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Abstract

Troubleshooting, risk management and reliability are important use of Probabilistic
Graphical Models (PGM). In these domains, Bayesian Networks BNs) are favored, as
they offer a sound framework for knowledge representation and probabilistic reason-
ing. However, when used to model complex systems, BNs lack both scalability and
reusability. In the late 90s, several BN extensions inspired by object-oriented program-
ing languages appeared. These new frameworks were the first of a growing list of exten-
sions that lead to First-Order Probabilistic Models (FOPMs). Yet, as the Al community
set its focus on merging first-order logic with PGMs, BN’s modeling issues were set
aside. Nonetheless, there are still many unanswered questions regarding object-oriented
PGMs: can we extend inheritance? How can we implement object-oriented concepts
such as subtype polymorphisms, prototyping or abstraction? What are the differences
between FOPMs and object-oriented PGMs?

In domains were expert knowledge is used to model systems, probabilistic inference
is the principal use of BNs. There exists a wide variety of probabilistic inference al-
gorithms, each exploiting different aspects of BNs (conditioning, junction trees, CNF,
etc.). But, when we consider BNs extensions, there a few dedicated inference algo-
rithms. Indeed, most extensions rely on ground inference, ie., on transforming their
model into a BN and apply classic probabilistic inference algorithms. Among the few
dedicated inference algorithms, Structured Variable Elimination (SVE, Pfeffer 1999)
exploits object-oriented models to prevent redundant computations in networks with
structural repetitions. However, SVE has several flaws preventing its use in systems
designed by experts in which there is no structural uncertainty, ie., in closed world sys-
tems.

This thesis purpose was to develop a complete object-oriented framework for di-
rected PGMs and generalize the concepts of structured inference. After describing
the current state-of-the-art, we propose a discussion about the different representation
paradigms used in BN extensions (object-oriented, entity-relationship, first-order). Then
we present the first contribution of this thesis: a fully object-oriented framework for di-
rected PGMs. Using Probabilistic Relational Models (PRMs) as a starting point, we
extend them to include features such as multiple inheritance, abstraction, subtype poly-
morphisms and attribute typing inheritance.

The second contribution of this thesis is the study and generalization of SVE. In-
deed, SVE exploits the structural information encoded by classes to prevent redundant
computations. We propose a reformulation of SVE and point out several flaws in the
algorithm. We then generalize SVE by extending the concept of structured inference
to our framework, resulting in a new probabilistic inference scheme called Structured
Probabilistic Inference (SPI). Finally, we show how d-separation analysis and SPI can
both be used conjointly to speed-up probabilistic inference in PRMs.

The third contribution of this thesis push structured inference a step further. We
exploit subgraphs mining to discover repeated patterns in a system. Such patterns define



iv

hight level structural repetitions, called dynamic classes, and can be exploited to speed-
up SPI. We propose a complexity analysis of this problem and provide an approximate
algorithm to discover "good" dynamic classes. We provide experimental results proving
the efficiency of our approach.

Keywords: probabilistic graphical models, complex systems, scalability, knowl-
edge representation, object-oriented bayesian networks, probabilistic relational models,
structured probabilistic inference.






Résumé

Les modeles graphiques probabilistes (MGP) sont particulicrement utilisés dans les
domaines du diagnostique automatique, de la stireté de fonctionnement et de la maitrise
des risques. Pour ces applications, les réseaux bayésiens (RB) sont parmi les MGP les
plus populaires, car ils offrent un cadre efficace pour la représentation des connaissances
et le raisonnement probabiliste. Toutefois, la modélisation des systemes complexes
avec des RB soulevent des difficultés, les principaux étant I’impossibilité de réutiliser
I’existant et la difficulté pour modéliser des systemes de grandes tailles. Vers la fin des
années 1990, plusieurs extensions des RB allaient lancer le développement des modeles
probabilistes du premier ordre (MPPO). Alors que la communauté des chercheurs en A
se concentra sur la fusion de la logique du premier ordre avec les MGP, les difficultés
pour modéliser des systemes complexes a I’aide de RB furent laissées de cotés. Néan-
moins, il y a encore de nombreux manques dans les extensions orientés-objet des RB:
pouvons nous mieux définir I’héritage ? Comment représenter des concepts tels que le
polymorphisme, le prototypage ou encore 1’abstraction ? Quelles sont les différences
entre les MPPO et les MGP orientés-objet ?

Lorsque les connaissances d’experts sont utilisées pour modéliser un systeme, 1’in-
férence probabiliste est une des principales applications des RB. Il existe une grande
variété d’approches, chacune exploitant un aspect particulier des RB (conditionnement,
arbre de jonction, CNF, etc.). Mais, lorsque nous considérons les extensions des RB,
il y a peu d’algorithmes dédiés. En effet, la plupart des extensions utilisent 1’inférence
"groundée”, ie. que le modele est transformé en RB pour y appliquer des algorithmes
d’inférence classiques. Parmi les algorithmes dédiés, Structured Variable Elimination
(SVE, Pfeffer 1999) exploite les modeles orientés-objet. Il réduit le nombre de calcul en
utilisant la répétition structurelle caractéristique des modeles orientés-objet. Toutefois,
SVE a des défauts qui empéchent son utilisation sur des systemes congus par des experts
dans lesquels il n’y a pas d’incertitude structurelle, ie. dans des mondes fermés.

L’ objectif de cette these est de développer une modélisation orienté-objet pour les
MGP et de généraliser I’inférence structurée. Apres une analyse de 1’état de 1’art, nous
proposons une comparaison des différents paradigmes de représentation (orienté-objet,
entité relation, premier ordre). Puis nous présentons notre premicre contribution: une
formalisation complete du paradigme orienté-objet pour les MGP. Nous utilisons les
modeles probabilistes relationnels (MPR) comme base que nous étendons pour inclure
des concepts tel que I’héritage multiple, 1’abstraction, le polymorphisme et I’héritage de
type.

La deuxieme contribution de cette these est I’étude et la généralisation de 1’algorit-
hme SVE. SVE exploite I’'information structurelle représentée par les classes et réduit
les calculs redondants. Nous proposons une reformulation de SVE et analysons ses prin-
cipaux défauts. Puis nous généralisons SVE en étendant la notion d’inférence structurée
a notre formalisme. Ceci donne une nouvelle forme d’inférence appelée Inférence Prob-
abiliste Structurée (IPS). Finalement, nous montrons comment I’analyse en d-séparation
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et I’inférence structurée peuvent étre utilisées conjointement pour améliorer les perfor-
mances de IPS.

La troisieme contribution de cette theése repousse un peu plus loin le concept de
I’inférence structurée. Nous exploitons un algorithme de recherche de sous graphes
pour détecter une répétition de motifs dans un systeme. Ces motifs définissent une
répétition de structure de haut niveau, appelée classe dynamique, qui peut étre exploitée
pour améliorer IPS. Nous proposons une analyse de la complexité du probleme et un
algorithme approché pour trouver de "bonnes" classes dynamiques. Nous fournissons
des résultats expérimentaux étayant notre approche.

Mots clés : modeles graphiques probabilistes, systemes complexes, passage a 1’échel-
le, représentation des connaissances, réseaux bayésiens orienté-objet, modele relation-
nels probabilistes, inférence probabiliste structurée.
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Introduction

Computer science is the study of algorithms and computational problems. Remarkably,
problems that are easily solved by humans are not always as easily solved by computers.
Modeling and solving problems are one of the most challenging aspects of computer sci-
ence. Humans and computers skills are profoundly different: computers are extremely
good at analyzing and manipulating large amounts of data. For computers, there is no
difference between sorting a list of ten or thousand of integers. However, such scale
change is intractable for human minds. For humans, reasoning and infering about con-
cepts is easy: differentiating chairs from tables is trivial for humans, but is more com-
plex for computers. In fact, simulating human intelligence, called Artificial Intelligence
(AJ) is certainly the most difficult and challenging problem of computer science. Creat-
ing an Al is much more difficult than expected and nowadays, Al researchers focus on
different subfields that are relevant to an aspect of human intelligence: knowledge rep-
resentation, planning, machine learning and reasoning are the most popular ones. This
thesis belongs to the reasoning branch of Al, but it also has connections with knowledge
representation and machine learning.

Reasoning is about reproducing human decision processes: given some knowledge
about the world, what decision is the best? Humans answer such problems everyday,
but, surprisingly, simulating such task is incredibly difficult. The first difficulty is how
to represent knowledge and logic was at first thought as the best formalism to represent
knowledge. Unfortunately, knowledge bases using logic were confronted to paradoxes,
such as the infamous “titi is a bird thus titi can fly” but what if titi is a penguin? Handling
exceptions is not an easy task for logic and soon the focus was set on alternative theo-
ries. Among them, probability theory introduced a new aspect to reasoning: uncertainty.
However, probability theory cannot be used as is, since representing knowledge using
joint probability distribution consumes too much memory and too much time to exploit.
In the eighties, a solution emerged exploiting conditional independencies to reduce the
memory cost of representing joint probability distributions and offering tractable in-
ference algorithms to process the knowledge base. That solution is still used today
and offers the framework on which this thesis is based: Probabilistic Graphical Models
(PGMs).

PGMs are a family of mathematical models combining probability theory and graph
theory. They are used in many domains but are historically associated with decision
theory and uncertain reasoning. They are, however, used in machine learning, most
especially in data mining. For troubleshooting, risk management, reliability and most
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domains where expert knowledge is used, Bayesian Networks (Pearl, |1988)) are a valued
framework for reasoning under uncertainty. Bayesian Networks (BNs) use a Directed
Acyclic Graph (DAG) to represent random variables and their conditional dependen-
cies. In a BN a random variable conditional probability distribution is conditioned by
the variable’s parents in the graph. As a consequence, BNs offer an intuitive framework
for representing causal dependencies (but all dependencies in a BN are not necessarily
causal). BNs have received a remarkable amount of contributions by the AI commu-
nity and have been used in many industrial applications. Their popularity stimulated the
need for handling problems of ever increasing size. However BNs turn out to be inad-
equate for large scale real-world applications due to high design and maintenance costs
(Mahoney and Laskey, 1996 |Koller and Pfetter, [1997). Indeed, defining a BN requires
to specify explicitly probabilistic dependencies and conditional probabilities over the
whole set of its random variables. This may lead to unrealistic modeling costs when
dealing with complex systems. Furthermore, BNs designs are static: any change in the
topology of their graphical structure induces significant update costs.

A proposed solution to enhance BNs expressive power was to extend BNs using
the object-oriented paradigm (Mahoney and Laskey, |1996; |[Koller and Pfefter, 1997).
This first paradigm shift led to the emergence of different families of BNs extensions:
object-oriented, entity-relationship and first-order paradigms. During the last decade,
the PGMs community has worked actively on first-order extensions and the object-
oriented paradigm has been somewhat neglected: since the introduction of Object-
Oriented Bayesian Networks (Koller and Pteffer,|1997;|Bangsg and Wuillemin,|2000a.b)),
the amount of contributions on object-oriented PGMs has actually been relatively small
(Ptetfer, [1999; Bangsg et al., 2003; Bangsg and Olesen, 2003; Bangsg, 2004} |Bangs@
et al., 2006). However, in many industrial applications, efficient frameworks for con-
structing large-scale complex systems are strongly needed. These systems usually boil
down to experts modeling large-scale BNs by aggregating hierarchically small network
fragments repeated many times. In addition, all the relations between these fragments
are usually fully specified, thus resulting in modeling closed worlds. For these do-
mains, object-oriented frameworks seem more suitable than first-order logic extensions.
Object-Oriented frameworks assume that many parts of a large BN are similar and can
thus be described as instances of a generic class defined only once. This scheme induces
low construction costs. In addition, maintenance costs are kept as low as possible since
a modification in a class definition updates many areas of the BN at once. Furthermore,
repetitions of structures in the BN (multiple instances of the same class) can speed-up
inference by performing computations within classes, caching them and using the cache
for all their instances. This process allows algorithms like Structured Variable Elimi-
nation to outperform classical BN inference engines by orders of magnitude (Pfeffer,
1999).

To promote Object-Oriented Bayesian Networks, the SKOOB ANR project (http:
//skoob.lip6.fr) gathers several companies, experts and research laboratories
with the purpose of defining a framework in which modeling large-scale complex net-
work is tractable. We have found that state-of-the-art object-oriented extensions of BNs
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have not fulfilled this goal, as the current theories clearly lack some useful object-
oriented features. From a modeling perspective, existing object-oriented frameworks
offer very few object-oriented features. Many features are either improperly defined
or absent (inheritance, subtype polymorphisms, abstraction). However, modeling is
only half of the problem: since Object-Oriented Bayesian Networks can be used to
model large-scale systems, experts can model networks that are intractable using cur-
rent state-of-the-art probabilistic inference. Consequently, besides defining a strong
object-oriented framework, we must also define probabilistic inference algorithms that
can be exploited on large-scale systems.

This thesis contains the contribution of the LIP6 in the SKOOB ANR project, and
its goal is to offer a solid framework for specifying large-scale complex systems and
tractable probabilistic inference algorithms. All the contributions in this thesis have ei-
ther been implemented in the aGrUM C++ framework (http://agrum.lip6.fr)
or in the SKOOL language (see appendix [A). The first chapter of this thesis presents
PGMs, focusing on BNs and Markov Networks. These two models are at the core
of many applications and have been used as a basis to many high-level PGMs. The
second chapter focuses on evidence updating, an application of probabilistic inference
that updates marginal probabilities when random variables are observed. In the third
chapter we introduce several BN extensions and discuss the different representation
paradigms used to encode knowledge in such frameworks. The fourth chapter presents
a new framework: an object-oriented PGM built upon Probabilistic Relational Models.
We redefine and extend several existing concepts, such as class inheritance, subtype
polymorphisms, and present new object-oriented features such as multiple inheritance
and attributes types inheritance. The fifth chapter focuses on structured probabilistic
inference. We redefine SVE and point-out several of its flaws. We then propose a gen-
eralization of structured inference and expose how d-separation analysis can be used
conjointly with structured inference to increase probabilistic inference performance. Fi-
nally, in the last chapter, we present a pattern discovery algorithm which find repeated
patterns of instances in a system to offer better performance to structured inference.
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Chapter 1

Probabilistic Graphical Models

For several decades, representing uncertainty has been a challenge for the AI commu-
nity and probability theory was seen as a promising framework to answer this challenge.
However, uncertain reasoning using probabilities was considered intractable until the
first appearance of PGMs (Pearl, |1988)). These graphs exploit independencies present in
probability distributions to factorize them and offer a tractable representation for uncer-
tain reasoning. In this thesis, we will focus on BNs, a directed PGM successful in mod-
eling probabilistic expert systems (Cowell et al., [1999). We will also discuss Markov
Networks (MNs), an undirected counterpart of BNs, which play an important role in
probabilistic inference. By permitting to model uncertainty using probabilities, BNs
quickly became an important tool in many computer science fields and they are defini-
tively a milestone on the road leading to Al. Not only BNs were rapidly considered by
academics as a sound framework for uncertain reasoning, they were also quickly used in
many industrial applications: troubleshooting, risk management, reliability, automatic
classification, data mining, multi agent systems, robotics. .. BNs industrial success can
be attributed to three facts: (i) they are a simple data structure, inducing low imple-
mentation costs; (ii) they require only basic probability theory knowledge; (iii) they are
easily understandable by non computer scientists.

We will introduce BNs through three chapters. The first chapter focuses on the
mathematical justification of BNs. Chapter 2] introduces two important algorithms for
probabilistic inference in BNs. Chapter [3| presents several BN extensions. We will
neither cover structure and parameter learning, nor approximate inference. Still these
topics are as important as exact inference and the reader should refer to Pearl (1988);
Jordan| (1999)); [Koller and Friedman (2009) for a complete presentation of these topics.
Koller and Friedman|(2009) was a great source for writing this chapter, most definitions
are taken from there and the reader should refer to it for any additional material. |Pearl
(1988) is also an excellent starting point for anyone who wishes to grasp a better un-
derstanding of PGMs. In this chapter, we will first introduce the core notions of PGMs,
then present MNs and BNs. We will then show the similarity between both models
by explaining how BNs can be transformed into MNs. Finally, we will present several
alternative representations of conditional probability distributions commonly used by
experts when modeling BNs.
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1.1 Independencies, graphs and I-maps

The PGMs main problem is to model state spaces: probability theory is well known to be
under the curse of dimensionality. Modeling complex systems with a minimal amount
of parameters is the main purpose of BNs emergence. To do so, BNs exploit conditional
independencies to factorize joint probability distributions and offer a tractable frame-
work for probabilistic inference, i.e., making possible to compute marginal probabili-
ties (see chapter[2). To understand the link between graphical properties and conditional
independence we will first explain the similarity between graphs and probability.

Example 1.1 Consider an experiment in which we toss two fair dice Dy and D,. Let
X be the random variable representing the result of the first toss using D,. X’s domain
is the values Val(X) = {1,2,3,4,5,6}. Let Y be the random variable representing the
result of the second toss using Dy and Val(Y') = Val(X). Obviously, the realization
of X does not influence our knowledge about Y ’s possible outcomes. In such case, we
say that X and Y are marginally independent, denoted (X 1L Y'). Now, suppose we
consider another experiment for which we have the three dice Dy, Dy and D3, such
that Dy and D, are fair but not Ds (it always gives a six). We also change how the
experiment realizes itself: we first toss D1 and if the result is even we toss D», otherwise
we toss D3. We denote by random variable X the result of the first toss and by Y the
result of the second. Now, we do no longer have marginal independence between X and
Y since X'’s resolution has a direct influence of Y ’s outcomes. Y ’s result also influences
our beliefs about X outcomes: if Y # 6 we are certain that X'’s value is not an odd
number.

Marginal independencies are intuitive notions. We are surrounded by events real-
1zing themselves that are not interconnected. In the field of uncertain reasoning, there
exists another kind of independence that proves to be much more useful to represent
related events. It is called conditional independence.

Example 1.2 Suppose we have two computers represented by random variables C and
Cy (Val(Cy) = Val(Cy) = {OK,NOK}) connected through the same power plug
Power (Val(Power) = {on,of f}) and we observe that C, is broken. The cause is
either a power surge or some random failure. A simple way to check if there has been
a power surge is to look at Cs. If Cy does not work then it is very likely that a power
surge occurred: Cy and Cy are correlated. However, once we learned that a power
surge occurred or not, Cy’s state becomes irrelevant for troubleshooting C: if Power
is observed, C and Cy are independent. In such a case, we say that C'y is conditionally
independent of Cy knowing Power, denoted (Cy 1L Cs|Power).

Conditional independencies are very useful when modeling correlation among ran-
dom variables. We will see that they are at the core of PGMs by being the link between
the graphical part and the probabilistic part of these models. Independencies and con-
ditional independencies in probability distributions follow a set of axioms called the
graphoid axioms.
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Definition 1.1 (Conditional Independence) Ler X, Y, Z be three sets of random vari-
ables. We say that X is conditionally independent of Y given Z in a probabilistic
distribution P if P |= (X 1L Y|Z = z) for all values of z € Val(Z). If the set Z is
empty, then instead of writing (X 1L Y |), we write (X 1L Y) and say that X and Y
are (marginally) independent. We denote by Z(P) the set of all independence assertions
present in a probability distribution P.

Note that conditional independence entails that P(X,Y'|Z) = P(X|Z) x P(Y|Z).
Conditional independence in a probability distribution satisfies the semi-graphoid ax-
ioms (Pearl and Paz, 1987).

Definition 1.2 (Graphoid axioms) The following four axioms are called the graphoid
axioms:

a) Symmetry:
(X1 Y|Z) = (Y 1L X|Z).

b) Decomposition:
XLY W|Z)= (X 1Y|Z).

c) Weak union:

(X LY, W|Z) = (X 1L Y|Z,W).

d) Intersection (only if P is positiv:
XLYZW)A XILW|Z)Y)= (X 1LY, W|Z).

For a ternary relation such as (e L e|e), properties a,b and c¢ characterize a structure
called a semi-graphoid and properties a, b, ¢ and d characterize a structure called a
graphoid.

Graphoid and semi-graphoid structures occur frequently in many domains (Studeny,
1990). For instance, separating nodes in directed and undirected graphs verify the
same structure. PGMs exploit graphoids by using graphs to encode the independen-
cies present in a probability distribution. Such representation offers several advantages:
it factorizes the probability distribution, it helps expert analysis of models and it helps
design algorithms (either for probabilistic inference or for data mining).

Definition 1.3 (Active path) Let G = (V, E) be an undirected graph, let X; —- - - — X,
be a path in G, and let Z < V. The path X, — - - - — X}, is active given Z if and only if
VX e{Xy, -, X}, X ¢Z

Example 1.3 In figure we can see that path V —T — L — S is active given { B, O}.
However, path V. — T — O — D is not active given { B, O}.

!'A probability distribution P is positive if and only if P(X = x) > 0, Vx € Val(X).
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Definition 1.4 (Separation) Ler X, Y and Z be three sets of nodes in G. We say that
Z separates X and 'Y in G, denoted sep(X; Y |Z), if and only if there is no active path
between any node X € X and Y € Y given Z. We define the separations associated
with G to be:

Z(G) = {sepc(X; Y|Z)}.

Example 1.4 Looking at figure we can find several separations:
sep({X}; {D}{O}) or sep({V. S}; {X, DY{ B, O}).

(a) An undirected graph. (b) A directed graph.

Figure 1.1: Separation in undirected and directed graphs follows the graphoid axioms.

Let G be a directed graph and X; and X; two nodes in G. We denote by X; < X;
the existence of a directed link between X; and X in G, i.e., X; <« X, or X; — X
exists in G.

Definition 1.5 (Active trail) Let G = (V, E) a directed graph, let X; < --- — X be
atrailin G andlet’Z c V. The trail X, < --- < X is active given Z if and only if:

e whenever we have a v-structure X;_1 — X; «— X;11 (1 <1 < k), then X; or one
of its descendants is in Z;

e 1o other node along the trail is in Z.

Example 1.5 In figure the trail V. — T — O «— L « S is active given {X, D}
and trail L — S — B is not active given {S}.

Definition 1.6 (d-separation) Ler X, Y and Z three sets of nodes in G. We say that Z,
d-separates X and Y in G, denoted d-sep(X;Y|Z), if and only if there is no active
trail between any node X € X and Y € Y given Z. We define the directed separations

associated with G to be: .
(G = {d-sepa(X: Y|2)}.

Example 1.6 Looking at figure we can see that d-sep({D}; {S}{B, O}) and that
d-sep({V'}; {SH{T, L}) but that O does not d-separate V' from S.
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In the following sections we will discuss how we can use directed and undirected
graphs to represent the set of conditional independencies present in a probability distri-
bution. The main notion is to map conditional independencies to directed or undirected
separations in graphs.

Definition 1.7 (I-map, minimal I-map and P-map) Let G be a graph (directed or not)
and P be a probability distribution. We say that G is an Independence map (I-map) of
P if and only if Z(G) < Z(P). We say that G is a minimal I-map of P if and only if
removing any edge of G makes it no longer an I-map of P. Finally, if Z(G) = Z(P) we
say that G is a perfect map (P-map) of P.

We may, by abuse of notation, say that graph G is an I-map to graph G’. In such
case it simply entails that Z(G) < Z(G").

1.2 Markov Networks

MNs use factors to encode probability distributions. They play an important role as
factors are closely related to the MN’s graph and operations on them are central for
probabilistic inference.

Definition 1.8 (Factor) Ler X be a set of random variables. We define a factor ¢ to be
a function ¢ : Val(X) — R. A factor is nonnegative if all of its entries are different
from 0. The set of random variables X is called the scope of the factor and denoted

Scope(o).

We will often mention the size of a factor, which is the product of the domain size
of each random variable associated with it: let ¢ be a factor over X, then the size of ¢
equals ) y.x |Val(X)|. When used in MNs, factors do not map random variables values
to probability. In most cases, they assign some nonnegative value that represents the
amount of belief that an outcome may realize itself. Regarding probabilistic inference,
we require two operators over factors: multiplication and marginalization.

Definition 1.9 (Factor multiplication) Let X, Y, and Z be three disjoint sets of ran-
dom variables, and let $1(X,Y) and ¢2(Y,Z) be two factors. We define the factor
product ¢1 X ¢ to be a factor ¢ : Val(X,Y,Z) — R as follows:

VX =x,Y=y,Z=2)=06(X=x,Y=y)x (Y =y,Z=2)

Definition 1.10 (Factor Marginalization) Let X = {X,--- , X,,} be a set of random
variables, and let $(X) be a factor. We define the factor marginalization } y ¢(X), to
be a factor ¢ : Val(X\{X;}) — R as follows:

PXn, e Xim, X, X)) = Y oK, X = X)) (LD
:L‘ZEVCll(XZ)
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Factor marginalization is also referred as “summing out variable X of ¢”. Both
operations are critical for inference performance, as we will in chapter [2, Factors do
not necessarily assign probability values, however MNs are used to make probabilistic
inference and to do so they are coupled with specific probability distributions called
Gibbs distributions.

Definition 1.11 (Gibbs distribution) Ler X = {X,--- , X,,} be a set of random vari-
ables and Py be a probability distribution over X. Py is a Gibbs distribution param-
eterized by a set of factors ® = {¢1(Cy), -, ¢r(Cy)} such that Ule C;, = X ifand
only if:

1 -~
P@(Xb'" JXn) = EPQ(le"' 7X7L)7

where .
Po(Xy, - Xa) = [ [ 6:(C))
i=1
is an unnormalized measure and

Z= > Pe(Xy,-, Xy

X1, Xn

is a normalizing constant called the partition function.

Computing the partition function is one of the most challenging aspects of MNs
inference algorithms. Since we focus on directed models in this thesis, we will not
detail the different algorithms to compute the partition function. The reader should refer
to |Koller and Friedman| (2009)) for additional material.

Definition 1.12 (Gibbs Distribution factorization) We say that a Gibbs distribution
Py with ® = {¢1(Cy),- -+, dx(Cp)} factorizes over a Markov Network Graph H if
each C;, 1 < i < k is a complete subgraph of H.

Each complete subgraph C,; is called a clique and the factors that parameterize a MN
are also called clique potentials. We can now give the definition of a MN.

Definition 1.13 (Markov Network) A Markov Network is a pair H = (Pg, G) where
Py is a Gibbs distribution that factorizes over G and G is an undirected graph that is
an I-map of Ps.

In the precedent section, we have seen that separation defines a structure equiva-
lent to independencies in a probability distribution. In fact, if a probability distribution
factorizes over an undirected graph then the graph is an I-map of the probability distri-
bution.

Theorem 1.1 (Soundness) Let P be a distribution over X, and H a Markov Network

structure over X. If P is a Gibbs distribution that factorizes over H, then ‘H is an I-map
for P.
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Proof in|Koller and Friedman| (2009). Not only the fact that a probability distribution
factorizes over an undirected graph gives us information about independencies existing
in it, but it also gives us the guarantee that some dependencies represented by edges can
exist.

Theorem 1.2 (Completness) Let H be a Markov Network structure, X and Y two ran-
dom variables in H and Z a set of random variables in H. If X and Y are not separated
given Z in H, then X and Y are dependent given Z in some distribution P that factor-
izes over H.

Proof in |Koller and Friedman! (2009). The next theorem tells us that if an undirected
graph is an I-map to a probability distribution, then there exists a factorization of that
distribution over the graph.

Theorem 1.3 (Hammersley-Clifford) Let P be a positive distributio over X, and H
a Markov Network graph over X. If H is an I-map for P, then P is a Gibbs distribution
that factorizes over H.

Proof of theorem can be found in [Koller and Friedman| (2009). With theorems
[[.T}[I.2]and [I.3] we have now enough theoretical justification to use MNs as a valid fac-
torization of joint probability distributions. We will end this chapter with an important
notion.

Definition 1.14 (Markov Blanket) For a given graph H and a random variable X in
H, we define the Markov blanket of X in H, denoted MBy,(X), to be the neighbors of
XinH.

A Markov blanket contains all the variables that separate a node from the rest of the
network. Thus, a Markov blanket is the only required knowledge to predict the node’s
possible outcomes (Pearl, [1988). Markov blankets are a very useful notion that can be
found throughout most PGMs. For MNss, they are used for classification or for expert
knowledge elicitation.

1.3 Bayesian Networks

Where MNss rely on undirected graphs, BNs are defined using directed graphs. It may
look like a small difference at first, but MNs and BNs applications differ greatly. The
most notable difference lies in the fact that BNs use conditional probability distributions
whereas MNs combine factors with a partition function.

2A positive distribution is strictly positive: P(X = x) > 0 for all x € Val(X).
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Definition 1.15 (Factorization w.r.t. a directed graph) Let G be a directed graph over
variables X = Xy, --- , X,,. We say that a probability distribution P over X factorizes
according to G if P can be expressed as the product:

P(Xy,--, X,) = | | P(Xi|m(X 1.2)
=1

Definition [I.13]is often called the chain rule for BN and is similar to definition[I.12]
and to the chain rule in probability theory. We can now provide the definition of a BN.

Definition 1.16 (Bayesian Network) A Bayesian Network is a pair B = (P, G) where
P is a probability distribution and G a Directed Acyclic Graph (DAG) such that P
factorizes over G and G is an I-map of P.

BN differ from MNs in two ways: they rely on a DAG where MNs use an undirected
graph; the probability distribution associated with a BN factorizes differently than the
one associated with a MN. These subtle differences have a huge impact on the use of
these frameworks. The most notable one being the ease for experts to model knowledge
using BNs. Eliciting conditional probability distributions as Conditional Probability
Tables (CPTs) is an easier task than eliciting factors, simply because CPTs are filled
with probabilities which are mathematical objects commonly manipulated by experts.
However, we will see that theoretical results for BNs are similar to those for MNs.

Active trails in BNs are more complex than their undirected counterpart. This is
due to the special treatment of v-structures. To understand their role it is convenient to
illustrate active trails as flows of information. Depending on the graph’s topology, such
flows can be blocked or activated given evidence. There are three structures that can be
found in a BN:

e chains X — 7 — Y or X « Z « Y then evidence on Z blocks the trail
between X and Y;

e common parents X «— Z — Y then evidence on Z also blocks the trail between
XandY;

e v-structures X — Z <« Y then evidence on Z does not block the trail between
XandV.

In the first two cases, the middle node blocks the flow of information once it is observed.
In such cases, we usually remove the out-going arcs of an observed node to illustrate
the fact that the flow is blocked. This implies that any evidence over X will not change
our beliefs about Y once Z is observed. The third case behaves differently. Indeed, a
v-structure X — Z <« Y block information between X and Y if Z is not observed:
evidence on X (resp.Y’) does not change our beliefs about Y (resp. X). But if we have
evidence over Z, then evidence about X (resp. Y') does influence our beliefs about YV
(resp. X).
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The fact that d-separation correctly represents independence assumptions for prob-
ability distributions that factorize over a BN graph is less intuitive than separation is for
MNs. The following two theorems provide mathematical justification for d-separation
in BNs.

Theorem 1.4 (d-separation soundness) Let G be a directed graph whose nodes are a
set of random variables X and let P be a joint distribution over X. If P factorizes
according to G, then G is an I-map for P.

Theorem [I.4]is very useful from a modeling perspective. Indeed, to obtain a valid
BN we can specify direct dependencies and fill the resultant CPTs to obtain a factorized
probability distribution for which the BN graph is an [-map. Consequently, defining a
BN is a simple and intuitive task.

Theorem 1.5 (d-separation completeness) Let G be a directed graph whose nodes are
a set of random variables X. If X and Y are not d-separated given Z in G, then X and
Y are dependent given Z in some distribution P that factorizes over G.

Proofs for theorems and can be found in [Koller and Friedman| (2009). They
simply state that d-separation is a valid graphical representation of conditional indepen-
dence. Finally, we will end this chapter over BNs with an important result.

Theorem 1.6 Let G be a directed graph whose nodes are a set of random variables X,
and let P be a joint probability distribution over the same space. If G is an I-map for
P, then P factorizes according to G.

Theorem 1.7 For almost all distributions P that factorize over G, that is, for all dis-

tributions except for a set of measure zero in the space of CPD parameterizations, we
have that Z(P) = Z(G).

Proofs for both theorems can be found in [Koller and Friedman|(2009). Theorem
tells us that almost all probability distributions that factorize over a BN graph are per-
fectly represented in terms of independence assumptions. The set of probability distri-
butions for which this statement is untrue includes distributions with extreme probability
values (many zero probability values).

Definition 1.17 (Markov Blanket) For a directed graph G = (V, E), we define the
Markov blanket of X € V, denoted MB(X), to be X ’s parents, children and children’s
parents.

In opposition to Markov blankets in undirected graphs, a Markov blanket of some
node X in a directed graph includes nodes that are not direct neighbors of X. This is
because nodes with common children form v-structures, inducing dependencies among
parents of the same nodes. Thus if a node X has a child Y that has a parent Z that is not
connected to X, there is a v-structure X — Y « Z that induces a dependency between
X and Z if Y is observed. Consequently, Z must be in X s Markov blanket.
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(@ A MN in which () A BN in which (c0 A BN in which

sep(A; D{B,C}) and d-sep(A4; D|{B,C}) but d-sep(B; C|{4, D}) but

sep(B; C|{A4, D}). where B and C are not where A and D are not
d-separated by {A, D}. d-separated by {B, C}.

Figure 1.2: MNs can represent set of independencies that BNs cannot.

1.4 From Bayesian Networks to Markov Networks

MNs and BNs are closely related, but they both cannot necessarily represent indepen-
dencies that the other can. First, let us illustrate by the following example a case where
they do.

Example 1.7 Let us first consider the following BN B : A — B — C. It defines the
following joint probability distribution: P(A, B,C) = P(A) x P(B|A) x P(C|B).
Now let us consider the MN over M : A — B — C. The joint probability distribution of
this MN would be P(A, B,C) = +¢1(A, B) x ¢o(B,C). In this case, possible values
for the MN’s factors could be ¢1(A, B) = P(A) x P(B|A) and ¢o(B,C) = P(C|B).
The partition function Z would then be equal to 1. We can also see that B and M both
encode the same set of independencies: d-sep(A; C|B) and sep(A; C|B).

The previous example illustrates a situation in which both a BN and a MN encode
the same set of independencies. However, in most situations MNs and BNs with similar
graphical structures encode different dependencies.

Example 1.8 Let A, B, C and D be four random variables and let us suppose we want
to model the following independencies (A \L D{B,C}) and (B 1L C|{A, D}). Fig-
ure illustrates a MN for which both independencies exist and no other. Figure[l.2}]
is an attempt to model the same set of independencies using a BN. Unfortunately,
whereas we have d-sep(A; D|{B,C}), B and C' are not d-separated by {A,C}. Fig-
ure is another unsuccessful attempt to model figure independencies. If we look
at the joint probability distributions induced by figures [I.2b| and we have (respec-
tively) P(A, B,C, D) = P(A)x P(B|A)x P(C|A)x P(D|B,C) and P(A, B,C, D) =
P(A) x P(D) x P(B|A, D) x P(C|A, D). If we consider those conditional probability
distributions as factors, they induce links that are non-existing in figure[l.2a} B —C for
figure and A — D for figure Conversely, note that the set of independencies
represented by figure [I.2D| cannot be represented precisely by any MN.
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In most cases, we can transform a model into the other by losing independence as-
sumptions (this usually implies that we add links or arcs). As we will see, transforming
a BN into a MN is simple: we add an edge for each pair of nodes if there exists a CPT
containing them both, the CPTs are then directly used as factors and the partition func-
tion equals 1. The process is important since several inference algorithms reason over
MNs. However, transforming a MN into a BN is more difficult and will not be discussed
in this thesis (Koller and Friedman, 2009). In the reminder of this chapter, we will set
the focus on transforming BNs into MNs.

CPTs are normalized factors, thus they can be used to infer a MN from a BN. Let us
consider the BN illustrated in figure It has the following CPTs: {P(A), P(B|A),
P(C|A), P(D|B,C)}. We know that factors in MN are also called clique potentials
because all random variables in a same factor form a clique in the MN graph. This is
not the case for figure since CPT random variables B, (', and D do not form a
clique in the BN graph. Given how BNs are defined, such missing links only occurs
among parents of a same node. Adding such edges are called moralizatiorﬂ

Definition 1.18 (Moral Graph) The moral graph ./\/l(é) of a DAG G over X is the
undirected graph over X that contains an undirected edge between X and Y if: (i)
either X < Y or X — Y exists in G, (ii) if there exist a node Z such that X — Z <« Y.

BN graphs can already be moral, as figure for instance. Adding edges to mor-
alize a BN graph obviously erase some independencies, however there exists several
properties of moralized graphs.

Property 1.1 Let G be a DAG. The moralized graph M (é) is a minimal I-map for G.

Proof in Koller and Friedman! (2009). This is an unsurprising result since removing
any edge that was not added during moralization breaks dependencies existing in the
BN graph and removing moral edges would create false independencies.

Property 1.2 Ifa DAG G is moral, then its moralized graph ./\/l(é) is a perfect map of
G.

Proof in Koller and Friedman|(2009). This is even a less surprising result since both
graphs are identical if we drop directions. We will see in chapter [2] that moralization is
the first step in two main inference algorithms: Variable Elimination and Shafer-Shenoy.

31t is called moralization since adding edges among unconnected parents marry them.
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1.5 Modeling using Bayesian Networks

When using BNs to model specific domains, experts usually require specific function-
alities. We will now present the most used ones. For BNs, local structures are the
different data structures used to represent conditional probability distributions. It is im-
portant to differentiate the data structure used for the probabilistic computations from
the ones used for modeling purpose. Different data structures induce different costs for
constructing a BN. CPTs are a straightforward representation of a discrete conditional
probability distribution and are considered as the classic data structure used to encode
probabilities in BNs. However, the difficulty to fill CPTs grows exponentially with
the number of random variables. Regarding ergonomics, there has been a considerable
amount of research carried out by the different software companies selling BN oriented
products. However, in our case we are more interested in alternative data structures that
require fewer parameters, which help reducing the memory consumption of large CPTs
and the number of computations. We will also take a glimpse to deterministic and prob-
abilistic functions that are a must-have feature when dealing with expert knowledge.
Such functions span from standard probability distributions to logical operators.

Context Specific Independence. Multidimensional tables prevent from exploiting
any structure in the conditional probability distribution, i.e., exploiting the fact that
conditional probability distributions are constant for different instantiations of random
variables. Such independence is called context specific independence and can be rep-
resented using trees or rules (Boutilier et al., |1996; [Koller and Friedman, 2009). In
many cases, context specific independence can be exploited to reduce CPTs memory
consumption. In figure we can see that the distributions P(Z|X = z,Y = y) and
P(Z|X =z,Y = y) are equal, i.e., that (7 1L Y|X = z). However, P(Z|X = z,Y =
y) and P(Z|X = z,Y = y) are not equal, thus when X = z, Z is dependent of Y.
These independencies can be exploited by a tree representation, as in figure 1.3}

A

X Y| z zZ

Ty 09 0.1 P(Z|z,Y) = (0.99,0.01)
r y| 0 1

z y|099 001

Ty 099 001 Tpz ) = (0.9,01)] [P(Z]2,9) = (0.0,1.0)

Figure 1.3: CPTs do not exhibit local structure present in conditional probability distri-
butions.

Deterministic Functions. When confronted to real world applications, we frequently
encounter deterministic relationships, i.e., cases where the state of a random variable
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is known with no uncertainty if its parents are known. Such variables are called deter-
ministic variables. These deterministic variables are easily identifiable by the fact that
probability values are either equal to one or zero. A deterministic function is a triple
(X¢, f,¢r) where Xy is a discrete random variable in a BN, f a function such that
f:m(Xy) — Val(Xy) and ¢ a CPT that maps m(X ) to zeros or ones. Deterministic
functions can be considered observed if all their parents are observed. Classic determin-
istic functions are logical or, logical and, and logical xor. There are also many specific
functions, such K-gates which are true only if at least K parents are true:

1 if {Y =True, Y e m(X)}| = K,
0 otherwise.

PIXIr(x) - |

Parametric Distributions Another classic conditional probability distribution varia-
tion is to use parametric distributions, i.e., conditional distributions dependent over a
parameter usually constant or context dependent. Formally, such parameters are usually
considered as observed random variables and thus they do not require a prior distribu-
tion, which can be problematic if the parameter is not discreteﬂ Usually, the parameter
1s directly part of the CPT specification:

X
True False
[ 1—-Xx A

Noisy-or, Noisy-and and generalized linear models. In many situations, a conse-
quence can have multiple independent causes. Such situations are represented using a
Noisy-or function. Figure [I.4]illustrates a Noisy-or with n + 1 parameters where Y’
and the X; are binary discrete random variables. Each ); is the probability P(Y =
true|X; = x;, X; = a;),7=1,--- ;i —1,i+1,--- ,n, except for the leak probability,
Ao, representing an unknown cause. Since we suppose each cause to be independent
from one another, we can infer the probability distribution P(Y'| X7, -+, X,,) using the
following equation:

P(Y =true|zy, -+ ,x,) =1— (1= \o) H(l — )",

i=1

were we suppose x; to equal 0 or 1. There have been considerable work on Noisy-or and
the class of similar functions, such as an axiomatization of the Noisy-or and Noisy-and
(Cozman, [2004; Xiangl 2010). Noisy-or are part of a more general class of probabilistic
functions called generalized linear models (Koller and Friedman, [2009).

“Problematic in a sense that mixing discrete and continuous probability distributions is not a trivial
matter (Koller and Friedman, [2009).
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Figure 1.4: A Noisy-or gate can be used when causes are independent from each other.

Probabilistic Functions and Discretization. Opposing deterministic functions, prob-
abilistic functions are functions which return probability values different from zeros and
ones. They are usually classic discrete probability distributions: the Poisson distribu-
tion, the Bernoulli distribution, the binomial distribution, the geometric distribution, and
the negative binomial distribution are the most used ones. We can also proceed with the
discretization of continuous distributions, since exponential or normal distributions are
often useful to model some continuous random variable behavior.



Chapter 2

Probabilistic Inference

Probabilistic inference is a family of algorithms used to compute probability values of
the form P(Q = q|E = e), where Q is a set of random variables called the query and
e is a set of observations of the realizations of some random variables called evidence.
P(Q = q|E = e) is the mathematical version of the question “What is the probability
of q knowing e€?”. Such questions are called conditional probability queries or evidence
updating and in most cases we will compute the probability distribution| P(Q|e). For
clarity, we will qualify probabilistic inference as plain inference, as we will only con-
sider probabilistic inference in this thesis. Inference is not only about evidence updating.
For some applications, we may want to infer the most probable explanation (MPE) or
the maximum a posteriori (MAP) of a query. Both MAP and MPE inference are simi-
lar: where MAP infers an assignment to some random variables such that it maximize
some observations, MPE infer an assignment to all random variables. Thus MPE in-
ference is considered as a special case of MAP inference. Algorithms for computing
MPE are similar to evidence updating, but MAP inference is known to be much harder
problem. Another application is, given a utility function, to find an assignment to a sub-
set of variables that maximizes the expected utility of the problem (MEU). Yet another
method, called sensitivity analysis, studies the probability variations when parameters
in the model’s CPTs change. These inference tasks are outside the scope of this thesis
and the reader should refer to (Pearl, [1988]; Jordan, |1999; |Koller and Friedman, 2009;
Darwiche,, 2009)) for additional materials.

Both exact and approximate inference are NP-Hard problems (Cooper, 1987; Dagum
and Luby, 1993)). We will not discuss approximate inference and the reader should refer
to|Koller and Friedman (2009) if needed. As it is often the case with NP-Hard problems,
many practical inference applications are tractable. The key parameter in inference com-
plexity is the MN’s tree-width. Unfortunately, computing a graph’s tree-width is also
NP-Hard (Arnborg et al., [1987; Robertson and Seymour, 1986} Dechter, |1996). Con-
sequently, it is difficult to estimate the complexity of inference without trying to infer
over it. As a general rule, the size of the largest factor is a good tree-width estimatOIEI

"We will often drop the notation P(X = x) in favor of P(x) which is a commonly accepted abuse of
notation.
2To properly define tree-width, we need definitions not yet introduced (see deﬁnition

21
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required and we will show that it is correlated to the largest clique of the associated
MN. Tree-width is not the only parameter that influences inference complexity. In-
deed each inference algorithm relies on different NP-Hard problems. Among them, we
can find minimal cutsets, optimal elimination orders or graph triangulation (Garey and
Johnson, 1979a; Arnborg et al.,|1987). Finally, operators over factors (factorization and
marginalization) are critical for inference. There have been a large amount of research
to implement cost-effective data structures and caching methods for manipulating them
(Druzdzel and Suermondt, [1994; Huang and Darwiche, |1996; [Shachter, 1998} | Arias and
Diez, 2007 Koller and Friedman, [2009; |Grant, 2010).

The outline of this chapter is the following: we will first discuss and define evi-
dence, as they are central for practical use of inference. Afterwards, we will present the
Variable Elimination algorithm and follow up with the transformation of a MN into a
junction tree. This allows us to introduce another inference algorithm called the Shafer-
Shenoy algorithm. We will conclude by giving references on other inference approaches
that are less relevant within this thesis. Finally, Koller and Friedman| (2009) was an im-
portant source for most definitions and proofs present in this chapter.

2.1 Evidence representation

How evidence is represented and used is central for inference. Remarkably, there exist
different evidence representations in BNs and MNs. But, before we explain evidence
mechanics we will first define what evidence is.

Definition 2.1 (Evidence) Let X be a random variable, an evidence e is the likelihood
measure e(X) = p(E = e|X).

We will distinguish hard evidence from soft ones.

