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Abstract

In this document, I first analyze some of the reasons why real-world environment perception is still
strongly inferior to human perception in overall accuracy and reliability. In particular, I focus on the
task of object detection in traffic scenes and present an argument why this task is in fact a good model
task for other, related perception problems (e.g. in robotics or surveillance). Enumerating the difficulties
encountered in this model task (and therefore, by inference, in many other detection tasks as well), I come
to the conclusion that problems in object detection can in fact be, to a significant extent, traced back
to problems of the learning algorithms that are used in various forms when performing object detection.
Namely, the lack of a probabilistic interpretation, the lack of incremental learning capacity, the lack of
training samples and the inherent ambiguity of local pattern analysis are identified and used to justify a
road map for research efforts aimed at overcoming these problems. I present several of my works concerning
real-world applications of machine learning in perception, where the stated problems become very apparent.
Subsequently, I describe in detail my recent research contributions and their significance in the context of
the proposed road map: context-based object detection, generative and multi-modal learning as well as an
original method for incremental learning. The document is concluded by an outlook that addresses further
work to complete the road map, and the possibilities that are offered by such an endeavour in the field of
machine perception.
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1. Introduction

This document gives an overview of my scientific
work after obtaining my PhD degree in 2005 from the
university of Bochum (Germany). This work was per-
formed partly at the Honda Research Institute Eu-
rope Gmbh in Offenbach (Germany) from 2005 to
2010, but for the most part at the "Ecole Nationale
Supérieure de Techniques Avancées" (ENSTA Paris-
Tech) at Palaiseau (France) where I am an associate
professor ("enseignant-chercheur") since 2011. Tt is,
by its very nature, a pedagogical rather than a scien-
tific document, intended to give an overview but not
an in-depth account of my research activities. There-
fore, no precise details (formulas, parameter values,
experimental results) will be shown here except for
pedagogical purposes. For these details, the inter-
ested reader is referred to the original publications.
This is not a self-contained document either, but as-
sumes a certain familiarity with computer vision, pat-
tern recognition and machine learning problems.

1.1. Scientific context and model scenario

The context of the research described here is the
achievement of human-like intelligence in present-day
computers using tools and insights from computer
science, mathematics, biology and psychology. A par-
ticular focus of my work is intelligent visual environ-
ment perception, a task the difficulty of which is often
underestimated as it is performed by each of us virtu-
ally flawlessly, every day of our lives. Only when we,
as computer scientists, try to duplicate some of the
functions humans perform routinely, we begin to see
their intrinsic difficulty: after all, the last 30 years
have seen intense academic and industrial research
on environment perception in economically very rel-
evant domains such as road traffic, surveillance or
humanoid robotics, without producing solutions that
come even close to human perceptual performance
(see [129] for a recent very exhaustive comparative
evaluation on pedestrian detection to this effect).

In fact, road traffic is an excellent scenario for
research in intelligent environment perception: not
only is it, scientifically speaking, very evident that
some kind of fundamental breakthrough is required
to close the gap between the current state of the art

Figure 1: Example scenes from the chosen model scenario of
object detection in road traffic. This scenario covers a great
variety of object classes to be detected: vehicles (A,B), pedes-
trians (C), road markings (D), traffic signs (E) and traffic lights
(F). At the same time, the variation in scene types is consider-
able as well, which can mainly be distinguished by complexity:
relatively simple highway traffic (B) and complex inner-city
traffic (A,C,D,E,F).

and human performance, but, at the same time, such
a breakthrough would be of very high economic and
societal relevance. After all, better safety systems
could save hundreds of thousand of lives world-wide
every year, which would otherwise be lost in traffic
accidents, not to speak of a revolution in our mobility
habits that could be triggered by cheap and univer-
sally available autonomous vehicles. For this reason,
road traffic is often used as a model scenario in my
research work, in particular road traffic as analyzed
from a moving car. In such a scenario, especially
in inner-city scenes, environment perception amounts
to a great extent to the localization and recogni-
tion of objects, such as pedestrians, cyclists, traffic
signs, road markings a.s.o., see Fig. 1. Real-time con-
straints usually apply, imposing upper bounds on the
computational complexity of algorithms. As we are
talking about a real-world scenario here, the fact of
relying on physical sensors implies a deep involvement
in aspects of signal- and image processing. Lastly,
due to the complexity and the sheer volume of the
data to be processed, machine learning must be in-
trinsically involved in this effort.

When we are interested in the principles of human-



Figure 2: Traffic sign detection as an example of object de-
tection with diagnostic features. In this case, the feature in
question is color, as the blue, yellow or red colors of the shown
traffic signs give already a very good indication about their
presence and position.

like intelligence, it is useful to limit the model sce-
nario further by excluding the detection of all ob-
jects that are "simple" to detect, e.g., by having sim-
ple diagnostic features [168] defining them unambigu-
ously, or almost so. An example for objects with a
diagnostic feature are traffic signs which are, inten-
tionally, characterized by a small set of forms and
especially colors, see. Fig. 2, and which are there-
fore excluded from our considerations, as well as road
markings. We are thus left with the detection of ve-
hicles, pedestrians, the course of the road, sidewalks,
(motor)cyclists a.s.o. While these object classes have
properties that might facilitate the task of detect-
ing them, there is no single, easy-to-compute visual
property that would allow an unambiguous charac-
terization.

1.2. Structure of the document

By virtue of proper restriction, object detection in
road traffic can therefore be considered a very diffi-
cult (and therefore very interesting) scientific prob-
lem. As it is at the same time a problem of high in-
dustrial and societal relevance, it becomes even more
interesting to search for solutions. The goal of this
document is to propose a road map towards a solu-
tion, based on system-oriented approaches and ma-
chine learning methods, and to summarize the most
important steps I have already taken in this direction,
as well as to outline future research efforts along the
proposed road map. In the following section, I will
first analyze the principal challenges associated with
visual environment perception (and object detection

in particular) in order to motivate the proposal of
a road map for overcoming those challenges. Subse-
quently, I will outline my recent work in this direction
in Secs. 3, 4, 5 and 6. Finally, the described works
are discussed in the context of the road map in Sec. 7,
and an outlook of potential future research efforts is
given and motivated.



Figure 3: Uncontrolled environments prevent simple hypothe-
ses: in the shown traffic situation, the usual assumption of

a flat ground plane is no longer valid. If the ground plane
hypothesis is used to give a priori indications about object
positions, its application would even be harmful here, as the
system would suddenly detect many objects that have no link
at all with the true (curved) ground plane.

2. Principal challenges to real-world object
detection

Uncontrolled scenario Object detection in road
traffic scenarios is faced with many challenges, most
of which are linked to the uncontrolled nature of
the environment in the sense that many influences
(weather, light, other traffic participants, traffic
rules) are totally outside the control of the ex-
perimenter, and therefore simplifying assumptions
based on controlled environment properties cannot
be made. For example: in indoor robotics, a flat
ground-plane assumption is often made, but this is
not necessarily true in traffic scenarios as the ground
can be slanted or curved even on a small spatial scale,
see Fig. 3.

Illumination and weather Another aspect that
cannot be controlled is illumination and weather (see
Fig. 4): it is intuitively clear that rain, low sun, fog
or snow, or the change of daytime to night-time, will
have a strong impact on all algorithms based exclu-
sively on image processing. A very disturbing prop-
erty of these effects is that they are often strongly
non-linear, i.e., there will be no simple image trans-
formation that corrects them: illumination changes
are often inhomogeneous across the image, camera
over-exposure corrupts individual pixel values in an
irreversible fashion, and fog acts as a filter removing
fine details that cannot be recovered.

Unpredictable dynamics Traffic scenes are highly
dynamic, even without considering the motion of the

Figure 6: Example of occlusion in traffic scenes. This is a
very common effect that essentially destroys a significant part
of visual information about and object, and, what is worse,
replaces it with potentially conflicting information.

ego-vehicle observing them. It is again very difficult
to model the behavior of other traffic participants
because it is based on traffic rules, infrastructure
(traffic lights, barriers), and to no small extent by
each driver’s personal driving style. All this move-
ment complicates the detection of objects of interest,
again because simple methods based on a static-world
assumption, or on the assumption of constant ego-
movement, cannot be used.

Visual ambiguities Another issue concerns visual
ambiguities: locally, the pixel pattern of a vehicle can
be very similar to the pattern of a window on a build-
ing, and similar confusions of local pixel patterns can
occur for pedestrians in particular (e.g., trees, street
lights, traffic lights). This is illustrated in Fig. 5.
This is a fundamental problem of object detection,
but exacerbated by the uncontrolled nature of road
traffic scenarios as conflicting patterns cannot simply
be excluded from the scenario.

Occlusions A last challenge that occurs in many
detection scenarios, not only in road traffic, is occlu-
sion by other objects, see Fig. 6. This does not seem
to represent a major problem for the human visual
system [82], but poses problems for many current de-
tection systems as essentially a large part of the in-
formation characterizing the object is not available.

2.1. State of the art for object detection in road traffic

In general, object detection is an area so vast,
depending on application scenarios and constraints,
that is it quite impossible to list all relevant ap-
proaches, simply because what is relevant varies
as a function of the intended application scenario.



Figure 4: Examples of the effect that time of day and weather can have on a visual image, the starting point for visual
perception. The ideal climatic condition, an overcast sky without direct sunlight, is shown in I. In II, it can be observed
what direct, low-standing sun can do in the way of shadows which are very detrimental to detection algorithms. In III, we
observe that rain completely changes the appearance of a visual scene, with a reflective road surface that may even lead to
"ghost detections", i.e., the detection of vehicles that are reflected on a wet road. In IV, the effect of night-time is illustrated.
Contrary to intuition, the effect is not really dramatic as artificial illumination is usually homogeneous and diffuse and thus
does not cause strong shadows. In V, the effects of fallen snow can be inspected. This case does not present extreme challenges
to visual processing, but LIDAR signals are strongly affected due to the high reflectance of snow and ice.

Figure 5: Ambiguities in visual scene analysis. The left image shows a typical inner-city traffic situation with three modifications.
The right image shows the nature of modifications: Three patterns were copied to other positions within the image. The fact
that these changes go unnoticed is due to the similarity of these patterns to traffic objects. Please verify for yourself whether
you could have found the changes!

When restricting this discussion to the model sce-
nario outlined above, however, a halfway representa-
tive overview can be given, focusing on purely visual
approaches, i.e., not considering the use of LIDAR or
other sensors, on methods that are (in principle) real-
time capable or close to it, and methods for detecting
vehicles or pedestrians (see Fig. 1). In general, object
detection methods can be grouped into "detection-
by-recognition" and direct approaches. The latter

implement algorithms for directly localizing objects
of the desired class, whereas the former reduces de-
tection to a classification or recognition problem by
analyzing all potential object locations by a binary
classifier that distinguishes objects (of the desired
class) from non-objects ("background"), as sketched
in Fig. 7. Virtually any object detection algorithm
makes use of multi-scale processing, analyzing the vi-
sual image at multiple spatial scales. This is required,
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Figure 7: How a state-of-the-art sliding-window detector
works, based on a vehicle detection scenario in road traffic.
The original image (bottom left) is analyzed on N = 3 spatial
scales denoted I, IT, ITI. Analysis is carried out by a constant-
size sliding window that assumes every position within each of
the N images. Window content at each position/scale is ana-
lyzed and each window is assigned an identity (vehicle or back-
ground). On the right-hand side, the results of this operation
are schematically drawn into the image, where "detections" of
the background class are not shown. Please note that, by hav-
ing a window of constant size but different image sizes at each
scale, this method effectively detects vehicles of different sizes.

since objects of the desired class need to be recognized
regardless of their distance to the observer, which
is usually strongly variable, and a multi-scale treat-
ment transfers some of the signal variability thus in-
troduced away from detection/classification models.

Object detection is an intrinsically ill-posed prob-
lem, as the space of possible objects, and above all
backgrounds, is extremely large and cannot be de-
scribed or even sampled completely. Especially for
visual object detection, the approach for coping with
this problem is twofold:

e feature transform: reduction of variability
by image transformations. Often, image vari-
ability has a physical cause. For example, global
illumination changes strongly affect image pixel
values, just as rotations or translations of objects
(or the observer) do. The goal of feature design
is to determine image transformations that are
inwvariant to some of these causes, thus signifi-
cantly reducing signal variability.

e machine learning: the remaining variability
is usually dealt with by machine learning tech-
niques, which attempt to map the output of the
feature transform step to statements about ob-
ject class membership. Results depend strongly

on the model complexity of the used algorithms.

Many visual objects seem to be strongly charac-
terized by gradients: edges, corners and lines. At
the same time, gradient information is insensitive
to global illumination changes, or, if properly nor-
malized, to local ones as well. In this way, a huge
source of variability, namely variability due to illumi-
nation changes, is removed when computing image
gradients. Therefore all relevant feature computa-
tion techniques are based on the calculation of image
gradients, all the more so as gradients do not require
significant computational resources. Notable feature
computation techniques are histograms of oriented
gradients (HOG) [20], local binary patterns (LBP)
[123], aggregated channel features (ACF) [25], Haar
wavelets based on integral images [176] and Canny-
edges [23].

When discussing learning methods, the model sce-
nario imposes constraints on these as well. Most fea-
ture computation techniques transform the image, or
patches of it, into a representation of high dimen-
sionality (outright or simply because an image has
already high dimensionality). This requires learn-
ing algorithms capable of dealing with high sample
dimensionality. Furthermore, as the problem is ill-
posed, an enormous amount of samples will be neces-
sary to achieve satisfactory performance, which priv-
ileges algorithms that have a benign scaling behavior
w.r.t. the number of samples. These two constraints
alone eliminate otherwise very powerful methods such
as, e.g., Gaussian Processes [139] as they cannot deal
with high data dimensions. Commonly used meth-
ods are therefore neural networks, boosting methods
[155] and support vector machines (SVM) [9]. SVMs
are in principle not very well suited for real-world de-
tection because of their unfavorable scaling behavior
for large sample numbers. However, as their general-
ization capability is excellent, the resulting very long
training times are in practice often accepted or cir-
cumvented by parallelizing the training process using
GPUs [15].

There are several systems, composed of feature
transform and an associated learning algorithm,
which are very frequently used for object detection
in applied scenarios, including road traffic. Concern-



ing detection-by-recognition, there is the HOG+SVM
approach [20] which performs a sliding window search
using a linear support vector machine which is par-
ticularly efficient, operating on a HOG representa-
tion of the image. Another popular approach is the
boosted cascade approach described in [176], which
uses the extremely efficient and integer-based Haar
wavelet feature transform coupled to a cascade of sim-
ple detectors that are arranged in a chain for perform-
ing detection-by-recognition. Object detection with
higher spatial precision, and a certain tolerance to oc-
clusions, is performed by the latent SVM method [33]
that selects characteristic parts of objects and detects
those objects through a detection of the parts. The
most "extreme" detection-by-recognition approaches
are convolutional neural networks [158], which skip
the feature transform step, replacing it by a set
of non-linear transformations that are learned from
training data. There are direct approaches as well
that have achieved a certain attention, most notably
the implicit shape model (ISM) [103] which detects
generic key points in the image that are subsequently
classified. Then, each key point "votes" for a certain
object identity, position and scale, and maxima in the
space of votes are associated with object positions
in a manner analogous to the Hough transform|81].
These systems constitute, more or less, the state of
the art for object detection in road traffic, and any
new approach needs to be compared to at least a sub-
set of them in order to show its merit.

