
HAL Id: tel-01418453
https://hal.science/tel-01418453v1

Submitted on 26 Oct 2018 (v1), last revised 16 Dec 2016 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Embedded Real-Time Virtualization Technology for
Reconfigurable Platforms

Tian Xia

To cite this version:
Tian Xia. Embedded Real-Time Virtualization Technology for Reconfigurable Platforms. Embedded
Systems. INSA Rennes; Université Bretagne Loire, 2016. English. �NNT : 2016ISAR0009�. �tel-
01418453v1�

https://hal.science/tel-01418453v1
https://hal.archives-ouvertes.fr

Embedded Real-Time
Virtualization Technology

for Reconfigurable
Platforms

Thèse soutenue le 05.07.2016
devant le jury composé de :

François Verdier

Professeur, Université de Nice Sophia-Antipolis, Nice / président

Emmanuel Grolleau

Professeur, ISAE-ENSMA, Chasseneuil-Futuroscope / Rapporteur

Guy Gogniat

Professeur, Université de Bretagne-Sud, Lorient / Rapporteur

Jean-Luc Bechennec

Chargé de Recherche, Ecole Centrale de Nantes, Nantes / Examinateur

Jean-Christophe Prévotet

Maître de Conférence, INSA, Rennes / Co-encadrant de thèse

Fabienne Nouvel

Maître de Conférence HDR, INSA, Rennes / Directrice de thèse

THESE INSA Rennes
sous le sceau de Université Bretagne Loire

pour obtenir le titre de

DOCTEUR DE L’INSA DE RENNES

Spécialité : Electronique et Télécommunications

présentée par

Tian Xia
ECOLE DOCTORALE : MATISSE

LABORATOIRE : IETR

Embedded Real-Time Virtualization
Technology for Reconfigurable Platforms

Tian Xia

To my parents, and my beloved wife.

Acknowledgement

First of all, I would like to express my great gratitude to my advisors, Fabienne
Nouvel and Jean-Christophe Prévotet, who are excellent scholars. During my 4 years’
stay in Rennes, you have given me countless precious advices and kind helps for both my
studies and my life, and have always been supportive for my research. None of the work
in this thesis could be done without your kindness and guidance.

I would like to sincerely thank all the members of my committe, Professor Em-
manuel Grolleau, Professor Guy Gogniat, Professor François Verdier and Doctor Jean-
Luc Bechennec, for their valuable suggestions and advices on my research. It is such an
honor of mine that you were present in my committe and attended my defense. I am
also thankful for Professor Mei Kuizhi, for reviewing my thesis, and being present at my
defense.

I woulk like to thank the China Scholarship Council and the INSA-UT CSC project
for giving me the opportunely to study at Rennes.

I would also like to express my thanks and appreciation to all my colleagues at
the IETR labrotary : Yaset Oliva, Yvan Kokar, Jordane Lorandel, Medhi Aichouch,
Mohamad-Al-Fadl Rihani, Hiba Bawab, Papa Moussa Ndao, Roua Youssef, Samar Sin-
dian, Ali Cheaito, Hussein Kudoh, Rida El Chall, Mohamed Maaz, and all the others
whose name I forgot to mention. Thank you all for your kindness, and for the beautiful
memories we have shared in our lovely office. I am also very grateful for Aurore Gouin,
Pascal Richard, Katell Kervella, Christèle Delaunay, Yolande Sambin, Jérémy Dossin and
Laurent Guillaume, for their kind helps and professional service.

I would like to thank my friends at Rennes : Sun Lu, Ge Di, Luo Tao, Chu Xingrong,
Bai Xiao, Wang Yu, Bai Cong, Ji Hui, Si Haifang, Zou Wenbin, Wang Hongquan, Zhang
jinglin, Zhang Xunying, Yi Xiaohui, Lu Weizhi, Li Weiyu, Fan Xiao, Yao Dandan, Liu
Wei, Liu Yi, Tang Liang, Li Bo, Shuai Wenjing, Wang Cheng, Yuan Han, Yao Zhigang,
Gu Qingyuan, Yang Yang, Zhao Yu, Wang Duo, Fu Jia, Wu Xiguang, Wang Yanping,
Xu Jiali, Zhang Xu, Huang Gang, Liu Shibo, Chen Zhaoxing, Wang Shijian, Song Xiao,
Huang Yong, Lu Hua, Wei Hengyang, Jiao Wenting, Fan Jianhua, Yao Haiyun, Wang
Qiong and Tian Shishun. The time we spent together was full of laughter and joy. Thank
you all for these wonderful and unforgettable days we had.

I would like to express special thanks to my friends : Fu Hua, Liu Ming and Peng
Linning, for your daily company, your friendship and your heart-warming helps. Thanks
to you, my days at Rennes were filled with wonderful experiences and colorful stories

i

ii

that I will always cherish in my heart.
Foremost, I am deeply grateful to my dear parents Fanglin and Liguang, and my

beloved wife, Yicong, for their generous and selfless support, understanding and encour-
agement. Life is never easy, but somehow you make my life the best I can ever imagine.
Thank you and I love you all.

In the end, I want to take a minute to mourn my dear aunt, who passed away during
the writing of this manuscript. I love you and I really miss you.

Résumé de la Thèse

Aujourd’hui, les systèmes embarqués jouent un rôle prépondérant dans la vie quo-
tidienne des utilisateurs. Ces systèmes sont très hétérogènes et regroupent une énorme
diversité de produits tels que les smartphones, les dispositifs de contrôle, les systèmes
communicants,etc. Couvrant une large gamme d’applications, ces systèmes ont évolué en
différentes catégories. Il existe des systèmes avec une grande puissance de calcul pouvant
mettre en œuvre des logiciels complexes et permettre la gestion de ressources complexes.
D’autres systèmes embarqués à faible coût, avec des ressources limitées, sont destinés à
l’implantation de dispositifs simples, tel que ceux mis en œuvre dans l’Internet des Ob-
jets (IdO). Fondamentalement, la plupart de ces appareils partagent des caractéristiques
communes telles que la taille, le poids et la faible consommation d’énergie.

Tandis que la complexité des systèmes embarqués augmente, il devient de plus en plus
coûteux d’améliorer les performances des processeurs par des approches technologiques
classiques comme la diminution de la taille des transistors, par exemple. Dans ce contexte,
l’idée d’une architecture h étérogène CPU-FPGA est devenue une solution prometteuse
pour les concepteurs de systèmes sur puce. D’autre part, la forte capacité d’adaptation et
son faible coût en font une solution très prisée. Cette solution permet de faire bénéficier
aux architectures matérielles classiques des avantages et de la flexibilité d’un processeur.
Elle permet également d’étendre les concepts logiciels classiques, tels que la virtualisation,
aux circuits matériels.

Dans cette thèse, notre recherche apporte une contribution dans ce domaine, en étu-
diant la virtualisation en temps réel des systèmes embarqués mettant en œuvre la re-
configuration partielle (DPR) de circuits, et ce, dynamiquement. Les objets cibles de la
thèse sont les systèmes embarqués hétérogènes comportant au moins un processeur et
une architecture reconfigurable de type FPGA.

Dans ce type d’architectures, les principales limitations sont les ressources de calculs
restreintes, la faible quantité de mémoire, et des contraintes d’exécution temps réel. Nos
travaux se concentrent sur deux aspects en : 1) proposant un micro-noyau léger, person-
nalisé, hautement adaptable, nommé Ker-ONE, qui prend en charge la virtualisation en
temps réel, et 2) en proposant un mécanisme de coordination innovant des accélérateurs
reconfigurables entre plusieurs machines virtuelles.

iii

iv Résumé de la Thèse

1. Concepts et état de l’art

1.1 Virtualization des systèmes embarqués

La virtualisation sur les systèmes embarqués nécessite de répondre à plusieurs con-
traintes spécifiques. Tout d’abord, la sécurité doit être garantie puisque les appareils em-
barqués peuvent contenir des informations personnelles sensibles telles que les numéros
de téléphone, des informations bancaires, des clés privées, etc. Un machine virtuelle doit
être protégée et ne plus dépendre d’autres machines. Au cas où une machine virtuelle
viendrait à être défaillante, elle ne doit en aucun cas corrompre le système dans sa glob-
alité. Deuxièmement, les processus temps réel sont indispensables afin d’effectuer des
tâches critiques (comme la mise en oeuvre des systèmes d’airbags, la gestion des sys-
tèmes d’assistance au freinage des véhicules, ou le traitement des appels d’urgence dans
les téléphones mobiles). Troisièmement, en raison de la limitation des ressources des sys-
tèmes embarqués, des systèmes virtuels doivent être conçus avec peu de complexité, ce
qui peut être obtenu en utilisant un hyperviseur léger.

Dans les dispositifs embarqués qui sont dédiés à l’Internet des objets , les contraintes
de conception sont encore plus grands. Ces contraintes portent principalement sur le
manque de ressources de calculs et sur la consommation d’énergie : les appareils sont
généralement très simples, bas és sur un seul micro-contrôleur ou un petit processeur
intégré dans un FPGA avec une quantité limitée de mémoire et d’E/S. Ces derniers sont
g énéralement alimentés par des batteries, ce qui impose une très faible consommation
d’énergie associée à une gestion efficace de cette même énergie. Dans un tel scénario, une
faible complexité du logiciel devient incontournable, de manière à implanter efficacement
les machines virtuelles.

Certaines architectures x86 traditionnelles (par exemple Intel VT, AMD-V, etc.) com-
portent des extensions de virtualisation matérielle, permettant de "piéger" et "émuler"
toutes les instructions sensibles. Les OS invités peuvent ainsi être hébergés sans modi-
fication. Toutefois, la couche ISA d’un processeur ARM traditionnel ne convient pas à
la virtualisation. L’architecture ARMv7 offre deux niveaux de privilège : PL0 et PL1.
Si l’on peut considérer que PL0 peut acc éder librement à des ressources globales du
processeur, les ressources vitales ne sont accessibles que dans les modes de PL1, ce qui
garantit la sécurité du code privilégié.

En général, un noyau d’OS fonctionne dans les modes de PL1, et gère toutes les
ressources et les tâches. Les applications utilisateur s’exécutent dans le mode PL0, comme
le montre la figure Figure 1(a). Cependant, en para-virtualisation, les systèmes d’ex-
ploitation invités devraient être port és à un niveau non-privilégié alors que le niveau
privilégié est occupé par l’hyperviseur (ou VMM pour Virtual Machine Monitor). Dans
ce cas, le code source d’un système d’exploitation client doit être modifié pour fonction-
ner correctement en mode utilisateur et les instructions sensibles doivent être remplacées
par des hyper-calls, comme le montre la figureFigure 1(b).

Récemment, ARM a inclus des extensions matérielles pour permettre une virtuali-
sation complète. Ces extensions offrent un mode supplémentaire d’exécution, le mode
hyperviseur (HYP), pour les noyaux de virtualisation les plus privilégiés. Cette prise en

Résumé de la Thèse v

Hardware

OS Kernel
(Original)

Applications

Hardware

OS Kernel
(Revised)

Applications

VMM

Hardware

Hyper-call Trap

(a)

Native OS

Machine

(c)

Full-virtualization

System

(b)

Para-virtualization

System

Non-privilege:

USR

Privilege:

SVC (mainly used)

IRQ, FIQ, UND, ABT

VMM

Trap

OS Kernel
(Original)

Applications

Privilege:

HYP

Figure 1 – Systèmes de virtualisation complète et de para-virtualisation sur une archi-
tecture ARM.

charge n’a été introduite que récemment (en 2010) pour le processeur Cortex-A15. Ce
mécanisme complet de virtualisation est décrit dans la figure Figure 1(c).

Un autre défi dans la virtualisation intégrée de systèmes est une compatibilité avec
les contraintes temps réel, ce qui signifie que le respect des latences des tâches doit
être garanti en temps réel. Dans la littérature, l’ordonnançabilité en temps réel a déjà
été étudiée et correspond souvent à un ordonnancement hiérarchique. Nous définissons
respectivement les concepts d’inter-VM et de programmation intra-VM pour l’ordon-
nancement des machines virtuelles, et l’ordonnancement des tâches locales au sein d’une
même machine virtuelle. Puisque les OSs invités partagent la même ressource processeur,
l’ordonnançabilité d’un jeu de tâches est non seulement déterminée par l’algorithme d’or-
donnancement d éployé au sein d’une machine virtuelle, mais aussi par l’algorithme d’or-
donnancement des machines virtuelles. Par conséquent, afin de respecter les contraintes
d’un OS temps réel, le respect des échéances des tâches temps réel doit être également
garanti dans l’hyperviseur.

1.2 État de l’art sur la Virtualisation des architectures ARM

Dans les approches classiques de para-virtualisation, un système d’exploitation invité
est normalement fourni avec un patch de virtualisation pour interagir avec l’hyperviseur,
ce qui exige que le code source du système d’exploitation soit disponible. En conséquence,
la majorité des OS actuellement pris en charge se résume à quelques OS libres ,largement
distribués, comme Linux embarqué et µC/OS-II.

Une autre solution envisageable permettant d’implanter la para-virtualisation consiste
à utiliser un micro-noyau, qui, comme son nom l’indique est un petit noyau avec des
ressources essentielles telles qu’un espace d’adressage, des mécanismes de communications
inter-processus,etc. .

Toutes les autres fonctionnalités additionnelles sont normalement mises en œuvre au

vi Résumé de la Thèse

niveau utilisateur. Les micro-noyaux de type L4 s’articulent g énéralement autour de
Linux pour porter les machines virtuelles. Une solution prometteuse est microvisor de
OKL4 d’Open Kernel Labs, qui a amélioré considérablement les noyaux L4 classiques.
Cependant, le fait que OKL4 ne soit pas libre rend impossible l’acquisition de détails de
mise en œuvre ainsi que de proposer d’autres études sur ce système.

Une autre solution disponible autour de de la para-virtualisation consiste à utiliser
de grands hyperviseurs monolithiques, dont la plupart sont d’abord conçus pour la vir-
tualisation des architectures x86, tels que KVM et Xen. Kernel-based Virtual Machine
(KVM), par exemple, a été revisit é afin de fonctionner dans le ARMv5 et a été proposé
en tant que KVM pour ARM (KVM/ARM). Il se compose d’un module de noyau léger
qui doit être inclus dans le noyau Linux, et repose sur une version de QEMU modifiée
pour mettre en œuvre l’émulation de l’hyperviseur. Les hyperviseurs de type XEN ont
également été mis en œuvre sur les architectures ARM, comme Xen-on-ARM.

L’inconvénient des hyperviseurs basés sur KVM ou Xen est leur dépendance vis à vis
de Linux en tant que système d’exploitation hôte, ce qui augmente considérablement la
taille du code du système global.

L’ajout d’un support temps-réel pour la virtualisation des systèmes a été l’objet
de nombreuses études. Un modèle type de planification en temps réel est le Composi-
tional Real-time Scheduling Framework (CSF) basée sur une planification hiérarchique
des tâches. Cet algorithme utilise le modèle de ressource périodique (PRM) afin de faire
abstraction d’un groupe d’applications temps réel dans un modèle de charge de travail qui
peut être considéré comme une seule tâche périodique. Sur la base de ce modèle de tâches
périodiques, l’ordonnancement de machines virtuelles peut être analysé directement en
utilisant des algorithmes de programmation classiques. Le micro-noyau L4 Fiasco a re-
visité le serveur L4Linux pour intégrer ce modèle dans la programmation en temps réel.
RT-Xen a également été proposé afin d’étendre l’hyperviseur XEN et profiter ainsi de
l’ordonnancement temps réel hiérarchique.

Un autre problème concernant la mise en œuvre de tels systèmes est le surcoût de
latence provoqué par les interruptions du service d’horloge. Ce problème a été résolu dans
[YY14]. Les auteurs ont proposé un nouvel algorithme d’ordonnancement pour XEN,
notée SHQuantization. Ce dernier permet de prendre en compte les surcoûts temporels.
Cependant, cette technologie nécessite la modification de l’interface de programmation
du système d’exploitation invité. Dans cette approche, l’ordonnanceur de l’OS invité
dépend également fortement de l’hyperviseur.

1.3 Accélérateur reconfigurable sur plate-forme CPU-FPGA hétérogène

Dans le domaine universitaire, le thème des systèmes hétérogènes basés sur le couple
CPU-FPGA a été massivement étudié pour fournir des dispositifs FPGA reconfigurables
actuels mettant en œuvre un système d’exploitation. Une approche réussie dans ce do-
maine est ReconOS, qui est bas é sur un RTOS open-source (eCos) prenant en charge les
tâches matérielles/logicielles multithread. ReconOS fournit une solution classique pour
la gestion des accélérateurs matériels dans un système hybride et dans un modèle de

Résumé de la Thèse vii

gestion classique de threads. Cependant, la possibilité de tirer profit de la virtualisation
n’a pas été pleinement discutée dans ces travaux.

Une attention particulière a également été portée sur des accélérateurs FPGA partagés
dans un contexte multi-clients, par exemple des OS complexes, des serveurs cloud ou des
systèmes de machines virtuelles. Dans ces recherches, une technologie de virtualisation
DPR est proposée. Cette technologie offre des accès efficaces à des accélérateurs virtuels
et simplifie considérablement le développement logiciel.

Dans [HH09], ce concept est mis en œuvre à l’aide de OS4RS sous Linux. Le matériel
virtuel permet aux périphériques matériels et aux ressources logiques d’être partagés si-
multanément entre les différentes applications logicielles. Cependant, cette approche est
proposée dans le cadre d’un seul système d’exploitation, sans tenir compte des fonction-
nalités de virtualisation. Une autre étude est présentée dans [WBP13]. Les auteurs tentent
d’étendre l’hyperviseur Xen afin de partager un accélérateur FPGA entre les machines
virtuelles. Cependant, cette recherche porte uniquement sur la m éthode de transfert
de données entre le CPU et le FPGA, et n’inclut pas la technologie de reconfiguration
dynamique partielle.

La virtualisation des systèmes reconfigurables est beaucoup plus populaire sur les
serveurs cloud et les centres de données, qui ont généralement un besoin plus fort en
termes de performance et de flexibilité. Par exemple, dans des travaux tels que [BSB+14]
et [KS15], les auteurs utilisent la reconfiguration partielle pour diviser un seul FPGA en
plusieurs régions reconfigurables, dont chacune est gérée comme un seul FPGA virtual-
isé (VFR). Ce type de virtualisation n’est néanmoins pas approprié pour les systèmes
embarqués, dont les ressources disponibles sont très limitées, comparées à celles qui sont
disponibles dans les serveurs ou les centres de données.

Dans notre travail, la plate-forme cible est le SoC Xilinx Zynq-7000 comprenant un
processeur Cortex-A9 dual-core et un FPGA reconfigurable partiellement. Ce dernier
est actuellement un des systèmes SoPC (System on Programmable Chip) le plus utilisé.
Dans cette plate-forme, nous souhaitons bénéficier d’une solution de virtualisation légère,
appropriée pour des systèmes dédiés à l’internet des objets. Dans ce contexte, les technolo-
gies de virtualisation existantes ne semblent pas appropriées, car leur complexité étant
très élevée, il devient inimaginable de les adapter à notre plate-forme cible. En outre,
plusieurs technologies, par exemple OKL4, ne sont pas libres et sont donc in-envisageables
pour nos travaux. Nous avons également écarté l’algorithme d’ordonnancement hiérar-
chique, décrit précédemment, car ce dernier nécessite le calcul d’interfaces PRM ou des
ordonnancements de serveurs supplémentaires.

Par conséquent, un objectif de nos travaux a consisté à proposer une approche micro-
noyau qui prend en charge la virtualisation en temps réel avec un minimum de complexité.
Nous avons également proposé une approche originale de virtualisation sur un hyperviseur
embarqués que nous avons développé. Des efforts ont été réalisés pour assurer efficacement
le partage des ressources reconfigurables entre les machines virtuelles.

viii Résumé de la Thèse

Drivers

Interrupt
Inter-VM

Communication
TimerScheduler

Memory
management

PL0

PL1Ker-ONE
Micro-kernel

Guest

VM Bootloader User services
Host

Virtual Machine Monitor

Ker-ONE
User environment

Virtual Machines Guest OS Guest OS Guest OS Guest OS

Figure 2 – Ker-ONE se compose d’un micro-noyau exécuté en mode privilégié et d’un
environnement utilisateur s’exécutant au niveau non-privilégié.

2. KER-ONE : un micro-noyau léger et temps réel

La virtualisation sur plate-formes ARM-FPGA a quelques limitations. La virtualisa-
tion complète des processeurs ARM est actuellement disponible en utilisant des exten-
sions de virtualisation ARM comme dans le Cortex-A15. En revanche, cette technologie
est actuellement indisponible sur les plateformes ARM-FPGA actulles. Par conséquent,
Ker-ONE est développé sur la base de l’architecture ARMv7 en utilisant le principe de
para-virtualisation. La conception de Ker-ONE est dict ée par le principe de faible com-
plexité, qui consiste à se concentrer uniquement sur la fonctionnalité de virtualisation
critique et élimine tous les services non primordiaux. Ker-ONE offre une petite taille
de TCB, et propose un mécanisme permettant de gérer les contraintes temps réel de
la plupart des applications. Actuellement, notre recherche est basée sur les hypothèses
suivantes :

– Dans une première étape, nous avons seulement considéré des architectures mono-
coeur, renvoyant les système multi-cœurs aux futures études.

– Nous nous concentrons sur la virtualisation des systèmes d’exploitation simples, au
lieu des gros OSs monolithiques tels que Linux. En effet, para-virtualiser de tels
systèmes d’exploitation serait très coûteux et complexe et irait à l’encontre des
objectifs de notre travail.

– Afin de réaliser la virtualisation en temps réel avec un ordonnanceur moins com-
plexe, nous supposons que toutes les taches critiques temps r éel s’exécutent dans
un RTOS invité spécifique, alors que les autres taches, moins critiques, s’exécutent
sur un OS généraliste (GPOSs). Aussi, Ker-ONE est conçu pour abriter au moins
un client RTOS et plusieurs GPOSs.

Ker-ONE se compose du micro-noyau à proprement parler et d’un environnement de
niveau utilisateur. La Figure 2 représente les éléments clés de notre architecture.

Le micro-noyau est le seul composant fonctionnant dans le mode le plus privilégié,
principalement en mode superviseur.

Résumé de la Thèse ix

Les caractéristiques de base implantées dans le noyau sont : la gestion de la mémoire,
les communications inter-VM, la gestion des exceptions, et l’ordonnanceur. L’hyperviseur
tourne au-dessus des fonctions de base du micro-noyau pour permettre l’exécution d’un
système d’exploitation invité dans la machine virtuelle associée. Il fournit une couche de
matériel virtuel, émule des instructions sensibles et gère les hyper-calls provenant des ma-
chines virtuelles. L’environnement utilisateur fonctionne en mode (PL0) et propose des
services supplémentaires, tels que les systèmes de fichiers, bootloaders et services spécial-
isés (comme le gestionnaire de tâches matérielles qui contrôle les accélérateurs matériels
dans FPGA Zynq-7000). Une machine virtuelle peut accueillir un système d’exploitation
para-virtualisé ou une image logicielle d’une application utilisateur. Chaque machine a
un espace d’adressage indépendant, et s’exécute sur le matériel virtuel (CPU virtuel)
fourni par l’hyperviseur.

2.1 Gestion de la mémoire

Dans la virtualisation des systèmes, la gestion de la mémoire est essentielle pour
fournir des espaces isolés de mémoire pour les machines virtuelles. Ker-ONE offre trois
niveaux de privilège de mémoire pour hôte (host) (pour VMM), noyau invité (pour le
noyau de l’OS invité) et utilisateur invité (pour les applications de l’OS invité). Chaque
niveau est protégé contre les niveaux inférieurs. Par exemple, les pages mémoire dans
le hôte ne sont accessibles que par le micro-noyau. De plus, les applications en cours
d’exécution dans le domaine utilisateur client ne peuvent accéder au noyau de l’OS.

Pour chaque machine virtuelle, une table de page indépendante est créée par l’hyper-
viseur. Une structure de données de MMU virtuelle est associée à chaque machine virtuelle
et contient les informations d’espace d’adressage. Les OSs invités peuvent changer le con-
tenu des tables de pages sous la supervision de l’hyperviseur, à l’aide d’hyper-calls.

2.2 Interruptions

KER-ONE gère toutes les interruptions matérielles. Lors de l’exécution dans une
machine virtuelle, toutes les interruptions matérielles sont d’abord prises au piège dans
l’hyperviseur. KER-ONE gère les interruptions physiques et envoie ensuite une interrup-
tion virtuelle correspondant à la machine virtuelle cible si nécessaire. Dans le domaine
de la machine virtuelle, ces interruptions virtuelles sont exactement gérées comme les
interruptions physiques grâce à l’hyperviseur. Chaque machine virtuelle est libre de con-
figurer les interruptions virtuelles dans son propre domaine, et est indépendante des
autres machines virtuelles.

KER-ONE catégorise et divise les sources d’interruptions en différents groupes. Les in-
terruptions utilisées par les systèmes d’exploitation invit és sont divisées en deux niveaux :
RTOS et GPOS. Une RTOS se voit attribuer un niveau de priorité supérieur à celui d’un
GPOS, de sorte que les interruptions d’un RTOS particulier peuvent être ni désactivées,
ni être bloquées par un GPOSs. Ceci garantit que les événements prioritaires peuvent
être reçus par le RTOS, même lors de l’exécution de GPOSs. Ceci est très important
pour assurer l’ ordonnançabilité des tâches en temps réel.

x Résumé de la Thèse

2.3 Les communications Inter-Process (IPC)

Un mécanisme de communication inter-processus efficace (IPC) est essentiel dans la
plupart des micro-noyaux. KER-ONE utilise de simples approches basées sur la commu-
nication asynchrone, à base d’interruptions pour faciliter les IPCs.

Pour effectuer une communication inter-VM, l’hyperviseur lève l’interruption corre-
spondante dans la machine virtuelle cible et délivre un message. Pendant ce temps, dans
chaque machine virtuelle, une page de mémoire partagée VMM/VM est créée avec une
structure nommée canal IPC (IPC Channel). Les machines virtuelles sont en mesure
d’envoyer des messages IPC en programmant le canal IPC dans la région partagée. Ce
message sera ensuite traité et livré à la machine virtuelle cible lors du prochain ordon-
nancement. Il est important de noter que ce mécanisme IPC nécessite seulement quelques
cycles d’ écriture/lecture mémoire sans utiliser d’hyper-calls, ce qui entraîne peu de sur-
coût en terme de latence.

2.4 Virtualisation des OS temps réel

KER-ONE met en œuvre un ordonnanceur round-robin préemptif, basé sur la priorité.
Chaque machine virtuelle est créée avec un niveau de priorit é fixe. L’ordonnanceur
sélectionne toujours la machine virtuelle de plus haute priorité. Une machine avec une
faible priorité ne peut fonctionner que lorsque les machines virtuelles plus prioritaires sont
suspendues ou arrêtées. Dans le cas où les machines virtuelles sont de même priorité, le
CPU est partagé équitablement.

Un RTOS doit fonctionner à un niveau de priorité supérieur à celui d’un GPOS ;
l’hyperviseur permet aux GPOSs de s’exécuter, uniquement lorsque le RTOS est inactif.
Le GPOS poursuivra alors son exécution jusqu’à ce que sa tranche de temps soit écoulée,
ou jusqu’à ce qu’un autre événement se produise dans le RTOS. Dans les deux cas,
l’hyperviseur ré-exécute le RTOS et préempte les GPOSs.

Pa rapport à une exécution native, la virtualisation dégrade inévitablement les per-
formances. Par conséquent, en ce qui concerne l’ordonnancement des tâches des RTOS,
nous proposons un modèle de coût qui formalise les surcoûts liés à la virtualisation. Nous
définissons le temps d’exécution réel d’une t âche qui se compose du WCET (ei) et de la
latence nécessaire à sa libération ou son ordonnancement. Le modèle est le suivant :

Ei = ei + relEv. (1)

Et ei est le chemin d’exécution de la tâche, et relEv est le temps de libération de cette
même tâche.

La Figure 3 décrit la manière dont la virtualisation affecte le temps d’exécution. Le
surcoût engendré par la virtualisation peut être inclus dans le temps d’exécution réel des
tâches : EVM

i :

Résumé de la Thèse xi

RT Event

RTOS Kernel

RTOS Task

Microkernel

GPOS

ΔVMMsched relEv
VM

ei
VM

ΔVMMcritical

Figure 3 – Surcoût d’exécution des tâches d’un RTOS lorsqu’exécutée dans une machine
virtuelle. Ce dernier est composé de surcoûts critiques li és à l’ordonnancement et les
surcoûts intrinsèques liés au RTOS.

EVM
i = eVM

i + relEvVM + ∆VMMsched+ ∆VMMcritical,

and eVM
i = eNative

i + ∆ei
V M ,

and relEvVM = relEvNative + ∆relEv
VM ,

(2)

eVM
i et relEvVM sont respectivement le temps réel d’exécution et le temps de libération
de la tâche dans une machine virtuelle. Ces temps sont majorés par ∆relEv

VM et ∆ei
V M , qui

correspondent respectivement à la latence nécessaire à l’ordonnancement des tâches et
au temps d’exécution dans une machine virtuelle.

∆VMMsched est la latence supplémentaire requise pour l’ordonnancement du RTOS.
∆VMMcritical est le retard causé par l’exécution critique de l’hyperviseur. En résumé,
le temps de réponse des machines virtuelles pour prendre en compte un événement temps
réel peut être représenté comme suit :

ResponseVM = relEvVM + ∆VMMsched+ ∆VMMcritical. (3)

A partir de ResponseVM , le surcoût sur le temps de réponse d’une tâche peut être
obtenu par :

∆Response
VM = ResponseNative −ResponseVM

= ∆relEv
VM + ∆VMMsched+ ∆VMMcritical,

(4)

Etant donné que l’ordonnancement d’un RTOS est rythmé par les cycles du timer,
tous les paramètres d’ordonnancement sont exprimés en nombre de cycles. Le nombre
de cycles (Θi) représente le temps minimal nécessaire à l’exécution d’une tâche et est
exprimé comme suit :

Θi = dE
Native
i + ∆ei

V M + ∆Response
VM

∆T ick
e, (5)

∆T ick représente la durée d’un cycle du timer, ∆Rponse
VM est le surcoût lié au temps de

réponse de la tâche.

xii Résumé de la Thèse

Inter-connection

Dev #1

PRR #1

PRR Monitor
IF(1) IF(1)

Search Solutions

VM #1

IF(1)

PRR #2

KER-ONE

VMM

Dev #2

Dev #3
Virtual Device

Manager

IF(2) IF(2) IF(2)

IPC Channel

PRR #3

Request

Return
Solution

VM #2

Dev #1

Dev #2

Dev #3

VM 1

VM 2

Figure 4 – Vue d’ensemble de la gestion de la zone reconfigurable dans KER-ONE.

3. Gestion des accélérateurs reconfigurables

Dans notre système, les accélérateurs reconfigurables sont mis en œuvre dans des
régions de reconfiguration partielle prédéterminées (PRR) du FPGA. Nous avons proposé
une interface standard pour tous les accélérateurs DPR, de sorte qu’une PRR peut être
utilisée par différents accélérateurs. Entre le logiciel et les accélérateurs reconfigurables,
une couche intermédiaire composée d’interfaces (IF) a été proposée. Ces IF sont mappées
dans l’espace d’adressage des machines virtuelles et sont vues comme étant différents
périphériques virtuels. Chaque IF est exclusivement associée à un accélérateur virtuel
spécifique dans une machine virtuelle spécifique. Un périphérique virtuel est toujours
mapp é à la même adresse dans toutes les machines virtuelles, mais est mis en œuvre
dans différents IF dans la couche inférieure.

Une interface IF possède deux états, connecté à une certain PRR ou sans lien.
Lorsqu’une interface est connectée, elle indique que l’accélérateur virtuel correspondant
est mis en œuvre dans la PRR et qu’il est prêt à être utilisé. Etre dans l’état sans lien
signifie que l’accélérateur est indisponible et les registres de l’interface IF sont mappés
uniquement en lecture seule.

Quand une machine virtuelle tente d’utiliser ce périphérique virtuel en écrivant dans
son interface, cette action provoquera un défaut de page et sera détectée par l’hyperviseur.
Comme les accélérateurs reconfigurables sont indépendants, notre système introduit des
mécanismes de gestion supplémentaires pour gérer dynamiquement les demandes d’util-
isation des ressources provenant des machines virtuelles.

Dans la figure 4, le mécanisme de gestion proposé est décrit. Le Gestionnaire de
périphériques virtuel est un service logiciel particulier proposé à une machine virtuelle

Résumé de la Thèse xiii

visant à allouer des ressources reconfigurables . Dans la partie statique du FPGA, un
PRR Moniteur est cr éé et est en charge des interconnexions entre les IF et les PRR,
ainsi que de la surveillance dynamique des accélérateurs reconfigurables. Ce service est
également en charge de trouver des solutions disponibles pour l’affectation des ressources
aux machines virtuelles.

Chaque fois qu’une machine virtuelle accède à une interface IF non connectée, l’hy-
perviseur exécute immédiatement le Virtual Device Manager pour gérer cette demande
de ressources. Une requête est de la forme :Request(vm_id, dev_id, prio), qui est com-
posée de l’identifiant de machine virtuelle, de l’identifiant du périphérique virtuel ainsi
que d’une priorité de demande qui est en réalité la priorité de la machine virtuelle ap-
pelante. Cette demande est envoyée au Moniteur du côté du FPGA pour rechercher une
solution de configuration appropriée. Cette solution comporte différentes méthodes :

– Allocate (prr_id) : alloue directement une zone reconfigurable (prr_id) à une
machine virtuelle. Si le périphérique dev_id n’est pas déjà implanté dans la zone,
un drapeau Reconfig est positionné.

– Preempt (prr_id) : aucune zone ne peut être directement attribuée, mais la zone
(prr_id) peut être préemptée et réaffectée. Si le périphérique dev_id n’est pas mis
en œuvre dans la zone, le drapeau Reconfig sera positionné .

– Unavailable : cet état signifie que la zone reconfigurable n’est pas disponible
actuellement. Une demande non aboutie est ensuite ajoutée à la liste des recherches
dans le PPR Moniteur qui continue la recherche de solutions. De nouvelles solutions
seront envoyées au Gestionnaire de périphériques virtuels immédiatement.

Le Gestionnaire de périphériques virtuels effectue ensuite l’allocation en fonction de
la solution retournée. L’allocation peut être effectuée en plusieurs étapes : (1) décon-
necter la zone reconfigurable des autres IF, et modifier la page de mémoire en lecture
seule dans la machine virtuelle correspondante ; (2) la connecter à la machine virtuelle
nécessitant la ressource et mettre à jour la page de mémoire en lecture/écriture ; (3)
continuer l’exécution de la machine virtuelle à l’endroit où elle a été interrompue. Dans
les solutions où l’exécution est différée (à savoir Reconfig et Preempt), le processus d’al-
location ne peut pas être terminé directement car il doit attendre l’achèvement de la
reconfiguration ou la préemption. Dans ce cas, le Gestionnaire de périphériques virtuel
prévient la machine virtuelle en envoyant des requêtes IPC, et laisse au PPR Moniteur le
suivi de ces solutions côté de FPGA. Ce dernier fournit des interruptions au Gestionnaire
de périphériques virtuels lorsque la reconfiguration/preemption est terminée.

4. Implémentation

Le micro-noyau Ker-ONE est construit sur l’architecture ARMv7 basée sur une plate-
forme Zynq-7000. Dans le domaine du logiciel, le système est divisé en trois objets : le
micro-noyau Ker-ONE, l’environnement utilisateur, et le client OS/applications. Tant le
micro-noyau et de l’environnement de l’utilisateur sont construits de façon indépendante,

xiv Résumé de la Thèse

ils coopèrent pour établir l’environnement de virtualisation. Les clients/applications sont
développés et construits par les utilisateurs.

Dans le cadre de cette thèse, nous avons para-virtualisé un RTOS bien connu, µC/OS-
II, qui est massivement utilisé dans l’éducation et la recherche. Le système d’exploitation
client virtualisé résultant est appelé Mini-µC/OS. La quantité de lignes de code (LoC)
qui a été nécessaire pour modifier l’OS original µC/OS est très faible. Il faut compter
139 lignes pour le code source modifié et 223 lignes supplémentaires pour le patch.

La conception de Ker-ONE se traduit par une mise en œuvre légère avec une petite
taille de TCB. Le micro-noyau KER-ONE est construit avec moins de 3000 lignes de Code.
Ce résultat a été obtenu grâce aux efforts fournis pour éliminer toutes les fonctionnalités
inutiles du noyau.

5. Evaluations

5.1 Impact de la virtualisation

Nous avons mené plusieurs expériences afin d’évaluer les performances de Ker-ONE.
Les expériences sont basées à la fois sur des mesures et des critères standards. Dans une
première étape, nous avons évalué les fonctions de base de l’hyperviseur afin d’obtenir
une évaluation générale. Ces fonctions se traduisent par un faible surcoût en termes de
temps d’exécution. Ce surcoût temporel a été estimé à 1 µs.

Ensuite, nous nous sommes concentrés sur la performance du client RTOS. Nous avons
effectué des tests qualitatifs sur les fonctions du RTOS, et mesuré l’impact des surcoûts
réels sur l’ordonnancement. Finalement, nous avons exécuté des applications embarquées
pour estimer une vitesse effective. Sur la base des résultats obtenus, nous avons présenté
une analyse approfondie de l’ordonnançabilité des clients RTOS. Les résultats montrent
que notre approche met en œuvre la virtualisation en temps réel avec de faibles coûts et
des performances proches de celles obtenues avec un OS natif.

Sur la base des résultats de l’expérience évaluant l’impact de la virtualisation sur le
RTOS original, l’impact global que la virtualisation provoque sur le temps de réponse du
RTOS ∆Response

VM peut être estimée à 3.08 µs. L’équation Eq.(5) peut alors être simplifiée
comme suit :

Θi ≈ d
ENative

i + ∆ei
V M

∆T ick
e, if ∆Response

VM � ∆T ick. (6)

Par conséquent, l’influence majeure sur la configuration de l’ordonnancement du RTOS
est causée par ∆ei

V M . Pour garantir l’ordonnançabilité du système, le temps d’exécution
réel des taches doit être mesuré avec précision. Pour une Tk qui fonctionne à l’origine sur
un RTOS natif, son ordonnançabilité est toujours garantie sur Ker-ONE si :

∀Ti ∈ Tk, d
ENative

i + ∆ei
V M

∆T ick
e = dE

Native
i

∆T ick
e. (7)

Si cette contrainte n’est pas respectée, la configuration des paramètres d’ordonnancement
pour Tk doit être recalculée pour répondre aux contraintes temps réel.

Résumé de la Thèse xv

5.2 Evaluation du coût de la reconfiguration dynamique

Notre évaluation porte sur la latence d’allocation d’une tâche au sein d’une zone
reconfigurable. Cette latence provient de plusieurs sources : les défauts de pages,les IPCs,
l’ordonnancement des machines virtuelles et l’exécution du Gestionnaire de périphériques
virtuels. Les coûts globaux sont résumés dans la Table 1.

Table 1 – Les overheads de l’allocation des DPR

Methods Overheads (µs)

{Assign} 3.03µs

{Assign, Reconfig.} 6.76µs+ TRFCG

{Preempt} 5.10µs+ Tpreempt

{Preempt, Reconfig. } 9.96µs+ Tpreempt + TRFCG

D’après le tableau, on peut clairement observer que les allocations directes peuvent
être efficacement réalisées avec une latence de 3 µs.

6. Conclusion et perspectives

Cette thèse décrit un micro-noyau original permettant de gérer la virtualisation des
systèmes embarqués et fournissant un environnement pour les machines virtuelles en
temps réel. Nous avons simplifié l’architecture du micro-noyau en ne gardant que les car-
actéristiques essentielles requises pour la virtualisation, et massivement réduit la com-
plexité de la conception du noyau. Sur la base de ce micro-noyau, nous avons mis en
place un environnement capable de gérer des ressources reconfigurables dans un système
composé de machines virtuelles. Les accélérateurs matériels reconfigurables sont mappés
en tant que dispositifs classiques dans chaque machine. Grâce à une gestion efficace de la
mémoire dédiée, nous permettons de détecter automatiquement le besoin de ressources
et autorisons l’allocation dynamique.

Selon diverses expériences et évaluations, nous avons montré que Ker-ONE ne dégrade
que très peu les performances en termes de temps d’exécution. Les surcoûts engendrés
peuvent généralement être ignorés dans les applications réelles. Nous avons également
étudié l’ordonnançabilité temps réel dans les machines virtuelles. Les résultats montrent
que le respect de l’échéance des tâches du RTOS est garanti. Nous avons également
démontré que le noyau proposé est capable d’allouer des accélérateurs matériels très
rapidement.

Pour les travaux futurs, nous envisageons de proposer une gestion de la mémoire
plus sophistiquée afin que de gros OS généralistes comme Linux puissent être pris en
charge. Nous souhaiterions aussi porter notre micro-noyau sur une architecture ARM plus
avancée afin d’exploiter pleinement l’extension de la virtualisation matérielle. D’autre
part, la politique d’allocation des ressources DPR doit être pleinement étudiée. Il serait
intéressant de développer l’algorithme de recherche de solutions plus sophistiquées et de

xvi Table of Contents

discuter de l’influence des différents paramètres à prendre en compte pour l’allocation des
ressources. Finalement, nous souhaitons considérer la mise en œuvre de scénarios réels
afin de pouvoir concrètement évaluer la performance de notre approche par rapport aux
solutions existantes dans ce domaine.

Table of Contents

Acknowledgement i

Résumé de la Thèse iii

Table of Contents xvi

Abbreviations xxi

Introduction 1

1 Concepts and Related Works 5
1.1 Basic Virtualization Theories . 5

1.1.1 Fundamental Theories of Virtualization 5
1.1.1.1 Machine Model . 6
1.1.1.2 Mapping Mechanism . 8
1.1.1.3 Instruction behavior . 9

1.1.2 Virtualization Approaches . 10
1.1.2.1 Hardware Virtualization Extension 11
1.1.2.2 Dynamic Binary Translation 13
1.1.2.3 Para-Virtualization . 14

1.2 ARM-based Embedded System Virtualization 16
1.2.1 Micro-kernels . 19

1.2.1.1 L4 Micro-kernels . 20
1.2.1.2 OKL4 Microvisor . 21

1.2.2 Hypervisors . 21
1.2.2.1 KVM . 22
1.2.2.2 Xen . 24

1.2.3 ARM-based Full Virtualization . 25
1.3 Real-time Scheduling for Virtual Machines 26

1.3.1 Compositional Real-time Scheduling 27
1.3.1.1 L4/Fiasco Micro-kernel with Compositional Scheduling . 29
1.3.1.2 RT-Xen . 30

1.3.2 Other Real-time Approaches . 31

xvii

xviii Table of Contents

1.4 CPU-FPGA Hybrid Architecture . 32
1.4.1 Dynamic Partial Reconfiguration 34
1.4.2 CPU/FPGA Execution Model . 35

1.4.2.1 CPU/FPGA offload model 36
1.4.2.2 CPU/FPGA unified model 37

1.4.3 DPR Resource Virtualization . 39
1.5 Summary . 42

2 Ker-ONE : Lightweight Real-Time Virtualization Architec-
ture 45
2.1 Overview of the Ker-ONE Microkernel . 45
2.2 Resource Virtualization . 48

2.2.1 CPU virtualization . 48
2.2.1.1 CPU Resource Model . 50
2.2.1.2 Instruction Emulation . 52
2.2.1.3 Virtual CPU Model . 54

2.2.2 Vector Floating-Point Coprocessor Virtualization 55
2.2.3 Memory Management . 57

2.2.3.1 Memory Access Control 57
2.2.3.2 Address Space Virtualization 59
2.2.3.3 Memory Virtualization Context 61

2.3 Event Management . 61
2.3.1 Interrupt Virtualization . 62

2.3.1.1 Emulation of Interrupts 63
2.3.1.2 Virtual Interrupt Management 65

2.3.2 Timer Virtualization . 66
2.3.3 Inter-VM Communication . 67

2.4 Optimization . 68
2.5 Real-time OS Virtualization . 70

2.5.1 VMM Scheduler . 71
2.5.2 RTOS Events . 72
2.5.3 RTOS Schedulability Analysis . 73

2.6 Summary . 75

3 Dynamic Management of Reconfigurable Accelerators on
Ker-ONE 77
3.1 Introduction to the Zynq-7000 platform 77

3.1.1 PS/PL Communication . 78
3.1.2 Partial Reconfiguration . 80
3.1.3 Interrupt Sources . 81

3.2 DPR Management Framework . 81
3.2.1 Framework Overview . 82
3.2.2 Hardware Task Model . 84

Table of Contents xix

3.2.3 PRR State Machine . 86
3.2.4 PR Resource Requests and Solutions 88
3.2.5 Virtual Device Manager . 90
3.2.6 Security Mechanisms . 94
3.2.7 Initialization Sequence . 95

3.3 Application of Virtual Devices . 96
3.3.1 Virtual Device Blocking . 97
3.3.2 Virtual Device Preemption . 97

3.4 Summary . 99

4 Implementation and Evaluation 101
4.1 Implementation . 101

4.1.1 RTOS Para-virtualization . 102
4.1.2 Complexity . 103
4.1.3 System Mapping . 104
4.1.4 Ker-ONE Initialization Sequence 106

4.2 Ker-ONE Virtualization Performance Evaluations 106
4.2.1 Basic Virtualization Function Overheads 107
4.2.2 RTOS Virtualization Evaluation 109

4.2.2.1 RTOS Benchmarks . 109
4.2.2.2 RTOS Virtualization Overheads 113

4.2.3 Application Specific Evaluation 115
4.2.4 Real-time Schedulability Analysis 116

4.3 DPR Allocation Performance Evaluation 117
4.3.1 Overhead Analysis . 117
4.3.2 Experiments and Results . 119
4.3.3 Real-time Schedulability Analysis 123

4.3.3.1 Response Time . 123
4.3.3.2 Execution Time . 124

4.4 Summary . 125

5 Conclusion and Perspectives 127
5.1 Summary . 127
5.2 Perspectives and Future Works . 129

List of Figures 131

List of Tables 137

Bibliography 137

xx Table of Contents

Abbreviations

API : Application Programming Interface
ASIC : Application-Specific Integrated Circuit
CP : Control co-Processor
CPSR : Current Processor State Register
DACR : Domain Access Control Register
DMA : Direct-Memory Access
DPR : Dynamically Partial Reconfiguration
EC : Execution Context
FFT : Fast Fourier Transform
FPGA : Field Programmable Gate Array
GIC : Generic Interrupt Controller
GPOS : General-Purpose Operating System
IP : Intellectual Property
IPC : Inter-Process Communication
IRS : Interrupt Routine Service
ISA : Instruction Set Architecture
IVC : Inter-Virtual machine Communication
LoC : Lines of Code
MMU : Memory Management Unit
OFDM : Orthogonal Frequency Division Multiplexing
OS : Operating System
PCAP : Processor Configuration Access Port
PL : Programmable Logic
PL0/1 : Privilege Level 0/1 PRR : Partial Reconfigurable Region
PS : Processing System
PSR : Processor Status Register
QAM : Quadrature Amplitude Modulation
RM : Reconfigurable Module
RP : Reconfigurable Partition RTOS : Real-Time Operating System
SoC : System on Chip
SRAM : Static Random Access Memory
TCB : Trusted Computing Base
TTBR : Translation Table Base Register

xxi

xxii Abbreviations

TTC : Triple Timer Counter
VD : Virtual Device
VFP : Vector Floating-Point
VHDL : Very high speed integrated circuit Hardware Description Language
VM : Virtual Machine
VMM : Virtual Machine Monitor

Introduction

Context

Virtualization has become more and more popular in the embedded computing do-
main, especially for today’s intelligent portable devices such as smart-phones and vehicles.
This technology offers the advantage of better energy efficiency, shorter time-to-market
cycles and higher reliability. As a result, the exploration of virtualization techniques
on embedded systems constitutes a hot topic in the industrial and personal embedded
computing domains.

