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We are like tenant farmers chopping down the
fence around our house for fuel when we should

be using Nature’s inexhaustible sources of
energy–sun, wind and tide. I’d put my money on

the sun and solar energy. What a source of
power! I hope we don’t have to wait until oil and

coal run out before we tackle that.

Thomas A. Edison, as quoted in Uncommon
Friends : Life with Thomas Edison, Henry Ford,

Harvey Firestone, Alexis Carrel and Charles
Lindbergh (1987) by James Newton

Version: November 26, 2016
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Titre : Contributions mathématiques pour la régulation et l’optimisation de la
production d’électricité

Keywords : électricité, micro réseau, marchés en réseaux, optimisation, vieillissement, mé-
canismes d’incitation.

Résumé : Nous présentons notre contribution sur la régulation et l’optimisation de la
production d’électricité.

La première partie concerne l’optimisation de la gestion d’un micro réseau. Nous formulons le
programme de gestion comme un problème de commande optimale en temps continu, puis nous
résolvons ce problème par programmation dynamique à l’aide d’un solveur développé dans ce
but : BocopHJB. Nous montrons que ce type de formulation peut s’étendre à une modélisation
stochastique. Nous terminons cette partie par l’algorithme de poids adaptatifs, qui permet une
gestion de la batterie du micro réseau intégrant le vieillissement de celle-ci. L’algorithme exploite
la structure à deux échelles de temps du problème de commande.

La seconde partie concerne des modèles de marchés en réseaux, et en particulier ceux de
l’électricité. Nous introduisons un mécanisme d’incitation permettant de diminuer le pouvoir
de marché des producteurs d’énergie, au profit du consommateur. Nous étudions quelques pro-
priétés mathématiques des problèmes d’optimisation rencontrés par les agents du marché (pro-
ducteurs et régulateur). Le dernier chapitre étudie l’existence et l’unicité des équilibres de Nash
en stratégies pures d’une classe de jeux Bayésiens à laquelle certains modèles de marchés en
réseaux se rattachent. Pour certains cas, un algorithme de calcul d’équilibre est proposé.

Une annexe rassemble une documentation sur le solveur numérique BocopHJB.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France
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Hello World

Title : Mathematical contributions for the optimization and regulation of electricity
production

Keywords : electricity, microgrid, network markets, optimization, aging, mechanism design,
auctions.

Abstract : We present our contribution on the optimization and regulation of electricity
production.

The first part deals with a microgrid Energy Management System (EMS). We formulate
the EMS program as a continuous time optimal control problem and then solve this problem
by dynamic programming using BocopHJB, a solver developed for this application. We show
that an extension of this formulation to a stochastic setting is possible. The last section of
this part introduces the adaptative weights dynamic programming algorithm, an algorithm for
optimization problems with different time scales. We use the algorithm to integrate the battery
aging in the EMS.

The second part is dedicated to network markets, and in particular wholesale electricity
markets. We introduce a mechanism to deal with the market power exercised by electricity
producers, and thus increase the consumer welfare. Then we study some mathematical proper-
ties of the agents’ optimization problems (producers and system operator). In the last chapter,
we present some pure Nash equilibrium existence and uniqueness results for a class of Baye-
sian games to which some networks markets belong. In addition we introduce an algorithm to
compute the equilibrium for some specific cases.

We provide additional information on BocopHJB (the numerical solver developed and used
in the first part of the thesis) in the appendix.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France
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Chapter 1

Introduction

This introduction, the only chapter of the thesis written in French, presents in
broad terms the whole content of the manuscript.

Contents
1.1 Présentation générale . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Quelques mots sur l’électricité . . . . . . . . . . . . . . . . . . . 18

1.3 Résumé et contributions de la première partie . . . . . . . . . . 20

1.4 Résumé et contributions de la seconde partie . . . . . . . . . . 23

1.5 BocopHJB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.1 Présentation générale

Ce manuscrit rassemble le travail des trois années de thèse que j’ai effectuées à l’Ecole
polytechnique au sein de l’équipe Inria Commands, sous la direction de Frédéric Bonnans,
co-encadré par Alejandro Jofré de l’Universidad de Chile. Au cours de cette thèse, j’ai
effectué trois séjours de plusieurs mois à Santiago du Chili pour travailler avec Alejan-
dro Jofré et une équipe du centro de Energía. Mon travail porte sur certaines questions
d’optimisation liées à la production d’électricité. Chacune des deux parties de cette thèse
en aborde un aspect différent. L’annexe quant à elle apporte quelques informations com-
plémentaires sur BocopHJB, le solveur numérique de contrôle optimal au développement
duquel j’ai pu participer.

La première partie de cette thèse porte sur l’optimisation de la production d’électricité
par un micro-réseau. Dans les deux premiers chapitres de cette partie, nous formulons
le problème d’optimisation du micro-réseau comme un problème de commande optimale.
Le micro-réseau (microgrid en anglais) est un paradigme de production et de distribution

15
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d’électricité décentralisées. Cette idée peut sembler dans un premier temps étonnante,
car le bon sens recommanderait plutôt a priori de centraliser pour faire des économies
d’échelle et prendre des décisions qui soient optimales globalement. Néanmoins ce concept
suscite un intérêt croissant dans le domaine [74]. L’étude des avantages et inconvénients
du micro-réseau en tant que moyen de production d’électricité n’entre pas dans ce projet
de recherche.

Observons tout d’abord qu’il existe un scénario où l’intérêt du micro-réseau est indé-
niable : quand il ne s’agit pas d’un choix mais d’une nécessité. Ainsi les deux chapitres
suivants portent sur l’optimisation d’un modèle de micro-réseau construit à partir d’un cas
réel : le projet du village de Huatacondo dans le désert de l’Atacama, au Chili1. Ce vil-
lage, parce qu’il est géographiquement isolé, n’est pas connecté au reste du réseau national
chilien. Il s’agit d’une situation typique pour les lieux isolés et peu peuplés, tels que les
endroits difficilement accessibles, les îles de petites tailles, etc. Le lecteur pourra se faire
une idée du lieu avec les photographies2 des illustrations 1.1, 1.2 et 1.3.

Figure 1.1 – Le village de Huatacondo, déconnecté du reste du reseau

Figure 1.2 – La batterie du projet de Huatacondo

Ensuite, le paradigme de micro-réseau comprend aussi un mode connecté. Dans ce cas,
un prix de marché, par exemple, permet de décentraliser les prises de décision. En milieu
urbain, un ensemble d’immeubles, une usine ou une flotte de véhicules hybrides peuvent se

1voir https://building-microgrid.lbl.gov/huatacondo
2Merci à Fernando Lanas de me les avoir fournies

https://building-microgrid.lbl.gov/huatacondo
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Figure 1.3 – Les panneaux solaires du projet de Huatacondo

décrire comme un micro-réseau. Ainsi les idées présentées dans les deux premiers chapitres
peuvent être adaptées pour le mode connecté.

La première partie se termine par un algorithme permettant de prendre en compte le
vieillissement de long terme (Chapitre 4) de systèmes commandés. J’applique ensuite ce
résultat à un exemple simplifié de micro-réseau. Ce travail est motivé par une question
pratique à l’énoncé très simple : comment prendre en compte l’usure de la batterie dans
le problème d’optimisation ?

Les idées et résultats de cette première partie sont construits sur la théorie du contrôle
optimal en temps continu (appelé aussi commande optimale), avec une petite incursion
dans la théorie du contrôle optimal stochastique dans le chapitre 3. Nous détaillons un
peu plus bas notre contribution scientifique sur le sujet des micro-réseaux.

La deuxième partie de ma thèse porte sur un thème plus macroscopique : le marché de
l’électricité. J’étudie un modèle d’enchères d’approvisionnement où un opérateur central
organise la production pour minimiser le prix que le consommateur devra payer.

Observons que la réalité est très complexe. Les règles d’allocations et de rétributions, les
contraintes techniques et réglementaires et le type d’agents qui y prennent part dépendent
du marché considéré. En plus de l’aspect géographique, il existe plusieurs types de marchés
(puissance, capacité, etc.) et ces marchés sont interconnectés que ce soit par des connexions
physiques ou des produits financiers.

L’étude que nous proposons porte sur un modèle statique en réseau avec une demande
inélastique. La demande est considérée comme un objet déterministe pour simplifier, le
cas stochastique se traitant de façon similaire. Nous proposons un mécanisme d’incitation
permettant:

• D’inciter les producteurs à révéler leurs vrais coûts de production,

• De minimiser le coût payé par le consommateur.

Nous étudions également la structure de ce marché à la lumière de quelques éléments
de théorie des jeux. Ce travail emprunte beaucoup à la théorie des enchères et à la théorie
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des jeux Bayesiens. Le manuscrit contient plusieurs références à des résultats classiques
d’optimisation convexe.

La construction du solveur numérique BocopHJB ne fait pas l’objet d’une discus-
sion spécifique au sein de ce manuscrit. J’aborde quelques points clefs de la théorie
sous-jacente (le Principe de Programmation Dynamique et l’équation de Hamilton-Jacobi-
Bellman) dans la suite de cette introduction. Le guide utilisateur ajouté en annexe fournit
l’information nécessaire à son utilisation, et le guide d’exemples illustre les types de prob-
lèmes que l’on peut résoudre avec le logiciel. Quelques extraits du code de micro-réseau
simplifié présenté au Chapitre 4 sont également donnés en annexe.

Comme ce travail est une compilation de projets d’articles, les chapitres peuvent se lire
indépendamment les uns des autres. Les noms de mes co-auteurs sont précisés au début de
chaque chapitre. Les deux parties correspondent à des projets différents et indépendants.

1.2 Quelques mots sur l’électricité

L’énergie (et donc la production d’électricité) est un sujet sociétal important. Pour preuve,
la période pendant laquelle ce manuscrit a été élaboré fut le témoin de la COP21. Durant
cette conférence, les dirigeants du monde entier ont débattu d’une politique pour lutter
contre le réchauffement climatique. Les problématiques liées à l’énergie et la production
d’électricité furent un des grands axes discutés au cours de ces échanges.

Par ailleurs, l’électricité est aussi un sujet complexe. Le réseau électrique est un sys-
tème gigantesque faisant interagir de nombreux agents à des échelles différentes dans un
environnement incertain et sous des horizons temporels variés, auxquels s’ajoute un lot de
contraintes techniques et légales.

Enfin, l’industrie de l’électricité est en pleine mutation. Au cours de ma deuxième
année de thèse, le marché mondial du panneau solaire a augmenté de 25%. Les énergies
renouvelables sont en plein essor (cf. graphique 1.4 et 1.5). L’objectif de la France est
un mix énergétique comprenant 20% de renouvelables d’ici 2020. L’ADEME (Agence de
l’Environnement et de la Maîtrise de l’Energie) a même envisagé (plus comme expérience
de pensée que comme plan politique) des scénarios avec des mix à plus de 80%. Dans ce
contexte, les quelques phrases données en épigraphe, attribuées à Thomas Edison (à qui
l’on attribue l’invention de la lampe à incandescence) prennent des accents de prophétie.

Dans certains pays, la part de renouvelables dépasse les 50% (Norvège 98%, Brésil 77%,
Canada 63%, Costa Rica 88%). De grands projets sont en cours dans d’autres pays (au
Chili par exemple). La catastrophe de Fukushima a durablement changé le rapport des
sociétés au nucléaire.

Des changements importants s’annoncent pour les années à venir:

• augmentation des sources intermittentes dans le mix énergétique,
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Figure 1.4 – Capacité en renouvelables (monde) en 2004 (en haut) et 2014 (en bas) Source:
http://www.ren21.net/resources/charts-graphs/

Figure 1.5 – Capacité en solaire (gauche) et éolien (droite) entre 2004 et 2014 (monde).
Source: http://www.ren21.net/resources/charts-graphs/

http://www.ren21.net/resources/charts-graphs/
http://www.ren21.net/resources/charts-graphs/
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• avènement du véhicule électrique

• réseaux intelligents,

• production par le consommateur.

Ces changements, qui sont portés par le progrès technologique (loi de Moore sur les
panneaux solaires, batteries de plus en plus performantes) et l’impératif écologique, intro-
duisent un nouveau degré de complexité. Par exemple, il est bien plus difficile de définir un
coût marginal pour des énergies intermittentes que pour une centrale à charbon. Dès lors,
la définition économique d’un prix s’en trouve bouleversée. L’augmentation du parc de
véhicules électrique se traduira vraisemblablement par une augmentation des capacités de
stockage d’énergie disponibles, les batteries des véhicules pouvant être utilisées pour stocker
le surplus de production des heures creuses. Ce nouveau moyen de stockage potentiel que
représente la flotte électrique demandera beaucoup de travail d’intégration.

1.3 Résumé et contributions de la première partie

La première partie de ma thèse porte sur l’optimisation de la production d’un micro-
réseau. Le modèle de micro-réseau a été construit au cours d’une collaboration avec des
ingénieurs du centro de Energia de l’Universidad de Chile. Ceux-ci disposent d’un micro-
réseau (évoqué plus haut) isolé, à Huatacondo dans le désert de l’Atacama. Ce village
produit localement l’électricité qu’il consomme. Pour subvenir à ses propres besoins en
électricité, le village dispose d’un panneau solaire, d’un générateur diesel et d’une batterie.

La figure 1.6 est une représentation symbolique d’un tel micro-réseau. Le panneau
solaire produit de l’énergie quand il y a du soleil. Si à un moment donné la production
d’énergie intermittente est supérieure à la demande, on peut stocker cette énergie dans la
batterie pour l’utiliser plus tard. Si au contraire, cette production est insuffisante pour
satisfaire la demande instantanée, on peut puiser dans les réserves énergétiques de la bat-
terie ou utiliser le générateur diesel. Lorsque le générateur est utilisé, la consommation de
diesel s’accompagne d’un coût supplémentaire. Le rôle d’un EMS (Energy Management
System) est de satisfaire la demande en électricité à moindre coût tout en satisfaisant des
contraintes de fonctionnement. De fait, un EMS a en général pour composant principal un
algorithme d’optimisation.

A priori, il y a donc deux variables d’ajustement possible pour le problème, mais si on
considère l’équation d’équilibre des puissances :

Pdiesel + Pbatterie + Psolaire = Pdemande, (1.1)

on se rend compte que si on fixe la puissance diesel, la puissance de la batterie est fixée
aussi. On en déduit qu’une formulation avec un contrôle (le diesel) et un état contrôlable
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Figure 1.6 – Représentation synthétique de la microgrid de Huatacondo. En haut la de-
mande en électricité, en bas la production non contrôlable, et au milieu les deux variables
d’ajustement : la batterie et le générateur diesel. Puisque par bilan des puissances, la
demande doit être égale à la somme des productions, et que seuls les deux éléments de la
ligne du milieu (diesel et batterie) correspondent à des quantités contrôlables, on peut com-
prendre avec cette figure que la seule variable de décision sera la puissance du générateur
diesel.

(correspondant à l’énergie stockée dans la batterie) doit être possible.
Plusieurs aspects sont à prendre en compte lors de l’optimisation: les contraintes

physiques (typiquement de charge et de décharge de la batterie) et opérationnelles (par
exemple éviter de se retrouver avec une batterie complètement vide). Dans la littérature
on trouve surtout des formulations en temps discret du problème d’optimisation du micro-
réseau. Je propose dans cette thèse une représentation continue du problème, ce qui permet
d’utiliser d’autres outils d’analyse (principe du maximum de Pontryagin, régularité3, tra-
vail sur le problème initial non linéaire), et de résolution (équations aux dérivées partielles,
Monte-Carlo, etc.). Le chapitre 2 introduit une formulation déterministe du problème de
gestion de micro-réseau. Comme l’aléa n’est pas pris en compte directement dans cette
formulation, cette approche peut s’utiliser en horizon glissant.

Le chapitre 3 étend cette formulation à un cadre stochastique. Comme la production solaire
est très prévisible dans un désert, l’aléa porte sur la demande, qui est modélisée avec un
terme Brownien et un terme de retour à la moyenne. Une telle approche demande d’estimer
un nombre relativement faible de paramètres. Nous comparons la stratégie obtenue avec
une stratégie à horizon glissant sur un profil historique de demande.

Le chapitre 4 propose un algorithme pour la résolution d’un problème de contrôle optimal

3en particulier, cf. l’hypothèse 3 dans le chapitre sur le vieillissement.
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avec vieillissement et données périodiques. L’intérêt d’un tel algorithme dans le cadre d’un
micro-réseau est clair: le prix d’achat de la batterie représente une part importante du
budget du micro-réseau et, de plus, sa durée de vie dépend de l’usage que l’on en fait. Au
fur et à mesure qu’une batterie vieillit, son efficacité décroit. Il faudrait donc idéalement
prendre en compte le vieillissement de cette batterie dans le problème d’optimisation du
micro-réseau.

Mais ce vieillissement se fait sur plusieurs années, et n’a donc pas d’effet mesurable à
l’échelle d’une journée. Quel niveau de vieillissement viser dans la résolution du problème
de l’EMS sur un horizon de 24 heures ? Comment éviter que la prise en compte de ce
vieillissement rende le problème trop difficile à résoudre numériquement dans les délais
impartis ? Pour le prendre en compte dans le problème d’optimisation, une technique
consiste à pénaliser l’usage de la batterie avec un terme de pénalisation dans le critère
à optimiser. Si le coefficient de pénalisation est nul, cela revient à ne pas prendre en
compte le vieillissement dans le critère d’optimisation. À l’inverse, si ce coefficient est très
grand, cela revient à s’interdire d’utiliser la batterie, et de n’utiliser que le générateur diesel
comme variable d’ajustement pour l’équilibre des puissances. En général ce coefficient de
pénalisation est choisi de façon plus ou moins arbitraire. Nous proposons une règle pour
décider de sa valeur. Nous modélisons l’état de santé de la batterie avec une variable d’âge.
Or, si l’on considère le problème d’optimisation du micro-réseau sur plusieurs années, il
faut prendre en compte l’état de santé de la batterie comme une variable d’état, au même
titre que la quantité d’énergie stockée dans la batterie. Sur un intervalle temporel grand,
il existe donc un profil optimal d’âge.

L’algorithme de poids adaptatifs permet de choisir le coefficient de pénalisation (le
poids) de telle sorte que le contrôle optimal résultant pour un horizon d’une journée
provoque un niveau de vieillissement qui soit proche de l’optimum. Les résultats sont
d’abord présentés de façon générale, en dehors du contexte du micro-réseau. J’expérimente
ensuite l’algorithme sur un modèle analytique de micro-réseau.

Nous venons de voir les principaux axes abordés dans cette première partie. Les prin-
cipales contributions sont les suivantes

Chapitre 2: Continuous Optimal Control Approaches to Microgrid Energy
Management

• formulation du problème de l’EMS comme d’un problème de contrôle optimal non
linéaire en temps continu,

• modélisation des états allumé et éteint du générateur diesel,

• introduction d’une simplification algorithmique pour le cas des coûts de production
concaves,
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• comparaison de deux méthodes de résolution du problème en temps continu avec une
approche mixte linéaire en nombres entiers (MILP).

Chapter 3: A Stochastic Continuous Time Model for Microgrid Energy Man-
agement Ce chapitre est paru comme article de conférence pour the European Control
Conference 2016 (ECC2016), Aalborg Danemark 29 juin-1er juillet 2016.

• extension au cas stochastique du modèle déterministe. Le modèle proposé pour la
demande nécessite l’estimation d’un nombre limité de paramètres.

• comparaison avec une approche déterministe à horizon glissant sur un profil his-
torique.

Chapter 4: Long Term Aging : An Adaptative Weights Dynamic Programming
Algorithm

• introduction de l’algorithme de poids adaptatifs,

• estimation de l’erreur,

• discussion sur la complexité algorithmique,

• expérience numérique sur le vieillissement d’un micro-réseau.

1.4 Résumé et contributions de la seconde partie

Dans la second partie, nous proposons un mécanisme de régulation permettant de dimin-
uer le pouvoir de marché des producteurs d’électricité, au profit du consommateur. On
considère un modèle de marché en réseau. Le marché est modélisé par un graphe. En
chaque point du graphe:

• il y a un producteur d’électricité,

• la demande est connue.

Un opérateur central alloue la production de façon à minimiser ses coûts. L’électricité
peut transiter à travers le réseau, mais cela engendre des pertes en ligne (effet Joule). Ces
pertes sont à la charge du consommateur.

Les producteurs voulant maximiser leur profit, ils sont tentés de surévaluer leurs coûts
de production pour augmenter leurs marges. Escobar et Jofré ont montré dans [35] que les
pertes en ligne donnent aux producteurs un pouvoir de marché, et que la surévaluation est
dans ce cadre là une attitude raisonnable des producteurs.
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Ainsi dans le cas d’un réseau de deux nœuds avec des producteurs symétriques de coût
marginal de production c, on peut montrer que ceux-ci annonceront à la place un coût de

c∗ =
c

1− 2rd
> c, (1.2)

où r est le coefficient de perte en ligne, et d la demande aux deux nœuds du réseau.
Après un chapitre introductif (chapitre 5), nous présentons un mécanisme d’incitation

pour des coûts de productions linéaires (chapitre 6). Nous généralisons ce mécanisme dans
le chapitre 7 au cas de coûts de production linéaires par morceaux dans un réseau avec
des contraintes et des externalités plus générales. Nous discutons aussi des propriétés du
programme d’allocation que résout l’opérateur central et en déduisons un algorithme de
calcul d’allocation "décentralisé". Le dernier chapitre contient un résultat d’unicité de
l’équilibre de Nash en stratégie pure du jeu Bayésien induit par ce modèle de marché, dans
le cas de fonctions de coût linéaires. Nous introduisons ensuite un système d’équations
différentielles couplées pour lequel cet équilibre de Nash est un point stationnaire. Nous
en déduisons un schéma numérique pour calculer les stratégies d’équilibre. Pour la famille
de jeux étudiée, ce schéma présente de meilleures propriétés de convergence numérique
que l’algorithme d’itérations sur les meilleures réponses. Il nous a permis de calculer les
stratégies d’équilibre du marché à partir desquelles on obtient le coût moyen payé par la
société quand le mécanisme d’incitation n’est pas implémenté. De cette manière on peut
estimer l’économie que représente pour le consommateur l’implémentation du mécanisme
d’incitation (cf. chapitre 6).

Pour cette deuxième partie, les contributions apportées sont:

Chapter 5: Mechanism Design and Auctions for Electricity Network

• ce chapitre est principalement une introduction du contexte général pour ce qui va
suivre,

• on propose en illustration un calcul de la solution du problème d’allocation de
l’opérateur dans le cas de deux nœuds et des coûts de production linéaire par morceaux
(deux morceaux).

Chapter 6: Cost-Minimizing regulations for a wholesale electricity market

• nous introduisons le mécanisme d’incitation dans le cas de coûts linéaires,

• nous calculons numériquement sur un exemple ce que gagne le consommateur si ce
mécanisme d’incitation est implémenté,

• nous montrons que, contrairement à ce que pourraient nous faire croire les résultats
numériques, ce que paie consommateur n’est pas une fonction affine du coefficient de
perte en ligne r.
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Chapter 7: Mechanism design and allocation algorithms for network markets
with piece-wise linear costs and quadratic externalities

• nous généralisons le résultat du chapitre précédent pour des fonctions linéaires par
morceaux, des externalités et un réseau général,

• nous observons quelques propriétés de la solution du problème d’allocation de l’opérateur
central,

• nous en déduisons en particulier que la quantité moyenne produite par un producteur
est une fonction régulière de son coût de production,

• nous en déduisons aussi un algorithme de point fixe pour calculer la solution du
problème d’allocation du principal,

• nous comparons les performances de cet algorithme avec les performances d’une ré-
solution avec le solveur CVX,

• pour le cas binodal, nous introduisons un autre algorithme plus rapide.

Chapter 8: On a class of bidding games whose dynamics converges to the
unique pure equilibrium

• nous identifions une classe de jeux Bayésien pour laquelle nous montrons l’existence
d’un équilibre de Nash en stratégie pure,

• nous donnons des conditions suffisantes d’unicité,

• nous proposons un algorithme pour calculer les stratégies d’équilibre,

• nous appliquons ces résultats au cas du marché binodal avec coûts de production
linéaires.

1.5 BocopHJB

BocopHJB est un solveur numérique codé en C++ que nous avons développé pendant la
première année de thèse. BocopHJB permet la formulation et la résolution de problèmes
de contrôle optimal en temps continu.

Il repose sur le principe de programmation dynamique énoncé par Richard Bellman
dans les années 1950. On considère formellement le problème de contrôle optimal suivant:

V (x0, t0) = inf
u

∫ T

t
`(u(t), x(t))dt+ φ(xT ), (1.3)

où x est un état contrôlé par la commande u, ` est un coût intégral et φ un coût final. La
quantité V correspond au coût total minimum que l’on puisse obtenir en partant de l’état
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x0 au temps t0. On dit que V est la fonction valeur du problème. C’est une fonction de x0

et de t0. Le principe de programmation dynamique de Bellman exprime la chose suivante:

Supposons qu’un contrôle u est optimal entre le temps t0 et le temps T et nous amène
à x au temps t. Alors si on part de x, ce contrôle est optimal entre le temps t et le temps
T .
Le lecteur intéressé par ce principe pourra notamment lire le livre de Isaacs sur les jeux
différentiels [54].

BocopHJB est, comme Bocop, un logiciel de contrôle optimal développé au sein de
l’équipe Commands. Celui-ci ne repose pas sur de la programmation dynamique, mais sur
ce que l’on appelle la méthode directe, qui consiste à discrétiser directement le problème
et résoudre ensuite le problème d’optimisation discrétisé. Le guide utilisateur et quelques
exemples sont donnés en annexe de la thèse. BocopHJB se présente comme un code source
en C++ (non compilé). Pour résoudre un problème de contrôle avec BocopHJB, il suffit
d’indiquer les différentes données du problème (dynamique, objectif, contraintes) dans des
fonctions C++ correspondantes. Les paramètres de discrétisation et de simulation sont à
indiquer dans des fichiers textes. Une fois le problème écrit, l’utilisateur doit compiler le
code, puis le lancer.

BocopHJB résout alors le problème par programmation dynamique. Plus technique-
ment, BocopHJB calcule la solution de l’équation de Hamilton-Jacobi-Bellman associée
au problème de contrôle optimal en utilisant un schéma semi-Lagrangien. L’équation de
Hamilton-Jacobi-Bellman (HJB, d’où BocopHJB tient son nom) est une équation aux
dérivées partielles non linéaire qui s’obtient formellement en combinant un développement
de Taylor de la fonction valeur (ou d’Itô dans un cadre stochastique avec un mouvement
Brownien) avec le principe de programmation dynamique:

∂tV (x, t) + inf
u
`(x, u) + ∂xV (x, t)b(x, u) = 0, (1.4)

où b est la dynamique du système commandé. Pour des références sur l’équation HJB, le
lecteur pourra consulter [20], [17], [88] et [76].

Il est important de préciser ici que cette dérivation est formelle, et qu’en général, un
travail théorique est nécessaire pour donner un sens à cette équation. En effet, rien n’assure
a priori que la fonction valeur V soit dérivable. Dans ce cas, le sens de (1.4) n’est pas clair
dans un cadre classique. La bonne notion de solution est celle de solution de viscosité. Le
lecteur pourra se référer au User Guide [30] pour une présentation détaillée de la théorie.
L’idée est la suivante : en chaque point, remplacer la fonction valeur par des fonctions test
régulières qui l’approchent par en dessus ou par en dessous. Ensuite au lieu de vérifier
directement que V satisfait l’identité (1.4), on utilise les fonctions test (et une relation très
proche de (1.4))
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Le schéma numérique par lequel nous résolvons l’équation HJB est un schéma semi-
Lagrangien, qui revient à discrétiser directement le principe de programmation dynamique.
Le lecteur pourra consulter [31] pour plus de détail sur ce schéma numérique.

La résolution de l’équation de Hamilton-Jacobi-Bellman par schéma semi-Lagrangien
consiste donc à calculer, en partant du temps final, les fonctions valeurs. Les calculs
peuvent prendre du temps si l’état est de dimension "grande" (typiquement supérieur à
3). C’est ce que l’on appelle la malédiction de la dimension: le nombre d’opérations à
effectuer lors de la résolution numérique explose avec la dimension de l’état. C’est l’une
des principales limites de l’approche par programmation dynamique. Une fois que le calcul
des fonctions valeurs pour chaque pas de temps est terminé, il reste à calculer effective-
ment le contrôle optimal. Pour cela on exploite à nouveau le principe de programmation
dynamique, en remarquant que si V est connue, u s’obtient "très facilement". On part
donc de l’état initial et on construit la trajectoire optimale à l’aide des fonctions valeurs
calculées par schéma semi-Lagrangien.

1.6 Perspectives

Nous identifions ici quelques pistes d’approfondissement:

• pour le modèle d’EMS des chapitres 2 et 3, étendre la méthode à des processus avec
sauts, étudier d’autres approches de résolution,

• étendre l’algorithme de poids adaptatifs au cas stochastique avec des contraintes en
espérance,

• identifier d’autres applications de cet algorithme (en économie ?), qui ne nécessite
en fait que des hypothèses de monotonie par rapport à une variable d’état monotone
dans le temps,

• faire une étude plus poussée du gain lorsque le mécanisme d’incitation est implémenté
(dans le cas général),

• identifier d’autres domaines d’application de ce mécanisme,

• le dernier chapitre s’intéresse à une partie restreinte du sujet qu’il aborde, mais une
étude plus approfondie pourrait possiblement ouvrir le champ à un contexte plus
général.
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Chapter 2

Continuous Optimal Control
Approaches to Microgrid Energy
Management
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We formulate the energy management problem as a deterministic optimal control prob-
lem (OCP). We solve (OCP) with two classical approaches: the direct method and Bell-
man’s Dynamic Programming Principle (DPP). In both cases we use the optimal control
toolbox Bocop for the numerical simulations. For the DP approach we implement a semi-
Lagrangian scheme adapted to handle the optimization of switching times for the on/off
modes of the diesel generator. The DP approach allows for accurate modelling and is com-
putationally cheap. It finds the global optimum in less than a second, a CPU time similar
to the time needed with a Mixed Integer Linear Programming (MILP) approach used in
previous works. We achieve this result by introducing a trick based on the Pontryagin
Maximum Principle (PMP). The trick increases the computation speed by several orders
and improves the precision of the solution.

For validation purposes, we performed simulations on datasets from an actual isolated
microgrid located in northern Chile. The result shows that the DP method is very well
suited for this type of problem.

2.1 Introduction

Distributed Energy Resources (DER) play a key role as an energy supply alternative.
Moreover, DER are in most of the cases renewable energy sources and bring positive
environmental impacts and contribute to sustainability. In order to integrate in a massive
way DER into interconnected power systems or make use of DER as a power source for
isolated locations, microgrids appear as a suitable technical solution.

A microgrid is a group of interconnected loads and DER that acts as a single controllable
entity. It can operate connected to the main network or autonomously (isolated)[89]. In
either case, an Energy Management System (EMS) is required to coordinate the different
units that compose it. The EMS solves an optimization problem and, as described in [74],
this problem falls into the category of mixed integer nonlinear programming (MILP).

Depending on the philosophy established for the EMS and the different components
(generation units, loads, storage devices) incorporated into the microgrid, the objective
function may be nonlinear. Moreover, the operation of some of these components involves
start up / shut down set points that are typically represented as binary functions of time
in the problem formulation. Constraints represent in particular operational limitations of
storage devices and generation units (i.e., batteries (dis)charging patterns).

There has been different formulations to handle this problem, the most common being
through MILP, for which the complexity mostly stems from the modelling of nonlinearities:
battery charging/discharging pattern and the diesel engine efficiency [74] for instance.
Heuristic techniques have been also applied to the microgrid EMS problem, such as Genetic
Algorithms (GA) [28], [47], Particle Swarm Optimization (PSO) [28], and Ant Colony
Optimization (ACO) [27].
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Finally, recent works which focus on microgrid energy management systems have incor-
porated a more detailed modelling of the energy storage system. This energy management
system considers the importance of the cost associated with its replacement, so that ex-
tending the life span of the battery is part of the objective. In this context, GA have been
implemented to solve the problem [96], and other predictive control approaches such as
the ones described in [39], [78], [51] and [58].

Other authors have made use of Dynamic Programming (DP) to solve the EMS prob-
lem. Kanchev et. al. [56] use DP but look for GHG emissions reductions, [64] focus its
objective on the Energy Storage System (ESS) management. These cases do not consider
the economic efficiency of the whole microgrid. In [95] the EMS problem is focused on
buildings decision incorporating uncertainty modeled with Markov chains under a discrete
approach. Babazadeh [9] makes use of DP to handle the wind power management in a
microgrid environment. In [71] DP has been developed to solve out the maximum profit
an owner might achieve from energy trading in a day, either in isolated or connected mode,
but do not consider in an explicit way effects and management of batteries. Finally, [53]
applies a multi path dynamic programming (MPDP) approach to solve a power scheduling
considering load/generation changes and time of use (TOU) tariff for a low voltage DC
microgrid incorporating energy storage battery, fuel cell and PV.

An important conceptual difference between previous works and the present study is
that we start with the optimal control problem formulated in continuous time. This gives
access to a broader set of theoretical and numerical tools (e.g. Pontryagin’s Principle and
the Direct Approach).

The microgrid model presented in this work handles some challenges involved with the
microgrid EMS, such as units modelling, ESS management, CPU solving time for real
applications and the switching of the generator mode (on or off) among others, with a
continuous time optimal control formulation. This approach keeps the original non-linear
model for the numerical optimization, which enhances the solutions accuracy. The proposal
considers two solution methods:

The direct method starts with a time discretization to transform the continuous optimal
control problem into a Nonlinear Programming (NLP) problem. The NLP is then solved
with any usual technique (see for instance [16]).

The DP method relies on Bellman’ s Principle and uses a discretization of both time
and space to compute the value function. This information then allows the reconstruction
of the optimal trajectory using feedback controls (See for example [12]).

We perform numerical simulations for both methods using the optimal toolboxes Bo-

cop and BocopHJB [19, 18]. The proposed methods are validated with data from a real
microgrid operating in Huatacondo, an isolated northern Chilean village that relies com-
pletely on the microgrid concept for its electricity supply, which is described in section II.
The present study uses a similar model to the one presented in [75], so that the comparison
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is relevant. We show results for the three approaches: MILP, direct method and DP.
Note that this work focuses on the comparison of the three techniques, but does not

intend to deal with their implementation as building block of upper level algorithms, such
as Model Predictive Control (MPC). Likewise, the demand and load modelling is out of the
scope of this article. In addition, in all this work the microgrid is considered in disconnected
mode, but a similar approach in connected mode could be envisioned (using a market price
for instance).

The main contributions of this work are:

• the introduction of a continuous time non-linear framework for the microgrid energy
management problem,

• for the dynamic programming approach, the modelling of the generator switching,

• the combination of the Pontryagin Maximum Principle and the Dynamic Programing
Principle to get a surprising improvement of the computing time

• a comparison of the continuous time non-linear framework (with two resolution tech-
niques, DP and direct method) with a MILP formulation.

The paper is organized as follows. Section II describes the microgrid system and the
optimal control formulation for its energy management. Section III explains the numerical
methods we use to solve the optimal control problem. Section IV presents the numerical
simulations with the direct and DP methods. Section V comments the results of the
simulations. The conclusion sums up the main results and presents ongoing research in
the continuation of this work.

2.2 Model Presentation

2.2.1 General Aspects

Description of the Microgrid

The following model is based on a real microgrid operating in Huatacondo, an isolated
village in northern Chile that relies entirely on the microgrid concept for its electricity
supply. The microgrid we are considering includes a photovoltaic power plant (PV), a
diesel generator and a battery energy storage system (BESS). It uses a mix of fuel and
renewable energy sources. The solar panel produces electricity without any additional
cost, but the generation pattern cannot be controlled and depends on the daily weather.
The BESS can store energy for later use, but has limited capacity and power. The diesel
generator has a minimal and a maximal output levels, and has a fixed start-up cost. All
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these are local generation units, i.e. situated physically near the electric consumption
point, and electric losses due to distribution are not considered.

The aim is to find the optimal planning that meets the power demand and minimizes
the operational costs, which, in this case, mainly relates to the diesel consumption. We
follow the problem description from [75].

Optimal Control Formulation

We consider a fixed horizon T = 48 hours. For t ∈ [0, T ], we denote by PS(t) the solar power
from the photovoltaic panels, PD(t) the diesel generator power and PL(t) the electricity
load. The state of charge SOC(t) of the BESS evolves according to the dynamics

˙SOC(t) =
1

QB
(PI(t)ρI − PO(t)/ρO) , (2.1)

where QB is the maximum capacity of the battery, PI , PO > 0 are the input and out-
put power of the BESS, and ρI , ρo are the efficiency ratios for the charge and discharge
processes, assumed constant. Observe that (2.1) writes equivalently

˙SOC(t) =
1

Q̃B
(PI(t)ρ̃− PO(t)) , (2.2)

where Q̃B = ρOQB and ρ̃ = ρIρO.
We introduce the slack variable Pslack that represents the excess power (Pslack < 0),

which has to be shed, or the missing power in the microgrid (Pslack > 0), which turns into
unmet demand. The addition of this variable ensures the mathematical feasibility of the
problem. Positive Pslack will be penalized by CUSP+

slack, where CUS is a positive constant
(see Table 2.1).

The underlying power equilibrium equation is

PD + PO + PS + Pslack − PL − PI = 0. (2.3)

Taking into account the demand and the various power production devices, we obtain
that PO and PI can be written as nonlinear functions of (t, PD, Pslack):

PO(t, PD, Pslack) = −min(0, PS(t) + PD − PL(t) + Pslack),

PI(t, PD, Pslack) = max(0, PS(t) + PD − PL(t) + Pslack).
(2.4)

We model the fuel consumption of the diesel generator by the following strictly concave
function ∫ T

0
KPD(t)0.9dt, (2.5)

withK = 0.471. The fuel consumption curve was extrapolated from the datasheet provided
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Figure 2.1 – Battery Charge Constraint

by the diesel generator manufacturer as in [75].

For physical reasons, the system is subject to the following constraints at every time
t ∈ [0, T ]:

SOC(t) ∈ [0.2, 1], (2.6)

PD(t) ∈ {0} ∪ [5, 120], (2.7)

{
PI(t, PD(t), Pslack) ∈ [0, 13.2] if SOC(t) < 0.9,

PI(t, PD(t), Pslack) ≤ 1320(1− SOC(t))2 otherwise,
(2.8)

PO(t) ∈ [0, 40]. (2.9)

Note that (2.4) implies that (2.8)-(2.9) are constraints on PD. The state constraint
(2.6) expresses the maximum and minimum charge of the battery. Constraints (2.7) to
(2.9) are control constraints. The minimal and maximal power for the diesel generator
are given by (2.7). The charging and discharging limits for the battery are stated in (2.8)
and (2.9). The charging limit depends on the state of charge, and is therefore a mixed
control-state constraint, as illustrated on Fig. 2.1.

Since the operations time frame is larger than the optimization horizon, we impose
a constraint on the final time to avoid the battery depletion. We impose this constraint
either with a periodicity condition SOC(0) = SOC(T ) (direct method) or a penalization
term g(SOC(T )) (DP method).

In summary the optimal control problem can be written under the following abstract
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formulation (see [24, Chapter 2])

(OCP )





min
u

∫ T

0
`(u(t))dt+ g(x(T ))

ẋ(t) = F (u(t), t)

x(0) = x0

u(t) ∈ Ux(t)

x(t) ∈ C.

(2.10)

In the notation above, x, u, F , Ux and C correspond respectively to the state variable
(SOC), the control variable (PD and Pslack), the dynamics of the system (2.1) and (2.4), the
control constraints on u(t) (see (2.7), (2.8) and (2.9)), and the state constraints (2.6). The
time horizon T is 48 hours. The objective function is the sum of a final cost g (introduced
in Section 2.2.3 to impose a periodicity condition) and the integral of ` defined in (2.5) (to
which we add the penalization associated with the slack variable). Those functions take
value from the state space and the control space respectively to R.

2.2.2 Switching Cost

Turning the diesel generator on consumes fuel. We model this by considering that the
diesel generator has two modes: when off, the only admissible control is PD = 0, whereas
when it is on, PD ∈ [Pmin, Pmax]. At any time, one can switch from one mode to the other
by paying the corresponding switching cost. This cost is zero to turn the generator off, and
is equal to CD to turn the generator on. It should be stressed that while the modelling of
the switching cost is made straightforward by the Dynamic Programming approach, it is
challenging for the Direct Method approach.

2.2.3 Periodicity Condition

To avoid the battery depletion at the end of the time horizon, we add a periodicity con-
straint on the state

SOC(0) = SOC(T ). (2.11)

The implementation of the constraint is straightforward for the MILP model and the Direct
Method. The actual initial value is then optimized by the algorithm.

For the dynamic programming approach we model the periodicity condition by taking
a similar approach to the "big M method" in linear programming:

g(SOC(T )) = M ifSOC(T ) < SOC0,

g(SOC(T )) = 0 if SOC(T ) ≥ SOC0.

For the simulations, we set SOC0 = 0.7.
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2.3 Presentation of the numerical methods

We give here a brief presentation of the two resolution approaches we are considering and
explain how to apply them in order to solve (2.10). The reader will find more on these
approaches in [16] and [37].

2.3.1 The Direct Method Approach

Presentation

In the Direct Method we apply a time discretization to the dynamics equation. The optimal
control problem is rewritten as a finite-dimensional optimization problem. The decision
variables of this discretized problem are the values of the control variables at each time
step. Since we solve the discretized problem by locally convergent algorithms, we cannot
guarantee that the numerical solution (if any) is close to a global optimum. On the other
hand, this approach often provides efficient solutions for large scale optimal control prob-
lems, with limited computing times.
Summary of the time discretization, using the Euler formula:

t ∈ [0, T ] → {t0 = 0, . . . , tN = T}
x(·), u(·) → Z = {x0, . . . , xN , u0, . . . , uN−1}

Criterion → min h
∑N−1

i=0 `(ui) +G(xN )

Dynamics → xi+i = xi + hf(xi, ui) i = 0, . . . , N

Controls → ui ∈ Uxi i = 0, . . . , N − 1

States → xi ∈ C i = 0, . . . , N

We therefore obtain a nonlinear programming problem on the discretized state and control
variables

(NLP )

{
minZ F (Z)

LB ≤ C(Z) ≤ UB.

The optimal control toolbox Bocop solves the discretized nonlinear optimization prob-
lem with the Ipopt solver [93] that implements a primal-dual interior point algorithm.

Modelling Remarks

We come back to our setting. This method allows a periodicity constraint of the form
SOC(0) = SOC(T ) where the actual value is optimized by the algorithm. On the other
hand, the constraint (2.7) is changed into PD ∈ [0, 120] because switching are hard to deal
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with within this framework. Another drawback is that switching costs are binary decisions
which are not easily handled within this framework.

2.3.2 Dynamic Programming Approach

We propose a semi-Lagrangian scheme to solve the DP, in particular because it is adapted
for problems with switching modes. We refer the reader to the monograph [37] and the
references therein for an introduction to semi-Lagrangian schemes applied to optimal con-
trol problems. In addition, the Pontryagin Maximum Principle (PMP), see [77], provides
additional information on the optimal solution. The combination of the Dynamic Pro-
gramming Principle and the Pontryagin Maximum Principle reduces the computing time
of the method significantly.

Brief Presentation of the Theory

Let V (t, x0) denote the value of problem (2.10) with initial time t and initial condition x0.
In R. Bellman’s words [12] “An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision.” In mathematical terms, V satisfies for
h ∈ (0, T − t):

V (t, x0) = inf

{∫ t+h

t
`(us)ds+ V (t+ h, x(t+ h))

}
, (2.12)

the infimum being taken over the set of admissible controls. In our case, we will use an
extended version of the DP approach that handles the switchings (See [37] for more details).

Semi-Lagrangian Scheme

The Semi-Lagrangian scheme consists of solving a discretized version of (2.12) over the
space backward in time (see [37] for an overview). We have chosen this scheme to solve
the problem because it has good stability properties, it allows large time steps and it is
easy to implement. Let us motivate the scheme by first discretizing in time (2.12). Given
a time step h and N such that Nh = T , let us set tk = kh (k = 0, . . . , N). Denoting by
V k the “approximated” value function at tk we have

V k(x) = min
u∈Ux

{
h`(u) + V k+1(x+ hF (u, tk))

}
. (2.13)

We derive the Semi-Lagrangian scheme from (2.13) by discretizing in space the state vari-
able x and introducing interpolation operators in order to approximate V k+1(x+hF (u, tk))

in terms of its values in the space grid. The scheme is solved backward in time and, under
standard conditions, it converges to the solution V of (2.12). We use the implementation
of BocopHJB (see [19, 18]) for the numerical experiment.
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The PMP Trick

The formulation has a property that greatly reduces the computing time. For the sake of
simplicity we do not detail the aspects related to the state constraints. If ū is the optimal
control, denote by x̄ the optimal state and by p̄ the costate associated to the dynamics
constraint ẋ(t) = F (t, u(t)). Defining the Hamiltonian H(u, p, t) := pF (u, t) + `(u) the
PMP says that for all t ∈ [0, T ] we have

H(ū(t), p̄(t), t) ≤ H(v, p̄(t), t) for all v ∈ Ux̄(t).

