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des Mines de Paris, en collaboration avec IFP Energies Nouvelles. Dans les deux
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amené du loin à ce campus agréable. Nous avons fait un projet très cool et créé
la Faustine ensemble. Je me souviens toujours le beau paysage au fenêtre de mon
bureau.

Je remercie mon ”team de printemps/été/automn/hiver”, mes chère et cher
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Abstract

In a work made at Centre de Morphologie Mathématique and IFPEN, we study
the microstructure and physical properties of mesoporous γ-alumina. This is a cat-
alyst carrier used in the petroleum refining industry. Highly porous, it contains
disordered ”platelets” at the nanoscale. The mass transport properties of the cata-
lyst carrier are strongly influenced by the morphology of the porous microstructure.
We focus on the modeling of the microstructure and of transport properties of meso-
porous alumina, using numerical and theoretical tools derived from image analysis
and random sets models. On the one hand, methods are developed to character-
ize and model the microstructure, by extracting and combining information from
transmission electron microscope (TEM) images and nitrogen porosimetry curves,
among others. On the other hand, the numerical homogenization relies on full-field
Fourier transform computations (FFT).

The material is first characterized experimentally by nitrogen porosimetry and
pulse-field gradient nuclear magnetic resonance (PFG-NMR). TEM images, obtained
on samples of various thicknesses are filtered and measured in terms of correlation
function. The high-frequency noise caused by carbon membrane support is identified
and integrated in the TEM image model. Based on the 2D TEM images, a two-
scale random set model of 3D microstructure is developed. It takes into account
the platelet shape, platelet size, local alignments and aggregations effects which
are numerically identified. The procedure is validated by comparing the model
and experimental images in terms of correlation function and specific surface area
estimated by nitrogen porosimetry.

Next, a procedure is proposed to simulate porosimetry isotherms in general
porous media, including random microstructures. Based on simple morphological
operations, it extends an earlier approach of mercury porosimetry. Multilayer ad-
sorption at low pressure is simulated by a dilation operation whereas the menisci
of the vapor-liquid interface occurring during adsorption are simulated by closing
the solid phase with spherical structuring elements. To simulate desorption, a com-
bination of closing and hole-filling operations is used. The desorption threshold is
obtained from a percolation analysis of the gaseous phase. The method, validated
first on simple geometries, is compared to previous results of the literature, allowing
us to predict the hysteresis and pore size distribution associated to porosimetry.
It is applied on 3D microstructures of mesoporous alumina. To account for the
pressure threshold during desorption, we propose a refined three-scale model for
mesoporous alumina, that reproduces the correlation function and the desorption
branch of porosimetry isotherms.

Finally, Fick diffusion, Darcy permeability, and elastic moduli are numerically
predicted using the FFT method and the two-scale and three-scale models of meso-
porous alumina. The hindering effects in diffusion are estimated by the Renkin’s
equation. The effective diffusion coefficients and the tortuosity factors are esti-
mated from the flux field, taking into account hindering effects. The effects of
platelet shape, alignment and aggregation on the diffusion property are studied.
The numerical estimation is validated from experimental PFG-NMR results.





Résumé

Dans ce travail réalisé au Centre de Morphologie Mathématique and IFPEN, on
s’intéresse à la microstructure et aux propriétés physiques d’alumines γ mésoporeuses.
Il s’agit d’un support de catalyseur utilisé notamment dans les procédés industriels
de raffinage du pétrole. Fortement poreux, ce matériau est formé de ”plaquettes”
distribuées de manière désordonnée à l’échelle de la dizaine de nanomètres. Les pro-
priétés de transport de masse du support de catalyseur sont fortement influencées par
la morphologie de la microstructure poreuse. Ce travail porte sur la modélisation de
la microstructure et des propriétés de transport des alumines mésoporeuses, à l’aide
d’outils numériques et théoriques dérivés de l’analyse d’image et de la théorie des
ensembles aléatoires. D’une part, on met en place des méthodes de caractérisation
et de modélisation des microstructures, qui s’appuient sur, entre autre, des im-
ages obtenues par microscopie électronique en transmission (MET) et des courbes
de porosimétrie azote. D’autre part, on utilise des méthodes d’homogénéisation
numérique à champs complets par transformées de Fourier rapide (FFT).

Dans un premier temps, le matériau est caractérisé expérimentalement par poro-
simétrie azote et résonance magnétique nucléaire à gradient de champ pulsé (RMN-
GCP). Les images MET sont obtenues sur des échantillons d’épaisseur variable,
filtrées et caractérisés par des fonctions de corrélation, notamment. Le bruit à haute
fréquence issu de la membrane de carbone est identifié et pris en compte dans la
modélisation de l’imagerie MET. À partir des images MET 2D, un modèle aléatoire à
deux échelles est proposé pour représenter la microstructure 3D. Il prend en compte
la forme des plaquettes d’alumine, leurs tailles, les effets d’alignement locaux et
d’agrégation, qui sont identifiés numériquement. La procédure est validée à l’aide
de comparaisons entre modèles et images expérimentales, en terme notamment de
fonctions de corrélation et de surface spécifique mesurées par porosimétrie azote.

Dans un deuxième temps, une méthode de simulation des courbes d’isotherme
de porosimétrie dans des milieux poreux périodiques ou aléatoires est développée.
Basée sur des opérations morphologiques simples, elle étend un travail antérieur sur
la porosimétrie au mercure. L’adsorption multicouche à basse pression est simulée
à l’aide d’une dilatation tandis que les ménisques de l’interface vapeur-liquide inter-
venant pendant l’adsorption sont simulés à l’aide de fermetures de la phase solide
par des éléments structurants sphériques. Pour simuler la désorption, une combi-
naison de fermetures et de bouchages de trou est utilisée. Le seuil de désorption
est obtenu par une analyse de la percolation de la phase gazeuse. La méthode,
d’abord validée sur des géométries simples, est comparée à des résultats antérieurs.
Elle prédit une hystérésis et les distributions de pores associées à la porosimétrie.
Nous l’appliquons aux modèles de microstructures 3D d’alumines mésoporeuses et
proposons un modèle à trois échelles afin de rendre compte du seuil de pression
pendant la désorption. En plus de la courbe de désorption, ce modèle reproduit les
fonctions de corrélation mesurées sur les images MET.

Dans un troisième temps, la diffusion de Fick, la perméabilité de Darcy, et les
propriétés élastiques sont prédites à l’aide de calculs de champs complets par FFT
sur des réalisations des modèles d’alumines mésoporeuses à deux et trois échelles.
Les coefficients de diffusion effectifs et les facteurs de tortuosité sont prédits à
partir de l’estimation du flux. Sont étudiés les effets de forme, d’alignement et



d’agrégation des plaquettes sur les propriétés de diffusion à grande échelle. Les
prédictions numériques sont validées au moyen des résultats expérimentaux obtenus
par méthode RMN-GCP.
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Chapter 1
Introduction

1.1 Context

Mesoporous alumina is a class of porous material made-up by an assemblage of
alumina (Al2O3) grains at the nanometric scale and is widely used in industry as
catalyst supports (Misra, 1986). A catalyst support provides a reaction interface
to active sites and reagents by its porosity. The catalytic performance and more
generally transport properties of mesoporous materials are strongly influenced by
the morphology of the porous phase, including the porosity, specific surface area and
connectivity properties (Levitz, 1993; Wernert et al., 2010). This influence of the
morphology of the support is experimentally observed for activity (Khodakov et al.,
2002; Rana et al., 2011), selectivity (Khodakov et al., 2002) or deactivation (Prieto
et al., 2014) for important industrial processes such as methanol synthesis (Prieto
et al., 2014), Fischer-Tropsch synthesis (Khodakov et al., 2002) or hydrotreating
of heavy oil fractions (Rana et al., 2011). The preparation method and synthesis
conditions, especially temperature and type of solvent influence the morphology of
the alumina porous structure at the nanoscale (Trimm & Stanislaus, 1986; Chiche
et al., 2008). A fine description of the microstructure is required to predict and
optimize the adsorption and catalytic performance of these materials.

Different characterization techniques allow one to extract information about the
inner microstructure or the spatial organization of grains at the nanoscale. These
techniques include nitrogen porosimetry, X-ray diffraction (XRD), Small Angle
X-ray Scattering (SAXS), transmission electron microscopy (TEM) and tomogra-
phy (Kim et al., 2003; Zecevic et al, 2013). Nitrogen porosimetry provides informa-
tion about the porosity at the macroscale. XRD methods provide information of the
mean structuring crystallites and on morphological characteristics such as size and
shape, less on pore connectivity or structure at higher length-scale (Chiche et al.,
2008). SAXS provides measurement of specific surface area, porous volume and cor-
relation at different length scale of the mass distribution. TEM methods produce
transmission 2D images on a thin slice of material, from which 3D reconstruction is
difficult. Electron tomographic techniques may provide 3D images of the pore space
at the nanoscale but at the expense of long acquisition and reconstruction time and
at poor representativeness (volume sides limited to a few hundred nanometers).

Morphological modelling is a key procedure in the design, development and op-
timization of catalyst supports. On the one hand, simple models are created using
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deterministic microstructures such as periodic arrays (Mu et al., 2008). On the other
hand, more elaborate modelling relies on stochastic microstructures to mimic real
materials (Adler et al., 1990; Koci et al., 2006; Diaz et al., 2004). With the recon-
structed microstructures, simulations of adsorption (Štěpánek et al., 2007) have been
performed, as well as heat conduction (Kohout et al., 2004) and reaction-diffusion
processes (Koci et al., 2007).

1.2 Goal of the thesis

The goal of this thesis is twofold. The prediction of the transport properties of
mesoporous alumina are warranted by an accurate description of its porous net-
work. Accordingly, 3D morphological microstructures that are representative of the
material will be derived first and employed to estimate and predict the transport
properties of these materials in a second step.

The study aims at enriching our knowledge on the relation between the mor-
phology of the microstructure and the transport properties of mesoporous alumina.
Combined with the knowledge of synthesis, it will allow us to propose microstruc-
tural ways to optimize the architecture of alumina catalysts supports.

1.3 Approach

First, information is extracted using large field of view TEM images of thin alumina
samples. A preliminary study (Pietrasanta, 2013) has already characterized the
textural fluctuation of these TEM images (in particular the two points correlation
function), their Representative Volume Element (RVE) and proposed a two scale
Boolean model. However, the identification of the parameters of the model led to
platelet size smaller than physically acceptable and consequently to a specific surface
area much higher than measured. This preliminary work is the basis for our study.
TEM images of thinner specimens at larger magnications are taken, together with
TEM images of crushed materials. We have improved the projection model of TEM
images, taking into account the noise in the image formation. The two-scale model
is reidentified to reproduce both the two points correlation function and the specific
surface area.

Second, the nitrogen porosimetry is simulated using morphological operators, in-
cluding multilayer adsorption, capillary condensation and evaporation. The porosime-
try isotherms of digital microstructures are simulated. The method is validated on
simple geometries and compared with literature. A detailed parametric study is
performed to relate the kind of stochastic model and their parameters with the
associated simulated porosimetry curves. A multiscale model based on the former
two-scale model is proposed to reproduce the experimental desorption branch, which
contains information on specific surface area, pore size distribution, and connectivity
of the pores.

Then, the effective diffusion coefficient in the pores, as well as the permeability
are computed directly from realisations of the multiscale models developed previ-
ously. The transport by diffusion is modeled by Fick law whereas the transport by
convection is modelled by Stokes flow. Homogeneization is performed with Fourier-
based computational method that allowed us to compute the effective properties as
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well as the full-fields response of the materials (Willot et al, 2013; Willot, 2015).

1.4 Project framework

This study has been carried out under a joint collaboration between the Center
of Mathematical Morphology (CMM), MINES ParisTech, Fontainebleau and IFP
Énergies Nouvelles (IFPEN), Solaize in France. The thesis work has been supervised
by F. Willot, D. Jeulin and M. Faessel (Mines ParisTech) and L. Sorbier and M.
Moreaud (IFPEN). This work has been made possible by IFPEN. We gratefully
acknowledge its financial support.
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Chapter 2
Experimental characterization, modeling
and effective properties

2.1 Mesoporous alumina

2.1.1 Catalytic performance and morphology

A catalyst support provides a reaction interface to active sites and reagents by its
porosity. The catalytic performances are strongly influenced by the morphology of
the porous phase. This influence of the morphology of the support is experimentally
observed for activity (Khodakov et al., 2002; Rana et al., 2011), selectivity (Kho-
dakov et al., 2002) or deactivation (Prieto et al., 2014) for important industrial
processes such as methanol synthesis (Prieto et al., 2014), Fischer-Tropsch synthe-
sis (Khodakov et al., 2002) or hydrotreating of heavy oil fractions (Rana et al.,
2011).

Khodakov et al. (2002) studied the effects of pore size on Fischer-Tropsch re-
action rate and selectivities over cobalt catalyst on mesoporous silica as catalytic
support. The reaction rate was found much higher on cobalt catalyst with the pore
diameter exceeding 3 nm than on the narrow pore catalysts. A large pore diameter
also led to a higher C5+ selectivity.

Prieto et al. (2014) investigated the impact of the support porous texture on the
stability of metal nanoparticles on CuZnO/SiO2 methanol synthesis catalyst. The
metal particles are confined by the pores, and the growth of metal particles is one
of the major deactivation mechanism of supported catalysts. Cagelike pores ensure
that the active Cu nanoparticles are exclusively inside the silica pores with short
interparticle spacings. The research indicates that catalyst stability is determined
by the narrowest characteristic pore dimension, which corresponds to the entrance
size of pores.

Rana et al. (2007) systematically studied the support effect in heavy oil hy-
drotreating catalysts. Both fresh and spent catalysts are characterized, which con-
firms that coke and metal deposition on the surface of the catalyst is most probably
near the pore mouth. The results also indicate that asphaltene conversion depends
on the pore diameter of the catalyst.

7
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2.1.2 Synthesis and morphology

In laboratory, mesoporous alumina catalyst support is usually synthesised through
thermal treatements of boehmite. In a typical synthesis process, boehmite powder is
first dispersed in solvent (e.g. water, ethanol). The suspension is malaxed, and the
support pellets are extruded. The extrudates are then calcined under air to obtain
porous transition alumina. Pores originate from voids between particles and between
aggregates of particles. The preparation method and synthesis conditions influence
the morphology of the alumina texture at the nanoscale (Trimm & Stanislaus, 1986;
Chiche et al., 2008; Morin, 2014).

Trimm and Stanislaus (1986) summarized the influence of the temperature, the
humidity during calcination, and the combination of them on the distribution of pore
size, ranging from macropores to mesopores. The empirical experience have become
important guidelines to control the porosity for the manufacturers of mesoporous
alumina. Chiche et al. (2008) indicate that boehmite nanoparticles synthesized in
solvent of different pH values have different morphologies: low pH values produce
smaller nanoparticles, while high pH values produce larger or longer nanoparticles.
Differences have been observed along the basal face and the thickness of boehmite
(see Fig. 2.1). Morin (2014) indicates that the mixture of polar protic solvents has a
strong influence on the particle aggregation. The modulation of surface affinity and
steric hindrance of the solvent controls the distance between particles, and further
controls the porosity and the microstructure.

2.2 Characterization

Once the material is synthesised, different characterization techniques allow one to
examinate the microstructure of the material. The main techniques include nitrogen
porosimetry, X-ray diffraction (XRD), Small Angle X-ray Scattering (SAXS), trans-
mission electron microscopy (TEM), tomography (Kim et al., 2003; Zecevic et al,
2013) and Nuclear Magnetic Resonance (NMR).

2.2.1 X-ray diffraction

X-ray diffraction has been widely used to determine the microstructure of a crystal
at nanoscale. A beam of incident X-rays is diffracted by the alumina lattice. By
measuring the angles of the diffracted beams, a 3D image of electron density in the
lattice is obtained.

Chiche et al. (2008) used X-ray powder diffraction to determine the shape and
size of boehmite particles at the nanoscale. They simulated morphology-dependent
diffraction patterns using the Debye formula. These reference patterns are then
compared to experimental diffraction pattern. The average particle morphology
is then computed by a linear combination of the reference patterns, with weights
according to the size distribution. XRD methods provide information of the mean
structuring crystallites and on morphological characteristics such as size and shape,
but less on structure at higher length-scale like aggregates.



CHAPTER 2. EXPERIMENTAL CHARACTERIZATION, MODELING AND
EFFECTIVE PROPERTIES 9

Figure 2.1: Boehmite particle morphology determined by XRD. The three sam-
ples are synthesised at different pH values: (A) pH=4.5, (N) pH=6.5 and (B)
pH=11.5 (Chiche et al., 2008).

2.2.2 Porosimetry

Nitrogen porosimetry is an important tool to characterize mesoporous material.
Material sample is pretreated at high temperature under vacuum to remove adsorbed
species and put into a container in vacuum at 77 K. By increasing the nitrogen
pressure, nitrogen molecules are progressively adsorbed at the sample surface or
condensed in the sample porous volume. The amount of adsorbed or condensed
nitrogen is related to the specific surface area and the pores’ morphology. The
amount of adsorbed nitrogen in function of vapour pressure is termed as nitrogen
isotherm.

Nitrogen porosimetry isotherms are generally interpreted as follows. The pres-
sure range is divided into three domains. The low pressure interval corresponds
to the thermodynamical multilayer adsorption of nitrogen molecules. The classical
Langmuir’s model (Langmuir, 1918) regards the monolayer adsorption as a reversible
reaction between the solid surface and gas molecules. An equilibrium is built up be-
tween the fractions of occupied and non-occupied volume in the monolayer. The gas
is assumed to be ideal.

The Brunauer-Emmett-Teller (BET) theory (Brunauer et al., 1938) extends the
Langmuir’s model to multilayer adsorption. It applies Langmuir’s model to each
layer, with the assumption of no intersection between layers. The BET equation is:

1

v[( 1
χ
)− 1]

=
c− 1

vmc
(χ) +

1

vmc
(2.1)

where v is the volume of adsorbed nitrogen gas, χ = p/p0 is the relative pressure (p
is the equilibrium pressure, and p0 is the saturation pressure), vm is the volume of
one monolayer of adsorbed nitrogen molecules, c is the BET constant determined
by the heat of adsorption. In the beginning range of the nitrogen isotherms (about
0.05 < χ < 0.35), the relationship between 1

v[(1/χ)−1]
and χ is linear. By linear

curve fitting, the volume of monolayer vm is estimated, together with the number
of adsorbed nitrogen molecules. With the hypothesis that one molecule occupies an
area of 0.16 nm2, the specific surface area, or more explicitly ”BET surface area”
denoted SBET , is estimated.

The empirical FHH equation (Frenkel, 1946; Halsey, 1948; Hill, 1952) describes
the low pressure part of isotherm. It allows one to deduce the specific surface area,
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or more explicitly ”FHH surface area”. Cimino et al. (2013) indicates that the FHH
surface area differs from the BET surface area by 15% or less on various materials.

The intermediate range is interpreted as the capillary condensation and evap-
oration, together with multilayer adsorption. Capillary condensation occurs from
highly curved interface to less curved interface with increasing pressure, while the
evaporation occurs in the opposite way. The relationship between the equilibrium
pressure and local curvature is described by the Kelvin equation.

The BJH method (Barrett et al., 1951), which combines the capillary conden-
sation and multilayer adsorption, is used to deduce the pore size distribution. The
method analyzes the desorption branch, and is based on the assumption of cylindri-
cal pore.

The high pressure part is interpreted as the liquid compression. This part is
fitted by a linear function of pressure (Cimino et al., 2013).

Mercury intrusion and helium pycnometry are also widely used techniques to
charaterize porous material. Helium pycnometry provides the structural density ds
(in g cm−3) of the sample, while mercury intrusion provides the grain density dg (in
g cm−3). The pore volume fraction ε is then obtained from:

ε = 1− dg
ds

(2.2)

2.2.3 Transmission electron microscopy

Transmission electron microscope (TEM) emits a large uniform beam of electrons
to a thin slice of the sample. The electron beam intensity attenuates when hitting
the materials, essentially by small angle scattering. Transmission electrons are then
caught by detectors and form a 2D image (Williams & Carter, 2009). TEM image
is the 2D projection of a 3D microstructure. Each pixel contains information along
the vertical axis of the sample slice. Typical resolution of standard microscope is a
few Å.

Reimer and Kohl (2008) modeled the bright field TEM image by the Lambert-
Beer law:

Y (x1, x2) = a+ b exp

[
−c
∫ f

0

dx3 χS(x1, x2, x3)

]
, (2.3)

where f is the sample thickness, a and b are constants that depend on the acqui-
sition process, c is the inverse scattering length of the solid phase and χS is the
characteristic function of the solid phase in 3D, i.e. χS(x, y, z) = 1 if and only if
point (x, y, z) is in the solid phase.

The TEM images are often blurry and noisy, because of the particle overlapping
and the noise during image formation. Moreaud et al. (2009) proposed a method to
reduce the noise and to remove the artefacts on TEM images of boehmite nanopar-
ticles. First, a median filter of small size is used to reduce the high frequency
electronic noise. Then, a bilateral filter is applied to smoothen and reduce the
remaining noise while maintaining the edges information. Third, the artefacts of
small thickness around the particles due to Fresnel diffraction are removed by a
morphological opening by reconstruction. After the image filtering, they employed
a dilution model to simulate the boehmite sample. By adjusting the simulated co-
variance to the experimental one, the average particle size is estimated, and is found
in agreement with the result obtained by XRD analysis.
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Local orientations are often visualized in TEM images of mesoporous alumina.
Jeulin et Moreaud (Jeulin & Moreaud, 2008) proposed a method to estimate the
local orientations in 2D TEM images. First, the vector field of the image gradient is
calculated, noted v(x). Second, a sub-domain W (x), e.g. a square in 2D, is located
around every point x. Third, a point cloud connected to the origin by the vectors
v(xi) for each point xi in the sub-domain xi ∈ W (x) is generated. Finally, the
matrix of inertia of the cloud of points is calculated, from which the main axis is
obtained by eigenvectors decomposition. The method is applied on TEM images of
cellulose, who has similar alignments as observed in mesoporous alumina.

TEM images are often employed for the reconstruction of 3D microstructure by
different models. More details are presented in Sec. 2.3.

2.2.4 Electron tomography

Electron tomography is a technique for the 3D reconstruction of microstructures at
nanoscale. It uses a series of 2D TEM images, acquired by tilting the specimen at
varying angles around an axis perpendicular to the electron beam (Frank & Joachim,
1992). The 3D reconstruction is based on the discrete Radon transform (Radon &
Parks, 1986), which transforms linearly a 2D function to its 1D projection according
to the angle rotated. Tran et al. (2014) proposed a robust method based on inverse
problem approach to align maker-free projections. The method was applied to a
mesoporous alumina sample, and allowed the reconstruction of the 3D microstruc-
ture (see details in Chap. 5). The disadvantage of electron tomography is the time
consumption for acquisition and reconstruction. Besides, it cannot reconstruct mi-
crostructures of large volume (volume size limited to a few hundred nanometers), so
it lacks representativity.

2.3 Microstructure Modeling

Microstructure modeling is useful for the design and the optimization of porous
media. In literature, many models of porous media have been proposed (see the
reviews of Sahimi (1993) for rocks and of Kosek (2005) for catalysts). Among them,
we have identified the following models that are of interest for mesoporous alumina
of similar materials:

• stochastic reconstruction algorithm (Gaussian field) (Adler et al., 1990).

• grain models (Jeulin, 1991)

• diagenesis process simulation (Štěpánek and Ansari, 2005)

• models obtained from simulated annealing (Yeong & Torquato, 1998)

• pore network model extracted from 3D imaging (Youssef et al, 2007)

• fractal model (Rigby & Gladden, 1999)

For the disordered porous network in mesoporous alumina, the first three types
of model are more frequently used.
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2.3.1 Grain models

Moreaud et al. (2012) use a dilution model (Serra, 1968; Jeulin, 1991) of grains
to simulate experimental TEM images of boehmite. It assumes that the specimen
is made of nanoparticles by sequentially letting particles fall from the top of the
specimen and stopping them when hitting the bottom. The particles have random
orientations uniformly distributed on the unit sphere. The resulting microstructure
is a pack of non-overlapping objects in contact. The TEM image is simulated by
performing a 2D projection on the microstructure. The parameters of the dilution
model are identified by minimizing the quadratic difference between the simulated
and the experimental covariance. The scale of the material and the context of the
research is similar to our work with mesoporous alumina.

Moreaud, M. (2006) modeled the spatial dispersion of carbon black nanocom-
posites by a three-scale model. First, the exclusion zones are modeled by a Boolean
model of spheres with a radius distribution. Second, the inclusion zones are located
by another independent Boolean model of spheres with a radius distribution. Then,
the primary particles of carbon black are modeled by a third Boolean model of
spheres with a radius distribution inside the inclusion zones. The parameters (the
radius distribution and volume fraction of each zone and particles) are identified
by minimizing the difference of image statistics between experimental TEM images
and simulated ones. The statistics include the covariance, the third order moment
and the area fractions measured on TEM images. The multiscale structure, like
aggregation, observed in this example is close to the one expected in mesoporous
alumina.

Diagenetic model is another type of grain model, which make use of the process
occurring during material synthesis, e.g. deposition and sintering process. This
method requires prior knowledge on the diagenetic process. Roberts et al., (1985)
generated a microstructure model of porous glasses through a simulation of grain
consolidation. On the same material, Gelb et al. (1998) proposed the dynamic
simulation of spinodal decomposition process, which is the main process occurring
during the formation of porous glasses.

Koci et al. (2010) used random packing of particles (Pt and Al2O3) together with
sintering to simulate the generation of γ-alumina. The packing process (Štěpánek
and Ansari, 2005) simulates the diagenesis of grains and the layering growth mech-
anism. The particles are modeled by cylinders with hemispherical caps. The ag-
glomerates are modeled by the packing of n×m particles. The level of sintering is
described by the intersection fraction between the particles. The parameters are op-
timized to reproduce the pore volume fraction, pore size distribution and correlation
length of the material.

2.3.2 Stochastic reconstruction algorithm

The stochastic modeling algorithm is widely used for the reconstruction of 3D mi-
crostructure of porous material from 2D images. The algorithm was originally pro-
posed by Joshi (1974), and was extended into three dimensions by Adler (1990).
The basic idea of the method is to smoothen a Gaussian random fields to reproduce
the pore volume fraction and the covariance function of the TEM image. First, a
3D space of uncorrelated random variables following Gaussian distribution is gen-
erated, noted X(x), with mean equal to 0 and standard deviation equal to 1. An
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Figure 2.2: Left: 2D experimental TEM images and 3D reconstructed microstructure
of mesoporous alumina with porosity in black. Right: Two-point covariance function
of reconstructed model and of TEM images (Diaz et al., 2004).

intermediate field, denoted Y (x), is generated from the X(x) random field by the
inverse Fourier transform:

Y (x) = N3/2
∑
k

[Ĉy(k)]
1
2 X̂(k)e−2iπkx/N (2.4)

where N is the size of the space, Ĉy(k) and X̂(k) are respectively the discrete Fourier
transform of Cy(x) and X(x). The Cy(x) is the covariance function of the field Y (x),
deduced from the covariance function of the TEM image. The intermediate field
Y (x) generated in this way has a distribution function P (y):

P (y) = (2π)−1/2

∫ y

−∞
e−t

2/2dt (2.5)

The field Y (x) is then thresholded according to its distribution function and the
pore volume fraction of the material, to produce the final microstructure. Since the
covariance function and the pore volume fraction are both inputs of the modeling
process, the generated microstructure inherits the properties.

Adler et al. (1990) used the algorithm to generate the 3D microstructure of
Fontainebleau sandstones. Simulated cross-sections of the simulated media are com-
pared to thin sections of real media, and are visually satisfactory. The generated
microstructure is used for the simulation of fluid flow. The permeabilities at various
porosities are computed numerically and validated with experimental data.

Diaz et al. (2004) used the stochastic reconstruction algorithm to model three
samples of γ-alumina from TEM images. With the 3D microstructure, the chord
length distribution measured on TEM images was reproduced. The permeability and
effective diffusion coefficients are estimated on the 3D microstructure by solving the
diffusion and momentum equations, which turned out to be close to experimental
measurements with relative error less than 10%.

Kainourgiakis et al. (2005) used the stochastic reconstruction algorithm to model
the mesoporous Vycor glass at nanoscale and North Sea chalk at micrometer scale.
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Flow in Darcy’s regime and diffusion in Knudsen regime was simulated in the mi-
crostructure. The estimated permeabilities are in good agreement with experiments.

The main advantage of the stochastic reconstruction algorithm is that it uses
correlation function as input and inherits this property in the generated microstruc-
ture. The method is also robust without many parameters, except the correlation
function and pore volume fraction. The main disadvantage is that microstructures
generated in this way do not have morphological features, like particles or the spatial
dispersion of particles. These features are important for the synthesis optimization
of mesoporous alumina.

2.3.3 Texture measurement on 3D microstructure

Once the microstructure is reconstructed, the geometric quantities of interest, e.g.
specific surface area, pore size distribution, chord-length distribution and tortuosity
factor are available from the 3D digital microstructure.

The specific surface area (SV ) may be determined from the slope at the origin of
the 3D model’s covariance (Matheron, 1971). Lindblad (2005) proposed a method
to estimate the surface area of a 3D digital model by local configurations. He has
defined 14 configurations of a cube of 8 points. Each point can be occupied by solid
or void. Each configuration is assigned with an area weight. The algorithm scans
the 3D space with the 8 points cubes, determining local weights. The sum of weights
is the total surface area of the microstructure. The method is efficient and easily
implemented. The weights were further optimized by Ziegel and Kiderlen (2010).

The chord length distribution function is another useful characteristic property
of porous structure. It gives the probability for a chord, to lay in pores of the
structure. Diaz et al. (2004) computed the chord-length distribution functions of
TEM images and of the 3D digital model generated from the TEM images. They
confirmed that their reconstruction process preserved this statistics.

2.4 Physical properties of mesoporous alumina

One of the main objectives of microstructure modeling is to predict the physical
properties of the material. Physical properties of materials similar to mesoporous
alumina have been studied on gas sorption (Štěpánek et al., 2007), Elasticity (Staub,
2014; Digne et al., 2004), permeability (Kainourgiakis et al., 2005; Adler et al., 1990),
heat conduction (Kohout et al., 2004) and reaction-diffusion (Koci et al., 2007,
2010). Numerical methods, including finite elements, finite difference, Fast Fourier
Transform (FFT), were used to solve the homogenization problem (Kainourgiakis
et al., 2005; Willot, 2015).

2.4.1 Elasticity

In industry, manufacturers tend to increase the pore volume fraction and the specific
surface area of mesoporous alumina. However, with increasing pore volume fraction,
the mechanical rigidity should be maintained. For a two phase material, Hashin-
Shtrikman bounds (Hashin & Shtrikman, 1963) are the tightest bounds for the
estimation of elastic moduli of isotropic media. The bounds are estimated through
the elastic moduli of each phase and their volume fractions.
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Table 2.1: Elasticity parameters for mesoporous alumina from bibliography. K is
Bulk modulus, G is Young’s modulus and V is the Poisson’s coefficient.

Experiments were performed to measure the mechanical response of alumina
particles (Gallas et al., 1994) as well as that of mesoporous alumina (Staub, 2014).
Staub (2014) worked on two different γ-alumina samples with macro pores – uni-
modal and bimodal. Digne et al. (2004) has calculated the elasticity properties of
γ-alumina crystals based on density functional theory. The elasticity parameters for
mesoporous alumina mentioned in the bibliography are summarized in Table 2.1.

2.4.2 Permeability

The permeability of a porous medium can be estimated with the Carman-Kozeny
equation (Carman, 1937; Kozeny, 1927):

κCK =
f 3

cγ2
(2.6)

where κCK is the estimated permeability, f the pore volume fraction, γ the specific
surface area and c an empirical constant.

Kainourgiakis et al. (2005) studied the Stokes flow in Darcy’s regime on mi-
crostructures of γ-alumina membrane, Vycor glass and North Sea chalk. The mi-
crostructure of alumina membrane is modeled by a ballistic deposition of spheres
with radius 10 nm. The Stokes equation is solved numerically by a finite-difference
scheme, with periodic boundary conditions for the velocity field. The effective per-
meability is numerically estimated at 4.3 × 10−19 m2. The result is close to the
estimation by the Blake-Kozeny equation (Bird, 1976), with a relative error less
than 13%.

2.4.3 Diffusion

The Hashin-Shtrikman lower bound for the effective diffusion coefficient of a porous
medium is zero. The upper bound is determined by the pore volume fraction and
the free diffusion coefficient of the gas.

Kainourgiakis et al. (2005) simulated the molecule diffusion by blind random
walk in the microstructure of a γ-alumina membrane. A sufficient number of
point-like molecules are injected into the 3D microstructures. The trajectories are
recorded, and the molecules displacements are measured. The diffusion coefficient
is calculated using the equation:

D = lim
t→∞

< r2 >

6t
(2.7)
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where t is the travel time, r the displacement. In Knudsen regime, the travel time
t is replaced by s/u, where s is the travel distance and u the thermal speed. The
simulated diffusion coefficient of He, 7.7× 10−3 cm2 s−1 is close to the experimental
reference (Papadopoulos, 1993) of 8.0×10−3 cm2 s−1. The ratio of effective diffusion
coefficient to the free diffusion coefficient is 0.25, close to the value 0.25 obtained
by Kim and Torquato (1992). The pore volume fraction of alumina sample used in
this work is 0.42.

Diaz et al. (2004) also estimate the effective diffusion coefficient of inert trac-
ers by random walk simulation, on the microstructure generated by the stochastic
reconstruction algorithm. The simulated diffusion coefficient of He is 6.3 × 10−4

cm2 s−1, with pore volume fraction 0.487.

