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Abstract

The methods required to make humans and robots interact and collaborate are
the subject of research in physical human-robot interaction (pHRI). One of the main
issues, particularly when physical contact can occur between the two, is safety. A
second fundamental requirement to establish pHRI is intuitive control by the human
operator, in particular when s/he is non expert.

Sensor-based control can address both issues, by closing the perception-to-action
loop, in a way that may well be assimilated to that of the lower motor neurons
in our nervous system. Traditionally, heterogeneous sensor data was fed to fusion
algorithms (e.g., Kalman or Bayesian-based), so as to provide state estimation for
modeling the environment. However, since robot sensors generally measure different
physical phenomena, it is preferable to use them directly in the low-level servo
controller rather than to apply them to multi-sensory fusion or to design complex
state machines. This idea, originally proposed in the hybrid position-force control
paradigm, when extended to multiple sensors brings new challenges to the control
design; challenges related to the task representation and to the sensor characteristics
(synchronization, hybrid control, task compatibility, etc.).

The rationale behind my work has precisely been to use sensor-based control
as a means to facilitate the physical interaction between robots and humans. In
particular, I have utilized vision, proprioceptive force, touch and distance to address
pHRI case studies, targeting different applications and robot platforms. My research
has followed four main axes: teach-and-repeat navigation of wheeled mobile robots,
collaborative industrial manipulation with safe physical interaction, force and visual
control for interacting with humanoid robots, and shared robot control. Each of
these axes will be presented here, before concluding with a general view of the issues
at stake, and on the research projects that I plan to carry out in the upcoming years.





“ An android,” he said, “doesn’t care what happens to an-
other android. That’s one of the indications we look for. ”

Philip K. Dick, Do Androids Dream of Electric Sheep?
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Chapter 1

Introduction

Robot control is a mature field: one that is already being heavily commercialized in
industry. However, the methods required to regulate interaction and collaboration
between humans and robots have not been established yet. These are the subject
of research in so called physical human-robot interaction (pHRI, [1, 2]). One of
the main issues, particularly when physical contact can occur between the two, is
safety [3]. Although there has been a recent push towards standardization (e.g.,
the ISO 13482:2014 for robots and robotic devices [4]), we are still in the initial
stages. For instance, safety requirements, typically in terms of system reactivity
(low bandwidth) and robustness, have not yet been attained.

A second fundamental requirement to establish pHRI is intuitive control by the
human operator, even by non expert users. The robot should, for instance, be proac-
tive in realizing the requested tasks [5–7]; in this regard, roboticists have drawn in-
spiration from behavioral and cognitive science. Finally, the reciprocal relationship,
between humans and robots, is also fundamental. The robot should, for instance, be
capable of inferring the user’s intentions, to interact more naturally from a human
perspective [8, 9]. These three requirements are hampered by the unpredictabil-
ity of human actions, which vary according to situations and individuals, impeding
deterministic context modeling, and the use of standard feedback control.

In one looks at the literature, two major approaches for robot task execution
have emerged: path planning [10] and sensor-based control [11]. The first, which is
traditionally closer to the fields of computer science and artificial intelligence, breaks
down the desired task into discrete subtasks that satisfy the system constraints and
possibly optimize some aspect of the task/mission. Low-dimensional problems are
generally solved with grid-based algorithms that overlay a grid on the robot’s con-
figuration space. On the other hand, planning for high-dimensional systems under
complex constraints is still computationally intractable (requiring excessively long
time). Furthermore, this approach generally relies on a priori knowledge of the
future robot and environment states over a time window; although path planning
has proved its efficiency in a series of problems spanning from robot exploration to
industrial manipulation and robotic surgery, it is hardly applicable to human-robot
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18 CHAPTER 1. INTRODUCTION

interaction. The main reasons for this are, as pointed out above, the unpredictability
of human behavior and the low bandwidth required for safety. To this end, sensor-
based control offers more promising features since it closes the perception-to-action
loop at a lower level, in a way that may well be assimilated to that of the lower
motor neurons in our nervous system. A classic example is image-based visual ser-
voing [11] which relies directly on image data to control the robot, without requiring
a (computationally heavy) cognitive layer nor a precise model of the environment.

The rationale behind our work has precisely been to use sensor-based control
as a means to facilitate the interaction between robots and humans. Although we
acknowledge the need for other techniques within a complete HRI control framework
(e.g., path planning as mentioned, machine learning, state observers, etc), the focus
here is on direct servo control relying on data from one or multiple sensor/s.

In fact, recent technological developments on bio-inspired sensors have made
these affordable and lightweight. It has therefore eased their use on robots, in
particular on anthropomorphic ones (e.g., humanoids and dexterous hands). These
sensors include RGB-D cameras, tactile skins, force/moment transducers, and capac-
itive proximity sensors. Traditionally, heterogeneous sensor data was fed to fusion
algorithms (e.g., Kalman or Bayesian-based), so as to provide state estimation for
modeling the environment. However, since these sensors generally measure differ-
ent physical phenomena, it is preferable to use them directly in the low-level servo
controller rather than to apply them to multi-sensory fusion or to design complex
state machines. This idea, originally proposed in the hybrid position-force control
paradigm [12], when extended to multiple sensors brings new challenges to the con-
trol design; challenges related to the task representation and to the characteristics
of the sensors (synchronization, hybrid control, task compatibility, etc.).

All of the case studies addressed in our work are outlined in the scheme in Fig. 1.1.
In all cases, the focus is on safety and on the dependability of robot interaction with
the Human, hence the position of the latter at the center of the scheme. These goals
are achieved with different combinations of sensing modalities, depending on the
task at stake. The following robot senses have been used.

• Vision. This includes methods for processing and understanding images, to
produce numeric or symbolic information, attempting to duplicate human
sight. Although image processing is complex and computationally expensive,
the richness of this sense is unique. Vision, fundamental throughout my PhD
work, has maintained its relevance in the research presented here, helping to
understand the environment and human intention, to react accordingly.

• Force. Although we group both under the term force, we differentiate pro-
prioceptive force from touch, with the latter involving direct physical contact.
Human touch (somatosensation), results from activation of neural receptors,
mostly in the skin (but also in hair follicles, tongue, throat, and mucosa).
These receptors have inspired the design of artificial tactile sensors, thoroughly
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Figure 1.1: Outline of our work. The sensors shown in the figure are: SICK lidar
(distance), AVT camera (vision), BioTac and ATI (force).

used for HRI. Proprioceptive force, on the other hand, can be seen as analo-
gous to the sense of muscle force [13]. On robots, this can be reproduced by
relying uniquely on the joint errors [14], or by inserting force/torque sensors
along the kinematic chain. In our work, both were used by the robot to in-
fer human intentions, and adapt to these, by relying on various admittance
control schemes [15].

• Distance. Excluding stereopsis, which provides an indirect perception of depth
using both eyes, this is the only type of data, among the four that is not
directly measurable by the human senses. Numerous examples of this sense
nevertheless exist in the mammal kingdom (e.g., among bats and whales),
in the form of echolocation. In robotics, distance sensors (sonar, radar, or
lidar) are thoroughly used to reconstruct either the environment (mapping
problem), or the robot state (localization). The relevance of this particular
“sense” in HRI is motivated by the direct relationship existing between the
distance from obstacles (here, the human/s) and the danger of operation.

In our work, subsets of these sensing modes have been used to realize HRI, in
various case studies. These are also indicated in Fig. 1.1. The case studies have
targeted different applications and different robot platforms, specifically: mobile
wheeled, humanoid, manipulator and hand robotic systems. Each of four research
axes (which we outline below) is described in a different chapter. The four axes are
color-coded in Fig. 1.1.
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• Chapther 3. Teach-and-repeat navigation of wheeled mobile robots
(blue in Fig. 1.1). We have exploited visual and distance sensing. The work
was mainly developed during my postdoc at INRIA Rennes, in the context
of the ANR CityVIP project (2008-2011). It was later extended (2013) by
Christoph Sprunk, a PhD student from Albert-Ludwigs-Universitaet Freiburg
(Germany). The results have been published in two Journals [16, 17] and
in eight International Conference papers [18–25]. To enable autonomous, yet
intuitively adaptable mobility (both for public transportation and logistics), we
designed a framework, where non-expert human operators teach the path to be
later replayed by the robot. Our contribution has been the integration of lidar-
based obstacle avoidance to visual navigation (CityVIP) and the representation
of the taught path via lidar scans instead of images (work of C. Sprunk, [25]).
Collaboration with Freiburg is being pursued via the PHC Procope Project
ViNavHuBot (2015-2016).

• Chapter 4. Collaborative industrial manipulation with safe physical
interaction (red in Fig. 1.1). Here we have exploited vision and force. The
work was developed at LIRMM, in the context of the French ANR Projects
ICARO (2011-2014, work of postdoc Arnaud Meline), and SISCob (2014-2017,
PhD thesis of Benjamin Navarro). The results have been published in two
Journals [26, 27] and in two International Conference papers [28, 29]. We pro-
vide an industrial robot manipulator with two fundamental requirements for
safe pHRI: human intentions should be easy to infer by the robot and the
control should be intuited in relation to the human viewpoint. Our contribu-
tions are: the development of a unified controller, merging vision force and
pose, with smooth transitions and weighted combinations of the sensor tasks
(ANR ICARO), and the design of an ISO10218-compliant adaptive damping
controller [29]. This research is ongoing in the context of projects EU H2020
Versatile, and Languedoc-Roussilon CoBot@LR, for both of which I am prin-
cipal investigator.

• Chapter 5. Force and visual control for interacting with humanoid
robots (purple in Fig. 1.1). Here we present research results of using force
and vision to make real-size humanoid robots capable of interacting with both
humans and machinery. The work was developed at LIRMM, in the context
of the FP7 European Project RoboHow (2012-2016, PhD thesis of Don Joven
Agravante) and of the CNRS PICS Project ViNCI (2013-2016, PhD thesis
of Antonio Paolillo). The results have been published in five International
Conference papers [30–34], and submitted to a Journal [35]. To make real-
size humanoid robots capable of interacting both with humans and machinery,
specific problems must be addressed. The main ones are whole-body control
of highly redundant systems and walk stability. The contribution of Joven’s
thesis has been the design of a complete sensor-based framework for human-
humanoid collaborative carrying. Both whole-body control and walking under
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sustained forces (from the human) have been addressed. During his 6 month
stay at LIRMM under my supervision, Antonio developed a visio-haptic con-
troller enabling a humanoid to manipulate sophisticated machinery (a car with
steering wheel and pedal). Although interaction with humans is not explicit in
this case, a human-like behavior must be designed for successful manipulation,
since the machinery is human-tailored.

• Chapter 6. Shared robot control with human in the loop (green in
Fig. 1.1). Here we present research on the use of vision and force as means
of extending the senses of a human who controls/embodies robotic systems.
The work was developed at LIRMM in the context of a collaboration with the
INRIA Camin Team (the PhD thesis of Wafa Tigra), of the FP7 European
Project VERE (2010-2015, the Phd thesis of Damien Petit), and of the post-
doc of Antonio Paolillo. The results have been published in three International
Conference papers [36–38], and two Journals [39, 40]. The works presented in
this chapter push HRI to a higher stage, where the robot becomes an extension
of the human, enabling the latter to expand his/her capabilities of interacting
with the environment. Fundamental research issues to be addressed concern
the shared control of the robotic system which, depending on the context and
specifications, should be either autonomous, or partially or entirely controlled
by the human. The case studies are: robotic hand control with electromyog-
raphy, embodiment in a humanoid robot via a brain computer interface and
car navigation through a humanoid robot driver. A contribution common
to all works, has been the integration of senses within these shared control
frameworks to aid human control when direct perception is not available.

All these aspects are detailed in each chapter of the manuscript, excluding Chap-
ter 2, which gives general definitions. Each chapter also proposes avenues of future
research. The final chapter, Chapter 7 gives a more general view of the issues at
stake in sensor-based control for HRI and describes the research projects that I plan
to carry out in this field, in the upcoming years.



22 CHAPTER 1. INTRODUCTION



Chapter 2

General Definitions

This chapter provides the general definitions and fundamental notions that are com-
mon to the works presented in the manuscript. The reader is also invited to look at
the “List of symbols” for quick reference on the notation.

2.1 Robot Modeling

We aim at controlling one or multiple tool control points (TCP) on an open
kinematic chain robot, with j degrees of freedom (dof). The approach is common
to the various platforms targeted in the manuscript, i.e., manipulators, wheeled
systems, humanoids, and a robotic hand. For a wheeled system, we will consider as
TCP, the center of rotation (e.g., the midpoint of the rear axis for a rear-drivable
car). The tree kinematic structures (humanoid and hand), can be “split” in various
open chains, to define multiple TCP, at convenience, on each branch.

The TCP pose in a fixed reference frame is noted:

x = [x y z φx φy φz]
> ∈ SE (3) . (2.1)

Its six components correspond to Cartesian coordinates and ZYX Euler angles1.
In general, the pose of frame A in frame B, is defined as:

BxA =
[
BxA

ByA
BzA

BφA,x
BφA,x

BφA,x
]> ∈ SE (3) . (2.2)

Any point can be transformed from frame A to frame B by premultiplying its Carte-
sian coordinates by:

BTA =

[
BRA

BtA
0 1

]
, (2.3)

with BRA the rotation matrix from A to B, and BtA =
[
BxA

ByA
BzA

]>
.

We also define the TCP kinematic screw (expressed in the fixed frame) as:

v = [vx vy vz ωx ωy ωz]
> . (2.4)

1This choice is motivated by the fact that the inconveniences (e.g., singularities) typical of the
Euler representation with respect to quaternions do not appear in the applications targeted here.
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24 CHAPTER 2. GENERAL DEFINITIONS

2.2 Task control

In all our works, we apply task control. We name s the robot task vector, and u
the control inputs. The task dynamics are related to the control inputs by the task
Jacobian J:

ṡ = Ju. (2.5)

Then, s can be regulated to a desired value s∗, by applying task control :

u = −λJ+ (s− s∗) , (2.6)

with J+ the generalized inverse of J, and λ a positive scalar gain.
When the control input coincides with the robot joint velocities q̇ ∈ Rj, and the

task coincides with the TCP pose x, we maintain this notation for the Jacobian and
gain. In all other cases (for instance, visual servoing, see Sect. 2.3), a subscript will
be added to J and λ.

2.3 Visual servoing

This section is taken in part from [11]. Visual servoing refers to the use of computer
vision data to control robot motion. The data may be acquired from a camera that
is mounted directly on the robot, in which case motion of the robot induces camera
motion, or the camera can be fixed in the workspace, so that it observes the robot
motion from a stationary configuration.

Visual servoing schemes mainly differ in the way task s is designed. The most
common approaches are: image-based (s is defined in the image state space) and
the position-based (s is defined in a 3D state space). Although, in this work, we
have applied both, here we only briefly recall the image-based approach. The reason
is that we have used position-based, by merely projecting the task from the image
view to the workspace, and then applying classic task control (2.6).

In all the image-based controllers used in our work, we have used visible points
to define the task:

s = [X, Y ]> , (2.7)

with X and Y the image point coordinates. If we use the camera kinematic screw:

vc = [vc,x vc,y vc,z ωc,x ωc,y ωc,z]
> , (2.8)

as control input u, the Jacobian2 relating ṡ and u is:

Jv =

[ −1
z

0 X
z
−1−X2 Y

0 −1
z

Y
z

−XY −X

]
, (2.9)

with z the depth of the point relative to the camera frame C.

2Named interaction matrix in the visual servoing literature.
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The camera kinematic screw vc can be mapped to any other frame B, by applying
the spatial motion transform matrix:

BVC =

[
BRC

[
BtC

]B
×RC

03
BRC ,

]
. (2.10)

with
[
BtC

]
× the skew-symmetric matrix associated to BtC . This is necessary when-

ever a control input u, other than the camera screw, is utilized. Examples (treated
in the manuscript) include manipulator joint velocities q̇, TCP kinematic screw v,
and wheeled robot translational/steering velocities, vx, ωz.

2.4 Active force control

This section is taken in part from [41]. In active force control (in contrast with
passive force control), the compliance of the robot is ensured by the control system
(instead of by the robot design and actuators). This approach usually requires
the measurement of three translational force components, and three torques, which
define the wrench:

h =
[
f> n>

]>
= [fx fy fz nx ny nz]

> . (2.11)

Although the measure of h is given in the sensor frame S, it can be transformed to
any frame F , by applying FWSh, where:

FWS =

[
FRS 03[

F tS
]F
×RS

FRS

]
. (2.12)

The wrench h is fed back to the controller and used to modify, or even gen-
erate online, the desired trajectory of the robot tool control point (TCP). Active
interaction control strategies can be grouped into two categories.

• Direct force control offers the possibility of controlling the contact force and
torque to a desired value via force feedback. This approach requires an explicit
model of the interaction task. In fact, the user has to specify the desired TCP
motion and the desired contact wrench (between TCP and environment or
human) consistent with the constraints imposed by the environment. A widely
adopted strategy is hybrid force/motion control [12], which aims at controlling
the motion along the unconstrained task directions, and the wrench along the
constrained task directions. This method, that will be further detailed in
Sect. 2.5, allows simultaneous control of the contact wrench and of the TCP
motion in two mutually independent subspaces.

• Indirect force control, instead, achieves force control via motion control
without explicit closure of a force feedback loop. To this category belongs
impedance control (or admittance control) [15, 42], where the deviation
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Figure 2.1: Block scheme of admittance control. The reference TCP motion ẋr is
deformed by a virtual mass-spring-damper to yield the desired motion ẋ∗ for robot
kinematic control. In the figure, ∆ẋ = ẋ∗ − ẋr.

of the TCP motion from the reference motion, due to the interaction with
the environment, is related to the contact wrench h through a virtual me-
chanical impedance/admittance with adjustable parameters. The TCP, under
impedance (or admittance) control is described by an equivalent mass-spring-
damper system with adjustable parameters. The most general equation is:

h− h∗ = M(ẍ∗ − ẍr) + B(ẋ∗ − ẋr) + K(x∗ − xr), (2.13)

where h and h∗ are respectively the estimated and desired TCP contact
wrench. The vectors xr, ẋr and ẍr correspond to the reference TCP pose,
defined for instance by a high-level trajectory generator. Correspondingly, vec-
tors x∗, ẋ∗ and ẍ∗ represent the deviated TCP pose with its first and second
derivatives. Finally, matrices M,B and K are the inertia, damping and stiff-
ness parameters that define the desired virtual mass-spring-damper behavior.
The general formulation in (2.13) can account for “different” control methods.
Firstly, it can either be “impedance controlled” by controlling wrench h, or
“admittance controlled” by controlling position x (t). A typical block diagram
of Admittance control is sketched in Fig. 2.1.

A drawback of direct control, is that it will not exploit sensor complementarity,
since the range of feasible tasks is reduced to those that can be described in terms
of constraint surfaces. Typically, in [43, 44], applications are limited to a single
contact point on a planar surface. Considering a realistic application with unknown
constraint location and complex contact geometry (typical with human-in-the-loop),
it will be hard to configure in advance the controller (e.g., set the desired TCP wrench
h∗). Hence, for pHRI, it is more suitable to use the indirect (impedance/admittance)
control framework since: i) it allows one to define a priori how the manipulator
should react to unknown external force disturbances, ii) it can use, as reference
trajectory xr (t), the output of another sensor (e.g., vision) along any dof. For these
reasons, we have utilized indirect force control, and more specifically admittance
control, throughout this work.
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2.5 Integrating sensors at control level

A first possibility would consist in combining different percepts by fusing the dif-
ferent information sources. This can be done with sensor fusion techniques, for
example Cartesian frames are fused in [45], and fusion of proprioception and vision
is done with an Extended Kalman Filter (EKF) in [46] or with task frame estima-
tion in [47]. These approaches relate back to the merging of percepts by humans
in [48, 49]. Although there is some merit to this, there is a resolvability issue [50],
typically when merging force/torque and position/orientation(vision), since these
are inherently different quantities. The camera and the force sensor measure dif-
ferent physical phenomena, while multi-sensory fusion aims at extracting a single
information from disparate sensor data. In fact, motion and force are generally rep-
resented as dual vector spaces [51]. In addition, interpreting real force/torque sensor
data is extremely complex, particularly in the presence of friction and when contact
points locations are not known in advance. Thus, it is preferable to combine, directly
at the control level, the actions simultaneously commanded by the various sensors.
This has been proposed in [43] by extending hybrid position-force control [12] to
account for vision.

In [43], the approaches for combining different sensors are classified into three
general categories:

• Traded: this is the simplest strategy, since the robot is controlled by one
sensor at a time, with the switches between sensors depending on the task and
on the context.

• Hybrid: the sensors act at the same time but on different dof. This requires
prior specification of a task-frame [44, 52, 53], i.e., a Cartesian frame divided
into orthogonal directions. Then, each direction will be controlled only by one
sensor. The directions are chosen using binary diagonal selection matrices,
noted S in this work.

• Shared: there is no separation in time (as for the traded approach) or in
space (as for the hybrid approach). The control is shared by the various
sensors throughout operation.

Although this classification was originally designed for merging vision and force, it
can be extended to any number and type of sensors, and will be used throughout
this manuscript to characterize our various design choices.
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Chapter 3

Vision and distance sensing for
“teach and repeat” navigation

This chapter presents our research on Teach and repeat navigation of wheeled
mobile robots. The goal is to design an easy and intuitive framework, enabling
a human to define the path to be followed by a mobile robot. At first, the human
manually drives the robot. Then, the recorded sensed data is used by the robot, to
autonomously follow the taught path. For this work, we have exploited vision, and
distance as outlined in Fig. 3.1.

Chapter	  3	  
vision-‐distance	  	  

for	  teach&replay	  naviga7on	  
(2	  journals,	  1	  conference)	  

teach&repeat	  
naviga7on	  TEACHER	  

Figure 3.1: Vision and distance senses are used for teach-and-repeat navigation of
wheeled robots (CyCab and omniRob). Here, HRI is asynchronous: the human acts
as a teacher ; teaching the path, to be later autonomously followed by the robot.

The research presented here has been carried out in the context of the French
ANR Project CityVIP (2008-2011) and of a collaboration with the Albert-Ludwigs-
Universitaet Freiburg (Germany), which then led to the French-German PHC Pro-
cope Project ViNavHuBot (2015-2016). The three main results have been:

1. Research on the choice of the best visual features to be used, in various navi-
gation scenarios. This work was carried out during my postdoc in the context

29
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of the CityVIP project and led to the publication of [18] and [19].

2. The design and validation of a framework, integrating lidar-based obstacle
avoidance and visual navigation, to avoid static and moving obstacles that
may appear in the repeat phase [16,17], [20]- [24]. This work was also carried
out during my postdoc, within CityVIP.

3. The design and validation of a teach-and-repeat framework where the taught
path is represented via lidar scans instead of images. This work was carried
out by Christoph Sprunk and Gian Diego Tipaldi, from the Albert-
Ludwigs-Universitaet Freiburg, and led to the publication of [25].

The rest of the chapter is organized as follows. First, we present the motivation
and objectives of the work (Sect. 3.1). Secondly, the current state of art in teach
and repeat navigation frameworks (Sect. 3.2). Finally, we present the contribution
of our work in Sect. 3.3, and the relevant conclusions in Sect. 3.4.

3.1 Objectives and Motivation

A great amount of robotics research focuses on vehicle guidance, with the ultimate
goal of automatically reproducing the tasks usually performed by human drivers [54].
To this end, vision and lidar are fundamental in all environments (urban, or indoor,
e.g., factories) where GPS localization is noisy or unreliable and when numerous
perceivable natural features can aid navigation. A second fundamental aspect that
is also common to all my research work on HRI is the need for intuitive frameworks
allowing non-expert operators to naturally instruct and reprogram these mobile
systems in changing environments.

Sensor-based navigation can be classified in model-based and appearance-based
approaches. The first relies on the knowledge of a 3D model (map) of the environ-
ment, composed of geometric features (e.g., lines, planes, or points). The second,
instead, operate directly in the sensor space. In appearance-based frameworks, the
environment is represented as a topological graph where each node corresponds to
a position and where a link between two nodes defines the possibility for the robot
to move autonomously between the two positions. The nodes correspond to images
(either from a camera or from a lidar) stored in a database. This paradigm is com-
monly realized within a teach-and-repeat framework [55–58]. During a preliminary
teach phase, robot motion is controlled by a human operator, so as to generate the
sensor database. The robot is then required to repeat the path by comparing the
currently observed and the previously recorded sensor data (repeat phase). Most of
these works rely on visual data. To design these controllers, the questions to be ad-
dressed include: What are the best visual features to be used? Can teach-and-repeat
be extended to other sensed measures, e.g. distance?

Along with these questions, our research has addressed the integration of obsta-
cle avoidance within a visual navigation framework. Obstacle avoidance consists in
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either generating a collision-free trajectory to the goal or in decelerating to prevent
collision when bypassing is impossible. In the past, obstacle avoidance has been in-
tegrated in sensor-based navigation by using the path geometry or the environment
3D model (e.g., including walls and doors). A reactive solution should be sought,
instead, when the task is defined in the sensor space. Furthermore, the way the two
tasks (navigation and obstacle avoidance) are to be realized, within a unique con-
troller, must be carefully elaborated. Finally, the proposed solution should cope with
moving obstacles which are a common feature in dynamic, real-world environments.

In summary, the motivation of the research presented in this chapter, is the
study of the best visual features for navigation, the integration of obstacle
avoidance and the extension of the teach-and-repeat paradigm to lidar.

3.2 State of art

Autonomous transportation platforms are increasingly employed for logistics appli-
cations in industrial contexts. Initially, these systems relied on guidance wires or
on optical markers to drive the robot [59]. The paradigm later shifted to the use of
on-board sensors for localization and navigation, while again augmenting the envi-
ronment with artificial markers [60]. Impressive results have been obtained with an
infrastructure-free robot that uses three cameras to navigate, with naturally occur-
ring visual cues (mainly on the warehouse floor) learned during operation [58]. This
framework is inspired by the visual teach-and-repeat approach originally presented
in [55], where a particular motion (e.g., “go forward”, “turn left”) is associated to
each taught image. This enables the robot to move from the current to the next
image in the database. Aside logistics, teach-and-repeat approaches have also been
applied to outdoor navigation (e.g., targeting public transportation, [56]).

In both indoor and outdoor contexts, an important choice concerns the database
representation. In some works, three dimensional reconstruction is used, whereas
other frameworks rely uniquely on image information. In [56], a 3D representation
of the taught path is built from the image sequence and a path following controller
is used for navigation. A similar approach, using omnidirectional cameras has been
proposed in [61]. There, the path is represented by a sequence of images, used to
reconstruct a local 3D map. Feature tracking is exploited, to localize the robot, and
path following is then done with a sequence of homing vectors to each image. In
general, 3D reconstruction is unnecessary, since moving from one key image to the
next, can also be done by relying uniquely on visual servoing (see Sect. 2.3). In [62]
for instance, a proportional control on the position of the feature centroid in current
and database images drives the robot steering angle while the translational velocity is
constant. The controller in [57] exploits angular information from features matched
in panoramic images. In [63], epipolar geometry (without explicit 3D reconstruction)
is used to drive a nonholonomic robot to a desired pose.

A drawback of such visual servoing schemes, is that whenever the initial and de-
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sired configurations are far from each other, convergence can be difficult to ensure.
As shown in [64], a possible solution is the use of a planning step joint with the
servoing to limit the tracking error along the planned path. In [65], an approach
that uses an image-based visual servoing system to track a desired timed feature
trajectory is presented. In contrast, a time-independent solution for tracking image
trajectories, based on a movement flow to determine the desired configuration from
the current one is described in [66]. With these approaches, the desired configura-
tion remains near the current one and the local stability of the image-based visual
servoing is always assured. However, none of these approaches has been applied to
outdoor navigation, and assessed in terms of 3D camera trajectory accuracy.

In any teach-and-repeat framework, the robot should also be capable of avoiding
obstacles that have appeared on the path between the two phases. Obstacle avoid-
ance has been integrated in many model-based navigation schemes. Simultaneous
obstacle avoidance and path following are presented in [67], where the geometry of
the path is perfectly known. In [68], obstacles are circumnavigated while follow-
ing a path; the radius of the obstacles (assumed cylindrical) is known a priori. In
practice, all these methods are based on the environment 3D model, including the
geometry of the path. In contrast, in appearance-based navigation neither the envi-
ronment nor the obstacle models are available. One of the most common techniques
for model-free obstacle avoidance is the potential field method, originally introduced
in [69]. The gap between global path planning and real-time sensor-based control
has been closed in [70], where a set of trajectories (arcs of circles or “tentacles”)
is evaluated for navigating. However, in [70], the trajectory computation relies on
GPS way points and hence on the robot’s pose.

If the obstacles are moving, as is common in real environments (where pedestri-
ans, bicycles and cars are present), the problem is even more challenging. In the
literature, researchers have taken into account the obstacle velocities to deal with
this issue. The approach presented in [71] is one of the first where static and moving
obstacles are avoided, based on the objects’ current positions and velocities relative
to the robot. The maneuvers are generated by selecting robot velocities outside the
velocity obstacles, that would provoke a collision at some future time. This paradigm
has been extended in [72] to take into account unpredictably moving obstacles. This
has been done by using reachability sets to find matching constraints in the veloc-
ity space, called Velocity Obstacle Sets. Another pioneer method, that has inspired
many others, is the Dynamic Window [73] that is derived directly from the dynamics
of the robot and is especially designed to deal with constrained velocities and accel-
erations. The method consists of two steps: first, a valid subset of the control space
is generated, then an optimal solution (driving the robot with maximum obstacle
clearance) is sought within it. A generalization of the dynamic map, that accounts
for moving obstacle velocities and shapes, is presented in [74], where a union of
polygonal zones corresponding to the non-admissible velocities controls the robot to
prevent collisions.
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Figure 3.2: Teach and repeat navigation. a) Defining the best features. Top: teach-
and-repeat paradigm. Bottom: design of the time-independent desired feature. b)
Visual navigation with a lidar-based obstacle avoidance. Left: occupancy grid and
tentacles. Right: experiments. c) Lidar navigation. Top: taught data. Center:
control error. Bottom: nine steps of the navigation experiment.

3.3 Contribution

The research described here addresses sensor-based (vision and distance) teach-
and-repeat wheeled navigation. Most of our work focused on outdoor visual nav-
igation: a wheeled vehicle equipped with an actuated pinhole camera and with a
forward-looking lidar must follow a path represented by key images, without col-
liding with the ground obstacles. For this (see Fig. 3.2(a),top), we rely on the
image coordinates of the n points matched in the current and next key images,
respectively (X1, Y1) . . . (Xn, Yn), and (X∗1 , Y

∗
1 ) . . . (X∗n, Y

∗
n ). The most recent work,

instead (Sect. 3.3.3), extends teach-and-repeat to indoor lidar-based navigation. All
applications are shown in Fig. 3.2, and in videos on the internet1 . Our contributions
have been: the definition of the best visual features to be used [18,19], the avoidance
of obstacles (including moving ones) during navigation [16, 17], [20]- [24], and the
use of lidar measures for teach-and-repeat [25]. All are detailed below.

3.3.1 Definining the best features for visual navigation

We focus on appearance-based navigation, with the path defined as a topological
graph (without forks), represented by a database of ordered key (taught) images.
Navigation is divided in a series of subtasks, each consisting of driving the robot
towards the next key image in the database. In such a framework, the choice of
the features to be used in the control feedback law is fundamental. In particular,
we must determine to what extent is 3D reconstruction, via structure from motion
(SfM) methods necessary/useful.

1https://www.youtube.com/watch?v=FYuqlQDj3yg
https://team.inria.fr/lagadic/demo/demo-cycab-vis-navigation/vis-navigation

https://www.youtube.com/watch?v=FYuqlQDj3yg
https://team.inria.fr/lagadic/demo/demo-cycab-vis-navigation/vis-navigation
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The main contribution of [18] is the quantitative comparison between six con-
trollers for nonholonomic appearance-based navigation using monocular vision. We
set the forward velocity vx to a constant positive value, and design a visual servo
controller (using the image jacobian, see Sect. 2.3) for the angular velocity ωz, with
four alternative feature vectors:

s = [X1 Y1 . . . Xn Yn]> , s =
[
X̄ Ȳ

]>
, s = X̄, s = φz. (3.1)

These are respectively: the image coordinates of all matched points, those of their
centroid, the image abscissa of the centroid, and the robot heading error (obtained
with SfM). For the first two feature vectors, we also compare the behavior of a
controller where the point depths in the image jacobian are precisely estimated
with SfM, with one where all depths are approximated by a pre-tuned, uniform
value. The third feature, X̄, is used in a simple proportional controller without
image Jacobian, as in [62]. We have compared the accuracy of all six controllers,
both in the image and in the 3D pose state space (since both are fundamental
for precise unmanned navigation). The experiments showed that the 4 controllers,
which combine both image data and feature depth outperform the 2 which utilize
only 3D data (φz), or only image data (X̄). Besides, although 3 controllers require
SfM, for those using the image jacobian, a large 3D reconstruction error (e.g., due
to coarse camera calibration) can be tolerated, without jeopardizing performance.
Since SfM introduces computational delay at run time and increases sensitivity to
image noise, a valid alternative is to use the uniform depth controller. Given these
results, in all our following works navigation was image, instead of position-based,
as in [56,61].

The results of that work inspired [19], where we designed a time-independent
varying desired visual feature s∗, to replace the next key image feature. The goal is
to maintain the task error norm ‖s − s∗‖ constant, while tracking each key image,
to guarantee target visibility, even when the current and key camera configurations
are far away from each other. Ideally, this can be done by computing the trajectory
of the features between pairs of consecutive key images, using SfM. Still we aim
at avoiding SfM, and timed trajectory tracking as much as possible. Our varying
feature is designed using a vector field Φ (s), derived from the previous and next key
feature values, si−1 and si:

s∗ = s + ‖si − si−1‖
Φ (s)

‖Φ (s) ‖
. (3.2)

Considering points as features, Φ is determined by summing two fields, one tangential
(Φt), and one normal (Φn) to the line connecting si−1 and si. This is outlined in
Fig. 3.2(a),bottom. The experiments show the advantages of the varying desired
feature with respect to a fixed one, in the image as well as in the 3D state space.
Besides, the performances are close to those obtained if the database contained all
images recorded during teaching (not only the key ones), while requiring less disk
space.
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3.3.2 Avoiding moving obstacles during navigation

Based on these results, we focused on obstacle avoidance, within the same frame-
work: while following the taught path, the robot must avoid obstacles which were
not present during teaching and which are sensed by an on-board lidar. To this
end, we designed a novel control scheme guaranteeing that obstacle avoidance and
navigation are achieved simultaneously. In the presence of obstacles, the camera pan
angle rφc,z is velocity controlled, to maintain scene visibility, while the robot circum-
navigates the obstacle. We also deal with unavoidable obstacles, which make the
robot reduce its translational velocity vx or stop. The situation risk (represented by
scalar function S ∈ [0, 1]) and the consequent behavior are determined via a tentacle
approach that differs from the original [70] by not requiring the robot pose.

Our tentacle-based approach is based on an occupancy grid linked to the robot
(see Fig. 3.2(b), left). Any grid cell is considered to be currently occupied (black)
if an obstacle has been sensed there. The cells’ linear velocities (green in the fig-
ure) are estimated using a Kalman-based observer [17, 24] to predict the obstacle
positions (hence, possible future collisions). Each tentacle j is a semicircle (drivable
path), of curvature κj, tangent to the robot sagittal plane at the robot center. It
is characterized by two classification areas (dangerous Dj and collision Cj ⊂ Dj),
which are respectively used to determine the safest tentacle curvature κb, and the
(eventual) time to collision tc.

In contrast with [75], redundancy is not necessary in our controller since we design
the two tasks (in the safe and unsafe contexts) to be independent. Specifically, we
control the velocities of the robot (vx, ωz) and camera (rφ̇c,z) through: vx

ωz
rφ̇c,z

 = (1− S) J−1s

 vs
−λx

(
X̄ − X̄∗

)
−λφ rφc,z

+ SJ−1u

 vu
−λx

(
X̄ − X̄∗

)
κbvu

 . (3.3)

The variables in the equation are:

• S the risk function on the best tentacle, null iff the best tentacle is clear,

• Js/u the Jacobians relating safe/unsafe tasks to the control inputs2,

• vs > 0 the translational velocity in the safe context (i.e., when S = 0), maximal
on straight path portions, and smoothly decreasing at sharp turns,

• vu ∈ [0, vs] the translational velocity in the unsafe context (S = 1), decreasing
(eventually to zero) as time to collision tc decreases,

• λx > 0 and λφ > 0 empirical gains,

• X̄ and X̄∗ the points’ centroid abscissas in the current and next key image,

2In [16], we provide the sufficient conditions for inverting Js and Ju.
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• κb the curvature of the best tentacle, determined with a rule, detailed in [16].

In the safe context (S = 0), the robot acts as in the teaching phase, i.e. following
the taught path with the camera looking forward and translational velocity set to
vs. If the current pan angle rφc,z is non-null (i.e., if the robot just avoided an
obstacle), it is servoed back to 0. Instead, in the unsafe context (S = 1) the robot
circumnavigates the obstacles, by following the best tentacle at velocity vu. Since
this heading variation drives the robot away from the taught path, the camera pan
angle must be actuated to maintain visibility of the database features. Referring to
the definitions of Sect. 2.5, our approach can be classified as hybrid when S = 0
or S = 1 (i.e., vision and distance operate on independent components of the task
vector), and as shared in all intermediate situations S ∈ (0, 1).

Controller (3.3) is compact, leading to a smooth behaviour. We guarantee asymp-
totic stability of the visual task in the presence of non occluding obstacles and prove
that (3.3) does not present any local minima. Our approach is merely appearance-
based, hence simple and flexible: it requires the database of key images and the
lidar data, but no model of the environment. Hence, there is no need for sensor data
fusion or planning, both of which can be computationally costly and require precise
calibration of the camera/scanner pair.

Our approach was validated in a series of real outdoor experiments with the Cy-
Cab robot (see right of Fig. 3.2(b)). This was the first time that obstacle avoidance
and visual navigation, merged directly at the control level (without the need for
planning) were validated in real-life, unpredictable urban experiments.

3.3.3 Lidar-based teach and repeat

In a fruitful collaboration with the University of Freiburg [25], teach-and-repeat
navigation was extended to lidar data, in the context of indoor logistic applications.
Current autonomous transportation systems need globally consistent metric maps,
to allow flexible route planning. This however requires an expert user to redesign
the map and docking positions at each change of the environment or transportation
routes. Instead, to make automation profitable for frequently changing production
processes, systems should be intuitively usable by non-expert workers. To this end,
we proposed a natural approach where the user just needs to demonstrate a new
trajectory that is then reproduced with high accuracy and precision.

Our scheme relies on localizing the robot along the taught trajectory represented
by a sequence of odometry-based anchor poses ak (shown in Fig. 3.2(c), top), with
associated recorded lidar data. Scan matching provides the current pose of the
robot with respect to the next anchor point, i.e., task vector s (t). By subtracting
the desired task s∗ (t), from s (t), we derive the task error e (t) (Fig. 3.2(c), center),
that is then input to a standard feedback controller.

Our approach has two advantages: it does not require globally consistent metric
mapping, and through the direct use of raw sensor data, it avoids errors that may
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be introduced by grid map approximation. It differs from standard appearance-
based navigation, in the sensor modality (lidar scans vs. camera images) and in the
state space (configuration vs. sensor space). Real-world experiments (Fig. 3.2(c)
bottom) with both a holonomic (Kuka3 omniRob) and a differential drive platform,
demonstrate that the accuracy of our scheme outperforms that of standard Monte
Carlo localization.

3.4 Conclusions

This chapter outlined our main research results in teach-and-repeat navigation for
mobile robots. Human interaction is not physical, nor synchronous, but is present,
since the operator teaches the path beforehand. All works rely on vision and/or dis-
tance as sensing modalities, and both are merged in the controller, to circumnavigate
obstacles, in Sect. 3.3.2.

The main contribution is in the integration of collision avoidance. In fact, prior
to our works [16, 17], [20]- [24], appearance-based navigation frameworks had never
been extended to account for obstacles (neither static nor in motion). Other – minor
– contributions are the design of a time-independent varying desired image feature,
to improve pose accuracy, and the extension of teach-and-repeat to lidar data.

In future work, we plan to extend the tentacle-based approach to robots with
other kinematic models, e.g., the pseudo-omnidirectional Neobotix MPO700 plat-
form present at LIRMM. On highly redundant systems, such as the humanoid HRP-4
(also at LIRMM) perspective work could also include automatic prevention of the
visual occlusions provoked by obstacles.

3http://www.kuka-robotics.com

http://www.kuka-robotics.com
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Chapter 4

Vision and force sensing for
industrial cobots

This chapter presents our research on Collaborative industrial manipulation
with safe physical interaction. The goal is to provide an industrial robot manip-
ulator (arm and possibly gripper or hand) with the three fundamental requirements
of pHRI: the human intention should be easy to infer by the robot, the control
should be intuitive from the human viewpoint and the designed controller should be
safe for both human and robot. To this end, we have exploited vision and force, as
outlined in Fig. 4.1.

Chapter	  4	  
vision-‐force-‐tact	  

for	  phyHRI	  in	  the	  industry	  
(2	  journals,	  1	  conference)	  

Safe	  collaboraAon	  
in	  the	  industry	  COWORKER	  

Figure 4.1: Vision and force sensing for collaborative robots (cobots) Kuka LWR
and Shadow Hand.

The research was carried out in the framework of the French ANR Projects
ICARO (2011-2014), and SISCob (2014-2017), and has lead to three main results:

1. A unified controller for collaborative interaction, merging vision and force with
smooth transitions and weighted combinations of the sensor tasks. This work
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has been published in [26,28], in collaboration with postdoc Arnaud Meline,
and in the context of the ICARO Project.

2. The design and validation of a robot manufacturing cell, for homokinetic joint
assembly [27]. This work was also carried out in the context of ICARO.

3. The design and validation, on a hand-arm robot, of an adaptive damping con-
troller that fulfills the ISO10218 safety standard. This work has been published
in [29], by PhD student Benjamin Navarro, and in the context of the ANR
SISCob Project.

The rest of the chapter is organized as follows: first we present the motivation
and objectives (Sect. 4.1), and the current state of art in collaborative industrial
robotics (Sect. 4.2). Then, we present the contribution of our work in Sect. 4.3, and
we conclude in Sect. 4.4.

4.1 Objectives and Motivation

The concept of cobots, i.e., robots collaborating with human workers in manufactur-
ing assembly lines, dates back to the pioneer work [76]. In fact, cobots - designed
for the assembly line worker – can reduce ergonomic concerns that arise due to
on-the-job physical and cognitive loading, while improving safety, quality and pro-
ductivity. This is a key issue, since according to statistics of the Occupational
Safety and Health Department of the US Department of Labour, more than 30% of
European manufacturing workers are affected by lower back pain, leading to enor-
mous social and economic costs. Thorough surveys on human-machine cooperation
in manufacturing lines are provided in [77, 78]. Both point to the absence of high
level human-robot collaboration (if one excludes “Intelligent Lift Assistants”) and to
the need for more advanced collaboration: although humans remain indispensable
in many assembly operations, ergonomic tools assisting their duties are fundamen-
tal. Although some automotive manufacturers are gradually introducing robots in
their production line [79,80], a crucial question persists: how should a collaborative
robotic cell be designed? The ultimate goal would be to have the adaptability of
humans merged with the high performance of robots in terms of precision, speed
and payload [81].

Furthermore, robots must behave safely, especially when operators are present
in their workspace. Higher safety levels need to be attained when physical contact
occurs between the two. This makes it indispensable to define safety and depend-
ability metrics [82–84]. These can contribute to the definition of standards, such as
the recent ISO 10218 “Safety requirements for industrial robots” [85], that imposes
velocity, power and contact force bounds to the robot tool control point, in the
presence of a human.

