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Foreword

The objective of this manuscript is to provide a coherent survey of the work I have done
on robust combinatorial optimization since I defended my PhD thesis in February 2011.
Hence, the manuscript does not intend to cover all work realized since my PhD defense
and in particular, it does not depict my work on affine routing and robust network design,
which is detailed in Ayoub and Poss [2016], Pessoa and Poss [2015], Pioro et al. [2016],
Poss and Raack [2013].

I started working on robust combinatorial optimization during my postdoctoral stay at
the University of Aveiro, in Portugal. There I met Agostinho Agra and Cristina Requejo,
who kindly invited me to the project on robust maritime transportation they were working
on at that time. The results of the collaboration are partly described in Chapter 6. In
parallel to this work, several discussions with A. Agra, C. Requejo as well as Lars Magnus
Hvattum and Rosa Figueiredo led me to introduce the variable budgeted uncertainty set
described in Chapter 2. I continued working on robust combinatorial optimization when
I joined Heudiasyc in October 2012. More specifically, I started advising Marcio Costa
Santos with Agostinho Agra and Dritan Nace on robust lot-sizing problems. Some of the
thesis results are presented in Chapters 5 and 6. At that time I had the chance to meet
Luigi di Puglia Pugliese and Francesca Guerriero with whom I have been working on the
robust shortest path problem described in Chapter 3.

I joined team MAORE in Feburary 2015, whose reseach topics include approximation
algorithms for scheduling problems. It has therefore been natural to combine my recent
experience on robust optimization with their knowledge of scheduling to propose new
robust scheduling models. Marin Bougeret has joined me in this research, and together
with Artur Alves Pessoa, we have provided some initial results on robust scheduling, some
of which are summarized in Chapter 4.
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Chapter 1

Introduction

Robust optimization is an increasingly popular approach to handle the uncertainty that
arises in mixed-integer linear optimization problems. Unlike stochastic programming,
which requires exact knowledge of the probability distributions and leads to very large-
scale optimization problems, robust optimization only describes the variability of the
uncertain parameters through bounded uncertainty sets. When the uncertainty set can
be described by polynomial numbers of linear inequalities and constraints, the robust
counterparts can be addressed efficiently through MILP formulations whose dimensions
are comparable to the dimensions of the deterministic problem. In a sense, robust opti-
mization overcomes the two main drawbacks of stochastic programming, which are the
necessity of knowing exactly the behavior of the uncertain parameters and the dimensions
of the resulting reformulations.

Although the dimensions of the robust reformulations are controlled, they tend the
break the combinatorial structure of the problems at hand. For instance, the robust
reformulations of problems that have totally unimodular formulations are usually not
totally unimodular anymore. Another drawback of the classical techniques is that they
are essentially limited to problems whose constraints are defined by linear functions of
the uncertain parameters. This prevents the approach from being applied to lot-sizing
problems, scheduling and routing problems with soft time windows, among others.

A fundamental breakthrough in robust combinatorial optimization came with the
budgeted uncertainty set from Bertsimas and Sim [2003]. Budgeted uncertainty leads
to robust problems that can be solved by solving a polynomial numbers of determinis-
tic problems whenever the robust constraints (and/or the objective) are defined by linear
functions of the uncertain parameters. In particular, budgeted uncertainty keeps the com-
plexity of a large class of combinatorial optimization problems. In addition to its good
computational properties, the budgeted uncertainty set benefits from profound links with
individual probabilistic constraints.

Our objectives in this thesis are to build around the results from Bertsimas and Sim
[2003], along the three following directions. First, we extend the budgeted uncertainty set
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4 CHAPTER 1. INTRODUCTION

to a more general uncertainty paradigm that keeps the property of budgeted uncertainty,
namely the controlled theoretical complexity of the robust counterparts and the link
with probabilistic constraints. Second, we study the limit of the positive results from
Bertsimas and Sim [2003] from a theoretical viewpoint, identifying problems for which the
robust counterparts are more difficult than the deterministic versions. Third, we propose
decomposition algorithms that split a robust combinatorial optimization problems into a
relaxed master problem and separation problems. The master problem essentially handles
the combinatorial structure of the problem, while the separation problems take care of
the robust constraints. These algorithms can handle non-linearities present in lot-sizing
problems, and scheduling and routing problems with soft time windows.

Sections 1.1 and 1.2 state precisely the technical context of the thesis. Specifically,
Section 1.1 defines formally robust combinatorial optimization, recalls the limitations of
the general model and introduce classical results in the field. Section 1.2 then introduces
the budgeted uncertainty set from Bertsimas and Sim [2003], states the main complexity
results and briefly introduces the link with probabilistic constraints. Section 1.3 provides
a short survey on robust optimization, focusing on the works addressing robust combi-
natorial optimization with budgeted uncertainty. The contributions and the structure of
the thesis are further described in Section 1.4.

1.1 Robust combinatorial optimization

Discrete optimization problems can often be formulated as follows. Let X ⊆ {0, 1}n be a
given feasibility set and c be a given cost vector in Rn. Then, the discrete/combinatorial
optimization problem described by (X , c) is

CO min
x∈X

cTx. (1.1)

In this thesis, we are interested by problem CO under uncertainty, which means that
the cost and/or the feasibility set of CO are uncertain. Formally, c and the parameters
that describe X are not known with precision, but instead, belong to known uncertainty
sets, falling into the framework of Robust Optimization [Ben-Tal et al., 2009]. For the
sake of uniformity, we assume hereafter that all uncertain parameters are components of
the vector/matrix u, whose dimensions depend on the context. In particular, the above
uncertain cost vector c is renamed u0 in this chapter. We further decompose CO by
splitting the structure of X into components X comb and X num where X comb ⊆ {0, 1}n
contains the combinatorial structure of X while X num is defined by linear constraints

uTj x ≤ bj, j = 1, . . . ,m, (1.2)

where u is a (m+ 1)× n matrix and b a m-dimensional vector. Hence, we redefine X as
X = X comb ∩ X num. Some of the results and problems studied in the thesis focus on cost
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uncertainty, which is represented by setting m = 0. In that case, X comb = X and X comb

contains all constraints of the problem, and u becomes a n-dimensional vector rather than
a matrix.

The uncertainty we are studying in this thesis is known as numerical uncertainty [Ben-
Tal et al., 2009], which means that only the numerical constraints (1.2) and the cost vector
u0 are affected by uncertainty. In contrast, the combinatorial structure of the problem,
X comb, is known with precision. Given finite uncertainty sets Uj for each j = 0, . . . ,m,
the robust counterpart of problem CO is

min
{

max
u0∈U0

uT0 x : (1.3)

U -CO uTj x ≤ bj, j = 1, . . . ,m, uj ∈ Uj, (1.4)

x ∈ X comb
}
.

Problem U -CO is affected by uncertainty in two ways. First, its objective function (1.3)
optimizes the worst-case cost function maxu0∈U0 u

T
0 x. Second, each binary vector x ∈

X comb must satisfy constraints (1.4) for all values of (u1, . . . , um) ∈ U1 × · · · × Um.
From the theoretical viewpoint, U -CO is in general harder than CO. For instance, if

X comb represents all paths from a given source to a given destination andm = 0, we obtain
the shortest path problem, well-known to be solvable in polynomial time when the costs
are positive. However, its robust version defined for an arbitrary set U0 is NP-hard [Yu
and Yang, 1998], even in the strong sense if the cardinality of U0 is unbounded. Similar
results arise for other easy instances of problems CO, such as the assignment problem
and the spanning tree problem; see Aissi et al. [2009] and the references therein.

In spite of its theoretical difficulty, problem CO can be solved fairly efficiently whenever
each uncertainty set can be described as the set of extreme points of a polytope with a
compact description. The first way to do this relies on the fundamental theorem of robust
optimization due to Ben-Tal and Nemirovski [1998] and recalled below. For simplicity,
the theorem is stated for m = 0, that is, assuming that the problem does not contain
robust constraints; one readily extends it to general problems U -CO.

Theorem 1. Let m = 0 and consider α ∈ Rl×n and β ∈ Rl that define polytope

P := {u0 ∈ Rn
+ : αTk u0 ≤ βk, k = 1, . . . , l},

such that U0 corresponds to the set of extreme points of P. Problem U-CO is equivalent
to the following mixed-integer linear program, with an additional vector of optimization
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variables denoted by z

min
{ l∑

k=1

βkzk :

l∑
k=1

αkizk ≥ xi, i = 1, . . . , n,

z ≥ 0, x ∈ X comb
}
.

Proof. The proof follows directly by the dualizing the inner maximization of U -CO.
Namely

min
x∈X comb

max
u0∈U0

uT0 x = min
x∈X comb

min

{
l∑

k=1

βkzk :
l∑

k=1

αkizk ≥ xi, i = 1, . . . , n, z ≥ 0

}
,

and the result is obtained by regrouping the two min.

A natural algorithmic approach to U -CO consists in solving the reformulation stated in
Theorem 1. A different approach to problem U -CO is based on a cutting-plane algorithm
that generate elements of U0, . . . ,Um on the fly. Specifically, given subsets U∗j ⊂ Uj for
each j = 0, . . . ,m, the algorithm relies on the following relaxed master problem

U∗-CO min

{
max
u0∈U∗0

uT0 x : uTj x ≤ bj, j = 1, . . . ,m, uj ∈ U∗j , x ∈ X comb

}
.

Given a solution x∗ to the master problem, and its cost denoted by z∗, the algorithm
alternates between solving U∗-CO and solving the separation problems

max
u0∈U0

uT0 x
∗ and max

uj∈Uj
uTj x

∗ for each j = 1, . . . ,m. (1.5)

If maxu0∈U0 u
T
0 x
∗ > z∗ or there are indices j for which maxuj∈Uj u

T
j x
∗ > bj, then the corre-

sponding vectors u0 and uj are added to U∗0 and U∗j , respectively, and the master problem
is solved again. Otherwise, the algorithm returns the optimal solution x∗. When each set
Uj corresponds to the set of extreme points of a polytope with a compact description, (1.5)
amount to solve m + 1 linear programs. The aforementioned iterative algorithm can of
course be improved in various ways, the first of which replaces the iterative procedure by a
branch-and-cut algorithm where the separation problems are called only at specific nodes
in the branch-and-bound tree, as commonly done in Benders decomposition algorithms
(e.g. Botton et al. [2013]). The relative performance of the cutting-plane algorithm and
Theorem 1 depends on the context, see the comparisons realized in Bertsimas et al. [2015],
Fischetti and Monaci [2012], Monaci et al. [2013], Pessoa and Poss [2015], among others.

From the numerical viewpoint, Theorem 1 and the cutting-plane algorithm have pro-
vided efficient ways to solve U -CO assuming that each uncertainty set corresponds to the
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set of extreme points of a polytope with a compact description. Yet, these approaches
usually break the combinatorial structure of the problem at hand. For instance, applying
Theorem 1 to the shortest path problem yields a mixed-integer linear program that does
not have the integrality property. This, and the fact that arbitrary uncertainty sets make
these problems difficult from the theoretical viewpoint, have motivated the introduction
of the structured uncertainty sets described in the next section.

1.2 Budgeted uncertainty

Given two vectors v ∈ Rn and v̂ ∈ Rn, and a positive integer Γ > 0, Bertsimas and Sim
[2003, 2004] introduce the budgeted uncertainty set as

UΓ :=

{
v ∈ Rn : vi = vi + ξiv̂i, ξ ∈ {0, 1}n,

n∑
i=1

ξi ≤ Γ

}
,

which means that, in any scenario u ∈ UΓ, at most Γ components of u will take their
extreme values. The counterpart of U -CO with budgeted uncertainty is

UΓ-CO min

{
max
u0∈UΓ

0

uT0 x : uTj x ≤ bj, j = 1, . . . ,m, uj ∈ UΓ
j , x ∈ X comb

}
,

where UΓ
0 , . . . ,UΓ

m are obtained from UΓ by replacing v and v̂ by the vectors uj ∈ Rn and
ûj ∈ Rn for each j = 0, . . . ,m, respectively, and the value of Γ is assumed to be identical
for all sets UΓ

0 , . . . ,UΓ
m to simplify notations.

Set UΓ is motivated by two fundamental results proved in Bertsimas and Sim [2003]
and Bertsimas and Sim [2004], respectively. First, the set yields a problem UΓ-CO that
belongs to the complexity class of its counterpart CO whenever the number of uncertain
constraints m is constant. This property is formally stated in the following theorem,
proved by Bertsimas and Sim [2003] for m = 0 and independently extended to positive
values of m by Álvarez-Miranda et al. [2013] and Goetzmann et al. [2011].

Theorem 2. The optimal solution to the robust problem UΓ-CO can be obtained by taking
the minimum among the optimal solution costs of (n + 1)m+1 deterministic problems,
defined as

û0`0Γ + min

{
n∑
i=1

ŭ0ixi :
n∑
i=1

ŭ
`j
jixi ≤ b̆

`j
j , j = 1, . . . ,m, x ∈ X comb

}
.

for each (`0, . . . , `m) ∈ {1, . . . , n+1}m+1, where b̆`jj = bj−Γûj`j and ŭ
`j
ji = uji+max(ûji−

ûj`j , 0) for each i = 1, . . . , n, j = 0, . . . , n and `j = 1, . . . , n+ 1, and ûj`n+1 = 0.
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Proof. We provide a short proof for the case m = 0. Problem UΓ-CO can be rewritten as
follows

min
x∈X comb

max
u0∈UΓ

0

uT0 x = min
x∈X comb

(
uT0 x+ max

ξ∈[0,1]n∑
i ξi≤Γ

n∑
i=1

ξiû0ixi

)
(1.6)

= min
x∈X comb

(
uT0 x+ min

θ+yi≥û0ixi
θ,y≥0

Γθ +
n∑
i=1

yi

)
(1.7)

= min
x∈X comb

(
uT0 x+ min

θ≥0
Γθ +

n∑
i=1

max(û0ixi − θ, 0)

)
(1.8)

= min
x∈X comb

(
uT0 x+ min

θ≥0
Γθ +

n∑
i=1

xi max(û0i − θ, 0)

)
(1.9)

where (1.6) holds because polytope {ξ ∈ [0, 1]n,
∑

i ξi ≤ Γ} has the integrality property,
(1.7) follows from linear programming duality, (1.8) is obtained by substituting yi with
max(û0ixi − θ, 0), and (1.9) holds because x is binary. Notice then that the minimum of
θ in (1.9) is always reached at one element of {û01, . . . , , û0n, 0} (see Bertsimas and Sim
[2003] for a detailed explanation). Therefore, (1.9) is equal to

min
θ∈{û01,...,,û0n,0}

min
x∈X comb

(
Γθ +

n∑
i=1

xi(u0i + max(û0i − θ, 0))

)
,

proving the result.

Whenever m is a constant that does not depend on the instance (e.g. for the knapsack
problem, m = 1), Theorem 2 implies that UΓ-CO can be solved by solving a polynomial
number of problems CO. The following result is the pendant of Theorem 2 for the ap-
proximation ratio achievable for problem UΓ-CO. Again, it was first proved by Bertsimas
and Sim [2003] in the case m = 0 and extended to constant values of m by Goetzmann
et al. [2011].

Theorem 3. Assume that m is a constant. If CO has an ρ-approximation polynomial-
time algorithm, then UΓ-CO is also ρ-approximable.

Theorems 2 and 3 radically changed the landscape of robust combinatorial optimiza-
tion since many instances of polynomially solvable problems CO also had polynomially
solvable robust counterparts (e.g. spanning tree problems, shortest path problems, mini-
mum cut problems, and assignment problems) contrasting with the NP-hardness of gen-
eral robust counterparts [Aissi et al., 2009]. In fact, the generality of Theorem 2 has raised
the following question: is there an instance of problem CO that is (pseudo-) polynomially
solvable whose counterpart UΓ-CO is (strongly) NP-hard? We shall see in the balance
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of this manuscript that the answer to the question is yes, more specifically: the short-
est path problem with time windows, pseudo-polynomially solvable, and minimizing the
weighted sum of completion times, polynomially solvable, both turn strongly NP-hard in
the robust context.

The second fundamental property behind UΓ concerns its relation with probabilistic
constraints. Let ũi = ui + ηiûi be the random variable associated with parameter ui and
suppose that ηi, i ∈ {1, . . . , n}, are arbitrary random variables independently and sym-
metrically distributed in [−1, 1]. Bertsimas and Sim [2004] construct different functions
β : R2 → R such that any vector x that satisfies the robust constraint

∑n
i=1 uixi ≤ b, for

all u ∈ UΓ, also satisfies

P

(
n∑
i=1

ũixi > b

)
≤ β(Γ, n). (1.10)

Hence, given a probability level ε ∈ (0, 1), choosing Γ such that β(Γ, n) ≤ ε ensures
that the probabilistic constraint P (

∑n
i=1 ũixi > b) ≤ ε will be satisfied. This is a very

strong result since robust constraints are significantly easier to handle than individual
probabilistic constraints. Bertsimas and Sim [2004] present various examples of bounds
β(Γ, n). The strongest of these bounds is given by

β(Γ, n) =
1

2n

(1− µ)

(
n

bνc

)
+

n∑
l=bνc+1

(
n

l

) (1.11)

where ν = (Γ + n)/2 and µ = ν − bνc. Bertsimas and Sim [2004] also present a weaker
bound

βweak(Γ, n) = exp

(
−Γ2

2n

)
, (1.12)

that yields an analytical definition for Γ as a function of ε and n, namely Γweak(ε, n) =

(−2n ln(ε))
1
2 .

1.3 Literature review

We review next some of the main works on robust optimization, focusing on those that
address robust combinatorial optimization with budgeted uncertainty. This section is
by no means an exhaustive survey on robust combinatorial optimization with general
uncertainty sets, for which we refer to Aissi et al. [2009] and Kouvelis and Yu [2013],
among others. It is even less a review on the robust optimization literature, for which
we refer to Ben-Tal et al. [2009], Bertsimas et al. [2011], Gabrel et al. [2014] and the
references therein.

Robust optimization is usually traced back to the work of Soyster [1973] who introduces
a robust model where parameters belong to bounded and convex sets. His model can be
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reformulated as a linear program by taking the maximal values of the parameters over
the uncertainty sets.

An important step forward has independently been taken by Ben-Tal and Nemirovski
[1998] and El Ghaoui et al. [1998] who study linear programs with ellipsoidal uncertainty
sets. They show that their models can be reformulated as conic quadratic programs.
Although their models are more complex than the one of Soyster, they are less conservative
and lead to cheaper robust solutions. More recently, Bertsimas and Sim [2004] have
introduced the aforementioned uncertainty sets UΓ whose conservatism is comparable
to the conservatism obtained with the ellipsoids from Ben-Tal and Nemirovski [1998],
El Ghaoui et al. [1998].

Differently from these works, which study mathematical programs under uncertainty,
Kouvelis and Yu [2013] study CO under discrete uncertainty sets and address the prob-
lems from a combinatorial perspective. Their combinatorial approach has been used in
subsequent works by various authors; see the survey from Aissi et al. [2009]. In spite of
their interest, U -CO problems defined for uncertainty sets of unbounded cardinality are
usually more difficult than their deterministic counterparts, and more often than not, the
robust counterparts of polynomial CO problems are NP-hard.

In this context, the results of Álvarez-Miranda et al. [2013], Bertsimas and Sim [2003],
Goetzmann et al. [2011] opened a new avenue of research, by showing how uncertainty
set UΓ keeps the complexity and approximability properties of the deterministic counter-
parts. Complementing these general results, researchers have studied particular instances
of problem UΓ-CO. Klopfenstein and Nace [2008] have studied dynamic programming
algorithms for the robust knapsack problem, see also Monaci et al. [2013] for efficient
implementations. Combinatorial approaches different from dynamic programming have
also been applied to UΓ-CO. Büsing et al. [2011] study the combinatorial properties of
the recoverable robust knapsack problem to provide a pseudo-polynomial mixed-integer
linear programming reformulation. Monaci and Pferschy [2013] study the worst-case op-
timal solution cost of the robust knapsack problem and propose a greedy heuristic whose
performance is also studied from a worst-case point of view. The nice computational
properties of UΓ have led Büsing et al. [2013] to consider multiple deviations for each
individual parameter, which they call multiband uncertainty. Based on this, Claßen et al.
[2015] propose dynamic programming algorithms for the robust knapsack problem with
multiband uncertainty.

1.4 Structure and contributions of the thesis

We detail in what follows the contributions of each chapter. While Chapter 2 describes a
new uncertainty paradigm, applicable to any problem CO, the subsequent four chapters
presents complexity results and solution algorithms devised for specific instances of CO.

Chapter 2 presents an extension of the budgeted uncertainty set UΓ that is based on
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a function γ of the optimization variables, rather than a constant Γ. We explain in the
chapter how this model is motivated by the aforementioned probabilistic result. Further,
whenever γ is an affine function, the new model keeps the main tractability properties
of UΓ such as the dualization from Theorem 1 and the iterative algorithm presented in
Theorem 2. Numerical experiments are presented, confirming the interest of the model
from a practical viewpoint.