2.2. Problems with learning approaches

While it seems that feature computation methods
are both efficient and beneficial (in fact there is lit-
tle fundamental dissension about the choice of fea-
tures), we find several fundamental problems or at
least inconveniences that are linked to learning meth-
ods, both for direct detection methods or detection-
by-recognition approaches.

Local ambiguities and occlusions: These prob-
lems were already mentioned problems of object de-
tection in general, see Fig. 5. However, they directly
impact learning algorithms because they cannot be
mitigated by whatever feature transform one chooses
to use: if an object is occluded, its identity will have
to be inferred based on less information, and if a local

pattern is inherently ambiguous, it will stay ambigu-
ous even after a feature transform step.

Lack of probabilistic interpretation: all of the
approaches detailed above are based on discrimina-
tive learning [8]. This is due to the need for efficient
algorithms in real-world object detection, and since
discriminative methods solve a simpler task they are
virtually always more efficient. They essentially de-
cide if a sample is situated left or right of a given
hyperplane, or, in other words, belongs to class "ob-
ject" or class "background". A measure of confidence
is not foreseen, or just by using heuristics (distance-
to-hyperplane for SVMs [133], output magnitude for
NNs [90]) that are not (and cannot be) derived from
the theoretical framework of statistical learning the-
ory [174]. This prevents reliable outlier detection and
a mathematically well-founded (e.g., Bayesian) com-
bination of processing results with other probabilistic
information.

Lack of training data: First of all, since all
learning is statistical [174], and the problem is fun-
damentally ill-posed (see above), any learning algo-
rithm requires enormous amounts of training sam-
ples. However, the creation of these samples ("an-
notations" or "ground-truth") cannot be fully auto-
mated for the time being, and always requires some
human participation, making a large-scale annota-
tion of video sequences difficult and, above all, ex-
pensive. After all, training samples must be consis-
tently and correctly annotated across multiple videos
while introducing as little "annotation bias" as pos-
sible, which requires the checking and re-checking of
already created samples. As a consequence, even the
largest available databases [49, 26, 67, 29] for vehicle
and pedestrian detection contain just a few 10° sam-
ples which often belong to a much smaller group of
actually distinct persons or vehicles. This does not
seem to be sufficient to cover all relevant cases, and
indeed vehicle and pedestrian detection using these
bases for training is far away from human perceptual
performance [24].

Lack of incremental and life-long learn-
ing capacity: a common practice to improve the
power of trainable detection algorithms consists in
re-training them with their own incorrect detections,
often in multiple iterations, see Fig. 8. As each it-



ROC

trained detect rf
training detector raine clectons 1 i performance
ini i etections ;
training detector | \ execution evaluation e ——
B C detections
test
streams

Figure 8: Illustration of detector training by repeated bootstrapping. An initial detector is trained using a database of annotated
samples, and this detector is successively re-trained by its own incorrect detections on test data. In this way, very large amounts
of samples are added to the original database. For non-incremental learning algorithms, this implies a complete re-training at

each iteration of the bootstrapping process.

eration of this so-called bootstrapping process adds
a non-negligible number of samples to the already
huge databases of training samples, training times
get progressively higher and higher, even in the case
of good scaling behavior of the used learning algo-
rithms. At some point, this makes a sensible param-
eter search, which has to be conducted on top of the
bootstrapping process, virtually impossible because
all learning algorithms considered here require com-
plete re-training (with existing plus additional sam-
ples) if they need to refine a trained model. It would
be far more efficient to re-train models with new sam-
ples only, giving a huge speed-up in practicability and
efficiency and, more generally, permitting a classifier
to be adapted and continuously extended by new data
over long periods of time ("life-long learning").

2.8. Road map

The objective of this introduction has been to elu-
cidate that many challenges in real-world object de-
tection, using the chosen model scenario, are in fact
tied to problems of the underlying machine learning
approaches. As signal processing techniques for pre-
treating images are well developed, it seems that no
fundamental break-throughs can be achieved by en-
hancing those techniques. The conclusion is therefore
rather simple: if we wish to improve object detection,
we need to adapt the way we use machine learning
techniques, or the techniques themselves. In this sec-
tion, I will outline the most important steps to be
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implemented in new processing architectures, or in
enhanced learning methods if we really wish to push
visual perception and cognition to new levels of per-
formance.

Up until this point, the discussions were strictly
scientifically neutral: while I believe that the ex-
istence of the aforementioned issues in visual per-
ception cannot be doubted since they are rigorously
backed by citations of other researchers’ results, their
significance and their impact is of course subject to
discussion. In contrast to this, the following road
map is my own, very subjective view, developed dur-
ing my years both in industrial and academic research
institutions, on how one could go about improving vi-
sual perception in the chosen model scenario. A large
part of my scientific work, as it will be presented in
this document, has been conducted within the scope
of this road map, making it a very appropriate means
to show the intrinsic coherence of my research efforts.

Inclusion of context information As the exis-
tence of local ambiguities (see Fig. 5) is a property
of the used signals rather than of the used learning
methods, it cannot be remedied simply by improv-
ing learning methods. Instead, the proposed solution
consists in harnessing additional sources of informa-
tion that may provide disambiguation, and integrate
this with the visual information obtained from the
image. Such additional sources of information may
be the geometric layout of scene elements (road, side-
walk, ground plane), information about object tra-



jectories, localized information about previous object
detections, and in general anything that might con-
ceivably resolve perceptual ambiguities. Please refer
to Fig. 21 for a visualization of these concepts. In
addition, it must be understood that ambiguity can
arise not only from ambiguous signals but also from
an insufficiently trained model. As detection prob-
lems are fundamentally ill-posed and insufficiently
described by training samples (see above), the latter
can occur quite often for difficult problems. Then,
this is just another case of ambiguity that can be re-
solved by context information, which thus not only
reduces local ambiguity but enhances generalization
performance as well.

Generative learning methods In order to
achieve a true probabilistic interpretation of, e.g., the
output of a classifier trained using machine learning
techniques, generative learning methods need to re-
place discriminative ones. A valid probabilistic inter-
pretation is particularly useful for including context
information (previous paragraph) or other informa-
tion sources in a theoretically sound way. In particu-
lar, the class of prototype-based generative learning
methods [59] is attractive here as it imposes only a
weak model bias as opposed to parametric genera-
tive methods, is comparatively efficient, and can be
trained efficiently in an incremental fashion (see next
paragraph).

Incremental learning To address life-long learn-
ing, incremental learning methods are required. More
precisely, we require methods that receive their train-
ing samples one by one, without knowing their num-
ber in advance, and whose performance degrades as
little as possible when the statistical distribution of
samples changes over time. This allows to continu-
ously extend learned models over long time periods,
and facilitates the bootstrapping process described
previously (see Fig. 8).

Multi-modal learning architectures A simple
solution for generating more training samples is to
re-think the supervised training procedure that is al-
most exclusively used in machine learning approaches
for applied perception. More to the point, a strategy
similar to co-training [2] might be beneficial, trying to
characterize suitable "foreground" samples by find-
ing stable mappings to other perceptual sources. Put
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differently: an interesting object is a percept whose
features can be stably mapped to the space of an-
other sensor. While this characterization leaves a lot
of details to be defined, it could be implemented in a
purely unsupervised way, paving the ground for the
generation of an unlimited number of training sam-
ples for machine learning. It is true that the quality
of these samples might be less perfect than if they
were created by a human, but one may argue that
the greater number of samples will offset their infe-
rior quality.



3. Application of machine learning techniques

I have conducted numerous studies that use ma-
chine learning techniques to solve real-world prob-
lems, mainly in the area of vehicle detection and clas-
sification [73, 54, 112, 156, 64, 51, 57, 63, 65], pedes-
trian detection and classification [47, 101, 66, 58],
driver behavior prediction [48, 65|, robotic object
recognition [14, 13, 35] and human-machine interac-
tion [88, 89, 90, 92, 94, 91, 93]. By and large, the tech-
niques used were mainly neural networks and support
vector machines, combined with problem-dependent
and sometimes tailor-made feature transforms to fa-
cilitate classification and promote invariances. This
has given me a very good insight into the potential
but also the problems and limitations of conventional
machine learning approaches, which I will discuss for
all the works described here. They constitute a repre-
sentative subset of my work in this area, and I have
selected them as they are most clearly suited to il-
lustrate the point I want to make in this document:
where the limits of conventional machine learning re-
ally lie in practice.

3.1. 2D/3D fusion for object recognition in mobile
robots

In this body of work [14, 13, 35|, a neural net-
work based fusion approach for real-time robotic ob-
ject recognition was investigated, which integrates 2D
and 3D descriptors in a flexible way. The recognition
architecture is coupled to a real-time segmentation
step based on 3D data, since a focus of the investi-
gations was real-world operation on a mobile robot.
As recognition must operate on imperfect segmenta-
tion results, tests of recognition performance using
complex everyday objects were conducted in order
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Figure 9: Implemented processing architecture for robotic
2D /3D object recognition as a block diagram.
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to quantify the overall gain of performing 2D /3D fu-
sion, and to discover where it is particularly useful. A
main result is that the fusion approach is most pow-
erful when generalization is required, for example to
significant viewpoint changes and a large number of
object categories, and that a perfect segmentation is
apparently not a necessary prerequisite for successful
discrimination.

In this section I will only consider the steps con-
cerned with machine learning techniques, and omit
some (quite interesting and complex) other steps,
namely the real-time segmentation of the 3D point
cloud into disjunct 3D object candidates.

Motivation and context

With the advent of cheap 3D sensing technology for
indoor applications, the question immediately arose
of how to use 3D information to improve the perfor-
mance of environment perception, and notably ob-
ject recognition. 3D sensors are not (or less) affected
by perspective and occlusion /overlap effects, whereas
they do not provide any non-geometric details of the
objects they observe, such as color or texture. This
richer information, however, is provided by normal
cameras, so the idea of combining the best of both
sensor technologies seems very promising. Since 3D
sensors are able to measure depth at high precision
and resolution, it becomes possible to adopt a two-
stage approach as depicted in Fig. 9, where a generic
segmentation step (i.e., independent of the identity of
segmented objects) is coupled to a classification stage

Figure 10: Example image of the objects used in the experi-
ments on robotic 2D /3D object recognition.
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that determines object identity. This is in contrast to
sliding-window approaches (see Sec. 3.3) which have
a priori no possibility to identify object candidates
with any reasonable degree of certainty, and which
therefore have to process the whole image, leading to
higher computation times and error rates.

Related work

The most commonly used 2D object descriptors
are SIFT [105] and SURF [6] which offer convenient
invariance properties at a reasonable (SIFT) or opti-
mized (SURF) computational cost. There is a large
number of other approaches which will be not re-
viewed here as the focus is on the fusion of multi-
modal information.

The recognition of objects from three-dimensional
data is well studied in the literature, see [12, 110]
for surveys. All proposed methods expect a seg-
mented object candidate which should be matched
against templates in a database of previously regis-
tered objects. At the most fundamental level, pro-
posed methods can be grouped into holistic and local
approaches. Of the former, a prominent example is
iterative closest point estimation (ICP) [190], which
can match object candidates to templates if a rough
alignment between the perceived object and at least
one template exists. If one restricts recognition to

specific object types known in advance, the Gener-
alized Hough Transform can be a useful tool, espe-
cially for simple objects like cylinders or spheres, see,
e.g., [137]. If the object class is unknown in advance,
more general methods for the holistic description of
objects need to be used: a prominent example is [180]
where histograms of normal orientations between ran-
domly chosen point pairs in the object candidate are
computed, resulting in a holistic descriptor of object
shape. Another notable holistic approach [130] at-
tempts to find constant object signatures in views of
object candidates that were taken from different di-
rections.

In contrast to this, local approaches are rather
similar to SIFT or SURF methods in RGB images,
trying to find a small number of distinctive "key
points" on an object candidate, whose associated de-
scriptors can be matched against stored templates.
Such methods, while potentially very powerful, are
often sensitive to viewpoint changes and occlusions,
so care must be taken when constructing a suitable
database. A few recent and notable approaches in-
clude [165, 154, 18, 17|, based on different local de-
scriptions of object shape, for the most part based
on local surface curvature or the local distribution of
normals.



System structure and methods

Fig. 9 shows the basic architecture of the system
that was implemented on a mobile indoor robot of
the PIONEER type, see [13]. Once object candidates
are determined, each one is analyzed based on visual
information using a bag-of-word technique based on
the SIFT descriptor and a HSV color space histogram
for color information, as well as 3D information us-
ing a so-called surflet-pair histogram which describes
holistic form. To achieve fusion for object recogni-
tion, all of this information is passed to a multilayer
perception (MLP) which is trained on a large self-
created database of 20 different types of everyday
household objects (see Fig. 10) that are encountered
by the robot, and the contribution of fusing 2D and
3D information is evaluated.

Results and machine learning issues

We conducted two experiments: in one we trained
and evaluated recognition performance using the
same viewing angles of objects. In the second ex-
periment, we trained recognition on viewing angles
that were different than those used during evalua-
tion in order to assess generalization performance.
In Fig. 11, we observe that 3D information alone is
sufficient and even slightly superior to the fusion ap-
proach when training and evaluating recognition un-
der the same conditions (viewing angle). However,
when attempting to generalize to unseen viewing an-
gles, the fusion approach performs much better than
3D information alone.

From this, we can first of all confirm the problems
evoked in Sec. 2, principally the lack of training data.
Generalizing to unseen views is a very common prob-
lem in robotics, and it stands to reason that a set of
training samples will never contain all relevant view-
ing angles, with a sufficiently fine angular resolution,
and in all possible appearance variations. This shows
that object recognition in such an application context
is an ill-defined task that is not sufficiently well speci-
fied by a training database. Is is therefore an absolute
necessity to take into account additional sensor in-
formation that might compensate for such variations
in appearance and viewing angle in order to obtain
better generalization performance in practice. As we
could see from the presented investigation, even the
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inclusion of very rudimentary information in a pretty
simple way is already strongly beneficial w.r.t. gen-
eralization.



3.2. Gesture classification for human-machine inter-
action

Another important long-term project [88, 89, 90,
92, 94, 91, 93] was the recognition of static hand pos-
tures and dynamic hand gestures by a learning-based
approach. This is opposed to methods who have a
skeleton model and try to infer the skeleton configu-
ration from observations to determine the state of a
hand. The basic task is to distinguish the ten hand
postures shown in Fig. 13 with high accuracy. In
the course of this project, numerous aspects of this
problem were investigated: the best choice of feature
transform for 3D data [88], the fusion of information
from two 3D sensors observing the hand from differ-
ent viewpoints [89, 90], the creation of a very large
benchmark database for training and validation [92],
neural network architectures and optimal exploita-
tion of all available information[94, 91|, real-time im-
plementation in a car [88] and user studies concerning
the feasibility of this system for human-machine in-
teraction [93].

