≤ C sup
‖φ‖H1(Ω0)=1

|aiδ(u, φ)|.

Proof. Let us prove this result by contradiction. Let uδ such that

‖uδ‖H1(Ω0) = 1 and lim
δ→0

sup
‖φ‖H1(Ω0)=1

aiδ(uδ, φ) = 0. (4.5.89)

Therefore the sequence uδ is bounded in H1(Ω0) and then up to a sub-sequence there
exists u0 such that uδ weakly converge to u0. First prove that for all φ ∈ C∞(Ω0) we
have:

a0(u, φ) = 0, (4.5.90)

and using the fact that this last variational formulation is well posed and using density
of the space C∞(Ω0) into H1(Ω0) will deduce that u0 = 0.

Indeed thanks to (4.5.89) and the definition (4.5.76) we have:

lim sup
δ→0

a0(uδ, φ) ≤ lim inf
δ→0
〈Z iδγΓuδ, γΓφ〉H−1(Γ)−H1(Γ) = lim inf

δ→0
〈γΓuδ,Z iδγΓφ〉H−1(Γ)−H1(Γ).

Moreover the function φ is regular on Γ× {0} and so thanks to the regularities of coeffi-
cients which appears on the operators Z1 and Z2 we have:

lim inf
δ→0
〈Z iδγΓuδ, γΓφ〉H−1(Γ)−H1(Γ) ≤ lim inf

δ→0

i∑
j=1

δj‖uδ‖L2(Γ×{0})‖Ziφ‖L2(Γ×{0}) = 0.

Therefore we success to prove that uδ weakly converge to 0.
Then we now use this weak convergence to prove a contradiction with (4.5.89). Indeed

the compactness of the operator Tk implies that Tkuδ → 0 strongly congerve to zero. Then
according to Corollary 4.5.3, (4.5.89) leads to the strong convergence of uδ to zero. This
contradict (4.5.89).
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Figure 4.4: Illustration of the Final Convergence Theorem

4.5.4 Error estimate

Now we back to the initial geometry Ωδ and define for i ∈ {0, 1, 2} the function uδi : Ω 7→ C
by the unique solution of:

∆uδi + k2uδi = f and ∂νu
δ
i = Z iδuδi on Γ,

and uδi satisfies the Sommerfeld radiation condition. We refer the reader to [25] to prove
that this last problem is well posed in H1

loc(Ω). Thanks to all this work we can state the
final result of this work.
Theorem 4.5.5 (Final Convergence Theorem). For all i ∈ {0, 1, 2}, if mΓ ≤ 6 + i
and supp(f) ∩ Γ = ∅ then for all K open bounded subset of Ω such that K ∩ Γ = ∅ there
exists C such that for all δ > 0 we have:

‖uδ − uδi‖H1(K) ≤ Cδi+1. (4.5.91)

We refer the reader to Figure 4.4 for an illustration of assumptions of this last theorem.
Proof. With the same way of the proof Proposition 1.3.2 (See Chapter 1), we show that:

uδi = ũi,δ ◦ L, (4.5.92)

where ũi,δ is the unique solution of: Find ũi,δ ∈ VZ such that for all v ∈ VZ we have:

aiδ(u, φ)(ũi,δ, v) = 〈fΣη0
, v〉.

Hereafter for this proof C > 0 is a generic constant independent of δ. Thanks to
Lemma 4.5.1 we have:

sup
φ∈VZ\{0}

|aiδ(ui,δ − ũi,δ, φ)|
‖φ‖

H1
(

Ω0

) ≤ Cδi+1.

Therefore using Lemma 4.5.4 yields:

‖ui,δ − ũi,δ‖
H1
(

Ω0

) ≤ Cδi+1. (4.5.93)

Let K ⊂ Ωδ be a bounded open subset of Ω such that Γ ∩ K = ∅. Therefore from
Γ ∩K = ∅ and the compactness of Γ and K we have:

c :=
dist(Γ, K)

2
> 0.

151



Thus by applying Theorem 4.1.1, we have:

‖uδ − ui,δ‖H1(Γ×]c,η0[) ≤ Cδi+1.

Moreover combining this last estimate with (4.5.93) yields:

‖uδ − ũi,δ‖H1(Γ×]c,η0[) ≤ Cδi+1,

Combining this with uδ = uδ ◦ L, (4.5.92) and [57, Theorem 3.20] yields:

‖uδ − uδi‖H1(L−1(Γ×]c,η0[)) ≤ Cδi+1. (4.5.94)

Moreover we recall that K ∩ Cδ,η0 ⊂ L−1(Γ×]c, η0[), which leads to:

‖uδ − uδi‖H1(K∩Cδ,η0 ) ≤ Cδi+1. (4.5.95)

Let us prove now:

∃C > 0, ∀δ > 0, ‖uδ − uδi‖H1(K\Cδ,η0 ) ≤ Cδi+1. (4.5.96)

Indeed we introduce the open bounded set Õ := Cδ,η0 ∪O.
Thanks to Proposition 1.3.1 (See Chapter 1),

∂Õ = L−1(Γ× {η0}). (4.5.97)

From the regularity of the map L and Γ we deduce from (4.5.97) that Õ is a Lipschitz
domain. Therefore we can apply classical theory of scattering for Helmholtz equation
which leads to:

‖uδ − uδi‖H1(K\Õ)
≤ C‖uδ − uδi‖H 1

2 (∂Õ)
. (4.5.98)

Moreover from (4.5.97) we have ∂Õ ⊂ ∂ (L−1(Γ×]c, η0[))) and combining with (4.5.94)
yields:

‖uδ − uδi‖H 1
2 (∂Õ)

≤ Cδi+1. (4.5.99)

Since K ∩ O = ∅ we have K \ Õ = K \ Cδ,η0 . Therefore combining (4.5.98) and (4.5.99)
yields the desired result (4.5.96).

Adding (4.5.95) and (4.5.96) yields the desired result which ends the proof.
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Chapter 5

Numerical approximation of the
approximate solution

This chapter contains two steps. We first, give a numerical procedure to compute a
numerical approximation of the solution approximate model in the two dimensional case.
That is the object of the section 5.3. Finally we will prove error estimates independent
of the small parameter δ that only depends one the mesh size h. That is the object of
section 5.4 and Theorem 5.4.2. We will see that it has an advantage compared to the
exact model.

5.1 Two dimensional configuration

Hereafter, the dimension of our problem is two. We assume that our obstacle O is included
on the ball B1/3 := {p ∈ R2, |p| < 1/3}. For the sequel our domain is Ω := B 1

3 \O. (See
Figure 5.1) We assume that the boundary Γ is a parametric curve in the sense that there
exists a function: P : [0, 1] 7→ R2 with P (0) = P (1) such that:

Γ = {P (t), t ∈ [0, 1]} ,

and this last function is supposed to be injective on [0, 1[. To ensure that Γ is a C∞
manifold, we assume that P is a C∞ function and the velocity dP

dt
does not vanishe on

[0, 1]. The function ψΓ is defined by P−1 : Γ 7→ [0, 1[. The coefficient ρ̂(xΓ; x̂, ν̂) and

Figure 5.1: Illustration of the geometry
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µ̂(xΓ; x̂, ν̂) are supposed independent of xΓ and we will write:

ρ̂(xΓ; x̂, ν̂) = ρ̂(x̂, ν̂) and µ̂(xΓ; x̂, ν̂) = µ̂(x̂, ν̂).

We assume that our cell is symmetric in the sense that for all (x̂, ν̂) ∈ Ω :=]0, 1[×]−1,∞[
we have:

ρ̂(x̂, ν̂) = ρ̂(−x̂, ν̂) and µ̂(x̂, ν̂) = µ̂(−x̂, ν̂).

5.2 Reminder of the approximated problem

We recall that for all i ∈ {0, 1, 2}, the function uδi is defined by the unique solution of:
Find uδi ∈:

V :=

{
u ∈ H1(Ω),

∫
Γ

(
|u|2 + | ∇Γ u|2

)
dΓ +

∫
Ω

(
|u|2 + |∇u|2

)
dΩ <∞ and u = 0 on ∂B1

}
,

such that for all v ∈ V we have: aδi (u, v) = (f, v)L2(Ω). The sesquilinear form aδ1 and aδ2
are defined by:

aδ1 := a0 + δa1 and aδ2 := a0 + δa1 + δ2a2,

where a0, a1 and a2 are defined for (u, v) ∈ V × V by:

a0(u, v) :=

∫
Ω

(
∇u · ∇v − k2uv

)
dΩ and ai(u, v) :=

∫
Γ

(
ρi−1
eff ∇Γ u · ∇Γ v − k2µi−1uv

)
dΓ , i = 1, 2.

Here we define for all xΓ ∈ Γ :

ρ0
eff (xΓ) := ρ0 −M

ρ
0

(
g(xΓ)

)
and ρ0

eff := −c(xΓ)ρ1 + c(xΓ)M ρ
1

(
g(xΓ)

)
where c(xΓ) is the curvature of Γ at the point xΓ,

ρi :=

∫
Ŷ−

iν̂i−1ρ̂(x̂, ν̂)dx̂dν̂ and µi :=

∫
Ŷ−

iν̂i−1ρ̂(x̂, ν̂)dx̂dν̂,

Ŷ∞ :=]0, 1[×] − 1,∞[ and Ŷ− :=]0, 1[×] − 1, 0[ (see Figure 5.2) and g : Γ 7→ R∗+ is given
for xΓ by

g(xΓ) :=

∣∣∣∣dPdt (t)

∣∣∣∣−2

with t := P−1(xΓ).

The functions M ρ
0,M

ρ
1 : R∗+ 7→ R are computed through solutions w of “cell problems”.

These functions are defined for g ∈ R∗+ by:

M ρ
0(g) := g ·

∫
Ŷ∞

ρ̂(x̂, ν̂)
(
g
∣∣∂x̂w(g; x̂, ν̂

)∣∣2 +
∣∣∂ν̂w(g; x̂, ν̂

)∣∣2) dx̂dν̂,
and:

M ρ
1

(
g
)

:= g ·
∫
Ŷ∞

ρ̂(x̂, ν̂)
(
−g
∣∣∂x̂w(g; x̂, ν̂

)∣∣2 +
∣∣∂ν̂w(g; x̂, ν̂

)∣∣2) dx̂dν̂ + 2g

∫
Ŷ∞

ρ̂(x̂, ν̂)ν̂∂x̂w
(
g; x̂, ν̂

)
dx̂dν̂.

154



Figure 5.2: Illustration of the infinite strip

Figure 5.3: Illustration of the domain Ωh and the map φh

Finally the function w is defined for g > 0 by w(g; ·) which is the unique solution of (up
to a constant): Find w(g; ·) ∈ H

(
Ŷ∞
)
such that for all v ∈ H

(
Ŷ∞
)
we have:∫

Ŷ∞

ρ̂(x̂, ν̂)
(
g∂x̂w

(
g; x̂, ν̂

)
∂x̂v(x̂, ν̂) + ∂ν̂w

(
g; x̂, ν̂

)
∂ν̂v(x̂, ν̂)

)
dx̂dν̂ =

∫
Ŷ∞

ρ̂(x̂, ν̂)∂x̂v(x̂, ν̂).dx̂dν̂

In this formulation we recall that

H
(
Ŷ∞
)

:=
{
u ∈ L2

loc(Ŷ∞),∇u ∈ L2(Ŷ∞), u is one periodic on the variable x̂
}
.

5.3 Construction of an approximation uhi,δ of the exact
function uδi

Let h > 0 be a small number. Let Γh and ∂B1/3,h be the triangulations of the surfaces Γ
and B1/3 such that for all j ∈ [0, 1/h] ∩ N we have

Γj := P (jh) ∈ Γ and 1/3
(

cos(2πjh), sin(2πjh)
)
∈ ∂B1/3,

and Ωh be the polygonal open set such that ∂Ωh = Γh ∪ ∂B1/3,h (See Figure 5.3).
Let Th be triangulation of the domain Ωh and Vh the space of P1 function of the mesh

Th. We construct here an approximation uδi,h : Ωh 7→ R of the function uδi . This function
depends of a vector of small parameter h := (h, ĥ, 1/L,∆T ) 7→ 0 where:

• h is the is the maximum of size of triangles of the mesh Th of the domain Ωh
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Figure 5.4: The strip truncated ŶL and the mesh T hL
,

• L is a large number to approximate the infinite strip Ŷ∞ with a truncated one
defined by ŶL :=]0, 1[×]− 1, L[(see Figure 5.4).

• ĥ is the maximum of size of triangles of some mesh Tĥ(L) of the truncated strip.(see
Figure 5.4.) We will use this mesh in order to compute for j ∈ {1, 2} an approxi-
mation M ρ

j,ĥ,1/L
of the map M ρ

j

• ∆T is a step of discretization of linear interpolationM ρ

j,ĥ,1/L,∆T
of the mapM ρ

j,ĥ,1/L

for all j ∈ {1, 2}. We have chosen to interpolate in order to reduce the number of
solutions of cell’s problem.

5.3.1 The discrete problem

For i = 0, 1, 2, the function uhi,δ defined by the unique element of Vh such that for all
vh ∈ Vh we have:

aδi,h(uhi,δ, vh) = (fh, vh)L2(Ωh). (5.3.1)

In this formulation the sesquilinear form aδi,h is given for i ∈ {1, 2} by:

ah1,δ := ah0 + δah1 and ah2,δ := ah0 + δah1 + δ2ah2 ,

where:

• ah0 is defined for (u, v) ∈ H1(Ωh)×H1(Ωh) by:

ah0(u, v) :=

∫
Ωh

(
∇u · ∇v − k2u · v

)
dΩh,

• and ahi is defined for (u, v) ∈ Vh × Vh and i ∈ {1, 2} by:

ahi (u, v) :=

∫
Γh

(
ρi−1
eff (h)∇Γhu,∇Γhv

)
− k2µiu · vdΓh,

• ρieff (h) is a numerical approximation of ρieff . These approximations are given for
xh ∈ Γh by: {

ρ0
eff (h)(xh) := ρ0 − I∆TM

ρ

0,ĥ,1/L

(
gh(xh)

)
,

ρ1
eff (xh) := −ch(xh)ρ1 + ch(xh)I∆TM

ρ

1,ĥ,1/L

(
gh(xh)

)
.
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Figure 5.5: Illustration of I∆T

.

• gh, ch : Ωh 7→ R∗+ are elements of Vh such that for all j:

gh(Γj) = |Vj|−2 and ch(Γj) := det(Aj, Vj)/|Vj|2

where we posed:

Vj :=
P
(
(j + 1) · h

)
− P

(
(j − 1) · h

)
2 · h

and Aj :=
P
(
(j + 1) · h

)
− 2 · P

(
j · h

)
+ P

(
(j − 1) · h

)
h2

.

• I∆T is the classical linear interpolator of step ∆T (See Figure 5.3.1).

Now let us explain how we compute the maps M ρ

0,ĥ,1/L
and M ρ

1,ĥ,1/L
. These maps are

defined for g ∈ R∗+ by:

M ρ

0,ĥ,1/L
(g) := g ·

∫
Ŷ∞

ρ̂ĥ(x̂, ν̂)
(
g
∣∣∂x̂wĥ,1/L(g; x̂, ν̂

)∣∣2 +
∣∣∂ν̂wĥ,1/L(g; x̂, ν̂

)∣∣2) dx̂dν̂,
and:

M ρ

1,ĥ,1/L

(
g
)

:= g ·
∫
Ŷ∞

ρ̂ĥ(x̂, ν̂)
(
−g
∣∣∂x̂wĥ,1/L(g; x̂, ν̂

)∣∣2 +
∣∣∂ν̂wĥ,1/L(g; x̂, ν̂

)∣∣2) dx̂dν̂
+ 2g

∫
Ŷ∞

ρ̂ĥ(x̂, ν̂)ν̂∂x̂wĥ,1/L
(
g; x̂, ν̂

)
dx̂dν̂.

Here ρ̂ĥ is an approximation of ρ̂ such that:

‖ρ̂ĥ − ρ̂‖L∞(Ŷ+) ≤ Ch,

where C is independent of h.

5.3.2 Numerical approximation of the map w(g, ·) with the finite
element method

To introduce the function wĥ,1/L
(
g; ·), we need to introduce the space H1

#(ŶL) constituted
of functions of H1(ŶL) one periodic on x̂. Furthermore we provide this last space with
the subspace of discretization V L,ĥ

# ⊂ H1
#(ŶL) of P1 function on Tĥ(L) one periodic on
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x̂. Then the function wĥ,1/L
(
g; ·) is defined (up to a constant) by the unique solution of:

Find wĥ,1/L
(
g; ·) ∈ V L,ĥ

# such that for all vĥ ∈ V
L,ĥ

# we have:

aĥ,1/L(wĥ,1/L
(
g; ·), vĥ) = lĥ,1/L(wĥ). (5.3.2)

In this variational formulation the sesquilinear form aĥ,1/L and the linear form lĥ,1/L are

defined for (vĥ, wĥ) ∈ V
L,ĥ

# × V L,ĥ
# by:

aĥ,1/L(vĥ, wĥ) :=

∫
Ŷ∞

ρ̂ĥ(x̂, ν̂) (g∂x̂vĥ(x̂, ν̂)∂x̂wĥ(x̂, ν̂) + ∂ν̂vĥ(x̂, ν̂)∂ν̂wĥ(x̂, ν̂)) dx̂dν̂,

and lĥ,1/L(wĥ) :=

∫
ŶL

ρ̂ĥ(x̂, ν̂)∂x̂v(x̂, ν̂)dx̂dν̂.

5.4 Convergence of the method

Since Γ is a smooth curve then we have Ω 6= Ωh. Hence the function uδi and uhi,δ have
not the same domains definition. However from [28, Finite Element Methods for Second
Order Problems Posed over Curved Domains ] and [55, Approximation par éléments finis
isoparamétriques dans les domaines à bords courbes] we get the following result:
Proposition 5.4.1. If vertex of the discretization Γh of Γ belongs to Γ then there exists
a sequence of bijective functions {φh : Ω 7→ Ωh}h>0 such that for all h > 0 we have:

φh(Ω) = Ωh and φh(Γ) = Γh,

and there exists C > 0 such that for all h > 0 we have the following estimations:

‖I− φh‖W 0,∞(Ω) ≤ C · h2 and ‖I− φh‖W 1,∞(Γ) ≤ C · h.

Moreover this last sequence of functions satisfies for all h > 0:

sup(I− φh) ⊂
{
x ∈ Ωh, dist(x,Γ) ≤ h

}
.

We refer the reader to Figure 5.3 for an illustration of this result. Thus we now can state
the following result that we now prove:
Theorem 5.4.2. There exists C > 0 independent of h such that for all i = 0, 1, 2 the
following estimate holds:

δ
1
2‖uδi − uδi,h ◦ φh‖H1(Γ) + ‖uδi − uδi,h ◦ φh‖H1(Ω) ≤ C

(
h+ δ

1
2 ε(h)

)
.

This result is a direct consequence of Proposition 5.4.1 and upcomes results: Lemma 5.4.3,
Lemma 5.4.4, Lemma 5.4.5, Lemma 5.4.7 and Lemma 5.4.8. We prove now these results.

158



5.4.1 Stability of the discretization of the effective boundary
conditions

We introduce for convenience the norm N δ
h defined for u ∈ H1(Γh) ∩H1(Ωh) by:

N δ
h(u) := δ

1
2‖u‖H1(Γh) + ‖u‖H1(Ωh).

We have a useful result of stability of our numerical approximation:
Lemma 5.4.3. There exists h0 > 0 and η0 > 0 independent of δ and h such that for all
xh ∈ Vh we have:

|h| < h0 ⇒ N δ
h(xη) ≤ η0 sup

yh∈Vh
Nδ
h

(yh)=1

aδi,h(xh, yh).

Proof. We prove this result by contradiction. The contradiction of our stated result
implies that for all η > 0 there exists δη > 0, h′ with |h′| < η and xη ∈ Vh′0 such that:

N
δη
h′0

(xη) = 1 and sup
yη∈Vh′0

N
δη

h′0
(yη)=1

∣∣∣aδηi,h′(xη, yη)∣∣∣ ≤ η, (5.4.3)

and let us prove that this last proposition is absurd.
First let us prove that the set of the weak limit point in the space H1(Ω) of the

sequence (xη ◦ φh′0
)η>0 is reduced to the singleton {0}. Let x0 be a weak limit point of

this last sequence and δ0 be a limit points of the sequence (δη)η>0.

• If δ0 > 0 then the sequence (xη ◦φh′0
)η>0 is bounded in the space VZ . Therefore this

last sequence weakly converge to x0 in the space VZ and x0 ∈ VZ . Therefore com-
bining this last convergence property with and Proposition 5.4.1 and Lemma 5.4.8
yields the following implication:

δ0 > 0⇒ ∀y ∈ C∞(Ω), lim
h→0

a
δη
i,h′

(xη, y ◦ φ−1
h′0

) = aδ0i (x0, y). (5.4.4)

• If δ0 = 0 then the quantity (xη ◦ φh′0
)η>0 could eventually not be bounded in the

space H1(Γ). However from N
δη
h′0

(xη) = 1 we get that δ
1
2
η xη ◦ φh′0

is bounded in the

space H1(Γ) which leads that for all j ∈ {1, 2} the quantity δ
1
2
η ahj (xη, y ◦ φ−1

h′0
) is

bounded which leads to

lim
η→0

i∑
j=1

δjηa
h′

j (xη, y ◦ φ−1
h′0

) = 0.

Combining this last convergence with the weak convergence of (xη)h in the space
in H1(Ω) and Proposition 5.4.1 yields the following implication:

δ0 = 0⇒ ∀y ∈ C∞(Ω), lim
h→0

a
δη
i,h(xη, y) = a0

i (x0, y). (5.4.5)

159



Now let us prove that we have for all smooth function y:

lim
η→0

a
δη
i (xη, y ◦ φ−1

h′0
) = 0. (5.4.6)

Indeed since y is a smooth function then we have existence of yη ∈ Vh′0 such that:

N
δγ
h′0

(y ◦ φ−1
h′0
− yη) ≤ Cη,

where C > 0 is independent of η which leads to lim
η→0

a
δη
i (xγ, y ◦ φ−1

h′0
− yη) = 0. Therefore

to prove (5.4.6) it remains to show that:

lim
η→0

aδhi (xη, yη) = 0,

which is a direct consequence of (5.4.3). Thus combining (5.4.4), (5.4.5) with (5.4.6)
leads to that for all smooth function y we have:

aδ0i (x0, y) = 0.

Therefore x0 is a solution of the approximate problem order of i with δ = δ0 with f = 0
and using that this last problem is well posed implies that x0 = 0.

Now we succeed to prove that xη weakly converges to 0 in the space H1(Ω). Therefore
we get that (xη ◦ φh′0

)η>0 strongly converges to 0 in the space L2(Ω). Moreover we have
it is clear that there exists C > 0 independent of η we have:

N δ
h′0

(xη) ≤ aδhi (xη, xη) + C‖xη‖2
L2(Ω)

Combining this last estimate with (5.4.3) yields which bring a contradiction contradiction
with the assumption N δ

h′0
(xη) = 1 and therefore ends our proof.

5.4.2 Decomposition of the error

We introduce the two following quantities:

• The interpolation error is defined by:

Dinterp := N δ
h

(
uδi ◦ φ−1

h − ΠThu
δ
i ◦ φ−1

h

)
.

This error measures how uδi ◦ φ−1
h fails to be in the space Vh.

• The consistency error is defined by:

Dconsistence := sup
yh∈Vh

Nδ
h

(yh)=1

aδi,h
(
uδi ◦ φ−1

h , yh
)
− aδi

(
uδi , yh ◦ φh

)
.

This error is due to error of approximation of the map w and our geometry.

Lemma 5.4.4. One has

N δ
h

(
uδi ◦ φ−1

h − u
δ
i,h

)
≤ Dinterp +Dconsistence.
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Proof. Since ΠThu
δ
i ◦ φ−1

h − uδi,h ∈ Vh, we have thanks to Lemma 5.4.3 that:

N δ
h

(
uδi ◦ φ−1

h − u
δ
i,h

)
≤ N δ

h

(
ΠThu

δ
i ◦ φ−1

h − u
δ
i,h

)
+N δ

h

(
uδi ◦ φ−1

h − ΠThu
δ
i ◦ φ−1

h

)
,

≤ η0 sup
yh∈Vh

Nδ
h

(yh)=1

aδi,h
(
ΠThu

δ
i ◦ φ−1

h − u
δ
i,h, yh

)
+Dinterp,

≤ η0 sup
yh∈Vh

Nδ
h

(yh)=1

aδi,h
(
uδi ◦ φ−1

h − u
δ
i,h, yh

)
+Dinterp.

Combining this last estimate with (5.3.1) yields:

N δ
h

(
uδi ◦ φ−1

h − u
δ
i,h

)
≤ η0 sup

yh∈Vh
Nδ
h

(yh)=1

aδi,h
(
uδi ◦ φ−1

h , yh
)
− (f, yh ◦ φh) +Dinterp,

≤ η0 sup
yh∈Vh

Nδ
h

(yh)=1

aδi,h
(
uδi ◦ φ−1

h , yh
)
− aδi

(
uδi , yh ◦ φh

)
+Dinterp,

which concludes the proof.

5.4.3 Estimate of the interpolation error

Lemma 5.4.5. There exists C > 0 independent of h, δ such that:

Dinterp ≤ C, (5.4.7)

This result is a direct consequence of:
Proposition 5.4.6. There exists C > 0 such that for all n ≤ mΓ and δ > 0 we have for
all i ∈ {1, 2}:

δ
1
2‖uδi‖Hn+1(Γ) + ‖uδi‖Hn+1(Ω) ≤ C. (5.4.8)

Proof. To simplify the writing of the proof we assume that k = 0 because the generaliza-
tion for k 6= 0 is trivial. By using chart and unit partition of unity we can assume that
Γ is R× {0}, Ω = R×]0, 1[ and uδi is the unique solution of: Find uδi ∈ VZ such that:

div
(
P∇uδiQuδ

)
= f in Ω and ∂νu

δ
i = δ divΓ

(
ρδi ∇Γ u

δ
i

)
on Γ,

where P is a CmΓ matrix valued function of the form P = diag(1, Pxx) and {Pj}j ∈
CmΓ(Γ) such that there exist P c

j > 0 such that for all x ∈ Γ we have Pj(x) ≥ P c
j . We will

prove the estimate (5.4.8) by a recurrence on n. Thanks to stability result Lemma 4.5.4,
the result the result is trivial for n = 0. Let n such that (5.4.8) is true and let us prove
the following estimate:

δ
1
2‖uδi‖Hn+2(Γ) + ‖uδ‖Hn+2(Ω) ≤ C. (5.4.9)

First let us prove that we have ∂α+1
x uδ ∈ H1(Ω) ∩H1(Γ) and the following estimate:

δ
1
2‖∂xuδi‖Hn+1(Γ) + ‖∂xuδ‖Hn+1(Ω) ≤ C. (5.4.10)

Thanks to the Leibniz formula we get that for all α ≤ n that ∂αxuδ is the unique solution
of: Find ∂αxuδ ∈ H1(Ω) ∩H1(Γ) such that we have:

div
(
P∇∂αxuδ

)
= f δα and ∂ν∂

α
xu

δ − δ divΓ

(
ρδi ∇Γ ∂

α
xu

δ
)

= gδα, (5.4.11)
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where we defined the following quantity:

f δα := ∂αx f −
∑
α′<α

div
(

(∂α−α
′

x P )∇∂α′x uδ
)

and gδα :=
∑
α′<α

δ divΓ

( (
∂α−α

′

x ρδi

)
∇Γ ∂

α′

x u
δ
)
.

Thanks to the recurrence hypothesis (5.4.8) we get that f δα ∈ L2(Ω) and gδα ∈ L2(Γ) with
the following estimate: ∥∥f δα∥∥L2(Ω)

≤ C and
∥∥gδα∥∥L2(Γ)

≤ Cδ
1
2 (5.4.12)

Now we introduce for h > 0 the translation operator Th defined for all function u defined
on Ω and (x, y) ∈ Ω by Thu(x, y) = u(x+ h, y) in order to write for all h > 0

Thf
δ
α − f δα = div

(
(ThP )∇∂αxThuδ

)
− div

(
P∇∂αxuδ

)
,

= div
(
(ThP − P )∇∂αxThuδ

)
+ div

(
P∇(Th∂

α
xu

δ − ∂αxuδ)
)
,

which leads to:

∀h > 0, div
(
P∇Dh∂

α
xu

δ
)

= Dhf
δ
α − div

(
(DhP )∇∂αxuδ

)
, (5.4.13)

where we defined the operator Dh := (Th − I)/h. Moreover we have with the same idea
that:

∀h > 0, ∂ν∂
α
xDhu

δ − δ divΓ

(
ρδi ∇Γ ∂

α
xDhu

δ
)

= gδα + δ divΓ

(
(Dhρ

δ
i )∇Γ ∂

α
xu

δ
)
. (5.4.14)

Now let us prove that we have existence of C > 0 independent of h > 0 and δ > 0 such
that the following estimate holds:∥∥Dhf

δ
α − div

(
(DhP )∇∂αxuδ

)∥∥
(H1(Ω))†

+δ−
1
2

∥∥Dhg
δ
α + δ divΓ

(
(Dhρ

δ
i )∇Γ ∂

α
xu

δ
)∥∥

H−1(Γ)
≤ C.

(5.4.15)
Indeed thanks to the recurrence hypothesis (5.4.8) we get that:∥∥∂αxuδ∥∥H1(Ω)

≤ C and
∥∥∂αxuδ∥∥H1(Γ)

≤ Cδ−
1
2 . (5.4.16)

Moreover the regularity on P and ρδi imply existence of C > 0 independent of δ > 0 such
that:

‖∂xP‖L∞(Ω) ≤ C and ‖∂xρδi‖L∞(Γ) ≤ C,

which leads combined with (5.4.16) to:∥∥div
(
(∂xP )∇∂αxuδ

)∥∥
(H1(Ω))†

≤ C and
∥∥divΓ

(
(∂xρ

δ
i )∇Γ ∂

α
xu

δ
)∥∥

H−1(Γ)
≤ Cδ−

1
2 .

Therefore combining these last estimate with (5.4.12) yields:∥∥∂xf δα − div
(
(∂xP )∇∂αxuδ

)∥∥
(H1(Ω))†︸ ︷︷ ︸

A

+δ−
1
2

∥∥∂xgδα + δ divΓ

(
(∂xρ

δ
i )∇Γ ∂

α
xu

δ
)∥∥

H−1(Γ)︸ ︷︷ ︸
B

≤ C,

and combining this last estimate with the mean value theorem end the proof of (5.4.15).
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Moreover combing (5.4.14) and (5.4.13) leads to∥∥Dh∂
α
xu

δ
∥∥2

H1(Ω)
+ δ

∥∥Dh∂
α
xu

δ
∥∥2

H1(Γ)
≤A

∥∥Dh∂
α
xu

δ
∥∥
H1(Ω)

+ δB
∥∥Dh∂

α
xu

δ
∥∥2

H1(Γ)
,

≤
√
A2 + δB2

√
‖Dh∂αxu

δ‖H1(Ω) + δ ‖Dh∂αxu
δ‖2
H1(Γ),

and then combining this last estimate with (5.4.15) leads to the existence of C > 0
independent of δ such that the following estimate holds:

∀h > 0,
∥∥Dh∂

α
xu

δ
∥∥
H1(Ω)

+ δ
1
2

∥∥Dh∂
α
xu

δ
∥∥
H1(Γ)

≤ C.

Therefore there exists an element Qδ ∈ H1(Ω) ∩ H1(Γ) such that there exists C > 0
independent of δ such that ∥∥Qδ

∥∥
H1(Ω)

+ δ
1
2

∥∥Qδ
∥∥
H1(Γ)

≤ C, (5.4.17)

and such that we have the weak convergence in the sense that for all smooth function φ :

lim
h→0

(
Dh∂

α
xu

δ, φ
)
L2(Ω)

=
(
Qδ, φ

)
L2(Ω)

and lim
h→0

(
Dh∂

α
xu

δ, φ
)
L2(Γ)

=
(
Qδ, φ

)
L2(Γ)

.

(5.4.18)
Now let us prove that in the sense of the distribution

∂α+1
x uδ = Qδ in D′(Ω) and ∂α+1

x uδ = Qδ in D′(Γ). (5.4.19)

Indeed for all smooth function φ ∈ C∞(Ω) we have the following strong convergence in
the space C∞(Ω)

lim
h→0

Dhφ = ∂xφ.

Therefore combining with (5.4.18) yields that for all φ ∈ D(Ω) we have

−
(
∂αxu

δ, ∂xφ
)
L2(Ω)

=
(
Qδ, φ

)
L2(Ω)

and −
(
∂αxu

δ, ∂xφ
)
L2(Γ)

=
(
Qδ, φ

)
L2(Γ)

.

which end the proof of (5.4.19). Thus combining (5.4.17) with (5.4.19) end the proof of
(5.4.10).

Since we success to prove (5.4.10) we first get the existence of C > 0 independent of
δ such that following estimates hold:

δ
1
2‖uδi‖Hn+2(Γ) ≤ C and ∀q ≤ n+ 1, ‖∂n+2−q

x ∂qνu
δ‖L2(Ω) ≤ C. (5.4.20)

Thus in order to end whole the proof it is sufficient to prove that ∂n+2
ν uδ ∈ L2(Ω) and

existence of C > 0 independent of δ such that:∥∥∂n+2
ν uδ

∥∥
L2(Ω)

≤ C. (5.4.21)

This result is a direct consequence of taking α = (n, 0) in (5.4.11) leads to

∂n+2
ν uδ + ∂x

(
Pxx(∂x∂

n
ν u

δ)
)

= f δ(n,0)

which leads to:

∂n+2
ν uδ = f δ(n,0)︸︷︷︸

in L2(Ω) thanks to (5.4.12)

− ∂xPxx∂x∂
n
ν u

δ︸ ︷︷ ︸
in L2(Ω) thanks to (5.4.20)

.
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5.4.4 Decomposition of the consistency error

Lemma 5.4.7. One has the following decomposition of the error estimate:

Dconsistence ≤ C

(∥∥∥Dφ−1
h Dφ−†h

∣∣ det(Dφh)
∣∣− I

∥∥∥
L∞(Ω)

+ max
j∈{0,1}

∥∥∥ρjeff ◦ φ−1
h − ρ

j
eff (h)

∥∥∥
L∞(Γh)

)
Proof. To simplify the writing of the proof we assume that k = 0 because the generaliza-
tion for k 6= 0 is obvious. Thanks to variable change formula for the gradient operator
we get that for all yh ∈ Vh we have:

aδi,h
(
uδi ◦ φ−1

h , yh
)

=
i∑

j=1

δj
∫

Γh

(
ρjeff (h)∇Γh(uδi ◦ φ−1

h ),∇Γhyh
)
dΓh +

∫
Ωh

(
∇(uδi ◦ φ−1

h ),∇yh
)
dΩh,

=
i∑

j=1

δj
∫

Γ

(
ρjeff (h) ◦ φh ·Dφ−†h ∇Γu

δ
i ,Dφ−†h ∇Γ(yh ◦ φh)

) ∣∣ det(Dφh)
∣∣dΓ+∫

Ω

(
Dφ−†h ∇u

δ
i ,Dφ−†h ∇(yh ◦ φh)

)∣∣ det(Dφh)
∣∣dΩ,

=
i∑

j=1

δj
∫

Γ

(
Dφ−1

h · ρ
j
eff (h) ◦ φh ·Dφ−†h ∇Γu

δ
i ,∇Γ(yh ◦ φh)

) ∣∣ det(Dφh)
∣∣dΓ+∫

Ω

(
Dφ−1

h Dφ−†h ∇u
δ
i ,∇(yh ◦ φh)

)∣∣ det(Dφh)
∣∣dΩ.