The subsequent four chapters present solution algorithms for specific robust optimiza-
tion problems. The algorithms presented in these chapters are of three kinds: exact
combinatorial algorithms, approximation algorithms, and Benders-like decomposition al-
gorithms based on mixed-integer linear programming formulations. In a way, the de-
composition algorithms try to extend the simplistic cutting plane algorithm presented in
Section 1.1 to robust optimization problems that are more complex than UΓ-CO due to
the presence of non-linear robust constraints. Hence, as in Section 1.1, these algorithms
keep the combinatorial structure X comb in the relaxed master problem, while the sepa-
ration problems handle the robust constraints. These chapters present exact dynamic
programming algorithms for the separation problems described therein. Notice that the
combinatorial algorithms proposed in Chapters 3 and 4 can also handle variable uncer-
tainty, albeit at a higher computational cost. This is not the case for the decomposition
algorithms presented in Chapters 5 and 6 as explained therein.

Let us detail more specifically the content of each of these four chapters. Chapter 3
focuses on the resource-constrained shortest path problem, considering either capacity
constraints or time windows. We show that the former is NP-hard in the weak sense
while the later is NP-hard in the strong sense, contrasting with the deterministic context
for which both problems are NP-hard in the weak sense. We propose then an extension
of the label-setting algorithm to the robust context, introducing new robust labels. While
having an exponential running-time in general, our algorithms are pseudo-polynomial
when Γ is constant.

Chapter 4 turns to scheduling problems. We consider problems on a single machine
that minimize the (weighted and unweighted) sum of completion times and problems that
minimize the makespan on parallel and unrelated machines. We provide polynomial algo-
rithms and approximation algorithms: constant factor and average non-constant factor.
In addition, we prove that the robust version of minimizing the weighted completion time
on a single machine is NP-hard in the strong sense.

Chapter 5 studies lot-sizing problems which, strictly speaking, are not combinatorial
optimization problems because the decision variables are real. However, we show in the
chapter that the problem can be efficiently addressed through Benders-like decomposition
algorithms, where the separation problem becomes a combinatorial optimization problem
that can be solved in pseudo-polynomial time through dynamic programming. We then
show how reducing the precision on the components of û yields a fully polynomial-time
approximation scheme. Numerical experiments highlight the supremacy of the dynamic
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programming algorithm over naive mixed-integer linear formulations for the separation
problem.

Chapter 6 addresses vehicle routing problems with hard and/or soft time windows.
We investigate the four problems obtained by combining soft/hard left time windows with
soft/hard right time windows. For all problems, we propose Benders-like decomposition
algorithms that come down to row-and-column generation algorithms. The separation
algorithms are studied for the four problems, turning out to be polynomial in the case of
two hard time windows and pseudo-polynomial in the other cases. Numerical experiments
are realized for the first case, showing that, with these algorithms, the robust models are
essentially as easy to solve as their deterministic counterparts.

The thesis is finally concluded in Chapter 7, where some ongoing and future research di-
rections are discussed. For brevity reasons, some proofs are omitted from the manuscript.
We would like to point out that the particular UΓ-robust optimization problems studied
in Chapters 3–6 were studied for the first time by the author of the thesis. For that
reason, and to keep this manuscript as concise as possible, these chapters only contain
few related papers; the interested reader is referred to the papers cited at the beginning
of each chapter for comprehensive literature surveys.



Chapter 2

Variable uncertainty

The chapter is based on Poss [2013, 2014].

2.1 Introduction

As mentioned in Chapter 1, one of the main motivations behind set UΓ is given by the
probabilistic bound

P

(
n∑
i=1

ũixi > b

)
≤ β(Γ, n),

which shows how a robust constraint can be used to approximate an ambiguous proba-
bilistic constraint. We show in this chapter how the approximation can be improved by
considering a more general paradigm of uncertainty. Our main idea is to let Γ depend on
the cardinality of feasible solutions, by introducing an uncertainty multifunction Uγ. We
define formally Uγ in the next section. Section 2.3 shows how the resulting model can
be solved by dualizing the robust constraints. Section 2.4 extends the iterative algorithm
from Theorem 2 to special cases of Uγ. Section 2.5 is devoted to cost uncertainty, defined
by setting m to 0. The new model is illustrated numerically in Section 2.6.

2.2 Definition

Consider a robust constraint of the form
n∑
i=1

uixi ≤ b, u ∈ UΓ. (2.1)

We will need in this chapter to consider UΓ as a polytope rather than a finite set, so that
we commit an abuse of language and redefine UΓ as follows

UΓ :=

{
u ∈ Rn : ui = ui + ξiûi, ξ ∈ [0, 1]n,

n∑
i=1

ξi ≤ Γ

}
.

13
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Because robust constraint (2.1) is concave in u (even linear), the maximum over UΓ is
always achieved at one of the extreme points of UΓ so that the binding constraints in (2.1)
always correspond to extreme points of UΓ. Hence, considering UΓ as a polytope or as the
set of its extreme points does not affect the feasibility region characterized by constraint
(2.1).

Polytope UΓ might sometimes be over-conservative because its definition is indepen-
dent from the value of x. Because of this, binary vectors with few non-zero components
are more protected than binary vectors with larger numbers of non-zero components. For
instance, consider two binary vectors x1 and x2 feasible for constraint (2.1) and suppose
that ‖x1‖1 :=

∑n
i=1 x

1
i = Γ while ‖x2‖1 = 2Γ. The robust constraints associated to x1

and x2 are equivalently written

n∑
i=1

uix
1
i =

∑
i:x1

i=1

ui ≤ b, u ∈ UΓ, (2.2)

and
n∑
i=1

uix
2
i =

∑
i:x2

i=1

ui ≤ b, u ∈ UΓ, (2.3)

respectively. In a relative point of view, vector x1 is more protected than vector x2 since
it is ensured that constraint (2.2) is feasible against the simultaneous deviation of all of
its terms while constraint (2.3) is only protected against the simultaneous deviation of
half of its terms. This relative point of view has a natural probabilistic interpretation.
If ũi are random variables arbitrarily distributed between ui − ûi and ui + ûi, then the
probability that constraint

∑
i:x1

i=1 ũi ≤ b be violated is equal to zero, regardless from the
specific distributions of ũ, while the probability that

∑
i:x2

i=1 ũi ≤ b be violated can be
strictly positive for particular choices of b and probability distributions.

To avoid this conservatism, we introduce below a novel model of uncertainty. Instead
of considering an uncertainty set UΓ ⊆ Rn independent of x, we introduce a multifunction
of x (point-to-set mapping) Uγ : {0, 1}n ⇒ Rn that is a generalization of the budgeted
uncertainty. Given a non-negative function γ : {0, 1}n → R+, we define the variable
budgeted uncertainty as

Uγ(x) :=

{
u ∈ Rn : ui = ui + ξiûi, ξ ∈ [0, 1]n,

n∑
i=1

ξi ≤ γ(x)

}
. (2.4)

If γ is constantly equal to Γ, then Uγ(x) coincide with UΓ for any x. In general however,
Uγ avoids overprotecting vectors with few components, yielding a less conservative model
than UΓ. The pendant of (2.1) for the variable budgeted uncertainty is

n∑
i=1

uixi ≤ b, u ∈ Uγ(x). (2.5)
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We explain next how function γ can be defined according to the probabilistic bounds
recalled in Chapter 1. It is not hard to see from the proof of Theorem 2 from Bertsimas
and Sim [2004] that, for any x ∈ {0, 1}n,

P

(
n∑
i=1

ũixi > b

)
≤ β(Γ, n). (2.6)

can be changed to

P

(
n∑
i=1

ũixi > b

)
≤ β(Γ, ‖x‖1). (2.7)

Inequality (2.7) tells us that the value of Γ can be changed according to the cardinality
of x while ensuring the same level of probability protection. Namely, we see that the
smallest value of Γ such that the resource constraint is satisfied with probability 1− ε is
given by the solution of the minimization problem

min{Γ : β(Γ, ‖x‖1) ≤ ε}, (2.8)

which can be solved by a bisection method. Hence, a natural choice for the function γ

used in Uγ is given by the function γβ : {0, 1}n → R+, defined as

γβ(x) = min{Γ : β(Γ, ‖x‖1) ≤ ε}. (2.9)

The interest of Uγβ is explained below. The minimum value of Γ dictated by (2.6) is
given by the optimal solution cost of

γβ(1) = min{Γ : β(Γ, n) ≤ ε},

where 1 = (1, . . . , 1) ∈ Rn. By definition of Γ, any vector x that satisfies the robust
constraint

∑n
i=1 uixi ≤ b, for all u ∈ UΓ, also satisfies

P

(
n∑
i=1

ũixi > b

)
≤ ε. (2.10)

Now, by construction of γβ, any vector x that satisfies the robust constraint

n∑
i=1

uixi ≤ b, u ∈ Uγβ , (2.11)

also satisfies (2.10). Since Uγβ(x) ⊆ UΓ for all x ∈ {0, 1}n, robust constraint (2.11) is less
conservative than the classical one given by (2.1).
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2.3 Dualization

It is not difficult to extend Theorem 1 to point-to-set mappings, but the resulting mixed-
integer programs contain non-linear constraints. To avoid this, we approximate γβ with
a set of affine functions as follows. Let γ1, . . . , γm be affine functions of x defined by
γj(x) = γj0 +

∑n
i=1 γ

j
i xi. For each x ∈ {0, 1}n, the set Uγ1...γm(x) contains vectors u ∈ Rn

such that ui = ui + ξiûi and

0 ≤ ξi ≤ 1, i = 1, . . . , n, (2.12)
n∑
i=1

ξi ≤ γj(x), j = 1, . . . ,m. (2.13)

In what follows, we will use multifunction Uγ1...γm as an approximation of Uγβ . To ensure
that Uγ1...γm yields the same probabilistic guarantee as Uγβ , functions γj, j = 1, . . . ,m,
must be greater than or equal to γβ for all x ∈ {0, 1}n so that Uγβ(x) ⊆ Uγ1...γm(x) for all
x. This is formalized in the following lemma, provided without proof.

Lemma 1. Let γ1, . . . , γm be affine functions of x such that γj(x) ≥ γβ(x) for all x ∈
{0, 1}n. If x∗ ∈ {0, 1}n satisfies the robust constraint

∑
aix
∗
i ≤ b, for all a ∈ Uγ1...γm(x),

then P (
∑
ũix
∗
i > b) ≤ ε.

The next result shows how to handle the upper approximation provided by γ1, . . . , γm.

Theorem 4. Consider robust constraint

uTx ≤ b, u ∈ Uγ1...γm(x),

x ∈ {0, 1}n, (2.14)

and suppose that γ1, . . . , γm are affine functions of x, non-negative for all x ∈ {0, 1}n.
Then, (2.14) is equivalent to

n∑
i=1

uixi +
m∑
j=1

(
γj0zj +

n∑
i=1

γjiwji

)
+

n∑
i=1

pi ≤ b (2.15)

m∑
j=1

zj + pi ≥ ûixi, i = 1, . . . , n, (2.16)

wji − zj ≥ −max
j

(ûj)(1− xi), i = 1, . . . , n,

j = 1, . . . ,m, (2.17)

p, w, z ≥ 0, (2.18)

x ∈ {0, 1}n. (2.19)

The proof of Theorem 4, omitted for brevity, follows closely the line of the proof of
Theorem 1. The main difference is that, after dualizing the adversary problem, one ends
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up with products between γj(x) and the dual variables. Since γj are affine functions of
x, the products can be linearized through big-M coefficients, which happen to be equal
to maxj(ûj) in our context.

2.4 Iterative algorithm

Let us extend the definition of UΓ-CO to Uγ:

Uγ-CO min

{
max
u0∈Uγ0

uT0 x : uTj x ≤ bj, j = 1, . . . ,m, uj ∈ Uγj , x ∈ X comb

}
.

We see next that the computational complexity of Uγ-CO for an affine function γ is
essentially the same as the complexity of UΓ-CO.

Theorem 5. Let γ(x) = γ0 +
∑n

i=1 γixi be affine. The optimal solution to the robust
problem Uγ-CO can be obtained by taking the minimum among the optimal solution cost
of (n+ 1)m+1 deterministic problems, defined as

û0`0γ
0 + min

{
n∑
i=1

ŭ0ixi :
n∑
i=1

ŭ
`j
jixi ≤ b̆

`j
j , j = 1, . . . ,m, x ∈ X comb

}
.

for each (`0, . . . , `m) ∈ {1, . . . , n + 1}m+1, where b̆`jj = bj − Γ0ûj`j and ŭ`jji = uj + γjûj +

max(ûji− ûj`j , 0) for each i = 1, . . . , n, j = 0, . . . , n and `j = 1, . . . , n+ 1, and ûj`n+1 = 0.

The only difference between the problems solved in Theorem 5 and those solved in
Theorem 2 lies in the costs coefficients of x. In Theorem 5, these coefficients depend on
the components γi of the budget function γ while they are independent of Γ in Theorem 2.

2.5 Cost uncertainty

We assume in this section that m = 0 and focus on combinatorial optimization problem
of the form

COcost min
x∈X comb

uTx.

We focus here on functions γ such that γ(x1) = γ(x2) for each pair of binary vectors that
satisfy ‖x1‖1 = ‖x2‖1. Therefore, we commit a slight abuse of notations and assume in
this section that the domain of the function γ is {0, . . . , n} and we redefine Uγ as

Uγ(x) :=

{
u ∈ Rn : ui = ui + ξiûi, ξ ∈ [0, 1]n,

n∑
i=1

ξi ≤ γ(‖x‖1)

}
.

Similarly, γβ is redefined as γβ : {0, . . . , n} → R+ through

γβ(k) = min{Γ : β(Γ, k) ≤ ε}. (2.20)
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Moreover, we focus on functions γ that are non-decreasing. When the cost is uncertain,
one can again apply either the classical approach from Bertsimas and Sim [2003]

UΓ-COcost min
x∈X comb

max
u∈UΓ

uTx,

or use the variable uncertainty set

Uγ-COcost min
x∈X comb

max
u∈Uγ(x)

uTx.

Let us denote by z(Uγ-COcost) and z(UΓ-COcost) the optimal solution costs of problems
Uγ-COcost and UΓ-COcost, respectively. Based on the aforementionned probabilistic re-
sults, we can see that both UΓ-COcost and Uγ-COcost provide approximate solutions for
combinatorial optimization problems that minimize their Value-at-Risk, which is defined
formally as

min
x∈X comb

VaRε(ũ
Tx),

where VaRε(ũ
Tx) = inf{t : P (ũTx ≤ t) ≥ 1 − ε}, ũi = ui + ηiûi is the random variable

associated with parameter ui, and ηi, i = 1, . . . , n, are arbitrary random variables inde-
pendently and symmetrically distributed in [−1, 1]. More precisely, we have the following
result.

Theorem 6. Let γβ(x) be the function defined in (2.9), ε ∈ (0, 1) be a probability level,
and Γ = γβ(n). It holds that

min
x∈X comb

VaRε(ũ
Tx) ≤ z(Uγβ -COcost) ≤ z(UΓ-COcost). (2.21)

Proof. The first inequality follows from (2.7) and the definition of γβ in (2.20). The second
inequality follows from the inclusion Uγβ(x) ⊆ UΓ for any x.

In view of the above theorem, one can wonder how much cheaper the solution provided
by model Uγ can be. Unfortunately, we cannot provide a general upper bound for the
cost reduction z(Uγ-COcost)

z(UΓ-COcost) . For instance, one readily verifies that the ratio is equal to 1
whenever the optimal solution to UΓ-COcost, denoted x∗, satisfies ‖x∗‖1 ≤ γ(‖x∗‖1).

Interestingly, an analytical lower bound can be computed for the ratio. Namely, we
show below that when a technical condition holds, the ratio z(Uγ-COcost)

z(UΓ-COcost) is never smaller
that γ(dΓe)−1

dΓe and the bound is asymptotically tight with respect to n. The next result
requires that γ satisfies the following condition:

there exists a positive integer k such that
γ(k)− 1

k
is non-increasing for all k ≥ k.

(2.22)
One can check numerically that function γβ introduced in Theorem 6 satisfies condition
(2.22).
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Theorem 7. Let COcost be any combinatorial optimization problem and Γ = γ(n). Sup-
pose that γ satisfies property (2.22) and that the optimal solution of Uγ-COcost has a
cardinality greater than or equal to k. It holds that:

z(Uγ-COcost)

z(UΓ-COcost)
≥ γ(dΓe)− 1

dΓe
. (2.23)

Bound (2.23) is asymptotically tight with respect to n for γweak(‖x‖1) = (−2 ln(ε)‖x‖1)
1
2 ,

u = 0, ûi = 1 for each i = 1, . . . , n, and X comb ⊆ {x, ‖x‖1 = k} for a given integer k.

Proof. We first prove that
z(Uγ-CO)

z(UΓ-CO)
≥ γ(dΓe)− 1

dΓe
.

Let x∗ be the optimal solution of problem Uγ-CO. The following holds:

z(Uγ-CO)

z(UΓ-CO)
≥

max
u∈Uγ(x∗)

uTx∗

max
u∈UΓ

uTx∗
=

uTx∗ + max
δ∈[0,1]n,

∑
δi≤γ(‖x∗‖1)

∑
i

δiûix
∗
i

uTx∗ + max
δ∈[0,1]n,

∑
δi≤Γ

∑
i

δiûix
∗
i

(2.24)

≥
max

δ∈[0,1]n,
∑
δi≤γ(‖x∗‖1)

∑
i

δiûix
∗
i

max
δ∈[0,1]n,

∑
δi≤Γ

∑
i

δiûix
∗
i

(2.25)

≥
max

δ∈[0,1]n,
∑
δi≤bγ(‖x∗‖1)c

∑
i

δiûix
∗
i

max
δ∈[0,1]n,

∑
δi≤dΓe

∑
i

δiûix
∗
i

(2.26)

≥ bγ(‖x∗‖1)c
min(‖x∗‖, dΓe)

. (2.27)

Inequality (2.24) holds because x∗ may not be optimal for UΓ-CO, inequality (2.25) follows
from the fact that γ(‖x∗‖1) ≤ Γ, and inequality (2.27) follows from a more technical
argument detailed below.

Because bγ(‖x∗‖1)c ∈ Z and dΓe ∈ Z, we can define ∆n ⊂ {1, . . . , n} and ∆d ⊂
{1, . . . , n} as the sets of indices where δi is equal to 1 in the optimal solutions of the
maximization problems involved in the numerator and the denominator of (2.26), respec-
tively. Notice that these sets can easily be computed by reordering the items according
to the decreasing value of ûix∗i , and taking in ∆n (resp. ∆d) the first bγ(‖x∗‖1)c (resp.
dΓe) elements. Hence, bγ(‖x∗‖1)c ≤ dΓe implies that that ∆n ⊆ ∆d so that we can define
∆∗ = ∆d\∆n. Thus, (2.26) can be rewritten as∑

i∈∆n

ûi∑
i∈∆n

ûi +
∑
i∈∆∗

ûi
. (2.28)
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Let us define û = min
i∈∆n

ûi, which is equal to ûdγ(‖(‖1x∗))e according to the reordering just

mentioned. By definition, ûi/û ≤ 1 for each i ∈ ∆∗. Hence, dividing both members of
fraction (2.28) we obtain ∑

i∈∆n

ûi/û∑
i∈∆n

ûi/û+
∑
i∈∆∗

ûi/û
≥

∑
i∈∆n

ûi/û∑
i∈∆n

ûi/û+
∑
i∈∆∗

1
. (2.29)

Inequality (2.27) finally follows from subtracting
∑

i∈∆n(ûi/û− 1) from the two members
of the rhs of inequality (2.29) and recalling that |∆n| = bγ(‖x∗‖1)c and |∆n| + |∆∗| =

min(‖x∗‖, dΓe).
We have proven

z(Uγ-CO)

z(UΓ-CO)
≥ bγ(‖x∗‖1)c

min(‖x∗‖, dΓe)
. (2.30)

Two cases are left to analyze to conclude the proof of validity of bound (2.23):

• if ‖x∗‖ ≥ dΓe the rhs of (2.30) becomes bγ(‖x∗‖1)c
dΓe , which is greater than or equal

to bγ(dΓe)c
dΓe because γ is non-decreasing.

• if ‖x∗‖ < dΓe we obtain

bγ(‖x∗‖1)c
‖x∗‖

≥ γ(‖x∗‖1)− 1

‖x∗‖
≥ γ(dΓe)− 1

dΓe
,

where the second inequality follows from (2.22).

We prove next that bound (2.23) is asymptotically tight. Consider optimization prob-
lems such that u = 0, ûi = 1 for each i = 1, . . . , n, and X comb ⊆ {x, ‖x‖1 = k} for some
k ∈ Z+ large enough so that (2.22) holds. We see immediately that

z(Uγ-CO)

z(UΓ-CO)
=

γ(k)

min(k,Γ)
= max

(
γ(k)

k
,
γ(k)

Γ

)
. (2.31)

Let us choose k to minimize the value of (2.31). On the one hand, since γ satisfies (2.22),
we obtain that γ(k)

k
is non-increasing for all k ≥ k. On the other hand, γ(k) is non-

decreasing. Therefore, the minimal value of (2.31) is reached at the value k ∈ Z+ where
γ(k)
k

= γ(k)
Γ

. That value is Γ if Γ is integer. Otherwise, the minimum of (2.31) is reached
either at k = bΓc or at k = dΓe, yielding the following value for (2.31):

max

(
γ(bΓc)
bΓc

,
γ(dΓe)

Γ

)
, (2.32)

which is not smaller than bound (2.23). Consider next the particular function γ(x) =

(−2 ln(ε)‖x‖) 1
2 and denote (−2 ln(ε))

1
2 by K > 0 and Γ = γ(n) = (−2 ln(ε)n)

1
2 = Kn

1
2 by
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m
1
2 . We show below that the value of (2.32) converges to the rhs of (2.23) as m = K2n

goes to infinity:

max

(
K(bm 1

2 c) 1
2

bm 1
2 c

,
K(dm 1

2 e) 1
2

m
1
2

)
− K(dm 1

2 e) 1
2 − 1

dm 1
2 e

≤ K(dm 1
2 e) 1

2

bm 1
2 c

− K(dm 1
2 e) 1

2 − 1

dm 1
2 e

≤ K(dm 1
2 e) 1

2 + 1

m
1
2 + 1

− K(dm 1
2 e) 1

2 − 1

m
1
2 + 1

≤ 2

m
1
2 + 1

.