Motivation and context

The context of this project is primarily automo-
tive HMI, e.g., the control of an in-car infotainment
system without distracting the driver (see Fig. 14).
However, the subject has wider implications in the
domain of human-machine-interaction in general, and
particularly for robotics where natural interaction
with a human is a high priority. The automotive
application context imposes real-time and cost con-
straints, which is why a low-cost 3D sensor was cho-
sen (see Fig. 12) and algorithms were selected based
on their computational efficiency.

Figure 12: The used time-of-flight 3D sensor for gesture clas-
sification, the Camboard Nano. Due to its small dimensions
and cheap price, it is well suited for automotive applications.
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Figure 13: The hand posture database for gesture classifica-
tion. From left to right, top to bottom: ONE, TWO, THREE,
FOUR, FIVE, FIST, FLAT, GRAB, PINCH, POINT

Figure 14: Demo setup of our infotainment system realized on
a tablet using gesture classification. The VOI (in red) denotes
the area sensible to user input.

Related work

Depth sensors represent an easy and robust solu-
tion for recognizing hand postures, as they can eas-
ily deal with the segmentation of the hand /arm from
the body by simple thresholding as described in [125].
Moreover, it is possible to make use of depth infor-
mation to distinguish ambiguous hand postures [87].
Usually a good performance is achieved with a very
limited set of postures, or if designed for a specific
application [164]. In [84] a single ToF-Sensor is used
to detect hand postures with the Viewpoint Feature
Histogram.

In general, ToF-Sensors suffer from a low resolu-
tion which makes it difficult to extract robust yet in-
formative features. Improved results can be achieved
when fusing Stereo Cameras with Depth Sensors, e.g.
in [183]. Therefore, various approaches make use of
the Kinect sensor’s ability to extract depth and RGB
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Figure 15: Overall structure of the hand gesture and posture
recognition system. The choice of early or late fusion depends
on application constraints: either to concatenate the feature
vectors from each sensor and classify the combined vector, or
to classify each feature vector individually and combine the
results.

data simultaneously [170]. although approaches us-
ing the Kinect sensor will always suffer from direct
illumination by sunlight, which is not the case for
ToF-sensors. The authors of [122] equally make use of
the Kinect sensor’s ability to acquire RGB and depth
data simultaneously albeit using a hand model as a
basis for hand posture recognition. In [144], a case
study is made of how the Kinect sensor can be used
to control E-Mail functions in a car through set of
six hand gestures, although the gesture set remains
small and the effect of different lighting conditions
is not discussed. More comprehensive overviews are
given in [141] and [179] and a good overview of au-
tomotive HMI is given in [132], with [191] describing
advantages in user acceptance of in-air hand gestures
in comparison to touch gestures.

System structure and methods

The block structure of the system implemented in
the course of the project is shown in Fig. 15. Sev-
eral variations are possible and have been explored
in the individual contributions to this project. Pro-
cessing can be based on one or two identical sen-
sors. If there are two sensors, their contributions
can be fused by simply concatenating their respec-
tive feature vectors (early fusion), or by combining
the class estimates from each sensor into a single con-
fidence measure (late fusion). Furthermore, classifi-
cation can be performed by conventional multi-layer
perceptrons (MLPs), by stacked or context-sensitive
MLPs, or else by multi-class support vector machines
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Figure 16: Illustrating the stacked MLP technique for two

MLPs (MLP1 and MLP2): MLP1 is always directly trained
with the samples from the training data set. A sample, repre-
sented by a feature vector of length n, is fed into MLP1’s input
layer. After MLP1 has propagated the input and calculated
each neuron’s activation in the output layer, MLP2 is trained
on the output vector of size m. Optionally, the output vector
is fused with the feature vector itself, forming the new input
of size m + n.

(SVMs) using an one-vs-one aggregation strategy [1].
Concerning stacked MLPs, we explored a variety of
strategies to provide an MLP with more useful infor-
mation: basically, a second MLP was trained using
the class estimates of the first, optionally enhanced by
the original feature vector of a sample (see Fig. 16).
Context-sensitive MLPs are similarly trained with
the class estimates of another MLP, only this time
the estimates come from the same MLP one time
step before. This allows to take the preceding de-
cisions into account, reflecting the assumption that a
posture is something that is rather stable in time, and
if a posture decision has been confidently computed,
it is rather likely that it will be identical for the next
sample. Again, various strategies for achieving this
were explored.

Results and machine learning issues

Results showed that the task is a difficult one that
in addition poses serious generalization issues. When
performing normal N-fold cross-validation without
taking into account which person (out of the 20 per-
sons that helped to create the database) samples
are coming from, it is possible to achieve approx-
imately 90% accuracy. However, when performing



person | 1 2 3 4 5 6 7 8 9 10 | 11 | 12 | 13 | 14 | 15 | 16 | Avg.
MLP1 | 83 | 49 | 69 | 58 | 79 | 62 | 57 | 68 | 84 | 70 | 89 | 75 | 90 | 74 | 90 | 80 | 73.94
MLP2 | 86 | 52 | 74 | 63 | 83 | 65 | 60 | 72 | 89 | 74 | 90 | 75 | 98 | 75 | 93 | 82 | 76.94

Table 1: Generalization results for gesture classification (all 16 persons), comparing conventional MLP (MLP1, first row) with
a stacked one (MLP2, second row). Shown are generalization result in percent for each person (represented by a single row),

plus the average performance over all persons in the last row.

Figure 17: Comparison of normal MLP classification (left) to classification with temporal fusion (right) for the hand posture
recognition task. Shown is a confusion matrix for the 10-class task that has therefore size 10x10. It demonstrates the (moderate)
improvements for nearly all classes when applying the temporal fusion approach. Evaluation is performed on person 13, that
is, classifiers are trained on all persons except person 13, and then tested on person 13.

a kind of leave-one-out training strategy based on
persons, training on all persons save one and test-
ing on the remaining one, we obtain (averaged over
all persons) a strongly inferior performance of about
72%, see Tab. 3.2, fusion approaches pushing this re-
sult to 76%, see Fig. 17. To my mind, this approxi-
mates the true generalization performance much bet-
ter since samples coming from the same person are
bound to be correlated. Thus, only a measure that
is based on persons will measure generalization to
unknown persons, which is after all that which is de-
sired in practice. Although using a second sensor
proved to be very helpful combined with simple late
fusion strategies that are computationally very effi-
cient, it was found that the second sensor imposed
too strong a computational burden for real-time op-
eration, mainly due to the additional point cloud pro-
cessing and feature transform involved. Very much in
line with the reasoning in Sec. 2, I encountered the
following points stemming from the chosen approach
to machine learning:
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e Lack of training data even a very large

database of approximately 600.000 samples,
coming from 20 persons and containing ten
posture classes, does not define the problem
uniquely: generalization to unseen persons is still
less-than-perfect. This has very probably noth-
ing to do with MLPs but with the fact that a
purely statistical approach to learning that re-
quires many samples.

Context information improves generaliza-
tion The integration of additional (or contex-
tual) information, be it temporal (preceding de-
tected posture) or contextual (signal from a sec-
ond sensor) strongly increases performance and
generalization, see, e.g., Fig. 17 which shows the
effect of including temporal information.

Lack of probabilistic interpretation is
problematic Since MLPs are not generative
methods, they do not provide true class mem-
bership probabilities. Fusion with contextual or
other information, as it was successfully demon-
strated in [90], will therefore always rely on



heuristics that are validated only by the fact
that they seem to work, but not by theoretically
sound means.

incremental learning could be helpful
Training times could be strongly reduced if every
new person’s samples were added incrementally
instead of a complete retraining with all sam-
ples. Even given the benign scaling behavior of
NN, training and model selection were observed
to take a very long time.
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3.3. Real-time pedestrian detection and pose classifi-
cation

In this contribution [47], which was conducted in
the context of an industrial collaboration with Honda
Research Institute USA, Inc., we presented a real-
time pedestrian detection and pose classification sys-
tem for road traffic scenarios, which makes use of
the computing power of Graphical Processing Units
(GPUs). The aim of pose classification is to deter-
mine the orientation and thus the likely future move-
ment of a pedestrian, which can increase the predic-
tion horizon for safety applications. Evaluation fo-
cuses on pose detection performance and shows that,
without resorting to complex tracking or attention
mechanism, a small number of safety-relevant pedes-
trian poses can be reliably distinguished during live
operation. Additionally, we showed that detection
and pose classification can share the same visual low-
level features, achieving a very high frame rate at high
image resolutions using only off-the-shelf hardware.

Motivation and context

Accidents involving pedestrians in inner-city envi-
ronments are frequently fatal, even at relatively low
driving speeds. Indeed, pedestrians have no protec-
tion in case of impact and are thus highly vulnera-
ble. The goal of pedestrian detection by intelligent
vehicles is, for the most part, inspired by safety con-
siderations: if pedestrians can be detected in time,
collisions might be avoided.

Inner-city scenes can be extraordinary complex,
and they require the driver to focus his attention on
the parts of the scene he (subconsciously) finds rel-
evant. This prioritization has its drawbacks as the
driver might simply miss something important. If
the driver should fail to react, or react too late, to
the appearance of a pedestrian, a Driver Assistance
System could warn him about the situation, or even
initiate autonomous braking. However, this requires
that the system is able to robustly localize pedestri-
ans. Pose classification takes this consideration even
further as it allows, under certain conditions, to es-
timate a pedestrian’s next actions. For this, even
a small number of pose categories may be sufficient
(“front view”, “back view", “facing right" and “facing
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Figure 18: Block diagram of the real-time pedestrian detec-
tion/pose classification system, which is composed of a detec-
tion and a pose classification stage.

left"). A reliable pose classification system can be
used to focus attention on a pedestrian that might
cross the road even if the pedestrian is not, at the
moment, in the vehicle’s path.

Related work

The issue of pose classification has been raised by
several authors (e.g. [44, 30, 102, 160, 19]), mainly
in the context of road traffic and surveillance. Due
to the real-time nature of our approach, we are in-
terested in the distinction of a small number of be-
haviorally relevant pose categories (see [44, 30]) that
allow a guess at a pedestrian future behavior. This is
different from the determination of a precise geomet-
ric pose, i.e. the heading in a 3D space, as described
in [102, 75| which is, in addition, hard to reconcile
with real-time constraints. Our approach made no
use of tracking as demonstrated in [189, 160], as we
wanted to achieve first a sufficient performance on
single-frame pose classification.



Figure 19: Some examples of the pose classes used in the pedes-

trian pose classification task: front, back, left and right
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Figure 20: Results for the pedestrian pose classification using
3 (left) and 4 (right) pose categories. Shown is the overall pose
classification error depending on the applied rejection thresh-
old.

System structure and learning methods

Differently from the approach pursued in [47],
we focus here on the machine learning aspects of
the pedestrian detection and pose classification task.
Several important constraints are imposed due to the
system structure as depicted in Fig. 18. First of all,
it must be stressed that the detection stage solves an
extremely difficult and ill-defined problem: that of
distinguishing pedestrian patterns from background
patterns, which is subject to most of the problems
evoked in Sec. 2. Please see Fig. 7 for a rough expla-
nation of the working of this detector, which is based
on the support vector machine (SVM) model of classi-
fication. Further training samples are needed for the
training of the pose classification stage of Fig. 18, in
this case about 20.000. Pose classification is a multi-
class problem (as there are four pose categories, see
Fig. 19) which is implemented using a so-called "one-
against-all" aggregation strategy that combines the
outputs of N binary SVM classifiers.

Results and machine learning issues

Several issues mentioned in Sec. 2 were made very
clear by the presented work on pedestrian detection

Predicted Classes
60 10 23 7
Real 5 83 0 12
class | 13 5 82 0
10 37 0 53

Table 2: Experimental results of pedestrian pose classification
using 4 pose categories. From left column to right column (or
first row to last row), the categories are right, front, left and
back.

Predicted Classes
60 20 20
Real 3 97 0
class | 13 5 84

Table 3: Experimental results of pedestrian pose classification
using 3 pose categories. From left column to right column (or
first row to last row), the categories are right, front or back and
left (the results in the last row do not add up to 100 because
of rounding errors).

and pose classification:

e Ambiguity As can be seen, the pose classifi-
cation problem can be solved with different suc-
cess depending on the organization of categories:
if one chooses to distinguish 4 categories (see
Fig. 19), then the problem is difficult (70% accu-
racy) due to the high similarity between the back
and front poses, which is shown by the confusion
matrix of Tab. 2. This is again a manifestation
of the ambiguity of local visual patterns stated
in Sec. 2, and is therefore unlikely to be solved
by analyzing local visual patterns only. If one
chooses to group the two offending classes into a
single one, the problem becomes markedly easier
(91% accuracy), see Tab. 3.

e Lack of probabilistic interpretation An-
other issue I encountered was the fact that SVMs
do not provide truly probabilistic class mem-
bership probabilities. There are post-processing
techniques such as Platt scaling[133] which nor-
malize SVM scores (distances to the separating
hyperplane) to look like probabilities, but they
do not change the fact that the output of a dis-
criminative classifier such as an SVM is funda-
mentally unrelated to probability. However, two
crucial steps of the described work on pose clas-
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sification rely on this assumption: the combina-
tion of several binary SVM classifiers into a sin-
gle multi-class one, and the realization of a "re-
ject" option, where the classifier decides based
on normalized SVM output scores that a sample
cannot be confidently assigned any of the classes
in question. Again, as in Sec. 3.2, the only justi-
fication for these ad hoc steps is that they seem
to work for the moment (for the efficiency of the
reject option, see Fig. 20), which is dangerous
especially in safety-critical functions.

e Scalability and lack of incremental learn-
ing capacity Lastly, one finds that the initial
problem of pedestrian detection is a very diffi-
cult one, requiring extremely many training sam-
ples to achieve decent performance, in this case
about 200.000, whose acquisition is extremely
time-consuming, and the internal consistency of
which is nearly impossible to ensure. Due to the
large number of samples, the used SVM classi-
fiers take a very long time to train (in the order
of weeks), an effort that has to be repeated every
time new SVM hyper-parameters are selected, or
new training samples are obtained. In this way,
the bad (cubic) scaling behavior of SVMs w.r.t.
sample number, together with their incapacity to
perform incremental learning, renders the task of
training classifiers very nearly impossible in this

scenario?.

I They were nevertheless chosen here for simplicity of imple-
mentation, and because it is well established that they work
well together with HOG features
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4. System-level learning for context-based ob-
ject detection

In this section, I will give an overview of the
wide field of context-based object detection and de-
scribe some of my own contributions to this fields
[58, 64, 56, 53, 66, 14]. As outlined in Sec. 1, T will
focus on the model scenario of object detection in
road traffic, such as vehicle detection and pedestrian
detection. Nevertheless it should be stressed that the
described systems are completely generic and make
no assumptions, implicit or explicit, that would for-
bid their applications to other object detection tasks.

4.1. Structure of the section

Initially, a concise and non-technical introduction
to the subject will be given in Sec. 4.2. Subsequently,
the basic mathematical modelling tools, namely prob-
abilistic computations using Bayes’ rule, will be in-
troduced in the context of object detection problems
in Sec. 4.3. An overview over related scientific work
will be given in Sec. 4.4. In Secs. 4.5 and 4.6, I will
describe two prototypical projects [64, 58] I under-
took regarding context-based object detection. As
they are related quite closely, I will discuss their im-
plication for object detection and machine learning,
within the larger context of this document, in a single
discussion section, Sec. 4.7.