Definition 2.2 (Hard and soft evidence) A hard evidence e over X maps one value of
X to 1 and all other values to 0. In all other cases, the evidence is said to be a soft
evidence.

Hard evidence encodes a total knowledge over a random variable’s possible out-
comes, on the contrary soft evidence represent partial knowledge. Let us consider a
hard evidence over a boolean variable X such that P(X = true) = 0.4. Stating that
e(X = true) = 1 is equivalent to stating that P(X = true|X = true) = 1. If
P(X = true|X = true) = 1 we have P(X = false|X = true) = 0. The in-
terpretation of the evidence e(X = true) = 1 is pretty straightforward. Now let us
consider soft evidence with a more complex example. Suppose that H represents some
patient’s health and that we proceed with a test to diagnose some disease. The test tells
us that: (i) there is 60% chance for the test to be positive if the patient is infected; (ii)
there is 0.01% chance for the test to be negative if the patient is healthy. So we have
P(T = positive|lH = ill) = 0.6 and P(T = negative|H = healthy) = 0.01. We
represent such observation using soft evidence and by the likelihood e(H = ill) = 0.6)
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/\

(a) In a MN, when a node is observed with hard (b) In a BN, when a node is observed with hard
evidence it removes the node from the network. evidence, it removes the node’s out-going arcs from
the network.

Figure 2.1: Evidence does not impact MNs and BNs identically: in gray the nodes,
edges and arcs removed from their graph.

and e(H = healthy) = 0.01. Note that we did not use the conditional probability dis-
tribution P(T'|H) but only some of its values. We could also have added a node in the
network that encodes the conditional probability P(T'|H).

Now, let us consider how we can include evidence into MNs andBNs. We have
seen that evidence are likelihoods: they define the probability P(e|X) for some random
variable X in the network. Adding such evidence in MNs simply adds the factor e(X)
in the pool of factors of the MN. For BNs we can add a new node e as a child of the
observed node X, and assign the conditional probability distribution P(e|X). When
random variables are observed with hard evidence another approach exists: if we are
certain about the variable’s outcome we can update the probability distribution accord-
ingly. To do so we update each factor containing the observed variable by summing the
variable out after taking into account evidence. For MNs this results in projecting each
factor ¢ containing the observed variable over its sub-factor ¢’ = >, ¢ x e, where X is
the observed variable and e the factor encoding evidence over X . Figure illustrates
the consequence of removing a variable with hard evidence: all edges among the node
and its neighbors are removed. The same operation can be done in BN, but its graphical
interpretation is different. Let X be the observed node, and Ch(X) its children. Then
all arcs X — Y, Y € Ch(X) are removed from the BN’s DAG. However, arcs Z — X,
Z € m(X) are left and so is node X. Indeed, to prevent from mixing directed and undi-
rected arcs, node X is not removed from the BN’s DAG and its conditional probability
distribution is replaced by P'(X|7(X)) = P(X|m(X)) x e(X).

In most applications, we will use hard evidence. Thus we must choose between
the two possible representations. Removing observed variables reduces the network’s
complexity, but each time a node is observed we must cache all concerned factors before
applying any update. If the number of observed variables is high, caching the tables can
consume large amounts of memory. On the other hand, the first solution offers a more
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general framework for handling evidence and is also less invasive, i.e., there is no need
to alter the network which can be cumbersome in some implementations.

2.2 Variable Elimination

The inference algorithms we will present in this chapter are both applied on MNs. Us-
ing MN inference algorithms for inference in BNs is unproblematic since BNs can be
transformed trivially into MNs. In this section, we will present Variable Elimination
(VE), a probabilistic inference algorithm that can be used for evidence updating in BNs
and MNs (Zhang and Poolel (1994, |1996; Dechter, |1999). VE is remarkable both for
its simplicity and its efficiency. To understand its principle, we must first recall how
random variables can be eliminated from joint probability distributions:

2x P(Q X, E =e)
P(E = e) '

PQIE =e) =

The issue with this straightforward approach is that it consumes too much memory and
takes too much computational time. VE exploits the factorization from the joint prob-
ability distribution and the fact that eliminating a random variable in such factorization
often requires to consider only a subset of factors. this entails a substantial speed gain
and preserves the low memory consumption resulting from the joint probability distri-
bution factorization.

V: Visit to Asia

S: Smoking

v
[T Tuberculosw] [L Lung Cancer}

N\,

O Tuberculosis or Cancer]

X: X Result D Dyspnea

Figure 2.2: The Asia BN.

B: Bronchitis

Example 2.1 Figure illustrates the Asia BN (Lauritzen and Spiegelhalter, |1988).
The joint probability distribution over the random variables of this example can be
factorized as follow:

P(V,T,L,B,0,X,D,S) = P(V) x P(S) x P(T|V) x P(L|S) x P(B|S)
« P(O|T, L) x P(X|0) x P(D|O, B).
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If we want to eliminate S, we only need to consider a small subset of factors: those that
have S in their scope. Thus, we need to consider the following factors:

6(S, L, B) = P(S) x P(L|S) x P(B|S).

We can then sum out S from the resulting factor and pick another candidate for elimi-
nation:

P(V,T,L,B,0,X,D) = P(V) x P(T|V) x P(O|T, L) x P(X|O)
x P(D|O,B) x > ¢(S, L, B).
S

The order in which variables are eliminated is critical for VE performances. Finding
a good elimination order is a difficult task and is closely related to triangulation (see
chapter 2.3). Finding an optimal elimination order is a NP-Hard problem (Kjarulff]
1990; [Bodlaender, [1993)).

Example 2.2 Let us consider two possible elimination order: 1 = (O, T, B, L, S, D,
Vyandv = (V, S, T, L, B, O, D). Both elimination orders p and v eliminate all
variables except X. Thus, they illustrate two elimination orders that compute the same
query, here P(X). Table illustrates the factors created by both elimination orders.
Each created factor is the result of multiplying all factors containing the eliminated
variable. We can see that elimination order 1 creates factors far bigger than elimination
order v. Such sizes impact memory consumption and the time required by computations.

1 | Created factors Size v | Created factors | Size
O|&»(T,L,B,O,X,D)| 36 V| o (V,T) 4
T | ¢o(V,T,L,B,X,D) | 36 S | ¢2(S, L, B) 8
B | ¢3(V,S,L,B,X,D) | 36 T | ¢3(T,L,0) 8
L | ¢4(V,S,L,X,D) 32 L | ¢4(L, B,0) 8
S | ¢s5(V,S, X, D) 16 B | ¢5(B,0,D) 8
D | ¢¢(V,X,D) 8 O | ¢6(0,X, D) 8
4 ¢7(V7X) 4 D Cb?(X’D) 4

Table 2.1: Factors created using VE and different elimination orders.

The algorithm

Algorithm m inputs are a set of factors ®, a set of queries Q, a set of evidence e, and
an elimination order ¢ over variables in ®. We denote by Scope(¢) the scope of fac-
tor ¢ and by Scope(®) the union [ .4 Scope(¢). In this version of VE we chose to
represent evidence as factors over the observed random variables. Algorithm [I] first
step is to eliminate each random variable X, following the order defined by ¢ (lines



26 2. Probabilistic Inference

1-12). Eliminating a variable is done by multiplying together each factor ¢ x such that
X € Scope(px) (lines 3-7), by multiplying evidence factors over X if necessary (lines
8-9) and by summing out X of the resulting factor (line 10). ® is updated by replacing
all factors in ® x by ¢x (lines 11-12). Then, VE multiply all remaining factors into ¢¢
(note that after eliminating all random variables X ¢ Q we have Scope(®) = Q). The
factor is then returned after normalization (lines 13-18).

Algorithm 1: Variable Elimination
Input: ®: a set of factors, Q: a set of queries, e: a set of evidence, ¢: an
elimination order
Output: ¢q: a factor over Q encoding P(Q|e)

1 while ¢ is not empty do

2 Let X be the first element of ¢;

3 Remove X from ¢;

4 if X ¢ Q then

5 let ®x be a subset of ¢ such that px € $x iff X € Scope(dx);
6 Scope(¢) = Scope(Px);

7 o =1;

8 foreach ¢x € ®x do

9 L ¢ =0 X ox;

10 if 3e € e such that X € Scope(e) then
11 L ¢ =0 Xe;

12 ¢ =2x®

13 O = P\Dy;

14 O =3>u{o};

15 Scope(pq) = Q;

16 9q = 1;

17 foreach ¢ € ¢ do

18 | dq = dq X ¢

19 normalize(¢q);
20 return ¢q;

Now, let us analyze Algorithm [T] complexity. VE proceeds with the elimination of
variables by factorization and marginalization. Initially, we have n factors and during
the elimination process m factors will be created. At step ¢, all factors containing vari-
able X; are multiplied in one factor v;. Then, X, is summed out of 1); resulting in factor
¢;. Let C; be the number of entries of ¢; and C),,., = max;C;. Then the cost of creating
all 1); is at most to Z?jlm C; < (n+m) X mazi1<j<n(Ci) = O(nCiqz). Creating factor
¢; requires to process all entries of factor v;, thus it costs exactly C;. Consequently, the
complexity of VE is in O(nC\,..). Since, a factor’s size is exponential in the number
of variables it contains, if 1/; contains k; variables of at most size v, then C; < v*. If
Kmaz = maz;|Scope(1;)|, then VE complexity is O(n.v*ma=). In other words, the com-
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plexity of probabilistic inference using VE is proportional to the largest factor’s size
induced by the elimination order.

Variable Elimination optimizations

Example 2.3 Consider that the Asia BN’s variables are not observed and suppose we
eliminate variable D first. The only factor over D is P(D|O, B) and suppose that its
values are:

O B D = present D = absent
true present 0.90 0.10
true  absent 0.70 0.30

false present 0.80 0.20
false absent 0.10 0.90

What values will take factor p(O, B) = >, P(D|O, B) ? If D is not observed, it will
produce a factor filled with ones:

O B (0, B)
true present 0.90+0.10 = 1.0
true absent 0.70 4+ 0.30 = 1.0
false present 0.80 4 0.20 = 1.0
false absent 0.10 4 0.90 = 1.0

Now if we have the evidence that D = present, we must add a factor over D such
that e(D = present) = 1.0 and e(D = absent) = 0.0. Consequently, (O, B) =
>.p P(DI|O, B) x e(D) is no longer filled with ones:

O B (O, B)

true present 1.0 x 0.90 + 0.0 x 0.10 = 0.90
true absent 1.0 x0.70 + 0.0 x 0.30 = 0.70
false present 1.0 x 0.80 + 0.0 x 0.20 = 0.80
false absent 1.0 x 0.10 + 0.0 x 0.90 = 0.10

Variables such as D are called barren nodes and can be discarded when they are not
observed.

Definition 2.3 (Barren random variables) Let 3 a BN, X the set of random variables
of B, Q < X a set of queried random variables and e a set of evidence over variables
in X\Q. A random variable X € X is said to be a barren random variable if X is a
leaf, X ¢ Qand X ¢ e.

Barren random variables are one among many properties that can be exploited to
speed-up inference algorithms. Here, discarding barren variables consists in ignoring
variables that do not provide any information. However, barren nodes are not the only
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nodes that can be discarded, sometimes only a small part of a BN is required to answer
certain queries. This is due to a simple fact: if a node X has only children that are barren
nodes, then it is also a barren node, i.e., its elimination will not affect our beliefs about
other nodes in the network. The BayesBall (BB) algorithm is a polynomial algorithm
that finds the set of required random variables to answer a given query with respect to
a set of queried variables and evidence (Shachter, 1998)). BB is a simple and effective
algorithm, easily adaptable to VE.

['\/{;\/1 o
@ (8) v paey @

(a) Node O is queried, X and
D are observed. Here all nodes
are required.

(b) X and D are queried. O is
observed. Here only X, D, B
and O are required.

(c) V is queried and O is ob-
served. Here V, T', S, L and
O are required.

Figure 2.3: With respect to different queries (solid nodes) and observations (dotted
nodes), the set of required nodes (black nodes) may vary drastically.

BB principle is simple: starting from the queried nodes, the algorithm parses the
graph looking for required nodes, i.e., it discards nodes that are not relevant with respect
to the query. Two parameters are considered when the algorithm iterates over a node:
if the node was reached either by a parent or child and if it is observed or not. When
a node is reached by one of its children, if it is not observed we mark the node on the
top and on the bottom and its parents and children will be visited. If the node is reached
from one of its parents, if it is observed we mark it on the top and only its parents will be
visited. If the node is not observed, we mark it on the bottom and only its children will be
visited. The different marks prevent from reconsidering a node twice (bottom marked)
and to distinguish required nodes (fop marked) from unwanted ones (fop unmarked).
From there it is simple to adapt VE to exploit BB: (i) reduce the CPT of any node with
an observed parent accordingly; (ii) add each required node’s CPT to the set of initial
factors; and (iii) evidence factors for any observed node that is also required. Figure [2.3]
illustrates three different configurations of queries and evidence for the Asia BN.
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2.3 From Variable Elimination to junction trees infer-
ence algorithms

Remarkably, VE (Zhang and Poole, 1994} 1996;|Dechter, |1999) is younger than junction
tree based algorithms (Lauritzen and Spiegelhalter, 1988; Shenoy and Shafer, 1990;
Jensen et al., [1990). We chose to present VE first, because it offers a more intuitive
grasp of probabilistic inference. Moreover, its simplicity makes it a good introduction to
inference in PGMs. In fact, VE was introduced as a simplification of junction tree based
algorithms. However, it’s more appropriate to present junction tree based algorithms
as a sophistication of VE. To understand the link between VE and junction tree based
algorithms, we must first discuss triangulation and its importance for both inference
approaches.

Variable Elimination and graph triangulation

We said that the elimination orders required by VE are closely related to graph trian-
gulation. We will explain how these two problems are connected. First, let use define
chordal graphs.

Definition 2.4 (Chordal graph) Let G = (V, E) be a undirected graph. G is chordal
if all cycles of length n > 3 have a chord, i.e., forall cycles! =X, —---— X, (n > 3)
two nodes X; and X; exist in | such that the edge X, — X; exists in I/ but not in .
Transforming a graph G into a chordal graph is called triangulating G.

A naive graph triangulation algorithm is to randomly choose a node, remove it and
connect all its neighbors. Edges added to connect neighbors after a node’s elimination
are called fill-ins. Eliminating a node and connecting its neighbors is the graphical
representation of eliminating a random variable using VE. To understand why, let us
define the induced graph of a set of factors.

Definition 2.5 (Induced Graph) Let ® be a set of factors. The induced graph of P is
the undirected graph G = {V, E}, with V. = Scope(®) and (X,Y) € E if and only if
3¢ € O such that {X,Y} € Scope(p).

Example 2.4 Let us consider the Asia BN and elimination order v from table Fig-
ure to figure illustrate the induced graphs obtained after each step of VE using
elimination order v. We can remark that eliminating S and O respectively add fill-ins
L — B and X — D (figure and 2.4g). By adding these two fill-ins we obtain the
chordal graph illustrated in figure[2.4h| Finally, figure[2.41)illustrates the induced graph
after eliminating O using elimination order . We can clearly see that eliminating O
first adds unnecessary fill-ins.

The number of fill-ins added by an elimination is a good estimator of the elimina-
tions quality. Ideally, we want to minimize that number, but finding minimal triangula-
tions is NP-Hard. Consequently, we rely on approximate algorithms based on different
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(a) The moralized graph of the (b) The induced graph after (c) Eliminating S adds the fill-
Asia BN. eliminating V. inL — B.

SRD W 1B

(d) The induced graph after (e) The induced graph after (f) The induces graph after

eliminating 7. eliminating L. eliminating B.
RN
T—L} B
N

(x)---{D] D)

(g) The induced graph after (h) The chordal graph obtained (i) Fill-ins added after O’s re-
eliminating O. using elimination order v. moval in elimination order .

Figure 2.4: Eliminating variables one by one is equivalent to triangulating the BN’s
moralized graph.

scoring heuristics (Kjerulft, |[1990; Bodlaender, 1993)). Note that the NP-hard aspect
of finding minimal triangulation is independent of the NP-hardness of inference. Thus,
even if we have the optimal triangulation, we do not have the guarantee that inference
will be tractable. Regarding triangulation, there has been a considerable number of
contributions (Rosel [1970; Robertson and Seymour, |1986; Kjerulff, 1990; Bodlaender,
1993}, [Koller and Friedman, 2009). We will use a standard algorithm that finds good
results while being fast, i.e., its execution time is negligible compared to inference time
(for challenging networks). This algorithm iteratively eliminates nodes using a greedy
search based on a score function. At each step the algorithm randomly chooses a node
among all nodes with identical scores and eliminates it (Fishelson and Geiger, 2004;
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Koller and Friedman, 2009). Classic score functions are:
e Min-neighbors: the score is equal to the number of neighbors;
e Min-weight: the score is the product of each neighbors domain size;
e Min-fill: the score equals the number of fill-ins added by eliminating that node.

We can also aggregate these functions in different manners. Depending on the instance
difficulty, we may want to run several instances of the greedy search algorithm using
different score functions to obtain the best elimination order.

Algorithm 2: Greedy Search for a Variable Elimination Ordering

Input: H = (V, E): an undirected graph, s: a score function
Output: ¢: a list of nodes in V'

t: an empty list of nodes;

while V' is not empty do

Let X be the set of nodes that minimize s;

Randomly choose a node X € X;

foreach (Y, Z) € Nghbrsy x Nghbrsy do

L ifY # Zand (Y,Z) ¢ E then

N QN B AW N

L addedge Y — Z to E;

=]

Remove X from V' and all edges (X,Y) € E withY € V;
9 | Insert X at the end of ¢;

Let us analyze the complexity of algorithm 2] Consider step ¢ of the construction of
the elimination ordering:: variables have been eliminated and there are n — ¢ remaining
variables (|X| = n). We will analyze algorithm complexity in the number of calls to
the score function s. At each step we must recompute scores for each node and since
one of them is eliminated at each step, thereis } " (n—1i) =, i = @ = O(n?)
calls to the score function.

Caching Variable Elimination computations

One of VE’s particularity is its query oriented aspect. Indeed, a given elimination order
will always compute the same query. If we consider elimination order v from table
we can see that permuting variables X and D does not change the seven first steps of
elimination order v. The fact that most computations used to compute P(X|e) are also
used to compute P(Dle) can be exploited to speed-up the computation of P(D|e) if
P(X|e) has already been answered. This is the main purpose of junction tree based
algorithms.

To understand how computations can be reused we will consider the elimination
order v of table {V,S,T, L, B, O, D} that computes P(X]|e). Figureillustrates
how we can represent each created factor by a specific node and connect them such that
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Figure 2.5: Each node represents a factor created using VE over elimination order v. If
an edge ¢; — ¢; exists then ¢; was used to compute ¢;.

edge ¢; — ¢; indicated that ¢; was used to compute ¢;. Now let us consider query
P(Ole) and an elimination order, call it ~/, almost identical to v: {V, S, T, L, B, D,
X1}. A subset of the factors created by elimination order v/ are identical to the ones
created by v, as illustrated by figure [2.6]

¢2(S7LaB)

Figure 2.6: Computing P(O|e) can be done using almost all factors created while com-
puting P(X|e).

Furthermore, we can note that each created factor is defined over a clique in the
chordal graph. Cliques are used in many graph-based problems and have been studied
from every angle (Luce and Perry, 1949} Karp, [1972).

Definition 2.6 (Clique) Given a graph G, a clique C of G is any subgraph of G that is
complete, i.e., all nodes in the clique are pairwise connected.

izo| [BoO] |0,D]

S i o

Figure 2.7: A junction tree built from the chordal graph of figure -

Using definition [2.6| we can describe figures [2.5| and [2.6] using a junction tree. Fig-
ure[2.7|illustrates the junction tree in which nodes represent cliques in the chordal graph
of figure [2.4h| and two cliques are connected with respect to the factors dependencies.
Junction trees are a very specific data structure. We will describe how junction trees
are constructed and the Shafer-Shenoy algorithm using junction trees for probabilistic
inference in the next section.



2. Probabilistic Inference 33

2.4 The Shafer-Shenoy inference algorithm

The Shafer-Shenoy (SS) inference algorithm transforms MNs into junction trees and
computes marginal probabilities using a message passing scheme (Shenoy and Shafer,
1990). In section [2.3] we have detailed triangulation and gave a hint on how junction
trees cache computations. We will now present formally junction trees construction
steps, present the SS inference algorithm and we will explain the importance of the
running intersection property.

Building the junction tree

The first step in building a junction tree is to triangulate the MN’s graph. We have seen in
section [2.3| that eliminating random variables one-by-one adds fill-ins, i.e., eliminating
a random variable will produce a new factor that links random variables that were not
originally connected. When we triangulate a graph, we add fill-ins and by doing so we
fix the elimination order: fill-ins are the graphical representation of intermediate factors
created by successively eliminating random variables. Then cliques in the triangulated
graph represent any intermediate factor created by VE and can be represented using a
clique graph.

Definition 2.7 (Clique Graph) Ler G be an undirected graph. A clique graphU of G is
an undirected graph with a node for each clique C; in G if and only if there is no other
clique C; in G such that C; < C;. An edge C, — C; exists inU only if C; n C; # .
Conversely, if C; n C; # (J, then there exists a path linking C; and C; in U.

Junction tree based algorithms goal is to compute the probability P(C;) for each
clique of a junction tree. Consequently, there is no need to represent a clique C; if
there exists a clique C; such that C; < C,. For example, figure is the clique
graph of figure cliques {O} and {O, X} have been removed since both of them are
included in clique {O, X, D}. Note that clique graphs are hypergraphs, thus cliques are
set of nodes and edges connecting two cliques C; and C; show that there exist edges
between any pair of nodes in C; n C;. We can incorporate the clique graph construction
in algorithm each time a node X is eliminated, the clique Cx = {X} u Nghbrs is
added to the clique graph if there is no clique C such that Cx < C. If Cy is added to the
clique graph, edges are added between Cx and other cliques with respect to definition
Not all clique graphs are adapted to inference (explications will be given at the end
of this section) and to obtain a suitable data structure for inference, we must extract a
specific clique tree called a junction tree. Not all clique trees are junction trees, since
junction trees must satisfy an important property called the running intersection property
(note that clique graphs with cycles can satisfy the running intersection property).

Definition 2.8 (Running Intersection Property) Let T = (V, E) be a clique tree over
a set of cliques V and a set of edges E called separators EE. We say that T has the
running intersection property if, whenever there is a variable X such that X € C; and
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X € Cj, then X is also in every clique in the unique path in T between C; and C;. A
clique tree with the running intersection property is called a junction tree.

The running intersection property ensures the correctness of junction tree based in-
ference algorithms. To understand why, we must first detail the SS algorithm. Given
definition the definition of a junction tree is straightforward.

Definition 2.9 A junction tree is a clique tree verifying the running intersection prop-

erty.

To extract a junction tree a possible solution is to use a maximum spanning tree
algorithm over a weighted clique graph. A weighted clique graph is a clique graph for
which each edge C; — C; has the weight |C; n C;| (see figure 2.8al).

Theorem 2.1 A clique tree obtained by applying a maximum spanning tree algorithm
on a clique graph will have the running intersection property.

(a) A clique graph derived from the chordal (b) The junction tree derived from figure Cir-

graph of figure[2.4h] Each clique is a clique in cle nodes are cliques and square nodes are separators
ﬁgure Sij = Cl N Cj.

Figure 2.8: A junction tree is obtained from the clique graph of a chordal graph.

Proof in [Shibata| (1988)); Jensen| (1988). Figure [2.84]is the clique graph built using
the chordal graph from figure[2.4h] Thick edges represent those picked by a maximum
spanning tree algorithm and figure [2.8b|illustrates the junction tree built using them.

Before presenting the SS algorithm, we will provide a definition to the tree-width of
a graph.

Definition 2.10 Width of a junction tree The width of a junction tree is the size of its
largest clique minus one.
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In this definition, the size of the largest clique is diminished by one in order to make
the tree-width of a tree equal to one.

Definition 2.11 Tree-width of a graph The tree-width of a graph G is the minimum
width among all possible junction trees of G.

The algorithm

The SS algorithm can be decomposed in three steps: (1) cliques initialization, (ii) collect
phase and (iii) diffuse phase. We denote by ¢; the factor associated with clique C; such
that Scope(¢;) = C; and by ¢;; the factor associated with the separator S;; = C; n C;
such that Scope(¢;;) = S;;. We differentiate S;; (resp. ¢;;) from S; (resp. from ¢,;).

Definition 2.12 (Valid clique assignment) Let M be a MN and ® be the factors asso-
ciated with M. Given a junction tree T constructed from M, a clique C € T is a valid
assignment for a factor ¢ € ® if and only if Scope(¢) < C.

The first step assigns a factor to a unique clique in the junction tree. Each factor ¢;
is initialized as follow: ¢; = 1 X ¢x, X --- X ¢x,, Where {¢px,,- - , ¢x, } are the factors
assigned to C;. Evidence are also assigned using definition [2.12

Example 2.5 In figure[2.8D] cliques are initialized as follows:

XO « P(X|0);

VT « P(V) x P(T|V);

TLO « P(O|T, L);

DOB — P(D|0, B);
e SLB « P(S) x P(L|S) x P(B|S);
e LOB « 1.

The following rule explains under what conditions a clique C; can send a message
(either during the collect or diffuse phase) to a clique C;.

Rule 2.1 Let C; and C; two cliques in a junction tree T such that C; and C; are
neighbors. C; can send a message to C; if and only if it has received messages from all
its other neighbors Nghbrs \{C;}.

SS message passing scheme starts from an arbitrary clique, called the root clique.
The first messages to be sent are called collect messages because they are sent from
leaf cliques to the root clique. At the end of the collect step, the root clique received
messages from all its neighbors. It can then send a message to each of its neighbors
during the second step. These messages going from the root clique to the leaves are
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Algorithm 3: The Shafer-Shenoy algorithm.
Input: 7 ajunction tree, ®: a set of factors, e: a set of evidence
foreach Cliqgue C € T do

L factor|C] = 1;

3 foreach Separator S;; € T do

4 factor[S;;] = 1;

s | factor[S;] =1,

¢ foreach Factor p € ® U e do

7 Choose a single clique C such that Scope(¢) < C;
8 | factor[C] = factor[C] x ¢;

9 Choose a root clique C,. in T

10 foreach Neighbor C; of C,. do

1 L Collect(C;, C,);

12 foreach Neighbor C; of C,. do

13 ¢ = factor[C,];

14 foreach Neighbor C; # C,; of C, do
15 L ¢ = ¢ x factor[S;,];

16 X = Scope(¢p) N S;i;

17 factor[S,i] = Dixex ¢
18 Dif fuse(C;, C,);

[ ST

called diffuse messages. From a probabilistic perspective, at the end of the collect step
we can update the root clique’s factor so that it encodes the probability P(C,., €),
where e is a set of evidence. At the end of the diffuse step, each clique’s factor can be
updated to encode the probability P(C;, e).

Algorithm [3] takes as inputs a set of factors, including evidence. Algorithm [3]uses
several tables to store factors. Table factor is used to store the initial cliques factors
and factors associated with separators. Algorithm (3| results are stored in table factor,
each factor encoding the probability P(C,e), where C is a clique in 7. Algorithm
starts with initializing each clique’s factor (lines 1-5). Then, a clique is chosen as the
root clique (any clique can do) and the collect phase is started (lines 6-10). When the
collect phase has ended, the diffuse step is started (lines 11-16).

Procedure ] applies the collect phase of algorithm 3] Procedure || purpose is to send
collect messages from leaves to the root clique. Indeed, given rule a clique C; can
send a message to its neighbor C; only if it has received messages from all of its other
neighbors. Thus, when no message have been sent, only cliques with a single neighbors
can send a message. Procedure [] first parameter is the clique C, that was asked to
send a collect message to C,. The message is a factor over the separator between two
cliques. The factor is obtained by multiplying the clique’s initial factors with all received
messages and then summing out variables that are not in the separator.
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Procedure Collect
Input: C,: aclique, C;: a clique
¢ = factor|C,];
if C.. is not a leaf then
foreach Neighbor C; # C, of C, do
Collect(C;, C,);
L ¢ = ¢ x factor[S];

X = Scope(®)\S;s;
faCtOT[STS] = ZXEX o3

[V I N

N &

Procedure Diffuse

Input: C,: aclique, C;: a clique

foreach Neighbor C; # C, of C,. do

¢ = factor|C,];

foreach Neighbor C; # C; of C, do
L ¢ = ¢ x factor[S;];

X = Scope(¢)\S,;

6 factor[Syi] = Dixex

7 Dif fuse(C;, C,);

B W N -

wn

Procedure [5applies the diffuse phase of algorithm[3] Procedure [5|purpose is to send
messages from the root clique to leaf cliques. After the collect phase, the root clique has
received messages from all of its neighbors. Thus it can send messages to each of its
neighbors. Procedure [5]first parameter is the clique C, that received a diffuse message
from clique C, and must send one to all its other neighbors.

Example 2.6 In example[2.5|we initialized the cliques of junction tree from figure
We will now proceed with the collect phase of algorithm |3|with clique LOB as the root
clique.

1. XO — TLO: ¢,(0) = Y P(X|0);

2. VT — TLO: ¢5(T) = 3, P(V) x P(T|V);

3. TLO — LOB: ¢3(L,0) = Y. P(O|T, L) x ¢1(0) x ¢(T);
4. DOB — LOB: ¢4(0, B) = 3., P(D|O, B);

5. SLB — LOB: ¢5(L, B) = Y4 P(S) x P(L|S) x P(B|S).

At the end of the collect phase, clique LO B updates its factor by taking into account all
received messages: ¢rop(L, 0, B) = ¢3(L,0) x ¢4(0, B) x ¢5(L, B). The resulting
factor is a joint probability distribution over random variables L, O and B. The diffuse
step proceeds similarly: messages are sent from the root clique LOB to leaf cliques.
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LOB — TLO: ¢(L,0) = 3, 1 x ¢4(O, B) x ¢5(L, B);
TLO — XO: ¢7(0) = Xog,, P(OIT, L) x $2(T) x (L, O);
TLO — VT: ¢s(T) = Y, o P(OIT, L) x $:(0) x ¢4(L, 0);

O 2 N

(
LOB — DOB: ¢9(0,B) =Y, 1 x ¢5(L,0) x ¢5(L, B);
10. LOB — SLB: §Z§10(L, B) = ZO T x §Z§3(L, O) X ¢4(O, B)

At the end of the diffuse phase, each clique can update its factor to obtain the unnor-
malized joint probability distribution over the variables in the clique:

* ¢x0(X,0) = P(X|0) x ¢7(0);

o pvr(V.T) = P(V) x P(T|V) x ¢s(T);

o orr0(T,L,0) = P(O|T, L) x $1(0) x ¢2(T) x ¢6(T', L, O);
* ¢pop(D,0,B) = P(D|0, B) x ¢4(0, B);

e ¢0s.5(S,L,B) = P(S) x P(L|S) x P(B|S) x ¢10(L, B).

Shafer-Shenoy correctness and complexity

We will discuss here why SS collect and diffuse phases update each clique with the
correct joint probability distribution. To do so, we will use the fact that VE and SS are
closely related. Indeed a junction tree is a data structure to store intermediate computa-
tions performed during VE. In other words, VE can match the computations performed
during a collect phase. Each time we project a clique’s factor on a separator, at least
one random variable is eliminated, thus when we are in a collect phase we continuously
repeat a factorization operation (when we multiply a clique’s factor with its incoming
messages) and a marginalization operation (when we project a clique’s factor over one
of its separator).

Theorem 2.2 Let T be a junction tree constructed from a MN M = (P, G). After
the collect and diffuse phase of algorithm 3| each factor ¢; of a clique C; obtained by
the product of C;’s initial value and of all of its received messages is an unnormalized
measure of the joint probability distribution P(C;, e).

Proof inShenoy and Shafer (1990). If we consider the number of messages sent dur-
ing the collect and diffuse steps, we can easily see that there are 2(n — 1) messages sent:
two for each edge in 7. Consequently, algorithm [3] complexity is impacted by the size
of the largest clique in the junction tree. Thus, algorithm [3] complexity is of the same
order of magnitude than algorithm [I| complexity. However, in practice algorithm [3] will
be less performing than algorithm 1| for a single query. Indeed, where algorithm (1| can
discard factors during the elimination process, algorithm [3| keeps track of all of them.
Furthermore, the diffuse phase of algorithm [3|adds unnecessary computations if we are
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only concerned by a single random variable. But, if we do not change evidence then
algorithm (3| is more performing for multiple queries. Ideally, we can imagine an ame-
lioration of algorithm 3| where messages are sent only to update cliques containing the
queried random variables, i.e., we only proceed with the collect phase of algorithm [3]
Doing so results in applying algorithm I and caching intermediate factors.

Understanding the importance of the running intersection property

We will explain now why the running intersection property is required for inference
using junction trees. Figure [2.9|shows a different spanning tree (figure and its de-
rived clique tree (figure [2.9b) than the ones in figure 2.8 Since the cliques are identical
to the junction tree in figure [2.8b] we can use the same clique initialization than exam-
ple[2.5] Let us do a collect phase using clique 7L O as root, the messages sent from leaf
nodes are:

1. LBO — XO: ¢1(0) = >, 5 1;
2. XO = TLO: $3(0) = 6:1(0). 2. P(X]0);
3. SLB — TLO: ¢3(L) = 25 P(S) x P(L]S) x P(B|S);

4. DOB — TLO: ¢4(0) = Xp, 5 P(D|O, B);

5. VT — TLO: ¢5(T) = Y,, P(V) x P(T|V).

(a) If we choose a spanning tree that is not (b) A clique tree derived from figure Clearly, the
maximal we will obtain a clique tree that will running intersection property does not hold in this graph.
not have the running intersection property.

Figure 2.9: A clique tree that is not a junction tree: the running intersection property
does not hold.
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If we look at the messages received by T'LO at the end of the collect phase, we
obtain the following factorization of the joint probability distribution over 7', L and O:

¢ro(T, L,0) = P(O[T, L) x $2(0) x ¢3(L) x ¢4(O) x ¢5(T)
P(O|T, L) ZP X|0)) ZP x P(L|S) x P(B|S))

x (). P(D|0O, B)) ZP x P(T|V)). 2.1)
D.,B

This computation is incorrect, since we summed out twice variable B. Furthermore,
evidence updating is not possible using the clique tree of figure suppose we add
evidence over L in clique LO B, then equation will not take it into account. Indeed
the evidence on L will be removed when the message from LOB to X O is sent. Let us
consider the diffuse phase and focus on clique LOB.

6. TLO — XO: ¢6(0) = X7, P(O|T, L) x ¢3(L) x ¢4(0) x ¢5(T);
7. {XO} = {LOB}: ¢7(0) = X P(X]0) x ¢6(0).

Lets consider the factorization used to compute ¢o5(7, L, O):
¢LOB(L70a B) =1 x ¢7(O)
x <Z P(O|T, L) x ¢3(L) x ¢4(0) x ¢5(T))

TL

(ZP O|T, L) x ZP ) x P(L|S) x P(B|S))

TL
x (), P(D|0,B)) ZP x P(V|T)) (2.2)
D,B

Clearly, the factorization computed in equation [2.2] is erroneous. Indeed, L and B are
eliminated whereas they should not have been. If we look at the random variables
distributions we see that the running intersection property is not satisfied, for example
variable B is not present in cliques X O and T'LO, yet it is in cliques LOB and DOB.
The absence of B in the path between LOB and DO B explains its early elimination in
equation [2.2) and the running intersection property purpose is to prevent such errors.

Shafer-Shenoy in clique graphs

To conclude our presentation of the SS algorithm, we will explain why this inference
algorithm must be applied to junction trees only. Indeed, the reason why we cannot use
a general clique graph as in figure [2.9a]is that SS uses local computations. The concept
of local computations first appeared in the initial work of Pearl on BNs and is at the core
of the Belief Propagation algorithm (Pearl, |1982)). The idea is to only rely on node’s
neighbors to update the belief of the nodes and using a message passing scheme to send
beliefs updates throughout the network.
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This message scheme does not work with graphs containing loops. If we look at
figure [2.9a] and consider messages received by clique SLB: DOB, TLO and LOB are
all pairwise connected. Consequently, LOB required messages from X O, T'LO and
DOB before sending its message to SLB. Likewise, DODB required messages from
LOB and T'LO and T'LO required messages from VT, XO, LOB and DOB. Thus,
by rule[2.1] clique SLB, DOB, TLO and LOB cannot send any message.

2.5 Other approaches and conclusion

Probabilistic inference algorithms are not limited to the two approaches presented in this
chapter. There is a considerable amount of different approaches, all exploiting distinct
features of BNs or MNs. We will also discuss the reasons why we chose to focus on VE
and SS.

Variable Elimination variants There exist several extensions and variations of VE,
one of the most notable is the Bucket elimination framework that extends VE to other
inference task (MPE and MAP) and to other algorithmic problems (constraint satisfac-
tion among others) (Dechter, |1996, 1999; Darwichel 2010). A generalization of VE
to junction tree has been proposed in (Cozman| (2000a), where VE is changed to save
intermediate computations resulting in a structure similar to junction trees. Finally, an
optimization of VE has been proposed that focuses on eliminating values instead of
variables, i.e., individuals factor’s entries are eliminated at each iteration instead of an
entire variable (Bacchus et al., 2003)).

Other junction tree based algorithms Historically, junction tree algorithms where
among the first inference schemes for BNs. Among them, we found different axiomati-
zations and message passing schemes often similar to SS (Lauritzen and Spiegelhalter,
1988}, Shenoy and Shafer, |1990; |[Lepar and Shenoy, 1999). Currently, the most per-
forming junction tree inference algorithm is Lazy Propagation (Madsen and Jensen,
1999). Lazy propagation exploits d-separation to prevent unnecessary computations.
There has been an effort to derive junction tree algorithms without resort to graphi-
cal concepts (Draper, 1995; Darwichel [1998), but these efforts have not produced a
variable-elimination-like scheme for inference.

Belief propagation and cutset conditioning. Belief Propagation, also called the poly-
tree algorithm, is a polynomial inference algorithm for polytree BNs (Pearl, |1982; Kim
and Pearl, |1983; [Pearl, [1988)). It is a message passing algorithm which reasons on the
BN’s graph. This algorithm cannot be applied to non polytree BNﬂ The reason is that
cycles induce a repetition of messages sent by nodes in the same cycle. A solution,

3At least for exact inference, if applied several times to non polytree BN it results in an efficient
approximate algorithm, called Generalized Belief Propagation (Yedidia et al., 2001).
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called Global Conditioning or loop-cutset conditioning, cuts the cycles by condition-
ing over the DAG’s cutset (Pearl, 1986, |1988; Suermondt and Cooper, |1990). Finding
the minimal cutset of a graph is NP-Hard (Garey and Johnson, [1979a; Hao and Or-
lin, 1994} Becker et al., 2000). However, it is possible to not globally condition the
network over every cutset variables, but to limit their conditioning to smaller and some-
times distinct portions of the DAG. Such technique is called Local Conditioning and is
by order of magnitude faster than Global Conditioning (Diez, |1996; Fay and Jaffray,
2000). Recursive Conditioning is another inference algorithm more inspired by the idea
of conditioning than by the polytree algorithm message passing scheme. It relies on
recursively splitting the graph to compute the value of a given query (Darwiche, [2001a;
Allen and Darwichel 2003; Grant, 2010). In the current state-of-the-art, global and local
conditioning algorithms are not considered as efficient inference algorithms. However
Recursive Conditioning offers interesting time-space trade-offs which can be crucial
when using inference on limited hardware. This trade-off is emphasized by the fact that
conditioning can be applied with a more popular inference algorithm: VE.

Darwiche’s approach to inference Junction trees algorithms and VE share the same
complexity limitation due to MNs tree-width. One approach to overcome the limita-
tion induced by high tree-width for exact inference is to exploit local structures. Local
structures are alternate representations of factors, exploiting local symmetries in the
probability distribution. However, where junction trees and VE algorithms can exploit
specific operators for these local structures, they do not exploit them from a graphical
point of view. This shortcoming has led to the development of a new family of inference
algorithms which compile MNs into circuits by transforming them into a knowledge
base in conjunctive normal form (CNF) (Darwichel 2003; Chavira and Darwiche, 2005;
Chavira et al., [2006; (Chavira and Darwichel 2007)). Unfortunately, where this technique
seems to have very promising results, it is still uncertain if this approach offers better
results than more classic algorithms (Darwichel 2010).

Probabilistic inference as optimization A link between probabilistic inference and
statistical physics have been recently discovered. This enables to approach probabilistic
inference as an optimization problem (Koller et al., 2007 Koller and Friedman, 2009).

Discussion If we look at the recent contributions for probabilistic inference in BN,
VE and SS are old techniques. The current state-of-the-art is more focused on Dar-
wiche’s approach and approximate inference with the Generalized Belief Propagation
algorithm (Darwichel 2009). So why did we focus on these two approaches? The main
reason comes from the fact that structured inference was developed to be used with VE.
When we generalized SVE to obtain the SPI algorithm (see chapter [5.3)), we discov-
ered that structured inference was not limited to VE-like algorithms: it could easily be
adapted to junction tree based algorithms. Consequently, VE and SS offered the best
starting point to adapt structured inference to classic inference algorithms. Possibly,
structured inference can be adapted to other inference approaches. However, structured
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inference was not well defined when this thesis started and we found necessary to first
study, formalize and generalize the concepts proposed in Pteffer (1999). Consequently,
adapting structured inference to recent and refined inference algorithms was not think-
able. Hopefully, the work presented in this thesis will provide enough understanding of
structured inference to adapt it to other inference schemes.

Conclusion With chapters [I|and 2| we have covered the main notions regarding BNs
and probabilistic inference. We have presented MNs and BNs under the scope of con-
ditional independencies and their link with graphoids. We have shown the similarities
between MNs and BNs and presented several modeling specificities of BNs. We have
then presented two inference algorithms that can be applied both on MNs and BNs: VE
and SS. We then concluded by briefly presenting different inference algorithms and dis-
cussing the choice of VE and SS as standard inference algorithms. We will now present
several BNs extensions that all share the common goal to extend BNs expressiveness to
handle large scale complex systems.
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Chapter 3

Bayesian Networks Extensions

Since their emergence, PGMs have been at the core of many contributions in the Al com-
munity. These contributions either focus on algorithmic aspects (inference, learning) or
focus on extending existing models. Sometimes, both topics are intertwined as some
extensions have dedicated algorithms. Computer sciences have always been a practical
field, with many direct industrial applications. Yet, PGMs are remarkable as they joined
many research fields in computer science. Probability elicitation, data mining, reliabil-
ity, risk management, maintenance, simulation, classification and troubleshooting are
the most popular uses of PGMs. There are similarities between the recent evolutions
of PGMs and programming languages. Indeed, the first programming languages were
low level languages, unadapted for complex and big programs. Rapidly, new languages
emerged offering modularity, high level syntax and programming paradigms. But in
the end, these high level languages are compiled in assembly languages to be used by
the computer’s CPU. BN extensions emerged to offer better tools for modeling com-
plex systems or specific domains, yet in the end probabilistic inference is almost always
done on BNs. In a certain way, BNs (and MNs) are the assembly language of PGMs.
Another similarity to programming languages is the recent explosion of new PGMs,
all offering specific functionalities or representation paradigms. While we could hope
for a consensus over these extensions, there is unfortunately little hope to find one: as
for programming languages the range of applications of PGMs is too big to hope for a
universal framework. The purpose of this chapter is to present several BN extensions
and focus on object-oriented ones. We cannot cover all existing extensions as there are
too many of them and some of them require theoretical background that we will leave
undiscussed. Here is a short review of the most remarkable ones: discrete probabilities
distributions do not allow to model many domains that require continuous random vari-
ables, thus continuous and hybrid (mixing continuous and discrete random variables)
frameworks were proposed: Gaussian BNs, Gaussian MNs (Wermuth, [1980; Speed and
Kiiveri, 1986; Shachter and Kenley, |1989; [Lauritzen, [1996; Malioutov et al., [2006),
exponential families (Csiszar, 1975 |Barndorff-Nielsen, |1978}; Lauritzen, |1996; Geiger
and Meek, 1998) and hybrid BNs (Lerner, 2002); different models have tried to mix
directed and undirected graphs, such as factor graphs (Ksichischang et al., 2001} Frey,
2003)) and conditional random fields (Lafferty et al., 2001} |Sutton and McCallum), 2004,
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2007); credal networks use belief functions instead of probabilities (Cozman, [2000b));
mixing probabilities and utilities is the core of influence diagrams (Howard and Math-
eson, |1984; Shachter, |1986; Pearl, 2005); hidden Markov Models are especially known
for their application in temporal pattern recognition, for example speech or handwriting
(Rabiner and Juang, |1986; Rabiner, |1989); causal networks are another BN extension
that set the focus on modeling and finding causal relations between variables (Pearl,
2009).