Therefore for all yh ∈ Vh we have:

aδi,h
(
uδi ◦ φ−1

h , yh
)
−aδi

(
uδi , yh ◦ φh

)
=

∫
Γ

(
DΓ∇Γu

δ
i ,∇Γ(yh ◦ φh)

)
dΓ+

∫
Ω

(
DΩ∇uδi ,∇(yh◦φh)

)
,

where we defined on Γ and Ω the following tensors field
DΓ :=

i∑
j=1

δj
(

Dφ−1
h · ρ

j
eff (h) ◦ φh ·Dφ−†h

∣∣ det(Dφh)
∣∣− ρjeff) ,

DΩ := Dφ−1
h Dφ−†h

∣∣ det(Dφh)
∣∣− I

Therefore we have for all yh ∈ Vh

aδi,h
(
uδi ◦ φ−1

h , yh
)
− aδi

(
uδi , yh ◦ φh

)
≤δ ‖DΓ‖L∞(Γ)

∥∥uδi∥∥H1(Γ)
‖yh‖H1(Γ) +

‖DΩ‖L∞(Ω)

∥∥uδi∥∥H1(Ω)
‖yh‖H1(Ω) ,

≤
(
δ

1
2 ‖DΓ‖L∞(Γ)

∥∥uδi∥∥H1(Γ)
+ ‖DΩ‖L∞(Ω)

∥∥uδi∥∥H1(Ω)

)
N δ
h(yh).

Thus applying Proposition 5.4.6 with n = 1 and the trace theorem we get that the
quantity δ

1
2‖uδi‖H1(Γ) is bounded when δ → 0. Therefore we have:

aδi,h
(
uδi ◦ φ−1

h , yh
)
− aδi

(
uδi , yh ◦ φh

)
≤ C

(
δ

1
2 ‖DΓ‖L∞(Γ) + ‖DΩ‖L∞(Ω)

)
N δ
h(yh), (5.4.22)
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where C > 0 is a constant independent of h and δ. Moreover, we can prove that:(
δ

1
2 ‖DΓ‖L∞(Γ) + ‖DΩ‖L∞(Ω)

)
N δ
h(yh) ≤ C

(∥∥∥Dφ−1
h Dφ−†h

∣∣ det(Dφh)
∣∣− I

∥∥∥
L∞(Ω)

)
+ C

(
max
j∈{0,1}

∥∥∥ρjeff ◦ φ−1
h − ρ

j
eff (h)

∥∥∥
L∞(Γh)

)
.

Combining this with (5.4.22) concludes the proof.

5.4.5 Error estimate of the approximation of the effective coeffi-
cient

Lemma 5.4.8. There exists C > 0 independent of h, ĥ,∆T and L such that the following
holds:∥∥∥ρ0

eff ◦ φ−1
h − ρ

0
eff (h)

∥∥∥
L∞(Γh)

≤ Cε(h) and
∥∥∥ρ1

eff ◦ φ−1
h − ρ

1
eff (h)

∥∥∥
L∞(Γh)

≤ Cε(h),

where we defined ε(h) := h2 + ĥ+ ∆T 2 + exp(−2π · L · √gmin).
This result is a direct consequence of Proposition 5.4.12 and Proposition 5.4.13. We
introduce the following interval:

I := [inf(g), sup(g)],

and we emphasize that inf(g) > 0.
Proposition 5.4.9. We have w ∈ CmΓ

(
I;H1(Ŷ∞)

)
and wh,ĥ,L ∈ CmΓ

(
I;H1(ŶL)

)
. More-

over there exists C > 0 independent of h, ĥ and L such that the following estimate holds:∥∥∥w − ΠTĥ
w
∥∥∥
CmΓ

(
I;H1(ŶL)

) ≤ Cĥ,

where Tĥis the P1 interpolator on the mesh Tĥ(ŶL).
Proof. First prove that:

w ∈ CmΓ
(
I;H1(Ŷ∞)

)
and wĥ,1/L ∈ C

mΓ
(
I;H1(ŶL)

)
, (5.4.23)

in order to give a sense of the estimate appearing in our result. We introduce for conve-
nience the operators:

Aĥ,L ∈ C
mΓ

(
I;L

(
H1

#(ŶL), H1
#(ŶL)†

))
and A ∈ CmΓ

(
I;L

(
H
(
Ŷ∞
)
,H
(
Ŷ∞
)†))

defined for t ∈ I and (u, v, uL, vL) ∈ H1
#(ŶL)×H1

#(ŶL)×H
(
Ŷ∞
)
×H

(
Ŷ∞
)
by:

〈
Aĥ,L(t)uL, vL

〉
H1

#(ŶL)†−H1
#(ŶL)

:=

∫
ŶL

ρ̂ĥ

(
M(t) ∇̂uL, ∇̂ vL

)
dx̂dν̂ +

∫
Σ

uLdx̂ ·
∫

Σ

vLdx̂,

〈A(t)u, v〉
H
(
Ŷ∞

)†
−H
(
Ŷ∞

) :=

∫
Ŷ∞

ρ̂
(
M(t) ∇̂u, ∇̂ v

)
dx̂dν̂ +

∫
Σ

udx̂ ·
∫

Σ

vdx̂.
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Here we defined:

M(t) :=

(
t 0
0 1

)
.

The linear forms Lĥ,L ∈ CmΓ

(
I;H1

#(ŶL)†
)
and L ∈ CmΓ

(
I;H

(
Ŷ∞
)†) defined for t ∈ I

and (vL, v) ∈ H1
#(ŶL)×H

(
Ŷ∞
)
by:

〈
Lĥ,L(t), vL

〉
H1

#(ŶL)†−H1
#(ŶL)

:=

∫
Ŷ∞

ρ̂ĥ(t; ·)∂x̂vLdx̂dν̂,

〈L, v〉
H
(
Ŷ∞

)†
−H
(
Ŷ∞

) :=

∫
Ŷ∞

ρ̂(t; ·)∂x̂vdx̂dν̂.

With these last definitions we get that for all t the functions wĥ,1/L(t; ·) and w(t; ·) are

the unique element of V L,ĥ
# and H

(
Ŷ∞
)
such that: for all (v, vh) ∈ V L,ĥ

# ×H
(
Ŷ∞
)
we have:

〈
Aĥ,L(t) · wĥ,1/L(t; ·), vL

〉
H1

#(ŶL)†−H1
#(ŶL)

=
〈
Lĥ,L(t), vL

〉
H1

#(ŶL)†−H1
#(ŶL)

,

〈A(t) · w(t; ·), v〉
H
(
Ŷ∞

)†
−H
(
Ŷ∞

) = 〈L(t), v〉
H
(
Ŷ∞

)†
−H
(
Ŷ∞

) . (5.4.24)

These last equations can be rewritten as below:

wĥ,1/L(t; ·) =
(
Arestriction
h,ĥ,L

(t)
)−1

· Lĥ,L(t) and w(t; ·) = A(t)−1L(t), (5.4.25)

where Arestriction
h,ĥ,L

(t) ∈ L(V L,ĥ
# , (V L,ĥ

# )†) is the operator defined for u, v ∈ V L,ĥ
# by:〈

Arestiction
h,ĥ,L

(t) · u, v
〉
H1

#(ŶL)†−H1
#(ŶL)

=
〈
Aĥ,L(t) · u, v

〉
H1

#(ŶL)†−H1
#(ŶL)

.

Moreover thanks to the assumption (4.1.12) the operators Arestiction
h,ĥ,L

and A are uni-

formly coercive on I which implies that their inverse belong to CmΓ

(
L(V L,ĥ

# )†, V L,ĥ
#

)
and

CmΓ

(
H
(
Ŷ∞
)†
,H
(
Ŷ∞
))

. Thus combing this last property with (5.4.25) and the regularity
of L and Lĥ,L end the proof of (5.4.23). Thus now we prove that∥∥∥w − ΠTĥ

w
∥∥∥
CmΓ

(
I;H1(ŶL)

) ≤ Cĥ.

Thanks to [28, Theorem 15.3] a sufficient condition for this last estimate is to prove that:

w ∈ CmΓ
(
I;H2(Ŷ0)

)
∩ CmΓ

(
I;H2(Ŷ∞ \ Ŷ0)

)
. (5.4.26)

First we prove that
∂x̂w ∈ CmΓ

(
I;H

(
Ŷ∞
))
. (5.4.27)

Indeed using same methods than proof of [57, Theorem 4.21] ) we get that for all (t) we
have ∂x̂w(t; ·) ∈ H

(
Ŷ∞
)
. Let v ∈ H

(
Ŷ∞
)
such that ∂x̂v ∈ H

(
Ŷ∞
)
then taking v = ∂x̂v in
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(5.4.24) yields: ∫
Ŷ∞

∂2
x̂ρ̂vdx̂dν̂ =

∫
Ŷ∞

ρ̂
(
M(t) ∇̂w(t; ·), ∇̂ ∂x̂v

)
dx̂dν̂,

=−
∫
Ŷ∞

(
M(t)∂x̂

(
ρ̂ ∇̂w(t; ·)

)
, ∇̂ v

)
dx̂dν̂,

=−
∫
Ŷ∞

(
M(t)

(
ρ̂ ∇̂ ∂x̂w(t; ·)

)
, ∇̂ v

)
dx̂dν̂

−
∫
Ŷ∞

(
M(t)

(
∂x̂ρ̂) ∇̂w(t; ·)

)
, ∇̂ v

)
dx̂dν̂.

Moreover is clear that we have
∫

Σ
∂x̂w(t; ·)dx̂ = 0 and then we have that for all t, t′ the

function ∂x̂w(t; ·) is given by:

∂x̂w(t; ·) = A(t)−1 · L′(t), (5.4.28)

where we defined the linear form field L′ defined for (t) ∈ I×]0, 1[ and v ∈ H
(
Ŷ∞
)
by:

〈L′(t), v〉
H
(
Ŷ∞

)†
−H
(
Ŷ∞

) =

∫
Ŷ∞

∂2
x̂ρ̂vdx̂dν̂ −

∫
Ŷ∞

(
M(t)

(
∂x̂ρ̂) ∇̂w(t; ·)

)
, ∇̂ v

)
dx̂dν̂.

Moreover thanks to w ∈ CmΓ
(
I;H

(
Ŷ∞
))

we show that L ∈ CmΓ

(
I;H

(
Ŷ∞
)†) and then

combining with (5.4.28) end the proof of (5.4.27). Therefore to end the proof of (5.4.26)
it is sufficient to proof that:

∂2
ν̂w ∈ CmΓ

(
I;L2(Ŷ0)

)
and ∂2

ν̂w ∈ CmΓ
(
I;L2(Ŷ∞ \ Ŷ0)

)
. (5.4.29)

Indeed we have for all t ∈ I in the sense of distribution:

∂ν̂ ρ̂∂ν̂w(t; ·) = ∂x̂ρ̂− ∂x̂ρ̂t′∂x̂w(t; ·).

Combining this last identity with ρ̂ ≡ 1 on ]0, 1[×]0,∞[ first yields that:

∂2
ν̂w = −t′∂2

x̂w on I ×
(

]0, 1[×]0,∞[
)
. (5.4.30)

Moreover also combining with the regularity of the function ρ̂ in I×
(

]0, 1[×]1, 0[
)
yields

that we can use Leibniz formula and then we get:

∂2
ν̂w = −

(
∂ν̂ ln(ρ̂)

)
· ∂ν̂w − t′ρ̂−1∂x̂ρ̂ρ̂∂x̂w on I ×

(
]0, 1[×]− 1, 0[

)
. (5.4.31)

Moreover thanks to (5.4.27) we have that ∂2
x̂w and ∂x̂ρ̂∂x̂w belongs to CmΓ(I;L2(Ŷ0)) and

CmΓ(I;L2(Ŷ∞ \ Ŷ0)). Thus combining these last properties with (5.4.30) and (5.4.31) end
the proof of (5.4.29) and so the the proof of (5.4.26). Thus we finished the proof of whole
the proposition.
We introduce for convenience the operator:

∇̂ :=

(
∂x̂
∂ν̂

)
.
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Proposition 5.4.10. There exists C > 0 independent of h, ĥ, L such that we have the
following estimate:∥∥∥ ∇̂w − 1ν̂<L · ∇̂wĥ,1/L

∥∥∥
CmΓ

(
I;L2(Ŷ∞)

) ≤ C ·
(
ĥ+ exp(−2π · L · √gmin)

)
.

Proof. We precise that for whole this proof C designate a generic positive constant which
is independent of ĥ and L.

We can prove that:∥∥∥ ∇̂w∥∥∥
CmΓ

(
I;L2(Ŷ∞\ŶL)

) ≤ C · exp(−2π · L · √gmin), (5.4.32)

and then it remains to establish the following estimate to end our proof:∥∥∥w − wĥ,1/L∥∥∥
CmΓ

(
I;H1(ŶL)

) ≤ C · ε, (5.4.33)

with ε := ĥ+exp(−2π ·L·√gmin). We emphasize that this result is just a simple extension
of Cea’s lemma(see [28, Theorem 13.1]) . This last estimate exactly means that P (α) is
true for α ∈ N2 with |α| ≤ mΓ where we defined for α the proposition

P (α)⇔
∥∥∥∂α(w − wĥ,1/L)

∥∥∥
C0
(
I;H1(ŶL)

) ≤ C · ε.

We prove this result by recurrence on mΓ in the sense that we show that P (0) is true and
for all α with |α| ≤ mΓ we have the implication:(

∀α′ ≤ α, α′ 6= α, P (α′)
)
⇒ P (α)

Indeed assume that α = 0 or for all α′ ≤ α with α 6= α and prove that P (α) is true.
Thanks to the uniform coercivity property of the operator Ah,ĥ,L, a sufficient condition
is to estimate the following quantity:

Q(t) :=
〈
Aĥ,L(t)E(t), E(t)

〉
H1

#(ŶL)†−H1
#(ŶL)

,

where we defined E(t) := ∂α
(
w(t; ·) − wĥ,1/L(t; ·)

)
. Thus this last quantities can be

rewritten in the following form:

Q(t) =
〈
Aĥ,L(t)E(t), ∂α

(
w(t; ·)− ΠTĥ

w(t; ·)
)

+ ∂αqh(t)
〉
H1

#(ŶL)†−H1
#(ŶL)

,

where we defined qh := ΠTĥ
w(t; ·)−wĥ,1/L(t) and thanks to Proposition 5.4.23 we get the

following estimate:
Q(t) ≤ Q′(t) + C ·

∥∥∥E(t)
∥∥∥
H1(ŶL)

h, (5.4.34)

where we defined the quantity Q′(t) =
∣∣∣ 〈Aĥ,L(t)E(t), ∂αqh(t)

〉
H1

#(ŶL)†−H1
#(ŶL)

∣∣∣. Classi-

cally in the proof of cea’s lemma this last quantities vanishes and then we will estimate
this last quantity:

Q′(t) ≤
∣∣∣ 〈Aĥ,L(t)wĥ,1/L(t; ·)− A(t)w(t; ·),ExtL∂αqh(t)

〉
H1

#(ŶL)†−H1
#(ŶL)

∣∣∣
+
∣∣∣〈(Aĥ,L − A)w(t; ·), ∂αExtLqh(t)

〉
H1

#(ŶL)†−H1
#(ŶL)

∣∣∣, (5.4.35)
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where ExtL : H1(ŶL) 7→ H1(Ŷ∞) is a simple extension operator defined for φ ∈ H1(ŶL)

and (x̂, ν̂) ∈]0, 1[×]L,∞[ by ExtL

(
φ(x̂, ν̂)

)
= φ(2 · L− ν̂)χ(ν̂ − L) where χ is a smooth

cut off function satisfying χ = 1 on ]0, 1/2[ and χ = 0 on ]1/2, 1[ and it is easy to prove
that we have existence of C > 0 independent of L such that

‖ExtL‖L
(
H1(ŶL),H1(Ŷ∞)

) ≤ C. (5.4.36)

Moreover thanks to Proposition 5.4.23 we get ‖∂αqh‖H1(ŶL) ≤ C
(∥∥∥E(t)

∥∥∥
H1(ŶL)

+h
)
. Thus

combining this last estimate with (5.4.35), (5.4.36) and (5.3.1) yields:

Q′(t) ≤ C ·
(
Q
′′
(t) + h+ ĥ

)(∥∥∥E(t)
∥∥∥
H1(ŶL)

+ h
)
, (5.4.37)

where we defined:

Q
′′
(t) := sup

vh∈V L,ĥ# ,‖vh∈V L,ĥ# ‖=1

∣∣∣ 〈Aĥ,L(t)wĥ,1/L(t; ·)− A(t)w(t; ·),ExtL∂αvh

〉
H1

#(ŶL)†−H1
#(ŶL)

∣∣∣.
Now let us estimate the quantity Q′′(t).

First we extend for convenience the binomial coefficients for (p, q) ∈
(
Nq
)2

for the
dimension 2 by: (

p
q

)
:=

q∏
i=1

(
pi
qi

)
,

because we have the following useful extension of Leibniz formula for function defined on
Rq:

∂p(fg) =
∑
q≤p

(
p
q

)
∂p−qf · ∂qg, (5.4.38)

where q ≤ p means for all i, qi ≤ pi(The proof of this result is a simple recurrence on the
dimension). Combining this last identity with (5.4.24) yields:

〈
Aĥ,L(t) · ∂αwĥ,1/L(t; ·), vL

〉
H1

#(ŶL)†−H1
#(ŶL)

= Q1,

〈A(t) · ∂αw(t; ·), v〉
H
(
Ŷ∞

)†
−H
(
Ŷ∞

) = Q2,

where we defined:

Q1 :=−
∑

α′≤α,α′ 6=α

(
α
α′

)〈
∂α−α′Aĥ,L(t) · ∂α′wĥ,1/L(t; ·), vL

〉
H1

#(ŶL)†−H1
#(ŶL)

+〈
∂αLĥ,L(t), vL

〉
H1

#(ŶL)†−H1
#(ŶL)

,

Q2 :=−
∑

α′≤α,α′ 6=α

(
α
α′

)
〈∂α−α′A(t) · ∂α′w(t; ·), v〉

H
(
Ŷ∞

)†
−H
(
Ŷ∞

)+

〈∂αL(t), v〉
H
(
Ŷ∞

)†
−H
(
Ŷ∞

) .
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Subtracting these two last lines yields for α 6= 0:

Q
′′
(t) ≤ Ch+

∑
α′≤α,α′ 6=α

C sup
vh∈V L,ĥ# ,‖vh∈V L,ĥ# ‖=1

〈βα′ , vh〉H1
#(ŶL)†−H1

#(ŶL) if α 6= 0, (5.4.39)

where we defined the anti-linear form βα′ for vh ∈ V L,ĥ
# by 〈βα′ , vh〉H1

#(ŶL)†−H1
#(ŶL) :=〈

∂α−α′Aĥ,L(t) · ∂α′wĥ,1/L(t; ·)− ∂α−α′A(t) · ∂α′w(t; ·),ExtLvh

〉
H1

#(ŶL)†−H1
#(ŶL)

,

and Q′′(t, t) ≤ Ch if α = 0 on the one hand. On the other hand thanks to our recurrence
hypothesis we get the following estimate for all α′ ≤ α with α′ 6= α:∣∣∣〈βα′ , vh〉H1

#(ŶL)†−H1
#(ŶL)

∣∣∣ ≤∣∣∣〈∂α−α′Aĥ,L(t) ·
(
∂α′wĥ,1/L(t; ·)− ∂α′w(t; ·)

)
, vh

〉
H1

#(ŶL)†−H1
#(ŶL)

∣∣∣+∣∣∣〈(∂α−α′Aĥ,L(t)− ∂α−α′A(t)
)
· ∂α′w(t; ·),ExtLvh

〉
H1

#(ŶL)†−H1
#(ŶL)

∣∣∣,
≤
∥∥∂α′wĥ,1/L(t)− ∂α′w(t; ·)

∥∥︸ ︷︷ ︸
≤Cε by induction hypothesis

‖vh‖H1(ŶL)+

∣∣∣〈(∂α−α′Aĥ,L(t)− ∂α−α′A(t)
)
· ∂α′w(t; ·),ExtLvh

〉
H1

#(ŶL)†−H1
#(ŶL)

∣∣∣,
≤Cε‖vh‖H1(ŶL)+∣∣∣∣∫

ŶL

(
∂α−α′

((
ρ̂ĥ − ρ̂

)
M(t)

)
· ∂α′ ∇̂w(t; ·), ∇̂ vh

)
dx̂dν̂

∣∣∣∣︸ ︷︷ ︸
≤Cε‖vh‖H1(ŶL) thanks to (5.3.1)

+

∣∣∣∣∫
Ŷ∞\ŶL

((
∂α−α′M(t)

)
· ∂α′ ∇̂w(t), ∇̂ExtLvh

)∣∣∣∣︸ ︷︷ ︸
≤Cε‖vh‖H1(ŶL) thanks to (5.4.32)

≤ Cε‖vh‖H1(ŶL),

which leads combined with (5.4.39) to the estimate Q′′(t) ≤ Cε is also satisfied for α 6= 0.
Next combining this last estimate with (5.4.34) and (5.4.37) yields:∥∥∥E(t)

∥∥∥2

H1(ŶL)
≤ Cε

(∥∥∥E(t)
∥∥∥
H1(ŶL)

+ ε
)
.

Using the Young inequality leads to:

∀η > 0, 2‖E(t)‖2
L2(ŶL)

≤ Cη−1ε2+Cη
(
h+‖E(t)‖L2(ŶL)

)2

≤ Cη−1ε2+2Cη
(
h2+‖E(t)‖2

L2(ŶL)

)
,

which leads to

(2− 2Cη) · ‖E(t)‖2
L2(ŶL)

≤ C
(
η−1ε2 + 2Cηh2

)
≤ C

(
η−1ε2 + 2Cηε2

)
.

Now we chose η small enough to have (2− 2Cη) > 0 and then we have:

‖E(t)‖2
L2(ŶL)

≤ C · (2− 2Cη)−1 ·
(
η−1 + 2C

)
ε2,

which leads to the desired result ‖E(t)‖L2(ŶL) ≤ Cε. Therefore we finish our proof.
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Corollary 5.4.11. There exists C > 0 independent of h, ĥ, L such that the following
estimates hold:∥∥∥M ρ

0 −M
ρ

0,ĥ,1/L

∥∥∥
CmΓ (I)

≤ C ·
(
h+ ĥ+ exp(−2π · L · √gmin)

)
,

and ∥∥∥M ρ
1 −M

ρ

1,ĥ,1/L

∥∥∥
CmΓ (I)

≤ C ·
(
h+ ĥ+ exp(−2π · L · √gmin)

)
.

Proof. It is a direct consequence of Proposition 5.4.10 and the expression of the quantity
M ρ

0 and M ρ
1.

Since mΓ ≥ 2, we directly have the following result:
Proposition 5.4.12. There exists C > 0 independent of h, ĥ,∆T, L such that the fol-
lowing estimates hold:∥∥∥M ρ

0 − I∆TM
ρ

0,ĥ,1/L

∥∥∥
CmΓ (I)

≤ C ·
(
h+ ĥ+ exp(−2π · L · √gmin) + ∆T 2

)
,

and ∥∥∥M ρ
1 − I∆TM

ρ

1,ĥ,1/L

∥∥∥
CmΓ (I)

≤ C ·
(
h+ ĥ+ exp(−2π · L · √gmin) + ∆T 2

)
.

Proposition 5.4.13. There exists C > 0 independent of h such that the following esti-
mate holds: ∥∥∥g ◦ φ−1

h − gh
∥∥∥
L∞(Γh)

+
∥∥∥c ◦ φ−1

h − ch
∥∥∥
L∞(Γh)

≤ C · h.

Proof. This result is obvious.
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Chapter 6

Numerical approximation of the exact
solution

Here, we present an error estimate for the approximation of the exact solution. Since the
exact solution have fast oscillations near the boundary Γ, we will use a mesh which is
finer near the boundary Γ and small compared to the small parameter. This notion of
“refinement” is mathematically written in (6.5.18). Theorem 6.6.1 gives an error estimate
in function of the small parameter δ, the size of mesh near the boundary and the size
of mesh far from the boundary Γ. The size of mesh near the boundary has to be small
compared to the small parameter δ. This explain why the approximate model is more
efficient than the exact one.

6.1 The mesh of the domain Ωδ

Let nh : Γh 7→ R3 be an approximation of the normal unit n in the sense that we have
existence of C > 0 such that for all h > 0 the followings estimate holds:

‖nh ◦ φh − n‖W 1,∞(Γ) ≤ C · h and ‖nh ◦ φh − n‖W 0,∞(Γ) ≤ C · h2. (6.1.1)

From this last approximation of the normal unit we build an approximation of the surface
Γδ defined by the unique polygonal surface whose corner are:{

Γhi,δ := Γi − δ · nh(Γi)
}
i
.

Hence the polygon Ωh
δ is given by the unique open set whose boundary is Γhδ ∪∂B

1/3
h . (See

Figure 6.1).

6.2 Finite element method

Let V δ
h be the space of discretization P1 on the mesh T hδ and let ρδh and µδh defined by 1

in Ωh and defined by the P1 interpolation in the numerical thin coat Ωh
δ \ Ωh. Then the

function uδh by the unique solution of: Find uδh ∈ V δ
h such that for all vδh ∈ V δ

h we have:∫
Ωhδ

ρδh(∇uδh,∇vδh)− k2µδhu
δ
hv

δ
hdΩδ

h =

∫
Ω

f ◦ φhdΩ. (6.2.2)
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Figure 6.1: Illustration of the φhδ application

6.3 Construction of a map φδh : Ωδ 7→ Ωδ
h

Since we have Ωδ 6= Ωδ
h we need prove the following extension of Proposition 5.4.1:

Proposition 6.3.1. For all δ, h > 0 there exists a bijective application φδh : Ωh
δ 7→ Ω such

that we have
φδh(Γδ) = Γhδ and φδh(Γ) = Γh,

and we have
φδh(Ωδ) = Ωh

δ and φδh(Ω) = Ωh.

Moreover there exists C > 0 independent of δ and h such that the following estimate
holds:

‖I− φδh‖W 0,∞(Ωδ) ≤ C · h2 and ‖I− φδh‖W 1,∞(Ωδ) ≤ C · h. (6.3.3)

Proof. First we introduce an intermediate function φ̃h defined on Ωδ. Let χ be a smooth
cut-off function such that χ(x) = 0 for x ≤1 and χ = 1 for x ≥ 0 and this function is
defined for x = xΓ + νn(xΓ) by:

φ̃h(x) := x+ χ
(ν
h

)
(φh(xΓ)− xΓ + (nh(xΓ)− n(xΓ)) · ν) ,

where φh is the function appearing in Proposition 5.4.1. We introduce this last function
because this last one transforms the corner of the triangulation of Γ into the corner of Γδ
i.e.

∀i, φh (Γi − δn(Γi)) = Γhi,δ,

and we easy have: φh(Γ) = Γh. Moreover we will later prove that this function satisfies
similar to the required (6.3.3):∥∥∥φ̃h − I

∥∥∥
W 0,∞(Ωδ)

≤ C · h2 and
∥∥∥φ̃h − I

∥∥∥
W 1,∞(Ωδ)

≤ C · h. (6.3.4)

Unfortunately this function does not not transform the set Γδ into a polygon i.e.

φ̃h(Γδ) 6= Γhδ .

However using Proposition 5.4.1 with Γ = φ̃h(Γδ) yields existence of a function Φ̃δ
h :

φ̃h(Ωδ) 7→ Ωh
δ satisfying existence of C > 0 independent of h, δ such that:∥∥∥Φ̃δ

h − I
∥∥∥
W 0,∞(φ̃h(Ωδ))

≤ C · h2 and
∥∥∥Φ̃δ

h − I
∥∥∥
W 1,∞(φ̃h(Ωδ))

≤ C · h, (6.3.5)
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and we have the following property:

Φ̃δ
h

(
φ̃h(Γδ)

)
= Γhδ and Φ̃δ

h

(
φ̃h(Γ)

)
= Γh.

Therefore now we can define the application φδh by:

φδh := Φ̃δ
h ◦ φ̃δh,

and this last application well satisfies the desired property (6.3.3). Indeed on the one
hand we have for all x ∈ Ωδ:∣∣∣(Φ̃δ

h ◦ φ̃δh
)

(x)− x
∣∣∣ =

∣∣∣Φ̃δ
h(φ̃

δ
h(x))− x

∣∣∣ ≤ ∣∣∣Φ̃δ
h(φ̃

δ
h(x))− φ̃δh(x)

∣∣∣+
∣∣∣φ̃δh(x)− x

∣∣∣ ≤ 2C · h2,

which leads combined with (6.3.4) and (6.3.5) to:∥∥∥Φ̃δ
h ◦ φ̃δh − I

∥∥∥
W 0,∞(Ωδ)

≤ 2C · h2. (6.3.6)

On the other hand we have for all x ∈ Ωδ:∣∣∣D(Φ̃δ
h ◦ φ̃δh

)
(x)− I

∣∣∣ =
∣∣∣D Φ̃δ

h(φ̃
δ
h(x)) ·D φ̃δh(x)− I

∣∣∣
≤
∣∣∣D Φ̃δ

h(φ̃
δ
h(x)) ·D φ̃δh(x)−D φ̃δh(x)

∣∣∣+
∣∣∣D φ̃δh(x)− I

∣∣∣
≤
∣∣∣D Φ̃δ

h(φ̃
δ
h(x))− I

∣∣∣ · ∣∣∣D φ̃δh(x)
∣∣∣+
∣∣∣D φ̃δh(x)− I

∣∣∣ ≤ 2C · h,

which leads combined with (6.3.4) and (6.3.5) to:∥∥∥Φ̃δ
h ◦ φ̃δh − I

∥∥∥
W 1,∞(Ωδ)

≤ 2C · h.

Thus combining this last estimate with the estimate (6.3.6) and the invertibility of Φ̃δ
h

and φ̃δh ends the proof of (6.3.3). Therefore it remains to prove estimate (6.3.4). Indeed
we have the following decomposition:

φ̃h − I = ∆h ◦ L, (6.3.7)

where ∆h : Γ×]− δ, η0[ is defined for (xΓ, ν) ∈ Γ×]− δ, η0[ by:

∆h(xΓ, ν) := χ
(ν
h

)
(φh(xΓ)− xΓ + (nh(xΓ)− n(xΓ)) · ν) .

Thus using Leibniz formula yields:

‖∆h‖W 1,∞(Γ×]−δ,η0[) ≤
∥∥∥χ(ν

h

)∥∥∥
W 1,∞(Γ×]−δ,η0[)

· ‖φh(xΓ)− xΓ + (nh(xΓ)− n(xΓ)) · ν‖W 0,∞(Γ×]−δ,η0[)+∥∥∥χ(ν
h

)∥∥∥
W 0,∞(Γ×]−δ,η0[)

· ‖φh(xΓ)− xΓ + (nh(xΓ)− n(xΓ)) · ν‖W 1,∞(Γ×]−δ,η0[),

≤Ch−1‖φh(xΓ)− xΓ + (nh(xΓ)− n(xΓ)) · ν‖W 0,∞(Γ×]−δ,η0[)+

C‖φh(xΓ)− xΓ + (nh(xΓ)− n(xΓ)) · ν‖W 1,∞(Γ×]−δ,η0[)

≤Ch−1
(
‖φh − I‖W 0,∞(Γ) + ‖(nh − n)‖W 0,∞(Γ)

)
+

C
(
‖φh − I‖W 1,∞(Γ) + ‖(nh − n)‖W 1,∞(Γ)

)
.
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Thus thanks to Proposition 5.4.1 and the assumption (6.1.1) this last estimate becomes:

‖∆h‖W 1,∞(Γ×]−δ,η0[) ≤ C · h.

Moreover thanks to Proposition 5.4.1 and the assumption (6.1.1) we get:

‖∆h‖W 1,∞(Γ×]−δ,η0[) ≤ C · h2.

Thus combining these two last estimates with the regularity of the function L and the
decomposition (6.3.7) end the proof of (6.3.4) and so the proof is finished.

6.4 Explosion of the Hs norm of the function uδ

Unfortunately the exact solution have the following explosion behavior of its Hs norm
for s > 1:
Proposition 6.4.1. If the function ρ̂ and µ̂ belongs to CmΓ(Γ×[0, 1]2) then for all q ≤ mΓ

and δ > 0 we have uδ ∈ Hq(Cδ) ∩ Hq(Ω) and there exists C > 0 independent of δ such
that:

‖uδ‖Hq(Ωδ) ≤ Cδ−(q−1). (6.4.8)

Proof. The proof of uδ ∈ Hq(Cδ)∩Hq(Ω) is already made in [57, Theorem 4.21]. Therefore
it is sufficient to prove the estimate (6.4.8)

By using charts and unit partition of unity, we can assume that Γ is R × {0} and
Ωδ = R×]− δ, 1[. Thanks to Leibniz formula we have:

div
(
ρδ∇∂yuδ

)
= gδ and ∂ν∂yu

δ = 0 on ∂Ωδ, (6.4.9)

with gδ := ∂yf − div(∂yρ
δ)∇∂yuδ − k2∂y(µ

δuδ) and it is easy to prove existence of C > 0
independent of δ such that the following estimate holds:

‖gδ‖(H1(Ωδ))† ≤ Cδ−1,

and thanks to (6.4.9) we get existence of C > 0 independent of δ such that we have
‖∂qyuδ‖H1(Ωδ) ≤ Cδ−1. We can prove by recurrence that in fact we can extend this last
estimate in the sense that there exists C > 0 independent of δ such that for all q ≤ mΓ−1
we have:

b‖∂qyuδ‖H1(Ωδ) ≤ Cδ−q. (6.4.10)

Now let us prove by recurrence that we have for all 1 ≤ q ≤ mΓ existence of C > 0
independent of δ such that:∥∥∂q−ly ∂lxuδ

∥∥
L2(Cδ)

+
∥∥∂q−ly ∂lxuδ

∥∥
L2(Ω)

≤ Cδ−(q−1). (6.4.11)

Thanks to (6.4.10) we first get the initialization q = 1. Indeed thanks to this estimate
we get existence of C > 0 such that:

‖∂1
yu

δ‖L2(Ωδ) + ‖∂x∂1−1
y uδ‖L2(Ωδ) ≤ C‖uδ‖H1(Ωδ) ≤ Cδ−(q−1).

Now let q ≥ 2 such that we have for all q′ ≤ q − 1 that

∀l ≤ q′,
∥∥∥∂q′−ly ∂lxuδ

∥∥∥
L2(Cδ)

+
∥∥∥∂q′−ly ∂lxuδ

∥∥∥
L2(Ω)

≤ Cδ−(q′−1), (6.4.12)
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and let us prove that this last estimate implies:

∀l ≤ q,
∥∥∂q−ly ∂lxuδ

∥∥
L2(Cδ)

+
∥∥∂q−ly ∂lxuδ

∥∥
L2(Ω)

≤ Cδ−(q−1). (6.4.13)

Inside this recurrence we do a second recurrence for a fixed q′ ≤ on 0 ≤ l ≤ q′. First let
us study the case of l = and l = 1. Indeed thanks to (6.4.10) we get

‖∂qyuδ‖L2(Ωδ) + ‖∂x∂q−1
y uδ‖L2(Ωδ) ≤ C‖∂q−1

y uδ‖H1(Ωδ) ≤ Cδ−(q−1).