The dependence of the diffusion coefficients on the morphological nature of a
porous material is also a hot topic in the field. Derjaguin et al. (1965) proposed
the self-diffusion coefficient based on the statistical properties of a set of consecu-
tive chords. Streider et al. (1967) proposed an upper bound on the self-diffusion
coefficient by using a variational technique. The upper bound coincides with the
coefficients proposed by Derjaguin, when the porous media have an exponential
chord-length distribution function. Mu et al. (2008) have examined the influence
of connectivity and pore size distribution on the effective diffusion coefficient in
Knudsen regime, based on a periodic 3D bond pore network model.

Wernert et al. (2010) studied experimentaly the mass transfer kinetics of toluene
and polystyrenes by Inverse Size-Exclusion Chromatography (ISEC). The study is
based on an assumption of cylindrical pores, taking into account size effects. An
equation was proposed to estimate the effective diffusion coefficient:

Deff
p (rm) =

εp(1− λ)2(1− 2.1λ+ 2.1λ3 − 1.0λ5)Dm

1− 2.4 log [εp(1− λ)2]
(2.8)

where Deff
p is the effective diffusion coefficient, rm the molecule radius, λ the ratio of

molecule radius to pore radius, Dm the molecular diffusion coefficient and εp volume
fraction of open pores.

2.4.4 Fourier-based homogenization method

Fourier-based homogenization algorithms, or ”FFT methods” for short, were in-
troduced by Moulinec & Suquet (1994). They were a breakthrough in numerical
methods for computing the mechanical response of composite materials. It has
been successfully applied to compute the dielectric (Moreaud, 2006; Delarue &
Jeulin, 2002), mechanical (Willot, 2015), electrical (Willot et al, 2013) and opti-
cal (Azzimonti, 2013) response of composites. The method can be applied to com-
pute the physical response of complex and large microstructures, e.g. multi-scale
nano-composites (Jean et al., 2011), granular medium (Willot et al, 2013) or poly-
crystals (Prakash et al, 2009). In FFT methods, the microstructure is defined by 2D
or 3D images, and the local fields are computed on each pixel or voxel in the image.
In elasticity, stress and strain field maps are obtained at the scale of microstructure,
which enables us to study in detail the effects of microstructure on local fields. Such
fields are representative of the material behavior if the resolution is fine enough and
the simulated microstructure is large enough.
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FFT methods applied in different contexts proceed all from Lippmann-Schwinger’s
equation (Moulinec & Suquet, 1994):

Ei = Ēi −G0
ij ∗ Pj, Pj = Jj − σ0Ej, (2.9)

where σ0 is an arbitrary reference property of a homogeneous medium (conductivity
for electrical response, stiffness tensor for linear elasticity media, permeability for
flow in porous media), E is the field of the driving force (electric field, concentration
gradient, ...), J is the field of response (current, mass flux, ...), P is the polarization
field, G0 is the Green operator and ”∗” is the convolution product. The convolution
product can be calculated by a standard product in the Fourier space, using FFT.
The iteration of the two equations in Eq. 2.9 leads to the convergence of the full
field.

In contrast to the finite element method, no meshing is required by the FFT
method. With the software Morph-Hom developed by Willot in CMM, simulated
microstructures of large sizes with a high contrast of properties can be handled. The
software has been validated on Boolean models of spheres with all volume fractions
for elastic properties and conductivity (Willot & Jeulin, 2009).

2.5 Discussion

Microstructure modeling In the literature, microstructures of mesoporous alu-
mina are modeled by ballistic deposition model (Kainourgiakis et al., 2005), cylin-
drical particle packing with sintering simulation (Koci et al., 2010) and stochastic
reconstruction (Diaz et al., 2004). The size of grains are in the same length or-
der: 10 nm (radius) for the ballistic deposition model, and 4 nm (diameter), 12 nm
(length) for the cylindrical particles. Diffusion property is the common interest of
the three models. The diffusion property of Kainourgiakis’s model has the best
match with experimental data or literature reference.

The common disadvantage of these models is the accuracy. The stochastic re-
construction model does not preserve neither the particles shape nor their local
organization. The grains described in the other two models are simplified to be
spherical or cylindrical, which are far from the geometrical accuracy we may expect.
Indeed, current characterization techniques (e.g. TEM images (Moreaud et al., 2012)
and XRD (Chiche et al., 2008)) enable us to identify the shape and size of alumina
nano-particles. An accurate information on the particle morphology is important
for the synthesis optimization (Trimm & Stanislaus, 1986; Morin, 2014).

Furthermore, the ballistic deposition model simplifies strongly the aggregation
of grains. Koci’s model simulates the particle aggregation by aligned packing and
intersecting, which is a simplification of the feature. The aggregation is expected to
play an important role for γ-alumina as it can produce large pores.

The three models are all identified with the correlation function of 2D microscopy
images. However, microscopy image processing and measurements are not presented
in detail in the three papers. In fact, the high resolution TEM images are often
noisy and blurry (as shown in Moreaud et al., 2009), which leads to inaccuracy in
the correlation function estimation.

Physical properties The gas sorption property is also addressed for Koci’s model
and Diaz’s model. Diaz et al. present the experimental isotherms of the alumina
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samples. Koci uses the method of virtual capillary condensation (Štěpánek et al.,
2007) to evaluate the pore size distribution of the reconstructed microstructures.
However, no comparison between simulation and experiment has been made. The
gas sorption property is so important for the characterization of mesoporous alumina
that it should become a criterion for the model validation.

On the elasticity of mesoporous alumina, numerical calculation of precise local
field with the FFT method is well developed (Willot, 2015). No experimental ref-
erence or simulation on the same material has been found, which makes the model
validation by elasticity difficult.

On the permeability, finite-difference scheme (Kainourgiakis et al., 2005) and
FFT method (Abdallah et al., 2015) have both been developed. The effective per-
meability estimated in (Kainourgiakis et al., 2005) is a rough reference for our esti-
mation, because our samples have a much higher pore volume fraction.

To estimate the diffusion coefficient of a gas in porous media, the widely-used
method is random walk simulation. The FFT method to solve Fick’s diffusion in
porous media is also well developed (Willot et al, 2013). The effective diffusion
coefficient and the tortuosity estimated in (Kainourgiakis et al., 2005) is a rough
reference for our estimation. Experiments on gas diffusion are required for more
accurate validation.

Summary In summary, to advance further from the current literature, and to
meet the requirements in refining industry, a model involving details in particle
shape, aggregation and other potential features is needed. To support the details in
modeling, experimental characterization and data processing with high precision is
required. The effective physical properties should be estimated for model validation
and for property prediction. The relation between the microstructure morphology
and the transport properties should be studied, in order to create links between
synthesis and effective properties.

Accordingly, our work focus on two main aspects: i) the extraction, modeling
and validation of material’s microstructure morphology; ii) its reconstruction and the
phenomenological study of the relation between the morphology of microstructure
and the transport and sorption properties of mesoporous alumina.
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Chapter 3
Morphological tools in images processing
and measurements

Morphological tools are used in the image processing and measurements of the TEM
images of mesoporous alumina and in the simulation of capillary condensation and
evaporation. In this chapter, the basic notions and operations involved in this work
are concisely presented. More details are available in (Serra J., 1982) and (Soille
P., 1999).

3.1 Notion of image

An image of dimension d of values in dimension n can be generally defined as a
function Rn×Rd. In our work, 2D or 3D grayscale images defined in discrete spaces
are considered. An image I defined in domain X of values in set Y is defined:

I : X ⊂ Zd → Y ⊂ Z, d ∈ {2, 3}. (3.1)

3.2 Morphological operations in image processing

3.2.1 Structuring element

I is an image defined in X ⊂ Zd. We call any subset B of Zd a structuring element
(SE): B ⊂ Zd. For x ∈ X, we denote Bx the translation of SE B by vector x, defined
by:

Bx = {b+ x | b ∈ B}, ∀x ∈ X (3.2)

The symmetric SE of B is denoted B̌, defined by:

B̌ = {−b | b ∈ B} (3.3)

21
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(A) (B) (C)

Figure 3.1: Illustration of morphological dilation and erosion operations on a binary
image. Pixels of value 1 is in white. Pixels of value 0 are in black. Pixels have
different values before and after the operation are in gray. (A) Original image. (B)
Dilation by a square structuring element of size 3 × 3. Pixels in white and in gray
have the same value 1. (C) Erosion by a square structuring element of size 3 × 3.
Pixels in black and in gray have the same value 0. (Image source: E. Decencière,
free access in the item Morphologie Mathématique, Wikipédia.)

3.2.2 Minkowski addition and subtraction

In binary images or sets, Minkowski addition and subtraction (Serra J., 1982) be-
tween two sets A and B are defined:

A⊕B =
⋃
b∈B

Ab

A	B =
⋂
b∈B

A−b = (Ac ⊕B)c
(3.4)

The Minkowski addition and subtraction constitute the basis of mathematical mor-
phology. The two operators correspond to morphological dilation and erosion in
binary images.

3.2.3 Erosion and dilation

The dilation δ and erosion ε of a set A by a structuring element B is defined by:

δB(A) = A⊕B
εB(A) = A	B

(3.5)

Erosion and dilation are the two basic operations of mathematical morphology. The
effects of two operations are illustrated in Fig. 3.1. They modify the value of a pixel
according to the information in its neighborhood. The neighborhood is defined by
the structuring element.

For grayscale images, the dilation and erosion operations by a flat structuring
element B is:

δB(I)(x) = sup
y∈B̌

(I(x− y))

εB(I)(x) = inf
y∈B̌

(I(x− y))
(3.6)

where sup and inf are supremum and infimum operators respectively. The dilation
operation enlarge the areas of higher values, while the erosion functions in the inverse
way.
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(A) (B) (C)

Figure 3.2: Illustration of morphological opening and closing operations on a binary
image. Pixels of value 1 is in white. Pixels of value 0 are in black. Pixels have
different values before and after the operation are in gray. (A) Original image. (B)
Opening by a square structuring element of size 3 × 3. Pixels in black and in gray
have the same value 0. (C) Closing by a square structuring element of size 3 × 3.
Pixels in white and in gray have the same value 1. (Image source: E. Decencière,
free access in the item Morphologie Mathématique, Wikipédia.)

3.2.4 Opening and closing

The opening γ and closing ϕ operations are defined as the combination of dilation
and erosion:

γB(I) = δB(εB(I))

ϕB(I) = εB(δB(I))
(3.7)

The effects of the two operations are illustrated in Fig. 3.2. In binary images,
the opening operation erodes the areas of higher values and of size smaller than
the structuring element. The areas larger than the structuring element remain
unchanged. The closing operation functions in the inverse way: it fills the areas of
lower values and of size smaller than the structuring element.

3.2.5 Geodesic dilation and erosion

Geodesic operations are used to constrain the morphological operations, when we
expect the operation functions only in a specific domain or in a specific value range.
Assuming that X and Y are two subsets of a domain D, it is expected to dilate the
set Y , while the result of dilation remains in X. Geodesic dilation and erosion for
compact sets or binary images are defined by:

δX(Y ) = δ(Y ) ∩X
εX(Y ) = ε(Xc ∪ Y ) ∩X

(3.8)

where X is called mask, Y is called marker, and the structuring element is implicit.

The marker and the mask can be both extended in grayscale. The values in the
dilation δ(Y )(x) remains inferior to the values of X(x). The geodesic dilation and
erosion for grayscale images are defined by:

δf (g)(x) = inf{δ(g)(x), f(x)}
εf (g)(x) = sup{ε(g)(x), f(x)}

(3.9)
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3.2.6 Reconstruction

We denote δnX(Y ) the successive geodesic dilations of Y in mask X by n iterations:

δnX(Y ) = δX(...δX(δX(Y ))) (3.10)

where X and Y can be binary images or grayscale images. For binary images or
sets, this equation is equivalent:

δnX(Y ) = δ(...δ(δ(Y ) ∩X) ∩X)... ∩X (3.11)

The reconstruction of a binary image or a grayscale image Y is defined as suc-
cessive geodesic dilations by infinite iterations:

RX(Y ) = lim
n→+∞

δnX(Y ) (3.12)

The reconstruction operation dilates the image Y to the maximum under constraint
X. The reconstruction operation combined with erosion is called opening by erosion-
reconstruction, denoted by Rf (εB(f)). It filters the small structures of higher values,
but at the same time conserves the edge information.

3.2.7 Connected components

A compact set X is said to be connected by arcs, if and only if any two points in
X are joined by a path contained in X. Given a point y in a set Y , the largest
compact set connected by arcs containing y is called the connected component of y
in Y , denoted by Cy(Y ). The class of all disjoint connected components in set Y is
called the connected components of Y , denoted by C(Y ). In binary images or sets,
a connected component Cy(Y ) can be obtained by reconstruction with the point y
as marker:

Cy(Y ) = RY (y). (3.13)

3.2.8 Hole-filling

Connected components non-connected to the boundary of the image are called iso-
lated holes. For a set or a binary image X, the boundary is denoted by ∂X. Grains
denoted by G are in the image X: G ⊂ X. It is assumed that isolated holes exist
in the porous phase Gc. The holes are filled by a reconstruction from the boundary
of the image:

F = [RGc(∂X ∩Gc)]c (3.14)

where F is the set of grains with filled pores.

3.3 Morphological measurements

Morphological measurements play an important role in the characterization of 2D
TEM images and of 3D random models. Information like volume fractions of dif-
ferent composites, the distribution of pixel values and the spatial correlation, serve
the microstructure modeling of mesoporous alumina.
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3.3.1 Volume fraction

The volume fraction f of a random set A in domain D ⊂ R3 is the proportion of
volume of A. For a stationary random set, it is given by the probability:

f = P{x ∈ A}, x ∈ D (3.15)

In practice, f is equal to the ratio of Lebesgue measure of A to that of D.

3.3.2 Histogram

We consider an image I : X → Y . The histogram of the image, denoted by HI(y)
is defined by:

HI(y) =
#{x : I(x) = y,x ∈ X}

#{X}
, y ∈ Y (3.16)

where # is the Cardinal operator for sets, representing the number of elements in a
set. The volume fraction is a specific value in histogram.

3.3.3 Covariance

The covariance of a random set or a grayscale image allows one to characterize
the spatial dispersion of objects and structures. It is related to the characteristic
scales of objects, aggregations and exclusions. It is also sensitive to the isotropy
(or anisotropy) and the specific surface area. The rich information contained in the
covariance makes it a privileged tool in the characterization of random models.

The covariance of a random set A, denoted by C(h) is defined as:

C(h) = P{x ∈ A,x + h ∈ A} (3.17)

where h is a coordinate shift. It represents the probability of that a pair of points
with shift h does not hit Ac.

For h = 0, we have C(0) = f . For an ergodic stationary random set, when the
shift tends to infinity, we get:

C(∞) = f 2 (3.18)

The covariance of a grayscale image Y can be estimated by:

C(h) = 〈Y (x + h)Y (x)〉 − 〈Y (x + h)〉〈Y (x)〉, (3.19)

where 〈.〉 mean space average. In practice, the normalized covariance, or the cor-
relation function is also often used, with the same notation C(h) by convention:

C(h) =
〈Y (x + h)Y (x)〉 − 〈Y (x + h)〉〈Y (x)〉

〈Y 2(x)〉 − 〈Y (x)〉2
, (3.20)

The normalized covariance satisfies C(0) = 1 and C(∞) = 0.

3.3.4 Specific surface area

The specific surface area is defined as the ratio of surface area to volume, denoted
by SV . The specific surface of a random model is deduced from the slope at the
origin of the covariance. For an isotropic medium, the relation is (Matheron, 1967):

SV = 4

(
∂C

∂|h|

)
h=0

(3.21)
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3.3.5 Representative volume element (RVE)

The analysis of the representative volume element allows one to evaluate the statis-
tical quality of the numerical homogenization of an effective property. It evaluates
the error of estimation, and further predicts the necessary volume for a given relative
error. The RVE analysis focus on a scalar field of a property, denoted by P , e.g.
a component of the stress field, a component of the velocity field, etc. In order to
homogenize the property P , the average over a volume V is used 〈P 〉V . The larger
the volume for estimation is, the smaller the estimation error is. We define D2

P (V )
the variance of estimates over n random realizations of volume V . The relative error
εP of the estimation 〈P 〉V is:

εP =
2DP (V )√
n〈P 〉V

(3.22)

Matheron (1971) proved that the asymptotic expansion of D2
P (V ) is proportional

to the reciprocal of the volume V when V � APd :

D2
P (V ) ∝ D2

PA
P
d

V
(3.23)

where D2
P is the point variance (V = 1 voxel in discrete space), and APd is the

integral range defined by:

APd =

∫
Rd

dhC(h), d ∈ {2, 3}. (3.24)

where C(h) is the normalized covariance. In practice, a single realization of a large
enough volume V0 is sufficient. The volume is divided into disjoint subdomains of
volume V . By plotting the variance D2

P (V ) in function of V , the integral range APd
is estimated by curve fitting.

When V0 is large enough, we use the 〈P 〉V0 to approximate the property P . In
this case, n = 1. The Eq. 3.23 is used to estimate the variance D2

P (V0), and the
relative error of the estimation becomes:

ε2P =
4D2

PA
P
d

V0〈P 〉V0
(3.25)

In the inverse way, with a given relative error εP , the required minimum volume is:

VV ER =
4D2

PA
P
d

ε2P 〈P 〉V0
(3.26)



Chapter 4
Morphological models of random media

Morphological modeling enables us to generate realistic 3D microstructures. It han-
dles the heterogeneity, which exists in materials at various scales, through a proba-
bilistic approach.

4.1 Presentation of random media

For a two-phase material as mesoporous alumina, one phase is modeled by a random
closed set A, and the other phase by its complementary Ac. A is fully characterized
by its Choquet capacity T (K) in a probabilistic view (Eq. 4.1) (Matheron, 1967):

T (K) = P (K ∩ A 6= ∅) = 1− P (K ⊂ Ac) (4.1)

where K is a compact set, P denotes the probability. In practice, T (K) can be
estimated by volume fraction on 3D images after a morphological dilation of the set
A by the set K: A⊕K = ∪x∈KAx. The Choquet capacity is a general characteristic
of the random set A, from which other morphological properties can be deduced.
When the set K is a single point, the volume fraction VV is deduced from eq. 4.1.
When the set K is made of a pair of points, the Choquet capacity becomes the
covariance. When K is a 3D ball, the distribution of distance of a point in Ac to
the boundary of A is deduced.

4.2 Poisson point process

Poisson point process is a typical random point process, which generates points
homogeneously and randomly distributed in the 3D domain. The probability that
a compact set K contains n points of the process is:

Pn(K) = P{N(K) = n} =
(θµ(K))n

n!
exp [−θµ(K)] (4.2)

where θ is the intensity (average number of points per unit volume in 3D), µ(K) is
the Lebesgue measure (volume in 3D) of the compact set K.

Starting from random point process, models of random structures can be gener-
ated, e.g. the Boolean model (Matheron, 1967), dead leaves model (Jeulin, 1987),
mosaic model (Matheron, 1968; Jeulin, 1987) and dilution model (Serra, 1968; Jeulin,

27
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1991). Multi-scale models are also generated from intersections of basic random sets
(Moreaud, 2006; Jeulin, 2012). In practice, these models incorporate information
from characterization tools and respect physical assumptions (on e.g. crystallogra-
phy for the grains shape). The parameters of the model are identified by numerical
or (semi-)analytical optimization (Moreaud et al., 2012; Couka et al., 2015; Jeulin,
2014; Jean et al., 2010).

4.3 Boolean model

The Boolean model was proposed by (Matheron, 1967), to simulate simple distri-
bution of overlapping objects. It is obtained by implantation of random primary
grains A′ (with possible overlaps) on Poisson points xk:

A = ∪xkA′xk . (4.3)

The Choquet capacity of Boolean model is:

T (K) = 1− exp (−θµ(A′ ⊕ Ǩ)) (4.4)

Any shape (convex or non convex, and even non connected) can be used for the
grain A′. Most often in the literature Boolean models of spheres are considered.

4.4 Hardcore model

A hardcore model guarantees a repulsion distance h between all the point pairs
of a random point process. Compared to a Poisson point process, the intensity is
modified as:

θHC =
1− exp−θh2π

h2π
(4.5)

In practice, the hardcore points are generated by removing points from Poisson point
process – the points of distance smaller than h to any other point are removed. When
the repulsion distance h is larger than the gyration radius of the grain A′, the objects
in the hardcore model do not have intersection.

4.5 Multi-scale models

In mesoporous alumina, the pores’ sizes are in different scales. The aggregates or
clusters of primary grains have also been observed in TEM or SEM images. Starting
from the basic one-scale models, the superposition of scales and the fluctuation
of local volume fraction can be used to model multi-scale features. The union
or intersection of random sets is a common and simple way to realize multi-scale
models (Jeulin, 1979; Greco et al, 1979).

Cox point process is a generalization of the Poisson point process. It generates
non-homogeneous distribution of random grains. Instead of the homogeneous inten-
sity, a positive random function is used to describe the local intensity θ(x) (Jeulin,
1996). The number of points in a domain D follows a Poisson distribution with
average θ(D) =

∫
D
θ(dx):

Pn(D) = P{N(D) = n} =
θ(D)n

n!
exp {−θ(D)} (4.6)
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The Choquet capacity of the Cox point process is:

T (K) = 1− Eθ{exp (−EA′{θ(Ǎ′ ⊕K)})} (4.7)

where Eθ is the mathematical expectation with respect to θ(x), and EA′ is the
mathematical expectation with respect to the random set A′. The non-homogeneous
distribution of intensity provides a way to generate multi-scale random model.
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Chapter 5
Experimental Characterization

5.1 Sample preparation

Three different mesoporous alumina samples, with different expected platelet shapes
were synthetized. Sample 1 and 2 originated from commercial boehmite powders
(provided by Axens, Salindres) whereas sample 3 was synthesized in a laboratory
scale from solution of aluminum nitrate (Al(NO3)3,9H2O from Sigma Aldrich) and
sodium aluminate (NaAlO2 from Sigma Aldrich).

The boehmite powder is dispersed in water to obtain a 10wt% solution. The
suspension is stirred for 2 hours and put in an autoclave. The autoclave is sealed and
heated at TA for tA hours. The suspension is filtered and dried at 393 K overnight.
The powder is shaped in trilobed extrudates, the extrudates are dried at 353 K
overnight and calcined under dry air (923 K, 4 h) then wet air (temperature TS, 2 h,
XS wt% water). Origin of samples and parameters of the thermal treatments are
reported in table 5.1. Such thermal treatments allows to obtain a coherent sample
series with very close specific surface and porous volume but different expected
platelet shapes.

Sample Origin Initial SBET TA tA TS XS

m2 g−1 K h K %

1 Axens 350 423 7 973 6
2 Sasol 330 403 4 923 1
3 Laboratory 330 403 24 923 1

Table 5.1: Synthesis conditions for the three samples of mesoporous alumina.

The obtained calcined extrudates are translucent, indicating no scattering by
light, that is to say, negligible density fluctuation at the scale of visible light wave-
length (few hundred nanometers).

5.2 Porosimetry and pycnometry

Structural density ds (in g cm−3) is measured by He pycnometry. The sample is
pretreated at 523 K for 3 h. Expected relative uncertainty is about 0.5%.
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Figure 5.1: Nitrogen porosimetry isotherm on the three samples of mesoporous
alumina.

Sample 1 Sample 2 Sample 3 Relative uncertainty
dg (g cm−3) 1.04 0.95 0.88 2.5%
ds (g cm−3) 3.33 3.26 3.26 0.5%
SBET (m2 g−1) 240 223 247 5%
ε 0.688 0.708 0.730 3.6%
SV (nm−1) 0.232 0.213 0.218 5.6%

Table 5.2: Textural properties and their uncertainties obtained from the porosimetry
measurements.

Grain density dg (in g cm−3) is measured by mercury intrusion after a pretreat-
ment (523 K for 2 h). The grain density is obtained at a 0.2 MPa intrusion pressure
where mercury fills only inter-grain porosity but not intra-grain porosity. Expected
relative uncertainty is 2.5% (Tab. 5.2).

The porosity ε (void volume fraction) is obtained from :

ε = 1− dg
ds

Gas sorption properties are characterized by nitrogen porosimetry. Extrudates
are pretreated at 623 K for 3 h under vacuum (10−4 Pa) before measurement. Ad-
sorbed gas volume is measured under standard temperature and pressure (STP)
in cm3 g−1. The sorption isotherms are shown in Fig. 5.1. Specific surface area
SBET (in m2 g−1) is estimated from the isotherm with the Brunauer–Emmett–Teller
(BET) method (Brunauer et al., 1938). Relative uncertainty of the obtained specific
surface area is estimated to be 5%. Specific surface area SV in nm−1 is obtained by
:

SV = 10−3dgSBET

Relative uncertainties for ε and SV are then respectively 3.6% and 5.6%. More
details are shown in table 5.2.
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5.3 Transmission Electron Microscopy (TEM)

For TEM imaging, an extrudate has been put in an oven at 353 K overnight and
embedded in araldite resin (EMbed 812, provided by Electron Microscopy Sciences,
Hatfield, PA, USA). The included sample has been trimmed to obtain a trapezoidal
surface and then cut in thin slices using an ultramicrotome (Reicherd). Slices thick-
ness has been targeted to 300 nm. Only slices with homogeneous color (homogeneous
thickness) were withdrawn to a lacey carbon grid. Images were taken with a TEM
(JEM-2100F, provided by JEOL, Peabody, MA, USA) operating at 200 kV, in bright
field mode, without objective diaphragm, using a CCD camera (UltraScan, provided
by Gatan, Pleasanton, CA, USA). This camera has a four quadrant CCD captor and
2048 by 2048 pixels maximum resolution. Before taking the images, the gain and
dark noise of the camera was calibrated respectively in a hole and in absence of
electron beam. Images were taken at full resolution (2048 by 2048 pixels), with a
2 s exposure time at an indicated magnification of 15000. This magnification yields
a field of view of 1130 by 1130 nm2 and a pixel size of 0.552 nm.

Twelve images were taken for different slices and different non overlapping zones
where neither the edge of the slices, nor cutting artifacts, nor lacey carbon were
apparent. Some of them are presented in Fig. (5.2). Local alignments and textured
patterns are somehow visible in the images, but information of platelets shapes and
platelets organization in the TEM images is hidden (and lost) by the attenuation of
the electron beam along the samples’s thickness.

Slices at 70 nm thick were prepared at a second round. An objective diaphragm
of 120µm diameter was used. Images were taken at full resolution (2048 by 2048
pixels), with a 2 s exposure time at indicated magnifications of 20000 and 30000.
The magnification of 20000 yields a field of view of 1003 by 1003 nm2 and a pixel size
of 0.49 nm. For the magnification of 30000, the field of view is 676 by 676 nm2 and a
pixel size is 0.33 nm. Ten images were taken for each sample, at each magnification,
on non overlapping zones. Some of them are shown in Fig. (5.3).

The three alumina samples were crushed into powders at a third round. Images
were taken at higher magnification of 100000, with field of view of 205 by 205 nm2

and a pixel size of 0.10 nm. Five images were taken for each sample, some of which
are shown in Fig. (5.4).

5.4 Electron Tomography

For electron tomography, few calcined extrudates were crushed in a mortar and the
obtained powder was dispersed in ethanol. A drop of the suspension was put on a
holey carbon grid that was dried. Tilt series projections were acquired on the JEOL
JEM-2100F fitted with the Gatan Ultrascan CCD camera, in bright field mode at
200 kV. 143 projections with an indicated magnification of 40000 times (0.21 nm
pixel size) were acquired at full camera resolution (2048 by 2048 pixels). The 143
tilt angles ranged between −71◦ to +71◦ with a Saxton spacing scheme. No fiducial
marker was put on the grid to avoid the artifacts induced in their vicinity. Prior to
reconstruction, images were binned twice to obtain a 1024 by 1024 pixels tilt series.
The 3D volume was reconstructed with the robust method based on inverse problem
approach to align marker-free projections and reconstruct 3D volume (Tran et al.,
2014). A 3D view of the tomographic reconstruction is shown in Fig. (5.5).
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(A) sample 1 (B) sample 2

(C) sample 3

Figure 5.2: TEM images of 300 nm thick specimen of mesoporous alumina at mag-
nification of 15000 (1130 nm × 1130 nm).
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(A) sample 1 at 20K (B) sample 1 at 30K

(C) sample 2 at 20K (D) sample 2 at 30K

(C) sample 3 at 20K (D) sample 3 at 30K

Figure 5.3: TEM images of 70 nm thick specimen of mesoporous alumina. The field
of view for images at 20000 magnification is 1003 nm × 1003 nm, and 676 nm ×
676 nm for 30000 magnification.
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(A) sample 1 (B) sample 2

(C) sample 3

Figure 5.4: TEM images of crushed mesoporous alumina (field of view 205 nm ×
205 nm).



CHAPTER 5. EXPERIMENTAL CHARACTERIZATION 39

Figure 5.5: 3D view of the tomographic reconstruction of a small portion of meso-
porous alumina. The image has a 0.87 nm voxel size, and the image field of view is
328 nm× 290 nm× 257 nm.
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Chapter 6
TEM image processing and morphological
measurements of 300 nm thick specimen

Slices at 300 nm thick were prepared at the first round. Since the images are noisy
and blurry, statistical tools are used to analyze the representativity of the images
(Sec. 6.2), and to measure the correlation functions (Sec. 6.3). The image drift and
filtering is talked about in Sec. 6.4.

This work was originally realized by Pietrasanta (2013), then was completed and
published in Wang et al (2015).

6.1 TEM image model

In TEM, electrons are directed along the thickness of the specimen and smallest
dimension, normal to the surface layer. Structure information is carried on trans-
mitted electrons after attenuation. These electrons are then detected and produce
an image. The electron direction is hereafter denoted by e3. We introduce Cartesian
axis e1 and e2 normal to e3 and parallel to the surface of the sample. Referring to
the coordinates x1, x2 and x3 in the Cartesian basis, 2D TEM images of porous
media are modeled by the Lambert-Beer law (Reimer & Kohl, 2008, p.36):

Y (x1, x2) = a+ b exp

[
−c
∫ f

0

dx3 χS(x1, x2, x3)

]
, (6.1)

where Y (x1, x2) is the greylevel TEM image at location (x1, x2), f = 300 nm is the
sample thickness, a and b are constants related to the offset and gain of the camera,
c is the inverse scattering length of the solid phase and χS is the characteristic
function of the solid phase in 3D, i.e. χS(x, y, z) = 1 if point (x, y, z) is in the solid
(alumina) phase, 0 otherwise.

Monte-Carlo simulations of 200 keV electrons trajectories across alumina embed-
ded in resin selected by a 120 µm objective diaphragm give a value c = 2.40 10−3 ±
2.05 10−6 nm−1. Furthermore, the integral is bounded by f and the sample has a
high porosity ε, therefore the Eq. (6.1) can be approximated by:

Y (x1, x2) ≈ (a+ b)− bc
∫ f

0

dx3 χS(x1, x2, x3). (6.2)
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This approximation is used for the simulation of TEM images from digital 3D mi-
crostructures afterwards (Chap. 8).

A typical histogram PY of 32-bit TEM image is represented in Fig. (6.1). Most
of the values Y (x1, x2) lie in-between y1 = 405 and y2 = 660. To visualize the TEM
images, we threshold all values larger than y2 or smaller than y1, and normalize the
result in the range [0; 255]. This amounts to replace Y with:

Ỹ =
255

y2 − y1

(max {min [Y (x1, x2), y2] , y1} − y1) . (6.3)

500 1000 1500 2000
Y(x)

0.000

0.005

0.010

0.015

p
Y

0 50 100 150 200 250
0

0.0025

0.005

0.0075

0.01

0.0125

Figure 6.1: Histogram of the raw data in the range [0; 2140]. The vertical dotted

lines denote y1 and y2. Top-right: histogram of Ỹ (Eq. 6.3) in the range [0; 255].

All TEM images of our samples have similar histogram as in Figure 6.1, which
presents only one mode. It is not possible to segment the image using only this
information.

6.2 Integral range

We propose to follow the approach of Matheron (1971); Kanit et al. (2003); Jeulin
(2011) to estimate the integral range. We define the variance D2(S) of the means
〈Y 〉S of the function Y over a compact subset of area (Lebesgue measure) S by:

D2(S) = E
{
〈Y 〉2S

}
− (E {〈Y 〉S})2 , (6.4)

with E{·} expectation operator (estimated here by averaging). When the area
reaches the limit of a single point, we obtain the point variance D2

1:

D2
1 = 〈Y 2〉 − 〈Y 〉2. (6.5)

The following asymptotic expansion holds (Matheron, 1989; Lantuejoul, 1991):

D2(S) ∼ D2
1A2

S
, (6.6)

where:

A2 =

∫
I
C(h)dh, (6.7)
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as long as A2, the integral range over the support of the image I, is finite. The
integral range gives the typical surface area of the microstructure. In practice, use
of the correlation function C(h) in (6.7) can hardly be used to estimate A2, due
to fluctuations in the function C(h) when |h| is large. Instead, the expansion (6.6)
is generaly used (Altendorf et al., 2014), provided that numerical data follows the
theoretical law (6.6). Hereafter, we need to check if this law is verified. The variances
D2(S) are estimated at increasing values of S. This is done by dividing the TEM
image into non-overlapping squares of equal area S, and measuring the variance
of the mean over the subdomains (Eq. 6.4). The results are given in Fig. (6.2),
in log-log scale for 5 images. An extra point representing D2(S) for S = 2048 ×
2048 pixels is computed using all 12 images. The data follows the scaling law
D2(S) ∼ S−0.5, with an exponent less than 1, i.e. a much slower decrease than that
in (6.6). Similar conclusions hold for the other 11 TEM images of the same sample.
This is not consistent with the asymptotic result of Eq. (6.6), which is valid for
any ergodic stationary random function with a finite integral range. The slowly-
decreasing scaling law of the variance will be explained by a drift in the image, as
detailed in Sec. 6.4.
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Figure 6.2: Variance D2(S) of the means over areas of surface S in the image Y ,
computed using (6.4). Stars of different colors are used to distinguish between the
5 TEM images. Solid lines: numerical fit of the data D2(S) ∼ S−0.5 (red), using all
5 samples, and, for comparison, scaling law D2(S) ∼ 1/S (blue) predicted by (6.6).

