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RESUMEN DE LA MEMORIA PARA OPTAR
AL GRADO DE DOCTOR EN CIENCIAS DE LA INGENIERÍA
MENCIÓN MODELACIÓN MATEMÁTICA
POR: ALEJANDRO MAXIMILIANO ROJAS PALMA
FECHA: 2016
PROF. GUÍA: HÉCTOR RAMÍREZ CABRERA, ALAIN RAPAPORT

ESTUDIO DE ALGUNOS PROBLEMAS EN MODELACIÓN Y OPTIMIZACIÓN DE
BIOPROCESOS

El propósito de esta tesis es el estudio de algunos problemas que surgen desde la ingeniería de
bioprocesos. En particular, el análisis del comportamiento y el cultivo óptimo de microalgas y la
conexión de múltiples bioreactores. Se proponen y analizan tres problemas. El primero se basa
en un reciente trabajo en el cual los autores alteran el clásico modelo de Monod incorporando
incidencia de luz en la dinámica a través de la función de crecimiento de la biomasa. La idea es
estudiar un problema de optimización no lineal más general, el cual considera la maximización
de la biomasa de microalgas promedio respecto del tiempo, para diferentes intervalos temporales.
La dificultad matemática que se presenta tiene relación con que la discontinuidad en los inter-
valos de tiempo provoca la no diferenciabilidad en partes del dominio temporal. Esta falta de
regularidad implica la formulación de un problema de optimización no suave. En el segundo
problema se analiza un modelo matemático reducido de un estanque de microalgas con nitrifi-
cación, asumiendo que las microalgas pueden crecer, ya sea consumiendo nitrato como amonio,
con preferencia por el amonio. La limitación de luz por auto-sombreado también es incluida en
la tasa de crecimiento de microalgas como inhibición no competitiva. Es factible reducir el sis-
tema usando la teoría de sistemas asintóticamente autónomos y el sistema limitante obtenido se
puede considerar como una perturbación de un sistema de dos especies que compiten por un sus-
trato. Por lo tanto, utilizamos un resultado de sistemas perturbados no evanescentes para obtener
teorema de estabilidad que demuestra la coexistencia. El último problema tiene relación con sis-
temas compartimentados. Se prueba que para una gran clase de sistemas entrada-salida positivos
de dimensión finita que representan redes de transporte y difusión de soluto entre compartimen-
tos móviles e inmóviles, existen representaciones MINC (multiple interacting continua) y MRMT
(multi-rate mass transfer) algebraicamente equivalentes. Más aún, se entregan métodos explícitos
para construir estas representaciones equivalentes, donde la controlabilidad de los sistemas juega
un rol importante.

Palabras claves: Bioprocesos, optimización, modelación matemática, sistemas compartimen-
tados, crecimiento de microalgas, controlabilidad.
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RÉSUMÉ DE LA THÈSE POUR OBTENIR
LE DEGRE DE DOCTEUR EN SCIENCES DE L’INGÉNIEUR
MENTION MODÉLISATION MATHÉMATIQUE
PAR: ALEJANDRO MAXIMILIANO ROJAS PALMA
DATE: JUIN 2016
DIRECTEURS DE THÈSE: HÉCTOR RAMÍREZ CABRERA , ALAIN RAPAPORT

ETUDE DE CERTAINS PROBLÈMES DANS lA MODÉLISATION ET L’OPTIMISATION DES
BIOPROCÉDÉS

L’objet de cette thèse est l’étude de certains problèmes liés à l’ingénierie des bioprocédés, en
particulier l’analyse du comportement et de la culture optimale des microalgues et la connexion
de plusieurs bioréacteurs. Trois problèmes sont proposés et analysés. Le première est basé sur
une étude récente dans laquelle les auteurs modifient le modèle classique du Monod en incorpo-
rant l’incidence de la lumière sur la dynamique à travers le rôle de la croissance de la biomasse.
L’idée est d’étudier un problème plus général de l’optimisation non linéaire qui considère max-
imisation de la biomasse moyenne de microalgues en fonction du temps, pour des intervalles
de temps différents. La difficulté mathématique qui se pose est lié à la discontinuité des inter-
valles de temps qui rend la fonction à optimiser non différentiable. Ce manque de régularité
comprend la formulation d’un problème d’optimisation non-lisse. Dans le deuxième problème,
un modèle réduit du réservoir microalgues avec nitrification est analysé, en supposant que les
microalgues peuvent se développer à partir de la consommation de nitrate et d’ammonium, de
préférence par l’ammonium. La limitation de la lumière par l’auto-ombrage est également inclus
dans le taux de croissance du microalgues comme inhibition non compétitive. En réduisant le
système en utilisant la théorie des systèmes asymptotiquement autonomes, il peut être considéré
comme une perturbation d’un système de deux espèces en compétition pour un substrat. Par
conséquent, nous utilisons un résultat de systèmes perturbés non-évanescentes pour obtenir un
théorème de stabilité pour la coexistence. Le dernier problème est lié aux systèmes compartimen-
tés. Il est prouvé que pour une grande classe de systèmes entrées-sorties positifs de dimension
finie, représentant transport et diffusion de soluté entre des compartiments mobiles et immobiles,
il existe des représentations MINC (multiple interacting continua) et MRMT (multi-rate mass transfer)
algébriquement équivalentes. En outre, des méthodes explicites sont donnés pour construire ces
représentations équivalentes, où la contrôlabilité des systèmes joue un rôle important.

Mots clés: Bioprocédés, optimisation, modélisation mathématique, systèmes compartimen-
taux, croissance des microalgues, contrôlabilité.
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THESIS ABSTRACT TO OBTAIN
Ph. D DEGREE IN ENGINEERING SCIENCE
MENTION MATHEMATICAL MODELLING
BY: ALEJANDRO MAXIMILIANO ROJAS PALMA
DATE: JUNE 2016
ADVISORS: HÉCTOR RAMÍREZ CABRERA , ALAIN RAPAPORT

STUDY OF SOME PROBLEMS IN MODELLING AND OPTIMIZATION OF BIOPROCESSES

The purpose of this thesis is to study some problems that arise from bioprocess engineering,
in particular the behaviour analysis and optimal cultivation of microalgae and the connection of
multiple bioreactors. The thesis consists of three problems. The first is based on a recent study in
which the authors extend the classical Monod model incorporating light incidence on the dynam-
ics through the role of biomass growth. The idea is to study a more general problem of nonlinear
optimization which considers maximization average biomass of microalgae versus time, for dif-
ferent time intervals. The mathematical difficulty that arises is related to that discontinuity of
the time intervals which causes non differentiability in some domain points. This lack of regu-
larity involves the formulation of a non-smooth optimization problem. In the second problem, a
reduced mathematical model of a microalgal pond with nitrification is analyzed, assuming that
microalgae can grow either by ammonium consumption or by nitrate consuming, with preference
for ammonium. Light limitation by self-shading is also included in the growth rate of microalgae
as a noncompetitive inhibition. It is feasible to reduce the system using the theory of asymptoti-
cally autonomous systems and the limiting system obtained can be considered as a perturbation
of a system of two species competing for a substrate. So, we use a result of non-vanishing pertur-
bated systems to obtain a strong stability theorem for equilibrium coexistence. The last problem
is related to compartmental systems. It is proved that for a large class of finite dimensional input-
output positive systems that represent networks of transport and diffusion of solute in mobile
and immobile compartments, there exist MINC (multiple interacting continua) and MRMT (multi-
rate mass transfer) algebraically equivalent representations. Moreover, we provide explicit methods
to construct these representations, where controllability property is playing a crucial role.

Keywords: Bioprocess, optimization, mathematical modelling, compartmental system, mi-
croalgae growth, controllability.
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Chapter 1

General Introduction

1.1 Thesis description and motivations

At present there is a tendency to develop efficient industrial processes from economic and en-
vironmental point of view. In this sense, bioprocesses, which are defined as fermentation pro-
cesses involving the decomposition of glucose contained in substrates by enzymes produced by
microorganisms, are more interesting due to the production of several products (antibiotics, foods,
beverages, enzymes, biofuels , etc.) in many productive areas of industry.

However, the mathematical modelling of these processes is valuable insofar as it answers theo-
retical questions concerning the kinetics of the involved reactions and optimizes the process itself
under certain predetermined criteria, such as minimizing production time or overall costs or max-
imizing the biomass resulting from the bioprocess. This is the motivation for the study of the
problems raised in this manuscript. Naturally, it is not possible to cover the broad spectrum of
problems in this area; however, the purpose is to show a methodology of analysis that responds
to the objectives and leads to discussions about the solutions obtained.

The focus of this manuscript is the proposal and analysis of three problems that arise from
bioprocess engineering. The first problem involves optimal microalgae productivity in bioreactors
with light incidence. Light has a positive influence on microalgae growth; thus, productivity is
better in cultures with light incidence. A management objective in the industrial production of
microalgae is productivity maximization over time. In this sense, in [44], the authors address
the optimization of biomass long-term productivity within the framework of microalgal biomass
production in photobioreactors in continuous operation mode under the influence of day/night
cycles. They propose a simple bioreactor model accounting for light attenuation in the reactor due
to biomass density and obtain a control law that optimizes productivity over a single day through
the application of Pontryagin’s maximum principle, with the dilution rate being the control. They
conclude that because of the day-night constraint, the productivity rate cannot be as high as it
could have been without it. However, when the maximal growth rate is sufficiently larger than
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the respiration rate, we manage to have a temporary phase where the productivity rate is at or near
this level. The maximal harvesting at the end of the light phase and at the beginning of the dark
phase minimizes the biomass during the dark phase and, consequently, the net respiration. If the
maximal growth rate is very large, the optimal solution consists in constantly applying maximal
control because the biomass that is built-up in the light phase needs to be harvested even during
the night.

Naturally, a question arises: Is it possible to make a comparison regarding the behavior and
optimization results considering a batch operation mode? The first substantial difference between
the processes is related to the dilution rate. In continuous operation mode, as a chemostat model
[88], the dilution rate is a parameter that can be considered a control variable. However, in a batch
process, dilution occurs in the final time of the process because batch mode is a discontinuous
process. Thus, from a mathematical point of view, an optimal control approach is not possible in
this case. In the batch process there are two decision variables: the initial condition of biomass
concentration of each species and the final time of the operation. The idea is to formulate a non-
linear optimization problem with the objective of maximizing the mean volumetric productivity.
Following the same assumptions given in [44], the model of two species, substrate concentration
and microalgae biomass concentration, in a batch culture is reduced to a first-order nonlinear or-
dinary differential equation with a discontinuous right-hand side [35] that represents the biomass
concentration growth of microalgae under light incidence. The discontinuity of this equation is
caused by the influence of day/night cycles that are given in the model as step functions (see
appendices A and B in chapter 2). The solution of this equation is a continuous function but not
differentiable in all the domains; where the solution is part of the objective function. This implies
that the optimization problem formulated is non smooth and the classical gradient approach is not
possible to apply. To solve this problem or at least give the necessary optimality conditions, some
results of nonsmooth optimization theory were applied. The analysis, main results and discussion
of this problem are given in chapter 2.

In the second problem of this thesis, we try to simplify a more complex model of microal-
gae growth in a chemostat in competition with oxidizing nitrite bacteria and oxidizing ammonia
bacteria and various substrates namely, total inorganic carbon, ammonium, nitrite, nitrate and
nitrous acid where nitrification is represented by a two-step bioreaction. The growth functions
considered for each species take into account different inhibition and limitation terms. The mass
balance equations form a high-dimensional system of nonlinear ordinary differential equations.
This fact causes the mathematical analysis of the system to be overcomplicated and even unsuc-
cessful. Although it is possible to apply a numerical approach to obtain the relevant information
of dynamical behavior from a quantitative point of view, we expect to have an idea of the global
behavior based on qualitative analysis.

The simplifying model is a four-dimensional nonlinear system that represents the dynamics
of two species, microalgae and nitrifying bacteria, in competition for nitrogen present as ammo-
nium and nitrate produced by nitrification in a continuous process (chemostat). The nitrification
is represented by a one-step bioreaction in this case. The model that we formulate and the sta-
bility results, present several features that we believe to potentially be of interest. In this chemo-
stat model, an intra-specific competition phenomenon is considered based on density dependent
growth functions and also cross-feeding; i.e., the nitrate produced by the nitrifiers can be con-
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sumed by the algae. We show that the coexistence of species is possible in the chemostat, although
their stability may vary depending on some parameter values. It is feasible to reduce the system
using the theory of asymptotically autonomous systems, and the limiting system obtained can be
considered as a perturbation of a system of two species competing for a substrate. Thus, we use
a result of non-vanishing perturbed systems to obtain a strong stability theorem for equilibrium
coexistence. Stability analysis, discussion and an application using realistic parameter values are
provided in chapter 3.

The third problem studied in this manuscript is related to linear compartmental systems. In
geoscience, models of fractured porous media are often described as a mobile zone driven by
advection, and one or several immobile zones are directly or indirectly connected to the mobile
zone by diffusion terms. We believe that these models are also relevant to describing flows in soil
or in porous media such as biofilms. To model a flow process, it is possible to define different
configurations between these zones. Example of these are the classical connections in series and
parallel, both in non-interacting systems [24]. The models MINC (Multiple INteracting Continua)
and MRMT (Multiple Rate Mass Transfer) are extensively used in transport phenomena. For in-
stance, MINC is used to model flow in fractured media [99], and MRMT is used to model the
transport of solutes both passive and reactive [46].

Recently, these models were studied in [25]. Specifically, the authors are interested in the re-
lation between these configurations. In a previous work (see appendix A in chapter 4) a trans-
fer function approach is used to show that these two schemes are often used in the literature:
MINC-where the diffusive compartments are connected in series- and MRMT-where the diffu-
sive compartments are connected in a star around the mobile zone- are equivalent input-output
representations and provide formulas (up to three compartments) to pass from one representa-
tion to another. This result means that one can simply choose the most convenient approach
when dealing with control or optimization without loss of generality. In this thesis, we prove this
equivalence in the general case of n compartments. For this, we analyze the equivalence between
MINC/MRMT structures and a general class of input-output linear systems that represent solute
transport and diffusion between different compartments. We indeed show that any such systems
can be equivalently represented by any of the particular two matrix structures: MRMT or MINC
(but using different volumes and diffusive transfer terms). Moreover, we propose explicit meth-
ods to build equivalent MRMT or MINC matrices from any given structure, on the condition that
it fulfills a controllability assumption. As shown in the examples, this controllability condition is
not provided by the single irreducibility assumption on the network structure. The results and
examples mentioned above can be found in chapter 4.

1.2 Some important notions in bioprocess engineering

Bioprocess engineering is the application of engineering principles to design, develop, and ana-
lyze processes using biocatalysts. These processes may result in the formation of desirable com-
pounds or in the destruction of hazardous substances. The tools of the engineer, particularly the
chemical engineer, are essential to the successful exploitation of bioprocesses [87].
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Biotechnology usually implies the use or development of methods of direct genetic manipula-
tion for a socially desirable goal. Such goals might include the production of a particular chemical,
but they may also involve the production of better plants or seeds or gene therapy or the use of
specially designed organisms to degrade waste. The key element for many users is the use of so-
phisticated techniques outside the cell for genetic manipulation. Others interpret biotechnology
in a much broader sense and equate it with applied biology; they may include engineering as a
subcomponent of biotechnology [36].

Many words have been used to describe engineers working with biotechnology. Bioengineer-
ing is a broad title and would include work on medical and agricultural systems; its practitioners
include agricultural, electrical, mechanical, industrial, environmental and chemical engineers, as
well as others. Biological engineering is similar but emphasizes applications to plants and ani-
mals. Biochemical engineering has usually meant the extension of chemical engineering princi-
ples to systems using a biological catalyst to bring about desired chemical transformations. It is
often subdivided into bioreaction engineering and bioseparations. Biomedical engineering has
been considered to be totally separate from biochemical engineering, although the boundary be-
tween the two is increasingly vague, particularly in the areas of cell surface receptors and animal
cell culture.

There is a difference between bioprocess engineering and biochemical engineering. In addition
to chemical engineering, bioprocess engineering would include the work of mechanical, electrical,
and industrial engineers who apply the principles of their disciplines to processes based on living
cells or subcomponents of such cells. The problems of detailed equipment design, sensor devel-
opment, control algorithms, and manufacturing strategies can utilize the principles from these
disciplines. Biochemical engineering is more limited in the sense that it draws primarily from
chemical engineering principles and is broader in the sense that it is not restricted to well-defined
artificially constructed processes, but it can be applied to natural systems [30].

The fundamental training of biologists and engineers is distinctly different. In the develop-
ment of knowledge in the life sciences, unlike chemistry and physics, mathematical theories and
quantitative methods (except statistics) have played a secondary role. Most progress has been
due to improvements in experimental tools. Results are qualitative and descriptive models are
formulated and tested. Consequently, biologists often have incomplete backgrounds in mathe-
matics but are very strong with respect to laboratory tools and, more importantly, with respect
to the interpretation of laboratory data from complex systems. Engineers usually possess a very
good background in the physical and mathematical sciences. Often a theory leads to mathematical
formulations, and the validity of the theory is tested by comparing predicted responses to those
in experiments. Quantitative models and approaches, even to complex systems, are strengths.
Biologists are usually better at the formation of testable hypotheses, experimental design, and
data interpretation for complex systems. Engineers are typically unfamiliar with the experimental
techniques and strategies used by life scientists. The skills of the engineer and life scientist are
complementary. To convert the promises of molecular biology into new processes, new products
must require the integration of these skills. To function at this level, the engineer must have a solid
understanding of biology and its experimental tools [87].

Due to the limitations of the thesis, it is not possible to cover all dimensions involved in bio-
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process engineering. However, we consider many topics that are used to develop the problems
that are studied. In the next sections, appropriate references are suggested.

1.2.1 Bioreactors: Design, kinetics and operation mode

The bioreactor is a device used to carry out any kind of bioprocess; examples include fermenters
or enzyme reactor [41]. Put simply, a bioreactor is a vessel in which a chemical process is carried
out that involves organisms or biochemically active substances derived from such organisms. This
process can either be aerobic or anaerobic. There are different types and sizes, depending on its use
(industrial or research, for instance). Everything concern with the implementation and dynamics
involved in the process is the basis for the bioreactor design.

Bioreactor design is an integral part of biotechnology, an area with rather vague and contested
borders. Biotechnology is not simply the sum of microbiology, genetics, biochemistry, engineer-
ing, etc.; it is also the integration of these disciplines, and this involves quite a bit more than just
simple addition. Integration and application are the keywords that can be found in most defini-
tions of biotechnology. In particular with the design of bioreactors, integration of biological and
engineering principles is essential. The bioreactor should be designed such that the specific bi-
ological and technological demands of a process are met. Naturally, the quality and price of a
product are important for commercial realization. The aim of bioreactor design can thus be de-
fined as "minimization of the costs of the pertinent product while retaining the desired quality,
and this within the biological and technological constraints." This does not mean a priori that
minimizing the costs of the bioreactor also means minimizing the costs of the integral process.
This depends largely on the cost-determining part(s) of the process. If running the bioreactor is
cost determining, then maximization of the overall volumetric productivity of the bioreactor is, in
general, the rational approach. If, on the other hand, downstream processing is cost determining,
then maximization of the product concentration in the bioreactor is, in general, the rational thing
to do. However, here again, integration is the keyword. Bioreactor design should be an integral
part of the overall process design. The words bioreactor, biocatalyst and product have been used
in general terms [61].

Productivity and product concentration

Overall volumetric productivity Qp [mol m−3 s−1] (it is also common to use a yearly basis) is
the average production capacity per unit volume and time of the bioreactor. The overall volu-
metric productivity is confined, on the one hand, by physical constraints such as mass and heat
transfer and, on the other hand, by the biocatalyst concentration x [mol m−3] and activity of the
bio-catalyst, expressed as the substrate consumption rate −µs [mol m−3 s−1]. Maximization of the
overall volumetric productivity of the bioreactor in principle means minimization of the costs of
investment because one can suffice with smaller equipment. It also usually means lower operating
costs. In general, it also means that it is desirabled to operate the bioreactor as close as possible to
the physical constraints. This physical limitation is the result of mass and heat transfer limitations,
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which are stoichiometrically related to product formation.

In addition to limitations by mass and heat transfer and concentration of the biocatalyst, the
overall volumetric productivity of the bioreactor is determined by the overall productivity of the
biocatalyst, Prx, defined as the total moles of a product that are produced by 1 mol of biocatalyst
during its operational lifetime tl [s]. Prx is related to the specific product production rate qp [s−1]
(moles of product produced per mol of biocatalyst per second) as

Prx =
∫ tl

0
qpdt = −

∫ tl

0
Yps

µs
x dt. (1.1)

The definition of Yps, the overall yield of product on substrate (total moles of product produced
per total mol of substrate), leads to

Qp =
1
tl

∫ tl

0
qpxdt =

1
tl

∫ tl

0
−Ypsµsdt. (1.2)

The time needed to empty, clean, refill, restart, etc. the bioreactor between two operations is the
so-called down-time, which is symbolized by ta [s]. In case ta is relevant, it can be introduced
in the equations above by replacing 1

tl
preceding the integral, by 1

tl+ta
. In addition to the molar

productivity used above, the mass productivity (kg product instead of mol) is also commonly used
in engineering (conversion from one to the other by means of the molecular weights). It is also
common practice to use hour, day or year as a unit of time. The search for and the development
of a useful biocatalyst with a suitable yield, specific activity and stability is, in the beginning,
the task of micro-biologists, biochemists, molecular biologists, protein engineers, etc. However,
in particular with respect to stability, the process engineer also has the means available -among
others immobilization- to improve the stability of biocatalysis.

The effect of the composition of the product stream leaving the bioreactor on the costs of down-
stream processing is substantial. Therefore, it is essential to take this into account when designing
the bioreactor. In practice, this often means that the bioreactor is designed such that the concen-
tration of the product is as high as possible. The end concentration of product Cp [molm−3] in the
bioreactor depends on µs, Yps, and the residence time in the bioreactor. For a batch reactor, with
t f [s] as the time that the batch lasts, this leads to

Cp = Yps

∫ t f

0
−µsdt, (1.3)

and for a continuous reactor with a liquid throughflow Fl [m3s−1] and a volume V [m3]

Cp = −Ypsµs
V
Fl

(1.4)

Concentration of product is a key-parameter when the downstream processing is the cost-determining
part of the integral process. Product recovery is often a laborious and expensive operation, in par-
ticular when diluted aqueous solutions are involved such as are usually encountered in biotech-
nology. However, it has become clear that the aqueous reaction medium, which was for a long
time supposed to be essential for biocatalysis, can be replaced to a large extent by a suitable or-
ganic solvent.

Volumetric productivity in a batch culture is the objective to maximize in the problem proposed
and analyzed in chapter 2 of this thesis.
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Enzyme kinetics

Enzymes are biological catalysts that are protein molecules in nature. They are produced by living
cells (animal, plant, and microorganism) and are absolutely essential as catalysts in biochemical
reactions. Almost every reaction in a cell requires the presence of a specific enzyme. A major
function of enzymes in a living system is to catalyze the creation and breaking of chemical bonds.
Therefore, like any other catalysts, they increase the rate of reaction without themselves undergo-
ing permanent chemical changes.

The catalytic ability of enzymes is due to its particular protein structure. A specific chemical
reaction is catalyzed at a small portion of the surface of an enzyme, which is known as the active
site. Some physical and chemical interactions occur at this site to catalyze a certain chemical
reaction for a certain enzyme. Enzyme reactions are different from chemical reactions, as follows
[30]:

1. An enzyme catalyst is highly specific, and catalyzes only one or a small number of chem-
ical reactions. A great variety of enzymes exist, which can catalyze a very wide range of
reactions.

2. The rate of an enzyme-catalyzed reaction is usually much faster than that of the same reac-
tion when directed by nonbiological catalysts. Only a small amount of enzyme is required
to produce a desired effect.

3. The reaction conditions (temperature, pressure, pH, and so on) for the enzyme reactions are
very mild.

4. Enzymes are comparatively sensitive or unstable molecules and require care in their use.

Because an enzyme is a protein whose function depends on the precise sequence of amino
acids and the protein’s complicated tertiary structure, large-scale chemical synthesis of enzymes
is impractical if not impossible. Enzymes are usually made by microorganisms grown in a pure
culture or obtained directly from plants and animals.

Enzyme kinetics adresses the rate of enzyme reaction and how it is affected by various chemical
and physical conditions. Kinetic studies of enzymatic reactions provide information about the
basic mechanism of the enzyme reaction and other parameters that characterize the properties
of the enzyme. The rate equations developed from kinetic studies can be applied in calculating
reaction time, yields, and optimum economic condition, which are important in the design of an
effective bioreactor.

Assume that a substrate (S) is converted to a product (P) with the help of an enzyme (E) in

a reactor as S E−→ P. If you measure the concentrations of substrate and product with respect to
time, the product concentration will increase and reach a maximum value, whereas the substrate
concentration will decrease. The rate of reaction µs can be expressed in terms of either the change
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in substrate s or product concentrations Cp as follows:

µs = − ds
dt , (1.5)

µs = dCp

dt . (1.6)

In order to understand the effectiveness and characteristics of an enzyme reaction, it is important
to know how the reaction rate is influenced by reaction conditions such as substrate, product, and
enzyme concentrations. If we measure the initial reaction rate at different levels of substrate and
enzyme concentrations, we obtain a series of curves and we can conclude the following:

1. The reaction rate is proportional to the substrate concentration (that is, first-order reaction)
when the substrate concentration is in the low range.

2. The reaction rate does not depend on the substrate concentration when the substrate con-
centration is high, since the reaction rate changes gradually from first order to zero order as
the substrate concentration is increased.

3. The maximum reaction rate µmax is proportional to the enzyme concentration within the
range of the enzyme tested.

Considering the remarks above, the following rate equation (Henri, 1902) [30] is proposed

µs(s) = µmaxs
KM+s , (1.7)

where µmax and KM are kinetic parameters that need to be experimentally determined. Eq. (1.7)
expresses the three preceding observations fairly well. The rate is proportional to s (first order) for
low values of s, but with higher values of s, the rate becomes constant (zero order) and equal to
µmax. Since (1.7) describes the experimental results well, we need to find the kinetic mechanisms
that support this equation.

Figure 1.1. Effect of nutrient concentration on the specific growth rate of E. coli (source [87]).

The reaction rate equation can be derived based on the following assumptions:

1. The total enzyme concentration stays constant during the reaction (CE0 = CES + CE).
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2. The amount of an enzyme is very small compared to the amount of substrate. Therefore,
the formation of the enzyme substrate complex does not significantly deplete the substrate.

3. The product concentration is so low that product inhibition may be considered negligible.

In addition to the preceding assumptions, there are three different approaches to derive the rate
equation: the Michaelis-Menten approach (1913), Briggs-Haldane approach (1925) and numerical
solution. We focus on the Michaelis-Menten approach, which is mostly used in this work. In the
first place, we note that the Michaelis-Menten equation has the same form as the Monod equation
(1942), but differs in that it is based on theoretical considerations, while the latter is empirical.

If the slower reaction, ES
k3−→ P + E, determines the overall rate of reaction, the rate of product

formation and substrate consumption is proportional to the concentration of the enzyme-substrate
complex as

µs = dCp

dt = ds
dt = k3CES (1.8)

Unless otherwise specified, the concentration is expressed as molar unit, such as kmol/m3 or
mol/L. The concentration of the enzyme-substrate complex CES, can be related to the substrate
concentration s and the free-enzyme concentration CE based on the assumption that the first re-

versible reaction S + E
k1←→
k2

ES is in equilibrium. Then, the forward reaction is equal to

k1sCE = k2CES.

By substituting the last equality into (1.8), the rate of reaction can be expressed as a function of
s and CE, of which CE cannot be easily determined. If we assume that the total enzyme contents
are conserved, the free-enzyme concentration CE can be related to the initial enzyme concentration
CE0 (see first assumption above). Thus, we now have three equations from which we can eliminate
CE and CES to express the rate expression as the function of substrate concentration and the initial
enzyme concentration. By substituting the last equations for CE and rearranging for CES, we obtain

CES =
CE0 s
k2
k1

+s
.

Substitution of the equation above into (1.8) results in the final rate equation

µs = dCp

dt = ds
dt =

k3CE0 s
k2
k1

+s
= µmaxs

KM+s (1.9)

which is known as the Michaelis-Menten equation and is identical to the empirical expression
(1.7). KM in equation (1.9) is known as the Michaelis constant.

The unit of KM is the same as s. When KM is equal to s, µs is equal to one half of µmax accord-
ing to (1.9). Therefore, the value of KM is equal to the substrate concentration when the reaction
rate is half of the maximum rate µmax. KM is an important kinetic parameter because it charac-
terizes the interaction of an enzyme with a given substrate. Another kinetic parameter in (1.9) is
the maximum reaction rate µmax, which is proportional to the initial enzyme concentration. The
main reason for combining two constants k3 and CE0 into one lumped parameter µmax is due to the
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difficulty of expressing the enzyme concentration in molar units. To express the enzyme concen-
tration in molar units, we need to know the molecular weight of the enzyme and the exact amount
of pure enzyme added, both of that are very difficult to determine. Since we often use enzymes
which are not in pure form, the actual amount of enzyme is not known. Enzyme concentration
may be expressed in mass unit instead of molar units. However, the amount of enzyme is not well
quantified in mass units because the actual contents of an enzyme can differ widely depending on
its purity. Therefore, it is common to express enzyme concentration as an arbitrarily defined unit
based on its catalytic ability.

Michaelis-Menten kinetics (or Monod growth in the context of microalgae cultivation) is mainly
used in chapters 2 and 3 of this thesis.

Batch operation mode

The simplest reactor configuration for any enzyme reaction is the batch mode. A batch enzyme
reactor is normally equipped with an agitator to mix the reactant, and the pH of the reactant is
maintained by employing either a buffer solution or a pH controller. An ideal batch reactor is
assumed to be well mixed so that the contents are uniform in composition at all times.

Figure 1.2. Batch bioreactor in a laboratory experiment (source Laboratoire de Biotechnologie de l’Environnement, INRA, Narbonne,
France ).

Assume that an enzyme reaction is initiated at t = 0 by adding enzyme and the reaction mech-
anism can be represented by the Michaelis-Menten equation

− ds
dt = µmaxs

KM+s . (1.10)

An equation expressing the change in the substrate concentration with respect to time can be
obtained by integrating equation (1.10), as follows

∫ s

s0

−
(

KM+s
s

)
ds =

∫ t

0
µmaxdt, (1.11)
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and
KM ln( s0

s ) + (s0 − s) = µmaxt. (1.12)

This equation shows how s is changing with respect to time. With known values of µmax and the
change in s with time in a batch reactor can be predicted from this equation.

In a batch reactor, the reactants and the catalyst are placed in the reactor, which is then closed
to the transport of matter; the reaction is allowed to proceed for a given time, whereupon the
mixture of unreacted material together with the products is withdrawn. A provision for mixing
may be required [41]. A special case of batch reactor with light influence (photobioreactor) is the
focus in chapter 2 of this thesis.

Continuous stirred-tank reactor

A continuous stirred-tank reactor (CSTR) is an ideal reactor that is based on the assumption that
the reactor contents are well mixed. Therefore, the concentrations of the various components of
the outlet stream are assumed to be the same as the concentrations of these components in the
reactor. Continuous operation of the enzyme reactor can increase the productivity of the reactor
significantly by eliminating the downtime. It is also easy to automate to reduce labor costs.

Figure 1.3. Growth of phytoplankton in a continuous reactor (source Laboratoire d’Ecologie du plancton, Marin, CNRS, Villefranche
sur mer, France).

The substrate balance of a CSTR can be set up, as follows

Fs0 − Fs + µsV = V ds
dt , (1.13)

where F is the flow rate and V is the volume of the reactor contents. It should be noted that µs is
the rate of substrate consumption for the enzymatic reaction, while ds

dt is the change in substrate
concentration in the reactor. As can be seen in (1.13), µs is equal to ds

dt when F is zero, which is the
case in batch operation.

For the steady-state CSTR, the substrate concentration of the reactor should be constant. There-
fore, ds

dt is equal to zero. If the Michaelis-Menten equation can be used for the rate of substrate
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consumption µs, equation (1.13) can be rearranged as

F
V = D = 1

τ = µmaxs
(s0−s)(KM+s) (1.14)

where D is known as the dilution rate, and is equal to the reciprocal of the residence time τ. It is
common in biochemical engineering to use the term dilution rate rather than the term residence
time, with which chemical engineers are more familiar.

Equation (1.14) can be rearranged to give the linear relationship

s = −KM + µmaxsτ
s0−s . (1.15)

Michaelis-Menten kinetic parameters can also be estimated by running a series of steady-state
CSTR runs with various flow rates and plotting s versus sτ

s0−s .

A chemostat is a CSTR for growing bacteria cells. Specifically, the chemostat is a bioreactor
in which constant growth conditions for microorganisms are maintained over prolonged periods
of time by supplying the reactor with a continuous input of nutrients and continuous removal of
medium [41]. Dynamics in a chemostat are discussed in chapter 3 of this thesis.

Enzyme inhibition

Inhibitors are substances normally found in a naturally occurring reaction system, foreign-substances
contaminants, or unexpected reaction retardants. As discussed previously, substrate or products
may also be inhibitors. Degree of inhibition may depend on pH or the presence of other sub-
stances in the reaction mixture. The most common inhibitors that must be dealt with are reaction
substrates and/or products.

Inhibition of enzymatic reactions may be reversible, irreversible, or somewhere between the
two extremes. Even if inhibition is reversible, the rate of reversal may be so slow that inhibition
must still be considered essentially irreversible. Either reversible or irreversible inhibition may
be so slow that their effects must be considered as rate limited. Because absolutely irreversible
inhibition results in permanently inactive enzymes, the process is also called deactivation. The
term is not reserved for irreversible inactivation, however.