Therefore it remains to prove that for all 0 ≤ l ≤ q−2 we have the following implication:

∀l′ ≤ l,
∥∥∥∂q−l′y ∂l

′

xu
δ
∥∥∥ ≤ Cδ−(q−1) ⇒

∥∥∂q−(l+2)
y ∂l+2

x uδ
∥∥ ≤ Cδ−(q−1) (6.4.14)

Indeed assume that we have:

∀l′ ≤ l,
∥∥∥∂q−l′y ∂l

′

xu
δ
∥∥∥ ≤ Cδ−(q−1). (6.4.15)

We have from the equation satisfied by our solution uδ: ∂xρδ∂xuδ+∂yρ
δ∂yu

δ+k2µδuδ = f
the following useful equality:

∂2
xu

δ = Aδ∂2
yu

δ + δ−1Bδ · ∇uδ +Dδuδ + (gδ)−1f,

where Aδ, Bδ and Cδ are function ψΓ−δ−periodic, which leads to the following useful
identity:

∂q−(l+2)
y ∂l+2

x uδ = ∂q−(l+2)
y ∂lx

(
∂2
xu

δ
)
,

= ∂q−(l+2)
y ∂lx

(
Aδ∂2

yu
δ + δ−1Bδ · ∇uδ +Dδuδ + (gδ)−1f

)
.

Moreover combining with the identity (5.4.38) yields existence of C > 0 independent of
δ such that we have:∥∥∂q−(l+2)

y ∂l+2
x uδ

∥∥ ≤ C
∑

α′≤q−(l+2)α≤l

(
Qα′,α
a + δ−1Qα′,α

b +Qα′,α
d + δ−(q−2)

)
(6.4.16)

where we defined the following quantities:
Qα′,α
a =

∥∥∥∂q−(l+2)−α′
y ∂l−αx Aδ

∥∥∥× ∥∥∥∂2+α′

y ∂αxu
δ
∥∥∥ ,

Qα′,α
b =

∥∥∥∂q−(l+2)−α′
y ∂l−αx Bδ

∥∥∥× ∥∥∥∂α′y ∂αx∇uδ∥∥∥ ,
Qα′,α
d =

∥∥∥∂q−(l+2)−α′
y ∂l−αx Dδ

∥∥∥× ∥∥∥∂α′y ∂αxuδ∥∥∥ .
Moreover using that {Aδ, Bδ, Dδ}δ are ψΓ−δ-periodic sequences implies that these last
estimates become:

Qα′,α
a ≤ C · δ−q+(α+α′+2) ×

∥∥∥∂2+α′

y ∂αxu
δ
∥∥∥ ,

Qα′,α
b ≤ C · δ−q+(α+α′+2) ×

(∥∥∥∂α′+1
y ∂αxu

δ
∥∥∥+

∥∥∥∂α′y ∂α+1
x uδ

∥∥∥) ,
Qα′,α
d ≤ C · δ−q+(α+α′+2) ×

∥∥∥∂α′y ∂αxuδ∥∥∥ ,
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which also can be rewritten in the following forms:
Qα′,α
a ≤ C · δ−q+(α+α′+2) ×

∥∥∥∂(2+α′+α)−α
y ∂αxu

δ
∥∥∥ ,

Qα′,α
b ≤ C · δ−q+(α+α′+2) ×

(∥∥∥∂(α′+α+1)−α
y ∂αxu

δ
∥∥∥+

∥∥∥∂(α′+α+1)−(α+1)
y ∂α+1

x uδ
∥∥∥) ,

Qα′,α
d ≤ C · δ−q+(α+α′+2) ×

∥∥∥∂(α+α′)−α′
y ∂αxu

δ
∥∥∥ ,

Thanks to our recurrence hypothesis (6.4.12) and (6.4.15) these last estimates become:

Qα′,α
a ≤ C · δ−q+(α+α′+2) × δ−(2+α+α′−1) ≤ Cδ−(q−1),

Qα′,α
b ≤ C · δ−q+(α+α′+2) ×

(∥∥∥∂(α′+α+1)−α
y ∂αxu

δ
∥∥∥+

∥∥∥∂(α′+α+1)−(α+1)
y ∂α+1

x uδ
∥∥∥) ,

≤ C · δ−q+(α+α′+2) × δ−(α+α′+1−1) ≤ Cδ−(q−2),

Qα′,α
d ≤ C · δ−q+(α+α′+2) ×

∥∥∥∂(α+α′)−α′
y ∂αxu

δ
∥∥∥ ≤ C · δ−q+(α+α′+2) × δ−(α+α′) ≤ Cδ(q−1),

which leads to Qα′,α
a + δ−1Qα′,α

b + Qα′,α
d ≤ Cδ−(q−1). Thus combing this last estimate

with (6.4.16) end the proof of the implication (6.4.14). Therefore we succeed (6.4.13),
which concludes the proof the induction step of the proof of (6.4.11). Therefore we can
conclude.

Unfortunately the classical approach require the following very restrictive condition:
Existence of C > 0 such that for all δ, h > 0 we have for all hT ∈ Th:

hT ≤ Cδ · h. (6.4.17)

6.5 Technique of mesh refinement near the boundary
Γ

It is however possible to replace the very restrictive condition (6.4.17) by a less restrictive
one which is existence of C > 0 such that for all δ and h > 0 (see Figure 6.2)

hT ≤ C
(
δ + dist(Th,Γ)

)
· h, (6.5.18)

where we defined for all subset ω ⊂ Ω:

dist(ω,Γ) := inf
x∈ω

dist(x,Γ).

Indeed we succeed to prove the following result:
We are inspired by the famous result of interior regularity for the Laplacian operator:

∆u = 0 in Ω⇒ u ∈ C∞(Ω). (6.5.19)

Let us prove the following extension of this result of interior regularity (that can quantify
how the regularity of the solution decreases when we approach the boundary Γ.)

178



(a) Brute force mesh (b) Mesh with refinement method

Figure 6.2: Mesh refinement

Proposition 6.5.1. Let u ∈ H1(C0,η0) and s ≤ mΓ − 2 such that:

∆u+ k2u = f ∈ Hs(C0,η0) and ∂νu = g ∈ Hs− 1
2 (Ση0),

and let ν̃ : C0,η0 7→ R defined for x ∈ C0,η0 by:

ν̃(x) := dist(x,Γ).

Then we have ν̃s+1u ∈ Hs+2(C0,η0) with existence of C > 0 such that:

‖ν̃s+1u‖Hs+2(C0,η0 ) ≤ C
(
‖f‖Hs(C0,η0 ) + ‖g‖

Hs− 1
2 (Ση0 )

)
, (6.5.20)

and for all open subsets ω ⊂ C0,η0, we have the following bound of the Hs+2 norm of u
when ω approachs the boundary Γ:

‖u‖Hs+2(ω) ≤ C · sup
s′≤s
‖ν̃s′+1u‖Hs′+2(ω) · dist(ω,Γ)−(s+1). (6.5.21)

Let us give somme comment about this result. Indeed (6.5.19) states that the function u
appearing in this belongs to C∞(Ω). Thanks to the sobolev embedding theorem, this is
equivalent to: For all open bounded ω ⊂ Ω satisfying dist(ω,Γ) > 0, we have u ∈ Hs+2(ω)
for all s ≥ 0.

However, the restriction uΓ of u on Γ might be discontinuous. Figure 6.3 is a graphical
illustration of a numerical approximation of the unique solution of ∆u = 0 satisfaying
u = 0 on Ση0 and for all (x, y) ∈ Γ

u(x, y) = 1 if xy > 0 and u(x, y) = −1 else.

Then in this case we a priori have:

lim
dist(w,Γ)→0

‖u‖Hs(ω) =∞.
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Figure 6.3: Illustration of a function satisfaying ∆u = 0 discontinuous on Γ.

Hence the estimate (6.5.21) appearing Proposition 6.5.1 give an estimate of how the
quantity ‖u‖Hs(ω) tends to infinty when dist(w,Γ)→ 0.

A second commentary is that we will strongly use this last result in the proof of Propo-
sition 6.6.1. More precisely we use it to estimate the error uδ and its P 1 interpolation on
each cell of the mesh. We recall that for each cell Th of the mesh, one has:

‖uδ − Πuδ‖H1(Th) ≤ C‖uδ‖H2(Th)hT ,

where Π is the P 1 interpolator and hT is the diameter of the cell Th.
Proof of Proposition 6.5.1. Thanks to results of regularity we can assume that f = 0 and
g = 0. First we prove by recurrence that for all −1 ≤ s′ ≤ s we have ν̃s′+1u ∈ Hs′+2(C0,η0)
with existence of C > 0 independent of u such that:

‖ν̃s′+1u‖Hs′+2(C0,η0 ) ≤ C‖u‖H1(C0,η0 ).

The result is clear for s′ = −1 and let s′ < s such that this last property is verified.
Thanks to Proposition 1.3.1 (See Chapter 1), we get that the function ν̃ is at least C2

and u is C∞ on the interior which leads that we strongly have in C0,δ:

(∆ + k2)
(
ν̃s
′+2u

)
=((((

(((
((

ν̃s
′+2
(
∆u+ k2u

)
+ 2∇ν̃s′+2 · ∇u+ u∆ν̃s

′+2,

= 2(s′ + 2)ν̃s
′+1 · ∇ν̃ · ∇u+ u · div

(
(s′ + 2)ν̃s

′+1∇ν̃
)
,

= (s′ + 2)
(

2ν̃s
′+1 · ∇ν̃ · ∇u+ u · ν̃s′+1∆ν̃ + (s′ + 1)ν̃s

′|∇ν̃|2u
)

Combining this last identity with |∇ν̃| = 1 leads to:

(∆ + k2)
(
ν̃s
′+2u

)
= (s′ + 2)

(
2ν̃s

′+1 · ∇ν̃ · ∇u+ u · ν̃s′+1∆ν̃ + (s′ + 1)ν̃s
′
u
)
.

Moreover we have:

∇ν̃ · ν̃s′+1∇u = ∇ν̃ · ∇(ν̃s
′+1u)− (s′ + 1)ν̃s

′
u,

which leads to the following identity:

(∆ + k2)
(
ν̃s
′+2u

)
= (s′ + 2)

(
2 · ∇ν̃ · ∇(ν̃s

′+1u) + uν̃s
′+1∆ν̃ − (s′ + 1)ν̃s

′
u
)
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Combining our recurrence hypothesis with ν̃ ∈ W s′+2(C0,δ) yields existence of C > 0 such
that:

∇(ν̃s
′+1u) ∈ Hs′+1(C0,η0) with

∥∥∥∇(ν̃s
′+1u)

∥∥∥
Hs′+1(C0,η0 )

≤ C‖u‖H1(C0,η0 ),

and uν̃s′+1∆ν̃ − (s′ + 1)ν̃s
′
u ∈ Hs′+1(C0,η0) with∥∥∥uν̃s′+1∆ν̃ − (s′ + 1)ν̃s

′
u
∥∥∥
Hs′+1(C0,η0 )

≤ C‖u‖H1(C0,η0 ),

yields existence of C independent of u such that:

(∆ + k2)
(
ν̃s
′+2u

)
∈ Hs′+2(C0,δ) with

∥∥∥(∆ + k2)
(
ν̃s
′+2u

)∥∥∥
Hs′+2(C0,δ)

≤ C‖u‖H1(C0,δ).

Since the function ν̃s′+2u satisfies the homogeneous Dirichlet condition on Γ then regu-
larity result for the laplacian operator yields this last one belongs to Hs′+3 with existence
of C > 0 such that: ∥∥∥ν̃s′+2u

∥∥∥
Hs′+3(C0,δ)

≤ C‖u‖H1(C0,δ).

Thus to finish the proof of this proposition it remains to prove estimate (6.5.21). First
let us prove this last result when Γ is the plane R2 × {0} because the expression of
the function ν̃ is explicit. Indeed in this case we have for all (x, ν) ∈ R2×]0, η0[ that
ν̃(x, ν) = ν. Thus in this plane case the estimate (6.5.21) is a direct consequence of the
following result: For all q ∈ N there exists Cq > 0 such that for all u smooth enough we
have: ∣∣∣∂q+1

ν u
∣∣∣ ≤ Cqν

−q ·
(

max
0≤q′≤q

∣∣∂q′+1
ν (νq

′
u)
∣∣). (6.5.22)

Let us prove this last result by recurrence. Indeed this result is clear for q = 0 and then
assume that the result is true for all 0 ≤ q′ ≤ q and let us prove that the result is true
for q + 1. Thanks to Leibniz formula we have:

∂q+2
ν (νq+1 · u) =

q+2∑
q′=1

(
q + 2
q

)
∂q
′

ν u · νq
′−1 (q + 1)!

(q′ − 1)!
,

which leads to:

νq+1∂q+2
ν u = ∂q+2

ν (νq+1 · u) +

q+1∑
q′=1

Cqq′ν
q′−1∂q

′

ν u,

where we posed for 1 ≤ q′ ≤ q + 1 the quantity:

Cqq′ := −
(
q + 2
q

)
· νq′−1 (q + 1)!

(q′ − 1)!
.

Thus combining this last identity with our recurrence hypothesis yields:

νq+1|∂q+2
ν u| ≤ |∂q+2

ν (νq+1 · u)|+

(
q+1∑
q′=1

Cqq′

)
· Cq
(

max
0≤q′≤q

∣∣∂q′+1
ν (νq

′
u)
∣∣),

≤

(
1 + Cq

q+1∑
q′=1

Cqq′

)
︸ ︷︷ ︸

:=Cq+1

× max
0≤q′≤q+1

∣∣∂q′+1
ν (νq

′
u)
∣∣,
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which end the proof of (6.5.22). Now assume that Γ is not the plane and bring us back
to the plane case. To do that, first prove existence of CmΓ partition of unity of C0,η0 and
collection of diffeomorphism φi : wi 7→ wΓ

i ×]0, η0[ where wi is the interior of the support
of the function χi and wΓ

i is an open bounded subset of R2 such that we have the following
property:

ν ◦ φi = ν̃ in wi. (6.5.23)

Let (χΓ
i )i be a CmΓ+1 unit partition of unity of the boundary Γ and for all i the set Γi

is the interior of supp(χΓ
i ) . From this unit partition of unity , we can define a new one

of the domain C0,η0 defined for x = xΓ + νn(xΓ) and i by χi(x) := χΓ
i (xΓ) and this unit

partition is CmΓ .
We can chose the unit partition (χi)i such that for all i there exists an open bounded

set wΓ
i ⊂ R2 and a CmΓ+1 diffeomorphism φΓ

i : wΓ
i ⊂ R2 7→ Γi ⊂ Γ. Then the interior of

the support of the function χi is given by:

wi :=
{
xΓ + νn(xΓ), xΓ ∈ Γi, ν ∈]0, η0[

}
,

and from this last set we can define the map φiwi 7→ wΓ
i ×]0, η0[ for x = xΓ + νn(xΓ) ∈ wi

by
φi(x) := (φΓ

i (xi), ν).

It is clear that this last function satisfies by construction the property (6.5.23).
Since (χ)i is a unit partition of C0,η0 we have:

‖u‖Hs+2(ω) ≤
∑
i

‖χiu‖Hs+2(ω∩wi),

and using that for all i the function χi is Cs+2 and φi is a Cs+2 diffeomorphism yields
existence of C independent of u such that:

‖u‖Hs+2(ω) ≤ C
∑
i

‖(χiu) ◦ φ−1
i ‖Hs+2(w′i)

, (6.5.24)

where we defined for convenience the set w′i := φi(ω ∩ wi) Moreover since w′i is an open
subset of R2×]0, η0[ we can apply (6.5.21) which leads that for all i

‖(χiu) ◦ φ−1
i ‖Hs+2(w′i)

≤ C dist(w′i,R2 × {0})−(s+1) sup
0≤s′≤s

‖νs′+1(χiu) ◦ φ−1
i ‖Hs+2(w′i)

.

Combining this last estimate with the property (6.5.23) yields that for all i:

‖(χiu) ◦ φ−1
i ‖Hs+2(w′i)

≤ C dist(ω ∩ wi,Γ)−(s+1) sup
0≤s′≤s

‖(ν̃s′+1χiu) ◦ φ−1
i ‖Hs+2(w′i)

,

and using that ω ∩ wi ⊂ ω ⇒ dist(ω ∩ wi,Γ) ≥ dist(ω,Γ) leads to:

‖(χiu) ◦ φ−1
i ‖Hs+2(w′i)

≤ C dist(ω,Γ)−(s+1) sup
0≤s′≤s

‖(ν̃s′+1χiu) ◦ φ−1
i ‖Hs+2(w′i)

.

Moreover reusing that φi is a Cs+2 diffeomorphism leads existence of C independent of u
such that for all i we have:

‖(χiu) ◦ φ−1
i ‖Hs+2(w′i)

≤ C dist(ω,Γ)−(s+1) sup
0≤s′≤s

‖ν̃s′+1χiu‖Hs+2(wi),

182



and combining with the regularity of χi leads that this last estimate become:

‖(χiu) ◦ φ−1
i ‖Hs+2(w′i)

≤ C dist(ω,Γ)−(s+1) sup
0≤s′≤s

‖ν̃s′+1u‖Hs+2(wi).

Thus combining this last estimate with (6.5.24) end the proof of estimate (6.5.21).

6.6 Convergence of the method

Theorem 6.6.1. If (6.5.18) is satisfied then the following estimate holds:

‖uδ − uδh ◦ φδh‖H1(Ωδ) ≤ Ch.

Proof. Let Πh : C0(Ωδ
δ) 7→ Vh be the P1-interpolation operator and Π̃h : C0(Ωδ) 7→ Ṽh :=

{X ◦ φh, X ∈ Vh} defined for u ∈ C0(Ωδ) by:

Π̃hX := Πh

(
X ◦ φ−1

h

)
◦ φh.

First let us prove existence of C > 0 such that for all h, δ > 0 the following estimate
holds:

‖uδ − Π̃Thu
δ‖ ≤ C · h. (6.6.25)

Thanks to [28, Theorem 15.3] for all T ∈ Th the following estimate holds:∥∥∥uδ − Π̃Thu
δ
∥∥∥
H1(T )

≤ ChT
∥∥uδ∥∥

H2(T )
(6.6.26)

Thus thanks to Proposition 6.4.1 we get existence of C > 0 such that for all δ, h > 0 we
have:

dist(T,Γ) ≤ δ ⇒
∥∥∥uδ − Π̃Thu

δ
∥∥∥
H1(T )

≤ C
∥∥ν̃ · uδ∥∥

H2(T )
· h. (6.6.27)

Moreover thanks to Proposition 6.5.1 we get existence of C > 0 such that for all h, δ > 0
we have:

∀T ∈ Th,
∥∥uδ∥∥

H2(T )
≤ C dist(T,Γ)−1 ·

∥∥ν̃ · uδ∥∥
H2(T )

,

which leads combined with (6.6.25) and the constraint (6.5.18) to:

∀T ∈ Th,
∥∥∥uδ − Π̃Thu

δ
∥∥∥
H1(T )

≤ C
(δ dist(T,Γ)−1 + 1)

2

∥∥ν̃ · uδ∥∥
H2(T )

· h.

Therefore we get the following implication:

∀T ∈ Th, dist(T,Γ) ≥ δ ⇒
∥∥∥uδ − Π̃Thu

δ
∥∥∥
H1(T )

≤ C
∥∥ν̃ · uδ∥∥

H2(T )
· h,

and combining this implication with (6.6.27) end the proof of the estimate (6.6.25).
Using similar argument from the proof of Proposition 5.4.3 yields existence of h0 > 0

and η0 > 0 independent of δ and h such that for all xδh ∈ V δ
h we have:

|h| < h0 ⇒ ‖xδh‖H1(Ωhδ ) ≤ η0 sup
yh∈V

δ
h

‖yδ
h
‖
H1(Ωh

δ
)=1

aδh(x
δ
h, y

δ
h),
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which leads to:∥∥∥uδ ◦ (φδh)
−1 − uδh

∥∥∥
H1(Ωhδ )

≤
∥∥∥uδ − Π̃Thu

δ
∥∥∥
H1(Ωδ)

+ η0 sup
yh∈V

δ
h

‖yδ
h
‖
H1(Ωh

δ
)=1

aδh

(
Π̃Thu

δ ◦ (φh)
−1 − uδh, yδh

)
.

Combining this last estimate with (6.6.25) and the uniform continuity of the sesquilinear
form qδh yields:∥∥∥uδ ◦ (φδh)

−1 − uδh
∥∥∥
H1(Ωhδ )

≤ Ch+ η0 sup
yh∈V

δ
h

‖yδ
h
‖
H1(Ωh

δ
)=1

aδh
(
uδ ◦ (φh)

−1 − uδh, yδh
)
,

which leads combined with (6.2.2) to:∥∥∥uδ ◦ (φδh)
−1 − uδh

∥∥∥
H1(Ωhδ )

≤ Ch+ η0 sup
yh∈V

δ
h

‖yδ
h
‖
H1(Ωh

δ
)=1

aδh
(
uδ ◦ (φh)

−1, yδh
)
− (f, yδh ◦ φδh),

≤ Ch+ η0 sup
yh∈V

δ
h

‖yδ
h
‖
H1(Ωh

δ
)=1

aδh
(
uδ ◦ (φh)

−1, yδh
)
− aδ(uδ, yδh ◦ φδh).

Therefore it remains to prove that the following estimate holds:

sup
yh∈V

δ
h

‖yδ
h
‖
H1(Ωh

δ
)=1

aδh
(
uδ ◦ (φh)

−1, yδh
)
− aδ(uδ, yδh ◦ φδh) ≤ Ch. (6.6.28)

To simplify the writing we assume that k = 0 because the generalization for k 6= 0 is
obvious. For all yh ∈ V δ

h we have that the quantity: E(yδh) := aδh
(
uδ ◦ (φh)

−1, yδh
)
−

aδ(uδ, yδh ◦ φδh)

E(yδh) =

∫
Ωhδ

ρδh∇
(
uδ ◦ (φh)

−1
)
· ∇yδhdΩh

δ −
∫

Ωδ

ρδ∇
(
uδ
)
· ∇
(
yδh ◦ φh

)
dΩδ,

=

∫
Ωδ

(
DΩ∇uδ,∇

(
yδh ◦ φh

))
dΩδ

where we defined the tensor field DΩ := ρδh ◦ φh ·Dφ−1
h ·Dφ−†h |det(Dφh)| − ρδ. Therefore

it is sufficient to prove that:
‖DΩ‖L∞(Ωδ) ≤ Ch. (6.6.29)

Indeed from Proposition 5.4.1 we get that∥∥∥Dφ−1
h Dφ−†h |det(Dφh)| − 1

∥∥∥
L∞(Ωδ)

≤ Ch. (6.6.30)

Moreover to (6.5.18) and the regularity at least C1(Γ; [0, 1] × [−, 0]) of the reference
function ρ̂ we have:

‖ρδh ◦ φh − ρδ‖L∞(Ωδ) ≤ C‖ρδ‖W∞(Cδ) sup
T∈T δh ,T⊂Ωhδ \Ωh

hT ≤ Cδ−1 sup
T∈T δh ,T⊂Ωhδ \Ωh

hT ≤ Ch.

Thus combining this last estimate with (6.6.30) end the proof of (6.6.29) which conclude
whole the proof.
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Chapter 7

Numerical validation of the
approximate boundary conditions

Here we present numerical comparison between the exact model and the approximate
model.

7.1 Algorithm for construction of mesh and computa-
tion of local coordinate

We emphasize difficulties to mesh our geometry and computing our coefficient. Indeed
the thin coat and the function ρδ and µδ are defined from the local coordinate function
L. Indeed we recall that:

Cδ = L−1(Γ×]− δ, 0[),

and for all x ∈ Cδ :

ρδ(x) = ρ̂

(
xΓ,

ψΓ(xΓ)

δ
,
ν̂

δ

)
,

with (xΓ, ν) = L(x). We recall that this last function is implicitly defined by its inverse
L−1 given by:

L−1(xΓ, ν) = xΓ + νn(xΓ).

Although the quantity xΓ can be explicitly defined by the minimizer of the functional
defined on Γ by

xΓ 7→ |x− xΓ|,

and ν be defined by:
ν = (x− xΓ, ν),

it is easy to see that a brute-force using this last formula will be very slow. Indeed let N
be the number of point of discretization of Cδ. Then for x ∈ Cδ, an exhaustive research
of the closest point xΓ ∈ Γ has a average times proportional to N . Since the method will
do it for each point of the discretization we get that the complexity of this brute-force
method is O(N2). Moreover if we assume that δ is very small, therefore N will must very
large compared to 1/δ. We will see that we typically take N = 10000× 20 and then the
computer will do 40 000 000 000 operations.
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P0,0 P1,0

P0,1

P1,1

PN,M

T+
0,0

T−
0,0

Figure 7.1: The rectangular triangulation

Figure 7.2: The transformation of mesh

Now this last difficulty is described, let us explain the way we use to overcome it.
First define for δ,N,M T̂δ,N,M the rectangular triangulation by the mesh of ]0, 1[×]− δ, 0[
whose vertex is the collection (Pij)0≤i≤N,0≤j≤M defined for 0 ≤ i ≤ N, 0 ≤ j ≤M by:

P̂ij := (i/N,−jδ/M),

and the triangles which are the collection (T̂+
ij , T̂

−
ij )0≤i≤N−1,0≤j≤M−1 defined for 0 ≤ i ≤

N − 1, 0 ≤ j ≤M − 1 by (see Figure 7.1):

T̂+
ij :=

{
(i, j), (i+ 1, j), (i, j + 1)

}
and T̂−ij :=

{
(i+ 1, j + 1), (i+ 1, j), (i, j + 1)

}
.

Thus from this last mesh, we construct a new mesh Tδ,N,M defined by the transformation
by the function L−S : [0, 1[×]− δ, 0[7→ Cδ defined for (t, ν) ∈ [0, 1[×]− δ, 0[ by :

L−S(t, ν) := S(t)− ν · n(S(t)),

of the mesh T̂δ,N,M . More precisely the vertex of this mesh is defined by the mesh whose
vertex is the following collection:

(Pij)ij := (L−S(P̂ij))ij,
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(a) The mesh Th (b) The mesh T δh

Figure 7.3: Example of meshing of the thin coat

and the triangles are the same as the initial mesh T̂δ,N,M (see Figure 7.2).
We implemented a little program written in C++ that take an initial mesh Th of the

domain Ω whose format is “.msh” and builds a new mesh T δh of the domain Ωδ with
same format. We refer the reader to Figure 7.3 for an example of application of this last
algorithm.

The initial mesh Th is represented by a triplet (Vh, Th,Γh) where:

• N v
h and N t

h are the number of vertex and triangle of the mesh Th.

• Vh ∈ (R2)N
v
h is a finite sequence of point of R2 containing the vertex of the mesh

Th.

• The triangles are represented by element of P3 which the set of subset of ({1, ·, N v
h})

whose cardinal is 3. All {i1, i2, i3} ∈ P3 represent the triangle whose corners are
Vh(i1), Vh(i2) and Vh(i3).

• Th ∈
(
P3({1, ·, N v

h})
)Nt

h is a finite sequence of P3({1, ·, N v
h}) containing the triangle

of the mesh Th.

• NΓ
h is the number of point of discretization of the boundary Γ.

• Γh ∈ {1, ·, N v
h}

NΓ
h is a finite sequence such that for all i ∈ {1, ·, N v

h} the point Vh(i)
belongs to Γ.

For any set E and natural n, the concatenation operator · is defined for all (L1, · · · , Ln) ∈
En and Ln+1 ∈ E by (L1, · · · , Ln) · Ln+1 := (L1, · · · , Ln, Ln+1). We introduced this last
operator in order to represent the insertion operation. Therefore we can give the algorithm
we use to construct the new mesh (V δ

h , T
δ
h ,Γ

δ
h):
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Data: (Vh, Th,Γh)
Result: (V δ

h , T
δ
h , XΓ,h, νh)

(V δ
h , T

δ
h)← (Vh, Th); Initialization with copying the initial mesh;

for 1 ≤ i ≤ N v
h do

P ← Vh(Γh(i)) ;
N ← normal(Vh(Γh(i− 1)), Vh(Γh(i+ 1)); Approximation of the unit
normal ;
for 1 ≤ j ≤ Nc do

νj ← −δ · j/Nc ;
Pν ← P + νj ·N ;
V δ
h ← V δ

h · Pν ; We push the the vertex on the mesh T δh ;
(I1, I2, I3, I4)← Carre(Vh, i, j) ;
t1h ← {I1, I2, I3};
t2h ← {I2, I3, I4};
Th ← Th · t1h;
Th ← Th · t2h;
XΓ,h(I1)← i/Nh;
νh(I1)← ν;

end
end

Data: (P−1, P1)
Result: N
DP ← Vh(Γh(i+ 1))− Vh(Γh(i− 1)) ;
DP ← DP/|DP |;
N ← (−Dp2, Dp1)

Data: (P−1, P1)
Result: N
if j = 1 then

I1 ← Vh(Γh(i);
I2 ← Vh(Γh(i+ 1);

else
I1 ← N v

h + (i− 1) ·Nc + j − 1 ;
I2 ← N v

h + i ·Nc + j − 1 ;
end
I3 ← N v

h + (i− 1) ·Nc + j ;
I4 ← N v

h + i ·Nc + j ;

7.2 Configuration

• The reference function function are defined by µ = 1 and for (xΓ, x̂, ν̂) ∈ Γ× [0, 1]×
[−1, 0] by:

ρ̂(xΓ; x̂, ν̂) := 1.25 + cos(2πx̂).

• The function g is defined for x :=
(

cos(θ), sin(θ)
)
∈ ∂B by g(x) := cos(5θ).
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• The kite is the region in the case where the application P : [0, 1] 7→ R2 is defined
for t ∈ [0, 1] by:

P (t) :=
(

cos(t) + 0.3 · cos(2 · t), sin(t)
)

• The ellipse is the form in the case where the application P : [0, 1] 7→ R2 is defined
for t ∈ [0, 1] by:

P (t) :=
(
0.6 · cos(t), 0.4 · sin(t)

)
• For meshing the domain Ωδ we always take 1500 point for the discretization of ∂B.

• For meshing the domains Ωδ we always take 60000× 30 of discretization of the thin
coat Cδ

7.3 Graphical comparison for thin mesh of the approx-
imated solutions

Here we take to approximate the domain Ω, 10000 points of discretization on the boundary
Γ. We present numerical results in Figure 7.4 for k = 10 in the case of a kite. In this
case we don’t see difference between the exact solution, the first order solution and the
second order solution for two values of δ. For the two values of δ figures are very similar
but present small differences. Finally we do not see a difference in the case of the ellipse
presented in Figure 7.6.

7.4 Graphical plot of the error:

Let η > 0 and Kη := {x ∈ Ω, dist(x,Γ) > η}. We introduce a regular third mesh T err
h of

the domain Kη. Let Πerr
η : H1(R2) 7→ VT err

h
be an projection application the space VT err

h
of

P1 function on this last mesh. The error is defined for η > 0 and i = 1, 2 by:

εiη := Πerr
η (uδh − uδi,h)

7.5 Numerical rate of convergence

We seek to numerically show the estimate (4.5.91). To do that emphasize this last
estimate is equivalent to the existence of C such that we have for all i = 1, 2 and δ > 0
the following estimate:

ln
(
‖uδ − uδi‖H1(K)

)
≤ (i+ 1) · ln(δ) + C.

Thus we produce for the same geometry and right hand-side several simulation for sev-
eral small (δj)j and we do a linear regression between vector (ln(δi))i and

(
ln
(
‖uδj −

u
δj
i ‖H1(K)

))
j
and we compare the slope with the theoretical slope i+ 1. From Figure 7.7

the slope comparison for a kite looks good but looks worst for an ellipse.
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(a) exact solution, δ = 0.01 (b) order 1, δ = 0.01 (c) order 2, δ = 0.01

(d) exact solution δ = 0.02 (e) order 1, δ = 0.02 (f) order 2, δ = 0.02

Figure 7.4: Graphical comparison for the kite and k = 10
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(a) exact solution, δ = 0.01 (b) order 1, δ = 0.01 (c) order 2, δ = 0.01

(d) exact solution δ = 0.02 (e) order 1, δ = 0.02 (f) order 2, δ = 0.02

Figure 7.5: Graphical comparison for the kite and k = 20
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(a) exact solution, δ = 0.01 (b) order 1, δ = 0.01 (c) order 2, δ = 0.01

(d) exact solution δ = 0.02 (e) order 1, δ = 0.02 (f) order 2, δ = 0.02

Figure 7.6: Graphical comparison for the ellipse and k = 10
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(a) The kite

(b) The ellipse

Figure 7.7: Numerical rate convergence
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Part III

The case of 3D Maxwell equations
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Chapter 8

Description of the Maxwell’s equations
and objective

We have extended part I and II for the scalar case to the vectorial case.

8.1 Description of the studied problem

Let us start with a quick description of the geometry of our problem and a presentation
of the model problem. Let O be a bounded domain of R3 such that R3 \ O is connected
with C∞ boundary Γ and δ > 0. We call the “thin coating of width δ” the following
subset Cδ of O:

Cδ := {x ∈ O, dist(x,Γ) < δ}.

Here the quantity dist(x,Γ) is the distance of x from the surface Γ defined by

dist(x,Γ) := inf
xΓ∈Γ
|x− xΓ|,

and |.| is the classical euclidean norm of R3. We need to introduce the complement of
O in R3 Ω := R3 \ O and Ωδ := Ω ∪ Cδ. We refer the reader to the Figure 8.1 for an
illustration in 2D. The electric and magnetic fields are respectively denoted by Eδ and
Hδ. We introduce the curl operator defined for vector field:

E : (x1, x2, x2) 7→

E1(x1, x2, x2)
E2(x1, x2, x2)
E3(x1, x2, x2)

 ,

Figure 8.1: Illustration of the geometry
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Figure 8.2: Illustration of (xΓ, ν)

by:

rotE :=

∂x3E2 − ∂x2E3

∂x1E3 − ∂x3E1

∂x2E1 − ∂x1E2

 .

The problem that we are interested in is the following: Find (Eδ, Hδ) ∈ Hloc(rot)
2 such

that:
rotEδ = −ikµδHδ and rotHδ = ikεδEδ + Jsource in Ωδ, (8.1.1)

with the following boundary conditions:

Eδ × nδ = 0 and µδHδ · nδ = 0 on Γδ := ∂Ωδ, (8.1.2)

and Eδ, Hδ satisfy the Silver-Muller radiation condition (See [59] and [69]):

lim
|x|7→∞

|x|
(
Hδ(x)× x

|x|
− Eδ(x)

)
= 0. (8.1.3)

Here nδ and n are respectively the unit outward normal to ∂Ωδ and Ω, k ∈ R is the
wave-number and Jsource denotes a given current source. Moreover εδ, µδ denote the
characteristics of the medium supposed to be equal to 1 in Ω. These function are supposed
to be ψΓ−δ− periodic in the thin coating Cδ associated to reference function ε̂ and µ̂.
We recall that it means that for all ∈ Cδ we have

εδ(x) = ε̂(xΓ; x̂, ν̂) and µδ(x) = µ̂(xΓ; x̂, ν̂)

where (xΓ, ν) ∈ Γ×] − δ, 0[ are the unique solution of x = xΓ + νn(xΓ) and (x̂, ν̂) :=(
ψΓ(xΓ), ν

)
δ

. (see Figure 8.2). In this work the map ψΓ : Γ 7→ R2 is a data of our
problem. We recall that (8.1.2) means that we use a model of perfect conductor and
(8.1.3) mean that the scattered waves is outgoing.