Since the dynamics is continuous and piecewise affine, the Hamiltonian is the sum of a
continuous, piecewise affine and of a continuous strictly concave functions, and therefore
is continuous, piecewise strictly concave. Therefore it can attain its minimum only at one
of the extreme points of the pieces. Taking into account the constraints, we have at most
five possible optimal controls, as illustrated in figure 2.2. Moreover, the values of these
controls can be computed explicitly, since they do not depend on p̄. Therefore, when doing
the minimization in (2.13), we test only these controls instead of discretizing the control
space, gaining both in speed and precision. So:

• if the Diesel is off (mode 0), we simply take PD = 0.

• if the Diesel is on (mode 1), we test the five cases

– PD = 5 (minimum power),

– PD = 120 (maximum power),

– PD such that ˙SOC = 0 (battery unused),

– PD such that Pi = Pmaxi (SOC) (maximal charge),

– PD such that P0 = 40 (maximal discharge).

The specific structure of the problem permits to reduce the computing time. More precisely,
the candidates for the optimal control do not depend on the costate p and therefore can be
evaluated and tested when computing the value function. In the general case, the control
that minimizes the Hamiltonian is expressed from both the state and costate, the latter
being unavailable in the DP approach (the costate actually corresponds to the gradient of
the Value Function under suitable regularity assumptions).

Remark 1 (Slack variable). In the five cases above, we adjust the slack variable if needed
to get an admissible Diesel output PD.

We now propose a pseudo-algorithm for the numerical resolution:
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Figure 2.2 – The PMP trick illustrated

Data: h, ISOC
Result: V k, kh = 0 . . . T

for kh ∈ T . . . 0 do
for m ∈ {ON,OFF} do

for SOC ∈ ISOC do
V k
m(SOC) = min{ minPD∈G(SOC,m,kh) h`(PD) + V k+1(x+ hF (PD, kh)),

minPD∈G(SOC,m̄,kh) h`(PD) + V k+1(x+ hF (PD, kh)) + Cswitch(m)}
end

end

end

The parameter h corresponds to the time discretization size, and ISOC is the state
discretization grid. The result is the value function V k for each time step k. The functions
F and ` correspond to the dynamics and running cost as expressed in the abstract optimal
control problem formulation (2.10) The mode m ∈ {ON,OFF} corresponds to the fact that
the diesel can be already working or turned off. We have denoted by m̄ the negation of
m. In case of switch, a cost Cswitch(m) has to be added to the cost to go function. This
cost is the startup cost if the generator is turned on (see Table 2.1), and 0 else. The set
G(SOC,m, t) corresponds to the potential optimal controls we deduced from the PMP
trick.

2.4 Numerical simulations

2.4.1 Comments on the Inputs: Solar Power and Power Load

We test the algorithms on two historical data sets. Both data sets correspond to repre-
sentative 48-hour periods, one data set was obtained with winter data, the other one with
summer data. Figures 2.3 and 2.4 show the load power and the solar power for the two
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Figure 2.3 – Summer data in kW
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Figure 2.4 – Winter data in kW

days of each period.

Since the actual microgrid is situated in the Atacama desert, we assume the production
from the photovoltaic panels to be reliably predictable. The demand, on the other hand,
has a greater variability. While it is modeled as deterministic in this initial work, the
extension of this model to a stochastic demand setting is the focus of another work.

2.4.2 Optimal Solutions for the Different Methods

In addition to the direct and DP methods, we present the results obtained with the MILP
approach from [75] as baseline for comparison. The six solutions are illustrated in Figures
2.5 and 2.6 for the DP approach, in Figures 2.7 and 2.8 for the direct approach and in
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Figure 2.5 – Summer DP Simulation

Figures 2.9 and 2.10 for MILP method. The numerical results are summarized in Table
2.2.

Name Notation Value Unit
Min Diesel Power Pmin 5 kW
Max Diesel Power Pmax 120 kW
Unserved Energy Cost CUS 250 CLP/kWh
Diesel Start-Up Cost - 1000 CLP
Diesel Price CD 500 CLP

Table 2.1 – Model parameters, CLP means Chilean Pesos

MILP DIRECT DP
Diesel range [18.66,29.69] [2.63,14.23] [8.15,28.66]
Switchings 2 3 2
Total Cost 34785 36244 34378
Cpu Time 3.92 s 4.41 s 0.88 s
SOC(0)=SOC(T) 0.7 0.641 0.7
SOC range [0.20,0.89] [0.38,0.75] [0.30,0.83]
Slack Range [0,0] [0,0] [0,0]

Table 2.2 – Results: MILP, direct and DP (summer case)
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Figure 2.6 – Winter DP Simulation
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Figure 2.7 – Summer Direct Simulation
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Figure 2.8 – Winter Direct Simulation
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Figure 2.9 – Summer MILP Simulation
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Figure 2.10 – Winter MILP Simulation

General Observations

• The Solar Power fills the demand, with any excess power used to charge the battery.

• The Diesel is always off when solar power is available, and is switched on once a day
during the evening peak in demand. The Diesel output is often greater than power
demand: it is also used to charge the battery.

• The battery fills the gaps between production and demand especially at night.

• MILP and DP solutions are quite close, while direct solution shows some clear dif-
ferences (different initial/final SOC, no minimal power, spurious switchings).

Diesel Range

A qualitative difference between MILP and DP/direct is the existence of time intervals with
a constant SOC, while the diesel exactly matches the power load. In the MILP solutions
the diesel is either off or saturating the charge limit.

First we note that there is a tradeoff between low average production cost and low
storage cost per energy unit. On the one hand, since the diesel cost function is concave,
the diesel generator should run at maximal capacity to minimize the average unit price of
power produced. On the other hand one incurs some losses when storing energy because
the battery is not perfectly efficient. One has to set the diesel output equal to the net



2.4. NUMERICAL SIMULATIONS 47

demand (so that nothing gets in or leaves the battery) to minimize those losses. This
tradeoff explains why on the DP and Direct solutions we observe two kinds of non zero
diesel levels (low: just sufficient to satisfy the demand, and thus keep a constant SOC, or
high: maximum physical production level). The question is then why we do not observe the
low level on the MILP simulation. We do not have a straightforward answer, as different
phenomena could contribute to this observation. First the MILP problem is a linearized
version of the DP problem, so it may happen that this linearized version does not produce
the same output. Second the MILP numerical solution is only locally optimal and so may
differ from the MILP actual solution.

2.4.3 Comparison of the methods

We highlight below the differences between the three optimization methods.

Global optimum. Both the MILP and direct approaches are local methods and may
converge to a local solution, depending on the provided starting point and the choice of
the stopping criterion (gap). On the other hand, the DP approach performs a global
optimization over all possible (discretized) trajectories, and therefore always finds the
global optimum. This is an advantage for the user since one does not have to find a
"suitable" starting point. Also, the DP solution provides a feedback optimal control,
whereas MILP and direct solutions are open-loop.

Switching cost. Both MILP and DP approaches take into account the switching costs
for the diesel generator. They typically find solutions with one switch per day, located
during the peak of power demand in the evening. On the other hand, the direct approach
has free switchings, which explains why it may find solutions with many on-off oscillations.

Nonlinear model. The MILP method requires a piecewise linear reformulation of the
nonlinear functions in the model, here for example the charging power limit or the cost of
diesel consumption. Both direct and DP methods use the original nonlinear model. This
simplifies the actual implementation, and may imply more accurate solutions.

Periodicity constraint and minimal diesel power. Compared to MILP and DP, the
direct method optimizes the value of the initial/final SOC. On the other hand, it does not
take into account the minimal power output for the diesel generator.

Computing time. For this problem the computing time is a few seconds for MILP
and direct method, and less than one second for the DP approach. Note that DP is
outperforming the two other approaches because of the PMP trick and the fact that the
state is one dimensionnal. An interesting question is how well each method would scale
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for higher dimensions. MILP and direct approach are iterative methods, so changing the
problem size may lead to a different convergence, making it difficult to assess the evolution
of the CPU time. For the DP approach, on the other hand, the number of operations is
always known and the CPU time can be predicted reliably. The CPU time should increase
linearly in the number of time steps. Due to the state discretization, however, adding
new state variables to the problem would have a significant impact on performance (the
so-called curse of dimensionality). In terms of high performance computing, parallelization
is possible with MILP and DP methods, not so easily with the direct method.

2.5 Conclusion and perspectives

We have applied two methods from the continuous optimal control field to the optimal
energy management of a microgrid, namely the direct and DP approaches. Numerical
simulations indicate that the DP method is very well suited to this problem as it is a
linearization-free method that provides global optimal solution with closed loop control. It
allows for the modelling of the switches and it is as fast as the MILP approach. We were
able to obtain the global optimum in less than one second of CPU time, while taking into
account the switching cost for the diesel generator. Solutions are close to the ones obtained
in [75] with a MILP formulation, the main difference being the existence of time intervals
where the battery stays at a constant SOC. In comparison with the two other approaches,
the use of Pontryagin’s Maximum Principle combined with Dynamic Programming reduces
the computing time. The numerical experiments were performed with the optimal control
toolbox Bocop.

From a theoretical standpoint, the continuous model offers a very large collection of
mathematical results. The PMP trick introduced here is an example of insight one can get
from a continuous time mathematical analysis. (Observe that a Maximum Principle exists
for the discrete case, but only for convex Hamiltonian).

Ongoing works on this topic include the extension to a stochastic model for the power
demand, and the study of the long-term aging of the battery.
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We propose a novel stochastic control formulation for the microgrid energy management
problem and extend previous works on continuous time rolling horizon strategy to uncer-
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reversion term and a Brownian noise. We use BocopHJB for the numerical simulations.
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This optimal control toolbox implements a semi-Lagrangian scheme and handles the opti-
mization of switching times required for the discrete on/off modes of the diesel generator.
The scheme allows for an accurate modelling and is computationally cheap as long as the
state dimension is small. As described in previous works, we use a trick to reduce the
search of the optimal control values to six points. This increases the computation speed by
several orders. We compare this new formulation with the deterministic control approach
introduced in [49] using data from an isolated microgrid located in northern Chile.

3.1 Introduction

A microgrid is a small network of loads and energy ressources controlled by an Energy
Management System (EMS). It can be either connected to the main network or isolated.
The coordination of the microgrid units requires the resolution of an optimization problem.
This problem is described in the literature as the microgrid management problem. Palma-
Behnke et al. introduce in [75] a microgrid EMS based on a rolling horizon strategy for
which the microgrid management problem is formulated as a Mixed Integer Programming
(MIP) problem. Heymann et al. show in [49] that this MIP formulation could be replaced
by a continuous Optimal Control (OC) formulation. We extend this last approach to the
stochastic case by introducing a stochastic dynamics for the load.

In [55] the microgrid energy management problem is formulated as a two-stage stochas-
tic programming model based on optimization principle. Then, the optimization model
is decomposed into a mixed integer quadratic programming problem by using discrete
stochastic scenarios to approximate the continuous random variables. A scenarios gener-
ation approach based on a time-homogeneous Markov chain model is proposed to simu-
late time-series of renewable energy generation and load demand. Similar approaches are
considered in [63] and [32], especially in [63] uncertainty is characterized by a scenarios
generation approach based on autoregressive moving average (ARMA) model according to
the probability density function of each random variable. In [73], uncertainty is addressed
using a two-stage decision process combined with a receding horizon approach. The first
stage decision variables (unit commitment) are determined using a stochastic mixed-integer
linear programming formulation, whereas the second stage variables (optimal power flow)
are refined using a nonlinear programming formulation. Other approaches appear, such
as the one described in [94] where uncertainties related to renewable distributed genera-
tion are modeled by proper probability distribution functions and are managed by reserve
provided by both DGs and loads.

The reader may refer to [76] to get an overview of stochastic control theory and the
applications of the dynamic programming principle, and to [31] and [25] for more details
about the discretization scheme we use. As in [49] we solve the microgrid management
problem using Bellman’s Dynamic Programming Principle (DPP). We compute an approx-
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imation of the value function using a time and space discretization, and then we use this
value function to reconstruct an optimal control. The DPP approach presents numerous
advantages. First, no starting point is required to initiate the optimization algorithm.
Second, the algorithm computes a global optimum, as opposed to other methods relying
for instance on first order optimality conditions that only compute local optima. Third,
we can deal with integer variables such as the on/off status of a device (in our case the
diesel generator). Fourth, we use directly the original non-linear model. This simplifies
the implementation, and may also give more accurate solutions. Fifth, since we derive the
optimal controls from the value function, those controls are in feedback form. Last but not
least, if the state dimension is low (in our case, two), it is competitive from a computational
perspective. In particular, the computational burden is linear in the number of time steps.
We perform numerical simulations with BocopHJB, a C++ open source numerical solver
for stochastic optimal control problems (see [18]). We point out that this solver does not
solve stochastic problems with scenario trees but instead solves an associated determin-
istic second order partial differential equation. The data for our problem come from the
Huatacondo microgrid. Huatacondo is an isolated village in the Atacama desert (northern
Chile). The village relies completely on the microgrid for its energy supply.

This paper is organized as follows: Section 3.2 describes the microgrid and the demand
model, and then formulates the stochastic optimal control problem. Section 3.3 presents
the numerical method as well as the simulation methodology. We explain the parameters
estimation in Section 3.4, and in Section 3.5 we display and comment the simulations
results. Finally, the conclusion sums up the main results and presents ongoing research in
the continuation of this work.

3.2 Model Presentation

3.2.1 System Description

On the supply side, the microgrid includes a photovoltaic power plant, a diesel generator
and a Battery Energy Storage System (BESS). The photovoltaic power plant is a non
dispatchable unit. Since one can accurately predict the climate in the desert region of the
microgrid, we assume that we know the future production of renewable energy. This is why
it is deterministic in this work. The diesel generator and the battery play the role of the
dispatchable units. The marginal cost of the energy the generator produces is decreasing,
i.e. the fuel consumption cost is a strictly concave function of the energy produced by the
diesel generator. We derived this production function in [49] from the constructor data
sheet. The diesel generator is either on or off. When on, the diesel generator cannot work
below a given threshold (due to its physical properties). When switched on, the generator
needs an additional amount of energy to warm up, which is modeled as a fixed switching
cost. Since any ON switching is followed by an OFF switching and conversely, we account
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for half this switching cost for any switch, ON or OFF. We can store the energy surplus in
the BESS when production is greater than demand and supply this energy to the system
when demand is greater than production. This storage is not free as some energy is lost
in the charge/discharge process. We will not take into account the battery aging in this
work. On the demand side, the load comes from the villagers domestic needs. In our model
proposal the randomness comes from the demand side. Since the village is small, the load
is volatile. We modelize the load dynamics with a Stochastic Differential Equation (SDE).
The grid is isolated, so there cannot be any flows from or to the outer world. We neglect
the transmission losses because the village is small. Our objective is to find a strategy that
minimizes the operating cost (diesel and switching cost) and produce enough electricity
for the village.

3.2.2 Load Model

The microgrid historical load might suggest a random model with several jumps. Nonethe-
less such type of models requires a large number of parameters: the sizes and probabilities
of jumps need to be fitted. As a first step toward the integration of stochastic modeling
within our framework we propose a simpler model based on a Brownian motion. Our pro-
posal is similar to an Ornstein-Uhlenbeck process (which is the continuous time equivalent
of the AR(1) model) because it is a Brownian dynamics with a mean reversion. The dif-
ference is that the mean and volatility parameters are time dependent. We model the load
process L(t) with the Stochastic Differential Equation (SDE)

dL(t) = (Λ̇(t) + b(Λ(t)− L(t))dt+ σ(t, L)dW (t), (3.1)

where Λ(t) is a deterministic load process (in kW), b ≥ 0 is a unitless mean reversion
coefficient, σ(t, L) is the volatility (in kW.t−0.5), W (t) is a Wiener process and L(0) = L0.
The volatility σ has a bounded support in [0, T ]× [0, Lmax]. Since Λ is bounded and b ≥ 0,
the load L remains bounded (and positive):

L(t) ≤ max(sup
t
{Λ(t)}, Lmax). (3.2)

This allows us to refer to section 3 of [25] for the mathematical properties of the system.
Setting Y (t) = L(t)ebt and applying Itô’s formula we get that L(t) is equal to

Λ(t) + e−bt(L0 − Λ(0)) +

∫ t

0
eb(τ−t)σ(τ, L(τ))dW (τ).

So, L(t) has expectation Λ(t) + (L0−Λ(0))e−bt and, by Itô isometry, a variance of at most
sup(σ2)(1 − e−2bt)/(2b). In Section 3.4 we will discuss the computation of σ and b and
provide an empirical justification of the model.
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3.2.3 Notations

We denote by t0 the initial time and by T the time horizon. The state variables will be
represented with capital letters. We denote by C the state of charge of the BESS and by
L the load. We point out that only C is controlled, since the dynamics (3.1) of L does not
depend on any decision. The diesel generator mode (on or off) at time t is represented with
the variable m(t) ∈ {0, 1} (0 for off and 1 for on). The control variables will be represented
with lower-case letters. We write d the diesel generator output and s an artificial slack
variable (to ensure the feasibility of the problem). The variable s represents the excess
(s < 0) or missing (s > 0) power. We penalize decisions with a non zero slack variable by
an integrable cost proportional to the absolute value of s. We impose s to be non positive
if the diesel generator is off and bigger than a fixed constant if it is positive. We denote
by n(t) the counting variable equal to the number of switches that occurred between time
t0 and t. It is non decreasing over time and for all t, n(t) ∈ N. We associate to each
switch (OFF to ON and ON to OFF) a cost K equal to half the real cost needed to fire
the diesel generator on. We write PS the quantity of renewable energy produced at time
t. As explained in §3.2.1, this is a deterministic function of time since we assume we have
a reliable deterministic forecast. If we denote by PI and PO the quantities that go in and
out of the BESS, then the power equilibrium equation writes

d+ PO + PS + s− L− PI = 0, (3.3)

so that PI and PO can be written as non linear functions of s, L, PS and d:

PO = −min(0, PS + d− L+ s)

PI = max(0, PS + d− L+ s).
(3.4)

We denote by QB the maximum capacity of the battery, while ρI and ρO are the efficiency
ratios for the charge and discharge processes. We write ` the cost function associated to
the diesel consumption. The final cost function g ensures a minimal value of the final state
of charge: {

g(C) = 0 if C ≥ C0

g(C) = M otherwise.
(3.5)

where M is a large penalty parameter. Setting C0 = C(t0) we ensure that the system
finishes the day with as much energy in the BESS as what was stored at t0.

3.2.4 Stochastic Control Formulation

We now define the value of the microgrid management problem as

V m0(t0, C0, L0) :=
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inf
n,d,s

E
(
Kn(T ) + g(C(T )) +

∫ T

t0

`(d(t), s(t))dt

)
(3.6)

subject to, for all t:
Ċ(t) = FC(L, d, s, t) (3.7)

dL(t) = (Λ̇(t) + b(Λ(t)− L(t))dt+ σ(t, L(t))dW (t) (3.8)

m(t) =
1 + (−1)n(t)(2mt0 − 1)

2
(3.9)

(C(t0), L(t0),m(t0)) = (C0, L0,m0) (3.10)
{
d(t) = 0 and s(t) ≤ 0 if m(t) = 0,

d(t) ∈ Id otherwise
(3.11)

C(t) ∈ Ic (3.12)

PO ∈ IPO (3.13)
{
PI ∈ IPI if C(t) < 0.9,

PI ≤ A(C(t)− 1)2 otherwise
(3.14)

where FC(L, d, s, t) = 1
QB

(PIρI − PO/ρO). We point out that by many ways this stochastic
optimal control problem is similar to the deterministic model presented in [49]. Here the
decision variables are the diesel output at any instant d(t), the slack variable s(t) and the
value of the counting function n(t). Note that optimizing over the counting functions is
equivalent to optimizing over the switching times. Implicitly we impose those decisions to
be non anticipative, i.e. progressively measurable with respect to the filtration generated
byW (t). Constraints (3.7) and (3.8) are respectively the power balance for the battery and
the load dynamics. Relation (3.9) expresses the current mode as a function of the initial
mode and the number of switches that occurred since t0. If this number is even, m(t) = m0

and if it is odd, m(t) = 1−m0. Constraint (3.10) is the initial condition. Constraint (3.11)
corresponds to the modeling of the diesel generator mode (ON = 1 or OFF = 0). If OFF ,
the diesel generator cannot produce anything and d = 0, else, the physics of the generator
imposes d to be in Id = [d1, d2], with d1 > 0. Last, constraints (3.12), (3.13) and (3.14)
correspond to physical properties and limitations of the battery, with PI and PO defined
by equation (3.4). The sets IPO and IPI are segments of R+ and IC is included in [0, 1].
The parameters A and M are positive constants. Table 3.1 contains the numerical values
we use.
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3.2.5 Technical Remark

We already noticed that L is bounded over [0, T ]. Thus the number of switches n is bounded
on any scenario and the slack variable s is uniformly bounded over the scenari (this is of
course true for d since d ∈ {0}∪Id). To our knowledge, there are no general well posedness
results for stochastic control with state constraints. Nonetheless, since the controls are
bounded and the diffusion is orthogonal to the outer normal of the state constraint we
can argue that the viscosity approach developed in [57] for second order fully nonlinear
elliptic equations with state constraints could be extended to our case with finite horizon
and switching times.

3.3 Numerical Optimization Method

3.3.1 Dynamic Programming

The Dynamic Programming Principle (DPP) states that (see [76])

V m0(t0, C0, L0) =

inf
d∈Dm0 ,τ∈Tt,s

E
∫ τ

t0

`(d, s)dt+ min{V m0(τ, C(τ), L(τ)),

K + V 1−m0(τ, C(τ), L(τ))}

(3.15)

where the optimization is performed over (7)-(14) and D0 = {0}, D1 = Id, and Tt is the set
of stopping times in [t0, T ]. The time dependency of d and s is implicite in the integrand.
Note that from (3.15) and applying Itô’s formula we get that the value function formally
satisfies the Hamilton-Jacobi-Bellman equation (see for instance [76])

max
{
−V i

t − 0.5V i
LLσ

2 − V i
L(Λ̇ + b(Λ− L)) +Hi ,

V i − (K + V 1−i))
}

= 0,
(3.16)

where
H0 = sup

s≤0
−{`(0, s) + V 1

CFC(L, 0, s, t)} (3.17)

H1 = sup
d∈Id,s

−{`(d, s) + V 0
CFC(L, d, s, t)}. (3.18)

We now explain a weaker version of a trick introduced in [49] for the deterministic case.
We assume s = 0, i.e. there is a good balance between production capacity and load. If the
diesel generator is off then by definition d = 0. Otherwise, the dynamics of the system is
locally (3.16) for i = 1, so that heuristically, the control should maximize the Hamiltonian
H1 defined at (3.18). Since we maximize a piecewise convexconvexe function, the optimal
controls can take a limited number of values that can be explicitly computed.
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• if the diesel is off (m = −1), we simply take d = 0.

• if the diesel is on (m = 1), we test the five cases

– d is set to the minimum power,

– d is set to the maximum power,

– d such that FC = Ċ = 0 (battery unused),

– d such that Pi is maximal (maximal charge),

– d such that P0 is maximal (maximal discharge).

From a computational perspective it is sufficient to test those values instead of discretizing
the control space.

3.3.2 Algorithm

We solve the Hamilton-Jacobi-Bellman equation (3.15) with BocopHJB [18]. This open-
source software solves second order finite horizon Hamilton-Jacobi-Bellman equations with
a semi-Lagrangian scheme and allows for the use of switches. The semi-Lagrangian scheme
is obtained by discretizing (3.15) first in time and then in space: it consists in the backward
resolution of a discretized dynamic programming principle The reader may refer to [31]
and [25] for the discretization theory. We point out that the semi-Lagrangian scheme does
not require to generate scenari (as opposed to other mainstream approaches in stochastic
programming), since the Brownian motion is discretized for each time step with determin-
istic variables (see [18]). For this kind of scheme, the computation burden is exponential
in the state dimension (curse of dimensionality), but here this dimension is only two. On
the other hand, the complexity increases only linearly with the number of time steps.

3.4 Parameters Estimation

We display in Table 3.1 the numerical values we have for the model. Most of them are
those used in [49] and [75]. The data consist in about ten months (Ndays = 300) of historic
load and renewable production from Huatacondo. The renewable production data look
both smooth and very similar days after days due to the climate in Huatacondo, so we use
the average for the optimization and the simulation (see Figure 3.5). We denote by h the
time step (15 minutes), tk = kh, σk the volatility and L̂k the historical load at time tk.
The data being discrete, Equation (3.8) becomes, for each day i

L̂ik+1 − L̂ik = Λk+1 − Λk + b(Λk − L̂ik)h+ σkε
i
k

√
h, (3.19)

where εik is a standard centered Gaussian variable and k ∈ {1, . . . , 96}. Note that as dis-
cussed in §3.2.2, Λk is the historical average of the load at time tk, i.e. Λk =

∑
i∈1..Ndays

L̂ik/Ndays.
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Table 3.1 – Numerical parameters

Notation Value
QB 117 kWh
A 1320 kW
M 1000000 CLP
2K 1000 CLP
`(d, s) 500d0.9 + 25000|s| CLP
ρO 0.95
ρI 0.95
Id [5,120] kW
IPI [0,13.2] kW
IPO [0,40] kW
Ic [0.2,1] kW

Set for all k ∈ {1, . . . , 96} and i ∈ {1, . . . , Ndays} dk,i = L̂ik − Λk, b′ = hb and σ′k = σk
√
h.

Then (3.19) is equivalent to dk+1,i−dk,i(1−b′) = σ′kεk. We then use a mean square estima-
tor. If we consider σ′k fixed for all k, then b′ should minimize

∑
k,i(d

i
k+1− dik(1− b′))2/σ′2k ,

so that b′ = {∑k,i d
2
k,i/σ

′2
k −
∑
dk,idk+1,i/σ

′2
k }/{

∑
d2
k,i/σ

′2
k }. On the other hand, if we know

b′, σ′k is the standard deviation of dk+1,i− dk,i(1− b) computed over the same epoch of the
day i on the data. So we start with σ′k = 1 and iterate the two formulas until numerical
convergence to get our estimators. We get b′ = 0.174. We display σ in Figure 3.1. We
display on Figure 3.2 some random samples of the data and some generated scenari. They
qualitatively look alike.

3.5 Simulation

We compare the stochastic extension with the determinist rolling horizon algorithm pro-
posed in [49] on a three day simulation. The simulation procedure is summarized in Figures
3.3 and 3.4.

The rolling horizon for the deterministic algorithm is set to 24 hours and for each
horizon we impose the final state of charge to be at least equal to the initial state of charge
at the beginning of the horizon. For every time step, we perform an optimization using
an updated load forecast for the next 24 hours. We use as a forecast for the kth step
the expectation of the flow of the load process with initial condition Lk, where Lk is the
corresponding historical Load.

For the stochastic simulation, we solve only once the Hamilton-Jacobi-Bellman equa-
tion, and then use the value function and the load historical realization to produce a
trajectory. We impose the state of charge to be at least equal to what is obtained with the
deterministic simulation at the end of the three day period.

We display on Figures 3.6, 3.8, 3.7 and 3.9 the results for the model with real data. On
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Figure 3.1 – The estimated volatility

our example the slack variable s is always zero so we do not plot it. The total costs for the
deterministic and the stochastic simulation are respectively 66819 CLP and 62342 CLP.

3.6 Conclusion

We have extended the deterministic continuous time model for microgrid management to a
stochastic setting and performed a numerical experiment on real data from the Huatacondo
microgrid. The total cost of the solution proposed by the stochastic algorithm was lower
than the one obtained with a deterministic rolling horizon formulation. Ongoing works on
this topic include the study of the long-term aging of the battery as well as a jump model
for the load process.
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Figure 3.2 – We simulate some scenarios with the load model, and compare them with
historical day taken at random. The grey area corresponds to one standard deviation. The
unit is the kW.

APPENDIX

Figure 3.5 – Real model: Solar Production (in kW)
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Figure 3.3 – Deterministic simulation algorithm

Figure 3.4 – Stochastic simulation algorithm
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Figure 3.6 – C (in kW) and mode for the deterministic simulation

Figure 3.7 – C (in kW) and mode for the stochastic simulation
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Figure 3.8 – Load and Production for the deterministic simulation (in kW)

Figure 3.9 – Load and Production for the stochastic simulation (in kW)
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We introduce a class of optimal control problems with periodic data. A state variable that
we call the age of the system represents the negative impact of the operations on the system
qualities over time: other things being equal, older systems have higher operating costs.
Many industrial problems relate to this class. If we envision to perform an optimization
over a large number of periods, there is a tradeoff between minimizing repeatedly the
one-period criterion in a short sighted way and taking into account the impact of the
decision on the aging speed (which modifies the minimal one period criterion). In general,
because the aging process is slow, short term optimization strategies- such as one period
sliding horizon strategies- either neglect it or use rule-of-thumb penalization terms in the
criterion, which leads to suboptimal solutions. On the other hand, for most applications it
is unrealistic to envision a brute-force numerical resolution by dynamic programming of the
long term problem because of the computation burden. We introduce a two-scale method
to reduce this computation burden. The method relies on Lagrangian duality and some
monotony properties. We expose the theoretical foundations of the method and discuss
some practical aspects: approximation errors, asymptotic estimation, computation burden,
possible extensions, etc. Since our initial motivation was the difficulty to take long term
battery aging in Energy Management Systems into account, we implement the method on
a toy long term microgrid energy management problem.

4.1 Introduction

The aging of physical systems is almost never taken into account in decision making. This
can be a cause of sub-optimality. For instance, for many controlled industrial systems, a
decision is taken every day. The decision should minimize a tangible criterion, such as the
operating cost and is subject to some operating and physical constraints. As time goes on,
the system gets older and its physical qualities decrease. On the one hand, this slow aging
process depends on how the system is operated. On the other hand the aging of the system
is responsible for a loss in efficiency that increases the daily operating cost. Therefore, in
an ideal world, the operator should take into account the impact of the daily decision
on the long term aging of the system. Nonetheless, this is often technically challenging:
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because of the time scales involved, the long term optimization problem requires a lot of
time and memory to be solved (curse of dimensionality with respect to the state variables).
In this work the system aging process is modeled with a one dimensional age variable a
with values in a segment. The physical qualities of the system decrease as a increases. We
point out that the choice of an increasing variable to measure the aging process is arbitrary,
and we could have defined instead a decreasing health variable. Of course in this case the
physical qualities of the system would have been increasing in the health process.

We introduce a class of optimal control problems with periodic data. If we envision
to perform an optimization over a large number of periods, there is a trade-off between
minimizing repeatedly the one-period criterion in a short sighted way and taking into
account the impact of the decision on the aging speed (which will later on in turn have an
impact on the minimal one-period criterion). Microgrid energy management relates to the
framework proposed in this paper when considering the aging of the battery. We discuss
some existing approaches from this literature in §4.6.2. As far as we know, it appears that
when taken into account, aging is constrained or penalized but not directly subject to a
long term optimization. An important characteristic of our problem is the existence of two
time scales. Some other works on multi time scales problem consider averaging techniques
(see [26]).

A first essential observation is that if we knew an optimal aging profile over the whole
time horizon, then the long term problem could be decomposed into a sum of micro prob-
lems with smaller time horizon, say one period. We could then use myopic approaches
to solve the resulting one period (or micro) problems. The reverse is also true: the long
term (or macro) problem can be reformulated by means of the micro problems. So we
could precompute the solutions of the micro problems off-line to solve the long term aging
problem afterward with a macro dynamic programming optimization. This is a first step
to reduce the problem numerical complexity. It will be detailed in §4.3.

Another essential observation is that aging is a slow process, so we could neglect the
age variations within a period to solve simplified micro problems without truly impacting
the performances. Indeed, this would decrease by one the number of state variables. Yet it
is still necessary to know the age at the end of the period to solve the long term problem.
Moreover, since we want to take the age into account in the decision, we should be able
to control the total aging over the period. So we look for a method to control the total
aging over a period without requiring the age to be a state variable in the micro problem
numerical resolution.

Our approach consists in penalizing the aging over the period in the criterion of the
micro problems. Then we map the penalization coefficients with the resulting agings. By
doing so, we do not need to keep track of the aging within the micro problems (see §4.4).
We then optimize for each period the penalization coefficient in the reformulation of the
long term problem. Observe that even if the penalization parameter could be interpreted as
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a Lagrangian multiplier, we will be performing a minimization over this coefficient, which
can be confusing. An alternative understanding is to see this penalization parameters as a
change of variable: instead of optimizing over the one-period age increments, we optimize
over the corresponding penalization coefficients. Figure 4.1 illustrates this idea, with α

being the optimization parameter.

To sum up, we propose a decomposition/parametrization method to solve a long term
optimal control problem incorporating an age variable. We use the fact that the age (as
a state variable) is slow to neglect its variations within a single period to limit the com-
putation burden. We solve a collection of one period, penalized, optimal control problems
and associate the resulting total agings with the corresponding coefficients, which allow us
to perform a dynamic optimization over the coefficients to solve the long term problem.
Observe that we do not fix only one coefficient for the whole problem as in penaliza-
tion approaches: we control the penalization coefficients of every single period. Then the
aging-conscious on-line one-period decision can be computed for an optimized time varying
penalization parameter that incorporates the long term aging.

The long term and short term optimal control problems are presented in the next
subsection, followed by the technical assumptions we use in this work. We present the bi-
level dynamic programming in §4.3 and the adaptive weights approach in §4.4. We discuss
the theoretical results and some possible refinements and variations in §4.5. The last
section is dedicated to an application of this approach to the microgrid energy management
problem. Readers only interested in applications might want to start with this last section.

In the proofs we will use LHS and RHS as shorthands for left-hand side and right-hand
side.

4.2 Setting

4.2.1 Problem Formulation

We consider a system with two state variables: the age a and the fast state c. The fast
state should be interpreted as a form of wealth (available cash, energy, inventory). This is
why we will refer to the fast state as the charge, in reference to this idea and to the toy
microgrid model example proposed in the last section. The age a and the charge c follow
a T -periodic dynamics controlled by a time dependent parameter u:

{
ȧ(t) = Fa(a(t), c(t), u(t), t)

ċ(t) = Fc(a(t), c(t), u(t), t),
(4.1)

or equivalently if we set x = (a, c) and F = (Fa, Fc):

ẋ(t) = F (x(t), u(t), t). (4.2)
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Think of T > 0 as the length of a day for instance. The whole horizon Ttot is a multiple
of T , i.e. Ttot = NT with N being a large integer (think of Ttot as the length of five years
for example). The control u is restricted to be in U = {u s.t. ∀t ∈ [0, Ttot], u(t) ∈ Ū},
and the charge c and the age a should belong to respectively C and A, where Ū and C

are compact subsets of Rn and R, and there exists (a−, a+) such that A = [a−, a+] and
a− ≤ a(0) ≤ a+.

The age a of the system is non-decreasing in time, i.e. Fa ≥ 0, and for all (u, t, c) ∈
Ū × [0, T ] ×C, Fa(a+, c, u, t) = 0, which ensures that for all time t, a(t) ∈ [a−, a+]. One
can interpret a = a+ as the aging component of the system being definitely dead. Then
Fa(a+, c, u, t) = 0 means that once this component dead, it cannot get older anymore.

The behaviors of the system change as it get older. In fact, the older the system, the
more effort should be needed to complete a given task. The aging process should decrease
the efficiency of the system. In addition, as c is a form of wealth, the cost-to-go functions
of our minimization problems should be decreasing in c. Those notions are expressed in
the monotonicity assumption (see. §4.2.2).

While the relevant time scale for the charge c is the period T , the dynamics of the age
a is so slow that one need to wait many periods to observe a non-microscopic change in
a. Our objective is to minimize the sum of an integral criterion and a non-decreasing final
cost φ(aTtot) while verifying some constraints. Like the dynamics, the (bounded) running
cost `(u, t) is T -periodic. We end up with the following optimal control formulation:

P1(a0, c0, t0)





V1(a0, c0, t0) = inf
u∈U

∫ Ttot

t0

`(u(t), t)dt+ φ(aTtot)

(a(t0), c(t0)) = (a0, c0)

a(Ttot) ≤ amax
∀t ∈ [t0, Ttot], ϕ(c(t), u(t), t) ∈ A
(ȧ(t), ċ(t)) = (Fa(a(t), c(t), u(t), t), Fc(a(t), c(t), u(t), t)),

(4.3)

where A is a closed set, ϕ a continuous T periodic-function, and amax a final constraint.
Problem P1 is parametrized by the initial point (a0, c0, t0). The value function V1 asso-
ciates any set of initial time and state variables with the corresponding minimal cost-to-go
function. Under Lipschitz conditions on Fa and Fc, the ordinary differential equation has
a unique solution.The integrand ` satisfies the following properties:

• ` is bounded

• for all t ∈ [0, T ], u→ `(u, t) is continuous

• for all u ∈ Ū , t→ `(u, t) is measurable.
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We use the standard flow notation i.e. for τ > 0, Xu,t+τ
x,t is the value of the solution of

the first order ordinary differential equation of the dynamics at time t+ τ when the initial
point is x = (a, c) at time t and the control is u. We will use the notation au,t+τx,t (resp.
cu,t+τx,t ) to refer to the flow of the age (resp. the charge). When the context will be clear,
we will sometimes simply write X(t).

The dynamic programming principle applies and we can write the value function of
problem P1 as the solution of:

V1(a0, c0, t0) = inf
u∈U

∫ t0+T

t0

`(u(t), t)dt+ V1(Xu,t0+T
x0,t0

, t0 + T ), (4.4)

where the infimum is taken over controls such that ϕ(cu,tx0,0, u(t), t) ∈ A for any t ∈ [t0, t0 +

T ]. Observe that problem P1 is not always feasible, the optimization is by construction
performed over the feasible V1(Xu,t0+T

x0,t0
, t0 + T ). Now set t = tk = kT for k ∈ N, by

T -periodicity of the data, we get the formulation we will use throughout this article

V1(a0, c0, tk) = inf
u∈Ua0,c0

∫ T

0
`(u(t), t)dt+ V1(Xu,T

x0,0
, tk), (4.5)

where Ua0,c0 is the set of controls u ∈ UT = {u ∈ L∞(0, T ) s.t. ∀t ∈ [0, T ], u(t) ∈ Ū} such
that ϕ(cu,tx0,0, u(t), t) ∈ A for any t ∈ [0, T ].

We propose a bi-level approach to solve problem P1. First we introduce a collection of
micro problems

Pµ1 (a0, δa, c0, cF )





V µ
1 (a0, δa, c0, cF ) = inf

u∈UT

∫ T

0
`(u(t), t)dt

(a(0), c(0)) = (a0, c0)

a(T ) ≤ a0 + δa

c(T ) ≥ cF
∀t ∈ [0, T ], ϕ(c(t), u(t), t) ∈ A.
(ȧ(t), ċ(t)) = (Fa(a(t), c(t), u(t), t), Fc(a(t), c(t), u(t), t)).

(4.6)

The superscript µ stands for micro. The micro problem Pµ1 is in many ways similar to P1:
the dynamics, the mixed constraints and the integrand of the criterion are the same. The
difference is that the time horizon is only one period. Moreover, the final state condition
on the age a and the final cost φ(aTtot) are replaced by two final state conditions on the
age a and the state c. The problem is parametrized by δa, which represents the maximal
amount of aging for the period. If φ = 0 then for both P1 and Pµ1 the goal is to minimize
the integral of the running cost ` over a time horizon without increasing the age of the
system a by more than a given quantity.
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4.2.2 Assumptions

We make the following assumptions.

Assumption 1 (Slow aging). There exists a constant L > 0 such that

• Fc is L-Lipschitz and uniformly bounded by L,

• Fa is L/N -Lipschitz and uniformly bounded by L/N .

Assumption 1 expresses that the aging process is slow. The dependence of the Fa
Lipschitz constant and bound in N (which is the number of periods in the macro problem
P1) is needed to perform an asymptotic estimation. (see §4.5.1). Assumption 1 is used in
the proof of Lemma 4.15.

Assumption 2 (Monotonicity). The value functions V µ
1 and V1 are non decreasing in a0

and non increasing in c0.

Assumption 2 corresponds to the fact that youth and wealth are always preferable for
the systems envisionned.

Assumption 3 (Regularity of the aging process). For any ε > 0, ∆ > 0, there exists
ε1 > 0 such that
if x0 = (a0, c0) ∈ A×C, u ∈ Ux0 and ∆ ≤

∫ T
0 Fa(X(t), u(t), t)dt ≤ ∆ + ε1,

then there exists u′ ∈ Ux0 such that

∫ T

0
Fa(X(t), u′(t), t)dt = ∆ and |

∫ T

0
[`(u(t), t)− `(u′(t), t)]dt| ≤ ε. (4.7)

We can interpret ∆ as a maximum aging level. Assumption 3 ensures that if we set a
maximum aging level and a precision level, then we can modify any “almost admissible”
control for the maximum aging level into an admissible one, and the change in integral
cost will not be more than the precision level. This Assumption is used in the proof of
Lemma 4.1.

4.3 Bilevel Dynamic Programming

4.3.1 Mathematical Justification

We start with the following (intuitive) result.

Lemma 4.1. For all (k, a0, c0) ∈ N× A×C,

V1(a0, c0, tk) = inf
δa∈R+,cF∈C

V µ
1 (a0, δa, c0, cF ) + V1(a0 + δa, cF , tk+1). (4.8)
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Proof. LHS ≥ RHS: Set x0 = (c0, a0). First we establish that LHS ≥ RHS. Take a
control u ∈ Ux0 and set δa = au,Tx0,0 − a0 and cF = cu,Tx0,0. By construction of δa and cF , u is
admissible for Pµ1 (a0, δa, c0, cF ) so by definition of V µ

1 ,
∫ T

0 `(u(t), t)dt ≥ V µ
1 (c0, cF , a0, δa).

Moreover, trivially V1(Xu,T
x0,0

, tk+1) = V1(a0 + δa, cF , tk+1) therefore

∫ T

0
`(u(t), t)dt+ V1(Xu,T

x0,0
, tk+1) ≥ V µ

1 (c0, cF , a0, δa) + V1(a0 + δa, cF , tk+1) ≥ RHS.(4.9)

Since this is true for any u ∈ Ux0 , we can apply the dynamic programing principle (4.5) to
get LHS ≥ RHS. We point out that here we did not use the existence of minimizers.

LHS ≤ RHS Take δa and cF an ε-optimal decision for the RHS and u ∈ Ux0 an ε-
optimal control for Pµ1 (a0, δa, c0, cF ). By definition of Pµ1 (a0, δa, c0, cF ) and admissibility
of u, cu,Tx0,0 ≥ cF and au,Tx0,0 ≤ a0 + δa. By ε-optimality,

RHS + 2ε ≥
∫ T

0
`(u(t), t)dt+ V1(a0 + δa, cF , tk+1) (4.10)

By monotonicity of V1,

V1(a+ δa, cF , tk+1) ≥ V1(a+ δa, cu,Tx0,0, tk+1) ≥ V1(au,Tx0,0, c
u,T
x0,0

, tk+1, ). (4.11)

Therefore,

RHS + 2ε ≥
∫ T

0
`(u(t), t)dt+ V1(Xu,T

x0,0
, tk+1) ≥ LHS, (4.12)

where we used the dynamic programming principle (4.5) and the fact that u ∈ Ux0 for the
last inequality. We can conclude that RHS = LHS.

4.3.2 Complexity Analysis

We proceed with a complexity analysis of the previous results. Assume we characterize
the discretization of the space and time grid with the integer parameters Na, Nc, Nu

and Nt, which are the discretization levels of a, c, u and one unit of time. On the one
hand, if we solve problem P1 directly by dynamic programming (for a fixed initial state),
the computation burden is proportional to NaNcNuNtTN . On the other hand if we use
Lemma 4.1, we first solve Pµ1 offline for each possible parameters. Problem Pµ1 computation
burden for one numerical resolution is proportional to NaNcNuNtT , but we need to solve
it for each final parameters (cF , aF = a0 + δa), i.e. NaNc times (indeed, observe that
one resolution solves the problem for all possible initial states). Then we have to do the
macro resolution ( O(NaNcN)). So the total cost with the micro/macro formulation is
O(N2

aN
2
cNuNtT ) + O(NaNcN), which can be competitive against a brute-force dynamic

programming if N is large compared to NaNc.
Consider a specific case where the charge c has to be the same at the beginning of each
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period. In this case we get:

• Direct dynamic programming resolution: O(NaNcNuNtTN)

• One micro problem resolution: O(NaNcNuNtT )

• Number of parameters for the micro problem: O(Na)

• Resolution of the macro problem: O(N2
aN)

• Total computation burden for the bilevel approach: O(N2
aN) +O(N2

aNcNuNtT )

Then this approach becomes competitive compared to the direct DP approach if N is larger
than Na. Note that when solving the micro problem, the complexity is proportional to Na,
but the grid does not need to contain the whole A segment for a given set of final ages.
The pseudo code of such an algorithm is straightforward.

• Compute the value function of Pµ1 for all δa.

• Compute the value function of the macro problem using the previous results.

Now assume we do an online implementation (with periodic cF = ĉF ): at the beginning
of each period, we compute an optimal control for the period, with a final constraint
cF = ĉF . With direct dynamic programming, either we recompute the value function
every time (a), or we keep it in memory (which requires a lot of resources)(b). If we
keep the whole value function in memory, it requires a memory space proportional to
NaNcNtNT , which is not realistic. If we only keep the value function at the end of each
period, then we only need a memory space proportional to NaN , but we need to recompute
the intermediate value function for a computation burden of NaNcNuNtT .

