
HAL Id: tel-01408450
https://hal.science/tel-01408450v2

Submitted on 10 Jan 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomic Thread Parallelism and Mapping Control for
Software Transactional Memory

Naweiluo Zhou

To cite this version:
Naweiluo Zhou. Autonomic Thread Parallelism and Mapping Control for Software Transactional
Memory. Logic in Computer Science [cs.LO]. Université Grenoble Alpes, 2016. English. �NNT :
2016GREAM045�. �tel-01408450v2�

https://hal.science/tel-01408450v2
https://hal.archives-ouvertes.fr

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatics

Arrêté ministérial : 7th August 2006

Présentée par

Naweiluo Zhou

Thèse dirigée par Éric Rutten, Jean-François Méhaut

et codirigée par Gwenaël Delaval

préparée au sein Laboratoire d’informatique de Grenoble - LIG

et de École Doctorale Mathématiques, Sciences et Technologies de

l’Information, Informatique

Autonomic Thread Parallelism
and Mapping Control for
Software Transactional Memory

Thèse soutenue publiquement le 19th October 2016,

devant le jury composé de :

M.Raymond Namyst
Professeur, Université de Bordeaux, Rapporteur

M.Lionel Seinturier
Professeur, Université Lille 1, Rapporteur

M.Christian Perez
Directeur de recherche, INRIA Lyon , Examinateur

M.Jean-François Méhaut
Professeur, Université de Grenoble Alpes, Directeur de thèse

M.Éric Rutten
Chargé de recherche, INRIA Grenoble , Directeur de thèse

M.Gwenaël Delaval
Associate professeur, Université de Grenoble Alpes, Co-Directeur de thèse

M.Bogdan Robu
Associate professeur, Université de Grenoble Alpes, Invité

GRENOBLE ALPES UNIVERSITY

INRIA

Autonomic Thread Parallelism and
Mapping Control for Software

Transactional Memory

A THESIS

SUBMITTED TO GRENOBLE ALPES UNIVERSITY

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY (PHD)

Author:

Naweiluo ZHOU

Supervisors:

Prof. Jean-François MÉHAUT

Dr.Éric RUTTEN

Dr.Gwenaël DELAVAL

CORSE and Ctrl-A Research Teams

2016

Contents

Abstract x

Research Collaboration and Scientific Context xi

Acknowledgements xiii

1 Introduction 2

1.1 Contributions . 4

1.2 Thesis Outline . 4

2 Background 6

2.1 Multi-core Processors . 6

2.1.1 Thread affinity . 9

2.1.2 Memory Affinity . 11

2.2 Synchronisation Mechanisms . 11

2.2.1 Lock-based Synchronisation Techniques 11

2.2.2 Other Synchronisation Techniques 12

2.3 Transactional Memory . 13

2.3.1 Concepts of Transactional Memory 14

2.3.2 TM Design Choices . 16

2.3.3 TM Metrics . 18

2.3.4 Implementation Schemes . 19

2.3.5 Software Transactional Memory Platforms 21

2.3.6 Restrictions of STM . 26

2.4 Benchmarks for Evaluation of TM Systems 26

2.4.1 EigenBench . 27

2.4.2 STAMP . 28

2.5 Control of Autonomic Computing Systems 31

i

ii CONTENTS

2.5.1 Concepts of Autonomic Computing 31

2.5.2 MAPE-K Loop . 32

2.5.3 Degrees of Autonomicity . 34

2.5.4 Control Theory in Self-adaptive Systems 34

2.6 Conclusion Remarks . 35

3 Overview of Algorithms and Architecture 38

3.1 Overview of System Architecture . 39

3.2 Runtime Profiling Approaches . 40

3.2.1 General TM Profiling Concepts 40

3.2.2 Phase-based Profiling Algorithm 42

3.2.3 Periodical Hill-Climbing Profiling Algorithm 43

3.3 Implementation . 44

3.3.1 How to Collect Profile Information 44

3.3.2 How to Dynamically Control Threads 45

3.4 Conclusion Remarks . 50

4 Autonomic Parallelism Adaptation 53

4.1 Introduction . 53

4.2 Simple Model for Parallelism Adaptation 54

4.2.1 Overview of the Profiling Algorithm 54

4.2.2 Feedback Control Loop of the Simple Model 54

4.3 Probabilistic Model for Parallelism Adaptation 57

4.3.1 The Autonomic Manager . 57

4.3.2 Parallelism Prediction Decision Function 59

4.4 Benchmark Setting . 61

4.5 Performance Evaluation . 63

4.5.1 Performance of Static Parallelism 64

4.5.2 Performance Evaluation on the UMA Platform 66

4.5.3 Performance Evaluation on NUMA 73

4.6 Discussion . 74

4.7 Conclusion Remarks . 77

5 Autonomic Thread Mapping Adaptation 80

5.1 Introduction . 80

5.2 Dynamic Thread Mapping . 82

CONTENTS iii

5.2.1 Inputs and Outputs . 83

5.2.2 Decision Functions . 83

5.3 Performance Evaluation . 83

5.3.1 Static Thread Mapping . 83

5.3.2 Performance Comparison on Static and Dynamic Mapping . . 85

5.4 Discussion . 88

5.5 Conclusion Remarks . 89

6 Coordination of Parallelism and Mapping 91

6.1 The Complexity of Dynamic Thread Control 91

6.1.1 The Threshold of Parallelism Degree for Thread Mapping . . 92

6.1.2 The Frequency of Thread Mapping Prediction 92

6.1.3 The Order of Decision Making 93

6.2 Overview of the Profiling Procedure 93

6.3 Control Coordination . 95

6.3.1 Inputs and Outputs . 95

6.3.2 Coordination of Control Loops 95

6.4 Performance Evaluation . 96

6.4.1 Results on the UMA Machine 97

6.4.2 Results on the NUMA Machine 104

6.5 Discussion . 105

6.6 Conclusion Remarks . 108

7 Related Work 110

7.1 Dynamic Parallelism Adaptation on TM systems 110

7.2 Thread Mapping Adaptation . 115

7.3 Coordination of Parallelism and Thread Mapping Adaptation 117

7.4 Conclusion Remarks . 117

8 Conclusion and Future Work 120

8.1 Conclusion . 120

8.2 Future Work . 123

8.2.1 Thread Mapping Strategy 123

8.2.2 From STM to HTM . 123

8.2.3 Coordination of Feedback Control Loops 124

8.2.4 From STM to Other Parallel Platforms 124

iv CONTENTS

Bibliography 127

Glossary i

Appendix A Runtime Parallelism Variation on NUMA vi

Appendix B Runtime Throughput Comparison on NUMA viii

Appendix C Résumé de Thèse en Français x

C.1 Titre de Thèse . xi

C.2 Résumé de Thèse . xii

List of Figures

2.1 Examples of UMA and NUMA platforms 7

2.2 Access latency of diverse memory levels 8

2.3 Four thread mapping strategies . 10

2.4 The basic operations of TM . 14

2.5 A simple example on usage of transaction primitives 14

2.6 An example of transaction conflicts in TM 15

2.7 EigenBench’s core code . 27

2.8 Online variation of contention and throughput for genome 30

2.9 A MAPEK control loop . 32

2.10 The feedback control loop from control theory 34

3.1 Overview of the feedback control loop 39

3.2 The terminologies used for the profiling algorithm in the thesis. 41

3.3 The three entry points of the monitor and the control functions. 47

3.4 A snapshot of C code on thread number control 48

4.1 An illustration of necessity for dynamic parallelism adaptation 54

4.2 Profiling procedure for the simple model 55

4.3 The feedback control loop of the simple model 55

4.4 Throughput fluctuation . 57

4.5 Profiling procedure for the probabilistic model 58

4.6 The controller of the probabilistic model described as an automaton . 58

4.7 Inputs of EigenBench applications for 24 threads. 63

4.8 The inputs of STAMP . 63

4.9 Time comparison of EigenBench for static parallelism on UMA . . . 64

4.10 Time comparison for STAMP for static parallelism on UMA. 65

4.11 Time comparison of EigenBench for static parallelism on NUMA . . 65

4.12 Time comparison for STAMP for static parallelism on NUMA. 66

v

vi LIST OF FIGURES

4.13 Time comparison of parallelism for EigenBench on UMA 67

4.14 Time comparison of parallelism for STAMP on UMA 67

4.15 Runtime parallelism variation by the two models for EigenBench on

UMA . 69

4.16 Runtime parallelism variation by the two models for STAMP on UMA 70

4.17 Throughput comparison for EigenBench on UMA 71

4.18 Throughput comparison for STAMP on UMA 72

4.19 Runtime parallelism variation from dynamic parallelism control mod-

els for genome on NUMA . 75

5.1 Time comparison for yada for four static mapping strategies. 81

5.2 Profiling the thread mapping strategy 82

5.3 The feedback control loop for dynamic thread mapping control 82

5.4 Time comparison of EigenBench for static mapping strategies 84

5.5 Time comparison for STAMP for static mapping strategies on UMA. . 85

5.6 Time comparison for STAMP for static mapping strategies on NUMA. 86

5.7 Time comparison of EigenBench for mapping strategies 87

5.8 Time comparison for STAMP for static mapping strategies on UMA. . 87

5.9 Time comparison for STAMP for static mapping strategies on NUMA. 88

6.1 Periodical profiling procedure for thread control 94

6.2 The feedback control loop for coordination 95

6.3 The implementation of the four decision functions on coordination. . . 97

6.4 Time comparison of EigenBench on UMA 98

6.5 Time comparison for STAMP on UMA 99

6.6 Runtime variation of parallelism and mapping strategies by the two

models for EigenBench on UMA 100

6.7 Runtime variation of parallelism and mapping strategies by the two

models for STAMP on UMA . 101

6.8 Time comparison of EigenBench for diverse parallelism on UMA . . 102

6.9 Time comparison of STAMP for diverse parallelism on UMA 103

7.1 Flux Concurrency Control in a feedback-driven loop 111

7.2 System architecture of Rughetti et al.’ feedback control loop 112

A.1 Runtime parallelism variation for EigenBench on NUMA vi

A.2 Runtime parallelism variation for STAMP on NUMA vii

LIST OF FIGURES vii

B.1 Throughput comparison for EigenBench on NUMA viii

B.2 Throughput comparison for STAMP on NUMA ix

List of Tables

2.1 Platform Configurations . 8

3.1 The basic STM operations . 44

3.2 Intrusiveness of the global monitor for UMA 49

3.3 The intrusiveness of the global monitor for NUMA 49

3.4 The effect of round-robin thread rotation on applications 50

4.1 Qualitative summary of each application’s runtime transactional char-

acteristics. The classification is based on the application with its opti-

mum parallelism applied on the UMA machine. 62

4.2 Performance comparison of simple model against static parallelism on

applications on UMA. 68

4.3 Performance comparison of probabilistic model against static paral-

lelism on applications on UMA . 68

4.4 Performance comparison of simple model against static parallelism on

applications on NUMA . 73

4.5 Performance comparison of probabilistic model against static paral-

lelism on applications on NUMA . 73

6.1 Performance comparison of different applications with the dynamic

parallelism model . 99

6.2 Performance comparison of different applications with the dynamic

thread control model . 100

6.3 Performance comparison of different applications with the dynamic

parallelism model on NUMA . 105

6.4 Performance comparison of different applications with the dynamic

thread control model on NUMA. 106

viii

Abstract

Parallel programs need to manage the trade-off between the time spent in synchroni-

sation and computation. The trade-off is significantly affected by the number of active

threads. High parallelism may decrease computing time while increase synchronisa-

tion cost. Furthermore, thread placement on different cores may impact on program

performance, as the data access time can vary from one core to another due to intrica-

cies of its underlying memory architecture. Therefore, the performance of a program

can be improved by adjusting its parallelism degree and the mapping of its threads

to physical cores. Alas, there is no universal rule to decide them for a program from

an offline view, especially for a program with online behaviour variation. Moreover,

offline tuning is less precise. This thesis presents work on dynamical management of

parallelism and thread placement. It addresses multithread issues via Software Trans-

actional Memory (STM). STM has emerged as a promising technique, which bypasses

locks, to tackle synchronisation through transactions. Autonomic computing offers de-

signers a framework of methods and techniques to build autonomic systems with well-

mastered behaviours. Its key idea is to implement feedback control loops to design

safe, efficient and predictable controllers, which enable monitoring and adjusting con-

trolled systems dynamically while keeping overhead low. This dissertation proposes

feedback control loops to automate management of threads at runtime and diminish

program execution time.

x

Research Collaboration and Scientific

Context

This PhD project is a sub-program under the Grenoble Project HPES (High Perfor-

mance Embedded System). This work has been partially supported by the LabEx

PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French Program Investisse-

ment d’avenir. This thesis joins work between High Performance Computing and Con-

trol Theory. It receives technique and technology support from two INRIA1 research

teams (CORSE and Ctrl-A) in Grenoble, France. The CORSE (Compiler optimisations

and Runtime Systems) research team works toward both execution time optimisation

and energy consumption improvement for HPC and embedded processors. Ctrl-A is

a research team that majors in autonomic computing with its objectives to design safe

controllers for automatic, adaptive, reconfigurable computing systems. The author is

affiliated to both of the research teams. This work also collaborates with the control

theory department of GIPSA-lab, which is a joint research unit of CNRS2, Grenoble

INP3 and Grenoble Alpes University conducting theoretical and applied research in

signals and systems. Thanks to the collaboration among the research teams and insti-

tutes, this work is able to show insights into the methodology of automatic control for

high performance computing systems.

1French Institute for Research in Computer Science and Automation.
2French National Center for Scientific Research.
3Grenoble Institute of Technology, France.

xi

Acknowledgements

The three years spent in Grenoble is one of the most joyful, peaceful time of my life. I

must express my appreciation to all the people who have helped me through the years.

I shall remember all the kindness.

I would like to take this opportunity to especially thank my PhD thesis supervisors

Prof. Jean-François Méhaut, Dr. Éric Rutten and Dr. Gwenaël Delaval who have guided

and supported me during my studies with their patience and knowledge whilst allowing

me the space to work in my own way. I attribute my research to their constructive

advices and efforts, without them this thesis would not have been completed otherwise.

I also would like to express my gratitude to Dr. Bogdan Robu who contributed

tremendously to the development of the algorithms in my thesis and who has given all

the supports to my publications.

The members of CORSE and CTRL-A research teams in INRIA have contributed

immensely to my personal and professional time in Grenoble. The two groups have

been a source of friendships as well as good advice and collaboration. I am especially

grateful for my fun group members and friends Kevin Pouget, Brice Videau, Fabian

Gruber and Christian Heinrich who have assisted me in my research and contributed

greatly to proofread my dissertation. I acknowledge their solicitude and thoughtful-

ness.

Lastly, I offer my deepest gratitude to my parents who are always supporting me

all through my life.

xiii

Chapter 1

Introduction

Chapter 1

Introduction

The last decades have seen a remarkable performance advancement of sequential pro-

cessors with an annual increment rate of 40%-50% [1] in speed. This was achieved by

doubling the amount of transistors on a single processor every two years to increase

clock speed. However, this development is reaching an end due to physical limitations

of transistors and obstacles of power dissipation among them. This hurdle promotes

designs of multi-core processors. Rather than increasing clock frequency, a multi-core

processor packs many cores that communicate through shared memory on one chip.

Computation is accelerated by high concurrency. The performance benefits brought

by multi-core processors require a program to execute in parallel and to scale when

the number of cores increases. However writing a parallel application is difficult, as

parallel programming encompasses all of the difficulties of sequential programming

and introduces extra problems on coordination of interactions among concurrently ex-

ecuting tasks [1]. In addition, complex memory hierarchies are built on multi-core

processors, which consist of several levels of cache to alleviate penalties of accessing

the main memory. Consequently, parallel applications need to evolve to efficiently

exploit potentials of their underlying multi-core platforms.

Multi-core processors boost program performance through high thread parallelism

(number of simultaneously active threads). High parallelism shortens execution time,

but it may also potentially increase synchronisation time. Furthermore, the complexity

of the memory hierarchy causes diverse access latency from cores depending on the

level of cache where data are placed. To alleviate access latency, threads can be fixed

to certain cores to improve their resource usage, such as cache, main memory and

interconnections. Therefore, the overall performance of a parallel application not only

depends on its level of thread parallelism but also its thread localities on the cores.

2

3

The conventional way to address synchronisation is via locks. However, locks are

notorious for various issues such as deadlocks as well as the vulnerability to failure

and faults. Moreover, it is not straightforward to analyse interaction among concur-

rent operations. Transactional memory (TM) has emerged as an alternative parallel

programming technique that handle synchronisation through transactions rather than

locks. Access to shared data is enclosed in transactions that are executed specula-

tively without blocking by locks. Various TM schemes have been developed including

Hardware Transactional Memory (HTM) [2], Software Transactional Memory (STM)

[3] and Hybrid Transactional Memory (HyTM) [4]. This thesis presents the work

on thread management under STM systems where the synchronisation time originates

from transaction aborts. There are different ways to reduce the number of aborts, such

as the design of contention manager policies (resolve conflicts among transactions),

the way to detect conflicts (detect at early stage or later stage), the setting of version

management (handles the storage policy for permanent and transient data copies) and

the level of thread parallelism.

Online parallelism adaptation recently begins to receive attention. A suitable par-

allelism degree in a program can significantly impact on program performance. How-

ever, it is onerous to determine a parallelism degree for a program offline especially

for the one with online behaviour variation. With regard to programs with online be-

haviour fluctuations, there is no single parallelism degree can enable its optimum per-

formance. Therefore the natural solution consists of monitoring the program at runtime

and altering its parallelism when necessary. Additionally, application performance is

affected by diverse locations of threads. When the active thread number varies, loca-

tions that threads are pinned to may also need to be adjusted accordingly in order to

optimise usage of the memory hierarchy. Pinning multiple threads to specific cores is

called thread mapping [5] and specifying a thread to a specific core is addressed as

thread affinity setting.

Furthermore, the diversity of TM applications and their supporting TM platforms

together with the complexity of multi-core processor architecture make it difficult to

decide the configurations of various parameters offline. Dynamical interactions among

applications, TM platforms and underlying hardware can impact on system perfor-

mance. All the aforementioned issues are preferred to be dealt with at runtime. Au-

tonomic computing [6] is a technique that can automatically manage systems given

high-level objectives. This thesis introduces feedback control loops into STM systems

to achieve autonomic computing, more specifically, to automatically regulate thread

4 CHAPTER 1. INTRODUCTION

parallelism and mapping at runtime.

1.1 Contributions

This doctoral dissertation contributes to the areas of parallel systems and autonomic

computing. It argues that online thread management is necessary and feasible for STM

systems. It demonstrates that program performance is sensitive to thread parallelism

and mapping. The contributions of this dissertation are as follows which have been

partially published in [7, 8, 9, 10]:

1. Feedback control loops are employed to manage STM systems at runtime.

2. Two models are presented to detect near-optimum parallelism degrees for STM

systems.

3. A model is proposed to coordinate adaptation of thread parallelism and mapping.

4. Two runtime phase detection algorithms are proposed and evaluated.

1.2 Thesis Outline

This thesis firstly present the relevant background in Chapter 2 to assist readers to

better understand the remaining chapters. Chapter 2 begins with the description of

multi-core processors and continues with the background on synchronisation mecha-

nisms. This chapter later introduces the diverse benchmark applications utilised in this

thesis for performance evaluation. Autonomic computing technique is presented lastly.

Chapter 3 proceeds to outline the overall proposed system architecture and the

description of phase detection algorithms. The phase detection algorithms are utilised

in the following three contribution chapters.

Chapter 4, Chapter 5 and Chapter 6 progressively detail the contributions of the

thesis on thread parallelism control, thread mapping control and their coordination.

Chapter 4 describes two approaches that can dynamically adjust parallelism degrees.

Chapter 5 presents the method for managing thread localities. Chapter 6 gives coordi-

nation of parallelism and thread localities.

Related work is reviewed in Chapter 7 to describe the state of art and compare its

significance with the contribution of this dissertation.

The last chapter (Chapter 8) gives conclusion remarks and proposes future work.

Chapter 2

Background

Chapter 2

Background

The performance of a parallel application can be significantly affected by: its thread

parallelism degree, the location of threads on cores and the synchronisation mecha-

nisms that are used to deal with concurrent access. This chapter describes significant

historical background techniques and technologies to motivate and better understand

the contributions of this dissertation. This chapter is organised as follows.

To start with, Section 2.1 describes the background information on modern multi-

core processors which facilitates understanding of the rationales of performance im-

pact from parallelism degree and thread affinity. Next, Section 2.2 reviews the main

synchronisation mechanisms. The synchronisation techniques and technologies on

Transactional Memory (TM) are described separately in the following section (Sec-

tion 2.3). Then Section 2.4 introduces two benchmark suites that are widely used

for performance evaluation on TM systems. Lastly, Section 2.5 outlines the neces-

sary background on autonomic computing techniques, as autonomic computing plays

a significant role in the methodologies that presented in this doctoral dissertation. Au-

tonomic computing facilitates the Software Transactional Memory (STM) system in

monitoring its runtime behaviour and responding to the changes accordingly.

2.1 Multi-core Processors

Moore’s Law [11] (doubling of transistors on a chip every 18 months) has been a funda-

mental driving force of processor designs. However, since 2005, processor designers

have increased core counts to exploit Moore’s Law scaling, rather than focusing on

single-core performance [12], as the increase in CPU clock frequency is approaching

a physical end. It is intricate to continue increasing computing speed of a single-core

6

2.1. MULTI-CORE PROCESSORS 7

processor based on current techniques and technologies, hence an alternative way to

continuously improve performance for a high-end processor is to support many cores

on one processor and multiple processors on one platform. A multi-core platform out-

strips a single-core platform by scheduling multiple threads (or processes) for execut-

ing programs simultaneously. This somehow relieves the demands for high CPU clock

frequency. Although structures of multi-core platforms can vary from manufacturers,

they mainly fall into two classes [13]: centralized shared-memory architecture and dis-

tributed memory architecture. The first group is also known as uniform memory access

(UMA), as all the processors have the equal access to one single centralized memory.

The second group consists of multi-processors with distributed memory, known as

Non-Uniform Memory Access (NUMA). Fig. 2.1 gives examples of UMA and NUMA

platforms which are the topologies of the platforms utilised for performance evaluation

in this thesis. The details of the platform configurations are provided in Table 2.1.

 C0

L3

Memory

L2

 C1 C2 C3 C4 C5

L2 L2

bus

 C6

L3

L2

 c7 C8 C9 C10 C11

L2 L2

 C12

L3

L2

 C13 C14 C15 C16 C17

L2 L2

 C18

L3

L2

 C19 C20 C21 C22 C23

L2 L2

(a) An example of UMA topology

 C0

L3

Memory

L2

 C1 C6 C7

L2

 ...

L2 L2 ...

 C8

L3

L2

 C9 C14 C15

L2

 ...

L2 L2 ...

 C16

L3

L2

 C17 C18 C19

L2

 ...

L2 L2 ...

 C20

L3

L2

 C21 C30 C31

L2

 ...

L2 L2 ...

Memory Memory Memory

bus bus bus bus

(b) An example of NUMA topology

Figure 2.1: Examples of UMA and NUMA platforms. Performance Evaluation is
performed on the two machines.

Each socket of the UMA machine includes 6 cores and every two cores share a

L2 cache, every 6 cores share a L3 cache and all cores share the main memory. Each

8 CHAPTER 2. BACKGROUND

socket of the NUMA machine includes 8 cores. Each core has its own L2 cache and 8

cores share a L3 cache.

Characteristics UMA NUMA

Processor Intel Xeon X7460 Intel Xeon Beckton X7560
number of cores 24 32
number of sockets 4 4
clock (GHz) 2.66 2.27
L1 cache capacity (KB) 32 (each) 32 (each)
L2 cache capacity (KB) 3072 (each) 256 (each)
L3 cache capacity(MB) 16 (each) 24 (each)
DRAM capacity (GB) 64 16 (each)

Table 2.1: Configurations for the UMA and NUMA platforms.

In both UMA and NUMA groups, as the distance between a core and a memory

increases, the time to access data rises. More specifically, the time latency is lower

to access L1 or L2 cache than that to the main memory. When it refers to a NUMA

machine, the time latency is alleviated from a core to a remote memory (in contrast

with its access to its local memory). The distributed memory in a NUMA machine is

accessed via an interconnect by a core from its contiguous memory. Fig. 2.2 illustrates

the access latency from the core to different memory levels1. Placing threads on the

sibling cores which share all the levels of memory structure allows threads to reuse

the data which already resides in the cache. This strategy can benefit the applications

whose threads possess a significant amount of joint data access. Some applications

showing disjoint data access may benefit from placement of distributed threads on

cores, meaning that the threads do not always share the underlying memory structure,

as it can alleviate potential contention.

L1 cache

L2 cache

Primary Memory

 ~1ns

 ~6ns

 ~185ns

32 KB

3072 KB

64 GB

Figure 2.2: An illustration for access latency of diverse memory levels.

Most current processors are homogeneous both in instruction set architecture and

1Lmbench [14] is utilised to measure the latency of the UMA platform in Table 2.1. The L3 cache
latency is skipped in the figured.

2.1. MULTI-CORE PROCESSORS 9

performance [15]. Some architecture, however, allow system software to control the

clock frequency for each core individually in order to either save power or to temporar-

ily boost single-thread performance. In contrast, heterogeneous architecture features

at least two different kinds of cores that may differ in both the instruction set architec-

ture, functionality and performance. The technique and technology on heterogeneous

processors [16] are beyond the scope of the dissertation, the author is only concerned

with homogeneous processors that keep clock frequency constant.

2.1.1 Thread affinity

Multi-core processors enhance program performance, i.e. reduce execution time, through

high parallelism (number of simultaneous active threads). Furthermore, the complexity

of modern memory hierarchies give diverse access latency from different cores, hence

it becomes interesting to find the suitable tactic for thread placement in order to lever-

age resource usage. Applications that require significant interaction among threads, a

small difference in thread management can give a non-trivial performance impact [17].

Assigning multiple threads to specific cores is called thread mapping [5] and fixing a

thread to a specific core is called setting the thread affinity. In multi-core systems,

there are three objectives in optimising thread placement [18]:

• Better use of interconnects. For instance, to reduce off-chip traffic by using

intra-chip interconnects which have a higher bandwidth and lower latency.

• Reducing invalidation misses. A invalidation miss is when the data was already

resident in the cache but is evicted by other cache lines. A common situation in

shared-memory is to have one thread writing to an area of memory and another

thread reading from the same location. This can cause one thread continuously

to invalidate the cache lines of the other’s. The objective of a thread mapping

strategy is to reduce invalidation misses caused by two private caches holding

the same data and continuously invalidating each other.

• Reducing compulsory misses. A compulsory miss (also known as cold miss) is

caused by competition for the same cache. Threads will evict cache lines from

each other if they share one cache, however, those cache lines would not be

evicted if threads accessed the same group of addresses.

There are two means of tackling thread affinity [19] in most of operating systems.

The first one, which is called soft affinity, relies on the traditional OS scheduler where

10 CHAPTER 2. BACKGROUND

L3

L2 L2

C0 C1 C2 C3

L3

L2 L2

C4 C5 C6 C7

L3

L2 L2

C0 C1 C2 C3

L3

L2 L2

C4 C5 C6 C7

L3

L2 L2

C0 C1 C2 C3

L3

L2 L2

C4 C5 C6 C7

L3

L2 L2

C0 C1 C2 C3

L3

L2 L2

C4 C5 C6 C7

Scatter Round-Robin

Compact Linux

thread migration

Figure 2.3: Four thread mapping strategies [5].

threads remain on the same core as long as possible. However, the OS scheduler may

still migrate threads to another core or processor, possibly unnecessary, which impact

on system performance. The second way of handling thread affinity is named hard

affinity, meaning that allocation of threads is controlled by users. Depending on the

number of cores and the memory hierarchy, there can be many different strategies to

implement thread mapping. Using exhaustive search (which is utilised for optimisa-

tion on some conventional parallel program) by trying all the cases to figure out the

best placement strategy is not feasible, especially when a large number of threads are

involved. However if putting main memory aside, thread mapping strategies can be

categorised into four main groups proposed by [5] as illustrated in Fig. 2.3:

• Compact: threads are placed on the sibling cores. This strategy is beneficial

to applications in which the same amount of data is accessed by its threads.

Threads sharing data but scheduled on the cores without sharing cache can result

in excessive data movement and high network traffic [20].

• Scatter: threads are distributed across processors. Equally distributing threads

is also addressed as thread balancing [21]. This strategy averts cache sharing

among cores in order to reduce contention on the same cache. It is beneficial to

applications whose thread mainly access disjoint data.

• Round-Robin: threads are placed on the cores where a higher level of cache

(e.g. L3) is shared but not the lower level of cache (e.g. L2). This strategy can

only be applied on the platforms which have more than one L3 shared cache and

where the L2 cache is shared by more than one core.

2.2. SYNCHRONISATION MECHANISMS 11

• Linux: the default Linux scheduling strategy. It is based on dynamical priority-

based strategy that allows threads to migrate to idle cores to balance the run

queues. This mapping strategy corresponds to soft affinity, whereas the other

three strategies coincide with hard affinity.

It causes thread migration to dynamically assign threads to specific cores. The most

significant source of performance penalty when a thread migrates between cores is the

loss of cache state [22]. The frequency of changing thread placement on cores is as

important as the design of thread mapping strategies.

2.1.2 Memory Affinity

Memory affinity [23] is ensured when data is efficiently distributed over the machine

memory. Such data distribution can either reduce the number of remote access or the

memory contention. In the linux operating system, the default way to handle memory

affinity is called first-touch [24], which places data on the node where is first accessed.

In this dissertation, the author concerns little with direct manipulation of data place-

ment in memory, but is more interested in investigating performance impact brought

by thread affinity.

Multi-core processors bring parallel computing to the mainstream. Despite the

potential performance boost by high concurrency, a parallel program is more difficult

to write than a sequential program due to the necessity of synchronisation taking place

among the concurrent tasks. There exists diverse techniques to address synchronisation

issues as introduced in the following two sections.

2.2 Synchronisation Mechanisms

Multi-core platforms increase application performance by executing multiple threads

concurrently. Threads must communicate and exchange data to complete their tasks,

this is called thread synchronisation.