In this chapter, we will consider specific extensions and focus on four distinct cate-
gories: early extensions (dynamic BNs (Dean and Kanazawa, 1989), Multiply Sectioned
BNs (Xiang et al., [1993b)), object-oriented frameworks (object-oriented BNs (Koller
and Pfeffer, 1997; Bangsg and Wuillemin, 2000a)), relational frameworks (Probabilis-
tic Relational Models (Friedman et al., [ 1999))) and first-order frameworks (Multi Entity
BNs (Laskey, 2008)), parfactors (Poole, 2003)). To prevent any ambiguity with the verb
model, we will use the term framework to name PGMs, e.g., BNs and MNs are frame-
works, the term system to designate a model, e.g., the Asia BN used in chapter [2]is a
system, and we use the verb model to point out the process of creating a system using a
framework. We chose these frameworks instead of others because they are the most rele-
vant to the work presented in this thesis. Indeed, they are either strongly inspired by the
object-oriented paradigm or are key frameworks in the current state-of-the-art. Still,
many other extensions centered over different representation paradigms exist. Here
is a short list: stochastic logic programs (Muggleton, 1996)), Relational BNs (Jaeger,
1997), Bayesian Logic programs (Kersting and Raedt., 2001), Relational Markov Mod-
els (Anderson et al., |2002), Relational Markov Networks (Taskar et al., [2002), Entity-
Relationship Probabilistic Models (Heckerman et al., 2007), Markov Logic Networks
(Domingos and Richardson, 2007). The reader may also want to refer to other BNs ex-
tensions studies (Pfeffer, [1999; Bangsg, 2004; Getoor and Taskar, [2007; |de Salvo Braz,
2007} |Getoor and Taskar, 2007} Laskey, 2008; [Koller and Friedman, |[2009).

If we look at BN’s history, we see that they appeared in the late 80’s and have
been continuously extended since. If we consider the integration of the object-oriented
paradigm in PGMs, we can see that (Koller and Pfetfer, |1997) is a milestone in BNs
history and we will denote by early extensions any BNs extension that appeared before
(Koller and Pfetter,|1997). To understand why, we must first explain what a representa-
tion paradigm is.

Definition 3.1 (Representation paradigm) A representation paradigm is a set of desi-
derata used to structure knowledge bases. Paradigms differ in the concepts and ab-
stractions used to represent the relations among atoms in the knowledge base (such as
objects, functions, predicates, random variables, etc.).

BNs are a propositional framework: as in propositional logic there is no first-order
rule among random variables and atoms in the knowledge base; they must be defined
and connected individually. We have mentioned Object-Oriented Bayesian Networks
(OOBNs) which are an object-oriented framework, but extensions that are entity-relationship
or first-order frameworks also exist. Each of them will be detailed in this chapter. Before
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OOBN:Ss, extensions were not explicitly defined by their representation paradigm, which
is clearly not the case anymore (most new extensions are qualified as relational, object-
oriented or first-order frameworks). However, we will see that in Dynamic Bayesian
Networks (DBNs) and Multiply Sectioned Bayesian Networks (MSBNs) we can find
the premises of the object-oriented paradigm in PGMs. The object-oriented paradigm
was first introduced as an engineering solution to model complex systems (Mahoney and
Laskeyl, 1996), this preliminary work led to Multi-Entity Bayesian Networks creation,
a framework presented in chapter The object-oriented paradigm inspired several
frameworks, the most notable being OOBNSs (Koller and Pteffer,|1997). Unfortunately,
no existing BN extension using the object-oriented paradigm provides a formal defini-
tion of what is an object-oriented PGM. Since the object-oriented paradigm is mostly
used as a programming language paradigm, we cannot use any existing definition and
apply it to PGMs. The object-oriented paradigm is at the core of the work presented in
this thesis, thus to understand the state-of-the-art and our choices, we must first properly
define an object-oriented representation paradigm for PGMs. To do so, we propose five
desiderata that we think are necessary in any complete object-oriented PGM.

Classes and instances. The first desideratum states that we will distinguish two
kinds of objects: classes and instances. Classes are used to define a family of objects
sharing common properties, e.g., a car. Instances are specific use of classes, e.g., John
Doe’s car. Classes definitions change from one framework to another, and in most cases
classes and instances are undifferentiated and called objects. However, in all frame-
works an object is a BN fragment, i.e., a BN with random variables referenced in CPTs
that are not represented as nodes in the BN’s DAG. We will denote by uppercase letters
(C, D, ...) classes and by lowercase letters instances (c, d, ...). If c is an instance of
C, we will say that c is an instantiation of C'. Random variables associated to a class
are called attributes and are denoted by capital letters (X, Y, ...) and we will denote by
C. X the attribute X of class C' and by c. X the attribute X of instance c.

Class inheritance. The second desideratum is class inheritance. Class inheritance
is a partial order among classes: given two classes C' and D, we say that C' is the super
class of D if D is a specialization of C, i.e., if D exhibit all C"s properties, specialize
some of C’s properties and/or has new ones. For example, we could specialize the class
car into a specific brand for which we will have more precise failure probabilities. We
denote by C' = D the fact that C'is the direct super class of DD, we say that D is a direct
subclass of C'. We say that C'is a super class of D and D a subclass of C, denoted by
C' » D, if there exists a list {C1,--- ,C,} such that C; = C;,4 for 1 < i < n — 1 with
Ci=CandC, = D.

Abstraction. The third desideratum is abstraction. Abstraction is the possibility to
use objects without having a total knowledge about them, e.g., to consider the failure
state of a car it is not necessary to consider the network modeling the car’s engine.
When confronted to complex systems, abstraction is essential to reduce the complexity
explosion due to increasingly large systems.

Polymorphism. The fourth desideratum is subtype polymorphism. Subtype poly-
morphism is one of the less intuitive features we can have in an object-oriented PGM,
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yet we will see that it is a very powerful tool. In programming language theory, subtype
polymorphism states that a given super class can be substituted by any of its subclass,
1.e., functions that operate on instances of the superclass can also operate on instances
of the subclass. In BNs the closest notion to a function is the conditional probability
distribution of a node. Indeed, we can see a conditional probability distribution of some
node X as a function ¢(X,Y3,---;Y,), where {Y},---,Y,,) = m(X). In an object-
oriented framework, we can imagine that each node is associated with its class, thus we
can rewrite ¢ as follows: ¢(C.X, D1.Yy, -+, D,.Y,). Subtype polymorphism tells us
that for any subclass D! of D; we can substitute D;.Y; by D..Y; in ¢ such that ¢(C. X,
D\Yy,---, DY, -+, DY) = o(C.X, DYy, -+, DI.Y;, -+, DY),

Recursive data types. The fifth desideratum is recursive data types. Recursive data
types simply state that any class can refer to itself, i.e., that we can define cyclic depen-
dencies among attributes of the same class. This is a must have feature to enable any
representation allowed by DBNs, however it becomes possible to create systems with
cyclic dependencies. This is of course a major issue as BNs does not cope with cyclic
dependencies, thus it is necessary to define rules that prevent from defining such cycles.
We will see that each framework offers its solution, spanning from forbidding recursive
definition to defining detection algorithms for on-the-fly warnings during modeling.

This chapter is organized as follows: we will first discuss early extensions including
DBNs and MSBNs. We will then introduce OOBNs and differentiate OOBNs a la
Pfeffer from OOBNs a la Bangsp & Wuillemin. Then we will present Probabilistic
Relational Models and follow with two First-Order Probabilistic Models: Multi-Entity
Bayesian Networks and parfactors. We will then conclude with a discussion on the
reasons why we chose Probabilistic Relational Models as the base of our own object-
oriented framework presented in chapter 4]

3.1 Early extensions

We will now present and discuss two early extensions: Dynamic Bayesian Networks
and Multiply Sectioned Bayesian Networks. They are both remarkable because they
offer many hidden object-oriented features and they are certainly involved in the first
appearance of the object-oriented paradigm in PGMs.

Dynamic Bayesian Networks

In many applications we want to describe a system evolving over time. The most
straightforward manner to do so is to describe the system at time ¢ using its state at
time ¢ — 1. From a modeling perspective, this enforces us to define repeated BN frag-
ments and connect them to span a BN over the desired number of time slices. DBNs
purpose is to prevent the definition of every time slice by only defining the prior dis-
tribution (the first time slice) and the transitional distribution (P(X;|X;_1)) (Dean and
Kanazawa, [1989; Smyth et al., [1997). DBNs are the first member of a family of BN
extensions called template based models. These extensions use templates, i.e., a partial



3. Bayesian Networks Extensions 49

specification of a BN also called a BN fragment, to construct BNs. Templates are simi-
lar to classes in the object-oriented paradigm, which makes DBNs the first PGMs to use
object-oriented features.

Definition 3.2 (2-Time slice BN) A 2-Time slice Bayesian Network is a Bayesian Net-
work whose nodes are partitioned in two sets X; and X, called slices. A 2-TBN is a
transitional model such that:

n—1
P(Xe11|Xy) = H P(X{ i1 lpa(Xiyy)), with pa(X[.,) € Xy 0 Xpig
1=0

and the prior distribution

n—1

P(Xo) = [ [ P(X{|m(X3)) where w(X;) < X.
i=0
Given an a priori distribution P(X,) and a transitional distribution P(X;|X;_1), it
is easy to define a system evolving over time. This leads to the definition of DBNSs.

Definition 3.3 (Dynamic Bayesian Networks) A DBN of length T is a BN resulting
from “unrolling” a 2-TBN in T time steps. Each state X, of the DBN is called the slice
t.

t=20 t=1 t=2 t=

@@@@
ORORONC)
() (1) ()

(a) A 2-TBN represented by the first time (b) A DBN can be obtained by unrolling
slice (the prior distribution) and the sec- a 2-TBN over the desired time length.
ond time slice (the transitional distribu-

tion) that defines P(X;|X¢—1).

Figure 3.1: 2-TBNs are a simple and compact way to specify DBNs.

Figure [3.14]illustrates a 2-TBN that is unrolled over three time steps in figure [3.1b]
Defining DBNs in such manner is space efficient: the modeling is reduced to its strict
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minimum making such models human readable and easily created by experts. There
are however several shortcomings. For example, there is no possibility to modulate
the probability distribution over time slices. Indeed, we could imagine that some com-
ponent’s probability failure varies drastically after some time period, i.e., we cannot
model systems that do not strictly follow the first-order Markov assumption. Unrolling
a 2-TBN over several time steps is nothing but a copy and paste of an I-map, thus it
offers very few modeling options. Let us suppose we had an object-oriented framework,
by using class inheritance we could easily construct DBNs with more subtle probability
distributions. Nevertheless, these shortcomings do not prevent from using DBNs for
many industrial problems, but most importantly, they do not prevent inference on large
DBNs.

Inference in DBN can be a challenging problem. If we chose to span the network
over hundreds or thousands of time steps, we can suppose that inference would be hard.
However, defining DBNs using 2-TBNs provides structural information that can be ex-
ploited for inference by using constrained elimination orders. Simple constrained elim-
ination orders include forward or backward elimination orders: variables are eliminated
from slice 0 to 7" or from 7" to 0. Such elimination orders give a theoretical upper bound
on the maximum clique size that is independent of the DBN’s length. They also offer
good experimental results and prevent from triangulating a DBN again after its length
has been changed (Kjarultf, [1994; Murphy, 2002; |Darwiche, |2001b; Bilmes and Bar-
tels, |2003). The key concept to exploit such elimination is the notion of interface.

Definition 3.4 (Interface) Let G = (X, E) be the moralized graph of a DBN By =
(P,G) of length T, i.e., there are T times slices {Xq, -+ ,Xp_1}. A subset I = X is
called an interface if for each path p between X, € X and X1 € Xr of G, I contain
at least one node of p. A minimal interface 1 is such that for all I' < 1, T is not an
interface.

Interfaces cut a DBN in two, i.e., an interface is a subset that d-separate the past
from the future. At first interfaces were limited to a single time-slice (Darwiche, 2001b).

Definition 3.5 (Forward and backward interfaces) Let G = (X, E) the DAG of a
DBN of length T', the forward interface 1,” is the set of all the nodes in slice t < I’ that
have at least one child in slice t + 1. The backward interface 1;~ is the set of all nodes
X in slice t > 0 such that X, or one of its children, has a parent in slice t — 1.

For example, in figure m the backward interface of slice 1 is the set I = { XV,
X1, X2} and its forward interface is I;” = {X?, X?}. These specific interfaces are de-
fined by nodes from the same time slice, yet we can define interfaces overlapping several
time slices. For example, I = {X{, X, X?} is an interface for the DBN of ﬁgurem
Such interfaces can be exploited for inference by deducing a constrained elimination
order from them. We can indeed eliminate nodes with respect to an interface instead of
their time slice. Let us consider interface T = {X), X{, X?}, that can be generalized to
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Figure 3.2: Illustrating the elimination ordering obtained by applying a forward elimi-
nation with interface I; on the DBN of figure 3.5}

I, = {X; ,, X}, X?} for t > 0. Figure [3.2|illustrates a forward elimination order ob-
tained using I;. However, these interfaces are not necessarily optimal and a recent result
proposes an algorithm for finding optimal interfaces in DBNs (Chopin and Wuillemin,
2010).

DBNs introduce several fundamental notions in PGMs. The first is the notion of
BN fragments that are repeated as many times as required. Fragmenting a BN will be
and is still one of the most used features in BN extensions. Surprisingly, almost no ex-
tensions define fragments using object-oriented notions, i.e., as classes and instances.
Another fundamental notion is used by DBNs dedicated inference algorithms: inter-
faces. Interfaces and their use in DBNs inference is the essence of structured inference,
whose principle is to exploit structural repetition to speed-up inference. Furthermore,
interfaces define a very simple relational scheme among BN fragments: time slices are
connected by their interfaces. This implicitly defines two kinds of nodes: those that
belong to the fragment’s interface and those that are internal to the fragment. We will
see that these notions are primordial for a strong object-oriented framework.

Multiply Sectioned Bayesian Networks

When we are confronted with complex domains, we naturally decompose a domain into
subdomains. In computer programming, this concept is called modularity and softwares
are decomposed into several parts called modules each with specific functionalities.
MSBNS follow this thread of thought: instead of considering the domain with a single
flat BN, MSBNSs use a set of BN fragments to consider each subdomain individually.
This offers several advantages, such as helping in modeling the network, i.e., the experts
can focus on each specific subdomain and then consider how fragments interact. Split-
ting apart a BN also reduces inference complexity as each fragment can be processed
individually. MSBNs have been first used for medical expert systems (Xiang et al.,
1993bja) and such domains are particularly well suited to a modular approach. Indeed,
a disease can be diagnosed by tests that are either disease specific (a blood test) or shared
among other diseases (fever). When experts consider a single disease they only need to
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consider relevant diagnoses, thus they only need to focus on a specific fragment. Fur-
thermore all tests the patients may undergo while considering a specific disease translate
into evidence in the associated fragment. Consequently, belief updating can be limited
to the considered fragment, preventing any unnecessary computations. Both the use-
fulness of fragmenting knowledge in subdomains to model complex systems and the
direct link among fragments and evidence updating justified the emergence of MSBNSs.
Before we start defining MSBN:Ss, it is important to remark that they have considerably
evolved since their first appearance in (Xiang et al., |1993b). Our point here is not to
give an up-to-date presentation of MSBNS5s but rather the reasons why we think that they
played a crucial role in object-oriented PGMs emergence.

Before we detail MSBNEs, it is important to remark that their formalization does not
reflect their modeling process. Indeed, we will present a MSBN as being the result
of sectioning a BN into several fragments. Whereas, in practice we would model each
fragment separately and then connect them, using random variables that would be shared
among fragments. This difference in MSBN formalization and modeling process can be
puzzling and has some undesired side effects that we will discuss shortly. We will first
present the framework, starting by hypertrees definition.

Definition 3.6 (Hypertree, hypernode and hyperlink) Let G = (V, E) be a connected
graph sectioned into subgraphs {G; = (V;, E;)}. Let the G;s be organized as a con-
nected tree W, where each node is labeled by a éz and each link between ék and C_jm is
labeled by the interface Vi, NV, such that for each i and j, V; 'V} is contained in each
subgraph on the path between @ and @j in W. Then W is a hypertree over G. Each le
is a hypernode, and each interface is a hyperlink.

Hypertrees generalize junction trees: its nodes are BN fragments and its edges are
sets of shared nodes between two fragments and are not necessarily cliques. This struc-
ture is exploited to define a distributive inference algorithm in MSBNs (Yang, 2002).
The nodes shared among the different sections of a MSBN play an important in the
framework’s formalization. Fragmenting a graph such that we can construct a hypertree
is the inverse operation of creating each fragment and then connect them into a single
graph. When modeling complex systems, such modular approach is necessary as con-
sidering the network in its entirety is not possible. However, it is necessary to define
how fragments interact and to do so we must define the set of nodes that will be the
interfaces among those fragments. Such nodes are called d-sepnodes in this framework.

Definition 3.7 (D-sepnodes and d-sepsets) Let G be a directed graph such that a hy-
pertree W over G exists. A node X contained in more than one subgraph of W is a
d-sepnode if there exists one subgraph é, in W such that (X)) € le A set I of nodes is
called a d-sepset if every X € 1 is a d-sepnode.

D-sepnodes and d-sepsets clearly play the roles of junction trees separators. How-
ever, there is a condition on how the graph can be sectioned. Indeed, for each node
present in several subgraphs, there must be at least one subgraph that contains all its
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parents. Fortunately, only a weak condition is required for that property to hold in a
sectioned DAG.

Condition 3.1 Let G be a directed graph such that a hypertree W over G exists. A
node X contained in more than one subgraph in G must be such that for every pair
of subgraphs C_}"Z and C_jj that contain X with the parents 7;;(X) in C_jz v C_jj, either
mi;(X) € Vi orm;(X) € V.

This condition is equivalent to the running intersection property (see definition [2.8§).
It ensures that moralization will be properly propagated in the hypertree and conse-
quently, that inference using local message passing is possible in the hypertree structure
defined by definition When modeling a MSBN, d-sepnodes play an important role
because they are shared among the different BN fragments, consequently they must be
fully specified. This forces several constraints on the modeling process: before model-
ing each fragment we must fix each d-sepnode to prevent different names or domains,
we must also ensure that for each d-sepnode there will be at least one fragment contain-
ing all the node’s parents. Defining d-sepsets is nothing more than fixing the interfaces
of each fragment, i.e., defining the set of dependencies a fragment relies on. The frag-
ment containing all the parents of a d-sepnode is the resident fragment of that node, i.e.,
where the node is semantically defined. All these notions need to be clearly defined and
properly used to offer an efficient framework for modeling large scale systems. Such
notions are present in the MSBN framework but are not defined as modeling features
but as topological constraints for the MSBNs inference scheme.

Theorem 3.1 Let W be a hypertree over a directed graph G = (V, E). For each hyper-
link I that splits W into two subtrees over U < V and W < V, respectively U\I and
WA\ are d-separated by I if and only if each hyperlink in W is a d-sepset.

Proof omitted (see [Yang| (2002)). Theorem [3.1] shows the equivalence between d-
sepset and separators: as a separator in a junction tree, a d-sepset d-separates one side
of the hypertree from another. This leads us to the definition of a hypertree Multiply
Sectioned DAG, the last notion required to define MSBNGs.

Definition 3.8 (Hypertree Multiply Sectioned DAG (MSDAG))
A MSDAG G = |, G;, where each G; = (V;, E;) is a connected DAG such that there

exists a hypertree W over GG, and each hyperlink in ¥ is a d-sepset.

Figure [3.3] illustrates the different graphical steps leading from a DAG to hyper-
tree multiply sectioned DAGs. Figure is a DAG that is decomposed into four
different subgraphs in figure Go = {f,i,5,p,0}, Gi = {a,b,c,d,e, f,g,h},
Gy = {f,9,h,i,j,k,1} and G3 = {j,k,l,m,n}. Note that a MSDAG is not simply
a fragmented DAG: d-sepnodes are repeated between adjacent subgraphs. For example,
node f is in Gy, G; and GG, and it is repeated in each subgraphs. The multiply sectioned
DAG defines the hypertree of figure [3.4]



54 3. Bayesian Networks Extensions

o D
2 p [ ] GO
\ . . A2 _
d <—€«M / i ¢ eree
A 7 R B e
o

A S I R
e 1% UL i N

,,,,,,,,,,,,

(a) A DAG with sixteen nodes. (b) Decomposition of figure in four subnetworks
Go, Gl, G2 and G3.

Figure 3.3: A DAG can be sectioned into subgraphs and then organized in a hypertree.
By ensuring that the sectioning respects condition [3.1] we have the guarantee that each
hyperlink is a d-sepset in the Hypertree Multiply Sectioned DAG (Yang, 2002).

{7, k. 1}

{f,9,h}

Figure 3.4: The subgraphs of figure can be organized in a hypertree. Note that each
hyperlink is a d-sepset in figure (Yang, 2002).

Deﬁgition 3.9 (Multiply Sectioned Bayesian Network) A MSBN M is a triplet M =
(V,G, P): V = J,<;<n Vi is the total universe where each V; is a set of variables called

a subdomain. G = U, C_jl (a hypertree MSDAG) is the structure where nodes of each
subgraph G; are labeled by elements of V;. Let X be a variable and w(X) be all the
parents of X in G. Foreach X, exactly one of its occurrences (in a G; ) containing { X }u
7(X)) is assigned P(X|w(X)), and each occurrence in other subgraphs is assigned a
uniform potential. P = ||, P; is the joint probability distribution, where each P is the
product of the potentials associated with nodes in C_jz Each triple S; = (V, (_ji, ) is
called a subnet of M. Two subnets S; and S; are said to be adjacent if G, and éj are
adjacent in the hypertree.

A MSBN is a structure composed of BN fragments (the subnets) connected by d-
sepnodes. Each set of d-sepnodes shared between two fragments form a d-sepset that
d-separates the hypertree in two. From an object-oriented perspective, each fragment
can be seen as a class instantiation and the d-sepsets among each fragment can be seen
as an interfac on which each class relies to define its probabilistic dependencies. This
last point is surely the major contribution of MSBNs from a modeling perspective: d-

"Here, the term interface is used as in object-oriented programming languages or in UML. A formal
definition of a PGM interface is given in chapter[d] Until then the reader should rely on his/her (object-
oriented) intuition regarding the notion of interfaces in PGMs.
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sepsets are the only relevant information that must be shared among subnets. Moreover,
the conditional probability distribution associated to each d-sepnode is not relevant to
ensure inference correctness and only a unique copy of the d-sepnode receives the true
conditional probability distribution, where all others receive placebo conditional proba-
bility distributions. Such notions have also been developed in DBNs but MSBNs show
us that the structural repetition characterizing DBNs and the fragmenting of a BN are
not correlated: they can both be exploited separately.

ffffffffffffffff

(b) ég is chosen as the root node, it first moralizes
itself and asks to its neighbors to send their fill-ins.

(c) Gy sends edges (a, b) and (¢, d) to G5 and (a,b) (d) Gy sends edge (a, b) to G and no edge is added

is added to ég. to Gs.
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(e) éo receives a diffuse message from C_v"2 contain- (f) él receives a diffuse message from ég and adds
ing edges (a, b), (a, c) and (c, d). edge (a, c).

Figure 3.5: The collect phase of a distributed moralization in MSDAGs (Yang, [2002).
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Inference in MSBNs requires dedicated algorithms for the moralization and triangu-
lation of MSDAGsS. Since d-sepnodes are present in different subgraphs, it is necessary
to propagate fill-ins added during moralization and triangulation. To do so, a similar
approach to inference in junction tree is proposed: a root node is chosen in the hyper-
tree MSDAG, then a collect phase moralizes each subgraph from leaves to root. Then, a
diffuse phase from the root to the leaves ensures that all subgraphs are correctly moral-
ized. Figure [3.5]illustrates the collect and diffuse phase of the distributed moralization
of MSDAGs. The first step illustrated by figure[3.5b|consists i in the root’s subgraph mor-
ahzatlon here Gz Then GQ asks for collect messages from GO and G1 In figure |3.
Gl is moralized and sends a collect message containing edges (a,b) and (c,d). Slnce
52 does not contain (a, b), it is added to ég In figure 3. le is moralized and the
collect message with edge (a, b) is sent to G2 Since that edge is already in Gs no edge
is added. Fmally, G2 sends diffuse messages to Go and G1 resulting in the addition of
edge (a, c) to Gy and G,. Triangulating the moralized MSDAG is done similarly (Yang,
2002)). The final step consists in transforming the moralized and chordal MSDAG into
a linkage tree.

Definition 3.10 (Linkage tree) Let Ga subgraph in a hypertree MSDAG, 1 the d-sepset
between G and an adjacent subgraph, and T a junction tree converted from GG. Repeat
the following procedure in T' until no node removal is possible:

1. Remove X ¢ 1 if X is contained in a unique cluster C.
2. After removal, if C becomes a subset of an adjacent cluster D, merge C into D.

Let L be the resultant cluster graph. Then L is a linkage tree of T with respect to 1 if
UQe ;. @ = I, where each cluster Q in L is called a linkage. A cluster in T' that contains
Q (breaking ties arbitrarily) is called the linkage host of Q.

Figure [3.6] illustrates the construction of a linkage tree from a junction tree forest.
The inference algorithm exploiting linkage trees is similar to classic junction trees in-
ference algorithms. However, given the nature of linkage trees the algorithm is more
complex. For instance, cliques initialization and message passing are more complex
due to the repetition of linkage throughout the linkage tree. We will not detail the algo-
rithm and the reader should refer to Yang (2002) for a complete presentation.

Early extensions shortcomings

The major flaw of these two extensions is the absence of any representation paradigm.
In the case of DBNSs, templates are only used to enable massive copy/pastes and where
some inference algorithms exploit the structure, it is never used from a modeling per-
spective. However, it seems very intuitive how DBNs could benefit from object-oriented
notions: class inheritance and abstraction can model systems in which the probability
P(X;|X;_1) is not always identical. MSBNSs at first lacked any representation paradigm,
however this extension has seen an evolution in the early 2000’s and has been adapted to
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(a) Local junction trees compiled from figure

(b) The linkage tree obtained from figure

Figure 3.6: A linkage tree obtained from a junction tree forest (Yang, 2002).

the multi-agent representation paradigm. Indeed, sectioning BNs into fragments com-
bined with the distributed inference algorithms defined for MSBNs result in a sound
formalism to represent multi-agent systems. Yet, the absence of any object-oriented
aspect is not justifiable, as we can easily imagine multi-agent systems in which we
will want to model family of agents using class inheritance. Furthermore, the absence
of abstraction does not enable to plug different fragments sharing common properties.
However, if there is no clear representation paradigm in these models, we can still see
the emergence of some object-oriented notions. Interfaces in DBNs are similar to the
notion of d-sepset in MSBNs, and we will see that these two notions can be generalized
to the notion of interfaces in the framework presented in chapter Using templates
to represent different time slices is also a basic use of classes, and so is the case of sub-
graphs in MSBNs. The fact that these notions emerge naturally in these early extensions
is a good indicator of the need of a sound object-oriented framework in PGMs. In the
next section we will discuss a first attempt to formalize PGMs using the object-oriented
paradigm.



58 3. Bayesian Networks Extensions

3.2 Object-Oriented Models

As said in the introduction of this chapter, object-oriented extensions of BNs were the
first to offer a paradigm shift of BNs representation. As we will see, state-of-the-art
object-oriented extensions are not satisfying: many of our object-oriented desiderata
are either missing or poorly thought. This does not prevent these frameworks from
being remarkable and the flaws we will point out are the sole consequence of these
frameworks innovativeness. We will present two BN object-oriented extensions that,
unfortunately, share a common name: Object-Oriented Bayesian Networks (OOBNSs).
To prevent any ambiguity we will differentiate them by their respective authors, thus
calling them OOBNSs a la Pfeffer for the framework from Koller and Pfeffer| (1997);
Pfeffer (1999) and OOBNSs a la Bangsg & Wuillemin for the framework from Bangsg
and Wuillemin| (2000a.b).

Object-Oriented Bayesian Networks a la Pfeffer
The framework

OOBNSs a la Pfeffer are a complex framework, thus we will first give an overview of
them before we detail each of their features. OOBNSs a la Pfeffer revolve around objects
that are defined by a set of typed attributes. Types can either be simple or structured:
simple ones refer to random variables; structured ones to collections of simple and struc-
tured types. Object’s attributes are partitioned in three sets: inner, input and output
attributes; and objects are either simple or complex. Simple objects contain only one
output attribute and zero to n input attributes. They represent classic random variables
in a BN. Complex objects are any other type of objects, i.e., a BN fragment without
probabilistic semantics. Object’s types are inferred by their attributes: for simple objects
types are necessarily simple since simple objects contain only attributes; for complex
objects, types are defined by a structured type obtained by the union of the object’s at-
tributes and encapsulated objects (recursive definitions are forbidden). Probabilities are
introduced using Object Oriented Network Fragments (OONF). An OONF can either
be simple or complex. A simple OONF associates a simple object with a stochastic
function (Koller et al., [ 1997a)), i.e., a more elaborate definition of a CPT. A complex
OONF combines a DAG with a complex object, where nodes are the object’s attributes
and arcs connections among outputs attributes and inputs attributes. Finally, if required
an Object-Oriented BN can be a class and reused each time it is needed.

OOBNSs a la Pfeffer separate the knowledge base definition from its probabilistic
semantics. The atomic unit in this framework are types that can either be basic or
structured.

Definition 3.11 (Basic type) A basic type is a set of values, which is either one of the
predefined basic types (Booleans, Integers or Reals) or some user-defined enumerated
sets (e.g., WEATHER = {raining, cloudy, sunny}). A basic variable is a variable that
takes values in some basic type.
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In this framework, values refer to random variables domains values, e.g., each el-
ement of the set {raining, cloudy, sunny} is a value and domains are called types.
Typing is useful when we want to model several random variables with identical do-
mains. Not only this avoids having to redefine each time the variable’s domain but it
also gives a simple mechanism to identify equivalent variables. Note that in this frame-
work booleans, integers and reals are considered built-in types, i.e., that there is no need
to define them in a system to use them. Where booleans and integers naturally define
discrete random variables, real types do not. This is an issue since mixing continuous
and discrete random variables is a non trivial matter and that there is no indication on
how to proceed with both kinds of random variables.

Definition 3.12 (Structured type) A structured type is a set of values defined by a type
(Aq i ty, -+, Ay i ty), where Ay, -+ | A, are attribute labels and ty,- - - , 1, are their
corresponding (basic or structured) types. The set of values of this type are all those of
the form (A; : vy,---,V, : v,) where each v; is of type t;. A structured variable is a
variable which takes values in some structured type.

A structured type enumerates the set of random variables and encapsulated struc-
tured types it contains. The fact that no probabilistic dependency is associated with
a structured type is both interesting and puzzling. It is interesting because structured
types gather almost all the information required to define probabilistic dependencies:
variables are named and their domain is fixed. However, why not call structured types
classes or class types? We will see that structured types purpose are to guarantee the
coherence of probabilistic dependencies, however objects are defined by their types but
they also define a type. We will see in chapter [4] that structured types are in fact inter-
faces.

Definition 3.13 (Simple object) A simple object X is composed of a set of labeled in-
put attributes I,,--- , I, and a single output attribute labeled Output. All of X'’s at-
tributes are basic variables.

Simple objects define the probabilistic dependencies of attributes: input attributes
are the output attribute’s parents. However, there is still no conditional probability dis-
tribution associated with the output attribute. That the output attribute is necessarily
labeled Output can be confusing and seems superfluous.

Definition 3.14 (Complex Object) A complex object X is composed of a set of labeled
attributes. The attributes are partitioned into three sets: the input attributes (X ), the
output attributes O(X), and the encapsulated attributes £(X). The output attributes
and encapsulated attributes are called value attributes, and denoted A(X). The in-
put attributes are (basic or structured) variables. The value attributes are themselves
objects.

Both simple and complex objects definitions are confusing. The difference between
structured types and objects is unclear. What we can understand is that complex objects
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are defined by a set of attributes separated in three categories: input, encapsulated and
output attributes. Output attributes must be attributes allowed to be parents of attributes
in other objects and input attributes must serve the purpose of parents in the definition
of the object’s attributes. But there is no place left for defining dependencies among
the object’s attributes. Another confusion comes from the fact that objects attributes
are labeled, thus associated with a type in some structured or basic type definition.
Why they are not directly typed or why objects are not simply associated with a type
is puzzling. Furthermore, input attributes are variables, does that mean that input and
output attributes are not typed? Why are they not variables?

Definition 3.15 (Simple object’s full variable) For a simple object X, its full variable
V*(X) and its output variable V(X)) are defined to be X ’s output variable X .Output.

Definition 3.16 (Complex object’s full variable) For a complex object X, its full vari-

able V*(X) is a structured variable whose value is (A; : Vy,--- A, : V,), where
Ay, -+, A, are X'’s value attributes, and V; is V*(X.A;). Analogously, the output
variable V(X)) is a structured variable whose value is {Oy : Uy, -+ , Oy : Uy), where

O1, -+, Oy are X ’s output attributes and U; is V(X.0;).

Full variables are the underlying random variables of simple objects or the underly-
ing set of random variables for complex objects. Both definitions clarify the previous
ones: complex and simple objects are associated with types variables. These types are
either basic or structured depending on the object’s being simple or complex. The dif-
ference between objects and variables is that objects are organizational units, describing
entities in the knowledge base and variables associate objects with actual random vari-
ables.

Definition 3.17 (Simple object-oriented network fragment) A simple object-oriented
network fragment F' has a set of input attributes Z(F') and a single value attribute Out-
put, all of which are basic variables. The network consists of a conditional probabil-
ity function defining a distribution over Val(Ouput) for each assignment of values in

Val(T).

As for simple objects, simple object-oriented network fragments model a single ran-
dom variable. The only difference with simple objects reside in the definition of condi-
tional probability distributions: output attributes can be seen as nodes in a BN and the
input attributes as the node’s parents.

Definition 3.18 (Object-Oriented Network Fragment)

An object-oriented network fragment (OONF) F over the input attributes Z(F') and the
value attributes A(F') consists of a DAG whose nodes are the attributes of F, and, for
each value attribute A € A(F):

e For each input I and an annotation B.p we require that the attributes A.I and
V(B).p have the same type, where B is a parent of A and p is an attribute of
V(B). We also require that every parent of A be used to annotate at least one
input of A.
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Figure 3.7: The hard drive object-oriented network fragment from the computer diag-
nosis example (Pfeffer,|1999).

e An OONF Fy. If A is a simple attribute, then F'y must be a simple OONF'.

Object-Oriented network fragments associate complex objects with conditional prob-
ability distributions. Note that there is no real object-oriented aspect to an object-
oriented network fragment and it should be called a plain network fragment. A re-
markable feature of OOBNSs a la Pfeffer is that object-oriented network fragments are
similar to functions, i.e., they have parameters (the input attributes) and an output (the
output attributes). If we look at Pfeffer and Koller preliminary work, we can see that
they focused on stochastic functions and on a functional approach for BN specification
(Koller et al., 1997alb). Later, Pfeffer developed an implementation of OOBNs a la
Pfeffer by extending the programming language Ocaml, a functional programming lan-
guage (Pteffer, [2001). Whereas OOBNSs a la Pfeffer is often considered as the first and
major object-oriented extension of BN, it is in fact largely influenced by the functional
programming languages and is a strange mixture of the object-oriented paradigm and
the functional paradigm.

Figure[3.7]is an object-oriented network fragment taken from the computer diagnosis
example (Pfeffer, 1999). This object represents a computer’s hard drive. We can see
that it has the three input attributes Temperature, Age and OS-status. It also has the
two output attributes Status and Full. We can distinguish encapsulated objects from
encapsulated attributes by the nodes shapes: rectangle nodes are objects and ellipse
nodes are attributes. Consequently, in-going and out-going arcs refer to input or output
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attributes of the encapsulated object when they pass by a rectangle node. For example,
Drive Mechanism, which is an object, has three in-going arcs. Two from the input
attributes Temperature and Age, this implies that they are both input attributes of Drive
Mechanism. The third arc connects Controller to Drive Mechanism, i.e., some output
attribute of Controller is an input attribute of Drive Mechanism.

Computer
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Figure 3.8: The computer diagnosis example (Pfeffer, (1999).

Definition 3.19 (Object-Oriented Bayesian Networks) An Object Oriented Bayesian
network consists of a set of class definitions C1, - - - ,C,,, and a single Situation object
(that has no input attributes) with an associated OONF. An object X in the model (in-
cluding within a class definition) can only be associated with one of the defined classes
Ci(i=1,---,m), and C; must be type-compatible with X.

Here classes are introduced as “generic object-oriented network fragments, which
can be used multiple times in defining many similar objects”. The fact that classes
are introduced so late in the framework points out its awkwardness. Indeed, if classes
are generic object-oriented network fragments, why do not directly call them classes?
Supposing that classes are mostly instantiated once also shows the misunderstanding of
the correct use of an object-oriented PGM. Mostly, OOBNSs a la Pfeffer suffer from a
poor choice of terms and misconception of what an object-oriented BN extension should
be. Fortunately, Koller and Pfeffer were not unaware of these issues and proposed an
extension to OOBNSs a la Pfeffer called Probabilistic Relational Models (Friedman et al.,
1999).

Figure[3.8|illustrates an Object-Oriented Bayesian Network a la Pfeffer for the com-
puter diagnosis example (Pfeffer, [1999). Figure [3.7|details the Hard Drive object encap-
sulated in the Computer object, which is represented in figure [3.8] Note that Computer
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does not have any input or output attribute, this implies that Computer is a top-level ob-
ject and models an entire system. Attributes of such high-level objects are often global
variables and shared among many objects. For example, Age is both an input attribute of
Motherboard and Hard Drive. If we look to figure we can see that Age is an input
attribute to all Surface objects, Drive Mechanism and is a parent of attribute Used.

In definition the notion of type compatibility is mentioned. It guarantees the
absence of recursive definitions: “the value type of an attribute X.A must be strictly
simpler than the value type of X”. In other words, if a class C’ is encapsulated in
an object-oriented network fragment C' then C' cannot be used (even indirectly) within
C'. This restriction directly prevents the definition of recursive data types which is a
necessary feature to model dynamic systems.

Class inheritance

OOBNSs a la Pfeffer also introduce the notion of subtyping and inheritance, despite
being rudimentary we will see that these notions will be used as a base to develop class
inheritance. The first necessary notion of interface type.

Definition 3.20 (Interface type) The interface type of a class C'is a tuple (I : t1,- -,
Iy i ty, > Oy i to,, -+, Ot to,, ywhere Z(C) = {1, -+ , I}, O(C) = {O1,- -+, O}
and t 5 is the type of attribute A.

Note that there is not much difference between interface types and structured types,
but we will just ignore here the framework’s incoherence. Interface types are what we
could call the signatures of an object-oriented network fragments. In programming lan-
guage a function is defined by its name, its inputs and its outputﬂ Those three properties
are the function’s signature. Here an object-oriented network fragment is its set of input
and output attributes, which matches the set of attributes required to connect the object
with other ones in the system. Thus type interface is a form of abstraction as it hides en-
capsulated attributes. Typing classes is necessary to define a coherent class inheritance
mechanism and the next step to define such an is-a hierarchy in OOBNs a la Pfeffer is
the notion of interface subtyping.

Definition 3.21 (Interface subtype) An interface type t' is a subtype of an interface
npet if:

e If't has an output attribute named A, then t' must have a corresponding output
attribute A. The output type of t'. A must be a subtype of the output type of t.A.

o Ift' has an input attribute A, then t must have a corresponding input attribute A.
The type of t.A must be a subtype of the type of t'. A.

2 A function outputs is not considered part of the functions signature in many programming languages,
such as C or C++.
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Interface subtyping tells us that any subtype is family preserving, i.e., that any exist-
ing attribute in a given type ¢ will exist in any subtype of ¢, either with the same type or
subtype. This introduces a very useful notion called overloading. In the object-oriented
paradigm, overloading is a form of a specialization: it is when we replace an inherited
property by a more specialized one. However, overloading guarantees type compatibil-
ity, i.e., the specialized property can be used wherever its ancestor was used. To allow
such feature in OOBNSs a la Pfeffer the constraint on input attributes is necessary: an
input attribute of a subtype must be present in the super type. This goes clearly against
the idea of specialization through subtyping. The reason why such constraint was added
is to allow subtype polymorphism: if a subtype has more inputs that its super type, then
when we use a subtype in place of a super type some dependencies will not be defined.
We will see that OOBNSs a la Bangsp & Wuillemin answer this issue by introducing
default distributions to input attributes. Note that the inverse is not true: a subtype can
have fewer input attributes than its super type. This is because in BN adding a child
does not change a variables conditional probability distribution definition, thus when
using such subtype in place of its super the underlying probability distribution is still
coherent.

Definition 3.22 (Class inheritance) C’ is a subclass of C' if O(C) < O(C"), and the
projected interface type of C' onto O(C) is a subtype of the interface type of C. An is-a
hierarchy over classes is a hierarchy = over the set of classes such that, if C' = C, then
C" is a subclass of C.

This definition outlines the general idea of class inheritance in PGMs: it must pre-
serve any declared random variable so when two instances c; and ¢, are connected we
can replace either one, or both, by an instance of one of their respective subclasses. We
will see in chapter [] that the constraints present in OOBNs a la Pfeffer are only due
to how the dependencies between classes are defined. This framework is remarkable in
several ways. First of all, it is the first BN extension to use the object-oriented paradigm
as a representation paradigm. The main purpose of adding object-oriented notions here
is to fragment a BN into objects that are connected using strongly typed interface at-
tributes. By setting the focus on how these fragments are connected, i.e., on the rela-
tions between network fragments, OOBNs a la Pfeffer initiated a large number of con-
tributions that will focus on different sort of paradigm representations. Unfortunately,
OOBNSs a la Pfeffer suffer several shortcomings. The most important ones are the mis-
use of object-oriented terminology, the weak distinction between classes and instances,
the impossibility to define recursive data types and, finally, the separation between the
knowledge base (objects) and the probabilistic semantics (network fragments). The last
point is paramount, as OOBNSs a la Pfeffer suffers from many unnecessary definitions
making this framework difficult to use. This issue is partially answered in IBAL, where
OOBN:Ss a la Pfeffer are represented using a simpler formalism (Pfeffer, 2001). Finally,
it seems that OOBNs a la Pfeffer have been used for military applications. Unfortu-
nately, there is only scarce information about such applications (Pfeffer, |1999; Pfetfer
et al.| [1999).
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Inference in OOBNSs a la Pfeffer

Several solutions exist to make inference in OOBNs a la Pfeffer, among them ground-
ing the system into a flat BN is the most trivial solution. Since any OOBN a la Pfeffer
can be transformed into a BN, we can use any existing inference algorithm for BN over
OOBNSs a la Pfeffer (Koller and Pfeffer, [1997; |Pfefter, |1999). Grounding is a common
feature to any BN extension. For many small systems, this is the most convenient so-
lution for inference: grounding a network is fast (polynomial in the size of the network
(Ptefter, 1999)) and there is a considerable amount of existing softwares for probabilis-
tic inference, thus reducing considerably implementation costs. Unfortunately, ground
inference is impractical when we deal with large and complex networks. Since the
object-oriented paradigm is meant to help modeling such systems, ground inference of-
ten leads to large BN that most existing inference algorithms cannot handle. We will
now discuss Pfeffer’s solutions to this issue.

A first solution is to transform an OOBN a la Pfeffer into a MSBN (Koller and Pf-
effer, 1997). However, inference over MSBN is not meant to deal with large networks
with a strong structure, i.e., with many repeated subgraphs. Consequently, MSBN’s
inference algorithm does not offer any substantial speed up in inference time. How-
ever, merging MSBN and OOBNS a la Pfeffer to offer an object-oriented framework for
multi-agent systems seems promising.

A second solution is to exploit the hierarchical nature of OOBNs a la Pfeffer to de-
fine a heuristic for finding good elimination orders (Pfeffer, |1999). Hierarchical infer-
ence use encapsulation among objects to infer sets of nodes that d-separate encapsulated
objects from their containers. If we look at figure [3.§] before eliminating attributes of
the Computer object, we would first eliminate each of its encapsulated objects. Suppose
we first eliminate the Hard Drive object illustrated in figure then we would elimi-
nate each of its encapsulated objects and then eliminate its encapsulated attributes. This
lead to the first version of Structural Variable Elimination (Pfeffer, 1999). Regrettably,
the algorithm proposed in |Pfeffer| (1999) suffers from an overly complex formalization,
making it obscure. Yet, experimental results seem to show good performances. How-
ever, there are few informations on the data used for experimentation, thus we cannot
be too conclusive about the efficiency of this approach (Pfeffer, 1999).

The third and most promising solution is to exploit the strong structure present in
OOBN:Ss a la Pfeffer. If a class is reused several times in a system, then its DAG will be
repeated as many times in the underlying ground BN. By exploiting an elimination order
that removes encapsulated attributes before input and output attributes we can reuse the
computation in each of the class’ instances. Such elimination order is obtained by using
the hierarchical nature of OOBNs a la Pfeffer. This approach completes the Structured
Variable Elimination proposed in (Pfetfer, |1999). However, as for the second approach,
experimental results using this technique are limited to Pfeffer| (1999) and do not offer
satisfying experimental data (Pfeffer, 1999).

Structured Variable Elimination has also been adapted to inference in Probabilistic
Relational Models for open world systems. We will detail this specialization of SVE
in chapter [3.3] Structural and hierarchical inferences are at the core of this thesis and
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it is undeniable that Pfeffer’s algorithm is the first to propose such an approach. How-
ever, both the frameworks used and the experimental results are unsatisfactory. Indeed,
OOBNSs a la Pfeffer suffer from many flaws and SVE as it is formalized in (Pfeffer,
1999) suffers from them. As a consequence we have found very difficult to exploit Pf-
effer’s work and directly extend it. Our version of structured inference is presented in
chapter 5]

Object-Oriented Bayesian Networks a la Bangsg & Wuillemin

In Bangsg and Wuillemin| (2000a,b) an extension of Koller’s and Pfeffer’s work is pro-
posed. Both frameworks share equivalent expressive power, with the possibility to
model dynamic OOBNs using Bangsg’s framework. We will see that the main differ-
ence between both frameworks is the formalization: OOBNSs a la Bangsg & Wuillemin
1s more centered on modeling and offers a simpler framework than OOBNSs a la Pfeffer.
A complete definition of OOBNs a la Bangs¢ & Wuillemin can be found in Bangsg’s
thesis (Bangsg, 2004). In Bangsg et al. (2003)) a link between OOBNSs a la Bangsg &
Wuillemin and inference in MSBNSs is provided. A medical decision support systems
built using OOBNS a la Bangsg & Wuillemin is proposed in|Bangsg and Olesen| (2003)
and in Bangsg et al. (2006) they are applied to virtual agents in role playing games.