6.3 Covariance

Referring to a point x = (x1;x2) and a vector h = (h1;h2), the empirical correlation
function of Y is the 2D function estimated from the space average denoted by 〈.〉:

C(h) =
〈Y (x + h)Y (x)〉 − 〈Y (x + h)〉〈Y (x)〉

〈Y 2(x)〉 − 〈Y (x)〉2
, (6.8)

so that C(0) = 1 and C(∞) = 0 for a stationary field. Note that the correlation
function does not depend on the values of a, b and c in (6.1) and that C(h) in
general depends on the norm and orientation of h.

The function C(h) in (6.8) is computed using Fourier transforms (Koch et al.,
2003), which comes to periodize the image. The profiles C(he1,2) along e1 and e2,
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for h > 0, are presented in Fig. (6.3) for two arbitrary TEM images. For the first
image, the two profiles are sensibly different, underlying image anisotropy. The
anisotropy is more apparent on the 2D representation of C(h1, h2) at long distance
h � 1 (Fig. 6.4). The anisotropy generally appears in most of the TEM images of
the three samples. The effect is stronger in some images like Fig. 6.3 (a), while less
strong in some others like Fig. 6.3 (b). The anisotropy is introduced by the detector
drift, which is further discussed in Sec. 6.4.
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Figure 6.3: Correlation function profiles along the horizontal and vertical axis, for
two TEM images (a and b).
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Figure 6.4: 2D correlation function C(h1, h2) of a TEM image of sample 1. The
function is cropped with top-left corner’s coordinate at (10 nm, 10 nm). Highest
values are in red and lowest values in blue.

6.4 Drift filtering

To visualize variations in the images over large scales, we divide it into a set of
non-overlapping square subdomains of size 140 nm × 140 nm. The means over
each square are represented in Fig. (6.5), for two arbitrary images. A drift appears
on the two images, roughly oriented along the diagonal from the top-left to the
bottom-right. This non-uniform averaged field can be interpreted as the result of
a non-uniform detection on the camera or a non-constant thickness of the slices.
Indeed, the four quadrants of the camera can be guessed from Fig. (6.5). This
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indicates that the correction of the gain of the camera performed before recording
the images is not accurate enough to correct for the camera detection discrepancies.
This is confirmed by the display of moving averages on more images of the sample,
as shown in Fig. (6.6).

Figure 6.5: Local means computed over a set of non-overlapping square subdomains
in two TEM images.

To remove the drift, a moving average is subtracted to each image, computed as
the mean of a disk of radius ` centered on each pixel. Accordingly Y is replaced by

Y ′(x) = Y (x)− 1

π`2

∫
|x−x′|<`

d x′ Y (x′), (6.9)

where x = (x1, x2) is a point in the image. The value of ` is now chosen so that the
integral range A′2 of the convoluted field becomes finite. Equivalently, ` is chosen so
that the variance D2

Y ′(S) of the means over subdomains of size S decreases with a
scaling law ∼ 1/S, as in Eq. (6.6). The variance is computed on the corrected image
Y ′, rather than on the moving average itself. We find numerically that D2

Y ′(S) ∼
1/Sα with α < 1 (resp. α > 1) when ` < 110 nm (resp. ` > 110 nm) and
D2
Y ′(S) ∼ 1/S when ` ≈ 110 nm (Fig. 6.7). Accordingly we set ` = 110 nm and

replace Y with Y ′ in the following of this study. The moving average is represented
in Fig. (6.6).

After removing the drift, the anisotropy observed in the correlation function
becomes weak and negligible. In the following of the thesis, it is approximated by
an isotropic correlation function, denoted by CTEM(h), averaging over all directions
and over the 12 TEM images. Additionally the integral range of the 12 images is
estimated, giving A′2 ≈ 30 nm2.

6.5 Conclusion

In this chapter, TEM images of 300 nm thick specimens were processed and mea-
sured. The covariance of the images were estimated. The systematic drifts appearing
in most of the images were identified and removed by moving average. After the
filtering, the image representativity is confirmed by the integral range.
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Figure 6.6: Moving average of 8 TEM images of the sample, using Eq. (6.9) with
disk radius 110 nm
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Y ′(S) of the means of image Y ′ over subdomains of area S,

with respect to S (red). Blue: numerical fit D2
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Chapter 7
TEM image processing and morphological
measurements of 70 nm thick specimen

Slices at 70 nm thick were prepared at a second round. Compared to 300 nm thick
specimens, the fluctuation caused by platelet overlapping decreases. Images were
taken at higher magnifications, with better resolution. Some platelets in the TEM
images of crushed material have clear edges. In this chapter, information of better
precision on the noise, correlation function, platelet size and platelet alignments is
extracted from the TEM images.

7.1 TEM images of vacuum

TEM images of vacuum are taken at the same condition as the 70 nm thick specimen.
Three images at each magnification 20000 and 30000 have been taken.

7.1.1 Histogram

The histograms PV of the 32-bit TEM images are shown in Fig. 7.1. Their greyscale
means and standard deviations are represented in Tab. 7.1. Shifts between the
three histograms at the same magnification are observed in Fig. 7.1. The shifts
are sometimes higher than the standard deviation, indicating time-variant gain drift
and offset drift of the electron detectors or changes in beam illumination.

Figure 7.1: Histograms of TEM images of vacuum. Their greyscale means and
standard deviations are listed in Tab. 7.1.
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20K 30K
N◦.1 N◦.2 N◦.3 N◦.4 N◦.5 N◦.6

Mean 1181 1064 1114 1218 1212 1140
Standard deviation 42 40 41 43 43 41

Table 7.1: Greyscale mean and standard deviation of the TEM images of vacuum.
Their histograms are shown in Fig. 7.1.

(A) (B)

Figure 7.2: Greyscale mean along the columns (red) and along the rows (blue) of
(A) TEM image of vacuum. (B) TEM image of vacuum filtered by moving average
(Eq. 6.9) with disk radius 33 nm.

7.1.2 Drift filtering

Four quadrants can be slightly observed in TEM images of vaccum (Fig. 7.3 A). It is
consistent with the four-quadrant structure of the electron detector. The greyscale
means are then estimated along the columns and rows, shown in Fig. 7.2. It indicates
that the drift exists not only between the four quadrants, but also between regions
in the same quadrant.

The moving average (Eq. 6.9) is used to remove the drift. In practice, a con-
volution is used to calculate the average. The drifts are shown in Fig. 7.2 (B) and
Fig. 7.3 (B). The filtered image is cropped to remove the boundary effect brought
in by the convolution.

(A) (B) (C)

Figure 7.3: (A) TEM image of vacuum. (B) Moving average using Eq. 6.9 with disk
radius 33 nm. (C) Filtered image Y ′.
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7.1.3 Correlation

The correlations of the filtered TEM images of vacuum are estimated with the same
equation as Eq. 6.8:

C(h) =
〈Y (x + h)Y (x)〉 − 〈Y (x + h)〉〈Y (x)〉

〈Y 2(x)〉 − 〈Y (x)〉2
, (7.1)

The average correlation is shown in Fig. 7.4. The correlation range with 0 < h < 2
nm indicates that it is not a pure Poisson noise. The profiles along the two directions
are exactly the same, indicating isotropy.

Figure 7.4: Average correlation function C(h) of the filtered TEM image of vacuum.

7.2 TEM images of carbon membrane

TEM images of carbon membrane are taken at the same condition as the 70 nm
thick specimen. Three images at each magnification 20000 and 30000 have been
taken.

7.2.1 Histogram

The histograms PC of the 32-bit TEM images are shown in Fig. 7.5, with greyscale
means and standard deviations represented in Tab. 7.2. The greyscale means are
lower than the image of vacuum, consistent with the electron attenuation by carbon
membrane.

20K 30K
image N◦. 1 2 3 4 5 6
Mean 1046 997 1076 1049 1136 1088
Standard deviation 40 39 41 43 46 45

Table 7.2: Greyscale mean and standard deviation of the TEM images of carbon
membrane. Their histograms are shown in Fig. 7.5.
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Figure 7.5: Histograms of TEM images of carbon membrane. Their greyscale means
and standard deviations are listed in Tab. 7.2.

7.2.2 Drift filtering

Drifts can also be observed in the TEM images of carbon membrane. The drifts
are removed using moving average (Eq. 6.9) with disk radius 110 nm. A filtered
TEM image of carbon membrane is shown in Fig. 7.6 (A). A TEM image of alumina
(Fig. 7.6 B) is compared with the filtered image carbon membrane. We can notice
that the images have similar textures.

(A) (B)

Figure 7.6: Comparison between the textures of (A) filtered TEM image of carbon
membrane and (B) TEM image of alumina sample 2. The image size is 100 × 100
nm2.

7.2.3 Correlation

The correlations of the filtered TEM images of carbon membrane are estimated
with Eq. 6.8. The average correlation is shown in Fig. 7.7. The correlation range
is 0 < h < 2.5 nm, with a slight rise in 1.4 < h < 2.3 nm. Compared to the
correlation of vacuum (in Fig. 7.4), the slight rise is caused by carbon membrane
microstructure. Isotropy can be observed regarding the similaity of profiles obtained
for differents orientations.
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Figure 7.7: Correlation function C(h) of the filtered TEM image of carbon mem-
brane.

7.3 TEM images of 70 nm samples

7.3.1 Histogram

A histogram PY of a 32-bit TEM image is shown in Fig. 7.8. The average greyscale
means and the average standard deviations over the images are shown in Tab. 7.3.
No significant difference between the three samples on the histogram can be ob-
served. The greyscale means at magnification 20K are generally lower than those at
30K. Furthermore, the means are both lower than the images of carbon membrane,
which is consistent with the electron attenuation model.

Figure 7.8: Histogram of a TEM image of alumina sample 1. Its greyscale mean is
469, with standard deviation 39.

20K 30K
Sample 1 2 3 1 2 3
average mean 428 408 392 435 456 439
average standard deviation 37 35 39 38 36 39

Table 7.3: Average greyscale mean and average standard deviation over the ten
TEM images of 70 nm thick specimens for each sample at each magnification.
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7.3.2 Drift and integral range

Drifts are observed slightly in the TEM images of mesoporous alumina (Fig. 7.9 A).
Observing the integral range curve (Fig. 7.10 A), the existence of large-scale drift is
confirmed. The drift is removed using a moving average (Eq. 6.9) with disk radius
110 nm. The filtered TEM image is shown in Fig. 7.9 (B).

(A) (B)

Figure 7.9: A TEM image of 70 nm mesoporous alumina sample 1. (A) Original
image (B) Filtered image.
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Figure 7.10: Integral range of a TEM image of mesoporous alumina sample 1. (A)
Original image (B) Filtered image.

7.3.3 Correlation

The correlations of the filtered TEM images of the 70 nm thick specimen of meso-
porous alumina are estimated with Eq. 6.8, and shown in Fig. 7.11. The correlation
range is 0 < h < 10 nm. The two profiles of the correlation function in Fig. 7.11
(A) are close, indicating the isotropy of the microstructure of γ-alumina. The cor-
relation functions are then averaged over the images of sample 1, respectively at
magnification 20K and 30K.

The images with magnification 20K have slightly higher correlation in the range
0 < h < 6 nm (Fig. 7.11 B). This is consistent with the pixel-wise noise brought
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in by the electron detector. The slope at the origin of the correlation function
corresponds to the pixel size. The pixel-wise noise has stronger effects on images of
high magnification.

We calculate the average correlation over all the TEM images at magnification
30K for each alumina sample. The comparison is shown in Fig. 7.11 (C). The slopes
at the origin of the correlation function are the same. The sample 1 has higher
correlation than the other two at the range 0.8 < h < 4.8 nm, but lower than
sample 2 at the range 4.8 < h < 8 nm. The sample 2 has higher correlation than
sample 3 at the range 1 < h < 10 nm. Despite these difference, the three samples
are quite close in terms of correlation function. In this work, the average correlation
of sample 1 at magnification 30K is used as the experimental reference.

(A) (B) (C)

Figure 7.11: Correlation functions of TEM images of mesoporous alumina. (A)
Profiles of the correlation of a TEM image of sample 1 at magnification 30K. (B)
Average correlation function over the TEM images of sample 1. (C) Average corre-
lation functions of the three samples.

7.4 TEM images of mesoporous alumina powders

TEM images of alumina powders allow us to distinguish and to segment some of
the platelets. We fit ellipses manually over distinguishable platelets for each sample
(Fig. 7.12). The platelets with less overlapping and clear contours are selected and
encircled in red. The length and width of the ellipses are then measured. Statistics
are shown in Tab. 7.4, providing a rough estimation of the platelet size.

(A) sample 1 (B) sample 2 (C) sample 3

Figure 7.12: TEM images of crushed mesoporous alumina. Measured platelets are
encircled in red.
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sample 1 sample 2 sample 3
dimension (nm) length width length width length width
mean 24.0 6.8 18.8 4.7 20.3 5.3
standard deviation 8.6 2.5 5.2 2.0 6.2 1.9

Table 7.4: Estimated length and width of the 2D projections of platelets of the three
samples of mesoporous alumina. The estimation is based on the manually measured
platelets in the TEM images of crushed material.

It needs to be mentioned that the estimation is biased, for the following reasons.

• First, some of the platelets may be broken during material crushing, even if the
damage process is much less favorable than breaking of contact zone between
platelets. This leads to an underestimation of platelet size.

• Second, the platelets observed in TEM images are 2D projections, which leads
to the underestimation of their length and overestimation of their width.

• Third, the platelets are overlapped one upon another, which makes the seg-
mentation difficult. The big, elongated and sideways monocrystals have more
chance to be distinguished. It leads to overestimation of platelet length.

7.5 Local alignments

Local alignments and platelet aggregation have been observed in the images of
crushed material (Fig. 5.4) and the images of 70 nm thick specimen (Fig. 5.3). In
order to study the orientation distribution, we segment the aligned platelets and
measure their orientations.

We use one of the TEM images of sample 2 at magnification 30K. For better
visualization, the image is normalized between [0; 255] and reversed with platelets
in bright, denoted Y (x1, x2). A median filter of size 1 × 1 nm2 is used to remove
Poisson noise. A Gaussian filter with σ = 1 nm is used to smooth the fluctuations
caused by the carbon membrane. The filtered image denoted Yf is shown in Fig. 7.13
(A).

The aligned elongated platelets are in bright, together with small fluctuations
also in bright. To remove the fluctuations, opening by reconstruction is used. First,
a threshold is applied to extract the bright regions:

M1 =

{
255 Yf > 150

0 Yf < 150
(7.2)

A binary image, denoted M1, is obtained (Fig. 7.14 A). M1 is then eroded with
square struturing element of size 5× 5 pixel (1.65× 1.65 nm2):

M ′
1 = ε5 (M1) (7.3)

Only large bright regions are left in M ′
1. The greyscale image is then reconstructed

with M ′
1 as markers:

Y1 = RYf (M ′
1) (7.4)
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(A) (B)

Figure 7.13: A TEM image of the 70 nm thick specimen of sample 2. (A) Filtered
by a median filter and a Gaussian filter. (B) Reconstructed TEM image with eroded
markers.

The reconstructed greyscale image is shown in Fig. 7.13 (B). In Y1, only big bright
regions are reconstructed, but some of these regions do not have elongated structure.

To obtain only the elongated structures in the image, a second opening by re-
construction is performed. The binary image, denoted M2 is obtained by applying
a threshold of 150 on Y1 (Fig. 7.14 B). M2 is opened with segments of size 15 nm
with various orientations θ from −90◦ to 90◦ with step 1◦. The union of the opened
images, denoted M ′

2 is shown in Fig. 7.14 (C).

M ′
2 =

⋃
θ

ϕθ (M2) (7.5)

The greyscale image is reconstructed with M ′
2 as markers, shown in Fig. 7.15.

Y2 = RY1(M
′
2) (7.6)

In Y2, only the elongated bright regions are kept.
To determine the orientation of the platelets, another binary image, denoted M3

is obtained by applying a threshold of 150 on Y2. The connected components in
the binary image M3 are labeled. For each connected component, the orientation
is determined by the eigenvector corresponding to the largest eigenvalue of the co-
variance matrix (Jeulin & Moreaud, 2008). We associate the orientation degree of
each connected component to the binary image M3, and obtain the orientation map
(Fig. 7.16). The orientation distribution based on surface fraction is represented in
Fig. 7.17.

To summarize, we observe some zones with local alignment of the platelets at a
small scale (about 30 nm), but a global random orientation at larger scale.

7.6 Conclusion

In this chapter, TEM images of vacuum, carbon membrane, 70 nm thick specimens
and crushed alumina were processed and measured. First, the drift brought in by
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(A) (B) (C)

Figure 7.14: Reconstruction markers. (A) Marker thresholded from Yf . (B) Marker
thresholded from Fig. 7.13 (B). (C) Marker opened with segments as structuring
element.

Figure 7.15: Reconstructed TEM image of alumina with elongated platelets high-
lighted.

Figure 7.16: A TEM image of mesoporous alumina with elongated platelets seg-
mented. Platelets are highlighted in color presenting orientation from −90 deg to
90 deg.
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Figure 7.17: Orientation distribution of Fig. 7.16.

the electron detectors was confirmed with the TEM images of vacuum and carbon
membrane. The high-frequency noise was characterized in terms of histogram and
correlation. Second, the correlation functions of TEM images of 70 nm thick slices
were estimated for each sample with each magnification. The difference between
correlation functions of 20000 magnification and 30000 magnification supports the
speculate of pixel-wise noise. Then, visible platelets in the TEM images of crushed
alumina were measured manually. It provides a rough estimation of the platelet
size. Finally, we filtered a TEM image of a 70 nm thick specimen and extract the
elongated objects with opening by reconstruction. The orientation distribution of
the extracted platelets were measured.
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Chapter 8
Random model of platelets

Through the physical characterizations, the porosity and the specific surface area
of the microstructure of mesoporous alumina are obtained from He pycnometer
and nitrogen porosimetry. From the TEM image processing and the morphological
measurement, the correlation and the size of primary grains are estimated. Based on
the known information, mesoporous alumina is a material consisting of monocrystals.

In this chapter, random models of platelets are proposed to model the 3D mi-
crostructure. A one-scale model is first talked about in Sec. 8.1. The aggregation
phenomenon is then taken into account, with a two-scale model proposed in Sec. 8.2.
The model is compared with the tomographic reconstruction in terms of specific sur-
face area in Sec. 8.3. In Sec. 8.4, the TEM image model is re-considered with noise
taken into account. The random model of platelets is re-identified with the new
TEM image model in Sec. 8.5.

The work in Sec. 8.1 and Sec. 8.2 was originally realized by Pietrasanta (2013).
It was then completed and published in Wang et al (2015).

8.1 One-scale Boolean model of platelets

8.1.1 Modeling

Mesoporous γ-alumina is a material which consists of primary grains, or monocrys-
tals. The monocrystals are observed in dark shadows in the TEM images, but their
accurate shape and size in 3D at the nanometric scale remains unknown. A similar
material – boemite (Chiche et al., 2008), consisting of prisms with irregular octag-
onal basis is considered (Fig. 8.1). The basis is made up of three sides with lengths
D1, D2 and D3. The angles, equal to 127.8◦ and 270− 127.8 = 142.2◦, are fixed by
crystallography. With the prism’s height D4, the platelets shape is parametrized by
(Di)1≤i≤4. X-ray diffraction data for the oxide nanoparticles (Chiche et al., 2008)
indicate D1 = 3.4 nm, D2 = 1.4 nm, D3 = 0.4 nm and D4 = 3.7 nm (Fig. 8.1). These
values do not necessarily correspond to the material we consider, so that we let
(Di)1≤i≤4 vary.

Nevertheless, for consistency with XRD measurements, we fix the ratiosD2/D1 =
0.41 and D3/D1 = 0.12, as obtained in (Chiche et al., 2008). With these constraints,
the prism shape is fully parametrized by the two variables D1 and D4. Hereafter, we
call the primary grain in prism shape ”platelet”. The work of Chiche (Chiche et al.,

61
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2008) indicates that materials synthesized in solvent of different pH values have
different particle morphologies, in other words, varying shape of octagonal basis
and varying width. For the sample we use in this work, the pH value is already
known.

D
4 
= 3.7 nm

Figure 8.1: Alumina platelet shape, following (Chiche et al., 2008).

To model the microstructure, we first consider a Boolean model of randomly-
oriented platelets. We take first the octagonal prism presented in Fig. 8.1 as the
shape of platelets. Microstructures are generated in two steps (Matheron, 1967;
Jeulin, 2000):

• First, a realization of a Poisson random point process is generated with a
prescribed point density, determined by the microstructure overall porosity,
and the volume of the platelet.

• Second, an octagonal prism is translated at each Poisson point. The prism
main axis orientation is uniform on the sphere.

This model should be considered as a one-scale model in the sense that it is based
on a homogeneous Poisson point process. The Boolean model depends on the shape
of the prisms and on the porosity. The latter pore volume fraction is set to 69%,
according to porosimetry data.

Realizations of the model are generated in a window consisting of 400×400×546
voxels with resolution 0.55 nm per voxel. The upper surface of the microstructure
(e1; e2) is discretized on a 400 × 400 voxels grid, and the thickness along e3 by
546 voxels. The microstructures have the same thickness as the specimen material
(300 nm). A 2D section of the 3D model is shown in Fig. (8.2). Transmission images
in 2D are readily computed by performing an integral along the vertical axis (e3)
on the generated microstructure (the same equation as Eq. 6.2):

Y (x1, x2) ≈ (a+ b)− bc
∫ f

0

dx3 χS(x1, x2, x3). (8.1)

From the simulated transmission images, we obtain the corresponding 2D corre-
lation function CM(h), who is confirmed to be isotropic. Since the correlation is
normalized, the choice of the parameters a, b and c does not influence the esti-
mation of correlation function. The 1-D profile of CM(h) is hereafter denoted by
CM(h). A comparison with the correlation functions of the TEM images CTEM(h)
is represented in Fig. (8.3).
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Figure 8.2: 2D section of a Boolean model of octagonal prisms. Solid phase in white.

0 5 10 15 20 h(nm)

0.0

0.2

0.4

0.6

0.8

1.0

C(h)

TEM image

one-scale model

Figure 8.3: correlation of TEM images and of a computer-generated one-scale
Boolean model.
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8.1.2 Parameter identification

The parameters of the one-scale Boolean model are estimated by minimizing some
distance between the correlation functions measured on TEM and on simulated
images:

inf
M

{
N∑
h=0

wh [CTEM(h)− CM(h)]2
}
, (8.2)

where h is given in pixels units, wh are weights given by:

wh =
ah∑N
i=0 ai

, ah =
1

1 + 0.2h
, (8.3)

and N = 29 defines a (finite) domain of comparison of the two correlation functions.
The decreasing weights with h are used to give more importance to the correlation
function for small values of h, which is more reliable than when h is large.

Previous findings (Chiche et al., 2008) indicate that the basis of the primary grain
is octagonal. Under this assumption, the length D1 and width D4 of the octagonal
grains vary independently, while the shape of the basis is fixed. Accordingly, the
prism is parametrized by two variables. To examine the effects of both parameters
on the correlation function, we fix one and let the other vary (Fig. 8.4). The slope
at the origin (h = 0) of the correlation is driven by the platelet’s shape: the thicker
the platelet is (D4 increases), the smaller the slope of correlation will be. For an
isotropic random set, it is related to the specific surface area SV (Matheron, 1967):∣∣∣∣dCM(h)

dh

∣∣∣∣
h=0

=
1

4
SV , (8.4)

For a Boolean model with primary grain A′, SV = −q log(q)
SA′
VA′

where q is the

volume fraction of void, SA′ and VA′ are respectively the average surface area and
average volume of primary grains. This can be used as an additional constraint to
the optimization problem. Under this constraint, the width D4 is fixed by the length
D1 or vice-versa. Therefore Boolean models following the additional constraint are
generated and the resulting correlation functions are compared in Fig. (8.5). As
expected, with the additional constraint, the models reproduce the correct slope
at the origin for the correlation function, irrespective of the shape. However, the
long-range of the correlation function is not reproduced except for very thin and
highly elongated platelets (in red, in Fig. 8.5). These platelets shapes, with sizes
smaller than 1 nm, are hardly physical and must be rejected. Accordingly, models
with larger correlation ranges must be used to approach the TEM images correlation
function. Hereafter, a two-scales model is considered.

8.2 Two-scale model of platelets

8.2.1 Aggregates and local alignments

As previously seen, the one-scale model of random platelets cannot reproduce the
correlation function of the TEM images in the range larger than the size of the
platelets. Indeed, crushed powder of mesoporous alumina exhibits local alignments
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Figure 8.4: Effect of the grain shape on the correlation function of the one-scale
model: with D1 = 3.4 nm and D4 varying from 0.55 nm to 14.3 nm (a); with D4 =
3.7 nm and D1 varying from 1.1 nm to 8.8 nm (b). The correlation function of the
TEM images is shown in blue.

0 3 6 9 12 15
h(nm)

0

0.2

0.4

0.6

0.8

1

C(h)

TEM image
D

1
 = 11 nm, D

4
 = 0.76 nm

D
1
 = 8.8 nm, D

4
 = 0.79 nm

D
1
 = 6.6 nm, D

4
 = 0.84 nm

D
1
 = 4.4 nm, D

4
 = 0.96 nm

D
1
 = 2.2 nm, D

4
 = 1.7 nm

S
A’

 / V
A’

 = constant

2 4 6 8 10 12 D
1
(nm)

1

2

3

4

5

6

D
4
(nm)

S
A’

 / V
A’

 = constant

(a) (b)

Figure 8.5: Correlation function of one-scale Boolean models of octagonal prisms
with fixed surface density SV and increasing platelet width D4 (a). Length D1 with
respect to width D4 under the constraint in Eq. (8.4) (b).

(Fig. 8.6). The aggregation of alumina platelets is well known (Euzen et al, 2002) and
originates from the behavior of the boehmite precursor in solution (Fukusawa & Tsu-
jii, 1988). This aggregation is expected to be highly anisotropic due to the anisotropy
of the platelet shape and the degree of hydroxylation of platelet faces (Digne et al.,
2004). The alignments suggest the existence of at least one larger scale, which
correspond to the size of aggregates of platelets. The size of these aggregates is
in-between 2 to 3 times the size of platelets, according to Fig. 8.6. Thus, the local
dispersion of the platelets should be taken into account.

8.2.2 Modeling

Accordingly a simple two-scales Boolean model, more general than the previous
one-scale model, is defined as follows:

• First, a Boolean model of spheres is used to generate a field of orientations: to
each sphere is associated a random principal direction uniformly distributed
on the unit sphere.

• Then, two Poisson point processes with two densities are generated inside and
outside the spheres.
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(a) (b)

Figure 8.6: TEM image of crushed powder of mesoporous alumina. Local alignments
are encircled in red.

• Third, a platelet with fixed shape is located at each Poisson point. When the
point is outside the spheres, the platelet orientation is uniformly random, as in
the previous one-scale model. When the point is inside a sphere, the platelet
orientation is given by that of the sphere. If a point is located in two or more
spheres, one of the corresponding orientations is chosen at random.

This type of model is a variant of a Cox Boolean model (Jeulin, 2012). The two-
scales Boolean model has 5 parameters: the shape parameters D1 and D4 (Fig. 8.1)
and 3 other variables that control the spatial dispersion of platelets. The latter are
the volume fraction of spheres at the larger scale pS, the radius of the spheres rS and
the volume fraction of platelets inside spheres pA. The volume fraction of platelets
outside the spheres p′S is prescribed by the overall porosity, fixed to 69%, by:

p′S(1− pS) + pApS = 1− 0.69. (8.5)

An example of realization of a two-scales model is shown in Fig. (8.7). The
volume of the microstructure is 400 × 400 × 546 voxels at resolution 0.55 nm per
voxel. The size of the 2D section is 400 × 400 pixels. The shape and size of the
platelet is chosen the same as the prism shown in Fig. (8.1). The volume fraction of
spheres pS is 0.5, with sphere radius fixed at 8 nm. The volume fraction of aligned
platelets inside the spheres pA is 0.5. In the generated microstructure, there are 5713
spherical aggregates, 165629 platelets aligned in the aggregates and 30364 randomly
oriented platelets outside the aggregates. Local alignments are distinguished and
encircled in red. We checked that the microstructure is macroscopicaly isotropic
with respect to the correlation function. Hereafter, we let the 5 paremeters D1,4,
pS,A and rS vary. We optimize them to approach the TEM images’ correlation
function.

8.2.3 Parameters identification

The effect of each parameter on the correlation function has firstly been examined
numerically. Simulations are performed by fixing two of the three parameters, and
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Figure 8.7: 2D section of a realization of the two-scales Boolean model with locally-
aligned platelets (some of them encircled in red).

letting the third parameter vary (Fig. 8.8). As expected, the slope at the origin of
the correlation is not sensitive to the parameters governing large scale effects pS and
rS (Figs. 8.8a and 8.8b). Their values however greatly affect the correlation range
from 1.1 nm to 5.5 nm. On the contrary, the slope at the origin of the correlation
is sensitive to the volume fractions of platelets inside the grains pA (Fig. 8.8c), in
particular for high values of pA larger than 50%. In this regime, platelets often
intersect, which greatly reduces their specific surface area. In the optimization
process detailed below, the two parameters pS and rS are adjusted to control the
correlation range, the other one being chosen to adjust the slope at the origin.

Hereafter, the parameters of the two-scales Boolean model are estimated by op-
timization, to approach the correlation function of the TEM images. The same
criterion is used as in the one-scale Boolean model (Eq. 8.2). First, a standard con-
jugate gradient descent method was tested. The method was ineffective, due to the
high variability in the estimate of the gradient, especially for such two-scales model.
The more robust Nelder-Mead method, which does not require the computation of
a gradient (Nelder & Mead, 1965), was also used. In most of our numerical simu-
lations, the algorithm very slowly converges. Furthermore, the microstructure was
found to be sub-optimal. This is presumably an effect of variability.

Finally, a random “point cloud”simulations based on a Monte Carlo method
(Hammersley & Handscomb, 1964) was tested. To initialize the point cloud method,
the shape parameters D1 and D4 are fixed, as in the optimized one-scale model.
The cloud zone for the other parameters (pA, pS and rS) is initially a large domain
(0.1 < pA < 0.9, 0.1 < pS < 0.9 and 2.6 nm < rs < 21 nm). In this domain, the
specific surface area is not sensitive to pA and controlled by the values of D1 and D4

initially chosen. After random simulations, the zone of interest is reduced to a region
where the objective function is lower. The process is repeated until convergence to
a single point. The method, which tends to explore larger regions in the parameters
space, was found to significantly reduce variability compared to the Nelder-Mead
method, and also provided the best local minima. After 3 iterations, the algorithm
provides good-enough microstructures and was stopped.

The cloud optimization was repeated with varying shape parameters D1 and D4,
following the specific surface area constraint (Eq. 8.4). A series of optimal two-
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Figure 8.8: Effects of the spatial dispersion parameters pS, rS and pA on the corre-
lation function.

scale models with respect to D1 (or equivalently, D4) is obtained. The correlation
functions of two such models are represented in Fig. (8.9) and compared with that
of the TEM images. For each set of parameters, the two correlation functions are
in excellent agreement. We pick one of the two optimal models, corresponding to
D1 = 3.3 nm, and used in Fig. (8.9). This model is compared to the TEM image
in Fig. (8.10). Image (8.10b) is simulated using (6.2) and a normalization similar
to (6.3). For the sake of comparison, all values are comprised beteen 0 and 255.
Note that the parameters a, b and c entering (6.2) are irrelevant due to (6.3).
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Figure 8.9: Correlation functions of two optimized two-scales models with different
shape parameters for the grains: comparison with the correlation function of TEM
images.
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(a) (b)

Figure 8.10: Comparison between (a) the TEM image and (b) the simulated trans-
mission image using one of the optimal two-scales models with D1 = 3.3 nm (see
Fig. 8.9). Image (b) is generated from Eq. (6.2) and a normalization similar to (6.3).

8.3 Validation with specific surface area

In this section, the specific surface area of the optimized models and obtained from
available porosimetry data are compared. Nitrogen porosimetry on the sample gives
a specific surface area of 0.232 nm−1.

8.3.1 Specific surface area estimation

For an arbitrary random set A, the specific surface area SV of A is given by the slope
at the origin of the correlation Q(h), as reminded in equation 8.4. For two-scales
models B written as:

B = (A0 ∩ A1) ∪ (Ac0 ∩ A2) , (8.6)

where Ai (i = 0, 1, 2) are independent random set with volume fraction pi and

specific surface area S
(i)
V , and Ac0 is the complementary of A0, the specific surface

area SBV of the random set B is given by (Jeulin, 2014):

SBV = S
(0)
V (p1 + p2 − 2p1p2) + p0S

(1)
V + (1− p0)S

(2)
V . (8.7)

The first term in the right-hand side represents the specific surface of the set B cut
by that of A0. The next terms are the specific surface in the interior and exterior of
A0. This equation is exact for platelets that are cut off at the boundary of primary
grains. It can be applied to the two-scales Boolean model as follows:

S
(0)
V = − 3

rS
(1− pS) log(1− pS), S

(1)
V = −Sp

Vp
(1− pA) log(1− pA),

S
(2)
V = −Sp

Vp
(1− p′S) log(1− p′S),

where Sp

Vp
is the surface/volume ratio of the platelets, determined by D1 and D4

by simple geometric considerations. The resulting estimation for SBV is only an
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approximation, since Eq. (8.6) is not exact for the Cox Boolean model. However,
the approximation is correct if a large scale-separation rS � D1 and rS � D4 is
assumed (Jeulin, 2012). In the present two-scales model, rS/D1 and rS/D4 are at
least equal to 2.

