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UNIVERSITÉ DE VERSAILLES - SAINT-QUENTIN-EN-YVELINES
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et théorie des représentations˜
Hecke algebras, generalisations

and representation theory

Soutenue le 25 novembre 2016 devant le jury composé de
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Introduction en Français

Les algèbres de Iwahori–Hecke associées aux groupes de Weyl apparaissent naturellement dans l’étude
des groupes réductifs finis comme des algèbres d’endomorphismes de la représentation de permuta-
tion par rapport à un sous-groupe de Borel. Elles peuvent aussi être définies indépendamment comme
déformations des algèbres de groupe des groupes de Coxeter finis. L’objectif de ce mémoire est d’étudier
certains aspects de la théorie des représentations des algèbres de Iwahori–Hecke et la façon dont elles se
généralisent dans le cas des :

• algèbres de Hecke cyclotomiques, qui sont obtenues comme déformations des algèbres de groupe
des groupes de réflexions complexes,

• algèbres de Ariki–Koike, qui sont obtenues comme généralisations des algèbres de Iwahori–Hecke
de types A et B,

• algèbres de Yokonuma–Hecke, qui sont obtenues lors de l’étude des groupes réductifs finis comme
des algèbres d’endomorphismes de la représentation de permutation par rapport à un sous-groupe
unipotent maximal.

Au cours de ce mémoire, nous allons aussi étudier une autre famille d’algèbres associées aux groupes
de réflexions complexes, les algèbres de Cherednik rationnelles, dont la théorie des représentations a
beaucoup de liens avec la théorie des représentations des algèbres de Hecke.

Les aspects de la théorie des représentations de ces algèbres sur lesquelles nous allons nous concentrer
seront la paramétrisation et description des représentations irréductibles dans les cas semisimple et non-
semisimple, les blocs, la structure d’algèbre symétrique et la détermination de la matrice de décomposition
associée à une spécialisation.

Les groupes de Coxeter finis sont des groupes finis de matrices réelles qui sont engendrés par des
réflexions. Ils incluent les groupes de Weyl, qui sont des objets fondamentaux pour la classifica-
tion des algèbres de Lie simples sur C et des groupes algébriques simples. Les algèbres de Iwahori–
Hecke associées aux groupes de Weyl apparaissent naturellement comme des algèbres d’endomorphismes
des représentations induites dans l’étude des groupes réductifs finis. Elles peuvent aussi être définies
indépendamment comme déformations des algèbres de groupes des groupes de Coxeter finis, où la
déformation dépend d’un paramètre q et une fonction de poids L. Pour q = 1, nous obtenons l’algèbre de
groupe. Pour un groupe de Coxeter fini W , nous désignerons par Hq(W,L) l’algèbre de Iwahori–Hecke
associée.

Lorsque q est une indéterminée, l’algèbre de Iwahori–Hecke Hq(W,L) est semisimple. Suivant le
théorème de déformation de Tits, il existe une bijection entre l’ensemble des représentations irréductibles
de Hq(W,L) et l’ensemble Irr(W ) des représentations irréductibles de W . Grâce à cette bijection, Lusztig
associe à chaque représentation irréductible de W un entier qui dépend de L, en définissant ainsi la
fameuse fonction a. Ici nous définissons la fonction a en utilisant la structure d’algèbre symétrique et
les éléments de Schur de Hq(W,L). La fonction a intervient dans la définition de Lusztig des familles de
caractères, une partition de Irr(W ) qui joue un rôle central dans l’organisation des familles de caractères
unipotents dans le cas des groupes réductifs finis.

La théorie de Kazhdan–Lusztig est une clef pour la compréhension de la théorie des représentations de
l’algèbre de Iwahori–HeckeHq(W,L). Il existe une base spéciale deHq(W,L), appelé la base de Kazhdan–
Lusztig, qui nous permet de définir des cellules de Kazhdan–Lusztig pour Hq(W,L), un certain ensemble
de classes d’équivalence sur W . Les cellules de Kazhdan–Lusztig aident à construire les représentations

1



de Hq(W,L). Elles permettent aussi une deuxième définition équivalente, plus combinatoire, des familles
de caractères de Lusztig.

Lorsque q se spécialise en un nombre complexe η différent de zéro, et plus spécifiquement en une racine
de l’unité, l’algèbre de Iwahori–Hecke spécialisée Hη(W,L) n’est pas nécessairement semisimple et nous
n’avons plus une bijection entre ses représentations irréductibles et Irr(W ). Nous obtenons donc une
matrice de décomposition qui décrit comment les représentations irréductibles de l’algèbre semisimple
se décomposent après la spécialisation. Un ensemble basique canonique est un sous-ensemble de Irr(W )
en bijection avec les représentations irréductibles de Hη(W,L) (et ainsi un ensemble qui paramètre les
colonnes de la matrice de décomposition) avec de bonnes propriétés. Ces bonnes propriétés impliquent
que la matrice de décomposition a une forme unitriangulaire inférieure alors que la fonction a crôıt (au
sens large) le long des colonnes. Les ensembles basiques canoniques ont été définis par Geck et Rouquier
[GeRo], qui ont prouvé leur existence dans quelques cas en utilisant la théorie de Kazhdan–Lusztig.
Grâce à un travail collectif, il est maintenant prouvé que des ensembles basiques canoniques existent et
sont explicitement décrits pour tous les groupes de Coxeter finis et tout choix de L (en caractéristique
0).

Les groupes de Coxeter finis sont des cas particuliers de groupes de réflexions complexes, c’est-à-dire
des groupes finis de matrices complexes engendrés par des “pseudo-réflexions”. La classification des
groupes de réflexions complexes est due à Shephard et Todd [ShTo] : si W est un groupe de réflexions
complexe (irréductible), alors soit W appartient à la série infinie G(l, p, n) soit W est un des 34 groupes
exceptionnels G4, . . . , G37 (voir Théorème 3.1). D’importants développements durant les deux dernières
décennies ont suggéré que les groupes de réflexions complexes jouent un rôle crucial, mais seulement
partiellement compris, en théorie de représentations, et pourraient même devenir aussi importants que
les groupes de Coxeter finis dans l’étude d’autres structures mathématiques. En effet, ils se comportent
de façon tellement analogue aux groupes de réflexions réels que Broué, Malle et Michel [BMM1] ont
conjecturé qu’ils pourraient jouer le rôle de groupes de Weyl pour des objets, toujours mystérieux, qui
généralisent les groupes réductifs finis. Ces objets s’appellent “Spetses”.

Broué, Malle et Rouquier [BMR] ont défini des algèbres de Hecke pour les groupes de réflexions
complexes comme déformations de leurs algèbres de groupe. Dans le cas des groupes de réflexions
complexes de type G(l, 1, n), elle cöıncident avec les algèbres de Ariki–Koike, déjà définies par Ariki
et Koike [ArKo] comme généralisations des algèbres de Iwahori–Hecke de types A et B. Une théorie
des cellules de Kazhdan–Lusztig généralisée pour ces algèbres, connues sous le nom d’algèbres de Hecke
cyclotomiques, permettrait de se diriger vers une définition des Spetses. Malheureusement, nous n’avons
pas de base de Kazhdan–Lusztig pour les groupes de réflexions complexes. Néanmoins, nous pouvons
définir des familles de caractères en utilisant la définition de Rouquier : dans [Ro1], Rouquier a donné
une définition alternative pour les familles de caractères de Lusztig en prouvant que, dans le cas des
groupes de Weyl, elles cöıncident avec les blocs de l’algèbre de Iwahori–Hecke sur un certain anneau,
qui s’appelle l’anneau de Rouquier. Cette définition se généralise naturellement au cas des groupes de
réflexions complexes et leurs algèbres de Hecke cyclotomiques, en produisant les familles de Rouquier.
Ces familles sont maintenant déterminées pour toutes les algèbres de Hecke cyclotomiques de tous les
groupes de réflexions complexes, voir [Ch3, Ch4, Ch5]. Un rôle-clef dans cette détermination est joué
par la structure d’algèbre symétrique (toujours conjecturée dans certains cas) des algèbres de Hecke
cyclotomiques et les éléments de Schur correspondants.

En utilisant les éléments de Schur, nous pouvons aussi définir une fonction a et des ensembles basiques
canoniques pour les algèbres de Hecke cyclotomiques. Même s’il n’existe pas de théorie de Kazhdan–
Lusztig dans le cas complexe, il est maintenant prouvé que des ensembles basiques existent pour les
groupes de la série infinie G(l, p, n) et pour quelques groupes exceptionnels. Afin d’obtenir des ensembles
basiques canoniques pour les algèbres de Ariki–Koike, Geck et Jacon ont utilisé le théorème d’Ariki sur la
catégorification des représentations des algèbres de Hecke et le travail de Uglov sur les bases canoniques
pour des espaces de Fock de plus haut niveau [GeJa1, Ja2, Ja3, GeJa2]. Le résultat pour G(l, p, n) est
déduit du résultat pour G(l, 1, n) avec l’utilisation de la théorie de Clifford [GenJa, ChJa2].

Les algèbres de réflexions symplectiques ont été introduites par Etingof et Ginzburg [EtGi] pour
l’étude des résolutions symplectiques de l’espace d’orbites V/G, où V est un espace vectoriel complexe
symplectique et G est un groupe de réflexions symplectique agissant sur V , i.e., G est un groupe fini
engendré par des réflexions symplectiques. Un groupe de réflexions complexe W ⊂ GL(h), où h est
un espace vectoriel complexe, peut être vu comme un groupe de réflexions symplectique agissant sur
V = h ⊕ h∗. Les algèbres de réflexions symplectiques associées aux groupes de réflexions complexes
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sont connues sous le nom d’algèbres de Cherednik rationnelles. Elles dépendent de façon cruciale d’un
paramètre t, et leur théorie des représentations varie beaucoup selon si t est nul ou non.

Si t 6= 0, il existe une catégorie de représentations de l’algèbre de Cherednik rationnelle importante,
la catégorie O, et un foncteur exact, le foncteur de Knizhnik–Zamalodchikov ou simplement KZ, de O
vers la catégorie de représentations d’une certaine algèbre de Hecke cyclotomique spécialisée Hη(W ) (la
spécialisation dépend du choix des paramètres de l’algèbre de Cherednik rationnelle; toute algèbre de
Hecke spécialisée peut être obtenue de cette façon). La catégorieO est une catégorie de plus haut poids, et
elle contient un ensemble des modules standards {∆(E) |E ∈ Irr(W )}, un ensemble des modules simples
{L(E) |E ∈ Irr(W )} et une matrice de décomposition qui décrit le nombre de fois que L(E) apparâıt dans
la série de composition de ∆(E′) pour E,E′ ∈ Irr(W ). L’exactitude de KZ nous permet de déduire la
matrice de décomposition de Hη(W ) de la matrice de décomposition de la catégorie O. En utilisant cette
propriété, nous avons prouvé dans [CGG] l’existence des ensembles basiques canoniques pour tous les
groupes de Coxeter finis et pour les groupes de réflexions complexes de type G(l, 1, n) (en caractéristique
0). En particulier, nous avons montré que E appartient à l’ensemble basique canonique pour Hη(W ) si et
seulement si KZ(L(E)) 6= 0. Notre preuve de leur existence est assez générale et n’utilise pas le théorème
d’Ariki pour le type G(l, 1, n). Néanmoins la description explicite des ensembles basiques canoniques
dans ces cas par des travaux antérieurs permet de déterminer quels modules simples sont envoyés sur
zéro par le foncteur KZ. Nous avons aussi démontré que les images des modules standards via le foncteur
KZ sont isomorphes aux modules cellulaires des algèbres de Hecke.

En ce qui concerne le cas t = 0, Gordon [Go] a introduit et étudié un quotient de dimension finie de
l’algèbre de Cherednik rationnelle, l’algèbre de Cherednik rationnelle restreinte, dont les modules simples
sont paramétrés par Irr(W ). La décomposition de cette algèbre en blocs induit une partition de Irr(W ),
connue sous le nom de partition de Calogero–Moser. Nous pensons qu’il existe un lien entre la partition
de Calogero–Moser et les familles de caractères, d’abord suggéré par Gordon et Martino [GoMa] pour
le type B. Dans tous les cas étudiés jusqu’à maintenant, la partition en familles de Rouquier (pour une
algèbre de Hecke cyclotomique choisie convenablement) rend la partition de Calogero–Moser plus fine
(“la conjecture de Martino”), alors que pour les groupes de Coxeter finis les deux partitions cöıncident.
Ce lien n’est pas encore expliqué, étant donné qu’il n’y a pas de connexion évidente entre les algèbres
de Hecke et les algèbres de Cherednik rationnelles à t = 0. Motivés par cette idée, et afin de pouvoir
construire une théorie des cellules de Kazhdan–Lusztig généralisée, Bonnafé et Rouquier ont utilisé la
partition de Calogero–Moser pour développer une théorie des “cellules de Calogero–Moser” qui peut être
appliquée à tous les groupes de réflexions complexes [BoRo1, BoRo2]. Il reste à voir les fruits de cette
approche très récente.

Les algèbres de Yokonuma–Hecke ont été introduites par Yokonuma [Yo] dans le contexte des groupes
réductifs finis comme généralisations des algèbres de Iwahori–Hecke. Elle sont définies comme des algèbres
d’endomorphismes de la représentation de permutation par rapport à un sous-groupe unipotent maximal,
et peuvent ainsi être vues comme des cas particuliers des algèbres de Hecke unipotentes. Nous allons nous
intéresser ici aux algèbres de Yokonuma–Hecke de type A, qui peuvent être aussi définies indépendamment
comme déformations des algèbres de groupe des groupes de réflexions complexes de type G(l, 1, n). Nous
obtenons ainsi un autre type d’algèbres de Hecke associées à G(l, 1, n), différentes des algèbres de Ariki–
Koike. Ayant étudié la théorie des représentations des algèbres de Yokonuma–Hecke dans [ChPdA1],
nous avons découvert beaucoup de similarités avec la théorie des représentations des algèbres de Iwahori–
Hecke de type A; ces similarités sont expliquées par un résultat de Lusztig [Lu7], qui a démontré que
les algèbres de Yokonuma–Hecke sont isomorphes à des sommes directes des algèbres matricielles sur des
produits tensoriels de certaines sous-algèbres des algèbres de Iwahori–Hecke.

Nous avons aussi introduit et étudié beaucoup de nouvelles algèbres intéressantes dans le contexte des
algèbres de Yokonuma–Hecke, qui sont obtenues comme généralisations (ou, comme elles sont appelées
dans [JuLa5], “pondérisations”) d’algèbres importantes dans le contexte des algèbres de Iwahori–Hecke.
Tout d’abord, nous avons les algèbres de Yokonuma–Hecke affines et cyclotomiques, qui généralisent
respectivement les algèbres de Hecke affines de type A et les algèbres de Ariki–Koike [ChPdA2]. En fait,
nous avons montré dans [ChSe] que les algèbres de Yokonuma–Hecke affines apparaissent aussi naturelle-
ment dans l’étude des groupes réductifs p-adiques, avec une construction analogue à la construction
de Yokonuma, alors que les algèbres de Yokonuma–Hecke cyclotomiques produisent en même temps les
algèbres de Ariki–Koike et les algèbres de Yokonuma–Hecke de type A, comme des quotients et des
cas particuliers. De plus, nous avons trois généralisations possibles de l’algèbre de Temperley–Lieb :
l’algèbre de Yokonuma–Temperley–Lieb [GJKL1], l’algèbre de Temperley–Lieb à poids (“Framisation of
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the Temperley–Lieb algebra”)[GJKL2] et l’algèbre de Temperley–Lieb de réflexions complexe [GJKL2].
Notre étude de la structure et la théorie des représentations de ces trois algèbres dans [ChPo1, ChPo2]
indique que l’algèbre de Temperley–Lieb à poids est l’analogue le plus naturel de l’algèbre de Temperley–
Lieb dans ce contexte.

Une des raisons pour lesquelles l’intérêt porté aux algèbres de Yokonuma–Hecke s’est accru récemment
est leurs applications topologiques. Suivant la méthode de Jones [Jo2, Jo3], la trace de Ocneanu sur
l’algèbre de Iwahori–Hecke de type A et son quotient, l’algèbre de Temperley–Lieb, peut être utilisée
pour la définition des invariants de noeuds classiques, connues sous le nom de polynôme Homflypt (ou
polynôme de Jones en 2 variables) et de polynôme de Jones respectivement. De façon similaire, en
utilisant la trace de Markov sur l’algèbre de Yokonuma–Hecke de type A définie par Juyumaya [Ju2],
nous pouvons définir des invariants en 2 variables de noeuds à poids (“framed”), classiques et singuliers
(voir [JuLa1]–[JuLa4], [CJKL]).

Durant les années dernières, nous travaillions sur la comparaison entre les invariants en 2 variables de
noeuds classiques obtenus par les algèbres de Yokonuma–Hecke et le polynôme Homflypt, qui apparâıt
dans cette famille (voir [ChLa]). Très récemment, nous avons réussi à prouver que nous avons en effet
obtenu une nouvelle famille d’invariants, qui ne sont pas topologiquement équivalents au polynôme
Homflypt [CJKL]. En fait, nous avons montré que nos invariants sont topologiquement équivalents au
polynôme Homflypt sur les noeuds, mais qu’ils distinguent des entrelacs (c’est à dire, des enchevêtrements
de plusieurs noeuds) que le polynôme Homflypt ne peut pas distinguer. En plus des données calculées par
ordinateur, nous avons donné une preuve diagrammatique basée sur le résultat suivant : les invariants
provenant des algèbres de Yokonuma–Hecke peuvent être définis de façon diagrammatique via une relation
d’écheveau (“skein relation”) qui est appliquée seulement à des croisements de composantes différentes.
Ce fait est très important en lui-même, puisque il existe très peu d’invariants de noeuds qui sont définis
via des relations d’écheveau. Enfin, nous avons généralisé cette famille d’invariants à un nouvel invariant
d’écheveau en 3 variables qui est plus fort que le polynôme Homflypt.

Dans [ChPdA2], nous avons défini des traces de Markov sur les algèbres de Yokonuma–Hecke affines et
cyclotomiques. Appliquant la méthode de Jones, nous avons obtenu des invariants de noeuds classiques et
à poids dans le tore solide. Étant donnés les résultats de [CJKL], ces invariants ne sont pas topologique-
ment équivalents aux invariants de noeuds classiques dans le tore solide de type Homflypt obtenus des
algèbres de Hecke affines et cyclotomiques dans [La1, GeLa, La2]. De façon similaire, des invariants en 1
variable de noeuds à poids et classiques peuvent être obtenus grâce à l’algèbre de Temperley–Lieb à poids
en utilisant la trace de Juyumaya; ces invariants ne sont pas topologiquement équivalents au polynôme
de Jones sur les entrelacs classiques [GJKL2].

Ce mémoire est organisé de la façon suivante : dans le premier chapitre, nous présentons quelques
résultats préliminaires sur les blocs, les formes symétrisantes et les éléments de Schur, les applications
et les matrices de décomposition. Dans le deuxième chapitre, nous étudions les algèbres de Iwahori–
Hecke associées aux groupes de Coxeter finis et leur théorie des cellules de Kazhdan–Lusztig. Nous
définissons les familles de caractères de trois façons différentes, et les ensembles basiques canoniques en
caractéristique 0. Dans le troisième chapitre, nous étudions les algèbres de Hecke associées aux groupes
de réflexions complexes et explorons quelles propriétés se généralisent du cas réel au cas complexe.
Nous donnons la définition des algèbres de Hecke génériques et cyclotomiques associées aux groupes de
réflexions complexes. Puis nous utilisons la définition de Rouquier afin de généraliser la notion de familles
de caractères au cas des groupes de réflexions complexes, et nous expliquons comment nous pouvons
déterminer les familles de Rouquier dans tous les cas. Un rôle-clef dans cette détermination est joué par
la forme des éléments de Schur, qui ont été calculés, sous certaines hypothèses, pour tous les groupes
de réflexions complexes. Ces éléments de Schur sont aussi utilisés pour la définition d’une fonction a et
des ensembles basiques canoniques dans ce cas, et nous présentons nos résultats dans cette direction, qui
concernent plutôt les groupes de la série infinie. Dans le chapitre 4, nous nous concentrons sur les algèbres
de Ariki–Koike, i.e., les algèbres de Hecke associées aux groupes de réflexions complexes de type G(l, 1, n).
Même si elles sont des cas particuliers d’algèbres de Hecke étudiées dans le chapitre précedent, les algèbres
de Ariki–Koike ont été définies indépendamment plus tôt et étudiées combinatoirement par plusieurs
personnes. Elles constituent le cas le mieux exploré jusqu’à présent. Nous donnons de jolies formules
combinatoires pour les éléments de Schur des algèbres de Ariki–Koike et la fonction a. Nous montrons
aussi que les familles de caractères dans ce cas peuvent être complètement déterminées par les familles
de caractères des groupes de Weyl de type B. Enfin, nous discutons les applications de décomposition
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pour les algèbres de Ariki–Koike (non-graduées et graduées), et la preuve de Geck et Jacon de l’existence
des ensembles basiques canoniques via l’utilisation du théorème d’Ariki. Dans le cinquième chapitre,
nous introduisons les algèbres de Cherednik rationnelles associées aux groupes de réflexions complexes,
qui dépendent d’un paramètre t. Si t 6= 0, alors il existe un lien entre la théorie des représentations des
algèbres de Cherednik rationnelles et celle des algèbres de Hecke cyclotomiques via le foncteur KZ, et nous
montrons comment on peut utiliser des informations sur l’un pour obtenir des informations sur l’autre, en
particulier en ce qui concerne les matrices de décomposition et les ensembles basiques canoniques. Nous
obtenons l’existence des ensembles basiques canoniques pour plusieurs algèbres de Hecke cyclotomiques,
parmi lesquelles les algèbres de Iwahori–Hecke associées aux groupes de Coxeter finis et les algèbres
de Ariki–Koike (sans l’utilisation du théorème d’Ariki). Si t = 0, il existe aussi un lien (qui n’est
pas encore bien compris) entre la théorie des représentations des algèbres de Cherednik rationnelles et
celle des algèbres de Hecke cyclotomiques, qui pourrait permettre le développement d’une théorie des
cellules de Kazhdan–Lusztig pour les groupes de réflexions complexes. Dans le dernier chapitre, nous
étudions les algèbres de Yokonuma–Hecke, qui sont obtenues dans le contexte des groupes réductifs
finis comme généralisations des algèbres de Iwahori–Hecke, et nous nous concentrons sur l’algèbre de
Yokonuma–Hecke de type A. Nous étudions sa théorie des représentations, nous construisons une forme
symétrisante sur celle-ci et nous déterminons ses éléments de Schur. Puis nous démontrons des résultats
similaires pour les algèbres de Yokonuma–Hecke affines et cyclotomiques, que nous introduisons comme
généralisations des algèbres de Yokonuma–Hecke de type A. Nous étudions également la théorie des
représentations et construisons des bases pour les trois quotients de type Temperley–Lieb des algèbres
de Yokonuma–Hecke: l’algèbre de Yokonuma–Temperley–Lieb, l’algèbre de Temperley–Lieb à poids et
l’algèbre de Temperley–Lieb de réflexions complexe. Nous déduisons que l’algèbre de Temperley–Lieb à
poids est l’analogue le plus naturel de l’algèbre de Temperley–Lieb dans ce cas. Enfin, nous parlons des
applications topologiques de toutes ces algèbres, qui peuvent être utilisées pour la définition des invariants
de noeuds à poids, classiques et singuliers avec l’utilisation des traces de Markov que nous définissons
sur celles-ci et la méthode de Jones. Nous montrons que les invariants de noeuds classiques provenant
des algèbres de Yokonuma–Hecke sont en effet nouveaux, et ne sont pas topologiquement équivalents
aux fameux invariants polynomiaux obtenus dans le contexte classique des algèbres de Iwahori–Hecke
de type A (notamment, le polynôme Homflypt, les invariants de noeuds classiques dans le tore solide de
type Homflypt et le polynôme de Jones).
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Introduction in English

Iwahori–Hecke algebras associated to Weyl groups appear naturally in the study of finite reductive groups
as endomorphism rings of the permutation representation with respect to a Borel subgroup. They can
also be defined independently as deformations of group algebras of finite Coxeter groups. The aim of
this memoir is to study some aspects of the representation theory of Iwahori–Hecke algebras and the
way they generalise in the cases of

• cyclotomic Hecke algebras, which are obtained as deformations of group algebras of complex reflec-
tion groups,

• Ariki–Koike algebras, which are obtained as generalisations of Iwahori–Hecke algebras of types A
and B,

• Yokonuma–Hecke algebras, which are obtained in the study of finite reductive groups as endomor-
phism rings of the permutation representation with respect to a maximal unipotent subgroup.

In the process, we will also study another family of algebras associated to complex reflection groups, the
rational Cherednik algebras, whose representation theory has many connections with the representation
theory of Hecke algebras.

The aspects of the representation theory of these algebras on which we will focus will be the parametri-
sation and description of the irreducible representations in the semisimple and non-semisimple case, the
block structure, the symmetric algebra structure and the determination of the decomposition matrix
with respect to a specialisation.

Finite Coxeter groups are finite groups of real matrices that are generated by reflections. They
include the Weyl groups, which are fundamental in the classification of simple Lie algebras over C as
well as simple algebraic groups. Iwahori–Hecke algebras associated to Weyl groups appear naturally as
endomorphism algebras of induced representations in the study of finite reductive groups. They can
also be defined independently as deformations of group algebras of finite Coxeter groups, where the
deformation depends on a parameter q and a weight function L. For q = 1, we recover the group algebra.
For a finite Coxeter group W , we will denote by Hq(W,L) the associated Iwahori–Hecke algebra.

When q is an indeterminate, the Iwahori–Hecke algebra Hq(W,L) is semisimple. By Tits’s defor-
mation theorem, there exists a bijection between the set of irreducible representations of Hq(W,L) and
the set Irr(W ) of irreducible representations of W . Through this bijection, Lusztig attaches to every
irreducible representation of W an integer depending on L, thus defining the famous a-function. Here we
define the a-function using the symmetric algebra structure and the Schur elements of Hq(W,L). The
a-function is used in Lusztig’s definition of families of characters, a partition of Irr(W ) which plays a
principal role in the organisation of families of unipotent characters in the case of finite reductive groups.

Kazhdan–Lusztig theory is a key to understanding the representation theory of the Iwahori–Hecke
algebra Hq(W,L). There exists a special basis of Hq(W,L), called the Kazhdan–Lusztig basis, which
allows us to define the Kazhdan–Lusztig cells for Hq(W,L), a certain set of equivalence classes on W .
The construction of Kazhdan–Lusztig cells yields the construction of representations for Hq(W,L). It
also gives another, more combinatorial, definition for Lusztig’s families of characters.

