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I | General introduction

1 Motivation

In both nature and ordinary life, one can find a lot of natural and social processes that
can be described by hyperbolic partial differential equations of order one. They provide

an effective way to mathematically model various phenomena such as water flow, traffic
flow, gas dynamics or electrical lines for instance. For those reasons, hyperbolic systems of
balance laws in one space dimension have been the subject of various researches in different
domains, such as mathematics, physics, or automatic control. The present thesis is about
this class of systems, with a special attention to application on the cases of overland flow
on the one hand, which is an hydrological system, and traffic flow on the other hand, which
is a more artificial phenomenon.

The motivation for those examples can be related to more general environmental issues:
in recent decades, scientists have observed a serious evolution of global warming. It is
one of the most important environmental challenges nowadays. Being driven directly or
indirectly by human emissions of greenhouse gases, it causes not only bad effect on Earth’s
ecological systems but also on human life. More details and further discussions about
global warming can be found in [Mat+10] and [Pac+14]. The climate change leads to
problems of hydrological changes, and in the last four decades for example, strong rainfall
decrements together with a significant change in the land use have been noted all around
the world (see [Pie+02] and [ZC11]). This happens even in regions which seem to be insen-
sitive to climate change like Sahelian desert area (with the case of Tondi Kiboro catchment
for instance, which will be considered in this thesis). This phenomenon leads to strong
adjustments in water cycle in such locations. Moreover, the increment of runoff factor and
flow channel infiltration also causes vegetation clearing and topsoil debasement. One of the
important changes which create a lot of difficulties for population in this area is changes
in agricultural productivity and crops. The increment of temperature also creates glacier
melting not only at Earth’s poles, but also on iced tops of some high mountains. Along

1



2 Introduction

with the heavy open flow water generated by rapid ice melting, the strong rain fall caused
by weather change can create flood. It is a natural phenomenon that can in turn generate
a lot of effects on many aspects of human life. It can for instance give rise to a broken
dam. Food usually happens when the water discharges of a river, stream or drainage ditch
exceed the maximum of its banks. Moreover, in some special situations such as very ex-
cessive rainfall, hurricane or tropical storm, a flood can become a more dangerous disaster,
called "flash flood" with duration less than six hours but with large destructive power,
very high speed and unpredictability. One of the main components of these bad phenom-
ena caused by global warming is the overland flow , whose dynamics can be modelled by
hyperbolic partial differential equations, or at least one, chosen as the continuity equation
of the well-known Saint-Venant model.

Beside the global warming, and being also part of the reasons for it, the population boom
and the rise of motorized personal transport (car or motorbikes typically), specially in
developing countries, have created heavy pressure in transport system (see [LA90] and
[MW90]). The traffic jams in big and crowded cities are more and more serious, and car
exhausts in the congestions make the environment more polluted as well as create poten-
tial threat on the health of urban residents. The traffic flow , which is considered as the
interactions between travelers (including pedestrians, cyclists, drivers and their vehicles)
and infrastructure, becomes a noticeable subject in many scientific branches, including
automatic control. In the macroscopic point of view, the dynamics of traffic flow of vehicle
can mathematically be again represented by a hyperbolic equation.

From the above analysis, hyperbolic partial differential equations of order one are an inter-
esting subject for many scientific domains, and can in particular be used to reduce the bad
effects of hydrological changes and traffic congestion. Automatic control, an application of
control theory, can play an essential role in this problem. Two main issues can be consid-
ered: monitor, and control, the overland flow, or the traffic flow. Both of these purposes
need information on the system, which is very often only provided by few sensors, and thus
requires additional estimation processes.

In such estimation (or observer) issues, beside the prior knowledge about the system dy-
namics, the measurements or outputs of systems are essential. Normally they are provided
by sensors placed at some points of the system spatial domain. For instance in the flood
mechanism previously mentioned, an extreme rainfall causing huge overland flow is pretty
common, and difficult to observe. Similarly, the vehicles characteristics (density and av-
erage velocity for instance) are necessary to formulate the control law in order to manage
the vehicle flow and avoid traffic congestion in the traffic system. Therefore, monitoring in
overland flow and traffic systems is a key process to detect, predict and provide warning
when there is a possibility of flood or traffic jams. These duties are realized by a sensor
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network. Because of technical and economic reasons, the number of sensors is limited, and
as a result, state and parameter estimation over the whole overland flow or traffic systems
from few measurements only should be achieved. Moreover, the sensor number and sen-
sor location affect on the accuracy of estimation. An investigation of the optimal sensor
placement is thus also needed before estimation step.

2 Thesis objectives and contribution summary

The main objective of this thesis is to develop a systematic technique for state and pa-
rameter estimation in overland flow and traffic flow, or more generally for a class of 1-D
hyperbolic system. The proposed method is applied directly on the nonlinear system model
in infinite dimensional way. A second challenge is the optimal sensor placement, which is
investigated with the purpose to propose a new one in accordance with the proposed
estimation method. The thesis was achieved within a Grenoble INP project on water man-
agement MEPIERA ("Méthodologies innovantes pour l’ingénierie de l’eau et des risques
associés"), partly in collaboration with Mme I. ZIN from LTHE (Laboratoire d’étude des
Transferts en Hydrologie et Environnement) for the validation on a real hydrological sys-
tem. It was also included in the PERSYVAL-lab context (project ANR-11-LABX-0025-01).

In this context, the contributions of the thesis are twofold:

• Firstly, a state and/or constant/distributed parameters estimation method for smooth/
switched 1-D hyperbolic systems is developed, and its effectiveness and applicability are
validated by simulation and real data examples. In short, the adjoint method based on cal-
culus of variations is used, formulated and solved directly on nonlinear infinite dimensional
models. It relies on the sensitivity of measurements with respect to variables needing to
be estimated, which can be distributed initial state variables, as well as parameters. The
presented approach is also validated in the more simple case of constant parameters. It
is generalized to the problem of state and distributed parameter estimation for a class
of switched hyperbolic partial differential equation coupled with an ordinary differential
equation. Overland flow and traffic flow are considered as illustrative examples. In the
first case, the unknown infiltration model provides the switched system, and in the second
case, the consideration of a relief route connected to the main traffic road also generates a
switched dynamical model.

• Secondly, the problem of optimal sensor placement is considered. Beside the formulation
of Fisher information matrix on an infinite dimensional hyperbolic system (the effective-
ness of which is also illustrated in overland and traffic flows), a new adjoint-gradient based
criterion to find optimal sensor position is introduced for an overland flow. This method
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is also extended to the case of a overland flow network and validated by a simulation illus-
trative example.

Publications

This work gave rise to the following publications:

Journal papers:

1 V. T. Nguyen, D. Georges, G. Besançon, "State and parameter estimation in 1-D
hyperbolic PDEs based on an adjoint method", Automatica, Volume 67, May 2016,
Pages 185-191, ISSN 0005-1098.

2 V. T. Nguyen, D. Georges, G. Besançon, "Calculus of variation approach for state
and parameter estimation in switched 1-D hyperbolic PDEs", ESAIM - Control Op-
timisation and Calculus of Variations (under review).

International conference proceedings:

1. V. T. Nguyen, D. Georges and G. Besançon, "Optimal state estimation in an overland
flow model using the adjoint method", IEEE Conf on Control Applications (CCA),
Juan Les Antibes, France, 2014, pp. 2034-2039.

2. V. T. Nguyen, D. Georges, G. Besançon and I. Zin, "Application of adjoint method
for estimating Manning-Strickler coefficient in Tondi Kiboro catchment", IEEE Conf
on Control Applications (CCA), Sydney, Australia, 2015, pp. 551-556.

3. V. T. Nguyen, D. Georges and G. Besançon, "Traffic flow parameter estimation based
on an adjoint method", European Control Conference (ECC), Linz, Austria, 2015,
pp. 1333-1338.

4. V. T. Nguyen, D. Georges and G. Besançon, "Adjoint-method-based estimation of
Manning roughness coefficient in an overland flow model", American Control Con-
ference (ACC), Chicago, IL, USA, 2015, pp. 1977-1982.

5. V. T. Nguyen, D. Georges, G. Besançon and I. Zin, "Parameter estimation of a
real hydrological system using an adjoint method", IFAC International Workshop on
Adaptation and Learning in Control and Signal Processing (ALCOSP), Eindhoven,
The Netherlands, 2016, pp. 300-305.

6. V. T. Nguyen, D. Georges and G. Besançon, "Adjoint-based state and distributed pa-
rameter estimation in a switched hyperbolic overland flow model", IFAC Symposium
on Nonlinear Control Systems (NOLCOS), Monterey, CA, USA, 2016.
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7. V. T. Nguyen, D. Georges and G. Besançon, "Optimal sensor location for over-
land flow network monitoring", 3rd International Conference on Control and Fault-
Tolerant Systems (SYSTOL), Barcelona, Spain, 2016.

3 Thesis organization

The rest of this thesis is organized as follows:

Chapter 2: In this chapter the estimation methodology is presented. A brief state-
of-the-art on control design and estimation method for hyperbolic systems is first given.
Then the optimal estimation problem is formulated with the presentation of the dynamics
of 1-D hyperbolic systems under consideration. An extension to switched hyperbolic sys-
tems is then discussed, with the introduction of a smooth activation function to obtain an
approximated continuous case. The optimal estimation is transformed into an optimiza-
tion problem by defining a cost function as least square error between simulated values
and measurement of system variable. The idea to solve this optimization problem is to
combine the Lagrangian method and calculus of variation. Some recalls on the calculus of
variations and Gâteaux derivatives are also given, and the first order optimality condition
applied to the augmented objective functional allows to get the gradients of this functional
with respect to the state and parameters needing to be estimated. These gradients are the
fundamental inputs of gradient-based optimization algorithm which are steepest descent
method and Quasi-Newton method. Some numerical schemes for numerically solving the
partial differential equation and ordinary differential equations are also presented in this
chapter.

Chapter 3: Here the application of the proposed optimal estimation method is consid-
ered in two main systems: overland flow modeled by continuity equation of Saint-Venant
equations and traffic flow modeled by Lighthill–Whitham–Richards equation. For each
system, the illustration simulation examples are presented from the less difficult cases (ini-
tial state estimation, constant parameters estimation) to the more difficult ones (state and
distributed parameters estimation at the same time). The system dynamics of both sys-
tems also evolve from non-switched into switched. Moreover, in overland flow system, the
parameters estimation approach is validated with the real data on Tondi-Kiboro catchment.

Chapter 4: This chapter is devoted to the optimal sensor placement for state/parameters
estimation in non-switched hyperbolic systems. After a brief state-of-the-art on sensor
positioning in various systems and applications, some preliminaries about observability
for linear and nonlinear systems and criteria for finding sensor location are recalled. The
application of Fisher information matrix approach to the problem of state and parameter
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estimation in hyperbolic systems is first considered, and a new method based on adjoint
approach to get the optimal sensor locations for state estimation is then proposed.

Chapter 5: In this chapter, applications of optimal sensor placement are presented, again
divided in two cases: traffic flow and overland flow. In the first one, the Fisher information
technique and gradient based criterion are applied on the same system to find the optimal
locations. The found solutions are tested by a state estimation process. This is also the
content of the first application in the case of overland flow. The second one is an extension
of the adjoint gradient based criterion for an overland flow network consisting of three
flows. The optimal location configurations must allow to estimate the initial conditions of
all three flows of the network.

Chapter 6: This chapter concludes the manuscript, and gives some perspectives or pos-
sible extensions.
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II | Estimation methodology

This chapter is devoted to the methodology of state and parameter estimation which
is considered in this thesis for a class of 1-D hyperbolic systems. It is basically an

optimal estimation strategy, based on the calculus of variations. Some references related
to the considered hyperbolic systems and the use of calculus of variations are firstly men-
tioned in the state-of-the-art section. The class of systems is then specified (section 2),
made of a partial differential equation (PDE) coupled with an ordinary differential equa-
tion (ODE), and the estimation problem is stated as a non-convex optimization one, the
solution of which provides the optimal values of the variables needing to be identified. It is
also emphasized how the approach can be extended to a larger class of systems, including
switches in the PDE dynamics, by means of a smooth activation function. The calculus
of variations, a typical tool to deal with the type of optimization we are facing, is then
recalled in section 3 with its historical development and basic concepts of Gâteaux deriva-
tive or first order necessary condition. Based on these concepts, the details of calculation
and application of adjoint method on the presented optimization problem are given. The
Lagrangian multiplier method is used to connect the system equation with the cost func-
tion and create a new unconstrained optimization problem; the first variation calculation
is applied on this Lagrangian objective functional to derive the gradient of the functional
with respect to the parameter and state. In this procedure, the adjoint equations (one
PDE and one ODE) being conjugated with the original one are also obtained. Finally,
numerical approaches to solve all the PDEs and ODEs which are met are discussed in
section 4, and two gradient-based minimization algorithms including steepest descent and
quasi-Newton as optimization solver are given in section 5. Section 6 gives the conclusions
of the chapter.

9
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1 State-of-the-art

The control design and state/parameter estimation problems for hyperbolic systems define
a vast field of research for the automatic control community. Over the last decades, along
with the developments in computer power, various advanced control and estimation meth-
ods which demand high computational power, have been developed in a lot of applications.
Focusing only on the class of non switched hyperbolic systems of conservation laws, vari-
ous researchers in control have investigated a large number of control issues with different
purposes. One can cite here some typical ones such as: P.O Malaterre combined the mul-
tivariable predictive control method with Kalman filter (for state estimation) to control
a 2-pool open canal [MR97]; X. Litrico et al. proposed the model and control law for a
dam-river system [LG99a], [LG99b]; X. Sun et al. applied the predictive control method
on gas jet flames distribution [SW05]; V. Puig et al. [Pui+05] and Y. Bolea et al. [BBP07]
investigated linear parameter varying approaches for modeling and identification of open
channel system; D. Georges [Geo09] designed an infinite-dimensional nonlinear predic-
tive control for open-channel flow; V.T. Pham et al. investigated the problem of shock
wave avoiding by using the receding horizon boundary control applied on the macroscopic
Lighthill-Whitham-Richards traffic flow model [PGB12]; more recently Y. Li et al. used
linear programming to optimally control traffic in highway network [LCC14].

Uncertainty in the initial condition and empirical parameters are ones of the important
issues arising in the simulation and control of this type of systems. They can cause large
errors and inconsistency between the output of control system and the real one. Related
to the problem of constant parameter estimation in hyperbolic systems, one can also find
studies such as: the method of influence coefficient has been used by Becker et al. to esti-
mate Manning roughness coefficient in an unsteady open-channel flow [BY72]; an adjoint
analysis method has been proposed by Y. Ding et al. to find out roughness coefficient
in shallow water [DJW04]. In the case of distributed parameters of hyperbolic system,
Bagchi et al. [BB90] developed an estimation method based on the maximization of a like-
lihood function for the parameter and system state of a discrete-time hyperbolic system
with noisy boundary condition; the same adjoint gradient approach considered by Y. Ding
et al. was also used on the multi-reaches channel flow network [DW05]; Richard et al.
investigated a numerical scheme used to solve parameter identification issue for 1-D hy-
perbolic system [EL88]; whereas Wenhuan proposed a quasi-Newton method to deal with
the same problem [Yu99]; the estimation problem of Manning roughness coefficient of a
channel network was solved by H. Longxi by a complex method [Lon08]; a state estimation
method based sequential Monte Carlo for an irrigation canal was developed in the work
of J. Sau et al. [SMB10]; P.O. Malaterre et al. proposed the sequential Kalman filter and
particle filter state observer applied on a 1-D hydrodynamic model to determine the water
level, discharges and some parameters such as Manning-Strickler [Mal+09]; a moving hori-
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zon technique was employed by Hasan et al. to estimate state and constant parameter in
a 2×2 linear hyperbolic system based on a distributed model for drilling application [HI14].

In the case of switched hyperbolic systems (used with a general sense including switched
characteristic in dynamic part or source part) some studies can also be found. One can
cite here some works concerning the optimal control for this type of system: X. Xu et al
[XA02] using nonlinear optimization techniques to find the optimal switching instants for
switched autonomous systems; dealing with the same problem and system M. Egerstedt
et al. [EWD03] used a different optimization technique; M. Rinehart et al. [RDK07] de-
signed discrete-time state-feedback controllers for continuous-time switched homogeneous
systems; further references can be found in a survey paper of F. Zhu et al. for optimal
control of hybrid switched systems [ZA15]. Some fruitful results on in infinite dimensional
stabilization of switched hyperbolic system have also been reported, see e.g, the papers of
S. Amin et al. [AHB08], C. Prieur et al. [PGW14]. More details on this subject can be
found in the survey paper of H. Yang et al. [YJC14]. However, there are few available
studies investigating the problem of state and parameters estimation in switched infinite
dimensional PDE. These brief references are of course very far from the full summary of
control application in hyperbolic systems but through them readers can find basic ideas.

In this context, the present chapter proposes the use of calculus of variations or adjoint
method to solve the problem of state and parameter estimation for 1-D hyperbolic systems.
The proposed approach is extended to a case of switched system where one PDE is coupled
with an ODE. The term "switched" here refers to a system changing its characteristics on
the source term in the dynamic equation, according to a switching rule which may depend
on time, parameters of the system and/or state of the system.

The adjoint method being the main tool considered in this thesis to deal with the es-
timation problem, it is worth including some references on this concept hereafter. Based
on the calculus of variations, a mature concept with more than 250 years (more details
about its brief history are recalled in section 3), the adjoint method is employed in various
problems in the field of control. An application survey of variational calculus can be found
in the work of J. Ferguson [Fer04]. Two formalisms including forward sensitivity and the
adjoint sensitivity for the investigation of mathematical foundations in nonlinear equations
and functional analysis are provided in two works of Cacuci [Cac81a]; [Cac81b]. A large
number of studies have investigated variational calculus to analyze the characteristics or
control the behaviors of some dynamical systems in various domains including engineering
systems, biological systems, economic systems and hydrological systems etc whose dynam-
ics are described by differential equations. Some typical works concerning the application
of this concept are: to design the controller for the contaminant releases in rivers [PK97a];
[PK97b]; to control the canal flow or reduce the effect of hazardous flood in rivers by using
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depression waves [SK99b]; [SK99a]; to investigate the applicability of adjoint method to
nonlinear control of irrigation canals or dam-river systems via the one-dimensional collo-
cation control model [DGB04]; to monitor and control the traffic flow with the presence of
congestion waves [JDWK05]; to plan the trajectory of aircraft and control air traffic flow
[RT05]; to solve the boundary optimal control issue for open channel flow network [DW06]
or alluvial channels [DW12b] or a watershed consisting of complex channel network with
irregular topography [DW12a] or for Navier-Stokes equations [GC06]; to find the control
law for an Eulerian network model of air traffic flow through solving an optimization prob-
lem of a log-barrier augmented objective functional [BRT06] or to regulate the optimal
flow in the same system [WB08] ; to formulate the nonlinear predictive control in infinite
dimensional for open-channels system [Geo08]; and to solve a coordinated ramp metering
problem for freeways [Rei+15].

A lot of studies have also been carried out to investigate the application of adjoint method
on estimation problem. S. K. Das and al. estimated the bottom friction coefficient and the
water depth in the tidal flow model [DL91]. I. M. Navon firstly provided some aspect of
stability to validate the estimated result after providing a survey on the use of calculus of
variations for inverse problems in oceanography and meteorology [Nav98]. More recently,
V. M. Calo et al. proposed a gradient-based approach to identify the spatially distributed
Manning coefficient in the shallow water equations [Cal+13]. L. Perez et al. investigated a
conjugate gradient algorithm based on calculus of variations to identify the thermal diffu-
sivity in moving boundaries system [PAG08]. L. Autrique [ARR05] performed a parametric
identification by using the same conjugate gradient method as [PAG08] on a thermal sys-
tem which is described by partial differential equations. K. Yoshida et al. proposed the
same approach for estimating also the Manning roughness but on a real hydrological sys-
tem (the Asahi River in Japan during flooding in 2011) [YM14] and for flood hydrograph
[YI15]. The dynamics of flood of this work is modeled by shallow-water equations. The
variational method applied on a Saint-Venant hydraulic network to estimated its water
discharges is presented in the work of I. Gejadze et al. [GM16]. More specially, the work of
W. Castaings et al., where the applicability of variational calculus for parameter estimation
in distributed overland flows is analyzed and illustrated by a numerical example [Cas+09],
shares the same idea as the one of parameter estimation in an overland flow investigated
in the present thesis. But [Cas+09] does not consider the problem of state estimation, and
the parameter needing to be estimated in this latter work is supposed to be constant.

The state and parameters estimation problem considered in this thesis consists in solv-
ing an inverse problem. But the inverse problem is often ill-posed if it is not well-posed
in the sense given by Jacques Hadamard [Had02]. This means that at least one of the
following properties is not satisfied: a solution exists, the existing solution is unique, the
behavior of the solution depends continuously on the initial conditions. The degree of
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ill-posedness which represents the characteristic of an inverse problem can be found in the
works of B. Hofmann et al. [Hof94]; [HW05]; [HK+10]. The noises in the observation
process are among the main reasons which cause the ill-posedness. For the class of de-
scent methods used for solving inverse problem, the regulation iterative technique based
on conjugate gradient proposed in the former works of Y. Jarny et al. [JOB91] and of
O.M. Alifanov [Ali94] for parabolic systems can be used as potential approaches. In this
thesis, an example of estimation problem with noisy measurement along with a regulation
method is presented at the end of chapter III.

The next part of this chapter is devoted to describe the state and parameter optimal
estimation in 1-D hyperbolic system. The calculation of variations and adjoint-based ap-
proach along with the optimization algorithm are then reformulated.

2 Optimal estimation problem formulation

2.a 1-D hyperbolic system dynamics

Being the subject of various researches in a lot of domains, such as mathematics, physics
and automatic control, hyperbolic systems of balance laws in one space dimension have
been used to describe a lot of phenomena in nature and ordinary life such as water flow,
macroscopic traffic flow, gas pipelines, or electrical lines for instance.
Denoting by x the spatial variable and t the time variable, with x ∈ [0, L], t ∈ [0, T ] for
a spatial length L and a time horizon T , the system dynamical representation typically
reads as follows:

∂u(x, t)

∂t
+
∂f(u(x, t), x)

∂x
= g(x, t, p, y(t), u(x, t))

u(x, 0) = ui0(x) and u(0, t) = ub0(t)
dy

dt
(t) = h(y(t), p)

y(0) = y0

(II.1)

where u(x, t) and y(t) are system variables of the PDE and ODE, respectively; f(u(x, t), x)

is the flow term depending on u(x, t) and x, and g(x, t, p, y, u) is a source term possibly
depending on space and time, but also system variables y, u and a set of parameters p.
Finally h is a function defining the dynamics of y, and possibly depending on p as well.
The system dynamics are complemented by the Cauchy initial and boundary conditions
described two functions u(x, 0) = ui0(x) and u(0, t) = ub0(t), while y0 is the initial condi-
tion of the coupled ODE. The boundary condition of PDE and initial condition of ODE
are known functions and fixed beforehand. The flow f(u(x, t), x) can be written as a
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product of some coefficient vector α = [α1(x)...αi(x)...αK(x)]T and sub-function vector
ϕ = [ϕi(u)...ϕi(u)...ϕK(u)]T ,

f(u(x, t), x) =
K∑
i=1

αi(x)ϕi(u) (II.2)

2.b Optimization-based estimation approach

The general estimation problem which is considered is that the initial condition ui0(x)

together with parameters p and α in equations (II.1) are undefined and needing to be
estimated from some available measurements.
Instead of the estimation techniques mentioned in the introduction chapter, the estima-
tion issue considered in this work is formulated as a nonlinear optimization problem. This
means that a cost function or observation function is considered, being a function of initial
state and parameters, and defined based on the measurements. This function needs to be
minimized to get the desired variables. There are several ways to characterize this function
or define the relationship between observations and simulated values. Typical functions
which can be considered are the maximal error, the absolute error summation and the sum
of least square errors, which will be the one considered in this thesis.
The measurements are provided by sensors normally placed at fixed locations on the spatial
domain (expect mobile sensors in some special cases). The observation process considered
hereby can thus be modelled by the Delta-Dirac operator at a predefined set of discrete
points. But to guarantee the smoothness of observation functions, a Gaussian approxima-
tion of the Dirac function is used. And with a variance σ2 and center point xj, this smooth
operator is described in equation (II.3):

δA(x− xj) =
1

Λ(xj)
e
−

(x− xj)2
σ2 (II.3)

where

Λ(xj) =

L∫
0

e
−

(x− xj)2
σ2 dx

with spatial domain length L. Notice that the reconstructed measurement values are
conserved due to

L∫
0

δA(x− xj)dx = 1

The center point xj is also the observation position. The size of observation window can be
adjusted by tuning the variance σ. A small value of σ allows to have an accurate observed
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data but causes some peaking in the gradients. Moreover, a large σ creates a wider observa-
tion window of sensor operator which propagates the information around observation point
xj but adds also a bias to the measured values. The value of σ is usually chosen "small
enough", and manually in each specific case because its value also depends on the scale of
spatial variable to keep a good compromise between exact measurement and information
propagation. The measurements are rebuilt by the spatial Fredholm first kind integral
of the convolution between the simulated value u(x, t) with the shifted approximation of
Delta Dirac function.
The cost function called J finally takes the following form:

J =
1

2

N∑
j=1

T∫
0

{ L∫
0

δA(x− xj)u dx− umeasj (xj, t)

}2

dt+
1

2
ε1

L∫
0

‖ui0(x)− ui0F (x)‖2dx

+
1

2
ε2

K∑
i=1

L∫
0

‖αi(x)− αiF (x)‖2dx+
1

2
ε3

H∑
l=1

‖p(l)− pF (l)‖2

(II.4)

where T is the observation horizon (hours); L is the spatial domain length (m); N is the
number of observation values; umeasj (xj, t) is the measurement at observation position xj
with xj ∈ [0, L]; K and H are respectively the size of parameter vector α and p; αiF ,
pF and ui0F are the first guessed values of coefficients αi, parameters p and initial state
ui0 respectively ; ε1, ε2, ε3 are weighting factors to calibrate the estimated values and the
guessed ones, adjust the scale of cost function and improve the convergence of optimization
algorithm. The first guessed values of state and parameters are selected in a reasonable
range around the expected real ones.

2.c Extension to switched 1-D hyperbolic systems

Before entering into the process of minimizing the above criterion (II.4), let us discuss
how the proposed formulation can be extended to systems (II.1) also including possible
switching dynamics: here only switching in the source term g will be considered, assuming
that it can change between 2 forms {g1(x, t, p, y, u), g2(x, t, p, y, u)} when a switching
condition is satisfied (more general cases could also be considered, but are left for future
works). More precisely, let us focus only on a simple case when the system goes from
g1(x, t, p, y, u) to g2(x, t, p, y, u) under the switching condition ξ(t, p, u) > 0. This condition
can be a time-evolving or state-evolving inequality. With the same switching condition,
the source of ODE, h(y, p) takes one of its sub-functions {h1(y, p), h2(y, p)}. Equation
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(II.1) can be therefore rewritten as follows:


∂u(x, t)

∂t
+
∂f(u(x, t), x)

∂x
− g1(x, t, p, y, u) = 0

dy

dt
= h1(y, p)

if ξ(t, p, u) ≤ 0


∂u(x, t)

∂t
+
∂f(u(x, t), x)

∂x
− g2(x, t, p, y, u) = 0

dy

dt
= h2(y, p)

if ξ(t, p, u) > 0

(II.5)

Due to the switching characteristics, the dynamics of the system are not differentiable at
switching times. The idea here is to use a smooth activation function to merge the two
sub-functions of PDE source term and two sub-functions of ODE in equation (II.5) into
one. This function is given by a logistic one as in equation (II.6) below:

ϕa(t, p, u) =
1

1 + e−Kacξ(t,p,u)
(II.6)

where Kac is the steepness of the curve and used to adjust the transition slope between
0 and 1 or the switching transition smoothness. The behavior of the smooth activation
function can be seen as an electric switch that can be "ON" or "OFF", depending on
function input. The binary step function has the exact characteristics but can not be
used in this situation due to its discontinuity. The final form of system dynamics with the
logistic activation function is rewritten as follows:

(Σ)



∂u(x, t)

∂t
+
∂f(u(x, t), x)

∂x
− g1(x, t, p, y, u)

+ϕa(t, p, u)
[
g1(x, t, p, y, u)− g2(x, t, p, y, u)

]
= 0(II.7)

u(x, 0) = ui0(x) and u(0, t) = ub0(t)

dy

dt
− h1(y, p) + ϕa(t, p, u)

[
h1(y, p)− h2(y, p)

]
= 0 (II.8)

y(0) = y0

In this way, we are brought to a description similar to (II.1) and the same optimization-
based estimation approach can be adopted.