4.2. What is context-based object detection?

The basic idea behind context-based object detec-
tion is that a visual object is not simply defined by

Figure 21: Examples for the strong relations between objects
and context: Left, middle: a camel and a hairdryer where we
expect to see them: in the desert and in the bathroom. Right:
an out-of-context example of a car that is not close to the
ground. This is immediately noticed by our visual system and
considered as uncanny.
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a local visual (pixel) pattern, but also by its embed-
ding into an environment, often generally referred to
as "context". The characterization of such an embed-
ding is of a probabilistic nature and can thus serve
both to infer the presence or absence of a certain
object. Typical statements about object-context re-
lations (see Fig. 21) are

e hairdryers are mostly found in bathrooms

e camels are mostly found in desert landscapes but

rarely in jungles

pedestrians are rarely seen on highways but often
in city traffic

e vehicles are always found close to the ground

These probabilistic example statements suggest that
such relationships can be learned, and it stands to
reason that this is what human beings actually do.
Such a type of learning is rather different from con-
ventional machine learning tasks that are working
with raw or weakly processed signals, at least in
most applied domains such as robotics or road traffic.
Here, by contrast, the basic quantities are symbolic
(classes of objects, types of rooms) or at least of a
much more abstract nature than the original signals.
For this type of learning, I have consistently used
the term "system-level learning" (SLL) to underscore
that it, on the one hand, operates on a level that is
far removed from the level of signals, and, on the
other hand, that it links (sub)symbolic information
coming from very different modal parts of a complex
processing system. The models that are learned on
the system-level are termed "context models".

In object detection, context models can be used
for disambiguation purposes which occur due to in-
herently ambiguous signals or insufficiently trained
detectors (see Sec. 2). A good example for this is
the detection of vehicles by night (or when it is rain-
ing heavily): usually, detectors are not exhaustively
trained with such samples, and it is assumed that the
feature transform stage will remove variations w.r.t.
to the training data. This is, however, never fully the
case, and thus one can only hope that a trained detec-
tor will generalize sufficiently to handle this problem.
A better solution would be a suitable combination of
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detector and context models such that uncertainty in
one component can be compensated for by the other
component. This is a viable strategy as it implies
the combination of (approximately) independent in-
formation, so the likelihood of simultaneous ambi-
guities is rather low. To stay with the example of
generalizing vehicle detection between daytime and
night-time, a context model expressing the fact that
vehicles are close to the ground plane, which is usu-
ally detected using stereo or LIDAR data, will be
completely unaffected by day/night changes. Thus
a low-confidence detection that is however close to
the road plane could be sufficiently boosted to be
accepted. We thus see that context models address
the issue of visual ambiguities but also, to a signifi-
cant extent, the issue of generalizing to situations not
(precisely) covered by training data.

4.3. Methods and approaches

As for the question of how to integrate context
models with a visual detector, there are fundamen-
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tally two possibilities, see Fig. 22. One way is to
use context models as a post-processing filter by let-
ting them eliminate those detection results which are
incompatible with current scene context, which was
shown in [56]. This option has the advantage of sim-
plicity, but suffers from the fact that it can only reject
detections. In other words: anything not detected by
the detector is lost for good, like an unusual-looking
car at night, receiving a detection score that is just
too small to be considered. As it is on the road and
close to the ground, context models could infer that
it is a car but they do not get the chance.

Therefore the second option is to use context mod-
els for directly influencing the detection stage [64].
This approach is usually termed "attentional mod-
ulation" or "visual attention", and is strongly in-
spired by findings in psychology and neurobiology
indicating that mammalian brains rely quite heav-
ily on this option. Here, not only does there exist the
possibility to reject detections that are inconsistent
with context (or rather, prevent them before they
are made), but one may also create additional detec-
tions if they are very consistent with context models.
This is strongly reminiscent of probabilistic compu-
tations using Bayes’ law, where a "likelihood" (like
a detection result) is combined with a "prior proba-
bility" (e.g., derived from context models) to form a
posterior probability distribution that can be used for
decision making [171]. This deserves to be treated a
bit more in-depth because it is a central cornerstone
for many arguments in this and the following section:

Following [171], we suppose that an object O has,
e.g., a certain size o, a certain position Z, a speed
§ and an identity o: O = {#,0,0,5,...}. Assuming
that the entirety of pixels in an image, or features
extracted from those pixels, is contained in the vec-
tor ¥, the goal of an object detector is to obtain 0}
from 7, i.e., to infer the distribution P(O|7). Virtu-
ally all common detection schemes operate on local
patterns ¥, only and ignore the remaining non-local
(contextual) information v¢:

P(Ov) = P(O|vL) = P(vL|0)P(O) (1)
If we wish to take into account the contextual infor-
mation v, the calculation has to be performed in a



slightly more complex way:

P(0|5) = P(O|iLic) =

_ P(OvLvc)
P(0,0c)

_ P(OLig)  P(Oig) _
P(¥L|tc)P(Uc) P(Ovc)
P(i|0tic) = -

P(ﬁLlﬁC ( |’Uc) ()

Here, U may contain any information complemen-
tary to the local visual pattern: image pixels not in
the vicinity of an object, past images, past trajectory
measurements, the time of day, a.s.o. By supposing
that local features do not depend on non-local ones,
this can usually be simplified to

P(ii|Oiic)
P(v|vc)
_ P@|0) =

- P(ﬁL) p(O|UC)
~ P(7|0)P(Olic)

PO|5) = p(Olic)

]

(3)

since the term in the denominator P(7y) does not de-
pend upon O and can thus be disregarded for max-
imum determination. Eqn.(3) is an important sim-
plification because it amounts computationally just
to the multiplication of two probability distributions,
the "likelihood" P(7|0)) coming from the detector
and the "context prior" P(O|dc) coming from con-
text models. The only issue with this equation is
that detectors are usually formulated to approximate
the probability P(O|7L), and as most detection algo-
rithms are discriminative models, the required likeli-
hood is impossible to obtain. If we had a generative
algorithm at our disposal for detection, we could work
directly with eqn.(3), since generative algorithms can
provide a probability distribution over (local) pat-
terns from which sampling is possible. In the absence
of generative detection methods, one works often with
more crude approximations of eqn.(3), or with a much
more radically simplifying starting point: if we as-
sume that context models and detection methods can
be treated as independent "classifiers", we can simply
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model the probability of detecting an object as
P(O[%) = P(Olvi) P(Olic)
—_—
detector context models

It is this equation, which can by appropriate as-
sumptions be obtained from eqn. (3), which inspires
all of my modelling work described in this section,
to a large extent because it is very compatible with
insights into biological processes of visual attention.
Another important reason is that it is very efficient
to implement because it just uses quantities that are
already computed even when discriminative detectors
are used, which means that the inclusion of context
information into visual object detection can be ex-
tremely efficient if detection and context models are
efficient themselves.

The only downside (which inspired my works de-
scribed in Sec. 5) is that the quantities one obtains
both from discriminative detectors and context mod-
els are usually not real probabilities (most promi-
nently: they are not normalized), and thus neither
Bayes’ rule nor other laws of probability are, strictly
speaking, applicable. However, a major insight is
that this does not seem to matter a great deal, and
very significant performance increases can be ob-
tained by applying eqn. (3) even in a naive fashion.

4.4. Related work

Computational modelling of static visual attention.
Recent work treats visual attention as a kind of
Bayesian inference process where the "attention
prior" is combined with a likelihood term arising from
a detection module [171, 145, 131]. Whereas a spa-
tial attention prior can be easily expressed in a prob-
abilistic form, the detection scores coming from a
real-world object detector generally need to be "con-
verted" to probabilities which is not always straight-
forward and involves a complicated calibration pro-
cess [131, 133]. A strictly feature-based attention
model was proposed by [80]. It focuses on feed-
forward processing and lateral competition, either
in the form of center-surround filtering or explicit
competition mechanisms. This model was applied
in numerous real-world scenarios, e.g., [78], for goal-
driven scene analysis [119] or fast object detection



and recognition[181]. While the work described in
[119] employs high-level semantic models of object-
to-object or object-to-goal relations to guide visual
attention to behaviorally important locations, these
models are specified by a designer and not acquired
through learning. The work of [181] couples an ex-
haustive object detection mechanism to signal-driven
saliency with beneficial results. The work of [111]
focuses on car detection in road traffic scenarios,
whereas the similar VOCUS model [41] targets mo-
bile robotics applications. Both approaches use an
offline optimization procedure to generate feature-
based object search templates based on small num-
bers of training samples. These templates are fused
with a bottom-up attention signal similar to [80] such
that both visual saliency as well as proximity to the
search template may trigger object detection. The
coupling of object detection and contextual infor-
mation mediated by low-level modulation is demon-
strated in [115] where context information about the
"gist", i.e., a low-dimensional description of a scene,
is used to infer the locations of relevant objects in
images by statistical models constructed from train-
ing examples. The concept of gist is taken further in
[76] where a generic probabilistic model of 3D scene
layout is proposed that can be queried for likely im-
age locations of, e.g., cars or pedestrians in order to
inform an exhaustive local object detector. Object
detection may not only be guided by global scene
properties, but also by other objects in the scene: in
[22], a discriminative model of local object-to-object
interaction is proposed that formalizes cooperation
and competition between local detections of multiple
object classes and gives a probabilistic interpretation
of this process. Lastly, object detection may also be
regarded as an active process in which the performed
gaze actions (i.e., object detections) should maximize
information acquisition. Based on the saliency map
approach of [80], a POMDP formalism is used in
[177, 178] to optimize gaze target selection based on
the detections arising from previous gaze targets, vi-
sual saliency and global scene priors.

Dynamic visual attention. Most of the previously de-
scribed approaches to visual attention are guided by
static local image properties [79], sometimes by static

spatial context [171]. Even if non-static image fea-
tures, such as local motion, are used [41, 113], such
attention mechanisms are always reactive in the sense
that they guide attention towards the detected fea-
tures but do not anticipate future events. Recent
psychophysical work [70] however reveals that hu-
mans learn highly precise dynamic models predicting
the movement of objects, and that such predictions
are used to guide eye movements to the predicted
locations ahead of time. This predictive mechanism
is shown to permit the visual pursuit of highly dy-
namic objects, such as squash balls, with the very
limited amount of fixations per second that can be
realized by the human visual system. The closest
corresponding function in technical systems is track-
ing, i.e., the trajectory analysis and pursuit of moving
objects. This is a crucial functionality in robotics,
or in road traffic, where the performance of single-
image-based detectors must be augmented by taking
into account the temporal evolution of the trajec-
tory. Especially in pedestrian detection applications
[28, 30, 45, 128, 20, 25, 34, 7, 43|, this is a very neces-
sary component mostly realized by Kalman filtering
[107, 117, 157, 162, 10, 188, 46, 187]. The issue with
tracking algorithms, as they are commonly used in
the cited works, is that they perform a kind of "late
fusion" as a post-processing step of detection. In this
way, they interpolate between the present detection
and a prediction derived from a pre-specified motion
model. However, when the motion model is violated,
e.g., because an object changes direction, the fusion
with the incorrect motion model causes "ghost" de-
tections that deviate considerably from the true ob-
ject position until the motion model is updated. In
case of noisy detection scenarios, such an update can
take several seconds, resulting in a considerable time
interval in which potential safety applications (e.g.,
emergency braking) receive incorrect data. There is
no work I know of that makes use of object-centered
dynamic attention mechanisms, as described here, to
influence its own detections and thus avoiding the
problem of ghost detections, except potentially [46].

25



4.5. Static scene context for vehicle detection

The work described here was born out of a long-
term project in vehicle detection [156], to which I
contributed the integration of (static) context infor-
mation in various forms, see [64, 56, 53]. Here, I
present this large-scale hierarchical system while pay-
ing particular attention to the fusion of "bottom-up"
detection results with "top-down" attentional mod-
ulation obtained from context models. A particu-
lar focus is the learning of context models, and their
"translation" into an image-wide attentional modula-
tion signal, to be combined with the dense confidence
map provided by a detector that analyzes local visual
patterns.

System structure

The system structure is roughly given by Fig. 22
and follows the variant a) indicated there for includ-
ing context models. Context models are situated at
the highest hierarchy level (termed system level), tak-
ing information from an intermediate level of gener-
ating and processing object hypotheses (hypothesis
level) which in turn receives low-level signals in the
form of dense retinotopic maps from the preprocess-
ing level. In the following, several modules of the
system are described in more detail:

The detector. The appearance-based detector [186]
generates object hypotheses in two successive steps.
As a first step, it generates scale-specific retinotopic
confidence maps as described in [185] by a sliding-
window approach (see Fig. 7), thus making it a
detection-by-recognition approach, see Sec. 2. Each

Figure 23: Examples of recorded streams and annotated in-
formation for benchmarking context-based object detection.
Each annotation consists of a rectangular area, an identity
and an occlusion value (not shown).

26

Figure 24: Example of how the appearance-based classifier
works in the context-based object detection architecture: for
each input image (a), it produces a retinotopic, dense map of
vehicle confidences (b). This means that each pixel in this map
represents the presence or absence of a vehicle, at a specific
scale, centered on that pixel.

Figure 25: Performance example of free-area computation. a)
Video image b) computed free area as a binary mask.

pixel of a confidence map represents the likelihood of
detecting a specific view of an object (in this case:
back-views of cars) at a specific position and scale in
the image, see Fig. 24. In a second step, object hy-
potheses are generated from these confidence maps
by a competitive selection process. Details about pro-
cessing and detector training are given in [52].

Free-area computation. The free area is defined as
the obstacle-free forward area visually similar to a
road and carries significant semantic information.
Since it is, by construction, bounded by all obsta-
cles that the car might collide with, many relevant
obstacles are close to the boundaries of the free area.
For the purposes of the presented system, the quan-
tity of interest is therefore the distance (in pixels) of
an object hypothesis to the free area. Details of free-
area calculation are given in [52], see also Fig. 25.

Distance and elevation computations. Dense stereo
processing is employed for measuring the 3D posi-
tion of image pixels in car-centered coordinates. For
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Figure 27: System-level learning of object models (left) and attentional modulation obtained thereby (right) in the context-
based object detection architecture. The left-hand side diagram shows where system-level learning is situated in the complete
processing system which first computes dense feature maps (preprocessing level), then selects an object hypothesis and computes
system-level quantities (SLQs) in population-coded format (hypothesis level), and finally learns the mapping between object
identity and SLQs (system level). A particular focus of system-level learning is the expected distribution of all SLQs given a
certain object identity, which is then "translated back" into an attentional modulation map. This process is illustrated on the
right-hand side: a) original image b) dense vehicle confidence map provided by detector c) attentional modulation obtained
from system-level learning d) fused vehicle confidence map. It can be observed that the false detections pointed out by the
arrow and the ellipse are strongly attenuated in the final vehicle confidence map.
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Figure 26: Examples of stereo processing for elevation and
distance calculation in the context-based object detection ar-
chitecture. a) video image b) dense elevation map (brighter
pixels are higher over the ground plane).

obtaining hints about the identity of objects, such
measurements are helpful but not optimal: it is not
really the height relative to a car-centered coordinate
system that carries semantic information, but rather
the height over the ground plane. The ground plane
is therefore estimated from stereo processing results,
and a dense elevation map is created where each pixel
encodes its height over the ground plane, see Fig. 26.
Details are given in [52].