2.2.1 Lock-based Synchronisation Techniques

The conventional way to address synchronisation is through locks. Locks protect crit-

ical sections granting unique access by one CPU or one thread. The higher the par-

allelism is, the more time it may spend in contending for the lock. The time spent

12 CHAPTER 2. BACKGROUND

in contending for the lock is called synchronisation cost. Lock-based synchronisation

suffers from several limitations [25]:

1. Deadlock. This can cause the whole system to halt if circular dependencies exist

where every job is stalled waiting for another job to complete.

2. Long delay. When one job which is the owner of a shared resource happens to

be delayed, it causes all the other jobs which require the same resource access

delayed.

3. Priority inversion. It happens when a higher priority task attempts to lock a

mutex that is already locked by a lower priority task. Assuming P1, P2 and P3

are low, medium and high priority tasks, respectively. If P1 holds the mutex and

P3 has to wait for the release of the mutex from P1. However if P2 has been

running before P1 holds the mutex, P2 will take precedence over P3. The high

priority task P3 faces un unpredicted delay before it can run and it may miss its

execution deadline.

The listed pitfalls result in the advent of other techniques to handle synchronisation

issues as described in Section 2.2.2 and Section 2.3.

2.2.2 Other Synchronisation Techniques

One way to bypass locks is to utilise atomic primitives such as CompareAndSet. Non-

blocking synchronisation algorithms are the ones that employ atomic primitives to

achieve lock-free synchronisation.

Non-blocking synchronisation has its obvious advantages over lock-based synchro-

nisation (or sometimes called blocking synchronisation) on the isolation between pro-

cesses or threads accessing a shared object. This means that several processes or

threads can operate on a critical section concurrently. An algorithm [25] is a non-

blocking algorithm (sometimes called lock-free) if it guarantees that at least one pro-

cess can complete a task or make progress within a finite time. In the literature, non-

blocking synchronisation falls into three primary classes [26]:

• Obstruction freedom. It provides single-thread progress guarantees in the ab-

sence of conflicting operations. It does not rule out livelocks, as the threads may

repeatedly preventing each other from making progress [27].

2.3. TRANSACTIONAL MEMORY 13

• Lock freedom. It provides system-wide progress guarantees. At least one process

or thread is guaranteed to complete in a finite number of steps.

• Wait freedom. Every active process or thread can complete in a finite number of

steps, regardless of the execution speeds on the others. It provides fault-tolerance

[28], meaning that no process or thread can be prohibited from completing an

operation by unknown halting failures of others, or by arbitrary fluctuations in

their speed.

On one hand, non-blocking synchronisation mechanisms rely on atomic primi-

tives, which can only operate on one word at a time resulting in complex structure

for the algorithms. On the other hand, such mechanisms introduce extra cost to en-

sure that an object remains in one state where progress can be made even if the cur-

rent process/thread dies. An alternative mechanism to tackle synchronisation issues is

transactional memory, which overcomes the aforementioned drawbacks and shifts the

burden of correct synchronisation from a programmer to a transactional memory sys-

tem. Strictly speaking, transactional memory can be defined as a generic non-blocking

synchronisation construct that allows correct sequential objects to be converted into

concurrent objects [29].

2.3 Transactional Memory

Transactional memory (TM) emerges as an alternative parallel programming tech-

nique, which addresses synchronisation issues through transactions. The access to the

shared data is enclosed in transactions that are executed speculatively without block-

ing by locks. Given that actual conflicts are rare in many applications [30], the TM

approach is promising as the future programming model. The original idea of transac-

tional memory dates back to 1977, when Lomet et al. [31] realised that an abstraction

similar to a database transaction [32] might make a good programming language mech-

anism to ensure the consistency of data shared among several processes. Since then

various TM schemes have been developed [2, 3, 4] including Hardware Transactional

Memory (HTM), Software Transactional Memory (STM) and Hybrid Transactional

Memory (HyTM).

14 CHAPTER 2. BACKGROUND

2.3.1 Concepts of Transactional Memory

A transaction [33, 2] is a finite sequence of machine instructions, executed by a single

process, satisfying the following properties:

• Serializability. The steps of one transaction never interleave with the steps of

another.

• Atomicity. Each transaction makes a sequence of tentative changes to shared

memory. When the transaction completes, it can either commit, making the

changes to the memory permanent, or it can abort causing the previous changes

to be discarded.

Tx management operations Data access operations
void StartTx(); T ReadTx (T *addr);
bool CommitTx(); void WriteTx(T *addr,T v);
void AbortTx();

Figure 2.4: The basic operations of TM

A transaction behaves as a logical unit, and its operations are either performed

entirely or not performed at all. In other words, it behaves as if it were a single instruc-

tion. Failed transactions will be executed again. The stylised TM interface provides

a set of operations for managing transactions and accessing data [34] without explic-

itly acquiring and releasing locks, as they are all handled by the TM implementation.

Fig. 2.4 shows the basic operations for programming in TM. StartTx begins a new

transaction in the current thread. So instead of acquiring a lock to access the critical

section, in TM a StartTx instruction begins a task. CommitTx attempts to commit the

current transaction but it may succeed or fail. Besides the commit operation, some sys-

tems also provide AbortTx which explicitly aborts the current transaction regardless of

its conflict situation. The data access operations ReadTx takes the address addr of a

value in type T and returns the transaction’s view of the data at that address. WriteTx

1 do {

2 StartTx(); //start a new Tx

3 int tmp_x = ReadTx(&x); //read from x

4 int tmp_y = ReadTx(&y); //read from y

5 WriteTx(&y, tmp_x+tmp_y+1); write tmp_x+tmp_y+1 to y

6 } while (!CommitTx()); //commit the current transaction

Figure 2.5: A simple example on usage of transaction primitives [34].

2.3. TRANSACTIONAL MEMORY 15

1 2 3 4 5 6 7 8 9 10 11 12

OK No OK

r/w conflict

thread1 thread2 thread3

r r w rrr w

1

2

atomic{...}

atomic{...}

...

atomic{...}

atomic{...}

atomic{...}

...

atomic{...}

atomic{...}

atomic{...}

...

atomic{...}

Figure 2.6: An example of transaction conflicts in TM. Object 3 and object 7 are
accessing concurrently by different threads. A read and write conflict happens between
thread 2 and thread 3.

takes an address addr and a new value V, writing the value to the transaction’s view

of that address. The data value type T differs from one system to another. With TM,

the programmer specifies intents rather than mechanisms leading to a higher-level ab-

straction than locks. For instance, the programmer can concentrate on the decisions of

the placement of the atomicity, in preference to the mechanisms that are used to en-

force the intent [35]. Fig. 2.5 illustrates a simple example on usage of the transactional

primitives of Fig. 2.4.

Conflicts can happen during a transaction execution or when it is committing.

Fig. 2.6 shows an example of conflicting transactions. In the example, each thread ex-

ecutes a sequence of transactions. A read and write conflict happens between thread2

and thread3 when they are accessing the shared object7 concurrently. Object3 is read

concurrently by two threads. Two read operations do not cause any aborts. TM em-

ploys various synchronisation mechanisms to mediate the read/write or write/write

conflicts. Broadly speaking, there are two approaches for conflict control: pessimistic

concurrency control and optimistic concurrency control. Pessimistic concurrency con-

trol detects and solves the conflicts at the same time when a transaction is about to

access a location. This type of conflict control grants the data ownership to a transac-

tion therefore preventing other transactions from accessing the same data. In optimistic

concurrency control, the conflicts detection and resolution are delayed after data access

therefore allowing multiple transactions to access the same data. When conflicts are

frequent, the pessimistic concurrency control is favoured, as it enables a transaction to

complete all of its operations once the access permission is granted. However, if the

conflicts are rare, pessimistic concurrency control is inferior to optimistic concurrency

16 CHAPTER 2. BACKGROUND

control as the later one increments the concurrency level by avoiding the locks.

TM provides serializability and atomicity. Hardware transactional memory rarely

requires locking mechanisms, yet locks can not be completely removed especially for

software transactional memory [36]. Since conflicts can not be avoided, different de-

sign choices have been designed aiming to diminish conflicts which are mainly based

on: when to detect a conflict, how to solve a conflict and how to manage memory log.

2.3.2 TM Design Choices

There are four key aspects for TM designs: granularity, conflict detection, conflict

resolution and version management. Every aspect includes multiple design choices

which are either fixed for a TM system or can be selected by users before application

execution. In some cases, it is possible to switch design choices at runtime. It is

worth noting that the two approaches for conflict control (pessimistic and optimistic

concurrency control) introduced in Section 2.3.1 are composed of conflict detection

policies and conflict resolution policy. This section will unroll more details on that.

Granularity

Transaction granularity [34] is the unit of storage in which a TM system detects con-

flicts. The choice of granularity impacts on TM performance. Similar to the cache

granularity, a fine granularity reduces false conflicts while a coarse granularity reduces

overhead. HTM often uses cache-line granularity, so that the conflict is detected when

a transaction is trying to change the status of a cache line. While STM operates on

word or block granularity. Some TM systems employ object granularity which ex-

tends transactional protection to an entire object at once.

Conflict Detection Policy

Conflict detection [37] dictates when to check the read/write sets to detect conflicts.

Two major designs are often employed, namely eager and lazy. The eager option

detects conflicts for every memory access. The lazy option detects conflicts when a

commit is required. The former option observes conflicts at early stage thus obviating

large-size abort, but it can potentially impose high abort rate. The later option, on

the other hand, delays the abort time which reduces the abort rate, however, it causes

large-size aborts.

2.3. TRANSACTIONAL MEMORY 17

Contention Manager

The contention manager (CM) decides the actions to be taken in order to resolve con-

flicts. When a transaction encounters a conflict with another transactions, three possi-

ble decisions can be made [37]:

• abort-other: also known as suicide, when a transaction encounters a conflict

with other transactions, it will kill the others which are in conflicts with so that

its own data validation can be guaranteed.

• abort-itself : also known as aggressive, when a transaction detects conflicts with

other transactions, it will kill itself to ensure the data validation of other trans-

actions. This policy performs well on a lowly-contended application, but scales

badly on highly-contended application as the aborted transactions are restarted

right after the conflict is detected and are doomed to abort several times before a

successful commit [5].

• backoff : when a transaction meets a conflict with other transactions (1) instead

of aborting itself immediately, it stalls for a certain period of time and rechecks

its data validation once it resumes; (2) it aborts immediately and stalls for a

certain period before its re-execution.

Various conflict resolutions are proposed based on the above three schemes aiming

to: minimise wasted work (aborts), avoid future conflicts and reduce the overhead of

executing CM itself.

Version Management

Version management [34] handles the storage policy for permanent and transient data

copies. The policy can be eager (also called write-throughput) or lazy (also known

as write-back). Eager policy logs the old data and replaces the memory with the new

data. Lazy policy logs new data and keeps the old data in memory. The former policy

has lower commit-time overhead hence it is preferred for tackling read-after-write or

write-after-write operations. The latter policy has lower abort overhead and does not

require extra work to guarantee consistent reads.

18 CHAPTER 2. BACKGROUND

2.3.3 TM Metrics

Different metrics in TM can be utilised to indicate the characteristics of TM appli-

cations, Ansari et al. [38] summarised the commonly used ones and proposed two

additional new metrics as follows:

• speedup. This metric is intuitive. It depends on characteristics of both the ap-

plication and the TM implementation.

• in transaction. It is the percentage of total time that the applications spent in

transactions. Noting that non-transactional code also exists in a TM application.

This metric, however, does not indicate application performance.

• wasted work. The aborted transactions. It is often calculated by dividing the

total time spent in the aborted transactions by the time spent in all transactions.

Or some works [39, 40, 41] are in favour of addressing wasted work as the total

time spent in aborted transactions.

• aborts per commit. It indicates the mean aborted transactions per committed

transactions.

• abort histograms. It details how abort per commit is spread among the transac-

tions.

• contention management time. It is the percentage of time the mean committed

transaction spends in performing contention management.

• transaction execution time histograms. It shows the spread of execution times

of committed transactions. This metric is useful as it illustrates how homoge-

neous or heterogeneous the amount of work contained in transactions for a given

application is. For instance, an application is more homogeneous with all its

transaction executing the same code block, and less so when its transactions ex-

ecuting a group of code blocks.

• instantaneous commit rate. It shows the proportion of committed transactions

at sample points during the execution of the application. Note that active trans-

actions are not taken into account.

• readset & writeset . Size of read and write operations of a transaction. It facili-

tates the selection of buffer size or cache size for HTM. A readset of a transaction

2.3. TRANSACTIONAL MEMORY 19

is the set of locations read by the transaction. A writeset of a transaction is a set

of locations accessed by the transaction.

• readset-to-writeset ratio. It indicates the mean number of reads lead to a write

in a committed transaction.

• writes-to-writeset ratio. The mean number of writes to a transaction data ele-

ment.

• reads-to-readset ratio. The mean number of reads to a transactional data ele-

ment.

Additionally, two metrics are useful to indicate the online TM application perfor-

mance, namely commit ratio (CR) and throughput. CR equals the number of commits

divided by the number of commits and aborts; it measures the level of conflict or con-

tention among the current transactions. Throughput is the number of commits in one

unit of time; it directly indicates transaction progress rate. The two metrics will be

discussed in more details in Chapter 3.

2.3.4 Implementation Schemes

Diverse implementation schemes have been developed [2, 3, 4] including Hardware

Transactional Memory (HTM), Software Transactional Memory (STM) and Hybrid

Transactional Memory (HyTM).

Software Transactional Memory

A Software Transactional Memory (STM) system implements all its transactional se-

mantics in software. It provides a lock-free programming interface, however, the STM

system itself is not necessarily lock-free. STM requires a sequence of locks to man-

age concurrent access to shared data. Contrasting with a lock-protected critical section

which hinders concurrent access by multiple threads, STM locks are used to indicate

the ownership by certain transactions [3]. This information is used later to detect con-

flicts when a transaction tries to commit. A programmer neither needs to indicate

where to acquire/release locks nor to identify which operations may be allowed to ex-

ecute concurrently, as this responsibility is taken by the TM implementation. The old

data are logged and recovered once an abort takes place. Since both the old and new

data are stored, there is a high demand for memory storage. When a transaction needs

20 CHAPTER 2. BACKGROUND

to commit, it has to traverse its previous accessed locations to ensure that the data

read previously has not been changed. Implementation of such a functionality purely

in software delivers a high runtime cost making STM performance-wise inefficient

for general purpose parallel programs. STM systems present worse performance than

locks when a small number of threads are used. In contrast, in some cases where there

is a high concurrency level with rare conflicts, STM systems manifest comparable or

even better performance than conventional locks [1]. As when the number of threads

rises, the cost of contending for locks rises accordingly.

This dissertation is concerned with STM systems as they are flexible (e.g. it is

easy to modify their conflict control polices and they have straightforward interfaces)

and rely little on underlying specific TM hardware supports. A brief description of

state-of-the-art STM systems will be given later in Section 2.3.5.

Hardware Transactional Memory

Hardware Transactional Memory (HTM) implements its all transactional functionali-

ties in hardware. A HTM system starts a transaction by executing a register checkpoint

with shadow register files [42]. A checkpoint [43] is a program location in a transac-

tion where control may jump during a partial abort. The cache coherence protocols

of processors are modified to be compatible with transactional execution. A processor

preserves two caches: one regular cache for non-transactional access and one transac-

tional cache for transactional access. The transactional cache does not propagate the

tentative writes to other processors or write to the main memory unless otherwise a

transaction commits. A commit makes tentative writes visible to other processors and

writes back the updates to the main memory. A conflict is detected by comparing the

readsets and writesets. Once a conflict occurs, at least one of the transactions aborts

and restores the values saved at the checkpoint at the start of the transaction to the

registers. Meanwhile the previous tentative writes are dropped by the transactional

cache.

Intel has introduced hardware support (Intel TSX) for TM in the Intel 4th Genera-

tion core TM processors [44] in 2012. L1 data cache tracks transactional states in the

granularity of a cache line and detect conflicts through cache coherence protocol. Intel

TSX provides developers with two software interfaces to specify the critical sections,

namely hardware lock elision (HLE) and restricted transactional memory (RTM). In

HLE, an abort may lead a transaction to fall back to a lock-based execution to avert

successive aborts which hinders the program progress. RTM requires a programmer

2.3. TRANSACTIONAL MEMORY 21

to provide a software handler to tackle transaction aborts. This allows the possibil-

ity of other strategies to solve aborts rather than giving up immediately on hardware

transactions [45].

HTM systems, as all the functionalities are implemented into hardware, indicate a

lower overhead than STM systems thus faster execution. Just as the initial intention

of TM design, HTM systems do not necessarily require locking mechanisms. Nev-

ertheless, HTM imposes restraints on the resource capacity, such as cache capacity.

Furthermore, HTM offers limited scope for contention management which plays an

important role in forward progress, thus persisting aborts exist in HTM. A common

solution to this restraint is to grant the transaction a lock to ensure an exclusive exe-

cution, yet acquiring a lock by a transaction causes other transactions to abort. This

can lead to a chain effect known as lemming effect where the other aborted transactions

endeavour to obtain the lock [46]. An alternative solution to gain good performance as

well as flexible size of atomicity is to combine HTM with STM.

Hybrid Transactional Memory

The construction of Hybrid TM (HyTM) system combines the base STM with a generic

HTM system, thus removing part of high cost imposed by software data structure and

also increasing the resource capacity limited by HTM. A transaction starts and pro-

gresses in the HTM mode and only enters the STM mode when a transaction aborts a

certain number of times. Some tactics can be employed to reduce the abort rate reck-

oning on the causes of aborts [47]. An abort caused by hardware resource constraints

will be executed in the STM mode as retrying in a HTM will still lead to persisting

aborts. An abort due to conflicts can be re-executed in the HTM mode repeatedly.

Since both HTM and STM modes exist in one TM system, the additional com-

plexity is added due to the intricacy of detecting the conflicts between a HTM mode

transaction and a STM mode transaction [5]. Per contra, it is reported that HyTM can

negatively affect some desirable properties of the original STM, especially the fairness

of resource access [36].

2.3.5 Software Transactional Memory Platforms

Section 2.3.4 has briefly discussed the techniques of STM which mainly concentrates

on the comparison of its difference with HTM and HyTM. This section presents im-

plementations of different STM systems and compare their differences. Particularly,

22 CHAPTER 2. BACKGROUND

TinySTM, which is reviewed in the end of the section, is utilised in the thesis as the

STM platform. STM systems can be implemented in a library or directly into a com-

piler. A library-based approach relies on the programmer to convert sequential code or

lock-based code into transactional code. A compiler or preprocessor can be used to en-

able automatic transformation. STM systems can also be classified by its programming

languages (e.g. C, C++, Java, C#, Python, Perl, Haskell, Scala) and its granularities of

data sharing (word-based or object-based). Despite the diversity, the following STM

systems share some common features:

• global timestamp. It is logic timestamp, which is incremented by one per com-

mit or write operation. The transaction checks the timestamp of its previously

accessed objects upon its commit. A transaction can successfully commit if the

timestamp of the previous accessed objects stay consistent.

• array of locks. Memory locations are mapped to locks based on certain func-

tions. Locks are utilised to manage concurrent access to memory locations rather

than stalling threads. The content of a lock can be either an address of an owner

transaction or a timestamp (details are presented in the following sections).

TL2

Transactional locking II (TL2) algorithm [48] is the second version of the original

transactional locking (TL) proposed by Dice et al.. The TL2 algorithm introduces

a global version-lock that is augmented by each writing transaction at commit time.

Each thread has a local variable to load the current value of the global version number.

Every transactional memory location is associated with a write-lock. A lock contains

a bit indicating whether the lock is taken and the rest of the bits indicating a version

number. The version number is the timestamp.

TL2 employs a two-phase locking scheme. A transaction first obtains the cur-

rent value of the global version clock (called read version number) and stores it in

a thread local variable. Every load operation is followed by a validation operation,

which checks if the location’s write lock is free (to check if it is conflicting with other

transactions) and has not been changed. Additionally, the lock’s write version number

(a version number associated by a write lock) should be no greater than the transac-

tion’s read version number. Otherwise the transaction aborts, as the memory location

has been modified after the current thread performs the load operation. All the trans-

actions are executed speculatively and conduct no change to the shared memory states

2.3. TRANSACTIONAL MEMORY 23

before committing. At the end of the speculative execution, all the previous performed

operations of one transaction need to be revalidated. This is achieved by comparing

the read version number with the lock’s version number. When the version number of

the write lock is greater than the read version number, the transaction is aborted. The

new version number is recorded in a local variable. At commit time, the new value

should be stored to the memory location and the locations locked should be released.

One exception is when a read version number plus one equals a write version number,

validation of the read transaction can be skipped.

To reduce the overhead the global version number is split into two parts: one part

for the version number, and one part for the thread id (which records the last thread

that updated it). A thread does not need to change the version number if it detects

the global version number differs from its version number. A thread only performs an

update (increment by one) to the global version number when its own version number

equals the global one.

SwissTM

SwissTM [49] is a lock-based STM which utilises word-based granularity to map

memory locations to locks. It employs a global commit counter (timestamp) which

is incremented by every non-read only transaction and used for transaction validation

upon commits. Every transaction starts by reading the global commit counter. When

the transaction reads a memory location, it first reads the write lock. If the transaction

does not own the current write lock, it reads the read lock and reads the read lock again

after its reading operation. The read operation is validated if the values of the read

lock at the two consecutive reads are the same. Upon the successful validation, the

transaction extends its validation timestamp to the value of the current global commit

counter. If validation fails, the transaction rolls back. When the transaction writes to a

memory location, it also first checks if it owns the write lock. The transaction updates

the value in the memory location directly if it already owns the lock, otherwise the

transaction tries to obtain the write lock. Failing to obtain the write lock leads to in-

tervention of the contention manager which decides how to resolve the conflict. Upon

commit, a read-only transaction can commit immediately. A transaction with write op-

erations has to validate all its previous read operations to guarantee their consistence

with the current state of the values. Upon successful validation, the transaction updates

the memory location and releases the read and write locks as well as incrementing the

global commit counter.

24 CHAPTER 2. BACKGROUND

SwissTM employs a conflict detection scheme that treat transactions differently

from TL2. It detects write/write conflict eagerly to prevent transactions that are doomed

to abort from further wasting resource; it detects read/write conflicts lazily to allow

more parallelism. A two-phase contention manager is employed in SwissTM which

incurs no overhead on read-only and short read-write transactions and allows the trans-

actions which have performed a significant number of updates to progress. Each trans-

action records its write access which indicates the phase. The first phase marks the

number of writes less than a threshold. A transaction aborts and restarts immediately

once a conflict is met during the first phase. When exceeding this threshold, transac-

tions are in the second phase where they abort and back-off. In addition, the transac-

tions that abort due to write/write conflicts back-off for a period which is proportional

to the number of the successive aborts.

RSTM

Rochester Software Transactional Memory (RSTM) [50] is one of the oldest open-

source STM systems. RSTM is a C++ library for object-oriented transactional pro-

gramming. It includes several STM algorithms that allow it to be customised to suit

a given workload. The implementations of the algorithms can differ in: bookkeeping,

visible reader management and memory management.

There are two major types of bookkeeping strategies, i.e. DSTM [27] and OSTM

[51]. DSTM dynamically initialises and deletes the transaction locator (the shared

data) which is accessed by transactions. The locator contains the information of the

latest transaction which has written to it, the new data version and the old data version.

The transaction utilises an object header (a pointer) to points to the locator so that the

contents of the locator can be modified atomically. While in OSTM, each transaction

maintains a transaction descriptor which records a list of the shared read and a list

of shared write objects. The lists contain object handles which refer to the object

header (a pointer which points to the current object). Each time when a transaction

needs to access an object, it accesses an object header. In contrast, RSTM mixes the

above two strategies, rather than utilising a locator, RSTM merges its contents into the

new data object which also points to the old data object. Each transaction also owns a

transaction descriptor which only contains the status of the transaction (in contrast with

OSTM’s descriptor, which also maintains two lists of read and write objects). When

a transaction demands access to an object, it accesses an object header which points

to the share objects. The object header also maintains a list of visible reads which

2.3. TRANSACTIONAL MEMORY 25

serves to avoid the cost of validating invisible reads. The object header and transaction

descriptor of RSTM require no dynamic memory allocation.

TinySTM

TinySTM [3] is a word-based (granularity) lightweight STM system which employs

a shared array of locks to control concurrent access to memory and applies a shared

counter as clock to indicate the global timestamp. The role of locks in TinySTM is

to enable atomicity when hardware support is missing, rather than locking memory

locations, therefore its locks do not intercept memory access by multiple threads.

A TinySTM lock is the size of an address with its least significant bit indicating

whether the lock is owned by a transaction. If not owned, the remaining bits of the

lock store the version number (timestamp) of the transaction which is the last to write

to one of the memory locations covered by the lock. If it is owned, the remaining

bits store an address to either the owner transaction (when using write-through version

management) or to an entry in the write set of the owner transaction (write-back version

management). When the least significant bit is set, a writing transaction first checks

if it is the owner of the lock, if not, the transaction can write the new value directly

otherwise it has to wait for a certain period or abort immediately. If the least significant

bit is not set, the writing transaction tries to acquire the lock by setting this bit using an

atomic operation (e.g. Compare and Swap). A failure indicates that another transaction

has acquired the lock concurrently. A reading operation by a transaction verifies if the

lock is owned or updated concurrently. A reading operation is consistent if the lock is

not owned and its value has not been changed between both read operations.

At commit time, a transaction needs to verify its previous read operations. The

verification process can be costly. TinySTM employs hierarchical locking to diminish

the cost of validating a large chunk of memory. In addition to the shared array of

locks, a smaller hierarchical array of counters (different from the global counter which

is used as the timestamp) are maintained. Multiple locks are mapped to one counter

using a hash function. Transactions additionally maintain a read mask and write mask

specifically for the counters. A read operation sets its read mask and stores the value

of the counter, and a write operation sets its write mask and increments the counter.

Upon validation, the counters with corresponding read masks set are checked if: the

value of the counter is equal to the stored value in the transaction, or the counter is

one more than the stored value when the write mask is set. If true, the corresponding

locks traverse can be skipped. Comparing the locks in TL2, TinySTM does not require

26 CHAPTER 2. BACKGROUND

storing of the thread id and it provides an additional hierarchical locking layer to gain

performance for read operation validation.

TinySTM provides memory-management functions that allow transactional code to

use dynamic memory. Transactions keep track of memory allocated or freed: allocated

memory is automatically disposed of upon abort, and freed memory is not disposed of

until commit. Furthermore, a transaction can only free the memory locations after it

has acquired all the locks covering the memory locations.

TinySTM provides interfaces allowing users to choose different parameters eas-

ily, such as conflict detection policies, version management policies and CM policies.

Additionally, it also grants easy interface to user-defined functions.

2.3.6 Restrictions of STM

Despite of its merits, a STM system is complicated. It incorporates numerous tunable

parameters such as contention manger, version management policy and so forth. Such

tunable parameters are usually set prior to application execution and remain consis-

tent during the whole program execution. Few actions from the STM can be made to

adapt the system to the diversity of program runtime behaviour. Alongside the under-

lying multi-core processors and divergence of the applications, the intricacy is further

enhanced. Manual offline tuning is arduous and less precise. Autonomic computing

(Section 2.5) is capable of monitoring the behaviour of applications and STM systems

at runtime and tuning their parameters accordingly to ameliorate performance. Be-

fore starting to investigate autonomic computing techniques, it is necessary to present

several benchmark applications that are widely used to evaluate performance of TM

systems in the next section.

2.4 Benchmarks for Evaluation of TM Systems

Since the advent of the first TM proposal, efforts have been seen to develop TM mi-

crobenchmarks and benchmarks to evaluate performance of TM implementations. This

section gives a brief introduction to the benchmark suites that are utilised in the dis-

sertation: an artificial benchmark suite (EigenBench) and a realistic benchmark suite

(STAMP). There are other available TM benchmarks [52, 53, 54, 55] which are beyond

the scope of the thesis.

2.4. BENCHMARKS FOR EVALUATION OF TM SYSTEMS 27

2.4.1 EigenBench

EigenBench [56] is an artificial but highly configurable benchmark suite. By adjusting

the input parameters, EigenBench can be easily configured to yield the workloads of

concern for TM evaluation. In addition, it can be configured to mimic the behaviour of

real TM applications as illustrated in [56]. The core of EigenBench is three separate

arrays whose sizes can be tuned. Array1 is the hot array that is shared by all the

threads and accessed only by transactions. Array2 is the mild array that is accessed by

transactions but whose data is private to each thread. Array3 is the cold array that is

accessed by non-transactions and private to each thread. The kernel of EigenBench

code is presented in Fig. 2.7. The parameter loops stands for the number of transactions

assigned to each thread. Tuning R1, R2, R3, W1, W2 and W3 can change the number

of read, write operations inside transactions. Moreover, it is also possible to configure

the size of non-transaction operations. random_actions function determines whether

a transaction performs a read or write and whether to access the hot or mild array.

local_ops conducts a given number of reads or writes on the cold array and performs

nops.

1 void test_core(tid, loops, pesist, lct, R1, W1, R2, W2

2 R3_i, W3_i, Nop_i, k_i, R3_o, W3_o, Nop_o, k_o)

3 {

4 long val=0;

5 long total = W1 + W2 + R1 + R2;

6 for (i=0; i<loops; i++)

7 {

8 Save_Random_Seed;

9 BEGIN_TM();

10 if (persist) Restore_Random_Seed;

11 (r1,r2,w1,w2) = (R1,R2,W1,W2);

12 Reset_History_Buffers;

13 for (j=0; j<total ; j++)

14 {

15 (action, array) = rand_action(r1, w2, r2, w2);

16 index = rand_index(tid, lct, array);

17 if (action == READ)

18 val += TM_READ(array[index]);

19 else

20 TM_WRITE(array[index], val);

21 if ((j%k_i)==0)

22 val += local_ops(R3_i, W3_i, Nop_i, val, tid);

23 }

24 END_TM();

25 if ((i%k_o)==0)

26 val += local_ops(R3_o, W3_o, Nop_o, val, tid);

27 }

28 }

Figure 2.7: PseudoCode description of EigenBench’s core code [56].