Traditionally, embedded computing systems are used to be relatively simple single-
purpose devices, where software is subject to particular constraints, such as power con-
sumption or real-time processing. Only simple operating systems (OS) or bare-metal
applications generally run on top of systems. Modern embedded systems, however, are
increasingly playing the role of general-purpose systems, due to their growing computing
abilities and resources. In this case, software-based systems that were formerly divided
to provide different functions are now merging into one platform. As an example, in
modern embedded devices, some critical background services may run concurrently with
some user-oriented applications, which may be designed for different systems.

Virtualization technology can help device vendors by enabling concurrent execution
of multiple operating systems, so that the legacy software stack can be easily ported to
contemporary platforms, saving the expensive development and verification efforts. On
the other hand, some conventional constraints still remain for embedded systems : limited
resources (compared to PCs), real-time processing, and limited battery capacity, which
are critical factors in virtualization. Furthermore, in such a mixed-criticality system, it
is essential for a virtualization system to guarantee the correctness of critical task timing
constraints, since they may significantly influence the system safety. In this case, the
system scheduling mechanism is forced to guarantee the real-time tasks deadlines, so
that the system manner can be predictable.

One key characteristic of virtualization technology is security, i.e. the isolation and
independence among different system components, so that any malfunction or incorrect
behaviors are constrained to their own domains. The virtual and physical computing plat-
forms are decoupled via virtual machine (VM), which provides each hosted guest with a
separate and secure execution environment. The guest OS runs on the virtual platform,
while the actual physical layer is managed by an underlying hypervisor, the virtual ma-

1

2 Introduction

chines monitor (VMM). Virtual machines are temporally and logically independent from
each other and cannot affect the system outside its domain. Such systems are also called
virtual machine systems. In fact, the issue of security has become increasingly important
since OS security is more and more threatened by malicious pieces of code. In order to
ensure system security, hypervisors must be kept as small as possible and feature a small
trust computing size (TCB).

Besides these software aspects, another challenge for embedded device vendors is
that the improvement of computing performance has become more and more difficult
to manage with traditional approaches such as IC scaling and ASIC. As an alternative,
the interest of vendors have progressively move on to the concept of CPU-FPGA hy-
brid System-on-Chip (SoC). Currently, FPGA devices are already popular in embedded
system designs as a result of their outstanding flexibility, low power consumption and
speed-up performance. This is especially true with the Dynamic Partial Reconfigura-
tion (DPR) technique, which has revealed considerable potential in hosting hardware
accelerators with less resource consumption. Therefore, the idea of enhancing embedded
processor with an FPGA fabric has been considered as a promising solution to improve
performances. Xilinx and Altera have both released ARM-FPGA hybrid embedded sys-
tems, while Intel’s Xeon-FPGA devices are also on their way.

Embedded systems that are based on this type of platforms can benefit from the
flexibility of processors and from the FPGA performances. This makes it possible to
extend the virtualization technology to the reconfigurable computing technology. In this
case, virtual machine users can easily and securely access IP accelerators on the FPGA
using the DPR technique.

In this context, a new challenge consists in providing an efficient management mecha-
nism while respecting the independence of virtual machines. The reconfigurable resources
have to be virtualized so that virtual machines can access them independently. This fea-
ture is critical in virtualization to guarantee the system security. However, though recon-
figurable accelerators on conventional embedded systems have been studied in numerous
researches, they are mostly implemented in simple applications and OSs, while the usage
and management of the DPR technique in a virtualized environment remains an open
problem.

This thesis is based on the mentioned issues of current embedded systems. In our
research, we focus on the small-scaled embedded ARM-FPGA hybrid systems. These
systems are designed with limited resources, and may be used for small devices such
as Internet-of-Things (IoT). In this context, we propose an innovative lightweight virtu-
alization approach that is capable of hosting real-time virtual machines and efficiently
utilizing reconfigurable FPGA devices. Our approach is implemented with low complexity
and high adaptivity, and is suitable for embedded devices that try to take advantage of
both virtualization and DPR techniques. In this dissertation we have also run extensive
experiments on our system to evaluate the overall performance of the proposed approach.

Introduction 3

Manuscript organization

The remainder of this thesis is organized as follows : In Chapter 1, we introduce
the general techniques and concepts used throughout this thesis. We first focus on the
major theories of virtualization technology in embedded systems, dealing especially with
real-time constraints. We then describe the concepts and principles of DPR technology.
We will also present the state of the art in related researches, introducing their principles
and major features. In Chapter 2, we describe in details the proposed virtualization
architecture. Fundamental structures and designs are presented and explained. We also
focus on the real-time virtualization mechanism. In Chapter 3, we propose the manage-
ment of DPR modules in our system, describing both sharing and security mechanisms.
In Chapter 4, we demonstrate the evaluations taken from standard open-source bench-
marks as well as custom experiments. The performance of our system in terms of real-time
scheduling and reconfigurable computing are given and analyzed. We conclude this thesis
and give the perspectives of our work in Chapter 5.

4 Introduction

Chapter 1

Concepts and Related Works

1.1 Basic Virtualization Theories

In the context of computing systems, the "virtualization" term refers to a system
virtualization technology, which permits multiple operating systems to be executed si-
multaneously on the same physical machine. The concept of virtualization dates back
to the 1960s and has been initially implemented in IBM’s mainframes [Gol74]. In 1974,
Popek and Goldberg defined formal system virtualization criteria for computing archi-
tectures, as the essential conditions for a computing machine to be virtualized. These
criteria constitute the groundwork of the virtualization technology [PG74]. Starting from
this model, virtualization experienced decades of research, and has achieved tremendous
success in both academic and commercial domains. In this section, we first introduce the
fundamental theories of virtualization technology.

1.1.1 Fundamental Theories of Virtualization

In modern computer architectures, a working space is generally divided into several
execution layers called privilege levels (or rings), in order to protect critical resources.
While the highest privilege level is authorized to freely control the whole computing
machine resources, the lowest privilege level, or the non-privilege level, is only permitted
to limited non-critical parts. Accessing high-privilege resources from low-privilege levels
may cause an exception, denoted as a trap, which will alert the processor of the forbidden
behavior. Thus, the highest privilege level is always used by operating systems to hold
the most important codes and data to ensure the security, while user applications and
processes are running on the non-privilege levels.

In classic implementations, virtualization is achieved by adding a software abstract
layer that interfaces the platform resources and the users, which decouples the underlying
hardware from the operating systems [Gol74]. The de-privileged operating systems are
executed in a virtual and isolated environment that emulates the hardware resources,
and are viewed as guest operating systems. A virtual machine (VM) refers to all software
components, e.g. guest operating systems and applications that are running within such

5

6 Concepts and Related Works

Hardware Platform

Virtual Machine Monitor

Guest OS

Application

Guest OS

Application

Virtual

Machine

Virtual

Machine

Figure 1.1 – Typical virtual machine system architecture

environments. Virtual machines are under the supervision of a virtual machine mon-
itor (VMM). This architecture is also called the virtual machine system. The typical
architecture of virtual machine system is shown in Figure 1.1.

The Virtual machine monitor is the most privileged component of a virtualization
system, and runs directly on the hardware. The VMM provides a basic functionality
that is similar to an OS kernel : controlling the hardware platform and managing the
components on its top. Additionally, VMM ensures the temporal and logical isolation
of virtual machines in the less-privilege levels. Any behavior of a virtual machine is
constrained to its own domain, which makes it impossible to influence the outside world.
In a sense, VMM holds virtual machines as traditional OS holds processes, except that
virtual machines are given the impression that they are granted with the whole hardware
platform.

In virtual machine systems, two metrics should be considered : the virtualization ef-
ficiency and the trust computing base (TCB) size. Virtualization efficiency evaluates the
mechanism of virtualization, indicating the adaptivity of a virtualization approach. In
most cases, higher virtualization efficiency means lower performance degradation for OS
hosted in virtual machine. On the other hand, the TCB is the part of software that runs
with the highest privilege and must be trusted. In the context of virtualization, TCB
size generally corresponds to the size of VMM. Lower TCB size implies less threats and
smaller attack surface from malicious user applications or guest OS that has been com-
promised. For the consideration of system security, small-sized TCB is always preferred
in virtualization techniques.

1.1.1.1 Machine Model

The criteria of virtual machine systems were formally defined by Popek and Goldberg
[PG74], which are well known as the conditions for classical virtualizability. Architectures
that meet these criteria are considered as capable to host virtual machines. The machine
model that Popek and Goldberg used was based on the computers available at that time,

Basic Virtualization Theories 7

such as DEC PDP-10 and IBM 360/67, and was intentionally simplified as :

S ≡< E,M,P,R > (1.1)

In this definition, the state of the machine model S is composed of the memory E, the
processor mode M , the program counter P and the relocation-bounds register R. This
model considers the memory space as linearly addressable and ignores the interactions
with I/O devices and interrupts, which were rational simplifications according to the
state of micro-processors at that time.

However, due to the advances in computing technologies, the model no longer fits
current architectures. Some novel characteristics of modern computers have been greatly
developed, and have become too significant to be ignored, which are listed as follows :

– Paged virtual memory system is fully exploited in modern operating systems to
provide applications with many key facilities and protections, such as dynamic
linking, shared libraries and independent virtual address spaces. The details of
mapping and translations must be included in the machine state.

– Modern machines are also significantly sensitive to timing. In some cases, timing-
dependent behaviors influence not only the user experiences but also the correction
of the system.

– Peripherals and integrated controllers also play important roles in contemporary
computers, for they help the processor to manage hardware resources. They may
include various controllers (e.g. interrupt controller and bus controller), and general
I/O devices.

Therefore, some researchers have attempted to extend the model proposed by Popek
and Goldberg to adjust it to modern computer architectures. In [VGS08] authors re-
defined the classical virtualizability model by extending it to include system constructs
that do not belong to the original model. The research of [DH10] also tried to include
interrupts and I/O in their updated model. However, the complete machine model of
current computer architecture was given by Penneman in [PKR+13] :

S ≡< E,M,P,G,C,A,DM , DP > . (1.2)

In this model, besides original elements E, M and P , additional objects are included :
the general-purpose registers G, the configuration registers C, the address space mapping
A, the Memory-Mapped IO (MMIO) device state DM and the Port-Mapped IO (PMIO)
device state DP . Note that, even though I/O devices may be mapped into the physical
memory, the device state DM/DP is omitted from E.

When considering timing-dependent systems, this definition of machine model can
also be revised to be :

S ≡< E,M,P,G,C,A,DM , DP , T >, (1.3)

where the additional element T stands for the execution timings of computer.

8 Concepts and Related Works

1.1.1.2 Mapping Mechanism

In modern computing machines, paged virtual address translation mechanism has
been critical for resource management. Software are compiled and executed according
to the virtual address, while the actual physical space is generally hidden from them.
Via the translation table, each virtual address page can be assigned with independent
physical memory spaces and access permissions. For simplification, we can assume that
all memory accesses are performed in the virtual address space.

According to the definition of machine model Eq.(1.2), virtual addresses are accessed
by the address mapping A, which can be defined as :

Definition 1. Address mapping A(V, P,X) maps the physical address space P to a virtual
address space V according to the access control policy X. A consists of a set of 3-tuples
(v, p, x) in which v ∈ V is a virtual address, p ∈ P is the corresponding physical address,
and x is the access permission identifier.

We denote the translation function performed according to translation table A as
TransA(v, x). Thus, its virtual address space V is valid when :

∀v ∈ V,∃p ∈ P, p = TransA(v, x). (1.4)

Upon every memory access, the translation function TransA(v, x) calculates the physical
memory space according to the virtual address v and permission check x. If for an address
v, the corresponding translation does not exist or is not permitted, a memory trap will
be triggered.

In the context of virtual machine systems, address mapping becomes more complex
than traditional physical-to-virtual translation. Operating systems tend to build up its
own translation tables to create virtual address space. In virtualization, however, the
physical memory space of guest OS needs to be virtualized by the VMM In this case, a
two-stage translation is performed. First, the virtual address space (Vg) of guest OS is
translated to the guest OS physical address (Pg). Second, Pg is translated to the actual
physical memory (Ph) in the host machine, as shown in Figure 1.2.

Therefore, VMM is responsible to manage both the address mappings of guest OS and
host machine, respectively denoted as Ag(Vg, Pg, Xg) and Ah(Pg, Ph, Xh). We assume EN

is the physical memory space which VMM allocates to virtual machine VMN on the host
machine, the address space of virtual machine VMN is valid when it meets the criterion :

∀v ∈ Vg, ∃p ∈ EN , p = TransAh
(TransAg(v, xg), xh). (1.5)

Maintenance of address mappings is one of the most complicated functionality of
VMM. A guest OS is generally permitted to freely map the virtual addresses. During the
translation, VMM should respect the guest translation table and accordingly allocate
memory resources. For typical memory management units (MMU) that only support
one-stage translation, one solution is to compose the guest and VMM mappings into a
single address mapping, which directly maps the guest virtual address to the host physical
memory. This map is called shadow mapping [AA06], which is shown in Figure 1.3. By

Basic Virtualization Theories 9

Vg

Ph

Pg

(,)
gA g gTrans v x

(,)
hA g hTrans p x

VM

VM

Figure 1.2 – Two-stage address mapping in virtual machine systems.

Vg Ph

(,)
gA g gTrans v x (,)

hA g hTrans p x

Shadow Mapping

(,)
sA g sTrans v x

Vg PhPg

Figure 1.3 – Using shadow mapping to perform two-stage address mapping.

denoting the shadow mapping as As(Vg, Ph, Xs), the access permission conditionXs must
meet the following criteria :

∀v ∈ Vg, T ransAs traps when TransAg(v, xg) traps ∪ TransAh
(pg, xh) traps. (1.6)

As we can notice, the mechanism of shadow mapping requires additional effort from
the VMM to monitor and establish protected shadow page table based on the mappings
of guest and host machine. Therefore, to accelerate the maintenance of shadow mapping,
in some computer architectures (e.g. ARMv7A/v8) MMU is enhanced with dedicated
two-stage translation mechanisms, so that the translation from guest virtual address to
host physical space is automatically handled by hardware [ARM12].

1.1.1.3 Instruction behavior

In the context of virtualization, instructions are classified in three categories :

10 Concepts and Related Works

– Privileged instructions are those that execute correctly only in privilege level,
and always trap in non-privilege level.

– Sensitive instructions are the ones that may threat the correction of virtual-
ization. They can be further classified as : (1) control-sensitive instructions which
manipulate the processor configurations ; (2) behavior-sensitive instructions whose
results depend on the processor execution mode.

– Innocuous instructions those instructions that are not sensitive.

Sensitive instructions must be monitored or prevented in virtual machines, since vir-
tual machines are not allowed to change the configuration of processors, such as the
execution mode or physical memory allocations. Furthermore, considering that guest
OSs are not running at the privilege levels that they are originally intended for, the
results of behavior-sensitive instructions are then incorrect.

Base on the classification of instructions, in [PG74], the theorem that defines the
condition of instructions in virtualization was proved :

Theorem 1. (Popek and Goldberg [PG74]) For any conventional third generation com-
puter, a virtual machine monitor may be constructed if the set of sensitive instructions
for that computer is a subset of the set of privileged instructions.

According to this theorem, in an instruction set architecture (ISA) that meets the
criterion, a trap will be triggered whenever sensitive instructions are executed in virtual
machines. In this case, these behaviors are automatically detected and monitored, which
is ideal for the construction of VMM, since software based on this ISA can be easily
monitored in virtual machines. For this reason, such an instruction set is considered as
virtualizable. A VMM based on a virtualizable ISA is called an execute-and-trap VMM.

In a virtual machine, the behaviors of instructions are constrained to the virtual ma-
chine domain, and should not influence the outside world. All sensitive instructions have
to be interpreted and properly handled by the VMM. The virtualization of instructions
follows the principles :

– Efficiency : all innocuous instructions are executed natively without the VMM
intervention ;

– Resource control : guest software is forbidden access to physical state and re-
sources ;

– Equivalence : guest software behaves identically as it runs natively on a system.

1.1.2 Virtualization Approaches

With decades of research, virtualization has been implemented on various platforms
and architectures with different solutions. Considering that virtual machines are built
on the simulation of physical platforms, the features of instruction set and processor
architecture may significantly influence the approaches. Some processor vendors have

Basic Virtualization Theories 11

considered the demand of virtualization, and provided virtualizable architectures, in-
cluding virtualizable ISAs and extensional hardware assistance. Such architecture will
be ideal for virtualization since a VMM can be easily established. In other cases, for
architectures which are not suitable for virtualization, alternate approaches are proposed
to implement virtualization.

Generally, while being hosted in a virtualized environment, the performance of guest
software will be inevitably degraded, so we wish to reduce the complexity of virtualization
mechanisms to minimize the extra workload on the machine. On the other hand, the
VMM must guarantee the isolated and secure virtual machine environment. To give more
details, the implementation of virtualization should consider the following principles :

– Low complexity or footprint of VMM, so that the resources required for virtualiza-
tion may be minimized.

– Low reliance on the guest OS source code. Virtualization should minimize the
modification of guest software to maintain adaptability. The ideal solution is to
host native OS directly in virtual machines without any modification.

– High virtualization efficiency, which means reducing virtualization cost to host
guest software with a level of performance close to the native one.

– Strong isolation of system components, so that virtual machines are temporally
and logically separated from each other.

While it is not likely that all principles could be emphasized equally, the solution of
virtualization should try to maintain balance. For example, an embedded system which
has limited resources may prefer a small-sized VMM. On the other hand, a tight-timing
system can afford significant modifications on guest OS to obtain a higher performance.

There are two main virtualization approaches : full virtualization and para-virtualization.
The full virtualization technique is also called native virtualization [ISM09]. It requires
no modification of the guest software, and relies on the VMM to emulate the low-level
features of the hardware platform. This feature allows native OSs like Linux or Android
to run directly inside the virtual machines. Since it does not rely on the OS code, even
close-source software can be easily hosted. Full virtualization relies on supporting tech-
nologies e.g. virtualizable ISA and hardware extensions.

Para-virtualization, on the other hand, refers to communication between the guest
software and the VMM to implement virtualization. This mechanism is mostly imple-
mented by modifying the guest software codes. Para-virtualization is especially suitable
for architectures without hardware assistance or virtualizable ISA.

In this section we will introduce the existing technologies of full virtualization and
para-virtualization. We will also overview the characteristics of different approaches.

1.1.2.1 Hardware Virtualization Extension

Considering the potentiality of virtualization, some contemporary computer architec-
tures have introduced hardware support to help building virtual machine systems. This

12 Concepts and Related Works

Guest Applications

Guest OS

3

2

0

1

Guest Applications

Guest OS

3

2

0

1

(a) Native Operating System

Applications

Operating System

3

2

0

1

Guest Applications

Guest OS (Unmodified)

3

2

0

1
Virtual Machine Monitor

3

2

0

1

(b) Virtual Machine System

Non-root Mode Root Mode

Figure 1.4 – Virtualization extension provided by Intel VT-x/VT-i, where the guest
software execute in original privilege levels, but in the non-root mode.

is denoted as hardware virtualization extension. Typical extensions include additional ex-
ecution mode, virtualizable ISA, multi-stage MMU translation and virtual interfaces of
system registers. Such extensions have been introduced to the traditional PC and server
world for a decade, and have been used for the new generations of embedded proces-
sors recently. Here, we introduce two typical architectures : Intel VT-x/VT-i and ARM
Cortex-A15.

Intel released processors with virtualization technology Intel VT-x and VT-i in 2005,
which respectively support Intel architecture 32-bit (IA-32) and Itanium Architecture
[UNR+05]. The principle extension is the addition of a new processor mode, which we
denote as the root mode. Traditionally, Intel microprocessors provide four privilege levels,
Ring 0-3, using 0 for most-privileged software and 3 for the least privileged. Most software
and operating systems use only rings 0 and 3, as shown in Figure 1.4(a). With the root
mode, four more privilege rings are provided, which have the same features as to the
non-root rings except that they are granted with more instructions and resources. Guest
software can freely use the four privilege rings that they are originally intended for, but
in a non-root mode. In this case, the VMM can be easily built up in the root mode and
guest operating systems can be directly hosted, as shown in Figure 1.4(b).

ARM proposes a different approach to assist virtualization. Conventional ARM pro-
cessor runs with two privilege levels : non-privilege level PL0 and privilege level PL1. By
default, operating systems utilize PL1 the secure kernel space, and leave PL0 for user
applications and processes to run, as shown in Figure 1.5(a). In the Cortex-A15 archi-
tecture, a higher privilege level, hypervisor mode (HYP), is added [Lan11]. Note that,
while Intel VT-x/VT-i root mode provides replica of four privilege rings, the HYP mode
in Cortex-A15 is a completely new execution mode, with a dedicated set of features.
The original features of PL0 and PL1, e.g. instructions and hardware resources, remain
unchanged. As higher privilege level (PL2), HYP mode accesses extra system registers to
control the behavior of PL0 and PL1. Thus, guest software can execute as native in PL0
and PL1 levels, and the VMM can be implemented at PL2. All sensitive instructions are
trapped into the HYP mode and handled by the VMM. The mechanism is demonstrated

Basic Virtualization Theories 13

Hardware

Operating System

Applications

Hardware

(a) Native Operating System (b) Virtual Machine System

Privelege Level 0 (PL0)
User Mode

VM Monitor

All Sensitive

Instructions Trap

Guest OS
(Unmodified)

Applications

Privelege Level 2 (PL2)
Hypervisor Mode

Privelege Level 1 (PL1)
Supervisor Mode

Figure 1.5 – In Cortex-A15 with hardware virtualization extension, guest OSs run at
the same privilege structure as before so that they can run the same instructions. New
HYP mode has higher privilege, where VMM is established to control wide range of OS
accesses to hardware.

in Figure 1.5(b).
Furthermore, hardware extensions also provide additional hardware mechanism to

help virtualize the resources. For example, the ARM Cortex-A15 processor introduces
a MMU that supports two-stage translation, which translates a virtual address into in-
termediate address space, before actually having the physical address. This mechanism
significantly simplifies the mechanism of shadow mapping, as we mentioned in the Sec-
tion 1.1.1.2. Cortex-A15 also provides a virtual interrupt controller and virtual timers.
The VMM may directly leverage and allocate these virtualized resources to virtual ma-
chines. These dedicated hardware features may largely improve the virtualization effi-
ciency [Lan11].

1.1.2.2 Dynamic Binary Translation

Full virtualization can also be achieved without extensions of hardware architecture.
This is typically supported by dynamic binary translation (DBT), which is also called
software dynamic translation [Hor07]. This approach translates the instructions of guest
software during its execution, on the fly, in order to replace non-virtualizable sensitive
instructions with new sequences of instructions that have the intended effect on the
virtual hardware. The basic principle of code-rewriting is to execute modified instructions
as native instructions, without intervention of the VMM, so that the costs of traps-
and-emulation are reduced. In this case, the guest OS can be developed as if in native
machine, and requires no beforehand modification. In fact, the DBT technique is the only
full-virtualization solution that is possible for architectures without hardware assistance
or virtualizable ISA. The mechanism of the DBT technique is depicted in Figure 1.6.

A major drawback of DBT is the heavy workload that it requires for code interpreta-
tion and translation, which takes up considerable resources. Considering the complexity,
a DBT-based virtualization normally relies on a host operating system to process the

14 Concepts and Related Works

Unprivileged

User Applications

Orignial OS
Guest OS

(Modified)

Dynamic Binary Translation

Virtual Machine Monitor

Translated
VMM
Request

Host Computer System Hardware

Privileged

Figure 1.6 – With DBT technology, guest OS kernel instruction are rewritten. During
executing, revised codes execute directly on processor as native codes.

Unprivileged

User Applications

Guest OS (Para-virtualized)

Virtual Machine Monitor Hyper-calls to replace the
non-virualizable OS instructions

Host Computer System Hardware

Privileged

Original OS

OS Kenrel
Modification

Figure 1.7 – Para-virtualization replaces the non-privilege sensitive instructions in OS
code with hyper-calls to emulate these behaviors.

guest OS codes. For example, Windows and Linux have been widely used as the host OS
for DBT virtualization.

DBT has been used on desktop and server computers, especially on Intel x86 archi-
tecture. Products such as VMware, Microsoft Virtual Server, QEMU, VirtualBox have
achieved significant commercial success on the market [Hei08][dR14][Res15]. However,
subjected to the limitation of on-chip resources, embedded systems did not consider this
technique as topic of interest until recent years. As to the best of our knowledge, no
DBT-based full virtualization has been constructed for ARM architecture.

1.1.2.3 Para-Virtualization

Though full-virtualization can provide ideal solutions, the limitations are also obvi-
ous : it is highly dependent to hardware assistance and only suitable to a determined
class of architecture. On the contrast, para-virtualization is able to be built on a wider
range of systems.

Para-virtualization refers to communication between the guest OS and the VMM to
virtualize the architecture. As shown in Figure 1.7, this technique involves modifying
the OS kernel to replace non-virtualizable instructions with hyper-calls that communicate
directly with the VMM. The VMM also provides hyper-call interfaces for other critical

Basic Virtualization Theories 15

Table 1.1 – Comparisons of existing virtualization solutions.
Solutions Advantages & Disadvantages

Hardware-assisted
virtualization

• Original OS kernel can be directly hosted ;
• VMM can be implemented with less effort and lower complexity ;
• Virtualization efficiency can be improved by dedicated architecture.
• It relies on the hardware virtualization extensions, which are limited
to a determined series of processors.

DBT virtualization

• Original OS kernel can be directly hosted ;
• No reliance on particular hardware architecture ;
• Code-rewriting gains a performance benefit over the trap & interpre-
tation mechanism ;
• Hybrid and heterogeneous systems can be virtualized since DBT can
translate code according to different ISAs [Hor07].
• DBT takes great amount of CPU resources to translate OS codes on
the fly, and is unsuitable for embedded systems ;
• DBT introduces substantial complexity to VMM.

Para-virtualization

• No reliance on particular hardware architecture ;
• Hyper-call based communication improves the VMM performance ;
• This solution requires a lower VMM complexity than DBT.
• Modification of OS kernel source codes causes extra development costs ;
• Potential guest OS is limited to the open-source ones ;
• Modified OS requires to be re-certified to avoid unexpected behavior.

kernel operations such as memory management, interrupt handling and time keeping.
VMM receives hyper-calls as direct demand from virtual machines which results in a
more efficient virtualization mechanism and lower-complexity VMM.

The value proposition of para-virtualization is in lower virtualization overhead, since
it avoids the trapping and decoding of instructions, which are inevitable due to the mech-
anism of full virtualization. Unlike full virtualization, guest OS in para-virtualization is
aware of being virtualized. VMM presents to virtual machines a custom interface that
is similar but not identical to the underlying hardware [AP12]. Besides, the coopera-
tion between VM and VMM makes it possible to develop more dedicated and flexible
virtualization mechanisms.

Para-virtualization requires the availability of OS source code, which narrows its
application to several open-source operating systems such as Linux and uC/OS [ISM09].
Another insufficiency in this domain is that there is a lack of a standardized VMM
interface for virtual machines. As a consequence, guest OS has to be specifically ported on
the target according to different para-virtualization solutions, and will not be supported
out of the box.

We overview the current virtualization approaches by comparing their advantages
and drawbacks, as listed in Table 1.1. Note that, one commonly-considered drawback of

16 Concepts and Related Works

para-virtualization is that it introduces higher VMM complexity than hardware-assisted
solutions. In fact, hardware virtualization extensions introduce the similar complexity,
but on the hardware level. Although these hardware supports manage to accelerate the
virtualization process, thereby obtaining smaller VMM sizes and better security, the
related design complexity is tremendous. This is illustrated by the fact that hardware
extensions only appear recently and exist in limited products, while being absent in
many low-end and mid-range CPUs [PKR+13]. In this case, para-virtualization is the
most economical solution for small-scaled devices in such a domain.

1.2 ARM-based Embedded System Virtualization

Embedded systems were used to be relatively simple, single-purpose devices whose
computing ability was limited. Due to the subject of resources, most embedded systems
were dominated by certain hardware constraints, e.g. timing, battery capacity or mem-
ory size. Software in embedded systems normally served for dedicated functionality, like
device drivers, schedulers and industry control. Real-time constraints were important
to guarantee their functionality. As a consequence, simple real-time operating systems
(RTOS), rather than general-purpose OSs, are used in such systems. Traditionally the
software stack was pre-defined by the device vendors and was unlikely to change during
execution [Hei08].

Modern embedded systems, however, are increasingly playing the role of general-
purpose computers. With the improvement of computing abilities, the amount and com-
plexity of their software are also growing. For instance, on the contemporary portable
devices such as smart phones, vehicles and aircraft, there co-exist software of different
types, ranging from critical tasks to high-end user applications. Each day, tons of new
applications and devices, in various domains, are created worldwide. For example, as
shown in Figure 1.8, the smart phone market is expected to grow throughout the fore-
cast period, reaching 1.7 billion unit sales by the year 2018 [dR14]. And the total market
of embedded systems is expected to reach 233 billion dollars by 2021 [Res15].

At the meantime, the growing demand on embedded devices also addresses new chal-
lenges. We should note that, compared to servers and personal computer, embedded
systems are still resource-constrained. For example, battery capacity increases slowly
overtime, making energy efficiency a key factor. Their memory sizes also tend to be
moderate, since memory is still a cost factor for vendors. Furthermore, as embedded
systems are widely used in mission and life-critical scenarios in daily life, there are high
requirements on safety, security and real-time scheduling.

In order to define the main requirements and challenges for current and future em-
bedded devices, we refer to the study carried out by European Commission DG CNECT
[AP12]. In this study report, according to the involvement of embedded devices in differ-
ent areas, the required characteristics are divided into four categories : critical require-
ments, complexity, user acceptance, and technological drivers, as listed in Table 1.2.

This table demonstrates that though the device requirements vary according to their
usages, virtualization remains universally desired. This is due to the fact that virtual-

ARM-based Embedded System Virtualization 17

© Analysys Mason Limited 2014

Smartphone markets: worldwide trends, forecasts and strategies 2014–2018

2014 will be a pivotal year for vendors as the high-end smartphone market

reaches saturation in developed countries

 We expect smartphone sales to continue to grow throughout

the forecast period as smartphone adoption increases in

developing markets and shorter replacement rates in

developed markets drive smartphone demand.

 The number of smartphones sold exceeded the number of

non-smartphones sold for the first time in 2013. Sales figures

(see Figure 6) are more representative of the vendor context

than the number of connections. Smartphone sales are

starting to saturate in the most-advanced markets, such as

North America, Western Europe and Developed Asia–Pacific,

further intensifying competition among smartphone vendors.

 The high-end segment of the smartphone market is already

saturated. 2014 will be a pivotal year for the most-exposed

vendors, which will have to turn to lower-end segments for

growth. Smaller vendors such as BlackBerry and HTC are

simply too small to manage and fund such drastic strategy

changes and may be subject to market consolidation instead.

 In developed countries, we expect most smartphone sales to

come from smartphone-to-smartphone replacements, rather

than non-smartphone-to-smartphone replacements, which

emphasises the importance of smartphone user retention

strategies for vendors and service providers.

15

Figure 6: Mobile handset unit sales by type, and smartphones‟ share of unit

sales, worldwide, 2011–2018 [Source: Analysys Mason, 2014]

0%

10%

20%

30%

40%

50%

60%

70%

80%

0.0

0.5

1.0

1.5

2.0

2.5

2
0
1

1

2
0
1

2

2
0
1

3

2
0
1

4

2
0
1

5

2
0
1

6

2
0
1
7

2
0
1
8

P
e

rc
e

n
ta

g
e

 o
f

u
n

it
 s

a
le

s

U
n

it
 s

a
le

s
 (

b
ill

io
n

)

Non-smartphones Smartphones

Smartphones' share

Figure 1.8 – Mobile handset unit sales by type, and smartphones share of unit sales,
worldwide, 2011-2018 [Source : Analysys Mason, 2014][dR14]

ization can provide attractive benefits that may meet the emerging demands, which are
summarized as following :

– Security. With the trend of open systems, operating systems are more likely to be
compromised by malicious software. Virtualization provides isolated fault-tolerant
environments, so that damage of attacks are minimized and limited in their own
virtual machines.

– Mixed criticality. Virtualization is easier to meet multiple system criteria by
deploying heterogeneous operating systems. For example, an embedded device may
host an application OS, such as Linux, to provide better human-machine interfaces,
while co-hosting a real-time OS for critical missions.

– Multi-core support. Virtualization is scalable when running on multiple pro-
cessors. It can easily allocate processors dynamically to host poorly-scaling legacy
OSs, or shut down idle processors to save energy. It also enhances the security of
multi-core systems.

Nevertheless, there are still significant limitations on the usage of virtualization. One
major cause is that the strongly-isolated computer model, as virtualization proposed,
does not fit the environment of embedded systems [Hei08]. By their nature, embedded
systems are highly integrated, where software cooperate closely with hardware resources
to contribute to the overall performance. Isolating virtual machines and hardware layer
may interfere the functionality of these systems.

18 Concepts and Related Works

Table 1.2 – Required characteristics of embedded devices for current and future appli-
cations.[Source : European Commission DG CNECT Report SMART 2009/0063] [AP12]

Features
Critical requirements Complexity User

Accept-
ance

Technological Drivers

Safety Security
Certifi-
cation

Distributed
architecture

Multi-core &
virtualization

Energy
efficiency

Automotive x x x x x x
Aerospace x x x x x x
Industrial
automation

x x x x

Energy con-
sumption point

x x x x

Electricity T&D x x x x
Healthcare x x x x x x x
Communications x x x x x x
Consumer x x

First, the applications on embedded systems require efficient data sharing. Massive
data of one component should be efficiently accessed by other components. For example,
video files received by a real-time virtual machine can be used by another guest OS to
display on the screen. Since VMs communicate with each other through a virtual network
interface, sharing bulk data will inevitably cause a waste of processor cycles and battery
energy.

Second, as an essential characteristic of embedded devices, real-time scheduling is
hard to guarantee in virtualized systems. The VMM schedules virtual machines as black
boxes, without knowing the timing constraints within each VM. In this case, real-time
activities in guest OS may miss their deadlines.

Third, the heavyweight virtual machines result in a boosting software complexity,
which undermines the device robustness and limits the number of users. In fact, when
virtual machine hosts a complete OS with its local software, whose complexity keeps in-
creasing, it consumes tremendous resources, especially the memory costs, which is one key
constrains of embedded devices. Addressing this issue requires a virtualization framework
that is lightweight, small-sized so that it does not add to the overall complexity.

In this thesis, embedded systems are discussed in the context of ARM architectures,
because ARM processors have been one of the leading CPU families in the embedded
market for their low cost, energy efficiency and high performance. They have been widely
applied on embedded devices, especially hand-held devices, robotics, automation and
consumer electronics. Currently, ARM family is the most popular embedded 32-bit CPU.
For example, according to the embedded market study carried out by UBM Tech (see
Figure 1.9), most embedded device vendors chose ARM processors as solution for
products [Tec14].

In this section, we review the existing ARM virtualization techniques by briefly intro-
ducing the principles. Since the ARM architecture is traditionally not virtualizable, we

ARM-based Embedded System Virtualization 19

2014 2013

TI Tiva (ARM) 11% 21%

Altera Nios II (soft core) 11% 10%

Xilinx Zynq (dual ARM Cortex-A9) 13% 13%

Freescale Kinetis (ARM/Cortex-M4/M0) 14% 13%

Intel Atom/Pentium/Celeron/Core IX 14% 16%

Freescale i.MX (ARM) 14% 14%

TI OMAP (ARM) 15% 17%

NXP (ARM) 17% 17%

TI Sitara (ARM) 17% 13%

Microchip PIC 32-bit (MIPS) 22% 23%

STMicro STM32 (ARM) 23% 22%

0% 5% 10% 15% 20% 25%

TI Tiva (ARM)

Altera Nios II (soft core)

Xilinx Zynq (dual ARM Cortex-A9)

Freescale Kinetis (ARM/Cortex-M4/M0)

Intel Atom/Pentium/Celeron/Core IX

Freescale i.MX (ARM)

TI OMAP (ARM)

NXP (ARM)

TI Sitara (ARM)

Microchip PIC 32-bit (MIPS)

STMicro STM32 (ARM)

2013 2014

Figure 1.9 – Types of 32-bit processors that are preferred by embedded device vendors.
The results are listed for year 2013 and 2014, based on a wide-range survey on worldwide
embedded developers. [Source : UBM Tech 2014 Embedded Market Study, 2014][Tec14]

first focus on para-virtualization based solutions on conventional ARM processors, and
briefly discuss the emerging hardware-supported ARM virtualization at the end.

1.2.1 Micro-kernels

Virtualized hardware abstractions can be provided by micro-kernels or hypervisor
systems. Micro-kernels intend to provide a minimized virtualization layer, whereas hy-
pervisors aim to fully replicate and multiplex hardware resources without consideration
of the kernel size or complexity. Though some researchers have argued that both sys-
tems are sharing similar principles and that the borderline is declining [Hei08], these
two approaches should still be analyzed separately. In this part we first introduce the
micro-kernel-based virtualization.

The basic micro-kernel concept was proposed by Brinch Hansen [Han70] as a reduced
nucleus with fundamental kernel mechanisms. Actual system services were supposed to
be implemented in user-level servers. Micro-kernel systems follow strictly the principle of
least privilege by providing the minimal set of abstractions. In 1995, based on modern
computer models, Liedtke defined the three key abstractions that micro-kernels should
provide : address space, threads and inter-process communication [Lie95]. The main idea
behind micro-kernels design is the low kernel complexity, which results in better feasibility
and security.

A micro-kernel-based VMM typically hosts virtual machines as OS-like concept of
processes. It avoids the complex replica of resources. For example, a micro-kernel does
not export I/O device interfaces to virtual machines. In contrast, it tends to run device
drivers as separate user-level servers. However, moving these services out of the kernel
into user-level implies extra communication costs. Therefore, most micro-kernel-based

20 Concepts and Related Works

virtualization works try to propose efficient inter-process communication (IPC) mecha-
nisms.

1.2.1.1 L4 Micro-kernels

One of the initial efforts to build up micro-kernel virtualization on ARM architecture
is the Fiasco L4 developed by TU Dresden [Hoh96]. Fiasco L4 was re-implemented from
the famous second-generation (2G) L4 micro-kernel, which was proved quite efficient on
x86 systems [Lie95]. This kernel follows Liedtke’s principles and provides only basic ser-
vices. Additionally, it offers good isolation characteristics to co-host multiple subsystems.
A Linux kernel (L4Linux) is para-virtualized on top of the L4 micro-kernel. Other user
applications are running in other virtual machines. From the micro-kernel’s point of view,
L4Linux and user virtual machines are L4 tasks with independent address spaces.

Fiasco L4 relies on L4Linux to support user threads in a server-client approach, as
shown in Figure 1.10. L4Linux plays as a Linux server that provides Linux services to
user threads. As clients, user thread can only communicate with L4Linux via the IPC
mechanism provided by L4 micro-kernel, which is based on system call interface. Through
code-rewriting, user threads generate system calls that will be passed to the micro-kernel
and be redirected to L4Linux for handling. As illustrated in Figure 1.10, such system
calls cause heavy context-switch overheads, which is a major drawback of this approach.

Under thorough discussion, the virtual machines hosted in Fiasco L4 are rather groups
of user Linux threads than independent guest OSs, since they are considered as different
clients sharing the same Linux server. Though virtual machines are strongly isolated from
the Linux server, they are running as groups of user Linux applications being supported
independently from each other. Therefore, it is unlikely to host heterogeneous OSs in this
framework.

One of the major advantages of L4 micro-kernels is low complexity, which makes

Linux-User Thread

Linux-Server

①
Linux
Syscall

Linux-User Thread

Linux-User Thread

L4 Microkernel

② redirection

③ syscall
 handling

④ thread
 resume

④ IPC

Figure 1.10 – Architecture of Fiasco L4 virtualization. Guest user threads are supported
by Linux server following the sequence :(1)thread syscall to request Linux service ; (2)L4
micro-kernel takes syscalls and redirects it to Linux server ; (3)syscall handiing ; (4)L4
returns to user thread via resuming execution context or inter-process communication.

ARM-based Embedded System Virtualization 21

it easy to be adapted. In [GBL+09], a solution dedicated to multi-core smartphones is
proposed, named ICT-eMuCo. A combination of an L4 micro-kernel, a load balancer, and
virtualization techniques is presented. The ICT-eMuCo solution offers the co-existence
of several protocol stacks into the modem subsystem together with a pluggable Rich-OS
based applications subsystem. However, ICT-eMuCo was highly customized for phone
applications and thus inevitably lacks generality.

1.2.1.2 OKL4 Microvisor

The Open Kernel Lab has proposed another micro-kernel-based virtualization ap-
proach, named as OKL4 microvisor[HL10]. OKL4 is a third-generation (3G) micro-kernel
of L4 heritage, and was intended for performance-sensitive memory-constrained mobile
devices. The developers claim that this solution has achieved commercial success and
been adopted in Motorola mobile phones. OKL4 attempts to combine the characteris-
tics of micro-kernel and hypervisor, providing the high efficiency of hypervisors while
maintaining the generality and minimality of micro-kernels. Though derived from the L4
micro-kernel concept, OKL4 has been built from-scratch and has significantly simplified
the virtualization mechanism from traditional L4 kernels. The evaluation presented in
[HL10] shows that OKL4 remains at low code complexity. Furthermore, OKL4 is based
on seL4, which is high-a security version of L4 micro-kernel. The seL4 has been formally
verified to satisfy strict isolation and information-flow control [KEH+09]. The features
of seL4 guarantee the security of the OKL4 system.

Unlike Fiasco L4, OKL4 does not rely on L4Linux to manage virtual machines. It
provides virtualized CPU and virtual MMU to provide independent execution context
and address space. I/O drivers are deployed in user space as processes. VMM schedules
guest OSs on virtual CPUs. OKL4 replace the complex system calls in L4 with simple
hyper-calls. Guest OS kernel uses hyper-calls to communicate with micro-kernel and
requires for services. Since OKL4 aborts the server-client mechanism, guest OS can be
hosted independently with their own execution environment. In the actual application of
OKL4 kernel on Motorola Evoke QA4 mobile phone, Linux system and the AMSS/BREW
baseband stack are co-hosted in virtual machines on top of an ARM9 processor [ISM09].
The virtualization framework of OKL4 microvisor is demonstrated in Figure 1.11.

One significant improvement of OKL4 is its efficient IPC mechanism, which consists
of virtual interrupts and channels. Virtual interrupts are used for synchronous IPC and
are quite simple to implement. Channels are defined as shareable FIFO buffers mapped in
user space and can be directly accessed from different users. These policies permit simpli-
fied, high performance IPC among virtual machines, without undergoing the redundant
system-call-based IPC process in L4 micro-kernel.

1.2.2 Hypervisors

Hypervisors used to constitute the earliest solution for co-hosting multiple operat-
ing systems when virtualization first went into fashion in the 1970s [PG74]. Initially,
hypervisors were intended to reuse legacy software stack and to execute multiple tasks

22 Concepts and Related Works

Virtual Machine

ARM Processor

OKL4 Microkernel

User mode

Privileged
mode

Virtual Machine

Inter-Process Communication Channel

Interrupt IPC

Figure 1.11 – The virtualization framework of OKL4 microvisor on ARM architecture.

concurrently. Since the renaissance of virtualization technology in 1990s, hypervisors have
been widely employed on desktop and server computers. They pursue to provide a full
abstraction of the hardware layer, which should resemble the physical platform as closely
as possible. Generally, the size and complexity of kernels are not the main concerns of
hypervisors. For example, hypervisors traditionally provide virtual networks as IPC for
virtual machines, which are running standard network protocols. Virtual machines access
the virtual network interfaces as if they were actually visiting networks. Also, hypervisors
prefer to export virtual device interfaces that emulate the actual peripheral drivers (but
maybe simplified).

Therefore, a large but fully-functional kernel may serve perfectly as hypervisor. How-
ever, porting hypervisors to embedded systems implies that the factors of kernel size and
complexity can no more be ignored. To meet this challenge, hypervisors are driven to
move closer to micro-kernels in terms of lower kernel complexity. Many hypervisor so-
lutions on ARM architecture choose to move part of their functionality into an existing
embedded OS e.g. embedded Linux, to relieve their burdens. In this part we introduce
the works of hypervisor-based ARM virtualization.

1.2.2.1 KVM

Kernel-based Virtual Machine (KVM) is a commonly adopted open-source virtual
machine monitor, which was originally designed for x86 hardware virtualization exten-
sions. Based on Intel and PowerPC processors, KVM provides full-virtualization on Linux
kernels. In 2011, the authors of [DJ11] released a revised KVM version that was adapted
to ARMv5 architecture, which is denoted as KVM/ARM. The motivation of this work
is to provide para-virtualization solutions to the increasing Linux-based distributions
targeting embedded ARM-based devices.

KVM resides as an additional loadable module in Linux kernel, so that it can take
advantage of the existing Linux functions to host virtual machines. The virtualization
execution path is illustrated in Figure 1.12. KVM maintains the execution context
of virtual machines, and provides an abstraction layer to emulate physical resources.