Attentional modulation

Learning of context models occurs at the system
level of the architecture as depicted in Fig. 22. At
this stage, all relevant quantities (termed system-
level quantities - SLQs) related to an object hypothe-
sis, such as distance, elevation, distance-to-free-area,

position etc., have been computed. To facilitate the
application of efficient linear learning methods, all
SLQs are converted to population codes (or basis
function representations [136]). I could show the
computational advantage of this transformation in a
related work on context-based object detection [56].
Linear regression is used to learn relations between
population-coded object identity ("vehicle" or "back-
ground") and individual SLQs, see Fig. 27 (left). By
learning the reverse mapping, one may obtain an ez-
pected value distribution for each SLQ, given that ob-
ject identity is "vehicle". This distribution is then
translated back into the image, mainly by means of
histogram back-projection [166]. In this process, val-
ues in the dense feature map associated with an SLQ
are replaced by the probability of those values in the
expected value distribution. Properly fused and nor-
malized, these modulation maps are then multiplica-
tively combined with detection confidences as shown
in Fig. 27 (right).

Ezxperiments and results

Extensive experiments were conducted to show
that the inclusion of static scene context information,
by means of system-level learning, can significantly
improve the performance of visual vehicle detection
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Figure 28: Performance improvement by attentional modulation for video streams I-V by ROC-like plots. Curves with more
surface under them indicate better quality. The solid red/dashed green curves show performance with/without attentional
modulation. System-level models were trained on parts of streams I-IIT not used for this evaluation. A clear overall improvement
can be observed for all streams, especially in the application-relevant areas of high recall.

and, by plausible inference, visual object detection in
general. To this end, we recorded five distinct video
streams covering a significant range of traffic, envi-
ronment and weather conditions, please see Fig. 4 for
a visual impression. For the quantitative evaluation
of object detection performance, we manually anno-
tated relevant objects in the recorded video streams,
please see Fig. 23 for details. Results are given by
ROC analysis, where the detection threshold of the
detector is varied and the two performance indicators
of incorrect detections and percentage of correctly de-
tected vehicles are plotted against each other, which
is a very usual measure in object detection scenarios
[129]. As the results of Fig. 28 clearly indicate, at-
tentional modulation has a strong beneficial effect on
detection performance. Improvements are strongest
for unfavorable environment conditions, where the
generalization ability of pure pattern-based detection
reaches its limits.
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4.6. Dynamic attention priors for pedestrian detec-
tion

In addition to using context models derived from
static quantities, I generalized this idea to include
dynamic sources of context information such as an
object’s own position and trajectory, an idea I pro-
posed and validated in [58]. Here, a predictive at-
tention mechanism similar in spirit to [70] attempts
to generate a probability distribution for an object’s
estimated position in the next image, which is sub-
sequently combined with detection results from the
next image. Differently from my previous work, con-
text models are not learned here but arise from a pre-
defined linear motion model implemented by a prob-
abilistic tracking algorithm, a so-called particle filter
tracker [4]. The distribution thus obtained I termed
dynamic attention prior (DAP), and its contribution
to performance and generalization was tested on a
challenging visual pedestrian detection task, where
the inclusion of DAPs works much in the same way as
the inclusion of attentional modulation in 4.5. A par-
ticular point of this endeavour is to show that techni-
cal systems, in this case a state-of-the-art pedestrian
detector, can profit from context models with little
changes or performance overhead.

System structure

The processing structure of the system realizing
DAPs (see Fig. 29) is very similar to that of Sec. 4.5
and implements option a) from Fig. 22, that is, direct
modulation of detection by attentional modulation.
It includes a pattern-based detector and a tracking
algorithm generating predictions and thereby DAPs,
which are fed back to the detector at the following
time step.

The detector. For the pattern-based pedestrian de-
tector, the HOG+SVM [20] sliding window detector
technique (see Fig. 7) is employed, which transforms
an input image into a set of scale-dependent confi-
dence maps, see fig. 30. Each individual confidence
value is considered a detection if it exceeds a so-
called detection threshold. These confidence maps
are modulated by the DAPs provided by the track-
ing algorithm, a mechanism that can "push" certain

confidences, which would have otherwise been dis-
regarded, beyond the threshold. A visualization of
DAPs is given in Fig. 32.

The tracker and DAP generation. Tracking extrap-
olates a trajectory from successive object detections
that is locally as linear as possible, see Fig. 31. The
conceptual beauty here is that the used particle fil-
ter algorithm is intrinsically probabilistic, and thus
a good choice for representing the context-based ob-
ject likelihood P(O|7¢) of eqn. (3). Bach distinct
object is tracked separately, and for each object a
separate DAP, derived from the extrapolated trajec-
tory, is applied to detection confidence maps as shown
in Fig. 32. Given that detection confidences are
not probabilistic themselves, being neither normal-
ized nor bounded, a direct implementation of eqn. (3)
is not possible and is replaced by an approximate im-
plementation where an explicit normalization of con-
fidences is performed based on ad hoc assumptions
about their bounds.

Ezxperiments and results
Evaluations are performed on 11 annotated short
video sequences of single moving pedestrians, see

Dynamic
attention
prior £

Figure 29: Block structure of the real-time pedestrian detec-
tion system enhanced by dynamic attention priors. A Original
image, white boxes show pedestrians that are to be found. The
pedestrian left of the center is too small to be detected and is
thus excluded here. B Detections, indicated by red boxes,
resulting from sliding window classification. C Results of non-
maxima suppression (NMS) removing overlapping detections.
These detections can be considered the final detection result
and are passed to evaluation. D Predictions generated from
past detections. Prediction centers and sizes are indicated by
green crosses of varying size, and serve as the sources for dy-
namic attention priors (green dashed arrow) modulating the
detection process.
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Figure 30: Topologically arranged pedestrian confidence maps
as computed by the HOG+SVM method from the camera
image (left). Confidence maps are computed on increasingly
coarse spatial scales (from left to right), which allows to detect
pedestrians of different sizes.

Figure 31: Illustration of the object tracking approach chosen
for generating DAPs: detections of the recent past are used
to compute a trajectory under a local linearity assumption.
Based on this trajectory, object motion can be extrapolated to
the immediate future.

Fig. 33 for a visual impression. Compared are
"bottom-up" (without DAP integration) and "top-
down" performance. The results, some of which are
shown in Fig. 34, demonstrate that in the worst
case, DAPs cause no performance degradation, and
in the best case a huge performance gain. It was
also investigated how DAPs affected the system when
they were applied at the wrong place, which hap-
pens always when pedestrians perform abrupt direc-
tion changes (e.g., when they turn around or start
walking from a standing start) so the prediction is
momentarily incorrect. It was found that the effect
of DAPs must always be tuned to be slight, so that
they create detections only at positions where there is
significant evidence from the detector. In the reverse
case when DAPs are strong, "ghost" detections may
be created at positions with little evidence from the
detector. These detections are then fed to the track-
ing algorithm and influence its predictions, making
them self-sustained in the absence of evidence. How-
ever, the strength of DAP feedback is governed by
a single scalar parameter, and it was found that it
is always possible to find appropriate values (essen-
tially by ROC analysis varying this parameter) while

Figure 32: Multi-scale modification of detection confidences by
DAPs. The green circle indicates the prediction center and the
green box its associated scale (which is also predicted by track-
ing!). Grey crosses represent the positions of detection scores
(sliding window centers) at each scale, the level of brightness
indicating the strength of the boost each one receives from
DAPs. The white box in the top-left corner of each image
indicates sliding window size at that particular scale. As the
pedestrian is predicted roughly at scale 1 (here, white and
green rectangles have similar size), the scores at scale 1 get
boosted more strongly than at other scales. At scale 3 no sig-
nificant boost takes places any longer. Please note that only
detection scores around the pedestrian are shown, in reality
the whole image is densely covered at each scale.

improving detection performance significantly.

Back-

Figure 33: Example images from evaluation streams.
ground and pedestrian identity and clothing vary strongly be-
tween video streams.
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Figure 34: Showing the effects of DAPs on pedestrian detec-
tion performance by ROC-like plots. Red solid curves show
the baseline detection performance without dynamic attention
priors, green dashed curves show the top-down performance.
Hint: A ROC-like plot is "better" than another one if it is
consistently below the other.
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4.7. Discussion and machine learning implications

e Context information improves generaliza-
tion As the contributions described in this sec-
tion have shown, the inclusion of context infor-
mation is a particularly efficient way to boost
the performance of object detectors, especially
in terms of generalization. In practice, it was
always found that the integration of a second,
approximately independent information source,
such as dynamic/static context information, im-
proves generalization behavior of the machine
learning models employed for object detection.
Specifically, detectors became much less sensitive
to changes in background, or to partial occlu-
sions, or to changes in size which would normally
degrade detection confidence in an unpredictable
manner, often leading to an erratic "flickering"
behavior of object detectors that is highly unde-
sirable. These undesirable effects are due to lack
of training data, or a difference between appli-
cation and training scenario which comes down
to the same problem: training data do not fully
cover the current application scenario. The pre-
sented works have convincingly shown that the
inclusion of context information effectively coun-
teracts this problem.

Probabilistic interpretation From a pure ma-
chine learning point of view, it is quite unnat-
ural to integrate context information into dis-
criminative detection methods as it is done in
the presented works on an ad hoc basis. This
cannot really be justified except by the fact that
it seems to work quite well in the shown appli-
cations, which was already the case for different
task presented in Sec. 3. Nevertheless, a desir-
able property of future context-based object de-
tection systems is a generative detection mech-
anism whose outputs can be linked to probabil-
ities (more concretely the likelihood P(#|0))
and which can therefore be coherently combined
with probability distributions P(0]@¢) from con-
text models.

System-level learning A particular point con-
cerns the learning of context models: it is found
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that learning methods are very easy to apply at
this (sub-)symbolic level of a processing system,
rather than at the level of signals (pixels) as it is
conventionally done. At signal level, dimension-
ality and variation are much higher and there-
fore pose more of a challenge to learning tech-
niques. In contrast, the system-level quantities
(SLQs) processed by context models are often
low-dimensional, allowing fast and efficient with
simple methods that incur virtually no compu-
tational cost. The modulation of a detector, be
it learned or imposed as in the case of DAPs, is
equally computationally cheap and conceptually
simple, underscoring the potential of such meth-
ods to operate in systems with real-time process-
ing constraints.



5. Generative and multi-modal learning with
the PROPRE architecture

Motivated by the work on context-based object de-
tection described in Sec. 4, I grew interested in learn-
ing methods that might be intrinsically suited for this
purpose. In particular, and using the notation from
Sec. 4.3, I realized the necessity for learning methods
that:

e are capable of outlier detection, in other words
expressing the intrinsic probability of a visual
pattern P(4r)

e are generative and can express the probability
P(v1|O) required, e.g., in eqn.(4)

e work for high data dimensions and sample
counts, as encountered in perceptual problems

e are open-ended, or more precisely, incremen-
tal (see Sec. 6 for more precise definitions),
that is, allow a continuous and long-lasting re-
adaptation to new input statistics, in line with
the road map put forward in Sec. 2.3

This severely limits the choice of learning meth-
ods: while some recent methods like deep belief net-
works [74] can be said to be generative methods, and
can clearly handle large sample dimensionalities and
numbers, they lack incremental learning capacity.
Other approaches, such as Gaussian process mod-
els [139] are generative but not incremental, and in
addition fail completely for sample dimensionalities
typically encountered in vision problems. Paramet-
ric methods such as used in [171] for context-based
object recognition also face problems for high sample
dimensionalities, and it is unclear how they could be
made incremental.

To address these issues, I focused my investiga-
tions on so-called prototype-based approaches: here,
the probability distribution in data space is not ex-
pressed in parametric form but by a learned set of
samples, the so-called prototypes. Prototype-based
machine learning methods were originally motivated
by prototype theory from cognitive psychology (see,
e.g., [149]) which claims that semantic categories in
the human mind are represented by a set of specific
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Figure 35: The generative, prototype-based PROPRE learning
architecture in its most basic form.

examples (or prototypes) for these categories. Typi-
cal prototype-based approaches are the learning vec-
tor quantization (LVQ) model [83], the RBF model
[114] or the self-organizing map (SOM) model [86].
A very popular prototype-based method in computer
vision is particle filtering [4], where a continuous,
evolving probability density function is described and
updated as a set of prototypes (here denoted parti-
cles) whose local density represents local probabil-
ity density. After some time, I decided to focus on
an RBF-like model whose basic structure is shown in
Fig. 35, composed of a modified SOM algorithm, cou-
pled to a linear or logistic regression step interpreting
hidden layer activities, this "read-out" being repre-
sented in the output layer P. This model [54, 55, 100]
is termed PROPRE (short for projection-prediction)
and comes in several variations concerning the precise
details of the architecture, depending on the func-
tionality that is to be achieved. In this chapter I will
present some of the most interesting of these variants,
but for the moment I will focus on the potential of
PROPRE to be used in perceptual tasks like object
recognition and detection, in the light of what has
been discussed in Sec. 4.

First of all, prototype density in the internal layer
H is related to probability density P(¥) in data
space [146] due to the properties of SOM learning,
which is needed for outlier detection (as stated in
Sec. 2). Furthermore, it can express a conditional
estimate for the object identity of a pattern, (O|7)
in its read-out layer P given a correct learning al-
gorithm for readout. By inverse regression from P
to H, it can express the probability P(¢7|O) which
is required, e.g., by context-based object detection
methods, see Sec. 4. These links will be explored



more rigorously in the following text:

If we denote a prototype vector associated with
unit ¢ in the internal representation H by p;, we
can define the probability that this unit is the best-
matching unit (BMU), i.e., the unit having the proto-
type closest to the input ¥y, as P(p;). Starting from
P(v1) and using the law of total probability, we can

write
i) = 3 P(lp) P

with P(UL|p;) denoting the probability of pattern ¥,
given that prototype p; is BMU. If we know, or can
estimate, how patterns are distributed around proto-
types, we can re-express this as
= Z iV,
i

= Z P(3|5:)P(5;)

where a; now expresses the "activity" of the unit as-
sociated with prototype pj;, and v; is the probability
that an unit becomes BMU which can easily be esti-
mated. We observe that the probability P(¥p|p;) now
acts as a kind of "activation function" for the unit
associated to prototype pj: if it were, for example,
uniform in the Voronoi volume V; of the prototype
pi, we would obtain

ai(7ip) ~ {

With the same assumptions and definitions, we can
re-formulate the probability P(¥z|o;), meaning the
probability of observing pattern ¥, given the object

identity o;, as:
Z P UL |pz Z ai wﬂ

where the term w;; = P(pi|o;) can be obtained from
the weights of an inverse regression, from ground-
truth G to internal layer H.