3 Calculus of variations

3.a Introduction

The calculus of variations, one of the classical fields of mathematical analysis, whose name
was given by Leonhard Euler, is an important tool to deal with the problem of finding the
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extrema (minima or maxima) of a nonlinear optimization problem on infinite dimensional
function space. From the beginning of this branch of mathematics in 814 BC with the
so-called "Dido problem" up to many modern time optimization issues, it is a very lively
domain which has attracted the attention of many scientists. Let us go upstream the his-
tory to have an overview of its development and its typical problems. The recalled Dido
problem, corresponding to finding the closed curve having the maximum area for a given
perimeter, can be considered as the earliest isoperimetric inequality. This is also one of
the oldest problems in the calculus of variations. Its first solution for polygons was given
by Zenodorus, an ancient Greek mathematician around 200 BC with the contribution and
improvement of Archimedes. Weierstrass made some significant advances in this isoperi-
metric inequality problem by his proof with new complete reformulation and opening the
way to modern study of the calculus of variations by proving the necessary condition for the
existence of strong extrema. In the seventeenth century, a lot of variational problems were
proposed and considered such as: geometrical optics by Fermat, ship design to minimize
the resistance of Newton and the well-known Brachistochrone curve problem formulated
and solved by Johann Bernoulli in 1696. During this period, Euler-Lagrange equation, a
systematic way allowing to solve systematically variational issue was found by Euler and
Lagrange. It was extended later in the studies of Hamilton, Hilbert, Weierstrass etc. At
the end of the nineteenth century and the beginning of twentieth century, a problem of
finding extrema of multiple integrals or Dirichlet integral, one of the most famous prob-
lem of the calculus of variations, was solved by Hilbert by using the direct method with
the previous contributions of Dirichlet, Thompson and Riemann. Being presented around
1900, the direct method relies on functional analysis and topology to prove the existence of
a minimum for a given functional. The problem of minimal surface (that locally minimizes
its area) which was presented in 1762, was completely solved by Douglas and Rado in 1930.
Further information about calculus of variations history can be found in [Fer04] and [Gol12].

Nowadays, the minimization techniques of calculus of variations provide a powerful tool to
characterize the functional equilibrium configuration of various systems in a lot of areas
of mathematics, physics, classical mechanics, quantum mechanics, engineering etc. With
the same spirit of multi-variable function optimization where the gradients of function
with respect to variable point out the candidate of the minima, the functional gradients
allow to distinguish the critical functions that might be the minimizer of the functional.
The gradient of a function or the generalization of the usual concept of derivative of one
variable function is given by its partial derivative. But in the case of a functional defined
on an infinite dimensional function space, the ordinary derivative is replaced by Gâteaux
differential or Gâteaux derivative, named after René Gâteaux, a French mathematician.
This new concept along with the associated first order of necessary condition for optimality
are presented in details in the next subsections.
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3.b Basic concept of calculus of variations

3.b.1 Gâteaux derivative

Considering two locally convex topological vector spaces denoted by Υ and Ψ, an open
sub vector space Θ ∈ Υ and a functional called F : Υ −→ Ψ, the Gâteaux derivative
denoted by dF(u; v) at u ∈ Θ in the direction v ∈ Υ of F is defined by the limit below:

dF(u; v) = lim
ε→0

F(u+ εv)−F(u)

ε
(II.9)

if the limit exists for all ε ∈ R. Classically, the direction v can be considered as the
variation of function u (maybe written as δu) perturbed by the real factor ε. This is also
the reason why this technique called as "calculus of variations". For an unknown function
u which will be determined to minimize the functional F(u), the functional value F(u)

perturbed by the perturbation function h and small real number ε is F(u + vε). If this
limit exists for all vector v ∈ Υ, the functional F is Gâteaux differentiable at u. The
Gâteaux derivative can be also rewritten under the form of partial derivative of a function
if the functional F is "considered" as a simple function of ε.

dF(u; v) =
∂

∂ε
F(u; v)

∣∣∣
ε=0

(II.10)

This formulation allows to calculate the Gâteaux derivative without evaluating the limit
as in the previous formal definition. The concept of first variation of functional G usually
corresponds to the Gâteaux derivative. A linear functional denoted by δG|u (linearity with
the sense: δG|u(v1ε1 + v2ε2) = ε1G|u(v1) + ε2G|u(v2)) is called the first variation of G at
function u if for all function v and all real number ε, the following equality holds

G(u+ vε) = G(u) + δG|uε+ o(ε) (II.11)

where the function o(ε) satisfies the condition below:

lim
ε→0

o(ε)

ε
= 0 (II.12)

or the function o(ε) goes to zero faster than ε when it tends to zero. This mean one can
reformulate the formal definition of Gâteaux derivative in (II.9) by dividing the two sides
of equation (II.11) by ε and taking the limit while ε tends to zero. For convenience and
to avoid the confusion between the notation of Gâteaux derivative dF(u; v) in (II.9) and
the ordinary derivative, the notation δF|u(v) is used for both the first variation and the
Gâteaux derivative. The first variation provides a necessary condition for a minimum of a
functional and will be discussed in more details in the next subsection via a simple proof.
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3.b.2 First-order necessary condition for minimization of a functional

Consider the functional F(u) defined on the two vector spaces Υ and Ψ, F : Υ −→ Ψ.
If the function u∗ is a minimum of F(u), then the following equation will hold for all small
real value ε because the functional value cannot be smaller in all possible direction:

F(u∗ + εv)−F(u∗) ≥ 0 (II.13)

As a result, if ε > 0
F(u∗ + εv)−F(u∗)

ε
≥ 0

and conversely ε < 0
F(u∗ + εv)−F(u∗)

ε
≤ 0

Take the limit of the two previous inequalities while ε goes to zero from both left and right
sides:

lim
ε→0
ε>0

F(u∗ + εv)−F(u∗)

ε
≥ 0 ; lim

ε→0
ε<0

F(u∗ + εv)−F(u∗)

ε
≤ 0 (II.14)

This leads to the limit defining the first variation:

lim
ε→0

F(u∗ + εv)−F(u∗)

ε
= 0

If the Gâteaux derivative of F exists, the previous limits also exists or the variation of F
at function u∗ is equal to zero in all direction v. By reversing the inequality signs in the
above equations, the same result can be obtained for the case of maximum. The first order
of optimality of functional therefore is presented as follows:

δF
∣∣
u∗

(v) = 0 ∀ v ∈ Υ (II.15)

On the function space Υ, an inner product <,> is defined, as the standard L2 inner product
for two functions f and g

< h, g >=

∫
g(x)h(x)dx (II.16)

The Gâteaux derivative of F at point u in direction v can be written under the form of
the inner product between the gradient of functional F(u) and vector v:

δF(u, v) =< ∇F(u), v > (II.17)

Comparing with equation of the previous optimality condition, the gradient of functional
F(u∗) satisfies

< ∇F(u∗), v >= 0 ∀ v ∈ Υ (II.18)

which is known as the weak form of variational principle.
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3.c Application of calculus of variations

The previous concepts of calculus of variations provide the idea to deal with the optimiza-
tion problem presented in section 2. The application is proposed here for the more general
case of system (II.7)-(II.8). The case of smooth system (II.1) is a reduced version and the
details can be found in [NGB16b]. Here, the first variation calculation or the Gâteaux
derivative of the cost function with respect to all possible variation directions of initial
state and parameters is applied. But the considered problem is a constrained one with
the system dynamics (II.5) as an equality constraint, along with the cost functional J
in equation (II.4). The Lagrangian multiplier method can then be used to combine the
cost function and the constraint together. By introducing two multipliers λ(x, t) for the
switched PDE and γ(t) for the ODE, the augmented objective functional called L can be
written as follows:

L(u(x, t), ui0(x), y(t), α(x), p) = J +

T∫
0

L∫
0

λ(x, t)Σ1dxdt+

T∫
0

γ(t)Σ2dt (II.19)

where Σ1, Σ2 are the left parts of equations (II.7) and (II.8), respectively. The constrained
optimization becomes an unconstrained one. The functional L(u(x, t), ui0(x), y(t), α(x), p)

is defined from the set L2([0, L], [0, T ]) × L2([0, L]) × L2([0, T ]) × L2([0, L])K × RH into
R. The idea to solve this optimization problem is to rely on the first order necessary
condition for functional optimality established by the calculus of variations (presented in
equation (II.15)) that is to cancel the first order variation of L(u(x, t), ui0(x), y(t), α(x), p).
The candidates for optimal solutions of the cost functional are found at the point where
its variations with respect to the variations of state and parameters vanish. The first var-
itation of functional is considered here in the form of Gâteaux derivative which is applied
on equation (II.19). The stationary point of the cost functional is at the point where its
gradients with respect to the sate and parameters vanish (by using the condition (II.18)
for all vector v). The local minimum of J corresponds to a stationary point of objective
functional L with a specific values of λ∗ and γ∗.

For the reason of simplicity, notations u(x, t), f(u(x, t), t), λ(x, t), γ(t), ϕa(t, p, u), g1(x, t, p,
y), g2(x, t, p, y), h1(y, p), h2(y, p), y(t) and ξ(t, p, u) will be reduced to u, f , λ, γ, ϕa, g1,
g2, h1, h2, y and ξ, respectively, except special case. The variation of the first part J of L
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is given as follows:

δJ =
N∑
j=1

T∫
0

L∫
0

δA(x−xj)
[ L∫

0

δA(x−xj)udx−umeasj

]
δudxdt+ε1

L∫
0

[
ui0(x)−ui0F (x)

]
δui0(x)dx

+ ε2

K∑
i=1

L∫
0

[
αi(x)− αiF (x)

]
δαi(x)dx+ ε3

H∑
l=1

[
p(l)− pF (l)

]
δp(l)

(II.20)

The variation of second part, called A, of equation (II.19) is obtained by the integration
by parts technique and given in equation (II.21).

δA =

L∫
0

λδu

∣∣∣∣∣
T

0

dx−
T∫

0

L∫
0

∂λ

∂t
δudxdt+

T∫
0

[
λ
∂f

∂u

]
δu

∣∣∣∣∣
L

0

dt+
K∑
i=1

T∫
0

[
λ

∂f

∂αi(x)

]
δαi(x)

∣∣∣∣∣
L

0

dt

−
T∫

0

L∫
0

∂f

∂u

∂λ

∂x
δudxdt−

T∫
0

L∫
0

λ

[
∂g1
∂p
− ∂ϕa

∂p
g1 − ϕa

∂g1
∂p

+
∂ϕa
∂p

g2 + ϕa
∂g2
∂p

]
δpdxdt

−
K∑
i=1

T∫
0

L∫
0

∂f

∂αi(x)

∂λ

∂x
δαi(x)dxdt−

T∫
0

L∫
0

λ

[
∂g1
∂y
− ϕa

∂g1
∂y

+ ϕa
∂g2
∂y

]
δydxdt

−
T∫

0

L∫
0

λ

[
∂g1
∂u
− ϕa

∂g1
∂u
− g1

∂ϕa
∂u

+ ϕa
∂g2
∂u

+ g2
∂ϕa
∂u

]
δudxdt

(II.21)

The same result of the variation of term A can be derived by using the Green’s theorem
for double integrals on 2-D domain [0, T ] × [0, L]. By using also the integration by parts,
the first variation of third part, called B, is thus written as

δB =

[
γδy(t)

]∣∣∣∣∣
T

0

−
T∫

0

∂γ

∂t
δy(t)dt−

T∫
0

γ

[
∂h1
∂p
− ∂ϕa

∂p
h1 − ϕa

∂h1
∂p

+
∂ϕa
∂p

h2 + ϕa
∂h2
∂p

]
δpdxdt

−
T∫

0

γ

[
∂h1
∂y
− ϕa

∂h1
∂y

+ ϕa
∂h2
∂y

]
δydt+

T∫
0

γ

[
h1
∂ϕa
∂u
− h2

∂ϕa
∂u

]
δudt

(II.22)

In order to establish the formulation of the gradients of Lagrangian functional, its variations
in equations (II.20), (II.21) and (II.22) are written under the form of Gâteaux derivative
of L with respect to the directions δu(x, t), δui0(x), δy(t), δαi(x) and δp. Denoting the new
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vector of all variations directions π = [δu(x, t) δui0(x) δy(t) δαi(x) δp]T , the Gâteaux
derivative of L in all directions can be rewritten by the following equation:

δL =< ∇L, π > (II.23)

where δL and ∇L are respectively the first variation and the weak form of gradient of L
with respect to u(x, t), ui0(x), y(t), αi(x) and p. The functional space where L is defined
on, L2([0, L], [0, T ])×L2([0, L])×L2([0, T ])×L2([0, L])K ×RH → R is equipped with an
inner product <,> defined as

< ∇L, π >=

T∫
0

L∫
0

∇Lu(x,t)δu(x, t)dxdt+

L∫
0

∇Lui0(x)δu
i
0(x)dx+

T∫
0

∇Ly(t)δy(t)dt+∇Lpδp

+

L∫
0

∇Lαi(x)δαi(x)dx

(II.24)

where ∇L is a vector of 5 elements ∇L = [∇Lu(x,t) ∇Lui0(x) ∇Ly(t) ∇Lαi(x) ∇Lp].
According to the first-order necessary condition for optimality, for all admissible variation
vector π, δL must be equal to zero, or the weak form of gradients ∇L must satisfy

∇L = 0 (II.25)

to eliminate the variations in all directions. Based on the of first variation calculations
in equations (II.20), (II.21) and (II.22), to establish the optimization condition of the
weak gradient in direction δu(x, t) in equation (II.25), all the terms related to δu(x, t) are
collected as shown in equation (II.26) below:

δLu(x,t) =

T∫
0

L∫
0

{
− ∂λ

∂t
− ∂f

∂u

∂λ

∂x
− λ
[
∂g1
∂u
− ϕa

∂g1
∂u

+ ϕa
∂g2
∂u
− g1

∂ϕa
∂u

+ g2
∂ϕa
∂u

]

+
N∑
j=1

δA(x− xj)×
[ L∫

0

δA(x− xj)udx− umeasj

]}
δudxdt+

T∫
0

γ

[
h1
∂ϕa
∂u
− h2

∂ϕa
∂u

]
δudt

(II.26)

The second integration concerning the Lagrangian multiplier γ(t) can be rewritten under
the form of double integration in time and space via an approximation of Dirac delta
function δA(x).

T∫
0

γ

[
h1
∂ϕa
∂u
− h2

∂ϕa
∂u

]
δudt =

T∫
0

L∫
0

γδA(x)

[
h1
∂ϕa
∂u
− h2

∂ϕa
∂u

]
δudxdt (II.27)
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The weak form of gradient of cost functional L with respect to system variable u(x, t)

can be found by merging two double integrations together and setting the term under
integration to zero. This is also the adjoint system of Lagrangian variable λ(x, t). Its
dynamic is finally described by the PDE in equation (II.28) below.

−∂λ
∂t
− ∂f

∂u

∂λ

∂x
− λ
[
∂g1
∂u
− ϕa

∂g1
∂u

+ ϕa
∂g2
∂u
− g1

∂ϕa
∂u

+ g2
∂ϕa
∂u

]
+ γδA(x)

[
h1
∂ϕa
∂u
− h2

∂ϕa
∂u

]

+
N∑
j=1

δA(x− xj)×
[ L∫

0

δA(x− xj)udx− umeasj

]
= 0

(II.28)

which describes the dynamics of the so-called adjoint system of variable λ(x, t). This PDE
is dual to the direct system. The minus signs in system (II.28) being contrary to the plus
signs in system (Σ) represents this duality. The adjoint system of variable γ(t) is similarly
found by gathering related terms into one equation and removing the time integration,
written readily as:

−∂γ
∂t
− γ
[
∂h1
∂y
− ϕa

∂h1
∂y

+ ϕa
∂h2
∂y

]
−

L∫
0

λ

[
∂g1
∂y
− ϕa

∂g1
∂y

+ ϕa
∂g2
∂y

]
dx = 0 (II.29)

The first variations of cost functional L with respect to the variation of state and parameters
are found by collecting the related variation terms of corresponding variables δui0(x), δp
in equations (II.20), (II.21) and (II.22). They are expressed in equations (II.30), (II.31)
hereafter, respectively.

δLui0(x) = −
L∫

0

λ(x, 0)δui0(x)dx+ ε1

L∫
0

[
ui0(x)− ui0F (x)

]
δui0(x)dx (II.30)

δLp = −
T∫

0

L∫
0

λ

[
∂g1
∂p
− ∂ϕa

∂p
g1 − ϕa

∂g1
∂p

+
∂ϕa
∂p

g2 + ϕa
∂g2
∂p

]
δpdxdt

−
T∫

0

γ

[
∂h1
∂p
− ∂ϕa

∂p
h1 − ϕa

∂h1
∂p

+
∂ϕa
∂p

h2 + ϕa
∂h2
∂p

]
δpdt+ ε3

[
p− pF

]
δp (II.31)



24 Estimation methodology

By using the same method, the variations of parameters αi(x) is presented in equation
(II.32). It is not identical allover the spatial domain.

δLαi(0) = −
T∫

0

[
λ

∂f

∂αi(x)

]∣∣∣∣∣
x=0

δαi(0)dt ; δLαi(L) =

T∫
0

[
λ

∂f

∂αi(x)

]∣∣∣∣∣
x=L

δαi(L)dt

δLαi(x) = −
T∫

0

L∫
0

∂f

∂αi(x)

∂λ

∂x
δαi(x)dxdt+ ε2

L∫
0

[
αi(x)− αiF (x)

]
δαi(x)dx

where x ∈ ]0, L[

(II.32)

But if parameter αi is constant in some special cases, its variation is

δLαi
=

T∫
0

[
λ

∂f

∂αi(x)

]∣∣∣∣∣
L

0

δαidt−
T∫

0

L∫
0

∂f

∂αi

∂λ

∂x
δαi + ε2

[
αi − αiF

]
dxdt (II.33)

To solve these equations of Lagrangian multipliers, the boundary and transversality con-
ditions associated with them must be present. These conditions can be found by setting
the remaining terms after forming the adjoint systems and the variation of state and pa-
rameters to zero to satisfy the first order optimality condition.

L∫
0

λ(x, T )δu(x, T )dx+

T∫
0

[
λ
∂f

∂u

]
δu

∣∣∣∣∣
L

0

dt+

[
γδy(t)

]∣∣∣∣∣
T

0

= 0 (II.34)

Because the boundary condition of the direct system is fixed beforehand, its variation is
thus equal to zero or δu(0, T ) = 0. The variation of initial condition of variable y of the
ODE is also equal to zero because of its predetermination. To establish equation (II.34),
the following equalities must hold λ(x, T ) = 0; λ(L, t) = 0 and γ(T ) = 0 which are as
well the limit time condition and boundary condition for the two adjoint models (II.28)
and (II.29). The initial and boundary conditions of the adjoint equation are dual to these
conditions of the direct systems.
The formulation of each element of δL in equations (II.30), (II.31) and (II.32) is rewritten
according to the previous definition of inner product <,> in (II.24), and presented as
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follow:

δLp =

{
−

T∫
0

L∫
0

λ

[
∂g1
∂p
− ∂ϕa

∂p
g1 − ϕa

∂g1
∂p

+
∂ϕa
∂p

g2 + ϕa
∂g2
∂p

]
dxdt

−
T∫

0

γ

[
∂h1
∂p
− ∂ϕa

∂p
h1 − ϕa

∂h1
∂p

+
∂ϕa
∂p

h2 + ϕa
∂h2
∂p

]
dt+ ε3

[
p− pF

]}
δp

δLui0(x) =

L∫
0

{
− λ(x, 0)dx+ ε1

[
ui0(x)− ui0F (x)

] }
δui0(x)dx



δLαi(0) =

L∫
0

1

L

{
−

T∫
0

[
λ

∂f

∂αi(x)

]∣∣∣∣∣
x=0

dt

}
δαi(0)dx

δLαi(L) =

L∫
0

1

L

{ T∫
0

[
λ

∂f

∂αi(x)

]∣∣∣∣∣
x=L

dt

}
δαi(L)dx

δLαi(x) =

L∫
0

{
−

T∫
0

∂f

∂αi(x)

∂λ

∂x
dt+ ε2

[
αi(x)− αiF (x)

]}
δαi(x)dx where x ∈ ]0, L[

As a result, the weak form of gradients of the cost functional with respect to the state and
parameters are written readily as:

∇Lp = −
T∫

0

L∫
0

λ

[
∂g1
∂p
− ∂ϕa

∂p
g1 − ϕa

∂g1
∂p

+
∂ϕa
∂p

g2 + ϕa
∂g2
∂p

]
dxdt+ ε3

[
p− pF

]

−
T∫

0

γ

[
∂h1
∂p
− ∂ϕa

∂p
h1 − ϕa

∂h1
∂p

+
∂ϕa
∂p

h2 + ϕa
∂h2
∂p

]
dt (II.35)

∇Lui0(x) = −λ(x, 0) + ε1
[
ui0(x)− ui0F (x)

]
(II.36)

∇Lαi(0) = − 1

L

T∫
0

[
λ

∂f

∂αi(x)

]∣∣∣∣∣
x=0

dt ; Lαi(L) =
1

L

T∫
0

[
λ

∂f

∂αi(x)

]∣∣∣∣∣
x=L

dt

∇Lαi(x) = −
T∫

0

∂f

∂αi(x)

∂λ

∂x
dt+ ε2

[
αi(x)− αiF (x)

]
where x ∈ ]0, L[

(II.37)

And for the case of constant αi

∇Lαi
=

T∫
0

[
λ

∂f

∂αi(x)

]∣∣∣∣∣
L

0

dt−
T∫

0

L∫
0

∂f

∂αi

∂λ

∂x
dxdt+ ε2

[
αi − αiF

]
(II.38)
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4 Numerical approach

4.a Introduction

PDEs can describe the dynamics of a vast amount of mathematical models for physical,
biological, hydrological and chemical phenomena. They have been extended in order to
deal with the systems in more recent fields including economic, weather forecasting etc.
The majority of PDEs falls into three types: the hyperbolic equations usefully associated
to the advection problems, the parabolic equations related to the diffusion phenomena and
the elliptic equations used to characterize the steady state of two above equation types.
Most of the research related to the PDEs needs the solution of the equation to carry out
their study. Except in some simple system model or simplified cases, an exact solution of
PDE is difficult to be obtained. Specially, in the case of nonlinear and complex system,
the demand of approximation of analytical solution by the numerical one is critical. But
in other simpler cases, they can be combined together to give a better analysis of system
characteristics. Because of the non-linearity and complexity of PDE governing both the
system model and the adjoint systems in this work, the only way to solve them is using
numerical technique due to the impossibility of finding analytical one. Through several
decades of development, there is a large number of methods allowing to approximate the
solutions of the three types of PDE which can be classified into some main approaches: the
finite-difference approach uses approximation technique to approximate the derivatives,
the method of lines discretizes the PDE in one dimension into a continuous and inter-
dependent set of ordinary differential equations (ODE) which are then solved by simple
numerical method, the finite-element method divides the original equation into a set of
finite elements (smaller parts) and applies the calculus of variations to minimize the error
function. For complex geometry equation with high demand of accuracy, some advanced
methods can be applied such as multi-grid method, finite volumes, spectral method, do-
main decomposition method. In this large number of possible choice of numerical method,
the chosen one not only depends on the type of governing equation but also the num-
ber of physical dimensions, the involved coordinates, and the type of associated boundary
conditions. Among them, the finite difference method is the simplest one and easiest to
implement with a good accuracy. This is the reason why this numerical method is used in
this study.

The choice of finite difference scheme depends on the type of PDE needing to be solved.
Some methods used to approximate the solution of hyperbolic PDE are upwind method of
characteristics, Lax–Friedrichs, Lax–Wendroff, MacCormack, Preissmann and etc. More-
over, a finite difference method can be basically arranged into two mains classes: implicit
and explicit methods. While the explicit one allows to get all unknown values at a point
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on discretized grid directly from its previous value, the implicit one provides only a set
of equations allover the grid which must be solved to get the solutions. But the implicit
schemes have the strong characteristic to be always stable for all step sizes. The stability of
explicit schemes must be guaranteed by some condition like the Courant condition for wave
equation. Both of this two numerical scheme families will be presented and analyzed in
the next sections with their typical representatives: Preissmann scheme and Lax-Wendroff
scheme, respectively for implicit and explicit methods.

In order to make the following development of Preissmann scheme and Lax-Wendroff
scheme be suitable for both the direct system equation and adjoint model, their PDEs
are generalized and described by the following form of general hyperbolic equation:

∂ϑ(x, t)

∂t
+
∂χ(ϑ(x, t), x)

∂x
= %(x, t) (II.39)

where ϑ(x, t) is the system variable, χ(ϑ(x, t), x) is the flow and %(x, t) is the non homo-
geneous source term. This simple equation can be considered as the representation of all
the PDE of system (Σ) and the adjoint equation of λ(x, t) (II.28).
The numerical solution for the ODE which is the governing equation of the adjoint variable
γ(t) (II.29) is much more simple than the partial one. The ordinary differential equation
(ODE) is the differential equation used to describe the relation between the functions of
only one dependent variable ("ordinary" instead of "partial") with their derivatives. It
arises in many contexts of social and also natural domains. The dynamics of various phe-
nomena can be described by this type of equation such as weather modeling reaction rates,
population modeling and the market equilibrium price changes. The exact analytic solution
can be usually derived in the case linear ODE (under the series or integral form) while the
numerical techniques are necessary to approximate the exact solution by a numerical one
in the case of nonlinear ODE. The numerical methods for the ODE can be arranged into
three classes according to its order. The first order numerical schemes contain the family
of Euler method (forward, backward, semi-implicit and exponential). The second order
method provides more accurate schemes: trapezoidal rule, midpoint method, Newmark-
beta method. The last class is the higher order method including exponential integrator,
Runge–Kutta methods and linear multi-step method. The ODE in equation (II.29) is a
first order one and can be reformulated as follows:

dγ(t)

dt
= f(γ(t))

γ(T ) = γT

(II.40)

Among the mentioned numerical scheme for ODE, the midpoint method (see [SM03]) is
chosen to solve equation (II.40) because of its balance between simplicity and accuracy.
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4.b Midpoint scheme

The system (II.40) is discretized on the time line [0, T ] with time step 4t. The time
derivative, in Euler method, is approximated by the finite difference at time t as

dγ(t)

dt
≈ γ(t)− γ(t−4t)

4t (II.41)

Replacing this equation by the derivative at a half time step −4 t/2 gives more accuracy:

dγ
(
t− 4t

2

)
dt

≈ γ(t)− γ(t−4t)
4t (II.42)

and thus
γ(t−4t) ≈ γ(t)−4tf(γ(t−4t/2)) (II.43)

The value of γ at a half backward time step t − 4t/2 is obtained by using the Taylor
expansion:

γ(t−4t/2) ≈ γ(t)− 4t
2

dγ(t)

dt
= γ(t)− 4t

2
f(γ(t)) (II.44)

Plugging this equation to (II.43) results in the final equation allowing to calculate back-
wardly the value γ(t−4t):

γ(t−4t) ≈ γ(t)−4tf
(
γ(t)− 4t

2
f(γ(t))

)
(II.45)

By using the notation γ(i) to shorten γ(t+ i4 t), equation (II.45) is rewritten as follow:

γ(i− 1) ≈ γ(i)−4tf
(
γ(i)− 4t

2
f(γ(i))

)
(II.46)

0 tTii− 1

Figure II.1: Stencil of midpoint scheme

From the final time condition at time T (being equal to γT ) denoted by the solid circle,
the value of γ(t) is calculated backwardly from the right of time line to the left. Figure
II.1 presents the stencil of this scheme. Through its development, the term "midpoint" in
the name refers to the mediate evaluation of function value at position t−4t/2, which is
located between the current point t and the point needing to be evaluated t − 4t. This
one step method has the local error of order 2 and converges faster than the Euler method
with a small value of 4t.
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4.c Preissmann scheme
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Figure II.2: Stencil of forward Preissmann scheme

Being introduced in 1960s by Preissmann [Pre61], this implicit scheme has been widely used
to numerically discretize the one-dimension unsteady flows and overland flow because of
its simplicity and effectiveness. Moreover, this weighted four-point implicit finite difference
can be extended to the case of general hyperbolic equation (II.39). The main idea of this
scheme is that a the value of variable ϑ(x, t) and its partial derivative with respect to x
and t is approximated by four discretization points in space and time with suitable and
chosen weighting factors α, β as presented in equation (II.47).

∂ϑ(x, t)

∂x
= α

ϑi+1
j+1 − ϑij+1

4x + (1− α)
ϑi+1
j − ϑij
4x

∂ϑ(x, t)

∂t
= β

ϑi+1
j+1 − ϑi+1

j

4t + (1− β)
ϑij+1 − ϑij
4t

ϑ(x, t) = α
ϑi+1
j+1 + ϑij+1

2
+ (1− α)

ϑi+1
j + ϑij

2

(II.47)

where 4t= time step; 4x= space step; α, β= weighting factors with 0 ≤ α, β ≤ 1;
ϑij = ϑ(x + i 4 x, t + j 4 t). Figure II.2 describes the stencil of Preissmann forward
difference. The initial and boundary conditions are fixed at the limits of the x− t plan and
depicted by the solid circle at two lines x = 0 ∀t ∈ [0, T ] and t = 0 ∀x ∈ [0, L]. From these
initial values, the system is simulated forward in space then forward in time. The known
values on the x − t grid are presented by the solid circle while the white circle represents
the unknown one, value of variable ϑ(x, t) at position (xi+1, tn+1). It will be calculated
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based on its values at three known neighbors ϑij, ϑij+1 and ϑi+1
j . By replacing the value of

ϑ(x, t) and its partial derivatives in equation (II.47) into the general system, an implicit
equation of variable ϑi+1

j+1 can be obtained. This nonlinear equation is then solved by the
iterative Newton–Raphson method to get the solution of ϑ(x, t) at grid point (xi+1, tn+1).
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Figure II.3: Stencil of backward Preissmann scheme

But one can notice that this scheme is used for forward simulation only. Due two its
boundary and final time condition, the adjoint equation of variable λ(x, t) must be solved
numerically backwardly in time and space. This mean the above Preissmann scheme has
to been modified to adapt to this situation. The stencil of backward Preissmann scheme
is given in Figure II.3. And the equations of backward Preissmann are as follow:

∂ϑ(x, t)

∂x
= α

ϑij − ϑi−1j

4x + (1− α)
ϑij−1 − ϑi−1j−1

4x
∂ϑ(x, t)

∂t
= β

ϑij−1 − ϑi−1j−1

4t + (1− β)
ϑij − ϑij−1
4t

ϑ(x, t) = α
ϑij + ϑi−1j

2
+ (1− α)

ϑij−1 + ϑi−1j−1

2

(II.48)

More details and discussion about this implicit backward scheme can be found in the stud-
ies of M. T. Shamaa et al [SK11] and F. Liu et al. [LFB92]. Another important reference
for the Preissmann scheme is the book of J. Cunge et al. [CHV80].
Through the stability analysis, this scheme is always stable for any time step 4t if co-
efficient α is chosen in the interval [0.5, 1]. A good accuracy of approximation can be
achieved if the value of α belongs to the specified interval [0.6, 0.75] according to study of
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H. Chanson [Cha04]. This characteristic allows to use a large time step 4t without any
stability problem. This is a good point because the iterative Newton–Raphson method for
each equation at all the grid mesh is time consuming (one of its largest disadvantage) with
large number of space and time discretization points.