28 CHAPTER 2. BACKGROUND

2.4.2 STAMP

Stanford Transactional Applications for Multi-Processing (STAMP) [57] is a bench-

mark suite which incorporates 8 applications. Inside the applications, there are 30

variants of input parameters and data sets provided. The applications simulate a wide

range of transactional behaviours, such as size of transactions, amount of contention,

size of read and write operations, coarse-grain and fine-grain transactions. Addition-

ally, they are compatible to HTM, STM and HyTM designs. The characteristics of

STAMP are summarised as follows:

• bayes. This application implements an algorithm for automatically learning

structures of Bayesian networks from observed data. The Bayesian network

is represented as a directed acyclic graph, whose nodes represent variables and

whose edges represent conditional dependencies among variables. Initially, there

is no dependencies among the variables. Its algorithm continuously learns de-

pendencies by analysing the observed data as the application progresses. A trans-

action is utilised to protect the calculation and addition of a new dependency.

Overall, this application has long transaction length (the time spent in commit-

ting one transaction), high transaction time (execution time of transactions) and

high contention. However, bayes exhibits non-determinism [58]: the ordering of

commits among threads at the beginning of its execution can drastically impact

on execution time.

• genome. This application performs a process of taking a significant number of

DNA segments and matching them to reconstruct the original source of genome.

More specifically, the process is composed of two phases. The first phase utilises

a hash set to create a set of unique segments. In the second phrase, each thread

attempts to remove a segment from a global pool of unmatched segments and

adds it to its partition of currently matched segments. Transactions are embedded

in each phase which evades the implementation of a deadlock avoidance scheme.

Overall, this benchmark has medium transaction length, high transaction time

and low contention.

• intruder. This application is a signature-based network intrusion detection sys-

tem (NIDS), which scans network packets for matches against a known set of

intrusion signatures. Network packets are processed in three phases: capture,

reassembly and detection, with the latter two phases enclosed by transactions.

2.4. BENCHMARKS FOR EVALUATION OF TM SYSTEMS 29

Overall, this benchmark has short transaction length, medium transaction time

and high contention.

• kmeans. This application is commonly applied to partition data into related sub-

sets. Particularly, it groups objects in N-dimensional space into K clusters. Each

partition of the objects is processed by one thread with transactions wrapping the

update of the clusters. The intensity of contention depends on the value of K and

the size of the transactions are proportional to the dimensionality of the space.

Overall, this benchmark has short transaction length, low transaction time and

low contention.

• labyrinth. This application implements a variant of Lee’s algorithm [59]. The

main data structure is a maze which is implemented by a three-dimensional uni-

form grid. The calculation of the maze’s path is enclosed by a single transaction.

A conflict happens when two threads try to fetch paths that overlap. Transactions

are efficient in this benchmark as they obviate the deadlock avoidance schemes.

Overall, this benchmark has long transaction length, high transaction time and

high contention.

• ssca2. It stands for Scalable Synthetic Compact Applications 2 (SSCA2) which

contains 4 kernels that operate on a large, directed, weighted multi-graph. STAMP

only adopts Kernel 1, i.e. constructing an efficient graph data structure by ad-

jacent and auxiliary arrays. Transactions are utilised to protect accessing the

two arrays. Overall, this benchmark has short transaction length, low transaction

time and low contention.

• vacation This application implements an online application transaction system

which emulates a travel reservation system. More specifically, it implements

a set of tree data structures that continuously track customers and their reser-

vation for various travel items. Threads conduct a number of sessions which

interact with the system database. Each of the sessions are enclosed into trans-

actions resulting in a significant amount of time spent in transactions. Over-

all, this benchmark has medium transaction length, high transaction time and

low/medium contention.

• yada. YADA is the abbreviation of Yet Another Delaunay Application. It imple-

ments Ruppert’s algorithm for Delaunay mesh refinements [60]. The basic data

structure of yada is a graph which stores mesh triangles, a set of mesh boundary

30 CHAPTER 2. BACKGROUND

segments and a task queue. The algorithm executes by iterating the following

steps: a triangle is removed from the queue, its retriangulation is performed on

the mesh and the new triangles obtained from the retriangulation are added to the

queue. Access to the queue is enclosed by transactions. Overall, this benchmark

has long transaction length, high transaction time and medium contention.

Some of the aforementioned applications demonstrate behaviour variation at run-

time. Such online performance fluctuations can be directly reflected on contention

changes. For instance, genome possesses three phases as shown in Fig. 2.8. A very

short phase with medium contention followed by a relatively long phase where the

contention is zero, as all the operations are reads, the last phase is characterised by a

rise of write operations leading to high contention. The contention falls again when

the program is approaching the end, as a part of threads are accomplishing their oper-

ations resulting in less conflicts globally. Fig. 2.8(a) illustrates contention fluctuations

for the parallelism degree 2 and 16. The corresponding throughputs are indicated in

Fig. 2.8(b). Fig. 2.8 demonstrates that varying parallelism degrees can impact on ap-

plication contention, therefore possibly improve application performance on execution

time. The next section describes the background technology and technique on auto-

nomic computing which is capable of controlling application behaviour automatically.

logic time

c
o
m

m
it
 r

a
ti
o
 (

%
)

0

10

20

30

40

50

60

70

80

90

100

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

2threads

16threads

(a) Contention

logic time

th
ro

u
g
h
p
u
t
(k

tx
/s

)

0

1000

2000

3000

4000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

2threads

16threads

(b) Throughput

Figure 2.8: Online variation of contention and throughput for genome

2.5. CONTROL OF AUTONOMIC COMPUTING SYSTEMS 31

2.5 Control of Autonomic Computing Systems

Autonomic Computing enables a software system to be self-adaptive. This technique

is introduced to STM systems in the thesis so that the systems is able to improve their

performance automatically.

2.5.1 Concepts of Autonomic Computing

The term "autonomic" comes from biology [61]. In the human body, the autonomic

nervous system takes care of unconscious reflexes without which, humans would have

to be constantly busy consciously adjusting the body to its needs and the environment.

IBM gives the definition of autonomic computing [62, 6]– computing systems that can

manage themselves given high level objectives from administrators.

A system can be considered as an autonomic system if it incorporates one of the

following aspects:

1. self-optimisation. Some complex systems may include multiple tunable param-

eters, which require careful tuning to maximise performance. In such a system,

the components and the system itself should be able to seek opportunities to im-

prove its own performance efficiency and throughput automatically by adjusting

these parameters. Such tunable parameters are also addressed as control points

[63, 64] in some literature.

2. self-configuration. The system can configure itself automatically in accordance

with high-level policies meaning that when a new component is added to a sys-

tem, it can incorporate itself seamlessly and the rest of the system can adjust to

its presence.

3. self-healing. The system can detect, diagnose and repair the problems deriving

from bugs or failures.

4. self-protection. Firstly, the system can defend itself from malicious attacks or

cascading failures that are uncorrected by self-healing measures. Furthermore,

the system can anticipate problems based on the information collected by sen-

sors, so that these problems can be avoided or mitigated.

This dissertation concentrates on the first feature: self-optimisation.

Autonomic computing proposes a general structure of feedback loop to take adap-

tive and reconfigurable computing into account [65]. Feedback control loops, on one

32 CHAPTER 2. BACKGROUND

Managed Element

sensors Effectors

Monitors
Knowledge

Execute

Autonomic Element

Analyse Plan

Autonomic Manager

Figure 2.9: A MAPE-K control loop. It incorporates an autonomic manager, a sensor,
an effector and a managed element among which the autonomic manager plays the
main role.

form or another, have been adopted as cornerstones of software-intensive self-adaptive

systems [66]. A classic MAPE-K feedback control loop proposed by IBM is intro-

duced in the following section.

2.5.2 MAPE-K Loop

Feedback control loops provide a generic mechanism for self-adaptation which is an

essential requirement for computing systems. However, in software engineering, feed-

back control loops are often hidden, abstracted, dispersed or internalised when the

architecture of an adaptive system is documented or presented [67]. Increasing the vis-

ibility of feedback control facilitates the uncertainty management of computing sys-

tems [68]. A classic feedback control loop is illustrated in Fig. 2.9 in the shape of a

MAPE-K loop (Monitor, Analyse, Plan, Execute, Knowledge) proposed by IBM.

In general, a feedback control loop (also called an autonomic element) possesses:

1. autonomic manager. It is also known as a controller.

2. sensor. It is also called probe or gauge which collects information from the

managed element. E.g. on a web server, the sensors can be the response time to

client requests, network and CPU usage, CPU and memory utilisation.

3. actuator. It carries out changes to the managed element. E.g. adding or remov-

ing machines to a web server.

2.5. CONTROL OF AUTONOMIC COMPUTING SYSTEMS 33

4. managed element. It can be any software or/and hardware that is given auto-

nomic behaviour by coupling it with an autonomic manager.

An autonomic manager takes the information of concern from the sensor to mon-

itors and execute changes via actuators. An autonomic manager is composed of five

elements:

1. monitor. It is used for sampling. The autonomic manager needs the appropriate

monitored data to recognise failure or suboptimal performance of the autonomic

element and perform the appropriate actions. There are two types of monitor-

ing that can be performed: passive monitoring and active monitoring. Passive

monitoring can be provided by the system directly (e.g. a Linux command top

provides the information of CPU utilisation). Active monitoring requires instru-

mentation to the applications or operating system to capture specific information

(e.g. functions or system calls).

2. analyser. It analyses data obtained from the monitor. Such as analysing the

architecture of systems.

3. knowledge. It means knowledge of the system. It acts like a database, which

includes the information of system architecture, available actions et al.. There

are three main approaches [61] used to represent knowledge: utility concept

(abstract measure of usefulness to a user, e.g. the amount of resource available to

users, the quality reliability or accuracy of the resource), reinforcement learning

(construct policies obtained from observing actions) and bayesian techniques (a

probabilistic technique which is used to provide a way to select from numbers

of services or algorithms).

4. plan. It takes into account of the monitored data to produce changes and order

the produced actions that will be performed on the managed element. Such as

ordering the actions and transferring them to executables. A simple case is the

event-condition-action (ECA) policy which yields adaptation plans right away

from specific events, e.g. when 95% of web servers response time exceeds 2

seconds and there are available resources, then increase the number of active

web servers.

5. execute. It perform changes.

34 CHAPTER 2. BACKGROUND

reference
 level

 external
Disturbances

+ -

control
input

control
error

tracked
 metric

controller process

transducer

Figure 2.10: The feedback control loop from control theory.

The purpose of the MAPE-K Loop is to develop autonomous control mechanisms

to regulate the satisfaction of dynamic requirements, specifically in software systems

[69, 62, 6]. An autonomic manager not only implements the phases of the adaptation

process, but also provides the interfaces required to sense the environment, and to

effect changes on target systems [66]. In the dissertation, feedback control loops are

introduced to STM systems to achieve autonomic performance adaptation according

to the application runtime behaviour.

2.5.3 Degrees of Autonomicity

IBM [6] defines five levels of autonomicity. (1) On the first level, the automated func-

tions only collects information to support the administrator’s decision making. (2) On

the second level, the autonomic computing system can act as an advisor to suggest

potential actions to be taken by administrators. (3) On the third level, the autonomic

computing system can make lower-level decisions and make actions, however, admin-

istrators have to frequently make higher-level decisions. (4) On the fourth level, the

system still makes lower-level decisions but requires less frequent administrator inter-

ventions. (5) On the top level, the systems and components are dynamically managed

by rules and polices.

2.5.4 Control Theory in Self-adaptive Systems

Control theory depends on reference control points of system behaviour and corre-

sponding explicit mathematical model specifications [66]. The idea of applying con-

trol theory to self-adaptive software system is to find the right mathematical model

for modelling the software system behaviour and apply the corresponding treatment.

2.6. CONCLUSION REMARKS 35

The theory of autonomic computing overlaps with control theory in the aspect of self-

adaptiveness, which is achieved through feedback control loops. A classic feedback

control loop from control theory is illustrated in Fig. 2.10. The process as in the figure

has a tuning parameter that can be manipulated by a controller. The tracked metric is

sensed to obtain the process behaviour and its value is supposed to stay at a reference

level. At each instance, the controller computes the difference (called control error)

between the value of the tracked metric with the reference level. The controller takes

corresponding actions on the process to reduce the control error. However, a nuance

[66] between the feedback control loop from control theory and the MAPE-K loop is

the complexity of each constituent component and of the overall loop. For example, in

the control theory, the control actions are atomic operations for physical actuators with

clear causality between inputs and outputs, whereas in the latter, they are a sequence

of discrete plans with long lag and uncertain consequences. Albeit the basic principles

of the feedbacks in both theories are the same. The details of control theory is out of

the scope of the thesis, more information can be found in [70, 71].

2.6 Conclusion Remarks

This chapter has reviewed the related background technologies and techniques on

multi-core processors, synchronisation and autonomic computing. It has introduced

the topologies of modern processors and discussed the diversity of synchronisation

mechanisms. Specifically it has surveyed the significant background on Transactional

memory, as transactional memory serves as the synchronisation mechanism used in

the dissertation. Two benchmark suites (EigenBench and STAMP) for TM evaluation

are later presented. Lastly, autonomic computing techniques have been covered, which

are employed for automatically managing and optimising TM applications and STM

platforms at runtime.

Transactional memory, as an alternative parallel programming paradigm, addresses

synchronisation issues through transactions. A sequence of instructions are enclosed

into a transaction. Transactions execute and access shared objects speculatively with-

out blocking by locks. When conflicts arise, the transaction which detects the conflict

can either chooses to abort itself making its previous operations from the current trans-

action invalid, or the transaction can choose to abort other transactions. The aborted

transactions are re-executed immediately or wait for a certain period before resuming.

TM can be implemented into software, hardware or hybrid.

36 CHAPTER 2. BACKGROUND

Diverse STM systems exist which present their pros and cons. STM systems in-

corporate many tunable parameters, such as contention manger, version management

policy, etc. Such tunable parameters are usually set prior to application execution and

remain consistent during the entire execution. Little variation of the parameters can be

made online to adapt to the diversity of program runtime behaviour. Manually offline

tuning the parameters is arduous and less precise. Alongside the complex topologies of

multi-core processors and divergence of TM applications, offline tuning becomes more

intricate. Autonomic computing is able to monitor application and system behaviour at

runtime and respond to changes accordingly.

The dissertation focuses on runtime adaptation on thread parallelism and mapping

to enhance system performance and describes the corresponding methodologies in the

following four chapters. The related work will be given in Chapter 7 in order to il-

lustrate the state-of-art research pertaining to the work of the dissertation and further

highlights the contribution of this work.

Chapter 3

Overview of Profile Algorithms and
System Architecture

Chapter 3

Overview of Profile Algorithms and

System Architecture

STM systems incorporate many tunable parameters such as contention managers, ver-

sion management policies, etc. Such tunable parameters are usually set prior to ap-

plication execution and remain unchanged during the whole program execution. Little

variation of the parameters can be made online by a STM system itself in order to

adapt its setting to the diversity of program runtime behaviour. Moreover, with the

complex topologies of multi-core processors and divergence of TM applications, more

tunable parameters are introduced to a system. Manually offline tuning the parameters

is not easy and less precise. On the grounds of runtime interaction between platforms

(hardware and software) and applications, application behaviour is more erratic from

an offline view. Autonomic computing is able to monitor application and system be-

haviour at runtime automatically and respond to changes accordingly.

This chapter gives an overview of the proposed system architecture and the method-

ologies shared in the following three chapters in order to avoid repetition. It serves as

an introduction to the work of the thesis on runtime thread parallelism and thread

mapping adaptation using autonomic computing techniques. The methodologies on

runtime parallelism adaptation is depicted firstly in Chapter 4. Chapter 5 details the

runtime adaptation of thread mapping strategies. The coordination of adaptation for

parallelism and thread mapping strategies is described in Chapter 6.

This chapter firstly gives the overview of the system architectural organisation

(Section 3.1). Then it presents the profiling algorithms in Section 3.2. Lastly, Sec-

tion 3.3 illustrates the relevant implementation techniques.

38

3.1. OVERVIEW OF SYSTEM ARCHITECTURE 39

3.1 Overview of System Architecture

 TinySTM

TM applica�ons

Mul�core HW

commits, aborts,

�me

Autonomic Element

Autonomic Manager

Monitors Execute

Analyse

CR and th

PlanCR range

mapping

opt tn

Knowledge

online && offline

system info

Managed Elements

sensors

 inc/dec tn, mapping,

 profile flag effectors

Figure 3.1: Overview of the feedback control loop. th, opt tn and mapping represent
throughput, optimum thread number and thread mapping strategy, respectively.

The system architecture is a MAPE-K-shape feedback control loop illustrated in

Fig. 3.1, which is an instantiation of the control loop in Fig. 2.9 of Section 2.5. This

autonomic element is composed of:

• Managed elements. TinySTM (the STM system), TM applications (EigenBench

and STAMP) and the underlying multi-core hardware.

• Sensors. The number of commits, the number of aborts and time.

• Actuators. Increase or decrease thread number, change thread mapping strate-

gies and set the profile flag. The amount of actuators can vary.

• Autonomic manager. This is the controller. When it changes, the corresponding

actuators can vary. E.g. in Chapter 4, the feedback control loop only manages

parallelism degrees, therefore its actuators are shrunk to increment or decrement

of parallelism degrees, the profile flag setting; its autonomic manager only de-

termines parallelism degrees.

Under the terminology of control theory, the control objectives of the feedback

control loop shared by the following three chapters is to maximise the throughput and

diminish the global execution time. This is achieved by adjusting parallelism degree

or/and thread mapping strategies at runtime to reduce contention and improve mem-

ory resource usage. Recall what is described in Section 2.5.3, IBM defines five levels

40 CHAPTER 3. OVERVIEW OF ALGORITHMS AND ARCHITECTURE

of autonomicity. This thesis is concerned with the fourth level of autonomicity on

self-optimisation where the autonomic system is able to automatically collect system

information and make decisions based on the pre-set rules to optimise application ex-

ecution time. However, some administrator interventions are still required, such as

setting the profiling length.

3.2 Runtime Profiling Approaches

This section covers the general concepts and terminologies which are specifically for

the methodologies described in this thesis. Two profiling algorithms are presented

afterwards.

3.2.1 General TM Profiling Concepts

Profiling in software engineering refers to a form of dynamic application analysis that

measures certain useful events to facilitate application optimisation. Measuring a great

amount of events can cause a high time overhead due to the execution of instrumenta-

tion code. The instrumented code may impact on application behaviour. Concerning

with TM applications, a transaction extends its length by adding instrumentation code

that results in a potential change of conflict ratio with other transactions, consequently

leading to the change of global contention.

Three events are profiled in the designed architecture, namely the number of com-

mits, the number of aborts and physical time. The number of commits and the number

of aborts are addressed as commits and aborts in the rest of the thesis. CR (commit ra-

tio) and throughput (recall that throughput is the commits in a unit of time) are utilised

to denote program performance, as they are both sensitive to performance variation of

threads. But either by itself is not sufficient enough to represent program performance,

as:

• A high throughput shows fast program execution whereas a low throughput rep-

resents slow program progress. Nevertheless, a low throughput may be caused

by low parallelism or simply just a low number of transactions taking places.

• CR indicates the conflicts among threads. A high CR means low synchronisa-

tion time whereas a low CR means a high synchronisation cost. Nonetheless,

a low CR can bring a high throughput when a large number of transactions are

3.2. RUNTIME PROFILING APPROACHES 41

executed concurrently, whereas a high CR may give a low throughput due to a

small number of transactions executing simultaneously.

Two metrics are often used as timers: physical time and logic time. The logic

time is utilised in the thesis, as the length of transaction varies in diverse applications

leading to the significant variation of execution time. Commits and aborts are two

frequent and meaningful events in TM, are hence good candidates to track the logic

events. The number of commits is employed as the timing metric, since it is often a

fixed value for an application, while aborts fluctuate significantly with different conflict

control strategies and hardware.

1st thread profile starts

non- ac�on interval (�med by Tx)

...

thread profile interval

Program starts
 A thread profile starts

decision points decision points

 one profile length
...

...

 one profile lengthdecision points

Figure 3.2: The terminologies used for the profiling algorithm in the thesis. One thread
interval consists of a continuous sequence of profile lengths within which the paral-
lelism or thread mapping strategy is adjusted, one non-action interval is composed of
one or a continuous sequence of profile lengths, within which the thread regulation is
suspended.

Ideally, profiling algorithms keep tracing program events and only take actions for

optimisation when necessary. The frequency of optimisation actions can significantly

impact on application performance. Two profiling algorithms are designed, which are

addressed as phase-based profiling and periodical hill-climbing profiling. Fig. 3.2 il-

lustrates how a program is profiled and the terminologies defined in this thesis. A

profile length is a fixed period timed by commits to gather information, such as com-

mits, aborts and time. A thread profile interval is composed of a continuous sequence

of profile lengths, within which the parallelism or/and thread mapping strategy is/are

adjusted and the CR range is computed. The non-action interval consists of one or

a continuous sequence of profile lengths, within which the thread regulation is sus-

pended. The duration of thread profile interval and non-action interval are not fixed

values as indicated in Fig. 3.2. At the end of one profile length is the decision point.

The choice of the profile length mainly depends on the total amount of transactions

42 CHAPTER 3. OVERVIEW OF ALGORITHMS AND ARCHITECTURE

in an application. The applications with the same magnitude of transactions share

the same profile length. For instance, genome and vacation (two benchmarks from

STAMP [57]) share the same profile length as the total number of transactions in the

two applications are on the same magnitude (i.e. 106).

3.2.2 Phase-based Profiling Algorithm

A good phase detection method is capable of resolving a phase with a small variance

in performance, comparing to the performance variance across the entire applications

[72]. A small variance is an indicator demonstrating if the phased detection mechanism

detects phase boundaries correctly. Moreover, there exists unstable transition region

between two phases, attempting to perform optimisation on the transition region can

lead to unpredictable, non-optimal results [72]. A TM application can generate differ-

ent phases during its execution. Its CR shows distinct difference among each phase,

yet fluctuates within a certain range in the same phase.

The phase-based profiling algorithm is useful as the controller only reacts to ma-

nipulate the threads when necessary. However it is non-trivial to determine runtime

phase boundaries for TM applications. In the proposed methodologies, a CR range

is dynamically resolved to indicate the phase. When CR falls out of the CR range,

meaning that the program enters a new phase, optimisation actions are invoked (e.g.

adapting parallelism) accordingly. Two methods are utilised to decide phase diversity.

Simple Phase Detection Algorithm

The first phase detection method is fairly simple. The two thresholds of the CR range

are resolved when the optimum parallelism is decided. The two thresholds are the

values of the CR generated by the parallelism degrees that are one more or one less

than the optimum one.

Advanced Phase Detection Algorithm

The second method is implemented through a feedback control loop that serves as a

slave loop to the main control loop. Through continuously modifying the CR range, the

actions taken by the main loop responds better to the phase changes. By detecting CR

fluctuation in the non-action interval, the main controller decides if the program enters

a new phase. When CR remains in a certain range, regulation to the thread is unnec-

essary as the conflicts in the program has already been minimised by previous control

3.2. RUNTIME PROFILING APPROACHES 43

actions. However, it is onerous to determine such a CR range offline, especially it is un-

realistic to set a fixed CR range for the applications with runtime behaviour variation.

Moreover, a constant CR range impedes programs to search their optimum parallelism

and mapping strategy. Therefore it becomes interesting to dynamically decide a CR

range. The derivation of the CR range is based on the optimum CR value. The opti-

mum CR (CRopt) is the value which produced by the optimum parallelism or together

with its optimum thread mapping strategy. The values of upper and lower thresholds

are the optimum CR plus or minus a factor (δ) of itself, as denoted in Equation 3.1.

CR =CRopt ±δ∗CRopt (3.1)

Initially, the value of δ is set to be 10% and is later continuously modified. δ rises

1% when the new predicted parallelism degree equals the previous value or the new

value delivers worse performance, meaning that the program still executes in the same

phase but the sensors overreact to the CR fluctuation. Therefore it is reasonable to

extend the current CR range to reduce the false alert of phase variation. The maximum

value of δ is restricted to 0.15.

3.2.3 Periodical Hill-Climbing Profiling Algorithm

The periodical hill-climbing profiling algorithm, as the name indicates, periodically

profiles the program and takes control actions. After each thread profile interval, if the

configuration stays the same as the previous setting, the non-action interval is doubled

otherwise it is reset to the initial value. To prevent the non-action interval from extend-

ing too long resulting in slow response to the program behaviour variation, the length

of a non-action interval is restricted to a threshold. The initial value of the non-action

interval is one profile length. This profiling algorithm is suitable for programs with

relatively long and stable phases, although it is less sensitive to the program behaviour

change comparing with the previous two phase detection algorithms. Additionally,

unnecessary control actions can be taken leading to the program progress under its

sub-optimum configurations. This thesis hence only presents performance evaluation

based on phase detection algorithms.

44 CHAPTER 3. OVERVIEW OF ALGORITHMS AND ARCHITECTURE

3.3 Implementation

This section describes the approaches on how to collect profile information and how to

manage threads at runtime.

3.3.1 How to Collect Profile Information

There are two methods for collecting application profile information in a parallel pro-

gram. A master thread 1 can be employed to record its own information. An alternative

way is to collect the information by all threads. The first method requires little synchro-

nisation cost to gather information, but the obtained information may not represent the

global view. Additionally, the master thread must not be suspended during the whole

program execution, consequently making it terminate earlier than the other threads.

This means that fair execution time slots among threads can not be guaranteed. The

latter method may suffer from synchronisation cost but the profile information gath-

ered represent the global view. More importantly, a fair execution time strategy can be

employed among threads. The second method is utilised in the thesis. The synchro-

nisation cost for gathering information is negligible for most of the TM applications

employed.

Events TinySTM functions Action performed

STMInit stm_init() initialise STM system
STMExit stm_exit() finalise the STM system
ThreadInit stm_thread_init () initialise TM threads
ThreadExit stm_thread_exit () finalise the threads
TxBegin stm_start() start a transaction
TxEnd stm_commit() commit the current transaction
TxAbort stm_abort() abort the current transaction and restarts
TxRead stm_load() transaction executes a read operation
TxWrite stm_store () transaction executes a write operation

Table 3.1: The basic STM operations relevant to the experiments.

The profiling mechanism adapted to TM must be generic in order to deal with high

diversity of STM systems and TM applications. Such a mechanism should be able to

tackle the following two requirements:

1A master thread in this thesis means a thread which is randomly selected to perform control actions
and collect profile information. It is not necessarily to be the main thread that creates the other threads.

3.3. IMPLEMENTATION 45

• Low intrusiveness. The profiling method should bring low time overhead to

applications and should alter little of TM application source code. Two met-

rics can be utilised to measure the intrusiveness in TM, i.e. the execution time

and aborts. If execution time and aborts generated by the instrumented appli-

cations without performing adaptation vary insignificantly from those generated

by original code, a verdict can be reached: application behaviour is not affected.

• TM system independence. The profiling method can be adapted to a new STM

system easily with little modification and be implemented into a HTM system

without significant changes.

The instrumentation code varies when the algorithms are designed for different pur-

poses, therefore profiling intrusiveness may differ. The implementation intrusiveness

is illustrated in the following Section (Section 3.3.2).

Although TM systems vary in many aspects as shown in Section 2.3, they rely on

some basic operations to perform their functions. Table 3.1 gives the operations which

are implemented as functions in STM systems and are relevant to the experiments of

the dissertation.

3.3.2 How to Dynamically Control Threads

This dissertation is concerned with two issues, that is dynamic parallelism degree and

thread mapping control. To dynamically adjust parallelism, a global monitor is im-

plemented. It enables threads to temporarily give up exclusive access to shared data

and later resumes their tasks when some conditions are satisfied. The monitor is a

cross-thread lock which consists of the concurrent-access variables by threads. The

major variables of the monitor are the commits, aborts, throughputs, two FIFO queues

recording the suspended and active threads, current active thread number, optimum

thread number, optimum thread mapping strategy and condition variables. Each thread

is associated with one condition variable. A thread waits on its condition variable until

a waking signal sent by the other thread. Details about the mechanisms of diverse pro-

cess synchronisation, such as locks, semaphores and monitors, are beyond the scope

of the thesis, more information can be found [73].

A monitor can include several entry points for controlling the threads, where threads

are suspended or wakened. The maximum thread number, which is the number of the

available cores, is created during application initialisation. Fig. 3.3 illustrates the de-

signed monitor that incorporates three entry points. The first entry point is upon thread

46 CHAPTER 3. OVERVIEW OF ALGORITHMS AND ARCHITECTURE

initialisation, where some threads are allowed to pass and the rest are suspended. The

second entry point is upon a transaction commit, where commits are accumulated and

where the control functions take actions. The third entry point is upon a thread exit,

where one suspended thread is wakened by one thread that completes its operations.

Fig. 3.3 also demonstrates the interfaces of the sensors, actuators and the controllers.

The sensors, which are used to collect commits and aborts reside where the trans-

action commits and the transaction aborts, respectively. The sensor to measure time

reside where the transaction commits and the TM system initialises. The sensor to

record time is a Linux kernel function gettimeofday(). Fig. 3.4 depicts how the mon-

itor is utilised to control the thread status written in C code. The array cond_state[]

is utilised to record the condition variables which are booleans. pthread_cond_wait()

operation sets a condition variable to be false making the corresponding thread sus-

pended. pthread_cond_signal sets a condition variation to be true and wakens the

corresponding suspended thread. The controller put its control decision into actions by

controlling the array thread_expect_state[].

In Fig. 3.3, the control functions, detailed in the following three chapters, are im-

plemented inside the three entry points. The control functions take the inputs collected

by the sensors and make corresponding decisions. The monitor acts as an actuator to

control parallelism degree. The second actuator for controlling thread mapping strate-

gies is a pthread function which affiliates the threads based on the chosen strategy to

the corresponding CPU cores. Affiliating a thread to a core can cause thread migra-

tion thus performance loss. Recall that, pinning a thread requires reconstruction of

cache information if a thread is pinned to a core which resides on another cache level.

Therefore it is necessary to avoid frequent change of thread mapping strategies. Thread

affinity is managed at two entry points, that is (1) upon thread initialisation where a

thread mapping strategy can be specified as an initial strategy, and (2) upon a thread

commit where a new thread mapping strategy can be specified and a new wakened

thread is assigned to the core where a thread is suspended.