Now, when q specialises to a non-zero complex number η, and more specifically to a root of unity, the
specialised Iwahori–Hecke algebra Hη(W,L) is not necessarily semisimple and we no longer have a bijec-
tion between its irreducible representations and Irr(W ). We obtain then a decomposition matrix which
records how the irreducible representations of the semisimple algebra decompose after the specialisation.
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A canonical basic set is a subset of Irr(W ) in bijection with the irreducible representations of Hη(W,L)
(and thus a labelling set for the columns of the decomposition matrix) with good properties. These good
properties ensure that the decomposition matrix has a lower unitriangular form while the a-function
increases (roughly) down the columns. Canonical basic sets were defined by Geck and Rouquier [GeRo],
who also proved their existence in certain cases with the use of Kazhdan–Lusztig theory. Thanks to the
work of many people, canonical basic sets are now proved to exist and explicitly described for all finite
Coxeter groups and for any choice of L (in characteristic 0).

Finite Coxeter groups are particular cases of complex reflection groups, that is, finite groups of
complex matrices generated by “pseudo-reflections”. Their classification is due to Shephard and Todd
[ShTo]: if W is an (irreducible) complex reflection group, then either W belongs to the infinite series
G(l, p, n) or W is one of the 34 exceptional groups G4, . . . , G37 (see Theorem 3.1). Important work in
the last two decades has suggested that complex reflection groups play a crucial, but not yet understood
role in representation theory, and may even become as ubiquitous as finite Coxeter groups in the study of
other mathematical structures. In fact, they behave so much like real reflection groups that Broué, Malle
and Michel [BMM1] conjectured that they could play the role of Weyl groups for, as yet mysterious,
objects generalising finite reductive groups. These objects are called “Spetses”.

Broué, Malle and Rouquier [BMR] defined Hecke algebras for complex reflection groups as defor-
mations of their group algebras. In the case of complex reflection groups of type G(l, 1, n), these co-
incide with the Ariki–Koike algebras, already defined by Ariki and Koike [ArKo] as generalisations of
Iwahori–Hecke algebras of types A and B. A generalised Kazhdan–Lusztig cell theory for these algebras,
known as cyclotomic Hecke algebras, is expected to help find Spetses. Unfortunately, we do not have a
Kazhdan–Lusztig basis for complex reflection groups. However, we can define families of characters using
Rouquier’s definition: in [Ro1], Rouquier gave an alternative definition for Lusztig’s families of characters
by proving that, in the case of Weyl groups, they coincide with the blocks of the Iwahori–Hecke algebra
over a certain ring, called the Rouquier ring. This definition generalises naturally to the case of complex
reflection groups and their cyclotomic Hecke algebras, producing the so-called Rouquier families. These
families have now been determined for all cyclotomic Hecke algebras of all complex reflection groups,
see [Ch3, Ch4, Ch5]. A key role in this determination is played by the (still conjectural in some cases)
symmetric algebra structure of cyclotomic Hecke algebras and the corresponding Schur elements.

Using the Schur elements, we can also define an a-function and canonical basic sets for cyclotomic
Hecke algebras. Although there is no Kazhdan–Lusztig theory in the complex case, canonical basic sets
are now known to exist for the groups of the infinite series G(l, p, n) and for some exceptional ones. In
order to obtain canonical basic sets for Ariki–Koike algebras, Geck and Jacon used Ariki’s Theorem on
the categorification of Hecke algebra representations and Uglov’s work on canonical bases for higher level
Fock spaces [GeJa1, Ja2, Ja3, GeJa2]. The result for G(l, p, n) derives from that for G(l, 1, n) with the
use of Clifford Theory [GenJa, ChJa2].

Symplectic reflection algebras were introduced by Etingof and Ginzburg [EtGi] for the study of
symplectic resolutions of the orbit space V/G, where V is a symplectic complex vector space and G is a
symplectic reflection group acting on V , that is, G is a finite group generated by symplectic reflections.
A complex reflection group W ⊂ GL(h), where h is a complex vector space, can be seen as a symplectic
reflection group acting on V = h ⊕ h∗. Symplectic reflection algebras associated with complex reflection
groups are known as rational Cherednik algebras. They depend on a parameter t, and their representation
theory varies a lot according to whether t is zero or not.

If t 6= 0, there exists an important category of representations of the rational Cherednik algebra, the
category O, and an exact functor, the Knizhnik–Zamalodchikov functor or simply KZ, from O to the
category of representations of a certain specialised cyclotomic Hecke algebra Hη(W ) (the specialisation
depends on the choice of parameters for the rational Cherednik algebra; every specialised Hecke algebra
can arise this way). Category O is a highest weight category, and it comes equipped with a set of standard
modules {∆(E) |E ∈ Irr(W )}, a set of simple modules {L(E) |E ∈ Irr(W )} and a decomposition matrix
that records the number of times that L(E) appears in the composition series of ∆(E′) for E,E′ ∈ Irr(W ).
The exactness of KZ allows us to read off the decomposition matrix of Hη(W ) from the decomposition
matrix of category O. Using this, we proved in [CGG] the existence of canonical basic sets for all finite
Coxeter groups and for complex reflection groups of type G(l, 1, n) (in characteristic 0). In particular,
we showed that E belongs to the canonical basic set for Hη(W ) if and only if KZ(L(E)) 6= 0. Our proof
of existence is quite general and it does not make use of Ariki’s Theorem for type G(l, 1, n). However,
the explicit description of canonical basic sets in these cases by previous works answers simultaneously
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the question of which simple modules are killed by the KZ-functor. We also proved that the images of
the standard modules via the KZ-functor are isomorphic to the cell modules of Hecke algebras.

As far as the case t = 0 is concerned, Gordon [Go] introduced and studied extensively a finite-
dimensional quotient of the rational Cherednik algebra, called the restricted rational Cherednik algebra,
whose simple modules are parametrised by Irr(W ). The decomposition of this algebra into blocks induces
a partition of Irr(W ), known as Calogero–Moser partition. It is believed that there exists a connection
between the Calogero–Moser partition and the families of characters, first suggested by Gordon and
Martino [GoMa] for type B. In every case studied so far, the partition into Rouquier families (for a
suitably chosen cyclotomic Hecke algebra) refines the Calogero–Moser partition (“Martino’s conjecture”),
while for finite Coxeter groups the two partitions coincide. The reasons for this connection are still
unknown, since there is no apparent connection between Hecke algebras and rational Cherednik algebras
at t = 0. Inspired by this, and in an effort to construct a generalised Kazhdan–Lusztig cell theory, Bonnafé
and Rouquier have used the Calogero–Moser partition to develop a “Calogero–Moser cell theory” which
can be applied to all complex reflection groups [BoRo1, BoRo2]. The fruits of this very recent approach
remain to be seen.

Yokonuma–Hecke algebras were introduced by Yokonuma [Yo] in the context of finite reductive groups
as generalisations of Iwahori–Hecke algebras. They are defined as endomorphism rings of the permutation
representation with respect to a maximal unipotent subgroup, and can thus be regarded as particular
cases of unipotent Hecke algebras. We will focus here on Yokonuma–Hecke algebras of type A, which
can be also defined independently as deformations of group algebras of complex reflection groups of type
G(l, 1, n). We thus obtain another type of Hecke algebras associated to G(l, 1, n), different from Ariki–
Koike algebras. Having studied the representation theory of Yokonuma–Hecke algebras in [ChPdA1],
we have discovered many similarities with the representation theory of Iwahori–Hecke algebras of type
A; these similarities are explained by a result of Lusztig [Lu7], who has proved that Yokonuma–Hecke
algebras are isomorphic to direct sums of matrix algebras over tensor products of certain subalgebras of
Iwahori–Hecke algebras.

We have now introduced and studied many interesting new algebras in the Yokonuma–Hecke algebra
setting, which are obtained as generalisations (or, as called in [JuLa5], “framisations”) of important
algebras in the Iwahori–Hecke algebra setting. First of all, we have the affine and cyclotomic Yokonuma–
Hecke algebras, which generalise respectively the affine Hecke algebras of type A and the Ariki–Koike
algebras [ChPdA2]. In fact, we have shown in [ChSe] that affine Yokonuma–Hecke algebras appear
also naturally in the study of p-adic reductive groups, arising from a construction analogous to the one
used by Yokonuma, while cyclotomic Yokonuma–Hecke algebras give rise to both Ariki–Koike algebras
and classical Yokonuma–Hecke algebras of type A, both as quotients and as particular cases. Further,
we have three possible generalisations of the Temperley–Lieb algebra: the Yokonuma–Temperley–Lieb
algebra [GJKL1], the Framisation of the Temperley–Lieb algebra [GJKL2] and the Complex Reflection
Temperley–Lieb algebra [GJKL2]. Our study of the structure and the representation theory of these
three algebras in [ChPo1, ChPo2] indicates that the Framisation of the Temperley–Lieb algebra is the
most natural analogue of the Temperley–Lieb algebra in this setting.

One of the reasons that Yokonuma–Hecke algebras have attracted a lot of interest recently is their
topological applications. After Jones’s method [Jo2, Jo3], the Ocneanu trace on the Iwahori–Hecke
algebra of type A and its quotient, the Temperley–Lieb algebra, can be used to define isotopy invariants
for classical knots and links, known as the Homflypt polynomial (or 2-variable Jones polynomial) and
the Jones polynomial respectively. In a similar way, using the Markov trace on the Yokonuma–Hecke
algebra of type A defined by Juyumaya [Ju2], one can define 2-variable isotopy invariants for framed,
classical and singular knots and links (see [JuLa1]–[JuLa4], [CJKL]).

For the past years, we have been trying to compare the family of 2-variable isotopy invariants of
oriented classical links arising from Yokonuma–Hecke algebras with the Homflypt polynomial, which
is included in this family (see [ChLa]). Very recently, we were successful in proving that we have
indeed obtained a new family of invariants, which are not topologically equivalent to the Homflypt
polynomial [CJKL]. In fact, we have shown that our invariants are topologically equivalent to the
Homflypt polynomial on knots, but they distinguish links that the Homflypt polynomial does not. Besides
computational data, we have given a diagrammatic proof based on the following result: the invariants
from Yokonuma–Hecke algebras can be defined diagrammatically via a special skein relation involving
only crossings between different components. This fact is very important in its own right, since there
are very few link invariants defined through skein relations. Finally, we have generalised this family of
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invariants to a new 3-variable skein link invariant which is stronger than the Homflypt polynomial.
In [ChPdA2], we have defined Markov traces on affine and cyclotomic Yokonuma–Hecke algebras.

Applying Jones’s method, we have obtained invariants for framed and classical links in the solid torus.
In view of the results of [CJKL], these invariants are not topologically equivalent to the Homflypt-type
invariants for classical links in the solid torus obtained from affine and cyclotomic Hecke algebras in
[La1, GeLa, La2]. Similarly, 1-variable isotopy invariants of oriented framed and classical links can be
obtained from the Framisation of the Temperley–Lieb algebra with the use of Juyumaya’s trace; these
invariants are not topologically equivalent to the Jones polynomial on classical links [GJKL2].

This memoir is organised as follows: In the first chapter, we present some preliminary results on
blocks, symmetrising forms and Schur elements, decomposition maps and matrices. In the second chapter,
we discuss Iwahori–Hecke algebras associated with finite Coxeter groups and their Kazhdan–Lusztig cell
theory. We define families of characters in three different ways, and canonical basic sets in characteristic 0.
In the third chapter, we study the Hecke algebras associated with complex reflection groups and explore
which properties generalise from the real case to the complex case. We give the definition of generic and
cyclotomic Hecke algebras associated with complex reflection groups. We then use Rouquier’s definition
in order to generalise the notion of families of characters to the case of complex reflection groups, and
we explain how we can determine the Rouquier families in all cases. A key role in this determination is
played by the form of the Schur elements, which have been calculated, under certain assumptions, for
all complex reflection groups. These Schur elements are also used for the definition of an a-function and
canonical basic sets in this case, and we present our results in this direction, which mostly concern the
groups of the infinite series. In Chapter 4, we focus on Ariki–Koike algebras, that is, Hecke algebras
associated with complex reflection groups of type G(l, 1, n). Even though these are included in the Hecke
algebras studied in the previous chapter, Ariki–Koike algebras were defined earlier independently and
studied combinatorially by many people, so this is the best understood case. We give nice combinatorial
formulas for the Schur elements of Ariki–Koike algebras and the a-function. We also prove that the
families of characters in this case can be completely determined by the families of characters of Weyl
groups of tye B. Finally, we discuss decomposition maps for Ariki–Koike algebras (ungraded and graded),
and Geck and Jacon’s proof of existence of canonical basic sets with the use of Ariki’s Theorem. In the
fifth chapter, we introduce rational Cherednik algebras associated with complex reflection groups, which
depend on a parameter t. If t 6= 0, then there is a connection between the representation theory of
rational Cherednik algebras and that of cyclotomic Hecke algebras through the KZ-functor, and we show
how we can use information on the former to obtain information on the latter and vice versa, especially
in regard to decomposition matrices and canonical basic sets. We obtain the existence of canonical basic
sets for many cyclotomic Hecke algebras, including Iwahori–Hecke algebras associated with finite Coxeter
groups and Ariki–Koike algebras (without the use of Ariki’s Theorem). If t = 0, there is also a (not
yet understood) connection between the representation theory of rational Cherednik algebras and that
of cyclotomic Hecke algebras, which could allow the development of a Kazhdan–Lusztig cell theory for
complex reflection groups. In the last chapter, we study Yokonuma–Hecke algebras, which are obtained
in the context of finite reductive groups as generalisations of Iwahori–Hecke algebras, and we focus on
the Yokonuma–Hecke algebra of type A. We study its representation theory, construct a symmetrising
form on it and determine its Schur elements. We then provide similar results for affine and cyclotomic
Yokonuma–Hecke algebras, which we introduce as generalisations of Yokonuma–Hecke algebras of type
A. We also study the representation theory and construct bases for the three suggested Temperley–Lieb
type quotients of Yokonuma–Hecke algebras: the Yokonuma–Temperley–Lieb algebra, the Framisation
of the Temperley–Lieb algebra and the Complex Reflection Temperley–Lieb algebra. We deduce that the
Framisation of the Temperley–Lieb algebra is the most natural analogue of the Temperley–Lieb algebra
in this case. Finally, we discuss the topological applications of all these algebras, which can be used
to define invariants for framed, classical and singular knots and links using the Markov traces that we
define on them and Jones’s recipe. We show that the classical link invariants arising from Yokonuma–
Hecke algebras are actually new, and not topologically equivalent to the famous polynomial invariants
obtained in the classical setting of Iwahori–Hecke algebras of type A (namely, the Homflypt polynomial,
the Homflypt-type invariants of links in the solid torus and the Jones polynomial).
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Chapter 1

Algebras of Finite Type

Let R be a commutative integral domain and let A be an R-algebra, free and finitely generated as an
R-module. If R′ is a commutative integral domain containing R, we will write R′A for R′ ⊗R A and we
will denote by Irr(R′A) the set of irreducible representations of R′A.

1.1 Blocks

We define the block-idempotents of A to be the primitive idempotents of the centre Z(A) of A. Let K be
a field containing R such that the algebra KA is semisimple. Then KA is isomorphic to a direct product
of simple algebras,

KA ∼=
∏

V ∈Irr(KA)

MV ,

where MV is a simple K-algebra. For all V ∈ Irr(KA), we denote by πV : KA � MV the projection
onto the V -factor and by eV the element of KA such that

πV ′(eV ) =

{
1MV

if V = V ′,
0 if V 6= V ′.

We have that the elements {eV }V ∈∈Irr(KA) are the block-idempotents of KA. Further, there exists a
unique partition Bl(A) of Irr(KA) that is the finest with respect to the property:

∀B ∈ Bl(A), eB :=
∑
V ∈B

eV ∈ A.

The elements {eB}B∈Bl(A) are the block-idempotents of A. We have A ∼=
∏
B∈Bl(A)AeB . From now on,

we will refer to the parts of Bl(A) as the blocks of the algebra A.

Example 1.1 Let G be a finite group. The group algebra Z[G] has only one block, which contains all
the irreducible representations of C[G].

1.2 Symmetrising forms and Schur elements

A symmetrising form on the algebra A is a linear map τ : A→ R such that

(a) τ(ab) = τ(ba) for all a, b ∈ A, that is, τ is a trace function, and

(b) the map τ̂ : A→ HomR(A,R), a 7→ (x 7→ τ(ax)) is an isomorphism of A-bimodules.

If there exists a symmetrising form on A, we say that A is a symmetric algebra.

Example 1.2 Let G be a finite group. The linear map τ : Z[G]→ Z defined by τ(1) = 1 and τ(g) = 0
for all g ∈ G \ {1} is a symmetrising form on Z[G]; it is called the canonical symmetrising form on Z[G].
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Suppose that there exists a symmetrising form τ on A. Let B = (bi)i∈I be an R-basis of A, and
let B∨ = (b∨i )i∈I denote the dual basis of A with respect to τ , that is, τ(bib

∨
j ) = δij . Let K be a field

containing R such that the algebra KA is split. The map τ can be extended to KA by extension of
scalars. Let V ∈ Irr(KA) with character χV . We have [GePf, Lemma 7.1.7]:

τ̂−1(χV ) =
∑
i∈I

χV (bi) b
∨
i ∈ Z(KA) . (1.1)

For any z ∈ Z(KA), Schur’s lemma implies that z acts as a scalar on V ; we denote this scalar by ωV (z).
The K-algebra homomorphism ωV : Z(KA)→ K is the central character associated with V . We define

sV := ωV (τ̂−1(χV ))

to be the Schur element associated with V . We have sV ∈ RK , where RK denotes the integral closure
of R in K [GePf, Proposition 7.3.9]. Moreover, note that the element sV satisfies:

sV χV (1) =
∑
i∈I

χV (bi)χV (b∨i ) .

Example 1.3 Let G be a finite group and let τ be the canonical symmetrising form on A := Z[G].
The set {g}g∈G forms a basis of A over Z, with {g−1}g∈G the dual basis of A with respect to τ .
If K is an algebraically closed field of characteristic 0, then KA is a split semisimple algebra and
sV = |G|/χV (1) ∈ Q for all V ∈ Irr(KA). Because of the integrality of the Schur elements, we must
have |G|/χV (1) ∈ ZK ∩Q = Z for all V ∈ Irr(KA). Thus, we have also shown that χV (1) divides |G|.

Now, the algebra KA is semisimple if and only if sV 6= 0 for all V ∈ Irr(KA) [GePf, Theorem 7.2.6].
If this is the case, we have

τ =
∑

V ∈Irr(KA)

1

sV
χV (1.2)

and

eV =
1

sV
τ̂−1(χV ) , (1.3)

where eV is the block-idempotent of KA corresponding to V . Both results are due to Curtis and Reiner
[CuRe], but we follow the exposition in [GePf, Theorem 7.2.6] and [GePf, Proposition 7.2.7] respectively.
Combining (1.1) with (1.3), and following the characterisation of blocks of the algebra A given in Section
1.1, we obtain the following description for the blocks of a symmetric algebra:

Proposition 1.4 Let K be a field containing R such that the algebra KA is split semisimple. The blocks
of the symmetric algebra A are the non-empty subsets B of Irr(KA) that are minimal with respect to the
property: ∑

V ∈B

1

sV
χV (a) ∈ R ∀a ∈ A.

1.3 Decomposition maps

Let K be a field containing R. Let R0(KA) be the Grothendieck group of finite-dimensional KA-modules.
The group R0(KA) is generated by expressions [V ], one for each KA-module V (up to isomorphism), with
relations [V ] = [V ′] + [V ′′] for each exact sequence 0 → V ′ → V → V ′′ → 0 of KA-modules. Two KA-
modules V, V ′ give rise to the same element in R0(KA), if V and V ′ have the same composition factors,
counting multiplicities. It follows that R0(KA) is free abelian with basis given by the isomorphism
classes of simple modules. Finally, let R+

0 (KA) be the subset of R0(KA) consisting of elements [V ],
where V is a finite-dimensional KA-module.

From now on, we assume that R is integrally closed in K. Let θ : R→ L be a ring homomorphism into
a field L such that L is the field of fractions of θ(R). We call such a ring homomorphism a specialisation
of R.

There exists a valuation ring O ⊆ K such that R ⊆ O and Kerθ consists of the elements of R that
belong to the maximal ideal J(O) of O. Let k denote the residue field of O. Then the restriction of the
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canonical map π : O → k to R has kernel J(O) ∩R = Kerθ. Since L is the field of fractions of θ(R), we
may regard L as a subfield of k. Thus, we obtain a commutative diagram

R

θ

��

⊆ O
π

��

⊆ K

L ⊆ k

If now V is a KA-module, then there exists an OA-lattice Ṽ such that K ⊗O Ṽ = V . The k-vector
space k ⊗O Ṽ is a kA-module via (1 ⊗ a)(1 ⊗ v) = 1 ⊗ av (a ∈ A, v ∈ Ṽ ), which we call the modular
reduction of Ṽ .

From now on, we will assume that either LA is split, or L = k and k is perfect. One consequence
of this assumption is that we can identify the Grothendieck groups R0(LA) and R0(kA). We then have
the following [GePf, Theorem 7.4.3]:

Theorem 1.5 The modular reduction induces an additive map dθ : R+
0 (KA) → R+

0 (LA) such that
dθ([KṼ ]) = [kṼ ], where Ṽ is an OA-lattice and [kṼ ] is regarded as an element of R+

0 (LA) via the
identification of R0(kA) and R0(LA).

The map dθ is called the decomposition map associated with the specialisation θ : R→ L. Note that
the map dθ depends only on θ and not on the choice of the valuation ring O. The matrix Dθ of this
map with respect to the bases of R0(KA) and R0(LA) consisting of the classes of the simple modules
is called the decomposition matrix associated with θ. The rows of Dθ are labelled by Irr(KA) and the
columns of Dθ are labelled by Irr(LA).

The following result gives a criterion for dθ to be trivial. It is known as “Tits’s deformation theorem”.
For its proof, the reader may refer, for example, to [GePf, Theorem 7.4.6].

Theorem 1.6 Assume that KA and LA are split. If LA is semisimple, then KA is also semisimple and
the decomposition map dθ is an isomorphism which preserves isomorphism classes of simple modules. In
particular, we have a bijection Irr(KA)↔ Irr(LA).

Finally, if A is symmetric, we can check whether the assumption of Tits’s deformation theorem is
satisfied using the following semisimplicity criterion involving the Schur elements [GePf, Theorem 7.4.7].

Theorem 1.7 Assume that KA and LA are split and that A is symmetric with symmetrising form τ .
For any simple KA-module V , let sV ∈ R be the Schur element with respect to τ . Then LA is semisimple
if and only if θ(sV ) 6= 0 for all V ∈ Irr(KA).
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Chapter 2

Iwahori–Hecke Algebras

In this chapter we will focus on real reflection groups, while in the next chapter we will see what happens
in the complex case.

Let (W,S) be a finite Coxeter system. By definition, the finite Coxeter group W has a presentation
of the form

W = 〈S | (st)mst = 1 ∀ s, t ∈ S 〉
with mss = 1 and mst > 2 for s 6= t. We have a length function ` : W → Z>0 defined by `(w) :=
min { r |w = si1 . . . sir with sij ∈ S } for all w ∈W .

Let L : W → Z>0 be a weight function, that is, a map such that L(ww′) = L(w) + L(w′) whenever
`(ww′) = `(w) + `(w′). For s, t ∈ S, we have L(s) = L(t) whenever s and t are conjugate in W . Let q be
an indeterminate. We define the Iwahori–Hecke algebra of W with parameter L, denoted by Hq(W,L),
to be the Z[q, q−1]-algebra generated by elements (Ts)s∈S satisfying the relations:

(Ts − qL(s))(Ts + q−L(s)) = 0 and TsTtTsTt . . .︸ ︷︷ ︸
mst

= TtTsTtTs . . .︸ ︷︷ ︸
mst

for s 6= t.

If L(s) = L(t) for all s, t ∈ S, we say that we are in the equal parameter case. Since L is a weight
function, unequal parameters can only occur in irreducible types Bn, F4 and dihedral groups I2(m) for
m even.

Example 2.1 Let W = S3. We have W = 〈s, t | s2 = t2 = (st)3 = 1〉. Let L : W → Z>0 be a weight
function and set l := L(s) = L(t). We have

Hq(W, l) := Hq(W,L) = 〈Ts, Tt |TsTtTs = TtTsTt, (Ts − ql)(Ts + q−l) = (Tt − ql)(Tt + q−l) = 0〉.

Let w ∈ W and let w = si1 . . . sir be a reduced expression for w, that is, r = `(w). Set Tw :=
Tsi1 . . . Tsir . The element Tw is well-defined due to Matsumoto’s theorem (see, for example, [GePf,

Theorem 1.2.2]). As a Z[q, q−1]-module, Hq(W,L) is generated by the elements (Tw)w∈W satisfying the
following multiplication formulas: T 2

s = 1 + (qL(s) − q−L(s))Ts for s ∈ S,

TwTw′ = Tww′ if `(ww′) = `(w) + `(w′).

The elements (Tw)w∈W form a basis of Hq(W,L), the standard basis.

2.1 Kazhdan–Lusztig cells

Let ι be the algebra involution on Hq(W,L) given by ι(q) = q−1 and ι(Ts) = T−1
s for s ∈ S (as a

consequence, ι(Tw) = T−1
w−1 for all w ∈ W ). By [KaLu1, Theorem 1.1] (see [Lu3, Proposition 2] for the

unequal parameter case), for each w ∈ W , there exists an element Cw ∈ Hq(W,L) uniquely determined
by the conditions

ι(Cw) = Cw and ι(Cw) = Tw +
∑

x∈W,x<w
Px,w Tx ,
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where < stands for the Chevalley–Bruhat order on W and Px,w ∈ q−1Z[q−1]. The elements (Cw)w∈W
also form a basis of Hq(W,L), the Kazhdan–Lusztig basis.

Example 2.2 We have C1 = T1 = 1 and, for all s ∈ S, Cs =

{
Ts if L(s) = 0
Ts + q−L(s)T1 if L(s) > 0

.

Using the Kazhdan–Lusztig basis, we can define the following three relations on W . For x, y ∈ W ,
we have:

• x←L y , if Cx appears with non-zero coefficient in hCy for some h ∈ Hq(W,L).

• x←R y , if Cx appears with non-zero coefficient in Cyh
′ for some h′ ∈ Hq(W,L).

• x←LR y , if Cx appears with non-zero coefficient in hCyh
′ for some h, h′ ∈ Hq(W,L).

If now we take the transitive closures of the above relations, we can define the following three preorders
on W : 6L, 6R, 6LR.

The preorder 6L defines an equivalence relation ∼L on W as follows:

x ∼L y ⇔ x 6L y and y 6L x.

The equivalence classes for ∼L are called left cells. Similarly, one can define equivalence relations ∼R
and ∼LR on W , whose equivalence classes are called, respectively, right cells and two-sided cells.

Example 2.3 Following the notation of Example 2.1, for W = S3 = {1, s, t, st, ts, sts = tst} and l > 0,

• the left cells are {1}, {s, ts}, {t, st} and {sts} ;

• the right cells are {1}, {s, st}, {t, ts} and {sts} ;

• the two-sided cells are {1}, {s, t, st, ts} and {sts}.