To guarantee safety, particularly during physical contact phases, human-robot
interaction has largely relied on the use of force/torque control [41]. Even when there
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is no direct contact, the robot should reactively adapt to sudden changes in the en-
vironment, especially because of unpredictable human behaviour [86]. This can be
done through vision, which is also useful to infer/guess the underlying intention be-
hind motion, as done in [87], to track the human hand during hand-over. Hence,
vision and force should be used concurrently, since the information they provide
is complementary. The integration of the two however requires operating differ-
ent modes and managing sudden signal changes from heterogeneous sensor data.
Important research problems include: What information would be helpful? How
can this information be reliably obtained in the context of the task and platform?
How/where should this information be used?

In summary, the motivation behind the research presented here is the design of
collaborative industrial robot cells, with safety as a fundamental requirement,
using vision-force control, as means for attaining this.

4.2 State of art

In the field of collaborative robotics, many solutions for realizing safe collaborative
tasks have been explored in recent years. Although few of these solutions have been
transferred to the industry, we hereby list some of the most relevant theoretical
works. In [88], a deformation-tracking impedance control strategy is designed to
enable robot interaction with environments of unknown geometrical and mechanical
properties. For successful interaction with unknown environments and operators, the
robot should behave in a human-like manner. This is the target of the research in [89]
and [90]: a human-like learning controller is designed, to minimize motion error and
effort during interaction tasks. Simulations show that this controller is a good model
of human-motor adaptation, even in the absence of direct force sensing. A robust
controller for a collaborative robot in the automotive industry, is extended in [91],
to manage not only the interaction between an industrial robot and a stiff envi-
ronment, but also human-robot-environment and human-robot-human-environment
interactions.

Other researchers have focused on industrial applications. For example, an indus-
trial robot controller, incorporating compliance of the joints with the environment,
is presented in [92]. The desired pose of the tool center point is computed from the
force error. Parallel control considers a reference trajectory, while allowing feedfor-
ward in force-controlled directions. Although the method is designed for industrial
assembly tasks, it does not take into account the presence of humans in the loop. In
contrast, Erden and colleagues [9,93,94] have thoroughly studied an industrial task
that directly involves a human operator: manual welding. In [9], a physically inter-
acting controller is developed for a manipulator robot arm: the human applies forces
on the robot, to make it behave as s/he likes. The assistant robot is then designed
in [93]: as the human controls the welding direction and speed, the robot suppresses
involuntary vibrations (e.g., caused by novice welders). The results show a consid-
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erable improvement in the welders performance when they are assisted. Finally, [94]
presents a study of end-point impedance measurement at human hand, with pro-
fessional and novice welders. The results support the hypothesis that impedance
measurements could be used as a skill level indicator, to differentiate the welding
performance levels. Similar works are presented in [95] and [96]. In [95], an opera-
tor teaches tasks to a robotic manipulator, by manually guiding its TCP. For this,
the authors design a virtual tool, whose dynamics the operator should feel when
interacting with the robot. An admittance controller driven by the measurements of
a force/torque sensor is designed to ensure the desired virtual dynamic behaviour.
The second paper [96] addresses the problem of controlling a robot arm, executing
a cooperative task with a human, who guides it physically. This problem is tackled
by allowing the TCP to comply according to an impedance controller [15] defined in
the Cartesian space. Redundancy ensures the stability of the coupled human-robot
system through inertial decoupling at the TCP.

As already mentioned, safety is a crucial element in the design of all these collab-
orative industrial robotic cells. To our knowledge, present-day collaborative robot
manufacturers [97] fulfill the ISO10218 standard by saturating the velocity, stopping
the robot, or using expensive hardware solutions. Although novel safe actuation
systems have been recently proposed in the literature [98], [99], [100], these are not
always easily affordable or adapted for any robotic system. An alternative comes
from control, although, to the best of our knowledge, the only work that tackles the
ISO1028-2011 is [101], where only the force limitation is considered. As for most of
the works cited above, a solution comes from impedance control [15] and its modified
versions for force tracking [102], force limitation [103], adaptive damping [104] or
exploiting redundancy [105].

In general, having a human being as a physical collaborator requires revisiting
some aspects, such as the choice of the impedance parameters. For instance, variable
impedance control is used for human-robot collaboration in [106,107], with parame-
ters obtained from human-human experiments. In fact, mechanical impedance was
shown to provide a good model of the human being in [108]. A variable damping
controller is defined in [109] using the derivative of the interaction force. A method
for improving impedance control consists in utilizing an estimate of the human in-
tended motion [110]. An example is [6], where machine learning is used to obtain a
model of the task, which is then utilized within an adaptive impedance framework.

Finally, let us briefly review work where vision and force are merged - directly
at the control level - for HRI. One such work is [111], where force- and vision-based
control are used to avoid collisions, while tracking human motion during interaction.
Force sensing, along with minimum jerk based estimation of the human motion, is
used by Maeda et al. [5] within a virtual compliance framework for cooperative
manipulation. The authors of [112] present a system (including a wearable suit
with inertial motion capture sensors) for precise localization of a human operator in
industrial environments. If the robot is realizing a task and a human enters the safe
area, the robot will pause until the human leaves.
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Figure 4.2: Collaborative robot applications. a) Collaborative screwing. Top: ex-
perimental setup. Center: on-board camera, kinect view and on-board camera view.
Bottom: three phases of the operation. b) Assembly of a homokinetic joint. Top:
Rzeppa joint, setup and raw/processed images. Bottom: six phases of the assembly.
c) Collaborative drilling: eight phases of the operation.

4.3 Contribution

The research described in this chapter was driven by industrial requirements. It
targeted three applications: collaborative screwing (case study proposed by AIR-
BUS [26, 28]), collaborative assembly of a homokinetic joint (proposed by PSA,
Peugeot Citroën [27]) and collaborative drilling, complying with the ISO10218 stan-
dard [29]. These applications are shown in Fig. 4.2, and in videos on the IDH LIRMM
youtube channel1. For the first two scenarios, we only utilized a Kuka LWR arm,
whereas in the third one a Shadow robotic hand2 was also mounted on the arm. In
the first two scenarios, the control relied on force proprioception (external wrench
estimated, via the FRI Interface3.) and vision (including a kinect, in the first one),
whereas in the third scenario, we used force proprioception and touch, measured
by the BioTac4 on the robot hand. The contributions of the three works have re-
spectively been: a unified multimodal control framework for pHRI, the design of a
collaborative cell with the robot alternating proactive and compliant behaviors, and
an adatpive damping controller guaranteeing safety. These are detailed hereby.

1https://www.youtube.com/watch?v=P8wfQ5tOa5E
https://www.youtube.com/watch?v=3KWduKKSyy8
https://www.youtube.com/watch?v=iOuhFKp31xY
2http://www.shadowrobot.com/
3http://cs.stanford.edu/people/tkr/fri/html/
4http://syntouchllc.com/

https://www.youtube.com/watch?v=P8wfQ5tOa5E
https://www.youtube.com/watch?v=3KWduKKSyy8
https://www.youtube.com/watch?v=iOuhFKp31xY
http://www.shadowrobot.com/
http://cs.stanford.edu/people/tkr/fri/html/
http://syntouchllc.com/
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4.3.1 Unified multimodal control for pHRI

In the first application (Fig. 4.2(a)), the robot aids a human operator in a screwing
operation. The two operate on opposite sides of a flank, where a series of screws
must be inserted. The required operations are: the human inserts the screws in
the holes; the robot touches the screws with its TCP properly aligned (bolt tight-
ening is out of scope). In such an application (which resembles “peg-and-hole”, but
adding the human-in-the-loop), it seems natural to exploit vision and force comple-
mentarity. Indeed, while the robot is far from any physical constraints, image-based
control is useful for nearing the parts to be mated, but as the robot tip approaches
the environment, unpredicted contacts can occur. Then, a force controller can inter-
vene on some dof to provide compliance and guide the manipulator to the desired
pose. Given these specifications, we have drawn inspiration from hybrid schemes
(see Sect. 2.5), in particular from our previous work on vision and distance-based
navigation (Sect. 3.3.2).

Inspired by inverse kinematic control [113,114], we have designed a unified task
formalism. The contributions, with regards to classic hybrid vision-force-position
control (typically to [115]), is that we can guarantee global asymptotic stability,
while: enabling smooth transitions (homotopies) and weighted combinations (even
on the same dof) of the different sensor tasks.

We hereby recall the formulation of our approach (further details are in [26]).
Let k ≤ 6 be the dimension of the operational space associated to the TCP. Consider
n senses and, for each sense, the task vector sm ∈ Rk, with m = 1, . . . , n (e.g., if
vision and force are used, n = 2). A combination of tasks defined by different senses
is realizable as long as its size is also k. The tasks are selected via n positive definite
square diagonal selection matrices, denoted Sm (generalizing the scalar activation
function S used in Sect. 3.3.2). The k-dimensional hybrid task s to be realized is:

ṡ = S ˙̄s, with S = [S1 . . .Sn] ∈ Rk × Rkn, and s̄ =
[
s>1 . . . s

>
n

]> ∈ Rkn. (4.1)

If the m-th sensor provides less than k measures, the missing components can be
deselected by zeroing the corresponding rows in Sm. Matrix S can also be used to
weigh/combine outputs from different sensors in a single task. Each task is related
to the Cartesian velocity of the TCP v ∈ Rk by the k × k Jacobian Jm :

ṡm = Jmv. (4.2)

We prove that the optimal controller5 ensuring convergence of s to s∗ is6:

v = (SJ)−1 (s∗ − s) , with J = [J1 . . .Jn]> ∈ Rkn × Rk. (4.3)

On the other hand, classic hybrid control (see Sect. 2.5) consists in assigning each
sensor to a Cartesian direction in the operational space and then summing up the

5By optimal, here, we mean it minimizes the task error 2-norm.
6Assuming matrix SJ is invertible.
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velocities associated with the selected sensors:

v = S

 J−11 . . . 0

0
. . . 0

0 . . . J−1n

 (s̄∗ − s̄) . (4.4)

Controller (4.4) is optimal under two strong assumptions: all the sensor tasks sm
must be expressed in the same reference frame and only one sensor can be used to
control each direction of v. These assumptions limit its use in practical applications.
For instance, merging image-based visual servoing, which defines the visual task in
the image frame with force control usually implemented at the contact point, would
infringe the first assumption. On the other hand, (4.3) only requires that SJ is
invertible (a weaker assumption, always true under the two assumptions above).

Furthermore, the use of homotopies (differentiable time-varying expressions for
the selection matrices Sm) smoothens the transitions between sensor tasks, to guar-
antee safer operation. We show experimentally, in the mentioned collaborative
screwing setup, that vision and force tasks can be realized either exclusively or
simultaneously with our controller. To this end, we utilize a fixed Kinect and a
black and white camera mounted on the robot, so as to respectively track the hu-
man hand position (using OpenNI7) and newly inserted screws on the flank. To
properly align tool and screw, the external wrench on the TCP is estimated via the
FRI Interface. The robot infers the - unpredictable - human intentions using only
low-cost sensors, without the need for structuring neither the environment nor the
operator (in contrast, e.g., with [112]).

4.3.2 Collaborative assembly cell

The second target application (Fig. 4.2(b)) is the assembly of an Rzeppa homoki-
netic joint. In particular, we focus on the insertion of six steel balls in the joint
grooves. This is currently done manually by the PSA operators, using an insertion
tool and a gripper to incline the joint cage and insert the balls. The cage opening
should be automated, to alleviate the worker from musculoskeletal disorders, while
ball insertion requires very high precision and adaptability skills, not attainable by
present-day industrial robots.

To fulfill these requirements, in [27] we propose a novel design of the Rzeppa
assembly cell. The lower part of the joint is held by the robot, while the insertion
tool is fixed to a rigid support. Hence, most of the required movements are carried
out by the robot, with the human intervening only to position the balls.

By relying on force and vision, we successfully manage direct physical contact
between robot and human, and between robot and environment. In fact, vision
stops robot operation in case of danger for the operator hand (as in the images

7https://github.com/OpenNI/OpenNIhttps://github.com/OpenNI/OpenNI
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in Fig. 4.2(b), top right), while the external forces are used (via admittance con-
troller (2.13)) to deform the robot nominal trajectory for collision/blockage avoid-
ance. Referring to Sect. 2.5, our approach can be classified as shared, since vision and
force operate concurrently. However vision intervenes merely as a trigger, blocking
or releasing the robot motion.

Although the applications targeted by most of the works cited in Sect. 4.2 also
fall in the shared workplace paradigm evoked in [77], they differ from the one treated
here, since the robot motion is driven only by the human worker. Instead, in our work
the robot alternates active (i.e., autonomous) and passive (compliant) behaviors, to
lighten the burden on the operator in the first case and to follow his/her needs in
the latter.

Furthermore, in contrast with most similar works (e.g., [96]), our approach can
be applied to standard position (and not torque) controlled robots, common in
the industry. From the end user’s (PSA) viewpoint, two aspects are particularly
noteworthy. First, since the operator load is reduced by approximately 60%, the
proposed assembly cell can be reclassified in the PSA ergonomics scale. Second, a
complete risk analysis by PSA indicates that the proposed setup is compatible with
the safety standards and can be certified.

4.3.3 A safe adaptive damping controller

Following that work, we pursued research on manually guided collaboration, on the
one hand focusing on the requirements of the ISO10218 safety standard, on the other,
exploring the features of direct force measurement via touch [29]. This research has
been carried out on a hand-arm robotic system, in a mock-up drilling application,
shown in Fig. 4.2(c). Here, as for the Rzeppa assembly, the robot operates as an
enhanced weight compensator, by alternating active and passive modes. Touch (via
tactile sensing) provides an intuitive interface for the operator, enabling it to easily
switch between the various modes.

The ISO10218 standard specifies that in presence of a human being, any robot
must respect contact force, velocity and power limits at the TCP:

|f| ≤ FM , |v| ≤ VM ,
〈
Bh, ẋ

〉
≤ PM . (4.5)

Positive scalars FM , VM and PM are respectively the maximum external force, ve-
locity and transmitted power allowed (all three specified by the end-user). Since
in pHRI it is very difficult to model/predict the evolution of exchanged force and
wrench over time, we assume the norm of their derivatives to be bounded by known
ḞM and ḢM respectively. Then, considering the robot as a delayed first order sys-
tem, we can determine the maximum increment of the force and power norm that
could occur as the system responds:

∆FM =
3ḞM
λ

, ∆HM% =
3ḢM

λ|h|
, (4.6)
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with λ > 0 the scalar gain of the inverse kinematic controller (see Sect. 2.2). Un-
der these assumptions, we have designed and experimentally validated an adaptive
damping controller that limits online (and only when needed) |f|, |v| and

〈
Bh, ẋ

〉
,

to fulfill (4.5). We apply (2.13), with h∗ = M = K = 0, B = K−1Bt, and Bt a
constant, pre-tuned, damping matrix. Our controller generates the desired velocity
ẋ∗, by adapting the scalar K ≤ 1:

ẋ∗ = KB−1t h + ẋr,with K =

{
min {Kv, Kp, 1} if |f| ≤ FM −∆FM

min {Kv, Kp} otherwise.
(4.7)

Parameters Kv < 1 and Kp < 1, which respectively guarantee the velocity and power
limitation, are function of the task, configuration, and measured wrench. Note that
in all cases K is chosen conservatively to guarantee that neither the velocity (since
K ≤ Kv) nor the power (since K ≤ Kp) constraints are infringed. Moreover, if the
force is below the security threshold FM − ∆FM , the damping will stay above its
pre-tuned values (because K ≤ 1), whereas otherwise, it could go below these values
and move the robot away from collision.

Although we did not apply our control framework directly to the robot hand,
we did guarantee safety of its use by exploiting tactile data in two ways. First,
we designed a simple grasp strategy that is driven by tactile measures. In fact,
we use them to modify online the desired articular configuration of each finger to
regulate the contact pressure between finger and object. Second, we exploit the
thumb BioTac as an intuitive interface for the operator. This BioTac is used as a
button, to trigger some events (e.g., to start grasping a tool). The implemented
switch is based on a comparator with hysteresis. With this system, the operator can
interact with the robot without an external sophisticated interface. This solution
improves both the ergonomy, and the time required to perform the task.

4.4 Conclusions

This chapter has outlined our main research results in the field of collaborative in-
dustrial robotics. The three case studies were application-driven, and have required
us to address two crucial specifications from the industry: safety and robustness.
We have shown that vision and force are fundamental to achieve these, and have
started exploring the potential of touch in pHRI.

On a more theoretical viewpoint, the development of our unified multimodal
controller, has opened numerous research avenues. These include: studying its ro-
bustness with regards to inaccurate estimation of the task Jacobian matrices Jm,
guaranteeing the boundary conditions at sensor task switches, and considering the
use of parsimonious control [116]. The second and third aspect can be addressed with
non-linear optimization, a powerful tool, which we has been successfully deployed
on humanoid robots, as will be shown in Chapter 5.
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Chapter 5

Force and visual control for
interaction with humanoid robots

This chapter presents our research on applying force and visual control on real-size
humanoid robots. The objective is to make humanoids capable of carrying ob-
jects with humans and of operating human-tailored devices. Humanoid platforms are
clearly less application-oriented than the industrial manipulators targeted in Chap-
ter 4. Nevertheless, their operation requires solving specific fundamental research
problems, typically problems related to whole-body control of highly redundant sys-
tems, and to walking stability. These problems become even more challenging when
closing the feedback loop on sensed information. In our work we have exploited
force, and in two of the three case studies, vision.

Figure 5.1: Force and visual control of humanoids HRP-2 and HRP-4 (Kawada Ind.),
for operating devices and for collaborative carrying with a human co-worker.

The research presented here has been carried out in the framework of the FP7
European Project RoboHow (2012-2016), and of the CNRS PICS Project ViNCI
(2013-2016), and has lead to three main results:

1. The design of a framework combining vision and force control for operating
the steering wheel of a simulated car, enabling to drive the car along a road.
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This work has been published in [33], by PhD student Antonio Paolillo, in
the context of the ViNCI Project.

2. The design and validation of a framework combining vision and force control
in human-humanoid collaborative carrying. This work has been published
in [30–32], in collaboration with the PhD student Don Joven Agravante, in
the context of the RoboHow Project.

3. The design and validation of a humanoid walking pattern generator, accounting
for external forces, e.g., those applied by a human in collaborative carrying.
This work was also carried out in RoboHow by Don Joven Agravante,
and led to the publication of [34], and to the submission of [35].

The rest of the chapter is structured in the following way: first we present the
motivation and objectives (Sect. 5.1), and the current state of art in humanoid robot
interaction (Sect. 5.2). Then, we present the contribution of our work in Sect. 5.3,
and we conclude in Sect. 5.4.

5.1 Objectives and Motivation

Humanoid robotics focuses on the design of robots directly inspired by human motion
and sensing capabilities. This design gives many advantages in operating human-
tailored devices and in working in cooperation with humans.

The operation of human-tailored tools by humanoid robots presents clear ad-
vantages for society; for instance, in disaster response scenarios, as well as in the
domains of service, industrial and entertainment robotics. In disaster situations,
for instance, the robot should be capable of driving a utility vehicle to reach the
intervention zone, operating cranks or other tools attached to the vehicle [117,118],
and executing other tasks, e.g., turning a valve, drilling, etc. In fact, it is unlikely
to have such devices instrumented for autonomous or teleoperated control. If the
robot is not a humanoid robot, these operations can hardly be achieved by a unique
platform.

All the cited applications require the solution of an unprecedented “humanoid-
in-the-loop” problem, since the robot must autonomously control another dynamic
system. In fact, it should handle the physical contact with the tool, while controlling
its motion. To this end, force and vision provide, once more, the most adapted
sensing modalities. Here, we focus on the development of a robot driver, a case study
of the more general problem of operating human-tailored devices and machinery
(including, e.g., levers, pedals, buttons).

A second, important application of humanoid robotics is collaborative object
carrying with human beings in the construction, service and rescue scenarios. In
fact, humans have extensive experience in physically cooperating with each another.
A humanoid with a similar range of motion and sensing, can provide an intuitive
interface, reducing the level of expertise required by the operator.
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As shown in Chapter 4, physical human-robot collaboration generally relies on
control of the exchanged interaction wrench. Vision can also be fundamental in
collaborative carrying, for two main reasons. First, a robot that is able to “see”
the user’s non-verbal and non-haptic cues to infer his/her intentions, will be able to
interact more intuitively from the human perspective. Second, wrench alone cannot
give the robot a complete knowledge of the environment (e.g., a table may have to
be moved carefully, to avoid objects from falling off). Both information sources may
then be needed to enable a humanoid to perform complicated tasks that are similar
to those that humans can perform.

An important challenge, specific to humanoid robots, is biped walk stability.
In the case of collaborative carrying, this should take into account the external
forces, applied by the human operator. Disregarding the legged aspect, various
works have been carried out on wheeled mobile manipulators [119–121]. The trade-
off is having an easier control over more limited mobility. Although the locomotion
is different, these works reveal one of the main problems: coordinating the motion
of the mobile/floating base, with that of the upper body, and with human intentions
(i.e., the exchanged force). However, balance is not addressed since, in contrast with
humanoids, these robots have a low Center of Mass.

To summarize, the motivation behind the research presented in this chapter is
the use of humanoid robots to operate human-tailored devices and to walk
while carrying objects in collaboration with humans.

5.2 State of art

Since in both applications (device operation and collaborative carrying), robot and
environment/human are permanently in contact, within the classification of Sect. 2.5,
a shared approach is preferable. We hereby review two works that have inspired
us: [122] and [123], which rely on vision/force shared control. The control schemes
proposed in these two papers are shown respectively at the top and bottom of
Fig. 5.2. In [122], the visual loop runs outside the force loop. The reference tra-
jectory ẋr output by visual servoing, is deformed in the presence of contact by the
admittance controller. Although the formulation relies on the task function ap-
proach, the effects of conflicts between force and visual tasks on stability are not
discussed. In [123], vision is used to first guide a robot hand towards a grasp position
and then, to perform the manipulation by taking into account the contact forces.
Here, the admittance controller runs outside the vision loop to deform the reference
visual task sr. Hence, as is common in external control [124], conflicts between force
and position/vision are avoided. The dynamics of the task error however, are not
explicitly derived. A stability proof is therefore impossible. Furthermore, the cited
works, as well as others using similar approaches such as [125], present experiments
on manipulator robots but not on humanoids.

Collaborative carrying has been addressed using small scale humanoids in [126–
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Figure 5.2: Two schemes for shared vision-force control. Top: visual loop outside
force loop [122] (with ẋr corresponding to the vc). Bottom: force loop outside vision
loop [123]. In both schemes, ∆x = x∗ − xr, and ∆s = s∗ − sr.

128]. The main focus of [126] was on the use of internal sensors in place of the hand
force/torque sensors commonly used in pHRI. The same platform (NAO) is used
in [127], where the capture point [129, 130], estimated by the robot IMU, guides
the robot walk. Another closely related demonstration can be found in [128], where
Darwin robots carry a stretcher. Here however, the human element is removed. In
these works, where only robots are used, the interest is turned to synchronization
and communication between machines.

Moving to real-size humanoids, early work was done in the Humanoid Robotics
Project (HRP), where the HRP-2P humanoid helps a human transport a panel [131].
This type of application has two important aspects: robot and human are jointly
doing the same task, and a haptic interaction exists among the two. The research
is focused on regulating the interaction forces for safety, and on making the robot
proactive in helping humans [5, 6]. Recent advances are presented in [7, 132], where
the HRP-2 carries a beam collaboratively with a human. Initially, studies were
conducted to understand how a human-human dyad cooperates for such a task [7].
These observations were then exploited to achieve a proactive behavior, enabling
the robot to be either a leader or a follower [132]. Both works are achieved using
only the force/torque measurements, hence the interest of adding vision, because of
the complementary information that it provides.
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Figure 5.3: Humanoid robot applications. a) Autonomous car steering. Top: exper-
imental setup. Bottom: robot camera views. b) Visual-force collaborative carrying.
Top: experiments. Bottom: robot camera views. c) Walking while carrying different
objects in different postures.

5.3 Contribution

The research described in this chapter targeted two applications: robot car driving
(in the context of the DARPA Robotics Challenge) and human-humanoid collabo-
rative carrying. These applications are shown in Fig. 5.3 and in videos on the IDH
LIRMM youtube channel1. We have utilized both HRP-2 and HRP-4 from Kawada
Industries equipped with ATI Mini45 force/torque sensors at each wrist, and with
an Asus Xtion RGB-D sensor in the head, which is used as a monocular camera.
The contributions have respectively been: a shared vision/force controller enabling
a humanoid robot to operate a steering wheel for car driving, a shared vision/force
controller for collaborative carrying, and a humanoid walking pattern generator,
which accounts for external forces. These are detailed hereby.

5.3.1 Vision and force for autonomous car steering

The first application (shown in Fig. 5.3(a)) consisted in making a humanoid robot
operate sophisticated devices. Specifically, we made it turn a car steering wheel and
drive the vehicle along a road. Although HRI is not explicit here, since the device
is human-tailored, a human-like behavior must be designed.

First, a vision-based controller used two image features of the road to provide
the reference angle α for the steering wheel. These features were: the image abscissa
of the intersection of the road borders, Xv, and the abscissa of the midpoint of the
segment linking the borders along the image plane abscissa axis, Xm. Subsequently,
an admittance controller allowed the humanoid to safely rotate the steering wheel

1https://www.youtube.com/watch?v=WzacruLkN g
https://www.youtube.com/watch?v=-1BcC3aEuZM
https://www.youtube.com/watch?v=btAwS9RDcSA

https://www.youtube.com/watch?v=WzacruLkN_g
https://www.youtube.com/watch?v=-1BcC3aEuZM
https://www.youtube.com/watch?v=btAwS9RDcSA
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with its hand, so as to perform the desired steering command. To obtain such
behavior, we draw inspiration from [122] (Fig. 5.2, top), and design a shared vision-
force controller with vision in the outer loop. The reason for this choice is that the
force sensor frequency is much higher that of vision.

The main contribution of this work has been a proof of concept, showing the
possibility of autonomous operation of complex devices, with a humanoid robot,
relying only on standard on-board sensors. With respect to recent works on tool op-
eration [133], a great deal of effort was made to elaborate autonomous behavior and
avoid human teleoperation. A second, important contribution has been in the simul-
taneous control of two sophisticated and interrelated dynamic systems: robot and
car. Both kinematic models were taken into account in the design of the framework
to guarantee success of the driving task.

We made the following assumptions: that the car driving speed v is always
strictly positive and assumed as approximately known, that the robot is already in
driving posture with its hand grasping the wheel and that the road is locally flat
with feasible turns. Under these assumptions, we considered a rear-wheel kinematic
model of the car and showed that the road is followed when the steering wheel is
turned by angle:

α =
kα

k1 +XmXv

(
k2Xv − λp

Xm

v

)
, (5.1)

with kα a positive scalar characteristic of the steer, k1,2 constants related to the
camera parameters, and λp a hand-tuned control gain. Angle α was converted
to the hand reference position required for turning the wheel, xr. To soften the
contact of the hand with the wheel, we utilized admittance controller (2.13) to yield
the desired hand position, x∗. For this application, our target was to have good
tracking of α and safe interaction with the wheel. To this end, the admittance
system (applied only on forces, not torques) was designed to be fast and stiff along
the wheel tangent, and slow and compliant along the two other axes. Finally, x∗ was
sent to the kinematic controller embedded in the stack of tasks framework [114], to
move the robot joints accordingly.

The controller was validated (even with respect to inaccurate estimates of v)
via a car driving experience by the humanoid robot HRP-4, within a video game
setup. This work was preliminary to our research on real car driving (outdoor, and
including gas pedal control, [40]). This is presented in Chapter 6.

5.3.2 Collaborative carrying using vision and force

A similar framework can been used to combine vision and wrench in human-robot
joint actions, i.e. in collaborative tasks requiring both parties to physically inter-
act. In such scenarios, the robot must move safely, regulating exchanged force and
sharing control with a human-in-the-loop, using only its on-board sensors. Vision
brings new information that cannot be obtained from force/torque sensors (e.g, per-
ception of object motion and gesture recognition for anticipating human intention).
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However, having a human as a physical collaborator implies that some aspects of
the shared vision-force framework presented in Sect. 5.3.1 need to be revisited, i.e.:
what information would be helpful? how can this information be obtained in the
given context? and how/where should this information be used while accounting for
the human safety/intention?

We considered the task of jointly carrying a flat surface (e.g., a table) while
keeping it horizontal, to prevent any object on top from falling off (see Fig. 5.3(b)).
The strategy consisted in using vision to observe/servo the table inclination, while
regulating the forces exchanged with the human to follow his/her intention. As in
Sect. 5.3.1, we used a shared approach, with visual servoing in the outer loop of
an admittance controller (see Fig. 5.2, top). The shared approach was preferred
over the others, since it allows for compliance in all dof. However, in contrast with
Sect. 5.3.1, the framework here was also hybrid ; controlling some dof only with
admittance and adding vision for the remaining ones. In [30], vision was used with
force to stabilize only the height of the table. Later, in [32], to avoid a moving object
(ball) from falling off the table, a second dof was controlled with vision. Another
contribution was the possibility for the robot to be either leader or follower within
the same framework.

The approach in [32] consisted in moving the robot’s hands (TCP) to drive the
table to a reference pose in the robot frame R. This pose, defined (omitting the left
superscript R for simplicity) as:

xr =
[
xr, yr, zr, φrx, φ

r
y, φ

r
z

]>
, (5.2)

was fed to the admittance controller (2.13), to guarantee safety. A fundamental
issue of our work was the design of the 6 reference dof. To avoid the ball from
falling, visual servoing regulated the table height zr and the roll angle φrx. The
three dof characterizing planar displacement of the table (xr, yr, φrz) were defined
(from our group’s earlier work [7,132]), to make the robot either leader or follower.
Finally, for human comfort, the table tilt angle was made compliant: φry = 0. For
visual control of zr and φrx, we modeled the ball dynamics using a simple sliding
model. Asymptotic convergence of the ball to the table center is guaranteed by a
Proportional Derivative feedback controller on the ball position in the table frame,
txb,

tyb: {
zr = −λ1 txb − λ2 tẋb
φrx = λ3

tyb + λ4
tẏb

(5.3)

with λ1−4 positive scalar gains, txb,
tyb derived using the robot on-board Asus Xtion

and tẋb and tẏb obtained by numeric differentiation.

Having now set xr, the output of admittance control (2.13) x∗ was then sent to
the stack of tasks, so as to control the robot joints. The results on HRP-2 showed
that the proposed vision-force controller could be successfully applied to human-
robot joint actions.
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5.3.3 Walking during physical collaboration

Although in Sect. 5.3.2 we successfully integrated vision and force in a setup where
both were necessary, that work highlighted an important limitation of the framework
at hand. In fact, postures (e.g., with extended arms or leaning chest) requiring the
Center of Mass (CoM) to move away from the waist would make the Walking Pattern
Generator (WPG) fail. Indeed, the WPG [134] used there was not designed for
physical interaction. Hence, we worked on the design of humanoid walking pattern
generators to be used for physical collaboration.

The use case addressed here is that of a humanoid robot helping a human to carry
large and/or heavy objects (see Fig. 5.3(c)). In contrast with the two previously
described works, here only force measured at the robot wrists is used for control.
Our contribution is the design of two WPG for walking under sustained forces, one
for the leader and the other for the follower robot.

To this end, we constructed a reduced model that takes into account physical
interaction. The external wrench (excluding the ground contact forces) expressed in
a frame placed on the CoM is noted: h = [f> n]> ∈ R6. The WPG aims at keeping
the Zero Moment Point (ZMP) in the support polygon. Assuming horizontal flat
ground, constant angular momentum and constant CoM height zcom, the dynamic
equations yield: {

xzmp = xcom + zcomfx+ny

mg−fz − zcom
g−fz/m ẍcom

yzmp = ycom + zcomfx−nx

mg−fz − zcom
g−fz/m ÿcom

, (5.4)

with m the robot mass and g the gravity. In absence of the external wrench, this
becomes the standard expression found in the literature:{

xzmp = xcom − zcom
g
ẍcom

yzmp = ycom − zcom
g
ÿcom

. (5.5)

Applying model predictive control to this system, with CoM jerk as input, the future
states and outputs can be written in function of vector:

p =

[
u
r

]
. (5.6)

Vectors u and r are the concatenation, over the preview horizon, respectively of
CoM jerk components [

...
x com,

...
y com]> and of future foot landing positions expressed

in the preceding foot frame. Using (5.6), we design two WPG that are suited for
leader and follower modalities. Each is obtained by minimizing an appropriate cost
function, using constrained quadratic optimization with p as argument.

The approach is validated both on simulation and on the HRP-4 humanoid robot.
In the follow-up, submitted in [35], the WPG is integrated in a whole-body opti-
mization control framework that also accounts for object grasping, holding, and
releasing.
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5.4 Conclusions

This chapter has outlined our main research results on sensor-based control of hu-
manoid robots. The case studies targeted both operation of human-tailored devices,
and collaborative carrying with a human. The first work has later led to the devel-
opment of the complete car driving framework that will be described in Chapter 6.
The research on collaborative carrying has shown the importance of the human role,
for task success (typically, the ball carrying experiment would fail without human
collaboration). It should also be noted that these type of applications would greatly
profit from an extended sense of touch (e.g., via robot skins).

From a methodological viewpoint, the last work on walking has emphasized
the enormous potential of constrained quadratic optimization for whole body kine-
matic/dynamic control. This approach has in fact gradually replaced the stack of
tasks in our research group. One of the main research axes that I plan to follow, will
consist in profiting from the experiences gained in controlling such highly redundant
systems to provide similar solutions in industrial mobile manipulator control. This
will bridge the results presented in this Chapter with those from Chapter 4.
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Chapter 6

Shared human-robot control

There is a growing interest in using anthropomorphic robots for many applications,
to enrich control and sensing capabilities of human beings. In this chapter, we
present our research on applying vision and force (specifically, touch) to extend
the senses of a human as s/he controls/embodies robotic systems. This research falls
in the broad class of shared control. The reader should here note that the term
shared has a different meaning from how it is used in Sect. 2.5, where it refers to
a technique that exploits different senses within a unique control scheme. Instead,
in this Chapter, the term indicates that the robot depending on the context can be
autonomous, or either partially or entirely controlled by the human operator.

Chapter	  6	  
shared	  control	  with	  
human	  in	  the	  loop	  

(2	  submi7ed	  journals?	  	  
1	  conference)	  

Shared	  control	  of	  	  
anthropomorphic	  robots	  AUGMENTED	  

HUMAN	  

Figure 6.1: Touch and vision-based shared control of humanoid HRP-2 and Shadow
Robotic Hand, for “augmenting” human capabilities.

The research presented here has been driven by three application scenarios; two
targeting assistance to disabled persons and one for post-disaster intervention. The
three main results that were obtained are:

1. The control of a robotic hand with electromyography (EMG) and tactile feed-
back. This work has been published in the IEEE Trans. on Neural Systems &
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Rehabilitation [39], in collaboration with the INRIA Demar team (work of
PhD students Wafa Tigra and Benjamin Navarro).

2. The design of a complete visual navigation framework for embodiment in a
humanoid robot, via a brain-computer interface (BCI). This work has been
published in [36–38] by PhD student Damien Petit in the context of the FP7
European Project VERE.

3. A vision-based shared control framework for operating a humanoid robot to
drive a car in post-disaster scenarios. This work has been submitted to the
Journal of Field Robotics [40] by postdoc Antonio Paolillo.

The rest of the chapter is organized as follows: first we present the motivation
and objectives (Sect. 6.1), and the current state of art in the various research areas
(Sect. 6.2). We then present the contribution of our work in Sect. 6.3. Finally, we
conclude in Sect. 6.4.

6.1 Objectives and Motivation

Although complete spinal cord injury is devastating, patients can move paralyzed
limbs by sending an electric stimulation sufficient to excite the cells responsible for
muscle contraction [135]. Nevertheless, precise control of the stimulation device
is still problematic, since the choice of voluntary movements (hence, of available
media) remains limited. Poor ergonomics of the piloting modes are another cause of
the low usage of orthotics and functional electrical stimulation (FES) for restoring
hand movements. While avoiding invasive surgery, a dexterous robot hand allows
investigation on the use of EMG (which result from the activation of muscles) to
control grasping. In fact, its dimensions and dof are close to those of the user
hand, allowing him/her to get (via visual feedback) an intuitive representation of
the movement that s/he could control with FES-based hand movement restoration.

A similar paradigm can be applied to the whole body of a humanoid robot, to
extend not only the control but also the mobility capabilities of elder or physically
disabled people. As the world population is aging rapidly, the increase in health care
demand may lead to deterioration in the quality of life of senior citizens. This has
spurred interest in research on assistive robotics, i.e, on robots aiding in domestic
tasks. The human-tailored environment and tools, that are targeted, motivate the
choice of humanoids in such scenarios.

The recent DARPA Robotics Challenge (DRC) has shown that disaster scenarios
also require humanoids capable of operating tools and machinery originally designed
for humans. For these complex tasks, the robot should be aided, at least partially,
by a human being, leading to shared control architectures, where (depending on the
situation at hand) the system autonomy can be tuned. The DRC utility car driving
task is a good illustration of this.
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To summarize, the motivation behind the research presented in this chapter is
the design of shared control frameworks aiding humans when direct perception
and/or control are not available. This pushes pHRI to a higher stage, where the
robot becomes an extension of the human being, enabling him/her to expand
his/her capabilities of interacting with the environment.

6.2 State of art

Recently, robotic hands have been used as prosthesis for amputees. These are con-
trolled either by BCI [136] or by EMG [137, 138]. These systems are preferred to
conventional grippers, since they allow manipulators or humanoids to handle com-
plex shaped objects originally designed for humans [139]. However, to the best of
our knowledge, EMG signals (in contrast with neural signals [140]) have never been
used by individuals with tetraplegia (i.e., who are not amputees) to pilot robot hands
(in [141], EMG pilots the patient’s own hand, via FES). Besides, in most works, a
single motor is used to open/close a finger; a design constraint that impedes precise
hand grasps.

Electroencephalography-based BCI is preferable for patients with severe motor
disability or whenever EMG is unavailable. Given the complexity of decoding motor
intention in BCI, researchers generally use high-level intention recognition to perform
goal-oriented control [142]. Many assistive applications have thus been developed
using BCI [143]. These include control of a wheelchair [144], of a humanoid [145],
or of a quadruped robot [146–148]. All works focus either on navigation or on
interaction with objects, but never address both issues within the same framework.

Another application where shared control is fundamental is disaster response. In
such scenarios where wireless communication may be unavailable, the robot should
be capable of some autonomous behavior while still guaranteeing the possibility
for manual teleoperation. Again, a layered goal-oriented architecture should be
considered. A typical case study is the DRC task that requires a humanoid robot to
drive a car at the center of an unknown road at a desired speed. Some researchers
have achieved this goal by relying on teleoperation [149, 150], while others have
proposed fully autonomous solutions [151,152]. However, no one has designed shared
control frameworks merging the two approaches.

6.3 Contribution

The research described in this chapter addressed shared control of antropomorphic
robots. All applications are shown in Fig. 6.2, and in videos on the IDH youtube
channel1 . Our contributions have been: the design of an EMG-based robotic grasp-
ing interface for individuals with quadriplegia [39], a BCI framework for humanoid

1https://www.youtube.com/watch?v=ekP1oxD6Vj0
https://www.youtube.com/watch?v=SYHI2JmJ-lk

https://www.youtube.com/watch?v=ekP1oxD6Vj0
https://www.youtube.com/watch?v=SYHI2JmJ-lk
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Figure 6.2: Shared control experiments. a) EMG-based robotic grasping. Top:
EMG outline, and three grasp states. Bottom: experiments. b) BCI-based hu-
manoid embodiment: four snapshots and robot views of an experiment, including
object grasping, carrying, and handover. c) Shared control for humanoid robot car
driving: snapshots of the experiments and robot view. Top: experiment alternating
autonomous and teleoperated modes. Bottom: assistive mode experiment.

embodiment [36–38] and a shared control scheme for humanoid robot car driving [40].
These are detailed hereby.

6.3.1 EMG-based robot hand grasping

In [39] we investigated the feasibility of processing online the muscle responses of
quadriplegic subjects to pilot a robotic hand. A fundamental advantage, is that
visual feedback (from observing the hand) can speed up the training phase. The
ability to grasp with a Shadow robotic hand equipped with BioTac sensors on each
fingertip, was assessed in two male spinal cord injured subjects, at the Propara
Neurological Rehabilitation Center, in Montpellier, France (see Fig. 6.2(a)).

A pair of surface-recording electrodes was positioned on each of two chosen mus-
cles. The choice was based on the subject preference, and on the EMG signal quality,
which was then low-pass filtered. Subjects did not receive any pre-training, and were
only instructed on the contraction movements.

The hand was controlled in five alternative modes, each corresponding to a differ-
ent finite state machine, with the transitions between states triggered by muscular
contractions and relaxations (using hysteresis). The triggering thresholds on the
EMG were determined via a calibration phase. Three hand states were used: pal-
mar grasp, palmar pinch, and open hand (left to right in the top of Fig. 6.2(a)). Each
state is characterized by the five finger target joint values, q∗i (i = 1, . . . , 5), and
an online trajectory generator2 ensures smooth motion to q∗i . For the two closing
states, the motion of each finger i stops when contact with the object is detected,

2http://www.reflexxes.ws
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via the norm of the force measured on the corresponding BioTac, ‖f‖i.
Two objects with different sizes were placed near the robot hand, and the sub-

jects had to select the most appropriate muscle contraction (and corresponding hand
grasp) for the given object. In one of the five modes, where closure is proportional to
the contraction intensity, the patients succeeded in modulating the EMG by using
visual feedback to compensate for the lack of haptic sensitivity. This confirms that
our setup can be useful for rehabilitation or for training FES control. Another inter-
esting feature is that even a weak muscle can produce a proper EMG signal, hence
an effective robotic movement. Finally, force control via the BioTacs compensates
the lack of tactile feedback and ensures proper object grasping.

6.3.2 BCI-based humanoid embodiment

Being able to control a robotic avatar and to perceive the world through its senses
covers issues related to embodiment ; a topic that we studied within the FP7 Eu-
ropean Project VERE. In that context, we designed a framework for assisting a
disabled user to control a humanoid robot with a BCI. In contrast with most related
works, our framework provides the robot with both navigation and interaction capa-
bilities. The low frequency and accuracy of the BCI commands are compensated by
vision algorithms, including object recognition, and simultaneous localization and
mapping (SLAM). In the resulting shared control scheme, only high-level goals are
specified by the human being, while the robot vision-based controller takes care of
achieving them.

We use the HRP-2 robot; a robot which is remotely controlled by a user, equipped
with a BCI cap, and with a head mounted display (HMD) enhancing immersion (the
user sees through the robot “eyes”). The images acquired by the robot are processed
online to localize the robot in the environment (using SLAM from [153]) and to
recognize/localize relevant objects in the scene. Both the robot camera view, and
the recognized object models are projected in the HMD. The objects and navigation
commands (directional arrows, or target poses) are displayed in the form of stimuli,
flickering at different frequencies and related to tasks to be realized by the robot.
When the user focuses his/her attention on a flickering stimulus, a peak is observed
in the BCI signal at the corresponding frequency. The user intention, output by the
BCI, determines the tasks (navigation or interaction) to be realized by the robot.
Generality of this framework is demonstrated in a complex experiment, where the
user controls the robot to serve himself a drink (Fig. 6.2(b)).