Several standard mechanisms utilized to explain the effects of reversible inhibition are based
on Michaelis-Menten kinetics and can be modeled by using modifications of Equation (1.8) with
linear functions of inhibitor concentration I. The modifications are as follows for the four major
categories.

1. Competitive inhibition:
1

Kapp
A

= 1
KA

(
1 + 1

KIC

)
. (1.16)

2. Uncompetitive inhibition:
1

Kapp
0

= 1
K0

(
1 + 1

KIU

)
. (1.17)
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3. Mixed inhibition: both equations (1.16) and (1.17) apply.

4. Pure noncompetitive inhibition: mixed inhibition with KIC = KIU .

where Kapp
A represents the apparent value of specificity coefficient KA [L mol−1s−1], I represents

the inhibitor concentration [mol L−1], KIC represents the competitive inhibition constant for I
[mol L−1], KIU represents the uncompetitive inhibition constant for I [mol L−1] and Kapp

0 repre-
sents the apparent value of catalytic constant K0 [s−1].

The overall rate equation(s) become complex when all these factors are included. Only in the
simpler cases can accurate integrations be carried out without the use of numerical integration.

Most initial rate equations fall into one standard category or another. The models for these
categories are conveniently stated in simpler standard forms analogous to the Michaelis-Menten
equation [73, 87].

• For competitive inhibition
µs = µmaxs

KM

(
1+ I

KIC

)
+s

. (1.18)

• For uncompetitive inhibition
µs = µmaxs

KM+s
(

1+ I
KIU

) . (1.19)

• For mixed inhibition
µs = µmaxs

KM+s+
KM
KIC

+ sI
KIU

. (1.20)

Where s represents the substrate concentration and I represents the inhibitor concentration. Con-
fusing terminology has arisen for the special case of mixed inhibition, where KIC = KIU , which tra-
ditionally is called noncompetitive inhibition. Not only is there confusion between the terms non-
competitive inhibition and uncompetitive inhibition, but also among the various types of mixed
inhibition, which may also have been called noncompetitive inhibition. The Nomenclature Com-
mittee of the International Union of Biochemistry recommends that this special case of mixed
inhibition, where KIC = KIU , be called pure noncompetitive inhibition and that the term noncom-
petitive inhibition not be used at all. In line with these recommendations, the equation for pure
noncompetitive inhibition is

µs = µmaxs

(KM+s)
(

1+ I
KI

) . (1.21)

In some cases, the maximum rate µmax may be determined by direct observation. Moreover, KM

is equal to the substrate concentration giving a rate equal to half the maximum rate. Care should
be taken in the use of this simplified analysis to be sure that a true maximum rate is obtained and
that the reaction actually is uninhibited. Note thata the catalytic constant,K0, is the slope of a plot
of µmax versus E0, for the uninhibited reaction; then

K0
KA

= KM. (1.22)
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The analysis of inhibition models according to Michaelis-Menten kinetics also may be applied
conveniently to cell growth inhibition because the simplified equation forms presented here are
the same as those derived from the Monod equation. This result naturally follows, because the
Monod equation presents a specific growth rate µ as a Michaelis-Menten function of cell substrate
concentration. However, cell multiplication may require more complex models and different treat-
ment, just as some complex enzymatic reactions do. Noncompetitive inhibition terms are used in
the example studied in chapter 3 of this thesis.

1.2.2 Microalgae cultivation: light influence and photobioreactors

Microalgae are microscopic photosynthetic microorganisms. They are a type of eukaryotic cell,
and they contain similar organelles such as chloroplasts and nuclei. Microalgae are generally
more efficient than land based plants in utilizing sun light, CO2, water and other nutrients which
translates into higher biomass yields and higher growth rates. They can also grow in a variety of
aquatic environments and can be grown without the use of fertilizers and pesticides which results
in less waste and pollution [84].

There are many areas where microalgae are needed. The whole algal biomass can be used as
a source of protein or valuable chemicals (pigments, enzymes) can be extracted. For instance, in
pharmaceutical applications several studies have shown the potential of microalgae as therapeu-
tical agents. Microalgae are already used as a source of nutritional supplements, as an additive for
cosmetics, in the treatment of wastewater and as a potential source of oil for biofuels [11].

Reduction of CO2 emissions is expedient, but even a 30% reduction (as agreed by some inter-
national legislations) is still not enough to stabilize the CO2 levels within a safe zone. This requires
the development of alternative biofuels, of which biodiesel and bioethanol have the greatest mar-
ket potential at the moment. Biodiesel is a popular alternative to petroleum-based diesel; it can be
used in regular diesel engines. It is ecofriendly, non toxic, biodegradable and when burned, due
to its low sulphur content, it produces fewer emissions than its petroleum counterpart. It can be
prepared from renewable sources like edible and non edible vegetable oils, animal fats and even
waste cooking oils. The most common concern with first generation biofuels is that as produc-
tion capacities increase, so does their competition with agriculture for arable lands used for food
production [17].

Different approaches can be taken when looking to grow microalgae in large volume. These
include outdoor ponds, with light supplied by the sun, and photo-bioreactors, which can be out-
door or indoor with light supplied by electric lights. Species control is better achieved under
closed conditions that are very common in a laboratory setting. Closed systems provide a better
opportunity to meet specific demands and to control and optimize cell growth parameters. In the
case of photo-bioreactors, many design considerations need to be made depending on the end
goal. There are basic design features that should be considered regardless of the configuration;
these include materials used for the set-up, source of light, circultion of the algae through the re-
actor, supplying CO2, and the control of other parameters such as pH, temperature and nutrient
concentration in the media [20].
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To estimate growth rates, one must have a series of measurements, at different times, that
will permit the calculation of the rate of change in biomass concentration. Cell number should
be counted, either through a direct method, as through light microscopy with a hemocytometer,
or indirectly through biomass concentration (as dry weight) or optical density as long as these
measurements correlate linearly with the number of cells. Under a typical homogenous batch
regime (in a closed system), microalgae (and other microorganisms) will pass through the follow-
ing growth phases:

A. Adaptation (lag phase)

B. Exponential growth phase (log phase)

C. Stationary phase

D. Logarithmic death phase

Figure 1.4. Batch growth profile (source [17]).

The individual phases, shown in Figure 1.4, are not always clearly defined; their length or slope
might change according to the culture conditions. During the lag phase (phase A) the microalgae
cells are adapting to the new environment conditions, at the end of the lag phase, the cells are
well adjusted and then start to multiply rapidly; this is the exponential phase (phase B. In this
phase, the number of living cells, doubles regularly with time. During this period, the cell growth
is described by the differential equation

dx
dt = µsx, x(0) = x0, (1.23)

where x is the number of cells (or cell concentration) at different times and µs is the specific growth
rate.

The deceleration growth phase follows the exponential phase. In this phase, growth deceler-
ates due to either depletion of one or more essential nutrients or the accumulation of toxic by-
products of growth. For a typical bacterial culture, these changes occur over a very short period
of time. The rapidly changing environment results in unbalanced growth. During unbalanced
growth, cell composition and size will change. In the exponential phase, the cellular metabolic
control system is set to achieve maximum rates of reproduction. In the deceleration phase, the
stresses induced by nutrient depletion or waste accumulation cause a restructuring of the cell to
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increase the prospects of cellular survival in a hostile environment. These observable changes are
the result of the molecular mechanisms of repression and induction. Because of the rapidity of
these changes, cell physiology under conditions of nutrient limitation is more easily studied in a
continuous culture.

The stationary phase (phase C) starts at the end of the deceleration phase, when the net growth
rate is zero (no cell division) or when the growth rate is equal to the death rate. Although the net
growth rate is zero during the stationary phase, cells are still metabolically active and produce
secondary metabolites. Primary metabolites are growth-related products and secondary metabo-
lites are nongrowth-related. In fact, the production of certain metabolites is enhanced during the
stationary phase (e.g., antibiotics, some hormones) due to metabolite deregulation. The reason for
termination of growth may be either exhaustion of an essential nutrient or accumulation of toxic
products. If an inhibitory product is produced and accumulates in the medium, the growth rate
will slow down, depending on inhibitor production, and at a certain level of inhibitor concen-
tration, growth will stop. Ethanol production by yeast is an example of a fermentation in which
the product is inhibitory to growth. Dilution of toxified medium, with the addition of an unme-
tabolizable chemical compound complexing with the toxin, or simultaneous removal of the toxin
would alleviate the adverse effects of the toxin and yield further growth.

The death phase (phase D) follows the stationary phase. However, some cell death may start
during the stationary phase, and a clear demarcation between these two phases is not always
possible. Often, dead cells lyse, and intracellular nutrients released into the medium are used
by the living organisms during stationary phase. At the end of the stationary phase, because of
either nutrient depletion or toxic product accumulation, the death phase begins. The rate of death
usually follows first-order kinetics

dx
dt = −µdx, (1.24)

where x is the concentration of cells at the end of the stationary phase and µd is the first order
death rate constant. A complete analysis of a batch growth is given in [87].

Light influence in growth and productivity

The central issue involved in mass cultivation of photoautotrophic microalgae,who are organisms
that carry out photon capture to acquire energy, concerns effective use of strong light for photo-
synthetic productivity of cell mass and secondary metabolites. This is particularly true for mass
cultivation of microalgae outdoors, in which effective use of solar energy is the foundation on
which the prospects for this biotechnology rest. Light energy received by photoautotrophic mi-
croorganisms is a function of the photon flux density (PFD) reaching the culture surface. The cells
absorb only a fraction of the photon flux, the actual size of which is governed by several factors,
including cell density, the optical properties of the cells, length of the optical path of the reactor
and rate of culture mixing. Photons that are not absorbed by the cells’ photosynthetic reaction
centers dissipate mostly as heat or may be reflected. As a rule, microalgal mass cultures reflect
only a small or very small fraction of the photons impinging on a culture surface.

Since essentially all photons of a high flux density may be captured by high cell density cul-
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tures, cell density will continue to increase exponentially until all photosynthetically available
photons are absorbed. Once this cell density is reached, cell mass accumulates at a constant, linear
rate until light per cell or some substrate in the culture medium becomes overly low, or alterna-
tively, some inhibitory activity or conditions arrest cell growth. In the light-limited linear growth
phase, the relationship between biomass output rate and light energy absorbed by the culture
(I0 A) can be expressed as follows

I0A = µsxV
Y , (1.25)

where the radiation intensity at the edge of the illuminated side of the reactor is denoted by I0,
A represent the irradiated culture area, µs is the specific growth rate, x represent biomass density,
V is the total culture volume and Y represent bioenergetic growth yield.

This relationship implies that the biomass output rate in continuous cultures µsx is determined
by area-volume relationships (A/V), and in order to obtain high cell densities it is mandatory
to use a reactor of high A/V ratio. Finally, if the value of Y for a particular microalga is a con-
stant, the specific growth rate µs can be altered by adjusting x without changing any other culture
parameters.

Maximal culture productivity may be obtained only when culture nutritional requirements are
satisfied and temperature is about optimal. There exists, indeed, a strong interaction between light
and temperature. At higher light intensities, the photosynthetic rate increased with an increase in
temperature, and at high, arround optimal temperature, the photosynthetic rate increased with
increasing light intensities. Thus, an elementary aspect of the interaction of light and temperature
is that the optimal temperature for photosynthesis increases with increasing light intensiy.

As a rule, growth of phototrophic mass cultures should be limited by light only. Efficient uti-
lization of strong light by the individual cells in the culture is associated, however, with many
constraints: One difficulty rests with the fact that the photosynthetic photon flux density (PPFD)
required to saturate the photosynthetic units in the cell is usually 1/5 or 1/10 the PPFD impinging
on the culture at midday. Even relatively short exposure of the photosynthetic unit (PSU) or pho-
tosynthetic reaction center, to a light dose much above saturation may impair the photosynthetic
complex and may reduce productivity. The kinetic response of an algal cell to light intensity is
shown in a generalized shape of the curve relating algal growth to the intensity of the light source
(see figure 1.5), provided the light source is strictly the sole limiting factor for growth and cell
development. The main features of this curve are as follows: At some very low light intensity, the
resulting low growth-rate is balanced by decay and the net growth is zero (compensation point).
As light becomes more intense, growth is accelerated, the initial slope of the curve representing
maximal efficiency of growth in response to light. With a further increase in light intensity, the
light saturation function is reached, at which point the growth rate is the maximal attainable; a
further increase in light intensity above this point would not result in a further increase in the
growth rate; but may become injurious, manifested initially by a decreased growth rate and cul-
minating in photo-damage and, in extreme cases, in culture death (see Chapter 2 in [84]).
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Figure 1.5. Light-response curve of photosynthesis (P-curve). The intercept on the vertical axis is the measure of O2 uptake due to
dark respiration. Ic, light compensation point; Is, light saturation intensity; Ih, light intensity value at which photoinhibition occurs
(source [84]).

If all growth conditions are optimal and the culture is optically thin (i.e., of low cell density),
the intensity of the light source is indeed the sole determinant of light availability to the cells and
hence the sole factor that controls growth. Under these conditions, the effect of the intensity of
the light source on algal photosynthesis and growth is faithfully portrayed by the light response
curve shown in figure 1.5. It is thus essential to note at this point that much misunderstanding
concerning the complex effect of light on culture growth has originated from irrelevant applica-
tion of the light curve for interpretation of the growth response of mass cultures, in which cell
density, as a rule, is such that mutual shading may greatly modify light availability for the indi-
vidual cells. This internal shading (clearly visible in that light does not pass through the culture’s
optical path, being essentially fully absorbed in the outer surfaces) results in cells receiving light
intermittently, a phenomenon augmented by the fact that light energy attenuates exponentially in
passing through the culture column. The higher the cell density, the shorter the depth light pene-
trates into the culture. Two light zones are thereby established in the culture: the outer illuminated
volume, in which light is sufficient to support photosynthesis (i.e., the photic zone); and the dark
volume, in which net photosynthetic productivity cannot take place since light intensity is below
the compensation point (figure 1.5). The higher the population density (and the longer the optical
path), the more complex it becomes to address the basic requirements for efficient utilization of
strong light, i.e., an even distribution of the available light to all cells in the culture, at an optimal
dose per cell (to be elucidated somewhat later). Clearly then, when mutual shading prevails, cells
are not exposed to continuous illumination but rather to cycles of light and darkness (L-D cycle),
which may take scores of milliseconds to a few seconds to complete, depending on the optical
path and the extent of turbulence in the culture. The endless combinations of light intermittency
expressed in L-D cycles to which the individual cells are exposed at a given instant relate to two
basic parameters: first, the ratio between the light and the dark period in the cycle and, second,
the frequency of the cycle. As shall be elucidated, the higher the frequency of the L-D cycle, the
more efficient strong light may be used for photosynthesis. It can be readily seen, therefore, that
the effect of light on photosynthetic productivity (i.e., cell mass produced per illuminated area per
time) as depicted in figure 1.5 may be misleading or altogether irrelevant; in effect, it ignores the
decisive impact on productivity exerted by other factors that concern the photon flux to which
the cells are exposed, i.e., cell density, the length of the optical path and the extent of culture tur-
bulence, all of which represent major determinants affecting phototrophic productivity, not less
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Figure 1.6. An open raceway pond is a photobioreactor with natural light (source Laboratoire de Biotechnologie de l’Environnement,
INRA, Narbonne, France ).

important than the intensity of the light source. In what follows, these determinants, all having
decisive effects on photosynthetic productivity of mass cultures, will be elucidated.

A complete study of light influence in microalgae growth, including growth inhibitory sub-
stances and conditions (see, for instance, the example in chapter 3), average radiation intensity
(see appendix A and B in chapter 2), effective use of sunlight and high irradiance for photosyn-
thetic productivity, photosynthetic efficiency in mass cultures and other interesting topics can be
found in [84, chapter 8].

Photobioreactors

Photobioreactors (PBR) are reactors in which phototrophs (microbial, algal or plant cells) are
grown or used to carry out a photobiological reaction. In a broad sense, the open shallow basins
widely used for microalgae cultivation could also be viewed as photobioreactors [94].

At present, commercial production of phototrophic microbial biomass is limited to a few mi-
croalgal species that are cultivated in open ponds by means of a selective environment or a high
growth rate. Most microalgae cannot be maintained long enough in outdoor open systems because
of the risk of contamination by fungi, bacteria and protozoa, and competition by other microalgae
that tend to dominate regardless of the original species that are used as inoculum. PBR offer a
closed culture environment, which is protected from direct fallout, relatively safe from invasion
by competing microorganisms, and where conditions are better controlled ensuring dominance
of the desired species. Thus, PBR allow the exploitation of the potential of the more than 50 000
microalgal species known, many of which may be interesting sources of high value compounds
[84].

Photobioreactors can be defined as culture systems for phototrophs in which a great proportion
of the light (> 90%) does not impinge directly on the culture surface, but has to pass through
the transparent reactor’s walls to reach the cultivated cells. Consequently, PBR do not allow, or
strongly limit, direct exchange of gases and contaminants (dust, microorganisms, etc.) between
the culture and the atmosphere.

Photobioreactors can be classified on the basis of both design and mode of operation. In design
terms, the main categories of reactors are: (1) flat or tubular; (2) horizontal, inclined, vertical or
spiral; and (3) manifold or serpentine. An operational classification of PBR would include (4) air
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or pump mixed and (5) single-phase reactors (filled with media, with gas exchange taking place
in a separate gas exchanger), or two-phase reactors (in which both gas and liquid are present
and continuous gas mass transfer takes place in the reactor itself). Construction materials provide
additional variation and subcategories, for example (6) glass or plastic and (7) rigid or flexible PBR.
Axenic PBR are reactors that are operated under sterile conditions. Although a major characteristic
of PBR is their ability to limit contamination, it must be made clear that an effective barrier, and
thus operation under truly sterile conditions, is not achieved except in the few special designs
developed expressly for that purpose.

Design criteria for PBR should aim at achieving high volumetric productivities and high ef-
ficiency of conversion of light energy, providing, at the same time, the necessary reliability and
stability to the cultivation process by means of a cost-effective culture system. An efficient PBR
can not be properly designed without adequate knowledge of the physiology in mass culture of
the organisms to be cultivated. Since phototrophic microorganisms are highly diverse in their
morphology, nutritional and light requirements, and resistance to stresses, PBR can not be de-
signed to adapt to all organisms and all conditions [94]. The main design criteria for PBR include:
surface-to-volume ratio, orientation and inclination, mixing and degassing devices, systems for
cleaning and for temperature regulation, transparency and durability of the construction mate-
rial. Ease of operation and scale-up as well as low construction and operating costs also take on
particular relevance in relation to commercial PBR.

There are three parameters commonly used to evaluate productivity in photobioreactors. First
is volumetric productivity (VP), i.e., productivity per unit reactor volume (expressed as [g L−1 d−1]);
the second is areal productivity (AP), i.e., productivity per unit of ground area occupied by the
reactor (expressed as [g m−2 d−1]); the third is illuminated surface productivity (ISP), i.e., pro-
ductivity per unit of reactor illuminated surface area (expressed as [g m−2 d−1]). It must be noted
that in vertical systems the illuminated surface area comprises both the front surface receiving
beam radiation and the back surface and the side walls receiving reflected and diffuse radiation.
The VP is a key parameter that illustrates how efficiently the unit volume of the reactor is used.
However, it should be kept in mind that VP is a function of the number of photons that enter
the unit reactor volume per unit time, and as such, it is dependent on the s/v of the reactor. The
higher the s/v, the higher the VP. We should also be aware of the fact that high s/v reactors may
achieve high VP even if they perform poorly and that a VP of g L−1 d−1 assumes a completely
different significance if obtained in a reactor of 1 cm or 5 cm light path. Care should be taken to
discern between AP and ISP. In the case of ponds and horizontal or near-horizontal flat reactors,
the ground surface area occupied by the system and its illuminated surface area substantially co-
incide, as do AP and ISP. In the case of horizontal tubular reactors, placed with tubes in contact,
the illuminated surface area is 1.57 times the occupied surface area, so ISP will always be lower
than AP, and both parameters can be calculated easily. In the case of horizontal tubular reactors
with empty space between contiguous tubes and vertical or highly inclined systems, the situation
is more complex. For example, in horizontal serpentine reactors, it is difficult to decide whether
and how to compute the empty space between tubes and how to account for the fact that hori-
zontal serpentine reactors may intercept a different proportion of the radiation impinging on the
horizontal, which depends on the elevation of the sun and, hence, on the hour of the day. The per-
formance of elevated systems may be even more difficult to evaluate, unless a fourth parameter
for measuring productivity is introduced: overall areal productivity. A more complete analysis of
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photobioreactors is made in [84], including scale up and comparison with open ponds.

1.2.3 Multiple bioreactors connected: The general gradostat

In this section, we extend the idea behind the simple chemostat to a new apparatus in order to
model a property of ecological systems that is not possible to model in the simple chemostat. The
idea is to capture the essentials of the new phenomenon without destroying the tractability of the
chemostat either as a mathematical model or as an experimental one. Just as the chemostat is a
basic model for competition in the simplest situation, the apparatus here shows promise of being
a model for competition along a nutrient gradient.

The "well mixed" hypothesis for the chemostat does not allow a nutrient gradient to be gener-
ated. A basic tenet is that the nutrient concentration is the same everywhere; hence, any advan-
tage in nutrient consumption is present everywhere. The model that incorporates a true gradient
would be one involving partial differential equations; a new variable, space, must be accommo-
dated. Systems of nonlinear partial differential equations are difficult mathematical objects to
understand and analyze. Even numerical solutions pose added and significant difficulties. More-
over, even if an experimental gradient is devised, measurements that do not disturb the local
environment take on new difficulties.

Figure 1.7. Multiple chemostats connected in a laboratory experiment (source Laboratoire de Biotechnologie de l’Environnement,
INRA, Narbonne, France ).

A piece of laboratory apparatus was devised by Lovitt and Wimpenny for experiments along
a nutrient gradient; this is now known as CSTR (continuous stirred-tank reactors) in series [73].
It is a concatenation of chemostats in which the adjacent vessels are connected in both directions.
Output occurs at the first and last vessels, and those in between exchange their contents - nutrient
and organisms. The flow rates in, out, and between vessels are constant and equal. The apparatus
is named a gradostat. It does not occur in nature, at least in this form. Indeed, although we
shall think of the apparatus as connected horizontally, the closest approximation in nature may
be vertically, as in a water column. We shall see that much more imaginative connection patterns
are possible. Growth along nutrient gradients does occur in abundance in nature. For example,
the surface films in dental plaque represent growth along such a gradient, as does growth along
the banks of a stream or along a seacoast. In a water column, sunlight replaces the nutrient as an
essential source for growth.

Mathematically and experimentally there is no reason to connect the vessels linearly, to restrict
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the source to the left-hand vessel, or to keep the washout rates D equal so long as the volume
of the fluid in each vessel is kept constant. We next describe a class of gradostat models that
is sufficiently general to include all cases of biological interest and yet remain mathematically
tractable. We refer to them as general gradostat.

In a loose sense the apparatus generates a "discrete" gradient; the nutrient concentrations will
vary from vessel to vessel, so the "parameters" of competition change from vessel to vessel. If
there is no consumption, the nutrient concentrations arrange themselves as discrete points along
a linear gradient. The effect of a nutrient gradient on growth and competition can be studied
with such a device. A complete stability analysis for the case of two vessels with and without
competition and considering Michaelis-Menten uptake functions was explored in [88].

When the number of vessels is increased and the restriction to Michaelis-Menten uptake func-
tions is relaxed, these computations are inconclusive. It turns out that unstable positive rest points
are possible and that non-uniqueness of the coexistence rest point cannot be excluded. The main
difference with the previous analysis is that we cannot exclude the possibility of more than one
coexistence rest point.

Figure 1.8. The standard n-vessel gradostat. The left vessel labeled R is a reservoir containing nutrient at concentration S0, C is an
overflow vessel, and D denotes the dilution rate. All vessels have the same volume (source [88]).

Let S denote the nutrient concentration and u and v the concentration of the two competitors,
fu(.) and fv(.) represents growth functions of both species (Linear or Monod, for instance), yu and
yv represents the yield coefficient of each species and D represents the dilution rate. Then, using
the subscript i to denote concentrations of S, u, and v in vessel i = 1, ..., n, the equations take the
form





Ṡi = (Si−1 − 2Si + Si+1)D− ui
yu

fu(Si)− vi
yv

fv(Si)

u̇i = (ui−1 − 2ui + ui+1)D + ui
yu

fu(Si)

v̇i = (vi−1 − 2vi + vi+1)D + vi
yv

fv(Si)

(1.26)

where S0 = S(0), u0 = v0 = 0, Sn+1 = un+1 = vn+1 = 0, Si(0) ≥ 0, ui(0) ≥ 0, vi(0) ≥ 0, and fu, fv

satisfy the following:
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1. The functions fu and fv are continuously differentiable.

2. fu(0) = fv(0) = 0 and f ′u(S) > 0, f ′v(S) > 0 for S > 0.

The Michaelis-Menten function is the prototypical example, but other functions with these prop-
erties have appeared in the literature. The principal reason for allowing quite general monotone
uptake functions in this case is that we are unable to obtain sharper results under the stronger
hypotheses that the uptake functions are Michaelis-Menten.

The S(0) is the input concentration of nutrient (to the leftmost vessel), and D is the dilution
rate. These two parameters are under the control of the experimenter. The terms yu and yv are the
yield coefficients. For convenience, one can scale substrate concentrations Si by S(0), time by 1/D
(making mi, nondimensional and D = 1), and microorganism concentrations by yuS(0) and yvS(0)
to obtain the less cluttered system from (1.26)





Ṡi = Si−1 − 2Si + Si+1 − ui fu(Si)− vi fv(Si)

u̇i = ui−1 − 2ui + ui+1 + ui fu(Si)

v̇i = vi−1 − 2vi + vi+1 + vi fv(Si)

(1.27)

where we use the same conventions as in the unscaled equations except that S(0) = 1. Hereafter,
we refer to (1.27) as the "standard" n-vessel gradostat model (see figure 1.8).

Suppose that our gradostat consists of n vessels. Let Eij be the constant (volumetric) flow rate
from vessel j to i (i 6= j), with the convention that Eij = 0 for i = 1, ..., n. Let Vi be the volume of fluid
in the ith vessel, Di the flow rate from a reservoir to vessel i (Di = 0 if no such reservoir exists),
Si(0) the concentration of substrate in the reservoir feeding vessel i (Si(0) = 0 if Di = 0), and Ci the
flow rate from vessel i to an overflow vessel (Ci = 0 if no such vessel exists). The notation diag(βi)
is used to denote a diagonal matrix whose diagonal elements are given by βi; E is the matrix of
flow rates Eij.

The rate of change of the vector S(t) = (S1(t), ..., Sn(t)) at time t in a general gradostat, in the
absence of any consumers, is given by

[diag(Vi)]Ṡ = ĀS + g,

where

Ā = E− diag[Ci]− diag(
n

∑
j=1

Eji),

g = (D1S1(0), ..., DnSn(0)).

Of course, the volume Vi of fluid in vessel i must be constant if this system is to describe a grado-
stat. This requires that

∑
j

Eij + Di = ∑
i

Eji + Ci,
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or that the volumetric flow rates in and out of any fixed vessel be the same.

It is convenient to multiply through by [diag(Vi)]−1 and obtain

Ṡ = AS + b,

where A = [diag(Vi)]−1Ā and b = [diag(Vi)]−1g. We assume that at least one vessel receives sub-
strate, since otherwise no microorganisms can survive. Mathematically, this means that Si(0) > 0
for some i, so b 6= 0. From the definition of A, we have that Aii < 0 since E = 0 (excluding one
trivial case of no input or output). In addition, A satisfies Aij ≤ 0, i 6= j and

n

∑
j=1

Aij = −V−1
i Di ≤ 0.

Our assumption that Si(0) > 0 for some i implies Di > 0, and hence strict inequality holds in the
last inequality for some i.

Our principal hypothesis is that the matrix A (or, equivalently, the matrix E) will be assumed
to be irreducible. Thus, the set of vessels comprising the gradostat may not be partitioned into
two disjoint non-empty subsets, I and J, such that no vessel in subset J receives input from any
vessel in subset I. More generally, if the matrix A does not have the property of being irreducible,
one can always partition the gradostat into irreducible subsets (subgradostats) that can be studied
sequentially. In this sense, there is really no loss in generality in assuming irreducibility from
the start. We also mention another way to view the hypothesis of irreducibility: for any pair of
distinct vessels i and j, material from vessel i can travel to vessel j, although perhaps indirectly by
first passing through intermediate vessels before entering vessel j.

While we focus on irreducible gradostats, reducible gradostats may be of biological interest as
well. They could be used to model a system of mountain lakes situated at different elevations,
where a lake at higher elevation feeds a lake at lower elevation.

Let Fu = diag[ fu(S1), fu(S2), ..., fu(Sn]) and let Fv be defined analogously with subscript v replac-
ing subscript u. Then, introducing consumption, the general model takes the form





Ṡ = AS + b− Fu(S)u− Fv(S)v
u̇ = Au + Fu(S)u
v̇ = Av + Fv(S)v

(1.28)

The standard model (1.26) is a special case of (1.28), where b is the vector with first component
equal to 1 and all others equal to 0 and where A is the matrix with −2 in the main diagonal
entries, 1 in the superdiagonal and subdiagonal entries, and 0 elsewhere. Although the standard
model is of primary interest, the general gradostat described by (1.28) can be treated with the same
mathematics. In figure 1.9, an irreducible gradostat configuration is described.
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Figure 1.9. Irreducible "dead-end" gradostat. Note that the inflow to each vessel balances the outflow (source [88]).

In [88] a comprehensive analysis of the general gradostat is performed using the conservation
principle and equilibrium existence and stability criteria. The gradostat is a special case of a com-
partmental system (see section D) and can be a motivation for the problem analyzed in chapter 4
of this thesis.
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Chapter 2

Productivity optimization of microalgae
cultivation in a batch photobioreactor
process

2.1 Introduction

Bioreactors are laboratory and industrial devices, used for the cultivation of microorganisms.
They are used in a wide variety of applications, including the production of food, beverages,
pharmaceutical compounds, polymers and biofuels. In general terms, a bioreactor can be defined
as a container with an inlet to introduce a cultivation media containing substances required for
microorganism growth and development, and an outlet through which the produced biomass
and products can be extracted. For the most part, devices are also present to enable exchange of
gases such as air.

Most industrial scale bioreactors are operated under batch conditions. Thus, the bioreactor is
loaded with a cultivation medium and an initial amount of biomass (inoculum), and then cells
are allowed to grow for a certain period of time. Once microorganism concentration reaches a
previously specified value, the reactor content is withdrawn and the unit is prepared for a new
operational cycle [29]. The bioreactor characteristics depend largely on the microorganisms that
need to be grown. This is clear when we conceive of photobioreactors, which are dedicated to the
cultivation of microalgae [94]. A photobioreactor is a bioreactor that incorporates a source light or
a disposition enabling exposure to natural solar radiation. Light is necessary to provide the input

This chapter is based on the paper H. Ramírez C., A. Rojas-Palma and D. Jeison, Productivity opti-
mization of microalgae cultivation in a batch photobioreactor process, submitted to Mathematical Methods in the
Applied Science, Wiley (2016).
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of photonic energy needed for the photosynthesis process performed by microalgae cells.

Microalgae are recognized as one of the oldest living organisms [32], are primitive plants (thal-
lophytes), i.e. lacking roots, stems and leaves, have no sterile covering of cells around the repro-
ductive cells and use chlorophyll as their primary photosynthetic pigment. While the mechanism
of photosynthesis in these microorganisms is similar to that of higher plants, they are generally
more efficient converters of solar energy because of their simple cellular structure. In addition,
because the cells grow in aqueous suspension, they have more efficient access to water, CO2, and
other substrates [20].

Microalgae can be used for the production of a wide variety of products, including high value
compounds (long-chain polyunsaturated fatty acids, vitamins, and pigments) or biofuels (photo-
biological hydrogen, biodiesel, biomethane, bioethanol) [20]. They can also be used for environ-
mental remediation (carbon dioxide fixation, wastewater treatment). Most of the recent interest
that microalgae have received is related to their potential for biofuel production and carbon diox-
ide fixation based on the impact of these potential applications on the reduction of greenhouse
gas emissions [70]. Moreover, their high actual photosynthetic yield compared to terrestrial plants
leads to large potential algal biomass production in photobioreactors of several tens of tons per
hectare and per year [55].

The photobioreactor operation is defined by the amount of light that can be provided to mi-
croalgae cells, and as biomass concentration increases, optical density of the media also increases,
reducing the penetration of light in the culture an thus restricting growth. As a result, growth
of microalgae decreases as time proceeds. Then, operational time in batch photobioreactors be-
comes a key factor determining productivity and the economic feasibility of the process. Opti-
mization of microalgae productivity is then obviously of great interest. In recent years, many
works have focused on solutions to this issue via mathematical modelling and optimal control
theory [44, 69, 70]. However a more practical approach has been realized via experimental studies
for specific microalgae species in different environments [13, 62, 83].

In this work, we formulate a microalgae biomass production optimization problem in a pho-
tobioreactor in batch mode. In particular, two cases are considered separately: constant light inci-
dence and the influence of dark/light cycles [58]. To do this, we propose a simple model based on
the well known Monod growth function, which is widely used in the literature [11, 12, 88]. Mathe-
matical results on stability and necessary optimality conditions are given for simplified nonlinear
optimization problems based on the general model and its application was studied in a batch
cultivation of the microalgae Chlamydomonas reinhardtii [47].
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2.2 Optimization problem formulation

2.2.1 Model construction

In that follows, we denote by x and s the concentrations of the microorganisms and substrate
respectively, Qin and Qout represent the input and output flows in the bioreactor respectively and
V represent the volume of the bioreactor [88].

