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Notations

Common notations

X, x Scalar values or sets

\bfX Matrix

\scrX Space

\bfx Vector

Multi-sensor association

\bfp Prototype vector associated to a SOM node

\scrN () Gaussian distribution

\omega Weight associated between nodes of two SOMs

h Neuron activity on SOM prototype given by

detection \bfz 

Spaces

\scrE \scrC \scrE \scrF ECEF space

\scrE \scrN \scrU ENU space

\scrL \scrL \scrA LLA space

\scrL Space of LIDAR detections

\scrP State space for tracking

\scrT State space for tracking where context is de-

�ned

\scrV Space of vision detections
\^\scrX Complement space, for association

\scrL Space of pseudo-LIDAR for GPS-LIDAR

transform

Tracking

G() Pseudo-distance function

Rd, Rb, Rret, Rm Tracker parameters: death/birth/retard/life

rates

XZassoc Set of pairs "track-detection" for association

X Set of tracks

Z Set of detection



\bfx Track state

\bfy Ground Truth state

\bfz Detection

\theta Thresholds

\xi Particle

c, d, v Track's characteristics: position, size and

speed

k Discrete time index

w Particle's weight

Transforms

\bfA Camera intrinsic parameters matrix

\bfR Rotation matrix

\bfT Linear transform

\bft Translation vector

t Continuous timestamp



Acronyms

ADAS Advanced Driver Assistance Systems

CAN Controller Area Network

CCD Charge-Coupled Device

CMOS Complementary Metal-Oxide Semiconductor

DATMO Detection And Tracking of Moving Objects

DGPS Di�erential Global Positioning System

ECEF Earth-Centered, Earth-Fixed

ENU East, North, Up

GBAS Ground-Based Augmentation System

GIS Geographic Information Sysem
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GNSS Global Navigation Satellite System

GPS Global Positioning System

GT Ground Truth
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JPDA Joint Probabilistic Data Association

JPDAF Joint Probabilistic Data Association Filter

KLT Kanade-Lucas-Tomasi

LIDAR LIght Detection And Ranging
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MHKF Multiple Hypothesis Kalman Filter
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OSM Open Street Map



PCA Principal Component Analysis

PF Particle Filter

PHD Probability Hypothesis Density

POSIX Portable Operating System Interface

RADAR RAdio Detection And Ranging

RFS Random Finite Set

RGB Red-Green-Blue

RGB-D Red-Green-Blue-Depth

RINEX Receiver INdependent EXchange

ROC Receiver Operating Characteristic

ROI Region Of Interest

ROS Robot Operating System

RTK Real Time Kinematic

SBAS Satellite-Based Augmentation System

SIFT Scale-Invariant Feature Transform

SMC Sequential Monte-Carlo

SOM Self-Organizing Map

SVD Singular Value Decomposition

SVM Support Vector Machine

TCP Transmission Control Protocol

ToA Time of Arrival

ToF Time-of-Flight

UART Universal Asynchronous Receiver/Transmit-

ter

USB Universal Serial Bus

V2I Vehicle to Infrastructure

V2V Vehicle to Vehicle

WGS-84 World Geodetic System

WSS Wheel Speed Sensors
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General introduction

The modern world is unthinkable without vehicles. Urban infrastructure in its current form

is resulting from motor car necessity. As the number of vehicles increases, roads enlarge and

extend. Human mobility is strongly coupled with personal cars - the major part of vehicles

on the roads. Due to the cars domination in our life it is not surprising that the questions of

autonomous driving and intelligent vehicles are rapidly evolving nowadays. The autonomous

driving can reduce human-caused accidents and liberate the time of driving. Some of the key

research problems of autonomous driving are self-positioning, environment understanding and

tra�c interactions with other vehicles and infrastructure.

Research domains

Scene understanding for an autonomous vehicle is a task which is closely related to functions

like road marking detection, road signs recognition, obstacle detection and dynamic objects

tracking. This last function is extremely important in road safety applications since it allows for

collision avoidance, preventing or mitigating accident consequences. The object tracking itself is

a large research subject. It has emerged motivated from military applications in the beginning

of the 20th century. After large development of relatively cheap sensors in 70s-80s, the tracking

methods were widely adopted and implemented on several applications. Multi-object tracking

for intelligent vehicles is a complex problem since it deals with multiple environments (rural,

semi-urban and urban), sensors limitations, multiple objects dynamics and few computational

resources.

Tracking using one sensor is a non-trivial issue, multi-sensor tracking is an even more chal-

lenging problem since the information provided by several sensors must be fused. Data fu-

sion is intended to enhance the precision and the con�dence of the tracking estimates. That

means that the combination of multiple sensors data can provide more speci�c inference than

a single sensor. Modern autonomous cars projects always consider multiple sensors, like cam-

eras, RADARs, LIDARs for environment perception; GPS, speed and inertial sensors for self-

positioning. Multi-sensor multi-object tracking for autonomous urban driving is a dynamically

developing area [H. Cho et al. 2014; Petrovskaya and Thrun 2009; Darms, Rybski, and Urmson

2008]. An example of a vehicle equipped with multiple sensors for tracking is shown in Fig. 1.

Zoe is the experimental vehicle of the SATIE Laboratory, University Paris Saclay.

While the data fusion enhances tracking by taking advantage of the combination of raw

observation data, a complementary approach consists in using additional, contextual (semantic

or geometrical) information about the environment so as to improve the tracking process. The

17
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contextual information can be extracted from the observed raw measurements, like road lane

detection using vision or turns and stops at crossroads from Geographic Information Systems

(GIS).

The thesis topic addressed in this manuscript is context-aided multi-modal or multi-sensor

systems for tracking dynamic objects.

Figure 1 � ZOE - experimental platform of SATIE Laboratory, University Paris Saclay

Statement of the problem

Multi-sensor object tracking entails multiple challenges as they were described on the �rst

part of this introduction. Since multi-object tracking provide key information for obstacle

avoidance, tracking estimates must be not only precise but also continuous and reliable. Such

quality criteria are negatively impacted when objects are imprecisely detected, partially ob-

served or even occluded. In addition, spurious detections would lead to missed associations and

false alarms. A multi-sensor object tracking framework must deal with all these challenging

situations.

State-of-the-art data fusion techniques combine information from multiple sources achieving

for instance an enlarged �eld of view using sensors covering di�erent ranges. Di�erent sensing

strategies (e.g. vision, LIDAR, RADAR) can also reduce occlusions and missed detections. The

integrity of the tracking estimates can be increased by means of multiple detection modalities

and sensor redundancy. All these high-end methods are however subject and limited by intrin-

sic sensor errors, modelling assumptions, the complexity of associating data of heterogeneous

sources and the uncertainty of estimated system parameters (e.g. calibration).

Our motivation is driven by the fact that the complexity of the environment can be e�ciently

reduced using contextual information. Such information is usually available in a semantic

fashion. Some questions that arise are: How to e�ciently integrate contextual information?

Where to �nd an accessible and an informative source?, How to design a robust algorithm to

evaluate all data together even in case of incompleteness?

Finally, it is natural to consider in the scope of this research the evaluation of developed

methods. Two common ways to achieve a complete analysis of the investigated concepts are: (1)

to generate synthetic emulation of data or (2) to use a public-accessed benchmark dataset. The
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�rst choice is generally adopted when the dataset is absent. However such data is not realistic

enough to achieve a reliable evaluation (e.g. noise levels, outliers, temporal misalignment of

data). Full-scale datasets are composed of sensor recordings with Ground Truth annotations.

It is worth noting that a dataset should ensure the independence of sensing data (perception)

and Ground Truth measurements.

The investigation of the stated problems is not only intended to address the enounced issues

but also to retrieve new insights about a context-aided multi-modal tracking system where all

interacting functions make use the probabilistic methods. This idea might lead into a system

implemented under a unique mathematical formalism.

Dynamic objects

Tracking trajectories
Self-positioning

Multiple
sensors

Figure 2 � The basic concept: an intelligent vehicle equipped with multiple sensors able to
recognize the environment and to track dynamic objects. A self-positioning task is closely
related.

Thesis structure

This thesis is composed of a detailed description of investigated methods. Chapter 1 presents

a state-of-the-art survey. Then, Chapters 2, 3 and 4 respectively present in details object

tracking, multi-sensor data association and contextual data fusion for intelligent vehicles. At the

end, Chapter 5 and 6 describe the creation of a dataset and the experimental evaluation using

ZOE platform providing a proof of concepts under full-scale scenarios. The thesis structure is

illustrated in Fig. 3.

Multi-modal perception: state of art

The chapter 1 of this work, "Multi-modal perception: state of art" is a short description

of multi-sensor tracking methods for autonomous vehicles. Firstly, a technological section is

provided. This section lists the sensors types employed by data fusion methods for tracking. Vi-

sual sensors, radio- and laser-based devices are presented and multiple con�gurations reviewed.

External information sources are considered as well, denoted as contextual information. The
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Figure 3 � Thesis structure by chapters: Green rectangles correspond to Chapter 2, Blue to
Chapter 3, Yellow to 4, and Red to Chapters 5 and 6.

second section of the chapter is devoted to a methodological survey. Then, classi�ed data fu-

sion methods are introduced according to di�erent levels of data representation. This chapter is

aimed at explaining the context of this study and to justify the choices of developed approaches.

Object tracking

The chapter 2 explains the fundamental de�nitions and speci�es the object tracking as a

recursive process. A half of the chapter is devoted to survey tracking approaches. In the second

part of the chapter, a probabilist multi-object tracking system was proposed. It is a variant of

existing methods mentioned in the �rst half of the chapter. The tracking system is Bayes-based

following a Monte-Carlo implementation. Such implementation allows for an easy contextual

information integration according to the method described in chapter 4. The e�ciency of the

multi-object tracking system is quanti�ed at the end of the chapter.

Multi-sensor data association

Chapter 3 addresses multi-sensor data association. A probabilistic learning method of sen-

sor spaces association is proposed here. The main advantage of this approach is that it avoids

the necessity of a calibration procedure and provides enough accuracy for LIDAR-vision appli-

cations. This chapter is a contribution to multi-modal tracking. It is important to note, the

"association" term is largely used in tracking as a temporal association between detections of

one tracked object. Here, only spacial association between two sensor spaces are considered.

The evaluation of the association method is provided for public datasets.

Context

Chapter 4 describes a proposed method for integrating contextual information during the

tracking process in order to improve accuracy and stability. The approach is based on the

probabilistic representation of the tracking system and from that can be considered also as

probabilistic method. An additional feature brought by this implementation is the possibility to

determine if a tracked object has an attended behaviour or an unattended one. This information

is crucial for safety applications. Experiments demonstrate the tracking improving in case when
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the object moves according to the contextual information and the absence of the signi�cant

tracking degradation when the tracked object does not follow contextual prior. The context is

represented in form of Open Street Maps annotations.

Dataset

Chapter 5 contains a detailed protocol for the creation a dataset using recordings of mul-

tiple sensors, both implemented on-board an intelligent vehicle and attached on the tracked

objects. An survey of existed datasets is provided to highlight the need of the dataset with refer-

enced multi-sensor-based Ground Truth in outdoor applications. Accurate sensors calibrations,

Ground Truth labelling as well as the raw observations are included in the dataset.

Results

Chapter 6 reports evaluation results of all proposed methods on recorded dataset. Reported

results con�rm the conclusions about the performance of the methods on full-scale scenarios.



Chapter 1

Multi-modal perception: state of art
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1.1 Introduction

The idea of multi-sensor combining is came from the nature of human perception, where he

uses visual, audio, tactile, olfactory and other senses [Shimojo and Shams 2001].

For an intelligent vehicle or any other similar application, the multi-modal perception and

data fusion are simpler. They does not try to understand the human brain functions, but they

only model them with simple hypotheses to allow their implementation. And, at the same

time, they are harder, because the "techniques" (e.g. sensor measurements, signal processing,

fusion algorithms and reasoning) did not achieve the level of human data perception and fusion

ability.
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In this chapter the state of art of multiple sensing are presented, the common wide-spread

techniques and methods are mentioned.

Firstly, some de�nitions are introduced.

[Hall, Liggins, and Llinas 2009] discusses the data fusion de�nition and �nally gives a very

short one:

Data fusion is the process of combining data or information in order to estimate or predict

entity states.

Multi-modal perception is the process where a perceptual system combines information

from more than one modality. For technical applications, the term modalities stands for the

sensor sources.

Considering these two de�nitions, the study is intended to conceive a system able to perceive

by means of multiple modalities and to combine them for estimating or predicting entity states.

This chapter addresses the questions enounce hereafter:

Which methods are more e�cient to achieve the goal of multi-modal data fusion? The chapter

�nally focuses on some methods developed in further parts of the thesis.

Why data fusion is needed? Fused data always provide more information than each of

separate modality itself. Redundant sensors can improve the dynamic target states estimation

using statistical principle, since there is more independent observations. Several sensors give

also an improved observability of the scene.

What are the data fusion problems? Normally, for a set of identical sensors, their physical

positions, orientation, visibility can be di�erent. Some areas of observations are perceived

by only one sensor and others are perceived by multiple sensors, so the process of the target

state estimation in the sensors boundary zones poses more issues about how to use information

describing current target state, provided from di�erent sources in the most optimal way.

For dissimilar sensors some additional problems appear: How to compare the sensors visi-

bilities, precision, type of provided information in the process of fusion? If sensors give contra-

dictory information, how to determine which is more reliable?

The State of art chapter has an aim of short review of common large-used technologies

and methodologies and is not a presentation of an original research. Various compilations

and classi�cations papers [Llinas and Hall 1998; Hall, Liggins, and Llinas 2009; Crowley 1993;

Esteban et al. 2005] of data fusion was used as well as particular publications with original

methods.

1.2 Technology

In this section the sensing technology used in automotive multi-modal perception is sur-

veyed. For the external object perception, the optical, magnetic, acoustic and other devices

based on remote sensing are used. Since the scene understanding is tightly coupled with the

ego-localization, also the sensors based on inertial or mechanical (like Wheel Speed Sensors)

principle are used [Urmson et al. 2009; Welch and Foxlin 2002]. The ego-localization with

object localization in vehicle ego-oriented coordination system gives a global positioning for

external objects. An example of this combination is proposed in [Sachs et al. 2008].
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1.2.1 Camera

Camera is an optical passive sensing mean for recording or capturing images. For projective

cameras its working principle can be summarised: light enters a closed box (camera obscura)

trough a lens, and a light-sensitive medium records the image. The time exposition of the light-

sensitive medium is controlled by a shutter mechanism. A video camera operates similarly to

a still camera, but records an images series in fast succession.

Nowadays cameras have a low and still decreasing prices leading to theirs large using,

including tracking purposes [Svoboda, Hug, and Gool 2002]. The multi-object tracking in civil

applications today has the camera sensing as one of the base mechanisms [Sankaranarayanan,

Veeraraghavan, and Chellappa 2008].

There are various camera types and corresponding models. The basic one is a pinhole camera

model, where the camera aperture is a point and without lenses the light is not focused. This

model can be applied even for cameras with lenses of low curvature. This model is described

with more details in Sec. 5.3.2. There are a lot of applications of pinhole cameras for the moving

object tracking in urban environments [H. Cho et al. 2014].

A �sheye lens is a lens providing very wide-angle of view with a strong distortion. They

are used to make large, panoramic and hemispherical images. Fisheye cameras are also used in

target tracking by autonomous vehicle in road applications [Held, Levinson, and Thrun 2013].

The camera with the most large, 360-degree �eld of view is called omnidirectional. The

camera system includes additional mirrors to collect as much lights beams as possible. The

autonomous driving with object tracking using omnidirectional cameras and even their stereo

combination (see the further) also has its application [Vatavu, Costea, and Nedevschi 2015].

Stereo vision

Stereo vision is a perception procedure where 3D information is estimated by means of two

cameras placed side by side. Two cameras provide a pair of view of a scene, like human binocular

vision. By comparing such two images, the relative depth information may be extracted and

represented as a disparity map. Such a map is composed as the di�erence in coordinates of

two corresponding image points. To achieve a stereo e�ect two cameras outputs are processed,

either in a classical computer, or there are specially manufactured stereo cameras, where the

3D information processing is inside implemented.

In Fig. 1.1a, the basic principle of stereo vision is illustrated: a point in the real world is

di�erently observed into two frames due the disparate camera positions. The same observed

point has di�erent positions on left and right cameras projections, so one can measure the

distance between its positions in projections. This distance is denoted d and is calculated as

d = d1 + d2, where d1 and d2 are the distances between projected point and the focus. The

depth value D is obtained according to the formula:

D = f \cdot b
d

(1.1)

where f is a focal length, and b is a baseline - distance between cameras.

In order to estimate the depth of a point, it must be visible from both cameras and a
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processing must identify this point in both images (that is not a trivial task).

Two camera's stereo vision is cost e�ective and easy-to-setup vision system providing 3D

(with depth) space of tracking. Stereo vision is used for multiple object tracking in tra�c

scenarios [Vatavu, Danescu, and Nedevschi 2015].
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(a) Stereo vision basic principle. The

depth is calculated from projection

points disparities d1 and d2

Percepted objects

Cameras
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(b) Multi-camera placement is quite di�erent from

stereo. Cameras observe their areas under di�erent an-

gles with di�erent blind zones. On the �gure the zones

of visibilities are shown

Figure 1.1 � Camera combinations for the data fusion

Multi-camera perception

In contrast to the stereo vision, multi-camera perception is composed of widely separated

cameras in order to obtain visual information from di�erent viewing angles and o�ers a possible

3D solution [Chang and Gong 2001].

The general problem of a multi-camera perception is to determine the association of ob-

servations corresponding to the same object. Using a network of cameras needs to model the

time correspondence, the overlapping, the orientation views. Such models can be obtain with

calibrations techniques or by learning techniques [Heng, B. Li, and Pollefeys 2013].

Multi-focal vision is a speci�c example of multi-camera perception. This problem is a part

of visual servoing, where robot controls its camera parameters, position and orientation based

on the visual information. As in [Kühnlenz 2007; Dickmanns 2003] visual servoing can use two

or more vision sensors and also be applied in autonomous vehicles vision systems.

Thermographic camera

Infra-red or thermographic camera is a passive sensing mean, forming an image like an

optical camera, but using thermal (infra-red) radiation (wavelength of 14 \mu m) instead of visible

light (wavelength 400-700 nm).

Normally, infra-red cameras are monochrome and does not distinguish wavelengths of infra-

red spectre.

Multiple object tracking with thermal [Bertozzi et al. 2004] and both optical and ther-

mal [Goubet, Katz, and Porikli 2006] cameras has its applications in urban scenarios. The
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advantage of thermal cameras is the pedestrians detection, because frequently they are warmer

than the environment.

1.2.2 RADAR

RADAR is an acronym for RAdio Detection And Ranging. RADAR is a system designed for

object-detection, using radio waves for determining the object properties, like range, velocity,

angle, etc. A RADAR system consists in a transmitter to operate electromagnetic waves in the

radio or microwaves spectrum, an emitting and receiving antennas, a receiver and a processor

to determine the object properties.

A transmitter emits radio waves in predetermined directions. After a contact with an object,

signals are re�ected or scattered in many directions. RADAR signals are better re�ected by ma-

terials of considerable electrical conductivity - by most metals, seawater and wet ground. Those

signals, re�ected back to the transmitter, are desirable. The principle can also be employed to

determine object motion based on the Doppler e�ect.

Since the radio waves are weakly absorbed by the medium, the RADAR can detect objects

at long ranges.

In multi-object automotive perception, the RADAR has been largely applied [Darms, Ryb-

ski, and Urmson 2008]. The RADAR data fusion with other sensors in multi-object perception

has been extensively a subject of research [Liu, Sparbert, and Stiller 2008; Urmson et al. 2009].

Compared with LIDAR, RADAR has some disadvantages: RADAR can be perturbed with

multiple re�ections, it is less accurate than the re�ection of straight laser beam. The advantage

of the RADAR is its large angle of view.

1.2.3 LIDAR

LIDAR or laser ranging, is an acronym for LIght Detection And Ranging. This is a remote

sensing technology emitting intense, focused light beams and measuring the time of �ight for

re�ections to be detected by the sensor. This information is used to determine distances (ranges)

to objects [Oceanic and Center. 2012].

The LIDAR technology relies on the same principles as the RADAR, but uses much shorter

wavelength (ultraviolet, visible or near infra-red range) than RADAR's radio waves. Given the

fact that sensors are not able to detect objects smaller than the used wavelength, LIDAR is

able to detect surfaces with �ner resolution than RADAR.

The LIDAR measurements are generally "point-wise", it computes the distance to only one

point. To have a complete range map it is required to have multiple measurements. For this

end a rotation mirror is used for re-orient the laser emission. Moreover, there is a need of a

delay between two measurements, which makes the observed scene not strictly rigid.

LIDAR system include a laser range �nder. The �nder orientation is changing by a rotating

mirror. The laser is scanned around the scene and converts the range measurements into 2D

plane each layer at speci�ed angle intervals. The 3D image is made as soon as layers are in

di�erently oriented planes. The basic principle is shown on Fig. 1.2a.

LIDAR has been used for multi-object perception as a single tool [Himmelsbach et al. 2008;
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Nobili et al. 2015] and in a sensing-cooperative architecture with other sensors [Premebida,

Monteiro, et al. 2007]. The main advantage of the LIDAR system in comparison to the visual

optical instruments is its high resolution at large distances from the sensor.
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Time shift δ
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(a) LIDAR basic principle. Point-wise mea-

surements of range are achieved measuring the

time delay between emission and reception
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(b) ToF camera basic principle. The range is

calculated by measuring phase delay for each

pixel

Figure 1.2 � Light-based range sensors

1.2.4 Time-of-Flight

Time-of-Flight (ToF) technology is based on measuring the time required by an emitted light

to travel to an object, and return back as a re�ection. This is the principle of LIDAR presented

in Sec. 1.2.3, but implemented in standard CMOS (active-pixel sensor) or CCD (charge-coupled

device) technology, it is denoted ToF camera [Kolb et al. 2010].

The device is composed of two parts: a near infra-red light source and an optical sensor.

The source emits a phase-modulated signal. The optical sensor in addition to the intensity

of the re�ected light is able to capture the phase of the received signal. The modulation of

the signal is synchronized between the light source and the sensor. Pixels values represent the

depth that is computed by comparing the phases modulation at the perception time moment

with the phase of the initial signal. The illustrated schema is shown on Fig. 1.2b

ToF sensors provide dense depth measurements on a scene at high frame rates (up to 30

Hz). A disadvantage of the modern ToF implementations is a limited range, working well

in indoor use and not very well outdoor [Luettel, Himmelsbach, and Wuensche 2012]. Still,

there are applications of multiple object tracking using ToF cameras installed on automotive

robots even for outdoor scenarios [Jafari, Mitzel, and Leibe 2014]. In [Hsu et al. 2006], a ToF

cameras-based safety application for intelligent vehicles perception.

1.2.5 Global Positioning System

The Global Positioning System (GPS) is a space-based navigation system. GPS provides

location and time information anywhere on the Earth or near it in all weather conditions,

having an unobstructed line of sight to 4 or more GPS satellites.

Under the GPS is considered the global navigation satellite system (GNSS) including also

GLONASS (GLObal NAvigation Satellite System) and others.
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The base de�nitions and descriptions in this section are inspired by [Kaplan 2005].

Pseudo-distance GPS

GPS uses the concept of ToA (Time of Arrival) measurements to determine the receiver

position. This concept entails measuring the time needed for an emitter-transmitted signal

(e.g. satellite) at a known location to reach the receiver. By measuring the propagation time

from multiple emitters at always known locations, the receiver can estimate its position.

To calculate the receiver location, the trilateration is used. The trilateration in geometry is

the process of determining the point location based on distance measurements and geometry of

triangles, circles and spheres. In Fig. 1.3 the basic principle is shown. Each satellite provides

a line in the Earth surface where points are at given equal distance from the satellite. Tree

lines are enough to achieve positioning. For calculating all these distances from satellite, time

synchronization is required. It is worth noting that satellites are able to provide precise atomic

clocks updates, however the receiver is that precise. To cope with receiver clock error, the

signal from a fourth satellite is used to constraint the following equation system:

bi = c(\Delta ti + tc) =
\sqrt{} 
(xi  - x)2 + (yi  - y)2 + (zi  - z)2 (1.2)

where i is the ith satellite, bi is a distance between receiver and satellite i, c denotes light

speed, \Delta ti is the elapse time of signal propagation from satellite to receiver, tc is a correction

of the receiver clock, xi,yi,zi are coordinates of ith satellite, x,y,z are coordinates of receiver.

With 4 unknown, 4 equations are necessary to solve.

Atmospheric conditions add independent errors to satellite signals. To reduce e�ects of such

a phenomenon, more satellites are taken into account. Thus, the positioning precision depends

on the number of visible satellites, the more information, the more precise it is.

Earth

Localized point

Satellites

Points at equal
distance from satellite

(x,y,z)

Figure 1.3 � Each satellite distance gives a line of position on the Earth. Tree lines are enough
to resolve a single position on the Earth

Two types of messages are transmitted from satellites:
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� "Raw measurements", meaning code phase and carrier Doppler phase (or frequency).

These data plus timestamps are enough to calculate pseudo-ranges between receiver and

satellites.

� Navigation data: Ephemeris parameters about satellites trajectories are received by GPS

satellites from ground referenced antennas and then sent back to user receivers.

These two message types are su�cient for positioning. There are various modi�cations of the

described positioning schema to enhance the �x precision, such as SBAS, DGPS, RTK, and

other. Some of them are described in a further section.

Satellite-Based Augmentation System (SBAS)

GNSS satellites SBAS satellite

Reference station
Uplink stations

SBAS-equipped
GNSS receivers

Master station/

Figure 1.4 � SBAS systems common schema

Satellite-Based Augmentation System (SBAS) is composed of widely dispersed reference

stations monitoring and gathering data about GPS satellites.

The key elements of SBAS are ground referenced stations, distributed in a service area,

SBAS master station and SBAS satellites. Referenced stations receive GPS signals from GPS

satellites, calculate the area corrections using known locations of the stations and send these

corrections to the master station, which transmits them to SBAS satellites. SBAS satellites

signals are broadcasted to GPS receivers. This schema is illustrated in Fig. 1.4.

SBAS system not only enhance the positioning precision through the transmission of cor-

rections, but also helps to quickly detect satellite signal errors and send alerts to receivers to do

not use unreliable satellite information. The SBAS satellite can also be used as GPS satellite

to provide additional ranging signal.

There are several SBAS systems, including US Wide Area Augmentation System (WAAS),

European Geostationary Navigation Overlay Service (EGNOS), Japanese MTSAT Satellite

Based Augmentation Navigation System (MSAS), Indian GPS-Aided GEO Augmented Navi-

gation System (GAGAN), Russian System for Di�erential Corrections and Monitoring (SDCM)

and Chinese Satellite Navigation Augmentation System (SNAS).

Ground Based Augmentation System (GBAS) uses a very high frequency radio link and

also provides di�erential corrections and satellite integrity monitoring. GBAS covers a small



30 1.2. TECHNOLOGY

area and is used where high accuracy, availability and integrity are required, for example in

airports.

Some approaches where SBAS is employed for autonomous vehicle positioning [Dixon 2006;

Toledo-Moreo et al. 2007].

Di�erential GPS

The Di�erential GPS (DGPS) uses one or more referenced stations at known locations,

equipped with their own GPS receivers. The �xed GPS receiver is denoted as a base station

providing positioning corrections to a mobile receiver. DGPS is considered as a high accuracy

positioning system with conventional surveying techniques.

The base station compares its mean surveyed position with the position calculated from

currently received satellite messages. The di�erence between those positions is considered as a

result of satellite ephemeris and clock errors, but more frequently as an atmospheric delay.

The base station provides information messages to other receivers via a data link, containing

corrections to raw and user's pseudo-range measurements and clock corrections provided by

satellites. The base station can also provide ephemeris data or data to replace the broadcast

clock and ephemeris information. Instead of corrections, base stations can also provide raw

measurements, pseudo-ranges and carrier phase.