8.2 Assumption on the coefficient and the map ψΓ

We assume for technical reason that:

inf ε̂ > 0 and inf µ̂ > 0, (8.2.4)

to ensure that our problem is well posed. (See [58]). We will see that the following
regularity well simplify our analysis:(

ε̂, µ̂
)
∈ C∞

(
Γ;L∞(Ŷ∞)

)2

and ψ ∈ C∞(Γ)2, (8.2.5)
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Figure 8.3: Illustration the of infinite strip

Figure 8.4: Illustration of the map ψΓ : Γ 7→ R2

where we introduced the infinite strip Ŷ∞ :=]0, 1[2×]−,∞[. (see Figure 8.3). We assume
the existence of a open set ΓM ⊂ Γ such that for all yΓ ∈ ΓM there exist neighborhoods
V (yΓ) ⊂ Γ, W

(
ψΓ(xΓ)

)
⊂ R2 of yΓ and 0 such that ψΓ : V (yΓ) 7→ W

(
ψΓ(yΓ)

)
is a

C∞ diffeomorphism.(See Figure 8.4). Our coefficient ε̂ and µ̂ are supposed “patching
admissible”. We recall that it mean that for all xΓ /∈ Γ the map (x̂, ν̂) 7→ ε̂(xΓ; x̂, ν̂) does
not depend of x̂.

Finally we impose that supp(Jsource) ∩ Γ = ∅.

8.3 Effective boundary conditions

The objective of this work is to find an operator Z defined on some space of functions
defined on Γ and takes values in some space of functions defined Γ such that if we delete
from our geometry the thin coat Cδ and we replace by what we call the impedance
boundary condition:

γtE
δ = ikZ

(
γTH

δ
)
,

where we define for function u : Ω 7→ C3 the two traces for xΓ ∈ Γ by:

γTu(xΓ) :=
(
n(xΓ)× u(xΓ)

)
× n(xΓ) and γtu(xΓ) := u(xΓ)× n(xΓ),

then the new scattered fields (Eδ, Hδ) are a good approximation of the exact field.
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The case of uniform coefficient in the thin coat has already been studied in [44] and
[14].

8.4 Summary of the work

The main steps of our work are as follows:

1. By using the method of matched asymptotic expansions, we construct a sequence
of vector fields (En, Hn)n∈N such that we have for all n ∈ N the following estimate:

Eδ −
n∑
k=0

δkEk = O(δn+1) and Hδ −
n∑
k=0

δkHk = O(δn+1), (8.4.6)

2. We identify an operator Z1 such that we have for all 0 ≤ n′ ≤ n

γtE
1 = ikZ1γTH

0 and γtE
0 = 0 on Γ.

3. We emphasize that this last equality yields:

γt
(
E0 + δE1

)
− ikZδn

(
γT (H0 + δH1)

)
= O(δ2). (8.4.7)

4. We prove that the approximated boundary condition is stable. This means that
there exists C > 0 independent of δ such that for all E,H : Ω 7→ C3 satisfying the
Maxwell equation (8.1.1) with Jsource = 0 and the radiating condition (8.1.3), we
have estimates of the form:

‖E‖+ ‖H‖ ≤ C‖gΓ‖ with gΓ := γtE − δikZ1 (γTH) . (8.4.8)

5. We introduce the function (Eδ
1 , H

δ
1) : Ω 7→ C3 defined as the unique solution of the

Maxwell equation (8.1.1) and the radiating condition (8.1.3) such that we have on
Γ:

γtE
δ
1 − δikZ1γTH

δ
1 = 0. (8.4.9)

6. We combine (8.4.8) with (8.4.9) which leads to

γt
(
E0 + δE0 − Eδ

1

)
− ikδZ1

(
γT (E0 + δE0 − Eδ

1)
)

= O(δ2). (8.4.10)

Combining this with (8.4.7) yields:∥∥E0 + δE1 − Eδ
1

∥∥+
∥∥H0 + δH1 − Eδ

1

∥∥ = O(δ2).

7. We combine this last estimate with (8.4.6) which yields by using the triangle in-
equality the final estimate:

Eδ − Eδ
1 = O(δ2) and Hδ −Hδ

1 = O(δn+1).
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Chapter 9

Formal asymptotic expansion

9.1 Summary of the matching expansion method in the
Maxwell case

This method consists in seeking two asymptotic expansions of the solution. One is valid
near the boundary called the near-field expansion and the other is valid far from the
boundary called far-field expansion. Firstly let us chose a function η : δ 7→ η(δ) such
that:

lim
δ→∞

η(δ) = 0 and lim
δ→∞

η(δ)

δ
=∞, (9.1.1)

and define the following zones (see Figure 9.1 for a graphical illustration of these regions):

• The far-field zone is defined by {x ∈ Ω, dist(x,Γ) > 2η}. For all point x in this zone
we assume that our field take the following form:

Eδ(x) =
∑
n∈N

δnEn(x) and Hδ(x) =
∑
n∈N

δnHn(x), (9.1.2)

where for all n ∈ N the functions En and Hn are defined on Ω.

• The near-field zone is defined by Cδ∪
{
x ∈ Ω, dist(x,Γ) < η0

}
. In this zone, we have

to take into account the ψΓ−δ−periodicity of our physical coefficient µδ, εδ. That is
why we use a more complicated ansatz inspired from the periodic homogenization
[5].

In this zone we formally assume that Eδ and Hδ are a series of ψΓ−δ−periodic
function. That means that for all point x in this zone we have:

Eδ(x) =
∞∑
n=0

δnÊ
n
(xΓ; x̂, ν̂) and Hδ(x) =

∞∑
n=0

δnĤ
n
(xΓ; x̂, ν̂), (9.1.3)

where (xΓ, ν) are the unique solution of x = xΓ + νn(xΓ) (see Figure 8.2) and

(x̂, ν̂) :=

(
ψΓ(xΓ), ν

)
δ

. (9.1.4)
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Figure 9.1: Illustration of the three zones

Here for all n in N the function Ê
n
, Ĥ

n
: Γ 7→ P (Ω̂) is defined from Γ into P (Ω̂)

and we recall that P (Ω̂) is the set of function defined on Ω̂ := R2×] − 1,∞[ and
one periodic on the variable x̂.

• The overlapping zone is defined by {x ∈ Ω, η < dist(x,Γ) < 2η} . In this zone expan-
sions (9.1.3) and (9.1.2) are assumed to be both valid and then should be equivalent.

We now built a system of equations in order to determine the sequences (En, Hn, Ê
n
, Ĥ

n
).

9.1.1 The far field

Identifying formally each coefficient of (8.1.1) and the radiating condition (8.1.3) as an
individual equation yields that for all n > 0 that:

rotEn = −ikHn = 0 and

{
rotH0 = ikE0 + Jsource,

rotHn = ikEn if n > 0.
(9.1.5)

The fields En and Hn are required to satisfy the radiating condition (8.1.3). Thanks
to the time harmonic Maxwell scattering theory(see [58]), we get that a necessary and
sufficient missing information as this time to construct the field En is the knowledge of
the tangential trace γtEn. However we will see later that this last quantity is linked with
the asymptotic behavior of the near field thanks to the matching condition.

9.1.2 The near field

For technical reasons of computation, we prefer to replace the expansion (9.1.3) by the
following one: 

Eδ(x) =
∑
n∈N

δn
(
I + νRΓ(xΓ)

)−1
Ên(xΓ; x̂, ν̂),

Hδ(x) =
∑
n∈N

δn
(
I + νRΓ(xΓ)

)−1
Ĥn(xΓ; x̂, ν̂).

(9.1.6)

Here for all n ∈ N, Ên and Ĥn are function defined on Γ × Ω̂ and one periodic on x̂.
These series are required to formally satisfy the following equation:

rotEδ = −ikµδHδ and rotHδ = ikµδEδ, (9.1.7)
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with the boundary condition: For all n ∈ N if (xΓ, x̂, ν̂) ∈ Γ× ∂Ω̂ then:

Ên(xΓ; x̂, ν̂)× n(xΓ) = 0 and µ̂(xΓ; x̂, ν̂)Ĥn(xΓ; x̂, ν̂) · n(xΓ) = 0, (9.1.8)

The detail of the analysis of this last expansion will be given later.

9.1.3 Matching condition

We will later see that the formal analysis of the required equation (9.1.7) implies for all
n ∈ N the existence of polynomials (P n

E , P
n
h ) ∈ C∞ (Γ;Cn[ν̂])2 such that:

Ên(xΓ; x̂, ν̂) ∼
ν̂→∞

P n
E(xΓ; ν̂) and Ĥn(xΓ; x̂, ν̂) ∼

ν̂→∞
P n
H(xΓ; ν̂), (9.1.9)

where (xΓ, x̂, ν̂) are defined by (9.1.4). For all 0 ≤ j ≤ n, P n,j
E and P n,j

H are respectively
the j-th coefficient of the polynomial P n

E and P n
H . By inspiring from [37], we impose that:

P n+j,i
E (xΓ) =

∂iνẼ
n(xΓ, 0)

i!
and P n+j,i

H (xΓ) =
∂iνH̃

n(xΓ, 0)

i!
. (9.1.10)

Here, the functions (Ẽn, H̃n) are defined for (x′Γ, ν
′) ∈ Γ×]− δ, 2η[ by:

Ẽn(x′Γ, ν
′) :=

(
I + ν ′RΓ(x′Γ)

)
En(x′) and H̃n(x′Γ, ν

′) :=
(
I + ν ′RΓ(x′Γ)

)
Hn(x′),

where we defined x′ := x′Γ+ν ′n(x′Γ). The equalities (9.1.10) are what we call the matching
conditions. Let us recall now the reason of these relations: From (9.1.6) we have:

(
I + νRΓ(xΓ)

)
Eδ(x) =

∞∑
n=0

δnÊn(xΓ; x̂, ν̂),

(
I + νRΓ(xΓ)

)
Hδ(x) =

∞∑
n=0

δnĤn(xΓ; x̂, ν̂).

We recall that in the matching zone we have ν > η: Therefore from this, (9.1.4) and
(9.1.1), we get that ν̂ tends to infinity when δ tends to zero. Therefore we can use the
expansions (9.1.9):

(
I + νRΓ(xΓ)

)
Eδ(x) ≈

∑
n,i

P n,i
E δnν̂i =

∑
n,i

P n,i
E δn−jνi,

(
I + νRΓ(xΓ)

)
Hδ(x) ≈

∑
n,i

P n,i
H δnν̂i =

∑
n,i

P n,i
H δn−jνi.

(9.1.11)

Moreover, ν tends to zero in the matching zone. Thus we can use the Taylor expansion
formula: 

(
I + νRΓ(xΓ)

)
Eδ
(
xΓ + νn(xΓ)

)
≈
∑
n,i

∂iνẼ
n(xΓ, 0)

i!
δnνi

(
I + νRΓ(xΓ)

)
Hδ
(
xΓ + νn(xΓ)

)
≈
∑
n,i

∂iνH̃
n(xΓ, 0)

i!
δnνi.

Finally, identifying each coefficient power of δ and ν of these last expansions and the
expansions in (9.1.11) yields the matching condition (9.1.10).
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9.2 Analysis of the formal equation (9.1.7)

Here we will formally show that (9.1.7) implies a relation between the quantities (Ên, Ên)
and the previous quantities (Ên−1, Ên−1) · · · (Ê0, Ê0) that we will impose for all n ∈ N
for further.

9.2.1 Curl of ψΓ−δ-periodic field Eδ.

Here, we seek an expression of rot(Eδ) where:

• For all x ∈ Ωδ: Eδ(x) =
(
I + νRΓ(xΓ)

)−1
Ê(xΓ; x̂, ν̂) where (xΓ, x̂, ν̂) are defined by

(9.1.4).

• Ê is an element of C∞
(
Γ;Hloc(rot; Ω̂)

)
. We recall that:

Hloc(rot; Ω̂) :=
{
H : Ω̂ 7→ C3, χu ∈ H(rot, Ω̂),∀χ ∈ D

(
Ω̂
)}

.

That will be the object of Proposition 9.2.3. To state and prove this result we need to
introduce the following notation:
Definition 9.2.1. Let u : Γ 7→ C3 be a vector field. We says that u is a tangential field
if for all xΓ we have u(xΓ) ∈ TxΓ

Γ where TxΓ
Γ is the tangent space of xΓ at the point xΓ.

We also need to introduce differential operators on the surface Γ and the infinite strip
Ŷ∞:

• The operator rotΓ is defined for all ∀(xΓ; x̂, ν̂) ∈ Γ× Ω̂ by:

rotΓ(Ê)(xΓ; x̂, ν̂) := ~rotΓ(Ê(xΓ; x̂, ν̂) · n(xΓ)) + rotΓ(ÊΓ)(xΓ; x̂, ν̂)n(xΓ),

with ÊΓ(xΓ; x̂, ν̂) := Ê(xΓ; x̂, ν̂) − Ê(xΓ; x̂, ν̂) · n(xΓ). The vectorial surface rota-
tional ~rotΓ and the scalar rotational rotΓ are surface tangential differential operators
that only concerns the variable xΓ. They are defined for tangential uΓ and scalar
uΓ fields defined on Γ by:

rotΓ(uΓ) := divΓ(n× uΓ) and ~rotΓ(uΓ) := n×∇Γ(uΓ).

We recall that the surface gradient ∇Γ is defined for u : Γ 7→ R and xΓ ∈ Γ by:

∇Γ u(xΓ) := ∇ũ(xΓ),

where ũ is an extension of u on Cδ such that for all (xΓ, ν) ∈ Γ×] − δ, 0[ we have
u(xΓ) = ũ

(
xΓ + n(xΓ)ν

)
. The surface divergence is the unique differential operator

such that for all tangential field uΓ : Γ 7→ R3 and v : Γ 7→ R:∫
Γ

divΓ(uΓ)vdxΓ = −
∫
uΓ · ∇Γ vdxΓ.

• The operator ˆrot is a three dimensional differential operator that only concerns the
variable x̂ and ν̂. This operator is defined for (xΓ, x̂, ν̂) ∈ Γ× Ω̂ by:
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– If xΓ ∈ ΓM then:

ˆrot(Ê)(xΓ; x̂, ν̂) := ΣΓ(xΓ) ·
(
rotx̂,ν̂

(
Σ†Γ(xΓ) · Ê(xΓ; x̂, ν̂)

))
, (9.2.12)

where we defined the matrix ΣΓ for xΓ ∈ ΓM by:

ΣΓ(xΓ) :=

√
det

(
DψΓ(xΓ)
n†(xΓ)

)(
DψΓ

−1(xΓ), n(xΓ)
)
. (9.2.13)

We emphasize that ΣΓ(xΓ) is well defined because we assumed that ψΓ is a
diffeomorphism at the point xΓ. We recall that for all smooth map ψ : Γ 7→ Cd

for some d ∈ N, Dψ(xΓ) : TxΓ
Γ 7→ Cd is the differential defined for v ∈ TxΓ

Γ
by:

Dψ(xΓ) := D
(
ψ ◦ φ

)
(0)
(

Dφ(0)
)−1

v,

in the right hand-side of this equality D is the classical differential(the matrix
containing the partial derivatives). Here φ : V (0) 7→ V (xΓ) is a local parame-
terization of Γ and V (0) ⊂ R2 and V (xΓ) ⊂ are respectively neighborhood of
0 and xΓ.

– If xΓ /∈ ΓM then:

ˆrot(Ê)(xΓ; x̂, ν̂) := n(xΓ)× ∂ν̂Ê(xΓ; x̂, ν̂). (9.2.14)

We need to recall a new notation:
Definition 9.2.2. Let û : Γ 7→ P (Ω̂) be a reference function. We say that û is patching-
ψΓ-admissible if for all xΓ /∈ ΓM the function û(xΓ; ·) only depends on the argument ν̂
i.e.

∀xΓ /∈ ΓM, ∃ûν̂(xΓ; ·) :]− 1, 0[7→ R st ∀(x̂, ν̂) ∈ R2×]− 1, 0[ û(xΓ; x̂, ν̂) = ûν̂(xΓ; ν̂).

Proposition 9.2.3. If Ê is patching admissible then for all x ∈ Cδ,η we have:

rot(Eδ)(x) = det
(
I+νRΓ(xΓ)

)−1(
I+νRΓ(xΓ)

)(
δ−1 ˆrot(Ê(xΓ; x̂, ν̂)+rotΓ(Ê)(xΓ; x̂, ν̂)

)
,

where (xΓ, x̂, ν̂) are defined by (9.1.4).
Before giving the proof of this result, we introduce the map L defined for x near enough the
boundary Γ by L(x) = (xΓ, ν) where (xΓ, ν) are the unique solution of x = xΓ + νn(xΓ).
Proof. We only give the proof for xΓ ∈ ΓM because the extension to xΓ ∈ ΓM is easy. We
will use the change variable formula for the curl operator in [58]. First we introduce the
transformation LψΓ

: Ωδ 7→ ψΓ(Γ)×]− δ, η[ defined for x ∈ Ωδ by:

LψΓ
(x) :=

(
ψΓ(xΓ), ν

)
with (xΓ, ν) := L(x),

and the vector field Rδ : ψΓ(Γ)×]− δ, η[ 7→ R3 by F δ := DL−†ψΓ
◦ L−1

ψΓ
·Eδ ◦ L−1

ψΓ
. Applying

the result [58, Corollary 3.58] with this last vector field and the transformation LψΓ
that

:
rot(Eδ) = det(DLψΓ

) DL−1
ψΓ
· rot

(
F δ
)
, (9.2.15)
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Moreover using the formula of differential of the map L yields:

DLψΓ
◦L−1 =

(
DψΓ

n†

)
·
(
I+νRΓ

)−1 and DL−†ψΓ
◦L−1 =

(
DψΓ

−†

n†

)(
I+νRΓ

)
. (9.2.16)

Therefore for all (xr, ν) ∈ ψΓ(Γ)×]− δ, η[ we have:

F δ(xr, ν) := F̂
(
xr;

xr
δ
,
ν

δ

)
,

where we defined F̂ : ψΓ(Γ)× Ŷ∞ 7→ R3 for (xr, x̂, ν̂) ∈ ψΓ(Γ)× Ŷ∞ 7→ R3 by:

F̂ (xr; x̂, ν̂) := DψΓ
−† (xΓ

)
·ÊΓ (xΓ; x̂, ν̂)+e3

(
Ê (xΓ; x̂, ν̂) , n(xΓ)

)
with xΓ := ψΓ

−1(xr).

Thus we have for all (xr, ν) ∈ ψΓ(Γ)×]− δ, η[ that:

rot(F δ)(xr, ν) = rotxr
(
F̂ (xr; x̂, ν̂)

)
+ δ−1rotx̂,ν̂

(
F̂ (xr; x̂, ν̂)

)
with (x̂, ν̂) :=

(
xr, ν

)
δ

.

On the one hand combining this last equation with the definition of the operator ˆrot:

rotx̂,ν̂
(
F̂ (xr; x̂, ν̂)

)
= rotx̂,ν̂

((
DψΓ(xΓ)−1, n

)† · Ê(xΓ; x̂, ν̂)
)

with xΓ := ψΓ
−1(xr)

yields:

det
(
ψΓ(xΓ)

)(
DψΓ(xΓ)−1, n

)
· rotx̂,ν̂

(
F̂ (xr; x̂, ν̂)

)
= ˆrot(Ê)(xΓ; x̂, ν̂). (9.2.17)

On the other hand since the map ψΓ : Γ 7→ R is locally a chart then we have the following
expression of the operator rotΓ and ~rotΓ for all tangential and scalar field ÊΓ and Êν(see
[60]): 

rotΓÊΓ = det

(
DψΓ(xΓ)
n†(xΓ)

)
rotR2(DψΓ

−† ÊΓ ◦ ψΓ
−1) ◦ ψΓ,

~rotΓÊν = det

(
DψΓ(xΓ)
n†(xΓ)

)(
DψΓ

−1, n(xΓ)
)
· ~rotR2(Êν ◦ ψΓ

−1) ◦ ψΓ,

which leads to det
(
ψΓ(xΓ)

)(
DψΓ(xΓ)−1, n

)
rotxr

(
F̂ (xr; x̂, ν̂)

)
= rotΓ(Ê)(xΓ; x̂, ν̂). Com-

bining this last equation with (9.2.16), (9.2.15) and (9.2.17) concludes the proof.

9.2.2 Equation of the near field

Thanks to Proposition 9.2.3, (9.1.7) formally becomes for all n ∈ N:
ˆrot
(
Ên
)

= fEn and ˆrot
(
Ĥn
)

= fHn , (9.2.18)

where we defined:

• The two following right hand-side:
fEn = −rotΓ

(
Ên−1

)
+ ikµ̂

n∑
i=1

Mi−1ν̂
i−1Ĥn−i,

fHn = −rotΓ

(
Ĥn−1

)
− ikε̂

n∑
i=1

Mi−1ν̂
i−1Ên−i.
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• The mapM : Γ× R 7→ L(R3) for (xΓ, ν) ∈ Γ× R by:

M(xΓ, ν) := det
(
I + νRΓ(xΓ)

)
(I + νRΓ(xΓ))−2 . (9.2.19)

• For all xΓ ∈ Γ and i ∈ N the quantityMi(xΓ) :=
∂iνM(xΓ, 0)

i!
.

In (9.2.18) we have taken the convention Ê−1(xΓ; x̂, ν̂) = Ĥ−1(xΓ; x̂, ν̂) = 0. We only give
the detail for the first line of this system because the computations for the second line
are similar. Indeed from (9.1.6), we have for x near the boundary:

Eδ(x) =
∑
n∈N

δn
(
I + νRΓ(xΓ)

)−1
Ên(xΓ; x̂, ν̂).

Therefore by applying Proposition 9.2.3, we formally have:

rot(Eδ)(x) =
∑
n∈N

δn det
(
I+νRΓ(xΓ)

)−1(
I+νRΓ(xΓ)

)(
δ−1 ˆrot(Ên)(xΓ; x̂, ν̂)+rotΓ(Ên)(xΓ; x̂, ν̂)

)
.

By using the definition (9.2.19) of the functionM and (9.1.7), this becomes

ikµ̂(xΓ; x̂, ν̂)Qδ(xΓ; x̂, ν̂) =
∑
n∈N

δn
(

ˆrot(Ên)(xΓ; x̂, ν̂) + rotΓ(Ên−1)(xΓ; x̂, ν̂)
)
, (9.2.20)

where we defined:

Qδ(xΓ; x̂, ν̂) :=M(xΓ, ν)
(
I + νRΓ(xΓ)

)−1
Hδ(x)

Moreover from the definition of the quantitiesMj(xΓ), we formally have:

M(xΓ, ν) =
∞∑
j=0

νjMj(xΓ) =
∞∑
j=0

δj ν̂jMj(xΓ).

Combining this with (9.1.6), yields:

Qδ(xΓ; x̂, ν̂) =
∑
n∈N

δnMj(xΓ)ν̂nĤn(xΓ; x̂, ν̂).

Combining this with (9.2.20) yields:∑
n∈N

δn
(

ˆrot(Ên)(xΓ; x̂, ν̂) + rotΓ(Ên−1)(xΓ; x̂, ν̂)
)

=
∑
n∈N

δnMj(xΓ)ν̂nĤn(xΓ; x̂, ν̂).

Identifying each power δn in this last equation conclude the proof of the first line of
(9.2.18).
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9.3 Explicit construction of a solution of the equation
of the ansatz

Here we will give a process of construction of the sequence (En, Hn, Ên, Ĥn)n∈N such that
this sequence satisfies (9.1.5), (9.1.8), (9.1.9), (9.1.10) and (9.2.18). Let us summarize
this section:

1. We construct operators SE and SH defined for one periodic function on x̂ function
(f, g) : Ω̂ 7→ C3 × R satisfying some compatibility conditions then SE(f, g) and
SH(f, g) are respectively solution of the two following problems:

• Find uE with uE × n = 0 on ∂Ω̂ such that:

ˆrot(uE) = f and d̂iv(εuE) = g in Ω̂. (9.3.21)

• Find uH with µuH · n = 0 on ∂Ω̂ such that:

ˆrot(uH) = f and d̂iv(µuH) = g in Ω̂, (9.3.22)

in order to solve the system (9.2.18). We recall that the operator d̂iv is given for
u : Γ× Ŷ∞ 7→ R3 and (xΓ, x̂, ν̂) ∈ Γ× Ω̂ by:

• If xΓ ∈ ΓM then:

d̂iv(u)(xΓ; x̂, ν̂) := divx̂,ν̂

(
DψΓ(xΓ)uΓ

n(xΓ) · u

)
(xΓ; x̂, ν̂). (9.3.23)

• If xΓ /∈ ΓM then:

d̂iv(u)(xΓ; x̂, ν̂) := ∂ν̂
(
n(xΓ) · u

)
(xΓ; x̂, ν̂). (9.3.24)

Here we can directly see that one of necessary compatibility conditions is
d̂iv(f) = 0. We will see after that a second necessary conditions are required.

2. We will give the values of the divergence d̂iv
(
ε̂Ên

)
and d̂iv

(
ε̂Ên

)
such that we have

the necessary conditions : d̂iv(fn+1
E ) = d̂iv(fn+1

H ) = 0 for the next step.

3. We will give the algorithm of construction of the sequence (En, Hn, Ên, Ĥn)n∈N.

4. We prove that this definition well satisfies the required equations (9.1.5), (9.1.8),
(9.1.9), (9.1.10) and (9.2.18). Moreover we will summarize in Lemma 9.3.11 the
required property to prove the error estimate.
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9.3.1 Construction of the solver operator SE and SH
9.3.1.1 Kernel of the electrostatic problem

We need to introduce the space:

H
(
Ŷ∞
)

:=

{
u ∈ H1

loc(Ω̂), ‖u‖2

H
(
Ŷ∞

):=∫
Ŷ∞

|∇u|2dx̂dν̂ +

∣∣∣∣∫
Σ

udx̂

∣∣∣∣2 <∞ and u is one periodic in x̂

}
,

where Σ :=]0, 1[2×{0}. We introduce the following subspace:

H0

(
Ŷ∞
)

:=
{
u ∈ H

(
Ŷ∞
)
, u = 0 on ∂Ω̂

}
,

and the norm of this space is defined for u ∈ H0

(
Ŷ∞
)
by ‖u‖

H0

(
Ŷ∞

) := ‖∇u‖L2(Ŷ∞)3 . We

need to introduce the operator ∇̂ defined for u : Γ× Ω̂ 7→ R and (xΓ, x̂, ν̂) ∈ Γ× Ω by:

∇̂u(xΓ; x̂, ν̂) := DψΓ
†∇x̂,ν̂u(xΓ; x̂, ν̂) + n(xΓ)∂ν̂u(xΓ; x̂, ν̂) if xΓ ∈ ΓM,

and:
∇̂u(xΓ; x̂, ν̂) := n(xΓ)∂ν̂u(xΓ; x̂, ν̂) else.

Hence we now can introduce for xΓ ∈ Γ the function wε(xΓ; ·) ∈ H0

(
Ŷ∞
)
which is the

solution of what we call the first cell problem: Find wε(xΓ; ·) ∈ H0

(
Ŷ∞
)
such that for all

v ∈ H0

(
Ŷ∞
)
we have:∫

Ŷ∞

ε̂(xΓ; x̂, ν̂) ∇̂wε(xΓ; x̂, ν̂) · ∇̂ v(xΓ; x̂, ν̂)dx̂dν̂ =

∫
Σ

v(xΓ; x̂, 0)dx̂. (9.3.25)

Thus we now can define the vector NE : Γ 7→ L2
loc(Ω̂) defined for (xΓ, x̂, ν̂) ∈ Γ× Ω̂ by:

NE(xΓ; x̂, ν̂) := n(xΓ)Iν̂>0(ν̂) + ∇̂wε(xΓ; x̂, ν̂). (9.3.26)

Proposition 9.3.1. The vector NE is an element of the kernel of the electrostatic prob-
lem in the sense that we have:

ˆrot(NE) = 0 and d̂iv(εNE) = 0, (9.3.27)

with the boundary condition NE × n = 0 on Γ × Ω̂. Moreover we have NE − n ∈
C∞

(
Γ;L2(Ŷ∞)

)3

.

Proof. Proof of (9.3.27). First prove that ˆrot(NE) = 0 and NE × n = 0 on Γ × ∂Ω̂.
Indeed this last vector can be rewritten in the following form:

NE = ∇̂
(
ν̂Iν̂>0 + wε

)
,

and using that ˆrot · ∇̂ = 0 concludes the proof of ˆrot(NE) = 0. Moreover the function
ν̂Iν̂>0 + wε vanishes on Γ× ∂Ω̂ which leads to ∇̂(Iν̂>0 + wε)× n = 0 on Γ× ∂Ω̂.
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Let xΓ ∈ Γ. Let us show that d̂iv
(
NEε(xΓ; ·)

)
= 0 in Ω̂. Indeed, for all φ ∈ D(Ŷ∞),

we have from (9.3.25) that:

〈d̂iv
(
εNE(xΓ; ·)

)
, φ〉D†(Ŷ∞)−D(Ŷ∞) =

∫
Ŷ∞

(
εNE · ∇̂φ

)
(xΓ; x̂, ν̂)dx̂dν̂,

=

∫
Ŷ∞

ε ∇̂wε · ∇̂φ(xΓ; x̂, ν̂)dx̂dν̂ +

∫
Ŷ+

∂ν̂φ(x̂, ν̂)dx̂dν̂,

=
((((

((((
(((

((((
((∫

Ŷ∞

(
ε ∇̂wε · ∇̂φ

)
(xΓ; x̂, ν̂)dx̂dν̂ −

��
�
��

��∫
Σ

φdx̂(x̂, 0) = 0.

Therefore we succeed in proving that d̂iv
(
NEε(xΓ; ·)

)
= 0 in Ŷ∞. The extension to Ω̂

is a consequence of the periodicity on x̂ of the map NE(xΓ; ·) : The periodicity of this
vector implies that the normal derivative are continuous on each ]0, 1[×{m}×] − 1,∞[

and {m}×]0, 1[×]− 1,∞[ for all m ∈ Z and d̂iv
(
NEε(xΓ; ·)

)
= 0 in Ŷ∞ + l for all l ∈ Z2.

Proof of NE − n ∈ C∞
(

Γ;L2(Ŷ∞)
)
. We have NE − n = ∇̂wε. Moreover, thanks

to (8.2.4) and (8.2.5) we can prove by using similar argument as the scalar case that
wε ∈ C∞

(
Γ;H0

(
Ŷ∞
))

. We can conclude from the definition of the space H0

(
Ŷ∞
)
.

We have a reciprocal result:
Proposition 9.3.2. Let u ∈ C∞

(
Γ;L2

loc(Ω̂)
)
one periodic on the variable x̂ and patching

admissible satisfying

ˆrot(u) = 0 and d̂iv(εu) = 0 and u× n = 0 on Γ× ∂Ω̂,

then there exists U ∈ C∞(Γ) such that u = U · NE.
Proof. We can prove by using a method of decomposition on the basis

(
(x̂, ν̂) 7→ exp(i2πx̂·

l)
)
l∈Z2 existence of a patching admissible function φ ∈ C∞(Γ;H0

(
Ŷ∞
)
) and U ∈ C∞(Γ)

such that we have: u = ∇̂φ + Un. This last identity can by rewritten in the following
form:

u = ∇̂
(
φ+ (ν̂ + 1)Iν̂<0 + Iν̂>0︸ ︷︷ ︸

φ̃

)
+ UIν̂>0n. (9.3.28)

Moreover we can easily prove that:

φ̃ ∈ C∞
(

Γ;H0

(
Ŷ∞
))
. (9.3.29)

Now we use d̂iv(ε̂u) = 0. Let ψ ∈ H0

(
Ŷ∞
)
and xΓ ∈ Γ. Thanks to the periodicity of u

and (9.3.29) we can apply the Green formula:

0 =

∫
Ŷ∞̂

div(ε̂u)(xΓ; x̂, ν̂)ψ(x̂, ν̂)dx̂dν̂ = −
∫
Ŷ∞

ε̂(xΓ; x̂, ν̂)u(xΓ; x̂, ν̂) · ∇̂ψ(xΓ; x̂, ν̂)dx̂dν̂,

= −
∫
Ŷ∞

ε̂(xΓ; x̂, ν̂)u(xΓ; x̂, ν̂) · ∇̂ψ(xΓ; x̂, ν̂)dx̂dν̂ − U(xΓ)

∫
Ŷ∞

∂ν̂ψdx̂dν̂.

Combining this with (9.3.28), yields:

∀ψ ∈ H0

(
Ŷ∞
)
,

∫
Ŷ∞

ε̂(xΓ; x̂, ν̂) ∇̂ φ̃(xΓ; x̂, ν̂) · ∇̂ψ(xΓ; x̂, ν̂)dx̂dν̂ = U(xΓ)

∫
Σ

ψ(x̂, ν̂)dx̂.
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Thanks to the uniqueness of the solution of (9.3.25) and the linearity of this problem, we
directly deduce that φ̃(xΓ; x̂, ν̂) = U(xΓ)wε(xΓ; x̂, ν̂). Combining this last identity with
(9.3.28) conclude the proof of our proposition.

9.3.1.2 Kernel of the magneto-static problem

We introduce for xΓ ∈ ΓM and i ∈ {1, 2} the function wi(xΓ; x̂, ν̂) ∈ H
(
Ŷ∞
)
which is the

unique of: Find wi(xΓ; x̂, ν̂) ∈ H
(
Ŷ∞
)
such that for all v ∈ H

(
Ŷ∞
)
we have:∫

Ŷ∞

µ̂(xΓ; x̂, ν̂) ∇̂wi(xΓ; x̂, ν̂) · ∇̂ v(xΓ; x̂, ν̂)dx̂dν̂ = −
∫
Ŷ∞

µ̂(xΓ; x̂, ν̂)∂x̂iv(x̂, ν̂)dx̂dν̂,

(9.3.30)
and to have uniqueness we impose that:∫

Σ

wi(xΓ)dx̂ = 0.

We introduce the map NH : Γ × Ŷ∞ 7→ L(R3). This matrix is defined for (xΓ; x̂, ν̂) ∈
Γ× Ŷ∞ by:

• If xΓ /∈ ΓM then
NH(xΓ; x̂, ν̂) := I. (9.3.31)

• If xΓ ∈ ΓM then for all i ∈ {1, 2} :

NH(xΓ; x̂, ν̂)ei(xΓ) := ei(xΓ) + ∇̂wi and NH(xΓ; x̂, ν̂)n(xΓ) = 0, (9.3.32)

where
(
ei(xΓ)

)
i=1,2

is defined for i ∈ {1, 2} by:

ei(xΓ) := DψΓ(xΓ)−1êi, (9.3.33)

and (êi)i is the canonical basis of R2.

Proposition 9.3.3. For all vΓ ∈ C∞ (Γ;R3) tangential field, the vector NHvΓ is well an
element of the kernel of the magneto-static problem in the sense that we have:

ˆrot
(
NHvΓ

)
= 0 and d̂iv

(
µ(NHvΓ)

)
= 0,

with the boundary condition µ̂(NHvΓ) · n = 0 on Γ× ∂Ω̂. Moreover we have:

NHvΓ − vΓ ∈ C∞
(

Γ;L2(Ŷ∞)
)
. (9.3.34)

Proof. Let vΓ ∈ C∞ (Γ;R3) be tangential field. The result is trivial for xΓ /∈ ΓM. Let
xΓ ∈ Γ. The property ˆrot(NHvΓ) = 0 is a direct consequence of the definition (9.3.31),
(9.3.32) and ˆrot ∇̂ = 0.