6.3.3 Shared control for a humanoid robot car driver

As a follow-up to the work presented in Sect. 5.3.1, we have designed a sensor-based
framework enabling a humanoid robot to drive a car along a road. To make the
approach vehicle-independent, we use only sensors commonly on-board humanoids,
i.e. a camera in the head and an Inertial Measurement Unit (IMU) in the chest.
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The robot sits in the car with its camera pointing the road. The acquired images
and IMU data are fed to two branches of the framework running in parallel: car
steering, and velocity control. The first maintains the car at the center of the road,
with the approach described in Sect. 5.3.1. The latter makes the car progress at
a desired speed: a Kalman Filter fuses optical flow and IMU data to estimate the
current car speed, so that the gas pedal is pushed accordingly by the robot’s foot.

The framework described above allows autonomous robot car driving. Under
certain working conditions, however, this mode may fail. Hence, humans should
supervise the driving operation, and control the car if required. To this end, we
implemented the three driving modes below.

• Autonomous : as indicated above, car steering and velocity control are both
autonomous, so that the robot does not need any human aid.

• Assisted : the human takes care of road detection (by manually selecting the
road borders), and car velocity control (by teleoperating the robot ankle). The
borders are still fed to the robot controller, that autonomously computes the
hand command.

• Teleoperated : for steering wheel and gas pedal operation, both the robot hand
and foot are teleoperated. The reference signals are sent to the robot kinematic
controller through a keyboard or joystick. The human being uses the robot
camera images as visual feedback for driving.

The human user/supervisor can intervene at any moment during the driving, to
select a driving mode, by pushing proper joystick (or keyboard) buttons.

We experimentally validated the framework, with a real car and the humanoid
robot HRP-2. In the intermediate phase of the experiment shown at the top of
Fig. 6.2(c), the human swtiches to a teleoperated mode, while the visual features
are not considered by the controller anymore. Nevertheless, the transitions are
smooth. The bottom of Fig. 6.2(c) shows assisted driving: by clicking, the user
selects artificial road borders (red in the figure) while teleoperating the robot ankle.

6.4 Conclusions

In this chapter we presented our main research in shared human-robot control. Here,
pHRI is stronger than in the other chapters, since the robot augments of the human
capabilities. In fact, quadriplegics can grasp via a robotic hand, mobility and in-
teraction are enhanced by a humanoid robot, and a sophisticated task (car driving)
can be executed remotely by relying on a humanoid pilot.

A key issue is decoding human intentions, and using this to control the robot.
Since the human signal frequency is, generally, lower that that of the robot controller,
goal-oriented task architectures appear as the best solution. Nevertheless, their use
including tunable levels of autonomy should be transparent for the user. To this
end, the sensors can be used to close an inner feedback loop directly on the robot.



Chapter 7

Research perspectives

In spite of the enormous progress in terms of both research and commercialization
that robotics has achieved in recent years, much work is still to be done. My short,
but now decennial, experience in the field, leads me to believe that there has been a
growing gap between the various technologies, particularly in terms of their maturity
for transfer (the so called Technology Readiness Level, TRL).

For instance, researchers have solved most of the problems (SLAM, exploration,
navigation) related to the control of mobile unmanned vehicles, as testified by the
picturesque invasion of such systems in our everyday life. Robotic vacuum cleaners,
as well as assisting car driving systems, not to mention drones, and automatic flight
and train controllers, are now present everywhere. Even the advent of urban self-
driving vehicles seems much closer than it was at the time of my research in that
field (Chapter 3). This progress has clearly been accompanied and motivated by the
concurrent breakthrough of related technologies: vision (including real-time tracking
and structure-from-motion), wireless communication, and speech recognition, just
to mention a few. Generally, the digital revolution originally predicted in “Moore’s
law”, has made complex algorithms executable in real time and on small, embedded
processors.

On the other hand, issues such as energy autonomy and safe operation in the
presence of humans, are still far from being solved. The latter problem has mo-
tivated all my research, since arriving at LIRMM within the IDH group in 2011
(Chapters 4-6). Since physical Human-Robot Interaction is at the core of IDH’s
work, I was required a slight thematic change from my previous research on sensor-
based navigation. Five years into this change, I am even more strongly persuaded
that studying pHRI is not only indispensable for societal acceptance of robots; it
also opens a series of unprecedented research questions. Aside from the delicate is-
sue of ethics, most of these questions have been raised in the previous pages. These
concern: safety, human intention recognition, control sharing and role assignment.
In the upcoming years, I plan to pursue my research in this direction, contributing
to pHRI by exploiting my experience in sensor-based feedback control, on numer-
ous platforms. In the following sections, I outline my planned avenues of research
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on advancing methodologies for sensor-based control, and on merging the experi-
ences drawn from all the platforms on the novel BAZAR mobile manipulator. I will
conclude this work with a short overview of perspective collaborations.

7.1 Sensor-based control

As explained throughout this manuscript, the integration of different sensor modal-
ities for direct control has been at the core of my recent research. Although some
important results have been obtained, I consider this research as still exploratory,
since it has opened tracks in various directions, promising to “keep us busy” for the
upcoming years.

To get a clear picture of the current state of art, I started, in 2015, a workshop
on “Multimodal sensor-based robot control for HRI and soft manipulation”. This
workshop, organized with Youcef Mezouar, David Navarro-Alarcon, Mario Prats
and Juan Antonio Corrales Ramon, took place at IROS in Hamburg, on September
28th, 2015. It included invited talks and a session of posters, selected after a peer
review process. Although the workshop focused mainly on vision- and force- based
control, the poster session showcased the growing need for tactile and proximity
sensing in present-day robotics. An important goal of the workshop was to bridge the
gap between communities, by sharing knowledge on signal processing, modeling and
task control aspects common to the different sensors. The workshop success (over
50 participants) has motivated the publication of a Special Issue on the “Robotics
and Autonomous Systems” journal for which I will be in charge as Guest Editor. I
plan to pursue my activity in shaping a community of researchers interested in these
research themes, possibly including the foundation of a dedicated RAS Technical
Committee.

The second edition of the workshop at IROS 2016 emphasized the importance of
auditive sensing. This sense has proved its technological maturity in numerous ap-
plications, including speech and voice recognition for telephony, language learning,
blind people education, and other functions. However, in spite of its unavoidable
role for successful HRI, audio has somewhat been neglected by the robotics research
community, probably (and paradoxically) because of its maturity. It is, however, my
belief that aside from providing an indisputable interface, the use of audio recogni-
tion, in combination with other robot senses, will be of great research interest.

In terms of senses and their correlation, the attentive reader may have noticed
that in the manuscript introductory scheme (Fig. 1.1), the only missing link is the one
between distance and force. In our opinion, this is not merely an aesthetic lack. All
applications requiring the robot to gradually come in contact with the human being
or environment are prone to need these senses for smoothly transitioning between
the free and constrained spaces. Besides control, the need can also come from
perception itself. Typically, in our initial works with the BioTacs, we have noticed
the measurements non-repeatability which motivates the need for continuous online
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calibration. In such scenarios, anticipating the contact via distance measurements,
while helpful, requires proper sensor fusion tools. Within the collaborative screwing
application presented in Sect. 4.3.1 and Fig. 4.2(a), we have partly explored distance-
force coupling. However, in that work, distance was implicitly derived via vision and
the environment model. Future research would consist in using explicit distance
measurements in similar applications.

As outlined above, another important observation drawn from exchanges, includ-
ing those at the workshop, concerns the gap in terms of used methodologies between
the various “sensor communities”. Although lidar-based mapping for instance is now
a consolidated technology, it still relies mainly on point representation (extended,
for low spatial resolution, to occupancy grids) and scan matching. Shape recog-
nition/tracking tools from image processing are generally ignored, despite recent
advances in terms of both robustness and speed. A similar risk could be encoun-
tered in the more recent tactile technology, where taxels (primitive point elements)
are for the moment the only universally used model. As the resolution of tactile
sensors increases, the use of more sophisticated geometric primitives is advisable.
Similarly, active exploration, which is a solved problem using lidar and vision has
been investigated little, when it comes to tact. This is the topic of the thesis of
Zineb Abderrahmane, that I supervise with André Crosnier and Ganesh Gowr-
ishankar. Lastly, the lidar-based teach-and-repeat scheme presented in Sect. 3.3.3
is a first step towards applying the “perception to action” control paradigm, to a
sensor other than vision. In other words, we advocate the extension of visual servo-
ing techniques to the other senses, for instance, by treating tactile skin data, as an
image.

On similar control aspects, much progress has been done within the stack-of-
tasks framework of Nicolas Mansard et al., starting from the seminal work [114]. This
framework proved effective for controlling highly redundant robots, while accounting
for dynamics and unilateral constraints [154]. Although control with heterogeneous
sensors was experimentally validated, theoretical studies on the robustness with
respect to inaccurate estimation of the sensor Jacobians (the “interaction matrix”
in visual servoing) were not explicitly addressed in the stack-of-tasks. Another
fundamental open problem that I plan to address, and that has been partially studied
in [154–156], concerns the stability of the transitions between different sensor tasks.

The latter issue is crucial, in all applications where contact is generated dur-
ing robot motion. Passing from free to constrained space, the control signals must
remain smooth while relying on different senses (vision or distance prior to, and
force posterior to, contact). An appropriate tool for guaranteeing such continuity
at the sensor task switches is constrained optimization, where suitable boundary
conditions can be set, for this purpose. This idea, which I plan to explore in the
near future, is in line with the importance that optimization has recently gained, in
robotics research, including within IDH. Apart from quadratic optimization applied
for whole-body control in Sect. 5.3.3, linear optimization has been studied by my col-
leagues Philippe Fraisse and André Crosnier to design parsimonious controllers [116].
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All these elements shape an ideal context for applying optimization to multimodal
sensor-based control on platforms such as the one that will be presented in the next
section.

7.2 The mobile manipulator platform BAZAR

The second research axis that I plan to investigate consists in concentrating the
experiences gained in controlling the various platforms cited above on a unique sys-
tem. This motivation emerged within the CoBot@LR project which was financed
by the Languedoc-Roussillon region in the context of a young researchers grant that
I obtained in 2013. The goal of CoBot@LR is to design mobile manipulation so-
lutions for collaborative industrial robotics, i.e., enhancing the mobility of systems
such as those proposed in Chapter 4. This objective has lead to the design and
development, in collaboration with other LIRMM colleagues (in particular, Robin
Passama and Benjamin Navarro) of our Bimanual Agile Zany Anthorpomorphic
Robot, BAZAR (sketched on the right of Fig. 7.1).

Figure 7.1: Mobile manipulators. Left to right: Justin, TUM-Rosie and BAZAR.

The irony of the name, Persian for“marketplace”, lies in its meaning in the French
urban dictionary, a “complicated grouping of different elements”. Indeed, in contrast
with most existing mobile manipulators, which are completely designed by a single
manufacturer, BAZAR combines the last generation sensors and actuators, from
various brands within a unique platform. These are: two laser scanners (Hokuyo
UTM-30LX) and four cameras (two D-Link DCS-5222L and two AVT GT1920C)
on its base (Neobotix MPO700), a force/torque sensor (ATI Mini45), hand (Shadow
Hand with BioTac) and an in-palm 3D range sensor (Leap Motion camera) on each
arm (Kuka LWR). Although its design resembles that of Justin and TUM-Rosie
(also shown in Fig. 7.1), the base of BAZAR can carry higher payloads thanks to
its omnidirectional, steerable wheels.
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However, a fundamental issue of steerable wheels with regards to purely omnidi-
rectional (e.g., swedish) ones is their control when the desired center of instantaneous
rotation moves unpredictably. This systematically occurs in sensor-based control,
as the robot behavior is not preplanned and will be driven by unexpected events
(e.g., obstacles, or interacting humans). Steerable wheel control for BAZAR is cur-
rently being studied by Mohamed Sorour in the context of his PhD thesis, that I
am co-supervising with Philippe Fraisee and PSA. The preliminary results are very
promising [157], and we are confident that this fundamental research problem will
be soon solved by Mohamed. With reactive velocity control in the operational space
(i.e., about any instantaneous center of rotation), it will then be possible to extend
our results on visual navigation and obstacle avoidance (Chapter 3) to all steerable
systems.

Concerning obstacle avoidance, the tentacle approach presented in Sect. 3.3.2,
must be adapted from non-holonomic to steerable omnidirectional wheeled robot
kinematics. Besides its theoretical contribution, such generalization would provide
a powerful solution for obstacle avoidance with any wheeled robot. This research is
being carried out along with PhD student Abdellah Khelloufi, in the context of
a collaboration with the CDTA Center in Algeria.

In general, BAZAR will be an ideal platform for merging and extending the
research results presented throughout this manuscript. Firstly, it can link all the
senses (force, vision, and distance) outlined in Fig. 1.1 in the context of HRI. Sec-
ond, it can be used for whole-body control, just as the humanoids of Chapter 5,
to simultaneously realize multiple tasks, including manipulation, and self collision
avoidance, or in teleoperation setups to remotely strengthen a human operator as in
the works presented in Chapter 6.

Last but not least, we plan to use BAZAR to explore the concurrent use of vision
and force for dual manipulation of flexible objects. Automatic manipulation of soft
materials is a fundamental - yet open - research problem in robotics, despite its
numerous applications (e.g., in the food industry). For this, we will profit from the
previous IDH works on dual arm control [158], and from our research on merging
vision and force for manipulation (Chapter 4). We also envision collaborating with
David Navarro from the University of Hong Kong, who has recently applied visual
servoing to soft object manipulation [159]. This, and other envisioned collaborations,
are summarized in the following Section.

7.3 Envisioned collaborations

To achieve such challenging research objectives alone is clearly utopian and pre-
sumptuous. Through my work, I have established a small network which I plan to
extend in the coming years to involve important robotics actors worldwide.

In a European context, the recently accepted EU H2020 Project VERSATILE
(2017-2020), for which I am Principal Investigator at LIRMM, will provide an ideal
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industry-oriented benchmark for BAZAR and all related research. My other main
contacts are obviously in Italy and France. Following my PhD, I have maintained a
strong link with the Robotics Group of “La Sapienza” in Rome through the projects
CNRS PICS ViNCI (2013-2016) and PHC Galileo SenbHIbot (2013). In
Rome, I am also collaborating [160] with the Fondazione Santa Lucia, a Center of
Excellence in human motion understanding and rehabilitation. In the near future, I
plan to work with two other fundamental actors of the Italian Robotics scene: the
IIT (Italian Institute of Technology, in Genoa), and the PRISMA Lab (Università
Federico II, in Naples). Their Internationally recognized skills (typically, in dynamic
control and deformable object manipulation) are complementary to those of IDH.
In France, the participation to three ANR Projects (CityVIP, ICARO, and SIS-
Cob) has made me encounter the main robotics research actors, both in the academy,
and industry (PSA, now partner in CoBot@LR, and Airbus). In the academy,
along with the worldwide leading group in visual servoing, Lagadic (Rennes) where
I spent my postdoc, I foresee synergies with my colleagues at SIGMA (Clermont Fer-
rand), Youcef Mezouar and Juan Corrales-Ramon, with whom I co-organized the
IROS 2015 Workshop. Furthermore, I am eager to intensify the collaboration with
LAAS in Toulouse, with whom we share common interests in pHRI and humanoid
robotics (as well as the same Administrative Region, since 2016). In Germany, the
collaboration originated with the Universities of Freiburg and Bonn in the context
of the PHC Procope ViNavHuBot project should naturally lead, on a short term,
to EU Project proposals. In Spain, I plan to intensify our collaboration with the
Tecnalia Foundation, and with humanoid manufacturer, PAL Robotics.

On a wider scale, my current contacts are mainly in Asia, especially in Japan.
Along with the CNRS-AIST JRL in Tsukuba, which is an important partner of IDH,
these contacts include Prof. Ozawa at the Ritsumeikan University for vision-based
grasping, and Prof. Ramirez Alpizar at the University of Osaka, for deformable ob-
ject manipulation. As mentioned above, on this theme, I am also seeking a frame-
work for collaborating with David Navarro from the Chinese University of Hong
Kong.
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Appendix A

Activity report

A.1 Supervision

Throughout my career, I have supervised the research of eight PhD students (five
ongoing), three postdocs and nine 2nd master students. These supervisions are
presented below.

A.1.1 PhD students

2011-2015
Antonio Paolillo, supervised with A. De Luca (30%) and M. Ven-
dittelli (40%).

Vision-based control of humanoid robots interacting with the real
world.

Defended on March 16, 2015, at Università di Roma “La Sapienza”.

Thesis Jury

Maria Domenica Di Benedetto, Reviewer,
Giovanni Ulivi, Reviewer,
Costanzo Manes, Reviewer,
Alessandro De Luca, Principal Supervisor,
Marilena Vendittelli, Co-Supervisor.

Funding : Italian Government Scholarship.

Joint work presented in Sect. 5.3.1, published in [33].

Current situation: postdoc at LIRMM (Supervisor: A. Kheddar).

Antonio’s thesis exploits information from an onboard camera to improve the
autonomous behavior of humanoid robots. In particular, he focused on 3 challenging
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topics: (i) localization, (ii) navigation and (iii) interaction with the environment.

The proposed localization method has the prediction-correction structure of an
Extended Kalman Filter. Kinematic computations give a prediction of the robot
pose, which is then corrected by measurements of the robot torso orientation and
camera pose. The navigation algorithm uses two visual features extracted from
the guidelines at the intersections of walls and floor, to make the robot walk at
the center of corridors. The same vision-based navigation strategy was used for
interacting with the environment (i.e., driving a simulated car with the humanoid
HRP-4 [33]). This last part of the thesis (presented in Sect. 5.3.1) was developed
during Antonio’s six month stay at LIRMM, in the context of our collaboration
(CNRS PICS ViNCI project).

2012-2015
Don Joven Agravante, supervised with A. Kheddar (30%).

Human-humanoid collaborative object transportation.

Defended on December 16, 2015, at Université de Montpellier.

Thesis Jury

Gabriel Abba, Reviewer,
François Chaumette, Examiner,
Florent Lamiraux, Reviewer,
Pierre-Brice Wieber, Examiner,
Abderrahmane Kheddar, Principal Supervisor,
Andrea Cherubini, Co-Supervisor.

Funding : EU FP7 RoboHow.

Joint work presented in Sections 5.3.2 and 5.3.3, and published
in [30], [31], [32], [34] and submitted in [35].

Current situation: postdoc at INRIA Rennes (Supervisor: F.
Chaumette).

Joven’s thesis focused on enabling collaborative humanoids. Humanoid robots
provide many advantages when working together with humans to perform various
tasks. This is because humans have an extensive experience in physically collaborat-
ing with each other. In particular, Joven focused on the example of collaboratively
carrying and transporting objects together.

He first focused on utilizing vision and force for enabling better collaboration
(work presented in Sect. 5.3.2 and published in [30]- [32]). He then designed walking
pattern generators that take into account physical collaboration. Finally, he broke
down the task of collaboratively carrying an object together with a human and im-
plemented it within a whole-body control optimization framework. The design of the
walking pattern generators and of the whole-body collaborative carrying framework
have been presented in Sect. 5.3.3, published in [34] and were submitted in [35]).
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2012-2015
Damien Petit, supervised with A. Kheddar (30%) and L.
Aymerich-Franch (30%).

Analysis of sensory requirement and control framework for whole
body embodiment of a humanoid robot for interaction with the en-
vironment and self.

Defended on December 14, 2015, at Université de Montpellier.

Thesis Jury

Gérard Bailly, Reviewer,
Laurence Devillers, Reviewer,
Peter F. Dominey, Examiner,
Abderrahmane Kheddar, Principal Supervisor,
Laura Aymerich-Franch, Co-Supervisor,
Andrea Cherubini, Co-Supervisor.

Funding : EU FP7 VERE.

Joint work presented in Sect. 6.3.2 and published in [36]- [38].
.

Current situation: postdoc at Osaka University.

Damien’s thesis targeted the development of a system, allowing a human partic-
ipant to embody a robotic entity. The feeling of embodiment goes beyond teleopera-
tion, since the user feels as if s/he is the surrogate. The thesis studied this feeling in
various scenarios, reproducing assistive domestic situations. Particular interest was
taken in controlling the robot via a brain computer interface (BCI), while remaining
still at a remote location. The following challenges were addressed:

1. Surrogate aspect. Androids replicate a person aspect but lack the ability to
move. In contrast, since humanoids have this ability, embodiment is assessed
in experiments where they mirror the user movements.

2. Embodiment through walking. In telerobotics, there is an inherent latency be-
tween the operator command and the robot task realization. Damien designed
a high-level navigation framework to study how latency affected the embodi-
ment of the subject while s/he drives the robot.

3. Interaction with oneself. Most embodiment studies use a fake limb or man-
nequin as surrogate. What would be the feeling experienced if the surrogate
could actually interact with the user? To answer this question, Damien ex-
tended his framework to make the robotic surrogate hand objects to the user
and manipulate his/her own arm.

The development of the navigation/interaction framework (points 2 and 3) has been
presented in Sect. 6.3.2, and published in [36]- [38].



76 APPENDIX A. ACTIVITY REPORT

2014-2017
Benjamin Navarro, supervised with G. Poisson (30%), P. Fraisse
(20%), and A. Fonte (20%).

Modeling and control of a compliant robot, designed for physical
human-robot interaction.

Expected defense in December, 2017, at the Université d’Orléans.

Funding : ANR SISCob.

Joint work presented in Sections 4.3.3 and 6.3.1, published in [29],
and submitted in [39].

Benjamin’s thesis focuses on developing control schemes for safe physical human-
robot interaction. These should target both classic and intrinsically safe manipula-
tors, embedding the Safe Intelligent Sensor designed within the ANR SISCOB. In
his first PhD year, Benjamin has developed an original admittance controller that
maintains the exchanged force, velocity and power below the bounds imposed by the
ISO218 safety standard (see Sect. 4.3.3 and [29]). This system was deployed on the
robot-arm system present at LIRMM. Benjamin extended the robot hand controller
to EMG-based operation (work presented in Sect. 6.3.1, and submitted in [39]). In
the rest of his thesis, Benjamin will generalize his controllers to SIS-equipped robots.

2014-2017
Mohamed Sorour, supervised with P. Fraisse (30%).

Control of a dual arm mobile manipulator.

Expected defense: December, 2017, Université de Montpellier.

Funding : Languedoc-Roussillon Regional Project CoBot@LR
(50%) and PSA Peugeot Citröen (50%).

Joint work published in [157].

Mohamed’s thesis is motivated by an industrial specification of our partner PSA.
The goal is to design a control framework, enabling a dual arm mobile manipulator,
to operate autonomously in a factory setting. The robot should displace car parts
from/to various areas of the factory. To this end, Mohamed will use the BAZAR
robot, presented in Sect. 7.2 and composed of Kuka LWR arms and Shadow Hands
mounted on a Neobotix MPO700 platform. This platform presents numerous kine-
matic singularities which Mohamed successfully tackled in [157]. Another drawback
with respect to standard omnidirectional platforms is that it can turn around an ar-
bitrary center of rotation only after reconfiguring its wheels. This problem is being
currently studied by Mohamed, who will then address the problem of upper body
(i.e., dual arm) control.
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2015-2018
Zineb Abderrahmane, supervised with A. Crosnier (30%) and
G. Gowrishankar (30%).

Visio-haptic exploration for modeling and classifying unknown ob-
jects.

Expected defense: December, 2018, Université de Montpellier.

Funding : Algerian Government Averroès Scholarship.

Humans have the amazing ability to recognize hand held objects haptically. In
her Phd, Zineb aims at providing similar capabilities to robots. She works with a
robotic hand-arm system. The joint readings from the robot hand and the mul-
timodal sensors mounted on the five fingers provide information on the grasped
object as well as on physical properties like compliance, surface texture and thermal
conductivity. Currently, Zineb is exploring different machine learning algorithms
to extract representative object features from the multimodal data and build a de-
scriptor. She should then develop an active exploration procedure that improves the
grasps, so as to provide more informative features.

Two other recently starting thesis are:

2016-2019
Sonny Tarbouriech, supervised with P. Fraisse (50%).

Dual arm kinematic control.

Funding : French Government CIFRE (with Tecnalia Foundation).

2016-2019
Osama Mazhar, with A. Crosnier (30%) and S. Ramdani (30%).

Human intention recogntion for robot control.

Funding : University of Montpellier.

A.1.2 Postdocs

In the context of the various projects in which I was involved, at Université de
Montpellier, I have supervised the work of three postdocs:

• Arnaud Méline,“Development of vision-based control algorithms for a robotic
manipulator”, 01/02/2013-30/11/2013, funding : ANR ICARO, supervisors :
A. Cherubini 40%, A. Crosnier 30%, P. Fraisse 30%. Arnaud developed image
processing algorithms for detecting screws in a flank, using a moving camera.
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The position of the screw in the image is exploited to drive the multimodal
controller, presented in Sect. 4.3.1 and in [28].

• José Romero Velazquez, “Design of a whole-body humanoid state observer
to detect contacts”, 01/11/2014-31/5/2015, funding : PSPC ROMEO 2, su-
pervisors : A. Cherubini 40%, A. Crosnier 30%, A. Kheddar 30%.

• Antonio Paolillo, “Humanoid robot interaction with sophisticated machin-
ery”, 01/07/2015 - 31/3/2016, funding : PSPC ROMEO 2, supervisors : A.
Cherubini 50%, A. Kheddar 50%. During this postdoc, Antonio continued
working on humanoid car driving. In particular, he extended his thesis work,
by accounting for shared control with the human user, and by making the
humanoid actuate the car gas pedal, using feedback from optical flow. He
also validated his approach in real outdoor experiments. His work has been
presented in Sect. 6.3.3, and submitted in [40].

A.1.3 Master students

Throughout my career, I have supervised the internships of nine 2nd year Master
students that are all listed below. The supervisions of Bachelor, and 1st year Master
student internships on the other hand, are presented with my teaching activities, in
Sect. A.3.1.

During my PhD, at the University of Rome“La Sapienza”, I have supervised
the internships of four students:

• Sandro Bruscino (2005): “ASPICE: an assistive robotic system”, supervised
with G. Oriolo. This work has contributed to the publication of [161].

• Theodora Capeqi (2006): “Vision for robot navigation”, supervised with L.
Iocchi and D. Nardi.

• Marcello Lombardo (2008): “Humanoid robot walk control”, supervised with
G. Oriolo. This work has contributed to the publication of [162].

• Manuel Colafrancesco (2008): “Visual navigation”, supervised with G. Oriolo.
This work, presented in Sect. 3.3.1, has been published in [18].

As Associate Professor, at the Université de Montpellier, I have also super-
vised the internships of five students:

• Fares Mentseur (2012): “Kinematic modeling and control of a 7 degrees of
freedom robot manipulator”.

• Boris Gretchanichenko (2013): “Dynmaic identification of the manipulator arm
Kuka LWR”, supervised with A. Crosnier.
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• Camilo Mousselli (2014): “Modeling and control of a robotic hand”, supervised
with A. Crosnier.

• Xavier Gorron (2015): “EMG control of a robotic hand”, supervised with C.
Azevedo. This work, presented in Sect. 6.3.1, has contributed to [39].

• Florian Raffalli (2015): “3D reconstruction from a pair of stereo cameras”,
supervised with R. Passama.

It is worth mentioning that, in the Italian Academic system, the final Master
internship is much longer than in the French one. An Italian internship generally
lasts nine to ten months, compared to the four to five months demanded in France.

A.2 Scientific activities

A.2.1 Project Management

At LIRMM, I am Principal Investigator for the following research projects:

• 2013: PHC Galileo SenbHIbot (3000 e). This project targeted sensor-
based human-robot interaction in collaboration with the University of Rome
“La Sapienza”. It covered travel expenses for seminars and visits.

• 2013-2016: CNRS PICS ViNCI (12000 e) This project addresses vision-
based humanoid navigation and interaction, in collaboration with University
of Rome “La Sapienza”. The project funded the visit of Antonio Paolillo
at LIRMM (2014) and contributed to his research results (these have been
presented in Sections 5.3.1 and 6.3.3).

• 2014-2017: French ANR SISCob (110000 e). This project addresses the
design of a safe intelligent sensor to be embedded on robots to make them
intrinsically compliant. Along with LIRMM (responsible for the development
of safe control laws for pHRI), the project involves PPRIME (Coordinator),
PRISME, XLIM et SENSIX. The project has contributed to fund the PhD
of Benjamin Navarro (co-supervised with PRISME), whose research results
have been presented in Sections 4.3.3 and 6.3.1).

• 2014-2017: Languedoc-Roussillon Project CoBot@LR (70000 e). This
project aims at designing a framework for controlling a dual arm mobile ma-
nipulator. The target application proposed by our partner PSA Peugeout
Citroën is industrial kitting. The project has contributed to fund the PhD of
Mohamed Sorour whose research has been published in [157]. An expected
result will be the design and control of the BAZAR platform, presented in
Sect. 7.2.
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• 2015-2016: PHC Procope ViNavHuBot (5000 e). This project, inspired
by the preliminary results presented in Sect. 3.3.3, addresses visual navigation
with mobile and humanoid robots. The partners are the German Universities
of Bonn and Freiburg.

• 2017-2020: EU H2020 VERSATILE (300000 e). This project, coordinated
by the TECNALIA Foundation (Spain) aims at developing flexible yet robust
robot solutions for the “factory of the future”.

A.2.2 Involvement in other projects

During my career, I have also been involved in the following projects:

• 2005-2007: Italian Telethon ASPICE: development of an assistive robotic
system, including BCI control. Partnership between the University of Rome
“La Sapienza” and the Fondazione Santa Lucia, Rome (coordinator).

• 2008-2011: French ANR CityVIP: autonomous driving of public trans-
portation vehicles in urban environments. Coordinator: Université Blaise
Pascal, Clermont Ferrand. This project has funded my postdoc at INRIA
Rennes and enabled the results presented in Sections 3.3.1 and 3.3.2.

• 2010-2015: EU FP7 VERE: human-humanoid embodiment via BCI. Coordi-
nator: Universitat de Barcelona, Spain. Part of the results (work of Damien
Petit) has been presented in Sect. 6.3.2.

• 2011-2014: French ANR ICARO: development of a collaborative indus-
trial robot. Coordinator: AIRBUS. Part of the results has been presented in
Sections 4.3.1 and 4.3.2.

• 2012-2016: EU FP7 RoboHow: use of web data for robot daily taks execu-
tion. Coordinator : Universität Bremen, Germany. Part of the results (work
of Don Joven Agravante) has been presented in Sections 5.3.2 and 5.3.3.

• 2013-2016 : French PSPC ROMEO 2: development of a humanoid robot
for daily life assistance. Coordinator: Aldebaran.

A.2.3 Editorial activities

I have reviewed over 70 articles, submitted to the International Conferences:

• IEEE Int. Conf. on Robotics and Automation, ICRA (2007 - 2017),

• IEEE/RSJ Int. Conf. on Robots and Intelligent Systems, IROS (2006 - 2016),

• IEEE-RAS Int. Conf. on Humanoid Robots, ICHR (2013-2016),

• Robotics: Science and Systems, RSS (2014),
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• American Control Conference, ACC (2014),

• Int. Conf. on Advanced Robotics, ICAR (2009, 2015),

and to the Academic Journals:

• IEEE Trans. Robotics (2009 - 2015),

• Int. Journal of Robotics Research (2011),

• Robotics and Autonomous Systems (2006 - 2013),

• Journal of Field Robotics (2014),

• Autonomous Robots (2013),

• IEEE Trans. on Industrial Informatics (2016),

• IEEE Trans. on Systems, Man, and Cybernetics, Part B (2011),

• IEEE Robotics and Automation Magazine (2013),

• IEEE Trans. on Intelligent Transportation Systems (2013),

• IEEE Trans. on Control Systems Technology (2007),

• Journal of Intelligent and Robotic Systems (2010),

• Robotica (2011),

• Advanced Robotics (2015).

A.3 Teaching activities

A.3.1 Teaching

Starting from my Ph.D. studies, I have performed various teaching activities at Uni-
versità di Roma “La Sapienza”, and at the Institut National des Sciences
Appliquées, INSA Rennes (during my postdoc). In the rest of this section,
acronyms CM, TD, and TP respectively refer to: lectures (“Cours Magistraux”),
exercise sessions (“Travaux Dirigés”), and practical work (“Travaux Pratiques”).

Here is a summary of my teaching activity prior to recruitment at Université de
Montpellier, as Associate Professor:

• 2006-2008: lectures (20 h CM) in Adaptive control and Machine learning for
2nd year Master students, at University of Rome “La Sapienza”.

• 2006-2008: supervision of the Projects of seven 3nd year Bachelor students, at
University of Rome “La Sapienza”.

• 2009-2010: practicals in Linear Control Systems (48 h TP) for 3nd year Bach-
elor students, at INSA, Rennes.

• 2010: practicals in Robotics (36 h TP), for 1st year Master students at INSA,
Rennes.
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Since my arrival in the Department EEA1 at the Faculté des Sciences, of the
Université de Montpellier, in September 2011, I have taught the following:

• 2011 - 2014: practicals (81 h TP) and exercises (26 h TD) in Linear Control
Systems, for 3nd year Bachelor students.

• 2011 - currently: lectures (29 h CM) and practicals (96 h TP) in Multivariable
Control Systems, for 1st year Master students.

• 2011 - currently: lectures (43 h CM) and practicals (147 h TP) in Vision and
Robot Perception, for 2nd year Master students.

• 2011 - currently: supervision of the Projects and Internships of an annual
average of eight (1st or 2nd year) Master students.

• 2012 - 2015: lectures (45 h CM) in Basic Information and Communications
Technology (ICT) Skills, for 2nd year Bachelor students.

• 2013 - currently: lectures (37 h CM) and practicals (68 h TP) in Foundations
of Robotics and Image Processing, for 1st year Master students.

• 2015 - currently: lectures (12 h CM) in Optimisation, for 2nd year Master
students.

Apart from the lectures in Basic ICT Skills (which were followed by all the spe-
cializations at Université de Montpellier), my teaching activities targeted students
specializing in Robotics (at Master level) or in EEA (at Bachelor level).

A.3.2 Responsibilities

• 2012-2015: I have been Teaching responsible and Manager of the course
on Basic ICT Skills, that is followed by all 2nd year Bachelor students of the
Faculté des Sciences, Université de Montpellier (i.e., approximately 1000 stu-
dents per year). My work consisted in: hiring the supervisors (approximately
30 per year) for the practicals, preparing the course timetable, booking the
computer classrooms, organizing the final multiple choice test, and grading all
students.

• 2015-currently: I am Teaching responsible and Manager of the Robotics
Specialization (1st and 2nd Master year), at the Université de Montpellier (ap-
proximately 50 students per year). For both 1st and 2nd year Master students,
my tasks include: selecting the student applications, hiring the supervisors for
the practicals, and preparing the financial demands to the Department. For
the 2nd year Master students, I must also prepare the timetable, and organize
the jury and project/internships defenses.

1Electric, Electronic, and Automation Engineering.
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A.4 Dissemination of knowledge

A.4.1 List of publications

All publications are available online at: www.lirmm.fr/∼cherubini

Academic Journals

[J12] A. Paolillo, P. Gergondet, A. Cherubini, M. Vendittelli, A. Kheddar, Au-
tonomous car driving by a humanoid robot , Journal of Field Robotics (under
revision).

[J11] W. Tigra, B. Navarro, A. Cherubini, X. Gorron, A. Gelis, C. Fattal, D.
Guiraud, C. Azevedo Coste, A novel EMG interface for individuals with
quadriplegia to pilot robot hand grasping, IEEE Transactions on Neural Sys-
tems and Rehabilitation (to appear).

[J10] A. Cherubini, R. Passama, A. Crosnier, A. Lasnier, P. Fraisse, Collabora-
tive manufacturing with physical human-robot interaction, Robotics and
Computer Integrated Manufacturing, vol. 40, August 2016, Pages 1–13.

[J9] M. Iosa, G. Morone, A. Cherubini, S. Paolucci, The three laws of Neu-
rorobotics: a review on what neurorehabilitation robots should do for
patients and clinicians, Journal of Medical and Biological Engineering, First On-
line, February 2016.

[J8] A. Cherubini, R. Passama, P. Fraisse, A. Crosnier, A unified multimodal
control framework for human-robot interaction, Robotics and Autonomous
Systems, 70, pp. 106-115, 2015.

[J7] A. Cherubini, F. Spindler, F. Chaumette, Autonomous Visual naviga-
tion and Laser-based moving obstacle avoidance, IEEE Trans. on Intelligent
Transportation Systems, vol. 15, no. 5, pp. 2101 - 2110, 2014.

[J6] A. Cherubini, F. Chaumette, Visual Navigation of a Mobile Robot with
Laser-based Collision Avoidance, International Journal of Robotics Research,
vol. 32, no. 2, pp. 189-209, 2013.

[J5] A. Cherubini, F. Chaumette, G. Oriolo, Visual servoing for path reaching
with nonholonomic robots, Robotica, vol. 29, no. 7, pp. 1037-1048, 2011.

[J4] A. Cherubini, F. Giannone, L. Iocchi, D. Nardi, P. F. Palamara, Policy gradi-
ent learning for quadruped soccer robots, Robotics and Autonomous Systems,
Special Issue on Advances in Autonomous Robots for Service and Entertainment,
vol. 58, no. 7, pp. 872-878, 2010.

[J3] A. Cherubini, F. Giannone, L. Iocchi, M. Lombardo, G. Oriolo, Policy gradi-
ent learning for a humanoid soccer robot, Robotics and Autonomous Systems,
vol. 57, no. 8, pp. 808-818, 2009.

[J2] A. Cherubini, G. Oriolo, F. Macri, F. Aloise, F. Cincotti, D. Mattia, A mul-
timode navigation system for an assistive robotics project, Autonomous
Robots, vol. 25, no. 4, pp. 383-404, 2008.

http://www.lirmm.fr/~cherubini
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[J1] F. Cincotti, D. Mattia, F. Aloise, S. Bufalari, G. Schalk, G. Oriolo, A. Cheru-
bini, M. G. Marciani, F. Babiloni, Non-invasive brain-computer interface sys-
tem: towards its application as assistive technology, Brain Research Bulletin,
vol. 75, no. 6, pp. 796-803, 2008.

International conferences

[C34] M. Ferro, A. Paolillo, A. Cherubini, M. Vendittelli, Omnidirectional hu-
manoid navigation in cluttered environments based on optical flow infor-
mation, in 16th IEEE-RAS Int. Conf. on Humanoid Robots, Humanoids, 2016.

[C33] M. Sorour, A. Cherubini, R. Passama, P. Fraisse, Kinematic modeling
and singularity treatment of steerable wheeled mobile robots with joint
acceleration limits, IEEE Int. Conf. on Robotics and Automation, ICRA 2016.

[C32] B. Navarro, A. Cherubini, A. Fonte, R. Passama, G. Poisson, P. Fraisse, An
ISO10218-compliant adaptive damping controller for safe Physical HRI,
IEEE Int. Conf. on Robotics and Automation, ICRA 2016.

[C31] D. J. Agravante, A. Sherikov, P-B. Wieber, A. Cherubini, A. Kheddar, Walk-
ing pattern generators designed for physical collaboration, IEEE Int. Conf.
on Robotics and Automation, ICRA 2016.

[C30] D. Petit, P. Gergondet, A. Cherubini, A. Kheddar, An integrated frame-
work for humanoid embodiment with a BCI, in IEEE Int. Conf. on Robotics
and Automation, ICRA 2015.

[C29] D. Petit, P. Gergondet, A. Cherubini, M. Meilland, A. I. Comport, A. Khed-
dar, Navigation assistance for a BCI-controlled humanoid robot, in IEEE
4th Annual Int. Conf. on Cyber Technology in Automation, Control, and Intelligent
Systems, CYBER, 2014.

[C28] A. Paolillo, A. Cherubini, F. Keith, A. Kheddar, M. Vendittelli, Toward
Autonomous Car Driving by a Humanoid Robot: A Sensor-Based Frame-
work, in 14th IEEE-RAS Int. Conf. on Humanoid Robots, Humanoids, 2014.

[C27] P. Gergondet, D. Petit, M. Meilland, A. Kheddar, A. I. Comport, A. Cheru-
bini, Combining 3D SLAM and Visual Tracking to Reach and Retrieve
Objects in Daily-Life Indoor Environments, in 11th Int. Conf. on Ubiquitous
Robots and Ambient Intelligence, URAI, 2014.

[C26] V. Bonnet, N. Sylla, A. Cherubini, A. Gonzales, C. Azevedo Coste, P. Fraisse,
G. Venture, Toward an affordable and user-friendly visual motion capture
system, in 36th Annual Int. Conf. of the IEEE Engineering in Medicine and
Biology Society, EMBC, 2014.

[C25] D. J. Agravante, A. Cherubini, A. Bussy, P. Gergondet, A. Kheddar, Col-
laborative Human-Humanoid Carrying Using Vision and Haptic Sensing,
IEEE Int. Conf. on Robotics and Automation, ICRA, 2014.

[C24] D. J. Agravante, A. Cherubini, A. Kheddar, Using vision and haptic
sensing for human-humanoid haptic joint actions, in 6th IEEE International
Conference on Robotics, Automation and Mechatronics, RAM, 2013.
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[C23] C. Sprunk, G. D. Tipaldi, A. Cherubini, W. Burgard, Lidar-Based Teach-
and-Repeat of Mobile Robot Trajectories, in IEEE/RSJ Int. Conf. on Intel-
ligent Robots and Systems, IROS, 2013.
[C22] D. J. Agravante, A. Cherubini, A. Bussy, A. Kheddar, Human-Humanoid
Joint Haptic Table Carrying Task with Height Stabilization Using Vision,
in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, IROS, 2013.
[C21] A. Cherubini, R. Passama, A. Meline, A. Crosnier, P. Fraisse, Multimodal
Control for Human-Robot Cooperation, in IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems, IROS, JTCF Novel Technology Paper Award for Amuse-
ment culture finalist, 2013.
[C20] A. Cherubini, B. Grechanichenko, F. Spindler, F. Chaumette, Avoiding
Moving Obstacles during Visual Navigation, in IEEE Int. Conf. on Robotics
and Automation, ICRA 2013, Pages 3054-3059, Karlsruhe, Germany, May 2013.
[C19] A. Cherubini, F. Spindler, F. Chaumette, A New Tentacles-based Tech-
nique for Avoiding Obstacles during Visual Navigation, IEEE Int. Conf.
on Robotics and Automation ICRA, 2012.
[C18] A. Cherubini, F. Chaumette, Visual navigation with obstacle avoidance,
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems IROS, 2011.
[C17] A. Cherubini, F. Spindler, F. Chaumette, A redundancy-based approach
for visual navigation with collision avoidance, IEEE Symposium on Compu-
tational Intelligence in Vehicles and Transportation Systems CIVTS, 2011.
[C16] A. Cherubini, F. Chaumette, A redundancy-based approach for obsta-
cle avoidance in mobile robot navigation, IEEE/RSJ Int. Conf. on Intelligent
Robots and Systems IROS, 2010.
[C15] A. Cherubini, F. Chaumette, Visual navigation with a time-independent
varying reference, IEEE/RSJ IROS, 2009.
[C14] R. Tatsambon Fomena, H. U. Yoon, A. Cherubini, F. Chaumette, S. Hutchin-
son, Coarsely calibrated visual servoing of a mobile robot using a cata-
dioptric vision system, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
IROS, 2009.
[C13] A. Cherubini, M. Colafrancesco, G. Oriolo, L. Freda, F. Chaumette, Com-
paring appearance-based controllers for nonholonomic navigation from a
visual memory, ICRA Workshop on safe navigation in open and dynamic envi-
ronments: application to autonomous vehicles, 2009.
[C12] A. Cherubini, M. Leonetti, L. Marchetti, A. De Luca, L. Iocchi, D. Nardi,
G. Oriolo, M. Vendittelli, S.P.Q.R. Team Desctiption paper 2008, RoboCup
Proceedings, Standard Platform League - NAO Division, 2008.
[C11] A. Cherubini, F. Chaumette, G. Oriolo, An image-based visual servoing
scheme for following paths with nonholonomic mobile robots, IEEE Int.
Conf. on Control, Automation, Robotics and Vision ICARCV, 2008.
[C10] A. Cherubini, F. Chaumette, G. Oriolo, A position-based visual servoing
scheme for following paths with nonholonomic mobile robots, IEEE/RSJ
Int. Conf. on Intelligent Robots and Systems IROS, 2008.
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[C9] A.Cherubini, F. Giannone, L. Iocchi, P.F. Palamara, An extended policy
gradient algorithm for robot task learning, IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems IROS, 2007.
[C8] F. Cincotti, F. Aloise, S. Bufalari, G. Schalk, G. Oriolo, A. Cherubini, F.
Davide, F. Babiloni, M. G. Marciani, D. Mattia, Non invasive Brain-Computer
Interface system to operate assistive devices, 29th IEEE Int. Conf. of the
Engineering in Medicine and Biology Society, 2007.
[C7] A.Cherubini, F. Giannone, L. Iocchi, Layered learning for a soccer legged
robot helped with a 3D simulator, 11th Int. Robocup Symposium, 2007.
[C6] A. Cherubini, G. Oriolo, F. Macri, F. Aloise, F. Cincotti, D. Mattia, Develop-
ment of a multimode navigation system for an assistive robotics project,
IEEE Int. Conf. on Robotics and Automation ICRA, 2007.
[C5] A. Cherubini, G. Oriolo, F. Macri, F. Aloise, F. Cincotti, D. Mattia, A vision-
based path planner/follower for an assistive robotics project, 1st Int. Work-
shop on Robot Vision, VISAPP, 2007.
[C4] F. Aloise, F. Cincotti, F. Babiloni, M. G. Marciani, D. Morelli, S. Paolucci,
G. Oriolo, A. Cherubini, F. Sciarra, F. Mangiola, A. Melpignano, F. Davide, D.
Mattia, ASPICE: an interface system for independent life, Int. Conf. on
Smart Homes and Health Telematica, 2006.
[C3] F. Aloise, F. Cincotti, F. Babiloni, M. G. Marciani, D. Morelli, S. Paolucci, G.
Oriolo, A. Cherubini, F. Sciarra, F. Mangiola, A. Melpignano, F. Davide, D. Mattia,
The ASPICE Project inclusive design for the motor disabled, Int. Working
Conference on Advanced Visual Interfaces, 2006.
[C2] F. Cincotti, F. Aloise, F.Babiloni, M. G. Marciani, D. Morelli, S. Paolucci,
G. Oriolo, A. Cherubini, S. Bruscino, F. Sciarra, F. Mangiola, A. Melpignano, F.
Davide, D. Mattia, Brain-Operated Assistive Devices: the ASPICE Project,
IEEE/RAS-EMBS Int. Conf. on Biomedical Robotics and Biomechatronics, 2006.
[C1] L. Iocchi, D. Nardi, A. Cherubini, L. Marchetti, V.A. Ziparo, S.P.Q.R. +
Sicilia Team Description paper, RoboCup Proceedings, 4-Legged League, 2005.