Using those corrections the receiver station may enhance its pseudo-ranges, time and

ephemeris respectively.

The absolute accuracy of the calculated receiver position depends on the absolute accuracy

of the base station itself.

The principle is based on the fact that GPS satellites orbit is high above the Earth and

the propagation paths from the satellite to the base and rover station are similar. DGPS

principle can increase positioning accuracy up to 10 cm with base and rover separated to tens

of kilometres.

In multi-sensor data fusion applications for object tracking in autonomous vehicles the

DGPS is used for the rover positioning [Chavez-Garcia 2014; Chumerin and Hulle 2008].

Real Time Kinematic (RTK), RTK with inertial center

DGPS and single-receiver positioning are code-based, i.e. they use the time codes in mes-

sages to synchronize receiving time and then calculate pseudo-ranges. Another approach, the

Real Time Kinematic (RTK) utilize the L1 (1575.42 MHz) carrier-phase measurement. Code

and carrier-phase measurements are available from each satellite. Dual frequency GPS receivers

are able to employ such measurements for both the L1 and L2 (1227.60 MHz) frequencies.

The common principle of RTK is the range calculation from the number of carrier cycles

between receiver station and satellite. The range is calculated as number of carrier cycles

multiplied by carrier wavelength. The process to determine the number of carrier cycles is

called ambiguity resolution.

While using this signal the possible improvement is very high (pseudo-range error might be

as low as 2 millimeters) if one continues to assume a 1% accuracy in locking. For L1 band the
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GNSS satellites

Base station
Rover station

(a) The base station compares the surveyed

position to the position calculated from the

satellite ranges. After that, the base sends this

di�erence error to the rover station

GNSS satellite

Base station Rover station

Carrier wave

Carrier phase
measurements

(b) The number of carrier cycles from the

satellite to the equipment is determined and

used to calculate the range. Base station, as

in DGPS, sends corrections to the rover sta-

tion

Figure 1.5 � Methods using base station with known locations as reference

wavelength is about 19 cm. That means one percent error in L1 carrier phase brings 1.9 mm

error in the initial positioning.

In practice, as in DGPS, RTK systems use a single base station receiver, that re-broadcasts

the phase of the carrier it observes and the mobile receiver compares its phase measurements

with those received from the base station. The base station is used to eliminate satellite clock

errors, ephemerides errors and delays produced by ionosphere and troposphere.

RTK method is considered as the most precise GPS positioning without inertial tools. In

multi-modal object-tracking by autonomous vehicles, the positioning with RTK has its appli-

cations [Geiger, Lenz, Stiller, et al. 2013].

Inertial navigation system is a navigation system equipped with motion sensors (accelerom-

eters) and rotation sensors (gyroscopes) to calculate the position, orientation and velocity of

the object during dead reckoning, e.g. GPS outages. In some GPS devices, motion sensors are

integrated and they also helps to increase the positioning precision. There are also external

connections between GPS devices and motion sensors [Scherzinger 2000; Schall et al. 2009].

Data post-processing

For some applications, GPS corrections are not required in real-time. In these cases, raw

GPS satellite measurements are collected for post-processing. This processing is very useful,

as it does not require real-time transmission of di�erential correction messages. This simpli�es

the system con�guration and also eliminates possible message loss and latency during such a

transmission.

Post-processing generally results in a more accurate, comprehensive solution than in real-

time.
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1.2.6 External sources

Additionally to the vehicle on-board sensors, there are also intelligent vehicle systems de-

signed to communicate information with other platforms (vehicle to vehicle, V2V) [Derder,

Moussaoui, and Boualouache 2015], with infrastructure (V2I and I2V) [Derder and Moussaoui

2014], and hybrid systems [J. Miller 2008]. Such architectures usually provide complementary

exteroceptive information of the vehicle surroundings that cannot be observed from on-boarded

sensors. The use of external sources in intelligent vehicles' tasks can be considered also as in-

ternal and external data fusion. It serves for the tra�c regulation, target tracking, incident

warning, etc.

Environment maps can be employed as an external information source [Quddus, Ochieng,

and Noland 2007]. In Sec. 4 the applied method takes advantage of a map to improve multi-

object tracking.

1.3 Methodology

1.3.1 Data representation for fusion

Data fusion is a large research subject, covering several areas, so today there is no com-

mon and unique fully covered classi�cation of data fusion methodology [Castanedo 2013]. A

classi�cation based on di�erent abstraction levels is presented [Luo, Yih, and Su 2002]. That

classi�cation can provide information about applications purposes. For example, signal level

fusion as the most primitive can be used in real-time or be a step to higher levels of data

representation. Pixel level fusion improves the performance in image processing - the domain

is large enough to mark out a separate level. Feature and symbol levels give additional forms

for data representation. Also, the levels classify the type of provided information, determine

the degree of required sensor registration, and separate methods and means used to increase

the data fusion impact.

According to this classi�cation, the process of perception is structured on the next levels:

1. Signal level - here the information is represented as signals acquired from the sensors

2. Pixel level - in applications using image data, this level can be used to improve image

processing. Sometimes, signal and pixel levels are coupled in data level.

3. Characteristic (feature) level - employs features extracted from images or signals

4. Symbol (decision) level - information here is represented as high-level symbols

The characteristics of the levels are given in Tab. 1.1.

Data fusion in image and spatial applications can be classi�ed according to fusion objectives

and input data properties. In Fig. 1.6 the corresponding taxonomy is shown. In this work,

after the state of art survey, the General Data Fusion Problem and Spatial Data Fusion are

studied in detail, particularly in Chap. 3 and in Chap. 4. The authors of [Crowley 1993] have

formulated the following principles for integrating perceptual information:

Principle 1) Primitives in the world model should be expressed as a set of properties.

Data fusion is an association of properties describing some state of a world part. In numerical

representation, properties are listed as estimations with their uncertainty. At symbolic level, the
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Characteristics Signal level Pixel level Feature level Symbol level
Representation

level of
information

Low Low Medium High

Type of sensory
information

Multi-dimensional
signal

Multiple images
Features extracted
from signals/images

Decision logic
from

signals/image

Model of sensory
information

Random variable
with noise

Random process
across the pixel

Non-invariant form
of features

Symbol with
degree

of uncertainty

Table 1.1 � Characteristics of data fusion levels according [Esteban et al. 2005]

Data fusion

Data properties

Fusion objective

Application

Sparse Point Target

Locate, ID and track

Regions of interests Complete Data Sets

Image Data Fusion Spatial Data Fusion

Combine multiple Create spatial databaseDetect, ID objects

General Data Multisensor Automatic
Fusion Problem Target Recognition

targets in space-time in imagery source imagery from multiple sources

Figure 1.6 � Image and spatial data fusion application taxonomy [Hall, Liggins, and Llinas
2009]

properties values belong to a �nite vocabulary, for example, hypotheses about object position

can contain a �nite number of regions. In that case an object position can be represented with

a region index.

Principle 2) Observation and Model should be expressed in a common coordinate system.

To evaluate a perceptible entity's model using observations, the information from obser-

vations must be transformable to the coordinate system of the model. Normally, observation

coordinate systems are de�ned by sensors. Thus, it is necessary to adapt the correspond-

ing models to make the fusion possible. For the adaptation some additional information is

needed. For example, an extrinsic calibration between sensors provide a type of information.

From other side, probabilistic data fusion approaches need supplementary information about

statistical relations between observations from di�erent sensors.

Signal level

At the signal level, the information is represented as signals from the sensors. To apply

data fusion techniques, signals must be represented in forms close to features or symbols.

For instance, audio and video-sensing can give input raw signals in form of spectral vectors

with easy computable statistics. From this point of view, the data fusion problem become

probabilistic [Gustafsson 2005].

At higher levels of data representation, to fuse information about an object observed by

multiple sensors, a region of interest or some extraction processing from raw data is needed.
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To carry out a signal level fusion, the raw signal must be considered as an extracted target or

a region of interest.

Pixel level

The image fusion combines multi-source imagery using image processing techniques. The

image fusion is applied to achieve di�erent purposes [Pohl and Genderen 1998]:

� Image �ltering

� Image Mosaicking to achieve a larger view

� 3D reconstruction from two 2D viewpoints

� Data fusion for classi�cation. For example, thermal+color pixel characteristics

� Change detection over time using multi-temporal data

� Reconstructing missing information

� Corrupted data identi�cation

The pixel level fusion operates with a slightly di�erent data from identical or not very dis-

tinct sources. Some well-known methods performing image data fusion at a pixel level are:

Intensity�Hue�Saturation (IHS) transform based image fusion [Wen 2011], Principal Compo-

nent Analysis (PCA) based image fusion [J. W. Davis and V. Sharma 2007], Pair-wise spatial

frequency matching [X. Li, Larson, and Hanjalic 2015]) and transform domain fusion: Pyramid-

based transforms [S. Zheng 2010], Wavelet transform image fusion [Z. Wang et al. 2009]. Trans-

form techniques show a better performance in spatial and spectral quality of the fused image. It

is interesting that PCA, Wavelet transform and some other methods used for image fusion can

be also applied on feature extraction to detect objects of some de�ned classes in images [Sun,

Bebis, and R. Miller 2006].

Feature level

A Feature is composed of individual measurable properties of the observed phenomena. For

instance in the problem of dynamic object perception, the features can be the representations

of objects and their detections enriched by multiple sensors. A feature representation can be

de�ned as points in some area, their velocities and other structure characteristics. Frequently,

an extracted feature is represented as a numerical vector, used in further processing, like clas-

si�cation or fusion [Caron et al. 2014]. The feature level data fusion is the most usual in the

following processing: data alignment, association, identi�cation.

One of the most simple data fusion at feature level is a concatenation of features, represented

as vectors [Hassan, Shro�, and Agarwal 2015; H. Cho et al. 2014]. This approach increases the

state space of objects to detect, to track or to classify. A concatenated features has a higher

dimension and can be easily distinguished in the representation space. This reduces the error

for classi�cation tasks, but at the same time, it may highly increase the computation cost,

which is crucial for real-time applications.

Methods based on the choice between sources use features, because a feature can contain

information about its certitude or about the quantity of the information that the feature brings.

For example, in [Pramanik and Bhattacharjee 2012] the features are statistical moments cal-

culated on multiple characteristics of an image. For a couple of sources, the features sets
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are extracted. Then an identi�cation of "salience" features processing is applied. The salient

features entail a decision map, helping to form a fused image.

A feature histogram vote-based method is proposed in [M. Wang et al. 2010]. Here the

classical Histogram of Oriented Gradients (HOG) [Dalal and Triggs 2005] features extracted

from image representation of visual and thermal cameras are fused into one common histogram.

A Principal Components Analysis (PCA) can reduce the concatenated feature as it can

extract and keep the most important components of feature [Khairdoost, Monadjemi, and

Jamshidi 2013]. PCA is also used in image object detection to extract correlations, even

among pixels.

In [Cramer, Scheunert, and Wanielik 2003], the logical and geometrical relations between

sensors and corresponding features are known from a model describing vehicles and pedestrians.

In that case, a common feature is constructed from separate features using linear (or more

sophisticated) transformations.

Symbol level

One of the data fusion approach at symbol (decision) level is based on fuzzy logic, where

the decision results of di�erent sensors are combined using many-valued logic operators. Fuzzy

logic fusion has applied, for example in [Ghahroudi and Fasih 2007].

Weighted sum is another simple model in multi-criteria decision analysis. Here the resulted

response is calculated as weighted sum of multiple sources' logical decisions. To this end, weights

are normalized by the likelihood of uncertainty assigned to the sources. Weighted decisions are

easy to be implemented and in some kind universal, so they �nd their applications, frequently

in a complex classi�er composition from weak classi�ers. Such classi�ers are applied in data

fusion methods for multi-sensor intelligent vehicles road applications [Premebida, Monteiro,

et al. 2007; Vu, Aycard, and Tango 2014]. When using the weighted sum method, one must

estimate weights for the information sources. Most of the solutions are concentrated near anchor

points, and not in the concave region, because weighted sum method's solutions are distributed

not uniformly and can not be found in non-convex regions.

Classical or Frequentist inference (also called frequentist statistics) is a type of statistical

inference that draws conclusions from sample data by emphasizing the frequency or proportion

of the data. In data fusion methods, the classical inference-based fused decision comes from

statistic decisions of fused sources [D. Cox and Mayo 2010]. The frequentist interpretation of

the probability is slightly di�erent from the Bayes' one, and since that, the classical inference

di�ers from the Bayes approach. Bayes approach becomes much more popular in data fusion

task [Fienberg 2006].

1.3.2 Fusion formalism

Bayes methods

The Bayesian data fusion method is one of the most frequently used at symbolic level, but

also at other levels too. It is largely applied in object tracking by intelligent vehicle's sensors

for urban scenarios [Pangop et al. 2008; Stiller, León, and Kruse 2011; Premebida, Peixoto,
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and U. Nunes 2006; Vasic and Martinoli 2015]. This methodology can be detailed in appli-

cation to system state estimation using multiple sensor observations. The Bayesian method

has a mathematical background. The Bayesian rule facilitates representing and taking into

account parameters and model uncertainties. It provides a natural, intuitively clear proba-

bilistic combining of prior information and interpretable answers. It can fuse past information

with new observations by using old posterior as new prior. It obeys the maximum likelihood

principle. A di�culty is to model the a priori information through known distributions, such

as Gaussian, Poisson,. . .A posteriori estimation is naturally dependent and inadequate a priori

models can be a non-detectable source of errors. In models with a high number of parameters

its computational cost cannot be neglected.

Let the state system to be estimated, \bfx k, at discrete time k, based on all previous sensor

measurements from all m sensors \bfz 1:m1:k . The task of the state estimation in probabilistic terms

is the computation of the posterior distribution p(\bfx k| \bfz 1:m1:k ). When applying Bayes theorem, the

problem can be formulated as follows:

p(\bfx k| \bfz 1:m1:k ) = p(\bfx k| \bfz 1:mk , \bfz 1:m1:k - 1)

=
p(\bfz 1:mk | \bfx k, \bfz 

1:m
1:k - 1)p(\bfx k| \bfz 1:m1:k - 1)

p(\bfz 1:mk | \bfz 1:m1:k - 1)

(1.3)

Assuming that given the state \bfx k the measurement at ith sensor is independent of the measure-

ments from other sensors and that the current state \bfx k includes all information for likelihood

evaluation, then one can drop the dependency of current measurement of the ith sensor \bfz ik from

all previous measurements of all sensors \bfz 1:m1:k - 1:

p(\bfz 1:mk | \bfx k, \bfz 
1:m
1:k - 1) =

m\prod 

i=1

p(\bfz ik| \bfx k, \bfz 
1:m
1:k - 1)

=
m\prod 

i=1

p(\bfz ik| \bfx k)

(1.4)

Based on Eq. 1.4 three di�erent data fusion strategies can be adopted:

1. If sensors report only their measurements modelled in a probabilistic manner, like a

likelihood or a sensor model, then the global estimation of the system state is updated

by fusing likelihoods only:

p(\bfx k| \bfz 1:m1:k ) \propto p(\bfx k| \bfz 1:m1:k - 1)
m\prod 

i=1

p(\bfz ik| \bfx k) (1.5)

where p(\bfz 1:mk | \bfz 1:m1:k - 1) is omitted as just normalization coe�cient for calculated posterior.

This is called centralized independent likelihood fusion

2. Alternatively, modalities of own local system state can be estimated based only on local

observations. Using Bayesian rule applying on the likelihood p(\bfz ik| \bfx k) from Eq. 1.5, the

follow expressions are derived:

p(\bfz ik| \bfx k) \propto 
p(\bfx k| \bfz i1:k)
p(\bfx k| \bfz i1:k - 1)

(1.6)
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p(\bfx k| \bfz 1:m1:k ) \propto p(\bfx k| \bfz 1:m1:k - 1)
m\prod 

i=1

p(\bfx k| \bfz i1:k)
p(\bfx k| \bfz i1:k - 1)

(1.7)

This is called the hierarchical fusion without feedback.

3. Finally, a global prediction based on all i sensor measurements, can serve as local prior.

Such prediction is stated below:

p(\bfz ik| \bfx k) \propto 
p(\bfx k| \bfz 1:m1:k - 1, \bfz 

i
k)

p(\bfx k| \bfz 1:m1:k - 1)
(1.8)

p(\bfx k| \bfz 1:m1:k ) \propto p(\bfx k| \bfz 1:m1:k - 1)
m\prod 

i=1

p(\bfx k| \bfz 1:m1:k - 1, \bfz 
i
k)

p(\bfx k| \bfz 1:m1:k - 1)
(1.9)

This is denoted hierarchical fusion with feedback.

A more detailed and specialized research on Bayesian methods can be found on [Markovic

and Petrovic 2014; Abdulha�z and Khamis 2013].

Dempster�Shafer method

The Dempster-Shafer method may be interpreted as a generalization of Bayesian theory

for multi-hypotheses processing [Shafer 1976; Smets 1988; H. Wu 2004; B. Ma 2001]. In

a Dempster-Shafer reasoning system, the frame of discernment T is composed by the pos-

sible basic hypotheses who are not dividable and mutually exclusive. The system infer-

ence space is the power set \Theta of T . For a discernment T = \{ A,B,C\} the inference is

\Theta = \{ \{ A\} , \{ B\} , \{ C\} , \{ A,B\} , \{ B,C\} , \{ A,C\} , \{ A,B,C\} , \emptyset \} , where hypotheses in braces means

a hypothesis in which one of the component is valid.

With the frame of discernment T and the possible hypothesis \Theta de�ned, belief (bel) can

be assigned over \Theta . Like in probability, the total belief equals 1. Each sensor Si reports its

observation by assigning beliefs. The basic belief assignment is called mass function mi of Si.

The assignment is based on the observed evidence E, supporting the belief. For a hypothesis

H the belief is expressed as follows:

beli(H) =
\sum 

Ek\subseteq H

mi(Ek) (1.10)

Another characteristic is plausibility (pl) of hypothesis H, including all the observed evidence

objects that do not stand against H:

pli(H) =
\sum 

Ek\cap H \not =\emptyset 
mi(Ek) = 1 - beli( \=H) (1.11)

In Dempster-Shafer system, the belief and plausibility form a con�dence interval

[beli(H), pli(H)] for a hypothesis, that represents the measured belief about the hypothesis.

The con�dence interval is an interval, where the true probability lies with a certain con�dence.

When one speaks about sensor's data fusion, there are rules which combine sensor Si's ob-

servationmi and sensor Sj's observationmj such as in the close-world assumption model [Smets

1994]:
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mi \oplus mj(A) =

\sum 
Ak\cap Ak\prime =A

mi(Ak)mj(Ak\prime )

1 - \sum 
Al\cap Al\prime =\emptyset 

mi(Al)mj(Al\prime )
(1.12)

where Ak,Ak\prime ,Al,Al\prime are sets from the discernment and A is a hypothesis. There are other

fusion models, such as in open-world assumption [Smets 1994], in cautious rule [Denoeux 2006],

etc. [McKeever and Ye 2013]

The Dempster-Shafer method can update a priori estimation with new observations for a

posteriori estimations, like it was demonstrated for Bayesian inference. The Dempster-Shafer

method relaxes the Bayesian restriction on mutually exclusive hypotheses. Belief theory can

be used both for the tracking purposes [Mourllion et al. 2005] and multi-sensor data fusion

purposes [Klausne, Tengg, and Rinner 2007] in intelligent vehicles applications.

1.3.3 Multi-sensor data association

In the previous section it was mentioned that the model and observations must be expressed

in a common coordinate system. For di�erent sensors their coordinate systems also di�er. There

are two possible solutions to make a data fusion in this case:

1. To have a possibility to transform observation of one sensor into the coordinate system

of the other

2. To introduce a common coordinate space and also have the possibility to transform

observations there

The methodology describes the transformation which are necessary to carry out the coordinate

system changing. I present the state of art in this domain in two groups of methods classi�ed

as "multi-sensor calibration" and "association by learning".

Multi-sensor calibration

Sensors of di�erent nature (and di�erent space of detections) perform their measurements

independently. Calibration serves to know whether two measurements originate from the same

object or less generally: from the same physical position. To �nd these correspondences, stan-

dard algorithms like Detection And Tracking of Moving Objects (DATMO) usually make use

of a calibration procedure which allows to transform measurements of one sensor into the ref-

erence frame of the other. Such transformations are often quite sensitive [Rodriguez, Fremont,

and Bonnifait 2008] to the used measurement models (e.g., pinhole model for camera) and

calibration parameters. Moreover, because of the nature of the measured quantities, sometimes

a bijective transformation does not even exist. This is for example the case when transforming

2D camera image points into a 3D coordinate system of a LIDAR device. State-of-the-art ap-

proaches for intelligent vehicles such as [H. Cho et al. 2014; Rodriguez, Fremont, Bonnifait, and

Cherfaoui 2011] rely on the explicit need of a common frame where all sensors observations can

be referenced (i.e. data alignment). This assumption greatly simpli�es the association problem

of multiple data sources (e.g. LIDAR, RADAR, vision). However, in practice, a calibration
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?

vision

LIDAR

Figure 1.7 � Illustration of the multisensory correspondence problem: LIDAR (left) and vi-
sual (right) measurements, e.g., provided by independent object detection algorithms, "live"
in completely di�erent spaces and are thus very di�cult to associate without applying prior
knowledge.

procedure is required in order to precisely determine all sensors rigid-body transformations (i.e.

extrinsic parameters) into the reference frame and their uncertainties.

As an example of external di�erent sensor's calibration method, one can cite [Fremont,

Sergio Alberto Rodriguez Florez, and Bonnifait 2012] where linear transformations between

sensors' relative positions is estimated using sets of captured images and LIDAR points cloud

corresponding to circular targets for some various positions.

To realize the previous calibration, intrinsic camera parameters must be also estimated with

another calibration technique [Zhang 1999] requiring several images of a chessboard captured

from a camera under di�erent angles.

Recent works on the 3D sensor calibration have considerably simpli�ed the procedure for

determining the relative position of sensors using a set of natural features [Scaramuzza, Harati,

and Siegwart 2007] or using a single observation of a set of calibration patterns ( covering

di�erent distances and orientations of the multi sensors �eld of view) [Geiger, Moosmann, et al.

2012].

Automatic calibration approaches can also infer the extrinsic parameters by the means of

an optimization framework which registers sensors data in a common space (typically 2D/3D

Cartesian space). Recently in [Pandey et al. 2014; Levinson and Thrun 2013] and [Napier,

Corke, and Newman 2013], online strategies were proposed to achieve data registration between

a vision system and a ranging sensor by optimizing the extrinsic parameters using a mutual

information criterion about the sensing sources.

Association by learning

In [K. Kim and L. S. Davis 2006] the full camera calibration is not needed, only a par-

tial calibration for ground plane homography. The partially calibrated cameras can project a

detected object as a line on a top-view ground plane. The intersected lines gives an object

position in a common tracking space, while its associations with cameras are still available.

The article [Javed et al. 2003] proposes a method of object correspondence between non-

overlapping cameras using statistical learning approach based on observations by non-inter-

calibrated cameras. The learning method proposes a probabilistic space-time model of lost
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object waiting: when a tracked pedestrian walks out of one camera visibility area, the other

camera is waiting a new pedestrian appearance. If the time of arriving is consistent to the

model, the new appeared pedestrian in second camera is associated with the lost pedestrian

from the �rst camera.

In [Cheikh et al. 2012] a method of object association based on image feature distance is

proposed. The approach don't need any camera calibration nor inter-space learning, but has

strict restriction about tracked objects features. Particularly, the normalized color histograms

are calculated for inter-view association.

As an alternative to the classical approaches, the method described in Chap. 3 is intended

to perform multi-sensor data alignment through a probabilistic learning based framework. This

approach not only provides a data alignment solution but also models the probability accorded

to the observation transfer. Moreover, this method can provide an integrity measure of the

data alignment using extrinsic parameters in a cross-validation scheme.
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2.1 Introduction

Fundamental de�nitions of this part are listed below.

Object is a dynamic entity existing in the real world, detectable by sensors and that can

be modelled.

Detection is either a process of the information extraction about an object from a larger

stream of information at a given time moment; or a result of the process as momentary object

representation.

Tracking is the process of estimation of the moving object's or multiple objects' locations

(or other data) composing the trajectory.

Tracked object is the object been tracked. In this work the tracking uses detections, which

arrive in consecutive time moments.

41
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Track state - instantaneous estimation of the tracked object location and other charac-

teristics. The state may be de�ned di�erently according to applications. In the approaches

used further, the state includes its coordinates in the corresponding space. The direction and

movement speed, as well as object's size parameters may also be included in the state. In

the taxonomy of tracking methods shown at Fig. 2.1 that type of tracking is denoted point

tracking. As a result, tracking provides an estimation of current object's position using the

observed positions of the past and external observations.

Track is a result of the tracking process, i.e. the set of time-ordered states of the tracked

object.

A taxonomy of tracking methods is represented on Fig. 2.1. This �gure illustrates a global

classi�cation of state of the art of multi-object tracking methods [Parekh, Thakore, and Jaliya

2014; Yilmaz, Javed, and Shah 2006]. Probabilistic point tracking is focused since it is related to

the methods considered in this work. The probabilistic methods have a developed mathematical

theoretical base, have wide-spread working applications and are generally common, i.e. can be

used in di�erent systems without any speci�ed restrictions.

Object Tracking

Point Tracking Kernel Tracking Silhouette Tracking

Contour
matching

Shape
matching

Multi-view
based

Template
based

View
subspace Classifier

Deterministic Probabilistic

Kalman filter

Particle filter

JPDA

MHT

etc.

PHD filter

Figure 2.1 � Survey of state-of-the-art tracking methods

An example of deterministic point tracking method is presented in [Salari and Sethi 1990],

where they establish correspondence for the detected points (temporal association) and extend

the tracking of a missing object by adding a number of hypothetical points. Another deter-

ministic tracking is presented by Veenman in [Veenman, Reinders, and Backer 2001], where

a common motion constraint is introduced to enhance data association. This is a constraint

which enforces coherent tracking of points lying on the same object.

The template-based tracking is a tracking coupled with a detection mechanism, where de-

tectors do not look for an abstract object of given class, instead they look for a previously

tracked object. For example, mean-shift tracker searches an object using histogram features

and spatial positions between the track state and a new detection [Comaniciu and Meer 2002].

A layer method divides the tracking space into background level and assigns a di�erent level for

each tracked object [Tao, Sawhney, and Kumar 2002]. Each layer consists in a priori shapes,



CONTENTS 43

motion model and a layer appearance. Layering can compensate background motion. The

Kanade-Lucas-Tomasi feature tracker (KLT) [Lucas and Kanade 1981] iteratively computes

the translation of region features described in [Shi and Tomasi 1994].

A classi�er serving as a tracker is a Support Vector Tracker [Avidan 2001], based on a

Support Vector Machines (SVM) classi�er. The classi�er �nds an optimal separating hyperplane

in the space of features for two classes of objects. In the tracking application, the classi�er is

trained on a di�erence between extracted patches of tracked region and other ones.

A multi-view based kernel tracking using view subspaces is represented by the Eigen track-

ing: an approach for tracking rigid and articulated objects using a view based representa-

tion [Black and Jepson 1998]. It computes the a�ne transformation from the current image of

the object to the image reconstructed using eigenvectors. The subspace representation is build

with Principal Component Analysis (PCA).

In image tracking one of the basic task is to separate tracked object from its environment,

and since the most of the information in practice comes from gradients, borders, it is useful

to track only a silhouette of the detected object instead of the complete area of interest. One

of the shape matching approach is based on the Hough transform in the velocity space for

object silhouettes [Sato and Aggarwal 2004]. The Temporal Spatio Velocity image determined

there, provides a motion-based matching of the silhouettes and is less sensitive to appearance

variation. Another method uses histograms of color and edges as the object models [Kang,

Cohen, and Medioni 2004]. The histograms are generated from concentric circles centred on a

set of control points on a reference circle, encapsulating the object silhouette.