Now let us prove that we have d̂iv
(
µ̂(NHvΓ)

)
(xΓ; ·) = 0. Let ψ ∈ D(Ŷ∞) then for all

i ∈ {1, 2} we have:

〈d̂iv
(
µ̂(NHei)

)
(xΓ; x̂, ν̂), ψ〉D(Ŷ∞)†−D(Ŷ∞) = −

∫
Ŷ∞

(
µ̂(NHei) · ∇̂ψ

)
(xΓ; x̂, ν̂)dx̂dν̂,

= −
∫
Ŷ∞

(
µ̂
(
∇̂wi + ei

)
· ∇̂ψ

)
(xΓ; x̂, ν̂)dx̂dν̂.
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Combining this with (9.3.33) yields:

〈d̂iv
(
µ̂(NHei)

)
(xΓ; x̂, ν̂), ψ〉D(Ŷ∞)†−D(Ŷ∞) = −

∫
Ŷ∞

(
µ̂ ∇̂wi · ∇̂ψ

)
(xΓ; x̂, ν̂)dx̂dν̂,

+

∫
Ŷ∞

µ̂(xΓ; x̂, ν̂)∂x̂iψ(x̂, ν̂)dx̂dν̂.

Thanks to (9.3.30) yields for all i ∈ {1, 2} that d̂iv(µ̂NHei)(xΓ; ·) = 0. Moreover vΓ(xΓ)

is a linear combination of ei(xΓ) which conclude the proof of d̂iv(µ̂NHvΓ)(xΓ; ·) = 0 in
Ŷ∞. The argument for the extension to Ω̂ are the same as the one of Proposition 9.3.1.

Now let us prove that µ̂(xΓ; x̂, ν̂)u(xΓ; x̂, ν̂) ·n(xΓ) = 0 on Γ×Ω̂. Indeed from (9.3.30),
we can prove that ∇̂wi(xΓ; x̂, ν̂) · n(xΓ) = 0. Moreover since vΓ is a tangential field, we
have vΓ(xΓ) ·n(xΓ) = 0. Combining these two properties with (9.3.32) conclude the proof.

The proof of (9.3.34) takes the same argument than the one of Proposition 9.3.1.
We have a reciprocal result:
Proposition 9.3.4. Let u ∈ C∞

(
Γ;L2

loc(Ŷ∞)
)
patching admissible satisfying

ˆrot(u) = 0 and d̂iv(µ̂u) = 0 and µ̂u · n = 0 on Γ× ∂Ω̂,

then there exists a tangential field UΓ ∈ C∞ (Γ;R3) such that u = NHUΓ.

Proof. From ˆrot(u) = 0 and d̂iv(µ̂u) = 0, we can prove by using technique of de-
composition on the function

(
(x̂, ν̂) 7→ exp(i2πx̂ · l)

)
l∈Z2 the existence of a function

φ ∈ C∞(Γ;H
(
Ŷ∞
)
) patching admissible, a tangent vector field vΓ ∈ C∞ (Γ;R3)

u = ∇̂φ+ vΓ. (9.3.35)

Thus it remains to prove that:

∇̂φ(xΓ; x̂, ν̂) =
∑
i

∇̂ viΓ(xΓ)wi(xΓ; x̂, ν̂) if xΓ ∈ ΓM and ∇̂φ(xΓ; x̂, ν̂) = 0 else .

(9.3.36)
Here, if xΓ ∈ ΓM,

(
viΓ(xΓ)

)
i
are the unique scalar such that: vΓ(xΓ) =

∑
i

viΓ(xΓ)ei(xΓ).

Indeed, let ψ ∈ H
(
Ŷ∞
)
. Thanks to the condition d̂iv(µ̂u)(xΓ; ·) = 0, µ̂(xΓ; ·)u(xΓ; ·) ·

n(xΓ) = 0 and the periodicity property, we can apply Green formula:

0 =

∫
Ŷ∞

(
µ̂ ∇̂φ, ∇̂ψ

)
(xΓ; x̂, ν̂)dx̂dν̂ +

∑
i

viΓ(xΓ)

∫
Ŷ∞

µ̂(xΓ; x̂, ν̂)∂x̂iφ(x̂, ν̂)dx̂dν̂.

If xΓ /∈ ΓM then this becomes:

∀ψ, H
(
Ŷ∞
)
, 0 =

∫
Ŷ∞

(
µ̂ ∇̂φ, ∇̂ψ

)
(xΓ; x̂, ν̂)dx̂dν̂.

Hence ∇̂φ = 0. If xΓ ∈ ΓM then we can use the use the uniqueness of the solution and
the linearity of the problem (9.3.30). Therefore we conclude the proof of (9.3.36). Thus
the proof is concluded.
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9.3.1.3 Construction of a right inverse SE and SH when the right hand-side
satisfies the P∞ property

Let f : Γ×Ω̂ 7→ R3 and g : Γ×Ω̂ 7→ R be two periodic in the variable x̂. Here we construct
two operator SE and SH such that under condition on f and g that uE := SE(f, g) and
uH := SH(f, g) are respectively solution of (9.3.21) and (9.3.22). We first succeed to
construct such operator when our right hand-side satisfies the P∞:
Definition 9.3.5. Let u : Γ 7→ L2

loc(Ω̂) one periodic on the variable x̂. We say that u
satisfies the P∞ property if there exists d ∈ N, a sequence (ul)l∈Z2\{0} ∈ C∞

(
Γ;Cd[ν̂]

)
such that:

∀(xΓ; x̂, ν̂) ∈ Γ× Ŷ+, u(xΓ; x̂, ν̂) =
∑

l∈Z2\{0}
ul(xΓ; ν̂)φl(xΓ; x̂, ν̂),

where we defined the sequence of functions (φl)l∈Z2\{0} for (xΓ, x̂, ν̂) ∈ Γ× Ŷ+ by:

φl(xΓ, x̂, ν̂) := ei2πlx̂e−2πλl(xΓ)ν̂ with λl(xΓ) := |DψΓ(xΓ)l|.

Moreover, the sequence of polynomial are required to satisfies:

∀q ∈ N,
∑

l∈Z2\{0}
|l|q‖ul‖Hm(Γ;Cd[ν̂]) <∞.

We introduce for convenience the following vectorial space of function defined on Γ× Ŷ∞:

F(Γ×Ŷ∞) :=
{
u ∈ C∞

(
Γ;L2(Ŷ∞)

)
, u is patching admissible and satisfies the P∞ property

}
.

We first assume here that:

• The right hand-side of (9.3.21) belongs to:

FE(Γ× Ŷ∞) :=
{
u ∈ F(Γ× Ŷ∞)3, d̂iv(u) = 0 and u · n = 0 on Γ× ∂Ω̂

}
.

• The right hand-side of (9.3.22) belongs to:

FH(Γ× Ŷ∞) :=
{
u ∈ F(Γ× Ŷ∞)3, d̂iv(u) = 0

}
.

Indeed, we have the following result:
Proposition 9.3.6. There exist operators SE and SH defined for functions

(fE, fH , g) ∈ FE(Γ× Ŷ∞)×FH(Γ× Ŷ∞)×F(Γ× Ŷ∞),

such that:

• uE := SE(fE, g) is a solution of (9.3.21). The map defined for (xΓ, x̂, ν̂) ∈ Γ × Ω̂
by:

uE(xΓ; x̂, ν̂)−
∫
Ŷ−

f(xΓ; x̂, ν̂)× n(xΓ)dx̂dν̂,

belongs to the space F(Γ× Ŷ∞)3.
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• uH := SH(f, g) is a solution of (9.3.22). The map defined for (xΓ, x̂, ν̂) ∈ Γ× Ω̂ by:

uH(xΓ; x̂, ν̂)−
(∫

Ŷ−

g(xΓ; x̂, ν̂)dx̂dν̂

)
n(xΓ),

belongs to the space F(Γ× Ŷ∞).

We also need an intermediate result. It is easy to adapt the proof of [57, Theorem 3.20]
to get the following generalization:
Proposition 9.3.7. Let m ≤ mΓ and two Hilbert spaces E,F . Then:

∀(A, u) ∈ CmΓ
(
Γ;L(E,F )

)
×Hm

(
Γ;E

)
, Au ∈ Hm(Γ, F ),

where Au : Γ 7→ F is the map defined for xΓ by A(xΓ)u(xΓ). Moreover there exists
Cm > 0 independent from A and K such that:

‖Au‖Hm(Γ,F ) ≤ Cm‖A‖
CmΓ

(
Γ;L(E,F )

) · ‖u‖Hm(Γ,E).

Proof of Proposition 9.3.6. We only give the proof for the operator SE. Let xΓ ∈ Γ.
Assume first that xΓ /∈ ΓM. Since f is patching admissible then we can construct uE(xΓ; ·)
that only depends on ν̂. In this case our equations are equivalent to:

n(xΓ)× ∂ν̂uE(xΓ; ·) = f(xΓ; ·) and ∂ν̂
(
ε̂(xΓ; ·)uE · n(xΓ)

)
= g(xΓ; ·).

We can easily see that this equation can be solved because we assumed that f(xΓ; ·) ·
n(xΓ) = 0. The solution is given by:

uE(xΓ; x̂, ν̂) :=

∫ ν̂

ν̂′=−1

f(xΓ; x̂, ν̂ ′)× n(xΓ)dν̂ ′ + n(xΓ)

∫ ν̂

ν̂′=0

ε̂−1(xΓ; x̂, ν̂ ′)g(xΓ; x̂, ν̂ ′)dν̂ ′.

This last function well satisfies the boundary condition uE(xΓ; ·)× n(xΓ) = 0 on ∂Ω̂. We
have:

uE(xΓ; x̂, ν̂)−
∫ 0

ν̂′=−1

f(xΓ; x̂, ν̂ ′)× n(xΓ)dν̂ ′ = R(xΓ; x̂, ν̂),

where:

R(xΓ; x̂, ν̂) :=

∫ ν̂

ν̂′=0

f(xΓ; x̂, ν̂ ′)× n(xΓ)dν̂ ′ + n(xΓ)

∫ ν̂

ν̂′=0

ε̂−1(xΓ; x̂, ν̂ ′)g(xΓ; x̂, ν̂ ′)dν̂ ′.

Since f and g satisfy the P∞ then f(xΓ; ·) and g(xΓ; ·) vanishes on Ŷ+. Thus the same
holds for R(xΓ; ·). Thanks to the assumption f ∈ C∞

(
Γ \ ΓM;L2(Ŷ∞)

)3, g ∈ C∞
(
Γ \

ΓM;L2(Ŷ∞)
)
, (8.2.4) and (8.2.5), we deduce that R ∈ C∞

(
Γ \ ΓM;L2(Ŷ∞)

)3.
Now we investigate the case of xΓ ∈ ΓM. Thanks to our assumption on ψΓ there exists

an open subset ΓM
? of Γ such that ΓM ⊂ ΓM

?

(
ΣΓ,Σ

−1
Γ

)
∈ C∞(ΓM

?;L(R)3
)
,
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where we recall that ΣΓ is defined by (9.2.13). Thus we can introduce the following
auxiliary functions:

uE := Σ†ΓuE, f := Σ−1
Γ f and ε̂ := det

(
DψΓ

n†

)
Σ−†Γ Σ−1

Γ ε̂.

Thanks to (9.3.23), (9.3.24), (9.2.12) and (9.2.14) our equations are equivalent to: Find
uE one periodic on x̂ such that:

rot
(
uE(xΓ; ·)

)
= f, div

(
ε(xΓ; ·)uE(xΓ; ·)

)
= g(xΓ; ·) and uE(xΓ; ·)× e3 = 0 on ∂Ω̂,

where e3 :=
(
0 0 1

)†. Our new right hand-side f(xΓ; ·) is well one periodic on x̂ satisfies
the P∞ property and:

div
(
f(xΓ; ·)

)
= 0 and f(xΓ; ·) · e3 on ∂Ω̂.

Thus by inspiring from the planar 3D Maxwell case (see [35]), we can build a solution u?E
of:

rot
(
uE

?(xΓ; ·)
)

= f, div
(
uE

?(xΓ; ·)
)

= 0 and uE
?(xΓ; ·)× e3 = 0 on ∂Ω̂, (9.3.37)

and the map R : ΓM
?×Ω̂ 7→ R3 defined for xΓ ∈ ΓM

? by:

R(xΓ; ·) := uE
?(xΓ; ·)−

∫
Ŷ−

f(xΓ; x̂, ν̂)dx̂dν̂ × e3,

satisfies the P∞ property and R ∈ C∞
(

ΓM
?;L2(Ŷ∞)

)
. However the field uE does not yet

satisfy div
(
uE

?
)

= g. That is why we introduce the function φ(xΓ; ·) which is the unique
solution of: Find φ(xΓ; ·) ∈ H0

(
Ŷ∞
)
such that:

div
(
ε̂(xΓ; ·)∇φ(xΓ; ·)

)
= −div

(
ε̂(xΓ; ·)u?E(xΓ; ·)

)
+ g(xΓ; ·). (9.3.38)

This problem is well posed because it is equivalent to the following variational formulation:
Find φ(xΓ; ·) ∈ H0

(
Ŷ∞
)
such that:

A(xΓ)φ(xΓ; x̂, ν̂) = L(xΓ) in H0

(
Ŷ∞
)†
, (9.3.39)

where A(xΓ) and L(xΓ) are defined for (u, v) ∈ H0

(
Ŷ∞
)2 by:

〈A(xΓ)φ, ψ〉
H0

(
Ŷ∞

)†
−H0

(
Ŷ∞

) :=

∫
Ŷ∞

(
ε̂(xΓ; x̂, ν̂)∇φ(x̂, ν̂),∇ψ(x̂, ν̂)

)
dx̂dν̂

and

〈L(xΓ), ψ〉
H0

(
Ŷ∞

)†
−H0

(
Ŷ∞

) := −
∫
Ŷ∞

R(xΓ; x̂, ν̂) · ∇ψ(x̂, ν̂)dx̂dν̂ +

∫
Ŷ∞

g(xΓ; x̂, ν̂)φ(x̂, ν̂)dx̂dν̂.

The equation (9.3.39) is well posed because thanks to (8.2.4) we have that A(xΓ) :

H0

(
Ŷ∞
)
7→ H0

(
Ŷ∞
)† is invertible. Moreover, since g satisfies the P∞, the function
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g(xΓ; ·) decrease enough to have ν̂g(xΓ; ·) ∈ L2(Ŷ∞). We can prove that it is a sufficient
condition to have g(xΓ; ·) ∈ H0

(
Ŷ∞
)†. Moreover we have:

g ∈ C∞
(

ΓM
?;H0

(
Ŷ∞
)†)

. (9.3.40)

Combining this with R(xΓ; ·) ∈ L2(Ŷ∞) yields L(xΓ) ∈ H0

(
Ŷ∞
)†. Therefore (9.3.39) is

well posed. We now define ũE for xΓ ∈ ΓM
? by:

uE(xΓ; ·) := u?E(xΓ; ·) +∇φ(xΓ; ·). (9.3.41)

Indeed, thanks to rot∇ = 0 and (9.3.37) we have:

rotuE(xΓ; ·) = f(xΓ; ·).

Combining (9.3.38) and φ(xΓ; ·) = 0 on ∂Ω̂ with (9.3.37) yields:

div
(
uE(xΓ; ·)

)
= g̃(xΓ; ·) and uE(xΓ; ·)× e3 = 0 on ∂Ω̂.

Now let us prove that the map R : Γ× Ω̂ defined for xΓ ∈ ΓM
? by

R(xΓ; ·) := uE(xΓ; ·)−
∫
Ŷ−

f(xΓ; x̂, ν̂)dx̂dν̂ × e3,

belongs to C∞
(

ΓM
?;L2(Ŷ∞)3

)
and satisfies the P∞ property. Indeed we first prove that:

φ ∈ C∞
(

ΓM
?;H0

(
Ŷ∞
))
. (9.3.42)

Indeed, thanks to (8.2.4) we have:

sup
xΓ∈ΓM

?

∥∥A−1(xΓ)
∥∥
L
(
H0

(
Ŷ∞

)†
,H0

(
Ŷ∞

)) <∞. (9.3.43)

Thanks to (8.2.5) we have A ∈ C∞
(

ΓM
?;L
(
H0

(
Ŷ∞
)
,H0

(
Ŷ∞
)†)). Combining this with

(9.3.43) yields A−1 ∈ C∞
(

ΓM
?;L
(
H0

(
Ŷ∞
)†
,H0

(
Ŷ∞
)))

. Moreover thanks to:

R ∈ C∞
(

ΓM
?;L2(Ŷ∞)3

)
,

and (9.3.40) we have L ∈ C∞
(

ΓM
?;H0

(
Ŷ∞
)†). Therefore according to Proposition 9.3.7,

we have A−1L ∈ C∞
(

ΓM
?;H0

(
Ŷ∞
))

, which conclude the proof of (9.3.42).

Combining (9.3.42) with R ∈ C∞
(

ΓM
?;L2(Ŷ∞)3

)
conclude the proof of:

R ∈ C∞
(

ΓM
?;L2(Ŷ∞)3

)
. (9.3.44)

Now let us prove that this last quantity satisfies the P∞ property. Indeed, g and u?E
both satisfy and the P∞ property. We refer the reader to the scalar case to get that it
is a sufficient condition to have that ∇φ satisfies the P∞ property. Combining this with
(9.3.41) and that E satisfies the P∞ property conclude the proof.
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9.3.1.4 Extension of SE and SH in the polynomial space

Although Proposition 9.3.6 only yields the existence of suitable operators SE and SH ,
we do not need for the sequel to have an explicit expression of these operators. Indeed,
for the sequel, we will only use that these operator can solve (9.3.21), (9.3.22) and more
precisely all the stated property in (9.3.6) to construct our ansatz. Thus hereafter SE
and SH denote two operators satisfying the property appearing in Proposition 9.3.6.
Proposition 9.3.8. Let (lEf , l

H
f , lg) ∈ FE(Γ × Ŷ∞) × FH(Γ × Ŷ∞) × F(Γ × Ŷ∞), d ∈ N

and (pf , pg) ∈ C∞ (Γ;Cd[ν̂])3 × C∞ (Γ;Cd[ν̂]) satisfying:

∀xΓ ∈ Γ, pf (xΓ; ·) · n(xΓ) = 0,

Define fE := lEf + pf , fH := lHf + pf and g = lg + pg. There exist extension of SE and SH
for (fE, g) and (fH , g) such that:

• The function uE := SE(fE, g) is a solution of (9.3.22). There exist:

(pE, lE) ∈ F(Γ× Ŷ∞)× C∞ (Γ;Cd+1[ν̂]) ,

such that uE = pE + lE. For all xΓ ∈ Γ, pE(xΓ; ·) is the unique solution of:

∂ν̂pE(xΓ; ·) = n(xΓ)× pf (xΓ; ·) + pg(xΓ; ·)n(xΓ), (9.3.45)

with the initial condition:

pE(xΓ; 0) = n(xΓ)×
∫
Ŷ−

f(xΓ; x̂, ν̂)dx̂dν̂. (9.3.46)

• The function uH := SH(fH , g) is a solution of (9.3.22). There exist:

(pH , lH) ∈ F(Γ× Ŷ∞)× C∞ (Γ;Cd+1[ν̂]) ,

such that uH = pH + lH . For all xΓ ∈ Γ, pH(xΓ; ·) is the unique solution of:

∂ν̂pH(xΓ; ·) = n(xΓ)× pf (xΓ; ·) + pg(xΓ; ·)n(xΓ), (9.3.47)

with the initial condition:

pH(xΓ; 0) = n(xΓ)

∫
Ŷ−

g(xΓ; x̂, ν̂)dx̂dν̂. (9.3.48)

Proof. We emphasize that:

FE(Γ× Ŷ∞) ∩ C∞ (Γ;Cd+1[ν̂])3 = FH(Γ× Ŷ∞) ∩ C∞ (Γ;Cd+1[ν̂])3 = {0},

and
F(Γ× Ŷ∞) ∩ C∞ (Γ;Cd+1[ν̂]) = {0}.

Therefore it remains to give a suitable definition of our operators for (f, g) ∈ C∞ (Γ;Cd[ν̂])3×
C∞ (Γ;Cd[ν̂]). We have:

Iν̂<0f ∈ FE(Γ× Ŷ∞) ∩ FH(Γ× Ŷ∞) and Iν̂<0g ∈ F(Γ× Ŷ∞).
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Therefore thanks to Proposition 9.3.6, we have:

ˆrot(u1
E) = ˆrot(u1

H) = fIν̂<0, d̂iv
(
ε̂u1

E

)
= d̂iv

(
µ̂u1

H

)
= gIν̂<0, (9.3.49)

and for all xΓ ∈ Γ the following boundary conditions:

u1
E(xΓ; ·)× n(xΓ) = 0 and u1

H(xΓ; ·) · n(xΓ) = 0 on ∂Ω̂, (9.3.50)

where we defined u1
E := SE(fIν̂<0g) and u1

H := SE(fIν̂<0g). Moreover the maps RE and
RH defined for xΓ ∈ Γ by:

RE(xΓ; ·) := u1
E(xΓ; ·)−

∫
Ŷ−

f(xΓ; x̂, ν̂)× n(xΓ)dx̂dν̂,

RH(xΓ; ·) := u1
H(xΓ; ·)−

(∫
Ŷ−

g(xΓ; x̂, ν̂)dx̂dν̂

)
n(xΓ),

satisfy: (
RE(xΓ; ·), RH(xΓ; ·)

)
∈ F(Γ× Ŷ∞)×F(Γ× Ŷ∞) (9.3.51)

Define p : Γ 7→ Cd+1[ν̂] for xΓ ∈ Γ by the unique solution of:

∂ν̂p(xΓ; ·) = n(xΓ)× f(xΓ; ·) + g(xΓ; ·)n(xΓ) and p(xΓ; 0) = 0. (9.3.52)

Thanks to this we have:

ˆrot
(
Iν̂>0p

)
= Iν̂>0f, d̂iv

(
ε̂Iν̂>0p

)
= Iν̂>0g and d̂iv

(
µ̂Iν̂>0p

)
= Iν̂>0g, (9.3.53)

and it is trivial that Iν̂>0p(xΓ; ·) × n(xΓ) = 0 and µ̂(xΓ; ·)Iν̂>0p(xΓ; ·) · n(xΓ) = 0 on ∂Ω̂.
Combining this with (9.3.49) and (9.3.50) yields:

ˆrot(uE) = ˆrot(uH) = f, d̂iv
(
ε̂u1

E

)
= d̂iv

(
µ̂u1

H

)
= g, (9.3.54)

and for all xΓ ∈ Γ the following boundary conditions:

uE(xΓ; ·)× n(xΓ) = 0 and uH(xΓ; ·) · n(xΓ) = 0 on ∂Ω̂, (9.3.55)

where we defined uE := u1
E + Iν̂>0p and uH := u1

H + Iν̂>0p. Therefore defining SE(f, g) :=
uE and SH(f, g) := uH is a suitable choice.

Therefore it remains to prove that:(
uE − pE, uH − pH

)
∈ F(Γ× Ŷ∞)×F(Γ× Ŷ∞). (9.3.56)

Indeed, combining (9.3.45), (9.3.47), (9.3.46) and (9.3.48) with (9.3.52) yields for all
xΓ ∈ Γ that: 

pE(xΓ; ·) = p(xΓ; ·) +

∫
Ŷ−

f(xΓ; x̂, ν̂)× n(xΓ)dx̂dν̂,

pH(xΓ; ·) = p(xΓ; ·) +

∫
Ŷ−

g(xΓ; x̂, ν̂)n(xΓ)dx̂dν̂.

(9.3.57)

Therefore we have:

uE − pE = RE − Iν̂<0p and uH − pH = RH − Iν̂<0p.

Combining this with (9.3.51) conclude the proof of (9.3.56).
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We later see that the following result is required:
Proposition 9.3.9. For all sΓ ∈ C∞ (Γ;R) and C∞ (Γ;R3) tangential field(

NEsΓ − sΓn,NHvΓ − vΓ

)
∈ F(Γ× Ŷ∞)3 ×F(Γ× Ŷ∞)3.

Proof. We have:
NEsΓ − sΓn = ∇̂wε and viΓ ∇̂wi,

where (viΓ)i are C∞ scalar field such that we have on ΓM : vΓ = viΓei. Therefore it remains
to prove that ∇̂wε and (∇̂wi)i satisfy the P∞ property. Indeed on the one hand we have
seen that wε ∈ C∞

(
Γ;H0

(
Ŷ∞
))

and wi ∈ C∞
(

Γ;H
(
Ŷ∞
))

for all i ∈ {1, 2}. On the
other hand thanks to (9.3.25) and (9.3.30) we have for all (xΓ, x̂, ν̂) ∈ Γ×R2 ×R∗+ that:

∀i ∈ {1, 2}, d̂iv
(
∇̂wi

)
(xΓ; x̂, ν̂) = d̂iv

(
∇̂wε

)
(xΓ; x̂, ν̂) = 0,

and these function are one periodic on the variable x̂.

9.3.2 Values of the divergence d̂iv
(
ε̂Ên

)
and d̂iv

(
µ̂Ĥn

)
Thanks to (9.2.18) we know by induction the values of ˆrotÊn and ˆrotĤn with the knowl-
edge of Ên−1 . . . and Ĥn−1 . . . . According to Proposition 9.3.8, we need to impose a
value for d̂iv(ε̂Ên) and d̂iv(µ̂Ĥn).

To give these values we need to introduce the surface divergence operator divΓ defined
for u ∈ C∞(Γ;R3) and xΓ ∈ Γ by:

divΓ u(xΓ) :=
1√

det(Dφ†x(0) ·Dφx(0))
div

(√
det(Dφ†x ·Dφx) Dφ−1

x · uΓ ◦ φ−1
x

)
(0),

where φx : V (0) 7→ V (xΓ) is a local parameterization of Γ. Here V (0) ⊂ R2 and V (xΓ) ⊂
are respectively neighborhood of 0 and xΓ.

We impose the following condition:

d̂iv
(
ε̂Ên

)
= gEn and d̂iv

(
µ̂Ĥn

)
= gHn , (9.3.58)

where we defined for all n′ ∈ N:
gEn′ = −

n′∑
i=1

divΓ

(
Mi−1ν̂

i−1ε̂Ên′−i−1
)
−

n′∑
i=1

d̂iv
(
Miν̂

iεÊn′−i),
gHn′ = −

n′∑
i=1

divΓ

(
Mi−1ν̂

i−1µ̂Ĥn′−i−1
)
−

n′∑
i=1

d̂iv
(
Miν̂

iµĤn′−i),
The reasons of this choice lies in the following form:

Proposition 9.3.10. If we have :

d̂iv
(
ε̂Ên−1

)
= gEn−1 and d̂iv

(
µ̂Ĥn−1

)
= gHn−1, (9.3.59)

and
ˆrot
(
Ên−1

)
= fEn−1 and ˆrot

(
Ĥn−1

)
= fHn−1 (9.3.60)

then d̂iv(fEn ) = d̂iv(fHn ) = 0.
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Proof. We have the following equality for all distribution u on Γ× Ω:

d̂iv(rotΓu) = − divΓ( ˆrotu). (9.3.61)

This last equality is a direct consequence of: For all u ∈ C∞
(
Γ× Ω̂;R3

)
and

(
xΓ, x̂, ν̂

)
∈

ΓM×Ω̂ we have that:



divΓ(u)(xΓ; x̂, ν̂) := det

(
DψΓ(xΓ)
n†(xΓ)

)
divxr

(
det

(
DψΓ(xΓ)
n†(xΓ)

)−1(
DψΓ(xΓ)
n†(xΓ)

)
u(xΓ; x̂, ν̂)

)∣∣∣∣∣
xr=ψΓ(xΓ)

,

d̂iv(u)(xΓ; x̂, ν̂) := divx̂,ν̂

((
DψΓ(xΓ)
n(xΓ)

)
u(xΓ; x̂, ν̂)

)
,

~rotΓ(u)(xΓ; x̂, ν̂) := det

(
DψΓ(xΓ)
n†(xΓ)

)(
DψΓ

−1(xΓ), n(xΓ)
)
rotxr

((
DψΓ(xΓ)−†

n†(xΓ)

)
u(xΓ; x̂, ν̂)

)∣∣∣∣
xr:=ψΓ(xΓ)

,

ˆrot(u)(xΓ; x̂, ν̂) := det

(
DψΓ(xΓ)
n†(xΓ)

)(
DψΓ

−1(xΓ), n(xΓ)
)
rotx̂,ν̂

((
DψΓ(xΓ)−†

n†(xΓ)

)
u(xΓ; x̂, ν̂)

)
,

and divx̂,ν̂rotxr + divxr ˆrotx̂,ν̂ = 0. Thanks to (9.3.61) we have

d̂iv(fEn ) = divΓ

(
ˆrotÊn−1

)
+ ik d̂iv

(
µ̂

n∑
i=1

Mi−1ν̂
i−1Ĥn−i

)
.

Combining this with (9.3.60), yields:

d̂iv(fEn ) = −
���

���
���

��

divΓ

(
rotΓ

(
Ên−2

))
+ik divΓ

(
µ̂

n∑
i=1

Mi−1ν̂
i−1Ĥn−i

)
+ik d̂iv

(
µ̂

n∑
i=1

Mi−1ν̂
i−1Ĥn−1−i

)

Combining this with (9.3.59) concludes the proof of d̂iv(fEn ) = 0. The proof of d̂iv(fHn ) =
0 is exactly the same, which conclude the proof.

9.3.3 Algorithm of construction

The nears field (Ên, H̃n)n∈N and the far field (En, Hn)n∈N are recursively defined. These
quantities are defined for n = −1 by zero. Now let us explain how we define for
some n ∈ N the quantities (Ên, Ĥn) and (En, Hn) from the knowledge of the quanti-
ties (Ên′ , Ĥn′)0≤n′≤n−1 and (En′ , Hn′)0≤n′≤n−1.
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9.3.3.1 Right-hand-side of the cell problem

We recall for the convenience that:

fEn := −rotΓ

(
Ên−1

)
+ ikµ̂

n∑
i=1

Mi−1ν̂
i−1Ĥn−i,

fHn := −rotΓ

(
Ĥn−1

)
− ikε̂

n∑
i=1

Mi−1ν̂
i−1Ên−i,

gEn := −
n∑
i=1

divΓ

(
Mi−1ν̂

i−1ε̂Ên−i−1
)

+ d̂iv
(
Miν̂

iε̂Ên−i),
gHn := −

n∑
i=1

divΓ

(
Mi−1ν̂

i−1µ̂Ĥn−i−1
)

+ d̂iv
(
Miν̂

iµ̂Ĥn−i).
9.3.3.2 Definition of the far field

The far field (En, Hn) are defined by the unique solution of: Find (En, H
n) ∈ Hloc(rot; Ω)2

such that:
rotEn = −ikHn and rotHn = ikEn + δn0Jsource, (9.3.62)

with the boundary condition for all xΓ, En(xΓ) × n(xΓ) =

∫
Ŷ−

fEn (xΓ; x̂, ν̂)dx̂dν̂ and the

far field have to satisfies the radiating condition (8.1.3).

9.3.3.3 Definition of the near field

• The electric near field Ên is defined for (xΓ; x̂, ν̂) ∈ Γ× Ω̂ by:

Ên(xΓ; x̂, ν̂) := (En(xΓ), n(xΓ))NE(xΓ; x̂, ν̂) +
(
SE(fEn , g

E
n )
)
(xΓ; x̂, ν̂). (9.3.63)

• The magnetic near field Ĥn is defined by:

Ĥn(xΓ; x̂, ν̂) := NH(xΓ; x̂, ν̂)Hn(xΓ) +
(
SH(fHn , g

H
n )
)
(xΓ; x̂, ν̂). (9.3.64)

Here we prove that we have the following result of construction of the ansatz.
Lemma 9.3.11. The nears field (Ên, Ĥn)n∈N and the far field (En, Hn)n∈N well satisfy
the required property. More precisely we have for all n ∈ N that:

• The far field (En, Hn) belongs to C∞(Ω).

• The functions Ên and Ĥn take the following form:

Ên = PE
n +RE

n and Ĥn = PH
n +RH

n , (9.3.65)

for some (RE
n , R

H
n ) ∈ F(Γ× Ŷ∞)2 and (P n

E , P
n
H) ∈ C∞

(
Γ;Cn[ν̂]

)
× C∞

(
Γ;Cn[ν̂]

)
.

• For all Ên(xΓ; ·)× n(xΓ) = 0 and Ĥn(xΓ; ·) · n(xΓ) = 0 on ∂Ω̂.
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• The matching condition are satisfied:

∀0 ≤ i ≤ n, P n,i
E =

∂iνẼ
n−i(xΓ, 0)

i!
and P n,i

H =
∂iνH̃

n−i(xΓ, 0)

i!
. (9.3.66)

• The equation (9.2.18) and (9.3.58) are satisfied.

We prove this last lemma with an induction on the number n′. The result is trivial for
n′ = −1. Let n′ ∈ N such that we have for all n < n′ such that all quantity an property
appearing in Lemma 9.3.11 is well defined and true. We prove now that this implies that
the same holds for n′ = n.
Proposition 9.3.12. There exists functions

(lEn′ , l
H
n′ , d

E
n′ , d

H
n′) ∈ FE(Γ× Ŷ∞)×FH(Γ× Ŷ∞)×F(Γ× Ŷ∞)×F(Γ× Ŷ∞)

and polynomials

(FE
n′ , F

H
n′ , G

E
n′ , G

H
n′) ∈ C∞

(
Γ;Cn′−1[ν̂]3

)2 × C∞
(
Γ;Cn′−1[ν̂]

)2
,

such that the following decompositions of our right hand-side hold:

fEn′ = FE
n′ + lEn′ , f

H
n′ = FH

n′ + lHn′ , g
E
n′ = GE

n′ + dEn′ and gHn′ = GH
n′ + dHn′ .

The polynomials FE
n′ , FH

n′ , GE
n′ and GH

n′ are given by:

FE
n′ = −∂ν̂

(
n× P n′−1

E

)
− rotΓ(P n′−1

E )− ik
n′−1∑
j=0

Mj ν̂jP
n′−(j+1)
H ,

FH
n′ = −∂ν̂

(
n× P n′−1

H

)
− rotΓ(P n′−1

H ) + ik
n′−1∑
j=0

Mj ν̂jP
n′−(j+1)
E ,

GE
n′ · n = −∂ν̂

(
n′∑
j=1

Mj ν̂
jP n′−j

E · n

)
− divΓ

(
n′∑
j=1

Mj−1ν̂
j−1(n× P n′−j

E )× n

)
,

GH
n′ · n = −∂ν̂

(
n′∑
j=1

Mj ν̂
jP n′−j

H · n

)
− divΓ

(
n′∑
j=1

Mj−1ν̂
j−1(n× P n′−j

H )× n

)
.

Proof. We refer the reader for the scalar case because the proof of Proposition 2.5.15 (See
Chapter 2), have similar arguments.