Other publications

[M3] B. Navarro, P. Kumar, A. Fonte, P. Fraisse, G. Poisson, A. Cherubini, Active
calibration of tactile sensors mounted on a robotic hand, in IROS Workshop
on Multimodal sensor-based robot control for HRI and soft manipulation, 2015.
[M2] A. Cherubini, R. Passama, A. Meline, A. Crosnier, P. Fraisse, Sensor-based
control of a collaborative robot, in 6th International Workshop on Human-
Friendly Robotics, HFR, 2013.
[M1] D. J. Agravante, A. Cherubini, A. Kheddar, Visio-haptic control for Human-
Humanoid Cooperative Carrying Tasks, in 6th International Workshop on
Human-Friendly Robotics, HFR 2013.
[T1] A. Cherubini, Vision-based techniques for following paths with mobile
robots, D.I.S., University of Rome “La Sapienza”, April 2008.
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A.4.2 Invited seminars

During my career, I have been invited to present my work in the following occasions:

• 2007 : “The ASPICE project”, Automation Institute(IAT), Universität Bre-
men, Germany.

• 2007 : “Multimodal navigation in ASPICE”, Royal Institute of Technology,
Stockholm, Sweden.

• 2009 : “Visual navigation with obstacle avoidance”, Université de Technologie
de Compiègne, France.

• 2010 : “Outdoor visual navigation with obstacle avoidance”, VisuLab - Univer-
sità di Parma, Italy.

• 2012 : “Outdoor Visual Navigation”, Albert-Ludwigs-Universitaet Freiburg,
Germany.

• 2012 : “Vision-based control of mobile robots”, CNRS-AIST Joint Robotics
Laboratory, Tsukuba, Japan.

• 2012 : At the crossroads of neurorehabilitation and robotics, Fondazione Santa
Lucia, Rome, Italy.

• 2013 : “An overview of our research on Human-inspired Cybernetic Systems”,
MPI Tübingen, Germany.

• 2014 : “See and touch: Visio-haptic control for safe human-robot interaction”,
ETH Zurich, Switzerland.

• 2014 : “Visio-haptic control for safe human-robot interaction”, IEEE ICRA
Workshop“Affective Haptics for Human-Robot Interaction”, Hong-Kong, China.

• 2015 : “Visio-haptic control for safe physical interaction with humanoids”,
plenary at the French Humanoid Research Conference, JNRH, Nantes, France.

• 2016 : “Sensor-based control of humanoids”, University of Bonn, Germany.

• 2016 : “Visio-haptic robot control”, Scuola Superiore Sant’Anna, Pisa, Italy.

• 2016 : “Visio-haptic control for physical human-robot interaction - recent works
of the LIRMM IDH Group”, German-French Conference on Humanoid and
Legged Robots, HLR 2016, Toulouse, France.

A.4.3 Invitations to PhD defenses

I have been invited as Reviewer to the following PhD defenses:

• Deon George Sabatta
ETH Zurich, Switzerland, December 5, 2014.
Algorithms for vision-based path following along previously taught paths
Jury: R. Siegwart (Principal Supervisor), L. Van Gool (Co-Supervisor), A.
Cherubini and C. Pradalier (Reviewers).
Deon extended two established path following controllers to teach-and-repeat
visual navigation. The first one relies on a scaled distance to path, derived
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from the visual memory. For the second, a novel image-based cost function is
proposed, to apply model predictive control to visual navigation.

• Daniel Maier
Albert-Ludwigs-Universitaet Freiburg, Germany, April 10, 2015.
Camera-based humanoid robot navigation
Jury: M. Bennewitz (Principal Supervisor), W. Burgard (Examiner), B.
Nebel (Examiner), A. Cherubini (Reviewer).
This thesis focused on cameras as primary sensors for humanoid robot deploy-
ment. Daniel addressed the following problems: self-calibration of the robot
kinematic model, safe navigation based on self-supervised image classification,
visual localization and mapping, and manipulation by object pose tracking.

• Alessandro Di Fava
Scuola Superiore Sant’Anna, Pisa, Italy, November 2, 2016.
Multisensory Advanced Robot Control: from perceptual sensors to human demon-
strations.
Jury: E. Ruffaldi (Principal Supervisor), C. A. Avizzano (Examiner), A.
Kheddar and A. Cherubini (Reviewer).
This thesis investigates technological and algorithmic solutions to enable de-
velopment of what the recent Strategic Research Agenda calls Better Action
and Awareness. The main goal is to improve the robot autonomy, by under-
standing and interpreting the environment surrounding the robot.

As Co-Supervisor, I have taken part to the PhD defenses of Damien Petit on
December, 14, 2015 and of Don Joven Agravante on December, 16, 2015. The
details of these defenses have been given in Sect. A.1.1.

A.4.4 Participation in Program Committees

• I have been invited to serve as Associated Editor at the IEEE/RSJ IROS
Conference, in 2014, 2015 and 2016. The mission consists in several tasks.
First, each paper must be assigned to 2-3 reviewers. The reviews must then be
summarized in a report, giving a final decision (either acceptation or refusal).
I have been assigned 6 papers in 2014 (on Planning and Optimization), and
respectively 11 and 8 in 2015 and 2016 (on Perception and Localization).

• I have been the founder and main organizer of the Workshops on Multi-
modal sensor-based robot control for Human-Robot Interaction and Soft Ma-
nipulation at IROS in 2015 and 2016. The work consisted in several tasks.
First, I found four colleagues to help in the organization. Second, we submit-
ted a proposal to the IROS Workshop Committee, including the website that
I designed and managed. We then contacted six experts for invited talks, and
managed the reviewing process of the submitted papers. Finally, we organized
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the workshop on site. The success of the 2015 Edition (over 60 participants),
has led to acceptation of our proposals for 2016 Edition and to a related
Robotics and Autonomous Systems journal Special Issue for which I will be
Editor in Chief.

• I have been among the six organizers of the Workshop Tactile sensing for
manipulation: new progress and challenges at the IEEE-RAS Int. Conf. on
Humanoid Robots, Humanoids 2016. The work consisted in submitting a
proposal to the ICHR Workshop Committee, in contacting eleven experts for
invited talks, and in reviewing the submitted papers.

A.4.5 National and International Expertise

• 2014 : expert for the European Program CHIST ERA. The work consisted
in reviewing a 60 page project on Robotics.

• 2014 : expert for the Italian National Young Researchers Program SIR
(Theme: Robotics). The work consisted in reviewing first 6 short pre-proposals
(5 pages each), and then 2 preselected proposals (15 pages each).

• 2014: invited to the Selection Committee for an Associate Professor
position at University of Cergy Pontoise, France (profile: Robotics and
Cognitive Science). The work consisted in preselecting the best among 17
applications, attending the oral presentations of the 5 preselected candidates
and selecting one in agreement with the other Committee members.

• 2015: expert for the French National ANR ACHN Program for hosting
high level foreign researchers. The work consisted in reviewing a 25 page
project on Image Processing.

• 2016: expert for the Italian National Research Program PRIN (Theme:
Robotics). The work consisted in reviewing three projects of 30 pages each.

A.4.6 Miscellaneous

Awards

In 2013 I was awarded, with 18 other young researchers, the prestigious prize
“Chercheurs d’Avenir” from the Region Languedoc-Roussillon. This award funded
my project CoBot@LR (70000 e, see Sect. A.2.1).

Media dissemination

Reports about my work in ASPICE have appeared on the Italian public TV RAI
and on Italian newspaper “Il sole 24 ore”. In 2007 and 2010, I was interviewed by
the French magazine “Sciences Ouest”. In 2013, I was interviewed during the TV
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show “Campus LR”, and for the magazine “La Gazette de Montpellier”. Work on
humanoid robot driving has been reported by Spanish newspaper “El pàıs”.

Conference chair

I have been invited to chair the session “Non-holonomic motion planning” at IROS
2008 and the session “Visual servoing” at ICRA 2013.
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Résumé en français

B.1 Mémoire

B.1.1 Activités de recherche (Chapitres 1-6)

Après la soutenance de ma thèse (2008), j’ai poursuivi mon activité de recherche
dans le domaine de la robotique. Ce manuscrit résume les travaux effectués durant
mon postdoctorat à l’INRIA Rennes (2008-2011), et ensuite, en tant que Mâıtre de
Conférence au LIRMM/Université de Montpellier (2011-présent).

Ma recherche, au cours de ces huit années, a visé à développer des lois de com-
mande référencées capteurs, ciblant l’interaction physique entre hommes et robots.
Nous avons conçu et développé des nouvelles méthodes pour exploiter les informa-
tions provenant de divers capteurs (de vision, force, et distance) pour que le robot
puisse collaborer de manière efficace et sûre avec l’opérateur humain.

Puisque le robot et l’homme risquent, à l’avenir, d’évoluer dans les mêmes lieux,
le premier doit pouvoir identifier le second et déterminer sa position, pour effectuer
des mouvements d’évitement ou d’interaction. D’autres verrous importants concer-
nent la sécurité de l’homme, qui doit rester prioritaire, et la simplicité des interfaces
de commande. Il est en effet fondamental, tout utilisateur, même novice, puisse
contrôler de manière intuitive le robot.

En vue de ces trois verrous, il est clair que le système de perception de robot
compagnon, est essentiel pour traiter des interactions réciproques. Parmi les diverses
modalités sensorielles, nous avons montré l’importance fondamentale de vision, force
et distance.

Les travaux présentés dans le manuscrit sont regroupés suivant quatre axes prin-
cipaux (un par chapitre):

• Navigation visuelle autonome, en présence d’obstacles. Ce travail a
consisté à développer un système de navigation, permettant au robot de rejouer
de manière autonome un parcours appris, en utilisant uniquement des amers
visuels naturels. Une première contribution a consisté a étudier plusieurs mod-
èles de l’interaction robot-camera, afin de choisir les informations visuelles les

91
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plus adéquates à la commande. Dans notre système de navigation, le chemin
est représenté de manière topologique, par une série d’images clé à attein-
dre. Les transitions d’une image clé à la suivante étant initialement assez
brusques, nous avons proposé l’introduction d’une référence variable dans la
loi de commande, qui a amélioré les performances du système. Par la suite,
nous avons attaqué le problème de l’évitement d’obstacles, pendant la navi-
gation, en utilisant, en plus de la vision, les données provenant d’un capteur
de distance (lidar). L’intégration de vision et distance s’est faite de manière
compacte, dans un contrôleur hybride unique, permettant d’éviter aussi les
obstacles mobiles.

• Commande multimodale pour la collaboration avec des robots ma-
nipulateurs industriels. Une forte demande de technologies permettant
l’interaction physique entre homme et robot, vient du monde de l’industrie.
Aujourd’hui, dans les usines de production, les postes d’assemblage sont soit
manuels, soit automatiques, et des barrières de protection séparent systéma-
tiquement les robots des opérateurs humains. Cependant, l’évolution récente
des technologies et des normes laisse envisager un nouveau scénario, où homme
et robot pourront travailler côte à côte. Dans cette optique, les humains réalis-
eront les opérations complexes, pendant que les robots effectueront les activ-
ités facilement automatisables, peu ergonomiques ou dangereuses, le tout dans
une zone de travail partagée. Nous avons exploité la complémentarité de vision
et force, dans trois applications industrielles. Le premier travail a permis de
généraliser les résultats obtenus pour la navigation, en concevant un contrôleur
hybride, permettant de gérer plusieurs capteurs pour l’interaction. Dans le
deuxième travail, nous avons conçu une cellule manufacturière, où le robot
alterne phases actives et phases passives, pendant une opération d’assemblage
collaboratif. Enfin, nous avons conçu une loi de commande en admittance sûre
par rapport aux contraintes de la norme ISO10218.

• Robots humanöıdes pour la collaboration et la manipulation d’outils
complexes. Les mêmes approches peuvent être utilisées pour contrôler des
robot humanöıdes. Il s’agit là de plateformes qui, de part leur ressemblance
à l’homme, peuvent l’aider dans des tâches collaboratives, tel le transport, et
dans la manipulation de machines ou outils conçus pour l’usage humain, mais
inaccessibles (par exemple, suite à une catastrophe naturelle). La perception
multimodale, permet en effet de lever certaines indéterminations de ces tâches.
Typiquement, nous avons montré la complémentarité de la vision, par rapport
à l’utilisation de la force seule, lors d’une tâche de transport collaboratif de
charges lourdes. Ceci a donné suite à un deuxième travail, où le génerateur de
marche du robot humanöıde a été adapté, pour prendre en compte les forces
échangées avec l’homme pendant le transport. Le troisième travail a concerné
la conception d’un schéma de commande permettant à un robot humanöıde
de conduire une voiture, en exploitant données visuelles et haptiques.
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• Retour capteurs dans des schémas de téléopération robotique. La
dernière application ciblée a été l’utilisation des robots pour étendre les capac-
ité sensorimotrices d’humains (par exemple, handicapés). A ce fin, différents
signaux physiologiques peuvent être utilisés, tels l’électromyographie, ou en-
core l’électroencéphalographie. Nous avons utilisé ces deux types de signaux,
pour permettre à un individu d’incarner respectivement une main robotique,
et un robot humanöıde. Une troisième cas d’étude à été la conception d’une
architecture de commande pour un robot conducteur, permettant différents
niveaux d’autonomie. Dans tous ces travaux, l’importance de la perception
du robot est primaire, car elle permet de fermer des boucles de commande à
haute fréquence, qui ne seraient pas contrôlables directement par l’opérateur
humain.

Tous ces travaux ont inspiré mon projet de recherche, qui est résumé ci-dessous.

B.1.2 Projet de recherche (Chapitre 7)

Dans les années à venir, j’envisage de continuer à développer des approches de
perception hybride, agissant directement au niveau de la commande et non pas,
comme dans la fusion traditionnelle, au niveau de l’estimation d’état. Je poursuivrai
principalement deux axes de recherche: d’un coté sur les méthodologies le plus
appropriés pour la commande basée capteurs, de l’autre en développant des nouvelles
approches, sur un système complet, le manipulateur mobile BAZAR présent au
LIRMM.

Concernant les méthodes, plusieurs développements sont à envisager dans le
cadre de ma recherche. D’abord, suite à mon implication personnelle dans la com-
munauté IEEE RAS (de part l’organisation de workshops sur la commande multi-
modale, à IROS 2015 et 2016), je souhaite étendre mon domaine d’étude à d’autres
modes sens, tel l’oüıe. Un deuxième axe concerne l’intégration de distance et force,
notamment dans les transitions entre espace libre et contraint (contact). Toujours
dans le cadre des méthodes, nous avons perçu un manque d’échange entre les com-
munautés travaillant sur les différents capteurs. Il serait intéressant de combler
ce manque, par exemple, en appliquant les méthodes de traitement d’images aux
données tactiles des peaux artificielles. Un dernier aspect concerne l’utilisation des
techniques d’optimisation, qui sont de plus en plus populaires dans la communauté,
y compris dans notre équipe, et dont pourrait profiter aussi la commande multi-
modale.

Le deuxième volet de mon projet concerne le développement de schémas de com-
mande multimodale pour l’interaction physique, sur le robot manipulateur mobile
BAZAR du LIRMM. Ce robot comprendra capteurs et actionneurs très avancés, tous
embarqués sur une base mobile pseudo-omnidirectionnelle. De part ses caractéris-
tiques, BAZAR permettra de réunir les différents résultats de nos travaux sur une
seule platforme. Un des verrous principaux concerne la commande de ce système.
S’agissant d’une base pseudo omnidirectionnelle, les méthodes de navigation visuelle
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avec évitement d’obstacles nécessiteront d’une adaptation. En effet, les roues ori-
entables de ce robot ne permettent pas les changements instantanés du centre de
rotation, ce qui rendra nécessaire la conception de loi de commandes innovantes. Un
dernier aspect concernera la commande duale pour la manipulation d’objets flexi-
bles, possible grâce aux deux bras manipulateurs embarqués sur BAZAR. Il s’agit
là d’un sujet très innovateur, mais pour lequel, de part l’expertise présente au sein
de l’équipe, nous sommes optimistes.

B.2 Rapport d’activités

B.2.1 Encadrement

Thèses

• Antonio Paolillo, “Vision-based control of humanoid robots interacting with
the real world”, Università di Roma “La Sapienza”, 2011-2015, financement :
Gouvernement Italien, encadrants : A. De Luca 30%, M. Vendittelli 40%, A.
Cherubini 30%. Son travail est presenté en Sect. 5.3.1.

• Don Joven Agravante, “Transport collaboratif homme-humanöıde”, Uni-
versité de Montpellier, 2012-2015, financement : EU FP7 RoboHow, encad-
rants : A. Kheddar 30%, A. Cherubini 70%. Son travail est présenté en Sec-
tions 5.3.2 et 5.3.3.

• Damien Petit, “Commande de robot humanöıde avec interface neuronale”,
Université de Montpellier, 2012-2015, financement : EU FP7 VERE, encad-
rants : A. Kheddar 30%, A. Cherubini 40%, L. Aymerich-Franch 30%. Son
travail est presenté en Sect. 6.3.2.

• Benjamin Navarro, “Modélisation et commande d’un robot compliant. Ap-
plication à l’interaction humain-robot”, Université d’Orléans, 2014-2017, fi-
nancement : ANR SISCob, encadrants : G. Poisson 30% A. Cherubini 30%, P.
Fraisse 20%, A. Fonte 20%. Son travail est présenté en Sections 4.3.3 et 6.3.1.

• Mohammed Sorour, “Contribution à la commande d’un manipulateur mo-
bile à 2 bras”, Université de Montpellier, 2014-2017, financement : Bourse
Région LR 50%, PSA 50%, encadrants : P. Fraisse 30%, A. Cherubini 70%.

• Zineb Abderrahmane, “Exploration visio-haptique pour la modélisation et
la classification d’objets de formes inconnues”, Université de Montpellier, 2015-
2018, financement : Bourse Averroès (Gouvernement Algérien), encadrants :
A. Crosnier 30%, A. Cherubini 40%, G. Gowrishankar 30%.

• Sonny Tarbouriech, “Manipulation robotique à deux bras”, Université de
Montpellier, 2016-2019, financement : CIFRE (Gouvernement Français), en-
cadrants : P. Fraisse 50%, A. Cherubini 50%.

• Osama Mazhar, “Reconnaissance des intentions humaines pour la commande
robotique”, Université de Montpellier, 2016-2019, financement : Université de
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Montpellier, encadrants : A. Crosnier 30%, A. Cherubini 40%, S. Ramdani
30%.

Post-doctorants

• Arnaud Méline, “Développment d’algorithmes de commande visuelle pour un
robot manipulateur”, 01/02/2013-30/11/2013, financement : ANR ICARO,
encadrants : A. Cherubini 40%, A. Crosnier 30%, P. Fraisse 30%. Travail
présenté en Sect. 4.3.1.

• José Romero Velazquez, “Design of a whole-body humanoid state observer
to detect contacts”, 01/11/2014-31/5/2015, financement : PSPC ROMEO 2,
encadrants : A. Cherubini 40%, A. Crosnier 30%, A. Kheddar 30%.

• Antonio Paolillo, “Humanoid robot interaction with sophisticated machinery”,
01/07/2015 - 31/3/2016, financement : PSPC ROMEO 2, encadrants : A.
Cherubini 50%, A. Kheddar 50%. Travail présenté en Sect. 6.3.3.

Masters

À l’Université de Rome “La Sapienza”:

• Sandro Bruscino (2005) : “Un système robotisé pour l’assistance”,

• Theodora Capeqi (2006) : “Vision pour la navigation robotique”,

• Marcello Lombardo (2008) : “Contrôle d’un robot bipède”,

• Manuel Colafrancesco (2008) : “Navigation visuelle robotique”.

À l’Université de Montpellier:

• Fares Mentseur (2012) : “Modélisation cinématique d’un bras manipulateur”,

• Boris Gretchanichenko (2013) : “Identification dynamique du bras Kuka LWR”,

• Camilo Mousselli (2014) : “Modelisation et commande d’une main robotique”,

• Xavier Gorron (2015) : “Commande par EMG d’une main robotique”,

• Florian Raffalli (2015) : “Reconstruction 3D à partir de caméras stéreo”.

Devenir des doctorants

• Antonio Paolillo (thèse mars 2015) : Post-doctorant au LIRMM, Montpellier
(Superviseur: A. Kheddar).

• Don Joven Agravante (thèse décembre 2015) : Post-doctorant à l’INRIA Rennes
(Superviseur: F. Chaumette).

• Damien Petit (thèse décembre 2015) : Post-doctorant à l’Université d’Osaka.
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B.2.2 Responsabilités scientifiques

Responsabilité de projets

• 2013 : PHC Galileo SenbHIbot. Responsable scientifique pour le LIRMM. Ce
projet concernait l’interaction homme-robot, en collaboration avec l’Université
“La Sapienza” de Rome.

• 2013-2016 : ViNCI (Programme CNRS PICS). Responsable scientifique pour
le LIRMM. Ce projet concerne l’interaction visio-haptique avec un robot hu-
manöıde, en collaboration avec l’Université“La Sapienza”de Rome. Une partie
des résultats a été présentée en Sections 5.3.1 et 6.3.3.

• 2014-2017 : ANR SISCob (Programme“Sciences et technologies de production,
l’usine numérique”). Responsable scientifique pour le LIRMM (workpackage:
loi de commandes sûres pour l’interaction physique homme-robot, dont les
résultats présentés en Sect.4.3.3). Ce projet concerne la conception d’un cap-
teur intelligent pour la robotique, et comprends 4 autres partenaires: PPRIME
(Coordinateur), PRISME, XLIM et SENSIX.

• 2014-2017 : CoBot@LR (Programme“Chercheurs d’Avenir”, financé par la Ré-
gion Languedoc-Roussillon). Responsable scientifique pour le LIRMM (com-
mande visio-haptique d’un manipulateur mobile à deux bras). Ce projet con-
cerne la robotique collaborative en milieu industriel, en partenariat avec PSA.

• 2015-2016 : PHC Procope ViNavHuBot. Responsable scientifique pour le
LIRMM. Ce projet, inspiré par une première collaboration, qui a abouti aux
travaux présentés en Sect. 3.3.3, concerne la navigation visuelle de robots mo-
biles (humanöıdes ou sur roues). Partenaires : Universités de Bonn, et de
Freiburg, Allemagne.

• 2017-2020 : VERSATILE (Programme Européen H2020). Responsable scien-
tifique pour le LIRMM. Ce projet concerne le développement de stratégies de
perception et de commande nécessaires au robot collaborateur de l’usine du
futur. Coordinateur : Fondation Tecnalia (Espagne).

Participation à projets

• 2005-2007 : ASPICE (Telethon Italie) : commande robotique par interface
neuronale directe. Partenariat entre l’Université “La Sapienza” et la Fon-
dazione Santa Lucia de Rome (Coordinateur).

• 2008-2011 : ANR CityVIP (Programme TSFA) : conduite automatique de
véhicules de transport publiques, en milieu urbain. Coordinateur: Université
Blaise Pascal, Clermont Ferrand. Une partie des résultats a été présentée en
Sections 3.3.1 et 3.3.2.

• 2010-2015 : VERE (Programme Européen FP7) concernant l’incorporation
dans un robot humanöıde d’un opérateur humain (par exemple, handicapé) à
l’aide d’une interface cerveau-ordinateur (BCI). Coordinateur : Universitat de
Barcelona, Espagne. Une partie des résultats a été présentée en Sect. 6.3.2.
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• 2011-2014 : ANR ICARO (Programme CONTINT) : développement d’un
robot collaboratif. Coordinateur : AIRBUS. Une partie des résultats a été
présentée en Sections 4.3.1 et 4.3.2.

• 2012-2016 : RoboHow (Programme Européen FP7) concernant l’utilisation de
base de données pour permettre aux robots d’effectuer des tâches au quotidien.
Coordinateur : Universität Bremen, Allemagne. Une partie des résultats a été
présentée en Sections 5.3.2 et 5.3.3.

• 2013-2016 : ROMEO 2 (Programme PSPC) poursuivant le développement
d’un robot humanöıde, assistant et compagnon pour la vie quotidienne. Co-
ordinateur: Aldebaran.

Révisions d’articles

Réviseur, de plus de 70 articles, pour les Conférences Internationales avec Comité
de lecture IEEE ICRA, IEEE/RSJ IROS, IEEE ICHR, ACC, RSS, ICAR, ainsi que
pour les Revues Internationales IEEE Trans. Robotics, Int. Journal of Robotics
Research, Robotics and Autonomous Systems, Autonomous Robots, IEEE Trans.
on Industrial Informatics, IEEE Trans. on Intelligent Transportation Systems, IEEE
Robotics and Automation Magazine, Journal of Field Robotics, Journal of Intelligent
and Robotic Systems, IEEE Trans. on Systems, Man, and Cybernetics Part B,
Robotica, Advanced Robotics, et IEEE Trans. Control Systems Technology.

B.2.3 Activités d’enseignement

Enseignement

Avant d’arriver à Montpellier:

• 2006-2008 : cours de Commande adaptative et Apprentissage automatique
(20 h CM) à l’Université de Rome “La Sapienza”, niveau M2.

• 2006-2008 : encadrement, à l’Université de Rome “La Sapienza”, des Projets
de 7 étudiants, niveau L3.

• 2009-2010 : travaux pratiques en Automatique Linéaire Mono-variable (48 h
TP) à l’INSA, Rennes, niveau L3.

• 2010 : travaux pratiques en Robotique (36 h TP), INSA, Rennes, niveau M1.

À la Faculté des Sciences, de l’Université de Montpellier:

• 2011 - 2014: travaux pratiques (81 h TP) et dirigés (26 h TD) en Automatique
des Systèmes Linéaire Mono-variable, niveau L3.

• 2011 - présent : cours magistraux (29 h CM) et travaux pratiques (96 h TP)
en Automatique des Systèmes Multi-variables, niveau M1.

• 2011 - présent : cours magistraux (43 h CM) et travaux pratiques (147 h TP)
en Vision et Capteurs pour la robotique, niveau M2.
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• 2011 - présent : encadrement des projets et stages d’environ 8 étudiants par
an, niveau Master (première et deuxième année).

• 2012 - 2015 : cours magistraux (45 h CM) d’Outils Informatiques, niveau L2.

• 2013 - présent : cours magistraux (37 h CM) et travaux pratiques (68 h TP)
en Bases de la Robotique et du Traitement d’images, niveau M1.

• 2015 - présent : cours magistraux (12 h CM) en Optimisation, niveau M2.

Responsabilités pédagogiques

• 2012-2015 : Responsable pédagogique et administratif de l’Unité d’Enseignement
Outils Informatiques, suivie par tous les étudiants inscrits en 2ème année de
Licence à l’UFR Faculté des Sciences de l’Université de Montpellier (environ
1000 étudiants par an). Ce travail a consisté à : recruter moniteurs et va-
cataires (environ 30 par an), préparer les emplois de temps, réserver les salles
d’informatique, organiser le QCM C2I, gérer les équivalences, centraliser les
notes.

• 2015-présent : Responsable pédagogique et administratif de la Spécialité Robo-
tique première et deuxième année du Master EEA, à l’Université de Montpel-
lier (environ 50 étudiants). Pour la première et deuxième année, il s’agit
de: recruter les étudiants, recruter moniteurs et vacataires, et préparer les
projets pédagogiques (demandes de moyens). Pour le Master 2ème année, il
s’agit de : préparer l’emploi de temps, organiser les jury et les soutenances de
projet/stage, faire un suivi des stages en entreprise, organiser les conférences
métier.

B.2.4 Diffusion de travaux (rayonnement, vulgarisation)

Publications

Au cours de ma carrière, j’ai publié 12 articles sur revues Internationales, et 34 arti-
cles dans des Conférences Internationales avec Comité de lecture (voir Sect. A.4.1).

Séminaires invités

• 2007 : “The ASPICE project”, Universität Bremen, Allemagne.

• 2007 : “Multimodal navigation in ASPICE”, KTH, Stockholm, Suède.

• 2009 : “Visual navigation with obstacle avoidance”, Université de Technologie
de Compiègne, France.

• 2010 : “Outdoor visual navigation with obstacle avoidance”, VisuLab - Univer-
sità di Parma, Italie.

• 2012 : “Outdoor Visual Navigation”, Albert-Ludwigs-Universitaet Freiburg,
Allemagne.

• 2012 : “Vision-based control of mobile robots”, CNRS-AIST Joint Robotics
Laboratory, Tsukuba, Japon.
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• 2012 : At the crossroads of neurorehabilitation and robotics, Fondazione Santa
Lucia, Rome, Italie.

• 2013 : “An overview of our research on Human-inspired Cybernetic Systems”,
MPI Tübingen, Allemagne.

• 2014 : “See and touch: Visio-haptic control for safe human-robot interaction”,
ETH Zurich, Suisse.

• 2014 : “Visio-haptic control for safe human-robot interaction”, IEEE ICRA
Workshop“Affective Haptics for Human-Robot Interaction”, Hong-Kong, Chine.

• 2015 : “Visio-haptic control for safe physical interaction with humanoids”,
Journées Nationales de la Robotique Humanöıde, Nantes, France.

• 2016 : Sensor-based control of humanoids, Université de Bonn, Allemagne.

• 2016 : Visio-haptic robot control, Scuola Superiore Sant’Anna, Pisa, Italie.

• 2016 : Visio-haptic control for physical human-robot interaction - recent works
of the LIRMM IDH Group, German-French Conference on Humanoid and
Legged Robots, HLR 2016, Toulouse, France.

Participation à des jurys de thèse

Au titre de rapporteur:

• ETH Zurich, Suisse : Deon George Sabatta, “Algorithms for vision-based path
following along previously taught paths” (2014).

• Albert-Ludwigs-Universitaet Freiburg, Allemagne : Daniel Maier, “Camera-
based humanoid robot navigation” (2015).

• Scuola Superiore Sant’Anna, Pisa, Italie : Alessandro Di Fava, “Multisensory
Advanced Robot Control: from perceptual sensors to human demonstrations”
(2016).

Au titre d’encadrant:

• Université de Montpellier : Don Joven Agravante, “Transport collaboratif
homme-humanöıde” (2015).

• Université de Montpellier : Damien Petit, “Commande de robot humanöıde
avec interface cerveau-ordinateur” (2015).

Comités de programme

• Éditeur Associé de la conférence IEEE/RSJ IROS en 2014, 2015 et 2016. Le
travail consiste d’abord à trouver 2-3 réviseurs pour chaque article assigné par
l’Éditeur, ensuite à faire une synthèse des révisions (sous forme de rapport),
en donnant un avis (favorable ou défavorable) sur l’acceptation du papier. J’ai
été responsable de: 6 articles en 2014 (thèmes: planification et optimisation),
et de 11 articles en 2015 (thèmes: perception et localisation).
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• Organisateur et initiateur des Workshops“Multimodal sensor-based robot con-
trol for Human-Robot Interaction and Soft Manipulation” aux conférences
IROS 2015 et 2016. Le travail consisté à: trouver les co-organisateurs (4 col-
lègues à l’international), soumettre une proposition au comité de programme
des Workshops IROS, contacter des experts (six) pour les présentations in-
vitées, gérer les révisions des résumés soumis (10 soumissions, avec 2 révision
chacune), et organiser sur place la journée. Le premier Workshop (2015) a
eu un grand succès (avec environ 60 participants) et sera re-proposé à IROS
2016. Une Special Issue (dont je serai Éditeur Principal) sur les mêmes thé-
matiques, est en cours de préparation avec les Éditeurs de la revue “Robotics
and Autonomous Systems”.

• Organisateur, avec 5 collègues, du Workshop “Tactile sensing for manipula-
tion: new progress and challenges” à la conférence IEEE-RAS Int. Conf. on
Humanoid Robots, Humanoids 2016. Le travail a consisté à: soumettre une
proposition au comité de programme des Workshops ICHR, contacter des ex-
perts (onze) pour les présentations invitées, et gérer les révisions des résumés
soumis.

Expertises Nationales/Internationales

• 2014, expert pour le Programme Européen CHIST ERA. Le travail a consisté
à expertiser un projet de Robotique de 60 pages.

• 2014, expert pour le Programme Jeunes Chercheurs (SIR) du Ministère de
l’Instruction, de l’Université et de la Recherche Italien (thème: Robotique).
Le travail a consisté, dans un premier temps, à expertiser 6 pré-propositions
courtes de projets de robotique (de 5 pages chacune), ensuite à expertiser deux
propositions pré-sélectionnées (de 15 pages chacune).

• 2014, membre du comité de sélection du recrutement du poste MCF section 61,
Université de Cergy Pontoise (2014), profil : Robotique et Sciences cognitives.

• 2015, expert pour le Programme ANR ACHN (Accueil de Chercheurs de Haut
Niveau). Le travail a consisté à expertiser un projet de Traitement de signal
de 25 pages.

• 2016, expert pour le Programme PRIN (Projets de Recherche d’Intérêt Na-
tional) du Ministère de l’Instruction, de l’Université et de la Recherche Italien
(thème: Robotique). Le travail a consisté à expertiser trois propositions de
projets de robotique, de 30 pages chacune.

Autres

• Lauréat, avec 18 autres jeunes chercheurs (toutes disciplines confondues), du
prix régional Chercheurs d’Avenir 2013 (Languedoc- Roussillon). Ce prix a
permis de financer le projet CoBot@LR à hauteur de 70000 euros.

• Co-président de la session “Planification non-holonome” à la conférence IROS
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2008, et de la session “Asservissement visuel” à ICRA 2013.

• Vulgarisation par le biais de journaux grand publique (dont “El Pàıs” en Es-
pagne, en 2014) et de la télévision publique italienne RAI (dans le cadre du
projet ASPICE). Interviews pour les magazines françaises “Sciences Ouest”
(2007 et 2010), et “La Gazette de Montpellier” (2015).
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Appendix C

Selected journal articles

I have hereby attached the original printouts of articles:

A. Cherubini, F. Chaumette, Visual Navigation of a Mobile Robot with
Laser-based Collision Avoidance, International Journal of Robotics Research,
vol. 32, no. 2, pp. 189-209, 2013.

A. Cherubini, F. Spindler, F. Chaumette, Autonomous Visual navigation
and Laser-based moving obstacle avoidance, IEEE Trans. on Intelligent
Transportation Systems, vol. 15, no. 5, pp. 2101 - 2110, 2014.

A. Cherubini, R. Passama, P. Fraisse, A. Crosnier, A unified multimodal
control framework for human-robot interaction, Robotics and Autonomous
Systems, 70, pp. 106-115, 2015.

A. Cherubini, R. Passama, A. Crosnier, A. Lasnier, P. Fraisse, Collaborative
manufacturing with physical human-robot interaction, Robotics and Com-
puter Integrated Manufacturing, vol. 40, August 2016, Pages 1–13.
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Visual navigation of a mobile robot with
laser-based collision avoidance

The International Journal of
Robotics Research
32(2) 189–205
© The Author(s) 2013
Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0278364912460413
ijr.sagepub.com

Andrea Cherubini1,2 and François Chaumette1

Abstract
In this paper, we propose and validate a framework for visual navigation with collision avoidance for a wheeled mobile
robot. Visual navigation consists of following a path, represented as an ordered set of key images, which have been
acquired by an on-board camera in a teaching phase. While following such a path, the robot is able to avoid obstacles
which were not present during teaching, and which are sensed by an on-board range scanner. Our control scheme
guarantees that obstacle avoidance and navigation are achieved simultaneously. In fact, in the presence of obstacles,
the camera pan angle is actuated to maintain scene visibility while the robot circumnavigates the obstacle. The risk of
collision and the eventual avoiding behaviour are determined using a tentacle-based approach. The framework can also
deal with unavoidable obstacles, which make the robot decelerate and eventually stop. Simulated and real experiments
show that with our method, the vehicle can navigate along a visual path while avoiding collisions.

Keywords
vision-based navigation, visual servoing, collision avoidance, integration of vision with other sensors

1. Introduction

A great amount of robotics research focuses on vehicle
guidance, with the ultimate goal of automatically reproduc-
ing the tasks usually performed by human drivers (Buehler
et al., 2008; Zhang et al., 2008; Nunes et al., 2009; Broggi
et al., 2010). In many recent works, information from visual
sensors is used for localization Guerrero et al. (2008);
Scaramuzza and Siegwart (2008) or for navigation (Bonin-
Font et al., 2008; López-Nicolás et al., 2010). In the case of
autonomous navigation, an important task is obstacle avoid-
ance, which consists of either generating a collision-free
trajectory to the goal (Minguez et al., 2008), or decelerating
to prevent collision when bypassing is impossible (Wada
et al., 2009). Most obstacle avoidance techniques, partic-
ularly those that use motion planning (Latombe, 1991),
rely on knowledge of a global and accurate map of the
environment and obstacles.

Instead of utilizing such a global model of the envi-
ronment, which would infringe the perception to action
paradigm (Sciavicco and Siciliano, 2000), we propose a
framework for obstacle avoidance with simultaneous exe-
cution of a visual servoing task (Chaumette and Hutchin-
son, 2006). Visual servoing is a well-known method that
uses vision data directly in the control loop, and that has

been applied on mobile robots in many works Mariottini
et al. (2007); Allibert et al. (2008); Becerra et al. (2011);
López-Nicolás and Sagüés (2011). For example, Mariot-
tini et al. (2007) exploited the epipolar geometry to drive
a non-holonomic robot to a desired configuration. A sim-
ilar approach is presented by Becerra et al. (2011), where
the singularities are dealt with more efficiently. The same
authors achieved vision-based pose stabilization using a
state observer in López-Nicolás and Sagüés (2011). Tra-
jectory tracking is tackled by Allibert et al. (2008) by
integrating differential flatness and predictive control.

The visual task that we focus on is appearance-based
navigation, which has been the target of our research of
Šegvić et al. (2008), Cherubini et al. (2009) and Diosi
et al. (2011). In the framework that we have developed in
the past,1 the path is a topological graph, represented by a
database of ordered key images. In contrast with other simi-
lar approaches, such as that of Booij et al. (2007), our graph

1INRIA Rennes - Bretagne Atlantique, IRISA, Rennes, France
2LIRMM - Université de Montpellier 2 CNRS, Montpellier, France
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does not contain forks. Furthermore, as opposed to Royer
et al. (2007), Goedemé et al. (2007), Zhang and Kleeman
(2009), Fontanelli et al. (2009) and Courbon et al. (2009),
we do not use the robot pose for navigating along the path.
Instead, our task is purely image-based (as in the approach
of Becerra et al. (2010)), and it is divided into a series
of subtasks, each consisting of driving the robot towards
the next key image in the database. More importantly, to
the best of the authors’ knowledge, appearance-based nav-
igation frameworks have never been extended to take into
account obstacles.

Obstacle avoidance has been integrated into many model-
based navigation schemes. Yan et al. (2003) used a range
finder and monocular vision to enable navigation in an
office environment. The desired trajectory is deformed to
avoid sensed obstacles in the work of Lamiraux et al.
(2004). Ohya et al. (2008) use a model-based vision system
with retroactive position correction. Simultaneous obsta-
cle avoidance and path following are presented by Lapierre
et al. (2007), where the geometry of the path (a curve on
the ground) is perfectly known. In the approach of Lee
et al. (2010), obstacles are circumnavigated while follow-
ing a path; the radius of the obstacles (assumed cylindrical)
is known a priori. In practice, all of these methods are based
on the environment 3D model, including, for example, walls
and doors, or on the path geometry. In contrast, we propose
a navigation scheme which does not require an environment
or obstacle model.

One of the most common techniques for model-free
obstacle avoidance is the potential field method, origi-
nally introduced by Khatib (1985). The gap between global
path planning and real-time sensor-based control has been
closed with an elastic band (Quinlan and Khatib, 1993), a
deformable collision-free path, whose initial shape is gener-
ated by a planner, and then deformed in real time, according
to the sensed data. Similarly, in the work of Bonnafous
et al. (2001) and Von Hundelshausen et al. (2008), a set
of trajectories (arcs of circles or ‘tentacles’) is evaluated
for navigating. However, in the work of Bonnafous et al.
(2001), a sophisticated probabilistic elevation map is used,
and the selection of the optimal tentacle is based on its risk
and interest, which both require accurate pose estimation.
Similarly, in Von Hundelshausen et al. (2008), the trajectory
computation relies on GPS way points, hence once more on
the robot pose.

Here, we focus on this problem: a wheeled vehicle,
equipped with an actuated pinhole camera and with a
forward-looking range scanner, must follow a visual path
represented by key images, without colliding with the
ground obstacles. The camera detects the features required
for navigating, while the scanner senses the obstacles (in
contrast with other works, such as that of Kato et al. (2002),
only one sensor is used to detect the obstacles). In this
sense, our work is similar to that of Folio and Cadenat
(2006), where redundancy enables reactive obstacle avoid-
ance, without requiring any 3D model. A robot is redundant

when it has more degrees of freedom (DOFs) than those
required for the primary task; then, a secondary task can
also be executed. In the work of Folio and Cadenat (2006),
the two tasks are respectively visual servoing and obsta-
cle avoidance. However, there are various differences with
that work. First, we show that the redundancy approach is
not necessary, since we design the two tasks so that they
are independent. Second, we can guarantee asymptotic sta-
bility of the visual task at all times, in the presence of
non-occluding obstacles. Moreover, our controller is com-
pact, and the transitions between safe and unsafe contexts
is operated only for obstacle avoidance, while in the work
of Folio and Cadenat (2006), three controllers are needed,
and the transitions are more complex. This compactness
leads to smoothness of the robot behaviour. Finally, Folio
and Cadenat (2006) considered a positioning task in indoor
environments, whereas we aim at continuous navigation on
long outdoor paths.