The tracked object can also be de�ned in terms of spline shape and a�ne motion parame-

ters. For instance, the measurements can be modelled as image edges extracted in the normal

direction to the contour. The state in that case may be updated using particle �lter [Isard

and Blake 1998]. There are methods where the contour tracking uses temporal image gradients

based on the optical �ow [Bertalmio, Sapiro, and Randall 1998].

In general, the road applications do not require high precision for object shape recognition,

however real-time performance is a critical feature for object tracking. Taken into account such

real-time constraints, point tracking was chosen. Kernel and silhouette tracking require the use

of time-cost features extraction and processing. Regarding the probabilistic methods developed

in the last years, deterministic approaches have become less used.

2.2 Filtering

The term �lter stands for methods and techniques that process sets of detections in order

to reduce initial detection imprecision, to �lter noise, to eliminate false positives, to cope with

detection loss. In this context, a bank of �lters can be employed to carry out multiple object

tracking.

In this section, a short description of well-known probabilistic point tracking methods is

presented. Their advantages and drawbacks are investigated. Finally, one method is then

chosen for a detailed study.
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2.2.1 Kalman �lter

The Kalman �lter is a probabilistic estimator for the linear-quadratic problem. It performs

the estimates of the instantaneous state of a linear dynamic system a�ected by a Gaussian

centred white noise [Grewal 2011; Meinhold and D.Singpurwalla 1983]. The Kalman �lter is

proved to be statistically optimal for any quadratic function of the estimation error in a linear

system. The �lter uses Bayesian inference and estimates a joint probability distribution over

the variables composing �lter states.

The Kalman �lter model assumes a linear state evolution with a given evaluation matrix \bfF 

of size N \times N , as it is shown in Eq. 2.1.

\bfx k = \bfF k\bfx k - 1 +\bfw k (2.1)

where \bfx k of size N is an object state at a discrete time index k, \bfw k of size N represents a

white noise process (each sample follows a Gaussian normal distribution with mean equals 0)

with a known covariance matrix \bfQ k of size N \times N , which is denoted as: \bfw k \sim \scrN (0,\bfQ k).

The true state \bfx k is estimated based on the observation \bfz k of size M according to Eq. 2.2.

\bfz k = \bfH k\bfx k + \bfv k (2.2)

where the matrix \bfH k of size M \times N is the observation model and the vector \bfv k of length

M is the known observation white noise: \bfv k \sim \scrN (0,\bfR k).

Let \^\bfx k| k - 1 be a priori state estimation at time k based on known state at time k - 1. With

this notation, \^\bfx k| k is a posteriori estimation after getting observations at time k. After the

de�nition of a posteriori \bfP k| k and a priori \bfP k| k - 1 error covariance matrix, the �lter can be

formulated through two sequential and iterative phases: prediction in Eq. 2.3 and update in

Eq. 2.4.

\^\bfx k| k - 1 = \bfF k\^\bfx k - 1| k - 1 Predicted (a priori) state estimate

\bfP k| k - 1 = \bfF k\bfP k - 1| k - 1\bfF 
T
k +\bfQ k Predicted (a priori) estimate covariance

(2.3)

\=\bfy k = \bfz k  - \bfH k\^\bfx k| k - 1 Innovation or measurement residual

\bfS k = \bfH k\bfP k| k - 1\bfH 
T
k +\bfR k Innovation (or residual) covariance

\bfK k = \bfP k| k - 1\bfH 
T
k\bfS 

 - 1
k Optimal Kalman gain

\^\bfx k| k = \^\bfx k| k - 1 +\bfK k\=\bfy k Updated (a posteriori) state estimate

\bfP k| k = (\bfI  - \bfK k\bfH k)\bfP k| k - 1 Updated (a posteriori) estimate covariance

(2.4)

Kalman �lter is limited by the linearity of state evolution and the assumption of the Gaussian

nature of noise. For video and LIDAR tracking, this limitation can lead to track lost and missed

association problems. Other �ltering frameworks might tackle these cases.

When the tracked trajectory has a sharp turn, if the signal-to-noise ratio is kept, then the

Kalman gain value is adapted with a certain latency. In that case the signi�cance of observation
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information becomes much higher than the signi�cance of model information. The algorithm

can then loose the track. Also, with a noise varying over time, the system needs to adapt the

Kalman gain and covariance matrices.

2.2.2 Multiple Hypothesis Tracking

The Multiple Hypothesis Tracking presents an exhaustive method where all possible assign-

ment combinations between track and detections are enumerated and computed in terms of

probabilities [Blackman 2004; Amditis et al. 2012; C. Kim et al. 2015]. In this approach, track

hypotheses are expanded to a set of new hypotheses taking into account all the possible assign-

ments of existing tracks and the new set of measurements (i.e. observations). Each hypothesis

is denoted as an object-to-track assignment.

An illustration of a hypothesis tree is presented in Fig. 2.2.

Figure 2.2 � Multiple hypothesis scheme. Node numbers indicate to which track the measure-
ment is assigned to. "Zero" stands for "false alarm" assignment, other numbers are existing or
new tracks. New measurements generally increase the number of hypotheses

For each hypothesis \Omega k
i , formed from the parent hypotheses \Omega k - 1

g , its probability P k
i is

calculated according to Eq. 2.5 from probability P k - 1
g and other values. Here k is a measure-

ment number, representing also the MHT tree level as in Fig. 2.2 where i, g are respectively

hypotheses indices at levels k and k  - 1.

P k
i =

1

c
PNDT
D (1 - PD)

(NTGT - NDT )\beta NFT
FT \beta NNT

NT \times 
\bigl[ NDT\prod 

m=1

N(\bfz m  - \bfH \bfx g,\bfB )
\bigr] 
P k - 1
g (2.5)

where:

� PD, Probability of detection

� \beta FT , Density of false targets

� \beta NT , Density new detected targets detected

� NDT , Number of measurements associated to prior targets

� NTGT , Number of all known prior targets

� NFT , Number of measurements associated to false targets

� NNT , Number of measurements associated to new targets

� c, Normalization constant

� \bfx g is a track supported by the hypothesis \Omega k - 1
g
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� \bfz m - \bfH \bfx g and \bfB are the innovation vector and innovation covariance matrix respectively.

Evaluating the probabilities of hypotheses after the arrival of new observations, and by

using an additional mechanism of rejecting improbable hypotheses, one can track one or more

objects by assigning them to the hypotheses tree.

The drawbacks of MHT are:

� Exponential increasing of hypotheses number. The exponential complexity can be lim-

ited by using hypotheses pruning strategies, but even then, the computational cost

remains high.

� Multiple hypothesis tracking method in its initial form provides only temporal associa-

tion between detections without any prediction.

� MHT has no possibility to �lter or correct noisy detections.

The two last disadvantages can be managed when MHT is completed by a single-object

tracker, like Kalman �lter. This combination is called Multiple Hypothesis Kalman �lter

(MHKF) [Bazzani, Bloisi, and Murino 2009].

2.2.3 Joint Probabilistic Data Association Filter (JPDAF)

Joint Probabilistic Data Association (JPDA) is an object-to-track association method based

on a joint probability estimation [Bar-Shalom and Tse 1975; Rezato�ghi et al. 2015; I. J. Cox

1992].

Let \bfx 1
k, . . . ,\bfx 

N
k and \bfz 1k, . . . , \bfz 

M
k be the states of N tracks and M detections at moment k

respectively. The assignment probability representing that the measurement i is generated by

the target j, is denoted as pk(d
j
i ):

pk(d
j
i ) \propto 

\Biggl\{ 
(1 - pD)\beta if i=0

pD \cdot \scrN (\bfz ik; \^\bfx 
j
k,\bfS S) otherwise

(2.6)

where \^xjk is the predicted state of the object j at time k, pD is the detection probability, \beta 

is a false detection density, and \bfS S is the innovation covariance matrix of the Kalman �lter.

The JPDA calculates joint probabilities qk(d
j
i ) = qk(d

j
i = 1) on the joint data association space

\Theta , which contains all possible combination pairs between detections and tracks, satisfying the

following constraints:

\Theta =
\Bigl\{ 
\theta = (dji )i\in [M ]0,j\in [N ]

\bigm\| \bigm\| \bigm\| dji \in \{ 0, 1\} 

\wedge 
N\sum 

j=1

dji \leq 1, \forall i \in [M ]

\wedge 
M\sum 

i=0

dji = 1, \forall j \in [N ]
\Bigr\} 

(2.7)

where \theta \in \Theta is a binary vector denoting one solution of the data association problem. For

a subset \theta ji including hypotheses which assign detections i to target j, the JPDA probability
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qk(d
j
i ) is calculated as:

qk(d
j
i ) =

\sum 

\theta \in \theta ji

p(\theta )

p(\theta ) =
\prod 

\forall m\in [M ]0
\forall n\in [N ]

(pk(d
n
m))

dnm
(2.8)

The solution maximizes the joint probability of Eq. 2.8.

As MHT, JPDA does not provide �ltering of noisy detection, neither does allow for predic-

tion. Analogously to MHKF, the JPDA can be used in a combination with Kalman �ltering.

The resulted method is called JPDAF. An advantage of JPDA with respect to MHT is its

computationally cost.

2.2.4 Particle �lter

The Bayesian Recursive Filtering is a �ltering method based on the construction of posterior

probability density function p(\bfx k| \bfz 1:k), where \bfx k is a state vector of size N at moment k and

\bfz 1:k are all observation vectors of size M from moment 1 to moment k. In this method, the

posterior probability density is recursively calculated with two processing steps: prediction and

update.

Prediction According to the Bayes' rule, using Chapman-Kolmogorov integral form, one can

get an expression for the prediction step:

p(\bfx k| \bfz 1:k - 1) =

\int 

\scrX 

p(\bfx k| \bfx k - 1)p(\bfx k - 1| \bfz 1:k - 1)d\bfx k - 1 (2.9)

where p(\bfx k| \bfx k - 1) is the prior probability of state \bfx k based on known previous state \bfx k - 1,

p(\bfx k - 1| \bfz 1:k - 1) is the posterior probability of state \bfx k - 1 based on known observations \bfz 1:k - 1, \scrX 
is a state space. In discrete form, Eq. 2.9 becomes:

p(\bfx k| \bfz 1:k - 1) =
\sum 

\bfx k - 1\in \scrX 
p(\bfx k| \bfx k - 1)p(\bfx k - 1| \bfz 1:k - 1) (2.10)

Update Using new observations at time k, the prior probability density function can be

updated as follows:

p(\bfx k| \bfz 1:k) =
p(\bfz k| \bfx k)p(\bfx k| \bfz 1:k - 1)\int 

\scrX 
p(\bfz k| \bfx k)p(\bfx k| \bfz 1:k - 1)d\bfx k

(2.11)

or

p(\bfx k| \bfz 1:k) =
p(\bfz k| \bfx k)p(\bfx k| \bfz 1:k - 1)\sum 

\bfx k\in \scrX 
p(\bfz k| \bfx k)p(\bfx k| \bfz 1:k - 1)

(2.12)

The Particle �lter represents the posterior probability density function as a discrete number of

samples, called particles [Ng and Delp 2009; Arulampalam et al. 2002; Hermes et al. 2009]. A

particle represents a hypothesis of the states and it is randomly placed around a prior density.

After sampling, particles are propagated according to the evolution model, and weights are

assigned to them according to a likelihood model. A particle's weight is proportional to its
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likelihood: particles located close to new observations have high weights, and particles far away

from new observations have low weights.

The object state can be reconstructed as a weighted mean of particle states, evolving ac-

cording to the state model. Its probability density is de�ned as:

p(\bfx k) \approx 
1

K

K\sum 

i=1

\delta (\bfx k  - \bfx i
k) (2.13)

where \delta is a Kronecker delta function, \bfx i is a state of ith particle and K is the number of

particles

Particle's weights are measured by means of a likelihood model \scrL , and the posterior prob-

ability density function p(\bfx k| \bfz 1:k) can be approximated as follows:

p(\bfx k| \bfz 1:k) =
K\sum 

i=1

\omega i
k\delta (\bfx k  - \bfx i

k)

\omega i
k =

\scrL (\bfz k| \bfx i
k)p(\bfx 

i
k| \bfx i

k - 1)

q(\bfx i
k| \bfx k - 1, \bfz k)

K\sum 

i=1

\omega i
k = 1

(2.14)

where q(xik| xk - 1, zk) is the normalization term.

The particle �lter does not require linearity of the evolution model and the noise is not

assumed to be Gaussian, as for the Kalman �lter.

The particle �lter model has a precision depending on the number of using particles: more

particles provide more stability for the stochastic process. In the initial form, the particle �lter

is not adapted to multi-object tracking. However, there is a set of algorithms using the particle

�lter principle. One of them, PHD �lter, is shown further.

2.2.5 Probability Hypothesis Density (PHD) �lter

The Probability Hypothesis Density �lter is a multi-object tracker based on the propagation

of probability hypothesis densities, as the �rst order moment of the multi-object posterior. The

PHD can be analysed so as to observe the number of tracked objects [Y. Zheng et al. 2013]. It

has various implementations, including Sequential Monte Carlo (SMCPHD) [Vo, S. Singh, and

Doucet 2003], Gaussian Mixture [Vo and W.-K. Ma 2006], Box-PHD implementation [Schikora

et al. 2014], etc. The PHD can be represented in the form of particles, and in that case the

PHD �lter remains a particle �lter, but with some new multi-object features.

The PHD �lter is e�cient in terms of computational resources [Maggio, Piccardo, et al.

2007]. A PHD is capable of �ltering clutter, completing missing observations and coping with

noisy ones.

Recently, e�cient particle implementations of PHD �ltering have been proposed [Vo, S.

Singh, and Doucet 2003; Maggio, Piccardo, et al. 2007; Schikora et al. 2014]. These approaches

include the estimation of the number of observed tracks. To this end, particle clustering is

necessary to identify tracks. However, such a procedure is non-trivial in urban scenarios where
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objects move in close to each other.

PHD is based on the propagation of �rst-order moment of the multi-object posterior. This

implies that the posterior is a condensation of random �nite set (RFS). Based on this last

statement and some other notions, a generic particle implementation of the PHD �lter algorithm

can be formulated structured by prediction, update and resampling steps, detailed below.

Let de�ne some notation:

� k, Time index, �lter iteration

� Lk, Number of particles at kth iteration

� Jk, Number of new born particles

� i, Particle index

� Zk, Set of all observations at kth iteration

� \xi ik, i
th particle at kth iteration

� wi
k, Weight, attributed to the particle \xi ik

� \^\xi k, \^wk| k - 1, Prior particle state and prior weight estimation

� \phi (\xi i, \xi j), Prediction operator

� \psi (\xi i, \xi j), Update operator

� \gamma (\xi ), PHD of spontaneously appeared objects, i.e. of new particle \xi 

� v(\xi ), Probability of non-detection

� qk(\xi i| \xi j, Zk), Probability of sampling \xi i from \xi j, taking into account observations Zk

� pk(\xi i| Zk), Probability of sampling new particle \xi i
� \kappa k, Clutter probability density

Prediction

For i=1, . . . , Lk - 1, sample \^\xi ik \sim qk(\cdot | \xi ik - 1, Zk) and compute the predicted weights:

\^wi
k| k - 1 =

\phi (\^\xi ik, \xi 
i
k - 1)

qk(\^\xi ik| \xi ik - 1, Zk)
wi

k - 1 (2.15)

For i=Lk - 1 + 1, . . . , Lk - 1 + Jk, sample \^\xi ik \sim pk(\cdot | Zk and compute the weights of new born

particles:

\^wi
k| k - 1 =

1

Jk

\gamma (\^\xi ik)

pk(\^\xi ik| Zk)
(2.16)

Update

For each z \in Zk, compute:

Ck(z) =

Lk - 1+Jk\sum 

j=1

\psi k,z(\^\xi 
j
k) \^w

j
k| k - 1 (2.17)

For i=1, . . . , Lk - 1 + Jk update weights

\^wi
k =

\Bigl[ 
v(\^\xi ik) +

\sum 

z\in Zk

\psi k,z(\^\xi 
i
k)

\kappa k(z) + Ck(z)

\Bigr] 
\^wi
k| k - 1 (2.18)

Resampling

Compute the total mass Mk| k =
\sum Lk - 1+Jk

j=1 \^wj
k
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Resample
\bigl\{ 
\^wi
k/Mk| k, \^\xi ik

\bigr\} Lk - 1+Jk

i=1
to get

\bigl\{ 
wi

k/Mk| k, \xi ik
\bigr\} Lk

i=1

This implementation does not allow for tracks' temporal association, i.e. the number of

tracks for each rayon of interest can be statistically estimated, but cannot reconstruct their

trajectories. In next section, the detailed implementation of a tracker based on particle PHD

is presented.

2.3 Proposed multi-object tracking system

In the variant of the particle-based PHD-�lter presented below, the problems of clustering

and cardinality estimation are avoided by initializing tracks with a �xed number of particles

constantly associated to them. The proposed method is not claiming to perform superior

multi-object tracking, however, it does facilitate the integration of contextual information as is

is shown in Chap. 4, because particles facilitates context data representation.

In this work a slight modi�cation of the SMCPHD �lter is used, with an integrated data

association mechanism, used to remove old, useless targets and to create new ones. The follow

detailed explanation concerns only this particular implementation of the �lter, and can not be

considered as generic.

2.3.1 Filter implementation

The PHD �lter is represented by Nx dynamically changing tracks \bfx m, m \in 1..Nx. Each

track \bfx m contains Np particles. Particle \xi \bfx m,n, n \in 1..Np contains a set of vectors \{ [ci, di, vi]T\} ,
i \in 1..D, where D is a space dimension, ci is the center coordinate, di is the detection size and vi
is the speed. Here index i is common for all three characteristics of a state (or a particle). That

means all three vectors have the same dimensionality. A weight \omega \bfx m,n, n \in 1..Np is assigned to

each particle \xi \bfx m,n, n \in 1..Np.

The size and velocity were introduced in the model to e�ciently resolve the cases of tracks

intersections. At the moment of tracks occlusion, the position states become equal. With the

presence of the speed and size, the distinction between tracks is kept during some time before

the adaptation.

The current implementation is a one-to-one approach (i.e. mono-hypothesis), that is a track

can represent only one object and one object can not have more than one associated track.

The parameters of the PHD �lter are:

� Rd, death rate

� Rb, birth rate

� Rret, retard rate

The tracking process implements the following stages: prediction, association, observation,

resampling, merging and correction.
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Figure 2.3 � Example of a simulated multi-target tracking scene. Green rectangles are tracks,
red circles are detections, dots are particles

Prediction Tracks and theirs particles are propagated according to the motion model:

ci,k| k - 1 =ci,k - 1 + vi,k - 1

di,k| k - 1 =di,k - 1, i \in 1..D

vi,k| k - 1 =vi,k - 1

(2.19)

where k is a discrete time moment and k - 1 is a previous time moment. The position coordinates

are evaluated linearly according to the current speed. The object size and speed change slowly

and their adaptations can be handled by only particles resampling.

Association Input observations \bfz j, where j \in 1..N z and N z is a number of observations, are

assigned to existing tracks \bfx m, m \in 1..Nx. Tracks assigned to observations increase their life

rate by Rd:

Rm,k = \mathrm{m}\mathrm{i}\mathrm{n}(Rm,k - 1 +Rd, 1), m \in 1..Nx (2.20)

where the life rate Rm,k for a track xm is a value de�ning if this track must be eliminated as

out of date or be still evaluated. Non-associated tracks update their probability by:

Rm,k = \mathrm{m}\mathrm{a}\mathrm{x}(Rm,k - 1  - Rd, 0) (2.21)

Observations which are not associated give birth to new tracks with an initial life rate equal to

the birth rate:

Rm,k = Rb (2.22)

In case when a new track is created, the weight of its particles are:

\omega \bfx m,n =
Rm,k

Np
, n \in 1..Np (2.23)

The association algorithm represents an implementation of Global Nearest Neighbor (GNN)

algorithm. It was chosen because it is simple in implementation, more precise in tracking appli-

cations than Suboptimal Nearest Neighbour (SNN) [Konstantinova, Udvarev, and Semerdjiev
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2003].

In detail, the association algorithm's steps are:

1. For all pairs \{ \bfz j,\bfx m\} , j \in 1..N z;m \in 1..Nx the pseudo-distance G(\bfx m,k, \bfz j,k) is cal-

culated, where the function G() is a product of Gaussians [Sattarov, Sergio Alberto

Rodríguez Florez, et al. 2014]:

G(\bfx m,k, \bfz j,k) = \scrN (\| \bfc \bfx m  - \bfc \bfz j\| | 0, Kc)

\times \scrN (\| \bfd \bfx m  - \bfd \bfz j\| | 0, Kd)

\times \scrN (\| \bfv \bfx m  - \bfv \bfz j\| | 0, Kv)

(2.24)

where Kc, Kd, Kv are coe�cients in the range ]0, 1], are experimentally chosen, \bfc ,\bfd ,\bfv 

are vectors of center coordinates, detection size and speed.

2. Find the nearest pair following the equation:

(\bfx , \bfz ) = \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}
\bfx m\in X,\bfz j\in Z

G(\bfx m, \bfz j) (2.25)

Associate \bfx and \bfz , remove \bfx from list of pairs to associate and repeat this step if

G(\bfx , \bfz ) > \theta a, where \theta a is an empirically chosen threshold.

3. Finally, a list of associated pairs \{ \bfz j,\bfx m\} , a list of non-associated detections \{ \bfz j\} and a

list of non-associated tracks \{ \bfx m\} are obtained.

Observation For each new observation \bfz j,k, j \in 1..N z, and for each particle \xi \bfx m,n, \bfx m \in X,

m \in 1..Nx, n \in 1..Np a pseudo-distance is calculated: G(\xi \bfx m,n, \bfz j,k). The pseudo-distances are

normalized relative to observations:

\omega \bfx m,n = (1 - Rret)
Nz\sum 

j=1

G(\xi \bfx m,n, \bfz j)
Np\sum 
l=1

Nx\sum 
s=1

G(\xi \bfx s,l, \bfz j)

+ Previous(\omega \bfx m,n)\times Rret (2.26)

The term \omega \bfx k,n \times Rret represents the "old" particle weights. It is used to add an inertia

component to a track, to reduce useless �uctuations. The normalization term has a summarizing

on distances to all tracks. That came from PHD �lter principle, where particle represent �rst-

order moment. That means that one observation must bring weights equivalent to

Resampling Track \bfx m is deleted if its current life rate Rm,k < \theta d. Here \theta d is an arbitrary

parameter. These threshold shows that if during some time no one detection was associated to

these track (i.e. its life rate decreases) it is considered as lost and must be deleted. Otherwise,

if Rm,k >= \theta d its particles are randomly sampled using:

ci,k = ci,k| k - 1 +\scrN c(0, \^Kc)

di,k = di,k| k - 1 +\scrN d(0, \^Kd)

vi,k = vi,k| k - 1 +\scrN v(0, \^Kv)

(2.27)

Here \scrN c,\scrN d,\scrN v are di�erent white noises, and \^Kc, \^Kd, \^Kv are coe�cients, chosen empirically.
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The parameters \^Kc, \^Kd, \^Kv are proportional to the value 1
Rm,k

. This is done in order to make

particles more dispersed when a track is "lost". The increased radius of particle distribution

increases the chances that some of particles will be near detections.

Merging If two tracks \bfx m1 and \bfx m2 have a pseudo-distance G(\bfx m1,\bfx m2) > \theta m, they are

supposed to belong to a single object, and the newer track is deleted. Here \theta m is a prede�ned

merging threshold.

There are di�erent situations when a merging mechanism is required:

1. One object was detected several times and those detections were recognized as belonging

to di�erent objects. During the association step, a new track was created near the old

one. After some time they approach and a merging mechanism removes the newer track.

This is an ideal case explaining why the merging step was considered. Without it, a set

of tracks following the same object would be created. That contradicts mono-hypothesis

(one-to-one) tracking de�ned above. The newer track hypothesis is pruned since it

encloses less information than the older one.

2. Two di�erent objects get into an occlusion scenario: one track overlaps another track.

The merging step deletes the newer one and when the occlusion is �nished, a new track

will be created. This scenario is undesirable, but the track lost is partially compensated

with a new track creation.

3. Two object get into occlusion and one track quits the tracking space while been occluded.

Here there is no problem: the track is correctly pruned in the merging procedure.

Correction New track centres are computed as the mean of particles associated to that track:

\bfx m,k =
1

Np

Np\sum 

n=1

\xi \bfx m,n,k (2.28)

The resulted mean is weighted because after the resampling step all particles are equiprobable.

The output of the algorithm is represented as a set of tracks.

This tracking system is used in recent publications: [Gepperth, Ortiz, et al. 2016; Gepperth,

Sattarov, et al. 2014].

2.3.2 Evaluation method

The approach was tested on simulated data and on the public KITTI benchmark

dataset [Fritsch, Kuehnl, and Geiger 2013] using annotated tracklets as Ground Truth. The

common schema to evaluate results requires four sets of data:

1. The set of labeled rectangles representing tracks constructed by tracking algorithms: X.

2. The set of labeled rectangles representing real objects Y , or Ground Truth.

3. The set of labeled rectangles representing noisy objects Z. It is obtained from Ground

Truth by arti�cially introducing missed (false negative) detections, and by corrupting

retained detections by noise. Noise is modelled as an additive Gaussian �uctuation
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applied to positions and sizes (ci, di), i \in 1..D of all Ground Truth objects. Each noisy

detection \bfz \in Z has a Ground Truth pair \bfy \in Y .

4. The set of pairs of labels representing associations between noisy detections and tracks

noted as XZassoc

As the particle implementation of PHD-�ltering contains a pseudo-random process, small vari-

ations can occur over trials. To precisely calculate the evaluation criteria, the results are

calculated as the mean and the standard variation of both measurements across 20 trials.

Two major evaluation criteria are used to quantify the accuracy of the approach: an overlap

criterion and a continuity criterion. The overlap criterion measures the accuracy of a track's

position with respect to associated real object position. The "continuity" criterion computes

the quality of object-to-track associations.

Track overlap criterion is derived from [Yin, Makris, and Velastin 2007; Manohar et al.

2006] as the mean of all association overlaps (i.e. overlap between track and real object):

Overlap =
1

Nassoc

\sum 

(k,i)

\mathrm{m}\mathrm{a}\mathrm{x}(
S(xk \cap yi)
S(xk)

,
S(xk \cap yi)
S(yi)

) (2.29)

whereNassoc is a number of associations inXZassoc and S(\cdot ) is an area occupied by detection.
This form was chosen because it:

1. Takes the detection size into account.

2. Has a normalized values in [0, 1] interval

3. Penalizes not only the distance between a detection and a track state, but the incorrect

size of the track state, both for too large and too small.

4. Is integral for all tested scenario.

The overlap value is always \in [0, 1], where 1 represents the ideal case of full overlap. The

illustration is provided on Fig. 2.4b.

Ground Truth trajectory

Corresponding tracks trajectories

Length=L (timestamps)

L1

L2

L3

Continuity=

{

{

max(L1,L2,L3)
L

(a) Continuity measure illustration. One must note that the dis-

connected parts of the same track are calculated together

Simple Euclidean distance

Overlap=

Square=S1

Square=S2

Intersection square=S

max( SS1,
S
S2)

Rectangle center

(b) Overlap measure with sim-

ple Euclidean distance illustra-

tion

Figure 2.4 � Tracking evaluation criteria

The "continuity" criterion is derived from [Smith et al. 2005; Holt et al. 2010] and is calcu-

lated according to the formula:
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Continuity =
1

NY

\sum 

yi\in Y
\mathrm{m}\mathrm{a}\mathrm{x}

k

1

Nyi

\sum 

t

\delta k,i(t) (2.30)

where NY is a number of Ground Truth objects, Nyi is the number of appearances of the

object yi during the whole tracking scenario, \delta k,i(t) = 1 if (k, i) \in XZassoc(t) and \delta k,i(t) = 0

otherwise. The continuity measure thus describes the mean of the longest associations. It

varies in ]0, 1], where 1 is the ideal case of constant associations. The illustration is provided

on Fig. 2.4a. The proposed continuity formula is used because it:

1. Penalizes changes of tracks associated with GT states.

2. Distinguishes the short-time and long-time changes in GT-tracks association.

3. Processes together two long GT-track association separated in time, but identical in the

labels.