In a first step, a particular optimized two-scales microstructure with D1 = 3.3 nm
and D4 = 1.1 nm (corresponding to Fig. 8.9) is considered. The porosimetry results
depend on the size of the molecules used for adsorption experiments (Thommes
et al., 2000; Wernert et al., 2010). The estimated specific surface areas are higher
(resp. lower) when small (resp. large) molecules are used. This effect is especially
important in nanomaterials. To roughly model the nitrogen adsorption, morpho-
logical closings (dilation followed by erosion) by a cube, a 3D cross and a rhom-
bicuboctahedron of increasing sizes are first performed. The rhombicuboctahedron
better approximates the shape of molecules on a digitized image, and offers a good
compromise between performance and exactness. Its size corresponds to the radius
of an equivalent sphere. Second, closed pores that are not accessible to nitrogen
are removed. 3D views of one optimized two-scales microstructure after closing are
represented in Fig. (8.11). Results for the estimates of the specific surface areas
are given in Tab. (8.1). We denote by Scov

V the estimate of the slope of the tangent
line to the correlation function at h = 0 (Eq. 8.4). For comparison purposes, we
also give estimates obtained by the method of weighted local configurations pro-
posed in (Ziegel & Kiderlen, 2010) and analytical estimates from Eq. (8.7), denoted
SZV and SBV respectively. The method in (Ziegel & Kiderlen, 2010) makes use of 5
weights which depend on two parameters s and r. We follow (Ziegel & Kiderlen,
2010) and set s = 1.7452 and r = 1. These two values are given for cylinders. They
give nearly optimal estimates with the platelets used in the present work.

The estimates Scov
V , SZV are measured on the original microstructure (M), its

closing by a cube (M ′) and by a 3D cross (M ′′) of size 1 pixel (0.55 nm). We also
remove closed pores by a hole filling operation on the three microstructures and
estimate their specific surface area SZ

′
V , using the method of Ziegel.

Numerical results for the specific surface are of the same order of magnitude
than experimental ones (about 0.232 nm−1) and yet, significantly higher. Closing
also significantly influences the specific surface area. Furthermore, numerical results
indicate that the latter is affected by the shape of the structuring element. There
are very few closed pores in the microstructure, as indicated by the values of SZ

′
V ,

very close to SZV .

SBV (nm−1) Scov
V (nm−1) SZV (nm−1) SZ

′
V (nm−1)

M 0.8104 0.6611 0.5533 0.5527
M ′ 0.4225 0.4299 0.4277
M ′′ 0.5796 0.4878 0.4871

Table 8.1: Specific surface areas of the two-scales optimized Boolean model M , and
of its closing M ′ and M ′′, computed using the analytical estimate (Eq. 8.7), the
correlation function and the method of weighted local configurations in (Ziegel &
Kiderlen, 2010). The analytical estimate (Eq. 8.7) is relevant for model M only.
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δ = 0 δ = 1 δ = 2

Figure 8.11: 3D views of the closings of an optimized two-scales Boolean model with
increasing structuring element size (left to right). Porosity in blue and platelets in
white. The structuring element is a rhombicuboctahedron of size δ (in voxels).

Figure 8.12: Porous volume of the tomography image after closing with rhom-
bicuboctahedron of 30 voxels and erosion by 3 voxels (2D section). Alumina grains
are in dark, while in grey is the porosity.

8.3.2 Electron tomography reconstruction

Hereafter, the two-scales models of platelets are compared to the tomographic model
in terms of porosimetry. The porous volume of the tomographic model is extracted
by using a series of morphological operations proposed by Moreaud et al (Moreaud
et al., 2008). First, a closing operation by a sufficient size (here we take 30 voxels)
together with a hole filling operation is performed to remove all pores in its interior.
Next, a geodesic erosion is performed on the 3D image in order to maintain the
surface irregularity (Fig. 8.12). The global volume and the external surface contour
of the tomographic model are emerged after the erosion.

Then, closings of increasing sizes are performed with rhombicuboctahedra on
both the tomographic model and the two-scales microstructure models, to simulate
the nitrogen adsorption. The structuring element roughly mimics the role of nitrogen
molecules. Isolated pores are removed using hole filling operations to extract the
accessible porosity. Specific surface area measurement results are given in Fig. (8.13),
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Figure 8.13: Specific surface areas with respect to the size of the closing: comparison
between one two-scales model of platelets (red), the tomographic model (blue) and
porosimetry data in confidence interval (horizontal black dotted lines). The sizes of
nitrogen molecules are indicated by the two vertical black dotted lines.

in red for the area of accessible specific surface in the two-scales model, and in
blue for the area of accessible specific surface in the tomographic model. These
values have been corrected by subtracting the exterior surface area of the specimen.
Finally, the nitrogen porosimetry data (0.232 nm−1) is indicated by the dotted black
horizontal lines. The nitrogen molecules whose shapes are anisotropic are indicated
by vertical black dotted lines.

8.3.3 Comparison

As shown in Fig. (8.13), the specific surface area in the two-scales microstructure
agrees with porosimetry data when the size of the structuring element is about
1.2 nm. This value is quite higher than the nitrogen size, of about 0.3 and 0.4 nm.
For a structuring element of this size, the estimated specific surface area is about
2 to 3 times higher for the two-scales model compared to porosimetry data and to
the tomographic model. However, the difference between model and porosimetry
data is much less of the same order than usually observed when comparing image
analysis results to molecular porosimetry.

Some differences between the two-scales optimized Boolean model and tomo-
graphic image are also observed. The decrease of the specific surface area with re-
spect to the size of the structuring element is much steeper in the two-scales model
than in the tomographic image. The difference between accessible and overall prop-
erties is also more important in the two-scales model, for large structuring elements.
The accessible porosity globally follows the same trend as the specific surface area
when the size of the structuring element increases (Fig. 8.14).

Also, our results are nearly insensitive to the shape of the platelets in the two-
scales model. Nearly identical results have been obtained when considering other
two-scales optimized models with varying shape parameters (not shown). This is
because the size of the platelets in the two-scale models is constrained by the slope
at the origin of the correlation, in other words, constrained by the specific surface
area. As indicated in the equation 8.4, the slope at the origin of the correlation of the
3D microstructure is directly related to its specific surface area. In our study, even
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Figure 8.14: Accessible porosity VV after closings by rhombicuboctahedra of in-
creasing size, for the two-scales optimized and tomographic models (red and blue,
resp.).

though only the 2D projections of the microstructure (TEM images) are available,
the correlation of the 2D projection still dominates the specific surface area.

To conclude, the specific surface area of the optimized two-scale models are 2 or
3 times higher than the results measured by nitrogen porosimetry. The difference is
essentially due to the conflict between the high-frequency information on the TEM
images and the nitrogen porosimetry. As a independent third-party reference, the
size of platelets measured on the TEM images of crushed material (section 7.4) are
much larger than the optimized platelets for the two-scale model. The large platelets
support the lower specific surface area, in favour of the nitrogen porosimetry results.

The high-frequency information in the TEM images are possibly coupled with
noise or projection of carbon membrane. The idea is proved in section 8.4, to-
gether with the proposition of a corrected model for TEM image simulation. Larger
platelets are then used in the two-scale model identification with the new TEM
image model in section 8.5.

8.4 TEM image simulation

8.4.1 Noise and carbon membrane

In previous sections, the TEM images were simulated from the 3D microstructure
by 2D projection. In the comparison between experiment and simulation, the noise
in the TEM images were not taken into account. A comparison between the 2D
projections of a microstructure with and without Poisson noise is shown in Fig. 8.15.
The noise influences the correlation function, especially the slope at the origin of
the correlation function.

In reality, the noise is more complex than the pure Poisson noise. The TEM
images of vacuum show correlation in the range 0 < h < 2 nm (Sec. 7.1). Where the
noise in the TEM images comes from? Despite the complex electron emission system
and the lens system, only the electron detector brings quite a lot of noise (Meyer &
Kirkland, 2000).

The electron detector consists of a layer of scintillator, an optical coupling system
and a grid of CCD photon detectors. The transmitted electrons hit and are scattered
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Figure 8.15: Correlation functions of the 2D projections of a microstructure with
and without Poisson noise.

in the scintillator. Photons are emitted along the trajectory of electrons. Some of
the photons go through the optical coupling system and are captured by the CCD.
During the process, noise source includes:

• Scattering of electrons in the scintillator, which brings spatial correlation.

• Emission of photons in the scintillator, which brings Poisson noise.

• Scattering of photons in the scintillator, which brings spatial correlation.

In the Lambert-Beer law (Reimer & Kohl, 2008, p.36) for the modeling of 2D
TEM images of porous media, only the electron attenuation caused by the specimen
is taken into account (Eq. 8.10). In reality, besides the alumina specimen, the carbon
membrane is also projected on the TEM images. Eventhough the carbon membrane
is thin and nearly transparent for electrons, it still influences high-frequency infor-
mation of the TEM image, in other words, the slope at the origin of the correlation
function. Accordingly, it influences the estimation of platelet size. The effect is
more important when the specimen is thin and the platelets are small.

8.4.2 TEM image model

There are two ways to compensate the noise effects – to remove it by filtering or
to add it into the simulation. The noise in the TEM images are difficult to filter,
because its correlation range is 0 < h < 2 nm, very close to the scale of the platelets.
Especially when the platelets overlap, the details in the intersections are removed
together with the noise.

The solution we choose is to integrate the main features of TEM image formation
into the simulation model. The ”main features” here explicitly refer to the features
who influence the correlation function, which include the electron attenuation, the
Poisson noise and the carbon membrane.

How to integrate the noise features to the TEM image model? The TEM image
formation is complex, and it is difficult to simulate the physics of the entire system.
Our first try is to add the Poisson noise to the Lambert-Beer law (Eq. 6.1), and then
to convolute with the point spread function. The point spread function is estimated
from the TEM images of vacuum. However, the resulting TEM images are too blurry
(not shown), compared to the experimental images. In the experimental images, the
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contours of the platelets are much more clear, which shows a weak point spreading.
The difference is due to that the transfer functions for noise and for signal are not
the same, as talked about in (Meyer & Kirkland, 2000). From the current pack of
TEM images, we do not have means to measure the point spread function for the
signal. Moreover, this approach cannot take the carbon membrane into account,
whose microstructure remains unknown.

Our second approach is based on the assumption that the noise is superposed
on the signal. The model is described as an additive noise term:

Y (x1, x2) = a(x1, x2) + b exp

[
−c1

∫ f

0

dx3 χS(x1, x2, x3)− c2

∫ 0

−fc
dx3 χC(x1, x2, x3)

]
(8.8)

where a(x1, x2) is no longer a constant, but a noise term, b is a positive constant co-
efficient, c2 is the attenuation coefficient of the carbon membrane, fc is the thickness
of the carbon membrane, χC is the microstructure of carbon membrane.

Since both the thickness and the attenuation coefficient of the carbon membrane
are much smaller than those of alumina specimen, the relation c2fc < c1f � 1 holds.
The equation 8.8 is approximated by:

Y (x1, x2) ≈ a(x1, x2) + b− b
[
c1

∫ f

0

dx3 χS(x1, x2, x3) + c2

∫ 0

−fc
dx3 χC(x1, x2, x3)

]
(8.9)

The noise term a(x1, x2), the coefficient b, the attenuation coefficient c2 and the
microstructure χC of carbon membrane remain unknown. Fortunately, the TEM
images of the carbon membrane is available. The above equation is then evaluated
as:

Y (x1, x2) =

[
a(x1, x2) + b− bc2

∫ 0

−fc
dx3 χC(x1, x2, x3)

]
− bc1

∫ f

0

dx3 χS(x1, x2, x3)

= YC(x1, x2)− bc1

∫ f

0

dx3 χS(x1, x2, x3)

(8.10)
where YC is the TEM image of the carbon membrane. The remaining problem is to
identify the coefficient b.

We take the mean value of greyscale on the both sides of Eq. 8.10, and obtain:

〈Y 〉 = 〈YC〉 − bc1pf (8.11)

where p is the volume fraction of solid phase in the alumina specimen fixed at 31%,
f is the specimen thickness fixed at 70 nm or 300 nm and the attenuation coefficient
of electron through alumina c1 is estimated in Sec. 6.1 with the value 2.40 10−3

nm−1. The coefficient b is then obtained by:

b =
〈YC〉 − 〈Y 〉

c1pf
(8.12)

The means of the TEM images of mesoporous alumina were estimated in chapter 7.
With the images of 70 nm thick specimen at magnification 20K, the value of b is
estimated to be 13270 ± 1665 with 95% confidence interval. With the images of
70 nm thick specimen at magnification 30K, the estimation is 12933±1511 with the
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Figure 8.16: TEM image simulation with a one-scale model of platelets using the
model in Eq. 8.10.

Figure 8.17: Histogram of the simulated TEM image in Fig. 8.16.

same confidence interval. We take the average of the two estimations b = 13101.
The TEM image simulation model is then tested with a one-scale model of platelets
(shown in Fig. 8.16). The platelet size comes from the measurement on the TEM
image of crushed sample (Sec. 7.4). The length and width of platelets measured are
converted to the side lengths Di,1≤i≤4 of the similar octagonal prisms with constraint
of equal width and thickness.

In the simulated TEM image, the noise is weak compared to experimental TEM
images. Furthermore, the greyscale variance of the simulated TEM image (Fig. 8.17)
is much higher than that of the TEM images (Sec. 7.3). The difference is because
in Eq.8.10, the variance of greyscale in the pure carbon membrane image σ2 (YC) is
high. The second term on the right of the equation also brings variance, constrained
by b. In the formation of TEM images of alumina, the intensity of the noise term
is lower than YC . The intensity difference of noise in TEM image of alumina and
of pure carbon membrane is interpreted by the electron detector’s gain drift in the
two processes.

Accordingly, a coefficient α ∈ R is added into the TEM image model (Eq. 8.10),
in order to correct the detector gain and to constrain the noise intensity:

Y (x1, x2) = αYC(x1, x2)− bc1

∫ f

0

dx3 χS(x1, x2, x3) (8.13)

The histograms of the two components are shown in Fig. 8.18, together with the
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Figure 8.18: Histograms of (A) the 2D projection of a microstructure∫ f
0

dx3 χS(x1, x2, x3) (B) the TEM image of alumina Y (C) the TEM image of car-
bon membrane YC . The microstructure in (A) is a realization of the one-scale model
of platelet with platelet size measured in section 7.4.

objective histogram.
Parameter identification is performed by searching for α and b to reproduce the

experimental histogram using the two constraints on the mean and variance of the
image: {

〈Y 〉 = α〈YC〉 − bc1pf

σ2
Y = α2σ2

YC
+ (bc1)2σ2

M

(8.14)

where σ2
M is the variance of the 2D projection of the microstructure. Unfortunately,

no real solution is found for the Eq. 8.14. This is because the variance of the carbon
membrane image is so high that the coefficient α cannot restrict σ2

YC
while at the

same time maintaining a high mean value 〈YC〉.
In the Fig. 7.5, the histograms of the TEM images of carbon membrane for the

same condition (magnification, exposure time, etc.) show shifts between them. The
shift cannot be explained quantitatively by the detector gain drift only. Except the
detector gain drift, the offset drift also exists if we compare the second and the third
peaks in Fig. 7.5. Therefore, a linear transform of the carbon membrane image is
considered as the noise component in the alumina TEM images. A constant term β
is then added to the model:

Y (x1, x2) = αYC(x1, x2) + β − bc1

∫ f

0

dx3 χS(x1, x2, x3) (8.15)

To identify the three parameters – α, β and b, the mean and the variance are
used as two constrains: {

〈Y 〉 = α〈YC〉+ β − bc1pf

σ2
Y = α2σ2

YC
+ (bc1)2σ2

M

(8.16)

Obviously, the two equations are not sufficient to identify the three parameters. In
our first try, the skewness is used as the third constraint. However, it does not deduce
parameters in the correct range b > 0. In fact, the skewness in the experimental
TEM images is very weak, and is not significant enough for model identification.
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Instead, we consider the following constraints:
b > 0

σ2
Y > α2σ2

YC

∆ > 0

(8.17)

where ∆ is the discriminant of the quadratic equation. The term σ2
M is estimated

from the one-scale of platelets with histogram shown in Fig. 8.18 (A). The solution
for the inequations 8.17 is then obtained:

α〈YC〉+ β ∈ (434, 528) (8.18)

where 434 is the mean 〈Y 〉 of the objective image. The inequation constrains the
greyscale mean of the noise term. Based on it, we define t to be:

t =
α〈YC〉+ β − 434

528− 434
∈ (0, 1) (8.19)

When t tends to 0, the value of b should be small, and the noise component dominates
the resulting TEM image. When t tends to 1, the discriminant ∆ and α tends to
0, thus the signal component dominates the resulting TEM image. Therefore, the
variable t is a normalized descriptor of the signal-to-noise ratio.

Now we need to know the signal-to-noise ratio in the TEM images of mesoporous
alumina.

8.4.3 Signal-to-noise ratio

We have TEM image for pure noise, but not for the pure signal. The intensity of
pure signal in the TEM images of alumina remains unknown. However, the signal-
to-noise ratio t influence the texture of the TEM images, as shown in Fig. 8.19. The
ratio t dominates the high-frequency information in the simulated TEM images, in
other words, dominates their autocorrelation at low shift. This feature is then used
to identify the signal-to-noise ratio.

The correlation functions are estimated and compared with experimental TEM
images in Fig. 8.20. As expected, the correlation is very sensitive to the signal-
to-noise ratio. When t = 0.68 (Fig. 8.20 (B) blue dotted line), the simulation fits
the experimental curve at the range 0 < h < 1 nm. This range corresponds to the
correlation range of the carbon membrane images.

With the identified signal-to-noise ratio t = 0.68, the equations Eq. 8.16 and
Eq. 8.19 are solved. The TEM image model (Eq. 8.15) is identified with the following
parameters: α = 0.717, β = −253 and b = 1208. It coordinates the criteria:
greyscale mean, greyscale variance and the correlation function at low shift 0 < h < 1
nm.

The textures of the experimental and simulated TEM images are visually close,
as shown in Fig. 8.21. The dark areas (solid phase, or platelets) in the two images
have close shapes and sizes. The small fluctuations homogeneously dispersed in the
images come from the projection of the carbon membrane and the noise.

It needs to be noted that the signal-to-noise ratio t is estimated with platelets
of measured size. The size is supposed to be overestimated (details in Sec. 7.4), and
the model does not have features in local alignment. The overestimated size and
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t = 0.17 t = 0.28 t = 0.38 t = 0.49

t = 0.60 t = 0.70 t = 0.81 t = 0.91

Figure 8.19: Simulated TEM images with different signal-to-noise ratios. The one-
scale model of platelets is used to generate the microstructure. The platelets have
the same size as the measurements in Sec. 7.4.

the non-alignment feature both bring bias to the estimation. However, they have
opposite effects on the correlation function. Therefore, the value t = 0.68 is basically
a reliable estimation. In the re-identification of the two-scale model (Sec. 8.5), the
two effects are both taken into account.

8.5 Two-scale model identification

The re-identification is based on the two-scale model of platelets and the new TEM
image model (Eq. 8.15). The platelet size and the spatial dispersion are free to vary.
The constraints for identification include the experimental correlation function C(h)
and the specific surface area SBET (0.232 nm−1).

The effects of the parameters on the correlation function are studied in Sec. 8.2.
The relation between the platelet size and specific surface area is described by
Eq. 8.4. With the known information, a parameter searching process is performed.

We have already the correlation function estimated on the one-scale model in
Fig. 8.20. The correlation at low shift fits well the experimental reference, but in
long range it is higher. In addition, the specific surface area of this one-scale model
is 0.2 nm−1, slightly less than the experimental BET surface area of 0.232 nm−1. The
specific surface area further confirms the overestimation of the platelet sizes.

Accordingly, the general searching direction is to decrease the platelet volume
and to add the aggregation features. A smaller platelet decreases the correlation
C(h), and makes room for the addition of aggregates. On the other side, it increases
the specific surface area.

Along with this direction, five microstructures are generated (Tab. 8.2), with dif-
ferent platelet sizes and spatial dispersions. The sizes are chosen randomly around
the initial parameters. The spatial dispersion parameters are initially taken from the
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Figure 8.20: Correlation functions of the simulated TEM images with different
signal-to-noise ratios. The simulated TEM images are shown in Fig. 8.19. The
one-scale model of platelets is used to generate the microstructure.

(A) (B)

Figure 8.21: Comparison between the texture on (A) a TEM image of sample N◦.2
and (B) a simulated image with t = 0.68 by the TEM image model in Eq. 8.15. The
image size is 100× 100 nm2.

identified two-scale model of Sec. 8.2, and are then adjusted to adapt to the correla-
tion in long range. The correlation functions estimated from these microstructures
are shown in Fig. 8.22.

Since the correlation of the initial one-scale model of platelets is already quite
close to the experimental reference, the parameter searching in around is not diffi-
cult. It is quickly found that in the five realizations, the microstructure (B) and (E)
(Fig. 8.22 dotted orange line and dotted blue line) both produce acceptable correla-
tion functions. The microstructure (E) has the best specific surface area compared
to the experimental data. The TEM image simulated from the microstructure (E)
is compared with an experimental TEM image of sample N◦. 1 in Fig. 8.23.

The solution for the identification of the two-scale model of platelets is not
unique. The correlation function and the specific surface area does not constrain
the two-scale model of platelets to a specific point, but a zone in the parameter
space. It explains why the three alumina samples have close correlation functions,
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Platelets (nm) Aggregates Specific surface area
Microstructure D1 D2 D3 D4 pA1 pS rS (nm) SV (nm−1)

Initial 14.8 3.3 4.0 3.0 0 0 0 0.201
(A) 17.4 1.6 4.0 3.0 0.6 0.2 8 0.221
(B) 17.4 1.6 4.0 3.0 0.3 0.2 20 0.225
(C) 11.6 4.1 3.0 3.0 0.3 0.2 40 0.212
(D) 15.4 1.6 2.0 3.0 0.3 0.2 30 0.261
(E) 14.3 2.4 2.0 3.3 0.3 0.2 30 0.231

Table 8.2: Parameter identification of the two-scale model of platelets for meso-
porous alumina. The corresponding correlation functions of the simulated TEM
images are shown in Fig. 8.22.
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Figure 8.22: Correlation functions of simulated TEM images from microstructures
shown in Tab. 8.2.

but different visual appearance (Fig. 5.2).
At present, we cannot sketch the shape of the zone, due to the lack of analytic

model and the numerous parameters. However, during the parameter searching,
some key factors which constrain the zone have been found.

• First, the surface-to-volume ratio of the platelets is important to obtain the
right correlation at low shift, and to obtain the objective specific surface area.

• Second, the aggregates are useful to increase the correlation in long range. It
is achieved by increasing the density of the aggregates (pS). The radius of
the aggregates should always be higher than the platelet length (from 1 to 2
times).

• Third, the density of aligned platelets in aggregates (pA) should be close to
or a bit higher than the average platelet density in the medium. A relatively
high pA simulates the bonding between aligned platelets. It helps increase the
correlation function in the entire range.

Through the above approach, more parameter sets that satisfy the correlation
function and the specific surface area can be found. Under the current constraints,
the two-scale model of platelets still has degrees of freedom. More information should
be extracted from the material to constrain the model. The degrees of freedom also
provide potential for the material optimization.
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(A) (B)

Figure 8.23: Comparison between (A) experimental TEM image of sample N◦.1 and
(B) simulated TEM image with the identified microstructure shown in Tab. 8.2 (E).

8.6 Conclusion

In this chapter, random models are proposed to model the 3D microstructure of
mesoporous alumina. A Boolean model of random-oriented octagonal prisms, or
platelets is first considered. TEM images are simulated with the digital microstruc-
tures by integration along the thickness axis. The length and width of the platelets
are identified with the correlation functions of the simulated TEM images. However,
the identified platelets are too thin compared to observations.

A two-scale model of platelets integrating the features of platelet aggregation is
then proposed. The aggregates are modeled with a Boolean model of spheres. The
platelets inside the aggregates have same orientations. The platelet size and the
spatial dispersion in the two-scale model are identified with correlation function. The
identified model is compared with the tomographic reconstruction and porosimetry
data in terms of specific surface area. The specific surface area of the two-scale
model is in-between 2 to 3 times higher than the BET specific surface area.

The noise and carbon membrane are then taken into account in the TEM im-
age simulation. The intensity of the noise in the TEM images are identified with
histogram and correlation. The platelet size and the parameters for spatial dis-
persion in the two-scale model of platelets are identified again, with correlation as
constraint. The identified platelet size is consistent with experimental observations.
Furthermore, the solution for the identification is not unique. The identified model
is validated with the BET specific surface area from the porosimetry test.
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Chapter 9
Simulations of capillary condensation and
evaporation on random materials

9.1 Introduction

This work focuses on the modelling of the capillary condensation and evaporation
phenomena in porous media The phenomena of capillary condensation and evapo-
ration is locally described by the Kelvin equation. The latter relates the equilib-
rium vapour pressure to the morphology of the pores: the more curved the local
vapour/liquid interface is, the lower the equilibrium vapour pressure is. Accord-
ingly, capillary condensation occurs first along highly curved interfaces. Porosime-
try isotherm represents the amount of liquid (or equivalently, the remaining porosity
filled by gas) as a function of pressure. When represented as a function of curvature
radius, the isotherm is frequently interpreted as a cumulative size distribution for the
porous phase (Barrett et al., 1951). Accordingly, the simulation of the capillary con-
densation and evaporation is important to study the relation between morphology
of the material microstructure and experimental porosimetry data. Nevertheless,
the question of determining the main microstructure parameters that influence the
porosimetry remains open. It is of clear interest to microstructure modeling.

To numerically simulate the capillary condensation/evaporation on 3D disor-
dered porous media requires a high efficiency of the algorithm. Here we highlight
the method of virtual capillary condensation method by Stepanek (Štěpánek et al.,
2007) and the MIP simulation method by Münch (Münch & Holzer, 2008).

9.1.1 Method of virtual capillary condensation

Stepanek et al. (2007) proposed the method of ”virtual capillary condensation” to
simulate the nitrogen adsorption and desorption process. The method focuses on
the propagation of liquid-vapour interface. At a given temperature and at a given
pressure, the Kelvin equation provides a relationship between radius of curvature
and pressure. The method measures the local radius of curvature on the solid-
vapour or the liquid-vapour interface. Wherever the local radius of curvature is less
than the minimum radius, nitrogen liquid is condensed. With liquid condensation
and filling, the curved interfaces becomes smooth and less curved. The algorithm
converges when the radius of curvature of vapour-liquid interface is equal to the
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minimum value and the radius of curvature of vapour-solid interface is equal to
or larger than the minimum value. At equilibrium, a point in the porosimetry
isotherm is obtained. The pressure is then increased, to achieve other equilibrium
points in the isotherm. The method is validated for simple geometries like ink-
bottle pore, and is also applied to microstructures generated by Gaussian random
fields and microstructures of nano-agglomerates and open-cell foams. The pore size
distributions of these models are then estimated from the isotherm. It should be
noted that the numerical computation of procedure of interface propagation requires
much computing power. Porous media are considered for volumes of size 1003 voxels.

9.1.2 Mercury intrusion simulation

In many cases, it is sufficient to compute equilibrium states during nitrogen con-
densation. These states are obtained experimentally by increasing and decreasing
pressure very slowly, so that equilibrium is met at all time. The equilibrium states
are governed by the Kelvin equation, which replaces the physical problem by geo-
metrical considerations. In this request, a similar geometrical problem arises in the
simulation of Mercury Intrusion Porosimetry (MIP). The analysis of MIP is based
on the Washburn equation, which relates the pressure to the radius of intruded cylin-
drical pores, whose role is similar to the curvature radius in the Kelvin equation.
In MIP, mercury intrudes largest pores first, and then, with increasing pressure,
intrudes gradually into pores of smaller size. Garboczi and Bentz (1991) simulated
the MIP in 2D porous structures by the propagation of disc-shape elements from
the external borders to the center of the 2D space. The disc element of a given
radius, which is determined by mercury pressure, occupies the maximum amount of
space without overlapping with the solid phase. When the pressure increases, the
radius of the disc decreases, and more space is intruded by mercury. Bentz (1994)
used the method in 3D space and estimated the pore size distribution. At nearly
the same time, Thovert et al. (1993) proposed the notion of critical sphere in the
geometrical characterization of porous media: the sphere of maximum radius fitted
in the porous phase in function of coordinates. Critical spheres are used to probe
the pore size at each point. Based on that, Münch and Holzer (2008) proposed the
notion of ”continuous PSD”: the amount of pore volume that can be covered by
critical spheres. The critical spheres are simulated using double Euclidean distance
transforms and thresholds, while the radius of the spheres is equal to the threshold.
The ”continuous PSD” is then applied to simulate the MIP: despite the ”continuous
PSD” operation, a regular region growth is performed. The region growth takes the
connectivity of the mercury phase into account, and the ink-bottle effect emerges in
the simulated isotherm.

9.1.3 Discussion

In 1967, Matheron introduced the morphological closing operator – a combination of
morphological dilation and erosion, and noted its equivalence with the capillary con-
densation with spherical structuring element (Matheron, 1967). Münch’s method in
MIP simulation is similar to Matheron’s idea, and they both solve physical problems
by geometrical means. Furthermore, the double distance transform plus threshold is
a specific case of the closing operator when a spherical structuring element is used.
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Other thermodynamic effects, e.g. solid/liquid interaction (Kierlik et al., 2001) and
physical multilayer adsorption (Brunauer et al., 1938) have been addressed in the
literature. Nevertheless, the geometry or the morphology of the porosity dominates
the capillary behavior in meso-pores. For disordered porous media as γ-alumina,
the 3D porous microstructure is complex, and the representative volume for the
capillary behavior of such disordered porous media is also much larger than ordered
porous media. In order to predict the capillary behavior of a random porous model,
numerical simulation methods should be able to handle large volumes to ensure the
representativity of the simulated result.

In this chapter, we propose a novel method that draws on the geometrical MIP
simulation described by (Münch & Holzer, 2008). It extends to nitrogen porosime-
try simulation, in particular, adsorption and percolation analysis. The method is
described from a mathematical morphological point of view in Section 9.2, together
with illustrations on simple geometries in Section 9.3. The representativity of the
simulated isotherm is then discussed on Boolean models in Section 9.5. The method
is then applied to more general random models with different morphologies, like
multi-scale models and 3D tomography images in Section 9.6.

9.2 Simulation using morphological operations

9.2.1 Capillary condensation and evaporation

The Kelvin equation is:

pc = ps exp

(
−2γ

rp

Vm
RT

)
(9.1)

where pc (in Pa) the equilibrium vapour pressure above a curved interface, rp (in m)
the local curvature radius of the interface, γ (in N m−1) the interfacial tension, R
(in J K−1 mol−1) the universal gas constant, Vm (in m3 mol−1) the molar volume of
liquid nitrogen, T (in K) the absolute temperature and ps (in Pa) is the saturation
vapour pressure if the liquid-vapour interface is flat. The Kelvin equation is valid
for pores of radius above 2 nm (Takei et al., 1997). Hereafter, we denote rp the
curvature radius corresponding to the vapour pressure ”Kelvin radius”.

9.2.2 Representation of porous media

The structure of porous media (denoted by χ) in 3D space is represented by a
function of two phases – solid and pore:

χ(x) =

{
1 if x is in the solid phase

0 otherwise
(9.2)

9.2.3 Condensation

We denote S and Sc the solid and porous phase respectively:

S = {x ∈ D ‖ χ(x) = 1}, Sc = D\S (9.3)



88 9.2. SIMULATION USING MORPHOLOGICAL OPERATIONS

where D = S ∪ Sc is the simulation domain. For simplicity D is a cube of length
l. When the porous media is put into vapour atmosphere, condensation and evap-
oration occur, and the pore is filled by vapour and condensed liquid. However, not
all the pore volume is accessible for vapour from exterior, and there exists pores
totally closed by the solid phase. Therefore, before the condensation simulation, a
preprocessing is needed to fill the isolated pores. We denote the accessible pores by
P . It is obtained by a hole-filling morphological operation H(·) so that P = H(S)c.
The hole-filling operation H(S) is realized using connected components (Serra J.,
1982) of the porous phase Sc: components unconnected to any border of the domain
are filled.

Capillary condensation and evaporation occurs in P , more specifically, in areas
of a high curvature, e.g. corners, narrow slit pores. During the adsorption process
in porosimetry, vapour pressure starts from nearly zero, and increases until the
saturation vapour pressure. At any given pressure, an equilibrium between the
condensation and the evaporation is established. The criterion of the equilibrium
is the radius of curvature, indicated by the Kelvin equation. The maximum radius
of curvature of vapour-liquid interface at position x is determined by the maximum
sphere in the porous phase that it can reach (Štěpánek et al., 2007). The menisci
of condensed liquid-vapour interface is formed along the spheres’ borders. The
filling of areas of high curvature and narrow space, and the forming of meniscus can
be realized using a morphological operation – closing with a sphere as structuring
element.

L(rp) = ϕrp(S) ∩ P (9.4)

where L the liquid phase and ϕrp is the closing operation, which is expressed by:

ϕr(S) = S ⊕ SB(r)	 SB(r) (9.5)

where SB(r) is the structuring element of sphere of radius r, 	 is the Minkowski
substraction (or erosion). In this work, we assume that the system is perfectly
wetted and the contact angle is 0◦.

A textbook example is provided in Fig. 9.1: capillary condensation in a conical
pore. In a conical pore, the curvature radius decreases linearly in function of pore
depth. According to the Kelvin equation, the apex region is filled first with con-
densed liquid at low pressure. The local curvature radius of liquid-vapour interface
and solid-vapour interface should be equal or greater than the Kelvin radius.