Let us summarize the other major contributions of our
work. An important contribution is that our approach is
merely appearance-based, hence simple and flexible: the
only information required is the database of key images,
and no model of the environment or obstacles is neces-
sary. Hence, there is no need for sensor data fusion nor
planning, which can be computationally costly, and requires
precise calibration of the camera/scanner pair. We guaran-
tee that the robot will never collide in the case of static,
detectable obstacles (in the worse cases, it will simply stop).
We also prove that our control law is always well-defined,
and that it does not present any local minima. To the best
of the authors’ knowledge, this is the first time that obstacle
avoidance and visual navigation merged directly at the con-
trol level (without the need for sophisticated planning) are
validated in real outdoor urban experiments.

The framework that we present here is inspired from that
designed and validated in our previous work (Cherubini
and Chaumette, 2011). However, many modifications have
been applied, in order to adapt that controller to the real
world. First, for obstacle avoidance, we have replaced clas-
sical potential fields with a new tentacle-based technique
inspired by Bonnafous et al. (2001) and Von Hundelshausen
et al. (2008), which is perfectly suitable for appearance-
based tasks, such as visual navigation. In contrast with those
works, our approach does not require the robot pose, and
exploits the robot geometric and kinematic characteristics
(this aspect will be detailed later in the paper). A detailed
comparison between the potential field and the tentacle
techniques is given in Cherubini et al. (2012). In that work,
we showed that with tentacles, smoother control inputs are
generated, higher velocities can be applied, and only dan-
gerous obstacles are taken into account. In summary, the
new approach is more robust and efficient than its prede-
cessor. A second modification with respect to Cherubini
and Chaumette (2011) concerns the design of the transla-
tional velocity, which has been changed to improve visual
tracking and avoid undesired deceleration in the presence of
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Fig. 1. General definitions. Left: top view of the robot (rectangle),
equipped with an actuated camera (triangle); the robot and camera
frame (respectively, FR and FC ) are shown. Right: database of
the key images, with current and next key images emphasized;
the image frame FI is also shown, as well as the visual features
(circles) and their centroid (cross).

non-dangerous obstacles. Another important contribution
of the present work is that, in contrast with the tentacle-
based approaches designed in Von Hundelshausen et al.
(2008) and Bonnafous et al. (2001), our method does not
require the robot pose. Finally, the present article reports
experiments, which, for the first time in the field of visual
navigation with obstacle avoidance, have been carried out
in real-life, unpredictable urban environments.

The article is organized as follows. In Section 2, the
characteristics of our problem (visual path following with
simultaneous obstacle avoidance) are presented. The con-
trol law is presented in full detail in Section 3, and a short
discussion is carried out in Section 4. Simulated and real
experimental results are presented respectively in Sections
5 and 6, and summarized in the conclusion.

2. Problem definition

2.1. General definitions

The reader is referred to Figure 1. We define the robot
frameFR (R, X , Y ) (R is the robot centre of rotation), image
frame FI( O, x, y) (O is the image centre) and camera frame
FC (C, Xc, Yc, Zc) (C is the optical centre). The robot control
inputs are

u = (v, ω, ϕ̇) .

These are, respectively, the translational and angular veloc-
ities of the vehicle, and the camera pan angular velocity. We
use the normalized perspective camera model:

x = Xc

Zc
, y = Yc

Zc
.

We assume that the camera pan angle is bounded: |ϕ| ≤
π
2 , and that C belongs to the camera pan rotation axis, and
to the robot sagittal plane (i.e. the plane orthogonal to the
ground through X ). We also assume that the path can be
followed with continuous v (t) > 0. This ensures safety,
since only obstacles in front of the robot can be detected by
our range scanner.
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Fig. 2. Obstacle models with four occupied cells c1, . . . , c4. (a)
Occupancy grid, straight (b, c) and sharpest counterclockwise (d,
e) tentacles (dashed). When a total of three tentacles are used, the
straight and sharpest counterclockwise are characterized, respec-
tively, by index j = 2 and j = 3. For these two tentacles, we
have drawn: classification areas (collision Cj, dangerous central
Dj, dangerous external Ej), corresponding boxes and delimiting
arcs of circle, and cell risk and collision distances (�ij, δij). For
tentacle j = 3 in the bottom right, we have also drawn the tentacle
centre (cross) and the ray of cell c1, denoted by �13.

2.2. Visual path following

The path that the robot must follow is represented as a
database of ordered key images, such that successive pairs
contain some common static visual features (points). First,
the vehicle is manually driven along a taught path, with the
camera pointing forward (ϕ = 0), and all of the images
are saved. Afterwards, a subset (database) of N key images
I1, . . . , IN representing the path (Figure 1, right) is selected.
Then, during autonomous navigation, the current image,
denoted I , is compared with the next key image in the
database, Id ∈ {I1, . . . , IN }, and a relative pose estimation
between I and Id is used to check when the robot passes the
pose where Id was acquired.

For key image selection, as well as visual point detection
and tracking, we use the algorithm presented in Royer et al.
(2007). The output of this algorithm, which is used by our
controller, is the set of points visible both in I and Id . Then,
navigation consists of driving the robot forward, while I is
driven towards Id . We maximize similarity between I and
Id using only the abscissa x of the centroid of the points
matched on I and Id . When Id has been passed, the next
image in the set becomes the desired one, and so on, until
IN is reached.

2.3. Obstacle representation

Along with the visual path following problem, we consider
obstacles which are on the path, but not in the database,
and sensed by the range scanner in a plane parallel to the
ground. We use the occupancy grid in Figure 2(a): it is
linked to FR, with cell sides parallel to X and Y . Its lon-
gitudinal and lateral extensions are limited (Xm ≤ X ≤ XM

and Ym ≤ Y ≤ YM ), to ignore obstacles that are too far to
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jeopardize the robot. The size of the grid should increase
with the robot velocity, to guarantee the sufficient time for
obstacle avoidance. An appropriate choice for |Xm| is the
length of the robot, since obstacles behind cannot hit it
as it advances. In this work, we use XM = YM = 10 m,
Xm = −2m, Ym = −10m. Any grid cell c centred at (X , Y )

is considered occupied if an obstacle has been sensed in c.
The cells have size 0.2 × 0.2 m. For the cells entirely lying
in the scanner area, only the current scanner reading is con-
sidered. For all other cells in the grid, we use past readings,
which are progressively displaced using odometry.

We use, along with the set of all occupied grid cells

O = {c1, . . . , cn} ,

a set of drivable paths (tentacles). Each tentacle j is a semi-
circle that starts in R, is tangent to X , and is characterized
by its curvature (i.e. inverse radius) κj, which belongs to K,
a uniformly sampled set:

κj ∈ K = {−κM , . . . , 0, . . . , κM } .

The maximum desired curvature κM > 0, must be fea-
sible considering the robot kinematics. Since, as we will
show, our tentacles are used both for perception and motion
execution, a compromise between computational cost and
control accuracy must be reached to tune the size of K,
i.e. its sampling interval. Indeed, a large set is costly since,
as we show later, various collision variables must be cal-
culated on each tentacle. On the other hand, extending the
set enhances motion precision, since more alternative ten-
tacles can be selected for navigation. In the simulations and
experiments, we used 21 tentacles. In Figure 2(b)–(e), the
straight and the sharpest counterclockwise (κ = κM ) ten-
tacles are dashed. When a total of three tentacles are used,
these correspond respectively to j = 2 and j = 3.

Each tentacle j is characterized by three classification
areas (collision, dangerous central and dangerous external),
which are obtained by rigidly displacing, along the tenta-
cle, three rectangular boxes, with increasing size. The boxes
are all overestimated with respect to the real robot dimen-
sions. For each tentacle j, the sets of cells belonging to the
three classification areas (shown in Figure 2) are denoted
Cj, Dj and Ej. Cells belonging to the dangerous central set,
are not considered in the dangerous external set as well,
so that Dj ∩ Ej = ∅. The sets O, C, D and E are used to
calculate the variables required in the control law defined
in Section 3.1: in particular, the largest classification areas
D and E are used to select the safest tentacle and its risk,
while the thinnest one C determines the eventual necessary
deceleration.

In summary, as we mentioned in Section 1, our tentacles
exploit the robot geometric and kinematic characteristics.
Specifically, the robot geometry (i.e. the vehicle encum-
brance) defines the three classification areas C, D and E ,
hence the cell potential danger, while the robot kinematics
(i.e. the maximum desired curvature, κM ) define the bounds

on the set of tentacles K. Both aspects give useful infor-
mation on possible collisions with obstacles ahead of the
robot, which will be exploited, as we will show in Section
3, to choose the best tentacle and to eventually slow down
or stop the robot.

2.4. Task specifications

Let us recall the Jacobian paradigm which relates a robot
kinematic control inputs with the desired task. We name s ∈
R

m the task vector, and u ∈ R
m the control inputs. The task

dynamics are related to the control inputs by

ṡ = Ju, (1)

where J is the task Jacobian of size m × m. In this work,
m = 3, and the desired specifications are

1. orienting the camera in order to drive the abscissa of the
feature centroid x to its value at the next key image in
the database xd;

2. making the vehicle progress forward along the path
(except if obstacles are unavoidable);

3. avoiding collision with the obstacles, while remaining
near the 3D taught path.

The required task evolution can be written

ṡ∗ = ṡd − 	
(
s − sd

)
, (2)

with sd and ṡd indicating the desired values of the task, and
of its first derivative, and 	 = diag (λ1 . . . λm) a positive-
definite diagonal gain matrix.

Since we assume that the visual features are static, the
first specification on camera orientation can be expressed
by

ẋ∗ = −λx

(
x − xd

)
, (3)

with λx a positive scalar gain. This guarantees that the
abscissa of the centroid of the points converges exponen-
tially to its value at the next key image xd , with null velocity
there (ẋd = 0). The dynamics of this task can be related to
the robot control inputs by

ẋ = Jxu = [
jv jω jϕ̇

]
u, (4)

where jv, jω and jϕ̇ are the components of the cen-
troid abscissa Jacobian Jx related to each of the three
robot control inputs. Their form will be determined in
Section 3.2.

The two other specifications (vehicle progression with
collision avoidance) are related to the danger represented
by the obstacles present in the environment. If it is pos-
sible, the obstacles should be circumnavigated. Otherwise,
the vehicle should stop to avoid collision. To determine the
best behaviour, we assess the danger at time t with a sit-
uation risk function H : R

∗+ �→ [0, 1], that will be fully
defined in Section 3.3.
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• In the safe context (H = 0), no dangerous obstacles are
detected on the robot path. In this case, it is desirable
that the robot acts as in the teaching phase, i.e. follow-
ing the taught path with the camera looking forward. If
the current pan angle ϕ is non-null, which is typically
the case when the robot has just avoided an obstacle,
an exponential decrease of ϕ is specified. Moreover, the
translational velocity v must be reduced in the presence
of sharp turns, to ease the visual tracking of quickly
moving features in the image; we specify this using
a function vs that will be detailed in Section 3.4. In
summary, the specifications in the safe context are

⎧⎨
⎩

ẋ = −λx

(
x − xd

)
v = vs

ϕ̇ = −λϕϕ

, (5)

with λϕ a positive scalar gain. The corresponding cur-
rent and desired task dynamics are

ṡs =
⎡
⎣

ẋ
v
ϕ̇

⎤
⎦ , ṡ∗

s =
⎡
⎣

−λx

(
x − xd

)
vs

−λϕϕ

⎤
⎦ . (6)

Using (4) we can derive the Jacobian relating ṡs and u:

ṡs = Jsu =
⎡
⎣

jv jω jϕ̇
1 0 0
0 0 1

⎤
⎦ u. (7)

Note that matrix Js is invertible if jω 	= 0, and we show
in Section 3.2 that this condition is indeed ensured.

• In the unsafe context (H = 1), dangerous obstacles are
detected. The robot should circumnavigate them by fol-
lowing the best tentacle (selected by considering both
the visual and avoidance tasks as we show in Section
3.3). This heading variation drives the robot away from
the 3D taught path. Correspondingly, the camera pan
angle must be actuated to maintain visibility of the
database features, i.e. to guarantee (3). The translational
velocity must be reduced for safety reasons (i.e. to avoid
collisions); we specify this using a function vu, that is
defined in Section 3.5. In summary, the specifications
in the unsafe context are

⎧⎨
⎩

ẋ = −λx

(
x − xd

)
v = vu

ω = κbvu

, (8)

where κb is the best tentacle curvature, so that the trans-
lational and angular velocities guarantee that the robot
precisely follows it, since ω/v = κb. The current and
desired task dynamics corresponding to (8) are

ṡu =
⎡
⎣

ẋ
v
ω

⎤
⎦ , ṡ∗

u =
⎡
⎣

−λx

(
x − xd

)
vu

κbvu

⎤
⎦ . (9)

Using (4) we can derive the Jacobian relating ṡu and u:

ṡu = Juu =
⎡
⎣

jv jω jϕ̇
1 0 0
0 1 0

⎤
⎦ u. (10)

Matrix Ju is invertible if jϕ̇ 	= 0, and we show in Section
3.2 that this condition is also ensured.

• In intermediate contexts (0 < H < 1), the robot should
navigate between the taught path and the best tenta-
cle. The transition between these two extremes will be
driven by situation risk function H .

3. Control scheme

3.1. General scheme

An intuitive choice for controlling (1) in order to fulfill the
desired tasks su and ss would be

u = J−1ṡ∗ (11)

with
s = Hsu + (1 − H) ss

and therefore (considering Ḣ = 0):

J = HJu + (1 − H) Js =
⎡
⎣

jv jω jϕ̇
1 0 0
0 H 1 − H

⎤
⎦ .

In fact, away from singularities of J, controller (11) leads to
the linear system:

ṡ − ṡd = −	
(
s − sd

)

for which, as desired,
(
sd , ṡd

)
are exponentially stable equi-

libria, for any value of H ∈ [0, 1] (since 	 is a positive-
definite diagonal matrix). Note that replacing (2) in (11),
leads to the well-known controller for following trajectory
sd = sd (t), given by (Chaumette and Hutchinson, 2007)

u = −	J−1( s − sd) +J−1ṡd .

However, the choice of controller (11) is not appropriate
for our application, since J is singular whenever

Hjϕ̇ + (H − 1) jω = 0. (12)

This condition, which depends on visual variables (jϕ̇ and
jω) as well as on an obstacle variable (H), can occur in
practice.

Instead, we propose the following control law to guaran-
tee a smooth transition between the inputs:

u = HJ−1
u ṡ∗

u + (1 − H) J−1
s ṡ∗

s . (13)

Replacing this equation in (7) and (10), guarantees that con-
troller (13) leads to convergence to the desired tasks (5)
and (8):

ṡs = ṡ∗
s if H = 0

ṡu = ṡ∗
u if H = 1
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and that, in these cases, the desired states are glob-
ally asymptotically stable for the closed loop system. In
Section 4, we show that global asymptotic stability of the
visual task is also guaranteed in the intermediate cases
(0 < H < 1).

In the following, we define the variables introduced in
Section 2.4. We show how to derive the centroid abscissa
Jacobian Jx, the situation risk function H , the best tentacle
along with its curvature κb, and the translational velocities
in the safe and unsafe context (vs and vu, respectively).

3.2. Jacobian of the centroid abscissa

We will hereby derive the components of Jx introduced
in (4). Let us define v = (vc, ωc) the camera velocity,
expressed in FC . Since we have assumed that the features
are static, the dynamics of x can be related to v by

ẋ = Lxv

where Lx is the interaction matrix of x (Chaumette and
Hutchinson, 2006). In the case of a point of depth Zc, it
is given by (Chaumette and Hutchinson, 2006)

Lx =
[

− 1
Zc

0 x
Zc

xy −1 − x2 y
]

. (14)

In theory, since we consider the centroid and not a physi-
cal point, we should not use (14) for the interaction matrix,
but the exact and more complex form given in Tahri and
Chaumette (2005). However, using (14) provides a suffi-
ciently accurate approximation (Cherubini et al., 2009). It
also has the strong advantage that it is not necessary to esti-
mate the depth of all points, using techniques such as those
described by Davison et al. (2007), De Luca et al. (2008)
and Durand et al. (2010). Only an approximation of Zc,
i.e. one scalar, is sufficient. In practice, we set a constant
fixed value. This strategy has proved successful for visual
navigation in Cherubini et al. (2009).

For the robot model that we are considering, the camera
velocity v can be expressed as a function of u by using the
geometric model:

v =C TRu

with:

CTR =

⎡
⎢⎢⎢⎢⎢⎢⎣

sin ϕ −X C cos ϕ 0
0 0 0

cos ϕ X C sin ϕ 0
0 0 0
0 −1 −1
0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

In this matrix, X C is the abscissa of the optical centre C in
the robot frame FR. This parameter is specific of the robot
platform. Since C belongs to the robot sagittal plane, and
since the robot is constrained on the ground plane, this is
the only coordinate of C in FR required for visual servoing.

Then, multiplying Lx by CTR, we obtain the components
of Jx:

jv = − sin ϕ+x cos ϕ

Zc

jω = XC(cos ϕ+x sin ϕ)

Zc
+ 1 + x2

jϕ̇ = 1 + x2.

(15)

From (15) it is clear that jϕ̇ ≥ 1 ∀x ∈ R; hence, Ju is never
singular (see (10)). Furthermore, it is possible to ensure that
jω 	= 0, so that Js is also invertible (see (7)). In fact, in (15)

we can guarantee that jω 	= 0, by setting Zc > XC

2 in the Jx

components. Indeed, condition jω 	= 0 is equivalent to

X C (cos ϕ + x sin ϕ)

Zc
+ 1 + x2 	= 0. (16)

Since |ϕ| ≤ π
2 : cos ϕ + x sin ϕ ≥ −x, ∀x ∈ R. Hence, a

sufficient condition for (16) is

x2 − X C

Zc
x + 1 > 0,

which occurs ∀x ∈ R when X C/Zc < 2. In practice, this
condition can be guaranteed, since X C is an invariant char-
acteristic of the robot platform, and Zc is a tunable control
parameter, which can be set to a value greater than X C/2. In
addition, the value of X C on most robots platforms is usu-
ally smaller than 1 m, which is much less than the scene
depth in outdoor environments. In Cherubini et al. (2009),
we have shown that overestimating Zc does not jeopardize
navigation.

On the other hand, we can infer from (15) that the sin-
gularity of controller (11), expressed by (12) can occur fre-
quently. For example, whenever Zc is large, yielding jϕ̇ ≈
jω, and concurrently H ≈ 0.5, J becomes singular. This
confirms the great interest in choosing control scheme (13),

which is always well defined if Zc > XC

2 .

3.3. Situation risk function and best tentacle

To derive the situation risk function H used in (13), we first
calculate a candidate risk function Hj ∈ [0, 1] for each ten-
tacle, as will be explained below. Each Hj is derived from
the risk distance of all occupied cells in the dangerous areas.

This distance is denoted �ij ≥ 0 for each ci ∈ O ∩(Dj ∪ Ej

)
. For occupied cells in the central set Dj, �ij is

the distance that the middle boundary box would cover
along tentacle j before touching the cell centre. For occu-
pied cells in the external set, only a subset Ēj is taken into
account: Ēj ⊆ O ∩ Ej. This subset contains only cells which
reduce the clearance in the tentacle normal direction. For
each external occupied cell, we denote �ij the ray starting at
the tentacle centre and passing through ci. Cell ci is added
to Ēj if and only if, in Dj ∪ Ej, there is at least an occu-
pied cell crossed by �ij on the other side of the tentacle. In
the example of Figure 2(e), O ∩ E3 = {c1, c3, c4}, whereas
Ē3 = {c1, c3}. Cell c4 is not considered dangerous, since
it is external, and does not have a counterpart on the other
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side of the tentacle. Then, for cells in Ēj, �ij is the sum of
two terms: the distance from the centre of ci to its normal
projection on the perimeter of the dangerous central area,
and the distance that the middle boundary box would cover
along tentacle j before reaching the normal projection. The
derivation of �ij is illustrated, in Figure 2, for four occupied
cells. Note that for a given cell, �ij may have different val-
ues (or even be undefined) according to the tentacle that is
considered.

When all risk distances on tentacle j are calculated, we
compute �j as their minimum:

�j = inf
ci∈(O∩Dj)∪Ēj

�ij.

If
(O ∩ Dj

) ∪ Ēj ≡ ∅, �j = ∞. In the example of Figure
2, �2 = �12 and �3 = �33. Obviously, overestimating the
bounding box sizes leads to more conservative �j.

We then use �j and two hand-tuned thresholds �d and
�s (0 < �d < �s) to design the tentacle risk function:

Hj=

⎧⎪⎪⎨
⎪⎪⎩

0 if �j ≥�s

1
2

[
1 + tanh

(
1

�j−�d
+ 1

�j−�s

)]
if �d <�j <�s

1 if �j ≤�d .
(17)

Note that Hj smoothly varies from 0, when the dangerous
cells associated with tentacle j (if any) are far, to 1, when
they are near. If Hj = 0, the tentacle is tagged as clear.
In practice, threshold �s must be set to the risk distance
for which the context ceases to be safe (H becomes greater
than 0), so that the robot starts to leave the taught (occu-
pied) path. On the other hand, �d must be tuned as the risk
distance for which the context becomes unsafe (H = 1),
so that the robot follows the best tentacle to circumnavigate
the obstacle. In our work, we used the values �s = 6 m and
�d = 4.5 m. The risk function Hj corresponding to these
values is plotted in Figure 3.

The Hj of all tentacles are then compared, in order to
determine H in (13). Initially, we calculate the path curva-
ture κ = ω/v ∈ R that the robot would follow if there were
no obstacles. Replacing H = 0 in (13), it is

κ = [
λx

(
xd − x

) − jvvs + λϕ jϕ̇ϕ
]
/jωvs,

which is always well defined, since jω 	= 0 and we have set
vs > 0. We obviously constrain κ to the interval of feasible
curvatures [−κM , κM ]. Then, we derive the two neighbours
of κ among all of the existing tentacle curvatures:

κn, κnn ∈ K such that κ ∈ [κn, κnn) .

Let κn be the nearest, i.e. the curvature of the tentacle that
best approximates the safe path.2 We denote it as the visual
task tentacle. The situation risk function Hv of that tentacle
is then obtained by linear interpolation of its neighbours:

Hv = (Hnn − Hn) κ + Hnκnn − Hnnκn

κnn − κn
. (18)

1

Hj

j

5.02.5 7.5 10
�

Fig. 3. Risk Hj as a function of the tentacle risk distance �j (m)
when �s = 6 m and �d = 4.5 m.
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c1 
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c1 
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�

Fig. 4. Strategy for selecting the best tentacle among 5 in four
different scenarios. The cells associated to the visual task tentacle,
to the previous best tentacle, and to the best tentacle are shown
in increasingly dark grey; the corresponding tentacles are dashed,
and the occupied cells c1 and c2 are shown in black. (a) Since
it is clear, the visual task tentacle with curvature κn is selected:
κb = κn. (b) The clear tentacle with curvature in

[
κn, κpb

]
nearest

to κn is chosen. (c) Since all tentacles with curvature in
[
κn, κpb

]
are occupied, the clear one nearest to the visual task tentacle is
chosen. (d) Since all tentacles are occupied, we select the one with
smallest Hj, hence, largest risk distance �j (here, �1) given the
middle boundary box.

In practice, Hv measures the risk on the visual path, by con-
sidering only obstacles on the visual task tentacle and on its
neighbour tentacle. In particular, for the context to be safe
(i.e. in order to follow the taught path and realize the desired
safe task in (6)), it is sufficient that the neighbour tentacles
are clear (Hn = Hnn = 0). In this way, obstacles on the sides
do not deviate the robot away from the taught path.

Let us now detail our strategy for determining the best
tentacle curvature κb for navigation. This strategy is illus-
trated by the four examples in Figure 4, where 5 tentacles
are used. In the figure, the dangerous cells (i.e. for each
tentacle j, the cells in Dj ∪ Ej) associated with the visual
task tentacle and to the best tentacle are respectively shown
in light and dark grey. The occupied cells are shown in
black. The best tentacle is derived from the tentacle risk
functions defined just above. If Hv = 0 (as in Figure 4(a)),
the visual task tentacle can be followed: we set κb = κn,
and we apply (13) with H = 0. Instead, if Hv 	= 0, we
seek a clear tentacle (Hj = 0). First, to avoid abrupt control
changes, we only search among the tentacles between the
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visual task one and the best one at the previous iteration,3

denoted by κpb, and mid-grey in the figure. If many clear
ones are present, the nearest to the visual task tentacle is
chosen, as in Figure 4(b). If none of the tentacles with
curvature in

[
κn, κpb

]
is clear, we search among the oth-

ers. Again, the best tentacle will be the clear one that is
closest to κn and, in case of ambiguity, the one closest to
κnn. If a clear tentacle has been found (as in Figure 4(c)),
we select it and set H = 0. Instead, if no tentacle in K
is clear, the one with minimum Hj calculated using (17)
is chosen, and H is set equal to that Hj. In the example
of Figure 4(d), tentacle 1 is chosen and we set H = H1,
since �1 = sup{�1, . . . , �5}, hence H1 = inf{H1, . . . , H5}.
Eventual ambiguities are again solved first with the distance
from κn, then from κnn.

3.4. Translational velocity in the safe context

We define here the translational velocity in the safe
context vs. When the feature motion in the image is fast, the
visual tracker is less effective, and the translational velocity
should be reduced. This is typically the case at sharp robot
turns, and when the camera pan angle ϕ is strong (since the
robot is far from the taught 3D path). Hence, we define vs

as

vs (ω, ϕ) = vm + vM − vm

4
σ (19)

with function σ defined as

σ : R × [−π
2 , π

2

] → [0, 4]

(ω, ϕ) �→ [1+tanh (π−kω|ω|)] [
1+tanh

(
π−kϕ |ϕ|)] .

Function (19) has an upper bound vM > 0 (for ϕ = ω = 0),
and smoothly decreases to the lower bound vm > 0, as either
|ϕ| or |ω| grow. Both vM and vm are hand-tuned variables,
and the decreasing trend is determined by empirically tuned
positive parameters kω and kϕ . This definition of vs yields
better results, both in terms of performances and smooth-
ness than that in Cherubini and Chaumette (2011), which
was only characterized by the image x variation. On the left
of Figure 5, we have plotted vs for vm = 0.4 m s−1, vM = 1
m s−1, kω = 13 and kϕ = 3.

3.5. Translational velocity in the unsafe context

The unsafe translational velocity vu must adapt to the poten-
tial danger; it is derived from the obstacles on the best
tentacle, defined in Section 3.3. In fact, vu is derived from
the collision distance δb, which is a conservative approxi-
mation of the maximum distance that the robot can travel
along the best tentacle without colliding. Since the thinner
box contains the robot, if R follows the best tentacle, col-
lisions can only occur in occupied cells in Cb. In fact, the
collision with cell ci will occur at the distance, denoted by
δib ≥ 0, that the thinner box would cover along the best ten-
tacle, before touching the centre of ci. The derivation of δib

is illustrated in Figure 2 for four occupied cells.

Then, we define δb as the minimum among the collision
distances of all occupied cells in Cb:

δb = inf
ci∈O∩Cb

δib.

If all cells in Cb are free, δb = ∞. In the example of
Figure 2, assuming the best tentacle is the straight one
(b = 2), δb = δ12. Again, oversizing the box leads to more
conservative δb.

The translational velocity must be designed accordingly.
Let δd and δs be two hand-tuned thresholds such that 0 <

δd < δs. If the probable collision is far enough (δb ≥ δs),
the translational velocity can be maintained at the safe value
defined in (19). Instead, if the dangerous occupied cell is
near (δb ≤ δd), the robot should stop. To comply with the
boundary conditions vu (δd) = 0 and vu (δs) = vs, in the
intermediate situations we apply a constant deceleration:

a = v2
s/2(δd − δs) < 0.

Since the distance required for braking at velocity vu (δb) is

δb − δd = −v2
u/2a,

the general expression of the unsafe translational velocity
becomes

vu (δb) =
⎧⎨
⎩

vs if δb ≥ δs

vs
√

δb − δd/δs − δd if δd < δb < δs

0 if δb ≤ δd ,
(20)

in order to decelerate as the collision distance δb decreases.
In practice, threshold δd will be chosen as the distance to
collision at which the robot should stop. Instead, threshold
δs must be defined according to the maximum applicable
deceleration (denoted aM < 0), in order to brake before
reaching distance δd , even when the safe velocity vs is at its
maximum vM :

δs > δd − 2aM

v2
M

.

In our work, we used δd = 2.7 m and δs = 5 m, as shown in
the right-hand side of Figure 5, where we have plotted vu in
function of δb for three values of vs: 0.4, 0.7 and 1 m s−1.

4. Discussion

In this section, we instantiate and comment on our con-
trol scheme for visual navigation with obstacle avoidance.
Using all the variables defined above, we can explicitly
write our controller (13) for visual navigation with obstacle
avoidance:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v = (1 − H) vs + Hvu

ω = (1 − H)
λx

(
xd − x

) − jvvs + λϕ jϕ̇ϕ

jω
+ Hκbvu

ϕ̇ = H
λx

(
xd − x

) − (jv + jωκb) vu

jϕ̇
− (1 − H) λϕϕ.

(21)
This control law has the following interesting properties.
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Fig. 5. Left: safe translational velocity vs (m s−1) as a function of ω (rad s−1) and ϕ (rad). Right: unsafe translational velocity
vu (m s−1) as a function of δb (m) for three different values of vs.

1. In the safe context (H = 0), Equation (21) becomes
⎧⎪⎪⎨
⎪⎪⎩

v = vs

ω = λx

(
xd − x

) − jvvs + λϕ jϕ̇ϕ

jω
ϕ̇ = −λϕϕ.

(22)

In Section 3.1, we proved that this controller guaran-
tees global asymptotic stability of the safe task ṡ∗

s . As
in Cherubini et al. (2009) and Diosi et al. (2011), where
obstacles were not considered, the image error is con-
trolled only by ω, which also compensates the centroid
displacements due to v and to ϕ̇ through the image
Jacobian components (15), to fulfil the visual task (3).
The two remaining specifications in (5), instead, are
achieved by inputs v and ϕ̇: the translational velocity is
regulated to improve tracking according to (19), while
the camera is driven forward, to ϕ = 0. Note that, to
obtain H = 0 with the tentacle approach, it is sufficient
that the neighbour tentacles are clear (Hn = Hnn = 0),
whereas in the potential field approach used by Cheru-
bini and Chaumette (2011), even a single occupied cell
would generate H > 0. Thus, one advantage of the new
approach is that only obstacles on the visual path are
taken into account.

2. In the unsafe context (H = 1), Equation (21) becomes
⎧⎪⎪⎨
⎪⎪⎩

v = vu

ω = κbvu

ϕ̇ = λx

(
xd − x

) − (jv + jωκb) vu

jϕ̇
.

(23)

In Section 3.1, we proved that this controller guaran-
tees global asymptotic stability of the unsafe task ṡ∗

u. In
this case, the visual task (3) is executed by ϕ̇, while the
two other specifications are ensured by the two other
DOFs: the translational velocity is reduced (and even
zeroed to v = vu = 0 for very near obstacles such that
δb ≤ δd), while the angular velocity makes the robot
follow the best tentacle (ω/v = κb). Note that, since
no 3D positioning sensor (e.g. GPS) is used, closing the
loop on the best tentacle is not possible; however, even
if the robot slips (e.g. due to a flat tyre), at the follow-
ing iterations tentacles with stronger curvature will be

selected to drive it towards the desired path, and so on.
Finally, the camera velocity ϕ̇ in (23) compensates the
robot rotation, to keep the features in view.

3. In intermediate situations (0 < H < 1), the robot navi-
gates between the taught path, and the best path consid-
ering obstacles. The situation risk function H represent-
ing the danger on the taught path, drives the transition,
but not the speed. In fact, note that, for all H ∈ [0, 1],
when δb ≥ δs: v = vs. Hence, a high velocity can be
applied if the path is clear up to δs (e.g. when navigating
behind another vehicle).

4. Control law (21) guarantees that obstacle avoidance has
no effect on the visual task, which can be achieved for
any H ∈ [0, 1]. Note that plugging the expressions of v,
ω and ϕ̇ from (21) into the visual task equation:

ẋ = jvv + jωω + jϕ̇ ϕ̇ (24)

yields (3). Therefore, the desired state xd is globally
asymptotically stable for the closed-loop system, ∀H ∈
[0, 1]. This is true even in the special case where v = 0.
In fact, the robot stops and v becomes null, if and only
if H = 1 and vu = 0, implying that ω = 0 and

ϕ̇ = λx

(
xd−x

)

jϕ̇
, which allows realization of the visual

task. In summary, from a theoretical control viewpoint
(i.e. without considering image processing nor field of
view or joint limits constraints), this proves that if at
least one point in Id is visible, the visual task of driving
the centroid abscissa to xd will be achieved, even in the
presence of unavoidable obstacles. This strategy is very
useful for recovery: since the camera stays focused on
the visual features, as soon as the path returns free, the
robot can follow it again.

5. Controller (21) does not present local minima, i.e. non-
desired state configurations for which u is null. In fact,
when H < 1, u = 0 requires both vu and vs to be null,
but this is impossible since from (19)), vs > vm > 0.
Instead, when H = 1, it is clear from (23) that for u to
be null it is sufficient that xd − x = 0 and vu = 0. This
corresponds to null desired dynamics: ṡ∗

u = 0 (see (9)).
This task is satisfied, since plugging u = 0 into (10),
yields precisely ṡu = 0 = ṡ∗

u.
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A B  C D E F 

Fig. 6. Six obstacle scenarios for replaying two taught paths (black) with the robot (rectangle): a straight segment (scenarios A to C),
and a closed-loop followed in the clockwise sense (D to F). Visual features are represented by the spheres, the occupancy grid by the
rectangular area, and the replayed paths are drawn in grey.

6. If we tune the depth Zc to infinity in (15), jv = 0, and
jϕ̇ = jω = 1 + x2. Thus, control law (21) becomes

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v = (1 − H) vs + Hvu

ω = (1 − H) λx
xd − x

jω
+ (1 − H) λϕϕ + Hκbvu

ϕ̇ = Hλx
xd − x

jω
− (1 − H) λϕϕ + Hκbvu.

Note that, for small image error (x ≈ xd), ϕ̇ ≈ −ω.
In practice, the robot rotation is compensated for by the
camera pan rotation, which is an expected behaviour.

5. Simulations

In this section and in the following, we provide details of
the simulated and real experiments that were used to vali-
date our approach. Simulations are in the video shown in
Extension 1.

For simulations, we made use of Webots,4 where we
designed a car-like robot equipped with an actuated 320 ×
240 pixels 70◦ field of view camera, and with a 110◦ scan-
ner of range 15 m. Both sensors operate at 30 Hz. The visual
features, represented by spheres, are distributed randomly
in the environment, with depths with respect to the robot
varying from 0.1 to 100 m. The offset between R and C is
X C = 0.7 m, and we set Zc = 15 m that meets the con-
dition Zc > X C/2. We use 21 tentacles, with κM = 0.35
m−1 (the robot maximum applicable curvature). For the sit-
uation risk function, we use �s = 6 m and �d = 4.5 m.
These parameters correspond to the design of H shown in
Figure 3. The safe translational velocity is designed with
vm = 0.4 m s−1, vM = 1 m s−1, κω = 13 and κϕ = 3, as in
the graph on the left-hand side of Figure 5. For the unsafe
translational velocity, we use δs = 5 m and δd = 2.7 m as on
the right-hand side of Figure 5 (top curve). The simulations
were helpful for tuning the control gains, in all experiments,
to λx = 1 and λϕ = 0.5.

At first, no obstacle is present in the environment, and
the robot is driven along a taught path. Then, up to five
obstacles are located, near and on the taught path, and the
robot must replay the visual path, while avoiding them. In
addition, the obstacles may partially occlude the features.

Although the sensors are noise-free, and feature matching is
ideal, these simulations allow validation of controller (21).

By displacing the obstacles, we have designed the six
scenarios shown in Figure 6. For scenarios A, B and C,
the robot has been previously driven along a 30 m straight
path, and N = 8 key images have been acquired, whereas
in scenarios D, E and F, the taught path is a closed loop of
length 75 m and N = 20 key images, which is followed
in the clockwise sense. In all scenarios, the robot is able to
navigate without colliding, and this is done with the same
parameters. The metrics used to assess the experiments are
the image error with respect to the visual database x−xd (in
pixels), averaged over the whole experiment and denoted ē,
and the distance, at the end of the experiment, from the final
3D key pose (ε, in centimetres). The first metric ē is use-
ful to assess the controller accuracy in realizing the visual
path following task. The latter metric is less relevant, since
task (3) is defined in the image space, and not in the pose
space.

In all six scenarios, path following has been achieved,
and in some cases, navigation was completed using only
three image points. Obviously, this is possible in simula-
tions, since feature detection is ideal: in the real case, which
includes noise, three points may be insufficient. Some por-
tions of the replayed paths, corresponding to the obstacle
locations, are far from the taught ones. However, these devi-
ations would have been indispensable to avoid collisions,
even with a pose-based control scheme. Let us detail the
robot behaviour in the six scenarios:

• Scenario A: two walls, which were not present dur-
ing teaching, are parallel to the path, and three boxes
are placed in between. The first box is detected, and
overtaken on the left. Then, the vehicle passes between
the second box and the left wall, and then overtakes
the third box on the right. Finally, the robot con-
verges back to the path, and completes it. Although the
walls occlude features on the sides, the experiment is
successful, with ē = 5, and ε = 23.

• Scenario B: it is similar to scenario A, except that there
are no boxes, and that the left wall is shifted towards
the right one, making the passage narrower towards the
end. This makes the robot deviate in order to pass in the
centre of the passage. We obtain ē = 6, ε = 18.
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Fig. 7. Scenario A. For each of the five relevant iterations we show (top to bottom) the robot overtaking the first obstacle, the next key
image, the current image and the occupancy grid.

• Scenario C: this scenario is designed to test the con-
troller in the presence of unavoidable obstacles. Two
walls forming a corner, are located on the path. This
soon makes all tentacles unsafe: �j ≤ �d| ∀j, yielding
H = 1. In addition, as the robot approaches the wall,
the collision distance on the best tentacle δb decreases,
and eventually becomes smaller than δd , to make vu = 0
and stop the robot (see (23)). Although the path is not
completed (making metric ε irrelevant), the collision is
avoided, and ē = 4 pixels. As proved in Section 4, con-
vergence of the visual task (x = xd) is achieved, in spite
of u = 0. In particular, here, the centroid abscissa on
the third key image in the database is reached.

• Scenario D: high walls are present on both sides of the
path; this leads to important occlusions (less than 50%
of the database features are visible), and to a consequent
drift from the taught path. Nevertheless, the final key
image is reached, without collisions, and with ē = 34
and ε = 142. Although this metric is higher than in the
previous scenarios (since the path is longer and there are
numerous occlusions), it is still reasonably low.

• Scenario E: two obstacles are located on the path, and
two others are near the path. The first obstacle is over-
taken on the left, before avoiding the second one, also
on the left. Then, the robot converges to the path and
avoids the third obstacle on the right, before reaching
the final key image. We obtain ē = 33 and ε = 74. The
experiment shows one of the advantages of our tentacle-
based approach: lateral data in the grid is ignored (con-
sidering the fourth obstacle, would have made the robot
curve away from the path).

• Scenario F: here, the controller is assessed in a situa-
tion where classical obstacle avoidance strategies (e.g.
potential fields) often fail because of local minima.
In fact, when detected, the first obstacle is centred on
the X axis and orthogonal to it. This may induce an
ambiguity, since occupancies are symmetric with
respect to X . However, the visual features distribution,
and consequent visual task tentacle κn drive the robot
to the right of the obstacle, which is thus avoided.
We have repeated this experiment with 10 randomly
generated visual feature distributions, and in all cases
the robot avoided the obstacle. The scenario involves
four more obstacles, two of which are circumnavi-
gated externally, and two on the inside. Here, ē = 29
and ε = 75.

In Figure 7, we show five stages of scenario A. In this
figure, as well as later in Figures 12 and 14, the segments
linking the current and next key image points are drawn
in the current image. In the occupancy grid, the danger-
ous cell sets associated with the visual task tentacle and to
the best tentacle (when different) are respectively shown in
grey and black, and two black segments indicate the scan-
ner amplitude. Only cells that can activate H (i.e. cells at
distance � < �s) have been drawn. At the beginning of the
experiment (iteration 10), the visual features are driving the
robot towards the first obstacle. When it is near enough, the
obstacle triggers H (iteration 200), forcing the robot away
from the path towards the best tentacle, while the camera
rotates clockwise to maintain feature visibility (iterations
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200, 290 and 405). Finally (iteration 630), the controller
drives the robot back to the path, and the camera to the
forward-looking direction.

Further details can be obtained by studying some rele-
vant variables. We focus on scenario E, for which we have
plotted in Figure 8 the values of H , v, ω, ϕ̇ and ϕ dur-
ing navigation. The curve of H shows when the obstacles,
respectively the first (at iterations 0–1,000), second (1,100–
1,700) and third (3,200–3,700), have intervened in control
law (21). As mentioned previously, the fourth obstacle does
not trigger H , since it is too far to the side to jeopardize
the robot. Let us now discuss the trend of the five curves.
Since the beginning, the first obstacle is detected: the ten-
tacle selection induces a negative rotation on the robot (ω
curve), a positive one on the camera (ϕ̇), and a reduction
of v. The strategy proves efficient, since the robot overtakes
the obstacle. Soon afterwards, the second obstacle triggers
H , and provokes a deceleration on v. Concurrently, the cam-
era pan angle ϕ becomes positive to track the visual features
which are mostly on the left of the robot (just like the taught
path, as shown in Figure 6). When the second obstacle is
bypassed, the camera pan is reset to zero. The reduction
of v at iteration 2,800 is due only to the sharp turn (i.e.
to the reduction of vs), since the path is safe at this point.
Then, the third obstacle triggers H , and is easily circum-
navigated. From iteration 3,700 onwards, the situation risk
function is cancelled. Correspondingly, the variables are
driven by (22). Note also that the camera angle ϕ is reset to
0 in less than 200 iterations, and remains null until the end
of the experiment. The small spikes in the angular velocity
ω, which appear throughout the experiment, correspond to
the changes of database key images (except when they are
provoked by the obstacles, as discussed above).

The six simulations have been repeated by setting the fea-
ture depth Zc to infinity. For all six scenarios, the image
accuracy, assessed with ē, is very near to that obtained when
Zc = 15 m. On the other hand, the pose accuracy, assessed
with ε, is lower when Zc = ∞, as shown in Table 1.
The difference is relevant on long paths (scenarios D, E

Table 1. Final 3D error ε (in centimetres) when Zc = 15 m and
Zc = ∞ (for scenario C, since the path is not completed, ε is
irrelevant).

Scenario A B D E F

Zc = 15 m 23 18 142 74 75
Zc = ∞ 26 19 151 80 82

and F). Although the navigation task is defined in the image
space, these experiments show that tuning Zc, even coarsely,
according to the environment, can contribute to the con-
troller performance in the 3D space. This aspect had already
emerged in part in our previous work (Cherubini et al.,
2009).