4.d Lax-Wendroff scheme

Instead of the implicit Preissmann scheme, which was used in the beginning of the work of
this thesis, the explicit Lax-Wendroff scheme is employed to overcome the disadvantages
of the firstly used one. Being presented in 1960 by P.D. Lax and B. Wendroff [LW60], this
conservative scheme is one of the most used numerical method for solving the systems of
one dimension hyperbolic conservation laws with second order of accuracy in both space
and time. There are various ways to find the formula of this scheme. The Taylor series
expansion is among of them. Because the dynamics of direct system are well-defined by
fixing the initial condition at time t = 0 and boundary condition at position x = 0, the
system equation will be solved forward in time and space. On the contrary, the adjoint
equation will be simulated backward in both time and space due to its conditions are
specified at the limits of x−t plane. In the case of forward simulation, the Taylor expansion
in time of ϑ(x, t) is written as

ϑ(x, t+4t) ≈ ϑ(x, t) +4t∂ϑ
∂t

+
4t2

2

∂2ϑ

∂t2
+O(4t2) (II.49)

The first and second order partial derivative with respect to t of ϕ(x, t) can be found and
replaced by the space derivatives by taking the time derivative of both left and right part
of equation (II.39) and changing the derivative order.

∂ϑ

∂t
= −∂χ

∂x
+ %

∂2ϑ

∂t2
= −

∂
∂χ

∂x
∂t

+
∂%

∂t
= −

∂
∂χ

∂ϑ
∂x

[
− ∂χ

∂x
+ %

]
− ∂χ

∂ϕ

[
− ∂2χ

∂x2
+
∂%

∂x

]
+
∂%

∂t

(II.50)

After neglecting the higher order term O(4t2), the Taylor expansion can be rewritten by
inserting the terms in equation (II.50) into equation (II.49). Its final form can be found in
equation (II.51)

ϑ(x, t+4t) ≈ ϑ(x, t)+4t
[
−∂χ
∂x

+%

]
+
4t2

2

{
−
∂
∂χ

∂ϕ

∂x

[
−∂χ
∂x

+%

]
−∂χ
∂ϑ

[
−∂

2χ

∂x2
+
∂%

∂x

]
+
∂%

∂t

}
(II.51)
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In previous equation, the time and space derivatives are replaced by their central finite dif-
ference approximations to get the second accuracy order to get the computational equation
of Lax-Wenroff scheme for each point on the discretization mesh, as in equation(II.52).

ϑ(i, n+ 1) ≈ ϑ(i, n) +4t
[
− χ(i+ 1, n)− χ(i− 1, n)

24 x
+ %(i, n)

]

+
4t2

2

{
− ς(i+ 1, n)− ς(i− 1, n)

24 x

[
− χ(i+ 1, n)− χ(i− 1, n)

24 x
+ %(i, n)

]

− ς(i, n)

[
− χ(i+ 1, n)− 2χ(i, n) + χ(i− 1, n)

4x2 +
%(i+ 1, n)− %(i− 1, n)

24 x

]

+
%(i, n+ 1)− %(i, n− 1)

24 t

}
(II.52)

The partial derivative of flow χ with respect to the variable ϑ is denoted by ς. The notation
ϑ(x+ i4x, t+n4 t) is shortened to ϑ(i, j). The notations of other terms are used with the
same meaning. The value of ϑ at the next time step are approximated from three values
of its neighbor at current time. The stencil of this scheme is depicted in figure II.4 where
the initial and boundary conditions along with the 3 known points are presented by the
solid circles. The value of ϑ(i, j + 1) needs to be updated is the white bigger one.
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Figure II.4: Stencil of forward Lax-Wendroff scheme

Since the adjoint system in equation (II.28) of variable λ(x, t) is conjugated with the
direct one, the similar approach can be used for discretization. Again, it must be simulated
backwardly. Consequently, the Taylor series expansion is modified to adapt to this new
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situation:
ϑ(x, t−4t) ≈ ϑ(x, t)−4t∂ϑ

∂t
+
4t2

2

∂2ϑ

∂t2
+O(4t2) (II.53)

Through the same previous technique for direct system, the final computational of back-
ward Lax-Wendroff is given by equation (II.54) with its associated stencil depicted in figure
II.5.

ϑ(i, n− 1) ≈ ϑ(i, n)−4t
[
− χ(i+ 1, n)− χ(i− 1, n)

24 x
+ %(i, n)

]

+
4t2

2

{
− ς(i+ 1, n)− ς(i− 1, n)

24 x

[
− χ(i+ 1, n)− χ(i− 1, n)

24 x
+ %(i, n)

]

− ς(i, n)

[
− χ(i+ 1, n)− 2χ(i, n) + χ(i− 1, n)

4x2 +
%(i+ 1, n)− %(i− 1, n)

24 x

]

+
%(i, n+ 1)− %(i, n− 1)

24 t

}
(II.54)
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Figure II.5: Stencil of backward Lax-Wendroff scheme

The von Neumann stability analysis shows that the linear stability of this second order
accuracy in both time and space is guaranteed by the Courant-Friedrichs-Lewy condition
[CFL67], which is given by

| ϑmax |
4t
4x 6 Cmax (II.55)

where the coefficient Cmax for this scheme is 1.
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4.e Discrete gradients and remarks

4.e.1 Discrete gradients

Because both of the switched direct systems and adjoint systems are discretized by the
previous numerical methods on the space and time grid, in order to be solved numerically,
the continuous gradients of cost functional presented in equations (II.32), (II.30) and (II.31)
must be consequently discretized for each discrete spatial point xj with ∀xj = j4x where
0 ≤ j ≤ M with 4x = L/M , M being the number of point. As a result, the gradient of
initial state becomes

∇Lui0(xj) = −λ(xj, 0) + ε1
[
ui0(xj)− ui0F (xj)

]
(II.56)

However, the gradients of parameter αi are not identical on the spatial grid. Their value
at the limits (the beginning and the end of section [0, L] in equations (II.57) and (II.58))
are different from the interior of section [0, L], in equation (II.59).

∇Lαi(xj) = − 1

L

T∫
0

[
λ

∂f

∂αi(x)

]∣∣∣∣∣
x=xj

dt with xj = 0 (II.57)

∇Lαi(xj) =
1

L

T∫
0

[
λ

∂f

∂αi(x)

]∣∣∣∣∣
x=xj

dt with xj = L (II.58)

∇Lαi(xj) = −
T∫

0

∂f

∂αi(x)

∂λ

∂x

∣∣∣∣∣
x=xj

dt+ ε2

[
αi(x)− αiF (x)

]
(II.59)

with ∀xj = j 4 x where 1 ≤ j ≤M − 1

On the other hand, the gradients of parameter p are the same with equation (II.35). They
do not change the form because of their independence with x.

4.e.2 Remarks

The distributed parameters and state are discretized on the spatial domain into M + 1

sections. As previously recalled, the boundary condition of adjoint equation is fixed to
zero or λ(L, t) = 0. This null value of λ(x, t) at position L for all time domain leads to

∇Lαi(L) = 0
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and
∇Lui0(xj) = ε1

[
ui0(L)− ui0F (L)

]
The gradients of αi(L) are equal to zero which prevents the algorithm from estimating the
optimal value of αi(L). For the same reason, the gradient of cost functional with respect
the last value of initial condition, ∇Lui0(L) depends only on first guessed ui0F (L) value and
calibration term ε1. As a result, this gradient is small when being compared to other
positions that causes difficulties for the operation of optimization process, specially the
gradient-based methods. This issue is caused by the use of the Gaussian approximation
of Dirac function as a continuous measurement function in equation (II.3). The present
formulation based on the approximated Dirac always gives the same boundary condition
for PDE of λ(x, t). This condition does not depend on the position of measurement. Or
there is no sensitivity of the gradients with the measurement at the end of spatial domain,
umeasj (L, t). By replacing this approximation with the real Dirac function or the discrete
measurements, the sensitivity of λ(L, t) with the measurements can be recovered but the
present formulation of the objective function J and adjoint equations must be changed to
adapt to the new sensor operator. The cost function J is thus separately defined for each
case of measurement at the interior locations or at the limit point L of the spatial domain
[0, L]. For example, if there are measurements at position L denote umeasj (L, t), the form
of cost function is written as

J =
1

2

T∫
0

{
u(L, t)− umeasj (xj, t)

}2

dt (II.60)

All the calibration terms and first guessed values are neglected for simplicity without any
loss of generality. By using the same calculus of variations approach, the dynamics of
multiplier λ(x, t) satisfy the equation below

−∂λ
∂t
− ∂f

∂u

∂λ

∂x
− λ
[
∂g1
∂u
− ϕa

∂g1
∂u

+ ϕa
∂g2
∂u
− g1

∂ϕa
∂u

+ g2
∂ϕa
∂u

]

+ γδA(x)

[
h1
∂ϕa
∂u
− h2

∂ϕa
∂u

]
= 0

(II.61)

The equation of second Lagrangian multiplier γ(t) and the gradient of initial state and
parameters remain unchanged expect the boundary condition of λ(x, t). Its value is directly
equal to the discrepancies between simulated and measured values

λ(L, t) = u(L, t)− umeasj (L, t)

which allows to have the effect of the last measurement of the domain on the adjoint values.
The observation information from the boundary condition is propagated allover the grid
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of λ(x, t) due to the backward simulation that brings the sensitivity to all the positions
before the last position L.
The present work only focuses on the application of continuous δA to investigate the adjoint
based estimation method, and the use of discrete measurement will be an open topic
for our future studies. The sensor locations are limited in the interior section of spatial
domain [0, L] and the corresponding discrete position for state and distributed parameter
estimation are reduced to the set {xj = j 4 x} where 2 ≤ j ≤M − 1.

5 Optimization algorithm

5.a Introduction

In order to select the most appropriate algorithm to solve the mentioned optimization is-
sue, it is worth classifying them according to their characteristics. This is an important
and necessary step because a particular type of problem has a tailored algorithm. There
are many points of view for classification. Depending on the variables set which can be
discrete or continuous, an optimization problem can be a discrete or continuous one which
need different algorithms. The smoothness of the model will provide useful information for
optimization solver because the function value at one point can be deduced from its neigh-
bors. The continuous optimization issue is thus easier to solve than the discrete one. The
optimization problem can be arranged by considering its number of objective functions.
Most of them have only one objective. There are also optimization issues with none or
many objectives. In the first case, it plays the role of a feasibility problem where the op-
timal solution will satisfy only the constraints. The multi-objective optimization problem
is also a common problem in many domains including economics, engineering. The found
solutions must satisfy all the objectives and the constraints. To reduce the complexity
of optimizing process, some objectives functions are transformed into constraints or use
weighted combinations to connect the objectives. Beside the objective function, the opti-
mization algorithm must deal also with the constraints on the optimizing variable if they
exist. This is called as constrained optimization problems. The constraints which describe
the relationships between the variable, can be simple bounds (constrained optimization),
linear functions (linear constraint programming) or maybe nonlinear functions (nonlinear
constraint programming). The unconstrained optimization issues is not as frequent as the
constrained one because it usually arises when the constraints are transformed to penalties
in the objective function. The last framework to classify an optimization problem is the
deterministic or probabilistic (stochastic) point of view. The deterministic optimization
means that the models used for optimization are fully determined by the values of ini-
tial condition and parameters and no noised or disturbance present in the system or the
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data contains some information about the future. In contrary, stochastic optimization con-
cerned the case when the data possess some inherent randomness or uncertainties. Some
advanced algorithms can be used to explicitly incorporate the uncertainty such as robust
optimization or stochastic programming.

By comparing with previous analysis, the optimal estimation considered hereby can be
put to the class of nonlinear continuous constrained deterministic optimization problem
with one objective function. Augmented Lagrangian method is a typical method that can
be used to solve this problem. The idea behind this method is that the original constrained
issue is replaced by an unconstrained one with only bound constraints through using of
the Lagrangian multiplier. It is also called the method of multipliers. The added virtual
variable is iteratively updated along with the augmented Lagrangian functional in a suc-
cessive minimization process. There are several issues involved in solving the optimization
of new objective functional. One of the important key to be considered is whether to use
gradient-free optimization approach or gradient-based approach. Both of them have its
own advantages and disadvantages. The choice between them is problem-dependent. One
of the strengths of gradient oriented algorithm is its fast convergence property compared
to other methods thanks to the exploitation of gradients which give the direction to the
optimal solution. However, this optimization approach contains also some weaknesses.
It usually gives the a optimal local solution rather than the global one. It is also time
consuming while developing the code to calculate the gradient of a complicated system.
Moreover, the code and calculation must be changed to fit to new configuration if there is
any change. This approach is also very sensitive to the uncertainty or the noisy data and
disturbances added into the cost function. The gradient can be calculated by several way
including finite-different method or through adjoint state.

In this study, after the step of adjoint based gradient method, the gradient of cost func-
tional with respect to the state and parameters are found and will be served as the inputs
of the optimization algorithm. While the gradients of objective functional with respect to
the state and parameters are found, the remaining question is how to use them correctly.
The gradient of the cost functional which belongs to the class of twice continuously dif-
ferentiable functional is perpendicular to the contour of this functional and represents the
direction of maximal increase. This gives the idea that the minimum (maybe local) of this
functional can be found if one goes in the opposite direction compared to the gradient.
This is the basic idea of the steepest descent method which is an important subclass of the
direct search algorithm, a more general optimization approach which has been developed
over several decades for constrained optimization. In a wider situation, the direct search,
from an initial estimate of optimum point, generates a sequence of the next estimate points
by seeking directly from each previous point in the descent directions which ensures the
next function value will be lower than the previous one. The stopping condition usually
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concerns the norm of first necessary condition of optimality (null value of gradient vector)
or norm of two consecutive function values. Depending on the way to choose the descent
direction, there are many sub classes of direct search method mainly including the first
order line search descent methods and the second order ones. The first order term in its
name reflects the first partial derivative of function value which is used to determine the
search direction at each iteration. The mentioned steepest descent method belongs to the
first order algorithm with the conjugate gradient method. The modified Newton method
and Quasi-Newton method which belong to the second order class, use the Hessian matrix,
second order partial derivative to improve the convergence.

Two of these methods, the steepest descent and Quasi-Newton which represent the char-
acteristics of their classes will be presented in the next subsections. Both of them have
been used to solve the optimization problems presented in the next chapter of estimation
application. Their advantages and disadvantages are also discussed.

5.b Steepest descent method

At the beginning of this work, the optimization problem was solved by using the steepest
descent method, one of the simplest and most famous first order line search method, pro-
posed by Cauchy in 1847. This method is used in some publications [NGB14]; [NGB15a];
[NGB15b]. The search directions to update the optimal point from the initial guessed one
are calculated based on the gradient of objective functional with respect to the estimated
state and parameters, which are presented in the calculation of adjoint method in section
3.c. The general structure of a line search descent method is firstly considered and it is
given in details in Algorithm 1 where the notations vector π contains the state and param-
eters needing to be estimated and ∇L denotes the gradient vector of L. As the discussion
in the beginning of subsection 5, there are two important points in the general algorithm
of gradient descent: how to choose the gradient based descent direction at each iteration
ui and how to perform the line search technique or solve the sub-optimization problem
(II.62).
The method of steepest descent uses the negative value of normalized gradient as the
search direction. The expression of this direction is derived via using the Schwartz’s equal-
ity. At the point π, by supposing that there exists a unit descent direction u such that the
directional derivative

dL(π;u)
∣∣
η

=
dΥ(0)

dη
= ∇TL(π)u (II.64)

where the function Υ is defined as Υ(η) = L(π + ηu). Via the Schwartz’s equality:

∇TL(π)u ≥ −‖∇TL(π)‖‖u‖ = −‖∇TL(π)‖ (II.65)
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Goal The optimal values of π∗.
• STOP = false.
• Define the positive tolerances ξ1, ξ2 and ξ3.
• Set iteration variable i = 1.
while STOP is false do
• Simulate forwardly in time and in space the direct systems.
• Simulate backwardly in time and in space the adjoint models.
• Select descent direction ui based on gradient ∇L(πi−1).
• Calculate the descent step at iteration i ηi by perform a one-dimensional line
search in direction ui. Or solve the sub-optimization problem of new function Υ

as follows:
min
η

Υ(η) = min
η
L(πi−1 + ηui) (II.62)

The solution of the optimization problem (II.62) is denoted ηi

• Update the new value of πi+1 in direction ui with step length ηi

πi = πi−1 + ηiui (II.63)

• if
∥∥∥πi − πi−1∥∥∥ ≤ ξ1 or

∥∥∥∇L(πi−1)
∥∥∥ ≤ ξ2 or

∥∥∥J (πi)− J (πi−1)
∥∥∥ ≤ ξ3. then

• STOP = true.
else
• Set i = i+ 1.

end
end

Algorithm 1: General gradient descent method algorithm

where −‖∇TL(π)‖ is the least value. By choosing the unit direction u =
−∇TL(π)

‖∇TL(π)‖ , the
directional derivative at u satisfies the below equality:

dΥ(0)

dη
= −∇TL(π)

−∇TL(π)

‖∇TL(π)‖ = −‖∇TL(π)‖ (II.66)

As a result, at the iteration i, the chosen ui =
−∇TL(πi−1)

‖∇TL(πi−1)‖ is the normalized direction of

steepest descent used to updated the current value of π.
The step size ηi is the optimal solution of (II.62) which allows to minimize the cost func-
tional in the chosen descent direction. In fact, the step size ηi can be selected to be
constant for all iteration i, but the convergence will be very slow with a small ηi or the
optimization does not converge with a large one. At each iteration, the best value of step
size that can be achieved is the exact solution of the sub-optimization issue (II.62). But it
is usually not possible to obtain this solution or it is time consuming due to the fact that
sub-optimization issue must be solved for all iteration. Moreover, an exact optimal values
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of step size are often not more efficient than its approximated value via backtracking line
search, which is presented as follows.

Goal The values of ηi.
• STOPbacktracking = false.
• Define maximum candidate step size value ηi0 and parameters τ ∈ (0, 1) and
σ ∈ (0, 1).
• Set inner iteration variable j = 0.
while STOPbacktracking is false do
• Set $ = −σ‖∇TL(πi−1)‖Tui
• Calculate the Armijo–Goldstein, stop condition
Ξj = J (πi−1)− J (πi−1 + ηiju

i)−$ηij.
• if Ξj ≥ 0 then
• Set j = j + 1.
• Set ηij = τηij.

else
• STOPbacktracking = true.

end
end

Algorithm 2: Backtracking line search method

Based on the Armijo–Goldstein condition, the backtracking line search allows to de-
termine the maximal step size or how far one can move along the chosen search direction.
From the beginning positive maximal candidate step size ηi0 (at iteration i of algorithm 1),
this method decreases iteratively the candidate ηi0 until getting an expected decrease of
the objective functional. This is the reason while it is call as "backtracking". By defining
new search control parameters τ ∈ (0, 1) and σ ∈ (0, 1), the Algorithm 2 describes
how to determine the step size ηi. This is a very simple and quite effective inexact line
search method. The constant τ can be interpreted as the fraction used to prevent long
steps relative to the decrease in J . In another work, the present of τ ensures that the
achieved reduction of J will be at least the amount of τ times the reduction promised by
the Taylor approximation of J at πi. Typical values of τ and σ are both 0.5 which are
presented in the study of Armijo [Arm66].

5.c Newton and Quasi-Newton method

As discussed previously, the steepest descent method, despite its simplicity, is one of the
slowest methods with very long convergence time. While in the opposite extreme, the pure
Newton and Quasi-Newton method give a good convergence characteristics but require
more computational effort and a complex formation. Being also iterative methods, both of
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original and modified Newton methods consist of the iteration to update the next values
of variables from current values by seeking along the chosen direction with an appropriate
step size. The only different thing compared with the first order method is the direction of
descent, second order gradient based direction. However, while the pure Newton method
relies on the Hessian matrix of function at each iteration, the Quasi-Newton one tries to
approximate this matrix by various methods. Due to almost Quasi Newton method based
on the basis idea of the original one, it is worth briefly presenting it and its variation here.

The algorithm of Newton method can be shared with the one of steepest descent method
but the descent direction at iteration i is ui = −H−1(L(πi−1))∇L(πi−1) where H(L(πi−1))

is the second-order functional derivative of L at point πi−1. The line search method to
calculate the step size is the same as in the preceding descent method. Some analysis
of pure Newton method including local convergence and global convergence shows its ad-
vantages and reduce the disadvantages. When starting close enough to a non-singular
minimum, the original Newton method converges super-linearly with order at least two.
If the algorithm begin at a point which is very far from the local minimum, the Hessian
matrix is possibly singular, as a result, its inverse does not exist that breaks down the
algorithm. Moreover, in some cases, such as the complex functional L as in this study, the
exact formulation of Hessian matrix is usually impossible to obtain. The Newton direction
as presented previously may not be the descent direction that means the update function
value at iteration i is larger than the function value at i − 1 because the Hessian is not
positive definite at this point. Moreover, this method is attracted by the minimum as
much as the attraction of maximum, therefore it just tries to find the solution of equation
∇L = 0. To overcome these drawback of this method, there are several modified versions
to convert the original Newton one into a true gradient descent method by manipulating on
the Newton direction such as replacing the Newton direction by the steepest descent one
whenever it is not defined (singular Hessian matrix) or making diagonal modification on
the non-positive definite Hessian matrix (modified Cholesky factorization and trust region
method whose details can be found in [Ber99]). These variations of Newton method can
not guarantee the fast convergence at early iteration as the pure method by provide an
more reliable algorithm with asymptotic rate of convergence. But they always require both
the computation of both gradient and Hessian matrix which demand a lot of computational
effort for a large and complex optimization problem. This obstacle can be dealt with by
the approach proposed in the Quasi-Newton methods.

The Quasi-Newton algorithm is basically the same algorithm of gradient descent 1 with
the same approaches to find the step size but with a different philosophy to choose the
searching direction as presented under the following form:

πi+1 = πi + ηiui (II.67)
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where the Quasi-Newton direction ui holds

ui = −Di∇L(πi) (II.68)

The term Di, a position definite matrix, represents an approximation of Hessian matrix of
Newton direction. It is adjusted to adapt to the situation of each iteration step based on
the iteration increment πiinc and gradient increment ∇Liinc of two successive iterates. Their
definitions are

πiinc = πi+1 − πi
∇Liinc = ∇Li+1 −∇Li (II.69)

which allows to get the approximate equality

∇Liinc ≈ H(Li+1)πiinc (II.70)

Extending this equation to the case of n iteration increments π0
inc, . . . , π

n−1
inc corresponding

to n gradient increments ∇L0
inc, . . . ,∇Ln−1inc allows to get the approximation of the inverse

Hessian matrix at iteration n as

H−1(Ln) ≈
[
π0
inc, . . . , π

n−1
inc

][
∇L0

inc, . . . ,∇Ln−1inc

]−1 (II.71)

This approximation is exact in the case of quadratic cost function. In other cases, more
sophisticated approaches are needed to progressively tend to the inverse Hessian. Some
classes of Quasi-Newton method use the equation

Di+1 = Di +
πiincπ

i
inc

T

πiinc
T∇Liinc

− D
iLiincLiinc

TDi
Liinc

TDiLiinc
+ κς iνiνi

T (II.72)

to update the approximation matrix Di+1 from its preceding value and vector of iteration
and gradient increments. The first guessed value of Quasi-Newton direction D0 must be a
positive definite matrix. In equation (II.72), the intermediate vectors ς i, νi are defined as

ς i = Liinc
TDiLiinc

νi =
πiinc

πiinc
T∇Liinc

− D
iLiinc
ς i

(II.73)

The value of real scalar coefficient κ is chosen in the interval [0, 1] and varies between
the different methods. The first Quasi-Newton method, Davidon-Fletcher-Powell method,
uses the null value of κ while the well-known Broyden–Fletcher–Goldfarb–Shanno (BFGS)
algorithm chooses κ = 1. Thank to their choice of update direction the Quasi-Newton
methods reaches a very fast convergence velocity near the local minimum and this prop-
erty does not depend on the choice of D0. It is also not sensitive to the inaccuracy of the
line search method that allows to manipulate some relaxation of line search to increase the
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algorithm speed without having affect on the optimization accuracy. Beside these strong
points, they also have some disadvantages including the high computational requirement
(function, gradient evaluation, operation to calculate the matrix Di) per iteration and the
high memory demand to store the calculated vector of iteration and gradient increments
also the matrix of Di especially whenever the size of optimization is large.

The steepest descent method previously described in 5.b has been replaced by the BFGS
method whose basic ideas are presented in this subsection. The implementation of BFGS
in nonlinear and non convex optimization like the one in this thesis is pretty complicated.
Moreover, because the intention of this work is to propose an estimation methodology for
state and parameter, the BFGS algorithm is therefore used via optimization tool called
fmincon in Matlab. The weak form of gradient of cost functional with respect to the
initial state and parameters ∇L is provided to this tool as well. Some linear constraints
are also used to prevent the estimated variables for both state and parameters to become
negative and be out of the limits describing the physical meaning. One can notice that the
fmincon tool has itself a finite difference method to calculate the gradient of estimated
variable, which means that it is not obligatory to provide it via adjoint method in some
simple estimation problems. In the numerical examples that will be presented in the next
chapter, due to the estimation size and the complexity of considered nonlinear hyperbolic
models, the optimization problem converges with long estimation time or does not converge
without feeding gradients.

6 Conclusion

In this chapter, an introduction of the methodology of adjoint based optimal estimation
method for a class of (switched) hyperbolic systems whose dynamics are described by a
PDE coupled with an ODE has been proposed. The initial condition of PDE along with
some parameters in both ODE and PDE are supposed to be unknown and needing to be
identified. The system dynamics can also included switching characteristics in the source
term. A smooth activation approach is then employed to add the smoothness to the system
equation. The optimal estimation is considered as an optimization problem by defining a
cost function which is basically made of the least square gaps between measurement and
simulated values. By optimizing this function, the found solutions are the desired state
and parameters. The presented concave nonlinear constrained optimization is transformed
to the unconstrained one by using the Lagrangian multiplier technique. The calculus of
variations is a typical tool to solve the new optimization problem of augmented cost func-
tional. By applying the first variation calculation on the functional and using the weak
optimality condition, the gradient of objective functional with respect to the initial state
and parameters can be obtained depending on the intermediate adjoint models.
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Three discretization schemes, the midpoint method for solving the ODE, implicit Preiss-
mann and Lax-Wendroff schemes (both forward and backward simulation) for PDE are
presented after a short general presentation of numerical methods for differential equation.
The continuous gradients are also discretized according to the discretization scheme to
get the gradients at each discrete point of spatial domain. These gradients are the inputs
of the optimization algorithms, and play the role as an important factor to compute the
direction for optimum seeking. The details direction calculation with the algorithms are
then discussed to give more insight about the steepest descent and Quasi-Newton methods.

To summarize, this chapter presents one of the original points of the first contribution
of the thesis, the adjoint-based estimation method for state and parameters in a pretty
general case of hyperbolic system in infinite dimensional way, and to the best of our knowl-
edge,there are very few researches realized with such a spirit.

At this point, all the necessary tools to solve the estimation problem, have been discussed.
Their applications in some concrete issues will be clarified in the next chapter.