Function γweak mentioned in Theorem 7 is related to the function Γweak introduced in
the previous chapter.

2.6 Numerical experiments

We assess in this section the numerical efficiency of the model U∂γβ , where ∂γβ is the best
affine over-approximation of γβ, see Poss [2014] for details.

2.6.1 Knapsack problem

Given a set of n items, each with profit pi and weight ui, the knapsack problem aims at
choosing a subset of these items not exceeding the available capacity b and maximizing
the profit:

KP max

{
n∑
i=1

pixi :
n∑
i=1

uixi ≤ b, x ∈ {0, 1}n
}
. (2.33)

The problem has been used by Bertsimas and Sim [2004] to evaluate the cost of protecting
the capacity constraint for various probability guarantees.

We generate our instances as the one used by Bertsimas and Sim [2004]. We consider
different item numbers n ∈ {100, 200, . . . , 1000} and set the capacity to b = 20n for each
value of n. For each value of n, we generate randomly five instances as follows. For each
i = 1, . . . , n, the average weight ui is chosen uniformly from the set {20, 21, . . . , 29}, the
deviation ûi is equal to 10% of ui, and the profit pi is chosen uniformly from the set
{16, 17, . . . , 77}.

We compare in Figure 2.1 the optimal protection costs (prices of robustness) of the
different models. Let z(KP ), z(UΓ-KP ), and z(U∂γβ -KP ) denote the optimal solution
costs to, respectively, the deterministic model and the robust models where the knapsack
constraint must be satisfied for all values of u in UΓ or U∂γβ . We compute the cost c(∗)
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Figure 2.1: Price of robustness for the knapsack problem.

of protecting a solution with a given probability for model ∗ as c(∗) = z(KP )−z(∗)
z(KP )

. We
present in Figure 2.1 the geometric means of these protection costs for each value of n.
On average, c(U∂γβ -KP ) is 18% less than c(UΓ-KP ).

Notice that the price of robustness was introduced by Bertsimas and Sim [2004] and
we use that measure here to be as close as possible to the results obtained by Bertsimas
and Sim [2004]. In practical applications however, we argue that it makes more sense
to study the Benefit of Robustness because decision makers tend to overestimate the
uncertain parameters in the presence of uncertainty. We come back to this point in the
next chapter.

We compare then the computational complexity of the dualized formulations obtained
for models U∂γβ and UΓ. Let t(∗) be the solution time in seconds to solve model ∗ to
optimality. The solution time was less than 10 second for any of our instances. For
ε = 0.01, the geometric mean of the ratios t(U∂γβ -KP )/t(UΓ-KP ) is equal to 1.7, with a
maximum value of 7.68. For ε = 0.05, these values increase to 2.5 and 10, respectively.
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The ratios do not increase with the problem size. In addition to the solution times, we
investigate the bound provided by the linear relaxation of the problem. In particular, we
want to understand whether the bound proposed in Theorem 4 for the big-M coefficients is
tight. Our results show that the gap between the linear relaxation and the solution of the
problem are very close for both models. Surprisingly, the LP relaxation gap of problem
U∂γβ -KP is even 10% better in average than the one of UΓ-KP . However, replacing
maxj(ûj) by very large numbers reduce significantly the bound provided by the linear
relaxation. For instance, setting M to 10000 multiplies the gap by an average factor of
four.

We have also tested more refined linearizations, using two and three linear over-
approximations. Unreported results have shown that the solution times tend to increase
more than linearly with the number of linear functions used while decreasing the protect-
ing cost by less than 1%.

2.6.2 Shortest path problem

We illustrate next the cost-reduction obtained with model U∂γβ for the robust shortest
path problem (SP ). Using Theorem 5, we can solve the U∂γβ -SP in essentially the same
amount of time as for UΓ-SP . The cost reduction is illustrated in Figure 2.2, using the
real road networks described in Table 2.1.

Network name Arc Length
(abbreviation) |V | |A| Arc/Node ratio Maximum Mean Stnd. Dev.

Nebraska (NE1) 523 1646 3.14 0.874764 0.215551 0.142461
Alabama (AL1) 842 2506 2.98 0.650305 0.128870 0.114031

Minnesota (MN1) 951 2932 3.08 0.972436 0.175173 0.132083
Iowa (IA1) 1003 2684 2.68 0.573768 0.119900 0.113719

Table 2.1: Characteristics of the networks taken from Zhan and Noon [1998].
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Chapter 3

Constrained shortest path

The chapter is based on Pessoa et al. [2015].

3.1 Introduction

Let G = (N,A) be a directed graph with two special nodes o and d, κ : A→ R+ be a cost
function and u : A→ Z+ be a weight function that represents the resource consumption
along each arc of G. The resource constrained shortest path problem looks for the shortest
path (according to cost κ) from o to d that satisfies the resource constraint(s), which can
be, for instance, capacity constraints or time windows. Namely, a capacity constraint
considers an upper bound W ∈ Z+ on the resource available on a path, and imposes that
any feasible path p satisfies

w(p) ≤ W, (3.1)

where w(p) =
∑

a∈p ua. The shortest path problem with capacity constraint is denoted by
CSP . Different from the capacity constraint, time windows must be satisfied at each node
pertaining to feasible paths and they are defined by two vectors b and b in Z|N |+ such that
bi ≤ bi for each i ∈ N . Consider a path p = (i0, i1, . . . , il) containing l = |p| arcs. For each
j ∈ {1, . . . , l}, we define the arrival time at node ij as tj(p) = max(bij , tj−1(p) + uij−1ij),
and the time window constraints are written as

tj(p) ≤ bij , j = 1, . . . , l. (3.2)

The shortest path problem with time windows is denoted by TWSP . One can define
similarly problems with multiple capacity constraints and/or time window constraints.
To keep simple notations, we disregard these generalizations in the following and consider
a unique resource constraint.

In what follows, we suppose that the weights are uncertain parameters that can take
any value in a given uncertainty set U ⊂ Z|A|+ , which we assume to be finite. Given a fixed
u ∈ U , we redefine the values of w(p) and tj(p) as w(p, u) and tj(p, u), respectively, to

25
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mark the dependency on the uncertain parameter u. In the uncertain context, we impose
that constraints (3.1) and (3.2) be satisfied for all u ∈ U ; that is

w(p, u) ≤ W, u ∈ U , (3.3)

and
tj(p, u) ≤ bij , j = 1, . . . , l, u ∈ U . (3.4)

We denote the associated optimization problems by U -CSP and U -TWSP , respectively.
We show in Section 3.2 that the problems are NP-hard in the strong sense for un-

certainty sets of unbounded cardinalities. In Section 3.3, we solve UΓ-CSP by solving
|A| + 1 deterministic CSP problems by applying Theorem 2 and Theorem 5. We show
then in Section 3.4 that UΓ-TWSP is NP-hard in the strong sense, which highlights a
fundamental difference between UΓ-CSP and UΓ-TWSP . We present in Section 3.5 a
label-setting algorithm based on that proposed by Desrochers and Soumis [1988], paying
a particular attention to the generalization of dominance rules.

3.2 NP-hardness for general uncertainty sets

When U is reduced to a singleton, U -CSP and U -TWSP reduce to their deterministic
counterparts. Otherwise, the problems can be seen as deterministic problems that contain
multiple capacity or time windows constraints, one for each value of u in U . When the
cardinality of U is bounded by a small constant, U -CSP and U -TWSP could therefore be
solved in pseudo-polynomial time using, for instance, the classical label-setting algorithm.
However, the running time of such algorithms is exponential in the cardinality of U ,
making them impractical for solving problems with uncertainty sets of large cardinalities.
One can wonder whether different efficient approaches could exist to solve these problems
under arbitrary uncertainty sets. The next result answers this in the negative, showing
that U -CSP and U -TWSP are NP-hard in the strong sense when the cardinality of
U is unbounded. The proof, omitted for brevity, simply consists in reducing the robust
knapsack problem (U -KP ) to U -CSP . A similar proof can be devised to reduce U -KP
to U -TWSP .
ROBUST KNAPSACK PROBLEM (U -KP )

Input: Set {1, . . . ,m} of items, set V ⊂ Zm+ of weights w, profit vector c ∈ Rm
+ , capacity

D.

Task: Find a subset of items I ⊆ {1, . . . ,m} of maximum profit such that
∑
i∈I

wi ≤

D for all w ∈ V .

Theorem 8. U-CSP is NP-hard in the strong sense for an uncertainty set U of un-
bounded cardinality.
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The above result suggests that problems U -CSP and U -TWSP can be quite hard to
solve exactly for arbitrary uncertainty sets. This is not very surprising as it is well known
that many robust versions of combinatorial optimization problems becomeNP-hard in the
presence of uncertainty [Kouvelis and Yu, 2013]. In view of the above difficulty, we focus
on uncertainty sets UΓ and Uγ, known to often lead to robust optimization problems with
computational complexities similar to the complexities of their deterministic counterparts.

3.3 Complexity of UΓ-CSP and Uγ-CSP
We consider in this section Uγ-CSP and show how the problem can be solved in pseudo-
polynomial time. Let us formulate next Uγ-CSP as an integer linear program with one
linear robust constraint. Let x ∈ {0, 1}|A| be a vector of optimization variables stating
which arcs belong to the solution, and let X comb ⊂ {0, 1}|A| contain all vectors x that
correspond to paths from o to d. With these variables, Uγ-CSP can be cast as

min

{∑
a∈A

κaxa :
∑
a∈A

uaxa ≤ W,u ∈ Uγ(x), x ∈ X comb

}
. (3.5)

Applying Theorem 5 to problem (3.5) yields the results below.

Corollary 1. If γ is affine, Uγ-CSP can be handled by solving |A| + 1 problems CSP
with modified weights.

The above result implies that Uγ-CSP can be solved in pseudo-polynomial time.
When the appropriate data structures are used, CSP can be solved by the label-setting
algorithm in O(|A|W ) if there are no zero weights [Desrochers and Soumis, 1988], yielding
the following corollary.

Corollary 2. If γ is affine, Uγ-CSP can be solved in O(|A|2W ) time.

Notice that whenever γ is not affine, we can still solve Uγ-CSP in pseudo-polynomial
time, albeit at a higher computational cost. Let CSP≤k and UΓ-CSP≤k be defined as
CSP and UΓ-CSP , respectively, with the additional restriction that feasible paths cannot
contain more than k arcs, for 0 ≤ k ≤ |N |, and Γ = γ(k). Clearly, the label-setting
algorithm applied to CSP≤k with the appropriate data structures has a running time of
O(|A|W |N |). Moreover, Theorem 5 can be applied to UΓ-CSP≤k so that the problem can
be solved in O(|A|2W |N |) time.

Theorem 9. Uγ-CSP can be solved in O(|A|2W |N |) time for any non-decreasing function
γ.

Unfortunately, the approach used in this section cannot be used to provide pseudo-
polynomial algorithms for Uγ-TWSP . The reason is that time windows restrictions are
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expressed through |N | non-linear constraints, instead of a single linear constraint as is the
case for Uγ-CSP . An alternative would be to adapt the layered formulation from Agra
et al. [2012] to Uγ-TWSP . Nevertheless, the resulting formulation would contain many
robust constraints (more than |N |2), so that applying Theorem 5 to it would enable us
to solve UΓ-TWSP by solving more than O

(
|A||N |2

)
problems TWSP , instead of the

O(|A|) problems involved in Corollary 1. This approach could hardly be of any practical
use.

3.4 Complexity of UΓ-TWSP and Uγ-TWSP

We show in this section that the decision version of a simplification of UΓ-TWSP is
NP-complete in the strong sense. Namely, we consider the robust path with deadlines,
obtained from the decision version of UΓ-TWSP by looking for a path with zero nominal
travel time that satisfies the upper time windows constraints (hence we suppose u = 0

and b = 0); we also suppose that the graph is acyclic.
ROBUST PATH WITH DEADLINES (UΓ-PD)

Input: A directed acyclic graph D = (N,A) with corresponding ûa for each a ∈ A and
bi for each i ∈ N , and a positive integer Γ.

Question: Does there exist a path p = (i0, i1, . . . , il) in D starting at o ∈ N (i0 = o) and
ending at d ∈ N (il = d) such that

max

{∑
a∈S

ûa : S ⊆ (i0, i1, . . . , ih), |S| ≤ Γ

}
≤ bih , for each h = 1, . . . , l?

Our proof is based on reducing the decision version of the independent set problem to
UΓ-PD. It is well known that the former problem is NP-complete in the strong sense
(e.g., Garey and Johnson [1990]).
INDEPENDENT SET (IS)

Input: An undirected graph G = (V,E) and a positive integer K.

Question: Does there existW ⊆ V such that |W | ≥ K and {i, j} * W for each {i, j} ∈ E
?

Theorem 10. UΓ-PD is NP-complete in the strong sense.

Proof. First, we show that UΓ-PD belongs to NP . For that, the feasibility of a path
p = (i0, i1, . . . , il) must be checked in polynomial time. This is true because, for each
h = 1, . . . , l, the time window constraint on ih needs to be checked only for a single S
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Figure 3.1: Reduction from the independent set problem to UΓ-PD.

containing min(h,Γ) arcs, with largest values of ûa. Next, we show that IS can be reduced
to UΓ-PD.

Given an instance to IS with |V | = n nodes and |E| = m edges, we show next how to
build an instance for UΓ-PD. The graph D is described on Figure 3.1 where pi represents
a directed path that contains m + 1 arcs for each i ∈ {1, . . . , 2n} and n arcs for each
i ∈ {2n+ 1, . . . , 2n+m}. Moreover, o = 0, d = n+m and Γ = n(m+ 1). In what follows
we denote the k-th arc of pi by a(i, k) and the elements of E by {e1, . . . , em}.

One sees immediately that any path p from o to d must contain all paths p2n+i for
i ∈ {1, . . . ,m}. Furthermore, for each i ∈ {1, . . . , n}, the path p contains either p2i or
p2i−1. Hence, there are 2n different paths in D from o to d, which is as many as the number
of different subsets of V . The correspondence between subsets of V and paths in D works
as follows. Let W ⊆ V be a subset of V and let pW be the path in D associated to W .
Then, for each i ∈ {1, . . . , n}, the path pW contains p2i if i ∈ W and the path pW contains
p2i−1 otherwise. We can describe concisely pW by introducing the function W̃ defined as
follows: W̃ (i) = 2i if i ∈ W and W̃ (i) = 2i− 1 otherwise, for each i ∈ {1, . . . , n}. Hence,
pW = pW̃ (1) ∪ pW̃ (2) ∪ · · · ∪ pW̃ (n) ∪ p2n+1 ∪ · · · ∪ p2n+m.

We explain next how to choose the parameters û and b such that the deadline con-
straints imposed on pW are equivalent to the constraints of IS imposed on W . Namely,
we choose these parameters such that the constraint

max

{∑
a∈S

ûa : S ⊆ pW̃ (1) ∪ pW̃ (2) ∪ · · · ∪ pW̃ (n), |S| = n(m+ 1)

}
≤ bn (3.6)

written for pW is equivalent to |W | ≥ K and constraints

max

{∑
a∈S

ûa : S ⊆ pW̃ (1) ∪ · · · ∪ pW̃ (n) ∪ p2n+1 ∪ · · · ∪ p2n+h, |S| = n(m+ 1)

}
≤ bn+h

(3.7)
written for pW are equivalent to eh = {i, j} * W , for each h = 1, . . . ,m. Notice that
in (3.6) and (3.7), |S| = n(m + 1) has been used instead of |S| ≤ n(m + 1) because
all components of û are positive and the paths considered in (3.6) and (3.7) contain not
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less than n(m + 1) arcs. Our construction below is made in two steps. First, we impose
restrictions on û and b which ensure that the corresponding deadline constraints translate
exactly into the constraints of IS. To this end we introduce additional parameters µ, ν,
and σh for each h ∈ {1, . . . ,m} to be specified later. Second, we provide an example of
a vector (µ, ν, σ, û, b) that satisfies the restrictions and that is composed of polynomial
functions of n,m, and K. For brevity, the construction of that vector is not presented in
this manuscript, we refer to Pessoa et al. [2015] for details.

Constraint (3.6) The number of arcs of the subpath pW̃ (1)∪ pW̃ (2)∪ · · · ∪ pW̃ (n) is equal
to n(m + 1), so that the unique choice of S in the maximization is the full subpath
pW̃ (1) ∪ pW̃ (2) ∪ · · · ∪ pW̃ (n). Hence, (3.6) becomes

n∑
i=1

m+1∑
k=1

ûa(W̃ (i),k) ≤ bn. (3.8)

Let û and bn be such that

m+1∑
k=1

ûa(2i,k) = µ, i ∈ {1, . . . , n},

m+1∑
k=1

ûa(2i−1,k) = µ+ 1, i ∈ {1, . . . , n},

bn = nµ+ n−K.

(3.9)

Plugging (3.9) into (3.8), we obtain that pW cannot contain more than n − K paths of
the form p2i−1 for i ∈ {1, . . . , n}, which is equivalent to |V \W | ≤ n−K, or more simply,
|W | ≥ K.

h-th constraint of (3.7) We next propose restrictions on û and b such that the maxi-
mization in the lhs of the h-th constraint in (3.7) becomes

n∑
i=1

m+1∑
k=h+1

ûa(W̃ (i),k) +
2n+h∑
i=2n+1

n∑
k=1

ûa(i,k). (3.10)

One readily checks that the following set of constraints yields the desired (3.10):

ûa(i,k) < ûa(j,k+1), i, j ∈ {1, . . . , 2n}, k ∈ {1, . . . ,m},
ν > ûa(i,m), i ∈ {1, . . . , 2n},
ν = ûa(i,k), i ∈ {2n+ 1, . . . , 2n+m}, k ∈ {1, . . . , n}.

(3.11)
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Once the lhs of the h-th constraint of (3.7) has been turned into (3.10), we impose the
following additional restrictions to obtain the desired deadline constraint:

m+1∑
k=h+1

ûa(2i,k) =

{
σh + 1, if eh is adjacent to the node i,
σh, otherwise.

, i ∈ {1, . . . , n},

m+1∑
k=h+1

ûa(2i−1,k) = σh, i ∈ {1, . . . , n},

bn+k = 1 + nσh + hnν.
(3.12)

Plugging restrictions (3.11) and (3.12) into the h-th constraint of (3.7), we obtain that
pW cannot contain more than a single subpath p2i such that i is adjacent to edge eh.
Hence, the number of vertices in W adjacent to eh must not be greater than 1, which is
equivalent to {i, j} * W for eh = {i, j}.

Since UΓ-PD is a special case of the decision problem associated to UΓ-TWSP , we
obtain immediately the following result, which contrasts with the pseudo-polynomial al-
gorithms proposed for UΓ-CSP in the previous section.

Corollary 3. UΓ-TWSP and Uγ-TWSP are NP-hard in the strong sense.

3.5 Label-setting algorithm

We show in this section how to extend the classical labels used in dynamic programming
and label-setting algorithms (e.g., Desrochers and Soumis [1988]) to the case of uncertain
weights. We focus on the definition of robust labels and discuss dominance rules in case
of budgeted uncertainty. Our description is presented for time windows; one can readily
modify the algorithms presented below for a capacity constraint instead of time windows.
Notice, however, that the computational complexity of the algorithm presented below is
exponential in Γ, which is in accordance with the NP-hardness of UΓ-TWSP .

In Subection 3.5.1, we sketch the label-setting algorithm, recall how labels are defined
in the deterministic setting and how dominance applies. We refer the interested reader
to Boland et al. [2006], among others, for a detailed description of the algorithm. In
Subection 3.5.2, we consider the set UΓ and suppose that Γ is integer. If it is not the
case, we can always round up Γ to obtain a slightly more conservative model. In the
(unlikely) situation where the fractional part of Γ really matters, one can always extend
the algorithm described next in a way similar to the dynamic programming algorithms
described by Poss [2014]. The extension to variable Uγ is omitted for brevity.
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3.5.1 Deterministic labels

We outline next the basic principles of the label-setting algorithm for TWSP . For each
path p from the node o to the node i, the classical label-setting algorithm considers the
label (κ(p), t|p|(p)) that records the cost of the path and its arrival time at the node i.
To avoid constructing all labels, the algorithm selects and extends labels in a special
order. Two sets of labels are considered: permanent labels and non-permanent labels. At
each iteration, the algorithm selects the smallest non-permanent label according to the
lexicographical order and marks the label as permanent. Then, for each direct descendant
of the node associated to the current label, we create a new non-permanent label and
check whether it satisfies the time-windows and is not dominated by a permanent label.
If one of the condition fails to hold, the label is immediately removed from the set of
non-permanent labels. The algorithm ends when the next selected label corresponds to
d.

A crucial phase in the label-setting algorithm is the removal of dominated labels, which
reduces significantly the total number of labels searched in the course of the algorithm.
Given two labels y and y′ associated to paths p and p′ ending at the same node, we say
that the label y′ is dominated by the label y if the following condition holds: if path p′

belongs to an optimal solution of TWSP , then the path p belongs to an optimal solution
of TWSP . Dominated labels can be discarded from the search that occurs during the
label-setting algorithm. The next result is well known and is presented without proof.