Proposition 9.3.13. The right-hand-side fEn′ and fHn′ satisfy the compatibility condi-
tions:

d̂iv(fEn′) = d̂iv(fHn′ ) = 0 and pEn′ · n = pHn′ · n = 0. (9.3.67)

Moreover we have on Γ× ∂Ω̂ that:

fEn′ · n = 0. (9.3.68)
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Proof. The proof of d̂iv(fEn′) = d̂iv(fHn′ ) = 0 is already given in Proposition 9.3.10.
Projecting the equation (9.3.62) yields on the normal yields:

∀0 ≤ p ≤ n′ − 1

{
0 = rotΓ

(
n× (Ẽn′−p × n)

)
+ ik

(
MH̃n′−p · n

)
0 = rotΓ

(
n× (H̃n′−p × n)

)
− ik

(
MẼn′−p · n

)
.

and differentiate p times in the variable ν these last equations yields:

∀0 ≤ p ≤ n′−1


0 = rotΓ

(
n× ∂pν(Ẽn′−1−p × n)

)
+ ik

p∑
p′=0

(
p
p′

)
p′!
(
Mp′∂

p−p′
ν H̃n′−1−p · n

)
,

0 = rotΓ

(
n× ∂pν(H̃n′−1−p × n)

)
− ik

p∑
p′=0

(
p
p′

)
p′!
(
Mp′∂

p−p′
ν Ẽn′−1−p · n

)
.

Combining this last equality with the recurrence hypothesis (9.3.66) yields:

∀0 ≤ p ≤ n′ − 1


0 = rotΓ

(
n× (P n′−1,p

E × n)
)

+ ik

p∑
p′=0

Mp′P
n′−1−p′,p−p′
H · n,

0 = rotΓ

(
n× (P n′−1,p

H × n)
)
− ik

p∑
p′=0

Mp′P
n′−1−p′,p−p′
E · n,

which can be rewritten:

∀0 ≤ p ≤ n′ − 1


0 = rotΓ

(
n× (P n′−1,p

E × n)
)

+ ik

(
p∑

p′=0

Mp′ ν̂
p′P n′−1−p′

H · n

)
p

,

0 = rotΓ

(
n× (P n′−1,p

H × n)
)
− ik

(
p∑

p′=0

Mp′ ν̂
p′P n′−1−p′

E · n

)
p

,

Combining this last equation with Proposition 9.3.12 concludes the proof of (9.3.67).
The property (9.3.68) is due to the boundary condition on Γ × ∂Ω̂ satisfied by the

previous term Ên′−1 · · · Ê0 and Ĥn′−1 · · · Ĥ0. Indeed we have for all (xΓ; x̂, ν̂) ∈ Γ× ∂Ω̂:

fEn′(xΓ; x̂, 0) · n =

(
−rotΓ

(
Ên′−1

)
+ ikµ̂

n′∑
i=1

Mi−1ν̂
i−1Ĥn′−i

)
(xΓ; x̂, 0) · n(xΓ),

= −
(((

((((
(((

((((
((

divΓ

(
Ên′−1(xΓ; x̂, 0)× n(xΓ)

)
+ ikµ̂

((((
((((

((((
Ĥn′−1(xΓ; x̂, 0) · n(xΓ) = 0.

Corollary 9.3.14. For n = n′ the equations (9.2.18) and (9.3.58) are well satisfied.
There exist (P n′

E , P
n′
H , R

n′
E , R

n′
H ) ∈ C∞ (Γ;Cn′ [ν̂])2 ×F(Γ× Ŷ∞)2 such that

Ên′ = P n′

E +Rn′

E and Ĥn′ = P n′

H +Rn′

H ,

where we defined for all (xΓ, x̂, ν̂) ∈ Γ× Ω̂:{
Ên′(xΓ; x̂, ν̂) := (En′(xΓ), n(xΓ))NE(xΓ; x̂, ν̂) +

(
SE(fEn′ , g

E
n′)
)
(xΓ; x̂, ν̂),

Ĥn′(xΓ; x̂, ν̂) := NH(xΓ; ·)Hn′(xΓ) +
(
SH(fHn′ , g

H
n′)
)
(xΓ; x̂, ν̂).

(9.3.69)
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The coefficients are given for all 1 ≤ p ≤ n′ by:

(
P n′

E × n
)
p

=− 1

p
~rotΓ

(
P n′−1,p−1
E · n

)
p
− ik1

p

(
p−1∑
j=0

Mj

(
n× (P n′−1−j,p−1−j

H × n)
))

p

,

(
P n′

H × n
)
p

=− 1

p
~rotΓ

(
P n′−1,p−1
H · n

)
p

+ ik
1

p

p−1∑
j=0

Mj

(
n× (P n′−1−j,p−1−j

E × n)
)
p
,

(P n′

E · n)p =−
p∑
j=1

Mj(P
n′−j,p−j
E · n)− 1

p

p−1∑
j=0

divΓ

(
Mj
(
n× (P n′−1−j,p−1−j

E × n)
))

p
,

(P n′

H · n)p =−
p∑
j=1

Mj(P
n′−j,p−j
H · n)− 1

p

p−1∑
j=0

divΓ

(
Mj
(
n× (P n′−1−j,p−1−j

H × n)
))

p
,

(9.3.70)
and for p = 0 we have for all xΓ ∈ Γ that:

P n′

E

(
xΓ; 0) = En′(xΓ) and P n′

H (xΓ; 0) = Hn′(xΓ). (9.3.71)

Proof. Thanks to Proposition 9.3.12 and Proposition 9.3.13 we can apply Proposition 9.3.8
which leads that SE(fEn′ , g

E
n′) and SH(fEn′ , g

E
n′) are solution of (9.2.18) and (9.3.58) for

n = n′. Moreover combining the definition (9.3.69) with Proposition 9.3.1 and Proposi-
tion 9.3.3 which conclude the proof of (9.2.18) and (9.3.58).

Applying Proposition 9.3.8 yields the existence of

(Rn′,0
E , Rn′,0

H , P n
E,0, P

n
H,0) ∈ F(Γ× Ŷ∞)2 × C∞ (Γ;Cn[ν̂])2 ,

such that:

SE(fEn′ , g
E
n′) = Rn′,0

E + P n′

E,0 and SH(fHn′ , g
H
n′) = Rn′,0

H + P n′

H,0,

and the polynomials (P n′
E,0, P

n′
H,0) ∈ C∞ (Γ;Cn′ [ν̂])2 are the unique solutions of:

∂ν̂P
n′

E,0 = GE
n′ × n+GE

n′n and ∂ν̂P
n′

H,0 = FH
n′ × n+GH

n′n, (9.3.72)

with the initial conditions for all xΓ ∈ Γ:

P n′

E,0(xΓ; 0) =

∫
Ŷ−

fEn′(xΓ; x̂, ν̂)dx̂dν̂×n(xΓ) and P n′

H,0(xΓ; 0) =

(∫
Ŷ−

gHn′(xΓ; x̂, ν̂)dx̂dν̂

)
n(xΓ).

Thanks to the definition (9.3.69), Proposition 9.3.9, Proposition 9.3.1 and Proposition 9.3.3,
there exist

(Rn′

E , R
n′

H , P
n′

E , P
n′

H ) ∈ F(Γ× Ŷ∞)2 × C∞ (Γ;Cn[ν̂])2 ,

such that:
Ên′ = Rn′

E + P n′

E and Ĥn′ = Rn′

H + P n′

H ,

and P n′
E and P n′

H are the unique polynomials satisfying (9.3.72) and the initial conditions
for all xΓ ∈ Γ:

P n′

E (xΓ; 0) =

(∫
Ŷ−

n(xΓ)× fEn′(xΓ; x̂, ν̂)dx̂dν̂

)
+ En′(xΓ) · n(xΓ)n(xΓ),

P n′

H (xΓ; 0) =

(∫
Ŷ−

gHn′(xΓ; x̂, ν̂)dx̂dν̂

)
n(xΓ) + n(xΓ)×

(
Hn′(xΓ)× n(xΓ)

)
.

(9.3.73)
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Thus integrating one time on the variable ν̂ the equation (9.3.72) conclude the proof of
(9.3.70). With computation we show that we have:

divΓ

(∫
Ŷ−

fEn′(·; x̂, ν̂)dx̂dν̂

)
= ik

∫
Ŷ−

gHn′(·; x̂, ν̂)dx̂dν̂,

and we recall that we thanks to the definition of the far field En that for all xΓ ∈ Γ:∫
Ŷ−

fEn′(xΓ; x̂, ν̂)dx̂dν̂ = En′(xΓ)× n(xΓ). (9.3.74)

These two last equalities lead to:

∀xΓ ∈ Γ, ik

∫
Ŷ−

gEn′(xΓ; x̂, ν̂)dx̂dν̂ = rot(En′)(xΓ) · n(xΓ).

Combining this with the Maxwell equations that En and Hn satisfy yields:

∀xΓ, ��ik

∫
Ŷ−

gEn′(xΓ; x̂, ν̂)dx̂dν̂ =��ikHn′(xΓ) · n(xΓ).

Combining this last equation and (9.3.74) with (9.3.73) concludes the proof of (9.3.71).
Proposition 9.3.15. The far field (En, Hn) defined by the unique solution of the problem
(9.3.62) belongs to C∞(K) for all open subset of Ω such that K ⊂ Ω.
Proof. It is a direct consequence of regularity results of the Maxwell equation.
Proposition 9.3.16. We have for all 0 ≤ i ≤ n′ that:

∀0 ≤ i ≤ n′, P n′,i
E =

∂iνẼ
n′−i(xΓ, 0)

i!
and P n′,i

H =
∂iνH̃

n′−i(xΓ, 0)

i!
(9.3.75)

Proof. Using the PDE (9.3.62) yields:

∂ν(Ẽ
n′−p × n) = − ~rotΓ

(
Ẽn′−p · n

)
− ikM

(
n× (H̃n′−p × n)

)
,

∂ν(H̃
n′−p × n) = − ~rotΓ

(
H̃n′−p · n

)
+ ikM

(
n× (Ẽn′−p × n)

)
,

∂ν(M · Ẽn′−p) = − divΓ

(
M
(
n× (Ẽn′−p × n)

))
,

∂ν(M · H̃n′−p) = − divΓ

(
M
(
n× (H̃n′−p × n)

))
.

For all p ∈ N\{0}, differentiating these last equations p−1 times on the variable ν yields
on Γ× {0}:
∂pν(Ẽ

n′−p × n) = − ~rotΓ

(
∂p−1
ν (Ẽn′−p · n)

)
− ik

p−1∑
j=0

(
p− 1
j

)
j!Mj∂

p−1−j
ν

(
n× (H̃n′−p × n)

)
,

∂pν(H̃
n′−p × n) = − ~rotΓ

(
∂p−1
ν (H̃n′−p · n)

)
+ ik

p−1∑
j=0

(
p− 1
j

)
j!Mj∂

p−1−j
ν

(
n× (Ẽn′−p × n)

)
,
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and
∂pν(Ẽ

n′−p · n) = −
p∑
j=1

(
p
j

)
∂p−jν (j!MjẼ

n′−p · n)−
p−1∑
j=0

(
p− 1
j

)
divΓ

(
j!Mj∂

p−1−j
ν

(
n× (Ẽn′−p × n)

))
,

∂pν(H̃
n′−p · n) = −

p∑
j=1

(
p
j

)
∂p−jν (j!MjH̃

n′−p · n)−
p−1∑
j=0

(
p− 1
j

)
divΓ

(
j!Mj∂

p−1−j
ν

(
n× (H̃n′−p × n)

))
.

For the sequel, all quantity that will appear will be evaluated in (xΓ, 0). We can rewrite
the last lines in the following forms:



∂pν(Ẽ
n′−p × n) =− ~rotΓ

(
∂p−1
ν (Ẽn−1−(p−1) · n)

)
− ik

p−1∑
j=0

(
p− 1
j

)
j!Mj∂

p−1−j
ν

(
n× (H̃n−1−j−(p−1−j) × n)

)
,

∂pν(H̃
n−p × n) =− ~rotΓ

(
∂p−1
ν (H̃n−1−(p−1) · n)

)
+ ik

p−1∑
j=0

(
p− 1
j

)
j!Mj∂

p−1−j
ν

(
n× (Ẽn−1−j−(p−1−j) × n)

)
,

and

∂pν(Ẽ
n−p · n) =−

p∑
j=1

(
p
j

)
∂p−jν (j!MjẼ

n−j−(p−j) · n)

−
p−1∑
j=0

(
p− 1
j

)
divΓ

(
j!Mj∂p−1−j

ν

(
n× (Ẽn−1−j−(p−1−j) × n)

))
,

∂pν(H̃
n−p · n) =−

p∑
j=1

(
p
j

)
∂p−jν (j!MjH̃

n−j−(p−j) · n)

−
p−1∑
j=0

(
p− 1
j

)
divΓ

(
j!Mj∂p−1−j

ν

(
n× (H̃n−1−j−(p−1−j) × n)

))
.

Moreover injecting recurrence hypothesis (9.3.75) in these last equalities yields:



∂pν(Ẽ
n−p × n) =− ~rotΓ

(
(p− 1)!P n−1,p−1

E · n
)

− ik
p−1∑
j=0

(
p− 1
j

)
j!Mj(p− 1− j)!

(
n× (P n−1−j,p−1−j

H × n)
)
,

∂pν(H̃
n−p × n) =− ~rotΓ

(
(p− 1)!P n−1,p−1

H · n
)

+ ik

p−1∑
j=0

(
p− 1
j

)
j!Mj(p− 1− j)!

(
n× (P n−1−j,p−1−j

E × n)
)
,
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and

∂pν(Ẽ
n−p · n) =−

p∑
j=1

(
p
j

)
(p− j)!(j!MjP

n−j,p−j
E · n)

−
p−1∑
j=0

(
p− 1
j

)
(p− 1− j)! divΓ

(
j!Mj

(
n× (P n−1−j,p−1−j

E × n)
))
,

∂pν(H̃
n−p · n) =−

p∑
j=1

(
p
j

)
(p− j)!(j!MjP

n−j,p−j
H · n)

−
p−1∑
j=0

(
p− 1
j

)
(p− 1− j)! divΓ

(
j!Mj

(
n× (P n−1−j,p−1−j

H × n)
))
,

Therefore thanks to the definition of binomial coefficient, we have for all 1 ≤ p ≤ n that
these last equalities simplify in the the following forms:

1

p!
∂pν(Ẽ

n−p × n) =− 1

p
~rotΓ

(
P n−1,p−1
E · n

)
− ik1

p

p−1∑
j=0

Mj

(
n× (P n−1−j,p−1−j

H × n)
)
,

1

p!
∂pν(H̃

n−p × n) =− 1

p
~rotΓ

(
P n−1,p−1
H · n

)
+ ik

1

p

p−1∑
j=0

Mj

(
n× (P n−1−j,p−1−j

E × n)
)
,

1

p!
∂pν(Ẽ

n−p · n) =−
p∑
j=1

Mj(P
n−j,p−j
E · n)− 1

p

p−1∑
j=0

divΓ

(
Mj
(
n× (P n−1−j,p−1−j

E × n)
))
,

1

p!
∂pν(H̃

n−p · n) =−
p∑
j=1

Mj(P
n−j,p−j
H · n)− 1

p

p−1∑
j=0

divΓ

(
Mj
(
n× (P n−1−j,p−1−j

H × n)
))
,

Therefore combining these last lines with Corollary 9.3.14 conclude the proof of (9.3.75).
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Chapter 10

Theoretical justification of the
asymptotic expansion

Let n ∈ N. We construct global function on Ωδ defined by:

En
η,δ := (1− χη)En

δ + χη Iδ,η(Ên
δ ),

where:

• En
δ :=

n∑
i=0

δiEi and Ên
δ :=

n∑
i=0

δiÊi.

• The so called “scaling operator” Iδ,η is defined for Ê : Γ × Ω̂ 7→ C3 by the map
Iδ,η Ê : Cδ,η 7→ C3. This map is defined for x ∈ Cδ,η by:

Iδ,η Ê(x) :=
(
I + νRΓ(xΓ)

)−1
Ê(xΓ; x̂, ν̂),

where (xΓ, ν) is the unique solutin of x = xΓ + νn(xΓ) and (x̂, ν̂) :=
(
ψΓ(xΓ), ν

)
/δ.

• χη is defined for x ∈ Cδ,η by χη(x) := χ
(
ν
η

)
with (xΓ, ν) is the unique solutin of

x = xΓ + νn(xΓ) if xΓ ∈ Cδ,η. This last map is extended by zero for x /∈ Cδ,η.

• Here χ is a smooth cut off function such that χ ≡ 1 on ] − ∞, 1[ and χ ≡ 0 on
]2,∞[.

We will estimate in this chapter for all n ∈ N the error Eδ − En
η,δ.

10.1 Stability of the exact problem

For all open set Ω̃ ⊂ R3, we define:

H(rot; Ω̃) :=
{
u ∈ L2(Ω̃δ)3, rot(u) ∈ L2(Ω̃δ)3

}
,

and the norm of this space is given for u ∈ H(rot; Ω̃) by:

‖u‖2
H(rot;Ω̃)

:= ‖u‖2
L2(Ω̃δ)3 + ‖rot(u)‖2

L2(Ω̃δ)3 .
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We introduce the spaces: L2
comp(Ωδ) :=

{
f ∈ L2(Ωδ)3, supp(f) is compact

}
and

V δ :=

{
(Eδ, Hδ) ∈ L2

loc(Ω
δ)2,

(
rotEδ + ikµδHδ,
rotHδ − ikεδEδ

)
∈ L2

comp(Ωδ)2, Eδ × n = 0 on Γδ satisfaying (8.1.3)
}

Next we define introduce the operator Pδ : V δ 7→ L2
comp(Ωδ)2 defined for (Eδ, Hδ) ∈ V δ

by:

Pδ
(
Eδ

Hδ

)
=

(
rotEδ + ikµδHδ

rotHδ − ikεδEδ

)
.

Thanks to these notations, we can rewrite our exact problem in the following form: Find(
Eδ, Hδ

)
∈ V δ such that:

Pδ
(
Eδ

Hδ

)
=

(
f
0

)
.

Thanks to the classical maxwell theory of time harmonics scattering (see [58]) we easily
get existence of the inverse of this last operator. However we need a uniform continuity
property with the small parameter δ > 0:
Lemma 10.1.1. For all R > 0 with Ω ⊂ BR there exist CR > 0 independent of δ > 0
such that for all f ∈ L2

comp(Ωδ)2 we have:

supp(f) ⊂ BR ∩ Ωδ =⇒
∥∥P−1

δ · f
∥∥
H(rot,BR∩Ωδ)2 ≤ C‖f‖L2(BR∩Ωδ),

where BR is the open ball of radius R centered at zero.
The proof of this result is made by contradiction. We have chosen to split the proof in
several propositions in order to to clarify its main steps.

If this result is false then: There exist R > 0 and a sequence (Eδ, Hδ) ∈ V δ such that
we have:

lim
δ→0

∥∥Pδ(Eδ, Hδ)
∥∥
L2(BR∩Ωδ)

= 0 and
∥∥Eδ

∥∥
H(rot,BR∩Ωδ)

+
∥∥Hδ

∥∥
H(rot,BR∩Ωδ)

= 1,

(10.1.1)
and we will prove during whole this section that this last proposition bring a contradiction.

First let us prove that we can reduce to the fixed domain Ω. We can easily prove
(with the local coordinate transformation L) the existence of a sequence of transformation
Iδ : Ω 7→ Ωδ such that:

∃C > 0,∀δ > 0, ‖Iδ‖C1(Ω) + ‖I−1
δ ‖C1(Ωδ) ≤ C, (10.1.2)

and
∀x ∈ Ω, dist(x,Γ) > δ =⇒ Iδ(x) = x. (10.1.3)

From this last transformation we define the two vectors field:

Eδ
? := D† Iδ ·

(
Eδ ◦ Iδ

)
and Hδ

? := D† Iδ ·
(
Hδ ◦ Iδ

)
,

the tensor field of coefficients:

εδ? :=
(
εδ ◦ Iδ

)
det(D Iδ) D I−1

δ ·D I−†δ and µδ? :=
(
µδ ◦ Iδ

)
det(D Iδ) D I−1

δ ·D I−†δ ,

and the vector field of right-hand side:

f δ?,E := rotEδ
? + ikµδ?H

δ
? and f δ?,H := rotHδ

? − ikεδ?Eδ
? . (10.1.4)
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Figure 10.1: Illustration of the Calderon map

Proposition 10.1.2. There exists C > 0 such that:

C−1 ≤
∥∥Eδ

?

∥∥
H(rot,Ω)

+
∥∥Hδ

?

∥∥
H(rot,Ω)

≤ C. (10.1.5)

and we have:
lim
δ→0

f δ?,E = 0 and lim
δ→0

f δ?,H = 0 in L2(BR ∩ Ω), (10.1.6)

Proof. It is a direct consequence of change variable formula for rotational operator(see
[58, Corollary 3.58]), (10.1.1) and (10.1.2).
Since our domain Ω is not bounded, we introduce the Calderon operator

Ge : H−
1
2 (div∂BR ; ∂BR) 7→ H−

1
2 (div∂BR ; ∂BR),

(see [58, 9.4 Electromagnetic Calderon operators] ) where:

H−
1
2 (div∂BR ; ∂BR) :=

{
u ∈ H−

1
2 (∂BR)3 , u is tangential and div∂BR(u) ∈ H−

1
2 (∂BR)

}
.

We introduced this operator to reduce our analysis in the bounded domain BR ∩ Ω. We
recall that this last operator is defined for ET ∈ H−

1
2 (div∂BR ; ∂BR) by GeuT := n × H

where E,H is the unique solution of: Find (E,H) ∈ Hloc(rot,Ω)2 such that we have:

rotE + ikH = 0 and rotH − ikE = 0 with E × n = ET on Γ satisfying (8.1.3).

Moreover we introduce the following space:

X := {u ∈ H(rot,Ω ∩BR), u× n = 0 on Γ} ,

equipped with the norm of H(rot,Ω ∩BR).
Proposition 10.1.3. The following proposition:

lim
δ→0

Eδ
? = 0 in X (10.1.7)

contradicts the proposition (10.1.5).
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Proof. It is a direct consequence of (10.1.4) and Proposition 10.1.2
Hereafter 〈·, ·〉 is the dual bracket 〈·, ·〉

H−
1
2 (div∂BR ;∂BR)−H− 1

2 (rot∂BR ;∂BR)
where:

H−
1
2 (rot∂BR ; ∂BR) :=

{
u ∈ H−

1
2 (∂BR)3 , u is tangential and rot∂BR(u) ∈ H−

1
2 (∂BR)

}
,

and (·, ·) is the classical dot product on L2(∂BR). The normal unit u is extended to ∂BR.
Then we can introduce the sesquilinear form aδ : X ×X 7→ C defined for (u, v) ∈ X ×X
by:

aδ?(u, v) =
((
µδ?)
−1rotu, rotv

)
− k2

(
εδ?u, v

)
+ ik

〈
Ge(n× u), (n× v)× n

〉
.

Proposition 10.1.4. We have:

lim
δ→0

sup
φ∈X

aδ?(E
δ
? , φ)

‖φ‖X
= 0. (10.1.8)

Proof. We have for all φ ∈ X that:

aδ?(E
δ
? , φ) = (lδ, φ),

where we defined the anti-linear form lδ ∈ X† for φ ∈ X by:

(lδ, φ) = −ik
∫
BR∩Ω

f δ?,HφdΩ + k2

∫
BR∩Ω

(
(µδ?)

−1f δ?,E, rot(φ)
)
dΩ.

Thanks to (10.1.6) we easily get lim
δ→0

lδ = 0 in X† which conclude the proof.

Nevertheless the sesquilinear form is not coercive and we can not now deduce the con-
vergence (10.1.7). However we have the following result:
Proposition 10.1.5. The following proposition:

lim
δ→0

Eδ
? = 0 weakly in X and lim

δ→0
Eδ
? = 0 in L2(BR ∩ Ωδ),

is a sufficient condition to the proposition (10.1.7).
Proof. From [58, Lemma 10.5,Theorem 10.6] we get that the operator Ge takes the fol-
lowing decomposition:

Ge = G1
e +G2

e,

where ikG1
e : H−

1
2 (div∂BR ; ∂BR) 7→ H−

1
2 (div∂BR ; ∂BR) is a positive operator and G2

e is
an operator such that the following sesquilinear form defined on X ×X:

(u, v) 7→
〈
G2
e(n× u), (n× v)× n

〉
,

is compact. Therefore the sesquilinear form aδ? takes the following decomposition:

aδ? = cδ? + kδ?,

where we defined for (u, v) ∈ X ×X the sesquilinear form:
cδ?(u, v) :=

∫
BR∩Ω

((
µδ?)
−1rotu, rotv

)
+
(
εδ?u, v

)
dΩ + ik

〈
G1
e(n× u), (n× v)× n

〉
,

kδ?(u, v) :=

∫
BR∩Ω

−(1 + k2)
(
εδ?u, v

)
dΩ + ik

〈
G2
e(n× u), (n× v)× n

〉
.
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The positivity property of the operator G1
e and the assumption (8.2.4) yields that a the

sesquilinear form cδ? is uniformly coercive with the small parameter. Therefore a sufficient
condition for (10.1.7) is:

lim
δ→0

cδ?(E
δ
? , E

δ
?) = 0. (10.1.9)

Let us prove now Since Eδ
? is bounded on X then (10.1.8) leads to lim

δ→0
aδ?(E

δ
? , E

δ
?) = 0.

Now let us prove that:
lim
δ→0

kδ?(E
δ
? , E

δ
?) = 0. (10.1.10)

On the one hand, thanks to lim
δ→0

Eδ
? in L2(BR ∩ Ω) we have:

lim
δ→0

∫
BR∩Ω

−(1 + k2)
(
εδ?E

δ
? , E

δ
?

)
dΩ = 0.

On the other hand, thanks to lim
δ→0

Eδ
? weakly in the space X and the compactness property

of the operator G2
e we have:

lim
δ→0

ik
〈
G2
e(n× Eδ

?), (n× Eδ
?)× n

〉
= 0,

which concludes the proof of (10.1.10). Combining this with (10.1.10) and (10.1.8) con-
cludes the proof of (10.1.9) which ends the proof.
Proposition 10.1.6. We have the following convergence:

lim
δ→0

Eδ
? = 0 weakly in X

Proof. Let C be the subspace of X constituted of the element u ∈ X such that u ≡ 0 in
the neighborhood of Γ. Let φ ∈ C. Thanks to (10.1.3), we have for δ small enough we
have:

aδ?(E
δ
? , φ) = a0

?(E
δ
? , φ).

Combining this with (10.1.8) yields that

lim
δ→0

a0
?(E

δ
? , φ) = 0. (10.1.11)

Since the sequence (Eδ
?)δ>0 is bounded in the space X then there exits E0

? ∈ X such that
(Eδ

?)δ>0 weakly converge up to a subsequence to E0
? ∈ X. Using the continuity of the

sesquilinear form a0
? and the weak convergence yields:

lim
δ→0

a0
?(E

δ
? , φ) = a0

?(E
0
? , φ). (10.1.12)

Combining this last convergence with (10.1.11) yields:

a0
?(E

0
? , φ) = 0, (10.1.13)

and using that C is dense in the space X yields that this last equality remains valid for
all φ ∈ X. Thanks to [58, Reduction to a bounded domain] we get that (10.1.13) implies
that E0

? = 0 which concludes the proof.
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Thanks to [58, Theorem 10.2] we can introduce the potential φδ? defined by the unique
solution of: Find φδ? ∈ S such that for all ψ ∈ S we have:

aδ?(∇φδ?,∇ψ) = aδ?(E
δ
? ,∇ψ), (10.1.14)

where we defined the following closed subspace of H1(BR ∩ Ω):

S :=
{
u ∈ H1(BR ∩ Ω), u = 0 on Γ

}
.

We emphasize that we have ∇S ⊂ X.
Proposition 10.1.7. We have the following convergence:

lim
δ→0

φδ? = 0 in S

Proof. Assume that the result is false. Then the sequence (ψδ?)δ>0 defined for δ by:

ψδ? :=
ψδ?
‖ψδ?‖S

,

is bounded and weakly converge up to a subsequence to some ψ0
? ∈ S. We define the

sesquilinear form aδ∇ : S × S 7→ C for (u, v) ∈ S × S by:

aδ∇(u, v) := aδ?(∇u,∇v),

and thanks to (10.1.8) we get:

lim
δ→0

sup
φ∈S

aδ∇(ψδ?, φ)

‖φ‖S
= 0. (10.1.15)

Let us prove that ψ0
? = 0. Indeed for all φ smooth function vanishing in the neighborhood

of Γ we have for small δ that aδ∇(ψ0
?, φ) = a0

∇(ψ0
?, φ). Combining with the continuity of

the sesquilinear form a0
∇ , the weak convergence and (10.1.15) that:

a0
∇(ψ0

?, φ) = lim
δ→0

aδ∇(ψδ?, φ) = 0.

Using an argument of density yields that this last equality remains true for all φ ∈ S and
thanks to [58, Theorem 10.2] we get that ψ0

? = 0.
Let us prove the existence of a coercive (with a constant of coercivity independent of

δ > 0) sesquilinear form cδ∇ and compact sesquilinear form kδ∇ such that the following
decomposition holds:

aδ∇ = −cδ∇ + k∇. (10.1.16)

Indeed, thanks to [58, Lemma 9.23, Theorem 10.2] there exists an operator G̃e : H−
1
2 (div∂BR ; ∂BR) 7→

H−
1
2 (div∂BR ; ∂BR) such that the sesquilinear form kδ∇ defined for (u, v) ∈ S:

k∇(u, v) := ik
〈

(Ge + ikG̃e)(n×∇u), n× (∇v × n)
〉
.

is compact. Moreover [58, Lemma 9.23, Theorem 10.2] also states that for all u ∈ S we
have:

k2
〈
G̃e(n×∇u), n× (∇u× n)

〉
≤ 0.
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Combining this with the assumption (8.2.4), yields that the sesquilinear form cδ∇ defined
for (u, v) ∈ S2 by:

cδ∇(u, v) := k2
(
εδ?∇u,∇v

)
− k2

〈
G̃e(n×∇u), n× (∇u× n)

〉
,

is well uniformly coercive with the parameter δ which concludes the proof.
Since we have proved ψ0

? = 0, the compactness of the sesquilinear form k∇ leads to:

lim
δ→0

k∇(ψδ?, ψ
δ
?) = 0.

Combining this last convergence with (10.1.15) and the decomposition (10.1.16) yields:

lim
δ→0

cδ∇(ψδ?, ψ
δ
?) = 0.

Using the uniform coercivity property of the sesquilinear form cδ∇ yields that:

lim
δ→0

ψδ? = 0 in S,

which is absurd.
Proposition 10.1.8. Up to a subsequence we have that the sequence (Eδ

? − ∇φδ?)δ>0

converge in the space L2(BR ∩ Ω).
Proof. We will use the existing compactness properties found in [35, Lemma 2.3] and [58,
Lemma 10.4] of the two following space:{

X0
δ :=

{
u ∈ H0(rot,Ω ∩BR), div(εδ?u) = 0

}
,

X1
0 :=

{
u ∈ X, ∀ψ ∈ S, a0

?(u,∇ψ) = 0
}
,

that we recall here:

• For all bounded sequence (Uδ)δ>0 in the space X if for all δ > 0 we have Uδ ∈ X0
δ

then there exists a subsequence of δ > 0 such that (Uδ)δ>0 converge in the space
L2(BR ∩ Ω).

• The space X1
0 is compactly embedded in the space L2(BR ∩ Ω).

Nevertheless the vector Eδ
? − ∇φδ? neither belongs to the space X0

δ or the space X1
0 .

However we succeed to prove that this last vector take the following forms:

Eδ
? −∇φδ? =

(
vδ0 −∇φδ?,0

)
+
(
vδ1 −∇φδ?,1

)
+∇

(
φδ?,0 + φδ?,1

)
, (10.1.17)

where we now prove that:

1. The function φδ?,0 and φδ?,1 converge up to a subsequence in the space S.

2. The sequence (vδ0 −∇φδ?,0)δ>0 is bounded in X and belongs to X0
δ for all δ.

3. (vδ1 −∇φδ?,1)δ>0 is bounded in X and belongs to X1
0 for all δ.
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The vector field vδ0 and vδ1 are defined by

vδ0 := χ · (Eδ
? − φδ?) and vδ1 := (1− χ) · (Eδ

? − φδ?).

where χ is a C∞ cut off function function such that χ ≡ 1 in the neighborhood of Γ and
χ ≡ 0 in the neighborhood of ∂BR and the functions (φδ?,0, φ

δ
?,1) ∈ H1

0 (BR ∩ Ω) × S are
defined by the unique solution of the two following problems:

• Find φδ?,0 ∈ H1
0 (BR ∩ Ω) such that for all ψ ∈ H1

0 (BR ∩ Ω) we have:

(εδ?∇φδ?,0,∇ψ) =
(
lδ?,0, ψ

)
.

• Find φδ?,1 ∈ S such that for all ψ ∈ S we have:

a0
?(∇φδ?,1,∇ψ) = (lδ?,1, ψ).

Here the anti-linear forms (lδ?,0, l
δ
?,1) ∈ H1

0 (BR ∩Ω)† × S† for (ψ0, ψ1) ∈ H1
0 (BR ∩Ωδ)× S

by: (
lδ?,0, ψ

)
:= (εδ?v

δ
0,∇ψ) and

(
lδ?,1, ψ

)
:= a0

?(v
δ
1,∇ψ).

Now let us prove the proposition 1.
Thanks to the hypothesis (8.2.4) and [58, Theorem 10.2] a sufficient condition is to

prove that the sequence (lδ?,0)δ>0 and (lδ?,1)δ>0 converge up to a subsequence in the spaces
H1

0 (BR ∩ Ω)† and S†. According to the Rellich lemma, a sufficient condition is to prove
that these two sequences of anti-linear forms are bounded in the space L2(BR ∩ Ω)†.
Indeed thanks to (10.1.14), we have for all ψ ∈ S that:

aδ?
(
Eδ
? −∇φδ?,∇(χψ)

)
= 0 and a0

?

(
Eδ
? −∇φδ?,∇

(
(1− χ)ψ

))
= 0. (10.1.18)

Therefore for all ψ ∈ H1
0 (BR ∩ Ωδ) we have(

lδ?,0, ψ
)

= (εδ?χ · (Eδ
? −∇φδ?),∇ψ) = (εδ?(E

δ
? −∇φδ?), χ · ∇ψ),

= (εδ?(E
δ
? −∇φδ?),∇(χψ))− (εδ?(E

δ
? −∇φδ?) · ∇χ, ψ)

=
((((

((((
((((

(
aδ?((E

δ
? −∇φδ?),∇(χψ))− (εδ?(E

δ
? −∇φδ?) · ∇χ, ψ),

which leads to lδ?,0 = εδ?(E
δ
? − ∇φδ?) · ∇χ in

(
H1

0 (BR ∩ Ω)
)†. Moreover the sequence

(Eδ
? − ∇φδ?)δ>0 is bounded in L2(BR ∩ Ω) which conclude the proof for lδ?,0. Thanks to

(10.1.18) we have for all ψ ∈ S:(
lδ?,1, ψ

)
=
(
εδ?(1− χ) · (Eδ

? −∇φδ?),∇ψ
)

+
〈
Ge((1− χ)(Eδ

? −∇φδ?), n× (∇ψ × n)
〉
,

=
(
εδ?(E

δ
? −∇φδ?), (1− χ)∇ψ

)
+
〈
Ge((E

δ
? −∇φδ?), n× (∇((1− χ)ψ)× n)

〉
,

=
(
εδ?(E

δ
? −∇φδ?),∇

(
(1− χ)ψ

))
+
〈
Ge((E

δ
? −∇φδ?), n× (∇((1− χ)ψ)× n)

〉
+(

εδ?(E
δ
? −∇φδ?) · ∇(1− χ), ψ

)
,

=
((((

(((
((((

((
aδ?(E

δ
? −∇φδ?, (1− χ)ψ) +

(
εδ?(E

δ
? −∇φδ?) · ∇(1− χ), ψ

)
which leads to lδ?,1 = εδ?(E

δ
? −∇φδ?) · ∇(1− χ) in S† and conclude the proof for lδ?,1.