ARM-based Embedded System Virtualization 23
2012 Linux Symposium • 97

ported to ARM architecture in Xen version 3.02 [9].
“Xen for ARM” required the guest code to be para-
virtualized by adding hyper-calls for system events such
as page table modification. However, code that needs
to be para-virtualized is not revealed in the paper. The
cost of maintenance with generations of different guest
operating system soars higher as heavier as the guest’s
code being modified for virtualization.

“KVM for ARM” [1] also implemented an embed-
ded VMM under KVM in ARMv5. They proposed
a lightweight script-based approach to para-virtualize
the kernel source code of the guest OS automatically,
by switching various kinds of non-privileged sensitive
instructions with pre-encoded hyper-calls that trap to
hypervisor for later emulation. Nonetheless, they ap-
plied a costly memory virtualization model when de-
privileging guest system in the user mode of ARM ar-
chitecture. First, they did not apply the “reverse map”
mechanism in memory virtualization for keeping the
coherency of guest’s and shadow page table. In their
model, each modification results in a page table flush
since the hypervisor is unaware of the correspondence
of guest’s page table and shadow page table. Further-
more, the benchmarking or profiling results are not yet
revealed, so it is hard to evaluate the performance results
of running virtual machines on their work.

In contrast, ARMvisor introduces a lightweight mem-
ory virtualization model mechanism to synchronize the
guest page table, which is more suitable for use in em-
bedded system due to the performance and power con-
sumption concern. Detailed measurement and analysis
of system and application level benchmarks will be re-
ported in the following section. We proposed a cost
model to measure overhead due to virtualization in gen-
eral use cases. According to the profiling results, we can
design several optimization methodologies.

3 Overview of ARMvisor

The proposed hypervisor is developed based on the open
source project KVM (Kernel-based Virtual Machine)
which was originally designed for hardware virtual-
ization extension of x86 architecture (Intel VT, AMD
SVM) to support full-virtualization on Linux kernel. It
has been included in the mainline Linux since kernel
version 2.6.20. KVM is composed numerous loadable
kernel modules which provide the core functions of the
virtualization. A modified QEMU is used to create the

Figure 1: KVM execution path

guest virtual machine and to emulate the I/O devices.
Figure 1 illustrates the execution flow when providing
a virtualization environment for the guest using KVM.
A virtual machine (VM) is initiated in QEMU by us-
ing the system call interface (ioctl) provided by the
modules of KVM. After the VM has finished its initial-
ization procedures, KVM changes the execution context
to emulated state of the guest OS and starts to execute
natively. Guest exits its execution context whenever an
exception occurs. There are two kinds of traps in KVM:
lightweight and heavyweight traps. In lightweight traps,
the emulation is handled in internal functions of KVM,
implemented in the kernel space of Linux. In contrast,
heavyweight traps that include I/O accesses and certain
CPU functions will be handled by QEMU in user space,
so context switches are required. Hence, the cost of a
single heavyweight trap is higher than a lightweight one.

Numerous hardware virtualization extension primitives
of the x86 architecture are leveraged by KVM to pro-
vide fast and stable workloads for virtual machines. A
new execution guest mode is designed to allow direct ex-
ecution of non-privileged yet sensitive x86 instructions.
Instead of unconditionally trapping on every privilege or
sensitive guest instruction, a subset of those instructions
can execute natively in the virtual ring 0 provided by
the guest mode. They modify the shadowed CPU states
indicated on VMCB (Virtual Machine Control Block)

Figure 1.12 – The virtualization path of KVM virtual machines. KVM plays as an
intermediate layer that receives the request of emulation from virtual machines, and
redirects them to either QEMU or to the Linux kernel [DLC+12].

Meanwhile, Linux is in charge of most VMM functionality. Linux kernel performs the
VM scheduling, manages the memory allocation of VMs, and provides the actual physical
device drivers. Furthermore, KVM utilizes QEMU, in Linux user space, to create the
virtual machines and to emulate the I/O drivers. In summary, KVM monitors virtual
machines, collects their traps and relies on Linux kernel for emulation. As a consequence,
KVM always keeps a low complexity.

KVM’s low complexity and high integration with the Linux kernel provides the ad-
vantage that it can easily be included in current embedded Linux kernels on ARM.
This is also the reason why numerous researches have been carried out to augment
KVM/ARM. For example, in [DLC+12] another variant of KVM, the ARMvisor, was
ported to ARM Cortex-A8 architecture. It focused on a simplified lightweight memory
virtualization model to replace the traditional costly model in KVM. The evaluation
presented in [DLC+12] showed a significant performance increase.

Nevertheless, since KVM and the Linux kernel are inseparable as VMM, the size
of privileged components can be huge. A large-sized trust computing base (TCB) may
expand the threats that system is exposed to, which will undermine the security level.
Besides, it might be too expensive to implement this solution on memory-constrained
embedded systems.

24 Concepts and Related Works

Dom0
(Linux)

Xen Hypervisor

PV Backends

HW Drivers

Hardware Platform

DomU

PV Frontends

DomU

PV Frontends

Figure 1.13 – The architecture of Xen-on-ARM hypervisor.

1.2.2.2 Xen

The Xen hypervisor is another para-virtualization technology that was originally
designed for x86 platforms. As a popular virtualization solution on traditional computers,
Xen’s application to ARM architecture is a popular topic in the domain of embedded
systems [Seo10]. The mainline ARM-based Xen hypervisor was proposed by Hwang et al.
[HSH+08], which was denoted as Xen-on-ARM, targeting the ARM-based secure mobile
phones. Unlike KVM, Xen does not leverage the existing operating system as host OS.
Instead, the Xen VMM runs directly on the hardware and manages virtual machines,
including IPC, memory management and scheduling. Xen on ARM also removes the
need of QEMU because it does not do any emulation. It accomplishes the goal by using
para-virtualized interfaces for I/O devices [XEN14].

The architecture of Xen-on-ARM hypervisor is depicted in Figure 1.13. Xen VMM
is at the most privilege level, while everything else in the system is running as a virtual
machine on top of Xen, including Dom0, the first virtual machine. Dom0 is created by
Xen, is privileged and drives the devices on the platform. Xen virtualizes CPU, memory,
interrupts and timers, providing virtual machines with one or more virtual CPUs, a frac-
tion of the memory of the system, a virtual interrupt controller and a virtual timer. Xen
keeps peripheral devices in Dom0, which is typically Linux, but could also be FreeBSD
or other operating systems. Dom0 runs the same device drivers for these devices that
would be used on a native execution. Other virtual machines, called DomU in Xen ter-
minology, gets access to a set of generic virtual devices by running the corresponding
para-virtualized front-end drivers, which will pass the demand to the para-virtualized
backend drivers in Dom0 for handling.

Xen-on-ARM is significantly simplified from its x86 version, and ends up with a
cleaner and small framework. Several further researches on Xen focus on improving its
adaptivity and performance. One well-known work is EmbeddedXEN proposed by Rossier
[Ros12]. This novel kernel is able to support third-party guest OS with full privileges,
instead of the limited authority in classic virtual machine systems. In this approach
guest OS can be para-virtualized with less modification and lower overheads. One of
its drawbacks is that it can host only two virtual machines, Dom0 and DomU. And it
is based on the assumption that the third party OS can be fully trusted, which may

ARM-based Embedded System Virtualization 25

threaten the system in actual application.

1.2.3 ARM-based Full Virtualization

In the previous discussions, we provided an overview of the existing mainstream para-
virtualization solutions for traditional ARM architectures, i.e. ARM v5/v6/v7. In this
part, we introduce several researches that have explored the ARM-based full virtualiza-
tion technology based on the hardware extensions.

Beginning from ARMv7A, the hardware virtualization extensions brings new possibil-
ities of virtualization. One of the earliest attempts was the revised OKL4 released in 2011
[VH11], which was capable of full-virtualization based on new ARM features. However,
due to the lack of actual device, OKL4 was developed and evaluated by using the ARM
Fast Models simulator.Therefore only estimated performance evaluations were obtained
from this work. Another early research of full virtualization solution, CASL-Hypervisor
[LCC13], was also developed based on System C simulations. The actual device-based
development began after the release of Cortex-A15 processor. Both KVM/ARM and
Xen have updated their technologies to provide full virtualization supports by exploit-
ing new features [XEN14][DN14]. Evaluation results from these works have proved that
by exploiting the extensional ARM features, better virtualization efficiency and lower
complexity can be achieved.

Other researchers take advantage of the special security technology of ARM, Trust-
Zone, to implement full-virtualization. The TrustZone technology [Xil14a] refers to secu-
rity extensions implemented in recent ARM processors e.g. Cortex-A5/A7/A8/A9/A15
and the newly-released Cortex-A53/A57. This hardware extension virtualizes a physical
core as two virtual cores, providing two completely separated security domains, the se-
cure world and the non-secure world. A new monitor mode is introduced. The TrustZone
technology is shown in Figure 1.14. This feature is leveraged in [POP+14] to support
virtual machines by hosting a guest OS in each security domain. It utilized the secure
world for critical real-time OS (FreeRTOS) and the non-secure world for general-purpose
OS (Linux). VMM is implemented in the monitor mode and has full view of the processor.
In this case, guest OSs execute on original privilege modes and requires no modification.
Furthermore, the dedicated secure world facilitates the VMM to manage virtual machine
resources, and results in small VMM size. However, this approach can only host two
virtual machines concurrently, limited by the number of separate worlds. Therefore, in
[Bau15] the authors employed this technology on Cortex-A15, by using the virtualization
extensions to host multiple virtual machines by using TrustZone to host security/safety
applications, as shown in Figure 1.15.

However, we should note that traditional ARM processors are still employed in most
embedded devices currently, and may remain as mainstream for their relatively low cost.
Especially in the domain of CPU-FPGA SoC, to the best of our knowledge, the hardware
virtualization extensions are still unavailable. Therefore, in our work, we have decided to
only focus on para-virtualization solutions on conventional embedded systems. Further
details of ARM-based full virtualization technologies will not be presented in this paper.

26 Concepts and Related Works

User mode
PL0

Privilege modes

User mode

Privilege modes

Monitor mode

PL1

Non-secure world Secure world

Figure 1.14 – The TrustZone technology in ARM processors.

Applications

ARM Cortex-A15

User Mode

Guest OS Kernel

Applications

Guest OS KernelKernel Mode

HYP Mode Hypervisor VMM

Non-Secure World

Secure Apps

Trusted Execution
Envrionment

Secure World

Figure 1.15 – Using hypervisor mode and security extensions to build up virtual machine
systems.

1.3 Real-time Scheduling for Virtual Machines

For embedded system virtualization, the support for real-time systems has been in
high demand, since real-time missions are critical for safety and security. However, the
timing constraints of real-time systems are not easily applicable to virtualization. In
typical virtual machine systems, a VMM considers virtual machines as black boxes. In
this case, the VMM may fail to allocate the processor to guest OSs satisfying their real-
time requirements if it has no specific knowledge about tasks inside virtual machines.
For example, in round-robin inter-VM scheduling, a guest OS with unfinished real-time
tasks may be scheduled out by other virtual machines and therefore miss the deadlines.
Hence, to respect real-time constraints of virtual machines, it entails an extensional
VMM scheduling framework which is aware of the urgency of individual guest OSs. To
simplify the problem, the related researches are based on the assumption that there is
no dependency among guest OSs or real-time tasks.

The scheduling of virtual machines preserves typically the characteristics of hierarchi-
cal scheduling framework (HSF) [FM02], which supports CPU resource sharing by intro-
ducing the concept of components, which are clusters of internal applications. Scheduling
is divided into two layers : the system scheduler that schedules components, and com-
ponent schedulers that are in charge of local scheduling within application clusters. In
the context of virtualization, the system scheduler refers to the VMM’s scheduler ; and

Real-time Scheduling for Virtual Machines 27

3.2 Guest OS Scheduler and Tasks
From a scheduling perspective, a virtualized system has

at least a two-level hierarchy, where the VMM Scheduler
schedules guest operating systems, and each guest OS in
turn schedules jobs of its tasks, as depicted in Figure 3. We
will describe the tasks and guest OS scheduler here, and in-
troduce the VMM Scheduler in Section 4. Note that our hy-
pervisor scheduler does not require any assumptions on tasks
or guest OS schedulers. We implemented Rate-Monotonic
Scheduling on Linux only as an example of guest OS schedul-
ing for our experimental study. We also implemented peri-
odic tasks, as they are required by the schedulability analysis
presented in [15] which we used to assess the pessimism of
the worst-case analysis at the end of Section 5.

Guest OS Scheduler

Task 1 Task n

Guest OS Scheduler

Task 1 Task n

VMM Scheduler

Figure 3: System Model

Task Model
A set of periodic tasks runs on each guest OS. Every task
has a period, which denotes the job release interval, and a
cost, which indicates the worst case execution time to finish
a job. Each task has a relative deadline that is equal to its
period. In this work, we focus on soft real-time applications,
in which a job continues to execute until it finishes, even if
its deadline has passed, because deadline misses represent
degradation in Quality of Service instead of failure. As a
starting point for demonstrating the feasibility and efficacy
of real-time virtualization in Xen, we assume a relatively
simple task model, where tasks are independent and CPU-
bound, with no blocking or resource sharing between jobs.
Such task models are also consistent with existing hierarchi-
cal real-time scheduling algorithms and analysis [15, 23, 35].
In future work, we plan to extend RT-Xen to support more
sophisticated task models.

Guest OS Scheduler
Each guest OS is responsible for scheduling its tasks. The
current implementation of RT-Xen supports Linux. To be
consistent with existing hierarchical scheduling analysis [15],
we used the pre-emptive fixed-priority scheduling class in
Linux to schedule the tasks in the experiments described in
Section 5. Each guest OS is allocated one VCPU. As [10]
shows, using a dedicated core to deal with interrupts can
greatly improve system performance, so we bind domain 0 to
a dedicated core, and bind all other guest operating systems
to another core to minimize interference, as we discuss in
more detail in Section 4.2.

4. DESIGN AND IMPLEMENTATION
This section presents the design and implementation of

RT-Xen, which is shaped by both theoretical and practi-
cal concerns. Section 4.1 describes the four fixed-priority

Schedulers in RT-Xen, and section 4.2 describes the VMM
scheduling framework within which different root schedulers
can be configured for scheduling guest operating systems.

4.1 VMM Scheduling Strategies
In this paper, we consider four servers: Deferrable Server [39],

Sporadic Server [37], Periodic Server, and Polling Server [32].
These scheduling policies have been studied in the recent
literature on hierarchical fixed-priority real-time schedul-
ing [15, 23, 35]. For all of these schedulers, a server corre-
sponds to a VCPU, which in turn appears as a physical core
in the guest OS. Each VCPU has three parameters: budget,
period and priority. As Davis and Burns showed in [17],
server parameter selection is a holistic problem, and RM
does not necessary provide the best performance. Thus we
allow developers to assign arbitrary priorities to the server,
giving them more flexibility. When a guest OS executes, it
consumes its budget. A VCPU is eligible to run if and only
if it has positive budget. Different server algorithms dif-
fer in the way the budget is consumed and replenished, but
each schedules eligible VCPUs based on pre-emptive fixed-
priority scheduling.

• A Deferrable Server is invoked with a fixed period.
If the VCPU has tasks ready, it executes them until
either the tasks complete or the budget is exhausted.
When the guest OS is idle, its budget is preserved until
the start of its next period, when its budget is replen-
ished.

• A Periodic Server is also invoked with a fixed period.
In contrast to a Deferrable Server, when a VCPU has
no task to run, its budget idles away, as if it had an
idle task that consumed its budget. Details about how
to simulate this feature are discussed in Section 4.2.

• A Polling Server is also referred to as a Discarding Pe-
riodic Server [15]. Its only difference from a Periodic
Server is that a Polling Server discards its remaining
budget immediately when it has no tasks to run.

• A Sporadic Server differs from the other servers in that
it is not invoked with a fixed period, but rather its bud-
get is continuously replenished as it is used. We im-
plement the enhanced Sporadic Server algorithm pro-
posed in [38]. Implementation details again can be
found in Section 4.2.

4.2 VMM Scheduling Framework
As we described in Section 3, to add a new scheduler in

Xen, a developer must implement several important func-
tions including do schedule, wake, and sleep. We now de-
scribe how the four RT-Xen schedulers (Deferrable Server,
Periodic Server, Polling Server and Sporadic Server) are im-
plemented.

We assume that every guest OS is equipped with one
VCPU, and all the guest OSes are pinned on one specific
physical core. In all four schedulers, each VCPU has three
parameters: budget, period, and priority. Since the De-
ferrable, Periodic, and Polling Servers all share the same
replenishment rules, we can implement them as one sub-
scheduler, and have developed a tool to switch between them
on the fly. The Sporadic Server is more complicated and is
implemented individually, as is shown in Figure 2.

42

Figure 1.16 – Hierarchical scheduling framework in virtual machine systems.

each component corresponds to a virtual machine running on top of VMM, generally a
guest OS, which hosts several local internal tasks or threads. The HSF in virtual machine
systems is depicted in Figure 1.16. We define the scheduling performed by VMM as the
inter-VM scheduling, and the scheduling of tasks inside virtual machines as intra-VM
scheduling.

The real-time schedulability for hierarchical systems is addressed theoretically in nu-
merous research works [MA01][LB05][CAA09][KZ09]. Many of these researches have fo-
cused on the schedulability with minimal CPU bandwidth. To achieve this goal, in their
proposed scheduling strategy, the details of component scheduler are monitored and
interfered by the higher-level scheduler, ending up with integrated scheduling models.
However, such approaches are not suitable for virtual machine system, since it requires
for more generalized scheduling where different layers are more decoupled. In this section
we take an overview of current real-time scheduling strategies in virtualization.

1.3.1 Compositional Real-time Scheduling

Presented by Shin and Lee [SL04] in 2004, the Compositional Real-time Scheduling
Framework (CSF) has been widely exploited in real-time virtual machine systems. This
scheduling model manages to meet the desired features of VMM scheduling : (1) the high-
level scheduler should not access the component internals and should operate only on
component interfaces ; (2) schedulability of a component’s workload should be analyzed
independently and be informed to the system ; (3) high-level scheduler analyzes the real-
time constraints based on component urgencies.

This compositional scheduling framework is based on the periodic resource model
(PRM) proposed by the same authors in [SL03]. In this model the authors define real-time
application as a combination of periodic tasks that exhibit a periodic behavior. Therefore,
by abstracting the real-time application with a workload model, it can be considered as
a single periodic task. Based on this periodic task model, schedulability can be directly
analyzed using classic scheduling algorithms. The periodic model is characterized as
Γ(Π,Θ) to describe a partitioned resource whose availability is guaranteed for Θ time
units in every Π units. In other words, Π describes the resource period, and Θ defines
the demand bound of this resource.

Figure 1.17 reveals how PRM is employed in a hierarchical scheduling framework.

28 Concepts and Related Works

C1 EDF

Γ1 (Π1 , Θ1)
Scheduling Interface (PRM)

C3

Component comprising of C1, C2

C2

Γ2 (Π2 , Θ2)

Γ3 (Π3 , Θ3)

C4

Γ4 (Π4 , Θ4)

C5

Component comprising of C3, C4

Γ (Π , Θ)

Scheduling Algorithm
RM

RM

RM

EDF

RM EDF

Figure 1.17 – Compositional scheduling framework in hierarchical systems. Periodic
resource model is used to abstract component real-time constrains and establish schedul-
ing interface between layers. Different scheduling algorithms can be used for different
components and layers.

As described in the earlier section, we define components as basic schedulable units. Each
component is composed of internal workloads and schedules them according to indepen-
dent internal schedulers. Denoting a component as C, it can be described as a triple
(W,R,A). W stands for the workloads (tasks or missions) included in the component.
R is a resource model describing the available resources. A is the scheduling algorithm
which component scheduler uses to schedule workloads. By using PRM, the collective
real-time requirements of component C are abstracted to be a single real-time require-
ment Γ, which is called the scheduling interface. C is then described as C(W,Γ, A). An
optimal scheduling interface Γ of a component can be obtained by minimizing the re-
source bandwidth for W [SL04]. Once a child component C1 calculates its scheduling
interface Γ1, it passes Γ1 to its parent component, which treats the scheduling interface
as a single workload T1. By satisfying the timing constrains of T1, it is guaranteed that
the resource demand of child component C1 can be met. In this case, the child component
can be scheduled without revealing its internal details, e.g. the number of tasks and local
scheduling algorithm.

Since each component schedules independently, compositional scheduling framework
is feasible to implement multiple scheduling strategies concurrently. For example, hard
real-time 1 tasks can be collected into a component with the Earliest Deadline First
(EDF) strategy so that all the deadlines can be met, while soft real-time 2 tasks can be
scheduled in another component with Rate-monotonic (RM) scheduling.

1. Hard real-time and soft real-time systems are distinguished by their criticality and policy [Kri99].
Hard real-time tasks are generally safety-critical, whose overrun in response time leads to potential loss
of life and/or big financial damage, e.g. ABS controllers in vehicles. For hard real-time systems, a missed
task deadline results in the failure of the whole system.

2. Soft real-time tasks are the ones whose deadline overruns are tolerable, but not desired. There are
no catastrophic consequences of missing one or more deadlines. Missed tasks can be delayed to execute

Real-time Scheduling for Virtual Machines 29

Work
load

Scheduling Server

Local Scheduler

Work
load

Work
load

Scheduling Server

Local Scheduler

Work
load

VMM Scheduler

PRM PRM

Child Scheduling Model

Parent Scheduling Model

Figure 1.18 – General implementation of compositional scheduling framework in virtual
machine systems.

In Figure 1.18 we present a general idea of implementing CSF in real-time vir-
tual machine systems. The local scheduler inside guest OS is generally extended with
a scheduling server that calculates the PRM for its tasks or threads according to the
scheduling algorithm. This periodic interface should then be passed to the VMM via
hyper-calls or IPC, as a collective timing requirement of guest OS.

Another issue in the implementation is the calculation of scheduling parameters.
In most embedded systems where scheduling is based on timer ticks, parameters are
expressed in integer numbers, which undermines the accuracy of scheduling. This factor,
denoted as the quantization overheads, should be fairly discussed. In the following, we
introduce several implementations of CSF in existing virtualization technologies.

1.3.1.1 L4/Fiasco Micro-kernel with Compositional Scheduling

Compositional scheduling framework has been explored on the Fiasco L4 micro-kernel
in [YKP+11]. The authors revised the L4Linux server to support the periodic resource
model in real-time scheduling. Linux servers, on which real-time tasks are running, collect
the internal tasks’ timing requirements and calculate the PRM interface. This interface
is then passed to the L4 micro-kernel for scheduling.

As described in Section 1.2.1.1, L4 hosts guest applications in a client-server mecha-
nism, where L4 micro-kernel schedules the L4Linux threads as clients. To facilitate the
scheduling, L4Linux internal tasks are mapped to corresponding shadow threads that can
be directly waken up by L4 micro-kernel. Furthermore, several L4Linux kernel features
are also implemented as threads, such as the Linux kernel thread, the timer interrupt

or aborted according to different policies. One typical soft real-time system is the user interface in smart
phone OS, whose response time directly determines the user experience and should be answered as fast
as possible. Soft real-time scheduling is usually evaluated by the criterion Quality of Service (QoS).

30 Concepts and Related Works

VM
Workload

Xen Scheduling Framework

Periodic

Servers

Real-Time Sub-Framework

PTPS WCPS CRPS

VM
Workload

VM
Workload

Figure 1.19 – The scheduler architecture of RT-Xen.

thread, and the idle thread. Thus, from the viewpoint of L4 micro-kernel, one L4Linux
is an assembly of multiple L4 threads (and shadow threads). The L4Linux server, as the
collection of L4Linux threads, calculates the PRM scheduling interface and communi-
cates with the L4 micro-kernel. In this case, multiple L4Linux servers are scheduled as
periodic interfaces.

This approach significantly benefits from the homogeneous architecture of L4 sys-
tems. By utilizing shadow thread mechanisms, real-time tasks in virtual machines can be
interpreted as L4 threads and directly scheduled by the L4 micro-kernel. This also makes
a contribution to the overall performance.

1.3.1.2 RT-Xen

The original Xen-ARM provides support for the real-time guest OS by the Simple
Earliest Deadline First (SEDF) scheduler. To use SEDF, each guest OS, at first, has to
provide its own scheduling parameter (period, execution slice, relative deadline) to Xen
VMM, then VMM sorts the guest OSs by their given deadlines and selects the guest OS
that has the earliest deadline. So, SEDF guarantees real-time scheduling among guest OSs
with inter-VM schedulability. However, SEDF cannot guarantee task execution inside a
guest OS, i.e. the intra-VM schedulability.

Therefore, in [XWLG11] and [LXC+] an extended Xen-ARM hypervisor, RT-Xen, was
proposed. RT-Xen is complemented with a compositional scheduling architecture(CSA),
which is built on the CSF model to support hierarchical real-time scheduling. The con-
tributions of RT-Xen can be concluded as : first, it implements CSF in Xen hypervisor
scheduler by introducing PRM scheduling interface. Second, it proposes several novel
periodic servers to implement PRM interfaces. Third, it provides an algorithm for com-
puting the optimal PRM interface for quantum-based platforms under RM scheduling.

Figure 1.19 describes the scheduler architecture of RT-Xen. The Xen hypervisor
scheduler, as the root scheduler, schedules virtual machines according to their PRM in-
terfaces. PRM interfaces can be built up based on three different periodic server policies :
Purely Time-driven Periodic Server (PTPS), Work-Conserving Periodic Server (WCPS)
and Capacity Reclaiming Periodic Server (CRPS). These policies differ in their strategies
on the handling of idle budget during execution. PTPS simply focuses on the consump-

Real-time Scheduling for Virtual Machines 31

Budget

Budget

High Priority Task

Execution

Low Priority Task

Execution

Shared Budget Donated Budget

(a) WCPS (b) CRSP

Figure 1.20 – Execution of servers with the WCPS and CRSP policies.

tion of budget, not caring whether it is at idle state. On the contrast, WCPS allows its
idle budget to be used by lower priority components, as shown in Figure 1.20(a). CRSP
resembles WCPS, excepting that it donates the idle budget to other component as extra
resource, as shown in Figure 1.20(b). In this case, the receiver can potentially finish
its task earlier, resulting in an overall improvement in task response time than the other
two policies. To unify the operations on different servers, an intermediate layer, real-time
sub-framework is inserted as general interfaces.

The intention of these server policies is to provide a better software real-time perfor-
mance. All scheduling parameters in the PRM interface are given in quantized numbers
of timer ticks according to the scheduling timer in Xen implementation. To simplify
the problem, RT-Xen assumes that the timer tick is small enough to perform accurate
scheduling, and ignores the changes of actual CPU bandwidth allocation caused by the
quantization overheads.

1.3.2 Other Real-time Approaches

Besides solutions with compositional scheduling framework, there are several hyper-
visors that focus on alternative approaches. Most of these works are attempting to extend
the existing virtualization technologies to real-time domain.

In [YY14], the Xen-ARM hypervisor is enhanced via another approach to compensate
the drawback of CSF, which is the quantization overheads caused by the implementa-
tion of scheduling ticks. The authors proposed a novel scheduling algorithm, denoted
as SH-Quantization, which specially takes the quantization overhead into account. This
algorithm calculates the scheduling parameter pair (Π,Θ) that meets the intra-VM tim-
ing constrains. The parameters (the period Π and the execution slice Θ) are selected
for the minimum effective CPU bandwidth (EBW) which measures the integer quantized
execution demand in real implementation. In implementation, the authors virtualized a
real-world RTOS, µC/OS-II, as guest OS on Xen-ARM. The scheduler of µC/OS-II is
modified as the following : first, a dedicated interface is provided to µC/OS-II to request

32 Concepts and Related Works

real-time scheduling using the the SH-Quantization algorithm ; second, µC/OS-II has
to change its scheduling parameters via additional hyper-calls. According to the evalu-
ation results, SH-Quantization algorithm managed to improve the hypervisor’s ability
to support real-time OS. However, we should note that this technology involves heavy
workload for the modification of the guest OS source code, for in this approach the guest
OS scheduler has a strong dependency for the VMM hypervisor.

In [BSH11], Heiser presented the L4-type third generation micro-kernel seL4 on ARM
Cortex-A8, which has been through a formal machine-security check. SeL4 not only
proposes strong-isolated software stacks, but also defines several behavior patterns to
eliminate potential threads. For example, it never stores function pointers at run-time,
so call jumps can be resolved statically. According to the authors, seL4 is extensively
proved as it will never crash or perform unsafe operation based on its well-controlled
behaviors. Based on this feature, seL4 was then further claimed to be efficient enough to
support hard real-time systems. To confirm this conclusion, the authors proposed a simple
pessimistic pipeline model to simulate the Cortex-A8 instruction latency. Given that the
software behaviors are quite deterministic in seL4, with the pipeline modeling, the worst-
case execution time (WCET) of tasks can be accurately estimated. Furthermore, since
the analysis is sound and statistic, the computed overheads can be confidently used as
safe upper bound for pre-determined real-time scheduling. This feature is denoted as
protected hard real-time. However, currently there is no actual implementation of real-
time virtualization based on this concept, which makes this approach hard to evaluate.

Besides the technologies introduced above, there are other real-time researches tar-
geting other hypervisors like KVM [CAA09] and PikeOS [Kai08]. However, all these
frameworks rely on the modification of the guest OS scheduler so that intra-VM schedul-
ing can be taken into account. This approach undermines the generality of the framework,
for the developers have to deal with the inner algorithm of guest RTOS. Furthermore,
most of these works require for extra computations of scheduling models. For example,
in the widely-used CSF scheduling, computation of PRM interfaces or extra scheduling
servers have to be added. In our work, we attempt to propose a scheduling framework
which respects real-time OS constraints with minimized additional mechanism, so that
RTOS can be supported without any modification on their original scheduler.

1.4 CPU-FPGA Hybrid Architecture

On conventional computing systems, Application Specific Integrated Circuit (ASIC)
are preferred by embedded device vendors for their higher performance and power ef-
ficiency for specific scenarios. However, since the processor complexity and computing
workloads are significantly increasing, so is the cost of designing and manufacturing
ASICs. Driven by this fact, an appropriate substitute is in high demand by device ven-
dors.

Meanwhile, Field Programmable Gate Arrays (FPGA), as classical programmable
device, has proved to be advantageous for accelerating complex computing. More impor-
tantly, FPGAs permit the developers to freely implement and optimize their algorithms.

CPU-FPGA Hybrid Architecture 33

Multi-core Processor

On-chip resources

FPGA Fabric

Bus-based Interface

Custom IP Soft Core

Accelerator Peripherals

SoC

Figure 1.21 – The general architecture of CPU/FPGA hybrid processors, with CPU
and FPGA being implemented in independent packages.

In fact, FPGA devices continue to gain popularity as the cost of reprogrammable logic
gradually declines. However, what prevents FPGA to be widely employed as conventional
ASIC processors is that FPGA is unable to use legacy software stack. Most FPGA de-
vices meet this challenge by shipping synthesized CPU core to the programmable-logic
fabric as hard processors. In past years, Altera and Xilinx, the leading FPGA vendors,
have offered a few FPGAs with hard CPU cores baked into the chip, such as PowerPC
inside the Xilinx Virtex family [Fle05]. The variety of these hybrid devices is quite nar-
row, however, and the performance of hard processors is comparatively poor, even in the
fastest and most expensive FPGAs.

Nevertheless, to meet the demand for an ASIC substitute, companies keep striving
to find the convergence point of conventional CPU and FPGA computing. The latest
attempts are from Xilinx, Altera and Intel, who are crafting new ways to combine CPU
cores with programmable logic. Instead of using synthesized CPU core implemented in
FPGA fabric, these approaches provide System on Chip (SoC) architectures where CPU
and FPGA domains are independently implemented and tightly connected by on-chip bus
and inter-connections. CPUs dedicated for embedded system are chosen in these devices.
Xilinx released such CPU/FPGA hybrid platforms in the Zynq-7000 series, where a dual-
core ARM Cortex-A9 processor is integrated with 7-series FPGA fabric [Xil14c]. ARM
was also introduced in Altera family of Cyclone-V and Arria-V FPGAs [Alt15]. Intel’s
solution is the Intel Atom processor E600C Series, which pairs an Intel Atom processor
SoC with an Altera FPGA in a multichip package [Kon12]. In this approach, a single-core
dual-threaded Intel Atom processor SoC and an Altera midrange FPGA, Arria-II, are
bonded side-by-side and linked over a PCI interface. Recently, Intel has taken a further
step by releasing a Xeon/FPGA platform dedicated for the Data Center [Gup15]. In
Figure 1.21 we briefly depict the general architecture of these platforms.

CPU-FPGA hybrid processors inherit the advantages of both sides. On one hand,
the high-end general purpose processors are capable of establishing complex computer
systems, and existing software stack can be directly shipped without obstacle. On the
other hand, the adoption of FPGA accelerators offers a compelling improvement in per-
formance when performing intensive computations. Moreover, with the help of CPU pro-
cessing, FPGA accelerators can be managed much more efficiently with higher-complex

34 Concepts and Related Works

A2

Tr
an

sc
ei

ve
rs

A1 B1 C1

D1 E1 F1

FP
G

A
 F

ab
ri

c
C2 Dynamic Reconfiguration via

Downloading Config. Data

Tr
an

sc
ei

ve
rs

A2 B1 C2

D1 E1 F1

FP
G

A
 F

ab
ri

c

Figure 1.22 – Dynamic Partial Reconfiguration permits users to modify a given area of
FPGA circuit on-the-fly, while the rest fabric functions normally.

strategies, which will inevitably enhance the acceleration. Considering that FPGAs are
already playing important roles in enterprise, cloud computing, datacenter, network, and
high performance computing (HPC) markets, it can be foreseen that a significant portion
of CPU workload in these domains will be shifted from CPUs to FPGAs over the coming
years, which may result in a performance jump.

Furthermore, the software stacks for programming FPGAs have greatly evolved over
years to simplify the FPGA programming. For example, Altera in particularly has grafted
support for FPGAs onto the OpenCL development environment [OBDA11] to ease the
design flow, and Xilinx has also released Vivado High-Level Synthesis (HLS) for a faster
path to IP creation [Xil14b]. With these technologies, it is even easier for software work-
loads to be shipped to programmable logic for acceleration.

While being considered as quite promising, CPU-FPGA systems also bring up new
challenges. One major challenge is how to efficiently offload software tasks to the FPGA
side. FPGA resources can either be accessed as flexible input/output peripherals or be
considered as co-processors with local workloads. With different strategies, scheduling,
sharing and security mechanisms should be carefully discussed. There have been re-
searches attempting to extend the existing traditional CPU-only techniques to CPU/F-
PGA hybrid systems, to fully exploit the mainstream FPGA computing. In this section,
we will first introduce the main characteristic of current mainstream FPGAs, the dy-
namic partial reconfiguration (DPR) technology, and then we will discuss the possibility
of building virtual machine systems on this architecture.

1.4.1 Dynamic Partial Reconfiguration

The DPR technology has been a trending topic during the last decade [BHH+07],
which has been included in the recent mainstream FPGA vendor devices, such as Xilinx
Virtex family and Altera Stratix family. DPR is a technology breakthrough for FPGA
devices. For traditional FPGA reconfiguration computing, one of the major drawbacks is
the lack of flexibility, because the whole fabric is required to be reconfigured even when
modification is required for part of FPGA. As a consequence, even a partial update or
modification of hardware functionality ends up with enormous time overhead and power
consumption. As a solution, DPR permits users to reconfigure particular areas of an

CPU-FPGA Hybrid Architecture 35

FPGA while the rest continues executing, as shown in Figure 1.22. By pre-compilation,
certain areas of the FPGA fabric can be defined as reconfigurable. In other words, gate
arrays in these areas can be re-programmed by receiving commands and synthesis in-
formation of alternative modules. The replaceable modules are synthesized during the
hardware compilation. Depending on different device families, different reconfiguration
ports and synthesis tool chains are employed.

This technique is proved to be quite prospective for embedded systems. Compared to
static fabric, DPR benefits from the following major advantages :

– Enhanced dynamic resource allocation and re-utilization : Users can imple-
ment more complex algorithms breaking them down into smaller mutually exclusive
modules. In this case, constraints regarding the chip size can be easily met.

– Improved develop efficiency : The time-consuming synthesis and mapping are
only required for the modified function, while the remainder of the design is fixed.

– Security : Reconfigurable accelerations are isolated from each other, with unified
interface, which contributes to a higher error tolerance.

– Lower power consumption : DPR reveals a better power efficiency in terms of
performance per watt than traditional solutions [TCL09].

However, DPR technology still suffers from expensive reconfiguration overhead, which
remains a crucial issue in practice [McD08]. In modern high-end FPGAs which may have
tens of millions of configuration points, one reconfiguration of a complex module will be
very time-consuming. Especially in a computing-intensive system, where several mutually
exclusive components are sharing reconfigurable resources, the time lost on reconfigura-
tion will severely degrade the overall performance [HD10]. Therefore, a dedicated efficient
management associated to a high data transfer bandwidth for configuration is essential
in DPR systems.

Exploitation of DPR has been under massive researches for the last decade. Though
these researches covered various domains e.g. efficient reconfiguration framework [LKLJ09]
[HGNB10] and power consumption optimization, the major effort of society is made to
provide efficient management of DPR resources in computing systems. In the following
part we introduce the related works focusing the DPR management in the context of
CPU/FPGA architecture.

1.4.2 CPU/FPGA Execution Model

Due to the nature of heterogeneous architecture, one major challenge for CPU/F-
PGA systems is the cooperation and coherency between software applications and hard-
ware accelerators. With software/hardware applications executing in parallel, the classical
software-related issues such as task scheduling and resource sharing are extended to the
FPGA side. In fact, from the viewpoint of software developers, these challenges can be
abstracted as how to map reconfigurable resources to software space. In Figure 1.23
we have classified the model types of existing approaches according to their strategies,

36 Concepts and Related Works

OS

CPU

Ap
pl
ic
at
io
n C

C

C

C

(a) Processor-only model.

Ap
pl
ic
at
io
n

OS

CPU
FPGA

F FPGA

F

(b) Processor + FPGA (offload) model.

A
pp
lic
at
io
n

OS

CPU FPGA

F

FF

F

(c) Processor + FPGA (Unified OS) model.

Figure 1: Design approaches in hybrid CPU/FPGA Systems. (a) System with CPUs alone. Application is executed by multiple
processors having their own OS, without any accelerator. (b)CPU/FPGA hybrid system, where OS is hosted in CPU. Application
is executed on CPU cores and FPGA is used as an accelerator. (c) CPU/FPGA hybrid system, where the application is divided
in parts and mapped to CPU and FPGA. OS helps in seamless execution of application parts in the hybrid system.

migration between the two resources. Parts of the application
are isolated and mapped through well-defined interfaces into
the reconfigurable substrate as accelerators. With the help of
library calls, applications can make use of OS services. In
the hybrid CPU/FPGA systems the communication and syn-
chronization are generally handled in an application-specific
manner that is error-prone and not portable between different
computing systems, often limiting the productivity of the
designer [5]. The researchers have focused on automated com-
piler extraction of loop level parallelism and augmentations
to sequential programming languages to achieve parallelism.
To tap the full potential of CPU/FPGA hybrid systems we
need a computational model of a virtual machine with modern
operating system and middleware services that extend across
the CPU/FPGA boundary and hides the platform specific
CPU/FPGA distinctions from the programmer [4].

The following sections summarise the wide range of work
that has been done to alleviate this problem.

A. Programming Models and Hardware Compilation

Design description is the first step in the application map-
ping process. For heterogeneous systems, OpenCL [6] is an
initiative towards unifying the frontend programming support
for devices with diverse microarchitectures such as CPUs,
GPUs and many-core architectures [7]. Further, Altera’s ini-
tiative in using OpenCL as a frontend for its FPGA design
flow [8], is a first step of industry acceptance for the need of
a single unified platform for CPUs and FPGAs.

SOpenCL (Silicon OpenCL) [9] is one of the first ar-
chitectural synthesis tools that maps the OpenCL program’s
coarse and fine grained parallelism into the reconfigurable
fabric like FPGA. Mapping each of the parallel paths of a
program to a separate hardware accelerator is not feasible
due to lack of resources in the FPGA fabric. Therefore,

SOpenCL [9] performs source-to-source translation to coarsen
the granularity of the kernel function, such that the parallel
tasks are based on a per-work-group basis, rather than on a
per-logical-thread basis. The OpenCL code is converted to C
code, which represents the work to be executed by each work
group. Before generating HDL code the SOpenCL’s back-end
performs various compiler transformations and optimizations
such as predication, code slicing and modulo scheduling in
succession. The architectural template of SOpenCL [9] can
be instantiated to match the availability of FPGA resources,
the performance requirements set by the user and is specific
to target applications. To minimize the effect of memory
access latency, the architecture decouples and overlaps the data
accesses and computations. The experimental results show that
the prediction of clock frequency is not straightforward as
it does not always scale up according to the computational
bandwidth and the amount of available resources.

Prior to using OpenCL as a single source specification,
numerous efforts have explored the possibility of using a
common C-based frontend for static code compilation [10].
Code annotations in languages such as HandelC [11] and
Chimps [12] are a means of behavioural synthesis of C-based
code. Authors Todman et al [13] present the key features of
a wide range of static compilations techniques. Another effort
called LegUp [14] looks at C-based synthesis as a scheme for
generating a hybrid architecture comprising a soft processors
coupled to custom accelerators. In addition to these tools, a
survey and evaluation of the techniques employed have been
discussed by authors Meeus et al [15] and also by Coussy et
al [16].

B. OS and Run-time systems

The operating system support for CPU/FPGA-based sys-
tems has been explored in Hthreads (Hybrid Threads) [17],

Figure 1.23 – The concepts of two CPU/FPGA models : offload model and unified
model. In offload model,application is executed on CPU cores and FPGA is used as an
accelerator. In unified model the application is divided in parts and mapped to CPU and
FPGA. OS helps in seamless execution of application parts in the hybrid system.

namely offload model and unified model [BPS15].
In the offload model, OS or bare-metal software applications are executing in CPU

and DPR resources are used as accelerators. In this case, DPR resources can be fully
exploited since they are directly accessed and programmed by applications. However,
it also undermines the generality as the processing of DPR accelerators are exposed to
software users.

In the unified model, on the other hand, CPU and FPGA are unified via well-defined
interfaces. The OS is in charge of the workload allocation and migration between both
resources. In some cases, a middleware is implemented inside the OS. Thus, with the
help of library calls, applications can make use of both resources as OS services, with-
out knowing the actual implementation at the physical layer. This model abstracts the
CPU/FPGA platform so that user applications have better performance, but also require
complicated scheduling and allocation mechanism.

1.4.2.1 CPU/FPGA offload model

Offload model is often used for bare-metal applications or simple OS, whose usage
scenarios are relatively simple and single-purposed. These systems require applications
to fully control the behaviors of accelerators, including computation and reconfiguration.
Researches for these system focus on faster reconfiguration path [HGNB10] and efficient
partial reconfiguration controller, as they are critical for the overall performance. One
typical approach is ZyCAP [VF14] based on ARM/FPGA system, which was proposed as
an efficient partial reconfiguration controller. This controller provides to software users
an interface that permits the overlapping of software execution and hardware partial
reconfiguration. Furthermore, this approach proposed a high reconfiguration throughput,
by enhancing the ICAP interface with high-bandwidth Direct Memory Access (DMA).
The measured reconfiguration throughput turned out to be much higher than the default

CPU-FPGA Hybrid Architecture 37

Applications

OS
OS Supervison

CPU FPGA

FPGA Access

Figure 1.24 – With DPR resources used by OS or multiple users, the offload model
should be modified. Because applications/threads still access FPGA accelerators as pe-
ripheral devices, the OS kernel has to supervise their accesses as an intermediate layer.

Processor Configuration Access Port (PCAP).
Offload model is also adopted by some well-developed OSs e.g. Linux, to support

DPR resources. This is because the offload model considers DPR modules as separate
accelerators that can therefore easily extend an OS as devices without heavy-cost source
code modification. In this case, researchers only need to focus on the mechanism to share
and reconfigure DPR accelerators as peripherals. In the work of [HH09], an embedded
PetaLinux kernel was extended to include DPR modules into the device tree, and was
mapped to the user applications through device nodes. From the user viewpoint, DPR
resources are acting as peripheral devices, whose sharing and allocation, however, were
actually controlled by the Linux kernel. However, since an OS often hosts multiple users,
one common problem is the sharing of FPGA accelerations among different clients. In
this case, the OS should be in charge of the allocation of accelerators, which should
be implemented either via the mutex/semaphore mechanisms or via accelerator virtual-
ization. As a consequence, the execution model is no longer the classical offload model
since software applications must use accelerators under the supervision of the OS kernel,
as shown in Figure 1.24. This requires a more complex mechanism, for instance, the
hardware virtualization technology. This will be explained in the later section.

1.4.2.2 CPU/FPGA unified model

Unified model is based on the theory that in DPR systems, the programmable logic
fabric can be interpreted as several engine containers where multiple hardware accelera-
tors can be hosted in a time-multiplexed sharing strategy. In this case, the model of multi-
kernel multi-threads [RVdlTR14] is often used to study DPR architecture [PG11][KBT08].
This model defines a FPGA as a group of computing agency with multiple hardware
threads, as shown in Figure 1.25. Based on this concept, a CPU can process hardware
computations as schedulable hardware tasks.

This model requires dedicated OSs that manage the hardware threads and hide tech-
nical details from the users. As introduced previously, the OS should be platform-specific
or a deeply-customized version of existing OSs. With uniform interfaces and APIs, multi-
tasking between hardware/software tasks can be supported on OSs such as Rainbow OS

38 Concepts and Related Works

Hardware Thread

CPU

Reconfigurable
Block

FPGA Fabric

OS Interface

Reconfigurable
Block

Hardware Thread Software Thread

Users

Figure 1.25 – Dynamic Partial Reconfiguration architecture modeling as a group of
computing agency with multiple hardware threads.

[JHE+13] and Hthreads [APA+06]. One well-known approach in this area is ReconOS
proposed in 2009 [LP09]. ReconOS was built as a revised version of the widely used
real-time OS eCos. In this approach, the functionality of an application is divided into
software threads on the CPU side and parallel hardware threads, which are mostly data
computation tasks. To provide symmetry between software and hardware tasks, for each
hardware thread, a new dedicated eCos thread, denoted as the delegate thread, is dy-
namically created and connected to the corresponding OS interface. Delegate thread is
hidden by ReconOS and provides hardware threads with equal access to OS services as
software threads, so that they can behave as software threads. For the user application,
there is no need to know whether its threads are implemented with software or hardware.
ReconOS was released on the Xilinx Virtex platform, which lacks partial reconfiguration.
Therefore, this work focused on the pre-defined static FPGA accelerators, which, though
undermines its value in context of the DPR management, still provides a classical solution
for modeling hardware threads in OSs.