6. Real experiments

After the simulations, the framework has been ported on
our CyCab vehicle, set in car-like mode (i.e. using the front
wheels for steering), for real outdoor experimental vali-
dation. The robot is equipped with a coarsely calibrated
320 × 240 pixels 70◦ field of view, B&W Marlin (F-131B)
camera mounted on a TRACLabs Biclops Pan/Tilt head (the
tilt angle is null, to keep the optical axis parallel to the
ground), and with a two-layer, 110◦ scanning angle, laser
SICK LD-MRS. A dedicated encoder on the TRACLabs
head precisely measures the pan angle ϕ required in our
control law (see (21)). The grid is built by projecting the
laser readings from the two layers on the ground. Exactly
the same configuration (i.e. the same parameters, gains and
grid size) tuned in Webots is used on the real robot. The
centroid depth value that we used in simulations (Zc = 15
m) proved effective in all real experiments as well, although
the scenarios were very variegate. This confirms, as shown
in Cherubini et al. (2009), that a very coarse approximation
of the scene depth is sufficient to effectively tune Zc. The
velocity (vM = 1, as in Webots) has been reduced due to
the image processing rate (10 Hz), to limit the motion of
features between successive images; the maximum speed
attainable by the CyCab is 1.3 m s−1 anyway. Since cam-
era (10 Hz) and laser (12.5 Hz) processing are not syn-
chronized, they are implemented on two different threads,
and the control input u derived from control law (21) is
sent to the robot as soon as the visual information is
available (10 Hz).

It is noteworthy to point out that the number of tentacles
that must be processed, and correspondingly the computa-
tional cost of the laser processing thread, increase with the
context danger. For clarity, let us discuss two extreme cases:
a safe and an occupied contexts. To verify that a context
is safe (i.e. that Hv = 0 in (17)), all of the cells in the
dangerous areas D ∪ E of only the two neighbour tenta-
cles must be explored. Instead, in a scenario where the grid
is very occupied, all of the tentacles in K may need to be
explored. In general, this second case will be more costly
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Fig. 9. Scenario A (a long obstacle is avoided): taught (white) and
replayed (black) paths.

than the first. However, in practice, since only the mini-
mum risk and collision distances (�j and δb) are required
by our controller, exploration of a tentacle stops as soon
as the nearest cell is found occupied, so that the tentacles
are rarely entirely explored. The experiments showed that
the computational cost of laser processing, using the chosen
number of tentacles (i.e. 21, as mentioned in Section 2.3),
was never a critical issue with respect to that of image
processing.

First, we have assessed the performance of our control
scheme when a very long obstacle is positioned perpendic-
ularly on the taught path (denoted as path A, and shown in
Figure 9). In Figure 10, we have plotted the control inputs
u, and the situation risk function H . The smooth trend of
u at the beginning and end of the experiments is due to
the acceleration saturation carried out at the CyCab low-
level control. The obstacle is overtaken on the left, while
the camera rotates right to maintain scene visibility (dotted
black and dotted grey curves in Figure 10). The robot is able
to successfully reach the final key image and complete nav-
igation, although it is driven over 5 m away from the taught
3D path by the obstacle. In practice, soon after the obstacle
is detected (i.e. after 5 s), tentacles with first positive (5–
16 s), and then negative (16–25 s) curvature are selected.
Since these tentacles are clear, v is reduced only for visual
tracking, by (19) (solid black curve in Figure 10). This is a
major feature of the tentacle method, which considers only
the actual collision risk of obstacles for reducing the trans-
lational velocity. After 25 s, the environment returns clear
(H = 0), so the visual tentacle can be followed again, and
the robot is driven back to the path. Then (38–52 s) a small
bush on the left triggers H and causes a small counterclock-
wise rotation along with a slight decrease in v. Then the
context returns safe, and the visual path can be followed

Fig. 11. Map of the four navigation paths B, C, D, E.

for the rest of the experiment. The translational velocity
averaged over the experiment is 0.79 m s−1, which is more
than twice the speed reached in Cherubini and Chaumette
(2011).

After these results, we have run a series of experiments,
on longer and more crowded paths (denoted B to E in
Figure 11) on our campus. All campus experiments here
are also visible in the video shown in Extension 2. The
Cycab was able to complete all paths (including 650 m long
path E), while dealing with various natural and unpre-
dictable obstacles, such as parked and driving cars and
pedestrians. The translational velocity averaged over these
experiment was 0.85 m s−1.

Again, by assessing the collision risk only along the
visual path, non-dangerous obstacles (e.g. walls or cars
parked on the sides) are not taken into account. This aspect
is clear from Figure 12(left), where a stage of the naviga-
tion experiment on path E is illustrated. From top to bottom,
we show the next key image in the database Id , the current
image I and three consecutive occupancy grids processed
at that point of the experiment. As the snapshots illustrate,
the cars parked on the right (which were not present during
teaching) do not belong to any of the visual task tentacle
classification areas. Hence, they are considered irrelevant,
and do not deviate the robot from the path.

Another nice behaviour is shown in Figure 12(centre): if
a stationary car is unavoidable, the robot decelerates and
stops with (20), but, as soon as the car departs, the robot
gradually accelerates (again with (20)), to resume naviga-
tion. In fact, as we mentioned in Section 4, when the best
tentacle is clear up to distance δs, a high velocity can be
applied: v = vs, independently of the value of H . In the
future, this feature of our approach could even be utilized
for vehicle following.



202 The International Journal of Robotics Research 32(2)

Fig. 12. Validation with: irrelevant obstacles (left), traffic (centre) and a moving pedestrian (right). The visual task tentacle and best
tentacle (when different) are respectively indicated as VTT and BT in the occupancy grids.

An experiment with a crossing pedestrian is presented
in Figure 12(right). The pedestrian is considered irrele-
vant, until it enters the visual task tentacle (second image).
Then, the clockwise tentacles are selected to pass between
the person and the right sidewalk. When the path is clear
again, the robot returns to the visual task tentacle, which is
first counterclockwise (fourth image) and then straight (fifth
image).

In October 2011, as part of the final demonstration of the
French ANR project CityVIP, we have validated our frame-
work in a urban context, in the city of Clermont Ferrand.
The experiments have taken place in the crowded neigh-
bourhood of the central square Place de Jaude, shown in
Figure 13. For four entire days, our Cycab has navigated
autonomously, continuously replaying a set of visual paths
of up to 700 m each, amidst a variety of unpredictable obsta-
cles, such as cars, pedestrians, bicycles and scooters. In
Figure 14, we show some significant snapshots of the exper-
iments that were carried out in Clermont Ferrand. These
include photos of the Cycab, as well as images acquired
by the on-board camera during autonomous navigation.
These experiments are also visible in the video shown in
Extension 3.

Fig. 13. City centre of Clermont Ferrand, with one of the nav-
igation paths where the urban experiments have been carried
out.

In Figure 14(a)–(c), Cycab is moving in a busy street,
crowded with pedestrians and vehicles. First, in Figure
14(a), we show a typical behaviour adopted for avoiding
a crossing pedestrian: here, Cycab brakes as a lady with
black skirt crosses the street. The robot would either stop
or circumnavigate the person, and in 4 days no one has
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Fig. 14. Snapshots of the urban experiments. (a) Avoiding a crossing pedestrian. (b)–(c) Navigating close to moving cars and to a
scooter, respectively. (d)–(e) Avoiding a stationing police patrol and a stationing vehicle, respectively. (f) Navigating with different light
conditions, using the same taught database. (g) Avoiding a pedestrian with a baby pushchair.

ever even closely been endangered nor touched by the vehi-
cle. In many experiments, Cycab has navigated among fast
moving vehicles (cars in Figure 14(b), and a scooter in
Figure 14(c)), and manual security intervention was
never necessary. The robot has also successfully avoided
many fixed obstacles, including a stationing police patrol
(Figure 14(d)) and another electric vehicle (Figure 14(e)).
Obviously, when all visual features are occluded by an
obstacle or lost, the robot stops.

Moreover, we have thoroughly tested the behaviour of our
system with respect to varying light, which is an impor-
tant aspect in outdoor appearance-based navigation. Vary-
ing light has been very common in the extensive Clermont
Ferrand experiments, which would last the whole day, from
the first light to sunset, both with cloudy and clear sky.
In some experiments, we could control the robot in differ-
ent lighting conditions, using the same taught database. For
instance, Figure 14(f) shows two images acquired approx-
imately at the same position at 5 p.m. (top) and 11 a.m.
(bottom), while navigating with the same key images. How-
ever, in spite of the robustness of the image processing
algorithms, which has been proved by Royer et al. (2007), in
some cases (e.g. when the camera was overexposed to sun-
light), the visual features required for navigation could not
be detected. Future work in adapting the camera automatic
shutter settings should solve this issue.

In the current version of our framework, moving
obstacles are not specifically recognized and modelled.
Although, as the experiments show, we are capable of avoid-
ing slowly moving obstacles (e.g. crossing pedestrians or
baby pushchairs as in Figure 14(g)), the main objective of
our future work will be to directly tackle this problem within
the control law, in order to avoid fast obstacles as well. This
can be done, for example, by estimating the velocity of the
detected objects, and then using it to predict their future
position. In our opinion, the main difficulty, in comparison
with the case of static obstacles, will concern the accuracy
and computation cost of this estimation process.

Overall, Cycab has navigated using an average of approx-
imately 60 visual points on each image, and some paths
have even been completed using less than 30 points. Along
with all of the cited technical aspects, the experiments
highlighted the reactions of non-robotic persons to the
use of autonomous ground vehicles in everyday life. Most
passersby had not been informed of the experiments, and
responded with curiosity, surprise, enthusiasm and, rarely,
slight apprehension.

7. Conclusions

A framework with simultaneous obstacle avoidance and
outdoor vision-based navigation, without any 3D model
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or path planning has been presented. It merges a novel,
reactive, tentacle-based technique with visual servoing, to
guarantee path following, obstacle bypassing, and colli-
sion avoidance by deceleration. Since our method is purely
sensor-based and pose-independent, it is perfectly suited for
visual navigation. Extensive outdoor experiments, even in
urban environments, show that it can be applied in realistic
and challenging situations including moving obstacles (e.g.
cars and pedestrians). To the best of the authors’ knowledge,
this is the first time that outdoor visual navigation with
obstacle avoidance has been carried out in urban environ-
ments at approximately 1 m s−1 on over 500 m, using nei-
ther GPS nor maps. In the near future, we plan to explicitly
take into account the velocity of moving obstacles within
our controller, in order to avoid fast obstacles, which are
currently hard to deal with. Perspective work also includes
automatic prevention of the visual occlusions provoked by
the obstacles.

Notes

1. See http://www.irisa.fr/lagadic/demo/demo-cycab-vis-naviga
tion/vis-navigation.

2. Without loss of generality, we consider that intervals are
defined even when the first endpoint is greater than the second,
e.g. [κn, κnn) should be read (κnn, κn] if κn > κnn.

3. At the first iteration, we set κpb = κn.
4. See http://www.cyberbotics.com.
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Appendix: Index to Multimedia Extensions

The multimedia extension page is found at
http://www.ijrr.org

Table of Multimedia Extensions

Extension Type Description

1 Video Simulations of our navigation scheme
in six different scenarios. In this and
the following two videos, the segments
linking the current and next key image
points are drawn in light green in the
current image. In the occupancy grid,
the dangerous cell sets associated with
the visual task tentacle and to the best
tentacle (when different) are respec-
tively shown in red and blue, and two
black segments indicate the scanner
amplitude. Only cells that can activate
H (i.e. cells at distance � < �s) have
been drawn.

2 Video Experiments on our campus.
3 Video Extensive validation in the city centre

of Clermont Ferrand.
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Autonomous Visual Navigation and
Laser-based Moving Obstacle Avoidance

Andrea Cherubini, Member, IEEE, Fabien Spindler, and François Chaumette, Fellow, IEEE

Abstract—Moving obstacle avoidance is a fundamental re-
quirement for any robot operating in real environments, where
pedestrians, bicycles and cars are present. In this paper, we
propose and validate a framework for avoiding moving obstacles
during visual navigation with a wheeled mobile robot. Visual
navigation consists of following a path, represented as an ordered
set of key images, which have been acquired by an on-board
camera in a teaching phase. While following such path, our robot
is able to avoid static as well as moving obstacles, which were
not present during teaching, and which are sensed by an on-
board lidar. The proposed approach takes explicitly into account
obstacle velocities, estimated using an appropriate Kalman-based
observer. The velocities are then used to predict the obstacle
positions within a tentacle-based approach. Finally, our approach
is validated in a series of real outdoor experiments, showing that
when the obstacle velocities are considered, the robot behaviour
is safer, smoother, and faster than when it is not.

Index Terms—Visual Servoing, Visual Navigation, Collision
Avoidance.

I. INTRODUCTION
One of the main objectives of recent robotics research is the

development of vehicles capable of autonomously navigating
in unknown environments [3], [4], [5]. The success of the
DARPA Urban Challenges [6] has heightened expectations that
autonomous cars will soon be able to operate in environments
of realistic complexity. In this field, information from visual
sensors is often used for localization [7], [8] or for navigation
purposes [9], [10], [11].

Nevertheless, a critical issue for successful navigation re-
mains motion safety, especially when the robot size and
dynamics make it potentially harmful. Hence, an important
task is obstacle avoidance, which consists of either generating
a collision-free trajectory to the goal, or of decelerating
to prevent collision whenever bypassing is impossible [12].
Obstacle avoidance has traditionally been handled by two tech-
niques [13]: the deliberative approach [14], usually consisting
of a motion planner, and the reactive approach [15], based on
the instantaneous sensed information.

The task that we focus on is outdoor visual navigation: a
wheeled vehicle, equipped with an actuated pinhole camera
and with a forward-looking lidar, must follow a path repre-
sented by key images, without colliding. In the past, obstacle
avoidance has been integrated in visual navigation [16], [17]
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and path following [18], [19], by using the path geometry
or the environment 3D model (including, for example, walls
and doors). However, since our task is defined in the image
space, we seek a reactive (i.e., merely sensor-based) solution,
which does not need a global model of the environment
and trajectory. Moreover, the proposed solution copes with
moving obstacles, which are common in dynamic, real-world
environments.

Reactive strategies include: the vector field histogram [20],
obstacle-restriction method [21], and closest gap [22]. In our
previous work [2], we presented a novel sensor-based method
guaranteeing that obstacle avoidance had no effect on visual
navigation. However, in that work, we did not consider moving
obstacles. In the literature, researchers have taken into account
the obstacle velocities to deal with this issue. We hereby survey
the main papers dedicated to moving obstacle avoidance.

The approach presented in [23] is one of the first where
static and moving obstacles are avoided, based on their current
positions and velocities relative to the robot. The maneuvers
are generated by selecting robot velocities outside of the
velocity obstacles, that would provoke a collision at some
future time. Planning in the velocity space makes it possible to
consider the robot dynamics. This paradigm has been adapted
in [24] to the car-like robot kinematic model, and extended
in [25] to take into account unpredictably moving obstacles.
This has been done by using reachability sets to find matching
constraints in the velocity space, called Velocity Obstacle Sets.

Another pioneer method that has inspired many others is
the Dynamic Window [26], that is derived directly from the
dynamics of the robot, and is especially designed to deal with
constrained velocities and accelerations. The method consists
of two steps: first, a valid subset of the control space is
generated, and then an optimal solution (driving the robot
with maximum obstacle clearance) is sought within it. A
generalization of the dynamic map that accounts for moving
obstacle velocities and shapes is presented in [27], where a
union of polygonal zones corresponding to the non admissible
velocities controls the robot, and prevents collisions. In [28],
the Dynamic Window has been integrated in a graph search
algorithm for path planning, to drive the robot trajectories
within a global path. A planning approach is also used in [29],
where the likelihood of obstacle positions is input to a Rapidly-
exploring Random Tree algorithm.

In [30], motion safety is characterized by three criteria,
respectively related to the model of the robotic system, to the
model of the environment and to the decision making process.
The author proves that motion safety cannot be guaranteed in
the presence of moving objects (i.e., the robot may inevitably
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Fig. 1. (a) Current and next key images, and key image database. (b) Top view of the robot, with actuated camera and control inputs v, ω and ϕ̇. A static
(right) and moving (left) object are observed (black); we show the object velocity
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(c, d) Tentacles (dashed black), with classification areas, corresponding boxes and delimiting arcs of circle, and cells ci ∈ Dj displayed in grey, increasingly
light with increasing tij .

collide at some time in the future). More recently [31], the
same researchers have defined the Braking Inevitable Collision
States (BICS) as states such that, whatever the future braking
trajectory, a collision will occur. In that paper, the BICS are
used to achieve passive motion safety.

Although all these approaches have proved effective, none
of them deals with moving obstacle avoidance during visual
navigation. In [2], we presented a framework that guarantees
that obstacle avoidance has no effect on the visual task. In
the present paper, we further improve that framework, by
designing a reactive approach that can deal with moving
obstacles as well. Our approach is based on tentacles [32], i.e.
candidate trajectories (arcs of circles) that are evaluated during
navigation, both for assessing the context, and for designing
the task in case of danger. The main contribution of this paper
is the improvement of that framework, to take into account the
obstacle velocities. First, we have designed a Kalman-based
observer for estimating the obstacle velocities. Then, we have
adapted the tentacles designed in [2], to effectively take into
account these velocities. Finally, we experimentally validate
our approach in a series of experiments.

The article is organized as follows. In Section II, all the
relevant variables are defined. In Section III and IV, we explain
respectively how the obstacle velocities are estimated, and
how they are used to predict possible collisions. Then, in
Section V, the control law from [2] is recalled, and adapted to
deal with moving obstacles. Experimental results are reported
in Section VI, and summarized in Section VII.

II. PROBLEM DEFINITION

This section is, in part, taken from [2]. Referring to Fig. 1(a,
b), we define the robot frame FR (R,X, Y ) (R is the robot
center of rotation) and image frame FI(O, x, y) (O is the
image center). The robot control inputs are:

u = [v, ω, ϕ̇]
>
.

These are the translational and angular velocities of the
vehicle, and the camera pan angular velocity. We use the
normalized perspective camera model, and we assume that the
sequence of images that defines the path can be tracked with
continuous v (t) > 0. This ensures safety, since only obstacles
in front of the robot can be detected by our lidar.

The path that the robot must follow is represented as a
database of ordered key images, such that successive pairs

contain some common static visual features (points). First,
the vehicle is manually driven along a taught path, with
the camera pointing forward (ϕ = 0), and all the images
are saved. Afterwards, a subset (database) of N key images
I1, . . . , IN representing the path (Fig. 1(a)) is selected. Then,
during autonomous navigation, the current image, noted I , is
compared with the next key image I∗ ∈ {I1, . . . , IN}, and a
relative pose estimation between I and I∗ is used to check
when the robot passes the pose where I∗ was acquired. For
key image selection, and visual point detection and tracking,
we use the algorithm proposed in [33]. The output of this
algorithm, which is used by our controller, is the set of points
visible both in I and I∗. Then, navigation consists of driving
the robot forward, while I is driven to I∗. We maximize
similarity between I and I∗ using only the abscissa x of the
centroid of points matched on I and I∗ to control the robot
heading. If no points can be matched between I and I∗, the
robot stops. This can typically occur in the presence of an
occluding obstacle; however, navigation is resumed as soon as
the obstacle moves and the features are again visible. When
I∗ has been passed, the next image in the set becomes the
desired one, and so on, until IN is reached.

Along with the visual path following problem, we consider
obstacles which are on the path, but not in the database,
and sensed by the lidar in a plane parallel to the ground.
For obstacle modeling, we use the occupancy grid presented
in Fig. 1(b): it is linked to FR, with cell sides parallel to
X and Y . Its extension is limited (Xm ≤ X ≤ XM and
Ym ≤ Y ≤ YM ), to ignore obstacles that are too far to
jeopardize the robot. An appropriate choice for |Xm| is the
length of the robot, since obstacles behind cannot hit it as it
advances. Any grid cell c = [X,Y ]

> is considered currently
occupied (black in Fig. 1(b)) if an obstacle has been sensed
there. For cells lying in the lidar area, only the current lidar
reading is considered. For the other cells, we use past readings,
displaced with odometry. The set of occupied cells with
their estimated velocities, denoted by O, is used, along with
the robot geometric and kinematic characteristics, to derive
possible future collisions. This approach is different from the
one in [2], where only the currently occupied cells in the
grid were considered. To estimate the obstacle velocities, and
therefore update O, we have designed an obstacle observer,
detailed just below.
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III. OBSTACLE OBSERVER

The detection and tracking of obstacles is crucial for
collision-free navigation. Of particular interest are potentially
dynamic objects (i.e., objects that could move) since their
presence and potential change of state will influence the
planning of actions and trajectories. Obviously, estimating the
velocity of these objects is fundamental.

Compared to areas where known road network information
can provide background separation, unknown environments
present a more challenging scenario, due to low signal to
noise ratio. Recent works [34], [35] have tackled these issues.
In [34], classes of interest for autonomous driving (i.e., cars,
pedestrians and bicycles) are identified, using shape infor-
mation and a RANSAC-based edge selection algorithm. The
authors of [35] apply a foreground model that incorporates
geometric as well as temporal cues; then, moving vehicles
are tracked using a particle filter. Both works rely on the
Velodyne HDL-64E S2, a laser range finder that provides rich
3D point clouds, to classify moving obstacles. Instead, we
target solutions based uniquely on a 2D lidar, and we are not
interested in recognizing the object classes.

In practice, we base our work on two assumptions:

1) All objects are rigid.
2) The instantaneous curvature of the object trajectories

(i.e., the ratio between their angular and translational
velocities) is small enough to assume that their motion
is purely translational over short time intervals. Hence,
the translational velocities of all points on an object are
identical and equal to that of its centroid.

Both assumptions are plausible for the projection on the
ground of walls, most vehicles and even pedestrians.

Under these assumptions, for each object, the state to be
estimated will be composed of the coordinates of its centroid
in FR, and by their derivatives1:

x =
[
X,Y, Ẋ, Ẏ

]>
.

Using a first-order Markov model (which is plausible for low
object accelerations), the state at time t is evolved from the
state at t−∆t (∆t is the sampling time) according to:

x (t) = Fx (t−∆t) + w (t) , (1)

where w (t) ∼ N (0,Q) is assumed to be Gaussian white
noise, with covariance Q and, the state transition model is:

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 .
At time t, an observation z (t) of the object centroid coordi-
nates is derived from lidar data. It is related to the state by:

z (t) = Hx (t) + v (t) , (2)

1If assumption 2 is not met, the orientation and angular velocity of the
object must be added to the state vector x, that is be estimated by our observer.

where v (t) ∼ N (0,R) is assumed to be Gaussian white noise
with covariance R, and the observation model is:

H =

[
1 0 0 0
0 1 0 0

]
.

Let us outline the steps of our recursive algorithm for deriv-
ing x̂ (t) (our estimate of x (t)), based on current observations
z (t), and on previous states x (t−∆t).

1) At time t, all currently occupied cells in O are clustered
in objects, using a threshold on pairwise cell distance,
and the current observation of the centroid coordinates
z (t) is derived for each object.

2) All of the object centroids that have been observed at
some time in the recent past (we look back in the last 2s)
are displaced by odometry, to derive their coordinates
X (t−∆t) and Y (t−∆t).

3) The observed and previous object centroids (outputs of
steps 1 and 2) are pairwise matched according to their
distance2. We then discern between three cases:
• For matched objects, the previous centroid velocity

is obtained by numerical differentiation, and input
to a Kalman filter, based on equations (1-2), and on
the outputs of step 2, to derive x̂ (t).

• For unmatched objects currently observed, we set:

x̂ (t) =

 z (t)
0
0

 .
• For unmatched unobserved objects, the centroid

coordinates are memorized (these will be the inputs
for step 2).

The output of our algorithm is, at each iteration t, the
estimate of the object centroid coordinates and of its velocities:

x̂ (t) =
[
X̂ (t) , Ŷ (t) , ˆ̇X (t) , ˆ̇Y (t)

]>
.

Then, each currently occupied cell ci is associated to the
estimated velocity of the object it belongs to, or to null
velocity, if it has not been associated to any object. Set O
is finally formed by all the occupied cell states:[

ci
ċi

]>
∈ O,

that encode the cell current coordinates and velocities in the
robot frame.

Let us briefly discuss the particular case of a group of near
moving obstacles. If these are close, they are clustered into a
single object. If one or more obstacles leave the group, these
will be treated as new objects, and their estimated velocity is
immediately reset, since there are no matches in the past. The
choice of restarting the observer in this case is reasonable,
since to leave the group, these obstacles had to substantially
vary their velocity.

2High obstacle velocity can hinder this step: if the ratio between the
obstacle velocity relative to the vehicle, and the obstacle processing algorithm
framerate is strong, the obstacle centroid position in the grid will strongly vary
between successive iterations, making matching impossible.
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In the next section, we will show how O is used to predict
possible collisions, and accordingly adapt the control strategy.
We will assess the danger of each cell by considering the time
that the robot will navigate before eventually colliding with it.
Without loss of generality, in the next section this time is
measured from the current instant t.

IV. OBSTACLE MODELLING

A. Obstacle occupation times

At this stage, the trajectory of each occupied cell in O can
be predicted to evaluate possible collisions with the robot.
More concretely, we will just estimate the times at which each
cell in the grid will be - eventually - occupied by an obstacle.
We assume that velocities of all occupied cells in O remain
constant over time horizon T . This is a plausible assumption,
since the estimations of the obstacles positions and velocities
are updated at every iteration, by the approach outlined above.
Then, for each ci that may be occupied by an obstacle within
T , we can predict initial

ti0 (ci,O) ∈ [0, T ]

and final
tif (ci,O) ∈ [ti0, T ]

obstacle occupation times, as a function of the set of occupied
cell states O. For cells occupied by a static object and
belonging to O, we obtain t0 = 0 and tf = T . For cells
that will not be occupied within time T , we set t0 = tf =∞.
Examples of a static (1 cell) and moving (3 cells) object are
shown in Fig. 1(b), with future occupied cells ci displayed in
grey, increasingly light with increasing ti0. Below, we explain
how the cell occupation times t0 and tf will be used to check
collisions with the possible robot trajectories.

B. Tentacles

As in [2], we use a set of drivable paths (tentacles), both
for perception and motion execution. Each tentacle j is a
semicircle that starts in R, is tangent to X , and is characterized
by its curvature (i.e., inverse radius) κj , which belongs to K,
a uniformly sampled set:

κj ∈ K = {−κM , . . . , 0, . . . , κM} .

The maximum desired curvature κM > 0, must be feasible
considering the robot kinematics. Since, as we will show, our
tentacles are used both for perception and motion execution, a
compromise between computational cost and control accuracy
must be reached to tune the size of K, i.e., its sampling
interval. Indeed, a large set is costly since, as we show
later, various collision variables must be calculated on each
tentacle. On the other hand, extending the set enhances motion
precision, since more alternative tentacles can be selected
for navigation. In Fig. 1(c, d), the straight and the sharpest
counterclockwise (κ = κM ) tentacle are dashed. When a
total of 3 tentacles is used, these correspond respectively
to j = 2 and j = 3. Each tentacle j is characterized
by two classification areas (dangerous and collision), which
are obtained by rigidly displacing, along the tentacle, two

rectangular boxes, with decreasing size, both overestimated
with respect to the real robot dimensions. For each tentacle
j, the sets of cells belonging to the two classification areas
(shown in Fig. 1) are noted Dj and Cj ⊂ Dj . As we will
show below, the largest classification area D will be used to
select the safest tentacle, while the thinnest one C determines
the eventual necessary deceleration.

In summary, the tentacles exploit the robot geometric and
kinematic characteristics. Specifically, the robot geometry (i.e.,
the vehicle encumbrance) defines the two classification areas
C and D, hence the cell potential danger, while the robot
kinematics (i.e., the maximum desired curvature, κM ) define
the bounds on the set of tentacles K. Both aspects give useful
information on possible collisions with obstacles ahead of the
robot, which will be exploited, as we will show in Section V,
to choose the best tentacle and to eventually slow down or
stop the robot.

C. Robot occupation times

For each dangerous cell in tentacle j, i.e., for each cell
ci ∈ Dj), we compute the robot occupation time tij . This
is an estimate of the time at which the large box will enter
the cell, assuming the robot follows the tentacle at the current
velocity. To calculate tij , we assume that the robot motion
is uniform, and displace the box at the current robot linear
velocity v, and at angular velocity ωj = κjv. We can then
calculate robot occupation time tij :

tij (ci, v, κj) ∈ IR+.

For instance, if the robot is not moving (v = 0), for every
tentacle j, the cells on the box will have tij = 0, and all other
cells in Dj will have tij =∞. Also note that for a given cell,
ti may differ according to the tentacle that is considered. In
Fig. 1(c, d), the cells ci ∈ Dj have been displayed in grey,
increasingly light with increasing tij .

D. Dangerous and collision instants

Once the obstacle and robot occupation times have been
calculated for each cell, we can derive the earliest time instant
at which a collision between obstacle and robot may occur
on each tentacle j. By either checking all cells in Dj , or
focusing just on Cj , we discern between dangerous instants
and collision instants. These are defined as:

tj = infci∈Dj

{tij : ti0 ≤ tij ≤ tif} ,

and
tcj = infci∈Cj

{tij : ti0 ≤ tij ≤ tif} .

In both cases, we seek the earliest time at which a cell is
simultaneously occupied by the obstacle and by the robot
box. Assuming constant robot and obstacle velocities, these
metrics give an approximation of the time that the robot
can travel along the tentacle without colliding. Obviously,
overestimating the bounding boxes size leads also to more
conservative values of tj and tcj . In the following, we explain
how these metrics are used: in particular, with tj we assess the
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danger on each tentacle to decide whether to follow it or not,
while tcj determines if the robot should decelerate on tentacle
j. Computation of tj and tcj is illustrated, for j = {2, 3}, in
the example of Fig. 1.

E. Tentacle risk function

The danger on each tentacle is assessed by tentacle risk
function Hj . This scalar function is derived from the tentacle
dangerous instant, and will be used by the controller as
explained in Section V. We use tj and tuned thresholds td > 0
and ts > td (d stands for dangerous, and s for safe), to design
the tentacle risk function:

Hj=


0 if tj≥ ts
1
2

[
1 + tanh

(
1

tj−td + 1
tj−ts

)]
if td<tj<ts

1 if tj≤ td.

Note that Hj smoothly varies from 0, when possible collisions
are in the far future, to 1, when they are forthcoming. If Hj =
0, the tentacle is tagged as clear. All the Hj are compared
(with a strategy explained below), to determine H in (3) and
select the best tentacle for navigation.

V. CONTROL SCHEME

In our control scheme, the desired behaviour of the robot is
related to the surrounding obstacles. When the environment is
safe, the vehicle should progress forward while remaining near
the taught path, with camera pointing forward (ϕ = 0). If
avoidable obstacles are present, we apply a robot rotation for
circumnavigation with an opposite camera rotation to maintain
visibility. The rotation makes the robot follow the best tentacle
in K, which is selected using the strategy explained below.
Finally, if collision is inevitable, the vehicle should simply
stop. To select the behaviour, we assess the danger at time t
with a situation risk function H ∈ [0, 1], also defined below.

Stability of the desired tasks has been guaranteed in [2] by:
v = (1−H) vs +Hvu

ω = (1−H)
λx(x

∗−x)−jvvs+λϕjϕ̇ϕ
jω

+Hκbvu

ϕ̇ = H λx(x
∗−x)−(jv+jωκb)vu

jϕ̇
− (1−H)λϕϕ

(3)

In the above equations:
• H is the risk function on the best tentacle: H = Hb;

hence, it is null if and only if the best tentacle is clear.
• vs > 0 is the translational velocity in the safe context

(i.e., when H = 0). It must be maximal on straight
path portions, and smoothly decrease when the features
quickly move in the image, i.e., at sharp robot turns (large
ω), and when the camera pan angle ϕ is strong. Hence,
we define vs as:

vs (ω, ϕ) = vm +
vM − vm

4
σ (4)

with function σ defined as:

σ (ω, ϕ) = [1+tanh (π−kω|ω|)] [1+tanh (π−kϕ|ϕ|)] .

Function (4) has an upper bound vM > 0 (for
ϕ = ω = 0), and smoothly decreases to the lower

bound vm > 0, as either |ϕ| or |ω| grow. Both vM and
vm are hand-tuned variables, and the decreasing trend is
determined by empirically tuned positive parameters kω
and kϕ.

• vu ∈ [0, vs] is the translational velocity in the unsafe
context (H = 1). It is designed as:

vu (δb) =


vs if tcb ≥ tcs
vs
√
tcb − tcd/tcs − tcd if tcd < tcb < tcs

0 if tcb ≤ tcd
(5)

(with tcd > 0 and tcs > tcd two thresholds corresponding to
dangerous and safe collision times) to guarantee that the
vehicle decelerates (and eventually stops) as the collision
instant on the best tentacle tcb decreases.

• x and x∗ are abscissas of the feature centroid respectively
in the current and next key image.

• λx > 0 and λϕ > 0 are empirical gains determining the
convergence trend of x to x∗ and of ϕ to 0.

• jv , jω and jϕ̇ are the components of the Jacobian relating
ẋ and u. They are:

jv = − sinϕ+x cosϕ
ζ

jω = ρ(cosϕ+x sinϕ)
ζ + 1 + x2

jϕ̇ = 1 + x2,

where ρ is the abscissa of the optical center in the robot
frame FR, and ζ is the feature centroid depth with respect
to the camera.

• κb is the curvature of the best tentacle. Here we detail
how such a tentacle is determined. Initially, we calculate
the path curvature that the robot would follow if H = 0:

κ = ω/v = [λx (x∗ − x)− jvvs + λϕjϕ̇ϕ] /jωvs.

In [2], we proved that κ is always well-defined, i.e.,
that jω 6= 0. We constrain κ to the interval of feasible
curvatures [−κM , κM ], and derive its two neighbors in K:
κn and κnn. Let κn be the nearest one, denoted as the
visual tentacle3. Its situation risk function Hv is obtained
by linear interpolation of the neighbours:

Hv =
(Hnn −Hn)κ+Hnκnn −Hnnκn

κnn − κn
. (6)

If Hv = 0, the visual tentacle is clear and can be
followed: we set κb = κn. Instead, if Hv 6= 0, we seek
a clear tentacle (Hj = 0). First, we search among the
tentacles between the visual task one and the best one at
the previous iteration4, noted κpb. If many are present,
the closest to the visual tentacle is chosen. If none of the
tentacles within [κn, κpb] is clear, we search among the
others. If no tentacle in K is clear, the one with minimum
Hj is chosen. Ambiguities are again solved first with the
distance from κn, then from κnn.

Let us shortly recall the main features of (3), which are
detailed in [2]. When H = 0 (i.e., if the 2 neighbour tentacles

3We consider that intervals are defined even when the first endpoint is
greater than the second: [κn, κnn) must be read (κnn, κn] if κn > κnn.

4At the first iteration, we set κpb = κn.
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Fig. 2. Six steps of the simulations: the taught path must be followed by the robot with methods S (top) and M (bottom) and 4 moving and 1 static obstacles.
Visual features (spheres), occupancy grid, and replayed paths are also shown.

are clear), the robot tracks at its best the taught path: the image
error is regulated by ω, while v is set to vs to improve tracking,
and the camera is driven forward (ϕ = 0). When H = 1, ϕ̇
ensures the visual task, and the two other inputs guarantee
that the best tentacle is followed: ω/v = κb. In general (H ∈
[0, 1]), the robot navigates between the taught and the best
paths, and a high velocity vs can be applied if the path is
clear for future time tcs.

VI. EXPERIMENTS
In this section, we will detail the experiments that were used

to validate our approach. These are also shown in the video
attached to this paper.

All experiments have been carried out on our CyCab ve-
hicle, set in car-like mode (i.e., using the front wheels for
steering). The maximum speed attainable by the CyCab is 1.3
ms−1. For preliminary simulations, we made use of Webots5,
where we designed a virtual CyCab, and distributed random
visual features, represented by spheres, as well as physical
obstacles, in the environment. The robot is equipped with a
coarsely calibrated 320× 240 pixels 70◦ field of view, B&W
Marlin (F-131B) camera mounted on a TRACLabs Biclops
Pan/Tilt head (the tilt angle is null, to keep the optical axis
parallel to the ground), and with a 2-layer, 110◦ scanning
angle, laser SICK LD-MRS. A dedicated encoder on the
TRACLabs head precisely measures the pan angle ϕ required
in our control law (3). Since camera (10 Hz) and laser (12.5
Hz) processing are not synchronized, they are implemented
on two different threads, and the control input u derived
from (3) is sent to the robot as soon as the visual information
is available (10 Hz).

The occupancy grid is built by projecting the laser readings
from the two layers on the ground, and by using: XM =
YM = 10 m, Xm = −2 m, Ym = −10 m. The cells
have size 20 × 20 cm. For the situation risk function, we
use ts = 6 s and td = 4.5 s, for the unsafe translational
velocity, we use tcs = 5 s, and tcd = 2 s, and as control
gains: λx = 1 and λϕ = 0.5. We set κM = 0.35 m−1

(the Cycab maximum applicable curvature, corresponding to a
minimum turn radius of 2.86 m). All these values were tuned
after a few simulations, and proved appropriate throughout
the experiments. It is noteworthy to point out that the number
of tentacles that must be processed, and correspondingly, the
computational cost of the laser processing thread, increase
with the context danger. For clarity, let us discuss two extreme

5www.cyberbotics.com

cases: a safe and an occupied contexts. To verify that a context
is safe (i.e., that Hv = 0 in (6)), all the cells in the dangerous
area D of only the two neighbour tentacles must be explored.
Instead, in a scenario where the grid is very occupied, all of
the tentacles in K may need to be explored. In general, this
second case will be more costly than the first. The experiments
showed that the computational cost of laser processing, using
the chosen number of 21 tentacles, was never a critical issue
with respect to that of image processing.

In all the experiments, at first, the robot is driven along a
taught path. Then, moving and static objects are present on
the path, while the robot replays it to follow the key images.
To evaluate the experiments, we verify if the robot is able
to complete the taught path until the final key image (this
was the case in all experiments), and we measure its linear
velocity v, averaged over the whole experiment, and denoted
v̄. We do not consider the 3D pose error with respect to the
taught path, since our task is defined in the image space, and
not in the pose space. Besides, some portions of the replayed
paths, corresponding to the obstacle avoidances, are far from
the taught ones. However, these deviations are indispensable
to avoid collisions. In some experiments, we also compare
the new approach that is presented here, and that takes into
account the obstacle velocities, with the original one designed
in [2]. We denote these respectively as approach M and S (for
Mobile and Static).

Let us firstly describe the simulations, shown in Fig. 2. The
taught visual path is a closed clockwise loop of N = 20 key
images, and the robot must replay it, while avoiding 4 moving
obstacles, with velocity norms up to 1 ms−1, and a static one.
Higher obstacle velocities are difficult to estimate due to the
low frequency of laser processing (12.5 Hz). However, it is
noteworthy to point out that 1 ms−1 is the walking speed of
a quick pedestrian. With approach M, the vehicle is able to
follow the whole path without colliding, whereas when S is
used, the robot collides with the third obstacle. Let us now
detail the robot behaviour in the two cases. The first obstacle
(a box moving straight towards the robot) is avoided by both
approaches, although with M motion prediction leads to a
smoother and earlier circumnavigation. With M, the robot is
faster, and reaches the brown box while it is crossing its way;
but since the box is expected to leave, the robot just waits
for the path to return free. With S, the robot arrives at the
same point late, when the box is far. The third, grey box
moves straight towards the robot, like the first one. Since it
is slightly faster, this time S is not reactive enough, and a
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Fig. 3. Ten relevant iterations of the experiment with two crossing pedestrians. For each iteration, we show the occupancy grid (left) and current image
(right). In the occupancy grid, the dangerous cell sets associated with the visual tentacle and to the best tentacle (when different) are shown, and two black
segments indicate the lidar amplitude. Only cells that we predict to be occupied in the next T s have been drawn in the grid. The segments link the current
and next key image points.

Fig. 4. Comparison between methods S (top) and M (bottom) as a pedestrian crosses the path in front of the robot.

collision occurs. On the other hand, with M the boxes are
easily avoided. The new approach also prevails in speed: the
average velocity v̄ = 0.67 ms−1 with M, and v̄ = 0.49 ms−1

with S.
After the simulations, the framework has been ported on

our CyCab vehicle.
In a first experiment, two pedestrians are passing during

navigation: one crosses the path, and the other walks straight
towards the robot. We show, in Fig. 3, relevant iterations with
the corresponding occupancy grids and currently viewed im-
ages. In the occupancy grid, the propagation of cells occupied
by the persons is visible at iterations 2-8. With the crossing
pedestrian (iterations 2-5), since no collision is predicted, the
robot keeps following the visual tentacle. Instead, with the
forward walking pedestrian, a collision is predicted at iteration
7; then, the robot selects the best tentacle to avoid the person.
Visual path replaying is again successful, with v̄ = 0.87 ms−1.

Then, we have compared methods S and M in an exper-
iment, where a single pedestrian crosses the taught path in
front of the robot (see Fig. 4, with control inputs plotted in
Fig. 5). The smooth trend of u at the beginning and end of
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Fig. 5. Single pedestrian experiment. Top and center, respectively: control
inputs using S and M, with v (ms−1), ω (rads−1), ϕ̇ (rads−1), and iterations
with strong H highlighted. Bottom: applied curvature ω/v (in m−1) using S
and M.

the experiments is due to the acceleration saturation carried
out at the CyCab low-level control. With controller S (top
in both figures), the robot attempts avoidance on the right,
since tentacles on the left are occupied by the person. This
is clearly a doomed strategy, which leads the robot toward
the pedestrian. Then, the robot must decelerate and almost
stop (v ≈ 0 after 15 s) when the pedestrian is very near.
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Fig. 6. City center of Clermont Ferrand, with one of the navigation paths
where the urban experiments have been carried out.

Navigation is resumed only once the path is clear again. On
the other hand, with controller M, as the pedestrian walks, the
prediction of his future position makes him irrelevant from
a safety viewpoint: risk function H (highlighted in Fig. 5),
which was relevant with S, is now null. Hence, the robot does
not need to reduce its speed (v̄ is 0.89 ms−1 with M, and 0.76
ms−1 with S) nor to deviate from the path (in the bottom of
Fig. 5, the applied curvature is smaller). The image error with
respect to the database x− x∗, averaged over the experiment
is also reduced with M: 7 instead of 12 pixels.

As part of the final demonstration of the French ANR
project CityVIP, we have also validated our framework in
a urban context, in the city of Clermont Ferrand. The ex-
periments have taken place in the crowded neighbourhood
of the central square Place de Jaude, shown in Fig. 6. For
four entire days, our Cycab has navigated autonomously,
continuously replaying a set of visual paths of up to 700
m each, amidst a variety of unpredictable obstacles, such as
cars, pedestrians, bicycles and scooters. In Fig. 7, we show
some significant snapshots of the experiments that were carried
out in Clermont Ferrand. These include photos of the Cycab,
as well as images acquired by the on-board camera during
autonomous navigation. These experiments are also shown in
the video attached to this paper.

In Fig. 7(a-c), Cycab is moving in a busy street, crowded
with pedestrians and vehicles. First, in Fig. 7(a), we show the
behaviour adopted in the presence of a pedestrian (a lady with
black skirt) crossing a narrow street: the Cycab brakes, since
avoidance is impossible. In general, the robot would either
circumnavigate the person or stop, and in four days no one
has ever even closely been endangered nor touched by the
vehicle. In many experiments, Cycab has navigated among fast
moving vehicles (cars in Fig. 7(b), and a scooter in 7(c)), and
manual security intervention was never necessary. The robot
has also successfully avoided many static obstacles, including
a stationing police patrol (Fig. 7(d)) and another electric
vehicle (Fig. 7(e)). When all visual features are occluded by
an obstacle, the robot stops, but resumes navigation as soon
as the obstacle moves and the features are again visible.