The proposition 2 and 3 are direct consequence of the definition of the function φδ?,0
and φδ?,1 and then we have finished our proof.
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Proof of Lemma 10.1.1. Combining Proposition 10.1.7 with Proposition 10.1.8 yields that
the sequence (Eδ

?)δ>0 converges in the space L2(BR ∩ Ω). Therefore thanks to Proposi-
tion 10.1.6 we get:

lim
δ→0

Eδ
? = 0 in L2(BR ∩ Ω),

and using Proposition 10.1.5 yields that (10.1.7) is fulfilled. Therefore thanks to Propo-
sition 10.1.3 we get that (10.1.5) is false which bring a contradiction. Therefore we finish
our proof.

10.2 Error decomposition

Thanks to Lemma 10.1.1 it remains to estimate the following quantities:QE,n
η,δ :=

∥∥rot(Eδ − En
η,δ) + ikµδ(Hδ −Hn

η,δ)
∥∥
L2(Ωδ)

,

QH,n
η,δ :=

∥∥rot(Hδ −Hn
η,δ)− ikεδ(Eδ − En

η,δ)
∥∥
L2(Ωδ)

.

We only give the proof of estimate for the quantity QE,n
η,δ because the one of QH,n

η,δ is
exactly the same. We split this last quantity into the following form: QE,n

η,δ :

QE,n
η,δ = Dcη,δ,n +Drη,δ,n,

where Dcη,δ,n is so-called "consistency error" (it measures how much the truncated expan-
sion (9.1.6) fails to satisfy the original Maxwell equation):

Dcη,δ,n :=
∥∥∥rot( Iδ,η (Ên

δ

))
+ ikµδ Iδ,η(Ĥn

δ

)∥∥∥
L2(Cδ,η)

,

where Drη,δ,n is so-called "matching error" (it measures the mismatch between the trun-
cated expansions (9.1.6) and (9.1.2)):

Drη,δ,n :=
∥∥∥rot(χη(Iδ,η Ên

δ − En
δ )
)

+ ikµδχη
(
Iδ,η Ĥn

δ −Hn
δ

)∥∥∥
L2
(
Cη,2η

) .
10.3 Estimate of the consistency error

We have the following decomposition of the consistency error:

Dcη,δ,n ≤ C ·
(
Dc,0η,δ,n +Dc,1η,δ,n

)
.

Here, we defined:
• The "first consistency error” by:

Dc,0η,δ,n :=
∥∥∥rot( Iδ,η Ên

δ

)
+ ikInµδ Iδ,η Ĥn

δ

∥∥∥
L2(Cδ,η)

,

where we defined for x ∈ Cδ,η the function In(x) :=M−1(xΓ, ν)
n∑
j=0

Mj(xΓ)νj where

(xΓ, ν) ∈ Γ×]− δ, η[ is the unique solution of x = xΓ + νn(xΓ).

• The "second consistency error” by:

Dc,1η,δ,n :=
∥∥∥ik(In − 1)µδ Iδ,η Ĥn

δ

∥∥∥
L2(Cδ,η)

.
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10.3.1 Estimate of the first consistency error

We introduce the following quantity:

Qδ
n := −δn ˆrot

(
Ên+1

)
+ ikµ

2n∑
j=n+1

δj
n∑

k=l−j
Mkν̂

kĤj−k,

because we have the following result:
Proposition 10.3.1. One has for all x ∈ Cδ,η:(

rot
(
Iδ,η Ên

δ

)
+ ikInµδ Iδ Ĥn

δ

)
(x) =M(xΓ, ν)−1

(
Iδ,ηQδ

n

)
(x),

where (xΓ, ν) ∈ Γ×]− δ, η[ is the unique solution of x = xΓ + νn(xΓ).
Proof. Thanks to Proposition 9.2.3, we have:(

rot
(
Iδ,η Ên

δ

)
+ ikInµδ Iδ Ĥn

δ

)
(x) =M(xΓ, ν)−1

(
Iδ,η Q̃δ

n

)
(x),

where we defined:

Q̃δ
n := δ−1 ˆrot

(
Ên
δ

)
+ rotΓ

(
Ên
δ

)
+ ikµ

n∑
j=0

Mj ν̂
jδjĤn

δ .

Therefore it remains to prove that Q̃δ
n = Qδ

n. Indeed we have:

Q̃δ
n =δ−1 ˆrot

(
Ên
δ

)
+ rotΓ

(
Ên
δ

)
+ ikµ

n∑
j=0

Mj ν̂
jδjĤn

δ ,

=
n∑
j=0

δj−1 ˆrot
(
Êj
)

+
n∑
j=0

δjrotΓ

(
Êj
)

+ ikµ
n∑
j=0

Mj ν̂
j

n∑
k=0

δk+jĤk,

=
n−1∑
j=−1

δj ˆrot
(
Êj+1

)
+

n∑
j=0

δjrotΓ

(
Êj
)

+ ikµ
∑

(k,j)∈N1

Mj ν̂
jδj+kĤk,

where N1 := {(k, l) ∈ Z2, 0 ≤ k ≤ n and 0 ≤ l ≤ n}. Let N : Z2 7→ Z2 defined for
(k, l) ∈ Z2 by:

N (k, l) := (k, l + k),

and we remark that this application is bijective. From the following equivalence:

∀(k, l) ∈ Z2,

{
0 ≤ k ≤ n

0 ≤ l ≤ n
⇐⇒

({
0 ≤ k ≤ l + k

0 ≤ l + k ≤ n
or

{
l + k − n ≤ k ≤ n

n+ 1 ≤ l + k ≤ 2n

)
,

we get that N (N1) = N1
2 ∪N2

2 with N1
2 ∩N2

2 = ∅ and:{
N1 :=

{
(k, l) ∈ Z2, 0 ≤ k ≤ l and 0 ≤ l ≤ n

}
,

N2 :=
{

(k, l) ∈ Z2, l − n ≤ k ≤ n and n+ 1 ≤ l ≤ 2n
}
.
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∑
(k,j)∈N1

Mj ν̂
jδj+kĤk =

∑
(k,j)∈N (N1)

δlMkν̂
kĤj−k =

∑
m=1,2

∑
(k,j)∈Nm

2

δjMkν̂
kĤj−k.

Moreover combining with (9.2.18) which is stated Lemma 9.3.11 yields:

Q̃δ
n =

n−1∑
j=−1

δj ˆrot
(
Êj+1

)
+

n∑
j=0

δjrotΓ

(
Êj
)

+ ikµ
∑
m=1,2

∑
(k,j)∈Nm

2

δjMkν̂
kĤj−k,

a =
((((

((((
(((

((((
((((n∑

j=0

δj ˆrot
(
Êj+1

)
+

n∑
j=0

δjrotΓ

(
Êj
)
− δn ˆrot

(
Ên+1

)
+
���

���
���

���
�

ikµ

n∑
j=0

δj
j∑

k=0

Mkν̂
kĤj−k + ikµ

∑
(k,j)∈N2

2

δjMkν̂
kĤj−k,

= −δn ˆrot
(
Ên+1

)
+ ikµ

2n∑
j=n+1

δj
n∑

k=l−j
Mkν̂

kĤj−k = Qn
δ ,

which conclude the proof.
Proposition 10.3.2. For all m ∈ N the following estimate holds:

‖Qn
δ ‖Cm(Γ;L2(]0,1[2×]−1,η/δ[)) ≤ Cηn+ 1

2 δ−
1
2

Proof. We recall that:

Qn
δ = −δn ˆrot

(
Ên+1

)
+ ikµ

2n∑
j=n+1

δj
n∑

k=l−j
Mkν̂

kĤj−k,

and thanks to the decomposition (9.3.65) found in Lemma 9.3.11 we have:

Qn
δ =− δn ˆrot

(
Rn+1
E + P n+1

E

)
+ ikµ

2n∑
j=n+1

δj
n∑

k=l−j
Mkν̂

k(Rj−k
H + P j−k

H ),

=− δn ˆrot
(
Rn+1
E

)
+ ikµ

2n∑
j=n+1

δj
n∑

k=l−j
Mkν̂

k(Rj−k
H )−

δn∂ν̂
(
n× P n+1

E

)
+ ikµ

2n∑
j=n+1

δj
n∑

k=l−j
Mkν̂

k(P j−k
H ),

which leads to the following decomposition:

Qn
δ := δnQn,0

δ +Qn,1
δ , (10.3.19)

where we defined:
Qn,0
δ := − ˆrot

(
Rn+1
E

)
+ ikµ

2n∑
j=n+1

δj−n
n∑

k=l−j
Mkν̂

k(Rj−k
H ),

Qn,1
δ := δn · n× ∂ν̂P n+1

E + ikµ

2n∑
j=n+1

δj
n∑

k=l−j
Mkν̂

k(P j−k
H ).
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We can easily prove that for all m the quantity Qn,0
δ satisfies the P∞m property which leads

to: ∥∥Qn,0
δ

∥∥
Cm(Γ;L2(]0,1[2×]−1,η/δ[))

≤ C. (10.3.20)

Moreover we have existence of PA ∈ C∞ (Γ;Cn[ν̂]) and (P n+1
B , · · · , P 2n

B ) ∈ C∞ (Γ;Cn+1[ν̂])×
· · · × C∞ (Γ;C2n[ν̂]) such that we have:

Qn,1
δ = δnPA + ikµ

2n∑
j=n+1

δjP j
B.

In the scalar case we have already shown that for all p ∈ N and P ∈ C∞ (Γ;Cp[ν̂]) we
have:

‖Dm
Γ P‖Cm(Γ;L2(]0,1[2×]−1,η/δ[)) ≤ C

(η
δ

)p+ 1
2
, (10.3.21)

which to leads the following estimate:

∥∥Qn,1
δ

∥∥
Cm(Γ;L2(]0,1[2×]−1,η/δ[))

≤ C

(
δn
(η
δ

)n+ 1
2

+
2n∑

j=n+1

δj
(η
δ

)j+ 1
2

)
≤ Cηn+ 1

2 δ−
1
2 .

Combining this last estimate with (10.3.19) and (10.3.20) conclude our proof.
Corollary 10.3.3. The first consistency error satisfies the following estimate:

Dc,0η,δ,n ≤ Cηn+ 1
2 .

Proof. It is a direct consequence of Proposition 10.3.2 and Proposition 3.1.1 (See Chapter
3),

10.3.2 Estimate of the second consistency error

Proposition 10.3.4. We have for all m ∈ N the following estimate:∥∥∥Ĥn
δ

∥∥∥
Cm(Γ;L2(]0,1[2×]−1,η/δ[))

≤ Cη
1
2 δ−

1
2 .

Proof. It is a direct consequence of (9.3.65) found in Lemma 9.3.11 and the estimate
(10.3.21).
Corollary 10.3.5. The first consistency error satisfies the following estimate:

Dc,1η,δ,n ≤ Cηn+ 3
2 .

Proof. Since (xΓ, ν) 7→ Mn(xΓ, ν) is the Taylor expansion of order n in ν of the function
Mn, we have that the function:

x 7→ I(x)− 1

νn+1
,

where (xΓ, ν) ∈ Γ×]−δ, η[ is the unique solution of x = xΓ+n(xΓ)ν is bounded. Moreover
the function µδ is bounded then we have existence of C > 0 independent of δ such that:

Dc,1η,δ,n =
∥∥∥ik(In − 1)µδ Iδ(Ĥn

δ )
∥∥∥
L2(Γ×]−δ,η[)

≤ Cηn+1
∥∥∥Iδ(Ĥn

δ )
∥∥∥
L2(Γ×]−δ,η[)

.
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Combining this last estimate with Proposition 3.1.1 (See Chapter 3), and Proposition 10.3.4
yields:

Dc,1η,δ,n ≤ Cηn+1δ
1
2

∥∥∥Ĥn
δ

∥∥∥
C3(Γ;L2(]0,1[2×]−1,η/δ[))

≤ Cηn+ 3
2 ,

which conclude the proof.

10.3.3 Total estimate of the consistency error

Thanks to Corollary 10.3.3 an Corollary 10.3.5 we get the following result:
Lemma 10.3.6. There exists C > 0 independent of δ such that the following estimate
holds:

Dcη,δ,n ≤ Cηn+ 1
2

10.4 Estimate of matching error

Lemma 10.4.1. There exists C > 0 independent of δ such that the followings estimate
holds:

Drη,δ,n ≤ C
(
ηn+ 1

2 + δ−1 exp
(
−πgmin

η

δ

))
.

Proof. We skip the proof as it is similar to the one of Lemma 3.3.4 (See Chapter 3). We
recall that this result is a consequence of the C∞ regularity of the far field and the identi-
ties (9.1.10). In this case, proceeding as previously a δ−1 term appears, intrinsically due
to Maxwell equation equation(oscillating term already appears in the term Ê0 contrary
to the term û0 ≡ u0(ν = 0).

10.5 Justification and error estimate theorem

Theorem 10.5.1. For all bounded open set K ⊂ Ω satisfying K ∩ Γ = ∅ there exists
CK > 0 such that the following estimate holds:∥∥Eδ − En

δ,η

∥∥
H(rot,K)

+ ‖Hδ −Hn
δ ‖H(rot,K) ≤ Cδn+1.

Proof. First we emphasize that we can chose the function δ 7→ η(δ) := δ
n

n+ 1
2 as it last one

well satisfies the required property that we recall above:

lim
δ→0

η(δ) = 0 and lim
δ→0

η(δ)

δ
=∞.

Then we prove that for this specific choice we have existence of C > 0 such that for all
bounded open set K the following estimate holds.∥∥Eδ − En

δ,η

∥∥
H(rot,K)

+
∥∥Hδ −Hn

δ,η

∥∥
H(rot,K)

≤ Cδn. (10.5.22)

Let K ⊂ Ω be a bounded open set. Thanks to the result of consistence error estimate
Lemma 10.4.1, the result of matching error estimate Lemma 10.3.6 and the stability result
Lemma 10.1.1 we first get the following estimate:∥∥Eδ − En

δ,η

∥∥
H(rot,K)

+
∥∥Hδ −Hn

δ,η

∥∥
H(rot,K)

≤ C
(
ηn+ 1

2 + δ−1 exp
(
−πgmin

η

δ

))
. (10.5.23)
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Thanks to these last property we get existence of C > 0 independent of δ > 0 such that:

exp
(
−πgmin

η

δ

)
≤ C

(
δ

η

)(n+1)2

= Cδn+1,

and combining this last estimate with (10.5.23) conclude the proof of the estimate (10.5.22).
Now that we proved this estimate we now use the hypothesis K∩Γ. In this case it is easy
to prove that for δ small enough that we have χη ≡ 0 and then the estimate (10.5.22)
becomes: ∥∥Eδ − En

δ

∥∥
H(rot,K)

+ ‖Hδ −Hn
δ ‖H(rot,K) ≤ Cδn.

Since the proof is true for all n then this last one is also true for n+ 1 which yields:∥∥Eδ − En+1
δ

∥∥
H(rot,K)

+
∥∥Hδ −Hn+1

δ

∥∥
H(rot,K)

≤ Cδn+1.

Therefore we have:∥∥Eδ − En
δ

∥∥
H(rot,K)

+ ‖Hδ −Hn
δ ‖H(rot,K) ≤

∥∥Eδ − En+1
δ

∥∥
H(rot,K)

+
∥∥Hδ −Hn+1

δ

∥∥
H(rot,K)

+

δn+1
∥∥Hn+1

∥∥
H(rot,K)

+ δn+1
∥∥En+1

∥∥
H(rot,K)

≤ Cδn+1,

which is the stated estimate in this theorem.
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Chapter 11

Effective boundary condition of order 1

11.1 Explicit construction of the far field and the near
field for n = 0

11.1.1 The far field

Applying the formula (9.3.62), yields that the far field (E0, H0) are defined by the unique
solution of: Find (E0, H0) ∈ Hloc(rot; Ω)2 such that:

rotE0 = −ikH0 and rotH0 = ikE0 + Jsource,

satisfying the boundary condition γtE0 = 0 on Γ and the radiating condition (8.1.3).

11.1.2 The near field

Applying (9.3.63) and (9.3.64) with n = 0 yields for all (xΓ; x̂, ν̂) ∈ Γ× Ω̂:

Ê0(xΓ; x̂, ν̂) = (E0(xΓ) · n(xΓ))NE(xΓ; x̂, ν̂), (11.1.1)

and
H0(xΓ; x̂, ν̂) = NH(xΓ; x̂, ν̂)

(
n(xΓ)×

(
H0(xΓ)× n(xΓ)

))
. (11.1.2)

11.2 Explicit construction of the far field for n = 1

We introduce for convenience the normal trace operator for u : Ω 7→ C3 and xΓ ∈ Γ by:

γnu(xΓ) := u(xΓ) · n(xΓ).

Thanks to (11.1.1) and (11.1.2), we have for n = 1 and all (xΓ, x̂, ν̂) ∈ Γ× Ω̂ that :

fE1 (xΓ; x̂, ν̂) = −rotΓ

((
E0(xΓ) · n(xΓ)

)
NE(xΓ; x̂, ν̂)

)
(11.2.3)

− ikµ̂(xΓ; x̂, ν̂)NH(xΓ; x̂, ν̂)
(
n(xΓ)×

(
H0(xΓ)× n(xΓ)

))
. (11.2.4)

245



Applying (9.3.62) yields that the far field (E1, H1) are defined by the unique solution of:
Find (E1, H1) ∈ Hloc(rot; Ω)2 such that:

rotE1 = −ikH1 and rotH1 = ikE1 in Ω,

satisfying the boundary condition:

E1(xΓ)× n(xΓ) =

∫
Ŷ−

fE1 (xΓ; x̂, ν̂)dx̂dν̂,

and the radiating condition (8.1.3). To express more explicitly this last quantity we
introduce the scalar field ε−1

eff defined for xΓ ∈ Γ by:

ε−1
eff (xΓ) :=

∫
Ŷ∞

ε̂(xΓ)
∣∣ ∇̂wε(xΓ; x̂, ν̂)

∣∣2dx̂dν̂,
and the tensor field µeff defined for xΓ ∈ Γ by:

• If xΓ ∈ ΓM then µeff(xΓ) is the unique element of L
(
TxΓ

Γ
)
such that for all (i, j) ∈

{1, 2}2 we have:(
µeff(xΓ)ei(xΓ), ej(xΓ)

)
=

∫
Ŷ∞

µ̂
((
ei(xΓ), ej(xΓ)

)
+
(
∇̂wi(xΓ; x̂, ν̂), ∇̂wj(xΓ; x̂, ν̂)

))
dx̂dν̂.

• If xΓ /∈ ΓM then:

µeff(xΓ) :=

∫
Ŷ∞

µ̂(xΓ; x̂, ν̂)dx̂dν̂I.

Finally we define the operator Z1 for u by:

Z1u = k−2 ~rotΓ

(
ε−1

eff rotΓu
)
− µeffu.

The space of definition of this last operator will be given later.
Proposition 11.2.1. For all xΓ ∈ Γ, we have∫

Ŷ−

fE1 (xΓ; x̂, ν̂)dx̂dν̂ = ikZ1(γTH
0)(xΓ).

Proof. First we prove that we have:∫
Ŷ−

rotΓ

(
γnE

0NE(·; x̂, ν̂)
)
dx̂dν̂ = −(ik)−1 ~rotΓ

(
ε−1

eff rotΓ

(
γTH

0
))
. (11.2.5)

To prove this last equality we need to prove that we have:

∀xΓ ∈ Γ,

∫
Ŷ−

NE(xΓ; x̂, ν̂)dx̂dν̂ = ε−1
eff (xΓ; x̂, ν̂)n(xΓ). (11.2.6)

Indeed, let xΓ ∈ Γ. Using the periodicity of the function wε and the definition of the
vector NE given in (9.3.26) yields:∫

Ŷ−

NE(xΓ; x̂, ν̂)dx̂dν̂ =

∫
Ŷ−

∇̂wε(xΓ; x̂, ν̂)dx̂dν̂ = n(xΓ) ·
∫
Ŷ−

∂ν̂w
ε(xΓ; x̂, ν̂)dx̂dν̂,

(11.2.7)
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and using (9.3.25) with wε as a test function yields:∫
Σ

wε(xΓ; x̂, ν̂)dx̂ =

∫
Ŷ∞

ε̂
(
∇̂wε(xΓ; x̂, ν̂), ∇̂wε(xΓ; x̂, ν̂)

)
dx̂dν̂ = ε−1

eff (xΓ).

Therefore combining this last equality with (11.2.7) end the proof of (11.2.6). Thus using
(11.2.6) yields:

rotΓ

(∫
Ŷ−

γnE
0NE(·; x̂, ν̂)dx̂dν̂

)
= ~rotΓ

(
γnE

0ε−1
eff

)
.

Moreover thanks to the equation rotE0 = −ikH1 we have γnE0 = −(ik)−1rotΓ

(
γTH

0
)
.

Secondly we prove that for all xΓ we have:

ik

∫
Ŷ−

µ̂(xΓ; x̂, ν̂)NH(xΓ; x̂, ν̂)H0(xΓ)dx̂dν̂ = ikµeff

(
n(xΓ)× (H0(xΓ)× n(xΓ))

)
. (11.2.8)

Indeed, for xΓ ∈ ΓM we have for all i ∈ {1, 2}:∫
Ŷ−

µ̂(xΓ; x̂, ν̂)NH(xΓ; x̂, ν̂)ei(xΓ)dx̂dν̂ = µ̂eff(xΓ)ei(xΓ), (11.2.9)

because applying (9.3.30) with wi(xΓ; ·) as a test function yields:(∫
Ŷ−

µ̂(xΓ; x̂, ν̂)NH(xΓ; x̂, ν̂)ei(xΓ)dx̂dν̂, ej(xΓ)

)
=

∫
Ŷ−

µ̂(xΓ; x̂, ν̂)
(
∇̂wi(xΓ; x̂, ν̂), ∇̂wj(xΓ; x̂, ν̂)

)
dx̂dν̂,

+

∫
Ŷ−

µ̂(xΓ; x̂, ν̂)dx̂dν̂
(
ei(xΓ), ej(xΓ)

)
,

=
(
µeff(xΓ)ei(xΓ), ej(xΓ)

)
.

The case of xΓ /∈ Γ is trivial Finally combining (11.2.5) and (11.2.8) with (11.2.3) ends
the proof.

11.3 Deduction to an effective boundary condition

11.3.1 Formal deduction

From the previous section we recall that

γtE
0 = 0 and γtE

1 = ikZ1

(
γTH

0
)
,

which leads to:
γt
(
E0 + δE1

)
≈ ikδZ1

(
γT (H0 + δH1)

)
. (11.3.10)

More precisely we have

γt
(
E0 + δE1

)
= δZ1

(
γT (H0 + δH1)

)
+O(δ2) with O(δ2) := −ikδ2Z1

(
γTH

1
)
.

Thus we introduce the field (Eδ
1 , H

δ
1) as the unique solution of (8.1.1) and (8.1.3) satisfying

the following boundary condition(the study of this problem will be done further):

γtE
δ
1 = ikδZ1

(
γTH

δ
1

)
.
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11.3.2 Variational formulation

We introduce for δ > 0 the following Hilbert space:

V δ :=
{
U ∈ H(rot;BR ∩ Ω), rotΓ(U) ∈ L2(Γ)

}
,

and we provide this last with the norm defined for U ∈ V δ by:

‖U‖V δ := δ
1
2

(
‖U‖L2(Γ) + ‖rotΓ(U)‖L2(Γ)

)
+ ‖U‖H(rot,BR∩Ω).

We define on this last space the sesquilinear form aδ1 defined for (H,H ′) ∈ V δ by:

aδ1(H,H ′) :=δ

∫
Γ

(
ε−1

eff rotΓ(H) · rotΓ(H ′)− k2
(
µeffH,H

′))dΓ+,∫
BR∩Ω

((
rotH, rotH ′

)
− k2

(
H,H ′

))
dΩ + ik

〈
Ge(n×H), (n×H)× n

〉
We introduce this last sesquilinear because we can easily prove that the restriction the
function Hδ

1 on the domain BR ∩Ω is the unique solution of: Find Hδ
1 ∈ Vδ such that we

have for all H ′ ∈ Vδ we have:

aδ1(Hδ
1 , H

′) =

∫
BR∩Ω

Jsource · rot(H ′).

11.3.3 Consistency error

We need to introduce the two following space:

H−
1
2 (divΓ; Γ) :=

{
u ∈ H−

1
2 (Γ)3 , u is tangential and divΓ u ∈ H−

1
2 (Γ)

}
,

and
H−

1
2 (rotΓ; Γ) :=

{
u ∈ H−

1
2 (Γ)3 , u is tangential and rotΓu ∈ H−

1
2 (Γ)

}
.

We recall that:

H−
1
2 (divΓ; Γ) =

(
H−

1
2 (rotΓ; Γ)

)†
and H−

1
2 (rotΓ; Γ) =

(
H−

1
2 (divΓ; Γ)

)†
(11.3.11)

Lemma 11.3.1. There exists C > 0 independent of δ such that we have the following
consistency error:

sup
H′∈V δ

aδ1(H0 + δH1 −Hδ
1 , H

′)

‖H ′‖V δ
≤ Cδ2

Proof. Let H ′ ∈ V δ satisfying ‖H ′‖V δ = 1. We will show an uniform estimate to the small
parameter δ and H ′ of the quantity aδ1(H0 + δH1 −Hδ

1 , H
′). Indeed thanks to (11.3.10)

and (11.3.11) we have:

aδ1(H0 + δH1 −Hδ
1 , H

′) = δ2 (lΓ, γTH
′)L2(Γ) ,

≤ δ2 ‖lΓ‖H− 1
2 (divΓ;Γ)

· ‖γTH ′‖H− 1
2 (rotΓ;Γ)

,

≤ Cδ2 ‖lΓ‖H− 1
2 (divΓ;Γ)

‖H ′‖H(rot;Ω),
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where we posed the quantity lΓ := ~rotΓ

(
ε−1

eff rotΓ(γTu)
)
−k2µeffγTu. Therefore combining

this with ‖H ′‖H(rot;Ω) ≤ ‖H ′‖V δ = 1 leads to :

aδ1(H0 + δH1 −Hδ
1 , H

′) ≤ C‖lΓ‖H− 1
2 (rot;Γ)

.

Therefore it remains to prove that lΓ ∈ H−
1
2 (divΓ; Γ). This result is a direct consequence

of the regularity of the far field H1 and the effective coefficients ε−1
eff and µeff .

11.4 Stability of the effective boundary condition

Lemma 11.4.1. There exists C > 0 independent of δ such that we have for all H ∈ V δ:

‖H‖V δ ≤ C sup
H′∈V δ

aδ1(H,H ′)

‖H ′‖V δ
.

As the proof of Lemma 10.1.1, we will prove this lemma by contradiction. If this result
is false then there exists a sequence Hδ ∈ V δ such that we have:

lim
δ→0

sup
H′∈V δ

aδ1(Hδ, H ′)

‖H ′‖V δ
= 0 and

∥∥Hδ
∥∥
V δ

= 1. (11.4.12)

Nevertheless, we do not have compactness result of the injection from V δ into L2(Ω) ∩
L2(Γ). However, we have a compactness result stated Proposition 11.4.3 for the following
space:

Xδ
0 :=

{
H ∈ V δ, aδ1(H,∇ψ) = 0, ∀ψ ∈ Sδ

}
,

where we defined the following space:

Sδ := H1(BR ∩ Ω) ∩H1(Γ).

We emphasize that from the relation rotΓ∇Γ = 0 that we have the following inclusion:

∇Sδ ⊂ V δ.

Although we do not have Hδ ∈ Xδ
0 , we can reduce to this last case by using the the

following result:
Proposition 11.4.2. There exists C > 0 independent of δ > 0 such that the sesquilinear
form aδ1 satisfies the following inf − sup condition:

inf
ψ∈Sδ

sup
ψ′∈Sδ

aδ1

(
∇φ,∇ψ′

)
‖H‖Sδ‖H ′‖Sδ

≥ C and inf
ψ∈Sδ

sup
ψ′∈Sδ

aδ1

(
∇φ′,∇ψ

)
‖H‖Sδ‖H ′‖Sδ

≥ C.

Proof. The proof is exactly the same than the one of the stability result for the Helmholtz
equation stated in Lemma 4.5.4 (See Chapter 4). It is sufficient to replace the Dirichlet
to Neumann map by the following sesquilinear forms defined for (u, v) ∈ H1(BR ∩ Ω)2

by:
ik〈Ge · (n×∇u), n× (∇v × n)〉.

Indeed this last sesquilinear satisfies the same required properties than DtN we used to
do the proof of Lemma 4.5.4 (See Chapter 4).
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Indeed thanks to this last result we have existence and uniqueness of a sequence ψδ ∈ Sδ
such that we have:

aδ1(∇ψδ,∇ψ′) = −aδ1(Hδ,∇ψ′), (11.4.13)

satisfying the the following estimate:

‖ψδ‖Sδ ≤ C−1 sup
ψ′∈Sδ

aδ1(Hδ,∇ψ′)
‖ψ′‖Sδ

, (11.4.14)

where C > 0 is the constant appearing in Proposition 11.4.2. Combining the estimate
(11.4.14) with (11.4.12) yields that:

lim
δ→0
‖∇ψδ‖V δ = 0,

and thanks to (11.4.13) we directly get that Hδ +∇ψδ ∈ Xδ
0 .

Proposition 11.4.3. Let (Hδ)δ>0 be a sequence of element of Xδ
0 such that there exists

C > 0 independent of δ with:
‖Hδ‖V δ ≤ C, (11.4.15)

Then there exists H ∈ L2(BR∩Ω) and HΓ ∈ L2(Γ) such that we have up to a sub-sequence
the following convergence:

lim
δ→0

Hδ = H in L2(Ω) and lim
δ→0

δ
1
2Hδ = HΓ in L2(Γ). (11.4.16)

Moreover there exists gΓ such that up to a sub-sequence we have:

lim
δ→0

G2
e(n×Hδ) = gΓ. (11.4.17)

The proof is inspired from the one of [38, Lemma 15]. We introduce the half space
P := R2×] − ∞, 0[. We denote for vector u : P 7→ C3 the tangential trace by u∂P.
Moreover div∂P and rot∂P are the surface divergence and scalar curl on ∂P. We need also
to define the following assumptions for (M,P ) ∈ C1

(
∂P;M2(R)

)
×C1

(
P;M3(R)

)
, η > 0

and u ∈ L2(P)3:

(I) There exists CM,P , C
′ > 0 such that for all v ∈ H1(P)3 with div(v) = 0 and

v∂P ∈ H1(∂P)2 we have:

−Re

∫
∂P

div∂P(Mv∂P)div∂P(v∂P)d(∂P) ≤ CM,P‖(Pv)∂P‖2

H
(
rot∂P,∂P

) + ‖Pv‖H(rot,P)

− C ′
(
‖v‖2

H1(P)3 + ‖v∂P‖2
H1(∂P)2

)
.

(II) We have the estimate : ‖P − I‖
C1
(
P;M3(R)

) ≤ η.

(III) The matrix field M is uniformly definite positive. That means the existence of
C > 0 such that: for all (v, x) ∈ C2 × ∂P we have

(M(x)v, v)

|v|2
> C.
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(IV) For all x ∈ ∂P and v ∈ R2 × {0}: P (x)v ∈ R2 × {0}.

(V)
(
rot(Pu), rot∂P(Pu)∂P

)
∈ L2

(
P
)3 × L2

(
∂P
)
and (u, u∂P) ∈ L2(P)3 × L2(∂P)2.

(VI) For all φ : Γ 7→ R with (∇φ,∇∂Pφ) ∈ L2
(
P
)3 × L2

(
∂P
)2 we have:∫

∂P
Mu · ∇∂Pφd(∂P) +

∫
P
u · ∇φdP = 0.

To prove Proposition 11.4.3, one need the three following results:
Lemma 11.4.4. Let (M,P ) ∈ C1

(
∂P;M2(R)

)
× C1

(
P;M3(R)

)
and η > 0 satisfying

(I), (II), (III) and (IV). Then if η is small enough, we have for all u ∈ L2(P)3 satisfying
(V), (VI) that u ∈ H1(P)3 and the following estimate holds:

‖u‖2
H1(P) ≤ 2‖Pu‖2

H(rot,P) + 4CM,P‖(Pu)∂P‖2
H(rot∂P,∂P). (11.4.18)

We will also use the following result which is found in [38, Lemma 14].
Lemma 11.4.5. Let M be a definite positive matrix of size 2× 2 and P = I3. Then (I),
(III) and (IV) holds in this case.
Lemma 11.4.6. The set of matrix field (M,P ) ∈ C1

(
∂P;M2(R)

)
×C1

(
P;M3(R)

)
sat-

isfying (I) and (III) is an open subset of C1
(
∂P;M2(R)

)
× C1

(
P;M3(R)

)
.

Proof of Lemma 11.4.4. Let us prove first that u ∈ H1(P)3 and (u)∂P ∈ H1(∂P)3 implies
the estimate (11.4.18). In this case we can apply [60, Lemma 5.4.2], which leads to:

‖rot(u)‖2
L2(P) + ‖div(u)‖2

L2(P) = ‖∇u‖2
L2(P) + 2Re〈divΓ(uΓ), u · n〉∂P, (11.4.19)

where 〈, 〉∂P := 〈·, ·〉
H−

1
2 (∂P)−H 1

2 (∂P)
. Thanks to (II) if η is small enough then:

‖rot(Pu)‖2
L2(P) ≥ ‖rot(u)‖2

L2(P) −
1

2
‖u‖2

H1(P).

Combining this last estimate with (11.4.19) leads to:

‖u‖2
L2(P) +‖rot(Pu)‖2

L2(P) +‖div(u)‖2
L2(P) ≥

1

2
‖u‖2

H1(P) +2Re〈divΓ(uΓ), u ·n〉∂P. (11.4.20)

The assumption (VI) leads to:

div(u) = 0 in P and u · n = divΓ(MuΓ) in ∂P. (11.4.21)

Hence (11.4.20) becomes:

‖u‖2
L2(P) + ‖rot(Pu)‖2

L2(P) ≥
1

2
‖u‖2

H1(P) + 2Re〈divΓ(uΓ), divΓ(MuΓ)〉∂P, (11.4.22)

Thanks to the assumption (I), this becomes:

1

2
‖u‖2

H1(P) ≤ ‖u‖2
L2(P) + ‖rot(Pu)‖2

L2(P) + 2CM,P‖(Pu)∂P‖2

H
(
rot∂P,∂P

),
which concludes the proof of the implication: u ∈ H1(P) and (u)∂P ∈ H1(∂P)3 ⇒
(11.4.18).
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Therefore it remains to prove u ∈ H1(P) and (u)∂P ∈ H1(∂P)3. Indeed thanks to (V),
there exists a sequence (uj)j with uj ∈ H1(P) and (uj)∂P ∈ H1(∂P)3 such that:

Pu = lim
j→∞

Puj in H(rot;P) and (Pu)∂P = lim
j→∞

(uj)∂P in H(rot∂P; ∂P). (11.4.23)

Nevertheless this sequence a priory does not satisfies the assumption (VI). That is why
we introduce for j a function ψj of the space:

V (∂P) :=

{
ψ ∈ L2

lox(P)/C, ‖u‖2
V (∂P) :=

∫
∂P
|∇u|2dP +

∫
P
|∇∂Pu|2d(∂P) <∞

}
.