Assumptions 2.1 The fundamental assumptions considered in the construction of a general mathematical
model of the internal dynamics in a bioreactor are:

1. The bioreactor vessel is perfectly mixed, that is, the substrate is uniformly distributed.

2. Thus, it is reasonable to assume that what is consumed c (x, s) is proportional to the amount of
microorganisms, namely:

c (x, s) = µ (s)Vx, with µ (s) ≥ 0 y µ (0) = 0.

3. The growth of microorganisms is proportional to what is consumed.

4. Density of the liquid inside the reactor remain constant.

Mass balance equations for xV and sV lead us to write the general model of a bioreactor as
follows: 




ds
dt = Qin

V (sin − s)− 1
Y µ (s) x,

dx
dt = µ (s) x− Qin

V x,

dV
dt = Qin −Qout,

where (s, x, Qin, Qout, V) ∈ R
2
++ × [0, Qmax]× [0, Qmax]× [0, Vmax] and parameters and functions

involved are indicates in table 2.1.

Table 2.1. Parameters and functions used in the general model.

Parameter/function Meanings
Qin
V Input rate [h−1]

Qout
V Dilution rate [h−1]

µ(.) Growth function [h−1]
Y Yield constant [g cells (g substrate)−1]

The most common growth function is the Monod type (1942) [75, 88] (see figure 2.1) where
µmax represent the maximum specific growth rate of the microorganisms and Ks represent the half
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Figure 2.1. Monod growth function.

saturation coefficient or Michaelis-Menten constant. For sake of simplicity, we use them in this
work.

µ (s) = µmax
s

s + Ks
.

In the case where Qin = Qout = 0, reactor operated under discontinuos or batch mode. Then,
the general model reduces to: 




ds
dt = − 1

Y µ (s) x,

dx
dt = µ (s) x.

(2.1)

The idea is to modify the model (2.1) from the inclusion of certain considerations about the in-
fluence of light on the dynamics, which is not considered in the system and including phenomena
typical of the microalgae biochemical process.

First, we need to introduce cellular respiration. This is the sum of a series of metabolic processes
that enables the microalgae to obtain the biochemical energy required for its growth. This process
takes place with or without light. As a result, biomass is converted into CO2, which is represented
by a term −ρx in the biomass dynamics. The parameter ρ is named respiration coefficient. Second,
we consider the incident light directly influences the growth rate of microalgae biomass. This is
the result of the obvious effect of light over photosynthesis, which represents the primary source
of energy for microalgae. Then µ = µ(s, x, I0(t)) where I0(t) represent the time-varying incidental
light (see appendix A).

From the above, the folowing model is obtained





ds
dt = − 1

Y µ(s, x, I0(t))x,

dx
dt = (µ(s, x, I0(t))− ρ) x.

(2.2)

Throughout this paper we consider the following assumptions (see Appendix B and C for
details):
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Assumption 2.2 The influence of incidental light I0(t) is given by

I0 (t) =





I0 if t2k ≤ t < t2k+1, (light phase),

0 if t2k+1 ≤ t < t2k+2, (dark phase),

with k = 0, 1, .... This mathematical simplification is enough to analize the effect of the light in the biomass
production.

Assumption 2.3 The substrate input concentration should always be kept very large so as to always keep
the substrate in the region where s/(s + Ks) ≈ 1. That is, we do not consider substrate limitation during
the studied process.

Consequently, growth function µ can be simplified by another similar increasing bounded
function µ̃(x, t) = µx(t)

c+x(t) (considering the obscuration effect over the specific growth rate) and the
system (2.2) is reduced to

dx
dt = µ(t)x

c+x − ρx, (2.3)

defined by a first order nonlinear differential equation with discontinuous righthand side [35],
where the function µ (t) can be written as

µ (t) =





µ if t2k ≤ t < t2k+1, (light phase),

0 if t2k+1 ≤ t < t2k+2, (dark phase),
(2.4)

with k = 0, 1, .... In terms of the problem studied, µ (t) = µ during the light phase (day) and
µ (t) = 0 at the dark phase (night). Here t0 > 0 denote the initial time of the process (See apendix
B for details).

2.2.2 Problem statement

The net rate of production determines how much product (volumetric biomass in our case) one
can obtained per unit time. So, in the optimization problem we can use the net rate of production
as objective function. The net rate of production for a batch reactor is the quantity of product
generated per batch divided by the sum of the final batch process time T and the turnaround time
ta, in case of batch systems, turnaround time will include time taken in forming batches, batch
execution, cleaning and forming a new batch.

The goal then would be to maximize the net rate of production in the photobioreactor in the
final batch process time subject to (2.3) considering two different light environments: constant
light and dark/light cycles. We can define the objective function to maximize

J (x0, T) = x(T)−x0
T+ta

. (2.5)

In the equation (2.5), J(x0, T) is the net rate of biomass production, x(T) = x(x0, T) represents
the biomass concentration at the end of the batch, x0 ≥ 0 represents the biomass concentration at
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the start of the batch process, T ≥ 0 is the final batch process time and ta > 0 is the turnaround
time. The function (2.5) is called mean biomass volumetric productivity [83].

The reactor operator must specify the operating schedule for the operation of the reactor, and
this sets the batch processing time. Doing so involves a trade-off that must be considered during
the design of a batch reactor, and particularly during the specification of the operating schedule.
Longer operation time implies reduction of productivity due to the optical density of the culture,
so biomass reduces its growth when time passes by light obscuration effect. For this reason an
optimization approach is necessary.

The dynamics described by the first order differential equation in (2.3) with the objective func-
tion defined in (2.5) are used to define the following optimization problem

max
(x0 ,T) ∈ R2

+

{
J (x0, T) = x(x0 ,T)−x0

T+ta

}
, (2.6)

where x(x0, t) represents the solution of the discontinuous differential equation (2.3) with initial
condition x(t0) = x0.

2.3 Main results

In this section we introduce the first results about the problems defined in the previous part, in
order to make a comparison between the optimal values of each case.

2.3.1 Constant light

In first place, some results will be shown for the ordinary differential equation

dx
dt = µx

c+x − ρx, (2.7)

with initial condition x(t0) = x0 ∈ R+.

Remark Since f (x, t) = µx
c+x − ρx is continuous as a function respect to x ∈ R, for each (x0, t0) ∈ R

2

let x(x0, t) a solution of the differential equation (2.7) with initial condition x(t0) = x0, we have that
x(x0, t) has continuous partial derivatives with respect to x0 [81] and ∂x

∂x0
(x0, t) is the solution of the

problem (variational equation) [48]
{

ẏ =
(

µc
(c+x)2 − ρ

)
y,

y(t0) = y0.

For simplicity, onwards we denote x(t) a solution of equation (2.7) with x(t0) = x0, however we
will return to the initial condition dependence notation if needed.
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Lemma 2.4 In the nonlinear differential equation (2.7) the following holds

a) The differential equation has a unique solution in the interval [0, T] with T ∈ R
+
0 and this solution

is bounded.

b) If µ̄ ≤ ρc then the origin is the only equilibrium point and is asymptotically stable for all x0 > 0.
Otherwise, if µ̄ > ρc then the origin is unstable and there is a positive and stable equilibrium point

given by xe = µ̄

ρ − c.

c) A trajectory x(t) at the time t ∈ [0, T] is obtained from the implicit equation

c ln
(

x(t)
x0

)
−

µ̄

ρ ln

(
µ̄−ρ(c+x(t))
µ̄−ρ(c+x0)

)

µ̄−cρ
= t. (2.8)

PROOF. The proof of a) follows directly from Picard-Lindelöf theorem, where the function f (x) =
µx
c+x − ρx is Lipschitz continuous with respect the variable x. Its clear also that M = max{x0, µ̄

ρ − c}
is an upper bound for this solution.

For prove b) in first place we note that the equilibrium points can be obtained by solving the
equation

µx
c+x − ρx = 0,

whose solutions are x0 = 0 and xe = µ̄

ρ − c.

Now, to analyze its stability, we will consider the behavior of solutions for different parameter
values. Suppose µ̄ ≤ ρc, then it follows that at all x ≥ 0

µx
c+x − ρx ≤ 0,

with this dx
dt ≤ 0, in this case the solution of the differential equation is decreasing in time. Also,

the origin is a equilibrium solution and the uniqueness result above implies limt→∞ x(t) = 0. Since
we consider only solutions with initial conditions x (t0) = x0 > 0, it is clear from the above that if
µ̄ ≤ ρc the origin is a stable equilibrium point for all initial condition.

Suppose now µ̄ > ρc, we have that if x0 > µ
ρ − c then

µx0
c+x0

− ρx0 < 0,

and dx(t0)
dt < 0. On the other hand, if x0 < µ

ρ − c using a similar analysis, we have dx(t0)
dt > 0.

Then, if µ > ρc the origin is unstable and the equilibrium point xe is stable for any positive initial
condition. This result is shown graphically in the phase plane of Figure 2.2. Finally, c) follows
directly from integration, where (2.7) is separable.

In this case J(x0, t) is continuous and differentiable. Suppose that µ̄ ≤ ρc, then x(x0, t)− x0 ≤
0, ∀t ≥ 0, i.e., J(x0, t) ≤ 0, ∀t ≥ 0 and the only possible solution of the optimization problem is
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Figure 2.2. Phase plane of the differential equation (2.7) for microalgae C. reinhardtii with parameter values µ = 2.34 [d−1], ρ =
0.34 [d−1], c = 0.253 [g.L−1]. and different initial conditions.

the trivial (x0, T) = (0, 0). So, a necessary condition for the existence of a non-trivial solution of the
optimization problem (2.6) is µ̄ > ρc and this implies limt→∞ x(t) = xe, i.e., must exist a positive
and stable equilibrium point (which is ensured by Lemma 1).

On the other hand, we can note that limt→∞ J(x0, t) = 0, i.e., when there are very large time
values, the mean volumetric productivity is dissipated, by foregoing high mean volumetric pro-
ductivity can not be achieved at very long periods of time. This implies that the optimal final time
of the batch process can not be very prolonged. Therefore, defining the set

Ω(τ) = {(x0, t) ∈ R
+
0 x0 ≤ xe, t ≤ τ} ,

for each τ > 0 this set is compact and the Weierstrass extreme value theorem assure the existence
of a solution of the optimization problem on this set. From the above, we can find the solution of
the optimization problem through the deductive method [22].

Proposition 2.5 Necessary and sufficient conditions for local optimality

a) (First order) For the optimization problem defined in (2.6) considering constant light, if the pair
(x∗0 , T∗) is an optimal solution then

∂x
∂x0

(x∗0 , T∗0 ) = 1 and J(x∗0 , T∗) = f (x(x∗0 , T∗), T∗),

where f (x, t) = µx
c+x − ρx.

b) (Second order) Assuming a), the conditions

∂2x
∂x2

0
(x∗0 , T∗) < 0 and ∂2x

∂T2 (x∗0 , T∗) < 0,

are sufficient to ensure that a maximum is reached at that point.
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PROOF. a) The result follows directly from Fermat rule [22], where (x∗0 , T∗) must be a critical point
of the objective function and therefore must fulfill

∇x0 ,T J(x∗0 , T∗) = 0.

In particular

∇x0,T J(x0, T) =




∂J
∂x0

∂J
∂T


 .

Now, from the following equalities (stationary conditions)

∂J
∂x0

= 1
T+ta

(
∂x(x0 ,T)

∂x0
− 1
)

= 0,

∂J
∂T = 1

T+ta
( f (x(x0, T), T)− J(x0, T)) = 0,

statement values are obtained.

b) The idea is to use the Hessian condition H(x0, T) for a maximization problem, which requires
that the matrix H(x∗0 , T∗) be negative semidefinite in the critical point (x∗0 , T∗). Evaluating the
Hessian in the critical point and assuming that the conditions in part a) are fulfilled

H(x∗0 , T∗) =




1
T∗+ta

∂2x
∂x2

0
(x∗0 , T∗) 0

0 1
T∗+ta

∂2x
∂T2 (x∗0 , T∗)


 .

If the conditions
∂2x
∂x2

0
(x∗0 , T∗) < 0, ∂2x

∂T2 (x∗0 , T∗) < 0,

are satisfied, the Hessian matrix H(x∗0 , T∗) is negative semidefinite and the critical point (x∗0 , T∗)
satisfies the second order necessary condition for a local maximum of the optimization problem.

As shown in Proposition above, to find it optimal candidates is necessary to solve nonlinear
inequalities. However, it is not possible to do explicitly, so it is necessary to implement a numerical
algorithm that allows finding an approximation to the problem solution.

2.3.2 Dark/light cycles

We now consider some theoretical aspects about the solutions of a nonlinear differential equation
with discontinuous righthand side [35]

dx
dt = µ(t)x

c+x − ρx, (2.9)

where

µ (t) =
{

µ if t2k ≤ t < t2k+1, (light phase)
0 if t2k+1 ≤ t < t2k+2, (dark phase)

(2.10)

for k = 0, 1, ..., with initial condition x(0) = x0, which is shown in (2.3) (see appendix B).
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Lemma 2.6 Carathéodory solutions

a) The differential equation with discontinuous righthand side (2.9) has unique solution in the Caratheodory
sense on the interval [0, T] with T ∈ R

+
0 .

b) The solutions of (2.9) in the interval [0, τ] with τ > 0, have the form

x(t) =
{

x̂(t) if t2k ≤ t < t2k+1,
x̂(t2k+1)e−ρ(t−t2k+1) if t2k+1 ≤ t ≤ t2k+2,

where 0 = t0 < t1 < ... < t2k < t2k+1 < t2k+2 < ... < τ and x̂(t) is implicitly determined in
t ∈ [t2k, t2k+1] (k = 0, 1, ...) by

c ln
(

x̂(t)
x(t2k)

)
−

µ̄

ρ ln

(
µ̄−ρ(c+x̂(t))

µ̄−ρ(c+x(t2k))

)

µ̄−cρ
= t− t2k.

PROOF. a) Suppose there exists b > 0 such that the function f (t, x) = µ(t)x
c+x − ρx is defined on

R = {(t, x)/t ∈ [0, a], | x− x0 |≤ b}. This is possible, where x = x(t) is bounded on the interval
[0, T].

We will prove that the function f = f (t, x) satisfies the three Carathéodory’s conditions. First,
f must be continuous with respect to x for almost everywhere (onwards we will denote a. e.)
t ∈ R. Let t = t∗ fixed, the function f (x) = µ(t∗) x

c+x − ρx is continuous throughout its domain of
definition.

Secondly, the function f is measurable with respect to t for each x ∈ R. If t2k ≤ t < t2k+1 then
f (t) = µ̄ x

c+x − ρx which is continuous and if t2k+1 ≤ t < t2k+2 then f (t) = −ρx− Dx which is also
continuous, i.e. there be only discontinuities in t2k+i with k = 0, 1, ... and i = 1, 2, 3, 4. f is therefore
continuous a.e. in t and [0, T] is a Borel set, then f is Lebesgue measurable respect to t.

Now, it must be
| f (t, x) | = | µ(t) x

c+x − ρx |

=
∣∣∣
(

µ(t)
c+x − ρ

)
x
∣∣∣

≤ | µ(t)
c − ρ || x |

= | µ(t)
c − ρ || x− x0 + x0 |

≤ | µ(t)
c − ρ | (b + x0)

then by defining m(t) =| µ(t)
c − ρ | (b + x0) the function m(t) is summable and | f (t, x) |≤ m(t),

therefore f satisfies the Carathéodory’s conditions in R which ensures the existence of the solution.
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To proof the uniqueness it is sufficient to prove the generalized Lipschitz condition. Let (t, x), (t, y) ∈
R

| f (t, x)− f (t, y) | =
∣∣∣
(

cµ(t)
(c+x)(c+y) − ρ

)
(x− y)

∣∣∣

≤
∣∣∣
(

µ(t)
c − ρ

)
(x− y)

∣∣∣

≤
∣∣∣ µ(t)

c − ρ
∣∣∣ |x− y|

namely l(t) =
∣∣∣ µ(t)

c − ρ
∣∣∣, then l is summable and this ensures that the solution of the Carathéodory

equation (2.9) exists and is unique.

b) The first part of the proof follows directly from Lemma 2.4 part c), considering the in-
terval [t2k, t2k+1]. The continuity of the solutions at the points t2k+1 (k = 0, 1, ...) is ensured by
Carathéodory conditions proved in Lemma 2.6. In particular, any solution is absolutely continu-
ous and satisfies the differential equation except for a measure-zero set.

Now, if t ∈ [t2k+1, t2k+2] the equation (2.9) is reduced to
{

dx
dt = −ρx,

x(t2k+1) = x̂(t2k+1),

which can be solved by separation of variables.

Remark 1. When x(t) is a continuous piecewise-defined function, for k ∈ N fixed, is easy to
show the existence of lateral derivatives

D−x(t2k+1) = lim
t→t2k+1

−
x(t)−x(t2k+1)

t−t2k+1
= µ̄x(t2k+1)−ρx(t2k+1)(c+x(t2k+1))

c+x(t2k+1) ,

D+x(t2k+1) = lim
t→t2k+1

+

x(t)−x(t2k+1)
t−t2k+1

= −ρx(t2k+1),

analogously, for t2k we obtain a similar result.

2. We use the definition of stability given by [35]. A solution x = φ(t) of a differential equation
ẋ = f (t, x), is called stable if for each ǫ > 0 there exists δ > 0 which possesses the following
property. For each x̃0 such that |x̃0 − φ(t0)| < δ, each solution x̃(t) with the initial data
x̃(t0) = x̃0 for t0 ≤ t < ∞ exists and satisfies the inequality

|x̃(t)− φ(t)| < ǫ (t0 ≤ t < ∞).

3. The point x = p is called stationary if it is a trajectory, that is, if x(t) = p is a solution of
the differential equation ẋ = f (t, x). The term "singular point" is not used here since beside
stationary points we also consider some other singular points, for instance, branching and
joining points of trajectories [35].

Lemma 2.7 Stability results
a) If µ̄ ≥ cρ then the differential equation (2.9) has stable solutions.
b) If µ̄ < cρ then the origin is a stable stationary point of the differential equation (2.9).
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PROOF. a) Is necessary to prove that a stable set (not necessarily stationary set) exist. The hypoth-
esis µ̄ ≥ cρ implies that dx

dt > 0, ∀t ∈ [t2k, t2k+1], ie x(t) is increasing on this interval. Similarly,
dx
dt < 0, ∀t ∈ [t2k+1, t2k+2], ie x(t) is decreasing on this interval for k = 0, 1, ..., this together with
the continuity of x(t) implies that x(t2k+1) is the maximum value of the function x in the interval
[t2k, t2k+2].
If we define the sequence {x(t2k+1)}k∈N this sequence is bounded, then Bolzano-Weierstrass theo-
rem says that there exists a convergent subsequence {x̄(t2k+1)}k∈N. Let U = limk→∞ x̄(t2k+1).
Using a similar argument, we have that x(t2k+2) is the minimum value of the function x in the
interval [t2k+1, t2k+3] and we can define the sequence {x(t2k+2)}k∈N that is bounded and there exists
a convergent subsequence {x̄(t2k+2)}k∈N. Let L = limk→∞ x̄(t2k+2). It is clear from the definition of
the sequences that U > L.
We consider the set M = [U, L] and dist(y, M) = in f {d(y, m)/m ∈ M} the distance from y to
the set M, then dist(x̄(t2k+1), M) → 0, dist(x̄(t2k+2), M) → 0 when k → ∞ and this implies that
∀ǫ > 0, ∃ δ > 0 such that for t0 ≤ t < ∞ each solution x(t) with initial condition x(t0) = x0 from
the δ-neighbourhood of the set M exists and satisfies the inequality dist(x(t), M) < ǫ and the set
M is stable. The oscillatory behaviour follows directly from the definition of the function µ(t).
b) We will use a stability result from direct Lyapunov method for discontinuous differential equa-
tions [35]. Let us consider the function

v(t, x) = ln(1 + x),

then, in order to check the fulfillment of the stability theorem conditions, it enough guarantee that

dv
dt ≡ vt +∇v · f ≤ 0, |x| < ε0, (ε0 > 0)

only in the domains of continuity of the function f (t, x).

Clearly v(t, x) ∈ C1, v(t, 0) = 0 and by the definition of the function, v(t, x) > 0, ∀x 6= 0. Now

vt +∇v · f = ∂v(t,x)
∂x · dx

dt

= 1
1+x · dx

dt

= x
1+x

(
µ(t)
c+x − ρ

)

< x
1+x

(
µ̄

c − ρ
)

.

From the hypothesis, we have that

∂v(t,x)
∂t < x

1+x

(
µ̄

c − ρ
)
< 0, ∀x 6= 0,

thus the function v(t, x) satisfies the condition and the origin is an stable stationary point.
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Figure 2.3. Solutions of the differential equation (2.9) for microalgae C. reinhardtii with parameter values µ = 2.34 [d−1], ρ =
0.34 [d−1], c = 0.253 [g.L−1]. considering regular intervals of 12 hours (0.5 [d]) and different initial conditions. A stable set exist
in the interior of the interval [2.35, 2.8] over biomass concentration axis.

The Clarke generalized Jacobian [22] (gradient in our case) of a function g is defined as the
convex hull of the B-subdifferential ∂Bg, i.e., the outer limits of∇g(x, y) when (xi, yi) → (x, y) (The
meaning is the following: consider any sequence (xi, yi) converging to (x, y) while avoiding points
at which g is not differentiable, and such that the sequence ∇g converges; then the convex hull of
all such limit points is ∂g). It is possible to characterize the Clarke generalized gradient in terms
of the generalized directional derivatives J0((x0, T); (v1, v2)), in this case

∂J(x0, T) =
{

(x1, x2) ∈ R
2 : J0((x0, T); (v1, v2)) ≥ 〈(x1, x2), (v1, v2)〉, ∀ (v1, v2) ∈ R

2} .

Proposition 2.8 Properties of the objective function
The function J(x0, t) = x(t)−x0

t+ta
where x(t) is the solution of (2.9) with x(0) = x0 is continuous, locally

Lipschitz and has generalized directional derivatives in their whole domain.

PROOF. The continuity is direct from the definition and the continuity of the solution x(t). Let
us now see that it is locally Lipschitz. In the first place, x(t) is locally Lipschitz with respect to t
(where f (t, x) defined in the proof of lemma 2.6 is bounded). Now consider (x0, t), (x̄0, t̄0) ∈ R

2,
then

|J(x0, t)− J(x̄0, t̄0)| = | x(t)−x0
t+ta

− x(t̄)− ¯x0

t̄+ta
|

= |(x(t)−x0)(t̄+ta)−(x(t̄)− ¯x0)(t+ta)|
|t+ta||t̄+ta|

= |x(t)t̄−x(t̄)t+ ¯x0t−x0 t̄+(x(t)−x(t̄))ta+( ¯x0−x0)ta|
|t+ta||t̄+ta|

= |(x(t)−x(t̄))t̄+(t̄−t)x(t̄)+( ¯x0−x0)t+(t−t̄)x0+(x(t)−x(t̄))ta+( ¯x0−x0)ta|
|t+ta||t̄+ta|

≤ 1
|t+ta||t̄+ta|

((|t̄| + |x(t̄)| + |x0| + |ta|)|t− t̄| + (|t| + |ta|)|x0 − x̄0|)
≤ Kx0 ,t,x̄0 ,t̄ ‖(x0, t)− (x̄0, t̄)‖
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where
Kx0,t,x̄0 ,t̄ = max{|t̄|+|x(t̄)|+|x0|+|ta|,|t|+|ta|}

|t+ta||t̄+ta|
.

Finally, to prove that J has directional derivatives, let (x0, t) ∈ R
2, then

J0((x0, t); (v1, v2)) = lim
(x̄0,t̄)→(x0 ,t)

s→0

J((x̄0,t̄)+s(v1,v2))−J(x̄0,t̄)
s

= lim
(x̄0 ,t̄)→(x0 ,t)

s→0

1
s

(
x(x̄0+sv1 ,t̄+sv2)−(x̄0+sv1)

t̄+sv2+ta
− x(x̄0,t̄)−x̄0

t̄+ta

)

= lim
(x̄0 ,t̄)→(x0 ,t)

s→0

1
s

(
(x(x̄0+sv1 ,t̄+sv2)−x(x̄0 ,t̄))(t̄+ta)−s((t̄+ta)v1+(x(t̄)−x̄0)v2))

(t̄+sv2+ta)(t̄+ta)

)

= lim
(x̄0 ,t̄)→(x0 ,t)

∂x
∂t (t̄+ta)v2+ ∂x

∂x0
(t̄+ta)v1−(t̄+ta)v1−(x(t̄)−x̄0)v2

(t̄+ta)2

= 1
t+ta

〈(
∂x
∂x0
− 1, ∂x

∂t − J(x0, t)
)

, (v1, v2)
〉

Now, where x(t) is differentiable ∀t ∈]t2k, t2k+1[∪]t2k+1, t2k[ with k = 0, 1, 2, ..., then J is differen-
tiable ∀(x0, t) ∈ R×]t2k, t2k+1[∪]t2k+1, t2k[ and J0((x0, t); (v1, v2)) = ∇J in this sets.
Suppose that (x0, t2k+1) ∈ R× {t2k+1} for k ∈ N fixed. In these cases we have

∂J(x0, t2k+1) = co





1
t2k+1+ta




dx(x0,t2k+1)
dx0

− 1

µx(t2k+1)−ρ(c+x(t2k+1))
c+x(t2k+1) −J(x0 ,t2k+1)


, 1

t2k+1+ta




dx(x0 ,t2k+1)
dx0

− 1

−ρx(t2k+1)−J(x0,t2k+1)








=

{
1

t2k+1+ta

(
dx(x0 ,t2k+1)

dx0
− 1

y

)
: y ∈ [a, b] ⊂ R

}
,

(co represent the convex hull) where

a = −ρx(t2k+1)− J(x0, t2k+1),

b = µ̄x(t2k+1)−ρ(c+x(t2k+1))
c+x(t2k+1) − J(x0, t2k+1).

A similar result is obtained for (x0, t2k) ∈ R× {t2k} for k ∈ N fixed.

Remark From the result above, Rademacher’s theorem [21] ensures that J(x0, t) is differentiable
almost everywhere in R

2 (the set where the function is not differentiable form a set of Lebesgue
measure zero). It is ∂J = {∇J} almost everywhere in R

2, where ∂J represent the Clarke generalized
gradient of J [22].

The problem (2.6) together with the solution of (2.9)-(2.10) is a nonsmooth optimization prob-
lem. Recall that a critical point (x∗0 , T∗) of the problem (2.6) must satisfy

∂J(x∗0 , T∗) ∋ 0, (2.11)

where ∂J(x0, T) represent the Clarke generalized gradient [22, 76].
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Proposition 2.9 First-order necessary conditions
An optimal solution (x∗0 , T∗) of (2.6) satisfies T∗ = t∗2k+1 for some k ∈ N and following conditions

i) ∂x
∂x0

(x∗0 , t∗2k+1) = 1, and ii) 0 ∈ 1
t∗2k+1+ta

[a∗, b∗]

where a∗ = −ρx(x∗0 , t∗2k+1)− J(x∗0 , t∗2k+1) and b∗ = µ̄x(x∗0 ,t∗2k+1)−ρ(c+x(x∗0 ,t∗2k+1))
c+x(x∗0 ,t∗2k+1) − J(x∗0 , t∗2k+1).

It is noted that the batch process should always end at the end of a period of light.

PROOF. If the optimal solution (x∗0 , T∗) is attained in the points where the function is differentiable
in the classical sense, when we evaluate the gradient in this point it should be equal to zero (Eu-
ler’s necessary condition), which does not occur, i.e., the candidates to optimal solutions are the
critical points (x∗0 , t∗2k+1) ∈ R× {t2k+1} for k = 0, 1, ..., such that (0, 0)t ∈ ∂J(x∗0 , t∗2k+1) and from the
proposition above

∂J(x∗0 , t∗2k+1) =

{
1

t∗2k+1+ta

(
dx(x∗0 ,t∗2k+1)

dx0
− 1

y

)
: y ∈ [a, b] ⊂ R

}

where

a∗ = −ρx(x∗0 , t∗2k+1)− J(x∗0 , t∗2k+1) and b∗ = µ̄x(x∗0 ,t∗2k+1)−ρ(c+x(x∗0 ,t∗2k+1))
c+x(x∗0 ,t∗2k+1) − J(x∗0 , t∗2k+1),

then, if a critical point (x∗0 , t∗2k+1) is optimum, then it must fullfil the conditions in the statement.

Where the objective is a non-differentiable function, it is not possible to apply the classical
direct gradient-based methods for resolution of optimization problems (which are quite efficient
in general). For this reason, in the next section we will deal with an approach based on domain
discretization.

2.4 Numerical approach

Throughout this section we fix t0 = 0. In order to solve numerically problem (2.6) we consider
first a tournaround time ta = 1 (in days) and define a grid of values x0 ∈ [0, x̄0] , T ∈ [0, T̄], with
x̄0 = T̄ = 20, and step-size h = 0.1. For each of these pairs, we obtain x(T) by solving the implicit
equation (2.8), and then we compute J(x0, T). This leads to the construction of a surface formed
by the triplets (x0, T, J (x0, T)) for which the maximum of values J (x0, T) is found by inspection.

2.4.1 Chlamydomonas reinhardtii study case

Chlamydomonas reinhardtii is a single cell green alga, belonging to the chlorophytes, a group of
highly adaptable species that lives in many different environments throughout the world. C. rein-
hardtii usually derives energy from photosynthesis, but thrives in total darkness when provided
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with an alternative carbon source. C. reinhardtii has been studied extensively in the past decades.
It is regarded as a model organism for green microalgae because of its diverse metabolism and
its ability to grow photoautotrophically as well as heterotrophically on acetate. In addition, C.
reinhardtii is able to accumulate starch and produce hydrogen when grown anaerobically [62].

a) (Constant light) For the algae C. reinhardtii we have the following parameter values (see ap-
pendix C) µ = 2.34 [d−1], ρ = 0.34 [d−1], c = 0.253 [g.L−1]. For these values, the differential equa-
tion (2.7) has a stable positive equilibrium point in 6.63 [g.L−1] approx. (Lemma 1). Solving (using
❢♠✐♥❝♦♥ in ♠❛'❧❛❜ for example or an interior point algorithm), the objective function reaches its
maximum value 0.9389 [g.L−1.d−1] and is reached in the initial condition x∗0 = 0.2 [g.L−1], the
terminal time is T∗ = 2.7 [d], i.e., in day 3 of the process, the net rate of production is maximized
in the case of light constant, starting with a relatively low amount of biomass and the final con-
centration is x(T∗) = 3.674 [g.L−1] approx. The pair (x∗0 , T∗) = (0.2, 2.7) satisfies the necessary and
sufficient optimality condition (proposition 2.5).
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Figure 2.4. Surface and level curves of the net rate of production (mean biomass volumetric productivity) for the optimization problem
(2.6) for C. reinhardtii at the parameter values µ = 2.34 [d−1], ρ = 0.34 [d−1], c = 0.253 [g.L−1].

b) (Dark/light cycles, summer period) For the same parameter values, but considering the
equation (2.9) in intervals of 14 hours of light (0.6 [d] approx.) and 10 hours of dark (0.4 [d]
approx.), the objective function reaches its maximum value 0.6188 [g.L−1.d−1] and is reached in
the initial condition x0 = 0.3 [g.L−1] and in the terminal time T = 1.6 [d], i.e., between the first and
the second day of the process, the net rate of production is maximized in the case of dark/light
cycles, starting with a relatively low amount of biomass, but more than in the previous case and
the final concentration is x(T∗) = 1.91 [g.L−1] approx. Since 0 ∈ [−1.115, 1.164] then the optimal
values satisfies the first order optimality condition (proposition 2.9).
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Figure 2.5. Surface and level curves of the net rate of production for the optimization problem (2.6) for C. reinhardtii with the same
parameter values in summer period.

c) (Dark/light cycles, regular interval) For the same parameter values, but considering the
model (2.9) in regular intervals of 12 hours (0.5 [d]), the objective function reaches its maximum
value 0.5240 [g.L−1.d−1] and is reached in the initial condition x0 = 0.4 [g.L−1] and in the terminal
time T = 1.5 [d], i.e., between the first and the second day of the process, the net rate of production
is maximized in the case of dark/light cycles, starting with exactly the same amount of biomass
that in the previous case and the final concentration is x(T∗) = 1.7099 [g.L−1] approx. Since 0 ∈
[−0.506, 0.441] then the optimal values satisfies the first order optimality condition (proposition
2.9).
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Figure 2.6. Surface and level curves of the net rate of production for the optimization problem (2.6) for C. reinhardtii with the same
parameter values in regular time intervals.

d) (Dark/light cycles, winter period) For the same parameter values, but considering the model
(2.9) in intervals of 10 hours of light (0.4 [d] approx.) and 14 hours of dark (0.6 [d] approx.), the
objective function reaches its maximum value 0.4345 [g.L−1.d−1] and is reached in the initial con-
dition x0 = 0.8 [g.L−1] and in the terminal time T = 0.4 [d], i.e., the first day of the process (during
the day, in presence of light), the net rate of production is maximized in the case of dark/light
cycles, starting with a relatively high amount of biomass compared to the previous example and
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the final concentration is x(T∗) = 1.4083 [g.L−1] approx. Since 0 ∈ [−0.913, 1.21] then the optimal
values satisfies the first order optimality condition (proposition 2.9).
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Figure 2.7. Surface and level curves of the net rate of production for the optimization problem (2.6) for C. reinhardtii with the same
parameter values in winter period.