Expressions for the probability of object identity o;
given a pattern ¥, can be derived in a similar fashion:

ZP (0j]p3) P
= Zwijp(ﬁ;WL)'

(5)

1

Vi
0

if ¥, in Voronoi zone of pj;

(6)

else

P(vL|o;) (piloj)

0J|UL (Pi|vL) =

(8)
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Figure 36: Illustration of the robotic model task devised for
testing the bootstrapping of representations, based on the mo-
bile robot currently in use at our lab. Based on a Kinect sensor,
we obtain a rough segmentation of objects which is the basis
for the subsequent determination of simple object properties.
Each detected object segment is approached and an attempt
to push it is made. Based on proprioceptive information, it
can be judged whether the attempt is successful or not. This
information, or the information that no attempt to push is cur-
rently being made, is entered into the reference representation
R on the right-hand side.
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When we suppose that all units are equally likely to
be BMU, making the probability P(p;) a constant,
we can simplify this further to give

wa 'UL |pz =

)P (pi)

:Z“’“%

’UL)
Zw” P ~ Zw”al

which again gives a very nice, simple expression in
which the weights w;; are derived from forward re-
gression, from internal representation H to ground-
truth G.

This treatment is concise but nevertheless shows
clearly that the PROPRE architecture, being built
essentially on the prototype-based SOM algorithm,
gives direct access to the statistical quantities we are
interested in, which are useful for a large variety of
perceptual tasks. Specifically, it can address out-
lier detection (by evaluating ¢,) and compute sam-
ple likelihoods that are needed when integrating con-
text information as in eqn. (4), and all this using
extremely simple expressions that can be efficiently

P(o;|vL)

9)



computed as linear products. In light of my re-
cent work on incremental learning (see Sec. 6), I am
more actively trying to map the various entities in
the PROPRE architecture to probabilistic interpre-
tations.
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5.1. Developmental learning aspects and bootstrap-
ping of representations

What I was exploring in the early works on PRO-
PRE [54] was the possibility of having a generative,
potentially incremental model that could be guided
(or modulated, to retain the biological analogy) to
represent only those parts of the data space that
have statistical links to another data flow. Guidance
should be weak, and coming from sensory signals or
quantities easily derivable from such signals. Thus,
my idea was to have a self-structuring bootstrapping
process, where the formation of a first abstract (ob-
ject) representation would be modulated by very sim-
ple stimuli (e.g., pain), whereas the formed abstract
representation might in turn modulate the formation
of ever more refined representations.

Architecture and model task

To provide a starting point for experimentation,
I designed a simulated robotic model task shown in
Fig. 36. The idea was that a robot should develop
a simple, multi-modal representation of objects that
can (or cannot) be pushed, simply by interacting
freely with its environment and attempting to push
random objects. This task is reflected in the architec-
ture (see Fig. 37) that is slightly adapted as compared
to the "generic" architecture of Fig. 35. The fact of
whether an object is pushable, not pushable or too
large is entered into a dedicated reference representa-
tion, which in turn guides the concept formation pro-
cess in the internal layer H by predictability. Thus,
the data flow from H to P as shown in Fig. 35 is re-
versed; it is now the reference representation R that
tries to predict activity in the internal representation

modulation

signal saauy predictability

\_computation

o |
SOM linear
LS| -—
projection regression

induced represen-
tation (H)

pusbable

not pusbable

too large

reference
representation (R)

Input (1)

Figure 37: Block schema of the PROPRE learning architecture
applied to the robotic model task.
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H, leading to the so-called reference-based predictions
which are used to compute a quantitative measure of
predictability. Essentially, learning promotes those
prototypes whose associated neural "activity" can be
reliably predicted from R.

Related work

The focus on predictability as a guiding prin-
ciple for learning was motivated by a conceptual
work [121], arguing that symbolic quantities should
be diverse on the one hand, and on the other hand
be defined by their power to predict other quantities.
My work differs from [121] in that it focuses on quan-
tities that can be predicted, and in that a concrete
algorithm is proposed and evaluated. Predictabil-
ity is attractive because it can be naturally incor-
porated into local learning algorithms, whereas using
predictive power necessarily involves bi-directional,
non-local operations. Conceptually very close to
this PROPRE variant is the predictive coding model
originally proposed by [138] and elaborated by, e.g.,
[42, 118]. As in our PROPRE algorithm, predic-
tive coding implements bi-directional learning be-
tween a receptive-field-generating process and a pre-
diction process where receptive field generation is in-
fluenced by predictability. However there are im-
portant differences: Most basically, predictive cod-
ing was originally proposed to model observed single-
neuron data, whereas PROPRE is intended for on-
line use in robotic agents which implies a certain
ease-of-use (no pre-whitening, no stability controls
on learning), computational efficiency and robustness
to noise. Furthermore, predictions in the predictive
coding model always arise from higher hierarchy lev-
els of the same processing stream, whereas PROPRE
allows multimodality as it imposes no constraints on
reference representations. The price for this flexibil-
ity is that, in contrast to predictive coding, PROPRE
is not rigorously derived from a probabilistic model.

Ezxperiments and results

Experiments are conducted with artificial input
stimuli coming in the three classes "pushable", "not
pushable" and "too large", as shown in Fig. 38.
These stimuli are generated randomly but within
well-defined parameter ranges for each class, with the
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Figure 38: Input statistics used in experiments on the boot-
strapping of representations. Shown are value ranges and real-
ization examples for the artificial input representations I and
reference representation R. Left: pushable objects are defined
by a certain range of colors and forms, and a small size. Mid-
dle: non-pushable objects are characterized by a slightly larger
size and a certain range of colors, irrespective of form. Right:
Objects too large for pushing are characterized by a large size,
whereas the other two visual properties can take any value.
Predictability is reduced since little can be inferred about the
values of "form" and "color".
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Figure 39: Examples of reference-based predictions. Roughly
speaking, predictability is expressed by the difference between
minimal and maximal values (please note the different value
ranges indicated by the colorbars when comparing diagrams).
Left: prediction derived from the "too large" signal in the
reference representation R: in this case the predictability of
the induced representation is low as compared to the case of
the "not pushable" (middle) and "pushable" (right) classes.

goal of the classes "pushable" and "not pushable"
being well predictable in contrast to the class "too
large" whose predictability should be much less pro-
nounced. As may be seen from Fig. 39, the reference-
based predictions differ strongly in predictive power.
In particular, the class "too large" cannot predict
the internal representation as well as the other two
classes. This shows that the PROPRE architecture
is capable, after a learning process, to extract this
information from the provided samples. As further-
more the learning of prototypes in H is governed by
this predictability measure, an impact on H may be
expected as well, and this is in fact precisely what
Fig. 40 shows: a very strong reduction of neurons
whose prototypes are selective for the "too large"
class. The other two classes, with higher predictive
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Figure 40: Development of neural selectivities in our robotic
model task under the influence of PROPRE learning. Left:
temporal evolution of the percentage of neurons selective

to the input classes "pushable","not pushable" and "too

large". Right: class selectivities in the internal layer H with-
out predictability-based modulation of learning (top), nor-
mal PROPRE modulation (middle), and alternative condition
(bottom) where the definitions of the classes are slightly ad-
justed (not discussed here). Bright gray pixels indicate the
"not pushable" class, moderately gray pixels indicate the "too
large" class, and dark gray pixels the "pushable" class. Black
pixels indicate no sufficient class selectivity.

power, profit from this re-organization and get allo-
cated more neurons, which was precisely the objective
of this study: to demonstrate a dynamic learning pro-
cess that would distribute representational resources
among the most predictable concepts and thus form
a task-specific representation.

Discussion of significance

In the light of the road map of Sec. 2, it was
shown in this section that the PROPRE architec-
ture is well suited to fulfill the need for generative
yet efficient machine learning approaches, giving ac-
cess to quantities that have a rigorous probabilistic
interpretation. While presenting one variant of the
PROPRE architecture, Furthermore, I showed that
a PROPRE variant can build up meaningful, multi-
modal perceptual representations by exploiting very
basic quantities that are derived from behavior. In
fact, PROPRE characterizes and extracts percepts
that have a statistical link to behavioral quantities,
and ignores other percepts that do have such a link.
What is learned by PROPRE is in fact entirely de-
pendent on the reference representation R; hence it
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is important to state that PROPRE does not impose
strong restrictions on R. In fact, in the following sec-
tion I will show another variant of PROPRE learn-
ing where R is not hand-crafted as it is done here,
but derived from another learning process, leading
to multi-modal learning which is another important
point on the road map of Sec. 2.
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5.2. Simultaneous concept formation and multi-
modal learning

This investigation [55] was conducted in the con-
text of developmental learning in embodied agents
who have multiple data sources (sensors) at their dis-
posal. It concerns an online learning method that
simultaneously discovers "meaningful" concepts in
the associated processing streams, extending meth-
ods such as PCA, SOM or sparse coding to the mul-
timodal case. In addition to the avoidance of redun-
dancies in the concepts derived from single modal-
ities, the claim is that "meaningful" concepts are
those who have statistical relations across modalities.
This is a reasonable claim because measurements by
different sensors often have a common cause in the
external world and therefore carry correlated infor-
mation. To capture such cross-modal relations while
avoiding redundancy of concepts, I proposed a set of
interacting generative learning processes which are
modulated (in the sense of the original PROPRE ar-
chitecture) by local predictability. That is to say, gen-
erative learning focuses on those concepts that can be
well predicted (in a statistical sense) across modali-
ties. To validate the fundamental applicability of the
method, I conducted a plausible simulation experi-
ment with synthetic data and found that concepts
which are predictable from other modalities succes-
sively "grow", i.e., become over-represented, whereas
concepts that are not predictable become systemati-
cally under-represented or even suppressed.

Motivation and context

The autonomous formation of representations is a
very active research topic in developmental robotics
[126, 85, 143, 142]. Such concepts may be formed
at low abstraction levels (and are usually termed
"features") or at high abstraction levels (where they
tend to be termed "concepts"). While it is generally
agreed that concepts derived from a single informa-
tion source should be encouraged to be diverse, as it
is the case in sparse coding [124], ICA [77] or com-
petitive learning approaches [21], biological and be-
havioral evidence suggests a great deal of correlations
between concepts derived from different sources. As
individual sources are usually corrupted by (struc-
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tured) noise, issues of multisensory integration be-
come crucial for stable perception and performance,
as can be seen in audio-visual facilitation[173], con-
tour integration[5] and multisensory integration[32].
Such sources may be different sensory inputs (vi-
sion/touch, vision/audition ete.), results of divergent
processing (ventral/dorsal processing in visual cor-
tex) or even different locations on a retinotopic sur-
face such as V1. It has furthermore been shown in
various experiments that humans are able to inte-
grate multi-sensory cues in a fashion that is close to
being Bayes-optimal[32].

In this contribution, I dealt with the problem of
how features or concepts may be formed that are
particularly suited for performing multisensory inte-
gration. Such concepts must be statistically related
across sensory modalities while being non-redundant
within their own modality. For achieving this in
an online learning process, a variant of the PRO-
PRE (projection-prediction) algorithm[54] was pro-
posed which uses predictability from another sensory
modality to control learning.

Related work

A conceptually similar approach, which is more-
over implemented in a robotic agent, is presented in
[96]. This work extracts multimodal concepts from
feature vectors arising from visual and haptic process-
ing streams by concatenating them and subjecting
the resulting vector to principal components analysis
(PCA). By construction of PCA, the basis vectors of
the resulting transformation will be those whose mul-
timodal components are maximally correlated, which
can be used to improve a multisensory classification
task. The main difference to our approach is that
we aim at online learning in a behaving agent, and
that our approach maintains separate representations
in different modalities which are however aligned to
each other.

System architecture

What is used here is just a generalization of the
PROPRE architecture described in Sec. 5.1: instead
of a "god-given" reference representation that is used
to modulate generative learning in a single modality, I
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Figure 41: Generalizing the PROPRE architecture to multiple
modalities (to be compared to Fig. 37).
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Figure 42: Input statistics for visual (upper row) and haptic
(lower row) modality for multi-modal learning experiments.
With a certain probability, these will be correlated (left row),
or uncorrelated (right row). Values are always drawn from a
uniform distribution, which is bounded in the correlated case
and unbounded for the uncorrelated case.

now use the result of another generative learning pro-
cess in complementary modality. Here, one may ob-
serve an advantage of the PROPRE architecture: it is
very modular, since, formally, anything may serve as
reference representation R because all that PROPRE
does is computing a prediction from it. In particular,
no analytical gradient computations need to be per-
formed that would require supplementary knowledge
about the internal workings of R. This generalized
architecture is shown in Fig. 41.

FExperiments and results

To assess the ability of the modified PROPRE ar-
chitecture to extract correlated concepts, simulation
experiments with two simulated modal data streams
were conducted. As in the original PROPRE ex-
periments, the population encoding technique was
used to represent single scalar quantities, see Fig. 42.
The probability distribution from which data samples
were drawn in simulation were chosen to replicate the
most important properties that might be encountered
in real data, most importantly that correlated con-
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Figure 43: Percentage of neurons in both induced representa-
tions that are sensitive to the correlated class (red and green
curves) and to the uncorrelated class (violet and blue curves).
The deterioration of selectivities to the uncorrelated class is
notable right from the start of PROPRE learning at ¢ = 8000.

cepts are much less frequent than uncorrelated ones.
This coincides with the reality in visual object detec-
tion where potential "background"-detections occur
much more frequently than actual objects (e.g., ve-
hicles or persons). For correlated concepts, feature
values in all modalities are bounded to certain fixed
intervals from which they are uniformly drawn, so
knowledge of features in one modality determines to a
large part feature values in another. For uncorrelated
concepts, feature values are unbounded, and knowl-
edge of one feature does not, statistically speaking,
tell anything about other features. Please see Fig. 42
for a visualization of the simulated sample distribu-
tions.

Although in this generalization of the PROPRE
architecture, the reference representation R is rep-
resented by an induced representation fed by an-
other modality, the principle of modulation by pre-
dictive power has been retained, the particularity of
this model being that both modalities modulate each
other at the same time, which can potentially lead
to interesting learning dynamics. The principal in-
terest in this work was however a proof of concept,
which was achieved as shown by Fig. 43. As in the
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original PROPRE experiments shown in Sec. 5.1, the
lower predictability of uncorrelated samples leads to
a near-suppression of such samples in the two induced
representations H; and Hs.

Significance of multi-modal learning

In the context of the road map outlined in Sec. 2.3,
these results are of the utmost significance, because
they demonstrate that meaningful information can
be extracted from multimodal data streams in a com-
pletely unsupervised manner. This approach should
always work when "interesting" (useful, stable, ...)
samples, characterized by correlation across modali-
ties, are embedded into a much larger body of un-
interesting samples who are not correlated across
modalities. The basic assumption here is that inter-
esting samples are identical to those that are relevant
for a certain application, which is not self-evident.
However, an automatic pre-selection of samples ac-
cording to the needs of the application can ensure
that only a subset of samples is treated for which the
assumptions holds. More will be said to this effect in
Sec. 7.

If this approach could be shown to work in realis-
tic scenarios, it could mean a huge performance boost
especially for very difficult problems like pedestrian
or vehicle detection, which notoriously suffer from
a shortage of supervised training data (see Sec. 2).
With the presented method, it will be possible to
"train" object -vs- background classifiers without any
direct supervision on as many samples as desired,
since all this would require are multi-modal record-
ings which are very easy and cheap to obtain nowa-
days.
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6. Incremental learning

This section continues the description of my work
on prototype-based generative learning methods,
however now with a focus on a special functional-
ity, the ability to learn in an incremental fashion. In
this sense, the work presented here is a variant of
the PROPRE architecture introduced previously. I
keep the focus on vision problems who tend to ex-
hibit a large number of high-dimensional data sam-
ples. Some of the treated problems come from the
domain of road traffic, as this motivates the my en-
tire research effort in machine learning, however I
make heavy use of more conventional machine learn-
ing benchmark tasks such as MNIST [99], simply be-
cause it is easy to work with, simple in nature and
yet has sufficient complexity (especially w.r.t. num-
ber of classes) to allow meaningful statements about
incremental learning capacity.