Overhead of the Monitor

A time overhead, which differs on different hardware, is given to each transaction

when calling and releasing the monitor. Two factors contribute to this cost: the oper-

ation of obtaining and releasing the lock and the time spent to contend for the lock.

The latter cost rises significantly when active thread number increases, which gives

significant impacts on the applications with short-length transactions (a transaction

3.3. IMPLEMENTATION 47

1 /*adjust functionalities*/

2 control_func(time,commits,aborts){

3 ...

4 adjust tn;

5 adjust thread mapping strategy;

6 decide control decision frequency;

7 ...

8 }

1 //The entry point

2 stm_thread_init(){

3 ...

4 control_func(time,commits,aborts);

5 ...

6 }

1 //The entry point.

2 /*The info of all threads are synchronised at this entry point*/

3 stm_commit() {

4 ...

5 commit sensor;//collect commits

6 time sensor; //record time

7 ...

8 control_func(time,commits,aborts);

9 ...

10 }

1 stm_abort(){

2 ...

3 abort sensor;//collect aborts;

4 ...

5 }

1 //The entry point

2 stm_thread_exit(){

3 ...

4 control_func(time,commits,aborts);

5 ...

6 }

1 stm_init(){

2 ...

3 time sensor;

4 ...

5 }

Figure 3.3: The three entry points of the monitor and the control functions. The mon-

itor in the figure is a cross-thread lock which includes the concurrent access variables
by threads. The code is written in pseudo C. tn stands for active thread number.

incorporating a small number of operations). Table 3.2 and Table 3.3 illustrate per-

formance difference with and without the monitor when applications executing with

the static optimum parallelism. The results are generated by the monitor when called

every commit. On the UMA platform (used in the thesis), the overhead caused by call-

ing locks is negligible for the transaction with medium length and long length, more

48 CHAPTER 3. OVERVIEW OF ALGORITHMS AND ARCHITECTURE

1 /*suspend threads*/

2 pthread_mutex_lock(&(monitor_t->monitor));

3 if ((mod_monitor->thread_expect_state[thread_id])==false)

4 while ((monitor_t->thread_expect_state[thread_id])==false)

5 monitor_t->active_tn--; //obtain the number of threads suspended

6 pthread_cond_wait(&(monitor_t->cond_state[thread_id]),&(monitor_t->monitor));

7 monitor_t->active_tn++;

8 pthread_mutex_unlock(&(monitor_t->monitor));

1 /*waken threads*/

2 pthread_mutex_lock(&(monitor_t->monitor));

3 pthread_cond_signal(&(monitor_t->cond_state[thread_id]));

4 pthread_mutex_unlock(&(monitor_t->monitor));

Figure 3.4: A snapshot of C code on suspending and wakening threads. This is one of
the control functions in Fig. 3.3

specifically is less than 2%. On the NUMA machine, the majority applications indicate

around 4% time overhead with the monitor. Time fluctuations are shown on genome

(around 4% on UMA), as its execution time is short. intruder and ssca2 demonstrate

20.6% and 224.6% time overhead with the monitor on the UMA due to its short-length

transactions. On the NUMA platform, the overhead cause by the monitor for the two

applications is smaller than that on UMA, i.e. around 5% and 12% for intruder and

ssca2, respectively. It is not surprising to observe such a significant overhead differ-

ence for ssca2 between the two machines, since the optimum thread number executed

on NUMA is 6 while 24 on UMA. The time spent in contending for the lock is hence

higher on UMA in this case.

The overhead caused by calling the monitor can be reduced through diminishing

its calling frequency. More specifically, the monitor is called every 100 commits rather

than every commit. As a time stall is added at commit time, it makes the contention

manger act similar as a backoff policy (except the backoff policy gives proportional

time stall based on the retry times). Therefore some applications when the global

monitor is used show slightly better or worse performance than the ones without the

monitor.

Deadlock Avoidance

Some applications, such as genome and ssca2, incorporate multiple thread barriers

which conflict with the monitor, thus deadlock. To tackle the issue, an additional func-

tion is inserted before a thread barrier to avoid the deadlock. Once a thread encounters

a barrier, it wakens one suspended thread. When all the threads have passed the barrier,

the last thread sets parallelism back to the optimal value. Thread control is disabled

3.3. IMPLEMENTATION 49

Application tn
without monitor with monitor

time (s) aborts time (s) aborts
EigenBench (one phase) 12 31.8 1422425 31.6 1427577
EigenBench (three phases) 12 57.3 2406000 56.7 2395137
EigenBench (two phases) 2 36.3 272180 35.8 247519
intruder 6 10.7 61687402 12.9 44105349
ssca2 24 6.1 18333 19.8 19428
genome 4 4.6 9706425 4.8 7743698
vacation 8 9.4 233214 9.5 208642
yada 8 9.1 80555689 9.2 78392329
labyrinth 20 37.1 217 37.3 219

Table 3.2: Intrusiveness of the global monitor for applications on the UMA platform.
tn represents the optimum parallelism degree. The monitor is called every commit.

Application tn
without monitor with monitor

time (s) aborts time (s) aborts
EigenBench (one phase) 12 33.9 1438002 33.9 1435445
EigenBench (three phases) 12 59.4 2418888 59.8 2418097
EigenBench (two phases) 4 28.4 2237076 28.2 2232561
intruder 6 9.3 36101578 9.8 28621899
ssca2 6 13.2 708 14.8 238
genome 4 4.0 3614305 4.0 3211683
vacation 8 7.3 168524 7.2 163164
yada 12 7.9 125357974 8.0 119209845
labyrinth 32 25.5 326 24.2 312

Table 3.3: The intrusiveness of the global monitor for applications on the NUMA
platform. tn represents the optimum parallelism degree. The monitor is called every
commit.

when the first thread meets a barrier until the last thread passes the barrier, as the

application behaviour is unstable at this period.

Round-robin Thread Rotation

To avoid thread starvation, round-robin thread rotation is employed to periodically

awaken early suspended threads and suspend the running threads having executed

longest time. There are two ways to implement thread round-robin rotation algorithm:

timestamp based round-robin and First-In-First-Out (FIFO) queue. The timestamp al-

gorithm marks an explicit time line for each thread (the time when it is wakened and

the time when it is suspended), however, it requires to compare the timestamp of all

50 CHAPTER 3. OVERVIEW OF ALGORITHMS AND ARCHITECTURE

the threads for each rotation operation. The FIFO queue algorithm does not include

the explicit time line, however, it performs simple push-in and pop-out operations to

achieve the thread rotation. The latter algorithm is chosen in this thesis. Two FIFO

queues are implemented, with one recording the suspended threads and one recording

the active threads. Thread starvation avoidance is necessary for the application with a

set amount of tasks allocated to each thread. This is the case for EigenBench, without

thread rotation the suspended threads starve, which not only slows down application

execution, but also changes application runtime behaviour. However in some appli-

cations such as yada from STAMP, the tasks are allocated to each thread at runtime,

and no tasks are assigned to the suspended threads, therefore applications likewise re-

quire no round-robin thread rotation. Table 3.4 lists the effect on fair execution time

among threads by round-robin thread rotation for diverse applications. More details of

the benchmark analysis will be explained together with performance evaluation in the

following chapters.

Application Effect Applications Effect

EigenBench (one phase) yes intruder no
EigenBench (three phases) yes ssca2 no
EigenBench (two phases) yes genome no
vacation yes labyrinth no
yada no

Table 3.4: The effect of round-robin thread rotation on applications.

3.4 Conclusion Remarks

This chapter gives an overview of the system architecture, presents the methods on

application phase detection and illustrates the implementation details. It provides the

techniques which are shared by the next three chapters. The system architecture is de-

scribed as a feedback control loop in MAPE-K shape which varies in sensors, actuators

and autonomic manager in following three contribution chapters. Autonomic comput-

ing employs feedback control loops, as it systematically depicts the design objectives

and system architecture. In addition, it develops autonomous control mechanisms to

satisfy runtime requirements. However, this chapter offers little insights into the pros

and cons of different phase detection approaches, as such will be better demonstrated

with performance evaluation. The implementation part describes the design details and

3.4. CONCLUSION REMARKS 51

discusses its advantages as well as limitations.

The next chapter presents the dynamic parallelism adaptation approaches. It de-

scribes two parallelism adaptation approaches and illustrates their efficiency through

performance evaluation.

Chapter 4

Autonomic Parallelism Adaptation

Chapter 4

Autonomic Parallelism Adaptation

4.1 Introduction

The parallelism degree can significantly impact on TM application performance. E.g.

Fig. 4.1(a) illustrates execution time difference of static parallelism degrees for one

application from EigenBench. A better choice of parallelism degree can boost ap-

plication performance. However, it is onerous to decide an optimum parallelism de-

gree offline especially for the program with online behaviour variation. Apropos of

a program with online behaviour fluctuations, no unique parallelism degree can yield

optimum performance. For instance, Fig. 4.1(b) indicates throughput fluctuations of

EigenBench for certain parallelism degrees. This application exhibits three phases

where no single parallelism degree can always achieve the highest throughput at each

phase. Additionally, the optimum parallelism degree varies when the same application

runs on a different platform. Therefore, the natural solution is to audit a program at

runtime and alter its parallelism degree when necessary.

This chapter presents the algorithms on parallelism adaptation for STM systems

using control techniques and technologies. Section 4.2 and Section 4.3 describe two

autonomic models that detect near-optimum parallelism at runtime. The parallelism

adaptation algorithms are described through control theory view. Benchmark settings

are presented later in Section 4.4 to clarify characteristics of the applications. Follow-

ing that, Section 4.5 firstly illustrates application performance diversity when different

static parallelism1 is applied. It then demonstrates the performance evaluation on dy-

namic parallelism adaptation.

1In this thesis, static parallelism refers to the parallelism degree which is selected offline and running
during the whole application execution without adaptation.

53

54 CHAPTER 4. AUTONOMIC PARALLELISM ADAPTATION

2 4 6 8 10 12 14 16 18 20 22 24

ti
m

e
 (

s
e
c
o
n
d
)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

(a) time difference

logic time (1k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

10

20

30

40

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

●
●

●

●

● ●
● ●

●

2threads

4thread

8threads

16threads

24threads

(b) throughput comparison

Figure 4.1: An illustration of necessity of dynamic parallelism adaptation for Eigen-

Bench.

4.2 Simple Model for Parallelism Adaptation

This section presents a model (addressed as simple model) that dynamically searches

the near-optimum parallelism degree for each phase of an application.

4.2.1 Overview of the Profiling Algorithm

The profiling procedure is depicted in Fig. 4.2. The parallelism profiling procedure

starts once the program starts. Initially, the program initialises the thread number that

equals the core number, but only 2 threads are active and the rest are suspended. At

each decision point, which corresponds to one state of the automaton in Fig. 4.3(b), the

controller is activated to increase or decrease the parallelism degree continuously or

suspend the parallelism regulation. The above procedure continues until the program

terminates.

4.2.2 Feedback Control Loop of the Simple Model

Fig. 4.3(a) gives the structure of the complete platform which forms a MAPE-K (defi-

nition in Section 2.5.2) feedback control loop. The structure of the autonomic manager

is shown in Fig. 4.3(b). The autonomic manager, which can be also seen as the con-

troller, is described as an automaton in this thesis. The automaton is composed of four

states. One state is called at each decision point.

4.2. SIMPLE MODEL FOR PARALLELISM ADAPTATION 55

1st thread profile starts

non- ac�on interval (�med by Tx)

...

 thread profile interval (tn keeps inc or dec by one)

Program starts
 A thread profile starts

decision points decision points

 one profile length ...

 one profile lengthdecision points

1. in/dec tn

2.CR range

 1 1 1 1&2

...

Figure 4.2: Profiling procedure for the simple model. The control actions are taken at
each decision point (marked by dashed red arrow).

commits, aborts,

 �me

profile flag

inc/dec tn

Autonomic Element

Autonomic Manager

Monitors Execute

Analyse

CR, th

Plan
CR range

opt tn

Knowledge
online && offline

 system info

Managed Elements

sensors effectors

 TinySTM

TM applica�ons

Mul�core HW

(a) The MAPEK-shape feedback control loop.

increase
 tn

 no tn
control

th
 dec o

r t
n_m

ax

CR<CR_L
OW

and

tn

>tn
_m

in

(CR>CR_UP or CR=1)

 and

 (tn<tn_max)

true

start
decrease
 tn

th dec or tn_m
in

 stop
profile

(b) The structure of the autonomic manager

Figure 4.3: The feedback control loop of the simple model.

Inputs and Outputs

The inputs of the loop are commits, aborts and physical time (see Section 2.3.1 and

Section 3.2.1 for definition). The actions are to increase or decrease parallelism de-

grees and setting the profile flag.

Three Decision Functions

The control loop is activated at each decision point. Three decision functions cooperate

to make decisions: a parallelism decision function, a profile decision function and a CR

range decision function. Each decision point in Fig. 4.2 corresponds to one state of the

automaton in Fig. 4.3(b). The corresponding decision functions are called to make

decisions at each state. The parallelism decision function and the profile decision

function are detailed in the following paragraph. The CR range decision function that

has been described in Section 3.2.2 is employed to detect program phases.

56 CHAPTER 4. AUTONOMIC PARALLELISM ADAPTATION

The automaton begins with the state increase tn, since the thread number is set

to the minimum at the starting point. Starting from the minimum thread number can

avoid the excessive conflicts among threads which hinders program progress. In each

thread profile interval, the parallelism can either continuously increase or decrease.

The direction of parallelism regulation (increase or decrease) is determined by the pro-

file decision function. If the current throughput is greater than the previous throughput,

one thread is wakened or suspended and the current throughput is recorded as the max-

imum throughput. The state shifts to stop profile when the current throughput is less

than the maximum throughput. At the final decision point of a thread profile interval

(at the state stop profile), the parallelism is set to the value that yields the maximum

throughput. A new CR range may be computed at the end of a thread profile interval

as detailed later in this section. Then the automaton shifts from the state stop profile

to the state no tn control that corresponds to non-action interval in Fig. 4.2. At each

decision point of a non-action interval, the profile decision function decides if a new

parallelism profile interval is needed. More specifically, if the CR falls into the CR

range, the program stays in the no tn control state. Otherwise a boolean value is set

indicating the direction of the parallelism regulation. Specifically, the automaton shifts

to increase tn if CR is higher than the upper CR threshold or decrease tn otherwise. It

is worth noting that, in case the maximum value of the upper threshold is 100%, and

the program CR is 100% (when only reads operation in the transactions or no conflicts

among transactions), a higher parallelism degree to the program is assigned.

The throughput often fluctuates before reaching the optimum value as shown in

Fig. 4.4. To prevent a parallelism profiling procedure from terminating at a local max-

imum throughput, the parallelism profiling procedure continues until the throughput

decreases over 10% of the maximum value (10% is an empirical value that is tunable).

The parallelism decision function described in the above paragraph is called in the

state increase tn and decrease tn. The runtime phases are indicated by CR fluctuations.

There is a natural fluctuation of CR at runtime within the same phase. Ideally, a control

action should only take place when a new phase begins. It is onerous to determine a CR

range offline, especially it is impossible to set a fixed CR range for some programs with

online performance variation. Also, a constant CR range impedes programs to search

their optimum parallelism. Therefore it becomes necessary to dynamically resolve a

CR range. At the end of a thread profile interval, a new CR range is prescribed. The

function is activated at the state stop profile corresponding to the last decision point

of a thread profile interval. The simple thread adaptation model utilises the simple

4.3. PROBABILISTIC MODEL FOR PARALLELISM ADAPTATION 57

thread number0

th
ro

u
g
h
p
u
t local optimum point

global optimum point

 10% variation

Figure 4.4: Throughput fluctuation. The throughput fluctuates before reaching the
maximum point.

phase-based profiling algorithm as its CR range decision function, since this decision

function does not give additional cost to the model. Recall that, the simple phase-based

profiling algorithm decides its CR range by recording the CR generated by one more

and one less parallelism degree than the optimum value (see Section 3.2.2 for details).

4.3 Probabilistic Model for Parallelism Adaptation

The approach to alter the parallelism degree by one at each decision point occupies

long profiling time which slows down execution. This section presents a probabilistic

model that predicts the parallelism based on the information of one profile length.

Likewise the profiling procedure stated in Section 4.2, Fig. 4.5 depicts the profiling

procedure for probabilistic model. As illustrated in Fig. 4.5, the probabilistic model

requires two profile lengths to obtain the near-optimum parallelism and possibly two

additional profile lengths to determine the CR range. In contrast, the simple model

employs at least two profile lengths each time to achieve this goal. Since the feedback

control loop is similar to that of the simple model, with an exception in the autonomic

manager, the rest of this section only describes the design of the autonomic manager.

4.3.1 The Autonomic Manager

As illustrated in Fig. 4.6, the automaton commences from the predict tn state which

predicts a near-optimum parallelism degree. The predicted parallelism is applied for

one subsequent profile length. Following that the automaton unconditionally shifts to

58 CHAPTER 4. AUTONOMIC PARALLELISM ADAPTATION

...

1. predic�on

2. verify

3. CR range

1st thread profile starts

non- ac�on interval (�med by Tx)

 thread profile interval

Program starts
 A thread profile starts

decision points

 one profile length
...

 one profile lengthdecision points

 1

decision points

 2

 or

2&3 3 3

Figure 4.5: Profiling procedure for the probabilistic model. The control actions are
taken at each decision point (marked by dashed red arrow).

predict
 tn

 stop
profile

 no tn
control

th dec

(CR<CR_LOW and tn>tn_min)

((CR>CR_UP or CR=1) and tn<tn_max)

.

verify

 OR

tr
ue

true truestart

CR range

th
 in

c

Figure 4.6: The controller of the probabilistic model described as an automaton. th
stands for throughput and tn means the thread number.

the verify state verifying the correctness of the predicted parallelism. The new pre-

dicted parallelism is only kept subsequently when the current throughput is larger than

the previous parallelism. This leads to the state shifting to the CR range state where

a new CR range is prescribed. Otherwise it recovers the previous value (CR range

remains unchanged in this case). The stop profile state disables the parallelism profile

action when the parallelism does not alter after verification or when a new CR range is

resolved. Contrary to the simple model, the probabilistic model requires an individual

state to obtain the CR range. The simple model continuously increases or decreases

the parallelism degree until reaching the optimum throughput, therefore it requires no

additional state for CR range decision.

4.3. PROBABILISTIC MODEL FOR PARALLELISM ADAPTATION 59

The following section only describes the parallelism decision function for the prob-

abilistic model, as the profile decision function and CR range decision function per-

forms the same as those in the simple model.

4.3.2 Parallelism Prediction Decision Function

This section describes a probabilistic model which serves as the parallelism decision

function. This probabilistic model yet has its limitations, as it is based on two assump-

tions:

1. assuming that the same amount of transactions are executed in the active threads

during a fixed period, as every thread shows similar behaviour in the TM appli-

cations used in this thesis;

2. assuming that the probability of one commit (a transaction successfully accom-

plishes its operations encountering no conflicts with the remaining transactions)

approaches a constant, as there is enough amount of transactions executed during

the fixed period, making the probability of a conflict between two transactions

approaches a constant.

Within a fixed period L0 during an application execution, assuming that the average

length of transactions (including the aborted transactions and the committed transac-

tions) is L , thus the number of transactions N executed during L0 can be expressed in

equation (4.1).

N =
L0

L
·n = α ·n (4.1)

Where n stands for the number of active threads during L0, N contains both aborts and

commits, and α = L0
L

.

We assume that the probability of the conflicts p between two transactions is inde-

pendent from the current active parallelism degree, thus independent from the number

of active transactions. Therefore during the L0 period, one transaction can commit if

it encounters no conflicts with other active transactions. The probability of a commit

can be expressed in Equation (4.2).

P(Xi = 1) = (1− p)(N−1) = q(N−1) (4.2)

Where q = 1− p, which stands for the probability of a commit between two transac-

tions. However, the transactions executed in a sequence within the same thread do not

60 CHAPTER 4. AUTONOMIC PARALLELISM ADAPTATION

cause conflicts among each other, the probability of a commit in Equation (4.2) is hence

lower than the reality. Presumably during L0 period, each thread approximately exe-

cute the same number of transactions N
n

. Therefore the number of transactions causing

conflict are reduced to N −
N
n

. So Equation (4.2) can be modified as in Equation (4.3).

P(Xi = 1) = q(N−
N
n
) = qα(n−1) (4.3)

Equation 4.3 is correct only if there is a large amount of transactions executed

during L0 period making the probability of conflicts p between two transactions ap-

proaches a constant, thus q approaches a constant.

Under the terminology of probability theory, Xi is a random variable with Xi = 1

if the transaction i is committed, Xi = 0 if aborted. Xi follows a Bernoulli law of

parameter q(N−
N
n).

Let T represent the throughput. In a unit of time, the throughput can also be ex-

pressed as T = ∑Xi and CR can be expressed as CR = T
N

, as T is a random variable

which follows a binomial distribution B(N,q(N−
N
n)). The expected value of T is there-

fore to be:

E[T] = N.q(N−
N
n
) = αnqα(n−1) (4.4)

Hence the expected value of CR is:

E[CR] =
E[T]

N
= qα(n−1) (4.5)

Equation (4.4) can be rewritten as a function from n to T as shown in Equa-

tion (4.6).

T (n) = α.n.qα(n−1) (4.6)

To obtain the value of n where the throughput could reach the maximum, the deriva-

tion of Equation (4.6) is computed as shown in Equation (4.7).

T ′(n) = αqα(n−1)+α2nqα(n−1) ln(q) (4.7)

Therefore

T ′(nopt) = 0 ⇔ αqα(nopt−1)+α2noptq
α(nopt−1) ln(q) = 0

⇔ qα(nopt−1)
.(α+α2nopt ln(q)) = 0

⇔ α+α2nopt ln(q) = 0

⇔ nopt =−
1

α ln(q) (4.8)

4.4. BENCHMARK SETTING 61

Where nopt stands for the optimum value of n which is the optimum parallelism degree.

From Equation (4.5), one can derive q = CR
1

α(n−1) . Then Equation (4.8) can be

rewritten as follows:

nopt =−
n−1

ln(CR)
(4.9)

Where nopt stands for optimum thread number, n stands for the number of current

active threads and CR is the current commit ratio.

4.4 Benchmark Setting

This chapter as well as the two following chapters presents performance evaluation

on six different STAMP [57] benchmarks and three applications from EigenBench

[56]. EigenBench and STAMP are widely used for performance evaluation on TM

systems. The data sets of the selected applications cover a wide range of parameters

from short-length to long-length transactions, from short to long program execution

time, from low to high program contention. Table 4.1 presents the qualitative summary

of each application’s runtime transactional characteristics (based on the statistics from

the UMA platform): Tx (transaction) length or Tx size (the number of instructions per

transaction), execution time, and contention (the global contention). The classification

is based on the application executed with its static optimum parallelism on the UMA

machine. A transaction with execution time between 10 us and 1000 us is classified

as medium-length. The contention between 30% and 60% is classified as medium.

The execution time between 10 seconds and 30 seconds is classified as medium. It is

worth noting that an application with short or very short length transactions requires to

reduce the frequency of calls to the monitor. Recall that, it is introduced in Chapter 3,

the monitor is utilised to dynamically control parallelism degree and collect profile

information.

Three applications from EigenBench are evaluated, i.e. one application with stable

behaviour (one phase), one with two phases, one with three phases. They are selected

and configured in this thesis to serve as complementary benchmarks to STAMP for

performance evaluation on special issues. EigenBench, with one phase, presents very

stable runtime behaviour, hence it is ideal to demonstrate the overhead of control ac-

tions. Fig. 4.7(a) provides the inputs for an application with stable behaviour. The

application, with two phases, is designed to verify if a change of parallelism requires

a change of thread mapping strategies. As most of the transactions in each STAMP

62 CHAPTER 4. AUTONOMIC PARALLELISM ADAPTATION

Application Tx length Execution time Contention

EigenBench medium long medium
ssca2 very short short low
intruder short medium high
genome medium short high
vacation medium medium low
yada medium medium high
labyrinth long long low

Table 4.1: Qualitative summary of each application’s runtime transactional charac-
teristics. The classification is based on the application with its optimum parallelism
applied on the UMA machine.

application usually have very similar behaviour [5] making them unsuitable for eval-

uation of the dynamic thread mapping approaches. The application with three phases

is utilised to demonstrate the necessity of runtime parallelism adaptation. This thesis

utilises two approaches to enable dynamic phases for EigenBench. The first method

is to modify the source code of EigenBench, since the original source code presents

no runtime phase variation. EigenBench includes three different arrays which pro-

vide the shared transactional access (Array1), private transactional access (Array2)

and non-transactional access (Array3). Dynamically varying the size of Array1 makes

the conflict rate vary. More specifically, within the first 40% of total number of the

transactions, the size of Array1 keeps the value given by the input file. From 40% to

70%, the array size is shrunk to 16% of the original value and afterwards the size is set

to 33% of the given value. This data set is shown in Fig. 4.7(b). A second approach

to create several phases is to provide several data sets and execute them in a sequence,

as each data set can give individual behaviour. However, the execution order of the

data sets is randomised [56] in EigenBench. In order to ensure consistent behaviour at

each execution, the source code has been slightly modified to disable randomisation.

Fig. 4.7(c) illustrates the data sets which provide two distinguishing phases.

Six different applications from STAMP are presented, namely ssca2, intruder,

genome, vacation, yada and labyrinth. Two applications namely bayes and kmeans

from STAMP are not taken into account in the thesis. bayes exhibits non-determinism

[58]: the ordering of commits among threads at the beginning of an execution can

drastically affect execution time. The number of commits shows significant differ-

ences during each execution for kmeans, therefore, it is excluded from performance

evaluation. The inputs of the six selected applications are detailed in Fig. 4.8.

4.5. PERFORMANCE EVALUATION 63

loops 16667
A1 35536
A2 1048576
A3 8192
R1 30
W1 30
R2 20
W2 200
R3i 10
W3i 30
R3o 10
W3o 10
NOPi 0
NOPo 0
Ki 1
Ko 1
LCT 0

(a) one phase

loops 33333
A1 145530
A2 1048576
A3 8192
R1 30
W1 30
R2 20
W2 200
R3i 10
W3i 30
R3o 10
W3o 10
NOPi 0
NOPo 0
Ki 1
Ko 1
LCT 0

(b) three phases

*R1 0 35
*W1 0 45

loops 3333 *R2 0 200
A1 95536 *W2 0 100
A2 1048576 *R3o 0 10
A3 819200 *W3o 0 10
NOPi 0 *R1 1 300
NOPo 0 *W1 1 220
Ki 1 *R2 1 100
Ko 1 *W2 1 50
LCT 0 *R3i 1 0
M 2 *R3o 1 0

*W3o 1 0

(c) two phases

Figure 4.7: Inputs of EigenBench applications for 24 threads.

ssca2 -s20 -i1.0 -u1.0 -l3 -p3
intruder -a8 -l176 -n109187
genome -s32 -g32768 -n8388608
vacation -n4 -q60 -u90 -r1048576 -t4194304
yada -a15 -i inputs/ttimeu1000000.2
labyrinth -i random-x1024-y1024-z7-n512.txt

Figure 4.8: The inputs of STAMP

4.5 Performance Evaluation

This section presents the performance evaluation of the two dynamic models on two

hardware platforms (the UMA and NUMA machines). The UMA machine has uni-

form main memory access from each core. In contrast, the NUMA machine which

possesses distributed memory, has a non-uniform memory access, meaning that the

access time from a core to its local memory is faster than that to remote memory. In

the performance evaluation, the node interleaving for the NUMA machine is disabled.

The NUMA machine behaves similarly as a UMA machine when its node interleaving

is enabled.

The results generated by the two autonomic models are compared against the re-

sults of static parallelism which presents the best, average and worst performance.

64 CHAPTER 4. AUTONOMIC PARALLELISM ADAPTATION

Such comparison is utilised to demonstrate that the autonomic models can outperform

static parallelism even if an unknown application is given. First of all, this section

manifests the performance of static parallelism. Secondly, it presents the results of the

execution time comparison between two autonomic models and the static parallelism.

Following that, it illustrates the runtime parallelism variation adjusted by the two mod-

els. Lastly, the throughput comparison is given to illustrate the efficiency and correct-

ness of the autonomic models. The predicted parallelism is correct if the throughputs

generated by the autonomic models converges to or rival the static parallelism which

generates the highest throughput. The maximum parallelism degrees are 24 (UMA) or

32 (NUMA) respectively, which is the number of the available cores of the hardware.

The minimum parallelism degree is two, as only parallel applications are of concern

in this thesis. The simple model starts with two threads to avoid excessive contention,

on the grounds that the model only regulates one thread number at each decision point.

Per contra, the probabilistic model starts with 24 threads which equals the maximum

core number of the UMA platform as the parallelism prediction of the probabilistic

model relies on execution of a large amount of transactions. All the applications are

executed 10 times and results are the average execution time.

4.5.1 Performance of Static Parallelism

Fig. 4.9 and Fig. 4.10 illustrate the performance differences on diverse static paral-

lelism on the UMA machine. Fig. 4.11 and Fig. 4.12 depict performance on the NUMA

machine. It is worth noting that the execution time of EigenBench with two phases

increases drastically, therefore Fig. 4.9(b) and Fig. 4.11(c) only present the execution

time up to 16 parallelism degree.

2 4 6 8 10 12 14 16 18 20 22 24

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

(a) one phase

2 4 6 8 10 12 14 16

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

(b) two phases

2 4 6 8 10 12 14 16 18 20 22 24

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

(c) three phases

Figure 4.9: Time comparison of EigenBench for static parallelism on UMA.

4.5. PERFORMANCE EVALUATION 65

2 4 6 8 10 12 14 16 18 20 22 24

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

(a) intruder

2 4 6 8 10 12 14 16 18 20 22 24

ti
m

e
 (

s
e

c
o

n
d

)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

(b) ssca2

2 4 6 8 10 12 14 16 18 20 22 24

ti
m

e
 (

s
e

c
o

n
d

)

0

100

200

300

400

500

(c) genome

2 4 6 8 10 12 14 16 18 20 22 24

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

(d) vacation

2 4 6 8 10 12 14 16 18 20 22 24

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

70

80

90

100

110

(e) yada

2 4 6 8 10 12 14 16 18 20 22 24
ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

(f) labyrinth

Figure 4.10: Time comparison for STAMP for static parallelism on UMA.