With a bilevel approach, we can keep in memory either the whole value function of the
macro problem (c), the value functions of the micro problems at t = 0 for different maximal
aging (d), or the mapping of the optimal δa for each (a, t) (e). The first solution is similar
to (a) and is not realistic. The second solution requires a memory space of O(N2

a ), which
is not proportional to N . Then we need to get the optimal aging by dynamic programming
on the macro problem O(N2

aN) and compute an optimal control O(NaNcNuNtT ). The
last possibility requires a Na ×N table. The online computation of the control will then
require two states, which represents a computation burden proportional to NaNcNuNtT .
Note that this last possibility is equivalent to (b) for the online phase.

The complexity analysis is summarized in Tables 4.1 and 4.2.
We point out that we have not used much of the problem specificity, as only Assump-

tions 2 is needed in the proof of Lemma 4.1. Moreover, such online computation burden
may be too big for some applications. This is what motivates the next section.
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4.4 Adaptative Weights

4.4.1 Preliminary Results

Note that we could replace the final constraint and the final cost in P1 by a penalization
on the age variation. We would get the criterion

∫ Ttot

t0

`(u(t), t)dt+ α[a(Ttot)− amax] + φ(aTtot). (4.13)

where α ∈ R+ is a penalization coefficient. Since amax and â0 are constants over which
we are not optimizing, we get an equivalent optimization problem by using instead the
criterion ∫ Ttot

t0

`(u(t), t)dt+ α

∫ Ttot

t0

Fa(X(t), u(t), t)dt+ φ(aTtot). (4.14)

We then get the penalized problem (with free final age)

P2(a0, c0, α, t0)





V2(a0, c0, α, t0) = inf
u∈U

∫ Ttot

t0

[`(u(t), t) + αFa(X(t), u(t), t)]dt+ φ(aTtot)

Ẋ(t) = F (X(t), u(t), t)

(a(t0), c(t0)) = (a0, c0)

ϕ(c(t), u(t), t) ∈ A
(4.15)

Let us introduce the corresponding micro-problem:

Pµ2 (a0, c0, cF , α)





V µ
2 (a0, c0, cF , α) = inf

u∈U

∫ T

0
[`(u(t), t) + αFa(X(t), u(t), t)]dt

Ẋ(t) = F (X(t), u(t), t)

(a(0), c(0)) = (a0, c0)

ϕ(c(t), u(t), t) ∈ A
c(T ) ≥ cF .

(4.16)

As the notations implies, Pµ2 is to P2 what Pµ1 is to P1: a one day version. Just note
that the final constraint in P1 is considered as fixed and is a parameter in Pµ1 whereas
the penalization coefficient is a parameter for both Pµ2 and P2. In addition, note that we
cannot write a dynamic programming principle directly with Pµ2 and P2 as we did for Pµ1
and P1 in Lemma 4.1.

If problem P1 is strictly feasible, then for α big enough the final constraint is satisfied
by the solutions of P2(a0, c0, α, t0) (see the proof of Lemma 4.6). A standard way to deal
with aging is to replace P1(a0, c0, t0) by an approximation of P2(a0, c0, cF , α) where the
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age a is fixed:

P̃2(a0, c0, α, t0)





V2(a0, c0, α, t0) = inf
u∈U

∫ Ttot

t0

[`(u(t), t) + αFa(a0, c(t), u(t), t)]dt+ φ(aTtot)

ċ(t) = Fc(a0, c(t), u(t), t)

(a(t0), c(t0)) = (a0, c0)

ϕ(c(t), u(t), t) ∈ A
(4.17)

To set α, practitioners would often compute a collection of solutions of P̃2 for different
values of α, and then take the best admissible solution in the sense of P1. Nonetheless
such an approach neglects the impact of the aging on the efficiency and more generally the
fact that the dynamics are coupled.

In addition, there may be a duality gap. In this case any (theoretical) solution of P2

admissible for P1 is suboptimal for P1. Ekeland and Aubin propose an estimate of this
sub-optimality in a finite dimensional setting [6].

The following lemma is a relation between the value functions of the two micro problems
Pµ2 and Pµ1 .

Lemma 4.2. For any (a0, c0, cF , α) ∈ A×C2 × R+,

V µ
2 (a0, c0, cF , α) = inf

δa∈R+

V µ
1 (a0, δa, c0, cF ) + αδa (4.18)

Proof. LHS ≥ RHS:
Take ε > 0, u ∈ Ux0 an ε-optimal solution of the LHS. Set δa = au,Tx0,0−a0. By ε-optimality
of u

LHS + ε ≥
∫ T

0
`(u(t), t)dt+ αδa. (4.19)

In addition note that u is admissible for Pµ1 (a0, δa, c0, cF ) therefore by definition of V µ
1 ,∫ T

0 `(u(t), t)dt ≥ V µ
1 (a0, δa, c0, cF ). Then

LHS + ε ≥ V µ
1 (a0, δa, c0, cF ) + αδa ≥ inf

δa∈R+

V µ
1 (a0, δa, c0, cF ) + αδa = RHS. (4.20)

Therefore LHS ≥ RHS.
LHS ≤ RHS:
Take ε > 0, δa ∈ R+ an ε-optimal solution of the RHS and u ∈ Ux0 an ε-optimal solution
of problem Pµ1 (a0, δa, c0, cF ). By ε-optimality

RHS+ε ≥ V µ
1 (a0, δa, c0, cF )+αδa and V µ

1 (a0, δa, c0, cF )+ε ≥
∫ T

0
`(u(t), t)dt, (4.21)



74 CHAPTER 4. ADAPTIVE WEIGHTS ALGORITHM

so

RHS ≥
∫ T

0
`(u(t), t)dt+ αδa− 2ε. (4.22)

Moreover, since u is Pµ1 (a0, δa, c0, cF )-admissible, δa ≥
∫ T

0 Fa(X(t), u(t), t)dt, so

RHS ≥
∫ T

0
[`(u(t), t) + αFa(X(t), u(t), t)]dt− 2ε ≥ LHS − 2ε. (4.23)

Therefore LHS ≤ RHS and the proof is done.

We point out that this result does not depend on φ and amax which are macro problem
specific parameters.

Corollary 4.3. For any (a0, c0, cF , δa, α) ∈ A×C2 × R2
+,

V µ
1 (a0, δa, c0, cF ) ≥ V µ

2 (a0, c0, cF , α)− αδa. (4.24)

4.4.2 Nice Case: No Duality Jumps

To proceed we need some additional notations. First for any x0 ∈ A×C, and any control
u ∈ Ux0 , we define

∆a(u) =

∫ T

0
Fa(X(t), u(t), t))dt and L(u) =

∫ T

0
`(u(t), t)dt. (4.25)

Note that for readability the initial conditions are kept implicit. For any (a0, c0, cF , α) ∈
A×C2 × R+, let

Γ(a0, c0, cF , α) =




δa = lim

n
∆a(un);

un minimizing sequence of Pµ2 (a0, c0, cF , α)



 (4.26)

Roughly speaking, given some (a0, c0, cF ) ∈ A × C2, α → Γ(a0, c0, cF , α) associates the
penalization coefficients with the set of optimal aging levels for Pµ2 . Lemma 4.4 is a key
result for what follows.

Lemma 4.4. Let (a0, c0, cF , α,∆a) ∈ A×C2 ×R2
+ such that ∆a ∈ Γ(a0, c0, cF , α). Then

V µ
1 (a0,∆a, c0, cF ) = V µ

2 (a0, c0, cF , α)− α∆a. (4.27)

Proof. We deduce LHS ≥ RHS from Corollary 4.3, so we only need to show that LHS ≤
RHS. Let ε > 0. By Assumption 3, there exists ε1 ≥ 0 such that if u2 ∈ Ux0 and
∆a ≤ ∆a(u2) ≤ ∆a+ ε1, then there exists u′ ∈ Ux0 such that

∆a(u′) = ∆a and |L(u2)− L(u′)| ≤ ε. (4.28)
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By hypothesis, ∆a ∈ Γ(a0, c0, cF , α) so by definition of Γ there exists u2 ε-optimal for
Pµ2 (a0, c0, cF , α) that satisfies |∆a(u2)−∆a| ≤ min(ε1,

ε
α).

If ∆a(u2) ≤ ∆a, then

V µ
2 (a0, c0, cF , α)− α∆a ≥ V µ

2 (a0, c0, cF , α)− α∆a(u2)− ε ≥ (4.29)

−2ε+ L(u2) ≥ −2ε+ V µ
1 (c0, cF , a0,∆a). (4.30)

We used α|∆a(u2)−∆a| ≤ ε for the first inequality, the ε-optimality of u2 for the second
inequality, and the admissibility of u2 for Pµ1 (c0, cF , a0,∆a) in the third.

Else we have the existence of a control u′ satisfying (4.28). Then by ε-optimality of u2

for Pµ2 , (4.28) and ∆a(u2) > ∆a, and the fact that u′ is admissible for Pµ1 and ∆a(u′) = ∆a:

V µ
2 (a0, c0, cF , α) ≥ −ε+ L(u2) + α∆a(u2) ≥ (4.31)

−2ε+ L(u′) + α∆(u′) ≥ (4.32)

−2ε+ V µ
1 (c0, cF , a0,∆a) + α∆a. (4.33)

Then we can conclude.

From Lemma 4.4 it is trivial that

Corollary 4.5. Let (a0, c0, cF , α, δa, u) ∈ A×C2 × R2
+ × UT and ε > 0 such that u is an

ε-optimal solution of Pµ1 (a0, δa, c0, cF ) and ∆a(u) ∈ Γ(a0, c0, cF , α) then

V µ
1 (a0,∆a(u), c0, cF ) = V µ

2 (a0, c0, cF , α)− α∆a(u) (4.34)

Now we have the tools to prove one of our main results.

Theorem 4.6. Let (a0, c0, αn, u) ∈ A × C × Rn+ × U and ε > 0 such that u is an ε-
optimal solution for P1(a0, c0, 0) and (ak+1 − ak) ∈ Γ(ak, ck, ck+1, αn), where ak = au,tkx0,0

and ck = cu,tkx0,0
. Then for all k = 0 . . . N − 1

|V1(ak, ck, tk)− inf
(α,cF ,δa)

{V µ
2 (a0, c0, cF , α)− αδa+ V1(ak + δa, cF , tk+1)}| ≤ ε, (4.35)

where the optimization is performed over the (α, δa, cF ) such that α ∈ R+, cF ∈ C and
δa ∈ Γ(ak, ck, cF , α).

Proof. Without loss of generality, we deal with the case k = 0. First note that the restric-
tion uT of u to [0, T ] is an ε-optimal solution for Pµ1 (a0, a1 − a0, c0, c1).

By ε-optimality, admissibility of uT for Pµ1 (a0, a1 − a0, c0, c1), Corollary 4.5 and the
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fact that a1 − a0 ∈ Γ(a0, c0, c1, α0),

V1(a0, c0, 0) + ε ≥ L(uT ) + V1(a1, c1, T ) ≥ V µ
1 (a0, a1 − a0, c0, c1) + V1(a1, c1, T ) (4.36)

≥ V µ
2 (a0, c0, c1, α0)− α0(a1 − a0) + V1(a0 + a1 − a0, c1, T ) (4.37)

≥ inf
α,δa,cF

V µ
2 (a0, c0, cF , α)− αδa+ V1(a0 + δa, cF , T ) (4.38)

Therefore RHS ≤ LHS + ε.
For any (α, δa, cF ) ∈ R+ × R+ ×C such that δa ∈ Γ(a0, c0, cF , α), by Lemma 4.4 and

Lemma 4.1:

V µ
2 (a0, c0, cF , α)− αδa+ V1(a0 + δa, cF , T ) = (4.39)

V µ
1 (a0, δa, c0, cF ) + V1(a0 + δa, cF , T ) ≥ V1(a0, c0, 0). (4.40)

Therefore RHS ≥ LHS and the conclusion follows.

We point out that the result is still true if we want to fix the ck as operational con-
straints. Under the hypothesis of the previous theorem, assume that Γ is a singleton, then
V1 can be computed by dynamic programming over α. We will get a similar result in
the next section as a consequence of Theorem 4.13. Note that since in Pµ2 there is no
final constraint on the age a we could approximate this problem by fixing the age in the
dynamics. With Assumption 1 we should be able to get an error estimate. Last but not
least, beware that the optimal α in Theorem 4.6 is not the α that would relate by duality
two macro problems P1 and P2.

4.4.3 Some comments on Γ

We say that Pµ1 (a0, δa, c0, cF ) is strictly feasible if there exists u ∈ Ux0 such that ∆a(u) <

δa. We start with the following classical result:

Lemma 4.7. If problem Pµ1 (a0, δa, c0, cF ) is strictly feasible, then there is an α0 such that
for α bigger than α0,

∀∆a ∈ Γ(a0, c0, cF , α),∆a ≤ δa. (4.41)

Proof. Since Pµ1 (a0, δa, c0, cF ) is strictly feasible, there exists u ∈ Ux0 such that ∆a(u) <

δa. Assume that there exists αn an increasing sequence such that

αn → +∞ and ∀n ∈ N,∃∆an ∈ Γ(a0, c0, cF , αn),∆an > δa. (4.42)

Then

n(∆an −∆a(u)) ≥ n(δa− δa(u)) (4.43)
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Then for n big enough, since ` is bounded, we would have L(u)+n∆a(u) < V µ
2 (a0, c0, cF , n),

which is absurd.

The result of the next lemma is clear to the intuition: Γ should be decreasing in α.

Lemma 4.8. Let (a0, c0, cF ) ∈ A×C2, then for any 0 ≤ α1 < α2,

(δ1, δ2) ∈ Γ(a0, c0, cF , α1)× Γ(a0, c0, cF , α2)⇒ δ1 ≥ δ2 (4.44)

Proof. To simplify, we omit (a0, c0, cF ) because they do not intervene in the proof. Assume
that for some non-negative α1 < α2, there exist some (δ1, δ2) such that δ1 < δ2. Then by
corollary 4.3

V µ
2 (α2) ≤ V µ

1 (δ1) + α2δ1. (4.45)

This implies with Lemma 4.4 that

α2(δ2 − δ1) ≤ V µ
1 (δ1)− V µ

1 (δ2) (4.46)

Then since α1 < α2 and δ2 − δ1 > 0

α1(δ2 − δ1) < V µ
1 (δ1)− V µ

1 (δ2) (4.47)

which in turn implies that

V µ
1 (δ2) + α1δ2 < V µ

1 (δ1) + α1δ1 = V µ
2 (α1), (4.48)

which is not coherent with the optimality of V µ
2 (α1). We conclude that δ1 ≥ δ2.

Since the data are bounded, Γ is included in a compact set. Since Pµ2 has a value, and
u→ ∆(u) is valued in a compact set, Γ is not empty. We display in Figure 4.1 a sketch of
Γ as a function of α (the other variables being fixed). By Lemma 4.8 Γ is non-increasing.
There is no reason a priori why it could not be locally constant. Indeed, even the solution of
Pµ2 could be locally constant with respect to α. Observe that Γ not necessarily a singleton:
we can have some jumps. In addition it is not necessarily convex valued.

Lemma 4.9. Let (a0, c0, cF , α,∆a1,∆a2) ∈ A×C2 ×R2
+ such that ∆ai ∈ Γ(a0, c0, cF , α)

for i = 1, 2 then

V µ
1 (a0,∆a1, c0, cF )− V µ

1 (a0,∆a2, c0, cF ) = α(∆a2 −∆a1) (4.49)

Proof. This is a direct consequence of Lemma 4.4.
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Figure 4.1 – An example of Γ(α) profile: This drawing summarize the possible behav-
iors of ∆a(α), i.e the influence of the penalization parameter over the aging in the micro
problem. It can be either continuous and strictly decreasing or constant, or it may “jump”
for a given value of α. If there is a jump at α = α0 then we cannot a priori say that Γ(α0)
is a singleton. In addition, it may happen that Γ ’misses’ some values at α0.

4.4.4 Generic Case

In general we do not have any guarantee of the existence of the α’s as in Theorem 4.4. In
relation with problem Pµ2 , we introduce for any (x0, cF , α) ∈ (A×C)×C × R+

∆−(x0, cF , α) = inf
u∈S(x0,cF ,α)

lim inf
n→+∞

∆a(un), (4.50)

and
∆+(x0, cF , α) = sup

u∈S(x0,cF ,α)
lim sup
n→+∞

∆a(un), (4.51)

where

S(x0, cF , α) = {u ∈ (UT )N; (un)n∈N minimizing sequence of Pµ2 (x0, cF , α)}. (4.52)

In addition, we denote by Γ̂ the set

Γ̂(x0, cF , α) = {∆−(x0, cF , α),∆+(x0, cF , α)} (4.53)

which is either a 2-uplet if there is a jump, and a singleton otherwise. The set Γ̂ corresponds
to the minimal and maximal optimal age increments for a given α. Last, we denote by γ
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the quantity:

γ = sup
(x0,cF ,α)∈(A×C)×C×R+

{ lim
α−<α

∆+(x0, cF , α
−)− lim

α+>α
∆−(x0, cF , α

+)}, (4.54)

which corresponds to the size of the biggest possible duality jump. By monotonicity of
Γ with respect to α, γ is non negative, and by Assumption 1, γ is finite. We denote by
P3(xk, tk) for k = 0 . . . N − 1 the problem

V3(xk, tk) = inf
(xi,αi)

N−1∑

i=k

{V µ
2 (xi, ci+1, αi)− αi(ai+1 − ai)}+ φ̃(aN ), (4.55)

where the optimization is performed over the (xi, αi)i=k+1,...,N ∈ (A ×C × R+)N−k such
that for any i = k . . . N − 1,

(ai+1 − ai) ∈ Γ̂(xi, ci+1, αi) (4.56)

and φ̃(a) = φ(a) if a < amax, +∞ else.

Lemma 4.10. Let (a0, c0, cF , α, δa) ∈ A×C2 ×R2
+, such that δa ∈ Γ̂(a0, c0, cF , α), then

V µ
1 (a0, c0, cF , δa) = V µ

2 (a0, c0, cF , α)− αδa (4.57)

Proof. We just observe that Γ̂(x0, cF , α) ∈ Γ(x0, cF , α) and apply Lemma 4.4.

Lemma 4.11. Let (x, k) ∈ A×C × [0 . . . N − 1], then V3(x, tk) ≥ V1(x, tk).

Proof. By Lemma 4.1, we have

V1(x, tk) = inf
xi

N−1∑

i=k

V µ
1 (xi, ci+1, ai+1 − ai) + φ̃(aN ). (4.58)

and by Lemma 4.10 and the definition of V3,

V3(x, tk) = inf
xi

N−1∑

i=k

V µ
1 (xi, ci+1, ai+1 − ai) + φ̃(aN ), (4.59)

where the optimization is performed over the xi such that there exist (αi)i=k+1,...,N to
satisfy (4.56). QED.

Remember the definition of γ in (4.54).

Lemma 4.12. For any (x0, cF , u) ∈ (A×C)×C×UT such that u is admissible for problem
Pµ1 (a0,∆a(u), c0, cF ), there exists α such that

dist(∆a(u), Γ̂(x0, cF , α)) ≤ γ. (4.60)
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Proof. We know that for α ∈ R+ big enough, δ ∈ Γ̂(x0, cF , α) implies δ ≤ ∆a(u). Take α0

the infimum of those α. Then if there exists δ ∈ Γ̂(x0, cF , α0) such that δ = ∆a(u) we just
take α = α0 and we are done. Else by definition of α0, for all α− < α, ∆+(x0, cF , α

−) >

∆a(u) and for all α+ > α, ∆−(x0, cF , α
+) ≤ ∆a(u). This rewrites, for all δ ∈ Γ̂(x0, cF , α)

∆−(x0, cF , α
+)− δ ≤ ∆a(u)− δ ≤ ∆+(x0, cF , α

−)− δ (4.61)

Taking the limit in α− and α+, we get

|∆a(u)− δ| ≤ γ (4.62)

i.e.
dist(∆a(u), Γ̂(x0, cF , α)) ≤ γ. (4.63)

The next result contains one of the main ideas of the paper: the set of the xi satisfying
(4.56) is rich enough to approximate a trajectory with a precision of γ.

Theorem 4.13. Let x0 ∈ A × C and u ∈ U admissible for P1(x0, 0). Then there exist
(α, δa) ∈ R2N

+ such that for all k = 0, . . . , N :

δak ∈ Γ̂(a0 +

k−1∑

j=0

δaj , ck, ck+1, αk) (4.64)

k−1∑

i=0

δai ≤ a(tk)− a0 (4.65)

k−1∑

i=0

δai ≥ a(tk)− a0 − γ, (4.66)

where ak = a(tk) and ck = c(tk).

Proof. First note that (4.65) and (4.66) are satisfied for k = 0. Now consider k = 0, . . . , N

such that the three properties are satisfied until (k − 1). If there exist α such that

a(tk+1)− a(tk) ∈ Γ̂(a0 +

k−1∑

j=0

δaj , ck, ck+1, αk) (4.67)

then set δak = a(tk+1)− a(tk) and αk = α. and then the three properties are still trivially
satisfied for k. Else, we apply Lemma 4.12 to justify the existence of an αk such that

dist(a(tk+1)− a(tk), Γ̂(a0 +
k−1∑

j=0

δaj , ck, ck+1, αk) ≤ γ. (4.68)
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then if
k−1∑

j=0

δaj + ∆+(a0 +
k−1∑

j=0

δaj , ck, ck+1, αk) ≤ a(tk+1)− a0 (4.69)

then we set δak = ∆+(a0 +
∑k−1

j=0 δaj , ck, ck+1, αk) Then constraints (4.64) and (4.65) are
satisfied. We need to check that (4.66) is also satisfied. To see this, observe that

k−1∑

j=0

δaj + ∆+(a0 +
k−1∑

j=0

δaj , ck, ck+1, αk) (4.70)

≥ a(tk)− a0 − γ + ∆+(a0 +
k−1∑

j=0

δaj , ck, ck+1, αk) (4.71)

≥ a(tk+1)− a0 + ∆+(a0 +
k−1∑

j=0

δaj , ck, ck+1, αk)− (a(tk+1)− a(tk))− γ (4.72)

≥ a(tk+1)− γ, (4.73)

where we applied, the induction and the fact that ∆+(a0 +
∑k−1

j=0 δaj , ck, ck+1, αk) ≥
a(tk+1)− a(tk). Else we set δak = ∆−(a0 +

∑k−1
j=0 δaj , ck, ck+1, αk). We have

k−1∑

j=0

δaj + ∆−(a0 +

k−1∑

j=0

δaj , ck, ck+1, αk) (4.74)

> a(tk+1)− a0 −∆+(a0 +

k−1∑

j=0

δaj , ck, ck+1, αk)−∆−(a0 +

k−1∑

j=0

δaj , ck, ck+1, αk) (4.75)

> a(tk+1)− a0 − γ (4.76)

and

k−1∑

j=0

δaj + ∆−(a0 +
k−1∑

j=0

δaj , ck, ck+1, αk) (4.77)

≤ a(tk)− a0 + ∆−(a0 +
k−1∑

j=0

δaj , ck, ck+1, αk) (4.78)

≤ a(tk+1)− a0 (4.79)

which concludes the induction.

We point out that the proof of this result is constructive. We propose in the next
result an a posteriori error estimate based on this construction. Since a(tk) is the age of
the system piloted by the ε-optimal solution u and a0 +

∑k
i=1 δai is the age of the system

piloted by the solution we are building with adaptative weights, relation (4.64) means that
the system is always in better shape (i.e. younger) in the solution we are building, and at
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the same time, it cannot be more than γ better (reminder: γ is the maximal diameter of
Γ).

Theorem 4.14 (Error Estimate). For any ε-optimal solution of P1(a0, c0, t0), the con-
struction of the previous theorem gives the estimate:

V3(a0, c0, t0)− V1(a0, c0, t0) ≤
N−1∑

k=0

αk(a(tk+1)− a(tk)− δak) + ε (4.80)

Note that (a(tk+1) − a(tk) − δak) = 0 when there is no jump at αk, which can be
numerically checked. Thus the theorem give an a posteriori estimate of the error when
optimizing with an adaptative weights approach. For instance, if the structure of the
problem allows us to claim that there are no jumps, then we do not make any approximation
error.

Proof. Take ε > 0 and u ∈ U an ε-optimal control for problem P1(c0, a0, t0). We apply
Theorem 4.13 to u.

We have

V3(c0, a0) ≤
N∑

k=1

{V µ
2 (a0 +

k−1∑

j=0

δaj , ck, ck+1, αk)− αkδak}+ φ̃(a+
N−1∑

k=0

δak) (4.81)

We deal with the first term of the RHS. According to Lemma 4.10, for all k = 0 . . . N − 1

V µ
2 (a0 +

k−1∑

j=0

δaj , ck, ck+1, αk)− αkδak = V µ
1 (a0 +

k−1∑

j=0

δaj , δak, ck, ck+1) (4.82)

Therefore

V µ
2 (a0 +

k−1∑

j=0

δaj , ck−1, ck, αk)− αkδak − V µ
1 (a(tk), a(tk+1)− a(tk), ck, ck+1) (4.83)

= V µ
1 (a0 +

k−1∑

j=0

δaj , δak, ck, ck+1)− V µ
1 (a(tk), a(tk+1)− a(tk), ck, ck+1) (4.84)

= V µ
1 (a0 +

k−1∑

j=0

δaj , δak, ck, ck+1)− V µ
1 (a0 +

k−1∑

j=0

δaj , a(tk+1)− a(tk), ck, ck+1) + (4.85)

V µ
1 (a0 +

k−1∑

j=0

δaj , a(tk+1)− a(tk), ck, ck+1)− V µ
1 (a(tk), a(tk+1)− a(tk), ck, ck+1) (4.86)

The second difference is negative because V µ
1 is decreasing in its first variable and a0 +∑k−1

j=0 δaj ≤ a(tk) by construction. We thus concentrate on the first difference. If there is
no jump, this quantity is zero. Otherwise, we need to compare (simplifying the notations)
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V µ
1 (δak) and V µ

1 (a(tk+1)− a(tk). By definition of Pµ2 , we have

V µ
1 (a(tk+1)− a(tk)) + αk(a(tk+1)− a(tk)) ≥ V µ

2 (αk). (4.87)

Remember that by definition the pair (αk, δak) satisfies δak ∈ Γ̂(a0+
∑k−1

j=0 δaj , ck, ck+1, αk).
We can apply Lemma 4.10 to get

V µ
2 (αk) = V µ

1 (δak) + αkδak. (4.88)

Therefore, combining relations (4.87) and (4.88) we get

V µ
1 (δak)− V µ

1 (a(tk+1)− a(tk)) ≤ αk(a(tk+1)− a(tk)− δak) (4.89)

Therefore if we denote by Kjumps the k ∈ [0..N − 1] such there is a jump in the
construction:

V3(a0, c0, t0)− V1(a0, c0, t0) ≤ (4.90)
∑

k∈Kjumps
αk(a(tk+1)− a(tk)− δak) + φ̃(a0 +

N−1∑

k=0

δak)− φ(a(tN )) + ε (4.91)

≤
∑

k∈Kjumps
αk(a(tk+1)− a(tk)− δak) + ε. (4.92)

Since a(tN ) ≥ a0+
∑N−1

k=0 δak by construction, φ is monotone decreasing and u is admissible
for P1(x0, t0).

4.4.5 Complexity Analysis

We denote by Nα the number of elements in the discretization of α. We get the following
offline computation burden for the adaptative weights algorithm if we neglect the age
variations in the micro problem.

• Micro problem: O(NcNuNtT )

• Parameters for micro: O(NαNaNc)

• Macro: O(NaNcNαN)

• Total bilevel: O(NaNαN) +O(NαNaN
2
cNuNtT )

We proceed with a complexity analysis for the case where we have the constraint
ctk = c0 and we neglect the age variations in the micro problem:

• Micro problem: O(NcNuNtT )

• Parameters for micro: O(NαNa)
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Offline Computation burden
Approach offline
BF NaNcNuNtTN

Bilevel N2
aN

2
cN +N2

aN
2
cNuNtT

AWA NαNaN
2
cN +NαNaN

2
cNuNtT

Table 4.1 – The offline computation burdens for the general case

Computation burden Memory requirementApproach offline online
BF (b) NaNcNuNtTN NaNcNuNtT NaN

Bilevel (d) N2
aN +N2

aNcNuNtT N2
aN +NaNcNuNtT N2

a

(e) " NaNcNuNtT NaN

AWA NaNαN +NαNaNcNuNtT NaNαN +NcNuNtT NaNα

Table 4.2 – The computation burdens for the case where c has to be the same at the
beginning of each period

• Macro: O(NaNαN)

• Total bilevel: O(NaNαN) +O(NαNaNcNuNtT )

If Na and Nα are of the same order, then the offline computation burdens for the adaptive
weights and bilevel dynamic programming algorithms are of the same order. We then
store an Na×Nα matrix. The online optimization complexity is proportional to NaNαN+

NcNuNtT .
The complexity analysis is summarized in Tables 4.1 and 4.2.

4.5 Discussion

4.5.1 Asymptotic Analysis

We propose in this subsection an asymptotic error estimate. The derivation of the estimate
relies mostly on Assumption 1, which by the way we did not use in the previous sections.
We now express formally the approximation of V µ

2 envisioned in the complexity analysis:

P̃µ2 (a0, c0, cF , α)





Ṽ µ
2 (a0, c0, cF , α) = inf

u∈U

∫ T

0
[`(u(t), t) + αFa(a0, c(t), u(t), t)]dt

ċ(t) = Fc(a0, c(t), u(t), t)

(a(0), c(0)) = (a0, c0)

ϕ(c(t), u(t), t) ∈ A
c(T ) ≥ cF .

(4.93)



4.5. DISCUSSION 85

This approximation consists in neglecting the evolution of a in the micro optimal control
problem. We then set ∆̃a(u) =

∫ T
0 Fa(a0, c(t), u(t), t)dt and define Γ̃ for P̃µ2 the same way

we defined Γ̂ for Pµ2 . Last we define Ṽ3 by replacing Γ̂ and V µ
2 by Γ̃ and Ṽ µ

2 in the definition
of V3 and Ũx as the set of controls u ∈ UT = {u ∈ L∞(0, T ) s.t. ∀t ∈ [0, T ], u(t) ∈ Ū}
such that ϕ(c̃u,tx0,0, u(t), t) ∈ A for any t ∈ [0, T ], where c̃ is the flow corresponding to the
dynamics (4.93).

First we estimate with Gronwall’s lemma the error made on the trajectories.

Lemma 4.15. There exists a constant K such that for any (a0, c0, u, t) ∈ A×C × UT ×
[0, T ],

|a0 − au,tx0,0| ≤ K/N and |cu,tx0,0 − c̃
u,t
x0,0
| ≤ K/N, (4.94)

and
|∆a(u)− ∆̃a(u)| ≤ K/N2. (4.95)

Proof. We get the first inequality using Fa ≤ L/N , the second inequality by combining the
L-Lipschitzianity of Fc, the first inequality and Gronwall lemma. We get (4.95) combining
the L/N -Lipschitziannity of Fa with (4.94).

We continue with the error estimate.

Theorem 4.16. Let x0 = (a0, c0) ∈ A×C. Let (αi, ai, ci) be some minimizers of V3(x0, 0).
Let ui ∈ Uai,ci be a minimizer of Pµ2 (ai, ci, ci+1, αi) such that ui ∈ Ũai,ci . Let ψ ∈ R → R
and C ≥ 0 be such that

• ai+1 − ai ∈ Γ̃(xi, ci+1, ψ(αi))

• | ψ(αi)− αi |≤ C

• αi ≤ NC

Then

Ṽ3(x0, 0)− V3(x0, 0)

N
≤ 3CK

N
(4.96)
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Proof. Set δai = ai+1 − ai. By definition of Ṽ3, we have

Ṽ3(x0, 0)− V3(x0, 0) ≤ (4.97)
N−1∑

i=0

Ṽ µ
2 (xi, ci+1, ψ(αi))− V µ

2 (xi, ci+1, αi) + (αi − ψ(αi))δai + φ(an)− φ(an) (4.98)

≤
N−1∑

i=0

inf
u∈Ũxi

[L(u) + ψ(αi)∆̃a(u)]− inf
u∈Uxi

[L(u) + αi∆a(u)] + (αi − ψ(αi))δai (4.99)

≤
N−1∑

i=0

inf
u∈Ũxi

[L(u) + ψ(αi)∆̃a(u)]− inf
u∈Ũxi

[L(u) + αi∆a(u)] + CK/N (4.100)

≤
N−1∑

i=0

sup
u∈Ũxi

[ψ(αi)∆̃a(u)− αi∆a(u)] + CK/N (4.101)

≤
N−1∑

i=0

CK

N
+
αiK

N2
+
CK

N
≤ 3CK (4.102)

The reverse result can be proved similarly.
To give an intuition of the estimate of α, observe that Γ(x0, cF , Nα) is equal to a

constant divided by N for any α.

4.5.2 Extensions

In this subsection we propose some possible extensions for the adaptative weights algo-
rithm.

Obstacle

In many applications, it is possible to buy off the shelf spare parts to replace worn com-
ponents. Hence we may want to introduce the possibility to buy a replacement in the
optimization problem. This could be done with an impulse control: for a fixed price p, we
should be able to reset the age a to zero. We would get the following dynamic programming
principle:

V3(a, c, tk) = min{ inf
cf ,α,δa

V µ
2 (a, c, cf , α)−αδa+V3(a+ δa, cf , tk+1), V3(0 + δa, cf , tk+1) +p}

(4.103)

Periodicity

We can include seasonality by having different kinds of periods. For instance, we could
model winter and summer days. In this case, one need to perform an offline pre-processing
for each kind of day.
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Short Term and Long Term Randomness

With Markovian dynamics and final constraints on the average age increment, the same
arguments should apply. Moreover, we could add an integer state with Markovian dynamics
to model the type of ’days’.

Infinite Horizon

If we add a discount rate, the arguments should apply for infinite horizon. Then one needs
to replace the macro dynamic programing algorithm by either a policy iteration algorithm
or a value iteration algorithm.

4.5.3 Algorithm

We propose a bi-level approach that consists in an offline and an online part. For readabil-
ity we assume that c should have the same value at the end of each period c̃. We already
defined ∆a(u) and L(u). The inputs of the algorithm are the discretization grids of the age
and the parameters, namely Ia and Iα. We denote by k0 the current period number and by
a0 the current age. We use the notation φ̃(a) = φ(a) if a < amax, +∞ else. For a table T
indexed by Ia FT is an interpolation of T over the grid. The output of the offline algorithm
is the pair of tables (∆α,a0 ,Lα,a0). The output of the online algorithm is a control u∗ ∈ UT .

Algorithm 1 offline Algorithm
Data: Ia, Iα
Result: ∆α,a0 Lα,a0
for α ∈ Iα do

for a0 ∈ Ia do
Solve Pµ2 (a0, c̃, c̃, α) Compute an optimal control u for Pµ2 (a0, c̃, c̃, α) ∆α,a0 ←
∆a(u) and Lα,a0 ← L(u)

end

end
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Algorithm 2 online Algorithm
Data: k0, a0, Ia, Iα, ∆α,a0 , Lα,a0
Result: u∗

Initialize Ṽ:,: ∈ Ia × [k0 + 1 . . . N ] Ṽ:,: ← +∞ Ṽ:,N ← φ̃(:)

for k ← N − 1 to k0 + 1 do
for a ∈ Ia do

for α ∈ Iα do
Ṽa,k ← min{Lα,a + F Ṽ (a+ ∆α,a, k + 1); Ṽa,k}

end

end

end
α∗ ← argminIα{Lα,a − α∆α,a0 + Ṽ (a0 + ∆α,a0 , k0 + 1)} Compute an optimal control u∗

for Pµ2 (a0, c̃, c̃, α
∗) Return u∗

4.6 Simulation and Implementation on a Microgrid Model

4.6.1 Problem Presentation

A microgrid is an electric system that includes electricity generation units (dispatchable
and non dispatchable) and a battery to store energy for later use. Although the battery
price is a non negligible part of the total infrastructure cost, the battery aging is rarely
taken into account in the control of the grid: this is the source of sub-optimality we propose
to deal with. The profusion and complexity of battery aging models is a reason why, to
the extent of our knowledge, no generic optimization tools have been proposed yet. It
is nonetheless natural to model the aging through a quantity representing the age of the
battery that would increase as the battery is used. The scope of our framework is the
models for which the battery age dynamics is a controlled first order ordinary differential
equation. We use a severity factor model for the aging and solve the simplified optimal
control formulation (introduced in [49] and [48] by dynamic programming.

Here is a brief description of the microgrid we consider. The electricity is produced
by some non dispatchable units (solar panels) and a dispatchable unit (a diesel generator
or the network for instance). At each instant, there is an instantaneous demand (non
controllable) for electricity. If there is a production surplus, one can store this surplus in
the battery. If there is not enough electricity produced at this instant, and there is some
energy left in the battery, one can use the battery to fill the gap or increase the production
from the dispatchable unit. Note that the battery is not a perfect storage: if one unit
of energy is stored in an empty battery, the total amount of energy we can get from the
battery is strictly lower than 1. Of course, there is a cost associated with the production
of electricity from the dispatchable unit.
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A more detailed and technical description of the system, with the underlying equations,
is proposed in §4.6.3. As already discussed, the battery state can be described by two
variables: the state of charge c and the age a. The state of charge c is a normalized
quantity that is the ratio of energy stored in the battery over the maximum quantity the
battery can store. It is zero when the battery is empty, and 1 when the battery is full.

The age a is also a normalized quantity in [0, 1]. We set a = 0 for a brand new battery
and a = 1 for a dead one. Obviously, we need to precise the dynamics of a and c so that
the model makes sense from a physics perspective. Such dynamics can be found in the
literature (see §4.6.2). Very often in the literature instead of the notion of age we find the
concept of state of health h = 1 − a. We prefer the notion of age in this work, to stay
coherent with the previous sections.

In order to make the document self contained and the results reproducible we use
analytical inputs for the solar power production and for the power consumption (load)

4.6.2 Battery Aging Model

As noted by Koller et al. in [60], battery based solutions for energy storage present the
advantage of being deployable without any consideration of the geographic factors and
within short schedule thanks to their modularity. In [83] the authors propose three ways
to model battery aging: a physico-chemical model, a weighted Amp-hour (Ah) throughput
model (or charge counting model) and an event oriented model. In [22] Borhan et al.
propose a model predictive control approach where the aging is penalized in the criterion.
They implement a weighted Ah throughput model. In [60] Koller et al. propose a discrete
time, model predictive control where the aging factor is the Depth of Discharge (DoD),
which is modeled with piece-wise affine dynamics.

In [46] Haessig et al. propose a simulation that includes an aging model in order to
perform a cost analysis, yet the optimization of the operations is not in the scope of this
work. In his PhD thesis [44] Haessig describes a battery aging model (among others)
based on the total amount of energy exchanged during the lifetime of the battery. In [81]
Riffonneau et al. use a a discrete time dynamic programming approach to solve an optimal
power flow problem. The battery aging is proportional to the discharge of the battery. It
linearly decreases the capacity of the battery.

In [75], Palma et al. integrate the battery aging in a rolling horizon strategy model.
The aging is taken into account in the model using a working zones approach as proposed
in [43] and the penalty parameter is the investment cost of the battery.

As argued in the final comments of [44] instead of using a penalization approach, one
could impose a maximal aging constraint. The supporting argument is that the appropri-
ateness of an aging profile depends on the time horizon over which the battery is supposed
to be in operation. Then in [45] Haessig et al. propose to implement an aging constraint by
introducing the notion of exchangeable energy for exchanged energy counting aging model.
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To our knowledge there are basically three approaches in the literature to take battery
aging into account in an optimization model:

• Some constraints on the control and state variables (for instance to avoid extreme
State of Charge values). This requires deciding which constraints to implement. The
aging is not directly taken into account in the optimization process. The constraints
can be too or not enough conservative.

• A penalization of the aging. This requires choosing an aging model and a penalization
parameter.

• An aging constraint. This requires choosing an aging model and the aging level. In
addition, one may need a heuristic to implement this constraint if a direct numerical
optimization is too burdensome.

Observe that ideally, we should perform an optimization over the whole remaining existence
of the microgrid and take into account the impact of the aging on the battery performance.
If the battery scheduled lifetime is shorter than the microgrid one, then the optimal aging
profile should take into account the possibilities and the conditions (price, etc. ) to buy
a new battery. Then it appears that in this very idealistic viewpoint, the optimal control
of the microgrid would take into account the aging without requiring the implementation
of any penalization or constraint. The aging penalization and the aging constraint are in
fact rule of thumbs to incorporate those long term considerations.

Nonetheless, it is hard to conciliate long term optimization and the modeling of the
aging related performances variations. Moreover, the numerical resolution of the opti-
mal control formulation problem needs to be fast enough if one envisions a real online
implementation.

Note that the adaptative weights approach presented in this paper allows for a long
term offline optimization. The output of the offline optimization is a closed loop optimal
penalization parameter which can be then used as input for the online (and short term)
optimal control problem. Since the age variation within a single day has a negligible
impact on the performance, we can neglect those variations for the numerical resolution
of the online optimal control problem. By doing so, the online problem approximation is
one dimensional an can be solved efficiently with dynamic programming.

Note that this approach should work as long as we have a continuous time model
for the aging (i.e. an ordinary differential equation). In the following we will apply our
framework to a severity factor model based on the state of charge of the battery. The
whole quantitative formulation is presented in §4.6.3.
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4.6.3 The Optimal Control Formulation

We implement the adaptative weights framework on a simplified version of the continuous
time optimal control formulation we introduced in [49] and extended to a stochastic setting
in [48]. The unit of time is the hour and T = 24 corresponds to a day. The long term
optimal control problem writes

P1(a0, c0, t0)





V1(a0, c0, t0) = inf
u∈U

∫ Ttot

t0

`(u(t))dt

(a(t0), c(t0)) = (a0, c0)

a(Ttot) ≤ amax
c(t) ∈ [0.1, 1]

(ȧ(t), ċ(t)) = (Fa(a(t), c(t), u(t), t), Fc(a(t), c(t), u(t), t)),

(4.104)

The control u corresponds to the power produced by the dispatchable unit (a diesel gen-
erator). If the battery is full and renewable production is greater than demand, we can
disconnect the battery. To simplify the model, we implement this by allowing u to be
negative. Let β > 0. The integral cost

`(u) = β(u+)2, (4.105)

is a quadratic (and so convex) function associated with the generator consumption of fuel.
The value of β as well as the other model parameters are detailed in Table 4.3. Observe
that only the product of Ubat and Ahbat matters, so to decrease the number of parameters,
we only indicate their product. If we denote by Ps(t) the power produced by the solar
panels and by PL(t) the load then the state of charge dynamics is

Fc(c, u, t) =
ρi(a)Pi(a, c, u, t)− Po(a, c, u, t)/ρo

C
(4.106)

with Pi(a, c, u, t) = (−u − Ps(t) + Pl(t))
+ being the power that gets into the battery and

Po(a, c, u, t) = (−u − Ps(t) + Pl(t))
− being the power that gets out of the battery. We

make the choice for simplicity purpose to model the aging impact on the performances by
decreasing the efficiency ratio ρi:

ρi(a) = (1− a)ρ (4.107)

Where ρ is the initial coefficient for a = 0. We denote by C the capacity of the battery. In
order to make our numerical experiment reproducible, we take T periodic functions with
analytic expression for the data input. The functions were chosen to be realistic enough.
For t ∈ [0, 24]

PS(t) = max(0, 13− 0.3(4t− 48)2) (4.108)
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Figure 4.2 – On the left: The aging severity factor as a function of the charge. The
severity factor is greater when the battery is depleted. This function was originally ob-
tained by interpolation of a piece-wise constant severity factors model. Note that in the
model the battery aging happens only when energy is taken from the battery.
On the right: solar production and load during the day. Observe that the solar produc-
tion only happens during mid-day, whereas the load profile has a constant component and
two peaks, one in the morning and one in the evening.
For both plots, we made the choice to use analytic expressions to produce synthetic data.

Constant Interpretation Value
β running cost coef. 0.5
ρi efficiency factor (in) 0.95
ρo efficiency factor (out)) 0.95
UbatAhbat * 12.5

Table 4.3 – Model Constants

and
PL(t) = 3 + 3e−0.1(4t−32)2 + 12e−0.03(4t−74)2 . (4.109)

The aging dynamics corresponds to a severity factor model

Fa(a(t), c(t), u(t), t) = η(c)
Po(a, c, u, t)

UbatAhbat
(4.110)

where

η(c) =
(−4c2 + 5)

5
(4.111)

is the severity factor (see Figure 4.2 ) and Ubat, Ahbat are parameters that depend on the
battery (see4.3). We set a− = 0 and a+ = 1000. For the numerical experiment, we will set
amax = 500 and N = 600.
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Parameter Na Nc Nu Nt

Value 100 100 100 4

Table 4.4 – Discretization parameters

algorithm micro (total) macro total AWA bruteforce
Comp. time 12.8 min 0.2 sec 12.8 min > 10 hours

Table 4.5 – The computing times

4.6.4 Implementation

Periodicity

We impose that at the end of each day, the charge c should be equal to c̄, which is a
parameter decided upfront. The origin of this additional constraint is operational. Indeed,
in a real setting, the optimization is performed regularly on a 24-hours sliding horizon
window. Without any final constraint, the optimization program will tend to deplete the
battery at the end of its horizon (end of the world effect). What is often done to deal
with the undesirable effect is to impose that the battery at the end of the time horizon
should be as charged as at the beginning. This is more or less what we implement here.
In dynamic programming, we cannot in general impose hard equality constraints such as
cT = c̄ when doing numerics. So we implement the periodicity of the daily final state of
charge using a penalty function (in the running cost for the long term bruteforce problem,
in the final constraints for the micro problem):

Ψ(c) =





(c− c̄)M1 if c ≥ c̄
M2 else

. (4.112)

Where M1 and M2 are two penalty parameters.