The framework

Unlike OOBNSs a la Pfeffer, OOBNs a la Bangsp & Wuillemin use classes instead of
objects. As hinted previously, classes are BN fragments and serve as templates to repeat
patterns several times in a system. In OOBNs a la Bangsp & Wuillemin, the knowledge
base and the probabilistic semantics are not separated as in Pfeffer’s framework. How-
ever, nodes are separated in three distinct subsets, following the same idea proposed in
the previous section with subtle changes.

Definition 3.23 (Class) A class C is a DAG over (I U P U O, E), where [ is the set of
input nodes, P is the set of protected nodes, O is the set of output nodes, and E is the
set of directed edges between nodes.

e [, P, O are pairwise disjoint.

e A node of I has no parents in C, no children outside C and can have at most one
referenced node outside C.

e A node of P has neither children nor parents outside C.

e A node of O has no parents outside C.

In OOBNSs a la Bangsp & Wuillemin, nodes can represent different notions, most of
them exist in OOBNSs a la Pfeffer. They can represent encapsulated instances in a class,
classic random variables and references. References is somewhat a generalization of
OOBNSs a la Pfeffer input nodes and give access to nodes defined in other classes.



3. Bayesian Networks Extensions 67

Definition 3.24 (Node) A node in an OOBN is either:
e an instance node: a node representing the instance of a class inside another class.
e a simple node: a node which is either:

— a reference node: an input node can have only one referenced node and is
a place-holder for it. An optional default prior distribution is used when no
referenced node has been specified. A reference node cannot have parents,
but it can have children. All input nodes are reference nodes. A protected
node cannot be a reference node.

— a regular node: the same as a node in BNs.

-

. Fodder ) ' Parent ) { Drink " input node )

S Then | o

Figure 3.9: The different kinds of nodes in a class (Bangsg, 2004).

Figure[3.9]illustrates the precedent definitions. Classes are not different from object-
oriented network fragments, yet OOBNSs a la Bangsg & Wuillemin formalization helps
modeling object-oriented domains as there is no ambiguity between classes and in-
stances as in OOBNSs a la Pfeffer. However, this framework takes a special care in
defining the links between simple nodes and reference nodes, a topic left undefined in
Pfeffer’s framework. Formalizing the relationships between simple and reference nodes
is done using different types of links.

Definition 3.25 (Link) A link is either a:
e a directed link (simple node — regular node): links as in normal BNs.

e a reference link (simple node --+ reference node): A --+ B means “A is refer-
enced by B”. B is a reference node, A is the referenced node.

Since reference nodes cannot have parents (in the sense of BNs), the type of link is
given by the type of the node pointed to by the link. Figure [3.10]is a smaller version
of the cow stock example (Bangsg and Wuillemin, [2000b; Bangsg, 2004) and illustrates
the different types of links allowed in OOBNSs a la Bangs¢g & Wuillemin. This example
models a small stock of cows and estimates the expected income it will generate. Again,
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Figure 3.10: An instantiation of figure [3.9|in the cow stock example (Bangsg, [2004).

there are not many differences with OOBNSs a la Pfeffer. The most important one being
the existence of reference links and the constraints in the construction of the systems.
Each set of nodes connected via reference links forms a tree. The constraints that pre-
vent from creating inconsistent probability models, i.e., with cyclic dependencies, are
defined using that reference tree. To prevent ill-conceived systems and to offer modeling
guidelines the following rules restraining reference definitions are proposed in Bangsg
(2004):

Rule 3.1 (Reference tree restriction) The reference tree restriction entails that:

1. Input nodes cannot be used as referenced nodes for simple nodes specified in the
same class but only for input nodes of (other) instances. Two input nodes in an
instance cannot have the same referenced node.

2. Output nodes can be used as referenced nodes for output nodes in the encapsu-
lating class and for input nodes in a different instantiation in the encapsulating
class. Two output nodes of a class cannot have the same referenced node.

3. Protected nodes can be used as referenced nodes for input nodes of instances only.
Protected nodes will always be referenced roots if they occur in a reference tree,
as they can never be reference nodes.
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4. A chain of reference links can go in both directions (further inside instances or
further out) but once it begins going inside, it cannot go out again.

The first rule entails that for two inputs nodes /; and /; of the same class, I; cannot
refer to ;. This constraint prevents ill constructed classes, since there is not much
sense in modeling a class with such feature. Furthermore, preventing two input nodes
from referring the same node when the class is instantiated follow the same concept. If
we allowed such constructions it could lead to unexpected loops since inputs nodes are
supposed to be distinct nodes. If it is not the case, then there is no reasonable justification
to have two input nodes instead of one. The second rule limits output nodes visibility.
This prevents a class to gain access to an output node bypassing its encapsulating class.
For example suppose we have three classes A, B and C' such that B is encapsulated
by A and has the output node X. Now, if we model C' such that it requires an input
attribute matching X, it cannot link its input node directly to B’s output node. We must
first add a reference output node to A that references X, name it X 4. Since A and C' are
at the same encapsulation level, we can connect C”s input attributes with X 4. The third
rule is derived from protected nodes definition, i.e., they are neither input nor output
nodes. Since they cannot be output nodes, they can only be referenced by input nodes of
encapsulated instances in their class. The final rule prevents ambiguous situations where
two nodes at the same level will in fact be the same random variable in the associated
probability distribution. In such situation, modeling undesired cyclic dependencies can
be achieved without noticing it.

Dynamic OOBNSs a la Bangsp & Wuillemin

OOBNSs a la Bangsp & Wuillemin offer basic dynamic BNs modeling. To do so, tempo-
ral links are added to create links between input and protected nodes that are normally
illegal. Such links are called temporal dependence links. These links represent depen-
dencies between time slices and only exist between two adjacent time slices, thus they
are discarded when checking for acyclicity.

Figure [3.11] is an example of a time slice class. The dashed links are temporal
dependence links, they represent the probabilistic dependencies between time slices 7;
and 7}, . For each temporal dependence link X --» Y, where Y is an input node and
X either an output or protected node, the node X in time slice 7; will be referenced by
the input node Y of time slice 7} 1.

Class inheritance

We have seen that OOBNs a la Pfeffer force constraints on the input nodes of subclasses.
OOBNSs a la Bangsp & Wuillemin allow to define default probability distributions for
input nodes. Doing so relax the OOBNs a la Pfeffer constraint over subclasses input
nodes. Thus, they offer a generalization of OOBNSs a la Pfeffer class inheritance mech-
anism.
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Figure 3.11: A time slice class with temporal dependence links (dashed arcs) and its
associated 2-TBN.

Definition 3.26 (Class inheritance) A class S over (Is U Ps U Og, Es) can be a sub-

class of a class C over (Ic U Pc U O¢, Ec) (where C' is a superclass of S), denoted
S>Cif[c§15, Po € Ps and Oc < Og.

Definition offers a sounder definition of class inheritance. Indeed, we want
to use class inheritance to specialize classes by creating subclasses of them. The most
straightforward manner to do that is to add nodes, either input, protected or output nodes,
to the subclass.

* Weather »  Fodder ) ¢ Parent }  Drink

~

Figure 3.12: A subclass of the class of ﬁgure

Figure is a subclass of the Cow class of figure[3.9] As we can see, this subclass
has more arcs that the class of figure This implies that some CPTs have been
specialized, i.e., they are a more precise probabilistic representation of the attributes of
the specialized class of figure[3.12] Such feature is not present in OOBNs a la Pfeffer.
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Definition 3.27 (Conditional probability table’s scope) The scope of the CPT associ-
ated with the node X, where Cr is the class where the node is originally defined for
the first time, is a substructure of the class tree with C'r as the root. Each subclass of
Cr is a member of the scope if and only if the CPT is not overwritten in that subclass or
in one of its superclass.

We will see that overwriting CPTs in subclasses is much more interesting than ana-
lyzing in which class it is unmodified. Yet such scope can be useful to prevent unneces-
sary memory usage. However, its use in inference is limited since we can hope reusing
computations only if a class and its subclass share the same conditional probability dis-
tribution, which does seem compatible with class inheritance use.

Inference

Unfortunately, there is not much to say about inference in OOBNs a la Bangsp &
Wuillemin from the perspective of structural inference. The main inference approaches

consist in either grounding the system into a BN or transforming it into a MSBN (Bangsg),
2004).

0O Bayesian Networks flaws and shortcomings

OOBN s are the first BN extension based on a paradigm representation shift. Frag-
menting BNs into instances of different classes helps with modeling complex systems
and structural inference seems to considerably speed-up inference. We have seen that
both OOBNSs a la Pfeffer and OOBNs a la Bangsp & Wuillemin offer similar expres-
sive power, while Pfeffer’s framework focuses more on the formalization, Bangsg &
Wauillemin priority is to offer a sound framework for modeling complex systems. Let us
recall the five object-oriented desiderata introduced at the beginning of this chapter: (i)
objects are defined by classes and used as instances, (ii) class inheritance, (iii) abstrac-
tion, (iv) subtype polymorphism, and (v) recursive data types. Let us consider how each
of these desiderata is more or less well satisfied in either OOBNs a la Pfeffer or OOBNs
a la Bangsp & Wuillemin.

For the first desideratum, we saw that OOBNSs a la Pfeffer can use the notion of class
but it is defined awkwardly and the difference among classes, objects and instances is
very ambiguous. OOBNSs a la Bangsg & Wuillemin offer a sounder formalization, yet
there is some ambiguity about the presence of instances in classes. Indeed, in such
situation the system is modeled as a unique class. Instances are only found in their en-
capsulating class. The fact that an instance can be connected to a class is an undesired
feature, we would prefer specify the classes then instantiate them and connect the in-
stances in a specific entity that is not a class. The second desideratum implementation
is also unsatisfactory. For example, it is not possible to specialize input or output nodes,
1.e., use amore specialized random variable type. This reveals another problem: random
variable type specialization. Suppose we model some generic equipment with a failure
node with the domain {functional, dysfunctional}. If we create a subclass to model a
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printer, we may want to specialize its failure states to {functional, no ink, paper jam}.
Both the absence of ink and a paper jam are specific cases of printers dysfunction, but
such specialization is impossible with both frameworks. Abstraction in PGM consists in
specifying a class with omitting probabilistic semantics. OOBNSs a la Pfeffer complex
objects are close to this notion: it provides the names of attributes that are present in
any object-oriented network fragment over that object. However, complex objects must
specify all the attributes that will be present in the associated object-oriented network
fragment. It is also unclear if complex objects are defined by a structured type or if the
type is inferred from the object. Ideally, we want to only specify the attributes that will
be used by other classes, i.e., only specify output nodes. In both OOBN versions it
is possible to proceed with subtype polymorphism since input nodes do not take into
account the class to which the node belongs. However, if we allow random variable
type specialization this form of subtype polymorphism is inefficient. Finally, the fifth
desideratum is present in OOBNSs a la Bangsg & Wuillemin but it is somewhat compli-
cated. Ideally we would want to handle dynamic systems without introducing specific
links. Thus allowing recursive data types creates the need of an efficient loop detection
algorithm. We will see that such issue is correctly dealt with in Probabilistic Relational
Models.

3.3 Probabilistic Relational Models

After introducing the object-oriented paradigm in BNs, the community focus have been
set on how to define relationships among BN fragments. The entity-relationship para-
digm was then used to extend the preliminary work on OOBNs a la Pfeffer. This new
paradigm shift was initiated for machine learning purpose (Getoor and Taskar, 2007).
Despite its intent to be used for machine learning, we will see that Probabilistic Re-
lational Models (PRMs) fix many OOBNSs a la Pfeffer flaws. PRMs are an extension
of OOBNSs a la Pfeffer (Friedman et al., 1999; Pfefter, [1999). They extend Pfeffer’s
framework by introducing reference slots, a notion both inherited by frames, plate mod-
els and the entity-relationship paradigm (Wellman et al., [1992; Buntimel, |1990; Koller
and Pfeffer, 1998} |[Heckerman et al., 2007). An important feature of PRMs is structural
uncertainty that we detail at chapter [3.3] As for OOBNs a la Pfeffer, PRMs exploit a
form of structured inference.

Basic definitions

PRMs are inspired by relational languages, where the focus is set on classes of ob-
jects and by defining relations among these objects. There are many different graphs
which represent PRMs, one among others are relational schema. Borrowed from the
entity-relationship paradigm, they describe attributes of each class and define relation-
ships among classes. As we will see, if a relation exists between two classes it does not
necessarily entails a probabilistic dependency. Figure is a relational graph repre-
senting the power surge example. Note that a relational schema is only a pattern to an
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infinite number of possible worlds, for example figure [3.13b|illustrates a possible world
for the relational schema of figure

Example 3.1 (The power surge example)

The power surge example is a computer maintenance problem where a set of comput-
ers and printers, located in different rooms, are powered by one or more power sup-
plies. Breakdowns are caused by power surges, also known as voltage spikes. They can
be caused by lightning strikes, power outages, tripped circuit breakers, short circuits,
power transitions in other large equipment on the same power line, malfunctions caused
by the power company, etc. Depending on the voltage spike intensity and the overall
quality and age, electronic devices, i.e., computer and printer, may breakdown after a
power surge. Each equipment is described by its current state (state: {OK, NOK}).
For computers, an additional attribute shows if we can print (canPrint: {can, cannot}).
Finally, power supplies are described by their power state (power: {on, off, surge}), the
surge state showing that at least one power surge occurred in the last 24 hours. Finally,
a computer is usually plugged to one or more printers, it can print if at least one of its
printers is functional.

PowerSupply [<— R00mS , o
power powersuppty canPrint
A false
I
: : ! T
- ! Printer Printer Printer !
Printer Computer ! Pl P2 P3 !
room e — — — — room I | state state state -
state printers :‘ OK OK OK
state | A
canPrint ot
(a) A relational schema. (b) A possible instantiation of figure

Figure 3.13: In figure a relational schema representing different objects and their
relationships. In figure [3.13b] a possible instantiation of the schema represented in
[3.13a] Rectangles are classes and rounded rectangles are objects. Dashed lines denote
existing relations among classes (or objects). Classes are described using attributes and
reference slots. For instances, they are assigned values.

PRMs are described using a set of classes, X = {Xy,---, X,,}. Each class X is
associated with a set A(X) of attributes and a set R(.X) of reference slots. An attribute
A of class X is denoted X.A, and its space of values, i.e., the domain of the random
variable it is representing, is denoted Val(X.A). Remarkably, reference slots are not
formally defined in any of PRMs presentations. This is surprising as it is their main fea-
ture. But, when we try to define them, we are confronted with several semantic issues.
In Pfefter (1999) a solution is to introduce them by defining a relational knowledge
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base. However, we find this approach to be too complicated: it introduces too many
intermediate definitions that do not prove to be of any practical use. In chapter 4 we
will propose our definition of reference slots and until then we will use the notions in-
troduced in |Getoor et al. (2007). We use X.p to denote the reference slot p € R(X).
Reference slots are typed, i.e., for each p € R(X) its domain type domain(p) equals
X and its range type range(p) equals Y, where Y is a class in X'. The inverse refer-
ence p~! of p € R(X) is the reference slot such that: domain(p™) = range(p) and
range(p—') = domain(p) and is defined in R(Y),Y € X.

A reference defines a 1-to-n relation (one computer connected to many printers), in
some cases, we are guaranteed that the relation is a 1-to-1 (one computer in one room).
Since 1-to-n relations require specific treatment regarding probabilistic semantics, we
will always differentiate single reference slots (1-to-1) from multiple ones (1-to-n). Note
that the inverse of single reference slot is not necessarily single (for example the relation
between Computer and Room is single, however its inverse is multiple). A slot chain K
is a sequence py, - - - , pi of reference slots such that for all i, Range|p;| = Dom|[p;1].
The inverse slot chain of K is the slot chain K~! such that K=! = p, ', -+ p;'. We
will say that a slot chain is single if all its reference slots are single, otherwise it is
multiple. For a modeling perspective, slot chains are user defined while inverse slot
chains are automatically inferred and used for inference purpose (see chapter [5.2).

PowerSupply

Printer

™a
N

Computer

Figure 3.14: Attributes parents are either attributes of the same class or attributes ob-
tained through a slot chain. If the slot chain is multiple then it is necessary to aggregate
the parents information obtained using aggregators.

Figure [3.14] illustrate all these notions. Attributes are represented as nodes and
probabilistic dependencies with arcs. We can see that classes Computer and Printer
access PowerSupply.power using their reference slots over Room: Printer.room.power-
Supply.power is the parent of Printer.state; Computer.room.powerSupply.power and Com-
puter.state are parents of Computer.canPrint. Note that the arc between Computer.can-
Print and Printer.state shows that it is a multiple relation. For probabilistic dependencies
defined using multiple slot chains, it is necessary to aggregate the information received.
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Here we merge the data from all printers connected to a computer such that we obtain
the value true if at least one printer is working and false otherwise. Aggregators are an
important feature of PRMs and we will detail them further shortly. We must remember
that a relational schema such as figure [3.14]is a pattern to an infinite number of possible
worlds (also called instantiations of the schema). Until now, we have been elusive on
how the probability distribution represented by a PRM is defined, we will now detail
this aspect.

Definition 3.28 (Instance of a relational schema)

An instance 1L of a relational schema specifies: for each class X, the set of objects of X
inZ, denoted Z(X); a value for each attribute x. A (in the appropriate domain) for each
object x; a value y for each reference slot x.p, which is an object in the appropriate
range type, i.e., , y € Z(Range[p]). Conversely, y.p~' = {z|x.p = y}. We use A(x)
as a shorthand for A(X) and R(x) as a shorthand for R(X), where x is of class X.
For each object x in the instance and each of its attributes A, we use I, 4 to denote the
value of x.Ain I.

The previous definition needs some clarification about the vocabulary used. Usu-
ally an instance is always the instantiation of something, either a class, a schema or
an attribute. In the PRM terminology, this is not the case: an instance is only the use
of a relational schema to model a specific situation (called a world), as in figure
(Getoor et al., [2007). An instance does not have any uncertainty since all its attributes
are observed (which is the purpose of the /. 4 notation which should have been denoted
x.A = a or x.a to preserve BNs classic notations). An object denotes the use of a class
in an instance. There is no term dedicated to denote attributes and reference slots of
instances, e.g., we cannot say that x.A is the instantiation of X.A in . In chapter 4.1
we will introduce a more standard object-oriented terminology and discuss the practical
reasons of our choices. In the remainder of our presentation of PRMs we will denote by
the term object class instances.

Definition 3.29 (Relational Skeleton) A relational skeleton o, of a relational schema
is a partial specification of an instance of the schema. It specifies the set of objects
0-(X;) for each class and the relations that hold between the objects. However, it leaves
the values of the attributes unspecified.

A relational skeleton o, represents a world for which we have partial information:
we know the number of objects and their relationships but attributes values are uncertain.
A relational skeleton serves the same purpose as BNs for reasoning under uncertainty,
1.e., it factorizes a joint probability distribution. Introducing uncertain knowledge using
probabilities, also called the probabilistic semantics of a PRM, is achieved using two
components: a qualitative dependency structure S and the parameters g associated
with it. Both of them are illustrated in figure [3.14} the dependency structure defines the
probabilistic dependencies for each attribute, i.e., their set of parents, denoted m(X.A).
Parameters are defined using CPTs. Recall that at class level we are defining a pattern,
thus 7(X.A) stands for the formal parents of X.A and for each object = of X, the set
7(x.A) will often be specific for each one of them.
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Example 3.2 Let us consider figure [3.13b| and suppose that all attributes are unob-
served. Figure[3.14|informs us that Computer.can Print’s parents are Computer.state
and Computer.printers.state. Now consider object C'1 in figure[3.13b| C'1.canPrint’s
parents are C'l.state, Pl.state and P2.state. Note that C'l.canPrint’s parents are
different from C2.canPrint’s parents: C2.state and P3.state.

Attributes parents are either in the same class or reached from another one using a
slot chain. Where the first case is standard, the second needs further explanations. We
denote by x.K the set of objects that are K-relatives of z, i.e., the set of objects acces-
sible through the slot chain K. Thus we need to define the probabilistic dependencies
of z.A using the multiset {y.B : y € x.K}. If the slot chain is single, then CPTs can
be used. If not, we need to aggregate the information contained in the multiset (recall
the arc labeled exists between Computer.canPrint and Printer.state in figure [3.14). This
is where the notion of aggregation from database theory is used to answer this issue. It
consists in using probabilistic or deterministic functions to create on-the-fly CPTs case-
by-case, i.e., given the number |{y.B : y € x.K}|. Such functions are already used by
experts to model BNs: noisy-or, k-out-of-gates, count, mean, min, max, exists, for all,
binomial distributions, Poisson distributions, etc.

Definition 3.30 (Aggregate) An aggregate v takes a multiset of values of some ground
type, and returns a summary of it in the form of a discrete multi-valued attribute. The
type of the aggregate can be the same as that of its arguments. However, we allow other
types as well, e.g., , an aggregate that reports the size of the set (with an upper and
lower bounds on the possible sizes). We allow X.A to have as a parent v(X.K.B); the
semantics is that for any v € X, x.A will depend on the value of y(x.K.B).

A ground type denotes attributes with identical domains, i.e., two attributes with
identical ground type are two distinct random variables with identical domains. Ag-
gregates are used to reduce an unknown number of attributes to a single one, enabling
definitions of CPTs at class level. With this, we can now give a formal definition of
PRMs.

Definition 3.31 (Probabilistic Relational Model) A PRM 11 for a relational schema R
is defined as follows. For each class X € X and each attribute A € A(X), we have:

e a set of parents m(X.A) = {Uy,---,U;}, where each U; has the form X.B or
v(X.K.B), where K is a slot chain and v an aggregate;

e a legal conditional probability distribution (CPD), P(X.A|r(X.A)).
Given a PRM II and a relational skeleton o,., we can build the ground BN of {11, o,.}.

Definition 3.32 (Ground BN) A PRM 11 and a relational skeleton o, define the follow-
ing ground BN: there is a node for every attribute of every object x € 0,.(X), z.A. Each
x.A probabilistically depends on parents of the form x.B or . K.B. If K is not single-

valued, then the parent is the aggregate computed from the set of random variables
{yly € ©.K},v(2.K.B). The CPD for x.Ais P(X.A|lr(X.A)).



3. Bayesian Networks Extensions 77

We can then write an equation equivalent of[I.2for PRMs, i.e., a factorized expres-
sion of the probability distribution represented by {II, 0,.}. We express it as the product
over each attribute of each object in o, of the attribute’s CPT. CPTs are inferred from
the probabilistic semantics of each class in IT. We denote by o,.(X) the set of objects of
X in o,.

P(I|O’T,S, 95‘) = H 1_[ P ;rA|I7r(ac A))

z€0r AEA(x)

=11 1] ] Pallwa) 3.1

XeX AeA(X) zeor(X)

Detecting cycles in Probabilistic Relational Models

PRMs are directed PGMs and, as for BNs, cyclic dependencies are forbidden. The fact
that a relational schema represents an infinite number of worlds can be problematic if,
for some of them, cyclic dependencies can be found. It is possible to detect such invalid
worlds during the modeling process for small systems, however it is nearly impossible
for complex ones. Generating the ground BN for a given instance is one solution to
check for cycles, but it is possible to guarantee the probabilistic coherence of a sys-
tem using dependency graphs. Furthermore, these dependency graphs are useful as a
modeling tool to exhibit probabilistic dependencies.

Definition 3.33 (Instance dependency graph) The instance dependency graph G, for
a PRM 11 and a relational skeleton o, has a node for each attribute of each object
x € 0,.(X) in each class X € X. Each x.A has the following edges:

1. Type Il edges: for each formal parent of x. A, X.B, we introduce an edge from x.B
to z.A.

2. Type Il edges: for each formal parent X.K.B, and for each y € x.K, we define
an edge from y.B to . A.

Theorem 3.2 Let 11 be a PRM whose dependency structure S is acyclic relative to a
relational skeleton o,. Then 11 and o, define a coherent probability distribution over
instantiations I that extend o, via

Proof omitted (see chapter 5 in Pfeffer| (1999)). This result is unsurprising since the
instance dependency graph topology is closely related to the ground BN, the difference
being in the absence of aggregate representation. However, we can also infer acyclic
properties of a PRM from its classes only.

Definition 3.34 (Class dependency graph) The class dependency graph Gy for a PRM
IT has a node for each descriptive attribute X.A, and the following edges:

1. Type I edges: for any attribute X.A and any of its parents X.B, we introduce an
edge from X.B to X . A.
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2. Type Il edges: for any attribute X.A and any of its parents X .K.B we introduce
an edge fromY.B to X.A, where Y = Range[ X.K].

Theorem 3.3 [f the class dependency graph G pi is acyclic for a PRM 11, then for any
skeleton o, the instance dependency graph is acyclic.

Proof omitted (see chapter 5 in |Pfeffer| (1999)).

Corollary 3.1 Let II be a PRM whose class dependency structure S is acyclic. For
any relational skeleton o,, 11, and o, define a coherent probability distribution over
instantiations I that extend o, via

In some situation, cycles can appear in the class dependency graph that are not
present in the instance dependency graph. This will often be the case for temporal or
recursive models. To represent such models using PRMs, we must guaranty the absence
of cycles.

Definition 3.35 (Acyclic guaranty) If reference slots Ry, = p1,--- , pr are guaran-
teed acyclic, we guaranty the existence of a partial ordering <,, such that if y is a
p-relative for some p € Ry, of x, then y <y, x. We say that a slot chain K is guaran-
teed acyclic if each of its component p’s is guaranteed acyclic.

A simple way to represent these reference slots and slot chains is to use edge col-
oring. The edge coloring results in a colored class dependency graph that describes the
direct dependencies among attributes.

Definition 3.36 (Colored class dependency graph)
The colored class dependency graph Gy for a PRM 11 has the following edges:

1. Yellow edges: if X.B is a parent of X.A, we have a yellow edge X.B — X.A.

2. Green edges: if v(X.K.B) is a parent of X.A,Y = Range[X K], and K is
guaranteed acyclic, we have a green edge Y.B — X . A.

3. Red edges: if v(X.K.B) is a parent of X.A,Y = Range[X K], and K is not
guaranteed acyclic, we have a red edge Y.B — X_.A.

Theorem 3.4 Given a PRM 11, if every cycle in the colored class dependency graph
for 11 contains at least one green edge and no red edges, then for any skeleton o, the
instance dependency graph is acyclic.

Proof omitted (see chapter 5 in |Pfefter] (1999)).
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Figure 3.15: A relational skeleton with unnamed objects in which a tree-like world
generation was used.

Structural uncertainty

BNs represent uncertainty: we describe a world with descriptive attributes and assign
conditional probability distributions to them. BNs do not offer any mechanism to encode
uncertainty about the existence of probabilistic relations: there is no uncertainty about
the set of parents of a random variable. For some applications, we may want to represent
such uncertainty over the structure of a BN. PRMs offer different solutions to represent
structural uncertainty.

In PRMs we distinguish two sorts of objects: named and unnamed objects. Named
objects are user-defined objects and represent the fact that we are certain about the ex-
istence of that object in our knowledge base. When all objects in a world are named,
we are modeling a closed world. Sometimes, we may have insufficient named objects to
derive a valid probability distribution. In such situation, we are modeling an open world:
a world in which we must generate unnamed objects until we obtain a valid probability
distribution. For example, in figure [3.14] we pretend that we could not name the object
power of the PowerSupply class. In such case we must define rules to generate possible
worlds. In [Pfeffer] (1999), a constraint is to force tree-like structures. In figure [3.14] we
remove the named object power, this results in the open world illustrated in figure[3.13]
However, generation rules influence greatly the resulting worlds. It is necessary to have
a good understanding of the domain and good feedbacks from experts.

Open worlds and generating unnamed objects are a simplistic structural uncertainty
feature. PRMs offer two notions to represent more complex structural uncertainty (Pfef-
fer, 1999): reference and existence uncertainty. Reference uncertainty represents uncer-
tain knowledge about the existence of reference links among objects. A straightforward
solution would be to assign a probability value to each possible link, however the num-
ber of such links grows exponentially with the number of objects. To reduce the number
of required parameters, PRMs use a partition function and then consider the existence
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Operating System
Room Partition | Apple Linux Windows
Secretary 0.5 0.0 0.34
Class Room 0.1 0.8 0.33
Prof. Office 0.4 0.2 0.33

Table 3.1: Representing reference uncertainty using selector attributes and partition
functions.

of a reference link between an object and an object in one partition. In each partition,
objects are considered equally eligible to receive the reference link.

Example 3.3 Let us consider the power surge example. To express uncertainty about
the location of computers, i.e., uncertainty about the existence of reference links be-
tween objects of the Computer class and objects of the Room class, we must first par-
tition rooms. Let us suppose that we are in a university and we have the following
different rooms: secretary, class rooms and professors office; and different operating
systems: Windows, Ubuntu and MacOS. By introducing a selector attribute for refer-
ence Computer.room, we can define a conditional probability distribution as in table
[3.I|which expresses the probability of a computer being in a given type of room depend-
ing on its operating system.

The following is a formal definition of reference uncertainty in PRMs:

Definition 3.37 (Reference uncertainty) A PRM 11 with reference uncertainty over a
relational schema R has the same components as in definition In addition, for
each reference slot p € X with Range[p] =Y, we have:

® a partition function 1,;
e a selector attribute S, € A(X) which takes on values in the range of \,;

e a set of parents and a conditional probability distribution for S,,.

We can include reference uncertainty in equation [3.1] as follow:

P(z.S, = m(z.S
P(Ilo,, = [T ] 11 PmA|7r:nA)) m = pII(;ﬁ[ijH( )

XeX zeoo(X) AcA(X PER(X) y=2.p

(3.2)

where o, is an object skeleton (an incomplete relation skeleton), 1|y] refers to the parti-
tion assigned to y and |Z(Y,[,1)| the number of objects in partition 1/[y]. Note that when
using reference uncertainty, we use the selector attribute only when no reference link is
defined between the two classes. Thus, in the previous example, all rooms are consid-
ered as possible candidates for a given computer. The partition function helps reducing
the number of parameters since instead of defining a CPT for all existing rooms, we
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use the different partitions. Since we suppose that all objects in a partition are equally
probable to be connected to a computer we can infer the probability for a given object to
be connected to the computer. Note that the equiprobability assumption is arbitrary and
nothing prevents us to choose a more subtle probability distribution (except the number
of required parameters).

The second form of structural uncertainty is called existence uncertainty. Here, we
refer to the entity-relationship paradigm and distinguish entity classes from reference
classes. A special boolean attribute F, called the existence attribute, is added to each
reference class. We differentiate determined class from undetermined ones by either
setting X. E to true or by assigning it a probability distribution. As for classic attribute,
these specific existence attributes can have a set of parents. Given an entity skeleton o,
which specifies the set of objects in our domain only for entity classes, we define the
induced relational skeleton o, [0, ] as follows:

Definition 3.38 (Induced relational skeleton) Consider a schema with determined and
undetermined classes, and let o, be an entity skeleton over this schema. We define the
induced relational skeleton, o,[o.], to be the relational skeleton that contains the fol-
lowing objects:

e If X is a determined class, then o,|0.|(X) = 0.(X).

o Let X be an undetermined class with reference slots p1, - - - , pr whose range types
areYy,--- Yy respectively. Then o,|0.|(X) contains an object X |y, - - - , yx| for
all tuples (y1, -+, yx) € 0x[0c](Y1) x - -+ x 0, [0] (V).

The relations in o,.[o.] are defined in the obvious way: slots of objects of determined
classes are taken from the entity skeleton; slots of objects of undetermined classes are
induced from the object definition: X |y, -+ , yr].pi iS Yi.

Simply put, an induced relational skeleton is a relational skeleton in which we added
all combinations of possible references represented by undetermined classes. To define
the probability distribution of PRM using existence uncertainty, we must define two
constraints over undetermined classes. If for one slots p of X, x.p.F = false then
x.El = false. To implement such constraint we redefine the conditional probability
distribution of X.FE such as:

P*(X.E|Pa*(X.E)) { P(X.E|r(X.E)) ifX-pi-E = true,Vi=1,--- ,k,
0 otherwise

where Pa*(X.F) = n(X.E) u {X.p1.E,--- , X.p;.E}. The second constraint prevents
from taking into account attributes of nonexistence objects. If X.A is an attribute and
Pa*(X.A) = m(X.A) u {X.FE} we redefine X.A conditional probability distribution as
follow:
P(X.Aln(X.A)) ifX.E = true,

1

~ otherwise.

P*(X.A|Pa*(X.A)) =
[Val(x. 4)|
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Given an entity skeleton 0., a PRM II with existence uncertainty specifies a distri-
bution over a set of instantiations Z consistent with o,.[o,]:

P(Zlo., ) = P(Z|o,[o], ) = [ ] ]] P*(z.AlPa*(z.4)).

XeX zeor[oe](X) AeA(x)

To end our presentation of structural uncertainty in PRMs we will remark that these
features can be simulated in BNs by assigning specific CPTs. However, this can be
difficult and by introducing such features, PRMs reduce the modeling costs of such
systems.

Inference in Probabilistic Relational Models

Inference in PRMs is closely related to inference in OOBNSs a la Pfeffer. The SVE al-
gorithm has been adapted to PRMs (Pfeffer, |1999) and exploits open worlds to reduce
inference cost. The concept is simple, each time the algorithm encounters an unnamed
branch of the system it caches the factors obtained after its elimination and reuses it each
time an equivalent branch is found. This is possible solely due to the generation algo-
rithm of unnamed objects that must guarantee the equivalence among branches spanning
from objects of the same class. As we will see later, since we will not consider open
world systems, we will not exploit this feature of SVE.

Probabilistic Relational Models as an object-oriented framework

It can be surprising to consider PRMs as an extension of OOBNs a la Pfeffer because
they are not described as an object-oriented PGM. It is even more surprising to see that
notions such as class inheritance, abstraction and subtype polymorphism are not ex-
tended in PRMs. However, the differences between OOBNSs a la Pfeffer and PRMs are
scarce. An important change is the simplification of the framework, making it much
more accessible, but the most important change is the introduction of reference slots. In
OOBNSs a la Pfeffer, classes were connected using input attributes, thus it was neces-
sary to declare as output nodes each node that had children in other classes. In PRMs
this constraint disappears since a class can reach the totality of a class’ attributes us-
ing reference slots. From a modeling perspective, such representation is more flexible
and drastically simplifies the creation of complex systems. A side effect is to reduce
the structure in PRMs, indeed objects are no longer encapsulated in one another and
exploiting hierarchical inference is harder. The fact that PRMs are not labeled by their
creators as an object-oriented PGM does not prevent us from considering it as one. The
purpose of chapter [ and one contribution of this thesis, is to complete the PRM frame-
work to make it a fully object-oriented PGM that is well suited for modeling complex
systems.
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3.4 First-Order Probabilistic Models

First-Order Probabilistic Models (FOPMs) represent relations among BN fragments us-
ing first-order logic. The use of first-order logic helps defining complex relationships
and considerably increases PGMs expressive power. FOPMs are undeniably at the core
of most recent contributions and stand for many extensions. Among them we can find
Markov logic networks (Domingos et al., 2006), Bayesian Logic Programs (Kersting
and Raedt., 2001), Multi Entity Bayesian Networks (Laskey, [2008), Relational Baye-
sian Networks (Jaeger, |1997), parfactors (Poole, 2003) and most frameworks presented
in (Getoor and Taskar, [2007). At first sight, we could think that FOPMs do share much
in common with object-oriented PGMs, but we will see that it is not the case. Indeed,
Multi-Entity Bayesian Network (MEBN)), the first FOPM we present was at first thought
as a BN object-oriented extension (Mahoney and Laskey, |1996). But is has evolved into
FOPMs after many years of refinement. The other framework that we will present,
called parfactors, is at the core of new inference techniques called first-order inference.
Although our domain does no require such inference technique, it is not incompatible
with object-oriented PGMs (see chapter {4)).

Multi-Entity Bayesian Networks

MEBNSs are presented as a first-order language for specifying probabilistic knowledge
base using parametrized BN fragments (Mahoney and Laskey, |1996, 1997, |1998a.b;
Laskey, 2008). MEBNs have then been developed for different applications, mostly
military (Laskey et al., 2001, 2004; da Costa et al., 2005} da Costa and Laskeyl [2006).
Finally, the framework is fully formalized in the following publications (da Costa and
Laskey, 2005a,bj; Laskey, [2008)).

The substitute of a class in the MEBN framework is called a MFrag and can be
described as a BN fragment with several enhancements. As for OOBNSs, variables in a
MFrag are divided in three categories: resident random variables, i.e., classic variables
in BN, input random variables, similar to reference nodes in OOBNs a la Bangsp &
Wuillemin and context variables, variables defining constraints over relations using first-
order predicates. These last variables share the same purpose of reference slots in PRMs,
1.e., they define the relations among MFrags.

Definition 3.39 AnMFrag F = (C,Z, R, G, D) consists of a finite set C of context value
assignment terms; a finite set L of input random variable terms, a finite set R of resident
random variable terms; a fragment graph G; and a set D of local distributions, one for
each member of R. The sets C, T and R are pairwise disjoint. The fragment graph
G is an acyclic directed graph whose nodes are in one-to-one correspondence with the
random variables in T w 'R, such that random variables in I correspond to root nodes
in G. Local distributions specify conditional probability distributions for the resident
random variables [. .. ].

Figure[3.16|illustrates two MFrags from the starships and Klingons example (da Costa
and Laskeyl |2005b). Dashed nodes are context nodes, light gray nodes are input nodes
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Figure 3.16: Two MFrags from the starships and Klingons MTheory (da Costa and
Laskey, 2005b)).

and plain nodes are resident nodes. We can see that context variables are first-order
predicates over logical variables. Logical variables can be seen as instantiations of
MFrags and define relations among them. For example, in the MFrag Zone MD the
four IsA predicates enforce types over variables tprev, t, st and z. The remaining two
context nodes constrain tprev as being the previous time step of ¢ and force z to be the
current position of st (representing a starship). Sometimes a resident variable can have
several parents dependent of the context. This requires multiple conditional probability
distributions for each given set of parents. To avoid enumerating all situations, different
solutions are proposed. In da Costa and Laskey (2005b)) a script language defines CPTs
on the fly. In Laskey| (2008) a generic approach using influence counts and combina-
tion functions is proposed. Unfortunately, these solutions lack any practical use and
prevent a standard implementation of MEBNs. However, existing applications based
on MEBNSs suggest that practical solutions have been found to express probabilities in
this framework. Unfortunately, they are either highly prototypical (no such features) or
restricted to military use (not publicly available).

Probabilistic inference in MEBNSs is done by generating a situation specific BN (Ma-
honey and Laskey, [1998a). Which is equivalent to ground inference with sensitivity
analysis to prevent unnecessary groundings. In some cases the ground network can be
infinite, it is then necessary to approximate it (Laskeyl, 2008).

Parfactors

Adding parameters to BNs has been the topic of several publications (Horsch and Poole,
1990; Buntime, 1990; Jaeger, [1997). However, parfactors are remarkable as they have
been introduced for the sole purpose of first-order inference (Poole, [2003). They also
offer a generic and concise formalization of First-Order PGMs. Parfactors enabled first-
order inference in several frameworks such as Markov Logic Networks or Bayesian
Logic Programs (Domingos and Richardson, 2007} [Milch et al., 2005). A parfactor is a
parameterized factor and the parameters are logical variables on which constraints are
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defined. They usually represent undirected PGMs, however they can represent directed
models if each parfactor defines a CPT. Parfactors are well suited in representing large
population of individuals for which we have very little information, i.e., how they are
related to one another. The following definition is taken from Poole| (2003)).

Definition 3.40 (Parfactors) A parfactor is a triple {C,V,t) where C is a set of con-

straints on parameters, V' is a set of parametrized random variables and t is a table
representing a factor from the random variables to the non-negative reals.

town_conservativeness

shoe_size(X) X:person

(. J

Figure 3.17: A parameterized BN from [Poole| (2003). Each node can be represented
using a parfactor.

Note that the logical variable X can be interpreted as a class and each parameterized
random variable with constraints over X as an attribute of that class. Where the example
of figure [3.17]is simple (it has no constraints), parfactors can easily represent complex
relationships among random variables with the use of first-order logic. However this
low-level representation makes parfactors a difficult framework for modeling purposes.
Usually, richer languages are used to model a PGM and then the network is transformed
into a parfactor representation for inference purpose (Milch et al.l 2005). Constraints
over parameters are used to define the relations among parfactors and it can be any
valid first-order proposition. Figure [3.17]illustrates a parameterized BN for the robbery
example (Poole, 2003). Each node can be defined using parfactors, for example ¢ {},
{hair_color(X), conservativeness}, t) is a valid parfactor for the parameterized node
hair_color(X ). With t defined as follows:

hair_color conservativeness | Val

purple conservative 0.001
purple liberal 0.01
blue conservative 0.1

blue liberal 0.05
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Regarding inference, parfactors inference scheme consists in grounding the network
into a MN and applying classic inference algorithms (variable elimination or junction
trees techniques). However, parfactors purpose is to enable first-order inference, which
has been a long sought objective of the PGM community (Halpern, [1990; Jaeger, 1999
Pasula and Russell, 2001} [Poolel 2003). First-order inference exploits the lack of in-
formation about objects to lift elimination of worlds seemingly identical. For example,
suppose we have a population of five individuals and that we only gave information
about a given John Doe and that the two worlds { friends(Xy, John Doe), friends(X,
X)), friends(X3, X,) } and { friends(Xs, John Doe), friends(X1, X»), friends(X3, X,)
} both induce the exact same probability distributions for guilty(John Doe). First-order
inference prevents inferring over both of these words by lifting the parameterized vari-
ables and by eliminating groups of equivalent worlds in one pass. From there, several
enhancements have been proposed either to reinforce the lifting process or to extend
first-order inference to handle specific graphical structures (de Salvo Braz et al., 2005}
de Salvo Braz, 2007; Milch et al., |2008; Kisynski and Poolel [2009).

3.5 Discussion

About representing relations in PGMs. The idea of representing relations is a fun-
damental challenge for computer sciences, especially in Al. The existence of knowl-
edge representation paradigms such as entity-relationship, object-oriented, first-order
or frames prove the complexity of such a task. For the PGM community the necessity
to deal with different paradigms appeared with the notion of BN fragments. Once the
idea of fragmenting a BN emerged, connecting the fragments have been the focus of
many new frameworks. The goal of this chapter was to give a snapshot of this trend and
show how, in almost twenty years, BN have slowly evolved into several sophisticated
frameworks dedicated to this task. The purpose of this discussion is to place this thesis’
contributions within that trend. The main contributions of this thesis concern specifying
an object-oriented framework for PGMs and developing inference algorithms exploiting
structural information provided by the object-oriented paradigm. To understand why we
chose to reinforce the object-oriented paradigm instead of focusing on first-order mod-
els, it is important to understand how BN extensions have evolved. MSBNs and DBNss
were the first models where the notions of interfaces, structural repetitions and fragmen-
tations have appeared. Following those frameworks, OOBNs were proposed using input
and output nodes to describe relations between fragments. Relational models completed
the work by borrowing the notion of slots from plate models and by focusing the de-
scription over the existence of relations rather than the existence of probabilistic links.
Finally, first-order models put the focus on describing relations using first-order predi-
cates and almost ignoring the conditional probability distribution specification: MEBNs
offer high-level tools laking any practical use and parfactors require to specify all parents
as parameters: the node and all of its parents must be explicitly defined. This remark is
generalizable to most first-order probabilistic models since the probability distributions
are specified using classic tabular representations. In some cases log-probabilities are
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even used. All these frameworks lack modeling aspects, which is undoubtedly because
they are mostly used for machine learning tasks or for academic purposes.

Being practical about the object-oriented paradigm in PGMs. We have seen that
there exists an official object-oriented framework (OOBNSs), but many frameworks that
are not qualified as object-oriented still implement many object-oriented features. DBNSs,
MSBNs, PRMs and MEBNs are example of frameworks that exhibit an object-oriented
aspect: they all use BN fragments at the core of their formalization. The fact that each of
these fragments is a class and that they define an interface is, for most frameworks, ig-
nored (purposely or not). If the object-oriented aspect of these frameworks is hidden, it
is a consequence of the unpopularity of OOBNs among the PGMs community. OOBNs
have been quickly replaced by PRMs by Pfeffer and Koller and have only known few
contributions from Bangsg et al.. We can only make guesses on the reasons why OOBNs
have been dropped: not because they are a failure but because adding object-oriented
features to PGMs may be perceived as a software feature more than a fundamental as-
pect of the theory. Another cause would be the community’s interest for FOPMs and
first-order inference: the number of contributions in these two domains speaks for itself.
Or maybe that academic use of PGMs do not require object-oriented frameworks for
machine learning or probabilistic inference. If we look at (Koller and Friedman, |2009)
object-oriented frameworks (DBNs, PRMs) are described as template-based models,
i.e., macro languages enabling richer representations and more complex queries. The
point is that PGMs lack a properly defined object-oriented framework as many funda-
mental features of the object-oriented paradigm are missing or incomplete, mainly in-
heritance, abstraction and polymorphism. Moreover, many features of template-based
models can be described or extended by considering them under the scope of the object-
oriented paradigm (see chapter @4.I)). An important result of this thesis is to prove that
theoretical research is not superfluous, neither for the framework formalization nor for
inference algorithms.