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

70

80

(a) one phase

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

(b) two phases

2 4 6 8 10 12 14 16

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

(c) three phases

Figure 4.11: Time comparison of EigenBench for static parallelism on NUMA.

Some applications demonstrate unstable behaviour with the ascent of its paral-

lelism degree, such as EigenBench (two phases), genome, yada, this is due to the

TM mechanisms on transaction conflicts detection and resolution. As indicated in the

figures of the time comparison for static parallelism, performance of an application

66 CHAPTER 4. AUTONOMIC PARALLELISM ADAPTATION

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

(a) intruder

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ti
m

e
 (

s
e

c
o

n
d

)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

(b) ssca2

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ti
m

e
 (

s
e

c
o

n
d

)

0

100

200

300

(c) genome

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

(d) vacation

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ti
m

e
 (

s
e

c
o

n
d

)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320

(e) yada

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

(f) labyrinth

Figure 4.12: Time comparison for STAMP for static parallelism on NUMA.

can depend on its parallelism degree. Its optimum parallelism degree can also differ

when the same application runs on a different platform (e.g. yada). Therefore adjust-

ing parallelism degree can not only improve application performance, but also ensures

stability. Unstable behaviour is often produced by the parallelism degree which causes

high program contention due to cascading transaction aborts. Nevertheless, ssca2 dis-

plays little performance difference among static parallelism degrees, regardless of the

hardware it runs. This benchmark, therefore, will hardly benefit from dynamic paral-

lelism adaptation.

4.5.2 Performance Evaluation on the UMA Platform

Fig. 4.13 and Fig. 4.14 illustrate the execution time comparison with diverse static

parallelism and adaptive parallelism for EigenBench and STAMP. The dots represent

the execution time with different static parallelism. The solid black line stands for

execution time with the simple model and the dashed red line gives the execution time

with the probabilistic model.

4.5. PERFORMANCE EVALUATION 67

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

●

●
●

●
● ●

●
●

●
●

0
4

8
1

3
1

8
2

3
2

8
3

3
3

8
4

3
4

8
5

3
5

8
6

3
6

8
7

3

2 4 6 8 10 12 14 16 18 20 22 24

simple

probabilistic

(a) one phase

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

●

●
●

● ● ●
● ●

●
●

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

1
0

1
3

0

2 4 6 8 10 12 14 16 18 20 22 24

simple

probabilistic

(b) three phases

Figure 4.13: Time comparison of static and adaptive parallelisms for EigenBench on
UMA. The dots represent the execution time with static parallelism.

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

●

●

●

●

●
●

●

●
● ●

0
2

4
6

8
1

1
1

4
1

7
2

0
2

3
2

6
2

9
3

2
3

5
3

8
4

1
4

4

2 4 6 8 10 12 14 16 18 20 22 24

simple

probabilistic

(a) intruder

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

●

●

●
● ● ● ● ● ● ●

0
1

2
3

4
5

6
7

8
9

1
1

1
3

1
5

1
7

1
9

2 4 6 8 10 12 14 16 18 20 22 24

simple

probabilistic

(b) ssca2

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●
● ● ● ● ●

●

●

●

●

●
●

0
4

0
8

0
1

3
0

1
8

0
2

3
0

2
8

0
3

3
0

3
8

0
4

3
0

4
8

0
5

3
0

5
8

0

2 4 6 8 10 12 14 16 18 20 22 24

simple

probabilistic

(c) genome

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

●
●

●

●

●

●

●

●

●

●

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

2 4 6 8 10 12 14 16 18 20 22 24

simple

probabilistic

(d) vacation

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

● ● ● ●

●
●

●

●

●

●

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

1
1

0
1

2
0

2 4 6 8 10 12 14 16 18 20 22 24

simple

probabilistic

(e) yada

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

●

●

●

●
●

● ● ● ● ●

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

2 4 6 8 10 12 14 16 18 20 22 24

simple

probabilistic

(f) labyrinth

Figure 4.14: Time comparison of static and adaptive parallelism for STAMP on UMA.
The dots represent the execution time with static parallelism.

According to Fig. 4.13 and Fig. 4.14, the adaptive parallelism outperforms the

majority of the static parallelism. The probabilistic model shows better performance

on applications, i.e. genome, vacation, labyrinth against the simple model, yet it

68 CHAPTER 4. AUTONOMIC PARALLELISM ADAPTATION

indicates performance degradation on yada and intruder against the simple model.

Both models present similar performance on EigenBench and ssca2. Table 4.2 and

Table 4.3 detail the performance comparison. The digits in the brackets are the static

parallelism degrees which give the best and the worst performance, respectively. The

symbol "plus" (+) means performance gain against the compared value.

benchmarks best case average worse case

EigenBench (one phase) -7% (12) +10% +50% (2)
EigenBench (three phases) +1% (12) +17% +58% (2)
genome -57% (4) +95% +99% (20)
vacation -45% (8) +79% +92% (24)
labyrinth -52% (24) +5% +67% (2)
yada -3% (8) +66% +91% (22)
ssca2 -14% (24) +11% +62% (2)
intruder -6% (6) +62% +71% (24)

Table 4.2: Performance comparison of simple model against static parallelism on ap-
plications on UMA. The higher value, the better performance.

benchmarks best case: average worse case

EigenBench (one phase) -5% (12) +11% +51% (2)
EigenBench (three phases) -1% (12) +18% +57% (2)
genome +6% (4) +97% +99% (20)
vacation -18% (8) +83% +93% (24)
labyrinth +8% (24) +42% +80% (2)
yada -17% (8) +61% +90% (22)
ssca2 -16% (24) +10% +61% (2)
intruder -31% (6) +53% +64% (24)

Table 4.3: Performance comparison of probabilistic model against static parallelism
on applications on UMA. The higher value, the better performance

Fig. 4.15 and Fig. 4.16 elucidate the runtime parallelism variation by simple and

probabilistic model. The results given are based on one execution whose performance

is closest to the average execution time. As indicated in the figures, the probabilistic

model gives abrupt parallelism changes contrasting with the simple model, since the

probabilistic model only requires one profile length for parallelism prediction making

it respond faster to CR changes. The two models show a significant difference on

parallelism prediction for EigenBench. This is not surprising, as certain parallelism

degrees generate similar throughputs in EigenBench. This point will be demonstrated

4.5. PERFORMANCE EVALUATION 69

logic time (1K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

3
8
0

3
9
0

4
0
0

4
1
0

simple

probabilistic

(a) one phase

logic time (1K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

simple

probabilistic

(b) three phases

Figure 4.15: Runtime parallelism variation by the two models for EigenBench on
UMA.

later in this section by comparing the online throughputs of diverse parallelism. A

sudden parallelism degree change generated by the probabilistic model are evident on

intruder and genome. For ssca2, the simple model gives continuous thread number

changes, in contrast the probabilistic model provides relatively constant parallelism.

ssca2 has trivial runtime CR changes among all the parallelism degrees with its value

close to 100%, but the computed CR range is too sensitive to performance fluctuations

causing the simple model to continuously change parallelism. The probabilistic model,

although reacts to predict parallelism degree frequently, often yields the maximum

value. Its controller, in this case, only acts frequently in order to adjust the thread

number to generate a new CR range. Both models give periodically and frequently

changes of thread number on vacation, which alleviate performance. Such vicissitudes

of parallelism degrees indicate that the CR range decided by the simple phase detection

algorithm performs deficiently on this benchmark. yada has similar behaviour from

6 to 12 parallelism degrees as indicated in Fig. 4.10. Additionally, the simple model

continues to regulate thread number when the throughput of an application falls within

10%. Therefore the simple model gives consistently parallelism changes from 2 to

12, while the parallelism given by the probabilistic model is more stable. labyrinth

indicates an upwards staircase in Fig. 4.16(f), as the simple model spends relatively

long time to search the optimum parallelism due to its long transaction length.

70 CHAPTER 4. AUTONOMIC PARALLELISM ADAPTATION

logic time (300K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

simple

probabilistic

(a) intruder

logic time (10K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

2
1
0
0

2
2
0
0

2
3
0
0

simple

probabilistic

(b) ssca2

logic time (10K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

simple

probabilistic

(c) genome

logic time (10K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

3
8
0

3
9
0

4
0
0

4
1
0

4
2
0

4
3
0

simple

probabilistic

(d) vacation

logic time (10K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

simple

probabilistic

(e) yada

logic time (15 commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0 2 4 6 8
1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

5
6

5
8

6
0

6
2

6
4

6
6

6
8

simple

probabilistic

(f) labyrinth

Figure 4.16: Runtime parallelism variation by the two models for STAMP on UMA

4.5. PERFORMANCE EVALUATION 71

This paragraph discusses the correctness of the autonomic approaches. The dy-

namic parallelism adaptation aims at regulating the parallelism that can retain through-

put at the optimum level at each phase. Ideally the throughput generated by the auto-

nomic models should rival that generated by the static parallelism achieving the max-

imum throughput during entire execution. Fig. 4.17 and Fig. 4.18 elucidate the online

throughput changes. To better distinguish the throughput lines generated by different

parallelism, the lines in most of the figures are given in the shape of their regression

curves over time, meaning that the throughputs have been smoothed. Fig. 4.17(b) and

Fig. 4.18(c) illustrate the original throughput lines, as EigenBench (three phases) and

genome incorporate sudden phase change. Such a change can be better illustrated by

the original data. The two figures demonstrate that the online throughputs produced

by the adaptive parallelism models approach the optimal throughput at each phase.

In Fig. 4.17, the throughputs of certain parallelism degrees are close which provides

the grounds for the thread number difference yielded by the two adaptive models for

EigenBench in Fig. 4.15.

logic time (1k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

3
8
0

3
9
0

4
0
0

4
1
0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

2threads

4thread

8threads

16threads

24threads

simple

probabilistic

(a) one phase

logic time (1k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

10

20

30

40

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

●

●
●

●

● ●
● ●

●

2threads

4thread

8threads

16threads

24threads

simple

probabilistic

(b) three phases

Figure 4.17: Throughput comparison for EigenBench on UMA. Fig. 4.17(a) presents
the regression curve of the throughput over time, meaning that the throughput has been
smoothed. Fig. 4.17(b) illustrates the original data to better present the clear phase
change.

72 CHAPTER 4. AUTONOMIC PARALLELISM ADAPTATION

logic time (300k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

● ● ● ● ● ● ● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

2threads

4thread

8threads

16threads

24threads

simple

probabilistic

(a) intruder

logic time (10k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

2
1
0
0

2
2
0
0

2
3
0
0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

2threads

4thread

8threads

16threads

24threads

simple

probabilistic

(b) ssca2

logic time (10k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

1000

2000

3000

4000

5000

6000

7000

8000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

● ●

●

●

● ● ●●

●

2threads

4thread

8threads

16threads

24threads

simple

probabilistic

(c) genome

logic time (10k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

100

200

300

400

500

600

700

800

900

1000

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

3
8
0

3
9
0

4
0
0

4
1
0

4
2
0

4
3
0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

2threads

4thread

8threads

16threads

24threads

simple

probabilistic

(d) vacation

logic time (10k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

100

200

300

400

500

600

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

2threads

4thread

8threads

16threads

24threads

simple

probabilistic

(e) yada

commits (15)

th
ro

u
g
h
p
u
t(

 t
x
/s

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

0 2 4 6 8
1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

5
6

5
8

6
0

6
2

6
4

6
6

6
8

● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

2threads

4thread

8threads

16threads

24threads

simple

probabilistic

(f) labyrinth

Figure 4.18: Throughput comparison for STAMP on UMA. Regression curves are
utilised, meaning that the throughput has been smoothed.

4.5. PERFORMANCE EVALUATION 73

4.5.3 Performance Evaluation on NUMA

This section presents performance evaluation on the NUMA platform. The NUMA

platform incorporates distributed memory with 8 more cores than that of the UMA

platform, but lower clock frequency. Therefore a change of a parallelism degree can

bring higher performance impacts to an application when a remote memory access is

needed. The specification of the two platforms are presented in Section 2.1, Chapter 2.

Table 4.4 and Table 4.5 indicate that the performance of the adaptive models out-

perform the majority of the static parallelism for all the applications except ssca2.

Overall, the adaptive models on the NUMA platform does not perform as sufficient as

on the UMA platform.

benchmarks best case average worse case

EigenBench (one phase) -11% (12) +9% +53% (2)
EigenBench (three phases) 0% (12) +19% +62% (2)
genome -175% (4) +79% +97% (16)
vacation +2% (8) +93% +97% (30)
labyrinth -146% (32) +22% +67% (2)
yada +13% (12) +92% +98% (28)
ssca2 -19% (6) -13% -8% (32)
intruder +3% (6) +70% +82% (32)

Table 4.4: Performance comparison of simple model against static parallelism on ap-
plications on NUMA. The higher value, the better performance.

benchmarks best case: average worse case

EigenBench (one phase) -6% (12) +13% +55% (2)
EigenBench (three phases) -4% (12) +2% +60% (2)
genome +28% (4) +90% +98% (16)
vacation -8% (8) +92% +96% (30)
labyrinth +3% (32) +52% +87% (2)
yada -5% (12) +91% +97% (28)
ssca2 -106% (6) -94% -86% (32)
intruder -103% (6) +37% +62% (32)

Table 4.5: Performance comparison of probabilistic model against static parallelism
on applications on NUMA. The higher value, the better performance

In contrast to the performance on the UMA machine, the adaptive models bring

higher overhead to the application with very short transaction length (i.e. ssca2). As

74 CHAPTER 4. AUTONOMIC PARALLELISM ADAPTATION

illustrated in Fig. 4.12(b), ssca2 shows similar behaviour across all the parallelism de-

grees with their high CR close to 100%. Therefore the probabilistic model always pre-

dicts the maximum parallelism degree as its optimum value, although it causes higher

performance degradation comparing with the static maximum parallelism. Recall what

is explained in Chapter 3, a monitor is utilised to control the runtime parallelism. The

cost of the call to the monitor rises when the thread number increases. Such cost is

significant for ssca2 due to its very short transaction length. It suffers more from such

cost on the NUMA machine. Overall, ssca2 suffers from the performance loss by the

frequent calls of the monitor and the instrumentation code. This cost is further deteri-

orated by a remote memory access. Nevertheless, its performance degradation is less

significant on the simple model, since a lower parallelism degree is favoured by the

simple model.

Analogising with the performance on the UMA machine, the probabilistic model

outperforms the simple model when an application includes long transaction length

and requires a high parallelism degree to achieve its optimum performance. This is

the case for labyrinth. The simple model performs insufficiently on this application.

Comparing with the performance on the UMA platform, the simple model does not

even reach the maximum parallelism degree before the application execution termi-

nates due to its slow increment of thread number.

Comparing with the performance on the UMA machine, the probabilistic model

also demonstrates better performance than that of the simple model on the applications

with sudden and significant parallelism changes, as in genome. As shown in Fig. 4.19,

genome presents such parallelism degree changes between the first and the second

phase. The program is highly contended in the second phase, making the application

progress significantly slow when its parallelism degree is high. Since the simple model

only decreases the thread number by one at each decision point, its performance loss is

high during the transition time from the maximum parallelism to the minimum value.

Appendix A presents the runtime parallelism variation by the adaptive parallelism

models for all the applications on NUMA. The online throughput comparison between

the static parallelism and dynamic parallelism on NUMA is attached in Appendix B.

4.6 Discussion

Three factors give the most significant impacts on TM application performance:

1. The frequency of optimisation actions. It is also called the frequency of control

4.6. DISCUSSION 75

logic time (1K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

simple

probabilistic

Figure 4.19: Runtime parallelism variation from the simple and probabilistic models
for genome on NUMA.

actions. Performance penalty can occur when parallelism varies, yet is trivial on

shared memory. In addition, to reduce the penalty likewise, a thread is only sus-

pended when its current transaction commits. Nevertheless, a frequent change

of parallelism can deteriorate application performance, while a slow change may

not respond efficiently to program behaviour changes. The frequency of the op-

timisation actions mainly depends on two factors, namely the size of the profile

length and the choice of the CR range. E.g. the CR ranges resolved for vacation

on the UMA platform does not represent its phase difference, consequently its

controller over-reacts to the CR fluctuation within the same phase.

2. The hierarchy of underlying hardware. As illustrated in Section 4.5.1, the same

parallelism degree demonstrates different performance on the two platforms. For

vacation, despite the lower clock frequency of the NUMA platform, the static

optimum parallelism (8 for both machines) outperforms that on the UMA ma-

chine (around 30%). The impact of the memory architecture to applications will

be better addressed in the following two chapters.

3. The precision of parallelism prediction of the probabilistic model. The prob-

abilistic model, as its name indicated, is based on the probability theory. The

model relies on two assumptions which are on the premise of the ideal situations,

thus the predicted parallelism may be sub-optimum de facto. On the NUMA

76 CHAPTER 4. AUTONOMIC PARALLELISM ADAPTATION

machine for intruder, the probabilistic model fails to predict the near-optimum

thread number in the beginning, yet produces the near-optimum parallelism de-

gree in the later period of its execution. Parallelism prediction is more precise on

the UMA platform. This is partially due to the impact of initial prediction, since

it is based on the performance of 24 threads. The impact of thread migration on

CR is trivial on UMA in this case, however, can be significant on NUMA.

The preceding factors can improve or deteriorate application performance. There

are some other factors that attribute to the overhead imposing performance penalty.

The overhead of the autonomic approaches mainly originates from four aspects:

1. Thread migration. It can introduce a large overhead especially when parallelism

is adapted at runtime. Thread migration is also caused by the operation that

periodically wakens a thread and suspends an active thread. Such an overhead is

higher on the NUMA platform, due to its non-uniform memory access.

2. The thread number to manipulate at each parallelism profile length in the sim-

ple model. The thread number is adjusted by one only at each decision point.

This causes a long parallelism profiling time making the program execute under

incorrect parallelism degree.

3. The choice of throughput variation rate. The simple model keeps increasing par-

allelism even if the current throughput is slightly lower than the recorded max-

imum value in order to avoid the parallelism profiling to terminate at a regional

maximum point. 10% is chosen as an acceptable variation between the current

throughput and the maximum throughput.

4. The parallelism degree to start with. The probabilistic model starts with the

thread number equivalent to the core number of the UMA machine, while the

simple model begins with the minimum value. The former model requires a

large amount of transactions executed by many threads at a fixed period to guar-

antee the constant probability of a conflict. A large number of threads can cause

high contention. The simple model avoids the excessive contention in the begin-

ning but hinders progress of some applications, such as labyrinth that need the

maximum thread number to achieve its peak performance.

The simple model only adjusts the thread number by one at each decision point,

thus it spends long time in searching the optimum parallelism. However this eludes

4.7. CONCLUSION REMARKS 77

the possibility of skipping the optimum parallelism. The application starts with two

threads activated rather than the maximum to avoid excessive contention which may

prevent the program from progressing. This setting brings long profiling time to appli-

cations that require high parallelism. Such an overhead is difficult to compensate by

the performance improvement brought by the optimum parallelism, especially when an

application has a unique phase. genome requires the maximum parallelism during the

second phase but minimal parallelism during the third phase leading to a high over-

head originating from slow parallelism descending. Such an overhead is especially

significant as the application is highly contented in the third phase.

The probabilistic model predicts the parallelism in one step. This diminishes the

profiling time making this model present better performance than that of the simple

model. However, the probabilistic model has the potential risk of overreacting to the

phase variation, as this is the case for intruder. Lastly, the probabilistic model relies

on two assumptions possibly making its prediction sub-optimum de facto. Thereby the

simple model can outperform the probabilistic model in certain cases (e.g. yada).

4.7 Conclusion Remarks

This chapter has investigated two autonomic parallelism adaptation approaches on

TinySTM (the STM platform). The system autonomicity is achieved by feedback con-

trol loops which keep auditing programs and only take actions to improve performance

when necessary. This chapter firstly argues that runtime parallelism adaptation is nec-

essary for TM applications. It then presents two approaches that can dynamically

search near-optimum parallelism. The performance difference of diverse static paral-

lelism is later examined, their results further enforce the initial argument that runtime

parallelism regulation is requisite. Following that the performance of the two proposed

approaches are compared with that of the static parallelism. Lastly, the implementation

overhead has been analysed and advantages and disadvantages of the work have been

discussed.

Apart from inappropriate parallelism, thread migration among cores impacts on

the system performance and causes the performance degradation. This issue is more

evident on the NUMA machine, as it has more available cores and its memory access

is non-uniform. Thread migration can also impact on the precision of parallelism pre-

diction by the probabilistic model. Performance penalty caused by thread migration

can be offset by mapping threads to specific cores. Furthermore, pinning threads to

78 CHAPTER 4. AUTONOMIC PARALLELISM ADAPTATION

CPU cores can leverage resource utilisation, as access latency rises from the low level

to a high level memory. The next two chapters will investigate the issues on thread

migration and resource utilisation. New feedback control loops are designed which

cooperate with the current loops to further enhance system performance.

Chapter 5

Autonomic Thread Mapping
Adaptation

Chapter 5

Autonomic Thread Mapping

Adaptation

5.1 Introduction

The preceding chapter raises the issues on thread migration and memory resource util-

isation. The strategy of thread mapping (recall Section 2.1.1) can significantly impact

on TM application performance due to data share on different memory levels. Thread

mapping requires knowledge of the underlying memory architecture and interaction

among threads. In addition, when design choices of the TM platform change, e.g.

the contention manager policy changes from abort-itself to abort-others, interaction

among threads often varies. Consequently, the optimum mapping strategy can vary.

However, it is beyond the scope of the thesis on analysis of how thread mapping can

be affected by TM designs. This dissertation is only concerned with decisions of opti-

mum thread mapping strategy that are influenced by memory architecture, parallelism

and TM applications.

Castro [5] has illustrated that the parallelism degree of an application can impact on

the choice of thread mapping strategy. However, his work is limited to constant (static)

parallelism degrees which poses the question on whether the mapping strategy differs

when the parallelism degree varies at runtime. Such an issue will be further investi-

gated in Chapter 6. This chapter concentrates on the influence of mapping strategies

when a parallelism degree is chosen and remains constant during the whole execution.

Despite of the constant parallelism degree, it is still intricate to determine a good thread

mapping strategy offline for a TM application. The natural solution is to dynamically

determine thread mapping strategies. Fig. 5.1 illustrates performance difference when

80

5.1. INTRODUCTION 81

Compact Scatter RR Linux

2 threads

12 threads

ti
m

e
 (

s
e
c
o
n
d
)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Figure 5.1: Time comparison for yada for four static mapping strategies.

various mapping strategies are applied on yada (an application of STAMP) executing

with two and 12 threads. When yada runs with two threads, its optimum mapping

strategy is Compact. The optimum strategy becomes Round-Robin with 12 threads.

This figure manifests that the optimum thread mapping strategy can vary when an ap-

plication runs with a different parallelism degree.

This chapter only analyses the dynamic thread mapping strategy when the mini-

mum parallelism degree is selected, for the following reasons:

1. When the parallelism degree reaches the number of available cores, the mapping

strategy no longer gives impact to application performance.

2. Some TM applications present unstable behaviour when running with a high

parallelism degree. Hence there is little interesting to investigate performance

impact from thread mapping when the parallelism degree is high.

3. This chapter focuses on the performance impacts originating from thread map-

ping, it does not intend to list performance diversity when thread mapping is

applied to all the possible parallelism degrees.

In this thesis, the static thread mapping strategy means that the thread mapping strat-

egy is chosen before program execution and remains constant at runtime, while the

dynamic thread mapping strategy means the strategy is selected during execution and

may vary afterwards.

82 CHAPTER 5. AUTONOMIC THREAD MAPPING ADAPTATION

...

1st threead profile starts

non- ac�on interval (�med by Tx)

 thread profile interval

Program starts
 A thread profile starts

decision points

 one profile length
...

 one profile lengthdecision points

 CP

decision points

RR LX, 1 SC

 1. CR range

Figure 5.2: Profiling procedure for obtaining the optimum thread mapping strategy.

This chapter firstly describes the dynamic thread mapping strategy in Section 5.2.

Next, Section 5.3 presents performance evaluation on static and dynamic thread map-

ping strategies for the UMA and NUMA machines. Following that, Section 5.4 dis-

cusses the pros and cons of the proposed approach. Section 5.5 concludes this chapter.

5.2 Dynamic Thread Mapping

A feedback control loop is constructed to consecutively improve the decision on the

thread mapping strategy. As illustrated in Fig. 5.2, each strategy is profiled during the

thread profile interval. A new strategy is switched at each decision point. The program

enters into an non-action interval when all the strategies have been profiled. The feed-

back control loop is fairly simple for dynamic thread mapping control as depicted in

Fig. 5.3.

 TinySTM

TM applica�ons

Mul�core HW

commits, aborts,

�me

change mapping

profile flag

Autonomic Element

Autonomic Manager

Monitors Execute

Analyse

CR, th

Plan
CR range

mapping

Knowledge
online && offline

 system info

Managed Elements

sensors effectors

(a) The MAPEK-shape feedback control loop.

 switch
Mapping

true

start no
mapping
 control

 stop
profile

true

CR>CR_UP or CR<CR_LOW

(b) The structure of autonomic manager

Figure 5.3: The feedback control loop for dynamic thread mapping control. th and
mapping stand for thread number and thread mapping strategies, respectively.

5.3. PERFORMANCE EVALUATION 83

5.2.1 Inputs and Outputs

Under control terminology, the inputs of the feedback control loop is commit, abort and

physical time (see Section 2.3.1 and Section 3.2.1 for definition). The outputs/control

actions are switching thread mapping strategies and setting the profile flag.

5.2.2 Decision Functions

The feedback control loop for thread mapping control incorporates three decision func-

tions: the CR range decision function, the profile decision function and the thread map-

ping strategy decision function. The advance phase-detection algorithm is utilised in

this chapter as the CR range decision function. The other two decision functions and

their interaction with the CR range decision function are described as an automaton.

The automaton (Fig. 5.3(b)) is possessed of three states.

To determine the optimum thread mapping strategy from a set of strategies for an

application, each strategy is profiled for one profile length and the one that yields the

highest throughput is selected as the optimum strategy. This procedure corresponds

to the state switch mapping. Every thread interval starts with the Compact strategy,

and continues with Scatter, Round-Robin (if applicable) and terminates with Linux.

The stop profile state decides the CR range and sets the optimum mapping strategy.

The automaton shifts to no mapping control, where the controller only audits if the

program stays in the same phase. When CR falls out of the CR range, the automaton

transitions into the switch mapping state again and a new thread profile interval starts.

5.3 Performance Evaluation

This section presents performance diversity for static thread mapping strategies and

dynamic thread mapping strategy for EigenBench and STAMP.

5.3.1 Static Thread Mapping

Figs. 5.4, 5.5 and 5.6 illustrate performance difference on the UMA and NUMA ma-

chines. Recall that, this thesis describes 4 thread mapping strategies based on cache

share and Linux default thread scheduling. The NUMA machine is not eligible for

setting Round-Robin, as its L2 cache possesses only one core. Round-Robin is ap-

plicable for the memory architecture whose L2 cache is shared by no less than two

84 CHAPTER 5. AUTONOMIC THREAD MAPPING ADAPTATION

cores. The figures only present the results for the minimum parallelism degree (two)

and the parallelism degree equivalent to half the core number (12 on UMA, 16 on

NUMA). Some conclusions can be reached from the figures:

1. The impact of parallelism degree is often more significant than that of the map-

ping strategy.

2. The performance difference from the four strategies is insignificant on some

applications, e.g. labyrinth, regardless of the thread number.

3. Some thread mapping strategies perform similarly on certain applications. E.g.

Scatter demonstrates analogous behaviour as Rounb-Robin when half of the

core number is utilised yada as shown in Fig. 5.5(e). When the minimum par-

allelism degree is applied, Compact and Round-Robin gives similar perfor-

mance. The impact of mapping strategies is not obvious on genome when the

minimum parallelism degree is chosen.

4. The affect of mapping strategies on applications varies between the UMA and

NUMA machines. E.g. when the parallelism degree of genome is equivalent to

the core number, on the UMA machine Compact outperforms the other strate-

gies, in contrast Scatter performs the best on the NUMA machine.

Compact Scatter RR Linux

2 threads

12 threads

ti
m

e
 (

s
e
c
o
n
d
)

0

100

200

300

400

500

600

700

800

(a) UMA

Compact Scatter Linux

2 threads

12 threads

ti
m

e
 (

s
e
c
o
n
d
)

0

100

200

300

(b) NUMA

Figure 5.4: Time comparison of EigenBench (two phases) for static mapping strategies
on UMA and NUMA. Round-Robin is not applicable on the NUMA platform.

5.3. PERFORMANCE EVALUATION 85

Compact Scatter RR Linux

2 threads

12 threads

ti
m

e
 (

s
e

c
o

n
d

)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

(a) intruder

Compact Scatter RR Linux

2 threads

12 threads

ti
m

e
 (

s
e

c
o

n
d

)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

(b) ssca2

Compact Scatter RR Linux

2 threads

12 threads

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

(c) genome

Compact Scatter RR Linux

2 threads

12 threads

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

(d) vacation

Compact Scatter RR Linux

2 threads

12 threads

ti
m

e
 (

s
e

c
o

n
d

)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

(e) yada

Compact Scatter RR Linux

2 threads

12 threads

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

(f) labyrinth

Figure 5.5: Time comparison for STAMP for static mapping strategies on UMA.

5.3.2 Performance Comparison on Static and Dynamic Mapping

The previous section indicates that dynamic thread mapping is necessary, as it is dif-

ficult to dictate a mapping strategy offline that can still benefits an application when

its parallelism degree alters. This section presents result evaluation of the dynamic

strategy and compares it with that of the static strategies. It demonstrates that online

adaptation of mapping strategies is needed. In the measurements visualised in Fig. 5.7,

dynamic mapping outperforms any static strategy on EigenBench (two phases). This

application of EigenBench incorporates two phases. The first phase chooses Scatter

as its best mapping strategy, whereas the second phase favours Compact. Fig. 5.8 and

Fig. 5.9 elucidate the performance comparison for STAMP. The majority of STAMP

applications manifest performance degradation against the best static mapping strategy.