As shown in the figure, the closing operation fills the regions of small curvature
radius first, and a spherical-cap meniscus is formed on the vapour-liquid interface
(Fig. 9.1 (A)). The curvature radius of every point on the spherical meniscus equals
the Kelvin radius. The spherical cap is tangent to the conic solid wall, so the
curvature radius at the boundary of the meniscus is also equal or greater than
the Kelvin radius. The curvature radius of the remaining vapour-solid interface is
greater than the Kelvin radius. Accordingly, the interface resulting from the closing
operation satisfies the Kelvin equation, and the capillary condensation phenomenon
is simulated.

With increasing pressure, the Kelvin radius increases, the meniscus propagates,
and fills the space of large size (Fig. 9.1 (B)). Even when Kelvin radius is larger
than the radius of the cone base, the meniscus becomes the arc of a larger pore
outside the conical pore (Fig. 9.1 (C)). The contact angles are no longer 0◦, but the
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r1

(A)

r2

(B)

r3

(C)

Figure 9.1: 2D sections of closing operations in a conical pore (solid black line). The
dilation operation is shown with dotted black line in the left column. The erosion
operation is shown in the middle column. The resulting liquid condensation is shown
in blue in the right column. (A),(B) and (C) correspond to increasing size of the
spherical structuring element (dotted red line).

curvature radius becomes negative at the borders of the arc and does not change
the satisfaction to Kelvin equation.

Another typical example of capillary condensation is the cylindrical pore. Fig. 9.2
is a cylindrical pore with one side open and the other side closed. Capillary conden-
sation occurs first at the corners, where condensed liquid flatten and smoothen the
vapour/liquid interface. The main space of the porosity remains empty until the
pressure reaches the critical radius, and the pore space is filled all at once.

In practice, approximate spherical structuring elements are used in a discrete
grid. The approximations, like rhombicuboctahedron, are not accurate to probe the
pore size and to reproduce the menisci. Alternatively, the closing operation with
spheres can be realized using Euclidean distance transforms (Maurer et al., 2003),
as the implementation in (Münch & Holzer, 2008). The distance map, denoted by
dS(x), x ∈ P , is the distance from a coordinate x to the closest solid-pore interface.
The dilation δr(S) of the solid phase is obtained simply by an inferior threshold:

δr(S) = S ⊕ SB(r) = {x|x ∈ P, dS(x) < r} (9.6)

For the following erosion, the distance map is recalculated from the pores Dilc, and
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r1

(A)

r2 r2

(B)

r3 r3 r3

(C)

Figure 9.2: 2D sections of closing operations in a cylindrical pore (solid black line).
The dilation operation is shown with dotted black line in the left column. The
erosion operation is shown in the middle column. The resulting liquid condensation
is shown in blue in the right column. (A),(B) and (C) correspond to increasing size
of the spherical structuring element (dotted red line).
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a superior threshold is taken to form the condensed liquid.

ϕr(S) = δr(S)	 SB(r) = {x|x ∈ δr(S), dδr(S)c(x) > r} (9.7)

The distance map for dilation is calculated only once during the whole process, but
that for erosion should be recalculated for each radius r. After the closing operation,
the areas where the curvature radius is inferior to rp are filled, the Kelvin equation
is locally satisfied, and we obtain an equilibrium state in the adsorption process.
The increasing pressure during adsorption corresponds to increasing sphere radius.
The procedure is repeated with increasing sphere radius to obtain all equilibrium
states.

The volume of condensed liquid at equilibrium state, denoted by Ψ(rp), makes
a point on the nitrogen isotherm:

Ψ(rp) = L(L(rp)) (9.8)

where L(·) is the Lebesgue measure. The total volume of adsorbed liquid at satu-
rated pressure is Ψ∞ = limr→+∞Ψ(r). In porosimetry isotherm plot, the normalized
volume of condensed liquid (denoted by ψ) in function of relative pressure (denoted
by p/p0) or the equivalent Kelvin radius is often used.

ψ(rp) = Ψ(rp)/Ψ∞ (9.9)

Once we obtain the whole branch of adsorption ψ(rp), the continuous pore size
distribution – the normalized intensity of pore volume in function of pore size,
denoted by I(rp), is evaluated using differentiation (Münch & Holzer, 2008; Štěpánek
et al., 2007):

I(rp) =
dψ(rp)

drp
(9.10)

9.2.4 Evaporation

During the adsorption process, each equilibrium state depends only on the pressure
and on the solid’s morphology, and is independent of previous states of the con-
densation. However during the desorption process, the evaporation depends on the
previous state of condensed liquid. Due to the ink-bottle effect, small ”neck pores”
block the large pores from evaporation. A blocked large pore remains filled until at
least one of the small ”neck pores” is released. In practice, when the geometry is
disordered and the porous structure is complex, it is difficult to judge the role of
”neck pore”.

We notice that the evaporation occurs only from exterior to interior. It depends
both on the local curvature radius and on the connection to the exterior vapour
reserve. A criterion is then proposed: at a given pressure, after the closing operation,
if a pore is still connected to the exterior vapour reserve, it is released; if the pore
is blocked by condensed liquid or by the solid phase, then it should remain filled.

The above criterion is fulfilled using a morphological operation – hole-filling. We
assume that the borders of the domain ∂D is the vapour reserve. The operation
follows the closing operation, and fills the pores that are not connected to any border
of the domain. Indeed, this operation just eliminates some vapour-liquid interface
and some vapour-solid interface around the blocked large pores, and does not change
the remaining interface. It is still consistent with the Kelvin equation.
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porous media closing hole-filling

Figure 9.3: Closing operation followed by a hole filling operation to block the inner
pores due to ink-bottle effect.

Therefore, there are two steps to obtain an equilibrium state during desorption:
closing and hole-filling. The liquid phase as a function of sphere radius:

L(rp) = H(ϕrp(S)) ∩ P (9.11)

where H(·) is the hole-filling operator defined as:

H(A) = [RAc(∂D ∩ Ac)]c (9.12)

where R is the reconstruction operator. The decreasing pressure during the des-
orption process corresponds to the decreasing radius of the spherical structuring
element. An equilibrium state during the evaporation is simulated, as shown in
Fig. 9.3. The volume filled by the hole-filling operation creates a gap between the
adsorption and the desorption branches, and is the origin of hysteresis. The width
of the gap is the volume of blocked pores.

The morphological simulation of capillary condensation/evaporation have been
validated on some simple geometries – narrow slit pore, ink-bottle pore and cylinder-
sphere grid pore. We now apply our method on random models – Boolean models
and multi-scale models. The discretization effects on the isotherms and the repre-
sentativity of the resulting isotherms have been studied.

9.3 Capillary behavior of simple geometries

9.3.1 Slit pore

Capillary condensation occurs in a narrow slit pore and forms menisci at the edges of
the pore. Even between two flat solid surfaces, where the local vapour-solid interface
already satisfies the Kelvin equation, the condensation still occurs to achieve a lower
energy state. The curvature radius of the menisci follows the Kelvin equation.

We consider a slit pore between two flat surfaces (Fig. 9.4 (A)). When nitrogen
vapour pressure is low, or more precisely, when the Kelvin radius is less than half
of the pore width, no condensation occurs at this stage. When the vapour pressure
increases, the equivalent curvature radius becomes larger than half of the pore width,
condensation occurs and the menisci is formed (Fig. 9.4 (B)).
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(A) (B) (C)

Figure 9.4: Condensation of liquid between two flat surface.

Since the pore is open, without ink-bottle effect, there is no hysteresis loop
in the condensation isotherm, and the adsorption-desorption process is completely
reversible. As shown in Fig. 9.5, fluctuations of the liquid volume, occurring when
the curvature radius is large, are due to discretization effects.
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Figure 9.5: Nitrogen adsorption-desorption hysteresis curve simulated between two
flat surfaces.

It should be mentioned that, according to the Kelvin equation, the narrow slit
pore between two convex or flat obstacles are not necessarily filled by liquid, because
the local vapour-solid interface curvature is zero or negative, which already satisfies
the Kelvin equation. In this case, there are two different equilibrium states that both
satisfy the Kelvin equation: condensation or no-condensation. The Kelvin equation
cannot tell the choice of the two states. The thermodynamics during condensation
and the energy states have strong influence on the choice. In terms of surface energy,
for a wetting solid/liquid interface, the capillary condensation may occur between
two close surfaces to achieve a lower energy state. However, the formation of the
condensed liquid and the meniscus between two surfaces needs an activation energy,
which depends on the distance between them. When the slit pore is narrow enough,
the obtained condensed liquid is realistic – the result predicted by our approach.
If we use the ”virtual capillary condensation” method proposed by Stepanek et
al. (2007), whose condensation depends only on the local curvature, there is no
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condensation in the slit pore, This is one of the main differences between the two
approaches. In this work, we focus only on the capillary behavior governed by the
Kelvin equation. The choice between different equilibrium states remains an open
question, which requires further study with the thermodynamic effects taken into
account.

9.3.2 Ink-bottle pore

An ink-bottle pore consists of two embedded cylindrical pores having the same
center axis (Fig. 9.6). Here we take diameters and heights of the cylinders measured
manually from the paper of Stepanek et al (2007). The radius of the outer cylinder,
denoted by r1, is 50 voxels and that of the inner pore, denoted by r2, is 100 voxels.
We apply the capillary condensation simulation on the ink-bottle pore (3D view in
Fig. 9.6 and obtain the condensation isotherm (Fig. 9.7).

The condensation occurs first at the corners of the inner pore, when the Kelvin
radius rp is inferior to the radius of the outer cylinder pore r1 (Fig. 9.6A). When
the Kelvin radius is larger than r1, the outer pore is filled by condensed liquid,
and the hemispherical menisci is formed with sphere radius r1 (Fig. 9.6B). The
condensation continues in the inner pore with increasing curvature radius, until it
reaches the radius of the maximum sphere rmax that can fit in the pore (Fig. 9.6C).
It should be noted that the rmax is less than r2 because the inner pore is not deep
enough to fit a larger sphere.

During the evaporation process, the Kelvin radius rp decreases. When rp is
inferior to the maximum sphere radius rmax, the inner pore would not be released
because it is not connected to the outer vapour reserve. Vaporization occurs only
on the surface of the outer pore. The radius of the menisci decreases (Fig. 9.6E),
until it reaches r1. The outer cylindrical pore is then released, together with the
inner pore (Fig. 9.6F). Some condensed liquid remains at the corners of the inner
pore. The latter is vaporized with decreasing pressure.

The capillary condensation/evaporation simulation 2D sections on slit pore and
ink-bottle pore is compared with that of (Libby & Monson, 2004) obtained by den-
sity functional theory. The results are qualitatively consistent (no quantitative data
available). The resulting isotherms are also compared with that of Stepanek (Štěpánek
et al., 2007) obtained by the virtual capillary condensation method. Isotherms are
quantitatively very similar regarding the filling pressure of the inner pore (Fig. 9.7
from point (C) to point (D)), the release pressure of the inner pore (Fig. 9.7 from
point (E) to point (F)). However, the obtained pressure when the outer pore is filled
(Fig. 9.7 from point (A) to point (B)) is different in the two approaches. This is be-
cause the two methods predict two different local minima. Both the hemispherical
vapour/liquid interface produced by our method and the cylindrical vapour/solid
interface predicted by the virtual condensation method satisfy the Kelvin equation.
The choice of the equilibrium states depends on other thermodynamic factors, which
needs further investigation. However, our simulation on the ink-bottle pore is con-
sistent with the results obtained by DFT and Monte Carlo simulation by Libby &
Monson, contrary to the method of Stepanek.
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(A) (B) (C)

(D) (E) (F)

Figure 9.6: Ink-bottle pore with condensed liquid in blue and solid in yellow. The
images from (A) to (D) are equilibrium states during adsorption at increasing pres-
sure. The images (E) and (F) are equilibirum states during desorption at decreasing
pressure. The pressures are marked in the Fig. 9.7 (A, ..., E).
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Figure 9.7: Nitrogen adsorption-desorption hysteresis curve simulated on the ink-
bottle pore by our approach. The shape of the liquid-vapour interface of each marked
pressure point is represented in Fig. 9.6 (A, ..., E).
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9.3.3 Cylinder-sphere grid pore

We now consider a periodic porous network that consists of spherical and cylindrical
pores (Fig. 9.8A). There are 8 spherical pores in the system, connected by cylindrical
pores. Only the cylindrical pores are connected directly to the outer space. This
microstructure can be viewed as a porous network with strong ink-bottle effect. The
radius of the cylindrical and spherical pores, denoted by rc and rs, are respectively 24
voxels and 72 voxels. We accordingly expect two peaks in the pore size distribution.

During the adsorption process, the capillary condensation doesn’t occur when
the Kelvin radius rp is inferior to rc. When rs > rp ≥ rc, the cylindrical pores are
filled (Fig. 9.8 (B) and (C)). When rp ≥ rs, the whole porous network is filled by
condensed liquid (Fig. 9.8 (D)). In the simulated isotherm in Fig. 9.9, we see two
steps, corresponding to the two pore sizes. The ink-bottle effect is also reproduced
in this regular pore grid – the liquid in the spherical pores are released only after
the release of the cylindrical pores.

(A) (B)

(C) (D)

Figure 9.8: Condensation in a regular cylinder-sphere grid pore.
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Figure 9.9: Capillary condensation/evaporation isotherm simulated on the regular
pore grid.

9.4 Capillary behavior of Boolean models of spheres

We now consider a disordered random porous medium, namely Boolean model of
spheres. The porosity is the space between the spheres or obstacles, so that the shape
and size of the pore volume fraction is a random distribution. In the simulation, we
take spheres of diameter 50 voxels at a volume fraction of 0.5, and system volume
256 × 256 × 256 voxels. The condensation and evaporation processes are shown
respectively in Fig. 9.10 and Fig. 9.11, together with the isotherm in Fig. 9.12.

Condensation first occurs at the corners of intersections and in the narrow space
between two spheres. With increasing Kelvin radius, small pores are then filled
(Fig. 9.10 (B)), and vapour ”bubbles” are formed inside the microstructure (Fig. 9.10
(C)). When the pressure is high enough, the Kelvin radius is large enough for the
condensed liquid to fill the whole porosity.
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Figure 9.10: 2D sections of equilibrium states during the capillary condensation.
Vapour phase is in black, solid phase is in grey and liquid phase is in white. The
four graphics correspond to increasing Kelvin radius.

During the desorption process, large pores at the boundary that are connected
to the exterior vapour reserve are released first (Fig. 9.11). Because of the ink-bottle
effect, some large pores are blocked inside from releasing. The 3D views of the liquid
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Figure 9.12: Capillary condensation/evaporation isotherms simulated on the
Boolean model of spheres. The markers (A F) correspond to the images in Fig. 9.13.

phase condensation and vaporization are presented in Fig. 9.13, together with the
isotherm in Fig. 9.12.
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Figure 9.11: 2D sections of equilibrium states during the capillary evaporation.
vapour phase is in black, solid phase is in grey and liquid phase is in white. The
four graphics correspond to increasing Kelvin radius.

As shown in the isotherm, a very weak hysteresis is obtained for the one-scale
Boolean model. We then generate three microstructures of Boolean models with the
same system volume, the same volume fraction f = 0.5 and different sphere radii.
The isotherms of the three microstructures are represented in Fig. 9.14: the smaller
the spheres are, the greater the hysteresis is. The difference is an effect of boundary
condition. This is discussed in detail in Sec. 9.5 (representative volume element).

9.5 Representative volume element

9.5.1 Finite-size effects

Clearly hysteresis in sorption isotherm is related to the amount of large pores that
are not well-connected to the boundary of the volume. The system size plays an
important role in determining the connection of the porous network to the exterior
vapour reserve. To study the boundary effect of the microstructure on the isotherms,
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Figure 9.13: Equilibrium states during capillary condensation/evaporation on a
Boolean model of spheres. The images correspond to the markers (A F) in Fig. 9.12
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Figure 9.14: Capillary condensation (blue) and evaporation (red) isotherms of
Boolean models of spheres, of increasing radius R = 60 voxels, R = 40 voxels
and R = 20 voxels (bottom to top).
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we consider three realizations of Boolean models of obstacle spheres of radius 20 vox-
els in different volumes: 2563 voxels, 5123 voxels and 10243 voxels (Fig. 9.15 (A)).
The number of spheres in the three microstructures increase by a factor of 8. A sig-
nificant difference between the three hysteresis is observed: the hysteresis increases
when the number of the spheres increases, i.e. the volume is more representative
of a macroscopic sized mesoporous sample. Furthermore, as expected, the desorp-
tion branch is also smoother when the microstructure is more representative. The
difference is amplified for Boolean models of spheres of radius 10 voxels (Fig. 9.15
(B)). Compared to the desorption branches, the adsorption branches are much less
sensitive to the system size.
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Figure 9.15: Capillary condensation isotherm in three Boolean models of spheres of
different sizes. the volume fraction of solid phase is 0.65. (A) The sphere radius is
20 voxels. The number of spheres are 525 (for V = 2563 voxels), 4205 (for V = 5123

voxels) and 33639 (for V = 10243 voxels). (B) The sphere radius is 10 voxels. The
number of spheres are 4205 (for V = 2563 voxels), 33639 (for V = 5123 voxels) and
about 2.7× 105 (for V = 10243 voxels).

The adsorption branches converge to an asymptotic curve when the number of
spheres becomes very large (Fig. 9.15). However, the corresponding asymptotic
curve has not been obtained numerically for desorption. Computations were not
carried out for samples of size larger than 10243 voxels due to the high memory
requirements. A solution to this problem is proposed in Subsection 9.5.3. The algo-
rithm is implemented in Matlab script, and the most time and memory consuming
process is the distance transform. In our program, the fast algorithm for computing
the exact Euclidean distance transform proposed by Maurer et al. is used. A pair
of equilibrium states, respectively in the adsorption branch and in the desorption
branch at the same Kelvin radius, takes 3 minutes for a system of 10243 voxels
(with CPU 24 × 2.67 GHz and RAM 100 GB). To achieve the convergence of the
desorption branch, a compromise should be made between the resolution and the
volume of microstructure.

9.5.2 Effect of discretization

To study the effect of resolution, we consider a Boolean model of spheres of diameter
40 voxels. A microstructure is realized in volume 10243 voxels. Downsampling is
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then performed on the microstructure, with decimation factors of 2 and 4. The
capillary condensation and vaporization simulation isotherms are shown in Fig. 9.16.
The horizontal axis of the isotherms of the downsampled microstructures have been
corrected by multiplying by their decimation factors. As shown in Fig. 9.16, at
low resolution, the adsorption branches and the desorption branches are both less
smooth and are both shifted to the right, which means an overestimation of the pore
size.
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Figure 9.16: Capillary condensation isotherm in a Boolean models of spheres at
increasing resolutions.

The simulated isotherms are very sensitive both to the system volume and to
the resolution. Computations on very large volumes (more than 20483 voxels) are
not practical.

Changes of the boundary condition (use of a surface or a point where vapour is
injected) and the use of periodic microstructures were considered, but are insufficient
to fix this problem. As observed in experimental isotherms (Fig. 5.1), typical type
IV isotherm in porosimetry (see Sing et al., 1985), the desorption branches remains
at 1 until the decreasing pressure reaches a certain threshold. The same phenomenon
has also been observed in the literature (Liu & Seaton, 1994). Therefore, to address
the problem, we take into account the desorption threshold of the vapour phase
explicitely in the next subsection.

9.5.3 Percolation of the vapour phase

In porosimetry, the pores which are directly connected to the exterior will be released
once the local curvature radius satisfies the Kelvin equation. However, most pores
will remain filled because of the ink-bottle effect. The proportion of the released
exterior pores tends to 0 when the system volume tends to infinity, which is the case
in real experiments. In the simulations, due to the finite system size, the desorption
branch does not remain at 1, but decreases along with the pressure decreasing. We
identify the pressure value when the desorption branch appears to the desorption
threshold of the vapour phase. Thus in capillary evaporation simulation, we should
consider the percolation of the vapour phase as the beginning of the desorption.



102 9.5. REPRESENTATIVE VOLUME ELEMENT

0 10 20 30
r
p
 (voxel)

0

0.2

0.4

0.6

0.8

1

ψ
(r

p)

V = 256
3
 voxel

V = 512
3
 voxel

V = 1024
3
 voxel

0 4 8 12 16
r
p
 (voxel)

0

0.2

0.4

0.6

0.8

1

ψ
(r

p)

V = 256
3
 voxel

V = 512
3
 voxel

V = 1024
3
 voxel

(A) (B)

Figure 9.17: Capillary condensation/evaporation isotherms with percolation correc-
tion of Boolean models of spheres. The volume fraction of solid phase is 0.65. (A)
Sphere radius is 20 voxels. The number of spheres are the same as Fig. 9.15(A). (B)
Sphere radius is 10 voxels. The number of spheres are the same as Fig. 9.15(B).

We accordingly check for the percolation of the vapour phase at each equilibrium
state. Connected components are used: if there exists a connected component of the
vapour phase which reaches the 6 faces of the cube, the vapour phase percolates.
It is possible to consider a smaller number of faces to determine the desorption
threshold since our material is isotropic. This has not been explored in the present
work. Using the information of percolation, the desorption branch is adjusted to
simulate the evaporation in an infinite-size system as follows:

ψ′(r) =

{
ψ(r), if ∃j,∀i ∈ {1, 2, ..., 6}, {CG(r)}j ∩ (∂D)i 6= ∅
1, otherwise

(9.13)

where ψ′ is the normalized volume of condensed liquid for an infinite-size system,
(∂D)i, i = 1, 2, ..., 6 are the six faces of the cubic domain and CG(r) is the set of
labeled connected components of the vapour phase G(r), which reads:

G(r) = {P c ∪ L(r)}c (9.14)

For comparison, we take the same Boolean microstructures as studied in Fig. 9.15,
and compute the corrected desorption branch using percolation (Eq. 9.13). The
desorption branches of infinite-size systems are shown in dotted lines in Fig. 9.17.
Figure 9.17(A) shows that the desorption threshold of the vapour phase in a Boolean
model of spheres varies with respect to microstructure size. Fig. 9.17(B) shows that
the desorption threshold converges with increasing representativity, and so do the
desorption branches.

Does the discretization influence the value of desorption threshold? The desorp-
tion thresholds of the microstructures in Fig. 9.16 are estimated by simulation, with
corrected desorption branch in dotted lines in Fig. 9.18.
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Figure 9.18: Capillary condensation/evaporation isotherms with percolation correc-
tion of Boolean models of spheres of difference radius. The volume fraction of solid
phase is 0.65. The numbers of spheres are the same 33639.

Results shown in Fig. 9.18 demonstrate that for the same number of spheres,
a worse resolution leads to an over-estimation of the desorption threshold. The
isotherms obtained with the two higher resolution are close to one another. Smoother
curves are obtained for the highest resolution. In the following, we take the highest
resolution curves as that representative of a Boolean model of spheres. The latter
is used for comparison with other models.
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Figure 9.19: Capillary condensation/evaporation isotherms of a Boolean model of
spheres with volume fraction of solid phase 0.65. The sphere radius is 20 voxels and
the microstructure volume is 10243 voxels.
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9.6 Capillary behavior of random models

9.6.1 Boolean models

We examine how the obstacle shapes affect the capillary condensation isotherms of
Boolean models. Instead of spheres, cylinders with different ratio base/height are
considered. These models are compared at the same volume fraction of solid phase
p, the same specific surface area SV , the same microstructure size of 5123 voxels and
the same resolution. The following obstacle shapes are considered:

• spheres of diameter 20 voxels

• oblate cylinders of diameter 40 voxels and height 10 voxels

• intermediate cylinders of diameter 20 voxels and height 20 voxels

• elongated cylinders of radius 15 voxels and height 60 voxels

The isotherms obtained from the condensation/vaporization simulation are rather
close (Fig. 9.20). It is explained by the fact that when the obstacles are uniformly
dispersed in the 3D space, the pore size in a Boolean model is mainly determined
by the number of obstacles in the space, and is not sensitive to the shape of obsta-
cles. When the volume fraction of the obstacles is fixed, the number of obstacles is
strongly influenced by the specific surface area, that’s to say, the higher the specific
surface area is, the smaller the obstacles are, the more obstacles we need to satisfy
the volume fraction, and the smaller the pores’s sizes are. For a Boolean model, if
the volume fraction and the specific surface area are fixed, not much variation in
the pore size distribution is observed. It gives us the insight that if we want more
freedom in manipulating the pore size distribution by microstructure modeling, a
one-scale Boolean model is not sufficient. Multi-scale models should be considered.
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Figure 9.20: Capillary condensation/evaporation isotherms in a Boolean models of
different obstacle shapes.
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9.6.2 Two-scale model of spherical exclusions

We now focus on the capillary behaviors of multi-scale random models, in order to
explore the effects of the different scales and parameters of the microstructure on
the simulated isotherm and in particular on the hysteresis. We consider first the
intersection of the complementary of two Boolean model of spheres, constructed as
follows:

• A Boolean model of spheres of radius 36 voxels, with porous phase in spheres,
denoted by Xc, of volume fraction pXc = 25%

• A Boolean model of spheres of radius 12 voxels, with porous phase in spheres,
denoted by Y c, of volume fraction pY c = 25%

• A two-scale model of spherical pores, with porous phase, denoted by Ac and
defined by:

Ac = Xc ∪ Y c (9.15)

The volume fraction of 25% is chosen to make sure that the spheres do not
percolate (the desorption threshold of a Boolean model is about 29%). The volume
fraction of the porous phase Ac of the two-scale model is therefore 1− (1− 25%)2 =
43.75%. The porous phase presumably percolates, but the small spherical pores
will block large pores during the desorption. The model is a probabilist version
of the combination of regular sphere-cylinder pores in Fig. 9.8. Its behavior in
capillary condensation simulation is shown in Fig. 9.21. The rectangle hysteresis is
reproduced, very similar to the curves in Fig. 9.8. The small spherical pores play
the role of valves, and the critical pore size of the microstructure is the radius of the
small pores.
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Figure 9.21: Capillary condensation/evaporation isotherm of the two-scale model A.
The markers (A, B, C) on the desorption branch of the finite-size model correspond
to the images in Fig. 9.22.

From point (A) to (B) in Fig. 9.22, the large pores connected to the exterior are
released, but the entire vapour phase does not percolate. Percolation occurs when
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(A) (B) (C)

Figure 9.22: 2D sections at different steps of the desorption process on the two-scale
model A. (A) rp = 37 voxels (B) rp = 36 voxels and (C) rp = 12 voxels correspond
to the markers on the desorption branch of finite-size model in Fig. 9.21.

the curvature radius reaches rp = 14 voxels, before the release of most of the small
pores. Indeed the small pores enlarge the intersection zones between the largest
pores and facilitate the pore connections.

9.6.3 Two-scale model with hardcore exclusions

We then try to eliminate the direct connection between the large pores, to highlight
the role of the connection functionality of the small pores. We add a repulsion
distance between the large spherical pores, and the two-scale model is constructed
in the following way:

• A hardcore model of spheres of radius 36 voxels with repulsion distance 36
voxels. The porous phase, denoted by Hc, has volume fraction pHc = 25%.

• A Boolean model of spheres of radius 12 voxels, with porous phase in spheres,
denoted by Y c, of volume fraction pY c = 25%.

• A two-scale model of spherical pores, with porous phase denoted by Bc, is
considered. It is defined as:

Bc = Hc ∪ Y c (9.16)

The capillary condensation isotherms simulated on the two-scale model is shown
in Fig. 9.23. From (A) to (B) in the desorption process, only the pores directly
connected to the boundaries are released. The interior of the microstructure remains
filled by liquid, until the Kelvin radius reaches the radius of the small spherical pores,
and then the whole porosity in the microstructure percolates.

The comparison of Fig. 9.24 (B) and Fig. 9.22 (B), shows that the released pores
are located along the boundaries of the volume. It means the repulsion distance
reduces the connections between the large pores. The isotherms of model B is also
smoother with less perturbation.

9.6.4 Two-scale model with Poisson-fiber exclusions

In the above cases, the desorption threshold is determined by the radius of the small
pores. The Poisson fibers could also be used to play the role of valves, replacing the
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Figure 9.23: Capillary condensation/evaporation isotherm of the two-scale model B.
The markers (A, B, C) on the desorption branch of the finite-size model correspond
to the images in Fig. 9.24.

(A) (B) (C)

Figure 9.24: 2D sections at different steps of the desorption process on the two-scale
model B. (A) rp = 36 voxels (B) rp = 35 voxels and (C) rp = 12 voxels correspond
to the markers on the desorption branch of finite-size model in Fig. 9.23.

spherical pores. We consider the following two-scale model:

• A Boolean model of spheres of radius 36 voxels, with porous phase, denoted
by Xc, of volume fraction pXc = 25%.

• A model of Poisson fibers of circular base radius 12 voxels, with porous phase,
denoted by F c, of volume fraction pF c = 25%.

• A two-scale model of spherical and cylindrical exclusions, with porous phase
denoted by Cc, is considered. It is defined as:

Cc = Xc ∪ F c (9.17)

The porosimetry isotherm simulated on the two-scale model is shown in Fig. 9.25,
together with the 2D sections illustrated in Fig. 9.26.

The capillary behaviors of the above two-scale models of exclusions showed a
perspective that pore size distribution can be manipulated using the combination of
multiple scales. The method is further developed in Chapter 10.
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Figure 9.25: Capillary condensation/evaporation isotherm of the two-scale model
C.
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Figure 9.26: 2D sections during the desorption process of two-scale model C with
Poisson fibers. (A) rp = 37 voxels (B) rp = 36 voxels and (C) rp = 11 voxels
correspond to the markers on the desorption branch of finite-size model in Fig. 9.25.

9.6.5 Two-scale model of inclusions and exclusions

We consider two two-scale models: First, a two-scale model of the intersection of
two Boolean models of spheres of much different scales, with the solid phase denoted
by D1, is constructed. The larger scale plays the role of aggregations, while the
small scale plays the role of primary grains. The model is a realistic description for
materials like mesoporous alumina (Wang et al, 2015).

D1 = X1 ∩X2 (9.18)

where X1 is the solid phase of a Boolean model of spheres of radius 40 voxels, at
volume fraction pX1 = 0.8062, and X2 is the solid phase of a Boolean model of
spheres of radius 5 voxels, at volume fraction pX2 = 0.8062. Therefore, the volume
fraction of the solid phase D1 is: pD1 = pX1pX2 = 0.65.

Second, a two-scale model of the intersection of the complementary of a Boolean
model of large spheres and a Boolean model of small spheres, with the solid phase
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denoted by D2, is constructed in the following way:

D2 = Y c
1 ∩ Y2 (9.19)

where Y1 is the solid phase of a Boolean model of spheres of radius 20 voxels, at
volume fraction pY1 = 0.1, and Y2 is the solid phase of a Boolean model of spheres
of radius 5 voxels, at volume fraction pY2 = 0.7222. Therefore, the volume fraction
of the solid phase D2 is: pD2 = (1− pY1)pY2 = 0.65.

For comparison purpose, we add a one-scale Boolean model of sphere of radius 5
voxels, with the solid phase denoted by D3 at volume fraction pD3 = 0.65. The three
models have the same volume fraction of solid phase p = 0.65. The parameters of
D1 are chosen so that the number of large spheres in the cubic volume is the same as
the number of small spheres in a large sphere. The volume fraction of large spheres
in D2 is chosen so that the large spheres do not percolate.

The simulated condensation/vaporization isotherms are shown in Fig. 9.27. At
low pressure, a quick filling of the small pores is observed, and the three models
have the similar behavior quantitatively. After that the pore space between small
spheres in the model D1 have been filled, condensed liquid begins a slow filling of
the larger pores along with increasing pressure. The isotherm well combines the
same behavior of two Boolean models at different scales.

In the model D2, the scale effect is more evident. After the quick filling of
the small pores, the large pores remain empty, until the Kelvin radius reaches the
radius of the large spherical pores. At the beginning of the desorption process, the
large spherical pores are partially released (those connected to the exterior vapour
reserve). The pores between small spheres play the role of valves to control the
release of the large spherical pores. Note that the desorption threshold of D1 is
much larger than D2, because the complementary of a Boolean model is in good
connection.
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Figure 9.27: Capillary condensation isotherm simulated on one-scale and two-scale
models.
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(A) (B)

Figure 9.28: 2D sections of capillary condensation simulation during the adsorption
at rp=7 voxels. (A) Two-scale model D1. (B) Two-scale model D2.

9.7 Conclusion

In this chapter, a procedure has been proposed to simulate the capillary condensation
and evaporation in porous media. The method is entirely geometrical and relies on
morphological operators. The latter is validated on simple geometries like slit pore
and ink-bottle pores. The results are in agreement with the literature. The method
is also applied to random models of porous media. Boundary effects introduce strong
finite-size effects on random media. These effects have been corrected by taking into
account the desorption threshold of the vapour phase.

The capillary behaviors of various random models have been simulated and in-
vestigated. Isotherms are not sensitive to the shape of obstacles in Boolean models.
With the union and intersection of two Boolean models of spherical exclusions of
different sizes, the ”ink-bottle” effect is reproduced in the 3D disordered porous
network. The repulsion distance between the spherical pores helps to control the
size of the ”neck-pore”, and thus controls the desorption threshold. These prelimi-
nary results demonstrate perspectives in adjusting multi-scale model parameters to
reproduce a prescribed isotherm. The topic is further investigated in Chapter 10.



Chapter 10
Microstructure modeling with porosimetry
constraint

In chapter 9, the capillary condensation and evaporation occuring in Boolean models
and two-scale Boolean models have been studied. A methodology has been employed
to limit microstructure models with prescribed pore size. Use has been made of
exclusion pores with spherical shapes.