If l = 0, then all elements of W belong to the same cell (left, right or two-sided).

Let now C be a left cell of W . The following two Z[q, q−1]-modules are left ideals of Hq(W,L):

H6LC = 〈Cy | y 6L w,w ∈ C〉Z[q,q−1] and H<LC = 〈Cy | y 6L w,w ∈ C, y /∈ C〉Z[q,q−1].

Then
MC := H6LC/H<LC

is a free left Hq(W,L)-module with basis indexed by the elements of C.
Let K ⊆ C be a field such that the algebra K(q)Hq(W,L) is split semisimple (for example, we can

take K = C, or K = Q if W is a Weyl group). Now, since the left cells form a partition of W , we obtain
a corresponding direct sum decomposition of K(q)Hq(W,L):

K(q)Hq(W,L) ∼=
⊕

C left cell

K(q)MC (isomorphism of left K(q)Hq(W,L)-modules), (2.1)

where K(q)MC := K(q) ⊗Z[q,q−1]MC. We obtain analogous decompositions with respect to right and
two-sided cells.

2.2 Schur elements and the a-function

From now on, set R := Z[q, q−1] and let K ⊆ C be a field such that he algebra K(q)Hq(W,L) is split
semisimple.

Using the standard basis of the Iwahori–Hecke algebra, we define the linear map τ : Hq(W,L) → R
by setting

τ(Tw) :=

{
1 if w = 1,
0 otherwise.
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The map τ is a symmetrising form on Hq(W,L), and the elements (Tw−1)w∈W form a basis of Hq(W,L)
dual to the standard basis with respect to τ (that is, τ(Tw−1Tw′) = δw,w′) [GePf, Proposition 8.1.1]. The
map τ is called the canonical symmetrising form on Hq(W,L), because it specialises to the canonical
symmetrising form on the group algebra Z[W ] when q 7→ 1.

Now, the map τ can be extended to K(q)Hq(W,L) by extension of scalars. By Tits’s deformation
theorem, the specialisation q 7→ 1 induces a bijection between the set of irreducible representations
Irr(K(q)Hq(W,L)) of K(q)Hq(W,L) and the set of irreducible representations Irr(W ) of W . For E ∈
Irr(W ), we will denote by V E the corresponding irreducible representation of K(q)Hq(W,L) and by sE
the Schur element of Hq(W,L) associated with V E . We have sE ∈ ZK [q, q−1] for all E ∈ Irr(W ), where
ZK denotes the integral closure of Z in K.

Example 2.4 The irreducible representations of the symmetric group Sn are parametrised by the par-
titions of n. For W = S3, there are three irreducible representations. Let E(3), E(2,1) and E(1,1,1) denote
respectively the trivial, reflection and sign representation of S3. Using again the notation of Example
2.1, we have

sE(3) = (q2l + 1)(q4l + q2l + 1), sE(2,1) = q2l + 1 + q−2l, sE(1,1,1) = (q−2l + 1)(q−4l + q−2l + 1).

We can define the functions a : Irr(W )→ Z and A : Irr(W )→ Z by setting

a(E) := −valuationq(sE) and A(E) := −degreeq(sE).

Note that both functions depend on L. For brevity, we will write aE for a(E) and AE for A(E).

Example 2.5 Following Example 2.4, for W = S3, we have

aE(3) = 0, aE(2,1) = 2l, aE(1,1,1) = 6l and AE(3) = −6l, AE(2,1) = −2l, AE(1,1,1) = 0.

The Schur elements of Hq(W,L) have been explicitly calculated for all finite Coxeter groups:

• for type An by Steinberg [St1],

• for type Bn by Hoefsmit [Ho],

• for type Dn by Benson and Gay [BeGa] (it derives from type Bn with the use of Clifford theory),

• for dihedral groups I2(m) by Kilmoyer and Solomon [KiSo],

• for F4 by Lusztig [Lu1],

• for E6 and E7 by Surowski [Su],

• for E8 by Benson [Be],

• for H3 by Lusztig [Lu2],

• for H4 by Alvis and Lusztig [AlLu].

There have been other subsequent proofs of the above results. For example, Iwahori–Hecke algebras of
types An and Bn are special cases of Ariki–Koike algebras, whose Schur elements have been independently
obtained by Geck–Iancu–Malle [GIM] and Mathas [Mat].

A case-by-case analysis shows that the Schur elements of Hq(W,L) can be written in the form

sE = ξE q
−aE

∏
Φ∈CycE

Φ(qnE,Φ) (2.2)

where ξE ∈ ZK , nE,Φ ∈ Z>0 and CycE is a family of K-cyclotomic polynomials (see [GePf, Chapters 10
& 11], [Ch4, Theorem 4.2.5 & Proposition 4.3.5]).

Example 2.6 Following Example 2.4, for W = S3, we have

sE(3) = Φ2(q2l)Φ3(q2l), sE(2,1) = q−2lΦ3(q2l), sE(1,1,1) = q−6lΦ2(q2l)Φ3(q2l) ,

where Φn denotes the n-th Q-cyclotomic polynomial.
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2.3 Families of characters and Rouquier families

The families of characters are a special partition of the set of irreducible representations of W . In the
case where W is a Weyl group, these families play an essential role in the definition of the families of
unipotent characters for the corresponding finite reductive groups. Their original definition is due to
Lusztig [Lu4, 4.2] and uses the a-function.

Let I ⊆ S and consider the parabolic subgroup WI ⊆W generated by I. Then we have a correspond-
ing parabolic subalgebra H(WI , L) ⊆ Hq(W,L). By extension of scalars from R to K(q), we also have
a subalgebra K(q)H(WI , L) ⊆ K(q)Hq(W,L), and a corresponding a-function on the set of irreducible

representations of WI . Denote by IndSI the induction of representations from WI to W . Let E ∈ Irr(W )
and M ∈ Irr(WI). We will write M  L E if E is a constituent of IndSI (M) and aE = aM .

Definition 2.7 The partition of Irr(W ) into families is defined inductively as follows: When W = {1},
there is only one family; it consists of the unit representation of W . Assume now that W 6= {1} and that
the families have already been defined for all proper parabolic subgroups of W . Then E,E′ ∈ Irr(W )
are in the same family of W if there exists a finite sequence E = E0, E1, . . . , Er = E′ in Irr(W ) such
that, for each i ∈ {0, 1, ..., r − 1}, the following condition is satisfied: There exist a subset Ii $ S and
Mi, M

′
i ∈ Irr(WIi) such that Mi,M

′
i belong to the same family of WIi and either

Mi  L Ei and M ′i  L Ei+1

or
Mi  L Ei ⊗ ε and M ′i  L Ei+1 ⊗ ε,

where ε denotes the sign representation of W . We will also refer to these families as Lusztig families.

Lusztig [Lu5, 3.3 and 3.4] has shown that the functions a and A are both constant on the families of
characters, that is, if E and E′ belong to the same family, then aE = aE′ and AE = AE′ .

The decomposition of W into two-sided cells can be used to facilitate the description of the partition
of Irr(W ) into families of characters. As we saw in the previous section, Tits’s deformation theorem yields
a bijection between Irr(K(q)Hq(W,L)) and Irr(W ). Let E ∈ Irr(W ) and let V E be the corresponding
simple module of K(q)Hq(W,L). Following the direct sum decomposition given by (2.1), there exists a
left cell C such that V E is a constituent of K(q)MC; furthermore, all such left cells are contained in the
same two-sided cell. This two-sided cell, therefore, only depends on E and will be denoted by FE . Thus,
we obtain a natural surjective map

Irr(W )→ {set of two-sided cells of W}, E 7→ FE

(see [Lu4, 5.15] for the equal parameter case; the same argument works in general).

Definition 2.8 Let E,E′ ∈ Irr(W ). We will say that E and E′ belong to the same Kazhdan–Lusztig
family if FE = FE′ .

The following remarkable result, relating Lusztig families and Kazhdan–Lusztig families, has been
proved by Barbasch–Vogan and Lusztig for finite Weyl groups in the equal parameter case [Lu4, 5.25].
It was subsequently proved, in [Lu6, 23.3] and [Ge5], to hold for any finite Coxeter group and any weight
function L, assuming that Lusztig’s conjectures P1–P15 [Lu6, 14.2] are satisfied.

Theorem 2.9 Assume that Lusztig’s conjectures P1–P15 hold. The Lusztig families and the Kazhdan–
Lusztig families coincide.

Lusztig’s conjectures P1–P15 concern properties of the Kazhdan–Lusztig basis which should hold for
any finite Coxeter group and in the general multiparameter case. For the moment, Conjectures P1–P15
have been proved in the following cases:

• Equal parameter case for finite Weyl groups [KaLu2, Lu6, Sp].

• Equal parameter case for H3, H4 and dihedral groups I2(m) [Al, DuCloux].

• Unequal parameter case for F4 and dihedral groups I2(m) [Ge4, Ge9].
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• Asymptotic case and some other cases for Bn [BoIa, Bo1, BGIL, GeIa].

Moreover, these are exactly the cases where we have a description of the Kazhdan–Lusztig cells and
Kazhdan–Lusztig families. A conjectural combinatorial description of the Kazhdan–Lusztig cells for
type Bn is given by [BGIL].

Example 2.10 The group S3 has three irreducible representations. Recalling the notation of Example
2.1, for l > 0, each irreducible representation forms a family on its own. This is true in general for the
symmetric group Sn. For l = 0, all irreducible representations belong to the same family. This is true
in general for the group algebra (L(s) = 0 for all s ∈ S) of every finite Coxeter group.

In [Ro1] Rouquier gave an alternative definition for Lusztig’s families. He showed that, for finite
Weyl groups in the equal parameter case, the families of characters coincide with the blocks of the
Iwahori–Hecke algebra Hq(W,L) over the Rouquier ring

RK(q) := ZK [q, q−1, (qn − 1)−1
n>1].

These are the Rouquier families of Hq(W,L). One advantage of this definition, as we will see in the next
chapter, is that it can be also applied to complex reflection groups. This is important in the project
“Spetses” [BMM1, BMM2].

Following the determination of Rouquier families for all complex reflection groups (see Section 3.3
for references), and thus for all finite Coxeter groups, one can check that Rouquier’s result holds for all
finite Coxeter groups for all choices of parameters (by comparing the Rouquier families with the already
known Lusztig families [Lu4, Lu6]); that is, we have the following:

Theorem 2.11 Let (W,S) be a finite Coxeter system and let Hq(W,L) be an Iwahori–Hecke algebra
associated to W . The Lusztig families and the Rouquier families of Hq(W,L) coincide.

2.4 Decomposition maps and canonical basic sets

As we saw in Section 2.2, the specialisation q 7→ 1 yields a bijection between the set of irreducible
representations of K(q)Hq(W,L) and Irr(W ). What happens though when q specialises to a complex
number? The resulting Iwahori–Hecke algebra is not necessarily semisimple and the first questions that
need to be answered are the following: What are the simple modules for the newly obtained algebra? Is
there a good way to parametrise them? What are their dimensions? One major approach to answering
these questions is through the existence of “canonical basic sets”.

Let θ : ZK [q, q−1] → K(η), q 7→ η be a ring homomorphism such that η is a non-zero complex
number. Let us denote by Hη(W,L) the algebra obtained as a specialisation of Hq(W,L) via θ. Set
K := K(η). Due to the form of the Schur elements of Hq(W,L) given by (2.2), and following Theorem
1.7, the algebra KHη(W,L) is semisimple unless η is a root of unity.

Example 2.12 Since S3 is a Weyl group, the algebra Q(q)Hq(S3, l) is split semisimple. Now, following
Example 2.6, the algebra Q(η)Hη(S3, l) is semisimple if and only if η2l /∈ {−1, ω, ω2}, where ω :=
exp(2πi/3).

If KHη(W,L) is semisimple, then, by Tits’s deformation theorem, the specialisation θ yields a bijection
between Irr(K(q)Hq(W,L)) and Irr(KHη(W,L)). Thus, the irreducible representations of KHη(W,L)
are parametrised by Irr(W ). If KHη(W,L) is not semisimple, then we have a well-defined decomposition
map

dθ : R0(K(q)Hq(W,L))→ R0(KHη(W,L))

such that, for all E ∈ Irr(W ), we have

dθ([V
E ]) =

∑
M∈Irr(KHη(W,L))

[V E : M ][M ].

The matrix
Dθ =

(
[V E : M ]

)
E∈Irr(W ),M∈Irr(KHη(W,L))

is the decomposition matrix with respect to θ. If KHη(W,L) is semisimple, then Dθ is a permutation
matrix.
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Definition 2.13 A canonical basic set with respect to θ is a subset Bθ of Irr(W ) such that

(a) there exists a bijection Irr(KHη(W,L))↔ Bθ, M 7→ EM ;

(b) [V EM : M ] = 1 for all M ∈ Irr(KHη(W,L));

(c) if [V E : M ] 6= 0 for some E ∈ Irr(W ), M ∈ Irr(KHη(W,L)), then either E = EM or aEM < aE .

If a canonical basic set exists, the decomposition matrix has a lower unitriangular form (with an
appropriate ordering of the rows). Thus, we can obtain a lot of information about the simple modules
of KHη(W,L) from what we already know about the simple modules of K(q)Hq(W,L).

A general existence result for canonical basic sets is proved by Geck in [Ge7, Theorem 6.6], following
earlier work of Geck [Ge2], Geck–Rouquier [GeRo] and Geck–Jacon [GeJa1]. Another proof is given in
[GeJa2]. Canonical basic sets are explicitly described for all finite Coxeter groups:

• for type An by Geck [Ge2],

• for type Bn by Jacon [Ja2],

• for type Dn by Geck [Ge1] and Jacon [Ja1],

• for all remaining groups from the explicit tables of decomposition matrices obtained by Geck, Lux
and Müller.

For a complete survey on the topic, we refer the reader to [GeJa2].

Example 2.14 Let W be the symmetric group Sn. Then W is generated by the transpositions si =
(i, i+ 1) for all i = 1, . . . , n− 1, which are all conjugate in W . Set l := L(s1) and let η2l be a primitive
root of unity of order e > 1. By [DiJa, Theorem 7.6], we have that, in this case, the canonical basic set
Bθ is the set of e-regular partitions (a partition is e-regular if it does not have e non-zero equal parts).
For example, for n = 3, we have Bθ = {E(3), E(2,1)} for e ∈ {2, 3}, and Bθ = Irr(S3) for e > 3.
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Chapter 3

Cyclotomic Hecke Algebras

Cyclotomic Hecke algebras generalise the notion of Iwahori–Hecke algebras to the case of complex reflec-
tion groups. For any positive integer e we will write ζe for exp(2πi/e) ∈ C.

Let h be a finite dimensional complex vector space. A pseudo-reflection is a non-trivial element
s ∈ GL(h) that fixes a hyperplane pointwise, that is, dimCKer(s − idh) = dimCh − 1. The hyperplane
Ker(s − idh) is the reflecting hyperplane of s. A complex reflection group is a finite subgroup of GL(h)
generated by pseudo-reflections. The classification of (irreducible) complex reflection groups is due to
Shephard and Todd [ShTo]:

Theorem 3.1 Let W ⊂ GL(h) be an irreducible complex reflection group (i.e., W acts irreducibly on
h). Then one of the following assertions is true:

• There exists a positive integer n such that (W, h) ∼= (Sn,Cn−1).

• There exist positive integers l, p, n with l/p ∈ Z and l > 1 such that (W, h) ∼= (G(l, p, n),Cn), where
G(l, p, n) is the group of all n×n monomial matrices whose non-zero entries are l-th roots of unity,
while the product of all non-zero entries is an (l/p)-th root of unity.

• (W, h) is isomorphic to one of the 34 exceptional groups Gn (n = 4, . . . , 37).

If W ⊂ GL(h) is an irreducible complex reflection group, then the dimension of h is called the rank
of W . We have rank(Sn) = n − 1, rank(G(l, p, n)) = n for l > 1 and rank(Gn) ∈ {2, 3, . . . , 8} for
n = 4, . . . , 37.

Remark 3.2 We have G(l, 1, n) ∼= (Z/lZ) oSn
∼= (Z/lZ)n oSn.

Remark 3.3 We have G(1, 1, n) ∼= Sn, G(2, 1, n) ∼= Bn, G(2, 2, n) ∼= Dn, G(m,m, 2) ∼= I2(m),
G23
∼= H3, G28

∼= F4, G30
∼= H4, G35

∼= E6, G36
∼= E7, G37

∼= E8.

Let W ⊂ GL(h) be a complex reflection group. Benard [Ben] and Bessis [Bes] have proved (using a
case-by-case analysis) that the field K generated by the traces on h of all the elements of W is a splitting
field for W . The field K is called the field of definition of W . If K ⊆ R, then W is a finite Coxeter
group, and if K = Q, then W is a Weyl group.

3.1 Hecke algebras for complex reflection groups

Let A be the set of reflecting hyperplanes of W . Let hreg := h \
⋃
H∈AH and BW := π1(hreg/W, x0),

where x0 is some fixed basepoint. The group BW is the braid group of W . For every orbit C of the action
of W on A, we set eC the common order of the subgroups WH , where H is any element of C and WH is
the pointwise stabiliser of H. Note that WH is cyclic, for all H ∈ A.

We choose a set of indeterminates u = (uC,j)(C∈A/W )(06j6eC−1) and we denote by Z[u,u−1] the
Laurent polynomial ring in the indeterminates u. We define the generic Hecke algebra H(W ) of W to
be the quotient of the group algebra Z[u,u−1][BW ] by the ideal generated by the elements of the form

(s− uC,0)(s− uC,1) · · · (s− uC,eC−1),
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where C runs over the set A/W and s runs over the set of monodromy generators around the images in
hreg/W of the elements of C [BMR, §4].

From now on, we will make the following assumptions for H(W ):

Assumptions 3.4

(a) (Freeness conjecture) The algebra H(W ) is a free Z[u,u−1]-module of rank |W |.

(b) (Trace conjecture) There exists a canonical symmetrising form τ on H(W ) that satisfies certain
canonicality conditions [BMM1, §1 and 2]; the form τ specialises to the canonical symmetrising form
on the group algebra of W when uC,j 7→ ζjeC .

The above assumptions are known to hold for all finite Coxeter groups [Bou, IV, §2] and for the
complex reflection groups of the infinite series G(l, p, n) [BMM1, BreMa, MalMat, GIM]. As far as the
exceptional complex reflection groups are concerned, the freeness conjecture has been proved for all
groups of rank at least 3 (G23, . . . , G37) [Mar1, Mar2, MarPf] and (almost all) groups belonging to the
first two families of groups of rank 2 (G4, . . . , G15) [Cha1], plus the groups G16 [Cha2] and G22 [MarPf].
For the five remaining groups (G17, . . . , G21), the freeness conjecture is still open, but seems now to be
within reach. In all the cases for which the freeness conjecture is proved, one can actually find a basis
originating from the braid group itself, as expected in [BMM1, §1.17]. A weaker version of this conjecture
states that H(W ) should be at least finitely generated as a Z[u,u−1]-module. The weak version is known
for every group [EtRa, Mar1, Mar2, MarPf], and it is strong enough to imply some of the results that we
will see in this chapter. Finally, the only (non-Coxeter) exceptional groups for which the trace conjecture
has been proved are G4, G12, G22 and G24 [MalMi] (the case of G4 was later independently checked in
[MarWa]).

Under Assumptions 3.4, we can always find NW ∈ Z>0 such that if we take

uC,j = ζjeCv
NW
C,j (3.1)

and set v := (vC,j)(C∈A/W )(06j6eC−1), then the K(v)-algebra K(v)H(W ) is split semisimple. Malle
[Mal3, 5.2] has shown that taking NW to be the number of roots of unity in K works every time, but
sometimes it is enough to take NW to be even as small as 1 (for example, if W = G(l, 1, n) or W = G4).
By Tits’s deformation theorem, it follows that the specialisation vC,j 7→ 1 induces a bijection between
Irr(K(v)H(W )) and Irr(W ). From now on, we will consider H(W ) as an algebra over ZK [v,v−1], where
ZK denotes the integral closure of Z in K.

Example 3.5 The group W = G(l, 1, n) is isomorphic to the wreath product (Z/lZ)oSn and its splitting
field is K = Q(ζl). In this particular case, we can take NW = 1 [ArKo]. The algebra K(v)H(W ) is
generated by elements s, t1, . . . , tn−1 satisfying the braid relations of type Bn:

st1st1 = t1st1s, sti = tis and ti−1titi−1 = titi−1ti for i = 2, . . . , n− 1, titj = tjti for |i− j| > 1,

together with the extra relations:

(s− vs,0)(s− ζlvs,1) · · · (s− ζl−1
l vs,l−1) = 0 and (ti − vt,0)(ti + vt,1) = 0 for all i = 1, . . . , n− 1.

The Hecke algebra of G(l, 1, n) is also known as Ariki–Koike algebra, with the last quadratic relation
usually looking like this:

(ti − q)(ti + 1) = 0, (3.2)

where q is an indeterminate. The irreducible representations of G(l, 1, n), and thus the irreducible
representations of K(v)H(W ), are parametrised by the l-partitions of n. We will talk more about
Ariki–Koike algebras in the next chapter.

Let now q be an indeterminate and let m = (mC,j)(C∈A/W )(06j6eC−1) be a family of integers. The
ZK-algebra morphism

ϕm : ZK [v,v−1]→ ZK [q, q−1], vC,j 7→ qmC,j

is called a cyclotomic specialisation. The ZK [q, q−1]-algebra Hϕm(W ) obtained as the specialisation of
H(W ) via ϕm is called a cyclotomic Hecke algebra associated with W . The Iwahori–Hecke algebras
defined in the previous chapter are cyclotomic Hecke algebras associated with real reflection groups.

Following [Ch4, Proposition 4.3.4], the algebra K(q)Hϕm(W ) is split semisimple. By Tits’s deforma-
tion theorem, the specialisation q 7→ 1 yields a bijection between Irr(K(q)Hϕm(W )) and Irr(W ).
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Example 3.6 We say that ϕm is the spetsial cyclotomic specialisation if mC,0 = 1 and mC,j = 0 for all
1 6 j 6 eC − 1. Fow W = G(l, 1, n), the spetsial cyclotomic Hecke algebra Hϕm(W ) is generated by the
elements s, t1, . . . , tn−1 satisfying the braid relations of type Bn, together with the extra relations:

(s− q)(sl−1 + sl−2 + · · ·+ s + 1) = 0 and (ti − q)(ti + 1) = 0 for all i = 1, . . . , n− 1.

3.2 Schur elements and the a-function

The canonical symmetrising form τ on H(W ) (see Assumptions 3.4) can be extended to K(v)H(W ) by
extension of scalars, and can be used to define Schur elements (sE)E∈Irr(W ) for H(W ), as in the real
case. The Schur elements of H(W ) have been explicitly calculated for all complex reflection groups:

• for finite Coxeter groups see §2.2;

• for complex reflection groups of type G(l, 1, n) by Geck–Iancu–Malle [GIM] and Mathas [Mat];

• for complex reflection groups of type G(l, 2, 2) by Malle [Mal2];

• for the non-Coxeter exceptional complex reflection groups by Malle [Mal2, Mal4].

With the use of Clifford theory, we obtain the Schur elements for type G(l, p, n) from those of type
G(l, 1, n) when n > 2 or n = 2 and p is odd. The Schur elements for type G(l, p, 2) when p is even derive
from those of type G(l, 2, 2) (see [Mal1], [Ch4, A.7]).

Using a case-by-case analysis, we have been able to determine that the Schur elements of H(W ) have
the following form [Ch4, Theorem 4.2.5].

Theorem 3.7 Let E ∈ Irr(W ). The Schur element sE is an element of ZK [v,v−1] of the form

sE = ξENE
∏
i∈IE

ΨE,i(ME,i) (3.3)

where

(a) ξE is an element of ZK ,

(b) NE =
∏
C,j v

bC,j
C,j is a monomial in ZK [v,v−1] with

∑eC−1
j=0 bC,j = 0 for all C ∈ A/W ,

(c) IE is an index set,

(d) (ΨE,i)i∈IE is a family of K-cyclotomic polynomials in one variable,

(e) (ME,i)i∈IE is a family of monomials in ZK [v,v−1] such that if ME,i =
∏
C,j v

aC,j
C,j , then gcd(aC,j) = 1

and
∑eC−1
j=0 aC,j = 0 for all C ∈ A/W .

Equation (3.3) gives the factorisation of sE into irreducible factors. The monomials (ME,i)i∈IE are
unique up to inversion, and we will call them potentially essential for W .

Remark 3.8 Theorem 3.7 was independently obtained by Rouquier [Ro2, Theorem 3.5] using a general
argument on rational Cherednik algebras.

Example 3.9 Let us consider the example of S3, which is isomorphic to G(1, 1, 3). We have

sE(3) = Φ2(vt,0v
−1
t,1 )Φ3(vt,0v

−1
t,1 ), sE(2,1) = v−1

t,0vt,1Φ3(vt,0v
−1
t,1 ), sE(1,1,1) = v−3

t,0v
3
t,1Φ2(vt,0v

−1
t,1 )Φ3(vt,0v

−1
t,1 ),

where Φn denotes the n-th Q-cyclotomic polynomial.

Let ϕm : vC,j 7→ qmC,j be a cyclotomic specialisation. The canonical symmetrising form on H(W )
specialises via ϕm to become a canonical symmetrising form τϕm on Hϕm(W ). The Schur elements of
Hϕm(W ) with respect to τϕm are (ϕm(sE))E∈Irr(W ), hence they can be written in the form (2.2). We
can again define the a-function am : Irr(W )→ Z and the A-function Am : Irr(W )→ Z by setting

amE := −valq(ϕm(sE)) and Am
E := −degq(ϕm(sE)).
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3.3 Families of characters and Rouquier families

Let ϕm : vC,j 7→ qmC,j be a cyclotomic specialisation and let Hϕm(W ) be the corresponding cyclotomic
Hecke algebra associated with W . How can we define families of characters for Hϕm(W )? We cannot
apply Lusztig’s original definition, because parabolic subgroups of complex reflection groups1 do not have
a nice presentation as in the real case, and certainly not a “corresponding” parabolic Hecke algebra. On
the other hand, we do not have a Kazhdan–Lusztig basis for Hϕm(W ), so we cannot construct Kazhdan–
Lusztig cells and use them to define families of characters for complex reflection groups in the usual way.
However, we can define the families of characters to be the Rouquier families of Hϕm(W ), that is, the
blocks of Hϕm(W ) over the Rouquier ring RK(q), where

RK(q) = ZK [q, q−1, (qn − 1)−1
n>1].

By Proposition 1.4, the Rouquier families are the non-empty subsets B of Irr(W ) that are minimal with
respect to the property: ∑

E∈B

ϕm(χE(h))

ϕm(sE)
∈ RK(q) ∀h ∈ H(W ) ,

where χE and sE are respectively the character and the Schur element of K(v)H(W ) corresponding to
E ∈ Irr(W ).