Discretization and Numerical Resolution

We display in Figure 4.4 the discretization parameters. We take N = 600 and T = 24. We
take α between 0 and 500 with a discretization of 10 points, to which we add a α = +∞
point. We use a discretization of 20 points for the adaptive weights algorithm.

We use the optimal control toolbox BocopHJB (see [18] and [19]) to solve the op-
timal control problems. The macro algorithm is coded in the R scripting language. We
performed the computation on laptop running OSX 10 with 1.3 GHz and 4 logical cores.
The computing times are displayed in Table 4.5.
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4.6.5 Results for the Micro Problem

Before commenting the results of the numerical experiment for the adaptive weights dy-
namic programming algorithm (that we will refer to as AWA), it is worth having a closer
look at the micro problem (one day time horizon). We display in Figure 4.3 three simula-
tions for (α, a) equal to (0, 0) (solid line), (0, 400) (dot and dash) and (250, 0) (dot). We
see that the increase in age or α is associated with a decrease in the total aging within
the day. This is done by diminishing the use of the battery: the maximal value of c is
greater for the red curve. The explanations are different for the case a = 400 and α = 250.
For the first one, because the battery efficiency is poor, the quantity that gets effectively
stored in the battery is low, so that there is not much to take from the battery during the
peaks. The diesel needs to compensate the battery age. For the second one, the battery
is efficient, but its use is penalized, so the diesel generator is used during the load peak to
decrease the quantity of energy taken from the battery. Observe that, unlike what is seen
in the two other cases, the control is flat for a new battery with no penalty. The aging
occurs during the two load peaks for all profiles, when the battery is discharging.

We display ∆a(α) for α = 0 in Figure 4.4 (solid curve). Observe that this picture is
qualitatively similar to the sketch in Figure 4.1. Yet it is likely that some jumps are the
result of the discretization.

We display in Figure 4.4 and 4.5 ∆a(α) and L(α) with respect to α for two values of
a and make the following observations:

• monotonicity of ∆a(α): we observe that ∆a(α) is monotone in a.

• regularity of ∆a(α): There seem to be smooth and non smooth ranges for α. It is
probable that some of the jumps are due to the discretization choice.

• as expected L(α) and ∆a(α) are respectively non-decreasing and non-increasing with
respect to α for a fixed.

Remark on the periodicity of c We chose to impose a periodicity condition on the
charge c for simplicity (in particular, the results are easier to represent) and because it
makes sense from an operational perspective (see for instance [75]).

We compare in Figure 4.6 the optimal trajectories (computed by dynamic program-
ming) with and without this periodicity condition.

We now proceed with the analysis of the macro part of the adaptative weights algorithm.

4.6.6 Results for the Macro Dynamic Programming Phase of AWA (Adap-
tative Weights Algorithm)

We display in Figure 4.7 two trajectories corresponding to two different initial ages. We
observe that as long as the age is far from amax, the lines look smooth. We display in
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Figure 4.3 – Three simulations for (α, a) equal to (0, 0) (solid), (0, 400) (dot and dash) and
(250, 0) (dot). The bell shaped curve correspond to the solar production Ps and the other
one to the load PL.
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Figure 4.4 – ∆a(α) for a = 0 (solid line) and a = 450 (dashed line)

Figure 4.5 – L(α) for a = 0 (solid line) and a = 450 (dashed line)

Figure 4.6 – The age a trajectories for a(0) = 0 and a(0) = 100. The solid lines corre-
spond to the periodic case and the dotted line to the unconstrained case. The periodicity
constraint increases the overall aging.
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Figure 4.7 – Two trajectories computed with AWA for a(0) ∈ {0, 100}

Figure 4.8 – The daily weights along the trajectories for a(0) ∈ {0, 100}

Figures 4.8 and 4.9 the daily weights and the age increments along those same trajectories.
The oscillations of the weights have two possible explanations: first the discretization of
the set to which α belongs, second, a jump in ∆a, which the oscillations smooth out on
average. As explained in the discretization section, on Figure 4.8 the maximal value of the
dotted curve (a(0) = 100) corresponds to α = +∞ as we have added such point in the
discretization of α to freeze the aging.

4.6.7 Comparison with the Bruteforce Results

We display in Figures 4.10 and 4.11 the envelopes of c and u for a(0) = 0 obtained with
the bruteforce dynamic programming algorithm. We see that the battery utilization rate
decreases as time goes on, while the diesel generator’s increases. We observe that the state
of charge c is always slightly above its expected terminal value during the first month,
which is possible since the constraint is implemented through a piecewise linear penalt, for
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Figure 4.9 – The daily age increments along the trajectories for a(0) ∈ {0, 100}
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Figure 4.10 – Envelope of c obtained by dynamic programming for the long term problem

numerical reasons.

Last but not least we display on the same plot in Figure 4.12, two pairs of trajectories
computed with AWA and a bruteforce dynamic programming approach for two initial ages.
The corresponding values are displayed in Table 4.6.

start. age/algo. AWA BF (AWA-BF)/BF
a(0) = 0 106544 105213 0.012
a(0) = 100 116901 111279 0.050

Table 4.6 – Estimates of the value function



4.6. SIMULATION AND IMPLEMENTATION ON A MICROGRID MODEL 99

2

4

6

8

0 200 400 600

time

u

Figure 4.11 – Envelope of u obtained by dynamic programming for the long term problem

Figure 4.12 – The age profile computed with AWA (solid line) and bruteforce dynamic
programming (dotted line) for two initial age values
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4.7 Conclusion

We have introduced the adaptive weight dynamic programming algorithm (AWA), which
is a decomposition technique for problems with periodic data. We tested this algorithm on
a toy micro grid problem to integrate the battery aging within the decision process. The
trajectories and the value functions obtained with AWA are close to those obtained with
a bruteforce approach, and the computing times are way smaller.
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In this chapter, we present some key aspects of wholesale electricity markets modeling
and more specifically focus our attention on auctions and mechanism design. Some of
the results stemming from these models are the computation of an optimal allocation for
the Independent System Operator, the study of equilibria (existence and uniqueness in
particular) and the design of mechanisms to increase the social surplus. More generally,
this field of research provides clues to discuss how wholesale electricity market should
be regulated. We begin with a general introduction and then present some results we
obtained recently. We also briefly discuss some ongoing related research. As an illustrative
example, a section is devoted to the computation of the Independent System Operator
response function for a symmetric binodal setting with piece-wise linear production cost
functions.

5.1 Introduction

Economists, engineers and mathematicians have given a lot of attention to electricity mar-
kets since the beginning of the liberalization era in the 1980s. We present recent results
and ongoing research about wholesale electricity markets and, in particular, the optimal
design of such market. The field of market design studies the effects of market rules on eco-
nomic functioning such as oligopoly behavior, vertical integration, market power, pricing,
externalities and so on. The number of recent Nobel Prize laureates with contributions in
this field demonstrates its impact on economic thinking. In this chapter we focus on recent
works [36], [35], [34] and [38] as well as on some ongoing research by the authors. In the
following sections, we assume that we are in a mandatory pool market, i.e. the agents will
satisfy their engagements.

Diversity in electrical markets models can be explained by market specificity. This
specificity stems from its economics, industrial and geographical setting, its dependency
on the regulatory environment, time scales, and the complex physical properties of electrical
networks (Kirchhoff laws, for instance) as well as the entities that compose it - producers,
consumers, Independent System Operator (ISO) and networks.

Key modeling decisions concern the agents preferences, the uncertainties on the energy
sources and demands, information representation, production capacities, and the physics
of the system. In particular one has to specify the structure used to represent the bidding
strategies of the producers. Since the physics of an electrical network are a difficult problem
too, it is usually simplified.

There are (also) classic questions which accompany any modeling attempt, such as the
mathematical well posedness of the problem, and the existence, uniqueness and tractability
of the equilibria as wel as their properties. One might also ask about the existence of
efficient algorithms for calculating those equilibria. We point out that models for wholesale
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electricity markets are often general enough to be relevant for other economic settings.
In our setting, the production allocation plan is the result of an auction. The producers

communicate their selling prices to a central agent, and then the central agent minimizes
the total cost while satisfying the demand. In our model we most of the time take into
account the geography of the network (i.e. production and consumption are not co-localized
at one point) as well as the losses due to the electricity transportation. Figure 5.1 presents
a simple example of a network with four nodes.

We first present the general setting of the model in Section 2. Section 3 is a short
review of some recent relevant work in the field. We give a quantitative formulation of
the problem in Section 4. We will discuss the main results in Section 5. In Section 6 we
develop the example of a two producers setting with piece-wise linear cost functions. We
conclude in Section 7.

5.2 Setting

This section is a qualitative description of the market settings encountered in literature. We
try to be as general as possible, whereas in Section 3 we focus on the frameworks Escobar,
Figueroa, Heymann and Jofré study in [36], [35], [34] and [38]. The main market model
components are the agents, the demand, the network, the regulation and the structure
of information (since some uncertainty is usually part of the model). Different types of
equilibria could be considered. An example of a network is proposed in Figure 5.1.

The agents are divided among those who produce electricity (producers) and those
who consume it (usually aggregated into an ISO). In our setting, both producers and
consumers are macroscopic, but for the sake of completeness, we note that some models
use a continuum of microscopic producers. Such models correspond to situations where no
producer can have any unilateral impact on the market.

Producers incur production costs when they supply electricity to the market. These
costs depend on the quantity of electricity they each produce individually. The relation be-
tween the quantity a producer supplies and its production cost is encoded in his production
cost function. To sell electricity, producers quote a price to the market. We consider two
structures to model the way a producer specifies a selling price, which we discuss later in
the chapter: the bid function and the supply function. A bid function maps any quantity
of electricity to the price a producer asks to supply such a quantity. A supply function
maps any price to the quantity a producer is ready to supply at such price. The objective
of each producer is to maximize his individual profit (or his average profit if the model
contains any form of randomness). We consider only non cooperative settings: producers
are competing against each other.

We assume dispatch decisions to be centralized: a unique agent, the Independent Sys-
tem Operator (ISO), aggregates the demand side. We justify this aggregation by the
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Figure 5.1 – An example of a wholesale electricity market network. On the demand side,
at each node ai there is a demand (load) di that has to be fulfilled. On the supply side,
electricity can be produced at some nodes by some independent agents. The production
cost function associates the quantity produced by an agent and the corresponding eco-
nomic cost (it is specific to the agent). For modeling but also technical and practical
reasons, those production cost functions are often approximated with functions in simple
functional sets (linear, quadratic, piecewise linear...). Electricity can be sent from one node
to another through the edges of the network, but there is a price for that (for instance, a
loss proportional to the square of the quantity sent, due to resistivity). The Independent
System Operator (ISO) is as its name indicates a central operator that has to allocate
the production so that supply meet demand while minimizing a criteria (usually the total
price). To produce this allocation, the ISO needs to know the price he will have to pay
for each allocation, so the producers specify their bid functions that are usually in the
same simple aforementioned functional set. Since the ISO has no way to know the real
production cost function of the producers, it is in their interest to game the system. We
point out that stochasticity may occurs on the demand. Moreover, the network aspect of
the market is of primary importance, as it is responsible for the market power of the agent.

a1

a2

a3

a4

r1,2

r2,3

r1,4

r2,4 r3,4
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regulatory environment and the market organization. The ISO receives bids from pro-
ducers and has to supply the local electricity demand where it is needed by buying the
electricity at the quoted prices (pay as bid market). Generally, the demand is inelastic (in
the literature we are considering), but it could be either deterministic or stochastic.

Usually electricity is seen as a divisible commodity. Nonetheless, in our model we
can also see it as a geographically differentiated product. Unless production facilities and
consumers are colocalized, productions and demands are dispatched on a network. The
network contains nodes and edges. Each node is a place where electricity is produced or
consumed (or both) and as such is characterized by its local demand and its local producers.
Each edge is a place through which electricity can be sent. The ISO has the possibility to
send any nodal electricity surplus where it is needed through the network cables but those
cables are subject to physical limitations such as capacity constraints and online losses
(due to Joule effects). The geographical differentiation comes from the fact that it the ISO
which incurs those losses.

In our model, we envision different kinds of optimization problems: the standard ISO
problem, the agent’s profit maximization problem and the mechanism design problem. The
first one consists simply in finding the minimal cost production plan. For this problem,
the ISO (or the principal, if we wish to use mechanism design terminology) receives bids
from the different producers and knows the demand (deterministic or stochastic) at each
node. He then has to supply this demand at each node for the cheapest total cost. This
optimization is subject to the network’s physical limitations and is parametrized by the
demand at each node and the producers’ bids. We call the function that maps these
parameters with the solution of the corresponding problem principal response.

The second problem stems from the agents’ perspectives. Knowing the principal re-
sponse function, their own production cost functions and possessing some common knowl-
edge on their fellow producers, they optimize their bids to maximize their individual profits.
This problem raises questions about best response strategies and Nash equilibria.

As alluded previously, in mechanism design, there is an agent and a principal. In our
model, we assign the role of the principal to the ISO. The mechanism design problem
reverts the role of the principal and the agents: the principal builds his response function
knowing that the agents will then maximize their profits. By offering the right incentives,
he leads the agents. The mechanism design problem can be formulated by considering
that the principal gives a new response function that is not the optimal solution of the first
problem. Indeed, instead of waiting for the bids to order the production, the ISO defines
in a contract a response function that he will respect in the future. This contract depends
on the (future) bids of each producer and the demand at each node. This occurs because
otherwise there would not exist incentives to convince the agents to tell the truth about
their production costs. They would optimize their own benefits based on the information
they have. We have shown that in some very general setting, it is possible for the principal
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to formulate the response function in the contract so that the producers are incentivized
to reveal their true types (i.e. real production costs). Put differently, the principal can
design a contract so that for each producer, it is optimal to reveal his true production
costs function. To do so, the principal has to pay (virtually, through the payment function
defined in the contract) an information rent to the producers, but his total cost is smaller
than in the previous setting.

In general, the principal does not know the real production cost of the producers. This
iis the reason why producers can bid higher than their production cost. The information
the principal has about producers’ costs is modeled by a probability distribution. The less
the producer knows about production costs, the higher the information rent.

5.3 Literature

Several approaches have been proposed to answer the questions raised in the previous sec-
tion. In [59], Klemperer and Meyer show that uncertainty reduces the quantity of supply
function Nash equilibria. The firms bid their supply functions before demand is revealed.
The existence of a Nash equilibria is shown for a symmetric oligopoly. In [4], Anderson
and Philpott show how to construct optimal time dependent supply functions in electricity
market settings where demand and competing generators’ behaviors are unknown by intro-
ducing a market distribution function. The gaming aspect of the situation is reduced by
arguing that competitors do not react to the producer bids. The problem is formulated as
an optimal control problem. In [3] the authors study asymmetric competition and propose
a numerical solver based on GAMS to compute the optimal strategies. They compare the
algorithm with the ODE method. In [1], Anderson gives a proof of existence of a pure
Nash Equilibria under some technical assumptions when the network is reduced to a single
point. He also gives sufficient conditions for uniqueness. Optimal auction design was in-
troduced by Myerson in his 1981 seminal article [70]. Laffont and Martimort wrote in [61]
an introduction to mechanism design in a general setting. These authors expose important
concepts such as the revelation principle, adverse selection, participation constraints and
information rent. The book does not consider interactions on a network -which is the
specificity of the wholesale electricity market. Bi-level approaches with quadratic produc-
tion cost functions are proposed in [8] and [52] to study the ISO response functions and
the Nash equilibria. For a reference on complementarity modeling, the reader can consult
[?]. Escobar and Jofré show in [34] that in a random environment a Walrasian and a
non-cooperative equilibria exist (for the non-cooperative equilibrium the distribution need
to be atom-less) in this setting, the demand is elastic and the ISO maximizes the sum of
the utility functions. Utility functions and cost functions are general.
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5.4 Quantitative formulations

We briefly present in this section some questions of interest concerning models that fit into
the general setting described in Section 2. Those questions were partially addressed in
recent works by the authors.

5.4.1 Generality

We will generically use the notations i to refer to a node or its corresponding producer and
qi to refer to the quantity this agent produces. The nodes are connected by edges and we
denote by hi,i′ the quantity of electricity that is sent from node i to node i′. The market
network is not necessary complete. We call di the demand at node i. Each producer
quotes a bid denoted by bi to the principal. This bid is a function of the quantity qi.
Each producer also informs the principal of the maximum quantity q̄i he can produce.
In general, the allocation problem is subject to network constraints, i.e., the vector h of
components hi,i′ has to be in a set H. For example the set H could be made of all vectors
h such that hi,i′ ≤ hmaxi,i′ , which means that one cannot send an arbitrary big amount of
electricity through the network.

5.4.2 The standard allocation problem

The principal receives bids from the agents and allocates the production so that:

• the allocation minimizes the total cost;

• the allocation respects the network and capacity constraints;

• supply is greater than demand at any node.

The last point corresponds to the nodal constraints. The supply at a given node i is the
sum of the local production qi and the importations from neighboring nodes

∑
i′ hi′,i. To

this we need to subtract the exportations to neighboring nodes
∑

i′ hi,i′ and the line losses.
If we send a quantity h through an edge {i, i′}, we denote by Li,i′(h) the corresponding
loss. We will count half of this loss at node i and the other half at node i′. We end up
with the following nodal constraint:

qi +
∑

i′

[hi′,i − hi,i′ ]−
∑

i′

Li′,i(hi′,i) + Li,i′(hi,i′)

2
≥ di, (5.1)
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where the summations are performed over the nodes adjacent to i. All this being said, the
generic allocation problem writes

minimize
q,h

∑

i

bi(qi)

subject to qi +
∑

i′

[hi′,i − hi,i′] −
∑

i

Li,i′(hi′,i) + Li,i′(hi,i′)

2
≥ di

qi ≤ q̄i
qi ≥ 0

h ∈ H
hi,j ≥ 0.

(5.2)

We point out that if the bidding and the loss functions are convex functions and H is a
convex set, then the problem is convex. For instance, one can take the bid functions linear,
the loss functions quadratic and H equal to R+. Observe that for a convex problem, if L
is strictly convex then at optimality hi′,ihi,i′ = 0. Note that the bid functions bi and the
demand vector d can be seen as parameters of the optimization problem. We could make
the solution of this problem stochastic by adding a dependency of d to a random variable
ω. This would not change the solution of the problem from the operator perspective, but
it would change the market setting for the agents. What is the solution of this
deterministic allocation problem? What are the analytical properties of this
solution? How can we compute it?

5.4.3 The agent problem

The objective of each producer is to maximize his profit. Note that by solving the principal
allocation problem, we have the response function of the ISO to the agents bids. It is
stochastic if the demand is stochastic. We can map each bidding profile of the agents
with the expected profit of each agent. By competing against each other, the agents are
playing a game. In addition, producer i does not know the production cost functions of his
fellow agents. As a result, we are in an imperfect information setting. We assume that for
each agent i there is a probability distribution fi over a set of potential production cost
functions. The probability distribution fi represents the (common) information the other
agents have about agent i. We assume those probability distributions to be independent.
The profit of an agent of type (i.e. production cost function) ci that bids bi (that associates
any production level with the price he asks or such production level) is given by

πi(ci, bi) =

∫

C−i

[bi(qi(bi, b−i(c−i))− ci(qi(bi, b−i(c−i)))]f−i(c−i)dc−i, (5.3)
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where the integral is performed over the types of the other agents. In this expression,
qi(bi, b−i) corresponds to the production level of producer i in the ISO allocation plan
when the bids are (bi, b−i). The production cost function ci associates the production level
qi and the corresponding true cost for producer i: ci(qi). The function b−i(c−i) is the
vector of bidding functions of the other producers when their types is the vector c−i. Then
the maximized profit is

πi(c) = max
bi

∫

C−i

[(bi(qi(bi, b−i(c−i))− c(qi(bi, b−i(c−i))]f−i(c−i)dc−i. (5.4)

So for each agent the best response strategy to the other agents is the solution of an
optimization problem on the set of maps from the types (i.e. production cost functions) c
to the bids b. Usually, the production cost functions will be characterized by a vector of
Rn. In this case this is an optimization over the functions from Rn to Rn. Observe that
this setting corresponds to a (Bayesian) Bertrand game. Of course, it is natural to ask
about the Nash Equilibria of the game. We point out that when L = 0, and there are no
network and capacity constraints (and of course, the network is connected), the problem
corresponds to the classic setting of first best auction theory (see Figure 5.3). What can
we say about this game? Is there an equilibrium ? Is it unique ? Can the
agents ‘game‘ the system ?

5.4.4 The optimal mechanism design problem

In this section we assume that every participant knows the demand. As in 5.4.3, only
producer i knows his true type ci. The other agent and the ISO only know fi. In order
to decrease the market power of the agents and increase social welfare, we reverse the role
of the principal (the ISO) and the agents, i.e. the principal “bids” a contract to the agent.
The contract should associate each bid profile (bi)i with two vectors q and x, where qi is
the quantity of electricity agent i has to produce and xi is amount of money he will receive.
This contract is communicated to the producers before the bidding phase. Of course, this
contract has to be incentive compatible, i.e. the payments described by the principal need
to be high enough to make the agent willing to stay in the market. In this situation, the
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problem we are solving is the design of the optimal contract:

minimize
qj ,hi,k,xj

∑

j

Exj(c)

subject to qj(c) +
∑

i

hi,j − hj,i −
∑

i

Li,j(hi,j) + Lj,i(hj,i)

2
≥ dj

Exj(c)− cj(qj(c)) ≥ Exj(b)− cj(qj(b))
Exj(c)− cj(qj(c)) ≥ 0

hi,j , xj ≥ 0,

(5.5)

where E denotes the mean operator with respect to the fi’s, c denote the vector of pro-
duction cost functions and the constraints should be verified for all c. We refer to [38]
for a justification of the formulation. We point out that this is an optimization problem
over a functional set (so infinite dimensional) with an infinite number of constraints. The
solution of this problem is an optimal mechanism, i.e. based on the information to the ISO,
it provides the allocation and payment rules (q, x) that minimize the expected payments
to the producers. We display some results in Figures 5.3 and 5.4. How do we build such
problem? How can we solve it? How much better is the social surplus with an
optimal design?

5.4.5 A differential equation

As noted in 5.4.3, the agents are playing a Bayesian Bertrand-like game in the standard
setting. In this section we propose a technique to compute a Nash equilibrium of this
game. It is based on a fictitious play like dynamics. For instance, consider the simplified
binodal, symmetric setting:

• 2 agents;

• Li,i′(hi,i′) = rhi,i′ ;

• H = R2
+;

• q̄i = +∞;

• the cost functions and the bid functions are linear;

• d1 = d2: the demand is equal at each node.

• f1 = f2 = f

We look for a symmetric equilibrium. If the agents iteratively change their bid functions
proportionally to the corresponding increase in profit this will produce, the bid functions
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dynamics should be described by this formal differential equation.

∂tb(c, t) = ∂bπb(c, b(c, t))) (5.6)

with
πb(c, s) =

∫

C−i

(s− c)(qi(s, b(c−i))f(c−i)dc−i. (5.7)

Is this dynamical system well posed? What conclusions can we draw from its
study? Can we build such dynamics for more general settings?

5.5 Important results

In this section we sum up some results concerning the setting introduced previously. Most
of the results focus on quadratic externalities (i.e. Li′,i(hi′,i) = rh2

i′,i) which is a realistic and
simple assumption. Escobar and Jofré demonstrate in [36] the existence of non-cooperative
and Walrasian equilibrium when the ISO solves the standard ISO problem and demand is
uncertain. The paper finishes with a welfare theorem for wholesale electricity auction. Es-
cobar and Jofré give in [35] a lower bound on the market power exercised by each producer.
The existence of a mixed strategy Nash equilibrium is given.The authors also give some
regularity property on the ISO response function (condition to be a singleton, continuity
and Lipschitzianity). The cost functions are general. Figueroa, Jofré and Heymann study
in [38], a bi-nodal symmetric market with linear production cost functions and quadratic
losses (i.e. Li,i′(hi,i′) = rh2

i,i′ , see Figure 5.3). The principal minimal cost production plan
problem was already solved in [35] and an explicit solution given. If we define

F (x, y) = d+
1

2r

(
x− y
x+ y

)2

− 1

r

(
x− y
x+ y

)
and q = 2

[
1−
√

1− 2dr

r

]
, (5.8)

then the solution of the standard allocation problem is

qi(ci, c−i) =





F (ci, c−i) if F (ci, c−i) ≥ 0 and F (c−i, ci) ≥ 0

q if F (c−i, ci) < 0 and F (ci, c−i) ≥ 0

0 if F (ci, c−i) < 0 and F (c−i, ci) ≥ 0

(5.9)

This solution is used to compute an explicit solution of the mechanism design problem. The
mechanism design solution is then compared to the standard setting for which numerical
simulations are performed. The authors assume that the function Ji : ci −→ ci + Fi(ci)

fi(ci)
is

increasing in ci, where fi is the distribution of the marginal cost of producer i and Fi is
its integral. Then the main result is

Proposition 5.1. Define
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q̃ = 2

[
1−
√

1− 2dr

r

]

Then an optimal mechanism is given by

q̂i(c) =





F (Ji(ci), J−i(c−i)) if F (Ji(ci), J−i(c−i)) ≥ 0

and F (J−i(c−i), Ji(ci)) ≥ 0

0 if F (Ji(ci), J−i(c−i)) ≤ 0

q̃ if F (J−i(c−i), Ji(ci)) ≤ 0

ĥi(c) =





1
r

[
J−i(c−i)−Ji(ci)
J−i(c−i)+Ji(ci)

]
if Ji(ci) ≤ J−i(c−i) and F (J−i(c−i), Ji(ci)) ≥ 0

q̃ − 1 if Ji(ci) ≤ J−i(c−i) and F (J−i(c−i), Ji(ci)) ≤ 0

0 if not

x̂i(c) = ciq̂i(c) +

ci∫

ci

qi(s, c−i)ds

We point out that the mechanism is built with the standard ISO response function,
where we just replace ci by Ji(ci). The mechanism is incentive compatible, i.e. for any
agent of any type, bidding the true type ensures a better profit for the agent than any
other bidding strategy. Also the mechanism should satisfy a participation constraint, so
that any agent can make a nonnegative profit. The optimal mechanism minimizes the total
expected payment from the ISO to the agents while satisfying the incentive compatibility
constraints, the participation constraints and the nodal constraints.

5.6 The ISO response for a binodal setting with piecewise
linear cost

5.6.1 Introduction

In this section we derive an explicit expression for a specific example of ISO allocation
problem as defined in 5.4.2 We study the bi-nodal market with quadratic externalities
displayed in Figure 5.3. The production cost functions of both agents are made of two
linear pieces, with a slope change when the production level is equal to q̄. We denote by
c1 (resp. c2) producer 1 (resp. 2) marginal cost when his production level is below q̄, and
by c̄1 (resp. c̄2) when it is above. The production cost functions are convex i.e. ci < c̄i

and the demand d is the same at both nodes. We end-up with the following formulation
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for the ISO allocation problem:

minimize
qi,q̄i,h

c1q1 + c̄1q̄1 + c2q2 + c̄2q̄2

subject to qi + q̄i + (−1)ih ≥ r

2
(h2) + d (λi) for i = 1, 2

qi, q̄i ≥ 0 (µi) for i = 1, 2

qi ≤ q̄ (γi) for i = 1, 2.

(5.10)

In this formulation, qi is the quantity produced by agent i at marginal cost ci, and q̄i is
the quantity produced by i at marginal cost c̄i. These quantities are subject to positivity
constraints with multipliers µi and µ̄i. We also introduce λi the multipliers of the nodal
constraints, and γi the multipliers of the constraints qi ≤ q̄. We denote

F (λ1, λ2) = d+
1

r

λ2 − λ1

λ1 + λ2
+

1

2r

(
λ2 − λ1

λ1 + λ2

)2

, (5.11)

P (h) = h+
rh2

2
+ d, (5.12)

k(λ1, λ2) = P

(
λ2 − λ1

r(λ1 + λ2)

)
, (5.13)

and
qtoti = qi + q̄i. (5.14)

We assume without loss of generality that q̄ < 2d and c1 < c2. It is clear that if q1 < q̄,
then q̄1 = 0. To solve this problem, we check whether d < q̄ or d ≥ q̄.

5.6.2 If d < q̄

By hypothesis c1 < c2. This implies that q1 ≥ q2. So q̄2 > 0 implies that q1 = q2 = q̄ > d,
which is not optimal. Therefore we can set q̄2 = 0. We can also relax the constraint q2 < q̄

because it won’t be binding for the optimal solution. So we rewrite the problem

minimize
qi,q̄1,h

c1q1 + c̄1q̄1 + c2q2

subject to

q1 + q̄1 − h ≥
r

2
(h2) + d (λ1)

q2 + h ≥ r

2
(h2) + d (λ2)

q1, q2, q̄1 ≥ 0 (µi)

q1 ≤ q̃ (γ1)
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The first order conditions give

c1 − λ1 − µ1 + γ1 = 0 (5.15)

c2 − λ2 − µ2 = 0 (5.16)

c̄1 − λ1 − µ̄1 = 0 (5.17)

h =
λ2 − λ1

r(λ1 + λ2)
(5.18)

There are four possible cases.

Case 1 : P ( c2−c1
r(c1+c2)) ≤ q̄

We consider a relaxation of the problem by removing the constraint q1 ≤ q̄. In this relaxed
problem, any optimal solution should verify q̄1 = 0 so the relaxed problem is equivalent
to the linear cost functions allocation problem with costs ci, for which we have an explicit
formula of the solution. We then notice that the optimal solution of the relaxed
problem is admissible, so it is also the solution of (5.10).

Case 2 : P ( c2−c1
r(c1+c2)) > q̄ and P ( c2−c̄1

r(c̄1+c2)) ≤ q̄

We show that q̄1 = 0 and q1 = q̄.
If q̄1 > 0, then by complementarity of the multiplier µ̄1 = 0, so with (5.17) λ1 = c̄1. So
by (5.18) we have h = λ2−c̄1

r(c̄1+λ2) . Then by hypothesis and the fact that P is increasing and
λ2 ≤ c2 we have that P (h) ≤ P ( c2−c̄1

r(c̄1+c2)) ≤ q̄ . So q1 + q̄1 = qtot ≤ q̄. Then using the fact
that q1 < q̄ ⇒ q̄1 = 0, we deduce that q̄1 is null, which is not the hypothesis. We conclude
that q̄1 = 0.
By hypothesis, q̄ < 2d and less than q̄ is produced at node 1. Summing the two nodal
constraints we see that q2 > 0, so that λ2 = c2.
Now if q1 < q̄, then by complementarity of the multiplier γ1 = 0, then with (5.15) c1 = λ1

and with (5.18), h = c2−c1
r(c1+c2) . Therefore we get q1 + q̄1 = qtot1 ≥ P ( c2−c1

r(c1+c2)) (by the first
nodal constraint), so by hypothesis qtot1 ≥ q̄ and so q̄1 which we know as false. So q1 = q̄.

Case 3 : P ( c2−c1
r(c1+c2)) > q̄ and P ( c2−c̄1

r(c̄1+c2)) > q̄ and P ( c̄1−c2
r(c̄1+c2)) > 0

We show that q2 > 0, q1 = q̄, q̄1 > 0, and, q2 = P ( c̄1−c2
r(c̄1+c2)).

First we show that q2 > 0. If q2 = 0, then by the second nodal constraint h ≥ rh2

2 + d,
which means that P (−h) ≤ 0. Moreover, q̄1 > 0 because 2d > q̄. So by (5.17) λ1 = c̄1.
With (5.16) and (5.18) we have P ( c̄1−c2

r(c̄1+c2)) ≤ P ( c̄1−λ2
r(c̄1+λ2)) = P (−h) ≤ 0, which is false by

hypothesis. So q2 > 0. We deduce from this and (5.16) that λ2 = c2.
If q1 < q̄ then by complementarity of the multiplier γ1 = 0, so by (5.15), λ1 = c1 and by
(5.18), h = c2−c1

r(c1+c2) . Then we get qtot1 ≥ P ( c2−c1
r(c1+c2)) (by the first nodal constraint), so by
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hypothesis qtot1 ≥ q̄, which implies q1 = q̄, which is absurd since we assumed q1 < q̄. So
q1 = q̄.
If q̄1 = 0 then with (5.17), λ1 ≤ c̄1 and so with (5.18), h ≥ c2−c̄1

r(c̄1+c2) . We then deduce by
nodal constraint 1 and the hypothesis that qtot1 ≥ P (h) ≥ q̄, which implies that q̄1 > 0,
which is absurd. So q̄ > 0.
We know that q̄2 = 0. Using the second nodal constraint, we get q2 = P ( c̄1−c2

r(c̄1+c2)). With
the first nodal constraint, we have q̄1 = P ( c2−c̄1

r(c̄1+c2))− q̄.

Case 4 : P ( c2−c1
r(c1+c2)) > q̄ and P ( c2−c̄1

r(c̄1+c2)) > q̄ and P ( c̄1−c2
r(c̄1+c2)) ≤ 0

We show that q2 = 0.
Indeed, if q2 > 0, then λ2 = c2. Using the same reasoning as the one used in the third case,
we would show that q1 = q̄ and q̄1 > 0. So that h = − c̄1−c2

r(c̄1+c2) . So using P ( c̄1−c2
r(c̄1+c2)) ≤ 0,

we see that nodal constraint 2 is satisfied with q2 = 0, so the solution is not optimal, which
is absurd. So q2 = 0.

We conclude

Theorem 5.2. Assuming d < q̄ < 2d, then:

qtot1 = k(c1, c2) and qtot2 = k(c2, c1) if k(c1, c2) ≤ q̄

qtot1 = q̄ and qtot2 = q̄ − 2
−1 +

√
1 + 2r(q̄ − d)

r
if k(c1, c2) > q̄ and k(c̄1, c2) ≤ q̄

qtot1 = k(c̄1, c2) and qtot2 = k(c2, c̄1) if k(c1, c2) > q̄, k(c̄1, c2) > q̄ and k(c2, c̄1) > 0

qtot1 = 2
1−
√

1− 2dr

r
and qtot2 = 0 if k(c1, c2) > q̄, k(c̄1, c2) > q̄ and k(c2, c̄1) ≤ 0

5.6.3 Case d ≥ q̄

Since we consider that c1 is smaller than c2, there are two possibilities. Either the c̄i are
all bigger than the ci, or c̄1 is smaller than c2.

If the c̄i are all bigger than the ci

In this case, we first show that q1 = q2 = q̄. The problem then writes

minimize
qi,q̄i,h

c̄1q̄1 + c̄2q̄2

subject to q̄1 +−h ≥ r

2
(h2) + d− q̄ (λ1)

q̄2 + h ≥ r

2
(h2) + d− q̄ (λ2)

q̄i ≥ 0 (µi) for i = 1, 2
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a1 a2
r

Figure 5.2 – In [38] and [35], the authors consider a binodal market with quadratic line
losses. The demand is the same at both nodes. The production cost functions are linear.
There are no network and capacity constraints. A very intuitive justification of the market
power induced by the line losses is given in [35]. Indeed, in a symmetric perfect information
setting with linear production cost function of slope c, the equilibrium strategy of both
producers is to bid c

1−2dr > c.

which corresponds to the linear case problem with a demand of d− q̄ and costs of c̄i.

If c̄1 is smaller than c2

We point out that replacing c1 by c̄1 does not change the solution.
If F (c2, c̄1) ≤ q̄, we show that q̄2 = 0 the problem can be reduced to the linear production
cost problem with demand d and marginal costs c̄1 and c2.
If F (c2, c̄1) > q̄, we show that we can reduce the linear production cost problem with
demand d− q and marginal costs c̄1 and c̄2.

Theorem 5.3. If d ≥ q̄, then

• If ci ≤ c̄j for all i, j, then we get the result by solving the linear problem with demand
d− q̄ and costs c̄i and adding q̄ to the quantity we get.

• If 0 ≤ F (c2, c̄1) ≤ q̄ we reduce to the linear allocation problem with demand d and
marginal cost c̄1 and c2.

• If F (c2, c̄1) > q̄, we reduce the problem to the linear allocation problem with demand
d− q and marginal costs c̄1 and c̄2 and add q̄ to the qis we get.

5.7 Ongoing work

We are currently working on several questions raised in this chapter. In particular, we
have shown that for a market with n-pieces piecewise linear production cost functions and
any number of producers, there is a mechanism design with an explicit formulation.
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Figure 5.3 – The average total cost for the ISO (in the market described in Figure 5.3) as a
function of the loss coefficient r for the standard mechanism and the optimal mechanism.
We take f1(c) = f2(c) = 2c+ (1− 2

4)1c≤ 1
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+−2c+ (1 + 3
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. Note how r influences the

social cost in the standard mechanism. The agents market power increase with r. When r
goes to zero, the two mechanisms lead to the same social cost. When r = 0 we recover a
classic result on first and second best auctions.
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Cost-Minimizing regulations for a
wholesale electricity market
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We consider a wholesale electricity market model with general networks, transmission losses
and strategic producers. Previous work by Escobar and Jofré [35] shows how regulation
mechanisms, for instance when prices correspond to the Lagrange multipliers of a cen-
tralized cost minimization program, allow the producers to charge significantly more than
marginal price. In this paper we consider an incomplete information setting where the
cost structure of a producer is unknown to both its competitor and the regulator. We
derive an optimal regulation mechanism, and compare its performance to the "price equal
to Lagrange multiplier" mechanism in an incomplete information setting (that we solve
numerically).
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6.1 Introduction

A common design in many recently liberalized electricity markets (e.g. US, UK, Spain,
etc) involves wholesale trading through an integrated market. Frequent market clearing
processes take place, through rules managed by a central authority, commonly referenced
as an independent system operator (ISO). In the context of this short-term operations, de-
mand is inelastic and must be satisfied through a grid that imposes significant constraints
on the allocations that can be selected. A particularly important feature of the problem is
that generators are connected through a grid to the places where demand is concentrated,
and there are important losses through the transmission lines. This makes electric power,
which is a priori an homogeneous good, a differentiated product, giving generators some
degree of market power. This has been remarked, among others, in the work by Borenstein
et al. [21], which emphasizes that “transmission costs will be at the heart of market power
issues in a restructured electricity market”.

This situation originates a very important regulatory problem. Given a set of generators
and a vector of demands in a network, with production costs that are private information,
what pricing scheme should be used in order to minimize the total cost paid and such that
the vector of demands is satisfied? An extensively used method is the following: ask each
generator its cost function, solve the problem of minimizing cost subject to the fulfillment
of the demand requirements, then pay, at each node, a price equal to the Lagrange mul-
tiplier associated to that constraint. In such a game, generators have incentives to “shade
their bids”, and bid costs above their true levels. This is true even if there is complete
information among generators but transmission costs are not zero, as it was shown in Esco-
bar and Jofré [35] in a simple network with two nodes and a fixed symmetric cost structure.

With this in mind, we solve the problem of designing an optimal (cost minimizing) mecha-
nism in the presence of incomplete information and transmission losses in a simple network.
By using mechanism design tools, we completely characterize the optimal mechanism, de-
rive explicit formulas and compute the total cost for the regulator. Moreover, in order to
compare the performance of the optimal mechanism with the standard one, we numerically
solve the Bayesian equilibrium of the game induced by the standard mechanism.

Some important features appear. In the absence of transmission costs, both the standard
and the optimal mechanism yield the same expected costs. The intuition comes from
standard auction theory. In the absence of transmission costs there is a single object being
bought (the procurement of all nodes in the network), the standard mechanism is equivalent
to a first-price procurement auction and the optimal one is a second-price auction. Since
both assign to the lowest cost generator, the revenue equivalence principle implies that
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both yield the same expected costs.
However, if transmission costs are non-zero, the standard and the optimal mechanism

allocate production differently, and have therefore different expected costs. Basically, the
distortions induced by (individually-optimal) bid-shading in the standard mechanism are
different than those induced by the cost-minimizing mechanism. While both induce ineffi-
cient allocations, the ones in the mechanism we characterize are designed so that expected
total cost is minimized. It is important to remark that the allocative first best, the as-
signment that would actually result if there was complete information, can be achieved
through a VCG mechanism. However, such a mechanism would not minimize expected
total cost. From a cost-minimizer perspective, it is optimal to induce inefficiencies in order
to minimize the producer’s informational rents.
We show that the implementation of the cost-minimizing mechanism is essentially of the
same complexity as the implementation of the standard one. To compute the optimal
allocation, it requires solving the same problem the ISO operator solves in the standard one,
but with modified parameters. To compute the optimal transfers, which are an essential
part of the rules of the game, a parameterized optimization problem must be solved.

6.2 The Problem

It is well known that price competition with differentiated products does not necessar-
ily lead to zero profits for the firms. In the context of electricity markets, the presence of
transmission losses makes the energy produced by different generators differentiated goods,
thus creating power and allowing generators to charge prices above marginal cost. This
effect was shown in Escobar and Jofré [35], in the context of symmetric producers and
complete information. There, the mechanism “price equal to Lagrange multiplier” induces
insufficient competition, leading to a Nash Equilibrium where both firms charge prices
above marginal cost.

To keep things simple, we consider an electric network with two nodes, each of them with
a fixed demand d. At each node, there exists a generator, and it is possible to transmit
any amount of electricity h between the nodes, but in that case an amount rh2 is lost. So
the network would look like the one in Figure 6.1.

a1 a2
r

Figure 6.1 – The binodal market

The fact that firms exercise their market power under the classical regulatory system gives
rise to some important questions. We know that with the current system firms charge
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prices above marginal cost but this does not seem completely avoidable. Is the current
mechanism optimal? If not, how costlier than an optimal mechanism is it? Maybe more
importantly, what is the best mechanism to regulate generators in the presence of trans-
mission losses?

To study these natural regulatory questions, a degree of incomplete information, which is
at the core of regulatory issues, is needed. First of all, it is realistic, since generators rarely
know exactly the cost structure of competitors, and the ISO is not perfectly informed about
generators either. Moreover, without private information the regulatory problem is trivial:
just ask each generator to produce at marginal cost, minimizing cost and guaranteeing
participation.

We introduce incomplete information in the marginal cost of a generator, ci. We assume
that ci is drawn from a distribution with density fi which has support Ci = [ci, ci] and is
positive in the interval. The parameter ci is known by firm i, but the regulator and its
competitor only know the distribution fi (of cumulated distribution function Fi). We will
use the notation C = C1 × C2 and f(c) = f1(c1)f2(c2).

Given the rules designed by the regulator, the generators maximize their expected profits.
Knowing this behavior, the regulator aims to design a mechanism that satisfies demand
at each node and minimizes expected cost. We address this problem in the next section,
using the techniques of mechanism design.

6.3 A Mechanism Design Approach

We now study the problem of the optimal regulatory mechanism in the presence of trans-
mission losses and private information. We assume that the regulator sets up some “rules
of the game”, which are then followed by the generators based on their private information.

Due to the presence of private information, these rules must allow the generators to reveal
their preferences, which in this case are given by their cost structure. By the revelation
principle we know that without loss of generality the regulator can restrict attention to in-
centive compatible direct revelation mechanisms, where the agents’s message space is their
type space Ci, and to incentive compatible mechanisms, where generators have incentives
to tell the truth.

Definition 6.1. A direct revelation mechanism M = (q, h, x) consists of an assignment
rule (q1, q2, h1, h2) : C −→ R4 and a payment rule x : C −→ R2.

The assignment rule specifies the quantity that each generator must produce and the flows
for each vector of reports. We denote by qi(c) the quantity that generator i must produce
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when the vector of reports is c and by hi(c) the surplus transmitted from generator i to
generator j. The payment rule x specifies, for each vector of reports c, a vector of pay-
ments, one for each generator.

The ex-ante expected utility of a buyer of type ci when he participates and declares c′i
is

Ui(ci, c
′
i; (q, h, x)) = Ec−i [xi(c

′
i, c−i)− ciqi(c′i, c−i)]

Since we can consider only incentive compatible mechanisms, a natural notion of a
feasible mechanism is the following:

Definition 6.2. (Feasible Mechanisms) We say that a mechanism (q, h, x) is feasible iff

Ui(ci, ci; (q, h, x)) ≥ Ui(ci, c
′
i; (q, h, x)) for all ci, c′i ∈ Ci and i = 1, 2

Ui(ci, ci; (q, h, x)) ≥ 0 for all ci ∈ Ci and i = 1, 2

qi(c)− hi(c) + h−i(c) ≥
r

2
[h2

1(c) + h2
2(c)] + d for all c ∈ C and i = 1, 2

qi(c), hi(c) ≥ 0 for all c ∈ C and i = 1, 2

The first set of constraints are the incentive compatibility constraints IC, the second
one are the voluntary participation constraints, PC, and the last two ones impose the re-
quirements that the quantities generated and the flows satisfy the demand and are positive
quantities, in other words these are the resource constraints, RES.

At an incentive compatible direct revelation mechanism M = (q, h, x), the regulator’s
expected cost is given by ∫

C

∑

i=1,2

xi(c)f(c)dc

Therefore, the problem of the planner can be written as

min

∫

C

I∑

i=1

xi(c)f(c)dc (6.1)

subject to (q, h, x) being “feasible”.