The multi-thread hardware accelerator model is also suitable for parallel high perfor-
mance computing architectures, such as GPU, where concurrent multithread execution
is achieved. The DPR feature permits a dynamic resource management strategy to op-
timize resources usages while meeting other requirements, e.g. power budget or working
conditions. ARTICo3 proposed in [RVdlTR14] is an embedded architecture that is based
on the NVIDIA CUDA execution model. It is able to calculate the optimal hardware re-
source allocation according to real-time conditions. The multiprocessors in traditional
CUDA devices are substituted by hardware accelerators in dynamically reconfigurable
slots. A dedicated unit Resource Manager is in charge of allocating application compu-
tations with a changeable amount of DPR slots (or threads). The resource of DPR slots
used by one application can be modified on the fly. Figure 1.26 shows a possible resource
allocation schedule that serves for two parallel applications. Note that, since the work
is intended to migrate CUDA-like GPU execution model to ARTICo3, each DPR slot
corresponds to a CUDA microprocessor thread. The major advantage of using DPR in

CPU-FPGA Hybrid Architecture 39

Figure 1.26 – ARTICo3 handles the requests of two parallel applications APP#1 and
APP#2. While APP#1 arrives first, the Resource Manager allocates all available DPR
slots to accelerate the computation. Then a higher-priority application APP#2 arrives,
which drives the Resource Manager to reconfigure slots of APP#1 to work on the new
computation.

this case is that hardware slots are application-specific and can be allocated for different
applications.

1.4.3 DPR Resource Virtualization

While CPU/FPGA architectures permit more complex software stack, general-purpose
operating systems and even virtualization start to be employed, especially for the plat-
forms requiring computation accelerations such as embedded systems and cloud comput-
ing environment. On these platforms, DPR resources are shared by multiple clients, whose
execution is mostly independent. Thus, the allocation of DPR resources and coherency
of hardware tasks are critical problems to be solved. In conventional systems, the accel-
erator must be exclusively used, that is, must be released by one of the clients and then
claimed by another one. However, such manipulations to support different clients by con-
tinuously releasing and claiming the accelerators may lead to additional time overheads.
Furthermore, such mechanism is not suitable for virtualization since virtual machines are
isolated from each other, making the inter-VM DPR allocation even more expensive.

In this case, DPR resource virtualization turns out to be an ideal solution since it
deceives the software clients by providing virtual accelerator accesses, and hence sig-
nificantly simplifies the software development. To virtualize DPR resource, the classi-
cal hardware virtualization challenges have to be taken into consideration, such as the
CPU/FPGA communication bandwidth, memory sharing, security and hardware com-
putation data preservation, which have been under enormous research in recent years
[WBP13][APL11][DRB+10]. Additionally, a dynamic reconfiguration model should also
be included since the FPGA accelerators are no longer static anymore. In the following
we introduce some research works which successfully employ DPR virtualization in their
OS or virtual machine systems.

DPR resource virtualization was implemented in the Linux OS in [HH09] by pro-

40 Concepts and Related WorksHUANG AND HSIUNG: HARDWARE RESOURCE VIRTUALIZATION FOR DYNAMICALLY PARTIALLY RECONFIGURABLE SYSTEMS 21

Fig. 1. Logic and hardware device virtualization: (a) logic virtualization and
(b) HW device virtualization.

Fig. 2. Hardware task management.

space by using copy_from_user and copy_to_user
kernel APIs may cause a large time overhead. Though dif-
ferent hardware functions, which are used for sequential data
processing in an application, can be integrated into a more
powerful hardware function at design-time for reducing such
a large time overhead, the flexibility of the reconfigurable
hardware functions, however, is thus neutralized at run-time.
To keep the flexibility of reconfigurable hardware functions
and to reduce such a large time overhead, using the hardware
device virtualization as shown in Fig. 1(b), the kernel module
corresponding to a required hardware function (HW1) can be
dynamically linked to another required hardware function HW2.
Through the many-to-one logic virtualization, HW2 can be
shared by different device nodes. Thus, the processing results
of HW1 can be directly transferred to HW2 through the kernel
module, and the final processing results of HW2 are then sent
back to the user space. As a result, the time overhead in repeat-
edly transferring data between the user space and the kernel
space can be significantly reduced.

C. Hardware Task Management

Besides proposing the virtual hardware mechanism to fur-
ther enhance the utilization of reconfigurable hardware func-
tions, a hardware task manager is required to not only manage
all data transfers between the kernel modules and the reconfig-
urable hardware functions, but also determine which virtualiza-
tion mechanism will be used. As shown in Fig. 2, the hardware
task management is divided into three categories, including the

Fig. 3. Unified communication mechanism.

hardware device virtualization, the logic virtualization, and the
partial reconfiguration.

When a request of hardware function is received, the hard-
ware task manager first checks if the required hardware function
has been configured in a PRR. If not, the hardware task man-
ager thus requests the ICAP in the FPGA to reconfigure the re-
quired hardware function in a best-fit PRR. Otherwise, the hard-
ware task manager then checks if the request is received from
the same software application. If not, the logic virtualization is
thus invoked to dynamically link another unused device node
to the corresponding PRR. Otherwise, the hardware task man-
ager dynamically link the previously used kernel module to the
PRR with the required hardware function if it does not already
exist, and thus the processing results of the previous hardware
function can be directly transferred to the requested hardware
function.

IV. UNIFIED COMMUNICATION MECHANISM

To realize the virtualization mechanism for further raising
the utilization of reconfigurable hardware functions in an
OS4RS, a unified communication mechanism is thus proposed
to standardize the hardware/software communication interface.
As shown in Fig. 3, the unified communication mechanism is
divided into the hardware part and the software part.

In the hardware part of the unified communication mecha-
nism, a communication component is used to connect to the
system bus. To ease the integration of user-designed hardware
functions into an OS4RS, a partially reconfigurable hardware
task template (PR template) [2] is used to connect user-designed
functions with the system bus via the communication compo-
nent. The PR template consists of eight 32-bit input data signals,
one 32-bit input control signal, four 32-bit output data signals,
and one 32-bit output control signal, while it also contains an
optional Data Transformation Component (DTC) for unpacking
incoming data and packing outgoing data based on the I/O reg-
isters sizes in the hardware functions.

In its software part, different from the device driver designed
for a specific hardware function in a conventional embedded
OS, a unified kernel module is designed to only interact with
the fourteen 32-bit signals of the PR template. All the inter-
actions between software applications and reconfigurable hard-
ware functions are through the ioctl system calls of the uni-
fied kernel module. However, different hardware functions have

Figure 1.27 – Hardware resource virtualization in the OS4RS framework. Logic re-
sources, i.e. device node modules, can be linked to hardware functions as many-to-one
manner, so that one hardware function can be shared by multiple clients. On the other
hand, one device node can be linked to alternate hardware modules so that it can always
access available resources.

viding the framework called operating system for reconfigurable systems (OS4RS). The
virtual hardware permits the same hardware devices and the same logic resources to be
simultaneously shared between different software applications, that is, a reconfigurable
hardware function can be virtualized to support more software applications. This mech-
anism is realized in the Linux kernel via leveraging the kernel modules, i.e. the device
nodes. The virtualization mechanism is shown in Figure 1.27. Device nodes can be dy-
namically linked to different DPR accelerators on the application’s demand. While device
nodes are linked to DPR modules in the many-to-one manner, the hardware resource is
thus virtualized to software applications. Meanwhile, applications only need to deal with
the device nodes, as OS4RS kernel links available DPR resources to them in a trans-
parent manner. OS4RS is also in charge of reconfiguring DPR modules when necessary.
Furthermore, the acceleration computation result is automatically stored in the module
of device nodes. Since device nodes are continuous for applications, the computation can
be easily picked up later by other hardware accelerators accessing the former results.

The above research focuses on the multitasking level on a single OS. In some re-
searches, the technology of FPGA resources virtualization moves a step forward to the
virtual machine systems, where guest OS or clients are sharing FPGA resources. Com-
pared to multiple tasks on single OS, virtual machines are more isolated and independent,
and the required hardware functions can be more diverse. Researches in this domain tend
to consider FPGA accelerators as a static coprocessor that servers for multiple virtual
machines. For example, in the research of pvFPGA [WBP13], one of the earliest re-
searches in this domain, authors try to extend the Xen hypervisor to support FPGA
accelerator sharing among virtual machines. However, this research focuses on the effi-
cient CPU/FPGA data transfer method, with a relatively simple FPGA scheduler that
provides a FCFS (first-come, first served) sharing on the accelerator, without including
the partial reconfiguration technology.

CPU-FPGA Hybrid Architecture 41

Figure 1.28 – An intermediate fabric region is composed of a data plane that hosts the
programmable hardware computing components, and of the control plane that holds and
defines the behavior and context frame of hardware tasks.

Meanwhile, DPR virtualization is more popular on cloud servers and data centers,
which normally have a higher demand for computing performance and flexibility. Re-
searches of this area are focusing on the integration of hardware accelerator resources in
cloud computing system. By leveraging DPR technology, the concept of virtual FPGA
(vFPGA) is provided as a virtual device for user custom hardware logic. For example,
in [BSB+14] the authors use partial reconfiguration to split a single FPGA into several
reconfigurable regions, each of which is managed as a single Virtualized FPGA Resource
(VFR). In effect, this virtualizes the FPGA and makes it a multi-tenant device, although
still requiring the external control of the Agent. A user can now allocate one of these
VFRs and have their own custom designed hardware placed within it. Based on the sim-
ilar idea, the work of RC3E [KS15] provides selectable vFPGA models, which permits
users to require for DPR resources as full FPGA, virtual FPGA or background acceler-
ators. The solutions mentioned above suit cloud server well since they virtualize FPGA
as a programmable resource for clients, facilitating the user to implement their own IP
cores. However, the target of our research is to implement an efficient DPR accelerator
sharing among virtual machines. We tend to isolate users with the development and
implementation of hardware accelerators. Thus, we will not discuss these researches in
details in this thesis.

One research that is relatively close to our research is the framework of hardware
task virtualization on a hybrid ARM-FPGA platform proposed in [JPC+14]. In this ap-
proach the authors modified the CODEZERO hypervisor to host guest OSs, including
the real-time OS, µC/OS-II. The hypervisor is able to dynamically schedule hardware
tasks according to two scheduling strategies : non preemptive and preemptive hardware
context switching. Hardware resource virtualization is used to preserve and resume the
hardware task state in switching, so that FPGA resources can be shared by hardware
tasks. However, the classical DPR technology is not employed in this work for hardware
reconfiguration. Instead, reconfigurable computing components in this framework are
implemented by intermediate fabric regions (IF), which are built of built of an intercon-

42 Concepts and Related Works

nected network of coarse-grained processing elements (PE) overlaid on top of the original
FPGA fabric. Figure 1.28 presents the programmable hardware computing components
whose behaviors are defined by the configuration registers that controls the PE and inter-
connections. PEs are distributed across the fabric in a grid inside the data plane block.
A PE is connected to all of its 8 immediate neighbors using programmable crossbar
(CB) switches. The operation of the PEs and CBs is set by downloading configuration
information to PE and CB configuration registers, which are referred to as context frame
registers for they hold the execution context of hardware tasks. These context frames
can be saved and resumed by the control plane block, in which way hardware tasks can
be scheduled in and out safely.

Since the workload of managing context frame registers is significantly less than tra-
ditional DPR netlist information, this approach presents low reconfiguration and man-
agement overheads, e.g. hardware tasks can be switched within several microseconds.
However, the application of intermediate fabric is limited to relatively simple computing
functions, since its possible configuration space and circuit scale are much smaller. Be-
sides, mapping circuits to IFs is less efficient than using DPR or static implementations
as the IF imposes a significant area and performance overhead. As concluded by the
works, this approach is more appropriate to systems with light but frequently-switched
computations, while DPR is more suitable for heavy workload computations.

1.5 Summary

In this chapter we have introduced some of the typical existing technologies for em-
bedded virtualization, real-time virtualization and DPR management on ARM-FPGA
FPGA platforms.

In our work, the target platform is the Xilinx Zynq-7000 SoC, which includes a dual-
core Cortex-A9 processor and 7-series FPGA fabric with the dynamic partial reconfigu-
ration (DPR) technology [Xil14c]. This is currently one of the mostly used ARM-FPGA
system. In this platform, what we require is a lightweight virtualization solution that is
appropriate for simple IoT devices. In this case, the existing virtualization technologies
are not ideal for our purpose, since their complexity is mostly higher than we expect and
most of them lack the support for our target platform. Furthermore, several technologies
e.g. OKL4, remain close-source and are impossible for further studies. We also find the
widely-used compositional real-time scheduling algorithm unsuitable for our intention as
it requires the computation of PRM interfaces or extra scheduling servers.

Therefore, in our research we intend to propose a micro-kernel approach that supports
real-time virtualization with minimal software complexity. In this paper, we focus on the
design and evaluation of the real-time virtualization micro-kernel, KER-ONE, whose
properties are a small-sized Trust Computing Base (TCB) and an accurate scheduling
for real-time tasks. We also orient our work to guarantee minimal modifications of guest
operating systems running on top of our kernel.

Meanwhile, we extend our framework to focus on the application of classical DPR
technology being supported by virtual machine systems in CPU/FPGA architectures.

Summary 43

Efforts have been made to develop a dedicated virtualization architecture that provides
efficient DPR resource sharing among virtual machines, while meeting the potential chal-
lenges. In the proposed framework, we attempt to improve the hardware task security, to
minimize the extra performance loss caused by hardware reconfiguration, and to provide
a unified user-transparent interface for DPR resource accesses.

44 Concepts and Related Works

Chapter 2

Ker-ONE : Lightweight
Real-Time Virtualization
Architecture

In this chapter, we introduce our research on real-time embedded system virtualiza-
tion. The proposed virtualization framework, Ker-ONE, is a microkernel-based virtual
machine system that supports real-time virtual machine scheduling. The subject of this
research is to provide light-weight, flexible and real-time virtualization solutions for small-
scaled ARM-FPGA hybrid embedded system. By eliminating unnecessary components
and strictly following the principle of least privilege, the Ker-ONE microkernel achieved
high virtualization performance with low complexity. In this chapter, we will focus on the
virtualization mechanism of Ker-ONE microkernel, including the virtual machine mecha-
nism and the real-time scheduling strategy that supports guest RTOS. Since Ker-ONE is
also extended to support FPGA fabric, it should also be noted that the mechanism con-
cerning the management of partially reconfigurable FPGA accelerators will be presented
in the next chapter.

2.1 Overview of the Ker-ONE Microkernel

In the work of Aichouch [Aic14], one of the precedent researches of this thesis, a
simplified micro-kernel, Minimal NOVA, was revised from the NOVA hypervisor [SK10]
in order to study real-time scheduling configurations on the x86 platforms. The author
only preserved the functionality of threads in NOVA to implement a user-level library
that allocates real-time scheduling as a middleware on top of a microkernel-based OS. The
user-level library of Mollison and Anderson [BA07] was used in this research to develop
and evaluate scheduling and locking techniques for the proposed real-time system.

Nova is an interesting architecture which is very suitable to embedded systems. Its
low kernel complexity facilitates the integration of new components, making it easier to
implement custom virtualization mechanisms. However, whereas both NOVA and Mini-

45

46 Ker-ONE : Lightweight Real-Time Virtualization Architecture

mal NOVA are intended for the x86 architecture, the object of our research is ARM-based
embedded systems. Considering the significant architecture difference between x86 and
ARM, and the different applications between desktop computers and embedded systems,
we had to re-design from bottom-up a novel micro-kernel, for the ARMv7 architecture.
This new micro-kernel has been entitled Ker-ONE. Like NOVA, Ker-ONE features a
small TCB size and low complexity. However, most designs of the framework are no
longer connected to NOVA hypervisor.

The design of Ker-ONE follows some basic principles. First, we would like to avoid
complex software implementation and by considering very simple guest OS systems such
as µC/OS or FreeRTOS. Second, we require a simple but reliable real-time scheduler.
Third, the hypervisor needs to be scalable and easily-adaptable to extension mechanisms.
One of these mechanisms consists in dynamically managing hardware tasks among mul-
tiple virtual machines with the help of partial reconfiguration.

Virtualization on ARM-FPGA platform has some limitations. Though full-virtualization
of ARM processors is now possible by using ARM virtualization extensions such as in
Cortex-A15, this technology is currently unavailable on ARM-FPGA platforms. There-
fore, Ker-ONE is developed using para-virtualization technology. The design of Ker-ONE
following the principle of low complexity, we decided to focus only on critical virtual-
ization functionality and eliminate non-mandatory features. Ker-ONE provides a small
TCB size, and a RTOS-support mechanism which is proposed to handle the real-time
constraints of most applications. Currently our research is based on the following as-
sumptions :

– In a first step, We have only considered single-core architectures, leaving multi-
core systems to future prospects, which is also the case in other state-of-the-art
researches such as RT-Xen and L4.

– We focus on the virtualization of simple OSs, instead of heavy-weight OSs such
as Linux, since para-virtualizing these complex OSs would be quite expensive and
goes against the purpose of our work.

– In order to realize real-time virtualization with less-complex scheduling, we assume
that all critical real-time tasks are held in one specific guest RTOS, while tasks
with lower priorities are held in general-purpose OSs (GPOSs). Thus, Ker-ONE is
designed to co-host one guest RTOS and several GPOSs.

Ker-ONE is based on the ARMv7 architecture. In order to present the virtualization
mechanisms of Ker-ONE, it is essential to understand the basic features and terms of
ARMv7.

As described in section 1.1.2.1, an ARMv7 processor runs with two privilege levels :
non-privilege level (PL0) and privilege level (PL1). Critical system resources, e.g. con-
figuration registers, interrupts, are excluded from PL0 and are only accessible in PL1,
which guarantees the security of privileged codes. In details, ARMv7 offers 6 main exe-
cution modes for different execution scenarios : PL0 is exclusively occupied by the user
mode (USR), and at PL1 exist five modes i.e. supervisor (SVC), interrupt (IRQ), fast

Overview of the Ker-ONE Microkernel 47

OS Kernel (Original)

Applications

ARMv7 Processor

OS Kernel (Revised)

Applications

VMM

ARMv7 Processor

Hyper-call Trap

(a) Native OS Machine (b) Para-virtualization System

Non-privilege:
USR

Privilege:
SVC (mainly used)
IRQ, FIQ, UND, ABT

Hardware

Figure 2.1 – Para-virtualization systems on ARMv7 architecture.

interrupt (FIQ), undefined instruction (UND) and data-abort (ABT) modes. In most op-
erating systems, the OS kernel executes in supervisor mode, and manages all hardware
resources, while user applications/threads/processes run in the user mode, as shown in
Figure 2.1(a). Other execution modes, on the other hand, are reserved to receive and
handle corresponding system exceptions. Whenever an exception occurs, the processor
automatically switches to the corresponding exception mode for handling. Table 2.1
lists the execution modes and descriptions in ARMv7.

Table 2.1 – Description of ARMv7 execution modes.
Mode PL Description
USR 0 Execute user applications and processes
SVC 1 Major mode for privileged software, e.g. OS kernel or VMM
IRQ 1 Handle Interrupt Exceptions
FIQ 1 Handle Fast Interrupt Exceptions
UND 1 Handle Undefined Instruction Exceptions
ABT 1 Handle Data-Abort Exceptions

The two-level structure provides the OS kernel with a safe environment to run by
isolating the user space and the kernel space. However, in para-virtualization, guest OSs
should be ported to a non-privileged level whereas the privileged level is occupied by
VMMs. According to the mechanism of para-virtualization, the source code of a guest
OS must be modified to properly run in USR mode and sensitive instructions have to be
replaced with hyper-calls, as shown in Figure 2.1(b).

Ker-ONE consists of both the host micro-kernel and a user-level environment. In
the Ker-ONE virtualization framework (see Figure 2.2), the microkernel is the only
component that runs at the highest privilege level, mainly in supervisor mode. According
to the smallest TCB policy, only the basic features that are security-critical remain in
the microkernel, including the memory management, the inter-VM communication, the
exceptions handling, and the scheduler. The VMM runs on top of the basic microkernel

48 Ker-ONE : Lightweight Real-Time Virtualization Architecture

Drivers

Interrupt
Inter-VM

Communication
TimerScheduler

Memory
management

PL0

PL1Ker-ONE
Micro-kernel

Guest

VM Bootloader User services
Host

Virtual Machine Monitor

Ker-ONE
User environment

Virtual Machines Guest OS Guest OS Guest OS Guest OS

Figure 2.2 – Ker-ONE consists of the micro-kernel and virtual machine monitors in
privileged level and User environment in non-privileged level.

functions to support the execution of guest operating systems in the associated virtual
machine. It provides a virtual hardware layer, emulates sensitive instructions and handles
virtual machine’s hyper-calls. The user environment runs in the user mode (PL0) and is
composed of additional system applications, for example, device drivers, file systems, VM
bootloaders and special-purpose services (as the Hardware task manager which controls
the hardware accelerators in the partially reconfigurable FPGA fabric). A virtual machine
can execute a para-virtualized operating system or a software image of user application.
Each virtual machine has an independent address space, and executes on the virtual
hardware provided by the VMM.

While guest OS is de-privileged to the un-privileged level, VMM is in charge to
virtualize the resources of CPU computing resources and provide virtual machines with
complete and virtual execution environments. In the following we present the detailed
implementation of VMM mechanisms in Ker-ONE.

2.2 Resource Virtualization

In virtual machine systems, guest OSs run on top of abstract physical resources.
To guarantee the correctness of guest OSs execution, the VMM has to establish an
execution environment that abstracts and virtualizes computing resources, including the
CPU computing resources, the instruction architecture set, the memory spaces, etc. In
this section we introduce the virtualization mechanism of these resources.

2.2.1 CPU virtualization

As described above, ARMv7 processor runs in six execution modes. The computing of
CPU is based on system registers, which are divided into different categories according
to their functionality. While some general-purpose registers are shared by all modes,
some specific registers are respectively banked for different modes to facilitate the mode
independency and context preservation.

Resource Virtualization 49

R0 – R7

R8 – R12

R13 (SP)

R14 (LR)

SP_svc

LR_svc

SP_abt

LR_abt

SP_und

LR_und

SP_irq

LR_irq

SP_fiq

LR_fiq

R8 – R12
(Banked)

R0 – R7 (Shared)

R8 – R12 (Shared)

User Supervisor Data-abort Undifined

Instruction

Interrupt Fast nterrupt

R15 (PC) PC (Shared)

Figure 2.3 – The allocation of general-purpose registers (R0-R14) and PC (R15) register
for different ARMv7 execution modes.

Figure 2.3 depicts the usage of the R0-R15 register group in different execution
modes. R0-R14 are 32-bit general-purpose registers that are accessible in all modes. R0-
R12 are frequently used for CPU computing and are shared by most modes, except the
FIQ mode, which possesses an independent R8-R12 bank for a faster interrupt handling
process. R13 (or SP) is always used to store the software stack pointer. R14 (or LR) is
used as a link register to store the return address when a subroutine call is made. SP
and LR registers are used by most C/C++ compilers by default. R15 (or PC) is defined
as a program counter which always points to the address of next executable instruction.
Note that SP and LR are respectively banked for each mode. Whenever CPU switch
from one mode to another, the corresponding register bank of successor mode will be
automatically used by instructions. With this mechanism software of different mode can
easily maintain their execution context, e.g. stack position and program pointer.

Additionally, the CPU execution also relies on the processor state register (PSR).
PSR is an assembly of processor flags that control the state and condition of CPU,
such as the execution mode, the interrupt mask, etc. In most cases, the configuration of
PSR may influence the correction of execution. Therefore, PSR is designed to be partially
accessible for non-privilege level, and is fully-accessible for privilege level. In other words,
some critical flags in PSR are reserved read-only (RO) to user mode. In Table 2.2 we
describe the attributes of some PSR states that will be frequently-used in this thesis.

Note that only the APSR flags are accessible in all modes, since these flags are in
charge of storing computation results and help for the conditional execution in user mode.
On the other hand, the critical flags in PSR are accessible only in privileged software
execution. User mode software is allowed to read values from these flags, while any writing
operation on them is automatically ignored by the system.

As PSR plays such an important role, ARMv7 proposes banked PSR registers to
help maintaining the coherency of PSR during execution. Figure 2.4 presents the man-
agement of PSR in ARMv7 processors. The Current Program Status Register (CPSR)
is shared by all modes to hold the current execution status. The Saved Program Status
Register (SPSR) is used to store the current value of the CPSR when an exception is
taken so that it can be restored after handling the exception. Each exception handling
mode can access its own SPSR. User mode does not have an SPSR because it is not

50 Ker-ONE : Lightweight Real-Time Virtualization Architecture

Table 2.2 – Description of ARMv7 execution modes.
Domain Access Description

PSR.APSR
PL0 : RW
PL1 : RW

The Application Program Status Register (APSR) holds copies
of the Arithmetic Logic Unit (ALU) status flags. They are also
known as the condition code flags. They are used to determine
whether conditional instructions are executed or not.

PSR.I
PL0 : RO
PL1 : RW

Interrupt Mask indicates if interrupts are masked. It is used to
mask/unmask all interrupts.

PSR.F
PL0 : RO
PL1 : RW

Fast Interrupt Mask indicates if fast interrupts are masked.

PSR.M
PL0 : RO
PL1 : RW

Mode Filed determines the current mode of the processor.
Changing the value of this filed will switch CPU to the corres-
ponding mode immediately.

CPSR
SPSR_svc

SPSR_abt

SPSR_und

SPSR_irq

SPSR_fiq

CPSR (Shared)
Save CPSR at

exceptions

Resume CPSR

for user mode

User mode Privilege modes

Figure 2.4 – The management of Program Status Registers in ARMv7 architecture.

exceptions handling.
ARMv7 also provides coprocessors to extend the functionality of CPU. In classical

implementation of ARMv7 architectures, two coprocessors are available for software :
CP14 and CP15. These coprocessors are designed for specific purposes. For example,
Coprocessor 15 (CP15) provides system control functionality, which includes architec-
ture and feature identification, as well as control, status information and configuration
support. The status of these coprocessor registers should also be properly virtualized to
successfully host virtual machines.

2.2.1.1 CPU Resource Model

In this part we propose the ARMv7 CPU resource model on which our virtual machine
are executing. In order to achieve a simpler modeling, we focus on the resources that are
logically and physically inseparable to processor itself, decoupling less-related components
for later discussion. From this viewpoint, the ARMv7 processor can be expressed as in
Figure 2.5, where only the states of processor and co-processor are included in the

Resource Virtualization 51

Software Stack

ARM Processor

Co-Processor

MMU

Interrupt Controller

Memory space

Peripherals

Decoupled CPU Resouce Model

Unified Mapping

Figure 2.5 – ARMv7 processor modeling by decoupling integrated functionalities.

CPU model.Meanwhile, the management of memory space and interrupts are performed
by independent components MMU and interrupt controller, and are out of the CPU’s
range. Moreover, since all I/O interfaces are memory-mapped, the states of I/O devices
are managed via custom implementations and are not part of the CPU functionality.

Here, we review Penneman’s resource model [PKR+13] that is required to fully sup-
port a bare ARMv7 processor, which is expressed as the concept of Machine State in
Equation (1.2) :

S ≡< E,M,P,G,C,A,DM , DP > (2.1)

In our system, after eliminating memory space, peripherals and interrupts from the
CPU execution resource (as shown in Figure 2.5), the model of CPU resources can be
simplified from the complete Machine State S. to be a subset of S :

SC ≡< M,P,G,C > . (2.2)

G refers to the system general-purpose registers (R0-R14). P is the program counter
(R15). C consists of an ARM Processor State Register (CPSR/SPSR) and a CP14/CP15
coprocessor, and PSR.M bit holds the status of processor mode. Note that the registers of
the coprocessor are not necessarily completely included in the C set, since some registers
are read-only or are ignored in the CPU execution. Thus, coprocessors have to be carefully
analyzed to determine which of their registers belong to C.

In terms of virtualization, the execution of virtual machines should be provided with
a virtualized CPU resource abstraction that meets the SC model. These virtualized re-
sources are supposed to be available for each virtual machine independently. As a solution,
we propose a virtual CPU (vCPU), which emulates all the processor resources that are
needed for virtual machines. Figure 2.6 demonstrates the mechanism of CPU resource
virtualization in virtual CPU. In our mechanism, CPU resources are considered as the
context of virtual CPU execution, denoted as Execution Context (EC), which holds and
virtualizes values and configurations of necessary resources in the SC model.

The Execution Context is virtualized according to different policies. The state of the
< M,C > set, as the Processor State Register (CPSR/SPSR) and co-processor CP14/15,
is critical for system security and should be supervised by the VMM. Moreover, some of
these resources are physically inaccessible in user mode, making it mandatory to manually

52 Ker-ONE : Lightweight Real-Time Virtualization Architecture

General Register
(R0-R14)

CPSR/SPSR CP14/CP15PC (R15)

Virtual PSR Virtual CP14/15

Virtual Machine

R0-R15 (USR Mode)

vCPU

Sc <G,P> Sc <M,C>

Save & Load EmulationHardware

Execution
Context

(EC)

Re-directed AccessDirect Access

Figure 2.6 – The mechanism of CPU resource virtualization. Resource < G,P > is
managed in a simple save/restore method, and resource < M,C > have to be emulated
as virtual resources for virtual machines.

emulate them for virtual machines. As a solution, an emulation interface is used to handle
virtual machine’s accesses to these resources by re-directing them to the corresponding
virtual states rather than in the physical ones. For example, configuring the PSR.I field
in CPSR, which is not permitted in user mode, is a frequent operation in most guest OS
kernels. In our system, this operation is forwarded to the virtual CPSR in EC and has
no influence on the physical CPSR register. Another typical example is when guest OS
switches between kernel space and user space. In this case, the virtual Mode of vCPU
should be switched accordingly. Via this mechanism, virtual machine can fully access
virtual resources while the physical resources are always controlled by the VMM.

On the other hand, the < G,P > set, as general-purpose registers (R0-R14), and the
program counter (R15), is commonly used by software parts. Accesses to these resources
make no threat to the system and can be totally trusted. The virtual CPU maintains the
consistency of these registers for each virtual machine via the simple Save & Load mode.
Thus, a virtual machine uses these resources as on a native machine. However, it should
be noted that LR and SR have virtual banked values in virtual modes. Whenever the
virtual Mode of vCPU is changed, the corresponding LR and SR virtual values should
be loaded to the physical registers immediately.

2.2.1.2 Instruction Emulation

The ARMv7 ISA is initially non-virtualizable, meaning some sensitive instructions
may run in non-privileged user mode without triggering any exceptions and cause unex-
pected results. These sensitive instructions involve accesses to critical system resources
(i.e. set C in SC), and are originally supposed to execute in privilege software such as
OS kernels. When running in user mode, these instructions will attempt to read/write
values at privilege registers, and will end up with incorrect results. The summary of

Resource Virtualization 53

non-virtualizable sensitive instructions in ARMv7 is depicted in Table 2.3.

Table 2.3 – Sensitive non-privilege 32-bit ARM instructions.

Instruction Functionality
LDC, STC, MCR, MRC Coprocessor Access
LDM(exception return)

Exception handling
and context switch

LDM/STM (user mode registers)
RFE
SRS
CPS, MRS, MSR System register (PSR) Access
WFE, WFI Low-power Mode

In Table 2.3, sensitive instructions are categorized according to their functionality
and operation objects, as explained in the following :

– Coprocessor access : these instructions are used to interact with coprocessors,
which will be denied when executing from user mode. For example, a user mode
MCR instruction that attempts to write data to a coprocessor register will be
automatically ignored without triggering any exception.

– Exception handling : these instructions are intended for handling exceptions,
especially for fast returning from exception mode to user mode. Instructions of this
type involve loading values to the user mode registers, such as LDM that is always
used for resuming CPSR from SPSR at the end of exception handling.

– System register access : some instructions directly read or write to system reg-
isters such as the CPSR or SPSR. In OS kernels, these instructions are frequently
used for CPU control, e.g. changing mode, or manipulating interrupts. In practice,
they are actually the sensitive instructions that are the frequently used by virtual
machines.

– Low-power mode : two special instructions, Wait-For-Event (WFE) and Wait-
For-Interrupt (WFI), are also defined as sensitive instructions and are designed to
put the CPU into low-power state until an interrupt/exception occurs. They are
used when the CPU is idle in order to save energy. In our system, these instructions
should be detected by the VMM when a virtual machine is in IDLE state, so that
the VMM can schedule another virtual machine to run. Details of this scheduling
strategy will be explained in Section 2.5.

The virtualization of sensitive instructions includes the detection and emulation of
instructions. In the source code of guest OSs or applications, these sensitive instructions
are manually replaced by corresponding hyper-calls or macros as extensional virtual-
ization patches, so that they can be detected and re-directed to the virtual resources
instead of the physical ones. VMM properly emulates the behavior of these instructions
by manipulating the virtual resources in the virtual CPU.

54 Ker-ONE : Lightweight Real-Time Virtualization Architecture

2.2.1.3 Virtual CPU Model

The virtual CPU (vCPU) is the fundamental component of the VMM that directly
hosts virtual machines. The aim of the vCPU is to provide virtual machines with an
abstracted layer that mimics the behavior and resources of the physical processor.

VM1

Execution
Context

Instruction
Emulation Virtual MMU

Virtual IRQ

IPCVirtualization Function Portals

Virtual Device

VM2 VM3

CPU Memory Device IRQ

Figure 2.7 – a VCPU has three major properties : (1) holds the virtual machine ex-
ecution context (EC) ; (2) emulates sensitive instructions ; (3) provides access to other
system resources/functionality. Virtual machines run on independent vCPUs that play
the role of an intermediate layer between virtual machines and the rest of the VMM.

We built up the vCPU model based on the simplified decoupled processor model (see
Figure 2.5) introduced in Section 2.2.1.1. In this model, the CPU is responsible not only
for instruction execution, but also for connecting software with other system services, e.g.
memory management, scheduling, interrupt handling and inter-process communication.
Therefore, whereas the vCPU is in charge to hold CPU resources and handle instruction
emulation, it should also provide function portals that links to the decoupled resource or
services, as shown in Figure 2.7. Based on this model, the VMM may easily establish
virtualized execution environments by initializing independent vCPUs to each virtual
machine. In this case, a vCPU acts as an intermediate layer between virtual machine
software and physical resources. The VMM performs the switching of different virtual
machines via activating the corresponding vCPU execution context.

The behavior of virtual machines are monitored through vCPUs by means of hyper-
calls or exceptions (or traps). A vCPU is in charge of gathering all exceptions (including
hyper-calls, as special exceptions) that may occur in a virtual machine, and is responsible
for distinguishing and dispatching them. Based on the nature of exceptions, it provides
them to different functional components for proper handling. A VCPU also includes a
local handler for hyper-calls and traps, and several capability portals for other VMM
functions. Normally, trapped instructions and hyper-calls that access CPU resources (i.e.
resources held by EC) should be handled locally. On the other hand, other exceptions
should also be re-directed. For example, when a data-abort exception is trapped by a
virtual machine, the vCPU will analyze it and forward this exception to the memory
management for further processing.

Resource Virtualization 55

2.2.2 Vector Floating-Point Coprocessor Virtualization

The Vector Floating-Point (VFP) co-processor in ARMv7 architecture is an impor-
tant component to speed up certain types of applications, especially in the communication
domain where intense floating-point computing is involved. However, due to the huge size
of the register bank that VFP is using (32 64-bit registers), the save/restore of the VFP
context heavily degrades the overall performance. Hence, an efficient virtualization mech-
anism of VFP is required. Given the heavy cost of a context switch, we apply the lazy
switching mechanism for VFP virtualization, which means that the VFP context is only
switched when necessary and not at every switch. Lazy switching has also been proposed
for OKL4 kernels in [VH11], but authors only theoretically estimated the overhead. In
[YYY13], an implementation of VFP lazy switching was proposed as an external patch to
the Xen-ARM hypervisor. In this section, we propose another approach of lazy switching
to be used in Ker-ONE.

There are two key features when dealing with lazy switching : trapping and consis-
tency. In the ARMv7 architecture, VFP instructions are not privileged operations and
will not be trapped if executed in user space. To trap VFP operations, the VFP configu-
ration register FPSCR.EN bit has to be cleared in order to disable the VFP coprocessor
so that any VFP instruction generates an undefined instruction (UND) exception. Also,
VFP relies on its register bank for computation, which is denoted as the VFP context
(FPC). With lazy switching, the current context in the physical VFP bank may not cor-
respond to the currently running virtual machines. In this case the VFP context must
be correctly saved to ensure its consistency with virtual machines.

Figure 2.8 shows the mechanism of VFP context (FPC) virtualization. For each
virtual machine, a vCPU is created initially without FPC. When a virtual machine
attempts to use the floating-point engine, this request is passed to the VMM, which will
then create a corresponding FPC and associate it to the vCPU (as in Figure 2.8(a)).
When multiple virtual machines are using VFP, the physical VFP register bank is always
loaded with the FPC of virtual machine that is currently using it. The process of changing
the VFP register content from one virtual machine to another is called VFP context
switch. The current active FPC in the physical VFP register bank is indicated by a
global pointer called FPC_Current.

It should be noted that a virtual machine is exclusively linked to a FPC. If a guest
OS executes multiple processes which are sharing VFP, there should be local floating-
point contexts (denoted as Local FPCs) which will be locally handled by the guest OS,
as shown in the VM3 in Figure 2.8(a).

Figure 2.8(b) presents an example of the process flow of VFP lazy switching. In this
example, VM 1 and VM 3 are executing processes that performs floating-point computa-
tions. To detect the floating-point instructions in a virtual machine, the FPSCR.EN state
register of VFP is cleared at every virtual machine switch, so that the VFP instructions
are disabled whenever a virtual machine is scheduled. When the virtual machine runs,
any VFP operation would be trapped to the VMM as UND exception, indicating that
the current virtual machine attempts to use the VFP. Then, the VMM will enable VFP

56 Ker-ONE : Lightweight Real-Time Virtualization Architecture

FP Context-VM3FP Context-VM1

VM1

P1 Local FPC

P2

vCPU1 vCPU2 vCPU3

FP Context-VM1 FP Context-VM3

VM2 VM3

Load FPC1

fpc_current = FPC1

UND Trap

Save FPC1, Load FPC3

fpc_current = FPC3

Enable

VM1

VM2

VM3

VFP Context

VMM

UND Trap

Guest

Host

VFP State

Disable Enable Disable

OS Kernel

P3

OS Kernel

P4

Local FPC

P5

OS Kernel

P1 P2

P3

P2

P4 P5

Local FPC

switch

(a) VFP Contexts Organization

(b) VFP virtualization mechanism

VM Switch

VFP Traps

VFP Disable

VFP Local Switch

Figure 2.8 – VFP virtualization mechanism via lazy virtualization. (a)VFP Contexts
(FPC) are created for VM1 and VM3 respectively since they have processes that use
VFP resources. Guest OS are responsible of the preservation of Local FPCs. (b) VFP is
disabled at each VM switch, and its register contents are switched only when necessary.

by setting the FPSCR.EN bit, and performs VFP context switch to load the register
bank with corresponding FPC of current virtual machine. During the context switch, the
current VFP register values would be saved to the FPC of the previous virtual machine
client (i.e. VM 1 in Figure 2.8(b)), and resumes the VFP context of the current running
vCPU (i.e. VM 3) and updates the FPC_Current pointer. In this mechanism, VFP Con-
text Switch is performed only when the usage of VFP has to be preempted by another
virtual machine. From Figure 2.8(b) we can notice that the occurrence frequency of the
VFP context switch is significantly reduced.

Resource Virtualization 57

2.2.3 Memory Management

The memory space in ARMv7 architecture is mainly managed by the Memory Man-
agement Unit (MMU), which performs virtual address translation, page table configura-
tion and page access control. By creating page tables, the MMU is able to map physical
memory to virtual address space according to two sizes of pages : 1M or 4K size page. A
two-level cache system is provided to accelerate memory access, including instruction/-
data independent L1 Cache (ICache and DCache) and unified L2 Caches. Besides, a
Translation Look-aside Buffer (TLB) is used to record the performed address translation
so that these translation results can be directly reused in future accesses.

Ker-ONE leverages a simplified mechanism of shadow-mapping for memory manage-
ment. Note that, the technology of shadow-mapping is used by some other virtualization
technologies, such as KVM [DJ11][DLC+12]. They seek to support multiple user-level in-
dependent address spaces (i.e. user-level processes with independent page tables) to host
complex desktop OSs such as Linux or Android. However, as mentioned before, Ker-ONE
is intended to work with simple OSs. In this case, the support of multiple user-level pro-
tections domains are not mandatory since the guest OSs that we have considered are
mainly OSs with single-domain page tables, e.g. µC/OS-II, FreeRTOS, etc. Moreover,
the implementation of such a technology is likely to greatly increase the complexity of
the micro-kernel. In this context, we focus on the memory virtualization of single guest
protection-domains.

2.2.3.1 Memory Access Control

The traditional memory access control is realized by tagging memory pages with
different access permission (AP) flags, which can be categorized as three types : privilege
access, full access and real-only access. Pages with privilege access can only be accessed
from privilege modes, whereas full access tagged pages are open to all execution modes.
Whenever software parts attempt to access the memory space, the MMU checks the
AP flags of these pages and generates a page fault exception (i.e. data-abort (ABT)
exception) if the access is not permitted. Thus, the memory space with a privilege access
flag is protected from less privilege software. This mechanism is widely used by OS kernels
to establish isolation between the user space and the kernel space.

In virtualization, the address space in virtual machine systems is organized in a two-
stage hierarchical structure. The first stage maps the guest virtual space to the guest
physical space, and the second stage maps guest physical space to the host physical space.
In other words, memory space in virtualization requires the access control on different
privilege levels : host kernel (HK), guest kernel (GK) and guest user (GU), respectively
for VMM, guest OS kernels and guest OS applications, as shown in Figure 2.9. To
guarantee the system security, software must be forbidden to access resources at a higher
privilege layer. To create protected memory space for host kernel space (i.e. VMM), we
take advantage of the default AP mechanism of the MMU, by configuring host kernel
resources with the privilege access flag, and the virtual machine space (including guest
kernels and guest users) with the full access flag.

58 Ker-ONE : Lightweight Real-Time Virtualization Architecture

GU: Guest Applications

GK: Guest OS Kernel

HK: KER-ONE Microkernel
PL1

PL0

Figure 2.9 – The access control among different address space privileges in virtual
machine systems : host, guest kernel and guest user.

Additionally, we proposed an additional mechanism to separate the guest kernel and
guest user space, to protect guest OS kernels. In Ker-ONE, we exploit the domain access
control register (DACR) of the MMU, which offers 16 access control domains (D0-D15).
Each memory page can be linked to one of these domains. Pages that belong to the same
access control domain are controlled by the corresponding bits in the DACR. Each domain
has three possible states : no access (NA), client and manager. The NA domain rejects
any access and generates a Domain fault. The client domain accesses are always checked
against the access permission. For the manager domain accesses, the access permission
are not checked and are always permitted.

Client NA Client

KER-ONE Guest OS
Kernel

Guest
Applications

Privilege
Access

Full
 Access

DACR

Memory
Pages

Figure 2.10 – By associating memory pages to different DACR domains, the memory
space of virtual machines is divided into several domains with different access policies.

As shown in Figure 2.10, guest kernels and guest users are associated to different
DACR domains, denoted as GK domain and GU domain respectively. When the CPU is
running in the GU space, the GK domain is set as NA so that it is forbidden to the guest
user. On the other hand, when a guest OS enters the kernel space, the VMM switches
the DACR GK domain state to client so that the entire VM space is accessible for OS
kernel software, as in the native machine. Via this mechanism, guest kernels are isolated
and protected from guest user software. The overall mechanism of memory access control
is summarized and listed in Table 2.4.

Resource Virtualization 59

Table 2.4 – The configuration of Access Permission Flag and DACR Domain State for
three different privilege levels : guest user, guest kernel and host kernel.

Memory Space
Domain AP Flag

DACR Domain State
GU Level GK Level HK Level

Guest user
Full Access

client NA client
Guest kernel client client client
Microkernel Privileged client

2.2.3.2 Address Space Virtualization

The VMM provides isolated virtualized address spaces by manipulating the trans-
lation page tables for virtual machines. As introduced previously, the MMU in ARMv7
performs a single-stage virtual-to-physical address mapping, making it unsuitable for
the two-stage hierarchical mapping structure in virtualization. As a result, the VMM is
responsible for interpreting the virtual address space in a virtual machine and for trans-
forming this mapping into an actual ARMv7 one. The principle of shadow-mapping is
used in our approach.

VMM Memory
Translation

Hyper-call
Vg à Pg Vh à Ph

Shadow MappingVM Mapping

Micro-kernel Domain

Figure 2.11 – The mechanism of address space virtualization by using shadow mapping
mechanism and hyper-calls.

Figure 2.11 depicts the mechanism of address space virtualization for virtual ma-
chines. For each independent virtual machine address space, a translation page table is
created by the VMM. This page table is referred to as the shadow page table. Shadow
page tables are held in host kernel space and cannot be directly accessed by guest OS.
Instead, guest OSs have to use hyper-calls to create and manage mappings between the
guest virtual and physical address spaces. For example, to require a mapping from a
guest virtual address vg to a guest physical address pg, a guest OS uses the hyper-call
interface :

hypercall_create_page(guest_virt, guest_phys, page_arributes).

During the hyper-call, the VMM translates the guest physical address into the host
physical address ph and creates the page table entry that directly maps vg to ph. Mean-
while, the argument of page_attributes passes the attributes of the created page, e.g.
the page size and the privilege level (OS kernel or guest user). For guest OS kernels,
any operation on page tables must be performed via hyper-calls, including the creation,

60 Ker-ONE : Lightweight Real-Time Virtualization Architecture

deletion and remapping of page tables.
By default, each virtual machine is allocated with a determined size of physical mem-

ory space, whose usage is under the supervision of VMM. Any mappings or accesses
outside this area will be rejected by the VMM. In this way, each virtual machine is
strictly isolated from each other.