Lemma 2. Consider the TWSP and let y = (κ, t) and y′ = (κ′, t′) be two labels associated
to paths p and p′ ending at the same node. Assume the following conditions hold:

1. κ ≤ κ′

2. t ≤ t′

3. and at least one inequality is strict.

Then, label y′ is dominated by label y.

3.5.2 Robust labels

Next, we consider the robust time windows constraints (3.4) recalled below for uncertainty
set UΓ

tj(p, u) ≤ bij , j = 1, . . . , l, u ∈ UΓ, (3.13)

where p = (i0, i1, . . . , il), and l = |p|. The naive approach to UΓ-TWSP would express
the problem as a shortest path problem with |UΓ| time-windows constraints, one for each
u ∈ UΓ. Defining s = |UΓ| and UΓ = {u1, . . . , us}, the naive approach would associate to
the node i and each path p from o to i a label with s resources,(

κ(p), t|p|(p, u
1), . . . , t|p|(p, u

s)
)
, (3.14)
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and extend the label through arc (i, j) with the classical formula(
κ(p) + κij,max(bi, t|p|(p, u

1) + u1
ij), . . . ,max(bi, t|p|(p, u

s) + usij)
)
. (3.15)

Using labels (3.14) and appropriate data structures, one can solve UΓ-TWSP by the label-
setting algorithm in time O(s|A|Bs), where s =

∑Γ
k=1

(|A|
k

)
. The main result of this section

is to show how to reduce the solution time to O(Γ|A|BΓ+1) by using a more compact
description of the labels. Notice that this is a significant improvement since Γ is always
much smaller than s. To be more precise, this improvement leads to pseudo-polynomial
algorithms when Γ is fixed, which happens in applications where we are interested in being
protected only against a small number of deviations, regardless to the size of the instances.
However, if we choose Γ according to probabilistic guarantees, then Γ ∈ O(|A|1/2) (see
the weak analytical bound Γweak presented after (1.12)). In the latter case, the resulting
computing time of the label-setting algorithm would be O(|A|3/2BO(|A|1/2)) which is not
polynomial, although asymptotically smaller than O(s|A|Bs).

Before explaining how the running time can be decreased to O(Γ|A|BΓ+1), we present
without proof the well known extension of Lemma 2 to multiple-resource label (3.14).

Lemma 3. Consider the UΓ-TWSP and let y = (κ, t1, . . . , ts) and y′ = (κ′, t′1, . . . , t′s)

be two labels associated to paths p and p′ ending at the same node. Assume the following
conditions hold:

1. κ ≤ κ′

2. tj ≤ t′j, for each j = 1, . . . , s

3. and at least one inequality is strict.

Then, label y′ is dominated by label y.

The key idea to reduce the running time of the robust label-setting algorithm is based
on rewriting the time windows constraints (3.13) as

max
u∈UΓ

tj(p, u) ≤ bij , j = 1, . . . , l. (3.16)

Our objective is to define robust labels that contain only the necessary information to test
whether the current path is feasible when considering its maximum travel time over UΓ.
Rather than considering all possible travel times u ∈ UΓ that could be used along the
path p = (i0, . . . , il) from o = i0 to i = il, we can define the label attached to the node i
and the path p as (

κ(p), τ 0
l (p), . . . , τΓ

l (p)
)
, (3.17)

where, for each j = 1, . . . , l, τ gj (p) is defined as the maximum arrival time at node ij when
considering up to g ∈ {0, . . . ,Γ} deviations when g ≤ |p| and is equal 0 otherwise; that
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is,

τ gj (p) =

{
max
u∈Ug

tj(p, u), for each g ∈ {0, . . . ,min(|p|,Γ)},
0, for each g ∈ {|p|+ 1, . . . ,Γ}.

(3.18)

Then, we extend the label through arc (i, k), generating a new label for node k = il+1, by
the formula

κ = κ(p) + κij,

τ 0
l+1 = max

(
bj, τ

0
l (p) + uij),

τ gl+1 = max
(
bj, τ

g−1
l (p) + uij + ûij, τ

g
l (p) + uij), for each g ∈ {1, . . . , ḡ},

τ ḡ+1
l+1 = max

(
bj, τ

ḡ−1
l (p) + uij + ûij),

(3.19)

where ḡ = min
(
|p|,Γ−1) and the extended label is feasible if τ ḡ+1 is less than or equal to

bj. It is easy to see by induction that extending the label (0, 0, . . . , 0), that corresponds to
the empty path, iteratively through formula (3.19) leads exactly to definition (3.18). One
readily sees that the solution time of the label-setting algorithm based on label (3.17) is
reduced to O(Γ|A|BΓ+1) since these labels contain Γ + 1 resources and their extension
through new arcs can be done in O(Γ) time with the help of formula (3.19). Finally, the
next result states the new robust dominance rule.

Lemma 4. Consider the UΓ-TWSP and let z = (κ, τ 0, . . . , τΓ) and z′ = (κ′, τ ′0, . . . , τ ′Γ)

be two labels associated to paths p and p′ ending at the same node. Assume the following
conditions hold:

1. κ ≤ κ′

2. τ j ≤ τ ′j, for each j = 0, . . . ,Γ

3. and at least one inequality is strict.

Then, label z′ is dominated by label z.

3.6 Computational experiments

We report below succinct numerical results on the grid networks from Class 6 used in
Dumitrescu and Boland [2003]. The characteristics of these networks are reported in Table
3.1. For each network, we generate a set of different instances by varying the values of Γ

(or γ) and ρ = ûa/ua as follows. Ratio ρ takes each value in {0.5, 0.6, 0.7, 0.8, 0.9, 1}. We
compute Γ and γ for each probability level ε in {0.01, 0.05, 0.1} following the construction
outlined in Chapter 2.
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test nodes arcs density
G1 625 2400 3.84
G2 2500 9800 3.92
G3 5625 22200 3.95
G4 15625 62000 3.97
G5 22500 89400 3.97
G6 30625 121800 3.98
G7 40000 159200 3.98

Table 3.1: Characteristics of the test problems.

Generating time windows We describe next how we generate b and b such that all
instances always have a feasible solution. We let T̂ and T̄ represent the shortest path
trees with respect to u + û and u, respectively. We let p̂ denote the path from node o
to node d in T̂ and the width of time windows is denoted by w (and set to a value in
{40, 100, 200}). The values of bi and bi are set according to the following rule

bi = T̂i − w; bi = T̂i, for each i ∈ p̂,
bi = T̂i − w; bi = T̂i, for each i 6∈ p̂ and rand < 0.5,

bi = T̄i; bi = T̄i + w, for each i 6∈ p̂ and rand ≥ 0.5,

(3.20)

where T̂i and T̄i are the costs of the paths from o to i in T̂ and T̄ , respectively, and rand
is chosen randomly through the uniform distribution [0, 1].

Benefit of robustness In our results, we report the optimal solution cost for the
deterministic problems, while the solution costs for robust problems are provided under
the benefit of robustness. Namely, in the absence of advanced framework to handle
uncertainty, such as robust optimization or stochastic programming, decision makes tend
to overestimate the parameters subject to uncertainty to avoid infeasible solutions, whose
repairing cost would be very high in practice. Hence, they would solve a pessimistic
deterministic problem where all uncertain parameters are set to their extreme values.
The Benefit of Robustness can thus be computed as follows

BoR =
opt(TWSP )− opt(P )

opt(TWSP )
,

where opt(P ) is the optimal solution cost of problem P ∈ {UΓ-TWSP,Uγ-TWSP}.

Results Table 3.2 shows that the robust TWSP with variable budgeted uncertainty
is more difficult to solve than UΓ-TWSP . Indeed, the computational cost of the label-
setting algorithm for solving the Uγ-TWSP is, on average, 1.52 times higher than the
time required for solving the UΓ-TWSP . This behavior is justified by the number of
generated labels. Indeed, the number of labels generated when solving Uγ-TWSP is 1.54
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times higher than that processed by the label-setting algorithm to solve UΓ-TWSP . The
higher number of labels is due to the fact that the feasibility check is done for a subset of
the element of the labels. It follows that infeasible labels for the UΓ-TWSP are feasible
for the Uγ-TWSP . The table also shows that model Uγ-TWSP leads to a significant
increase in the benefit of robustness obtained by model UΓ-TWSP .

TWSP UΓ-TWSP Uγ-TWSP

ε graphs time #labels cost time #labels BoR time #labels BoR

0.01 G1 0.0 83 4897 0.0 109 3.00 0.0 262 5.11
G2 0.0 151 10215 0.2 489 4.02 0.6 1323 5.65
G3 0.1 232 14482 1.2 1388 5.94 3.1 3108 7.88
G4 1.5 436 24740 7.8 3127 5.38 21.2 7358 7.49
G5 2.5 471 16592 14.6 4034 2.57 40.1 9552 3.37
G6 4.4 525 29080 51.0 9271 6.17 124.9 20667 9.17
G7 6.9 594 24892 39.2 4929 2.92 360.6 15382 5.02

AVG 2.2 356 17842 16.3 3335 4.29 78.7 8236 6.24
0.05 G1 0.0 83 4897 0.0 141 3.04 0.0 258 5.19

G2 0.0 151 10215 0.2 455 4.43 0.4 985 6.03
G3 0.1 232 14482 1.3 1219 7.06 2.0 2059 9.38
G4 1.5 436 24740 7.6 2751 5.89 14.3 5336 7.87
G5 2.5 471 16592 12.6 3093 2.80 23.8 5901 4.02
G6 4.4 525 29080 37.5 6325 7.22 70.9 12058 9.56
G7 6.9 594 24892 34.5 4316 3.84 80.0 10177 5.67

AVG 2.2 356 17842 13.4 2614 4.90 27.4 5253 6.82
0.1 G1 0.0 83 4897 0.0 145 3.98 0.0 226 5.19

G2 0.0 151 10215 0.2 441 4.90 0.4 900 6.47
G3 0.1 232 14482 1.0 1040 7.38 1.6 1661 10.32
G4 1.5 436 24740 6.6 2211 7.30 12.1 4039 8.48
G5 2.5 471 16592 10.6 2518 3.18 19.1 4417 4.23
G6 4.4 525 29080 29.0 4934 7.78 46.5 8108 10.02
G7 6.9 594 24892 28.5 3580 4.20 57.9 7779 6.15

AVG 2.2 356 17842 10.8 2124 5.53 19.7 3876 7.27

Table 3.2: Average computational times, number of labels, and cost reductions.



Chapter 4

Scheduling

The chapter is based on Bougeret et al. [2016].

4.1 Introduction

Scheduling is a very wide topic in combinatorial optimization with applications rang-
ing from production and manufacturing systems to transportation and logistics systems.
Stated generally, the objective of scheduling is to allocate optimally scarce resources to ac-
tivities over time. The practical relevance and the difficulty of solving the general schedul-
ing problem have motivated an intense research activity in a large variety of scheduling
environments. Scheduling problems are usually defined in the following way: given a set
of n jobs represented by J , a set of m machines represented byM, and processing times
represented by the tuple u, we look for a schedule x of the jobs on the machines that satis-
fies the side constraints, represented by the set X comb of feasible schedules, and minimize
objective function f(x, u). Formally, this amounts to solve optimization problem

min
x∈X comb

f(x, u).

As before, we suppose in this chapter that the processing times u are uncertain and
address optimization problems of the form

min
x∈X comb

max
u∈UΓ

f(x, u), (4.1)

where the exact definitions of X comb and f depend on each scheduling problem. Differently
from UΓ-CO, we see that scheduling problems represented abstractly in (4.1) feature non-
linear objective functions in general. This explains why Theorems 2 and 3 do not apply
to these problems, opening the way for ad-hoc exact and approximation algorithms.

Recall the three-field notation α|β|γ from Graham et al. [1979] where α describes the
machine environment, β the job characteristics, and γ the objective function. We focus

37
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on the following classical scheduling problems in this chapter. Let Cj(x, u) denote the
completion time of task j for schedule x and processing times represented by u. The
first type of problems studied herein concerns the minimization of the weighted sum of
completion times on a single machine (1||

∑
j wjCj), defined by letting X comb contain

all orders for the n tasks and setting f(x, u) =
∑

j∈J wjCj(x, u). We pay a particular
attention to the case where wj = 1 for each j ∈ J , which is denoted 1||

∑
j Cj. The second

type of problems studied herein considers a set of m machines, which can be identical
(P ), uniform (Q) or unrelated (R), and minimize the makespan f(x, u) = Cmax(x, u) =

maxj∈J Cj(x, u). In the first case, processing job j on machine i is given by uj. In the
second case, the processing time is given by uij = uj/si where si is the speed of machine
i. In the last case, the processing times are given by an arbitrary matrix u ∈ Nm×n. The
resulting problems are denoted by P ||Cmax, Q||Cmax, and R||Cmax, respectively. In these
problems, X comb contain all assignments of the n tasks to the m machines.

We detail below our contributions more specifically as well as the structure of the
chapter. Let us extend Graham’s notation to α|β|UΓ

p |γ to specify that the cost of any
feasible schedule is obtained for the worst processing times in UΓ. In Section 4.2 we
consider one machine problems minimizing the sum of completion times. We prove that
1||UΓ

p |
∑
Cj is polynomial by extending Theorem 2. Comparing with Aloulou and Croce

[2008], Daniels and Kouvelis [1995], Yang and Yu [2002], the result illustrates how UΓ-
robust scheduling can lead to more tractable problems than robust scheduling with arbi-
trary uncertainty sets. We show then that 1||UΓ

p |
∑
wjCj is weakly NP-hard if Γ = 1 and

strongly NP-hard if Γ > 1. To our knowledge, this is the first example of a polynomial
scheduling problem having a NP-hard UΓ-robust counterpart. In Section 4.3 we show
that P ||UΓ

p |Cmax is 3-approximable. Section 4.4 is dedicated to R||UΓ
p |Cmax. We provide

an average O(logm)-approximation based on an extended formulation of the problem.
The formulation is solved in polynomial time by combining column generation with an
approximately feasible solution for the pricing problem. Finally, a classical randomized
rounding is applied, which is carefully analyzed to provide the required approximation
factor.

4.2 Minimizing sum of completion times

4.2.1 Unitary weights

Problem 1||
∑
Cj is one of the simplest scheduling problem, yet its robust version is

NP-hard in the weak sense for arbitrary uncertainty sets U , even for two scenarios Yang
and Yu [2002]. In contrast, we show below that the UΓ-robust version of the problem can
be solved in polynomial time.

Our approach applies an extension of Theorem 2 to problem 1||UΓ
p |
∑
Cj. Let xij be
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equal to 1 iff job j is scheduled in position i. Problem 1||UΓ
p |
∑
Cj can be cast as

min

max
u∈UΓ

∑
(i,j)∈J×J

uj(n+ 1− i)xij :
∑
i∈J

xij = 1, j ∈ J ,
∑
j∈J

xij = 1, i ∈ J

 . (4.2)

Observation 1. Theorem 2 cannot be applied to problem (4.2) because its cost function
is defined by a product of parameters ujqi where only u ∈ UΓ.

We now provide an extension of Theorem 2, which encompasses problem (4.2).

Theorem 11. Let X ⊆
{
{0, 1}I×J :

∑I
i=1 xij = 1, j = 1, . . . , J

}
and let q ∈ RI and

u ∈ UΓ be cost vectors. The optimal solution to problem

min
x∈X

max
u∈UΓ

∑
i,j

ujqixij (4.3)

can be obtained by solving the problems minx∈X
∑

i,j(uj + ûj)qixij and
minx∈X

∑
i,j

(
uj + ŭklij

)
qixij, for each k ∈ I, l ∈ J , where ŭklij = max(0, ûj − ûlqk

qi
).

Proof. The proof follows closely the lines of the proof of Theorem 2 from Bertsimas and
Sim [2003]. Let us detail the inner maximization of (4.3) as∑

i,j

ujqixij + max
{ ∑

i,j

δjûjqixij :∑
j

δj ≤ Γ,

δj ∈ {0, 1}, j = 1, . . . , J
}
.

Removing the binary conditions on δ in the definition of UΓ, one obtains a polytope
whose extreme points correspond with the elements of UΓ. Hence if we consider the linear
programming relaxation of the above problem, which is equal to the solution cost of its
dual

min
{

Γθ +
∑
j

yj :

θ + yj ≥
∑
i

ûjqixij, j = 1, . . . , J

θ, y ≥ 0
}
.

Substituting yj by max(0,
∑

i ûjqixij − θ), we can further reformulate (4.3) as

min
x∈X ,θ≥0

Γθ +
∑
i,j

ujqixij +
∑
j

max(0,
∑
i

ûjqixij − θ). (4.4)
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The crucial step of our proof (which differs from Theorem 2) is that, because the constraint∑I
i=1 xij = 1 holds for each j = 1, . . . , J , we can further reformulate (4.4) as

min
x∈X ,θ≥0

Γθ +
∑
i,j

ujqixij +
∑
j

∑
i

xij max(0, ûjqi − θ).

Introducing r = (i, j) and renaming variable xij as zr, products ujqi and ûjqi as cr and dr,
respectively, the rest of the proof is identical to the proof of Theorem 2 from Bertsimas
and Sim [2003].

Applying Theorem 11 to (4.2), we obtain that 1||UΓ
p |
∑
Cj can be solved by solving

O(n2) assignment problems. We point out that, although the robust problem can be
solved in polynomial time, the modified cost coefficients uj + ŭklij break the structure of
1||UΓ

p |
∑
Cj, i.e., the deterministic problems with cost vector u+ ŭkl are not instances of

1||
∑
Cj.

4.2.2 General weights

It is well known that problem 1||
∑
wjCj can be solved in polynomial time by applying

Smith’s rule [Smith, 1956] (i.e., scheduling jobs by non-decreasing uj
wj
). However, it does

not seem easy to extend that simple rule to the robust problem 1||UΓ
p |
∑
wjCj. In fact,

we show that the problem is NP-hard in the weak sense for Γ = 1 and strongly NP-hard
for arbitrary Γ. For that, we need the following two lemmas.

Lemma 5. Given X ⊂ J such that wj
uj
< w`

u`+û`
, ∀j ∈ X, and ` ∈ J \X, in any optimal

solution for 1||UΓ
p |
∑
wjCj the jobs in X are the last |X| in the schedule.

Proof. We prove the proposition by contradiction. Assume that there is an optimal solu-
tion σ∗ for 1||UΓ

p |
∑
wjCj where two consecutive jobs j and ` have

wj
uj

<
w`

u` + û`
. (4.5)

Let c∗(u) denote the solution cost for the specific vector u ∈ UΓ and c∗ be the solution
cost for worst deviations; that is, c∗ = maxu∈UΓ c∗(u). By swapping j and ` in σ∗, we
obtain an alternative schedule σ′ with cost denoted c′, which satisfies

c′ = max
u∈UΓ

(c∗(u) + u`wj − ujw`)

≤ max
u∈UΓ

c∗(u) + max
u∈UΓ

(u`wj − ujw`)

≤ c∗ + (u` + û`)wj − ujw`. (4.6)

From (4.5) and (4.6), we obtain that c′ < c∗, which contradicts the optimality of σ∗.
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Lemma 6. There exists an optimal solution for 1||UΓ
p |
∑
wjCj where, for any two jobs j

and ` with uj = u`, wj = w`, and ûj < û`, j is scheduled before `.

Proof. Let j and ` be two jobs satisfying the conditions of this proposition such that `
precedes j in an optimal solution σ∗. We show that swapping ` and j does not increase the
robust cost c∗ of σ∗. Let σ′ be the resulting schedule. Let also Wk be the sum of weights
of all jobs that do not precede k in σ∗, for all k ∈ J . Clearly Wj < W`. Moreover, the
total cost due to mean processing times is the same for σ∗ and σ′, and the total cost due
to deviations is calculated by selecting the Γ jobs with maximum ûkWk among all k ∈ J ,
and summing up these values. After the swap, ûjWj and û`W` are replaced by û`Wj and
ûjW`, and the remaining values are kept unchanged. SinceWj < W` and ûj < û`, we have
that û`Wj + ûjW` < ûjWj + û`W`. As a result, the total cost due to deviations cannot
increase after the swap.

For the hardness proof, we define the k-PARTITION problem.

Definition 1. Given kN positive numbers a1, . . . , akN satisfying
∑kN

j=1 aj = NA, k-
PARTITION asks if there exists a partition of {a1, . . . , akN} into N subsets S1, . . . , SN
such that

∑
j∈Si aj = A, for i = 1, . . . , N .

The decision version of 1||UΓ
p |
∑
wjCj, denoted by (1||UΓ

p |
∑
wjCj, K)dec, asks for a

schedule whose robust cost is not greater than a given integer K.

Theorem 12. There is a polynomial reduction from k-PARTITION to
(1||UΓ

p |
∑
wjCj, K)dec with Γ = N − 1.