III | Estimation application

Based on the estimation methodology developed in the previous chapter, the present
one proposes its application to estimation problems in two types of physical exam-

ples, illustrative of hyperbolic systems: overland flow and traffic flow. The chapter is
organized from cases with synthetic data to cases with real data, and from simpler es-
timation problems to more complex ones, following progresses and publications realized
along the thesis. The chapter starts with the traffic flow case, on the basis of classical
Lighthill–Whitham–Richards model, for which first (constant) parameters, and then state
and (constant) parameters, can be estimated. The model is subsequently modified by addi-
tion of a relief route at some point along the main road, resulting in a switched hyperbolic
system for which the estimation method is applied. The second part of the chapter deals
with the overland flow example, starting with a smooth (non switched) model derived from
classical Saint-Venant equations, and for which only initial conditions are first estimated.
Then the Manning roughness coefficient is estimated when considered as a distributed one,
with the help of Radial Basic Function Network approximation. The estimation problem
is subsequently extended to the case of both state and distributed coefficient estimation
for the same model. Here the parameters needing to be estimated only appear in the flow
function and not in the source term. An extension to identification of parameters also in
the source term is then proposed (here infiltration), turning the model into a switched one
(due to the so-called Green-Ampt model for infiltration).
The next part of the chapter presents estimation results obtained with real measurements,
here limited to the case of overland flow for which data of water discharges could be ob-
tained from LTHE lab for the Tondi Kiboro catchment (Sahel). The first application is
to estimate a constant Manning coefficient of the overland flow, with the infiltration being
modeled by Green-Ampt formula. This application is then extended to the case of simul-
taneous estimation of Manning coefficient and infiltration parameters, when considering
here the empirical Horton model.
The robustness of the proposed adjoint-based estimation method with different configu-
ration of real values of initial state and parameters and different initialization value of
optimization algorithm (the beginning points where the algorithm starts) is tested in the
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next section. Moreover, at the end of this section, a small section is presented to give a
comparison about the effectiveness of optimization algorithm (given by fmincon tool of
Matlab) in two cases with adjoint-based gradient and without adjoint gradient.
Finally, the aim of the last section is to provide an example of state and distributed pa-
rameter estimation with the noisy measurements. A potential solution to deal with the
presence of noise in measurement is also provided.

Notice that since the calculation details have been provided in chapter II for the general
case, they are omitted here, except for some specific situations.

1 Traffic flow

1.a Overview of free traffic flow

The traffic phenomena, from the very beginning of traffic flow modeling in the 1920s up
to now, have been described and analyzed mainly via 3 modeling approaches, which are
classified according to the scale of observation: microscopic scale, mesoscopic scale and
macroscopic scale. These scales can be visually compared with the views of a map at a
high altitude above the ground where the traffic flow takes place on. The macroscopic scale
corresponds to the case when an observer stays at one thousand meters above the region of
highway. The possible observable quantities are the average velocity, density of a group of
vehicles which propagates like a wave. When decreasing the altitude to a hundred meters,
or "zoom" in more details, the observer can see each individual vehicle but instead of exact
measurement of its position or velocity, the probability of its appearance on a position and
at a moment is a more reasonable quality to measure. Finally, the microscopic scale is to
see each vehicle at a low altitude which allows to characterize its dynamics easily. More
precisely, the microscopic model of traffic flow analysis takes in account all the individual
vehicles circulating on highway as a particle of the whole traffic system and the dynamics of
each one is individually described by an ordinary differential equation. Some of its typical
sub-model families are car-following family including continuous time models (Wiedemann
model, intelligent driver model, Gipps model) and integer variable models (cellular au-
tomaton family including Biham–Middleton–Levine model, Nagel–Schreckenberg model).
The so-called mesoscopic scale, or kinetic scale, observes the flow of vehicle under the sta-
tistical point of view in order to find the probability distribution of appearance of a vehicle
in space and time. As a result, the integro-differential equations are used to describe the
dynamics of the traffic system in this case. The idea of the third analysis approach is
to use some physical variables to represent the characteristics of a set of vehicles on the
highway, such as average velocity and density. The relations between these variables are
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thus illustrated by partial differential equations. One of its typical model is the Lighthill-
Whitham-Richards (LWR) model [Pap98]. In some large and complicated traffic systems,
these three approaches can be combined together to get hybrid models.

Thanks to its advantages, the LWR model plays a central role in many studies associ-
ated with traffic dynamics and control. Some of its strong points can be cited here are
its simplicity for understanding and its low calculation demand, as compared to the other
two models, having much fewer parameters. Moreover, the formation and the propagation
of vehicle flow is well reproduced in this kinetic wave model. It is constructed, firstly by
Lighthill and Whitham in 1955 [LW55] and by Richards in 1956 [Ric56], at a macroscopic
level and in a deterministic way, used to describe the dynamics of density of a vehicle’s set
through time and space. By denoting the density of vehicle per space unit by ρ(x, t) and
the average velocity v(v, t) with (x, t) ∈ R×R+, and considering a part of highway limited
by two positions x1 and x2 in a time interval [t1, t2], the number of vehicles remaining on
the interval [x1, x2], as in Fig.III.1, of highway is given by

d

dt

x2∫
x1

ρ(x, t)dx = ρ(x1, t)v(x1, t)− ρ(x2, t)v(x2, t) (III.1)

By taking the time integral in [t1, t2] of equation (III.1), the following equality holds:

4x

ρ(x, t)ρ(x1, t)v(x1, t) ρ(x2, t)v(x2, t)

x1 x2

Figure III.1: Interval [x1, x2] of highway.

x2∫
x1

t2∫
t1

∂ρ(x, t)

∂t
dtdx = −

x2∫
x1

t2∫
t1

∂
[
ρ(x, t)v(x, t)

]
∂x

dtdx (III.2)

and after removing double integration, the equation of traffic flow is as follows:

∂ρ(x, t)

∂t
+
∂
[
ρ(x, t)v(x, t)

]
∂x

= 0 (III.3)
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where ρ(x, t) is the density of vehicles (vehicle/km); v(x, t) is the average velocity of
vehicles (km/hour). This free traffic flow is thus described by a one dimensional, time-
varying and non-linear hyperbolic PDE. The basic assumption of this model is that velocity
depends on vehicle density. The next step is thus to choose the relation between the velocity
and density of a given group of vehicles at position x. Among some deterministic models
like Greenshields model, Greenberg model, Underwood model etc., the first and simplest
one, Greenshields model [GCM+35] is exploited to characterize this relation. Its idea is
depicted in Fig.III.2 where the straight line describes the linear speed-density liaison. This

0 ρ(x, t)0

v(x, t)

vmax

ρmax

Figure III.2: Relation density-velocity of Greenshields model.

means that when density becomes zero, free highway, the vehicles can get the maximal
velocity v = vmax. In contrast, the vehicles can not move v = 0 if the density gets its
maximal value ρ = ρmax, in the tailback moment.

v(x, t) = vmax

[
1− ρ(x, t)

ρmax

]
(III.4)

The final equation of traffic flow can be established by inserting equation (III.4) into
equation (III.3) and given by

∂ρ(x, t)

∂t
+ vmax

[
1− 2ρ(x, t)

ρmax

]
∂ρ(x, t)

∂x
= 0

ρ(x, 0) = ρi0(x) and ρ(0, t) = ρb0(t)

(III.5)

where ρi0(x) and ρb0(t) are respectively the initial and boundary conditions of vehicles
density ρ(x, t). Being affected by the characteristics of vehicles and highway, like vehicles
type and geometric and constructive characteristics of the highway such as the road width
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or road’s surface properties, the two parameters vmax and ρmax are normally empirical
parameters. For a given short enough highway length, the values of these parameters
usually remain constant.

1.b Estimation problems using synthetic measurements

1.b.1 Estimation of parameters

Estimation problem statement
The optimal estimation problem of two parameters vmax and ρmax of equation (III.5) is
considered in this part with assumption that the initial and boundary conditions ρi0(x)

and ρb0(t) are perfectly known. The optimal values of parameters are estimated by using
the estimation methodology presented in chapter II. The PDE are solved via the nonlinear
implicit Preissmann scheme of subsection 4.c. The parameters to be estimated are then
obtained through an optimization process being constructed by steepest descent method
and backtracking line search method described in subsection 5.b of chapter II. This es-
timation problem has been published in [NGB15b]. The calculation of variations is not
necessary to be repeated, except the gradient of the cost functional L with respect to the
parameter vmax and ρmax and the adjoint system because they have a important role in the
optimization algorithm. By comparing system equation (III.5) with the general equation
of switched hyperbolic system (II.7), one can notice that this is just an continuous model
without the switched source term. The associated coupled ODE does not exist and the
same with the sub functions {g1(x, t, p, y), g2(x, t, p, y)} and {h1(y, p), h2(y, p)}. The flow
function f is just a function of vehicle density ρ(x, t) and does not depend on x anymore
because of the constant values of parameters vmax and ρmax. Its expression is

f(ρ(x, t)) = vmaxρ(x, t)− vmax
ρmax

ρ2(x, t)

By correlating this equation with the general form of flow function in equation (II.2), the
corresponding vector of parameter α is α = [vmax vmax/ρmax] denoted [α1 α2]. But the
parameter needing to be estimated in this application is ρmax, some transformations are
thus needed to get the gradient for ρmax from gradients for α2 or vmax/ρmax. Moreover,
the formulation of α2 contains vmax, the variation of vmax thus appears in variation of α2.
The first variation of α2 is written in the relation with variation of ρmax and vmax as

δα2 = −vmax
ρ2max

δρmax +
1

ρmax
δvmax
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By inserting this relation into the first variation of L in the direction of vmax/ρmax or α1,
one obtains

δLα2 =−vmax
ρ2max

T∫
0

[
λ
∂f

∂α2

]∣∣∣∣∣
L

0

δρmaxdt+
vmax
ρ2max

T∫
0

L∫
0

∂f

∂α2

∂λ

∂x
δρmaxdxdt+ ε2

[
ρmax−ρFmax

]
δρmax

+
1

ρmax

T∫
0

[
λ
∂f

∂α2

]∣∣∣∣∣
L

0

δvmaxdt−
1

ρmax

T∫
0

L∫
0

∂f

∂α2

∂λ

∂x
δvmaxdxdt

(III.6)

with the partial derivatives
∂f

∂α2

= −ρ2(x, t) and
∂f

∂α1

= ρ(x, t). The first order optimality

condition, the relation of Gâteaux derivative and inner product allow to have the form of
gradient for ρmax as follows:

∇Lρmax =
vmax
ρ2max

T∫
0

[
λρ2(x, t)

]∣∣∣∣∣
L

0

dt− vmax
ρ2max

T∫
0

L∫
0

ρ2(x, t)
∂λ

∂x
dxdt+ ε2

[
ρmax− ρFmax

]
(III.7)

The gradient for vmax is obtained easily by inserting the derivative
∂f

∂α1

= ρ in the

general form of gradient for α in equation (II.38) and adding the term relating δvmax in
variation of δα2 in equation (III.6). It then satisfies

∇Lvmax =

T∫
0

[
λρ(x, t)

]∣∣∣∣∣
L

0

dt−
T∫

0

L∫
0

ρ(x, t)
∂λ

∂x
dxdt+ ε2

[
vmax − vFmax

]

− 1

ρmax

T∫
0

[
λρ2(x, t)

]∣∣∣∣∣
L

0

dt+
1

ρmax

T∫
0

L∫
0

ρ2(x, t)
∂λ

∂x
dxdt

(III.8)

All the partial derivatives of sub-functions {g1(x, t, p, y), g2(x, t, p, y)} and {h1(y, p), h2(y, p)}
with respect to ρ do not exist, the dynamic of adjoint equation of variable λ(x, t) in equation
(II.28) in this case is presented as

−∂λ
∂t
−
[
vmax−2

vmax
ρmax

ρ(x, t)
]∂λ
∂x

+
N∑
j=1

δA(x−xj)×
[ L∫

0

δA(x−xj)ρ(x, t)dx−ρmeasj (xj, t)

]
= 0

(III.9)

Estimation result
The estimation methodology is applied on a highway with the geometric and numerical
data given in Table III.1.
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Parameter Notion Value Unit

Maximal speed vRmax 80 km/hour

Maximal density ρRmax 100 vehicle/km

Highway length L 50 km

Observation horizon T 4 hour

Time step 4t 5 minute

Space step 4x 1 km

Calibration coefficient ε2 [10−3 10−3] Unitless

Guess value of ρmax ρFmax 70 vehicle/km

Guess value of vmax vFmax 110 km/hour

Cost function tolerance ξ3 10−2 Unitless

Gradient tolerance ξ2 10−2 Unitless

Number of observation value M 10 Unitless

Table III.1: Parameters of highway and numerical values of optimization parameters used
for estimating of vmax and ρmax

.

At 10 randomly selected observation positions, 10 observation values of flow density
ρ(x, t) are obtained from the exact simulation of system equation. The initial values used
for vmax and ρmax in the optimization algorithm are 60 (km/hour) and 60 (vehicle/km),
respectively. The steepest descent method along with line search in algorithm 1 will be
stopped if the 2-norm of gradients is less than gradient tolerance ξ2 or the distance between
two consecutive values of cost function J (vmax, ρmax) is less than tolerance ξ3.
Figure III.3a depicts the convergence of the estimations of vmax and ρmax from initial values
to the real ones. After 163 iterations, the final estimated values of vmax and ρmax are 79.96

and 100.01, respectively, which are pretty close to the expected values. The relative errors
are pretty small 0.05% and 0.01%.
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Figure III.3: Parameters estimation results in LWR traffic flow (I).
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Figure III.4: Parameters estimation results in LWR traffic flow (II).

Moreover, the value of cost function J (vmax, ρmax) indeed decreases to zero, as seen
in Figure III.3b, and reaches 0.00039 at the end of optimization process. The reached
minimum is not exactly zero possibly due to numerical errors. As seen in Figure III.4a, the
2-norm of the gradient of L with respect to vmax and ρmax decreases also to 0.00991. After
the estimation step, it is worth to re-simulate the system with estimated parameters in order
to compare the simulated flow density at the end of highway with the real one. The density
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of vehicle simulated with estimated optimal values vmax and ρmax is really close to the one
simulated by real values of parameters that presents the previously mentioned accuracy
of parameters estimation, see Figure III.4b. Based on the estimated values of parameters,
the velocity × density curve which represents the characteristic of the considered road can
be seen. Figure III.5a presents two curves v(x, t) × ρ(x, t) (the number of vehicles per
hour), in two cases: using real parameters and using estimated parameters. The similarity
between the two curves is consistent with the accuracy of parameters estimation as seen
before. It is interesting to see how the estimation algorithm react to the decreasing number
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Figure III.5: Parameters estimation results in LWR traffic flow (III).

of observation points or sensor numbers. This is also a test to examine the sensitivity of
optimization problem to measurements. There is only one measurement available, in the
worst case. Let us consider the estimation issue when the only observed value of flow
density is obtained at 25 km the middle of highway. After using the same algorithm and
same starting point, the optimal obtained values of vmax and ρmax are vmax = 79.268 and
ρmax = 100.199 which are very close to the results when using 10 sensors. This means that
for parameter estimation, 10 sensors provide redundant information. However, the number
of iterations to get the optimal solution is 275 which is much larger than in the first case.
The estimation of parameters in this case is described in Figure III.5b. As a conclusion
here, after 163 iterations for the case of 10 measurements and 275 iterations for the case
of only 1 measurement, the optimal solutions of the estimation problem are found, which
is very promising. One may notice that gradient descent is relatively slow close to the
minimum and the optimization time is pretty long, but this can be improved by changing
the numerical method.
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1.b.2 Estimation of state and parameter

Estimation problem statement
The initial state of vehicle density ρi0(x) which was supposed to be perfectly known in
the precedent application example, will be estimated in this example at the same time as
parameter vmax and quotient vmax/ρmax. The value of maximal vehicles density ρmax can be
easily recovered from estimation of vmax and vmax/ρmax. This is also an illustrative example
in our publication [NGB16b]. The ODE coupled with the PDE does not exist in this case,
and neither its adjoint equation γ(t). The adjoint equation of the first Lagrangian λ(x, t)

has the same form as in the previous case, equation (III.9). The gradients for parameters
α = [α1 α2] are given by the following equations:

∇Lα1 =

T∫
0

[
λρ(x, t)

]∣∣∣∣∣
L

0

dt−
T∫

0

L∫
0

ρ(x, t)
∂λ

∂x
dxdt+ ε2

[
α1 − α1F

]

∇Lα2 = −
T∫

0

[
λρ2(x, t)

]∣∣∣∣∣
L

0

dt+

T∫
0

L∫
0

ρ2(x, t)
∂λ

∂x
dxdt+ ε2

[
α2 − α2F

] (III.10)

And the gradient for initial condition ρi0(x) is:

∇Lρi0(x) = −λ(x, 0) + ε1
[
ui0(x)− ui0F (x)

]
(III.11)

The numerical schemes used for discretizing the differential equation are forward Lax-
Wendroff scheme for the LWR model and the backward Lax-Wendroff scheme for the PDE
of adjoint equation. The algorithm of optimization process is based on the interior point
method of fmincon with the gradient provided by equations (III.10) and (III.11).

Estimation result
The estimation process for identification the optimal values of initial condition of vehicles
density and two parameters α1 and α2 is realized on a straight traffic road with the detailed
characteristics presented in Table III.2.
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Parameter Value Unit

Highway length L 100 km

Observation horizon T 3 hour

Space step 4x 10 km

Time step 4t 0.01 hour

Calibration coefficients ε1 1× 10−7 Unitless

Calibration coefficients ε2 [1× 10−7 1× 10−7] Unitless

Observation number N 1 Unitless

Table III.2: Parameters of highway and numerical value of optimization parameter used
for estimating of α1 = vmax and α2 = vmax/ρmax and initial condition ρi0(x).
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Figure III.6: State and parameters estimation in LWR traffic flow (I).

The real values of maximal vehicles velocity α1 is 150 (km/hour) and the parameter
α2 is 0.5 (km/hour×km/vehicle) which need to be estimated. With spatial discretization
step 4x = 10 (km), the 100 km high way length is divided into 10 sections. In this
example, the boundary condition at x = 0, ρb0(t) is a sum of four sinusoidal signals in
time with different frequencies and phases. The first values of optimization algorithm are
ρinit(xj) = 20 (vehicle/km) ∀ xj, α1 = vmax = 100 (km/hour), α2 = vmax/ρmax =

0.25 (km/hour × km/vehicle). The first guessed values of initial condition ρiF0(xj) and
two parameters are equal to zero. The optimization tool fmincon is stopped whenever the
cost function tolerance or tolerance of estimation variable is smaller than the predefined
termination tolerance values. There is only 1 observation value at the end of the considered
domain or the discrete position 10, from an exact simulation of direct system (III.3) with
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real value of initial state and parameters.
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Figure III.7: State and parameters estimation in LWR traffic flow (II).

Figure III.6a compares estimated optimal values of ρi0(xj) with initial values and the real
ones. From the initiations, its estimated values converge to the respective real state with
some small bias values at some positions in the considered spatial section with relative error
0.0812%. The found local minimal value of cost function J is 0.0074, after 54 iterations,
slightly larger than zero. The estimated value of parameters α1 and α2 are 149.8782 and
0.4988 respectively with relative errors 0.08% and 0.24%. Their convergences are described
in Figure III.7a and Figure III.7b. These biases of estimation are possibly caused by
the numerical simulation errors on direct and adjoint system simulation and optimization
algorithm’s convergence limitation. The optimal value of maximal vehicles density is found
by simple division ρmax = α1/α2.

1.b.3 Estimation of state and parameter in switched system

Estimation problem statement
The idea of this estimation example is to go further to estimate the parameter in the
source term of the equation of traffic flow. Here the model is modified by considering a
relief route on the highway at position x̄. This situation is very common in a real traffic
system, to avoid traffic jam at rush hours for instance. The relief phenomenon happens
when the density of vehicles becomes lager than a defined threshold called β, the gate
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at relief position is opened and a percentage of vehicles turn into this relief route. The
threshold value is appropriately chosen to adapt the capacity of both main highway and
relief route. To represent this phenomenon a source term can be added to the right side of
equation (III.5) as follows:

∂ρ(x, t)

∂t
+
∂f [ρ(x, t)]

∂x
= 0 if ρ(x̄, t) ≤ β

∂ρ(x, t)

∂t
+
∂f [ρ(x, t)]

∂x
= −δ(x− x̄)ζρ(x, t) if ρ(x̄, t) > β

(III.12)

where x̄ is the relief position and belongs to the spatial domain of highway; ζ is the relief
percentage and its value is in the section [0, 1] ; f [ρ(x, t)] is the traffic flow and equal to
vmax[ρ(x, t) − ρ2(x, t)/ρmax]. Along with the initial state ρi0(x) and the parameters vmax,
vmax/ρmax, two specifications β and ζ of relief route also need to be identified.
Equation (III.12) becomes a switched hyperbolic system, and has the same form as com-
pared with the general model of equation (II.5) without the associated ODE. In this exam-
ple, the parameter vector p = [ζ β]T is denoted by [p1 p2]

T and α = [vmax vmax/ρmax]
T

is denoted by [α1 α2]
T . By comparing with the general case presented in section 2, one

can get: the switching condition ξ = ρ(x̄, t) − β depending on the state of system; the
sub-functions g1 = 0 and g2 = −δ(x− x̄)ζρ(x, t). The functions {h1 h2} do not exist due
to the absence of the ODE. The necessary partial derivatives, in equation (II.28) must be

calculated, to get the dynamics of adjoint variable λ:
∂g1

∂ρ(x, t)
= 0,

∂g2
∂ρ(x, t)

= −δ(x− x̄)ζ,

∂f

∂ρ(x, t)
= α1 − 2α2ρ(x, t),

∂ϕa
∂ρ(x, t)

=
∂ϕa

∂ρ(x̄, t)

∂ρ(x̄, t)

∂ρ(x, t)
= ϕ2

aδA(x̄)e−Kacξ. The second

adjoint equation of γ(t) does not exist while the corresponding adjoint equation of variable
λ(x, t) is described by:

−∂λ
∂t
−
[
α1 − 2α2ρ(x, t)

]∂λ
∂x
− λ
[
− ζϕaδ(x− x̄) + δ(x− x̄)ζϕ2

aδA(x̄)e−Kacξ
]

+
N∑
j=1

δA(x− xj)
[ L∫

0

δA(x− xj)ρ(x, t)dx− ρmeasj (xj, t)

]
= 0

(III.13)

By replacing the partial derivatives of the sub-functions g1, g2 and activation function ϕa
with respect to each element of p, the partial derivative of traffic flow f with respect to α
in equations (II.35), (II.37), the gradient of cost functional with respect to parameters p
and α can be easily formulated and are presented in equation (III.14) below:

∂g1
∂p1

= 0 ;
∂g1
∂p2

= 0 ;
∂g2
∂p1

= −δ(x− x̄)ρ(x, t) ;
∂g2
∂p2

= 0

∂ϕa
∂p1

= 0 ;
∂ϕa
∂p2

= Kacϕ
2
ae
−Kacξ ;

∂f

∂α1

= ρ(x, t) ;
∂f

∂α2

= −ρ2(x, t)
(III.14)
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The gradients of the Lagrangian functional L with respect to the constant parameters
follows the general gradient in equation (II.38), and are thus as follows:

∇Lα1 =

T∫
0

[
λρ(x, t)

]∣∣∣∣∣
L

0

dt−
T∫

0

L∫
0

ρ(x, t)
∂λ

∂x
dxdt+ ε2

[
α1(x)− α1F (x)

]
dx (III.15)

∇Lα2 = −
T∫

0

[
λρ2(x, t)

]∣∣∣∣∣
L

0

dt+

T∫
0

L∫
0

ρ2(x, t)
∂λ

∂x
dxdt+ ε2

[
α2(x)− α2F (x)

]
dx (III.16)

∇Lp1 = −
T∫

0

L∫
0

λϕaδ(x− x̄)ρ(x, t)dxdt+ ε3

[
p1 − p1F

]
(III.17)

∇Lp2 = −ζKac

T∫
0

L∫
0

λϕ2
ae
−Kacξδ(x− x̄)ρ(x, t)dxdt+ ε3

[
p2 − p2F

]
(III.18)

In addition, the gradient for the initial condition of the vehicle density is not changed, the
same as equation (III.11).

Estimation result

Parameter Value Unit
Highway length L 100 km

Observation horizon T 3 hour

Space step 4x 10 km

Time step 4t 0.005 hour

Calibration coefficients ε1 [1 1...1]︸ ︷︷ ︸
size 9

×10−9 Unitless

Calibration coefficients ε2 [1 1]× 10−9 Unitless

Calibration coefficients ε3 [5× 10−4 5× 10−1] Unitless

First guessed value of vmax, α1F 200 km/hour

First guessed value of vmax/ρmax, α2F 0.8 km2/(hour × vehicle)
First guessed value of leaving percentage ζ, p1F 0.8 Unitless

First guessed value of vehicle threshold β, p2F 60 vehicle/km

First guessed value of initial condition ρi0(x), ρi0F (x) 0 ∀x ∈ [0, L] vehicle/km

Kac 50 Unitless

Observation number N 4 Unitless

Table III.3: Parameters of highway and numerical values of optimization parameters used
for estimating of α1 = vmax and α2 = vmax/ρmax, initial condition ρi0(x) and relief charac-
teristics p = [ζ β] .

.
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Figure III.8: State and parameters estimation results in switched LWR traffic flow (I).

The considered parameters are synthesized in table III.3, the 100 (km) highway is di-
vided into 10 sections with 10-km space step 4x. The real initial state is in the form
of a Gaussian function as in Figure III.8a. The boundary condition, at position x = 0

of system is a sum of some sinusoidal signals with different frequencies and phases and
there is no interest to present it here. The maximal velocity possible on highway vmax
or α1 = 150 (km/hour); the real value of second parameter α2 = vmax/ρmax is cho-
sen to be equal to 0.7, the maximal density of vehicles circulating is thus approximately
214.2857 (vehicles/km). The relief route is located at position x̄ = 40 (km), which corre-
sponds to discrete position 5 of the numerically simulated model. The percentage of leaving
vehicles is equal to ζ = 0.5, while the vehicle density threshold β = 50 (vehicles/km). In
this simulation example, 4 measurements are taken from the exact simulation at positions
{40, 50, 60, 90} with no disturbance, to define the cost function J . The term "exact sim-
ulation", in this case, means the simulation realized with the original equation of system,
described in equation (III.12), and with the real values of initial state and parameters. The
simulation for estimation process is based on the smoothed one using the activation func-
tion. Comparing the estimated values with the simulated ones then also gives a validation
of the approximation model.
The cost function J , from the initial value 1.2308 × 103, decreases to the minimal one
equal to 0.0511 as in Fig.III.8b after 63 iterations. Figure III.8a illustrates the real, initial
and final estimated values of the initial state of system. The initial values of parameters
α1, α2, p1 and p2, which are equal to 180 (km/hour), 0.3, 0.4% and 40 (vehicles/km), con-
verge to the final ones 149.9609 (km/hour), 0.4995, 0.6854% and 50.1782 (vehicles/km),
respectively. Their convergences are depicted in Fig.III.10a, Fig.III.10b, Fig.III.9a and
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Figure III.9: State and parameters estimation results in switched LWR traffic flow (II).

Fig.III.9b). The corresponding relative errors between the real and estimated values of
these parameters are pretty small and equal to 0.0261%, 0.0972%, 2.0877% and 0.3563%.
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Figure III.10: State and parameters estimation results in switched LWR traffic flow (III).

One can observe that the estimated values are pretty close to the real ones with an
average relative error of all estimation at discrete positions equal to 0.1487%. The activa-
tion function approximation is possibly one of the main reasons that causes the estimation
errors. The cost function calculated with the real values of state and parameter is already
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0.0309, slightly smaller than the found optimal one 0.0511. Moreover, the estimation re-
sult, especially the estimation of p2 is greatly affected by the factor Kac. According to the
gradient formulation of p2 in equation (III.18), a large value of Kac makes this gradient
close to zero while a small value allows to have a good estimation of p2 but give a bad
effect and causes larger estimation error on other parameters. The value of Kac is finally
chosen equal to 50 after some manual tests. This value allows to keep the balance between
the estimation of all variables.

2 Overland flow

2.a Overview of overland flow

Figure III.11: Illustration of overland flow model.