We have introduced the criterion of memory virtualization for shadow mappings in
Section 1.1.1.2, Eq.(1.6). Assume that the mapping of VM and VMM are denoted as
Ag(Vg, Pg, Xg) and Ah(Vh, Ph, Xh) respectively. And the shadow page table is referred
to as As(Vg, Ph, Xs). Then the access permission condition of shadow mapping Xs is the
combination of guest mapping access permission Xg and host mapping access permission
Xh, which can be proved as the following :

1. Shadow mapping As strictly corresponds to the guest mapping Ag that guarantees :

∀v /∈ Vg, T ransAs(v, xs)traps. (2.3)

2. Additionally, within the memory space of Shadow mapping As, guest kernels and
guest user spaces are managed as native machines. Any accesses that is forbidden
in the original mapping Ag remains forbidden in the shadow mapping. Therefore :

∀v ∈ Vg, T ransAs(v, xs)traps when TransAg(v, xg)traps. (2.4)

3. Virtual machines and VMM are separated with access permissions. During the
VM execution, any access to the VMM memory space will trap with an access-
permission-fault exception. Therefore :

∀v ∈ Vg, T ransAs(v, xs)traps when TransAh
(pg, xh)traps. (2.5)

Based on the above characteristics, the mapping in virtual machines can be fully virtu-
alized in our approach. The VMM depends on the page-fault traps to emulate both access
conditions Xg and Xh respectively. Specifically, access-permission failures are caused by
illegal accesses outside the VM domain, and must be handled by the VMM itself. On the
other hand, if traps are caused by DACR domains, they are mostly conflicting the guest
mapping Xg and should be passed to the guest OS kernel.

Another classical challenge for address space virtualization is the coherency of cache
memory and TLB when switching from one address space to another. In the ARMv7
architecture, the cache consistency is protected by hardware, since both instruction and
data caches are physically-tagged. Thus, without the duplicate mapping that shares the
physical memory, the memory space switch is spared of the expensive cache flush. ARMv7
also provides the Address Space Identifier (ASID) register to simplify the management
of the TLB. Translations with different ASIDs are respectively labeled in TLB. Each
address space is associated with one unique ASID value. The VMM reloads the ASID
register whenever address spaces switch.

Event Management 61

2.2.3.3 Memory Virtualization Context

The VMM emulates the virtual memory space for guest OS by maintaining the ad-
dress space for each virtual machine. ARM processors use the CP15 coprocessor to control
the behavior of the MMU, including enabling/disabling, loading the position of a trans-
lation page table in the Translation Table Base Register (TTBR), configuring the DACR
register, etc. For each virtual machine, the VMM holds a replica of these resources,
denoted as the memory space context. This context includes necessary resources to vir-
tualize the memory space of the guest OS, i.e. (1) corresponding page tables, (2) TTBR,
(3) DACR, (4) ASID. The virtual MMU (vMMU) emulates the behavior of the physical
MMU. It manages the shadow mapping page tables and handles hyper-calls that guest
OSs use to access page tables.

The VMM switches VM address spaces by saving and resuming the memory space
context in the physical registers. The switching of address spaces may result in heavy
overheads, since the cache miss rate and TLB miss rate will inevitably increase after
the switching. In fact, such a cost is one of the most significant virtualization overheads,
which will be discussed in Section 4.2.1.

2.3 Event Management

In general computing systems, an event is an action or occurrence that may be handled
by software. Sources of events include the user, who may interact with software via I/O
devices (for example, UART port, keystrokes on the keyboard, etc.). Another source is
on-chip hardware peripherals such as system timers. Software can also trigger its own set
of events, e.g. to communicate with other processes or other computers. Most modern
OSs rely on events to schedule tasks and allocate resources. Software that changes its
behavior in response to events is said to be event-driven, which often exists in scheduling
algorithms or real-time systems. For example, system timer is commonly used by OS
kernels to count time slices and perform scheduling, and real-time OS depends on the
external events to perform real-time computation. In embedded systems, events can be
categorized according to their purpose as the following types :

– System events are used to help the execution of OS, which are normally generated
by software as synchronous notifications such as the timer tick for scheduler or the
completion of certain tasks.

– Peripheral events are the ones that peripherals or I/O devices use to interact
with the processor.

– Communication events are used to convey notifications to other systems, mostly
in multi-core systems where one CPU can raise events to other CPUs for commu-
nication purposes.

Most events are implemented as interrupts, which will be raised to the processor and
be handled via dedicated event handlers in OS. These handlers directly interact with

62 Ker-ONE : Lightweight Real-Time Virtualization Architecture

Native OS

Event Sources

Event Emulation

Event Sources

OS OS

VMM

(a) Native machine (b) Virtual machine system

Figure 2.12 – Event management in native machines and virtual machine systems.

the sources of event by processing their requests and making responses, as shown in
Figure 2.12(a).

In virtual machine systems, the management of events is much more complicated.
Hardware resources, e.g. timers and peripherals may be shared by multiple virtual ma-
chines concurrently. As the intermediate layer between virtual machine and physical
resources, the VMM must emulate these events to virtual machines, while guaranteeing
that the events of each virtual machine are completely independent from other VMs, as
shown in Figure 2.12(b). The virtualization policy of events may differ based on their
applications in the system.

Events can be emulated following different principles. In existing technology such
as XEN hypervisor, the VMM emulates the virtual machines events with additional
mechanism. Guest OS receives software-emulated events with new ID numbers and at-
tributes, which are handled through a dedicated mechanism called the event_channel.
This channel wraps all physical events indifferently and re-generates virtual events. Such
a mechanism forces the guest OS to abandon its original handlers and to adjust itself
with the event_channel, and results in extra complexity in both VMM and guest OSs.
Moreover, interrupts of different natures are under the same policy, which inevitably
increases the efficiency.

Ker-ONE addresses this issue by an alternative approach. We attempt to emulate
the physical events as the original ones, so that the local handling process in guest OS
is respected. Interrupts with different purposes are distinguished and classified, so that
we can propose dedicated mechanisms accordingly.

In this section we introduce the event emulation in Ker-ONE. First, we will present
the mechanism of interrupt virtualization. Then we will propose the emulation of two
special mechanisms, i.e. virtual timer and inter-VM communication.

2.3.1 Interrupt Virtualization

From the processors viewpoint, events arrive as interrupts, which are triggered by
hardware sources. In Ker-ONE, the VMM manages all hardware interrupts. When run-
ning in a virtual machine, all interrupts are trapped to the VMM. The VMM first handles
the physical interrupt by acknowledging the interrupt and clearing the source. Then, the

Event Management 63

VMM sends a corresponding virtual interrupt to the targeted virtual machine if neces-
sary. In this case, the hardware interrupts management is performed in the host space,
so that the VMM remains in complete control of the hardware resources. Meanwhile,
virtual machines receive and handle the emulated interrupts as if in native machine. This
technique is called the interrupt virtualization.

2.3.1.1 Emulation of Interrupts

The ARMv7 architecture provides the Generic Interrupt Controller (GIC) to control
interrupts [ARM13]. The GIC logically splits into an Interrupt Distributor block and
one or more CPU Interrupt Interface blocks. The functionality of these two blocks is as
follows :

– The Interrupt Distributor performs interrupts’ prioritization and distributes
interrupts to the target CPU Interrupt Interface blocks. The Distributor also holds
the interrupt state and configurations (such as enable/disable, sensitive type, etc.).

– The CPU Interrupt Interface performs priority masking and preemption of
interrupts. This interface raises the highest priority interrupt to CPU. Software
interrupt handlers directly interact with the CPU Interrupt Interface for proper
handling of an interrupt.

Inactive

Active

Pending

IRQ
Delivered

Interrupt
Routine

IAR

EOI

IRQ ID

IRQ ID

Generic Interrupt Controller

Figure 2.13 – The behavior and states of hardware interrupts managed by the Generic
Interrupt Controller (GIC).

In a GIC, the behavior of each interrupt is controlled as a state machine (see Fig-
ure 2.13), in which three major states exist : Inactive, Pending and Active. Generally,
interrupts are in the Idle state by default. when an interrupt arrives, it is distributed to
the target CPU Interrupt Interface (changing state to Pending), and raises a hardware
interrupt to the CPU. Then the software Interrupt Service Routine (ISR) is responsible
for acknowledging the reception of an interrupt by accessing the Interrupt Acknowledge
Register (IAR) (changing state to Active). After proper handling, the ISR should set the
End of Interrupt register (EOI) to mark the end of the interrupt processing (changing
state to Inactive). The typical software ISR is demonstrated in Figure 2.14(a).

64 Ker-ONE : Lightweight Real-Time Virtualization Architecture

Physcical Interrupt

Exception
Vector

Interrupt
Handler

OS Kernel

IRQ

ACK

EOI

IRQ State

IAR

EOI

...

GIC

Physcical Interrupt

IRQ

ACK

EOI

IRQ State

IAR

EOI

...

GIC

KER-ONE
Handler

VGIC

Virtual
IRQ Exception

Vector

Interrupt
Handler

OS Kernel

vIRQ

vACK

vEOI
VGIC

Interface

(a) Native machine

(b) Virtual machine

Figure 2.14 – The process of physical interrupts being handled and virtualized through
the virtual GIC.

For virtual machines, virtual interrupts are raised by the VMM. In order to simplify
the adjustment of the guest OS IRQ handler, we have decided to respect the guest OS
original interrupt handling routine by providing a virtual interface of the GIC. The virtual
content is identical to the physical GIC registers.

As shown in Figure 2.13(b), a custom virtual GIC (vGIC) is designed to emulate
the management of interrupts. The vGIC holds the state of virtual interrupts for each
VM, and emulates the behavior of the GIC by manipulating virtual interrupt states. A
data structure, denoted as vGIC Interface, is implemented to hold the vGIC context.
This structure holds virtual GIC registers including IAR, EOI, IRQ enable register, etc.
Note that guest OS kernels may configure the vGIC and control virtual interrupts by
directly accessing the vGIC Interface registers.

The flow in Figure 2.14(b) describes the processing of virtualized interrupts in guest
OSs. When a physical interrupt occurs, the exception vector of Ker-ONE redirects them
to the VMM for handling. The VMM handler completes the physical IRQ processing and
raises the corresponding virtual interrupt in the vGIC. The vGIC then updates the virtual
interrupt state and sends it to the VM by forcing it jump to its local exception vector.
Then the guest OS kernel interacts with vGIC Interface to complete the handling. Note
that, with this mechanism, the original OS IRQ handler only requires light modification
of several code lines to re-direct GIC accesses. Thus the IRQ handler in the OS can be
easily adapted.

Event Management 65

Based on the vGIC, the states of virtual interrupts are consistent and independent in
each VM. For example, a virtual interrupt can be disabled or masked by one VM, while
the corresponding physical interrupt can still be collected by other VMs. A vGIC can also
be programmed to directly send virtual interrupts into a specific virtual machine. This
functionality is normally used by the VMM as a method of inter-VM communication
(IVC), by allowing one virtual machine to raise interrupts to another one. This point will
be detailed in Section 2.3.3.

2.3.1.2 Virtual Interrupt Management

In Ker-ONE, interrupt sources are categorized and divided into different priority
layers according to their importance, as listed in Table 2.5. The highest interrupt priority
level concerns the critical system interrupts. These are security-related interrupts that are
only used by the VMM. An example of such an interrupt source is the VMM scheduling
timer. Critical IRQs are always protected. Each VM is always associated to one interrupt
layer, and is not allowed to manipulate interrupts in higher layers, so that events of higher
significance remain unaffected.

Table 2.5 – List and description of interrupt priority layers.

Layer Description Priority Level

Micro-kernel System critical interrupts 0-16

RTOS RTOS Interrupts 16-64

GPOS Non-critical interrupts 64-128

IVC Inter-VM interrupts for communication 128

Interrupts used by guest OSs are divided into two levels : RTOS and GPOS. A RTOS
is given a higher priority level than a GPOS, so that interrupts of a particular RTOS can
neither be disabled nor be blocked by GPOSs, which guarantees that these events can be
received by the RTOS even during the execution of GPOSs. This is quite important for
ensuring the schedulability of real-time tasks, since RTOSs generally rely on real-time
events, such as timer ticks or external interrupts to perform scheduling.

IVC refers to interrupt resources that are reserved for inter-VM communication, which
are a group of software-generated interrupts in Ker-ONE. They are allocated with the
lowest priority level given that inter-VM interrupts do not have to overtake guest OS
local interrupts.

For each virtual machine, the context of virtual GIC is held in the vGIC Context data
structure. This structure allows VMM to maintain the coherency of virtual interrupts
when scheduling VMs.

66 Ker-ONE : Lightweight Real-Time Virtualization Architecture

2.3.2 Timer Virtualization

In many operating systems, reading and writing from (to) timers are common oper-
ations to schedule tasks and measure performances. For example, an OS often relies on
timer ticks to determine if a specific task is ready to execute. Application workloads also
often leverage timers for various reasons. In traditional virtualization, the physical timer
resource is controlled by the hypervisor, and VMs are provided with software virtual
timers, which have to be accessed by traps or hyper-calls. However, this method is likely
to cause several problems. First, trapping to the hypervisor for each timer operation may
incur noticeable performance overheads [DN14]. Second, the resolution of the VM timer
is limited by the timer period of the hypervisor. For example, on a hypervisor whose
timer period is set to 10ms, guest OS with 1ms timer accuracy may work incorrectly.

System Timer

RT Timer

GT Timer

Page Tables

4K Page

4K Page

GPOSs

Physical Memory

Micro-kernel

RTOS

OSOS OS

Figure 2.15 – Three independent physical timers are provided to the micro-kernel, RTOS
and GPOSs respectively, which can be accessed directly. For one guest OS, only one timer
interface is mapped in the page table.

As a solution, Ker-ONE allows VMs to directly access and program the timer without
being trapped into the VMM. As shown in Figure 2.15, we use three independent
physical timers for VMM, RTOS and GPOS respectively, denoted as system timer, RT
timer and GP timer. The ARM page table mechanism is leveraged to create independent
timers for VMs. Note that each timer interface corresponds to a 4k memory page in the
address space. For each VM, only one timer interface is mapped in its page table, so
that it can only have access to the allocated timer. As depicted in Figure 2.15, system
timer is reserved in the host space and can only be accessed by the micro-kernel. The RT
timer is exclusively used by the RTOS VM. The GP timer is shared by multiple GPOS
VMs. The timer sharing is implemented by saving and restoring its register values for
each VM. A guest OS is free to configure its timer, e.g. clocking period, interval value,
interrupt. These configurations will be restored whenever a VM is scheduled.

One concern about this mechanism is the protection of the timer state when it is pro-
grammed by multiple users independently. In our system, the VM timer is implemented
with the Triple Timer Counter (TTC), which is a peripheral timer provided in the ARM

Event Management 67

architecture. The programming of the TTC is performed by discrete read/write opera-
tions on configuration registers. Therefore, the programming sequence can be interrupted
anytime and continued later as long as the registers are properly resumed.

Compared to conventional software virtual timer solutions, our mechanism would
slightly increase the VM switch overhead, since the timer registers must be reloaded at
each VM switch. In our system, this involves a total number of 7 TTC registers. However,
this overhead is negligible, considering that it also avoids frequent hyper-calls or traps,
and simplifies the VM timer emulation mechanism.

2.3.3 Inter-VM Communication

An efficient communication mechanism inter virtual machines (IVC) is essential for
most virtualization micro-kernels. The issue of IVC can be interpreted as the classical
Inter-process communication (IPC) problem in micro-kernels. Since the work of L4 micro-
kernels, great efforts of research have been given to minimize the IPC overheads for micro-
kernel, which results in a greatly simplified synchronous IPC model, denoted as fast IPC
model [Lie94], and has achieved high IPC performance. However, the synchronous IPC
model has been aborted by some embedded micro-kernels because of its complexity, as
in [Hei08]. In Ker-ONE, we use simple asynchronous communication methods instead of
synchronous IPC model to achieve lower complexity. An IRQ-based IVC mechanisms is
implemented in our system.

VM #ID IVC #ID Message

VM #ID IVC #ID Message

VM #ID IVC #ID Message

Message

Message

...

VM 1

Message

Message

...

VM 2

VM 3

vIRQ

vIRQ
VMM

IVC Channel

IVC_Channel.Send IVC_Channel.Receive

IVC 0
...

IVC 7

IVC 0
...

IVC 7

vGIC

Figure 2.16 – The IVC mechanism leveraging VM/VMM shared memory region.

Ker-ONE leverages the VMM/VM shared memory region to facilitate asynchronous
IVC. For each virtual machine, a shared memory page is created that can be accessed
from both VMM and VM sides. A shared structure, IVC_Channel, is implemented in
this region. This channel is composed of IVC_Channel.Send and IVC_Channel.Receive,
which is depicted as in Figure 2.16. A total number of 8 IVC signals is reserved for
the channel. To post IVC messages to other VMs, a virtual machine needs to create an
entry in IVC_Channel.Send by indicating the target VM, the IVC number, and the mes-
sage. Whenever the sender VM is scheduled out, the messages from IVC_Channel.Send

68 Ker-ONE : Lightweight Real-Time Virtualization Architecture

will be dispatched to the IVC_Channel.Receive of the target VMs. So that whenever
these VMs are scheduled, Ker-ONE invokes the vGIC to send virtual interrupts to the
target to acknowledge the arrival of IVC messages. In our case, these interrupts are re-
served software-generated interrupts (SGI), which are configured with the lowest priority
(Table 2.5). They will not preempt the VM local interrupts.

Note that, the sending and receiving of IVC mechanisms are performed with only
several lines of read/Write instructions on the shared memory. Therefore, this approach
is shorter and lightweight compared to the simplified fast IPC model in L4 micro-kernels.

2.4 Optimization

In the previous sections, we have described the mechanisms of virtualization that have
been proposed in our system. As we can notice, to provide a fully-virtualized environment,
it is essential to emulate physical resources by manipulating virtual resources : guest OS
would access to these virtual resources frequently when executing kernel functions. Thus,
the management of these resources may noticeably influence the performance of guest
OS. In this section we discuss the management policies of virtual resources.

Shared Memory Region

vCPSR

vSPSR

VGIC
Interface

OS Kernel

Patched Macros

VGIC

VCPU

VMM

Figure 2.17 – Implementation of virtual PSR and vGIC interface in a VM/VMM shared
memory region.

Here we focus on the most frequently used resources during guest OS execution. PSR
registers, including CPSR and SPSR in an example of such resources. As already pre-
sented, this register configures the execution mode (PSR.M) and interrupt mask (PSR.I)
of CPU, which will be frequently accessed and changed by OS to enter or exit the kernel
space, or to execute critical functions. Moreover, CPSR/SPSR is saved/restored when-
ever a task is saved or resumed, which is a common operation in OS. Another virtualized
resource that deserves special attention is the vitual GIC Context, which contains virtual
registers emulating physical GIC. Each IRQ handling involves several read/write on these
registers. In an event-driven OS, e.g. RTOS, the access to these resources may influence
the IRQ handling overhead, which then increases the response time.

One simple and conventional solution for these resources is to hold them within the
micro-kernel domain and make sure that they are exclusively manipulated by the VMM.

Optimization 69

Guest OS accesses them via hyper-call interfaces, which calls the VMM to handle their
requests. This approach is easy to implement since guest OS only need to replace the
original store/load instructions with corresponding single-line hyper-calls. Nevertheless,
compared to the original access process which is performed by a single instruction, trap-
ping to the VMM is quite expensive and heavyweight.

An alternative policy is to implement virtual resources that are frequently used in
the VM/VMM shared memory region. Guest OS access the virtual resources directly,
and the VMM performs emulations according to the shared resource asynchronously.
One obvious advantage of this policy is that a guest OS can perform operations on
these resources without generating hyper-calls, which greatly reduces overheads. However,
since this approach holds virtual resources in the virtual machine domain, it requires
extra mechanisms at the VM side to properly access and protect these resources. This
results in a considerable amount of functions and macros being added to the original
OS code. Besides, the security of a VM is also undermined since these resources are no
longer protected by the VMM, and thus can be threatened by malicious software. Any
compromised task is able to freely modify the values of these resources. In Table 2.6,
we compared the pros and cons of both policies.

Table 2.6 – Advantages and drawbacks of two policies for virtual resource management.

Policies Performance
Source code
modification

Security

Micro-kernel domain low low high

Shared memory region high high low

Despite that the use of shared memory region requires more effort to virtualize the
guest OS, it is able to considerably shorten the execution path to access resources, which
makes it a preferred optimization for virtualization technologies. To address this issue
more clearly, we take the example of a common task-switch function in the OS kernel,
during which the context of an old task is stored in the stack and a new task’s context is
resumed. We have listed the pseudo assembly code in Table 2.7. Note that hyper-calls
are relatively heavy operations because it involves entering and exiting the micro-kernel.
With the virtual CPSR implemented in the shared memory region, we can avoid hyper-
calls. We can also notice that the first approach causes only slight changes to the source
code by simply replacing MCR/MRC instructions with hyper-calls, whereas the second
approach has to introduce extra assembly macros to fulfill these operations.

In our system, virtual resources of PSR and vGIC are held in shared memory region
to optimize the overall performance, whose implementation is shown in Figure 2.17. A
shared data structure is created in VM domain, and registered in the VMM. The VMM
can have knowledge of the current state of both virtual CPSR and vGIC by checking
the shared structure when necessary. Dedicated macros (as in Table 2.7) are used to
patch the source code of guest OS. This optimization results in a significant increase

70 Ker-ONE : Lightweight Real-Time Virtualization Architecture

Table 2.7 – Pseudo codes of the task context save/resume process with two policies.
Policy 1 : Virtual PSR is held in VMM domain and is accessed via hyper-calls. Policy
2 : Virtual PSR is held in VM domain and accessed directly.

Function : OS Context Switch (OSCtxSw)
Native Machine :
STMFD SP !,{R0-R12, LR} @ Push current registers
MRS R0,CPSR @ Get current CPSR
STMFD SP !,R0 @ Push CPSR value
... @ Load new task stack
LDMFD SP !,R0 @ Pop new task’s CPSR
MSR SPSR_cxsf, R0 @ Move CPSR to SPSR
LDMFD SP !,{R0-R12, LR, PC}ˆ @ Pop new task’s context, including CPSR
Virtualization Policy 1 :
STMFD SP !,{R0-R12, LR}
Hypercall_MRS @ Use hyper-call to get current virtual CPSR
STMFD SP !,R0
...
LDMFD SP !,R0
Hypercall_MSR @ Use hyper-call to resume virtual CPSR
LDMFD SP !,{R0-R12, LR, PC}
Virtualization Policy 2 :
STMFD SP !,{R0-R12, LR}
Macro_MRS @ Macro to get virtual CPSR :

@ - Load vCPSR value ;
@ - Get physical CPSR.apsr ;
@ - Update vCPSR.apsr ;

STMFD SP !,R0
...
LDMFD SP !,R0
Macro_MSR @ Macro to resume virtual CPSR :

@ - Change vCPSR value ;
@ - Resume physical CPSR.apsr ;

LDMFD SP !,{R0-R12, LR, PC}

of virtualization efficiency. In Chapter 4 we will give extensive experiment results to
demonstrate the performance of these two policies.

2.5 Real-time OS Virtualization

This section introduces the real-time support of our system. In terms of schedulability,
a virtual system is a typical two-level hierarchical architecture, involving both intra-VM
and inter-VM scheduling. Since real-time OSs demand that real-time tasks always meet
their deadlines, the VMM scheduling mechanism must guarantee the execution of RT
VM, while the application developers are responsible for defining a schedulable task set
according to the proposed RTOS scheduling algorithm.

Generally, a RTOS hosts a set of periodic tasks Tk that can be characterized by a

Real-time OS Virtualization 71

periodic task model Tk = Ti(ei, pi, di), where ei is the worst-case execution time (WCET)
with its period pi (pi > ei) and relative deadline di with (di > ei). The task set Tk
is considered as hard real-time schedulable if for every period pi, Ti can complete its
execution ei, within its deadline di. Otherwise the scheduling fails. For a hard real-time
system, missed task deadline results in the failure of the whole system.

For a virtualized RTOS, being hosted in a virtual machine causes extra overheads
to ei, and the CPU bandwidth of a RTOS is influenced by the VMM scheduling. This
may result in the collapse of a tasks set that is actually schedulable on a native machine.
Therefore a dedicated VMM scheduler is required to support RTOS tasks in virtual
machines.

2.5.1 VMM Scheduler

The Ker-ONE VMM scheduler is intended to support real-time virtual machines with
low complexity. In this work, we mainly focus on two characteristics : the scheduling accu-
racy for real-time tasks and the algorithm complexity for implementation. As introduced
at the beginning of this chapter, we focus on a VMM which hosts one RTOS and several
GPOSs. The RTOS tasks are considered as critical with soft real-time constraints.

For the Ker-ONE scheduler, we have discarded some well-known algorithms such as
the compositional scheduling algorithm, since we would like to avoid complex algorithms
that require additional computation for PRMmodels [YKP+11] or modification of the OS
original scheduling interface [YY14]. The purpose of the Ker-ONE scheduler is to allow
RT tasks to be scheduled by the original RTOS scheduler with negligible virtualization
overheads.

IDLE

RTOS

OS 1 OS 2 OS 3

RTOS

RT event /

TimeSlice = 0

Consuming

TimeSlice

Suspend Queue

Run Queue
preempting

RT Timer

GP Timer

Other RT event

RTOS being scheduled RTOS being suspended

IDLE

RTOS

OS 1 OS 2 OS 3

RTOS
RT event /

TimeSlice = 0

Consuming

TimeSlice

Suspend QueueRun Queue

preempting

RT Timer

GP Timer

Other RT event

Schedule RTOS

Suspend RTOS

RTOSRTOS

RT event

High Priority

Low Priority

Figure 2.18 – RTOS Priority-based scheduling mechanism with independent physical
timers. An RTOS is added to the run queue and preempts the other OS when RTOS
events occurs.

The VMM scheduler is based on a priority-based preemptive round-robin strategy. It
includes two scheduling lists : a run queue and a suspend queue. The run queue contains
all currently executable components, and the suspend queue holds the idle components.
For every scheduling decision, the VMM scheduler always selects the highest-priority VM
in the run queue to execute. Among VMs that have the same priority level, the CPU is
shared according to a time-slice-based round-robin policy. The VMM allocates each VM
a determined quantum of CPU time denoted as time slice, which expires during the VM

72 Ker-ONE : Lightweight Real-Time Virtualization Architecture

execution. Whenever the budget is consumed up, the VM is replenished with full time
slice and moved to the end of the round-robin circle. The higher priority VMs can always
preempt the lower ones as long as they are included in the run queue.

The proposed scheduling mechanism is demonstrated in Figure 2.18. The VMM
always removes the currently running RTOS from the run queue when it is IDLE, al-
lowing the lower-priority non-RT OSs to run. In this case, the non-RT OSs budgets are
consumed. The non-RT OSs continue their execution in a round-robin way until any
event occurs in the RTOS. In this case, the VMM adds the RTOS back into the run
queue and reschedules all VMs. With this mechanism, the workload of higher-priority
VM (i.e.RTOS) is not affected because only its IDLE time is used by the other VMs.

In order to implement this scheduling strategy, we have added a hook routine to
the IDLE task of RTOS, which is composed of the hyper-call that acknowledges the
VMM about the idle state of the RTOS virtual machine, so that lower priority VMs are
rescheduled to run. Note that in modern ARM processors, the instructions of Wait-for-
Interrupt (WFI) or Wait-for-event (WFE) are normally used in the IDLE task, in order
to lower the CPU power consumption. In Ker-ONE, these instructions are no more valid
since the idle time is donated to other software.

2.5.2 RTOS Events

RTOS rely on events to perform tasks scheduling. Events include timer ticks that
help keeping track of the execution time and other exceptions or interrupts. For most
RTOS schedulers, timer ticks are important to determine whether a task is ready to run
or not. In virtualization, a guest OS executes in virtual time instead of physical time. For
VMs, the virtual time is measured by counting the virtual timer ticks that it receives.
Therefore, in a VM, the difference between physical time and virtual time can be quite
significant if the VMM generates virtual timer ticks only when this VM is scheduled.

However, in real-time virtualization, a guest RTOS should be aware of the physical
time (i.e. actual execution time) to guarantee the scheduling of its tasks. In section 4.4
we have introduced that an independent physical timer, RT timer, is allocated to RTOS
with direct access. Recall that we have divided IRQ resources into several priority levels
(as in Table 2.5). RT timer has higher priority level that GPOSs. Thus, even when
RTOS is not scheduled in CPU and GPOSs are running, RT timer interrupt can still
be received by the VMM and get delivered to the RTOS. In this case, RTOS can set
RT timer as its scheduler requires without worrying about inter-VM scheduling, and the
original OS scheduler remains unchanged.

For example, at some time t0, the RTOS scheduler sets the RT timer to trigger after
T seconds and goes into the IDLE state, which causes the VMM to reschedule GPOS A
into the RUNNING state. Then after T seconds, the RT timer triggers an interrupt while
GPOS A is still running. However, since the RT timer IRQ has a higher priority, it will
preempt the execution of GPOS A so that the RTOS’real-time scheduling is respected.

Real-time OS Virtualization 73

2.5.3 RTOS Schedulability Analysis

Though Ker-ONE is designed to minimize the extra latency cost on guest RTOSs, the
virtualization environment will inevitably degrade performance. Therefore, regarding the
schedulability of the RTOS tasks, it is crucial to take into consideration the cost model
that formalizes the extra virtualization-related overheads.

Normally in a complete cost model, the actual execution time that a task Ti needs,
consists of the WCET ei and the latency of its being released or scheduled. Thus, the
extended model for the actual execution time Ei is :

Ei = ei + relEv,

and relEv = ∆event + ∆rel + ∆sched + ∆cxs,
(2.6)

where ei is adjusted with the tasks’ Release Event overhead relEv , which consists of the
event latency ∆event, the release overhead ∆rel, the scheduling overhead ∆sched and the
context switch overhead ∆cxs.

Virtualization overheads have three sources. First, when an event (e.g. RT timer tick)
targets an RTOS, it may not be delivered immediately. This is typically the case if the
VMM is in critical state such as handling hyper-calls. In this case, the arrival of an event is
delayed for the RTOS. Second, if an RTOS is to preempt other VMs, the VMM scheduler
takes additional time to reschedule the RTOS and to switch between VMs. Third, the
release of a task on a RTOS causes more overheads than on a native machine due to
the extra costs of the environment virtualization, e.g. the instruction emulation and
interrupts virtualization. Even the execution time ei is affected. Figure 2.19 describes
how virtualization affects the execution time. The negative effect of virtualization can be
included into the tasks practical execution time : EVM

i (see Eq. (2.7)).

RT Event

RTOS Kernel

RTOS Task

Microkernel

GPOS

ΔVMMsched relEv
VM

ei
VM

ΔVMMcritical

Figure 2.19 – Overhead of an RTOS task execution in VM, which is composed of VMM
critical overheads, VMM scheduling overheads and RTOSs intrinsic overheads.

74 Ker-ONE : Lightweight Real-Time Virtualization Architecture

EVM
i = eVM

i + relEvVM + ∆VMMsched+ ∆VMMcritical,

and eVM
i = eNative

i + ∆ei
V M ,

and relEvVM = relEvNative + ∆relEv
VM ,

(2.7)

where eVM
i and relEvVM are actual Ti execution time and Release Event overheads in a

VM, which are respectively inflated with the ∆ei
V M and ∆relEv

VM overheads. ∆VMMsched
is an extra overhead required for RTOS scheduling. And ∆VMMcritical is the delay
caused by the VMM critical execution. In fact, the VMs’ response time for RTOS events
can be represented as :

ResponseVM = relEvVM + ∆VMMsched+ ∆VMMcritical. (2.8)

From ResponseVM , the extra VM overhead caused to the task response time can be
derived as :

∆Response
VM = ResponseNative −ResponseVM

= ∆relEv
VM + ∆VMMsched+ ∆VMMcritical,

(2.9)

And the overall virtualization overheads then can be obtained as :

EVM
i = ENative

i + ∆VM ,

and ∆VM = ∆ei
V M + ∆Response

VM ,
(2.10)

where ENative
i refers to the native execution cost Ei. Therefore, for the task set Tk that

was verified as schedulable in the original RTOS, the adjusted model Tk = Ti(E
VM
i , pi, di)

has to be re-verified for virtualization according to ∆VM . In fact, the value of ∆VM

evaluates the influence of virtualization on the original tasks. As we can notice, such an
influence is caused by the extra overheads of response time and execution time. This
model is depicted in Figure 2.20.

Embedded Real-Time Virtualization Technology

for Reconfigurable Platforms

Tian XIA

IETR, INSA de Rennes

∆𝑉𝑀𝑀𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑊𝐶𝐸𝑇 = 1.47𝜇𝑠
∆𝐷𝑃𝑅𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 𝑊𝐶𝐸𝑇 = 4.67𝜇𝑠

 Introduction & Motivation

 Ker-ONE Virtualization Architecture

 Dynamic Partial Reconfiguration Ker-ONE

 Real-time Schedulability Analysis

 Conclusion and Prospectives

relEv
Native

ΔrelEvΔVMMSchedΔCritical ei
Native

ΔVM
ei

Respons
VM

ei
VM

Virtualization Impact on WCET

1

∆𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙(𝑊𝐶𝐸𝑇) = 4.67𝜇𝑠

 Real-time Task Execution Model

 Task Model in Virtualization Context

 Virtualization Impact on WCET

 Real-time Schedulability Analysis

VMM Critical Execution

Maximum: 1.47us
Sample: 1,048,576

∆𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙 = 𝑚𝑎𝑥{∆𝑉𝑀𝑀𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙, ∆𝐷𝑃𝑅𝐶𝑟𝑖𝑡𝑖𝑐𝑎𝑙}

Figure 2.20 – Composition of overall execution time in the virtual machine context,
which is composed by the overheads of response time (ResponseVM) and execution time
(eVM

i).

Moreover, in a real implementation, the quantization issue has to be discussed. Given
that RTOS scheduling is performed according to scheduling ticks, all schedule parameters
such as ei and pi are expressed as numbers of ticks. In practical scheduling, we define the

Summary 75

effective execution time E′
i for Ti, as a number of ticks Θi. This represents the minimal

tick-quantized execution time of EVM
i , as follows :

Θi = dE
VM
i

∆T ick
e

= dE
Native
i + ∆ei

V M + ∆Response
VM

∆T ick
e,

(2.11)

where ∆T ick stands for the schedule tick interval of the RTOS. From our overhead mea-
surement, the cost of ∆Response

VM is estimated to be less than few microseconds. Since an
RTOS normally sets the schedule ticks to several milliseconds, the extra response over-
head for RTOS tasks can be negligible due to the significant timing difference (several
orders of magnitude). The ∆ei

V M cost, on the other hand, depends on the type and work-
loads of tasks. The detailed evaluation and measurement results are given in Section
4.2.

Some researchers also pay attention to the quantization overhead in an RTOS, i.e
the difference between the RTOS execution time based on the number of ticks, and
the physical time. However, since Ker-ONE uses an independent real time timer, the
quantization overheads for virtualized RTOS’s remain the same as in the native situation,
and will then not be discussed in the thesis.

Another interesting issue deals with the schedulability of multiple RTOSs. Currently
Ker-ONE only hosts a single RTOS. With multiple RTOSs run with the same priority
level, RTOS events may not be processed in real-time. Therefore the scheduling strategy
has to change to respect the deadlines of real-time tasks.

2.6 Summary

In this chapter we introduce the details of the Ker-ONE micro-kernel. We first ex-
plained the motivation and scenario of our research, which is intended for small-scaled
embedded systems. Based on this scenario, we have claimed the assumptions and limita-
tions of our micro-kernel, and gave an overall introduction of the kernel architecture.

Then we described the virtualization approach from two aspects. We introduced the
virtualization mechanism for resources of the processor, the floating-point co-processor
and the virtual machine memory space. The major concern of these resources is to pro-
vide secure and continuous maintenance so that virtual machines have consistent and
independent execution environments. On the other hand, in events virtualization, we
pay much attention to the emulation and control of behaviors since they influence the
behavior of virtual machines. We described our emulation policies for virtual interrupts,
timers and IVCs. We also discussed the optimization approach by introducing shared
memory regions. Both pros and cons were fully discussed in this part.

The last part of this chapter focuses on the real-time support of Ker-ONE. We pro-
posed a real-time virtualization mechanism with an independent RT timer and preemp-
tive scheduling. Based on a simplified task model, we have analyzed how our approach

76 Ker-ONE : Lightweight Real-Time Virtualization Architecture

would influence the schedulability of guest RTOS in Ker-ONE. A complete model was
built to express this impact.

In the next chapter, we demonstrate the extension of Ker-ONE, which focuses on
supporting DPR accelerators in virtual machines. We will discuss the problems of DPR
implementation, resource allocation, virtual machine synchronization and software coding
that occurs during the sharing of DPR resources among independent virtual machines.

Chapter 3

Dynamic Management of
Reconfigurable Accelerators
on Ker-ONE

In the last decade, the research on CPU-FPGA hybrid architectures has become a hot
topic. One of the main challenges in this domain consists in efficiently and safely man-
aging dynamic partial reconfiguration (DPR) resources. In this chapter we introduce the
management framework of the reconfigurable accelerators by the Ker-ONE micro-kernel.
Note that one of the strongest motivation of using virtualization is the isolation among
components. Based on this feature, virtual machines access resources independently, be-
ing unaware of the existence of other VMs. The purpose of our framework is to provide
an abstract and transparent layer for virtual machines to access reconfigurable resources.
The underlying infrastructure of partial reconfiguration management is hidden from the
virtual machines, so that the software developers do not need to consider the implemen-
tation details. In this section, we first introduce the hardware platform of Zynq-7000,
including its architecture and reconfiguration features. We then propose a framework
where DPR accelerators are presented as virtual devices, and are universally mapped in
each VM space as ordinary peripheral interfaces. The framework automatically detects
VM’s request for DPR resources and handles these requests dynamically according to
a preemptive allocation mechanism. In this chapter we also address another issue that
is the security when sharing PR resources among VMs. Our framework guarantees that
VMs and DPR modules are exclusively connected, and that DMA accesses are restricted
in isolated VM domains. In the end of this chapter, we will discuss the employment policy
of DPR accelerators for guest OS applications.

3.1 Introduction to the Zynq-7000 platform

The Zynq-7000 family is based on the Xilinx All Programmable SoC (AP SoC) ar-
chitecture. This platform integrates a feature-rich dual-core ARM Cortex-A9 MPCore

77

78 Dynamically Management of Reconfigurable Accelerators on Ker-ONE

Application Processor Unit

ARM ARM

MMU MMU
GIC

DDR
Memory

PL Interconnection

OCM
Interconnection

I/O
Peripherals

IRQ Config

PCAP

AXI-GP x 4 AXI-HP x 4

DMA

PL
PS

2-Level Cache

FPGA Fabric

Figure 3.1 – The overview architecture of Zynq-7000 ARM-FPGA hybrid platform.

based processing system (denoted as PS) and Xilinx programmable FPGA fabric logic
(denoted as PL) in a single device. ARM CPUs are the heart of the PS which also in-
cludes on-chip memory, external memory interfaces, and a rich set of I/O peripherals.
The PL includes mainly the FPGA fabric which can be completely reconfigured or used
with partial, dynamic reconfiguration (PR). PR permits the configuration of a portion of
the PL. This enables optional design changes such as updating coefficients or the time-
multiplexing of PL resources by swapping in new algorithms as needed. This capability
is analogous to the dynamic loading and unloading of software modules.

In Figure 3.1, we present the architecture of this hybrid platform with the functional
blocks of the system. The PS and the PL are on separate domains, being connected with
various interfaces and signals. The PS part includes mainly the Application Processor
Unit (APU), the on-chip DDR memory, I/O peripherals (IOP) and interconnections,
whereas the PL side consists of the FPGA fabric and PS/PL interfaces.

3.1.1 PS/PL Communication

The Zynq-7000 device builds up the communication bridge between PS and PL by im-
plementing several types of interfaces which are based on a standard AXI protocol. These
AXI interfaces are implemented with different features, providing various communication
options. Three types of AXI interfaces are provided in our platform :

– AXI General-Purpose Interfaces(AXI-GP) is directly connected to the PS-
PL interconnection net and is general-purpose. It is aimed to provide simple com-
munication between PS and PL, and is not intended to achieve high performance.

– AXI High-Performance Interfaces(AXI-HP) provides PL bus masters with

Introduction to the Zynq-7000 platform 79

high bandwidth datapaths to the system memories. Each interface includes two
FIFO buffers for read and write traffic. It can be programmed as 32-bit or 64-bit
to perform high-speed data exchange between PL and PS parts.

– AXI Accelerator Coherency Port(AXI-ACP) is a 64-bit AXI interface that
allows the PL to access the CPU L2 cache while maintaining memory coherency
with CPU L1 caches. This interface is mostly used in computations where software
and FPGA accelerators are closely connected.

In Table3.1, we present the technical details of three AXI interface types. We can
notice that AXI interfaces can be implemented as bus masters or slaves on both PL or PS
side. Most interfaces, i.e. AXI-HP and AXI-ACP, support only master modes on the PL
side, meaning that the FPGA is granted to access to system memory implicitly. The only
way that enables PS to access PL directly is through the AXI-GP interface, which is quite
essential to control FPGA accelerators. As shown in Figure 3.2, the accesses on AXI-GP
are led via the OCM interconnection, which are implemented as a unified memory space
for MMU. Thus, through AXI-GP, the CPU regards PL as physical memory space. A
reserved address space, 0x40000000 to 0xBFFFFFFF, is allocated to AXI-GP accesses.
Within this domain, a user is free to map PL registers into physical addresses, which
will then be managed by the MMU. Ker-ONE leverages this feature to create isolated
accelerator domains for virtual machines, which will be introduced in later sections.

Table 3.1 – Technical details of the AXI interface
AXI Type Num Mode(PL side) Throughput Width Usage
AXI-GP 4 2 Master, 2 Slave 600MB/s 32-bit Simple access
AXI-HP 4 4 Master 1200MB/s 32/64-bit Burst data transfer

AXI-ACP 1 1 Master 1200MB/s 32/64-bit
Burst transfer with
cache coherency

ARM

MMU

OCM
Interconnection

AXI-GP

0x40000000

0xBFFFFFFFPage Table

FPGA

Physical Address
Mapping

Address Space

Figure 3.2 – The physical address mapping of PL resources via the AXI-GP interface.

80 Dynamically Management of Reconfigurable Accelerators on Ker-ONE

3.1.2 Partial Reconfiguration

With the partial reconfiguration (PR) technology, the FPGA fabric on the Zynq-
7000 device can be partially reconfigured at run-time while the rest of the logic continues
running. PR occurs in a reconfigurable partition (RP), which is an independent recon-
figurable region that is divided into areas via partitioning. An RP is often denoted as
partial reconfiguration region. Each RP is composed of several frames, which are the
smallest reconfigurable regions within an FPGA device. Frames may contain different
logic resources,such as Look-Up Tables (LUTs), Digital Signal Process(DSPs) or RAMs.
The logic of an RP is determined by a Reconfigurable Module (RM), which is the netlist
or an HDL description that is implemented when instantiated in an RP. There may be
multiple RMs for one RP. Other FPGA logical elements that are not part of a Recon-
figurable Partition are denoted as static logic. These logical elements are never partially
reconfigured and are always active when RPs are being reconfigured.

Synthesis

Frame

Reconfiguration
Partition

Static Logic

Config

PCAP

Reconfiguration
Module

Hardware Algorithm
(VHDL / IP)

Bitstream

FPGA Fabric

FPGA
Partitioning

Xilinx Tools

Creating
Partitions

Figure 3.3 – The partial reconfiguration technology on Xilinx FPGA.

The RP regions in FPGAs are determined before the system get launched, and cannot
be modified during execution unless re-implementing the whole fabric. Targeted hard-
ware algorithms and logic on each RP have to be implemented as Reconfigurable Modules
which will then be translated into actual configuration information such as a netlist. Xil-
inx development software tools such as PlanAhead and Vivado are in charge of creating

DPR Management Framework 81

Reconfiguration partitions, synthesizing RMs and generating configuration files as bit-
stream files. Note that the size of a bitstream is solely determined by the RP, and varies
depending on the amount and type of resources used by this RP. It does not depend
on the actual algorithm which means that different algorithms RMs on the same RP
may end up with identical bitstream size. In Figure 3.3, PR technology concepts are
illustrated.

Reconfiguration is performed by downloading bitstream files into the correspond-
ing Reconfiguration Partitions. Two downloading methods are supported on the Zynq
platform. As shown in Figure 3.3, by default, a Processor Configuration Access Port
(PCAP) is implemented in PS. The PCAP is connected to the Device Configuration
Interface (DevCfg), which is a DMA controller. Through the PCAP interface, DevCfg
is enabled to launch bitstream transfers from system memory to PL by commanding
DMA transfers. The advantage of PCAP is that it provides a light API interface for
software, and extensive built-in features to control the reconfiguration, including inter-
rupts and encrypted transfers. Besides, PCAP provides a high transfer bandwidth as
130MiB/s, which is sufficient in most scenarios. Bitstreams can also be downloaded via
Internal Configuration Access Port (ICAP), which is a more traditional technology from
earlier Xilinx products, e.g the Virtex family. ICAP is implemented on the FPGA fabric
and allows PL to perform self-configuration from external memories. ICAP can be cus-
tomized to achieve high-bandwidth data transfer, which has been studied in several works
[HGNB10][LKLJ09]. However, ICAP costs extra FPGA resources to get implemented.
Moreover, ICAP lacks the versatility of PCAP which makes it convenient for software
development. In our system, PCAP is used to perform reconfiguration.

3.1.3 Interrupt Sources

As shown in Figure 3.1, PL is able to assert asynchronous interrupt signals to CPUs.
Up to 20 interrupt sources are reserved for PL. These interrupt signals are routed to the
Generic Interrupt Controller, where each interrupt signal is set to a priority level and
managed as a normal interrupt (see Section 2.3.3). However, only PL decides whether
to use these interrupts and the way to use them, which requires custom logic from de-
velopers. The designation of PL interrupts must guarantee that the interrupts can be
manually enabled, disabled and cleared by software.

3.2 DPR Management Framework

To facilitate the application of DPR accelerator on virtualization, Ker-ONE provides a
management framework based on the PR features of the Zynq platform, which is aimed
to dynamically allocate DPR resources for virtual machines at run-time. This section
introduces the proposed framework in a bottom-up sequence. We start with the lower
physical layer of DPR resources, and then move up to describe the allocation mechanism
and the behavior of the software manager. We also discuss HW/SW security issues and
isolation in this framework.

82 Dynamically Management of Reconfigurable Accelerators on Ker-ONE

3.2.1 Framework Overview

In this part, we first present the terminology applied in this thesis. As introduced
in Section 3.1.2, reconfigurable modules (RM) are implemented in pre-determined re-
configuration partitions (RP), by downloading corresponding bitstream files via PCAP
transfer. In our designation, RP is denoted as partial reconfiguration regions (PRR) and
RM is denoted as HW task.