Table 2.2. optimal values in different light environments for C. reinhardtii considering con-
stant light.

turnaround time ta = 1

Light environment x∗0 [gL−1] T∗ [d] x(T∗) [gL−1] J∗ [gL−1d−1]

constant light 0.2 2.7 3.674 0.9389
Summer period [14-10 h] 0.3 1.6 1.91 0.6188
Regular intervals [12 h] 0.4 1.5 1.71 0.5340
Winter period [10-14 h] 0.8 0.4 1.4083 0.4345

turnaround time ta = 2

Light environment x∗0 [gL−1] T∗ [d] x(T∗) [gL−1] J∗ [gL−1d−1]

constant light 0.1 3.5 4.2475 0.7541
Summer period [14-10 h] 0.2 2.6 2.4017 0.4786
Regular intervals [12 h] 0.2 2.5 1.992 0.3981
Winter period [10-14 h] 0.2 2.4 1.5743 0.3123

Table 2.2 sumarizes the results above for different light environments and different turnaround
time values.

Now we will consider optimal conditions through varying incidental light, the model param-
eters are different respect the values used in the above simulations (but considering the same
measurement units).

For the parameters values in table 2.3, we obtain the optimal values in constant light condition
using ❢♠✐♥❝♦♥ of ▼❛(❧❛❜ in the optimization problem (2.6).
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Figure 2.8. Biomass trajectories associated to the optimal values of initial concentration x∗0 and terminal time T∗ in different light
environments, with turnaround times ta = 1 (left) and ta = 2 (right).

Table 2.3. Parameter estimations for different incidental light settings for C. reinhardtii.

I0 µ c

1000 2.699 0.2736
900 2.5918 0.2673
800 2.4726 0.2604
700 2.3395 0.2528
600 2.1887 0.2444
500 2.0147 0.2349
400 1.8091 0.2239
300 1.5576 0.2109
200 1.2237 0.1948
100 0.7778 0.1736

2.5 Discussion

In this chapter was formulated a system based on a batch photobioreactor model. From this
model a nonlinear optimization problem was defined and necessary conditions for maximizing
the biomass surface productivity was obtained, subject to the choice of initial biomass microalgae
concentration and final operation time. In order to get analytical results we try to keep a balance
between model simplicity (to handle mathematical analysis) and model complexity to capture the
main phenomena that influence a photobioreactor’s productivity.

We have shown numerically that, because of the day-night behaviour, the productivity rate
cannot be as high as it could have been without it (constant light case). However, when the max-
imal growth rate is sufficiently larger than the respiration rate (for example, in summer period
during light phase), we can obtain conditions for which the productivity rate is relatively close to
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Table 2.4. Optimal values in different incidental light settings for C. reinhardtii considering
constant light.

I0 x∗0 T∗ x (T∗) J∗

1000 0.2119 2.7270 4.3397 1.1075
900 0.2062 2.7336 4.1663 1.0607
800 0.2002 2.7424 3.9753 1.0087
700 0.1936 2.7533 3.7620 0.9507
600 0.1862 2.7674 3.5202 0.8849
500 0.1777 2.7866 3.2411 0.8090
400 0.1676 2.8142 2.9110 0.7193
300 0.1554 2.8579 2.5068 0.6095
200 0.1391 2.9442 1.9687 0.4639
100 0.1148 3.1616 1.2454 0.2717

this level.

Three practical points would be nice to highlight, which have been determined from the math-
ematical analysis in section 2.3:

1. There is a condition that maximizes productivity, mainly due to the obscuration effect that
makes the growth rate decreases with increasing biomass concentration.

2. It is mentioned here that more light (higher intensity or longer period lighting) improve
productivity, which is obvious in practice.

3. When operating in natural photoperiods, there is a moment in the day that should har-
vest the product of the reactor. This is the end of the day, because during the dark period,
respiration causes biomass concentration decrease. The result of the optimization problem
coincides with this fact.

In the particular case of microalgae Chlamydomonas reinhardtii estimates of growth parameters and
respiration were obtained, the model was applied and the results were consistent with the pre-
vious analysis (section 2.3). It is interesting that during dark/light cycles in regular intervals the
mean volumetric productivity decreases, being slightly more than half over a 12-hour light pho-
toperiod compared to the case of constant light and in the same way, the terminal batch time also
reduces almost by half in 12-hour photoperiod. Then (in theory) in the same time period in which
mean volumetric productivity is maximized in constant light environment, two batch processes
can be performed at regular intervals (12-hour photoperiod) where, under optimal conditions,
higher mean volumetric productivity would be obtained in the addition of both batch process,
however, this policy could be not profitable in practice.
By varying the incidental light (and thus the model parameters) small variations are observed in
optimal decision variables (x∗0 , T∗) in constant light case, but there exists a difference in the final
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Figure 2.9. The figure shows the results of the table 2.4. It may be noted that the higher the incidencial light, higher the final biomass
concentration, while the terminal batch time decreases and the mean volumetric productivity increases, the initial concentration
needed to achieve optimal productivity decreases slightly.

concentrations and optimal mean volumetric productivity. We can see that the mean volumetric
productivity in summer period (14 light hours) and at regular intervals (12 light hours) for inci-
dental light 1000 [µmol. m−2.s−1] is similar to that obtained in a batch process with constant light
with incidental light 400− 500 [µmol. m−2.s−1]. Are also similar the final concentrations in these
cases, however, the time required to reach this level of productivity would be lower in photoperi-
ods.

Appendices

A Considering light incidence

We represent light attenuation following an exponential Beer-Lambert law

I (xz) = I0e−axz, (2.12)

where the attenuation at some depth z comes from the total biomass xz per surface unit contained
in the layer of depth [0, z], I0 represent the incident light and a is a light attenuation coefficient.
In microalgae, chlorophyll is mostly the cause of this shadow effect and, in model (2.1), it is best
represented by a fixed portion of the biomass [12].

Finally, about the light source variation, will be introduced the incident light I0 = I0 (t) like
time-varying. With such an hypothesis on the light intensity that reaches depth z, growth rates
vary with depth: in the upper part of the reactor, higher light causes higher growth than in the
bottom part.

Following the methodology used in [70] for the simplification of the influence of light on the
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dynamics, supposing that light attenuation directly affects the maximum growth rate [54], the
growth rate for a given depth z can then be written as

µz(s, I (xz, t)) =
(

µ̃I(xz,t)
I(xz,t)+KI

)
s

s+Ks
,

with
I (xz, t) = I0 (t) e−axz.

Based on the above, we can compute the mean growth rate in the reactor

µ(s, I0 (t) , x) = 1
L

∫ L

0
µz(s, I (xz, t))dz,

where L is the depth of the reactor and where we have supposed that, even though the growth
rate is not homogeneous in the reactor due to the light attenuation, the concentrations of s and x
are kept homogeneous through continuous reactor stirring. It is this average growth rate that will
be used in the lumped model that we develop.

We then have

µ(s, I0 (t) , x) = µ̃
L

∫ L

0

(
I(xz,t)

I(xz,t)+KI

)
dz s

s+Ks

= µ̃
L

∫ L

0

(
I0(t)e−axz

I0(t)e−axz+KI

)
dz s

s+Ks

= µ̃
axL ln

(
I0(t)+KI

I0(t)e−axL+KI

)
s

s+Ks
,

Replacing all previously considered in the model (2.1) we obtain the system




ds
dt = − 1

Y
µ̃

axL ln
(

I0(t)+KI
I0(t)e−axL+KI

)
s

s+Ks
x,

dx
dt = µ̃

axL ln
(

I0(t)+KI
I0(t)e−axL+KI

)
s

s+Ks
x− ρx,

(2.13)

where µ̃ is hypothetical maximum growth rate, a is a light attenuation coefficient, L is the depth of
the reactor, KI represents the half-saturation coefficient relative to the light, Ks represents the half-
saturation coefficient (Michaelis-Menten constant) relative to the substrate, ρ is the respiration rate
and all the rest of parameters follows from (2.1). This model is shown (in a reduced notation form)
in (2.2).

B Simplification and reduction of the system

It seems clear that the larger s translating into large growth rates. In a batch process, the initial
substrate concentration should then always be very large so as to always keep the substrate in the
region where s

s+Ks
≈ 1, i.e., at such levels that the growth rate only dependent of light influence

and biomass at each instant.
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Remark The previous hypothesis, which allows a strong simplification of model, is used in [44] to
change and reduce an system similar to (2.2) in order to consider in the dynamics of the biomass
only the influence of light and thus reduce to a optimal control problem with an independent
variable (biomass).
In modelling terms, we assume that don’t exist substrate limitation. This is always true in the
initial times in a batch bioreactor, however, in long terms is not always true. By this reason high
initial substrate concentrations are needed. We assume this hypothesis in our model.

So, it is can be studied the reduced model

dx
dt = µ̃

axL ln
(

I0(t)+KI
I0(t)e−axL+KI

)
x− ρx, (2.14)

which then encompasses all the relevant dynamics for the optimization problem. In order to more
precisely determine the model, We must indicate what the varying light will be like. Classically, it
is considered that day light varies as the square of a sinusoidal function so that

I0 (t) =
(

max
{

sin
(

2πt
Td

)
, 0
})2

,

where Td is the length of the day. The introduction of such a varying light would however render
the computations analytically untractable. Suppose that the light and dark periods appears in
periodic intervals, for k = 0, 1, ..., and considering t0 = 0 < t1 < ... < t2k < t2k+1 < ..., we can
approximate the light source by a step function:

I0 (t) =





I0, t2k ≤ t < t2k+1, (light phase),

0, t2k+1 ≤ t < t2k+2, (dark phase).
(2.15)

From (2.15) the biomass growth in the presence of light is reduced to

µ(I0 (t) , x) =





µ̃
axL ln

(
I0+KI

I0e−axL+KI

)
, t2k ≤ t < t2k+1,

0, t2k+1 ≤ t < t2k+2.

Finally, we consider a last simplification to the model: instead of considering that the biomass
growth in the presence of light has the form

µ1(x) = µ̃
axL ln

(
I0+KI

I0e−axL+KI

)
x,

which is an increasing and bounded function, following the idea in [44], we replace µ1(x) with
another similar increasing bounded function given by

µ2(x) = µx
c+x ,

where c is a fitting parameter (see appendix C).

From the simplifications above, the reduced system is

dx
dt = µ(t)x

c+x − ρx, (2.16)
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where

µ (t) =





µ, t2k ≤ t < t2k+1 (light phase),

0, t2k+1 ≤ t < t2k+2 (dark phase).
(2.17)

C Parameter estimation

In order to use the model in a case study, we consider algae Chlamydomonas reinhardtii. The fol-
lowing table contains parameter values obtained in some references.

Table 2.5. Parameter values for C. reinhardtii obtained from [58].

Parameter Value units

µ̃ 0.13 h−1

L 0.03 m
Kl 100 µmol. m−2.s−1

Ī0 700 µmol. m−2.s−1

For microalgae production is better to use a high incident light. This study was done un-
der over-saturating photon flux density during the light period, I0 = 700 [µmol. m−2.s−1] [58].
Now, [62] gives an respiration rate estimate of 0.53 [µmol O2. g−1.h−1] and a molecular weight of
22.45 [g. molC−1] and from [32] the respiratory quotient of this mocroalgae is 1.15 [molC. molO−1

2 ],
with this values we obtain

ρ = 0.53∗1.15∗22.45
1000 = 0.014.

So, in terms of the unit measurement used in this model, the last value is equivalent to ρ =
0.014 [h−1].

To determine the light attenuation coefficient, we will use a simple linear regression with the
data obtained from [62].
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Figure 2.10. Linear regression and zero intercept for the estimation of the light attenuation parameter a.

Table 2.6. Linear regression f (x) = axL

µ [h−1] x [g.L−1] I abs I out axL

0.018 0.78 88 12 2.1203
0.019 0.84 87 13 2.0402
0.031 0.41 80 20 1.6094
0.034 0.39 73 27 1.3093
0.052 0.21 51 49 0.7134
0.061 0.11 36 64 0.4463
0.064 0.1 31 69 0.3711

R2 0.971
Slope 2.33
Zero–intercept 2.81
a (estimated) [m2. g−1] 0.0933

Finally, it is necessary to estimate the last parameters by comparing the functions µ1(x) and
µ2(x) that was defined above (appendix B) by a nonlinear least squares method.
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Figure 2.11. Approximation of functions µ1(.) and µ2(.) by nonlinear least squares method.

In the next table we shown the parameters were estimated by the nonlinear least squares
method, from the data obtained in references (see table 2.5) for the model applied to C. reinhardtii
with corresponding measurement units. Using the same procedure, we can obtain different pa-
rameters values for this model, for example by varying the incidental light I0 (see table 2.3).

Table 2.7. Parameters estimated for C. reinhardtii in this model.

parameter value units

µ̄ 2.34 d−1

ρ 0.34 d−1

c 0.253 g.L−1
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Chapter 3

Modelling and stability analysis of a
microalgal pond with nitrification

3.1 Introduction

Microalgae culture is an emerging solution for a wide range of applications: food production,
wastewater treatment, biofuel, among others. For large-scale production, microalgae can be fed
with wastewater or digestate, that contains a large amount of ammonium [38, 95]. The presence
of oxygen (produced by photosynthesis) and ammonium favor the growth of nitrifiers, which
transform ammonium into nitrate. On the other hand, microalgae can grow either on ammonium
or nitrate as a nitrogen source. The conditions in which microalgae and nitrifiers can coexist is an
important issue for microalgae pond operation.

The chemostat is a laboratory bioreactor in which fresh medium is continuously added and
culture liquid is continuously removed, so that the culture volume remains constant. It is an
ideal model for studying competition between exploited species. It is also used as a model of the
wastewater treatment process. It has important industrial applications, including the commercial
production of genetically modified organisms [88].

The basic mathematical model for the chemostat was first presented in [75, 79]. However, dif-
ferent proposals for mathematical modelling of the dynamics of multiple species in the chemostat
have been made over the recent years, both for one limiting substrate (see [15, 52, 65, 71, 101]) and
for more than one substrate (see [4, 9, 63, 72]).

In the case of competition for one resource [45, 93], for a well-mixed continuous culture (e.g.

This chapter is based on the paper F. Mairet, H. Ramírez C. and A. Rojas-Palma, Modelling and stability
analysis of a microalgal pond with nitrification, submitted to Applied Mathematical Modelling, Elsevier (2016).
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the chemostat), the competitive exclusion principle [5] provides conditions on growth rates under
which only one species can generically persist. This has led to a large literature (for example,
[5, 37, 66] and references therein) whose aim is to explain the discrepancy between the competitive
exclusion principle and the fact that it is common for multiple competing species to survive in
nature on one limiting substrate [72].

The case of two species and two substrates has been well studied in [8, 9, 68]. In particular, these
papers focus on ensuring the coexistence of two species based on the consideration of nullclines,
the locations and stability of single species equilibria, and global stability results for coexistence
are given. Nonetheless, the particular case of microalgae and nitrifiers - together with competition
and cross-feeding - has never been addressed to the best of our knowledge.

In this work, we propose a reduced model of a microalgal pond with nitrification. This model
considers the competition for nitrogen between microalgae and nitrifiers, but others possible inter-
actions (CO2, O2) are neglected. Nitrification is represented by a one-step bioreaction. Microalgae
can grow either on ammonium or nitrate, with a preference for ammonium. Light limitation (by
self-shading) is also included in the microalgae growth rate.

The goal of this manuscript is to propose a dynamical model of the competition in a microalgal
pond and to mathematically analyze this system. We finally provide some hints on how to manage
the presence of nitrifiers.

Preliminaries.

1) By positive equilibrium point, we refer to an equilibrium point whose components are pos-
itive.

ii) Throughout this paper, global asymptotic stability should be interpreted as global asymp-
totic stability in the defined domain of the considered system, i.e., where the initial condi-
tions have sense in terms of their meaning in the studied problem (For instance, they should
be positives)

iii) By equilibrium existence, we mean that equilibrium points belong to the domain of defini-
tion of the considered system.

iv) For convenience, we sometimes consider x ∈ R
n, and for f : R

n → R, we denote ∇ f =
( ∂ f

∂x1
, ..., ∂ f

∂xn
).

3.2 Problem statement

In first place, we define in Table 3.1 the state variables used in the algal pond model.
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Table 3.1. Variables used in the algal pond model

Variable IC Meaning

x1 1 Nitrifying biomass [gCOD/m3]
x2 10 Microalgal biomass in C [gCOD/m3]
s1 10 Ammonium concentration [gN/m3]
s2 1 Nitrate concentration [gN/m3]

3.2.1 Stoichiometric Equations

We consider the following reactions:

1. Nitrifying Biomass Growth:

k1s1
µ1(s1)x1−→ x1 + k1s2. (3.1)

Note that we assume that all the nitrogen consumed is oxidized into nitrate, neglecting the
nitrogen in the biomass. This assumption can be checked using ASM1 parameter values
[1]: the nitrogen content of the biomass iXB (0.086 gN/gCOD) is negligible compared to
consumption yield Y−1

A (4.17 gN/gCOD).

2. Microalgal Growth on Ammonium:

k2s1
µ2(s1 ,x2)x2−→ x2. (3.2)

3. Microalgal Growth on Nitrate:

k2s2
µ3(s1 ,s2 ,x2)x2−→ x2. (3.3)

3.2.2 Kinetic Equations

Assumptions 3.1 We give some assumptions about growth functions of the different species involved in
the dynamics.

H1 The function µ1(s1) is iqual to zero for s1 = 0 (onwards zero at zero), positive, continuous, increasing
and bounded function (a Monod growth fulfills these assumptions for instance).
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H2 The function µ2(s1, x2) is defined by

µ2(s1, x2) = µ̄2(s1)φ2(x2), (3.4)

where µ̄2(s1) is a zero at zero, positive, differentiable, increasing and bounded function and the
function φ(x2) is positive, differentiable, non increasing, φ2(0) = 1 and φ2(x2)x2 is increasing and
bounded (it can represent competitive inhibition).

H3 The function µ3(s1, s2, x2) is defined by

µ3(s1, s2, x2) = µ̄3(s2)ϕ(s1)φ2(x2), (3.5)

where µ̄3(s2) is a zero at zero, positive, differentiable, increasing and bounded function and the func-
tion ϕ(s1) is positive, differentiable, non increasing, ϕ(0) = 1 and ϕ(s1)s1 is increasing and bounded.
In particular we shall consider |µ̄3(s2)| ≤ c|s2| for some c > 0 (as in Monod case) and in general
|µ3(x2, s1, s2)| ≤ c‖(x2, s1, s2)‖.

The functions µ1(s1), µ̄2(s1), and µ̄3(s2) are classical kinetics for substrate limitation. The func-
tion φ(x2) is used to represent microalgae self-shading: the more biomass there is, the more light
is attenuated and so the growth rate decreases. Finally, the function ϕ(s1) is used to represent
microalgae preference for ammonium over nitrate (i.e. ammonium inhibits growth on nitrate).

3.2.3 Mass Balance Equations

In a continuous reactor, the model is described as follow:




ẋ1 = (µ1(s1)− D)x1
ẋ2 = (µ2(s1, x2) + µ3(s1, s2, x2)− D)x2
ṡ1 = D(sin − s1)− k1µ1(s1)x1 − k2µ2(s1, x2)x2
ṡ2 = −Ds2 + k1µ1(s1)x1 − k2µ3(s1, s2, x2)x2

(3.6)

where D and sin are respectively the dilution rate and the ammonium input concentration. The
system (3.6) is defined in the region

Ω = {(x1, x2, s1, s2) ∈ R
4 | x1, x2, s1, s2 ≥ 0}.

and all the parameters are positive. This model of competition in a chemostat is similar to the one
presented in [8, 9, 51] but considering intra-specific competition phenomenon through density-
dependent growth functions [65, 66, 71] and also cross-feeding (the nitrate produced by the nitri-
fiers can be consummed by the algae).

3.3 Model analysis

We consider in this section the mathematical analysis of the system (3.6). The first result is quite
technical but important, because it implies that the system is well posed.
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Lemma 3.2 For initial conditions in Ω, the solutions of the system (3.6) remain positive and are bounded
for all t > 0.

PROOF. First of all, we need to prove that Ω is an invariant set. Suppose that s1 = 0, where in this
case ṡ1 = D(sin) ≥ 0, then s1(t) ≥ 0, ∀t > 0. In the same way, if s2 = 0 then ṡ2 = k1µ1(s1)x1 ≥ 0, ∀t >
0. Finally, if xi = 0 for i = 1, 2, where ẋi = 0, all solution with initial condition xi(t0) = 0 remains
in this plane and the Picard-Lindelöf theorem implies that a solution in int(Ω) cannot cross these
planes. So, each solution with initial condition in Ω remains in this set, i.e., this is an invariant set.

The dynamical behaviour of the solutions x1(t) of the first equation of (3.6) depends of s1(t)
whose dynamics are described in the third equation of (3.6). We note (using comparision principle
[60]) that

ṡ1 = D(sin − s1)− k1µ1(s1)x1 − k2µ2(s1, x2)x2 ≤ D(sin − s1)− k1µ1(s1)x1,

then, we can consider the subsystem
{

ẋ1 = (µ1(s1)− D)x1
ṡ1 = D(sin − s1)− k1µ1(s1)x1

(3.7)

and defining r = k1x1 + s1 then we have

ṙ = k1 ẋ1 + ṡ1

= D (sin − k1x1 − s1)

= D (sin − r) ,

the following differential equation is obtained ṙ + Dr = Dsin, where r(t) = sin − (sin − r(0))e−Dt ≤
sin, ∀r(0) ≤ sin. Otherwise, if r(0) > sin then r(t) = sin + (r(0) − sin)e−Dt is decreasing and its
maximum value is r(0). If we denote L = max{r(0), sin} then r(t) ≤ L, ∀t > 0. In particular,
k1x1 ≤ L in this case.

To show that all solutions are bounded, we consider w = k1x1 + k2x2 + s1 + s2 then (using ma-
jorization)

ẇ = k1 ẋ1 + k2 ẋ2 + ṡ1 + ṡ2

= D (sin − k1x1 − k2x2 − s1 − s2) + µ1(s1)k1x1

= D (sin − w) + µ1(s1)k1x1

≤ D (sin − w) + µ1(sin)L

≤ Dsin + µ1(sin)L− Dw,

the following inequality is obtained

0 ≤ ẇ + Dw ≤ Dsin + µ1(sin)L.

From a theorem on differential inequalities [91]

0 ≤ w(t) ≤ sin + L
D µ1(sin) + (w(0)− (sin + L

D µ1(sin)))e−Dt, ∀t > 0
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when t → ∞ we get w ≤ sin + L
D µ1(sin). Therefore, by defining the set

R =
{

(x1, x2, s1, s2) ∈ Ω | k1x1 + k2x2 + s1 + s2 < max{w(0), sin + L
D µ1(sin)}

}
,

the set R is the region where all solution trajectories of the system (3.6) with initial conditions in
Ω is confined.

Remark 1. The dynamical system is said to be dissipative if all positive trajectories eventually
lie in a bounded set [88]. This is sufficient to ensure that all solutions exist for all positive
time. The last lemma ensure this property for the system (3.6).

2. In the first equation in (3.6) using the comparision principle [60]

ẋ1 = (µ1(s1)− D) x1 ≤ (µ1(sin)− D) x1,

we obtain
x1(t) ≤ x1(0)e−(D−µ1(sin))t,

Suppose that the condition µ1(sin) < D is fulfilled. Then x1 → 0 when t → ∞ ∀x1(0) > 0, i.e.,
if the dilution rate is greater than the growth rate of nitrifying biomass at input ammonium
level, their concentration tends to disappear in time. In the same way, we can prove a similar
result for x2(t) considering in the second equation of (3.6) that s2 ≤ sin + L

D µ1(sin) = s̄2 and
µ2(sin, 0) + µ3(sin, s̄2, 0) < D, i.e., the biomass concentration of microalgae tends to zero in
this case.

3.3.1 Equilibrium existence and local stability

Lemma 3.3 (non-coexistence equilibrium points)
The non coexistence equilibrium points of the system (3.6) are

1. (Washout) E0 = (0, 0, sin, 0) which always exists.

2. (Nitrifier only) En = ( sin−λn
k1

, 0, λn, sin − λn) with λn = µ−1
1 (D) which exists if and only if D <

µ1(sin) (or equivalently λn < sin).

3. (Microalgae only) Ea = (0, sin−λs
k2

, λs, 0) with λs the unique solution of µ2(s1, sin−s1
k2

) = D which
exists if and only if D < µ2(sin, 0) (or equivalently λs < sin).

PROOF. The equilibrium points are the positive solutions of the system of nonlinear equations

(µ1(s1)− D)x1 = 0,
(µ2(s1, x2) + µ3(s1, s2, x2)− D)x2 = 0,

D(sin − s1)− k1µ1(s1)x1 − k2µ2(s1, x2)x2 = 0,
−Ds2 + k1µ1(s1)x1 − k2µ3(s1, s2, x2)x2 = 0.

(3.8)

From the first two equations, we have
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• (µ1(s1)− D)x1 = 0 ⇒ x1 = 0 or µ1(s1) = D,

• (µ2(s1, x2) + µ3(s1, s2, x2)− D)x2 = 0 ⇒ x2 = 0 or

µ2(s1, x2) + µ3(s1, s2, x2) = D.

1. If x1 = 0 and x2 = 0, then

ṡ1 = 0 ⇒ D(sin − s1) = 0 ⇒ s1 = sin,

ṡ2 = 0 ⇒ −Ds2 = 0 ⇒ s2 = 0.

Therefore (x1, x2, s1, s2) = (0, 0, sin, 0) is an equilibrium point.

2. If µ1(s1) = D and x2 = 0, let λn = µ−1
1 (D) the unique solution of the first equality, then

ṡ1 = 0 ⇒ D ((sin − λn)− k1x1) = 0 ⇒ x1 = sin−λn
k1

,

ṡ2 = 0 ⇒ Ds2 + k1Dx1 = 0 ⇒ −s2 + k1x1 = 0 ⇒ s2 = λn − s1.

Therefore (x1, x2, s1, s2) =
(

sin−λn
k1

, 0, λn, sin − λn

)
is an equilibrium point. In particular, we

can see that µ1(s1) is an increasing function and D is constant, then to ensure the intersection
between these functions it is necessary that D < µ1(sin), the last inequality is a necessary and
sufficient condition to guarantee the existence of this equilibria.

3. If x1 = 0 and µ2(s1, x2) + µ3(s1, s2, x2) = D, suppose that s2 = 0, the last equality is reduced to
µ2(s1, x2) = D and

ṡ1 = 0 ⇒ D(sin − s1)− k2µ2(s1, x2)x2 = 0 ⇒ x2 = sin−s1
k2

,

if we denote λs the unique positive solution of the equation

µ2(s1, sin−s1
k2

) = D,

then (x1, x2, s1, s2) =
(

0, sin−λs
k2

, λs, 0
)

is an equilibrium point. Similarly to the previous case,

µ2(s1, sin−s1
k2

) is an increasing function and D is constant, then to ensure the intersection be-
tween these functions it is necessary and sufficient that D < µ2(sin, 0).

From the analysis of the above cases, the statement is proved.
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Figure 3.1. In this setting µ̄n = 2, µ̄s = 1, Kn = 1, Ks = 0.12, Kx = 0.5, sin = 1, D = 0.5, k1 = 1 and considering the growth functions in the
application section, the graph show the existence of the three equilibrium points that was proven in lemma above.

Now, if any other equilibrium point of (3.6) exists, there must be a positive equilibrium. As-
suming this fact, the positive solutions of equation (3.8) must simultaneously solve the equations

{
µ1(s1) = D,
µ̄2(s1) + µ̄3(s2)ϕ(s1) = x2

φ(x2) D, (3.9)

{
D(sin − s1) = k1µ1(s1)x1 + k2µ̄2(s1)v(x2),
−Ds2 = −k1µ1(s1)x1 + k2µ̄3(s2)ϕ(s1)v(x2),

(3.10)

where v(x2) = x2φ(x2). If we denote y = v(x2), using Cramer’s rule, a solution (x∗1 , x∗2) = (x∗1 , v−1(y∗))
of system (3.10) for s1, s2 fixed is given by

x∗1 = k2D((sin−s1)µ̄3(s2)ϕ(s1)−s2µ̄2(s1))
d(s1 ,s2) ,

v(x∗2) = k1Dµ1(s1)(sin−s1−s2)
d(s1 ,s2) ,

where d(s1, s2) = k1k2µ1(s1)(µ̄2(s1) + µ̄3(s2)ϕ(s1)) > 0, ∀s1, s2 > 0.

When s1 and s2 are positive solutions of (3.9) then we obtain the result of proposition 3.4. In
the following, we define

f (s1, x2) = µ2(s1, x2) + µ3(s1, sin − s1 − k2x2, x2). (3.11)

Proposition 3.4 (coexistence)
A necessary and sufficient condition for the existence and uniqueness of a positive equilibrium point of (3.6)
is given by

D < min {µ1(sin), µ2(sin, 0), µ2(λn, 0) + µ3(λn, sin − λn, 0)} (3.12)

or equivalently λn < sin, λs < sin, and D < γn,0, with

γn,0 := f (λn, 0) = µ2(λn, 0) + µ3(λn, sin − λn, 0).
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Furthermore, in this case, the unique positive equilibrium Ec = (x∗1 , x∗2 , s∗1 , s∗2) is described by

s∗1 = λn,

s∗2 = sin − λn − k2x∗2 ,

x∗1 = sin−λn−k2x∗2
k1

+ k2µ3(λn ,x∗2 )x∗2
Dk1

,

where x∗2 is a positive solution of the nonlinear equation

µ2(λn, x2) + µ3(λn, sin − λn − k2x2, x2) = D.

PROOF. Suppose that µ1(s1) = D and µ2(s1, x2) + µ3(s1, s2, x2) = D. The equality µ1(s1) = D give us
an explicit expression for s1 in this case, i.e., s∗1 = λn. It exists if and only if D < µ1(sin) (see Lemma
3.3, part 2).

If we add the last two equations in (3.8) then

D(sin − s1 − s2)− k2(µ2(s1, x1) + µ3(s1, s2, x2))x2 = 0

D(sin − s1 − s2 − k2x2) = 0,

that is, the equilibrium points must necessarily fulfill the equality relation

sin − s1 − s2 − k2x2 = 0. (3.13)

then necessarily s2 = sin − λn − k2x2.

From the third equation of (3.8), using the equality µ1(s1) = D

D(sin − λn)− k1Dx1 − k2µ2(λn, x2)x2 = 0,

therefore, solving for the variable x1 we obtain

x∗1 = D(sin−λn)−k2µ2(λn ,x2)x2
Dk1

,

or equivalently
x∗1 = sin−λn−k2x2

k1
+ k2µ3(λn ,x2)x2

Dk1
.

Finally, x∗2 should be the solution of the equation

µ2(λn, x2) + µ3(λn, s∗2 , x2) = D (3.14)

It is noted that by replacing the term s∗2 into the last equation, the unique variable is x2. From as-
sumptions H1-H3 the function (3.11) is positive in ]0, ∞[×]0, ∞[, increasing with respect to s1 and
is strictly decreasing with respect to x2. We note that f (sin, 0) = µ2(sin, 0) so a necessary condition
for the existence of the positive equilibrium is D < µ2(sin, 0). Finally, the maximum possible value
of the function evaluated in the equilibrium value λn is f (λn, 0) = µ2(λn, 0) + µ3(λn, sin− λn, 0) and
then to guarantee the existence of solution of the equation (3.14)

f (λn, 0) = µ2(λn, 0) + µ3(λn, sin − λn, 0) := γn,0 > D.

this completes the proof.
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Table 3.2. Equilibrium existence conditions for break-even concentrations

Equilibria Existence

E0 Always
En λn < sin

Ea λs < sin

Ec λn < sin, λs < sin, D < γn,0

Proposition 3.5 (Local stability of non-coexistence equilibrium points)

1. The equilibrium point E0 = (0, 0, sin, 0) is locally asymptotically stable if µ1(sin) < D and µ2(sin, 0) <
D (or equivalently sin < λn and sin < λs).

2. The equilibrium point En = ( sin−λn
k1

, 0, λn, sin − λn) is locally asymptotically stable if µ2(λn, 0) +
µ3(λn, sin − λn, 0) < D (or equivalently γn,0 < D).

3. The equilibrium point Ea = (0, sin−λs
k2

, λs, 0) is locally asymptotically stable if µ1(λs) < D (or equiv-
alently λs < λn).

PROOF. We shall use the Lyapunov indirect method [19].

1. The Jacobian matrix of system (3.6) (see (3.24) in appendix A) evaluated in the point E0

J(E0) =




µ1(sin)− D 0 0 0
0 µ2(sin, 0)− D 0 0

−k1µ1(sin) −k2µ2(sin, 0) −D 0
k1µ1(sin) 0 0 −D




is a lower triangular matrix. Then its eigenvalues are the diagonal elements. In this case,
all the eigenvalues are negatives (negative real part) if the conditions µ1(sin) < D and
µ2(sin, 0) < D are satisfied.

2. The Jacobian matrix of the system (3.6) evaluated in the point En is

J(En) =




0 0 sin−λn
k1

dµ1
ds1

(λn) 0
0 J22 0 0

−k1D −k2µ2(λn, 0) J33 0
k1D −k2µ3(λn, sin − λn, 0) (sin − λn) dµ1

ds1
(λn) −D




where µ1 is increasing, dµ1
ds1

(λn) > 0 and

J22 = µ2(λn, 0) + µ3(λn, sin − λn, 0)− D 6= 0,

J33 = −D− (sin − λn) dµ1
ds1

(λn) < 0.
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The eigenvalues of the matrix J(En) are {−D, J22} and the roots of the quadratic equation

λ2 − J33λ + (sin − λn) dµ1
ds1

(λn)D = 0,

whose discriminant is

△ = (J33)2 − 4(sin − λn) dµ1
ds1

(λn)D

= ((sin − λn) dµ1
ds1

(λn)− D)2 > 0,

i.e., the roots of the last equation are real and (from Descartes’ rules of signs) both roots
are negative, then if µ2(λn, 0) + µ3(λn, sin − λn, 0) < D the equilibrium point En is locally
asymptotically stable.