Being one of the major components in water cycle and the main agent of soil erosion,
the so-called overland flow or surface runoff is the hydrological concept used to describe
the movement of water over soil surface and towards some hydraulic channels such as
streams, small water channel or rivers under gravitational force (see Figure III.11 for an
illustration). This type of flow is different from the channel flows which start at the end
of overland flow and are concentrated in a channel. Both overland flow and channel flow
are considered as surface flow. They play an essential role in various hydrological topics,
especially flood prediction and surveillance. In nature, there are many types of overland
flows which are classified according to the generating physical mechanisms: rainfall, snow
and glacier melting or ground water. The first type of overland is much more common and
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happens during and after the rainfall process. There are mainly two factors concerning
an overland flow: fluid flow on soil surface and the infiltrated water in the ground which
makes the soil to become saturated. The infiltration physically begins at the same moment
as rainfall event with the infiltration rate depending on the initial state of soil, and ends
when the soil reaches its saturation threshold. One of the common ways to mathematically
model overland flow is to determine the flow depth and flow rate at a point on watercourse
from the continuity equation of the hydrodynamic model or Saint-Venant model for flow
dynamics and some common infiltration model, such as the physical Green-Ampt model
or the empirical Horton model for the infiltration process (see [Sco92] and [Par+97]). The
well-known Saint-Venant model belongs to a class of distributed flow routing, or sometime
referred as unsteady flow routing, where the flow rate, water level and water discharge are
functions of time and space instead of a function of time only as in the case of lumped flow
routing (see [May10] for more details). The relationships between water flow’s height and
rainfall, infiltration rates are as follows:


∂h

∂t
+
∂uh

∂x
= r − i

∂u

∂t
+ u

∂u

∂x
+ g

∂h

∂x
= g(S0 − Sf ) +

u

h
(r − i)

(III.19)

where h is the water flow depth, (m); u is the water flow velocity, (m/s); x is the space
variable, (m); t is the time, (s); r is the rainfall intensity, (m/s); i is the infiltration
intensity, (m/s); g is the acceleration of gravity, (m/s2); S0 is the bed slope, (m/m); Sf is
the friction slope, (m/m).
The first and second equations of model (III.19) are called respectively the continuity and
momentum ones. The mathematical description of overland flow now can be simplified by
omitting the momentum equation. The resulting model is the kinematic-wave equation
where the motion of water is the only subject being taken into account with the influence
of force and mass. Notice that in the momentum equation, from left to right, the first
term is the local acceleration describing the change of velocity overtime, the second one
is the convective acceleration describing the change of velocity along spatial length, the
third one is called pressure force term equal to gravitational acceleration times spatial
change of water depth, the fourth term includes gravity force and friction force term and
the last one is the momentum caused by excess rainfall. In the kinematic-wave model, all
the local and convective accelerations, and pressure force are neglected. An assumption
of kinematic wave is also made to keep the balance between gravity and friction forces,
S0 = Sf . Moreover, the bottom slope of overland flow is small, sin(S0) ' S0, which allows
to neglect the so-called scour’s effect and deposit. The dynamic of water flow in then only
described by the continuity equation.
The relation of the flow rate velocity and the flow depth is expressed by the Manning
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equation (III.20):

u =
R2/3S

1/2
f

n
with R =

hw

2h+ w
(III.20)

where R is the hydraulic radius, (m); n is the Manning roughness coefficient, (s/m1/3); w
is the elemental flow width, (m). In an overland flow, the water depth h is usually much
smaller than the elemental flow with (h � w) so R ' h and the Manning equation then
becomes:

u =
S
1/2
0

n
h2/3 (III.21)

By denoting the flow of water as f , which is a function of water depth h(x, t) and spatial
variable x due to the distributed Manning coefficient n(x) in some cases, the equation of
overland flow is finally: 

∂h(x, t)

∂t
+
∂f(h(x, t), x)

∂x
= r − i

h(x, 0) = hi0(x)

h(0, t) = hb0(t)

(III.22)

where hi0(x) and hb0(t) are respectively the initial condition and boundary conditions.
According to the empirical or physical points of view, there are many ways to characterize
the infiltration rate, such as Horton model or Green-Ampt model. Due to its simplicity and
good physical meaning preservation, the classical Green-Ampt model is used in the example
using synthetic measurement and the Horton one is employed in the case of real data. The
details of Horton model are discussed in the subsection where it is used. From the physical
point of view, under the effect of rainfall and depending on the initial state of soil and
rainfall intensity, the soil surface becomes ponded with infiltrated water. There are thus
two distinct stages of an infiltration process under a rainfall event: a stage without surface
ponding and a stage when ground is ponded. In the first case, before the ponding moment,
all the rainfall infiltrates into the soil. As a result the infiltration rate is equal to rainfall
rate and less than the infiltration capacity. With the movement of water into the soil, the
soil surface becomes ponded and after a moment, so-called "ponding time", the infiltration
process is independent of rainfall time distribution. The Greent-Ampt model follows this
idea. But this model was given initially (by Green and Ampt in 1911, see [GA11]) for the
ponded surface. It has been modified by Mein and Larson [1973] and Swartzendruber [1974]
to determine the time when the surface ponding starts. On can consider that this is the
first physically and most widely used infiltration model for steady rainfall. The derivation
of this model from the Darcy’s law and the principle of mass conservation in homogeneous
soil condition can be seen in [ML73]. An infiltration rate according to Green-Ampt model
is finally divided into two periods: before and after "ponding time" denoted by tpon, as
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follows: i(t) = Ki

(
Ψη(1− θ)

I(t)
+ 1

)
if t > tpon

i(t) = r if t ≤ tpon

(III.23)

where Ki is the effective hydraulic conductivity of the soil, (m/s); Ψ is the soil suction
at wetting front, (m); η is the soil porosity, (%); θ is the relative initial soil moisture,
(unitless); I(t) is the cumulative infiltration m which is the accumulated depth of water
infiltrating during the time period t, defined by equation

I(t) =

∫ t

0

i(τ)dτ

The ponding time tpon depends on rainfall rate and soil characteristics as in equation
(III.24):

tpon =
ΨKiη(1− θ)
r(r −Ki)

(III.24)

One can notice that the equation used to describe the infiltration phenomenon, after pond-
ing time, in Green-Ampt model, is implicit in time. No formal algebraic formulation can be
determined to calculate the infiltration rate. Instead, an iteration method (e.g. Newton-
type iteration) can be used to get the cumulative infiltration at time t + δt from the one
at time t through the equation below by

It+4t = It + Ψ4 θ ln

[
It+4t + Ψ4 θ

It + Ψ4 θ

]
+Ki4 t (III.25)

2.b Estimation problems using synthetic measurements

The synthetic measurements are the values obtained from the exact simulation of system
without noise at some fixed observation positions. This simulated values of system dy-
namics are realized by using the true initial state and exact values of parameter. These
measurements are used as inputs of our optimization process, to define the cost function
J .

2.b.1 Estimation of initial condition

Estimation problem statement
The problem of estimation for initial condition of the flow per width unit is presented
in this example. This is also the content of our publication [NGB14]. The dynamics of



2. Overland flow 65

overland flow used here is of the flow per unit width f(x, t). Equation (III.22) must be
written for variable f(x, t) as

∂f 3/5

∂t
+Khf

∂f

∂x
= Khf (r − i)

f(x, 0) = f i0(x)

f(0, t) = f b0(t)

(III.26)

where the coefficient Khf =
[S1/2

0

n

]3/5
; f i0(x) is the initial condition needing to be identified

and f b0(t) is the upstream boundary condition which is fixed. The cost function J is defined
in the same form as the general one (II.4) but using both the measurement of flow depth
and flow per unit width:

J =
1

2

M∑
j=1

T∫
0

{ L∫
0

1

Khf

δA(x− xj)f 3/5(x, t)dx− hmeasj (xj, t)

}2

dt

+
1

2

N∑
k=1

T∫
0


L∫

0

δA(x− xk)f(x, t)dx− fmeask (xk, t)


2

dt+ ε1
1

2

L∫
0

‖f i0(x)− f iF0(x)‖2dx

(III.27)

where M , N are respectively the number of measurements of flow dept and flow per
unit width. The procedure to solve the estimation problem is almost the same as in the
presentation of the estimation methodology (section 3.c in chapter II) except that the
variation of water flow depth must be expressed as a function of the variation of f(x, t) as

δh(x, t) =
3

5Khf

f−2/5(x, t)δf(x, t)

The source term r− i does not relate to the initial condition function f i0(x), and the system
equation is a continuous one without the switch function g1, g2 and there is no associated
ODE. Then all the partial derivatives of g1, g2, h1, h2 and activation function with respect
to f(x, t) do not exist. The corresponding adjoint equation of λ(x, t) is thus

−3

5
f−2/5

∂λ

∂t
−Khf

∂λ

∂x
+

M∑
j=1

[
3

5Khf

δA(x− xj)f−2/5(x, t)
{ L∫

0

1

Khf

δA(x− xj)f 3/5(x, t)dx

− hmeasj (xj, t)

}]
+

N∑
k=1

δA(x− xk)

 L∫
0

δA(x− xk)f(x, t)dx− fmeask (xk, t)

 = 0

(III.28)

And the gradient of L for f i0(x) has the form

∇Lf i0(x) = −3

5
f−2/5(x, 0)λ(x, 0) + ε1

[
f i0(x)− f iF0(x)

]
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Parameters Value Unit
Length of plan 1000 m

Simulation time 100 hour

Space step 4x 50 m

Time step 4t 2 hour

Bed slope S0 0.04 m/m

Manning coefficient n 0.025 Unitless

Effective hydraulic conductivity Ki 0.145 cm/s

Soil suction at wetting front Ψ 21.85 cm

Soil porosity η 0.434 %

Relative initial soil moisture θ 0.463 Unitless

Weighting factor ε1 10−4 Unitless

Coefficient α; β of Preissmann 0.68; 0.5 Unitless

Observation number M,N 5; 5 Unitless

Table III.4: Parameters of overland flow used in example of estimation the initial condition
of flow per unit width f(x, t).

Estimation result
A numerical simulation of overland flow in this case takes place on an hill-slope under a
rainfall event. All the geometric and numerical simulation are summarized in Table III.4.
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Figure III.12: Estimation of f i0(x)

The infiltration process is simulated by using a Newton-Raphson method. The flow’s
depth and flow per unit width observed values are got from the first simulation of system
(III.26) with a chosen initial state f i0(x) which needs to be estimated. The forward and
backward Preissmann schemes and the steepest descent method are used as the numerical
tool for the optimization problem. In order to reduce time of optimization process without
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any loss of generality, the author considered a case when the initial state of flow per unit
width is identical for all x. The real value of condition initial is f i0(xj) = 0.3 (m2/s), ∀ xi ∈
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Figure III.13: Estimation results of state in overland flow (II).

]0, L[ and the optimization is started with f i0Init(x) = 0.15, ∀xi ∈]0, L[, and f iF0(xj) = 0.2.
It can be seen how the estimation of f i0(xj) indeed converges in Figure III.12, with an
average relative error between the estimated values of f i0(xj) and the desired one of 0.6%,
which is pretty small. Figure III.13a depicts the convergence of the value of the cost
functional to the minimal one which is here equal to 0.022 that is almost 0. The convergence
rate is indeed slow due to the characteristic of steepest descent method which is used here.
One can finally see in Figure III.13b that the norm of gradient indeed decreases to zero.
The optimization process is stopped when its value is smaller than the chosen gradient
tolerance ξ = 10−3.

2.b.2 Estimation of distributed Manning coefficient

Estimation problem statement
In the present estimation problem, the Manning roughness coefficient n(x) of continuity
equation is assumed to be spatially distributed in space and unknown. A new parameter
called Kfh(n, S0) is introduced and is a simple function of the roughness coefficient n(x)

and the bed slope S0. This example uses the equation of water flow depth h(x, t) to describe
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the dynamics of overland flow as follow:
∂h

∂t
+
∂
[
h5/3Kfh

]
∂x

= r − i with Kfh(n, S0) =
S
1/2
0

n(x)

h(x, 0) = hi0(x) and h(0, t) = hb0(t)

(III.29)

The estimation of n(x) transform to the estimation of Kfh(n, S0) Moreover, an assumption
is made where the function Kfh can be approximated by a Radial Basis Function Network
(RBFN) which is a type of artificial neural networks containing three layers called input,
hidden and output layer, depict in Figure III.14 and described in equation (III.30).

Kfh(n, S0) =
P∑
k=1

wkφ(‖x− xck‖) (III.30)
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Figure III.14: Overview of Radial Basic Function Network to approximate Kfh(n, S0)

where P is the number of neurons in the hidden layer; x is the spatial variable and
also input data of the network; xck is the predefined center vector of each neuron of the
network, belonging to the same set as x; φ(‖x− xi‖) is a predefined activation function in
hidden layer, which can be Gaussian, multiquadric, inverse quadric, polyharmonic spline
function; wk denotes the weighting factors. The Euclidean or Mahalanobis distance can be
used to define the operation ‖.‖ and the activation function is described by the Gaussian
function

φ(‖x− xi‖) = e
−
‖x− xck‖2

σ2
K
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where ‖.‖ is the Euclidean distance. The problem of how to choose optimal value of
center vector and parameters of activation function is not taken into account. From the
knowledge of K(x) and other parameters, the values of wk are found by just a simple linear
optimization. With the assumption that we know all information of RBFN except the
weighting factors wk and the constant bed slope S0 throughout the plan, the estimation of
Manning roughness coefficient or the estimation of Kfh(n, S0) can be reduced to estimation
of wk. This means that one can get the value of Manning coefficient through the estimated
values of wk. The reason why the estimation problem of n(x) or Kfh(n, S0) is transformed
to estimation problem of wk is the fact that the dimension of wk or size of parameter that
needs to be estimated, is usually much smaller than that of n(x). A reduction of complexity
of optimization problem is realized. On this basis, the point here is to look for an optimal
estimation of the weighting factors wk of RBFN by means of adjoint based estimation
methodology in chapter II. The cost function J is defined with the same esprit as in the
previous case, estimating initial condition of the flow per unit width in equation (III.27),

except the calibration term of f 0
i (x) being replaced by the one of wk,

1

2
ε1

P∑
k=1

∥∥∥wk(0) −

wkF (0)
∥∥∥2. Due to the change of system equation, the adjoint equation in this example

becomes:

− ∂λ

∂t
− 5Kfh

3
h2/3

∂λ

∂x
+

M∑
j=1

δA(x− xj)
[ L∫

0

δA(x− xj)h dx− hmeasj (xj, t)

]

+
N∑
k=1

[
5

3

P∑
k=1

wkφ(‖x− xck‖)δA(x− xk)h2/3
{ L∫

0

δA(x− xk)
P∑
k=1

wkφ(‖x− xck‖)h5/3 dx

− fmeask (xk, t)

}]
= 0

(III.31)

By applying the general calculation of first variation to this special case, the gradient of the
cost functional L with respect to the weighting factors wk can be deduced by considering
the Kfh(n, S0) as parameter α(x) of general case and by replacing the first variation δα(x)

by
∂Kfh

∂wk
δwk = φ(‖x − xck‖)δwk and adding the variation δwk in the first variation of J .
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This gradient is thus

∇Lwk
=

N∑
k=1

T∫
0

L∫
0

δA(x− xk)h5/3φ(‖x− xck‖)
[ L∫

0

δA(x− xk)
P∑
k=1

wkφ(‖x− xck‖)h5/3 dx

− fmeask (xk, t)

]
dxdt−

T∫
0

L∫
0

h5/3
∂λ

∂x

∂Kfh

∂wk
dxdt+

T∫
0

λ

[
h5/3

∂Kfh

∂wk
δwk

]∣∣∣∣∣
x=L

x=0

dt+ ε1(wk − wkF )

(III.32)

The optimization process is solved by using steepest descent method. The four points
implicit schemes are the discretization tool to solve the PDE of overland flow and adjoint
equation. This result is presented in author’s publication [NGB15a].

Estimation result
The illustrative example to estimate wk is chosen with the same condition of rainfall
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Figure III.15: Estimation results of distributed Manning coefficient in overland flow (I).

and infiltration as an identical hill slope. The detail of all parameters used in this exam-
ple can be seen in Table III.4. From the real value of n(x), Kfh is calculated via formula

Kfh(n, S0) =
S
1/2
0

n(x)
. By solving the RBFN formula with predefined parameters, the weight-

ing factors wk, called real weighting factors of RBFN, can be then obtained. 5 values of
flow depth and 5 values of flow per unit width are taken from the simulation of system with
real value of Manning coefficient, as observation values. The positions of observations are
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chosen randomly in interval [0, L]. The RBFN parameters used to approximate K(x) are:
6 hidden functions, P = 6; xck = [0 320 400 500 750 1000] and σK = 200. After a simple
inversion, the real values of wk is wk = [1.2964 0.6027 0.0906 0.2671 0.7707 1.1499].
Due to the error of RBFN approximation of K(x), the corresponding cost function value
is 0.1664 larger than zero. The initial value of wk for steepest descent is wk initial =

[1.2064 0.5127 0.0006 0.1771 0.6807 1.0599] not far from the real one. One can see how
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Figure III.16: Estimation results of distributed Manning coefficient in overland flow (II).

the estimation wk indeed converges in Figure III.15a with some biases on estimation values
of w1 and w2. The errors on wk are possibly caused by convergence limitation of steepest
descent method. As depicting in Figure III.15b, the value of cost function J decreases
from 15670 to the minimum 0.8964 which is a bit larger than the theoretical one 0.1664.

After getting the optimal estimated wk, one can get the estimated Kfh and also the esti-
mated values of n(x). Figure III.16b presents the comparisons between the real Kfh, and
n(x) and estimated ones. One can observe more clearly, in Figure III.16a, the convergence
from initial value of n(x) to the optimal value. In the same figure, the estimated n(x)

is pretty close to the desired one and the average relative error between them is small
1.6818%. By using the RBFN, the estimation of 19 discrete values of n(x) is successfully
transformed and solved by an equivalent problem but the size of optimization problem
reduced to 5 values of wk.
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2.b.3 Estimation of initial state and distributed Manning roughness

Estimation problem statement
In this example, the author tries to increase the complexity of estimation problem by
considering to estimate directly (without RBFN approximation) the Manning roughness
and also the initial condition of flow depth hi0(x) at the same time and using the same
measurement. This problem is one among two illustrative examples in author’s publica-
tion [NGB16b] (the second example is the state and parameter estimation in traffic flow
which has been previously presented ).The Manning coefficient will be estimated via the
estimation of parameter α(x) = S

1/2
0 /n(x). The system equation is still the PDE of water

depth h(x, t) as in equation (III.22). The cost function J has a simpler form, defined by
the errors between simulations and some lumped observation values of only water depth
h(x, t), as equation below:

J =
1

2

N∑
j=1

T∫
0

{ L∫
0

δA(x− xj)h dx− hmeasj (xj, t)

}2

dt+
1

2
ε1

L∫
0

‖hi0(x)− hi0F (x)‖2dx

+
1

2
ε2

L∫
0

‖α(x)− αF (x)‖2dx

(III.33)

By comparing this to the general form of flow in equation (II.1), one has the vector of only
one parameter α(x) and the corresponding function of system variable ϕ(h) = h5/3. The
switching sub-functions g1, g2, h1 and h2 do not exist, neither their partial derivatives.

By inserting the derivative
∂f(u, x)

∂h
=

5

3
α(x)h2/3 into equation (II.28), the adjoint system

of λ(x, t) can be constructed. Replacing the derivative
∂f(h, x)

∂α(x)
= h5/3 into equations

(II.38), the gradient of cost functional L with respect to α for the interior spatial section
is obtained.

Estimation result
This example is assumed to be taking place on the same hills as in the two earlier ones with
characteristics described in Table. III.4. The real value of the initial condition of flow height
hi0(x) ∀x ∈ [0...L] is depicted in Figure III.17a. The real value of distributed parameter
α(x) ∀x ∈ [0...L] (being calculated via equation α(x) = S

1/2
0 /n(x) with chosen values of

n(x) is sketched in Figure III.17b. From the exact simulation of the system , 2 observation
values of water depth, 1 at the begin and 1 at the end, are taken out of 10 discretized
sections. The interior point algorithm of fmincon is initialized by 0.35(m) ∀x ∈ [0...L] for
the initial state and 7 ∀x ∈ [0...L] for α(x). The estimation of hi0(x) indeed converges to the
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Figure III.17: Estimation results of distributed Manning coefficient and initial condition
in overland flow (III).

desired values in Figure III.17a and parameter α(x) also converges in Figure III.17b after
192 iterations with the average relative errors of estimated values of hio(x) and α(x) equal
to 3.4240 × 10−8% and 2.4165 × 10−8% respectively. One can see that the estimation is
pretty accurate with such small errors. Along with the convergence of state end parameter,
the cost function J reaches its minimum at 1.1478 × 10−18. After the termination of
optimization algorithm, the Manning coefficient n(x), recovered via optimized parameter
α(x), has also a small relative error (3.4240× 10−8%).

2.b.4 Estimation of initial state, distributed Manning roughness and infiltra-
tion parameters

Estimation problem statement
With the same spirit as in the state and parameter estimation for switched traffic flow, the
object of this example is to consider the estimation of the parameters of the infiltration
process at the same time with state and water flow parameter. But unlike the case of
switched traffic flow, the original equation of overland flow with Green-Ampt infiltration
is already a switched PDE coupled with the ODE of cumulative infiltration because of the
ponding time. On the basic the presentation of system equation in subsection 2.a, the
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overland flow system can be rewritten as equation (III.34) below with switching time tpon:



∂h(x, t)

∂t
+
∂f(h(x, t), x)

∂x
= 0 if t ≤ tpon

∂h(x, t)

∂t
+
∂f(h(x, t), x)

∂x
= r −Ki

(
Ψη(1− θ)

I(t)
+ 1

)
if t > tpon

dI(t)

dt
= rt if t ≤ tpon

dI(t)

dt
= Ki

(
Ψη(1− θ)

I(t)
+ 1

)
if t > tpon

(III.34)

These equations have exactly the same form in the general one (II.5). One can notice
that the cumulative infiltration I(t) plays the role of ODE variable y(t). The unknown
parameters of infiltration are p1 = Ki, p2 = KiΨη(1 − θ) and the vector of parameters
p = [p1 p2]. There is only one element of vector α defined as α1 = S

1/2
0 /n(x), like in the

previous example. Moreover, the switching condition in this example is a function of time,
and defined by ξ = t−tpon; the sub-switching functions are {g1 g2}={0 r−p2/I(t)−p1}
and {h1 h2}={rt p2/I(t) + p1}. The adjoint models of variables λ and γ in equations
(II.28) and (II.29) can be rewritten by replacing the following partial derivatives:

∂f

∂h(x, t)
=

5

3
α1h

2/3(x, t) ;
∂g1

∂h(x, t)
= 0 ;

∂g2
∂h(x, t)

= 0 ;
∂g1
∂I(t)

= 0

∂g2
∂I(t)

=
p2
I2(t)

;
∂h1
∂I(t)

= 0 ;
∂h2
∂I(t)

= − p2
I2(t)

(III.35)

The corresponding adjoint systems of λ(x, t) and γ(t) are subsequently presented as follows:

−∂λ
∂t
− 5

3
α1h

2/3(x, t)
∂λ

∂x
+

N∑
j=1

δA(x− xj)×
[ L∫

0

δA(x− xj)h(x, t)dx− h(xj, t)
meas
j

]
= 0

(III.36)

−∂γ
∂t

+ γϕa
p2
I(t)
−

L∫
0

λϕa
p2
I2(t)

dx = 0

(III.37)

The gradient of objective functional with respect to the parameters p and α is also found
by the same method, replacing the derivatives in equations (II.35) and (II.59), respectively,
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by the following derivatives:

∂ϕa
∂p1

= − rKacp2
r2(r − p1)2

ϕ2
ae
−Kacξ;

∂ϕa
∂p2

= − Kac

r(r − p1)
ϕ2
ae
−Kacξ;

∂h1
∂p2

= 0;
∂h2
∂p1

= 1

(III.38)
∂f

∂α1

= h5/3(x, t);
∂g2
∂p1

= −1;
∂g2
∂p2

= − 1

I(t)
;
∂h1
∂p1

= 0

(III.39)
∂h2
∂p2

=
1

I(t)
;

∂g1
∂p1

= 0;
∂g1
∂p2

= 0 (III.40)

Estimation result

Parameters Value Unit
Overland flow length L 300 m

Simulation time 100 s

Space step 4x 30 m

Time step 4t 0.01 s

Bed slope S0 0.1 m/m

Ki 0.05 m/s

Ψ 1.4 cm

η 0.8340 %

θ 0.0863 Unitless

r 0.07 m/s

Kac 1× 10−7 Unitless
Calibration coefficients ε1 [1 1...1]︸ ︷︷ ︸

size 9

×10−9 Unitless

Calibration coefficients ε2 [1 1...1]︸ ︷︷ ︸
size 9

×10−9 Unitless

Calibration coefficients ε3 [1 1]× 10−9 Unitless

First guessed value of n(x), α1F 0 ∀x ∈ [0, L] s/m1/3

First guessed value of Ki, p1F 0.1 m/s

First guessed value of KiΨη(1− θ), p2F 0.05 Unitless

First guessed value of initial condition hi0(x), hi0F (x) 0 ∀x ∈ [0, L] m

Observation number N 5 Unitless

Table III.5: Parameters of overland flow and numerical value of optimization parameter
used for estimating of α1 = S

1/2
0 /n(x), initial condition hi0(x) and infiltration characteristics

p = [Ki KiΨη(1− θ)].
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Figure III.18: State and parameter estimation result in switched overland flow (II).

The numerical simulation model of an overland flow with the characteristic presented
in Table III.5 is considered. There are 9 discrete values of the Manning coefficient and
initial state will be estimated along with two parameters p1 and p2 of the infiltration
process. For the measurements, 5 observed values of water flow height at discrete posi-
tions {2, 3, 6, 9, 10}, among 11 discrete positions of 300-m long hill slope, are used for
estimation.
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Figure III.19: State and parameter estimation result in switched overland flow (I).
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Figure III.19a and Figure III.19b illustrate the estimation results for the state and the
parameters. Initial values are shown in dashed line with plus sign. The convergence to
the real values can be seen in the same figures, under the blue continuous line with circle.
The average relative between the estimated and real one are 1.4703% and 2.6109% for
the Manning coefficient and the state respectively. One can notice some slight different
accuracies depending on the position. Two figures Fig.III.18a and Fig.III.18b provide the
insight of the convergence to the desired ones 0.0501 and 0.0360 of infiltration parameters
p1 and p2 from the initial values 0.04 and 0.02. The estimation relative errors are 0.1859%

and 0.3182% respectively. in parallel with these convergences, the evolution of cost function
J reaches it minimal value 1.8248× 10−4, seen in Fig.III.20.
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Figure III.20: State and parameter estimation result in switched overland flow (III): the
evolution of cost function J .

From all those examples, it results that the proposed methodology can be applied
pretty efficiently, in estimation problem which can be quite complex. In the next section,
an application with real data is further given.

2.c Estimation problems using real measurement of Tondi Kiboro
catchment

2.c.1 Overview of Tondi Kiboro catchment and real measurements

This subsection is intended for introducing the parameter estimation problem for the so-call
Tondi-Kiboro catchment. Being one of the small and typical catchments of the Sahelian
area, the Tondi-Kiboro has been affected by the global climate change leading to hydro-
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logical change which is one of the major importance environmental challenges nowadays
(further information can be found in [Mou+11], [Sou08]). In the last four decades for ex-
ample, strong rainfall decrements together with a significant change in the land use have
been noted in this catchment. Moreover, the water cycle in such locations are strongly
modified by this phenomenon. The increment of flow channel infiltration and runoff factor
also causes topsoil debasement and vegetation clearing.

Some studies in hyrological domains have investigated this area of Sahelian region such
as two researches of Descroix et al. to find out the effect of land use change on the runoff
evolution [Des+11] or the possibility to define this area of Sahelian region as a deep infiltra-
tion one [Des+12]. There is no dynamical model of water flow in those references, and some
parameters used in these works, including the Manning roughness coefficient of the soil,
characterizing the friction of water flow on the soil surface and the factors of infiltration
process are, in general not easily, nor accurately, known. These factors indeed are usually
considered as empirical parameters, and their values depend on the soil surface character-
istics, water topology, vegetation and crop. They are usually obtained from some empirical
calculations applied to measured data or from a lookup table, with small adjustment to
adapt to the specific context if necessary. On the basis of the presented adjoint-based esti-
mation methodology of the chapter II, an alternative approach for Manning coefficient and
infiltration parameters estimation is proposed. The essential assumption in this method
is that the water flow on Tondi Kiboro catchment is described by the continuity equation
of Saint-Venant model as equation (III.19). This hypothesis can be verified by comparing
the simulated water discharge (system simulation with the estimated values of parameters)
with the measurement after the estimation process.

A good estimation of these parameters allows to have a simple numerical model to repre-
sent the real water flow of Tondi Kiboro basin and promote further hydrology research to
study other effects of rain fall on the water cycle, soil erosion and fallow period. The inverse
problems investigated on this basin are the subject of two publications [Ngu+15], dealing
with Manning roughness estimation and [Ngu+16] for Manning coefficient and parameters
of Horton infiltration model.
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Figure III.21: Location of Tondi Kiboro catchment.

Location of Tondi-Kiboro catchment
Banizoumbou Tondi Kiboro catchment is a set of basins, located near Tondi Kiboro village,
70 km east of the Niamey region, at the Fakara plateau southwest Niger (Figure III.21).
Its bed slope S0 is about 3.5%. This catchment consists of three small basins and two of
them are nested as illustrated in Figure III.22 with surfaces of 46800 m2 and 63720 m2 for
the upper and lower basins respectively and the total ground surface of this area (including
upstream and downstream stations) is 110520m2. Only the up basin of the two nested ones
(with a length of 600 m approximately, between the upper-stream end and downstream
end and measurements stations) is taken into account.

The top soil of this area is made of 10% of silt and clay, 90% of sands. These components
play an important role on not only vegetation and crop growth but also the infiltration
and overland processes. They also contribute significantly to fix the value of Manning
coefficient. Moreover, due to the small size of the considered Tondi Kiboro basin, the rain
fall rate and infiltration rate can be considered to be uniform all over the area. Manning
coefficient n is also constant because the characteristics of soil do not vary spatially.
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Figure III.22: Overview of Tondi Kiboro basins.

Real measurements
The only measurement on flow dynamics available is the water discharge during all rainfall
events at the end of the basin, equivalent to the position L in the simulator. This observed
value of water discharge is provided by stream flow sensor equipped on this basin, with
locations presented in Figure III.23, in the measurement campaign from 2004 to 2012.
Each observed water discharge is associated to the corresponding measurements of rainfall
rate provided by 1 day raingauge (see its location in Figure III.23).

Figure III.23: Observation stations on Tondi Kiboro catchment.
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Parameters Value Unit
Length of basin 600 m

Simulation time 3960 second

Space step 4x 60 m

Time step 4t 60 second

Bed slope S0 3.5% m/m

Observation number N 1 Unitless

Surface flow width at position L, W 78 m

Table III.6: Geometric characteristic of Tondi Kiboro catchment.