Most of STAMP applications do not exhibit the necessity of dynamic mapping profil-

ing. It is sufficient enough to profile once and apply the decision during the remaining

execution, therefore penalty caused by profiling mapping strategies can not be offset

86 CHAPTER 5. AUTONOMIC THREAD MAPPING ADAPTATION

Compact Scatter Linux

2 threads

12 threads

ti
m

e
 (

s
e

c
o

n
d

)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

(a) intruder

Compact Scatter Linux

2 threads

12 threads

ti
m

e
 (

s
e

c
o

n
d

)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) ssca2

Compact Scatter Linux

2 threads

12 threads

ti
m

e
 (

s
e

c
o

n
d

)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

(c) genome

Compact Scatter Linux

2 threads

12 threads

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

(d) vacation

Compact Scatter Linux

2 threads

12 threads

ti
m

e
 (

s
e

c
o

n
d

)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(e) yada

Compact Scatter Linux

2 threads

12 threads

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

(f) labyrinth

Figure 5.6: Time comparison for STAMP for static mapping strategies on NUMA.
Round-Robin is not applicable on the NUMA platform.

by its gain. A notable exception that the dynamic approach benefits STAMP applica-

tions is genome. As analysed in Section 4.5.2, genome incorporates two main phases

at runtime. The first phase only possesses read operations, while the second phase in-

cludes both read and write operations. Hence the optimum strategy is predicted twice:

Round-Robin (on UMA) or Scatter (on NUMA) is chosen for the first phase, Com-

pact is selected for the second phase. However its speed-up is negligible on the UMA

machine. As illustrated in Fig. 5.5(c), four strategies offer performance difference in a

small degree. Per contra, on the NUMA machine, the performance difference is neg-

ligible when the three strategies are applied (this is partially due to shorter execution

time on the NUMA). Thus the dynamic approach only benefits genome on the UMA

platform.

5.3. PERFORMANCE EVALUATION 87

Compact Scatter RR Linux dynamic

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

(a) UMA

Compact Scatter Linux dynamic

ti
m

e
 (

s
e

c
o

n
d

)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

(b) NUMA

Figure 5.7: Time comparison of EigenBench (two phases) for static and dynamic map-
ping strategies on UMA and NUMA. RoundRobin is not applicable on the NUMA
platform.

Compact Scatter RR Linux dynamic

ti
m

e
 (

s
e

c
o

n
d

)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

(a) intruder

Compact Scatter RR Linux dynamic

ti
m

e
 (

s
e

c
o

n
d

)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

(b) ssca2

Compact Scatter RR Linux dynamic

ti
m

e
 (

s
e

c
o

n
d

)

0

1

2

3

4

5

6

7

8

9

10

11

(c) genome

Compact Scatter RR Linux dynamic

ti
m

e
 (

s
e

c
o

n
d

)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

(d) vacation

Compact Scatter RR Linux dynamic

ti
m

e
 (

s
e

c
o

n
d

)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

(e) yada

Compact Scatter RR Linux dynamic

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

(f) labyrinth

Figure 5.8: Time comparison for STAMP for static mapping strategies on UMA.

88 CHAPTER 5. AUTONOMIC THREAD MAPPING ADAPTATION

Compact Scatter Linux dynamic

ti
m

e
 (

s
e

c
o

n
d

)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

(a) intruder

Compact Scatter Linux dynamic

ti
m

e
 (

s
e

c
o

n
d

)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

(b) ssca2

Compact Scatter Linux dynamic

ti
m

e
 (

s
e

c
o

n
d

)

0

1

2

3

4

5

6

(c) genome

Compact Scatter Linux dynamic

ti
m

e
 (

s
e

c
o

n
d

)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

(d) vacation

Compact Scatter Linux dynamic

ti
m

e
 (

s
e

c
o

n
d

)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

(e) yada

Compact Scatter Linux dynamic

ti
m

e
 (

s
e

c
o

n
d

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

(f) labyrinth

Figure 5.9: Time comparison for STAMP for static mapping strategies on NUMA.
RoundRobin is not applicable on the NUMA platform.

5.4 Discussion

The overhead of the dynamic thread mapping approach mainly originates from:

1. Time wasted in the wrong mapping strategy during profiling. In order to detect

the optimum strategy, each strategy is applied for one profile length making the

program execute under non-optimum setting. Therefore, only the application

with diverse phases can benefit from this approach.

2. Thread migration. It results in thread migration to switch between two thread

mapping strategies. The more often the strategy changes, the higher performance

penalty can be caused.

In Section 5.3.1, the performance evaluation on diverse static mapping strategies

indicates that the best strategy can vary when a new parallelism degree is applied. Sec-

tion 5.3 demonstrates that changing mapping strategies dynamically can improve pro-

gram performance when two threads are executing. However, the dynamic approach

5.5. CONCLUSION REMARKS 89

only shows performance gain on two applications against the best static strategy.

5.5 Conclusion Remarks

This chapter firstly introduces the necessity of dynamic thread mapping, then it presents

an approach that can dynamically adjust mapping strategies. Following the description

of this approach, performance evaluation is given on comparison of static and dynamic

strategies. Lastly, the implementation overhead is discussed.

The conclusion has been made that it is intricate to detect the best thread mapping

strategy for an application offline. This chapter illustrates that the best mapping strat-

egy can vary when a different parallelism degree is chosen for the same application.

The performance difference can also differ when the same application executes on a

difference platform. Performance diversity has been examined from four thread map-

ping strategies (only three on NUMA) and the optimum strategy can alter in different

applications.

Through the presentation of this chapter and the preceding chapter (Chapter 4),

one conclusion can be reached: it can bring performance improvement by either dy-

namically adapting parallelism or thread mapping strategies. This raises one question

on whether performance can be further improved by coordinating the two dynamic

approaches? The next chapter will offer insights into this issue.

Chapter 6

Coordination of Thread Parallelism
and Thread Mapping Adaptation

Chapter 6

Coordination of Thread Parallelism

and Thread Mapping Adaptation

Chapter 4 and Chapter 5 have demonstrated that parallelism degrees and thread map-

ping strategies can both impact on application performance. It has been manifested that

dynamic parallelism or thread mapping adaptation is feasible and necessary. As illus-

trated in Fig. 5.1, the optimum mapping strategy differs when the parallelism degree

alters. Coordination of thread parallelism and mapping adaptation, thereby, becomes

necessary.

The remainder of this chapter firstly analyses the complexity and obstacles of man-

aging both parallelism degree and thread mapping at runtime in Section 6.1. To sim-

plify the description, the control of both thread parallelism and thread mapping is ad-

dressed as thread control in the rest of this thesis. The overview of the algorithm is

presented in Section 6.2 and is detailed in Section 6.3. Following that, Section 6.4

depicts performance evaluation. Advantages and disadvantages are entailed in Sec-

tion 6.5. Section 6.6 concludes this chapter.

6.1 The Complexity of Dynamic Parallelism and Map-

ping Control

Application performance affected by thread mapping can be measured by cache miss

ratio and cache hit ratio, as a good mapping strategy improves cache usage. However,

this thesis does not utilise cache information to indicate performance for the examined

thread mapping, as the reasons stated below:

91

92 CHAPTER 6. COORDINATION OF PARALLELISM AND MAPPING

• Cache misses can be caused by round-robin thread scheduling. Round-robin

scheduling (See Section 3.3.2) guarantees fair execution time among threads,

but it causes cache misses for its working principle: the suspended threads are

invoked and the active threads are suspended periodically, consequently causing

thread migration and inducing cache misses. These cache misses are unpre-

ventable and impact on measurement of the cache misses originating from data

accessing by threads.

• Threads need to remap to cores, when the parallelism predictor gives new pre-

diction. It is difficult to distinguish this type of cache misses from the others.

• The L3-level cache information is not always accessible by users, e.g. the UMA

platform utilised for performance evaluation in this thesis does not provide the

interface for L3-level cache access.

Hence the same metrics as in the proceeding two chapters are utilised, i.e. CR and

throughput, to indicate runtime performance of thread mapping.

6.1.1 The Threshold of Parallelism Degree for Thread Mapping

As elucidated by Fig. 5.5 in Chapter 5, the best thread mapping strategy can differ

when the parallelism degree varies. When the active thread number is equivalent to

the core number, there is little interest to choose thread mapping strategies. Addition-

ally, some TM applications experience significant performance degradation when their

parallelism degree increases, or their performance becomes unstable. Therefore thread

mapping is less interesting for such applications running with a high parallelism de-

gree. Based on the above reasons, the author chooses half of the core number as the

threshold for activating control of thread mapping strategies. When the parallelism de-

gree surpasses this value, the application utilises the default mapping strategy (Linux).

6.1.2 The Frequency of Thread Mapping Prediction

The cost of setting a thread mapping strategy can be high, therefore the frequency

of adjusting the strategy should be low. The frequency of switching thread mapping

strategies brings non-trivial impacts on application performance, as the improvement

of memory resource utilisation obtained by thread mapping can be forfeited by its

associated potentially high cost of thread migration.

6.2. OVERVIEW OF THE PROFILING PROCEDURE 93

Setting a threshold as aforementioned in Section 6.1.1 reduces mapping frequency.

To further alleviate the cost of thread migration, yet ensure the controller to be re-

sponsive to phase changes, the control actions of changing mapping strategies are only

invoked if the change of parallelism degree exceeds four. This is a tuning parameter,

and application performance can be affected by adjusting this value. Furthermore, no

mapping is triggered the parallelism degree keeps the same value as the one before its

prediction. Since when the parallelism stays unmodified, the program phase remains

unchanged.

6.1.3 The Order of Decision Making

Two control decisions need to be taken: thread parallelism degree and thread mapping

strategy. This brings up the question on which decision should be made first. As

demonstrated in the preceding chapter, the parallelism degree can affect the choice of

the best thread mapping strategy. Intuitively, the thread mapping strategy may in turn

affect the parallelism prediction. This thesis presents the algorithm which chooses to

predict parallelism prior to mapping under the scrutiny as stated below:

1. The prediction of the thread mapping strategy requires knowledge of the paral-

lelism degree. Some TM applications do not scale with an increase of its par-

allelism degree regardless of the mapping strategy that is applied, e.g. genome

with the 12 thread number. It is unnecessary to predict the mapping strategy

when the behaviour of a program is unstable.

2. The parallelism degree demonstrates more significant performance impacts than

that of the thread mapping strategy.

3. The frequency of thread mapping decision depends on the parallelism degree.

4. The impact of the thread mapping strategy on parallelism prediction is trivial.

This is based on observation of application performance.

6.2 Overview of the Profiling Procedure

Recall that Chapter 4 describes two models for near-optimum parallelism prediction:

the simple model and probabilistic model. This section only utilises the latter model

to predict parallelism for the following reasons:

94 CHAPTER 6. COORDINATION OF PARALLELISM AND MAPPING

1. The time spent for parallelism prediction is short. The simple model responds

slowly to program phase changes and requires longer time for detection. Per

contra, the probabilistic model responds rapidly to phase variation and needs

short parallelism profile time despite that it may over-react to phase fluctuations.

2. It shortens the thread profile interval. The control loop described in Chapter 5

needs three or four profile lengths to decide the best mapping strategy. Combin-

ing the simple model with the thread mapping method, the thread profile interval

is de facto at risk to exceed the length of a program phase.

Fig. 6.1 illustrates the profiling procedure for prediction of thread parallelism and

mapping. In the first decision point during a thread profile interval, the parallelism

is predicted and is subsequently verified in the second decision point. The profiling

procedure may proceed with four (three on the NUMA) profile lengths to analyse each

thread mapping strategy. The procedure of profiling mapping strategies is the same as

stated in Chapter 5, however, whether to trigger this procedure depends on the con-

ditions described in Section 6.1.1 and Section 6.1.2. The last decision point sets the

optimum thread mapping strategy and parallelism degree as well as the CR range. Af-

ter this thread profile interval, the program remains in the non-action interval where its

performance is monitored and a new thread profiling procedure is scheduled when the

program enters a new phase.

1st thread profile starts

non- ac�on interval (�med by Tx)

...

 thread profile interval

Program starts,
 A thread profile starts

decision points decision points

 one profile length ...

 one profile lengthdecision points

1. predic�on

2. verify

3. thread mapping

 1 2 3 3 3 3

Figure 6.1: Periodical profiling procedure for thread control. At each decision point
(marked by dashed red arrow), control actions are taken. One profile length is a fixed
number of commits.

6.3. CONTROL COORDINATION 95

6.3 Control Coordination

6.3.1 Inputs and Outputs

The inputs of the loop are commits, aborts and physical time (see Section 2.3.1 and

Section 3.2.1 for definition). The outputs/actions are increasing or decreasing paral-

lelism degree, changing thread mapping strategy and setting the profile flag.

6.3.2 Coordination of Control Loops

 TinySTM

TM applica�ons

Mul�core HW

commits, aborts,

�me

Autonomic Element

Autonomic Manager

Monitors Execute

Analyse

CR and th

PlanCR range

mapping

opt tn

Knowledge

online && offline

system info

Managed Elements

sensors

 inc/dec tn, mapping,

 profile flag effectors

(a) The instantiation of MAPE-K-shape feed-
back control loop.

predict
 tn

mapping
 &
CR range

 stop
profile

 no
thread
control

th dec

(CR<
CR_LO

W
 and tn>

tn_m
in)

((CR>
CR_UP or CR=

1) and tn<
tn_m

ax
))

.

th
 in

c
a
n
d
 t
n

ch
an

ge

a
n
d
 t
n<

=
12

verify

 or

true

true

true

start

(b) The structure for the autonomic manager of
Fig.6.2(a) in an automaton shape.

Figure 6.2: The feedback control loop. th, tn and mapping stand for throughput, thread
number and thread mapping strategy, respectively. One state corresponds to one deci-
sion point in Fig. 6.1. The boolean value true means the unconditional state shift.

Fig. 6.2(a) presents the MAPE-K loop for thread control. The autonomic manager

is depicted in Fig. 6.2(b) as an automaton. It is composed of five states. Four decision

functions cooperate to make decisions. A parallelism predictor, a thread mapping

strategy decision function, a CR range decision function (decides the phase change)

and a thread profile decision function (enables/disables the thread profile action). This

section only describes the thread profile decision function and its relationship with

other functions. The first two functions have been detailed in the previous two chapters.

The advanced-phase detection algorithm presented in Chapter 3 (Page 42) is utilised

as the CR range decision function.

The automaton as illustrated in Fig. 6.2(b) starts in the predict tn state where the op-

timum parallelism is predicted. Having executed the predicted parallelism for one pro-

file length, the automaton unconditionally shifts to the verify state which corresponds

96 CHAPTER 6. COORDINATION OF PARALLELISM AND MAPPING

to the second decision point in Fig. 6.1. In the verify state, the predicted optimum

thread number is verified by comparing the current throughput with the throughput

before the prediction. If the current throughput is higher than that value, the predicted

thread number is kept, otherwise the parallelism degree is switched back to the previ-

ous optimal value. Additionally, the verify state decides the necessity of profiling the

thread mapping strategy, i.e. it is only profiled when the following conditions are both

satisfied:

1. The thread number has been changed (as reasoned in Section 6.1.2).

2. The new thread number does not exceed half of the core number (as reasoned in

Section 6.1.1).

When the above conditions are met, the automaton shifts to the mapping & CR

range state where each thread mapping strategy is profiled, meanwhile a new CR range

is computed. Otherwise, the automaton transitions to the stop profile state suspending

all the thread regulation. The automaton transitions from the mapping & CR range

state to stop profile unconditionally. At the final decision point of a thread profile in-

terval, the parallelism and thread mapping strategy are set to the values which yield

the maximum throughput. At each decision point of a non-action interval which cor-

responds to the no thread control state, the profile decision function decides if a new

thread profile is needed. A new thread profile procedure always starts from the predict

tn state. It is worth noting that the profile decision function is performed on the verify,

mapping & CR range and no thread control state.

The coordination of the four decision functions are illustrated in pseudocode in

Fig. 6.3 to further clarify their integration and to illustrate their implementation. The

profile decision function is composed of two parts: disable and enable profile actions.

6.4 Performance Evaluation

This section presents the results of autonomic thread parallelism and mapping adapta-

tion on the UMA and NUMA machines. Its results are also compared with the ones

generated by adaptation only on parallelism. The approach that only adjusts paral-

lelism is addressed as dynamic parallelism model, while the method that regulates

both parallelism and thread mapping strategy is addressed as dynamic thread control

model. Since this chapter utilises the advanced phase detection algorithm, the dynamic

6.4. PERFORMANCE EVALUATION 97

1 /*CR range decision func and parallelism predictor*/

2 thread_prediction_func(){...}//see previous derivation

3 CR_range_func(){...}//see previous derivation

1 /*thread mapping and disable profile decision funcs*/

2 thread_mapping_prediction()

3 {

4 for i in {Compact,Scatter,RR,Linux} //mapping strategy

5 apply i;

6 if (current throughput> max throughput)

7 optimum mapping= i;

8 apply optimum mapping;

9 }

10 if (current throughput > max throughput)

11 compute a new CR range;

12 max throughput=current throughput;

13 if (optimum tn <= half the core number && tn changes)

14 apply thread mapping prediction;

15 else

16 disable profile;

17 else

18 optimum tn = previous tn;

19 apply previous optimum thread mapping;

20 disable profile ;

1 /*enable profile decision fuc*/

2 enable_profile_action()

3 {

4 record current mapping strategy;

5 record current max throughput;

6 record current tn;

7 }

8 if CR falls out the CR range

9 enable thread profile action;

10 else

11 keep collecting profile info;

Figure 6.3: The implementation of the four decision functions. tn and thread mapping
stand for the thread number and thread mapping strategy, respectively.

parallelism model also employs this algorithm for phase detection as comparison. Re-

call that Chapter 4 presents the probabilistic parallelism prediction model that utilises

the simple phase decision algorithm. Therefore, the performance of the autonomic par-

allelism adaptation in this section differs from that in Chapter 4. It is worth noting that

this thesis is only concerned with parallel applications, hence the results of sequential

applications are not presented.

6.4.1 Results on the UMA Machine

This section firstly presents the execution time comparison between the two dynamic

models as well as static parallelism. It then illustrates the runtime changes of thread

parallelism and mapping strategy. Lastly, in order to validate the dynamic approaches

98 CHAPTER 6. COORDINATION OF PARALLELISM AND MAPPING

on prediction of suitable parallelism and mapping strategies at each phase, the com-

parison of online throughput variation is given.

Fig. 6.4 and Fig. 6.5 illustrate the execution time comparison with different static

parallelism, and two dynamic models of EigenBench and STAMP on the UMA ma-

chine. The dots represent the execution time with different static parallelism degrees

from two to the core number (24). The solid black line stands for execution time ob-

tained with the dynamic parallelism model and the dashed red line gives the execution

time with the dynamic thread control model. Fig. 6.4(b) only compares the perfor-

mance of up to 10 threads to better illustrate the performance difference between two

dynamic models on EigenBench.

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

● ● ● ● ●

●
● ●

●

●

●

●

0
3

0
0

7
0

0
1

1
0

0
1

6
0

0
2

1
0

0
2

6
0

0
3

1
0

0
3

6
0

0

2 4 6 8 10 12 14 16 18 20 22 24

para

para & mapping

(a) all threads

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●
●

●

●

●

0
4

8
1

3
1

9
2

5
3

1
3

7
4

3
4

9
5

5
6

1
6

7
7

3
7

9

2 4 6 8 10

para

para & mapping

(b) up to 10 threads

Figure 6.4: Time comparison of EigenBench for static parallelism, dynamic paral-

lelism model and dynamic thread control model. The dots represent the execution time
with different static parallelism.

As can be seen in Fig. 6.4 and Fig. 6.5, the two models outperform the majority of

the static parallelism degrees. The dynamic thread control model shows positive per-

formance rise against the dynamic parallelism model on the applications, i.e. Eigen-

Bench, yada and intruder, but it indicates performance degradation on genome and

vacation. Both models perform similarly on labyrinth and ssca2. Table 6.1 and Ta-

ble 6.2 detail the performance comparison. The digits in the brackets are the static

parallelism which gives the best and the worst performance, respectively. The sym-

bol "plus" ("+") means performance gain against the compared value. Both models

outperform the best case of static parallelism on EigenBench, genome and labyrinth.

Both models show performance degradation on vacation, intruder and ssca2 against

the best case, yet significantly improve performance compared with the average value

and the worst case. It is worth noting that, some TM applications scale poorly when

6.4. PERFORMANCE EVALUATION 99

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

●

●

●

●

●
●

●

●
● ●

0
2

4
6

8
1

1
1

4
1

7
2

0
2

3
2

6
2

9
3

2
3

5
3

8

2 4 6 8 10 12 14 16 18 20 22 24

para

para & mapping

(a) intruder

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

●

●

●
● ● ● ● ● ● ●

0
1

2
3

4
5

6
7

8
9

1
1

1
3

1
5

1
7

1
9

2 4 6 8 10 12 14 16 18 20 22 24

para

para & mapping

(b) ssca2

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●
● ● ● ● ●

●

●

●

●

●
●

0
4

0
8

0
1

3
0

1
8

0
2

3
0

2
8

0
3

3
0

3
8

0
4

3
0

4
8

0
5

3
0

5
8

0

2 4 6 8 10 12 14 16 18 20 22 24

para

para & mapping

(c) genome

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

●
●

●

●

●

●

●

●

●

●

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

2 4 6 8 10 12 14 16 18 20 22 24

para

para & mapping

(d) vacation

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

● ● ● ●

●
●

●

●

●

●

0
1

0
2

0
3

0
4

0
5

0
6

0
7

0
8

0
9

0
1

0
0

1
1

0
1

2
0

2 4 6 8 10 12 14 16 18 20 22 24

para

para & mapping

(e) yada

thread number

e
xe

c
u
ti
o
n
 t
im

e
 (

s
e
c
o
n
d
)

●

●

●

●

●

●
●

● ● ● ● ●

0
2

0
4

0
6

0
8

0
1

0
0

1
2

0
1

4
0

1
6

0
1

8
0

2 4 6 8 10 12 14 16 18 20 22 24

para

para & mapping

(f) labyrinth

Figure 6.5: Time comparison for STAMP for static parallelism, dynamic parallelism

model and dynamic thread control model . The dots represent the execution time with
different static parallelism.

their parallelism rises (e.g. genome, vacation, EigenBench) due to TM mechanisms

on transaction conflict detection and resolution.

benchmarks best case average value worse case

EigenBench (two phases) +15% (2) +95% +99% (24)
genome +16% (4) +97% +99% (20)
vacation -13% (8) +83% +94% (24)
labyrinth +7% (24) +42% +80% (2)
yada -11% (8) +63% +91% (22)
ssca2 -4% (24) +19% +65% (2)
intruder -48% (6) +46% +59% (24)

Table 6.1: Performance comparison of different applications with dynamic parallelism

model. The performance is compared with the minimum, average and the maximum
value of all the static parallelism.

Fig. 6.6 and Fig. 6.7 demonstrate the parallelism variation for both models and the

100 CHAPTER 6. COORDINATION OF PARALLELISM AND MAPPING

benchmarks best case average value worse case

EigenBench (two phases) +24% (2) +96% +99% (24)
genome +2% (4) +96% +99% (20)
vacation -50% (8) +78% +91% (24)
labyrinth +6% (24) +41% +80% (2)
yada +12% (8) +70% +93% (22)
ssca2 -4% (24) +19% +65% (2)
intruder -10% (6) +60% +70% (24)

Table 6.2: Performance comparison of different applications with the dynamic thread

control model. The performance is compared with the minimum, average and the
maximum value of all the static parallelism

mapping strategy variation for the dynamic thread control model. The gap between two

vertical blue lines is the phase transition region. To better illustrate the performance

impact of thread mapping strategies, the results presented in the two figures are the

best results out of 10 executions. As shown in the figures, the EigenBench application

shows thread mapping strategy variation between Scatter and Compact. In contrast,

the majority of applications in STAMP keep the same strategy during their entire exe-

cution. genome illustrates the thread mapping strategy change at runtime. This is due

to the fact that the mapping strategy is not profiled in its first phase, as the maximum

parallelism degree is predicted leading to the selection of the default mapping strategy.

Likewise, vacation changes its thread mapping strategy at the second phase when its

parallelism degree decreases significantly.

logic time (1.4K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

Scatter Compact

para

para & mapping

Figure 6.6: Runtime variation of parallelism and mapping strategies by the two models
for EigenBench on UMA.

6.4. PERFORMANCE EVALUATION 101

logic time (300K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0 2 4 6 8 11 14 17 20 23 26 29 32 35 38 41 44

Compact

para

para & mapping

(a) intruder

logic time (10K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0 200 400 600 800 1100 1400 1700 2000 2300

Linux

para

para & mapping

(b) ssca2

logic time (10K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0 10 30 50 70 90 110 130 150 170 190

Linux Compact

para

para & mapping

(c) genome

logic time (10K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0 30 60 90 120 160 200 240 280 320 360 400

Linux Scatter

para

para & mapping

(d) vacation

logic time (10K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

Compact

para

para & mapping

(e) yada

logic time (15 commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

Linux

para

para & mapping

(f) labyrinth

Figure 6.7: Runtime variation of parallelism and mapping strategies by the two models
for STAMP on UMA

102 CHAPTER 6. COORDINATION OF PARALLELISM AND MAPPING

Lastly, Fig. 6.8 and Fig. 6.9 show the online throughput comparison on the UMA

machine. To better distinguish the throughput lines generated by different parallelism,

the lines in most of the figures are given in the shape of their regression curves over

time, meaning that the throughputs have been smoothed. Only Fig. 6.9(c) and Fig. 6.8

illustrate the original throughput lines, as EigenBench (two phases) and genome in-

corporate sudden phase changes, it can better illustrate the phase transition by present-

ing the original data. According to the figures, both models converge or exceed the

maximum throughput of the static parallelism in each phase.

logic time (1.4k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

● ● ●

●

●
●●●

●

2threads

4thread

8threads

16threads

24threads

para only

para & mapping

Figure 6.8: Time comparison of EigenBench (two phases) for static parallelism, dy-

namic parallelism model and dynamic thread control model on UMA. The dots repre-
sent the execution time with different static parallelism.

6.4. PERFORMANCE EVALUATION 103

logic time (300k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

● ●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

2threads

4thread

8threads

16threads

24threads

para only

para & mapping

(a) intruder

logic time (10k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

15000

16000

17000

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

2
1
0
0

2
2
0
0

2
3
0
0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

2threads

4thread

8threads

16threads

24threads

para only

para & mapping

(b) ssca2

logic time (10k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

1000

2000

3000

4000

5000

6000

7000

8000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

●

●
●

●

●
● ●●

●

2threads

4thread

8threads

16threads

24threads

para only

para & mapping

(c) genome

logic time (10k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

100

200

300

400

500

600

700

800

900
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

3
8
0

3
9
0

4
0
0

4
1
0

4
2
0

4
3
0

●
●

●
●

●
●

●
●

● ● ● ● ● ● ●
●

●

●

●

●

●

2threads

4thread

8threads

16threads

24threads

para only

para & mapping

(d) vacation

logic time (10k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

100

200

300

400

500

600

700

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ●
● ●

●

2threads

4thread

8threads

16threads

24threads

para only

para & mapping

(e) yada

commits (15)

th
ro

u
g
h
p
u
t(

 t
x
/s

)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

160

170

180

190

200

210

220

230

0 2 4 6 8
1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

5
6

5
8

6
0

6
2

6
4

6
6

6
8

● ● ● ● ● ●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

2threads

4thread

8threads

16threads

24threads

para only

para & mapping

(f) labyrinth

Figure 6.9: Time comparison of STAMP for static parallelism, dynamic parallelism

model and dynamic thread control model on UMA. The dots represent the execution
time with different static parallelism.

104 CHAPTER 6. COORDINATION OF PARALLELISM AND MAPPING

6.4.2 Results on the NUMA Machine

This section only gives the results on execution time comparison for the NUMA ma-

chine as indicated in Table 6.3 and Table 6.4. This section concentrates on the execu-

tion time comparison between the UMA and NUMA platforms. Since the execution

time of EigenBench (two phases) rises drastically after 16 threads, the tables only

include the time comparison for up to 16 threads for this benchmark. Overall, the

performance of the dynamic models on the NUMA machine does not rival that on the

UMA machine.

The dynamic thread control model gives EigenBench performance degradation

against the best case on the NUMA, per contra it illustrates significant performance

rise on the UMA machine. Switching the mapping strategies causes higher cost by

thread migration on the NUMA platform. Furthermore, the throughput obtained from

each strategy is less stable than that on the UMA platform, consequently the choice of

the optimum strategy becomes inconstant.

vacation demonstrates better performance on the NUMA machine, as its control

actions are taken less frequently than those on the UMA machine. Based on the ob-

servation of its program behaviour when the maximum parallelism degree is applied,

its CR indicates some discrete abrupt changes. On the UMA machine, the frequency

of such changes is higher than that on the NUMA machine. Therefore, more control

actions that are mostly unnecessary are triggered on the UMA machine.

labyrinth shows similar behaviour on both machines due to its long transaction

length and low contention. The maximum parallelism degree and the default thread

mapping strategy are always predicted for this applications.

6.5. DISCUSSION 105

The NUMA machine also outperforms the UMA machine for yada with the dy-

namic models. Compact delivers the optimum performance for yada by mapping

threads to the sibling cores. Mapping threads to the cores which share the same main

memory can result in significant performance gain, since data accessing to the remote

memory is more costly.

As explained in Section 4.5.3, ssca2 suffers from the cost of calling the monitor.

This cost is negligible and can be significantly reduced on the UMA machine, but it is

significant on the NUMA machine. Therefore, ssca2 indicates worse performance on

the NUMA machine.