6.3.1 Some Basic Results

We now investigate properties of feasible mechanisms. This will in turn allow us to write
the regulator’s problem in a simpler way. We use Vi(ci) to denote i’s maximized surplus,
that is

Vi(ci) = max
c′i

Ec−i [xi(c
′
i, c−i)− ciqi(c′i, c−i)] (6.2)
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We will also define the expected quantity to be produced by a generator that declares a
type c′i (resp. expected payment) as

Qi(c
′
i) ≡ Ec−i [qi(c′i, c−i)] (resp. Xi(c

′
i) ≡ Ec−i [xi(c′i, c−i)])

Lemma 6.3. A mechanism (q, h, x) is feasible iff

Qi(c
′
i) ≤ Qi(ci) for all c′i > ci (6.3)

Vi(ci) = Vi(ci) +

ci∫

ci

Qi(s)ds for all ci ∈ Ci, i = 1, 2 (6.4)

qi(c)− hi(c) + h−i(c) ≥
r

2
[h2

1(c) + h2
2(c)] + d for all c ∈ C, i = 1, 2 (6.5)

qi(c), hi(c) ≥ 0 for all c ∈ C and i = 1, 2 (6.6)

Proof. See Appendix

With this, we can write the expected payment to a seller as a function of the assignment
rule. This is expressed in the next lemma.

Lemma 6.4. The expected payment of buyer i can be written as
∫

C
xi(c)f(c)dc =

∫

C

qi(c)[ci +
Fi(ci)

fi(ci)
]f(c)dc (6.7)

Proof. See Appendix.

With these two lemmas, we can characterize the seller’s problem in the next proposition:

Proposition 6.5. If in a mechanism (q̂, ĥ, x̂) the assignment function (q̂, ĥ) solves

min
q,h

∫

C

∑

i=1,2

qi(c)[ci +
Fi(ci)

fi(ci)
]f(c)dc (6.8)

subject to the constraints (6.3), (6.5) and (6.6), and the payment function x̂ satisfies

x̂i(c) = q̂i(c)ci +

ci∫

ci

qi(s, c−i)ds (6.9)

then (q̂, ĥ, x̂) is an optimal mechanism.

Proof. Direct from lemma (6.3) and (6.4).

Now, with a simple assumption on the distribution f , we can find an explicit solution of
the problem.
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Assumption 4. The function Ji : ci −→ ci + Fi(ci)
fi(ci)

is increasing in ci.

This assumption will guarantee that pointwise minimization of (6.8), subject to the feasibil-
ity constraints (6.5) and (6.6), leads to an allocation rule q(c) that is incentive compatible.
With this, the solution to the seller’s problem is simple: for each realization of costs c,
solve a cost minimization problem, but where the agents’ costs are Ji(ci) instead of ci.

Proposition 6.6. Suppose that assumption 4 is satisfied.
Define

F (x, y) = d+
1

2r

(
x− y
x+ y

)2

− 1

r

(
x− y
x+ y

)

and

q = 2

[
1−
√

1− 2dr

r

]

Then an optimal mechanism is given by

q̂i(c) =





d+ 1
2r

[
J−i(c−i)−Ji(ci)
J−i(c−i)+Ji(ci)

]2
+ 1

r

[
J−i(c−i)−Ji(ci)
J−i(c−i)+Ji(ci)

]
if

{
F (Ji(ci), J−i(c−i)) ≥ 0

and F (J−i(c−i), Ji(ci)) ≥ 0

0 if F (Ji(ci), J−i(c−i)) ≤ 0

q if F (J−i(c−i), Ji(ci)) ≤ 0

ĥi(c) =





1
r

[
J−i(c−i)−Ji(ci)
J−i(c−i)+Ji(ci)

]
if Ji(ci) ≤ J−i(c−i) and F (J−i(c−i), Ji(ci)) ≥ 0

q − 1 if Ji(ci) ≤ J−i(c−i) and F (J−i(c−i), Ji(ci)) ≤ 0

0 if not

x̂i(c) = ciq̂i(c) +

ci∫

ci

qi(s, c−i)ds

Proof. Notice that (q̂, ĥ) solve the problem of proposition 6.5 pointwise if the constraint
(6.3) is relaxed (see appendix) so it is enough to show that (6.3) is satisfied. A sufficient
condition is that the function q̂i : (ci, c−i) −→ q̂i(ci, c−i) is non-increasing in ci for a fixed
c−i. A straightforward calculation1 shows that ∂q̂i(ci,c−i)

∂ci
= − 4J2

−i(c−i)J
′
i(ci)

[Ji(ci)+J−i(c−i)]2
≤ 0 in the

region where q̂i(ci, c−i) is not constant, so the result follows.

6.4 The Standard Mechanism

A standard regulatory mechanism is the following: the regulator asks each generator his
marginal cost of production and then, using these revelations as the true costs, solves the

1We assume differentiability of Ji just for simplicity, the proof can be done without it.
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Figure 6.2 – The function q

problem of minimizing the total cost of production subject to the feasibility constraints.
In our case this corresponds to solve, considering c1 and c2 as given:

min
q,h

2∑
i=1

ciqi

s.t. qi − hi + h−i ≥ r
2 [h2

1 + h2
2] + d for i = 1, 2

qi, hi ≥ 0 for i = 1, 2

The regulator will then ask generator i to produce a quantity qi and will pay him a unit
price λi, where λi is the Lagrange multiplier associated with the feasibility constraint at
node i.

If we define

F (x, y) = d+
1

2r

(
x− y
x+ y

)2

− 1

r

(
x− y
x+ y

)

and

q = 2

[
1−
√

1− 2dr

r

]

the solution to this problem can be written as (see appendix)

qi(ci, c−i) =





F (ci, c−i) if F (ci, c−i) ≥ 0 and F (c−i, ci) ≥ 0

q if F (c−i, ci) < 0 and F (ci, c−i) ≥ 0

0 if F (ci, c−i) < 0 and F (c−i, ci) ≥ 0

λi(ci, c−i) =

{
ci if F (ci, c−i) ≥ 0[

2−
√

1−2dr√
1−2dr

]
c−i otherwise

We display q in Figure 6.2.
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6.4.1 The Bayesian Game

Consider now the situation we analyzed in the previous section: each generator indepen-
dently draws a marginal cost ci ∈ Ci. They then play a Bayesian game where the quantity
asked from a generator that bids a cost x and confronts a generator who bids a cost y
is given by qi(x, y), and the unit price paid to him is pi(x, y) = λi(x, y). Generators are
profit maximizers.
The equilibrium of this game would be the benchmark against which we compare the op-
timal mechanism. A symmetric equilibrium corresponds to a strategy b : [0, 1] −→ R that
is played by both generators, where b(c) is the bid of a generator of type c.
The profit of a generator of type c that bids x is given by

π(c, x) =

∫

C−i

[pi(x, b(c−i))− c]qi(x, b(c−i))f−i(c−i)dc−i (6.10)

The maximized profit is

π(c) = max
x

∫

C−i

[pi(x, b(c−i))− c]qi(x, b(c−i))f−i(c−i)dc−i (6.11)

and an optimal strategy b̄(c) must satisfy:

b̄(c) ∈ argmaxx

∫

C−i

[pi(x, b(c−i))− c]qi(x, b(c−i))f−i(c−i)dc−i (6.12)

6.4.2 Approximation

We now propose an approximation scheme to compute b̄(c). Without loss of generality,
let’s assume Ci = [0, 1] (this is just a rescaling).

Doing a direct resolution by iterating on the strategies leads to numerical instability for
small r. We introduce formally the equation ∂tbt(c) = ∂bπbt(c, bt(c)). The economical
interpretation is clear: each agent changes his strategy proportionally to the gain he would
get from small local changes. While a mathematical analysis of this equation and of the
Nash equilibrium will soon be presented in another paper, we will assume here that the
derivative could be understood as small variations for a given discretization when the
derivative does not exist. Starting with b(c) = c, we observe numerically that the limit
when t goes to infinity of b is a symmetric Nash equilibrium strategy. Some results are
displayed in Figures 5.4, 6.5 and 6.5. An interesting comment is that the ISO expected
cost in the optimal mechanism seems to depend linearly on r. We show in Section 6.8 that
this is not the case from a mathematical standpoint, but still, this approximation is very
close to the true function.
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6.5 Some Comparisons

In order to compare both mechanisms in the presence of transmission costs we consider
the following class of distributions in [0, 1]:

ga(x) =

{
ax+ (1− a

4 ) if x ≤ 1
2

−ax+ (1 + 3a
4 ) if x ≥ 1

2

It is easy to verify that these distributions satisfy Assumption 4. The case of maximum
variance corresponds to a = 0 (the uniform distribution) and a = 4 corresponds to the
case of minimal variance. The results are display in Figures and .

As we can see, the optimal mechanism performs significantly better.

6.6 Practical Implementation

Now that we have seen that the optimal mechanism design performs significantly better,
we turn to the problem of implementation. How difficult is it to implement it in practice?
Is it significantly more difficult to implement than the standard mechanism?

Let’s start with the simple case analyzed in this paper, that is a network with only
two nodes. As long as the distribution of types satisfies Assumption 4, all that is required
from the regulator is to solve the optimization problem (6.8) pointwise, for all possible
realizations of (c1, c2). With this, he would state the rules of the game (q̂, x̂, ĥ). Once this
is done, the agents will declare marginal costs ci, and the regulator will evaluate the mech-
anism at the revealed costs, instructing each generator to produce q̂i(c) and paying them
x̂i(c). In comparison, in the standard case this optimization is solved once for each time
the agents declare some costs. Therefore, if the mechanism is to be used repeatedly over
time, the optimal mechanism has a computational cost similar to the standard mechanism
which is frequently used.

If we apply this technique to a more complicated network, like the ones that appear in
practice, a result analogous to the one in Proposition 6.5 can be proved. Moreover, under
Assumption 6, the pointwise solution of the problem would continue to be incentive com-
patible, since the quantity bought from a generator is decreasing in its own cost (keeping
the other generators’ costs fixed), which is sufficient for incentive compatibility (for details
about this result in a general setting, see Correa and Figueroa [29]). Then, computing the
optimal mechanism would require solving the ISO problem for modified costs (instead of
actual ones), a problem of the same computational complexity as the one actually solved
by the ISO.
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6.7 Sensitivity Analysis

There is a natural concern. To compute the optimal mechanism, the regulator does not
need to know the generators’ costs, but he needs to have a prior about the distribution
of these costs. This weaker requirement can still be difficult to satisfy in practice, and
the regulator can make mistakes when assessing these prior distributions. This, coupled
with the well documented fact that generators know each other very well, and much better
than the regulator knows them, could give rise to unexpected and undesirable results. In
what follows we consider a scenario where the regulator designs a mechanism with wrong
information, and generators that know the true distributions of their competitors, plus the
rules of the game.

We conduct the following sensitivity analysis. Let’s suppose that the true distributions
are f1, f2, but that the regulator mistakenly designs the optimal mechanism (q̂f̄ , ĥf̄ , x̂f̄ )

for distribution f̄1, f̄2. We compare the expected payment that the seller was hoping to
pay (for distributions f1, f2) with the expected payment that the seller actually pays (for
distributions f̄1, f̄2).

First, we note that the mechanism (q̂f̄ , ĥf̄ , x̂f̄ ) (designed with f̄1, f̄2 in mind) is in-
centive compatible in dominant strategies since the payment defined in (6.9) satisfies (6.4)
pointwise. Therefore the agent has incentives to tell the truth regardless of his beliefs about
the other agent’s distribution. This is particularly important since the “wrong” mechanism
does not induce, as a second-order effect, players to lie about their costs, no matter how
mistaken the regulator was in his assessment of the prior distribution f . The cost paid by
a regulator who thinks the distributions are f̄1, f̄2 but is really facing distributions f1, f2

is given by

C f̄ ,f =

∫

C

∑

i=1,2

q̂f̄i (c)[ci +
Fi(ci)

fi(ci)
]f(c)dc

6.8 The social cost is not affine

We derive an explicite expression of the expected social cost for the optimal mechanism.
We consider the symmetric binodal setting with the common knowledge density f being the
uniform distribution on [0, 1]. For r in [0, 1/2d], we denote byG(r) the social cost associated
with the optimal mechanism. By definition of f , the virtual cost writes (by symmetry, the
expression is the same for producer 1 and producer 2): J(c) = 2c. We will use the short-
hand F̃ (c1, c2) = F (J(c1), J(c2)) = F (2c1, 2c2). Observe that, F̃ (c1, c2) = F (c1, c2). The
expected social cost (i.e. what is paid by the ISO) G(r) can be expressed as an integral
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over (c1, c2) ∈ [0, 1]2:

G(r) = E(x1 + x2) =

∫ 1

c1=0

∫ 1

c2=0
{J(c1)q̃(c1, c2) + J(c2)q̃(c2, c1)}dc2dc1 (6.13)

where q̃ is the optimal mechanism allocation rule (which depends on r). Note that by
symmetry, the participation of the part such that c1 < c2 is equal to the participation
of the part such that c2 ≤ c1 and those two parts form a partition of (c1, c2) ∈ [0, 1]2.
Therefore,

G(r) = 2

∫ 1

c1=0

∫ c1

c2=0
{J(c1)q̃(c1, c2) + J(c2)q̃(c2, c1)}dc2dc1, (6.14)

then we decompose the integral in two terms: the integral over the locus such that
F̃ (c1, c2) ≥ 0 and the integral over the locus such that F̃ (c1, c2) < 0. Observe that
since c1 > c2, F̃ (c2, c1) ≥ 0.

G(r) = 2

∫ 1

c1=0

∫ c1

c2=0
{J(c1)F̃ (c1, c2) + J(c2)F̃ (c2, c1)}1F̃ (c1,c2)≥0dc2dc1 (6.15)

+2

∫ 1

c1=0

∫ c1

c2=0
q̄J(c2)1F̃ (c1,c2)<0dc2dc1 (6.16)

= 4

∫ 1

c1=0

∫ c1

c2=0
{c1F (c1, c2) + c2F (c2, c1)}1F (c1,c2)≥0dc2dc1 (6.17)

+4

∫ 1

c1=0

∫ c1

c2=0
q̄c21F (c1,c2)<0dc2dc1. (6.18)

Therefore

G(r) = 4A(r) + 4q̄B(r) (6.19)

with

A(r) =

∫ 1

c1=0

∫ c1

c2=0
{c1F (c1, c2) + c2F (c2, c1)}1F (c1,c2)≥0dc2dc1 (6.20)

and

B(r) =

∫ 1

c1=0

∫ c1

c2=0
c21F (c1,c2)<0dc2dc1. (6.21)

Note that the dependence in r is implicite in F and q̄. We denote by Y the function
Y (c1, c2) = c1−c2

c1+c2
and by P the polynomial P (Y ) = d + 1

2rY
2 − 1

rY . We introduce
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y0(r) = 1−
√

1− 2rd the unique solution of

P (y) = 0; 0 ≤ y ≤ 1. (6.22)

Now we observe that for any (c1, c2) ∈ [0, 1]2 such that c1 ≥ c2:

F (c1, c2) ≥ 0 ⇐⇒ P (Y (c1, c2)) ≥ 0 ⇐⇒ Y ≤ y0(r) (6.23)

and

F (c1, c2) ≤ 0 ⇐⇒ Y (c1, c2) ≥ y0(r). (6.24)

Therefore A(r) rewrites

∫ 1

c1=0

∫ c1

c2=0
{c1F (c1, c2) + c2F (c2, c1)}1F (c1,c2)≥0dc2dc1 (6.25)

=

∫ 1

c1=0

∫ c1

c2=0
{c1P (Y (c1, c2)) + c2P (Y (c2, c1))}1Y (c1,c2)≤y0(r)dc2dc1 (6.26)

=

∫ 1

c1=0

∫ 0

Y=1
{c1P (Y ) + c1

1− Y
1 + Y

P (−Y )}1Y≤y0(r)
−2c1

(1 + Y )2
dY dc1 (6.27)

= 2

∫ 1

c1=0
c2

1dc1

∫ y0(r)

Y=0
{P (Y ) +

1− Y
1 + Y

P (−Y )} 1

(1 + Y )2
dY (6.28)

=
2

3r

∫ y0(r)

Y=0

2dr − Y 2

(1 + Y )3
dY =

2

3r

∫ y0(r)

Y=0

−1

1 + Y
+

2

(1 + Y )2
+

2rd− 1

(1 + Y )3
dY

(6.29)

Here are some justifications:

1. Definitions of y0, Y and P ,

2. Change of variable Y = (c1 − c2)/(c1 + c2) ⇐⇒ c2 = c1(1− Y )/(1 + Y ),

3. Simplification and Fubini theorem,

4. Simplification

5. Check that −1
1+Y + 2

(1+Y )2
+ 2rd−1

(1+Y )3
= 2dr−Y 2

(1+Y )3

Thus

A(r) =
2

3r

(
2rd− 1

2

y0(r)2 + 2y0(r)

(1 + y0(r))2
+

2y0(r)

1 + y0(r)
− ln(1 + y0(r))

)
. (6.30)
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Then follows similarly the computation of B(r) :

B(r) =

∫ 1

c1=0

∫ c1

c2=0
c21F (c1,c2) (6.31)

=

∫ 1

c1=0

∫ c1

c2=0
c21Y (c1,c2)>y0(r)dc2dc1 (6.32)

= −
∫ 1

c1=0

∫ 0

Y=1
c1

1− Y
1 + Y

1Y >y0(r)c1
2

(1 + Y )2
dY dc1 (6.33)

= 2

∫ 1

c1=0
c2

1dc1

∫ 1

Y=y0(r)

1− Y
(1 + Y )3

dY (6.34)

=
2

3

∫ 1

Y=y0(r)

2

(1 + Y )3
− 1

(1 + Y )2
dY (6.35)

=
2

3

(
1

(1 + y0(r))2
− 1

4
− 1

(1 + y0(r))
+

1

2

)
(6.36)

=
1

6

(
1− y0(r)

1 + y0(r)

)2

(6.37)

Note that q̄ = 2y0
r We conclude:

G(r) =
8

3r

(
2rd− 1

2

y0(r)2 + 2y0(r)

(1 + y0(r))2
+

2y0(r)

1 + y0(r)
− ln(1 + y0(r))

)
+

4y0(r)

3r

(
1− y0(r)

1 + y0(r)

)2

(6.38)
Because of the logarithm, G is not linear in r. We set d = 1 for the plot displayed in

Figure 6.5.

6.9 Appendix

Proof of lemma 6.3
If (q, h, x) is feasible, then

Ui(ci, ci) ≥ Ui(ci, c′i) and Ui(c′i, c
′
i) ≥ Ui(c′i, ci) (6.39)

implies
(Qi(ci)−Qi(c′i))(ci − c′i) ≤ 0 (6.40)

which means that Qi is non-increasing. We get (6.4) with the envelop theorem.
Conversely if (q, h, x) satisfies (6.3) to (6.6), then

Ui(ci, ci)− Ui(ci, c′i) = X(ci)−X(c′i) + ci(Qi(c
′
i)−Qi(ci)) (6.41)

= V (ci) + ciQ(ci)− (V (c′i) + c′iQ(c′i)) + ci(Qi(c
′
i)−Qi(ci)) (6.42)

=

∫ c′i

ci

Qi(s)ds− (c′iQ(c′i)− ci(Qi(c′i))) =

∫ c′i

ci

Qi(s)−Q(c′i)ds, (6.43)
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Figure 6.5 – The social cost (red) is well approximated by an affine function (blue).
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which is non-negative since Qi is non-increasing. Then we get the voluntary participation
constraint combining (6.4) with Vi(ci) ≥ 0.

Proof of lemma 6.4
From (6.2) we get that

∫

C

xi(c)f(c)dc =

∫

C

ciqi(ci, c−i)f(c)dc+

∫

Ci

Vi(ci)dci,

The second term on the right-hand side can be written (by using (6.4) and changing the
order of integration) as:

∫

Ci

Vi(ci)dci =

∫

Ci

[Vi(ci) +

ci∫

ci

Qi(si)dsi]fi(ci)dci

= Vi(ci) +

∫

Ci

Qi(si)[

si∫

ci

fi(ci)dci]dsi

= Vi(ci) +

∫

Ci

Qi(ci)Fi(ci)dci

= Vi(ci) +

∫

Ci

∫

C−i

qi(ci, c−i)Fi(ci)dci

= Vi(ci) +

∫

C

qi(c)
Fi(ci)

fi(ci)
f(c)dc

Replacing this last expression and noticing that in any optimal mechanism Vi(ci) = 0 the
result follows.

The Solution to the pointwise optimization problem

For given c1 and c2, we analyze the seller’s cost minimization problem, where he faces
modified costs L1(c1) and L2(c2). In the case of section 3, Li(ci) = Ji(ci), while in section
4, Li(ci) = ci.

min
q,h

2∑
i=1

Li(ci)qi

s.t. qi − hi + h−i ≥ r
2 [h2

1 + h2
2] + d for i = 1, 2

qi, hi ≥ 0 for i = 1, 2

Without loss of generality we consider c1 ≤ c2 (we can just change indices otherwise). In
that case we get h2 = 0, and the constraints q1 ≥ 0, h1 ≥ 0 never bind. The problem then
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becomes

min
q,h

2∑
i=1

Li(ci)qi

s.t. q1 − h1 ≥ r
2 [h2

1 + h2
2] + d

q2 + h1 ≥ r
2 [h2

1 + h2
2] + d

qi, hi ≥ 0 for i = 1, 2

Writing the Lagrangian and taking FOC we get:

−L1(c1) + λ1 = 0 (6.44)

−L2(c2) + λ2 + µ = 0 (6.45)

−λ1 − λ1rh1 + λ2 − λ2rh1 = 0 (6.46)

−q1 + h1 + d+
r

2
h2

1 ≤ 0 (6.47)

−q2 − h1 + d+
r

2
h2

1 ≤ 0 (6.48)

−q2 ≤ 0 (6.49)

µ, λ1, λ2 ≥ 0 (6.50)

The solution can be broadly divided into two cases, depending on whether the positivity
constraint q2 ≥ 0 binds or not.
Case 1: d− L2(c2)−L1(c1)

r(L2(c2)+L1(c1)) + (L2(c2)−L1(c1))2

2r(L2(c2)+L1(c1))2
≥ 0

This case corresponds to the non-binding case, and the solution is given by

µ = 0

λi = Li(ci)

q1 = d+
L2(c2)− L1(c1)

r(L2(c2) + L1(c1))
+

(L2(c2)− L1(c1))2

2r(L2(c2) + L1(c1))2

q2 = d− L2(c2)− L1(c1)

r(L2(c2) + L1(c1))
+

(L2(c2)− L1(c1))2

2r(L2(c2) + L1(c1))2

h1 =
L2(c2)− L1(c1)

r(L2(c2) + L1(c1))

Case 2: d− L2(c2)−L1(c1)
r(L2(c2)+L1(c1)) + (L2(c2)−L1(c1))2

2r(L2(c2)+L1(c1))2
< 0

This is the binding case (it can only happen if 2dr < 1), and the solution is:

µ = L1(c1) + L2(c2)− 2L1(c1)√
1− 2dr

λ1 = L1(c1)
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λ2 =

[
2−
√

1− 2dr√
1− 2dr

]
L1(c1)

q1 = 2

[
1−
√

1− 2dr

r

]

q2 = 0

h1 =
L2(c2)− L1(c1)

r(L2(c2) + L1(c1))
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Motivated by market power in electricity market we introduce a mechanism design in [38]
for simplified markets of two agents with linear production cost functions. In standard
procurement auctions, the market power resulting from the quadratic transmission losses
allow the producers to bid above their true value (i.e. production cost). The mechanism
proposed in the previous paper reduces the producers margin to the society benefit. We
extend those results to a more general market made of a finite number of agents with
piecewise linear cost functions, which make the problem more difficult, but at the same
time more realistic. We show that the methodology works for a large class of externalities.
We also provide two algorithms to solve the principal allocation problem.

7.1 Introduction

Our purpose is to show how monopolistic behaviors in network markets can be opposed
using mechanism design. We point out that the optimal mechanism we obtain has a
surprisingly simple expression. We complete this work with algorithmic tools for the com-
putation of this mechanism. Following a model proposal already discussed in [35, 36, 38],
we consider a geographically extended market where a divisible good is traded. Each mar-
ket participant is located on a node of a graph, and the nodes are connected by edges. The
good can travel from one node to another through those edges at the cost of a quadratic
loss. We will use the word principal to designate what could also be called in the literature
a central operator, or in the context of electricity markets, an ISO. This principal, who
aggregates the (inelastic) demand side, has to match locally -i.e. at each node - production
and demand at the lowest expense through a procurement auction. As argued in [38] this
setting is relevant to describe some real electricity markets, but it could also be used in
other markets where a good is transported. There is a clear antagonism between the market
participants: the operator wants to minimize its expected cost while the producers want to
maximize their expected profit. So there is a transaction and a commitment between each
agent and the principal, and at the same time, there is a competition among the agents.
In a standard procurement auction, the market power resulting from the quadratic line
losses allow the producers to bid above their true value (i.e. production cost) [35]. The
mechanism reduces the producers margin and decrease the social cost represented in this
case by the optimal value of the principal. The optimal auction design was introduced by
Myerson in 1981 [70]. We build on an electricity market model introduced by the second
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author in two previous papers [36] and [35]. The authors wrote a brief presentation of this
model in [50]. Other models were proposed for example in [8], [2], and [52], with a focus on
the existence of a market equilibrium. Concerning the techniques we use in this paper the
reader can refer to [61], [72], [7] chapter 45 and [87] for general introductions on principal
agent theory, mechanism design, game theory and lattices theory respectively.

We consider -similarly to [38]- that everybody knows the demand at each node before
the interactions start and that the production cost of each agent is private information. In
a standard setting the agents first bid their cost and then the principal, knowing the bids,
a posteriori minimizes its cost. So in a standard setting the principal is a bid taker. The
producers know they influence the allocation and compete with each other to maximize
their individual profit. Since the demand is known by everyone, everyone can guess the
principal reaction once the bids have been announced: we can virtually remove the principal
from the interaction in the standard setting and consider that the agents are the players
of a game with incomplete information (since the agents do not know their fellow agents
preferences). This equivalence is true provided that the agents are not communicating with
each others. The mechanism design consists in changing the payoff function of this game
-subject to constraints we detail in this article- so as to minimize a priori (i.e. before the
bids are announced) the principal cost. Allowing the principal to strike first by revealing
a committing rule gives him a strategic advantage in the negotiation.

We restrict our discussion to determinist demand, but the reasoning extends naturally
to random demand as long as any possible realization of the demand satisfies the model
assumptions. Indeed since the optimal mechanism constructed in this article is incentive
compatible, then a random version (where the demand is revealed after the producers
bidding phase, as in [36]) would be realization-wise incentive compatible, and so incentive
compatible. Observe the mechanism we propose in the following could be adapted to
elastic, piecewise linear demand.

Our first main result is the mechanism design characterization. Interestingly the al-
location procedures for the optimal and the standard mechanism are the same (one just
needs to modify the input of the allocation procedure of the standard mechanism to get
the allocation of the optimal mechanism). Our second main result is a principal alloca-
tion algorithm based on a fixed point. The fixed point could be interpreted as cooperating
agents trying to minimize a global criteria by sharing relevant information. Our implemen-
tation of the algorithm gives good results against standard methods. We point out that
the numerical computation of Nash equilibrium for the procurement auction (important
to compare the optimal mechanism and the standard auction setting) requires an efficient
algorithm to compute the allocation. Some other additional facts are presented within the
paper: the smoothness of the allocation functions (q and Q), a decreasing rate estimation
for the fixed point iterations, some results of numerical experiments with the fixed point
algorithm, and a specific algorithm for the two-agent case.
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We describe the market in the next section. In §7.3 we introduce and solve the mech-
anism design problem. In §7.4, we study the standard allocation problem and propose an
algorithm to solve it. In §7.5 we propose a different algorithm for the 2-agent standard
allocation problem. In §7.6 we sum up and comment the main results and propose some
continuations for this work. A reader only interested in mechanism design could read
§7.2, §7.3 and §7.4 only, whereas readers interested only in allocation algorithms could
concentrate on §7.4 and §7.5.

7.2 Market description

The production cost of each agent is assumed to be piecewise linear, non decreasing and
convex in the quantity produced. This class of functions is sufficiently rich to represent
real life problems and sufficiently simple for theoretical study. In this work we need to
assume that the production levels at which there is a slope change are known in advance
and exogenous (i.e. the agents cannot choose them). Then without loss of generality we
assume that there is a quantity q̄ such that the changes of slope only occur at the multiples
of q̄. Thus, the authors find it practical to write the production cost functions in the form

Cc(q) =

N∑

j=1

cj min((q − (j − 1)q̄)+, q̄), (7.1)

where N ∈ N and the cj are some slopes coefficients specific to the agent, while q is the
quantity produced. We will sometimes refer to the vector of the cj as the cost vector (of
the agent). If we denote by qji the quantity produced by agent i at marginal cost cji , then
qji = min((qi − (j − 1)q̄)+, q̄), where qi is the total quantity produced by this agent. Let
c∗ < c∗ ∈ R∗+ and C a set of non-decreasing N -tuples of [c∗, c∗]. To each element c of C
we associate the piecewise linear cost function q → Cc(q). Throughout the paper we set,
for any c ∈ C, cN+1 = c∗ to simplify notations in some proofs. Note that in practice a
capacity constraint of the type q ≤ jq̄ for a given agent can be implemented by setting its
(j + 1)th slope cj+1 equal to a big positive number. If an agent of cost vector c produces
a quantity q and receives a transfer x, then its profit is

ui = x− Cc(q). (7.2)

There are n agents numbered from 1 to n in the market. We denote I = [1 . . . n] and
use generically the letter i to refer to a specific agent, and −i to refer to I\{i}. We denote
J = [1 . . . N ] and we will use generically j for the cost coefficients of the jth segment
(starting from 1). The agents are dispatched on the n nodes of a graph. At each node
i we find the corresponding agent i and a local demand di. The nodes are connected by
undirected edges. We write V (i) the set of nodes different from i connected to i. Obviously
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if i1 ∈ V (i2) then i2 ∈ V (i1). We denote E = {(i1, i2) : i1 ∈ V (i2)} the set of undirected
edges. For each (i1, i2) ∈ E, we introduce a quadratic loss coefficient ri1,i2 such that
ri1,i2 = ri2,i1 . In the context of electricity market, this quadratic coefficient corresponds to
the Joule effect within the lines. We make the non restricting assumption that N is big
enough so that in what follows production at each node is smaller than q̄N .

We assume that both the agents and the principal are risk neutral: they maximize their
expected profit. If the principal proposes to pay a price xi to agent i to make her produce
a quantity qi - this agent being free to accept or decline the offer- and if the agent i has a
production cost defined by ci, then she accepts the offer if

xi − Cci(qi) ≥ 0. (7.3)

So for agent i, either xi ≥ Cci(qi) or qi = 0. Thus, if the principal knew the cost vectors
ci, he would solve an allocation problem with those ci, and then bid to the agents the
quantity and the payments corresponding to the solution of the allocation problem. But
the principal does not know the cost vectors, so instead what happens is that the agents
tell her some values for the ci (not necessary their real cost vectors), and then the principal
decides based on those values. In this case, previous works [35] showed that the agents can
get non-zero profits and bid above their production costs. The question we adress is how
to reduce their margins.

To do so, we need to consider an intermediate scenario between the one in which the
agent knows nothing (and is a price taker), and the one in which he knows everything (and
optimizes directly the whole system as a global optimizer). Each agent is characterized
by an element fi, which is a probability density of support included in C and an element
ci of C drawn according to fi. Only agent i knows ci, which is private information. The
other agents and the principal only know the probability fi with which it was drawn. The
density fi corresponds to the public knowledge on agent i production costs so the principal
won’t accept any bid ci that is not in the support of fi. We assume that the cost slopes
are not correlated for a given agent and between agents, i.e. their laws f ji are independent.
In particular fi(ci) =

∏
j∈J f

j
i (cji ). In such situation, it makes sense to define

f−i(c−i) =
∏

i′∈I\i
fi′(ci′) and f(c1, .., cn) =

∏

i∈I
fi′(ci), (7.4)

and E (respectively Ec−i) the mean operator with respect to f (respectively f−i). The den-
sity f (resp. f−i) represents the uncertainty from the principal (resp. agent i) perspective.
To simplify notations we will use the symbole Cn to denote the product of the supports
of the fi. We denote by Q the set of allocation functions -which are the applications from
Cn to Rn+, by X the set of payments functions -which are the applications from Cn to Rn,
and by H the set of flow functions - which are the applications from Cn to RE . A direct
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mechanism is a triple (q, x, h) ∈ (Q,X,H). Let (q, x) ∈ (Q,X). For this payment function
and this allocation function, the expected profit of agent i of type ci and bid c′i is

Ui(ci, c
′
i) = E−iui = Xi(c

′
i)−

∑

j∈J
cjiQ

j
i (c
′
i). (7.5)

where the capitalized quantities

Qji (ci) = E−i min((qi(ci, c−i)− (j − 1)q̄)+, q̄) and Xi(ci) = E−ixi(ci, c−i) (7.6)

correspond to the average of their non capitalized counterpart. We also denote by

Vi(ci) = Ui(ci, ci). (7.7)

the expected profit of agent i if she is of type ci and bids her true production cost.
In this work we make five assumptions.

• First, the non overlapping working zones assumption is that if we denote by Ci the
support of fi, then Ci should be of the form:

Ci = [c1−
i , c1+

i ]× . . .× [cN−i , cN+
i ] (7.8)

with c1−
i < c1+

i < . . . < cN−i < cN+
i . We could interprete each segments over which

the agent has a constant marginal cost as a working zone with identified productive
assets. The expertise of the market participants should allow them to, based on the
working zone, assess the marginal cost of the agent. This makes senses for instance if
the setting is repeated over time. This estimation need to be precise enough so that
there is no chance that it corresponds to another working zone. We use this item in
particular in the proof of lemma 7.6.

• For i ∈ I, j ∈ J and ci ∈ Ci let

Kj
i (ci) =

∫ cji
cj−i

fi(c
−j
i , s)ds

fi(ci)
. (7.9)

We point out that by independence of the laws of the cji , K
j
i (ci) =

∫ cji
cj−i

f ji (s)ds/

f ji (cji ) = Kj
i (c

j
i ). So Kj

i is simply the ratio of the cumulative distribution and the
probability density for cji . The second assumption is the discernability assumption.
For all i ∈ I and ci ∈ Ci, the virtual cost Ji,j(c

j
i ) = cji + Kj

i (c
j
i ) is increasing in

j. As demonstrated in the next section, the virtual cost could be interpreted as the
real marginal cost augmented by a marginal information rent. The item imposes the
marginal information rent to be such that for any bid, the virtual marginal prices are
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increasing, i.e. the virtual production cost function is convex. The item is necessary
to show the independence property of the reformulation in Lemmas 7.8 and 7.9.

• Third, in the following we assume that, for all j ∈ J , i ∈ I and ci ∈ Ci,

cji → cji +Ki
j(c

j
i ) (7.10)

is increasing in cji . This is the piecewise linear adaptation of the classic monotone
likelihood ratio property assumption encountered in mechanism design [70, 29]. It
is true in particular for log-concave functions. The assumption ensures that the
pointwise allocation resulting from the mechanism design problem reformulation is
decreasing in the bids. We refer to this assumption in the proof of Theorem 7.11.

• Fourth, for §7.3 and §7.4 only, we assume that

di −
∑

i′∈V (i)

1

2ri,i′
< 0, and di +

∑

i′∈V (i)

3

2ri,i′
> Nq̄, (7.11)

i.e. we require the ri,j to be small enough. Note that the bigger the demand, the
smaller the r should be, which is a limit to the generality of the approach. This
assumption ensures that, for any agent i and working zone k, no matter what the
other agents are doing, it is still possible to find a (virtual) marginal price that would
ensure a production of exactly kq̄ in an optimal allocation. If the loss rates rii′ are all
too big for a given agent i, then the line losses can be bigger than the flow through
the lines: the lines of agent i can be all saturated. This hypothesis is necessary to
ensure the existence of one of the building block of the fixed point operator presented
in §7.4. We point out that this is the multidimensional version of the assumption
1− 2rd ≥ 0 in [38].

• Fifth, for regularity issues we make the non restrictive assumption that it is not possi-
ble to produce a multiple of q̄ at each node and satisfy exactly the nodal constraints.
This is non restrictive because if this was the case we could perturb the demand to
ensure the condition is satisfied. This hypothesis will be important in the proof of
the regularity of q (in lemma 7.16), from which the regularity of Q follows.

To finish with the market presentation, we introduce the products of the type sets
Cn =

∏
i∈I C

i′ and C−i =
∏
i′∈I\{i}C

i′ .

7.3 Mechanism Design

We start with the revelation principle as expressed in [40].
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Theorem 7.1 (Revelation Principle). To any Bayesian Nash equilibrium of a game of
incomplete information, there exists a payoff-equivalent direct revelation mechanism that
has an equilibrium where the players truthfully report their types.

According to the revelation principle, we can look for direct truthful mechanisms. There
is a priori no reason why the agents should willingly report their types. So we need to add
a constraint on the design to enforce truthfulness. This means that the profit of any agent
i of type ci should be maximal when agent i bids her true type ci i.e. for all (c′i, ci)

Ui(ci, ci) ≥ Ui(ci, c′i). (IC) (7.12)

This is the incentive compatibility (IC) constraint. In addition, since we want all agents
to participate in the market, we need the participation constraint imposing that for all ci

Ui(ci, ci) ≥ 0. (PC) (7.13)

Without this constraint, the principal would optimize as if the agents would accept any
deal (even deals where they would make a negative profit). The last constraint is that
the supply should be at least equal to the demand at every node. The supply available
at a given node is equal to the production augmented by the imports minus the exports
and the line losses. As explained earlier, there is a loss when some quantity hi,i′ of the
divisible good is sent from one node i to another i′. This loss is equal to ri,i′h2

i,i′ , where
ri,i′ is a multiplicative constant. In order to obtain symmetric expressions, we will proceed
as if half of this quantity was lost by the sender, and the other half by the receiver (see for
instance [35]). Note that we could have equivalently used signed flows, but we would have
lost some symmetry in the formulation. Then the supply and demand constraint writes,
for all i ∈ I and c ∈ Cn,

qi(c) +
∑

i′∈V (i)

hi′,i(c)− hi,i′(c)−
h2
i,i′(c) + h2

i′,i(c)

2
ri,i′ ≥ di. (SD) (7.14)

We point out that for an optimal allocation (see §7.4) , hi,i′hi′,i = 0.

The principal decision is a triple (q, x, h) ∈ (Q,X,H). This decision is made under
the constraints (IC), (PC) and (SD). Since we assume that the principal is risk neutral,
his goal is to minimize his average cost, i.e. mathematically his criterion is equal to the
average of the sum of the payments. Finally the optimal mechanism is the solution of
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Problem 1.

minimize
(q,x,h)∈(Q,X,H)

∑

i∈I
Exi(c)

subject to

∀c ∈ Cn, ∀i ∈ I : qi(c) +
∑

i′∈V (i)

hi′,i(c)− hi,i′(c)−
h2
i,i′(c) + h2

i′,i(c)

2
ri,i′ ≥ di (SD)

∀c ∈ Cn, ∀(i, i′) ∈ E : hi,i′(c) ≥ 0

∀i ∈ I, ∀(c′i, ci) ∈ C2
i : Ui(ci, ci) ≥ Ui(ci, c′i) (IC)

∀i ∈ I, ∀ci ∈ Ci : Ui(ci, ci) ≥ 0 (PC).

We now proceed to solve the optimal mechanism design problem, which is a functional
optimization problem with an infinity of constraints, some of which are expressed with
integrals. The essential observation is that this complicated problem is equivalent to a
much simpler one. The proof relies on the comparison with two intermediate problems:

Problem 2.

minimize
(q,x,h)∈(Q,X,H)

∑

i∈I
Exi(c)

subject to.

∀c ∈ Cn,∀i ∈ I : qi(c) +
∑

i′∈V (i)

hi′,i(c)− hi,i′(c)−
h2
i,i′(c) + h2

i′,i(c)

2
ri,i′ ≥ di(SD)

∀c ∈ Cn,∀(i, i′) ∈ E : hi,i′(c) ≥ 0

∀i ∈ I, ∀j ∈ J, (c−j , t1, t2), (c1, . . . , tk, . . . , c
N ) ∈ Ci, : Vi(c

1, .., cj−1, t1, c
j+1.., cN )

− Vi(c1, .., cj−1, t2, c
j+1.., cN ) =

∫ t2

t1

Qji (c
1, .., cj−1, s, cj+1.., cN )ds (H1)

∀i ∈ I, ∀(c, c′) ∈ c2 : (c− c′).(Qi(c)−Qi(c′)) ≤ 0, (H2)

∀i ∈ I, ∀ci ∈ Ci : Vi(ci) ≥ 0 (PC),

and
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Problem 3.

minimize
(q,h)∈(Q,H)

E
∑

i∈I

∑

j∈J
qji (c)(c

j
i +Kj

i (c
j
i ))

subject to

∀(c, i) ∈ Cn × I : qi(c) +
∑

i′∈V (i)

hi′,i(c)− hi,i′(c)−
h2
i,i′(c) + h2

i′,i(c)

2
ri,i′ ≥ di(SD)

∀c ∈ Cn, ∀(i, i′) ∈ E : hi,i′(c) ≥ 0.

∀c ∈ Ci, ∀i ∈ I : xi(c) =
∑

j∈J
qji (c)c

j
i +

∫ cj+i

cji

qji (c
1
i . . . c

j−1
i , t, c

(j+1)+
1 . . . cN+

i ; c−i)dt.

The inequality on the scalar product in (H2) is the piecewise linear equivalent of a
monotonicity condition already encountered in [38]. The first two problems are very similar,
but (IC) has been replaced by (H1) and (H2) and (PC) is expressed in terms of V instead
of U . This replacement is a trick introduced by Myerson in his 1981 paper. We will
show later on how we can compare Problems 2 and 3, but note that Problem 3 is really
simpler, as the optimization part can be solved pointwise (and x can be deduced from this
pointwise optimization). The main result of this paper is that the three problems have the
same solution.

7.3.1 Necessary conditions for Problem 1

We derive some necessary conditions for a solution of Problem 1. In fact, we only use
constraint (IC) to deduce the two next results. The first lemma indicates that any solution
of the first problem should be such that Q is monotonous. This is a classic result already
introduced for instance in [70] and [38]. The novelty here is that in the context of piecewise
linear production cost functions, this monotonicity result is expressed in a vectorial sense.

Lemma 7.2 (Q monotonicity). If (q, x, h) is admissible for Problem 1, then for all agent
i ∈ I and all (ci, c

′
i) ∈ C2

i

(ci − c′i).(Qi(ci)−Qi(c′i)) ≤ 0 (7.15)

where . is the scalar product in RN .

Proof. We omit the i in the proof, as it plays no role. First, let (c, c′) ∈ C2
i by the (IC)

constraint,
U(c, c) ≥ U(c, c′) and U(c′, c′) ≥ U(c′, c) (7.16)

i.e.
X(c)−

∑

j∈J
cjQj(c) ≥ X(c′)−

∑

j∈J
cjQj(c′)

X(c′)−
∑

j∈J
cj
′
Qj(c′) ≥ X(c)−

∑

j∈J
cj
′
Qj(c).

(7.17)
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We get the lemma after summation of the two inequalities and simplification.

Lemma 7.2 indicates that an agent should be producing less on average in her ith
working zone if she is biding a higher marginal cost for this working zone.

Lemma 7.3. If (q, x, h) is admissible for Problem 1 then for any agent (omitting i) for
any c, t1 and t2

V (c1, . . . , cj−1, t1, c
j+1, . . . , cN ) =V (c1, . . . , cj−1, t2, c

j+1, . . . , cN )

−
∫ t1

t2

Qj(c1, . . . , cj−1, s, cj+1, . . . , cN )ds
(7.18)

Proof. The inequality U(c, c) ≤ U(c, c′) implies that c′ → U(c, c′) is maximal at c for any
c ∈ Ci. Moreover,

t→ U((c1, .., cj−1, t, cj+1.., cN ), c) = X(c)−
∑

k∈J\{j}
ckQk(c)− tQj(c) (7.19)

is absolutely continuous, differentiable with respect to t for all c, and its derivative is
−Qj(c). By definition of qj , Qj ≤ q̄. So applying the envelope theorem we get the
result.

7.3.2 Necessary conditions for Problem 2

We derive some necessary conditions for a solution of Problem 2.

Lemma 7.4. If (q, x, h) is an optimal solution of Problem 2 then (omitting i) for all c ∈ Ci

V (c) =
∑

j∈J

∫ cj+

cj
Qj(c1 . . . cj−1, t, c(j+1)+, . . . , cN+)dt. (7.20)

Proof. According to (H1)

∑

j∈J

∫ cj+

cj

Qj(c1 . . . cj−1, t, c(j+1)+, . . . , cN+)dt =

∑

j∈J
V (c1, .., cj−1, cj , c(j+1)+, . . . , cN+)− V (c1, .., cj−1, c(j)+, . . . , cN+)

= V (c)− V (c1+, . . . , cN+).