Broué and Kim [BrKi] determined the Rouquier families for the complex reflection groups of type
G(l, 1, n), but their results are only true when l is a power of a prime number or ϕm is a “good”
cyclotomic specialisation (for example, we have shown that their results hold when ϕm is the spetsial
cyclotomic specialisation [Ch3, Proposition 3.20]). The same problem persists, and some new appear,
in the determination of the Rouquier families for G(l, p, n) by Kim [Kim]. Malle and Rouquier [MalRo]
calculated the Rouquier families for some exceptional complex reflection groups and the dihedral groups,
for the spetsial cyclotomic specialisation. More recently, we managed to determine the Rouquier families
for all cyclotomic Hecke algebras of all complex reflection groups [Ch1, Ch3, Ch4, Ch5], thanks to their
property of “semicontinuity”. In order to explain this property, we will need some definitions.

Let M =
∏
C,j v

aC,j
C,j be a potentially essential monomial for W . We say that the family of inte-

gers m = (mC,j)(C∈A/W )(06j6eC−1) belongs to the potentially essential hyperplane HM (of R
∑
C eC ) if∑

C,jmC,jaC,j = 0.
Suppose that m belongs to no potentially essential hyperplane. Then the Rouquier families of

Hϕm(W ) are called Rouquier families associated with no essential hyperplane. Now suppose that m
belongs to a unique potentially essential hyperplane H. Then the Rouquier families of Hϕm(W ) are
unions of the Rouquier families associated with no essential hyperplane and they are called Rouquier
families associated with H. If they do not coincide with the Rouquier families associated with no essen-
tial hyperplane, then H is called an essential hyperplane for W . All these notions are well-defined and
they do not depend on the choice of m because of the following theorem [Ch4, §4.4]:

Theorem 3.10 (Semicontinuity property of Rouquier families) Let m = (mC,j)(C∈A/W )(06j6eC−1)

be a family of integers and let ϕm : vC,j 7→ qmC,j be the corresponding cyclotomic specialisation. The
Rouquier families of Hϕm(W ) are unions of the Rouquier families associated with the essential hyper-
planes that m belongs to and they are minimal with respect to this property.

Thanks to the above result, it is enough to do calculations in a finite number of cases in order to
obtain the families of characters for all cyclotomic Hecke algebras, whose number is infinite.

Example 3.11 For W = S3, the Rouquier families associated with no essential hyperplane are trivial
(that is, every block is a singleton). The hyperplane HM corresponding to the monomial M = vt,0v

−1
t,1 is

essential, and it is the unique essential hyperplane for S3. Let ϕm : vt,j 7→ qmj , j = 0, 1, be a cyclotomic
specialisation. We have that m = (m0,m1) belongs to HM if and only if m0 = m1. There is a single
Rouquier family associated with HM , which contains all irreducible representations of S3.

1The parabolic subgroups of a complex reflection group W ⊂ GL(h) are the pointwise stabilisers of the subsets of h. It
is a remarkable theorem by Steinberg [St2, Theorem 1.5] that all parabolic subgroups of W are again complex reflection
groups.
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We have computed the Rouquier families associated with no and each essential hyperplane:

• With the use of GAP3 for all exceptional complex reflection groups [Ch4]; the results can be found
on my webpage [Ch-web], while very recently, together with Jean Michel, we programmed the algo-
rithm described in [Ch4] in the GAP3 package CHEVIE (see chevie/contr/rouquierblockdata.g).

• Combinatorially for the groups of type G(l, 1, n) [Ch3]; we will see more on these results in the
next chapter.

• With the use of Clifford theory for the groups G(l, p, n), for n > 2 or n = 2 and p odd, from the
Rouquier families for G(l, 1, n) [Ch5].

• Applying the algorithm of [Ch4] for G(l, 2, 2) [Ch5].

• With the use of Clifford theory for the groups G(l, p, 2), for p even, from the Rouquier families for
G(l, 2, 2) [Ch5].

A consequence of the above results is the following:

Proposition 3.12 The Rouquier families associated with no essential hyperplane are trivial if and only
if W = G4 or W is of type G(l, 1, n).

Note that, by definition, the Rouquier families associated with an essential hyperplane are not trivial
for any complex reflection group.

Now, part of the algorithm used for the determination of the Rouquier families is the easy-to-prove
fact that the function a + A is constant on the Rouquier families (see, for example, [BrKi, Proposition
2.9]). However, we have also managed to show that, similarly to the real case, both functions a and A
are constant on the Rouquier families, for all cyclotomic Hecke algebras of all complex reflection groups:

• With the use of GAP3 for all exceptional complex reflection groups [Ch2]; the programme used,
Degval.g, is available on my webpage [Ch-web].

• Combinatorially for the groups of type G(l, 1, n) [BrKi, Ch3].

• With the use of Clifford theory for the groups G(l, p, n), for n > 2 or n = 2 and p odd, from the
analogous result for G(l, 1, n) [Ch5].

• With explicit calculations for G(l, 2, 2) [Ch5].

• With the use of Clifford theory for the groups G(l, p, 2), for p even, from the analogous result for
G(l, 2, 2) [Ch5].

Finally, we would like to point out that the semicontinuity property of the Rouquier families is part
of the block behaviour of algebras whose Schur elements are of the form (3.3). We have studied the block
theory of this type of algebras, which we call essential algebras, in [Ch4]. Besides generic Hecke algebras
of complex reflection groups, another example of essential algebras are the Yokonuma–Hecke algebras
which will be studied in the last chapter.

3.4 Decomposition maps and canonical basic sets

Given a cyclotomic Hecke algebra Hϕm(W ) and a ring homomorphism θ : q 7→ η ∈ C \ {0}, we obtain a
semisimplicity criterion and a decomposition map exactly as in §2.4. A canonical basic set with respect
to θ is also defined in the same way.

In [ChJa1], we showed the existence of canonical basic sets with respect to any θ for all cyclotomic
Hecke algebras associated with finite Coxeter groups, that is, when the weight function L in the definition
of Hq(W,L) is also allowed to take negative values.

For non-Coxeter complex reflection groups, things become more complicated. For W = G(l, 1, n),
consider the specialised Ariki–Koike algebra with relations

(s− ζs0e )(s− ζs1e ) · · · (s− ζsl−1
e ) = 0, (ti − ζe)(ti + 1) = 0 for i = 1, . . . , n− 1,
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where (s0, . . . , sl−1) ∈ Zl and e ∈ Z>0. With the use of Ariki’s Theorem [Ar2] and Uglov’s work on
canonical bases for higher level Fock spaces [Ug], Geck and Jacon [GeJa1, Ja2, Ja3, GeJa2] have shown
that, for a suitable choice of m, the corresponding function am yields a canonical basic set for the above
specialised Ariki–Koike algebra. However, this does not work the other way round: not all cyclotomic
Ariki–Koike algebras admit canonical basic sets. We will see more on canonical basic sets for type
G(l, 1, n) in the next chapter.

In [ChJa2], building on work by Genet and Jacon [GenJa], we generalised the above result to obtain
canonical basic sets for all groups of type G(l, p, n) with n > 2, or n = 2 and p odd.

Finally, for the exceptional complex reflection groups of rank 2 (G4,. . . ,G22), we have shown the
existence of canonical basic sets for the cyclotomic Hecke algebras appearing in [BrMa] with respect to
any specialisation θ [ChMi].
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Chapter 4

Ariki–Koike Algebras

Ariki–Koike algebras were introduced by Ariki and Koike [ArKo] as generalisations of Iwahori–Hecke
algebras of types A and B. They can be viewed as the Hecke algebras associated with the complex
reflection groups of typeG(l, 1, n). In this chapter, we will switch from the notation for the indeterminates
used in Example 3.5 to the notation more traditionally used for Ariki–Koike algebras.

Let R be a commutative integral domain with 1. Fix elements q, Q0, . . . , Ql−1 of R, and assume that
q is invertible in R. Set q := (Q0, . . . , Ql−1 ; q). The Ariki-Koike algebra Hq

n is the unital associative
R-algebra with generators s, t1, . . . , tn−1 and relations:

(s−Q0)(s−Q1) · · · (s−Ql−1) = 0

(ti − q)(ti + 1) = 0 for 1 6 i 6 n− 1

st1st1 = t1st1s

titi+1ti = ti+1titi+1 for 1 6 i 6 n− 2

titj = tjti for 0 6 i < j 6 n− 1 with j − i > 1.

The Ariki-Koike algebra Hq
n is a deformation of the group algebra of the complex reflection group

G(l, 1, n).
For w ∈ Sn, if w = si1 . . . sir is a reduced expression for w, with si = (i, i + 1), set tw := ti1 . . . tir .

Further, define elements Xm := q1−mtm−1 . . . t1st1 . . . tm−1 for m = 1, 2, . . . , n. Ariki and Koike [ArKo]
have proved that the set

{Xa1
1 Xa2

2 . . . Xan
n tw |w ∈ Sn, 0 6 am 6 l − 1 for all m = 1, 2, . . . , n} (4.1)

is a basis of Hq
n as an R-module. In particular, Hq

n is a free R-module of rank lnn! = |G(l, 1, n)|.
In addition, when R is a field, Ariki and Koike have constructed anHq

n-module V λ for each l-partition
λ of n, which is called the Specht module. These modules form a complete set of non-isomorphic simple
modules in the case where Hq

n is semisimple. By Ariki’s semisimplicity criterion [Ar1], the algebra Hq
n

is (split) semisimple if and only if∏
16i6n

(1 + q + · · ·+ qi−1)
∏

06s<t6l−1

∏
−n<k<n

(qkQs −Qt) 6= 0. (4.2)

4.1 Combinatorics of partitions and multipartitions

Let l and n be positive integers.

4.1.1 Partitions

A partition λ = (λ1, . . . , λh) is a family of positive integers such that λ1 > λ2 > . . . > λh > 1. We call

h the length or height of the partition λ. We write |λ| :=
∑h
i=1 λi and we say that λ is a partition of n
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if n = |λ|. We denote by P(n) the set of partitions of n. To each partition λ we associate its β-number,
βλ = (β1, β2, . . . , βh), defined by

β1 := h+ λ1 − 1, β2 := h+ λ2 − 2, . . . , βh := h+ λh − h = λh.

Note that β1 > β2 > · · · > βh > 1.
We define the set of nodes [λ] of λ to be the set

[λ] := {(i, j) | 1 6 i 6 h, 1 6 j 6 λi}.

We identify partitions with their Young diagrams: the Young diagram of λ is a left-justified array of h
rows such that the i-th row contains λi boxes (nodes) for all i = 1, . . . , h.

The conjugate partition λ′ = (λ′1, . . . , λ
′
h′) of λ is defined by λ′j := #{i | 1 6 i 6 h such that λi > j}.

We have h′ = λ1. The Young diagram of λ′ is the transpose of the Young diagram of λ. A node (i, j) ∈ [λ]
if and only if (j, i) ∈ [λ′].

If x = (i, j) ∈ [λ] and µ is another partition, we define the generalised hook length of x with respect
to (λ, µ) to be the integer:

hλ,µi,j := λi − i+ µ′j − j + 1.

For µ = λ, the above formula becomes the classical hook length formula (giving the length of the hook
of λ that x belongs to). Moreover, we define the content of x to be the difference j − i.

Finally, we set

N(λ) :=
h∑
i=1

(i− 1)λi =
1

2

h′∑
i=1

(λ′i − 1)λ′i =
h′∑
i=1

(
λ′i
2

)
.

4.1.2 Multipartitions

An l-partition (or multipartition) of n is an ordered l-tuple λ = (λ(0), λ(1), . . . , λ(l−1)) of partitions such

that |λ| :=
∑l−1
i=0 |λ(i)| = n. We denote by P(l, n) the set of l-partitions of n. The empty multipartition,

denoted by ∅, is an l-tuple of empty partitions. If λ = (λ(0), λ(1), . . . , λ(l−1)) ∈ P(l, n), we denote by λ′

the l-partition (λ(0)′, λ(1)′, . . . , λ(l−1)′). For i = 0, 1, . . . , l − 1, we denote by h(i) and β(i) the height and
β-number of λ(i) respectively. Finally, we denote by λ̄ the simple partition of n obtained by writing in
decreasing order all the entries of λ (that is, all the elements of the multiset λ(0) ∪ λ(1) ∪ . . . ∪ λ(l−1)).

Example 4.1 Let us take l = 2, n = 6 and λ = ((2, 1), (3)). We have λ′ = ((2, 1), (1, 1, 1)) and
λ̄ = (3, 2, 1).

If β = (β1, β2, . . . , βh) is a sequence of positive integers such that β1 > β2 > · · · > βh and m is a
positive rational number, then the m-shifted of β is the sequence of numbers defined by

β[m] = (β1 +m,β2 +m, . . . , βh +m,m− 1,m− 2, . . . ,m− [m] + 1,m− [m]),

where [m] denotes the integer part of m.
From now on, we suppose that we have a given weight system m := (m0,m1, . . . ,ml−1) ∈ Ql. We

define the (l,m)-charged height of λ to be the family (hc(0), hc(1), . . . , hc(l−1)), where

hc(0) := h(0) −m0, hc
(1) := h(1) −m1, . . . , hc

(l−1) := h(l−1) −ml−1,

and the m-charged height of λ to be the integer

hcλ := max
06i6l−1

hc(i).

For i = 0, 1, . . . , l − 1 , we set

Bc
(i)
λ := β(i)[hcλ − hc(i)].

We then have

Bc
(i)
λ = (bc

(i)
j )16j6hcλ+[mi] where bc

(i)
j = β

(i)
j + hcλ − hc(i) = λ

(i)
j − j + hcλ +mi
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(taking β
(i)
j = λ

(i)
j = 0 for j > h(i)).

The m-charged standard symbol of λ is the family of numbers defined by

Bcλ = (Bc
(0)
λ , Bc

(1)
λ , . . . , Bc

(l−1)
λ ).

It is a tableau of numbers arranged into l rows indexed by the set {0, 1, . . . , l− 1} such that the i-th row
has length equal to hcλ + [mi]. In general, an m-charged symbol of λ is a family of numbers obtained
from the m-charged standard symbol of λ by shifting all the rows by the same positive rational number.

The m-charged content of λ is the multiset

Contcλ = Bc
(0)
λ ∪Bc

(1)
λ ∪ . . . ∪Bc

(l−1)
λ .

Example 4.2 Let us take l = 2, n = 6, λ = ((2, 1), (3)) and m = (−1, 2). Then

Bcλ =

(
3 1
7 3 2 1 0

)
We have Contcλ = {7, 3, 3, 2, 1, 1, 0}.

Let s ∈ Z with s > hcλ. Let Bcsλ be the m-charged symbol of λ obtained from Bcλ by shifting all

the rows by s − hcλ. Let κ1 > κ2 > · · · > κt, with t = ls +
∑l−1
i=0[mi], be the elements of the multiset

Bcsλ written in decreasing order (if s = hcλ, these are simply the elements of Contcλ). We set

nm(λ) :=

t∑
i=1

(i− 1)κi.

Let r ∈ Z>0, By [GeJa2, Proposition 5.5.11], the following element of Q does not depend on the choice
of the integer s:

a(m,r)(λ) := r (nm(λ)− nm(∅)). (4.3)

We will see in the next section that a(m,r) corresponds to the a-function of an Ariki–Koike algebra.

4.2 Schur elements and the a-function

Let τ : Hq
n → R be the linear map defined by

τ(Xa1
1 Xa2

2 . . . Xan
n tw) =

{
1 if a1 = a2 = · · · = an = 0 and w = 1,
0 otherwise,

where w ∈ Sn and 0 6 am 6 l − 1 for all m = 1, 2, . . . , n. The function τ was introduced by Bremke
and Malle [BreMa] who showed that τ is a trace form and that τ is essentially independent of the choice
of basis of Hq

n. It is not obvious from the definition above that τ coincides with the form introduced by
Bremke and Malle; however, this was proved by Malle and Mathas in [MalMat], where they also showed
that τ is a canonical symmetrising form on Hq

n whenever all Qi’s are invertible in R. As we will see in
Chapter 6, τ is the Markov trace on Hq

n with all parameters equal to 0.
From now on, we assume that all q,Q0, . . . , Ql−1 are invertible in R. Let K be a field containing

R such that KHq
n is split semisimple. As mentioned in the beginning of this chapter, but also due to

Tits’s deformation theorem, the simple modules of KHq
n are parametrised by the l-partitions of n. For

λ ∈ P(l, n), we denote by V λ the corresponding simple module and by sλ(q) the Schur element of V λ

with respect to τ . As we saw in §1.2, sλ(q) belongs to the integral closure RK of R in K.
For example, we can take q,Q0, . . . , Ql−1 to be indeterminates, R = Z[q±1, Q±1

0 , . . . , Q±1
l−1] and K =

Q(q,Q0, . . . , Ql−1). In this case, we call Hq
n the generic Ariki–Koike algebra, and we have sλ(q) ∈

Z[q±1, Q±1
0 , . . . , Q±1

l−1] for all λ ∈ P(l, n).
The Schur elements of Hq

n have been calculated independently by Geck, Iancu and Malle [GIM], and
by Mathas [Mat]. Their papers provide different combinatorial formulas for the calculation of sλ(q),
which are described in both cases as quotients of elements of K. Even though it was theoretically known
that these quotients belonged to RK , there was no combinatorial formula to describe the terms remaining
after the division. In [ChJa2], we managed to obtain a cancellation-free formula for the Schur elements
of Hq

n:
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Theorem 4.3 Let λ = (λ(0), λ(1), . . . , λ(l−1)) be an l-partition of n. Then

sλ(q) = (−1)n(l−1)q−N(λ̄)(q − 1)−n
∏

06s6l−1

∏
(i,j)∈[λ(s)]

∏
06t6l−1

(qh
λ(s),λ(t)

i,j QsQ
−1
t − 1).

Since the total number of nodes in λ is equal to n, the above formula can be rewritten as follows:

sλ(q) = (−1)n(l−1)q−N(λ̄)
∏

06s6l−1

∏
(i,j)∈[λ(s)]

[hλ
(s),λ(s)

i,j ]q
∏

06t6l−1, t 6=s

(qh
λ(s),λ(t)

i,j QsQ
−1
t − 1)

 ,

where [m]q := (qm − 1)/(q − 1) = qm−1 + qm−2 + · · ·+ q + 1, for all m ∈ Z>0.

Jean Michel and the author programmed the cancellation-free formula for the Schur elements of
Ariki–Koike algebras into the GAP3 package CHEVIE. This made the algorithm for the computation of
the Schur elements faster than the pre-existing one.

Now, applying Theorem 1.7 with the formulas for the Schur elements given in Theorem 4.3 yields easily
Ariki’s semisimplicity criterion (4.2). Further, if we take q = ur and Qi = ζilu

ri for all i = 0, . . . , l − 1,
where u is an indeterminate, r ∈ Z>0 and r0, . . . , rl−1 ∈ Z, then the algebra Hq

n is a cyclotomic Ariki–
Koike algebra (since it can be obtained via the cyclotomic specialisation ϕ : q 7→ ur, Qi 7→ ζilu

ri from
the generic Ariki–Koike algebra). Set mi := ri/r for all i = 0, . . . , l − 1 and m := (m0, . . . ,ml−1) ∈ Ql.
Let λ ∈ P(d, n). Then the a-value of the irreducible representation Eλ of G(l, 1, n) corresponding to λ
(that is, the negative of the valuation of sλ(q)) is equal to a(m,r) [GeJa2, Proposition 5.5.11]. Theorem
4.3 allows us to give an alternative description of the a-value of Eλ [ChJa2, Proposition 4.5]:

Proposition 4.4 Let Hm,r
n be the cyclotomic Ariki–Koike algebra defined above, and let λ ∈ P(d, n).

The a-value of Eλ is

a(m,r)(λ) = r

N(λ)−
∑

06s6l−1

∑
(i,j)∈[λ(s)]

∑
06t6l−1,t6=s

min(hλ
(s),λ(t)

i,j +ms −mt, 0)

 .

4.3 Families of characters and Rouquier families

The Rouquier families for cyclotomic Hecke algebras associated with the complex reflection group
G(l, 1, n), that is, cyclotomic Ariki–Koike algebras, have been first determined by Broué and Kim [BrKi],
but it turned out that their results were only true in the case where l is a power of a prime number.

In [Ch3], we gave the correct families for any l, using the property of semicontinuity explained in the
previous chapter. In fact, we discovered that the Rouquier families for G(l, 1, n) are determined by the
families of characters of Weyl groups of type B.

Let r, r0, r1, . . . , rl ∈ Z. If r 6= 0, set mi := ri/r for all i = 0, . . . , l− 1 and m := (m0, . . . ,ml−1) ∈ Ql.
Let u be an indeterminate. Let

ϕ : Z[q±1, Q±1
0 , . . . , Q±1

l−1]→ Z[u±1]

be the cyclotomic specialisation defined by

ϕ(q) = ur and ϕ(Qi) = ζilu
ri .

Then we have the following result due to Broué and Kim [BrKi].

Proposition 4.5 Let λ,µ ∈ P(l, n) and assume that r 6= 0. If Eλ and Eµ are in the same Rouquier
family, then Contcλ = Contcµ with respect to the weight system m. The converse is true when l is a
power of a prime number.

Now, using the form of the Schur elements, we obtain that the essential hyperplanes for G(l, 1, n) are:

• kr + rs − rt = 0 for all −n < k < n if ζsl − ζtl is not a unit in Z[ζl].
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• r = 0.

Remark 4.6 Note that, according to Theorem 3.10, the Rouquier families do not depend on the actual
values of the ri’s and r, but only on the essential hyperplanes to which they belong. Therefore, as long
as r 6= 0, we can always restrict to the case r = 1.

It is obvious from the form of the Schur elements that the Rouquier families associated with no
essential hyperplane are all trivial. We now have the following two results about the Rouquier families
associated with the essential hyperplanes described above [Ch3, Propositions 3.15, 3.16, 3.17]:

Proposition 4.7 Let λ,µ ∈ P(l, n). The following are equivalent :

(1) Eλ and Eµ are in the same Rouquier family associated with the essential hyperplane kr+rs−rt = 0.

(2) λ(i) = µ(i) for all i /∈ {s, t} and Contc(λ(s),λ(t)) = Contc(µ(s),µ(t)) with respect to the weight system
(0, k).

(3) λ(i) = µ(i) for all i /∈ {s, t} and Contc(λ(s),λ(t)) = Contc(µ(s),µ(t)) with respect to the weight system
(ms,mt).

(4) λ(i) = µ(i) for all i /∈ {s, t} and E(λ(s),λ(t)), E(µ(s),µ(t)) are in the same Rouquier family of the
cyclotomic Ariki–Koike algebra of type B|λ(s)|+|λ(t)| obtained via the specialisation :

q 7→ ur, Q0 7→ urs , Q1 7→ −urt

Proposition 4.8 Let λ,µ ∈ P(l, n). Then Eλ and Eµ are in the same Rouquier family associated with
the essential hyperplane r = 0 if and only if |λ(i)| = |µ(i)| for all i = 0, . . . , l − 1.

Using the above results, we managed to prove that the functions a and A are constant on Rouquier
families (for r 6= 0, this was already a known consequence of Proposition 4.5). We also created the
program RBAK.g, available on my webpage [Ch-web], which allows the computation of the Rouquier
families for any cyclotomic Ariki–Koike algebra on GAP3.

Finally, the results above allowed for the correct determination of the Rouquier families of the cyclo-
tomic Hecke algebras associated with the complex reflection groups G(l, p, n), with the use of Clifford
theory, in the cases where n > 2, or n = 2 and p is odd [Ch5].

4.4 Decomposition maps and canonical basic sets

A few of the results in this section have been briefly discussed in §3.4. They are repeated here for reasons
of completeness.

4.4.1 Classical setting

We now consider the specialised Ariki–Koike algebra with relations

(s− ζs0e )(s− ζs1e ) · · · (s− ζsl−1
e ) = 0, (ti − ζe)(ti + 1) = 0 for i = 1, . . . , n− 1, (4.4)

where (s0, . . . , sl−1) ∈ Zl and e ∈ Z>0.
Geck and Jacon [GeJa1, Ja2, Ja3, GeJa2] have shown that, for a suitable choice of m, the correspond-

ing function am := a(m,r), where r can be any positive integer, yields a canonical basic set for the above
specialised Ariki–Koike algebra. This canonical basic set consists of the so-called “Uglov l-partitions”
[Ja3, Definition 3.2]. However, this does not work the other way round: not all cyclotomic Ariki–Koike
algebras admit canonical basic sets. For a study about which values of m yield canonical basic sets, see
[Ger].

The key result in the determination of the decomposition matrix for Ariki-Koike algebras has been
Ariki’s proof [Ar2, Ar3] of the Lascoux-Leclerc-Thibon Conjecture [LLT], which relates this matrix to
the canonical basis matrix of the irreducible highest weight module of highest weight determined by
(s0, . . . , sl−1) as a submodule of the Fock space in affine type A. The latter depends on a parameter
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v and, according to Ariki’s Theorem, the decomposition matrix of the Ariki-Koike algebra equals the
canonical basis matrix (for any realisation of the highest weight module) when v = 1.

In the next chapter, we will see that we can prove the existence of canonical basic sets for Ariki–Koike
algebras without the use of Ariki’s Theorem, but with the use of the category O for rational Cherednik
algebras.

Generalising the above results, we proved in [ChJa2] the existence of canonical basic sets for the
specialised Ariki–Koike algebra with relations

(s− ζs0e )(s− ζs1e ) · · · (s− ζsl−1
e ) = 0, (ti − ζre )(ti + 1) = 0 for i = 1, . . . , n− 1, (4.5)

where (s0, . . . , sl−1) ∈ Zl and r, e ∈ Z>0; we called the elements of this canonical basic set “generalised
Uglov l-partitions”.

The basis of our proof is a reduction theorem by Dipper and Mathas [DiMa] which allows us to
restrict to the case r = 1: more specifically, the specialised Ariki–Koike algebra given by (4.5) is Morita
equivalent to a direct sum of tensor products of Ariki–Koike algebras of the form (4.4) (associated with
groups G(li, 1, ni) with li 6 l and ni 6 n). Morita equivalent algebras have the same decomposition
matrix.

This result allowed us, with the use of Clifford theory, and building on previous work by Genet and
Jacon [GenJa], to obtain canonical basic sets for all cyclotomic Hecke algebras associated with groups of
type G(l, p, n) with n > 2, or n = 2 and p odd [ChJa2].

4.4.2 Graded setting

Recently, using the works of Khovanov–Lauda [KhLa] and Rouquier [Ro3], Brundan, Kleshchev and
Rouquier have shown the existence of a Z-grading on Ariki–Koike algebras defined over any field [BrKl1,
Ro3]. The next natural step is to study the graded representation theory of these algebras. In the
characteristic 0 case, using a grading on the Specht modules explicitly constructed in [BKW], Brundan
and Kleshchev [BrKl1, BrKl2] have shown the existence of a certain “graded decomposition matrix”
(with coefficients in N[v, v−1] for some indeterminate v). In addition, they have proved that this matrix,
which may be viewed as a quantisation of the usual decomposition matrix, corresponds to the canonical
basis matrix in one realisation of the irreducible highest weight module as a submodule of the Fock space
in affine type A. This gives a graded analogue of Ariki’s Theorem.