This chapter further explores ways to control porosimetry isotherms with mi-
crostructure modeling. We start with a presentation of the experimental porosime-
try isostherms of mesoporous alumina in Sec. 10.1. A multi-scale Boolean model
with repulsion is used to reproduce the pore size distribution and the desorption
threshold in Sec. 10.2. The behaviors of microstructures of mesoporous alumina are
studied in Sec. 10.3. The effect of multilayer adsorption on the solid interface is
talked about in Sec. 10.4. A three-scale model of platelets is proposed in Sec. 10.5
aiming at reproducing the experimental isotherms. In the last section, the limi-
tations of the method is discussed. The parameters of the three-scale model are
identified again and validated using TEM images.

10.1 Isotherms of mesoporous alumina

10.1.1 Experimental isotherm

The samples of mesoporous alumina under study have been characterized by nitrogen
porosimetry at IFPEN, with isotherms shown in Fig. 5.1. The porosimetry curves of
the three samples are close to each other. They follow typical type IV isothemrs (Sing
et al., 1985) with gradual adsorption branches and steep desorption branches. The
pressures for adsorptions and desorptions are also similar, which means that they
have similar pore size distribution. The only evident difference is that the pore
volume fraction of sample 2 is about 5% lower than two other samples.

10.1.2 Preprocessing with the FHH equation

The experimental isotherms contains information on multilayer adsorption, capillary
condensation and liquid compressing. To highlight the capillary condensation, we
use the method proposed by Cimono et al. (2013) to preprocess the isotherms.

111
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Figure 10.1: Fit of the adsorption branch in nitrogen porosimetry of sample 1 by
Eq. 10.2.

The method removes the effects of liquid compressibility at high pressure with a
linear fit, and removes the effects of multilayer nitrogen molecule adsorption at low
pressure with the FHH equation. Let us recall the principles of the method. First,
a linear fit of the high pressure part of the isotherm is defined, denoted Vc(χ) ∝ χ,
where χ = p/p0 is the relative pressure. Second, the low pressure part is defined as
Vs(χ) = S · h(χ), where S is the specific surface area, and h(χ) is the thickness of
the multilayer molecule film, usually modelled by the FHH equation (Cimino et al.,
2013)

h(χ) =

[
K

− logχ

]1/m

(10.1)

The prefactor K and exponent m are constants related to the chemical nature of
the nitrogen-alumina interface. The equation is identified by curve fitting for each
isotherm. Eq. 10.1 is rewritten as:

log Vs(χ) = − 1

m
log (− logχ) + logS +

1

m
logK (10.2)

We use Eq. 10.2 to fit the linear part of the original experimental isotherms (denoted
V (χ) shown in Fig. 10.1 A). Therefore, the FHH equation Vs(χ) with identified
parameters is obtained:

− 1

m
= −0.465

logS +
1

m
logK = 0.402

(10.3)

The result in Eq. 10.3 is sufficient to draw Vs(χ) with Eq. 10.2, without knowing
the exact values of K and m. The linear curve fit result is shown in Fig. 10.1 for
sample 1. The same procedure is performed on the other two samples.

Furthermore, in the rest of this work, we denote the filtered and normalized
isotherms by:

Q(χ) =
Vc(χ)− V (χ)

Vc(χ)− Vs(χ)
(10.4)

The quantity Q(χ) is plotted as a function of χ for the three samples in Fig. 10.2.
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Figure 10.2: Nitrogen porosimetry isotherms of the three samples normalized with
Eq. 10.4, together with pore size distribution estimated with Eq. 9.10.

10.1.3 Pore size distribution

The pore size distribution was defined in Eq. 9.10. The pore size distributions of the
three samples I(r) are estimated using the normalized isotherm Q(r). The results
are shown in Fig. 10.2, and are close to each other. In this work, we take without
loss of generality the sample 1 as experimental reference.

10.2 Isotherm simulation with multi-scale Boolean

models

10.2.1 Adsorption branch simulation with Boolean models

In the experimental isotherms, the pressures for cumulated volume is discretized.
For each pressure pi, we obtain the corresponding curvature radius ri from the Kelvin
equation. The cumulated volume fraction of condensed liquid is given at a set of
values: Qi = Q(ri). Therefore, the pore size distribution intensity is: Ii = ∆Qi/∆ri.

The capillary behavior of two-scales models of spherical exclusions contains two
peaks (see Fig. 9.21). It suggests that the union of a series of Boolean models of
spherical exclusions with a radius distribution allows one to reproduce various pore
size distributions. We thus introduce the microstructure:

S =
n⋂
j=1

Bc
j (10.5)
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Figure 10.3: Prescribed pore size distribution yj of a multi-scale model of Boolean
models, deduced from the experimental reference of sample 1.

where S is the solid phase, Ω\S is the porous phase, Bj, (j = 1, 2, ..., n) are Boolean
models of spheres. The number n is related to the number of discretized pressure
in the experimental isotherms. The sphere radii (denoted by rj) and the volume
fraction (denoted by pj) for each Boolean model Bj need to be identified. We use
information from the experimental pore size distribution (Fig. 10.2) to set these
variables rj and pj.

In the experimental isotherm ψ − p/p0 plot (Fig. 5.1), the spacing is constant
along the relative pressure axis. However in the ψ−rp plot (Fig. 10.2), the points at
low pressure are more dense than that at high pressure (Fig. 10.3 A). We accordingly
regularize the spacing by combining close peaks. In the range of rp, we generate a
series of points {xi} with spacing of 0.5 nm. The spacing equal to the voxel length
is chosen. The series xi is then shifted to the closest experimental Kelvin radius.
The resulting Kelvin radius serve as the sphere radius {rj} for the Boolean models:

rj = arg min
rk

|xj − rk| (10.6)

The same elements in the series {rj} are eliminated and the series is sorted. This
preprocessing improves the regularity of the radius spacing and is consistent with
the spacing in sparse zones (Fig. 10.3).

The resulting model S is expected to have the same pore size distribution as Ii,
with intensity denoted by yj:

yj =

∑
rj−1<ri<rj

Ii∆ri∑
rj−1<ri<rj

∆ri
=
Q(rj)−Q(rj−1)

rj − rj−1

(10.7)

The model (Eq. 10.5) would have the expected pore size distribution yj with
pj = yj, if there is no intersection between the Boolean models. However, the
intersections exist and modify the pore size. The intersected regions between two
pores of different sizes belong to the large pore in terms of pore size distribution.
To account for the intersection of sphere, we have:

yj(rj − rj−1)q = pj − pj
n∑

k=j+1

yk(rk − rk−1)q (10.8)
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Figure 10.4: Volume fractions of Boolean models of spheres deduced from Eq. 10.10
(blue) and Eq. 10.11 (orange).

where yk(rk − rk−1)q is the volume fraction of pores of radius rj, which satisfies:

n∑
k=1

yk(rk − rk−1) = 1 (10.9)

and q is the experimental pore volume fraction measured by pycnometry, and is
also the pore volume fraction of the multi-scale model S. The second term on the
right of Eq. 10.8 represents the intersections. From Eq. 10.8, we obtain the volume
fraction pj for each Boolean model Bj (Fig. 10.4 blue bars):

pj =
yj(rj − rj−1)q

1−
∑n

k=j+1 yk(rk − rk−1)q
(10.10)

Once we have the rj and pj, the multi-scale model S is determined. A microstructure
was realized and its capillary behavior is studied. The 2D sections during adsorption
and desorption are represented in Fig. 10.5 and Fig. 10.6 respectively, together with
isotherms in Fig. 10.7 (a). During the adsorption process, the pores of different
sizes are filled gradually from small pores to large pores. The adsorption branch has
the same shape as the experimental isotherm, but is shifted to the right. The shift
represents an overestimation of the pore size.

(A) (B) (C)

Figure 10.5: 2D sections during adsorption process. (A) r = 0 nm (B) r = 6 nm and
(C) r = 12 nm. Vapour phase is in black, solid phase is in grey and liquid phase is
in white.
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(A) (B) (C)

Figure 10.6: 2D sections during desorption process. (A) r = 9 nm (B) r = 8 nm and
(C) r = 6 nm. Vapour phase is in black, solid phase is in grey and liquid phase is
in white.
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Figure 10.7: Isotherms of capillary condensation-evaporation simulated with (a)
initial parameters and (b) identified parameters by Eq. 10.11.

Parameters identification

The overestimation of the pore size is because of the approximation by Eq. 10.8,
which did not take the change of size in the small pores into account. As shown
in Fig. 10.8, the intersections do not only take away a part of the small pores, but
also change the pore size distribution inside the small pores (the orange part in
Fig. 10.8).

The intersection effect increases the volume of large pores, and decreases that of
small pores. To compensate the effect, a linear empirical correction on the volume
fractions pj is proposed:

p′j = c(rj)pj (10.11)

c(rj) = krj + b (10.12)

where k and b are empirical parameters. The volume fractions of pores of different
sizes is modified accordingly:

y′j(rj − rj−1)q = p′j − p′j
n∑

k=j+1

y′k(rk − rk−1)q (10.13)
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Figure 10.8: Schematic illustration of the intersection effect on the pore size. Grey:
solid phase. Blue: porous phase of size r. Orange: porous phase of intermediate
size between r and R. White: porous phase of size R.

We now minimize the difference between the simulated adsorption branch and
the experimental reference. Manual dichotomy is used to optimize k and b, described
as follows. The parameter k is optimized first to increase the volume of small pores
and to decrease the volume of large pores. Once the simulated adsorption branch
fits the experimental isotherm, the parameter b is adjusted to compensate the total
pore volume fraction.

After about 10 rounds of parameter tuning, we fix the values k = −0.09 nm−1

and b = 1.64. The corrected volume fractions p′j are shown in Fig. 10.4 (orange bars),
together with the isotherms of capillary condensation simulation on the model in
Fig. 10.7 (b). The adsorption branch is close to the experimental isotherm. However,
the desorption branch is still far away, especially the neck-pore size. This problem
is addressed in the next subsection.

10.2.2 Desorption branch simulation with hardcore model

In order to reproduce the desorption branch, based on the Boolean model proposed
in subsection 10.2.1, it is necessary to reduce the connection of the pores and decrease
the neck-pore size. We add a repulsion distance between the large spherical pores.
The smallest pores remain connected and play the role of ”neck pores”. This multi-
scale hardcore model is defined as:

T =

(
m⋂
j=1

Bc
j

)⋂
Hc (10.14)

where T is the solid phase of the microstructure, Bj is a Boolean model of spheres
of radius rj and volume fraction pj, m is the number of Boolean models and H is
the solid phase of the multi-scale hardcore model:

H =
n⋂

j=m+1

Rc
j (10.15)
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where Rj is a one-scale hardcore model of spheres of radius rj, and satisfies:

Rk ∩Rl = ∅, ∀ k, l ∈ N ∩ [m+ 1, n] and k 6= l (10.16)

In practice, one-scale hardcore models are generated in a sequence from the
largest pores to the smallest pores. The domain of the repulsive point process for
hardcore model Rk is denoted by Dk:

Dk =

{
δrk

(
n⋃

j=k+1

Rj

)}c

(10.17)

where δrk(·) is the dilation operator by a spherical structuring element of radius
rk. For each repulsive point process, the repulsion distance is set to be the sphere
radius rk. Thus, any two spheres in H do not intersect, which makes it a multi-scale
hardcore model. The multi-scale model H is then intersected with the Boolean
models of small spheres, and results in the model T . The small spherical pores
connects the large repulsive pores and play the role of ”bottle neck” as in the ink-
bottle pore.

The multi-scale model T have the following parameters: the volume fractions
pj of the Boolean models and of the one-scale hardcore models, and the threshold
m from which the spherical pores become repulsive. The volume fractions pj are
determined in a similar way as in Eq. 10.8:

yjq(rj − rj−1) =

{
pj j ≥ m

pj − pj
∑n

k=j+1 ykq(rk − rk−1) j < m
(10.18)

where yk(rk − rk−1) satisfies always Eq. 10.9. The equation is split into two cases
because there is no intersection between the large hardcore pores. Consequently,
the volume fractions of the one-scale models are determined by:

pj =

{
yjq(rj − rj−1) j ≥ m

yjq(rj−rj−1)

1−
∑n

k=j+1 ykq(rk−rk−1)
j < m

(10.19)

We now fix the value of the parameter m for the hardcore model. From the experi-
mental porosimetry isotherms (Fig. 10.2), the desorption threshold is around 6 nm,
so the value of rm is initially set to be 6 nm.

The results of capillary condensation and evaporation simulation is shown in
Fig.10.9 (a). As expected, the isotherms show a much lower neck-pore size than
that in Fig. 10.7 (b). The low neck-pore size is also observed on the 2D sections
during capillary evaporation simulation (Fig. 10.10): the evaporation occurs only at
the boundary before the pressure reaches the desorption threshold.
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Figure 10.9: Isotherms of capillary condensation-evaporation simulation with (a)
initially chosen parameters and (b) optimized parameters by Eq. 10.11.

(a) (b)

Figure 10.10: 2D sections of capillary evaporation on multi-scale hardcore model.
(a) rp = 5.5 nm, (b) rp = 5 nm.

The simulated adsorption and desorption branches of model T are quite close to
the experimental data. However, the pore volume fraction of the resulting model is
0.63, lower than the experimental reference of 0.69. Eq. 10.11 is used to adjust the
parameters. By manual dichotomy, we find k = −0.0034 nm−1, b = 1.18 and rm =
6.4 nm for the identified multi-scale hardcore model, with a pore volume fraction of
0.69 and isotherms shown in Fig.10.9 (b).

10.3 Capillary behavior of microstructures of meso-

porous alumina

Two microstructure models of mesoporous alumina have been previously constructed:
the tomographic reconstruction and the two-scale model of platelets. In this section,
we study their capillary behaviors.

10.3.1 Tomographic reconstruction

The tomographic 3D image (Fig. 5.5) was reconstructed upon a small piece of
crushed sample of sample 1 (Fig. 10.2 A). The reconstruction image size is 328
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(A) (B)

(C) (D)

Figure 10.11: 2D sections during the capillary condensation simulation on the to-
mographic reconstruction of the mesoporous sample. (A) rp = 0 nm, (B) rp = 3.5
nm, (C) rp = 7 nm, (D) rp = 10.5 nm.

nm ×290 nm ×257 nm at resolution 0.66 nm3 per voxel. It is a binary image with
pore phase in 0 and solid phase in 1. Since the shape of the microstructure is irreg-
ular, the cuboid container can not represent the volume of the microstructure. The
envelop and the total volume of the microstructure was obtained in chapter 8, by
closing and geodesic erosion operations.

The capillary condensation and evaporation simulation was performed on the mi-
crostructure, with 2D sections in Fig. 10.11. The morphological simulation method
adapts on the tomographic 3D image. The condensation occurs first on the interface
of small curvature radius and in the narrow space between solid walls. The menis-
cus then propagates gradually from the small pores to large pores, until the whole
porosity is filled by condensed liquid.

Simulated isotherms are shown in Fig. 10.13 in red. The adsorption branch
increases slowly until rp = 17 nm, which means a smooth pore size distribution.
However, it is observed on the 2D sections that some of the pores larger than 13
nm, are very close to, or directly part of the contour of the sample. It is possible
that some of these pores were formed during the sample crushing by mechanical
damage. The weak hysteresis means a good connection of the pore phase to the
exterior, because of the small system volume and the irregular shape. For the same
reason, it is impossible to obtain any information about desorption thresholds. The
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tomographic reconstruction is not representative enough to simulate the capillary
condensation and evaporation behavior.

10.3.2 Two-scale model of platelets

A two-scale model of platelets was proposed in chapter 8, based on TEM images.
The model consists of aggregates of aligned platelets and individual randomly ori-
ented platelets.

We perform the capillary condensation & evaporation on a realization of the
identified model, with 2D sections shown in Fig. 10.12. Fig. 10.12(A) is a 2D sec-
tion of the microstructure. The capillary condensation occurs first in the concave
corners of intersected platelets. Then the narrow slit space between aligned pores
are filled by condensed liquid. The meniscus propagates gradually from small pores
to large pores. The large pores locates usually between the aggregates (black zones
in Fig. 10.12(B)). When the Kelvin radius reaches 10 nm, the whole pore phase is
filled.

During the desorption, the pore phase does not percolate until the Kelvin radius
reaches 5 nm and lower. In Fig. 10.12(F), only pores at the boundaries are released.
The ink-bottle effect prevent the inner pores from releasing. If we compare the 2D
sections Fig. 10.12 (B) and (E), when the pore phase percolates at rp = 5 nm, there
are still pores that are blocked by the ”neck pores”, especially the pores surrounded
by aggregates.

The isotherms of the identified two-scale model is shown in green in Fig. 10.13.
Compared to the experimental isotherms, its pore size distribution is very narrow
with smaller average pore size. Indeed, the porosity in the identified two-scale
model consists of small regions located in-between platelets, rather than aggregates
of platelets. According to the result of subsection 9.6.1, the pore size in a Boolean
model is dominated by the pore volume fraction. The pore size distribution inside
the aggregates and in the complementary is rather the same. To widen the range
of the pore size distribution, we ought to enlarge the difference between the platelet
volume fractions inside and outside the aggregates. This way is explored in the next
subsection 10.3.3 and further developed in section 10.5.

Another significant difference observed in Fig. 10.13 is that at the origin of the
adsorption branches, the slope of the experimental isotherm is zero, but the other two
simulated adsorption branches show high slopes. This is because the experimental
isotherms have been preprocessed to remove the effects of multilayer adsorption of
nitrogen molecules on the solid surface using the FHH equation, while the simulated
isotherms have not been preprocessed. Although all isotherms in Fig. 10.13 are
related to capillary behavior, the initial step eliminates a non-negligible volume
fraction (about 23%) of the porosity. This step changes the morphology of the
porous phase. The simulation of multilayer adsorption is studied in section 10.4.
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(A) adsorption rp = 0 nm (D) desorption rp = 4 nm

(B) adsorption rp = 5 nm (E) desorption rp = 5 nm

(C) adsorption rp = 6 nm (F) desorption rp = 6 nm

Figure 10.12: 2D sections during the capillary condensation simulation on the iden-
tified two-scale model of platelets of mesoporous alumina. Left column: adsorption.
Right column: desorption.
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Figure 10.13: Comparison between the hysteresis of experiment and simulations.

10.3.3 Random models of platelets

In order to explore the limits of the two-scale model of platelets proposed in chap-
ter 8 on capillary behavior, we consider the following generalized random models of
platelets of the same shape (D1 = 6.8 nm, D2 = 3.3 nm, D3 = 2.0 nm, D4 = 2.0
nm) and of the same pore volume fraction 69%.

1. a two-scale model, denoted by P1: a Boolean model of spheres is used to model
to aggregates, aligned platelets are intersected inside the spheres, the comple-
mentary of the aggregates is empty. The parameters on spatial dispersion are
pA = 0.49, pS = 0.65, rS = 16 nm. 2D sections are available in Fig. 10.14 (C)
and (D).

2. a two-scale model, denoted by P2: a Boolean model of spheres is used to
model to the large pores, randomly-oriented platelets are dispersed in the
complementation of the spherical pores. The parameters on spatial dispersion
are pA = 0, pS = 0.28, rS = 16 nm. 2D sections are available in (Fig. 10.14)
(E) and (F).

3. a reference Boolean model, denoted by P0, of platelets of random orientation
uniformly distributed on the unit sphere. The parameters on spatial dispersion
are pA = 0, pS = 0, rS = 0 nm. 2D sections during capillary condensation &
evaporation simulation are shown in Fig. 10.14 (A) and (B).

The platelet shape and size are chosen so that the representativities of structures of
different scales are ensured to the maximum, and at the same time the microstruc-
tures have sufficient resolution.

The capillary isotherms of these microstructures are shown in Fig. 10.15. The
porosity in P0 are the space between the randomly oriented platelets, which are
rather small. The range of the pore size distribution is also narrow (from 1 to 5
nm). The percolation is achieved when half of the pores are released (rp = 3 nm).
The porosity in P1 are either the space between the aligned platelets, or the space
between the aggregates. The latter is much larger than the former. The distribution
range is also larger than the former (from 5 to 15 nm). The vapour phase percolates
through the complementary of the aggregates at rp = 7 nm. The pores in P2 are
either the space between the randomly oriented platelets, or the spherical exclusions.
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(A) P0, adsorption, rp = 4 nm (B) P0, desorption, rp = 4 nm

(C) P1, adsorption, rp = 8 nm (D) P1, desorption, rp = 8 nm

(E) P2, adsorption, rp = 8 nm (F) P2, desorption, rp = 8 nm

Figure 10.14: 2D sections of equilibrium states during the condensation & vaporiza-
tion simulation on random models of platelets P0, P1 and P2.
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Figure 10.15: Capillary condensation and evaporation isotherms simulated on ran-
dom models of platelets.

In this model, the adsorption branch increases rapidly with rp between 0 nm and 3
nm and between 11 nm and 13 nm. They correspond to the space between platelets
and the spherical exclusions respectively. The percolation of the vapour phase is
more difficult to achieve in P2 than in P1. This is because the spherical exclusions
are surrounded by the platelets. The small pores play the role of ”neck pores”,
which strengthen the ink-bottle effect.

None of the two-scale models has the same capillary behavior as the experimental
isotherm shown in Fig. 10.13 (blue). The main differences include:

• The desorption threshold of the experimental isotherm is so low that more
than half of the porosity is blocked by neck pores.

• The adsorption branch of the experimental isotherm is smooth, without sig-
nificant scale separation in pore size distribution.

The first difference means that there exists structures and pores of large scales,
but these pores do not contribute to the percolation of the vapour phase. This
phenomenon has not been observed in the two-scale models P1 and P2.

The second difference is because the preprocessing eliminates the multilayer ad-
sorption from experimental isotherms with FHH equation. In mesoporous alumina,
the multilayer adsorption (rj < 2 nm) takes a non-negligible percentage of con-
densed liquid at about 25%, as shown in the isotherms without preprocessing in
Fig. 10.16. The pore size distribution shows two peaks: one at very low pressure,
the other at rp = 6 nm. The first peak corresponds to the multilayer adsorption,
the simulation of which is detailed in the next section.

10.4 Multilayer adsorption simulation

The phenomenon of physical adsorption of nitrogen molecules on a solid surface is
well known. Nitrogen molecules are adsorbed on the solid walls, to minimize the
interface energy. The molecules also approach the existing molecule layers, and
forms multilayer molecules on the solid surface, independent of surface curvature. It
happens at low pressures, before the Kelvin equation is valid, and the phenomenon
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Figure 10.16: Pore size distribution derivative of the experimental adsorption branch
of sample N◦.1 by Eq. 9.10. The sample is preprocessed with only the linear fitting
of liquid compressing Vc(χ).

still takes effect at high pressure. In the BJH method for pore size distribution
analysis, the pore size is determined by both the Kelvin radius and the multilayer
thickness.

According to the BET theory, the number of molecules on the solid interface
follows a random distribution. The average number of molecules or layers increases
with increasing pressure. We use a dilation operation, denoted δ(·), with a spher-
ical structuring element to simulate the average thickness of the layers, before the
simulation of capillary condensation:

Lrt = δrt(S) ∩ P (10.20)

where Lrt is the multilayer nitrogen molecules, S is the solid phase, P is the accessible
porosity and rt is the size of the structuring element, corresponding to the thickness
of the multilayer adsorption. In practice, the multilayer adsorption is thin, and the
spherical structuring element is small and discretized. The spherical structuring
element can be replaced by a 3D cross or by the Euclidean distance transform with
threshold. In this work, we choose the latter for a better precision.

The multilayer adsorption is followed by the capillary condensation. Its simula-
tion is performed based on the dilated microstructure S ∪ Lrt . The liquid phase in
the microstructure is then obtained by the closing operator:

L(rp) = ϕrp (S ∪ Lrt) ∩ P (10.21)

It needs to be mentioned that the capillary condensation simulation wouldn’t begin
from Kelvin radius equal to zero. This is because at low pressure, the thermody-
namic multilayer adsorption, not the capillary condensation, dominates the volume
of condensed liquid. It is well known that, the Kelvin equation is only valid for
Kelvin radius above 2 nm (Takei et al., 1997). The domain of Eq. 10.21 is accord-
ingly set to be rp ≥ 2 nm. The local pore size, denoted r, is then determined by
both the multilayer thickness and the Kelvin radius:

r = rt + rp (10.22)

The simulation method by dilation is illustrated in a cylindrical pore in Fig. 10.17.
This is a cylindrical pore with base radius r0 and two ends open. At low pressure,
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rpr0

rt

Figure 10.17: 2D section of a cylindrical pore with multilayer adsorption (left) and
capillary condensation (right). Solid phase is in grey. Liquid phase is in blue. Red
dotted lines are the structuring elements.

Figure 10.18: 2D section of a conical pore with multilayer adsorption (left) and
capillary condensation (right). Solid phase is in grey. Liquid phase is in blue.
Dotted red lines are the structuring elements.

only the multilayer of molecules of thickness rt is adsorbed on the solid interface.
With increasing pressure, when the Kelvin radius satisfies rp = r0 − rt, the pore is
filled and the meniscus is formed at the two ends. The boundaries of the menis-
cus are tangent to the existing liquid interface. The newly formed vapour/liquid
interface is smooth and satisfies the Kelvin equation.

Another schematic illustration of the multilayer adsorption simulation in shown
in a conical pore in Fig. 10.18. After the multilayer adsorption on the cone surface,
the capillary condensation is simulated with a spherical structuring element of radius
2 nm, instead of radius starting from 0 nm.

To implement the method, the multilayer thickness rt at low pressure needs to be
identified. According to Lippens et al. (1964), the thickness of a nitrogen monolayer
is 0.354 nm. To address the question more precisely – how many layers are there
before the capillary condensation occurs at rp = 2 nm? According to the Kelvin
equation, the Kelvin radius rp = 2 nm corresponds to relative pressure p/p0 ≈ 0.6.
As mentioned in the experimental isotherms, the volume fraction of condensed liquid
in the porosity at p/p0 = 0.6 is 23%. The 23% contains the volume fraction of the
multilayer adsorption and the initial volume fraction by capillary condensation at
rp = 2 nm. With the BET equation, we obtain the gas quantity adsorbed in a
monolayer nitrogen, which takes a volume fraction of the porosity at 8.24%. The
proportion 23%/8.24% < 3, which indicates that the average number of adsorbed
layers at p/p0 = 0.6 should be less than 3. Thus, in the multilayer adsorption
simulation by dilation, the thickness rt is either 1 or 2 layers. This question is
addressed in the following section.
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10.5 Microstructure modeling with porosimetry

constraint

The two-scale model of platelets and the tomographic reconstruction of mesoporous
alumina can not reproduce the experimental isotherms. A microstructure with larger
pores and strong ink-bottle effect is considered in this section.

10.5.1 Three-scale model of platelets

We make use of the hardcore exclusions, and combine it with the two-scale model
of platelets. The new model has features of large unconnected pores, aggregates as
well as platelets. The three-scale model is constructed in the following way.

First, we consider a multi-scale hardcore model of spherical exclusions:

H =
n⋂

j=m+1

Rc
j (10.23)

where Rj is the solid phase of a one-scale hardcore model of spheres of radius rj
at volume fraction pj. These one-scale hardcore models do not intersect with one
another:

Rk ∩Rl = ∅, ∀ k, l ∈ N ∩ [m+ 1, n] and k 6= l (10.24)

The sphere radius rj and the corresponding volume fractions pj are chosen according
to the experimental pore size distribution (Fig. 10.16). Only the pores larger than
the parameter threshold rm are taken into account. Since no intersection exists
between the spheres, the volume fraction the hardcore exclusion, denoted pH , is the
sum of pj:

pH =
n∑

j=m+1

pj. (10.25)

Second, we consider a Boolean model, denoted B, of spheres of radius rS and
volume fraction pS in the 3D domain D. This Boolean model is used to locate the
aggregates of platelets, independent of the exclusions. Each sphere in the Boolean
model is associated with a random orientation θl, distributed uniformly on unit
sphere.

Third, we consider a primary platelet A′ and implement it randomly inside and
outside the aggregates. A Poisson point process generates random points xk with
volume fraction of platelets pA1, in the aggregates and out of exclusions B ∩ Hc.
At each point, a platelet is implemented A′xk . The platelet is then rotated along
the orientation associated with the sphere that it locates in, denoted A′xk,θl . If
the platelet is located in the intersection of multiple spheres, it takes an arbitrary
orientation of these spheres. The set of aligned platelets inside the aggregates is
then obtained by:

A1 =
⋃
xk

A′xk,θl (10.26)

Note that the Poisson point process of xk takes place in the domain B∩Hc, but the
platelets are implemented in the full domain D.

A homogeneous Poisson point process is simulated outside the aggregates and
the exclusions in Bc ∩ Hc. A platelet A′yk,µk is implanted at each Poisson point
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Figure 10.19: Regularized pore size distribution based from the experimental
isotherm in Fig. 10.16.

yk with volume fraction pB. The orientations µk are randomly distributed on unit
spheres and are independent. The volume fraction pB is prescribed by the overall
porosity, fixed by experimental to 69%:

pA2(1− pS)(1− pH) + pA1pS(1− pH) = 1− 0.69 (10.27)

The set of randomly oriented platelets is then obtained by:

A2 =
⋃
yk

A′yk,µk (10.28)

The three-scale model of platelets, with solid phase denoted by A, is then obtained
by:

A = A1 ∪ A2 (10.29)

The parameters of the three-scale model A include: radius threshold rm, refer-
ence pore size distribution (rj, pj), volume fraction pS and radius rS of spherical
aggregates, volume fraction of aligned platelets pA1 and shape of platelets A′. In
this work, we take the octagonal prism as the primary platelet, described by the
lengths of four sides (Fig. 8.1): D1, D2, D3 and D4.

In practice, the reference pore size distribution is deduced from the experimental
data by regularization (Eq. 10.6). The regularized pore size distribution is shown
in Fig. 10.19. The desorption threshold is initially fixed at 6.4 nm as identified
in section 10.2.2. The three parameters of the aggregates pA1, pS and rS and the
four parameters of platelet shape are initially taken the same as the optimized two-
scale model in section 8.5. The resolution of the microstructure is chosen to be
0.354 nm per voxel, because it is the size of monolayer nitrogen and it garanties the
necessary precision for the simulation of multilayer adsorption. A 2D section of the
hardcore spherical exclusion is shown in Fig. 10.20 (a). After inserting platelets, the
microstructure of platelets is obtained (with 2D section shown in Fig. 10.20 b).

The multilayer adsorption at low pressure is performed on the three-scale model
of platelets (2D sections shown in Fig. 10.21(A)). The number of nitrogen layers on
solid interface is fixed at 1 for the initial test. It is observed in Fig. 10.21(A) that
the monolayer nitrogen is ”pasted” on the solid walls. Few pores are filled by the
monolayer nitrogen. The volume fraction of the monolayer in the total porosity is
11.5%.
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(a) hardcore exclusions (b) three-scale model of platelets

Figure 10.20: 2D sections of (a) the hardcore spherical model H and (b) the
three-scale model of platelets. The parameters of the microstructure are shown
in Tab. 10.1(B).

After the monolayer adsorption has occurred, the capillary condensation is sim-
ulated, starting from Kelvin radius rp = 2 nm. At the corresponding pressure, the
small space between platelets begins to be filled. The volume fraction of condensed
liquid at this stage is 23%, which is in agreement with the experimental data. In-
deed, the volume fraction of condensed liquid at low pressure is mainly determined
by the specific surface area and the thickness of multilayer nitrogen. The former
is dominated by the platelet size. This agreement validates the assumption of only
one layer of nitrogen molecule at relative pressure p/p0 = 0.6. It validates also the
platelet size identification in chapter 8.

The simulated isotherms are shown in Fig. 10.22(B). The first point from the
origin of the simulated isotherm is the volume fraction of the monolayer at rp =
0.354 nm (note that here it takes approximately the value of rt). The second point
is the volume fraction of condensed liquid by monolayer adsorption and capillary
condensation at rp = 2 nm. The two points are connected with dotted line, because
the first point is an approximation and the Kelvin equation is not valid at pressure
below rp = 2 nm.

The simulated adsorption and desorption branches of the three-scale model are
shifted left compared to the experimental isotherms. It means the pores in the three-
scale model are smaller than the real material. Compared to the two-scale model
of platelets (Fig. 10.22(A)), the exclusions have taken effects to enlarge the pore
size. Comparing Fig. 10.20 (a) and Fig. 10.21 (C), it is observed that at rp = 4.8
nm, the remaining unfilled pores are mainly from the spherical exclusions. At the
same time, the ink-bottle effect with small desorption threshold has been retained
(Fig. 10.21 D).

Note that the exclusions do not explicitly generate spherical pores, but are useful
for simulating the repulsion between the platelets in the model. An interpretation of
the repulsion is that during the shaping, the neighbouring platelets tend to approach
and align with one another. This effect creates aggregates at a larger scale, but also
creates hollow space between large-scale structures.
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(A) (B)

(C) (D)

Figure 10.21: 2D sections of equilibrium states during porosimetry simulation on
the three-scale model of platelets. The parameters of the microstructure are shown
in Tab. 10.1(B). (A) Multilayer adsorption of thickness rt = 0.354 nm. (B) Capillary
condensation simulation at rp = 2 nm. (C) Capillary condensation simulation at
rp = 4.8 nm. (D) Capillary evaporation simulation at rp = 4.8 nm.
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10.5.2 Parameters identification

The platelet size and the aggregates have been identified in chapter 8. Here, we
emphasize on the identification of the exclusions. The exclusions in the three-scale
model of platelets are described by three parameters: radius threshold rm in nm,
sphere radius rj in nm and volume fractions pj. First, we enlarge the radius of
spherical exclusions by:

r′j = rj + rc (10.30)

where rj is the original radius in the experimental pore size distribution, r′j is the
adjusted radius and rc is the compensation size.