All the geometric characteristics of this basin and numerical simulations factors are
summarized in Table. III.6.

2.c.2 Estimation of Manning coefficient with Green-Ampt model for unsteady
rain

Estimation statement
The purpose of this part is to estimate the Manning coefficient n in equation (III.20). The
infiltration model used to calculate the infiltration rate is the Green-Ampt modified model
for unsteady rainfall process. This model is different from the one used for steady rain
which is already presented in previous sections. Let us recall the dynamical model of an
overland flow: 

∂h(x, t)

∂t
+
∂f(h(x, t), x)

∂x
= r − i

h(x, 0) = hi0(x) h(0, t) = hb0(t)
(III.41)

The initial state function hi0(x) and boundary function hb0(t) in this case are supposed to
be equal to zero at the begin of rainfall process. This assumption is reasonable because
this region is generally dry all the time between two rain events. The measured rainfall
in this real case is not a steady one, its intensity varies as a function of time r(t) and
the same with infiltration rate i(t). The original Green-Ampt model was developed to
deal with the case of constant or steady rainfall and is not suitable for unsteady one. To
overcome this difficulty, S.T. Chu [Chu78] proposed modifications to adapt to the new
complex situation. The idea is that there is almost one ponding time in a steady rain. The
infiltration process begins with an unponded surface, transforms to a stage with surface
ponding and keeps lasting to the end of rainfall event. The equation of this original
model allows to calculate the ponding time beforehand which only depends on the rainfall
intensity and some soil’s parameters. But in the case of unsteady rain, there are more
than one ponding moments because the rainfall rate exceeds the infiltration rate at several
periods and the infiltration process can shift back to original stage from the current one.
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Parameters Value Unit

Effective hydraulic conductivityKi 0.0479 cm/s

Average suction at the wetting front Ψ 28.5 cm

Saturated water content 0.1 cm3/cm3

Initial water content at start of the rainfall event 0.01 cm

Soil surface storage 10 cm

Table III.7: Infiltration parameter of modified Green-Ampt model on Tondi Kiboro catch-
ment.

The details of the modified model in unsteady rain are not presented here. They can be
found in [Chu78] and [SK82] with entire formula and a calculation validation. Based on
these formula, the infiltration rate is calculated offline (following the equations and Fortran
code developed in WinGAmpt tool, Agricultural and Biological Engineering Department
University of Florida, [MCEP09]) with rainfall data and some soil parameters presented in
Table III.7. Only measurements on water discharge are available and the water discharge
Q(x, t) at position and time t depends also the unknown Manning coefficient

Q(x, t) = Wf(h, x) = W
S
1/2
0

n
h5/3

with W the surface flow width at position x. Because the values of bed slope S0 and water
flow width W are perfectly known, the estimation of Manning coefficient can be related

to the estimation of variable αn =
S
1/2
0

n
. Notice that the flow sensor equipped on Tondi

Kiboro catchment is at the end of watercourse or corresponding to the point near the last
position of numerical model (the length of the numerical model is 660 m, longer than the
real flow with one spatial step). The cost function must be redefined, for this special case
of one sensor at numerical position xmeas = L, as follow:

J =
1

2

T∫
0

{ L∫
0

δA(x− xmeas)Wf(h, x)dx−Qmeas(xmeas, t)

}2

dt (III.42)

Comparing with the general case, the adjoint equation of λ(x, t) becomes:

−∂λ
∂t
− 5

3
αnh

2/3∂λ

∂x
+

5

3
Wαnh

2/3δA(x− xmeas)
[ L∫

0

δA(x− xmeas)Wf dx

−Qmeas(xmeas, t)

]
= 0

(III.43)
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And the equation of gradients for parameter αn is

∇Lαn =

T∫
0

[
λh5/3

]∣∣∣∣∣
L

0

dt−
T∫

0

L∫
0

h5/3
∂λ

∂x
dxdt+

T∫
0

L∫
0

δA(x− xmeas)Wh5/3

×
[ L∫

0

δA(x− xmeas)Wαh5/3 dx−Qmeas(xmeas, t)

]
dxdt

(III.44)

The numerical tools used in this example are Lax-Wendroff scheme and the interior point
algorithm of fmincon.

Estimation result
Among the used data (provided by LTHE), two sets are chosen and used: one for optimiza-
tion and one for verifying the consistency of the estimated model. Each data set includes
one measurement of water discharge Qmeas(xmeas, t) ∀t ∈ [0, T ] and one rainfall rate value
r(t) ∀t ∈ [0, T ]. The rainfall data set employed in the optimization process is taken on
2012/06/21 from 08:12 to 09:17 universal time. The infiltration rate and excess rain fall
are calculated offline. One can observe in Figure III.24a the values of rainfall, infiltration
rate and excess rainfall which are calculated offline and independent of the optimization
algorithm.
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Figure III.24: Manning coefficient estimation results using real data of Tondi-Kiboro catch-
ment (I).
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The estimation of Manning coefficient (via estimation of parameter αn) converges to
the value of 0.0151 (see convergence of n in Figure III.24b. This estimated value of n is
pretty reasonable and suitable with the mentioned characteristics of soil on Tondi Kiboro
basin. The found minimal cost function value is J ∗ = 0.3288 after 10 iterations. One can
see the cost function evolution in Figure III.24b). After the optimization procedure, the
value of estimated value of n is verified by simulating again the system equation with this
value of n and compare the discharge at the end of watercourse with the measured data.
The small biases between them shown in Figure III.25 allow to conclude that the model
simulates pretty well the characteristics of overland flow on Tondi Kiboro catchment. In
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Figure III.25: Manning coefficient estimation results using real data of Tondi-Kiboro catch-
ment (II): The comparison between simulated discharge and measured discharge.

order to verify the consistency of the numerical model and effectiveness of the optimization
process, the second data set measured on 2012/08/03 from 20:33 to 21:09 universal time is
thus used to simulate the system. Figure III.26a describes this rainfall rate of in this data
and the corresponding infiltration rate.
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Figure III.26: Manning coefficient estimation results using real data of Tondi-Kiboro catch-
ment (III).

The simulated water discharge at position xmeas follows the measured value of this
variable with an acceptable error as shown in Figure III.26b. These biases are possibly
caused by the error on sensor and in measurement procedure, and by the fact that only
the continuity equation is taken in consideration and the momentum one (which describes
a part of the system dynamics) is neglected. This validation allows to consider that equa-
tion (III.22) with mentioned parameter and estimated Manning coefficient as a validated
numerical model of overland flow taking place on Tondi Kiboro basin.

2.c.3 Estimation of Manning coefficient and infiltration parameter with Hor-
ton model

Estimation statement
After the estimation of Manning coefficient, the question is how can one can estimate
also the infiltration process only from the rainfall infiltration and the water discharge.
The information about the Green-Ampt infiltration in the preceding case presented in
Table III.7 is assumed to be unknown. But the complexity (discontinuities due to multi-
ponding time) of this model under variable rainfall condition creates a lot of difficulty for
the formulation of adjoint-gradient. The empirical Horton model is adopted instead of the
physical Green-Ampt model to overcome this obstacle. Being a purely empirical model, the
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Horton model is adopted to describe the dynamics of infiltration process after the rainfall
intensity exceeds the infiltration capacity of soil. With the meaning of a fitting equation
to data, Horton model does not depend on rainfall or soil properties and is described by a
function of time rather than the rainfall rate. The infiltration capacity tends to decrease
from the initial infiltration rate in an exponential manner, as:

i(t) = ic + (i0 − ic)e−kt (III.45)

where i(t) is the infiltration rate at time t, (m/s); k is the constant representing the expo-
nential rate, (1/s); ic is the equilibrium infiltration rate, (m/s); i0 is the initial infiltration
capacity, (m/s). As a consequence, this model only makes sense if i(t) is lower than r(t).
This model can be compared to the Green-Ampt model after the ponding time. The soil
surface of Tondi Kiboro catchment consists of 90% sand, which means that it has a very
large infiltration capacity. As a result, the ponding time is usually very small which allows
the use of the Horton model.
The model of overland flow at Tondi Kiboro is adjusted by turning 4 parameters, including
Manning coefficient n, equilibrium infiltration rate ic, initial infiltration rate i0 and expo-
nential rate k. They are also the parameters which will be identified. The cost function
J in this application case is defined the same as the previous one in equation (III.42),
using only one observed value of water discharge at the end of considered domain. The
system equation of overland flow can be seen as an non-switched hyperbolic system which
corresponds to equation (II.1) or equation (II.5) without switching function g2 and the
associated ODE. Basically, the calculations to find the adjoint system and the weak form
of gradient for estimated parameters can be directly obtained from the general case in
section 3. And the PDE of ajoint variable λ(x, t), the gradient for parameter α = S

1/2
0 /n

are the same with the case of Green-Ampt infiltration. On the other hand, the gradients
for the parameters are below

∇Lk =

T∫
0

L∫
0

λ
∂g

∂k
dxdt where

∂g

∂k
= −t(i0 − ic)e−kt

∇Li0 =

T∫
0

L∫
0

λ
∂g

∂i0
dxdt where

∂g

∂i0
= e−kt

∇Lic =

T∫
0

L∫
0

λ
∂g

∂ic
dxdt where

∂g

∂ic
= 1− e−kt

(III.46)
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Estimation result
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Figure III.27: Manning coefficient and Horton infiltration parameters estimation results
using real data of Tondi-Kiboro catchment (I).

The geometric characteristics of Tondi-Kiboro in this estimation problem are the same
as in Table III.6. The data used hereby are the same as in the preceding example with the
single one observation value of water discharge, provided by stream flow sensor at position
xmeas = L. In fact the same two data sets are chosen. The parameter estimation is realized
on the first data set taken on 2012/06/21 from 08:12 to 09:17 universal time whose rainfall
intensity is depicted in the high part of Figure III.27a. After 44 iterations as illustrated in
Figure III.27b, and from the initial guessed value of parameters [n0; i0c ; i

0
0; k

0] = [0.006; 1×
10−8; 4 × 10−7; 3 × 10−3], the parameters converge to the optimal values [0.0119; 9.3 ×
10−8; 9.995 × 10−6; 0.0017]. The estimated friction coefficient in this example is slightly
different from the one obtained in the earlier one (0.0151). But both of these two values are
consistent with the characteristics of the basin soil. The gap between them is possibly due
to the different infiltration models. The cost function J , shown in Figure III.28a decreases
from 13.0643 to minimum value of 0.9833.



88 Estimation application

0 5 10 15 20 25 30 35 40 45
0

2

4

6

8

10

12

14
Cost funtion J

Iteration

C
o
s
t
fu
n
c
t
io
n

Cost function J

(a) Evolution of cost function J

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Comparison of simulated and measured discharge

Time (s)

D
is
ch
ar
ge

(m
3
/s
)

Estimated discharge

Measured discharge

(b) Estimated and measured discharge

Figure III.28: Manning coefficient and Horton infiltration parameters estimation results
using real data of Tondi-Kiboro catchment (II).
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Figure III.29: Manning coefficient and Horton infiltration parameters estimation results
using real data of Tondi-Kiboro catchment (III).

It is interesting to compare the water discharge measurement with the simulated one ob-
tained by simulating system equation with the estimated variables. Figure III.28b describes
this comparison. One can see that there are no big differences between them, confirming
the correctness of estimation result. Moreover, the obtained result is very similar to the
one already obtained in example 2.c.2. The roles of the second rainfall data set (taken on
2012/08/03 from 20:33 to 21:09 universal time) is to verify the consistency of estimated
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values. The rainfall and infiltration rate (simulated with estimated parameters)are given
in Figure III.29a. As observed in Figure III.29b, the simulated discharged fits with the
measurements provided by sensors with some discrepancies which can be sensor error and
the changes of soil surface and cultivated plant over time.

3 Estimation results with different configurations

Almost all the presented estimation examples have been carried out in the case where the
initial state and/or distributed parameter are under the form of Gaussian functions. But
the accuracy of estimation results and convergence of optimization algorithm possibly de-
pend on the form of initial state and parameter of the system, as well as initial conditions
fed to optimization process. It is thus necessary to test the proposed estimation approach
with different configurations. Coming back to the case of state and distributed parameter
estimation of non-switched overland flow presented in subsection 2.b.3, this numerical ex-
ample will be re-carried out on different situations: 3 forms of initial state and distributed
parameter, and for each form, there are 6 different tests with 6 initial conditions for opti-
mization algorithm where 3 initial conditions are chosen manually and the 3 remaining are
generated randomly. The geometric and numerical parameters for simulation is the same
as example 2.b.3 (see Table III.4).
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Figure III.30: Real values and 6 initial conditions of initial state and parameter α(x) in
the case of constant initial state and parameter.

Constant initial state and parameter
In this case, the real values of initial state and parameter are chosen as constant distri-
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butions (i.e. identical all over the spatial domain). Figure III.30 depicts all the 6 pairs
of initial condition and parameter. The optimization process to estimate the chosen state
and parameter starts firstly with 3 manually selected initial values and then with 3 random
ones. Table III.8 summarizes the corresponding relative estimation error for the 6 cases.
In all the different situations of starting condition, the optimization process is successful
to recover the real states and parameter with very small relative error.

Estimation relative errors and minimal J
for each initial condition of optimization algorithm

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6
for α(x) 5.09× 10−8 5.92× 10−8 5.92× 10−8 5.07× 10−8 8.50× 10−8 3.08× 10−9

for hio(x) 3.09× 10−8 4.25× 10−8 3.79× 10−8 3.43× 10−8 5.30× 10−8 4.84× 10−9

J 3.31× 10−18 3.39× 10−18 1.82× 10−18 3.74× 10−18 2.83× 10−18 2.37× 10−20

Table III.8: Estimation errors with 6 different initial conditions in the case constant initial state
and parameter.

Gaussian initial state and parameter
The second case is to test the estimation accuracy when the real values of initial state and
parameter follow a Gaussian distribution like in the example which has been presented in
subsection 2.b.3. Similarly to the previous case, the error between real values and estimated
values of both state and parameter are very small. Figure III.31 and Table III.9 represent
respectively all the initial conditions and summary of estimation error.
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Figure III.31: Real values and 6 initial conditions of initial state and parameter α(x) in
the case of Gaussian initial state and parameter.
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Estimation relative errors and minimal J
for each initial condition of optimization algorithm

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6
for α(x) 3.42× 10−8 2.58× 10−8 1.94× 10−8 1.26× 10−8 1.79× 10−8 1.38× 10−7

for hio(x) 2.42× 10−8 1.82× 10−8 1.36× 10−8 9.80× 10−8 1.60× 10−8 1.04× 10−7

J 1.15× 10−18 6.39× 10−19 2.09× 10−19 9.26× 10−18 4.60× 10−15 1.17× 10−17

Table III.9: Estimation errors with 6 different initial conditions in the case Gaussian initial state
and parameter.

Random initial state and parameter
This last case is devoted to examine the results of adjoint based estimation approach in
the situation where both real initial state and parameter are generated randomly in a
reasonable range section (in order to preserve the physical meaning of variable). Figure
III.32a and Figure III.32b show the comparison between estimated values, real values and
initial conditions (of optimization algorithm) for initial state and parameter α(x). These
figures correspond to the case of condition 6 in Table III.10.
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Figure III.32: Estimation result of state and parameter estimation with initial condition 5

in Table III.10.

The relative errors for this case are also small. Figure III.33 and Table III.10 sum-
marize all the initial conditions, estimation error and final value of cost function J of 6

optimization situations in this case.
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Figure III.33: Real values and 6 initial conditions of initial state and parameter α in the
case of random initial state and parameter.

Estimation relative errors and minimal J
for each initial condition of optimization algorithm

Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6
for α(x) 1.04× 10−5 1.32× 10−7 2.27× 10−4 2.44× 10−6 9.04× 10−8 3.13× 10−7

for hio(x) 1.82× 10−5 1.20× 10−7 2.26× 10−4 4.39× 10−6 1.43× 10−7 7.74× 10−7

J 7.88× 10−13 1.27× 10−16 3.96× 10−11 4.31× 10−14 9.98× 10−15 2.04× 10−15

Table III.10: Estimation errors with 6 different initial conditions in the case random initial state
and parameter.

The convergence of optimization algorithm and the accuracy of estimation result (with
very small average relative error) in various estimation situations previously presented (3
forms of initial state and parameter and 6 initial conditions of optimization algorithm for
each form) of overland flow allows to validate the robustness of proposed approach with
changes in both real values of initial state and parameter and starting values of algorithm.
The same results are expected in a more general case of 1-D hyperbolic system.

4 Optimization algorithm with adjoint-gradient and with-
out adjoint-gradient

As previously mentioned in subsection 5.c of chapter II, it is worth to test the optimization
algorithm without using the calculated adjoint gradients vector ∇L. This means that
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the function fmincon of Matlab will calculate by itself the gradient (by finite difference)
instead of using the supplied adjoint gradient. This test is carried out in the case of random
initial state and parameters (with the 6 initial conditions of Table III.10). The estimated
results of two cases (with and without adjoint-gradient) will be compared in three aspects:
the average value of average estimation relative errors (the mean value of the average
relative errors of initial state and the average relative errors parameter α), minimum of
cost function and estimation time. The first aspect of both two cases is summarized in the
following table.

Average estimation relative errors
Condition 1 Condition 2 Condition 3 Condition 4 Condition 5 Condition 6

with adjoint-gradient 1.43× 10−5 1.26× 10−7 2.27× 10−4 3.37× 10−6 1.17× 10−7 5.44× 10−7

without adjoint-gradient 3.48× 10−5 43.74 2.08× 10−5 2.06× 10−5 1.86× 10−5 0.01

Table III.11: Comparison of average relative error in 6 different initial conditions between two
cases: with adjoint-gradient and without adjoint-gradient.
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Figure III.34: Comparison of minimum of cost function and estimation time in two cases:
with adjoint-gradient and without adjoint-gradient.

In the 6 configurations of initial condition of optimization algorithm, one can observe
that the adjoint-gradient allows the optimization algorithm to reach more accurate esti-
mation results in most of cases (case 1, 2, 4, 5, 6). More specially, in case 2, the average
relative error while using optimization algorithm without adjoint gradient is very large.
The fmincon tool in this case seems not to converge. It is necessary to take a look at
the minimum of cost function and estimation time. Figure III.34a and Figure III.34b re-
ceptively show that the fmincon tool fed with adjoint based gradient almost always gives
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smaller minimal value of cost function J (excepting initial condition 3) with shorter esti-
mation time. These points allow to conclude about the advantages of adjoint-gradient for
fmincon tool compared to its self calculated gradient by finite difference.

5 Estimation with noisy measurements

It is necessary to investigate the quality of the result of the proposed estimation approach
in the case of noisy measurements, that is the robustness of the adjoint method with respect
to the ill-posedness of the inverse problem caused by incertitude of observation. Let us
reconsider the estimation problem which has been presented in example 2.b.3 and the
initial configuration 6 (in Figure. III.33) for parameter α(x) and hi0(x). To represent the
noise in measurements, an additive white Gaussian noise is added to each observed value
hmeas(xj, t) with specified signal to noise ratio (SNR). The smaller SNR is, the more noisier
measurements are. By denoting the added noise at observation position xj as J (xj, t), the
SNR (in decibel, dB) at this position is given by :

SNRj
dB = 10log10

[∣∣hmeas(xj, t)∣∣2∣∣N (xj, t)
∣∣2
]

(III.47)

The SNR used in this example varies from 15 dB to 60 dB. There are 2 sensors used
to estimate α(x) and hi0(x). Figure III.35 represents the comparison between noise-free
measurement and noisy measurement at sensor location 10 in two cases, SNRdB = 15 dB

and SNRdB = 30 dB.
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Figure III.35: Comparison between noise-free measurement and noisy measurement at
sensor location 10
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In the case of noise-free, the average relative error of α(x) and hi0(x) is 5.44 × 10−7%

(presented in Table III.11). The estimation process is carried out with various values
of the SNRdB and the average relative error of the estimated state and parameters are
synthesized in the following table.

SNRdB Erreur (%)

15 13.97

25 6.15

30 3.09

40 1.23

60 0.11

Table III.12: Average relative error with different values of the SNRdB.

From the above table, one can observe that for the value of SNRdB being larger than
or equal to 30 dB, the estimation process gives a reasonable accuracy. The estimation
of parameter α(x) in two cases SNRdB = 15 dB and SNRdB = 30 dB, for instance, is
presented in Figure III.36.
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Figure III.36: Estimation of α(x) in two cases SNRdB = 15 dB and SNRdB = 30 dB.

By comparison with the estimation of α(x) in the case noise-free, illustrated in Figure
III.32a, the estimation errors are mainly at the begin of the spatial domain. These results
show that the adjoint based estimation method is sensitive to measurement noise. However,
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with a less noisy measurement (SNRdB ≥ 30 dB), an reasonable estimation accuracy can
be achieved.
In order to minimize the effect of noise, the idea is to weight the cost function J with the
inverse of the variance of the noise at each observation position xj, denoted by R(xj). The
cost function J in equation II.4 is rewritten as follow:

J =
1

2

S∑
j=1

T∫
0

[ L∫
0

δA(x−xj)u dx−umeasj (xj, t)

]
R−1(xj)

[ L∫
0

δA(x−xj)u dx−umeasj (xj, t)

]
dt

(III.48)
where the initial guessed value terms are omitted. This is equivalent to what is done in
the Kalman filter. The validation of this approach is a perspective for future works.

6 Conclusion

In this chapter, the application of adjoint-based estimation methodology has been inves-
tigated through various scenarios in two illustrative examples of hyperbolic system: over-
land flow, described by the continuity equation of Saint-Venant model, and traffic flow,
characterized by the LWR model. The scenarios include cases of constant parameter es-
timation, distributed parameter estimation, initial state estimation, or simultaneous state
and parameter estimation. They also include smooth or switched models. In all cases, the
proposed methodology gives pretty good results. In addition, the estimation methodology
applicability is also validated by successfully solving two parameters estimations of the
soil of overland flow on the Tondi-Kiboro catchment using only one measurement of water
discharge at the end of flow, and real data.
The tests of the adjoint-based estimation method with various configurations of initial
state and parameter and different algorithm initial values show some robustness of the
approach. In addition, the adjoint gradient is more effective than the finite difference gra-
dient for fmincon tool.

The sensor location or the position of measurements in these examples are sometimes
randomly chosen, sometimes manually chosen. For cases of parameter estimation, it seems
that the position of sensor does not affect a lot the convergence and accuracy of estimation
algorithm. However, after some simulations in the presented examples to determine the
sensitivity of estimation accuracy with respect to the number and the location of measure-
ments, a conclusion can be drawn that for estimating the initial state, the sensor must
be placed at the end of spatial domain to achieve observability. But only one sensor at
the boundary may not be enough the get a good estimation result. Moreover, the more
measurements available, the more accurate results can be obtained. But the accuracy
improvement is not noticeable while being compared to the cost paid for sensor number
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increment. The question is how to optimally locate the sensors to get as much useful
information as possible. The next two chapters of the second part are devoted to answer
this question.
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IV | Optimal sensor location method-
ology

The location of sensor used in the previous chapter dedicated to some optimal estima-
tion applications is selected manually. This means that the best locations of sensors,

in the sense of giving the smallest estimation errors, are chosen after several trials. The
manual method can be performed on the system for a small number of discretized segments
or when the number of possible locations is small. But in more complex situations, an in-
vestigation of optimal positions of sensors is thus needed to ensure at least observability and
also the best possible performance of the estimation process. Moreover, the number of sen-
sor is limited due to the economical and technical reasons. For a given sensor resource with
these constraints, the sensor placement will find the best possible locations to recover the
expected system information from measurements. A-state-of-the-art about sensor place-
ment techniques will be proposed in section 1. Some background about observability for
both linear and nonlinear system and the sensor placement criteria based on observability
Gramian will be presented in the section of preliminaries. For sensor placement of infinite
dimensional nonlinear systems, such as the overland flow described in section 2 of chapter
III, a focus will be made on the approach based on the Fisher information matrix. The
the main drawback of the Fisher information matrix based approach will be discussed. To
overcome this drawback a new sensor optimal location criteria based on the adjoint PDE
presented in subsection 3.c of chapter II will be proposed.

1 State-of-the-art

The problem of sensor locations for infinite-dimensional systems has been firstly addressed
in 1972 in the work of Bensoussan [Ben72]. Further approaches have been studied in vari-
ous works in the last four decades. Most of the proposed approaches can be classified into
four mains categories: some optimization methods based on the error covariance matrix of

101



102 Optimal sensor location

the Kalman filter, some methods based on the notion of Fisher information matrix, and
some approaches based on the observability Gramian or using the risk of failure of sensors
combined with the measurement cost.
Firstly introduced by Kalman et al. [Kal60] in 1960, the Kalman filter has been used
widely in signal processing, navigation and system and control. With its extensions and
generalizations such as the extended Kalman filter or the unscented Kalman filter, this al-
gorithm allows to combine the measurements from sensors for example, the control inputs
and the system dynamics to predict the system state. The Kalman filter belongs to the
class of asymptotical state observers. A. Bensoussan [Ben72] proved the existence of op-
timal sensor placement problems for a filtering problem of the Riccati equation in infinite
dimensional spaces. The location of sensors was considered as a control variable of the
optimal control problem of the filter corvariance equation. Athans et al. [Ath72] obtained
an analogous result to the work of Bensoussan by using Pontryagin’s maximum principle.
Following the same idea and with more detailed developments, the work of Curtain et al.
[CI78] has to be mentioned in the case of linear distributed systems in the framework of
the semi-group theory. Kumar et al. [KS78] developed a new approach that minimizes a
measure linked to the upper bound of the filter covariance while Omatu et al. [OKS78]
minimized the trace of the optimal error covariance matrix of the optimal filter to prove
the existence and uniqueness of a optimal sensor location for the operator Ricatti equation
of partial differential equations. More recently, Khan et al. [KMS15] showed that the
sensor must be placed at the position of disturbance by applying the Kalman filter for
state estimation in 1-D linear dispersive wave equation. The positions of measurements
are found by minimizing the trace of the solution of the Ricaati equation associated with
the optimal filter.
The Fisher information is a statistical notion firstly introduced by statistician R. Fisher
to measure the amount of information contained in the observation of a model, which is
supposed to be observable, in terms of state or parameters. In the state and parameter
estimation, the measurements taken at some positions of the spatial domain are the main
inputs for the estimation algorithm. The Fisher information matrix provides to be an
intuitive way to describe the amount of knowledge about the states and parameters to
be estimated. As a result, one can use some scalar functions of the Fisher information
or Fisher information matrix (in the case of multiple variables) to determine the optimal
positions of sensors. Two approaches based on the normalized Fisher information matrix
for locating sensors in parameter estimation process are proposed by T.D. Fadale et al.
[FNE95]. The D-optimality criterion, i.e the determinant of Fisher information matrix,
has been investigated by Uciński et al. [Uci99]; [Uci00]; [UP07]; [Tri+08] to find out the
trajectories of mobile sensor used to estimate parameters of distributed processes. An ex-
tension of this work to the case of mobile sensor networks is presented in [Uci12]. Autrique
et al. [Aut+00]; [ALR02] used the Fisher information matrix to determine sensor location
in thermal processes. Nahor et al. [Nah+03] where the modified E-criterion, minimizing
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the ratio between the largest and smallest eigenvalues of the Fisher information matrix,
is used to optimize the temperature sensor position in a hot wire probe in food process.
Alaña [Ala10] also used the determinant of Fisher information matrix to study the role
of measurement locations in the parameter estimation of a tabular reactor. By the same
approach S. Martinez et al. [MB06] studied the maximization of D-optimality criterion to
find the set of positions of mobile sensor network. After that the information from sensors
at chosen locations is used as input for target tracking realized by extended Kalman filter.
The observability gramian can be employed as an optimality criterion for optimal sensor
placement. Originally developed for linear dynamical systems case, this method can be ex-
tended to the case of nonlinear systems. In the case of linear systems, Müller et al. [MW72]
discussed the optimal sensor location through the minimization of some scalar functional,
such as the determinant, the trace or the maximal eigenvalue of the observability matrix.
The problem of sensor positioning in a tabular reactor, modeled by an infinite dimensional
model is treated in the work of Waldraff et al. [Wal+98] and van den Berg et al. [Ber+00].
The authors considered the minimal singular value of an observability gramian matrix as
a criterion for optimal sensor location. Georges firstly developed a placement criterion
based on the minimum eigenvalue of the transient observability gramian in [Geo95] for
finite-dimensional systems and then used this idea to find the optimal sensor network con-
figuration for air pollution monitoring. Due to the complexity of observability gramian
in the case of nonlinear and complex systems, such as in chemical reactions in fixed-bed
bio-reactors, Singh et al. [SH05] replaced it by the empirical one to determine the optimal
sensor location.