Lastly, intruder performs worse on the NUMA machine, as its controller predicts

higher parallelism degree than the optimum during its first half execution. Although

its parallelism degree is later modified to the near-optimum value, the performance

penalty in the first half of its execution can hardly be offset. The reasons for such

behaviours have been explained in Section 4.6.

benchmarks best case average value worse case

EigenBench (two phases) +4% (4) +67% +87% (16)
genome -11% (4) +91% +99% (26)
vacation -21% (8) +90% +96% (30)
labyrinth +3% (32) +52% +87% (2)
yada -5% (12) +91% +97% (28)
ssca2 -56% (6) -47% -41% (32)
intruder -72% (6) +46% +68% (32)

Table 6.3: Performance comparison of different applications with the dynamic paral-

lelism model on NUMA. The performance is compared with the minimum, average and
the maximum value of all the static parallelism.

6.5 Discussion

The overhead of the approaches in this chapter mainly originates from three aspects:

(1) Thread migration. This stems from two points: switching among thread mapping

strategies and periodically wakening/suspending the threads to ensure execution time

fairly distributed to each thread. (2) Unnecessary profiling of thread mapping strate-

gies. Most of the transactions within STAMP applications show very similar behaviour

and require no more profiling of mapping strategies despite of the parallelism fluctu-

ations later. The more frequently the parallelism is adjusted, the higher overhead the

106 CHAPTER 6. COORDINATION OF PARALLELISM AND MAPPING

benchmarks best case average value worse case

EigenBench (two phases) -22% (4) +59% +83% (16)
genome -18% (4) +91% +99% (26)
vacation -12% (8) +91% +96% (30)
labyrinth +3% (32) +52% +87% (2)
yada +32% (12) +94% +98% (28)
ssca2 -56% (6) -48% -41% (32)
intruder -27% (6) +60% +76% (32)

Table 6.4: Performance comparison of different applications with the dynamic thread

control model on NUMA. The performance is compared with the minimum, average
and the maximum value of all the static parallelism

applications suffer. (3) The cost of calling the monitor. Two factors contribute to that:

the operation of obtaining and releasing the monitor and the time spent contending

for the monitor. The latter cost rises significantly with the increment of active threads

and gives significant impacts on the applications with short-length transactions. The

cost of calling the monitor is negligible on the UMA machine and high on the NUMA

machine as explained in Section 3.3.2.

The program phase change is determined by the advanced phase detection algo-

rithm in this chapter. The limitations of the CR decision function become obvious on

intruder. Since its CR tends to fluctuate frequently over the CR range, yet remains in

the same phase. The dynamic parallelism model, therefore, overreacts to such changes

and gives unstable performance. With better controls of thread migration, the dynamic

thread control model is more resilient against abrupt parallelism changes, thus per-

forms better. It is worth noting that Fig. 6.7(a) only presents the best case where the

parallelism is adjusted less frequently.

The parallelism predictor relies on two assumptions which are based on ideal sit-

uations, thus the predicted parallelism de facto may be sub-optimum (e.g. yada).

However, such performance loss is compensated by the performance gain from thread

mapping. The gain obtained with a dynamic approach over a static one is directly

related to the diversity of application phases. The more distinct the phases are, the

higher performance gain it can obtain. The proposed dynamic approaches are hence

more interesting to the applications with online behaviour variations. Although the dy-

namic framework is capable of optimising the parallelism and thread mapping strategy

for applications with stable online behaviour, the performance benefit can not always

compensate the profile overhead, as can be observed from ssca2. It is also worth noting

6.5. DISCUSSION 107

that not all the applications require to profile a thread mapping strategy. For instance,

applications with low contention and their parallelism degrees equalling the core num-

ber (e.g. labyrinth, ssca2). Both models illustrate similar performance on the two

applications. Additionally, profiling the thread mapping strategy penalises genome

and vacation, since the two applications contain sudden contention changes which the

dynamic parallelism model can respond to immediately. On the contrary, the dynamic

thread control model requires extra profile lengths to search a better thread mapping

strategy, meanwhile the applications have already transitioned to a new phase.

Compact is favoured when CR is low and Scatter is likely to be selected when CR

is high. When CR is high, the dynamic thread control model favours high parallelism.

When the parallelism is approaching the maximum core number, the thread mapping

strategy profiling is disabled as little performance impact can be received from map-

ping threads. Scatter and Compact are based on the cache share. The two strategies

do not take the sharing of the main memory into account, therefore, the thread mapping

strategy does not perform as well as on the UMA machine.

It is worth noting the advanced phase detection algorithm demonstrates a signifi-

cant performance rise against the simple phase detection algorithm (Chapter 4) on the

NUMA platform for ssca2. The simple phase detection algorithm tends to overreact

to the CR fluctuation. Continuous computation of CR range is performed by the con-

troller, hence the thread number is frequently increased and decreased by one to obtain

the CR range. In contrast, the advance phase detection algorithm prescribes a constant

CR range during the complete execution of ssca2, resulting in a constant parallelism

degree during its entire execution.

On the NUMA machine, the cost of thread migration is higher than that on the

UMA machine. The performance on NUMA fluctuates more than that on UMA es-

pecially when both parallelism degree and thread mapping strategy are adapted at

runtime. Therefore an application, which manifests variation of both parallelism and

thread mapping strategies, tends to be less stable (e.g. EigenBench). Overall, the dy-

namic models indicate their limitations on performance improvement for the NUMA

machine, that is the gain from thread control can hardly be offset by its overhead and

the more complex memory structure of NUMA impacts on the optimum parallelism

prediction. A better solution in the future work would be to reduce the initial paral-

lelism degree and restrict the threads to a local memory bank so that optimum paral-

lelism prediction can be less affected by thread migration.

108 CHAPTER 6. COORDINATION OF PARALLELISM AND MAPPING

6.6 Conclusion Remarks

This chapter has presented autonomic adaptation of parallelism and thread mapping on

TinySTM. It has investigated the complexity of adjusting both parameters at runtime

and proposed the solutions. The approaches are detailed next and their performance is

compared with static parallelism. A feedback control loop is employed to coordinate

the thread parallelism and mapping at runtime. Lastly, the implementation overhead

has been analysed and the advantages as well as limitations of the work have been

discussed.

Runtime parallelism adaptation can reduce contention among threads thus improve

application performance. However, this does not consider the underlying hardware ar-

chitecture. Since access latency rises from the low-level cache to the main memory,

thread placement on the core can impact on application resource utilisation. Further-

more, adapting thread online causes thread migration, which leads to performance loss.

The two issues mentioned above that cause performance degradation can be amelio-

rated by mapping threads to specific cores. However, dynamically controlling both

parallelism and thread mapping is non-trivial. The proposed approach in this chap-

ter on thread control demonstrates performance improvements on some applications

against the static best case on the UMA machine. On the NUMA machine, however,

the performance improvement is less promising, as the mapping strategies ignore data

share among the distributed memory. New thread mapping strategies that take dis-

tributed memory share into account can better support the NUMA structure. It can

reduce the influence of data access to remote memory on parallelism prediction by

diminishing the starting thread number and restricting them to a local memory bank.

Four thread mapping strategies are profiled (three on the NUMA machine) in order

to determine the optimum one. Such a profiling procedure is costly, as it induces thread

migration and also forces the program to work partly under an unsuitable mapping

strategy. A better approach for mapping prediction would be to utilise a predictor that

can predict the optimum strategy in one step rather than four (three on NUMA) steps.

Chapter 7

Related Work

Chapter 7

Related Work

This chapter reviews prior research related to the work of this thesis. Literature on

adaptation of thread parallelism and mapping shows a variety of approaches. These

methods are investigated in three aspects as how the methodologies of the thesis are

presented in the previous three chapters. Section 7.1 briefly describes the work on

dynamic optimum parallelism detection with or without control techniques for TM

systems. The following section (Section 7.2) reviews the work on thread mapping

adaptation, but not limited to TM systems. Lastly, Section 7.3 introduces the state-of-

art work on coordination of thread parallelism and mapping adaptation.

7.1 Dynamic Parallelism Adaptation on TM systems

It has been addressed in previous work [74, 75, 39, 76, 77, 78, 79, 41] to dynamically

adapt thread parallelism via control techniques to reduce wasted work for TM systems.

Ansari et al.[74, 75] first proposed to adapt parallelism online by detecting the

changes of the application’s CR (commit ratio, see Section 2.3.1 for definition) using

control techniques. The control action is made to parallelism if the CR falls out of

the pre-set CR range [75] or does not equal a single pre-fixed CR value [74]. This

is based on the fact that the CR falls during highly-contended phases and rises with

low-contended phases. Ansari et al. gave five different algorithms which decide the

sampling interval and the level of parallelism based on the CR. The first algorithm,

called SimpleAdjust, increases or decreases threads by one when current CR is above

or below the CR thresholds. ExponentialInterval extends SimpleAdjust by halving

the sampling interval when the thread number has been changed or doubling it when

the parallelism has not been varied. ExponentialAdjust keeps the sampling interval

110

7.1. DYNAMIC PARALLELISM ADAPTATION ON TM SYSTEMS 111

Application

Monitoring

concurrency level

Transaction Throughput

Feedback

+ -

Figure 7.1: Flux Concurrency Control in a feedback-driven loop

fixed but exponentially increments or diminishes the thread number for every 10% of

CR that falls out the CR range. ExponentialCombined combines ExponentialInterval

and ExponentialAdjust, which improves the responsiveness of adaptation to the CR

change. Additionally, a P-only algorithm is given, which determines the thread number

to manipulate by sensing the difference between the current CR and a pre-set CR value.

The number of threads to change is the current value multiplied by the CR difference

and divided by 100.

Ravichandran et al. [76] presented a model which employs a feedback control loop

with throughput (see Section 2.3.1 for definition) as the performance metric to adapt

concurrency levels. The concurrency level is adapted in two phases, i.e. exponential

and linear in the loop as shown in Fig. 7.1. The thread number is varied exponentially

giving a better throughput while linearly giving a worse throughput. The concurrency

level is halved in the first phase before switching to the second phase. During the

second phase, the concurrency level increases giving a better throughput and decreases

giving a worse throughput.

Rughetti et al. [39] utilise a neural network to enable performance prediction of

STM applications. The neural network is trained to predict the execution time of

wasted transactions which in turn is utilised by a control algorithm to regulate par-

allelism. The statistics required by the neural network are the average read-set size

(rssize), the average write-set size (wssize), the average execution time for committed

transactions (ttime) and the average execution time for the code block where the trans-

actions and non-transactions interleave (ntctime). In addition, two indices rwaff and

wwaff are calculated which indicate the conflict affinity of read-write operations and

write-write operations. The above statistics and indices together with the current con-

currency level (k) are used to estimate wasted execution time as shown in Equation 7.1.

The system structure is illustrated in Fig. 7.2.

wtime = f (rssize,wssize,rwa f f ,wwa f f , ttime,ntctime,k) (7.1)

112 CHAPTER 7. RELATED WORK

Statistics
Collector

 Control
Algorithm

 Neural
Network

Applications

STM

Sample

Prediction

Sample
thread
activation/deactivation

Sampling

Figure 7.2: System architecture of Rughetti et al.’ feedback control loop [39].

The optimal concurrency level is the value when the result of Equation 7.2 is max-

imised. Where i is the optimal concurrency level.

i

wtime,i + ttime,i,ntctime
(7.2)

Rughetti et al. proposed an additional approach in [40], which depends on machine-

learning to regulate concurrency level at runtime. This paper shares the same method

as in [39] to predict the optimal parallelism. However, in preference to prediction based

on the same amount of statistics, the size of the input features are shrunk or enlarged

according to the quality of the estimated wasted time (contrasting with the real wasted

time observed at runtime). More sampling overhead is incurred when more features

are selected for prediction, consequently, input feature set is enlarged when the quality

of wasted time is low while shrunk when it is high.

Similar to the two foregoing works from Rughetti et al., Sanzo et al. [41] utilise the

identical parameters and function as in Equation 7.1 to estimate the transaction abort

probability rather than the wasted time. The transaction abort probability is expressed

in Equation 7.3.

pa = 1− e−ρ.ω.φ (7.3)

Where pa is the transaction abort probability; ρ is a function presumably dependent on

input parameters rssize,wssize,rwa f f and wwa f f ; supposedly, the function ω depends

on the parameter k; function φ is assumed to rely on the parameters ttime and ntctime.

ρ,ω and φ are derived by varying the workload, which is achieved by continuously

changing certain aforementioned parameters while keeping the rest constant. Lastly,

the optimal concurrency level is estimated by Equation 7.2. The derivation of all the

parameters for the two equations is done through regression analysis that is obtained

7.1. DYNAMIC PARALLELISM ADAPTATION ON TM SYSTEMS 113

by exploiting a set of sampling data gathered via runtime observation of applications.

The approach of concurrency regulation proposed by Sanzo et al. is limited to the

optimistic concurrency control where transactions are aborted and resumed right upon

conflicts.

Didona et al. [77] described two approaches to identify optimal parallelism for

shared-memory STM as well as distributed STM. The exploration-based approach is

applied for shared-memory STM by trying different thread number to maximise the

throughput. However, since the cost for trying different parallelism degrees is high for

distributed STM, the authors combine a model-driven approach and the exploration-

based approach to estimate optimal parallelism degree. This hybrid approach exploits

a machine-learning method to build a function utilised for parallelism prediction. To

deduce the function, the system collects the following features (which are called work-

load): duration and relative frequency, of read-only and update transactions, abort rate

and average number of writes per transaction. By trying different parallelism degrees,

the prediction function can be continuously corrected.

Wamhoff et al. [79] presented a synchronisation strategy called FASTLANE for

STM systems that determines optimal synchronisation strategy for applications apro-

pos of instrumentation code by detecting the active thread number. Nevertheless, the

parallelism degree is determined at runtime. The authors argued that the performance

of a single-threaded application without instrumentation is generally higher than that

of STM systems with a small number of threads [80, 81, 57]. Furthermore, the pa-

per stated that STM, with compiler instrumentation for transactions, requires over four

parallelism degrees on average in order to outperform sequential code [82]. This work

proposed two types of threads: one master thread that always executes without be-

ing aborted and the other helper threads help the master thread. The master thread is

light while the helpers include more instrumentation code and thus slower. The pa-

per proposed four code paths for each transaction: (1) a light sequential path without

instrumentation, (2) a pessimistic path with a master thread lightly instrumented with

writes, (3) a speculative path with helper threads that are instrumented for reads and

deferred writes , (4) a full STM path with instrumented reads and writes. One code

path can be selected dynamically at the beginning of a transaction, which enables ap-

plications to execute sequentially or in parallel.

The methodologies of dynamic parallelism regulation above are applied to STM.

These methods are generally difficult to apply to HTM systems due to their heavy

instrumentation. Studies (e.g. [78]) targeting on HTM have depicted their prominence

114 CHAPTER 7. RELATED WORK

in parallelism adaptation.

Rughetti et al. [78] argued that the existing techniques for parallelism regulation

on STM may not function effectively when applied to HTM. The paper presented two

automatic approaches of tuning parallelism degrees on HTM. The two approaches re-

quire Decision Trees and Neural Network to obtain the relation between optimal par-

allelism and workload. The workload consists of the average execution time for com-

mitted transactions (ttime) and the average execution time for the code block where the

transactions and non-transactions interleave (ntctime), abort rate due to data conflict

(abortconflict), abort rate due to overflow of cache capacity (abortcapacity) and abort rate

due to other architecture reasons (abortother). The above two machine-learning based

approaches make use of training data.

Comparing with the work of Ansari et al. [75, 74], this thesis resolves a CR range

(used for phase detection) which is adaptive to the online program behaviour rather

than a fixed range or a single prefixed value. This makes parallelism adaptation more

sensitive to application phase change. Analogising with the parallelism prediction by

Ravichandran et al. [76], Rughetti et al. and Didona et al. [77], the probabilistic

model presented in the thesis predicts the optimum parallelism based on probability

theory, which requires no offline training procedure or tries of different parallelism de-

gree to search the optimum. This thesis is concerned about applications running with

no less than two threads since transactional memory is designed for parallel applica-

tions. In contrast, Wamhoff et al.’s work [79] enables applications execute in sequential

or parallel. Its selection of parallelism degree depends on the available cores meaning

that the parallelism degree is not adaptive to application online behaviour fluctuations.

Wamhoff et al. favour choices of the optimal synchronisation strategy when the par-

allelism degree is determined rather than adjusting it dynamically. Contrasting with

the aforementioned works which either use CR or throughput to indicate performance,

the thesis employs both: CR to indicate program phases and throughout to indicate

correctness of parallelism regulation. Since either by itself is not sufficient enough to

represent program performance (recall Section. 3.2.1). Furthermore, the thesis expli-

cates the design of controllers as automata that is widely employed to describe and

construct the controllers in the control theory. Automata facilitate the description of

relations of all the control actions and explicitly illustrate their control frequency. Such

designs, to the best of the author’s knowledge, have not been found from the aforemen-

tioned studies.

7.2. THREAD MAPPING ADAPTATION 115

7.2 Thread Mapping Adaptation

Literature has shown interesting work [18, 83, 84, 85, 86] which address the thread

or process mapping issues on parallel applications. Although the previous work is not

dedicated to TM, it presented relevance to the work of the thesis.

Diener et al. [18] described two methods, i.e. Exhaustive Search and Heuristic Al-

gorithm, to resolve thread placement issues. The authors proposed a data sharing met-

ric used to measure how much a certain thread placement can benefit from data sharing.

This is calculated by aggregating the shared cache access between two threads with a

high metric indicating high data sharing among caches. The exhaustive search method,

as its name indicates, utilises exhaustive search via trying every possible thread place-

ment on the cores, and selects the optimal placement for the one indicating the highest

data sharing metric. This method is only feasible for a small number of threads due to

the high cost. The heuristic algorithm, although it does not detect the best thread place-

ment, requires less simulation time. Since it only searches the amount of data sharing

for all the possible pairs of threads, meaning that certain groups of thread placement

are skipped. Both methods require to perform simulation of the applications in order

to obtain data sharing metrics.

Zhang et al. [83] presented a process mapping strategy for MPI (Message Passing

Interface) [87] applications with collective communications (collective communication

requires synchronisation of all the processes in a group). The collective communica-

tions are decomposed into a series of point-to-point communications. The authors

then employ an existing strategy, i.e. the graph partitioning algorithm, to generate an

appropriate process mapping for applications.

Jeannot et al. [84] proposed an algorithm called TREEMATCH that maps pro-

cesses of MPI applications to computing elements based on the hierarchy topology of

the target environment and the communication patterns of the different processes. The

algorithm firstly constructs all the possible combination of the processes. It then traces

the point-to-point and collective communications among all the groups and selects the

one which delivers the highest degree of decline in communication cost.

Hong et al. [85] depicted a dynamic thread mapping scheme that maps threads to

diverse processors according to workload of threads and frequency of processors. The

mapping scheme is performed in two phases. In the first phase, called detection phase,

an application is executed for one iteration of the loop nest of the thread. Processor

cycles and cache access are recorded accordingly. The threads are remapped based on

its workload. The thread with the most load is assigned to the processor-cache pair

116 CHAPTER 7. RELATED WORK

with the combination of the fastest frequency and cache latency. The second phase

starts by running the threads with the new mapping and it also records the workload

information. No remapping is performed if the workload does not vary after a certain

period, otherwise a new mapping is scheduled.

Tournavitis et al [86] stated a machine-learning method to choose the best map-

ping strategy from the four options provided by OpenMP [88], which are CYCLIC,

DYNAMIC, GUIDED and STATIC. Support Vector Machine (SVM) is used to obtain

classification indicating the mapping strategy to schedule. However the proposed map-

ping strategies target on how to schedule jobs to threads rather than scheduling threads

to the specific CPU core.

Comparing with the aforementioned studies with respect to thread mapping on

OpenMP or MPI systems for regular parallel programs, this thesis is concerned with

TM applications for STM platforms. A TM system differentiates rationales of syn-

chronisation from lock-based systems. A change of design policies (e.g. contention

manager) can lead to drastic performance fluctuations for threads, thus complicating

designs of thread mapping strategies.

Castro et al. [89, 90, 5] carried out the first study on thread mapping for TM

systems. Their work have defined three novel thread mapping strategies (compact,

scatter, RoundRobin, see Section 2.1.1 for more details) based on the sharing of

diverse cache levels, together with Linux (the default mapping strategy), to leverage

resource usage. The proposed approach incorporates an offline data training phase

and an online profiling phase. A machine learning method is performed in the first

phase to construct a function which predicts the optimal thread mapping strategy. The

machine learning procedure takes into account of the following features: transaction

time ratio (tx time/execution time), transaction abort ratio, conflict detection policy

(eager and lazy), conflict resolution policy (backoff and suicide), cache miss ratio as

well as the four aforementioned thread mapping strategies. A decision tree classifies

the features and yields the optimal thread mapping strategy as the tree root. In the

second phase, applications are periodically profiled so that the system can adapt the

thread mapping strategy based on their online behaviour. The thread mapping approach

presented in this thesis is a continuation of their work. In preference to machine-

learning based prediction, each strategy is profiled and the one that achieves the highest

throughput is applied as the optimal strategy. The thread mapping profiling procedure

is implemented in a feedback control loop.

7.3. COORDINATION OF PARALLELISM AND THREAD MAPPING ADAPTATION117

7.3 Coordination of Parallelism and Thread Mapping

Adaptation

The literature indicates no prior work addressing the issue on coordination of thread

parallelism and mapping for TM systems. Some previous studies [91, 92] investigated

the decision of parallelism degrees and processor allocation for non-TM parallel appli-

cations. However, neither addresses the issue on pinning threads to the specific cores.

Wang et al. [91] developed a compiler-based, automatic approach to decide par-

allelism and scheduling strategies for OpenMP programs. An offline data training is

performed to construct predictors. Two machine learning algorithms are utilised: a

feed-forward Artificial Neural Network (ANN) to decide parallelism degrees and a

Support Vector Machine (SVM) to determine thread scheduling rules (i.e. how tasks

are scheduled to certain threads). Executing a program with its least amount of input

data, the predictors are able to deduce the optimal thread configuration. In comparison

with this work, this dissertation employs online profiling with the thread configurations

varying based on the in-time fluctuations of program workload. Runtime adaptation

benefits applications with runtime behaviour diversity. Furthermore, no offline training

is required for prediction in the approaches presented in this thesis.

Corbalan et al. [92] proposed an approach that can select the number of threads and

allocate tasks to the available threads. This approach is only concerned with the num-

ber of available processors that can be allocated for an application. Comparing with

this work, this dissertation exploits hardware hierarchies at runtime and pins threads to

specific cores. This can take advantage of access latency difference between levels of

memory.

This thesis does not address the issue of task assignment to the available threads,

rather it is more interested in threads online interaction. The proposed methodolo-

gies are concerned with reducing the global contention and improving the resource

utilisation by controlling parallelism degrees and thread mapping. However, it is less

interesting for OpenMP applications to consider issues on contention.

7.4 Conclusion Remarks

This chapter has reviewed some related works of significance and compared them with

the work of this dissertation. The current research offers insights into runtime par-

allelism degree adaptation using control techniques. The feedback control loops are

118 CHAPTER 7. RELATED WORK

either explicitly or implicitly stated and utilised in the system to regulate parallelism

degrees. The parallelism degree can be obtained by trying its different values based

on the application contention or throughput. It can also be determined by a machine-

learning algorithm or model-driven algorithm being served as runtime prediction. The

machine learning algorithm requires offline data training and the model-driven algo-

rithm requires a large set of sampling data. The thread mapping strategy can give a

significant impact on system performance. Literature on thread mapping focused on

conventional parallel applications for OpenMP or MPI platforms with one notable ex-

ception by Castro et al. [89, 90] who coped with thread mapping strategies on STM

systems. Castro et al. exploits a machine-learning algorithm to predict and adjust the

thread mapping strategies according to the program behaviour. Some previous studies

synthesised prediction of parallelism and thread mapping, yet at compile time and on

conventional parallel applications.

Chapter 8

Conclusion and Future Work

Chapter 8

Conclusion and Future Work

Multi-core processors can enhance application performance by providing many cores

to support application-level parallelism. A high parallelism degree can decrease com-

puting time, however, potentially increases synchronisation cost. Therefore, parallel

applications need to handle the trade-off between synchronisation and computation.

The conventional approach to address synchronisation is to implement locks. The pit-

fall of this approach is the risk of deadlocks. Furthermore, it is intricate to analyse

interaction among concurrent operations. Transactional memory provides an alterna-

tive way for writing parallel applications. Rather than utilising locks to block concur-

rent access, transactional memory offers programmers interfaces to enclose concurrent

access in transactions. Transactions execute speculatively without being blocked by

locks. Transactional memory provides a lock-free environment for programmers.

8.1 Conclusion

This thesis presents work on autonomic management of thread parallelism and map-

ping on TinySTM. The proposed methodologies address the issues arising from how

to identify the trade-off between synchronisation and computation among multiple

threads and how to reduce thread memory access latency. A suitable parallelism de-

gree can speed up computation and keep synchronisation cost low. A good thread

mapping strategy can reduce data access latency of threads. Although it is possible

to analyse applications offline and make a tentative decision on the parallelism degree

and thread mapping strategy, such a decision can only be applied to applications with

stable behaviour. It requires a lot efforts to determine the settings for the applications

with online behaviour variation from an offline view. Therefore, online application

120

8.1. CONCLUSION 121

analysis and decision making become necessary. Autonomic computing provides tech-

nical supports for automatic system management. The idea of autonomic computing

is through implementing feedback control loops to monitor and continuously improve

system performance. The feedback control loop keeps collecting feedbacks (impacts of

its previous decision) from the system it manages, so that its decision on performance

enhancement can be continuously improved.

This thesis presents the designs of feedback control loops that can dictate paral-

lelism degrees and thread mapping strategies based on application runtime behaviours

as well as the hardware architecture. Although literature has demonstrated insights

into designs of feedback control loop to manage parallelism degrees for TM applica-

tions, no previous studies have been conducted on online manipulation of both. It is

challenging to control both simultaneously for TM systems, as either can impact on

prediction of the other. Moreover, controlling parallelism and thread mapping at run-

time can easily lead to thread migration from one core to another, causing application

performance degradation. This dissertation addresses the above two issues and illus-

trates the efficiency of the solutions by comparing runtime application performance of

the proposed models with that of static parallelism degrees.

The frequency of control actions for a feedback control loop can significantly im-

pact on its performance. The previous literature on TM reveals some attempts to ad-

dress this issue either explicitly or implicitly, however, their decisions on frequency

of control actions incorporate strong empirical bases (e.g. no parallelism adaptation

when CR is within 30 % and 60%, or simply trigger the control action periodically).

In industry automation control, control actions are often triggered by sensors which

are based on elaborate mathematical functions. However such modelisations have not

been extensively studied in computing systems. This thesis proposes the phase detec-

tion algorithms that can sense application phase changes, and the control actions are

taken when a phase change is detected. Consequently, profiling overhead is reduced.

Despite the significance of the proposed methodologies, some limitations of this

work also need to draw attention. The probabilistic model can predict optimum paral-

lelism degree for an application at runtime. Its prediction requires no offline profiling

to construct a predictor that is normally based on machine-learning approaches. The

machine-learning based parallelism predictor tends to be platform-dependent. In con-

trast, the proposed parallelism predictor in the thesis is platform-independent, yet its

derivation is based on ideal situations. Hence, the model can yield a sub-optimum

parallelism degree de facto. Furthermore, regarding the decision of optimum thread

122 CHAPTER 8. CONCLUSION AND FUTURE WORK

mapping strategy, it is not always guaranteed to obtain the same optimum strategy by

profiling each and comparing their throughputs, since the performance of certain strate-

gies are similar. Additionally, throughputs are affected by thread migration caused by

periodically wakening and suspending threads.

The proposed approaches take profits of application runtime phase diversity to im-

prove performance. The more distinct the phases are, the higher performance im-

provement the approaches can yield. Therefore, the performance benefits can surpass

implementation overhead. Since the overhead is inevitable, it facilitates to diminish

the overhead by analysis of its causes. The main overhead originates from:

1. Thread migration. Thread migration contributes a significant amount of over-

head to the runtime adaptation approaches. Notably, the performance penalty

caused by thread migration is significantly higher on the NUMA platform due to

its non-uniform memory access.

2. Profiling the thread mapping strategies. It can be costly to try each strategy in

order to determine the best option for an application, since the application works

under the non-optimum strategies during profiling. Such cost is higher on the

NUMA machine than that on the UMA machine.

3. Cost of calling the monitor. This cost is trivial on the UMA machine and it can

be further reduced by trimming the calling frequency. However it is significant

on the NUMA machine for the application with very short transaction length.

4. The parallelism degree to start with. The probabilistic model starts with the max-

imum core number (more specifically, the core number of the UMA machine),

whereas the simple model begins with the minimum value. The former model

requires a large amount of transactions executed by many threads at a fixed pe-

riod to guarantee the constant probability of a conflict. A large number of threads

can cause high contention. The simple model avoids excessive contention in the

beginning but hinders progress of some applications meanwhile.

The impact of the listed overhead and limitations of the proposed approaches vary

from diverse TM applications to different mechanisms of TM platforms as well as

hardware architecture. This dissertation does not intend to provide a versatile solution

that can work under all the circumstances, yet it offers approaches that can be applied

for a wide range of applications and their supporting platforms.

8.2. FUTURE WORK 123

Multi-core processors are increasing their number of cores and complexity of their

memory hierarchy leading to higher requirements of parallel applications. A mech-

anism to simplify designs of parallel application becomes more and more essential.

Meanwhile how to reduce synchronisation time and memory access latency for running

applications becomes critical for system performance. The diversity of applications

and underlying platforms (software or/and hardware) urges a design of a system that

is capable of managing itself given the objectives from high-level administrators. This

thesis illustrates significance and efficiency of the methodologies on runtime thread

parallelism and mapping control using autonomic computing techniques for software

transactional memory. It offers insights into designs of autonomic STM systems that

can be otherwise adapted to other parallel programming platforms.

8.2 Future Work

The scale of the proposed methodologies in this thesis can be extended to a larger

area with the aims to accelerate performance of parallel applications automatically.

Exploration of the followings in future research can facilitate the attainment of this

goal.

8.2.1 Thread Mapping Strategy

The thread mapping strategies in this thesis do not take into account of access latency

diversity of distributed memory. One interesting topic for the further work can be car-

ried out on designs of new thread mapping strategies that can diminish access latency

apropos of remote main memory.

Furthermore, a thread mapping strategy predictor that can predict the optimum

strategy after one profile length is achievable with possible assistance from compilers.