The value of rc is determined by manual dichotomy method. The initial value
of rc is set to be 9 nm, half of the platelet length. A microstructure is generated
with the new exclusions radius (Tab. 10.1 C) with simulated isotherms shown in
Fig. 10.22 (C). The radius compensation is very efficient to increase the large-size
pores. Furthermore, it does not change much the desorption threshold of the vapour
phase, thanks to the hardcore features. A problem is shown in the adsorption branch
that the pores are over enlarged. When the value of rc is adjusted to be 6 nm
(Tab. 10.1 D), the high-radius part (rp from 8 nm to 12 nm) of the adsorption
branch fits the experimental reference (Fig. 10.22 D).

Then we consider the intermediate part of the adsorption branch (rp from 4 nm
to 8 nm). In the microstructure (D), the volume fraction of pores of these sizes is less
than that in experimental reference. To increase their volume fraction, we can either
decrease the radius threshold rm or increase their volume fractions pj. However, the
volume fraction of the hardcore spheres is limited to about 60%. The closer it gets to
the limit, the more time-consuming the generation process is. We first decrease the
radius threshold rm to 5.5 nm (parameters in Tab. 10.1 E, isotherms in Fig. 10.22 E).
It increases the volume fraction of exclusions and helps to facilitate the connections
of the vapour phase. Compared to microstructure (D), the adsorption branch gets
closer to the experimental isotherm.

To recover the experimental adsorption branch, we have tried to decrease further
the radius threshold (not shown). However, the small exclusions take a significant
volume fraction, but the do not contribute equally to the pores of corresponding
size. Instead of adding more small exclusions, we increase the volume fraction of
spherical exclusions of current sizes by a coefficient k:

p′j = kpj (10.31)

where pj is the original volume fractions in the experimental pore size distribution,
p′j is the adjusted volume fractions and the coefficient k is greater than 1. When the
value of k is set to be 1.3, the isotherm in Fig. 10.22F is obtained. The adsorption
branch gets closer to the experimental reference. When the volume fraction of
exclusions increases, the desorption threshold also becomes higher.

To pull back the desorption threshold without decreasing the volume fraction of
exclusions, the size of neck pores is considered. With fixed total number of platelets,
we minimize the neck pores size by dispersing the platelets homogeneously in the
domain. We let pA1 = pA2 in Eq. 10.27 and obtain pA1 = 0.47. The parameters of
the microstructure is shown in Tab. 10.1 G, and simulated isotherms in Fig. 10.22
G). As expected, the desorption threshold is decreased and fit the reference.
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Figure 10.22: Simulated capillary isotherms of the multi-scale model of platelets
for mesoporous alumina. The parameters of above microstructures are shown in
Tab. 10.1.
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Platelets (nm) Aggregates Exclusions
Microstructure D1 D2 D3 D4 pA1 pS rS (nm) rm (nm) rc (nm) k

(A) 14.3 2.4 2.0 3.3 0.3 0.2 30 0 0 0
(B) 14.3 2.4 2.0 3.3 0.3 0.2 30 6.4 0 0
(C) 14.3 2.4 2.0 3.3 0.3 0.2 30 6.4 9 0
(D) 14.3 2.4 2.0 3.3 0.3 0.2 30 6.4 6 0
(E) 14.3 2.4 2.0 3.3 0.3 0.2 30 5.5 6 0
(F) 14.3 2.4 2.0 3.3 0.3 0.2 30 5.5 6 1.3
(G) 14.3 2.4 2.0 3.3 0.47 0.2 30 5.5 6 1.3

Table 10.1: Parameter identification of the multi-scale model of platelets for meso-
porous alumina. The corresponding simulated isotherms are shown in Fig. 10.22.

The microstructure (G) is sufficient to approximate the behavior of mesoporous
alumina in nitrogen porosimetry, both the adsorption and desorption branches. The
dichotomy searching process illustrates the effects of each parameter.

10.5.3 TEM image simulation

The TEM image is simulated from the microstructure (G) with the method pre-
sented in chapter 8. The simulated image is shown in Fig. 10.23, together with the
correlation function shown in Fig. 10.24. Platelets and aggregates are visible in the
simulated images in dark, together with the exclusions in bright hollows. Compared
to the experimental TEM image, the contrast between solid phase and porous phase
is higher. The difference is also shown in the correlation function: the exclusions
contribute to the correlation of structures of large scales, and the range of correla-
tion is much farther. The repulsion distance between hardcore exclusions also makes
oscillations in long range.

The difference between the simulated TEM image and experimental TEM im-
ages originates from the interpretation of porosimetry data and TEM images. The
integral range of the experimental TEM images is 30 nm2 (section 6.4). The range
of the correlation function of the TEM images is about 6 nm. In the TEM images,
no structures as large as the simulated big hollows has been observed. However,
the range of the adsorption branch of the nitrogen porosimetry isotherm is around
rp = 12 nm, larger than 6 nm. The porosimetry data shows the existence of struc-
tures of large scales that have not been observed in the TEM images.

The conflict between the information extracted from TEM images and nitrogen
porosimetry leads to a reconsideration of the capillary condensation-evaporation
simulation method. This is further discussed in Sec. 10.6.

10.6 Limitation of the method

10.6.1 Adsorption simulation on simple geometries

In the capillary adsorption simulation, spherical structuring elements are used to
probe the local curvature. Where it cannot enter in, the local curvature is supposed
to be smaller than the sphere radius. It fills these areas, and produces hemispher-
ical meniscus on the vapour-liquid interface. This probing process describes the
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(A) sample 1 (B) sample 2

(C) sample 3 (D) simulation

Figure 10.23: Comparison between TEM image of the three samples and the simu-
lation from the three-scale model of platelets, with parameters shown in Tab. 10.1
(G). The resolution of the four images is the same 0.33 nm per pixel, and the same
for the system size 3003 nm3.
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Figure 10.24: Comparison between the correlation functions of the TEM images
and of the from the multi-scale model of platelets for mesoporous alumina. The
parameters are shown in Tab. 10.1 (G).
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reality during the desorption process, because the entire pore has been filled, and
the evaporation depends only on the curvature of the vapour-liquid interface. The
vapour-liquid interface tend to be spherical for a minimun energy state. However
this is not exactly the case for adsorption, because the condensation depends more
on the vapour-solid interface.

Cohan’s model (Cohan, 1938) is an typical example to demonstrate the difference.
In a cylindrical pore with one end closed, the condensation occurs first in the corners
where the local curvature is low. With our method, hemispherical meniscus is
formed, as predicted by the Kelvin equation. The meniscus propagates from the
initial meniscus formed in the corners. The entire pore is filled when the Kelvin
radius reach the radius of the cylinder base (denoted by r). In this case, it is right
to use a spherical structuring element to probe the local curvature, because the
condensation occurs on the hemispherical vapour-liquid interface.

However, in a cylindrical pore with two ends open, the condensation would not
occur at the beginning at low pressure. The condensation occurs on the vapour-solid
interface. The local curvature on the solid interface inside the pore is 2r. The entire
pore is filled suddenly when the Kelvin radius reach 2r. Cohan predicts hysteresis for
the cylindrical pore with two ends open – condensation at rp = 2r and evaporation
at rp = r. If we use a spherical structuring element to probe the local curvature,
the result is r, which leads to pore filling at underestimated pressure.

Cohan’s model tells a fact that hysteresis can be produced even without the ink-
bottle effect, in the regime of the Kelvin equation. This effect – the difference in local
curvature probing has not been taken into account in our method. It explains the
different adsorption pressure observed on the isotherms of ink-bottle model between
our method and the method of Virtual Capillary Condensation (Štěpánek et al.,
2007) in Chapter 9. In a slit pore (Fig. 9.4), this effect is even more important. The
curvature of the flat vapour-solid interface is infinite, and the meniscus curvature
during desorption is d (where d is the pore width). The condensation occurs at
saturated pressure, and the evaporation occurs at rp = d. Being empty and being
filled are two equilibrium states that both satisfy the Kelvin equation. However,
the adsorption and the desorption have different preferences between the two states,
which brings hysteresis.

Accordingly to the above, the pressures obtained during condensation are un-
derestimated.

10.6.2 Identification using the desorption branch only

Since the adsorption branch simulated using spherical structuring element is not
reliable, we re-identify the three-scale model with only the desorption branch as
constraint.

As observed in the isotherm of Fig. 10.22(B), the black line (the desorption
branch for system of infinite size) is quite close to the experimental desorption
branch. Small changes are carried out in order to reduce the difference between
model and experiment.

We keep the spherical exclusions, but cancel the repulsion distance. The other
parameters are exactly the same as the microstructure (B). Therefore, the exclusion
is an union of Boolean models of spheres with a radius distribution. The scales
of aggregates and platelets remain unchanged. The simulated isotherms is shown
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Platelets (nm) Aggregates Exclusions
Microstructure D1 D2 D3 D4 pA1 pS rS rm (nm) rc (nm) k

(A′) 14.3 2.4 2.0 3.3 0.3 0.2 30 0 0 0
(B′) 14.3 2.4 2.0 3.3 0.3 0.2 30 6.4 0 0

Table 10.2: Parameter identification of the three-scale model of platelets with only
desorption branch. The corresponding simulated isotherms are shown in Fig. 10.25.
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Figure 10.25: Experimental and simulated correlation functions of the three-scale
model of platelets for mesoporous alumina. The parameters of the microstructures
are shown in Tab. 10.2.

in Fig. 10.25(B′). The desorption isotherm is fitted to the experimental data with
the same desorption threshold. A comparison is made between the two microstruc-
tures (A′) and (B′) in Fig. 10.25, where microstructure A′ is the identified two-scale
model in chapter. 8. The comparison illustrates the effects of the exclusions on the
isotherms.

TEM image validation

The TEM image is simulated from the microstructure (B′), as shown in Fig. 10.27,
together with the correlation functions shown in Fig. 10.26. The simulated image is
also compared with the TEM image simulated from the two-scale model A′. In order
to reproduce the correct porosimetry data, exclusions are used to slightly enlarge
the pores and the desorption threshold, but it has a side effect that the correlation
of the random structure is also slightly increased. At this point of view, the corre-
lation function of the 2D projection (simulated TEM image) of a microstructure is
correlated to its capillary behavior.

The two-scale model and the three-scale model of platelets are compared in terms
of both capillary condensation-evaporation and image visualization. One is closer to
the experimental data in capillary behavior, while the other is closer in TEM image
validation. After all, the TEM image simulation and the porosimetry simulation
both have been simplified. Their behaviors are similar and are both coherent to
the experimental data. The real microstructure of the material is supposed to be a
mixture of the two models.
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Figure 10.26: Simulated capillary isotherms from (A′) the identified two-scale model
of platelets (B′) the three-scale model of platelets for mesoporous alumina. The
parameters of the microstructures are shown in Tab. 10.2.
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Figure 10.27: Simulated TEM images from (A′) the identified two-scale model of
platelets (B′) the three-scale model of platelets for mesoporous alumina. The pa-
rameters of the microstructures are shown in Tab. 10.2.
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10.7 Conclusion

The objective of this chapter is twofold: model the microstructure of mesoporous
alumina, and reproduce its porosimetry isotherms numerically. We developed a mul-
tiscale model based on Boolean random sets of spheres. By adjusting the sphere
radius and volume fractions, the pore size distribution has been reproduced. Af-
terwards, by implementing hardcore spherical exclusions, the desorption threshold
has been controlled. Then we observed the capillary behaviors of the tomographic
reconstruction and of the two-scale model of platelets. The former’s volume is too
small and lacks representativity. The latter’s average pore size was much smaller
than the experimental data. Furthermore, it is found for the model of platelets, that
the multilayer adsorption of nitrogen molecules occupies an non-negligible amount
of liquid volume. The multilayer adsorption was simulated with a dilation operator.

A three-scale model was proposed with hardcore exclusions. The parameters
of the three-scale model were identified to reproduce the experimental isotherm.
However, the TEM image simulated from the three-scale model could not fit the
experimental images in terms of correlation function. The information extracted
from the TEM images and the porosimetry isotherms conflicted. This has led us
to reconsider the interpretation of the isotherms and TEM images. It is found that
the use of spherical structuring element simplifies the complex local geometry dur-
ing the adsorption, and it causes the underestimation of the condensation pressure.
The spherical structuring element is more coherent with the vapour-liquid inter-
face during the desorption. The model has been then re-identified with only the
desorption branch as constraint. The resulting three-scale model has the same des-
orption branch as experimental isotherms, and is validated with the TEM images. A
comparison was made between the behaviors of the two-scale model and the three-
scale model in terms of porosimetry and TEM image simulation. The comparison
shows that through microstructure modeling, the information extracted from the
two sources are consistent.
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Chapter 11
Hindered diffusion in mesoporous alumina

11.1 Introduction

The mass transport property in nanoporous solid is driven by diffusion. Among
important industrial processes under internal diffusional limitation, one finds hy-
drodemetalation of vacuum residues (Merdrignac et al., 2013), fixed-bed Fischer-
Tropsch synthesis (Iglesia et al., 1995) and selective hydrogenation of unsaturated
hydrocarbons (Derrien, 1986; Godinez et al., 1995). For these process, diffusion at
the catalyst pellet’s scale occurs at a lower pace than the chemical reaction, leading
to internal diffusional limitations. Increasing the diffusion efficiency may lead to
increased catalyst efficiency and overall process conversion.

In this chapter, we study the influence of the microstructure on diffusion prop-
erties of mesoporous alumina with a simplified quasistatic diffusion model. The
experimental characterizations are presented in Sec. 11.2. The FFT method is used
to compute the velocity fields in random models in Sec. 11.3. The effective diffusion
coefficient of mesoporous alumina is estimated in Sec. 11.4.

11.1.1 Hindered diffusion

Mass transport of liquids in nanoporous media is a complex process, where hindered
diffusion dominates. Hindered diffusion occurs when the gyration radius of the
diffusing molecule is not negligible compared to the size of the pores. The ratio λ
of the gyration radius rg of the molecule on the pore radius rp plays an important
role.

λ =
rg

rp

(11.1)

Liquid diffusion in nanoporous media occurs at a slower pace in bulk liquids. The
effective diffusion coefficient De reads (Wernert et al., 2010):

De =
εKp (λ)Kd (λ)

τ (λ)
D0 (11.2)

where D0 is the molecular diffusion coefficient, ε the pore volume fraction, τ the
tortuosity factor, Kp the partition coefficient, and Kd the drag coefficient. Three
phenomena which slow down mass transport have been taken into account in the
equation:

143
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• The tortuosity of the porous space that implies that a molecule have to travel
a longer path than the Euclidean distance to move from two remote (far away
from the pore size) points. This effect is described by a tortuosity factor τ

• The steric hindrance, which describes a the fact that a finite sized molecule
can not approach nearer than its gyration radius to the pore walls. This effect
is described by a partition coefficient Kp

• A difference in viscous drag of the molecule due the vicinity of the pore walls,
modeled by a drag coefficient Kd

For molecules much smaller than the pore size, Kp = Kd = 1. For a cylindrical
pore, a molecule having a giration radius rg has access to a fraction of the porosity
equal to Kpε, where:

Kp = (1− λ)2 (11.3)

Several expressions have been proposed for the Kd factor depending on the geometry
and method of averaging (Deen, 1987; Dechadilok and Deen, 2006). The most
employed factor, called the Renkin’s equation, has been computed for a geometry
made of a hard sphere in a cylindrical pore and reads, for 0 ≤ λ ≤ 0.4:

Kd = 1− 2.1044λ+ 2.089λ3 − 0.948λ5 (11.4)

For rather small molecules, an empirical formula has been proposed by Satterfield
et al. (1973):

KdKp = exp (−2λ) (11.5)

The tortuosity factor τ depends strongly on pore space topology and porosity.
A general relation between τ and ε in the high porosity regime has been proposed
by Comiti and Renaud (1989):

τ = 1− p ln ε (11.6)

Where p is specific to the pore space topology, hence to the geometry of particles
forming the solid. Equation 11.6 with p = 0.5 is an upper bound of the effective
diffusion coefficient in a random model of overlapping sphere (Weissberg, 1963). Its
applicability has been experimentally assessed by permeability (Comiti and Renaud,
1989), electrical conductivity (Barrande et al., 2007) or effective diffusion (Wernert
et al., 2010) measurements.

11.1.2 Pulse-Field Gradient Nuclear Magnetic Resonance
(PFG-NMR)

Hindered diffusion coefficient in nanoporous solids can be measured by proton Pulse-
Field Gradient Nuclear Magnetic Resonance (PFG-NMR) (Hollewand and Gladden,
1995), inverse chromatography (Wernert et al., 2010), membrane permeation or
modeling of the kinetics of adsorption of the solute in a batch reactor (Prasher and
Ma, 1977; Tayakout et al., 2010). It is worth mentioning that PFG-NMR measures
a self-diffusion coefficient, and the measurement is done only in the accessible part
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of the pore space by the probe molecule. Then, effective diffusion coefficient probed
by NMR DNMR

e is related to molecular diffusion coefficient DNMR
0 by:

DNMR
e =

Kp (λ)

τ (λ)
DNMR

0 (11.7)

Pulse Gradient Spin Echo (PGSE) Nuclear Magnetic Resonance is a well establish
technique to measure effective self-diffusion coefficient in porous media. Proton
spins are phase-encoded and decoded by a field gradient impulsion and attenuation
of the NMR signal can be related to the effective diffusion coefficient. Indeed,
PGSE-NMR allows to map the diffusion propagator in q space, the magnetization
wave vector (Callaghan et al., 1990). Assuming long diffusion times ∆ and small
magnetization wave vector q, the propagator is Gaussian and there is a simple
relation between the ratio of echo intensities S (g) with a field gradient over S (0)
without gradient, the parameters of the NMR sequence and the effective diffusion
coefficient DNMR

e . Using the stimulated echo sequence proposed by Tanner (1970),
this relation writes:

ln

(
S (g)

S (0)

)
= −DNMR

e γ2g2δ2

(
∆− δ

3

)
(11.8)

where γ is the gyromagnetic ratio of the nucleus probed, g is the intensity of the
field gradient pulses, δ is the duration of the gradient pulses and δ the time between
the two gradient pulses (diffusion time). In this case, if δ � ∆ the magnitude of
magnetization wave vector q is:

q =
γgδ

2π
(11.9)

Following the argument of Callaghan, effective diffusion measurement by PFG-NMR
must be performed in the regime 1/q � dp, where dp is the pore diameter.

PGSE-NMR has been used to study the diffusion of probe molecules in various
mesoporous samples: water in silica and alumina (Hollewand and Gladden, 1995) or
in mesoprous NaA zeolite (Valiullin and Kärger, 2011), n-pentane and n-heptane in
alumina and used hydro-processing catalysts (Wood and Gladden, 2003), n-octane
and 1,3,5-triisopropylbenzene in mesoporous Y zeolithe (Kortunov et al., 2005) or
n-hexane in micro-mesoporous activated carbon (Kirchner et al., 2012). Hollewand
et al. found a DNMR

0 /DNMR
e ratio equal to 1.8 for water diffusing in a 182 m2/g

specific surface area alumina support (Hollewand and Gladden, 1995). Wood et al.
have observed such ratio equal for 1.6 and 2.37 respectively for pentane and heptane
in a 372 m2/g specific surface area alumina support (Wood and Gladden, 2003).
DOSY (Diffusion Ordered SpectroscopY) is a class of NMR sequences that allows
the simultaneous measurement of the classical NMR spectrum (chemical shift) with
the measurement of the apparent diffusion coefficient. The Fourier transform of
the free induced decay signal gives the NMR spectrum whereas the inverse Laplace
transform of the echo attenuation yields the apparent diffusion coefficient.

Self-diffusion coefficient in pure toluene measured by PFG-NMR can be found in
literature. Extrapolated values at 295 K found are 2.11 (Krüger and Weiss, 1970),
2.22 (Harris et al., 1993) and 2.39× 10−9 m2/s (Pickup and Blum, 1989). Using the
value of viscosity η = 575.3 µPa s (Santos et al., 2006) and D0 = 2.39× 10−9 m2/s
the Stokes-Einstein formula gives an hydrodynamic radius rg = 0.16 nm at 295 K.
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11.1.3 Homogenization of Fick’s diffusion

Fick’s diffusion

The steady-state diffusion governed by the Fick’s first law is considered. Let Ji (r)
be the diffusion flux of molecules along the i axis and c (r) the concentration of
molecule at point r, The Fick diffusion equation reads, in the permanent regime
(time-independent): {

Ji (r) = −Dij (r) ∂jc (r)

∂iJi (r) = 0
(11.10)

where Dij (r) is the local diffusivity tensor. Assuming isotropic media, Dij = Dδij
where D (r) is a scalar field. The effective diffusion coefficient De of a porous medium
is defined by:

〈J〉 = De〈−∇c〉. (11.11)

Analytical bounds and estimates

The Hashin-Shtrikman lower bound for the effective diffusion coefficient of a porous
medium is zero. For 3D medium, the upper bound is (Hashin & Shtrikman, 1963):

De ≤ DHS
max = D0

(
2ε

3− ε

)
(11.12)

Numerical computation: FFT-Fick diffusion

We use an auxiliary field E = −∇c and note that the problem of Fick diffusion
a mathematically (not physically) equivalent to that of electrical response of ma-
terials (Willot, 2015). According to this analogy, diffusion flux is associated with
electrical current, the concentration gradient to electric field, concentration to elec-
tric potential and diffusion coefficient to conductivity. We now consider a three-
dimensional cubic domain Ω = [−L/2, L/2]3 of width L. The edges of the domain
are aligned with the Cartesian unit vectors ei with i ∈ {1, 2, 3} and periodic bound-
ary conditions are employed:

J (r) · n−#, c (r + Lei) ≡ c (r)− EiL, r, r + Lei ∈ ∂Ω (11.13)

where −# means anti-periodicity, n is the outer normal of ∂Ω, and E is an applied
concentration gradient.

To apply FFT methods, we rewrite equation 11.10 as the Lippmann-Schwinger’s
equation: {

Ei = Ei − G̃i,j ∗ Pj
Pj = Jj − D̃Ej

(11.14)

where D̃ is an arbitrary reference diffusion coefficient, P is the associated polariza-
tion field, G̃ the Green operator and ∗ the convolution product. The convolution
product in equation 11.14 may be advantageously evaluated in the Fourier domain.
Simple FFT methods consists in iterating the following equation until convergence:

Ek+1 = E− G̃ ∗
[(
D − D̃

)
Ek
]

(11.15)
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where Ek is the opposite of the concentration gradient at iteration k.
The effective diffusion coefficient De is obtained from the flux along i axis using:

De =

∫∫
Ω
D (r)Ei (r) dx dy

L2Ei

(11.16)

where −Ei is the applied (macroscopic) concentration gradient along axis i.

11.2 Experimental Characterization

The experimental characterization is carried out by IFPEN.

11.2.1 Texture of alumina

Median pore diameter dp is defined as the diameter where half of the mesoporous
volume is contained in pores larger and smaller than dp. It is obtained from mercury
intrusion and from the Barret-Joyner-Halenda (BJH) calculation of the nitrogen
desorption branch. The accessible porosity by toluene εt = εKp (λ) is computed
from equation 11.4 using the hydrodynamic radius of toluene and the median pore
radius measured from mercury intrusion. Results of texture characterization are
summarized in table 11.1.

Table 11.1: Texture characterization of alumina samples. The value of λ is estimated
using the average median pore diameter dp = (dHg

p + dBJH
p )/2. The coefficients Kd

and Kp are calculated with Eq. 11.4 and Eq. 11.3 respectively. The accessible pore
volume fraction εt is estimated by εKp.

Sample SBET ε dp (Hg) dp (BJH) εt λ Kp Kd

m2/g nm nm 10−2

sample 1 240 0.69 11.3 12.9 0.68 2.64 0.948 0.944
sample 2 223 0.71 10.7 15.7 0.70 2.42 0.952 0.949
sample 3 247 0.73 10.7 15.9 0.72 2.41 0.953 0.949

The three alumina have close textural properties. As toluene has a small hydro-
dynamic radius compared to the mean pore size, most of the porosity is accessible
by toluene. Nitrogen desorption and mercury intrusion give slightly different values
for the median pore diameter but it does not appreciably change the obtained Kd

value and hence the accessible porosity by toluene.

11.2.2 Effective diffusion from PFG-NMR

About 15 extrudates are placed in a 5 mm diameter tube and immersed in 10 %
deuterated toluene. The deuterated fraction has the purpose of locking the NMR
probe on the deuterium resonance frequency. Measurements were performed with a
Brucker Avance 600 spectrometer (600 MHz resonance frequency for proton). Tem-
perature is controlled during the experiments at 295 K. Longitudinal relaxation time
T1 is measured by inversion-recovery sequence and transverse relaxation time T2 by
Carr-Purcell-Meiboom-Gill (CPMG) sequence. The relaxation time measurement
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Table 11.2: Diffusion coefficient from NMR measurements

Sample DNMR
e DNMR

0 τNMR =
DNMR

0

DNMR
e

De = εtD0/τ
NMR τ = D0

De

10−9 m2/s 10−9 m2/s 10−9 m2/s
Toluene 2.40
sample 1 1.52 2.36 1.55 1.05 2.29
sample 2 1.57 2.60 1.65 1.02 2.35
sample 3 1.40 2.24 1.60 1.08 2.22

is mandatory to choose the correct PFG sequence and the order of magnitude its
parameters.

The echo attenuation coefficients are measured using the bipolar pulse pairs
longitudinal-eddy-current delay stimulated echo sequence (BPP-LED-STE) with pa-
rameters delta=2.5 µs, Delta=140µs and tau=0.05 µs (Wu et al, 1995). q space is
probed by varying the intensity of the gradient g, in order to obtain 16 values of
attenuation from 2 % to 95 %. The values of the parameters are consistent with
the small q requirement as 1/qmin = 1.2× 105 nm. Data are processed by the NM-
Rnotebook software using the maximum entropy algorithm. Both free and hindered
toluene diffusion coefficients are measured simultaneously by the DOSY sequence.
From the experimental data, the tortuosity factor τNMR is estimated by:

τNMR =
DNMR

0

DNMR
e

. (11.17)

Following the expressions of equation 11.2 and 11.7, effective diffusion coefficient De

is obtained by:

De = εt
D0

τNMR
(11.18)

A reference measurement is performed on a tube filled with only deuterated toluene
to check the field gradient calibration.

DOSY spectra of pure toluene and alumina plunged into toluene are showed in
Fig. 11.1. For free toluene (Fig. 11.1 A), the five protons of the aromatic cycle are
observed between 7 and 8 ppm, whereas the three proton of the methyl group are
observed between 2 and 2.5 ppm. The 5/3 expected ratio of the peaks area is cor-
rectly recovered. A single diffusion coefficient is observed D0 = 2.40× 10−9 m2/s,
compatible with the value found in literature. For toluene in all alumina, a strong
broadening of both aromatic and methyl proton peaks are observed. Chemical shifts
of confined toluene protons are shifted to higher values. Two distinct diffusion coef-
ficients for free and confined toluene are systematically observed. Numerical values
of diffusion coefficient extracted from DOSY spectra are reported in table 11.2. As
expected by the subtle variation in texture, the effective diffusion coefficients of the
three alumina are found very close. It should be noticed that the range of diffu-
sion coefficients of free toluene from the three alumina is much greater than the
uncertainty of measurement in pure toluene.
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(A) Toluene (B) alumina sample 1

(C) alumina sample 2 (D) alumina sample 3

Figure 11.1: DOSY spectra of pure toluene and toluene in alumina.

11.3 Modeling of tortuosity from random models

Numerically, the effective diffusion coefficient De is computed numerically with the
FFT-Fick diffusion method. Eq. 11.2 is used to estimate the tortuosity factors of
random models. The molecule size effects and the viscous drag effects are neglected,
so Kp = Kd = 1. D (r) is set equal to D0 = 1 in the pore space and DS = 0 in the
solid part. The tortuosity factor is then estimated by:

τ =
ε

De

(11.19)

Analytically, the self-consistent homogenization method provides the relationship
between the pore volume fraction ε and the effective diffusion coefficient De (Pelle-
grini & Willot, 2012):

ε
D0 −De

1
d
D0 + (1− 1

d
)De

+ (1− ε) Ds −De

1
d
Ds + (1− 1

d
)De

= 0 (11.20)

where d is the dimension factor (fixed at 3 in our case), Ds is the diffusion coefficient
in the solid phase (fixed at 0 for alumina grains). Accordingly, we getDe = (3ε−1)/2,
and the tortuosity factor is obtained by:

τ =
2ε

3ε− 1
. (11.21)

11.3.1 Boolean models

In order to study the effects of particle shape on the effective diffusion coefficient
and on the tortuosity, two grain shapes for Boolean models are considered: spheres
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(A) sphere with ε = 0.7 (B) platelet with ε = 0.7

(C) sphere with ε = 0.4 (D) platelet with ε = 0.4

Figure 11.2: 2D sections of the first component of the flux field J1 in the plane
z = 256 obtained by FFT method on the Boolean models.

and platelets. The platelets have the same size and shape as the identified model in
Sec. 8.5. The orientations of the platelets are isotropic. The microstructure volume
is 5123 voxel. The radius of spheres is 20 voxel. In order to study the relation
between pore volume fraction and the tortuosity factor (as indicated in Eq. 11.6),
microstructures of different pore volume fractions are generated.

A macroscopic concentration gradient is applied between the two faces along the
first axis: E = [1, 0, 0]. The diffusion flux is in the complementary of the grains.
When the algorithm converges, the steady concentration field is obtained, together
with the flux field. An example of the first component of the flux fields J1 are shown
in Fig. 11.2.

The effective diffusion coefficients and the tortuosities estimated by Eq. 11.19 are
respectively shown in Fig. 11.3 and in Fig. 11.4. The effective diffusion coefficients
satisfy the Hashin-Shtrikman upper bound. Compared to the Boolean model of
spheres, the Boolean model of isotropic platelets have lower diffusion coefficients
and higher tortuosity factors. The shape of elongated prism increases the tortuosity
of the porous phase. The shape effect is more important for media of low porosity,
as shown in Fig. 11.2 (C) and (D).

The value of p in Eq. 11.6 is obtained by curve fitting using linear least squares
with ε ≥ 0.5. For the Boolean model of spheres, p = 0.74. For the Boolean model of
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Figure 11.3: Effective diffusion coefficients of random models in function of pore
volume fraction.

Figure 11.4: Tortuosity in function of porosity.

platelets, p = 0.97. The estimated tortuosity factors satisfy the Weissberg’s lower
bound with p = 0.5 for Boolean model of spheres.

11.3.2 Two-scale model of platelets

We study the effects of platelet alignment and platelet aggregation on the effective
diffusion coefficient and on the tortuosity factor. The two-scale model of platelets is
considered. First, the platelet density inside the aggregates pA1 is set to the same as
the overall solid volume fraction 1− ε. The volume fraction of spherical alignment
zones is set to be 50%. In this microstructure, half of the platelets are aligned, but
not aggregated. Second, the aggregation effect is added into the microstructure by
setting pA1 higher than the overall solid volume fraction. A quadratic function of
the pore volume fraction is used: pA1 = 1− ε2 > 1− ε. The fractions of aligned and
isotropic platelets are both maintained at 50% by setting pSpA1 = 0.5(1 − ε). The
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Platelets (nm) Aggregates
Platelets organization D1 D2 D3 D4 pA1 pS rS(nm) Figure

Isotropic 14.3 2.4 2.0 3.3 0 0 0 Fig. 11.2 (B) (D)
Aligned 14.3 2.4 2.0 3.3 1− ε 0.5 30 Fig. 11.5 (A)

Aligned and aggregated 14.3 2.4 2.0 3.3 1− ε2 0.5
1+ε

30 Fig. 11.5 (B)

Table 11.3: Parameter table of the microstructures of the random models of platelets.

(A) Aligned platelets (B) Aligned and aggregated platelets

Figure 11.5: 2D sections of the first component of the flux field J1 in the plane
z = 256 obtained by FFT method on the two-scale models in Fig. 11.4 at ε = 0.3.

parameters of the microstructures of platelets are shown in Tab. 11.3.
As shown in Fig. 11.3 and Fig. 11.4, the platelet alignment decreases the diffu-

sivity and increases the tortuosity, compared to the isotropic platelets. The platelet
aggregation has little influence on the diffusivity and tortuosity factor at high poros-
ity. At low porosity, e.g. ε = 0.3, the aggregation decreases the tortuosity factor.
This is because the aggregation enlarges the pores outside the aggregates. The ag-
gregation effect is shown in Fig. 11.5. The value of p in Eq. 11.6 is obtained by curve
fitting using linear least squares with ε ≥ 0.6. For the microstructure with aligned
platelets, p = 0.98. For the microstructure with aligned and aggregated platelets,
p = 1.01.

11.3.3 Effects of aggregation density on tortuosity

The effects of fraction of aligned platelets on the tortuosity is considered. We set
the overall pore volume fraction ε constant at 0.31, and let t = pA1pS/(1 − ε) vary
between 0 and 1.0 with step 0.1. The platelet density inside the aggregates is set
pA1 = 1− ε2, higher than the platelet density outside the aggregates. When t = 0,
no alignment is in the microstructure and it is equivalent to the Boolean model of
isotropic platelets. When t = 1, all the platelets are aligned and contained in the
aggregates. The parameters of the microstructures are shown in Tab. 11.4.

The tortuosity of above microstructures are estimated with the FFT method,
and are shown in Fig. 11.6.When 0.1 < t < 0.4, the tortuosity slightly decreases
with increasing fraction of aggregations. However, when t is greater than 0.4, the
higher the fraction of aggregated platelet is, the higher the tortuosity factors are.
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Platelets (nm) Aggregates
Platelets organization D1 D2 D3 D4 pA1 pS rS(nm) Figure

Aligned and aggregated 14.3 2.4 2.0 3.3 1− ε2 t
1+ε

30 Fig. 11.7

Table 11.4: Parameters of the microstructures with varying aggregation density pS,
where ε = 0.31 and t ∈ {0.1, 0.2, ..., 1.0}.
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Figure 11.6: Tortuosity in function of volume fraction of aligned and aggregated
platelets t. The parameters of the microstructures are shown in Tab. 11.4.