2 Preliminaries

2.a Observability

2.a.1 Linear time-invariant systems

It is necessary to briefly provide some background on observability because this property is
useful for developing some sensor positioning strategies. Basically, observability is required
to be able to reconstruct the values of the state variables from a given output or measure-
ment y obtained on a given period of time. If we consider some linear time-invariant system
of the form {

ẋ = Ax +Bu

y = Cx +Du
(IV.1)
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For asymptotically stable linear systems, observability can be related to the notion of
output energy function generated by any initial state x:

Eo =

∞∫
0

‖y(t)‖2dt =

∞∫
0

xT eA
T tCTCeAtxdt = xTWlinearx (IV.2)

where

Wlinear =

∞∫
0

eA
T tCTCeAtdt (IV.3)

where state vector x ∈ Rn; output y ∈ Rm and input vector u ∈ Rv. The matrix
Wlinear is called the observability gramian for linear system. If it has full rank, the system
is then observable. And in the opposite case, some of the states can not be recovered from
information of output y and the system is simply detectable.
For an observation horizon [0, T ], the observability gramian if a function of T defined by

Wlinear(T ) =

T∫
0

eA
T tCTCeAtdt

For linear systems, it can be interpreted as the solution of the differential Lyapunov equa-
tion: {

Ẇlinear(T ) = ATW(T ) + W(T )A+ CTC

Wlinear(0) = 0
(IV.4)

If the matrix A is stable and the observation time reaches infinity T → ∞, Wlinear can be
obtained as the non negative definite symmetric matrix solution of the Lyapunov equation:

ATWlinear + WlinearA+ CTC = 0 (IV.5)

Observability can also be assessed by using the observability matrix Mobs (which does not
require the stability assumption.

Mobs =


C

CA

CA2

...
CAn−1



2.a.2 Link between the Fisher information matrix and the observability gramian

The Fisher information matrix in this linear system provides an alternative way to derive
Wlinear(T ). By denoting the initial state x(0) of the linear system in equation (IV.1) by x0,
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the sensitivity of the output y with respect to x0 can be given by the following formulation
of Fisher information matrix:

F(T ) =

T∫
0

∂y(t)

∂x0

∂y(t)

∂x0

T

dt (IV.6)

Taking the partial derivative of equation (IV.1) with respect to initial condition x0 and
changing the derivative order, one can obtain

d

dt

(
∂xT (t)

∂x0

)
= A

∂xT (t)

∂x0

∂yT (t)

∂x0

= C
∂xT (t)

∂x0

(IV.7)

with initial condition
∂xT (0)

∂x0

= Id where Id is the identity matrix. The partial derivative

of output with respect to initial condition is then

∂yT (t)

∂x0

= CeAt (IV.8)

As a result, the Fisher information matrix in (IV.6) becomes

F(T ) =

T∫
0

eA
T tCTCeAtdt = W(T ) (IV.9)

We can see that the Fisher Information Matrix coincides with the observability gramian
for linear systems. This gives an interpretation of the observability gramian in terms of
the measure of the output sensitivity with respect to the initial conditions.

For infinite dimensional linear systems, some extension of the notion of observability
gramian has been proposed in the semi-group theory framework by Curtain et al. [CI78].
The observability gramian becomes an infinite-dimensional operator, solution of an oper-
ator Lyapunov equation which generalizes Lypaunov equation. In practice, the numeri-
cal solution of this equation requires complicated finite-dimensional reduction techniques,
which will not be explored in this thesis.

2.a.3 Nonlinear systems

However observability matrix Mobs and observability gramian Wlinear in equation (IV.3)
cannot assess the observability of a finite-dimensional nonlinear system. Some alterna-
tive conditions have been derived in various researches in last decades (see [Bes07] for an
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overview on observer tools for nonlinear systems). In practice, theses conditions appears
to be complicated to develop some systematic approaches. A local approach consists in
linearizing the nonlinear system around an operating point and in considering the ob-
servability at this point by using the rank test applied to the observability matrix of the
linearized system. The observability gramian of the linearized system can also be used to
asses local observability. However observability of the linearized system does not allow to
assess the observability of the nonlinear system. In order to avoid the computation of the
observability graminan through the numerical solution of large Lypaunov equations, a new
concept developed by S. Lall et al. [LMG02], empirical observability Gramian has been
developed. Let us consider a nonlinear system of the following form:{

ẋ(t) = f(x(t),u(t))

y(t) = g(x(t),u(t))
(IV.10)

where the notations f(.) and g(.) are state and output functions; x, y, u play the same role
as the linear system. Some intermediate matrices need to be defined to get the definition of
the so-called observability covariance matrix, which is strongly related to the observability
gramian, as mentioned later:

Tn =
{
T1,T2, . . . ,Tr

}
with Ti ∈ Rn×n; TT

i Ti = I and i = 1, 2, . . . , r

M =
{
c1, c2, . . . , cs

}
with ci ∈ R; ci > 0 and i = 1, 2, . . . , s

En =
{
e1, e2, . . . , en

}
with En is the standard vector in Rn

(IV.11)

where n is the system state size; r is the perturbation direction matrices number and
for each perturbation direction s is the number of different sizes. By denoting the initial
condition by

x(0) = cmTjek + xss (IV.12)

with xss being the steady state of system, the system output corresponding to initial state
x(0) is denoted by yilm(t). A new intermediate matrix Ψlm(t) ∈ Rn×n is defined, as
the norm of the difference between the current output at position i for perturbation l and
perturbation number m and output at steady state of system yss(t) by equation below at
each element position {i, j}.

Ψlm
ij (t) =

(
yilm(t)− yss

)T (
yilm(t)− yss

)
(IV.13)

The expression of the the observability covariance matrix is thus given by

Wnonlinear =
r∑
i=1

s∑
j=1

1

r2s2c2j

∞∫
0

TiΨ
ij(t)TT

i dt (IV.14)

If the initial state of the nonlinear system x(0) given in equation (IV.12) is in the domain
of attraction of the steady state xss or the system (IV.10) is asymptotically stable, the
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observability covariance matrix in equation (IV.14) reduces to the case of an empirical
observability Gramian. Moreover, by applying the technique of observability covariance
matrix on the case of linear and stable system described in equation (IV.1) as shown in
[LMG02]. For the perturbed initial condition (IV.12), the output of linear system (IV.1)
at steady state is

yilm(t) = CeAtcmTlei + Cxss

with the stable state of output yilmss = Cxss
(IV.15)

As a result, the element at position {i, j} of matrix Ψlm is

Ψlm
ij (t) =

(
CeAtcmTlei

)T (
CeAtcmTlei

)
= c2me

T
i T

T
l e

AT tCTCeAtTlej (IV.16)

The matrix Ψlm is finally written as

Ψlm(t) = c2mT
T
l e

AT tCTCeAtTl (IV.17)

And the corresponding observability covariance matrix holds

Wnonlinear =
r∑
i=1

s∑
j=1

1

r2s2c2j

∞∫
0

c2mT
T
l e

AT tCTCeAtTldt =

∞∫
0

eA
T tCTCeAt (IV.18)

and is identical to the observability matrix Wlinear. The choice of matrices Tn and M

play an important role for calculating the observabitity covariance matrix. The choice
of matrix T much satisfy the condition in its definition. Its value is usually chosen as
the negative identity matrix −I if the negative perturbations are used, and vice-versa
as the positive identity matrix I for positive perturbations. For the value of matrix M,
the authors in [SH05] state that the largest perturbation size must be selected to allow
the system to rest in the attraction domain of the considered operating point. Moreover,
the work of S. Lall et al [LMG02] shows that in the case of linear system, any value of
M give the same value of observability corvariance matrix, as shown in equation (IV.18).
The local observability of nonlinear system is guaranteed if and only if the rank of the
observability corvariance matrix or empirical observability gramian is full. The application
of this approach to infinite-dimensional systems, such as the balance laws studied in this
thesis, is an interesting perspective in future works.

2.b Criteria for optimal sensor locations

As previously presented, the rank of the observability matrix just answers the question
of whether or not the considered system is completely observable. It does give enough
information to investigate the optimal sensor positions or which locations gives the most
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useful information for the state estimation (that is the maximal sensitivity with respect
to unknown parameters to be estimated). In other words, it is necessary to define some
criteria to measure the degree of observability. By duality with the controllability problem,
Muller et al. [MW72] proposed three candidates for physically meaningful measures: the
maximum eigenvalue, the trace and the determinant of the inverse controllability matrix.
Because of the duality between observability and controllability, one can apply the same
approaches to find the potential locations of sensors. The details of these criteria applied
on the linear observability Gramian in equation (IV.3) will be presented below.

2.b.1 Smallest eigenvalue of the observability Gramian

By denoting the smallest eigenvalue of the inverse liner observability Gramian by notation
κ1. The formulation of this criterion is given by:

κ1 = λmin
(
Wlinear

)
(IV.19)

The notation λmin denotes the minimal eigenvalue of Wlinear. If the matrix is full rank or
its determinant is non null, the maximum eigenvalue of the inverse observability Gramian
can be used to replace this criterion. The smallest eigenvalue λmin represents the least
observable direction of system. In the same way, higher degree of observability is repre-
sented by larger value of the smallest eigenvalue. Each sensor location configuration gives
different values of κ1. By maximizing κ1 on the sensor position space, one can determine
the optimal locations giving the largest κ1. This criterion is also called as the E-optimality
criterion.

2.b.2 Trace of the inverse observability Gramian

With n being the states number of system, the trace criterion or sensitivity criterion, κ2 is

κ2 =
n

trace
(
W−1

linear

) (IV.20)

Another possibility to define this criterion with the same meaning is to use the trace of
W−1

linear, the so-called A-optimality criterion. A large value of κ2, corresponding to a small
trace of the observability matrix, gives the higher observability degree. As a result, the
optimal sensor location can be transformed into a maximization problem, max(κ2). But
this criterion may become problematic when system is not observable, since the inverse
observability matrix W−1

linear is then not defined. D. Ucinski [Uci00] proposed a similar
criterion but with the original observability matrix to overcome this issue

κ2 = trace
(
Wlinear) (IV.21)

This is denoted as the sensitivity criterion.
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2.b.3 Determinant of observability Gramian

This D-optimality criterion is defined apart from the determinant of the linear observability
Gramian as:

κ3 =
[
det
(
Wlinear

)]1/n (IV.22)

If κ3 is equal to zero, the system is not completely observable. And similarly, the improve-
ment of the observability degree corresponds to a larger value of the determinant.
Finally F. van Den Berg et al. [Ber+00] suggested two other similar criteria, the maximal
singular value, in equation (IV.23) and the trace, in equation (IV.24) of the observability
matrix.

κ4 = λmax
(
Wlinear

)
(IV.23)

κ5 =
n∑
i=1

λi
(
Wlinear

)
(IV.24)

where λi is the ith eigenvalue of Wlinear. One can remark that by definition, the observ-
ability Gramian is a symmetric positive (semi)-definite matrix, so the two terminologies
singular values and eigenvalues are equivalent.

3 Two approaches for the optimal location of sensors

Now the Fisher information matrix and the so-called new adjoint-based approaches will
be presented in more details in the next section of the thesis. After that, some compar-
isons between their characteristics will be also performed. Both of these approaches will
be developed on a general non switched hyperbolic system similar to the one presented
in chapter II. To avoid a far backward reference, the system equation and the optimal
estimation method will be briefly recalled. The dynamic of system is

∂u(x, t)

∂t
+
∂f(u(x, t), x)

∂x
= g(x, t)

u(x, 0) = ui0(x) and u(0, t) = ub0(t)
(IV.25)

with the flow function f(u(x, t), x) =
N∑
i=1

αi(x)ϕi(u) and the unknown initial state ui0(x).

The least-square cost function J is then

J =
1

2

N∑
j=1

T∫
0

{ L∫
0

δA(x− xj)u dx− umeasj (xj, t)

}2

dt (IV.26)

with the assumption that there is N available sensors and without the calibration terms
related to the first guessed values.
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3.a A Fisher information matrix approach

In equation (IV.26) of cost function J , the measurement umeasj (xj, t) depends on the posi-
tion xj of the jth sensor. This means that the result, of course, depends on these positions.
The Fisher information matrix provides a way to formulate the sensitivity of umeasj (xj, t)

with respect to the estimated state and/or parameters. The formulation of this approach is
developed for both the initial state ui0(x) and some parameters αi(x). Because of the inde-
pendence between these variables, the obtained formulation can be used separately without
any constraints. In order to formulate the Fisher information matrix, let us denote the
unknown values, which are the discretized variables obtained at M discretization points
on spatial domain [0, L]: θ = [αi(xk) u

i
0(xk)]

T︸ ︷︷ ︸
size (N + 1)× (M − 2)

with k ∈ [2 . . .M − 1]. By supposing that

the number of sensors is S, denoting the set of discrete positions of sensors by X , and xj
denoting variable in this set corresponding to the jth sensor, the Fisher information matrix
is

F(xj) =
1

ST

S∑
j=1

T∫
0

ν(xj, t)Tν(xj, t) dt (IV.27)

where the term

ν(xj, t) =

[
∂u(xj, t)

∂θ

]
(IV.28)

is the partial derivative of system variable u(x, t) at sensor position xj with respect to
variable θ. It is also called the sensitivity vector. The reason behind this choice is that
the inverse of the Fisher information matrix in (IV.27) is a good approximation of the
covariance error matrix, cov(θ̂) of the estimated value of θ̂ with a large time horizon [WP97].
It is calculated by taking the partial derivative of the two sides of equation (IV.25) with

respect to θ, with the notation F (u, x, θ) representing the derivative
∂f(u(x, t), x)

∂x
. The

sensitivity is obtained as the solution of

∂t

[
∂u

∂θ

]
= −∂F

∂θ
− ∂F

∂u

∂u

∂θ
+
∂g

∂θ
+
∂g

∂u

∂u

∂θ
(IV.29)

The last two components of equation (IV.29) are equal to zero because they are not function
of θ. Equation (IV.30) finally becomes

∂t

[
∂u

∂θ

]
= −∂F

∂θ
− ∂F

∂u

∂u

∂θ
(IV.30)



3. Two approaches for the optimal location of sensors 111

By changing the partial derivative orders (do the derivative of all terms with respect to θ

before to x and to t), the derivatives
∂F

∂θ
and

∂F

∂u
, in equation (IV.30) are as bellows:

∂F

∂θ
=

∂

∂x

{ N∑
i=1

[
∂αi(x)

∂θ
ϕi(u) + αi(x)

∂ϕi(u)

∂u

∂u

∂θ

]}

=
N∑
i=1

[
∂αi(x)

∂θ

∂ϕi(u)

∂u

∂u

∂x
+
∂αi(x)

∂x

∂ϕi(u)

∂u
× ∂u

∂θ
+ αi(x)

[∂∂ϕi(u)

∂u
∂x

∂u

∂θ
+
∂ϕi(u)

∂u

∂
∂u

∂θ
∂x

]]

∂F

∂u
=

∂

∂x

N∑
i=1

αi(x)
∂ϕi(u)

∂u
=

N∑
i=1

[
∂αi(x)

∂x

∂ϕi(u)

∂u
+ αi(x)

∂
∂ϕi(u)

∂u
∂x

∂u

∂θ

]
(IV.31)

where
∂αi(x)

∂θ
= [0 . . . 1︸︷︷︸

position i

. . . 0]

By inserting these terms into equation (IV.30), one can obtain the equations describing

the dynamics of sensitivity
∂u

∂θ
, as defined below:

∂

∂t

[
∂u

∂θ

]
+

∂

∂x

[
∂u

∂θ

]
N∑
i=1

αi(x)
∂ϕi(u)

∂u
+
∂u

∂θ

N∑
i=1

[
2
∂αi(x)

∂x

∂ϕi(u)

∂u
+ αi(x)

∂
∂ϕi(u)

∂u
∂x

]

+

[
∂u

∂θ

]2 N∑
i=1

αi(x)
∂
∂ϕi(u)

∂u
∂x

+
N∑
i=1

∂αi(x)

∂θ

∂ϕi(u)

∂u

∂u

∂x
= 0

(IV.32)

More specifically, equation (IV.32) can be rewritten for each parameter αi(xk) as:

∂

∂t

[
∂u

∂αi(xk)

]
+

∂

∂x

[
∂u

∂αi(xk)

]
N∑
i=1

αi(x)
∂ϕi(u)

∂u
+

∂u

∂αi(xk)

N∑
i=1

[
2
∂αi(x)

∂x

∂ϕi(u)

∂u

+ αi(x)
∂
∂ϕi(u)

∂u
∂x

]
+

[
∂u

∂αi(xk)

]2 N∑
i=1

αi(x)
∂
∂ϕi(u)

∂u
∂x

+
N∑
i=1

∂αi(x)

∂αi(xk)

∂ϕi(u)

∂u

∂u

∂x
= 0

(IV.33)

The initial condition for this PDE is
∂u

∂αi(xk)(x, 0)
= 0 ∀ x ∈ [0 . . . L] and the boundary

condition
∂u

∂αi(xk)
(0, t) = 0 ∀ t ∈ [0 . . . T ]. Similarly, sensitivity equation (IV.32) with
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respect to the initial condition ui0(xk) is given by

∂

∂t

[
∂u

∂ui0(xk)

]
+

∂

∂x

[
∂u

∂ui0(xk)

]
N∑
i=1

αi(x)
∂ϕi(u)

∂u
+

∂u

∂ui0(xk)

N∑
i=1

[
2
∂αi(x)

∂x

∂ϕi(u)

∂u

+ αi(x)
∂
∂ϕi(u)

∂u
∂x

]
+

[
∂u

∂ui0(xk)

]2 N∑
i=1

αi(x)
∂
∂ϕi(u)

∂u
∂x

= 0

(IV.34)

with following initial and boundary conditions

∂u

∂ui0(xk)
(x, 0) = [0 . . . 1︸︷︷︸

position k

. . . 0]

∂u

∂ui0(xk)
(0, t) = 0 ∀ t ∈ ]0, T ]

∂u

∂ui0(xk)
(0, 0) = 0

(IV.35)

Equations (IV.33) and (IV.34) are two nonlinear PDEs. In order to determine
∂u

∂ui0(xk)

and
∂u

∂αi(xk)
, these two equations must be discretized and solved via the use of numerical

schemes which have been presented in section 4 of chapter II. Similarly to the case of
the direct system discretization, their spatial domains [0...L] are divided into P sections
with step 4x and time domain [0...T ] into Q sections with step 4t. For the first equation
(IV.33), the solution (at each observation position xj) is a vector ofN×P elements (because
there are totally N parameter α) and each element is a vector size 1×Q.

∂u(xj, t)

∂α(x)
=



∂u(xj, t)

∂α1(x1)
· · ·

∂u(xj, t)

∂αi(xk)
· · ·

∂u(xj, t)

∂αN(xP )




N × P (IV.36)
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For the second equation, the solution
∂u

∂ui0
is a vector of only P elements and each element

is a matrix of size 1×Q.

∂u(xj, t)

∂ui0(x)
=



∂u(xj, t)

∂ui0(x1)
· · ·

∂u(xj, t)

∂ui0(xk)
· · ·

∂u(xj, t)

∂ui0(xP )




P (IV.37)

The size of sensitivity vector
∂u(xj, t)

∂θ
is then (N + 1)P . The Fisher matrix defined by

expression (IV.27) is consequently a (N + 1)P × (N + 1)P symmetric matrix. Each sensor
position xj generates a Fisher matrix. All the matrices given by all the sensors have to
be added and normalized by dividing by the number of sensor S and observation horizon
T . The resulting Fisher information matrix reflects the sensitivity of the sensor measure-
ments with respect to the parameters to be estimated through sensitivity vectors ν(xj, t).
But the direct use of this matrix does not seem to be a possible way to directly derive
sensor locations and a metric (a measure of sensitivity) has to be introduced. Some scalar
functions denoted κF (with the same meaning with κ in subsection 2.b) can play this role.
Several choices for such a function have been also presented in 2.b. The optimal positions
of sensors based on the Fisher information matrix are the solutions of the maximization
problem with function κF , as follows:

max
xj ∈X

{
κF (F(xj))

}
(IV.38)

The main drawback of this Fisher matrix approach applied to PDEs is the need to compute
the solutions of a very large number of sensitivy PDEs, whose number grows exponentially
with the number of parameters to be estimated.

3.b An adjoint based approach

The previously-defined Fisher information matrix approach along with the other recalled
approaches, such as the approach based on the error covariance matrix of the Kalman or
extended Kalman filter, approaches using the observability Gramian, are very demanding
in terms of computational complexity when large-scale systems are considered. This is
especially the case if we consider complex systems governed by PDEs. Moreover, the
sensor placement process uses different criterions and is completely separated form the
optimal estimation process. This needs additional calculation efforts. The idea is now to
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connect the two processes. A new approach based the adjoint PDE is proposed for the
initial state estimation. However this approach can be extended without restriction to
parameter estimation problems. From the previous analysis and derivation in section 2 of
the chapter devoted to the estimation method methodology, it appears that the gradients in
(II.36) represent the sensitivity of the objective functional with respect to the initial state of
system. This sensitivity function should not be equal to zero to ensure observability of the
initial state. The basic idea is thus to use the absolute value of the gradients as a measure of
the degree of observability. Let us recall the form of gradients of the Lagrangian objective
functional with respect to state ui0(xj) of system (IV.25) and cost function (IV.26).

∇Lui0(xj) = −λ(xj, 0) (IV.39)

Since this gradient is the ingredient of the steepest descend method used to solve the op-
timal estimation problem, there is now a direct connection between the degree of observ-
ability and the performance of the iterative method based on this gradient. The criterion
used for solving the optimal sensor placement problem is now defined as follows:

κg(xj) = min
{
abs(−λ(xj, 0))

}
(IV.40)

and
{
abs(−λ(xj, 0))

}
is a vector of M − 2 element corresponding to M − 2 discrete values

of initial state to estimate. The optimal sensor positions will be consequently the solutions
of the maximization of κg:

max
xj ∈ X

{
κg(xj)

}
(IV.41)

Since this approach directly connects the adjoint-based gradients used for the optimal
estimation to the criterion used for sensor placement, the computation is less demanding
is reduced because there is no need to make additional computation. Moreover, it helps to
measure the impact of the sensor positions on the performance of the estimation algorithm.
To the best of our knowledge, this approach has not been studied before.

4 Conclusion

Along with the state of the art on optimal sensor placement methods and some background
on observability, two sensor placement approaches for optimal sensor locations have been
developed in the present chapter. The Fisher information matrix method relies on the
maximization of some scalar criteria, such as the determinant, the minimal eigenvalue and
the trace of a Fisher information matrix of sensitivity functions measuring the degree of
observability. The main drawbacks of this method is the computational complexity, which
grows exponentially with the system size, especially in the case of infinite-dimensional
systems. This drawback has motivated the proposal of a new approach based on the adjoint
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state of the optimal estimation problem as a measure of both the degree of observablity
and the performance of the iterative method used to solve the optimal estimation problem
at the same time. The adjoint-based method has been applied only to the case of state
estimation. An extension to both state and parameters estimation should be investigated.
The application of both the Fisher information matrix approach (for single overland flow
and traffic flow) and the adjoint-based approach (for overland flow network and traffic
flow) will be studied in the next chapter. The adjoint-based sensor placement methodology
developed in this chapter is presented as a part of publication [NGB16a].





V | Optimal sensor location application

The objectives of this chapter are to illustrate the effectiveness of the two approaches
developed in chapter IV for solving the optimal sensor placement problem. Three case

studies: a traffic flow, an overland flow, and an overland flow network, will be successively
investigated. The optimal placement of one sensor on the traffic flow will be performed
by using the new adjoint-based criterion proposed in this thesis. The impact of the choice
of the sensor location on the estimation of the initial state will be then investigated. In a
second part of this chapter, the optimal placement of one sensor on a single overland flow
will be assessed by using the Fisher information matrix criterion and the adjoint-based
criterion. Again, the impact of the choice of the sensor location on the state estimation
process will be studied. Finally a more complex case study consisting in a network of three
water flows will be also investigated. The optimal placement of multiple sensors will be
considered in this section together with a analysis of the impact on the state estimation
process.

1 Sensor placement in a traffic flow

1.a Using the adjoint-based criterion

In this section, the effectiveness of the adjoint-based location technique of one single sensor
is investigated on a traffic flow described by the LWR model already presented. The
parameters of the studied highway are the same as the ones defined in Table III.2. Figure
V.1 shows that the sensor must be placed at the discrete position 10. This result is
consistent with the case of an overland flow.

117
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(a) Estimation result with position 10.
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(b) Estimation result with position 8.

Figure V.2: State estimation in traffic flow with sensor position 10 and position 8.
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Figure V.1: One-sensor placement using the adjoint-based criterion.

1.b State estimation using optimal and non optimal locations of
a single sensor

On the basis of the previous sensor placement result, the estimation algorithm is carried
out with two scenarios: using the optimal position 10 and using the non optimal one, i.e
position 8. Figure V.2a and Figure V.2b show that the optimal location of the sensor
at position 10 allows a very accurate estimation of the vehicle initial state (the average
relative errors are 8× 10−8%, and 16.5% respectively for position 10 and 8).
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2 One-sensor placement in overland flows

2.a One-sensor placement in a single overland flow

2.a.1 Using the Fisher Information Matrix criterion

The criterion for sensor location which has been formulated in section 3.a of chapter IV
will be applied to determine the appropriate position of one sensor in order to estimate
the initial state of an overland flow. All the criteria including the D-optimality criterion
(determinant of Fisher information matrix), E-optimality criterion (minimal eigenvalue of
Fisher information matrix) or the sensitivity criterion (trace of Fisher information matrix)
are used and their characteristics will be analyzed. The parameters of the overland flow
are the same as the ones presented in Table III.5. This case takes in account only 1

sensor which can be placed on a discrete positions set (integer number from 1 to 10 with
11 discretized points) The computation of the three placement criteria are presented in
Figures V.4, V.3a and V.3b where the y-axis gives the value of the criterion, while the
x-axis represents the discrete positions of the sensor.
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(a) E-optimality criterion.
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(b) Sensitivity criterion.

Figure V.3: Sensor placement used Fisher information matrix criterion in an overland flow:
trace-based criterion and E-optimality criterion.
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Figure V.4: Sensor placement used Fisher information matrix criterion in an overland flow:
D-optimality criterion.

One can see that the optimal location according to the trace-based sensitivity criterion
is given by the highest peak (0.17) in Figure V.3a, which corresponds to position 6. This
result is not relevant because if the sensors are placed at this position, the sensitivity of
the measurement with respect to the values of initial state after position 5 are all equal to
zero. This means that the trace-based criterion is not suitable, since it cannot guarantee
the observability of all the distributed state. On the contrary, E-optimality criterion shows
that the optimal position is the last discrete position 10. This position is known as being the
one which ensures observability. The same result is found in the case of the D-optimality
criterion, as shown in Figure V.4. Note that, due to the ill-conditioned computation, the
largest determinant of Fisher information matrix, given by measurement at position 10, is
here very small 1.5× 10−38, but still larger than the other ones. This position corresponds
to the optimal sensor position given using both D and E-optimality criterion.

2.a.2 Using the adjoint-based criterion

On the same system, the adjoint-based criterion is now used to find the optimal location of
a single sensor. The evolution of this criterion over the position set is depicted in Figure V.5
where one can easily observe that position 10 gives the maximum value of index function
I. This result is similar to the one obtained with the Fisher information matrix criterion.



2. One-sensor placement in overland flows 121

1 2 3 4 5 6 7 8 9 10
0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

Index function I

Position

I

Index function I

Figure V.5: One-sensor placement ubased on the adjoint-based criterion.

2.a.3 State estimation using optimal and non optimal locations

Each of the two proposed methods shows that the optimal location is the position 10 or
at 900 −m, that is the end of the interior section of spatial domain. It is now important
to use the measurement at this position to define the cost function J and to assess the
performance of the estimation algorithm. In addition, the measurement at two positions 5

and 6 (i.e. at 400−m and 500−m) will be evaluated also to illustrate the algorithm behavior
when the condition ensuring full state observability over the domain are not fulfilled. Figure
V.6a presents the estimation result of the initial state of the system with measurements
performed at position 10. The estimated values are pretty close to the real one with a
small average relative error of 0.41%. It appears that the relative errors corresponding to
measurements performed at positions 5 and 6 are 20.75% and 29.75%, which are much
larger. Not surprisingly, the only good estimated value of the state components, see in
Figure V.6b and Figure V.7 are obtained at positions 5 and 6.
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(a) Estimation result at position 10.
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(b) Estimation result at position 5.

Figure V.6: State estimation in an overland flow with a single sensor at position 10 and
position 5.

100 200 300 400 500 600 700 800 900

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Estimation of hi
o
(x)

x (m)

h
i o
(x
)(
m
)

Estimated h
i
o
(x)

Real hi
o
(x)

h
i
o
(x) initial

Figure V.7: State estimation in an overland with a single sensor at position 6.

2.b Sensor placement in an overland flow network

The adjoint-based criteria is now applied to a more complex system: a network of three
water flow pools, with two upstream flow pools whose waters are pouring into a third pool
(i.e, a Y topology). The problem is not to locate multiple sensors all over the spatial
domains of the three flows and to investigate the optimal position combinations in order
top get the best estimate of all the initial states of the three flows.
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2.b.1 Dynamics of overland flow network

As depicted in Fig. V.8, this network consists in three small overland flows defined on three
spatial domains called Ω1 = [a1, a3], Ω2 = [a2, a3] and Ω1 = [a3, a4] with spatial variables
(x1, x2, x3) ∈ Ω1×Ω2×Ω3, respectively denoted by Σ1, Σ2 and Σ3. The downstream end of
the two upstream flow pools Σ1 and Σ2, denoted as a3, is the interconnection point where
the water runs into the downstream flow pool Σ3.

a1

a2

a3 a4

Σ1

Σ2

Σ3

Figure V.8: Overland flow network configuration

Each of the three flows are governed by the water flow depth h(x, t) PDE, already
defined in equation (III.22) of chapter III. It is more convenient for reading if the system
dynamics are represented hereafter by equation (V.1).