6.1. Structure of this section

Incremental learning being a complex and notori-
ously ill-defined notion, I begin with a taxonomy of
this and other, related terms while also introducing
a few facts about incremental learning in biological
systems. The definitions I give here may not be uni-
versally adhered to, but they will help to give precise
meaning to statements made in this section. After
giving a survey of related work on incremental learn-
ing and related issues, I will outline my contributions
to this field [61, 60, 71, 59, 72, 62], which focus on
incremental learning for visual problems or problems
that are similar in nature. Finally, I will discuss the
relevance and significance of my particular approach
to incremental learning and outline the next steps for
improving them.

6.2. What is incremental learning?

Incremental learning comes in various forms in the
literature, and the use of the term is not always con-
sistent. So some effort will be made here to give pre-
cise meaning to relevant terms.
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Batch -vs- online learning

Many machine learning algorithms are trained on
entire databases of samples, that is to say, they use
all examples in a database at the same time, irre-
spective of their (temporal) order, to perform, e.g.,
a model optimization step. This does not preclude
the repetition of this step: for example, a multi-
layer perceptron minimizes its cost function by it-
erative gradient descent, where all training samples
are processed at each iteration. This approach com-
pletely ignores the temporal structure and order of
samples in a database, which is of course completely
acceptable when data statistics are stationary. In this
case we speak of batch learning algorithms. When
data statistics are non-stationary, it becomes inter-
esting to take the temporal evolution of the data
into account. This is realized by online learning
approaches, which use training samples one by one,
without knowing their number in advance, to opti-
mize their internal cost function. There is a contin-
uum of possibilities here, ranging from fully online
approaches that adapt their internal model imme-
diately upon processing of a single sample, over so-
called mini-batch techniques that accumulate a small
number of samples to perform batch learning, to the
batch learning approaches described previously. As
to existing machine learning models, online learn-
ing is most easily achieved by stochastic gradient
descent versions of multilayer perceptrons (MLPs),
but there are also extensions of the support vector
machine (SVM) model ([184] for an overview) that
have this capacity. Prototype-based models such as
k-means [152], k-NN [152], radial basis function net-
works (RBF) [114], learning vector quantization [83]
and self-organizing maps [86] all naturally fall into
this category as well.

Concept drift and the stability-plasticity dilemma
When the temporal structure of data samples is
taken into account, one is often faced with changes
in data statistics that occur over time. Generally,
such changes, denoted somewhat generally as concept
drift [98, 172], can be gradual or abrupt. In the lat-
ter case one often uses the term concept shift. When
data statistics do not change globally but only in a
specific region of data space, sometimes the term lo-
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Figure 44: Examples for global and local concept drift/shift in
a model classification task containing two visual classes, P and
X. At t = to, concept drift sets in, with effects marked in red.
Top row (green): original sequence of data samples without
concept drift. Second row (cyan): gradual global concept drift.
All characters increase slowly in size. Third row (violet): local
concept shift with conflict. A third class B appears suddenly
in the data stream. This is local because class X is far away
from the new class in data space, however P and B are visually
very close which leads to a conflict when trying to distinguish
them. Fourth row: local concept shift without conflict. All
instances of class P become suddenly underlined. Again this
is local because class X is not at all affected, and there is no
conflict because class assignments remain constant

cal concept drift is used [172]. A prominent example
is the addition of a new, visually dissimilar object
class to a classification problem. This in particular is
an important use case for incremental learning algo-
rithms as there is, a priori, no reason why new statis-
tics in localized regions should disrupt learned models
elsewhere. Another and much more problematic case
is local concept drift/shift with conflict, for example
when a new but visually similar class appears in the
data: this will in any event have an impact on clas-
sification performance until the model can be locally
re-adapted to separate the old from the new class.
Please see Fig. 44 for a visualization of some promi-
nent special cases of concept drift. Recognizing con-
cept drift at execution time constitutes a challenging
task, see [98, 172] and references therein. Coarsely
speaking, an algorithm needs to decide whether a de-
viation is just due to noise, or due to a real change in
data statistics. This implies a model of the data, in
the simplest form a time scale on which "real" con-
cept drift can occur. If concept drift can be reliably
detected, it is possible to adapt to it, although this
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adaptation raises another difficulty: when old and
new data statistics are in conflict, how quickly should
models be updated? They can be updated quickly
but in this case, old information will be forgotten
equally quickly. On the other hand, adaptation can
be performed slowly, in which case old information is
retained longer: it really depends on the application
one has in mind to correctly set these parameters.
This complexity of online learning might seem intim-
idating w.r.t. batch learning algorithms. However,
the conceptual simplicity of the latter stems from the
extreme simplification that is made in discarding all
temporal information in a set of data samples.

Definition of incremental learning

The most obvious consequence of taking into ac-
count the temporal evolution of data statistics is that
machine learning algorithms, instead of being trained
exactly once, need to track these changes and react
accordingly. From the foregone discussion, it is clear
that any incremental learning algorithm must nec-
essarily be an online technique whereas the reverse
it not true, the most famous counterexample being
MLPs which exhibit a so-called catastrophic forget-
ting behavior [109, 140, 37, 36, 106] even when the
new data statistics do not invalidate the old ones.
Stated in a clear and concise manner, a learning algo-
rithm that shall be called "incremental" should have
the following properties:

e it must be an online learning method

e concept drift is recognized autonomously and the
internal model is adapted accordingly

e previously learned knowledge is retained when
facing concept drift. In case of local conflicts,
old knowledge is replaced only locally.

6.3. Existing approaches to incremental learning

There are a number of approaches for incremental
learning with support vector machines (see [184] for
an overview). Some rely on heuristics, like retraining
a model with all support vectors plus a new "incre-
mental" batch of data [27, 167], but this is without
theoretical guarantees and not what would be consid-
ered fully online approaches as it makes little sense in



this context to present examples one by one. Other
ideas are a modification of the cost function to be
optimized by SVM training, see, e.g., [153] in order
to facilitate incrementality. But in the light of the
given definitions, these approaches are closer to on-
line learning and will run into trouble under concept
drift. Furthermore, it has been proposed to perform
SVM training adiabatically, that is, presenting one
example at a time while maintaining the relevant op-
timality conditions on all previously seen examples.
However in our terminology this is neither online nor
incremental, as all previously seen samples need to be
stored, although the approach can considerably sim-
plify SVM training and has numerous useful conse-
quences in practice. Lastly, there are ensemble learn-
ing algorithms [134, 184| that achieve incremental
learning simply by training new classifiers for new
batches of data, and combining all existing classifiers
for decision making. While this indeed achieves in-
cremental learning under some conditions, it makes
the implicit hypothesis that concept drift coincides
with new data batches, whereas a detection of con-
cept drift is not addressed at all.

As the problem of catastrophic forgetting was first
remarked for multilayer perceptron (MLP) models
[109, 140], it is hardly surprising that there was signif-
icant work on the subject of how catastrophic forget-
ting could be avoided. There was an initial consen-
sus that catastrophic forgetting in MLPs arises from
the completely distributed nature of internal repre-
sentations, coupled to back-propagation-type learn-
ing (see [40] and references therein). This can maybe
best be understood by considering the opposite case,
so-called localist representations where each internal
unit responds only to a very small sub-volume in in-
put space. Learning in such networks would thus
only adapt the sensitivities of internal units that are
"closest" to the input, which would eliminate the
catastrophic forgetting problem at the price of poor
generalization performance [159]. It was concluded
that semi-distributed representations were necessary
which would not be strictly localist but not com-
pletely distributed either, thus achieving a compro-
mise between generalization and catastrophic forget-
ting. A number of modifications of the MLP model
were proposed with the goal of reducing the rep-
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resentational overlap and achieving semi-distributed
internal representations. These relied to a signifi-
cant extent on purely algorithmic approaches, namely
sparsification [38], orthogonalization of internal node
weights [39, 116] and the adaption of the backprop-
agation algorithm to reduce representational overlap
[95]. These were more or less successful in mitigat-
ing but no eliminating the effect of catastrophic for-
getting, although the success tends to be strongly
problem-dependent and generalization capability is
reduced [159]. This is not surprising as representa-
tional resources are less efficiently exploited if they
are constrained to be sparse or orthogonal. In fact
this was a first step towards semi-distributed or local-
ist prototype-based representations although a vastly
increased number of units is required for these ap-
proaches to generalize well. A rather recent propo-
sition is made in [68] where a specific regularization
scheme is supposed to reduce but in no way eliminate
catastrophic forgetting effects.

Furthermore, there were attempts to modify the
general architecture of MLPs [97, 163] which are more
in the line of generative learning in that they attempt
to detect newness and use different representational
resources for new samples. This was taken further by
connectionist models with a more elaborate organiza-
tion, featuring different memory subsystems for long-
term and short-term learning [151, 3], as well as mod-
els that performed explicit replay and re-learning of
previous samples to alleviate forgetting [147]. It can
safely be said that all of these approaches managed
to reduce the problem at the price of being vastly
more complex than conventional connectionist mod-
els. Contrarily to modern approaches, inspiration
was taken primarily from biology and thus a solid
mathematical foundation was not intended, prevent-
ing a thorough understanding of the algorithms.

To perform explicit incremental learning in the
sense of Sec. 6.2, most modern approaches perform
a local partitioning of the input space and train a
separate classification /regression model for each par-
tition [175, 120, 161, 11, 16]. The manner of per-
forming this partitioning is very diverse, ranging from
kd-trees [16] to genetic algorithms [11] and adaptive
Gaussian receptive fields [175]. Equally, the choice
of local models varies between linear models [175],



Gaussian mixture regression [16] or Gaussian Pro-
cesses [120]. Since this article is concerned with high-
dimensional perceptual problems, it can be stated for
all cited approaches that it is really the partitioning
of the input space that is costly in terms of memory.
Most notably, covariance matrices used in [175] are
quadratic in the number of input dimensions which
makes their use prohibitive.

6.4. Insights into biological incremental learning

As biological incremental learning has reached a
high degree of perfection, we explicitly investigated
the biological literature for hints as to how this
might be achieved. Basing ourselves on observa-
tions from the basic sensory cortices, we noted that
sensory representations seem to be prototype-based,
where prototype-sensitive neurons are topologically
arranged by similarity [169, 104, 150, 31]. Learn-
ing seems to act on these representations in a task-
specific way, where more prototypes are allocated
to sensory regions where finer discrimination is nec-
essary [135], i.e., where more errors occur during
learning. Learning is conceivably enhanced through
acetylcholine release in case of task failures [182, 69],
leading to higher "prototype density" in difficult re-
gions of the sensory space. In particular, learning
seems to respect and even generate topological lay-
out of prototypes by changing only a small subset
of neural selectivities [148] at each learning event,
namely around those neurons that best matched the
presented stimulus [31].

When going beyond the single-neuron level and
looking at architectural issues, there is a large body
of literature investigating the roles of the hippocam-
pal and neocortical areas of the brain in learn-
ing. Generally speaking, the hippocampus employs
a rapid learning rate with separated representations
whereas the neocortex learns slowly, building over-
lapping representations of the learned task [127]. A
well-established model of the interplay between the
hippocampus and the neocortex suggests that recent
memories are first stored in the hippocampal sys-
tem and they are played back to the neocortex over
time [108]. This accommodates the execution of new
tasks that have not been recently performed as well
as the transfer of new task representations from the
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Figure 45: Adaptation of the PROPRE learning architecture
for incremental learning. The most fundamental change made
to the architecture is that learning in H is now modulated by
the ability of H to predict P, instead of being predictable from
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Figure 46: Illustration of how incremental learning is made
possible through a topologically ordered prototype represen-
tation. Due to topological ordering, neighbouring prototypes
are almost always situated in nearby regions of input space.
Therefore, local updates of prototypes will almost always be
local in input space as well, thus effectively enabling efficient
incremental learning. This is shown here for a subset of proto-
types trained on the MNIST database, the best-matching unit
(BMU) for a "5" input being indicated by a small red circle.
It is obvious that the local 2D update region, indicated by a
larger red circle, is indeed local in the input space. The yel-
low circle indicates a region where this property does not hold
(structural defect) but the reader can convince himself that
this occurs but rarely.

hippocampus (short-term memory) to the neocorti-
cal areas (long-term memory) through slow synaptic
changes.

6.5. Flat incremental learning architecture

The biological findings of Sec. 6.4 were modelled
by an architecture for incremental supervised learn-



ing proposed in [60, 61] which is another variant of
the basic PROPRE architecture introduced in Sec. 5,
the most important difference being that learning of
prototypes in the hidden layer H is now driven by
the ability to predict P, as opposed to predictabil-
ity from P. This architecture combines generative,
prototype-based learning of an internal representa-
tion with discriminative learning of classification or
regression outputs, see Fig. 45. From the latter, a
task-related error signal is derived which adapts the
internal representation in case of mismatch or classi-
fication ambiguity. This ensures that prototype den-
sity increases in regions of the input space that are
difficult to classify, or in which concept drift is occur-
ring. Prototype adaptation is stably self-terminating
when no more errors are made, or when concept drift
subsides.

The internal representation is topologically orga-
nized, and prototype adaptation modifies weights
only locally, as observed in biology (see Sec. 6.4). It
is above all this property that allows for incremental
learning of prototypes: adaptation of a single proto-
type changes just its neighbours, which are close in
data space as ensured by the topological organization
of selectivities, see Fig. 46.

A read-out mechanism between hidden and out-
put layer maps local input space regions (i.e., sets of
prototypes) to class memberships using simple linear
regression learning.

The mapping from hidden to output layer is
adapted only when there is sufficient prototype acti-
vation in the internal representation. If this is not the
case, e.g., when concept drift is occurring, adaptation
is suspended, because random weak activations due
to unknown inputs can disrupt already existing read-
out weights.

The presented architecture is prototype-based in
its hidden layer and covers data space by hyper-
spheres of adaptive size around prototypes. This
strongly simplifies the definition of local regions
which, in other algorithms, is very costly in spaces
of high dimensionality I (see Sec. 6.3). The qual-
ity of this approximation can be controlled by con-
trolling the overall number of prototypes. As such
a prototype-based representation approximates the
distribution of data points in input space as a whole,
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Figure 48: Typical samples from the MNIST handwritten digit
database used for the experiments on incremental learning.
Each sample has a size of 28x28 pixels which gives a dimen-
sionality of 784. All MNIST samples are treated "as is", that
is to say, without intermediate feature transform.

it is a generative model [8] as it could be used for
sampling purposes.