The 2D sections of the flux field with t = 0.4 and t = 1.0 are shown in Fig. 11.7.
Note that when the value of t is high (0.8 ≤ t ≤ 1), the representativities of the

microstructures decrease, and the variance of estimates is high.

11.4 Modeling of hindered diffusion from identi-

fied models

We consider two identified models of platelets for mesoporous alumina – the two-
scale model identified with the correlation function of TEM images of sample 1 (see
details in Sec. 8.5) and the three-scale model identified with the nitrogen porosimetry
isotherms of sample 1, including both the adsorption and the desorption branches
(see details in Sec. 10.5). The parameters of the two microstructures are shown in
Tab. 11.5.

The volume of the microstructures are 3003 nm3, with resolution 0.33 nm per
voxel. The global pore volume fraction is set to be 0.69 (the same as sample 1). A

Platelets (nm) Aggregates Exclusions
Microstructure D1 D2 D3 D4 pA1 pS rS rm (nm) rc (nm) k

Two-scale 14.3 2.4 2.0 3.3 0.3 0.2 30 0 0 0
Three-scale 14.3 2.4 2.0 3.3 0.47 0.2 30 5.5 6 1.3

Table 11.5: Parameter table of the identified random models of mesoporous alumina.
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(A) pSpA = 0.4p (B) pSpA = 1.0p

Figure 11.7: 2D sections of the first component of the flux field J1 in the plane
z = 256 obtained by FFT method on the two-scale models shown in Fig. 11.6.

(A) Two-scale (B) Three-scale

Figure 11.8: 2D sections of the first component of the flux field J1 in the plane
z = 256 obtained by FFT method on the identified random models of platelets with
parameters shown in Tab. 11.5.

concentration gradient is imposed between the two faces along the e1 axis. The dif-
fusion flux is computed using FFT method on the two models. The first components
of the flux fields are shown in Fig. 11.8.

The effective diffusion coefficient is obtained by averaging J1 over the domain.
The relative error of the estimates are analysis by the representative volume element.
The variance of estimates D2(V ′) in function of domain volume V ′ is shown in
Fig. 11.9. The relative error of the two estimates are obtained by:

er =
2
√
D2(V0)

〈J1〉
(11.22)

where V0 is the volume of the microstructure and D2(V0) is obtained by curve fitting
(Fig. 11.9). The relative errors of the estimates on the two-scale model and the
three-scale model are 0.86% and 0.81% respectively.

The comparison between numerical computation and NMR measurements is
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(A) Two-scale (B) Three-scale

Figure 11.9: Variance D2(V ′) computed over the first component of the flux field
J1. Linear curve fitting for large V ′ by 1/V ′ is in red.

Table 11.6: Comparison of effective diffusion coefficients from numerical computa-
tion and NMR measurements.

Microstructure De D0 τ = D0

De
D′e τ ′ = D0

D′e

10−9 m2/s 10−9 m2/s 10−9 m2/s
Sample 1 2.40 2.29
Two-scale 0.51± 0.0022 1 1.96 0.46 2.19
Three-scale 0.50± 0.0020 1 2.00 0.45 2.23

shown in Tab. 11.6. The two-scale model and the three-scale model of platelets
have similar effective diffusion coefficients. The ratio D0

De
is about 20% lower than

the experimental result. This is because in the numerical computation of Fick’s
diffusion, the molecule size is neglected, and the hindering effects (the drag effect
and the partition effect) are not taken into account.

The Eq. 11.4 and the Eq. 11.3 are used to compensate the hindering effect by
D′e = KpKdDe. The compensated tortuosity factor τ ′ = D0

D′e
is then estimated, shown

in the last column in Tab. 11.6. The tortuosity factors of the two-scale model (2.19)
and of the three-scale model (2.23) are close to the NMR measurement result (2.29),
respectively with relative error 4.4% and 2.6%.

11.5 Conclusion

In this chapter, the hindered diffusion in mesoporous alumina has been numerically
estimated. The diffusion coefficients of toluene in the alumina samples were mea-
sured by PFG-NMR. The tortuosity factors were estimated as the ratio of free and
confined diffusion coefficients. We modeled the tortuosity factors in Boolean models
of spheres and isotropic platelets using numerical FFT-Fick’s diffusion computation.
The Boolean model of spheres has higher diffusion coefficient than that of platelets.
The mixture of isotropic and aligned platelets was also studied, with or without
aggregation. The platelet alignment decreases the diffusion coefficient and increases
the tortuosity factor. The platelet aggregation increases the diffusion coefficient at
low pore volume fraction, while at high pore volume fraction the effect is weak. At
a fixed pore volume fraction, the tortuosity factor increases with increasing fraction
of aggregated platelets, when the fraction of aggregated platelets is higher than 0.4.

We computed numerically the Fick’s diffusion flux on the two-scale and three-
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scale models of platelets for mesoporous alumina. The effective diffusion coefficients
and the tortuosity factors were estimated. The hindering effects were estimated by
Renkin’s equation and cylindrical pore assumption, and were used to correct the
effective diffusion coefficient numerically computed. The tortuosity factors of the
random models are close to the experimental result, with relative error less than
4.4%.



Chapter 12
Other physical properties of mesoporous
alumina

12.1 Permeability

12.1.1 Reminder: homogenization of Stokes flow

We consider the steady-state flow of an incompressible Newtonian fluid in meso-
porous alumina. The flux velocity u(x) in the porous phase is described by the
Stokes equation:

µ∆ui(x) = ∂ip(x), ∂iui(x) = 0 (x ∈ P ) (12.1)

where µ is the fluid viscosity, p the pressure field and P the compact set for the
porous phase. No-slip boundary condition is applied on the solid interface:

u(x) = 0 (x ∈ ∂S
⋃

S) (12.2)

where S is the compact set for the solid phase. Periodic boundary condition is
applied for the fluid velocity on the domain boundaries:

u(x± ekL) ≡ u(x) (12.3)

where L is the side length of the cubic domain and ek, k ∈ 1, 2, 3 the basis vector.
A macroscopic pressure gradient of intensity δP along the direction E is applied on
the domain:

〈∂ip(x)〉 = δPEi, |E| = 1, (12.4)

where 〈·〉 means average over the domain. The boundary condition for the pressure
field satisfies the periodic fluctuation p∗ (Ene & Sanchez-Palencia, 1975):

p ∗ (x) = p(x)− δP (x · E) = p ∗ (x± Lek) (12.5)

The permeability κij is defined by the Darcy’s law:

〈ui(x)〉 = −κijEj
µ

δP. (12.6)

157
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(A) u1 (B) u2 (C) u3

Figure 12.1: 2D section of the velocity field components in the porous phase: x-
direction (vertical on the map), y-direction (horizontal on the map) and z-direction
(normal to the map) on top-right, bottom-left and bottom-right resp.

Mesoporous alumina is macroscopically isotropic. In this work, we choose E = e1,
so that the permeability tensor κ is identified with the first component κ = κ11 and:

κ = −µ〈u1(x)〉
δP

(12.7)

For analytical permeability estimation, the Carman-Kozeny estimates (Carman,
1937; Kozeny, 1927) is considered:

κCK =
f 3

cγ2
(12.8)

where γ is the specific surface area, f the porosity.

12.1.2 Numerical solution of local fields

We use the FFT method (Wiegmann, 2007) to solve numerically the Eq. 12.1 – 12.5.
By convention, we set the pressure gradient δP = −1 Pa and the viscosity µ = 1 Pa s.
The algorithm converges, and we obtain the steady-state velocity field. A 2D section
of the velocity field is shown in Fig. 12.1. The permeability is obtained directly by
averaging the velocity field:

κe = 〈u1(x)〉 (12.9)

The effective permeability estimated on the two-scale model of platelets is 1.45 nm2,
larger than the Carman-Kozeny estimate of 0.95 nm2. The estimation result cannot
be validated because no experiment has been performed to measure the permeability
on our mesoporous alumina samples.

12.1.3 Representative volume element

The representativity of the estimated effective permeability is analyzed using the
variance D2

κ(V ) of estimates over n random realizations of volume V . In practice, a
single large realization of volume V is sufficient. The volume is divided into disjoint
subdomains of volume V ′. When V � V ′ and V ′ → ∞, the asymptotic expansion
reads (Matheron, 1971):

D2
κ(V

′) ∝ D2
κA

κ
3

V ′
(12.10)
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Figure 12.2: Variance D2
κ(V

′) computed over the first component of the velocity
field u1. Linear curve fitting for large V ′ by 1/V ′ is in red.

(A) Spheres (B) Platelets

Figure 12.3: 2D sections of microstructures of Boolean models of spheres and of
isotropic platelets.

where D2
κ is the point variance, and Aκ3 is the integral range.

The variance D2
κ(V

′) computed over the velocity field is shown in Fig. 12.2. The
curve fitting satisfies the reciprocal of V ′. The variance D2

κ(V ) at domain volume
V is estimated by extending the fitting line. The relative error of the permeability
estimation is:

2
√
D2
κ(V )

κe
= 0.98% (12.11)

12.1.4 Effects of prism shape on permeability

To study the effects of prism shape on the permeability, we compare the permeabil-
ities of a Boolean model of spheres and a Boolean model of isotropic platelets. The
pore volume fractions of the two microstructures are the same 0.69. The platelet
size is the same as the identification in Sec. 8.5. The sphere radius is 10 nm. The
2D sections of the microstructures and of the velocity fields are shown in Fig. 12.3
and Fig. 12.4 respectively.

The effective permeability of the Boolean model of spheres is 2.96 nm2, while
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(A) Spheres (B) Platelets

Figure 12.4: 2D sections of velocity fields in Boolean models of spheres and of
isotropic platelets.

1.43 nm2 for the Boolean model of platelets. The elongated prism shape is not
favorable for the improvement of permeability in Boolean models.

12.2 Elastic response of the 3D model of platelets

The rigidity of the catalyst support at high porosity is of the industry’s interest.
We use the FFT method to compute the elastic response of the 3D microstructures,
and estimate the effective elastic moduli.

12.2.1 Reminder: linear elasticity homogenization

The constitutive behavior follows an isotropic, compressible linear elastic law, such
that the stress and strain tensors are related by the local elastic tensor C:

σ(x) = C : ε(x) (12.12)

where σ and ε are the local stress and strain tensors, respectively. The material has
an isotropic local elastic tensor C that reads:

Cijkl = λ(x)δijδkl + µ(x)(δikδjl + δilδjk) (12.13)

where δ is Kronecker symbol and λ(x) and µ(x) are constant-per-phase Lamé’s first
and second coefficients. For a 3D media, the local bulk modulus is κ = λ + 2/3µ.
In the porosity, both λ(x) and µ(x) equal to zero.

The strain derives from the displacement field u. Assuming small deformation,
this reads:

εij =
1

2
(∂iuj + ∂jui) (12.14)

Symmetrically, the stress field satisfies an ”equilibrium equation”, in the absence of
external forces:

∂iσij = 0 (12.15)

Periodic boundary conditions are applied with the material subjected to an over-
all strain loading ε̄. The effective properties are computed by taking averages over
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the elementary cell Ω. It is assumed that isotropy is recovered at the macroscopic
scale:

ε0 = 〈ε〉, σ0 =< σ >= C̃ : ε0 (12.16)

where ε0 = ε̄ and σ0 are the macroscopic strain and stress respectively, < . > denotes
the spatial mean over Ω, and C̃ is the resulting effective elastic tensor.

The FFT method is based on the Lippmann-Schwinger equation. It makes use
of an iterative fixed-point algorithm derived from the periodic equation (Moulinec
& Suquet, 1994):

εij(x) = ε̄ij −Gij,kl(x) ∗ τkl(x), τij(x) = σij(x)− C0
ij,kl : εkl(x) (12.17)

In Eq. 12.17, a homogeneous reference elasticity tensor C0 is introduced, together
with its associated polarization field τ and Green operator G. In Fourier domain,
the Green operator has the form (Kanaun & Levin, 2008):

Gij,kl(q) = {qi
[
qmC

0
mj,knqn

]−1
ql}sym (12.18)

where q 6= 0. If the reference elasticity tensor C0 is symmetric, positive and isotropic,
when q 6= 0, the Green operator has the form:

Gij,kl(q) =
1

µ0

[
(
qiql
|q|2

δjk)sym −
λ0 + µ0

λ0 + 2µ0

qiqjqkql
|q|4

]
(12.19)

The ”direct scheme” (Moulinec & Suquet, 1994) applies the equation 12.17 iter-
atively:

εk=0 = ε̄, εk+1 = ε̄−G ∗ [(C − C0) : εk], (k ≥ 0) (12.20)

The convolution product is then computed in Fourier domain, using Fast Fourier
Transform. Refined FFT algorithms with modified Green operators have also been
proposed, in order to improve the convergence rate. In this work, we use the ac-
celerated scheme (Eyre & Milton, 1999). The convergence rate of the scheme is
influenced by the choice of reference elasticity tensor.

12.2.2 Numerical solution of local fields

The two-scale model of platelets identified with the correlation function of TEM
images (see details in Sec. 8.5) is used. The microstructure volume is 5123 voxel
(3D view in Fig. 12.5 A). The Young’s modulus of the solid phase is set to be 253
GPa (Gallas et al., 1994), while the porous phase 0 GPa. Staub (2014) took 0.22
as the macroscopic Poisson coefficient of unimodal and bimodal γ-alumina. The
Poisson coefficient of alumina grains at the nanoscale should be a bit higher than
the macroscopic value (Willot & Jeulin, 2011). Therefore, the Poisson coefficient of
alumina grains is empirically set as 0.24.

An overall hydrostatic strain loading is imposed to the microstructure. The
algorithm converges, and the stress field σ and the strain field ε are obtained. A 3D
view of the stress field component σxx is shown in Fig. 12.5 (B). The 2D sections of
the three main components of the stress field are shown in Fig. 12.6.
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(A) (B)

Figure 12.5: 3d views of (A) the microstructure of mesoporous alumina and (B)
stress field component σxx. The direction of ex orients from the upper face to the
lower face. Warm colors correspond to high positive stress zones, while cold colors
for weak negative zones.

(A) σxx (B) σyy (C) σzz

Figure 12.6: 2D section of the stress field components in the solid: xx-direction
(vertical on the map), yy-direction (horizontal on the map) and zz-direction (normal
to the map) on top-right, bottom-left and bottom-right resp.
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Figure 12.7: Variance D2
σ(V ′) computed over the first component of the stress field

σxx. Linear curve fitting for large V ′ by 1/V ′ is in red.

12.2.3 Representative volume element

The representativity of the estimated effective elastic moduli is analyzed using the
variance D2

σ(V ) of estimates over n random realizations of volume V . In practice, a
single large realization of volume V is sufficient. The volume is divided into disjoint
subdomains of volume V ′. When V � V ′ and V ′ → ∞, the asymptotic expansion
reads (Matheron, 1971):

D2
σ(V ′) ∝ D2

σA
σ
3

V ′
(12.21)

where D2
σ is the point variance, and Aσ3 is the integral range.

The variance D2
σ(V ′) computed over the stress field is shown in Fig. 12.7. The

linear curve fitting satisfies the asymptotic expansion. The variance D2
σ(V ) at do-

main volume V is estimated by extending the fitting line. The relative error of the
estimated 〈σxx〉 is:

2
√
D2
σ(V )

〈σxx〉
= 3.02% (12.22)

12.2.4 Comparison with literature

The effective elastic moduli are calculated by eq. 12.16, and are shown in Tab. 12.1.
The results satisfy the Hashin-Shtrikman upper bound. However, they cannot be
validated because no experiment has been performed on elastic response of our
mesoporous alumina samples. The results are compared with some elastic moduli
of similar materials in literature.
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Source Method ε grain properties effective properties

E (GPa) ν E (GPa) ν
(Staub, 2014) experiment 66.5% 6.4
(Staub, 2014) experiment 72.5% 3.6
(Gallas et al., 1994) experiment 253

HS upper bound 69% 253 0.24 41.5 0.24
FFT 69% 253 0.24 1.65 0.19

Table 12.1: Comparison between elastic moduli computed by numerical methods
and of similar materials in literature. Staub’s sample of ε = 66.5% is unimodal
γ-alumina, and the sample of ε = 72.5% is bimodal γ-alumina.
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Chapter 13
Conclusion and perspectives

13.1 Conclusion

The study aims at enriching our knowledge on the relation between the morphology
of the microstructure and the transport properties of mesoporous alumina. The
goal of this thesis is to develop morphological models of the microstructure that are
representative of the material, and to predict its transport properties which include
sorption property and diffusion property.

Our approach consists of three steps: microstructure modeling constrained by
TEM images, morphological simulation of sorption properties and homogenization
on diffusion property. Accordingly, the thesis manuscript is organized focusing on
the three problematics.

In Part III, the TEM images of 300 nm thick and 70 nm thick specimens were
processed. The noise in the TEM images were identified, and the drift of the elec-
tron detectors was removed. The correlation functions of the 2D projections of the
alumina microstructures were estimated.

In Part IV, based on the preliminary study by (Pietrasanta, 2013) on the Boolean
model of isotropic platelets and the two-scale model of aligned platelets, we iden-
tified the size of the platelets and the spatial organization of the aggregates. The
resulting two-scale model has a specific surface area much higher than the BET
area by porosimetry, because the high-frequency noise biases the identification of
platelet size. The noise and carbon membrane were then taken into account in the
TEM image simulation. The re-identified model has platelets of size consistent with
experimental observations, and was validated with the BET specific surface area.

In Part V, a procedure was proposed to simulate the capillary condensation and
evaporation in porous media. The capillary condensation is simulated by a closing
operator, while the evaporation is simulated by a closing operator followed by a
hole-filling operator. The method is entirely geometrical, and the meniscus formed
satisfies the Kelvin equation. The method was validated on simple geometries like
slit pore and ink-bottle pores, in agreement with literature. When applied to random
models of porous media, boundary effects introduce strong finite-size effects on the
desorption branch. These effects were corrected by the percolation threshold analysis
of the vapour phase. The main advantage of the method is the computation efficiency
in large microstructures.

The method was then applied on various random models of porous media.
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Isotherms are not sensitive to the shape of obstacles in Boolean models. The union
or intersection of models of different scales combines their features in pore size dis-
tribution. A smooth pore size distribution was reproduced with a union of Boolean
model of spherical exclusions. Ink-bottle effects were reproduced by the union of
pores of distinct scales. By implementing hardcore spherical exclusions, the desorp-
tion threshold was controlled.

In order to reproduce the full range of the isotherms of nitrogen porosimetry
on mesoporous alumina, the multilayer adsorption at low pressure was simulated
by a dilation operator. The simulated isotherms of the two-scale model of platelets
identified in Part IV indicated that its average pore size is smaller than experiment
result. To enlarge the pores, a three-scale model with hardcore exclusions was
proposed. This model reproduced the experimental isotherm with the full range
simulation of nitrogen porosimetry.

The limitation of the method was also addressed: the spherical structuring el-
ement simplifies the local geometry during adsorption, and further underestimates
the condensation pressure. The spherical structuring element is more coherent with
the vapour-liquid interface during desorption. When watching only the desorp-
tion branch, the two-scale model of platelets identified with TEM images has close
isotherms with experimental result. It indicates the consistency between the TEM
images and the porosimetry isotherms.

In Part VI, the diffusion coefficients of toluene in the alumina samples were mea-
sured by PFG-NMR. The diffusion coefficients of Boolean models of spheres and of
isotropic platelets were estimated using numerical FFT-Fick’s diffusion computa-
tion, together with their tortuosity factors. Comparison indicated that platelets are
less favorable than spheres for a high diffusion coefficient. The mixture of isotropic
and aligned platelets was also studied, with or without aggregation. The platelet
alignment decreases the diffusion coefficient and increases the tortuosity factor. The
platelet aggregation increases the diffusion coefficient at low pore volume fraction,
while at high pore volume fraction the effect is weak.

We computed numerically the Fick’s diffusion flux on the two-scale and three-
scale models of platelets for mesoporous alumina. With cylindrical pore assumption,
the hindering effects were estimated by Renkin’s equation, and were added in the
effective diffusion coefficient estimation. The tortuosity factors of the two models
are close to the experimental result, with relative errors 4.4% and 2.6% respectively.
Numerical computations on elastic response and Stokes flow were also performed on
the two-scale model of platelets. The effective elastic moduli and effective perme-
ability have been predicted, but further experimental validation is required.

In summary, we modeled the 3D microstructure of mesoporous alumina with a
random model of platelets. The model incorporates the information extracted from
the XRD (by platelet shape) and the TEM images (by platelet size and aggregate
organization). After parameter identification, the model reproduces the covariance
of TEM images, the desorption branch of nitrogen porosimetry (including the spe-
cific surface area, the pore size distribution and the desorption threshold), and the
effective diffusion coefficent measured by PFG-NMR. The effects of platelet size and
aggregate organization on gas sorption properties have been studied. The effects
of platelet shape, alignement and aggregation on the diffusion property have been
studied.
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13.2 Perspectives

The three samples of mesoporous alumina studied in this work were not distinct
enough in texture. They have similar porosimetry isotherms and diffusion proper-
ties. Even so, differences in platelet aggregation scale have been observed visually in
the TEM images. A preliminary work in the segmentation of primary grains and the
quantification of local alignment has been shown in Sec 7.5. These information can
be further explored and be quantified for the microstructure modeling and identifi-
cation. This work may lead to models of better precision for each sample. If more
samples with distinct textures are available, comparisons between them will help
us to better understand the effects of microstructure morphology on the transport
properties.

The morphological simulation of capillary condensation is not perfect: the solid-
vapour interfaces are complex. Using a spherical structuring element to probe the
curvature of the interface is over-simplified. Closing operator adapting to the inter-
face curvature is an alternative for improvement.

In the Fick’s diffusion computation, the hindering effects are estimated using an-
alytical or empirical equations. In fact, the effect of gyration radius can be simulated
by a dilation operator. The dilation puts a repulsion distance between molecules
and solid walls. This manner is more precise than the cylindrical pore assumption.

The effective elastic moduli and effective permeability predicted using the FFT
method should be further validated by experiment. The effects of microstructure
morphology on the elasticity and permeability of mesoporous alumina are also of
great interest for the refining industry. With these knowledge, microstructure opti-
mizations can be performed for each property or coupled properties.
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Matheron, G. (1967) Eléments pour une théorie des milieux poreux, Masson, Paris.

Matheron, G. (1987) Composition des perméabilité en milieu poreux hétérogène:
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318(11):1417–1423.

Mu, D., Liu, Z.-S., Huang, C., and Djilali, N. (2007). Prediction of the effective
diffusion coefficient in random porous media using the finite element method.
Journal of Porous Materials, 14(1):49–54.

Mu, D., Liu, Z., Huang, C. & Djilali, N. (2008) Determination of the effective diffu-
sion coefficient in porous media including Knudsen effects. Microfluid Nanofluid
4, 257–260.

Münch, B. & Holzer, L. (2008) Contradicting geometrical concepts in pore size
analysis attained with electron microscopy and mercury intrusion. Journal of the
American Ceramic Society 91 (12), 4059–4067.

Nelder, J. & Mead, R. (1965) A simplex method for function minimization. Com-
puter Journal 7, 308–313.



178 BIBLIOGRAPHY

Papadopoulos, G. (1993) Study of adsorption, diffusion and gas relative permeability
in mesoporous alumina membranes, in relation to their porous and macroscopic
structure. Ph.D. thesis (in Greek), University of Athens.

Pardo, P., Montoya, N., and Alarcón, J. (2015). Tuning the size and shape of nano-
boehmites by a free-additive hydrothermal method. CrystEngComm, 17(10):2091–
2100.

Pellegrini, Y. P., & Willot, F. (2012). Generalized two-body self-consistent theory of
random linear dielectric composites: an effective-medium approach to clustering
in highly-disordered media. arXiv preprint arXiv: 1206.0857.

Pickup, S. and Blum, F. (1989). Self-diffusion of toluene in polystyrene solutions.
Macromolecules, 22(10):3961–3968.

Pietrasanta, A. (2013) Mathematical morphology applied to mesoporous alumina:
construction of a 3D random model through the analysis of 2D TEM images.
Master thesis, University of Milan.

Prakash, A. & Lebensohn R. (2009) Simulation of micromechanical behavior of poly-
cristals: finite element versus fast Fourier transforms. Modelling and Simulation
in Materials Science and Engineering 17:6, 064010.

Prasher, B. and Ma, Y. (1977). Liquid diffusion in microporous alumina pellets.
AIChE Journal, 23(3):303–311.

Prieto, G., Shakeri, M., de Jong, K.P. & de Jongh, P.E. (2014) Quantitative relation-
ship between support porosity and the stability of pore-confined metal nanopar-
ticles studied on CuZnO/SiO2 methanol synthesis catalysts. ACS Nano 8:3,
2522–2531.

Radon, J. & Parks, P.C. (1986) On the determination of functions from their integral
values along certain manifolds. IEEE Transactions on Medical Imaging 5:4, 170-
176.

Rana, M.S., Ancheyta, J., Maity, S.K. & Rayo, P. (2011) Hydrotreating of Maya
crude oil: I. effect of support composition and its pore-diameter on asphaltene
conversion. Petroleum Science and Technology 25:1-2, 187–199.

Reimer, L. & Kohl, H. (2008) Transmission electron microscopy: physics of image
formation. Springer, 36.

Reyes, S. and Iglesia, E. (1991). Effective diffusivities in catalyst pellets: new
model porous structures and transport simulation techniques. Journal of Cataly-
sis, 129(2):457–472.

Rigby, S. and Gladden, L. (1999). The prediction of transport properties of porous
media using fractal models and NMR experimental techniques. Chemical Engi-
neering Science, 54(15-16):3503–3512. 15th International Symposium on Chemical
Reaction Engineering (ISCRE 15), Newport Beach, CA, Sep 13-16, 1998.



BIBLIOGRAPHY 179

Rozita, Y., Brydson, R., Comyn, T., Scott, A., Hammond, C., Brown, A., Chauruka,
S., Hassanpour, A., Young, N., Kirkland, A. Sawada, H., and Smith, R. (2013). A
study of commercial nanoparticulate γ-Al2O3 catalyst supports. ChemCatChem,
5(9):2695–2706.

Rozman, M. and Utz, M. (2001). Efficient reconstruction of multiphase morphologies
from correlation functions. Physical Review E, 63(6):066701.

Sahimi, M. (1993). Flow phenomena in rocks: from continuum models to frac-
tals, percolation, cellular automata, and simulated annealing. Reviews of Modern
Physics, 65(4):1393–1534.

Santos, F., Nieto de Castro, C., Dymond, J., Dalaouti, N., Assael, M., and Na-
gashima, A. (2006). Standard reference data for the viscosity of toluene. Journal
of physical and chemical reference data, 35(1):1–8.

Satterfield, C., Colton, C., and Pitcher, W. (1973). Restricted diffusion in liquids
within fine pores. AIChE Journal, 19(3):628–635.

Seaton N.A. (1991) Determination of the connectivity of porous solids from nitrogen
sorption measurements. Chemical Engineering Science 46 (8), 1895–1909.
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Résumé 
 

Dans ce travail réalisé au Centre de Morphologie Mathématique 

and IFPEN, on s'intéresse à la microstructure et aux propriétés 

physiques d'alumines mésoporeuses. Il s'agit d'un support de 

catalyseur utilisé notamment dans les procédés industriels de 

raffinage du pétrole. Fortement poreux, ce matériau est formé de 

''plaquettes'' distribuées de manière désordonnée à l'échelle de la 

dizaine de nanomètres.  Les propriétés de transport de masse du 

support de catalyseur sont fortement influencées par la 

morphologie de la microstructure poreuse. Ce travail por te sur la 

modélisation de la microstructure et des propriétés de transport 

des alumines mésoporeuses, à l'aide d'outils numériques et 

théoriques dérivés de l'analyse d'image et de la théorie des 

ensembles aléatoires. D'une part, on met en place des méthodes 

de caractérisation et de modélisation des microstructures, qui 

s'appuient sur, entre autre, des images obtenues par microscopie 

électronique en transmission (MET) et des courbes de porosimétrie 

azote. D'autre part, on utilise des méthodes d'homogénéisation 

numérique à champs complets par transformées de Fourier rapide 

(FFT). 

 

Dans un premier temps, le matériau est caractérisé 

expérimentalement par porosimétrie azote et résonance 

magnétique nucléaire à gradient de champ pulsé (RMN-GCP). Les 

images MET sont obtenues sur des échantillons d'épaisseur 

variable, filtrées et caractérisés par des fonctions de corrélation, 

notamment. Le bruit à haute fréquence issu de la membrane de 

carbone est identifié et pris en compte dans la modélisation de 

l'imagerie MET. À partir des images MET 2D, un modèle aléatoire à 

deux échelles est proposé pour représenter la microstructure 3D. Il 

prend en compte la forme des plaquettes d'alumine, leurs tailles, 

les effets d'alignement locaux et d'agrégation, qui sont identifiés 

numériquement. La procédure est validée à l'aide de comparaisons 

entre modèles et images expérimentales, en terme notamment de 

fonctions de corrélation et de surface spécifique mesurées par 

porosimétrie azote. 

 

Dans un deuxième temps, une méthode de simulation des courbes 

d'isotherme de porosimétrie dans des milieux poreux périodiques 

ou aléatoires est développée.  Basée sur des opérations 

morphologiques simples, elle étend un travail antérieur sur la 

porosimétrie au mercure. L'adsorption multicouche à basse 

pression est simulée à l'aide d'une dilatation tandis que les 

ménisques de l'interface vapeur-liquide intervenant pendant 

l'adsorption sont simulés à l'aide de fermetures de la phase solide 

par des éléments structurants sphériques. Pour simuler la 

désorption, une combinaison de fermetures et de bouchages de 

trou est utilisée. Le seuil de désorption est obtenu par une analyse 

de la percolation de la phase gazeuse. La méthode, d'abord 

validée sur des géométries simples, est comparée à des résultats 

antérieurs. Elle prédit une hystérésis et les distributions de pores 

associées à la porosimétrie. Nous l'appliquons aux modèles de 

microstructures 3D d'alumines mésoporeuses et proposons un 

modèle à trois échelles afin de rendre compte du seuil de pression 

pendant la désorption. En plus de la courbe de désorption, ce 

modèle reproduit les fonctions de corrélation mesurées sur les 

images MET. 

 

Dans un troisième temps, la diffusion de Fick, la perméabilité de  

Darcy, et les propriétés élastiques sont prédites à l'aide de calculs 

de champs complets par FFT sur des réalisations des modèles 

d'alumines mésoporeuses à deux et trois échelles. Les coefficients 

de diffusion effectifs et les facteurs de tortuosité sont prédits à 

partir de l'estimation du flux. Sont étudiés les effets de forme, 

d'alignement et d'agrégation des plaquettes sur les propriétés de 

diffusion à grande échelle. Les prédictions numériques sont 

validées au moyen des résultats expérimentaux obtenus par 

méthode RMN-GCP. 

 

Mots Clés 
 

Traitement de l'image, microstructure, modèle aléatoire, simulation 

de porosimétrie azote, condensation capillaire, FFT, diffusion 

restreinte 

Abstract 
 

In a work made at Centre de Morphologie Mathématique and 

IFPEN, we study the microstructure and physical properties of 

mesoporous alumina. This is a catalyst carrier used in the 

petroleum refining industry. Highly porous, it contains disordered 

''platelets'' at the nanoscale. The mass transport properties of the 

catalyst carrier are strongly influenced by the morphology of the 

porous microstructure. We focus on the modeling of the 

microstructure and of transport properties of mesoporous alumina,  

using numerical and theoretical tools derived from image analysis 

and random sets models. On the one hand, methods are developed 

to characterize and model the microstructure, by extracting and 

combining information from transmission electron microscope 

(TEM) images and nitrogen porosimetry curves, among others. On 

the other hand, the numerical homogenization relies on full -field 

Fourier transform computations (FFT). 

 

The material is first characterized experimentally by nitrogen 

porosimetry and pulse-field gradient nuclear magnetic resonance  

(PFG-NMR). TEM images, obtained on samples of various 

thicknesses are filtered and measured in terms of correlation 

function. The high-frequency noise caused by carbon membrane 

support is identified and integrated in the TEM image model. Based 

on the 2D TEM images, a two-scale random set model of 3D 

microstructure is developed. It takes into account the platelet 

shape, platelet size, local alignments and aggregations effects 

which are numerically identified. The procedure is validated by 

comparing the model and experimental images in terms of 

correlation function and specific surface area estimated by nitrogen  

porosimetry. 

 

Next, a procedure is proposed to simulate porosimetry isotherms in 

general porous media, including random microstructures. Based on 

simple morphological operations, it extends an earlier approach of 

mercury porosimetry. Multilayer adsorption at low pressure is 

simulated by a dilation operation whereas the menisci of the vapor-

liquid interface occurring during adsorption are simulated by 

closing the solid phase with spherical structuring elements. To 

simulate desorption, a combination of closing and hole-filling 

operations is used. The desorption threshold is obtained from a 

percolation analysis of the gaseous phase. The method, validated 

first on simple geometries, is compared to previous results of the 

literature, allowing us to predict the hysteresis and pore size 

distribution associated to porosimetry. It is applied on 3D 

microstructures of mesoporous alumina. To account for the 

pressure threshold during desorption, we propose a refined three-

scale model for mesoporous alumina, that reproduces the 

correlation function and the desorption branch of porosimetry 

isotherms. 

 

Finally, Fick diffusion, Darcy permeability, and elastic moduli are  

numerically predicted using the FFT method and the two-scale and  

three-scale models of mesoporous alumina. The hindering effects 

in diffusion are estimated by the Renkin's equation. The effective  

diffusion coefficients and the tortuosity factors are estimated from 

the flux field, taking into account hindering effects. The effects of  

platelet shape, alignment and aggregation on the diffusion property 

are studied. The numerical estimation is validated from 

experimental PFG-NMR results.  
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