HW tasks provide accelerators for various functions and algorithms. Each function
or algorithm is denoted as a virtual device (VD) and is completely isolated from the
implementation details. Therefore, one specific device can be implemented by different
HW tasks in different PRRs. To better clarify this concept, an example is presented
in Figure 3.4. Let us consider two reconfigurable areas in the FPFA fabric (PRR #1
and PRR #2). In addition , four HW tasks prr1_fft256, prr1_fft512, ppr2_fft256 and
prr2_fft128 are designed to work in PRR #1 and #2 respectively. In this system, three
virtual devices are available : FFT512, FFT256 and FFT128. In this example, the virtual
device FFT256 can be implemented in both PRR #1 and #2, and PPR #1 is able to
host two virtual devices, i.e.FFT512 and FFT256.

PRR #1 PRR #2

prr1_fft256

prr1_fft512

prr2_fft256

prr2_fft128

FFT512 (Dev #1)

FFT256 (Dev #2)

FFT128 (Dev #3)

FPGA

Figure 3.4 – HW tasks and the implementation of virtual devices.

Virtual devices are mapped to the fixed addresses in all guest OS address spaces,
and are considered as ordinary devices. A unified interface, i.e. a standard structure of
registers, is provided to users. Like other peripherals in ARM systems, user software
accesses these devices by reading/writing at the address of the corresponding device
interface. Meanwhile, the physical positions of these virtual devices are not known since
they can be implemented in different PRRs.

Therefore, we have introduced an intermediate PR interface (IF) on the FPGA side,
which can be seen as an intermediate layer between the logical virtual devices and the
actual reconfigurable accelerator modules. These IFs are in charge of connecting the
virtual machines with accelerator modules so that software can control them as peripheral
devices. Each IF is exclusively associated to a specific virtual device. Thus, allocation of
DPR resources is performed in two steps : first, the IF is mapped to the VM address
space as a virtual device interface. Second, on the FPGA side, the IF is connected to the
target PRR that implements the corresponding device function.

DPR Management Framework 83

Page Table

Dev #1

Dev #2

Dev #1

IF (1, 1) IF (1, 2)

Virtual Address
Space

PS

4K Page

Dev #3

Dev #2

Dev #1

Dev #3

IF (1, 3) IF (2, 1) IF (2, 2) IF (2, 3)

Page Table

0xE0130000

0xE0131000

0xE0132000

0xE0133000

PRR #1

Dev #1

PRR #3

VM #1 VM #2

PL

Connected (R/W)

Disconnected (R/O)PRR #2

Figure 3.5 – Allocation of virtual devices for virtual machines via manipulating the
mapping of of IFs.

Figure 3.5 describes how IFs are used to connect virtual devices in the VM space
with PR accelerators. IFs are initiated on the hardware side, whose physical address
are configured to be aligned to independent 4KB memory pages. VMs access IFs via
independent page tables, which maps IFs as memory pages in virtual address space.
Therefore, though a virtual device is mapped to the same virtual address across VMs, in
physical layer it is implemented by using separated IFs in the FPGA.

As shown in Figure 3.5, the mapping between a particular IF and the VM space of
a virtual device is fixed. An IF has two identifiers, vm_id and dev_id (i.e. referred to as
IF(vm_id, dev_id)) to help identify the virtual machine and the virtual device to which
it is associated.

An IF has two states, connected to a certain PRR or unconnected. When an IF is
connected, it is considered that the corresponding virtual device is implemented in the
PRR and that it is ready to be used. Being in the unconnected state means that the
target accelerator is unavailable. Once connected, a virtual machine can control PR ac-
celerators by manipulating IF registers. On the other hand, for unavailable devices (with
an unconnected IF), the IF registers are mapped as read-only pages, and a VM cannot
configure or command this virtual device by writing to its interface. This mechanism
guarantees the monopoly use of PR resource at any time.

We can take Figure 3.5 as an example of this mechanism. In VM#1, an application is
free to program and command Dev #1 as the IF associated with it is currently connected
to PRR #1, where the device accelerator is implemented. Meanwhile, VM #1 cannot
give orders to Dev #2 and #3 since these interfaces are currently read-only. Any writing
on these interfaces will cause a page-fault exception to the VMM, and will help VMM
detect the VM’s request for virtual devices.

One major characteristic of virtualization is that virtual machines are totally isolated

84 Dynamically Management of Reconfigurable Accelerators on Ker-ONE

Inter-connection

Dev #1

PRR #1

PRR Monitor
IF IF

Search
Solutions

Virtual Machine

IF

PRR #2

KER-ONE

VMM

Dev #2 Dev #3 Virtual Device
Manager

IF IF IF

IPC

PRR #3

Request

Return
Solution

Inter-connection

Dev #1

PRR #1

PRR MonitorIF(VM1) IF(VM1)

Search Solutions

VM #1

IF(VM1)

PRR #2

KER-ONE
VMM

Dev #2

Dev #3
Virtual Device

Manager

IF(VM2) IF(VM2) IF(VM2)

IPC Channel

PRR #3

Request

Return Solution

VM #2

Dev #1

Dev #2

Dev #3

VM 1

VM 2

Dev #1 Dev #2 Dev #3

Figure 3.6 – Overview of the DPR management framework in Ker-ONE.

from each other. In our system, VMs are also completely isolated from PR accelerators.
This can obviously lead to resource sharing issues that are well known in computing
systems. In traditional OS, such problem can be solved by applying synchronization
mechanisms such as semaphores or spin-locks. For Ker-ONE however, such mechanisms
are not suitable since they may undermine the independence of VMs. Therefore, our
system introduces additional management mechanisms to dynamically handle virtual
machines’ request for PR resources. Note that such requests can occur randomly and are
unpredictable.

In Figure 3.6 the proposed management framework is described. A Virtual Device
Manager and a PRR Monitor component are made available in both software and hard-
ware parts of the FPGA. The Virtual Device Manager is a particular software service
implemented in an independent virtual machine domain. It automatically detects the
requests coming from virtual machines that want to use the virtual devices, and han-
dle these requests by allocating DPR resources. The inter-communication is performed
through the IPC mechanism on Ker-ONE. In the static part of the FPGA, a PRR Mon-
itor is created and is in charge of maintaining the connections between IFs and PRRs.
This monitor runs concurrently with software to dynamically monitor reconfigurable ac-
celerators and search for available solutions of PR requests. It communicates with the
Virtual Device Manager synchronously with dedicated interface and interrupts.

3.2.2 Hardware Task Model

HW tasks are associated with PRRs. Hence, there may be several HW tasks im-
plementing the same algorithm (i.e. virtual device), targeting different PRRs. In this

DPR Management Framework 85

prr1_dev1 null null

prr1_dev2 prr2_dev2 null

prr1_dev3 prr2_dev3 prr3_dev3

prr1_dev4 prr2_dev4

PRR #1

Dev #1

Dev #2

Dev #3

Dev #4

PRR #2 PRR #3
HW task descriptor

Bitstream Address

Bitstream Size

HW task ID

Compatible Incompatible

prr3_dev4
Reconfig. Overhead

Figure 3.7 – HW task index table with HW task descriptors.

Device Interface
Address Page

PR
Accelerator

Ports
IF

Inter-
connection

PR accelerator interface

Figure 3.8 – Implementation of the PR accelerator interface for virtual devices.

case, a given PRR may not be compatible with some virtual device, if its area (i.e. re-
source amount) is insufficient to implement the corresponding function. Therefore, the
compatibility information of HW tasks must be initialized beforehand.

As listed in Figure 3.7, an HW task index table is created to provide a quick look-up
search for HW tasks. In this table the compatible virtual devices for each PRR are listed.
For each compatible virtual device, a HW task descriptor structure is given, which holds
the information of the corresponding bitstream file, including its ID, memory address
and file size. This information is used to correctly launch PCAP transfers and perform
reconfiguration. This table also holds the reconfiguration overheads of each HW task,
whose values can be precisely estimated via previous measurements.

Virtual machines access HW tasks via IFs. We proposed a standard interface to
facilitate the multiplexing of PR modules, denoted as PR accelerator interface. The im-
plementation of this interface is shown in Figure 3.8. It is included in both IFs and HW
tasks, and conveys the register values from the IF to HW tasks. Once the IF is connected
to an HW task, a virtual machine can write commands or configurations into the IF
registers to control the HW task behavior.

In Table 3.2 the structure of the PR accelerator interface is listed. Virtual machines
start the process by setting the START flag. When the required computation is over,
the OVER flag is set and the result is returned in the RESULT register. HW tasks can
be programmed to perform DMA data transfers via the AXI-HP interface to exchange
massive data with VM memory. PL Interrupts can also be generated to acknowledge

86 Dynamically Management of Reconfigurable Accelerators on Ker-ONE

Table 3.2 – List and description of ports in PR accelerator interface.

Register Width Description

STAT 32-bit HW task status register
START 8-bit Start flag
OVER 8-bit Over flag
CMD 32-bit Command register
DATA_ADDR 32-bit Data buffer address register
DATA_SIZE 32-bit Data buffer size register
RESULT 64-bit Computation result register
INT_CTRL 32-bit Interrupt controller register
Custom Ports 8*32-bit Provide 8 IP-defined ports

critical events to VMs, like errors or completion. From Figure 3.8, we should note that a
PR accelerator interface structure of registers is implemented in IF. When an accelerator
is disconnected with a PRR, the states of virtual device execution (e.g. results, status)
are still stored in this structure in IF, so that the VM can restart from the interrupt
point of the virtual device when it gets re-allocated. In this way, the consistency of the
virtual device interface is guaranteed.

The VMs that are currently using HW tasks are denoted as clients. HW tasks inherit
the priorities of VM clients. We use preemptive policy for HW tasks, meaning that the
HW task corresponding to the low-priority VMs can be forced to stop and get replaced
by the desired HW task corresponding to the VM of higher priority.

This raises another issue that is data integrity. A running HW task cannot be stopped
or preempted at any time, otherwise it may cause a loss of data consistency. For example,
in some algorithm there exists unbreakable execution paths. Therefore, the designers
of HW tasks have to provide the points in the code where their execution may stop.
Moreover, these points must allow the HW task to be fully resumed from the same point
of interruption. These points are denoted as consistency points.

To summarize, the designation of HW tasks or accelerator modules must fulfill two
requirements : to feature a compatible interface with the unified PR accelerator inter-
face, and to consist of a preemptive algorithm with consistency points pre-defined in its
execution path.

3.2.3 PRR State Machine

A PRR houses HW tasks to implement different devices. Such a region can be al-
located to a VM as a virtual device by connecting it to the corresponding IF. The
allocations are performed by the Virtual Device Manager and the PPR Monitor, and
can be performed in different ways : direct allocation and preemption. If the required
device is not implemented in the allocated PRR, a PCAP transfer will be launched for
reconfiguration.

DPR Management Framework 87

Table 3.3 – Contents of the PRR descriptor data structure.

Contents Description

STAT Current state of PRR
VM_ID VM that is currently using PRR
DEV_ID Device that is currently implemented
PRIO Priority of the client VM
RCFG_DELAY Reconfiguration overhead

Idle

Reconfig.

Busy

Hold

Preempt
Start

Over

StartPCAP
Begin

PCAP Over

PCAP Begin

Stop

Reach
consistency points

Allocate
PRR

Client VM Scheduled
or Timeout

Figure 3.9 – The behavior of PRRs as a state machine.

The essential information of a PRR is stored in the PRR descriptor data structure,
which consists of the contents of Table 3.3. Note that, in the DPR technology, the
bitstreams size is strictly determined by the size of the reconfigurable area. Considering
that the PCAP bandwidth is fixed, the reconfiguration time overhead of HW tasks, i.e.
the download time, can be predicted. In our framework, the reconfiguration overheads
RCFG_DELAY are used to indicate the size of the PRR area in the FPGA.

In our system, PRRs run as a state machine with five states :

– Idle : The PRR is idle without any ongoing computation and is ready for allocation.

– Busy : The PRR is in the middle of a computation

– Preempt : The PRR is running, but the computation will be stopped (preempted)
once it reaches a consistency point.

– Hold : The PRR is allocated to a VM and is preserved for a certain amount of
time

– Reconfig : The PRR is in the middle of a PCAP reconfiguration.

The PRRs behaviour can be described according to the flow chart given in Figure
3.9. As depicted, a PRR can only be directly allocated to VMs when it is in Idle state
and requires no reconfiguration. In other situations, the allocation process requires extra
overheads caused by PCAP transfer or preemption. In virtualization, this will cause the
VM requests and PRR allocations to be asynchronous. Let us imagine that we allocate
PRR #1 to VM #1 via reconfiguration, and the PCAP transfer is performed in parallel

88 Dynamically Management of Reconfigurable Accelerators on Ker-ONE

with software. Then, VM #1 gets scheduled out before the PCAP transfer completes and
can only start to use the allocated device when it gets scheduled again. In this case, there
is a risk for PRR #1 to be re-allocated to another VM before VM #1 gets scheduled,
and that VM #1 could never use the requested PRR #1.

To solve this problem, we have introduced Hold as a special intermediate state. The
PRRs that are allocated to a VM will firstly enter this state. This indicates that the PRR
is reserved to a certain VM client. PRRs in the Hold state will block any re-assignment
and will wait to be used by the VM. PRRs will be released and return to the Idle state
under two conditions : the target VM is scheduled into the CPU, or the pre-set waiting
time Expire runs out.

In this case, the time Expire parameter determines how long an allocated accelerator
should wait before it gets aborted. The value of Expire should be configured out of
the experience of experiments, and is related to the VMM scheduling policy and the
granularity of HW tasks. For instance, in a system where virtual machines are frequently
scheduled, the Expire parameter should be relatively small, so that the DPR resources
are more flexible. In our system, the value of Expire is set to be 50 ms.

3.2.4 PR Resource Requests and Solutions

Each time that a VM tries to use an unavailable virtual device, an exception will
be triggered and then handled by Virtual Device Manager as a PR resource request :
Request (vm_id, dev_id, prio), which is composed of the VM ID, the virtual device ID
and a request priority. The request priority is equal to the priority of the calling VM.

This request is posted to the PPR Monitor on the FPGA side to search for an
appropriate allocation plan. This plan is referred as a solution. A complete solution is
formatted as :

Solution{vm, dev,Method(prr_id), Reconfig}, (3.1)

which includes the target VM, the required device, the actual allocation method and
reconfiguration flag. The different methods include :

– Assign (prr_id) : this solution directly allocates the returned PRR (i.e. prr_id)
to the request VM. If the requested device dev_id is not implemented in this PRR,
a Reconfig flag will also be added.

– Preempt (prr_id) : this solution means that no PRR can be directly allocated, but
the returned PRR (i.e. prr_id) can be preempted and re-allocated. If the requested
device dev_id is not implemented in this PRR, a Reconfig flag will also be added.

– Unavailable : this state means that currently no PRR is available for Request
(vm_id, dev_id, prio).

The PPR Monitor searches for the best solution by checking the PRR descriptors
(see table 3.3). The searching routine is described in the flow given in Figure 3.10.
For a given Request (vm_id, dev_id, prio), the PRR Monitor first obtains the list of
compatible PRRs for the target device (dev_id) by checking the HW task index table in

DPR Management Framework 89

Find compatible PRRs

Request (vm_id, dev_id, prio)

Exist

Select PRR
 (Low FPGA Area)

Device exist?

Check lower priority
Busy PRR

Return:
 { Method (prr), Reconfig. flag }

Yes

No

Set Solution = Assign

Set Reconfig. flag

Exist

Set Solution = Preempt

No exist

Check Idle PRR

Exist

Return: Unavailable

No exist

Selecting

Policy

Select Low FPGA Area

Device exist?

Return: { Method (prr), Reconfig. flag }

Yes

No

Set Solution = Assign

Set Reconfig. flag

Return:
Unavailable

No exist

Find compatible PRRs

Request (vm_id, dev_id, prio)

Check Idle PRR
Check lower priority

Busy PRR

Assign
available?

Set Solution = Preempt

Solutions

Yes

No

Figure 3.10 – The solution searching sequence and the selecting policy for solutions in
the PRR Monitor logic.

Figure 3.7. The states of these compatible PRRs are then checked for possible solutions. If
multiple solutions are found, the best one is chosen according to the selecting policy. This
decision-making algorithm is based on the application scenario, and can include various
factors. In our algorithm, Idle PRRs are considered to be best solutions. Preemptions are
chosen only when no Idle PRR exists. Besides, the selector always chooses the solution
with a minimal reconfiguration overhead since it means a faster device response and a
lower power consumption. However, these policies can be easily modified and adapted.

Figure 3.11 depicts the interaction between the PPR Monitor and the Virtual Device
Manager. Normally the selected solution is sent to the Virtual Device Manager for further
handling. However, if there is no valid solution (i.e. Unavailable), this unsolved request
will be added to the search list, which is a waiting list of all unsolved requests. PPR
Monitor keeps searching solutions for requests in this list, and acknowledges the Virtual
Device Manager whenever a new solution is found. The searching runs in parallel with
VMs, following priority-based FIFO principle, so that when a requests conflict occurs,

90 Dynamically Management of Reconfigurable Accelerators on Ker-ONE

PRR Descriptor
Table

Search List

PRR Monitor

Search
Solution

Virtual Device Manager
Reschedule

Unavailable
Request

Valid Solution

Micro-kernel

IRQ (New Solution)

PR Regions

Request

HW Task index
Table

Figure 3.11 – The interaction between the PPR monitor and the Virtual Device Manager
to search for appropriate allocation solutions.

the PPR Monitor always chooses the highest priority request.
An important issue about the preemption mechanism of accelerators is that it may

influence the scheduability of VM tasks. Since the priority of requests is equal to the VM
priority, which makes it possible that a high-priority RTOS task can be blocked by low-
priority task. This problem can be fixed by using a more sophisticated scheduling policy
of HW tasks, for example, using "sub-priority" to indicate the task priorities in order to
avoid the priority inversion/blocking issues of RTOS tasks. However, such a mechanism
will significantly increase the complexity of scheduling algorithm of multiple HW tasks
on multiple PRR containers. The preemption of HW tasks is unlike software ones, since
their stopping and reconfiguration tasks extra overheads (sometimes quite big). All these
factors will introduce high complexity in the real-time schedule for VM users, since the
task execution in such a system is quite difficult to predict beforehand. Therefore, to
keep the behavior of critical tasks predictable, we assume that the FPGA resources are
always sufficient for the high-priority VM, whereas they can also be shared and reused
by low-priority VMs. This assumption seems reasonable in practice, since critical tasks
are pre-determined in most embedded systems.

3.2.5 Virtual Device Manager

The Virtual Device Manager is a special service provided by Ker-ONE. As previously
described, this service runs in an independent VM and communicates with other VMs
through the IPC channel. It has a higher priority than guest OSs and can preempt them
once it gets scheduled (see Section 2.5.1). After its execution, it suspends itself and the
VMM resumes the interrupted VM immediately.

The Virtual Device Manager stores all the HW tasks in its memory and is the only
component that can launch PCAP reconfigurations. The main task of this manager is :
(1) to communicate with VMs and manage the virtual devices in their space ; (2) to

DPR Management Framework 91

Dev #1

IF (1,1) IF (2,1)

Virtual Device

Manager

R/W

OS

R/O

PRR #1

PRR Monitor

OS

Request (vm01, dev01, prio01)

(a) IF_Disconnect

PRR descriptor Table

(a)

(c)

(d)

(b)

(e)

(a) Clear PRR Descriptor

(c) Update PRR Descriptor

Hyper-call

VM #2 DEV #1 PRIO #1

VM #2 DEV #1 PRIO #1

VM #2 DEV #1 PRIO #1

PRR1

PRR2

PRR3

VM #1 DEV #1 PRIO #1

(c) IF_Connect

Figure 3.12 – Execution flow for solution {assign(prr01), non-Reconfig} to directly
allocate PRR #1 to VM #1.

correctly allocate PR resources to VMs.
When a virtual device is unavailable, the corresponding IF is not connected to any

PRR and its address is set as read-only. Any writing operations on this address will trap
to a VMM as a page-fault exception. We assume that, in order to command a virtual
device, a VM always needs to configure the device interface in the IF. In this case, any
VMs’ attempt to use unavailable virtual devices will be detected by the VMM, and then
passed to the Virtual Device Manager.

Since the virtual devices are pre-determined and identically mapped in all VM virtual
address spaces (see Figure 3.5), it is easy to identify the target device by simply checking
the page-fault address. Then this exception is translated into the Request (vm_id, dev_id,
prio) format and is used to search solutions. The Virtual Device Manager allocates PR
resource to VMs according to different solutions.

The allocation/ de-allocation of PR resources are realized by manipulating IF connec-
tions and VM page tables. In Figure 3.12, we have depicted the complete flow to allocate a
PRmodule to VM as a virtual device. In this example, after a givenRequest(vm01, dev01, prio01)},
a solution {Assign (prr01), non-Reconfig} is performed. We assume that PRR #1 is pre-
viously used by VM #2 and currently in Idle state and can be directly re-allocated. First,
de-allocation of PRR #1 is performed in step (a) and (b). Then, allocation is performed
by re-connecting PRR #1 with VM #1 using IF_Connect in (c) and (d). The details of
steps are as following :

1. Command IF_Disconnect is given to the PRR Monitor to disconnect the IF of

92 Dynamically Management of Reconfigurable Accelerators on Ker-ONE

VM #2. Meanwhile, the corresponding PRR descriptor entry is cleared.
2. A hyper-call is used to set the no-more-available device interface as read-only in

VM #2’s page table.
3. Using IF_Connect to connect PRR to the IF of VM #2. With this command, PRR

Monitor also updates the PRR descriptor entry with the new client VM #2.
4. Another hyper-call is used to change VM #1’s dev01 interface as read-write.
5. Virtual Device Manager suspends itself. The VMM resumes VM #1 to the excep-

tion point and VM #1 continues to use this device.
For a guest OS, the ideal solution is {Assign, non-Reconfig}, because a PRR can be

allocated immediately as shown in the previous example, and the allocation is totally
transparent. On other non-immediate solutions which requires reconfiguration or pre-
emption, or when there is no valid solution, the target device is not ready or preempted.
This influences the execution of VM software and must be acknowledged by releasing
IPC messages (see Section 2.3.3), and must be properly handled at the VM side. There
are currently three types of messages :

– IPC_WAIT (dev_id) : This IPC is released to the VM that generates a request
when the PRR cannot be immediately allocated.

– IPC_READY (dev_id) : This IPC is released in pair with IPC_WAIT, indi-
cating that the earlier unavailable device is now ready for use.

– IPC_PREEMPT (dev_id) : This IPC is released when a running PRR is
preempted. It informs the former client VM that its virtual device has been stopped.

The first-step handling of solutions is performed by the run_solution() function,
which is called from the main function of the Virtual Device Manager. In Listing 3.1
we demonstrate the pseudo code of this function. This function is called with a Solution
structure as the argument and returns the allocation results. If the PRR resource is not
successfully allocated, a signal IPC_WAIT (dev_id) will be sent to the requesting VMs.

Listing 3.1 – Pseudo code of solution handling process
1 /* Virtual Device Manager Main function */
2 int VDManager_Main (){
3 Solution s;
4 ...
5 s = search_solution(VM_ID , Dev_ID , Priority);
6 if(Run_Solution (&s))
7 send_IPC_WAIT(VM_ID , Dev_ID);
8 ...
9 }

10

11 /* Run_Solution(Solution *)
12 * Argument: Solution{VM_ID , Dev_ID , PR_ID , Method , Reconfig}
13 * Return: 0 (Success), 1 (Wait)
14 */
15 int Run_Solution(Solution *s){
16 HWTask_Descriptor *HW_Task;
17

18 switch(s->Method){

DPR Management Framework 93

19

20 /* Method.unavailable means no appropriate PR for now.
21 * Request is suspended until a solution is found by PR controller. */
22 case unavailable:
23 return 1;
24

25 /* Method.assign means to assign an IDLE PR to IF:
26 /* (1) If need reconfiguration: Launch PCAP Transfer and Return 1 (WAIT)
27 /* (2) If don ’t need reconfiguration: Connect PR with current IF */
28 case assign:
29

30 IF_Disconnect(s->PR_id); // Disconnect target PR from previous IF
31

32 if(s->Reconf == true){
33 HW_Task = HWTaskIndexTable[s->PR_id][s->DevID];
34 if(PCAP_Launch(HW_Task ->Bitsream_Addr , HW_Task ->Bitsream_Size))
35 print ("PCAP Error! \n\r");
36 PRR_STATE_RCFG_SET(s->PR_id);
37 return 1; }
38 else{
39 IF_Connect(s->VM_ID , s->Dev_ID , s->PR_id);
40 ClearSolution(s);
41 PRR_STATE_HOLD_SET(s->PR_id); }
42 break;
43

44 /* Method.preempt means to preempt low -priority non -IDLE PR:
45 * 1) Give STOP command to PR Controller
46 * 2) Return 1 (WAIT) */
47 case preempt:
48 PR_STOP(s->PR_id);
49 return 1;
50

51 case nonvalid:
52 default:
53 panic (" ERROR: Undefined Solution Method! \n\r");
54 }
55

56 return 0;
57 }

From the process shown in Listing 3.1 we can notice that Virtual Device Manager
cannot complete non-immediate solutions in one-shot execution, since it needs to wait
for the completion of reconfiguration or preemption to make further operations. So it
saves the unfinished solutions, and gives the CPU time back to guest OSs by suspending
itself. Meanwhile, the PRR Monitor keeps tracking these solutions on the FPGA side
and delivers interrupts in the following cases :

– IRQ_New_Solution : A new solution is found in the Search List and is returned
to Virtual Device Manager.

– IRQ_PCAP_Over : The PRR reconfiguration is complete and it is ready to
use.

– IRQ_PRR_Stop : A running PRR has been preempted and is ready for re-
allocation.

Whenever these IRQs trigger, the VMM reschedules the Virtual Device Manager imme-

94 Dynamically Management of Reconfigurable Accelerators on Ker-ONE

Run Solution

Launch
PCAP

Assign (prr_id)Preempt (prr_id) Unavailale

De-allocate PRR

Reconfig.
Flag?

Allocate PRR to VM

Suspend

IPC_WAIT
(dev_id)

Suspend

IRQ_PCAP_Over

Allocate PRR to VM

IPC_READY
(dev_id)

Suspend

Preempt PRR

IPC_WAIT
(dev_id)

Suspend

Change Solution as
Assign(prr_id)

IRQ_PRR_Stop
(vm, dev, prr)

IPC_WAIT
(dev_id)

Suspend

IRQ_New_Solution
(Solution)

Acknowlege
Preempted VM

IPC_PREEMPT
(dev_id)

Solution = {vm_id, dev_id, Solution (prr_id), Reconfig}

PL Interrupt
IPC to VMs
IRQ Handler

Preempting

Reconfiguration

Figure 3.13 – The process of Virtual Device Manager handling Solution {vm_id, dev_id,
Method (prr_id), Reconfig}.

diately to handle them.
In Figure 3.13 we demonstrate the process of solution handling in the Virtual De-

vice Manager. The routine is composed of one main function Run_Solution() and several
interrupt handlers. We can notice that preemption and reconfiguration solutions are per-
formed in two stages : (1) the main function Run_Solution() launches the reconfiguration
or preemption and then goes to sleep, (2) the Virtual Device Manager is awakened by
IRQs and completes the solution in the interrupt routine service. Note that, in the pro-
cessing of the Preempt solution, the manager first stopped the target accelerator, and
then handles re-allocate this PRR to the target virtual machine by starting a typical
Assign solution by calling Run_Solution(). This is because after preemption, the target
PRR can be considered as an idle allocatable component.

3.2.6 Security Mechanisms

The strong isolation among virtual machines is one of the most essential features of
virtualization, which guarantees the security of each component. The sharing of DPR
accelerators may undermine the system isolation since it increases the attack surface of
a virtual machine. A compromised OS may try to use accelerators of another VM, or

DPR Management Framework 95

try to leverage its accelerators to attack other VM domains. In this part we discuss the
potential security threats and propose our solutions.

To protect the isolated environment of a virtual machine, it is mandatory to follow
two principles : first, one accelerator can be shared by any VM, but should be exclusively
used once it is dispatched to a specific guest OS. Second, accelerators should only access
the memory region of the VM which is currently using it. Accessing a memory space
outside the specific section is forbidden.

The solution for the first challenge is addressed by the allocation mechanism we
described. During the allocation, the Virtual Device Manager manipulates the page tables
of VMs to guarantee that a VM and a PRR are exclusively connected, so that a VM is
only permitted to access the DPR resource that is allocated to it.

Meanwhile, the protection of memory space requires extra mechanisms. In classic
virtualization systems, the separate execution environment relies on the MMU, which
automatically controls accesses from different privilege levels and blocks illegal access.
Isolated memory spaces are ensured by managing the page tables (see Section 2.2.3).
However, considering that the Zynq-7000 provides AXI-HP interfaces as bus master on
the PL side, the FPGA accelerators can directly access physical CPU memory without
going through MMU (see Figure 3.1), which means that it is impossible to monitor
and control the FPGA access via the page table mechanism. There is a risk that the
accelerator accesses other VM domains or even the micro-kernel domain to attack the
system.

Therefore, we created a custom unit, denoted as the hardware memory management
unit (hwMMU), to monitor any access to the CPU memory. hwMMU creates a memory
region table to store the physical memory regions of each VM. This table is initialized
during the start-up stage of system. Whenever a PR accelerator attempts to access the
CPU memory via AXI-HP, hwMMU checks the target address according to the memory
region table, and any access outside the current client VM domain will be rejected. This
mechanism guarantees that DPR accelerators are strictly constrained in a determined
VM domain, and are isolated from other parts of the system.

In Figure 3.14 we demonstrate the secure environment when virtual machines use
PR accelerators. Each virtual machine and its PR resources are logically and physically
isolated, guaranteeing the system safety.

3.2.7 Initialization Sequence

In our framework, DPR management is an optional feature of the Ker-ONE micro-
kernel. Users can choose this option when PR resources are shared among virtual ma-
chines. The Virtual Device Manager is an independent loadable module which will be
launched as a user-level process when the DPR management feature is enabled.

Ker-ONE creates a high-priority virtual machine to host Virtual Device Manager.
Bitstreams of PR modules are generated beforehand via Xilinx synthesis tools and stored
in a dedicated region of system memory. This memory region is exclusively mapped in
the memory space of Virtual Device Manager during the launching stage. Because of

96 Dynamically Management of Reconfigurable Accelerators on Ker-ONE

PR
Accelrator

VM #1

hwMMU

VM Memory Region

1 Physical domain 1

2 Physical domain 2

3 Physical domain 3

IF

DMA
Address

AXI-HP

Permission

Physical Memory

Checking

DMA

PRR Descriptor
Table VM ID = 1

Isolated Domain

Figure 3.14 – The isolated execution environment of virtual machine and its allocated
PR accelerator.

higher priority, Virtual Device Manager starts initialization before other guest OSs, and
suspends itself after the boot-up stage is over. This stage follows the sequence below :

1. Ker-ONE schedules the Virtual Device Manager to boot up.

2. Initialization of the PCAP and DevCfg for DMA transfers.

3. Initialization of the HW task index table to load information of bitstream files, i.e.
compatibility, IDs, addresses, sizes, configuration overheads. (see Figure 3.7)

4. Hyper-calls to create memory mapping to the bitstream memory region so that
these files are available.

5. Hyper-calls to create page mapping to the interface of PRR Monitor registers.

6. PRR Monitor command to initialize PL logic.

7. Initialization of the memory region table in hwMMU with physical memory domains
of guest OSs.

8. Initialization of interrupts (IRQ_New_Solution, IRQ_PCAP_Over, IRQ_PCAP_Stop)
and their handlers.

9. Hyper-call to suspend itself and reschedule. Other virtual machines are rescheduled
to execute.

3.3 Application of Virtual Devices

With our framework, coding is significantly simplified for software applications to
use virtual devices. From their point of view, the use of virtual devices is performed by
a series of write/read operations on the interface registers as ordinary devices. Though

Application of Virtual Devices 97

the access of PR resources are transparent for user applications, it still requires extra
mechanisms from the OS kernel that deal with special situations such as unavailable or
preempted devices. In this section, we discuss the policies followed by guest OSs when
using PR resources and give some practical advises for software developers.

3.3.1 Virtual Device Blocking

In user tasks, an exception will be generated on the first writing instruction on un-
available virtual devices. In an ideal situation, the interrupted virtual device would imme-
diately be allocated and the task would continue from the interrupted point seamlessly.
However, it is also possible that the virtual device would currently be not ready and that
an IPC signal IPC_WAIT would be sent back. In this case the usage of virtual device
should be suspended until IPC_READY is received.

From Section 2.3.3, we know that IPC signals are sent to virtual machines as inter-
rupts. One appropriate policy for guest OS is to handle these interrupts by blocking/un-
blocking the involved tasks. In simple OSs, this policy can be simply implemented by
leveraging the synchronization mechanisms such as semaphores.

ISR (IPC_WAIT)

Task A:
{
 ...
 Setup_Parameters();
 Start_Device();

}

Current TCB
SemPend(Dev_id)

OS_Sched();

SemPost(Dev_id)
OS_Sched();

Sem_Dev[Dev_id]

Binary Semaphore
(Init N=0)

ISR (IPC_READY)

Figure 3.15 – An example in which the µC/OS-II guest uses a binary semaphore to
handle the IPC signals.

In Figure 3.15, we demonstrated our approach on a simple µC/OS-II as an exam-
ple solution. Initially, each virtual device is allocated a semaphore with initial value 0.
Imagine that an IRQ IPC_WAIT is received during the executing of a task, indicating
that this task is trying to use an unavailable virtual device. In the ISR process, we use
a slightly-modified semaphore-pending function to block the current task by getting the
corresponding semaphore from the semaphore list according to the unavailable device
ID. This task will be kept blocked until an IRQ IPC_READY with the same device ID
is received. In this case, the ISR will post the semaphore and resume the earlier blocked
task, so that its operation on the virtual device can continue.

3.3.2 Virtual Device Preemption

Another issue caused by the PR resource virtualization is the preemption of virtual
devices. Recall that PR accelerators can only be stopped when they reach the consistency

98 Dynamically Management of Reconfigurable Accelerators on Ker-ONE

points, which depends on the types of computation. For algorithms that perform a single-
shot computation, e.g. image filtering and video encoding, these processes cannot be
interrupted during their execution. Software tasks using these algorithms will not be
influenced. Even though their devices are re-allocated to other VMs, the execution results
are guaranteed.

The situation becomes much more complex when the computation of a given acceler-
ator is preemptive, i.e. with valid consistency points. The complete computation process
may be broken into several stages when it gets preempted in the middle. This algo-
rithm could be continuous, where software begins the computation and sleeps until some
event occurs. Normally users expect that this type of computation keeps running in the
background and therefore the preemption is unpredictable.

To react to the preemption of these devices, the OS kernel must provide a mechanism
to re-launch the stopped device as soon as possible. This policy requires a task that is
responsible for detecting the preemption (via IPC_PREEMPT) and for restarting it.
This dedicated task should resume the computation according to the execution results
and the status that is stored in IF registers.

Task R:

While(1)
{
 Get_Parameters ();
 Restart_Device ();
 OSTaskSuspend (TaskR):
}

OSTaskResume (TaskR)

ISR (IPC_Preempt)

Request for
Virtual Device

Virtual Device
Manager

Figure 3.16 – An example that Guest µC/OS-II handles the preemption of virtual
devices by calling a dedicated task to re-launch the interrupted computation.

In Figure 3.16 we present another example of a µC/OS-II guest dealing with the
preemption of a PR accelerator. A dedicated task is created to restart the interrupted
accelerator. When an IRQ IPC_PREEMPT arrives, the ISR resumes this task, which,
without doubt, will cause an allocation request to the Virtual Device Manager. This
task will be suspended again after the accelerator is re-allocated and the computation is
re-launched.

The policies that we introduced previously imply that a guest OS requires modifica-
tions to provide additional features about virtual devices, including IRS and dedicated
tasks. Considering that the purpose of our research is to isolate users from the details of
low-layer PR implementation as far as possible, we suggest a software structure for guest
OS kernels, where the involved modifications are implemented as a patch package. These
modification are kept invisible to the user applications, so that software development can
be simplified.

Summary 99

3.4 Summary

In this chapter we have introduced a framework which facilitates the DPR resource
management for virtual machines on top of the Ker-ONE micro-kernel. Our framework
is intended to provide a highly-abstracted, transparent program interface to access re-
configurable accelerators.

To this purpose, in each virtual machine, PR accelerators are mapped as universally-
addressed peripherals, which can be accessed as ordinary devices. Through dedicated
memory management, our framework automatically detects the request for DPR re-
sources and allocates them dynamically according to a limited preemptive allocation pol-
icy. Dedicated management components, i.e. Virtual Device Manager and PRR Monitor
are implemented on both software and hardware sides to handle allocations at run-time.
We also thoroughly discussed the security issues for virtual machines that are caused
by the sharing of PR accelerators. With the combination of page table control and its
dedicated component hwMMU, the virtual machine domains (including software stack,
memory space and allocated PR accelerators), are safely isolated from other parts of the
system.

In this chapter we also discussed the programming policies for guest OSs which are
willing to use PR resources on Ker-ONE. For special occasions as the blocking and
preemption of PR accelerators, we presented detailed explanations and practical examples
based on an actual µC/OS-II RTOS.

In the next chapter, we demonstrate the details of Ker-ONE implementation. Then we
will evaluate the performance of our system with extensive experiments and benchmarks.
Overheads in both virtualization and PR resource allocation will be analyzed. We will also
discuss the real-time schedulability and how it would be influenced by these overheads.

100 Dynamically Management of Reconfigurable Accelerators on Ker-ONE

Chapter 4

Implementation and Evaluation

The purpose of our virtualization framework is to provide a lightweight approach for
small-scaled embedded systems. The methodology of implementation determines the size
of the kernel, and the complexity of development. On the other hand, we also pay atten-
tion to the system performances for virtualization and DPR resources management. To
perform an extensive evaluation of our system, it is necessary to measure the overheads
caused by the proposed mechanisms and analyze them with thorough discussion. Mean-
while, it is also essential to discuss the real-time schedulability of virtual machines in the
context of our mechanisms. In this chapter, we first present the implementation principles
and details of the proposed approach. Then we present the results of both custom and
standard benchmarks on the Ker-ONE micro-kernel to demonstrate the virtualization
efficiency. We also measure the overheads of DPR resource allocation to evaluate the
management mechanism. At the end of this chapter, we discuss the real-time schedula-
bility based on the acquired experiment results.

4.1 Implementation

In this section, we present the implementation of the Ker-ONE micro-kernel on the
ARMv7 architecture based on a Zynq-7000 platform, which features a dual-core Cortex-
A9 processor. In this thesis, to simplify the architecture, we consider a single core, leaving
the multi-core studies to future research. Detailed hardware information is shown in
Table 4.1.

In the software domain, the system is composed of three objects : the Ker-ONE micro-
kernel, the user environment, and guest OS/applications. Both the micro-kernel and the
user environment are provided from the Ker-ONE project and built independently. They
cooperate with each other to establish the virtualization environment. Guest OSs/ap-
plications are developed and built by users. The image of guest OSs is then used by
Ker-ONE to create virtual machines. To properly build a para-virtualized guest OS, the
source code of OS kernels must be modified with the para-virtualization patch codes
provided by the Ker-ONE project. This process takes extra efforts for different OSs, as
we have to manually analyze and modify the OS kernels code according to their architec-

101

102 Implementation and Evaluation

Table 4.1 – Development platform information for the proposed approach.

Feature Description
Processor ARM Cortex-A9
CPU Frequency 660MHz

Cache hierarchy 32KB L1 ICache, 32KB L1 DCache, 512KB L2 unified cache
RAM 512 MB
External Memory 4 GB SD Card
Board Xilinx ZedBoard
Hosted RTOS µC/OS-II

tural characteristics. This is also one of the reasons why we chose simple guest OSs, since
complex OSs such as Linux require tremendous efforts. As can be noticed in Table 4.1,
µC/OS-II is used for researches in this thesis.

In case where DPR technology is used, on the FPGA side, the fabric is divided into
static circuits and reconfigurable partitions (RP) beforehand. Reconfigurable accelerators
for these partitions are synthesized as bitstream files, whose information is stored in the
user environment and will be used by the Virtual Device Manager.

4.1.1 RTOS Para-virtualization

To present the validity of real-time virtualization, we para-virtualized a well-known
RTOS, µC/OS-II, which is commonly used in education and research. The virtualized
guest OS is named Mini-µC/OS.

In Section 2.2.1.2, we have analyzed the sensitive instructions that should be processed
for para-virtualization. They need to be replaced by hyper-calls or assembly macros to
re-direct these operations to VMM or virtual resources. With this target in mind, we
have scanned the kernel source code of µC/OS-II to locate these instructions, which are
mostly involved in the following functionality :

– PSR operations are performed to manipulate the processor status. For example, an
interrupt mask is often modified when the OS kernel performs critical execution,
which is required for most kernel functions.

– Exception handling routine deals with sensitive resources, i.e. PSR register to
save/resume task context and the GIC to handle interrupts (see Section 2.3.1).

– Timer operations are frequently performed to handle timer ticks.

Besides of these operations, some less-frequent instructions involve Cache/TLB, page
tables, and peripherals such as SD cards. These instructions also require modifications. To
simplify the modification, we have created code patches that include para-virtualization
API interfaces for hyper-calls and alternative functions (i.e. assembly macros) to replace

Implementation 103

the original operations. Changes on OS kernel source code are summarized in the follow-
ing :

– A shared memory region is created to hold virtualized resources such as PSR reg-
ister and vGIC registers (see Section 2.4).

– Sensitive instructions are replaced by APIs. Some of them are re-directed to the
shared memory region. Others are emulated by VMM through hyper-calls.

– Timer operation remains original, as a guest OS is permitted to access it directly.

In the design of Ker-ONE, we attempted to avoid unnecessary modifications of guest
OSs. The amount of Lines of Code (LoC) that were required for modifying the original
µC/OS is very low, counted as 139 LoC for modified source code and 223 LoC for ad-
ditional virtualization patch. Most changes take place in assembly code where sensitive
instructions are used.

According to different usages, the Mini-µC/OS is released with two distributions,
aiming for guest RTOS and general-purpose OS respectively. The two distributions are
built separately in a conditional compilation way, with only slight differences, including
the timer and the idle task hook routines.

To evaluate our workload, we compare our Mini-µC/OS with xeno-µC/OS, which is a
para-virtualized µC/OS-II on Xen-ARM and is available from the XEN Wiki site [uco12].
In Table 4.2 we give a qualitative comparison for the required modifications. XEN-ARM
has a higher impact on µC/OS-II mainly because it imposes the event channel mechanism
into the OS kernel, which is used to manage virtual IRQs and virtual timers. Therefore,
the original exception/interrupt handling routine in µC/OS-II is totally aborted. In the
contrast, Ker-ONE allows µC/OS-II to use its original handlers with only slight changes
(see Section 2.3.1).

Table 4.2 – Qualitative comparison of µC/OS-II source code modification in different
characteristics of Ker-ONE and XEN-ARM kernels.

Modification Ker-ONE XEN-ARM
Scheduler Light Light
Interrupts & exceptions Light Heavy
Timer Light Heavy
Initialization Medium Heavy
Sensitive instruction rewriting Medium Medium

4.1.2 Complexity

In order to evaluate an hypervisor complexity, we generally assume that virtualiza-
tion layers are divided into a host-level micro-kernel (or hypervisor in some cases) and
additional user-level functionality. The micro-kernel/hypervisor consists of the most crit-
ical components, whose size determines the TCB of system, and should be kept small to

104 Implementation and Evaluation

reduce the potential threats or attacks on the code.
The design of Ker-ONE results in a lightweight implementation with a small TCB

size. The Ker-ONE micro-kernel is built up with less than 3,000 LoC. This is due to our
attempts to eliminate all virtualization features that are unnecessary in a small embedded
system. For example, we avoid complex memory virtualization mechanisms and focus on
simple OSs with single address space. We also realize real-time scheduling with minimal
complexity. Moreover, I/O devices that are not critical to system security (i.e. UART
and SD card) are allowed to be directly accessed to avoid heavyweight emulations. Via
these methods we have obtained a minimal micro-kernel for small embedded systems.

It is difficult to compare our work with existing approaches, since, to the best of
our knowledge, there is currently no available information for systems sharing the same
features, i.e. ARM para-virtualization on small systems with single-protection-domain
OSs. However, in order to give a global overview of the kernel complexity, in Table 4.3,
we compare the TCB size for several traditional ARM para-virtualization approaches on
the ARMv6/7 architecture, including OKL4 [HL10] and Xen-ARM [XEN14].

Table 4.3 – Comparison of TCB size for ARMv6/v7 virtualization environments mea-
sured in LoC.

Hypervisor Kernel User-level Total
Ker-ONE 2,142 712 2,854
OKL4 9,800 / 9,800
Xen-ARM 4,487 Dom0 4,487 + Dom0 (Linux)

From this comparison we can notice different design policies. Xen-ARM leverages the
functionality of Linux to perform I/O emulation, the virtualization functionality provided
by Xen-ARM is quite complete. Following the similar principle, OKL4 also chooses to
provide extensive virtualization features to support Linux. It is inevitable that these
approaches ends up with higher complexity. The trade-off of Ker-ONE is to give up
complex OS, and to target simple OSs in embedded systems. As a result, this manages
to greatly reduce the software complexity, while still maintaining virtualization features
and real-time support.

4.1.3 System Mapping

Ker-ONE creates a system mapping to organize on-chip resources and software com-
ponents. Resources mapped to the address space include CPU memory, system registers,
peripherals and FPGA fabric. By default they are implemented into different regions
in the physical address space, as shown in Figure 4.1. Through the address mapping
created by Ker-ONE, these resources are re-organized in the virtual machine’s memory
space. The scheme of system mapping is demonstrated in Figure 4.1. To be specific, it
is composed of several regions :

– System registers and peripherals are mainly placed in a high address space, e.g.
I/O peripheral registers are located in address section (0xE0000000 - 0xE0300000).

Implementation 105

These regions are flat-mapped into the virtual machine space.

– The Ker-ONE micro-kernel is also mapped in the high address space, (0xF0000000
- 0xF0100000), with a footprint of 1 MB. This region is universally mapped into
each virtual machine space.

– The FPGA resources section, which is originally in the 0x40000000 - 0xC0000000
address space, are re-mapped to higher addresses (0xE0300000 - 0xE0400000) as
independent 4 KB pages (see Section 3.2.1). These are the intermediate interfaces
(IF) that are considered as virtual devices in the virtual machines.

– The address space under 0xE0000000 is reserved for virtual machines, and can be
freely used by guest OS software.