3. The Jacobian matrix of the system (3.6) evaluated in the point Ea is

J(Ea) =




µ1(λs)− D 0 0 0
0 J22 J23

sin−λs
k2

∂µ3
∂s2

(λs, 0, sin−λs
k2

)
−k1µ1(λs) J32 J33 0
k1µ1(λs) 0 0 −D




where

J22 = sin−λs
k2

∂µ2
∂x2

(λs,
sin−λs

k2
) < 0,

J23 = sin−λs
k2

∂µ2
∂s1

(λs,
sin−λs

k2
) > 0,

J32 = −(sin − λs)
∂µ2
∂x2

(λs,
sin−λs

k2
)− k2D 6= 0,

J33 = −D− (sin − λs)
∂µ2
∂s1

(λs,
sin−λs

k2
) < 0.

The eigenvalues of the matrix J(Ea) are {µ1(λs)− D, J22} (where µ1(λs)− D < 0 when λs <
λn) and the eigenvalues of the submatrix

A =
(

J22 J23
J32 J33

)
∈ M2×2(R),

determined by the equation

λ2 − trace(A)λ + det(A) = 0, (3.15)

where trace(A) = J22 + J33 and det(A) = J22 J33 − J23 J32. In this case

trace(A) = sin−λs
k2

( ∂µ2
∂x2

(λs,
sin−λs

k2
)− k2

∂µ2
∂s1

(λs,
sin−λs

k2
))− D,

det(A) = − sin−λs
k2

( ∂µ2
∂x2

(λs,
sin−λs

k2
)− k2

∂µ2
∂s1

(λs,
sin−λs

k2
))D.

The discriminant of (3.15) is

△ = (trace(A))2 − 4 det(A)

= ( sin−λs
k2

( ∂µ2
∂x2

(λs,
sin−λs

k2
)− k2

∂µ2
∂s1

(λs,
sin−λs

k2
)) + D)2 > 0,
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then the roots of (3.15) are real and are given by

λ1 = −2D < 0

λ2 = 2 sin−λs
k2

( ∂µ2
∂x2

(λs,
sin−λs

k2
)− k2

∂µ2
∂s1

(λs,
sin−λs

k2
)) < 0,

and where all the eigenvalues of the matrix J(Ea) are negative (negative real part) and none
is equal to zero. The equilibrium point Ea is locally asymptotically stable when λs < λn.

From the three cases above, the statement is proved.

Table 3.3. Local stability conditions of non-coexistence equilibrium points for break-even
concentrations

Equilibrium point Locally asymptotically stable if

E0 sin < λn, sin < λs

En γn,0 < D
Ea λs < λn

In the next lemma we investigate the nature of the coexistence equilibrium point.

Lemma 3.6 Suppose the conditon (3.12), the equilibrium Ec is an hyperbolic equilibrium point.

PROOF. The determinant of Jacobian matrix of the system (3.6) (see (3.24)) following the same
notation from the previous proposition, is given by

det(J(Ec)) = k1x∗1 D dµ1
ds1

(λn) (J22 J44 − J32 J24 − J24 J42)

= x∗2 D
[
k2

∂µ3
∂s2

(λn, s∗2 , x∗2)−
(

∂µ2
∂x2

(λn, x∗2) + ∂µ3
∂x2

(λn, s∗2 , x∗2)
)]

.

Suppose parameters are varied so that an eigenvalue of Ec passes through zero. At the bifurcation
point, either Ec collapses with the equilibrium points in ∂Ω (the boundary of the set Ω) or it exists
as an equilibrium in int(Ω), in which case x∗i > 0 and s∗i > 0 (i = 1, 2) then the determinant of Ec

cannot be zero (it is positive, in fact it coincides with the coefficient a4 of the characteristic poly-
nomial as shown in the previous proposition) and so there is no bifurcation. Thus, if parameters
are varied so that an eigenvalue of J(Ec) reaches zero, then Ec collapses either with En or Ea (or
possibly E0 if there is a higher order bifurcation).

Remark Note that the last result does not fully characterize the nature of the coexistence equilib-
rium but at least it avoids the possibility of existence of Hopf bifurcations and other local bifurca-
tions for such equilibrium point for the different parameter values of the model.
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3.3.2 Model reduction

The dynamics described by the system (3.6) can be studied from a reduced model based on some
simple assumptions. Let us define:

z = k2x2 + s1 + s2 − sin, (3.16)

whose dynamics writes:
ż = −Dz.

Then the system (3.6) is equivalent to the following





ż = −Dz
ẋ1 = (µ1(s1)− D)x1
ẋ2 = (µ2(s1, x2) + µ3(s1, z + sin − s1 − k2x2, x2)− D)x2
ṡ1 = D(sin − s1)− k1µ1(s1)x1 − k2µ2(s1, x2)x2

(3.17)

Where ż = −Dz, we have z(t) = z0e−Dt with z0 = z(0) ≤ 1 by (3.16) and obviously limt→+∞ z(t) =
0. Hence, using the theory of asymptotically autonomous systems [88, 90, 92] one studies the
limiting system (we can consider the system (3.6) restricted to the invariant hyperplane z = 0)





ẋ1 = (µ1(s1)− D)x1
ẋ2 = (µ2(s1, x2) + µ3(s1, x2)− D)x2
ṡ1 = D(sin − s1)− k1µ1(s1)x1 − k2µ2(s1, x2)x2

(3.18)

where, from (3.16)
µ3(s1, x2) = µ3(s1, sin − k2x2 − s1, x2),

This system is defined in the region

Ω2 = {(x1, x2, s1) ∈ R
3 | x1, x2, s1 ≥ 0}.

and all the parameters are positive.

There are simple hypotheses to be checked before one can conclude that the dynamics of the
original system (3.6) and that of the asymptotic limiting equations (3.18) have the same asymp-
totique behavior [53], see Appendix F in [88]. The important hypothesis is the lack of a cyclic
connection for orbits, and we comment on this since it is an important hypothesis for uniform
persistence. We describe only the case of equilibrium points, the stability of them prevents it from
being a part of any chain of equilibria (we see this below).

Remark The function µ3(.), defined in the region

R = {(s1, x2) ∈ [0, sin]×R
+
0 | s1 + k2x2 ≤ sin}

is positive, smooth, bounded, decreasing with respect to s1 and x2 and vanishes over the line
s1 = sin − k2x2.
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Figure 3.2. Graph of the function µ3(.) for k2 = 1 and the parameter values in table 3.5.

The next proposition is a direct consequence of the results in Section 3.1 for the reduced system
(3.18)

Proposition 3.7 Let us consider the system (3.18)

a) For initial conditions in Ω2, the solutions of the system remain positive and are uniformly bounded
for all t > 0 in the region

R2 =
{

(x1, x2, s1) ∈ Ω2 | k1x1 + k2x2 + s1 < max{w(0), L
D µ1(sin)}

}
.

b) The equilibrium points of the system are the following ones

1. Ē0 = (0, 0, sin) that always exists.

2. Ēn = ( sin−λn
k1

, 0, λn) with λn = µ−1
1 (D) that exists if and only if D < µ1(sin).

3. Ēa = (0, sin−λs
k2

, λs) with λs the unique solution of µ2(s1, sin−s1
k2

) = D that exists if and only if
D < µ2(sin, 0).

4. Ēc =
(

sin−λn−k2x∗2
k1

+ k2µ3(λn ,x∗2 )x∗2
Dk1

, x∗2 , λn

)
where x∗2 is a positive solution of equation

µ2(λn, x2) + µ3(λn, x2) = D,

that exists and is unique if and only if

D < min {µ1(sin), µ2(sin, 0), µ2(λn, 0) + µ3(λn, 0)} .

c) Local stability of non-coexistence equilibrium points

1. If µ1(sin) < D and µ2(sin, 0) < D, then the equilibrium point Ē0 is locally asymptotically
stable.

2. If µ2(λn, 0) + µ3(λn, 0) < D, then the equilibrium point Ēn is locally asymptotically stable.
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3. If µ1(λs) < D, then the equilibrium point Ēa is locally asymptotically stable.

We are now able to show a sufficient condition for the local stability of the interior positive
equilibrium point Ēc

Proposition 3.8 Asuming condition (3.12), if

0 < δγn,x∗2 , (3.19)

the equilibrium point Ēc is locally asymptotically stable, where

δγn,x∗2 = ∂µ2
∂s1

(λn, x∗2) + ∂µ3
∂s1

(λn, x∗2). (3.20)

PROOF. The Jacobian matrix evaluated in the positive equilibrium point Ēc is

J̄(Ēc) =




0 0 J13
0 J22 J23

−k1D J32 J33


 ,

where

J13 = x∗1
dµ1
ds1

(λn) > 0,

J22 = ( ∂µ2
∂x2

(λn, x∗2) + ∂µ3
∂x2

(λn, x∗2))x∗2 < 0,

J23 = ( ∂µ2
∂s1

(λn, x∗2) + ∂µ3
∂s1

(λn, x∗2))x∗2 6= 0,

J32 = −k2(x∗2
∂µ2
∂x2

(λn, x∗2) + µ2(λn, x∗2)) < 0,

J33 = −D− k1x∗1
dµ1
ds1

(λn)− k2x∗2
∂µ2
∂s1

(λn, x∗2) < 0,

The characteristic polynomial asociated to J̄(Ēc) is

p(λ) = λ3 + a1λ2 + a2λ + a3,

where

a1 = −J22 − J33 > 0,

a2 = J22 J33 − J13 J31 − J23 J32,

a3 = −k1DJ13 J22 > 0.

The Routh-Hurwitz criterion in this case provides that the roots of the polynomial p(λ) have
negative real part if and only if ai > 0 (i = 1, 2, 3) and a1a2 − a3 > 0. Suppose that 0 <
∂µ2
∂s1

(λn, x∗2) + ∂µ3
∂s1

(λn, x∗2) we obtained that J23 > 0, with this a2 > 0 and

a1a2 − a3 = J13 J31 J33 −
(

J2
22 J33 + J22 J2

33
)

+ J23 J32 (J22 + J33) > 0,

then the eigenvalues of J̄(Ēc) have negative real part, i.e., the coexistence equilibrium point Ēc is
locally asymptotically stable.
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Table 3.4. Equilibrium existence and local stability conditions for break-even concentra-
tions in system (3.18).

Equilibria Existence Local stability

Ē0 Always sin < λn, sin < λs

Ēn λn < sin γn,0 < D
Ēa λs < sin λs < λn

Ēc λn < sin, 0 < δγn,x∗2
λs < sin, D < γn,0

3.4 About the global behaviour

In Proposition 3.8 we prove that the coexistence equilibrium point of the system (3.18) can be lo-
cally asymptotically stable. To try to demonstrate the global stability of this point, a first approach
would be to use the direct method of Lyapunov [19, 60], which gives sufficient conditions for
global asymptotic stability. However, it is not always possible to construct such functions. For
this reason, some researchers have used different approaches, for example in [9, 97] an non-strict
Lyapunov function [72] is constructed and LaSalle invariance principle [86] is applied, in fact [9]
give a different focus, using second additive compound matrices [64, 77] for linear growth func-
tion in the case of exploitative competition for two resources. In [71] for a model of n species in
competition for a single resource, the authors make a change of coordinates and they construct a
Lyapunov function that is not radially unbounded. However, they study the sign properties of the
time derivative of the function and Barbalat’s lemma [60] is applied to conclude the attractiveness
of the positive equilibrium. For general chemostat models, in [50] the author gives a complete
survey about the construction of Lyapunov functions. However, in the same article some open
problems are proposed. On other hand, in [26, 53] the authors reduce their model and they study
the system of lower dimension using the theory of asymptotically autonomous systems [88, 90].
We shall develop the same idea in this section.

Remark Some important considerations are now emphasized

i) The system (3.18) can be considered as a perturbation of the system




ẋ1 = (µ1(s1)− D)x1
ẋ2 = (µ2(s1, x2)− D)x2
ṡ1 = D(sin − s1)− k1µ1(s1)x1 − k2µ2(s1, x2)x2

(3.21)

A similar system, for n species but replacing µ1(s1) by µ1(s1)θ(x1) where θ(x1) is strictly
decreasing and θ(0) = 1, was studied in [65, 66, 67]. Under certain assumptions it is possible
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to prove the existence and uniqueness of a positive equilibrium globally asymptotically
stable. Although the system (3.21) does not fulfill one of these hypotheses (in this case
θ(x1) ≡ 1, then it is not strictly decreasing), [66] provides a demonstration based on the
Lyapunov direct method that includes the case of system (3.21).

ii) We note also that the stability results for the system (3.18) are valid for the system (3.21)
(considering µ3(λn, x∗2) = 0, i.e., vanishing perturbation [60]). In particular, the Jacobian
matrix of system (3.21) evaluated on their unique positive equilibrium point E∗ = ( sin−λn

k1
−

k2x∗2
k1

, x∗2 , λn) with x∗2 solution of µ2(λn, x2) = D, is Hurwitz under the condition (3.19) in
Proposition 3.8.

Proposition 3.9 (Some results of global stability for non-coexistence points)

1. Suppose that µ1(sin) < D and µ2(sin, 0) < D, the equilibrium point Ē0 is globally asymptotically
stable for all initial condition.

2. Suppose that µ2(λn, 0) + µ3(λn, 0) < D, the single-species equilibrium Ēn is globally asymptotically
stable with respect to all solutions for which x1(t0) > 0, and x2(t0) = 0.

3. Suppose that µ1(λs) < D, the single-species equilibrium Ēa is globally asymptotically stable with
respect to all solutions for which x2(t0) > 0, and x1(t0) = 0.

PROOF. 1. If the necessary conditions for the local stability of the washout equilibrium point Ē0 are
fulfilled then (from Proposition 3.7) this is the unique equilibrium point in Ω2 and the solutions
are bounded in this case, i.e., the washout equilibrium point is globally asymptotically stable on
this set.

2. We note that x2 = 0 is invariant, then the dynamics for (x1(t), s1(t)) is determined by the
reduced system {

ẋ1 = (µ1(s1)− D)x1
ṡ1 = D(sin − s1)− k1µ1(s1)x1

the last system under assumption H1 represent the classical general chemostat model for one
species, where for any x1(t0) > 0, we have λn < sin implies x1(t) → sin−λn

k1
(see theorem 3.2 in [88]).

3. We note that x1 = 0 is invariant, then the dynamics for (x2(t), s1(t)) is determined by the
reduced system {

ẋ2 = (µ2(s1, x2) + µ3(s1, x2)− D)x2
ṡ1 = D(sin − s1)− k2µ2(s1)x1

(3.22)

the system (3.22) can be considered as a perturbation of system
{

ẋ2 = (µ2(s1, x2)− D)x2
ṡ1 = D(sin − s1)− k2µ2(s1)x1

(3.23)

The system (3.23) was studied in [66] in particular, the authors show the global asymptotical sta-
bility of the unique positive equilibrium through the direct method of Lyapunov, this equilibrium
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matches with Ēa in this case and where µ3(λs, x∗) = 0, ie in the equilibrium Ēa the perturbation
vanish, the Lemma 9.1 in [60] assure that the equilibrium is globally asymptotically stable.

Theorem 3.10 (Ultimate bounded solutions near positive equilibrium) Assuming condition (3.19), the
solutions of (3.18) with initial condition in R2 tend asymptotically to the positive coexistence equilibrium
point Ēc in a finite period of time and then remain bounded and near equilibrium.

PROOF. The demonstration will be given in two steps. First of all, we shall prove that the system
(3.21) have a positive equilibrium point globally asymptotically stable trought the Lyapunov direct
method, following the construction in [66]. Secondly, we use a result of non-vanishing perturbated
systems from [60] and the last remark to conclude the statement. The system (3.21) can be written
as 




ẋ1 = (µ̄1(s1)φ1(x1)− d1)x1
ẋ2 = (µ̄2(s1)φ2(x2)− d2)x2
ṡ1 = f (s1)− k1µ̄1(s1)φ1(x1)x1 − k2µ̄2(s1)φ2(x2)x2

where f (s1) = D(sin − s1), µ̄1(.) = µ1(.), φ1(x1) ≡ 1 and d1 = d2 = D. Clearly f (0) > 0 and from
hypothesis H1-H2 φi(xi) are positive, decreasing, φi(0) = 1 and φi(xi)xi is increasing for i = 1, 2.
There is a unique positive equilibrium point (x∗1 , x∗2 , s∗1) ∈]0, ∞[2×]0, sin[ such that µ̄i(s∗1)φix∗i = D
and ∑

2
i=1 kiµ̄i(s∗i )φi(x∗i )x∗i = f (s∗1), the functions µ̄i are bounded, zero at zero, increasing and µ̄′i(0) >

0. There is a positive function Λ and positive constants ci with i = 1, 2 such that

Λ(0) = ci
µ̄i(s∗1)

µ̄′i(s
∗
1)s∗1

,

and, for all s1 > 0, s1 6= s∗1 ,

Λ(s1) = ci
s1

µ̄i(s1)
µ̄i(s1)− µ̄i(s∗1)

s1 − s∗1
.

Also, we can define a function

Γ(s1) = − f (s1)− f (s∗1) + ∑
2
i=1 ki(µ̄i(s1)− µ̄i(s∗1))φi(x∗i )x∗i

s1 − s∗1
,

which is positive under the above assumptions. From [66] we have that

V(x1, x2, s1) = c1

∫ x1−x∗1

0

l
l+x∗1

dl + c2

∫ x2−x∗2

0

l
l+x∗2

dl

+c2x∗2

∫ x2−x∗2

0

φ2(l+x∗2 )−φ2(x∗2 )
φ2(l+x∗2 ) dl +

∫ s1−s∗1

0

Λ(l+s∗1)l
l+s∗1

dl,

is a Lyapunov function for the system (3.21) which is positive definite and proper on Dt =] −
x∗1 , ∞[×]− x∗2 , ∞[×]− s∗1 , ∞[ (for details, see [66]), and its derivative along the trajectories satisfies

V̇ = −W(x1, x2, s1),

with

W(x1, x2, s1) =
Λ(s1)Γ(s1)

s1
(s1 − s∗1)2 + c2

α(x2)β(x2)
φ2(x2)

(x2 − x∗2)2,
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where α(x2) = −µ2(s∗1) φ2(x2)−φ2(x∗2 )
x2−x∗2

and β(x2) = φ2(x2)x2−φ2(x∗2 )x∗2
x2−x∗2

are positive from the assumptions.
Then the positive equilibrium (x∗1 , x∗2 , s∗1) is a globally asymptotically and a locally exponentially
stable equilibrium point of the system (3.21).

Now we note that the Jacobian matrix of system (3.21) evaluated in their unique positive equi-
librium point E∗ is Hurwitz under the condition (3.19) of Proposition 3.8, i.e., all their eigenvalues
are strictly in the left half plane. Besides, if we denote

f1(x1, x2, s1) =




(µ̄1(s1)φ1(x1)− d1)x1
(µ̄2(s1)φ2(x2)− d2)x2

f (s1)− k1µ̄1(s1)φ1(x1)x1 − k2µ̄2(s1)φ2(x2)x2


 ,

the vector field associated to system (3.21) and

f2(x1, x2, s1) =




0
µ3(s1, x2)x2

0


 ,

the perturbation vector, and considering

∇V(x1, x1, s1) =
(

c1
x1−x∗1

x1
, c2

x2−x∗2
x2

− c2x∗2
φ2(x2)−φ2(x∗2 )

φ2(x2) , Λ(s1) s1−s∗1
s1

)
,

it is straightforward (see Lemma 4.3 in [60]) to note that there exist constants Ci with i = 1, 2, 3 in
terms of the parameters of the system, such that

C1‖(x1 − x∗1 , x2 − x∗2 , s1 − s∗1)‖ ≤ V(x1, x2, s1) ≤ C2‖(x1 − x∗1 , x2 − x∗2 , s1 − s∗1)‖,

V̇ = ∂V
∂t +∇V · f1(x1, x2, s1) = −W(x1, x2, s1)

≤ −C3‖(x1 − x∗1 , x2 − x∗2 , s1 − s∗1)‖2,

and from hypothesis H3, the non-vanishing perturbation term is increasing and bounded

|µ3(s1, x2)| = |µ̄3(sin − k2x2 − s1)||ϕ(s1)||φ2(x2)|
≤ |µ̄3(sin − k2x2 − s1)| ≤ µ̄3(sin).

Now

∇V · f2(x1, x2, s1) =
(

c2
x2−x∗2

x2
− c2x∗2

φ2(x2)−φ2(x∗2 )
φ2(x2)

)
µ3(s1, x2)x2

= c2

(
(x2 − x∗2)− x∗2

x2φ2(x2)−x2φ2(x∗2 )
φ2(x2)

)
µ3(s1, x2),

from hypothesis H2-H3 and using the mean value theorem, there exists ξ ∈ [x2, x∗2] such that

x2φ2(x2)− x2φ2(x∗2) = x2φ2(x2)− x∗2φ2(x∗2) + x∗2φ2(x∗2)− x2φ2(x∗2)

= (ξφ2(ξ))′(x2 − x∗2)− φ2(x∗2)(x2 − x∗2)

= (ξφ2(ξ))′ − φ2(x∗2))(x2 − x∗2),

by using this equality in the above expression, we have

∇V · f2(x1, x2, s1) = c2
(
φ2(x2)− x∗2((ξφ2(ξ))′ − φ2(x∗2))

)
µ̄3(sin − k2x2 − s1)ϕ(s1)(x2 − x∗2),
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we obtain a bound for the norm of ∇V · f2(x1, x2, s1)

‖∇V · f2(x1, x2, s1)‖ ≤ C4|x2 − x∗2 |
≤ C4‖(x1 − x∗1 , x2 − x∗2 , s1 − s∗1)‖,

where C4 = c2µ̄3(sin)(1 + x∗2(ξφ2(ξ))′ + x∗2φ2(x∗2)).

From the last inequalities

V̇ +∇V · f2(x1, x2, s1) ≤ −C3‖(x1 − x∗1 , x2 − x∗2 , s1 − s∗1)‖2 + C4‖(x1 − x∗1 , x2 − x∗2 , s1 − s∗1)‖,

≤ −C3(1− θ)‖(x1 − x∗1 , x2 − x∗2 , s1 − s∗1)‖2

− C3θ‖(x1 − x∗1 , x2 − x∗2 , s1 − s∗1)‖2 + C4‖(x1 − x∗1 , x2 − x∗2 , s1 − s∗1)‖,

where 0 < θ < 1. Then,

V̇ +∇V · f2(x1, x2, s1) ≤ −C3(1− θ)‖(x1 − x∗1 , x2 − x∗2 , s1 − s∗1)‖2,

∀ ‖(x1 − x∗1 , x2 − x∗2 , s1 − s∗1)‖ ≥ C4
C3θ .

Therefore Theorem 4.18 in [60] guarantee that for all initial conditions

(x1(t0), x2(t0), s1(t0)) ∈ R2 ⊂ Ω2,

there exist constants k, γ, b, T, such that ∀ t0 ≤ t ≤ t0 + T,

‖(x1(t), x2(t), s1(t))− (x∗1 , x∗2 , s∗1)‖ ≤ ke−γ(t−t0)‖(x1(t0), x2(t0), s1(t0))− (x∗1 , x∗2 , s∗1)‖,

and ∀ t ≥ t0 + T we have
‖(x1(t), x2(t), s1(t))− (x∗1 , x∗2 , s∗1)‖ ≤ b,

where k = C2
C1

, γ = C3(1−θ)
C2

, b = kC4
C3θ . This completes the proof.

Remark We have that the system (3.6) is dissipative (see remark of Lemma 3.2), all the finite
equilibrium points are hyperbolic and the system (3.17) does not possess a cycle of rest points.
Then Theorem F.1 in [88][Appendix F] guarantee that if (z(t), x1(t), x2(t), s1(t)) is a solution of the
system (3.17) then

lim
t→∞

(z(t), x1(t), x2(t), s1(t)) = (0, x∗1 , x∗2 , s∗1),

where system (3.17) is equivalent to the system (3.6), all solutions of this system with initial con-
dition in R ⊂ Ω tend asymptotically to the positive coexistence equilibrium point Ec in a finite
period of time, and then remain bounded and near equilibrium, following the result of Theorem
3.10.
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3.5 Application

In [1], a dynamical model of an algal pond for wastewater treatment is proposed. In line with this
model, let us consider the Monod growth functions

µ1(s1) =
µ̄ns1

Kn + s1
, µ̄2(s1) =

µ̄ss1

Ks + s1
, µ̄3(s2) =

µ̄ps2

Kp + s2
,

and the non-competitive inhibition terms

φ2(x2) =
exp

(
1− Iin exp(−a(x2)h)

KI

)
− exp

(
1− Iin

KI

)

a(x2)h
, ϕ(s1) =

Ks

Ks + s1
,

where h is the pond depth and a(x2) = a0 + a1x2 is the light extinction coefficient. It is straightfor-
ward to prove that this functions fulfill the assumptions H1-H3. The next table shows parameter
values for the model defined by the system (3.6) based on [1].

Table 3.5. Parameter values for the system (3.6).

parameter value unit

k1 4.2 gN/gCOD
k2 0.08 gN/gCOD
Kn 0.7 gN/m3

Ks 0.05 gN/m3

Kp 0.1 gN/m3

KI 140 W/m2

a0 0.2 1/m
a1 0.088 m2/gCOD
µ̄n 1.12 1/d
µ̄s 2.5 1/d
µ̄p 2.5 1/d
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Figure 3.3. Graph of the non-competitive inhibition function φ2(.) for the parameter values in table 3.5.
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Figure 3.4. Growth functions with parameter values of table 3.5 (from [1]) with a pond depth h = 0.1 m (left) and h = 0.5 m (right).

We consider the same benchmark cases as in [1]: an ammonium input concentration sin =
120 gN/m3, an incident light Iin = 125 W/m2 and two pond depths, either h = 0.1 m or h = 0.5 m.

For h = 0.1 m, we observe for low dilution rate (D < 0.17 d−1) that Ea is globally stable. But for
intermediate dilution rate (D ∈ (0.17; 1.1)), Ea is unstable (given that λs > λn) and the coexistence
equilibrium Ec is globally stable (see figure 3.5). For higher dilution rate, the nitrifiers are washed
out and we obtain only algae (Ea globally stable).
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Figure 3.5. Solutions of the system (3.6) with initial condition (x1(0), x2(0), s1(0), s2(0)) = (10, 40, 30, 50) and a pond depth h = 0.1 m,
considering a dilution rate D = 0.1 (left) and D = 0.4 (right). In the left figure the equilibrium Ea = (0, 1496, 0.045, 0) is globally stable,
however in the right figure the positive equilibrium Ec = (11.2461, 1034, 0.388, 36.88) is globally stable.

For h = 0.5 m, Ec is globally stable if D < 1.1 d−1, otherwise Ea is globally stable (see figure 3.6).
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Figure 3.6. Solutions of the system (3.6) with initial condition (x1(0), x2(0), s1(0), s2(0)) = (10, 40, 30, 50) and a pond depth h = 0.5 m,
considering a dilution rate D = 0.9 (left) and D = 1.2 (right). In the left figure the equilibrium Ec = (26.11, 95.34, 2.86, 109.5) is globally
stable, however in the right figure the positive equilibrium Ea = (0, 68.74, 114, 0) is globally stable.

3.6 Discussion

In this chapter we consider a model of two species, microalgae and nitrifying bacteria, in compe-
tition for nitrogen present as ammonium and nitrate produced by nitrification.

The system (3.6) defined in this work consider some important assumptions. First of all, we
assume that the uptake functions of each specie are classical kinetics for substrate limitation (as
Monod function for instance) but modified by assuming self shading and preference for ammo-
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nium over nitrate in the case of microalgae. With this we obtain density-dependent growth func-
tions. Secondly, we assume cross-feeding, i.e., the nitrate produced in the reactor can be consumed
by microalgae and we do not consider a initial input concentration of nitrate because is not rea-
sonable in terms of the modelling.

We perform an analysis of existence and local stability of equilibria for the system (3.6), where
conditions for existence and stability are given in terms of some parameters, in particular, dilution
rate (D), ammonium input concentration (sin) and break-even concentrations (see tables 3.2-3.3).
To analyze the local stability of positive equilibrium was necessary to use a result of asymptotically
autonomous systems to reduce dimension, obtaining the limiting system (3.18).

Concerning to global behaviour, the most interesting result was about ultimate bounded so-
lutions near of coexistence equilibrium. This result guarantee that under some parameter condi-
tions, the positive equilibrium can be globally asymptotically stable or at least the system solutions
will remain close to this value. To prove this, it was necessary to use a two step approach. First, we
realized that the system (3.18) can be interpreted as a perturbation of a two-species competition
model for a single resource previously studied in [66] where the authors provides a demonstration
of global stability based on the Lyapunov direct method. Secondly, we can conclude the statement
based on a non-vanishing perturbation result detailed in [60].

Finally, we shown an application of this model using parameter values from [1] where the
authors conclude from simulations with a more complex model that nitrification does not occur
for low dilution rate (D < 0.1 d−1) with h = 0.1 m. Our analysis is consistent with their results,
although we obtain a different threshold.

Moreover, we can see that a deeper pond facilitates the presence of nitrifiers (Ec becomes glob-
ally stable for all dilution rates lower than 1.1 d−1) given that it slows down the growth of microal-
gae (because of light attenuation). We can also observe that En can never be locally stable within
these operating conditions: microalgae can always invade a pure culture of nitrifiers.

Finally, this analysis also highlights the potential benefits of the presence of nitrifiers. For
example, as it can be seen in Figure 3.4, the ammonium concentration with a dilution rate of 0.8
d−1 at the equilibrium with only algae (given by the green curves) is 75.3 gN/m3 for h = 0.1 m and
111.3 gN/m3 for h = 0.5 m (the concentration increases with pond depth given that algae growth
becomes more light-limited). On the other hand, the ammonium concentration at the coexistence
equilibrium (given by the blue curve) is 1.7 gN/m3, whatever is the pond depth. The presence of
nitrifers allows a huge decrease of ammonium concentration at equilibrium. This is of particular
interest in order to limit ammonia stripping (which can represent an undesirable loss of nitrogen
if the objective is to produce microalgal biomass).

Our model and analysis do not include all the phenomena involved in the process (effect of
O2, CO2, day-night cycle, ammonia stripping...). Nonetheless it gives us some hints on how to
manage the presence of nitrifiers in an algae pond. This study also shows that a simple model can
be useful to point out some phenomena from a mathematical analysis.
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Appendices

A Jacobian Matrix

The Jacobian matrix is the matrix of all first-order partial derivatives of a vector-valued function.
Suppose f : R

n → R
m is a function (which takes as input real n-tuples and produces as output real

m-tuples). Such a function is given by m real-valued component functions,

f1(x1, . . . , xn), . . . , fm(x1, . . . , xn).

The partial derivatives of all these functions with respect to the variables x1, . . . , xn can be orga-
nized in an m-by-n matrix, the Jacobian matrix J f of f , as follows:

J f (x1, . . . , xn) =




∂
∂x1

f1 . . . ∂
∂xn

fn
...

. . .
...

∂
∂x1

fm . . . ∂
∂xn

fm




In the particular case when the function f : R
n → R

n define a dynamical system ẋ = f (x) with
x ∈ R

n, the Hartman-Grobman theorem [81] or Linearization theorem [6] assure that behavior of
the system near a hyperbolic equilibrium point x∗ is the same to the linearized system ẋ = J f (x∗)x.

For the system (3.6) the Jacobian matrix is

J(x1, x2, s1, s2) =




J11 0 J13 0
0 J22 J23 J24
−J41 J32 J33 0
J41 J42 J43 J44


 , (3.24)

where

J11 = µ1(s1)− D,

J13 = x1
dµ1
ds1

(s1),

J22 = ( ∂µ2
∂x2

(s1, x2) + ∂µ3
∂x2

(s1, s2, x2))x2 + µ2(s1, x2) + µ3(s1, s2, x2)− D,

J23 = ( ∂µ2
∂s1

(s1, x2) + ∂µ3
∂s1

(s1, s2, x2))x2,

J24 = x2
∂µ3
∂s2

(s1, s2, x2),

J32 = −k2(x2
∂µ2
∂x2

(s1, x2) + µ2(s1, x2)),

J33 = −D− k1x1
dµ1
ds1

(s1)− k2x2
∂µ2
∂s1

(s1, x2),

J41 = k1µ1(s1),

J42 = −k2(x2
∂µ3
∂x2

(s1, s2, x2) + µ3(s1, s2, x2)),

J43 = k1x1
dµ1
ds1

(s1)− k2x2
∂µ3
∂s1

(s1, s2, x2),

J44 = −D− k2x2
∂µ3
∂s2

(s1, s2, x2).
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Chapter 4

Equivalence of finite dimensional
input-output models of solute transport
and diffusion

4.1 Introduction

In underground media (soil, unsaturated zone and aquifers), the transport of solutes is slow,
remaining always slower than a few meters per hour in some large pore structures [27, 34]. Trans-
port can also be orders of magnitude slower in narrow pores immediately neighboring the former
larger pores giving rise to strong dispersive effects [39, 40]. Slow to very slow motions, high
dispersion, and direct interactions between slow diffusion in small pores and fast advection in
much larger pores are ubiquitous in soils and aquifers [23]. They are also the most characteristic
features of underground transport as long as it remains conservative. Concerning reactivity, the
characteristic feature of underground media is the strong water-rock interactions due both to the
high surface to volume ratio and to the slow solute movements in the pores [89, 96]. The domi-
nance of these characteristic features up to some meters to hundreds of meters have prompted the
development of numerous simplified models starting from the double-porosity concept [99]. In
double-porosity models, solutes move quickly by advection in a first homogeneous porosity with
a small volume representing focused fast-flow channels and slowly by diffusion in a second large
homogeneous porosity. Exchanges between the two porosities is diffusion-like, i.e. directly pro-
portional to the differences in concentrations. Such models have been widely extended to account
not only for one diffusive-like zones but for many of them with different structures and connec-
tions to the advective zone [46, 82]. Such extensions are thought to model both the widely varying
transfer times and the rich water-rock interactions. The two most famous ones are the Multi-

This chapter is based on the paper A. Rapaport, A. Rojas-Palma, J. R. de Dreuzy and H. Ramírez C.,
Equivalence of finite dimensional input-output models of solute transport and diffusion in geosciences, submitted to
IEEE Transactions on Automatic Control, IEEE Xplore (2016).
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Rate Mass Transfer model (MRMT) [16, 46] and Multiple INteracting Continua model (MINC)
[78]. They are made of an infinity of diffusive zones deriving from analytic solutions of the dif-
fusion equation in layered, cylindrical or spherical impervious inclusions (MRMT) or in series
(MINC). Between the single and infinite diffusive porosities of the dual-porosity and these mod-
els, many intermediary models with finite numbers of diffusive porosities have been effectively
used and calibrated on synthetic, field, or experimental data showing their relevance and useful-
ness [7, 25, 74, 100, 103]. Theoretical grounds are however missing to identify classes of equivalent
porosity structures, effective calibration capacity on accessible tracer test data, and influence of
structure on conservative as well as chemically reactive transport. One can then naturally wonder
which representation suits the best experimental data, and if the two particular MRMT and MINC
models are not restrictive structures. This is exactly the problem we address in this work, from a
theoretical approach based on linear algebra.