This function is the unique solution of: Find ψj ∈ V (∂P) such that for all φ ∈ V (∂P) we
have:

a(ψj, φ) = lj(φ). (11.4.24)

In this variational formulation, the sesquilinear form a and the anti-linear form lj are
defined for (v, v′) ∈ V (∂P)2 by:

a(v, v′) :=

∫
∂P

(MP−1)∇∂Pv · ∇∂Pv
′d(∂P) +

∫
P
(P−1∇v) · ∇v′dP,

and:
lj(v

′) = −
∫
∂P
Muj · ∇∂Pv

′d(∂P)−
∫
P
uj · ∇v′dP = 0.

This last problem is well posed when η is small enough. Indeed, on the one hand we
assumed that M is uniformly coercive on ∂P. Combining this with (II) yields that if η is
small enough then the matrix fieldMP−1 is also uniformly coercive on ∂P. Moreover P−1

is also uniformly coercive on P. Then the sesquilinear a form is well coercive in V (∂P).
On the other hand the anti-linear form lj is clearly continuous.

Thus we now can introduce the field:

ũj := uj + P−1∇ψj. (11.4.25)

Thanks to (11.4.24), this field well satisfies (VI). Thanks to the regularity of uj and M ,
by inspiring from the proof of [57, Theorem 4.21], we can prove that: ∇φj ∈ H1(P) and
(∇φj)∂P ∈ H1(∂P)3.

Therefore for all j, k, ũj − ũk ∈ H1(P)3 and (ũj − ũk)∂P ∈ H1(∂P)2 . Moreover thanks
to the properties rot∇ = 0 and rot∂P∇∂P = 0 we have by construction:

rot
(
P (ũj − ũk)

)
= rot

(
P (uj − uk)

)
∈ L2(P)3, (11.4.26)

and
rot∂P

(
P (ũj − ũk)

)
= rot∂P

(
P (uj − uk)

)
∂P ∈ L

2(P). (11.4.27)

Moreover, by linearity ũj − ũk satisfies (V) and (VI). Thus we can apply the estimate
(11.4.18) which leads to:

‖ũj − ũk‖2
H1(P) ≤ 2‖P (ũj − ũk)‖2

H(rot,P) + 4CM,P‖
(
P (ũj − ũk)

)
∂P‖

2
H(rot∂P,∂P).
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Thanks to (11.4.26) and (11.4.27) this last estimate becomes:

‖ũj − ũk‖2
H1(P) ≤ E1

jk + E2
jk, (11.4.28)

where we defined for j, k:

E1
jk := 2‖rot

(
P (uj − uk)

)
‖2
L2(P)3 + 4CM,P‖rot∂P

(
P (uj − uk)

)
∂P‖

2
L2(∂P),

and
E2
jk := 2‖(ũj − ũk)‖2

L2(P)3 + 4CM,P‖(ũj − ũk)∂P‖2
L2(∂P).

Now let us prove that:
lim
j→∞

sup
k→∞

E1
jk = lim

j→∞
sup
k→∞

E2
jk = 0. (11.4.29)

Indeed, thanks to (11.4.23) we directly get that (because all convergent sequence are
Cauchy sequence):

lim
j→∞

sup
k→∞

E1
jk = 0.

Thanks to (VI), we can rewrite for v ∈ V (∂P) the definition of lj as follow:

lj(v
′) = −

∫
∂P
M(uj − u) · ∇∂Pv

′d(∂P)−
∫
P
(uj − u) · ∇v′dP = 0.

Combining this with (11.4.23), yields that: lim
j→∞

lj = 0 in V (∂P)†. Combining this (11.4.24),

yields:
lim
j→∞

ψj = 0 in V (∂P). (11.4.30)

Hence lim
j→∞

sup
k→∞

E2
j,k = lim

j→∞
sup
k→∞

2‖(uj−uk)‖2
L2(P)3 +4CM,P‖(uj−uk)∂P‖2

L2(∂P). Combining

this with (11.4.23) conclude the proof of (11.4.29). Thanks to (11.4.29) and (11.4.28), we
directly get that (ũj)j is a Cauchy sequence in H1(P)3. Therefore there exists ũ ∈ H1(P)3

such that:
ũ = lim

j→∞
ũj in H1(P)3,

and thanks to (11.4.30) and (11.4.25) this becomes:

ũ = lim
j→∞

uj in L2(P)3.

Combining this with (11.4.23) yields u = ũ ∈ H1(P)3 which concludes the proof.
Proof of Lemma 11.4.6. Let M , C and C ′ satisfying (I). Let M ′ be an element of
C1
(
R2,M2(R2)

)
such that

‖M ′ −M‖C1(∂P) ≤
√
C ′

2
.

Then thanks to the Leibniz’s formula, we can prove that for all u ∈ H1(P)2 with u∂P ∈
H1(P)2 and div(u) = 0, we have:

Re

∫
∂P

divΓ(M ′u∂P)divΓ(u∂P)d(∂P) ≥ −C
′

2
‖u∂P‖2

H1(∂P) + Re

∫
R2

divΓ(Mu∂P)divΓ(u∂P)d(∂P).
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Combining this last line with (I) leads to:

−Re

∫
∂P

div∂P(Mu∂P)div∂P(u∂P)d(∂P) ≤ CM,P‖(Pu)∂P‖2

H
(
rot∂P,∂P

) + ‖Pv‖H(rot,P)

− C ′

2

(
‖u‖2

H1(P)3 + ‖u∂P‖2
H1(∂P)2

)
. (11.4.31)

Let P ′ an element of C1
(
P,M2(R3)

)
then if ‖P ′ − P‖C1(P) is small then we have:

C‖P ′u‖2
H(rot,P) ≥ C‖Pu‖2

H(rot,P) −
C ′

4
‖u‖2

H1(P)3

Adding this last estimate with (11.4.31) which conclude the proof.
Proof of Proposition 11.4.3. By using truncation function and correction with gradient(see
proof of Lemma 10.1.1), we can prove that we can reduce to the case of Hδ satisfying:

Hδ × n = 0 on ∂BR, (11.4.32)

which conclude the proof of (11.4.17). Let (χNi )1≤i≤N be an arbitrary smooth partition
of unity. Thanks to the Rellich lemma, a sufficient condition of (11.4.16) is the following
one: If this last unit partition is fine enough then for all 1 ≤ i ≤ N the quantity χNi Hδ is
bounded in H1(BR∩Ω). Therefore, let 1 ≤ i ≤ N and let us prove that this last property
holds for this i.

Assume first that supp(χNi ) ∩ Γ = ∅. In this case we have by the definition of the
space Xδ

0 that:

div(χNi H
δ) = ∇χNi ·Hδ + χδi��

���div(Hδ) and rot(χNi H
δ) = ∇χNi ·Hδ + χδi rot(H

δ),

which directly leads that χNi Hδ is bounded in the space H(rot;BR∩Ω)∩H(div;BR∩Ω).
Moreover this last quantities vanishes in the neighborhood of Γ. Thus thanks to (11.4.32)
and [60, Lemma 5.4.2] we directly get that this last quantity is bounded in H1(BR ∩Ω).

Assume now that supp(χNi ) ∩ Γ 6= ∅. Since our manifold Γ is smooth enough then
there exists C∞ diffeomorphism Ψi : R3 7→ R3 such that we have:

Ψ−1
i (supp(χNi ) ∩ Ω) ⊂ P and Ψ−1

i

(
supp(χNi ) ∩ Γ

)
⊂ ∂P. (11.4.33)

We refer the reader to Figure 11.1 for an illustration of this map. From this last appli-
cation we introduce the vector sequence Hδ

? : P 7→ C3 defined for x ∈ P by:

Hδ
?(x) := det

(
D Ψi(x)

)
D Ψi(x)−1χi(x

′)Hδ(x′) with x′ := Ψi(x) ∈ Ω, (11.4.34)

and we now prove by using Lemma 11.4.4 that this last quantity is bounded in H1(P).
We introduce for convenience the tensor field defined for x ∈ Ψ−1

i (supp(χNi ) by:

µ?eff(x) := µωi(x) det
(

D Ψi(x)
)−1

D Ψi(x)−1µeff(x′) D Ψi(x) with x′ := Ψi(x) ∈ Ω,

where µωi : ∂P 7→ Γ is a smooth function such that for all F : supp(χNi ) ∩ Γ 7→ C we
have: ∫

Ψ−1
i (supp(χNi )∩Γ)

F
(
Ψi(x)

)
µωi(x)dx =

∫
supp(χNi )∩Γ

F
(
xΓ

)
dxΓ.
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Figure 11.1: Illustration of Ψi

We can prove that we can extend the tensor field µ?eff for all x ∈ ∂P and hereafter µ?eff is
this extension.

Thanks to [58, Corrally 3.58] the curl of the following vector field defined for x ∈ P
by:

det
(

D Ψi(x)
)

D Ψ†i (x)χi(x
′)Hδ(x′) with x′ := Ψi(x),

is bounded in L2(P). Therefore there exists C > 0 independent of δ such that:∥∥rot(IΨiH
δ
?

)∥∥
L2(P)

≤ C and δ
1
2

∥∥rotΓ

(
IΨiH

δ
?

)∥∥
L2(∂P)

≤ C, (11.4.35)

where we defined the tensor field on P by IΨi := D Ψ†i D Ψi.
If we were able to apply Lemma 11.4.4 to the sequence of vector field (Hδ

?)δ and tensor
fields µ?eff and IΨi then we could conclude our proof. Indeed this result would provide
that the sequence fields (Hδ

?)δ is bounded in H1(P). Nevertheless, if Hδ
? assumption

satisfied (VI) then the anti-linear form lδi ∈ V (P)† (the space V (P) defined one the proof
of Lemma 11.4.4)

〈lδi , v〉V (P)†−V (P) :=

∫
P
Hδ
? · ∇v + δ

∫
∂P
µ?eff

(
Hδ
?

)
∂P · ∇Pv, (11.4.36)

should vanish. To counter this problem, one adds a potential to Hδ
? :

H̃δ
? := H̃δ

? + I−1
Ψi
∇φδ? (11.4.37)

where ∇φδ? ∈ V (P) is uniquely defined by the solution of the problem: Find φδ? ∈ V (P)
such that for all v ∈ V (P)

∀v ∈ V (P), Aδ(φδ?, v) = −〈lδi , v〉V (P)†−V (P), (11.4.38)

and Aδ : V (P)× V (P) 7→ C is defined for by for (u, v) ∈ V (P)2 by:

Aδ(u, v) :=

∫
P
I−1

Ψi
∇u · ∇v + δ

∫
∂P
µ?effI

−1
Ψi
∇∂Pu · ∇∂Pv.

In the later we prove this last problem is well posed when the diameter of supp(χNi ) is
small enough. Then one directly get that H̃δ

? satisfies:

∀v ∈ V (P),

∫
P
H̃δ
? · ∇v + δ

∫
∂P
µ?eff

(
H̃δ
?

)
∂P · ∇Pv = 0. (11.4.39)
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To prove that (11.4.38) is well posed, we now apply the Lax Milgram theorem. Thus we
now prove the two following proposition:

• If the diameter of the support of the function χNi is small enough then the sesquilin-
ear form Aδ is uniformly to the small parameter δ coercive on the space V (P) in the
sense that there exists a constant C > 0 independent of δ such that for all u ∈ V (P)
we have:

ReAδ(u, u) ≥ C
(
‖∇u‖2

L2(P) + δ‖∇∂Pu‖2
L2(P)

)
. (11.4.40)

• The anti-linear form lδi is well an element of V (P)†.

Thanks to the regularity of our boundary Γ and the regularity of the tensor field µeff on
Γ we have for all η > 0 that: If the diameter of the support of the function χNi is small
enough then we can chose the application Ψi such that:

‖IΨi − I‖C1(P) ≤ η and ‖µ?eff − µ?0‖C1(∂P) ≤ η, (11.4.41)

where µ?0 is a constant positive definite hermitian matrix. Thus if η is small enough then
the matrix I−1

Ψi
and µ?effI

−1
Ψi

are definite positive and then we can easily conclude the proof
of (11.4.40). Now let us prove that lδi is well continuous. Indeed, thanks to (11.4.15) ,
the smoothness of the map Ψi and (11.4.34) we have existence of C > 0 independent of
δ such that: √

‖Hδ
?‖2

L2(P)3 + δ‖
(
Hδ
?

)
∂P‖

2
L2(∂P)2 < C.

Combining this with (11.4.36), yields that for all v ∈ V (P) we have:

|〈lδi , v〉V (P)†−V (P)| ≤
√
‖∇v‖2

L2(P)3 + δ‖∇Pv‖2
L2(∂P)2C. (11.4.42)

Therefore we concluded the proof of the continuity of lδi . Hence we well can apply the
Lax Milgram theorem and then φδ? is well defined and (11.4.39) holds.

Now let us prove that ∇φδ? ∈ H1(P) and ∇∂Pφ
δ
? ∈ H1(∂P) with the existence of C > 0

such that we have:
‖∇φδ?‖H1(P)2 + δ

1
2‖∇∂Pφ

δ
?‖H1(∂P)2 ≤ C. (11.4.43)

Combining (11.4.40) with (11.4.42), yields the existence of C > 0 independent of δ such
that:

‖∇φδ?‖L2(P) + δ
1
2‖∇∂Pφ

δ
?‖L2(∂P) ≤ C. (11.4.44)

Now let us prove the existence of functions Lδ0 : P 7→ C and Lδ1 : ∂P 7→ C such that for
all v ∈ V (P) we have:

〈lδi , v〉V (P)†−V (P) =

∫
P
Lδ0 · v + δ

∫
∂P
Lδ1 · v, (11.4.45)

with the existence of C > 0 independent of δ such that we have

‖Lδ0‖L2(P) ≤ C and δ
1
2‖Lδ1‖L2(P) ≤ C. (11.4.46)

Moreover the support of this last function satisfies:

supp(Lδ0) ⊂ Ψ−1
i (supp(χNi ) ∩ Ω) and supp(Lδ1) ⊂ Ψ−1

i (supp(χNi ) ∩ Γ). (11.4.47)
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Indeed, for all v ∈ V (P), we have:

〈lδi , v〉V (P)†−V (P) =

∫
P
Hδ
? · ∇v + δ

∫
∂P
µ?eff

(
Hδ
?

)
∂P · ∇Pv

=

∫
Ψ−1
i (supp(χNi )∩Ω)

Hδ
? · ∇(ṽ ◦Ψi) + δ

∫
Ψ−1
i (supp(χNi )∩Γ)

µ?eff

(
Hδ
?

)
∂P · ∇P(ṽ ◦Ψi),

=

∫
Ψ−1
i (supp(χNi )∩Ω)

Hδ
? ·D Ψ†i · ∇ṽ ◦Ψi + δ

∫
Ψ−1
i (supp(χNi )∩Γ)

µ?eff

(
Hδ
?

)
∂P ·D Ψ†i · ∇Pṽ ◦Ψi,

=

∫
Ψ−1
i (supp(χNi )∩Ω)

D Ψi ·Hδ
? · ∇ṽ ◦Ψi + δ

∫
Ψ−1
i (supp(χNi )∩Γ)

D Ψi · µ?eff

(
Hδ
?

)
∂P · ∇Pṽ ◦Ψi.

Replacing Hδ
? and µ?eff by their definition in these last line leads to:

〈lδi , v〉V (P)†−V (P) =

∫
Ψ−1
i (supp(χNi )∩Ω)

det
(

D Ψi

) (
χiH

δ · ∇ṽ
)
◦Ψi + δ

∫
Ψ−1
i (supp(χNi )∩Γ)

µωi

(
µeffχiH

δ
Γ · ∇Γṽ

)
◦Ψi,

=

∫
Ω

χiH
δ · ∇ṽ + δ

∫
Γ

µeffχiH
δ
Γ · ∇Γṽ,

=
(((

((((
(((

((((
(((

(((∫
Ω

Hδ · ∇(χiṽ) + δ

∫
Γ

µeffH
δ
Γ · ∇Γ(χiṽ) +

∫
Ω

(∇χi ·Hδ)ṽ + δ

∫
Γ

(µeffχiH
δ
Γ · ∇Γχi)ṽ,

=

∫
(supp(χNi )∩Ω

(∇χi ·Hδ)ṽ + δ

∫
supp(χNi )∩Γ

(µeffχiH
δ
Γ · ∇Γχi)ṽ,

=

∫
Ψ−1
i (supp(χNi )∩Ω)

det
(

D Ψi

)
(∇χi ·Hδ) ◦Ψiv + δ

∫
Ψ−1
i (supp(χNi )∩Γ)

µωi(µeffχiH
δ
Γ · ∇Γχi) ◦Ψiv,

which conclude the proof of (11.4.45) and (11.4.47) if we chose:

Lδ0 := det
(

D Ψi

)
(∇χi ·Hδ) ◦Ψi and Lδ1 := µωi(µeffχiH

δ
Γ · ∇Γχi) ◦Ψi.

The estimate (11.4.46) are direct consequences of (11.4.15) and the definition of Lδ0 and
Lδ1.

Thanks to the smoothness of the maps µeff and IΨi , by using similar argument as the
proof of [57, Theorem 4.21], we can prove that for all j ∈ {1, 2} we have:

∂xjφ
δ
? ∈ V (P),

where (x1, x2, x3) is the variable of the map φδ?. Thus for all φ ∈ P, taking ∂xjφ as a test
function in (11.4.38) yields:

Aδ(∂xjφ
δ
?, φ) = 〈lδi,j, φ〉V (P)†−V (P), (11.4.48)

where we defined the anti-linear form lδi,j for v ∈ V (P) by:

〈lδi,j, φ〉V (P)†−V (P) :=

∫
P
∂xj(I

−1
Ψi

)∇u·∇v+δ

∫
∂P
∂xj(µ

?
effI
−1
Ψi

)∇∂Pu·∇∂Pv−
∫
P
Lδ0·∂xjv−δ

∫
∂P
Lδ1·∂xjv.

Thanks to the smoothness of the maps µeff and IΨi (11.4.46) and (11.4.44), we get the
existence of C > 0 independent of δ such that for all v ∈ V (P) we have:

|〈lδi,j, v〉V (P)†−V (P)| ≤
√
‖∇v‖2

L2(P)3 + δ‖∇Pv‖2
L2(∂P)2C.
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Combining this with (11.4.48) and (11.4.40), yields the existence of C > 0 independent
of δ such that for all j ∈ {1, 2} we have:

‖∇∂xjφδ?‖2
L2(P)3 + δ‖∇P∂xjφ

δ
?‖2
L2(∂P)2 < C. (11.4.49)

Moreover, by using there is an argument in the proof of [57, Theorem 4.21] which state
that combining (11.4.49) and

−div
(
I−1

Ψi
∇φδ?

)
= Lδ0 in P,

yields ∂2
x3
φδ? ∈ L2(P) the existence of C > 0 such that:

‖∂2
x3
φδ?‖L2(P) ≤ C.

Combining this with (11.4.49) concludes the proof of (11.4.43).
(11.4.45) and (11.4.46) are sufficient condition to have Thus we succeed to properly

construct the function ∇ψδ? and the required property (11.4.39) is a direct consequence
of (11.4.38).

Thanks to (11.4.35), (11.4.43), the identity identity rot∇ = 0 and rot∂P∇∂P = 0, we
directly get the existence of C > 0 independent of δ such that the following estimate
holds: 

∥∥∥rot(IΨiH̃
δ
?

)∥∥∥
L2(P)

+
∥∥∥H̃δ

?

∥∥∥
L2(P)

≤ C,

δ
1
2

(∥∥∥rotΓ

(
IΨiH̃

δ
?

)∥∥∥
L2(∂P)

+
∥∥∥H̃δ

?

∥∥∥
L2(∂P)

)
≤ C.

(11.4.50)

Thus thanks to (11.4.50) and (11.4.39), H̃δ
? satisfies (V) and (VI). Moreover we have seen

that we can have η as small as we want in (11.4.41). Therefore to to apply Lemma 11.4.4
to H̃δ

? it remains to prove that the tensor IΨi and µ?eff satisfies (I), (III) and (IV)
Indeed, thanks to Lemma 11.4.5, since µ?0 is a positive constant hermitian matrix,

µ?0 and I3 satisfies (I), (III) and (IV). Moreover, since we have seen that we can get η
as small as we want in (11.4.41) we can apply Lemma 11.4.6 which yields that IΨi and
µ?eff also satisfies (I), (III). The property (IV) is a consequence of (11.4.33). We can
easily prove that IΨi and δµ?eff also satisfies (I), (III) and (IV), by replacing CM,P by
Cδµ?eff ,IΨi

:= δCM,P . Therefore thanks to (11.4.50) and Lemma 11.4.4, H̃δ
? ∈ H1(P)3 and

there exists C > 0 independent of δ > 0 such

‖H̃δ
?‖H1(P)3 ≤ C.

Combining this with (11.4.43) and (11.4.37) conclude the proof of H̃ ∈ H1(P) and
‖H̃‖H1(P) ≤ C. Therefore we can now conclude our proof.
Corollary 11.4.7. We have the following convergence:

lim
δ→0
‖Hδ‖L2(BR∩Ω) = lim

δ→0
δ

1
2‖Hδ

Γ‖L2(Γ) = ‖G2
e(n×Hδ)‖

H−
1
2 (div∂BR ;∂BR)

= 0.

Proof. Thanks to Proposition 11.4.3 a sufficient condition is to prove that Hδ weakly
converge to 0 in the space H(rot;BR ∩ Ω) and δ

1
2Hδ weakly converge to 0 in L2(Γ).
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Indeed let H ′ be a smooth vector field then thanks to the regularity of the coefficient ε−1
eff

and µeff we have:
~rotΓ

(
ε−1

eff rotΓH
′)− µeffH

′ ∈ H−
1
2 (div∂BR ; ∂BR).

Therefore the following quantity:∫
Γ

ε−1
eff rotΓH

δ · rotΓH
′ −
∫

Γ

(
µeffH

δ, H ′
)

is bounded in δ which leads to:

lim
δ→0

δ

∫
Γ

ε−1
eff rotΓH

δ · rotΓH
′ − δ

∫
Γ

(
µeffH

δ, H ′
)

= 0.

Thus combining this last convergence with (11.4.12) leads to:

lim
δ→0

a0(Hδ, H ′) = 0. (11.4.51)

Moreover the sequence Hδ is bounded in H(rot;BR ∩ Ω) and then this last sequence
converge up to a sub-sequence. We emphasize that (11.4.51) is true for all smooth vector
H ′ and then we directly yields that the the weak limit of (Hδ)δ>0 is zero. Moreover the
sequence (Hδ)δ>0 is bounded in H−

1
2 (div∂BR ; ∂BR) which leads to (δ

1
2Hδ)δ>0 converge to

zero in the space H−
1
2 (div∂BR ; ∂BR). Thus using that this last sequence is bounded in

L2(Γ) conclude the proof of the weak convergence (δ
1
2Hδ)δ→0 to zero in the space L2(Γ).

Proof of Lemma 11.4.1. We have the following decomposition:

aδ1(Hδ, Hδ) = Cδ +Kδ,

where we defined:
Cδ :=

∫
BR∩Ω

|rotHδ|2dΩ + δ

∫
Γ

ε−1
eff |rotΓH

δ|2dΓ + 〈ikG1
e(n×Hδ), (n×Hδ)× n〉,

Kδ := −k2

∫
BR∩Ω

|Hδ|2 − δ
∫

Γ

(µeffH
δ, Hδ)dΓ + 〈ikG2

e(n×Hδ), (n×Hδ)× n〉

Thus taking H ′ = Hδ in (11.4.12) yields: lim
δ→0

Cδ + Kδ = 0. On the other thanks to

Corollary 11.4.7 we have lim
δ→0

Kδ = 0 which leads to:

lim
δ→0

Cδ = 0. (11.4.52)

Thanks to [58, Lemma 10.5,Theorem 10.6] we have:

Re〈ikG2
e(n×Hδ), (n×Hδ)× n〉 ≥ 0.

Moreover we recall that the function ε−1
eff is inferiorly bounded by a strictly positive

constant. Therefore (11.4.52) leads to:

lim
δ→0
‖rot(Hδ)‖L2(BR∩Ω) = lim

δ→0
‖rotΓ(Hδ)‖L2(Γ) = 0.

Combining these last convergence with Corollary 11.4.7 leads to:

lim
δ→0
‖Hδ‖V δ = 0,

which contradict (11.4.12) and then conclude the proof.
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Conclusion et perspective

A l’issue de cette thèse, il est intéressant de faire le point sur le travail réalisé. La
définition de la ψΓ−δ−périodicité, nous a apporté une généralisation de la périodicité
pour des fonctions définie une surface Γ. Cette définition n’est pas intrinsèque à la
surface Γ car elle dépend du choix de l’application ψΓ. Cependant cette définition nous
apporte une modélisation de couche mince fortement hétérogène: si l’on se donne une
fonction très oscillante (donnée du problème) µ̃ dans la couche mince et que l’on arrive à
identifier un δ, fonction ψΓ et une fonction µδ qui est ψΓ−δ−périodique tel que µδ ≈ µ̃.
Nous pourrons alors utiliser notre modèle de couche ψΓ−δ−périodique. Les simulation
numériques de couches minces ψΓ−δ périodiques sont coûteuses car il faut mailler à
l’échelle du petit paramètre δ. Nous avons réussi durant cette thèse à construire des
approximations d’ordre 1 pour les équations de Maxwell et d’ordre 2 pour l’équation
de Helmholtz . La couche mince très hétérogène est alors remplacée par une condition
d’impédance. Les coefficients apparaissant dans les opérateurs d’impédance dépendent
du choix de l’application ψΓ . Ces approximations nous permettent de réduire le temps
de calcul car l’implémentation de ces conditions ne requiert pas de maillage aussi fin que
ceux des couches minces ψΓ−δ−périodiques. Nous avons réussi à valider numériquement
nos approximations dans le cas 2D. Le temps de calcul pour la résolution du problème
approché est très inférieur à celui nécessaire pour la résolution du problème initial : ainsi
le calcul numérique de la solution exacte a pour ordre de grandeur d’une journée et celui
du models approchée a pour ordre de grandeur de une heure.

Donnons pour terminer quelques perspectives de notre travail. Tout d’abord, une pre-
mière perspective est l’implémentation, puis la validaion, d’une méthode numérique pour
l’approximation des conditions d’impédance en 3D (Helmholtz et Maxwell). Nous avons
déjà mis au point un code scalaire en 3d qui calcule la solution exacte ainsi que la solution
approchée avec la conditions aux limites équivalente d ordre 1 lorsque la surface Γ est
homéomorphe à un tore. Les résultats correspondant n’on pu être présentés dans cette
thèse car il y a encore des bugs dans ces codes : les deux programmes sont déjà implémen-
tés mais nous sommes actuellement en cours de débogage. Une deuxième perspective de
notre travail est d’étudier le cas de couche mince ψΓ−δ−périodique contenant des méta-
matériaux (changement de signe des coefficients) ou des matériaux fortement conducteurs
(coefficient de l’ordre de 1/δ2). On s’attend à observer dans ces deux cas des phénomènes
de résonance dans la couche mince. La dernière perspective est d’étendre notre travail
à des surfaces Γ contenant des coins afin d’affaiblir nos hypothèses de régularité sur la
surface de l’obstacle.
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Nomenclature

H0

(
Ŷ∞
) {

u ∈ H
(
Ŷ∞
)
, u = 0 on ∂Ω̂

}
, page 211

Sδ H1(BR ∩ Ω) ∩H1(Γ), page 249

Xδ
0

{
H ∈ V δ, aδ1(H,∇ψ) = 0, ∀ψ ∈ Sδ

}
, page 249

H−
1
2 (rot∂BR ; ∂BR)

{
u ∈ H− 1

2 (∂BR)3 , u is tangential and rot∂BR(u) ∈ H− 1
2 (∂BR)

}
, page 234

X {u ∈ H(rot,Ω ∩BR), u× n = 0 on Γ}, page 233

(x̂, ν̂) The microscopic variables, page 18

(ei(xΓ))i The dual basis of (e(xΓ))i, page 124

(ei(xΓ))i A basis of TxΓ
Γ, page 124

(xΓ, ν) The local coordinates, page 20

Ŷ∞ ]0, 1[2×]− 1,∞[, page 54

Ŷ− ]0, 1[2×]− 1, 0[, page 64

Ŷ+ ]0, 1[2×]0,∞[, page 64

ε−1
eff (xΓ) Scalar to used to define Z1, page 246

µeff(xΓ) Element of L(TxΓ
Γ) used to define Z1, page 246

ρ1
eff (xΓ) Element of L(TxΓ

Γ) used to define Z2, page 142

M ρ
0(xΓ) Element of TxΓ

Γ used to compute ρ0
eff , page 125

M ρ
1,0 Element of L(TxΓ

Γ) used to compute M ρ
1 , page 137

M ρ
1,3 Element of L(TxΓ

Γ) used to compute M ρ
1 , page 139

M ρ
1(xΓ) Element of L(TxΓ

Γ) used to define ρ1
eff , page 142

N ρ
1(xΓ) Element of L(TxΓ

Γ) used to define ρ1
eff , page 142

δ The small parameter, page 16

δΣ Dirac distribution on the surface Σ, page 61
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δij The Kronecker symbol, page 124

P R2×]−∞, 0[, page 250

ΓM Set where ψΓ is smooth, page 28

D f Differential for functions f defined on Γ , page 27

DX(u1, u2) The differential for functions defined on a open subset of R2, page 25

dist The distance function to Γ, page 16

d̂iv Divergence with respect to the microscopic variables, page 47

divΓ The surface divergence, page 41

divL Divergence for functions defined on Γ×]− δ, 0[, page 41

DtN Dirichlet to Neumann map on η0, page 35

DtNL Dirichlet to Neumann for functions defined on Γ× {η0}, page 39

H
(
Ŷ∞
)
Functional space of periodic function defined on Ω̂, page 54

Hcomp

(
Ŷ∞
)
Space of functions of H

(
Ŷ∞
)
that vanishe for ν̂ large enough, page 55

F(Γ× Ŷ∞) Space of exponentially decreasing vector with respect to ν̂ , page 215

FE(Γ× Ŷ∞) Subspace of F(Γ× Ŷ∞) for the electro-static problem in Ŷ∞, page 215

FH(Γ× Ŷ∞) Subspace of F(Γ× Ŷ∞) for the magneto-static problem in Ŷ∞, page 215

Hm
0,ΓM

(
Γ;V (Ŷ∞)

)
Set of function patching admissible, page 54

Cm
0,ΓM

(
Γ;V (Ŷ∞)

)
Set of function patching admissible, page 54

H−
1
2 (div∂BR ; ∂BR)

{
u ∈ H− 1

2 (∂BR)3 , u is tangential and div∂BR(u) ∈ H− 1
2 (∂BR)

}
, page 233

η Positive parameter used to define the near-field zones, the far field zones and the
overlapping zones , page 44

η0 Positive number where dist(supp,Γ) > η0, page 34

∇̂ Gradient with respect to the microscopic variables, page 47

∇Γ The surface gradient, page 38

∇L Gradient for functions defined on Γ×]− δ, η0[, page 38

ν̂+ 0 if ν̂ ≤ 0 and ν̂ if not , page 63

Ω̂ R2×]− 1,∞[, page 45
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NE Solution of the electrostatic problem , page 211

NH Kernel of the magneto-static problem, page 213

λl(xΓ) Norm of DψΓ(xΓ)l, l ∈ Z2, page 72

〈·, ·〉Γ×{η0} Dual bracket on H
1
2 (Γ× {η0}), page 37

〈·, ·〉Ση0 Dual braket on H
1
2 (Ση0), page 35

L The local coordinate map, page 20

M1(xΓ) scalar used to define Z2, page 142

Z iδ
∑i

j=0 δ
jZj, page 144

Z1 Impedance operator for the first order condition, page 129

Z2 Operator used to define Zδ2 , page 142

M(xΓ, ν) Element of L(R3), page 209

Mi Terms of the Taylor expansion ofM(xΓ, ν) with respect to the variable ν, page 209

φl(xΓ, x̂, ν̂) ei2πlx̂e−2πλl(xΓ)ν̂ , page 72

µ Distribution defined for elements in H
(
Ŷ∞
)† ⊕ C[ν̂], page 67

Ω The exterior domain, page 16

Ωδ Ω \ Cδ, page 16

Ω0 Γ×]0, η0[, page 121

ρ0(xΓ), µ0(xΓ) Average on Ŷ− of ρ̂ and µ̂, page 128

ρ1(xΓ), µ1(xΓ) Average on Ŷ− of 2 · ν̂ρ̂(xΓ; x̂, ν̂) and 2 · ν̂µ̂(xΓ; x̂, ν̂) , page 142

φxΓ
The chart at xΓ, page 25

TxΓ
Γ The Tangent space, page 25

rot The curl operator, page 200

rotΓ The scalar surface curl, page 206

rotΓ Curl in the variable (xΓ, ν), page 206

~rotΓ The vectorial surface curl, page 206

Iδ,η Scaling operator for Electromagnetism, page 231

Iδ The scaling operator, page 46

Σ ]0, 1[2×{0}, page 55
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Ση0 Boundary where DtN is defined, page 35

? Operator defined for a tensor field and vector field, page 132

δΣ ⊗ δΣ Dirac distribution on Σ× Σ, page 61

C Tensor appearing in the definition of aδ, page 39

C(k)(xΓ), c(k)(xΓ) Terms appearing in the taylor expansions with respect to ν of C and C,
page 51

γn The normal trace, page 245

γt, γT The tangential traces , page 201

T0 Elliptic operator with respect to the variables (x̂, ν̂), page 58

T ρk+2 Differential operator with respect to the variable xΓ and (x̂, ν̂), page 52

Tk Differential operator with respect to the variable xΓ and (x̂, ν̂), page 52

aδ Sesquilinear form for the problem posed in Cδ,η0 , page 36

aiδ Sesquilinear form for the GIBC, page 146

aδ1 Sesquilinear form for the 1 order condition GIBC for Electromagnetism, page 248

aδ Sesquilinear form for the problem posed in Γ× {η0}, page 39

BR Open ball of radius R centered at zero, page 232

C Function appearing in the definition of aδ, page 38

Cδ The thin coating, page 16

Cδ,η0 Reduced domain for scattering problem, page 34

G(xΓ) Gaussian curvature, page 38

Ge The Calderon map, page 233

H(rot; Ω̃)
{
u ∈ L2(Ω̃δ)3, rot(u) ∈ L2(Ω̃δ)3

}
, page 232

H(xΓ) The mean curvature, page 37

H−
1
2 (divΓ; Γ)

{
u ∈ H− 1

2 (Γ)3 , u is tangential and divΓ u ∈ H−
1
2 (Γ)

}
, page 248

H−
1
2 (rotΓ; Γ)

{
u ∈ H− 1

2 (Γ)3 , u is tangential and rotΓu ∈ H−
1
2 (Γ)

}
., page 248

n Normal unit vector to Ω, page 16

nδ Normal unit vector to Ωδ, page 16
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O The obstacle, page 16

R(xΓ) The tensor curvature, page 37

uδ The new unknown defined on Γ×]− δ, η0[, page 34

uf Intermediate function to define the righ handside of the problem posed in Γ×] −
δ, η0[, page 35

V δ Functional space for the 1 order condition GIBC for Electromagnetism, page 248

VZ Functional space for the GIBC, page 146

VxΓ
(0) Domain of the function φxΓ

, page 25

wε Solution of the “cell problem”, page 211

wi(xΓ; x̂, ν̂) Solutions of the “cell problem”, page 124

WxΓ
(xxΓ

) Image of φxΓ
, page 25
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