Flat Mapping

Ker-ONE Mapping

System Register

Peripherals

System Register

Peripherals

Ker-ONE
Microkernel

Ker-ONE

Virtual Machine
Software

0x40000000

0xC0000000
0xE0300000

0xE0400000

0xF0000000

0xF0100000

0x00000000

0xE0000000

0x00000000

0x20000000

FPGA Domain

Virtual Device

RAM (512 MB) Guest OS

Intermidiate
Interface

(4KB Pages)

Physical
Address Space

Virtual Machinel
Address Space

Figure 4.1 – Ker-ONEMemory mapping from physical to virtual machine address space.

Note that, in our system mapping, Ker-ONE is included in the address space of
all virtual machines, due to its small computing size. Therefore, the switch between
VMM and virtual machine is spared from the change of page tables, which facilitates the
communication between them. We should also note that the address section reserved for
virtual devices is 1 MB, which can hold up to 256 different virtual device interfaces. This
section is sufficient in most cases.

106 Implementation and Evaluation

4.1.4 Ker-ONE Initialization Sequence

Ker-ONE uses a SD card as boot-up device, which holds essential initialization files,
i.e. ELF-format executable images for kernel (KERNEL.ELF) and user environment
USER.ELF, guest OS images and DPR accelerator bitstream files. The boot-up sequence
is composed of two stages, respectively being performed in the kernel space and user level.

Bitstreams

Guest OS

User Environment

Ker-ONE Bitstream
Files

KERNEL.elf

USER.elf

OS Image

Microkernel

VM 0

VD
Manager

Guest
OS

U-boot

USR mode

SVC mode

CPU Memory

U-boot

⓪

①

⓪

② ②

SD Card

Figure 4.2 – Ker-ONE initialization sequence divided into stages. Stage 0 : U-boot load
files from SD card and start micro-kernel. Stage 1 : micro-kernel initialize system and
creates VM0. Stage 2 : User environment boot up guest OSs and services into independent
virtual machines.

Figure 4.2 describes the initialization sequence. The first boot-up stage can be
launched by any Linux-compatible bootloader such as U-boot [LZQ07], which is respon-
sible for loading initialization files into physical memory and launch the kernel image.
This image contains the micro-kernel program executing in supervisor mode. It is respon-
sible for basic system configurations, including mapping and peripheral initialization. At
the end of this stage, it creates the first virtual machine domain (denoted as VM0) to
start up the user environment (USER.ELF) in the user mode. In VM0, system services
are instantiated to build up the user level execution environment. For example, Virtual
Device Manager is launched into another independent virtual machine. To be specific,
the guest OS bootloader is called to load the guest OS images, to parse their headers
and to create virtual machines with priority levels. Eventually, the initialization sequence
ends up by calling the VMM to reschedule virtual machines. Note that, in VM0, software
manipulate virtual machines through hyper-call interfaces.

4.2 Ker-ONE Virtualization Performance Evaluations

In this section, we present Ker-ONE experimental results focusing on the virtualiza-
tion overheads. The measurements have been obtained in three experiments. First, we
measured the overheads of fundamental virtualization functions, such as interrupt emu-
lation, VMM scheduling, hyper-calls, etc. Then we evaluated the impact of virtualization
on the RTOS performances by measuring extra overheads caused to the VM scheduling.

Ker-ONE Virtualization Performance Evaluations 107

We also used a standard RTOS benchmark to obtain a global evaluation. Finally, we
used our platform to implement real-world applications based on standard benchmarks.

The methodology of evaluation consists in hosting multiple guest OSs (i.e. Mini-
µC/OS) together, on top of Ker-ONE, and executing benchmarks on top of them. We also
created custom benchmarks to estimate overheads of various virtualization functions with
long-term running and enormous number of samples. We also selected several third-party
benchmarks, such as Thread-Metric [Exp07] and MiBench [GRE+01]. These benchmarks
run as tasks inside guest Mini-µC/OS. The overheads are measured by setting the Global
Timer in the processor.

For all experiments, the VMM scheduling tick interval was fixed to 33 ms, and guest
OSs were running according to 1 ms timer tick. Note that these values are common
timing configurations for µC/OS-II [YY14]. Guest OSs were hosted as general-purpose
OSs or real-time OS, according to different experiment purposes.

In this section we also analyzed the schedulability of a guest RTOS, based on the
overheads estimated in experiments. Following the equations given in Section 2.5.3, we
calculated the impact of virtualization on RTOS task timings and present practical ad-
vises.

4.2.1 Basic Virtualization Function Overheads

We have examined various micro-architecture virtualization overheads for the most
frequently used and basic VMM functions : hyper-calls, virtual interrupts, virtual machine
switch and Vector Floating-Point (VFP) switch. These overheads help us evaluating the
VMM performance, and understanding the bottleneck execution path in the micro-kernel.

In this experiment, the system has been configured to concurrently host four Mini-
µC/OS at the same priority level, as general-purpose OSs. All OSs were scheduled ac-
cording to the round-robin strategy. We created experiment tasks on top of the guest
OSs to manually launch hyper-calls and utilize the Vector Floating-point co-processor.
The overhead of corresponding VMM functions has then been recorded by a background
monitor for a large amount of samples during several hours of execution. Figure 4.3
presents the results of the experiments, where minimal, average and maximum overheads
are presented in microseconds.

Hyper-call entry/exit measures the overhead latency that is necessary for a virtual
machine to generate hyper-calls to the VMM and to return back to a virtual machine
immediately. This latency can be used to estimate the extra latency for virtual machines
when hyper-calls are launched. Note that hyper-calls are generated frequently by the OS
functions, but rarely during user tasks, which mostly execute without sensitive opera-
tions. Since Ker-ONE is mapped to the VM address space, no VM switching is required.
Hyper-calls entries and exits are relatively low cost processes. They only involve the
saving/restoring of the CPU context and the distribution of hyper-calls.

The virtual IRQ emulation experiment represents the cost of emulating a virtual
interrupt for a VM. This type of functionality is critical for event-driven OSs, since this
latency directly influences the response time of events. Moreover, it is also closely related

108 Implementation and Evaluation

�

����

����

����

����

����

����

��� ��� ��� ��� ��� ��� ��� ��	 ��

�
�

�
�
�
�
�
�
�

�
��

�������� �� !

"#$��%&�'' ()*�#+(,-* � .-)/����� 0 ���/����� 0 .�,/��	�� 0 �.$'�/	���� !

1�#$��&�'' �)*�#1

�

�����

�����

�����

�����

�����

�����

�����

��� ���� ��� ���� ��� ���� ��� ���� ���

	

�
�

�
�
�
�
�
�
�
�

�������� ����

 !�"��# $%& '(�#�"!)* � (!*+������, ���+������, (�-+���.��, ��(/#�+������ �

0!�1 �*"�20

�

����

����

����

����

�����

�����

��� ��� ��� ��� ��� ��� ��	 ��� ��
 �

�
�

�
�
�
�
�
�
�

�
��

�������� �� !

"#�$��% &�'�#(�)*#$'� � +#(,���	� - ���,����� - +�.,��
�� - �+/%�,������ !

0*1�%� *$0

�

��

���

���

���

��� ��� ��� ��� � ��� ��� ��� ���

�
	

�
�

�
�
�
�

�
��

�������� ����

�� !"� #$"�!%&'()"%&! *+%! � � ,%&-������. ���-������. ,�/-��00��. ��,1$�-�2�� �

3�41 �+!3

Figure 4.3 – Results of basic virtualization function overheads evaluation in microsec-
onds (µs) with minimum, average and maximum values.

to the guest OS’ scheduling overhead because a guest OS relies on the virtual timer tick
for counting virtual time. This overhead is measured from the physical event’s arrival
time until the time at which the virtual machine is forced to its local exception vector.
This process involves the handling of physical IRQ and the emulation of the virtual GIC
interface registers.

Virtual machines switch represents the cost of switching from one virtual machine to

Ker-ONE Virtualization Performance Evaluations 109

another, which may be relatively heavy. The overhead of virtual machine switch is one
of the key metric in most virtualization approaches, as it is usually quite cumbersome,
and has a huge impact on VMM efficiency. In Ker-ONE, this switch is performed when
a virtual machine consumes its time quantum and moves to its successor, or when it
suspends itself and the VMM resumes another virtual machine. This switch includes
several major procedures : (1) re-scheduling ; (2) vGIC context switch ; (3) timer state
update ; (4) address space (page table) switch ; and (5) CP15 registers update. Note that
the address space changing causes a higher TLB/Cache miss rate and inevitably increases
the switch latency. Note that, only the round-robin scheduling is presented, whereas the
cost for preemptive scheduling is measured in a later section.

We also measured the Vector Floating-point (VFP) switch overhead. As described in
Section 2.2.2, the virtualization of VFP co-processor follows the lazy switching policy,
which occurs much less frequently than other functions. The switch of VFP includes
the saving/resuming of co-processor registers, and the amount of involved registers de-
termines the switch latency. Therefore, we can notice that the experiment results are
relatively spread in a wide range, which is due to the fact that the VFP registers are in
different states when they switch. We should also note that the VFP switch may cause a
relatively high overhead (mostly over 1 µs). In this case, the usage of lazy switch helps
reducing the overhead considerably.

Generally, the VMM relies on these basic functions to emulate resources and manage
virtual machines. Therefore they represent the efficiency of virtualization. Attributed
to the low complexity and simplified mechanisms of a VMM, these functions result in
low overheads. As shown in the results, frequently-called functions, i.e. hyper-calls and
vIRQ emulation can be handled in less than 1 µs. Besides, as one of the most expensive
processes in most virtualization technologies, the virtual machine switch overhead could
be limited within 1 µs.

4.2.2 RTOS Virtualization Evaluation

In this part, we will study the influence of virtualization on the performance of guest
RTOSs in details, including the OS kernel functions and real-time scheduling overheads.
To evaluate the virtualization impact, we led two experiments : first, on a native RTOS
on ARM, and second, on a guest RTOS on top of Ker-ONE. According to this study,
the virtualization efficiency may be demonstrated. In these experiments, we have imple-
mented Mini-µC/OS using the RTOS distribution in one virtual machine and three other
virtual machines hosting Mini-µC/OS as GPOSs (i.e. using the GPOS distribution). The
target benchmarks are executed on top of the RTOS for evaluation. In each test, the
comparison of native machine and virtual machine is shown and analyzed.

4.2.2.1 RTOS Benchmarks

The RTOS performance consists of the speed at which a specific RTOS completes
its tasks. In this section, we evaluate the performance of the virtual Mini-µC/OS with

110 Implementation and Evaluation

the Thread-Metric benchmark suite that is dedicated to RTOS performance measure-
ment [Exp07]. Thread-Metric was proposed by Express Logic in 2007 and has been ap-
plied in several researches to measure and compare the performance of various RTOSs
[MA09][Bes13]. In our experiment one RTOS and three GPOSs (all Mini-µC/OS) were
concurrently running on Ker-ONE. The benchmark set was executed on the RTOS. To
obtain the performance loss due to the virtualization implementation, the benchmarks
results on the native µC/OS-II have been used as a reference.

Note that in the designation of Ker-ONE, the resource virtualization mechanism is
optimized via a shared memory region (see Section 2.4), which is supposed to bring signif-
icant performance improvement. This factor is estimated in our experiment by measuring
the non-optimized micro-kernel for comparison.

In order to give an extensive evaluation, XEN-ARM hypervisor was also used to
perform a comparison with our system. In the experiment, a Version-3.0 XEN-ARM
hypervisor [xen12] was ported to our platform (Zynq-7000). A para-virtualized µC/OS-II,
released on XEN site as xeno-µC/OS [uco12], was also ported. On this µC/OS-II kernel,
we executed the Thread-Metric benchmark and compared the results. Note that µC/OS-
II runs on a single protection domain and requires no multiple page tables. Therefore,
although Ker-ONE and XEN-ARM have different memory virtualization strategies, the
virtualization contexts of µC/OS-II were identical, because XEN’s support of user-level
multiple protection-domains was not used and thus made no influence on the overall
performance.

The principle of Thread-Metric is to evaluate the OS kernel performance. The test
objects consist of a set of common OS kernel services that are representative and that
can be usually found in most RTOSs. These services include context switching, interrupts
handling, message passing, memory management, etc. For each OS service under test,
the methodology is as follows : first, service function and its inverse function execute in
pairs, e.g. allocating/ de-allocating memory, or sending/receiving messages. Second, the
testbench keeps executing repeatedly and the iterations number is counted. Third, the
iterations number is recorded every 30 seconds and denoted as test score. A higher test
score represents a shorter overhead from the corresponding OS kernel function, and thus
a better performance. The testbenches included in Thread-Metric are :

– Calibration Test : A basic single-task rolling counter function to set up a perfor-
mance baseline for comparisions.

– Preemptive Context Switching : Five tasks of different priorities are created. Staring
from the lowest priority task, each one resumes the next higher priority task and
suspends itself. The sequence of OS scheduling (i.e. OSTaskSuspend - OSTaskRe-
sume - OSSched in µC/OS-II) is evaluated.

– Message Processing : One task is created to repeatedly send and receive message
through the OS message queue (i.e. OSMessagePost-OSMessagePend).

– Memory Allocation : One task that allocates and releases memory through the OS
memory block (i.e. OSMemGet-OSMemPut).

Ker-ONE Virtualization Performance Evaluations 111

– Synchronization Processing : One task that pends and posts semaphore (i.e. OSSemPost-
OSSemPend).

– Interrupt Handling : One task is created to generate software IRQ. Semaphore
mechanism is used in the IRQ handler routine to guarantee the handling comple-
tion.

– Interrupt Preemption : Two task of different priorities are created. Lower priority
task generates software IRQ and during the IRQ handler routine the other task is
resumed and preempts the low priority one.

To rationally evaluate the virtual machine performance compared to the native ma-
chine, we introduced the Performance Ratio (RP) parameter, which can be obtained
as :

RP =
ScoreVM

ScoreNative
× 100%, (4.1)

where ScoreVM and ScoreNative stands for the result score of benchmarks on guest OS
and native OS respectively. RP is used to measure the percentage of VM performance
compared to the the native execution. A higher RP means a better virtualization effi-
ciency. Table 4.4 presents the experimental results of the Thread-Metric benchmarks
running on both Ker-ONE and native environments.

Table 4.4 – Thread-Metric benchmarks results on both native and virtual µC/OS-II.

Test Object
Native

µC/OS-II
VM

µC/OS-II
Performance
Ratio (%)

Calibration Test 764458 733879 96.1
Preemptive Context Switching 32113328 28927171 90.1
Message Processing 18431136 16748720 90.9
Memory Allocation 104601611 85091278 81.3
Synchronization Processing 108589466 90893213 83.7
Interrupt Handling 32541832 25768399 79.2
Interrupt Preemption 19089282 16425610 86.0

As the results indicate, µC/OS-II in a virtual machine suffers from performances
degradation. This is inevitable due to the fact that the OS kernel functions in these
benchmarks always execute sensitive instructions and operations to access privileged
system resources. For example, at every task context switch, software needs to load and
restore the value of CPSR/SPSR register. Moreover, at each time entering OS kernel,
it has to be switched to critical mode by masking all interrupts. This involves also the
operation on CPSR registers. While these operations are performed with single-line in-
structions originally, in para-virtualized OS kernel, these instructions are replaced with
assembly macros which results in longer execution paths. While these functions are con-
tinuously repeated during the tests, it causes noticeable extra overheads compared to the
original code.

112 Implementation and Evaluation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Calinration Test Preemptive
 Context

Switching

Message
Processing

Memory
 Allocation

Interrupt
Handling

Interrupt
Preemption

Synchronization
Processing

ThreadMetric Benchmarks Performance Ratio

KER-ONE ucos-ii Non-Opt KER-ONE ucos-ii Opt XEN-ARM ucosii

Figure 4.4 – Comparison of Thread-Metric Performance Ratio (RP) for para-virtualized
µC/OS-II on Ker-ONE and XEN-ARM.

Another factor that degrades the performance is the virtualization of timers and in-
terrupts. Emulation of these events may be expensive if guest OS executes with high
clocking rate or frequent interrupts. This effect can be noticed in the Interrupt Handling
and Interrupt Preemption benchmarks in Table 4.4. In these benchmarks massive inter-
rupts are generated and handled, which result in a considerable performance degradation.
This explains the relatively low performance in these tests.

Table 4.4 also indicates that Ker-ONE hosts RTOS with relatively high efficiency.
For kernel services tested in benchmarks, most performance losses are limited to less
than 20%. And for some functions such as task scheduling and message processing, their
performance are close to the native results, with only 10% performance loss.

In Figure 4.4 we compared the benchmark results of three implementations on the
same platform : the optimized Ker-ONE kernel, the non-optimized Ker-ONE kernel and
the XEN-ARM hypervisor. As we can notice, with optimization, the virtualization per-
formance is considerably improved. As we described in Section 2.4, through optimization,
hyper-calls are avoided in common OS kernel functions. For example, in non-optimized
solutions, a common task context switch (i.e. OSCtxSw) launches 2 or 3 hyper-calls to
manipulate virtual PSR values. For the Preemptive Context Switching, this function is
repeated continuously, making significant extra overheads. Figure 4.4 demonstrates that
the optimized mechanism is able to reduce overheads efficiently.

On the other hand, compared to XEN-ARM, using Ker-ONE, the guest µC/OS-II
achieves better performance and is closer to the native machine. Both Ker-ONE and
XEN employ the mechanism of shared memory region. The different performances can
be explained by the fact that Ker-ONE provides a simpler virtualization interface. For

Ker-ONE Virtualization Performance Evaluations 113

example, virtualized resources, such as vCPU, vIRQ, are implemented with smaller struc-
tures and smaller size. µC/OS-II can access them with several lines of assembly codes. We
can notice that in benchmarks dealing with Interrupt Handling and Interrupt Preemp-
tion, XEN-ARM has more significant performance loss. This is attributed to the virtual
interrupt mechanism. As we have introduced, virtual interrupts in XEN-ARM are han-
dled as event_channel, which separates physical IRQs from VM event ports. IRQs are
remapped to VMs in event_channels. This mechanism is useful to provide better VM
isolation but also is relatively complex. In contrast, Ker-ONE focuses on the GIC emu-
lation and applies simpler virtual IRQ management. Physical interrupts are forwarded
to VMs via a simple monitor-and-redirection mechanism. Additionally, VMs continue to
use their original IRQ handlers, which makes this process even simpler. Therefore for
interrupt benchmarks, Ker-ONE has a better performance.

4.2.2.2 RTOS Virtualization Overheads

With the Thread-Metric benchmarks, we have performed some qualitative analysis
about the performance loss on OS functions. Furthermore, we have created custom bench-
marks to accurately measure the RTOS overheads for context switching and scheduling,
so that we can precisely discuss the schedulability of the RTOS as explained in [Ste01].

In this evaluation, we have paid attention to the worst-case RTOS task response
time, which happens when an RTOS is waken up from the suspend queue when events
occur, according to the scheduling mechanism of Ker-ONE. In Eq.(2.8) we have ana-
lyzed this response time ResponseVM as composed by : delays caused by VMM critical
execution (∆VMMcritical), by VMM scheduling (∆VMMsched) and by RTOS task
release (relEvVM). These three overheads influence the release delay of RTOS tasks, and
thereby are important factors for schedulability [APN13]. In our experiment, these over-
heads have been measured respectively and recorded during hours of execution. A total
number of 1,048,576 samples have been obtained. The results of evaluation are shown in
Figure 4.5.

The Critical Execution (i.e.∆VMMcritical) measures the overhead of VMM critical
executions when IRQs are masked. Any events occurring in this period will be delayed
until the critical execution is over. When VMs run, the VMM performs critical executions
for various reasons, i.e. hyper-calls, IRQs, exceptions or VM switches. In order to cover
all possible critical execution overheads, we have executed dedicated test software which
helped triggering hyper-calls, IRQs and exceptions. This test ran for several hours and
a large amount of samples was obtained. As shown in Figure 4.5, the worst-case VMM
critical execution is estimated to be 1.47 µs.

The RTOS Preemption (i.e.∆VMMsched) refers to the cost of an RTOS preempting
the current GPOS. This process is performed by the VMM and includes several steps :
(1) real-time event handling (timer tick interrupts in this case), (2) rescheduling, (3)
VM switch, (4) forwarding the timer interrupts to RTOS. As shown in Figure 4.5, in
most cases, RTOS preemption is completed in the average delay of 0.98 µs, whereas the
WCET result is 1.19 µs.

114 Implementation and Evaluation

�

����

�����

�����

�����

� ��� ��� ��� ��� � ��� ���

�
	

�
�

�
�
�
�

�
��

�������� ����

� !�"#"$�% &'�$�#"() � *")+������, ���+������, *�'+���-��, ��*.%�+�����-� �

/� !�"#"$�% &'�$�#"()/

�

����

�����

�����

�����

�����

�����

��� ���� ��� ���� � ���� ��� ���� ���

�
	

�
�

�
�
�
�

�
��

�������� ����

� �! "���#$%&'(� #&()������* ���)������* #�+)������* ��#$,�)�-.�.� �

/� �! "���#$%&'(/

�

����

�����

�����

�����

�����

�����

�����

�����

��� ��� ��	 ��
 � ��� ���

�
�

�
�
�
�
�
�
�

�
��

�������� �� !

"� # $�%�� � &�'(�� �)(*+����� , ���+����� ,)�-+��
�� , �).%�+������ !

"� # $�%�� � /(�'��% �)(*+��	�� , ���+��
�� ,)�-+����� , �).%�+������ !

0&�'(�� �1 '� # ��%�� �0

0/2 �1 '� # ��%�� �0

Figure 4.5 – Results of VM RTOS task response overheads evaluation in microseconds
(µs) with minimum, average and maximum values.

In addition, the Task Release latency measures the cost of an RTOS handling the
virtual timer tick and scheduling the new ready task. The latency of both native and
VM Task Release has been measured, respectively as relEvNative and relEvVM . The
performance loss of a task Release is mainly caused by the emulation of sensitive in-
structions that are used in interrupts handling and context switching. According to the
former equation Eq.(2.6) and Eq.(2.7) in Section 2.5.3, the worst-case extra Release Event
overhead can be estimated as :

∆relEv
VM = relEvVM

(WCET) − relEvNative
(BCET). (4.2)

In this equation, ∆relEv
VM is estimated to be 0.42 µs. Therefore, according to Eq.(2.9), the

total influence that virtualization causes on the RTOS response time ∆Response
VM can be

estimated as 3.08 µs.

Ker-ONE Virtualization Performance Evaluations 115

4.2.3 Application Specific Evaluation

To measure the virtualization overhead of our system in more realistic use cases, we
have run a series of application-related benchmarks. Since our system targets small-scaled
embedded systems, which are mostly used for portable devices, vehicles and mobiles, it
is reasonable that we verify our system with applications from tele-communication and
industrial domains. Therefore, the widely-used embedded benchmark MiBench suite has
been selected [GRE+01]. MiBench has been used by many embedded virturalization
technologies as standard benchmarks [XBG+10]. This test suite provides representative
applications of embedded systems in several categories. Two groups of applications that
can characterize real-time mobile embedded devices have been used in our experiments :

– Telecommunication applications are the basic elements of mobile devices and are
most commonly used in RTOS systems. Applications in this group include CRC32,
FFT/IFFT, GSM encode/decode and ADPCM encode/decode functions.

– Automotive and Industrial Control applications are intended for embedded control
systems, typically for air bag controllers, sensor systems, etc. Tests in this category
consist of Basic Math, Bit Count, qsort (i.e. information sorting algorithm) and the
Susan image recognition package with three different filter algorithms (smoothing,
edges and corners).

In these experiments, benchmarks have been ported to both native and virtual µC/OS-
II as real-time tasks. Each benchmark has run for hundreds iterations, and the average
cost for one iteration has been calculated as a benchmark result. The experiment results
on native and VM are listed in Table 4.5. The results that have been obtained with
the benchmarks that have run in a virtual machine are very close to those obtained in
the native execution. All have more than 90% performance. For the computation-intense
applications such as FFT and Bit Count, the performance loss is below 1%, because these
benchmarks are all CPU-bounded applications in which sensitive instructions are merely
used. Therefore, they barely have any virtualization overhead and execute similarly as
on an native machine. The only extra overhead is due to the handling of virtual timer
ticks that occur during their execution.

However, there is a relatively higher performance loss for benchmarks like GSM,
qsort, CRC32 and Susan image processing. These benchmarks are all data-bounded or
file-based applications, which mainly and frequently interact with input and output files
that are stored in external file system, e.g. FAT32 on SD card. For example, one at a
time, the GSM benchmark reads a frame of 160 samples from input files, encodes, and
writes results to an output file when the process is complete. These accesses have to be
performed by OS services.For example, DMA transfers are used to load data from the
SD card, which should be performed through hyper-calls. A lot of OS functions are used
during the execution. From the results of Thread-Metric benchmarks, we know that the
OS service function is influenced by the extra virtualization overheads, and thus causes
the degradation of overall performances.

116 Implementation and Evaluation

Table 4.5 – MiBench experiment results on virtual and native Mini-µC/OS in millisec-
onds (ms).

Benchmarks Native OS (ms) VM OS (ms)
Performance
Ratio (%)

∆ei
V M (ms)

FFT (8192 pts) 54.277 54.614 99.4 0.337
GSM (encode/decode) 204.387 214.668 95.2 10.281
ADPCM (encode/decode) 3391.075 3510.580 96.6 119.505
CRC32 206.685 220.932 93.6 14.247
Basic Math 47.931 49.152 97.5 1.220
Bit Count 133.990 134.722 99.5 0.732
qsort 45.693 48.927 93.4 3.234
Susan (smoothing) 141.362 141.695 99.8 0.334
Susan (edges) 51.192 55.557 92.1 4.365
Susan (corners) 45.777 48.928 93.6 3.151

From the MiBench results, we can also determine the extra execution cost ∆ei
V M in

Eq.(2.7) as the performance loss :

∆ei
V M = eVM

i − eNative
i . (4.3)

As shown in Table 4.5, though the performance loss is retained within 10%, the ∆ei
V M

for different benchmarks are quite heterogeneous, ranging from hundreds of microseconds
to tens of milliseconds. In fact, the value of ∆ei

V M is determined by the implementation
of tasks and by more realistic factors, for example the size of the file that is processed by
the task. Thus, no quantitative evaluation can be given in this experiment. Taking into
account the qualitative analysis, we can conclude that, one has to avoid frequent usage of
OS functions or external device accesses because they will cost a lot in virtual processes.

4.2.4 Real-time Schedulability Analysis

Based on the experiment results that evaluate the virtualization impact on the original
RTOS, the RTOS task model Tk = Ti(E

VM
i , pi, di) should be carefully reviewed to deal

with practical implementations.
Usually, the RTOS time-tick interval is set to 10 ms in common cases, and to 1 ms

for high-resolution scheduling [YY14]. For developers that design a task set for virtual
RTOSs, Eq.(2.11) is used to calculate the actual execution timer ticks demanded by a
task Ti ∈ Tk. Given that ∆Response

VM is evaluated as 3.08 µs (see Section 4.2.2.2), Eq.(2.11)
can be simplified as :

Θi ≈ d
ENative

i + ∆ei
V M

∆T ick
e, if ∆Response

VM � ∆T ick. (4.4)

Eq.(4.4) indicates that the virtualization cost on task Response is unnoticeable in real-
world implementations. Therefore, the major influence on RTOS scheduling configuration

DPR Allocation Performance Evaluation 117

is caused by the extra execution overhead ∆ei
V M . To guarantee the system schedulability,

the practical task execution time has to be accurately measured. For Tk that originally
runs on an native RTOS, its schedulability is still guaranteed on a Ker-ONE VM if :

∀Ti ∈ Tk, d
ENative

i + ∆ei
V M

∆T ick
e = dE

Native
i

∆T ick
e. (4.5)

Otherwise, the configuration of scheduling parameters for Tk have to be re-calculated to
meet hard real-time constraints.

The configuration of the RTOS timer tick should also be discussed. When the timer
tick interval is reduced, RTOSs can fulfill the required scheduling with higher accuracy
and higher CPU usage rate. Meanwhile, the task schedulability becomes more sensitive
to the virtualization environment. On the other hand, a task set based on a longer
tick interval is more tolerant regarding virtualization overheads, but with lower schedule
precision. From our experience, we suggest that, for systems with tight timing constraints,
the timer tick interval should be reduced to increase the scheduling accuracy, whereas
loosely tasks set can be chosen to increase the tick interval, so that it can be easily
adapted.

4.3 DPR Allocation Performance Evaluation

In this section, we evaluate the performance of DPR accelerator allocation for virtual
machines on Ker-ONE. More specifically, we focus on the overheads associated with the
allocation mechanism, and the inevitable extra latency caused by virtualization imple-
mentations. Based on these overheads, we have calculated the overall latency for DPR
accelerator allocations, which is essential to determine the response time of accelerators
and the flexibility. For guest OSs with real-time constrains, this is more critical as it
may influence the timing of certain tasks. In the following, we first analyze the overheads
contributed to the allocation latency in details. Then we present the experiment results.
Based on these results, we also discuss the advantages and disadvantages of our allocation
policies.

4.3.1 Overhead Analysis

In this thesis, we define the concept denoted as DPR resource allocation latency. This
extra execution path begins when a virtual machine traps at accessing unavailable virtual
device, and ends when the DPR accelerator is properly allocated and ready to start. This
latency is considered as the response time of DPR accelerators.

Allocation latency comes from two main sources : the allocation management (i.e. the
execution of Virtual Device Manager), and the extra virtualization mechanism overheads,
for example, the handling of page-table faults, Inter-VM communication (IPCs) and
virtual machine scheduling. Besides, the costs of DPR accelerator reconfiguration and
preemption take up extra time, which will noticeably contribute to the total latency.
Considering the above elements, we create the allocation execution model to facilitate

118 Implementation and Evaluation

Ttrap TSearch TSolution(1)

Path1: Assignment w/o reconfiguration

TPL_irqTRCFG Tirq_PCAP

TResume

Ttrap TSearch TSolution(2) TResume TResume

TPL_irqTpreempt Tirq_STOPTtrap TSearch TSolution(3) TResume TResumeTSolution(1)

Path2: Assignment with reconfiguration

Path3: Preemption w/o reconfiguration

Path4: Preemption with reconfiguration

TPL_irqTpreempt Tirq_STOPTtrap TSearch TSolution(3) TResume

Assignment with
reconfiguration

Guest OS

KER-ONE Microkernel

Virtual Device Manager

Wait for IRQ

Figure 4.6 – The execution paths of DPR resource allocation.

the analysis. Based on the allocation mechanism we proposed, the execution path is only
determined by the state of solutions (see Section 3.2.4), which can be characterized as 4
execution paths :

– Path 1 (i.e. Solution {assign}) : Allocate an Idle accelerator to virtual machine
without reconfiguration, which is also called immediate allocation, since the virtual
machine can start using the virtual device immediately.

– Path 2 (i.e. Solution {assign with reconfig.}) : Reconfigure an Idle partial re-
configuration region (PRR) with the desired accelerator and allocate it to virtual
machine.

– Path 3 (i.e. Solution {preempt}) : Preempt a running accelerator and allocate it
to virtual machine without reconfiguration.

– Path 4 (i.e. Solution {preempt with reconfig.}) : Preempt a running accelerator,
which will then be reconfigured with the desired accelerator and get allocated to
virtual machine.

The model of these execution paths can be calculated according to the diagrams
displayed in Figure 4.6. Except for Path 1, other paths are divided into several steps by
the events of preemption or reconfiguration. Note that the execution path 4 is equivalent
to a combination of preemption (as in path 3) and assignment with reconfiguration (as
in path 2), because after the accelerator is successfully preempted, the Virtual Device
Manager re-runs the solution as normal assignment with reconfiguration, i.e. the process
of path 2. This execution is also described in the Figure 3.13 in Section 3.2.5.

In this model, each allocation path is decomposed into smaller atomic executions.
Note that any specific atomic execution has almost identical path in different paths, and
thus is with determined overhead. For example, the execution path of detecting a virtual
machine trap and redirecting it to the Virtual Device Manager is determined for each
path, and is represented as an atomic execution Ttrap. The detailed description of this
execution path model is listed in the following :

DPR Allocation Performance Evaluation 119

– Ttrap : Time required by Ker-ONE to detect a page-table exception in VM domain
and to invoke the Virtual Device Manager.

– Tresume : Time required by Ker-ONE to schedule back to a VM.

– TPL_irq : Time required by Ker-ONE to receive IRQs from the PRR Monitor and
redirect them to the Virtual Device Manager.

– TSearch : Time required by the Virtual Device Manager to receive the VM requests
and searches for solutions.

– TSolution(1)(2)(3) : Execution time of the main function to handle (i.e. Run_Solution()
) different solutions : (1) direct assignment, (2) assignment with reconfiguration,
(3) preemption.

– Tirq_pcap, Tirq_stop : Time required by the Virtual Device Manager to handle the
following IRQs (i.e. IRQ_PCAP_Over, IRQ_PRR_Stop).

– TRCFG : Overhead of waiting for the completion of PCAP reconfiguration.

– Tpreempt : Overhead of waiting for the stop of preempted PRRs.

Therefore, the total allocation latency for the different allocation execution models
can be calculated as :

TPath1 = Ttrap + TSearch + TSolution(1) + Tresume,

TPath2 = Ttrap + TSearch + TSolution(2) + 2 ∗ Tresume

+ TPL_irq + Tirq_pcap + TRFCG,

TPath3 = Ttrap + TSearch + TSolution(3) + 2 ∗ Tresume

+ TPL_irq + Tirq_stop + TSolution(1) + Tpreempt,

TPath4 = TPath3 + TPath2 − Ttrap − TSearch − Tresume − TSolution(1)

(4.6)

As we have explained, since the execution path 4 is implemented as a combination of
preemption and assignment in Eq.(4.6), the latency of TPath4 can be approximately
estimated from TPath2 and TPath3, with some minor adjustments.

Most elements in Eq.(4.6) are system-dependent overheads, which are caused by the
virtualization and management software, and their values are determined and are pre-
dictable via experiments and measurements. On the other hand, FPGA-dependent over-
heads, i.e. TRCFG and Tpreempt, are determined by the implementation of accelerators
and PRRs on the FPGA side, whose values may vary in with different hardware desig-
nations. Therefore they should be considered under specific scenarios. In the next part,
we will evaluate these overheads through dedicated experiments.

4.3.2 Experiments and Results

Our evaluation were set on the same platform and environment as in Section 4.2,
i.e. Ker-ONE micro-kernel virtualization on Xilinx ZedBoard ARM Cortex-A9 processor.

120 Implementation and Evaluation

µC/OS-II instances are hosted in virtual machines as guest OSs. The operating frequency
of the CPU and FPGA logic are 667 MHz and 100 MHz respectively.

To fairly measure the allocation performance of DPR accelerators, it requires dedi-
cated experiments which can be close to real-case scenarios. However, currently to out
best knowledge, there is no standard benchmark suite that evaluates the performance of
reconfigurable accelerator management in a virtual machine system. It is also difficult for
us to establish and implement a real-world reconfigurable computing framework. There-
fore, we intend to create an evaluation experiment which is able to emulate the common
situation of DPR accelerator usage by following the principles below :

1. Partial reconfiguration regions are implemented with different sizes. For each PRR,
different accelerators can be implemented. All DPR accelerators are mapped into
virtual machine space as virtual devices.

2. The data frame processed by accelerators should have determined structure, with
determined size. Accelerator should respect the completion of the data it processes.

3. Virtual machines are totally independent from each other. Tasks on top of guest
OSs access to different virtual devices randomly. In other words, the request for
DPR accelerators are predictable, and may come from any virtual machine.

4. Guest OSs have different priority levels, so that preemptions may occur randomly.

Bitstream

PRR
#1

T1

PRR #1 #2 T1: Start FFT512 every 1 s

T2: Start QAM64 every 500 ms

High Priority

T2 T3 T4 T5

PRR
#2

PRR
#3

Virtual Device
Manager

Bitstream
Bitstream

FFT1024

FFT512

QAM16

QAM64

FFT1024

FFT512

QAM16

QAM64

Low Priority

PS

PL

3

QAM16 ■ ■ ■

QAM64 ■ ■ ■

FFT512 ■ ■

FFT1024 ■

Compatibility Table

T3: Start FFT512 every 2 s

T4: Start FFT1024 every 1 s

T5: Start QAM16 every 500 ms

PRR Monitor

Figure 4.7 – Experimental architecture for performance evaluation.

According to the principles above, the FPGA fabric is initially implemented with three
PRRs, with different sizes. Four accelerators, i.e. QAM16, QAM64, FFT512, FFT1024,
have been synthesized into bitstream files. During the initialization stage of Ker-ONE,

DPR Allocation Performance Evaluation 121

these accelerators are mapped in the memory space of virtual machines with unified
addresses.

On top of Ker-ONE, two guest µC/OS-II execute concurrently, with different priority
levels. For each guest OS, four available virtual devices are instantiated. Several tasks
run in both guest OSs to periodically command virtual devices to process data frames
containing 18,800 bits, which causes requests for allocations. The Virtual Device Manager
detects and handles these requests at run-time. The design is shown in Figure 4.7.
During the experiment, the various overheads caused by allocation mechanisms were
recorded and classified during hours of execution. Based on massive samples, we have
calculated and evaluated the overall cost for our allocation mechanism.

The results of our measurements are listed in Table 4.6. We should note that Ker-
ONE provides an efficient virtualization mechanism, in which virtual machine scheduling
and virtual interrupt emulation are performed with an overhead less than 1µs. The
heaviest overhead is caused by TSolution(2), referring to the PRR assignment with recon-
figuration. This is because this process includes the launch of a PCAP transfer which is
composed of complex operations to set up the DMA transfer.

Table 4.6 – Measurements of Overheads during DPR allocation
Micro-kernel Virtual Device Manager

Operation Overheads (µs) Operation Overheads (µs)
Ttrap 0,76 TSearch 0.50
Tresume 0,64 TSolution(1) 1.13
TPL_irq 0.81 TSolution(2) 2.77

TSolution(3) 0.34
Tirq_pcap 0.64
Tirq_stop 0.28

We should also note that the overheads of TRCFG and Tpreempt are determined by the
implementation of accelerators. TRCFG is determined by the size of PRRs, and Tpreempt

depends on the algorithm of accelerators. The computation granularity influences the
positions of the consistency points, which determines the worst-case waiting time before
an accelerator is successfully preempted. Thus, the value of TRCFG and Tpreempt can
be predicted according to the implementation of the PRRs and accelerators. Table 4.7
presents the overhead results.

According to the experiment measurements, allocation overheads can be estimated
from Eq.(4.6) as :

TPath1 = 3.03µs,

TPath2 = 6.76µs+ TRFCG,

TPath3 = 5.10µs+ Tpreempt,

TPath4 = 8.83µs+ Tpreempt + TRFCG.

(4.7)

Note that the estimated overheads in Eq.(4.7) demonstrates the allocation overheads

122 Implementation and Evaluation

Table 4.7 – Preemption and reconfiguration overheads for DPR accelerators

Virtual Device Tpreempt(µs)
TRCFG(µs)

PRR#1 #2 #3
QAM16 47.0 231 810 1,206
QAM64 31.0 231 810 1,206
FFT512 12.1 - 810 1,206
FFT1024 21.6 - - 1,206

for the high priority OS, since high priority request can always get a valid solution in
our system. It can be clearly noticed that direct allocations can be efficiently performed
with 3µs latency, whereas other solutions suffer from extra overheads of preemption or
reconfiguration. The worst-case solution corresponds to the overhead TPath4, which may
result in hundreds of microseconds considering the relatively heavy overhead of PCAP
reconfiguration.

Based on TPath4, we can derive the worst-case allocation latency of a given virtual
device. Assume that N accelerators {A1...AN} are implemented in K reconfigurable
regions {P1...PK}. Each implemented accelerator is denoted as Ak

n, where k represents
the host PRR. We denote the worst case allocation latency as R, and then for a certain
accelerator An, the worst latency Rn can be obtained as :

Rn = 8.83µs+ max
i:Ai

n∃
{TRCFG(i) + max

j:Ai
j∃∩j 6=n

Tpreempt(A
i
j)}. (4.8)

In this equation, we estimate the worst-case by considering all PRRs that are compatible
for An. TRCFG(i) stands for the reconfiguration overhead of region Pi, which is also the
reconfiguration overhead of Ai

n. Tpreempt(A
i
j) represents the overhead when Ai

n preempts
other accelerators in Pi.

From the equations Eq.(4.7) and Eq.(4.8), we can notice that virtualization and allo-
cation mechanisms in Ker-ONE framework have only a slight impact (several microsec-
onds) on the overall performance, while Tpreempt and TRFCG are inevitable in most DPR
systems. On the other hand, for low priority OS, the allocation latency is unpredictable
since its requests may be suspended until a valid solution is found.

Table 4.7 presents the overhead measurement results of the accelerators used in our
experiment. In our example, TRCFG causes the heaviest overhead, which results in a
large latency value of R (more than 1ms). Meanwhile, Tpreempt is significantly lower than
TRCFG. Actually, this is the case in most DPR accelerator implementations. Therefore, a
preemptive allocation of DPR resources can effectively reduce the heavy reconfiguration
overheads, which, however, will also considerably undermine the schedulability of low
priority OS tasks. In a system where preemption occurs frequently, low priority virtual
machine may never get DPR resources.

The trade-off between preemption and consistency has been considered when we chose
the solution selecting policy in the PRR Monitor (see Section 3.2.4). In our current

DPR Allocation Performance Evaluation 123

searching policy, allocating Idle PRRs are preferred than preempting PRRs, as we wish
to respect the execution of tasks in low priority virtual machines. However, in a system
where the higher priority OS is in charge of critical tasks or is used as a real-time OS, an
alternative policy which encourages preemption should be applied, so that high priority
tasks are guaranteed to acquire DPR resources with minimum latency.

4.3.3 Real-time Schedulability Analysis

In section 4.3.2, we discussed the allocation overheads of reconfigurable resources. In
the context of real-time virtualization, this factor brings another problem, that is such
extra overheads would inevitably influence the timing characteristics of the system. In
this section we will re-analyze the real-time schedulability, based on the consideration of
the additional allocation latency.

Considering the execution overhead model for a real-time task set Ti in guest OS, the
actual execution time is composed of the response time ReleaseVM and execution path
eVM
i (see Eq.(2.7) and Eq.(2.8)). Considering that DPR accelerators are dynamically
allocated and shared among virtual machines, both ReleaseVM and eVM

i are affected.
In this context, we only focus on real-time guest OS tasks, since the timing constraints
of these tasks are most critical and should be guaranteed in embedded systems.

4.3.3.1 Response Time

The response time of real-time tasks (i.e.ReleaseVM) is influenced by the allocation
latency due to the fact that the execution ofVirtual Device Manager cannot be preempted
by real-time events, since it executes at a higher priority level. In other words, during the
allocation process, the real-time OS scheduling is blocked and this prevents the immediate
response to schedule real-time tasks. In the ReleaseVM equation Eq.(2.8), we brought
in the factor of VMM critical execution (∆VMMCritical), since this process cannot be
preempted by real-time events. In the context of DPR allocation, the non-preemptive
execution of Virtual Device Manager should be considered as another critical execution,
based on which the model of ReleaseVM can be adjusted as :

Release’ VM =relEvVM + ∆VMMSched

+ max{∆VMMCritical,∆DPRCritical}
(4.9)

In this new model, the additional parameter ∆DPRCritical stands for the critical
execution during the DPR allocation path, and the worst-case critical execution should
consider the critical execution overheads caused by both VMM (∆VMMCritical) and
the allocation (∆DPRCritical).

From the model of DPR allocation path in Figure 4.6, we can notice that the critical
overhead is only related to the execution of Virtual Device Manager, while the process
of reconfiguration (TRCFG) or preemption (Tpreempt) have no influence on the response
time. Therefore, the critical executions in allocation paths can be calculated as in the
Table 4.8.

124 Implementation and Evaluation

Table 4.8 – Critical execution calculation in DPR allocation paths

Path Model Description Overhead

Path 1 Ttrap + TSearch + TSolution(1) + TResume Direct allocation 3.03µs

Path 2
Ttrap + TSearch + TSolution(2) + TResume Main function 4.67µs

TPL_irq + Tirq_pacp + TResume IRQ Routine 2.09µs

Path 3
Ttrap + TSearch + TSolution(3) + TResume Main function 2.24µs

TPL_irq + Tirq_stop + TSolution(1) + TResume IRQ Routine 2.86µs

Path 4

Ttrap + TSearch + TSolution(3) + TResume Main function 2.24µs

TPL_irq + Tirq_stop + TSolution(2) + TResume IRQ Routine 4.50µs

TPL_irq + Tirq_pcap + TResume IRQ Routine 2.09µs

In this table, the allocation paths are decomposed into several periods Based on the
experiment results obtained from section 4.3.2, their execution overheads can be precisely
calculated following the models presented in the table.

Based on this calculation, the worst-case RTOS response time Response’ VM in
Eq.(4.8) is 7.01µs. To estimate the influence of DPR allocation mechanism on the real-
time scheduling parameters, the equation in Eq.(2.9) can be derived into :

∆’ Response
VM =∆VM

relEv + ∆VMMSched

+ max{∆VMMCritical,∆DPRCritical}.
(4.10)

In this equation, ∆’ Response
VM represents the extra overhead impact when we consider the

factor of DPR allocation. Its value can then be calculated to be 6.28 µs.
Note that we have measured the overhead impact ∆Response

VM (as 3.08µs) in section
4.2.2.2, in the context where DPR resources were not involved. This result shows that
With DPR allocation mechanism, the response time for real-time tasks would be pro-
longed for several micro-seconds. We should note that, such an augment may only slightly
influence the schedulability of real-time tasks, considering the time resolution is set to
1ms or 10ms (see Eq.(4.4)).

4.3.3.2 Execution Time

Determining the worst-case execution time of tasks is critical when designing real-
time scheduling parameters. In our system, where reconfigurable accelerators are used, the
execution of tasks depends on not only software computing but also hardware resources.
The execution time of guest OS tasks may be significantly prolonged if the hardware
computation takes a long time to complete.

In fact, the proposed DPR management mechanism grants a guest RTOS several
advantages to reduce its impact on the task execution, including :

Summary 125

1. the RTOS is held at higher priority level that GPOSs. DPR requests from RTOS
can always find valid solutions immediately, since it can preempt any running ac-
celerators of other VMs.

2. The accelerators being used by RTOS can never be re-allocated (or preempted) to
other VMs, unless the computation is complete.

Despite these principles, the execution of RTOS tasks may still be prolonged by the
allocation of accelerators, which is inevitable when the DPR resources are shared by
multiple virtual machines.