Proof. First, we describe a reduction allowing that û is a vector of rational numbers.
Later, we show how the proposed reduction can be modified to use only integer numbers,
and still satisfy the conditions of this theorem. We create three types of jobs. For
j = 1, . . . , kN , job j, referred to as a partition job, has wj = uj = aj, and ûj = 0; for
j = kN + 1, . . . , (k + 1)N − 1, job j, referred to as a tail job, has wj = 1, uj = 2N ,
and ûj = 4NA

(k+1)N−j ; for j = (k + 1)N, . . . , (k + 2)N − 2 = n, job j, referred to as a
separating job, has wj = 2, uj = 1, and ûj = 4NA

Wj+β(j)A
, where β(j) = j − (k + 1)N + 1,

and Wj = N − 1 + 2β(j). Moreover, Γ = N − 1.
We restrict our analysis to schedules that satisfy Lemmas 5 and 6 since they necessarily

include an optimal solution to the optimization version of the problem. Thus, we can
conclude that the last N − 1 scheduled jobs are exactly the tail jobs, which are sorted in
an increasing order by their indices, and that the separating jobs are sorted in a decreasing
order by their indices.

For a given schedule σ, let σ(`) denote the `-th job to be executed, for ` = 1, . . . , kN ,
and define σ−1(j) such that σ(σ−1(j)) = j for each j ∈ J . Define also uσ as the worst
vector u ∈ UΓ for the schedule σ. In the objective function

∑
j∈J

∑kN
`=σ−1(j) u

σ
jwσ(`), the

term uσjwσ(`) is referred to as the cost from job j to job σ(`). Let also σ∆(`) denote the
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`-th partition job to be executed according to σ, and define (σ∆)−1 analogously to σ−1.
Finally, let

Aσj =
kN∑
`=1

σ−1(`)≥j

a`

be the sum of the weights of the partitions jobs scheduled after job j (and including the
weight of job j if it is a partition job).

We divide the cost of a schedule σ for the created instance of (1||UΓ
p |
∑
wjCj, K)dec

into six terms:

• the cost from partition jobs to partition jobs, given by

c1 =
kN∑
j=1

kN∑
`=(σ∆)−1(j)

ujwσ∆(`) =
kN∑
j=1

kN∑
`=1

aja`;

• the cost from partition jobs to tail jobs, given by

c2 =
kN∑
j=1

(k+1)N−1∑
`=kN+1

ujw` = NA(N − 1);

• the cost from tail jobs excluding deviations, given by

c3 =

(k+1)N−1∑
j=kN+1

(k+1)N−1∑
`=j

ujwσ(`) = N2(N − 1);

• the cost from partition jobs to separating jobs, given by

c4 =
kN∑
j=1

(k+2)N−2∑
`=(k+1)N

σ−1(`)>σ−1(j)

ujw` = 2NA(N − 1)− 2

(k+2)N−2∑
j=(k+1)N

Aσj ;

• the cost from separating jobs excluding deviations, given by

c5 =

(k+2)N−2∑
j=(k+1)N

(k+2)N−2∑
`=1

σ−1(`)>σ−1(j)

ujw` = N(N − 1) + (N − 1)2 +

(k+2)N−2∑
j=(k+1)N

Aσj ;

• the cost due to deviations from both the separating jobs and the tail jobs, given by

c6 =

(k+2)N−2∑
j=kN+1

(k+2)N−2∑
`=1

σ−1(`)>σ−1(j)

(uσj − uj)w`
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=

(k+2)N−2∑
j=(k+1)N

max

4NA,

(k+2)N−2∑
`=1

σ−1(`)>σ−1(j)

ûjw`


=

(k+2)N−2∑
j=(k+1)N

max

{
4NA,

4NA

Wj + β(j)A
(Wj + Aσj )

}
where the second equality holds because for each tail job, the cost due to its deviation
is equal to 4NA.

The total cost is given by c1 + c2 + c3 + c4 + c5 + c6. Note that only c6, the third
term of c5 and the second term of c4 depend on the schedule σ. All remaining terms are
constant. Summing up the non-constant terms, we obtain

c̃(σ) =

(k+2)N−2∑
j=(k+1)N

max

{
4NA− Aσj ,

4NA

Wj + β(j)A
Wj +

(
4NA

Wj + β(j)A
− 1

)
Aσj

}
.

Assuming that A > 3, we have that 4NA
Wj+β(j)A

> 2. Hence, the value of c̃(σ) is minimized
(and thus the total cost) when β(j)A = Aσj , for j = (k + 1)N, . . . , (k + 2)N − 2. This
only occurs when each sum of processing times of partition jobs scheduled between two
consecutive separating jobs is exactly A. Otherwise, by the coefficients to Aσj in the two
arguments of the maximum function, c̃(σ) increases by at least one unit. Thus, setting
K = c1 + c2 + c3 +N(N − 1) + (N − 1)2 + 5.5NA(N − 1) + 0.5, we have that a positive
answer to k-PARTITION yields a schedule of cost K − 0.5, and that any schedule costs
at least K + 0.5 otherwise.

To ensure that the constructed instance contains only integer numbers on the input,
we multiply all processing times and K by 2(N − 1)

∑
j∈J wj. This yields a solution of

cost K − (N − 1)
∑

j∈J wj in the case of a positive answer to k-PARTITION, and no
solution of cost less than K + (N − 1)

∑
j∈J wj otherwise. By rounding up the values of

ûj, for j = kN + 1, . . . , (k + 2)N − 2, the cost of each solution may increase by at most
(N − 1)

∑
j∈J wj, still allowing to answer k-PARTITION. Moreover, if A is polynomially

bounded for the k-PARTITION, so are all input data for the constructed instance.

The next corollary proves the desired hardness results.

Corollary 4. (1||UΓ
p |
∑
wjCj, K)dec is NP-complete in the weak sense for Γ = 1 and

strongly NP-complete when Γ is part of the input.

Proof. For N = 2 and arbitrary k, k-PARTITION corresponds to PARTITION, which
is weakly NP-complete, and, for k = 3 and arbitrary N , k-PARTITION generalizes 3-
PARTITION, which is NP-complete in the strong sense. Hence, the corollary follows
directly from the reduction given by Theorem 12.
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4.3 Minimizing makespan on identical machines

We introduce the following notations. A schedule is denoted by σ and σi ⊆ J denotes a
schedule restricted to machine i. An optimal schedule is denoted by σ∗ and its value is
denoted by opt. For any set of jobsX ⊆ J , we use u(X) =

∑
j∈X uj and û(X) =

∑
j∈X ûj.

We let Γ(X) contain the Γ jobs from X with highest deviations, ûΓ(X) = û(Γ(X)), and
ûΓ(σ) =

∑
i∈M ûΓ(σi). We also use C(J ) = u(J ) + ûΓ(J ) and C(σ) = maxi∈MC(σi).

We say that an algorithm A is a ρ-dual approximation if for any ω and instance I,
either A(I, ω) builds a schedule σ such that C(σ) ≤ ρω or fails, which implies then that
ω < opt. Notice that any ρ-dual approximation can be converted to a ρ-approximation
algorithm by performing a binary search on ω to find the smallest ω that is not rejected.

Let us now design an algorithm A for P ||UΓ
p |Cmax, and prove the following theorem.

Theorem 13. Algorithm A is a 3 dual approximation algorithm for P ||UΓ
p |Cmax. This

implies that P ||UΓ
p |Cmax admits a 3-approximation in the general case.

Before presenting algorithm A, we point out an important obstacle faced when design-
ing dual algorithms for the problem. As usual, fixing the value of ω is suitable as it defines
the size of bins in which we can schedule the jobs. Thus, a natural way to design a dual
approximation algorithm would be to take the jobs in an arbitrary order and schedule
as many of them as possible into each machine, moving to the next machine whenever
C(σi) > ω, and rejecting ω if there remain some jobs after filling m machines. This algo-
rithm would not exceed 2ω, thus improving over Theorem 13. However, this algorithm is
not correct, as the existence of a σ with C(σi) > ω for any i does not imply that ω < opt,
even if the algorithm selects jobs by non-increasing ûj. Indeed, consider the input where
m = Γ = 2, ω = 15 and u1 = (0, 10), u2 = u3 = u4 = (0, 6), u5 = (5, 0), u6 = (3, 0) (where
uj = (uj, ûj)). The previous algorithm would create σ1 = {1, 2}, σ2 = {3, 4, 5} and rejects
as C(σi) > ω for any i and not all jobs are scheduled, whereas there exists a schedule
σ∗1 = {1, 5}, σ∗2 = {2, 3, 4, 6} that fits in ω. This explains the design of Algorithm 1. The
validity of the algorithm is shown in the rest of this section.

Observation 2. For any σ, C(σ) ≤ ω ⇒ ûΓ(σ) + u(J ) ≤ mω.

Lemma 7. For any i, C(σi) ≤ 3ω

Proof. In the worst case, before adding the last job j in the interior while loop we had
u(X) = ω and ûΓ(X) = ω, and thus C(σi) ≤ 2ω + uj + ûj with uj + ûj ≤ ω (if there is a
job with uj + ûj > ω, we can immediately reject ω).

Lemma 8. If A fails, then opt > ω.

Proof. Let us suppose that A fails and suppose by contradiction that opt ≤ ω. We say
that machine i is of type 1 iff ûΓ(σi) > ω, and is of type 2 otherwise. Notice that a schedule
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Algorithm 1 Algorithm A

// Given a set of jobs J , A(J ) either schedules J on m machines, or fails.
i = 1

while J 6= ∅ AND i ≤ m do
σi ← ∅
while J 6= ∅ AND u(σi) ≤ ω AND ûΓ(σi) ≤ ω do
assign to σi the largest job (in term of ûj) of J ;

end while
i← i+ 1;

end while
if J 6= ∅ then
fails

end if

on a machine of type 1 contains at most Γ jobs (as jobs are added by non-increasing ûj),
and a schedule σi on a machine of type 2 verifies u(σi) > w. LetM1 be the set of machines
of type 1, and let J1 be the set of jobs scheduled by A in machinesM1. LetM2 and J2

be defined in the same way. We have

• u(J2) > |M2|ω by definition of type 2

• û(J1) > |M1|ω by definition of type 1

• û(σ∗) ≥ û(J1)

Let us prove the last item. Notice first that for any schedule σ′ of J1 on m machines such
that C(σ′) ≤ ω, û(σ′) = û(J1). Indeed, let i be the last machine inM1 and let x = |σi|.
Notice that as we select the jobs by non-increasing order of ûj in the interior while loop,
σi contains the x smallest jobs (in terms of ûj) of J1. As i is type 1 we get ûΓ(σi) > ω,
and we deduce that in any schedule of J1 that fits in ω, there are at most x ≤ Γ jobs on
every machine. Thus, all jobs deviate in σ′, and û(σ′) = û(J1).

Then, notice that û(σ∗) ≥ û(σ∗|J1
) where σ∗|J1

is the schedule we obtain by starting
from σ∗ and only keeping jobs of J1 on each machine (and removing idle time). Thus, as
opt|J1

is a schedule of J1 on m machines that fits in ω, we know that û(σ∗|J1
) = û(J1),

concluding the proof of the last item.
Thus, we get u(J ) + û(σ∗) ≥ u(J2) + û(J1) > mω, and thus according to Observation

2 we deduce opt > ω, a contradiction.

Lemmas 7 and 8 directly imply Theorem 13.
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4.4 Minimizing makespan on unrelated machines

In this section, we denote by ūij and ûij respectively the mean and deviating processing
times for job j ∈ J = {1, . . . , n} on machine i ∈M = {1, . . . ,m}.

We provide an algorithm that yields an average O(logm) approximation factor. Notice
that the straightforward generalization of the formulation from Lenstra et al. [1990] is not
useful in the robust context because its fractional solution may contain up to nm fractional
variables. Hence, we must use a different approach, based on the extended formulation
described next.

Define, for each i ∈M and each ν ⊆ J , λiν = 1 if the set of jobs executed on machine
i is precisely ν, and zero otherwise. Let µ(j, ν) = 1 if j ∈ ν, and zero otherwise, and
α(i, ν) = max

{∑
j∈ν(ūij + ξjûij) : ξ ∈ {0, 1}n,

∑
j∈J ξj ≤ Γ

}
. The formulation follows:

min
{

ω :∑
i∈M

∑
ν⊆J

µ(j, ν)λiν = 1, ∀j ∈ J

ω ≥
∑
ν⊆J

α(i, ν)λiν , ∀i ∈M∑
ν⊆J

λiν = 1, ∀i ∈M

λiν ∈ {0, 1}, ∀(i, ν) ∈M× 2J
}
.

As with the formulation from Lenstra et al. [1990], the value of the lower bound
improves if we drop the objective function and remove all variables λiν such that α(i, ν)

is greater than a given target makespan value ω. Namely, we consider the lower bound
for R||UΓ|Cmax defined as follows

LB = {minω : FP (ω) is feasible}, (4.7)

where FP (ω) is defined by the following linear constraints:∑
i∈M

∑
ν⊆J

α(i,ν)≤ω

µ(j, ν)λiν = 1, ∀j ∈ J (4.8)

∑
ν⊆J

α(i,ν)≤ω

λiν = 1, ∀i ∈M (4.9)

λiν ≥ 0, ∀(i, ν) ∈M× 2J . (4.10)

LB is a lower bound because the integrality restrictions on λ have been relaxed. We
show below how we can assert in polynomial time whether FP (ω) is infeasible or prove
its feasibility for 2ω. This algorithm can be further combined with a binary search on the
minimum value ω for which FP (ω) is feasible, yielding the following result.
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Theorem 14. We can compute in polynomial time a 2-approximate solution for LB.

Proof. We solve problem (4.7) using a dual-approximation algorithm. Namely, for each
value of ω, either we show that FP (2w) is feasible or that FP (ω) is infeasible. Then, the
minimum value of ω for which FP (ω) is feasible that leads to zero objective value can be
found through a binary search.

Let ω be the current value of the guess. We can check the feasibility of FP (2ω) by
adding artificial variables sj that allow penalized infeasibilities, leading to the following
linear program.

min
{ ∑

j∈J

sj : (4.11)∑
i∈M

∑
ν⊆J

α(i,ν)≤ω

µ(j, ν)λiν + sj = 1, ∀j ∈ J (4.12)

∑
ν⊆J

α(i,ν)≤ω

λiν = 1, ∀i ∈M (4.13)

λiν ≥ 0, ∀(i, ν) ∈M× 2J , α(i, ν) ≤ ω (4.14)

sj ≥ 0, ∀j ∈ J
}

(4.15)

The continuous relaxation of the previous formulation can be solved in polynomial time,
using for instance the Ellipsoid method [Khachiyan, 1980], if the problem of pricing the
λ variables is also polynomially solvable [Grötschel et al., 1988]. Such a pricing problem
can be stated as follows. Let πj, and θi be dual variables associated to constraints (4.12),
and (4.13), respectively. The reduced cost of the variable λiν , denoted by c̄(λiν), is equal
to −

∑
j∈ν πj − θi.

Then, for each i ∈ M, we want to find ν ⊆ J that maximizes
∑

j∈ν πj subject to
α(i, ν) ≤ ω. This problem is the robust binary knapsack problem, which is an NP-hard
problem. Hence, suppose instead that we can compute in polynomial time a solution ν∗

with reduced cost c̄∗ such that α(i, ν∗) ≤ 2ω and such that no solution with a smaller
reduced cost exists where α(i, ν) ≤ ω. We obtain a relaxed primal solution that may
use variables λiν with α(i, ν) up to 2ω, and whose objective value is not greater than the
optimal value of a linear program where all variables λiν have α(i, ν) ≤ ω. As a result,
a positive value on the objective function ensures that FP (ω) is infeasible while a null
value provides a fractional feasible solution for FP (2ω).

It remains to show how to find the solution ν∗. Remark that if û = 0 (the problem
is deterministic), such a solution ν∗ can be found by using the greedy algorithm for
the knapsack problem and rounding up the unique fractional variable. Then, one readily
verifies that the deterministic approach can be extended to the robust context by applying
Theorem 3.
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In the remainder of the section, we let ω be the solution returned by Theorem 14 and λ∗

be the corresponding fractional vector. Our objective is to use randomized rounding to ob-
tain an integer solution to R||UΓ|Cmax with an average makespan of at most O(log(m))ω.
Since ω/2 is a lower bound for opt, this will lead to an average O(log(m))-approximation
ratio for R||UΓ|Cmax (see Theorem 16).

The proposed rounding procedure iteratively adds schedules to all machines until every
job is assigned to one of the machines. At each iteration, one additional schedule is selected
for each machine and added to the current solution, allowing that the same schedule is
added more than once to a given machine. The procedure maintains a variable yij for each
machine i and each job j representing the number of times that job j belongs to a schedule
that is added to machine i. These variables are used only to prove the approximation
bound on the obtained makespan. The integer solution consists of simply assigning each
job j to the machine that receives the first schedule that contains j.

Algorithm 2 Randomized rounding (input: a feasible solution (λ∗) of FP (ω))
y ← 0;
while there exists a job j ∈ J not assigned to any machine do
for i← 1, . . . ,m do

Randomly select a schedule ν∗ for machine i with probability λ∗iν of selecting each
schedule ν;
for each j ∈ ν∗ do
yij ← yij + 1;
if job j is not assigned to any machine then
Assign job j to machine i;

end if
end for

end for
end while

The pseudocode for this rounding procedure is given in Algorithm 2. Let Cmax be the
random variable corresponding to the makespan of the schedule computed by Algorithm 2.
Let t be the number of iterations performed by the while loop of this algorithm. Since
every schedule ν associated to a variable λiν has a total processing time of at most ω, it is
clear that Cmax ≤ ωt. Thus, it remains to give an upper bound on the expected value of t.
For that, we use the well-known Chernoff bound that can be described as follows. Given
K independent random variables X1, . . . , XK , each one taking the value 1 with certain
probability and zero otherwise, such that the expected value of X =

∑K
k=1Xk is equal to

µ, the probability that X < (1 − δ)µ, for any δ > 0, is smaller than e−µδ
2/2. The next

Theorem uses this bound to limit the value of t.

Theorem 15. The probability that t > d4 ln(2n)e is less than 1/2.
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Proof. Let t∗ = d4 ln(2n)e. For a given job j, machine i and iteration q ≤ t∗ of the while
loop, let Xj

q,i = 1 if the value of yij is increased during this iteration, and zero otherwise
(if the algorithm stopped after t < t∗ iterations of the while loop then all the Xj

q,i with
t < q ≤ t∗ are set to 0). Clearly, the random variables Xj

q,i are independent. Moreover,
the constraints (4.12) ensure that E(

∑
iX

j
q,i) = 1 for any j and q, and thus the expected

value of Xj =
∑t∗

q=1

∑
i∈MXj

q,i is equal to t∗. Now, applying the Chernoff bound with
δ = 1− 1/t∗, and assuming that t∗ ≥ 4, we obtain that

Pr[Xj < 1] < e−
(t∗−1)2

2t∗ < e−t
∗/4 ≤ 1

2n
. (4.16)

Note that Pr[Xj < 1] is the probability that the job j is not scheduled after t∗ iter-
ations, and that the random variables X1, . . . , Xn are not necessarily independent. Let
X = 1 if every job is scheduled after t∗ iterations, and zero if at least one job is not
scheduled. Note that X = 0 is equivalent to state that the Algorithm 2 does not finish
after t∗ iterations, i.e., t > t∗. Moreover, we have that

Pr[X = 0] = Pr[
n∑
j=1

Xj < n] ≤
n∑
j=1

Pr[Xj < 1] < 1/2, (4.17)

which completes our proof.

Corollary 5. E(Cmax) = O(log(n))ω.

Proof. An immediate consequence of Theorem 15 is that for any integer c ≥ 1, the
probability that t > c × d4 ln(2n)e is less than 1/2c (indeed, 1/2c upper bounds the
probabilty that none of c parallel execution of Algorithm 2 schedules all the jobs, where
each run only performs d4 ln(2n)e iterations of the while loop). As a result, the expected
value of t is smaller than 2× d4 ln(2n)e.

A tighter analysis of the approximation ratio of Algorithm 2 yields the following result.
Its proof is ommitted for brevity.

Lemma 9. E(Cmax) = O(log(m))ω.

We obtain easily the following result.

Theorem 16. There is a O(log(m))-approximation in expectation for R||UΓ|Cmax.

Proof of Theorem 16. Let us define a randomizedO(logm)-dual approximation that given
a threshold ω either creates a schedule with E(Cmax) ≤ O(logm)ω, or fails, implying that
ω < opt (where opt is the optimal solution cost of the R||UΓ|Cmax input). Given ω,
we apply Theorem 14 to either compute a fractional solution of cost 2ω of LB, or fail
(implying ω < opt(LB) ≤ opt). If the algorithm does not fail, we apply Lemma 9 to round
this solution to an integer solution with expected makespan E(Cmax) ≤ O(logm)2ω.
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Chapter 5

Lot-sizing

The chapter is based on Santos et al. [2016a].

5.1 Introduction

We consider in this chapter a simple version of the robust lot-sizing problem, denoted
UΓ-LSP . Consider a finite planning horizon {1, . . . , n}. For each time period i = 1, . . . , n,

we are given a capacity Ci, a holding cost pi, a shortage cost si, and a production cost ci.
We assume that the demands are not known with precision and vary around their nominal
values. However, unlike the previous chapters, it is important here to represent upward
deviations as well as downward deviations, because a demand lower than expected may
also lead to additional costs (holding costs) Hence, we assume here that the vector of
demands u belongs to

UΓ
± :=

{
u ∈ Rn : ui = ui + ξiûi, ξi ∈ {−1, 0, 1},

∑
|ξi| ≤ Γ

}
,

UΓ
±, where ui represents the nominal demand in period i, and ûi represents the maximum

allowed demand deviation in period i. The amount that needs to be produced in each
time period must be decided before the actual demand value is revealed. In contrast,
stock levels and backlogged demands are adjusted to each individual demand realization.