This is an expression for V (c) as a sum of a positive function of c and a constant V (c1+, . . . , cN+).
It is clear that to optimize the criteria, this constant should be as small as possible. The par-
ticipation contraint (PC) imposes that V (c1+, . . . , cN+) ≥ 0, therefore V (c1+, . . . , cN+) =

0.
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A consequence of this is:

Corollary 7.5. If (q, x, h) is an optimal solution of Problem 2 then for all i ∈ I,

Vi(c
1+
i , . . . , cN+

i ) = 0. (7.21)

Proof. See the proof of Lemma 7.4.

Corollary 7.5 means that if an agent bids a production cost functions that is the maxi-
mum of what he could bid, he should not make any profit, and so he should be paid exactly
his production cost. We see with this lemma that if the public information is inaccurate
and the real cost of an agent is higher than what could be expected, then there is a risk
that the participation constraint is not satisfied. On the other hand, it should not be sur-
prising that an agent can have a zero profit: remember that in the extreme case in which
the principal knows everything (discussed in §7.2), the agents do not make any profit.

Another consequence of lemma 7.4 is

Lemma 7.6. If (q, x, h) is an optimal solution of Problem 2, the expected profit of agent i
(over his type) is

EVi(c) =
∑

j∈J

∫

(c1..cn)∈Ci

Qji (c
1, . . . , cj , c(j+1)+, . . . cN+)Kj

i (c)fi(c)dc. (7.22)

Proof. By Lemma 7.4 and Fubini’s lemma, EVi(c) is equal to

E
∑

j∈J

∫ cj+

cj
Qji (c

1, . . . , cj−1, t, c(j+1)+, . . . cN+)dt

=
∑

j∈J

∫

c−j∈C−j

∫ cj+

cj=cj−

∫ cj+

t=cj
Qji (c

1, . . . , cj−1, t, c
(j+1)+
i , . . . cN+

i )fi(c)dtdc
jdc−j .

Our task is now to compute the inner term. Applying again Fubini’s lemma, this term is
equal to

∫ cj+

cj=cj−

∫ cj+

t=cj
Qji (c

1, . . . , cj−1, t, c(j+1)+, . . . cN+)fi(c)dtdc
j =

∫ cj+

t=cj−

∫ t

cj=cj−
Qji (c

1, . . . , cj−1, t, c(j+1)+, . . . cN+)fi(c)dc
jdt =

∫ cj+

t=cj−
Qji (c

1, . . . , cj−1, t, c(j+1)+, . . . cN+)(

∫ t

cj=cj−
fi(c)dc

j)dt =

∫ cj+

t=cj−
Qji (c

1, . . . , cj−1, t, c(j+1)+, . . . cN+)(

∫ t

cj=cj−

fi(c)

fi(c−j , t)
dcj)fi(c

−j , t)dt =

∫ cj+

t=cj−
Qji (c

1, . . . , cj−1, t, c(j+1)+, . . . cN+)Kj
i (t)fi(c

−j , t)dt =
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∫ cj+

cj=cj−
Qji (c

1, . . . , cj−1, cj , c(j+1)+, . . . cN+)Kj
i (c

j)fi(ci)dc
j

We get the lemma by summing all the inner terms.

Lemma 7.7. If (H1) is satisfied, then for any (a, b) ∈ C2
i (omitting i)

X(a)−X(b) =
∑

j∈J
[ajQj(a)− bjQj(b) +

∫ bj

aj
Qj(b1 . . . bj−1, t, aj+1 . . . aN )dt] (7.23)

Proof. Because of its length the proof is detailled in Appendix 7.7

Lemma 7.8. If (q, x, h) verifies (H1) and (H2) and Qji is independent of cj
′

i for j′ > j,
then for all (c, c̃) ∈ C2

U(c, c) ≥ U(c, c̃). (7.24)

Proof. Since (H1) is satisfied, equation (7.23) of Lemma 7.7 applies. We combine this
relation with the definition of the expected profit U from (7.5). We obtain:

U(c, c)− U(c, c̃) =
∑

j∈J
cjQj(c)− c̃jQj(c̃)+

∫ c̃j

cj
Qj(c̃1, ..., c̃j−1, t, cj+1, ...cN )dt+ cjQj(c̃)− cjQj(c)

=
∑

j∈J
(cj − c̃j)Qj(c̃1, ..., c̃j−1, c̃j)) +

∫ c̃j

cj
Qj(c̃1, ..., c̃j−1, t)dt

=
∑

j∈J

∫ c̃j

cj
Qj(c̃1, ..., c̃j−1, t)−Qj(c̃1, ..., c̃j−1, c̃j)dt,

where we used the independence hypothesis for the second equality. By (H2), which implies
the decreasingness of Qj with respect to cji when all other quantities are fixed, if cj < c̃j

then for any t ∈ [cj , c̃j ], Qj(t) − Qj(c̃j) ≥ 0. Otherwise, we use the formula
∫ b
a = −

∫ a
b

and the fact that any t ∈ [c̃j , cj ] verifies Qj(t) − Qj(c̃j) ≤ 0. So U(c, c) − U(c, c̃) is non
negative.

7.3.3 Necessary conditions for Problem 3

We derive some properties for Problem 3.

Lemma 7.9. There is an optimal solution (q, x, h) for Problem 3 such that qji (and Qji ) is
independent of cki for k 6= j.

Proof. First note that x is not taking any role in the optimization problem: it is defined
afterward. The only real optimization variables are then q and h. Remember that qji is
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defined as a function of q by qji = min((qi − (j − 1)q̄)+, q̄). The constraints are defined for
each c ∈ Cn and the integral criterion is in fact a sum of independent criteria depending
on q(c) for c ∈ Cn. Therefore we can solve Problem 3 with a pointwise optimization.
By the discernability assumption, for any c ∈ Cn and i ∈ I, cji + Kj

i (c
j
i ) is increasing

in j. So for all c ∈ Cn, i ∈ I,
∑

j∈J q
j
i (c)(c

j
i + Kj

i (c
j
i )) is a convex criteria in qi and

so the pointwise problem corresponds to Problem 4 of §7.4. In particular, we can apply
Lemma 7.15 from the next section. So qji only depends on cji and c−i. This property is
preserved by integration over the c−i: Q

j
i only depends on cji .

We point out that, since the pointwise problem has a unique solution, the pointwise
optimal solution introduced in the proof is uniquely defined.

Theorem 7.10. If (q, x, h) is the pointwise optimal solution of Problem 3 and Kj
i is smooth

in cji for (i, j) ∈ I × J and c ∈ Ci, then for all i ∈ I, Qi is C∞ over Ci.

Proof. We will use some results and notations from 7.4.2. Remember that cji → cji +Kj
i (c

j
i )

is increasing, so by composition with smooth bijection, we can do the reasoning as if
the costs involved were cji instead of cji + Kj

i (c
j
i ). First according to Lemma 7.16, qi is

continuous. Since qi is bounded, we can apply the dominated convergence theorem to show
that Qi is continuous. Then we proceed by mathematical induction. Assume that Qi is
C l, then take c0

i ∈ Ci and cki a sequence in Ci that converges to c0
i . Since Ŝ = ∪k∈NS(cki )

is a countable union of null measured set (by Lemma 7.34), its measure is zero. So without
changing the results, we can compute the integrals on C−i\Ŝ instead of C−i. Since qi and
its derivatives are bounded, we can apply the dominated convergence theorem to compute

the limit of Q
(l)
i (c0i )−Q

(l)
i (cki )

c0i−cki
as k goes to +∞ as the integral of a limit. Since we removed

the point over which this limit was not defined, we get that Q
(l)
i (c0i )−Q

(l)
i (cki )

c0i−cki
has a limit, and

this limit does not depend on the sequence cki . So Qi is l + 1 times derivable at ci, for all
ci. We conclude by induction.

7.3.4 Resolution of the mechanism design problem

Last but not least, we state the main result of the Section.
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Theorem 7.11. Let (qji , h) be defined such that for any c ∈ Cn, (qji (c
j
i , c−i), h(c)) solves

minimize
qji ,x,h

∑

i∈I

∑

j∈J
qji (c

j
i , c−i)(c

j
i +Kj

i (c
j
i ))

subject to

0 ≤ qji ≤ q̄
∑

j∈J
qii(c

j
i , c−i) +

∑

i′∈V (i)

hi′,i(c)− hi,i′(c)−
h2
i,i′(c) + h2

i′,i(c)

2
ri,i′ ≥ di

hi,i′(c) ≥ 0,

and set

qi(c) =
∑

j∈J
qji (c

j
i , c−i) and xi(c) =

∑

j∈J
qji (c

j
i , c−i)c

j
i +

∫ cj+i

cji

qji (t, c−i)dt, (7.25)

then (q, h, x) solves the optimal mechanism design problem (Problem 1).

Proof. • First note that (q, h, x) is the pointwise solution of Problem 3 so it is optimal
for Problem 3, moreover, by construction (q, h, x) satisfies (SD) and h ≥ 0.

• Then note that by Lemma 7.6, (q, h, x) solves a relaxation of Problem 2, but is it
admissible for Problem 2 ?

• By definition of V (omitting i),

V (c1 . . . aj . . . cN )− V (c1 . . . bj . . . cN ) =

Ex(c1 . . . aj . . . cN )− x(c1 . . . aj . . . cN )− [Qj(aj)aj −Qj(bj)bj ] =

Eqji (a
j , c−i)aj +

∫ cj+i

aj
qji (t, c−i)dt− Eqji (b

j , c−i)bj −
∫ cj+i

bj
qji (t, c−i)dt

−[Qj(aj)aj −Qj(bj)bj ] = E
∫ bj

aj
qji (t, c−i)dt =

∫ bj

aj
Qji (t)dt

where we used the definition of x, the definition of Q and Fubini lemma’s for the
second, third and fourth equalities. So (q, h, x) satisfies (H1).

• By construction, qji is non-increasing in cji +Kj
i (c

j
i ) then using the third assumption,

qji is non-increasing in cji so for any (a, b, c−i) ∈ C2 × C−i, (aji − b
j
i )(q

j
i (a

j
i , c−i) −

qji (b
j
i , c−i)) ≤ 0, so by integration with respect to c−i, (aji − b

j
i )(Q

j
i (a

j
i )−Q

j
i (b

j
i ) ≤ 0

and then by summation over j, (c− c′).(Qi(c)−Qi(c′)) ≤ 0, i.e. (H2) is satisfied.

• Since (H1) is satisfied, Vi(ci) ≥ Vi(c
+
i ). Moreover, Vi(c+

i ) = 0 by construction of x.
So the participation constraint (PC) is satisfied.
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• Therefore (q, h, x) is admissible for Problem 2. So it solves Problem 2.

• Since (q, h, x) solves Problem 2, by Lemma 7.8 the incentive compatibility constraint
(IC) is satisfied. Moreover, by Lemma 7.4, (PC) is satisfied. So (q, h, x) is admissible
for Problem 1, but is it optimal ?

• By Lemmas 7.2 and 7.3, any optimal solution of Problem 1 should be admissible for
Problem 2. Since the criteria are the same, we conclude that (q, h, x) is an optimal
solution of Problem 1.

7.3.5 Comments

In the optimal mechanism, the agents are paid at a marginal price that is equal to their bid
augmented by an information rent. This information rent depends on the problem structure
by the fact that it is built from a collection of allocation problems, and it depends on the
available information by the fact that, in these optimization problems, the marginal prices
are replaced by the virtual marginal prices cji + Kj

i (c
j
i ). We point out that, as already

noted for instance in [29], the computation of such rent may pose a practical difficulty for
large problems.

Notice that, by construction, the optimal mechanism is incentive compatible in dom-
inant strategies no matter K as (H1) is verified anyway as long as the hypothesis are
satisfied. If this market is repeated over time, the principal can dynamically enhance his
probabilities.

The model extends to the more realistic case when some nodes do not have a producer
and for some others, the demand is null. In particular, we can consider the buyer/suppliers
setting where there is demand only at one node.

One may argue that one limit of the current result is that it does not take into account
any network constraints. Nonetheless, the structure of the proof makes it clear that we
exploited only some properties of the allocation problem. Therefore, the optimal mecha-
nism construction is valid for any market for which the allocation problem satisfies these
properties. We discuss more on this point in §7.3.6.

In addition, the optimal mechanism construction is valid for limiting case with r = 0

at some edges. In this case, one needs to specify the definition of q of as the solution of
the allocation problem may not be a singleton. If all the agents are identical and r = 0 for
all edges, this corresponds to a second best auction.

We have not tried any ironing techniques to get rid of the monotone likelihood ratio
assumption ; this is probably something to look at.
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7.3.6 Generalization

The study of this subsection could be postponed to a second reading. We extend Theorem
7.11 to a more general network market. In this subsection we use specific notations. The
letter e is used generically to refer to a line. The network flow is now subject to a constraint
of the form N(h) ∈ Rm− , where N(h) is a convex and smooth function from RE to Rm,
where m ∈ N. We call this constraint the network constraint. To model the piecewise
linear prices, we use positive variables qji ≤ q̄ji . Thus, the working zones are not assumed
to be of equal sizes anymore. The marginal rates cji are assumed to be increasing in j.
The criterion is still J(q) =

∑
i∈I
∑

j∈J q
j
i c
j
i . We write K1 the set of decisions (qji , he)

such that N(h) ∈ Rm− and 0 ≤ qji ≤ q̄ji . We assume that K1 is non-empty. The nodal
constraints are replaced by constraints of the form (for all i ∈ I)

∑
j q

j
i + gi(h) ≥ 0

where the gi are smooth strictly concave functions from (R+)E to R. We introduce the
set K2 = {(qji , he) ∈ K1; ∀i ∈ I −∑j q

j
i − gi(h) ≤ 0}. Then the allocation problem

corresponds to the following optimization program:

minimize
(qji ,h)

J(q)

subject to (qji , he) ∈ K2.

(7.26)

It is clear that qji is non-increasing in cji . We point out that at optimality, the nodal
constraint should be binding. Moreover, by the strict concavity of the gi the solution
of problem (7.26) is unique.1 Note that J is smooth and its gradient at (cji , he) is
(c1

1, . . . c
N
1 , . . . c

N
n , 0, . . . , 0), where the last |E| null coordinates correspond to the variable

h. We denote by NK1(qji , he) and NK2(qji , he) the normal cones to K1 and K2 at (qji , he).
Applying Theorem 10 from [82] (we can check that the constraint qualification is satisfied
if q is not identically equal to zero), we can express NK2(qji , he) as

{
∑

i∈I
λi∇fi(qji , he) + z; (λ1, . . . , λn) ∈ (R+)n, z ∈ NK1(qji , he)} (7.27)

where fi(q, h) = −∑j q
j
i − gi(h). Applying Theorem 9 from [82], the solution of (7.26)

should satisfy
−∇J(qji , he) ∈ NK2(qji , he). (7.28)

Observe that since the problem is convex and the solution unique, this is in fact a
necessary and sufficient condition for the unique solution of the problem. The N first rows
of this relation gives:

(−c1
1, . . . ,−cN1 ) = λ1(−1, . . . ,−1) + (z1, . . . , zN ). (7.29)

1Take two optimal solutions, then check that the solution build with the average of the two flow vectors
is admissible by convexity of the problem and strictly better by concavity of g.
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where λ1 ≥ 0 and

zj





≥ 0 if qji = q̄ji

≤ 0 if qji = 0

0 else

(7.30)

Note that if zj = 0 then cji = λ1, and since the cji are increasing in j, there is at most one
j such that zj = 0. Moreover, by 7.29 for all j we have zj = λ1 − cj1. So the zj are strictly
decreasing in j. From the product structure of K1 we deduce the product structure of its
normal cone. We can then write with obvious notations: NK1(q, h) = NK1(q) × NK1(h)

From the rows corresponding to h in the first order condition we derive the relation:

∑

i∈I
λi∇gi(h) ∈ NK1(h). (7.31)

Lemma 7.12 is a generalization of Lemma 7.15.

Lemma 7.12. Let (q(c), h(c)) be a solution of Problem 7.26. Assume qi continuous with
respect to ci, then for any i ∈ I, j ∈ J , qji (c) does not depend on cli for l 6= j.

Proof. Take (ci, c−i) ∈ Cn. If qji (ci, c−i) ∈]0, q̄ji [, then λi = cji and cki (k 6= j) does not
intervene the first order conditions (7.30) and (7.31), so that the solution does not depends
on it. So without loss of generality we assume qji (ci, c−i) = 0 (the case qji (ci, c−i) = q̄ji
could be treated in the same manner). By the continuity assumption we can restrict even
more to the case where qj−1

i = q̄j−1
i and qji (ci, c−i) = 0. Then by the first order condition,

λi ∈ [cj−1
i , cji ]. Using the same the first order condition argument we used at the beginning

of this proof, we see that the solution only depends on cj−1
i and cji . If c

j−1
i increases, then

qi decrease so that qji stays equal to zero. If cj−1
i decreases, then the first order condition

λi ∈ [cj−1
i , cji ] stays true for the current λi, the whole first order condition is still satisfied.

Therefore the solution does not change. The lemma follows.

Notice that we can write qi as a strictly convex function of h qi = −gi(h), and then
the cost associated with qi is the composition of an increasing convex function of R and
a convex function from R|E| to R, therefore it is convex with respect to h, then we can
rewrite the problem with only h as a decision variable, the problem would be defined on
a convex set and with a strictly convex cost, and parametrized by c ∈ C. Then we can
apply Berge maximum principle (see Theorem 9.17 in [85]) in a convex setting to get the
continuity of q. From Lemma 7.12 and the monotony of q, we conclude that we can extend
Theorem 7.11 to a more general setting.
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7.3.7 Examples with log-concave functions

We point out that a sufficient condition to check the monotone likelihood ratio property
is that F/f is increasing. If F is a smooth cumulative distribution function with f the
corresponding smooth and positive density, then F/f is increasing iff f/F is decreasing iff
lnF ′ is decreasing iff lnF is concave. A function f is said to be log-concave if ln f is concave.
Many density functions encountered in the economic and engineering literature are log-
concave: the uniform, the normal, the exponential, the power function and the Laplace
distribution have log-concave density function. We refer to [10] for the results we use on
this class of functions. The class of log-concave is stable by monotonic transformation and
truncation. Moreover, it happens that if a probability density distribution is log-concave,
then the corresponding cumulative distribution is log-concave. In mechanism design theory,
it is standard to assume F to be log-concave [62].

We want to see the implication of the discernability assumption. This assumption
imposes a gap ∆ equals to Kj

i (c
j+
i ) between cj+i and c

(j+1)−
i . We compute this gap for

some standard cases. To simplify the notations and the computation, we assume without
loss of generality that cj− = 0 and write cj+ = c+. We get the following table:

Table 7.1 – The gap ∆ for some standard probabilities

Name ∝ f(x) ∝ F (x) K(x) ∆

Uniform 1 x x c+

Power Function λ( x
c+

)λ−1 c+( x
c+

)λ x
λ

c+

λ

Weibull λ( x
c+

)λ−1e(− x
c+

)λ c+(1− e−( x
c+

)λ) c+

λ ( c
+

x )λ−1(e( x
c+

)λ − 1) c+ e−1
λ

Laplace 1
2e
−λ|x− c+

2
| x > c+

2 , 2−e−λ c
+

2 e−λ(x−
c+

2 )

2λ
2
λ(e

c+

2
λ − 1)

Exponential (reversed) λe−(c+−x)λ e−c
+λ(exλ − 1) 1−e−xλ

λ
1−e−c+λ

λ

We truncate the probabilities so that they have support in [0, c+]. The symbole ∝
means that we express f and F modulo the multiplication by a common constant (due to
the truncation) and λ is a positive parameter that should be greater than 1 for the Power
function and the Weibull probability. For the uniform distribution, we see that the interval
should be of non-decreasing sizes. For instance, one could take c1 ∈ [c̄, 2c̄], c2 ∈ [3c̄, 4c̄],
c3 ∈ [5c̄, 6c̄], etc. For the Power function, the Weibull function and the exponential, we see
that the gap could be made smaller. We do not address in this work the question of the
practical implementation of an optimal mechanism. The discernability assumption raises
an additional practical issue.

7.4 Study of the allocation problem

7.4.1 The standard auction problem

The previous section motivates the study of the allocation problem for different reasons.
First, as we have seen in the proofs, the results of §7.3 rely on some properties of the
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solution of the standard allocation problem. In addition to those properties, we derive in
this section two algorithms to compute the solution of the standard allocation problem.
According to 7.11, those algorithms can be used for both the original auction problem and
the optimal mechanism design. To benchmark the mechanism design equilibrium against
an equilibrium of the Bayesian game related to the standard auction, numerical efficiency
is pivotal: indeed the Bayesian equilibrium requires a lot of allocations computations.

Let us first introduce the standard allocation problem. In a standard mechanism, the
principal solves an allocation problem based on the bids he receives. Those bids will be
denoted by cji , where as before i ∈ I corresponds to the ith agent and j ∈ J corresponds to
the jth working zone with constant marginal price. To model the fact that the production
costs are piecewise linear, we use some positive variables qji so that q

j
i ≤ q̄, for any i ∈ I, the

quantity produced by agent i is qi =
∑

j∈J q
j
i and the related production cost is

∑
j∈J c

j
i q
j
i .

As before, an allocation should satisfy the constraint that production exceeds demand. We
end up with Problem 4:

Problem 4.

minimize
(q,h)

∑

i∈I

∑

j∈J
qji c

j
i

subject to ∀i ∈ I :
∑

j∈J
qji +

∑

i′∈V (i)

hi′,i − hi,i′ −
h2
i,i′ + h2

i′,i

2
ri,i′ ≥ di (λi)

∀(i, i′) ∈ E : hi,i′ ≥ 0 (γi,i′)

∀(i, j) ∈ I × J : qji ≥ 0 (µi,j)

∀(i, j) ∈ I × J : qji ≤ q̄ (νi,j).

(7.32)

The notations for the dual the variables associated with each constraint are indicated
in parentheses. Those variables are in R+.

For any node i ∈ I, we define the function Fi for λ ∈ [mini c
1
i ,maxi c

N
i ]n

Fi(λi, λ−i) = di +
∑

i′∈V (i)

λi′ − λi
ri,i′(λi + λi′)

+
(λi′ − λi)2

2ri,i′(λi + λi′)2
. (7.33)

We will justify later that this function could be interpreted as the production of agent i
when the multipliers are λi and λ−i. Its partial derivative with respect to λi is

∂λiFi(λi, λ−i) = −
∑

i′∈V (i)

4

ri,i′

λ2
i′

(λi + λi′)3
< 0. (7.34)

The derivative is negative: when i increases its price it is assigned smaller production
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quantities. The partial derivative of Fi for i′ ∈ I\{i} is

∂λi′Fi(λi, λ−i) =





4
ri,i′

λi′λi
(λi+λi′ )

3 > 0 if i′ ∈ V (i)

0 else.
(7.35)

When another agent becomes less competitive, i is assigned more production. Let k ∈
J ∪ {0}. The limit at +∞ and 0 of Fi(x, λ−i)− kq̄ are

lim
x→+∞

Fi(x, λ−i)− kq̄ = di − kq̄ −
∑

j∈V (i)

1

2ri,j
(7.36)

and
lim

x→+∞
Fi(x, λ−i)− kq̄ = di − kq̄ +

∑

j∈V (i)

3

2ri,j
. (7.37)

Using the hypotheses (7.11), the first term is strictly negative and the second strictly
positive, so by the intermediate value theorem, Fi − kq̄ has a zero. Since Fi − kq̄ is
decreasing in λi, this solution is unique. Now we define for i ∈ I and k ∈ J ∪ {0}, gki as
the function that associates any λ−i ∈ [mini c

1
i ,maxi c

N
i ]n−1 with the unique x such that

and Fi(x, λ−i) = kq̄ and x > 0:

Fi(g
k
i (λ−i), λ−i) = kq̄

gki (λ−i) > 0.
(7.38)

Lemma 7.13. For any i ∈ I, k ∈ J ∪ {0}, λ−i ∈ [mini c
1
i ,maxi c

N
i ]n−1 and i′ ∈ V (i)

∂λi′g
k
i (λ−i) > 0. (7.39)

In particular, gki is increasing in λi′ for i′ ∈ V (i).

Proof. According to the implicit function theorem

∂gki (λ−i)
∂λi′

= − ∂Fi
∂λi′

/
∂Fi
∂λi

, (7.40)

It is clear that gki (λ−i) is decreasing in k. We proceed with the computation of the
dual of Problem 4. If a strong duality theorem applies, then we should have

min
q,h

max
λ,γ,ν,µ

∑

i∈I,j∈J
qji c

j
i +

∑

i∈I
λi{di − (

∑

j∈J
qji +

∑

i′∈V (i)

hi′,i − hi,i′ −
h2
i,i′ + h2

i′,i

2
ri,i′)}
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−
∑

i∈I,j∈J
γi,jhi,j +

∑

i∈I,j∈J
νi,j(q

j
i − q̄)− µi,jq

j
i

= max
λ,γ,νµ

min
q,h

∑

i∈I
λidi −

∑

i∈I,j∈J
νi,j q̄ + qji (c

j
i + νi,j − λi − µi,j)

+
∑

(i,i′)∈E
hi,i′{λi − λi′ − γi,j}+ h2

i,i′ri,i′
λi + λi′

2
,

so that for any (i, i′) ∈ E, by necessary and sufficient first order condition

hi,i′ =
γi,i′ + λi′ − λi
ri,i′(λi′ + λi)

. (7.41)

By replacing h by its expression in the dual variables we get something equivalent to

maximize
(λ,γ,µ,ν)

∑

i∈I
{λidi −

∑

j∈J
νi,kq̄ −

∑

i′∈V (i)

(λi − λi′ − γi,j)2

2ri,i′(λi + λi′)
}

subject to ∀(i, j) ∈ I × J cji + νi,j ≥ λi + µi,j .

(7.42)

The expression of γ with respect to λ follows. For any (i, i′) ∈ E

γi,i′ =





0 if λi ≤ λi′
λi − λi′ else

(7.43)

so the dual problem is equivalent to

maximize
(λ,µ,ν)

∑

i∈I
{λidi −

∑

j∈J
νi,j q̄ −

∑

i′∈V (i)

(λi − λi′)2

4ri,i′(λi + λi′)
}

subject to ∀(i, j) ∈ I × J cji + νi,j ≥ λi + µi,j ,

(7.44)

because µ does not play any role in the admissibility of the other variables nor in the
objective, this is equivalent to

maximize
(λ,ν)

∑

i∈I
{λidi −

∑

j∈J
νi,j q̄ −

∑

i′∈V (i)

(λi − λi′)2

4ri,i′(λi + λi′)
}

subject to ∀(i, j) ∈ I × J cji + νi,j ≥ λi,
(7.45)

The expression of ν follows. For any (i, j) ∈ I × J

νi,j =





0 if λi ≤ cji
λi − cji else.

(7.46)
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So we can a posteriori justify that we have strong duality: the operator is continuous,
convex-concave and the dual variables are restricted to be in a bounded set.

So the dual of the allocation problem writes:

maximize
λ≥0

∑

i∈I
{λidi − q̄

∑

j∈J
(λi − cji )δλi≥cji −

∑

i′∈V (i)

(λi − λi′)2

4ri,i′(λi + λi′)
}, (7.47)

where

δx≥y =





1 if x ≥ y
0 else.

(7.48)

For i ∈ I we maximize the criteria

λidi − q̄
∑

j∈J
(λi − cji )δλi≥cji −

∑

i′∈V (i)

(λi − λi′)2

4ri,i′(λi + λi′)
, (7.49)

which is strictly concave for any λ−i (sum of concave and strictly concave functions). We
denote by Λi(λ−i) its maximizer. The first order necessary and sufficient condition on Λi

is:
0 ∈ Fi(Λi, λ−i)−Ki(Λi), (7.50)

where

Ki(λi) =





0 if λi < c1
i

[j − 1, j]q̄ if λi = cji

jq̄ if λi ∈]cji , c
j+1
i [, j 6= N

Nq̄ if λi ∈ λi ∈]cNi , c̄[,

(7.51)

We conclude

Lemma 7.14. For any i ∈ I and any λ−i ∈ [mini c
1
i ,maxi c

N
i ]n−1, Λi(λ−i) is the unique

solution of

Fi(Λi, λ−i) ∈ Ki(Λi). (7.52)

We point out that the primal (and dual) solution unicity is a desirable property that is
not systematic for the allocation problems of centralized market models. The expression
of h with respect to λ (7.41) and the fact the supply constraint should be binding at
optimality justify the interpretation of Fi proposed at the beginning of this subsection. In
the following we use this property many times.
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7.4.2 Some properties of the solution

If r and d are set, we can see the solution of Problem 4 as a function of the vector c ∈ Cn.
We denote by q(c) the solution of Problem 4 with the cost vector c. Similarly, we define
qi(c), q

j
i (c), λ(c) and λi(c). We give here two properties of the allocation problem solution.

By integration, we showed in the previous section that the solution of the mechanism
design inherits those properties.

Lemma 7.15. Let (q(c), h(c)) be a solution of Problem 4, then qji (c) does not depend on
cli for l 6= j:

qji (c
1, . . . cj−1, cj , cj+1 . . . , cN ; c−i) = qji (s

1, . . . sj−1, cj , sj+1 . . . , sN ; c−i) (7.53)

Proof. Let i ∈ I, j ∈ J , c−i ∈ Cn−1, c = (c1, . . . , cN ) ∈ C and s = (s1, . . . , sN ) ∈ C such
that sj = cj . We shall prove that qji (s, c

−i) = qji (c, c
−i). We denote by λc (resp. λs) the

dual variables associated with the nodal contraints for the allocation problem parametrized
with c (resp. s). First if

qji (c, c
−i) ∈]0, q̄[, (7.54)

then by lemma 7.14 λci = cji and so using Lemma 7.14 again, λsi = cji . Therefore λs = λc,
from which we deduce that qji (c, c

−i) = qji (s, c
−i).

So without loss of generality, we can assume that

qji (c, c
−i) = q̄ and qji (s, c

−i) = 0. (7.55)

Then using Lemma 7.14 we get

λci ≥ ck and λsi ≤ ck, (7.56)

so that λci ≥ λsi . If λci > λsi , then λc−i ≥ λs−i by non-decreasingness of Λi′ , i′ ∈ I\{i}
(explained in §7.4.3) Therefore all the other agents are producing less, which is absurd
since i is already producing less.

We extend the notations by setting for all i ∈ I, c0
i = c∗. We consider the subset S of

C for which at some nodes i, the multiplicator λi is equal to the marginal cost and the
production is a multiple of q̄ (i.e. stuck in an angle):

S = {c ∈ Cn, qi(c) = jq̄ and λi(c) = cj
′

i for some i ∈ I, j ∈ J ∪{0}, j′ ∈ {j, j+1}}. (7.57)

The set S corresponds to the points of transition between the two possibilities defined by
the first order condition (7.50). Because of the angle, it is natural to think that this is
where irregularities may happen (see the proof of the next lemma). We introduce this set
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to show some regularity properties of q and Q. We detail the proof in the Appendix. The
approach consists in showing that S is a finit union of sets of zero measure. This is also
true for the projection of S on the {ci}×C−i. Then we observe that on C\S, the relations
between the primal and dual variables are smooth.

Lemma 7.16. The function q is C∞ on Cn\S and C0 on Cn.

Proof. We postpone the proof to Appendix 7.8

7.4.3 Fixed point

In this subsection we show that the solution of the dual problem is the unique fixed point
of a monotone operator. We define

Λ(λ1, ..., λn) = (Λ1(λ−1), ...,Λn(λ−n)). (7.58)

Lemma 7.17. For any i ∈ I, Λi is non-decreasing.

Proof. Let λ−i < λ′−i and the corresponding Λi and Λ′i. Assume Λi > Λ′i. Since Fi is
decreasing in the first variable and increasing in the second

Fi(Λi, λ−i) < Fi(Λ
′
i, λ
′
−i) (7.59)

Moreover for any x ∈ K(Λ′i) and y ∈ K(Λi), x ≤ y and Fi(Λi, λ−i) ∈ K(Λi), Fi(Λ′i, λ
′
−i) ∈

K(Λ′i). Therefore Fi(Λ
′
i, λ
′
−i) ≤ Fi(Λi, λ−i) which is absurd.

We will use the following classical result (see [87] for a proof and definition of complete
lattice).

Theorem 7.18 (Knaster-Tarski fixed point). Let L be a complete lattice and let f an
application from L to L and order preserving. Then the set of fixed points of f in L is a
complete lattice.

In particular, the set of fixed points is non empty. Since Λ is order preserving and
[c∗, c∗]n is a lattice when we consider the natural order, there is a fixed point, and the set
of fixed points is a lattice.

Lemma 7.19. λ is optimal for the dual ⇔ λ is a fixed point of Λ.

Proof. • If λ is optimal for the dual, then each component i maximizes the criteria
(7.49), so λ is a fixed point of Λ.

• If λ is a fixed point of Λ, then by definition, each component i maximizes the criteria
(7.49). So since the problem is (strictly) concave, λ is optimal.
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A consequence of the previous lemma is that

Lemma 7.20. The set of fixed points of Λ is a singleton.

Definition 7.21 (Continuous for monotone sequence). We consider the natural partial
order on Rn. We say that a function G is continuous for monotone (resp. increasing,
decreasing) sequences if for any monotone (resp. increasing, decreasing) sequence xn con-
verging to a point x in the domain of G, G(xn) goes to G(x) as n goes to infinity.

Obviously, a function is continuous for monotone sequences if and only if it is continuous
for increasing and decreasing sequences.

Lemma 7.22. The operator Λ is continuous for monotone sequences.

The intuition of the proof is that we can use the monotony of the sequence and Lemma
7.14 to characterize the behaviour of Λ on the neighborhood. We find that Λ is either
constant or characterized by the implicit function theorem.

Proof. Let λ̄−i, j ∈ [1 . . . N ], we first deal with the ’nice’ case, that corresponds to
Fi(Λ(λ̄−i), λ̄−i) ∈]j − 1, j[q̄

• If Λi(λ̄−i) ∈]cji , c
j+1
i [ (we do not treat the case j = N , which is very similar to what

follows) then since Fi is C∞ and of invertible derivative (non zero) in λi, the implicit
function theorem tells us that the solution ψ of Fi(ψ(λ̄−i), λ̄−i) = jq̄ is continous
in a neighborhood B of λ̄−i. So we can take B small enough so that for λ−i ∈ B,
ψ(λ−i) ∈]cji , c

j+1
i [. On this neighborhood, ψ satisfies the first order conditions and

so by unicity of the solution of the optimization problem, since those conditions are
sufficient, ψ = Λi on B. So Λi is continous at λ̄−i.

• If Λi(λ̄−i) = cji (as before, we do not treat the case j = N), then by Lemma 7.14
Fi(Λi(λ̄−i), λ̄−i) = [j − 1, j]q̄, if Fi ∈]j − 1, j[q̄ (we deal with the border case in the
next point) then since Fi is continuous, there is a neighborhood B of λ̄−i such that
Fi(Λi(λ̄−i), λ−i) ∈]j − 1, j[q̄, so on B Λi is constant so continuous.

• We proceed with the borders. If Fi(Λi(λ̄−i), λ̄−i) = (j − 1)q̄ and Λi(λ̄−i) = cji .

– Decreasing case: Let us take ε ∈ Rn−1
+ such that Fi(Λi(λ̄−i), λ̄−i+ε) ∈ [j−1, j]q̄

(Fi is continuous and increasing in λ−i). Then Λi(λ̄−i+ ε) = Λi(λ̄−i) checks the
first order condition so Λ is constant, so we get the continuity for decreasing
sequences.

– Increasing case: Fi(Λi(λ̄−i), λ̄−i) = (j−1)q̄ and so there exists a ball B such that
the implicit function theorem applies and there exists ψ such that Fi(ψ(λ̄−i −
ε), λ̄−i− ε) = (j − 1)q̄ and ψ(λ̄−i) = Λi(λ̄−i) = cji (remember that Λi(λ̄−i) = cji
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by hypothesis) . Since Fi is increasing in the second variable and decreasing in
the first, ψ is increasing. For ε of positive components and sufficiently small,
ψ(λ̄−i− ε) ∈]cj−1

i , cji [ (since ψ(λ̄−i) = Λi(λ̄−i) = cji ) and so check the first order
condition. So for ε of positive components and sufficiently small, ψ = Λi by
uniqueness of the solution. So Λi is continuous for increasing sequence.

• We do the same analysis if Fi(Λi(λ̄−i), λ̄−i) = jq̄ and Λi(λ̄−i) = cji .

The conclusion follows.

We could have alternatively used Berge Maximum theorem for strictly concave criterion
to get the continuity of Λ. Yet, we choose to present this proof for pedagogical reasons
since it contains some key ideas we will use later (see appendix).

Theorem 7.23. The sequence (Λk(cN1 ...c
N
n ))k∈N converges to the solution of the dual.

Proof. Since Λ(cN1 ...c
N
n ) ≤ (cN1 ...c

N
n ), and since Λ is order preserving, the sequence Λk(cN1 ...c

N
n ) =

λk is non increasing and bounded, so converge to a point x. Since Λ is continuous for mono-
tone sequence, x is a fixed point.

Theorem 7.24. For any i ∈ I, λ−i ∈ [c∗, c∗]n−1, Λi(λ−i) has the following explicite
expression:

Λi(λ−i) = min{cNi ,min
j∈J
{cji1Fi(cji ,λ−i)<jq̄}, min

k∈[0..N−1]
{gki (λ−i)1gki (λ−i)∈[cki ,c

k+1
i ]}} (7.60)

Proof. We denote by Gi the RHS of (7.60) and show that for any i

Fi(Gi(λ−i), λ−i) ∈ K(G(λ−i)), (7.61)

and then we conclude with a uniqueness argument.
If there is j ∈ J such that Gi(λ−i) = cji , then either Fi(c

j
i , λ−i) < jq̄ or gji (λ−i) =

cji . This last possibility implies by definition of gji that Fi(c
j
i , λ−i) = jq̄. So anyway

Fi(c
j
i , λ−i) ≤ jq̄. Remember that K(G(λ−i)) = [j − 1, j]q̄. So we need to prove that

Fi(c
j
i , λ−i) ≥ (j − 1)q̄. Suppose the contrary, i.e. Fi(c

j
i , λ−i) < (j − 1)q̄. Then since

Gi(λ−i) = cji , F (cji , λ−i) < (j − 1)q̄, which in turn implies that

gji (λ−i) < cji . (7.62)

Now observe that since Gi(λ−i) = cji , F (cj−1
i , λ−i) > (j − 1)q̄, which implies that

gji (λ−i) > cj−1
i . (7.63)

Combining (7.62) and (7.63) with the definition of G, we see that G(λ−i) ≤ gji (λ−i). But
G(λ−i) = cji and g

j
i (λ−i) < cji , so this is absurd. Therefore Fi(c

j
i , λ−i) ≥ (j − 1)q̄.
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Else let us assume that there is not such j. Then there is k ∈ [0 . . . N − 1] such that
Gi(λ−i) = gki (λ−i). By definition of gki , Fi(Gi(λ−i), λ−i)) = kq̄ and by definition of G,
Gi(λ−i) ∈ [cki , c

k+1
i ]. So again Fi(Gi(λ−i), λ−i)) ∈ K(Gi(λ−i)). We can now conclude that

Λ = G.

We can interpret the fixed point algorithm as if some benevolent agents situated at
each node of the network were exchanging information. They collectively try to minimize
the total cost and, to do so, they communicate their current marginal costs. This marginal
cost is the minimum of their local marginal cost and the marginal cost of importation
from the adjacent nodes. At each iteration, the agents compute how much they are going
to produce based on their current marginal cost. Then they update their marginal cost
based on the information they just received and transmit this marginal cost to the adjacent
nodes. We point out that the information used by each agent is local.

7.4.4 Decreasing Rate

We derive in this section an estimate for the decreasing rate. We denote α = max(e,e′)∈E2 re/re′ .
We have the following bound:

Lemma 7.25. For any (i, i′, k, λ−i) ∈ E × [0, N ]× [c∗, c∗]n−1,

∂λig
k
i′(λ−i) ≥

1

Nα
(
c∗
c∗

)5. (7.64)

Proof. We combine (7.40) with (7.34) and (7.35).

Lemma 7.26. Since (λki )k∈N is non-increasing for all i ∈ I, there is a finite number of k
for which at least one coordinate λki satisfies

λki > cqi and λk+1
i ≤ cqi (7.65)

or
λki = cqi and λk+1

i < cqi . (7.66)

We denote by K this set. Let (k1, k2) ∈ N2 such that [k1 − 1, k2 + 1] ∩ K = ∅. Then for
k ∈ [k1, k2] and i ∈ I such that λk−1

i 6= λki

λki − λk+1
i ≥ 1

Nα
(
c∗
c∗

)5 max
i′∈V (i)

(λk−1
i′ − λki′) (7.67)

Proof. By definition of λk, λki − λk+1
i = Λi(λk−1

−i )− Λi(λk−i). By construction, there exists
j ∈ [0, N − 1] such that Λi(λk−1

−i ) = gji (λ
k−1
−i ) and Λi(λk−i) = gji (λ

k
−i). Then by monotony

of g, gji (λ
k
−i)− gji (λk−1

−i ) is lower bounded by

|∂λi′g
j
i |∞(λk−1

i′ − λki′), (7.68)
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Fixed Point CVX
cost 83.2 83.195
time (s) 2.03 30.23

Fixed Point CVX
cost 4971.4 4971.4
time (s) 28.39 35.23

Table 7.2 – Results for a linear (a) and piecewise linear (b) instances of the problem solved
with the fixed point algorithm and CVX.

for i′ ∈ V (i). We then take the i′ ∈ V (i) that maximizes (λk−1
i′ −λki′) and use the previous

lemma to get the result.

7.4.5 Algorithm Implementation

We implemented this algorithm in Matlab. We use a dichotomy to compute the gki . Note
that for linear cost the analysis is similar. We define gi(λ−i) as the unique x such that
fi(x, λ−i) = 0 and x ≥ 0 and define Λ such that

Λi(λ) = min(ci, gi(λ−i)) (7.69)

We perform some numerical comparisons with CVX, a package for specifying and solv-
ing convex programs [41, 42] for both linear and piecewise linear production cost functions.
We generate a graph with 100 nodes connected randomly. To generate the graph, we use
a Barabasi-Albert model [11] to ensure some scaling properties. The experiment is per-
formed on a personal laptop (OSX, 4 Go,1.3 GHz Intel Core i5). The networks randomly
generated to test the implementations are displayed in Figures 7.1a and 7.1b, and the
results are summarized in Table 7.2.

Both CVX and the fixed point algorithm find the optimal value. The linear version of
the fixed point algorithm is about ten times faster than the CVX resolution. Note that
the algorithm could be distributed, since at each iteration, the computation at each node
only depends on the values of the previous iteration. In addition, instead of computing
the iterates of Λ at each step, we could use intermediate steps were we follow a decreasing
direction Λ(λk) − λk and choose h > 0 such that λkh = h(Λ(λk) − λk) + λk satisfies
Λ(λkh) ≤ λkh, which is easier to check than computing the gi. This makes the algorithm
similar to more standard descent based approaches (see [15]).

7.5 Two-agent allocation problem

We propose another algorithm for the piecewise linear allocation problem when the network
is limited to two agents. This section is motivated by the need for efficient (both in speed
and precision) allocation algorithms to numerically compute Bayesian Nash equilibria of
the standard setting. Indeed, the natural next step of this work would be to proceed
with numerical benchmarks, by comparing the Bayesian Nash equilibrium of the standard
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(a) The network generated to test the linear
implementation of the algorithm

(b) The network generated to test the
generic implementation of the algorithm

setting and the solution of the optimal mechanism. In general the numerical search of such
equilibrium requires to solve the allocation problems many times. A second motivation to
present this piece of work here is the complementary insight it gives on the structure of
the allocation problem.

7.5.1 First order condition

The allocation problem with two agents of slopes cji and demand vector di is

Problem 5.
minimize

qji ,h

∑

j∈J
cj1q

j
1 + cj2q

j
2

subject to
∑

j

qj1 − h ≥
r

2
h2 + d1

∑

j

qj2 + h ≥ r

2
h2 + d2

qji ≤ q̄
qji ≥ 0

h ∈ R.

(7.70)

We assume that N is big enough so that each agent could supply the whole amount
without producing more than q̄N . This is not a restrictive assumption as we could put
very high marginal cost to model some capacity constraints. We denote for h ∈ R and
j ∈ J

q1(h) = d1 + r
h2

2
+ h, q2(h) = d2 + r

h2

2
− h, (7.71)

φji (h) = min((qi(h)− (j − 1)q̄)+, q̄). (7.72)

In order to reduce to an unconstrained problem, we assume that the constraints on the
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positiveness of the production are not bounding (else we can already conclude). This can be
checked numerically by computing the gradients at qi(h) = 0. Since the nodal constraints
are bounding, we reformulate the problem:

minimize
h∈R

C(h) =
∑

j∈J
cj1φ

j
1(h) + cj2φ

j
2(h). (7.73)

By definition of φ for (i, j, h) ∈ I × J × R,

φji (h) =





0 if qi(h) ≤ (j − 1)q̄

qi(h)− (j − 1)q̄ if qi(h) ∈ [j − 1, j]q̄

q̄ if qi(h) ≥ jq̄.
(7.74)

So we can express the derivative of φji :

∂φji (h) =





0 if qi(h) < (j − 1)q̄

rh+ (−1)i+1 if qi(h) ∈]j − 1, j[q̄

0 if qi(h) > jq̄.