However, there exist several possible realisations of the irreducible highest weight modules as sub-
modules generated by the vacuum vector of the Fock space, and thus several canonical bases matrices,
in affine type A. Therefore, it is natural to ask whether all these matrices can be expressed as graded
decomposition matrices. From this perspective, one problem is to obtain a canonical way to define these
graded decomposition matrices; indeed, Brundan and Kleshchev’s approach depends on the existence
and the choice of the Specht modules for the Ariki–Koike algebras.

In [ChJa3] we developped a general theory for graded decomposition matrices, using the concept of
specialisation. This pursuit is motivated by the works above, but can be also interesting as a subject in
its own right, providing a graded analogue of the usual notion of decomposition matrices associated with
specialisation maps. In particular, we obtain a graded analogue of Theorem 1.5 and a factorisation result
which is a graded analogue of [Ge3, Proposition 2.6]. Combined with the results obtained in [AJL], our
results could indicate the existence of several graded representation theories for Ariki–Koike algebras.
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Chapter 5

Rational Cherednik Algebras

Let W ⊂ GL(h) be a complex reflection group. There is a natural pairing ( , ) : h × h∗ → C given by
(y, x) := x(y). Let S be the set of all pseudo-reflections in W and let c : S → C be a conjugacy invariant
function, that is, a map such that

c(wsw−1) = c(s) ∀ s ∈ S, w ∈W.

Let V := h ⊕ h∗ and let TV ∗ denote the tensor algebra on the dual space of V . For s ∈ S, fix αs ∈ h∗

to be a basis of the one-dimensional vector space Im(s − idV )|h∗ and α∨s ∈ h to be a basis of the one-
dimensional vector space Im(s− idV )|h. Let t ∈ C. The rational Cherednik algebra Ht,c(W ) of W is the
quotient of TV ∗ oW by the relations:

[x1, x2] = 0, [y1, y2] = 0, [y, x] = t(y, x)− 2
∑
s∈S

c(s)
(y, αs)(α

∨
s , x)

(α∨s , αs)
s (5.1)

for all x1, x2, x ∈ h∗ and y1, y2, y ∈ h.

Example 5.1 Let W = Sn and h = Cn. Choose a basis x1, . . . , xn of h∗ and a dual basis y1, . . . , yn of
h so that

σxi = xσ(i)σ and σyi = yσ(i)σ ∀σ ∈ Sn, 1 6 i 6 n.

The set S is the set of all transpositions in Sn. We denote by sij the transposition (i, j). Set

αij := xi − xj and α∨ij = yi − yj ∀ 1 6 i < j 6 n.

We have (α∨ij , αij) = 2. There is a single conjugacy class in S, so take c ∈ C. Then Ht,c(Sn) is the
quotient of TV ∗ oSn by the relations:

[xi, xj ] = 0, [yi, yj ] = 0, [yi, xi] = t− c
∑
j 6=i

sij , [yi, xj ] = c sij for i 6= j.

Remark 5.2 For all λ ∈ C×, we have Hλt,λc(W ) ∼= Ht,c(W ). So we only need to consider the cases
t = 1 and t = 0.

There is a natural filtration F on Ht,c(W ) given by putting V ∗ in degree one and W in degree
zero. The crucial result by Etingof and Ginzburg is the Poincaré–Birkhoff–Witt (PBW) Theorem [EtGi,
Theorem 1.3].

Theorem 5.3 Let C[V ] be the set of regular functions on V (that is, the symmetric algebra Sym(V ∗) of
the dual space of V ). There is an isomorphism of algebras

grF (Ht,c(W )) ∼= C[V ] oW,

given by σ(v) 7→ v, σ(w) 7→ w, where σ(h) denotes the image of h ∈ Ht,c(W ) in grF (Ht,c(W )). In
particular, there is an isomorphism of vector spaces

Ht,c(W ) ∼= C[V ]⊗ C[W ].
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5.1 Rational Cherednik Algebras at t = 1

The PBW Theorem implies that the rational Cherednik algebra H1,c(W ), as a vector space, has a
“triangular decomposition”

H1,c(W ) ∼= C[h]⊗ C[W ]⊗ C[h∗].

Another famous example of a triangular decomposition is the one of the enveloping algebra U(g) of a finite
dimensional semisimple complex Lie algebra g (into the enveloping algebras of the Cartan subalgebra,
the nilpotent radical of the Borel subalgebra and its opposite). In the representation theory of g, one
of the categories of modules most studied, and best understood, is category O, the abelian category
generated by all highest weight modules. Therefore, it makes sense to want to construct and study an
analogue of category O for rational Cherednik algebras.

5.1.1 Category O
Let H1,c(W )-mod be the category of all finitely generated H1,c(W )-modules. We say that a module
M ∈ H1,c(W )-mod is locally nilpotent for the action of h ⊂ C[h∗] if for each m ∈M there exists N >> 0
such that hN ·m = 0.

Definition 5.4 We define O to be the category of all finitely generated H1,c(W )-modules that are locally
nilpotent for the action of h ⊂ C[h∗].

Remark 5.5 Each module in category O is finitely generated as a C[h]-module.

Category O has been thoroughly studied in [GGOR]. Proofs of all its properties presented here can
be found in this paper.

For all E ∈ Irr(W ), we set
∆(E) := H1,c(W )⊗C[h∗]oW E,

where C[h∗] acts trivially on E (that is, the augmentation ideal C[h∗]+ acts on E as zero) and W acts
naturally. The module ∆(E) belongs to O and is called a standard module (or Verma module). Each
standard module ∆(E) has a simple head L(E) and the set

{L(E) |E ∈ Irr(W )}

is a complete set of pairwise non-isomorphic simple modules of the category O. Every module in O has
finite length, so we obtain a well-defined square decomposition matrix

D = ([∆(E) : L(E′)])E,E′∈Irr(W ),

where [∆(E) : L(E′)] equals the multiplicity with which the simple module L(E′) appears in the com-
position series of ∆(E). We have [∆(E) : L(E)] = 1.

Proposition 5.6 The following are equivalent:

(1) O is semisimple.

(2) ∆(E) = L(E) for all E ∈ Irr(W ).

(3) D is the identity matrix.

Now, there exist several orderings on the set of standard modules of O (and consequently on Irr(W ))
for which O is a highest weight category in the sense of [CPS] (see also [Ro2, §5.1]). If <O is such an
ordering on Irr(W ), and if [∆(E) : L(E′)] 6= 0 for some E,E′ ∈ Irr(W ), then either E = E′ or E′ <O E.
Thus, we can arrange the rows of D so that the decomposition matrix is lower unitriangular. We will
refer to these orderings on Irr(W ) as orderings on the category O. A famous example of such an ordering
is the one given by the c-function.
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5.1.2 A change of parameters and the c-function

In order to relate rational Cherednik algebras with cyclotomic Hecke algebras via the KZ-functor in the
next subsection, we need to change the parametrisation of H1,c(W ). As in §3.1, let A denote the set of
reflecting hyperplanes of W . For H ∈ A, let WH be the pointwise stabiliser of H in W . The group WH

is cyclic and its order, denoted by eC , only depends on the orbit C ∈ A/W that H belongs to. We have
that

S =
⋃
H∈A

WH \ {1}.

For each s ∈ WH \ {1}, we have Kerαs = H. Without loss of generality, we may assume that αs = αs′

and α∨s = α∨s′ for all s, s′ ∈ WH \ {1}. Set αH := αs and α∨H := α∨s . Then the third relation in (5.1)
becomes

[y, x] = (y, x)− 2
∑
H∈A

(y, αH)(α∨H , x)

(α∨H , αH)

∑
s∈WH\{1}

c(s) s ∀x ∈ h∗, y ∈ h.

We define a family of complex numbers k = (kC,j)(C∈A/W )(06j6eC−1) by

−2
∑

s∈WH\{1}

c(s) s =
∑

s∈WH\{1}

eC−1∑
j=0

det(s)−j(kC,j − kC,j−1)

 s for H ∈ C ,

with kC,−1 = 0. This implies that

c(s) = −1

2

eC−1∑
j=0

det(s)−j(kC,j − kC,j−1).

From now on, we will denote by Hk(W ) the quotient of TV ∗ oW by the relations:

[x1, x2] = 0, [y1, y2] = 0, [y, x] = (y, x) +
∑
H∈A

(y, αH)(α∨H , x)

(α∨H , αH)
γH ,

where

γH =
∑

w∈WH\{1}

eC−1∑
j=0

det(w)−j(kC,j − kC,j−1)

w

for all x1, x2, x ∈ h∗ and y1, y2, y ∈ h. We have Hk(W ) = H1,c(W ).

Let E ∈ Irr(W ). We denote by cE the scalar by which the element

−
∑
H∈A

eC−1∑
j=0

( ∑
w∈WH

(detw)−jw

)
kC,j ∈ Z(C[W ])

acts on E. We obtain thus a function c : Irr(W ) → C, E 7→ cE . The c-function defines an ordering <c
on the category O as follows: For all E,E′ ∈ Irr(W ),

E′ <c E if and only if cE − cE′ ∈ Z>0.

Remark 5.7 If cE − cE′ /∈ Z \ {0} for all E,E′ ∈ Irr(W ), then D is the identity matrix, and thus O is
semisimple.

Remark 5.8 In the rational Cherednik algebra literature the function c is usually taken to be the
negative of the one defined here. In the context of this chapter the above definition is more natural. In
both cases we obtain an ordering on the category O.
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5.1.3 The KZ-functor

Following [GGOR, §5.3], there exists an exact functor, known as the Knizhnik–Zamalodchikov functor or
simply KZ, between the category O of Hk(W ) and the category of representations of a certain specialised
Hecke algebra Hk(W ). Using the notation of §3.1, this specialised Hecke algebra Hk(W ) is the quotient
of the group algebra C[BW ] by the ideal generated by the elements of the form

(s− exp(2πikC,0))(s− ζeCexp(2πikC,1)) · · · (s− ζeC−1
eC exp(2πikC,eC−1)),

where C runs over the set A/W and s runs over the set of monodromy generators around the im-
ages in hreg/W of the elements of C. The algebra Hk(W ) is obtained from the generic Hecke algebra
C[v,v−1]H(W ) via the specialisation Θ : vNWC,j 7→ exp(2πikC,j) (recall that NW is a positive power to
which the indeterminates vC,j appear in the defining relations of the generic Hecke algebra so that the
algebra C(v)H(W ) is split; see (3.1)). We always assume that Assumptions 3.4 hold for H(W ).

The functor KZ is represented by a projective object PKZ ∈ O, and Hk(W ) ∼= EndHk(W )(PKZ)op

[GGOR, §5.4]. Based on this, we obtain that the category O is semisimple if and only if the algebra
Hk(W ) is semisimple [Va, Theorem 2.1]. We can thus use the semisimplicity criterion for Hk(W ) given
by Theorem 1.7 in order to determine for which values of k the category O is semisimple.

Now let <O be any ordering on the category O as in Subsection 5.1.1.

Proposition 5.9 Set B := {E ∈ Irr(W ) |KZ(L(E)) 6= 0}.

(a) The set {KZ(L(E)) |E ∈ B} is a complete set of pairwise non-isomorphic simple Hk(W )-modules.

(b) For all E ∈ Irr(W ), E′ ∈ B, we have [∆(E) : L(E′)] = [KZ(∆(E)) : KZ(L(E′))].

(c) If E ∈ B, then [KZ(∆(E)) : KZ(L(E))] = 1.

(d) If [KZ(∆(E)) : KZ(L(E′))] 6= 0 for some E ∈ Irr(W ) and E′ ∈ B, then either E = E′ or E′ <O E.

Property (a) follows from [GGOR, Theorem 5.14]. For the proof of properties (b), (c) and (d), all of
them deriving from the fact that KZ is exact, the reader may refer to [CGG, Proposition 3.1].

The simple modules killed by the KZ-functor are exactly the ones that do not have full support.
Their determination, and thus the determination of the set B, is a very difficult problem.

5.2 Canonical basic sets for Hecke algebras from rational Chered-
nik algebras

Let Θ and Hk(W ) be defined as above. We have a decomposition matrix Dk for the specialised Hecke
algebra Hk(W ) with respect to the specialisation Θ. The rows of Dk are indexed by Irr(W ) and its
columns by Irr(Hk(W )). Following Proposition 5.9, Dk can be obtained from the decomposition matrix
D of the category O by removing the columns that correspond to the simple modules killed by the KZ-
functor, that is, the columns labelled by Irr(W ) \B. This implies that Dk becomes lower unitriangular
when its rows are ordered with respect to <O, in the same way that, in the cases where Θ factors
through a cyclotomic Hecke algebra, the existence of a canonical basic set implies that Dk becomes
lower unitriangular when its rows are ordered with respect to the a-function. If we could show that
the a-function defines an ordering on the category O, we would automatically obtain the existence of a
canonical basic set for Hk(W ). At the same time, we would obtain the determination of B in the cases
where canonical basic sets have already been explicitly described.

5.2.1 The (a + A)-function

Let m = (mC,j)(C∈A/W )(06j6eC−1) be a family of integers and let ϕm : vC,j 7→ qmC,j be the corresponding
cyclotomic specialisation for the Hecke algebra H(W ). Let θ : q 7→ η be a specialisation such that η
is a non-zero complex number. If η is not a root of unity or η = 1, then, due to Theorem 1.7 and the
form of the Schur elements of Hϕm(W ), the specialised Hecke algebra Hη(W ) is semisimple. So we may
assume from now on that η is a root of unity of order e > 1, namely η = ζre for some r ∈ Z>0 such that
gcd(e, r) = 1.
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Let k = (kC,j)(C∈A/W )(06j6eC−1) be the family of rational numbers defined by

kC,j :=
rNW
e

mC,j for all C, j.

Then Hk(W ) = Hη(W ). Following [CGG, §3.3], we obtain the following equation which relates the
functions am and Am for Hϕm(W ) with the c-function for Hk(W ):

amE +Am
E =

e

rNW
cE +

∑
H∈A

eC−1∑
j=0

mC,j for all E ∈ Irr(W ), (5.2)

where C denotes the orbit of H ∈ A under the action of W .

Remark 5.10 The above formula was also obtained in [GGOR, §6.2] for finite Weyl groups in the equal
parameter case.

Equation (5.2) implies that am +Am yields the same ordering on Irr(W ) as the c-function (note that
in this case cE ∈ Q for all E ∈ Irr(W )). Thus, am + Am is also an ordering on the category O, that is,
if [∆(E) : L(E′)] 6= 0 for some E,E′ ∈ Irr(W ), then either E = E′ or amE′ + Am

E′ < amE + Am
E . If now

the function am is compatible with am +Am, that is, for all E,E′ ∈ Irr(W ),

amE′ + Am
E′ < amE + Am

E ⇒ amE′ < amE , (5.3)

then am is an ordering on the category O and we obtain the existence of a canonical basic set forHϕm(W )
with respect to θ by Proposition 5.9. This is true in several cases, but unfortunately not true in general.
Some exceptional complex reflection groups where (5.3) holds and the above argument works are:

G23 = H3, G24, G27, G29 and G30 = H4.

This yields the existence of canonical basic sets for the groups G24, G27 and G29, which was not known
before. To summarise, we have the following [Ch6, Proposition 5.11]:

Proposition 5.11 Let W = Gn, n ∈ {23, 24, 27, 29, 30}. Let m and k be defined as above, and let
E, E′ ∈ Irr(W ). If [∆(E) : L(E′)] 6= 0, then either E = E′ or amE′ < amE . In particular, we have
KZ(L(E)) 6= 0 if and only if E belongs to the canonical basic set of Hϕm(W ) with respect to θ : q 7→ ζre .

5.2.2 Canonical basic sets for Iwahori–Hecke algebras

Equation (5.2) has also allowed us to show that, in the case where W is a finite Coxeter group, and
assuming that Lusztig’s conjectures P1 – P15 hold, the c-function is compatible with the ordering 6LR
on two-sided cells, since a and A are (see [Ge8, Remark 5.4] for the a-function, [Lu6, Corollary 21.6] and
[ChJa1, Proposition 2.8] for A). This in turn was crucial in showing [CGG, Corollary 4.7]:

Proposition 5.12 Let (W,S) be a finite Coxeter group and let Hq(W,L) be the Iwahori–Hecke algebra
of W with parameter L, as defined in Chapter 2. For H ∈ A, let sH ∈W be the reflection with reflecting
hyperplane H and let C be the orbit of H under the action of W . If H ′ ∈ C, then we have L(sH) = L(sH′)
and we can set LC := L(sH). Let e, r ∈ Z>0 such that gcd(e, r) = 1, and take, for all C ∈ A/W ,

kC,0 =
rLC
e

and kC,1 = −rLC
e
.

If E ∈ Irr(W ), then KZ(L(E)) 6= 0 if and only if E belongs to the canonical basic set of Hq(W,L) with
respect to θ : q 7→ ζre .

The proof uses a connection, established in [CGG, Proposition 4.6], between category O and the
cellular structure of the Iwahori–Hecke algebra. More specifically, if E ∈ Irr(W ), then KZ(∆(E)) is iso-
morphic to the cell module Wθ(E) defined in [Ge6, Example 4.4]; we will not go into further details here.
Note though that, in Proposition 5.12, we have not included the assumption that Lusztig’s conjectures
must hold. The reason is that the only case where they are not known to hold, the case of Bn, is covered
by Corollary 5.17 below.
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Remark 5.13 The above result can be generalised to the case where kC,0 = λLC and kC,1 = −λLC
for any complex number λ. If λ ∈ Z or λ ∈ C \ Q, then both category O and Hexp(2πiλ)(W,L) are
semisimple, so the statement trivially holds. If λ is a negative rational number, let us say λ = −r/e for
some e, r ∈ Z>0 with gcd(e, r) = 1, and E ∈ Irr(W ), then KZ(L(E)) 6= 0 if and only if E belongs to the
canonical basic set of Hq(W,−L) with respect to θ : q 7→ ζre . We recall now that the canonical basic sets
for finite Coxeter groups where L can take negative values are described in [ChJa1]. In fact, E belongs
to the canonical basic set of Hq(W,−L) with respect to θ : q 7→ ζre if and only if E ⊗ ε belongs to the
canonical basic set of Hq(W,L) with respect to θ, where ε denotes the sign representation of W .

Proposition 5.12 yields the existence of canonical basic sets for all finite Coxeter groups in a uniform
way. At the same time, it yields a description of the simple modules that are not killed by the KZ-
functor, since canonical basic sets for finite Coxeter groups are explicitly known (see, for example,
[GeJa2]). However, it does not imply that the a-function is an ordering on the category O, because we
do not know what happens with the simple modules killed by the KZ-functor. We do believe though
that, for finite Coxeter groups, the a-function is an ordering on the category O.

Example 5.14 Let W be the symmetric group Sn and let l := L(s) for every transposition s ∈ Sn

(there exists only one orbit C in A/W ). Let η2l := ζre for some e, r ∈ Z>0 with gcd(e, r) = 1. As we saw
in Example 2.14, the canonical basic set Bθ of Hq(W, l) with respect to θ : q 7→ η consists of the e-regular
partitions of n. Now take kC,0 = r/2e and kC,1 = −r/2e. Let λ be a partition of n and let Eλ be the
corresponding irreducible representation of Sn. We have KZ(L(Eλ)) 6= 0 if and only if λ is e-regular.

5.2.3 Canonical basic sets for Ariki–Koike algebras

As we have said and seen earlier, there exist several orderings on the category O. For W = G(l, 1, n),
where the irreducible representations are parametrised by the set P(l, n) of l-partitions of n, one com-
binatorial ordering on the category O is given by Dunkl and Griffeth in [DuGr]. More precisely, in this
case, there are two hyperplane orbits in A/W ; we will denote them by Cs and Ct. We have eCs = l and
eCt = 2. Let (s0, . . . , sl−1) ∈ Zl and e ∈ Z>0. We define k = (kCs,0, . . . , kCs,l−1, kCt,0, kCt,1) by

kCs,j =
sj
e
− j

l
for j = 0, . . . , l − 1, kCt,0 =

1

e
, kCt,1 = 0. (5.4)

Then the KZ-functor goes from the category O of Hk(W ) to the category of representations of the
specialised Ariki–Koike algebra Hk(W ) with relations

(s− ζs0e )(s− ζs1e ) · · · (s− ζsl−1
e ) = 0, (ti − ζe)(ti + 1) = 0 for i = 1, . . . , n− 1,

as in (4.4).
Let λ = (λ(0), . . . , λ(l−1)) ∈ P(l, n). We will denote by Eλ the corresponding irreducible representa-

tion of G(l, 1, n). We define the set of nodes of λ to be the set

[λ] = {(a, b, c) : 0 6 c 6 l − 1, a > 1, 1 6 b 6 λ(c)
a }.

Let γ = (a(γ), b(γ), c(γ)) ∈ [λ]. We set ϑ(γ) := b(γ)− a(γ) + sc(γ). We then have the following [DuGr,
Proof of Theorem 4.1]:

Proposition 5.15 Let λ, λ′ ∈ P(l, n). If [∆(Eλ) : L(Eλ′)] 6= 0, then there exist orderings γ1, γ2, . . . , γn
and γ′1, γ

′
2, . . . , γ

′
n of the nodes of λ and λ′ respectively, and non-negative integers µ1, µ2, . . . , µn, such

that, for all 1 6 i 6 n,

µi ≡ c(γi)− c(γ′i) mod l and µi = c(γi)− c(γ′i) +
l

e
(ϑ(γ′i)− ϑ(γi)).

Now, there are several different cyclotomic Ariki–Koike algebras that produce the specialised Ariki–
Koike algebra Hk(W ) defined above and they may have distinct a-functions attached to them. Let
u = (u0, . . . , ul−1) ∈ Ql be a list of rational numbers such that 0 < uj − ui < e whenever i < j. Set
tj := sj − uj , for all 0 6 j 6 l − 1, and t := (t0, . . . , tl−1). We then use the combinatorial description
of the a-function for G(l, 1, n) given by (4.3), taking aEλ := a(t,1)(λ) for all λ ∈ P(l, n). Note that this
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definition captures all a-functions for G(l, 1, n) in the literature: the function am for mCs,j = sj l − ej,
j = 0, . . . , l − 1, given by Jacon [Ja3] and studied in the context of Uglov’s work on canonical bases
for higher level Fock spaces, and also the a-function for type Bn (l = 2) arising from the Kazhdan–
Lusztig theory for Iwahori–Hecke algebras with unequal parameters (see [GeJa2, 6.7]). We have shown
in [CGG, §5] that this a-function is compatible with the ordering on category O given by Proposition
5.15. Consequently, the a-function also defines a highest weight category structure on O, that is, we
have the following:

Proposition 5.16 Let λ, λ′ ∈ P(l, n). If [∆(Eλ) : L(Eλ′)] 6= 0, then either λ = λ′ or aEλ′ < aEλ .

The above result, combined with Proposition 5.9, yields the following:

Corollary 5.17 Let W = G(l, 1, n). Let (s0, . . . , sl−1) ∈ Zl and e ∈ Z>0. Let k be defined as in (5.4).
If λ ∈ P(l, n), then KZ(L(Eλ)) 6= 0 if and only if Eλ belongs to the canonical basic set of Hk(W ) with
respect to the a-function above.

Thus, we obtain the existence of canonical basic sets for Ariki–Koike algebras without the use of
Ariki’s Theorem. On the other hand, the description of the canonical basic sets for Ariki–Koike algebras
by [Ja3, Main Theorem] yields a description of the set B = {Eλ ∈ Irr(W ) |KZ(L(Eλ)) 6= 0}: we have
that Eλ ∈ B if and only if λ is an Uglov l-partition.

Finally, we expect a result similar to Corollary 5.17 to hold in the case where W = G(l, p, n) for
p > 1.

Remark 5.18 By repeating the proof of [CGG, Proposition 4.6] for W = G(l, 1, n), we can obtain that
the images of the standard modules via the KZ-functor agree with the Specht modules defined by the
cellular structure on the Ariki–Koike algebras in [DJM], provided that the parameters k are chosen to
belong to the so-called “asymptotic region” (see [Ro2, Proposition 6.4] for the explicit description of this
region).

5.3 Rational Cherednik Algebras at t = 0

Let us now consider the rational Cherednik algebra H0,c(W ). Set A := C[h]W ⊗ C[h∗]W . We define the
restricted rational Cherednik algebra to be

H0,c(W ) := H0,c(W )/A+H0,c(W ),

where A+ denotes the ideal of A consisting of elements with zero constant term. This algebra was
originally introduced, and extensively studied, in [Go]. The PBW Theorem implies that, as a vector
space,

H0,c(W ) ∼= C[h]coW ⊗ C[W ]⊗ C[h∗]coW

where C[h]coW = C[h]/〈C[h]W+ 〉 is the coinvariant algebra. Since W is a complex reflection group,
C[h]coW has dimension |W | and is isomorphic to the regular representation as a C[W ]-module. Thus,
dimCH0,c(W ) = |W |3.

Let E ∈ Irr(W ). We set
∆(E) := H0,c(W )⊗C[h∗]coWoW E,

where C[h∗]coW acts trivially on E (that is, C[h∗]coW+ acts on E as zero) and W acts naturally. The

module ∆(E) is the baby Verma module of H0,c(W ) associated with E. We summarise, as is done in
[Go, Proposition 4.3], the results of [HoNa] applied to this situation.

Proposition 5.19 Let E, E′ ∈ Irr(W ).

(a) The baby Verma module ∆(E) has a simple head, L(E). Hence, ∆(E) is indecomposable.

(b) ∆(E) ∼= ∆(E′) if and only if E ∼= E′.

(c) The set {L(E) |E ∈ Irr(W )} is a complete set of pairwise non-isomorphic simple H0,c-modules.
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5.4 Families of characters for Hecke algebras from rational Chered-
nik algebras

Since the algebra H0,c is finite dimensional, we can define its blocks in the usual way. Let E, E′ ∈ Irr(W ).
Following [GoMa], we define the Calogero–Moser partition of Irr(W ) to be the set of equivalence classes
of Irr(W ) under the equivalence relation:

E ∼CM E′ if and only if L(E) and L(E′) belong to the same block of H0,c.

We will simply write CMc-partition for the Calogero–Moser partition of Irr(W ). Using the classification
of irreducible complex reflection groups (see Theorem 3.1), Bellamy has shown the following [Bel1,
Theorem 1.1]:

Theorem 5.20 Let W be an irreducible complex reflection group. The CMc-partition is trivial for
generic values of c if and only if W is of type G(l, 1, n) or G4.

Remark 5.21 The cases where the CMc-partition is trivial for generic values of c are exactly the cases
where the space (h⊕ h∗)/W admits a symplectic resolution.