2.3.3 Tests

Before testing the tracking system on a new approach, it is useful to test the proposed

tracking itself. To this end, the evaluation criteria described above are used on a KITTI

dataset.

The tracking tests are e�ectuated in 2D space of detections, where points are represented

by their 2D position, size and velocity. Two types of tracking spaces are used:

� Camera image projection, where the actual "detection size" depends on the distance

between camera and the observed object. The position, size and velocity are measured

in pixels.

� The Bird-eye-view ground plane. The size of detections are supposed constant for each

object and represent a square with side equals max(width, length), where width and

length are given real object sizes obtained from KITTI dataset. The position, size and

velocity are measured in metres.

The visual tracking quality estimation can be observed at Fig. 2.5a and Fig. 2.5b. It is

obvious that the visual tracking is a more complicated task, as the track states can change

their sizes, can create occlusions and move too fast when approaching to the camera.

Now, the tracking quality can be evaluated with de�ned criteria "continuity", "overlap"

and simple Euclidean distance. Two KITTI scenarios are tested both for camera and bird-eye

views in two modes:

� Full KITTI tracklets are provided as detections. In this case the detections are tight in

time and the tracking is supposed to be easy.

� Noised scenario: only one third (two thirds for camera view) of KITTI reference positions

are served as detections. They are randomly chosen. The absent detections imitate the

false negatives. Thus tracking process is supposed to be more complicated.

Results are shown in Fig. 2.6 for bird eye view and in Fig. 2.7 for camera view. The tracking

in camera view is far from being perfect, but in bird eye view without false negatives the conti-

nuity of tracks are 100% respected. It is worth noting that the matching criteria (distance and

overlap) on a noised scenario provides a higher rate than for the noise-free scenario. Moreover,
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(a) Camera-view

Rover

Bus

Pedestrian

Car

Car

Cyclist

Cars at
traffic lights

Car

Car

(b) Bird-eye-view

Figure 2.5 � Visual illustration of tracking system. Red rectangles are detections, green rect-
angles are actual tracks state. The green lines are tracks recent trajectories. One can see that
camera-view tracking is a more di�cult task than in bird-eye-view. The scene is the same in
both �gures

a decreasing on continuity criterion are correlated to track-object association errors. However,

a track-object association error can induce new track creation improving distance and overlap

criteria. As camera view tracking is not stable enough, bird eye view will be used to test the

approach proposed in Chap. 4.
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Figure 2.6 � Continuity, overlap and Euclidean distance for tracking in bird eye view. Two
KITTI scenarios are the sources of detections: one is on the left column, other - on the right
column. As the particle implementation brings a random component, for each con�guration
20 essays was repeated to have a representative statistics. Two cases was tested: all detections
provided and 33% of detections provided.
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Figure 2.7 � Continuity, overlap and Euclidean distance for tracking in image projection view.
Two KITTI scenarios are the sources of detections: one is on the left column, other - on the
right column. 20 essays was repeated to have a representative statistics. Two cases was tested:
all detections provided and 66% of detections provided.



Chapter 3

Multi-sensor data association
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3.1 Introduction

While calibration approaches are often quite precise, the calibration procedure itself is com-

plex and error-prone and requires considerable expertise. Furthermore, a calibration procedure

depends intrinsically on the common data representation (e.g. calibration pattern, features),

and needs to be re-designed every time a change is made. On the other hand, it is often rather

easy and cheap to obtain a large number of sample measurements from both sensors. Assum-

ing the existence of such a sample dataset, a method to extract an implicit calibration model

between vision and LIDAR sensors is proposed. A data-driven approach where the statistics

of each sensor are used to optimally project both measurements (i.e. object-level) onto a stan-

dardized representation format is pursued to be able to apply generic probabilistic methods.

59
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In this way, this approach is completely independent of the intrinsic characteristics of the mea-

surements, and in particular of their dimensionality (i.e. n-d observations), leading to a strong

reduction of design and re-design e�ort for the conception of multi-modal processing system in

vehicles.

A learning approach that allows to detect correspondences between multiple sensors mea-

surements is presented. In contrast to approaches that rely on calibration (see Sec. 1.3.3), a

learning approach creates an implicit calibration model from training data.

Figure 3.1 � Illustration of the case, when the unique transform between sensor's spaces does
not exist: when detected by some sensors, an object can be viewed as one detection, for other
sensors the same object can be viewed as a distribution of probable detection

The model can provide three functions: �rst of all, it converts a measurement from one sensor

into the coordinate system of an other sensor, or into a distribution of probable measurements

in case where a transformation is not unique, like it is illustrated in Fig. 3.1. Secondly, the

model is able to decide if two visual/LIDAR measurements are likely to come from the same

object. This is of profound importance for applications such as object detection or tracking

where contributions from several sensors need to be combined [Hall, Liggins, and Llinas 2009].

The feasibility of the approach is demonstrated by training and evaluating the system on

tracklets in a KITTI dataset as well as on a small set of real-world scenes containing pedestrians,

in which the method �nds correspondences between the results of raw camera and LIDAR-based

detections [Sattarov, Gepperth, et al. 2015].

Figure 3.2 � Block architecture of the proposed correspondence detection method.
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A new way of detecting multi-modal correspondences for the important vision/LIDAR sen-

sor combination is presented here. A main contribution of the used learning approach is that

the "calibration" procedure is much simpler, it uses Self-Organizing Maps (SOM) detailed in

Sec. 3.3.2, and so it can in fact be handled by a non-expert regardless of the precise type of

measurements that are conducted. Furthermore, it is shown that the resulting data alignment

is very computationally e�cient and su�ciently accurate for most applications. Performing all

experiments using the publicly available dataset adds signi�cant credibility to the results.

The complete model is composed of several components, as visualized in Fig. 3.2:

� LIDAR and vision sensor

� Means to measure interesting quantities in both common reference data

� Self-organized Maps (SOM) for vision and for LIDAR, which learn to represent the

inputs coming from the respective (synchronous) measurements

� An algorithm for learning a correspondence model between SOMs

� A module for deciding when two measurements correspond, based on the SOMs and the

learned correspondence model

Not to complicate the clean and simple algorithm, only unimodal processing in each modality

are proposed by details

3.2 Self-Organizing Maps (SOM)

Self-Organizing Map (SOM), also called Kohonen map [Kohonen 1982], is an arti�cial neural

network providing unsupervised learning. As a result of competitive learning a SOM provides

a low-dimensional (the most frequently - 2D) map, which is a discrete representation of the

training samples space. SOMs are useful for high-dimensional data visualisation and clustering.

2D SOM represents a grid of nodes. While training, the training samples drag the nearest node

and its grid neighbours to the samples. As a result, the nodes repeat the training data spatial

structure.

SOMs are intuitively simple and their various applications in classi�cation and clustering

prove the SOMs e�ciency. As disadvantages one can mention the poor generalization at ex-

tremes of training data. Also the data representation surface must be su�ciently continuous,

otherwise some part of nodes will be placed in area without samples.

At Fig. 3.3 some trivial examples of 2D data covering by SOMs are shown.

In autonomous vehicle and tracking domains, the SOMs are applied for vehicle future move-

ment direction. In [Bohlooli and Jamshidi 2012] the repetitive car's trips composed of movement

patters are learned and reproduced by SOMs. In [J. Cho et al. 2006] SOMs learn to choose

unmanned motion models using sensor's signals for embedded control of an autonomous robot.

SOMs are used to classify images of frontal camera [Neagoe and Tudoran 2008]. Each image

there can be classi�ed as "sharp turning left", "sharp turning right", "smooth turning left,

smooth turning right", "moving forward". In [Hendzel 2005] the SOMs are trained to �nd a

collision free path for an autonomous robot. The SOM response consists in a motion model

coe�cients, a�ecting the robot behaviour. The node weights corrections are e�ectuated based

on robot's observations online.
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(a) (b) (c)

Figure 3.3 � Examples of SOMs functionality on 2D sample data: a) Samples are uniformly
distributed b) Normally distributed c) Represent a ring. Red dots are training samples, white
circles are SOM nodes, black lines connected nodes are the inner SOM neighbours relations.
All SOMs are grids of 10\times 10 nodes

For tracking purposes the feature-based recognition of lost tracks is realised in [Bevilacqua,

Stefano, and Vaccari 2005]. The feature models are trained with SOMs. An improvement of

well-known Scale-Invariant Feature Transform (SIFT) using SOM is proposed in [K. Sharma,

Jeong, and S.-G. Kim 2011]. Its objective is to reduce computational time for SIFT. SIFT

itself can be applied in object tracking or obstacle avoidance for autonomous vehicles. Also,

SOMs can resolve pedestrian tracking collision problem, like in [Humphreys and Hunter 2009]

by helping to choose the cost functions for neural networks based on the local-speci�c tracking

context: appearance, change of appearance and trajectory.

3.3 Proposed methods

3.3.1 Learning sensor statistics with Self-Organizing Maps

The Self-Organizing Map (SOM) algorithm, originally proposed as a model of cortical in-

formation processing, is a generative machine learning algorithm that aims to approximate the

distribution of high-dimensional data, and to represent it in a topology-preserving way on a

two-dimensional manifold. It is in fact quite related to K-Means [Jain and Dubes 1988] except

that the preservation of topology makes it interesting for incremental learning scenarios.

SOM de�nes a �xed N \times N grid of nodes (neurons) ni, each of which is associated with a

so-called prototype vector \bfp i, represented an object detection in a detection space. For a given

input \bfz , each node gets assigned an activity hi based on the distance of its prototype to the

input:

hi = d(\bfz ,\bfp i)

d(\bfa ,\bfb ) =
\sqrt{} 
(\bfa  - \bfb )2 (3.1)

As a distance measure, the euclidean distance is often used, and for our proposal too. In most

cases, the calculation of activity is followed by a learning step where the prototypes are adapted
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(a)

(b)

(c)

(d)

Figure 3.4 � Statistical models of sensory spaces acquired by self-organizing maps (SOM) for
visual (a,c) and LIDAR sensors (b,d). The points represent the position of SOM prototypes in
the space of each sensor. The local density of prototypes is guided by average local density of
data points. The two datasets-based SOM pairs are presented: (a,b) - SOMs constructed using
KITTI dataset, (c,d) - SOMs constructed using datasets from Honda
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to better �t the current input:

i\ast = \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}
i

hi

\bfp i(t+ 1) = \bfp i + \epsilon (t)G (i\ast , i, \sigma (t)) (\bfz  - \bfp i) (3.2)

where G(i, j, \sigma = \mathrm{e}\mathrm{x}\mathrm{p} ( - d2(i,j)
2\sigma 2 )) is a Gaussian with standard deviation \sigma which is based on

the euclidean distance between node i and node j on the two-dimensional grid of nodes. t is a

learning iteration index. For faster convergence, the algorithm demands to gradually lower the

learning rate \epsilon (t) and their neighbourhood radius \sigma (t) from initially large values \epsilon 0, \sigma 0 until

the minimal values \epsilon \infty , \sigma \infty are reached.

3.3.2 Learning of conditional distributions between sensors

Supposing the SOMs are trained using the algorithm described in Sec. 3.3.1, correspondences

between visual and LIDAR SOMs are detected using a simple probabilistic counting approach.

Assuming that two sets of weights \omega \scrL 
ij, \omega 

\scrV 
ij exist between nodes i, j in visual \scrV and LIDAR \scrL 

SOMs, both are updated as follows:

for each simultaneously presented pair of visual and LIDAR measurements \bfz \scrV , \bfz \scrL :

\~h\scrX i =

\left\{ 
 
 

1 if i = \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}
k

h\scrX k

0 else

\~h
\^\scrX 
i =

\left\{ 
     
     

1 if i = \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}
k

h
\^\scrX 
k

0.5 if i is neighbour to \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{i}\mathrm{n}
k

h
\^\scrX 
k

0 else

\omega \scrX 
ij = \omega \scrX 

ij +
\~h\scrX i \~h

\^\scrX 
j

(3.3)

with a shorthand notation \scrX = \scrL ,\scrV ( \^\scrX denoting the other modality is used, i.e., \scrL if \scrX = \scrV 
and \scrV otherwise).

After a su�cient amount of samples has been processed, the weight matrices are normalized

in order to obtain normalized probabilities:

\Sigma \scrX 
i =

\sum 

j

\omega \scrX 
ij

\omega \scrX 
ij \rightarrow \omega \scrX 

ij

\Sigma \scrX 
i

(3.4)

It must be noted that the visual and LIDAR measurements do not need to come from the

same objects. Indeed, if this is the case, it would mean that the desired correspondences to

identify are already known. When working on a benchmark dataset like KITTI, this is the

case but when training the system on recorded data does not contain any annotations, the

correct correspondences are evidently unknown except when there is always just a single object

in sight. Therefore, the adopted strategy is: to present all combinations of visual and LIDAR
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measurements taken at a certain point in time (e.g. a single, synchronized image and LIDAR

recording) when learning weights between sensors. This assumes there is a su�cient amount of

training data, because the "correct" correspondences will appear together far more often than

random incorrect ones. The adopted strategy is applied for two used datasets: KITTI and

Honda.

As it was supposed that SOMs have already converged, the SOM learning is disabled during

the whole phase of learning conditional distributions by setting \epsilon (t) \equiv 0 for both SOMs.

3.3.3 Overall training procedure

The overall training procedure is given in Alg. 1. It consists of a SOM training step and a

step that determines weights that have the semantic of the conditional probabilities between

the SOM representations of both measurements.

Algorithm 1: Model Training: Overview over the two-stage model training procedure consist-

ing of learning distributions with SOMs, and learning multi-sensory conditional probabilities.

for t : 1 \rightarrow TSOM do
Get a random image frame q from Dtrain;

Get random visual measurement l \bfz \scrV ql from q;

Get a random LIDAR frame r from Dtrain;

Get a random LIDAR measurement m \bfz \scrL rm from r;

Update visual SOM with \bfz \scrV ql acc. to Sec. 3.3.1;

Update LIDAR SOM with \bfz \scrL rm acc. to Sec. 3.3.1;

Disable learning in SOMs by setting \epsilon (t) \equiv 0;

for t : 1 \rightarrow Tcorr do
Get a random frame q from Dtrain;

for (l,m) = all permutations of measurements do
Feed visual SOM with \bfz \scrV ql \rightarrow h\scrV (t);

Feed LIDAR SOM with \bfz \scrL qm \rightarrow h\scrL (t);

Update \omega \scrL 
ij, \omega 

\scrV 
ij acc. to Sec. 3.3.2;

Normalize \omega \scrL 
ij, \omega 

\scrV 
ij acc. to Sec. 3.3.2;

3.3.4 Unimodal detection of correspondences

After training is completed, the model is used for detecting whether a given combination of

visual and LIDAR measurements is likely caused by the same object. To this end, a criterion is

developed. This criterion depends on a single parameter, the probability threshold \theta . Assuming

that each measurement has generated activities h\scrX i in both SOMs, the criterion �rst computes

a single binary measure c\scrX = \{ 0, 1\} for each conditional probability matrix \omega \scrX 
ij , using the
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Figure 3.5 � Examples of conditional probability distributions PX for vision (given a LIDAR
node) and LIDAR (given a vision node). These distributions are used to detect correspondences.
The color of nodes means the value of the association probability: blue tints represent low
probability and red tints correspond to high probability.

shorthand notation \scrX = \scrL ,\scrV for a certain modality, and \^\scrX for the other one:

i\ast = \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}
i

h\scrX i

j\ast = \mathrm{a}\mathrm{r}\mathrm{g}\mathrm{m}\mathrm{a}\mathrm{x}
j

h
\^\scrX 
j

P
\^\scrX =

\bigl\{ 
j| \omega \scrX 

i\ast j > \theta 
\bigr\} 

c\scrX =

\Biggl\{ 
1 if j\ast \in P

\^\scrX 

0 else

(3.5)

The two quantities c\scrX express whether a best-matching unit (BMU) at position i\ast in \scrX can

predict the best-matching unit at index j\ast in the other modality \^\scrX based on the learned

conditional probabilities. Given a best-matching unit in \scrX , \theta is used for selecting a set of nodes

P
\^\scrX with conditional probabilities that exceed \theta . If the BMU of \^\scrX is an element of the selected

set, one can conclude that there is a match and set c\scrX = 1. Thus, the threshold \theta governs the

strictness of the matching: if it is high, only a small (or empty) set of nodes P \^\scrX will be selected

and the probability of match decreases. On the other hand, if \theta is low, the probability of match
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increases, up to the point where there will always be a match at \theta = 0. As it is often not

necessary to detect all correspondences correctly but rather to exclude unlikely combinations, a

more relaxed value of \theta helps to avoid missed correspondences while still being able of reducing

the combinatorial space of correspondences.

3.3.5 Fusing correspondence detection

Apart from the unidirectional mutual sensor activity predictions, one can also use a cross-

veri�ed decision for improving the quality of the correspondence. For that, the criterion of

acceptance in Eq. 3.5 changes to:

\omega \scrX 
i\ast j\ast \times \omega 

\^\scrX 
j\ast i\ast > \theta (3.6)

\omega \scrX 
i\ast j\ast + \omega 

\^\scrX 
j\ast i\ast > \theta (3.7)

\sum 

k

\omega \scrX 
i\ast kh

\^\scrX 
k \times 

\sum 

k

\omega 
\^\scrX 
j\ast kh

\scrX 
k > \theta (3.8)

where h\scrX i is again the activity at node i in SOM \scrX (which can be LIDAR or vision, whereas
\=\scrX represents the other modality), and the indices i\ast , j\ast are the indices of the BMU's in both

sensor's SOMs. The last Eq. 3.8 takes into account not only the BMU of each SOM, but also

its neighbouring nodes plus their learned conditional probabilities.

3.3.6 Training and evaluation data

  

Figure 3.6 � The KITTI dataset used for the experiments is recorded from a moving car
equipped with several cameras, a GPS device and a Velodyne LIDAR device.

For the training stage and the evaluation of the proposed methods, di�erent datasets are

used:

� Dataset A is composed of annotated tracklets from the public KITTI benchmark

dataset [Geiger, Lenz, and Urtasun 2012] (see also Fig. 3.6).

� Dataset B is composed of raw detections captured from dash camera and four-layer

LIDAR on-boarded on an experimental platform. Visual pedestrian detections are ob-

tained with the 'Daimler' detector provided with the OpenCV vision library, and LIDAR

detections are based on the cloud clustering.
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� Dataset C is a benchmark created specially for this purpose. The dataset is described

in Chap. 5 and its using is described in detail in Chap. 6.

From Dataset A: the center positions of objects in 2D image coordinates are employed, and

the corresponding 3D laser coordinates are measured by a Velodyne laser scanner (i.e. tracklets).

As the height-over-ground of a tracklet's center is often irrelevant for safety applications, a

birds-eye perspective is taken and just considers two of the three 3D coordinates, excluding

height-over-ground. Due to the synchronized nature of visual and LIDAR recordings in the

Dataset A, each tracklet can be assigned a unique visual image and therefore a corresponding

LIDAR sweep. All types of objects provided by the dataset A are used, making the total

number of considered tracklets equal to 23497. For training the model, 70% of this dataset is

used, performing a random split of available tracklets into train and test datasets.

From Dataset B: the center positions of objects in 2D image coordinates are employed as

well as the corresponding 3D laser point cluster center positions. Vision-based and LIDAR-

based detection are manually associated to obtain a Ground Truth reference. This sequences is

composed of pedestrians �lmed in 9 short scenarios of about 2 minutes, making a total number

of 8613 visual detections, and 5476 LIDAR detections. Due to the small size of this data base,

a cross-validation is performed, that is, for each scenario the SOM are trained with 8 other

scenarios and tested with the chosen one.

3.3.7 Evaluation

Algorithm 2: Evaluation: Overview over the evaluation procedure.

Disable learning in both SOMs by setting \epsilon (t) \equiv 0;

for i : 1 \rightarrow (images in Dtest) do
Draw image i from Dtest;

for (l,m) = combinations of measurements do
Feed visual SOM with \bfz \scrV il \rightarrow h\scrV (t) Feed LIDAR SOM with \bfz \scrL im \rightarrow h\scrL (t) Generate
bin. measures c\scrV , c\scrL acc. to. Sec. 3.3.4

Plot precision/recall curves

In order to quantify the capacity of the trained model to identify visual/LIDAR correspon-

dences, the evaluation is conducted on the remaining data. In order to prevent the SOMs from

being adapted during the evaluation phase, one set \epsilon (t) \equiv 0 for both SOMs.

Assuming a trained model (SOMs plus conditional probabilities), all images in the test

dataset are processed in a sequential manner. For each image, all combinations of visual and

LIDAR measurements are performed and the scores cL, cV for each combination are computed.

A binary decision on the presence of a correspondence is taken according to Eq. 3.5. As this

decision depends on a single threshold \theta the in�uence is analysed with a Receiver Operating

Characteristic (ROC) curve by varying \theta in the interval [0, 1] and measuring the precision/recall

rates.

A schema of the complete evaluation procedure is given in Alg. 2.
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Figure 3.7 � ROCs for vision�>LIDAR (red curve) and LIDAR�>vision (green curve) corre-
spondences. As can be expected, LIDAR�>vision provides slightly better performance as the
associated transformation is one-to-one.

3.4 Tests

Model training is performed in two steps.

Step 1: The SOMs are trained independently of one another by drawing random samples

from the training dataset, see Sec. 3.3.6, and by adapting each individual SOM according to

Sec. 3.3.1, with the input vector provided by the unimodal part of the drawn sample. Training

parameters are: N = 30, \epsilon \infty = 0.01 \sigma \infty = 1, \epsilon 0 = 0.6, \sigma 0 = N
2
. Neighbourhood radius and

learning rate develop according to

\sigma (t) = max (\sigma \infty , \sigma 0 \mathrm{e}\mathrm{x}\mathrm{p}( - \lambda \sigma t)) (3.9)

\epsilon (t) = max (\epsilon \infty , \epsilon 0 \mathrm{e}\mathrm{x}\mathrm{p}( - \lambda \epsilon t)) , (3.10)

with - \lambda \epsilon = 0.002 and \lambda \sigma = 0.004. SOM training duration is limited to TSOM = 20000 iterations.

Step 2: Subsequently, correspondences are trained according to Sec. 3.3.4 for another

Tcorr = 20000 iterations, randomly drawing images from the training dataset and feeding all

possible combinations of visual/LIDAR measurements to the two SOMs as well as updating

the two sets of weights \omega \scrV 
ij, \omega 

\scrL 
ij based on the resulting SOM activities h\scrX j , \scrX = \scrL ,\scrV .

Evaluation is conducted according to Sec. 3.3.7 by iterating over all images in the test

dataset and measuring precision/recall rates when presenting to the model all possible combi-

nations of visual/LIDAR measurements in each image.

For KITTI base a separate ROC for LIDAR�>vision and vision�>LIDAR correspondence

detection is �rstly plotted, given in Fig. 3.7. As it can be expected, the LIDAR�>vision

correspondence detection gives better results, very likely because multiple LIDAR detections

can be associated with a unique vision position. The inverse situation for vision�>LIDAR

projection is quite impossible.

It is also noticeable that the algorithm performance is acceptable given that no prior knowl-

edge was used even if it is far from being an ideal ROC.

In a further experiment, it is time to back the claim made in Sec. 3.3.1 that the proposed

method was able to handle arbitrary measurements without requiring explicit models of corre-



70 3.4. TESTS

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

F
al

se
 p

os
iti

ve
 r

at
e

True positive rate

vision-->LIDAR
LIDAR-->vision

Figure 3.8 � ROCs for vision�>LIDAR (red curve) and LIDAR�>vision (green curve) corre-
spondences, where laser measurements are augmented by object size. By comparison to Fig. 3.7,
one may conclude that this irrelevant information is ignored.
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Figure 3.9 � Di�erent ROCs correspondences. The blue "complex" curve represents the cross-
veri�ed strategy of Eq. 3.8. The cyan "simple-add" curve corresponds to Eq. 3.7, and the violet
"simple-mult" one to Eq. 3.6. It is apparent that all fusion methods outperform the unimodal
ones (red and green curves).

spondence. To this end, the previous experiment is realised by taking into account the tracklet

width and tracklet height from the laser measurement, bringing up its dimensionality to 4.

The ROCs obtained in this way are shown in Fig. 3.8. It is clear that the addition of addi-

tional information does not impair the ability of the system to detect correspondences. On the

other hand, performance is neither improved, because the added information is irrelevant to

the transformation to be computed. This experiment therefore shows that this model, due to

the learning approach, is able to process very diverse types of measurements, and automatically

extracts the information required for �nding correspondences.

Lastly, the three fusion strategies proposed in Sec. 3.3.5 are evaluated, which means that

for a pair of visual and LIDAR measurements, there will now be only one decision on corre-

spondence for a given strategy ("complex", "simple-mul","simple-add"), not two as in previous

experiments, corresponding to LIDAR�>vision and vision�>LIDAR. The overall performance

is shown in Fig. 3.9 and shows that the fused decisions outperform any single unimodal one,

boosting the satisfactory performance even further.

For Dataset B (Honda) the ROCs are calculated using only complex activity predictions
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from Eq. 3.8 as being the most e�ective. The results are seen in Fig. 3.10. One can observe a

low quality for unidirectional correspondences detections and a very high quality for fused one.

It can be explained by the non-symmetrical detections nature and the small number of detected

objects per frame. The ROC curves in Fig. 3.10 are placed in order: from left to right, from

up to down. In the following it is provided a brief description and analysis of the investigated

scenarios:

1. A group of pedestrians (up to 6 people) randomly moves inducing some occlusions. 240

video frames length. In the obtained results, the crossed-validation data association

strategy outperforms uni-modal strategies.

2. Two pedestrians move together hand-by-hand. 97 video frames length. The proximity of

the walking pedestrians constitutes a non-trivial situation for the association mechanism.

As expected, the results evidence a slight decreasing on achieved performance with

respect to the other scenarios.

3. Two pedestrians moves describing a crossing trajectory. Their motion is perpendicular

to the camera. One occlusion situation is observed. The gap between the pedestrian tra-

jectories is large (depth distance). 447 video frames length. On this occlusion scenario,

it was not observed any considerable impact on the global association performance.

4. Two pedestrians move in opposite directions as in the previous scenario. However,

the gap between the pedestrian trajectories was small. 183 video frames length. The

accuracy observed was considerably decreased with respect to the previous scenario.

Since the distance between pedestrian trajectories is small, object positions are harder

to be associated.

5. Two pedestrians are crossing the road following the same direction, perpendicularly

to the camera. 297 video frames length. Association errors induced by an long-time

occlusion were observed in this scenario.

6. Two pedestrian cross the camera's line of sight. The pedestrians trajectories are per-

pendicular to each other. Only one occlusion is observed. 148 video frame length. No

performance changes were observed regarding previous occlusion situations (scenarios 3

and 4).

7. Four pedestrians move randomly with multiple occlusions. This is considered as the more

complex scenario. 899 video frames length. The results observed on this test con�rm

the stability and reliability of this approach. A smooth ROC curve was achieved thanks

to this long length sequence.

8. Only one pedestrian is presented. The ROC curve is the best among the reported tests,

but not perfect. Errors are frequently caused by the noisy detections employed at the

SOMs learning stage. 684 video frames length.

3.5 Discussion and conclusions

A learning approach is presented to solve the problem of �nding visual/LIDAR correspon-

dences and to validate its performance on a widely accepted benchmark dataset. In this section,
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Figure 3.10 � ROCs for fused correspondence detection in the case of cross-validated strategies
for 8 scenarios of dataset B (Honda). The red "complex" curve represents the cross-veri�ed
strategy of Eq. 3.8. unimodal ones (blue and green curves)
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one may review and justify the components of the model and outline the principal conclusions

and further research works.