Ezxperimental validation

The performance of this architecture, both incre-
mental and non-incremental, was measured on the
MNIST handwritten digit dataset [99] containing
70000 samples of dimension 784, grouped into 10
classes (please see a visualization of these classes in
Fig. 48). To quantify incremental learning capac-
ity, 10 experiments (Inc-0 through Inc-9) were con-
ducted where the architecture was initially trained on
9 classes and subsequently presenting the remaining
one exclusively for a short period, which was followed
by a short period of retraining with all 10 classes.
In the terminology of Sec. 6.2, these experiments
represent local concept shift with conflict, as each
MNIST class that is added at least partially over-
laps with other classes. In general, performance de-
pended in a monotonous fashion on the size of the
internal representation, i.e., the (fixed) number of
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Figure 49: Results of incremental learning experiments conducted on MNIST. The missing class is presented between iterations
800.000 and 820.000, and retraining with all classes occurs between 820.000 and 840.000. Left: temporal development of overall
classification error for experiments Inc-0 through Inc-9 (see text). Middle: development of class-specific errors in Inc-0. right:

development of class-specific errors in Inc-1.

prototypes. Non-incremental (no concept shift, us-
ing all 10 classes) performance was around 3% for a
reasonable number of prototypes (900), which is close
to state-of-the-art results of around 1.5%. As can be
seen from some exemplary results shown in Fig. 49,
the architecture managed to predict the added class
with high precision after a short period of model re-
adaptation with transiently higher classification er-
Trors.

6.6. Flat incremental learning architecture with
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Figure 50: Extension of the original "flat" model by a short-
term memory (STM) module. This module stores misclassified
or ambiguous samples in order to be able to react quickly to
these samples. At regular intervals, the content of the STM
is replayed to the internal SOM layer of the architecture and
subsequently emptied.

In [60], I also investigated the effects of interact-
ing short-and long-term memories on the proposed
model, inspired by biological findings (see Sec. 6.4).
The reason for adding a short-term memory is that
the used statistical learning algorithm for adapting
the prototypes is slow to adapt even when learning
rates are high. In contrast, real-world situations re-
quire a rapid reaction to concept drift once it is de-
tected as such (in our case, concept drift is detected
by analyzing prototype activation in the internal rep-
resentation). In order to achieve this, the basic model
described in the previous section has been comple-
mented by a second memory system, a short-term
memory (STM). This memory is exemplar-based,
that is, it stores incoming samples "as is" until it
reaches its predefined capacity limit. Its function is
three-fold:

e store samples along with their class in case of
wrong or ambiguous classification

e predict class from samples stored in STM in case
no prototype in the internal SOM representation
responds sufficiently

e periodically train internal SOM representation
using samples stored in STM (which is cleared
afterwards)

The prediction from short-term memory is therefore
only a temporary solution, until new patterns have
been transferred to long-term storage. In the STM,
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generalization ability is traded for reaction speed un-
til a transfer to long-term memory is achieved whose
generalization ability is higher. The extended archi-
tecture thus has a rather complex reaction to concept
drift. When concept drift occurs, e.g., by adding a
new class to a problem, the different steps until com-
plete adaptation are as follows (see Fig. 51 for a vi-
sualization):

e Newness is detected by lack of activity in the
internal SOM representation. This implies an
extremely ambiguous classification as all class
predictions will be very low, which leads to the
storage of the current sample in STM.

Once sufficiently many samples are stored in
STM, it will react with sufficient activity to the
new class, and will therefore give correct predic-
tions. Therefore, storage of samples to STM will
nearly cease.

After a predetermined interval, samples in STM
are replayed to the internal SOM representation,
which incorporates them into its set of proto-
types, whereupon the STM is reset.

Now, the SOM prototypes will respond strongly to
the new class (thus inhibiting STM use), which al-
lows the re-adaptation of linear regression weights
that control readout, at which point the new class
can be said to be added to the model. A potential
last step is a brief re-training with all classes in order
to re-calibrate the readout weights in SOM regions
where old and new classes overlap. As can be veri-
fied from the results shown in Fig. 52, the STM essen-
tially fulfils the function for which it is created. When
introducing concept shift with conflict in the form
of a new class, performance is degraded only very
slightly and transiently, since predictions are rapidly
provided by the STM. On the other hand, the LTM is
not adapted immediately, so it continues to perform
well on already known classes until STM replay takes
place, transferring samples of the newly added class
into a form more suited for generalization.

Significance and possible extensions
Summarizing, the proposed model tries to incor-
porate as many facts about incremental learning in

learning signals
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Figure 51: Sequence of events as a reaction to concept shift
in the form of a new visual class when using the PROPRE-
based incremental learning architecture with short-term mem-
ory, Fig. 50.

. N 10x10  20x20 30x30 50x5H0
time
GPU 15 19 27 53
CPU 115 457 1037 2903

Table 4: Execution time measurements in seconds per 104 iter-
ations of the incremental learning architecture (without STM)
for GPU and CPU implementations. It can be observed that
GPU execution times scale (much) less than linearly in the
considered range of hidden layer sizes, whereas the CPU im-
plementation scales almost exactly in a linear fashion.

biology as possible while keeping the model as sim-
ple and efficient as possible. Modelling takes place at
the architectural level, leaving aside the finer details
of neural modelling such as rate/spike code or more
realistic, dynamic neuron models. In the presented
projects, I could show that incremental learning is
both feasible and efficient for difficult real-world vi-
sual classification tasks, and that especially the high
dimensionality of these tasks poses no problem at all
to the proposed approach. Some experiments have
been made regarding parallelization on a graphics
processor (GPU), and, unsurprisingly, it turns out
that a neural architecture is quite favourable to par-
allelization as can be seen in Tab. 4 and [61].

An obvious extension of the presented "flat" archi-
tecture is a "deep" architecture that would function
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Figure 52: Results of incremental learning experiment Inc-6 with short-term memory conducted on MNIST. Left: frequency of
short-term memory usage for prediction. Right: development of individual class errors for Inc-6. The increased noise exhibited
by curves in the right-hand figure after 800K iterations is due to a higher sampling rate of the test error.

like a convolutional neural network (CNN), see [15§]
or my own work on CNNs [50]. A first step in this
direction has been taken in [71], where it could be
shown that the essential functions of concept drift
detection can be performed in a multi-level archi-
tecture as well. Especially for prototype-based ap-
proaches such as PROPRE and its derivatives, deep
architectures promise a strong reduction in resource
consumption (which is already quite modest) since far
less prototypes are required to describe smaller sub-
sections ("receptive fields") of an input, especially if
approximate independence properties hold between
distant parts of the visual input.
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7. Future research project

In the recent years I was able to contribute to many
issues raised by the road map of Sec. 2.3, all with
the long-term goal of improving environment percep-
tion in road traffic scenarios which were chosen as a
template for many other perception tasks. However,
most contributions were disconnected from one an-
other, and thus the coupling aspect, which is one of
the most interesting capacities of generative learning
methods, was not exploited to its full potential. In
the following years, I intend to create a full-blown
perception system for road traffic that makes use of
generative learning methods for detection, integrates
context information in multiple and adaptive ways,
and is capable of developing basic detection capabil-
ities in a developmentally inspired way by exploit-
ing multi-modality. This will require several distinct
steps, some of which can be conducted in parallel:

e enhance the computational power and reduce
computational cost of incremental learning as
described in Sec. 6. This will mainly include
creating a "deep" version of the basic PROPRE
architecture, with the goal of reducing the num-
ber and the dimensionality of prototypes which
can get high for difficult problems, which could
limit applicability.

fully formalize the probabilistic interpretation of
PROPRE (see Sec. 5.1) for easy interfacing with
other methods

speed-up of prototype-based learning and classi-
fication methods, such as PROPRE;, so they can
be used for detection tasks in real time.

experimentally investigate fully probabilistic
coupling of generative object detectors and con-
text information in the spirit of Sec. 4.

experimentally verify that multiple learned con-
text models, for example derived from static
scene context and dynamic object trajectory
analysis, can work together within a single sys-
tem
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Figure 53: Envisioned extension of incremental PROPRE
learning to a deep architecture, in this case with two inter-
nal layers Hyp and H;. Additional internal layers H; may be
introduced by the same mechanism of local receptive fields that
was applied in Hp.

e demonstrate acquisition of basic perceptual skills
by large-scale multi-modal learning as outlined
in Sec. 5.

The fundamental building block of such an architec-
ture will be incremental learning as outlined in Sec. 6,
be it for training pattern-based object detectors or
context models as in Sec. 4, and indeed considerable
effort will have to go into the further development
of these methods in order to make them truly ap-
plicable in such an architecture. The unsupervised
training of detection skills, based on multi-modal per-
ception, may provide a sensible starting point for a
self-improvement cycle: context models trained from
a roughly trained object detector, which in turn gets
refined further by context models. I will discuss the
most important steps a little more in-depth in the
following sections:

7.1. Prototype-based deep learning

One of the main drawbacks of prototype-
based learning approaches such as PROPRE (see
Secs. 5.1, 6) is that the number of prototypes some-
times needs to be quite high in order to satisfactorily
solve a given problem. Even for simple problems such
as MNIST, we found in Sec. 6 that about 1000 pro-
totypes are needed to obtain state-of-the-art perfor-
mance. This is still low in comparison to what other
incremental approaches require, but if incremental
learning is not a priority, then this is quite high com-
pared to other classification methods. A simple way
to reduce resource requirements is to exploit the prob-
abilistic structure of images which we deal with in



most cases: very often, some parts of the input im-
age are approximately independent of other parts. In
this sense, it is far more computationally efficient to
model them independently, again by prototypes. As
the required number of prototypes can increase expo-
nentially with dimensionality, in this case it should
decreases exponentially when dimensionality is re-
duced by modelling only a small part of the image
(a receptive field, to be coherent with deep learning
terms). In its simplest form, this comes down to a
four-layer architecture (see Fig. 53), where the added
layer contains now prototype activities related to lo-
cal descriptions of the input, which are subsequently
integrated into a global representation. Preliminary
experiments show that one can obtain a 10-fold de-
crease in free parameters (connection weights) with
no loss of classification performance on MNIST when
using an architecture as shown in fig. 53, but fur-
ther research is needed to consolidate these results
and determine the optimal way of parametrizing the
architecture.

7.2. Speed-up of prototype-based learning for object
detection

For detection-by-recognition purposes (see Sec. 1),
trained models are applied to every position and scale
in an image in a sliding window fashion (see also
Fig. 7). This requires a certain execution speed if
real-time capability is to be maintained. At present,
the prototype-based models presented here are rather
costly in terms of execution time due to the input-
prototype distance computation step which currently
needs to be performed for all prototypes. Already, the
ideas given in the preceding section can be a way out
of this dilemma: by reducing the number of weights
in the architecture, computational demands can be
reduced by approximately the same factor. Further
speed-ups may be obtained by considering a convolu-
tional version of the hierarchical architecture outlined
in Fig. 53. This means that the prototypes of all local
SOMs in layer Hy are identical, which further simpli-
fies the architecture and reduces the number of free
parameters.

Another way to speed up calculations is paralleliza-
tion, be it using programmable logic (FPGA) boards
or graphics processing units (GPUs). In fact, the
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Figure 54: Approach for transferring the simulation results
on multi-modal learning to object detection in a real-world
domain (here, pedestrian detection/recognition is shown, but
other classes such as vehicles are eligible as well): when a com-
plementary LIDAR measurement is available for each visual
object hypothesis, the multi-modal learning architecture de-
scribed in Sec. 5 can be used "as is", although a preprocessing
of modal data may be required.
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parallelization potential of the PROPRE architecture
was already established in [61] using GPUs.

A last idea concerns cascade-like approaches for
computing input-prototype distances: making use of
the topological organization of prototypes, it may be
feasible to compute distances only for a subset of pro-
totypes and then restricting further calculations to
neighbourhoods of prototypes with sufficient activ-
ity.

Speeding up the ezecution (in contract to learning)
of prototype-based learning is of crucial importance
if these methods should ever be applied to perceptual
problems in an applied setting. In contrast, learning
in PROPRE is strictly local, that is, only a few proto-
types around the BMU will be modified at any single
time, which does not incur a high computational cost.

7.3. Multi-modal learning on real data

As mentioned in Sec. 5, transferring multi-modal
learning on simulated data, as described in that sec-
tion, to real data coming from object detection tasks
in road traffic, would mean a huge potential gain in
detection performance "for free", as it is the creation
of a sufficient number of supervised training samples
that is very costly. First steps have been taken in that
direction, using multimodal (visual and LIDAR) data
coming from the KITTI dataset [49] to train pedes-



Figure 55: Results of the restricted vehicle detector presented
in [73]. Left: original image. Right: vehicle detections. Please
note that all vehicles are detected but many incorrect detec-
tions exist as well.

trian detectors as sketched in Fig. 54. The biggest
issue in this endeavour is purely practical: how to
select samples that should be subject to learning?
If one selects image patches at random, the relative
frequency of pedestrians will be too low for mean-
ingful learning. On the other hand, one cannot use
the pedestrian annotations in the KITTI database ei-
ther (maybe for selecting pedestrians and then adding
randomly selected background samples) because the
goal is to learn without annotations. To solve this
dilemma, a simple restricted detector as, e.g., pro-
posed in [73], could be used. A restricted detector
detects its class of interest by efficient but hand-coded
image processing operations, e.g., finding horizontal
lines for detecting lower vehicle borders as described
in [73]. As can be seen from Fig. 55, this sort of
detector will have a high false detection rate, which
is acceptable for multi-modal learning as long as al-
most all object of the class of interest are localized.
Such a detector can act as a filter which increases
the relative frequency of the objects of interest suf-
ficiently so that the learning algorithm can extract
statistical information. When looking at the biolog-
ical analogy, this can be seen as an innate attention
mechanism that guides learning in the right direc-
tion. As stated at the end of Sec. 5, this kind of
unsupervised multi-modal learning, together with a
suitably crafted restricted detector, has the potential
to boost the quality of learned models simply because
the number of available training data is potentially
unlimited.
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7.4. System building

Finally, the long-term objective of my research is
to unite all of my contributions into a single percep-
tion system, with incremental learning as its basic
functionality operating in different places, but at the
very least in a generative prototype-based detector
and, acting thereon by attentional modulation, in
one of several context models (static and dynamic)
as described in Sec. 4. Evidently, it will have to be
investigated how learning is handled in various parts
of the architecture, for preference taking inspiration
from what is known about the large-scale organiza-
tion of the human neocortex. Especially, the archi-
tecture of the system should contain a developmental
component that would allow it to acquire a baseline
performance in an unsupervised way, exploiting the
principle of multi-modal learning outlined in Sec. 5.

This system will then be used to address the items
on the road map outlined in Sec. 2.3, ideally lead-
ing to a detection performance that is superior to
the state of the art. However, such a system may
very well have a scientific merit in its own right. An
example is the continuous acquisition of new train-
ing data: as the experiments on context-based object
detection (see Sec. 4) suggest, many objects can be
detected only with the "help" of attentional modula-
tion derived from context models. The more context
models are involved, the more certain such detections
may become. Therefore, if a detection is made that
would not have been recognized by the pattern-based
detector alone, this should trigger learning of detec-
tion/recognition models. In case these models are
"deep" networks (as evoked previously in this sec-
tion), the learning of new features or new object parts
can be triggered as well. Conversely, context models
may be trained on object hypotheses obtained from
the detector and not from ground-truth data, a possi-
bility already investigated with some success in [53].
Ideally, the whole architecture could serve as a tool
to reduce the need for ground-truth data to an ab-
solute minimum while still achieving a detection per-
formance beyond the state of the art.
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