5.4.1 The Calogero–Moser partition and Rouquier families

It just so happens that the cases where Xc(W ) is generically smooth, and the Calogero–Moser partition
generically trivial, are exactly the cases where the Rouquier families are generically trivial (that is, the
Rouquier families associated with no essential hyperplane are singletons). This, combined with the fact
that the Calogero–Moser partition into blocks enjoys some property of semicontinuity, led to the question
whether there is a connection between the two partitions.

The question was first asked by Gordon and Martino [GoMa] in terms of a connection between the
Calogero–Moser partition and families of characters for type Bn. In their paper, they computed the
CMc-partition, for all c, for complex reflection groups of type G(l, 1, n) and showed that for l = 2,
using the conjectural combinatorial description of Kazhdan–Lusztig cells for type Bn by [BGIL], the
CMc-partition coincides with the partition into Kazhdan–Lusztig families. After that, Martino [Mart]
compared the combinatorial description of the CMc-partition for type G(l, 1, n) given in [GoMa] with
the description of the partition into Rouquier families, given by [Ch3], for a suitable cyclotomic Hecke
algebra Hc of G(l, 1, n) (different from the one defined in §5.1.3). He showed that the two partitions
coincide when l is a power of a prime number (which includes the cases of type An and Bn), but not
in general. In fact, he showed that the CMc-partition for G(l, 1, n) is the same as the one obtained by
[BrKi]. He thus obtained the following two connections between the CMc-partition and the partition
into Rouquier families for G(l, 1, n), and he conjectured that they hold for every complex reflection group
W [Mart, 2.7]:

(a) The CMc-partition for generic c coincides with the generic partition into Rouquier families (both
being trivial for W = G(l, 1, n));

(b) The partition into Rouquier families refines the CMc-partition, for all choices of c; that is, if E,E′ ∈
Irr(W ) belong to the same Rouquier family of Hc, then E ∼CM E′.

Conditions (a) and (b) are known as “Martino’s Conjecture”. Using the combinatorics of [GoMa]
and [Mart], Bellamy computed the CMc-partition, for all c, and proved Martino’s conjecture in the case
where W is of type G(l, p, n) [Bel2]; note that when p > 1 the generic partitions in this case are not trivial.
However, a counter-example for (a) was found by Thiel [Th] in the case where W = G25. Thiel calculated
the CMc-partition for generic c for the exceptional complex reflection groups G4, G5, G6, G8, G10, G23 =
H3, G24, G25 and G26. Comparing his results with the generic partition into Rouquier families for these
groups, given by [Ch4], he showed that Part (a) of Martino’s Conjecture holds in every case1 except for
when W = G25. In this particular case, the generic partition into Rouquier families simply refines the
CMc-partition for generic c. So we will state here as a conjecture only Part (b) of Martino’s conjecture,
which is still an open problem, and proved in all the above cases.

1for G4 this was already known by [Bel1].
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Conjecture 5.22 (Martino’s Conjecture) Let W be a complex reflection group. The partition into
Rouquier families (for a suitably chosen cyclotomic Hecke algebra Hc of W ) refines the CMc-partition,
for all choices of c; that is, if E,E′ ∈ Irr(W ) belong to the same Rouquier family of Hc, then E ∼CM E′.

Remark 5.23 Note that, in all the cases checked so far where W is a finite Coxeter group, the partition
into Rouquier families and the CMc-partition coincide. This covers the finite Coxeter groups of types
An, Bn, Dn and the dihedral groups for all choices of c, and H3 for generic c.

5.4.2 The Calogero–Moser partition and Kazhdan–Lusztig cells

In an effort to develop a generalised Kazhdan–Lusztig cell theory, Bonnafé and Rouquier [BoRo1, BoRo2]
used the Calogero–Moser partition to define Calogero–Moser cells for all complex reflection groups. An
advantage of this, quite geometric, approach is that the Calogero–Moser partition exists naturally for all
complex reflection groups. It also implies automatically the existence of a semicontinuity property for
cells, a property that was conjectured and proved in some cases for Kazhdan–Lusztig cells by Bonnafé
[Bo2]. However, Calogero–Moser cells are very hard to compute and their construction depends on an
“uncontrollable” choice. After very long computations, it has been confirmed that the Calogero–Moser
cells coincide with the Kazhdan–Lusztig cells for some finite Coxeter groups of rank 2: the Weyl groups
A2, B2, G2 [BoRo1] and the dihedral groups I2(m) with m odd [Bo3]; there is still a lot of work that
needs to be done.

43



44



Chapter 6

Yokonuma–Hecke Algebras

Yokonuma–Hecke algebras were introduced by Yokonuma [Yo] for the same reason that Ariki–Koike alge-
bras were introduced by Ariki and Koike: as generalisations of Iwahori–Hecke algebras. More precisely,
the Iwahori–Hecke algebra associated to a finite reductive group G is the centraliser algebra associated
to the permutation representation of G with respect to a Borel subgroup of G. The Yokonuma–Hecke
algebra is the centraliser algebra associated to the permutation representation of G with respect to a
maximal unipotent subgroup of G. Thus, Yokonuma–Hecke algebras can be also regarded as particular
cases of unipotent Hecke algebras.

In this chapter, we will focus on the Yokonuma–Hecke algebra of type A. In recent years, the
presentation of this algebra has been transformed in [Ju1, JuKa, Ju2, ChPdA1, ChPo2] to the one that
we will use here. This new presentation is given by generators and relations, depending on two positive
integers, d and n, and a parameter q. For q = pm and d = pm− 1, where p is a prime number and m is a
positive integer, the Yokonuma–Hecke algebra of type A, denoted by Yd,n(q), is the centraliser algebra
associated to the permutation representation of GLn(Fq) with respect to a maximal unipotent subgroup.

Let n ∈ N, d ∈ N∗. Let q be an indeterminate. The Yokonuma–Hecke algebra (of type A), denoted
by Yd,n(q), is an associative C[q, q−1]-algebra generated by the elements

g1, . . . , gn−1, t1, . . . , tn

subject to the following relations:

(b1) gigj = gjgi for all i, j = 1, . . . , n− 1 such that |i− j| > 1,
(b2) gigi+1gi = gi+1gigi+1 for all i = 1, . . . , n− 2,
(f1) titj = tjti for all i, j = 1, . . . , n,
(f2) tjgi = gitsi(j) for all i = 1, . . . , n− 1 and j = 1, . . . , n,
(f3) tdj = 1 for all j = 1, . . . , n,

(6.1)

where si is the transposition (i, i+ 1), together with the quadratic relations:

g2
i = q + (q − 1) ei gi for all i = 1, . . . , n− 1, (6.2)

where

ei :=
1

d

d−1∑
s=0

tsi t
−s
i+1. (6.3)

It is easily verified that the elements ei are idempotents in Yd,n(q). Also, that the elements gi are
invertible, with

g−1
i = q−1gi + (q−1 − 1) ei for all i = 1, . . . , n− 1. (6.4)

If we specialise q to 1, the defining relations (6.1)–(6.2) become the defining relations for the complex
reflection group G(d, 1, n). Thus, the algebra Yd,n(q) is a deformation of the group algebra over C of
G(d, 1, n), different from the Ariki–Koike algebra. Moreover, for d = 1, the Yokonuma–Hecke algebra
Y1,n(q) coincides with the Iwahori–Hecke algebra Hn(q) of type A, and thus, for d = 1 and q specialised
to 1, we obtain the group algebra over C of the symmetric group Sn.
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Remark 6.1 Note that in all the papers prior to [ChPdA1], the algebra Yd,n(q) is generated by elements
g1, . . . , gn−1, t1, . . . , tn satisfying relations (6.1) and the quadratic relations:

g2
i = 1 + (q − 1) ei + (q − 1) ei gi for all i = 1, . . . , n− 1. (6.5)

This presentation changed in [ChPdA1], where we considered Yd,n(q) defined over C[q1/2, q−1/2] and
generated by elements g̃1, . . . , g̃n−1, t1, . . . , tn satisfying relations (6.1) and the quadratic relations:

g̃2
i = 1 + (q1/2 − q−1/2) ei g̃i for all i = 1, . . . , n− 1. (6.6)

By taking gi := g̃i+(q1/2−1) eig̃i (and thus, g̃i = gi+(q−1/2−1) ei gi), we obtain the old presentation of
the Yokonuma–Hecke algebra. By taking gi := q1/2g̃i we obtain our presentation of the Yokonuma–Hecke
algebra.

Now let w ∈ Sn, and let w = si1si2 . . . sir be a reduced expression for w. Since the generators gi
of the Yokonuma–Hecke algebra satisfy the same braid relations as the generators of Sn, Matsumoto’s
theorem implies that the element gw := gi1gi2 . . . gir is well-defined, that is, it does not depend on the
choice of the reduced expression of w.

Juyumaya [Ju2] has proved that the following set is a C[q, q−1]-basis of Yd,n(q):

BH
d,n := { tr11 . . . trnn gw | w ∈ Sn, 0 6 rj 6 d− 1 for all j = 1, 2, . . . , n} . (6.7)

In particular, Yd,n(q) is a free C[q, q−1]-module of rank dnn!.

6.1 Representation theory of Yokonuma–Hecke algebras

The representation theory of Yokonuma–Hecke algebras has been first studied by Thiem [Th1, Th2, Th3]
in the general context of unipotent Hecke algebras. The generality of his results and the new presentation
for Yd,n(q) has led us to develop a combinatorial approach to the representation theory of the Yokonuma–
Hecke algebra of type A in [ChPdA1]. In this section, we will give an explicit description of the irreducible
representations of Yd,n(q) in terms of d-partitions and standard d-tableaux.

Recall that we denote by P(d, n) the set of d-partitions of n. Let λ = (λ(0), . . . , λ(d−1)) ∈ P(d, n). A
node θ of λ is a triple (x, y, i), where 0 6 i 6 d− 1 and (x, y) is a node of the partition λ(i). We define
p(θ) := i to be the position of θ and c(θ) := qy−x to be the quantum content of θ.

A d-tableau of shape λ is a bijection between the set {1, . . . , n} and the set of nodes of λ. In other
words, a d-tableau of shape λ is obtained by placing the numbers 1, . . . , n in the nodes of λ. The size of
a d-tableau of shape λ is n, that is, the size of λ. A d-tableau is standard if its entries increase along any
row and down any column of every diagram in λ. For d = 1, a standard 1-tableau is a usual standard
tableau.

For a d-tableau T , we denote respectively by p(T |i) and c(T |i) the position and the quantum content

of the node with the number i in it. For example, for the standard 3-tableau T =
(

1 3 , ∅ , 2
)

of size
3, we have

p(T |1) = 0 , p(T |2) = 2 , p(T |3) = 0 and c(T |1) = 1 , c(T |2) = 1 , c(T |3) = q .

For any d-tableau T of size n and any permutation σ ∈ Sn, we denote by T σ the d-tableau obtained
from T by applying the permutation σ on the numbers contained in the nodes of T . We have

p(T σ|i) = p
(
T |σ−1(i)

)
and c(T σ|i) = c

(
T |σ−1(i)

)
for all i = 1, . . . , n.

Note that if the d-tableau T is standard, the d-tableau T σ is not necessarily standard.
Now, let λ ∈ P(d, n), and let Vλ be a C(q)-vector space with a basis {vT } indexed by the standard

d-tableaux of shape λ. We set vT := 0 for any non-standard d-tableau T of shape λ. By [ChPdA1,
Proposition 5 & Theorem 1] and [ChPo2, Theorem 3.7], we have the following description of the irre-
ducible representations of C(q)Yd,n(q):
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Theorem 6.2 Let {ξ0, ξ1, . . . , ξd−1} be the set of all d-th roots of unity (ordered arbitrarily). Let T be
a standard d-tableau of shape λ ∈ P(d, n). For brevity, we set pi := p(T |i) and ci := c(T |i) for all
i = 1, . . . , n. The vector space Vλ is a representation of C(q)Yd,n(q) with the action of the generators on
the basis element vT defined as follows: for j = 1, . . . , n,

tj(vT ) = ξpjvT ; (6.8)

for i = 1, . . . , n− 1, if pi > pi+1 then
gi(vT ) = vT si , (6.9)

if pi < pi+1 then
gi(vT ) = q vT si , (6.10)

and if pi = pi+1 then

gi(vT ) =
qci+1 − ci+1

ci+1 − ci
vT +

qci+1 − ci
ci+1 − ci

vT si , (6.11)

where si is the transposition (i, i + 1). Further, the set {Vλ |λ ∈ P(d, n)} is a complete set of pairwise
non-isomorphic irreducible representations of C(q)Yd,n(q).

The above theorem implies that the algebra C(q)Yd,n(q) is split. As we have already mentioned,
when q 7→ 1, the algebra C(q)Yd,n(q) specialises to the group algebra C[G(d, 1, n)], which is semisimple.
By Tits’s deformation theorem, we obtain that the algebra C(q)Yd,n(q) is also semisimple.

Let now θ : C[q, q−1] → C be a ring homomorphism such that θ(q) = η ∈ C \ {0}. Using the
representation theory of C(q)Yd,n(q), we have proved the following semisimplicity criterion for CYd,n(η)
[ChPdA1, Proposition 9]:

Proposition 6.3 The specialised Yokonuma–Hecke algebra CYd,n(η) is (split) semisimple if and only if
θ(P (q)) 6= 0, where

P (q) =
∏

16i6n

(1 + q + · · ·+ qi−1).

Note that following Ariki’s semisimplicity criterion (4.2), the algebra CYd,n(η) is semisimple if and
only if the specialised Iwahori–Hecke algebra CHn(η) is semisimple.

Another way to obtain the above result is through our definition of a canonical symmetrising form τ
on Yd,n(q) [ChPdA1, Proposition 10]. Having calculated the Schur elements of Yd,n(q) with respect to
τ [ChPdA1, Proposition 11], we can deduce the above semisimplicity criterion with the use of Theorem
1.7. More precisely, we have the following:

Theorem 6.4 We define the linear map τ : Yd,n(q)→ C[q, q−1] by

τ(tr11 . . . trnn gw) =

{
1 if w = 1 and rj = 0 for all j = 1, 2, . . . , n,
0 otherwise,

(6.12)

where w ∈ Sn and 0 6 rj 6 d − 1 for all j = 1, 2, . . . , n. Then τ is a symmetrising form on Yd,n(q),
called the canonical symmetrising form. If λ = (λ(0), . . . , λ(d−1)) ∈ P(d, n), then the Schur element of
Vλ with respect to τ is

sλ = dn sλ(0)sλ(1) . . . sλ(d−1) , (6.13)

where sλ(i) is the Schur element of the Iwahori–Hecke algebra H|λ(i)|(q) corresponding to λ(i) for all
i = 0, 1, . . . , d− 1 (we take s∅ := 1).

A simple formula for the calculation of the Schur elements of Iwahori–Hecke algebras of type A is
given by Theorem 4.3.

The connection between the representation theory of the Yokonuma–Hecke algebra and that of
Iwahori–Hecke algebras of type A implied by (6.13) is explained by a result of Lusztig [Lu7, §34],
who has proved that Yokonuma–Hecke algebras, in general, are isomorphic to direct sums of matrix
algebras over certain subalgebras of classical Iwahori–Hecke algebras. Using the new presentation for
Yd,n(q), Jacon and Poulain d’Andecy [JaPdA] have explicitly described this isomorphism between the
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Yokonuma–Hecke algebra of type A and a direct sum of matrix algebras over tensor products of Iwahori–
Hecke algebras of type A. Another proof of this result has been given recently in [EsRy], where Espinoza
and Ryom-Hansen have constructed a concrete isomorphism between Yd,n(q) and Shoji’s modified Ariki–
Koike algebra. Note that in all cases the result has been obtained over the ring C[q1/2, q−1/2] (using the
generators g̃i defined in Remark 6.1). We have managed to show that it is still valid over the smaller
ring C[q, q−1]. We have [ChPo2, Theorem 4.3]:

Yd,n(q) ∼=
⊕

µ∈Compd(n)

Matmµ(Hµ0
(q)⊗Hµ1

(q)⊗ · · · ⊗ Hµd−1
(q)), (6.14)

where
Compd(n) = {µ = (µ0, µ1, . . . , µd−1) ∈ Nd |µ0 + µ1 + · · ·+ µd−1 = n} (6.15)

and

mµ =
n!

µ0!µ1! . . . µd−1!
(6.16)

6.2 Affine and Cyclotomic Yokonuma–Hecke algebras

We have now seen two families of algebras that are deformations of the groups algebra of the complex
reflection group G(d, 1, n): the Ariki–Koike algebras and the Yokonuma–Hecke algebras of type A. Both
families include the Iwahori–Hecke algebras of typeA. The former preserve the “good” quadratic relations
of the Iwahori–Hecke algebras, while the latter preserve the wreath product structure of G(d, 1, n) ∼=
(Z/dZ) oSn.

In [ChPdA2], we introduced the affine and cyclotomic Yokonuma–Hecke algebras, which give rise
to both Ariki–Koike algebras and Yokonuma–Hecke algebras of type A as quotients and as special
cases. Let n ∈ N, d ∈ N∗ and l ∈ N∗ ∪ {∞}. Let q and (Qi)i∈N be indeterminates, and set Rl :=
C[q±1, Q±1

0 , Q±1
1 , . . . , Q±1

l−1] if l < ∞, and R∞ := C[q±1]. We define the algebra Y(d, l, n) to be the
associative Rl-algebra generated by the elements

g1, . . . , gn−1, t1, . . . , tn, X1, X
−1
1

subject to the relations (6.1)–(6.2), together with the following relations concerning the generator X1:

X1X
−1
1 = X−1

1 X1 = 1

X1 g1X1g1 = g1X1g1X1

X1gi = giX1 for all i = 2, . . . , n− 1,

X1tj = tjX1 for all j = 1, . . . , n,

(6.17)

and if l <∞,
(X1 −Q0)(X1 −Q1) · · · (X1 −Ql−1) = 0. (6.18)

The algebra Y(d,∞, n) is called the affine Yokonuma–Hecke algebra. For l < ∞, the algebra Y(d, l, n)
is called the cyclotomic Yokonuma–Hecke algebra. These algebras are isomorphic to the modular frami-
sations of, respectively, the affine Hecke algebra (l = ∞) and the Ariki–Koike algebra (l < ∞); see
definitions in [JuLa5, Section 6] and [ChPdA1, Remark 1].

The cyclotomic Yokonuma–Hecke algebra is a quotient of the affine Yokonuma–Hecke algebra by the
relation (6.18). If we map X1 7→ Q0 for l <∞ or X1 7→ 1 for l =∞, we obtain a surjection of Y(d, l, n)
onto Yd,n(q). If we map tj 7→ 1 for all j = 1, . . . , n, then we obtain a surjection of Y(d, l, n) onto H(l, n),
where H(l, n) denotes the Ariki–Koike algebra associated to G(l, 1, n) for l < ∞ and H(∞, n) denotes
the affine Hecke algebra of type A. Moreover, we have Y(d, 1, n) ∼= Yd,n(q) and Y(1, l, n) ∼= H(l, n). In
particular, we have Y(1, 1, n) ∼= Hn(q). All these relations are depicted in the following commutative
diagram (where l is taken to be a positive integer):
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H(∞, n) ∼= Y(1,∞, n)

(6.18) ** **TTTTTTTTTTTTTTTT
X1 7→1

-- --ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ

Y(d,∞, n)

tj 7→1

55 55llllllllllllll

(6.18)
// //

X1 7→1 )) ))RRRRRRRRRRRRRR
Y(d, l, n)

tj 7→1
// //

X1 7→Q0
����

H(l, n) ∼= Y(1, l, n)
X1 7→Q0

// // Hn(q) ∼= Y(1, 1, n)

Yd,n(q) ∼= Y(d, 1, n)

tj 7→1

11 11ddddddddddddddddddddddddddddddddddd

Remark 6.5 Let p be a prime number. In a recent series of papers [Vi1, Vi2, Vi3], Vignéras introduced
and studied a large family of algebras, called pro-p-Iwahori–Hecke algebras. They generalise convolution
algebras of compactly supported functions on a p-adic connected reductive group that are bi-invariant
under the pro-p-radical of an Iwahori subgroup, which play an important role in the p-modular repre-
sentation theory of p-adic reductive groups. In [ChSe] we have shown that the affine Yokonuma–Hecke
algebra Y(d,∞, n) is a pro-p-Iwahori–Hecke algebra. Thus, the affine Yokonuma–Hecke algebra gener-
alises the affine Hecke algebra of type A in a similar way that the Yokonuma–Hecke algebra generalises
the Iwahori–Hecke algebra of type A. In particular, for q = pm and d = pm − 1, where m is a positive
integer, Y(d,∞, n) is isomorphic to the convolution algebra of complex valued and compactly supported
functions on the group GLn(F ), with F a suitable p-adic field, that are bi-invariant under the pro-p-
radical of an Iwahori subgroup.

Remark 6.6 Following Lusztig’s approach in [Lu7], Cui [Cui] has established an explicit algebra isomor-
phism between the affine Yokonuma–Hecke algebra Y(d,∞, n) and a direct sum of matrix algebras over
tensor products of affine Hecke algebras of type A, similar to (6.14). More recently, Poulain d’Andecy
[PdA] obtained the same result, as well as an isomorphism between the cyclotomic Yokonuma–Hecke
algebra Y(d, l, n), where l <∞, and a direct sum of matrix algebras over tensor products of Ariki–Koike
algebras, using the same approach as in [JaPdA]. The isomorphism theorem for cyclotomic Yokonuma–
Hecke algebras has been subsequently re-obtained by Rostam [Ros] using his result that cyclotomic
Yokonuma–Hecke algebras are cyclotomic quiver Hecke algebras.

In [ChPdA2] we have constructed several bases for the algebra Y(d, l, n). In order to describe them
here, we introduce the following notation: Let Zl := {0, . . . , l − 1} for l < ∞ and Z∞ := Z. We define
inductively elements X2, . . . , Xn of Y(d, l, n) by setting

Xi+1 := q−1giXigi for all i = 1, . . . , n− 1.

Let Bd,n be a basis of the Yokonuma–Hecke algebra Yd,n(q) ∼= Y(d, 1, n) over Rl (we can take, for
example, BH

d,n defined in (6.7)). We denote by BAK
d,l,n the following set of elements of Y(d, l, n):

Xa1
1 . . . Xan

n · ω , ak ∈ Zl and ω ∈ Bd,n.

Now, for k = 1, . . . , n, we set

W
(k)
J,a,b := g−1

J . . . g−1
2 g−1

1 Xa
1 t

b
1 g1g2 . . . gk−1 ,

W
(k)−
J,a,b := gJ . . . g2g1X

a
1 t

b
1 g
−1
1 g−1

2 . . . g−1
k−1 ,

W̃
(k)
J,a,b := gJ . . . g2g1X

a
1 t

b
1 g1g2 . . . gk−1 ,

W̃
(k)−
J,a,b := g−1

J . . . g−1
2 g−1

1 Xa
1 t

b
1 g
−1
1 g−1

2 . . . g−1
k−1 ,

where J ∈ {0, . . . , k − 1} and a, b ∈ Z. We use the following standard conventions: for ε = ±1,
gεJ . . . g

ε
2g
ε
1 := 1 and gεk−J . . . g

ε
k−2g

ε
k−1 := 1 if J = 0. Then we denote, respectively, by BInd

d,l,n, BInd−
d,l,n ,

B̃Ind
d,l,n and B̃Ind−

d,l,n the following sets of elements of Y(d, l, n):

W
(n)
Jn,an,bn

. . .W
(2)
J2,a2,b2

W
(1)
J1,a1,b1

, Jk ∈ {0, . . . , k − 1}, ak ∈ Zl and bk ∈ {0, . . . , d− 1}.
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W
(n)−
Jn,an,bn

. . .W
(2)−
J2,a2,b2

W
(1)−
J1,a1,b1

, Jk ∈ {0, . . . , k − 1}, ak ∈ Zl and bk ∈ {0, . . . , d− 1}.

W̃
(n)
Jn,an,bn

. . . W̃
(2)
J2,a2,b2

W̃
(1)
J1,a1,b1

, Jk ∈ {0, . . . , k − 1}, ak ∈ Zl and bk ∈ {0, . . . , d− 1}.

W̃
(n)−
Jn,an,bn

. . . W̃
(2)−
J2,a2,b2

W̃
(1)−
J1,a1,b1

, Jk ∈ {0, . . . , k − 1}, ak ∈ Zl and bk ∈ {0, . . . , d− 1}.
We then have the following [ChPdA2, Theorem 4.4]:

Theorem 6.7 Each set BAK
d,l,n, BInd

d,l,n, BInd−
d,l,n , B̃Ind

d,l,n and B̃Ind−
d,l,n is an Rl-basis of Y(d, l, n). In particular,

Y(d, l, n) is a free Rl-module and, if l <∞, its rank is equal to (dl)nn!.

Remark 6.8 The set BAK
d,l,n is the analogue of the Ariki–Koike basis (4.1) of the Ariki–Koike algebra

H(l, n) for l <∞, and the standard Bernstein basis of the affine Hecke algebra of type A for l =∞. The
four other sets are inductive sets with respect to n, which are analogous to the inductive bases of H(l, n)
studied in [La2, OgPo].

Furthermore, in [ChPdA2] we have studied the representation theory of the cyclotomic Yokonuma–
Hecke algebra Y(d, l, n), which is quite similar to the representation theory of the Yokonuma–Hecke
algebra Yd,n(q). From now on, we only consider the case l <∞.

Let Kl denote the field of fractions of Rl. We will see that the irreducible representations of the
algebra KlY(d, l, n) are parametrised by the dl-partitions of n. Instead of looking though at dl-partitions
as dl-tuples of partitions, we look at them as d-tuples of l-partitions, and we call them (d, l)-partitions
when seen as such. We denote by P(d, l, n) the set of (d, l)-partitions of n. If λ ∈ P(d, l, n), then

λ = (λ(0),λ(1), . . . ,λ(d−1)), where λ(i) is an l-partition for all i = 0, 1, . . . , d − 1, and
∑d−1
i=0 |λ

(i)| = n.

We thus have λ(i) = (λ(i,0), λ(i,1), . . . , λ(i,l−1)), where λ(i,j) is a partition for all i = 0, 1, . . . , d − 1 and

j = 0, 1, . . . , l − 1, and
∑d−1
i=0

∑l−1
j=0 |λ(i,j)| = n.

A node θ of λ is a 4-tuple (x, y, i, j), where 0 6 i 6 d − 1, 0 6 j 6 l − 1 and (x, y) is a node of the
partition λ(i,j). We define p(θ) := i to be the d-position of θ and c(θ) := Qjq

y−x to be the l-quantum
content of θ.

Following the definitions in §6.1, a (d, l)-tableau is simply a dl-tableau and a standard (d, l)-tableau
is simply a standard dl-tableau. For a (d, l)-tableau T and for i = 1, . . . , n, we denote respectively by
p(T |i) and c(T |i) the d-position and the l-quantum content of the node with the number i in it.