FOPMs and the object-oriented paradigm. Interestingly, most contributions con-
cerning PRMs exhibit what is considered as their major feature: structural uncertainty.
In fact, by introducing such feature PRMs opened the way to FOPMs as it is their key
feature to represent complex relationships between random variables. In that matter,
parfactors reduce structural uncertainty to its minimalistic form, i.e., a set of first-
order predicates over parameterized random variables. On the other hand, MEBNSs are a
rich and complex FOPM which connects BN fragments (MFrags) using context nodes,
i.e., first-order predicates. Most importantly and against intuition, the object-oriented
paradigm is not incompatible with first-order representation of relations, MEBNs are a
perfect example since BN fragments are a simplistic application of the object-oriented
paradigm. This confusion is at the core of many misunderstandings concerning the
work presented in this thesis and object-oriented extensions of PGMs. PRMs are seen
as extensions of OOBNs and FOPMs as extensions of PRMs, thus discarding the object-
oriented paradigm as an improper solution to represent complex relations between ran-
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dom variables. It is untrue since the object-oriented paradigm helps modeling complex
systems and not complex relations between objects. In chapter[d.1|we show how our en-
hanced PRMs can be represented using parfactors, discarding the assumption that both
representations are incompatible.

The need for a formal object-oriented PGM. At the start of this thesis our goal was
to create a new tool for modeling large scale and complex networks using PGMs. The
SKOOB ANR project was created for this purpose and is at the core of most contribu-
tions of this thesis. Most importantly, it enabled us to conclude with the help of experts
that there were missing features in the current theories. We chose to build a new object-
oriented framework from an existing one: PRMs. At the current time, that framework
was (and is still if we put aside the work presented here) the only one including a well
thought object-oriented aspect. PRMs are also a direct extension of OOBNSs a la Pf-
effer and thus has legitimacy as a starting point to enhance its object-oriented features.
From there we created the SKOOL language, a declarative and object-oriented language
for representing object-oriented PRMs. We also enhanced PRMs with object-oriented
features to formally define class inheritance, typing, type inheritance, interface imple-
mentations. The SKOOL language is presented in Appendix [A]and the enhancement of
PRMs in chapter 4.1]



Chapter 4

Reinforcing Probabilistic Relational
Model’s Object-Oriented Aspect

PGM:s are a general purpose framework for dealing with uncertainty. Their applications
to many different domains stimulated an uninterrupted process of creation of new frame-
works based on probability theory. In recent years, the Statistical Learning community
proposed new probabilistic frameworks, closing the gap between first-order logic and
probability theory. New models such as OOBNs, MSBNs, PRMs and MEBNs have
extended BNs and widen their range of applications. In many situations, these new
FOPMs can be efficiently learned from databases and used for answering probabilis-
tic queries. However, there are situations where the scarcity of available data prevents
learning. For such problems, oriented graphical models such as PRMs are more suitable
than the aforementioned FOPMs, because they can be modeled by experts.

Despite being an OOBN extension, PRMs lack fundamental object-oriented fea-
tures: class inheritance, subtype polymorphisms, abstraction. .. In software engineering,
such object-oriented designs are useful for creating complex software. In this chapter,
we illustrate why these mechanisms are necessary for practical design of large-scale
systems and we show how light extensions can enforce strong object-oriented features
in PRMs. Furthermore, we propose a representation of our extended version of PRMs
using parfactors, the state-of-the-art framework for first-order probabilistic inference.

This chapter is organized as follows: after redefining the major features of classi-
cal PRMs, we introduce the notion of attribute’s type inheritance and extend attribute
overloading. We then propose a new definition for class inheritance based on attributes
and reference slots overloading. Then, we offer a solution to multiple inheritance in
PRMs by introducing interfaces. Finally, we provide an algorithm to transform PRMs
into parfactors. The results presented in this chapter have been published at PGM 2010:
Tort1 et al.[|(2010).

89
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(a) A BN. (b) Two classes C and D. (c) An instance diagram.

Figure 4.1: Analysis of the BN (a) reveals the use of two recurrent patterns, which are
confined in two classes (b). Hence, a system equivalent to figure Ea] may be built (c).

4.1 Probabilistic Relational Models

We give here a more formal definition of PRMs than the one given in chapter [3.3] Our
objective is to clarify this framework under the scope of modeling purposes. Figure
shows a BN encoding relations between two different kinds of patterns: random vari-
ables X;, Y; on one hand and Uj, V;, W; on the other hand. We assume that the CPTs
associated with random variables with the same capital names are identical. When using
PRMs, the main idea is to abstract each pattern as a generic entity, called a class, which
encapsulates all the relations between variables in the same pattern. Random variables
encapsulated by a class are called attributes. So, in figure[d.1b] C encapsulates variables
X, and Y; as well as their probabilistic relations (arc (X;, Y;)) and D encapsulates ran-
dom variables U;, V; and ;. Note that in figure [4.Ta]there exist links between different
patterns, such as links Y} — U; or Y5 — Us. Classes only access to their own elements,
in opposition to nodes in BNs that can be linked to other nodes in the network. To
make an analogy with computer programming, we can say that BNs nodes are global
variables and classes attributes are local variables, i.e., visible only in the scope of their
encapsulating class. Consequently, dependencies among classes cannot be represented
using BNs terminology, i.e., we cannot write Y ¢ 7(U). Hence classes must have a
mechanism allowing to refer to random variables outside the class. In PRMs, this mech-
anism is called a reference slot. Basically, the idea is to create some pointer p allowing
a class to extend its scope to attributes in other classes. In figure 4.1b] reference slot
p gives D access to C’s attributes, e.g., U parent is p.Y. Reference slots can be used
sequentially to create paths, called slot chains. Now, as shown in figure the BN
from figure can be built up from the PRM: it is sufficient to create two instances,
¢y and cg, of class C as well as three instances dy, ds, d3 of D and associate at least one
instance to each reference slot of each instance. Connecting instances through reference
slots can be represented using instance diagrams, as illustrated in figure
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Classes, reference slots and attributes

We will provide a concise set of definitions that offer a formalization equivalent to those
presented in chapter[3.3] The most important elements in a PRM are classes.

Definition 4.1 (Class) A class C is defined by a Directed Acyclic Graph (DAG) over a
set of attributes A(C) (see definition4.5)) and a set of reference slots R(C) (see definition
H.2). To refer to a given attribute X (resp. reference p) of class C, we use the standard
object-oriented notation C.X (resp. C.p).

Classes are an elaborate version of BN fragments, their principal enhancement is the
concept of reference slots. Reference slots indicate how classes are related to each other,
not probabilistically but conceptually. This adds another dimension to modeling with
PGMs: groups of random variables are clustered together in classes and these clusters
are related to each other using reference slots.

Definition 4.2 (Reference slots) Let C and D be two classes. A reference slot C.p = D
is a pointer towards a class D such that we can access elements of D through C, e.g.,
A(C.p) = A(D) and R(C.p) = R(D). We say that C is the domain of C.p, denoted
domain(C.p), and D is the range of C.p, denoted range(C.p). A reference slot C.p is
simple if it defines a 1-to-1 relation and is complex if it defines a 1-to-n relation.

If there is no ambiguity about a reference slot’s domain, we may write p instead of
C.p. The previous definition is a direct analogy with object-oriented programming lan-
guages, where objects are accessed through pointers. Traditionally, PRMs see reference
slots through the lens of the entity-relationship paradigm. Both views are compatible,
but an object-oriented approach is preferable since we are reinforcing the object-oriented
aspect of PRMs. In figure we can see that D.p is a reference slot pointing on class
C and that such reference slot is used to define a probabilistic dependency between D.U
and C.Y. Such use of a reference slot is called a slot chain.

Definition 4.3 (Slot chains) A slot chain C.K is a sequence {p,--- , pn} of reference
slots such that domain(p;) = C and range(p;) = domain(p; 1) for1 <i<n—1. We
denote by range(C.K) = range(p,,) its range and by domain(C.K) = domain(p;) its
domain.

As for reference slots, we may write K instead of C.K when there is no ambigu-
ity about K’s domain. Slot chains are the practical use of reference slots to connect
attributes from different classes together. Indeed, since a reference slot gives access to
elements in a class, we can chain them to connect classes not directly related. Con-
sequently, slot chains are commonly used when defining attributes dependencies. For
example, in ﬁgure@] attribute D.U is a child of attribute C.Y, both of different classes.
In such case, C.Y is accessed using a slot chain of one reference slot (D.p) and we say
that D.p.Y is the parent of D.U. In figure there is another slot chain connecting
E.BtoC.Y: £.0.p. In the classic PRMs formalism, there is no graphical representation
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of slot chains and they can only be deduced by existing dependencies between attributes.
Such representation is not well suited when modeling systems with many classes and
complex probabilistic dependencies. A possible solution is illustrated in figure 4.2b
where attributes accessed through slot chains are represented using an node labeled by
the path leading to the desired attribute.

C
D
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g ~_~-
[ONG
—_ -7
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(a) Three classes C, D and £ with a slot chain con- (b) An alternative representation of the slot
necting £.B with C.Y. chains in figure [f.24]

Figure 4.2: Reference slots and slot chains are used to define probabilistic dependencies
among classes. Dashed nodes are reference slots, dashed links represent reference slot’s
range, solid line nodes represent attributes and solid line arcs probabilistic dependencies
between two attributes.

Definition 4.4 (Attribute’s type) An attribute’s type T describes a family of distinct
discrete random variables sharing the same domain T = {ly,--- ,1,}, where n is the
domain size of T.

The notion of Attribute’s types was introduced in OOBNs a la Pfeffer, however we
will use it differently. Indeed, types in OOBNS a la Pfeffer are inferred once an object is
defined. Here, types are defined before being used. In complex systems there are often
many random variables sharing the same domain, thus by defining once an attribute’s
type we reduce the amount of redundant information that must be specified when model-
ing the system. Furthermore, we will see that attribute’s types are a fundamental aspect
of class inheritance (see section [4.2)).

Definition 4.5 (Attributes) LetC be a class. An attribute C.X is a triplet {t¢.x, 7(C.X),
¢c.x ), where ¢ x is C.X s type, 1(C.X) a set of attributes called the parents of C.X
and ¢¢ x a factor encoding the conditional probability distribution P(C.X|m(C.X)).

Again, we will write X instead of C.X when there is no ambiguity about Xs class.
Attributes are equivalent to nodes in BNs. However, at class level, attributes do not
define random variables, but a more generic pattern from which many identical random
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(a) The class dependency diagram of the power surge (b) UML diagrams offer a more compact
example. representation of classes.

Figure 4.3: The power surge example. Theses classes are meant to model systems in
which several computers and printers are in different rooms.

variables are created. They are closely related to the notion of parametric random vari-
ables (see section 4.3)). Defining a factor over attributes is an abuse of notation, since
factors are defined over random variables. However, since attributes are patterns for
random variables, the link between attributes and the random variables they represent
is sufficiently obvious to define unambiguously factors. Classes are meant to be used
as generic entities, instantiated as many time they are used in a system. It is only after
being instantiated that classes attributes becomes random variables.

Figure illustrates the power surge example. We can see that four classes are
modeled: Power Supply, Room, Printer and Computer. Except for the Power Sup-
ply class, each class has at least one reference slot (dashed nodes): a room is con-
nected to a power supply, computers and printers are in a room from which they have
access to a power supply. Attributes (nodes in solid lines) are present in all classes
except class Room which is only a relational class, i.e., its purpose is to define a re-
lation among class Power supply on one hand and among classes Printer and Com-
puter on the other. Attribute Computer.state (respectively Printer.state) is connected to
attribute PowerSupply.state through the slot chain Computer.room.power.state (respec-
tively Printer.room.power.state) and attribute Computer.exists is connected to attribute
Printer.state trough Computer.printers.state. Finally, note that in figure [4.3b] attribute
Computer.exists and reference slot Computer.printers declarations differ from other at-
tributes. Simply because reference slot printer is complex and attribute exists is an
aggregator (see section {.1)).
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Instances, relational skeletons and PRMs

Definition 4.6 (Instance) An instance c of class C is a BN fragment whose attributes
are classic BN nodes generated from their class level counterparts and where refer-
ence slots refer to sets of their range’s instances. Thus, instantiated slot chains can
be used to access instances attributes parents (if necessary). As for classes, we use an
object-oriented notation to access instances elements and use the same set of notations
available for classes, i.e., A(c) refers to c’s attributes and R(c) refers to ¢’s reference
slots.

It is important to differentiate attributes at class level from attributes at instance level,
even if they are tightly related there is an important difference: class level attributes are
not random variables and instance level attributes are random variables. Furthermore,
the family of attributes spawned from the same class are all distinct random variables.
Instances in a system are connected together to form a relational skeleton. Given an
instance ¢ and a reference slot p € R(i), we denote by range(i.p) the set of instances
connected to ¢ through p.

Definition 4.7 (Relational Skeleton) A relational Skeleton S is a set of instances such
that for any instance 1 of class C and any reference slot C.p = £, there exists at least one
instance j € S such that j is an instance of € and j € range(i.p). Finally, we denote by
Is(C) the set of instances of class C in S.
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Figure 4.4: A relational skeleton using instances from the power surge example.

Relational skeletons enforce the instantiation of all reference slots, consequently any
relational skeleton models a valid probability distribution. We will usually refer to the
relational skeleton as the system, since it is the closest representation of a system we
can have using PRMs. The graphical representation of a relational skeleton is called an
instance diagram. It is a directed graph in which each node is an instance and edges
indicate that two instances are connected by a reference slot. We will often say that a
reference slot is instantiated, i.e., it is linked to one or more instances of the correct
class in a given system.
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Definition 4.8 (PRM) A PRM 11 is defined by a set of classes € and a relational skele-
ton S and factorizes the following joint probability distribution:

PAS) =] [] ] PleXlr(cX)),

Ce% cels(C)) c.XeA(c)

where A(S) is the set of all attributes in the relational skeleton S.

Figure 4.4 illustrates a relational skeleton with instances from the power surge ex-
ample. Dashed arcs represent reference slots assignments, i.e., ¢ --» d means c has
a reference slot referencing d. In the power surge example, reference slot assignments
are explicit, but for systems more complex it would be necessary to label the arcs to
prevent ambiguities. For example, we could label the arc ¢; --+ r; with room and the
arcs ¢, --+ py with printers.

Inverse reference slots, aggregates and output attributes

We will now define several useful notions, either for modeling or for inference. The first
of them combines two definitions: inverse reference slots and inverse slot chains.

Definition 4.9 (Inverse reference slot) Let two classes C, D and a reference slot C.p €
R(C) with range(C.p) = D. The inverse of C.p, denoted D.p~" is a reference slot such
that range(D.p™') = domain(C.p) and domain(D.p™') = range(C.p).

Obviously, if we can define an inverse reference slot, we can define an inverse slot
chain.

Definition 4.10 (Inverse slot chains) Let C.K = {p1, -, p,} be a slot chain. Its in-
verse is the slot chain D.K™' = {p=1 ---  p7'} where range(C.K) = D.

Inverse slot chains are useful to retrieve attributes children defined in other classes.
For example, in figure [d.3|attribute PowerSupply.state has two children Printer.state and
Computer.state that can be accesed using the inverse slot chains of Printer.room.power
(denoted K) and Computer.room.power (denoted L): PowerSupply. K—!.state and
PowerSupply.L~!.state. Similarly, the inverse slot chains of a given instance i give
access to the set of instances that have dependencies on i. For example, in figure 4.4]the
instances in sets p.K! = {p;, ps, p3} and p.L™! = {c, co} are dependent on one of p’s
attributes (p.state). We will now re-introduce a notion that existed in OOBN but that
was dropped in the classic PRM formalization: output attributes.

Definition 4.11 (Output attributes) An output attribute C.X is an attribute such that
there exists some attribute D.Y that is a child of X accessing C.X through a slot chain.
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We cannot define output attributes as attributes with children outside of their class,
since such definition would discard recursive classes. Indeed, for such classes some
attributes would access to attributes of their classes using a recursive reference slot and
we would have D = C. Consequently, we must define an output attribute as an attribute
being accessed using a slot chain.

The final notion concerns aggregators. We have seen that reference slots are sets of
instances when instantiated. In most cases, reference slots model unary relations, i.e.,
an instance will be connected to a single instance. But in some cases, an instance will
be connected to many instances. CPTs are not a reasonable choice to encode condi-
tional probability distributions for attributes with a variable number of parents: since
we want to keep the probabilistic semantics declared at class level, we would have to
declare CPTs for each possible number of parents. Obviously, such solution suffers
from the possible large number of different configurations. A solution proposed in the
classic PRM framework is to aggregate parents using a special arc called an aggregator.
The concept comes from database theory, where several operators have been defined
to handle large amounts of data. In practice we have noticed that such arcs are often
modeled as attributes with specific conditional probability distributions, usually deter-
ministic functions. This leads to the following definition of aggregators that is different
from the one proposed in Getoor et al. (2007).

Definition 4.12 (Aggregators) Aggregators are attributes with a conditional probabil-
ity distribution defined by a set of rules that can be used to generate the attribute’s CPT
once it is instantiated and connected to its parents.

Classic aggregators are min, max, for all, exist and k-gates. They often enable to
implement optimized data-structures preventing high memory consumptions. See ap-
pendix |A for the specification of the aggregators we implemented in the SKOOL lan-

guage.

Definition 4.13 (Ground Baysian Network) A ground Bayesian Network is a BN B
constructed from a PRM 11 = (¢, S) using the following steps (Getoor et al. (2007)):

1. There is a node for every attribute i.X of every instance i € S, named i.X.

2. Each 1.X depends probabilistically on parents of the form i.Y or j.Y such that
there exists a slot chain K with j € range(i.K).

3. The conditional probability distribution for 1.X is a CPT generated from ¢ x,
where C is the i’s class.

Ground BNs purpose is twofold. They provide formal justification to PRMs and
enable classic BN inference algorithms. The second point has already been discussed
in chapter |3t ground BNs is the most direct option to perform probabilistic inference in
PRMs. Regarding the first point, ground BNs provide justification because we can see
PRMs as some high-level macro language to model BNs. Even if in practice they help
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modeling systems too complex to model using classic BNs, the fact that any PRM is a
high level representation of a BN proves the soundness of this framework. Moreover,
the underlying BN of a PRM is relatively obvious, as PRMs offer an intuitive framework
for anyone familiar with BNs.

4.2 C(lass inheritance

In section [3.2] we have seen two different definitions for class inheritance in OOBNs.
In OOBNSs a la Pfeffer, the set of input nodes of a subclass must be a subset of the
superclass input nodes set. For OOBNs a la Bangsg & Wuillemin, new input nodes can
be added with specialization but none can be removed. Both solutions are restrictive
(see the discussion in section [3.2)). We will see that slot chains help defining a flexible
class inheritance mechanism, but we must first understand why slot chains make PRMs
different from OOBNS.

In section .1) we have seen that there only exists one kind of attribute, i.e., at-
tributes are not declared as input, encapsulated or output attributes. In OOBN:Ss, the user
must declare what attributes in a class can be accessed by other classes. In PRMs an
attribute becomes an output attribute when the user adds a child from another class to
that attribute. OOBN’s input attributes are replaced in PRMs by slot chains. When
the user adds an attribute to a class, he must declare the attribute’s parents. If some of
them are defined in another class, he simply accesses them using a slot chain (supposing
that it is possible to defined such a slot chain). To make an analogy with programming
languages, declaring input attributes is similar to declaring variables at the beginning
of a function (like in C) in opposition to declaring them where they are used (like in
C++). In OOBNs, we must push out of a class its output attribute, i.e., we must know
when modeling the class which attributes will be accessed by other classes. In PRMs,
classes pull from other classes any required attribute, i.e., we delay the dependencies
definitions when we are modeling them, not when we are modeling the class that will be
used by other classes. Discussions with experts in the ANR project SKOOB showed us
that the second solution was often simpler and helped experts in the modeling process
of complex systems.

Slot chains and reference slots detail explicitly how probabilistic dependencies can
be defined between classes, thus it is easier to define precisely how such feature is inher-
ited. Indeed, OOBNs limited relational mechanisms prevent from defining a complete
class inheritance mechanism and we will show in this chapter how PRMs can be used to
define a complete class inheritance scheme. We will start by adapting OOBN’s class in-
heritance scheme to PRMs and we will complete this definition throughout this section.

Definition 4.14 (Simple class inheritance) A class D is a subclass of class C, denoted
C =D, if:

e for each attribute C.X = {1¢c.x, 7(C.X), ¢c.x ), there exists an attribute D.X =
<7—D.X; W(DX), ¢D.X> € .A(D) such that Tc.xX = TD.Xs
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e for each reference slot C.p = &, there exists a reference slot D.p = F such that

E=F

Definition 4.14] is a simple definition of class inheritance and we will improve it
with each new notion that we will add to PRMs. Figure [4.5]illustrates three classes:
Printer (figure d.53), B&W Printer (figure [4.5b) and Color Printer (figure #.5c). Color
Printer is a subclass of B&W Printer, which is a subclass of Printer. We can see that any
attribute existing in Printer is present in either of its subclasses. Note that definition 4.14]
does not preserve attributes parents nor conditional probability distributions. Indeed,
the set of parents of attribute state changes. Consequently its conditional probability
distribution changes from class Printer to class B&W Printer. The same happens for
attribute hasInk in class Color Printer, but not for attribute hasPaper which is identical
to its version in class B&W Printer.

E— (_room ' B&W Printer

7 - > .
v_room )  Printer oo
hasPaper @

(a) The printer class (b) Dependencies of the Printer class.

R Color Printer

(c) Dependencies of the ColorPrinter class, which is a sub-
class of Printer.

Figure 4.5: Example of class inheritance. Dashed arcs represent dependencies with
attributes in another class.
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Attribute’s type specialization

Attribute’s types arise naturally when using PRMs and they are closely related to the
notion of hierarchically structured variables (Sharma and Poole (2005)). There often
exist several, if not many, random variables sharing a common domain in BNs, espe-
cially in BNs modeled by experts. Attribute’s types inheritance purpose is to provide an
additional behavior specialization to class inheritance. We have seen that definitiond.14]
only allows to change inherited attributes conditional probability distributions, i.e., we
can add and/or remove parents or just change their conditional probability distributions.
This feature, yet useful, does not provide total satisfaction. Indeed, when specializing a
class we often want to model new states that are specific to the subclass. For example,
in the power surge example we could consider the following type for Printer’s state
attribute: {functional, dysfunctional, broken}. The two values dysfunctional and broken
are specific to printers: dysfunctional indicates that the printer prints but badly or is
suffering some minor issue, e.g., a color is missing or the paper tray is empty. Broken
states that the printer does not print anymore, there could be a paper jam or an internal
component broken. In some cases we can cope with such specialization by adding new
attributes, but in others we may want to overload attributes with specialized types.
Attribute’s type inheritance is the process of decomposing types into more specific
and precise domains. This includes partitioning types values into specific substates, e.g.,
rainy could be decomposed into light rain, heavy rain, storm and typhoon. Another pos-
sibility is to add intermediate values to model subtle differences, e.g., OK and NOK can
be decomposed into functional, malfunctioning and broken to model the intermediate
state between a functioning printer and a broken one (no more cyan ink does not pre-
vent from printing black & white). Attribute subtyping can be modeled using a function
mapping a subtype values to a subset of the super type values. Such functions are called
domain generalization functions, since they generalize concepts present in subtypes.

Definition 4.15 (Domain generalization function) A domain generalization function
is a function ® : T — P(X\) where T and X are two distinct attribute types and P(\) is
a subset of \’s values.

Generally a subtype will have more values that its super type. However, there can
be situations where we may not want to specialize a type in such manner. For example,
let us consider a disease whith different variations. The set of all possible symptoms
is {51, S2,S3}. Each variation may not present all three symptoms, but only a subset
of them. While specializing the disease for each form, we may want to specialize the
symptom’s types into subtypes matching each variation. Furthermore, a domain general-
ization function is not necessarily a bijection, it can be a surjective or injective function.
Indeed, in the previous example we define injective domain generalization functions:
not all symptoms are present in each variation. In some cases, a surjective function will
help define substates that overlap over several general concepts, as the broken state of a
color printer illustrated in figure [4.6b] Attribute’s type inheritance definition is straight-
forward now that we have introduced domain generalization functions.
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Definition 4.16 (Attribute typing inheritance) An attribute type T inherits from an-
other attribute type )\, denoted \ = T, if it is defined using a domain generalization
function ® : 7 — P(\). We say that \ generalizes T or that T specializes M.

(a) A subtype hierarchy where each domain (b) A subtype hierarchy in which malfunc.
generalization function returns singletons. either is state OK or NOK.

In such situation cast descendant distribu-

tions are deterministic.

Figure 4.6: A type hierarchy with attribute types boolean, t_state and t_malfunction.

Given two types, we can always define a domain generalization function from one
type to another. Consequently, definition relies on how a type is defined. Such
feature is, unfortunately, very implementation specific and the reader should see ap-
pendix [A] for a possible use of attribute’s type inheritance. Figure {.6] illustrates type
inheritance. Arcs represent concepts specialization. For example, ¢_malfunction has
three values: functional (func.), malfunction (malfunc.) and broken. In figure 4.6a] finc-
tional and malfunction are specialization of NOK. In figure 4.6b|an alternative represen-
tation is illustrated and malfunctional is also a specialization of OK. As is, attribute’s
type inheritance is only a semantic relation: 7_state’s label OK is a sort of true, broken
is a sort of false, etc. In the next section, we will show how to exploit such concepts
probabilistically.

Attribute overloading

In the previous section we introduced attribute’s type inheritance as a specialization
mechanism for overloading attributes. If we overload attributes with different types, we
will obviously break probabilistic dependencies: if a class C depends on D’s attributes
and that we connect an instance of C with an instance of £, such that D=& and that some
of &’s attributes specialize D’s, then C’s instance dependencies will be broken. Indeed,
by changing the domain of the underlying random variables, all conditional probability
distributions specifications become erroneous. To allow subtype polymorphism, we
must provide an efficient solution to preserve dependencies. To do so, we will present
in this section cast descendants, a solution that allows attribute overloading using type
inheritance and that preserves dependencies. We will first define the notion of type
genealogy.
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Definition 4.17 (Attribute type genealogy) The genealogy of an attribute’s type T is a
set of attribute’s types {\1, - -+ , Ay} such that \y = 7 and \iy 1>\, for 1 < i < n where
An IS a type with no super type, called T’s ancestral type.

A type’s genealogy is an ordered set of all the type’s super types. We will ex-
ploit types genealogies to automatically generate cast descendant attributes. These cast
descendant attributes purpose is to cast an attribute into one of its super types. Cast
descendants are automatically added, such that any attribute can be casted in any of its
super types. Suppose that we have two classes C and D such that some attribute in C is
overloaded in D using type specialization. If a third class, name it £ has an attribute with
a parent K. X = C.X, then the slot chain K can reference an instance of D by changing
K.X to K.X,,. Consequently, slot chains will automatically be plugged to attributes
of the correct type, see figure for an example. The cost of adding cast descendants
is negligible because if they are not used, i.e., neither queried nor referenced by a slot
chain, we can discard them before inference as they will be barren nodes.

Definition 4.18 (Cast descendant) Ler C. X = {7,7(C.X), ¢c.x ) be an attribute with
7’s genealogy being {1, -+ , \,}. C.X cast descendants are the set of attributes:

{CXz\z = <)‘17 {C-X/\¢,1}7 ¢C.X>\i>}7

with 1 < 1 < nand C.X,, = C.X. Each ¢,, is either user defined or the default
cast distribution (see definitiond.19). We say that C.X; is the direct cast descendant of
C.Xi_l.

Definition 4.19 (Default cast distribution) Let 7 = {I],--- I} and X\ = {I},--- , 1)}
be two attribute types of respective domain sizes n and m such that \ = 1. Given an at-
tribute C.X = (1,7(C.X), ¢c x), its direct cast descendant C. X = (\,{C.X}, ¢c.x,)
and the domain generalization function ® : T — P(N), the default cast distribution for

T |®(5)] ifl} e ®(7),
P(C-XAZZNC-XZZJ’):{ / (])O| oftherwis(e.j)

Figure [4.7] illustrates an example of cast descendants using the default cast distri-
bution with the domain generalization functions of figure Attribute X 1is of type
t_malfunction, X of type t_state and X, of type boolean. Figure shows a partial
representation of a system in which three instances are connected through dependency
links X — Y and X, — Z. Attributes Y and Z are both connected to X using a slot
chain, but where Y expects an attribute of type t_malfunction, Z expects type boolean.
Z’s class must be connected to some super class of X’s one and X must be an overload-
ing using type specialization. The framework can easily detect that Z requires a subtype
of X, and automatically connects it to the correct cast descendant.
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PY|X,--) ‘ X = func. X =malfunc. X = broken

Y=u a1 a2
Y =y

X = X = X =
P(X,1|X) functional — malfunc.  broken P(Z]|Xg2,--) ‘ Xo = false X2 = true
X, = OK 10 05 0.0 Z== 5 5
X1 =NOK 0.0 0.5 1.0 Z = 29

|

P(X5]|X1) ‘ X1 =0K X;=NOK
Xo = false 0.0 1.0
X9 = true 1.0 0.0

l

Figure 4.7: X is an attribute with two cast descendant (X; and X5). Attributes Y and Z
both depends on X, however Z expects a boolean while Y expects an attribute of type
t_malfunction.

Subtype polymorphism and dependencies preservation

In the precedent section we have mentioned subtype polymorphisms and we will now
explain how such feature can be added to PRM’s class inheritance scheme. To do so we
will change definition 4.7] as follows:

Definition 4.20 (Relational Skeleton with subtype polymorphism)

A relational Skeleton S is a set of instances such that for any instance i of class C and
any reference slot C.p = &, there exists at least one instance j in S such that j is an
instance of £ or of a subclass of € and j € range(i.p).

This definition is almost identical to definition[4.7] except that definitiond.20]allows
a wider range of instances to be referenced by reference slots. Another important feature
regarding reference slot and class inheritance is the possibility of overloading reference
slots. Reference slot overloading consists in specializing the range of an inherited refer-
ence slot. This is a useful feature when modeling complex systems as we will often first
define classes using abstract concepts and specialize them using inheritance. In many
cases we want to increase the complexity of the relationships between classes. We can
now provide a proper definition of class inheritance in PRMs.

Definition 4.21 (Class inheritance) A class D is a subclass of class C, denoted C =D,

if:

e for each attribute C.X = {1¢.x, 7(C.X), ¢c.x ), there exists an attribute D.X =
<7—D.Xa W(DX), ¢D.X> such that Tc.x = Tp.x Or 7c.x =>Tp.x,
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e for each reference slot C.p = &, there exists a reference slot D.p = F such that

E=Foré=F.

The fundamental property that must be present in any class inheritance mechanism is
dependencies preservation. Preserving dependencies guarantees subtype polymorphism
as it states that wherever a class is used in defining a probabilistic dependency, we can
replace it by one of its subclasses without requiring to change any attribute or reference
slot definition.

Property 4.1 (Dependencies preservation) Let C and D be two classes such that C =
D. For each reference slot p° € R(C), we denote by pP its inherited version in D and
for each attribute X¢ € A(C), we denote by X7P its inherited version in D. A class
inheritance mechanism preserves dependencies if:

e for any slot chain K = {py,--- , 05, , pn} we can substitute C referenced by
pi—1 by D such that K' = {py,--- ,pP,--- , pn} is a legal slot chain;

e for any parent K.X with K = {py,---, pC}, we can substitute C referenced by
prn_1 by D such that K' = {py,---,pP} is a legal slot chain and K'.X’s type
equal or is a subtype of K. X ’s type.

An illegal slot chain would be a slot chain C.K = {py, - , p,} such that 3p; € C.K,
pi ¢ R(C.p1.- - .pi_1).

Theorem 4.1 The class inheritance scheme defined by definition preserves depen-
dencies.

Proof. Let us start by the first point of property Let C and D be two classes such
that C =D. Suppose that there exists some legal slot chain £.K = {py,--+ , 5, , pp}
such that EK' = {py, -+ ,pP, -+, p,} is not legal. Either p? ¢ R(E.py.-+- .p; 1) or
pis1 & R(E.pr.- - .pP).

The first case is trivial: since D is a subclass of C, any reference slot referencing C
can also refer D (see definition . The only situation where p? ¢ R(E.p1. -+ .pi_1)
would be when D is not a subclass of C or that £.K is not a legal slot chain, both
propositions are contradictory with our hypothesis. In the second case, definition [4.21]
guarantees that all reference slots in C are defined in D, either as is or using reference
slot overloading. Thus, if p;;1 ¢ R(E.p1.- - .pP) then D is not a subclass of C or £.K
was not a legal slot chain.

Now let us prove the second point of property Suppose that attribute £.Y" de-
pends on C..X through the slot chain £. K with range(€. K) = C,ie., EK. X e m(€.Y).
Suppose that £ K'. X, with K’ = {p;,---, pP}, is not a legal parent of £.Y. This im-
plies either that D.X ¢ A(D) or that D.X’s type differs from C.X’s. However, by
definition there exists an attribute D. X such that its type equals C.X’s or is a syb-
type of C.X’s type. If not, then D is not a subclass of C which is contradictory with our
hypothesis. |
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Interfaces and multiple inheritance

Multiple inheritance is a key feature in most object-oriented programming languages
and is essential for a strong object-oriented framework. Unfortunately, a problem arises
when confronted with diamond-shaped inheritance, as illustrated in figure An am-
biguity results from how class .A’s properties are inherited by class D, since two distinct
paths exist from A to D (through B or C). In programming languages there exist two
solutions to handle multiple inheritance. The first one is straightforward as it forces
subclasses to declare explicitly from whom each property is inherited. For PRMs, this
implies that we should detail for each attribute which set of parents or CPT is used, e.g.,
from superclass C or D. The second solution forbids multiple inheritance among classes
and introduces new objects called interfaces.

Figure 4.8: A diamond-shaped inheritance graph.

In object-oriented programming languages interfaces are a set of methods signatures,
1.e., they do not provide any body for their methods. Consequently, interfaces cannot
be instantiated but are used as an abstraction of concrete classes: from a programming
perspective, a method’s body is unnecessary to call it since only its signature is required.
When a class implements an interface, the programmer must define a method and its
code for each corresponding method in the implemented interface. Interfaces have been
used in PGMs (DBNs, MSBNs, OOBNs, MEBNs). For PRMs, an interface would
be an object with the minimal amount of information required to define probabilistic
dependencies. This leads us to the following definition for an interface in PRMs.

Definition 4.22 (Interface) An interface 1L is defined by a set of labeled types called
abstract attributes, denoted A(Z), and by a set of reference slots, denoted R(ZI). Inter-
faces cannot be instantiated.

Interfaces are used to define dependencies among classes using abstraction. Given
two classes C and D, if an attribute D.Y depends on attribute C..X, then the only in-
formation required for defining D.Y’s conditional probability distribution is the type
of C.X. Abstract attributes represent the minimal amount of information required to
define probabilistic dependencies among classes. However interfaces cannot be instan-
tiated, but we know that any class implementing an interface will possess attributes
and reference slots declared in that interface, thus we can use instances of such classes
as substitute of the interface in a system. The same is possible with classes and their
subclass and provides an efficient implementation of subtype polymorphism. A class
can implement any number of interfaces as long as there is no name conflict. A name
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conflict appears if a class implements two interfaces that each possess an attribute or
a reference slot with the same name but with incompatible types. In such a case, it is
impossible for the class to satisty both interfaces.

Definition 4.23 (Interface implementation) A class C implements an interface T if
and only if:

e for each abstract attribute T.X of type A, there exists an attribute C.X = (T,
7(C.X), ¢c.x) suchthat \ = 7 or A7,

e for each reference slot L.p = &, there exists a reference slot C.p = F such that
E=ForE=F.

A class can implement any number of interfaces as long as it does not create any name
conflict.

Like for classes, we can define inheritance among interfaces. The principle is similar
to definition .21 and offers a simple mechanism to specialize interfaces. Since there is
no probabilistic semantic in interfaces, we do not have any limitation on the number of
interfaces an interface can specialize.

Definition 4.24 (Interface inheritance) Let 7 and J be two interfaces. We say that [J
is a sub interface of L, denoted T = 7, if:

e for each abstract attribute T.X of type \ there exists an attribute J.X of type T
such that \ = 7 or A >T1;

e for each reference slot L.p = & there exists a reference slot J.p = F such that
E=ForéE=F.

Figure 4.9 shows an example of an interface implementation, where the two classes
B&W Printer and Color Printer implement interface Printer (which is no longer a class
for this example). The Printer interface defines the minimal set of attributes and refer-
ence slots any printer must declare: a reference to its room, attributes to represent its ink
and paper status and attribute to represent if it the printer is functional. Figure4.9|is also
an alternative representation of classes using a UML syntax. Such syntax is necessary
to point out attributes and reference slots types and prevents from overloading the class
dependency graphs with attribute types (long names often do not fit within in graphical
user interfaces or UML diagrams).

We can also derive from theorem i4.1|the following corollary.

Corollary 4.1 The interface inheritance scheme defined by definitions|[6.1|and pre-

serves dependencies.

Proof is omitted as it is almost identical to theorem 4.1 proof.
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Color Printer
<<implements Printer>>

Printer B&W Printer room: Room
<<interface>> <<implements Printer>> black: t_inkState
room: Room room: Room magenta: t_inkState
hasInk: boolean hasInk: boolean cyan: t_inkState
hasPaper: boolean hasPaper: boolean yellow: t_inkState
state: t_state state: t_state hasInk: boolean

hasPaper: boolean
state: t_state

Figure 4.9: An interface and two classes implementing it.

PRMs and visibility

We will conclude section 4.2 with a discussion about the use of visibility in PRMs.
Visibility in object-oriented programming languages is composed of three different vis-
ibility descriptors: public, private and protected. They rule which elements are publicly
visible, i.e., what elements are accessible outside of their class; which elements are only
visible to elements of the same class and element only accessible to subclasses. Table
4.1l summarizes these informations.

Keyword | scope

Public | Attributes and reference slots can be accessed by all other
classes.
Private | Attributes and reference slots can only be accessed by ele-
ments of the same class.
Protected | Attributes and reference slots can only be accessed by ele-
ments of the same class and by elements of subclasses.

Table 4.1: The different visibilities and their associated scope.

4.3 Parfactor representation of PRMs

FOPMs are a popular framework and have received a considerable amount of contri-
butions, mostly on extending BNs and MNs to the first-order paradigm. Furthermore,
lifted inference is a dedicated probabilistic inference algorithm that exploits FOPMs
(see section [3.4). Lifted inference algorithms use the parfactor framework, a minimal-
istic FOPM. This section purpose is to demonstrate how an object-oriented framework
such as PRMs can be expressed using parfactors. We recall here the definition of par-
factors.

Definition 4.25 A parfactor is a triple {C,V,t) where C'is a set of constraints on pa-
rameters, V is a set of parametrized random variables and t is a table representing a
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factor from the random variable to the non-negative reals.

Algorithm [] details formally how an attribute can be converted into a set of par-
factors. We will detail this algorithm using attribute state of class Color Printer from
figure When we consider parfactors, we cannot miss the link between random
variables parameters and classes. Indeed, both notions fulfill the same goals: defining
relations among random variables. If we consider all factors with the same parame-
ter, we are considering a group of random variables sharing some common semantics.
Parfactors with several parameters exhibit the relations between different groups of ran-
dom variables. Consequently, we represent classes as random variables parameters. To
ensure the exact representation of the structure encoded by the classes of a PRM, it is
necessary to use two different types of constraints.

To represent classes, class inheritance and interface implementation we will use
isA()-like constraints (e.g. isAPrinter(X)). Relations can be expressed as binary con-
straints in which each parameter has a isA() constraint. For example, attribute state of
class Color Printer can be represented by the following parfactor:

({isAColor Printer(X) A isARoom(Y) A
isAPowerSupply(Z) n room(X,Y) A power(Y, Z)},
{mal function_works(X), paperType_hasPaper(X),
Boolean_hasInk(X), state_works(Z)}, t ).

The first part of this parfactor is composed of type constraints (isAColorPrinter(),
isARoom() and isAPowerSupply()) and relational constraints (room() and power()). The
second part contains the dependencies of the parfactor, which are the parametrized ran-
dom variables malfunction_works(X), paperType_hasPaper(X), Boolean_hasInk(X) and
state_works(Z). The Cartesian product of their values is mapped to the values in ¢, which
represent the CPT of ColorPrinter.works.

Algorithm 6: Parfactor generation of an attribute.
Input: Class c, Attribute X
Output: Parfactor fctr
Parfactor fctr;
Add a isA() constraint over c’s type;
Add a parametrized variable named by X and prefixed by X'’s type;
foreach parent Y of X do
if Y not in A(c) then
Add a isA() constraint over Y’s class type;
foreach reference p in the slot chain from X to'Y do
Add a relational constraints in fctr matching p;
L Add a isA() constraint over p range type;

o 0 N AT AW N -

10 | Add a parametrized variable named by Y and prefixed by Y'’s type;

11 Copy in fctr’s table X’s CPT;
12 return fctr




108 4. Reinforcing Probabilistic Relational Model’s Object-Oriented Aspect

The isA() constraints encode the inheritance scheme of a PRM if, for each in-
stance ¢ of a system, a ground variable is declared for each type of i, i.e., for all of
its super classes and implemented interfaces. For example, an instance coloria of the
Color Printer class will be represented with the following ground variables: isAColor-
Printer(coloria) and isAPrinter(coloria).

Finally, cast descendants can be represented by including types names in the para-
metric variables declarations. For example malfunction_works(X) stands for the at-
tribute ColorPrinter.works of type malfunction. Then, by generating parfactors for each
cast descendant, the constraints names will ensure the correct structure. For example,
the cast descendant ColorPrinter.works will be declared as:

({isAColor Printer(X)}
{state_works(X), mal function_works(X)}, t )

At first sight, such a representation seems cumbersome but it illustrates the expres-
sive power of parfactors and of FOPMs. First-order logic can be used to express very
complex relations: only two types of constraints are necessary to represent all the no-
tions presented in this thesis. However such expressive power has a major flaw as se-
mantics and relations are hidden in the mass of constraints declarations. When dealing
with large-scale systems, creating and maintaining such knowledge bases can be ex-
tremely difficult. Reinforced object-oriented PRMs are a proposition to manage such
knowledge with a formalism less expressive but much more scalable.



Chapter 5

Structured Probabilistic Inference

Probabilistic inference is often considered the prime task of PGMs and an efficient in-
ference scheme is essential. For most BN extensions, probabilistic inference reduces to
ground inference: given a model, a BN is generated and used for inference. In some
cases, specific inference algorithms are designed: time slices repetition is exploited to
compute an efficient elimination order for 2-TBNs, hyper-tree triangulation enables dis-
tributed inference for MSBNs and first-order logic is used to lift identical worlds for
parfactors. OOBNSs, and by extension PRMs, also benefit from a dedicated inference
scheme: structured inference.

Structured probabilistic inference have already been explored in (Pfeffer, |1999). Pf-
effer’s preliminary work set the basis of the contributions presented in this chapter. We
have found extremely difficult to reuse the algorithms proposed in (Pfeffer, |1999) and
our first approach was to redefine SVE, an algorithm that exploits structural information
encoded in OOBNs and PRMs. SVE exploits hierarchical and structural inference to
prevent redundant computations. It uses the information encoded by classes to elim-
inate attributes at class level, the resulting computations can then be applied to each
class’ instances. However, SVE suffers from several shortcomings which have led us
to develop a new approach to structured inference. Another unanswered issue concerns
d-separation analysis and structured inference. Indeed, both approaches seem at first
incompatible. Where d-separation analysis breaks the structure encoded by classes to
only consider relevant attributes, structured inference needs that structure to detect rep-
etitions and prevent redundant computations. We propose a solution that couples both
approaches and offers a substantial performance gain.

In this chapter, we will first discuss the limitation of ground inference. We will then
introduce our version of SVE and expose its inefficiency to deal with certain families of
systems. We will then present a new inference algorithm that generalizes SVE. From
there, we will expose our adaptation of the BayesBall (BB) algorithm to PRMs and
conclude with experimental results. The results presented in this chapter have been
published at FLAIRS 2010: Torti and Wuillemin (2010).

109
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5.1 Ground inference limits

Ground inference’s main limitation is its lack of scalability. When using an object-
oriented framework, specifying large scale networks is simple. Let us consider the
power surge example, which is a simple network. It includes four classes, one with zero
attribute, two classes with one attribute and one class with three attributes (one of them
is an aggregator). Each attribute’s domain size is binary, but the overall tree-width of
the system can be large depending on the number of printers connected to computers.
Figure [5.1]is a sample ground network in which we have four rooms, each with twenty
computers and two printers. While this shows the benefits from using object-oriented
frameworks to model large scale systems: only the four classes in figure 4.3] are neces-
sary to specify the ground network in figure it also gives a good indication of the
memory consumption of generating ground BNs.

Definition gives us a general outline of the grounding algorithm. Grounding
a PRM is pretty straightforward: each attribute becomes a node in the ground BN and
each CPT is copied for each ground attribute. A naive approach would build a BN
by allocating memory for each CPT copied that way. This can cause high memory
consumptions and will restrain from grounding large relational skeletons. For example,
using a PRM to represent figure five CPTs are required (four attributes and one
aggregator), the ground BN of ﬁgurerequires 1+4= (2034 2) =249 CPTs.