(7.75)

The function C is convex, the expression of its subdifferential ∂C(h) follows from (7.75):





cj11 (rh+ 1) + cj22 (rh− 1) if qi(h) ∈](ji − 1), ji[q̄

[cj11 , c
j1+1
1 ](rh+ 1) + cj22 (rh− 1) if q2(h) ∈](j2 − 1), j2[q̄ and q1(h) = j1q̄

cj11 (rh+ 1) + [cj22 , c
j2+1
2 ](rh− 1) if q1(h) ∈](j1 − 1), j1[q̄ and q2(h) = j2q̄

[cj11 , c
j1+1
1 ](rh+ 1) + [cj22 , c

j2+1
2 ](rh− 1) if qi(h) = jiq̄.

By the fifth assumption, we eliminate the last possibility. We denote

g(u) =
1− u
1 + u

, (7.76)

so that 0 ∈ ∂C(h) is equivalent to





g(rh) = cj11 /c
j2
2 if qi(h) ∈]ji − 1, ji[q̄

g(rh) ∈ [
c
j1
1

c
j2
2

,
c
j1+1
1

c
j2
2

] if q2(h) ∈]j2 − 1, j2[q̄ and q1(h) = j1q̄

g(rh) ∈ [
c
j1
1

c
j2+1
2

,
c
j1
1

c
j2
2

] if q1(h) ∈]j1 − 1, j1[q̄ and q2(h) = j2q̄

(7.77)
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We denote

q−1
1 (x) = −1

r
+

√
1

r2
− 2

r
(d1 − x) and q−1

2 (x) =
1

r
−
√

1

r2
− 2

r
(d2 − x), (7.78)

and
ji(h) = dqi(h)

q̄
e. (7.79)

By (7.77), 0 ∈ ∂C(h) is equivalent to one of those propositions being true:




∃j1, j2 qi(h) ∈]ji − 1, ji[q̄ and h = g(
c
j1
1

c
j2
2

)/r

∃j1, g(rh) ∈ [
c
j1
1

c
j2(h)
2

,
c
j1+1
1

c
j2(h)
2

] and h = q−1
1 (j1q̄)

∃j2, g(rh) ∈ [
c
j1(h)
1

c
j2+1
2

,
c
j1(h)
1

c
j2
2

] and h = q−1
2 (j2q̄).

(7.80)

We then use the fact that g is idempotent: g(u) = x⇔ g(x) = u. We obtain:

0 ∈ ∂C(h)⇔





∃j1, j2 h ∈ q−1
i (](ji − 1), ji[q̄) and h = g(

c
j1
1

c
j2
2

)/r

∃j1, rh ∈ [g(
c
j1+1
1

c
j2(h)
2

), g(
c
j1
1

c
j2(h)
2

)] and h = q−1
1 (j1q̄)

∃j2, rh ∈ [g(
c
j1(h)
1

c
j2
2

), g(
c
j1(h)
1

c
j2+1
2

)] and h = q−1
2 (j2q̄).

(7.81)

We denote, for (i, j) ∈ I × J and (j1, j2) ∈ J2:

aji = q−1
i (jq̄) and bj1,j2 = g(cj11 /c

j2
2 )/r. (7.82)

Those two quantities only depend on the problem data. We point out that aji corresponds
to the value of h when we set qi = jq̄ and bj1,j2 corresponds to the optimal value of h when
qi ∈](ji − 1), ji[q̄. We sum up with the following Lemma:

Lemma 7.27. There exist (j1, j2) ∈ J2 such that one of those propositions is true:

bj1,j2 ∈]aj1−1
i , aj1i [∩]aj2i , a

j2−1
i [ (7.83)

aj11 ∈ [b
j1+1,j2(a

j1
1 )
, b
j1,j2(a

j1
1 )

] (7.84)

aj22 ∈ [b
j1(a

j2
2 ),j2

, b
j1(a

j2
2 ),j2+1

]. (7.85)

Then the optimal value of h is respectively bj1,j2, a
j1
1 and aj22 .

7.5.2 Algorithm

We denote by c−i the copy of the vector ci with the first coordinate removed, and qi the total
production of agent i. We denote by q1(d, c1, c2) and q2(d, c1, c2) the optimal production
allocation when the demand is d at both node and the cost vectors are c1 and c2.
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Lemma 7.28. If q1(d, c1, c2) ≥ q̄ and q2(d, c1, c2) ≥ q̄, then

q1(d, c1, c2) = q1(d− q̄, c−1 , c−2 ) + q̄ and q2(d, c1, c2) = q2(d− q̄, c−1 , c−2 )) + q̄. (7.86)

Proof. Fix q1
i = q̄, the resulting optimization problem is equivalent to P (d− q̄, c−1 , c−2 ).

We set
F (λ1, λ2) = d+

1

r

λ2 − λ1

λ1 + λ2
+

1

2r
{λ2 − λ1

λ1 + λ2
}2, (7.87)

which is the 2-agent equivalent of Fi. We already know that if (λ1, λ2) are the solution of
the dual, then q1 = F (λ1, λ2) and q2 = F (λ2, λ1). The main result of this part is:

Theorem 7.29. If c1
1 < c1

2 and the second and third propositions of Lemma 7.27 are not
satisfied, then let k be the smallest element of J ∩ {0} such that

F (ck+1
1 , c1

2) ≤ kq̄ (A) or F (c1
2, c

k
1) > q̄ (B) (7.88)

then

• if (B), then q1(d, c1, c2) = q1(d−q̄, c−1 , c−2 )+q̄ and q2(d, c1, c2) = q2(d−q̄, c−1 , c−2 ))+q̄.

• else, q1 = F (ck1, c
1
2) and q2 = F (c1

2, c
k
1)

Proof. If (B), then we show that q2 ≥ q̄. Indeed, if we assume q2 < q̄, then since we have
eliminated the corner solution cases λ2 = c1

2. If we assume in addition that q1 < (k − 1)q̄,
then λ1 < ck1, then q1 = F (λ1, λ2) = F (λ1, c

1
2) > F (ck1, c

1
2) > (k − 1)q̄ because of the

definition of k, which is absurd. So if q2 < q̄ then necessarily q1 > (k − 1)q̄ (The case
q1 = (k−1)q̄ is a corner solution case that has been eliminated by hypothesis). So λ1 > ck1
so by (B) q2 = F (λ2, λ1) > F (c1

2, c
k
1) > q̄ which is in contradiction with the assumption.

So if (B), then q2 > q̄, and since c1
1 < c1

2, q1 > q̄.
Else, by definition, (A) is true. Note that q1 = F (ck1, c

1
2) and q2 = F (c1

2, c
k
1) solve the

linear problem with c1 = ck1 and c2 = c1
2 and it is admissible. So by convexity, this is the

solution.

Combining this result with the previous subsection, we can build an algorithm that first
checks that we do not have a corner solution, and then recursively computes the solution.

7.6 Conclusion

We have shown how to characterize and compute the mechanism design. In addition,
the allocation problem for the optimal and the standard mechanism are the same. We
have proposed an algorithm based on a fixed point to solve the allocation problem. This
work raises some questions. Can we weaken the Assumptions used in this work? Can we
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estimate the social benefit of using such mechanism? How to build numerical benchmarks
to compare the optimal mechanism and the standard setting? How to implement the
optimal mechanism in practice? Which real markets enter in the framework described in
§7.3.6?

7.7 Proof of Lemma 7.7

Proof. By definition

X(a1 . . . ak−1, b, ak+1 . . . aN )−X(a1 . . . ak−1, c, ak+1 . . . aN ) =

V (a1 . . . b . . . aN )− V (a1 . . . c . . . aN ) +
∑

j 6=k
aj [Qj(a1 . . . b . . . aN )−Qj(a1 . . . c . . . aN )]

+bQk(a1 . . . b . . . aN )− cQk(a1 . . . c . . . aN )

=

∫ c

b
Qk(a1 . . . s . . . aN )ds+

∑

j 6=k
aj [Qj(a1 . . . b . . . aN )−Qj(a1 . . . c . . . aN )]

+bQk(a1 . . . b . . . aN )− cQk(a1 . . . c . . . aN ).

We use (H1) for the last equality. Then we apply a telescopic formula

X(a)−X(b) = X(a1 . . . aN )−X(b1, a2 . . . aN ) +

X(b1, a2 . . . aN )−X(b1, b2 . . . aN ) + . . .

+X(b1 . . . bN
1
, aN )−X(b1 . . . bN )

=

N∑

k=1

(

∫ bk

ak
Qk(b1 . . . s . . . aN )ds) +

N∑

k=1

∑

j<k

bj [Qj(b1 . . . bk−1, ak, ak+1 . . . aN )−Qj(b1 . . . bk−1, bk, ak+1 . . . aN )]

+

N∑

k=1

∑

j>k

aj [Qj(b1 . . . bk−1, ak, ak+1 . . . aN )−Qj(b1 . . . bk−1, bk, ak+1 . . . aN )]

+

N∑

k=1

akQk(b1 . . . bk−1, ak, ak+1 . . . aN )− bkQk(b1 . . . bk−1 . . . bk, ak+1 . . . aN )

Reordering the last three terms, we get

N∑

j=1

∑

k>j

bj [Qj(b1 . . . bk−1, ak, ak+1 . . . aN )−Qj(b1 . . . bk−1, bk, ak+1 . . . aN )]

+

N∑

j=1

∑

k<j

aj [Qj(b1 . . . bk−1, ak, ak+1 . . . aN )−Qj(b1 . . . bk−1, bk, ak+1 . . . aN )]
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+
N∑

j=1

ajQj(b1 . . . bj − 1, aj , aj+1 . . . aN )− bjQj(b1 . . . bj−1 . . . bj , aj+1 . . . aN )

=

N∑

j=1

{bj
∑

k>j

[Qj(b1 . . . bk−1, ak, ak+1 . . . aN )−Qj(b1 . . . bk−1, bk, ak+1 . . . aN )]

+ajQj(b1 . . . bj−1, aj , aj+1 . . . aN )− bjQj(b1 . . . bj−1 . . . bj , aj+1 . . . aN ) +

aj
∑

k<j

[Qj(b1 . . . bk−1, ak, ak+1 . . . aN )−Qj(b1 . . . bk−1, bk, ak+1 . . . aN )]}

=
N∑

j

ajQj(a1 . . . aN )− bjQj(b1 . . . bN )

We end up with

X(a)−X(b) =
N∑

j=1

(ajQj(a)− bjQj(b) +

∫ bj

aj
Qj(b1 . . . bj−1, t, aj+1 . . . aN )dt) (7.89)

7.8 On S and the regularity of q

Remember that the set S corresponds to the points of transition between the two possi-
bilities defined by the first order condition (7.50):

S = {c ∈ Cn, qi(c) = jq̄ and λi(c) = cj′ for some i ∈ I, j ∈ J, j′ ∈ {j, j + 1}}. (7.90)

Our first goal is to show that S is a finite union of sets of zero measure (Lemmas 7.30
and 7.32). To do so, we apply the implicit functions theorem. From this we deduce the
regularity of q (proof of Lemma 7.16). For any IA, IB partition of I, and IC ⊂ IB not empty,
j ∈ JI and j′ ∈ JI such that for all i, j′ ∈ {ji, ji + 1}, we denote by S(IA, IB, IC , j, j

′) the
set




c ∈ Cn such that for any i ∈ I





i ∈ IA ⇒ λi(c) = c
j′i
i and qi(c) /∈ Nq̄

i ∈ IB ⇒ qi(c) = jiq̄

i ∈ IC ⇒ λi(c) = c
j′i
i




. (7.91)

For an element c of such set, we denote by M the matrix

M(c) =

(
∂Fi(λ(c))

∂λj

)

(i,j)∈IB
. (7.92)
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We need to study the invertibility of M to apply the implicit functions theorem (Lemma
7.31). Note that the function S is defined on a finite set. We use the image of S to show
that the measure of S with respect to the Lebesgue measure is zero. We first show in the
next lemma that S is included in the finite union of the S(IA, IB, IC , j, j

′) family. Then
we will show that each element of this family has a measure equal to zero.

Lemma 7.30. S ⊆ ∪S(IA, IB, IC , j, j
′)

Proof. Take c ∈ S, then by definition of S, there exist i ∈ I, j ∈ J and j′ ∈ {j, j+ 1} such
that qi(c) = jq̄ and λi(c) = cj′ , so IC is not empty. By Lemma 7.14, for all i ∈ I, i is in
IA or IB. So we have a set S(IA, IB, IC , j, j

′) such that c is in this set, so S is included in
the union of those sets.

Lemma 7.31. For any c ∈ Cn the matrix M(c) is invertible.

Proof. Assume that there are some coefficients αi such that
∑

i αiMi = 0 where Mi is the
ith column of M . Then by (7.34) and (7.35), the ith row of this relation writes:

αi
∑

j∈V (i)

λ2
j

ri,j(λi + λj)3
=

∑

j∈V (i),j∈IB

αjλiλj
ri,j(λi + λj)3

. (7.93)

We denote bi,j =
λ2jλi

ri,j(λi+λj)3
and ai = αi

λi
. Then (7.93) is equivalent to

ai =
∑

j∈V (i),j∈IB
aj

bi,j∑
k∈V (i) bi,k

(7.94)

Considering the biggest ai, we get that all ai are equal by convexity, and so either all
are equal to zero or ∑

j∈V (i)

bi,j =
∑

j∈V (i),j∈IB
bi,j (7.95)

which is not the case since IA is not empty by the fifth assumption.

Next we show that S(IA, IB, IC , j, j
′) has a zero Lebesgue measure.

Lemma 7.32. For any IA, IB partition of I, and IC ⊂ IB not empty, j ∈ JI and j′ ∈ JI
such that for all i, j′ ∈ {j, j + 1}, the measure of the set S(IA, IB, IC , j, j

′) is zero.

Proof. We assume in the market description that it is not possible to produce a multiple q̄
at each node and satisfy exactly the nodal constraints (fifth assumption). Therefore it is
not possible that IB = I, so IA is not empty. By definition of SIA,IB ,IC ,j,j′ , for all i ∈ IB,

Fi(c
j′

IA
, λIB (c)) = qi(c) = jiq̄, (7.96)
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which is a system of equations in λIB parametrized by cj
′

IA
. Let c ∈ C such that the system

is satisfied, by Lemma 7.31, we can apply the implicit function theorem, so there is a ball
around c in which S(IA, IB, IC , j, j

′) is included in a smooth surface. By compacity of C,
we can choose a sequence dense in S(IA, IB, IC , j, j

′). We apply the result to each element
of this sequence. By density, S(IA, IB, IC , j, j

′) is a countable union of smooth surfaces.
Therefore the measure of S(IA, IB, IC , j, j

′) is zero.

A direct consequence of Lemma 7.32 and Lemma 7.30 is

Lemma 7.33. The measure of S is zero.

We proceed with the proof of Lemma 7.16.

of lemma 7.16. Let c = (c1 . . . cn) ∈ Cn\S. Let us show that q is infinitely differentiable
at c. We consider the two assertions:

Ai = ”∃ki, Fi(λ(c)) ∈]ki − 1, ki[q̄ and λi = cki ”

Bi = ”∃ki, Fi(λ(c)) = kiq̄ and λi ∈]cki , c
k+1
i [”

By Lemma 7.14 and by defintion of S, for any i ∈ I either Ai or Bi is true, but never both.
We denote by IA (resp. IB ) the set of elements of I for which Ai (resp. IB) is true. If
Ai is true for all i then there is a neighborhood V of c such that for any element c̃ of V ,
Fi(c̃) ∈]ki − 1, ki[q̄, therefore on V , λ(c̃) = c̃.

Else IB is not empty and by definition of Bi

∀i ∈ IB Fi(λIA , λIB ) = q̄ji, (7.97)

which we can see as an equation in λIB parametrized by λIA . This equation is satisfied at
λ(c). If we denote by M the matrix

M =

(
∂Fi(λ(c))

∂λj

)

(i,j)∈IB
, (7.98)

thenM is invertible (see lemma 7.31), the implicit function theorem applies and there exists
a function λIB so that in a neighborhood V of c, for all i ∈ IB, we have Fi(λIA , λIB (λIA)) =

q̄ki. Moreover, since Fi is C∞ on [c∗, c∗]n, λIB is C∞ on V . Then if c̃ ∈ V , (c̃, λIB (c̃))

checks the first order condition so by uniqueness cIA , λIB (c̃) is the dual solution, and so,
qi = Fi(λIB (c̃), c̃) for all i ∈ I on V , so qi is C∞ at c. This concludes the proof of the first
part of the lemma.

The continuity of q comes from Berge maximum principle (see Theorem 9.17 in [85])
in a convex setting.

The next lemma is an important component for the proof of Theorem 7.10.



178CHAPTER 7. MECHANISMDESIGN ANDALLOCATIONS FOR NETWORKMARKETS

Lemma 7.34. Let i ∈ I and ci ∈ Ci, then the Lebesgue measure of the set

Si(ci) = {c−i ∈ C−i, (ci, c−i) ∈ S} (7.99)

is zero.

Proof. Using Lemma 7.30, Si(ci) ⊆ {c−i ∈ C−i, (ci, c−i) ∈ ∪S(IA, IB, IC , j, j
′)}. So let

c−i ∈ Si(ci), IA, IB a partition of I, and IC ⊆ IB not empty, and j, j′ such that (ci, c−i) ∈
S(IA, IB, IC , j, j

′). There are three possible cases:

• i ∈ IA then as explained in the proof of Lemma 7.32, S(IA, IB, IC , j, j
′) is locally a

surface parametrized by ci so by projection over an hyperplane of the type ci = x it
also a surface in C−i.

• i ∈ IB\IC locally, q is independant of ci so if S(IA, IB, IC , j, j
′) ∩ (ci,Si(ci)) is of

strictly positive measure, then S(IA, IB, IC , j, j
′) has also a strictly positive measure

in Cn, since this is not true, S(IA, IB, IC , j, j
′)∩ (ci,Si(ci)) is of zero measure in the

neighborhood.

• Else i ∈ IC , which is the tricky part. First by definition of IC , for any element c of
S(IA, IB, IC , j, j

′), qi(c) = jiq̄ and λi(c) = c
j′i
i . Without loss of generality, we assume

j′i = ji, the other case can be treated similarly. Then we make the observation that
we do not modify the c−i of S(IA, IB, IC , j, j

′) if we set cj+1
i = cji . Since we are

interested in S(IA, IB, IC , j, j
′)∩(ci,Si(ci)), we can assume without loss of generality

that cj+1
i = cji . Then we have reduced to the case i ∈ IA.

We conclude as in the proof of Lemma 7.32.
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We introduce a class of Bayesian bidding games for which we prove that the set of pure Nash
equilibria is a (non-empty) sublattice and we give a sufficient condition for uniqueness that
is often verified in the context of markets with inelastic demand. We propose a dynamics
that converges to the equilibrium set and derive a scheme to compute the extreme Nash
equilibria. This scheme is an alternative to the more standard best reply dynamics and
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fictitious play. It shows better converging properties on the electricity auction instance
that motivated its introduction. We apply this framework to the wholesale electricity
procurement auctions that motivated this study.

8.1 Introduction

The interaction between firms (or individuals) competing on price to maximize their profits
in an imperfect information environment constitutes a Bayesian game. Very often most
of the private information concerns the production costs of the firms. Such situations
occur for instance in procurement auctions, commodity markets and oligopolies. It is then
natural to ask about the Nash equilibria of such kind of games. Do we have a guaranty of
existence? Is the equilibrium unique? Do we have an algorithm to compute it? Those are
generically hard questions when the classical results of game theory are not applicable. In
this work we identify a class of games for which some of those questions can be answered
using basic tools of lattice theory.

An essential observation is that a bid increase by one firm is very often an incitation for
all other firms to increase their bids. The exploitation of such monotonic behaviors, sum-
marized in the notion of strategic complementarity, is central in the study of many pricing
games (and more generally in Bayesian games) and explains the intensive use of lattice
theory in a literature that has many interesting results of pure Nash equilibria existence.
As opposed to what is required in most of game theory literature, those results usually do
not need payoff functions to be quasiconcave. Those existence results, depending on the
fixed point theorem over which they are constructed, differ by the underlying assumptions
and the additional information they provide on the equilibria set.

What follows builds on a rich literature. We now briefly review some of its major
achievements.

Optimization on lattices The development of this work was strongly inspired by a
book from Topkis [87] in which the author surveys some fundamental results of monotone
comparative statics, in particular [86, 68, 84, 33]. Monotone comparative statics concerns
settings where a parametrized collection of optimal decisions are monotone in the param-
eter.

Bayesian games and equilibrium existence The class we introduce belongs to the
large class of Bayesian games, and more specifically has some strategic complementarity
properties.

In [91] Vives proves the existence of a pure Nash equilibrium for Bayesian games with
general action and type spaces in action with a Tarsky fixed-point theorem on lattices.
More precisely, the equilibrium set is a non-empty complete lattice. Payoffs need to be
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supermodular.

In [5], Athey shows the existence of a monotone pure strategy equilibrium for finite
Bayesian games satisfying a single-crossing condition. Actions and types should be one di-
mensional. The demonstration relies on Kakutani’s fixed-point theorem. Athey generalizes
the result to a continuum action set when the payoffs are continuous.

In [65], McAdams extends Athey results to a multidimensional setting. Like in [5] the
extension to continuum action sets is obtained by taking the limit of finite approxima-
tions equilibria. McAdams, like Athey, uses a single-crossing condition, combined with a
quasisupermodularity condition, and then applies the Glicksberg’s fixed point theorem.

In [80], Reny and Zamir show that first price, one unit auctions with affiliated types
and interdependent values have a pure equilibrium; they use Athey’s [5] result for their
demonstration. They combine a result by [69] with Athey [5] approach of limit of finite
action grids.

Vives surveys in [92] the use of monotone comparative static tools for games with
complementarities. He points out some interesting properties of games with strategic
complementaries that are still valid in our framework: general strategic spaces, existence
of pure Nash equilibria, specific structure of the set of equilibria, existence of a Best reply
dynamics algorithm to compute the extremal equilibria. In the seventh section of the
article, he discusses some aspects specific to Bayesian games.

In [90], Van Zandt and Vives give a constructive proof of the existence of a pure Nash
equilibrium for Bayesian games satisfying a strategic complementarity condition. The
action and type sets can be infinite dimensional. The payoffs need to be supermodular and
satisfy some increasing difference property. In addition, they show that one can compute
such equilibria by best-reply iteration. We propose a different approach that turns out to
be more stable on the numerical benchmark we use in this study.

In [79] Philip J. Reny generalizes the results of Athey [5] and McAdams [65] on the
existence of monotone pure strategy equilibria in generic Bayesian games. While Athey
and McAdams proofs rely on the convexity of the best reply sets, Reny uses a fixed point
theorem that relies on the notion of contractibility. He shows that the result applies
when the payoff function is weakly quasi supermodular and satisfies a weak single crossing
condition, and concludes that his result is strictly more general than [5] and [65]. In
particular, the result can be applied when type and action sets are infinite dimensional.
The payoff functions need to be continuous in the actions.

Equilibrium computation, best reply dynamics and fictitious play Many ap-
proaches to compute an equilibrium consist in mimicking the behaviors of the players
when the game is repeated sequentially. As time goes on, each player takes a decision
based on the previous iterations of the game. Basically, an approach is characterized by
the memory of the players (do they remember a joint probability of actions, marginals. . . )
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and the way they choose the next action. The two historical approaches are the Cournot’s
tâtonnements and Brown’s fictitious play [23]. In the standard Cournot’s tâtonnements
(or Best Reply dynamics), actions are taken as best replies against the last actions of the
other players. In fictitious play, the last action is modified in the direction of the Best
Reply against the average of the other players past actions. There are no general results
of fictitious play convergence for games with complementarities. Yet one may consult
[14, 13, 66, 67]. Vives discusses in [92] the tâtonnements in a context very close to ours.
The convergence is derived from some monotonicity properties but, as he points out, con-
vergence cannot be ensured for an arbitrary starting point. Observe that most of these
results are related to matrix games. We propose an alternative approach to fictitious play
and Best Reply dynamics for a class of Bayesian games to which the electricity market
introduced in [38] belongs.
In the next section, we introduce the game and present our main results. We illustrate
those results on an example in §8.3. §8.4, §8.5 and §8.6 are dedicated to the proofs of the
three main results: the existence of a Nash equilibrium, the uniqueness of the equilibrium
and a convergence of a tâtonnement dynamics to the equilibrium. We discuss some possible
extensions in the conclusion.

8.2 Game presentation and main results

8.2.1 Definitions

Definition 8.1 (Least Upper Bound (∨) and Greatest Lower Bound (∧) , see [87]). Let X
be a partially ordered set, X′ ⊆ X. We say that x̄ ∈ X is the least upper bound of X′ when
∀(x, x′) ∈ X × X′ x̄ ≤ x ⇐⇒ x′ ≤ x. We say that x ∈ X is the greatest lower bound of
X′ when ∀(x, x′) ∈ X × X′ x ≤ x ⇐⇒ x ≤ x′. For (x, y) ∈ X2, we denote by x ∧ y and
x ∨ y the greatest lower bound and the least upper bound of the pair {x, y}.

Definition 8.2 (Lattice, Sublattice, Complete Lattice, see [87]). A partially ordered set X
is a lattice iff it contains a least upper bound and a greatest lower bound for each pair of its
elements. A subset X′ ⊆ X is a sublattice if it contains a least upper bound and a greatest
lower bound for each pair of its elements. A lattice in which each nonempty subset has a
greatest lower bound and a least upper bound is complete.

We will use the notion of increasing function in lattice, which differs from the usual
definition. Observe that one may also encounter the term isotone in the literature.

Definition 8.3 (Increasing). We say that a function f from two ordered sets is increasing
if for all x ≤ y, f(x) ≤ f(y).
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8.2.2 Game Presentation

Notations

The game (I,T,B,Σ,K, p) consists in a set of players I = 1 . . . n, n ∈ N. For each player,
there is a set of types Ti and a set of bids (or action) Bi. Types and bids are included in a
compact [c∗, c∗] (where c∗ > 0) such that T ⊂ B. The strategies are applications from Ti to
Bi. For each player, we denote by Σi his strategy set. For any i ∈ I, the demand response
Ki is a function from the bid set B to [0,K+], where K+ > 0. We generically denote by
σi the elements of the strategy set Σi, ci the elements of Ti (because it can be interpreted
as a production cost and we want to avoid any confusion with the time variable), and bi

the bids, elements of Bi. We use the standard notation of game theory −i to refer to all
but player i. Last but not least, pi is a probability density of support T−i.

For a strategy profile σ−i = (σ1 . . . σn), the expected ex-ante payoff Πi of player i of
type ci bidding bi = σi[ci] is

Πi
σ−i(b

i, ci) =

∫

c−i∈T−i
πi(bi, ci, σ−i[c−i])p−i(c−i)dc−i, (8.1)

with the payoff πi defined for (bi, ci, σ−i, c−i) ∈ Bi × Ti × Σ−i × T−i by

πi(bi, ci, σ−i[c−i]) = (bi − ci)Ki(bi, σ−i(c−i)). (8.2)

In this expression, Ki can be interpreted as the quantity i is asked to provide for a marginal
price profile bi when the other players bid the marginal prices σ−i[c−i]. So the integrand is
the profit of this player if he has a marginal production cost ci. The kernel Ki corresponds
to the market (or auctioneer) response to the bids. We assume the Kernel to be continuous.
In what follows we assume πi(bi, ci, σ−i[c−i]) Lebesgue measurable with respect to c−i for
all (bi, ci, σ−i) ∈ Bi × Ti × Σ−i.

Definition 8.4 (Best Reply ). We denote by BRi the Best Reply set-valued mapping from
Σ−i to the subsets of Σi such that for any σ−i ∈ Σ−i,

BRi(σ−i) = {β ∈ Σi : ∀(c, σ) ∈ Ti × Σi, Πi
σ−i(β[ci], ci) ≥ Πi

σ−i(σ
i[ci], ci)} (8.3)

Definition 8.5 (Pure Nash Equilibrium). A strategy profile σ ∈ Σ is a Pure Nash Equi-
librium if for any i ∈ I, σ̂i ∈ Σi and ci ∈ Ti

Πi
σ−i(σ

i[ci], ci) ≥ Πi
σ−i(σ̂

i[ci], ci) (8.4)

We use the partial order ≤Σi on Σi defined by

∀(σ1, σ2) ∈ Σi, (σ1 ≤Σi σ2) iff (∀c ∈ Ti, σ1(c) ≤ σ2(c)). (8.5)
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We denote by ≤Σ the induced product order on Σ.

Assumption 5 (Kernel Monotonicity). For any i ∈ I Ki(bi, b−i), is increasing in b−i and
decreasing in bi.

The Kernel Monotonicity assumption corresponds to the fact that the bidding occurs
in a competitive setting, and the demand tends to go to the cheapest bidder.

Assumption 6 (Strict Increasing Differences). For any i ∈ I, c ∈ Ti, set πic = πi(., c, .).
Then πic satisfies the Strict Increasing Differences Property:

∀(b1, b2, b−i1 , b−i2 ) ∈ Bi × Bi × B−i × B−i such that b1 ≤ b2 and b−i1 ≤ b−i2 : (8.6)

πic(b2, b
−i
1 )− πic(b1, b−i1 ) < πic(b2, b

−i
2 )− πic(b1, b−i2 ). (8.7)

8.2.3 Main results

Theorem 8.6 (Existence of a Pure Nash Equilibrium). The set of pure Nash equilibra is
a nonempty complete lattice.

Theorem 8.7 (Uniqueness Sufficient Condition). If

• for any α > 0, (x, y) ∈ B,
K(αx, αy) = K(x, y), (8.8)

• for any σ ∈ Σ equilibrium strategy profile, i ∈ I, and (c1, c2) ∈ [c∗, c∗]×]0, c∗] such
that c1 > c2

β1 > β2,∀(β1β2) ∈ arg max
b∈Bi

Πi
c1(b, σ−i)× arg max

b∈Bi
Πi
c2(b, σ−i) (8.9)

• for any σ ∈ Σ equilibrium strategy profile, i ∈ I, inf BRi(σ−i)(c) and supBRi(σ−i)(c)

are continuous

• for any (σ1, σ2) ∈ Σ equilibrium strategy profile for all (i, c) ∈ I× T,

σi2(c∗)
σi1(c)

σi2(c)
≤ b∗ (8.10)

then the set of pure Nash equilibria is a singleton.

Relation (8.8) means that if every player multiplies his bid by the same constant, then
the resulting allocation does not change. This should be satisfied with inelastic demand.

Theorem 8.8 (Converging dynamics). Assume:

• b ∈ Bi → Πi
σ−i(b, c) is C2 and b→ ∂bΠ

i
σ−i(b, c) is uniformly Lipschitz for all (c, σ) ∈

Ti × Σ−i.



8.3. APPLICATION 185

• σ∗(T) is included in ]b∗, b∗[I, where σ∗ is the smallest equilibrium’s strategy profile.

• For any (σ−i, c) ∈ Σi × Ti, Πi
σ−i(b, c) is concave in b.

Then the solution to the system of differential equations

∀(i, c) ∈ I× Ti ∂tσ
i(c, t) = ∂bΠ

i
σ(,t)−i(σ

i(c, t), c) (8.11)

σi(c, 0) = c (8.12)

converges to the smallest equilibrium strategy profile σ∗ as t goes to +∞.

8.3 Application

Consider a simple geographical electricity market with two nodes (Node 1 and Node 2).
The nodes are connected by a line through which electricity can be sent. There is a known
(inelastic) demand d at each node. We assume marginal prices to be constant, within a
compact [b∗, b∗]. We consider that there is one producer at each node, namely a1 and a2.
An independent operator has to allocate the production to meet the demand at each node
and to minimize the total cost paid to the producers. When a quantity h of electricity is
sent through the line, rh2 is lost in the process (Joule effect). The players of the Bayesian
game are the two producers, who want to maximize their expected profit (we say expected
because they do not know the other player production cost). Solving the independent
operator problem, we get

Ki(bi, b−i) =





F (bi, b−i) if F (bi, b−i) ≥ 0 and F (b−i, bi) ≥ 0

0 if F (bi, b−i) < 0

q̄ if F (b−i, bi) < 0,

(8.13)

where

F (x, y) = d+
1

2r

(
x− y
x+ y

)2

− 1

r

x− y
x+ y

and q̄ = 2
1−
√

1− 2dr

r
. (8.14)

Therefore Assumption 5 is satisfied. Observe that the increasing difference property is
not satisfied (see Picture 8.1) everywhere. In the following, we assume that F (b∗, b∗) ≥
0. Therefore the corner solutions are not to be considered and Ki(bi, b−i) = F (bi, b−i).
Moreover, we assume b∗ < 2b∗. Then the payoff writes πic(bi, b−i) = (bi − c)Ki(bi, b−i).
Therefore

∂xyπ
i
c(x, y) =

4y

r(x+ y)4
(x(2y − x) + c(2x− y)) > 0 (8.15)

Therefore the strict increasing differences condition 6 is satisfied. So Theorem 8.6 applies.
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Increasing Differences is not satisfied

Figure 8.1 – The increasing difference property is not satisfied, we use something weaker

Next it is clear that the scaling property (8.8) of Theorem 8.7 is satisfied. Using

∂xcπ
i
c(x, y) =

4y2

r(x+ y)4
> 0 (8.16)

we show as in [90] that (8.9) is satisfied.

Observe that
∂xxπ

i
c(x, y) =

4y

r(x+ y)4
(x− 3c− 2y) < 0 (8.17)

Therefore π is strictly concave with respect to its first variable, and by integration, so is Π.
Therefore by Berge theorem, the best reply is continuous in c. To show that (8.10), we first
observe that in full information, symmetric setting, if the cost is c for both players, then
the best reply is c

1−2rd . We combine this observation with the monotonicity of the best
reply with respect to the type and the opponent strategy to conclude that any optimal bid
b should satisfy

b ∈ [
c∗

1− 2rd
,

c∗

1− 2rd
] (8.18)

Therefore condition (8.10) is satisfied for b∗ large enough and Theorem 8.7 applies.

We have already checked that all conditions to apply Theorem 8.8 were satisfied.

8.4 Existence of a Nash Equilibrium

8.4.1 General Preliminary Results

Definition 8.9 (Strict Single crossing property, see [87]). Let X, Y and Z be partially
ordered set, let f(x, z) be a function of a subset S of X×Z into Y, then f(x, z) satisfies the
strict single crossing property in (x, z) on S if for all x1 and x2 in X and z1, z2 in Z with
x1 < x2, z1 < z2 and (x1, x2) × (z1, z2) being a subset of S, f(x1, z1) ≤ f(x2, z1) implies
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f(x1, z2) < f(x2, z2).

Lemma 8.10. The application (b, σ−i) → Πi
σ−i(b, c) satisfies the Strict Single Crossing

Property.

Proof. Let b1 < b2 ∈ B and a−i1 < a−i2 ∈ A−i such that Πi
c(b1, σ

−i
1 ) ≤ Πi

c(b2, σ
−i
1 ). By

increasing differences, for any c−i ∈ T−i, we have

πic(b2, σ
−i
1 (c−i))− πic(b1, σ−i1 (c−i)) < πic(b2, σ

−i
2 (c−i))− πic(b1, σ−i2 (c−i)), (8.19)

so multiplying by p−i(c−i), and integrating, we get

0 ≤ Πi
c(b2, σ

−i
1 )−Πi

c(b1, σ
−i
1 ) < Πi

c(b2, σ
−i
2 )−Πi

c(b1, σ
−i
2 ), (8.20)

where the first inequality comes from the hypothesis.

Definition 8.11 (Quasisupermodularity, see [87]). Let X be a lattice, Z a partially ordered
set and f a function from X to Z, then we say that f is quasisupermodular if for all x1 and
x2 from X, f(x1 ∧ x2) ≤ f(x1) implies f(x2) ≤ f(x1 ∨ x2) and f(x1 ∧ x2) < f(x1) implies
f(x2) < f(x1 ∨ x2).

Lemma 8.12 (Quasi Supermodularity). For any i ∈ I, c ∈ T, σ−i ∈ Σ−i, b → Πi
σ−i(c, b)

is quasisupermodular.

Proof. Trivial since we are in a monodimensional setting.

8.4.2 Existence

We will need the following result:

Theorem 8.13 (Increasing Optimal Strategies (see [87]) page 83). Suppose that X is a
lattice, Z is a partially ordered set, Sz is a subset of X for each z in Z, Sz is increasing in
z on Z, f(x, z) is quasisupermodular in x on X for each z in Z, and f(x, z) satisfies the
strict single crossing property in (x, z) on X × Z. If z1 and z2 are in Z, z1 < z2, x1 is in
arg maxx∈Sz1 f(x, z1) and x2 is in arg maxx∈Sz2 f(x, z2), then x1 ≤ x2. Hence if one picks
any xz in arg maxx∈Sz for each z in Z with argmax non empty, then xz is increasing in z
on {z : z ∈ Z, arg maxx∈Sz f(x, z) non empty }.

Definition 8.14 (Induced Set ordering). Let X be a lattice, X1 and X2 two non empty
subsets of X. We say that X1 v X2 iff for any (x1, x2) ∈ X1 × X2, x1 ∧ x2 ∈ X1 and
x1 ∨ x2 ∈ X2.

Combining Lemma 8.10, Lemma 8.12 with Theorem 8.13, we get:
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Lemma 8.15. For any i ∈ I, for any (c, σ−i1 , σ−i2 ) ∈ Ti × Σ−i2 , such that σ−i1 < σ−i2 , for
any (β1, β2) ∈ BRi(σ−i1 )×BRi(σ−i2 )

β1(c) ≤ β2(c) (8.21)

In particular, BRi is increasing in the induced set ordering on Σi. In addition, for any
σ−i ∈ Σ−i, BRi(σ−i) is a complete sublattice.

Proof. By continuity and compactness, for any c ∈ Ti, arg maxb Πi
c(b, σ

−i) is nonempty.
Since Πi

c is quasisupermodular (Lemma 8.12) and satisfies the strict single crossing property
(Lemma 8.10). Therefore by Theorem 8.13,(8.21) is satisfied for any c. So any selection of
BRi is increasing in σ−i. Therefore BRi in increasing in the induced set ordering. Since
Π is continous in b (by continuity of the integrand) and supermodular in b (since b is
monodimensionnal), by corollary 2.7.1 of [87], BRi(σ−i)[c] is a complete sublatice of Bi,
therefore BRi(σ−i) is a complete sublatice of Σi.

Theorem 8.16 (Tarsky fixed point, see [87] Theorem 2.5.1). Suppose that X is a non
empty complete lattice, Y (x) is an increasing correspondence (in the induced set ordering)
from X to the set of the non empty complete sublattices of X. Then the set of fixed points
of Y is a nonempty complete sublattice.

Proof of Theorem 8.6. With Lemma 8.15, Y = (BR1(σ−1) . . . BRn(σ−n)) is increasing in
the induced set ordering on Σ. Since Σ is a non empty complete lattice (this comes from the
definition of B), Theorem 8.16 ensures that the set of fixed points is a nonempty complete
sublattice. The elements of this set satisfy the definition of a Nash equilibrium.

On the example: multinodal case Observe that the reasoning could be extended to
a multinodal, non symmetric setting. One needs to use the strict increasing difference
property with respect to the neighboring nodes.

8.5 Uniqueness Sufficient Condition

Proof of Theorem 8.7. Assume that the equilibria set is not a singleton. Then since it is a
complete lattice, there exists a biggest and a smallest equilibria in the set. We denote by
σ̄ ∈ Σ and σ ∈ Σ the strategy profiles of those equilibria. The ratio

σ̄i[c]

σi[c]
(8.22)

is bounded by b∗/b∗ and therefore admits a supremum α > 1. By compactness of T
and continuity of the extremal equilibrium strategies (hypothesis), there exist i∗ ∈ I and
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c∗ ∈ Ti∗ such that
σ̄i
∗
[c∗]

σi∗ [c∗]
= α. (8.23)

For any strategy profile σ ∈ Σ we denote by ασ the strategy profile defined by

(ασ)i(c) = α(σi(c)) (8.24)

for any i ∈ I and c ∈ Ti.
By (8.10) ασ belongs to Σ. Now observe that for i ∈ I, c ∈ T,

BRi(ασ−i)[c] = arg max
b∈Bi

Ec−i(b− c)Ki(b, ασ−i[c−i]) (8.25)

= arg max
b∈Bi

Ec−i(b− c)Ki(b/α, σ−i[c−i]) (8.26)

= arg max
b∈Bi

Ec−i(b/α− c/α)Ki(b/α, σ−i[c−i]) (8.27)

= α arg max
u,αu∈Bi

Ec−i(u− c/α)Ki(u, σ−i[c−i]) (8.28)

where we applied the definition of BR, the scaling relation (8.8) and a change of variable.
Now combining the last computation with (8.9), we have

BRi(ασ−i)[c] < ασi[c] (8.29)

The inequality should be understood in the sense that any element of the LHS set is
smaller than the RHS. Combining the definition of an equilibrium, Lemma 8.15 on the
monotonicity of the best replies, and the last relation, we get

σ̄i[c] ∈ BRi(σ̄−i)[c] ≤ BRi(ασ−i)[c] < ασi[c] (8.30)

which is not coherent with the definition of α. We conclude that the equilibrium is unique.

8.6 A dynamics that converges to the smallest Nash Equilib-
rium

8.6.1 Proof of theorem 8.8

Proof. First we need to show that (8.11) has a solution. Let T > 0 and DT the set of
measurable functions σ from [0, T ] to Σ. On DT we consider the operator φ such that, for
any σ ∈ DT , φσ ∈ DT and for any (i, c, t) ∈ I× T× [0, T ]

[φσ(t)]i(c) = c+

∫ t

0
∂bΠ

i
[σ(s)]−i([σ(s)]i(c), c)ds. (8.31)
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Observe that for T small enough, DT is stable by φ, which is a contracting operator,
and, moreover, DT associated with the ||∞ is a closed subset of a Banach space. Therefore
we can apply Picard fixed point theorem and denote by σ̃t the associated fixed point.
Iterating the reasoning we can extend the flow σ̃t as long as it stays strictly below b∗.
Using the single crossing property of Π (which is conserved by integration from π), the
fact that Π is convex and that the dynamics cancel at any equilibrium point, we see that
σ̃t increases and stays below σ∗. Therefore the flow is defined for all t ≥ 0, is bounded
and increasing and therefore converges as t goes to +∞ to a stationary point. Using the
convexity of Π, we deduce that the stationary point is an equilibrium, therefore the flow
converges to σ∗.

8.6.2 Remarks

Observe that we could build the same kind of scheme to compute σ∗. We introduce this
scheme because it showed better converging properties on our example than the Best Reply
iterations. Our explanation is that the Best Reply dynamics requires a discretization of
B and T, while an Euler scheme of the differential equation only requires a discretization
of T (and the time). We display in Figures 8.2 and 8.3 a numerical experiment with the
Best Reply iterations and the continuous time dynamics. Even when the hypotheses of
Theorem 8.8 are not satisfied, the scheme displays good converging properties.

8.7 Conclusion and possible extension

We have identified a class of Bayesian games for which we showed that there exists a unique
pure Nash equilibrium to which a simple dynamics converges. Numerical experiments seem
to indicate that those results could be reinvestigated with weaker assumptions.

In addition, some extensions should be considered. In particular the use of affiliated
types, atoms in the distribution and general bidding functions (not only constant marginal
rates).
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Figure 8.2 – The iterated best replies algorithm does not converge
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Figure 8.3 – The differential approach converges when we start above or below the equi-
librium strategy profil
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Appendix A

BocopHJB 1.1.0 – A collection of
examples

We provide some toy problems solved with BocopHJB.

A.1 Car with obstacle

We consider a very simplified car model. The state (x, y) describes the coordinates of a
pointlike car in R2. The controls u and θ are the velocity and the direction of the car.
The dynamics is

ẋ = u cos θ

ẏ = u sin θ.

Our criteria is to reach a prescribed final position as fast as possible, therefore

min

∫ T

0
f(x(t), y(t))dt

where f(x, y) is 0 if we are close enough to (xf , yf ) = (0.2, 0.75), and 1 else. We define the
part of the space where the car can go in order to illustrate the use of state contraints
with BocopHJB:

{(x, y) ∈ [0, 1]2 : x < 0.5, y < (0.75− 0.5x), y > (0.25 + 0.5x)}

is a forbidden space. Figure A.1 shows the value function we get, with the simulated
trajectory corresponding to the initial conditions (x0, y0) = (0.2, 0.2).

193
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Figure A.1 – Value Function and simulated trajectory for car problem

A.2 Thermostat

We use a very simple thermostat model to illustrate the mode switching. The state x
represents the temperature in the room. There is no control, but only two modes for the
thermostat (on or off). The dynamics of the thermostat is

ẋ = +10 when the thermostat is on

ẋ = −10 when the thermostat is off.

We have to pay a constant cost of 1 per-unit of time when the thermostat is on. We set an
additional cost of 10 per-unit of time when the temperature goes below 50. We also have
a switching cost of 1 when turning the thermostat on.

Figure A.2 – Simulated trajectory, modes and value function for the thermostat problem

A.3 Mouse in a maze

This maze illustrates the use of both discrete switches and continuous controls. A mouse
tries to get out of a maze. This mouse has a "bomberman" control space. The state
can be described with the variable (x, y) ∈ R2 which defines the position of the unlucky
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pointlike mouse. The mouse has 4 modes modeling its direction: north, east, west, south.
In addition to the direction modes, the mouse has a control variable for its velocity, which
is positive and upper-bounded. We consider a running cost of 10 per unit of time in the
maze, and each change of direction costs 1 as a switching cost. The mouse starts at the
red square while the exit of the maze is at the green square. The optimal trajectory is
displayed in Fig. A.3.