Now, let λ ∈ P(d, l, n), and let Vλ be a C(q)-vector space with a basis {vT } indexed by the standard
(d, l)-tableaux of shape λ. We set vT := 0 for any non-standard (d, l)-tableau T of shape λ. By [ChPdA2,
Propositions 3.2 & 3.4], the vector space Vλ is a representation of KlY(d, l, n), with the action of the
generators g1, . . . , gn−1, t1, . . . , tn on the basis element vT defined exactly as in Theorem 6.2, and the
action of the generator X1 given by:

X1(vT ) = c(T |1) vT . (6.19)

Further, the set {Vλ |λ ∈ P(d, l, n)} is a complete set of pairwise non-isomorphic irreducible representa-
tions of KlY(d, l, n).

Remark 6.9 We can easily show, by induction on i, that [ChPdA2, Lemma 3.3]:

Xi(vT ) = c(T |i) vT for all i = 1, . . . , n. (6.20)

We also have a semisimplicity criterion for cyclotomic Yokonuma–Hecke algebras, which is exactly
the same as Ariki’s semisimplicity criterion (4.2) for Ariki–Koike algebras [ChPdA2, Proposition 4.7]:

Proposition 6.10 Let θ : Rl → C be a ring homomorphism such that θ(q)
∏l−1
j=0 θ(Qj) 6= 0. The

specialised cyclotomic Yokonuma–Hecke algebra CY(d, l, n)θ, defined via θ, is (split) semisimple if and
only if θ(P ) 6= 0, where

P =
∏

16i6n

(1 + q + · · ·+ qi−1)
∏

06s<t6l−1

∏
−n<k<n

(qkQs −Qt).

We deduce that the algebra CY(d, l, n)θ is semisimple if and only if the specialised Ariki–Koike algebra
CH(l, n)θ is semisimple.

Finally, we have proved the existence of a “canonical” symmetrising form on KlY(d, l, n) and calcu-
lated the Schur elements with respect to it [ChPdA2, §7]:
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Theorem 6.11 We define the linear map τ : Y(d, l, n)→ Rl by

τ(Xa1
1 . . . Xan

n tb11 . . . tbnn gw) =

{
1 if w = 1 and aj = bj = 0 for all j = 1, 2, . . . , n,
0 otherwise,

(6.21)

where w ∈ Sn, aj ∈ Zl and 0 6 bj 6 d − 1 for all j = 1, 2, . . . , n. Then τ (extended linearly) is a

symmetrising form on KlY(d, l, n). If λ = (λ(0), . . . ,λ(d−1)) ∈ P(d, l, n), then the Schur element of Vλ
with respect to τ is

sλ = dn sλ(0)sλ(1) . . . sλ(d−1) , (6.22)

where sλ(i) is the Schur element of the Ariki–Koike algebra H(l, |λ(i)|) corresponding to λ(i) for all
i = 0, 1, . . . , d− 1 (we take s∅ := 1).

A simple formula for the calculation of the Schur elements of Ariki–Koike algebras is given by Theorem
4.3.

Remark 6.12 The map τ is known to be a symmetrising form on Y(d, l, n) (defined over Rl) in cases
d = 1 [MalMat] and l = 1 [ChPdA1]. In these cases, τ is called the canonical symmetrising form on
Y(d, l, n).

Remark 6.13 Equation (6.22) hints towards an isomorphism between the cyclotomic Yokonuma–Hecke
algebra Y(d, l, n) and a direct sum of matrix algebras over tensor products of Ariki–Koike algebras; this
isomorphism was recently described by Poulain d’Andecy in [PdA] and by Rostam in [Ros].

6.3 Temperley–Lieb quotients of Yokonuma–Hecke algebras

The Temperley–Lieb algebra was introduced by Temperley and Lieb in [TeLi] for its applications in
statistical mechanics. Jones [Jo1, Jo2, Jo3] later showed that it can be obtained as a quotient of the
Iwahori–Hecke algebra Hn(q) of type A by a two-sided ideal, and used it for the construction of the knot
invariant known as the Jones polynomial.

Since Yokonuma–Hecke algebras can be also used for the definition of knot invariants, it was natural
to ask what the analogue of the Temperley–Lieb algebra would be in this case. As it is explained in more
detail in [JuLa5], where the technique of framisation is thoroughly discussed, three possible candidates
arose: the Yokonuma–Temperley–Lieb algebra [GJKL1], the Framisation of the Temperley–Lieb algebra
[GJKL2] and the Complex Reflection Temperley–Lieb algebra [GJKL2]. All three are defined as quotients
of the Yokonuma–Hecke algebra Yd,n(q) of type A by a suitable two-sided ideal, and they specialise to
the classical Temperley–Lieb algebra for d = 1.

In this section, we will determine the irreducible representations of the three algebras by showing
which representations of Yd,n(q) pass to each quotient. We will compute their dimensions and construct
bases for them. At the end of this section, it will be clear that the most natural analogue of the
Temperley–Lieb algebra in this setting is the Framisation of the Temperley–Lieb algebra.

First, let us recall some information about the classical setting. Let n > 3. The Temperley–Lieb
algebra TLn(q) is defined as the quotient of the Iwahori–Hecke algebra Hn(q) ∼= Y1,n(q) by the ideal In
generated by the elements

gi,i+1 := 1 + gi + gi+1 + gigi+1 + gi+1gi + gigi+1gi =
∑

w∈〈si,si+1〉

gw

for all i = 1, . . . , n− 2. It turns out that this ideal is principal, and we have In = 〈 g1,2 〉.
Since the algebra C(q)Hn(q) is semisimple, the algebra C(q)TLn(q) is also semisimple and its irre-

ducible representations are precisely the irreducible representations of C(q)Hn(q) that pass to the quo-
tient. That is, for λ ∈ P(n), Vλ is an irreducible representation of C(q)TLn(q) if and only if g1,2(vT ) = 0
for every standard tableau T of shape λ. It is easy to see that the latter is equivalent to the trivial
representation not being a direct summand of the restriction ResSn〈s1,s2〉(E

λ), where Eλ is the irreducible

representation of the symmetric group Sn labelled by λ. Since the restriction from Sn to S3
∼= 〈s1, s2〉

corresponds to the simple removal of boxes from the Young diagram of λ, and the trivial representation of
S3 is labelled by the partition (3), we obtain the following description of the irreducible representations
of C(q)TLn(q):
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Theorem 6.14 Let λ ∈ P(n). We have that Vλ is an irreducible representation of C(q)TLn(q) if and
only if the Young diagram of λ has at most two columns.

Now, let n ∈ N, and let i = (i1, . . . , ip) and k = (k1, . . . kp) be two p-tuples of non-negative integers,
with 0 6 p 6 n− 1. We denote by Hn the set of pairs (i, k) such that

1 6 i1 < i2 < · · · < ip 6 n− 1 and ij − kj > 1 ∀ j = 1, . . . , p.

For (i, k) ∈ Hn, we set

gi,k := (gi1gi1−1 . . . gi1−k1
)(gi2gi2−1 . . . gi2−k2

) . . . (gipgip−1 . . . gip−kp) ∈ Hn(q).

We take g∅,∅ to be equal to 1. We have that the set

BH
1,n = {gw |w ∈ Sn} = {gi,k | (i, k) ∈ Hn}

is the standard basis of Hn(q) as a C[q, q−1]-module.
Further, let us denote by Tn the subset of Hn consisting of the pairs (i, k) such that

1 6 i1 < i2 < · · · < ip 6 n− 1 and 1 6 i1 − k1 < i2 − k2 < · · · < ip − kp 6 n− 1.

Jones [Jo1] has shown that the set
BTL

1,n := {gi,k | (i, k) ∈ Tn}

is a basis of TLn(q) as a C[q, q−1]-module. We have |BTL
n | = Cn, where Cn is the n-th Catalan number,

i.e.,

Cn =
1

n+ 1

(
2n

n

)
=

1

n+ 1

n∑
k=0

(
n

k

)2

.

6.3.1 The Yokonuma–Temperley–Lieb algebra

Let d ∈ N∗ and let n ∈ N with n > 3. The Yokonuma–Temperley–Lieb algebra YTLd,n(q) is defined as
the quotient of the Yokonuma–Hecke algebra Yd,n(q) by the ideal Id,n := 〈 g1,2 〉.

Since the algebra C(q)Yd,n(q) is semisimple, the algebra C(q)YTLd,n(q) is also semisimple and its
irreducible representations are precisely the irreducible representations of C(q)Yd,n(q) that pass to the
quotient. That is, for λ ∈ P(d, n), Vλ is an irreducible representation of C(q)YTLd,n(q) if and only if
g1,2(vT ) = 0 for every standard d-tableau T of shape λ. It is easy to see that the latter is equivalent to

the trivial representation not being a direct summand of the restriction Res
G(d,1,n)
〈s1,s2〉 (Eλ), where Eλ is the

irreducible representation of the complex reflection group G(d, 1, n) labelled by λ. Unfortunately, this
restriction for d > 1 does not correspond to the simple removal of boxes from the Young diagram of λ
(as in the symmetric group case), but it is controlled by the so-called Littlewood–Richardson coefficients.
Using algebraic combinatorics, we obtain the following description of the irreducible representations of
C(q)YTLd,n(q) [ChPo1, Theorem 3]:

Theorem 6.15 Let λ = (λ(0), . . . , λ(d−1)) ∈ P(d, n). We have that Vλ is an irreducible representation
of C(q)YTLd,n(q) if and only if the Young diagram of λ has at most two columns in total, that is,∑d−1
i=0 λ

(i)
1 6 2.

Using the fact that the algebra C(q)YTLd,n(q) is semisimple and the above description of its irre-
ducible representations, we have been able to calculate the dimension of the Yokonuma–Temperley–Lieb
algebra [ChPo1, Proposition 4]. We have

dimC(q)(C(q)YTLd,n(q)) =
n(d2 − d) + d2 + d

2
Cn − (d2 − d).

What is more, we have shown in [ChPo1] that YTLd,n(q) is a free C[q, q−1]-module of rank equal to the
dimension above. However, note that, even though the set

BH
d,n =

{
tr11 . . . trnn gi,k | (i, k) ∈ Hn, 0 6 rj 6 d− 1 for all j = 1, 2, . . . , n}
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is a basis of Yd,n(q) as a C[q, q−1]-module, the set

BTL
d,n =

{
tr11 . . . trnn gi,k | (i, k) ∈ Tn, 0 6 rj 6 d− 1 for all j = 1, 2, . . . , n}

is not a basis of YTLd,n(q) as a C[q, q−1]-module, since |BTL
d,n| = dnCn. The set BTL

d,n is simply a generating

set for YTLd,n(q), and we have managed to find a subset BYTL
d,n of BTL

d,n that is a basis of YTLd,n(q) by
proving the following remarkable property: Let (i, k) ∈ Tn. We denote by I(gi,k) the set (without
repetition) of all indices of the gj ’s appearing in gi,k, i.e.,

I(gi,k) = {i1, i1 − 1, . . . , i1 − k1, i2, i2 − 1, . . . , i2 − k2, . . . , ip, ip − 1, . . . , ip − kp}.

We define the weight of gi,k to be wi,k := |I(gi,k)|. We then have [ChPo1, Propositions 9, 11, 12]:

|{(r1, . . . , rn) ∈ {0, . . . , d− 1}n | tr11 . . . trnn gi,k ∈ BYTL
d,n }| = 2n−wi,k−1(d2 − d) + d− δwi,k,0(d2 − d),

where δi,j stands for Kronecker’s delta (note that we have wi,k = 0 if and only if gi,k = 1). Thanks to
this property, an explicit basis for YTLd,n(q) as a C[q, q−1]-module is described in [ChPo1].

6.3.2 The Framisation of the Temperley–Lieb algebra

Let d ∈ N∗ and let n ∈ N with n > 3. The Framisation of the Temperley–Lieb algebra FTLd,n(q) is
defined as the quotient of the Yokonuma–Hecke algebra Yd,n(q) by the ideal Jd,n := 〈 e1e2g1,2 〉. We
remark that Jd,n can be also defined as the ideal generated by the element

∑
06a,b6d−1 t

a
1t
b
2t
−a−b
3 g1,2.

Again, since the algebra C(q)Yd,n(q) is semisimple, the algebra C(q)FTLd,n(q) is also semisimple
and its irreducible representations are precisely the irreducible representations of C(q)Yd,n(q) that pass
to the quotient. That is, for λ ∈ P(d, n), Vλ is an irreducible representation of C(q)FTLd,n(q) if
and only if e1e2g1,2(vT ) = 0 for every standard d-tableau T of shape λ. Using the formulas for the
irreducible representations of C(q)Yd,n(q) given by Theorem 6.2, we obtain the following description of
the irreducible representations of C(q)FTLd,n(q) [ChPo2, Theorem 3.10]:

Theorem 6.16 Let λ = (λ(0), . . . , λ(d−1)) ∈ P(d, n). We have that Vλ is an irreducible representation of
C(q)FTLd,n(q) if and only if the Young diagram of λ(i) has at most two columns for each i = 0, . . . , d−1.

Following the recipe of [JaPdA, §3], we have proved the following isomorphism theorem for FTLd,n(q)
[ChPo2, Theorem 4.3]:

Theorem 6.17 There exists a C[q, q−1] algebra isomorphism

ψn : FTLd,n(q)→
⊕

µ∈Compd(n)

Matmµ(TLµ0
(q)⊗ TLµ1

(q)⊗ · · · ⊗ TLµd−1
(q)),

where Compd(n) and mµ are as defined in (6.15) and (6.16), and we take TLn(q) ∼= Hn(q) for n < 3.

We deduce that the following set is a basis of FTLd,n(q) as a C[q, q−1]-module:{
ψ−1
n (bµ0 b

µ
1 . . . b

µ
d−1M

µ
k,l) |µ ∈ Compd(n), bµi ∈ B

TL
1,µi for all i = 0, . . . , d− 1, 1 6 k, l 6 mµ

}
,

where Mµ
k,l denotes the elementary mµ×mµ matrix with 1 in position (k, l). In particular, FTLd,n(q) is

a free C[q, q−1]-module of rank ∑
µ∈Compd(n)

m2
µ Cµ0

Cµ1
· · ·Cµd−1

.
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6.3.3 The Complex Reflection Temperley–Lieb algebra

Let d ∈ N∗ and let n ∈ N with n > 3. The Complex Reflection Temperley–Lieb algebra CTLd,n(q) is

defined as the quotient of the Yokonuma–Hecke algebra Yd,n(q) by the ideal Kd,n := 〈
∑d−1
s=0 t

s
1e1e2g1,2 〉.

We remark that Kd,n can be also viewed as the ideal generated by the element
∑

06a,b,c6d−1 t
a
1t
b
2t
c
3 g1,2.

Once more, the algebra C(q)CTLd,n(q) is semisimple and, for λ ∈ P(d, n), Vλ is an irreducible

representation of C(q)CTLd,n(q) if and only if
∑d−1
s=0 t

s
1e1e2g1,2(vT ) = 0 for every standard d-tableau T

of shape λ. Using the formulas for the irreducible representations of C(q)Yd,n(q) given by Theorem 6.2,
we obtain the following description of the irreducible representations of C(q)CTLd,n(q) [ChPo2, Theorem
5.3]:

Theorem 6.18 Let {ξ0, ξ1, . . . , ξd−1} be the set of all d-th roots of unity (ordered arbitrarily) as in
Theorem 6.2. Let i0 ∈ {0, . . . , d − 1} be such that ξi0 = 1, and let λ = (λ(0), . . . , λ(d−1)) ∈ P(d, n). We
have that Vλ is an irreducible representation of C(q)CTLd,n(q) if and only if the Young diagram of λ(i0)

has at most two columns.

Following the recipe of [JaPdA, §3], we have proved the following isomorphism theorem for CTLd,n(q)
[ChPo2, Theorem 5.8]:

Theorem 6.19 There exists a C[q, q−1] algebra isomorphism

ψn : CTLd,n(q)→
⊕

µ∈Compd(n)

Matmµ(TLµ0(q)⊗Hµ1(q)⊗Hµ2(q)⊗ · · · ⊗ Hµd−1
(q)),

where Compd(n) and mµ are as defined in (6.15) and (6.16), and we take TLn(q) ∼= Hn(q) for n < 3.

We deduce that the following set is a basis of CTLd,n(q) as a C[q, q−1]-module:{
ψ
−1

n (bµ0 b
µ
1 . . . b

µ
d−1M

µ
k,l) |µ ∈ Compd(n), bµ0 ∈ BTL

1,µ0
, bµi ∈ B

H
1,µi for all i = 1, . . . , d− 1, 1 6 k, l 6 mµ

}
,

where Mµ
k,l denotes the elementary mµ ×mµ matrix with 1 in position (k, l). In particular, CTLd,n(q)

is a free C[q, q−1]-module of rank ∑
µ∈Compd(n)

m2
µ Cµ0µ1! . . . µd−1!.

6.3.4 Relations between the Temperley–Lieb quotients

Let d ∈ N∗ and let n ∈ N with n > 3. The inclusions of ideals Kd,n ⊆ Jd,n ⊆ Id,n yield the following
commutative diagram of natural algebra epimorphisms:

Yd,n(q) // //

����

CTLd,n(q) // //

����

FTLd,n(q) // //

xxxxppppppppppp
YTLd,n(q)

sssshhhhhhhhhhhhhhhhhhhhhh

Hn(q) // // TLn(q)

where the non-horizontal arrows are defined by tj 7→ 1 for all j = 1, . . . , n.

6.4 Knot invariants

One of the reasons that the interest in Yokonuma–Hecke algebras was rekindled in the past years was
that Juyumaya and Lambropoulou used the Markov trace on them defined by the former [Ju2] in order
to construct isotopy invariants for framed [JuLa1, JuLa2], classical [JuLa3] and singular [JuLa4] knots
and links. Their method is the same as the one applied by Jones, who used the Ocneanu trace on the
Iwahori–Hecke algebra of type A to define the Jones polynomial [Jo2], an invariant for classical knots
and links arising from the Temperley–Lieb algebra. The same technique, when applied directly to the
Iwahori–Hecke algebra, yielded the Homflypt polynomial or 2-variable Jones polynomial [HOMFLY, PT].
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6.4.1 Invariants from Yokonuma–Hecke algebras for framed knots and links

From now on, set R := C[q, q−1]. Using the natural inclusions Yd,n(q) ⊂ Yd,n+1(q), we can define a
Markov trace on

⋃
n>0 Yd,n(q) as follows (cf. [Ju2, Theorem 12]):

Theorem 6.20 Let z, x1, . . . , xd−1 be indeterminates over C(q). There exists a unique linear Markov
trace

trd :
⋃
n>0

Yd,n(q) −→ R[z, x1, . . . , xd−1]

defined inductively on Yd,n(q), for all n > 0, by the following rules:

(1) trd(ab) = trd(ba) a, b ∈ Yd,n(q)
(2) trd(1) = 1 1 ∈ Yd,n(q)
(3) trd(agn) = z trd(a) a ∈ Yd,n(q) (Markov property)
(4) trd(at

k
n+1) = xk trd(a) a ∈ Yd,n(q) (1 6 k 6 d− 1).

For d = 1, the trace tr1 is defined by only the first three rules, and it is the Ocneanu trace on the
Iwahori–Hecke algebra Hn(q) ∼= Y1,n(q).

Remark 6.21 The canonical symmetrising form on Yd,n(q) defined by (6.12) coincides with the Markov
trace with parameters z = x1 = · · · = xd−1 = 0.

The relations (b1), (b2), (f1) and (f2) in the definition of the Yokonuma–Hecke algebra (6.1) are
defining relations for the framed braid group Fn ∼= Z o Bn, where Bn is the classical braid group on n
strands (its generators usually denoted by σ1, . . . , σn−1), with the tj ’s being interpreted as the “elemen-
tary framings” (framing 1 on the j-th strand). The relations tdj = 1 mean that the framing of each braid
strand is regarded modulo d. Thus, the algebra Yd,n(q) arises naturally as a quotient of the framed braid
group algebra over the modular relations (f3) and the quadratic relations (6.2). Moreover, relations (6.1)
are defining relations for the modular framed braid group Fd,n ∼= (Z/dZ) oBn, so the algebra Yd,n(q) can
be also seen as a quotient of the modular framed braid group algebra over the quadratic relations (6.2).

For any α ∈ Fn, we denote by α̂ the link obtained as the closure of α. By the Alexander Theorem,
we have that Lf := ∪n{α̂ |α ∈ Fn} is the set of all oriented framed links. Further, by the Markov
Theorem (see [KoSm]), isotopy of framed links is generated by conjugation in Fn and by positive and
negative stabilisation and destabilisation (α ∼ ασ±1

n ), for any n ∈ N. Using now the natural R-algebra
epimorphism from R[Fn] onto Yd,n(q) given by σi 7→ gi and tj 7→ tj , and abusing notation, we can define
the trace trd on the elements of CFn, and thus, in particular, on the elements of Fn. In order to use
trd for constructing invariants for framed knots and links after Jones’s method, the trace trd has to be
normalised, so that the closures of the framed braids α and ασn (α ∈ Fn) be assigned the same value
of the invariant, and re-scaled, so that the closures of the framed braids ασ−1

n and ασn (α ∈ Fn) be
assigned the same value of the invariant. However, trd(ασ

−1
n ) does not factor through trd(α) as in the

classical case, that is,

trd(ασ
−1
n )

(6.4)
= q−1trd(ασn) + (q−1 − 1) trd(αen) 6= trd(α)trd(σ

−1
n ).

The reason is that, although trd(ασn) = z trd(α) = trd(α)trd(σn), trd(αen) does not always factor
through trd(α), that is,

trd(αen) 6= trd(α)trd(en).

Forcing the so-called E–condition

trd(aen) = trd(a)trd(en) for any n > 1 and all a ∈ Yd,n(q)

yields that the trace parameters x1, . . . , xd−1 have to satisfy the following non-linear system of equations,
called the E–system:

d−1∑
s=0

xk+sxd−s = xk

d−1∑
s=0

xsxd−s (1 6 k 6 d− 1),
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where the sub-indices on the xj ’s are regarded modulo d and x0 := 1. Note that

1

d

d−1∑
s=0

xsxd−s = trd(ei) for all i = 1, . . . , n− 1.

It has been shown by Gérardin [JuLa2, Appendix] that the solutions of the E–system are parametrised
by the non-empty subsets of Z/dZ. More specifically, if D is a non-empty subset of Z/dZ, then the
corresponding solution of the E–system is XD := (x1, . . . , xd−1), where

xk :=
1

|D|
∑
j∈D

ζkjd (1 6 k 6 d− 1). (6.23)

Let now D be a non-empty subset of Z/dZ and let XD = (x1, . . . , xd−1) be the corresponding solution
of the E–system. We shall call specialised trace and denote by trd,D, the trace trd where the parameter
xj is specialised to xj for all j = 1, . . . , d− 1 [ChLa, Definition 3]. We then have

ED := trd,D(ei) =
1

|D|
for all i = 1, . . . , n− 1,

and (cf. [JuLa2, Theorem 7 & Lemma 8]):

trd,D(aen) = ED trd,D(a) and trd,D(aengn) = z trd,D(a) for all a ∈ Yd,n(q). (6.24)

Note that, for d = 1, the specialised trace tr1,{0} coincides with tr1, which in turn coincides with the
Ocneanu trace on Hn(q) ∼= Y1,n(q).

Remark 6.22 Following (6.23), we have

ED = 1⇔ |D| = 1⇔ xd1 = 1 and xk = xk1 (1 6 k 6 d− 1)

and

ED =
1

d
⇔ D = Z/dZ⇔ xk = 0 (1 6 k 6 d− 1).

The latter is the “trivial” solution of the E–system.

We now set

λD :=
z + (1− q)ED

qz
and ΛD :=

1

z
√
λD

. (6.25)

We also set RD := R[z±1,
√
λD
±1
,
√
q±1]. Normalising and re-scaling the specialised trace trd,D (which

is possible due to the E–condition) yields the following [CJKL, Theorem 3.1]:

Theorem 6.23 For any framed braid α ∈ Fn, we define

Φd,D(α̂) := Λn−1
D (

√
λD)ε(α) trd,D(α) ,

where ε(α) is the sum of the exponents of the braiding generators σi in the word α. Then the map

Φd,D(q, z) : Lf → RD, L 7→ Φd,D(L)

is a 2-variable isotopy invariant of oriented framed links.

Remark 6.24 Note that, for every d ∈ N∗, we have 2d − 1 distinct solutions of the E–system, so the
above construction yields 2d − 1 seemingly distinct isotopy invariants for framed links.

Remark 6.25 Using (6.25), we can obtain defining equations for z and ΛD with respect to λD, namely,

z :=
(1− q)ED
qλD − 1

and ΛD :=
1

z
√
λD

.

Accordingly, we can use the notation Φd,D(q, λD) instead of Φd,D(q, z) .
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Remark 6.26 In [JuLa2], the old quadratic relation (6.5) was used. Using the natural surjection of
R[Fn] onto Yd,n(q) given by σi 7→ gi and tj 7→ tj , and normalising and re-scaling the specialised trace,
invariants Γd,D(q, z) for oriented framed links were defined in [JuLa2, Theorem 8].

In [JuLa2, Proposition 7] a skein relation is found for the invariant Γd,D, involving the braiding and
the framing generators. It reads:

1√
λD

Γd,D(L+)−
√
λDΓd,D(L−) =

1− q−1

d

d−1∑
s=0

Γd,D(Ls) +
1− q−1

d
√
λD

d−1∑
s=0

Γd,D(Ls×) (6.26)

where the links L+, L−, Ls and Ls× are illustrated in Figure 6.1.

β β β β

0 0 0 0 0 0 s d − s 0 s d − s 0

L+ = β̂σ1 L− = β̂σ1
−1 Ls =

̂
βts1t

d−s
2 Ls× =

̂
βts1t

d−s
2 σ1

Figure 6.1: The framed links in the skein relation in open braid form.

Analogously, with the new quadratic relations, the invariant Φd,D satisfies the following skein relation:

1√
qλD

Φd,D(L+)−
√
qλDΦd,D(L−) =

q1/2 − q−1/2

d

d−1∑
s=0

Φd,D(Ls) (6.27)

where the links L+, L− and Ls are illustrated in Figure 6.1. The fact that the skein relation for Φd,D
is very different from the skein relation for Γd,D is an indication that the two invariants may not be
topologically equivalent. We also have computational data that seem to support this claim [Ai].

6.4.2 Invariants from Yokonuma–Hecke algebras for classical knots and links

Let L denote the set of oriented classical links. By the Alexander Theorem, we have L = ∪n{α̂ |α ∈ Bn}.
The classical braid group Bn injects into the framed braid group Fn ∼= ZnoBn, whereby elements of Bn
are viewed as framed braids with all framings equal to zero. So, by the classical Markov braid equivalence,
comprising conjugation in the groups Bn and positive and negative stabilisations and destabilisations,
and by treating the tj ’s as formal generators, Φd,D(q, z) becomes an isotopy invariant of oriented classical
links when restricted to L (see also [JuLa3]). This invariant of classical links will be denoted by Θd,D(q, z).
Accordingly, for any classical braid α ∈ Bn, we have

Θd,D(α̂) := Λn−1
D (

√
λD)ε(α) trd,D(α) ,

where λD and ΛD are given by (6.25), and ε(α) is the sum of the exponents of the braiding generators
σi in the word α.