However, we can imagine smart ground networks preventing redundant CPTs copies.
To do so, we would need to dereference each CPT to a unique memory location, thus
each unique CPT is stored once in memory. Unfortunately, such solution is inconve-
nient for several reasons. Suppose we decide to use a junction tree algorithm: creating
the junction tree and initializing each clique breaks the memory gain, unless we design a
specific junction tree algorithm to exploit structural repetition. By doing so, we lose the
main advantage of ground inference (to use existing inference algorithms) and we are
creating a new inference algorithm that should be specified for PRMs rather for ground
BNs. If we choose to use existing softwares for inference over the ground BN, we are
confronted to another problem. Indeed, if we do so we will limit ourselves to small net-
works since such software do not take advantage of structural repetition. Commercial
softwares often require some file format, e.g., BIF, and dumping the ground BN into
such format would invalidate any benefits from a smart implementation of ground BNs.

Figure [5.2] illustrates the limitation of ground inference. We have performed infer-
ence over a system generated from the power surge example, with three different in-
ference algorithms: VE, VE coupled with BayesBall (VEBB) and Shafer-Shenoy. The
queried variable is the state attribute of a randomly chosen computer and there is no
evidence. The system had 1 power supply, 40 rooms and 6 printers per room. We in-
creased the number of computers per room from 10 to 200 and we see that we reached
the memory limit of the computelﬂ around 130 computers per room, which explains why
the graphs of figure[5.2] ends around 130 computers per room. Finally we can see that
inference time increases drastically with the number of computers per room and yet the

'The computer was a 1686 quad core @1998.0 MHz and with 3 Go of memory.
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Figure 5.1: Ground BNs does not encode structural repetition. This application of the

power surge example contains 249 nodes, but there are only five distinct CPTs.
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Figure 5.2: The limits of ground inference.

PRMs we used here is simple and does not offer many challenges except for its size.

Inference in PRMs is hard both for memory consumption and execution time, as
even a simple set of classes can be used to model challengingly large systems. If we
consider exploiting smart ground BNs, we obviously need to develop dedicated infer-
ence algorithms and by doing so there are few reasonable arguments to not develop such
algorithms directly for PRMs. We have seen that PRMs can reduce memory consump-
tion, but we can optimize other criteria by reasoning at an object-oriented level. This is
precisely the purpose of SVE.

5.2 Structured Variable Elimination

Structured Variable Elimination (SVE) is a probabilistic inference algorithm proposed
in Pfeffer (1999). Its main feature is to offer a dedicated inference algorithm for OOBN5s
and PRMs. Unfortunately, SVE has several shortcomings. From an experimental per-
spective, SVE lacks solid experimentations, since the experiments in Pfeffer] (1999) do
not detail precisely the networks used and the experimental environment. For example
tree-widths are not given. From a formal perspective, the use of PRMs in Pfefter (1999)
is profoundly different from the use of PRMs in this thesis. Indeed, in this thesis we fo-
cus on closed world systems. In closed world systems, all instances and references are
known, i.e., there is no structural uncertainty. Furthermore, the use of SVE to OOBNs
is incompatible with PRMs as most of the structural constraints present in OOBNs are
not present in PRMs. In this chapter we will focus on these issues and explain why we
chose to adapt SVE to be efficient on PRMs used to model closed world systems.

Hierarchical inference in Probabilistic Relational Models

We will first detail the specificities of OOBNs exploited by SVE. SVE’s principle is
similar to specific triangulation algorithms used for DBNs: it exploits structure and a
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Figure 5.3: Illustrating the power surge example using an OOBN representation. Ag-
gregators are not represented since such notion does not exist in OOBNSs.

heuristic to build good elimination orders. This is possible because of OOBNSs hierar-
chical nature, i.e., that relations between objects entail that an object will always be
encapsulated into another one. In chapter[3.2) we have seen an example where the object
Hard Drive is encapsulated by the object Computer. Consequently, we can define an in-
terface for each object that will d-separate its internal components from the outer ones.
This feature is called hierarchical inference. Figure illustrates a system instantiated
from the power surge example, in which we have one power supply, two rooms with
two computers and a third room with three computers. All rooms have a single printer
connected to all other computers in the same room. Hierarchical inference will exploit
encapsulation and eliminate inner objects first. In figure[5.3]this leads to the elimination
of all computers and printers before eliminating rooms and the power supply.

Such elimination is still possible in PRMs, however probabilistic dependencies de-
fined using slot chains do not allow to infer this elimination from the sole information
encoded in the relational skeleton. Consequently, there is no viable solution to exploit
hierarchical inference in PRMs (either in Pfeffer’s version or in ours) as it is done in
OOBNs. However, we can extend hierarchical inference to PRMs using a simple state-
ment: if we cannot infer an encapsulation order between instances, we can do so with
attributes. Indeed, we can circumvent the absence of hierarchy by defining three sets
of attributes: inner, output and external attributes. We have already defined the notion
of output attributes (see definition [4.1T)). Inner attributes are any attribute that is not an
output attribute. For example, attributes canPrint and state of the Computer class are
inner attributes. Output attributes are any attribute with at least one child outside of its
class, e.g., attribute power of class PowerSupply. Note that class level output attributes
can be inner attributes at instance level. Consider an instance of Printer that is not con-
nected to a computer, then its state attribute is no longer an output attribute. External
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attributes of a class C are attributes not in .A(C) but present in CPTs of C’s attributes,
i.e., they are accessed from C using slot chains.

Eliminated Factors
attributes
{} P(C.state|Pow.state),  P(C.exists|Prnt.state),
P(C.canPrint|C.state, C.exists)

{C.canPrint} | P(C.state|Pow.state), P(C.exits|Prnt.state),
¢, (C.state, C.exist)
{C.canPrint, | P(C.exits|Prnt.state), ®o(C.exist, Pow.state)
C.state}
{C.canPrint, | ®3(Pow.state, Prnt)
C.state,
Cl.exists}

Table 5.1: Resulting factor after eliminating inner attributes of the Computer class.
Remaining random variables belong to attributes defined in other classes.

We can exploit differences between inner, output and external attributes to recre-
ate a hierarchical structure in PRMs. Table [5.1] illustrates factors obtained after elim-
inating Computer’s inner attributes. Note that the Computer class only has inner at-
tributes. Factor @, only contains external attributes, i.e., attributes that are not part of
Computer set of attributes. Now, let us generalize this principle. Given a class C, the
CPTs associated with C’s attributes can either contain inner attributes, denoted .4;,,(C),
output attributes, denoted A,,;(C), or external attributes, denoted A.,;(C). Note that
Ain(C) U Apt(C) = A(C) and VX € A..4(C), X ¢ A(C). The factor obtained after
eliminating all inner attributes will be:

(At (C), Acrt(C) = > [] P(X|r(X)). (5.1)

XeAin(C) XeA(C)

There is however a category of attributes that cannot be eliminated along with inner
attributes at class level: aggregators. Indeed, these attributes are used to aggregate infor-
mation of an unknown number of parents. Consequently, aggregators conditional prob-
ability distributions at class level are not representative of their instantiated versions. In
some cases, aggregators are defined using simple reference slots, but in the general case
there is no possible way to know what their conditional probability distributions will be
once instantiated. Fortunately, we only need to consider aggregators as output attributes
as we will see that output attributes are also dependent of their instance’s context.

Structured inference in PRMs

Hierarchical inference only provides a predefined elimination order and, unfortunately,
we cannot guarantee that such elimination order is efficient in the general case. It can
even be, in some situations, particularly inefficient. To increase hierarchical inference’s
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performance, we must also use structural inference. Structural inference exploits struc-
ture repetition to prevent redundant computations. For example, in figure[5.3| we can see
two different kind of repetitions. The first repetition concerns classes and their instances,
in figure[5.3|we can see that the computer class has seven instantiations, the Printer class
has three and so does class Room. Hierarchical inference can be exploited to reuse fac-
tors obtained after eliminating inner attributes. For instance, the factors resulting from
Computer’s inner attributes elimination can be reused for each of its instantiation. The
second repetition is patterns repetition. Patterns are sets of connected instances repeated
throughout a system. In figure[5.3]we can see that both outlined rooms share an identical
pattern. Eliminating attributes that are encapsulated in such pattern results in factors that
can be reused in each of the pattern’s occurrences. However, exploiting these patterns is
a remarkably difficult task and is the topic of chapter[6]

In this chapter, we will focus on exploiting structured inference over classes. Our
goal is to reuse inner attribute’s class level elimination for each suitable instance. We
say suitable instance because not all instances are eligible to receive the factor obtained
after class level eliminations. Indeed, evidence on inner attributes breaks structure by
locally changing an instance’s conditional probability distributions. This prevents any
reuse of class level elimination and could be a major flaw as evidence update is one
of the main use of PGMs. We will see that it is not that much a burden as exploiting
d-separation analysis helps optimizing inference in systems with evidence. Coupling
d-separation analysis and structural inference is the topic of section[5.4]

Adapting SVE to object-oriented PRMs

We will now adapt the SVE algorithm of Pfeffer| (1999) to object-oriented PRMs. In
its traditional form, SVE does not exploit hierarchical or structural inference on named
instances (see chapter [3.3)) and handles them not differently than ground inference does.
Since we only consider systems in which all instances are named, we cannot use SVE
in its classic form. However, Pfeffer introduces several notions that can be used in our
context. We have adapted two of them: hierarchical and structural inference. The final
notion we will exploit is a specific elimination order of instances called a bottom-up
elimination. Bottom-up eliminations of instances consist in eliminating instances with
no output attribute first.

Definition 5.1 (Leaf instances) A leaf instance is an instance with no output attribute.
An instance has no output attribute either because of the relational skeleton topology or
because all instances that had dependencies on that instance have been eliminated.

To understand the importance of bottom-up eliminations and leaf instances, we will
consider the example illustrated by figure[5.4] Figure[S.4|represents a system containing
seven instances. We can see that two of them are leaf instances: X4 and X7 (we suppose
that all instances are of the same class, name it C). The black node of instance X is
the queried attribute. A bottom-up elimination eliminates first leaf instances and to find
them we follow inverse slot chains starting from the queried instance. This is illustrated
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throughout figures [5.4b| to we start from X, (figure [5.4b), then go down in the
system (figure[5.4c). When a leaf instance is reached, we eliminate it and obtain a factor
over its external attributes. For example, the external attributes of Xg are attributes of
instances X3 and X,. Now that we have reached a leaf instance, we follow up its slot
chains to reach instances containing its external attributes. If these instances are leaves,
we proceed with their elimination, and so on.

Let us focus on the elimination of instance Xg. When we eliminate Xg’s attributes,
we obtain factors over its external attributes. Such factors are stored in a global set
called the pool of factors (referred as the pool). Later on, when X3 is chosen for elimi-
nation, we eliminate its inner attributes, resulting in factors over its output and external
attributes. Since all attributes depending on its output attributes have been eliminated,
we can eliminate them if we take into account the factors in pool. Without a bottom-up
elimination, we could not guarantee that all dependencies have been dealt with. The
method we described can be applied on X (figure[5.4¢), then X (figure[5.4d), then X

(figure[5.4e)).

Now let us consider step 5, illustrated by figure [5.4f] In step 5 we have reached
instance X that still has existing dependencies. Thus, before eliminating X; we must
eliminate instances that have dependencies on its output attributes. This results in a
recursive call over inverse slot chains illustrated on figures [5.4gland [5.4h| On the latter
we reached a leaf where the preceding paragraph can be applied, hence resulting in the
elimination of X (figure [5.4h), and then of X (figure [5.41), as eliminating X; makes
X5 a leaf instance and eligible to elimination. The remaining instances, X; and Xo,
become leaf instances after X5 elimination and can be eliminated.

Algorithm[7]is our adaptation of Pfeffer’s SVE to close world systems. SVE requires
as inputs a PRM 1II, a relational skeleton S, a query attribute (), its instance ¢ and
a set of evidence e. Evidence is encoded by factors over the observed attributes, as
for algorithm [1] (see chapter 2.2). SVE’s output is a factor over ¢ encoding P(gle).
Algorithm{[7]also uses three different calls to the procedure VE (line 9, 11 and 13). How
algorithm [I)is used is crucial to algorithm [7]and each call will be detailed later on. The
first step of algorithm[7is to initialize a list and a set of instances with g (lines 2-3), Ist’s
purpose is to proceed with a depth-first search in & and visited purpose is to prevent
from visiting instances twice. Until /st is empty (line 4), algorithm [/| picks the first
element of the list, name it ¢, and if it is a leaf it proceeds with its elimination (lines
6-13). Three possible eliminations can occur. If ¢ is the queried instance we proceed
with a call of VE over ¢’s attributes and takes into account the queried attribute () and
factors in pool and in e (lines 8-9). If < has evidence, VE is applied to 7’s attribute and
takes into account factors in pool and in e (lines 10-11). If ¢ has no evidence, VE is
applied first on ¢’s class to eliminate inner attributes at class level. The resulting factors
are cached to be reused at the next occurrence of an instance of ¢’s class. After the class
level elimination, VE proceeds with the elimination of 2’s output attributes and takes
into account factors in pool and in e (lines 12-13). The next step of algorithm [/]is to
add 7’s dependencies to /st. Such dependencies include any instance in which attributes
are parent of some of ¢’s attribute (lines 14-18). If ¢ is not a leaf, then we parse its
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Algorithm 7: Structured Variable Elimination
Input: a PRM II, a relational skeleton S, a query ¢.(), a set of evidence e
Output: a factor encoding P(q|e)

1 let pool = & be an empty set of factors;

2 let Ist = [q] be a list of instances;

3 let visited = {q} be a set of instances;

4 while [st is not empty do

5 i = lst. front();

6 if ¢ is a leaf instance then

7 Lst.pop_front();

8 if © equals q then

9 | VE1(q,Q, e, pool);

10 else if an inner attribute of i has evidence then
11 L VE2(i, e, pool);

12 else

13 L VE3(Class(i), i, pool);

14 foreach slot chain K of © do

15 foreach j € . K do

16 if j ¢ visited then

17 visited = visited L {j};
18 L Ist.push_front(j);

19 else
20 foreach inverse slot chain K of i do
21 foreach j € i. K do
22 if 7 ¢ visited then
23 visited = visited U {j};
24 L Ist.push_front(j);

25 Let ¢ be a factor over ¢ initialized with ones;
26 foreach factor 1) in pool do ¢ = ¢ x 1;

27 normalize(g);

28 return ¢;

2

inverse slot chains to add all instances that depend on one of i’s output attributes (lines
19-24). Note that in such case, we do not remove ¢ from [st. Finally, once /st is empty
and all instances have been eliminated, algorithm [/ retrieves all factors containing the
queried attribute () in pool, multiplies them, normalizes the result and returns the factor
encoding P(g|e) (lines 25-28).

Procedure [§] eliminates queried instance’s attributes. We need a different treatment
for this instance to not eliminate the queried attribute. Procedure [§] is simple: after
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Procedure VE1 (g, ), e, pool)
Input: An instance ¢, an attribute (), a set of evidence e, a set of factor pool
Compute an elimination order ¢ over A(q)\{Q};
foreach Artribute A € A(q) do
add ¢.A’s CPT to pool;
if ¢. A is observed then add evidence in e over ¢.A to pool;

AW N -

(9]

Apply algorithmusing t over pool;

Procedure VE2 (7, €, pool)
Input: An instance 7, a set of evidence e, a set of factor pool
1 Compute an elimination order ¢ over A(7);
2 foreach Attribute A € A(i) do
3 L add i.A’s CPT to pool;

4 if i. A is observed then add evidence in e over i. A to pool,

s Apply algorithm using ¢ over pool;

computing an elimination order over the instance’s attributes (except ¢.()), it adds each
CPT to pool and each evidence of an attribute in ¢ to pool. Finally, it applies algorithm T}
which proceeds with the elimination of ¢’s attributes. Procedure [9]is almost identical to
procedure |8} the difference lies in the fact that all attributes of ¢ are eliminated, where
the queried attribute is preserved in procedure 8]

Procedure [I0] proceeds with the elimination of i’s attributes in two steps. The first
step eliminates the inner attributes at class level (line 2-9) and copies the obtained factors
into their instance level counterparts (lines 10-15). When the instance level factors are
obtained, procedure |10 eliminates output attributes (line 17). The C'ache(C) procedure
returns a set of factors associated with class C.

We will now prove that algorithm 7] correctly computes the value P(g|e) under cer-
tain conditions. To do so we must first define a category of classes that prevents algo-
rithm [7| convergence.

Definition 5.2 (Mutually dependent classes) Let {Cy,-- ,C,} be a set of classes such
that C; = C,,. Classes C; to C,, are said to be mutually dependent if for 1 <i <n — 1,
C; is dependent of C; 1, i.e., one of C;’s attributes is the child of one of C;,1’s attributes.

Mutually dependent classes appear once a list of classes creates a reference cycle in
the dependency class diagram. Such mutually dependent classes can be instantiated into
a set of mutually dependent instances.

Definition 5.3 (Mutually dependent instances) Let {c1, - ,c,} be a set of instances
such that ¢, = c,. Instances cy to ¢, are said to be mutually dependent if for 1 <1 <
n — 1, ¢; is dependent of c; 1, i.e., one of c;’s attributes is the child of one of c;y1’s
attributes.
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Procedure VE3 (C, 4, €, pool)
Input: A class C, an instance i, a set of factor pool
let bucket = ¢ be an empty set of factors;
if Cache(C) exists then
L bucket = Cache(C);

else

WO =

Compute an elimination order ¢ over A;,(C);
foreach Astribute A € A(C) do
L add C.A’s CPT to bucket;

Apply algorithmusing t over bucket;
9 Cache(C) = bucket;

N S B A

=]

10 foreach factor ¢ € bucket do

1 let {C.X1,---,C.X,,} = Scope(¢);

12 | let ) be a factor such that Scope()) = {i.X1,--- ,i.X,,};

13 foreach Value {C. X, = z1,--- ,C.X,, = x,} do

14 L '(ﬁ(ZXl =T, " ,ZXn = J,’n) = qb(CXl =T, " ,CXn = .I‘n);

15 | pool = pool L {1)};
16 Compute an elimination order ¢’ over A,:(C);
17 Apply algorithmusing t' over pool,

When there are mutually dependent instances, SVE cannot converge since it will
endlessly iterate over mutually dependent instances. Such configurations can be en-
countered but we have found it particularly counter-intuitive to model such systems in
the classic PRM framework. However, the notion of interface we introduced in chap-
ter[dcan easily create configurations where mutually dependent instances appear. SVE’s
inability to deal with mutually dependent instances is due to the bottom-up elimination
ordering. This led us to its abandon and its replacement is the topic of section[5.3] Thus,
to prove algorithm [/|convergence we must limit its use to systems with no mutually de-
pendent instances.

Theorem 5.1 (SVE convergence) Let II be a PRM and S a relational skeleton. In the
absence of mutually dependent instances in S, SVE will proceed with the elimination of
all instances in S.

Proof. Algorithm [/| proceeds with a depth-first search in the relational skeleton, fol-
lowing slot chains and inverse slot chains. If there does not exist any set of mutually
dependent instances in S we are guaranteed to find at least one leaf instance. Eliminating
that leaf instance creates at least one other leaf instance and, by induction, we can elim-
inate all instances of the relational skeleton. If it is not the case, there is obviously a set
of mutually dependent instances, which contradicts our assumption that there is none. ll
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Now that we have shown that algorithm [/|converges, we will prove that the attribute
elimination scheme of SVE matches the elimination performed by VE with a specific
elimination order.

Theorem 5.2 (SVE correctness) Let II be a PRM, S a relational skeleton, a set of
evidence e and a query Q) € A(q), with q an instance in S. If SVE converges, then the
returned factor encodes the probability P(q|e).

Proof. Without loss of generality, we will suppose that there is no evidenceﬂ Let IT
be a PRM, S a relational skeleton and {cy,--- ,¢,} be a set of instances such that ¢; is
eliminated before c; only if ¢ < j and we denote by C; the class of instance c;.

Let us consider ¢;’s elimination. Since ¢; is the first instance to be eliminated, it is
necessarily a leaf node (theorem [5.1)). This entails that either C; has no output attribute
or that none of C; output attribute instantiations in c; have children outside of ¢;. Then
by applying equation[5.1| we eliminate inner attributes at class level and then if there are
class level output attributes, we must eliminate them from the factors obtained through
equation 5.1} Since, none of these output attributes have children outside of ¢;, all
information required for their elimination is encapsulated in ¢;. Consequently c; is
eliminated correctly and results in the creation of factors over A.,;(c1) (supposing that
Acat(c1) # ).

Now let us consider the elimination of instance ¢;. We first apply equation [5.1] to
eliminate c;’s inner attributes at class level, i.e., we obtain a factor over ¢;’s output and
external attributes. If ¢; has no output attribute, then it has been eliminated and remains
a factor over A.,;(c;) (supposing that A..;(¢;) # ¢ and that the factor’s scope is not
limited to A, (c;) but is a subset of | ), ., Aext(ck)). If C; has output attributes but
none of their instantiations have children outside of c¢;, we apply the same reasoning
used for c;. Finally, in the case where c¢; has attributes with children outside of it, the
bottom-up elimination order ensures that all instances that had dependencies over c;
have been eliminated. Consequently, we can eliminate ¢;’s output attributes if we take
into account the factors created by previous instance eliminations (as in VE, we assume
that such factors are used only once and removed from the pool of factors after they have
been used to create a new one). As a result, ¢; is correctly eliminated and its elimination
creates factors over A..(¢;) (assuming that A..;(c;) # ¢ and that the factor’s scope is
not limited to A..¢(¢;)).

When instance ¢, is reached, all previous instances have been eliminated. Conse-
quently, existing factor’s scopes are only over attributes in c,, (and the queried attributes).
Then, eliminating ¢,, can be done as explained previously, except that the resulting fac-
tors will be over the queried attribute.

Eliminating instances c; to ¢, using SVE is equivalent to applying algorithm
over the ground BN of & using an elimination order induced by the partial ordering
{c1,-+ ,¢,}. Indeed, ¢;’s attributes elimination only requires attributes that are in ¢;
and ¢;’s attributes elimination requires attributes that have been eliminated (theorem

ZWhen confronted to evidence, we can replace instances with evidence by classes that directly encode
the desired evidence.
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[5.1). Thus algorithm [7]is equivalent to algorithm [I] using a specific elimination order-
ing. ]

We will conclude this section by discussing algorithm [/{complexity. Obviously, al-
gorithm [/| applies at most VE n times, where n is the number of instances in S. Since
VE complexity is exponential in the size of the largest clique, we can infer that algo-
rithm SVE is of the same order of magnitude. However, VE elimination orders are
defined using algorithms that are not constrained by the specific ordering induced by
SVE’s bottom-up elimination ordering. Thus, even if the theoretical complexity of both
algorithms is identical, the quality of the elimination ordering induced by the bottom-up
elimination of instances can considerably burden or favor SVE. However, estimating the
quality of SVE’s elimination ordering can be done easily: we simply need to compute
the size of each factor after each attribute elimination. Doing so will give us the size of
the largest factor created by SVE. We can then proceed with the same operation using
VE and compare each elimination order’s quality. If the size of the largest factor cre-
ated by SVE is by order of magnitude bigger than VE’s largest factor, then it would be
preferable to use ground inference or the algorithm presented in the next section.

5.3 Structured Probabilistic Inference

We present here a new probabilistic inference algorithm called Structured Probabilistic
Inference (SPI). SPI is a generalization of SVE in which we drop bottom-up elimina-
tion of instances for a more generic approach. We have already pointed out SVE’s
limits when dealing with mutually dependent instances, yet there are other issues, no-
tably about SVE’s performances on specific systems. We will first present these specific
systems for which SVE is counter-performing and we will then present a solution well
suited for them. We will then detail the SPI algorithm and provide its complexity anal-
ysis.

Limits of a bottom-up elimination

We have seen in section [5.2]that SVE is based on a bottom-up elimination of instances.
Doing so offers the advantage of dealing recursively with instances elimination (the
original SVE is recursive, unlike algorithm [7). However, we remarked that some sys-
tems, with mutually dependent instances, do not allow SVE to converge (this is also
true with the original SVE). We will see that there is another important flaw in SVE re-
garding inference performances. Indeed, the bottom-up elimination order used by SVE
enforces elimination orders of attributes that can be particularly counter-performing for
a wide range of systems.

Figure [5.5]illustrates a simple system for which SVE is remarkably not well suited.
In figure [5.5] all instances only contain one attribute, thus we represent instances and
attributes with only one graphical element. We can immediately notice that figure [5.5]
is a polytree, consequently inference should be easy. Let us consider how SVE will
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Figure 5.5: A worse case scenario for SVE: each node is the only attribute of its instance
(instances are not illustrated for the sake of clarity).

proceed with the system of figure[5.5] Let us suppose that the query is ¢4 and that a is
observed. The factors created by SVE are:

Instance | Factors in the pool after the instance elimination
a o1 (517 b2)
by Pa(c1, 2, ba)
c1 P3(dy, ds, c2, bs)
d; P3(da, ca, ba)

Note that even changing the order in which leaf instances are eliminated does not im-
prove the quality of SVE elimination of attributes:

Instance | Factors in the pool after the instance elimination

a ¢1(b17 52)
by ¢2(C1, Co, 52)
by ¢3(01,02,037C4)

C1 ¢3(d17d2702703704)

Globally, when we are confronted with an inverse pyramidal topology, i.e., many par-
ents and few children, SVE performs badly. This is crucial as we are often confronted
with aggregators having many parents. The bottom-up elimination of instances forces
SVE to eliminate aggregators before their parents, creating large factors that would have
been prevented with other elimination orders.
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A generic scheme for structural inference

Our proposition to enhance inference in PRMs while exploiting hierarchical and struc-
tural inference is to proceed with a two steps inference. The first step of our algorithm
eliminates inner attributes from all instances, reusing as many times as possible class
level eliminations. The second step generates the Markov Network (MN) induced by
the factors obtained after eliminating inner attributes. We then apply VE or SS over the
newly created MN.

O O O O
X X5 O O
[oN I 0% 0
T o0l 00 [00
X3 X4 X5 @ o @) ﬁ;
QO O O ]
o O o O
Xe X7 O ,Q
O O
(a) The system used in ﬁgure (b) Gray nodes are eliminated at- (c) The MN induced by the
tributes. factors resulting inner attributes

elimination.

Figure 5.6: If we eliminated inner attributes from all instances, we can create a MN over
the remaining factors.

Figure [5.6]illustrates the two steps with the same system of figure [5.4]in which we
eliminated all inner attributes (figure[5.6b). The factors created by the elimination of all
inner attributes can be used to create the MN illustrated in figure SPI fixes several
of SVE flaws. First of all, dropping the bottom-up elimination order allows more opti-
mal elimination orders. Secondly, SPI is not bothered by mutually dependent instances,
as there is no recursive elimination of instances. SPI offers a generic framework for
exploiting structural information as the second phase of the algorithm can use any prob-
abilistic inference for MNs such as junction tree inference algorithms or approximate
inference algorithms.

Algorithm [TT] requires a PRM II, a system S, a query and a set of evidence e. It
returns a MN constructed from the factors obtained after eliminating inner attributes.
Algorithm 11| processes each instance one by one and either: (i) eliminates inner at-
tributes at instance level, except for the queried attribute if the instance is the query
(lines 2-3); (ii) eliminates inner attributes at instance level and takes into account evi-
dence over the inner attributes (lines 4-5); (iii) proceeds with a class level elimination
and reuses if possible previous eliminations (lines 6-7). The final step of algorithm [TT]
is to create the induced MN from the factors in pool (see chapter [2.2]).
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Algorithm 11: Structured Probabilistic Inference
Input: PRM 11, system S, a query ¢.Q), a set of evidence e
Output: a MN
let pool = (& be an empty set of factors;
foreach instance v in S do
if 7 equals q then
L VE(q,Q, e, pool);
else if an inner attribute of i has evidence then
6 L VE(i, e, pool);
7 else
8 L VE(Class(i), i, pool);

AW N -

(9]

9 Create the induced MN H over the factors in pool;
10 return H;

Theorem 5.3 Let Il be a PRM and S a system. The MN returned by algorithm
matches the induced MN obtained by applying VE over the ground BN of S after elimi-
nating ground inner attributes.

Proof of theorem is trivial and is omitted. Theorem is useful as it tells us
that SPI is in fact VE applied on a subset of the nodes in the ground BN of S. The only
difference with VE is that SPI prevents redundant computations by caching class level
eliminations.

5.4 Structured BayesBall

As stated by Shachter (1998)), d-separation analysis (with respect to structure and evi-
dence) may induce another kind of optimization: only a subset of the BN may be neces-
sary to answer a specific request. D-separation exploits the graphical properties of BNs
to prune irrelevant nodes with respect to a query and evidence. A classic example is to
see nodes as valves that block or let the flow of information pass as shown in figure
(Pearl, 1988).

Figure illustrates how hard evidence influences the flow of information in BNs.
We can see that chains (X — Y — Z) and divergent arcs (X <« Y — Z) are both
blocked by hard evidence. However, v-structures (X — Y « Z) do not block infor-
mation when there is evidence and block it if not. The reasons of these behaviors have
been detailed in chapter 2.1, The BB algorithm (Shachter] [1998) exploits d-separation
to determine the set of requisite nodes given a query and evidence. It uses an imaginary
ball that bounces the BN’s nodes, following the flow of information. In this section, our
aim is to adapt such algorithm to PRMs. A d-separation analysis will help reducing the
number of computations, which can be seen as a low level exploitation of the structural
information encoded in PRMs.
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Figure 5.7: The different influences of hard evidence on BNs.

The BB algorithm marks BN’s nodes on the top and the bottom. The marks purposes
are twofold: they define the set of required nodes (nodes with the top marked) and how a
node have been reached (marked on the top when reached by a child and marked on the
bottom when reached by a parent). We know that barren nodes are unobserved leaves
in the BN’s DAG. We also know that when all the children of a node are barren, then
that node is also barren. The BB algorithm exploits this fact to find the set of barren
nodes in a BN: starting from the query, it parses the BN’s DAG in all directions (the
parsing is illustrated by a ball, giving the algorithm’s name). The different situations are
illustrated in figures[5.8][5.9] [5.10]and [5.11] In the following examples, we denote by X
the node that receives the ball either from a parent (figures [5.8]and [5.9)) or from a child

(figures and [5.TT]).

(a) U received the ball from a (b) X is not observed: he for- (c) X and its children are marked
parent and sends it to X. wards the ball to its children and on the bottom: they are not re-
marks itself on the bottom. quired nodes.

Figure 5.8: In the absence of evidence, the ball is forwarded to children until an observed
node or a leaf node is reached.

Figures [5.8] and [5.9] illustrate how the ball is forwarded after it was received by
a parent. How the marking works is important to understand the algorithm we will
present in this section: a node is marked on the top when it is required. In most cases,
this happens when the node received the ball from a children. Indeed, this occurs only
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(a) U received the ball from a (b) X is observed: he forwards (c) X and his parents are required
parent and forwards it to X. the ball to his parents but not to nodes.
his children.

Figure 5.9: An observed node connects its parents, this is illustrated by the ball being
forwarded to all of X’s parents. When the ball is received from a child, it entails that the
child has some relevant information with respect to the query. Consequently, the parents
of such nodes are required as well.

when a child has relevant information with respect to the query. Nodes are also marked
on the top when they are observed and received the ball from a parent, since in such
situations the evidence will be relevant given the query.

(a) A received the ball from a (b) X is not observed: he for- (c) Parents of X are marked as re-

child and sends it to X. wards the ball to his neighbors quired nodes and X’s descendant
and become a required node. are visited.

Figure 5.10: When a node is unobserved and receives the ball from a child, it becomes
a required node. Consequently, its parents must also be added (if they are unobserved)
and its children must be visited to find relevant information, i.e., evidence.

Figures [5.10] and [5.T1] illustrate how the ball is forwarded after it was received by a
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(a) A received the ball from of its (b) Since X is observed: he ig-
children and forwards it to X. nores the ball received from A.

Figure 5.11: When observed, a node d-separates its children from its parents. Here,
node X is observed and ignores the ball when it is received from one of its children.

child. When X is unobserved the rule is simple: X is marked both on top and bottom
and sends the ball to his neighbors. Since its parents will receive the ball from a child,
they will also be marked doubly and forward the ball in a similar manner. Children
on the other side will be required only if they are observed, indeed if unobserved they
would be barren nodes. To summarize the purpose of marks, we must remember that
nodes marked on the top are required and nodes marked on the bottom have been visited
but are not (yet) required.

Now that we have explained how the BB algorithm works, we will discuss how
d-separation analysis and structural inference are not incompatible inference optimiza-
tions. Indeed, structural inference uses repetitions to prevent redundant computation and
d-separation analysis extracts the minimal set of nodes required to answer a query with
respect to a set of evidence. Both approaches enter in conflict since d-separation breaks
the structure used by structured inference. Fortunately, there is a trade-off between both
approaches.

Figure illustrates an experiment in which we randomly observed different num-
bers of attributes in the same system. We used a system generated from the power surge
example with fifty rooms, ten printers and forty computers (for a total of 6501 nodes).
Queries were randomly generated and each point is the result of several hundred of runs.
The curve of figure [5.12]illustrates how much d-separation analysis is sensitive to evi-
dence and queries (we did not allow configurations where the query was observed). The
curve is uneven because we voluntarily chose to not run enough experiments to even
it. Doing so points out the high variance of the size of the set of requisite nodes with
respect to the query and the evidence. What we must learn from figure [5.12)is that there
are cases in which repetition and evidence occur. We will present a scheme to detect
and exploit such repetitions, while exploiting d-separation analysis to prune irrelevant
attributes.

To exploit d-separation and structural information we must first consider how in-
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Figure 5.12: D-separation analysis with BB.

formation flows between instances in a system. We know that attributes of different
instances are connected through slot chains (inverse or not). Then, we can consider
each slot chain as an indicator of active paths between instances.

]
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(a) Slot chains and inverse slot  (b) The ball is sent from X and  (c) The ball is sent by X and U

chains are used to define a class’ V' (or one of his descendant) is  (or one of his descendants) is ob-

dependencies. observed. Here, attributes A, B,  served. Here, attributes A and C
and D are required. are required.
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Figure 5.13: A class with attributes A, B, C, D and its dependencies: square labels are
slot chains (p, p) or inverse slot chains (i, v). The other attributes belong to unrepre-

sented classes in figure and instances in figures[5.13b[and [5.13c|
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Figure[5.13]illustrates how the set of required attributes can differ depending on the
instance’s context. In figures [5.13b]and [5.13c|two instances of the class represented in
figure are placed in different contexts during the BB algorithm (supposing we have
such algorithm for PRMs). Both instances receive the ball from X but in figure V
(or one of his descendants) is observed and in figure U (or one of his descendants)
is observed. We can see that both instances required attribute sets differ, thus if we want
to use d-separation analysis and structured inference we must dissociate instances with
different set of required attributes. From there, adapting BB to PRMs is trivial.

Algorithm 12: Structured BayesBall
Input: a PRM II, a relational skeleton S, a query ¢.(), a set of evidence e
Output: a set of required attributes
Add ¢.Q) to be visited from a child;
while there is an attribute X to be visited do
if X is visited from a parent and is not marked on the bottom then
Mark the bottom of X;
if X is observed then

Mark the top of X;

foreach Y € 7(X) do

| AddY to be visited from a child;

W NN R W N

9 else
10 foreach Y € Ch(X) do
1 L Add Y to be visited from a parent;

12 else if X is visited from a child and is not marked on the top then
13 if X is not observed then

14 Mark the top and bottom of X;

15 foreach Y € 7(X) do

16 L Add Y to be visited from a child;
17 foreach Y € Ch(X) do

18 L Add X to be visited from a parent;

19 Return the set of attributes marked on the top;

Algorithm [12[is almost identical to the BB algorithm. Algorithm [12|takes as inputs
a PRM, a relational skeleton a query (¢ is an instance and () an attribute) and a set of
evidence. Algorithm (12]supposes that 7(X') and Ch(.X) return respectively the parents
and children that are in X’s instance and in other instances. We could choose to make
the slot chains and inverse slot chains part of the algorithm’s specification but it adds
unnecessary complexity. Algorithm (12| parses the relation skeleton from attribute to
attribute, updating the markings each time it is necessary. Complexity analysis and
convergence proof are identical to the BN version of this algorithm and can be found in
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Shachter| (1998)).

5.5 Experimental results

PRMs are a difficult framework for experimenting as there are no standard system to
compare probabilistic inference. Furthermore generating random PRMs is difficult since
there is a considerable amount of parameters: class, inheritance, reference slots, refer-
ence chains, etc. To experiment our inference algorithms we chose to exploit the power
surge example described in figure 4.3] For the following experiments we have used dif-
ferent systems generated from the power surge example (see figure d.3] The examples
we used for our experiments are composed of a fixed number of rooms (fifty) and a ran-
dom number of printers and computers per room. Despite the simplicity of the power
surge example, we can generate challenging systems. Furthermore, each experiment re-
quires a small set of parameters, making them more understandable and help understand
our algorithms behavior. One parameter is the number of computers per room, that have
an influence on the size of the network. Another parameter is the number of printers,
which are connected to all the computers in their rooms, that have a direct impact on the
size of the largest clique.

100
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50 -
40 -

Time in seconds.

30 -
20 -
10
0

0 20 40 60 80 100 120 140 160 180 200
#computers per room.

Figure 5.14: Structured and ground inference.

Figure [5.14] exhibits the behavior of several inference algorithms in the absence of
observations. For this experiment we have raised the number of computers per room
from 10 to 200, with 6 printers and 40 rooms (for a total of 1 441 to 24 241 nodes). The
curves which stops after 130 computers represent classic inference algorithms used on
ground BNs. The following ground inference algorithms were used: VE, SS (SS) and
VE coupled with BB (VEBB). We used two versions of structured inference: SPI (SPI)
and SPI coupled with Structured BayesBall (SPID). The results show the limitation of
reasoning on BN, since the computer used for the tests could not handle the size of the
ground BNs. Furthermore SPI and SPID give good results.
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Figure 5.15: Comparaison between SPI and SPID on networks with high tree-width.

Figure [5.15] shows the behavior of SPI and SPID in the absence of evidence. The
system contained 40 rooms with 50 computers and the number of printers varied from
1 to 10 (for a total of 6 041 to 6 401 nodes). The curves clearly show the possible
gain d-separation analysis can give to inference. However we must point out that the
example used for these test gives very good performance to algorithms exploiting d-
separation and they should be considered as best case situations. Although in the worst
case situation, it is easy to show that SPI and SPID differ neither in complexity nor in
time.

Time in seconds.

0 10 20 30 40 50
#observations per room.

Figure 5.16: Inference performance under evidence (6 printers per room).

Figure shows the impact of observations on SPID and SPI in a system with
6 printers, 50 computers per room and 40 rooms. It gives the inference time when
the power supply’s state attribute is queried under different amounts of evidence. The
number of observed attributes in each room grows from 0 observed computers to 50.
These results give us the insights of SPID performances under heavy observations: we
can expect slower inference, even slower then SPI in the worst case. The worst case for
SPID would be systems with small cliques.

Figure illustrates an experiment slightly different from the one represented in
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Figure 5.17: Inference performance under evidence (8 printers per room).

figure [5.16] The difference lies in the number of printers per room, which was raised
to 8. This illustrates the importance of tree-width in inference complexity: in fig-
ure the tree-width equaled 129 and in figure 257. We can see that the cost of
d-separation analysis is quickly negligible when inferring in systems with large cliques.
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Chapter 6

Pattern Discovery for Structured
Probabilistic Inference

In this chapter, we propose an enhancement of SPI based on discovering repeated pat-
terns of instances that are used to speed-up structured inference. To understand why
such patterns emerge in complex systems modeled using PRMs, we must consider
abstraction. Abstraction is one of the most important features in the object-oriented
paradigm: it is used to decompose knowledge into classes. The more complex the do-
main, the more classes are necessary to lower its complexity. Indeed, it is easier to
model and reuse classes made of few attributes, e.g., less than ten and one or two ref-
erence slots, than classes composed of hundred of attributes and tens of reference slots.
This decomposition of knowledge leads to a large number of instances and since experts
will naturally minimize the number of attributeq| the benefits of using structured infer-
ence can be limited. However, in many real world applications, instances often form
repeated patterns throughout the system. By using a frequent subgraph pattern mining
algorithm, it is possible to discover such patterns and exploit them to speed-up SPI. Fre-
quent subgraph pattern mining is related to the subgraph isomorphism problem, which
is a NP-complete problem (Cook,|1971). Consequently, mining optimally such patterns
is hard. In this chapter, we both provide a structured inference algorithm for PRMs
exploiting patterns and a mining heuristic fast enough for efficient on-line inference.
Marginalizing-out internal attributes at class level is the key to structured inference
efficiency as it reduces significantly redundant computations. However, not all redun-
dancies can be identified by this scheme. Figure illustrates the idea of finding pat-
terns to infer new classes and use them to reduce the number of output attributes in the
relational skeleton. In figure[6.1|C and D are two classes with X € A(C) and Y € A(D)
two attributes such that C. X is the parent of D.Y and D.Y is the only child of C.X not
in A(C). In this configuration, C.X is an output attribute and D.Y" is an inner attribute.
Consequently, we will be able to eliminate D.Y" at class level but not C.X. However, if
we consider a new class, name it F, defined by the union of C and D, attribute F.X is
no longer an output attribute since F.Y € A(F). Hence, for any pair of instances (c, d)

"We have been confronted to systems where each class contained a single attribute.

135
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of classes C and D that match the definition of F, we can replace them by an instance
of F in which F.X is an inner attribute, thus eligible to class level elimination.
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(a) Classes C and D can be (b) Patterns matching F can be replaced
grouped into a dynamic class F. by instances of F.

Figure 6.1: We can search for repeated patterns of instances in the relational skeleton,
doing so enables class level elimination for output attributes encapsulated by patterns.
Here, attribute ¢;.X and can be eliminated at class level if we consider (¢;,d;) as an
instance of F.

Note however that not all pairs (¢, d) can be used: in figure[6.1] pairs (¢, d;) cannot
be used conjointly with (¢, d;). Indeed, if we replace (ci, d;) by an instance of F we
cannot replace (cs, d1) by another instance of F without changing the joint probability
distribution. Another important notion is the efficiency of a pattern. In figure
we can see that pattern (¢, d) has a total of five possible matches, but at most three of
them can be used at the same time. If we substitute (¢, d;), (¢c2,ds2) and (c3, d3) with
instances f1, fo and f3 of F see that f;.X is an inner attribute, but f>..X and f3..X are
not. Furthermore attribute f3.Y does not have the same number of parents as attributes
f1.Y and f,.Y. Fortunately, we will see that by labeling the relational skeleton we
can build a graph in which discriminating different kinds of instances of a same class
becomes trivial.

This chapter is organized as follow: in section [6.I] we formalize our problem of
repeated sets of instances in a relational skeleton and in section [6.2] we provide a com-
plexity analysis of this problem. We will see that finding optimal patterns in a relational
skeleton is a NP-hard problem. In section |B.4{ we present an approximate algorithm for
mining patterns and we detail the pruning rule we used to find good quality patterns.
Experiments reported in section [6.4] show the practical efficiency of our approach. The
results presented in this chapter have been published at SUM 2011: [Torti et al.| (2011).
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6.1 Formalizing pattern discovery

When searching for patterns, we need to consider both output attributes and aggregators.
Doing so ensures that each set of instances matching the same pattern can be encapsu-
lated by the same class. Such instances are called interchangeable because apart from
their names, they are identical in all points.

Definition 6.1 (Interchangeable instances) Ler I1 be a PRM and S a relational skele-
ton. Two instances c; and c; of class C are said to be interchangeable in S if for all
aggregators X € A(C) we have |w(c;. X)| = |n(c;.X)| and for all output attributes
Y € A(C) we have |Ch(c;.Y)| = |Ch(c;.Y)|.

For example, in figure instances ¢, and c3 are interchangeable, so are instances
dy and d,. Detecting such variations between instances is necessary to discover patterns.
To do so, we will use a labeled graph called a boundary graph.

Definition 6.2 (boundary graph) Let II be a PRM and S a relational skeleton. A
boundary graph is an undirected graph BG = (I, ), where:

e 7 is a set of labeled nodes representing instances such that two nodes c and d are
labeled identically if and only if ¢ and d are interchangeable in S;

e £ < T x T isaset of labeled edges such that 3(c, d) € € if and only if

Lcd = (Aout(c) M Ae:ct(d)) U (-Aout(d) M Ae:vt(c)) # @7

where A..i(c) (respectively A..i(d)) is the set of external attributes of ¢ (respec-
tively d), Apui(c) (respectively A,,:(d)) the set of output attributes of ¢ and L., is
used as the label of edge (c,d) in BG.