Figure A.3 – The mouse & maze trajectory, and the corresponding value function

A.4 Call option

We use the Black-Scholes model as an example of a stochastic problem without control
variables. We compute the price of a European call option, with S the price of a stock as
the state variable. In Black-Scholes model, S follows the dynamics

dS = S(µdt+ σdW )

and the payoff is given by g(S) = (S −K)+ where K is the strike. The interest rate is r.
We solve Black-Scholes equation to compute the value of the option. We show on Fig. A.4
the results for r = 0.01, σ = 0.02, K = 105, t = 0, T = 20, S0 = 100. We check that the
value function is very close to the solution given by the Black-Scholes formula.

Remark: we recall that for a call option the Black-Scholes formula gives the solution

C(S, t) = N(d1)S −N(d2)Ke−r(T−t)

d1 =
1

σ
√

(T − t)
(ln(

S

K
) + (r +

σ2

2
)(T − t))

d2 = d1 − σ
√
T − t
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Figure A.4 – The price of a call option computed withBocopHJB and explicit solution
(above), an example of simulated trajectory (below)

A.5 Portfolio allocation

As an example of a stochastic control problem, we consider the Merton portfolio allocation
problem in finite horizon, for which the solution is known (see for instance [76]). The
portfolio consists in a risky asset whose value S follows dS = S(µdt + σdW ) and a non-
risky asset whose value S0 follows dS0 = S0rdt. The portfolio is invested in the risky asset
with proportion α, and the value of the portfolio X is the state variable with dynamics

dXt =
Xtαt
St

dSt +
Xt(1− αt)

S0
t

dS0
t = Xt(αtµ+ (1− αt)r)dt+XtαtσdWt.

We want to solve the utility maximization problem V (x) = supαE(U(X
x,α
T )), where U

is the CRRA utility function defined by U(x) = xp

p . The solution is given by

V (x) = eρTU(x), with ρ =
(µ− r)2

2σ2

p

1− p + rp,

and the optimal control is constant, equal to α̂ = µ−r
σ2(1−p) . The results for p = 0.5 and
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other parameters as in [76] are displayed in figure A.5.

Figure A.5 – Control and state of the simulated trajectory. Value function at t = 0

A.6 Oscillations

We consider the optimal control problem

min
∫ 1

0 y
2 − u2

ẏ = u

u ∈ [−1, 1]

The infimum is −1 (consider un(t) = 1 if t ∈ [ 2k
2n ,

2k+1
2n ], −1 else).

The Hamiltonian is H = y2 − u2 + up. A minimizing control u∗ is either −1 or 1. The
intuition is that the control has to oscillate very quickly between −1 and 1 to obtain the
optimal value.

Consider that the control is randomized at any time, with probability α for u = 1. We
can formulate the relaxed problem

min
∫ 1

0 y
2 − 1

ẏ = E(u) = α1 + (1− α)(−1) = 2α− 1

α ∈ [0, 1]

The optimal solution for the relaxed problem is given by α = 0.5. Therefore when solving
numericaly the original problem, we expect the simulated trajectory to present a sequence
of very fast oscillations.
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Figure A.6 – On the left the value function of the problem. The control and the state
oscillate oscillations



Appendix B

Simplified microgrid model for
BocopHJB

We display here the most important samples from the code we used for the
battery aging study.

1 double u = con t r o l [ 0 ] ;
2 double P_diesel = fmax (0 e0 , u) ;
3 running_cost = 0 .5∗ pow( P_diesel , 2 ) ;
4 int k = round ( time /0 .25 e0 ) ;
5 double P_solar = SolarPower [ k ] ;
6 double P_load = LoadPower [ k ] ;
7 double P_bat = − P_diesel − P_solar + P_load ;
8 double P_out = fmax (0 e0 , P_bat) ;
9 double U_bat = 0 . 2 5 ;
10 double Ah_bat = 5e3 ;
11 double alpha = Alpha [ 0 ] ;
12 double I_out = P_out / U_bat ;
13 double SOC = s t a t e [ 0 ] ;
14 double SF = (−4e0∗SOC∗SOC + 5e0 ) / 5e0 ;
15 running_cost += alpha/ (Ah_bat) ∗ SF ∗ I_out ;

Listing B.1 – runningCostp

1 double SOC_i = Star t ingPo in t [ 0 ] ;
2 double SOC = f i n a l_ s t a t e [ 0 ] ;
3 i f (SOC>SOC_i) {
4 f i n a l_co s t = (SOC−SOC_i) ∗1 e3 ;
5 }
6 else {
7 f i n a l_co s t = 1e5 ;
8 }

Listing B.2 – finalCost

199
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1 double rho_i = 0 . 9 5 ;
2 double rho_o = 0 . 9 5 ;
3 double age = Age [ 0 ] ;
4 double capacity_bat = 100 ;
5 // con t r o l
6 double P_diesel = con t r o l [ 0 ] ;
7 // data f o r s o l a r power and power load
8 int k = round ( time /0 .25 e0 ) ;
9 double P_solar = SolarPower [ k ] ;
10 double P_load = LoadPower [ k ] ;
11 // b a t t e r y power s p l i t ( charge / d i s charge )
12 double P_bat = − P_diesel − P_solar + P_load ;
13 double P_out = fmax (0 e0 , P_bat) ;
14 double P_in = −fmin (0 e0 , P_bat) ;
15 // aging
16 rho_i = rho_i ∗ ( 1000−age ) /1000 ;
17 // dynamics
18 state_dynamics [ 0 ] = (P_in∗ rho_i − P_out/rho_o ) / capacity_bat ;

Listing B.3 – dynamics

1 # I n i t i a l and f i n a l time :
2 time . i n i t i a l double 0
3 time . f i n a l double 24
4 # Dimensions :
5 s t a t e . dimension i n t e g e r 1
6 con t r o l . dimension i n t e g e r 1
7 constant . dimension i n t e g e r 0
8 brownian . dimension i n t e g e r 0
9 # Control :
10 d i s c r e t i z a t i o n . c on t r o l . type s t r i n g uniform
11 combination . c on t r o l . type s t r i n g uniform
12 # Time d i s c r e t i z a t i o n :
13 d i s c r e t i z a t i o n . time i n t e g e r 24
14 # Grid type :
15 g r id . type s t r i n g uniform
16 # I n t e r p o l a t i o n :
17 i n t e r p o l a t i o n . inner s t r i n g l i n e a r
18 i n t e r p o l a t i o n . outer s t r i n g user_funct ion
19 # Switching mode :
20 sw i t ch ing .mode i n t e g e r 1
21 # Simulat ion :
22 s imu la t i on . type s t r i n g from_computed_sol
23 s imu la t i on . no i s e s t r i n g none
24 s imu la t i on . s t a r t i n g .mode s t r i n g user_funct ion
25 s o l u t i o n . f i l e s t r i n g valueFunct ion

Listing B.4 – problemHJB.def
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1 BocopHJB overview

1.1 Key features

• Global optimization for both deterministic and stochastic optimal control problems.

• Handles switching between discrete modes of the system.

• Stopping time problems can be solved using switchings.

• Built-in simulation module to recompute optimal strategies.

• Supports advanced rules to define the discrete control set.

• Parallel execution with OpenMP.

• Matlab / Python scripts to read value function and simulated trajectories.

1.2 Algorithm

The original Bocop package implements a local optimization method. The optimal con-
trol problem is approximated by a finite dimensional optimization problem (NLP) using
a time discretization (the direct transcription approach). The NLP problem is solved by
the well known software Ipopt, using sparse exact derivatives computed by Adol-C.

The second package BocopHJB implements a global optimization method. Similarly to
the Dynamic Programming approach, the optimal control problem is solved in two steps.
First we solve the Hamilton-Jacobi-Bellman equation satisfied by the value fonction of
the problem. Then we simulate the optimal trajectory from any chosen initial condition.
The computational effort is essentially taken by the first step, whose result, the value
fonction, can be stored for subsequent trajectory simulations.

1.3 Workflow

BocopHJB package contains core files and problem files. Core files implements the HJB
solver and are problem independent. Each problem is defined by a set of c/c++ files
and text files located in the problem folder. Solving an optimal control problem with
BocopHJB involves the following steps:

1. Problem Definition
Define the optimal control problem by completing the problem files. This files typ-
ically define the dimension, functions, and discretization (time, state and control)
of the problem.

2. Build and Run
The build step will create the bocophjp executable. Running the executable will,
depending on the options set in problemHJB.def, compute the value fonction
and/or simulate an optimal trajectory.
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3. Visualization
You can use provided python scripts in order to load and visualize the results of the
solution and simulation files. Note that plotting the value fonction is not always
available since it is a function of n variables, where n is the state dimension.

BocopHJB package includes a folder examples/ with several sample problems
to illustrate the features of the toolbox. These examples are described in
more details in the document ‘A collection of examples‘
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2 Example: the mouse & maze problem

2.1 Problem description

To test the use of both several switching possibilities and controls, we designed the
following maze problem. A mouse trapped in a maze tries to get out. This mouse has a
”bomberman typed” control space. The state can be described by the variable (x, y) ∈ R2

describing the position of the unlucky punctual mouse. The mouse has 4 modes modeling
its direction: north, east, west, south. In addition to the direction modes, the mouse has
a control variable for its velocity, which is positive and upper-bounded. We consider a
running cost of 10 per unit of time in the maze, and each change of direction costs 1 as
a switching cost. The mouse starts at the red square while the exit of the maze is at the
green square. The optimal trajectory is shown on Fig. 1.

Figure 1: The Maze and the mouse trajectory according to BocopHJB

You can run this test and display the results with the following commands in terminal.
Locally from the problem folder (examples/maze/):
> ./build

> ./bocophjb

Or from the root of the package:
> sh bocop build examples/maze

> sh bocop run examples/maze
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2.2 Files for the mouse & maze problem

2.2.1 Definition files

problemHJB.def, stateDisc/state.grid,
controlDisc/control.grid, controlDisc/control.combination.

# This file defines all dimensions and parameters

# values for your problem :

# Initial and final time :

time.initial double 0

time.final double 3

# Dimensions :

state.dimension integer 2

control.dimension integer 1

constant.dimension integer 0

brownian.dimension integer 0

# Control :

discretization.control.type string uniform

combination.control.type string uniform

# Time discretization :

discretization.time integer 50

# Grid type :

grid.type string uniform

# Interpolation :

# Inner : linear ; other

# Outer : final value ; projection ; user function

interpolation.inner string linear

interpolation.outer string user_function

# Switching mode :

switching.mode integer 4

# Names :

state.0 string x1

state.1 string x2

control.0 string u

# Simulation :

simulation.type string from_computed_sol

simulation.noise string none

solution.file string valueFunction.sol

# Discretization of the state :

discretization.state.0 integer 30

discretization.state.1 integer 30

# Minimum of the state grid :

minimum.state.0 double 0

minimum.state.1 double 0

# Maximum of the state grid :

maximum.state.0 double 1

maximum.state.1 double 1

# Discretization :

discretization.control.0 integer 11

# Minimum of the control grid :

minimum.control.0 double 0

# Maximum of the control grid :

maximum.control.0 double 1

2.2.2 Source files

dynamicsHJB.cpp

/**

* Drift function which describes the deterministic part of the dynamics.

*/

#include "header_drift"

{

double u1 = control[0];

switch(mode)

{

case 0 : // UP

state_dynamics[0] = 0.0;

state_dynamics[1] = u1;

break;

case 1 : // DOWN

state_dynamics[0] = 0.0;

state_dynamics[1] = -u1;

break;

case 2 : // LEFT

state_dynamics[0] = -u1;

state_dynamics[1] = 0.0;

break;

case 3 : // RIGHT

state_dynamics[0] = u1;

state_dynamics[1] = 0.0;

break;

}

}

/**

* Volatility function which describes the stochastic part of the dynamics.

*/

#include "header_volatility"
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{

// This function is unused since the problem is deterministic.

costFunctions.cpp

/**

* Running cost for the computation of the criterion.

*/

#include "header_runningCost"

{

double x1 = state[0];

double x2 = state[1];

if ( (x1 > 0.9) && (x2 < 0.1) )

running_cost = 0;

else

running_cost = 10;

}

/**

* Final cost for the computation of the criterion.

*/

#include "header_finalCost"

{

final_cost = 0;

}

/**

* Switching cost for the computation of the criterion.

*/

#include "header_switchingCost"

{

if (current_mode == next_mode)

switching_cost = 0;

else

switching_cost = 1;

}

constraints.cpp

/**

* User function used to check if a state is admissible or not.

*/

#include "header_checkAdmissibleState"

{

// We use state contraints to describe the maze (position of walls).

double x = state[0];

double y = state[1];

if( (x>1) || (x<0) || (y<0) || (y>1) ){return false;}

if( (x<0.4) && (y<0.6) ){return false;}

if( (x>=0.1) && (x<0.4) && (y>=0.7) ){return false;}

if( (x>=0.4) && (x<0.9) && (y<0.2) ){return false;}

if( (x>=0.4) && (x<0.9) && (y>=0.9) ){return false;}

if( (x>=0.9) && (y>=0.6) ){return false;}

if( (x>=0.5) && (x<0.8) && (y>=0.7) && (y<0.8) ){return false;}

if( (x>=0.5) && (x<0.8) && (y>=0.3) && (y<0.6) ){return false;}

if( (x>=0.7) && (x<0.8) && (y>=0.6) && (y<0.7) ){return false;}

if( (x>=0.8) && (y>=0.3) && (y<0.5) ){return false;}

return true;

}

/**

* User function used to check if a combination of controls and a state is admissible or not.

*/

#include "header_checkAdmissibleControlState"

{

return true;

}

simulation.cpp

/**

*\fn void simulationStartingPoint(std::vector<double>& starting_point)

* User function to define the starting point of the simulation.

*/

#include "header_simulationStartingPoint"

{

starting_point[0] = 0.05;

starting_point[1] = 0.95;
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}

/**

*\fn void simulationStartingMode(int& starting_mode)

* User function to define the starting mode of the simulation.

*/

#include "header_simulationStartingMode"

{

starting_mode = 0;

}

optionalFunctions.cpp

/**

* User function to compute the value of the value function for the points outside the grid.

*/

#include "header_userOutOfGridValueFunction"

{

// we return a huge value to prevent exit from the grid

result = 10000;

}

/**

* User function used to define the discretized controls.

*/

#include "header_userControlDiscretization"

{

//unused function for this example (see control.discretization in problemHJB.def)

return 0;

}

/**

* User function used to compute the combinations of controls.

* Each line of the resulting matrix is a combination of controls (u_0,..., u_p).

*/

#include "header_userControlCombination"

{

//unused function for this example (see control.discretization in problemHJB.def)

return vector< vector<double> >();

}

/**

* User function used to compute the combinations of controls when it depends of state.

* Each line of the resulting matrix is a combination of controls (u_0,..., u_p).

*/

#include "header_userControlCombinationStateDependent"

{

//unused function for this example (see control.discretization in problemHJB.def)

return vector< vector<double> >();

}
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3 Algorithm description

3.1 Stochastic optimal control problem

Let yt be a stochastic process described by

{
dyt = f(t, ut, yt)dt+ σ(t, ut, yt)dWt

y0 = x
(1)

where the control ut ∈ U and t ∈ [0,∞[, Wt is a standard Brownian motion and the drift
f and the volatility σ are Lipschitz and bounded.

We define U the set of mappings with value in U adapted to the filtration generated by
the Brownian motion (which means that we can take u(t) as a function of the past history
of the Brownian). We want to solve the stochastic optimal control problem

min
u∈U

E
(∫ T

t0

`(t, us, ys)ds+ φ(yT )

)
(2)

where ` is the running cost and φ the final cost.

Remark: Our framework includes additional state and control constraints of the form
g(t, u(t), y(t)) ≤ 0. It also handles switchings between several modes, which allows in
particular to solve stopping time problems, on/off state of plants, etc.

3.2 Dynamic Programming Principle

We define the value function V (x, t) such that

V (x, t) := min
u∈U

E
(∫ T

t

`(t, us, ys)ds+ φ(yT )

∣∣∣∣ yt = x

)

and
V (x, T ) = φ(x)

Let us take τ ∈ (t0, T ). We can write

V (y0, t0) = min
u∈U

Et0
(∫ τ

t0

`(t, us, ys)ds+

∫ T

τ

`(t, us, ys)ds+ φ(yT )

)

which leads to the dynamic programming equation

V (y0, t0) = min
u∈U

Et0
(∫ τ

t0

`(t, us, ys)ds+ V (yτ , τ)

)
(3)

We can discretize on time the stochastic process (using for instance an Euler scheme), so
that we have yk+1 as a function of yk, σk, uk. Let tk = h0k with tN = T . The discretized
problem is

min
uk∈U

E

(
h0

N−1∑

k=0

`(tk, u
k, yk) + φ(yN)

)
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where we set yk = y(tk) and uk = u(tk). The value function is defined as

V k(x) := min
u∈U

E

(
h0

N−1∑

j=0

`(ti, u
j, yj) + φ(yN)

∣∣∣∣∣ y
k = x

)

which leads to

V k(x) := min
u∈U

Ex
(
h0l(tk, u, x) + V k+1(yk+1)

)
(4)

with final condition
V N(x) = φ(x) (5)

We can extend this reasoning to cases where the dynamics and the cost functions depend
of a mode : a diesel engine for example which can be turned off or on. If we denote M
the number of modes, with a subscript i (or j) the functions corresponding to the mode
i and cij the switching cost from mode i to mode j (assuming that cii = 0), this leads to

V k
i (x) = min

j∈{0,...,M}

(
cij + min

u∈U

{
h0`j(tk, u, x) + Ex

[
V k+1
j

(
yk+1

)]})
(6)

The algorithm used to compute the Value function at tk is the following

Algorithm 1 Compute V k

Require: 0 ≤ k ≤ N
for x ∈ Grid do

if k = N then
V N(x) = φ(x)

else
for i ∈ {0, . . . ,M} do

Ṽ k
i (x) = min

u∈U

(
h0`j(tk, u, x) + Ex

[
V k+1
j

(
yk+1

)])

end for
for i ∈ {0, . . . ,M} do

V k
i (x) = min

j∈{0,...,M}

(
cij + Ṽ k

j (x)
)

end for
end if

end for

This algorithm is independent of the way of calculating Ex
[
V k+1
j

(
yk+1

)]
. A classical

method is to use an interpolation on the grid of V k+1 and an Euler scheme for the
dynamics: this is the semi-Lagrangian method, as used in BocopHJB.

3.3 Semi Lagrangian scheme

3.3.1 Time discretization

Remark: in the following we drop the argument tk in functions f, l for clarity.
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In the deterministic case, we naturally discretize the dynamics:

yk+1 = yk + h0f(uk, yk) (7)

In the stochastic case, remembering that a Brownian motion has independent increments
following a Normal law, W (tk+1)−W (tk) ∼

√
h0N (0, 1), we obtain

yk+1 = yk + h0f(uk, yk) +
√
h0σ(uk, yk)N (0, 1) (8)

According to [3], N (0, 1) can be replaced by any law with the same first two moments.
We use a binary choice and obtain

yk+1 ' yk + h0f(uk, yk) + α
√
h0eσX (uk, yk) (9)

P(e = 1) = P(e = −1) =
1

2

where X follows an uniform distribution on {1, . . . , q} and we have to choose α such that
the expected value and the variance of this approximated process correspond to the ones
of the original process in (8). Since the normal distribution and the random variable e
are centered, and e and X are independent, the expected value is the same for any α.
The variance in (8) is h0σσ

T . The variance in (9) writes

E
(
α
√
h0eσX (α

√
h0eσX )T

)
= α2h0E

(
e2σXσ

T
X
)

= α2h0
1

q

q∑

s=1

σsσ
T
s =

α2

q
h0σσ

T

therefore we have α =
√
q. Plugging (9) in (3) we obtain

V k(x) = min
u∈U

(
h0`(u, x) +

1

2q

q∑

s=1

V k+1
(
x+ h0f(u, x)±

√
qh0σs(u, x)

))
. (10)

3.3.2 Space discretization

We know the value of V at the points of the grid, and we want to interpolate at the
point y. We choose the coefficients αi ∈ [0, 1] such that yj = (1 − αj)xij + αjxij+1. We
interpolate the value function at the point y as follows (see [2]):

V k+1(y) =
∑

(k1,...,kn)∈{0,1}n

[
n∏

j=1

(1− αj)1−kjαkjj

]
V k+1(xi1+k1 , . . . , xin+kn)

where the sum is made on the 2n elements of {0, 1}n.

When a point doesn’t belong to the grid we cannot interpolate the value function at this
point. A typical choice is to take the value of the nearest point of the grid. Depending
on the problem, another sensible choice can be to take the final cost.

3.3.3 Control discretization

The minimizer of (10) is approximated by discretizing the control set U .
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3.3.4 Simulation

BocopHJB includes a built-in module to simulate the optimal strategies provided by
the dynamic programming algorithm. At each time step, the optimal control is taken as
the minimizer of (4) over the discrete control set.
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4 Description of problem files

In BocopHJB a problem is defined by the following files:

• a set of (C/C++) files:
- constraints.cpp for the constraints of the problem (state and/or control-state)
- costFunctions.cpp for the running, final and switching cost functions
- dynamicsHJB.cpp for the drift and volatility
- simulation.cpp for the initial conditions of the simulated trajectory
- optionalFunctions.cpp for several optional functions see 4.5

• a set of text files:
- problemHJB.def for general definition and settings
- stateDisc/ folder for state discretization
- controlDisc/ folder for control discretization

4.1 Definition file: problemHJB.def

This file defines the dimensions and names for the variables, as well as several general
parameters. Note that the ordering of the lines in this file does not matter. Blank lines
can be used for more clarity, as well as comments beginning by #. We recommend
renaming every variable and control, however this is not mandatory. The line format is
the following: keyword type value, where the keywords are listed below and the type
can be integer, double or string.

• Initial and final time
- time.initial: initial time t0
- time.final: final time tf

• Dimensions
- state.dimension: dimension of state variables y
- control.dimension: dimension of control variables u
- constants.dimension: number of numerical constants
- brownian.dimension: dimension of brownian motion W

• Control discretization
- discretization.control.type: discretization for each component of the control,
can be ”uniform” (automatic), ”user function” (see 4.5.2), or ”user file”. The values
for the i-th control component are in the files controlDisc/control.i.disc and
must be filled manually if option is set to ”user file”.
- combination.control.type: how to build the discretized control set. It can be
”uniform” (automatic), ”user function”(see 4.5.2), or ”user file”. The control set is
written in the file controlDisc/control.combination, one element per row. As
above, the file must be filled manually if option is set to ”user file”, in which case
”discretization.control.type” is ignored.

• Time discretization
- discretization.time: number of time steps
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• Grid type
- grid.type: type of state grid, for now the only available option is ”uniform”.

• Interpolation
- interpolation.inner: type of interpolation for the points inside the grid, for
now the only available option is ”linear interpolation”.
- interpolation.outer: type of interpolation for the points outside the grid, can
be ”final value” for the final value, ”projection” for the projection on the nearest
point of the grid, or ”user function” (see 4.5.3) for a specific function coded by the
user.

• Switching mode
- switching.modes: number of modes among which the system can switch. Set to
1 if there are no switchings.

• Simulation
- simulation.directory: the name of an existing directory inside the problem
directory where the simulation results will be saved. The simulated trajectory
consist in the files simulatedTrajectory.[times,states,controls, modes] that contain
the values for (t, x(t), u(t)) and the mode.

- simulation.type: can be ”none” (only compute the value function, no trajectory
simulation), ”from computed sol” (first compute the value function, then simulate
the optimal trajectory from the given initial conditions), or ”from sol file” (read a
previously computed value function file then simulate the optimal trajectory).

- simulation.noise: type of noise (i.e. realization of the Brownian for the simu-
lation), can be ”none”, ”gaussian”, or ”user function” (see 4.5.5). This parameter
has no effect for deterministic problem with brownian.dimension set to 0.

- simulation.starting.mode: set the initial mode for the simulation; ”auto” picks
the initial mode i0 giving the lowest value of V (t0, x0, i0), ”user function” lets the
user set explicitly the initial mode i0 in simulation.cpp (see 4.4).

• Names
- state.i: name of component i of y
- control.i: name of component i of u

• Constants
- constant.i: name and value of ith constant, the name replaces the type for
constants (ex: constant.0 c0 1.0)

• Solution file
- solution.file: name of the solution file (default ”valueFunction.sol”)

• Output frequency
- timestep.output.frequency: frequency of the displayed output (in the termi-
nal), can be 0 for no output at all, 1 to output every time step, or n (with n an
integer less than the number of time step) to output only the time steps which are
multiple of n.
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4.2 State discretization file: folder stateDisc/

This file state.grid gives, for each component of the state, the lower and upper bounds
and the number of discretization steps (uniformly spread). For instance, 10 steps in [0, 1]
give the discretized set {0, 0.1, . . . , 1}.
- discretization.state.i: number of discretization steps for component i
- minimum.state.i: lower bound for component i
- maximum.state.i: upper bound for component i

4.3 Control discretization file: folder controlDisc/

The files to be completed depend on the options ”discretization.control.type” and ”con-
trol.combination.type”.

• Discretized control set: if ”control.combination.type” is set to
- ”uniform”, the control set will be built automatically by taking the values from
each control component (see below).
- ”user function” or ”user function statedependent”: the control set will be built
by the corresponding user function (see 4.5.2).
- ”user file”: complete the file control.combination, each row containing a m-tuple
where m is the dimension of the control space.

• IF CONTROL.COMBINATION.TYPE=UNIFORM.
Individual control components: if ”discretization.control.type” is set to
- ”uniform”: complete the file control.grid with a syntax similar to state.grid. In-
dividual files control.i.disc will be written automatically.
- ”user function”: the control component will be discretized by the corresponding
user function (see 4.5.2).
- ”user file”: complete the individual files control.i.disc for each component of the
control. Each file contains the set of discretized values for the corresponding com-
ponent.

Example: Assume we have a problem with a two-dimensional control u with u0 ∈ {0, 1}
and u1 ∈ {0, 1}. Setting control.combination.type to ”uniform” gives the discretized
control set {(0, 0), (0, 1), (1, 0), (1, 1)}. If we want to impose the constraint u0 ≥ u1, we
can define directly the control set with control.combination.type set to user file, and write
the file controlDisc/control.combination as follows

0 0

1 0

1 1

4.4 Basic Functions for the optimal control problem

The user has to write the functions which define the problem: the drift and the (optional)
volatility to describe the dynamics, the running cost, the final cost and the (optional)
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switching cost to describe the criterion to optimize; if there are constraints, the functions
to check the admissibility of the states and the controls; and some other optional func-
tions, if the user wants to give its own functions to discretize the single controls, to make
the control combinations, or to interpolate inside and/or outside the grid.

The dynamics functions f and σ are in dynamicsHJB.cpp:

// Drift function which describes the deterministic part of the dynamics.

void drift(const double& initial_time,

const double& final_time,

const double& time,

const vector<double>& control,

const vector<double>& state,

const int mode,

const int dim_constant,

const double* constants,

vector<double>& state_dynamics)

// Volatility function which describes the stochastic part of the dynamics.

void volatility(const double& initial_time,

const double& final_time,

const double& time,

const vector<double>& control,

const vector<double>& state,

const int mode,

const int dim_constant,

const double* constants,

vector<double>& volatility_dynamics)

Cost functions are in costFunctions.cpp:

// Running cost for the computation of the criterion.

void runningCost(const double& initial_time,

const double& final_time,

const double& time,

const vector<double>& control,

const vector<double>& state,

const int mode,

const int dim_constant,

const double* constants,

double& running_cost)

// Final cost for the computation of the criterion.

void finalCost(const double& initial_time,

const double& final_time,

const vector<double>& state,

const int mode,

const int dim_constant,

const double* constants,

double& final_cost)

For the simulation step, one has to set the initial state and mode in simulation.cpp.
Modes are numbered from 0 to NbModes-1.

// Starting point definition.

void simulationStartingPoint(vector<double>& starting_point)

// Starting mode definition.

void simulationStartingMode(int& starting_mode)
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4.5 More advanced features

In this part we describe some optional more advanced functions.

4.5.1 State and/or control constraints

State and control admissibility functions are in constraints.cpp:

// User function used to check if a combination of controls is admissible or not.

bool checkAdmissibleControl(const vector<double> control,

const int dim_constant,

const double* constants)

// User function used to check if a state is admissible or not.

bool checkAdmissibleState(const double initial_time,

const double final_time,

const double time,

const vector<double> state,

const int mode,

const int dim_constant,

const double* constants)

// User function used to check if a combination of controls and a state is admissible or not.

bool checkAdmissibleControlState(const double initial_time,

const double final_time,

const double time,

const vector<double> control,

const vector<double> state,

const int mode,

const int dim_constant,

const double* constants)

4.5.2 Non uniform control discretization

Control discretization functions are in optionalFunctions.cpp. :

This function allows to define explicitly the discretized values taken by each component
of the control.
// User function used to define the discretized controls.

// The user has to fill the values of m_discretizedControl[i][j] with i=0,...,m_dimControl

// and j=0,...,m_discretizedControl[i].size()

int userControlDiscretization()

This function allows to define explicitly the elements of the discret control set. Each
element is an m-tuple, where m is the dimension of the control space. It can be used in
particular to enforce some constraints on the control.

// User function to compute the combinations of controls.

// Each line of the resulting matrix is a combination of controls (u_0,..., u_p)

vector< vector<double> > userControlCombination(const int dim_constant,

const double* constants)

The next function is similar but also take into account the state variables.
// User function to compute the combinations of controls when it depends on state.

// Each line of the resulting matrix is a combination of controls (u_0,..., u_p)

vector< vector<double> > userControlCombinationStateDependent(const double initial_time,

const double final_time,

const double time,

const vector<double> state,

const int mode,

const int dim_constant,

const double* constants)
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4.5.3 Out of grid evaluation

Interpolation of the value function when it is out of the grid is in optionalFunctions.cpp:

// User function to compute the value of the value function for the points outside the grid.

void userOutOfGridValueFunction(const double initial_time,

const double final_time,

const double time,

const vector<double>& state,

const int dim_constant,

const double* constants,

double& result)

4.5.4 Switching modes

If the system has several modes (set in problemHJB.def) we must define the cost of
switching from one mode to another. Modes are numbered from 0 to NbModes-1.

// Switching cost for the computation of the criterion.

void switchingCost(const int initial_mode,

const int final_mode,

const int dim_constant,

const double* constants,

double& switching_cost)

4.5.5 Brownian realization for the simulation

If simulation.noise is set to user function, user noise() in optionalFunctions.cpp defines
the Brownian realization used in the simulation.

// User function to compute the noise for the simulation.

std::vector<double> user_noise()

References

[1] Kristian Debrabant and Espen Jakobsen. Semi-lagrangian schemes for linear and
fully non-linear diffusion equations. Mathematics of Computation, 82(283):1433–1462,
2013.

[2] Maurizio Falcone and Roberto Ferretti. Semi-Lagrangian approximation schemes for
linear and Hamilton-Jacobi equations. SIAM, 2013.

[3] Harold Kushner and Paul G Dupuis. Numerical methods for stochastic control prob-
lems in continuous time, volume 24. Springer Science & Business Media, 2013.

[4] Huyên Pham. Continuous-time stochastic control and optimization with financial
applications, volume 61. Springer Science & Business Media, 2009.

18



A Install notes (INSTALL file)

*************************

BOCOP HJB INSTALL NOTES

*************************

----------------------------------------

LINUX

In the following, <BOCOPHJB> is the directory in which you have extracted

the package. Please make sure that there are no blanks or spaces in the

path name to this folder.

A. PREREQUISITES

BocopHJB requires the compiler g++ and CMake.

Please install them if necessary (using yum, apt-get or the system tools).

B. HOW TO LAUNCH BOCOPHJB

First we recommend that you compile and run a test case. To do so you can call

the following commands from <BOCOPHJB>:

> ./bocop build examples/maze

> ./bocop run examples/maze

To define a new problem you can call the following command:

> ./bocop create_problem PROBLEM_NAME

Once you have completed the input files located in <BOCOPHJB>/problems/PROBLEM_NAME

as described in the documentation. You have to compile (build) and run BocopHJB:

> ./bocop build problems/PROBLEM_NAME

> ./bocop run problems/PROBLEM_NAME

If you want to visualize the simulation results you can call the following command:

> ./bocop visualize -s -d problems/PROBLEM_NAME

To visualize the value function you can call the following commands:

> ./bocop visualize -v -d problems/PROBLEM_NAME -m MODE_VALUE -t TIME_VALUE
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Example:

> ./bocop visualize -v -d <BOCOPHJB>/examples/maze -m 0 -t 0

NB: you can use the -h option to print an help message.

----------------------------------------

MAC OS

In the following, <BOCOPHJB> is the directory in which you have extracted

the package. Please make sure that there are no blanks or spaces in the

path name to this folder.

A. PREREQUISITES

BocopHJB requires Xcode and CMake.

Please install them if necessary according to the following guideline.

A.1 XCODE

Download and install Xcode from the appstore. Please note that you have to accept

Xcode license in order to use the C++ compiler.

A.2 CMAKE

1) Get cmake from internet, put it in /Applications

2) Check that the file ’cmake’, ’ccmake’ are in the directory

/Applications/CMake.app/Contents/bin/

3) Open a terminal and create symbolic links to /usr/bin as follows:

sudo ln -s /Applications/CMake.app/Contents/bin/ccmake /usr/bin/ccmake

sudo ln -s /Applications/CMake.app/Contents/bin/ccmake /usr/bin/cmake

4) Check the result by typing in terminal

which cmake

which ccmake

The answers should be

/usr/bin/cmake

/usr/bin/ccmake

B. HOW TO LAUNCH BOCOPHJB
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First we recommend that you compile and run a test case. To do so you can call

the following commands from <BOCOPHJB>:

> ./bocop build examples/maze

> ./bocop run examples/maze

To define a new problem you can call the following command:

> ./bocop create_problem PROBLEM_NAME

Once you have completed the input files located in <BOCOPHJB>/problems/PROBLEM_NAME

as described in the documentation. You have to compile (build) and run BocopHJB:

> ./bocop build problems/PROBLEM_NAME

> ./bocop run problems/PROBLEM_NAME

If you want to visualize the simulation results you can call the following command:

> ./bocop visualize -s -d problems/PROBLEM_NAME

To visualize the value function you can call the following commands:

> ./bocop visualize -v -d problems/PROBLEM_NAME -m MODE_VALUE -t TIME_VALUE

Example:

> ./visualize_solution -d <BOCOPHJB>/examples/maze -m 0 -t 0

NB: you can use the -h option to print an help message.

----------------------------------------

WINDOWS

In the following, <BOCOPHJB> is the directory in which you have extracted

the package. Please make sure that there are no blanks or spaces in the

path name to this folder.

WARNING : BocopHJB must be installed in a directory without any blanks or

spaces, in particular not in Program Files !

A. PREREQUISITES

BocopHJB requires MinGW and CMake to run on Windows.

A.1 MINGW
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Due to some incompatibilities with the latest MinGW version, we

recommend that you use the provided full MinGW archive, available on the

Download page of bocop.org.

Simply extract the archive to a location without spaces in its

name (for instance C:\, but NOT C:\Program Files\).

In the following, <MINGW> is the installation target directory

(for example C:\MinGW which is the preferred one).

* Change the Path environment variable, as explained here :

- Right-click on your "My Computer" icon and select "Properties".

- Click on the "Advanced" tab, then on the "Environment Variables" button.

- Click on the PATH entry and edit it.

- Scroll to the BEGINNING of the string and add the directories for your MinGW:

<MinGW>\msys\1.0\bin;<MinGW>\bin;

Note: we recommend to put the two directories for MinGW at the beginning of the

PATH to avoid the confusion with other versions of files such as sed.exe or

libtools that may be present in your system folders. Such files can be installed

by other applications, and may not be compatible with the building process in

Bocop.

A.2 CMAKE

The building process requires CMake. You can download the installer here:

http://www.cmake.org/cmake/resources/software.html

During the installation process choose the option to add the CMake path

in the Path environment variable.

When this is done please reboot your computer to update the Path

environment variable.

IMPORTANT:

CMake under Windows assumes building with Visual Studio by default.

Since we currently use MinGW instead, we have to add the option

-G "MSYS Makefiles" as stated below.

A.3 PYTHON

Visualization process need Python 2.7 installed.

B. HOW TO LAUNCH BOCOPHJB
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First we recommend that you compile and run a test case. To do so you can call

the following commands from <BOCOPHJB>:

> sh bocop build examples/maze

> sh bocop run examples/maze

/!\ Please note that the check need python installed to be passed /!\

To define a new problem you can call the following command:

> sh bocop create_problem PROBLEM_NAME

Once you have completed the input files located in <BOCOPHJB>/problems/PROBLEM_NAME

as described in the documentation. You have to compile (build) and run BocopHJB:

> sh bocop build problems/PROBLEM_NAME

> sh bocop run problems/PROBLEM_NAME

If you want to visualize the simulation results you can call the following command:

> sh bocop visualize -s -d problems/PROBLEM_NAME

To visualize the value function you can call the following commands:

> sh bocop visualize -v -d problems/PROBLEM_NAME -m MODE_VALUE -t TIME_VALUE

Example:

> sh bocop visualize -v -d <BOCOPHJB>/examples/maze -m 0 -t 0

NB: you can use the -h option to print an help message.
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B Code structure

Definition of the problem
● Read data from input files : .def (.constants), .grid

● Calculate controls and modes
from value function

● Calculate (stochastic or not)
dynamics

● Estimate adjoint state in 
t0,x0

Dynamic Programming 
Algorithm

● For time step equal N-1 to 0
● For each point at time 

step k of the grid
● For each possible 

mode
➔ Compute min over u 

of admissible 
transitions and store 
it in W(j)

● End for
● For each possible 

current mode
➔ Compute min over j 

of switching cost 
from i to j plus W(j)

● End for
● End for

● End for

Save value function
● valueFunction.sol.t*
● valueFunction.sol.log

Save solution
● simulatedTrajectory.controls
● simulatedTrajectory.states
● simulatedTrajectory.modes
● simulatedTrajectory.log

Compute value Function Simulate trajectory

Pre-processing

Post-processing
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Simulate Trajectory
upwards in time

Compute
value function

backwards in time

Interface

Bocop core

Input files

BOCOP HJB

● problemHJB.def
● gridDisc/state.grid
● controlDisc/control.grid
● problemHJB.constants

● dynamicsHJB.cpp
● costFunctions.cpp
● constraints.cpp
● optionalFunctions.cpp
● Simulation.cpp

Controls
Modes

Dynamics

Output files
● simulatedTrajectory.controls
● simulatedTrajectory.modes
● simulatedTrajectory.states
● simulatedTrajectory.times
● simulatedTrajectory.log

● valueFunction.sol.t*
● valueFunction.sol.log

Randomness

Interpolation

Output scripts
Python or Matlab

Parallelization
OpenMP

Third Party
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Titre : Contributions mathématiques pour la régulation et l’optimisation de la
production d’électricité

Mots clefs : électricité, micro réseau, marchés en réseaux, optimisation, vieillissement, mécanismes
d’incitation.

Résumé : Nous présentons notre contribution sur
la régulation et l’optimisation de la production
d’électricité.
La première partie concerne l’optimisation de la
gestion d’un micro réseau. Nous formulons le pro-
gramme de gestion comme un problème de com-
mande optimale en temps continu, puis nous résol-
vons ce problème par programmation dynamique à
l’aide d’un solveur développé dans ce but : Boco-
pHJB. Nous montrons que ce type de formulation
peut s’étendre à une modélisation stochastique.
Nous terminons cette partie par l’algorithme de
poids adaptatifs, qui permet une gestion de la bat-
terie du micro réseau intégrant le vieillissement de
celle-ci. L’algorithme exploite la structure à deux
échelles de temps du problème de commande.

La seconde partie concerne des modèles de mar-
chés en réseaux, et en particulier ceux de l’élec-
tricité. Nous introduisons un mécanisme d’incita-
tion permettant de diminuer le pouvoir de marché
des producteurs d’énergie, au profit du consomma-
teur. Nous étudions quelques propriétés mathéma-
tiques des problèmes d’optimisation rencontrés par
les agents du marché (producteurs et régulateur).
Le dernier chapitre étudie l’existence et l’unicité
des équilibres de Nash en stratégies pures d’une
classe de jeux Bayésiens à laquelle certains modèles
de marchés en réseaux se rattachent. Pour certains
cas, un algorithme de calcul d’équilibre est proposé.
Une annexe rassemble une documentation sur le
solveur numérique BocopHJB.

Title : Mathematical contributions for the optimization and regulation of electri-
city production

Keywords : electricity, microgrid, network markets, optimization, aging, mechanism design, auctions.

Abstract : We present our contribution on the
optimization and regulation of electricity produc-
tion.
The first part deals with a microgrid Energy Ma-
nagement System (EMS). We formulate the EMS
program as a continuous time optimal control pro-
blem and then solve this problem by dynamic pro-
gramming using BocopHJB, a solver developed for
this application. We show that an extension of this
formulation to a stochastic setting is possible. The
last section of this part introduces the adaptative
weights dynamic programming algorithm, an algo-
rithm for optimization problems with different time
scales. We use the algorithm to integrate the bat-
tery aging in the EMS.

The second part is dedicated to network markets,
and in particular wholesale electricity markets. We
introduce a mechanism to deal with the market po-
wer exercised by electricity producers, and thus in-
crease the consumer welfare. Then we study some
mathematical properties of the agents’ optimiza-
tion problems (producers and system operator). In
the last chapter, we present some pure Nash equi-
librium existence and uniqueness results for a class
of Bayesian games to which some networks mar-
kets belong. In addition we introduce an algorithm
to compute the equilibrium for some specific cases.
We provide additional information on BocopHJB
(the numerical solver developed and used in the
first part of the thesis) in the appendix.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery
Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

1



236


	Introduction
	Présentation générale
	Quelques mots sur l'électricité 
	Résumé et contributions de la première partie
	Résumé et contributions de la seconde partie
	BocopHJB
	Perspectives

	I Microgrid optimization and dynamic programming
	Optimal Control of Migrogrid
	Introduction
	Model Presentation
	General Aspects
	Switching Cost
	Periodicity Condition

	Presentation of the numerical methods
	The Direct Method Approach
	Dynamic Programming Approach

	Numerical simulations
	Comments on the Inputs: Solar Power and Power Load
	Optimal Solutions for the Different Methods
	Comparison of the methods

	Conclusion and perspectives

	Stochastic Model for Microgrid
	Introduction
	Model Presentation
	System Description
	Load Model
	Notations
	Stochastic Control Formulation
	Technical Remark

	Numerical Optimization Method
	Dynamic Programming
	Algorithm

	Parameters Estimation
	Simulation
	Conclusion

	Adaptive Weights Algorithm
	Introduction
	Setting
	Problem Formulation
	Assumptions

	Bilevel Dynamic Programming
	Mathematical Justification
	Complexity Analysis

	Adaptative Weights
	Preliminary Results
	Nice Case: No Duality Jumps
	Some comments on 
	Generic Case
	Complexity Analysis

	Discussion
	Asymptotic Analysis
	Extensions
	Algorithm

	Simulation and Implementation on a Microgrid Model
	Problem Presentation
	Battery Aging Model
	The Optimal Control Formulation
	Implementation
	Results for the Micro Problem
	Results for the Macro Dynamic Programming Phase of AWA (Adaptative Weights Algorithm)
	Comparison with the Bruteforce Results

	Conclusion


	II Electricity markets
	Mechanisms and Auctions for Electricity Networks
	Introduction
	Setting
	Literature
	Quantitative formulations 
	Generality
	The standard allocation problem
	The agent problem
	The optimal mechanism design problem
	A differential equation

	Important results
	The ISO response for a binodal setting with piecewise linear cost 
	Introduction
	If d<
	Case d

	Ongoing work
	Acknowledgments

	Cost-Minimizing Regulation
	Introduction
	The Problem
	A Mechanism Design Approach
	Some Basic Results

	The Standard Mechanism
	The Bayesian Game
	Approximation

	Some Comparisons
	Practical Implementation
	Sensitivity Analysis
	The social cost is not affine
	Appendix

	Mechanism design and allocations for network markets
	Introduction
	Market description
	Mechanism Design
	Necessary conditions for Problem 1
	Necessary conditions for Problem 2
	Necessary conditions for Problem 3
	Resolution of the mechanism design problem
	Comments
	Generalization
	Examples with log-concave functions

	Study of the allocation problem
	The standard auction problem
	Some properties of the solution
	Fixed point
	Decreasing Rate
	Algorithm Implementation

	Two-agent allocation problem
	First order condition
	Algorithm

	Conclusion
	Proof of Lemma 7.7
	On S and the regularity of q

	Bidding games
	Introduction
	Game presentation and main results 
	Definitions
	Game Presentation
	Main results

	Application
	Existence of a Nash Equilibrium
	General Preliminary Results
	Existence

	Uniqueness Sufficient Condition
	A dynamics that converges to the smallest Nash Equilibrium
	Proof of theorem 8.8
	Remarks

	Conclusion and possible extension

	BocopHJB 1.1.0 – A collection of examples
	Car with obstacle
	Thermostat
	Mouse in a maze
	Call option
	Portfolio allocation
	Oscillations

	Simplified microgrid model for BocopHJB 
	BocopHJB User Guide