The proposed hybrid SOM-based architecture is based on two necessities: �rstly, to have a

generic model that will work with any kind of visual/laser measurements. This means that the

model must be able to work regardless what is actually measured by each sensor. For a camera,

this could be, e.g., pixel position of interest points, but also center position, size and identity

if an object detection algorithm is used, or center position, size and speed if tracking is added.

By using the self-organizing map architecture, every measurement is down-projected to a 2D

image-like representation in a way that is statistically optimal and respects a certain topological

constraint that allows to easily visualize and interpret a SOM's activity. For ensuring statistical

optimality, a variant of the SOM model that has a well-de�ned energy function [Heskes 1999]

is used, which makes very easy to detect measurement outliers that should be ignored.

Secondly, it is desired to have a model that will not fail even when the transformation

between modalities is not one-to-one in both directions. To this end, a purely probabilistic

approach is adapted on top of the SOM mechanism, that will simply respond by a multi-

peaked probability distribution in case where there is inherent ambiguity due to non-unique

transformations.

As seen in Sec. 3.3.4, the quality of correspondence �nding is very satisfactory given that

one did not bring any speci�c expert knowledge. In addition, the threshold \theta allows to smoothly

change the behavior of the system, from a point where there are few correct correspondences

but also few incorrect ones, to a point where there are many correct correspondences but also

some incorrect ones. For example, for a multi-modal tracking system a higher false positive rate

can be acceptable if no correspondence are incorrectly rejected, since tracking can take into ac-

count past information and thus correct the occasional incorrect correspondence. Another very

encouraging fact is that the quality of correspondence detection can be signi�cantly improved

by considering not only both unidirectional correspondences in isolation, but a fusion of both.

As a proper fusion should be, it is indeed better-performing than any single contribution to it.

It was shown that a learning-based approach can successfully solve the problem of multi-

modal correspondence detection, in particular between visual and LIDAR sensors. The only

prerequisite is a collection of (unlabeled) data which is usually easy to obtain. No expert

e�ort is required at all, and in particular no detailed models of the data acquisition process by

the used sensors is needed. The technique is very computationally e�cient, and consumes no

signi�cant computational load, thus making it suitable for embedded operation. Still it would

be better to make this technique even more appealing, for instance by di�erently attributing

the weights to SOM nodes and by better performing fusion strategies.
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4.1 Introduction

After more than 30 years of contributions on Multiple Target Tracking (MTT), this subject

still remains open since, depending on the applications, it addresses complex problems such

as management of multiple hypotheses, data association between multiple information sources,

and real time constraints. In the context of Intelligent Vehicles (IV), MTT is a key perception

process attempting to determine the (e.g. kinematic) state of observed objects. This informa-

tion is not only important for active safety applications, such as Advanced Driver Assistance

Systems (ADAS), but also for scene understanding in autonomous vehicles.

Classic MTT approaches are de�ned by a recursive framework where a set of detected

objects is managed by means of temporal �ltering such as Kalman or particle �lters. Fil-

tering can usually cope with detection errors and simple missed detections. Multiple Hy-

pothesis Tracking (MHT, [Blackman 2004]), and Joint Probabilistic Data Association Filtering

(JPDAF, [Habtemariam et al. 2013; Jaechan 2006]), are part of well-known mechanisms improv-
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ing the performance of tracking for complex object-to-track association cases in the presence

of missed and false detections.

Temporal �ltering contained in MTT frameworks exploits motion models and observed mea-

surements for maximizing the probability of the observed motion. Interactive motion models

take advantage of multiple expected high-level motion classes, such as lane changes or turns or

stops at crossroads in application to IV contexts [Z. Hu et al. 2012; Cheng and T. Singh 2007].

Those models use online information about recent vehicle motions to predict their future posi-

tions. In this study, no motion model classes have been de�ned, but low-level primitives have

been integrated in the form of expected velocity vector �elds. Such vector �elds are de�ned by

road and lane context, which is taken from maps using ego-localization information [Sattarov,

Sergio Alberto Rodríguez Florez, et al. 2014].

Most of the state-of-the-art methods, which exploit context information, are strongly cor-

related to a particular detection method. For instance, road detection approaches [Strygulec

et al. 2013; Chapuis, Aufrere, and Chausse 2002; Ulmke and Koch 2006; X. Hu, Sergio Al-

berto Rodríguez Florez, and Gepperth 2014] are used to provide key information for driving

assistance applications, or to de�ne regions of interest for object tracking [Chapuis, Aufrere,

and Chausse 2002; Orguner, Schon, and Gustafsson 2009].

In contrast, this study is inspired by [Maggio and Cavallaro 2009; Kooij, Schneider, and

Gavrila 2014; Shibata, Sugiyama, and Wada 2014; Orguner, Schon, and Gustafsson 2009] and

aims to use extracted context (road) information to directly improve the quality of multi-

object tracking. The contribution in this part is a computational mechanism for integrating

a priori knowledge derived from contextual road and lane information into a state-of-the-art

multi-object tracking system. The bene�ts of this approach are evaluated in terms of track

continuity and track overlapping.

4.2 Proposed methods

The goal is to track vehicles, pedestrians and other possible objects in two-dimensional

space (top-view) while taking scene context into account. Two use cases are considered. First

case: Simulated scenarios on a featureless 2D map plane with hand-crafted velocity vector �eld

as illustrated in Fig. 2.3

Second case: 2D East-North map space as shown in Fig. 4.1 taken from the KITTI-

dataset, from which object information and GPS coordinates serves to match with road and

lane context from OpenStreetMap.

4.2.1 Vector �eld implementation

The context information to implement in the tracking system is represented as a vector

�eld, that is, a �eld of probable directions for each map location. If \scrP is the state space of

tracking having dimension D, and a subspace \scrT \subset \scrP is a space where vector �elds are de�ned,

then one point \tau \in \scrT contains a set of N \tau vectors V in it. One vector \bfv \in V has components

vi, i \in 1..D.
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Orientation and norm in�uence

(a) Map with areas covering by

vector �elds
(b) Field's vector directions

(c) Field's vector directions,

zoom-in

Figure 4.1 � Visual representation of vector �elds on a OpenStreetMap (OSM) map

Initial particle Chose randomly Modify the subset
according to contextcloud a subset

Figure 4.2 � A general idea of particle-level mechanism of external information injection

A track's coordinates ci, i \in 1..D indicate a point of the tracking space \pi \in \scrP . At the re-
sampling and association stages of PHD �lter described in Sec. 2.3.1, when random �uctuations

at point \pi \in \scrT are needed, the vector �eld is applied.

In a point \pi it is possible to allow multiple possible context typical directions. Let denote

a possible direction \pi j, j \in 1..N\pi . The number of particles injected according to the direction

\pi j is denoted as N\pi j .

Let CMF value be the "model force" coe�cient. Then the N \times (1 - CMF ) �rst particles are

resampled as in Eq. 2.27, and other particles are resampled according to vectors, de�ned in \pi 

as follows:

ci,k = ci,k| k - 1 + \zeta c

di,k = di,k| k - 1 + \zeta d

vi,k = v\pi j ,i + \zeta v

(4.1)

where \bfv \pi j
is a vector de�ned at the point \pi , with components v\pi j ,i, i \in 1..D. \zeta c, \zeta d, \zeta v are

values de�ning the evaluation of track's components according to the context. All N \times CMF
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�eld-de�ned particles are divided between vectors \bfv \pi j
, j \in 1..N\pi uniformly. Here N\pi is a

number of vectors de�ned in \pi . The main idea is also illustrated at Fig. 4.2.

Direction-only in�uence

Another potential way to incorporate context consists in letting only the orientation of the

vector �eld in�uence tracking. In this case, one can calculate new vector components as follows:

\^v\pi j ,i =
v\pi j ,i \times 

\bigm\| \bigm\| \bfv k| k - 1

\bigm\| \bigm\| 
\bigm\| \bigm\| \bfv \pi j

\bigm\| \bigm\| (4.2)

Here
\bigm\| \bigm\| \bfv k| k - 1

\bigm\| \bigm\| is the norm of the track's speed and
\bigm\| \bigm\| \bfv \pi j

\bigm\| \bigm\| is the norm of the vector �eld's

speed at \pi j. So, the �eld's orientation is fused with the norm of the current track's speed. A

visual representation of the vector �eld for the road map is illustrated in Fig. 4.1

Especially the second point is important as it eliminates the need to use vector �elds con-

taining all possible speeds (vector lengths).

4.2.2 Vector �eld compatibility measurement

Figure 4.3 � An example of a simulated scenario. The color of particles shows their weight and
thus their current impact. The red particles have more weight than blue ones. Green rectangles
indicate current tracks.

When the �eld of possible directions is imposed, it is clear that a moving object may not

follow these expected directions. In such a case, it may be assumed that the object has atypical

behaviour and is potentially dangerous.

Let use the notation of Chap. 2, where particles weights are denoted \omega xk,n, where xk is a

track k, n is a particle index. We will use the formalism of previous section to identify if a

subset of track's particles describes better the track behaviour than the mean of the particle

distribution. Therefore we will inject external information in a subset of the particles, denoted

\omega \pi j
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The detection of such objects is possible with the proposed framework. If the motion of a

tracked object satis�es the following condition:

\sum 
n\in \^N\pi j

\omega \bfx k,n

Np\sum 
n=1

\omega \bfx k,n

\times Np

N\pi j
> 1 (4.3)

for at least one j, it can be classi�ed as typical. Here, \^N\pi j is the sets of indexes for particles,

resampled according to vector \pi j of point \pi respectively. Np and N\pi j are the number of all

object particles and the number of particles resampled according to vector \pi j of point \pi .

The condition considers motion as being "typical" if �eld-sampled particles are closer to

new detections than the mean of all particles. Fig. 4.3 shows a visual distribution of particles'

weights. The illustration of the compatibility measurement is provided at Fig. 4.4.

Sum of N c context particles weights∑
context

Sum of all Na particles weights∑
all

Context impact=
Na

Nc

∑
context∑

all

Observation

Weight is proportional to resemblance between particles and detections

Figure 4.4 � The track's compatibility to the vector �eld measurements estimation scheme

4.3 Tests

4.3.1 Simulation

(a) (b) (c)

Figure 4.5 � Visual representation of the vector �eld (c) and simulated scenarios (a,b). Green
rectangles and traces are tracks and their previous positions
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The �rst simulation scenario represents a scene of size 1000\times 1000 pixels and of 110 frames,

with 10 objects moving simultaneously: four from left to right, six from up to down as shown

in Fig. 4.5a. This scenario is chosen since it contains many pairwise intersections, in order

to observe the algorithm's capability to resolve collisions. All of objects have sizes of 30 \times 60

pixels.

Noise parameters were set as follows:

1. \sigma d = 10 - the variance of white noise applied to particle dimensions

2. \sigma c = 30 - the variance of white noise applied to particle centers

3. False negative rate Pfn = 0.1

4. False positive rate Pfp = 0.2

PHD imposed parameters are:

1. Rb = 0.7

2. Rd = 0.1

3. Rret = 0.1

The vector �eld map was created manually and covers all of the scene uniformly with two

directions present: "right" and "down" as shown at Fig. 4.5c.

Estimations of overlap and continuity are shown at Fig. 4.6. A larger improvement of the

"overlap" is observed while the "continuity" improvement is lower. However both measures are

consistently improved by the introduction of the vector �eld from Fig. 4.5c.

Errors of associations can happen mostly in case of intersections. If two tracks meet at

one point, they lose parts of their particle information which can help to resolve the collision

because vector �elds are identical and come from the same point position. But, on the other

hand, if two di�erently oriented tracks meet in one point, the vector �eld at this point helps

them to go through this point faster. These two reasons balance themselves and so the impact

of the vector �eld is low.

The overlap errors arise from imprecise positions of associations. When the position noise is

Gaussian, the trajectories of tracks try to oscillate. When vector �elds are applied, the tracks

positions become closer to their mean values, and so more stable.

For the same simulated scenario, vector �eld compatibility measurements were calculated

according to Sec. 4.2.2. The mean and standard deviation are measured both for "compati-

ble" and "incompatible" tracks, with the expectation that the compatibility measure allows to

distinguish those cases. The compatible tracks were evaluated in the scenario described above,

the incompatible ones in a scenario with an inverted vector �elds. The results are shown in

Fig. 4.7. The di�erence in mean values is evident, but noise deviations are considerable.

The second simulation scenario represents a scene of size 1000 \times 1000 pixels and of 200

frames, with 8 objects simultaneously: four compatible and four incompatible as it is shown at

Fig. 4.5b. All objects have sizes of 15\times 15 pixels. Noise parameters were set as follows: \sigma d = 10,

\sigma c = 20, Pfn = 0.2, Pfp = 0.125. PHD imposed parameters are: Rb = 0.7, Rd = 0.1, Rret = 0.5.

This scenario will be used further to test the auto-determined model force mechanism.
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(a) Overlap (b) Continuity

Figure 4.6 � Accuracy for simulated data when only vector directions are used, plotted as
a function of total particle number. Solid lines are mean values, semi-transparent borders
represent their variances

Figure 4.7 � Direction compatibility measurements for simulated data. The values are calculated
according to Eq. 4.3. For values bigger than 1.0, the movements is assumed to be along the
�eld, and against the �eld otherwise.

4.3.2 KITTI/OSM scenarios

The tracking space is a 2D East-North plane limited of size 165 \times 167 meters shown in

Fig. 4.1. The duration of tracking is 12 seconds with a frequency of 8.9 fps. A number of

19 targets takes part in this urban tra�c scenario. Since objects like cars, buses, pedestrians

and cyclists are present without class distinction, detections of pedestrians can be mixed with

detections of cars and other objects.

Noise parameters were set to: \sigma d = 0, \sigma c = 0.5 meters, Pfn = 0.1, Pfp = 0. PHD imposed

parameters are: Rb = 0.7, Rd = 0.1, Rret = 0.1.

The vector �eld map is created manually with directions collateral to expected target mo-

tions in those areas. This �eld map is based on OpenStreetMap, KITTI Velodyne and GPS-
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(a) Overlap (b) Continuity

Figure 4.8 � Accuracy for real data for both vector directions and norms used in dependency
of used particles number

(a) Overlap (b) Continuity

Figure 4.9 � Accuracy for real data for only vector directions used in dependency of used
particles number

data, and it covers all tracklets' possible occupation areas. The map of directions is displayed

in Fig. 4.1b and Fig. 4.1c.

Estimations of overlap and continuity in cases of full information are shown at Fig. 4.84.9. As

in case of simulated data, the overlap shows a greater performance di�erence as a consequence

of the vector �eld. The variance of performance is smaller because of less noise occurring in

the real scenario.

We will compare two context introductions: 1) by a�ecting the track's direction and velocity

2) by a�ecting the direction only.

We analyse the performance margins between with- and without vector �eld. It is possible to

draw the conclusion that in this road tra�c the complete speed injection is a helpful information,

but signi�cant gains in tracking quality can be obtained using only directions.

4.3.3 Auto-determined model force

The second simulated scenario mentioned in Sec. 4.3.1 is created to compare the impact on

tracking precision in two cases: 1) movements along vector �elds and 2) movements against it.
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As expected, the results obtained during this experiment show a decreased tracking perfor-

mance when tracks are incompatible with the context �elds. In Fig. 4.10, four lines are shown

where blue and red are the respective baselines for compatible and incompatible tracks without

the in�uence of vector �elds. Yellow and green curves represent compatible and incompatible

tracks assisted by context with a �xed model force coe�cient, CMF = 0.05. As illustrated, the

overlap observed for incompatible tracks is almost the same as the improvement for compatible

ones. Track continuity seems not be in�uenced in both cases.

Hereafter, there is a question of how to keep the advantages of contextual information while

reducing the undesirable e�ects on incompatible tracks. To this end, a dynamic estimation of

the model force coe�cient, CMF , is proposed. If the track is considered as compatible with

respect to the vector �eld, see Eq. 4.3, CMF is increased by 0.01 or decreased otherwise. For

all tracks,CMF varies from 0.01 to 0.5. The results are shown in Fig. 4.11

(a) Overlap (b) Continuity

Figure 4.10 � Comparison of accuracy for tracks moving along and against vector �elds without
and with them using �xed model force coe�cient

(a) Overlap (b) Continuity

Figure 4.11 � Comparison of accuracy for tracks moving along and against vector �elds without
and with them using a variable model force coe�cient

The overlap improvement for compatible tracks clearly outweighs the slight performance

decrease observed for incompatible ones. However, track continuity decreases particularly for

compatible tracks. This result can be explained in ambiguous tracking situations (e.g. two
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tracks intersecting) where contextual information can induce object-to-track association er-

rors. Simulated scenarios contain objects intersecting at the same location with di�erent speed

directions. This use case is however not encountered under real conditions.

4.4 Conclusion

In this part, a proof-of-concept of a novel method for multiple target tracking for Intelligent

Vehicles is presented. This method uses road information (the context) in order to provide

contextual cues which leads to an increased precision in multi-object tracking, using a PHD

�lter approach in its particle implementation. The public KITTI benchmark dataset was used

to verify the impact on tracking precision. The method proves that such kind of a priori

knowledge is considerably helpful when there is no single a priori direction but a distribution

over them. The automatic detection of objects that violates the imposed prior is studied with

favourable results, promising applicability in safety applications.

Several points are still open, in particular how to correctly encode vector �elds (with or

without complete speed component).

A subset of Gaussian distribution-initialised particles with modi�ed speed vectors, as used

in this implementation, is a possibility, but other distributions, or a more complex particle state

including potential high-level behaviors, are conceivable as well.

A principled method to introduce a priori knowledge into tracking is presented. In this case

information about expected object speeds is obtained from scene context. It is showed, both in

a simulated scenario and from the KITTI dataset, that the quality of tracking (measured with

overlap and continuity criteria) is signi�cantly improved, leading to a more robust trajectory

estimation by a tracking algorithm. Used by di�erent tracking algorithms, the proposed vector

�eld approach can be transferred to all particle-based tracking algorithms and thus has a wide

range of applicability.

The subject of object detection is not examined: object detections, or Ground Truth, are

directly extracted from both the simulated and the KITTI scenario. They are arti�cially cor-

rupted by noise in order to test the bene�ts of this approach in noisy environment. Particularly

when detections are obtained, as it is envisioned from a object detection processing, our ap-

proach is bene�cial because the motion a priori leads to the best position estimation.

The Gaussian or uniform noise applied to simulate the imprecision of detections are not

correct with real databases as most of noise models, and there must be a certain de�ection in

obtained results regarding to results in case of true noise model, but these noises are simple to

implement and frequently used in research applications.

Future work will include a more representative testing using a large set of urban tra�c

scenarios, to provide more �ndings regarding the robustness of the proposed methodology.
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5.1 Introduction

Motivation One of the principal problems of multi-modal data fusion research is a lack

of reference information, so called Ground Truth, which is needed to quantify the quality of

the fusion. Each researcher tries to resolve correctly that problem. For example, one can

try to determine with human annotators which results are considered as correctly estimated,

84
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and which one are incorrect [H. Cho et al. 2014]. Such methods cannot be used by another

researchers in an objective way, and so methods can not be quantitatively compared. To avoid

this problem, reference datasets are often used. Here we enumerate a bibliography of current

freely available reference datasets, in order to identify the ones which can be used to evaluate

data fusion methods. Particularly, the datasets for multi-modal pedestrian or vehicle tracking

in urban scenes were considered in this overview.

Most public datasets in road tra�c applications provide labelled Ground Truth for tracking

purposes in a single modality. There is a rich class of video tracking datasets, containing for

example one of the biggest camera-based datasets for human detection - the Caltech [Dollár et

al. 2012; Dollár et al. 2009], or the smaller Multiple Object Tracking (MOT) benchmark [Leal-

Taixé et al. 2015], the BoBot tracking dataset [Klein 2010], the Tracking-Learning-Detection

dataset [Kalal, Mikolajczyk, and Matas 2012] and many others [Dubuisson and Gonzales 2016].

An interesting, but still multi-camera tracking dataset based on 3D range information is

the [Br²£i¢ et al. 2013]. A similar multi-camera recording on a large open surface is provided

by 3DPeS: 3D people dataset for surveillance and forensics [Baltieri, Vezzani, and Cucchiara

2011] or by S. Sunderrajan's scenarios [Sunderrajan and Manjunath 2013; Sunderrajan and

Manjunath 2016].

There are RGB-D datasets, where multi-modality comes from RGB and ToF cameras used

together. One of the most commercial known device of such type is the Kinect sensor [Cai et

al. 2016]. The used scenarios in these datasets are �lmed in closed rooms, but the integration

in intelligent vehicles is a currently ongoing activity. RGB-D solutions have their principal

application as autonomous robots perception system [Sturm et al. 2012]. As another reason

not to use ToF-based datasets is the pre-combined data fusion with joint RGB-D output.

Two datasets published on the International Workshop on Performance Evaluation of Track-

ing and Surveillance (PETS) are multi-modal in nature:

� The ARENA dataset [Patino and Ferryman 2014] contains multi-camera recordings for

human tracking and complex interactions around a parked vehicle. The cameras are

non-overlapping and the vehicle on which the cameras are mounted is static, so it can

not serve for the purpose of the algorithms of Chap. 3

� The IPATCH dataset containing 14 overlapping visible and thermal recordings [L. Li,

Nawaz, and Ferryman 2015]. The dataset challenges are detection, tracking and scene

understanding in the maritime domain.

There is a class of multi-camera based datasets where �xed cameras observe a small limited

area full of moving pedestrians. Examples are the "EPFL" [Berclaz et al. 2011; Fleuret et al.

2008], SALSA [Alameda-Pineda et al. 2015], HALLWAY and LAB datasets [T. Hu, Messelodi,

and Lanz 2015], VIPT [Mutlu, T. Hu, and Lanz 2013], MVPDT [T. Hu, Mutlu, and Lanz 2013].

The Toyota Motor Europe (TME) Motorway Dataset provide 28 movie clips of highway

scenes with vehicle annotations [Cara� et al. 2012]. The perception data is composed from

image stereo acquisition, ego-motion estimate and laser-scanner generated vehicle annotations.

The GT annotations are limited to angular resolution of the laser scanner. Furthermore, due

the discontinuity of automatically generated GT object trajectories, some tracks are actually

processed as multiple tracks from di�erent objects.
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A true multi-modal dataset for human motion is proposed by Berkeley Multi-modal Human

Action Dataset (MHAD) [O�i et al. 2013]. It has optical motion capture system, four multi-

view stereo vision camera arrays, two Kinect cameras, six wireless accelerometers and four

microphones. Unfortunately, the �lmed scenarios are not vehicle-perception-based in urban

environment.

The Daimler Urban Segmentation Dataset consists of video sequences recorded in urban

tra�c with stereo image pairs [Scharwächter et al. 2013; Scharwächter et al. 2014]. Dense

disparity maps are provided as a reference and annotations are computed using semi-global

matching.

The CLEAR dataset contain audiovisual information from multiple acoustic and video sen-

sors [Katsarakis et al. 2008]. It is designed for multi-modal speaker tracking [Taj, Maggio, and

Cavallaro 2008]. As most multi-camera sets, the recording is performed in a closed room with

�xed cameras and microphones.

The BU-TIV (Thermal Infrared Video) Benchmark provides thermal, multi-view thermal

and multi-view color-thermal image recordings for dynamic object tracking [Z. Wu et al. 2014].

The cameras are �xed, and recorded objects are pedestrians inside and outside buildings, as

well as vehicles on a road.

The Object Scene Flow dataset is based on Stereo perception data and optical �ow [Menze

and Geiger 2015; Keller, Enzweiler, and Gavrila 2011]. This is an example of dataset that is

derived from KITTI.

The EuRoC MAV is a visual-inertial dataset collected on-board a Micro Aerial Vehicle

(MAV) [Burri et al. 2016]. The dataset contains stereo images, synchronized IMU measurements

and motion and structure Ground Truth. The dataset is an example of multi-modal perception,

but its goal is self-localization and environmental structure modelling.

A set of recordings united under the project name RAWSEEDS represents a mobile robot

equipped with GPS, cameras, LIDAR, IMU, odometry sensors etc. indoor and outdoor of a

campus [Bonarini et al. 2006; Ceriani et al. 2009]. The aim of the benchmark is to provide

data fusion for self-positioning and environment reconstruction purposes. The Ground Truth

consists in the robot's actual trajectories.

One of the most well-known urban tra�c tracking datasets is KITTI (from Karlsruhe In-

stitute of Technology) [Geiger, Lenz, and Urtasun 2012], [Geiger, Lenz, Stiller, et al. 2013]. It

provides high-precision LIDAR-based Ground Truth, convertible to image projections via ex-

trinsic calibration, that means the only one GT modality exists which makes data fusion tasks

too arti�cial. At the same time, the problem of multi-modal perception is strongly coupled to

the sensors' di�erent characteristics, mainly expressed by variations in the �eld of view, which

means that sometimes an object which is observed with one sensor is occluded in another's

zone of visibility.

The LIPD dataset proposed by Cristiano Premebida [Premebida and U. J. C. Nunes 2009]

is close to the task of multi-modal data fusion: it contains synchronous LIDAR and raw camera

measurements and their Ground Truth (positive and negative samples for a pedestrian detection

and classi�cation task). That dataset also provides encoder and DGPS information for rover

position estimation. But still, that dataset is not appropriate for the task of real-time multi-
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modal tracking: the Ground Truth is there focused on the multi-modal classi�cation task. In

contrast, real sensors have di�erent frame rates, they are not synchronized, and they can detect

something not detected by others (in the dataset the area of visibility is the same, and image

ROIs are generated with the help of range detections). Finally, the Ground Truth in LIDAR

and camera spaces does not provide a Ground Truth in world coordinate systems, when the

latter is useful to better understand urban scenes. Finally, LIPD does not describe the temporal

continuity of detected pedestrians, which is not needed for the detection but crucial for tracking.

The dataset "A multi-sensor tra�c scene dataset with omnidirectional video" provides a

benchmark with 360°�eld of camera view and multiple self-positioning estimation sensors, as

GPS, IMU, lateral and longitudinal velocity sensor and three non contact laser ride height

sensors [Koschorrek et al. 2013]. Unfortunately, the Ground Truth is not provided and multi-

modality here concerns only the position of the rover the data are recorded from.

Commercial "Multisensor Datasets" from VisLab s.r.l. provide also multi-modal vehicle

perception, including cameras, stereo pairs, tetravision systems, LIDAR, GPS, IMU and chassis

data, but also without GT annotations [Vislab 2011].

The authors of "On multi-modal people tracking from mobile platforms in very crowded

and dynamic environments" have recorded multi-modal datasets (based on RGB-D and 2D

LIDAR) with separate annotations [Linder et al. 2016]. They also propose their own framework

for multi-sensor annotations. The recorded scenarios contain pedestrian crowds in a laboratory

and an airport from the point of view of a mobile human-size robot. This benchmark can be

considered as one of the nearest to the searching criteria, except that it was not recorded in an

urban tra�c environment.

In the Tab. 5.1 a short classi�cation of the above-mentioned datasets for multi-object track-

ing is provided. As can be seen from Tab. 5.1, no publicly available dataset precisely �ts our

intentions, which is why it was decided to create an own dataset for this purpose.

Our dataset provides four sources of information, three of which have separate and inde-

pendent annotations. These sources are: LIDAR point clouds (GT from segmentation), RGB

cameras (GT from visual pedestrian detection methods), signals from portable GPS-devices

and wheel-based vehicle odometry. A presentation of di�erent coordinate system is done in

Sec. 5.5.3, followed by the dataset �le structure in Sec. 5.5.3. The recorded scenarios are

presented in Sec. 5.5.3.