The problem can be modeled as follows. Variable xi represents the amount produced
at period i and variable θ represents the total storage and backlog costs. The formulation
for UΓ-LSP follows.

min
{

cTx+ θ :

0 ≤ xi ≤ Ci, i = 1, . . . , n, (5.1)

θ ≥
n∑
i=1

max

si
 i∑
j=1

uj −
i∑

j=1

xj

 ,−pi

 i∑
j=1

uj −
i∑

j=1

xj

 , u ∈ UΓ
±

 . (5.2)

51
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Let us make a few comments on the above formulation. First, we remark that UΓ-LSP
is not an instance of UΓ-CO because variables x are fractional. This being said, the
algorithms developed in the balance of this chapter, like those developed in Chapters 3
and 4 rely on the combinatorial structure of UΓ. Then, the attentive reader will also
notice that constraints (5.2) are non-linear, unlike the linear constraints (1.4). We do
not linearize these constraints purposely as their non-linearity shall be exploited in this
chapter when devising separation algorithms. Finally, we point out that the formulation
is not compatible with variable uncertainty because x is fractional. Nevertheless, even if x
were binary, the nature of the algorithms proposed in this chapter would not suit variable
uncertainty, because these algorithms generate a subset of constraints (5.2) that must be
valid for all x. We come back to this in the next chapter.

We show in the next section how to solve UΓ-LSP through a row-and-column gen-
eration algorithm. Section 5.3 focuses on the separation problem and shows how it can
be solved in pseudo-polynomial time through dynamic programming. For simplicity, the
section focuses on the simpler uncertainty set UΓ. Section 5.4 is devoted to construct a
Fully Polynomial Time Approximation Scheme for the problem (FPTAS). Computational
experiments are presented in Section 5.5.

5.2 Decomposition algorithm

The problem UΓ-LSP contains exponential numbers of variables and constraints, making
it intractable as such. Here, we tackle the problem by generating a relevant subset of
variables and constraints on the fly in the course of the decomposition algorithm presented
below. Let U∗ ⊂ UΓ

± be a finite set. We can reformulate

θ ≥
n∑
i=1

max

{
si

(
i∑

j=1

uj −
i∑

j=1

xj

)
,−pi

(
i∑

j=1

uj −
i∑

j=1

xj

)}
, u ∈ U∗, (5.3)

as the following set of linear inequalities, written for each u ∈ U∗:

θ ≥
n∑
i=1

ϕui , (5.4)

ϕui ≥ si

(
i∑

j=1

uj −
i∑

j=1

xj

)
, i = 1, . . . , n, (5.5)

ϕui ≥ −pi

(
i∑

j=1

uj −
i∑

j=1

xj

)
, i = 1, . . . , n, (5.6)

where ϕu is an additional vector of optimization variables. Our approach is based on the
above linear reformulation of (5.3). Specifically, we relax constraints (5.2) for all elements
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in UΓ
± but U∗ and replace robust constraint (5.2) by its linear reformulation, obtaining

the relaxed Master Problem

min
{

cTx+ θ :

0 ≤ xi ≤ Ci, i = 1, . . . , n,

U∗-LSP θ ≥
n∑
i=1

ϕui , u ∈ U∗,

ϕui ≥ si

(
i∑

j=1

uj −
i∑

j=1

xj

)
, u ∈ U∗, i = 1, . . . , n,

ϕui ≥ −pi

(
i∑

j=1

uj −
i∑

j=1

xj

)
, u ∈ U∗, i = 1, . . . , n

}
.

Given a feasible solution (x∗, θ∗) to U∗-LSP , one checks the feasibility of (x∗, θ∗)∗ for
UΓ-LSP by solving the adversarial problem

max
u∈UΓ

±

n∑
i=1

max

{
si

(
i∑

j=1

uj −
i∑

j=1

x∗j

)
,−pi

(
i∑

j=1

uj −
i∑

j=1

x∗j

)}
; (5.7)

we denote the objective function of (5.7) as g(u) for short. Let u∗ be the optimal solution
for the adversarial problem. If g(u∗) > θ∗, then U∗ ← U∗ ∪ {u∗}, and the corresponding
optimization vector ϕu∗ and constraints (5.4)–(5.6) are added to U∗-LSP . Hence, unlike
the cutting plane algorithm depicted in Section 1.1, the algorithm presented above is a
row-and-column generation algorithm.

5.3 Dynamic programming algorithm

For the sake of simplicity, we first restrict ourselves to upward deviations only (resp-
resented by UΓ ⊆ UΓ

±), showing at the end of the section how the assumption can be
relaxed. Let uΣ

i =
∑i

j=1 uj define the sum of the i first elements of u. Then, we de-

fine fi(uΣ
i ) = max

{
si

(
uΣ
i −

∑i
j=1 x

∗
j

)
,−pi

(
uΣ
i −

∑i
j=1 x

∗
j

)}
, for each i = 1, . . . , n and

f(uΣ) =
∑n

i=1 fi(u
Σ
i ). We also denote the function by f(uΣ, x) when the dependency on

x is needed.
We are interested here in solving the optimization problem

AP max
u∈UΓ

f(uΣ). (5.8)

Problem (5.8) may not be easy to solve since UΓ contains an exponential number of
elements and function f is non-linear. However, recall that, because of the definition
of UΓ, we do not need to know the entire vector u ∈ UΓ to compute f(uΣ). In fact,
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it is enough to know the cumulative uncertainties uΣ
i =

∑i
j=1 uj for each i = 1, . . . , n,

which are equivalent to the cumulative deviations
∑i

j=1 uj−
∑i

j=1 uj for each i = 1, . . . , n

because u ∈ [u, u+ û]. With this in mind, we introduce

f ′i(φi) = max

{
si

(
ūΣ
i + φi −

i∑
j=1

x∗j

)
,−pi

(
ūΣ
i + φi −

i∑
j=1

x∗j

)}
,

obtained from fi by treating separately the cumulative mean ūΣ
i =

∑i
j=1 uj and the

cumulative deviation φi = uΣ
i − ūΣ

i . Namely, let ξ ∈ {0, 1}n be a binary vector that
satisfies ‖ξ‖1 ≤ Γ and let u ∈ UΓ be the associated vector of uncertain parameters,
defined as ui = ui + ξiûi for each i = 1, . . . , n. One readily checks that fi(uΣ

i ) = f ′i(φi) if
and only if φi =

∑i
j=1 ûjξj. Therefore, adversarial problem (5.8) can be rewritten as

max
{ n∑

i=1

f ′i(φi) :

AP φi =
i∑
t=1

ûtξt, i = 1, . . . , n,

n∑
i=1

ξi ≤ Γ,

ξi ∈ {0, 1}, i = 1, . . . , n
}
.

Up to now we have shown that the optimal solution cost of AP only depends on
the cumulative deviations φi for each i = 1, . . . , n. To obtain a Dynamic Programming
Algorithm (DPA), we still need a way to enumerate only the most promising cumulative
deviations. Let φ be the maximum allowed cumulative deviation, that is,

φ = max
S⊆{1,...,n}:|S|=Γ

∑
i∈S

ûi.

We define α(j, γ, φ), for each triple of integers 1 ≤ j ≤ n, 0 ≤ γ ≤ Γ and 0 ≤ φ ≤ φ, as
the optimal value of the restricted problem for set {1, . . . , j} with at most γ deviations
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and a cumulative deviation of φ:

α(j, γ, φ) = max
{ j∑

i=1

f ′i(φi) :

φj = φ, (5.9)

φi =
i∑
t=1

ûtξt, i = 1, . . . , j, (5.10)

j∑
i=1

ξi ≤ γ, (5.11)

ξi ∈ {0, 1}, i = 1, . . . , j
}
. (5.12)

Let α(j, γ, φ) = −∞ if the feasible set defined by (5.9)−(5.12) is empty because the value
of φ cannot be reached by a sum of deviations. Hence, we have that α(1, 0, 0) = f ′1(0),
α(1, γ, û1) = f ′1(û1) for each 1 ≤ γ ≤ Γ, and α(1, γ, φ) = −∞ for the remaining cases.

We see immediately that the optimal solution cost of the adversarial problem AP ,
denoted by opt(AP ), can be computed as opt(AP ) = max

φ=0,...,φ
α(n,Γ, φ). Moreover, we see

easily by contradiction that α(n, γ, φ) satisfies the functional equation stated below.

Lemma 10. For j > 1, each α(j, γ, φ) can be obtained using the following recursion:

α(j, γ, φ) = f ′j(φ) + max{α(j − 1, γ, φ), α(j − 1, γ − 1, φ− ûj)},
α(j, 0, φ) = f ′j(φ) + α(j − 1, 0, φ)

(5.13)

for each j = 2, . . . , n, γ = 0, . . . ,Γ, and φ = 0, . . . , φ.

The computation of f ′j(φ) can be done in constant time for each j = 2, . . . , n and
φ = 0, . . . , φ, yielding a pseudo-polynomial worst-case complexity for our DPA.

Lemma 11. Problem AP can be solved by a DPA in O(nΓφ) operations.

It follows from the equivalence between separation and optimization [Grötschel et al.,
1993] and the cutting plane algorithm presented in the corollary below that UΓ-LSP can
be solved in pseudo-polynomial time.

Corollary 6. Problem UΓ-LSP can be solved in pseudo-polynomial time.

Proof. We present next a simple cutting-plane algorithm for solving UΓ-LSP . Let J be
a non-negative integer and f ji (z) be an affine function of x for each 1 ≤ i ≤ n, 1 ≤ j ≤ J .
We solve UΓ-LSP by a cutting-plane algorithm based on the following relaxation:

min
{

cTx+ θ :

U∗-LSP ′ 0 ≤ xi ≤ Ci, i = 1, . . . , n,
n∑
i=1

f ji (x) ≤ θ, j = 1, . . . , J
}
,
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initialized with J = 0. Given a feasible solution x∗ to U∗-LSP ′, we solve the adversarial
problem. If max

u∈UΓ
f(uΣ, x∗) > θ∗, we let u∗ be an optimal solution of the maximization prob-

lem, set J ← J+1, and add a new constraint to U∗-LSP ′ where f ji (x) = si

(
uΣ
i −

∑i
j=1 xj

)
if si

(
uΣ
i −

∑i
j=1 xj

)
= max

{
si

(
uΣ
i −

∑i
j=1 x

∗
j

)
, −pi

(
uΣ
i −

∑i
j=1 x

∗
j

)}
and f ji (z) =

−pi
(
uΣ
i −

∑i
j=1 x

∗
j

)
, otherwise.

Lemma 11 states that solving the adversarial problem using the proposed dynamic
approach can be considered an interesting option when the sum of deviations φ is not too
large. The cases when the deviations are large correspond to the situations where the
uncertain parameters can assume a wide range of values and therefore the decision maker
is very conservative or very little is known about the uncertain parameters. We also see
that the algorithm is polynomial when Γ is constant since φ can take at most nΓ different
values.

We conclude the section by showing that downward deviations of u can be handled
by replacing constraints (5.11) and (5.12) in the definition of α(j, γ, φ), by

∑j
i=1 |ξi| ≤ γ

and ξi ∈ {−1, 0, 1}, respectively. The recursion formula (5.13) is then adapted to:

α(j, γ, φ) = f ′j(φ) + max{α(j − 1, γ, φ), α(j − 1, γ − 1, φ− ûj), α(j − 1, γ − 1, φ+ ûj)},
α(j, 0, φ) = f ′j(φ) + α(j − 1, γ, φ),

for each j = 2, . . . , n, γ = 0, . . . ,Γ, and φ = −φ, . . . , φ.

5.4 Fully polynomial time approximation scheme

We show next how to modify our DPA to obtain a FPTAS for problems UΓ-LSP that
satisfy additional assumptions. For simplicity, the FPTAS is exposed for upward devi-
ations only. One readily extends it to account for downward deviations as in the end
of the previous section. Our approach works in two steps. First, we adapt to AP the
FPTAS proposed for the knapsack problem by Ibarra and Kim [1975]. Their main idea is
to reduce the precision on the parameters by dividing them with a well-chosen number,
identical for all parameters. Our approach holds whenever parameters si and pi satisfy
the technical assumption stated below. Then, we show that a FPTAS for AP can be
turned into a FPTAS for UΓ-LSP . Consider the following lower bound for the optimal
solution of the problem

LB =
umin{sn, pn}

2
,

where u = maxi=1,...,n ûi.
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Assumption 1. We suppose that min{sn, pn} > 0 and that

2 max
i=1,...,n

{si, pi}

min{sn, pn}
≤ P(n) (5.14)

where P(n) is a polynomial in n.

When P(n) is equal to some constant λ > 0, we obtain the set of instances for

which
max

i=1,...,n
{si,pi}

min{sn,pn} ≤
λ
2
. Considering polynomials of higher degrees yields a larger set

of admissible instances while increasing the computational complexity of the resulting
FPTAS.

Lemma 12. Consider problem AP such that Assumption 1 holds. There exists a FPTAS
for AP .

Proof. For any ε > 0, we let K = εumin{sn,pn}

4n(Γ+1)

∣∣∣∣ max
i=1,...,n

{si,pi}
∣∣∣∣ and define the new mean value

u′i = ui
K

and deviation û′i = b ûi
K
c for each i = 1, . . . , n, and φ′ = maxS⊆{1,...,n}:|S|=Γ

∑
i∈S û

′
i.

Then, execute the DPA presented in the previous section to AP using the vector of
deviations û′. Using notation u′ = b u

K
c, we see that the running time of the algorithm is

polynomial in (n,Γ, 1/ε) since

O(nΓφ
′
) = O(nΓ2u′) = O

(
nΓ2

⌊ u
K

⌋)
= O

(
nΓ2

⌊
nΓP(n)

ε

⌋)
.

We are left to show that the optimal solution to the problem with û′ is an (1 − ε)-
approximate solution for the original problem.

Let ξ′, ξ∗ ∈ {ξ : ξ ∈ {0, 1}n, ‖ξ‖1 ≤ Γ} be the solution returned by the above algorithm
and the optimal solution, respectively, and let profit(·) and profit′(·) denote the profit
of any element of {0, 1}n using deviations û and û′, respectively. Clearly, profit(ξ′) ≤
opt(AP ). Then, recall from the definition that K profit′(ξ) =

n∑
i=1

max

{
−siK

i∑
t=1

x∗i + si

i∑
t=1

(
ut + ξtK

⌊
ût
K

⌋)
, piK

i∑
t=1

x∗i − pi
i∑
t=1

(
ut + ξtK

⌊
ût
K

⌋)}
,

for any ξ ∈ {ξ : ξ ∈ {0, 1}n, ‖ξ‖1 ≤ Γ} and observe that
∣∣ût −K ⌊ ûtK ⌋∣∣ ≤ K. Hence, for

any ξ ∈ {ξ : ξ ∈ {0, 1}n, ‖ξ‖1 ≤ Γ} we have that

| profit(ξ)−K profit′(ξ)| ≤ n(Γ + 1)K

∣∣∣∣ max
i=1,...,n

{si, pi}
∣∣∣∣ . (5.15)
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Therefore,

profit(ξ′) ≥ K profit′(ξ′)− n(Γ + 1)K

∣∣∣∣ max
i=1,...,n

{si, pi}
∣∣∣∣

≥ K profit′(ξ∗)− n(Γ + 1)K

∣∣∣∣ max
i=1,...,n

{si, pi}
∣∣∣∣

≥ profit(ξ∗)− 2n(Γ + 1)K

∣∣∣∣ max
i=1,...,n

{si, pi}
∣∣∣∣

= opt(AP )− εLB ≥ (1− ε) opt(AP ),

proving the result.

The lemma below shows that the existence of a FPTAS for AP can be translated into
a FPTAS for special cases of problem UΓ-LSP .

Lemma 13. Assume that there exists a FPTAS for max
u∈UΓ

f(uΣ). There exists a FPTAS

for UΓ-LSP .

Proof. We must show that for each ε > 0, we can provide in polynomial time an (1 + ε)-
approximate solution to P . Our approach relies on the cutting-plane algorithm from
Corollary 6 with the difference that each AP is now solved with the FPTAS to provide
an 1

1+ε
-approximate solution. Let (x′, θ′) be the solution returned by the approximate

cutting plane algorithm. We claim that (x′, (1 + ε)θ′) is the desired approximate solution.
Clearly, (x′, (1 + ε)θ′) is computed in polynomial time. Then, we must verify that

opt(UΓ-LSP ) ≤ cTx′ + (1 + ε)θ′ ≤ (1 + ε) opt(UΓ-LSP ).

To prove the first inequality, we rewrite UΓ-LSP as

min
0≤x≤C

cTx+ F (x),

where F (x) = maxu∈UΓ f(uΣ, x). Since θ′ is an 1
1+ε

-approximate solution of the corre-
sponding AP , we have that θ′ ≥ 1

1+ε
F (x′). Hence,

cTx′ + (1 + ε)θ′ ≥ cTx′ + F (x′) ≥ opt(UΓ-LSP ).

We prove the second inequality by contradiction. Assuming the inequality does not hold,
we obtain:

opt(UΓ-LSP ) <
cTx′

1 + ε
+

1 + ε

1 + ε
θ′ ≤ cTx′ + θ′. (5.16)

Moreover, because θ′ is an approximate solution of the corresponding AP , we have

cTx′ + θ′ ≤ cTx′ + F (z′) ≤ opt(UΓ-LSP ),

which is in contradiction with (5.16).
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n Γ0.10 Γ0.05 Γ0.01

50 11 13 18
100 14 18 24
200 20 25 34

Table 5.1: Values of Γε obtained by rounding up the values prescribed by the probabilistic
bound β(Γ, n) from (1.11).

5.5 Computational experiments

We compare in this section our DPA and the classical MIP formulation for solving the
lot-sizing problem with row-and-column generation algorithms.

5.5.1 Instances and details

We consider three numbers of periods: 50, 100, and 200. For each of them we create four
sets of instances: S1, S2, S3 and S4. For all sets we generate the storage cost for each
period randomly and uniformly from an interval [5, 10]. The difference between the sets
lies in the backlog cost. For each i ∈ {1, 2, 3, 4}, instances in Si are defined by backlog
cost equal to i times the storage cost in each period. For all instances the nominal demand
is generated randomly from interval [50, 100]. Then, we consider five levels of deviations,
ranging from 10% to 50% of the nominal demand. We round up the obtained deviations
to ensure that they are integer. Finally, we also consider three different values for the
budget of uncertainty Γ, motivated by the probabilistic bounds given in Bertsimas and
Sim [2004] and provided in Table 5.1. Namely, the value of Γε is such that there is a
probability of 1 − ε that the real cost will be no higher than the optimal solution cost
whenever ξ is composed of independent and identically distributed random variables.

Our experiments compare the DPA with the well-known MIP reformulation of AP
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n 10% 20% 30% 40% 50%

DPA MIP DPA MIP DPA MIP DPA MIP DPA MIP
50 0.051 18.6 0.078 15.2 0.091 10.2 0.094 7.67 0.115 7.56
100 0.358 70.3 0.519 52.1 0.537 29 0.634 23.5 0.674 21.5
200 2.77 1,600 3.72 940 3.95 417 4.69 326 5.23 183

Table 5.2: Arithmetic means of the solution times.

(e.g. Bienstock and Özbay [2008]) recalled below:

max
{ n∑

i=1

ϕi :

ϕi ≤ si

(
i∑

j=1

xi − yi

)
+Miwi, i = 1, . . . , n,

ϕi ≤ −pi

(
i∑

j=1

xi − yi

)
+Mi(1− wi), i = 1, . . . , n,

yi =
i∑
i=1

(ui + ûiξi), i = 1, . . . , n,

n∑
i=1

ξi ≤ Γ, i = 1, . . . , n,

ξ ∈ {0, 1}n, w ∈ {0, 1}n, y ≥ 0
}
.

For each i = 1, . . . , n, variables ϕi and yi represent the value of fi(yi(ξ)) and uΣ
i , respec-

tively.
The DPA was coded in C++ and compiled in a GNU G++ 4.5 compiler. The MIP for-

mulation was implemented in C++ using Cplex Concert Technology 12.5 CPLEX [2013].
The numerical experiments were carried out in an Intel(R) Core(TM) i7 CPU M60, 2.6Hz
4GB Ram machine.

5.5.2 Results

We provide in Figure 5.1 geometric means of the solution time of MIP divided by the
solution time of DPA. The standard deviations of the solution times are illustrated on
Figure 5.2 for both approaches. We present on Table 5.2 the arithmetic means of the
solution times for the different number of time periods and levels of deviations.

Figure 5.1 shows that DPA clearly outperforms MIP, with means ranging up to 475
when n = 200 and the deviation is 10%. The different parameters strongly impact the
respective solution times. First, we see on the charts from Figure 5.1 that, as expected
from its theoretical complexity, higher levels of deviation slow down DPA. The number of
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Figure 5.1: Geometric mean of (time MIP)/(time DPA).
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Figure 5.2: Standard deviation of the solution times σ when varying the number of time
periods.

time periods strongly affect both approaches, see Table 5.2. When the deviation is small,
Figure 5.1(a) shows that the ratio between MIP and DPA increases with the value of n.
In contrast, high levels of deviations tend to reduce the ratio between MIP and DPA.
Figure 5.1(b) depicts the sensitivity of the ratio between the storage and backlog costs.
Our (unreported) results show that MIP is highly sensitive to the ratio, while DPA is not
affected at all, explaining the results of Figure 5.1(b). Finally, Figure 5.1(c) shows that
higher values of Γ yields smaller ratios on average. Here, both approaches are strongly
affected by the value of Γ, and the figure shows than DPA is more affected than MIP
since the ratio decreases significantly when Γ rises.
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The variations of the solution times are represented on Figure 5.2 for DPA and MIP,
through the standard deviation (σ). Figure 5.2(a) presents these standard deviations in a
logarithmic scale, which shows that the solution times of MIP vary between 2 and 3 order
of magnitude more than the solution times of DPA. Figure 5.2(b) shows these standard
deviations in a relative scale, dividing them by the associated arithmetic means. The
figure shows that in a relative scale, MIP varies roughly twice as much as DPA.