More precisely, we study the equivalence problem for a wide class of network structures and
provide necessary and sufficient conditions, making the mathematical proofs explicit. We have
a proof of the input-output equivalence of MINC and MRMT configurations in the simple case
of three compartments (see Appendix A) but our aims of this analysis is to generalize this result
for the case of n compartments. We stick to the framework of stationary flows (in the mobile
zone) and assume water saturation in the immobile zones. Concretely, we consider a system of
n compartments interconnected by diffusion, whose water volumes Vi (i = 1 · · · n) are assumed
to be constant over the time. One reservoir is subject to an advection of a solute. We shall called
mobile zone this particular reservoir, and all the others n− 1 reservoirs will be called immobile zones
(see Fig. 4.1).
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Figure 4.1. Example of a network with one mobile zone

We aim at describing the time evolution of the concentrations Si (i = 1 · · · n) of the solute in
the n tanks. The solute is injected in tank 1 with a water flow rate Q at a concentration Sin, and
withdrawn from the same tank 1 at the same water flow rate Q with a concentration Sout = S1.
Thus, the tank 1 plays the role of the mobile zone. We represent this system by a system of n
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ordinary differential equations:





Ṡ1 =
Q
V1

(Sin − S1) +
n

∑
j=2

d1j

V1
(Sj − S1)

...
...

Ṡi = ∑
j 6=i

dij

Vi
(Sj − Si)

...
...

where the parameters dij = dji (i 6= j) denote the diffusive exchange rates of solute between reser-
voirs i and j.

For the sake of simplicity, we shall assume

Q
V1

= 1

which is always possible by a change of the time scale of the dynamics.

In the following we adopt an input-output setting in matrix form:
{

Ẋ = AX + Bu
y = CX

(4.1)

where X denotes the vector of the concentrations Si (i = 1 · · · n), u the input that is u = Sin and y
the output y = Sout = S1. The column and row matrices B and C are as follows

B =




1
0
...
0


 and C =

(
1 0 . . . 0

)
(4.2)

and the matrix A satisfies the following properties.

Assumptions 4.1 There exist matrices V and M such that

A = −BBt −V−1M

where B is defined in (6.8), V is a positive diagonal matrix and M is a symmetric matrix that fulfills

i. M is irreducible (i.e. the graph with nodes Pi, and edges
−→
PiPj when Mij 6= 0 is strongly connected)

ii. Mii > 0 for any i
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iii. Mij ≤ 0 for any i 6= j

iv. ∑j Mij = 0 for any i

The diagonal terms of the matrix V represent the volumes of the n zones, and the off-diagonal
terms Mi,j of the matrix M are the (opposite) of the diffusive exchange rate parameters between
zones i and j (equal to 0 if i is not directly connected to j). Properties i. and iv. are related to the
connectivity of the graph between zones and the mass conservation (i.e. Kirchoff’s law). One can
proceed to the following reconstruction of matrices V and M from a given matrix A as follows.

Lemma 4.2 For a given matrix A that fulfills Assumptions 4.1, let π be a permutation of {1, · · · , n} such
that Aπ(i)π(i+1) 6= 0 (i = 1 · · · n) with π(1) = 1. Define the numbers Vi as follows

Vπ(i+1) = Vπ(i)
Aπ(i)π(i+1)

Aπ(i+1)π(i)
i = 2 · · · n

with V1 = 1. Then M = −V(A + BBt) where V is the diagonal matrix with Vi as diagonal entries.

Matrices A that fulfill Assumption 4.1 are compartmental matrices, that have been extensively
studied in the literature (see for instance [57, 98]). In the present work, we focus on properties for
the specific structure of compartmental matrices that we consider.

4.2 Notations and preliminary results

For the sake of simplicity, we introduce the following notations

• for any vector X ∈ R
n and matrix Z ∈ Mn,n(R), we denote

X̃ = [Xi]i=2···n , Z̃ = [Zij] i=2···n
j=2···n

.

• diag (X) denotes the diagonal matrix whose diagonal elements are the entries of the vector
X

• we denote by Vand (x1, · · · , vm) the (square) Vandermonde matrix

Vand (x1, · · · , vm) =




1 x1 · · · xm−1
1

...
...

...
...

1 xm · · · xm−1
m




• we define the vectors in R
n

✶ =




1
...
1


 .
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Lemma 4.3 Under Assumptions 4.1, the domain R
n
+ is invariant by the dynamics for any non-negative

control u.

PROOF. Take a vector X that is on the boundary of R
n
+ and set I = {i ∈ 1 · · · n |Xi = 0}. At such a

vector, one has
Ẋi = ∑

j/∈I

Ai,jXj + Biu , i ∈ I

Note that the matrix A is Metzler (all its non-diagonal terms are non-negative) and B is a non-
negative vector. Consequently one has

Ẋi ≥ 0 , i ∈ I

which proves that any forward trajectory cannot leave the non-negative cone.

Remark Under Assumptions 4.1, the linear system (4.1) is positive in the sense that for any non-
negative initial state and non-negative control u(·), state and output are non-negative for any
positive time (see [33]).

Lemma 4.4 Under Assumptions 4.1, the matrix M̃ is symmetric definite positive.

PROOF. The matrix M̃ is symmetric and consequently it is diagonalizable with real eigenvalues.
Its diagonal terms are positive and off-diagonal negative or equal to zero. Furthermore one as

M̃ii = Mi+1,i+1 = − ∑
j 6=i+1

Mi+1,j = −∑
j 6=i

M̃i,j −Mi+1,1 ≥ −∑
j 6=i

M̃i,j

The matrix M̃ is thus (weakly) diagonally dominant. As each irreducible block of the matrix M̃ has
to be connected to the mobile zone (otherwise the matrix A will not be irreducible), we deduce
that at least one line of each block has to be strictly diagonally dominant. Then each block is
irreducibly diagonally dominant and thus invertible by Taussky Theorem (see [49, 6.2.27]). Finally
the eigenvalues of the matrix M̃ belong to the Gersgorin discs

G(M̃) =
⋃

i

{
λ ∈ R | |λ− M̃i,i|≤ ∑

j 6=i

|M̃i,j|
}

and we deduce that each eigenvalues λ̃i of M̃ are positive. The matrix M̃ is thus symmetric definite
positive.

Lemma 4.5 Under Assumptions 4.1, the matrix A is non singular. Furthermore, the dynamics admits the
unique equilibrium ✶u, for any constant control u

PROOF. Let X be a vector such that AX = 0. Then, one has BBtX = −V−1MX or equivalently

MX = −V1X1B .
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Let us decompose the matrix M as follows

M =
(

M11 L
L′ M̃

)

where L is a row vector of length n− 1. Then equality MX = −V1X1B amounts to write
{

M11X1 + LX̃ = −V1X1
L′X1 + M̃X̃ = 0

M̃ being invertible (Lemma 4.4), one can write X̃ = −M̃−1L′X1 and thus X1 has to fulfill

(M11 − LM̃−1L′)X1 = −V1X1

From Assumptions 4.1, one has M✶ = 0 which gives
{

M11 + L✶̃ = 0
L′ + M̃✶̃ = 0

that implies M11 − LM̃−1L′ = 0. We conclude that one should have X1 = 0 and then X̃ = 0, that is
X = 0. The matrix A is thus invertible.

Finally the system admits a unique equilibrium X⋆ = −A−1Bu for any constant control u. As
Assumptions 4.1 imply the equality A✶ = −B, we deduce that the equilibrium is given by X⋆ = ✶u.

Lemma 4.6 Under Assumptions 4.1, the sub-matrix Ã is diagonalizable with real negative eigenvalues.

PROOF. Note first that the matrix Ã can be written as Ã = −Ṽ−1M̃. The matrix Ṽ being diagonal
with positive diagonal terms, one can consider its square root Ṽ1/2, defined as a diagonal matrix
with

√
Ṽi terms on the diagonal, and its inverse Ṽ−1/2. Then, one has

Ṽ1/2 ÃṼ−1/2 = −Ṽ−1/2M̃Ṽ−1/2

which is symmetric. So Ã is similar to a symmetric matrix, and thus diagonalizable. Let λ be an
eigenvalue of Ã. There exists an eigenvector X 6= 0 such that

ÃX = λX ⇒ X′Ṽ(ÃX) = λX′ṼX ⇔ X′M̃X = −λX′ṼX

As M̃ is definite positive (Lemma 4.4) as well as Ṽ, we conclude that λ has to be negative.

4.2.1 About controllability and observability

The controllability and observabillity definitions for single-input single-output systems (A, B, C)
of dimension n are given in part B of Annexes. We consider now the following definition
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Definition 4.7 To a given triplet (A, B, C), we associate the linear operator FA,B,C : L2(R+, R) 7→
L2(R+, R) that is defined as y(·) = FA,B,C[u(·)] with y(·) = CX(·) where X(·) is solution of Ẋ = AX + Bu(·)
for the initial condition X(0) = 0. We say that a triplet (A, B, C) is a minimal representation if among
all the triplets (A†, B†, C†) such that FA† ,B† ,C† = FA,B,C, the dimension of A is minimal.

We recall a well known result of the literature on linear input-output systems [59, 2.4.6].

Theorem 4.8 (Kalman) A representation (A, B, C) is minimal if and only if the pairs (A, B) and (A, C)
are respectively controllable and observable.

The particular structures of the matrices A, B and C that we consider allow to show the follow-
ing property.

Lemma 4.9 Under Assumptions 4.1, (A, B) controllable is equivalent to (A, C) observable.

PROOF. Note first that one has

V−1 AV = −BBt −MV−1 = (−BBt −V−1M)′ = A′

and by recursion
V−1AkV = (A′)k

Then one can write

O′A,C = [B, A′B, (A′)2B, · · ·] = V[V−1B, AV−1B, A2V−1B, · · ·]

But one has
V−1B = V−1

1 B

Thus
V1O′A,C = V[B, AB, A2B, · · ·] = VCA,B

and we conclude
rk (OA,C) = rk (CA,B)

4.3 The Multi-Rate Mass Transfer and Multiple INteract-

ing Continua configurations

We consider two particular structures of networks whose (A, B, C) representations fulfill Assump-
tion 4.1.
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Definition 4.10 A matrix A that fulfills Assumptions 4.1 and such that the sub-matrix

Ã = [Aij] i=2···n
j=2···n

is diagonal is called a MRMT (multi-rate mass transfer) matrix.

MRMT matrices correspond to particular arrow structure of the matrix A:

A =




− Q
V1
−∑i

d1i
V1

d12
V1

· · · · · · · · · d1n
V1

d12
V2

− d12
V2

0 · · · · · · 0

...
. . .

...
. . .

d1n
Vn

0 · · · · · · 0 − d1n
Vn




or star connections of depth one, where all the immobile zones are connected to the mobile one
(see Fig. 4.2). In the context of general compartmental models, the flow digraph asociated to
matrix A is an n-compartment mammillary system [2].
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Figure 4.2. Example of a MRMT network

Definition 4.11 A matrix A that fulfills Assumptions 4.1 and which is tridiagonal is called a MINC
(Multiple INteracting Continua) matrix.

MINC matrices correspond to particular structure:

A =




Q
V1
− d12

V1

d12
V1

0 · · · · · · 0

d12
V2

− d12+d23
V2

d23
V2

0 · · · 0

. . .

0 · · · · · · 0 dn−1,n
Vn

− dn−1,n
Vn
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Figure 4.3. Example of a MINC network

where the immobile parts are connected in series, of length n− 1, one of them being connected to
the mobile zone (see Fig. 4.3). In the context of general compartmental models, the flow digraph
asociated to matrix A is an n-compartment catenary system [2].

In the following, we give properties on eigenvalues for MRMT matrices only, because it is
easier to be proved for this particular structure. In the next section, we shall show that MINC and
MRMT structures are indeed algebraically equivalent, and as a consequence eigenvalues of MINC
matrices fulfill the same properties.

Lemma 4.12 A MRMT matrix is Hurwitz (i.e. all the real parts of its eigenvalues are negative).

PROOF. Take a number

γ > max

(
Q
V1

+ ∑
i

d1i

V1
,

d12

V2
, · · · , d1n

Vn

)
.

Then the matrix γI + A is an irreducible non-negative matrix. From Perron-Frobenius Theorem
(see [49, 8.4.4]), r = ρ(γI + A) is a single eigenvalue of γI + A and there exists a positive eigenvector
associated to this eigenvalue. That amounts to claim that there exists a positive eigenvector X of
the matrix A for a single (real) eigenvalue λ = r− γ, and furthermore that any other eigenvalue µ
of A is such that

−r < γ + Re (µ) < r ⇒ Re (µ) < λ .

From the particular structure of MRMT matrix, such a vector X has to fulfill the equalities

− Q
V1

+
n

∑
i=2

d1i

V1
(Xi − X1) = λX1

d1i(X1 − Xi) = λViXi (i = 2 · · · n)

from which one obtains

− Q
V1

= λ

(
X1 +

n

∑
i=2

Vi

V1
Xi

)
.

The vector X being positive, we deduce that λ is negative.
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As ✶u is an equilibrium of the system (4.1) for any constant control u, this Lemma allows then
to claim the following result.

Lemma 4.13 For any constant control u, ✶u is a globally exponentially stable of the dynamics (4.1).

Finally, we characterize the minimal MRMT representations as follows.

Lemma 4.14 For a minimal representation (A, B, C) where A is MRMT, the eigenvalues of the matrix Ã
are distinct.

PROOF. The eigenvalues of Ã for the MRMT structure are λi = −d1i/Vi (i = 2 · · · n). If there exists
i 6= j in {2, · · · , n} such that λi = λj = λ, one can consider the variable

Sij =
Vi

Vi + Vj
Si +

Vj

Vi + Vj
Sj

instead of Si, Sj and write equivalently the dynamics in dimension n− 1:





Ṡ1 =
Q
V1

(Sin − S1) + ∑
k≥2,k 6=i,j

d1k

V1
(Sk − S1) +

d1ij

Vij
(Sij − S1)

...
...

Ṡk =
d1k

Vk
(S1 − Sk) k ∈ {2, · · · , n} \ {i, j}

...
...

Ṡij =
d1ij

Vij
(S1 − Sij)

with Vij = Vi + Vj and d1ij = −(Vi + Vj)λ, which show that (A, B, C) is not minimal.

In the coming sections, we address the equivalence problem of any network structure that
fulfills Assumption 4.1 with either a MRMT or a MINC structure. There are many known ways to
diagonalize the sub-matrix Ã or tridiagonalize the whole matrix A to obtain matrices similar to A
with an arrow or tridiagonal structure. The remarkable feature we prove is that there exist such
transformations that preserve the signs of the entries of the matrices (i.e. Assumption 4.1 is also
fulfilled in the new coordinates) so that the equivalent networks have a physical interpretation.

4.4 Equivalence with MRMT structure

We first give sufficient conditions to obtain the equivalence with MRMT.
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Proposition 4.15 Under Assumption 4.1, take an invertible matrix P such that P−1 ÃP = ∆, where ∆ is
diagonal. If all the entries of the vector P−1

✶̃ are non-null and the eigenvalues of Ã are distinct, the matrix

R =
(

1 0
0 −P∆−1diag (P−1A(2 : n, 1))

)

is invertible and such that R−1AR is a MRMT matrix.

PROOF. Take a general matrix A that fulfills Assumption 4.1. From Lemma 4.6, Ã is diagonalizable
with P such that P−1ÃP = ∆ where ∆ is a diagonal matrix. Let G be the diagonal matrix

G = −∆−1diag (P−1A(2 : n, 1))

and define R̃ = PG.
Note that one has A✶ = −B from Assumptions 4.1. The n − 1 lines of this equality gives A(2 :
n, 1) + Ã✶̃ = 0 and one can write

P−1A(2 : n, 1) + P−1Ã✶̃ = 0
⇔ P−1A(2 : n, 1) + P−1ÃPP−1

✶̃ = 0
⇔ P−1A(2 : n, 1) + ∆P−1

✶̃ = 0

Thus having all the entries of the vector P−1A(2 : n, 1) non-null is equivalent to have all the entries
of the vector P−1

✶̃ non null.

All the entries of the vector P−1A(2 : n, 1) being non-null, R̃ is invertible and one has

R̃−1ÃR̃ = G−1P−1 ÃPG = G−1∆G = ∆.

One can then consider the matrix R ∈ Mn,n defined as

R =
(

1 0
0 R̃

)
with R−1 =

(
1 0
0 R̃−1

)

One has

R−1 AR =




A11 A(1, 2 : n)R̃

R̃−1 A(2 : n, 1) ∆




We show now that the matrix R−1AR fulfills Assumptions 4.1.

One has straightforwardly

R−1 AR = −BtB− R−1V−1MR .

As the irreducibility of the matrix V−1M is preserved by the change of coordinates given by
X 7→ R−1X, Property i. is fulfilled.
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The diagonal terms of −(R−1AR + BBt) are −A11 − 1 (which is positive) and the diagonal of
−∆ which is also positive. Property ii. is thus satisfied.

We have now to prove that column R̃−1 A(2 : n, 1) and row A(1, 2 : n)R̃ are positive to show
Property iii. From the definition of the matrix G, one has

∆ = −G−1diag (P−1A(2 : n, 1)) = −diag (R̃−1A(2 : n, 1))

and thus one has
R̃−1A(2 : n, 1) = −∆✶̃

As the diagonal terms of ∆ are negative, we deduce that the vector R̃−1A(2 : n, 1) is positive. As
the matrix VA is symmetric, one can write V11A(1, 2 : n) = A(2 : n, 1)′Ṽ and then

(
V11 A(1, 2 : n)R̃

)′ = R̃′ṼA(2 : n, 1) = −R̃′ṼR̃∆✶̃

Note that the matrix R̃′ṼR̃ can be written T′T with T = Ṽ1/2R̃, and that the matrix T diagonalizes
the matrix S = Ṽ1/2 ÃṼ−1/2:

T−1ST = R̃−1 ÃR̃ = ∆

The matrix S being symmetric, it is also diagonalizable with a unitary matrix U such that U′SU =
∆. As the eigenvalues of Ã are distinct, their eigenspaces are one-dimensional and consequently
the columns of any matrix that diagonalizes S into ∆ have to be proportional to the corresponding
eigenvectors. So the matrix T is of the form UD where D is a non-singular diagonal matrix. This
implies that the matrix R̃′ṼR̃ is equal to D2, which is a positive diagonal matrix. As −∆✶̃ is a
positive vector, we deduce that the entries of A(1, 2 : n)R̃ are positive.

Note that ✶̃ is necessarily an eigenvector of R̃−1 (or R̃) for the eigenvalue 1: as one has A✶ = −B,
one has also A(2 : n, 1) = −Ã✶̃ and then

R̃−1
✶̃ = −R̃−1 Ã−1A(2 : n, 1) = −∆−1R̃−1A(2 : n, 1) = −∆−1diag (R̃−1A(2 : n, 1))✶̃ = ✶̃

Finally, one has
(R−1AR + BBt)✶ = R−1 A✶ + B = −R−1B + B = 0

which proves that Property iv. is verified.

We come back to the condition required by Proposition 4.15 and show that it is necessarily ful-
filled for minimal representations (we recall from Lemma 4.9 that controllability implies a minimal
representation in our framework).

Proposition 4.16 Under Assumptions 4.1, the entries of the vector P−1
✶̃ are non null for any P such that

P−1 ÃP = ∆ with ∆ diagonal, when the pair (A, B) is controllable. Furthermore, the eigenvalues of Ã are
distinct.
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PROOF. From Lemma 4.6, Ã is diagonalizable with P such that P−1 ÃP = ∆ where ∆ is a diagonal
matrix. Let X = P−1

✶̃. One has

P−1ÃkP = ∆k =⇒ P−1 Ãk
✶̃ = ∆kX , k = 1, · · ·

This implies

P−1
(
✶̃, Ã✶̃, · · · , Ãn−1

✶̃

)
= diag (X)Vand(λ1, · · · , λn)

or equivalently
P−1CÃ,✶̃ = diag (X)Vand(λ1, · · · , λn−1)

We deduce that when CÃ,✶̃ is full rank, diag (X) and Vand(λ1, · · · , λn−1) are non-singular, that is all
the entries of X are non-zero and the eigenvalues λ1, · · · , λn−1 are distinct. We show now that the
controllability of the pair (A, B) implies that the pair (Ã, ✶̃) is also controllable.

From the property A✶ = −B, one can write

A =
(

A11 L
−Ã✶̃ Ã

)

where L is a row vector of length n− 1. Then one has

A✶ =
(
−1
0̃

)
, A2

✶ =
(
−A11

Ã✶̃

)
, A3

✶ =
(
−A2

11 + LÃ✶̃
A11 Ã✶̃ + Ã2

✶

)

that are of the form

Ak
✶ =

(
αk
Pk

)
with Pk = Ãk−1

✶ + ∑
j≤k−2

βkj Ã
j
✶ , for k = 2, 3

By recursion, one obtains

Pk+1 = −αk Ã✶̃ + Ãk
✶ + ∑

j≤k−2
βkj Ã

j+1
✶ = Ãk

✶ + ∑
j≤k−1

βk+1,j Ã
j
✶ , for k = 2, · · ·

Then, one can write

−CA,B = CA,A✶ =
(

α1 α2 · · · αn

0̃ P2 · · · Pn

)

from which one deduces

rk (CA,B) = n ⇒ rk (P2, · · · , Pn) = n− 1 ⇒ rk (Ã✶, · · · Ãn−1
✶) = n− 1

One can also write [Ã✶, · · · Ãn−1
✶] = ÃCÃ,✶̃ and as Ã is invertible (Lemma 4.6), we finally obtain

that CÃ,✶̃ is full rank under controllability assumption.

Finally Propositions 4.15 and 4.16 lead to the following result.
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Theorem 4.17 Any minimal representation (A, B, C) that fulfills Assumptions 4.1 is algebraically equiv-
alent to a MRMT structure.

Remark For a positive linear system (A, B), let A+
0 (A, B) be the attainability set from the 0-state

with non-negative controls. The system being positive, one has A+
0 (A, B) ⊂ R

n
+ and for any state

X ∈ A+
0 (A, B), the state Z = R−1X for the equivalent MRMT structure is also non-negative, but for

a state X ∈ R
n
+ \ A+

0 (A, B), the equivalent state Z = R−1X is not necessarily non-negative (as the
coefficients of the matrix R−1 are not necessarily non-negative). Consequently, one can have an
equivalent input-output representation in MRMT form but with negative concentrations.

Getting back to the original system (4.1) we note that it is a classical linear time-invariant (LTI)
single input-single output (SISO) model. The transfer matrix associated to this system is defined
by

H(s) = C(sIn − A)−1B,

this matrix function relates the input and output of the system and some results can be determined
from this expression (stability, poles, minimal realization for instance). If the system (A, B, C)
fulfills the assumption 4.1 and is controllable, then it is also observable (by Lemma 4.9) and the
realization (A, B, C) is minimal. Also

H(s) = C(sIn − A)−1B
= C(sIn − R−1AMRMTR)−1B
= CR−1(sIn − AMRMT)−1RB
= C(sIn − AMRMT)−1B,

then the systems (A, B, C) and (AMRMT , B, C) are transfer equivalents (See appendix B in Annexes).
Therefore, from Theorem 4.17, the equality above and the minimality of the realizations we have
the following result

Corollary 4.18 The minimal realizations (A, B, C) and (AMRMT , B, C) are input-output equivalents.

4.5 Equivalence with MINC structure

Take a matrix A that fulfills Assumption 4.1 and such that pair (A, B) is controllable. As we have
already shown that such representation (A, B, C) is minimal and equivalent to a MRMT configu-
ration, we can assume without any loss of generality that the matrix A has the structure

A =

(
A11 A(1, 2 : n)

A(2 : n, 1) ∆

)

where ∆ is a square diagonal matrix (of size n− 1) with distinct negative eigenvalues. We denote
by V the diagonal matrix of the volumes associated to the matrix A with V1 = 1, as given by
Lemma 4.2 We shall consider a tridiagonalization of this matrix. For this purpose, we recall the
Lanczos algorithm.
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Definition 4.19 (Lanczos algorithm) Let S be a symmetric matrix of size m and q1 be a vector of norm
equal to one. One defines the sequence πk = (βk, qk, rk) as follows

• β0 = 0, q0 = 0, r0 = q1,

• if βk 6= 0, define qk+1 = rk/βk, αk+1 = q′k+1Sqk+1, rk+1 = (S− αk+1 I)qk+1 − βkqk and βk+1 = ||rk+1||.

One can straightforwardly check that the vectors qk provided by this algorithm are orthogonal
and of norm equal to one. The algorithm stops for k < m (“breakdown”) or k = m. A non-breakdown
condition for this algorithm is given in [43, Th 10.1.1]:

Proposition 4.20 When rk (CS,q1) = m, the sequence πk is defined up to k = m, and the matrix Q =
[q1 · · · qm] verifies

Q′AQ =




α1 β1 0

β1
. . . . . .
. . . . . . . . .

. . . . . . βm−1
0 βm−1 αm




where the numbers βi (i = 1 · · ·m) are positive.

Lemma 4.21 The Lanczos algorithm applied to the matrix ∆ with q1 = A(2 : n, 1)/||A(2 : n, 1)|| provides
an orthogonal unitary matrix Q such that Q′∆Q is symmetric tridiagonal with positive terms on the sub-
(or super-) diagonal.

PROOF. As the matrix ∆ is diagonal, one has

C∆,q1 = Vand (λ1, · · · , λn−1)diag (q1)

where λi (i = 1 · · · n− 1) are the diagonal elements of ∆. Furthermore, as Assumptions 4.1 imply
the equality A✶ = −B, one has

q1 = − 1√
∑

n−1
i=1 λi




λ1
...

λn−1




As λi are all distinct and non null, q1 is a non null vector and the matrices Vand (λ1, · · · , λn−1),
diag (q1) are full rank. Therefore C∆,q1 is full rank and Proposition 4.20 can be used.

Let us recall the well known Cholesky decomposition of symmetric matrix.

Theorem 4.22 Let S be a symmetric definite positive matrix. Then, there exists an unique upper triangular
matrix U with positive diagonal entries such that S = U′U.
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We are ready now to explicit a tridiagonalization of the matrix A with positive entries on the
sub- and super-diagonals.

Proposition 4.23 Let A be a MRMT matrix such that (A, B) is controllable. Let Q be the orthogonal
matrix given by the Lanczos algorithm applied to ∆ with q1 = A(2 : n, 1)/||A(2 : n, 1)||. Let U be the upper
triangular matrix with positive diagonal entries given by the Cholesky decomposition of the symmetric
matrix Q′ṼQ. Then the matrix

T =
(

1 0
0 QU−1

)

is such that T−1AT is symmetric tridiagonal with positive entries on the sub- (or super-)diagonal.

PROOF. Lemma 4.21 provides the existence of the matrix Q such that Q′∆Q is tridiagonal with
positive terms on the sub- and super-diagonal. For convenience, we define the matrices

P =
(

1 0
0 Q

)
and W =

(
1 0
0 U

)
.

Clearly, P is orthogonal, W is upper triangular with positive diagonal, and one has T = PW−1.
Consider the matrix

P′AP =

(
A11 A(1, 2 : n)Q

Q′A(2 : n, 1) Q′∆Q

)
.

For the particular choice of the first column of Q, one has

Q′A(2 : n, 1) =
1

||A(2 : n, 1)||




1
0
...
0




and Q′∆Q is triangular with positive sub-diagonal. Therefore, P′AP is an upper Hessenberg ma-
trix with positive entries on its sub-diagonal. Consider then

P′CA,B = P′
(

B AB A2B · · ·
)

=
(

P′B (P′AP)P′B (P′A2P)P′B · · ·
)

Note that one has P′B = B and obtains recursively

P′B =




h1
0
...
...
0




, (P′AP)B =




⋆
h2
0
...
...
0




, (P′A2P)B =




⋆
⋆
h3
0
...
0




, · · ·

where the number hi are positive. Therefore the matrix P′CA,B is upper triangular with positive
diagonal entries, as the matrix W. Then T−1CA,B = WP′CA,B is also upper triangular with positive
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entries on its diagonal. Proposition 6.22 (See part C in Annexes) implies that T−1 AT is tridiagonal
with positive entries on its sub-diagonal. Let us show that T−1AT is also symmetric. One has

T−1 AT =

(
A11 A(1, 2 : n)QU−1

UQ′A(2 : n, 1) UQ′∆QU−1

)

As the matrix VA is symmetric by Assumption 4.1, one can write
(

A(1, 2 : n)QU−1
)′ = 1

V1
(U−1)′Q′ṼA(2 : n, 1)

= 1
V1

(U−1)′U′UQ′A(2 : n, 1)
= 1

V1
UQ′A(2 : n, 1)

and as we have chosen V1 = 1 we obtain
(

A(1, 2 : n)QU−1
)′ = UQ′A(2 : n, 1). Consider now the

sub-matrix UQ′∆QU−1. Note first that the decomposition Q′ṼQ = U′U implies the equalities
U′ = Q′ṼQU−1 and (U−1)′ = UQ′Ṽ−1Q. Then on can write

(
UQ′∆QU−1

)′ = (U−1)′Q′∆QU′

= (UQ′Ṽ−1Q)Q′∆Q(Q′ṼQU−1)
= UQ′Ṽ−1∆ṼQU−1

= UQ′∆QU−1

The matrix T provided by Proposition 4.23 possesses the following property.

Proposition 4.24 The vector X = T−1
✶, where the matrix T is provided by Proposition 4.23, is positive.

PROOF. The matrices A + BB′ and T−1 AT + BB′ have non-negative entries outside their main di-
agonals. So there exists a number γ > 0 such that I + 1

γ (A + BB′) and I + 1
γ (T−1AT + BB′) are

non-negative matrices.

By Assumption 4.1, one has A✶ = −B, which implies the property
(

I +
1
γ

(A + BB′)
)
✶ = ✶ .

Thus I + 1
γ (A + BB′) is a stochastic matrix (real square matrix, with each row summing to 1), and

we know that its maximal eigenvalue is 1 (see for instance [10, Th 5.3]). As I + 1
γ (A + BB′) and

I + 1
γ (T−1 AT + BB′) are similar:

T−1
(

I +
1
γ

(T−1AT + BB′)
)

T = I +
1
γ

(A + BB′),

the maximal eigenvalue of I + 1
γ (T−1 AT + BB′) is also 1. Furthermore, as A + BB′ is irreducible by

Assumption 4.1, I + 1
γ (T−1AT + BB′) is also irreducible. The property A✶ = −B implies

(
I +

1
γ

(T−1 AT + BB′)
)

X = X +
1
γ

(T−1A✶ + B) = X +
1
γ

(−T−1B + B) = X.
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So X is an eigenvector of I + 1
γ (T−1 AT + BB′) for its maximal eigenvalue 1. Finally note that X =

T−1
✶ implies that the first entry of X is equal to 1. Then by Perron-Frobenius Theorem (for non-

negative irreducible matrices, see for instance [10, Th 1.4])), we conclude that X is a positive vector.

We give now our main result concerning the MINC equivalence.

Proposition 4.25 Let A be a MRMT matrix such that (A, B) is controllable and R = Tdiag (T−1
✶), where

T is provided by Proposition 4.23. Then (R−1AR, B, C) is an equivalent representation where R−1 AR is a
MINC matrix.

PROOF. Let X = T−1
✶ and Ā = R−1AR. Define V̄ = diag (X)2 and M̄ = −V̄(Ā + BB′). As A + BB′ is

irreducible by Assumption 4.1, the similar matrix Ā + BB′ is also irreducible, as well as M̄ because
V is a diagonal invertible matrix.

By Proposition 4.23, T−1AT is a symmetric tridiagonal matrix with positive terms on the sub- or
super-diagonal. By Proposition 4.24, X is a positive vector, and thus Ā = diag (X)−1(T−1AT)diag (X)
is also a tridiagonal matrix with the same signs outside the diagonal. Thus, M̄ is a tridiagonal ma-
trix with negative terms on sub- or super-diagonal. Moreover, one has

M̄ = −diag (X)2(diag (X)−1T−1ATdiag (X) + BB′) = −diag (X)T−1ATdiag (X)− X2
1 .BB′.

where X1 = 1. The matrix M̄ is thus symmetric. One has

M̄✶ = −diag (X)T−1ATdiag (X)✶− BB′✶
= −diag (X)T−1ATX− B
= −diag (X)T−1AT(T−1

✶)− B
= −diag (X)T−1A✶− B
= diag (X)T−1B− B
= diag (X)B− B
= 0

The matrix M̄ thus fulfills Assumption 4.1 and is tridiagonal: Ā is then a MINC matrix. Finally,
one has B̄ = R−1B = B and C̄ = CR = C.