5.2 Scene sensors

5.2.1 Vehicle-embedded sensors

The sensors used to register raw data about the vehicle state and the observed environment

are divided on two groups: 1) Vehicle-embedded sensors are devices that are rigidly attached

to the vehicle, and 2) track-embedded sensors are devices that are attached to mobile tracks

(i.e., carried by pedestrians).

Further, one can use the terms "rover"and "vehicle" as synonyms, de�ning a vehicle em-

bedding a set of sensors. As we are dealing with pedestrian tracking here, the terms "tracks"

and "pedestrians" will often be used in a synonymous fashion as well.
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Dataset group Examples
Multi-
sensor

Urban
road

scenario

Object
tracking

Mono-modal
tracking

Caltech, MOT, BoBot,
TLD etc.

no yes yes

Fixed multi-camera with
highly intersected view

EPFL, SALSA, HALLWAY,
LAB, VIPT, MVPDT etc.

partly no yes

Fixed multi-camera
(or range) with

weakly intersected view

ATC SC, 3DPeS,
Sunderrajan's, ARENA etc.

partly no yes

Audio-visual CLEAR yes no yes
Fixed thermal-color view BU-TIV partly yes partly

Stereo or optical �ow
KITTI, Menze's
Daimler etc.

partly yes yes

RGB-D ToF-based Cai's,Sturm's etc. partly partly yes
LIDAR-based
annotations

KITTI, LIPD,
TME etc.

partly yes yes

Multi-sensory robots
EuRoC MAV,
Rawseeds etc.

yes partly no

Without
Ground Truth

Koschorrek's
VisLab's etc.

yes yes partly

No urban scenes Linder's yes no yes

Table 5.1 � Short dataset taxonomy for multi-sensor object tracking in urban road scenarios

Vehicle-embedded sensors have two objectives: to estimate the rover's world position, such

as odometry-served wheel encoders and GPS devices, as well as to observe tracks, such as

monocular vision cameras, or LIDAR sensors.

All embedded sensors are connected to a vehicle-mounted PC.

To better evaluate the performance of multi-object tracking, it is useful to use at least two

(overlapping) sensors that observe the main part of conductor's view zone. In the standard

approach, the front camera as the cheapest solution for object tracking in front of the vehicle

is used. In addition to that, it is useful to add a sensor with higher object resolution quality.

As a Ground Truth source, one can take an external data source with high precision and the

�eld of view larger than any of rover's embedded sensors.

The �nally selected sensors are:

1. A front camera with a large-angle objective. The choice is made since the most important

possible actions of tracked objects are expected in front of the vehicle.

2. A LIDAR sensor with four layers oriented in front of the vehicle. Its visibility zone

is tighter that of the camera in terms of horizontal angular range. The chosen type

of LIDAR is cheaper than a Velodyne sensor and thus potentially usable in consumer

vehicles. At the same time, its lateral resolution is more precise than that of the camera.

3. GPS antennas on tracked objects are chosen to provide Ground Truth information.

4. In order to add some additional information that might prove useful to the data fusion

task, odometry information is also provided.
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A schematic Fig. 5.1 shows the main elements for dataset recording: a rover with installed

sensors, a GPS base for RTK-precision processing and a reference pedestrian equipped with

Raspberry-Pi [Molloy 2016; Halfacree and Upton 2012] device with a GPS receiver.

The camera installation on the bar of rover's top is shown in Fig. 5.3b.

b

b

Altus APS-3 base and rover

Front and back wheels encoders
Lidar Camera

U-blox receiver: rover and tracks

Figure 5.1 � Dataset recording elements schema

Both for track control and for con�guring the GPS station, as well as data collection from

rover sensors, a PC with a dual-core Intel Core processor and hard disk storage capacity of 250

Gigabytes was used. The computer runs Ubuntu Linux (64 bit).

Odometry

Odometry is a measurement of travelled distance as recorded by the rover itself, providing

a continuous, but potentially drifting motion estimate relative to some arbitrarily �xed initial

location.

A so-called Wheel Speed Sensor (WSS) is a type of speedometer, i.e., a sender device used

for reading the speed of a wheel rotation.

Inductive sensors used in the rover are Contrinex DW Ax-62x-04 devices [Inductive sensors

2013] of 4mm diameter. Their maximal frequency is 3000 Hz, so 230 km/h (computed using

90 "teeth").

(a) Encoder with double sen-

sors installation (b) Detection track on the

brake drum

αi−1

αi

Left wheel radius

Right wheel radius

∆R

∆L

(x, y)i−1

(x, y)i

(c) Odometry calculation

schema

Figure 5.2 � Odometry sensors. Images (a) and (b) are taken from [Bouaziz 2013]
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Four Rotary encoders are placed in the rover's wheels. Two front wheels have quadrature

encoders, which are able to determine rotation direction with an angular resolution of 1° (90

teeth for 4 combinations of two sensors). The two rear wheels have a single sensor each,

which are not able to determine rotation direction (only rotation speed), working at an angular

resolution of 4°. A circle with a detection track installed on a wheel is shown in Fig. 5.2b. An

encoder with two sensors (with quadrature signal) installed on the rover is shown in Fig. 5.2a.

The motion model of the rover is composed of a pair of wheels with given radius R (m) and

distance between wheels D (m). The rover's state is parametrized by its position as the center

point between the wheels, and its yaw angle between a current motion direction and an initial

one.

At each new observation, the new rover's coordinates xi+1,yi+1 in meters and rotation angle

\alpha i+1 in radians are updated from old values xi,yi,\alpha i according to Eq. 5.1

\alpha i+1 = \alpha i +
\Delta L - \Delta R

D

xi+1 = xi +
\Delta L+\Delta R

2
\times \mathrm{c}\mathrm{o}\mathrm{s}\alpha i+1

yi+1 = yi +
\Delta L+\Delta R

2
\times \mathrm{s}\mathrm{i}\mathrm{n}\alpha i+1

(5.1)

where distance increments in meters for left and right wheels respectively \Delta L (m) and \Delta R (m)

are calculated from impulse increments \delta L and \delta R with impulses per turn n of rotary encoders

and wheel radius R:

\Delta L = \delta L\times 2\Pi R

n

\Delta R = \delta R\times 2\Pi R

n

(5.2)

In Eq. 5.1, the angular increment is supposed to be small and so it is approximated to

\mathrm{s}\mathrm{i}\mathrm{n}\Delta \alpha \approx \Delta \alpha [Olson 2004]. The schema with odometry parameters is illustrated on Fig. 5.2c.

Of course the CAN messages from encoders arrive at di�erent times, but when they are

processed in the odometry equations above, four consecutive messages from all four encoders

are considered to be simultaneous.

Monocular vision

The camera is meant to provide a faithful and full representation of the scene in front of

the vehicle. The �eld of view must not be too narrow, because in that case close, but laterally

distant objects will be ignored. Too wide �eld of view is to be avoided too, because it leads to

image distortion and makes tracking problematic. In addition, an adequate resolution in order

to detect pedestrians at a maximal distance of 25 meters is needed.

The chosen PointGray Flea2 color camera (model number FL2-08S2C) is �xed on the rover's

top. The camera has a bus connection interface IEEE-1394b which allows the 800Mb/s inter-

face speed for full color RGB output. Sensor model is ICX204 1/3" with a resolution of 0.8

Megapixels(1032x776), with sensor's pixel size 4.65x4.65\mu m, imaging sensor type CCD [Flea 2

Technical Reference Manual 2011].
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The camera is equipped with lens Theia MY125M with focal length 1.3, aperture 1.8,

horizontal angle of view 135°, vertical angle of view 119°, diagonal angle of view 141°, manual

locked focus and a resolution of 5 Megapixels.

That camera has a large enough �eld of view, it can provide color images of schema RGB8

with su�cient frequency of 15 fps and a resolution of 1024x768 pixel. These parameters are set

up for all experimental recordings.

M(x,y,z)

3D object

m(u,v)

2D projection

Uc

Vc

u

v

(0,0)

z

x

y

(0,0,0)

c

(a) Schema of projection from 3D camera

space to 2D image space

(b) Camera installation on the rover's top

Figure 5.3 � Camera as visual sensor

The pinhole camera model has an intrinsic parameter matrix\bfA which is needed to transform

3D camera space to a 2D plane projection:

\bfA =

\left( 
  
fx \gamma u0

0 fy v0

0 0 1

\right) 
  (5.3)

where fx = f \times mx and fy = f \times my represent focal length in pixels, mx and my the scale

factors of pixels to distance, and f the focal length in terms of distance. \gamma is a skew coe�cient

between the axes x and y. u0 and v0 represent the principal (center) point in the projected

image.

A schema of camera 3D space projection into 2D space is represented on Fig. 5.3a.

The chosen camera has a large angular �eld of view, and thus, the provided images have

deviations from rectilinear projection on their sides, i.e., distortions that must be taken into

account in the camera model. For this case, it includes 4 additional non-zero coe�cients: two

radial distortion coe�cients k1, k2, and two tangential distortion coe�cients p1, p2. After their

determination, the camera images can be undistorted as described in Sec. 5.3.2.

Range scanner

The principles of LIDAR sensors are detailed in Sec. 1.2.3.

A 3D Laser Scanner (LIDAR, model number LD-MRS400001) with 4 measuring planes is

placed on the rover's top. This LIDAR sensor has 85°of central scanning range and 110°of

total scanning range. The illustration of its angular resolution is given in Fig. 5.4a. The
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frequency range varies between 12.5 Hz and 50 Hz with di�erent possible horizontal angular

resolutions, which might typically take values of 0.125°, 0.25°, 0.5°. The four layers are scan

planes, one under another, and have 0.8°of vertical angular distance. The Fig. 5.4b illustrates

those values. The LIDAR sensor has an Ethernet data interface [Laser Measurement Sensor

LD-MRS Operating instructions 2014].

X

Y

50◦ -50◦

-60◦

35◦

LIDAR

(a) Horizontal angular range

φ

0◦

0.8◦

-0.8◦

-1.6◦

1.6◦

1

2

3

4

(b) Vertical plane angles sepa-

ration schema

(c) View of LD-MRS SICK 3D

Laser Scanner

Figure 5.4 � LIDAR as range sensor

The frequency is set to 25 Hz with 0.25°of horizontal angular resolution. One LIDAR scan

contains all four layers in the LIDAR coordinate system.

The chosen model LD-MRS SICK is shown on Fig. 5.4c.

Scanning micro-pulse LIDAR sensors get re�ections of objects from consecutive times, but

one scanning sweep is supposed to be simultaneous because of negligible turning and re�ecting

time. The LIDAR sensor itself is at the center of its own Cartesian 3D space, in which re�ections

are modelled as 3D points.

A LIDAR scan is also a subject to deformations induced by the rover motion: while initial

ranges in a scan are measured in a previous vehicle's position, the last ranges are from more

recent one. Also, the range computation for a full scan takes some time, while rover's position

changes. With a scan frequency 25 Hz and for a rover speed limited to 30 km/h, the max-

imal deformation estimation is about 0.33 meters. It is a full scan linear deformation. The

deformations inside one scan are smaller.

5.2.2 GPS localisation

The de�nition of GPS and its enhancements are described in Sec. 1.2.5.

In this section, the applications of GPS technology for the precise positioning of the rover

and tracked objects are studied.

As it is shown in Fig. 5.1, there are two types of GPS devices playing a role in the dataset

creation as well as other parts:

1. Altus APS3 is a centimeter RTK accurate smart antenna of Serptentrio manufac-

turer [APS-3 User manual 2011]. Its accuracy is described in Tab. 5.2. The APS 3

is equipped with SIM and SD cards. For control and data transmission, a cable with

5-pin LEMO port of APS 3 and an RS232 port at the other end is present. The Altus

APS 3 can store raw satellite data on its SD card at a maximal frequency of 25 Hz.

With the same frequency, it can output NMEA string messages via the cable.
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Navigation performance Horizontal (m) Vertical (m)
Standalone 1.3 1.9
SBAS 0.6 0.8
DGPS 0.5 0.9
RTK 0.01 +1 ppm 0.02 +1 ppm

Table 5.2 � Navigation accuracy for Altus APS 3

2. The U-blox M8 module is a passive GNSS receiver from the u-blox manufacturer

equipped with UART and USB output ports [u-blox 8 / u-blox M8 Receiver Descrip-

tion 2016]. It is able to ouput, at a frequency of 5 Hz, the NMEA string messages

and messages in UBX format, including RXM_RAWX (providing raw measurements

from satellites, i.e. pseudoranges and carrier phase measurements) and RXM_SFRBX

(providing raw navigation data, i.e. ephemeris, satellite clock and ionosphere param-

eters) messages. Although u-blox has only one L1 antenna, this is su�cient to use

the RTK mode with �oating-point precision. The antenna has a 35mm square ceramic

patch [CGGBP.35.6.A.02 Speci�cation datasheet 2015].

3. The Raspberry-Pi is a credit card-sized single-board computer manufactured by the

Raspberry Pi Foundation. The Raspberry Pi 1 Model B+ is used. It is equipped with 4

USB 2.0 ports and a micro-SD memory card. The installed operation system is Ubuntu

Linux 64 bit.

4. The Edimax WiFi antenna (EW-7811Un) with 150 Mbps data transfer speed is con-

nected to the Raspberry-Pi device to control it by remote commands.

5. The RS 5200 mAh lithium Power Bank battery pack 775-7508 is used to power the

Raspberry-Pi.

(a) The Altus APS 3 smart antenna
(b) The Raspberry-Pi device with U-blox

U8 receiver, battery and WiFi antenna

Figure 5.5 � Various GPS receivers

To obtain the most precise GPS data possible, the RTK mode was used. One Altus APS 3

antenna was placed statically on a tripod as an RTK base. The second APS 3 was �xed on the

top of the experimental vehicle as a reference RTK rover, as it is illustrated in Fig. 5.1. Both

are con�gured to log raw measurement data internally on SD cards at a frequency of 25 Hz.

The rover's APS 3 is also con�gured to output NMEA strings via its RS232 communication
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interface at 25 Hz. This is necessary to associate GPS and POSIX times in order to synchronize

POSIX-timestamped camera, LIDAR and encoders with GPS-timestamped receivers as it will

be shown in Sec. 5.4.2. All ports are con�gured to have a baud rate of 115200.

Along with the reference APS 3 rover antenna, a less precise U-blox antenna is �xed on

the top of the vehicle to provide perception measurements. U-blox is con�gured to output via

the USB port the UBX messages containing raw data, and to output via the UART port the

NMEA string messages to make the association between GPS and POSIX times.

Tracked pedestrians hold Raspberry-Pi blocks connected to U-blox antennas, as well as

WiFi antennas powered by lithium batteries. The U-blox receiver is placed on the hat of

each pedestrian and is con�gured to output via USB port the UBX messages with raw GPS

observation data. The recording itself is e�ectuated under Linux.

The RxTools software is a suite of GUI tools for monitoring and con�guring receiver oper-

ations as well as logging and downloading SBF data �les. There are also tools to analyse SBF

data �les and convert them to various other formats [RxTools User Manual 2013].

The open source GNSS toolkit RTKlib is used for self-positioning with standard and high

precision [Takasu 2013].

After recording, the following post-processing is used:

1. Tracks' saved .ubx �les are transformed to RINEX 3.02 [International GNSS Service

(IGS) and Maritime Services Special Committee 104 (RTCM-SC104) 2013] format using

the RTKlib library convbin module.

2. The .SBF �les from base and rover, saved to SD cards of Altus APS 3 antennas, are

transformed into RINEX format using the SBF converter module from RxTools.

3. The rover's perception and reference, as well as pedestrian tracks along with the base

RINEX �les are used to calculate RTK mode for the rover and tracks using RTKlib's

rnx2rtkp application. As soon as APS 3 has L1/L2 antennas, the RTK mode provides

it with the �xed, highly precise position. For u-blox antennas with only L1 antennas,

the precision is �oating-point, but still RTK.

Another schema of RTK for Raspberries-Pi was envisioned. It is about online-correction

sending directly to u-blox receivers. The corrections from Altus APS 3 base are sent via the

TCP protocol to WiFi antennas, and the Linux socat utility retransmits them to u-blox. In

that way, the receivers could output directly an RTK-corrected NMEA string. The method was

rejected due to the latency on the reception of the base station correction, and since it does

not o�er post-processing �exibility.

According to the GPS technology, the rover is represented as a point in an LLA (Latitude,

Longitude, Altitude) coordinate system. All the tracks are also represented as points in a LLA

system. For further processing, some transformations between coordinate systems of di�erent

sensors, as well as between coordinate systems of GPS positioning, are carried out.
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5.3 Coordinate systems

5.3.1 Objectives

Since the system has a set of sensors where each of them has its own coordinate system,

one must know how to transform from one set of coordinates to another. Particularly, in this

case, one can talk about four representation spaces:

1. The camera has two coordinate systems:

� The 3D space system with origin at the current camera position.

� The 2D space coordinate system which is a projection of the previous one to the

recorded 2D image. It is discrete with pixel resolution and has its zero-point in

upper left corner of the image.

One can project points in 3D camera space onto the 2D projection using camera intrinsic

parameters, but the inverse transformation is more di�cult (impossible without some

additional assumptions, like rover pitch equal zero everywhere and a ground modelled

as a plane). Since the 2D camera projection can not be transformed to other coordinate

systems, one must �nd a solution to project other coordinate systems to the camera one.

2. The LIDAR 3D space is analogous to camera 3D space: it is rover-�xed with its zero-

point at the current LIDAR sensor position. It is possible to convert LIDAR 3D space

to camera 3D space by a linear transformation which can be represented as rotation

matrix and translation vector, since both spaces are Cartesian.

3. The GPS 3D space (latitude, longitude, altitude - LLA)is an Earth-centred global coor-

dinate system, and to convert it to the rover ego-motion system one must apply several

transformations including the estimation of the rover orientation.

4. The odometry space is a 2D Earth projection with a center in the initial rover position.

Axes are de�ned by initial rover orientation. In the dataset, this coordinate system is

not connected to the other ones and only given as a supplementary perceptual data.

A transformation schema between coordinate spaces is illustrated in Fig. 5.8.

5.3.2 Vision calibration

The base method is derived from Zhang's calibration technique [Zhang 1999] and needs

several images of a chessboard captured from a camera under di�erent angles. To project an

arbitrarily oriented plane from world (chessboard) coordinate system to the 2S image projection,

the following transformation is used:

s\bfm = \bfH M (5.4)

with \bfH = \bfA [\bfr 1\bfr 2\bfr 3\bft ] = \bfA [\bfR \bft ]. Here matrix \bfA is still the matrix of intrinsic parameters

de�ned in Eq. 5.3, and \bfR and \bft are extrinsic parameters which transform points from the world

coordinate system to the camera's one. M and \bfm are points in world coordinate system and

2D image respectively.
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To estimate the intrinsic parameters, a maximum likelihood is obtained via minimizing the

following expression:
n\sum 

i=1

m\sum 

j=1

\| \bfm ji  - \^\bfm (\bfA ,\bfR i, \bft i,Mj)\| 2 (5.5)

where \^\bfm (\bfA ,\bfR i, \bft i,Mj) is the projection of point Mj in image i, according to Eq. 5.4. The

closed-form solution needs an initial guess of intrinsic matrix \bfA , [\bfR i, \bft i| i = 1..n]. The nonlinear

minimization problem is solved using the Levenberg-Marquardt algorithm.

The radial distortion k1 and k2 is calculated either after solving the minimization problem

by solving Eq. 5.6, or using their integration in the functional in Eq. 5.5.

\Biggl[ 
(u - u0)(x

2 + y2) (u - u0)(x
2 + y2)2

(v  - v0)(x
2 + y2) (v  - v0)(x

2 + y2)2

\Biggr] \Biggl[ 
k1

k2

\Biggr] 
=

\Biggl[ 
\^u - u

\^v  - v

\Biggr] 
(5.6)

or, in matrix form \bfD \bfk = \bfd . Here x,y are normalized image coordinates of non-observable ideal

images without distortion, \^x,\^y are real distorted normalized image coordinates. Similarly, u,v

and \^u,\^v are ideal and corresponding real pixel coordinates. To eliminate distortion e�ects from

the image using given distortion coe�cients, Eq. 5.7 must be solved.

There is a strategy of alternating distortion coe�cients and other parameters estimations

until their Eq. 5.6 and Eq. 5.5 convergence [Zhang 1999].

\^x = x+ x[k1(x
2 + y2) + k2(x

2 + y2)2]

\^y = y + y[k1(x
2 + y2) + k2(x

2 + y2)2]
(5.7)

The calibration procedure was realized using the Camera Calibration Toolbox for Mat-

lab [Bouguet 2003]. This tool helps to calculate the intrinsic matrix from Eq. 5.3 and distortion

coe�cients using 20-25 images of a planar checker-board registered in front of the camera on

di�erent angles, as it is shown on Fig. 5.6. The method is based on the maximum likelihood

estimation of the Eq. 5.5.

The procedure of calibration consists of semi-automatically extracting image corners.

OpenCV is an open source computer vision tool [Bradski 2000]. OpenCV library's methods

were used to undistort images. To eliminate black zones after undistortion and to remove the

useless view if the rover's hood, images were cropped, and their �nal size is 1024x576.

5.3.3 Vision-LIDAR extrinsic calibration

Using camera parameters, the method of video and LIDAR sensor alignment with circular

target [Fremont, Sergio Alberto Rodriguez Florez, and Bonnifait 2012] was applied. This

method determines the rotation and translation transformations relative to poses of sensors,

while using sets of captured images and LIDAR points cloud corresponding circular targets for

some various positions.

The calibration itself is based on the minimization of the functional in Eq. 5.8.
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Figure 5.6 � Example frame of checker-board inner camera calibration

Figure 5.7 � Camera-LIDAR calibration with a circular target example frame

n\sum 

i=1

m\sum 

j=1

\bfW .\| \bfp \scrV 
ij  - \bfR \scrV 

\scrL \bfp 
\scrL \scrI \scrD 
ij  - \bft \scrC \scrA \scrM 

\scrL \scrI \scrD \| 2 (5.8)

here \bfp \scrL 
ij is a jth point in LIDAR space for a ith circle pose, \bfp \scrV 

ij is a point in camera space

respectively. The \bfR \scrV 
l and \bft \scrV \scrL are the rotation matrix and translation vector from LIDAR space

to camera space, and the \bfW is a weight matrix.

The circular target is detected by both camera and LIDAR. The LIDAR detects the inner

edges of a circle, from which the calibration method reconstructs the circle's form. The camera's

target representation is reconstructed using 16 points outlined manually from a 2D image

projection. The camera's intrinsic parameters which are necessary for the correct camera space



98 5.3. COORDINATE SYSTEMS

positioning are taken from the calibration mechanism described in the previous section.

The method also provides a performance and an error estimation analysis. As a result, the

linear transformation \bfT \scrV 
\scrL between 3D LIDAR-centered space and 2D camera projection are

obtained:

\bfT \scrV 
\scrL = \bfA 

\bigl[ 
\bfR \scrV 

\scrL | \bft \scrV \scrL 
\bigr] 

(5.9)

where the matrix \bfA represents the intrinsic camera parameters from Eq. 5.3.
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Figure 5.8 � Coordinate systems transformation schema

5.3.4 Vehicle-centered reference frame

The geographic coordinate system LLA is spherical and not adequate for road applications,

because it provides distances in angles from the equator and the zero meridian, and not in

meters on the Earth surface. Firstly, it must be transformed into ECEF ("Earth-Centered,

Earth-Fixed") coordinates, which is Cartesian with zero point in the center of the Earth. The

transformation is carried out as follows:

x = (h+N) \mathrm{c}\mathrm{o}\mathrm{s}\lambda \mathrm{c}\mathrm{o}\mathrm{s}\phi 

y = (h+N) \mathrm{c}\mathrm{o}\mathrm{s}\lambda \mathrm{s}\mathrm{i}\mathrm{n}\phi 

z = (h+N(1 - E2)) \mathrm{s}\mathrm{i}\mathrm{n}\lambda 

(5.10)

where N = a\surd 
1 - E2 \mathrm{s}\mathrm{i}\mathrm{n}2 \lambda 

is the Geoid radius at a given point, a = 6378137.0 is the equatorial ra-

dius, h is the altitude, \lambda and \phi are latitude and longitude expressed in radians, E = 0.081819191

is the eccentricity of the Earth's elliptical cross-section. The transformation is based on the

WGS 84 Coordinate System as on a Conventional Terrestrial Reference System [World Geodetic

System � 1984 (WGS - 84) Manual 2002].
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Figure 5.9 � Earth coordinate systems: LLA (\phi ,\lambda ), ECEF, ENU (Eash,North,Up)

The ECEF coordinates can be transformed into ENU (East-North-Up) also known as a

LTP (local tangent plane) coordinate system which give a ground orientation to east, north

and vertical directions. It is important to know that ECEF to ENU conversion must always

have a reference point denoted, the ECEF point that are transformed to zero center in ENU

coordinates.

To transform ECEF coordinates to ENU, one must have also the LLA coordinates:

e =  - x \mathrm{s}\mathrm{i}\mathrm{n}\phi + y \mathrm{c}\mathrm{o}\mathrm{s}\phi 

n =  - x \mathrm{c}\mathrm{o}\mathrm{s}\phi \mathrm{s}\mathrm{i}\mathrm{n}\lambda  - y \mathrm{s}\mathrm{i}\mathrm{n}\phi \mathrm{s}\mathrm{i}\mathrm{n}\lambda + z \mathrm{c}\mathrm{o}\mathrm{s}\lambda 

u = x \mathrm{c}\mathrm{o}\mathrm{s}\phi \mathrm{c}\mathrm{o}\mathrm{s}\lambda + y \mathrm{s}\mathrm{i}\mathrm{n}\phi \mathrm{c}\mathrm{o}\mathrm{s}\lambda + z \mathrm{s}\mathrm{i}\mathrm{n}\lambda 

(5.11)

where x,y,z are ECEF coordinates in meters.

To transform LLA point to ENU coordinate with given reference zero point, one must

subtract ECEF coordinates of reference point before conversion to ENU:

x = x - xref

y = y  - yref

z = z  - zref

(5.12)

That is because ECEF to ENU projection projects not the point itself, but the di�erence

between reference point and given one. The di�erence in ECEF coordinates is a vector on an

Earth surface, when the point itself is a vector from the Earth center to a point on its surface.

Let the LLA to ECEF transform be \bfT \scrE \scrN \scrU i
\scrL \scrL \scrA , let the ECEF to ECEF transform of given

reference \scrE \scrC \scrE \scrF i (as soon as the rover-centred coordinate system is needed) be \bfT \scrE \scrC \scrE \scrF i
\scrE \scrC \scrE \scrF and let

the ECEF to ENU transform be \bfT \scrE \scrN \scrU i
\scrE \scrC \scrE \scrF i

. Then, the the LLA coordinates can be placed in

ego-centred ENU coordinates of the rover using Eq. 5.13, where \scrE \scrC \scrE \scrF i is a ECEF space with

a reference of the actual rover position.

The \scrE \scrN \scrU i spaces are shown in Fig. 5.10 in comparison to the \scrE \scrN \scrU space transformed from

ECEF with only one reference point.
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Figure 5.10 � Di�erence between ENU coordinates transformed from ECEF with one reference
point or with references given from all ECEF points in series during rover motion

\bfT \scrE \scrN \scrU i
\scrL \scrL \scrA = \bfT \scrE \scrN \scrU i

\scrE \scrC \scrE \scrF i
\bfT \scrE \scrC \scrE \scrF i

\scrE \scrC \scrE \scrF \bfT \scrE \scrC \scrE \scrF 
\scrL \scrL \scrA (5.13)

At the same time the rover ENU coordinates, with initial rover position as a reference point,

are calculated using \bfT \scrE \scrN \scrU 0
\scrL \scrL \scrA of Eq. 5.14.