To conclude, our simple experiments show that DPA can be orders of magnitude faster
than MIP, especially when the deviation level is low. Moreover, the absolute variability of
MIP is much higher than the one of DPA, some instances being particularly hard to solve
for the former. Notice also that we compared a simplistic implementation of DPA to the
well-engineered MIP solver from CPLEX. It is likely that rules to eliminate dominated
states would further improve our results, we get back to this in Chapter 7.



Chapter 6

Vehicle routing with time windows

The chapter is based on Agra et al. [2013], Santos et al. [2016a].

6.1 Introduction

We consider in this chapter a vehicle routing problem with time windows, which can be
defined as follows. We are given a directed graph G = (N,A), a set of vehicles K, a
cost function κ : A ×K → R+, and a vector of traveling times (u1, . . . , uK) where each
subvector uk may take any value in UΓ ⊂ R|A|+ (hence u ∈

∏
k∈K UΓ). The graph contains

special depot nodes o (origin) and d (destination) connected to all other nodes of G, and
we denote by N∗ the set of nodes that are not depots, N∗ := N\{o, d}. We are given time
windows [bi, bi] with bi, bi ∈ R+, for each i ∈ N∗. Because different vehicles may have
access to different routes, we also introduce the subset Ak of A for each k ∈ K. Problem
UΓ-V RPTW consists of defining routes for the vehicles in K such that the union of all
routes passes exactly once by each i ∈ N∗. Specifically, the problem can be formulated
with a set of binary flow variables xkij which indicate whether vehicle k travels from node
i ∈ N to node j ∈ N . Variables x must satisfy∑

k∈K

∑
j∈N :(i,j)∈Ak

xkij = 1, i ∈ N∗, (6.1)

∑
j∈N :(j,i)∈Ak

xkji −
∑

j∈N :(i,j)∈Ak
xkij =


−1 i = o

1 i = d

0 otherwise

, i ∈ N, k ∈ K, (6.2)

where constraints (6.1) ensure that all i ∈ N∗ are served exactly once, and constraints (6.2)
are the flow conservation constraints for each vehicle. At this point, x could form cycles
not connected to o nor d, which must be prevented by adding cycle-breaking inequalities
to the formulation. We do not detail them further here as the time windows constraints,
detailed below, will prevent cycles from appearing.

63
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Different variants of the problem can be defined, depending on the type of time win-
dows that must be satisfied by the routes. Namely, left and right time windows can be
considered as soft or hard: a soft time window means that a violation is allowed at some
cost, assumed proportional to the extend of the violation, while a hard time window must
be satisfied. In particular, a vehicle arriving at a node before a hard left time window
must wait before actually entering the node, while a soft left time windows allows the
vehicle to enter the node before the the window starts. We disregard in this chapter the
configuration where the vehicle must wait if it arrives before the left time window and pays
for the waiting time, which can be handled using algorithms similar to those described
in the following. To handle time windows, the above formulation must be complemented
by introducing a set of continuous variables ykui indicating the arrival time of vehicle k
at node i ∈ N for traveling times u ∈

∏
k∈K UΓ. In fact, since only one vehicle can serve

node i, we may drop the index k and let yi be the arrival time at node i of the vehicle
that serves i. Variables x and y are linked through quadratic constraints

xkij(y
u
i + ukij − yuj ) ≤ 0, (i, j) ∈ Ak, k ∈ K, u ∈

∏
k∈K

UΓ, (6.3)

and intialized through
yuo = 0, u ∈

∏
k∈K

UΓ. (6.4)

Then, for each i ∈ N∗ and u ∈
∏

k∈K UΓ hard time windows are modeled by

bi ≤ yui and yui ≤ bi, (6.5)

while soft time windows are modeled by introducing additional variable ϕui representing
the cost for the earliness and tardiness for vehicle k

ϕkui ≥ ski max(bi − yui , 0) and ϕkui ≥ pki max(yui − bi, 0), (6.6)

where s and p are vectors describing the unitary earliness and tardiness costs, respectively.
Notice that, unlike variables y, variables ϕ must depend on the vehicle k because the
earliness and tardiness costs are dependant on vehicle k for each k ∈ K. Finally, the
objective of UΓ-V RPTW is given by∑

k∈K

∑
(i,j)∈Ak

κkijx
k
ij,

possibly adding the sum of earliness and tardiness costs

max
u∈
∏
k∈K UΓ

∑
i∈N

∑
k∈K

ϕkui . (6.7)

We show next how to linearize efficiently constraints (6.3). Using big-M coefficients,
we obtain the classical reformulation

yui − yuj + (ukij +M)xkij ≤M, (i, j) ∈ Ak, k ∈ K, u ∈
∏
k∈K

UΓ. (6.8)
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Since in any feasible solution, at most one vehicle will take arc (i, j), (6.8) can be strength-
ened to

yui − yuj +
∑

k∈K:(i,j)∈Ak
(ukij +M)xkij ≤M, (i, j) ∈ A, u ∈

∏
k∈K

UΓ. (6.9)

The simple strengthening procedure used from (6.8) to (6.9) was originally introduced in
Agra et al. [2013] and it has proved its efficiency for other (non-robust) routing problems,
see for instance Agra et al. [2014].

Finally, we explain below how the uncertainty set
∏

k∈K UΓ can be replaced by an
uncertainty set of smaller cardinality. Given two different vehicles k 6= h, the travel
times uk and uh are independent, because the considered uncertainty set is defined by
the Cartesian product of two copies of UΓ, one for k and one for h. However, it is not
necessary to consider all combinations of uk and uh in UΓ × UΓ. Specifically, we see that
constraints (6.9) are equivalent to

yui − yuj +
∑

k∈K:(i,j)∈Ak
(M + ukij)x

k
ij ≤M, (i, j) ∈ A, u ∈ UΓ

diag, (6.10)

defined for the smaller uncertainty set

UΓ
diag :=

{
(u, . . . , u) ∈ R|A|×|K| : u ∈ UΓ

}
.

Similarly, constraints (6.4), (6.5), and (6.6) written for all u ∈
∏

k∈K UΓ become

yuo = 0, u ∈ UΓ
diag (6.11)

bi ≤ yui , i ∈ N, u ∈ UΓ
diag, (6.12)

yui ≤ bi, i ∈ N, u ∈ UΓ
diag, (6.13)

ϕkui ≥ ski max(bi − yui , 0), i ∈ N, k ∈ K, u ∈ UΓ
diag, (6.14)

ϕkui ≥ pki max(yui − bi, 0), i ∈ N, k ∈ K, u ∈ UΓ
diag, (6.15)

and the earliness and tardiness costs become

max
u∈UΓ

diag

∑
i∈N

∑
k∈K

ϕkui .

One direction of the equivalence is immediate since UΓ
diag ⊂

∏
k∈K UΓ; the other direction

follows easily from the fact only one vehicle is involved in each constraint of (6.10).
We detail in the following four sections how the four combinations of hard and soft

time windows can be addressed through decomposition algorithms. In each case, dynamic
programming algorithms are proposed to handle the separation problems.
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6.2 Left and right hard

If both time windows are hard, we can strengthen (6.10) by choosing M = bi− bj for each
(i, j) ∈ A, obtaining

yui − yuj +
∑

k∈K:(i,j)∈Ak
(bi − bj + ukij)x

k
ij ≤ bi − bj, (i, j) ∈ A, u ∈ UΓ

diag,

bi ≤ yui ≤ bi, i ∈ N, u ∈ UΓ
diag.

(6.16)

The resulting mixed-integer linear formulation follows, extending to the robust context
what is sometime known as the Resource Inequalities formulation

UΓ-RI min

∑
k∈K

∑
(i,j)∈Ak

κkijx
k
ij : (6.1), (6.2), (6.11), (6.16), y ≥ 0, x binary


6.2.1 Iterative algorithms

Formulation UΓ-RI can be used as such only for very small instances, since the cardinality
of UΓ

diag increases exponentially with |A|. To deal with larger instances, one must devise
decomposition algorithms, in the line of the row-and-column generation algorithm de-
scribed in Chapter 5. Specifically, consider subset U∗ ⊂ UΓ

diag defining the relaxed master
problem U∗-RI

min
{∑
k∈K

∑
(i,j)∈Ak

κkijx
k
ij : (6.1), (6.2), y ≥ 0, x binary, yuo = 0, u ∈ U∗,

bi ≤ yui ≤ bi, i ∈ N, u ∈ U∗,

yui − yuj +
∑

k∈K:(i,j)∈Ak
max{bi + ukij − bj, 0}xkij ≤ bi − bj, (i, j) ∈ A, u ∈ U∗

}
.

Then, given a feasible solution x∗ to U∗-RI, we must find out whether there exists u∗ ∈
UΓ
diag \ U∗ that leads to a violated group of constraints

yu
∗

i − yu
∗

j +
∑

k∈K:(i,j)∈Ak
max{bi + u∗kij − bj, 0}xkij ≤ bi − bj, (i, j) ∈ A,

bi ≤ yu
∗

i ≤ bi, i ∈ N.
(6.17)

If such a violated group of constraints is found, then U∗ ← U∗ ∪ {u∗}, and the corre-
sponding optimization vector yu∗ and the group of constraints (6.17) are added to U∗-RI,
yielding a row-and-column generation algorithm. The above algorithm is different from
the one depicted in Chapter 5 in two aspects. First, the restricted master problem U∗-RI
is now a MILP and is NP-hard to solve exactly even for a single scenario in U∗. Sec-
ond, we show in Subection 6.2.2 how the separation problem can be solved in strongly
polynomial time.
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We present next another formulation for the problem, sometimes known as the Path
Inequalities formulation. The Path Inequalities formulation does not explicitly consider
the satisfaction of the time windows. Instead, it forbids routes in G for which it is not
possible to find arrival times that satisfy the time windows. Let Pk be the set of infeasible
paths in G starting at o, that is, the set of paths in G for which it is not possible to define
arrival times y that satisfy constraints (6.16). For p ∈ Pk, we denote by |p| the number of
arcs contained in p. The main idea of formulation UΓ-PI is to forbid such paths, through
paths inequalities ∑

(i,j)∈p

xkij ≤ |p| − 1, p ∈ Pk, k ∈ K. (6.18)

The Path Inequalities formulation UΓ-PI is

min

∑
k∈K

∑
(i,j)∈Ak

κkijx
k
ij : (6.1), (6.2), (6.18), cycle-breaking inequalities, x binary

 ,

where the cycle-breaking inequalities could be any set of constraints (possibly with ad-
ditional variables) that forbid cycles. In our computational results we use the MTZ
inequalities [Miller et al., 1960] which, essentially, uses an auxiliary set of variables sim-
ilar to y in UΓ-RI to impose an order on the nodes visited by the vehicles. As before,
UΓ-PI can hardly be solved as such, unless very small instances are considered. Rather,
we should handle the formulation through a cutting plane algorithm that generates con-
straints (6.18) on the fly. Let P∗k ⊂ Pk for each k ∈ K. We define the relaxed master
problem UΓ-P∗I as

min

∑
k∈K

∑
(i,j)∈Ak

κkijx
k
ij : (6.1), (6.2), cycle-breaking inequalities, x binary,

∑
(i,j)∈p

xkij ≤ |p| − 1, p ∈ P∗k, k ∈ K

 .

Then, given a feasible solution x∗ to UΓ-P∗I, we must find out whether there exists
p∗ ∈ P∗k \ Pk and k ∈ K that leads a violated path inequality constraint, in which case
the constraint is added to UΓ-P∗I and the problem is solved again. In practice, it is
more efficient to implement the above algorithm in a branch-and-cut way, inserting the
cutting planes at the root and integer nodes in the branch-and-bound tree. An interesting
characteristic of formulation UΓ-PI is that all information on the robust aspects is hidden
into (6.18). In particular, the only difference between our solution algorithm and the one
proposed by Kallehauge et al. [2007] lies in the separation of violated path inequalities,
detailed in the next subsection.



68 CHAPTER 6. VEHICLE ROUTING WITH TIME WINDOWS

6.2.2 Separation problem

Given an binary vector x that satisfies (6.1), (6.2), and does not contain cycles, x is feasible
for UΓ-RI and UΓ-PI if and only if x satisfy all constraints (6.18), or equivalently, we
can define a vector y∗ such that (x∗, y∗) satisfies all constraints (6.16). We study next the
separation problem associated to these constraints. Since x is binary, we know that the
vector describes one path from o to d for each vehicle in K.

Proposition 1. Let p = (o = i0, . . . , in+1 = d) be a path in G from o to d for vehicle
k ∈ K. The question whether p ∈ Pk can be answered in (n − Γ′ + 1)Γ′ steps where
Γ′ = min{Γ, n}.

Proof. Let α(ij) be the earliest arrival time at node ij ∈ p when the travel times are
deterministic, which is formally defined by

α(ij) = max{bij , α(ij−1) + uij−1ij}.

In that case, the question whether p ∈ Pk would be answered by checking that

α(ij) ≤ bij , 1 ≤ j ≤ n,

which can be done in O(n).
Let α(ij, γ) be the earliest arrival time at ij when exactly min(j, γ) arcs are using

their maximum time in subpath i0, . . . , ij. The robust version of the earliest arrival at ij
becomes the following recursive function α(ij, γ) =

α(i0, γ) = bi0 0 ≤ γ ≤ Γ′

α(ij, 0) = max{bij , α(ij−1, 0) + uij−1ij} 1 ≤ j ≤ n

α(ij, γ) = max{bij , α(ij−1, γ − 1) + uij−1ij + ûij−1ij , α(ij−1, γ) + uij−1ij}
1 ≤ γ ≤ j

α(ij, γ) = −∞ j < γ

The question whether p ∈ Pk is answered by checking if

α(ij,min(j,Γ)) ≤ bin+1 , 1 ≤ j ≤ n,

which can be done in (n− Γ′ + 1)Γ′ steps.

One observes that if Γ′ = Γ, the separation problem for constraints (6.16) and (6.18) is
solved in O(nΓ). On the other hand, if Γ′ = n, the problem is solved in O(n). Notice that
since each vehicle is considered independently from the others, the dynamic programming
approach proposed in Proposition 1 can also be applied to the uncertainty polytope where
different values of Γ are associated with different vehicles.

Since UΓ-PI is solved through a branch-and-cut algorithm, it is important to be able
to separate inequalities (6.18) when x is fractional, which is more complicated because the
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arcs on which xk takes positive values do not define a single path from o to d. However, as
explained by Kallehauge et al. [2007], we can use the fact that there is only a polynomial
number of paths for which the associated path inequality (6.18) is violated. Moreover,
since paths inequalities are weak, works addressing V RPTW or the asymmetric traveling
salesman problem with time windows rather use a lifted version of the path inequalities
called tournament inequalities [Ascheuer et al., 2000].

In this work, we also separate tournament inequalities rather than paths inequalities
whether x is fractional or not. The only difference between our separation heuristic and
the one from Kallehauge et al. [2007] is that we need to apply the dynamic programming
procedure from Proposition 1 to check whether the time windows are satisfied along a
candidate path. Also, in the case where xk is binary, that is, xk defines a unique path p
from o to d, the tournament inequality defined for p is generated as soon as xk violates
the path inequality (6.18) for p.

6.2.3 Variable uncertainty

We see that whenever x is binary the separation problem can be applied to Uγ exactly as
in Proposition 1 since x is fixed when solving the separation problem. The only subtlety
concerns the choice of Γ, which is then equal to γ(x) instead of Γ. The separation of
(6.16) and (6.18) does not carry over to Uγ-RI and Uγ-PI straightforwardly. For Uγ-PI,
an infeasible path leads to the addition of a violated path inequality (6.18) which will
forbid only the path defining the inequality. Therefore, if γk only depends on xk, i.e.

∂γk

∂xh
= 0, if k 6= h,

which is a reasonable assumption in practice, the row-and-column generation and its
branch-and-cut version stay valid to handle model Uγ. Yet, notice that in that case, one
must consider the original (weak) inequality (6.18) because only the infeasible path can
be forbidden. We cannot use the aforementioned tournament inequalities because they
may cut out shorter paths that would be feasible in the context of variable uncertainty.

This relatively nice picture does not extend to Uγ-RI. In that case, the system of
variables and constraints (6.17) added to U∗-RI may forbid other paths than those used
in the separation problem from Proposition 1, so that they are not valid for Uγ-RI. For the
same reason, variable uncertainty cannot be combined with other types of time windows
considered in this chapter.

6.2.4 Numerical results

Our numerical results are realized on realistic instances created for maritime ship routing
and scheduling problems. In particular, the instance generator specifies the possible delay
in sailing time for each arc in the network. This delay is calculated based on the time
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normally required to perform the transportation represented by the arc. The delay also
depends on the specific pickup port and delivery port involved, where some ports are
associated with more delay than others. Such a structure is reasonable since bad weather
affects the schedule more severely in some areas. Since the planning horizon is long,
there is a significant risk of a ship being delayed at some point during its route, but the
probability of experiencing longer travel times for all legs would be small. Hence it makes
sense to make routes that can handle some delays, with Γ equal to some small number.

The computational testing contains instances with 30, 40, and 50 different cargoes
(value of |N |). For each number of cargoes, we consider four values of Γ: 0 (deterministic
case), 1 (low uncertainty), 3 + (|N | − 20)/10 (middle uncertainty), and 5 + (|N | − 20)/5

(high uncertainty). For each number of cargoes, we also consider three number of ships:
1, 3 + (|N | − 20)/10, and 5 + (|N | − 20)/5. Finally, we generate five instances for each
combination of values for the number of cargoes and number of ships.

All models and algorithms have been coded using the modeling language Xpress Mosel
3.2.3 and solved by Xpress Optimizer 22.01.09 [FICO, 2011]. A time limit of 1800 seconds
has been set for each instance. They were run on a computer equipped with a processor
Intel Core i5 at 2.53 GHz and 4 GB of RAM memory. The objectives of this section are
(i) assessing the computational cost of solving the robust models as compared to their
deterministic counterparts, and (ii) comparing formulations UΓ-RI and UΓ-PI.

Table 6.2 reports the average numbers of cuts generated by UΓ-PI for each number of
cargoes and uncertainty level. We see that UΓ-PI generates significantly more cuts than
UΓ-RI generates extreme points. This can be explained by the fact that the cuts generated
by UΓ-PI are tournament inequalities whose violation is checked at many nodes in the
branch-and-cut tree solving UΓ-PI. In opposition to this, extreme points are generated
for UΓ-RI only after an optimal integer solution has been found for the previous set of
extreme points.

Uncertainty level (Γ)
|N | low mid high
30 3.1 9.33 9.13
40 6.67 20.7 21.7
50 7.93 22.8 23.2

Table 6.1: Average numbers of extreme
points generated by UΓ-RI.

Uncertainty level (Γ)
|N | det low mid high
30 1210 313 867 795
40 25097 9501 17997 17870
50 17919 10364 24547 25072

Table 6.2: Average numbers of cuts gen-
erated by UΓ-PI.

Average solution times are presented in Table 6.3 for each group of 5 instances. Rows
entitled “av” compute the average of the three rows above them. The table presents
average solution times for the two approaches. The numbers of unsolved instances within
the 1800 seconds are given in parentheses and their values have been set to 1800 seconds
when computing the averages. We see from Table 6.3 that the performance of UΓ-RI
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and UΓ-PI are comparable, although UΓ-RI seems to be more efficient for the larger
instances. The results for both approaches present, however, important differences. The
solution times for UΓ-RI are highly impacted by the value of Γ. Deterministic instances
are always solved faster than robust instances. Moreover, the number of extreme points
of the uncertainty sets also influences the solution times since instances with uncertainty
sets defined by few extreme points (low) are solved faster than instances with uncertainty
sets defined by larger number of extreme points (mid and high). In opposition to this,
the presence of uncertainty does not seem to influence much the solution times of UΓ-PI.

UΓ-RI UΓ-PI
Γ det low mid high det low mid high

|N | |K|

30
1 0.1 0.1 0.1 0.1 1 1.2 4.8 2.9
4 0.6 1.1 5.3 4.1 2.9 1.6 1.7 2.1
7 3.3 8.2 58.1 66.1 27.3 7.6 16.6 17
av 1.6 3.3 21.2 23.4 10.4 3.5 7.7 7.3

40
1 0.1 0.1 0.3 1.4 1.5 2.2 5.1 24
5 11.3 160 640 (2) 617 (2) 391 (1) 30 249 227
9 364 (1) 368 (1) 477 (1) 444 (1) 452 (1) 391 (1) 429 (1) 427 (1)
av 125 176 372 354 281 141 228 226

50
1 0.1 0.3 1.2 2.8 6.7 7.3 28.2 55.3
6 13.8 31.1 537 (1) 485 (1) 534 (1) 216 805 (2) 779 (2)
11 109 748 (2) 1070 (3) 962 (3) 1020 (3) 773 (2) 1160 (3) 1150 (3)
av 41 260 536 483 520 332 664 661

Table 6.3: Average solution times in seconds for UΓ-RI and UΓ-PI for larger instances.