Moreover, we have thoroughly tested the behaviour of our
system with respect to varying light, which is an important
aspect in outdoor appearance-based navigation. Varying light
has been very common in the extensive Clermont Ferrand

experiments, which would last the whole day, from the first
light to sunset, both with cloudy and clear sky. In some
experiments, we could control the robot in different lighting
conditions, using the same taught database. For instance,
Fig. 7(f) shows two images acquired approximately at the
same position at 5 p.m. (top) and 11 a.m. (bottom), while
navigating with the same key images. However, in spite of
the robustness of the image processing algorithms. which has
been proved in [33], in some cases (e.g., when the camera
was overexposed to sunlight), the visual features required for
navigation could not be detected. Future work in adapting the
camera automatic shutter settings should solve this issue.

Overall, Cycab has navigated using an average of approxi-
mately 60 visual points on each image, and some paths have
even been completed using less than 30 points. Along with
all the cited technical aspects, the experiments highlighted the
reactions of non-robotic persons to the use of autonomous
ground vehicles in everyday life. Most passer-bys had not been
informed of the experiments, and responded with curiosity,
surprise, enthusiasm, and - rarely - slight apprehension.

VII. CONCLUSIONS

We presented a novel framework with simultaneous laser-
based moving obstacle avoidance and outdoor vision-based
navigation, without any 3D model or path planning. It merges
a reactive, tentacle-based technique with visual servoing, to
guarantee path following, obstacle bypassing, and collision
avoidance by deceleration. In particular, for the first time
obstacle velocities are accounted for within a visual navigation
scheme. To estimate the obstacle velocities, we have designed
a Kalman-based observer. Then, we utilize the velocities to
predict possible collisions between robot and obstacles. Our
approach is validated in a series of experiments (including ur-
ban environments), and it is compared with a similar controller
that does not consider obstacle velocities.

The results show that, by predicting the obstacle displace-
ments within the candidate tentacles, the robot behaviour is
safer and smoother, and higher velocities can be attained.
The framework can be applied in realistic and challenging
situations including real moving obstacles (e.g., cars and
pedestrians). To our knowledge, this is the first time that
outdoor visual navigation with moving obstacle avoidance is
carried out in urban environments at approximately 1 ms−1

on over 500 m, using neither GPS nor maps.
In the future, we will investigate scenarios, where obstacles

are not translating, as assumed here, and can approach the ve-
hicle from behind. For the latter case, the current configuration
(forward-looking lidar) must be modified. Perspective work
also includes automatic prevention of the visual occlusions
provoked by the obstacles.
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graduated from École Nationale Supérieure de
Mécanique, Nantes, France, in 1987. He received the
Ph.D. degree in computer science from the Univer-
sity of Rennes, France, in 1990. Since 1990, he has
been with Inria in Rennes where he is now Senior
Research Scientist and head of the Lagadic group
(http://www.irisa.fr/lagadic). His re-
search interests include robotics and computer vi-
sion, especially visual servoing and active percep-
tion. Dr. Chaumette is IEEE Fellow. He received the

AFCET/CNRS Prize for the best French thesis in automatic control in 1991.
He also received with Ezio Malis the 2002 King-Sun Fu Memorial Best
IEEE Transactions on Robotics and Automation Paper Award. He has been
Associate Editor of the IEEE Transactions on Robotics from 2001 to 2005
and is now in the Editorial Board of the Int. Journal of Robotics Research.



Robotics and Autonomous Systems 70 (2015) 106–115

Contents lists available at ScienceDirect

Robotics and Autonomous Systems

journal homepage: www.elsevier.com/locate/robot

A unified multimodal control framework for human–robot interaction
Andrea Cherubini ∗, Robin Passama, Philippe Fraisse, André Crosnier
Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier LIRMM, Université Montpellier - CNRS, 161 Rue Ada, 34392 Montpellier,
France

h i g h l i g h t s

• A unified multimodal sensor-based control framework is proposed.
• Pose, vision and force tasks can be realized either exclusively or simultaneously.
• Self-adapting gains and homotopies between the tasks guarantee safe operation.
• The approach is validated in an industrial task: collaborative screwing.

a r t i c l e i n f o

Article history:
Received 13 October 2014
Received in revised form
24 February 2015
Accepted 2 March 2015
Available online 1 April 2015

Keywords:
Reactive and sensor-based control
Human–robot interaction
Visual servoing

a b s t r a c t

In human–robot interaction, the robot controller must reactively adapt to sudden changes in the
environment (due to unpredictable human behaviour). This often requires operating differentmodes, and
managing sudden signal changes from heterogeneous sensor data. In this paper, we present amultimodal
sensor-based controller, enabling a robot to adapt to changes in the sensor signals (here, changes in the
human collaborator behaviour). Our controller is based on a unified task formalism, and in contrast with
classical hybrid visicn–force–position control, it enables smooth transitions and weighted combinations
of the sensor tasks. The approach is validated in a mock-up industrial scenario, where pose, vision (from
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1. Introduction

Recently, the attention of robotics researchers worldwide has
turned towards the field of human–robot interaction (HRI [1–5]),
to enable close collaboration between human and robot [6,7]. In
this context, the robot must infer the user intention, to interact
more naturally, from the human perspective [8–10]. To this end,
both visual (e.g., based on Microsoft KinectTM [11]) and force
feedback, have been used [12–16]. Generally,we believe that direct
sensor-basedmethods, such as visual servoing [17], provide better
solutions, for intuitive HRI, than planning techniques, requiring a
priori models of the environment and agents [18]. Moreover, force
and vision should be used concurrently, since the information they
provide is complementary. One pioneer work in this sense is [19],
where force and visual control are used to avoid collisions, while
tracking human motion during interaction.

∗ Corresponding author.
E-mail addresses: Andrea.Cherubini@lirmm.fr (A. Cherubini),

robin.passama@lirmm.fr (R. Passama), philippe.fraisse@lirmm.fr (P. Fraisse),
andre.crosnier@lirmm.fr (A. Crosnier).

However, the authors do not provide a unified solution for
integrating the two sensing modalities. Instead, since the vision
and force sensors often measure different physical phenomena, it
is preferable to directly combine their data at the control level,
rather than to apply multi-sensory fusion, or to design complex
state machines. This idea has been initially proposed in [20,21],
by adapting the hybrid position–force control paradigm [22]: force
constrains somemotion directions, while vision drives the remain-
ing degrees of freedom. Later, the authors of [23] have presented
a list of hybrid control configurations, and divided the degrees
of freedom to be controlled by vision and force. An alternative is
impedance/admittance control [24], which has been integratedwith
visual [25] and even tactile [26] control, to account for external
forces. Althoughmany techniques formerging vision, force and po-
sition control have beendesigned, the presence of the human in the
robot control loop is rarely accounted for.

In our previous work [27], we have started the design of a mul-
timodal framework for human–robot cooperation. The approach
is marker-less, and has been validated in a mock-up industrial sce-
nario. However, the following contributions are brought here, with
regard to that work:

http://dx.doi.org/10.1016/j.robot.2015.03.002
0921-8890/© 2015 Elsevier B.V. All rights reserved.
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• a unified formalism, inspired by inverse kinematics [28,29]
guarantees the controller stability, independently from the
sensor modality;

• the use of smooth transitions (homotopies) between the
sensor-based tasks, and of self-adapting gains, limits the robot
accelerations, thus guaranteeing safer operation;

• in contrast with hybrid vision–force control, it is possible to
control a same task direction using weighted combinations of
different sensors, and sensor-based tasks can be expressed in
different reference frames;

Other, minor improvements, with regard to [27], include the
introduction of force-based control, guaranteeing safety of HRI,
and better accuracy, velocity, and control smoothness. Moreover,
our task-oriented approach, in contrast with similar ones, such as
the stack-of-tasks [29] and constraint-based programming [30,31],
is directly useable in real HRI scenarios (to our knowledge, the
method presented in [31] has been used, for now, only for human
collision avoidance).

The article is organized as follows. In Section 2, we present our
general framework formultimodal control forHRI. In Section 3, rel-
evant variables and sensor-based tasks are defined. Based on these
preliminaries, Section 4 shows how the general framework can be
instantiated for an industrial case study. Experimental results are
reported in Section 5, and summarized in the Conclusion.

2. Control framework

To safely interact with the human, the designed controllermust
rely on the various sensing modalities present on the robot. These
may include cameras (for vision), force/torque sensors, skin (for
tact), or proprioception (e.g., for positioning).

A commonly used approach to merge the various sensing
modalities directly at the control level is hybrid sensors control,
e.g. hybrid force/position [22] or hybrid force/vision [20] control.
This approach was recently extended in a framework integrating
vision, force and tact to realize physical interaction tasks [32]. We
hereby recall the formulation of that approach, and propose amore
generic one, based on classic inverse kinematics control [28].

Let k be the dimension of the operational space associated with
the end effector (e.g., k = 3 in the case of a planar manipulator).
Consider n senses and, for each sense, the task vector sm ∈ Rk,
with m = 1, . . . , n. For example, a task associated with the sense
of vision could consist in controlling an on-board camera tomake it
look at a target point, and a task associated with the sense of force
could consist in applying a desired wrench with the end effector
(e.g., sf =


fx, fy,mz


for a planar manipulator). In this work, since

position, vision and force are used, n = 3. All n tasks have the
same size k, and, if the sensor provides less than kmeasures, it will
be sufficient to select the task components corresponding to the
actual measures, as will be explained later.

Each task is related to the Cartesian velocity of the end effector,
v ∈ Rk by the k × kmatrix Lm (called interaction matrix in the case
of visual servoing):

ṡm = Lmv. (1)

Stacking the n tasks yields:

˙̄s = Lv, with s̄ =

s1
...
sn

 ∈ Rkn and

L =

L1
...
Ln

 ∈ Rkn
× Rk.

(2)

As aforementioned, a combination of tasks defined by different
senses (i.e., by components of the different sm) is realizable, as long
as its size is also k. The tasks are selected thanks to n positive
definite square diagonal selection matrices of size k, denoted Sm,
that activate or deactivate a given task component. Then, the
k-dimensional hybrid task to be realized, is a linear mapping of the
complete s̄:

ṡ = S˙̄s, with S = [S1 . . . Sn] ∈ Rk
× Rkn. (3)

Note that, as outlined above, if the m-th sensor provides less than
k measures, the missing components can be deselected by simply
setting to zero the corresponding row in Sm. The selectionmatrices
can also be used, as will be shown later, to weigh outputs from
different sensors and combine them into a single task.

Merging (3) and (2) gives the open-loop behaviour of the task
in function of the end effector velocity:

ṡ = SLv. (4)

Inverse kinematics control relies on the assumption that matrix
SL is invertible.1 Then, the optimal2 solution of (4) ensuring
exponential convergence of s to the desired constant task s∗ is:

v = (SL)−1 s∗ − s

. (5)

Indeed, replacing this into (4) yields:

ṡ = s∗ − s, (6)

guaranteeing that s = s∗ is a stable equilibrium for the closed-loop
system.

Let us now compare (5) with the hybrid sensors control used in
numerousworks [20,22,23,32]. This approach consists in assigning
each sensing modality to a Cartesian direction in the operational
space, and then summing the velocities associated with the
selected sensors:

v =


m

Smvm, (7)

with some assumption on the selectionmatrices, e.g., that they are
orthogonal, as in [32].

Assuming each Lm is invertible, exponential convergence of sm
to s∗m, according to (1), is guaranteed by applying:

vm = L−1
m


s∗m − sm


. (8)

Plugging (8) into (7), we obtain the hybrid sensors control expres-
sion:

v = SL̃

s̄∗ − s̄


with L̃ =

L−1
1 · · · 0

0
. . . 0

0 · · · L−1
n

 ∈ Rkn
× Rkn. (9)

This controller is optimal for (4), if and only if (9) coincideswith (5):

SL̃

s̄∗ − s̄


= (SL)−1 s∗ − s


∀


s̄∗, ˙̄s

∗


∈ R2. (10)

This is equivalent, considering (3), to:

SL̃ = (SL)−1 S. (11)

In general, this is not the case, but we hereby provide two neces-
sary conditions for it to be true.

1 Otherwise, specific strategies for avoiding singularities, which are out of the
scope of this paper, are to be devised.
2 Throughout the paper, we refer to controllers as optimalwhen they provide the

least squares solution to the task, i.e., they minimize the control effort.



108 A. Cherubini et al. / Robotics and Autonomous Systems 70 (2015) 106–115

Property. Hybrid sensors control (9) is optimal if the diagonal selec-
tion matrices Sm are all binary and orthogonal, and if the sensor ma-
trices Lm are all diagonal.

Proof. Since all Sm are binary (hence, idempotent) and orthogonal:

n
m=1

Sm = I. (12)

Moreover, binary Sm imply that S has full rank, so its right pseu-
doinverse can be derived to show, using (12), that it coincides with
its transpose:

SĎ = S⊤

SS⊤

−1
= S⊤


m

S2m

−1

= S⊤

m

Sm = S⊤. (13)

Then, post-multiplying condition (11) by SĎ = S⊤, we obtain:

SL̃SĎ = (SL)−1 SSĎ, (14)

which leads to:

SL̃S⊤
= (SL)−1 . (15)

• The first member of (15) becomes:

SL̃S⊤
=


m

SmL−1
m Sm. (16)

By commuting the matrix product (since all Lm and Sm are di-
agonal, and have the same size), and taking advantage of the
idempotency of the Sm, we obtain:

SL̃S⊤
=


m

S2mL
−1
m =


m

SmL−1
m . (17)

• The second member of (15) becomes:

(SL)−1
=


m

SmLm

−1

. (18)

Noting sim and lim the i-th elements of Sm and Lm, respectively:

(SL)−1
=


diag


m

s1ml1m, . . . ,

m

skmlkm

−1

= diag

 1
m

s1ml1m
, . . . ,

1
m

skmlkm

 . (19)

Since for each i, exactly one si is non-null and equal to 1, this
equation can be rewritten:

(SL)−1
=


m

SmL−1
m . (20)

Eqs. (17) and (20) demonstrate that the first and second mem-
bers of (15) coincide, and that the property is therefore valid. �

To summarize, hybrid sensors control provides an optimal
solution for (4) under two strong assumptions.

1. All the sensor tasks sm must be expressed in the same reference
frame. This can be stated from (1), subject to the condition that
the Lm matrices are diagonal.

2. Only one sensor can be used to control each end effector
direction. This can be stated from (7), subject to the condition
that the Sm are binary and orthogonal.

These assumptions are mentioned in all works that apply hybrid
sensors control. However, they limit its use in practical appli-
cations. For instance, merging image-based visual servoing [17],
which defines the visual task in the image frame, with force con-
trol, usually implemented in the force sensor frame,would infringe
the first assumption.

On the other hand, to guarantee stability of the closed-loop
system, the classical inverse control scheme (5) only requires that
SL is invertible (a weaker assumption, that is always true if the Sm
are binary, and the Lm diagonal). Controller (5) can be applied even
if the task frames associated with each sensor are different, and
even if a task is defined formultiple robots [33], or as a combination
of heterogeneous sensor data (as shown in many recent works by
Mansard et al. [29,34,35]).

Let us now apply the previous result, by expressing the problem
in the joint space, rather than in the operational space. The robot
joint velocity is denoted q̇ ∈ Rj, with j the number of degrees of
freedom. We assume that j ≥ k, so that s can be realized. If j > k,
redundancy exists, and one can alsominimize a scalar cost function
h (q) ∈ R, while realizing the task s.

Each task is related to the joint velocity by:

ṡm = Jm (q, sm) q̇, (21)

where

Jm (q, sm) =
∂sm
∂q

(22)

is the corresponding task Jacobian, of dimension k× j, that depends
on both the robot configuration and on the task. By stacking the n
tasks, and using (3), we obtain:

ṡ = S˙̄s = SJ (q, s̄) q̇, (23)

where:

J =

J1
...
Jn

 ∈ Rkn
× Rj. (24)

The multimodal controller that we propose, for driving s to s∗
is given by:

q̇ = (SJ)Ď 3

s∗ − s


+

I − (SJ)Ď (SJ)


▽ h (25)

In the above equation:

• (SJ)Ď is the j × k right pseudoinverse of SJ. We assume that SJ
is full rank during operation, so that the pseudoinverse can be
calculated. This was the case throughout the experiments and
is a common assumption in inverse kinematics control [34].

• 3 is a positive definite square diagonal matrix of dimension k
that determines the convergence rate of s to s∗;

• the term ▽h =
∂h
∂q (i.e., ▽h = 0 when j = k) is introduced in

order to minimize cost function h in case of redundancy.

System (23), controlled by (25), is globally asymptotically stable
with respect to the k selected tasks. Indeed, plugging (25) into (23)
yields:

ṡ = 3

s∗ − s


. (26)

Thus, since 3 is a positive definite diagonal matrix, s = s∗ is
a stable equilibrium for the closed-loop system. Also, note that
minimization of h has no effect on the convergence rate of the task.

For constant gain matrix 3, convergence of the task will be
exponential according to (26). Thus, since (25) is a proportional
feedback controller, the joint velocities will also follow an expo-
nential trend, an unwanted behaviour which may lead to abrupt
velocity changes at task transitions (i.e., when the error suddenly
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Fig. 1. Reference frames used in our multimodal framework for human–robot
interaction.

increases). A simple solution to this, is the use, for each task, of
an adaptive gain matrix, function of the task error s∗ − s, inspired
by [36]:

3 (s) = 3∗


e−α∥s∗−s∥

+ β

1 − e−α∥s∗−s∥


. (27)

In (27),3∗ is the diagonal gainmatrix applied when s is close to s∗,
and α ≥ 0 and β ∈]0, 1] are two scalar parameters such that, as
the task error norm ∥s∗ − s∥ increases, 3 exponentially decreases
(with slope dependent on α) to β3∗, for very large task error. This
exponential trend compensates that of the error signal, thus gen-
erating a less variable control input q̇, as will be shown by the ex-
periments. The values ofα, β , and3∗ are tuned empirically, so that
the robot joint velocities stay roughly constant during operation.

In the next section, we first define the reference frames and the
main variables of the framework and then, for each of three sensor-
based tasks (position, vision and force), we give the expression of
s and that of the corresponding Jacobian J.

3. Sensor-based tasks

3.1. Definitions

The reference frames used in our work are (see Fig. 1): the
robot base (B), camera (C), end effector (E), and image (I) frames.
Reference frame B is fixed in the world, whereas C, E and I move
with the robot. The pose of A in frame B is defined as: BpA =
BtA, BθuA

⊤
∈ SE (3), with BθuA the angle/axis vector [37].

For the camera, we use the normalized perspectivemodel. A 3D
point with coordinates


CX, CY , CZ


in the camera frame, projects

in the image as a 2D point with coordinates:

x =

CX
CZ

, y =

CY
CZ

. (28)

We assume that the pose of the camera in the end effector, EpC , is
constant and known through a preliminary calibration step.

For human–robot collaboration, we use n = 3 tasks: position-
ing, visual, and force task. Each one has dimension k = 6, in or-
der to control all 6 degrees of freedom of the end effector. We will
hereby detail each task.

3.2. Positioning task

The objective of positioning is to control the end effector pose
in the base frame. Hence, the positioning task is:

sp =
BpE . (29)

This can be estimated at each iteration, by applying the robot
forward kinematics to the measured articular variables, q.

For this task, the Jacobian in (21) is simply:

Jp =
∂BpE

∂q
. (30)

This Jacobian can be computed, at run time, by applying the tech-
nique presented in [28].

3.3. Visual task

The objective of the visual task, is to drive the end effector to
a desired pose with respect to a visible target. To this end, we
apply the two and one-half-dimensional (2 1/2 D) visual servo
paradigm originally introduced in [38]. This method combines
the advantages of image-based and position-based visual servoing
schemes, while trying to avoid their shortcomings [17]. In fact,
the task is defined by a combination of image features and 3D
characteristics:

sv =

x y log CZ C∗

θuC
⊤

. (31)

In this equation, x and y are the image coordinates of the target
characterized by (28), CZ is the target depth in the camera frame,
and C∗

θuC gives the relative rotation between the current and
desired poses of the camera.

The Jacobian corresponding to the 2 1/2 D task is [38]:

Jv = Ls CVB
∂BpC

∂q
. (32)

In this expression, Ls is the interaction matrix relating the task
evolution to the camera velocity in frame C:

Ls =


L11

x, y, CZ


L12 (x, y)

0 L22

C∗

θuC


, (33)

while CVB is the spatial motion transform matrix from frame B to
frame C:

CVB =

CRB
C tB×CRB

0 CRB


. (34)

The complete expressions of L11, L12, and L22 are given in [17],
and [t]× is the skew-symmetric matrix associated with vector t.
Jacobian Jv can be calculated at each iteration, since Ls depends on
s, CVB on the pose of B in C (determined via forward kinematics
BpE plus constant known ETC ), and ∂BpC/∂q can be calculated again
using the technique presented in [28].

3.4. Force task

The objective of force control is to regulate the external wrench
h (force and torque vectors f andm), at the contact point between
robot and human, to a desired value. This is essential to guarantee
safe interaction with the environment and with the human opera-
tor. Without loss of generality, in this work, such external wrench
is expressed in the end effector frame E.

To realize the force task,we apply an admittance controller [24],
where the deviation of the end effector motion due to the in-
teraction with the environment is related to the contact wrench,
through an equivalent mass–spring–damper system with ad-
justable parameters.

Here, we consider a simple spring system, with null mass and
damping, and positive definite diagonal square stiffness matrix K,
such that:
EhE −

Eh∗

E = −K
EpE −

Ep∗

E


= K Ep∗

E . (35)

Then, the force task is defined as: sf =
EhE . Deriving the above

equation yields the Jacobian corresponding to this task:

Jf = −K
∂EpE

∂q
. (36)

Having defined K, Jf can again be calculated with the technique
from [28].
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Fig. 2. Collaborative screwing case study. Top: experimental setup. Bottom left: view of the camera and end effector. Bottom centre: Kinect image. Bottom right: camera
image.

Fig. 3. Collaborative screwing state machine, selecting the appropriate control
mode, according to the sensed data. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

4. A case study: collaborative screwing

4.1. Experimental setup and assumptions

To validate our controller, we focus on a case study, where a
robot aids a human operator in a screwing operation. In Fig. 2, we
show the setup, along with the frames defined in Section 3.1; the
screw is denoted S.

Humanand robot operate on the opposite sides of a flank,where
a series of screws must be inserted. The required operations are
respectively:

• for the human: to insert the screws in the holes,
• for the robot: to tighten a bolt on each of the inserted screws,

while the human maintains it on the flank.

Since the focus here is mainly on our textitmultimodal control
framework, we do not implement the physical screwing action;
instead,we consider a screw to be tightened,when the end effector
touches it with proper alignment. To realize the collaborative
screwing operation, we utilize a Kinect, that outputs an RGB-D
image of the work scene from a fixed pose, and a black and white
camera mounted on the robot. These sensors are respectively
dedicated to detecting and tracking the human hand motion, and
to tracking newly inserted screws on the flank. Finally, to properly
align end effector and screw, an estimation of the external forces
is necessary. This force estimation will be explained in Section 5.

Our work assumptions are that the flank is perpendicular to the
Y axis of the base frame, at known distance from B, and that the
Kinect pose in the base frame has been coarsely calibrated.

To avoid luminosity variations in the image, we maintain the
camera orientation with respect to the flank constant throughout
operation. Since EpC is constant, we have decided to do this by
keeping the end effector perpendicular to the flank, with the axes
of frame E placed as in Fig. 2. Hence,we impose the desired rotation
matrix from end effector to base to be:

BR∗

E =


−1 0 0
0 0 −1
0 −1 0


. (37)

In the rest of this section, we will detail the strategy that has
been used to realize collaborative screwing, with controller (25).

4.2. Multimodal control strategy

To realize the collaborative screwing task, we utilize four
modes, and halting, which simply consists in setting q̇ = 0. The
Jacobian used in (25) is:

J =

 Jp
Jv
Jf


, (38)

with Jp, Jv , and Jf defined respectively in (30), (32) and (36).
The modes are operated by the state machine in Fig. 3. As the

figure shows, the transitions can be activated either by detection
(red) or loss (black) of sensed information, or by success of the
mode (blue). The detection/loss of information is determined by
sensors processing. Instead, a mode is successful when:

6
i=1

wi∥s∗i − si∥ < σ, (39)

with w = [w1 . . . w6] ∈ R6 a vector of positive weights, and σ a
scalar threshold.

Our complete framework is summarized in Fig. 4. In the rest of
this section, we will focus on each of the four modes, by specifying
the selection matrices Sp, Sv and Sf , the desired task vector s∗, and
the activation condition (39).

4.3. Hand approaching mode

If the human operating hand is detected by the Kinect, its
position is fed to a controller that moves the robot so that the
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Fig. 4. Multimodal framework block diagram.

camera has a good view of the area where the human is operating.
Since only the positioning task (29) is necessary, the selection
matrices are:

Sp = I Sv = Sf = 0. (40)

From (3) and (29), we can infer the desired task vector:

s∗ = Sps∗p =
Bp∗

E ∈ SE(3). (41)

To derive s∗p , we introduce the Kinect (K), and operating hand (H)
frames (see Fig. 2). The origin of H is the orthogonal projection of
the operator hand on the flank, while its orientation is that of B.
The hand position in the Kinect frame is estimated using OpenNI,3
and then orthogonally projected on the flank4to obtain KXH , which
can then be transformed to BXH in the base frame. Then, our aim is
to place H at a fixed desired position in the camera frame:

CX∗

H =
CX∗

H
CY ∗

H
CZ∗

H 1
⊤

, (42)

to increase the chances of visualizing in the image the future
inserted screw. Also, since we set HRB = I, BR∗

E according to (37),
and since CRE is constant and known, the desired orientation
of the camera with respect to the hand, HR∗

C can be derived.
Combining CX∗

H and HR∗

C , we can obtain the desired camera to hand
transformation, HT∗

C . This can now be used to determine BT∗

E , and
therefore s∗p , to be used in (25), along with:

S =

I 0 0


. (43)

Since the hand approaching mode should be activated and
deactivated only by perceived data, the task convergence need not
be monitored, and we can set σ = 0 and w ≠ 0, so that (39) is
never true in this mode.

4.4. Pose-based screw approaching mode

If a screw is detected in the image (see Fig. 2, bottom right), its
position determines sv according to (31), so that the end effector is
driven in front of it. To this end, we exploit the screw position as
viewed from the on-board camera (to infer x and y), along with the
measures of the robot articular positions for forward kinematics (to
infer CZ and C∗

θuC ). The details on the image processing algorithms
used to detect and track the screws are given in [27].

The shift from hand to screw approaching can lead to abrupt
joint accelerations. This problem, which is common when switch-
ing between manipulation primitives, has been recently tackled

3 http://www.openni.org
4 It is trivial to derive the flank plane equation in K from BTK and BYH .

using on-line trajectory generation [39]. Here, we exploit homo-
topy to better manage the transition. We define t > 0 the screw
age (i.e., the time since it has been detected). The visual task selec-
tionmatrix is then designed to smoothly vary from 0 to I, as t tends
to a tuned scalar T :

Sv =

1 − cos (π t/T )

2
I if t < T ,

I otherwise.
(44)

The other task selection matrices are set to:

Sp = I − Sv, Sf = 0, (45)

so that, in controller (25):

S =

I − Sv Sv 0


. (46)

In practice, the visual task is gradually activated by Sv , while
concurrently the hand position task is deactivated by Sp.

As proved in Section 2, the advantage of our framework is
that such a smooth transition can be easily implemented without
compromising the controller stability, since, in contrast with
hybrid sensors control, the selection matrices do not have to be
binary. This is also a fundamental advantage with respect to the
method proposed in [39].

From (3), we can infer the desired task vector:

s∗ =


(I − Sv) s∗p + Svs∗v if t < T ,

s∗v otherwise. (47)

As mentioned, s∗ varies from a task dependent on both hand and
screw, to purely vision-based screw approaching task s∗v , that we
define as:

s∗v =

x∗

S y∗

S log CZ∗

S 0
⊤

. (48)

This s∗v corresponds to driving the screw to image position

x∗

S , y
∗

S


at desired depth CZ∗

S , while zeroing the orientation error between
C and C∗.

Let us now explain how s∗v is derived. The image position
x∗

S , y
∗

S


(circle in Fig. 2, bottom right) is set so that end effector and

screw are aligned at the end of this mode. We set the end effector
Cartesian position to have a desired translation with respect to the
screw:

Et∗S =

0 0 EZ∗

S

⊤
, (49)

so that EZ∗

S > 0 is as small as possible, without end effector occlu-
sion. Then, from the known CTE , and from EX∗

S , we can derive CX∗

S ,
and, from that: CZ∗

S , x∗

S =
CX∗

S /CZ∗

S , and y∗

S =
CY ∗

S /CZ∗

S . For rota-
tions, as usual we servo BR∗

E according to (37). Then, C
∗

θuC can be
calculated from known CRE and ER∗

B .
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The following mode (force-based screw approaching), is trig-
gered when the visual error with respect to the screw is small
enough. Hence, we set:

w ≠ 0 ∀t > 0,
σ = 0 if t < T ,
σ > 0 otherwise,

(50)

so that (39) is verified only after time T , when the hand task is de-
activated.

4.5. Force-based screw approaching mode

Once the screw is near enough, force control is activated, to
make the end effector compliant in case of contact, while advanc-
ing. We activate this mode just before contact, because, in the ab-
sence of external contacts, the force signal to noise ratio can lead
to inaccurate positioning.

The desired wrench on the end effector, in the end effector
frame, is:

Eh∗

E =

0 0 Ef ∗

E,Z 0 0 0
⊤

. (51)

Through force control (35), Ef ∗

E,Z < 0 makes the end effector pro-
gress forward. All other components are zeroed to make the end
effector compliant.

As long as the screw is visible, the end effector can be driven
towards it by using visual control. Then, the task selectionmatrices
are:

Sp = 0 Sv =


I2 02×4

04×2 04


Sf =


02 02×4

04×2 I4


. (52)

Therefore, in controller (25):

S =


02×6 I2 02×6 02×4
04×6 04×2 04×6 I4


, (53)

and the desired task is:

s∗ = Svs∗v + Sf s∗f =

x∗

s y∗

s
Ef ∗

Z 0 0 0
⊤

. (54)

The transition from this mode to the following is triggered by
the loss of the screw, when it is too near to be visible in the image.
Then, we set σ = 0 andw ≠ 0, so that (39) is never true.

4.6. Screw tightening mode

When the screw is so near that it is not visible anymore, the last
mode is activated. This relies solely on force control:

Sp = 0 Sv = 0 Sf = I. (55)

Therefore, in controller (25):

S =

0 0 I


, (56)

and the desired force task is:

s∗ = s∗f =

0 0 Ef ∗

E,Z 0 0 0
⊤

. (57)

Clearly, if tighteningwas also to be realized (although this is not
the case here, as mentioned in Section 4.1), the desired moment
around Z, Em∗

E,Z should also be non-null. To verify that the screw is
tightened, we check the force error according to (39), with tuned
weightsw ≠ 0 and threshold σ > 0.

5. Experiments

To validate our framework, we have run a series of experiments
with a lightweight KUKA LWR IV robot in the scenario illustrated in
Fig. 2. Since a tightening tool is notmounted on the end effector,we
have used a cylindrical tool of external diameter 14 mm to verify
the precision of our method. The LWR is redundant with respect to
the end effector operational space dimension (it has j = 7 degrees
of freedom, whereas k = 6). Thus, we use the extra degree of
freedom to guarantee joint limit avoidance. To this end, in (25), we
use a scalar, configuration dependent, cost function [40]:

h (q) =
1
2

7
i=1


qi − qi,mid

qi,M − qi,m

2

, (58)

with

qi,m, qi,M


the available range for joint i and qi,mid =


qi,M +

qi,m

/2 its midpoint. The values of q̇ computed via (25) are

fed to the Reflexxes online trajectory generation library5 for
smoothing. To get the interactionwrench EhE , instead of mounting
a force sensor on the end effector, we have decided to use the
estimated external wrench signal provided by the robot controller
through the FRI Interface.6 The camera mounted on the end
effector is a Stingray F201B from Allied Vision Technologies, with
resolution 1024 × 768 pixels, and we used the ViSP library [41]
for visualization purposes. The image processing pipeline takes
approximately 60 ms. Thus, although the skeleton processing on
the Kinect is slightly faster, we fix the control loop rate at 15 Hz.

To highlight the novel contributions of our framework, i.e., force
control, and the use of homotopy and adaptive gains, various
experiments were run. These are shown in the video attached to
this paper (see Appendix A).

In a preliminary experiment, (see Fig. 5), three screws are
touched with the tip of the tool, using only the hand approaching
(HA) and pose-based screw approaching (SA)modes. In this exper-
iment, the homotopy between these twomodes is deactivated, and
the gain matrix 3 is independent from s. In Fig. 6, we have plotted
the components of the error e = s∗ − s (top) and of the joint veloc-
ities q̇ (bottom). The numbers correspond to the inserted screws
(1 to 3). It is clear from the curves that the transitions between
modes are abrupt in terms of q̇. This is because homotopy and
adaptive gains are not used.

Let us now focus on the second, complete experiment (see
Fig. 7), where all modes, as well as homotopy and adaptive
gains, were applied. This time, we verify that the cylindrical tool
successfully encircles new, non-tightened screws (see photo on
the left of Fig. 7). A high accuracy is required, since the screw
external diameter and tool internal diameters are respectively 5
and 9 mm. Although, the specifications are more strict than in
the previous experiment, force control facilitates the insertion, by
correcting slight orientation errors. Hence, we are confident that,
with a tightening tool, the approach should alsowork. Convergence
of the hand approaching and screw approaching modes has been
discussed just above. Let us now focus on the final mode, when
force control intervenes. In Fig. 8, we have E fE,Z and BYE during
this final mode. The plots start at time t = 60 s, when the tool
comes into contact with the flank. Correspondingly, E fE,Z decreases
from the null value, until the desired value is reached (in (51), we
set E f ∗

E,Z = −25 N). Then, at t ≈ 65 s, the end effector stops
(see bottom graph). After a few seconds, a user (see snapshots in
Fig. 7 and video) moves by hand the robot last joint. The forces are
detected (see E fE,Z in Fig. 8), and admittance control induces the
small variations of BYE . This experiment shows that the framework
is capable of force stabilization, for safe human–robot interaction.

5 www.reflexxes.com.
6 http://cs.stanford.edu/people/tkr/fri/html/.
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Fig. 5. Six consecutive snapshots of the first experiment of collaborative screwing.

Fig. 6. The six components of the error e = s∗ − s (top) and the seven components of the joint velocities q̇ (bottom) during the first experiment.

Fig. 7. Left: the tightening task. Right: consecutive snapshots of the second experiment.

Finally, we ran experiments with and without the adaptive
gains for Λ (experiments noted AG and FG), and with and with-
out the smooth homotopy from hand to screw approaching (noted

H and NH). To compare the experiments, in Fig. 9, we have plotted
the norm of the joint velocity |q̇|, for three experiments: NH+FG,
NH+AG, and H+AG. Since the change mainly concerns the hand
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Fig. 8. Evolution of E fE,Z (top) and BYE (bottom) over time, during force-based screw
approach and tightening.

Fig. 9. Evolution of |q̇| over time, during hand and screw approaching, using
NH+FG (green), NH+AG (cyan), and H+AG (red). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

and the beginning of screw approaching, we have only plotted the
curves for these phases. The mode change is visible in the plots,
and occurs after approximately 5 s. The joint velocity norm has
been chosen, since it is a good indicator of the movement smooth-
ness. In the first experiment (NH+FG, green curve), which repro-
duces the approach used in [27], strong variations appear during
the HA mode; these come from the variability of the positioning
error s∗p − sp, due to hand motion. Replacing the fixed gain with
an adaptive one yields the cyan curve. As the curves show, the
use of an adaptive gain, reduces the shaky motion. Another im-
provement is obtained by adding a homotopy of duration T = 1
second when the screw is seen. In this case (red curve), the tran-
sition from hand to screw tracking is much smoother. To further
demonstrate the smooth transitions obtained thanks to the adap-
tive gains and homotopies, in Fig. 10, we have compared the joint
velocity components obtained with NH+FG (left), and with H+AG
(right). As the figure shows, the curves are much smoother, and
less control effort is required,with the new approach.We have also

Table 1
Comparison between |q̇| and |q̈| in the four configurations.

Configuration FG AG NH H

|q̇| (rad s−1) 0.091 0.067 0.079 0.079
|q̈| (rad s−2) 0.132 0.082 0.145 0.068

compared the average values of |q̇| and |q̈| over each experiment.
These, shown in Table 1, confirm the cited properties. For bothmet-
rics, AG outscores FG, by realizing the same operation in the same
time with less velocity and acceleration. Also, as expected, homo-
topy reduces |q̈| (from 0.145 to 0.068 rad s−1) since it realizes a
smoothing effect on the joint velocities, but has no influence on
|q̇|. Reducing |q̈| is crucial for safe human–robot interaction, since
most robot safetymetrics (see [42]), depend on accelerationsmea-
sured at impacts.

In summary, the approach with both homotopy and adaptive
gains (H+AG) should be selected. The advantages are numerous:
less energy is required, the motion is smoother (facilitating image
processing), and faster operation can be obtained. In fact, although,
for the purpose of these comparisons, the gains were all tuned
so that the duration of the experiments be the same, in other
experiments we have fine tuned the gains of H+AG, to achieve
screw approaching in 40 s, i.e., approximately 80% faster than
in [27].

6. Conclusions

In this paper, we have generalized the multimodal framework
for human–robot interaction originally introduced in [27]. The
generalized framework can operate by activating or deactivating
various tasks, according to the sensed data and to the needs
of the application. This is of particular interest when numerous
sensing devices are to be used for control, as is often the case in
HRI. Typically, in this work, we have applied the framework to a
collaborative screw tightening experiment, where vision, Kinect,
position and force data must be alternatively controlled. To avoid
abrupt accelerations, important features such as adaptive gains
and homotopy are included in the framework.

This preliminary work opens numerous avenues for future re-
search. In the future, we plan to use our framework for full hu-
man–robot cooperation, with direct physical interaction. It would
then be possible to verify its robustness to unknown dynamic
parameters, resulting from the interaction with the human body
(e.g., arm and hand).
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Fig. 10. Evolution of q̇ components over time, during hand and screw approaching, using NH+FG (left), and H+AG (right). (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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a b s t r a c t

Although the concept of industrial cobots dates back to 1999, most present day hybrid human–machine
assembly systems are merely weight compensators. Here, we present results on the development of a
collaborative human–robot manufacturing cell for homokinetic joint assembly. The robot alternates
active and passive behaviours during assembly, to lighten the burden on the operator in the first case,
and to comply to his/her needs in the latter. Our approach can successfully manage direct physical
contact between robot and human, and between robot and environment. Furthermore, it can be applied
to standard position (and not torque) controlled robots, common in the industry. The approach is vali-
dated in a series of assembly experiments. The human workload is reduced, diminishing the risk of strain
injuries. Besides, a complete risk analysis indicates that the proposed setup is compatible with the safety
standards, and could be certified.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The concept of cobots, i.e., robots collaborating with human
workers in manufacturing assembly lines, dates back to the pio-
neer work [1]. In fact, cobots – designed for the assembly line
worker – can reduce ergonomic concerns that arise due to on-the-
job physical and cognitive loading, while improving safety, quality
and productivity. This is a key issue, since according to statistics of
the Occupational Safety and Health Department of the US De-
partment of Labour,1 more than 30% of European manufacturing
workers are affected by lower back pain, leading to enormous
social and economic costs. A thorough state-of-the-art on human–
machine cooperation in manufacturing lines is provided in [2]. At
the time of that survey (2009), the only hybrid assembly systems
in manufacturing processes were weight compensators/balancers.
However, the authors clearly point out the need for more ad-
vanced collaboration: although humans remain indispensable in
many assembly operations, ergonomic tools assisting their duties
are fundamental.

In this paper, we focus on a target application, proposed by PSA
(Peugeot Citroën) in the frame of the French National Project ANR
ICARO. The application is the assembly of an Rzeppa homokinetic
joint, an operation that is currently done manually in the PSA line,

causing muscular pain to the workers. In this work, we propose a
novel, collaborative human–robot design, of this cell.

The main contributions of this work are outlined below.

� In contrast with most existing human–machine manufacturing
applications, where collision avoidance is guaranteed by a
minimum security distance [2], our framework successfully
manages direct physical contact between robot and human,
and between robot and environment.

� In our design, the robot alternates active and passive behaviours
during assembly, to lighten the burden on the operator in the
first case, and to comply to his/her needs in the latter.

� In contrast with most similar works, our approach can be ap-
plied to standard position (and not torque) controlled robots,
common in the industry.

From the end user (PSA) viewpoint, two aspects are particularly
noteworthy. First, since the operator load is reduced by approxi-
mately 60%, the proposed assembly cell can be reclassified in the
PSA ergonomics scale. Second, a complete risk analysis by PSA
indicates that the proposed setup is compatible with the safety
standards, and could be certified.

The article is organized as follows. Section 2 summarizes the
state-of-the-art in collaborative manufacturing, and highlights our
contributions in the context of current, related research. In Section
3, we present the targeted application: collaborative assembly of a
homokinetic joint. The proposed framework is outlined in Section
4. The framework components (nominal trajectory generation,
admittance control, and safety monitoring) are then detailed in the
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following sections (respectively, Sections 5–7). Experimental re-
sults are reported in Section 8, and finally summarized in the
Conclusion.

2. Related work

This section summarizes the current state-of-the-art in colla-
borative manufacturing. We first review the more application-or-
iented research on human–machine cooperation (Section 2.1), and
then the academic research on physical human–robot interaction
(Section 2.2).

2.1. Research on human–machine cooperation in the industry

The authors of [3] provide a very rich overview of the emerging
technologies in automotive assembly, including the supporting
systems (mainly the information technologies). They show that
mass customization requires high technological flexibility, and
propose various designs to cope with this, by integrating both
automated and human-based assembly. A similar perspective is
that of the recent EU project ROBO-PARTNER [4], that aims at in-
tegrating assembly systems, and human capabilities. The main
enablers, according to the authors, are: intuitive interfaces, safe
strategies and equipment, proper methods for planning and ex-
ecution, and the use of mobile robots, and of distributed com-
puting. More recently, the U.S. Consortium for Automotive Re-
search conducted a study on feasibility of fenceless robotic cells for
automotive applications [5]. The study defines the levels of hu-
man–robot collaboration according to the cell complexity, to drive
the probabilities of successful implementation. But as in the pre-
viously cited survey [2], the paper exposes the absence of high
level human–robot collaboration, apart from “Intelligent Lift
Assistants”.

Although some automotive manufacturers are gradually in-
troducing robots in their human production line [6,7], a crucial
question persists: how should a collaborative robotic cell be de-
signed? Various researchers have looked into this. Papakostas et al.
[8] discuss the key features of cooperating robotic cells in auto-
motive assembly, and provide simulated comparisons of two sce-
narios: a conventional welding robotic cell, and one with co-
operating robots. The authors of [9] assess five alternative safety
designs, covering both hardware and control design, of a human–
robot collaboration prototype cell for cable harness assembly. In
[10], a new cell production assembly system, with human–robot
cooperation is developed. The system consists of three key tech-
nologies; parts feeding by double manipulators on a mobile base,
production process information support for the operator, and
safety management for cooperation between operator and robot.
The main target of [11] is safety of the shared work cell, in the
absence of physical fences between human and robot. Since safety
options provided by basic infrared sensors are limited, the authors
design a network architecture of these sensors, for tracking user
positions, while avoiding collisions. The authors of [12] propose a
method for optimizing task distribution among workers and ro-
bots. The method is validated, using an ABB Dual Arm Concept
Robot, in a PLC Input/Output module assembly scenario.