\bfT \scrE \scrN \scrU 0
\scrL \scrL \scrA = \bfT \scrE \scrN \scrU 0

\scrE \scrC \scrE \scrF 0
\bfT \scrE \scrC \scrE \scrF 0

\scrE \scrC \scrE \scrF \bfT \scrE \scrC \scrE \scrF 
\scrL \scrL \scrA (5.14)

After getting localized objects in rover-centred ENU, one needs to turn axes Est-North to

make them congruent with the axes of movement direction. To do this, the transformations in

Eq. 5.15 and Eq. 5.16 are applied.

\bfT \scrL 
\scrE \scrN \scrU i

=
\bigl[ 

\bfR \scrL 
\scrE \scrN \scrU i

\bigr] 
(5.15)

\bfR \scrL 
\scrE \scrN \scrU i

=

\left( 
  
\mathrm{c}\mathrm{o}\mathrm{s}\alpha  - \mathrm{s}\mathrm{i}\mathrm{n}\alpha 0

\mathrm{s}\mathrm{i}\mathrm{n}\alpha \mathrm{c}\mathrm{o}\mathrm{s}\alpha 0

0 0 1

\right) 
  (5.16)

α

α

d

d

Figure 5.11 � Yaw estimation from curve position. When taking neighbouring points at a �xed
distance d, problems with static or slow rover are avoided

Here, \bfR \scrL 
\scrE \scrN \scrU i

is a rotation matrix, \alpha is an yaw angle between rover direction and the East

calculated from rover neighbour positions in \scrE \scrN \scrU 0. One approximates \alpha by an angle, connect-
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ing the nearest future point being distant from the observed one at a �xed parameter value d,

and the nearest past point being distant from the observed one at the same �xed value d, as it

is shown on Fig. 5.11.

The resulted \scrL coordinates are already very close to the LIDAR's detections.

The axes of LIDAR are not aligned with the rover's pitch in ego-motion coordinates. To

align them, a Singular Value Decomposition (SVD) method is applied on set of pairs [p\scrL , c\scrL ],

where p\scrL is a GPS position transformed to pseudo-LIDAR coordinate system and c\scrL is a center

of point cloud of an associated pedestrian. SVD estimates the rotation matrix to apply to the

axes of \scrL . Let the matrix \bfP represent the input N \times K data from \scrL space, where N is a

number of points, and K is a point dimension. Let the \bfC be an anologous data matrix N \times K

of points in the space \scrL . To estimate the rotation matrix \bfR and the translation vector \bft which

respect the transformation:

\bfC = \bfR \bfP + \bft , (5.17)

�rst the mean values are subtracted from coordinates:

\^\bfP = \bfP  - \BbbE [\bfP ]

\^\bfC = \bfC  - \BbbE [\bfC ]
(5.18)

where \BbbE [\cdot ] is expectation operator.

Then, the covaiance matrix \bfSigma is calculated:

\bfSigma = cov( \^\bfP T , \^\bfC T ) = \BbbE [ \^\bfP T \^\bfC ] (5.19)

Now the SVD is applied: the covariance matrix is decomposed into three parts: two rotation

matrices \bfU , \bfV composed from left and right singular vectors, and one diagonal matrix \bfS 

composed from singular values.

\bfSigma = \bfU \bfS \bfV \ast (5.20)

where \bfV \ast is a conjugate transposed version of \bfV .

As soon as the one looks for a rotation matrix, the only matrices from singular vectors

representing a rotational transform are taken into account:

\bfR = \bfV \ast \bfT \bfU \bfT (5.21)

The translation vector is calculated from mean values:

\bft =  - \bfR \BbbE [\bfP ]T + \BbbE [\bfC ]T (5.22)

As a result of imprecise heading estimation, \scrL and \scrL has still a signi�cant angle deviation

when the rover turns. To eliminate this imprecision a mechanism of axes adaptation using SVD

transformation is introduced. For each GPS detection in \scrL space, its own transformation to

LIDAR space \scrL is calculated according to Alg. 3. When LIDAR detections corresponding to

the given GPS one are present, the SVD alignes GPS detection and LIDAR detection using

a sliding window around the given pair LIDAR-GPS. If LIDAR detections are absent, the
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alignment uses the nearest present pairs [p\scrL , c\scrL ]. Using this type of transformation, the GPS

detections can be transformed �nally to image 2D projection and serve as Ground Truth for

vision. In Fig. 5.12, the initial 2D pair of axes (10, 0), (0, 10) for the space \scrL are shown, as well

as the axes transformed to the space \scrL for all GPS detections of one scenario.

Algorithm 3: Alignment: Pseudo LIDAR (\scrL ) and LIDAR (\scrL ) coordinate systems alignment

using SVD method

Data: Set of LIDAR pairs \scrL [c\scrL , t\scrL ]i, i = 0..nobjects where c\scrL is a point from \scrL , t\scrL is a
timestamp associated to this point for i object, whose number is nobjects. Set of
GPS pairs [p\scrL , t\scrL ]j, j = 0..nobjects in \scrL . Set of rover reference timestamps tr

Result: Set of rover yaw correction angles \alpha corr and 2D translation vector xcorr, ycorr to
modify GPS detections

Interpolate LIDAR and GPS object's detections to timestamp tr. Now there are [ptr\scrL , tr]

and [ctr\scrL , tr];

Set constants k1 and k2 - they signify the neighbourhood around given point where one
looks for points for SVD ;

for each tr do
Initialize SV Dpairs as empty pair structure;

if ptr\scrL exist then
if ctr\scrL exist then

Let trk be the the moment tr plus k position in a set [tr];

k=0;

while p
trk
\scrL and c

trk
\scrL exist and k < k1 do

Add [p
trk
\scrL ,c

trk
\scrL ] to SV Dpairs;

k=k+1;

k=0;

while p
trk
\scrL and c

trk
\scrL exist and k >  - k1 do

Add [p
trk
\scrL ,c

trk
\scrL ] to SV Dpairs;

k=k-1;
Apply SV D method for SV Dpairs and get \alpha corr,xcorr, ycorr for the moment tr

else

Find nearest existed pair p
trk
\scrL ,c

trk
\scrL for k>0;

while p
trk
\scrL and c

trk
\scrL exist and k < k2 do

Add [p
trk
\scrL ,c

trk
\scrL ] to SV Dpairs;

k=k+1;

Find nearest existed pair p
trk
\scrL ,c

trk
\scrL for k<0;

while p
trk
\scrL and c

trk
\scrL exist and k >  - k2 do

Add [p
trk
\scrL ,c

trk
\scrL ] to SV Dpairs;

k=k-1;
Apply SV D method for SV Dpairs and get \alpha corr,xcorr, ycorr for the moment tr
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Figure 5.12 � \scrL axes (blue) and its SVD transformations to \scrL (red) for all GPS detections of
one scenario. The axes are shown as vectors (10,0), (0,10). The images show the rotation and
translation transformations from \scrL to \scrL for each timestep of the scenario

5.4 Files

The dataset has a �le representation. Each recorded scenario has:

1. A �le providing real-time perception data

2. A set of �les with raw GPS data

3. A set of �les with perception data resulting from o�ine processing

4. A �le with Ground Truth annotations

5. Calibration data

In this section there is a full documentation about all these types of data.

5.4.1 ROS �le format

The Robot Operating System (ROS) is a set of software libraries and tools that help to build

and manage complex robot applications [Quigley et al. 2009]. For the dataset application, ROS

is needed to provide data bags (so called ROSbags), which are capable to store signals from

all sensors in real time and to replay them later (also in real time). ROS also provides a set

of drivers to parse and encapsulate messages from devices. The common schema of ROS is

shown in Fig. 5.13. All messages are published in "topics" with a given queue size. When some

process (a "node") subscribes to a topic, the appearance of a message in this topic activates

a processing mechanism inside the node. When new message arrives into a full queue, the

queue removes the oldest message. That system allows to simulate and work with real-life

multi-thread messages easily. That is why ROS was chosen as a real-life version of the dataset.

The o�ine version as a set of text �les and images is proposed too.

Almost all sensors' detections are transformed into ROS messages. For camera's images,

a caption driver FlyCapture SDK is used with modi�cations allowing to transform images to
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Node 1

Node 2

Node 3

Node 4

Node 5

Subscribers

Writing bag

Topic A

Topic B

Reading bag

Figure 5.13 � Base concept of ROS: nodes make messages, publish them in topics. Other nodes
can subscribe to topics and read published messages

ROS messages of type sensor_msgs::Image illustrated with details on List. A.3. The LI-

DAR detections are processed with a sick_ldmrs ROS package with its executable script

sickldmrs.py [Grandbois and Pauling 2012] to compose and send ROS messages of type

sensor_msgs::PointCloud2 explained in List. A.4.

Wheel encoders are connected to rover's bus CAN (Controller Area Network) and transmit

messages encoded in TPCANMsg format of libpcan library:

1. DWORD ID - id of the sender encoder

2. BYTE LEN - length of actual message in bytes. Here it is not used, as soon as the

length is only one and is known

3. BYTE MSGTYPE - type of used message. Here it is not used

4. BYTE DATA [8] - all the rest of essencial encoders information:

� 1-4 bytes - number of impulses read from sensors. This value shows absolute wheel

position changing

� 5-6 bytes - number of impulses changing, i.e. wheel speed in terms of impulses

� 7-8 bytes - timestamp

Each of encoder send message with 10 ms frequency. CAN bus is parametrized to have 1

Mb/s rate. Bus CAN is connected to a PC with USB adapter and its messages are stored

timestamped with the POSIX time of the PC.

A peak-linux-driver based ROS package transform CAN output to ROS message of

new de�ned type pcan_msgs::CAN shown in List. A.1. Online NMEA output from the rover's

receivers is transformed into ROS messages of type std_msgs::Header as explained in List. A.2.

5.4.2 Time alignment

All types of used ROS drivers make timestamps for each data structure using host PC's

system clock in POSIX format. For the LIDAR, one sweep is a frame and its timestamp is

a time of ROS-message creation. For a camera frame, its time-stamp is also a time of ROS-

message creation. The same principle is valid for odometry messages. GPS �les are saved in

o�ine-mode, they contain only UTC time provided by satellites with resolution which is not

high enough to be matched to the local POSIX time of the host PC.

As it was mentioned above, two GPS receivers, one U-blox and one APS 3, installed on the

rover's top are con�gured to output NMEA string via serial connection to the PC processing
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all other sensors' messages. This is needed to associate the PC's POSIX time with GPS times-

tamps and to thus have all sensor readings time-stamped. Each NMEA message that arrives via

the serial port is processed by the ROS driver making messages of types std_msgs::Header,

containing NMEA string and the POSIX timestamp of the incoming message. Most GPS times-

tamps have a corresponding POSIX timestamp. In case of lost NMEA messages, a procedure

of reconstruction of missing timestamps is proposed: the area of lost timestamps is �lled with

�xed time steps, as it is shown in Fig. 5.14b.

(a) Reference rover time alignment for an example scenario

(b) One time hole �lling example

Figure 5.14 � The graphs show POSIX timestamps (horizontal axis) and time di�erence be-
tween neighbouring timestamps (vertical axis). The blue line signi�es original, not improved
POSIX timestamps for GGA messages. One can see some high di�erences between neighbour-
ing timestamps, indicating loss of time information. The red line shows the improvement by
�lling "lost" timestamps

5.4.3 Extracted �les

Besides the online-format ROS �les, also more classical o�ine-processing-style �les are pro-

vided. As it is shown on Fig. B.1, the visual perception data is represented as a set of .png
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images and a .txt �le containing timestamps for them. The range perception data is represented

as a set of .txt �les for each scan. The timestamps are stored in a similar manner in a .txt �le.

GPS data is stored in text �les as NMEA string lines with their POSIX timestamps. For each

track, one �le is provided as well as for the GPS perception and reference data of the rover.

Encoders' messages for the odometry reconstruction are given in their raw form to allow for

methods of optimal wheel radius and wheelbase estimation.

5.4.4 GPS raw �les

The raw GPS o�ine data is provided too. It represents APS-3 logged .sbf �les for the

base and reference rover. For U-blox receivers, raw .ubx �les are also present. Text �les

of .pos extensions are NMEA-form output resulting o�ine manipulations with GPS raw data.

Theoretically, they can be recalculated using other extraction methods as described in Sec. 5.2.2,

or using other parameters.

5.4.5 Transforms �les

A set of �les with transformations between sensors spaces are provided too:

� Intrinsic parameters of the camera, calibrated with methods described in 5.3.2 are com-

pleted with the raw images of a checker-board under di�erent angles.

� LIDAR-camera transform detailed in 5.3.3 is provided with raw images circular target

�lmed under di�erent angles with the corresponding LIDAR's range point clouds

� GPS-LIDAR �tting transforms mentioned in 5.3.4 are proposed too.

5.4.6 Annotations

The main goal of the dataset is to provide a complete experimental tool to test various

approaches in multi-object tracking and detection in multi-modal perception. To this end,

Ground Truth information is needed. Ground Truth (GT) is the ideal result expected after the

application of tracking algorithms. For the case of tracking, GT is a trajectory of each dynamic

object in the �eld of view of the sensors. In case of GPS, Ground Truth is a trajectory composed

from 3D points in the geographical coordinate system, where for each time-stamp an object is

expressed as only one point. In case of LIDAR, Ground Truth for one time-stamp is a cluster

of 3D points in the LIDAR-centred Cartesian coordinate system, which are points re�ected

by the objects while scanning. In case of camera-based visual information, a GT object at a

time-stamped 2D rectangle, circumscribing the visual contour of an object. All these types of

GT are illustrated in Fig. 5.15.

In this dataset, the Ground Truth is given in the form of .xml �les of the type illustrated

in List.C.1.

The GPS type of Ground Truth is given as GPS �xes without special GT extraction. The

LIDAR GT is extracted with the semi-automatic procedure based on expert (human) track

initialization and automatic point cloud tracking. The vision GT is based on GPS projection

onto a 2D image as described in Sec. 5.3.4, with human's height assumed to be roughly equal to
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Figure 5.15 � Ground Truth representation for various sensors: camera (image) GT is a 2D
rectangle, LIDAR GT is a cloud of 3D points, GPS GT is one point

the rover's top and a human's width assumed to be 1 meter. The developpment kit is written

in C++ which helps to generate Ground Truth �les and is shown in Fig. 5.16.

Another tool of the development kit in order to verify the integrity of dataset is proposed. It

is written in Python and represents a set of scripts, including a �le dataLoader.py containing

structures representing GT tracks and the functions to load them from .xml �les. Another

script encoders_reader.py reconstructs the odometry trajectory from raw encoder messages.

The script tracklets_reader.py visualizes Ground Truth tracks and projects detections from

one sensor space to another.

from 2016-08-19 17:51:24.eps from 2016-08-19 17:51:24.eps

Track 1

Track 0

Figure 5.16 � Development kit for Ground Truth generation: in the top left corner, the visual
annotations are shown, the top right corner contains the LIDAR scene with GT annotations
(coloured circles are tracks). The bottom left corner shows GPS annotations in rover-centred
Birds' Eye View. Arrows show associations between tracks.
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5.5 Recorded scenarios

4 scenarios were so far recorded in di�erent semi-urban environments, near to University

Paris Saclay in France's Paris metropolitan region. They contain at most four tracked pedestri-

ans moving around a slowly moving rover. The recorded scenarios have been de�ned for their

di�culty w.r.t. sensor fusion and tracking, as evidenced by track intersections, occlusions,

partial visibility etc. The descriptive chart with total Ground Truth detections number and

duration is given in Tab. 5.3:

Scenario Duration GPS GT number Video GT number Range GT number
Scenario 1 2:51s 1719 2491 2316
Scenario 2 2:37s 1554 2800 3001
Scenario 3 3:03s 3672 9320 12016
Scenario 4 3:22s 4044 10045 14735

Table 5.3 � Scenarios descriptive chart

(a) Scenario 1

(b) Scenario 2

Figure 5.17 � Scenario's GPS trajectories for the base, perception, rover reference and tracks.
The reference point is the �rst rover reference position. The base positions are processed in
single, �xed mode, so the shown dispersion gives the order of corrections used in RTK mode
for rover and tracks

Since the rover and pedestrians are equipped with GPS, one can plot the full scenario as
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their coordinates on the Ground plane, as it is shown on Fig. 5.17a5.17b.

Also, one can try to measure the U-blox receiver's intrinsic precision. This precision is

calculated as relative to the Altus APS-3 receiver position, which is supposed to be centimeter-

precise. The rover perception is compared to the rover reference position. The horizontal mean

distance between them is

mh =
1

N

\sum 
(
\sqrt{} 
(ep  - er)2 + (np  - nr)2 (5.23)

whereN is a number of found pairs of perception and reference, ep, er are East coordinates of

perception receiver and reference receiver, np and nr are the corresponding North coordinates.

The vertical mean distance is measured as

mv =
1

N

\sum 
abs(up  - ur) (5.24)

where np and nr are Vertical (Up) coordinates. The horizontal dispersion is calculated as

dh =
1

N

\sum 
abs(mh  - 

\sqrt{} 
(ep  - er)2 + (np  - nr)2) (5.25)

and vertical one as

dv =
1

N

\sum 
abs(mv  - abs(up  - ur)) (5.26)

The calculated values are illustrated on the Tab. 5.4. The high value of vertical mean di�erence

for the Scenario 2 is the consequence of the rover's trajectory near a high building. Some part

of sky is occluded and the satellite data is less precise. In the same time, a post-processing

�ltering algorithm keeps the erroneous value constant, and the corresponding dispersion stays

low. The horizontal values are much preciser: 40-41 cm is a real distance between receivers.

Fluctuations of 6-8 cm in U-Blox positioning correspond to expectable values.

Scenario Horizontal mean Vertical mean Horizontal dispersion Vertical dispersion
Scenario 1 0.406919085187 0.113258635022 0.0660296133688 0.138379026754
Scenario 2 0.41329173529 1.53703328148 0.0825748695907 0.0734323213258
Scenario 3 0.419925052762 1.09849766286 0.211421303392 0.0960270613371
Scenario 4 0.540115957438 0.192691456112 0.236486342331 0.0113630018678

Table 5.4 � Measured perception of rover precision from the recorded scenarios in meters. The
actual relative positions of rover receivers are not changed

The results of GPS detection corrections from pseudo-LIDAR space \scrL to \scrL as they are

descibed in Sec. 5.3.4 are shown in Fig. 5.18a5.18b. In these �gures, the trajectories of GPS

detections before and after corrections and also the LIDAR detections are traced. One can

observe that after the matching, GPS is very coherent LIDAR detections trajectory, as it was

expected.

Another result to characterize the quality of the recorded data is the odometry estimation.

This is shown in Fig. 5.19a5.19b5.19c5.19d. They illustrate trajectories in the �rst two scenarios,

as reconstructed from front or rear wheels. The coordinate system depends a lot on the initial
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(a) Scenario 1 (b) Scenario 2

Figure 5.18 � Scenario's GPS transformation to LIDAR space. Initial GPS detections in pseudo-
LIDAR space are shown, as well as LIDAR detections and GPS transformed to LIDAR space

direction of movement, which is why for front and rear wheels of the �rst scenario the axes are

rotated.

It is possible to measure the relative precision between odometry reconstructed trajectories

by comparing with GPS reference trajectories. SVD transform is used to align ENU and wheel-

based coordinate systems. Results are illustrated in Fig. 5.20, where WSS based reconstructed

trajectories of Scenarios 1 and 2 are compared with GPS. Results were quanti�ed computing the

mean distance between corresponding points of two trajectories, see Tab. 5.5. Odometry errors

are higher on Scenario 1 since the vehicle perform multiple turns. Such a kind of trajectories

induces wheels sliding errors. The quanti�ed error integrated on WSS trajectories con�rms

the integrity of the recorded data. This information is precise enough to carry out motion

compensation on detected objects.

Scenario Front wheels (m) Rear wheels (m)
Scenario 1 1.9012 1.4271
Scenario 2 1.4122 1.2627
Scenario 3 1.9337 1.1880
Scenario 4 1.8389 1.2211

Table 5.5 � Odometry precision measurement chart. Columns correspond to mean distance
between points of GPS and odometry reconstructed trajectories from rear and front wheels.

For now, the technical descriptions of the recorded scenarios is completed. Their semantic

meanings with their applications for various evaluation purposes are described in the next

chapter.
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(a) Scenario 1 front wheels (b) Scenario 1 rear wheels

(c) Scenario 2 front wheels (d) Scenario 2 rear wheels

Figure 5.19 � Scenarios odometry reconstructed traces for front and rear wheel pairs
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Figure 5.20 � Rear wheels-based odometry reconstructed traces matched with GPS trajectories
with SVD transform. Scenarios 1 (left) and 2 (right) are presented.



Chapter 6

Experimental results
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6.1 Introduction

Chap. 5 was intended to acquire data necessary to evaluate the e�ciency of the proposed

methods described in Chap. 2,3 and 4. Thus, the experiments reported in this chapter provide

a full-scale proof of concept. The dataset is composed of four scenarios that were recorded with

a speci�c purpose:

Scenarios 1 and 2 address classical and simple tracking situations. In the sequence, two

pedestrians are moving in front of the rover. Pedestrians intersect the rover trajectory, follow

one side of the road, or just stand quietly while the rover moves. Occasionally, the pedestrians

are also recorded in a blind zone of the LIDAR, but still visible by camera. Since only few

objects are present at each sampling time, this kind of scenarios are well suited as a training

set for the data association method detailed in Chap. 3.

Scenario 3 aims at demonstrating the quality of the proposed tracking system. This scenario

is composed of four pedestrians frequently occluded in a highly dynamic scene (e.g. round-

about). This scenario provides a complex con�guration for the association and tracking method.

Scenario 4 is intended to validate context-aided tracking concept. Four pedestrians are

recorded: two of them evolve following an expected context motion and the others move follow-

ing an unexpected context behaviour. This scenario provides a well-suited situation to identify

two tracking groups.

113
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6.2 Tracking

In the dataset, the Ground Truth (GT) is composed of LIDAR, ROI images and GPS an-

notations (i.e. tracklets). Object tracking algorithms can then perform taking advantage of

on-board vehicle sensors only such monocular vision and LIDAR measurements (i.e. extero-

ceptive information). The GPS positioning of tracked objects is provided as a reference. Three

evaluation criteria are investigated: continuity, overlap and Euclidean distance. In order to

quantify these criteria, the proposed algorithms were evaluated under two di�erent conditions:

(1) Detections are emulated as all presented GT objects (2) Detections are emulated by the

set composed of all presented GT objects and some false negatives. The objects positions are

perturbed by an additive white noise.
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Figure 6.1 � Continuity, overlap and Euclidean distance for tracking in LIDAR range view
of scenarios 1 (left column) and 3 (right column). 20 trials are carried out so as to achieve
representative statistics. Two cases are evaluated: without noise in the detected object positions
and with white noise in the detected object positions and false negative detections.
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Figure 6.2 � Continuity, overlap and Euclidean distance for tracking in image projection view
of scenarios 1 (left column) and 3 (right column). 20 trials are carry out as a representative
statistics. Two cases are tested: without noise and with additive white noise and false negative
detections.

In Fig. 6.1 and Fig. 6.2, the evaluation of two scenarios are illustrated: Scenario 1 is a

low-speed simple scene and Scenario 3 is a more complex scene covering tracking issues like

occlusions and turning trajectories.

For the object tracking algorithm performing on LIDAR measurements, the parameters

were set: Rb = 0.7, Rd = 0.1 and Rret = 0.2. Additive noise parameters applied to LIDAR

observations: \sigma c = 0.3 (m) and Pfn = 0.33.

The settings for object tracking performing on monocular vision: Rb = 0.7, Rd = 0.1 and

Rret = 0.2. Additive noise parameters applied to visual observations: \sigma c = 20 (pixels) and

Pfn = 0.33.

Based on Fig. 6.1 and Fig. 6.2, some insights are stated hereafter:

Tracking in LIDAR coordinate system is more stable and precise than on the image projec-
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tive space. This was also noted on results are reported in Chap. 2, more particularly in Fig. 2.6

and in Fig. 2.7. It is worth noting that the choice of tracking parameters is not a trivial problem

because of the perspective e�ects on the image plane. That is, depth changes not only lead to

object size changes but also to di�erent error distributions of the observed dynamics.

The increase of noise negatively impacts the continuity of tracks according to the chosen

criterion. For KITTI dataset, in case of a high noise in�uence, the criteria overlap and Euclidean

distance follow slight improvements. That is, a new track is initialized after a previous track

loss. A new track perfectly matches to the corresponding detection. For the proposed dataset

this e�ect is too week to be observed.

Finally, noise increases the uncertainty in tracking. Thus, this relation was observed in the

dispersion of the computed criteria values.
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6.3 Multi-modal association

The designed multi-sensor data association mechanism was evaluated on the proposed

dataset following the same procedure as for KITTI and Honda datasets. In Fig. 6.3 is shown

(a)

(b)

Figure 6.3 � Statistical models of sensory spaces are acquired by SOM for visual (a) and LIDAR
sensors (b). Red points represent the position of SOM prototypes in the space of each sensor.
The local density of prototypes is guided by average local density of data points. The data for
SOMs constructions are GT annotations of the dataset proposed in Chap. 5

the resulting SOMs using GT detections from both, visual and LIDAR spaces.

In Fig. 6.4, the ROC curve for all recorded scenarios is illustrated. The training and the

evaluation sets are composed from randomly chosen frames of a set containing all recorded

scenarios. Because of the limited number of recorded scenarios, we consider necessary to apply

also a cross-validation mechanism. In Fig. 6.5 ROCs graphs are provided for training-testing

pairs, where training data are selected based on all recorded scenarios but one, this remaining

set was devoted as the training scenario.

The analysis of Fig. 6.5, 3.8, 6.3 leads us to the following conclusions:

The SOM nodes distributions characterize the small data size: there are represented through

areas with higher nodes densities. A similar trend was observed using Honda dataset (see

Fig. 3.4d and Fig. 3.4c). On the contrary, in the KITTI dataset nodes are distributed more

uniformly (see Fig. 3.4b and Fig. 3.4a).

The ROC curves corresponding to the proposed dataset are as smooth as ROCs for KITTI
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Figure 6.4 � ROCs for vision�>LIDAR, LIDAR�>vision and complex cross-veri�ed strategy
of Eq. 3.8 applied on proposed dataset.
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Figure 6.5 � ROCs of fused correspondence detection using the proposed GT data. Multiple
graphs illustrates cross-validation procedure. The red curve represents the cross-veri�ed strat-
egy of Eq. 3.8. The remaining curves (blue and green) represent ROCs for uni-modal association
mechanism.

(see Fig. 3.9). Moreover, both KITTI and the proposed dataset's ROCs are more smooth than

the one of Honda. This is because on KITTI and the proposed dataset, the SOMs learning

and tests perform using GT annotations. Raw detections from noisy sources, however, were

employed on Honda data.

ROCs for vision�>LIDAR and LIDAR�>vision uni-modal correspondence methods and

multi-modal strategies have similar results for datasets using Ground Truth. In that case

a good enough uni-modal correspondence can not be signi�cantly improved by multi-modal

fusion, because of the same information in two modalities.

In contrast, the SOMs learning using noisy detectors provides modalities with di�erent

information. These uni-modal associations are not precise enough because they are learned
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with noisy information.

ROCs depend on the number of observed objects at one sampling time. For the case of

proposed dataset, the number of observed objects is at maximum 4. For two scenarios is

only necessary at maximum 2. That explains better ROCs for the cases where the learning is

e�ectuated using Scenarios 1 and 2.

6.4 Context implementation

The scenarios of the dataset were recorded on a parking lot near the research laboratory,

where Open Street maps does not provide detailed cartography. To cope with this, internal vehi-

cle roads were added. Tracked objects agreeing to the contextual information can be identi�ed.

Objects disagreeing to contextual prior can be reported as critical. The observed behaviour

of the latter set of objects can represent a high risk for autonomous vehicle applications. In

the considered use-case, the proposed algorithm analyses four pedestrians and provides "along"

and "against" classes of the context motions.

It is possible to evaluate the impact of the contextual information on the tracking process

for these two groups of pedestrians. In Fig. 6.6 the performance of the tracking according to

overlap, Euclidean distance and continuity criteria is presented.