Imagine a RTOS task ti which utilizes n accelerators {A1...An} to speed up its com-
putation. The worst-case execution overhead model (eVM

i) in Eq.(2.7) can be extended
as :

e’VM
i = eNative

i + ∆ei
V M +

n∑
k=1

Rk. (4.11)

Whereas ∆ei
V M stands for the extra overheads caused by virtualization, the parameter

Rk is the allocation latency for the request of accelerator Ak, as in Eq.(4.8). All used
accelerators should be taken into consideration when calculating the WCET of tasks.

The model for actual scheduling parameters in Eq.(4.4) can then be adjusted as :

Θ’i ≈ d
ENative

i + ∆ei
V M +

∑n
k=1Rk

∆T ick
e, if ∆’Response

VM � ∆T ick. (4.12)

As in Eq.(4.4), the value of ∆’Response
VM is still ignored here. And ∆T ick is still estimated

to be 1ms or 10ms.
In some implementations (e.g. the example results in Table 4.7), the value of allo-

cation latency R could be several milliseconds. In this case, the extra overheads of R
may possibly influence the scheduling parameters. Therefore, it is mandatory that RTOS
users take into account this factor to calculate the full execution overheads of tasks and
to make scheduling configurations.

From section 4.3.2, we have learned that the allocation latency of accelerators depends
on the implementations such as their reconfigurable region sizes and their algorithms. It is
therefore impossible to present constant quantitative timing characteristics of our system.
However, with the equation Eq.(4.7) and Eq.(4.8), the WCET of real-time tasks can be
calculated based on measurements and experiment results.

4.4 Summary

In this chapter we have introduced the implementation details of Ker-ONE micro-
kernel,which is based on the Xilinx Zynq-7000 platform, and have evaluated the perfor-
mance of both virtualization and DPR accelerator allocation mechanisms with extensive
experiments. The results have also been thoroughly discussed in the context of real-time
embedded systems.

To present the implementation of Ker-ONE, we have described the target platform
and the efforts to para-virtualize a RTOS µC/OS-II. We have also demonstrated the result

126 Implementation and Evaluation

code complexity of our micro-kernel. By comparing with other existing technologies, i.e.
XEN-ARM and OKL4, we have shown that our approach manages to achieve smaller
TCB kernel size because of the lightweight mechanism we applied. We also introduced
the system mapping and initialization sequence of our system.

Then we have followed several experiments in order to evaluate the virtualization
performance of Ker-ONE. The experiments are based on both custom and standard
benchmarks. In the first step, we evaluated the basic VMM functions to make a general
evaluation. Then we focus on the performance of guest RTOSs. With this target in
mind, we have performed qualitative tests with RTOS functions, and measured the actual
overheads impact on the scheduling of guest RTOS. In the end, we ran some real-world
embedded applications to understand the overall speed. Based on the obtained results, we
have presented an extensive analysis on the real-time schedulability of guest RTOS. The
results show that our approach implements real-time virtualization with low overheads
and close-to-native performance.

Furthermore, we attempted to estimate the allocation overheads during the alloca-
tion of DPR accelerators. we modeled the execution path according to the mechanism
presented in Chapter 3. In the proposed models of allocation, processes are broken
down into smaller execution paths, which are then respectively measured in a dedicated
experiment. The results proved that our management framework is able to efficiently
allocate DPR accelerators to virtual machines, with low extra overheads. Based on these
experiment results, we have made further analysis about the overall influence of system
on the schedulability of real-time tasks.

Chapter 5

Conclusion and Perspectives

5.1 Summary

Nowadays, embedded systems are playing an important role in the daily life of most
people, ranging from customer products such as smartphones and vehicles, to industry
domains. With such an expanded range of purposes, embedded systems can be put into
different categories. There are systems with high computing power, which can support
complex software stacks and enormous resources. There are also small-scaled embedded
systems with limited resources, that are intended for low-cost simple devices, such as the
Internet-of-Things (IoT). Basically, most of these devices share common characteristics
such as a small size, low weight and low power consumption.

Meanwhile, while the complexity of embedded systems is increasing, it is becoming
more and more expensive to improve CPU performance by conventional approaches,
i.e. IC scaling and ASICs. In this context, the concept of heterogeneous CPU-FPGA
architecture has become a promising solution for SoC device vendors, because of the fast
time-to-market circle, the high adaptability and the relatively-low cost to improve the
computation ability. This emerging convergence point of conventional CPU and FPGA
computing makes it possible to extend traditional CPU virtualization technologies into
the FPGA domain to fully exploit the mainstream FPGA computing. To achieve this
goal, it is necessary to propose an architecture which enhances the ability of existing
technology while respecting the features of both software and hardware components.

Our research makes a contribution in this domain, by studying the real-time virtu-
alization in embedded systems with the dynamic partial reconfiguration (DPR) tech-
nology. The target object of our research is small-scaled simple CPU-FPGA embedded
systems, where the main limitations include computing resources, small memory size,
tight timing constraints and power budget. Our works focus on two aspects : a custom
lightweight highly-adaptable micro-kernel Ker-ONE, that supports real-time virtualiza-
tion, and an innovative coordination mechanism of DPR accelerators among multiple
virtual machines.

In Chapter 1, we began the thesis by introducing the basic technical concepts and
existing technologies of embedded virtualization, real-time scheduling and partial re-

127

128 Conclusion and Perspectives

configuration. We presented the fundamental theories for virtualization, and introduced
the approach of hypervisors (i.e. XEN) and micro-kernels (i.e. L4, OKL4) in domain of
embedded system. Then we discussed the real-time scheduling algorithms for virtualiza-
tion, mainly the compositional scheduling framework. We have introduced the features
of these approaches, and have demonstrated that they introduce relatively heavy-weight
software, which is against our purpose. In the following part, we have discussed about the
application of DPR technology in software and operating systems. In these approaches,
hardware virtualization technology was used for multiplexing FPGA resources among
multiple users. However, research efforts dedicated on DPR management in embedded
virtualization system were not sufficient. At the end of Chapter 1, the motivation of
our research was explained.

In Chapter 2, we described the architecture of the Ker-ONE micro-kernel, which
we have been built from bottom-up to provide ARM para-virtualization, following the
principle of a lowest complexity and high adaptivity. In the first part of this chapter,
we introduced the virtualization mechanism. Our design eliminated unnecessary VMM
functionality and focused only on essential execution resources, e.g. CPU, coprocessor,
memory, interrupt, timer, IPC, etc. Dedicated methods were taken to reduce the devel-
opment cost and to optimize the performance. The second part of this chapter proposed
a preemptive scheduling algorithm which can realize real-time virtual machine (RTOS)
with low software complexity. To analyze the scheduability, we proposed an extensive
overhead model to present the impact of virtualization on RTOS timing constrains.

Then in Chapter 3, based on the Ker-ONE micro-kernel, we proposed a custom
management framework which allocates DPR accelerators. The target of this approach
is to create a transparent, efficient and secure framework for virtual machines. We started
this chapter by demonstrating the management mechanism, which includes the reconfig-
urable infrastructure on the FPGA fabric, the virtual device management on the virtual
machine memory space, and the cooperation from HW/SW sides. The major content
was about the allocation requests/solution mechanisms, and how they were carried out
by the independent user-level service virtual machine manager. Then we made specific
discussions about the security of virtual machines in this context, showing that the shar-
ing of DPR resources does not undermine the isolation. At the end, we took the example
of a guest OS, and gave some practical suggestions for the user software programming
policy to use DPR resources.

In the last part of thesis, we presented the overall evaluations of the proposed system.
The implementation of Ker-ONE results in a small TCB kernel size. The virtualization
performance was estimated from two aspects. We measured precisely the extra overheads
via custom benchmarks base in which we have also analyzed the guest OS schedulabil-
ity. We have also studied the performance loss compared to native machine by running
standard benchmarks, i.e. Thread-Metric and MiBench. The experiments demonstrated
that Ker-ONE was able to host guest OS with low performance loss. Then we examined
the DPR allocation mechanism by determining the corresponding latencies and studying
its influence on the overall real-time schedulability. We modeled the possible execution
paths of allocation and measured their overheads respectively. It can be noticed in the

Perspectives and Future Works 129

end that our framework was capable of dynamically coordinating DPR accelerators for
virtual machines with high efficiency.

5.2 Perspectives and Future Works

The proposed micro-kernel provides a lightweight real-time virtualization approach
with DPR support. Ker-ONE results in low complexity and small footprint, and merely
relies on platform-specific architectures. Though developed on the Zynq-7000 platform, it
can easily adapt to other ARMv7-based embedded systems. Moreover, Ker-ONE remains
adaptable and might be extended to additional features and mechanisms. Meanwhile,
there are some future works that may improve our system.

First, our research is currently focusing on simple OSs with single protection domain,
which permits us to use a simplified shadow-mapping mechanism. In the future works, we
would like to introduce more sophisticated memory management so that multiple guest
OS processes (i.e. page tables) can be supported. With this improvement, more complex
OS such as Linux can be hosted in our virtual machine. This will certainly expand the
usage of Ker-ONE in both academic and industrial domains. We would like to implement
a conditional kernel compilation, where users may choose the simple implementation for
smaller kernel size, or the complex one to use Linux in the virtual machine.

Second, with the development of hardware virtualization extensions in ARM archi-
tectures, more and more embedded systems use CPUs with such features, including
ARMv7-A (e.g. Cortex-A15) and ARMv8 (e.g. Cortex-A53). FPGA vendors such as Xil-
inx are also planning to release FPGA board with Cortex-A15. In this case, we would
like to port our approach to more advanced ARM architecture to fully exploit the hard-
ware virtualization extension. With dedicated hardware support, it can be foreseen that
Ker-ONE will go through a significant performance improvement, better security, as well
as simpler kernel software.

Third, in our current research, the allocation policy of DPR resource allocation hasn’t
been fully studied. It would be interesting to develop more sophisticated solution search-
ing algorithm for allocations, and discuss the influence of different parameters on the
usage of DPR accelerators in different priority virtual machines. For example, the factors
of hardware task granularity, solution selecting policy or the size of reconfigurable regions
may all influence the allocation and preemption of different accelerators, and their usages
by guest OSs.

Last but not the least, we are interested in implementing some real-world scenarios in
our framework, e.g. applications in telecommunication or vehicle domains, so that we can
rationally evaluate the performance of our framework compared to existing solutions in
these domains, and evaluate how much the computation can be improved by using CPU-
FPGA architectures. Currently, our research team is trying to build a full communication
processing system, including OFDM and WIFI chains, on top of Ker-ONE, which would
help estimating Ker-ONE in practical situations. This approach may also be proposed
for general telecommunication systems which require flexibility and low complexity.

130 Conclusion and Perspectives

List of Figures

1 Systèmes de virtualisation complète et de para-virtualisation sur une ar-
chitecture ARM. v

2 Ker-ONE se compose d’un micro-noyau exécuté en mode privilégié et d’un
environnement utilisateur s’exécutant au niveau non-privilégié. viii

3 Surcoût d’exécution des tâches d’un RTOS lorsqu’exécutée dans une ma-
chine virtuelle. Ce dernier est composé de surcoûts critiques li és à l’or-
donnancement et les surcoûts intrinsèques liés au RTOS. xi

4 Vue d’ensemble de la gestion de la zone reconfigurable dans KER-ONE. . xii

1.1 Typical virtual machine system architecture 6
1.2 Two-stage address mapping in virtual machine systems. 9
1.3 Using shadow mapping to perform two-stage address mapping. 9
1.4 Virtualization extension provided by Intel VT-x/VT-i, where the guest

software execute in original privilege levels, but in the non-root mode. . . 12
1.5 In Cortex-A15 with hardware virtualization extension, guest OSs run at

the same privilege structure as before so that they can run the same in-
structions. New HYPmode has higher privilege, where VMM is established
to control wide range of OS accesses to hardware. 13

1.6 With DBT technology, guest OS kernel instruction are rewritten. During
executing, revised codes execute directly on processor as native codes. . . 14

1.7 Para-virtualization replaces the non-privilege sensitive instructions in OS
code with hyper-calls to emulate these behaviors. 14

1.8 Mobile handset unit sales by type, and smartphones share of unit sales,
worldwide, 2011-2018 [Source : Analysys Mason, 2014][dR14] 17

1.9 Types of 32-bit processors that are preferred by embedded device vendors.
The results are listed for year 2013 and 2014, based on a wide-range survey
on worldwide embedded developers. [Source : UBM Tech 2014 Embedded
Market Study, 2014][Tec14] . 19

1.10 Architecture of Fiasco L4 virtualization. Guest user threads are supported
by Linux server following the sequence :(1)thread syscall to request Linux
service ; (2)L4 micro-kernel takes syscalls and redirects it to Linux server ;
(3)syscall handiing ; (4)L4 returns to user thread via resuming execution
context or inter-process communication. 20

131

132 List of Figures

1.11 The virtualization framework of OKL4 microvisor on ARM architecture. . 22
1.12 The virtualization path of KVM virtual machines. KVM plays as an inter-

mediate layer that receives the request of emulation from virtual machines,
and redirects them to either QEMU or to the Linux kernel [DLC+12]. . . 23

1.13 The architecture of Xen-on-ARM hypervisor. 24
1.14 The TrustZone technology in ARM processors. 26
1.15 Using hypervisor mode and security extensions to build up virtual machine

systems. 26
1.16 Hierarchical scheduling framework in virtual machine systems. 27
1.17 Compositional scheduling framework in hierarchical systems. Periodic re-

source model is used to abstract component real-time constrains and es-
tablish scheduling interface between layers. Different scheduling algorithms
can be used for different components and layers. 28

1.18 General implementation of compositional scheduling framework in virtual
machine systems. 29

1.19 The scheduler architecture of RT-Xen. 30
1.20 Execution of servers with the WCPS and CRSP policies. 31
1.21 The general architecture of CPU/FPGA hybrid processors, with CPU and

FPGA being implemented in independent packages. 33
1.22 Dynamic Partial Reconfiguration permits users to modify a given area of

FPGA circuit on-the-fly, while the rest fabric functions normally. 34
1.23 The concepts of two CPU/FPGA models : offload model and unified model.

In offload model,application is executed on CPU cores and FPGA is used
as an accelerator. In unified model the application is divided in parts and
mapped to CPU and FPGA. OS helps in seamless execution of application
parts in the hybrid system. 36

1.24 With DPR resources used by OS or multiple users, the offload model
should be modified. Because applications/threads still access FPGA accel-
erators as peripheral devices, the OS kernel has to supervise their accesses
as an intermediate layer. 37

1.25 Dynamic Partial Reconfiguration architecture modeling as a group of com-
puting agency with multiple hardware threads. 38

1.26 ARTICo3 handles the requests of two parallel applications APP#1 and
APP#2. While APP#1 arrives first, the Resource Manager allocates all
available DPR slots to accelerate the computation. Then a higher-priority
application APP#2 arrives, which drives the Resource Manager to recon-
figure slots of APP#1 to work on the new computation. 39

1.27 Hardware resource virtualization in the OS4RS framework. Logic resources,
i.e. device node modules, can be linked to hardware functions as many-
to-one manner, so that one hardware function can be shared by multiple
clients. On the other hand, one device node can be linked to alternate
hardware modules so that it can always access available resources. 40

List of Figures 133

1.28 An intermediate fabric region is composed of a data plane that hosts the
programmable hardware computing components, and of the control plane
that holds and defines the behavior and context frame of hardware tasks. . 41

2.1 Para-virtualization systems on ARMv7 architecture. 47
2.2 Ker-ONE consists of the micro-kernel and virtual machine monitors in

privileged level and User environment in non-privileged level. 48
2.3 The allocation of general-purpose registers (R0-R14) and PC (R15) regis-

ter for different ARMv7 execution modes. 49
2.4 The management of Program Status Registers in ARMv7 architecture. . . 50
2.5 ARMv7 processor modeling by decoupling integrated functionalities. . . . 51
2.6 The mechanism of CPU resource virtualization. Resource < G,P > is

managed in a simple save/restore method, and resource < M,C > have
to be emulated as virtual resources for virtual machines. 52

2.7 a VCPU has three major properties : (1) holds the virtual machine execu-
tion context (EC) ; (2) emulates sensitive instructions ; (3) provides access
to other system resources/functionality. Virtual machines run on indepen-
dent vCPUs that play the role of an intermediate layer between virtual
machines and the rest of the VMM. 54

2.8 VFP virtualization mechanism via lazy virtualization. (a)VFP Contexts
(FPC) are created for VM1 and VM3 respectively since they have processes
that use VFP resources. Guest OS are responsible of the preservation of
Local FPCs. (b) VFP is disabled at each VM switch, and its register
contents are switched only when necessary. 56

2.9 The access control among different address space privileges in virtual ma-
chine systems : host, guest kernel and guest user. 58

2.10 By associating memory pages to different DACR domains, the memory
space of virtual machines is divided into several domains with different
access policies. 58

2.11 The mechanism of address space virtualization by using shadow mapping
mechanism and hyper-calls. 59

2.12 Event management in native machines and virtual machine systems. . . . 62
2.13 The behavior and states of hardware interrupts managed by the Generic

Interrupt Controller (GIC). 63
2.14 The process of physical interrupts being handled and virtualized through

the virtual GIC. 64
2.15 Three independent physical timers are provided to the micro-kernel, RTOS

and GPOSs respectively, which can be accessed directly. For one guest OS,
only one timer interface is mapped in the page table. 66

2.16 The IVC mechanism leveraging VM/VMM shared memory region. 67
2.17 Implementation of virtual PSR and vGIC interface in a VM/VMM shared

memory region. 68

134 List of Figures

2.18 RTOS Priority-based scheduling mechanism with independent physical
timers. An RTOS is added to the run queue and preempts the other OS
when RTOS events occurs. 71

2.19 Overhead of an RTOS task execution in VM, which is composed of VMM
critical overheads, VMM scheduling overheads and RTOSs intrinsic over-
heads. 73

2.20 Composition of overall execution time in the virtual machine context,
which is composed by the overheads of response time (ResponseVM) and
execution time (eVM

i). 74

3.1 The overview architecture of Zynq-7000 ARM-FPGA hybrid platform. . . 78
3.2 The physical address mapping of PL resources via the AXI-GP interface. . 79
3.3 The partial reconfiguration technology on Xilinx FPGA. 80
3.4 HW tasks and the implementation of virtual devices. 82
3.5 Allocation of virtual devices for virtual machines via manipulating the

mapping of of IFs. 83
3.6 Overview of the DPR management framework in Ker-ONE. 84
3.7 HW task index table with HW task descriptors. 85
3.8 Implementation of the PR accelerator interface for virtual devices. 85
3.9 The behavior of PRRs as a state machine. 87
3.10 The solution searching sequence and the selecting policy for solutions in

the PRR Monitor logic. 89
3.11 The interaction between the PPR monitor and the Virtual Device Manager

to search for appropriate allocation solutions. 90
3.12 Execution flow for solution {assign(prr01), non-Reconfig} to directly allo-

cate PRR #1 to VM #1. 91
3.13 The process of Virtual Device Manager handling Solution {vm_id, dev_id,

Method (prr_id), Reconfig}. 94
3.14 The isolated execution environment of virtual machine and its allocated

PR accelerator. 96
3.15 An example in which the µC/OS-II guest uses a binary semaphore to

handle the IPC signals. 97
3.16 An example that Guest µC/OS-II handles the preemption of virtual de-

vices by calling a dedicated task to re-launch the interrupted computation. 98

4.1 Ker-ONE Memory mapping from physical to virtual machine address space.105
4.2 Ker-ONE initialization sequence divided into stages. Stage 0 : U-boot load

files from SD card and start micro-kernel. Stage 1 : micro-kernel initialize
system and creates VM0. Stage 2 : User environment boot up guest OSs
and services into independent virtual machines. 106

4.3 Results of basic virtualization function overheads evaluation in microsec-
onds (µs) with minimum, average and maximum values. 108

4.4 Comparison of Thread-Metric Performance Ratio (RP) for para-virtualized
µC/OS-II on Ker-ONE and XEN-ARM. 112

List of Figures 135

4.5 Results of VM RTOS task response overheads evaluation in microseconds
(µs) with minimum, average and maximum values. 114

4.6 The execution paths of DPR resource allocation. 118
4.7 Experimental architecture for performance evaluation. 120

136 List of Figures

List of Tables

1 Les overheads de l’allocation des DPR . xv

1.1 Comparisons of existing virtualization solutions. 15
1.2 Required characteristics of embedded devices for current and future ap-

plications.[Source : European Commission DG CNECT Report SMART
2009/0063] [AP12] . 18

2.1 Description of ARMv7 execution modes. 47
2.2 Description of ARMv7 execution modes. 50
2.3 Sensitive non-privilege 32-bit ARM instructions. 53
2.4 The configuration of Access Permission Flag and DACR Domain State for

three different privilege levels : guest user, guest kernel and host kernel. . 59
2.5 List and description of interrupt priority layers. 65
2.6 Advantages and drawbacks of two policies for virtual resource management. 69
2.7 Pseudo codes of the task context save/resume process with two policies.

Policy 1 : Virtual PSR is held in VMM domain and is accessed via hyper-
calls. Policy 2 : Virtual PSR is held in VM domain and accessed directly. 70

3.1 Technical details of the AXI interface . 79
3.2 List and description of ports in PR accelerator interface. 86
3.3 Contents of the PRR descriptor data structure. 87

4.1 Development platform information for the proposed approach. 102
4.2 Qualitative comparison of µC/OS-II source code modification in different

characteristics of Ker-ONE and XEN-ARM kernels. 103
4.3 Comparison of TCB size for ARMv6/v7 virtualization environments mea-

sured in LoC. 104
4.4 Thread-Metric benchmarks results on both native and virtual µC/OS-II. . 111
4.5 MiBench experiment results on virtual and native Mini-µC/OS in millisec-

onds (ms). 116
4.6 Measurements of Overheads during DPR allocation 121
4.7 Preemption and reconfiguration overheads for DPR accelerators 122
4.8 Critical execution calculation in DPR allocation paths 124

137

138 List of Tables

Bibliography

[AA06] Keith Adams and Ole Agesen. A comparison of software and hardware
techniques for x86 virtualization. ACM Sigplan Notices, 41(11) :2–13, 2006.

[Aic14] Mohamed El Mehdi Aichouch. Evaluation of a multiple criticality real-time
virtual machine system and configuration of an RTOS’s resources allocation
techniques. PhD thesis, INSA de Rennes, 2014.

[Alt15] Altera. Cyclone V Device Overview. Altera Corporation, 2015.
[AP12] Gabriella Cattaneo Nathalie Feeney Lorenzo Veronesi Cyril Meunier

Alain Petrissans, Stephane Krawczyk. Final study report : Design of fu-
ture embedded systems (smart 2009/0063). Technical report, IDC France,
2012.

[APA+06] Jason Agron, Wesley Peck, Erik Anderson, David Andrews, Ed Komp, Ron
Sass, Fabrice Baijot, and Jim Stevens. Run-time services for hybrid cpu/fpga
systems on chip. In Real-Time Systems Symposium, 2006. RTSS’06. 27th
IEEE International, pages 3–12. IEEE, 2006.

[APL11] Andreas Agne, Marco Platzner, and Enno Lübbers. Memory virtualization
for multithreaded reconfigurable hardware. In Field Programmable Logic
and Applications (FPL), 2011 International Conference on, pages 185–188.
IEEE, 2011.

[APN13] Mehdi Aichouch, Jean-Christophe Prevotet, and Fabienne Nouvel. Evalua-
tion of an rtos on top of a hosted virtual machine system. In Design and
Architectures for Signal and Image Processing (DASIP), 2013 Conference
on, pages 290–297. IEEE, 2013.

[ARM12] ARM ARM. Architecture reference manual. armv7-a and armv7-r edition.
ARM DDI C, 406, 2012.

[ARM13] ARM. ARM Generic Interrupt Controller Architecture Specification (ARM
IHI0048B), 2013.

[BA07] B Brandenburg and J Anderson. Feather-trace : A lightweight event tracing
toolkit. In Proceedings of the Third International Workshop on Operating
Systems Platforms for Embedded Real-Time Applications, pages 19–28, 2007.

[Bau15] Felix Baum. Securing Devices with Embedded Virtualization and ARM
TrustZone Technology. Mentor Graphics Corporation, 2015.

139

140 Bibliography

[Bes13] Joel Best. Real-Time Operating System Hardware Extension Core for
System-on-Chip Designs. PhD thesis, 2013.

[BHH+07] Jürgen Becker, Michael Huebner, Gerhard Hettich, Rainer Constapel,
Joachim Eisenmann, and Jürgen Luka. Dynamic and partial fpga exploita-
tion. Proceedings of the IEEE, 95(2) :438–452, 2007.

[BPS15] Meena Belwal, Madhura Purnaprajna, and TSB Sudarshan. Enabling seam-
less execution on hybrid cpu/fpga systems : Challenges & directions. In
Field Programmable Logic and Applications (FPL), 2015 25th International
Conference on, pages 1–8. IEEE, 2015.

[BSB+14] Stuart Byma, J Gregory Steffan, Hadi Bannazadeh, Alberto Leon-Garcia,
and Paul Chow. Fpgas in the cloud : Booting virtualized hardware acceler-
ators with openstack. In Field-Programmable Custom Computing Machines
(FCCM), 2014 IEEE 22nd Annual International Symposium on, pages 109–
116. IEEE, 2014.

[BSH11] Bernard Blackham, Yao Shi, and Gernot Heiser. Protected hard real-time :
The next frontier. In Proceedings of the Second Asia-Pacific Workshop on
Systems, page 1. ACM, 2011.

[CAA09] Tommaso Cucinotta, Gaetano Anastasi, and Luca Abeni. Respecting tem-
poral constraints in virtualised services. In 2009 33rd Annual IEEE Interna-
tional Computer Software and Applications Conference, pages 73–78. IEEE,
2009.

[DH10] Hanfei Dong and Qinfen Hao. Extension to the model of a virtualizable
computer and analysis on the efficiency of a virtual machine. In 2010 Second
International Conference on Computer Modeling and Simulation, pages 503–
507. IEEE, 2010.

[DJ11] Christoffer Dall and Nieh Jason. Kvm for arm. In Proceeding of Linux
Symposium, pages 45–56, 2011.

[DLC+12] Jiun-Hung Ding, Chang-Jung Lin, Ping-Hao Chang, Chieh-Hao Tsang, Wei-
Chung Hsu, and Yeh-Ching Chung. Armvisor : System virtualization for
arm. In Proceedings of the Ottawa Linux Symposium (OLS), pages 93–107,
2012.

[DN14] Christoffer Dall and Jason Nieh. Kvm/arm : the design and implementation
of the linux arm hypervisor. ACM SIGARCH Computer Architecture News,
42(1) :333–348, 2014.

[dR14] Ronan de Renesse. Smartphone markets : worldwide trends, forecasts and
strategies 2014-2018. Technical report, Ronan de Renesse, 2014.

[DRB+10] Julio Dondo, Fernando Rincón, Jesus Barba, Francisco Moya, Francisco
Sanchez, and Juan Carlos López. Persistence management model for dy-
namically reconfigurable hardware. In Digital System Design : Architectures,
Methods and Tools (DSD), 2010 13th Euromicro Conference on, pages 482–
489. IEEE, 2010.

Bibliography 141

[Exp07] ExpressLogic. Measuring Real-Time Performance Of An RTOS, 2007.
[Fle05] Bryan H Fletcher. Fpga embedded processors : revealing true system per-

formance. In Embedded Systems Conference, pages 1–18, 2005.
[FM02] Xiang Feng and Aloysius K Mok. A model of hierarchical real-time virtual

resources. In Real-Time Systems Symposium, 2002. RTSS 2002. 23rd IEEE,
pages 26–35. IEEE, 2002.

[GBL+09] Maria E Gonzalez, Attila Bilgic, Adam Lackorzynski, Dacian Tudor, Emil
Matus, and Irv Badr. Ict-emuco. an innovative solution for future smart
phones. In Multimedia and Expo, 2009. ICME 2009. IEEE International
Conference on, pages 1821–1824. IEEE, 2009.

[Gol74] Robert P Goldberg. Survey of virtual machine research. Computer, 7(6) :34–
45, 1974.

[GRE+01] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin,
Trevor Mudge, and Richard B Brown. Mibench : A free, commercially
representative embedded benchmark suite. In Workload Characterization,
2001. WWC-4. 2001 IEEE International Workshop on, pages 3–14. IEEE,
2001.

[Gup15] Prabhat K Gupta. Xeon+ fpga platform for the data center. In Fourth
Workshop on the Intersections of Computer Architecture and Reconfigurable
Logic, volume 119, 2015.

[Han70] Per Brinch Hansen. The nucleus of a multiprogramming system. Commu-
nications of the ACM, 13(4) :238–241, 1970.

[HD10] Scott Hauck and Andre DeHon. Reconfigurable computing : the theory and
practice of FPGA-based computation. Morgan Kaufmann, 2010.

[Hei08] Gernot Heiser. The role of virtualization in embedded systems. In Proceed-
ings of the 1st workshop on Isolation and integration in embedded systems,
pages 11–16. ACM, 2008.

[HGNB10] Michael Hübner, Diana Göhringer, Juanjo Noguera, and Jürgen Becker. Fast
dynamic and partial reconfiguration data path with low hardware overhead
on xilinx fpgas. In Parallel & Distributed Processing, Workshops and Phd Fo-
rum (IPDPSW), 2010 IEEE International Symposium on, pages 1–8. IEEE,
2010.

[HH09] Chun-Hsian Huang and Pao-Ann Hsiung. Hardware resource virtualization
for dynamically partially reconfigurable systems. Embedded Systems Letters,
IEEE, 1(1) :19–23, 2009.

[HL10] Gernot Heiser and Ben Leslie. The okl4 microvisor : convergence point of
microkernels and hypervisors. In Proceedings of the first ACM asia-pacific
workshop on Workshop on systems, pages 19–24. ACM, 2010.

[Hoh96] Michael Hohmuth. Linux-emulation auf einem mikrokern. Master’s thesis,
Dresden University of Technology, Dept. of Computer Science, 1996.

142 Bibliography

[Hor07] Chris Horne. Understanding full virtualization, paravirtualization and hard-
ware assist. White paper, VMware Inc, 2007.

[HSH+08] Joo-Young Hwang, Sang-Bum Suh, Sung-Kwan Heo, Chan-Ju Park, Jae-
Min Ryu, Seong-Yeol Park, and Chul-Ryun Kim. Xen on arm : System
virtualization using xen hypervisor for arm-based secure mobile phones. In
Consumer Communications and Networking Conference, 2008. CCNC 2008.
5th IEEE, pages 257–261. IEEE, 2008.

[ISM09] Asif Iqbal, Nayeema Sadeque, and Rafika Ida Mutia. An overview of mi-
crokernel, hypervisor and microvisor virtualization approaches for embed-
ded systems. Report, Department of Electrical and Information Technology,
Lund University, Sweden, 2110, 2009.

[JHE+13] Krzysztof Jozwik, Shinya Honda, Masato Edahiro, Hiroyuki Tomiyama, and
Hiroaki Takada. Rainbow : An operating system for software-hardware
multitasking on dynamically partially reconfigurable fpgas. International
Journal of Reconfigurable Computing, 2013 :5, 2013.

[JPC+14] Abhishek Kumar Jain, Khoa Dang Pham, Jin Cui, Suhaib A Fahmy, and
Douglas L Maskell. Virtualized execution and management of hardware
tasks on a hybrid arm-fpga platform. Journal of Signal Processing Systems,
77(1-2) :61–76, 2014.

[Kai08] Robert Kaiser. Alternatives for scheduling virtual machines in real-time
embedded systems. In Proceedings of the 1st workshop on Isolation and
integration in embedded systems, pages 5–10. ACM, 2008.

[KBT08] Dirk Koch, Christian Beckhoff, and Jürgen Teich. Recobus-builder-a novel
tool and technique to build statically and dynamically reconfigurable sys-
tems for fpgas. In Field Programmable Logic and Applications, 2008. FPL
2008. International Conference on, pages 119–124. IEEE, 2008.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, et al. sel4 : Formal verification of an os kernel. In Proceed-
ings of the ACM SIGOPS 22nd symposium on Operating systems principles,
pages 207–220. ACM, 2009.

[Kon12] Kontron. No end to the possibilities : x86 meets FPGA whitepaper. Kontron,
2012.

[Kri99] C Mani Krishna. Real-Time Systems. Wiley Online Library, 1999.
[KS15] Oliver Knodel and Rainer G Spallek. Rc3e : Provision and management of

reconfigurable hardware accelerators in a cloud environment. arXiv preprint
arXiv :1508.06843, 2015.

[KZ09] Robert Kaiser and Dieter Zöbel. Quantitative analysis and systematic
parametrization of a two-level real-time scheduler. In Emerging Technolo-
gies & Factory Automation, 2009. ETFA 2009. IEEE Conference on, pages
1–8. IEEE, 2009.

Bibliography 143

[Lan11] Travis Lanier. Exploring the design of the cortex-a15 processor. URL :
http ://www. arm. com/files/pdf/atexploring the design of the cortex-a15.
pdf (visited on 12/11/2013), 2011.

[LB05] Giuseppe Lipari and Enrico Bini. A methodology for designing hierarchical
scheduling systems. Journal of Embedded Computing, 1(2) :257–269, 2005.

[LCC13] Chien-Te Liu, Kuan-Chung Chen, and Chung-Ho Chen. Casl hypervisor and
its virtualization platform. In Circuits and Systems (ISCAS), 2013 IEEE
International Symposium on, pages 1224–1227. IEEE, 2013.

[Lie94] Jochen Liedtke. Improving ipc by kernel design. In ACM SIGOPS Operating
Systems Review, volume 27, pages 175–188. ACM, 1994.

[Lie95] Jochen Liedtke. On micro-kernel construction, volume 29. ACM, 1995.

[LKLJ09] Ming Liu, Wolfgang Kuehn, Zhonghai Lu, and Axel Jantsch. Run-time par-
tial reconfiguration speed investigation and architectural design space ex-
ploration. In Field Programmable Logic and Applications, 2009. FPL 2009.
International Conference on, pages 498–502. IEEE, 2009.

[LP09] Enno Lübbers and Marco Platzner. Reconos : Multithreaded programming
for reconfigurable computers. ACM Transactions on Embedded Computing
Systems (TECS), 9(1) :8, 2009.

[LXC+] Jaewoo Lee, Sisu Xi, Sanjian Chen, Linh TX Phan, Chris Gill, Insup
Lee, Chenyang Lu, and Oleg Sokolsky. Realizing compositional scheduling
through.

[LZQ07] Lei Liu, Feng-li ZHANG, and Zhi-guang QIN. Embedded linux’s bootloader
based on u-boot. Application Research of Computers, 12 :078, 2007.

[MA01] Aloysius K Mok and Xiang Alex. Towards compositionality in real-time
resource partitioning based on regularity bounds. In Real-Time Systems
Symposium, 2001.(RTSS 2001). Proceedings. 22nd IEEE, pages 129–138.
IEEE, 2001.

[MA09] P McLean and H Ayoub. ucos ii vs uclinux. Technical report, Technical
Report, Computer Architecture Research Group, University of Ottawa. Ot-
tawa, 2009.

[McD08] Eric J McDonald. Runtime fpga partial reconfiguration. In Aerospace Con-
ference, 2008 IEEE, pages 1–7. IEEE, 2008.

[OBDA11] Muhsen Owaida, Nikolaos Bellas, Konstantis Daloukas, and Christos D
Antonopoulos. Synthesis of platform architectures from opencl programs.
In Field-Programmable Custom Computing Machines (FCCM), 2011 IEEE
19th Annual International Symposium on, pages 186–193. IEEE, 2011.

[PG74] Gerald J Popek and Robert P Goldberg. Formal requirements for vir-
tualizable third generation architectures. Communications of the ACM,
17(7) :412–421, 1974.

144 Bibliography

[PG11] François Philipp and Manfred Glesner. Mechanisms and architecture for the
dynamic reconfiguration of an advanced wireless sensor node. In 2011 21st
International Conference on Field Programmable Logic and Applications,
pages 396–398. IEEE, 2011.

[PKR+13] Niels Penneman, Danielius Kudinskas, Alasdair Rawsthorne, Bjorn De Sut-
ter, and Koen De Bosschere. Formal virtualization requirements for the arm
architecture. Journal of Systems Architecture, 59(3) :144–154, 2013.

[POP+14] S Pinto, Daniel Oliveira, J Pereira, Nuno Cardoso, Mongkol Ekpanyapong,
Jorge Cabral, and A Tavares. Towards a lightweight embedded virtualization
architecture exploiting arm trustzone. In Emerging Technology and Factory
Automation (ETFA), 2014 IEEE, pages 1–4. IEEE, 2014.

[Res15] Transparency Market Research. Embedded system market - global industry
analysis, size, share, growth, trends and forecast, 2015 - 2021. Technical
report, Transparency Market Research, 2015.

[Ros12] Daniel Rossier. Embeddedxen : A revisited architecture of the xen hyper-
visor to support arm-based embedded virtualization. White paper, Switzer-
land, 2012.

[RVdlTR14] Alex Rodriguez, Juan Valverde, Eduardo de la Torre, and Teresa Riesgo. Dy-
namic management of multikernel multithread accelerators using dynamic
partial reconfiguration. In Reconfigurable and Communication-Centric
Systems-on-Chip (ReCoSoC), 2014 9th International Symposium on, pages
1–7. IEEE, 2014.

[Seo10] Sangwon Seo. Research on system virtualization using xen hypervisor for
arm based secure mobile phones. In Seminar Security in Telecommunica-
tions, Berlin University of Technology, Korea Advanced Institute of Science
and Technology, 2010.

[SK10] Udo Steinberg and Bernhard Kauer. Nova : a microhypervisor-based secure
virtualization architecture. In Proceedings of the 5th European conference
on Computer systems, pages 209–222. ACM, 2010.

[SL03] Insik Shin and Insup Lee. Periodic resource model for compositional real-
time guarantees. In Real-Time Systems Symposium, 2003. RTSS 2003. 24th
IEEE, pages 2–13. IEEE, 2003.

[SL04] Insik Shin and Insup Lee. Compositional real-time scheduling framework.
In Real-Time Systems Symposium, 2004. Proceedings. 25th IEEE Interna-
tional, pages 57–67. IEEE, 2004.

[Ste01] David B Stewart. Measuring execution time and real-time performance. In
Embedded Systems Conference (ESC), 2001.

[TCL09] David B Thomas, J Coutinho, and Wayne Luk. Reconfigurable computing :
Productivity and performance. In Signals, Systems and Computers, 2009
Conference Record of the Forty-Third Asilomar Conference on, pages 685–
689. IEEE, 2009.

Bibliography 145

[Tec14] UBM Tech. 2014 embedded market study then now whats next. Technical
report, UBM Tech, 2014.

[uco12] Para-virtualized µC/OS-II RTOS on Xen-ARM, 2012.
[UNR+05] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L Santoni, Fernando Martins,

Andrew V Anderson, Steven M Bennett, Alain Kägi, Felix H Leung, and
Larry Smith. Intel virtualization technology. Computer, 38(5) :48–56, 2005.

[VF14] Kizheppatt Vipin and Suhaib A Fahmy. Zycap : Efficient partial reconfig-
uration management on the xilinx zynq. Embedded Systems Letters, IEEE,
6(3) :41–44, 2014.

[VGS08] Jérôme Gallard-Adrien Lèbre-Geoffroy Vallée, Christine Morin-Pascal Gal-
lard, and Stephen L Scott. Refinement proposal of the goldberg’s theory.
2008.

[VH11] Prashant Varanasi and Gernot Heiser. Hardware-supported virtualization
on arm. In Proceedings of the Second Asia-Pacific Workshop on Systems,
page 11. ACM, 2011.

[WBP13] Wei Wang, Miodrag Bolic, and Jonathan Parri. pvfpga : accessing an fpga-
based hardware accelerator in a paravirtualized environment. In Hardware/-
Software Codesign and System Synthesis (CODES+ ISSS), 2013 Interna-
tional Conference on, pages 1–9. IEEE, 2013.

[XBG+10] Yang Xu, Felix Bruns, Elizabeth Gonzalez, Shadi Traboulsi, Klaus Mott,
and Attila Bilgic. Performance evaluation of para-virtualization on modern
mobile phone platform. In Proceedings of the International Conference on
Computer, Electrical, and Systems Science, and Engineering, 2010.

[xen12] Xen on ARM (PV), 2012.
[XEN14] XEN. Xen ARM with Virtualization Extensions whitepaper, 2014.
[Xil14a] Xilinx. Programming ARM TrustZone Architecture on the Xilinx Zynq-7000

All Programmable SoC : User Guide. Xilinx, 2014.
[Xil14b] Xilinx. Vivado High Level Synthesis (UG902), 2014.
[Xil14c] Xilinx. Zynq-7000 All Programmable SoC Technical Reference Manual

(UG585), 2014.
[XWLG11] Sisu Xi, Justin Wilson, Chenyang Lu, and Christopher Gill. Rt-xen : To-

wards real-time hypervisor scheduling in xen. In Embedded Software (EM-
SOFT), 2011 Proceedings of the International Conference on, pages 39–48.
IEEE, 2011.

[YKP+11] Jungwoo Yang, Hyungseok Kim, Sangwon Park, Changki Hong, and Insik
Shin. Implementation of compositional scheduling framework on virtualiza-
tion. ACM SIGBED Review, 8(1) :30–37, 2011.

[YY14] Seehwan Yoo and Chuck Yoo. Real-time scheduling for xen-arm virtual
machines. Mobile Computing, IEEE Transactions on, 13(8) :1857–1867,
2014.

146 Bibliography

[YYY13] Seehwan Yoo, Sung-bae Yoo, and Chuck Yoo. Virtualizing arm vfp (vector
floating-point) with xen-arm. Journal of Systems Architecture, 59(10) :1266–
1276, 2013.

Résumé

Aujourd'hui, les systèmes embarqués jouent un rôle

prépondérant dans la vie quotidienne des utilisateurs. Ces

systèmes sont très hétérogènes et regroupent une énorme

diversité produits tels que les smartphones, les dispositifs de

contrôle, les systèmes communicants, etc. Avec cette large

gamme d'applications, ces systèmes ont évolué en différentes

catégories. Il existe des systèmes avec une grande puissance

de calcul. D'autres systèmes embarqués à faible coût, avec des

ressources limitées, sont destinés à l'implantation de dispositifs

simples, qui constituent le cœur de l'Internet de Objects (IdO).

Fondamentalement, la plupart de ces appareils partagent des

caractéristiques communes telles que la taille, le poids et la

faible consommation d'énergie.

Tandis que la complexité des systèmes embarqués augmente,

il devient de plus en plus coûteux d'améliorer les performances

du processeur par des approches technologiques classiques i.e

diminution de la taille des transistors. Dans ce contexte, l'idée

d'une architecture hétérogène CPU-FPGA est devenue une

solution prometteuse pour les concepteurs de systèmes sur

puce, en termes de rapidité de mise sur le marché. D'autre part,

la forte capacité d'adaptation et le faible coût en font une

solution très recherchée. Cette solution permet d'allier les

avantages et la flexibilité d'un processeur aux architectures

matérielles classiques. Elle permet également d'étendre les

concepts classiques, telles que la virtualisation, aux circuits

matériels.

Cette thèse décrit un micro-noyau original (Ker-ONE)

permettant de gérer la virtualisation des systèmes embarqués

et fournissant un environnement pour les machines virtuelles en

temps réel. Nous avons simplifié l'architecture du micro-noyau

en ne gardant que les caractéristiques essentielles requises

pour la virtualisation, et massivement réduit la complexité de la

conception du noyau. Sur la base de ce micro-noyau, nous

avons mis en place un cadre capable de gérer des ressources

reconfigurables dans un système composé de machine

virtuelles. Les accélérateurs matériels reconfigurables sont

mappés en tant que dispositifs classiques dans chaque

machine. Grâce à une gestion efficace de la mémoire dédiée,

nous avons permis de détecter automatiquement le besoin de

ressources et permettons une allocation dynamique.

Selon diverses expériences et évaluations, nous avons montré

que Ker-ONE ne dégrade que très peu les performances en

termes de temps d'exécution. Les surcoûts engendrés peuvent

généralement être ignorés dans les applications réelles. Nous

avons également étudié l'ordonnançabilité temps réel dans les

machines virtuelles. Les résultats montrent que le respect de

l'échéance des tâches du RTOS est garanti. Nous avons

également démontré que le noyau proposé est capable

d'allouer des accélérateurs matériels très rapidement.

N° d’ordre : 16ISAR 12 / D16 - 12
Institut National des Sciences Appliquées de Rennes
20, Avenue des Buttes de Coësmes - CS 14315 - F-35043 Rennes Cedex
Tél : 02 23 23 82 00 – Fax : 02 23 23 83 96

Abstract

Nowadays, embedded systems are playing important roles in

the daily life of most people, ranging from customer products

such as smartphones and vehicles, to industry domains. With

such as an expanded range of purposes, embedded systems

have evolved into different categories. There are systems with

high computing power which can support complex software

stack and enormous resources. There are also small-scaled

embedded systems with limited resources and are intended for

low-cost, simple devices, such as for Internet-of-Things (IoT).

Basically, most of these devices share common characteristics

such as requirements in size, weight and low power

consumption.

While the complexity of embedded systems is increasing, it is

becoming more and more expensive to improve CPU

performance by conventional approaches, i.e. IC scaling and

ASICs. In this context, the concept of heterogeneous CPU-

FPGA architecture has become a promising solution for SoC

device vendors, because of the fast time-to-market circle, the

high adaptability and the relatively-low cost to improve the

computation ability. This emerging convergence point of

conventional CPU and FPGA computing makes it possible to

extend traditional CPU visualization technologies into the FPGA

domain to fully exploit the mainstream FPGA computing. To

achieve this goal, it is necessary to propose an architecture

which enhances the ability of existing technology while

respecting the features of both software and hardware

components.

This thesis describes an original micro-kernel that manages

virtualization and that provides an execution environment for

real-time virtual machines. We have simplified the micro-kernel

architecture by only keeping critical features required for

virtualization, and massively reduced the kernel design

complexity. Based on this micro-kernel, we have introduced a

framework capable of DPR resource management in a virtual

machine system. DPR accelerators are mapped as ordinary

devices in each VM. Through dedicated memory management,

our framework automatically detects the request for DPR

resources and allocates them dynamically.

According to various experiments and evaluations, we have

shown that Ker-ONE causes very low virtualization overheads,

which can generally be ignored in real applications. We have

also studied the real-time schedulability in virtual machines. The

results show that RTOS tasks are guaranteed to be scheduled

while meeting their intra-VM timing constraints. We have also

demonstrated that the proposed framework is capable of virtual

machine DPR allocation with low overhead.