Ideally, an edge (c, d) of the boundary graph and its label define precisely what at-
tributes that were eliminated at instance level in ¢ and d, should be eliminated at class
level, if (¢, d) were considered as an instance of the fusion of C and D. Unfortunately,
it is not that simple. Let us illustrate this notion with an example: figure [6.2b]illustrates
the boundary graph of figure [6.2a]in which three different sorts of instances are repre-
sented. Label n; represents instances of class C, label ny instances of class D where
instantiations of D.Y have one parent and label n3 instances of class D where instanti-
ations of D.Y have two parents. Edges are labeled such that two edges with identical
labels encode the exact same set of dependencies. In this example, there are necessarily
dependencies between some instantiation of C.X and some instantiation of D.Y. In
figure [6.2a] each edge represents the fact that an instantiation of C.X is shared by an
instance of C and two instances of D. Consequently all edges are labeled identically
with label e. However, in the general case we can expect instances to have different
dependencies given their context. In figure [6.2b|this is represented by the two different
labels given to instances of class D. Instances of D labeled ng differ greatly from the
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(c) Two existing patterns in figure represented  (d) Using instances of the dynamic class in
as dynamic classes. figure on the relational skeleton of fig-

ure

Figure 6.2: Finding patterns in a boundary graph is more explicit than finding in a
relational skeleton.

ones labeled ns as they have different conditional probability distributions (the number
of parents of instantiations of D.Y" varies).

As said in this chapter’s introduction, our objective is to reduce the number of output
attributes using patterns of instances. In figure only instantiations of C.X are
output attributes and we can see that only two kinds of patterns transform it into inner
attributes: pattern n, —n, —ng and pattern ns —n; —ns. However, these two patterns are
incompatible: if we apply the first one first, there is only a single possible occurrence
left for the second and if we choose the second one, there will be no possilgle occurrence
for the first. In figure we choose to use the first pattern, denoted F, and another
one over n; — ng denoted E. Figure illustrates the relation skeleton obtained after
substituting instances of F and £ in ﬁgure Such classes are called dynamic classes.
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Definition 6.3 (dynamic class) Let BG be a boundary graph. A dynamic class D in
BG is a pair (G5, D) where G5 is a subgraph of BG and D the class induced by G 5.
We say that D is composed of classes (one for each instance in G'5) that are called the
components of D.

By abuse of notation we will often refer to D as if it was the class D induced by G5.

What is interesting about dynamic classes is to compare its output attributes A, (D A)
with the unions of its components output attribute. Let us denote by C the set of compo-
nents of D. If | Ay (D)] < | Ucec Aout(C)| then D as fewer output attributes than the
unions of its components, i.e., it should offer better performance under SPI. However,
we must also consider external attributes, as eliminating inner attributes results in a fac-
tor over the union of external and output attributes. Note that the set of output attributes
of D 1s different from the set of output attributes of a classic class, because any instance
of D is guaranteed to have the same set of output attributes than its dynamic class. Ideed,
given definitions[6.1]and [6.2]two instances are labelled identically if and only if they are
interchangeable, i.e., only if they have the same set of equivalent external and output
attributes. So, to improve structured inference, we shall search the boundary graph for
frequent subgraphs, i.e., subgraphs repeated many times, create their corresponding dy-
namic class, substitute each subgraph by one instance of its dynamic class and, finally,
apply an inference algorithm like SPI. Thus we need to characterize the set of instances
matching a dynamic class.

Definition 6.4 (Matches of a dynamic class) Let I be a PRM, § a relational skeleton,
BG the boundary of S and Da dynamlc class. The matches M(D ) of D is a multiset of
instances such that each set s € M(D) is a set of instances matching D, i.e., that each
set of instances in s can be replaced by an instance of DinS.

For example, in ﬁgure | we can see that F has the matches M(F) = {{c, dy, d>},
{cs, ds5, dg}} and matches for € are M(E) = {{c1, do}, {2, do}, {ca, d3}, {c3, d5}, {c3, dy},
{eq,da}, {cq, ds}, {5, dy}}. However, as we said, replacing matches by instances of their
dynamic classes must be performed carefully: it may actually happen that occurrences
of frequent subgraphs share some nodes. In this case, only one of them can be substi-
tuted, otherwise some instances of the original system woulq be counted several times.
For example, in figure [6.2| we can see that many matches of £ share common instances.
Hence the following rule and definition:

Rule 6.1 In the boundary graph, substituted subgraphs cannot share any node, i.e., any
instance in the relational skeleton.

Definition 6.5 (Substitutions of a dynamic class)

Let 11 be a PRM, S a relational skeleton, BG the boundary of S, Da dynamic class and
M(D) its matches. A substitution S(D) is a subset of M(D) such that S(D) respects
Rulel6.1]
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6.2 Complexity of pattern discovery

Optimizing structured inference thus amounts to searching for the best set of dynamic
classes and subgraph substitutions satisfying Rule [6.1] Unfortunately, as shown in the
following proposition, this problem is NP-hard:

Proposition 6.1 The following problem is NP-hard:

Instance: a PRM, a boundary graph, an integer K= 0.

Question: is there a set of dynamic classes and boundary subgraph substitutions of
these classes such that the number of operations (multiplications and summations) per-
formed by structured inference is smaller than K ?

Proof of Proposition [6.1}
Reduction from Vertex Cover for cubic graphs, which is known to be NP-complete
(Garey et al.,|1974):
Instance: A graph G = (V, E), V ={vy,...,v,}, E={e,...,en}, each v; has 3 neigh-
bors. An integer K >0.
Question: Is there a set of vertices C' of size at most K s.t. each e; is incident to at least
one vertex in C'?

Define a PRM as follows: let X and Y be the proptotypes of two octary random
variables, i.e., |X|=1|Y|=H =8, andletZ, = {X} and Z, = {Y'} be two interfaces.
Create classes S, T, Q,U;, Ri;, Z;; such that:

e class S implements interface Z,, contains only one attribute A(S) = {Y'}, no
reference slot R(S) = ¢ and a probability distribution P(S) = {Ps(Y)};

e class 7 implements Z,, has one attribute A(7) = {X}, one reference slot R(7") =
{pr} with range(p7) = Z,, T.X has for parent 7(X) = {pr.Y'} and distribution
P(T) = {Pr(X[Y)}

e class Q implements 7, has one attribute A(Q) = {Y'}, one reference slot R(Q) =
{po} with range(pg) = Z,, Q.Y has for parent 7(Y") = {pg. X} and distribution
P(Q) = {Fo(Y[X)};

e for each node v; € V, class U; implements Z,, A(U;) = {Y}, R(U;) = {pu,}
with range(py,) = T, U;.Y parent has for parent 7(Y) = {py,.Y'} and P(U;) =
{Pu, (X[Y)};

e for any i, j, class R;; implements Z,, A(Ry;) = {Y}, R(R)(Ri;) = {pr,;}
with range(pr,;) = T, Ry;.Y has for parent 7(Y') = {pg,,.Y'} and P(R;;) =
{PRi,j (Y|X)}

e for any i, j, class Z;; implements Z,, A(Z;;)) = {X}, R(Zi;) = {pz,} with
range(pz,,) = L, Zi;.X has for parent 7(X) = {pz,,.Y} and
P(Z;;) = {Pz,(X|Y)}.
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All the distributions Ps, Pr, Py, Py,, Pr,;, Pz, are distinct. For any instances, say
a and b, of these classes, ab and H?:l a are shortcuts fora - banda - a — --- —> a
respectively. In addition, for any pattern M = ajasy---a, of instances, ¥ = S(M)
denotes a dynamic class &7 implementing a,.’s class interface and such that A(¥) con-
tains only the attribute in a,’s class, say b € {X,Y}, R(~) contains only the inter-
face of the reference in a;’s class, say I., ¢ € {X,Y}, the DAG of ¥ is ¢ — b and
P(¥) = {Pn(b|c)}, where Py is the distribution resulting from the elimination of in-
stances aq,--- ,a,—1 from M. Pattern M is thus considered as a dynamic class, we
eliminate its internal nodes a4, - - - , a,_; and we insert back its interface into the bound-
ary graph. As M is a chain, computing Py requires (r — 1) H? operations since each
a;’s elimination is of the form ), P,,(b|c)P,,,, (c|b). Now, construct the PRM’s ground
BN: for any v; € V, let A; and B; represent patterns tu;t and gtu;tq respectively, where
t, q,u; are instance prototypes of classes with the same uppercase names. For any edge
e; = (vj,ur) € E, let C; represent pattern gtu;tqtu,tq. Now, consider the PRM net-
work BN = SH?L 115 (Airji) z00 H;il 11 (Bizji) [ 17,(Ciz0:). We will show
that G has a vertex cover of size at most K if and only if [Comp(BN)| < A(K) =
H+ H? + Hf[?Sn + K + 2m], where |Comp(BN)| is the number of operations per-
formed by SPI.

First, note that BN is a chain. Hence, using SPI, removing an attribute at the end of
the chain induces H? operations. Similarly, removing attribute s requires H operations.
Assume that G has a vertex cover C of size k£ < K. For each node v; € V, consider sub-
stitution A; = S(A;) and for any v; € C, substitution &; = S(B;). Apply substitution
m,; for all patterns A;, substitution n; for all patterns B; when v; € C' and substitution
gm;q for all patterns B; when v; € V\C'. Finally, as C is a vertex cover, each edge of F
is incident to a node in C, hence each pattern C; corresponding to edge (v;,v;,) can be
substituted by either n;myq or gm;ny,. After all these substitutions, BN is a chain with
s plus R = 1+ 140n + 4m — 30k nodes and the number of computations, including
those of the Py, and Py, is H + RH? + 2nH? + 4kH? = A(k) < A(K).

Conversely, assume there exists a set A of dynamic classes enabling to substitute
BN by another instance graph BN’ such that the overall number of computations is
lesser or equal than A(K'). Without loss of generality, we may assume that no sub-
stituted pattern contains a node z;; or r;; since no two z;; or r;; in BN contain the
same probability distribution and, hence, only one substitution would occur in BN,
thus resulting in an increase of computations (hence removing this substitution from
X would produce an BN” such that |[Comp(BN")| < |Comp(BN’)|). For the same
reason, we can assume that substituted patterns do not contain u;tqtus. Let i be such
that pattern A; has not been substituted by instances from A4. Then one can easily
prove that substituting A; by S(A;) reduces the number of operations in SPI. Simi-
larly, it is always better to use S(A;) than S(tu;) or S(u;t). So we shall consider
that A1 contains {S(A4;),7 = 1,---,n}. Now, it is easy to see that we shall never
use S(qtu;) nor S(u;tq). We shall also assume that S(gtu,t) or S(tu;tq) do not be-
long to A1 since they induce 45H? + 3H? operations in H;il [1_,(Biz;;) and can
save up to 947 in the | [, C; part, which is never better than not applying the sub-
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stitution. To summarize: all A; are substituted by S(A;), some B; are substituted by
S(B;) while others are substituted by ¢S(A;)q and C; are substituted by S(B;)S(An)q
or gS(A;)S(By) or ¢S(A;)gS(Ar)g. Let f and g denote the number of B; substi-
tuted by S(B;) and the number of C; substituted by ¢S(A;)¢S(Ay)q respectively. Then
the overall number of computations, including eliminating inner attributes, is equal to
H+ H? + H73[7871 + f + g + 2m]. By assumption, this quantity is < A(K), hence
f + g < K. Now, the nodes corresponding to substitutions in S(B;) are adjacent to all
the edges except j edges. By adding one node from each of these edges, we construct a
vertex cover of asize f + g < K. |

In a sense, this proposition is not very surprising since determining the minimal
number of operations in variable elimination algorithms such as SPI or VE is equivalent
to determining an optimal elimination sequence, which is known to be NP-hard (Rose
et al.,|1976). In addition, determining all the occurrences of a given subgraph in a graph
is NP-hard as well (Garey et al., [1974). Finally, given a set of dynamic classes and their
subgraph occurrences in the boundary graph, determining which ones should be sub-
stituted amounts to solve an Independent Set problem in which each vertex represents
a boundary subgraph and edges link vertices corresponding to overlapping boundary
subgraphs. Again, this problem is NP-hard (Garey and Johnson, 1979b). However,
the proof of Proposition shows that finding the best dynamic classes/substitutions
remains NP-hard even in cases where inference in the ground BN is polynomial (singly-
connected BNs). We shall however present in the next section an efficient approximate
algorithm for determining an effective set of dynamic classes.

6.3 An Approximate Algorithm for pattern discovery

The problem of finding frequent patterns in labeled graphs has received many contri-
butions, although their aim is somewhat different from ours as they consist of finding
frequent subgraphs that appear in many graphs (Inokuchi et al., 2005} |Kuramochi and
Karypis, [2001; [Yan and Han, 2002). However, the connection with our problem is suf-
ficiently high that techniques from this domain can be borrowed to solve our problem.
In this paper, we suggest to use a variant of gSpan (Yan and Han, [2002).

The gSpan algorithm

The gSpan (graph-based Substructure pattern mining) algorithm exploits a labeled graph
and depth-first search to mine subgraphs. It builds a linear order among subgraphs using
a Depth-First Search (DFS) code and a DFS tree. Each node in the DFS tree matches
a subgraph and is associated with a DFS code. gSpan exploits properties of the DFS
code to avoid reconsidering subgraphs twice: when a subgraph is first encountered, the
DFS code associated with its node in the DFS tree is minimal, i.e., that any subsequent
occurrence of this subgraph in the DFS tree will be associated with a non minimal DFS
code. To detect non minimal DFS code, a simple algorithm, i.e., polynomial, tests a
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code to detect if it is minimal or not. If not, then we are guaranteed that the current
node has already been discovered. This is very useful as it avoids comparing each
new subgraph with previous ones. This repetition detection scheme is used to prune
the DFS tree of uninteresting branches and helps focusing on subgraphs not yet found.
Finally, gSpan goal is to find repeated subgraphs, thus it prunes any subgraph that has
not at least & occurrences. The details and formalizations used by gSpan to enable such
coding will not be discussed and the reader should refer to Yan and Han (2002) for a
complete presentation of the gSpan algorithm.

Figure 6.3: The DFS tree obtained by gSpan on the boundary graph of figure For
any two nodes G; and G, if 7 < j then G; was mined before G.

Figure [6.3] illustrates the DFS tree built by gSpan to discover subgraphs on the
boundary graph of figure [6.2b] At the first level of the DFS tree we can find 1-edge
subgraphs of figure The labeling used for each node of the DFS tree indicates the
order in which each subgraph has been discovered. In this example, the most repeated
1-edge subgraph is (G; (repeated 8 times) and the second most frequent is G5 (repeated
twice). Then, gSpan start growing (G; to find new subgraphs: subgraphs G3 (repeated 4
times), G4 (repeated 3 times) and G5 (repeated twice) are added to the DFS tree. G5 is
the most frequent subgraphs, thus gSpan searches for subgraphs by adding an edge to
Gs. It finds G (repeated 6 times) and GG7 (repeated twice). From G only one growth
is at least repeated twice, all others have only one occurence in figure [6.2b] Finally, no
other node can be used to find subgraphs that are not already found and the search stops
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after G'g discovery.

Adapting gSpan for mining dynamic classes

We will now explain how we can exploit a DFS tree T as the one in figure [6.3] for
finding dynamic classes in a boundary graph. Each node G; of the tree is mapped to a
pair (D;, M(D;)) where D; is a dynamic class and M(D;) is the set of its matches in
BG. It can be confusing that the boundary graph’s labels do not match instances names,
thus it is important to recall that each node in BG is mapped to a single instance in
the relational skeleton from which BG was built. T is initialized with all the dynamic
classes corresponding to 1-edge subgraphs in BG. In T, nodes at level £ + 1 are derived
from those at level £ by extending their associated subgraph in BG with one of their
adjacent node in BG. As a consequence, each node of T represents a dynamic class
whose boundary subgraph is connected and whose set of instances is nonempty. The
whole tree thus reveals precisely all the possible substitutions that can be applied in the
relational skeleton. We denote by V = | Jz. M(D) the set of substitutions.

< (

{cg,dg} : & y .

oy

{c1,do} : €

{Cl,dl,dg} : .7’:\.
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Figure 6.4: An example of independence set for the boundary graph of figure with
patterns in figure Gray nodes are unchosen one.

Finally, we must select among V the best possible substitutions. To do so, we must
enforce Rule [6.1] It is easily done by observing that each node of BG can only belong
to one dynamic class and, more precisely, to one instance of this dynamic class. Hence,
if we create a graph G = (V| F) in which each node of V' represents a given element
of V, i.e., a subgraph of BG, and each edge (vi,v;) € FE represents the fact v; and
vy have a nonempty intersection in BG, then any subset W/ < V such that no pair of
nodes of W are adjacent in G corresponds to a set of substitutions satisfying Rule [6.1]
In other words, there is a one-to-one mapping between the Independent Sets of G and
the sets of substitutions satisfying Rule Of course, some substitutions are better
than others because they induce higher speed-ups in Structured Inference (see the /5
and 5 scores below). So by weighting nodes of V' according to the speed-up improve-
ments they induce, the best substitutions we look for correspond to solutions of a Max
Weighted Independent Set problem (Hallddrsson, [2000). Figure [6.4]illustrates the max
independence set for the boundary graph of figure[6.2b|using patterns in figure For
this example we suppose that patterns F and £ have equivalent costs. The nodes labels
represent which pattern is represented and above each node we can find the dynamic

class’ substitute in figure
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Of course, the size of T is exponential and, thus, some pruning is necessary. Pruning
rules will be described in the next subsection. But, to guaranty their efficiency, we shall
construct T in such a way that the best dynamic classes are constructed first. This results
in changing how gSpan sorts mined subgraphs. We have seen that gSpan consider fre-
quency of each subgraphs, searching from most frequent subgraphs first. Consequently,
we simply need to change the frequency of a subgraphs by a score guarantying that the
most promising dynamic classes are mined first. Such score function is also our pruning
rule and is described in the next section.

Algorithm 13: Pattern Discovery
Input: A PRM 1I, its boundary graph BG and a score function f
Output: A set of dynamic classes/substitutions
T « all dynamic classes of 1-edge subgraphs of BG found by gSpan
sort the nodes in T using f from most promising to less promising
remove any unpromising 1-edge subgraphs
foreach new node G; found by gSpan do
sort G;’s children that were found by gSpan using the score function
add promising children to T from most promising to less promising
prune unpromising children

N SN BT AW N

8 sort all of T nodes from most promising to less promising

9 build a graph G = (V, E) such that:
10 e each node v € V' is a dynamic class match
11 eecachedge (v;,v;) € E exists if v; and v; share instances
12 weight the nodes in V' using f
13 solve a Max Weighted Independent Set over V' and infer the substitutions of each mined

dynamic class

14 return the set of dynamic classes with their substitutions

Algorithm|[T3]is based upon the gSpan algorithm, so we do not describe the subgraph
mining part of algorithm [T3] To understand algorithm [I3] we simply need to know that
at each iteration of gSpan will find the next most interesting subgraph with respect to the
pruning rule. Algorithm [I3]inputs are a PRM and a boundary graph and returns the set
of dynamic classes and their substitutions. The first step of algorithm [I3]is to initialize
the search tree (lines 1-3). The second step of algorithm [13|is to grow the search tree
using both gSpan and the pruning rule (lines 4-7). The third and final step picks the
most promising dynamic classes and find possible instantiations of them in BG using
a Max Weighted Independent Set (lines 8-14). Algorithm [I3[s complexity is identical
to gSpan’s complexity, i.e., exponential in the number of nodes in the boundary graph.
This is where the pruning rule becomes primordial. Indeed, we do not want to search for
all repeated subgraphs in the boundary graph, but we only need a few that are interesting
for SPI. The more time we spend searching for dynamic classes, the less cost efficient
they will be.
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Score function

To estimate the possible gain achievable by a dynamic class in SPI, we first need to
define the cost of using a dynamic class.

Definition 6.6 (Dynamic class cost) Let D be a dynamic class, M(D) its matches and
S(D) its substitutions. We denote by:

e w(D) the number of operations necessary to eliminate D’s inner attributes,

e W(D) the number of operations necessary to eliminate D’s output attributes.

The cost of a dynamic class D is equal to:
w(D) + S(D)| x w(D).

A dynamic class cost is the number of operations performed by SPI if we substitute
instances in S(D) by instances of D. This measure of a dynamic class efficiency is at
the core of our pruning rule. Now remember that D corresponds to a 1-edge extension
of its parent W(D) So, matches of D that are not substituted can still be substituted by

7(D). Such matches are called D’s left overs.

Definition 6.7 (Dynamic class left overs) Let D be a dynamic class, M(ZA)) its matches
and S(D) its substitutions. We call D left overs the set L(D) = M(D)\S(D).

If we assume that the left overs of D can all be substituted as instances of ( A)
their eliminations by SPI would have cost w(7 (D)) + |L(D)| x w(D) where w(D) =
W, 5 + k(D) and k(D) corresponds to the cost of eliminating the edge added to (D)

Definition 6.8 (Total cost of a dynamic class) The rotal cost of a dynamic class D is:
B(D) = w(D) + [S(D)| x W(D) + w(n(D)) + |L(D)| x W(D).
We will compare the total cost of D with the cost of not using it.

Definition 6.9 (Negative cost of a dynamic class) The negative cost a dynamic class
D is the cost of using its parent w(D) over substitutions in S(D):

~

(D) = w(r(D)) + [S(D)| x w(D).
We can now define the effective cost of using a dynamic class D.

Definition 6.10 (Effective cost of a dynamic class)
The effective cost of a dynamic class D is the difference between the total cost B(D ) and

its negative cost y(D):

a(D) = B(D) — (D)
D
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Then we can easily express our pruning rule using the effective cost of a dynamic
class.

Rule 6.2 (Pruning rule of dynamic classes) A dynamic class D is pruned whenever
the total cost of D is greater than or equal to its negative cost:

~

a(D) > 0,
i.e., when the cost of using D is higher than the cost of not using if.

Finally, note that S(D), w(D), (D), k(D) can be estimated quickly: as shown
previously, S(ZA)) can be estimated by solving a Max Independent Set problem induced
by M(D). To estimate w(D), it is sufficient to compute an elimination order over D’s
inner attributes and to sum-up the sizes of the factors creating in the process. Elimi-
nating the remaining variables provides an estimation of w(D). k(D) can be estimated
similarly. Figure[6.5]illustrates a dynamic class and the factors created by eliminated its
inner attributes (X7, Xo, X3 and X,) and its output attributes (X5 and X¢). The results
are equivalent to equation [5.1| presented in chapter [5|and we can see with table [6.1] that
a dynamic class’ cost effectiveness is dependent on the class’ context: here the smaller
7(X1), 7(X2), Ch(X;) and Ch(Xj), the more cost effective D.

Figure 6.5: A dynamic class with four components: {X;, X5}, {Xo, X4}, {X5} and
{ X6}

Note however that T is not a-decreasing, i.e., it may happen that a(f)) > 0 for a
given dynamic class 75 but not for some of its descendants. This property results from
the fact that, in these descendants the number of inner nodes may be far higher than that
in D, hence decreasing w(D) (dropping constraints on the junction tree’s elimination
order) as well as w(ﬁ) (the inner nodes do not belong to the boundary). Unfortunately,
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the a-non-decreasing property does not allow for a clear pruning rule. We chose to stop
mining as soon as a dynamic class was found uninteresting, i.e., it was a-positive. This
choice results from two observations: (1) mining subgraphs is time-expensive, in fact for
large graphs it can be much more complex than inference (Yan and Han, [2002), thus we
want to stop the mining as soon as possible; (ii) we observed that small patterns were
more cost-effective as they require less time to be found and are more frequent than
large ones. Indeed large patterns can seem interesting but finding them will require to
mine all intermediate sub-graphs and they will usually be less frequent. Thus the gain of
using large patterns as dynamic classes may not necessarily be high regarding the time
spent finding them.

Elim. order | Created factors
X1 7T(X1), Xl, X3
X2 7T(X2), XQ, X4
X4 7T(X2), X4, Xg, X6
Xg 7T(X1),7T(X2),X3, X5,X6
X5 7(X1), 7(X2), Ch(X5), X¢
X6 7T(X1), 7T(X2), Ch(X5), Ch(Xﬁ)

Table 6.1: Factors created during a possible elimination order over figure attributes.
Summing the factors sizes gives a good estimation of the dynamic class efficiency.

6.4 Experimental Results

We now describe different set of experiments that highlight the gain in inference speed
resulting from the combination of structured inference and pattern mining. In each ex-
periment, we compared our new algorithm (subsequently denoted as PD for Pattern Dis-
covery) with Structured Probabilistic Inference (SPI), the standard inference algorithm
for structured inference and also with Variable Elimination (VE), a classic and standard
probabilistic inference algorithm for Bayesian Networks. Response times reported for
PD take into account both pattern mining and inference. For experiments using VE,
results include both grounding and inference time. However, to allow ground inference
on large networks, we exploit the information encoded by PRMs to prevent unnecessary
copies of CPTs in the ground BNs. It is important to note that our experiments included
no evidence. This choice was motivated by the fact that the structure of the network
varies drastically given evidence. Our goal here was to show how pattern mining can
improve inference when there exist repetitions in the network. Moreover, evidence is
not a good indicator of repetitions as it can either be identically applied in each pattern,
thus preserving repetition, or applied randomly, thus breaking the structure. Experi-
ments 1 and 2 show the results of our new approach on networks with and without
repetitions, hence providing a good insight of PD’s performance. All our experiments
were performed on an Intel Xeon at 2.7 Ghz.
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The key to understand these experimentations lies in the generation of the bench-
marked PRMs. High level frameworks such as PRMs offer a wide variety of generation
methods. Here, our primary concern was the generation of PRMs in which we could
control the amount of structure repetition in order to prove that, when confronted to a
large amount of pattern repetitions: (i) a substantial speed gain can be achieved and
(i1) our approach does not suffer from a prohibitive pattern mining cost. Our generator
takes the following parameters as inputs: domain is the domain size of each attribute;
Ming, 1S the number of attributes common to all classes; maz,y, 1S the number of
attributes in each class; c is the minimal number of classes; max,.; is the maximal
number of reference slots allowed per class; n is the number of instances in the system.

The PRM’s generation process is performed as follows: first, we generate an inter-
face with min,, attributes which will be implemented by all classes and will be the slot
type of each reference slot in each class. Next, for all k € [0, - - - , max,.r|, a class with
precisely £ reference slots is created. Then, if max,.; < ¢, we generate new classes
until exactly c classes have been created. For those new classes, the number of refer-
ence slots is chosen randomly between 0 and max,.s. Finally, we generate a DAG S
representing the relational skeleton of our generated system: each node represents an
instance and an arc ¢ — j represents the fact that there exists p € R(7) such thati = j.p.
For a given node ¢ with 7; parents in .S, we instantiate a class randomly chosen among
all the classes with precisely 7; reference slots. A given class C' is generated as follows:
we first create a DAG G with max,;;, nodes, we then add to C' k reference slots and
max., attributes. Dependencies between attributes are defined using G¢. For each
reference slot p, we create a slot chain p. A, where A € A(]) is chosen randomly among
all the attributes in A(I). The slot chain is then added as a parent of an attribute of C
chosen randomly. DAGs are generated using the algorithm provided in|lde et al. (2004).

In our first set of experiments, we generated systems with an increasing number of
instances. Each class contains 15 attributes (max - = 15), each attribute’s domain size
is equal to 4 (domain = 4) and each class has at most 4 incoming arcs (max,.;y = 4).
Finally, the minimal amount of classes required was set to ¢ = 5, which implies that
there are precisely max,.r +1 = 5 classes in each system. These experiments highlight
the behavior of PD when many repetitions can be found in the system. Fig.[6.6]shows the
response times of PD, SPI and VE when no evidence is observed and with a number of
instances varying from 100 to 1000. Clearly, in this case, PD significantly outperforms
both VE and SPI.

An important factor is the ratio of PD’s inference time over that of SPI. The gain of
PD against SPI and that of SPI against VE are due to the presence of structural repetition
in the generated networks. It can be seen that SPI’s complexity is less impacted by the
size of the system than VE’s complexity. But for small systems with small classes, SPI
does not guarantee a considerable speed gain. By exploiting pattern mining, PD signifi-
cantly increases the gain obtained by repetition. Thus, where SPI does not perform well
compared to VE, PD infers larger patterns that can drastically increase performance.
In our first experiments, there is enough structure to see the possible gain provided by
our new approach. Yet, we must also consider cases where there are few or even no
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Figure 6.6: Structural repetition is an important factor for PD’s performance: systems
with strong repetitions favor drastically our approach.

structural repetitions. The amount of pattern repetitions can be influenced by the num-
ber of classes, so if we increase that number we should observe a less favorable ratio
between PD’s and SPI's inference time against VE. This is the purpose of our second
set of experiments.
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Figure 6.7: Structural repetition is an important factor for PD’s performance. Unsur-
prisingly, performance decrease dramatically for systems with no structural repetition.

In our second set of experiments we generated systems with an increasing number of
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classes (c € [0, 500]) and 500 instances. The remaining parameters are equal to those of
the first experiment. The goal here is twofold: we want to show that, when no structure
is exploitable, there is no overhead in proceeding with the pattern mining and that pat-
tern repetitions is critical for PD’s performance. Fig. shows that when the number of
classes increases dramatically, the speed gain induced by PD and SPI are considerably
less significant. If we compare those results with those obtained by VE, we see that
PD and SPI are considerably counter-performing. To anyone familiar with structural
inference, this is an unsurprising result and these results can be explained by the fact
that the elimination order used by PD and SPI (inner attributes before outer attributes)
is in most cases suboptimal. If PD and SPI show better results than VE in Fig. [6.6] it
is only because the gain resulting from the reduction of redundant computations com-
pensate the suboptimal elimination order. Fortunately, detecting repetition is trivial in
an object-oriented framework as the amount of instantiations of each class is a good
indicator of structural repetition. The presence of evidence is also a good indicator, as
different evidence will break down the structure and thus reduce the amount of repeti-
tion in the network. We can easily switch to classic inference if needed by detecting
situations which would lead to counter-performing results: few instantiations of each
classes, heavy evidence, seemingly random evidence. Finally, we observe no over-cost
due to pattern mining. This is also an unsurprising result as our pruning rules take into
account frequencies and cut the mining process when such value is too low (here the
minimal frequency allowed was set to 2).

Table 6.2: Third experiment: patterns mining efficiency for PD. Values are averages.
Inst. stands for instances, attr. for attributes and pat. for pattern.

#inst.  #pat. pat. max pat.  #inst. maxinst. % of attr.
repetition repetition per pat. per pat.  ina pat.
200 11.88 292 6.26 2.15 4.08 37.29%
400 24.68 3.40 10.46 2.25 4.71 47.20%
600 36.35 3.91 15.92 2.36 5.25 55.90%
800 46.51 4.50 20.25 2.45 5.62 64.09%
1000 54.19 5.25 30.07 2.62 6.12 75.54%

In our third experiment, we analyze the amount of patterns found by PD with the pa-
rameters from experiment 1 (maxqy, = 15, domain = 4, max,.; = 4,¢ = 5, MaTyer +
1 = 5). The results of this experiment are summarized in Tab. A noticeable point
is the low number of instances in each pattern. This is a consequence of our pruning
rule which was designed to be strict. It favors smaller patterns because larger ones
are in most cases less cost effective (they often induce a larger clique than an optimal
elimination order would) and because they are less frequent. In general, discovered pat-
terns consisted of few small patterns largely repeated and many different patterns less
repeated. The latter were used to fill-in the gaps in the structure once the main patterns
were applied. If we consider the last column of Tab. [6.2] we can see that the larger a
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system, the more the attributes covered. The fact that the coverage increases with the
system size explains why the inference time of PD increases linearly with the system
size: the large number of usable patterns compensates the complexity induced by the
number of instances.

To conclude our experiments, we applied PD to a classic BN: the Pigs network. This
network is remarkable in that it only contains two distinct CPTs, which are represented
in our framework by two classes. The network in itself is too small to point out any
significant gain in inference time, however it is still interesting to analyze the patterns
found by PD. Our approach mined 14 different patterns. On average, they are repeated
11 times and the maximal amount of repetitions equals 45. Only patterns with 2 in-
stances are found. Discovered patterns cover up to 69% of the 441 attributes present in
the Pigs network. As for our previous results, our pruning rules favor smaller patterns
since larger ones tend to be less cost effective and less frequent. While the size of the
Pigs network does not enable to point out the efficiency of our approach in terms of
inference time, the existence of such structures and the results we obtained over random
networks can help conclude to the efficiency of our approach. We can also point out its
usefulness w.r.t. modeling: by pointing out frequent patterns in a system we can infer
new classes which can then be used by experts for modeling purposes.



Conclusion

This thesis objectives were to define a strong object-oriented framework for PGMs and
exploit the structure encoded by the object-oriented paradigm to enhance probabilis-
tic inference. We have seen that several existing framework proposed implementations
of the object-oriented paradigm, some of them purposely (OOBNs, PRMs) others un-
wittingly (DBNs, MSBNs). Other frameworks chose to extend BNs using other rep-
resentation paradigms (MEBNSs, parfactors). In chapter |3| we presented each of these
extensions and discussed why each of them neither implemented a fully object-oriented
framework nor offered tools required to model complex systems. In chapter ] we pre-
sented our first contribution, an extension of PRMs that reinforces their object-oriented
aspect. We redefined and extended object-oriented notions such as class inheritance,
subtype polymorphisms and abstraction. We also defined new concepts to PGMs, such
as multiple inheritance using interfaces, attributes types inheritances and attributes cast
descendants. We have also shown how such strong object-oriented PRMs can be repre-
sented using parfactors. In chapter [5| we extended Pfeffer’s initial works and presented
a new version of SVE. While simplifying it, it also highlighted several of its flaws. As
SVE proved to be unpractical to our domains, we then proposed a generalization of
structured inference. SPI is a generic inference scheme, like conditioning algorithms or
junction tree based algorithms rather than a precise probabilistic inference algorithm.
Indeed, we have shown how structure in object-oriented PGMs can be exploited to cre-
ate a MN with fewer variables on which any classic inference algorithm can be applied.
Our generalization of structured inference also offers the possibility of exploiting a clas-
sic probabilistic inference optimization technique: d-separation analysis. In chapter [6]
we extended SPI by pushing the concept of structured inference a step further. Using
the structure encoded by classes and instances, we adapted a frequent subgraph mining
algorithm to detect and exploit instance patterns. Doing so enables the discovery of new
classes that can be exploited by SPI to speed-up even more probabilistic inference.

Unfortunately, chapter {] and appendix [A] do not detail the thought process lead-
ing to the creation of the SKOOL language and to the extensions added to PRMs. It
is important to understand that these features have been the result of many hours of
brainstorming among different experts in reliability and risk management. There also
have been several systems defined using the SKOOL language. Such systems are not ex-
posed in this thesis because they result of work of several members of the ANR SKOOB
project, in which I have barely contributed. However, the tools developed during this
thesis have been used by several experts to model systems using strong object-oriented
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features. It is clear that a public database of object-oriented PGMs must be created to
offer the possibility of benchmarking different implementations.

Regarding implementation, the contributions presented in this thesis have all been
implemented in the aGrUM framework (http:://agrum.lip6.fr). Implement-
ing object-oriented PRMs have been an extremely difficult and time consuming task.
This is certainly the biggest flaw of our contributions. Indeed, where BN offer a simple
framework for probabilistic reasoning, the framework presented in this thesis is complex
and cannot be implemented trivially. Where many probabilistic inference algorithms can
be easily implemented (VE, SS), algorithm [T1] and [I3] require good programing skills
and consequent rewriting to become performing. However, such flaw is also character-
istic of many new inference algorithms and BN extensions.

One of the most underused feature of this thesis is the bridge defined between PRMs
and parfactors. Parfactors and lifted inference are one of the main source of recent
contributions. They offer new possibilities, both in modeling systems and in inference.
By proving that our object-oriented framework can be represented using parfactors, we
created the possibility to add first-order features to our framework. In a way, MEBNs
are maybe the best illustration to what can be FOPM using object-oriented modeling
tools. However, there are also many possibilities regarding inference. Lifted inference
is particularly inefficient in worlds with strong structural observations, i.e., systems in
which relations between objects are known. However, such systems are particularly well
exploited by our algorithms. Consequently there are many possibilities of combining
lifted inference with structured inference to both speed-up probabilistic inference in
FOPMs and to offer more expressive power to our framework.

Extending the pruning rule used by algorithm [13|is certainly one of the most inter-
esting extensions of the work presented in this thesis. Furthermore, we can also imagine
using such rules directly on instances, i.e., detect which classes offer good performance
when attributes are eliminated at class level. We could also break down any structure
induced by classes and directly search for classes at a ground level.

Finally, there is still considerable work regarding machine learning. Parameter learn-
ing is a must have feature for most practical industrial use of BNs, and we can infer the
same for our framework. Structural learning is also an interesting domain and there
is certainly some common ground with the content of chapter [6| Indeed searching for
instances patterns in a system is a problem close to discovering classes in a BN.


http:://agrum.lip6.fr
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Appendix A
SKOOL Language Specification

The SKOOL language purpose is to model PRMs using a strong object-oriented syntax.
Its syntax is inspired by the Java programming language.

A.1 SKOOL project structure

As in Java, the SKOOL language is made of compilation units that are placed in pack-
ages. It is possible to encode in a single file an entire project but it is not recommended.
Ideally, a package matches a specific directory and in each file we can find one compi-
lation unit. The following is a sample SKOOL project.

fr\
| skoob\
| printers\
| variables.skoot // types definition
| powersupply.skool // class PowerSupply definition
| equipment.skool // class Equipment definition
| room.skool // class Room definition
| computer.skool // class Computer definition
| printer.skool // class Printer definition
| example.skoos // system Example definition
| query.skoor // request query definition

File extensions can be used as indicator of the file’s compilation unit nature. The
following extensions are allowed: .skool for classes, skoos for systems, skoot
for types and skoor for queries. As in Java, filenames convention is not mandatory
and users can choose to gather several compilation units in a single file. This is mostly
useful when modeling small systems.

Compilation units

There exists four different sorts of compilation units. A compilation unit declares a
specific element in the modeling process and can either be: an attribute’s type, a class,
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a system or a query. Each compilation unit can start with a header. Headers are used to
declare the unit’s package and its dependencies:

<SKOOL> ::= [<header>] <compilation_unit> [ (<compilation_unit>)]
<header> ::= <package> | <import>
<compilation_unit> ::= <type_unit> |

<class_unit> |
<system_unit> |
<query_unit>

Header syntax

The syntax to declare a unit’s package is:

<package> ::= package <path> ";"

<path> = <word> [ ( "." <word> ) ]
<word> ::= <letter> (<letter> | <digit>)
<letter> ::= 'A" . .'Z2" + Ta' ..z + 7!
<digit> ::= "0"..79".

An example:

package fr.skoob.printers;

Basically, it is the path to the folder in which the unit’s file is located. Directory
separators are represented using dots and the environment variable defining the paths in
which we can find packages is implementation specific. Ideally, it must behave like the
CLASSPATH variable used by Java.

Depending on the compilation unit’s nature, we may need to use compilation units
defined in other files. In such cases, we say that a given compilation unit has dependen-
cies. Declaring dependencies is done using the import keyword. The syntax is:

<import> ::= import <path> ";"

An example:

import fr.skoob.printers.computer;

The import instruction is made of a package’s name and a compilation unit’s name
(not the file in which the unit is defined).
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A.2 Attribute type declaration

In SKOOL we can only define discrete random variables that are either user-defined
or one of the three built-in types: boolean, int and real. User-defined types are
declared using the keyword type:

<type_unit> ::= <built_in> | <user_defined>
<user_defined> ::= <basic_type> | <subtype>
<basic_type> ::= type <word> <word> "," ( "," <word> )+ ";"

The rule <basic_type> defines a random variable’s domain, the first word is the
type’s name and the following are the domain label’s names. There must be at least two
labels. The rule <subtype> is explained in the next section. Some examples:

boolean exists;

int (0,9) power;

real (0, 90, 180) angle;
type t_state OK, NOK;

Subtyping

A subtype can be declared using the extends keyword. A subtype declaration syntax
is:

<subtype> ::= type <word> extends <word> <type_spec>
<type_spec> ::= <word> ":" <word> (<word> ":" <word>)+

The first <word> is the type’s name, the second the name of its supertype and the
rule <t ype_ spec> defines label specializations: the first <word> is the subtype’s la-
bel and the second <word> is the supertype’s label. A example of subtype declaration:

type t_degraded extends t_state
OK: OK,

DYSFONCTION: NOK,

DEGRADED: NOK;

In this example, DYSFONCTION and DEGRADED are specializations of the label
NOK of type t_state. When declaring a subtype, it is mandatory that the supertype is
visible, i.e., :

e cither the supertype was declared in the same file before the subtype;

e or the supertype declaration unit has been imported.
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Built-in types

The built-in types are: boolean, int and real. The boolean type is used to rep-
resent binary random variables taking the values false or t rue. Note that the order
used is always false first and then true. The int must be used to define random
variables over ranges: int (0, 9) power defines a random variable power over the
domain integers from 0 to 9. The real type must be used to define random variables
discretized over continuous domains. For example, real (0, 90, 180) angle
defines a random variable with the two values [0-90 [, [90, 180 [. When defining a
random variable with the real type there must be at least three parameters. The syntax
of built-in types is:

<built_in> ::=

boolean <word> ";" |

int " (" <digit>x "," <digit>x ")" <word> ";" |
real " (" <digit>x ( "," <digit>x )+ ")" <word> ";"

A.3 C(lass and interface declaration

Classes are declared as follows:

<class_unit> ::= <class> | <interface>
<class> ::= class <word> [ extends <word> ] "{" <class_elt>x "}"
<class_elt> ::= <reference_slot> | <attribute> | <parameter>
<interface> ::= interface <word> [ extends <word> ]

"{" <interface_elt> "}"
<interface_elt> ::= <reference_slot> | <abstract_attr>

The first word is the class’ name and the second (if any) the class’ superclass. An
example:

class A {
// reference slots and attributes declaration

}

Reference slot declaration

In the SKOOL language, simple and complex reference slots are declared differently.
Simple reference slots can only refer to a single instance and complex reference are
considered as arrays. The syntax for declaring a reference slot is:

<reference_slot> ::= [internal] <word> [ "[" "]" ] <word> ";"

The keyword internal can be used to specify a reference slot as internal to a class.
Consequently, the reference cannot be accessed by attributes outside of its encapsulating
class. The first word is the reference slot range’s name:, if it is complex [ ] are added
as suffixes to the range’s name and the last word is the reference slot’s name. The
following is an example of two reference slots declaration:
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// Simple reference slot

A refh;
// Complex reference slot
B[] refB;

// Simple internal reference slot
internal class_name ref_ name;

// Complex internal reference slot
internal class_name[] ref_name;

Attribute declaration

Attributes are declared as follows:

<attribute> ::= <word> <word> [ dependson <parents> ]
( <CPT> | <function> ) ";"

<parents> ::= <path> ( "," <path> )=«

<CPT> ::= "{" ( <raw_CPT> | <rule_ CPT> ) "}"

The first word is the attribute’s type, the second its name. Dependencies are defined
as a list of parents separated by commas. Each parent is defined by a <path>, i.e., a
list of reference slots ending by an attribute. We will detail CPTs declaration in the
next section. Functions will be detailed in section[A.6] The following is an example of
attribute declaration:

// An attribute with no parents

a_type a_name {
cpt_declaration

}i

// An attribute with two parents

another_type another_name dependson parent_1, parent_2 {
cpt_declaration

bi

Raw CPT declaration

When declaring a raw CPT, all values of the CPT must be given. In such cases, the
value’s order is paramount. The declaration used in SKOOL is by columns, i.e., each
column in the CPT must sum to one. Let us consider the boolean attributes X, Y and
Z such that X depends on Y and Z. The first value in X’s CPT declaration will be
the probability P(X = false|Y = false,Z = false) and the next value is done by
increasing the domain of the last attribute by one. In this case, the second value is the
probability P(X = false|lY = false,Z = true). When the last attribute reached
its last value, we set it back to its first value and increase the previous attribute. For
example, the third value of X’s CPT would be the probability P(X = falselY =
true, Z = false). The following illustrates how we can use comments to make raw
CPT definitions easier to read.
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boolean X dependson Y, Z {

// Y= \ false | true

// 7= | false | true | false | true |
/+ false x/ [ 1.0, 0.3, 1.0, 0.01,
/* true «/ 0.0, 0.7, 0.0, 0.99 ]

}i

The CPT declaration is dependent on the order in which the parents are declared.
The syntax of a raw CPT declaration is straightforward:

<raw_CPT> ::= "[" <float>+ ( "," <float>+ )+ "]"

Rule based CPT declaration

Rule based declarations exploit wildcards to reduce the number of parameters for CPT
with redundant values. Its syntax is:

<rule_CPT> ::= ( <word> ("," <word>)x ":" <float> ";" )+

There is no limit in the number of rules and when two rules overlap the last rule takes
precedence. The following is an example of rule based declaration using the previous
example:

boolean X dependson Y, Z {

// Y, 7 X=false, X=true
*, false: 1.0, 0.0;
true, true: 0.01, 0.99;
false, true: 0.3, 0.7;

bi

Parameters

Parameters are declared using the following syntax:

<parameter> ::= <word> <word> [ default <word> ] ";"

The first word is the parameter’s type, the second its name and the third (if any) is
the parameter’s default value. It must be a valid label of the parameter’s type. Some
examples:

// A parameter with no default value
boolean X;

// A parameter with a default value
boolean Y default true;

When the parameter does not have any default value, it will be necessary to provide
one for each instantiation of its encapsulating class in the system declaration.
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Interface’s abstract attributes

An abstract attribute in an interface declaration syntax is:

<abstract_attr> ::= <word> <word> ";"

Where the first <word> is the abstract attribute’s type and the second its name.