Finally, Theorem 4.17 and Proposition 4.25 lead to the following result.

Theorem 4.26 Any minimal representation (A, B, C) that fulfills Assumptions 4.1 is equivalent to a
MINC structure.

Remark From Theorem 4.26 and following the same argument that in Corollary 4.18 for system
(4.1) the minimality of the realizations (A, B, C) and (AMINC, B, C) implies that this realizations are
input-output equivalents.
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4.6 Examples: Reduction and the importance of minimal

representation

Consider a network with one mobile zone and four immobile zones of identical volumes Vi = 1
(i = 1 · · · 5), as depicted on Figure 4.4 with the following diffusive exchange rates

d12 = 1 , d13 = 2 , d34 = 1 , d35 = 3 , d45 = 1 .
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d   =213
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3 4
V  =1 V  =1

V  =1
5

V  =1

Figure 4.4. Example of a network with one mobile and four immobile zones

The structure of this network is neither MRMT nor MINC, and its corresponding matrix A is

A =




−3 1 1 0 0
1 −1 0 0 0
1 0 −3 1 1
0 0 1 −2 1
0 0 1 1 −2




.

One can easily compute the controllability matrix

CA,B =




1 −4 21 −129 906
0 1 −5 26 −155
0 2 −20 182 −1614
0 0 2 −18 136
0 0 6 −82 856




and check that it is full rank (computing for instance det(CA,B) = −896). Then the constructions of
Sections 4.4 and 4.5 give the following equivalent MRMT and MINC matrices:

AMRMT =




−4 0.3256267 0.1692779 1 1.5050954
8.1710298 −8.1710298 0 0 0
3.3115831 0 −3.3115831 0 0

1 0 0 −1 0
0.5173871 0 0 0 −0.5173871




,
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AMINC =




−4 3 0 0 0
1.6666667 −5 3.3333333 0 0

0 3.6 −4.1333333 0.5333333 0
0 0 2.4666667 −2.9207207 0.4540541
0 0 0 0.9459459 −0.9459459




.

We have checked numerically that each matrix A, AMRMT and AMINC give the same co-prime
transfer function

T(z) =
14 + 47z + 45z2 + 13z3 + z4

14 + 117z + 187z2 + 92z3 + 17z4 + z5 .

Differently to the original network, the magnitude of the values of volumes and diffusive ex-
change rates are significantly different among compartments, opening the door of possible model
reduction dropping some compartments.

i. For the equivalent MRMT structure, one obtains

V1 = 1 , V2 = 0.0398514 , V3 = 0.0511169 , V4 = 1 , V5 = 2.9090317

with
d12 = 0.3256267 , d13 = 0.1692779 , d14 = 1, d15 = 1.5050954

and notes that zones 2 and 3 are of relatively small volumes (compared to the total volume
of the system which is equal to 5) and connected to the mobile zone with relatively small
diffusive parameters. Then one may expect to have a good approximation with a reduced
MRMT model dropping zones 2 and 3. Keeping the volumes V1, V4, V5 with the parameters
d14, d15, one obtains the 3 compartments MRMT matrix

ÃMRMT =



−3.5050954 1 1.5050954

1 −1 0
0 0.5173871 −0.5173871




with the corresponding transfer function

T̃MRMT(z) =
0.5173871 + 1.5173871z + z2

0.5173871 + 4.8359736z + 5.0224825z2 + z3 .

ii. For the equivalent MINC structure, one obtains

V1 = 1 , V2 = 1.8 , V3 = 1.6666667 , V4 = 0.3603604 , V5 = 0.1729730

with
d12 = 3 , d23 = 6 , d34 = 0.8888889, d45 = 0.1636231 .

Here, one notes that the two last volumes are relatively small and connected with relatively
small diffusion terms. Keeping the volumes V1, V2, V3 with the parameters d12, d23, one
obtains the 3 compartments MINC matrix

ÃMINC =




−4 3 0
1.6666667 −5 3.3333333

0 3.6 −3.6
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with the corresponding transfer function

T̃MINC(z) =
6 + 8.6z + z2

6 + 35.4z + 12.6z2 + z3 .

The Nyquist plots of the transfer functions T, T̃MRMT and T̃MINC are reported on Figure 4.5, show-
ing the quality of the approximation with only three compartments derived from the MRMT or
MINC representations. There exist many reduction methods in the literature, but a reduction
through MRMT or MINC has the advantage to obtain easily reduced models with a physical
meaning.

Im

Re 1.2

-0.0422

-0.00671

-2.34

2.34

0.00671

0.0422

0.5

-0.5
0

Figure 4.5. Nyquist diagrams (black: original system, blue: reduced MRMT, green: reduced MINC)

Remark For a positive linear system (A, B), let A+
0 (A, B) be the attainability set from the 0-state

with non-negative controls. The system being positive, one has A+
0 (A, B) ⊂ R

n
+ and for any state

X ∈ A+
0 (A, B), the state Z = R−1X for the equivalent MRMT or MINC structure is also non-

negative, but for a state X ∈ R
n
+ \ A+

0 (A, B), the equivalent state Z = R−1X is not necessarily non-
negative (as the coefficients of the matrix R−1 are not necessarily non-negative). Consequently,
one can have an equivalent input-output representation in MRMT form but with negative concen-
trations for such states of the system.

Theorems 4.17 and 4.26 show that whatever the network structure is, it is always possible to
represent its input-output map with either a MRMT star structure or a MINC series structure. Nev-
ertheless, these two results require that the original network is of minimal representation, or equiv-
alently that the system (4.1) is controllable (or observable, see Proposition 4.9). To illustrate the
necessity of the controllability assumption, we present an example of a structure of four reservoirs
of volumes (see Fig. 4.6)

V1 = 1 , V2 = 1 , V3 = 2 , V4 = 3

with the diffusive exchange rate coefficients:

d12 = 1 , d13 = 2 , d14 = 3 , d23 = 3 , d24 = 3
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which lead to the dynamics





Ṡ1 = −7S1 + S2 + 2S3 + 3S4 + u
Ṡ2 = S1 − 7S2 + 3S3 + 3S4

Ṡ3 = S1 + 3
2 S2 − 5

2 S3

Ṡ4 = S1 + S2 − 2S4

with the matrix

A =




−7 1 2 3
1 −7 3 3
1 3

2 − 5
2 0

1 1 0 −2
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Figure 4.6. Structure of the example

At the first look, this structure does not exhibit any special property or symmetry that could
make believe that it is non minimal. By construction one has Ã✶̃ = −✶̃ but the particular matrix
A that we consider satisfies A(2 : 4, 1) = ✶̃. Consequently the vector A(2 : 4, 1) is an eigenvector
of the matrix Ã for the eigenvalue −1. If the multiplicity of −1 was more than 1, then λ = −9.5
should be an eigenvalue of Ã, as the trace of Ã is −11.5. But an eigenvector X of Ã fulfills

−7X1 + 3X2 + 3X3 = λX1
1.5X1 − 2.5X2 = λX2

X1 − 2X3 = λX3

one should have

(λ + 7)X1 − 3X2 − 3X3 = 0 with X2 =
1.5

λ + 2.5
X1 , X3 =

1
λ + 2

X1 (and X1 6= 0)

which is not possible for λ = −9.5. Then any matrix P that diagonalizes Ã should have one col-
umn proportional to the eigenvector õne, which amounts to have the vector P−1

✶̃ with exactly one
non-zero entry. Thus it is not possible to transform the system in a equivalent MRMT structure of
the same dimension.

One can check that the pair (A, B) is indeed non controllable, even though the matrix Ã has
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distinct eigenvalues, as one has

AB =




−7
1
1
1


 , A2B =




55
−8
−8
−8


 = −B− 8AB

from which one deduce rk (CA,B) = 2. Indeed, the system admits a minimal representation of
dimension 2 that can be found by gathering the immobile zones in one of volume V̄ = V2 + V3 +
V4 = 6 and solute concentration

S̄ =
V2S2 + V3S3 + V4S4

V̄
=

S2 + 2S3 + 3S4

6

One can check that variables (S1, S̄) are solutions of the dynamics

{
Ṡ1 = −7S1 + 6S̄ + u
˙̄S = S1 − S̄

that gives an equivalent representation (in MRMT or MINC form) with a diffusive exchange rate
d̄ = 6 (see Fig. 4.7).
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Figure 4.7. Simplified equivalent structure of the example

4.7 Discussion

We have shown that any general network structure is equivalent to a star structure (MRMT) or a
series structure (MINC), that are commonly considered in geosciences to represent soil porosity
in mass transfers. In this way, we reconcile these two different approaches, showing that they are
indeed equivalent. Practically, this means that when the structure is unknown, or partially known,
one can use equivalently the most convenient structure to identify the parameters or use some a
priory knowledge.
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Controllability property of a given mass transfer structure plays a crucial role. Although there
is no particular control issue in the input-output representations of mass transfers, controllabil-
ity is a necessary condition to obtain equivalence with the multi-rate mass transfer structures of
depth one, introduced by Haggery and Gorelick in 1995 [46], or the multiple interacting con-
tinua structure. This condition is related to the minimal representation of linear systems, that is
not necessarily fulfilled for such structures even for non-singular network matrices with distinct
eigenvalues.

Although the objective of the present work is to show the exact equivalence of systems, we have
shown on examples that MRMT and MINC representations could allow a simple and efficient way
to obtain reduced models with a good approximation. Further investigations about such reduction
techniques will the matter of a coming work.

From a geosciences view point, this analysis shows the existence of both identifiable and non-
identifiable porosity structures from input-output data in geological media where dispersion is
controlled by diffusive exchanges between restricted but quick advective zones and slow but ex-
tensive diffusive zones. Input-output signals are typical of conservative tracer tests where non-
reactive tracers are injected in an upstream well and analyzed in a downstream well [34]. Iden-
tifiable structures could thus be calibrated on tracer tests [2]. The porosity structure identified
is however not unique as demonstrated on the example in Section 4.6, meaning that a porosity
structure cannot be fully characterized by a conservative tracer test. While conservative transport
and residence time distributions are already quite constraining for water-rock interactions [25, 28],
highly non-linear reactivity depend on the structure of porosity beyond its input-output signature.
In such cases, reactivity will not only depend on the input/output concentrations but also on the
concentrations within the diffusion porosities, i.e. from the full state of the system. This should be
seen as an advantage rather than as a drawback as some characteristic of the porosity structures
might be revealed by appropriate combination of conservative and reactive tracers.

Appendices

A Explicit equivalences for two models of three compartments

As a motivation of the general problem, we introduce the most simple case of configurations
MINC and MRMT with three compartments (two inmobile and one mobile) and we will prove
that this configurations are input-output equivalent using basic arguments of realization theory.

Let us begin with the MINC configuration that is presented in figure 4.8
One has the following dynamics for the concentrations Si with i = 1, 2, 3 in the three zones:





.
S1 = Q

V1
(Sin − S1) + d12

V1
(S2 − S1)

.
S2 = d12

V2
(S1 − S2) + d23

V2
(S3 − S2)

.
S3 = d23

V3
(S2 − S3)

(4.3)
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Figure 4.8. The MINC configuration with two inmobile compartments.

We posit d = Q
V1

and

a12 = d12
V1

, a21 = d12
V2

, a23 = d23
V2

, a32 = d23
V3

Then the dynamic can be rewritten in the following way

{ .
S = ACS + BSin
Sout = CS

with S = (S1, S2, S3)T and

AC =



−d− a12 a12 0

a21 −a21 − a23 a23
0 a32 −a32


 , B =




d
0
0


 , C =

(
1 0 0

)
.

The transfer function of the input-output map Sin → Sout is given by

HC(s) = C(sI − AC)−1B.

In terms of the system parameters

HC(s) = ds2+d(a21+a23+a32)s+da21a32
s3+(a12+a21+a23+a32+d)s2+(a12a23+a12a32+a21a32+d(a21+a23+a32))s+da21a32

(4.4)

One can check that the pairs (AC, B) and (AC, C) are respectively controllable and observable
exactly when a21 6= 0 and a32 6= 0. Under these conditions, numerator and denominator of HC are
coprimes and the realization is thus minimal.

Now consider the MRMT configuration with two inmobile compartments, showed in figure
4.9
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Figure 4.9. The MRMT configuration with two inmobile compartments.

One has the following dynamics for the concentrations Si with i = 1, 2, 3 in the three zones:




.
S1 = Q

V1
(Sin − S1) + d12

V1
(S2 − S1) + d13

V1
(S3 − S1)

.
S2 = d12

V2
(S1 − S2)

.
S3 = d23

V3
(S1 − S3)

(4.5)

We posit d = Q
V1

and

b12 = d12
V1

, b21 = d12
V2

, b13 = d13
V1

, b31 = d13
V3

.

Then the dynamic can be rewritten in the following way
{ .

S = ATS + BSin
Sout = CS

with S = (S1, S2, S3)T and

AT =



−d− b12 − b13 b12 b13

b21 −b21 0
b31 0 −b31


 , B =




d
0
0


 , C =

(
1 0 0

)
.

Remark Configurations (d, b12, b13, b21, b23) and
(
d̄, b̄12, b̄13, b̄21, b̄23

)
with d̄ = d, b̄21 = b13, b̄13 = b12, b̄21 =

b31 and b̄31 = b21 are equivalents (one has just to interchange subindices 2 and 3).

The transfer function of the input-output map Sin → Sout is given by

HC(s) = C(sI − AT)−1B.

In terms of the system parameters

HC(s) = ds2+d(b21+b31)s+db21b31
s3+(b12+b13+b21+b31+d)s2+(b12b31+b21b13+b21b31+d(b21+b31))s+db21b31

(4.6)

One can check that the pairs (AT , B) and (AT , C) are respectively controllable and observable ex-
actly when b21 6= 0, b31 6= 0 and b21 6= b31. Under these conditions, numerator and denominator of
HT are coprimes and the realization is thus minimal.

102



Systems are input-output equivalent if and only if their transfer functions HC 4.4 and HT 4.6
are identical, that amounts exactly to have the four equalities, whatever is d.

α21 + α23 + α32 = β21 + β31 (4.7)

α21α32 = β21β31 (4.8)

α12 = β12 + β13 (4.9)

α12(α23 + α32) = β12β31 + β13β21 (4.10)

Equation (4.9) gives immediately:

α12 = β12 + β13

Replacing α12 in (4.10) gives

α23 + α32 =
β12β31 + β13β21

β12 + β13

and replacing α23 + α32 by this last expression in (4.7) gives

α21 = β21 + β31 −
β12β31 + β13β21

β12 + β13

or equivalently

α21 =
β12β21 + β13β31

β12 + β13

Then, condition (4.8) provides

α32 =
β21β31(β12 + β13)
β12β21 + β13β31

Finally, (4.10) gives

α23 =
β12β31 + β13β21

β12 + β13
− β21β31(β12 + β13)

β12β21 + β13β31

or equivalently

α23 =
β12β13(β21 − β31)2

(β12 + β13)(β12β21 + β13β31)

So, we conclude that for any MRMT configuration with non-null parameters, there exists exactly
one MINC equivalent that is input-output equivalent.

Conversely, let S = β21 + β31 and P = β21 + β31. β21 and β31 are solutions of X2 − SX + P = 0.
From (4.7) and (4.8), one has S = α21 + α23 + α32 and P = α21α32. Then one has

∆ = S2 − 4P = (α21 + α23 + α32)2 − 4α21α32
= (α21 − α32)2 + (α23)2 + 2α21α23 + 2α23α32 ≥ 0

103



So, there always exits two real non-negative roots, and accordingly to Remark 1, there are two
symmetric solutions for β21 and β31. Assume without loss of generality that β21 ≥ β31:

β21 =
α21 + α23 + α32 +

√
(α21 + α23 + α32)2 − 4α21α32

2

β31 =
α21 + α23 + α32 −

√
(α21 + α23 + α32)2 − 4α21α32

2

From (4.9), (4.10), one can write
(

1 1
β31 β21

)(
β12
β13

)
= α12

(
1

α23 + α32

)

When α23 > 0, note that β21 and β31 are distinct. Then, there exits a unique pair (β12, β13):

(
β12
β13

)
=

α12

β21 − β31

(
β21 −1
−β31 1

)(
1

α23 + α32

)

that are

β12 = α12
α21 − α23 − α32 +

√
(α21 + α23 + α32)2 − 4α21α32

2
√

(α21 + α23 + α32)2 − 4α21α32

β13 = α12
−α21 + α23 + α32 +

√
(α21 + α23 + α32)2 − 4α21α32

2
√

(α21 + α23 + α32)2 − 4α21α32

Finally, note that the property

(α21 + α23 + α32)2 − 4α21α32 − (α21 − α23 − α32)2 = 4α21α23 ≥ 0

implies that the expressions of β12 and β13 given above are non negative.

From the analysis above, we conclude that MINC and MRMT configurations with two inmobile
compartments are input-output equivalent. Is it possible to generalize this result for the general
case of n compartments? Naturally, it is not possible to replicate the previous process in the general
case. For this reason, It was necessary to use another approach which was detailed in the previous
sections.

B Invariance of total volumes by MINC and MRMT transformations

Consider the minimal representation (A, B, C) with B and C as in system (4.1) assuming that A
fullfill assumption 4.1. In the Theorem 4.17, using the transformation R, we obtain a algebraically
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equivalent matrix AMRMT in a MRMT form such that that fulfills the assumption 4.1, then there
exist a diagonal positive matrix V̄ and a symmetric matrix M̄ such that

AMRMT = V̄−1(−BBt − M̄).

The next result determine that the trace of matrices V and V̄ are invariant by transformation.

Proposition 4.27 Under the hyphotesis of Theorem 4.17, the similarity transformation R preserve the trace
of the matrices V and V̄, ie, tr(V) = tr(V̄).

PROOF. In first place, where At = (−BBt − M)V−1, BBt
✶n = B, A✶n = B and M✶n = ~0 then

AtV✶n = −B = −A✶n.

Now

AtV✶n = −A✶n

(V✶n)t A = −(A✶n)t

✶

t
n(V + At A−1) = ~0

From the last equality, we have

✶

t
n(V + At A−1)✶n = 0

✶

t
nV✶n + ✶t

n At A−1
✶n = 0

tr(V) + (A✶n)t A−1
✶n = 0.

with this tr(V) = −Bt A−1
✶n, and using the same arguments we obtain tr(V̄) = −Bt A−1

MRMT✶n, and

tr(V)− tr(V̄) = −Bt A−1
✶n + Bt A−1

MRMT✶n

= Bt(A−1
MRMT − A−1)✶n

= Bt(R−1 A−1R− A−1)✶n,

also, we have BtR−1 = Bt and R✶n = ✶n then

Bt(R−1 A−1R− A−1)✶n = BtR−1 A−1R✶n − Bt A−1
✶n

= Bt A−1
✶n − Bt A−1

✶n

= 0

Therefore tr(V) = tr(V̄) and the transformation R preserve the traces of V and V̄.

Remark In the proposition above, using the same argument but for a tridiagonal matrix AMINC

that fulfills the Assumption 4.1, then exist a diagonal positive matrix V̄ and a symmetric tridiago-
nal matrix M̄ such that

AMINC = V̄−1(−BBt − M̄).

So, the result above is also valid for a MINC instead a MRMT structure.
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Example For n = 4 in the system (4.1) consider the following matrices

A =




−2 1 0 0
3 −5 2 0
0 1 −2 1
0 0 2 −2


 , B =




1
0
0
0


 and C =

(
1 0 0 0

)
,

where A is triadiagonal, fulfills Assumption H1 with

VMINC =




1 0 0 0
0 1

3 0 0
0 0 2

3 0
0 0 0 1

3


 and M =




1 −1 0 0
−1 5

3 − 2
3 0

0 − 2
3

4
3 − 2

3
0 0 − 2

3
2
3


 ,

the system (A, B, C) are in MINC form. The controllability matrix of this system is

C4(A, B) =




1 0 0 0
−2 3 0 0

7 −21 3 0
−35 132 −27 6


 ,

and det(C4(A, B)) = 54 6= 0, so the system is controllable and the Theorem 4.17 ensures that there is
a unique invertible transformation R such that R−1AR have the MRMT form.

By using a numerical algorithm and following the construction given by the Theorem, is possi-
ble find explicitly the transformation, in this case (the values of the coefficients are approximated)

R =




1 0 0 0
0 0.4286 0.1429 0.4286
0 −0.1384 0.1429 0.9955
0 0.0759 −0.2857 1.2098


 , R−1 =




1 0 0 0
0 1.8819 −1.2153 0.3333
0 1 2 −2
0 0.1181 0.5486 0.3333


 .

Therefore

AMRMT = R−1AR =




−2 0.4286 0.1429 0.4286
5.6458 −5.6458 0 0

3 0 −3 0
0.3542 0 0 −0.3542


 .

Is clear that AMRMT fulfills the Assumption H1 where

VMRMT =




1 0 0 0
0 0.075 0 0
0 0 0.05 0
0 0 0 1.21


 and M =




−1 0.4286 0.1429 0.4286
0.4286 −0.4286 0 0
0.1429 0 −0.1429 0
0.4286 0 0 −0.4286


 ,

and the system (AMRMT , B, C) is controllable because both minimal realizations are similar.
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Example For n = 4 in the system (4.1) consider the following matrices

A =




−5 2 1 1
1 −1 0 0
3 0 −3 0
2 0 0 −2


 , B =




1
0
0
0


 and C =

(
1 0 0 0

)
,

where A has a MRMT form and fulfills Assumption H1 with

VMRMT =




1 0 0 0
0 2 0 0
0 0 1

3 0
0 0 0 1

2


 and M =




4 −2 −1 −1
−2 2 0 0
−1 0 1 0
−1 0 0 1


 .

The controllability matrix of this system is

C4(A, B) =




1 −5 32 −210
0 1 −6 38
0 3 −24 168
0 2 −14 92


 ,

and det(C4(A, B)) = 12 6= 0, so the system is controllable and proposition 4.26 ensures that there is
a unique invertible transformation R such that R−1AR have the MINC form.

By using a numerical algorithm and following the construction given by the Theorem, is possi-
ble find explicitly the transformation, in this case (the values of the coefficients are approximated)

R =




1 0 0 0
0 0.5714 0.3697 0.0588
0 1.7143 −0.8319 0.1176
0 1.1429 0.0924 −0.2353


 , R−1 =




1 0 0 0
0 0.5 0.25 0.25
0 1.4545 −0.5455 0.0909
0 3 1 −3


 .

Therefore

AMINC = R−1 AR =




−5 4 0 0
1.75 −2.1429 0.3929 0

0 1.7663 −1.916 0.1497
0 0 1.9412 −1.9412


 .

Is clear that AMINC fulfills the Assumption H1 where

VMINC =




1 0 0 0
0 2.285 0 0
0 0 0.51 0
0 0 0 0.039


 and M =




−4 4 0 0
4 −4.898 0.898 0
0 0.898 −0.9741 0.0761
0 0 0.0757 −0.0757


 ,

and the system (AMINC, B, C) is controllable because both minimal realizations are similar as in
the anterior example.
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An important observation from the examples above is that tr(VMINC) = tr(VMRMT). This fact
can have different interpretations depending on the problem under study. Suppose the MINC
system is used to model the diffusion of the substance between several reactors with different
volumes, then the MRMT model represents an equivalent model for the diffusion between the
same amount of reactors with different volume distributions. However, both models maintain the
same the total volume, from Proposition 4.27.

C A direct method to obtain an MINC structure

We consider now the system (A, B, C) defined in (4.1) under the same assumptions and notations,
where the matrix A that fulfils Assumption 4.1.

The Multiple INteracting Continua models (MINC) matrix diffusion as diffusive-like exchanges
within a succession of ”continua" identified to the elementary cells issued by a finite-difference
discretization of the diffusion process in the matrix. MINC has a chained-type connectivity where
immobile zones are mutually connected on a line. The form of the matrix AMINC is triadiagonal
(not necessarily symmetrical).

The following result established a relation between the different models, where is possible find,
under some assumptions, an invertible transformation such that AMINC and A are similar and the
tridiagonal matrix AMINC fulfills Assumptions 4.1.

Theorem 4.28 Suppose that matrix A fulfills the assumption 4.1 and the realization (A, B, C) is control-
lable, then there exist a unique invertible matrix R such that AMINC = R−1 AR fulfills assumptions 4.1
and is tridiagonal.

PROOF. To construct the similarity transformation R we use the unsymmetric Lanczos algorithm.
Let A ∈ Mn such that A = V−1(−BBt − M), Aii < 0, Aij ≥ 0 (i 6= j) and A✶n = −B (the entries of
every row of V−1M sum to zero). Following the methodology of [42] the algorithm allows find a
invertible square matrix P such that P−1AP = H where H is a tridiagonal matrix, P−1B = B and
CP = C.

We consider the matrix Cn(A, B) and through elementary row operations construct a matrix S1
such that S1Cn(A, B) = U1 where U1 is a upper triangular matrix with positive diagonal elements
(algorithm 2). Note that this process is always possible, where Cn(A, B) is invertible and from [42,
Lemma 2.1] we have that S1AS−1

1 has a upper Hessenberg form and S1B = B and the elements
under the principal diagonal are positives. Also, the S1 matrix has the form

S1 =
(

1 0
0 S̃1

)
∈ Mn,n,

where S̃1 ∈ Mn−1,n−1 is a lower triangular matrix. For simplicity, we dentote Ā = S1AS−1
1 .

Now, we consider the matrix Cn(Āt, B) that is invertible and through elementary row operations
construct a matrix S2 such that S2Cn(Āt, B) = U2 where U2 is a upper triangular matrix. Same as
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above, we have that S2 ĀtS−1
2 has a upper Hessenberg form. Note that S2 has a form similar to S1,

CSt
2 = C and if we denote Ht = S2 ĀtS−1

2 then H is a lower Hessenberg matrix.

If we define P = S−1
1 St

2 by the construction above, H = P−1AP is a tridiagonal matrix (up-
per and lower Hessenberg matrix), is non singular (similar to A invertible) and irreducible by
construction, P−1B = B, CP = C and the elements no nulls outside the principal diagonal are
positives. Let R = PD a diagonal scaling (see remark C) where D = diag(P−1

✶n) is a diagonal
matrix and each diagonal entry is the row-sum of the matrix P−1, we note that D✶n = P−1

✶n,
RB = R−1B = B. Also, note that

P−1
✶n = P−1 A−1B

= H−1P−1B
= H−1B,

is this, P−1
✶n is solution of the system HX = B and Lemma 6.21 above assure that each entry of

the vector P−1
✶n is non null. Consecuently, each element of the principal diagonal of D is different

to zero, ie D is invertible and we have that

R−1AR = (PD)−1A(PD)
= D−1(P−1AP)D
= D−1HD,

where D and D−1 are diagonal matrices, R−1AR is a tridiagonal matrix and the elements Hi,i and
Hi+1,i Hi,i+1, i = 1, ..., n are invariant under this transformation (see remark C). Now

R−1AR✶n = R−1APD✶n

= R−1APP−1
✶n

= R−1A✶n

= R−1(−B)
= −B.

Also
R−1AR = R−1V−1(−BBt −M)R

= −R−1V−1BBtR− R−1V−1MR
= −BBt − R−1V−1MR,

and R−1V−1MR is a tridiagonal matrix and fulfills the hyphotesis of the Proposition 4.27, then is
possible find a matrix diagonal positive V̄ such that V̄(R−1V−1MR) = M̄ where M̄ is a symmetric
tridiagonal matrix. Summarizing

R−1 AR = −V̄−1(BBt + M̄)

where M̄ is irreducible symmetric tridiagonal matrix, M̄ii > 0, M̄ij ≤ 0, for i 6= j, M̄✶n =~0. Finally
AMINC = R−1 AR is the matrix that that fulfils the statement.
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Chapter 5

Conclusions and future perspectives

This chapter briefly reviews the main contributions of this thesis. The principal contribution of this
thesis is the proposal and analysis of three different practical problems arising from real issues in
bioprocess engineering. Each one is especially tailored and based on reasonable assumptions for
each situation. The most specific results derived from this work can be divided into different
topics depending of the studied problem.

Considering the first problem, chapter 2 was devoted to optimizing the productivity of mi-
croalgae in photobioreactors. The formulated model, stability results and optimization problem
exhibit several features that can be of interest:

• In this batch model, we assume that there are no substrate limitations. Under this assump-
tion, we focused on the influence of light in the growth of microalgae.

• We show that there is steady dynamical behavior over time on the part of the microalgae
in the photobioractor, although in dark/ light cycles, the trajectories go to a quasi-periodic
solution. This is not proved, but at least it is shown that there is a stable set where the
solutions belong in time.

• It is feasible to find necessary optimality conditions for the optimization problem using
Clarke generalized derivatives. Moreover, the results make sense under the model interpre-
tations. For instance, proposition 2.9 indicates that the batch process should always con-
clude at the end of a period of light. That is, the respiration effects in the night period make
the microalgae biomass decrease.

• We performed simulations using parameter values obtained from a preliminary study for
microalgae chlamydomonas reinhardtii , and the results obtained are consistent.

These features and the methodology employed, which is based on ordinary differential equations
with a discontinuous right side, nonsmooth optimization and numerical analysis, appear to be
well suited to the scope of a thesis project.

110



The second problem was studied in chapter 3 and addressed modelling and stability analysis
of a microalgal pond with nitrification. The main novelties and results derived from the analysis
are given below.

• In this chemostat model, an intra-specific competition phenomenon was considered based
on density-dependent growth functions and cross-feeding, i.e., the nitrate produced by the
nitrifiers can be consumed by the algae. The last assumption is not generally considered in
competition models.

• The coexistence of species in the chemostat was shown, although their stability may vary
depending on certain parameter values. A Lyapunov stability approach was necessary to
obtain this result.

• It is feasible to reduce the system using the theory of asymptotically autonomous systems,
and the limiting system obtained can be considered a perturbation of a system of two species
competing for a substrate. Using a result of non-vanishing perturbated systems was possi-
ble to obtain a strong stability theorem for equilibrium coexistence.

• We performed simulations using functions and parameter values obtained from a prelim-
inary study [1], and the results obtained are equivalents from a qualitative point of view,
but our model is much simpler than that used by the authors, where the referred work is a
purely numerical study and based on simulations.

We take into account the third problem, which was considered in chapter 4 and address the
equivalence of finite dimensional input-output models of solute transport and diffusion; the main
conclusions are as follows:

• We have shown that any general network structure is equivalent to a star structure (MRMT)
or a series structure (MINC), which are commonly considered in geoscience problems to
represent soil porosity in mass transfers.

• The controllability property of a given mass transfer structure plays a crucial role because
it is a necessary condition to prove observability in the special matrices of linear compart-
mental systems that are involved in the modelling. As a consequence, the minimality of the
transfer function associated with the system implies the uniqueness of equivalent transfor-
mation.

• Examples show that MRMT and MINC representations could allow a simple and efficient
way to obtain reduced models with good approximation.

The contributions of this thesis create possibilities for future work. Further from the perspec-
tives discussed here, which originate from our contributions, a number of related research direc-
tions are worth exploring. This chapter briefly discusses the most important ones. Some of these
research proposals represent on going work.

For the first problem, some possible perspectives are the following:
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• Decrease the number of assumptions. For instance, by avoiding the assumption about sub-
strate limitations, the growth model will have a larger dimension considering the substrate
concentration equation.

• Consider different assumptions about natural light incidence. What happens if we consider
a Fourier series approach instead of a step function approach to model superficial light in
the photobioreactor process?

• What would happen in the case of species competition in the photobioreactor in a batch or
continuous process?

For the second problem, some possible perspectives are as follows:

• Propose an optimal control problem to maximize the productivity of the microalgae subject
in the system under consideration, where the dilution rate is the control variable, in order
to obtain an optimal dilution profile for process management.

• Consider microalgae growth limitations as result of excess ammonia, which is more realistic
and has not been considered in this thesis.

For the third problem, some possible perspectives are as follows:

• Consider input and output flows with different diffusion values in each compartment. What
happens in the MIMO case?.

• Analyze the MINC and MRMT gradostat with three bioreactors and biomass diffusion.

• Generalize the result of the last analysis to n vessels, considering biomass diffusion with
different growth functions (linear, Monod, Haldane, etc.) as compared to the case with-
out biomass diffusion. Is there a connection between systems with and without biomass
dynamics?

To conclude, we would like to stress a fact further elicited by this work, namely, that mathe-
matical models in bioprocess modelling provide theoretical results that offer an idea of the process
behavior and this helps in management decision making. We believe that the application of simi-
lar approaches may prove productive for problems that arise in other bioprocess issues.
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Chapter 6

Annexes

A Linear Algebra results

Proposition 6.1 Let A ∈ Mn be positive semi-definite and X ∈ R
n. Then Xt AX = 0 iff Ax = 0.

PROOF. Suppose that X 6= 0 and Xt AX = 0. Consider the polynomial p(t) = (tX + AX)t A(tX +
AX) = t2Xt AX + 2tXt A2X + Xt A3X = 2t‖AX‖2 + Xt A3X. The hyphotesis assure that p(t) ≥ 0 for
all real t. However, if ‖AX‖2 6= 0 then for sufficiently large negative values of t we would have
p(t) < 0. We conclude that ‖AX‖2 = 0, so AX = 0.

Corollary 6.2 A positive semi-definite matrix is positive definite iff it is nonsingular (invertible).

PROOF. Suppose that A is positive semi-definite. Now, A singular implies AX = 0 for some X ∈
R

n no null, but then Xt AX = 0 for some X ∈ R
n and A is not positive definite.

Proposition 6.3 Let A ∈ Mn Hermitian (symmetric in case of K = R) and C ∈ Mn,m. Suppose that A is
positive definite, Then rank(Ct AC) = rank(C) and Ct AC is positive definite iff rank(C) = m.

PROOF. For proof and details see [49], page 431, observation 7.1.8.