The tracking is e�ectuated on ENU space because here the multi-modality or detection

nature are not principal. The GPS GT annotations are easier to use for context implementation

test because the context is de�ned also in GPS coordinates. Tracker parameters are the same

as for LIDAR-view tracking, described in Sec. 6.6.2. Additive noise parameters applied to GPS

observations: \sigma c = 0.15 (m) and Pfn = 0.2.

For the same scenario a classi�cation graph for tracks along and against contextual directions

is presented at Fig. 6.7. Here additional discretization is applied: the classi�cation value is

bigger than 1, i.e. impact of injected particles are bigger, the new classi�cation value is set

to 1. If the classi�cation value is smaller than 1, a new classi�cation value is set to -1. This

discretization is applied to normalize the criteria.

As a conclusion, our investigations have shown that the context implementation method

improves the continuity of tracked objects up to 10%. The overlap and the distance criteria

are however impacted since positioning errors increased up to 10 cm (please see the vertical

gap between red and blue curves in Fig. 6.6c). The increasing on the track positioning error

is induced by the context particles mechanism injection. In detail, the context in the recorded

scenario for sidewalks is composed of two possible walking directions (i.e. forward and backward

along the sidewalk). Both directions are taken into account in Scenario 4 (see Fig. 6.8). When

context particles are injected during �ltering, two sets of particles represent the expected context

motions. Since a pedestrian can only move in one of the two context directions a set of injected

particles misplace the track mean state. This problem can be tackle by restricting the considered

context direction to the most probable one. This can be a perspective of this research.

For tracks following the vector �eld class, the context implementation stabilizes tracking in

terms of continuity since the dispersion of continuity values decreases from 0.07 to 0.03 (i.e. 2

times better) in the continuity scale.
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Figure 6.6 � Comparison of accuracy for tracks moving along and against context vector �elds
without and with them using a variable model force coe�cient. The used data is taken from
GPS GT of the scenario 4 of proposed dataset
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Figure 6.7 � Direction compatibility measurements (validity) for proposed dataset scenario.
The values are calculated according to Eq. 4.3 and supplement discretization: for values bigger
than 0.0, the movements is assumed to be along the �eld, and against the �eld otherwise.

For tracks contradicting the context prior, the continuity remains at the same level. The

positioning criterion is slightly impacted of 1-1.5 cm (please see the vertical gap between green

and yellow curves in Fig. 6.6c).

Experiments have shown that the quality of direction compatibility classi�cation performs as
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expected. Tracks following an unexpected trajectory are detected in a time horizon of 2 seconds

(i.e. \approx 10 timestamps of GPS sampling - 5Hz). Without lost of generality, let's consider that

the LIDAR or camera detections can classify the object's context compatibility at the same

rate (i.e. 10 samples). A camera performing object detection at 15 fps would require 660 ms

and and a LIDAR at 25 Hz would need 400 ms to detect such a behaviour. A child moving

at 24 km/h speed, the classi�cation latency is equivalent to 4.35 m and 2.64 m for camera

and LIDAR respectively. In a urban environment, the object tracking system would require a

distance of 35 m (25 m braking distance and 660 ms latency) in order to mitigate or avoid such

a collision scenario.

Figure 6.8 � Visualization of the real-time validity evaluation for Scenario 4. Trajectory has a
red color when the object is classi�ed as against the context and green color when the object
is along the context



Conclusion and perspectives

Conclusion

In thesis a context-aided multi-modal perception system has been studied. The proposed

system was intended for tracking moving objects. Our investigations were aimed at determin-

ing and quantifying the impact of context information in the performance of a multi-sensor

tracking framework. To this end, such a tracking framework was developed with minor con-

tributions. The multi-sensor nature of the considered system lead us also to contribute with

a new multi-sensor association strategy. The proposed methods were applied to an intelligent

vehicle and they were experimentally validated on full-scale use-cases including semi-urban and

urban environments.

The �rst step of the conducted investigation addressed the well-known problem of tracking

mobile surrounding objects from a moving multi-sensor platform. Important e�orts have been

done in the last decades to address this complex problem, particularly for Intelligent Vehicles

(IV) applications. After surveying state-of-the-art techniques, a Monte-Carlo PF and PHD-

based multi-object tracking algorithm was implemented taking into account the complexity

of the approach, its �exibility to perform multi-sensor data fusion and the adaptability of

framework to integrate contextual information at the fusion stage.

Secondly, a new multi-object tracking framework tightly coupled to a contextual information

integration mechanism was proposed so as to improve the system performance in terms of

accuracy and stability. In detail, prior knowledge was represented as context particles since

tracks states are managed by a particle �lter. Such particles were introduced at the re-sampling

�lter stage allowing for tracks behavior classi�cation. That is, the states of tracked objects

agreeing with contextual data are stabilized and predictions are improved. The states of tracked

objects contradicting contextual data are clearly identi�ed. This last feature can be employed

to identify unexpected motions which constitutes a key feature for IV and autonomous vehicles

applications.

Later on, multi-sensor data association was investigated. The association of multi-sensor

data is often facilitated by the representation (i.e. transformation) of the data into a common

reference coordinate system. In consequence, data association methods are subject to errors

and uncertainties induced by data transformations. Motivated by the complexity and the

sensibility of existing multi-sensor calibration procedures (i.e. extrinsic calibration), a new

learning-based method using Self Organizing Maps (SOM) was proposed. This technique is not

only transposable to di�erent sensing modalities (e.g. vision, LIDAR, RADAR) but can also

model a non-unique association between sensors coordinate systems. This alternative approach

122
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was validated on KITTI dataset and on Honda proprietary data for associating LIDAR - camera

information.

Aiming at experimentally validating the previous stated contributions of this thesis on

speci�c use-cases, an important e�ort was �nally devoted for conceiving and building a new

multi-modal dataset. The intended contributions of this dataset are to provide :

� Asynchronous measurements of a standard multi-modal IV system including a wide-view

monocular vision, a multi-layer LIDAR, wheel speed sensors and a RTK-L1 localization

system.

� A Ground Truth reference positioning is available for intelligent vehicle and surrounding

objects (i.e. up to 4) enabled by means of a RTK positioning system and post-processed

objects trajectories on RTK-L1 mode. These data were also represented on a common

reference coordinate system validating the integrity in terms of spatial and temporal

coherence of the data. Moreover, geometrical calibration and manually-de�ned annota-

tions are also included.

� A reference and stand-alone perception means facilitating the development and the per-

formance estimation of IV applications.

To conclude, a thorough analysis of the proposed learning-based multi-sensor data associa-

tion method was reported as well as for the context-aided multi-modal object tracking system.

Perspectives

The promising results of the learning-based multi-sensor calibration provide new insights

regarding alternative strategies allowing for mutual support between di�erent sensing modali-

ties. Such strategies would notably enhance False Alarms (FA) statistics in complex dynamic

scenarios. A second but not less important perspective concerns the detection processing stage

of the multi-modal perception system being considered as an available input in this study. The

diversity of detection methods regarding each perception modality was out of the scope of the

proposed investigation. However, tracking-by-detection like strategies would also help to cope

with detection errors as proposed by [Gepperth, Ortiz, et al. 2016].

Certainly, some improvements of the proposed multi-sensor data association strategy still

remain open. For instance, SOM intrinsic properties may lead to poor quality association

because of its node structure spareness particularly for data located near to detection border

regions. As a perspective, node-to-node association could be improved into a polygon-to-

polygon structure. To this end, the association procedure would detect nearest nodes projecting

theirs weights onto a set of nodes into the corresponding space. Such transfered nodes would

de�ne a linear space allowing for higher precision and dealing with node-sparse areas. A second

limitation is the presence of some ambiguous associations induced by the presence of weights

local maxima on SOMs. A possible idea to tackle this limitation is to use not only object

position but also tracked objects dynamics in the SOM learning stage.

Concerning the integration of contextual information, an interesting extension of the pro-

posed concept will be its inclusion at an earlier processing stage (e.g. detection) and a multi-

hypothesis generation based contextual-priors.
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Finally, thanks to the experimental protocol developed for retrieving multi-modal data

on dynamic scenes, the proposed dataset can be enhanced by including a larger selection of

complex use-cases covering for instance variety of occlusions, intersections, parallel motions

and pedestrian groups. The use of inertial sensors and an INS/GNSS positioning system as a

reference would de�nitely facilitate the dynamic scene analysis.



Appendices

Appendix A: ROS messages listings

pcan_msgs/CAN
std_msgs/Header header

u int32 seq //not used
time stamp // POSIX timestamp came from PCs time

// at the moment o f message c r ea t i on
s t r i n g frame_id //Encoder ' s ID

uint8 l enght //Length o f a c t ua l used PCAN message
uint8 [ 8 ] data

//PCAN main array wi th number o f impulses , impulse - 
// c a l c u l a t e d speed and in t e rn encoders timestamp

Listing A.1 � Encoders message format pcan_msgs/CAN
with main array explained in Sec. 5.4.1

std_msgs/Header header
u int32 seq // not used
time stamp // POSIX timestamp came from PCs time

// at the moment o f message c r ea t i on
s t r i n g frame_id // raw frame o f type GPGGA/GNGGA or GPRMC/GNRMC

Listing A.2 � GPS message format std_msgs/Header

sensor_msgs/Image
std_msgs/Header header

u int32 seq // not used
time stamp // POSIX timestamp came from PCs time

// at the moment o f message c r ea t i on
s t r i n g frame_id // not used

uint32 he ight
// image h e i g h t in p i x e l s , t h a t i s , number o f rows

uint32 width
// image width in p i x e l s , t h a t i s , number o f columns

s t r i n g encoding // encoding . Here RGB8 i s used
uint8 i s_bigendian // i s t h i s data b i gend ian ?
uint32 step // Fu l l row l en g t h in by t e s
uint8 [ ] data // ac t ua l matrix data , s i z e i s ( s t ep * rows )

Listing A.3 � Vision message format sensor_msgs/Image

sensor_msgs/PointCloud2
std_msgs/Header header

125
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uint32 seq //not used
time stamp // POSIX timestamp came from PCs time
s t r i n g frame_id //not used

uint32 he ight //2D s t r u c t u r e o f the po in t c loud . I f the c loud
uint32 width // i s unordered , h e i g h t i s 1 and width i s the

// l en g t h o f the po in t c loud
sensor_msgs/ Po intF ie ld [ ] f i e l d s //Each po in t composi t ion

uint8 INT8=1 // data t ype s
uint8 UINT8=2
uint8 INT16=3
uint8 UINT16=4
uint8 INT32=5
uint8 UINT32=6
uint8 FLOAT32=7
uint8 FLOAT64=8
s t r i n g name //Name o f data type

// ( x , y , z , t imede l ta , echowidth , l a y e r e c h o f l a g s )
uint32 o f f s e t // O f f s e t from s t a r t o f po in t s t r u c t
uint8 datatype // Datatype enumeration , see above
uint32 count //How many e lements in the f i e l d

bool i s_bigendian // I s t h i s data b i gend ian ?
uint32 point_step // Length o f a po in t in b y t e s
uint32 row_step // Length o f a row in by t e s .

// I t v a r i e s from one mesure to another
uint8 [ ] data // Actual po in t data , s i z e i s ( row_step* h e i g h t )
bool is_dense // True i f t h e r e are no i n v a l i d po in t s

/*The l a s t e lement in a po in t d e s c r i p t i o n i s " l a y e r e c h o f l a g s " ,
where 0 ,1 b i t s are l a y e r number ; 2 ,3 b i t s are echo and
4 ,5 ,6 b i t s are f l a g s */

Listing A.4 � LIDAR message format sensor_msgs/PointCloud2
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Appendix B: dataset �le structure

/scenario_name

bags................................................................Bags folder

main.bag.........ROS bag containing all scenario topics and messages

gps_raw.............................Raw GSP data captured in offline mode

base

base.SBF.........................................APS-3 raw logged data

base.pos .................................NMEA post-processed output

rover_reference

rover_reference.SBF ...........................APS-3 raw logged data

rover_reference.pos ....................NMEA post-processed output

rover_perception

rover_perception.ubx ............................UBX raw logged data

rover_perception.pos ...................NMEA post-processed output

track0 ..........Raw and NMEA post-processed output for all tracks

track0.ubx

track0.pos

...

trackN

trackN.ubx

trackN.pos

extracted

images .................................PNG images ordered from 0 to M

cam0000000.png

...

camM.png

clouds ..................................Text scans ordered from 0 to K

lid0000000.png

...

lidK.png

cam.txt ...............................Timestamps associated with images

lid.txt ................................Timestamps associated with scand

encoders.txt ...........................................Encoders messages

perception_rover.txt ...Post-processed NMEA with POSIX timestamps

reference_rover.txt ....Post-processed NMEA with POSIX timestamps

track0 ...................Post-processed NMEA with POSIX timestamps

...

trackN

transforms

lidToCam.txt .Rigid transformation from LIDAR space to camera one

gpsToLid.txt ....Set of transformations from Pseudo-LIDAR space to

LIDAR one

camera_calibration_raw ....................Raw camera calibration data

LIDAR_camera_calibration_raw .....Raw LIDAR-camera calibration data

annotations

tracklets.xml .Annotated Ground Truth for tracks positions in GPS,

LIDAR, camera spaces

Figure B.1 � File structure corresponding to one scenario from the dataset
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Appendix C: dataset tracklets example

<?xml version=" 1 .0 " encoding="UTF - 8"?>
<Track l e t s Type="Multimodal">

<count>2</count>
<Track>

<Video>
<frame x=" 219.343 " y=" 344.778 " w=" 33.7319 " h=" 85.8011 "
timestamp="1466601582.944839716 "/>
<frame x=" 223.818 " y=" 345.049 " w=" 33.8125 " h=" 85.7738 "
timestamp="1466601583.008192301 "/>

</Video>
<Cloud>

<frame timestamp="1466601549.930003643 ">
<point x=" 4.81342 " y=" 5.73641 " z=" - 0.156859" l ay e r="0"/>
<point x=" 4.9542 " y=" 5.80063 " z=" - 0.159791" l ay e r="1"/>

</ frame>
<frame timestamp="1466601549.970012188 ">

<point x=" 4.81985 " y=" 5.74407 " z=" - 0.157068"/>
<point x=" 4.90226 " y=" 5.73981 " z=" - 0.158115"/>
<point x=" 4.81229 " y=" 5.63447 " z=" - 0.0517311"/>

</ frame>
</Cloud>
<GPS>

<frame l a t=" 48.7129 " lon=" 2.16807 " a l t=" 205 .19 " e=" - 0.796161"
n=" - 2.70606" u=" 0.159001 " x r e l=" 0.915924 " y r e l=" - 2.6679"
z r e l=" 0.159001 " timestamp="1466601518.079777002 "/>
<frame l a t=" 48.7129 " lon=" 2.16807 " a l t=" 205.196 " e=" - 0.799964"
n=" - 2.70124" u=" 0.160001 " x r e l=" 0.910034 " y r e l=" - 2.66617"
z r e l=" 0.160001 " timestamp="1466601518.279969931 "/>

</GPS>
</Track>
<Track>

<Video>
<frame x=" 977.951 " y=" 365.64 " w=" 80.417 " h=" 140.541 "
timestamp="1466601687.010539055 "/>

</Video>
<Cloud>

<frame timestamp="1466601548.451144934 ">
<point x=" 8.28533 " y=" 9.87407 " z=" - 0.0899884" l ay e r="2"/>

</ frame>
</Cloud>
<GPS>

<frame l a t=" 48.713 " lon=" 2.16809 " a l t=" 205.116 " e=" 0.405501 "
n=" 1.29742 " u=" 0.0850001 " x r e l=" - 0.419744" y r e l=" 1.29289 "
z r e l=" 0.0850001 " timestamp="1466601518.079777002 "/>

</GPS>
</Track>

</Track l e t s>

Listing C.1 � Example of an XML-format for tracks annotations
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Synthèse substantiel

Aujourd'hui, la conduite autonome et les véhicules intelligents sont des applications qui

comportent de verrous scienti�ques et technologiques importants. Parmi ses verrous, nous

portons un intérêt particulier aux problèmes liés à la localisation, l'analyse et la compréhension

de scène dynamique et aux interactions d'un véhicule autonome avec d'autres véhicules, avec

l'infrastructure et avec les usagers vulnérables de la route (e.g. vélos et piétons).

Problèmes étudiées

Dans le cadre de l'analyse de scène dynamique, l'étude des méthodes de suivi multi-objets

basées sur la perception embarquée est d'une grande importance. Le suivi d'objets dynamiques

est un problème complexe dû principalement aux spéci�cités et à la multiplicité de contraintes

des environnements observés (rural, semi-urbain, urbain). De plus, le méthodes doivent aussi

s'adapter aux limitations des capteurs (imprécision, �abilité) et aux ressources limitées à bord

du véhicule.

Le suivi basé mono-capteur est un problème non trivial; le suivi basé multi-capteurs est

une tâche encore plus sophistiquée car l'information des capteurs di�érents doit être fusionnée

en prenant en compte leurs imprécisions intrinsèques. La fusion des données a donc pour but

l'augmentation de la précision et de la con�ance des estimations issues du suivi. C'est-à-dire,

la combinaison des capteurs multiples doit rajouter de l'inférence plus spéci�que qu'un seul

capteur. Les approches multi-capteurs s'adaptent bien aux véhicules autonomes puisqu'ils sont

équipés de caméras, de RADARs, LIDARs, de GPS, de systèmes inertiels, etc.

Tandis que la fusion des données enrichie le processus de suivi grâce à la combinaison des

données observées (redondance et/ou complémentarité), une autre approche consiste à utiliser

de l'information additionnelle dite contextuelle, a�n d'améliorer le suivi. L'information du

contexte peut être extraite des observations brutes, comme la détection des voies de circulation

par vision ou de manière décorrélée du processus de perception comme à partir de systèmes

d'information géographiques (SIG).

Le suivi multi-objets fournit de l'information clé pour l'évitement d'obstacles, alors, il doit

être précis, continu et intègre. Ces critères de qualité sont impactés négativement quand les

objets sont détectés partialement ou même complètement occlus. Les techniques de fusion de

l'état de l'art combinent l'information des sources multiples a�n d'élargir le champ de vision

en utilisant des capteurs avec une portée di�érente. D'autres stratégies de fusion diminuent les

occlusions et les non détections. Toutes ces méthodes sont limitées par des erreurs intrinsèques

des capteurs, par des hypothèses sur les modèles employés, par la complexité des données à

associer et par l'incertitude des paramètres du système.
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La motivation de ce travail supportée par le fait que la complexité de l'environnement peut

être réduite quand l'information contextuelle est prise en compte par le système de perception.

Ce type d'information est souvent disponible sous une représentation sémantique. Les questions

qu'on adresse sont : Comment intégrer l'information contextuelle d'une manière e�cace? Com-

ment intégrer la prise en compte de ce type d'information? Comment concevoir un algorithme

robuste pour évaluer toutes les données même en cas de l'incomplétude?

Après d'avoir présenté la méthodologie, nous devons aussi être capable d'évaluer et de com-

parer les solutions proposées. Pour ce faire, une base de données composée des enregistrements

des capteurs accompagnés par les annotations de Vérité de Terrain a été créée.

Finalement, l'investigation des problèmes instanciés n'a pas seulement adressé les tâches

annoncées, mais aussi retrouvé de nouvelles perspectives vers un système pour le suivi des

objets multi-modal assisté par des informations contextuelles. Cette idée peut conduire à la

généralisation du système implanté vers un formalisme mathématique unique.

État de l'art

Dans le chapitre 1, l'état de l'art concernant le suivi multi-objet multimodal est décrit et

détaillé. Il présente les techniques appliquées aux systèmes de perception pour les véhicules

autonomes telles que les caméras et leurs di�érentes variantes, le RADAR, le LIDARet les

caméras TOF. Les méthodes de positionnement avec les systèmes GNSS (i.e. GPS) et leurs

augmentations de précision sont expliquées en détail a�n de faciliter la compréhension du

chapitre 5. Les systèmes qui prennent en compte les sources de l'information extérieure, du

type V2V, V2I ont été aussi considérés. La section Méthodologie comprend la classi�cation des

méthodes de fusion des données suivant di�érents niveaux d'abstraction de la représentation

de données. La présentation de l'état de l'art des mécanismes d'association entre les données

multi-capteur ainsi que les méthodes d'apprentissage et de calibration multi-capteur clôturent

ce chapitre.

Le suivi des objets dynamiques

Le chapitre 2 explique les dé�nitions fondamentales et il spéci�e le processus récursive de

suivi des objets. Dans la première section, l'état de l'art des approches de suivi est présenté.

Le modèle d'objet utilisé est dé�ni et formalisé. Ensuite, un accent est réservé aux méthodes

de suivi probabilistes. Dans la deuxième section, un système pour le suivi des objets multiples

est proposé. Ce dernier système est basé sur les méthodes existantes. Le système est développé

et implanté. Le système de suivi d'objets se base sur un formalise bayésien dans une implé-

mentation de type Monte-Carlo. Cette représentation permet l'intégration de l'information

contextuelle (voir le chapitre 4) peu complexe au niveau des particules. L'e�cacité du suivi des

objets multiples est quanti�ée à la �n de chapitre.

Association de données multi-capteurs

Le chapitre 3 s'adresse à l'association de données multi-capteurs. Une méthode probabiliste

d'apprentissage pour l'association entre les espaces multi-capteurs a été étudiée et proposée.
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L'avantage principale de l'approche est l'absence du besoin d'une procédure de calibration avec

une grande précision adapté aux applications intégrant LIDAR-vison. Ce chapitre constitue

une contribution pour le suivi multimodal. Il est important de noter que le terme association

est largement utilisé en suivi comme l'association temporelle entre les détections d'un objet.

Ici, l'association concerne exclusivement l'association spatiale entre deux espaces de capteurs.

La méthode proposée est générique et peut gérer l'association entre les espaces quand elle n'est

pas unique.

L'approche est basée sur deux points principaux: 1) La composition des cartes auto-

organisatrices (SOM) modélise la densité des détections pour chaque capteur. 2) Le cumul

des statistiques des paires des détections observées et ses attributions aux n÷uds de SOMs.

L'évaluation de la méthode d'association a été faite sur de bases de données publiques.

Intégration de l'information contextuelle dans le suivi multi-objets

Le chapitre 4 décrit la méthode proposée pour l'intégration de l'information contextuelle

dans le processus du suivi pour améliorer la précision et la certitude. L'approche est basée

sur la représentation probabiliste du système. L'avantage apporté par cette implémentation

est la possibilité de déterminer si l'objet suivi décrit un comportement attendu ou inattendu.

Cette information est essentielle pour les applications du type sécurité pour les véhicules intel-

ligents. Les expériences démontrent l'amélioration de suivi d'objet qui respecte l'information

contextuelle et l'absence de la dégradation considérable quand l'objet suivi ne respecte pas les

informations contextuelles. En détail, le schéma d'intégration du contexte dans le �ltre de par-

ticules consiste à replacer partiellement les particules qui représentent l'état de l'objet par les

particules qui sont dé�nies par les informations contextuelles. Le contexte dans les cas évalués

a été représenté sous la forme des annotations des cartes "Open Street Maps".

Base de données

Le chapitre 4 décrit un protocole détaillé pour la création d'une base de données en utilisant

les enregistrements des capteurs multiples intégrés à bord d'un véhicule intelligent et d'autres

rattachées aux objets à suivre. L'étude des bases de données existantes est présentée remar-

quant le besoin d'une base de données avec des annotations de Vérité Terrain multicapteur en

applications d'extérieur. L'avantage principale de cette base de données est l'indépendance des

informations du type Vérité Terrain par rapport aux autres capteurs embarqués. La calibra-

tion précise des capteurs, Vérité Terrain et les observations brutes sont incluses dans la base

de données. Les enregistrements brutes sont asynchrones et comportent la vision monoculaire,

le LIDAR, des odomètres et un système de positionnement GPS RTK.

Résultats

Le chapitre 6 rapporte l'évaluation de toutes les méthodes proposées en utilisant la base de

données enregistrée. Les résultats con�rment les conclusions de la performance des méthodes

dans de scénarios réels.
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Résumé: Cette thèse a pour but d'étudier

et de quanti�er la contribution de la perception

multimodale assistée par le contexte pour suivre

des objets en mouvement. Cette étude sera

appliquée à la reconnaissance des objets perti-

nents dans les environnements de la circulation

pour les véhicules intelligents (VI). Les résul-

tats à obtenir devront permettre de transposer

le concept proposé à un ensemble plus large de

capteurs et de classes d'objets en utilisant une

approche système intégrative qui implique des

méthodes d'apprentissage. En particulier, ces

méthodes d'apprentissage vont examiner com-

ment l'implantation dans un système intégré,

qui prévoie une multitude des sources de don-

nées di�érentes, peut conduire à apprendre 1)

sans ou avec une supervision limitée, réduite

en exploitant des corrélations 2) de fa�con in-

crémentale à la connaissance stockée au lieu

de faire un entraînement complet à chaque fois

qu'une nouvelle donnée arrive 3) collectivement

à chaque instant d'apprentissage dans le système

entraîné d'une manière qui assure approxima-

tivement une fusion optimale. Concrètement, le

couplage fort entre les classi�ers des objets en

modalités multiples aussi bien que l'extraction

du contexte de la géométrie de la scène sont à

étudier: d'abord en théorie, après en application

du tra�c routier. La nouveauté de l'approche

d'intégration envisagée se pose dans le couplage

fort entre les composants du système, tels que

la segmentation, le suivi des objets, l'estimation

de la géométrie de la scène et la catégorisation

des objets basée sur la stratégie de l'inference

probabiliste. Une telle stratégie caractérise des

systèmes où toutes les composants de perception

émettent et re�coivent les distributions des résul-

tats possibles avec leur score de croyance prob-

abiliste attribué. De cette fa�con, chaque com-

posant de traitement peut prendre en compte les

résultats des autres composants au niveau plus

bas par rapport aux combinaisons des résultats

�naux. Cela diminue beaucoup le temps et les

ressources pour le calcul, quand les techniques

de l'application de l'inference Bayésienne garan-

tissent que les données d'entrée peu plausible

n'apportent pas des impactes négatives.

Université Paris-Saclay

Espace Technologique / Immeuble Discovery
Route de l'Orme aux Merisiers RD 128 / 91,190 Saint-Aubin, France



Title: Contributions of context-aided multi-modal perception systems for detection and track-

ing of moving objects

Key words: Multisensor data fusion, perception, tracking, multi-modal

Abstract: This thesis project will investi-

gate and quantify the contribution of context-

aided multimodal perception for tracking mov-

ing objects. This research study will be ap-

plied to the recognition of relevant objects in

road tra�c environments for Intelligent Vehicles

(IV). The results to be obtained will allow us to

transpose the proposed concept to a wide range

of state-of-the-art sensors and object classes by

means of an integrative system approach in-

volving learning methods. In particular, such

learning methods will investigate how the em-

bedding into an embodied system providing a

multitude of di�erent data sources, can be har-

nessed to learn 1) without, or with reduced,

explicit supervision by exploiting correlations 2)

incrementally, by adding to existing knowledge

instead of complete retraining every time new

data arrive 3) collectively, each learning instance

in the system being trained in a way that en-

sures approximately optimal fusion. Concretely,

a tight coupling between object classi�ers in

multiple modalities as well as geometric scene

context extraction will be studied, �rst in the-

ory, then in the context of road tra�c. The

novelty of the envisioned integration approach

lies in the tight coupling between system com-

ponents such as object segmentation, object

tracking, scene geometry estimation and object

categorization based on a probabilistic inference

strategy. Such a strategy characterizes systems

where all perception components broadcast and

receive distributions of multiple possible results

together with a probabilistic belief score. In

this way, each processing component can take

into account the results of other components

at a much earlier stage (as compared to just

combining �nal results), thus hugely increasing

its computation power, while the application of

Bayesian inference techniques will ensure that

implausible inputs do not cause negative e�ects.
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