∂hj(xj, t)

∂t
+
∂fj(hj(xj, t))

∂xj
= rj(t)− ij(t)

j = {1, 2, 3} for Σ1, Σ2 and Σ3

(V.1)

with the same notations as the ones in equation (III.22). The subscript j is used to refer to
the jth system. Some Dirichlet conditions are used to define the upstream end boundary
conditions of system 1 and 2, together with some initial state conditions, as follows

(Σ1)

{
h1(x1, 0) = hi01(x1)

h1(a1, t) = hb01(t)
(Σ2)

{
h2(x2, 0) = hi02(x2)

h2(a2, t) = hb02(t)

The initial state of system Σ3 is defined similarly, h3(x3, 0) = hi03(x3). At the interconnec-
tion point between the three pools at position a3 , the mass conservation principle is used
to define the confluence condition, which is specified by equation (V.2)

f3(a3, t) = f1(a3, t) + f2(a3, t) (V.2)
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This condition can be expressed in terms of water flow depth hj(xj, t) as

h3(a3, t) =
{[
α1(a3)h

5/3
1 (a3, t) + α2(a3)h

5/3
2 (a3, t)

]
/α3(a3)

}3/5

(V.3)

This means that the boundary condition of Σ3 at a3 is specified by the water depths of the
two upstream flows. The information about initial states of upstream flows is transmitted
to the downstream system through this confluence condition,as the derivation of the adjoint
equations of the network will show it in the next section.

2.b.2 Generalized adjoint-based criterion for the water flow network

Derivation of the adjoint equations
Because the general criterion of gradient defined in the previous chapter is defined for a
single onverland flow only, a more general derivation of the adjoint equations of the network
is needed. The initial conditions functions hi01(x1), hi02(x2) and hi03(x3) of all the systems
are supposed to be unknown and need to be estimated by solving also an inverse problem
based on a new cost function J . Without any lost of generality, it is assumed that multiple
sensors can be located along all the three pools. As a consequence, J can be defined by
equation (V.4).

J =
1

2

M1∑
j1=0

T∫
0

{ a3∫
a1

δA(x1 − x1j1)h1dx1−hmeas1 (x1j1 , t)

}2

dt+
1

2

M2∑
j2=0

T∫
0

{ a3∫
a2

δA(x2 − x2j2)h2dx2

− hmeas2 (x2j2 , t)

}2

dt+
1

2

M3∑
j3=0

T∫
0

{ a4∫
a3

δA(x3 − x3j3)h3dx3 − hmeas3 (x3j3 , t)

}2

dt

(V.4)

The sensor positions are denoted by x1j1 , x2j2 and x3j3 , respectively for system 1, system
2 and system 3. Again the goal is to derive an adjoint-based criterion suitable to derive
the optimal locations of the sensors in order to get the best performance of the inverse
problem algorithm, in a similar way to the one presented in the previous chapter. In this
case, the variables to be estimated are the set of the three initial states of the network. The
derivation of the adjoint system will be now briefly presented. The objective functional L,
defined on the function space L2([a1, a3], [0, T ]) × L2([a2, a3], [0, T ]) × L2([a3, a4], [0, T ]) ×
L2([a1, a3])× L2([a2, a3])× L2([a3, a4]) into R with three Lagrangian multipliers λ1(x1, t),
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λ2(x2, t) and λ3(x2, t) is given by the following equation.

L(hj(x, t), h
i
0j(xj)) = J +

T∫
0

a3∫
a1

λ1(x1, t)Σ1dx1dt+

T∫
0

a3∫
a2

λ2(x2, t)Σ2dx2dt

+

T∫
0

a4∫
a3

λ3(x3, t)Σ3dx3dt with j={1, 2, 3}

(V.5)

The inner product <,> is here defined as

< ∇L, π >=

T∫
0

a3∫
a1

∇Lh1(x1,t)δh1(x1, t)dx1dt+

T∫
0

a3∫
a2

∇Lh2(x2,t)δh2(x2, t)dx2dt

+

T∫
0

a4∫
a3

∇Lh3(x3,t)δh3(x3, t)dx3dt+

a3∫
a1

∇Lhi01(x1)δh
i
01(x1)dx1 +

a3∫
a2

∇Lhi02(x2)δh
i
02(x2)dx2

+

a4∫
a3

∇Lhi03(x3)δh
i
03(x3)dx3

(V.6)

where ∇L is a vector of 6 elements ∇L = [∇Lh1(x1,t) ∇Lh2(x2,t) ∇Lh3(x3,t) ∇Lhi01(x1)
Lhi02(x2) Lhi03(x3)] with the variation vector in all directions π = [δh1(x1, t) h2(x2, t)

h3(x3, t) hi01(x1) hi02(x2) hi03(x3)]. The first variation of L is equal to the variation of
two parts, J and the sum of three remaining terms called K in direction π. The variation
of cost function J is given as,

δJ =

M1∑
j1=1

T∫
0

a3∫
a1

δA(x1 − x1j1)
[ a3∫
a1

δA(x1 − x1j1)h1dx1 − hmeas1 (x1j1 , t)

]
δh1dx1dt

+

M2∑
j2=1

T∫
0

a3∫
a2

δA(x2 − x2j2)
[ a3∫
a2

δA(x2 − x2j2)h2dx2 − hmeas2 (x2j2 , t)

]
δh2dx2dt

+

M2∑
j2=1

T∫
0

a4∫
a3

δA(x3 − x3j3)
[ a3∫
a3

δA(x3 − x3j3)h3dx3 − hmeas3 (x3j3 , t)

]
δh3dx3dt

(V.7)
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end also the first variation of K is obtained by using an integration by part technique:

δK =

a3∫
a1

[
λ1δh1

]∣∣∣∣∣
T

0

dx1−
T∫

0

a3∫
a1

∂λ1
∂t

δh1dx1dt+

T∫
0

[
λ1
∂f1
∂h1

]
δh1

∣∣∣∣∣
a3

a1

dt−
T∫

0

a3∫
a1

∂f1
∂h1

∂λ1
∂x1

δh1dx1dt

+

a3∫
a2

[
λ2δh2

]∣∣∣∣∣
T

0

dx2−
T∫

0

a3∫
a2

∂λ2
∂t

δh2dx2dt+

T∫
0

[
λ2
∂f2
∂h2

]
δh2

∣∣∣∣∣
a3

a2

dt−
T∫

0

a3∫
a2

∂f2
∂h2

∂λ2
∂x2

δh2dx2dt

+

a4∫
a3

[
λ3δh3

]∣∣∣∣∣
T

0

dx3−
T∫

0

a4∫
a3

∂λ3
∂t

δh3dx3dt+

T∫
0

[
λ3
∂f3
∂h3

]
δh3

∣∣∣∣∣
a4

a3

dt−
T∫

0

a4∫
a3

∂f3
∂h3

∂λ3
∂x3

δh3dx3dt

(V.8)

The three adjoint systems are then derived as the weak form of the gradient of L with
respect to h1(x, t), h2(x, t) and h3(x, t). They are obtained by collecting the terms under
the double integral multiplied by variations δh1, δh2 and δh3. The three adjoint PDEs are
given by equations (V.9), (V.10) and (V.11).

−∂λ1
∂t
− ∂f1
∂h1

∂λ1
∂x1

+

M1∑
j1=0

δA(x1−x1j1)
[ a3∫
a1

δA(x1−x1j1)h1(x1, t)dx1−hmeas1 (x1j1 , t)

]
= 0 (V.9)

− ∂λ2
∂t
− ∂f2
∂h2

∂λ2
∂x2

+

M2∑
j2=0

δA(x2 − x2j2)
[ a3∫
a2

δA(x2 − x2j2)h2(x2, t)dx2 − hmeas2 (x2j2 , t)

]
= 0

(V.10)

− ∂λ3
∂t
− ∂f3
∂h3

∂λ3
∂x3

+

M3∑
j3=0

δA(x3 − x3j3)
[ a4∫
a3

δA(x3 − x3j3)h3(x3, t)dx3 − hmeas3 (x3j3 , t)

]
= 0

(V.11)
The weak gradients of L with respect to the initial states are the terms multiplied by
δhj(xj, 0) where j ∈ {1, 2, 3}. The optimization algorithm will ensure that these gradients
will vanish in order to satisfy the first order necessary conditions for optimality.

∇Lhi01(x1) = −λ1(x1, 0) ∇Lhi02(x2) = −λ2(x2, 0)

∇Lhi03(x3) = −λ3(x3, 0)
(V.12)

After the derivation of the gradients and the adjoint equations, the remaining terms of (V.7)
and (V.8) are gathered together and set to zero to derive the initial state and boundary
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conditions for the adjoint PDEs.

−
a3∫
a1

λ1(x1, T )δh1(x1, T )dx1 −
a3∫
a2

λ2(x2, T )δh2(x2, T )dx2 −
a4∫
a3

λ1(x3, T )δh3(x3, T )dx3

+

T∫
0

[
λ1
∂f1
∂h1

]
δh1

∣∣∣∣∣
a3

a1

dt+

T∫
0

[
λ2
∂f2
∂h2

]
δh2

∣∣∣∣∣
a3

a2

dt+

T∫
0

[
λ3
∂f3
∂h3

]
δh3

∣∣∣∣∣
a4

a3

dt = 0

(V.13)

Since the boundary conditions of the three systems are fixed, their variations are equal
to zero, i.e, δh1(a1, t) = 0, δh2(a2, t) = 0. To satisfy the above equality for all varia-
tion directions δh1(x1, T ), δh2(x2, T ) and δh3(a4, t), the following equalities must hold:
λ1(x1, T ) = 0, λ2(x2, T ) = 0, λ3(x3, T ) = 0 and λ3(a4, t) = 0 which are also the initial
conditions for the adjoint systems. Finally, the remaining time integrals are gathered as
follows:
T∫

0

[
λ1(a3, t)

∂f1
∂h1

(a3, t)δh1(a3, t) + λ2(a3, t)
∂f2
∂h2

(a3, t)δh2(a3, t)

− λ3(a3, t)
∂f3
∂h3

(a3, t)δh3(a3, t)

]
dt = 0

(V.14)

By considering the first variation of interconnection condition (V.2) at the interconnection
point a3, one can obtain

δf3(a3, t) = δf1(a3, t) + δf2(a3, t) (V.15)

By removing the time integral of equation (V.14) and putting equation (V.15) into (V.14)
the following equalities hold:

λ1(a3, t) = λ3(a3, t)

λ2(a3, t) = λ3(a3, t)
(V.16)

These boundary conditions of the three adjoint systems are therefore induced by the con-
fluence condition (V.2) of the direct PDEs.

Derivation of the generalized sensor placement criterion
As in the approach proposed in section 3.b of the previous chapter, the gradients defined
by equation (V.12) are the ingredients for the generalized sensor placement criterion. Fol-
lowing the idea developed in 3.b, the absolute minimal value of gradients is used as an



128 Optimal sensor location

index function. However in this case, there are three initial states to be estimated. This
means that the selected locations will guarantee the observability of all states over the
spatial domains of all three systems. By denoting the combination of discretized observa-
tion positions selected as ξ and the set of all the position locations on the three domains
Ω1,Ω2 and Ω3 as χ = {xi1, xj2, xk3} where 1 < i ≤ N1 − 1 with 4x1 = (a3 − a1)/N1,
1 < j ≤ N2 − 1 with 4x2 = (a3 − a2)/N2 and 0 < k ≤ N3 − 1 with 4x3 = (a4 − a3)/N3,
the discretized versions of the gradients for initial states in equation (V.12) are given by

∇Lhi01(xi1) = −λ1(xi1, 0) ∇Lhi02(xj2) = −λ2(xj2, 0)

∇Lhi03(xk3) = −λ3(xk3, 0)
(V.17)

The set {xi1, xj2, xk3} is defined as the set of the discretized positions of the sensor location
domain {x1j1 , x2j2 , x3j3} in equation (V.4). As a result, the index function is formulated as
follows:

I(ξ) = min

abs
 −λ1(x1i)−λ2(x2j)
−λ3(x3k)

 (V.18)

The optimal location problem consists in maximizing function I(ξ)

max
ξ∈χ

{
I(ξ)

}
(V.19)

Sensor placement result

Defining the number of sensors to be used is also an important issue beside the issue of
defining the optimal sensor locations. In this thesis the maximum number of sensors will
be fixed to three and the impact of the number of sensors on the performance of the inverse
problem computation will not be evaluated. Three cases will be considered in this section:
state estimation with 1, 2 or 3 sensors. Since the number of sensors is limited to three,
the computation of the optimal sensor location problem is still tractable by using a simple
enumeration of all the possible combinations. For a larger number of sensors or a with
larger number of discrete spatial positions, the number of combinations can be very large.
As a result, some adequate integer programming algorithms should be used to overcome
the combinatorial burden issue. In this example, the parameters used for the numerical
simulations of the three overland flows are summarized in Table V.1. The real value of the
initial states and the initialization parameters of algorithm for 3 systems are depicted in
Figures V.9a, V.9b and V.10.
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Parameters Values Unit
System 1 System 2 System 3

Length of flow 200 200 300 m

Simulation time 1 1 1 hour

Space step 4x 20 20 30 m

Time step 4t 0.1 0.1 0.1 hour

Bed slope S0 1% 1% 1% m/m

Manning coefficient n 0.002 0.002 0.0025 hour/m1/3

Table V.1: Parameters used for the numerical simulations of the three overland flows.
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Figure V.9: Real initial state and initialization of systems 1 and 2.
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Figure V.10: Real initial state and initialization of system 3.
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The lengths and the step sizes of systems are different but each system is always divided
into 10 sections with 11 discrete positions. The 10 interior positions from 1 to 10 define
the set of possible locations. it is important to notice that the final positions of system
1 and system 2 at the interconnection point are physically the same, and identical to the
first position of system 3. There are consequently 28 discretized positions all along the flow
pools, which define the accessible set. The optimal combination(s) is/are computed using
an enumeration procedure based on all the possible combinations of sensor locations over
the domain Ω1×Ω2×Ω3 for a given number of sensors. The application of this procedure
is now considered for the there cases of sensor number.

One-sensor case
Because there is only one sensor available, there are only 28 combinations. The value of the
placement criterion defined by (V.19) for all the possible discrete position combinations is
presented in Fig. V.11, where the highest value of index function is 0.4047 × 10−13. This
means that a single sensor must be located at combination number 28, which corresponds
to the discrete position 10 of system 3, on spatial domain Ω3. Moreover, one can observe
that, all the other positions give an index function value equal to zero. This means that
if one places a single sensor at these locations, the values of all three initial states cannot
be all recovered. This result is interesting since the maximum of the minimal gradient
ensures the observability for all the discrete states of the three systems. It appears that
position 10 on system 3 is the only one which receives the information propagated from the
upper-streams and its preceding points. The sensor position 7 (on system 3) for instance,
allows to estimate all the information (the discrete states) propagated through systems 1,
2 from their upper-stream ends, and the discrete states from 1 to 7 of system 3.
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Figure V.11: Values of the adjoint-based criterion for different locations of a single sensor
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Two-sensors case
With two sensors, the number of possible combinations is now 378. Figure V.12 shows that
the maximal value of the criterion is 0.5790 × 10−3, which is obtained at 3 combinations
350, 357, 363 represented by the highest peaks in this figure. Its corresponding discrete
positions are {2, 10}, {3, 10} and {4, 10} all located on Ω3×Ω3. There are some sub-optimal
locations located on Ω3×Ω3 such as {5, 10} (index function 0.4935× 10−3), {6, 10} (index
function 0.1967 × 10−3) and {7, 10} (index function 0.0089 × 10−3) which are also some
potential sub-optimal locations for the sensors. One can remark that all of them share the
presence of position 10 of system 3. This result can be interpreted as the fact that the
system 3 catches all the information from the two previous ones and if a sensor is placed
near the conjunction point, the obtained information will not be heavily influenced by the
initial state of system 3 and the upper-stream end information of system 3 reflecting the
information propagated through both systems 1 and 2 will be available through this sensor.
The result is also consistent with the result of the one-sensor case.
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Figure V.12: Index function with different location of 2 sensors

Three-sensors case
In this case, there are 3276 position combinations for 3 sensors. Figure V.13 shows that
there is a group of 6 optimal combinations which give the highest sensitivity to estimate
states ( all equal to 0.0011). This group is depicted in the last blue column at the end
of figure V.13. They are {2, 9, 10}, {3, 9, 10}, {4, 9, 10} (all of them are on Ω3 × Ω3 × Ω3)
and {2, 8, 10}, {3, 8, 10} and {4, 8, 10} (also on Ω3 × Ω3 × Ω3). Some of other suboptimal
sensor configurations are {2, 7, 10}, {3, 7, 10} and {4, 7, 10} (all of them is on Ω3×Ω3×Ω3

sharing the same index function value of 0.0010).
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Figure V.13: Adjoint-based criterion w.r.t. locations of 3 sensors

From this analysis, it appears that at least one sensor must be placed at the down-
stream end of system 3 to ensure the observability of all the system states. The locations
of the three sensors on Ω3 always provide a larger index function than the location of one
of the sensors at the downstream end and the two others on Ω1 and/or Ω2. The opti-
mal locations of the other sensors depend on the physical characteristics of the network.
However the initial values fed to the inverse problem algorithm may have some impact on
the sensor placement result. A different configuration of algorithm initialization is used to
investigate the independence between the chosen sensor locations with the initial value of
the estimation algorithm (in this case, the values of the initial state of the three systems
are not changed). After the calculation, this initialization almost gives the same sensor
positions. The choice of optimal sensor locations provided by adjoint-gradient approach
seems to be not really sensitive to the choice of initialization. In practice, averaging of the
adjoint-based criterion over a set of initialization scenarios would be a solution to minimize
the potential effect of initialization. However this aspect has not been done yet.
In what follows, the focus is made on the evaluation of the inverse problem performance
with respect to the locations of the sensors on the basis of a fixed initial value profile. All
the 8 sensor combinations which have been derived, are presented with the corresponding
sensor positions and criterion values.

2.b.3 State estimation using optimal locations

The relative errors of the state estimation using 8 sensor configurations are presented in
Table V.2. With case 1, when only one sensor is used and located at position 10 on Ω3,
we can achieve a pretty good estimation result for initial condition of system 3 (average
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relative error equal to 2.4%) but some pretty large estimation errors always remain for
the upstream systems. With case 2, when the sensor is located at position {7} also on
Ω7, one can observe better results concerning the estimation of systems 1 and 2 while
the estimation of system 3 gets worse (with a larger estimation relative error). In fact,
as already discussed, the sensor position at 7 on Ω3 does not have any state information
after it (point {8, 9, 10} of Ω3) and then the three corresponding discrete states are not
observable, since the adjoint gradient at these points are equal to zero. The estimation
algorithm cannot recover the real values of initial state at these positions. This is also the
reason why the index function at position 7 is zero. However, the shorter distance from
position 7 to the interconnection point a3 reinforce the observability of both systems 1 and
2, since this location provides more information from systems 1 and 2 and, as a result, the
relative errors of the upstream systems 1 and 2 in this case are smaller than in case 1.

Case Sensor number Combination Index function value Estimation relative error
System 1 System 2 System 3

1 1 {10} on Ω3 0.4047× 10−13 19.27% 19.22 % 2.40 %
2 1 {7} on Ω3 0 10.27 % 10.15 % 6.77 %
3 2 {2, 10} on Ω3 × Ω3 0.5790× 10−3 3.88% 5.91 % 0.12 %
4 2 {3, 10} on Ω3 × Ω3 0.5790× 10−3 4.76 % 7.91% 0.014 %
5 2 {6, 10} on Ω3 × Ω3 0.1967× 10−3 10.56 % 11.33% 0.75 %
6 3 {2, 9, 10} on Ω3 × Ω3 × Ω3 0.0011 3.46 % 6.15 % 0.12 %
7 3 {2, 8, 10} on Ω3 × Ω3 × Ω3 0.0011 4.05% 5.62 % 0.09 %
8 3 {3, 7, 10} on Ω3 × Ω3 × Ω3 0.0010 3.65 % 6.10 % 0.11 %

Table V.2: Estimation errors with different sensor configurations

The number of sensors is then increased to 2, as in cases 3, 4 and 5 in Table V.2, the
estimation accuracy also increases for all the systems. The estimation errors of two optimal
combination {2, 10} and {3, 10} are smaller than the one of case 5. This result appears
to be correlated with the result of the sensor placement. The combination giving more
sensitivity (higher criterion value), i.e cases 3, 4, allows to get smaller estimation errors
than for case 5. More over two cases 3, 4 almost give a close estimation error.
Three last cases of 3 sensors are then considered. The obtained results appear to be not
very different when compared between them. However, the estimation errors between these
3 cases are really close to case 2 where 2 sensors are located at 2, 10 on Ω3 × Ω3. This
leads to the conclusion that sensor positions {7, 8, 9} on Ω3 (which are present in cases 6,
7, 8) seem not to bring significant additional and useful information for state estimation,
especially for the estimation of the initial state of the two upstream systems. Finally it
appears that the proposed adjoint-based criterion provides an effective way to assess and
predict the performance of the state estimation algorithm.
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3 Conclusion

The two optimal sensor placement methodologies proposed in this chapter (based on the
Fisher Information Matrix and the adjoint-based criteria) have been validated on an over-
land flow and an overland flow network. The optimal sensor locations are determined by
solving a maximization problem via an enumerative approach if the number of combinations
remains small. Then cost function J of the inverse problem problems described in chapter
II is modified to include The performance analysis of the state estimation performed in this
chapter proves that the optimal sensor location results provided by the proposed optimal
sensor location methodologies are the most appropriate, in the sense that they provide
the greatest sensitivity of the cost functional with respect to the unknown initial states to
estimate. Even though the adjoint-based approach has not been applied to the traffic flow
example, one can guess that similar results could be obtained, since the problem is simi-
lar to the overland flow one. It is important to mention that the optimal sensor location
configurations depends on the initial values used by the optimization algorithm. In order
to make the proposed approach more robust with respect to the initial values, the idea is
to introduce randomly-chosen initialization scenarios and to consider an average criterion
computed with these scenarios. The remaining errors present in the estimation results,
(see in Table V.2), may be due to mismatches between the numerical methods used for
sensor placement (based on a simple gradient descend approach) and the state estimation
algorithm (based on a quasi-Newton approach).
But beside the sensor position, the determination of the number of sensors, which also
impacts the estimation process has not been extensively investigated. Moreover, if the
sensor location optimization is performed with a large number of sensors, the number of
combinations will increase dramatically. An enumerative procedure is no more possible in
this case and some integer programming algorithms should be employed.
All these different issues will be investigated in some future works.
The sensor placement example on the overland flow network which has been presented in
this chapter is a part of publication [NGB16a].
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The main goal of this chapter is to synthesize the works that have been presented in
this thesis and to give some perspectives for future works to go deeper in some of the

topics.

1 Conclusions

The contributions of this thesis can be divided into two main parts: some contributions
to both state and parameter estimation of nonlinear balance equations (hyperbolic partial
differential equations) in the first part and some contributions to optimal sensor placement
for the same partial differential equations in second one. Each of them is developed in the
same way: the proposed approaches (for estimation and for sensor positioning) are first
presented in a methodology chapter and then their validation in considered with examples
in an application chapter.

For the first part of the thesis, the main contribution can be summarized as follows: An
adjoint based estimation method is developed for a class of 1-D switched hyperbolic sys-
tems. The calculus of variations plays a central role for the solution of the estimation
problems. The adjoint method used for state and distributed parameter estimation is
formulated with a very general manner, which can can be easily reduced to simpler estima-
tion cases: Estimation of the initial state only or of some constant/distributed parameters
only, and for non-switched hyperbolic equations. It is important to point out that, to
the best of my knowledge, it is the first time that an estimation methodology is proposed
for switched hyperbolic equations, thanks to the use of continuous activation/switching
functions, which allows to apply smooth calculus of variations. This method allows, to
simultaneously estimate the initial state, the distributed system parameters, and also the
parameters in the switching source terms, in an infinite dimensional framework. In this
thesis, a direct nonlinear approach is used: The calculus of variations is applied directly to
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the original PDE and ODE governing the system without linearization and reduction of the
PDE in finite dimensions. The necessary conditions for optimality lead to a set of direct
and adjoint PDEs which are then solved by using time-space discretization techniques.
Some numerical approaches and gradient-based optimization are also investigated. The
proposed estimation method is validated with various application scenarios: Estimation
of constant parameters, state and distributed parameters in non-switched/switched traffic
flows, of the initial state only, of distributed coefficients only, of both state and coefficients
in overland flow using synthetic measurements; parameters estimation using real data on
Tondi-Kiboro catchment. Moreover, from an application point of view, Tondi-Kiboro es-
timation application offers the opportunity to derive a realistic model of water flow on
Tondi-Kiboro catchment which promotes also further researches dealing with hydrological
changes including soil erosion, components of water cycle, fallow period changes in this
region. A new switched traffic flow model, based on the LWR equation which can handle
relief route has also been proposed in this thesis.

For the second part of the thesis which is dedicated to the issue of optimally locating
sensors, a focus is made on the extension of an existing optimal sensor placement tech-
nique, the so-called Fisher information matrix technique which is here applied on a class of
non-switched hyperbolic system. To overcome the main disadvantage of Fisher information
matrix approach related to the need of solving a large set of sensitivity nonlinear partial
differential equations, a new method has then been proposed: this approach relies on the
use of the adjoint state provided by the necessary conditions for optimality of the optimal
estimation problem. It ensures a strong connection between observability (in the sense
of guaranteeing non zero sensitivity of the estimation cost functional with respect to the
state or parameters to estimate) and performance of the gradient-based iterative method
used to numerically solve the optimal estimation problem. While the Fisher information
matrix approach is validated only a single traffic flow and overland flow, the validation of
adjoint-gradient criterion is realized not only on a single flow but also on a overland flow
network.

2 Perspectives

In the view of the obtained results, several perspectives/extensions can be deduced:

• The validation of the adjoint-based estimation method has been performed with real
data only for the case of overland flow, a real date validation or some laboratory
experiments are expected to evaluate the applicability of the presented method to
real problems in traffic flow.
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• Results of optimal sensor placement in chapter V, especially for the case of the
overland flow network, depend on the choice of initial conditions (the initial values
used in the iterative optimization method, not the ones used to generate the synthetic
measurements). Each initial condition configuration can possibly give a different
sensor position. A deeper robustness analysis of the adjoint based approach will be
part of future works. An extension to the case of optimal sensor location for both
state and parameter estimation is also an interesting topic to investigate.

• Inclusion of additional constraints in the optimal sensor location methodology such
as communication constraints should be also investigated in the future.

• The generalization of both the optimal estimation method and the optimal sensor
location one to more complex network of balance laws is possible and should be next
investigated.

• Some more general problems in infinite dimensional hyperbolic system such as output-
feedback stabilization or optimal control with output constraints could help to widen
the applicability of the presented estimation method. The parameters considered in
this thesis are time-invariant which can restrict the generality of the method. A time
varying parameter version will be then a possible part of future developments.
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Approche à base d’adjoint pour estimation et placement de
capteurs dans les systèmes hyperboliques 1D avec application à

l’hydrologie et au trafic routier

Résumé — Ce travail de thèse propose une approche générique pour l’estimation de l’état/ des
paramètres et pour le placement de capteurs de systèmes hyperboliques non linéaires en dimension in-
finie. Le travail est donc divisé en deux parties principales : une partie consacrée à l’estimation optimale
et une partie dédiée au placement optimal de capteurs. La méthode d’estimation optimale utilise une
approche par calcul des variations et utilise la méthode des multiplicateurs de Lagrange. Ces multiplica-
teurs jouent un rôle important en donnant accès aux sensibilités des mesures par rapport aux variables
qui doivent être estimées. Ces sensibilités, décrites par les équations adjointes, sont aussi à l’origine d’une
nouvelle approche, dite méthode de l’adjoint, pour le placement optimal de capteurs. Divers exemples,
construits sur la base de simulations mais également de données réelles et pour différents scénarios, sont
aussi étudiées afin d’illustrer l’efficacité des approches développées. Ces exemples concernent les écoule-
ments à surface libre (en hydrologie des bassins versants) et le trafic routier représentés par des équations
aux dérivées partielles hyperboliques non linéaires.
Mots clés : Estimation optimale d’état et de paramètres, Placement optimal de capteurs, Calcul des
variations, Systèmes hyperboliques non linéaires; Écoulements de surface, Trafic routier

Adjoint-based approach for estimation and sensor location on 1D
hyperbolic systems with applications in hydrology and traffic

Abstract — The thesis proposes a general framework for both state/parameters estimation and sensor
placement in nonlinear infinite dimensional hyperbolic systems. The work is therefore divided into two
main parts: a first part devoted to the optimal estimation and a second one to optimal sensor location.
The estimation method is based on the calculus of variations and the use of Lagrange multipliers. The
Lagrange multipliers play an important role in giving access to the sensitivities of the measurements with
respect to the variables to be estimated. These sensitivities, described by the adjoint equations, are also
the key idea of a new approach, so-called the adjoint-based approach, for the optimal sensor placement.
Various examples, either based on some simulations with synthetic measurements or real data sets and
for different scenarios, are also studied to illustrate the effectiveness of the developed approaches. Theses
examples concern the overland flow systems and the traffic flow, which are both governed by nonlinear
hyperbolic partial differential equations.
Keywords: Optimal state and parameter estimation, Optimal sensors placement, Calculus of variations,
nonlinear hyperbolic systems, Overland flows, Traffic flow
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