Remark 6.27 Following Remark 6.24, the above construction yields 2d − 1 seemingly distinct isotopy
invariants for classical links. However, we shall see soon that, for classical links, we only obtain one
invariant for every d ∈ N∗.

The invariants Θd,D(q, z) need to be compared with known invariants of classical links, especially with
the Homflypt polynomial. The Homflypt (or 2-variable Jones) polynomial P (q, z) is a 2-variable isotopy
invariant of oriented classical links that was constructed from the Iwahori–Hecke algebras Hn(q) after
normalising and re-scaling the Ocneanu trace [Jo3]. Here we define P (q, z) via the invariants Θd,D(q, z),
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since, for d = 1, the algebras Hn(q) and Y1,n(q) coincide, while the Ocneanu trace coincides with tr1

and tr1,{0}. For any classical braid α ∈ Bn, we define

P (α̂) := Θ1,{0}(α̂) =

(
1

z
√
λH

)n−1

(
√
λH)ε(α) tr1,{0}(α) ,

where

λH :=
z + (1− q)

qz
= λ{0},

and ε(α) is the sum of the exponents of the braiding generators σi in the word α. Further, the Homflypt
polynomial satisfies the following skein relation [Jo3]:

1√
qλH

P (L+)−
√
qλH P (L−) = (q1/2 − q−1/2)P (L0) (6.28)

where L+, L−, L0 is a Conway triple.
Contrary to the case of framed links, the skein relation of the invariant Φd,D(q, z) has no topological

interpretation in the case of classical links, since it introduces framings. This makes it very difficult
to compare the invariants Θd,D(q, z) with the Homflypt polynomial using diagrammatic methods. On
the algebraic level, there are no algebra homomorphisms connecting the algebras and the traces (see
[ChLa]). Further, for generic values of the parameters q, z the invariants Θd,D(q, z) do not coincide with
the Homflypt polynomial; they only coincide when q = 1 or when ED = 1 (cf. [ChLa, Theorem 5]).

Remark 6.28 Similarly to Φd,D(q, z), the invariant Γd,D(q, z) becomes an isotopy invariant of oriented
classical links when restricted to L. This invariant of classical links is denoted by ∆d,D(q, z) and it is
the one studied in [JuLa3] and [ChLa]. Again, there is no reason that the invariants ∆d,D(q, z) and
Θd,D(q, z) are topologically equivalent. In fact, we have computational data that seem to indicate that
they are not [Ai]. Note though that, for d = 1, ∆1,{0}(q, z) = Θ1,{0}(q, z) (this can be easily seen by
writing down the skein relation for ∆1,{0} and for Θ1,{0}), so both families of invariants include the
Homflypt polynomial as a special case.

We will now see that the specialised trace trd,D, when computed on elements of the classical braid
group Bn, can be computed via rules involving only the traces of the elements gi and ei. This in turn
will imply that the invariants Θd,D of oriented classical links depend only on the cardinality of D.

Let δ : R[Bn] → Yd,n(q) be the natural R-algebra homomorphism given by σi 7→ gi. Then, for any
α ∈ Bn, δ(α) involves only the braiding generators g1, . . . , gn−1. In fact, we have that the image of δ is
the subalgebra Yd,n(q)(br) of Yd,n(q) generated by g1, . . . , gn−1 [CJKL, Proposition 4.1].

Remark 6.29 If q 6= 1, then

ei =
1

q − 1

(
q−1g3

i − gi
)
−
(
q−1g2

i − 1
)

for all i = 1, . . . , n− 1. So, when defined over R[(q − 1)−1], Yd,n(q)(br) coincides with the subalgebra of
Yd,n(q) generated by the elements g1, . . . , gn−1, e1, . . . , en−1, which in turn should be isomorphic, when
d > n, to the so-called algebra of braids and ties (see [EsRy]).

Now, during the calculation of the specialised trace trd,D on α ∈ Bn, the framing generators appear
only when the quadratic relation (6.2) and the inverse relation (6.4) are applied, and then only in the
form of the idempotents ei. So, it would make sense in this setting to substitute rule (4) of the definition
of trd,D by rules involving only the ei’s, such as (6.24). Indeed, we have the following [CJKL, Theorem
4.3]:

Theorem 6.30 Let m ∈ {1, . . . , d} and set Em := 1/m. Let z be an indeterminate over C. There exists
a unique linear Markov trace

trd,m :
⋃
n>0

Yd,n(q)(br) −→ R[z]
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defined inductively on Yd,n(q)(br), for all n > 0, by the following rules:

(i) trd,m(ab) = trd,m(ba) a, b ∈ Yd,n(q)(br)

(ii) trd,m(1) = 1 1 ∈ Yd,n(q)(br)

(iii) trd,m(agn) = z trd,m(a) a ∈ Yd,n(q)(br) (Markov property)
(iv) trd,m(aen) = Em trd,m(a) a ∈ Yd,n(q)(br)

(v) trd,m(aengn) = z trd,m(a) a ∈ Yd,n(q)(br).

For all a ∈
⋃
n>0 Yd,n(q)(br), we have trd,m(a) = trd,D(a) where D is any subset of Z/dZ such that

|D| = m. Note that, in this case, Em = ED.

For α ∈ Bn, we set trd,m(α) := trd,m(δ(α)). Theorem 6.30 implies that the specialised trace trd,D on
classical knots and links depends only on |D| and not on the solution XD of the E–system. It does not
even depend on d, since we have the following [CJKL, Corollary 4.4]:

Corollary 6.31 Let d, d′ be positive integers with d 6 d′. For all α ∈ Bn, we have

trd′,d(α) = trd,d(α) = trd,Z/dZ(α).

Remark 6.32 Recall that Z/dZ parametrises the trivial solution of the E–system, that is, the one given
by x1 = x2 = · · · = xd−1 = 0.

The above way of calculating the trace trd,D allows us to prove new results for the invariants Θd,D

of classical knots and links and to compare them with the Homflypt polynomial. Here is the first
observation. The construction of the invariants Θd,D yielded seemingly 2d− 1 invariants for every choice
of d. However, an immediate consequence of Theorem 6.30 and Corollary 6.31 is the following [CJKL,
Proposition 4.6]:

Proposition 6.33 The values of the isotopy invariants Θd,D for classical links depend only on the
cardinality |D| of D. Hence, for a fixed d, we only obtain d invariants. Further, for d, d′ positive
integers with d 6 d′, we have Θd,D = Θd′,D′ as long as |D| = |D′|. We deduce that, if |D′| = d, then
Θd′,D′ = Θd,Z/dZ. Therefore, the invariants Θd,D can be parametrised by the positive natural numbers,
setting Θd := Θd,Z/dZ for all d ∈ N∗.

Theorem 6.30 also enabled the development of a program for computing the invariants Θd with
much lower computational complexity than the one used for the computation of the invariants Γd,D (see
[ChmJKL]). Such a program has been developed by Karvounis [Kar] and it is available on [La-web].

Now, the main result of this section concerns the comparison of the invariants Θd with the Homflypt
polynomial. In [CJKL] we have obtained the following remarkable result:

Theorem 6.34 Let d ∈ N, d > 1. The invariants Θd are topologically equivalent to the Homflypt
polynomial on knots, and more generally on links that are obtained as disjoint unions of knots. However,
the invariants Θd are NOT topologically equivalent to the Homflypt polynomial on links.

For the first part, using the properties of the specialised trace, we have proved that, for all α ∈ Bn
such that α̂ is a knot, we have [CJKL, Theorem 5.8]:

Θd(q, z)(α̂) = Θ1(q, dz)(α̂) = P (q, dz)(α̂).

More generally, for all α ∈ Bn such that α̂ is a disjoint union of k knots, we have [CJKL, Theorem 6.2]:

Θd(q, z)(α̂) = dk−1Θ1(q, dz)(α̂) = dk−1P (q, dz)(α̂).

Note that, following Remark 6.25, the above equality can be rewritten as

Θd(q, λD)(α̂) = E1−k
D Θ1(q, λD)(α̂) = E1−k

D P (q, λD)(α̂),

where D = Z/dZ. We will simply write

Θd(α̂) = E1−k
D P (α̂). (6.29)
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For the second part, as mentioned earlier, a computer program has been developed on Mathematica,
which calculates the specialised trace trd,D (and thus the invariants Θd) by using only the five rules of
Theorem 6.30 and the new quadratic relation. Now, out of 4.188 links (with up to 11 crossings), there
are 89 pairs of P -equivalent links which do not differ only by orientation, that is, they are different links
if considered as unoriented links. Using the data from LinkInfo [ChaLi], we computed the invariants Θd

on all of them. Out of these 89 P -equivalent pairs of links, 83 are still Θd-equivalent for generic d, yet
we found that the following six pairs of 3-component P -equivalent links are not Θd-equivalent for every
d > 1:

L11n358{0, 1} L11n418{0, 0}
L11a467{0, 1} L11a527{0, 0}
L11n325{1, 1} L11n424{0, 0}
L10n79{1, 1} L10n95{1, 0}
L11a404{1, 1} L11a428{0, 1}
L10n76{1, 1} L11n425{1, 0}

Table 6.1: Six P -equivalent pairs of 3-component links which are not Θd-equivalent.

Further, in [CJKL, Theorem 7.3], we have proved diagrammatically that the invariants Θd, for d > 1,
distinguish the pair of P -equivalent links L11n358{0, 1} and L11n418{0, 0}1, using another remarkable
property of the invariants Θd, namely [CJKL, Theorem 6.19]:

Theorem 6.35 The invariants Θd can be completely defined via the Homflypt skein relation.

The above result derives from the fact that the invariants Θd satisfy a special skein relation [CJKL,
Proposition 6.8], which can only be applied on crossings involving two different components (and thus,
it cannot be applied, for example, on knots). Consider the standard Conway triple L+, L−, L0, as in the
following figure, where different colours represent different components:

β β β

L+ = β̂σ1 L− = β̂σ1
−1 L0 = β̂

Figure 6.2: The links in the special skein relation in open braid form.

Then the skein relation (6.27) for the framed link invariants Φd,D becomes:

1√
qλD

Φd,D(L+)−
√
qλDΦd,D(L−) = (q1/2 − q−1/2) Φd,D(L0) ,

which in turn yields the following skein relation for the invariants Θd:

1√
qλD

Θd(L+)−
√
qλDΘd(L−) = (q1/2 − q−1/2) Θd(L0) , (6.30)

where D = Z/dZ. Note that this is exactly the skein relation (6.28) of the Homflypt polynomial P (q, λD).

Remark 6.36 With the old quadratic relations for the Yokonuma–Hecke algebra, we would not have
been able to derive the special skein relation (6.30). The reason is that the skein relation (6.26) for the
invariants Γd,D contains also diagrams Ls× of L+ with framings which cannot be collected together (to
form L0) since they belong to different components.

1Similar diagrammatic proofs can be given for the remaining five pairs.
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Let now L be an oriented link with l components. The value of Θd on L at variables (q, λD) can be
computed diagrammatically by applying the following procedure:

Step 1. Apply the skein relation (6.30) on crossings linking different components until the link L is
decomposed into disjoint unions of knots. More specifically, we obtain that Θd(L) is written as
a linear combination of values of Θd on disjoint unions of knots with up to l components. For
k = 1, . . . , l, let N (L)k denote the set of all disjoint unions of k knots appearing in this linear
combination. We thus have

Θd(L) =

l∑
k=1

∑
α̂∈N (L)k

c(α̂)Θd(α̂)

for some c(α̂) ∈ Q[q±1,
√
λD
±1

].

Step 2. Apply (6.29), which yields

Θd(L) =
∑̀
k=1

E1−k
D

∑
α̂∈N (L)k

c(α̂)P (α̂),

where D = Z/dZ. We thus obtain that Θd(L) is a linear combination of Homflypt polynomials
of disjoint unions of knots obtained by the special skein relation [CJKL, Theorem 6.16].

Step 3. Apply the skein relation (6.28) of the Homflypt polynomial to obtain the value of P on α̂ at
variables (q, λD), for all disjoint unions of knots α̂ ∈ N (L)k, k = 1, . . . , l.

Finally, observing that in the above procedure, the rational number ED = 1/d could be taken to be a
parameter, we have constructed a new 3-variable skein link invariant Θ generalising both the invariants
Θd and the Homflypt polynomial [CJKL, Theorems 8.1]:

Theorem 6.37 Let q, λ, E be indeterminates over C. There exists a unique isotopy invariant of classical
oriented links Θ : L → C[q±1/2, λ±1, E±1] defined by the following rules:

1. For a disjoint union L of k knots, with k > 1, it holds that:

Θ(L) = E1−k P (L).

2. On crossings involving different components the following skein relation holds:

1√
qλ

Θ(L+)−
√
qλΘ(L−) = (q1/2 − q−1/2) Θ(L0),

where L+, L−, L0 is a Conway triple.

The invariant Θ specialises to the invariant Θd for E = ED and λ = λD, where D = Z/dZ (recall
that Θ1 = P ). It also distinguishes the six pairs of links of Table 6.1. Hence, we conclude the following
[CJKL, Theorem 8.2]:

Theorem 6.38 The invariant Θ(q, λ,E) is stronger than the Homflypt polynomial.

Remark 6.39 The invariants {Θd}d∈N∗ and Θ are topologically equivalent to the Homflypt polynomial
on knots. Since there is at least one pair of knots distinguished by the Homflypt polynomial but not
by the Kauffman polynomial, the invariants {Θd}d∈N∗ and Θ are not topologically equivalent to the
Kauffman polynomial.

Remark 6.40 An appendix was recently added to [CJKL]; it contains a closed formula, obtained by
Lickorish, for the 3-variable invariant Θ. For a given link L, this formula expresses Θ(L) as a non-
trivial mixture of linking numbers and Homflypt polynomials of all sublinks of L. The same result was
independently proved in [PdAWa].
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6.4.3 Invariants from affine and cyclotomic Yokonuma–Hecke algebras

Recall now the notation of Section 6.2. Let n ∈ N, d ∈ N∗ and l ∈ N∗ ∪ {∞}. We have Rl =

C[q±1, Q±1
0 , Q±1

1 , . . . , Q±1
l−1] if l <∞, and R∞ := C[q±1]. We define inductively elements X̃1, X̃2, . . . , X̃n

of Y(d, l, n) by setting

X̃1 := X1 and X̃i+1 := g−1
i X̃igi for i = 1, . . . , n− 1.

Note that X̃a
i = W

(i)
i−1,a,0 for all i = 1, . . . , n and a ∈ Z. We have tbiX̃

a
i = W

(i)
i−1,a,b = X̃a

i t
b
i for all b ∈ Z.

Using now the natural inclusions Y(d, l, n) ⊂ Y(d, l, n + 1), we can define a Markov trace on⋃
n>0 Y(d, l, n) as follows (cf. [ChPdA2, §5]):

Theorem 6.41 Let z and (xa,b)a∈Zl,b∈{0,...,d−1} be indeterminates over Rl. There exists a unique linear
Markov trace

trd,l :
⋃
n>0

Y(d, l, n) −→ Rl[z, (xa,b)a∈Zl,b∈{0,...,d−1}]

defined inductively on Y(d, l, n), for all n > 0, by the following rules:

(1) trd,l(uv) = trd,l(vu) u, v ∈ Y(d, l, n)
(2) trd,l(1) = 1 1 ∈ Y(d, l, n)
(3) trd,l(ugn) = z trd,l(u) u ∈ Y(d, l, n) (Markov property)

(4) trd,l(uX̃
a
n+1t

b
n+1) = xa,b trd,l(u) u ∈ Y(d, l, n) (a ∈ Zl, 0 6 b 6 d− 1).

Remark 6.42 For d = 1, the Markov trace tr1,l on the algebra H(l, n) ∼= Y(1, l, n) was introduced

• by Ocneanu/Jones [Jo2, Jo3] for l = 1,

• by Lambropoulou and Geck [La1, GeLa] for l = 2, and

• by Lambropoulou [La2] for l ∈ Z>3 ∪ {∞}.

For l = 1, trd,1 is the Markov trace trd on the Yokonuma–Hecke algebra Yd,n(q).

Remark 6.43 The canonical symmetrising form on KlY(d, l, n) defined by (6.21) coincides with the
Markov trace trd,l with parameters z = 0 and xa,b = δa,0δb,0.

The relations (b1), (b2), (f1) and (f2) in (6.1) together with relations (6.17) are defining relations for
the framed affine braid group Faff

n
∼= Z oBaff

n , where Baff
n is the affine braid group (its generators usually

denoted by σ0, σ1, . . . , σn−1), with the tj ’s being interpreted as the “elementary framings” (framing 1 on
the j-th strand). Moreover, relations (6.1) together relations (6.17) are defining relations for the modular
framed affine braid group Faff

d,n
∼= (Z/dZ) oBaff

n . Thus, the algebra Y(d, l, n) can be seen as a quotient of
both framed affine braid group algebra and modular framed affine braid group algebra

For any α ∈ Faff
n , we denote by α̂ the link obtained as the closure of α. By the Alexander Theorem,

we have that Laff
f := ∪n{α̂ |α ∈ Faff

n } is the set of all oriented framed links in the solid torus. Further,
in [ChPdA2, Theorem 6.6], we have shown that isotopy of framed links in the solid torus is generated by
conjugation in Faff

n and by positive and negative stabilisation and destabilisation (α ∼ ασ±1
n ), for any

n ∈ N. Using now the natural Rl-algebra epimorphism from Rl[Faff
n ] onto Y(d, l, n) given by σ0 7→ X1,

σi 7→ gi and tj 7→ tj , and abusing notation, we can define the trace trd,l on the elements of CFaff
n , and

thus, in particular, on the elements of Faff
n . In order to use trd,l for constructing invariants for framed

knots and links after Jones’s method, the trace trd,l has to be normalised, so that the closures of the
framed affine braids α and ασn (α ∈ Fn) be assigned the same value of the invariant, and re-scaled, so
that the closures of the framed affine braids ασ−1

n and ασn (α ∈ Fn) be assigned the same value of the
invariant. As in the non-affine case, we need to impose the affine E–condition:

trd,l(uen) = trd,l(u)trd,l(en) for any n > 1 and all u ∈ Y(d, l, n).

This condition yields in turn that the trace parameters (xa,b)a∈Zl,b∈{0,...,d−1} have to satisfy the following
non-linear system of equations, called the affine E–system [ChPdA2, Proposition 6.13]:

d−1∑
s=0

xa,b+sx0,d−s = xa,b

d−1∑
s=0

x0,sx0,d−s (a ∈ Zl, 0 6 b 6 d− 1).
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Note that

1

d

d−1∑
s=0

x0,sx0,d−s = trd,l(ei) for all i = 1, . . . , n− 1.

We have solved the affine E–system and obtained the following [ChPdA2, Proposition 6.15]:

Proposition 6.44 The affine E–condition holds if and only if there exists a non-empty subset D of
Z/dZ such that

x0,b =
1

|D|
∑
j∈D

ζbjd (0 6 b 6 d− 1) ,

that is, (x0,1, . . . , x0,d−1) is solution of the classical E–system, and, for a 6= 0,

(xa,0, xa,1, . . . , xa,d−1) ∈ SpanRl({(1, ζ
j
d, ζ

2j
d , . . . , ζ

(d−1)j) | j ∈ D}).

In this case, we have

trd,l(ei) =
1

|D|
for all i = 1, . . . , n− 1.

Assume now that the trace parameters (xa,b)a∈Zl,b∈{0,...,d−1} are a solution of the affine E–system
corresponding to a non-empty subset D of Z/dZ. We set

ED :=
1

|D|
, λD :=

z + (1− q)ED
qz

and ΛD :=
1

z
√
λD

.

We also set R̃l := Rl[z±1,
√
λD
±1
,
√
q±1]. We then have the following [ChPdA2, Theorem 6.8]:

Theorem 6.45 For any framed affine braid α ∈ Faff
n , we define

Ψd,l,D(α̂) := Λn−1
D (

√
λD)ε(α) trd,l(α) ,

where ε(α) is the sum of the exponents of the braiding generators σ1, . . . , σn−1 in the word α. The map

Ψd,l,D : Laff
f → R̃l, L 7→ Ψd,l,D(L)

is an isotopy invariant of oriented framed links in the solid torus.

The invariant Ψd,l,D when restricted to the set Lf of framed links coincides with the invariant Φd,D
of oriented framed links from the Yokonuma–Hecke algebra defined in Theorem 6.23.

Let now Laff denote the set of oriented (non-framed) links in the solid torus. The invariant Ψd,l,D when
restricted to Laff becomes an invariant of oriented links in the solid torus, which we will denote by Ωd,l,D.
For d = 1, the invariants Ω1,l,{0} coincide with the Homflypt-type invariants of oriented links in the solid
torus obtained from the cyclotomic and affine Hecke algebras in [La1, GeLa, La2]. When further restricted
to the set of L of oriented classical links, the invariants Ωd,l,D and Ω1,l,{0} coincide respectively with
the invariants Θd,D and the Homflypt polynomial Θ1,{0}, defined in the previous subsection. Following
Theorem 6.34, we deduce that the six pairs of links of Table 6.1 are distinguished by Ωd,l,D when |D| > 1,
but not by Ω1,l,{0}. We conclude the following [ChPdA2, Proposition 6.10]:

Proposition 6.46 The invariants Ωd,l,D with |D| > 1 are not topologically equivalent to the Homflypt-
type invariants of oriented links in the solid torus obtained from the cyclotomic and affine Hecke algebras.

6.4.4 Invariants from Temperley–Lieb quotients of Yokonuma–Hecke alge-
bras

The Ocneanu trace on the Iwahori–Hecke algebra Hn(q) passes to the Temperley–Lieb algebra TLn(q)
if and only if z = −1/(q + 1) or z = −1. Using the natural surjection of R[Bn] onto TLn(q) given by
σi 7→ gi, and normalising and re-scaling the Ocneanu trace for z = −1/(q + 1) (the case z = −1 not
being interesting topologically), Jones [Jo2] defined an 1-variable isotopy invariant of oriented classical
links V (q), known as the Jones polynomial. We have V (q) = P (q,−1/(q + 1)).
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Trying to repeat the same procedure for the construction of 1-variable isotopy invariants of oriented
framed and classical links from the Temperley–Lieb quotients of Yd,n(q), Goundaroulis, Juyumaya, Kon-
togeorgis and Lambropoulou have determined the values of the parameters z, x1, . . . , xd−1 for which the
trace trd passes to the Yokonuma–Temperley–Lieb algebra [GJKL1], the Framisation of the Temperley–
Lieb algebra [GJKL2] and the Complex Reflection Temperley–Lieb algebra [GJKL2]. In particular, they
have obtained that trd passes to:

• YTLd,n(q) only if x1 is a d-th root of unity and xk = xk1 for all k = 1, . . . , d− 1.

• FTLd,n(q) only if (x1, . . . , xd−1) is a solution of the E–system.

• CTLd,n(q) for many values of (x1, . . . , xd−1), including all solutions of the E–system.

Subsequently, in order to define knot invariants following Jones’s method, they have had to impose
the E–condition on the parameters x1, . . . , xd−1. If now x1 is a d-th root of unity and xk = xk1 for all
k = 1, . . . , d − 1, then (x1, . . . , xd−1) is a solution of the E–system parametrised by a singleton subset
of Z/dZ (case ED = 1). In this case, there is a loss of the framing information, while if we restrict
to the case of classical links, the invariants from the Yokonuma–Temperley algebra coincide with the
Jones polynomial (cf. [ChLa, Theorem 5]). Thus, the Yokonuma–Temperley–Lieb algebra is not very
interesting topologically.

For the Framisation of the Temperley–Lieb algebra the conditions are not so restrictive. If D is a
non-empty subset of Z/dZ and XD is the corresponding solution of the E–system, then the specialised
trace trd,D passes to FTLd,n(q) if and only if z = −ED/(q + 1) or z = −ED [GJKL2, Proposition 8].
Using the natural surjection of R[Fn] onto FTLd,n(q) given by σi 7→ gi and tj 7→ tj , and normalising
and re-scaling trd,D for z = −ED/(q + 1) (the case z = −ED not being interesting topologically), one
can construct 1-variable invariants φd,D(q) of oriented framed links [GJKL2, Definition 7]. We have
φd,D(q) = Φd,D(q,−ED/(q + 1)). Similarly to the Yokonuma–Hecke algebra case, these invariants,
when restricted to classical links, are parametrised by the positive natural numbers; we denote them
by θd, where d ∈ N∗. We then have θd(q) = Θd(q,−1/d(q + 1)), and so V (q) = θ1(q). The invariants
Θd(q,−1/d(q + 1)) still distinguish the six P -equivalent pairs of Table 6.1, whence, following Theorem
6.34, we conclude the following (see also [GJKL2, Proposition 11 & Theorem 9]):

Proposition 6.47 Let d ∈ N, d > 1. The invariants θd are topologically equivalent to the Jones polyno-
mial on knots, and more generally on links that are obtained as disjoint unions of knots. However, the
invariants θd are not topologically equivalent to the Jones polynomial on links.

Remark 6.48 A 2-variable generalisation of θd and the Jones polynomial (obtained as a specialiasation
of the invariant Θ defined in Theorem 6.37) was recently introduced and studied in [GouLa].

Finally, as far as the Complex Reflection Temperley–Lieb algebra is concerned, we can take again
(x1, . . . , xd−1) to be any solution of the E-system. Let D be a non-empty subset of Z/dZ and let XD be
the corresponding solution of the E–system. By [GJKL2, Proposition 9], if 0 /∈ D, then trd,D passes to
CTLd,n(q) for any value of z; if 0 ∈ D, then trd,D passes to CTLd,n(q) if and only if z = −ED/(q + 1)
or z = −ED. We conclude the following about the invariants arising from the Complex Reflection
Temperley–Lieb algebra [GJKL2, Proposition 10]:

Proposition 6.49 Let D be a non-empty subset of Z/dZ and let XD be the corresponding solution of the
E–system. If 0 /∈ D, then the invariants obtained from CTLd,n(q) coincide with the invariants obtained
from Yd,n(q). If 0 ∈ D, then the invariants obtained from CTLd,n(q) coincide witht the invariants
obtained from FTLd,n(q).
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[Ro1] R. Rouquier, Familles et blocs d’algèbres de Hecke, C. R. Acad. Sciences 329 (1999), 1037–1042.

[Ro2] R. Rouquier, q-Schur algebras and complex reflection groups, Mosc. Math. J. 8 (2008), 119–158.

[Ro3] R. Rouquier, 2-Kac-Moody algebras, preprint, arXiv:0812.5023.

[ShTo] G. C. Shephard, J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304.

[Sp] T. A. Springer, Quelques applications de la cohomologie d’intersection, Séminaire Bourbaki
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