6.3 Left and right soft

The constraints that couple x and y in the previous sections are

yui − yuj +
∑

k∈K:(i,j)∈Ak
(M + ukij)x

k
ij ≤M, (i, j) ∈ A, u ∈ UΓ

diag. (6.19)

These constraints are not sufficient in the case of soft left time windows, because the
arrival times (represented by y) would try to increase their values artificially to avoid the
earliness costs. Hence, we must also consider the reverse set of inequalities in this section,
which reads

yui − yuj +
∑

k∈K:(i,j)∈Ak
(−M + ukij)x

k
ij ≥ −M, (i, j) ∈ A, u ∈ UΓ

diag. (6.20)

Notice then that the arrival time at any node i can be as large as the value of the longest
path from o to i using the worst vector of traveling times u ∈ UΓ. Hence, computing
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minimal values for each M amounts to solve NP-hard optimization problems, so that
heuristics are required in practice. For the sake of simplicity, we simply keep M in the
following formulation

min
{ ∑

k∈K

∑
(i,j)∈Ak

κkijx
k
ij + max

u∈UΓ
diag

∑
i∈N

∑
k∈K

ϕkui :

UΓ-LSRS (6.1), (6.2), (6.11), (6.19), (6.20), y ≥ 0, x binary,

ϕkui ≥ max(ski (bi − yui ), 0, pki (y
u
i − bi)), i ∈ N, k ∈ K, u ∈ UΓ

diag

}
,

where the second term of the objective function can be replaced by a new variable θ and
adding the following robust constraint to the problem

θ ≥
∑
i∈N

∑
k∈K

ϕkui , u ∈ UΓ
diag.

Similarly to the situation ecountered in the previous section, UΓ-LSRS can be used
as such only for very small instances. To handle larger problems, one should rely instead
on the the relaxed master problem U∗-LSRS defined for a subset U∗ ⊂

∏
k∈K UΓ

min
{ ∑

k∈K

∑
(i,j)∈Ak

κkijx
k
ij + max

u∈UΓ
diag

∑
i∈N

∑
k∈K

ϕkui :

(6.1), (6.2), y ≥ 0, x binary, yuo = 0, u ∈ U∗,

yui − yuj +
∑

k∈K:(i,j)∈Ak
(M + ukij)x

k
ij ≤M, (i, j) ∈ A, u ∈ U∗, (6.21)

yui − yuj +
∑

k∈K:(i,j)∈Ak
(−M + ukij)x

k
ij ≥ −M, (i, j) ∈ A, u ∈ U∗, (6.22)

ϕkui ≥ max(ski (bi − yui ), 0, pki (y
u
i − bi)), i ∈ N, k ∈ K, u ∈ U∗

}
. (6.23)

Then, solution algorithms iterate between solving U∗-LSRS and solving separation prob-
lems defined below, where set U∗ is incremented with the vector u∗ ∈

∏
k∈K UΓ found in

the separation problems.
We finish the section by detailing the separation problems. Let x∗ be a binary vector

feasible for U∗-LSRS. Thus, x∗ characterizes |K| paths from o to d, denoted π1, . . . , π|K|,
which partition the nodes of N∗. Let |πk| denote the number of arcs in πk, and define
n(πk, `) as the `-th node in the path, for ` = 1, . . . , |πk| + 1. In particular, n(πk, 1) = o

and n(πk, |πk| + 1) = d. We define similarly a(πk, `) as the `-th arc in the path. With
these definitions, we see that

yun(πk,`) =
`−1∑
t=1

ua(πk,t) (6.24)
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for any u ∈
∏

k∈K UΓ and ` = 2, . . . , |πk|. Therefore, one readily verifies that, for each
k ∈ K, the separation problem can be written

max
u∈UΓ

gk(u) = max
u∈UΓ

|πk|∑
`=2

max

{
skn(πk,`)

(
bn(πk,`) −

`−1∑
t=1

ua(πk,t)

)
, 0,

pkn(πk,`)

(
`−1∑
t=1

ua(πk,t) − bn(πk,`)

)}
.

Notice that the outer summation starts at ` = 2 because there is no time window associ-
ated to the depot o = n(πk, 1). Since each path πk is fixed when solving the separation
problem, let us consider a specific k and reorder the nodes and the arcs of the graph as

(n(πk, 2), n(πk, 3), . . . , n(πk, |πk|), other nodes in arbitrary order), (6.25)

and

(a(πk, 1), a(πk, 2), . . . , a(πk, |pk| − 1), other arcs in arbitrary order), (6.26)

respectively. With these reorderings, gk can be written as

gk(u) = max
u∈UΓ

|πk|−1∑
`=1

max

{
sk`

(
b` −

∑̀
t=1

ut

)
, 0, pk`

(∑̀
t=1

ut − b`

)}
,

and we easily see the similarity of gk with the function g defined in (5.7) from the pre-
vious chapter. It is therefore not surprising that a very similar dynamic programming
algorithm can be used to solve maxu∈UΓ gk(u) in pseudo-polynomial time. Altough the
details of the algorithm are omitted for brevity, it is very close to the one described in
Section 5.3. Finally, we obtain the new vector u∗ ∈

∏
k∈K UΓ by concatenating the vectors

u1∗, . . . , u|K|∗ obtained for the |K| separation problems.

6.4 Left soft and right hard

The situation with right hard time windows is very similar to the case studied in the
previous section. We jump immediately to the definition of the relaxed master problem
U∗-LSRH, defined for a subset U∗ ⊂

∏
k∈K UΓ

min
{ ∑

k∈K

∑
(i,j)∈Ak

κkijx
k
ij + max

u∈UΓ
diag

∑
i∈N

∑
k∈K

ϕkui :

(6.1), (6.2), (6.21), (6.22), y ≥ 0, x binary, yuo = 0, u ∈ U∗,
ϕkui ≥ max(ski (bi − yui ), 0), i ∈ N, k ∈ K, u ∈ U∗ (6.27)

yui ≤ bi, i ∈ N∗, u ∈ U∗
}
. (6.28)
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There are two differences between U∗-LSRH and U∗-LSRS. First, the maximization
in (6.27) contains only two terms (unlike the one from (6.23) that contains three terms),
thus making the resulting separation problem even more similar to the one studied for the
lot-sizing problem in Section 5.3. Second, we also have to ensure that constraints (6.28)
are satisfied. Using equation (6.24), one readily verifies that the separation problem
associated to (6.28) comes down to solving maxu∈UΓ

∑`−1
t=1 ua(πk,t), which can be done in

polynomial time through a sorting algorithm.

6.5 Left hard and right soft

We shall see in this section that the presence of left hard time windows hardens the
situation observed so far. As before, let us define the relaxed master problem as

min
{ ∑

k∈K

∑
(i,j)∈Ak

κkijx
k
ij + max

u∈UΓ
diag

∑
i∈N

∑
k∈K

ϕkui :

U∗-LHRS (6.1), (6.2), (6.21), (6.22), y ≥ 0, x binary, yuo = 0, u ∈ U∗,
ϕkui ≥ max(0, pki (y

u
i − bi)), i ∈ N, k ∈ K, u ∈ U∗

bi ≤ yui , i ∈ N∗, u ∈ U∗
}
. (6.29)

In the rest of the section, we focus on a given vehicle k and on the route πk described
by an integer solution x∗ to U∗-LHRS. In particular, we reorder the nodes and the arcs
as explained in (6.25) and (6.26). Constraints (6.29) break the structure witnessed for
U∗-LSRH and U∗-LSRS because the arrival time yui at node i can no longer be defined
as an affine function of u, such as (6.24). Namely, the wait of the vehicle in case it arrives
at node i before bi yields arrival times that can be formulated recursively as

yui = max(bi, y
u
i−1 + ui−1), (6.30)

for each i = 2, . . . , |πk|. Therefore, it is not possible to adapt the DPA from Section 5.3
to maximize penalty function

f(u) =

|πk|−1∑
i=1

max{ski (yui − bi), 0},

with yui defined in (6.30).
Fortunately, it is possible to adapt our DPA to handle this difficulty. Let us denote

the separation problem as

AP max
u∈UΓ

f(u),
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and denote fi(u) = max{ski (yui − bi), 0}. Expanding recursively the maxima in (6.30), yui
can be expressed as (see Agra et al. [2012], Chardy and Klopfenstein [2010])

yui = max
`=1,...,i

{
b` +

i∑
t=`

ut

}
. (6.31)

We can use (6.31) to rewrite each term fi of the penalty function as

fi(u) = ski

[
max
`=1,...,i

{
b` +

i∑
t=`

ut

}
− bi

]+

= max
`=1,...,i

ski
[
b` +

i∑
t=`

ut − bi

]+
 ,

where we used the simplified notation [x]+ for max{0, x}.
Let u[`i] denote the subvector {ut : t = `, . . . , i} and define f `i(u[`i]) = ski [b` − bi +∑i
t=` ut]

+. Hence, fi(u) = max
`=1,...,i

f `i(u[`i]). Let β(m, γ) be the value of the optimal solution

of the restricted problem defined for the subpath 1, . . . ,m with at most γ deviations:

β(m, γ) = max
u∈Uγ

[1m]

{
m∑
i=1

max
`=1,...,i

f `i(u[`i])

}
,

where

Uγ[`i] :=

{
u : ut = ut + ûtξt, t = `, . . . , i, ξ ∈ {0, 1}i−`+1,

i∑
t=`

ξt ≤ γ

}
.

Clearly, opt(AP ) = β(n,Γ).

The rest of the section is devoted to the construction of a DPA to compute β(n,Γ).

Notice that for any t,
m∑
i=t

f ti has the structure of the function studied in Section 5.3, so

that the sum can be optimized over the set Uγ[tm] in pseudo-polynomial time by applying

the DPA presented therein. Let us denote fβ(u[1m]) =
m∑
i=1

max
`=1,...,i

f `i(u[`i]) so that β(m, γ)

can be rewritten as
β(m, γ) = max

u∈Uγ
[1m]

f
β
(u[1m]).

The DPA from Section 5.3 cannot be used directly to optimize fβ(u[1m]) because of the
maximization involved in the definition of fβ(u[1m]). Hence, we use next an alternative
recursion based on the key lemma below. The lemma expresses fβ(u[1m]) from the set of

functions
{
f
β
(u[1t]) : 1 ≤ t ≤ m− 1

}
and the sums

{
m∑
i=t

f ti(u[ti]) : 1 ≤ t ≤ m

}
. We show

in the balance of the section how this leads to a DPA.
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Lemma 14. Let u ∈ Uγ be fixed and m ∈ {2 . . . , n}. It holds that

f
β
(u[1m]) = max

t=1,...,m

{
f
β
(u[1(t−1)]) +

m∑
i=t

f ti(u[ti])

}
.

Proof. Since u is fixed, we simplify notations and denote f `i(u[`i]) as f `i in the rest of the
proof. Notice that from the definition of f `m, the following holds for each i ∈ {`, . . . ,m}:

arg max
`=1,...,i

f `m = arg max
`=1,...,i

f `i.

Therefore, if arg max
`=1,...,m

f `m = t and t ≤ i, then arg max
`=1,...,i

f `i = t. This can be equivalently

written as

f tm = max
`=1,...,m

f `m ⇒ f ti = max
`=1,...,i

f `i for all i = t, . . . ,m. (6.32)

The counterpart of (6.32) for the whole sum
m∑
i=1

max
`=1,...,i

f `i is

f tm = max
`=1,...,m

f `m ⇒
m∑
i=1

max
`=1,...,i

f `i =
t−1∑
i=1

max
`=1,...,i

f `i +
m∑
i=t

f ti,

and the result follows by taking the maximum over all t = 1, . . . ,m because we do not
know in advance which corresponds to arg max

`=1,...,m
f `m.

Using Lemma 14 we have, for each 2 ≤ m ≤ n and 0 ≤ γ ≤ Γ:

β(m, γ) = max
u∈Uγ

[1m]

{
f
β
(u[1m])

}
= max

u∈Uγ
[1m]

max
t=1,...,m

{
f
β
(u[1(t−1)]) +

m∑
i=t

f ti(u[ti])

}

= max
t=1,...,m

max
δ=0,...,γ

{
max

u∈Uδ
[1(t−1)]

f
β
(u[1(t−1)]) + max

u∈Uγ−δ
[tm]

m∑
i=t

f ti(u[ti])

}

= max
t=1,...,m

max
δ=0,...,γ

{
β(t− 1, δ) + max

u∈Uγ−δ
[tm]

m∑
i=t

f ti(u[ti])

}
= max
t=1,...,m

max
δ=0,...,γ

{
β(t− 1, δ) + F (t,m, γ − δ)

}
, (6.33)

where F (t,m, γ−δ) = max
u∈Uγ−δ

[tm]

m∑
i=t

f ti(u[ti]). Furthermore, form = 1 and each γ ∈ {0, . . . ,Γ},

we have
β(1, γ) = max

u∈Uγ
[11]

f 11(u[11]) = s1[b1 − b1]+ = 0. (6.34)
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Combining (6.33) and (6.34), we obtain a DPA to solve AP .
We conclude the section by showing that (6.33) yields a pseudo-polynomial DPA.

Notice that function

f̄tm(u[tm]) =
m∑
i=t

f ti(u[ti])

is again a special case of the function studied in the previous chapter for each 1 ≤
t ≤ m ≤ n. Hence, we can apply the DPA from Section 5.3 to compute F (t,m, γ) =

max
u∈Uγ

[tm]

f̄tm(u[tm]) for each 1 ≤ t ≤ m ≤ n and 0 ≤ γ ≤ Γ. Namely, let αt be the table used

to compute F (t, n,Γ) through the DPA from Section 5.3. We readily see that

F (t,m, γ) = max
φ=0,...,φ

αt(m− t, γ, φ),

for each 1 ≤ t ≤ m ≤ n and 0 ≤ γ ≤ Γ. Therefore, we can obtain all values in
{F (t,m, γ) : 1 ≤ t ≤ m ≤ n, 0 ≤ γ ≤ Γ} by applying the DPA from Section 5.3 to
F (t, n,Γ) for each 1 ≤ t ≤ n. This yields a computational time of O(n2Γφ) which is done
in a pre-processing phase. Once all values of F have been computed, (6.33) can be solved
in O(n2Γ2). Since Γ ≤ φ, we obtain the following worst-case complexity.

Lemma 15. Problem AP can be solved by a DPA in O(n2Γφ) operations.
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Chapter 7

Conclusion and future work

The objectives of the thesis were both numerical and theoretical. From the numerical view-
point, we have proposed decomposition algorithms that split the optimization problems
into two parts. On the one side, the relaxed master problem contains the combinatorial
structure of the problem and the robust constraints associated with small subsets of the
uncertainty sets. On the other side, the true robust constraints are handled by separation
problems, that are solved efficiently by exploiting the combinatorial structure of UΓ. From
the theoretical viewpoint, we have answered our original question regarding easy problems
turning NP-hard, and realized on the way that achievable approximation ratios do not
generalize easily to the robust context. Generally speaking, our opinion is that the field of
robust combinatorial optimization with budgeted uncertainty is everything but covered,
and we list in the next sections some research directions that we intend to pursue in the
following years.

7.1 Numerical research directions

Variable uncertainty The new model presented in Chapter 2 would need further vali-
dation to prove useful in practice. Specifically, one should consider applications with real
data and see how using Uγ yields cheaper solutions than UΓ, while guaranteeing similar
reliability levels. This would require problems where one wishes that individual proba-
bilistic constraints be satisfied while having little information over the true probability
distributions.

Efficient implementation for the constrained shortest path problem It is known
that the label-setting algorithm can be sped up significantly for capacity constraints
through reduction rules and bounds obtained from the Lagrangian relaxation of the ca-
pacity constraint. We are currently working with Luigi di Puglia Pugliese and Francesca
Guerriero (Unversity of Calabria) on generalizing those for the robust constrained shortest
path problem studied in Chapter 3, hopefully providing efficient algorithms for UΓ-CSP .

79



80 CHAPTER 7. CONCLUSION AND FUTURE WORK

MIP with pseudo-polynomial separation algorithms The results of Chapters 5
and 6 could be improved along the following three directions. First, the exact pseudo-
polynomial dynamic programming algorithms should be called only when heuristic solu-
tions are unable to find violated extreme points, in the line of well-engineered branch-and-
cut algorithms commonly developed in the mixed-integer programming literature. Second,
the dynamic programming algorithms should be improved to incorporate dominance rules
and other state space reduction techniques. Third, integer programs such as the vehicle
routing problems studied in Chapter 6 should be addressed by branch-and-cut-and-price
algorithms rather than row-and-column generation algorithms. This would avoid the ex-
ploration of several branch-and-bound trees. The difficulty with the third aspect is that
coding efficient branch-and-cut-and-price algorithms is not easy, as commercial solvers do
not handle the dynamic generation of variables along the branch-and-bound tree. One
should instead rely on the existing academic platforms such as SCIP or BaPCoD. We have
recently started to explore this third direction with the platform BaPCoD, developed by
the team-project Realopt from Bordeaux. The research is carried out in collaboration
with Zacharie Ales from the University of Avignon, and Boris Detienne and François
Vanderbeck from the University of Bordeaux.

Paths formulations for routing problems The most competitive algorithms for ve-
hicle routing problems are based on advanced branch-and-cut-and-price algorithms where
routes, rather than scenarios, are priced out along the search tree. It would therefore be
natural to see how the label-setting algorithms developed in Chapter 3 can be combined
with the advanced algorithmic techniques that have been proposed for vehicle routing
problems, see Pecin et al. [2014], to improve the results provided in Chapter 6. We intend
to work on the topic with Artur Alves Pessoa (Federal Fluminense University) in the
future.

7.2 Theoretical research directions

Variable uncertainty One can easily see that the concept of variable uncertainty can
be applied to any point-to-set mapping, although the resulting optimization problems
may be harder to solve than their classical robust counterparts. It would be interesting to
find other types of point-to-set mappings that are useful from a theoretical viewpoint. An
idea would be to combine the distributionally robust optimization paradigm with variable
uncertainty.

Scheduling We think that the main theoretical contribution of this work has been to
start the investigation of robust scheduling, which is a virtually empty field of research.
Much is left to do on the topic and we are currently working on extensions of our results
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in many directions. Immediate extensions of the work presented in the thesis concern the
following questions.

1. Dualizing the assignment formulation for 1||UΓ
p |
∑

j wjCj, one ends up with a prob-
lem combining 1||

∑
j wjTj and 1||

∑
j wjCj. Can this be exploited to provide

pseudo-polynomial time algorithms for 1||UΓ
p |
∑

j wjCj ?

2. Provide positive and/or negative results on the approximation ratios achievable for
1||UΓ

p |
∑

j wjCj.

3. Provide constant factor approximation algorithms for Q||UΓ
p |Cmax and R||UΓ

p |Cmax.

4. When Γ is fixed, we could provide a PTAS for P ||UΓ
p |Cmax, which has been left

out of this manuscript for brevity. Is the problem still PTAS when Γ is part of the
input? The first step in that direction would be to find an (1 + ε)-approximation
ratio whenever all jobs have uj and ûj less than ε.

In addition to these immediate extensions, we would like to get a more profound under-
standing of the type of deterministic algorithms that can be generalized to the robust
context, to avoid having to study each of them individually. We are currently working on
these research directions together with Marin Bougeret (University of Montpellier) and
Artur Alves Pessoa.

Lot-sizing It is unfortunate that we were not able to prove that the robust lot-sizing
problem is NP-hard. While very special cases have been proved polynomial (constant
values of Γ and Γ = n), the complexity of the general problem is still unknown.

7.3 Lot-sizing

In addition to the above well-identified research directions, our preliminary results on
robust lot-sizing problems lead us to think that these could also benefit from exploiting
the structure of UΓ. However, general robust lot-sizing problems should be addressed in a
multi-stage way, instead of the static approach used in Chapter 5. Namely, the production
vector x should depend on past realizations of the demand, which is modeled through the
non-anticipativity constraints. Multi-stage robust optimization problems are very chal-
lenging both from the numerical and theoretical viewpoints since the non-anticipativity
constraints prevent us from applying the Benders-like decomposition algorithms used in
this thesis. Relaxing these constraints make the problem tractable numerically in some
cases [Santos et al., 2016b], but the resulting solutions provide only lower bounds for the
original problem.
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Alternatively, Minoux [2009] proposes simple dynamic programming algorithms able to
handle a specific class of robust-lot-sizing problems, without suffering the curse of dimen-
sionality often encountered in multi-stage problems. Can this algorithm be generalized to
more general problems?

7.4 Beyond budgeted uncertainty

A different type of interesting open questions is related to the generalization of Theo-
rems 2 and 3 to more general structured uncertainty sets. We are currently working on a
generalization of these theorems to uncertainty sets that correspond to the extreme points
of polytopes defined by small numbers of knapsack constraints. We are also working on
approximation algorithms for the robust counterparts of approximable problems CO when
the uncertainty set is an axis-parallel ellipsoid

U ellap :=

{
u ∈ Rn : ui = ui + ξiûi,

n∑
i=1

ξ2
i ≤ Ω2

}
.

In fact, a very interesting open question concerns the complexity of U ellap -CO which is still
unknown, contrasting with the NP-hardness of U ell-CO proved in Sim [2004], where the
ellipsoid U ell is defined as

U ell :=
{
u ∈ Rn : ui = ui + ξiûi, ξ

TAξ ≤ Ω2
}

for some positive semi-definite matrix A.
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