2.2. Research on physical human–robot collaboration

Recent robotics research focuses on the study and character-
ization of physical human–robot interaction (pHRI [13,14]). The
goal is to enable close collaboration between human and robot, in
all service and industrial tasks, that require the adaptability of
humans to be merged with the high performance of robots in
terms of precision, speed and payload [15]. In this context, it

becomes indispensable to define safety and dependability metrics
[16–19]. These can contribute to the definition of standards, such
as the recent ISO 10218-1:2011 “Safety requirements for industrial
robots”.2

In this line of research, many solutions for realizing safe col-
laborative tasks have been explored in recent years. Although
these solutions have not yet been transferred to the industry, we
hereby list some of the most relevant theoretical works. In [20], a
deformation-tracking impedance control strategy is designed to
enable robot interaction with environments of unknown geome-
trical and mechanical properties. For successful interaction with
unknown environments and operators, the robot should behave in
a human-like manner. This is the target of the research in [21,22]:
a human-like learning controller is designed, to minimize motion
error and effort, during interaction tasks. Simulations show that
this controller is a good model of human–motor adaptation, even
in the absence of direct force sensing. A robust controller for a
collaborative robot in the automotive industry, is extended in [23],
to manage not only the interaction between an industrial robot
and a stiff environment, but also human–robot–environment and
human–robot–human–environment interactions.

Other researchers have focused more on industrial applica-
tions. For example, an industrial robot controller, incorporating
compliance of the joints with the environment, is presented in
[24]. The desired pose of the tool center point is computed from
the force error. Parallel control considers a reference trajectory
while allowing feedforward in force controlled directions. Al-
though the method is designed for industrial assembly tasks, it
does not take into account the presence of a human in the loop. In
contrast, Erden and colleagues [25–27] have thoroughly studied an
industrial task that directly involves a human operator, i.e., manual
welding. In [25], a physically interactive controller is developed for
a manipulator robot arm: the human applies forces on the robot,
to make it behave as he/she likes. Then, a manual welding assis-
tant robot is presented in [26]: as the human controls the welding
direction and speed, the robot suppresses involuntary vibrations
(e.g., caused by novice welders). The results show a considerable
improvement in the welders performance when they are assisted.
Finally, [27] presents a study of end-point impedance measure-
ment at human hand, with professional and novice welders. The
results support the hypothesis that impedance measurements
could be used as a skill level indicator, to differentiate the welding
performance levels. Although the welding assistance application
targeted by these works also falls in the shared workplace para-
digm evoked in [2], it differs from the one treated here, since the
robot motion is driven by the human worker. Instead, in our work,
the robot is active and autonomous during various phases of the
assembly cycle. For the same reason, robot programming by de-
monstration/teaching is also out of scope here.

Other works similar to ours, but targeting manually guided
robot operation, are presented in [28,29]. In [28], an operator
teaches tasks to a robotic manipulator, by manually guiding its end
effector. For this, the authors design a virtual tool, whose dynamics
the operator should feel when interacting with the robot. An ad-
mittance controller driven by the measurements of a force/torque
sensor is designed to ensure the desired virtual dynamic beha-
viour. The second paper addresses the problem of controlling a
robot arm, executing a cooperative task with a human, who guides
the robot through direct physical interaction. This problem is
tackled by allowing the end effector to comply according to an
impedance control law [30] defined in the Cartesian space. Re-
dundancy ensures the stability of the coupled human–robot sys-
tem, through inertial decoupling at the end effector. However, in

2 www.iso.org/iso/catalogue_detail.htm?csnumber¼51330
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contrast with our work, the robot is torque (not position) con-
trolled, and an impedance (instead of admittance) controller is
used.

As outlined in most of the cited works, an efficient cobot must
interact easily with the worker, even if s/he is non-trained. To this
end, many pHRI works rely on the physical contact (touch) be-
tween robot and operator [31]. More recently, to guarantee inter-
action even in the absence of direct contact, researchers have
proposed the use of pointing gestures [32], as well as the in-
tegration of vision with force [33–35]. Also, in our work, interac-
tion includes both vision and force. In fact, vision stops/triggers
robot operation, in case of danger, while the operator contact
forces are used to start and end assembly, and to deform the robot
trajectory, for collision avoidance.

3. Application: collaborative assembly of a homokinetic joint

The application that is targeted in this work is the collaborative
human–robot assembly of a car homokinetic joint. Homokinetic
joints allow a drive shaft to transmit power to a second shaft
through a variable angle, at constant rotational speed, while lim-
iting friction and play. They are used both in front wheel drive
cars, and in rear wheel drive cars with independent rear
suspension.

Specifically, the homokinetic joint that we use in this work is
the Rzeppa joint, which was invented in 1926 by Alfred Hans
Rzeppa (1885–1965). The joint works in a manner similar to a
bevel gear, with steel balls in place of teeth. The working principle
and exploded diagram of this joint are shown in Fig. 1.

The joint consists of a spherical star-shaped inner race with six
grooves in it, and a similar enveloping outer shell (housing). Each
groove guides one steel spherical ball. The half shaft fits in the
centre of the inner race, which itself nests inside a circular cage.
The cage is spherical but with open ends, and with six openings
around the perimeter, one for each ball. Finally, the housing is
attached to the second shaft.

In this work, we propose a collaborative strategy for the as-
sembly of the Rzeppa joint. In fact, after thorough discussions with
the PSA ergonomists, and analysis of the most difficult cells in the
PSA process, it appears that this use-case generates more Mus-
culoskeletal Disorders (MSDs) than other assembly cells. This is
what motivated the choice of this cell, as case study. In particular,
we focus on the insertion of the six balls in the joint. This task is
currently done manually, using an insertion tool similar to the one
that is shown, along with all the joint components, in the left of
Fig. 2. The ball insertion operation that is currently done in the PSA
production process is outlined on the right of the same figure. The
ball order is predefined, since, to limit the mechanical constraints,
the first three balls must be inserted, so that there is an empty
groove between any two of them.

Let us hereby describe the steps of the manual assembly op-
eration. Prior to ball insertion (i.e., in the previous work cell), the
inner race, cage, and housing have been assembled, and a first ball
has been inserted. This ball links the cage and inner race, leaving

some backlash, which will diminish as the other balls are placed.
Hence, for simplicity, in the rest of this paragraph, the term cage
will be used to refer to the linked grouping of cage and inner race.
At first, the operator receives the partially assembled Rzeppa joint,
and places it in an ad-hoc support. Then, by tapping on the cage
with the insertion tool (see Fig. 2(1)), he slightly inclines it, until
the second ball can be inserted (Fig. 2(2)). Since the backlash di-
minishes, for inserting the third and following balls, tapping is not
sufficient anymore, and the operator must use the insertion tool to
increase the lever arm needed to incline the cage (Fig. 2(3)). The
insertion tool is designed so that its lower part fits precisely in the
cage. The cage inclination (or cage opening), followed by ball in-
sertion is repeated for the remaining balls (Figs. 2(4)– 2(8)). Once
all six balls have been placed, the cage is closed (i.e., reset to the
flat position, Fig. 2(9)), so that the Rzeppa joint can be sent to the
following cell in the production chain.

An experienced operator executes this entire operation very
quickly, to guarantee the required production rate of 70 joints per
hour. However, the cage opening and closing steps can provoke
MSDs. These injuries are due to the forces required for cage po-
sitioning, opening, and closing, and to the repetition of such ac-
tions. Ergonomists estimate that over an eight hour shift, the op-
erator lifts a total weight of approximately 5 tons, and realizes
18 000 upper limb movements [36]. Therefore, this part of the
operation should be automated to alleviate the operator. On the
other hand, the action of ball insertion by itself requires very high
precision and adaptability skills, which are not attainable by pre-
sent-day industrial robots. Thus, the characteristics of the Rzeppa
joint ball insertion work cell make it an ideal scenario for cobotics
research.

In practice, one should automate the cell according to the fol-
lowing specifications:

(1) The human operator must position the five balls in the cor-
responding cage openings, with little effort and motion, so
that the fatigue and chances of injury are minimized.

(2) The physical interaction between human and environment
(specifically, between the human hand and the steel parts)
must be controlled, to guarantee safety.

(3) The physical interaction between insertion tool and environ-
ment (specifically, the Rzeppa joint) must be controlled, to
avoid blockage.

(4) The cobot velocity must guarantee safety, i.e., it must comply
with the ISO safety standard cited in Section 2.2 (tool center
point velocity limited to 0.25 ms�1).

To fulfil the above requirements, we have redesigned the
manufacturing cell, as shown in Fig. 3 (top). The lower part of the
pre-assembled Rzeppa joint (composed of the housing, cage, inner
race, and first ball), is held by a gripper placed on the end effector
of a manipulator robot. The insertion tool, instead, is fixed to a
support that is rigidly constrained to the robot base. In contrast
with the manual insertion operation shown in Fig. 2, most of the
required movements will be carried out by the robot, with the
human intervening only to position the balls. The scenario is

Fig. 1. Working principle (left) [https://en.wikipedia.org/wiki/Constant-velocity_joint] and exploded diagram (right) [www.aa1car.com] of the Rzeppa homokinetic joint.
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perfectly reversed, to make it human-centered: now the Rzeppa joint
is displaced around the operator, instead of the opposite. To this end,
we control the robot so that it opens/closes the cage – for ball in-
sertion – by properly inclining it within the housing, and then pivots
it around the vertical axis so that the operator is always facing the
next desired opening. At the start (end) of the operation, the robot
end effector raises (descends) to connect (disconnect) insertion tool
and inner race. To realize all these motions (tool connection/

disconnection, cage opening/closing and pivoting), the robot follows
nominal, pre-taught trajectories. These nominal trajectories are de-
formed to comply with the external force/torques from the en-
vironment and operator, using an admittance controller [30]. To
further enhance safety of operation, the robot is stopped in the
presence of strong force/torques, and a fixed camera, mounted on the
insertion tool support, monitors the ball insertion. The camera is
used both to detect ball insertion, and to stop the robot if it may
endanger the operator hands. Since there is no risk of clamping
fingers in the back of the joint (solid steel of the housing, without
openings), the camera only monitors the front of the cage. Images
from the camera are shown at the bottom of Fig. 3 (raw image on the
left, and processed image on the right).

In the following, we provide more details on the control fra-
mework developed for collaborative assembly of the Rzeppa joint.

4. Definitions and characteristics of the control framework

4.1. Definitions and assumptions

The reference frames used to describe the assembly task are
shown in Fig. 3. In this, and in all other figures of the paper, the
RGB convention is used: axes X, Y and Z are respectively red, green
and blue. The frames used in this work are: the robot base ( B),
insertion tool support ( S), and end effector ( E) frames, with
origins respectively B, S and E. Reference frames B and S are
fixed in the world, whereas E moves with the robot. The pose of

S is determined via an estimation procedure explained in Section
5. The pose of a generic frame A in frame B is defined as:

θ= [ ] ∈ ( )⊤ p t u , 3A
B

A
B

A
B , with tA

B the translation vector from B to

A, and θuA
B the angle/axis vector [37].

In this work, we consider a manipulator with ≥j 6 degrees of
freedom (dof), and note ∈ q j the robot joint values.

We also assume that it is possible to estimate (either through
direct, or through joint torque measurement) the wrench (force
f E

E and torque mE
E ) applied to the end effector, and expressed in

the end effector frame: = [ ]⊤h f m,E
E

E
E

E
E . This information will be

fed to an admittance controller [30], to adapt the robot motion,
and avoid blockage between the Rzeppa inner race and the in-
sertion tool.

Fig. 2. Manual insertion. Left: concerned components (clockwise from top left: inner race, balls, cage, housing and insertion tool). Right: nine steps of the PSA manual
insertion operation; ball 1 does not appear, since, along with the inner race, cage, and housing, it has been assembled before this operation.

Fig. 3. Top: experimental setup for collaborative Rzeppa joint assembly with: in-
sertion tool support (S), end effector (E), and robot base (B) reference frames.
Bottom left: raw image from the camera. Bottom right: processed image with: locus
of the tool axis in the image (A), distance between hand and tool (dh), and mini-
mum distance tolerated for safety (dm). (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)

A. Cherubini et al. / Robotics and Computer-Integrated Manufacturing 40 (2016) 1–134



4.2. Inverse kinematics controller

In our framework, an inverse kinematics controller is used to
map end effector poses to the joint space. This is necessary for
initially generating the nominal trajectory, and then for deforming
it, according to the admittance controller. We hereby recall the
classic inverse kinematics formulation according to [38].

The evolution of the end effector pose can be expressed as:

̇ = ̇ ( )p Jq, 1E
B

with = ∂
∂J
p

q
E

B
the task Jacobian, of size × j6 , that is derived from

the robot measured configuration q̂, and q̇ the robot joint
velocities.

The end effector pose can be regulated to a desired value ⁎pE
B

and, if >j 6, redundancy [39] exists. Then, a secondary task can be
realized, by exploiting the −j 6 extra degrees of freedom (since
only 6 are required by the primary task, ⁎pE

B ). The joint velocity q̇

for driving pE
B to ⁎pE

B , is generated via:

Λ̇ = ( − ) + ( − )▽ ( )† ⁎ †q J p p I J J g. 2E
B

E
B

In the above equation:

� †J is the ×j 6 right pseudoinverse of J, such that =†JJ J J. We
assume that J is full row rank during operation, so that this
pseudoinverse can be calculated. This was the case throughout

the experiments and is a common assumptions in inverse ki-
nematics control [40].

� Λ is a positive definite 6-dimensional square diagonal matrix
that determines the convergence rate of pE

B to ⁎pE
B .

� The term ▽ = ∂
∂g g
q

is introduced to minimize the scalar cost
function ( )g q to perform the secondary task.

It is well-known that system (1), controlled by (2), is globally
asymptotically stable with respect to the pose regulation task.
Indeed, plugging (2) into (1) yields:

Λ̇ = ( − ) ( )⁎p p p , 3E
B

E
B

E
B

and, since Λ is a positive definite diagonal matrix, = ⁎p pE
B

E
B is a

stable equilibrium for the closed-loop system. Also, note that
minimization of g has no effect on the task dynamics.

4.3. Control framework

Our framework for collaborative assembly is shown in Fig. 4.
The framework is made up of two steps (shown respectively at the
top and bottom of the figure): the offline nominal trajectory gen-
eration step, and the online controller for collaborative assembly.
We hereby outline the framework, and will then detail its com-
ponents in Sections 5–7.

A nominal trajectory , corresponding to the entire assembly
operation, is input to the controller. This is defined by a series of N

Fig. 4. Control framework for collaborative assembly. Top: nominal trajectory generation. Bottom: collaborative assembly controller.
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way points in the joint space, that are to be followed by the robot:

= { … }

= … ∈ ( )
⊤⎡⎣ ⎤⎦ q q

q q

q

, ,

. 4

N

i i i j
j

1

,1 ,

In (4), …q q, ,i i j,1 , are the nominal joint angular values to be realized
at iteration i. These are mapped from the operational space by the
inverse kinematics controller, presented just above. Nominal tra-
jectory (4) is identified offline through a procedure outlined at the
top of Fig. 4, and detailed in Section 5.

Then, at run time, is adapted online to account for the
physical interaction with the environment and operator. To this
end, an admittance controller (see Section 6) shifts the end effector
desired pose by Δ = −⁎p p pE

B
E

B
E

B , according to the external
wrench (force and torque) on the end effector, expressed in the
support frame, that we denote with hE

S . This pose variation is
mapped, again by the inverse kinematics controller, to a joint
correction Δq, then applied to the current waypoint of , to obtain
the actual joint reference ⁎q for the robot motors. Index i is in-
creased as soon as the reference trajectory way point qi has been
reached, i.e., when δ‖ − ^‖ <q qi 2 , with q̂ the joint measure, and δ
an arbitrary scalar threshold (see ‘way point sequencing’ block in
the bottom of Fig. 4).

Prior to this, safety monitoring is applied. This relies on two
verifications. The first consists in checking the magnitude of the
external wrench, whereas the second uses processed image data to
monitor the operator hand. The safety module is detailed in Sec-
tion 7.

5. Nominal trajectory generation

This section presents the generation of the nominal trajectory
used by the control framework.

5.1. Characterization of the trajectory

Without loss of generality, we consider that the robot final joint
value qj is defined along the axis aligned with the end effector
frame z-axis (positive qj corresponds to a counter clockwise rota-
tion around the z-axis). This assumption, which is consistent with
the kinematics of most current day collaborative robots [41], fa-
cilitates the pivoting of the Rzeppa cage after each ball insertion.
This pivoting will orient the joint, so that the groove where the
next ball is to be inserted, will face the operator. The assembly
operation can then be broken into five similar trajectories (one per
ball), differing only by the orientation of the Rzeppa joint, i.e., of
the end effector frame, with respect to the second-to-last joint

frame. These five orientations (shown at the top of Fig. 5) have
been designed to respect the ball insertion order shown on the top
left of the same figure.

The collaborative Rzeppa joint assembly operation that is pre-
sented in this paper is then composed of the following steps
(shown in the bottom of Fig. 5).

1. The end effector E connects the inner race to the insertion tool.
For this, E tracks a straight line segment in the operational
space.

2. The robot moves the Rzeppa joint to enable insertion of each
ball – the following steps are cycled 5 times (once for each ball).

(a) The joint is inclined so that the cage opens in front of the
operator, and then the robot stays still until ball insertion
(detected by the camera). For this, E tracks an arc of circle in
the operational space (since the position of S and the distance
between E and S are both constant).

(b) The joint is inclined so that the cage is closed. Again, E tracks
an arc of circle in the operational space.

(c) The joint is brought back to the starting position of step 2, by
having E track again an arc of circle in operational space.

(d) The last joint qj is actuated to pivot the Rzeppa joint, so that
the next cage opening will face the operator. Specifically (see
Fig. 5, top), after the insertion of each ball …II VI, joint qj must
rotate, relatively to the previous value by:

π π

π π π

Δ = − Δ = −

Δ = Δ = Δ = − ( )

q q

q q q

2 /3 /3

2 /3 2 /3 /3. 5

j j

j j j

II III

IV V VI

The last rotation shift is necessary to realign the robot end
effector with the initial configuration, to prepare the next
assembly operation.

3. The end effector disconnects the inner race from the insertion tool.
For this, E tracks a straight line segment in the operational space.

Each of these steps is obtained by executing a trajectory, and all are
concatenated to obtain the complete nominal trajectory in (4).
Defining these trajectories in the joint, rather than in the operational
space, guarantees their feasibility (typically w.r.t. singularities and
joint limits), and avoids errors due to inaccuracies in the encoder
measurement and in the inverse kinematics computation. However,
although technically defined in the joint space, the trajectories
correspond to desired behaviours of the end effector in the opera-
tional space. The only exception is the trajectory in 2(d), which is best
defined in the joint space, since it consists in controlling only the last
joint value qj to pivot the end effector ( = = … =q q qk k N k1, 2, , ,

= … −k j1, , 1). For the other steps, instead, the task is best defined
in the operational space.

Fig. 5. Top: ball insertion order (left), and end effector frame configurations for inserting balls …II VI (right). Bottom: snapshots of the consecutive steps of the assembly
operation (steps 2(a) to 2(d) are cycled 5 times, once for each ball).
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5.2. Manual execution and identification in the operational space

The most delicate issue is the identification of the circular
trajectory to be followed during steps 2(a)–2(c). This is crucial,
since the Rzeppa joint is physically constrained to the insertion
tool, during robot motion, and an inaccurate trajectory may lead to
blockage. The trajectories for the other steps (1, 2(d), and 3) are
derived from these circular trajectories. In fact: the trajectories for
steps 1 and 3 are simple rectilinear connections to and from the
arc of circle, without physical contact between the joint and the
insertion tool, and the trajectory for 2(d) is constrained to the
circle, with only orientation changes of the end effector. However,
the equation of the circle in the robot base frame is related to the
dimensions, configurations and poses of the insertion tool and of
its support, which are very difficult to measure accurately. Thus,
we have devised an identification procedure based on manually
executing the nominal trajectory to the robot.

This procedure relies on the assumption that the robot is
backdrivable (either via software or hardware). This is the case in
most current day collaborative robots [41]. At first, the robot end
effector is manually driven to the starting pose of step 2, noted
Pteach. This corresponds to the insertion tool being connected to the
inner race, with the Z axis of the end effector frame aligned with
the insertion tool. Then, the operator moves the robot end effector
back and forth a few times along the circular trajectory that is to
be followed for ball insertion. The Cartesian positions of the end
effector in the robot base frame are recorded throughout this
operation:

{ … }

= ∈ ( )
⊤⎡⎣ ⎤⎦ X Y Z

t t

t

, ,

. 6
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E
B

E
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E
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E
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This set of positions in the operational space, which is clearly noisy
due to the shaky motion of the operator, is fed to an identification
algorithm, coded in ®Matlab .

The results of the identification are shown on the left of Fig. 6.
First, the sphere (radius R and center position tS

B in the base
frame) that is closest to the taught trajectory, is found, by solving
with lsqnonlin the nonlinear least-squares problem:

( ) ( ) ( )∑ − + − + − −
( )
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7R i
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2 2 2 2
2

S
B i i i

The center of this sphere is set as the origin of the support frame,
S. Second, the plane passing through S, and closest to the taught
points is found, by solving, with lsqlin, the constrained linear
least-squares problem:

( )∑ + + − +

+ = ( )
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c Z

min 1 subject to

1. 8
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B
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, ,

2

i i i

Here, a, b and c are the parameters of the plane equation
+ + =a X b Y c Z 1B B B . Third, we define the start point of step 2,

noted P for pivoting cage point. Point P is obtained by projecting
Pteach first on the sphere (7), and then on the plane (8). This way, it
is possible to define the S frame axes: Z is parallel to line ( )SP and
pointing towards S, X is parallel to plane normal [ ]⊤a b c and
pointing to the right of the operator, and Y completes the frame.
Then, naming Q the intersection between the sphere and the Y axis
of S, the equation of the arc of circle in B is:

ψ ψ ψ

ψ ψ ψ

ψ ψ ψ

( ) = + +

( ) = + +

( ) = + + ( )
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B
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Q

S

with ψ ψ ψ π π∈ [ ] ⊂ ]− ], ,m M . The two trajectory extrema ψm and ψM

are manually tuned according to the setup. These correspond to
points O (for open cage), and C (for closed cage). Finally, translating
P away from the arc of circle, in the direction of decreasing SZ, by
the arbitrary length of the connecting trajectory, we derive the end
effector initial pose, noted I. Having set a desired sampling interval
on ψ, the four points I, P, O, and C, with equation (9), define the
way poses of the end effector in the base frame for steps 1-3 for
inserting only the first ball:

{ … … … … … … } ( )p p p p p p p, , , , , , , , , , , , . 10I
B

P
B

O
B

P
B

C
B

P
B

I
B

For each pose, the end effector orientation θuE
B is calculated so that

the end effector frame Z axis passes through S, and the Y axis is
tangent to the circle, so that the ball 2 cage opening is in front of the
operator (as in the second snapshot of Fig. 5). The result of the de-
scribed identification procedure is shown in the left of Fig. 6, where
we show: in red the recorded taught positions tE

B
i
, in gray the in-

sertion tool, in green the identified plane (with the top vertex cor-
responding to S), and in black the sampled trajectory (10).

S 

I 
P 

O  

C 

B 

E=O 

B 

I 
P C 

E 

Q  

Fig. 6. Left: results of the trajectory identification with relevant way points I (initial), P (pivoting), O (open cage), and C (closed cage), and insertion tool (grey). Right:
Simulations for replaying the identified path (black) using an inverse kinematics controller. In both figures, the base and end effector frames are also drawn. (For inter-
pretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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5.3. From the operational to the joint space trajectory

The following step consists in converting operational space
trajectory (10) to the corresponding joint space trajectory, ex-
pressed as (4). For a general redundant robot, the inverse geo-
metric model cannot be derived in closed form. Thus, we use the
inverse kinematic pose controller (2) to track trajectory (10), as
explained just below. First, we position the robot in the initial pose
pI

B . Then, renaming pE
B

i
the ordered sample poses in (10), tra-

jectory tracking consists in driving the end effector pose pE
B to the

next desired pose in the trajectory ( =⁎p pE
B

E
B

i
), and incrementing i

as soon as ⁎pE
B is reached (i.e., as soon as ‖ − ‖ < ϵ⁎t tE

B
E

B
t2 and

θ‖ ‖ < ϵ⁎ ⁎u sinE
E

E
E

r2 , with ϵt and ϵr two arbitrary scalar thresholds).
The trajectory terminates when pose =⁎p pE

B
C

B is reached, as in
(10).

The joint values recorded while tracking (10), i.e.,

{ … … … … … … } ( )q q q q q q q, , , , , , , , , , , , , 11I P O P C P I

are then split in the following five primitive joint trajectories:
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The index of each trajectory coincides with the corresponding step,
as listed at the beginning of this Section. For the five ball inser-
tions, the last joint value qj of the trajectories (12) must be shifted
by the Δq values in (5). This corresponds to applying the following
iterative rule:
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with, in addition, Δqj
I set to 0. In practice, the three trajectories of

step 2 are identical for all five balls, except for the value of the last
joint angle, which is shifted by a constant value at each new ball
insertion. To guarantee smooth transitions between the trajec-
tories, the Rzeppa joint is pivoted during step 2(d) with the linear
interpolation indicated by the second equation in (13).

To summarize, the complete nominal trajectory for assembling
an Rzeppa joint, is given by the following concatenation of tra-
jectories:
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In the next section, we explain how this nominal trajectory is
used to control the robot, during the Rzeppa joint assembly op-
eration, when the interaction forces with the environment and
operator are also to be taken into account.

6. Admittance control

Admittance and impedance are reciprocal concepts [30]: while
impedance control produces forces/torques in response to velocities,
admittance control produces velocities in response to forces and
torques, at a given interaction port. Here, we apply an admittance

controller, to map the contact wrench to a desired deviation of the
end effector motion in the base frame, ΔpE

B , through an equivalent
spring-damper system. This guarantees motion safety, since the end
effector trajectory is ‘naturally’ deformed to avoid blockage. It also
makes the robot compliant during step 1, so that the operator can
manually guide the inner race in the insertion tool.

The contact between robot and environment is located at S, and
the frame S is immobile during operation. For these reasons, the
admittance controller will rely on the wrench applied on the end
effector and expressed in the support frame, hE

S . It is straight-
forward to obtain this from hE

E , through:

= ( )h W h , 15E
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and RE
S the rotation matrix corresponding to angle/axis vector

θuE
S . The relative pose of the effector in the support frame re-
quired in (16), can be derived at each iteration from the robot end
effector pose ( )p qE

B , and from the pose of the support in the base

frame, pS
B (computed as explained in 5).

To ensure that the admittance controller is activated only for
sufficiently high values, and filter out measurement noise, each
component of hE

S is passed through the following deadband filter:
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to generate the components of wrench vector hadm, that is the one
actually input to the admittance controller. The sizes of the six
deadband regions, hm i, , are manually tuned, as will be explained
just below.

We consider a spring-damper system, with null mass, and ad-
justable parameters (stiffness matrix K, and damping matrix B,
both positive definite and diagonal):

= Δ + Δ ̇ ( )h K p B p . 18adm E
S

E
S

Numerically differentiating on a sampling period Δt , and re-
arranging terms, yields the expression of ΔpE

S at time t:

Δ ( ) = Δ (Δ + ) ( ) + (Δ + ) Δ ( − Δ ) ( )− −t t t t t t tp K B h K B B p . 19E
S

adm E
S1 1

This controller relies on its output at the previous iteration
Δ ( − Δ )t tpE

S . Finally, a spatial motion transform matrix is used to

convert ΔpE
S to ΔpE

B , as required by the inverse kinematics con-
troller (2).

The whole admittance control pipeline is outlined in Fig. 7. The
procedure for tuning all the parameters (hm i, , and the diagonal com-
ponents of K and B, noted respectively …k1 6 and …b1 6) is the following.

(1) The robot is manipulated away from the insertion tool sup-
port, with the end effector not in contact with the
environment.

(2) The damping is set to zero in (19), so the ΔpE
B , to be realized

by the robot is a linear function of hadm (pure spring model).
(3) The operator applies external torques/forces to the end effec-

tor along each of the six dof, and tunes the corresponding
values of the deadband range …hm,1 6 and of the stiffness …k1 6,
to obtain the desired deadband tolerance and static gain.

(4) B is introduced to remove the oscillations: the operator ap-
plies an external wrench, but this time the robot is controlled
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with (19), and the …b1 6 are tuned to obtain the desired
response time for each component.

The values used in the experiments are given in Section 8.

7. Safety

This section presents the safetymodule. This relies on two tests.
The first consists in checking whether any component of hE

S is
greater than the corresponding one in a threshold vector. Then,
according to the current phase of the experiment, the robot either
stops (‘safety stop’) or changes waypoint, using a strategy that will
be detailed in Section 7.1. Second, the external camera is used to
monitor safety of the insertion. If the operator hand is detected in
the scene during robot motion, a safety stop is triggered. Details on
the algorithm used for this are given in Section 7.2.

7.1. Dealing with strong external wrench

The external wrench on the end effector is used not only as
input to the admittance controller presented just above, but also to
monitor state changes or blocking situations during the assembly
operation. Here also, we use its expression in the support frame,
hE

S , derived with (15). The components of hE
S are monitored ei-

ther to check if a step has been completed, or to stop the motion in
case of blockage. These two cases are indicated respectively by the
left and right arrows exiting block Test on external wrench in Fig. 4.

In practice, steps 1 and 2(b) are considered completed if any
component of hE

S is greater than the corresponding one in
threshold vectors τ1 and τ b2 . If this is the case, even if the end
effector has not yet reached the end point (respectively, P and C),
the nominal reference is shifted to the start of the next trajectory
(respectively, a2 and c2 ). During the connecting trajectory 1, we
only monitor component f E Z

S
, :

τ τ= [+∞ + ∞ + ∞ + ∞ + ∞] ( ). 20z1 1,

Since this force is due to the first contact between the Rzeppa joint
and the insertion tool, if it passes the threshold, we consider point P to
be reached, and start the first inclination step, a2

I . During the cage
closing phase, b2 , a strong component of hE

S will indicate that the
closure is complete, and that the ball has been properly inserted in the
inner race. Then, we consider that point C has been reached, and re-
verse the motion to return towards P, by following c2 .

Throughout operation, a safety stop is triggered if any component
of hE

S is greater than the corresponding one in threshold vector τs. The
robot is blocked to avoid damaging the parts (or the robot itself), and
the operator must manually unblock it, to resume operation. The
image processing module (explained just below) ensures that motion
is not resumed while the operator hand is in contact with the end
effector.

7.2. Image processing

To safely interact with the human and with the environment,
the designed controller relies on various sensed data. Along with
the force/torque measures that are monitored as explained in the

previous section, we utilise a camera to observe the scene around
the insertion tool. Specifically, the camera should detect the op-
erator hand, to trigger a safety stop, if the hand is near the robot,
and restart motion, once a ball has been inserted.

The camera is placed with its optical axis parallel to the insertion
tool, to maximize scene saliency. The type of image seen from the
camera is shown in the bottom left of Fig. 3. Only the image greyscale
is considered, and we assume that the operator hand is the lighter
gray area in the scene. To facilitate detection, the operator wears
white gloves, and the ground floor, below the end effector, is black.
These are reasonable constraints, since the industrial cell can be
partly structured, and since image processing is not the main con-
tribution of this work. More sophisticated approaches, such as
[42,43], could be applied to relax these constraints.

A simple image processing algorithm is used to derive the distance
dh between the hand and the insertion tool axis (see bottom right of
Fig. 3). For this, two geometric parameters are predefined according to
the relative pose of the camera and tool. These are: the locus of the
tool axis (point A), and an annulus surrounding the tool, which is
considered relevant for safety. Only the pixels in this annulus are taken
into account (the grey pixels in the figure are excluded, and in the
following paragraph, we refer to this annulus as the image).

The algorithm then consists in the following steps:

1. A two-dimensional Gaussian filter is applied to the image to
improve the signal-to-noise ratio.

2. The image is binarized: pixels are turned black or white, by
comparing their luminosity with a fixed threshold.

3. One erosion and two dilations are applied to the image, to
connect regions of similar pixels (blobs).

4. The size of each white blob in the image is evaluated by
counting the neighbour pixels.

5. The greatest white blob is selected; if it is sufficiently large, it is
assumed to be the hand, and dh is calculated. Otherwise, dh is
undefined.

If dh is defined, and if it is below a minimum tolerated distance for
safety, denoted dm, a safety stop is triggered (see Fig. 4). The stop is
only active while <d dh m. For example, if the operator has to
manually unblock the robot as explained in Section 7.1, the robot
will resume motion only when: it has been unblocked (all compo-
nents of hE

S are smaller than those of τs) and the operator hand is in
safety (not in the camera field of view, or with >d dh m). This method
is also used to close the Rzeppa cage: as soon as the hand exits the
dangerous area, the ball is considered inserted, and the robot starts
the closing phase (step 2(b)).

8. Experiments

8.1. Setup and nominal trajectory generation

To validate our framework, we have run a series of experiments
with a 7 dof lightweight KUKA LWR IV3 robot in the scenario

Fig. 7. Complete pipeline of the admittance controller, from measured external wrench hE
E to desired pose variation ΔpE

B .

3 www.kuka-labs.com/en
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illustrated in Fig. 3 (top). This robot is well known for its flexibility,
which has fostered its use in pHRI applications [44]. The controller
sampling time is set to Δ =t 20 ms (a specification imposed by the
ICARO project software architecture). The ⁎q computed by the
controller (see Fig. 4) are smoothed by the Reflexxes online tra-
jectory generation library4 before being sent to the robot joints. To
get the interaction wrench hE

E , instead of mounting a force sensor
on the end effector, we average, over a window of 4 samples, the
wrench that is estimated by the robot controller through the FRI
Interface5 every 5 ms. This signal, which is derived from the ap-
plied and measured joint torques, proved to be accurate enough
for our application. The camera used to monitor the human hand
is a B & W Stingray F201B from Allied Vision Technologies, with
resolution 1024�768 pixels. As secondary task in (2), we impose
joint limit avoidance, via the following scalar cost function:
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with [ ]q q,k m k M, , the available range for joint k and =qk mid,

( + )q q /2k M k m, , its midpoint.
Two compliant controllers (in the operational and joint space)

are already embedded in the KUKA LWR. However, we decided to
use our own admittance controller (described in Section 6) for
three reasons. First, we must control the robot in the joint space
(to verify its configuration w.r.t. the environment and w.r.t. self-
collisions), whilst defining the admittance characteristics (wrench
references, damping and stiffness) in the operational space, and
this is not feasible with the KUKA controller. Second, the ad-
mittance parameters must be varied online at the various assem-
bly steps, and the KUKA controller can only operate with prefixed
values. Finally, our method can be applied to any position-based
industrial robot with wrench measurement, making the frame-
work generic, and not limited to the LWR.

The manually taught trajectory is identified (see Fig. 6, left), as
an arc of circle of radius R¼0.241 m, center position

= [− − ]⊤t 0.432 0.421 0.448 mS
B , and amplitude ψ ψ− = 1.70M m
radians. Then, to generate the corresponding articular joint tra-
jectories, we apply (2) to track operational space trajectory (10), on
a KUKA LWR IV, simulated in Webots6 (see Fig. 6, right). The si-
mulations are used to record the joint values (11), without en-
dangering the real robot. We set Λ = I6, ϵ = 0.02t and ϵ = 0.005r , to
obtain the five primitive joint trajectories (12) for each of the se-
ven joints, plotted in Fig. 8.

8.2. Control parameters

These trajectories are deformed online in case of external
contacts, using the admittance controller described in Section 6.
For the deadband filter, we apply the following threshold:

= [ ]⊤h 8 8 8 3 3 3m , (i.e., force components below 8 N and torque
components below 3 Nm are not taken into account). The stiffness
and damping matrix components are set to:

= = =

= = = ( )

k k k

b b b

250 N/mm 500 N/mm 170 Nm/mrad

0.005 Ns/m 0.01 Ns/m 0.003 Nms/rad. 22

1,2 3 4,5,6

1,2 3 4,5,6

The threshold vectors that are used to check if a step has been
completed, or to stop the motion (see Section 7.1), are as follows
(forces expressed in N, moments in Nm).

� To verify that P has been reached (i.e., that the tool has been

inserted), we only monitor f E Z
S

, , according to (20): τ = 40 Nz1, .
� To verify that the closure is complete, we compare the wrench

to the threshold:

τ = [ ] ( )⊤70 40 70 15 15 15 . 23b2

The reason for setting the threshold on f E Y
S

, smaller than f E X
S

,

and f E Z
S

, is that, in our setup, when the closure is completed,
the most relevant forces appear along the support frame Y-axis
(see Fig. 3).

� To block the robot:

τ = [ ] ( )⊤70 70 70 25 25 25 . 24s

In this case, all directions are considered equally relevant.

Although we used the ViSP library [45] for visualization, the
image processing algorithms for detecting and tracking the op-
erator hand were developed from scratch, as explained in Section
7.2. The threshold for considering the hand dangerous is set to
dm¼300 pixels, while the relevant annulus minimum and max-
imum radii are respectively 180 and 750 pixels. The whole image
processing pipeline takes only 5 ms, well below both the con-
troller (20 ms) and camera framegrabber (33 ms) sampling times.

8.3. Results and discussion

The experiments consisted in having various users insert the
five balls in the Rzeppa joint. We hereby discuss the results of
these experiments, which are shown in Fig. 9, and in the video
available at https://youtu.be/3KWduKKSyy8.

On the top of Fig. 9, the relevant steps of a complete successful
experiment are shown. These include: tool connection/disconnec-
tion (1, 8), ball insertion (2, 3, 7), joint pivoting (4, 5), vision trig-
gered emergency stop (6), and joint manual unmounting (9, 10).

The joint trajectories obtained during this experiment are plotted
in Fig. 10. In this figure, the emergency stops activated by vision are
highlighted in yellow, and the insertion phases for each ball are in-
dicated with the black rectangles. Correspondingly, the robot motion
is stopped. As the curves show, the values of …q1 6 are the same for
each of the five balls, whereas q7 changes, to pivot the cage before
the start of the next ball insertion (just before the vertical dashed
lines). In the current version of the software, the end of the insertion
phase is notified by keyboard pressing, to resume robot motion. The
reason is that it is very difficult, and unnecessary, to determine this
state automatically. In future work, this notification could be given
via a pedal, to free the operator hands.

The admittance controller is indispensable to avoid blockage be-
tween robot and tool, which systematically occurs when it is deac-
tivated. Its effect can be seen in Fig. 11, where we have plotted the
components of the external wrench hE

S , along with the

Fig. 8. The five primitive trajectories in joint space, obtained by inverse kinematics
in Webots (abscissa: iterations, ordinate: joint angles in rad).

4 www.reflexxes.com
5 http://cs.stanford.edu/people/tkr/fri/html/
6 www.cyberbotics.com
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corresponding variation of the articular trajectories. Apart from the
peaks on f E Y

S
, (red curves in the top figure), which occur at each of

the five insertion phases, it can be seen that throughout the as-
sembly, the admittance controller induces variations of the order of
magnitude of 0.02 rad (1 degree) to the articular joint values.

Although the whole assembly takes approximately 120 s, i.e.,
almost 4 times more than the manual one, the following aspects
must be considered.

� Part of the delays are due to the current cell configuration. In
particular, when the Rzeppa joint opens, the cage is horizontal.
This complicates the ball insertion task, and makes, in this ex-
periment, the operator drop the second ball to the ground,
causing a 25 s insertion phase (first black rectangle in Fig. 10). To
solve this problem, in future work, we plan to incline the
insertion tool w.r.t. the ground, so that the housing is horizontal
during ball insertion.

� We have deliberately decided to operate at 40% of the max-
imum speed allowed in physical Human–Robot Interaction
(0.25 ms�1). In fact, throughout the experiments, the tool cen-
ter point velocity is always below 0.1 ms�1. However, given the
low image processing sampling time (5 ms), we are confident
that increasing the robot speed towards the 0.25 ms�1 limit
would not pose problems.

� Note that, even if the collaborative assembly was executed at
the maximum speed allowed in physical Human–Robot Inter-
action (0.25 ms�1), it would still be slower than the manual
one. However, since the operator activity over one cycle time is
smaller, it could be possible to have more robots working with a
single operator, in order to leverage his/her production time.

� Another gain can be obtained by pivoting the Rzeppa
joint during step 2(c). This would suppress step 2(d), which
currently takes approximately 10% of the entire cycle time (2.5 s
per ball).

Fig. 9. Top: first experiment. (1) Tool connection. (2, 3) Second ball insertion. (4, 5) Joint pivoting. (6) Vision triggered emergency stop. (7) Sixth ball insertion. (8) Tool
disconnection. (9, 10) Unmounting the assembled Rzeppa joint. Bottom: second experiment. (11, 12). The operator unblocks the joint using a hammer. (13, 14) Motion
resumes and a new ball can be inserted.

Fig. 10. The joint trajectories, during the first experiment (abscissa: time in s, ordinate: joint angles in rad). The emergency stops activated by vision are highlighted in
yellow, and the insertion phases for each ball are indicated with the black rectangles. (For interpretation of the references to color in this figure caption, the reader is referred
to the web version of this paper.)
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� The collaborative robot assembly substantially reduces the risk
of strain injuries with respect to the manual assembly, since
most of the physical effort is realized by the robot. In fact, the
operator load is reduced by approximately 60%, and, following
this work, the Rzeppa assembly cell was reclassified in the PSA
ergonomics scale (from ‘red’ to ‘medium’ level).

The experiments have been repeated by two users, to show the
simplicity and robustness of the system. The video shows four
experiments, where the entire assembly is completed, twice by
each user. The last experiment (shown in the bottom of Fig. 9) is of
particular interest, since it shows a case where the robot motion is
blocked due to excessive external wrench (above threshold (24)).
In this case, the user has to manually unblock the cage, using a
hammer, until motion resumes (when the wrench returns within
the safety range). It is noteworthy to point out that this also often
occurs during manual assembly by experienced users. Typically, a
slight misplacement of the third ball can jam the inner race and
housing, requiring intervention with a hammer. The advantage of
our framework is that these situations are automatically managed
at a high level, avoiding permanent blockage of the robot.

9. Conclusions

This paper presents preliminary results on the development of
a collaborative human–robot manufacturing cell for Rzeppa joint
assembling. In contrast with most human–machine manufacturing
applications, this one requires direct physical contact between
robot and human, as well as between robot and environment.

The proposed framework integrates many state-of-the-art ro-
botics components, seldom applied in real industrial scenarios.
These include: trajectory optimization, admittance control, and
image processing. The approach is validated in a series of experi-
ments, with different users. With the proposed visual gesture
monitoring and intrinsic collision detection, the robot setup is
compatible with the safety standards, and could be certified. In
addition, PSA has conducted a complete risk analysis of the ap-
plication, to ensure that there is no obstacle in the deployment of
such technology. Although the cycle time is lower than that of
manual assembly, the collaborative cell lightens the operator
burden, and substantially reduces the risk of strain injuries. Fur-
thermore, the causes of the assembly delays have been identified,
and we are confident that slight adjustments in this sense would
radically reduce the cycle time, and spur the transfer of the pro-
posed technology.

If successfully deployed in automotive factories, the proposed
robotic assistant would have a very quick return on investment.
Indeed, in spite of the high price of the hardware, the expected
reduction of MSDs and associated costs, is tremendous. It has been
estimated, by PSA, that the savings in terms of activity limitations
and disability could cover the hardware cost of the setup in ap-
proximately a year.

Following this work, the two groups (LIRMM and PSA) are
pursuing research in this field, in the context of other French Na-
tional Projects. Future work will consist in deploying the proposed
methodologies on mobile manipulator robots, which represent
key technologies in flexible manufacturing.
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