A.4 System declaration

A system is declared as follows:

<system> ::= system <word> "{" <system_elt>x "}"
<system_elt> ::= <instance> | <affectation>

The first word is the system’s name. A system is composed of instance declarations
and affectations. Affectations either assign an instance to an instance’s reference slot or
assign a parameter’s value. The following illustrates a system declaration:

system name {
// body
}

Instance declaration

The syntax to declare an instance in a system is:

<instance> ::= <word> [ "[" digitx "]" ] <word> ";"

The first word is the instance’s class and the second its name. For example, if we
have a class A we could declare the following instance:

A an_instance;

We may want to declare arrays of instances. To do so we need to add [n] as a suffix
to the instance’s type, where n is the number of instances already added in the array. if
n = 0 then we can simply write [].

// An empty array of instances
A_class[] a_name;

// A array of 5 instances
A_class[5] another_name;
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Affectation

<affectation> ::= <path> += <word> ";"
<path> = <word> ";"

It is possible to add instances into an array, using the += operator:

// Declaring some instances
A_class x;

A_class y;

A_class z;

// An empty array of instances
A_class|[] array;

// Adding instances to array
array += X;

array += y;

array += z;

Reference affectation is done using the = operator:

class A {
boolean X {[0.5, 0.51};

class B {
A myRef;

system S {
// declaring two instances
A a;
B b;
// Affecting b’s reference to a
b.myRef = a;

In the case of multiple references, we can either use the = to affect an array or the
+= operator to add instance one by one:

class A {
boolean X {[0.5, 0.51};

class B {
A myRef[];

system S1 {
// declaring an array of five instances of A.
A[5] a;
// declaring an instance of B
B b;
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// Affecting b’s reference to a
b.myRef = a;
}
// An alternative declaration
system S2 {
// declaring three instances of A
A al;
A a2;
A a3;
// declaring an instance of B
B b;
// Affecting b’s reference to a
b.myRef += al;
b.myRef += a2;
b.myRef += a3;

We can mix = and +=operators, but operator = overwrites previous affectations.
Parameters without default values must be defined each time their encapsulating class
is instantiated. It is also possible to define values for parameters with default values. To
do so, we use the = operator.

class A {
boolean param;

system S {
// declaring an instance of A
A a;
// Affecting b’s reference to a
a.param = true;

The value assigned to a parameter must be valid given the parameter’s type.

A.5 Query unit declaration

A query unit is defined using the keyword request. Its syntax is the following:

<query_unit> ::= request <word> "{" <query_elt>% "}"
<query_elt> ::= <observation> | <query>
<observation> ::= ( <path> = <word> ) |

( unobserved <path> )

m.nmn
4

<query> ::= "?" <path> ";"

The first word is the query’s name. In a query unit we can alternate between obser-
vations and queries. An observation observe an attribute with a given value. Evidence
are affected using the = operator. A query over attribute X asks to infer the probability
P(X|e) where e is evidence over attributes in the system. This is done using the ?
operator. The keyword unobserve can be used to remove evidence over an attribute.
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system mySystem {
// a system declaration

}

request myQuery {
// adding evidence
mySystem.anObject.aVariable = true;
mySystem.anotherObject.aVariable = 3;
mySystem.anotherObject.anothervVariable = false;
// asking to infer some probability value given evidence
? mySystem.anObject.anotherVariable;
// remove evidence over an attribute
unobserve mySystem.anObject.aVariable;

A.6 Functions

Functions in SKOOL are considered as tools to define attributes CPTs. They replace
the CPT declaration by a specific syntax depending to which family the function be-
longs to. There exit three kinds of functions in SKOOL. The first kind contains built-in
functions called aggregators. These functions are used to quantify information hold in
multiple reference slots. The second sort contains deterministic functions and the third
probabilistic functions. The last two sorts of functions are not built-in functions and are
implementation specific. We only provide a generic syntax to keep uniformity between
different SKOOL implementations. All functions share the same syntax:

<function> ::= ( "=" | "~" ) <word> " (" [ <parameters> ] ")"
<parameters ::= <word> ( "," <word> )=«

The use of = is reserved for deterministic functions and ~ for probabilistic func-
tions. There are only four built-in functions in the SKOOL language that are determin-
istic functions called aggregators. There are four built-in aggregators in the SKOOL
language: min, max, exists and forall.

The min and max functions require a single parameter: a list of slot chains pointing
to attributes. The attributes must all be of the same type or share some common super-
type. If the common type is not a int, then the type’s values order is used to compute the
min and max values.

class A {
// Some declarations
int (0,10) myMax = max([chain_1, chain_2, ...]1);
// Some declarations
int (0,10) myMin = max(chain_1);

If there is only one element in the list of slot chains the [] are optional. The
exists and forall require two parameters: a list of slot chains and a value. As
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for min and max, all attributes referenced in the slot chains list must share a common
type or supertype. The value must be a valid value of that common supertype. exists
and forall attribute type must always be a boolean.

class A {
// Some declarations
boolean myExists = exists([chain_1, chain_2, ...], a_value);

}
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Appendix B

French Summary

Les modeles graphiques probabilistes sont particulierement utilisés dans les domaines
du diagnostique automatique, de la stireté de fonctionnement et de la maitrise des risques.
Pour ces applications, les réseaux bayésiens sont un formalisme particulierement plébisc-
ité, car ils offrent un cadre efficace pour la représentation des connaissances et le raison-
nement probabiliste. Toutefois, la modélisation des systeémes complexes avec des BNs
soulevent plusieurs difficultés. La principale concerne la modélisation des systémes
complexes de grandes tailles. Vers la fin des années 1990, plusieurs extensions des
BNs apparaissent et s’inspirent d’un paradigme des langages de programmation: le
paradigme orienté-objet Leur but est d’offrir un formalisme adapté a la spécification
de BNs de grandes tailles. Toutefois, ces extensions ont également permis des avancées
dans la fusion de la logique et des probabilités. De nos jours, une grande part des ex-
tensions des BNs s’affairent a étudier cette famille de modeles, appelée modeles proba-
bilistes du premier ordre. Bien que prometteur, la modélisation des systeémes complexes
de grande taille utilisant le paradigme orienté-objet fut peu développée. Il est toutefois
évident que sur ce sujet de nombreuses questions, a la fois théorique et pratique, restent
sans réponse.

Lorsque les connaissances d’experts sont utilisées pour modéliser un systeme, 1’in-
férence probabiliste est une des principales applications des BNs. Il existe une grande
variété d’approches, chacune exploitant un aspect particulier des BNs (conditionnement,
arbre de jonction, CNF, etc.). Mais, lorsque nous considérons les extensions des BN,
il existe peu d’algorithmes inférence probabiliste dédiés. En effet, la plupart des ex-
tensions utilisent I’inférence probabiliste groundée, ie. que le modele est transformé en
BN pour y appliquer des algorithmes d’inférence probabiliste classique. Parmi les algo-
rithmes dédiés, SVE (Pfeffer, |1999) exploite certains modeles orientés-objet. Il réduit
le nombre de calcul en utilisant la répétition structurelle caractéristique de ces modeles.
Toutefois, SVE a des défauts qui empéchent son utilisation sur des systemes congus par
des experts dans lesquels il n’y a pas d’incertitude structurelle, i.e., dans des mondes
fermés.

L’objectif de cette these est de développer une modélisation orienté-objet pour les
modeles graphiques probabilistes et de généraliser I’inférence structurée. Ce document
en offre un résumé, concentrant 1’ensemble de ses contributions. De ce fait, le con-
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tenu est épuré car il ne contient ni exemple, ni preuve, ni expérimentation. Ce résumé
est organisé en quatre parties: la premiere partie présente brievement 1’état de 1’art; la
deuxieme présente notre formalisme orienté-objet pour les modeles graphiques proba-
bilistes; la troisieme pose les bases de 1’inférence probabiliste structurée; finalement, la
quatrieme partie expose un algorithme pour la recherche de motifs d’instances.

B.1 Modeles graphiques probabilistes orientés-objet

Historiquement, les premiers modeles graphiques orientés-objet sont les réseaux bayé-
siens (Bayesian Networks, BNs) et les réseaux de Markov (Markov Networks, MNs)
et sont encore aujourd’hui le sujet de nombreuses contributions et d’utilisations indus-
trielles (Pearl, 1988; Koller and Friedman, 2009). Toutefois, ces modeles sont I’objet
de nombreuses tentatives d’améliorations. Ces tentatives commencerent lorsqu’il fut
évident que les BNs n’étaient pas adaptés a la modélisation de systemes complexes
de grandes tailles et, grace a une analogie avec les paradigmes de programmation, les
réseaux bayésiens orientés-objet furent proposés (Mahoney and Laskey, [1996; [Koller
and Pfeffer, [1997; Pfeffer, 1999; |Bangsg and Wuillemin, |2000a,bj [Bangsg, 2004)).

Etonnement, au lieu de se concentrer sur la représentation des systeémes complexes
de grande taille, la communauté s’est concentrée sur les différents paradigmes de représen-
tation utilisables dans le cadre des modeles graphiques probabilistes. Apres le paradigme
orienté-objet le paradigme entité relationnel fut exploré avec les modeles probabilistes
relationnels (Probabilistic Relational Models, PRMs, |[Friedman et al.| (1999); |Pfeffer
(1999); |Getoor et al.|(2007))) ou encore les modeles probabilistes entité-relations (Prob-
abilistic Entity-Relationship Models, Heckerman et al.| (2007))). D’autres modeles se
basent sur le paradigme du premier ordre, i.e., qu’ils utilisent des prédicats de la logique
du premier ordre pour décrire les relations entre les différents fragments d’un modele
graphique probabiliste. Parmi ces modeles nous trouvons les réseaux bayésiens relation-
nels (Relational Bayesian Networks, Jaeger (1997)), les réseaux bayésiens aux entités
multiples (Multi-Entity Bayesian Networks, |Laskey| (2008))) ou encore les parfactors
(Poolel 2003).

Autre fait marquant, il existe peu d’algorithmes d’inférence dédiés a ses extensions.
En effet, la plupart de ces modeles exploitent une inférence dite groundée, i.e., qu’ils
génerent a partir de leur modele de haut niveau un BN ou un MN qui est utilisé pour
réaliser I’inférence (Pfeffer, 1999; Laskey, |2008). Seulement deux modeles offrent un
cadre d’inférence probabiliste dédié: les PRMs (Pfeffer, [1999) et les parfactors (Poole,
2003} de Salvo Braz, [2007; |[Kisynski and Poole, [2009). Les PRMs sont une extension
des OOBNSs et exploitent la répétition de structure induite par les instances des classes
pour réduire le nombre de calculs nécessaire pour I’inférence. Les parfactors fonc-
tionnent sur une idée similaire mais plus complexe. En effet, les parfactors permettent
de représenter plusieurs mondes possibles, i.e., que les relations entres fragments de
réseaux ne sont pas observées. De ce fait, pour réaliser une inférence probabiliste dans
ce genre de contexte, il est nécessaire d’énumérer tous les mondes possibles. L’ inféren-
ce liftée du premier ordre repere les mondes dont la topologie est identique afin de ne
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faire les calculs pour ces mondes équivalents qu’'une seule fois. Toutefois, 1a ot I’infé-
rence liftée du premier ordre a recue beaucoup d’intérét de la communauté, I’inférence
structurée n’en a pas regue. De plus, le paradigme orienté-objet est peu développé et il
reste encore de nombreuse notions a définir pour offrir un formalisme permettant une
modélisation aisée des systemes complexes de grandes tailles.

B.2 Renforcement de I’aspect orienté-objet des PRMs

Les PRMs sont inspirés du paradigme orienté-objet mais ils leurs manquent des mécan-
ismes fondamentaux liés a I’héritage. Nous proposons dans cette partie une redéfinition
des PRMs puis d’étendre les différentes notions orientés-objet existantes dans ce for-
malisme.

Les PRMs

Nous proposons ici de redéfinir les PRMs en utilisant un formalisme plus orienté-objet
que ce qui peut etre trouvé dans [Pfeffer| (1999)) et Getoor et al. (2007).

Definition B.1 (Class) Une classe C est définie par un graphe orienté acyclique (DAG)
sur un ensemble d’attributs A(C) (cf. definition et sur un ensemble de références
R(C) (cf- definition|B.2)). Nous désignerons un attribut X de A(C) (respectivement une
référence p de R(C)) en utilisant une notation orienté-objet standard: C.X (respective-
ment C.p).

Une classe est une version élaborée d’un fragment de BN. La principale amélioration
est la notion de référence.

Definition B.2 (Référence) Une référence C.p = (l,, D) est un pointeur étiqueté (l,)
d’une classe D, tel que nous pouvons accéder aux élément de D par C, e.g., C.p.X =
D.X, X € A(D). Nous dirons que le domaine de p est C, dénoté domain(p) = C, et
que la portée de p est D, dénotée range(p) = D.

Cette définition est inspirée des langages de programmations orientés-objet ou les
objets sont accédés via des pointeurs ou des références.

Definition B.3 (Chaine de références) Une chaine de références K est une séquence
{p1,...,pn} de références on range(p;) = domain(pi+1), 1 < i < n — 1. Nous
dénoterons par range(K) = range(p,) sa portée et par domain(K) = domain(p;)
son domaine.

Les chaines de références permettent d’utiliser concretement les références.

Definition B.4 (Typage d’attributs) Un type d’attribut T décrit une famille de vari-
ables aléatoires distinctes qui partagent toutes un méme support 7 = {ly, ..., l,}.
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Les attributs typés ont été introduits dans (Koller and Pfeffer, [1997), toutefois nous
en aurons ici une utilisation différente.

Definition B.5 (Attribut) Un attribut X est un quadruplet {Ix,7x,m(X), ¢x), ot Ix
est une étiquette, Tx un type, 7(X) un ensemble d’attributs appelé les parents de X et
¢x un foncteur encodant la distribution de probabilités conditionnelles P(X |r(X)).

Les attributs sont équivalents aux nceuds d’un BN.

Definition B.6 (Instance) Une instance ¢ d’une classe C est un fragment de BN ou
chaque attribut est un neeud classique d’un BN généré depuis son équivalent dans C et
ou chaque référence pointe vers un ensemble d’instances de la portée de la dite réfé-
rence.

Une instance est I’utilisation d’une classe dans la modélisation d’un systeme. Il est
important de différencier attributs et références définis aux niveaux des classes de leur
version instanciée.

Definition B.7 (Squelette relationel) Un squelette relationnel S est un ensemble d’ins-
tances tel que pour chaque référence p = {l,,E) d’une instance i, il existe au moins une
instance j dans S tel que j soit une instance de £ et qu’elle soit référencée par i.p.

Pour représenter une distribution de probabilités correctement définie, il est néces-
saire de s’assurer que toutes les références des instances dans un squelette relationnel
soient définies. En effet, si certaines ne I’étaient pas, nous serions dans 1’incapacité de
connecter certains attributs avec leurs parents.

Definition B.8 (PRM) Un PRM 11 est défini par un ensemble de classes € et un squelette
relationnel S et factorise la loi jointe:

PAS) =11 [[ [] p&x=(x)),

C €% c els(C)) XeA(c)

ou A(S) est I’ensemble de tout les attributs présents dans toutes les instances du squelette
relationnel.

Nous allons maintenant définir plusieurs notions utiles pour la modélisation ou pour
I’inférence.

Definition B.9 (Référence inverse) Soir deux classes C, D et une référence p € R(C)
avec range(p) = D. L'inverse de p, notée p™", est une référence telle que range(p™) =
domain(p) et range(p™t) = domain(p).

Les références inverses permettent de définir les inverses de chaines de références.

Definition B.10 (Inverse d’une chaine de références) Soit K = {p1, ..., p,} une chai-
ne de références. Son inverse est la chaine de référence K=t = {p;1, ... p; '}
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Nous allons maintenant réintroduire une notion existante dans les BN orientés-objet
mais qui a été retirée des PRMs. Elle nous sera particulierement utile lors de la définition
des algorithmes d’inférence.

Definition B.11 (Attribut publique) Un attribut X € C est un attribut publique s’il
existe un attribut Y qui accéde a X via une chaine de références.

Nous ne pouvons pas définir les attributs publiques comme étant les attributs avec
des enfants en dehors de leurs classes, car cela empécherait de prendre en compte les
dépendances récursives lors de la modélisation de systemes dynamiques. La derniere
notion que nous allons introduire est celle d’aggrégateur. Nous utiliserons une défini-
tion différente de celle de |Getoor et al.| (2007), que nous trouvons plus adaptée pour la
modélisation.

Definition B.12 (Aggrégateur) Un aggrégateur est un attribut dont la distribution de
probabilités conditionnelles est définie par un ensemble de régles qui peuvent étre util-
isées pour générer automatiquement la table de probabilités conditionnelles de I’ attribut
en fonction du nombre de parents qui y sont connectés.

Des aggrégateurs classiques sont min, max, for all, exists et k-gates. 1ls permettent
généralement une implémentation dédiée qui réduit considérablement 1’occupation en
mémoire.

Definition B.13 (Réseau bayésien groundé) Un réseau bayésien groundé est un BN B
construit a partir d’'un PRM 11 = (¢, S) de la maniére suivante (Getoor et al., [2007):

1. il y a un neeud c. X pour chaque attribut X de chaque instance c € S;
2. chaque c. X dépend sur des nceuds c.Y ou c.K.Y;

3. la distribution de probabilités conditionnelles pour c. X est une table de probabil-
ités conditionnelles générée depuis ¢, x.

Les BNs groundés sont utiles pour deux raisons. La premiere est qu’ils justifient
les PRMs, car tout PRM peut étre converti en BN groundé. L’ autre utilité est plus
pragmatique, car elle consiste a se servir des BNs groundés pour réaliser 1’inférence.
En effet, il est possible de directement utiliser n’importe quel algorithme d’inférence
probabiliste existant pour les BNs sur un BN groundé.

Héritage, interface et surcharge de référence

Nous allons d’abord redonner la définition classique de I’héritage de classe.

Definition B.14 (Héritage de classe) Une classe D est une sous-classe de C, noté C >
D, si:
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o pour chaque attribut C.X = (lx,7x,m(X), ¢x), il existe un attribut D.Y =
Uy, v, m(Y), dy) tel que lx = ly et Tx = Ty,

e pour chaque référence C.p = (l,, &), il existe une référence D.p = (l,,, F) tel que
l,=1l,et€=F.

La definition [B. 14|est une définition simple de 1’héritage entre classes et nous allons
y ajouter plusieurs notions afin de la rendre plus complete. Une propriété fondamentale
que nous devons préserver est la propriété de préservation des dépendances.

Property B.1 (Préservation des dépendances) Soit C et D deux classes telles que C =
D. Pour chaque référence p¢ € R(C), nous notons par p¥ sa version héritée par D et
pour chaque attribut X¢ € A(C), nous notons par X sa version héritée par D.

Un mécanisme d’héritage de classe préserve les dépendances si:

e pour chaque chaine de références K = {py,...,p%, ..., pn} nous pouvons per-
muter C référencée par p; 1 avec D tel que K' = {py,...,pP, ..., pn} soit une

chaine de références légale;

e pour chaque parent K.X avec K = {pi1,...,p5}, nous pouvons permuter C
référencée par p,_ avec D tel que K' = {p,,...,pP} soit une chaine de réfé-
rences légale et T(K'.X) = T(K.X).

Par chaine de références 1égale nous entendons une chaine de références qui soit
proprement définie, i.e., pour chaque référence p; € K = {rhoy,..., p,}, nous avons
range(p;) = domain(p; 1) pour 1 <i <i— 1.

ES

Interface et héritage multiple

Nous allons présenter notre premiere amélioration de 1’héritage dans les PRMs:
I’ajout d’interface et de I’héritage multiple. Le concept d’une interface dans un PRM est
sensiblement le méme que celui des langages de programmations, i.e., qu’une interface
contient la quantité minimale d’information pour définir des dépendances probabilistes.

Definition B.15 (Interface) Une interface I est définie par un ensemble de types éti-
quetés A(ZT), appelés attributs abstraits (cf.  definition , et par un ensemble de
références R(Z). Une interface ne peut étre instanciée.

Definition B.16 (Attribut abstrait) Un artribut abstrait X est une paire (lx,Tx), ol
Ix est une étiquette et Tx un type d’attribut. Nous dirons qu’un attribut Y = (ly, Ty,
7(Y), ¢,) implémentent un attribut abstrait X silx = ly et Tx = Ty.

Les interfaces sont des classes dépouillées de toute information probabiliste. En re-
vanche puisqu’elles définissent des attributs typés et des références, elles peuvent servir
comme abstraction de classes concretes.
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Definition B.17 (Implémentation d’une interface) Une classe C implémente une in-
terface L si et seulement si:

e pour chaque attribut T.X = (lx, Tx), il existe un attribut C.Y = (ly, 1y, ©(Y),
¢y> tel que Ix =lyettx =Ty,

e pour chaque référence I.p = {l,,E), il existe une référence C.j = (l,,, F) tel que
lp=1,et&=F.

Une classe peut implémenter n’importe quel nombre d’interfaces du moment que cela
ne produit aucun conflit d’étiquette, i.e., que deux éléments étiquetés identiquement
doivent étre équivalents (méme type d’attribut ou méme classe).

Comme pour les classes nous pouvons définir une relation d’héritage entre inter-
faces. Le principe est similaire a la definition [B.14]

Definition B.18 (Héritage d’interface) Soit 7 et J deux interfaces. Nous dirons que
J est une sous interface de L, dénoté I = 7, si:

e pour chaque attribut abstrait T.X = {lx, Tx ) il existe un attribut J.Y = {ly, Ty )
tel que lx = ly et Tx = Ty;

o pour chaque référence I.p = {l,,E) il existe une référence J . = {l,,, F) tel que
l=1l,etE=F.

&

Polymorphisme et surcharge de référence
Pour pouvoir utiliser les interfaces il est nécessaire de définir la notion de polymor-
phisme, i.e., d’autoriser a une référence de pointer vers des sous classes de sa portée.

Definition B.19 (Squelette relationel avec polymorphisme) Un squelette relationnel
S est un ensemble d’instances tel que pour chaque référence p = (l,,E) d’une instance
i, il existe au moins une instance j dans S tel que j soit une instance de £ ou d’une sous
classe de £ et qu’elle soit référencée par i.p.

Cette définition est proche de la definition la différence étant qu’une référence
peut étre instanciée par des instances d’une sous-classes de sa portée. Une autre notion
découle immédiatement de la definition [B.19] la notion de surcharge de référence.

Definition B.20 (Héritage de classe avec surcharde de référence) Une classe D
est une sous-classe de C si:

e pour chaque attribut C.X = {Ix,7x,m(X), dx), il existe un attribut D.Y =
Uy, 1y, 7(Y), ¢y ) € A(D) tel que lx = ly et Tx = Ty;

o pour chaque référence C.p = (l,, &), il existe une référence D.;. = (l,,, F) tel que
I, =1, et F.



176 B. French Summary

&

Spécialisation des types d’attributs

Le typage d’attributs est une notion qui apparait naturellement lors de I’utilisation
des PRMs. La spécialisation des types permet la décomposition des différentes valeurs
d’un type par des valeurs plus spécifiques. Par exemple, nous pourrions décomposer un
type {OK, NOK} par {OK, dys fonction, panne}.

Definition B.21 (Domain generalization function) Une domain generalization func-
tion est une fonction ® : 7 — P()\) oit T et \ sont deux types d’attributs distincts et
P(N) est I'ensemble des partitions des valeurs de \.

La notion de spécialisation des types est directe une fois que nous disposons des
domain generalization functions.

Definition B.22 (Spécialization des types d’attributs) Un type d’attribut T spécialise
un autre type \ s’il est défini en utilisant une domain generalization function ® : 7 —

P(N).

&

Surcharge d’attribut

Pour exploiter efficacement la spécialisation des types d’attributs, il nécessaire de
définir un mécanisme pratique de surcharge des attributs. Pour cela, nous devons intro-
duire la notion de généalogie d’un type d’attribut.

Definition B.23 (Généalogie d’un type d’attribut) La généalogie d’un type d’attribut
T est un ensemble de types d’attributs {o,...,0,} tel que 0y = T et 0; = 0,11 pour
1 <@ < n avec o, un type qui ne spécialise aucun autre type, appelé le type ancestral
de .

La généalogie d’un type va nous permettre de créer des descendants de projection.
Ce sont des attributs créés automatiquement pour permettre de projeter un attribut sur
un de ses super types.

Definition B.24 (Descendants de projection) SoitC.X = (Ix,7,7n(X), ¢x ) un attribut
avec la généalogie de T égale a {01, ...,0,}. Les descendants de projection de C.X
sont un ensemble d’attributs {C.X,, = (Ix,0i,{C.Xs,_,},0x, )}, 1 < i < n avec
C.X,, = C.X. Chaque ¢,, est soit défini par ['utilisateur, soit par la distribution de

projection par défaut (cf. definition [B.23).

Les descendants de projection sont automatiquement ajoutés pour chaque attribut
dont le type n’est pas un type ancestral.
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Definition B.25 (Distribution de projection par défaut) Soit un attribut C.X = (lx,
7, m(X), ¢x), son descendant de projection direct est C. X, = (Ix, 0, {X}, ¢x,) et sa
domain generalization function est ¢ : 0 — 7. La distribution de projection par défaut
pour P(X,|X) est:

1/|®(z,)| sixe P(x,),

P(Xy = 24X = 2) = { 0 sinon.

B.3 Inférence probabiliste structurée

Nous allons présenter dans cette partie une redéfinition de Structured Variable Elimi-
nation, une généralisation de I’inférence probabiliste structurée puis une adaptation de
I’algorithme BB aux modeles probabilistes relationnels.

Structured Variable Elimination

SVE est un algorithme d’inférence probabiliste proposé dans Pfetter (1999). Cet al-
gorithme est le premier algorithme (et le seul) a avoir introduit les notions d’inféren-
ce probabiliste hiérarchisée et structurée. L’inférence probabiliste hiérarchisée est a
I’origine utilisée dans les BNs orientés-objet et exploite les relations de compositions
entres objets pour déterminer un ordre d’élimination des objets composants aux objets
composites. Malgré 1’absence de relation de composition entre les classes d’'un PRM,
nous pouvons transposer cette notion aux attributs d’une classe. En effet, il est possi-
ble de définir un ordre d’élimination entre attributs permettant d’éliminer les attributs
internes d’une classe avant les attributs publiques. Cet ordre d’élimination a pour consé-
quence de produire des foncteurs sur les attributs publiques et importés de la classe (un
attribut importé est un attribut qui n’appartient pas a la classes mais qui a un enfant dans
celle-ci). L’inférence probabiliste hiérarchisée en soit ne permet pas de gain consid-
érable dans un PRM car I’heuristique est moins efficace que dans les BNs orientés-objet.
Toutefois, si I’on exploite I’inférence probabiliste structurée, nous pouvons obtenir un
gain conséquent. L’inférence probabiliste structurée consiste a réaliser 1’élimination des
attributs internes au niveau de la classe, et de réutiliser le calcul pour chaque instance.
Nous allons maintenant introduire quelques notions utiles pour définir SVE.

Definition B.26 (Instance feuille) Une instance feuille est une instance avec aucun at-
tribut publique. Une instance n’a aucun attribut publique soit grdace a la topologie du
squelette relationnel, soit parce que toutes les instances qui avaient une dépendance
vers cette instance ont été éliminées.

SVE exploite un ordre d’élimination de bas-en-haut, i.e., qu’il va éliminer d’abord
les instances feuilles puis, récursivement, éliminer les autres instances au fur et a mesure
qu’elles deviendront des feuilles.

L’algorithm [[4] est notre version de I’algorithme SVE. Sa principale différence est
d’accentuer I’utilisation de I’inférence probabiliste structurée et d’étre dédié aux mondes
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Algorithm 14: Structured Variable Elimination

Entrées: un PRM II, un squelette relationnel S, une requéte ¢.(), un ensemble
d’observations e

Sorties: un foncteur encodant P(q.Q|e)

1 soit [st = [q] une liste d’instances;

2 soit visited = {q} un ensemble d’instances;

3 tant que [st est non vide faire

4 i = lst. front();

5 si i est une instance feuille alors

6

7

8

Lst.pop_front();
si i est égale a q alors

| VE(q,Q, e, pool);

9 sinon si un attribut privé de i est observé alors

10 L VE(i, e, pool);

11 sinon

12 L VE(Class(i), i, pool);

13 pour chaque chaine de références K dans 1 faire
14 pour chaque ; € i.K faire

15 si j ¢ visited alors

16 visited = visiting U {j};

17 Ist.push_front(j);

18 sinon

19 i = lst.front();

20 pour chaque inverse de chaine de références K dans 1 faire
21 pour chaque j € i.K faire

22 si j ¢ visited alors

23 visited = visiting U {j};

24 L Ist.push_front(j);

25 soit ¢ un foncteur sur ¢.() initialisé avec des 1;
26 foreach foncteur 1) dans pool do ¢ = ¢ x );
27 normaliser();

28 renvoyer ¢;

2

fermés. La fonction V' E est un appel a I’algorithme VE (Dechter, [1999). L’algorithm|[T4]
prend en entrée un PRM II, un squelette relationnel S, une instance g, un attribut
Q) € A(q) et un ensemble d’observations e. Les observations sont définies par des fonc-
teurs sur les variables observées. L’algorithme renvoie un foncteur sur ¢.() encodant
P(q.Q|e). La premiere étape de I’algorithm [I4]est d’initialiser une liste et un ensemble
d’instances avec ¢ (lignes 1-2), [st est utilisée pour faire une recherche en profondeur
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dans S et visited est utilisé pour ne pas visiter deux fois la méme instance. Tant que /st
n’est pas vide (ligne 3), 1’algorithme choisi le premier élément de la liste, nommons le
1. S14 est une feuille, I’instance est éliminée (lignes 5-12). L’instance peut tre éliminée
de trois facons différentes. Si ¢ fait partie de la requéte, V E élimine les attributs de ¢
en prenant en compte la requéte, les observations et pool (ligne 7-8). Si ¢ possede des
attributs observés, V' E/ élimine les attributs de ¢ en prenant en compte les observations et
pool (lignes 9-10). Finalement, si 7 n’est ni dans la requéte, ni observée, V' I procede a
I’élimination des attributs privés aux niveaux de la classe, réutilise les calculs déja effec-
tués puis élimine ses attributs publiques en considérant les foncteurs dans pool (lignes
11-12). Une fois que ¢ est éliminée I’algorithme ajoute toutes ses dépendances dans
[st (lignes 13-17). Si ¢ n’est pas une feuille, alors 1’algorithme remonte ses inverses
de chaines de références pour atteindre les instances qui ont des dépendances vers 1.
Ces instances sont alors éliminées récursivement des qu’une instance feuille est atteinte
(ligne 25-28).

Pour prouver que SVE converge et calcule correctement la probabilité P(q.Q|e), il
est nécessaire d’introduire quelques nouvelles notions.

Definition B.27 (Classes mutuellement dépendantes) Soit {Cy,...,C,} un ensemble
de classes tel que Cy = C,,. Les classes Cy a C,, sont dites mutuellement dépendantes si
pour 1 < i <n —1, C; est dépendante de C; 1, i.e., un des attributs de C; est I’enfant
d’un attribut de C; 1.

Definition B.28 (Instances mutuellement dépendantes) Soir {cy,...,c,} un ensem-
ble d’instances tel que c1 = c,. Les instances c a c, sont mutuellement dépendantes si
pour 1 < i <n —1, ¢; est dépendante de c; .1, i.e., un attribut de c; est [’enfant d’un
des attributs de c; .

Le théoreme suivant montre que SVE ne peut converger que s’il n’y a pas d’instance
mutuellement dépendante.

Theorem B.1 (Convergence de I’algorithm [I4) Soir I un PRM et S un squelette re-
lationnel. Si il n’y a aucun ensemble d’instance mutuellement dépendante dans S, al-
gorithm|14)| éliminera tout les instances dans S.

Preuve omise (cf. la these). Le théoreme suivant prouve que 1’algorithm [14] calcul
la probabilité P(q.Qle).

Theorem B.2 (Justess de I’algorithm[14) Soit IT un PRM, S un squelette relationnel,
un ensemble d’observations e et une requéte () € A(q), avec q une instance dans S. Si
l’algorithm converge, alors le foncteur renvoyé encode la probabilité P(q.Q)|e).

Preuve omise (cf. la these).
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Inférence Probabiliste Structurée

Nous proposons ici une généralisation de 1’algorithm [I4] L’idée est simple: au lieu
de procéder a une élimination de bas-en-haut des instances, nous procédons d’abord a
I’élimination de tous les attributs internes. Puis nous construisons un réseau de Markov
(Markov Network, MN) a partir des foncteurs obtenus lors de la premiere phase et util-
isons un algorithme classique d’inférence sur le MN obtenu.

Algorithm 15: Structured Probabilistic Inference

Entrées: PRM II, un squelette relationnel S, une requéte ¢.(), un ensemble
d’observations e

Sorties: un MN

pour chaque instance i dans S faire

—

2 si i est égale a q alors

3 || VE@.Q, e. pool);

4 sinon si un attribut privé de 1 est observé alors
5 L VE(i, e, pool);

6 sinon

7 L VE(Class(i), i, pool);

créer le MN H induit par pool;
renvoyer H;

L-- ]

L’algorithm [15] prend en entrée un PRM 11, un squelette relationnel S, une requéte
q.Q) et un ensemble d’observations e. Il renvoie un MN induit par les foncteurs obtenus
apres I’élimination de tous les attributs privés des instances dans S. L’ algorithm[I5]con-
sidere chaque instance dans un ordre quelconque et soit: (i) élimine les attributs privés
au niveau de leur instance, en prenant en compte requéte et observations (lignes 2-3);
(i1) élimine les attributs au niveau de leur instance et prend en compte les observations
(lignes 4-5); (i11) élimine les attributs privés au niveau de leur classe et réutilise les cal-
culs déja réalisés (lignes 6-7). L’étape finale est la création du MN a partir des foncteurs
présent dans pool.

Theorem B.3 Soit 11 un PRM et S un squelette relationnel. Le MN retourné par
lalgorithm[I5| correspond au MN induit par Iutilisation de VE sur le BN groundé de S
apres avoir éliminé les versions groundés des attributs privés.

Preuve omise (cf. la these).

Structured BB

Nous présentons ici une adaptation de 1’algorithme BB (Shachter, [1998)) aux PRMs. Le
principe est d’exploiter les instances partageant les méme attributs requis pour 1’infé-
rence structurée. L algorithm [16] differe peu de sa version classique, la différence se
trouvant sur le traitement des chaines de références.
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Algorithm 16: Structured BB
Entrées: un PRM I, un squelette relationnel S, une requéte ¢.(), un ensemble
d’observations e
Sorties: un ensemble d’instances requises et leurs attributs requis
lancer I’algorithme sur ¢;
pour chaque chaine de références c. K atteinte faire
marquer le dessus de c. K;
pour chaque attribut d.Y référencé par c.K faire
marquer le dessus de d. K~ 1;
ajouter d.Y pour €étre visité par un enfant;
si d.K' n’a pas le bas de marqué alors
marquer le bas de d. K —1;
pour chaque attribut e.Z référencé par d.K~! faire
10 L ajouter e.Z pour €tre visité par un parent;

o 0 N BT AW N -

11 pour chaque inverse de chaine de références c.K ! atteinte faire

12 si c. K n’a pas le bas de marqué alors

13 marquer le bas de ¢. K~ 1;

14 pour chaque attribut d.Y référencé par c. K" faire
15 L ajouter d.Y pour €tre visité par un parent;

B.4 Recherche de motifs d’instances

Nous présentons ici une technique qui exploite un algorithme de recherche d’isomor-
phismes de sous graphes, afin de détecter des motifs d’instances répétés dans un squelette
relationnel. Ces motifs sont alors transformés en instances de classes spécialement
créées pour permettre une meilleure utilisation de I’'inférence structurée.

Formalisation du probléme

Lors de la recherche de motifs il est nécessaire de prendre en compte a la fois les attributs
publiques et les aggrégateurs. Ceci permet de s’assurer que chaque motif peut Etre
représenté par une seule classe.

Definition B.29 (Instances interchangeables) Soit I1 un PRM et S un squelette rela-
tionnel. Deux instances c; et c; de la classe C sont interchangeables dans S si pour
chaque aggrégateur X € A(C) nous avons |r(c;. X)| = |n(c;.X)| et pour chaque at-
tribut publique Y € A(C) nous avons |Ch(c;.Y)| = |Ch(c;.Y)|.

La recherche de motifs s’effectue dans un graphe étiqueté appelée un graphe de
frontiere.
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Definition B.30 (Graphe de frontiere) Soit II un PRM et S un squelette relationnel.
Un graphe de frontiére est un graphe non orienté BG = (L, E), ou:

o T est un ensemble de nceuds étiquetés représentant des instances tel que deux
neeuds c et d sont identiquement étiquetés si et seulement si c et d sont inter-
changeables dans S;

o £ € I x T estun ensemble d’arétes étiquetées tel que (¢, d) € & si et seulement
si

Lea = (A(c) 0 Aear(d)) | (Ald) 0 Aci(0)) # &,

o Apup(c) (respectivement Ay, (d)) est I’ensemble des attributs publiques de c
(respectivement d) et L. est I’étiquette de ’aréte (c, d) dans BG.

Les motifs trouvés dans le graphe de frontiere sont utilisés pour définir de nouvelles
classes, de telles classes sont appelées classes dynamiques.

Definition B.31 (Classe dynamique) Soit BG un graphe de frontiere. Une classe dy-
namique D dans BG est une paire (D, B), oii: D est une classe composite; B < A(D)

A

est ’ensemble des attributs publiques de D. L’ensemble B est appelé la frontiere de D.

Chaque classe dynamique va étre associ€e a un ensemble d’ensembles d’instances,
correspondant a toutes les instances possibles de la classes dynamique dans le graphe
de frontiere et par extension dans le squelette relationnel.

Definition B.32 (Affectation d’une classe dynamique) Soiz [T un PRM, S un squelette
relationnel, BG un graphe de fronti¢re de S et D une classe dynamique. Les affecta-
tions M(D) de D est un ensemble d’ensemble d’instances tel que chaque ensemble
d’instances s € M(ﬁ) soit une instance possible de D dans BG.

Toutefois, nous ne pourrons pas utiliser toutes les affectations possibles d’une classe
dynamique. En effet, certaines affectations partagent des nceuds dans le graphe de fron-
tiere, ce qui rend impossible de substituer les deux affectations par une instance de la
classe dynamique.

Rule B.1 Dans un graphe de frontiére, les affectations ne peuvent pas étre substituées
si elles partagent un nceud.

Definition B.33 (Substitution d’une classe dynamique) Soit Il un PRM, S un squelet-
te relationnel, BG le graphe de frontiére de S, D une classe dynamique et M(D) ses
affectations. Une substitution S(D) est un sous ensemble de M(D) tel que chaque
ensemble s € S(D) respecte la Régle

Optimiser I'inférence structurée revient alors a chercher pour le meilleur ensemble
de classes dynamiques et de substitutions satisfaisant la Regle [B.I] Malheureusement,
cet probleme est NP-difficile:
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Proposition B.1 Le probleme suivant est NP-difficile:

Instance: un PRM, un graphe de frontiére, un entier K= 0.

Question: existe-t’il un ensemble de classes dynamiques et de substitutions de ces
classes tel que le nombre d’opérations (multiplication et sommation) réalisées par SPI
soit plus petit que K?

Preuve omise (cf. la these).

Un algorithme approché pour la recherche de motifs

Nous proposons dans cette partie d’adapter un algorithme de recherche d’isomorphismes
de sous graphes, gSpan (Yan and Han, [2002), au probleme de recherche de motifs dans
un graphe de frontiere.

L’ algorithme gSpan (graph-based Substructure pattern mining) exploite un graphe
étiqueté et une recherche en profondeur pour découvrir des sous graphes fréquemment
répétés. Il crée un ordre linéaire parmi les sous graphes trouvés en utilisant un arbre
de recherche en profondeur et un codage spécifique. Chaque nceud dans ’arbre de
recherche correspond a un sous graphe et est associé€ a un code. Chaque code peut étre
réécrit sous une forme canonique et gSpan recherche les sous graphes de manieres a
ce que la premiere occurrence d’un sous graphe soit associée a un codage canonique.
Ainsi, lorsque 1’algorithme trouve un sous graphe déja découvert, le codage associé sera
alors non canonique et permettra a I’algorithme de ne pas prendre en compte le sous
graphe sans avoir a le comparer avec tous les sous graphes préalablement découverts.
L algorithm[I7|exploite gSpan afin de rechercher des classes dynamiques dans un graphe
de frontiere.

L’algorithm[I7] se base sur gSpan, que nous ne détaillerons pas (cf. la these et[Yan
and Han| (2002)). Pour comprendre 1’algorithm |17/|il suffit de savoir que chaque itéra-
tion de I’algorithme gSpan renvoie un sous graphe trouvé dans le graphe de frontiere.
L’algorithm[I7]prend en entrée un PRM II, un squelette relationnel S, le graphe de fron-
tiere BG de S et une fonction de score f (détaillée ci-dessous). Il initialise I’arbre de
recherche avec tous les motifs répétés de deux instances (pour cela il suffit de considérer
chaque ensemble d’arétes étiquetées identiquement). Ces premiers sous graphes sont
triés a I’aide de la fonction de score f (lignes 1-3). L’étape suivante de 1’algorithme
consiste a faire pousser chaque sous graphe en utilisant a la fois gSpan et la fonction
de score (lignes 4-7). La troisieme et derniere étape consiste a trier toutes les classes
dynamiques trouvées. Puis, a I’aide d’un algorithme de recherche Max Weighted Inde-
pendent Set, de trouver le meilleur ensemble de classes dynamiques et de substitutions
(lignes 8-14).

Fonction de score

Nous décrivons ici la fonction de score utilisée par 1’algorithme

Definition B.34 (Coiit d’une classe dynamique) Soit D une classe dynamique,
M(D) ses affectations et M (D) ses substitutions. Nous notons par:



184 B. French Summary

Algorithm 17: Pattern Discovery
Entrées: Un PRM II, un squelette relationnel S, son graphe de frontiere BG et
une fonction de score f
Sorties: Un ensemble de classes dynamiques et de substitutions
T « toutes classes dynamiques composées de deux instances trouvées par gSpan
trier les nceuds de T en utilisant f
enlever tous les nceuds inintéressants
pour chaque nouveau neeud G; trouvé par gSpan faire
trier les enfants de G; trouvés par gSpan en utilisant f
ajouter les enfants intéressants a T
supprimer les enfants inintéressants

N QA BT R W N =

=]

trier tous les nceuds de T en utilisant f

9 construire un graphe G = (V, E) tel que:

10 e chaque nceud v € V soit une affectation d’une classe dynamique

1 echaque arréte (v;,v;) € E existe si v; et v; partagent des instances

12 pondérer chaque nceud en utilisant f

13 trouver le Max Weighted Independent Set dans V' et en déduire les substitutions
utilisées pour chaque classe dynamique

14 renvoyer I’ensemble de classes dynamiques découvertes et leurs substitutions

dans BG

e w(D) le nombre d’opérations nécessaires pour éliminer les attributs privés de D;

e wW(D) le nombre d’opérations nécessaires pour éliminer les attributs publiques de

)

Le coiit d’une classe dynamique D est alors:
B(D) = w(D) + [M(D)| x w(D).

Le score B(D A) est le nombre d’ operatlons réalisées par SPI si nous substituons les
instances dans M(D) par des instances de D. Nous avons également besoin de prendre
en compte les affectations délaissées par une substitution.

Definition B.35 (Affectation délaissée) Soit D une classe dynamique, M(ZA)) ses af-

fectations et M(YS) ses substitutions. Nous appelons les affectations délaissées de D
I’ensemble L(D) = M(D)\M(D).

Si nous supposons que les affectations délaissées peuvent tout €tre substituées par
le parent de D dans I’arbre de recherche (qui est nécessairement un sous graphe de D)
nous pouvons estimer le colit d’élimination des affectations délaissées par D: w(m(s))+
IL(D)| x w(D) ot w(D) =, 5 + k(D) et k(D) correspond a I'élimination de I"arréte
ajoutée a (D) par D.
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Definition B.36 (Coiit total d’une classe dynamique) Le coilt total d’une classe dy-
namique D est:

B(D) = w(D) + w(n(D)) + s(D) x w(D) + [L(D)| x wW(D).
Nous comparerons le colt total de D avec le coiit de ne pas I'utiliser.

Definition B.37 (Coiit négatif d’une classe dynamique) Le coiit négatif d’une classe
dynamique D est le coiit d’utiliser son parent (D) pour les substitutions M(D):

V(7w (2)) = w(w(2)) + [M(D)| x w(D).
Nous pouvons maintenant définir la fonction de cofit utilisée par 1’algorithm

Definition B.38 (Coit effectif d’une classe dynamique) Le coiit effectif d’une classe
dynamique D est la différence entre le coiit total (D) et son coilt négatif y(D):

a(D) = (D) — (D)
w(D) + s(D

~ ~ ~

Finalement, notons que les fonctions s(D), w(D), W(D), k(D) peuvent étre es-
timées rapidement: 3(73) peut étre estimée en solvant un probleme de Max Independent
Set induit par M(D). Pour estimer w(D), il suffit de construire I’arbre de jonction de
D (Rose, [1970), d’éliminer ses attributs internes, et de sommer la taille des Acliques
restantes. Eliminer les variables restantes fournit une estimation de (D). k(D) peut
étre estimée de la méme maniéze. Toutefois, T n’est pas a-décroissant, i.e., qu’une
classe dynamique peut avoir (D) > 0, mais pas pour certains de ses descendants. Ceci
vient du fait que dans ces descendants, le nombre d’attributs privés peut €tre bien plus

élevé et de ce fait rendre certains descendants plus intéressants.
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