Definition 6.4 Let A be an m× n matrix. Then the n× n matrix

G = At A

is known as the associated Gram matrix to A.

Theorem 6.5 All Gram matrices are positive semi-definite. The Gram matrix G = At A is positive definite
if and only if ker(A) = 0.
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PROOF. To prove positive (semi-) definiteness of G, we need to examine the associated quadratic
form

q(X) = XtGX = Xt At AX = (AX)t AX = ‖AX‖2 ≥ 0,

for all X ∈ R
n. Moreover, it equals 0 if and only if AX = 0, and so if A has trivial kernel, this

requires X = 0, and hence q(X) = 0 if and only if X = 0. Thus, in this case, q(X) and G are positive
definite.

Proposition 6.6 1. The determinant of a Gram matrix is equal to zero iff any of its principal minors is
zero.

2. A real matrix and its Gram matrix have the same rank.

PROOF. 1. See for instance [31].

2. Let A real matrix, G = At A their Gram matrix asociated and X vector such that GX = 0.
Then Xt At AX = 0 and this implies ‖AX‖2 = 0. We therefore have AX = 0. Conversely, if
X satisfies the relation AX = 0, then clearly At AX = 0. It folllows that the homogeneous
systems AX = 0 and GX = 0 are equivalent. Hence, by dimensionality theorem for homo-
geneous systems

n− rank(A) = n− rank(G)

where n is the number of columns of A. The theorems is therefore proved.

Theorem 6.7 Perron-Frobenius
Let A be an n× n matrix with nonnegative real entries and irreducible. Then we have the following

1. A has a nonnegative real eigenvalue. The largest such eigenvalue, λA, dominates the absolute values
of all other eigenvalues of A. The domination is strict if the entries of A are strictly positive.

2. If A has strictly positive entries, then λA is a simple positive eigenvalue, and the corresponding
eigenvector can be normalized to have strictly positive entries.

3. If A has an eigenvector v with strictly positive entries, then the corresponding eigenvalue λv is λA.

PROOF. See [49] for details.

B Realization Theory Fundamentals

The state-space model of a continuous-time linear system is given by

{ .
x = Ax + Bu
y = Cx + Du

(6.1)
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The vector x is called the state vector of the system. We will denote the number of states in the
system by n, so that x ∈ R

n. The quantity n is often called the order or dimension of the system.
In general, we might have multiple inputs u1, u2, ..., um to the system. In this case, we can define
an input vector u = [u1, u2, ..., um]t. In the same way, we might have multiple outputs y1, y2, ..., yp.
In this case, we can define the output vector y = [y1, y2, ..., yp]t. Note that each of these outputs
represents a sensor measurement of some of the states of the system.

The system matrix A is an n× n matrix representing how the states of the system affect each
other. The input matrix B is an n × m matrix representing how the inputs to the system affect
the states. The output matrix C is a p× n matrix representing the portions of the states that are
measured by the outputs. The feedthrough matrix D is a p×m matrix representing how the inputs
affect the outputs directly (i.e., without going through the states first).

While the state-space model is a time-domain representation of a system, one can also convert
them to the frequency domain by taking the Laplace transform in continuous-time. Specifically, if
we take the Laplace transform of (6.1), we obtain:

sL {x} (s)− sx(0) = AL {x} (s) + BL {u} (s)
L {y} (s) = CL {x} (s) + DL {u} (s)

Note that this includes the initial conditions of all the states. The first equation can be rearranged
to solve for L {x} (s) as follows:

(sI − A)L {x} (s) = sx(0) + BL {u} (s) ⇔ L{x} (s) = (sI − A)−1sx(0) + B(sI − A)−1L {u} (s)

Substituting this into the equation for L {y} (s), we obtain

L {y} (s) = C(sI − A)−1sx(0) +
(

C(sI − A)−1B + D
)
L {u} (s)

Definition 6.8 The transfer function of the state-space model (6.1) with initial condition x(0) = 0 is

H(s) = C(sI − A)−1B + D (6.2)

Note that H(s) is a p × m matrix, and thus it is a generalization of the transfer function for
standard single-input single-output systems. In fact, it is a matrix where entry i, j is a transfer
function describing how the j− th input affects the i− th output.

The basic problem in Realization Theory is to determine matrices A, B, C, D such that the state
space system (A, B, C, D) of system (6.1) represents a given input-output map, specified by its
impulse response or transfer function.

We recall the usual definitions of controllability and observability of single-input single-output
systems (A, B, C) of dimension n (see for instance [59]).

Definition 6.9

• The controllability matrix associated to the pair (A, B) is given by

CA,B = [B, AB, · · · , An−1B]
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• The observability matrix associated to the pair (A, C) is given by

OA,C =




C
CA
...
CAn−1




• A system Ẋ = AX + Bu is said to be controllable when rk (CA,B) = n, and observable for y = CX
when rk (OA,C) = n.

Suppose we have a linear system with transfer function H(s) (which can be a matrix, in gen-
eral). We have seen that the transfer function is related to the matrices in the state space model
via (6.2). Recall that the transfer function describes how the input to the system affects the output
(when the initial state of the system is zero). In some sense, this might seem to indicate that the
exact representation of the internal states of the system might be irrelevant, as long as the input-
output behavior is preserved. We will see that there are multiple state-space realizations for a
given system that correspond to the same transfer function.
Consider any particular state-space model of the form (6.1). Now, let us choose an arbitrary in-
vertible n× n matrix T, and define a new state vector

x̄(t) = Tx(t)

In other words, the states in the vector x̄(t) are linear combinations of the states in the vector x(t).
Since T is a constant matrix, we have

.
x̄(t) = T

.
x(t) = TAx(t) + BTu(t) = TAT−1 x̄(t) + TBu(t)

y(t) = Cx(t) + Du(t) = CT−1 x̄(t) + Du(t)

Let Ā = TAT−1, B̄ = TB, C̄ = CT−1, then, after this transformation, we obtain the new state-space
model { .

x̄ = Āx̄ + B̄u
y = C̄x̄ + Du

Note that the inputs and outputs were not affected by this transformation; only the internal state
vector and matrices changed. The transfer function corresponding to this model is given by

H̄(s) = C̄(sI − Ā)−1B̄ + D = CT−1(sI − TAT−1)−1TB + D
= CT−1(sTT−1 − TAT−1)−1TB + D
= CT−1T(sI − A)−1T−1TB + D
= C(sI − A)−1B + D
= H(s)

Thus the transfer function for the realization with state-vector x̄ is the same as the transfer function
for the realization with state-vector x. For this reason, the transformation x̄ = Tx is called a
similarity transformation and systems say (algebraically) equivalent.
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Definition 6.10 (A, B, C, D) and (Ā, B̄, C̄, D̄) are algebraically equivalent if they are of the same dimen-
sion and they are related by a similarity (coordinate) transformation, i.e., there exists an invertible matrix
T such that

Ā = T−1 AT, B̄ = T−1B, C̄ = CT, D̄ = D.

Since T can be any invertible matrix, and since there are an infinite number of invertible n× n
matrices to choose from, we see that there are an infinite number of realizations for any given
transfer function H(s). From input-output viewpoint, two equivalent dynamical equations give
the same transfer function and this remain unchanged under an similartity transformation.

Proposition 6.11 Controllability, observability and stability are invariant under similarity transforma-
tions

PROOF. Direct computations establish the following relations between the Gramians and State
Transition

M̄ = T−1M(Tt)−1, N̄ = TtNT, eĀt = T−1eĀtT,

matrices of two similar realizations.

In other words, algebraically equivalent realizations have identical controllability, observability
and stability properties.

The system defined in (6.1) can be writing
{ .

x− Ax = Bu
y− Cx = Du

in terms of the differentiation operator ∆ we obtain
(

∆− A 0
−C I

)(
x
y

)
=
(

B
D

)
u.

In general, all linear system can be represented by

P(∆)x = Q(∆)u (6.3)

where x ∈ R
n, u ∈ R

m, ∆ is the differentiation operator, P(∆) and Q(∆) are, respectively, n× n and
n×m matrices whose entries are polynomials in operator ∆. We assume that det(∆) 6= 0.
Let us assume that the maximal degree of the entries of P is dp and the maximal degree of the
entries of Q is dq. Let x(k)(0) = 0 for k = 0, ..., dp and u(k)(0) = 0 for k = 0, ..., dq. Applying the
Laplace transform on both sides of the input-output equation (6.3) we obtain

P(s)X(s) = Q(s)U(s),

where X(s) = L{x}(s) and U(s) = L{u}(s) are the Laplace transforms of x and u, respectively.
As P(s) is invertible for almost all s, we get X(s) = P(s)−1Q(s)U(s). As usually, H(s) = P(s)−1Q(s) is
called the transfer matrix of system.

In [3, 18], the author give the next definition
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Definition 6.12 Two systems of the form (6.3) are called transfer equivalent (or zero-state equivalent) if
and only if their transfer matrices are identical.

Obviously, transfer equivalence is an equivalence relation in the set of all systems of the form
(6.3).

Definition 6.13 Two systems of the form (6.3) are called input-output equivalent if they are satisfied by
the same pairs (x, u), ie, the systems has to be at zero state and given a L2 signal u, the output signals y
should be identical.

Is clear from the last definition that two system input-output equivalent has the same input-
output behaviour.
Let us recall that a square polynomial matrix K(s) is called unimodular if detK(s) is constant and
different from 0. Then the inverse of K(s) is also a polynomial unimodular matrix. It is known
[102] that K(s) is unimodular if and only if it can be obtained from the identity matrix by finitely
many elementary row operations over the ring of polynomials in s.
The next results give us criteria to determine when two system are input-output and transfer
equivalents. Their proofs are in [14].

Proposition 6.14 Two input-output systems given by matrices [P1(s), Q1(s)] and [P2(s), Q2(s)] are trans-
fer equivalent if and only if there are polynomials matrices M1(s), M2(s) with detMi(s) 6= 0, i = 1, 2, such
that

M1(s)[P1(s), Q1(s)] = M2(s)[P2(s), Q2(s)].

Proposition 6.15 Two input-output systems given by matrices [P1(s), Q1(s)] and [P2(s), Q2(s)] are input-
output equivalent if and only if there is a unimodular matrix K(s) such that

[P1(s), Q1(s)] = K(s)[P2(s), Q2(s)].

Corollary 6.16 If two systems are input-output equivalent then they are transfer equivalent.

Now, consider the system (6.1) and

{ .
x̄ = Āx̄ + B̄u
y = C̄x̄ + D̄u

(6.4)

we call these systems (A, B, C, D) and (A, B, C, D) respectively. When will these two systems have
the same transfer function?

Theorem 6.17 Two linear time-invariant state equations (A, B, C, D) and (A, B, C, D) are zero-state
equivalent if and only if D = D and

C (A)m B = C
(

A
)m

B m = 0, 1, 2, ...

PROOF. See [18].
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Definition 6.18 (A, B, C, D) is reducible (non-minimal) if there exists a zero-state equivalent representa-
tion of smaller state-space dimension; otherwise (A, B, C, D) is irreducible or minimal.

Some properties of minimal realizations are described by the following theorem. They make
use of the so-called Hankel matrix

HA,B,C = O(A, C)C(A, B)

=




CB CAB ... ... CAn−1B

CAB
. . . . . . . . .

...
...

. . . . . . . . .
...

CAn−1B ... ... ... CA2(n−1)B




Theorem 6.19 1. (A, B, C, D) is minimal iff it is controllable and observable.

2. (A, B, C, D) is minimal iff its Hankel matrixHA,B,C has full rank.

3. Suppose (A, B, C, D) is minimal and let (Ā, B̄, C̄, D̄) be a input-output equivalent realization. Then
(Ā, B̄, C̄, D̄) is minimal iff it is algebraically equivalent to (A, B, C, D). In such a case, the similarity
transformation relating the two can be computed as

T = C(A, B)C t(Ā, B̄)(C(Ā, B̄)C t(Ā, B̄))−1, T−1 = (Ot(Ā, B̄)O(Ā, B̄))−1Ot(A, B)O(Ā, B̄).

PROOF. 1. and 2. Let n̄ be the dimensional of a minimal realization, n̄ ≤ n. We note that
rank(HA,B,C) ≤ n̄, because if If n̄ = n, follows from Sylvester inequality because rank(C(A, B)) ≤ n
and rank(O(A, C)) ≤ n that implies rank(HA,B,C) ≤ n = n̄. If n̄ < n, let (Ā, B̄, C̄, D̄) be an n̄-
dimensional realization. Since Ā is n̄ × n̄, by Cayley-Hamilton theorem Ān̄, ..., Ān−1 are linear
combinations of I, Ā, ..., Ān̄−1. Hence rank(HA,B,C) ≤ n̄.

Suppose that (A, B, C, D) is controllable then rank(C(A, B)) = n and if (A, B, C, D) is observable
rank(O(A, C)) = n then by Syvester inequality n + n− n ≤ rank(O(A, C)C(A, B)) = rank(HA,B,C) ≤
n that implies rank(HA,B,C) = n. On other hand, n ≤ rank(HA,B,C) ≤ n̄ ≤ n that implies n̄ = n and
the realization is minimal.

C The unsymmetric Lanczos procedure and tridiagonalization

The Lanczos biorthogonalization algorithm is an extension to nonsymmetric matrices of the sym-
metric Lanczos algorithm. The nonsymmetric Lanczos algorithm is quite different in concept from
ArnoldiâĂŹs method because it relies on biorthogonal sequences instead of orthogonal sequences.
The algorithm proposed by Lanczos for nonsymmetric matrices builds a pair of biorthogonal bases
for the two subspaces

Km(A, v1) = span{v1, Av1, · · · , An−1v1}
and

Km(At, w1) = span{w1, Atw1, · · · , (At)n−1w1}.
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The algorithm that achieves is the following

Algorithm 1 The Lanczos Biorthogonalization procedure

Choose two vectors v1, w1 such that (v1, w1) = 1,
Set β1 = δ1 = 0, w0 = v0 = 0,
For j = 1, 2, ..., m Do:
αj = (Avj, wj),
v̂j+1 = Avj − αvj − β jvj−1,
ŵj+1 = Atwj − αwj − δjwj−1,

δj+1 = |(v̂j+1, ŵj+1)|
1
2 , If δj+1 = 0 Stop

β j+1 = (v̂j+1, ŵj+1)/δj+1,
wj+1 = ŵj+1/β j+1,
vj+1 = v̂j+1/δj+1
End Do

Note that there are numerous ways to choose the scalars δj+1, β j+1. These two parameters are
scaling factors for the two vectors vj+1 and wj+1 and can be selected in any manner to ensure that
(vj+1, wj+1) = 1. As a result of the algorithm, it is only necessary to choose two scalars δj+1, β j+1 that
satisfy the equality

δj+1β j+1 = (v̂j+1, ŵj+1). (6.5)

The choice taken in the above algorithm scales the two vectors so that they are divided by two
scalars which have the same modulus. Both vectors can also be scaled by their 2-norms. In that
case, the inner product of vj+1 and wj+1 is no longer equal to 1 and the algorithm must be modified
accordingly. Consider the case where the pair of scalars δj+1, β j+1 is any pair thart satisfies the
relation (6.5). Denote by Tm the tridiagonal matrix

Tm =




α1 β2
δ2 α2 β3

. . .
δm−1 αm−1 βm

δm αm




.

If the determinations of β j+1, δj+1 are used, then the δj are positive for j = 1, ..., m and β j = ±δj.
Observe from the algorithm that the vectors vi ∈ Km(A, v1) and wj ∈ Km(At, w1) for i, j = 1, ..., m.

Proposition 6.20 If the algorithm 1 not break down before step m then the vectors vi, wj with i, j = 1, ..., m
form a biorthogonal system, ie (vj, wi) = δij, 1 ≤ i, j ≤ m. Moreover, {vi}i=1,...,m is a basis of Km(A, v1)
and {wj}j=1,...,m is a basis of Km(At, w1) and the following relations hold,

AVm = VmTm + δm+1vm+1et
m

AtWm = WmTt
m + βm+1wm+1et

m
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Wt
m AVm = Tm

where Vm is the matrix with columns vectors vi i=1,...,m and Wm is the matrix with columns vectors wj j=1,...,m.

PROOF. See [85] for details.

For the next result, we consider the tridiagonal matrix

T =




a1 b1 0 · · · 0

c1 a2 b2
. . .

...

0 c2
. . . . . . 0

...
. . . . . . . . . bn−1

0 · · · 0 cn−1 an




∈ Mn(R).

Lemma 6.21 The unique solution of the system TX = B with T invertible and irreducible tridiagonal
matrix has all its entries non zero.

PROOF. In first place, we note that the system TX = B with

X = (x1, . . . , xi−1, xi, xi+1, . . . , xn)
t ,

can be write as

T =
(

a1 T(1, 2 : n)
T(2 : n, 1) T̃

) (
x1

X(2 : n)

)
=
(

1
~0n−1

)
(6.6)

Suppose that in the last system x1 = 0, then

T(1, 2 : n)X(2 : n) = 1 and T̃X(2 : n) =~0n−1

wich clearly is a contradiction. Then necessarily x1 6= 0 and by the same argument X(2 : n) 6=~0n−1.
In fact if xn = 0 then xn−1 = 0 (T is tridiagonal) and a recursive argument implies that X(2 : n) =
~0n−1 which contradicts the last result, reason why xn 6= 0 (and in consequence xn−1 6= 0).

Suppose now that for some i ∈ {2, . . . , n− 2}, xi = 0. Also, where T is no singular, the system
TX = B has unique solution.
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We have


a1 b1 0 · · ·
c1 a2 b2

. . .

0 c2
. . . . . .

...
. . . . . . ai−1

0
...
...

bi−1

· · · · · · 0
. . .

. . .
...

. . .
. . .

...

0
. . .

...
...

. . . . . . ci−1
ai bi · · · 0

...
. . . . . . 0

...
. . . . . . . . .

0 · · · · · · · · ·

ci
...
0

ai+1 · · · 0
. . . . . . bn−1
· · · cn−1 an







x1
...

xi−1

0
xi+1

...
xn




=




1
0
0
...
0




,

So, we obtain the subsystems



a1 b1 0 · · ·
c1 a2 b2

. . .

0 c2
. . . . . .

...
. . . . . . ai−1







x1
...

xi−1


 =




1
0
...
0


 (6.7)




ai+1 · · · 0
. . . . . . bn−1
· · · cn−1 an







xi+1
...

xn


 =




0
...
0


 , (6.8)

and the equation
ci−1xi−1 + bixi+1 = 0. (6.9)

We note that (6.7)-(6.9) is a overdetermined system, but have a unique solution (from the hy-
pothesis) and this implies that the solution of the system (6.8) necessarily is not the trivial, ie exist
two linearly dependent rows and where the system (6.8) is homogeneous, then is the trivial solu-
tion plus an infinite set of other solutions. This is a contradiction where the solution of the system
is unique. Therefore, each entrie xi, (i = 1, . . . , n) of the vector solution X is different to zero. This
complete the proof.

We also recall a nice result about tridiagonalization of single-input single-output systems, from
[42].

Proposition 6.22 Let T be an invertible transformation, then one has

T−1 AT =




⋆ y2 0

x2
. . . . . .
. . . . . . . . .

. . . . . . yn

0 xn ⋆




, T−1B =




x1
0
...
...
0




, CT =
(

y1 0 · · · · · · 0
)
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with xi 6= 0 and yi 6= 0 (i = 1 · n) if and only if

T−1CA,B =




c1 ⋆ · · · ⋆
. . . . . .

...
. . . ⋆

0 cn




and OA,CT =




o1 0

⋆
. . .

...
. . . . . .

⋆ · · · ⋆ on




with ci 6= 0, oi 6= 0 (i = 1 · n) . Furthermore, one has x1 = c1, y1 = o1, xi+1 = ci+1/ci, yi+1 = oi+1/oi
(i = 1 · · · n− 1).

Corollary 6.23 Let Hn the n × n Hankel matrix corresponding to the system (A, B, C) where n is the
dimension of A and S be an invertible transformation, where H = S−1AS is tridiagonal irreducible (ie, with
non null entries in the first diagonal below and the first diagonal above the principal diagonal), S−1B = x1B
and CS = y1C with x1, y1 6= 0. There exists a transformation of (A, B, C) to a system (S−1AS, S−1B, CS)
if and only if all the leading principal minors ofHn are non-zero.

Note that in proposition above T−1C(A, B) needs to be upper triangular. The next algorithm
allows to construct a matrix L such that LC(A, B) be upper triangular with positive elements in the
diagonal, then we can consider L = T−1 the transformation of the statement.

Algorithm 2 Upper triangular matrix with positive diagonal elements

Choose matrix A ∈ Mn and I ∈ Mn identity matrix.
Consider Ā = [A|I] and Ei(−1) elementary matrix.
For i = 1, ..., n− 1
If A(i, i) 6= 0,
For j = i + 1, ..., n
Ā(j, :) = Ā(j, :)− Ā(i, :) ∗ Ā(j, i)/Ā(i, i),
End For
End If
End For
P = Ā(1 : n, n + 1 : 2n),
For i = 1, ..., n
If P(i, i) ≤ 0,
Ā = Ei(−1) ∗ Ā,
End If
L = Ā(1 : n, 1 : n)
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For the next, we consider the tridiagonal matrix

T =




a1 b1 0 · · · 0

c1 a2 b2
. . .

...

0 c2
. . . . . . 0

...
. . . . . . . . . bn−1

0 · · · 0 cn−1 an




∈ Mn(R).

Proposition 6.24 Assume that the matrix T is irreducible and the products bici are positives for i = 1, ..., n.
Then, the matrix T is similar to a symmetric tridiagonal matrix. Therefore, its eigenvalues are real.

PROOF. Consider the matrix D = diag[d1, ..., dn] where d1 = 1 and d2
i = di−1

ci
bi

for i = 2, ..., n. Then
it is readily verified that

DTD−1 =




a1
√

b1c1 0 · · · 0
√

b1c1 a2
√

b2c2
. . .

...

0
√

b1c1
. . . . . . 0

...
. . . . . . . . .

√
bn−1cn−1

0 · · · 0
√

bn−1cn−1 an




Since DTD−1 is symmetric and T and DTD−1 have the same eigenvalues, this implies that the
eigenvalues of T are real. Suppose λ is an eigenvalue of T. Then λI − T is also of the same form
that the matrix T. If the first row and last column of λI− T are deleted, then the resulting matrix is
an n− 1× n− 1 upper triangular matrix with no zero entries on its main diagonal, since bici > 0,
for i = 1, 2, ..., n− 1. Hence this submatrix has rank n− 1. It follows that λI − T has rank at least
n− 1. However, λI − T has rank at most n− 1 since λ is an eigenvalue of T. So by definition λ
has geometric multiplicity one.

Remark 1. In the similar way that in the last proposition, under the same assumptions, is
possible define a diagonal positive matrix D = diag[d1, ..., dn] where d1 = 1 and di = di−1

bi
ci

(i = 2, ..., n), such that DT = H (equivalently, T = D−1H) where H is a symmetric tridiagonal
matrix determined from T as

H =




a1 b1 0 · · · 0

b1 a2d2 b2d2
. . .

...

0 c2d3
. . . . . . 0

...
. . . . . . . . . bn−1dn−1

0 · · · 0 cn−1dn andn




=




a1 b1 0 · · · 0

b1 a2d2 b2d2
. . .

...

0 b2d2
. . . . . . 0

...
. . . . . . . . . bn−1dn−1

0 · · · 0 bn−1dn−1 andn




,

2. (Diagonal scaling [80]) If Q−1BQ = T is tridiagonal matrix and D is diagonal and invertible,
then (QD)−1B(QD) = D−1TD is another tridiagonal matrix similar to B. T and D−1TD are
equivalent for theoretical purposes. Note that Ti,i and Ti+1,iTi,i+1, i = 1, ..., n are invariant
under diagonal scaling.
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D Compartmental Systems

Kinetics is that branch of dynamics that pertains to the turnover of specific particles in a biological
system. A compartment is an amount of material which acts kinetically in a homogeneous dis-
tinct way. The compartment to which a particle belongs characterizes both its physical-chemical
properties and its environment. A compartment may not be an actual physical volume; however,
the amount of some material in a physiological space is often treated as a compartment in cer-
tain clinical studies. The particles of each compartment are influenced by forces which cause the
particles to transfer from one compartment to another. All particles in a particular compartment
have the same probability of transition since within the compartment all particles are well-mixed
and considered indistinguishable by the system. The transition from one compartment to another
occurs by passing through some physical barrier or by undergoing some physical or chemical
transformation. Associated with each compartment is its size. Sometimes the terms volume and
size are used interchangeably.

A compartmental system consists of two or more compartments, interconnected in the sense
that among certain compartments there is exchange of material. The compartmental system will
be primarily modeled in a continuous deterministic manner by a collection of ordinary differential
equations, each equation describing the time rate of change of amount of material in a particular
compartment. These rates of change are dictated by the physical-chemical laws that govern the
material exchange between interacting compartments, e.g., diffusion, temperature, chemical reac-
tions, etc. It will be assumed that the set of equations model average properties of the system for
very large numbers of particles. From the idealized physical model it is hypothesized as to the ex-
act nature of the interconnections that occur between compartments. In the usual representation
for a compartmental system, a box denotes a compartment, and an arrow indicates the transfer
of material into or out of a compartment. There also may be inputs from the outside environ-
ment into one or more compartments (vertical arrows pointing into the tops of boxes), and there
can be excretion of material from some of the compartments to the outside environment (vertical
arrows pointing out of the bottoms of boxes). Should there be no exchange of material to the out-
side environment, the compartmental system is referred to as closed; otherwise it is said to be an
open system. Realistically, many compartmental systems are open, for some material is lost by
excretion, metabolism, etc.

Linear compartmental models

The kinetics of the tracer amount xi(t) will be assumed to follow the constant coefficient linear
equation

ẋi(t) = bi(t) +
n

∑
j=1,j 6=i

aijxj −
n

∑
j=0,j 6=i

ajixi, j = 1, ..., n. (6.10)

The bi(t) is the input rate of tracer to compartment i from outside the system. The constant frac-
tional transfer coefficients aij (j 6= i) are nonnegative. The last sum in (6.10) can be rearranged
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as (
−

n

∑
j=0,j 6=i

aji

)
xi,

which leads to the nonpositive constant

aii = −
n

∑
j=0,j 6=i

aji, j = 1, ..., n. (6.11)

Equation (6.11) fills out the remaining entries of an n× n constant matrix A = [aij]. This is a
compartmental diagonally dominant matrix. If we consider

b(t) = (b1(t), ..., bn(t))t, and x(t) = (x1(t), ..., xn(t))t,

then the following continuous deterministic model governs the tracer kinetics in a general n-
compartmental system in steady-state

{
ẋ(t) = Ax(t) + b(t),
x(0) = x0.

(6.12)

where the amounts of tracer, xi(t), with i = 1, 2, ..., n, are referred to as the state variables of the
system, the matrix A is called the system matrix, and the input vector b(t) is known as the forcing
function.

Many properties of model (6.12) depend only on the disposition of zero and nonzero elements
in the compartmental matrix A (matrix singularity of A turns out to be such a property). If aij = 0
with i 6= j, then there is no flow of material from compartment j directly to compartment i. If aij 6= 0
(i 6= j), then material is passing directly from the jth to the ith compartment. A useful representation
of structure of a compartmental system is the connectivity diagram for the system which shows
the nonzero transfers of material on a directed graph. The directed graph consists of a set of nodes
(the compartments) together with a set of directed edges (the flows) connecting certain of these
nodes. A compartmental system, complete with inputs and exits, and its associated connectivity
diagram are given in 6.1.

Figure 6.1. The Compartmental System Connectivity Diagram (source [2]).
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There are some important types of connectivity in compartmental models that appear repeat-
edly in idealized physiological systems. The first is the catenary system in which the compart-
ments connect in a series or chain as is shown in figure 6.2. Only ’adjacent compartments commu-
nicate. Of special interest are catenary systems wherein there is tracer input into either compart-
ment 1 or n, and single exit only from one of those two compartments. In particular, a common
physiological catenary 3-compartment model is with the compartments identified as (1) blood
plasma; (2) interstitial fluid; (3) cells. Here, due primarily to the kidney, the first compartment
has the single exit to the outside. The compartmental matrix A for a catenary system as shown in
figure 6.2 is easily seen to be tridiagonal.

Figure 6.2. An n-Compartment Catenary System (source [2]).

Often useful in analyzing the kinetics of the distribution of a tracer injected into blood plasma
and which enters the interstitial space is the mammillary system (see figure 6.3). Here one com-
partment acts as the "mother" or central compartment and all other compartments are "daughters".
Connectivity only takes place between the mother compartment and each individual daughter. It
is standard to number the compartments commencing with the central compartment designated
as number one. Provided this numbering scheme is instituted, the compartmental matrix A has
nonzero entries only in the first row, first column, and on the main diagonal.

Figure 6.3. An n-Compartment Mammilary System (source [2]).

A complete analysis about solution of this systems and stability, strongly connected property
and irreducibility, non negative eigenvalues of compartmental matrices is given in [2]. These
results will be useful in Chapter 4 of this thesis.
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General compartmental model

We consider now a network of n interconected compartments, and assume that a same single
species is presented in each vessel at initial time. The network is fed with a single limitant
ressource that allows th growth of the bacterial species.

The nodes of the interconnection graph is composed of the tanks of volume denoted by Vi >
0 (i = 1, ..., n), and the arcs represent mass transfers between the tanks. We consider four types of
arcs:

• Flux of flow rate Qij ≥ 0 from node i to node j with j 6= i,

• Fick diffussion of parameter dij = dji ≥ 0 between nodes i and j with j 6= i

• Output flow Qout
i ≥ 0 from node i,

• Input flow Qin
i ≥ 0 toward node i.

and assume that the Kirchoff law or mass conservation is satisfied at each nodes, wich amouts to
write thee equalities

∑
j 6=i

Qij + Qin
i = ∑

k 6=i

Qki + Qout
i , ∀ i = 1, ..., n (6.13)

We denote by I and O the sets of input and output nodes

I = {i ∈ {1, ..., n}/Qin
i > 0}, O = {i ∈ {1, ..., n}/Qout

i > 0} (6.14)

We shall represent by S and X respectively the vectors of concentrtions of the limiting ressource
and biomass in the set of reactors. The time evolution of these vectors is modelled by the following
dynamical system {

Ṡ = − 1
y R(S, X) + MS + DSin

Ẋ = R(S, X) + MX + DXin
(6.15)

where y > 0 and R(.) stand respectively for the convertion yield of the species, and the vector
of kinetics that occurs in each vessel. Classicaly, we assume the kinetics to be linear w.r.t. to the
biomass concentration and characterized by a specific growth rate µ(.) such that

Ri(S, X) = µ(Si)Xi, ∀ i = 1, ..., n. (6.16)

Remark Under this last assumption, one can check that the parameter y can be chosen equal to
one without any loss of generality, simply replacing Xi/y by Xi in equation (6.15).

We shall assume that the function µ(.) is smooth (at least C2) with µ(0) = 0 and µ(S) > 0 for
S > 0.

The matrices M and D represent respectively the mass transfers and inputs and are defined as
follows:

Mij =

{
− 1

Vi

(
∑k 6=i Qik + dik + Qout

i

)
, when i = j

1
Vi

(Qji + dij), when i 6= j
(6.17)
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This model is an attempt to represent and study spatial inhomogenity.

Definition 6.25 A square matrix A is said to be compartmental if it fulfills the following properties

1. Aii ≤ 0 for any indice i,

2. Aij ≥ 0 for any indice i 6= j,

3. For any indice i, one has ∑j Aij ≤ 0.

Definition 6.26 A matrix A is diagonal dominant when there exists positive numbers d1, ..., dn such that

di|Aii| > ∑
j 6=i

dj|Aji|, ∀ i = 1, ..., n. (6.18)

An matrix A such that −A is compartmental and diagonal dominant are called M-matrices.

Lemma 6.27 The matrix M is compartmental

PROOF. The first two properties are fullfilled from (6.17) and for any i, one has

∑
j

Mij = 1
Vi

(

∑
j 6=i

(Qji + dij)−∑
k 6=i

(Qik + dik)−Qout
i

)
(6.19)

and using equality (6.13) we obtain

∑
j

Mij = −Qin
i

Vi
(6.20)

Thus propertiy 3. is fulfilled.

In the following, we assume that there is no loop in the network that is not connected to the set
O.

Assumption 6.28 The sets I and O are non-empty and for i /∈ O there exists j ∈ O and a sequence
{i0, ..., ik} such that i0 = i, ik = j with Qiαiα+1 > 0.

Proposition 6.29 Assume that assumption 6.28 is fulfilled. The positive domain D = R
2n
+ is invariant

by the dynamics (6.15) and any solution in D is bounded. Furthermore, any solution of the system (6.15)
fulfills

lim
t→∞

S(t) + X(t) = −M−1D(Sin + Xin) (6.21)

PROOF. From system (6.15) and the property that the matrix M has non-negative off-diagonal
terms, one deduces the following inequalites

Si = 0 ⇒ Ṡi ≥ 0, Xi = 0 ⇒ Ẋi ≥ 0,
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and cnclude that the domain D is invariant by the dynamics (6.15).

Now consider the vector Z = S + X and for convenience we posit Zin = Sin + Xin. One has
straithforwardly

Ż = MZ + DZin. (6.22)

We recall that for a compartmental matrix, if the graph is outflow-connected implies that the ma-
triz M is non-singular and Hurwitz. We can then deduce the asymptotic property of solution of
system (6.22)

lim
t→∞

Z(t) = Z̄ = −M−1DZin. (6.23)

Furthermore, a non-singular comparmental matrix being diagonal dominant, −M is a M-matrix.
The components of the vector DZin being non-negative, the properties of the M-matrices implies
then the vector Z̄ has non-negative components. Finally, we deduce the boundedness of the solu-
tions S and X.

More detailed analysis for linear and nonlinear compartmental systems can be founded in
[56, 57].
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