Compilers are able to analyse and provide sufficient information (e.g. the memory-

intensive and computation-intensive code) of applications as well their underlying

hardware. This information together with runtime profile information can construct

the predictor for the optimum mapping strategy.

8.2.2 From STM to HTM

STM is memory-consuming. In general, its performance gain from speculative trans-

action execution can hardly compensate its performance penalty from its significant

124 CHAPTER 8. CONCLUSION AND FUTURE WORK

amount of memory log. The research trend on TM is seeking auxiliary from hard-

ware. The idea of feedback control loops to facilitate designs of autonomic computing

systems can be also applied to HTM. The sensors and actions of the feedback con-

trol loops stated in this thesis are not only specific to STM. Therefore, adapting the

approaches from STM to HTM becomes possible provided that peculiarities of HTM

system is taken into account. A salient peculiarity on HTM is its causes of aborts due

to capacity constraints of processors (e.g. the capacity of cache line). Such a factor

is absent from STM. In addition, the overhead from profiling the same parameters in

the context of HTM can easily shield the performance enhancement from hardware.

Further studies targeting HTM can utilise the methodologies in this thesis and yet need

to address the aforementioned issues.

8.2.3 Coordination of Feedback Control Loops

This thesis utilises both periodical and event-based control to trigger control actions.

Event-based control demonstrates its advantage in diminishing its control frequency

thus causing less overhead for control systems. The control theory has developed

numerous models, simple or sophisticated, to handle event-based control, e.g. PID

controller [93]. As discussed in Chapter 6, a controller that can respond efficiently to

program phase changes, meanwhile, reduce overshooting is feasible.

Performance influence on TM systems stems from multiple aspects. Future work

can be conducted on multiple-objectives optimisation. Multiple-objective optimisation

has been extensively studied in control theory. It can be addressed in one or several

loops. Several control loops can either be controlled by one master loop, or are at

equivalent position. When more than one feedback control loops exist, coordination

of the loops becomes necessary. Alas, it is onerous to program multiple loops which

incorporate complicated coordination using C/C++ or JAVA. The Heptagon/BZR pro-

gramming language [94, 95] designed by INRIA provides a straightforward way to

program automata and their coordination. This language can be utilised in further

work to facilitate complex designs of loops for parallel platforms.

8.2.4 From STM to Other Parallel Platforms

The algorithms on parallelism prediction presented in this thesis may be adapted to

other parallel platforms (e.g. OpenMP [88], Charm++ [96]) by substituting both CR

and throughput with memory contention and instruction throughput.

8.2. FUTURE WORK 125

A STM system is a high-level platform utilised to address synchronisation. The

control system proposed in this thesis works on top of the STM system, therefore it

provides more accessible interfaces to programmers than its managed element. The

idea of utilising feedback control loops to automatically manage thread parallelism de-

grees and mapping strategies can be otherwise implemented in other high-level parallel

platforms.

Bibliography

[1] J. Larus and C. Kozyrakis, “Transactional memory,” Commun. ACM, vol. 51,

pp. 80–88, July 2008.

[2] M. Herlihy and J. E. B. Moss, “Transactional memory: architectural support for

lock-free data structures,” SIGARCH Comput. Archit. News, vol. 21, pp. 289–300,

May 1993.

[3] P. Felber, C. Fetzer, and T. Riegel, “Dynamic performance tuning of word-based

software transactional memory,” in Proceedings of the 13th ACM SIGPLAN Sym-

posium on Principles and practice of parallel programming, PPoPP ’08, (New

York, NY, USA), pp. 237–246, ACM, 2008.

[4] P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nussbaum,

“Hybrid transactional memory,” SIGPLAN Not., vol. 41, pp. 336–346, Oct. 2006.

[5] M. B. Castro, Improving the Performance of Transactional Memory Applications

on Multicores: A Machine Learning-based Approach. PhD thesis, University de

Grenoble, December 2012.

[6] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer,

vol. 36, pp. 41–50, Jan. 2003.

[7] N. Zhou, G. Delaval, B. Robu, É. Rutten, and J.-F. Méhaut, “Autonomic Par-

allelism and Thread Mapping Control on Software Transactional Memory,” in

ICAC 2016 - 13th IEEE International Conference on Autonomic Computing ,

(Wursburg, Germany), July 2016.

[8] N. Zhou, G. Delaval, B. Robu, É. Rutten, and J.-F. Méhaut, “Control of Au-

tonomic Parallelism Adaptation on Software Transactional Memory,” in Interna-

tional Conference on High Performance Computing & Simulation (HPCS), (Inns-

bruck, Austria), July 2016.

127

128 BIBLIOGRAPHY

[9] N. Zhou, G. Delaval, B. Robu, É. Rutten, and J.-F. Méhaut, “Autonomic

Parallelism Adaptation for Software Transactional Memory,” in Conférence

d’informatique en Parallélisme, Architecture et Système (COMPAS), (Lorient,

France), July 2016.

[10] N. Zhou, G. Delaval, B. Robu, É. Rutten, and J.-F. Méhaut, “Autonomic Par-

allelism Adaptation on Software Transactional Memory,” Research Report RR-

8887, Univ. Grenoble Alpes ; INRIA Grenoble, Mar. 2016.

[11] G. E. Moore, “Cramming more components onto integrated circuits,” Proceed-

ings of the IEEE, vol. 86, pp. 82–85, Jan 1998.

[12] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger,

“Dark silicon and the end of multicore scaling,” in Proceedings of the 38th An-

nual International Symposium on Computer Architecture, ISCA ’11, (New York,

NY, USA), pp. 365–376, ACM, 2011.

[13] J. L. Hennessy and D. A. Patterson, Computer Architecture, Fourth Edition: A

Quantitative Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., 2006.

[14] L. McVoy and C. Staelin, “Lmbench: Portable Tools for Performance Analysis,”

in Proceedings of the 1996 Annual Conference on USENIX Annual Technical

Conference, ATEC ’96, (Berkeley, CA, USA), pp. 23–23, USENIX Association,

1996.

[15] A. Vajda, Programming Many-Core Chips. Springer Publishing Company, Incor-

porated, 1st ed., 2011.

[16] R. Kumar, D. M. Tullsen, N. P. Jouppi, and P. Ranganathan, “Heterogeneous chip

multiprocessors,” Computer, vol. 38, pp. 32–38, Nov. 2005.

[17] T. E. Anderson, D. D. Lazowska, and H. M. Levy, “The Performance Implica-

tions of Thread Management Alternatives for Shared-memory Multiprocessors,”

SIGMETRICS Perform. Eval. Rev., vol. 17, pp. 49–60, Apr. 1989.

[18] M. Diener, F. Madruga, E. Rodrigues, M. Alves, J. Schneider, P. Navaux, and

H.-U. Heiss, “Evaluating thread placement based on memory access patterns for

multi-core processors,” in High Performance Computing and Communications

(HPCC), 2010 12th IEEE International Conference on, pp. 491–496, Sept 2010.

BIBLIOGRAPHY 129

[19] C. Pousa Ribeiro, M. Castro, V. Marangonzova-Martin, J.-F. Mehaut, H. C. D.

Freitas, and C. A. P. D. Silva Martins, “Evaluating CPU and Memory Affinity for

Numerical Scientific Multithreaded Benchmarks on Multi-cores,” IADIS Interna-

tional Journal on Computer Science and Information Systems (IJCSIS), 2012.

[20] A. Agawal and A. Gupta, “Memory-reference Characteristics of Multiproces-

sor Applications Under MACH,” SIGMETRICS Perform. Eval. Rev., vol. 16,

pp. 215–225, May 1988.

[21] R. Thekkath and S. J. Eggers, “Impact of sharing-based thread placement on

multithreaded architectures,” in Computer Architecture, 1994., Proceedings the

21st Annual International Symposium on, pp. 176–186, Apr 1994.

[22] J. A. Brown, L. Porter, and D. M. Tullsen, “Fast thread migration via cache work-

ing set prediction,” in Proceedings of the 2011 IEEE 17th International Sympo-

sium on High Performance Computer Architecture, HPCA ’11, (Washington, DC,

USA), pp. 193–204, IEEE Computer Society, 2011.

[23] C. Terboven, D. an Mey, D. Schmidl, H. Jin, and T. Reichstein, “Data and thread

affinity in openmp programs,” in Proceedings of the 2008 Workshop on Memory

Access on Future Processors: A Solved Problem?, MAW ’08, (New York, NY,

USA), pp. 377–384, ACM, 2008.

[24] J. Antony, P. P. Janes, and A. P. Rendell, “Exploring thread and memory

placement on numa architectures: Solaris and linux, ultrasparc/fireplane and

opteron/hypertransport,” in Proceedings of the 13th International Conference

on High Performance Computing, HiPC’06, (Berlin, Heidelberg), pp. 338–352,

Springer-Verlag, 2006.

[25] M. B. Greenwald, Non-Blocking Synchronization and System Design. PhD thesis,

Stanford University, 1999.

[26] S. Al Bahra, “Nonblocking algorithms and scalable multicore programming,”

Commun. ACM, vol. 56, pp. 50–61, July 2013.

[27] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer, III, “Software transac-

tional memory for dynamic-sized data structures,” in Proceedings of the Twenty-

second Annual Symposium on Principles of Distributed Computing, PODC ’03,

(New York, NY, USA), pp. 92–101, ACM, 2003.

130 BIBLIOGRAPHY

[28] M. Herlihy, “Wait-free synchronization,” ACM Trans. Program. Lang. Syst.,

vol. 13, pp. 124–149, Jan. 1991.

[29] V. J. Marathe and M. L. Scott, “A Qualitative Survey of Modern Software Trans-

actional Memory Systems,” Tech. Rep. TR839, University of Rochester, June

2004.

[30] T. Harris, M. Plesko, A. Shinnar, and D. Tarditi, “Optimizing memory transac-

tions,” SIGPLAN Not., vol. 41, pp. 14–25, June 2006.

[31] D. B. Lomet, “Process structuring, synchronization, and recovery using atomic

actions,” SIGOPS Oper. Syst. Rev., vol. 11, pp. 128–137, Mar. 1977.

[32] J. Gray, “Notes on Data Base Operating Systems,” in Operating Systems, An

Advanced Course, (London, UK, UK), pp. 393–481, Springer-Verlag, 1978.

[33] J. E. B. M. Maurice Herlihy, “Transactional memory: Architectural support for

lock-free data structures,” tech. rep., Digital Cambridge Research Lab, Digital

Cambridge Research Lab, One Kendall Square, Cambridge MA 02139, Decem-

ber 1992.

[34] T. Harris, J. Larus, and R. Rajwar, Transactional Memory, 2Nd Edition. Morgan

and Claypool Publishers, 2nd ed., 2010.

[35] M. Milovanović, R. Ferrer, O. S. Unsal, A. Cristal, X. Martorell, E. Ayguadé,

J. Labarta, and M. Valero, “Transactional Memory and OpenMP,” in Proceedings

of the 3rd International Workshop on OpenMP: A Practical Programming Model

for the Multi-Core Era, IWOMP ’07, (Berlin, Heidelberg), pp. 37–53, Springer-

Verlag, 2008.

[36] E. Vallejo, S. Sanyal, T. Harris, F. Vallejo, R. Beivide, O. Unsal, A. Cristal,

and M. Valero, “Hybrid transactional memory with pessimistic concurrency con-

trol,” International Journal of Parallel Programming, vol. 39, no. 3, pp. 375–396,

2010.

[37] Z. He, X. Yu, and B. Hong, “Profiling-based adaptive contention management for

software transactional memory,” in Parallel Distributed Processing Symposium

(IPDPS), 2012 IEEE 26th International, pp. 1204–1215, May 2012.

BIBLIOGRAPHY 131

[38] M. Ansari, K. Jarvis, C. Kotselidis, M. Lujan, C. Kirkham, and I. Watson, “Pro-

filing transactional memory applications,” in Parallel, Distributed and Network-

based Processing, 2009 17th Euromicro International Conference on, pp. 11–20,

Feb 2009.

[39] D. Rughetti, P. Di Sanzo, B. Ciciani, and F. Quaglia, “Machine learning-based

self-adjusting concurrency in software transactional memory systems,” in Mod-

eling, Analysis Simulation of Computer and Telecommunication Systems (MAS-

COTS), 2012 IEEE 20th International Symposium on, pp. 278–285, Aug 2012.

[40] D. Rughetti, P. D. Sanzo, B. Ciciani, and F. Quaglia, “Dynamic feature selec-

tion for machine-learning based concurrency regulation in stm,” in Parallel, Dis-

tributed and Network-Based Processing (PDP), 2014 22nd Euromicro Interna-

tional Conference on, pp. 68–75, Feb 2014.

[41] P. D. Sanzo, F. D. Re, D. Rughetti, B. Ciciani, and F. Quaglia, “Regulating con-

currency in software transactional memory: An effective model-based approach,”

in 2013 IEEE 7th International Conference on Self-Adaptive and Self-Organizing

Systems, pp. 31–40, Sept 2013.

[42] M. M. Pereira, M. Gaudet, J. N. Amaral, and G. Araujo, “Study of hardware

transactional memory characteristics and serialization policies on haswell,” Par-

allel Computing, pp. –, 2015.

[43] E. Koskinen and M. Herlihy, “Checkpoints and continuations instead of nested

transactions,” in Proceedings of the Twentieth Annual Symposium on Parallelism

in Algorithms and Architectures, SPAA ’08, (New York, NY, USA), pp. 160–168,

ACM, 2008.

[44] Intel Corporation, Intel architecture instruction set extensions programming ref-

erence. Chapter 8: Intel transactional synchronization extentions., 2012.

[45] N. Diegues and P. Romano, “Self-Tuning Intel Transactional Synchronization

Extensions,” in 11th International Conference on Autonomic Computing (ICAC

14), (Philadelphia, PA), pp. 209–219, USENIX Association, June 2014.

[46] D. Dice, M. Herlihy, D. Lea, Y. Lev, V. Luchangco, W. Mesard, M. Moir,

K. Moore, and D. Nussbaum, “Applications of the adaptive transactional memory

test platform,” in the TRANSACT’08:3rd Workshop on Transactional Computing,

2008.

132 BIBLIOGRAPHY

[47] S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. Nguyen, “Hybrid transac-

tional memory,” in Proceedings of the Eleventh ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’06, (New York, NY,

USA), pp. 209–220, ACM, 2006.

[48] D. Dice, O. Shalev, and N. Shavit, “Transactional locking ii,” in Proceedings of

the 20th International Conference on Distributed Computing, DISC’06, (Berlin,

Heidelberg), pp. 194–208, Springer-Verlag, 2006.

[49] A. Dragojević, R. Guerraoui, and M. Kapalka, “Stretching transactional mem-

ory,” SIGPLAN Not., vol. 44, pp. 155–165, June 2009.

[50] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N. Scherer,

and M. L. Scott, “Lowering the Overhead of Nonblocking Software Transactional

Memory,” 2006.

[51] K. Fraser and T. Harris, “Concurrent programming without locks,” ACM Trans.

Comput. Syst., vol. 25, May 2007.

[52] M. Ansari, C. Kotselidis, I. Watson, C. Kirkham, M. LujÃąn, and K. Jarvis, “Lee-

TM: A Non-trivial Benchmark Suite for Transactional Memory,” in Algorithms

and Architectures for Parallel Processing (A. Bourgeois and S. Zheng, eds.),

vol. 5022 of Lecture Notes in Computer Science, pp. 196–207, Springer Berlin

Heidelberg, 2008.

[53] G. Kestor, V. Karakostas, O. S. Unsal, A. Cristal, I. Hur, and M. Valero, “RMS-

TM: a comprehensive benchmark suite for transactional memory systems,” SIG-

SOFT Softw. Eng. Notes, vol. 36, pp. 335–346, Sept. 2011.

[54] R. Guerraoui, M. Kapalka, and J. Vitek, “STMBench7: A Benchmark for Soft-

ware Transactional Memory,” SIGOPS Oper. Syst. Rev., vol. 41, pp. 315–324,

Mar. 2007.

[55] F. Zyulkyarov, A. Cristal, S. Cvijic, E. Ayguade, M. Valero, O. Unsal, and T. Har-

ris, “WormBench: A Configurable Workload for Evaluating Transactional Mem-

ory Systems,” in Proceedings of the 9th Workshop on Memory Performance:

Dealing with Applications, Systems and Architecture, MEDEA ’08, (New York,

NY, USA), pp. 61–68, ACM, 2008.

BIBLIOGRAPHY 133

[56] S. Hong, T. Oguntebi, J. Casper, N. Bronson, C. Kozyrakis, and K. Olukotun,

“EigenBench: A simple exploration tool for orthogonal TM characteristics,” in

2010 IEEE International Symposium on Workload Characterization (IISWC),

pp. 1–11, Dec 2010.

[57] C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP: Stanford trans-

actional applications for multi-processing,” in 2008 IEEE International Sympo-

sium on Workload Characterization (IISWC), September 2008.

[58] W. Ruan, Y. Liu, and M. Spear, “STAMP need not be considered harmful,” in 9th

ACM SIGPLAN Workshop on Transactional Computing, (Salt Lake City), March

2014.

[59] C. Y. Lee, “An algorithm for path connections and its applications,” Electronic

Computers, IRE Transactions on, vol. EC-10, pp. 346–365, Sept 1961.

[60] J. Ruppert, “A delaunay refinement algorithm for quality 2-dimensional mesh

generation,” J. Algorithms, vol. 18, pp. 548–585, May 1995.

[61] M. C. Huebscher and J. A. McCann, “A survey of autonomic computing — de-

grees, models, and applications,” ACM Comput. Surv., vol. 40, pp. 7:1–7:28, Aug.

2008.

[62] IBM, “An architectural blueprint for autonomic computing,” tech. rep., IBM,

2003.

[63] Y. Sun, J. Lifflander, and L. V. Kalé, “PICS: A Performance-Analysis-Based In-

trospective Control System to Steer Parallel Applications,” 2014.

[64] I. J. Dooley, Intelligent Runtime Tuning of Parallel Applications with Control

Points. PhD thesis, Champaign, IL, USA, 2010. AAI3455708.

[65] E. Rutten, N. Marchand, and D. Simon, “Feedback Control as MAPE-K loop

in Autonomic Computing,” in Software Engineering for Self-Adaptive Systems,

Lecture Notes in Computer Science, Springer, Apr. 2016.

[66] M. Litoiu, M. Shaw, G. Tamura, N. M. Villegas, H. Müller, H. Giese, E. Rutten,

and R. Rouvoy, “What Can Control Theory Teach Us About Assurances in Self-

Adaptive Software Systems?,” in Software Engineering for Self-Adaptive Systems

3: Assurances (R. de Lemos, D. Garlan, C. Ghezzi, and H. Giese, eds.), Springer,

Feb. 2016.

134 BIBLIOGRAPHY

[67] H. Müller, M. Pezzè, and M. Shaw, “Visibility of control in adaptive systems,” in

Proceedings of the 2Nd International Workshop on Ultra-large-scale Software-

intensive Systems, ULSSIS ’08, (New York, NY, USA), pp. 23–26, ACM, 2008.

[68] Y. Brun, G. Marzo Serugendo, C. Gacek, H. Giese, H. Kienle, M. Litoiu,

H. Müller, M. Pezzè, and M. Shaw, “Software engineering for self-adaptive sys-

tems,” ch. Engineering Self-Adaptive Systems Through Feedback Loops, pp. 48–

70, Berlin, Heidelberg: Springer-Verlag, 2009.

[69] J. L. Hellerstein, Y. Diao, S. Parekh, and D. M. Tilbury, Feedback Control of

Computing Systems. John Wiley & Sons, 2004.

[70] W. L. Brogan, Modern Control Theory (3rd Ed.). Upper Saddle River, NJ, USA:

Prentice-Hall, Inc., 1991.

[71] C. G. Cassandras and S. Lafortune, Introduction to Discrete Event Systems.

Kluwer Academic Publishers, 2001.

[72] A. S. Dhodapkar and J. E. Smith, “Comparing program phase detection tech-

niques,” in Proceedings of the 36th Annual IEEE/ACM International Sympo-

sium on Microarchitecture, MICRO 36, (Washington, DC, USA), pp. 217–, IEEE

Computer Society, 2003.

[73] A. Silberschatz, (WCS)Operating System Concepts 7th Edition Flex Format. John

Wiley & Sons, 2005.

[74] M. Ansari, C. Kotselidis, K. Jarvis, M. Luján, C. Kirkham, and I. Watson, “Ad-

vanced concurrency control for transactional memory using transaction commit

rate,” in Proceedings of the 14th International Euro-Par Conference on Parallel

Processing, Euro-Par ’08, (Berlin, Heidelberg), pp. 719–728, Springer-Verlag,

2008.

[75] M. Ansari, C. Kotselidis, K. Jarvis, M. Luján, C. Kirkham, and I. Watson, “Adap-

tive concurrency control for transactional memory,” in MULTIPROG ’08: First

Workshop on Programmability Issues for Multi-Core Computers, January 2008.

[76] K. Ravichandran and S. Pande, “F2C2-STM: Flux-based feedback-driven con-

currency control for STMs,” in Parallel and Distributed Processing Symposium,

2014 IEEE 28th International, pp. 927–938, May 2014.

BIBLIOGRAPHY 135

[77] D. Didona, P. Felber, D. Harmanci, P. Romano, and J. Schenker, “Identifying the

optimal level of parallelism in transactional memory applications,” in Networked

Systems (V. Gramoli and R. Guerraoui, eds.), vol. 7853 of Lecture Notes in Com-

puter Science, pp. 233–247, Springer Berlin Heidelberg, 2013.

[78] D. Rughetti, P. Romano, F. Quaglia, and B. Ciciani, Euro-Par 2014 Parallel Pro-

cessing: 20th International Conference, Porto, Portugal, August 25-29, 2014.

Proceedings, ch. Automatic Tuning of the Parallelism Degree in Hardware Trans-

actional Memory, pp. 475–486. Cham: Springer International Publishing, 2014.

[79] J.-T. Wamhoff, C. Fetzer, P. Felber, E. Rivière, and G. Muller, “Fastlane: Im-

proving performance of software transactional memory for low thread counts,” in

Proceedings of the 18th ACM SIGPLAN symposium on Principles and practice of

parallel programming, PPoPP ’13, (New York, NY, USA), pp. 113–122, ACM,

2013.

[80] D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack, C. Fet-

zer, M. Nowack, T. Riegel, P. Felber, P. Marlier, and E. Rivière, “Evaluation of

amd’s advanced synchronization facility within a complete transactional memory

stack,” in Proceedings of the 5th European Conference on Computer Systems,

EuroSys ’10, (New York, NY, USA), pp. 27–40, ACM, 2010.

[81] L. Dalessandro, D. Dice, M. Scott, N. Shavit, and M. Spear, Transactional Mutex

Locks, pp. 2–13. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010.

[82] A. Dragojević, P. Felber, V. Gramoli, and R. Guerraoui, “Why stm can be more

than a research toy,” Commun. ACM, vol. 54, pp. 70–77, Apr. 2011.

[83] J. Zhang, J. Zhai, W. Chen, and W. Zheng, Euro-Par 2009 Parallel Processing:

15th International Euro-Par Conference, Delft, The Netherlands, August 25-28,

2009. Proceedings, ch. Process Mapping for MPI Collective Communications,

pp. 81–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009.

[84] E. Jeannot and G. Mercier, “Near-Optimal Placement of MPI processes on Hier-

archical NUMA Architectures,” in Europar (P. D’Ambra, M. R. Guarracino, and

D. Talia, eds.), vol. 6272, (Ischia, Italy), pp. 199–210, Springer, Aug. 2010.

[85] S. Hong, S. Narayanan, M. Kandemir, and O. Ozturk, “Process variation aware

thread mapping for chip multiprocessors,” in Design, Automation Test in Europe

Conference Exhibition, 2009. DATE ’09., pp. 821–826, April 2009.

136 BIBLIOGRAPHY

[86] G. Tournavitis, Z. Wang, B. Franke, and M. F. O’Boyle, “Towards a holistic

approach to auto-parallelization: Integrating profile-driven parallelism detection

and machine-learning based mapping,” SIGPLAN Not., vol. 44, pp. 177–187,

June 2009.

[87] W. Gropp, E. Lusk, and A. Skjellum, Using MPI: Portable Parallel Programming

with the Message-passing Interface. Cambridge, MA, USA: MIT Press, 1994.

[88] L. Dagum and R. Menon, “OpenMP: An Industry-Standard API for Shared-

Memory Programming,” IEEE Comput. Sci. Eng., vol. 5, pp. 46–55, Jan. 1998.

[89] M. Castro, L. F. W. G. Goes, and J.-F. Mehaut, “Adaptive thread mapping strate-

gies for transactional memory applications,” Journal of Parallel and Distributed

Computing, vol. 74, no. 9, pp. 2845 – 2859, 2014.

[90] M. Castro, L. F. W. G. Goes, C. P. Ribeiro, M. Cole, M. Cintra, and J.-F. Mehaut,

“A machine learning-based approach for thread mapping on transactional mem-

ory applications,” in High Performance Computing (HiPC), 2011 18th Interna-

tional Conference on, pp. 1–10, Dec 2011.

[91] Z. Wang and M. F. O’Boyle, “Mapping parallelism to multi-cores: A machine

learning based approach,” SIGPLAN Not., vol. 44, pp. 75–84, Feb. 2009.

[92] J. Corbalán, X. Martorell, and J. Labarta, “Performance-driven processor alloca-

tion,” in Proceedings of the 4th Conference on Symposium on Operating System

Design & Implementation - Volume 4, OSDI’00, (Berkeley, CA, USA), USENIX

Association, 2000.

[93] K. H. Ang, G. Chong, and Y. Li, “PID control system analysis, design, and tech-

nology,” IEEE Transactions on Control Systems Technology, vol. 13, pp. 559–

576, July 2005.

[94] G. Delaval, N. De Palma, S. M.-K. Gueye, H. Marchand, and É. Rutten, “Discrete

Control of Computing Systems Administration: A Programming Language Sup-

ported Approach,” in European Control Conference (M. Morari, ed.), (Zurich,

Switzerland), pp. 117–124, July 2013.

[95] G. Delaval, H. Marchand, and E. Rutten, “Contracts for Modular Discrete Con-

troller Synthesis,” in ACM International Conference on Languages, Compilers,

BIBLIOGRAPHY 137

and Tools for Embedded Systems (LCTES 2010), (Stockholm, Sweden), Apr.

2010.

[96] L. Kalé and S. Krishnan, “CHARM++: A Portable Concurrent Object Oriented

System Based on C++,” in Proceedings of OOPSLA’93 (A. Paepcke, ed.), pp. 91–

108, ACM Press, September 1993.

Glossary

A | C | D | I | L | M | N | O | P | R | S | T | U | V | W

A

abort

A transaction has failed, its previous changes made to the data locations are

abandoned. 14

actuator

It carries out changes to the managed element in a MAPE-K loop. 32

autonomic computing

Computing systems that can manage themselves given high level objectives from

administrators. 31

autonomic manager

It is the controller of a MAPE-K loop. It takes the information of interest from

the sensor to monitors and execute changes via effectors. 32

C

checkpoint

Is a program location within a transaction where control may jump during a

partial abort. 20

commit

A transaction successfully finishes its operations and the changes to the memory

are made permanently. 14

i

ii Glossary

commit ratio

The number of commits divided by the number of commits and aborts. 19

compulsory miss

Due to the competition to the same cache from several threads which causes

cache misses. 9

conflict detection

Decides when to check the read/write sets to detect conflicts. 16

contention manager

Decides the actions to be taken in order to resolve the conflicts. 17

D

dynamic thread mapping strategy

Means the thread mapping strategy is selected during execution and may vary

during execution. 81

I

invalidation miss

When the data has already resided in the cache but is evicted by other cache

lines. 9

L

lemming effect

One transaction aborts and acquire a lock to fall back to the lock-based execu-

tion, consequently causing other transactions to abort and endeavour to obtain

the lock. 21

lock freedom

At least one process or thread is guaranteed to complete in a finite number of

steps. 13

M

Glossary iii

managed element

Can be any software or/and hardware that is given autonomic behaviour by cou-

pling it with an autonomic manager in a MAPE-K loop. 33

MAPE-K loop

It is a feedback control loop proposed by IBM. MAPE-K stands for Monitor,

Analyse, Plan, Execute, Knowledge. 32

memory affinity

It is ensured when data is efficiently distributed over the machine memory. 11

N

non-action interval

Is composed of one or a continuous sequence of profile lengths, within which

the thread regulation is suspended. 41

non-blocking algorithm

When an algorithm guarantees that at least one process can complete a task or

make progress within a finite time. 12

Non-Uniform Memory Access

Multiprocessors with distributed memory, which have different access to local

and remote memory. 7

O

obstruction freedom

Provides single-thread progress guarantees in the absence of conflicting opera-

tions. 12

optimistic concurrency control

The conflicts detection and resolution can be delayed after data access. 15

P

iv Glossary

pessimistic concurrency control

Detects and solves the conflicts at the same time when a transaction is about

accessing a location. 15

profile length

Is a fixed period for information gathering, such as commits, aborts and time. 41

profiling

Profiling in software engineering refers to a form of dynamic application analysis

that measures certain useful events to facilitate application optimisation. 40

R

readset

A readset of a transaction is the set of locations read by the transaction.. 18

S

sensor

It is also called probe or gauge, which collects information on the managed ele-

ment in a MAPE-K loop. 32

static thread mapping strategy

Means that the thread mapping strategy is chosen before execution and remains

constant at runtime. 81

T

thread affinity

Fixing a thread to a specific core is called setting the. 9

thread control

To simplify the description, the control of both thread parallelism and thread

mapping is addressed as thread control. 91

thread mapping

Assigning multiple threads to specific cores on a multi-core platform. 9

Glossary v

thread profile interval

Is composed of a continuous sequence of profile lengths within which the par-

allelism or thread mapping strategy is adjusted and the CR range is computed.

41

thread synchronisation

Threads must communicate and exchange data to complete their tasks. 11

throughput

The number of commits in one unit of time. 19

transaction

Is a finite sequence of machine instructions, executed by a single process. 14

transaction granularity

Is the unit of storage in which a TM system detects conflicts. 16

transactional memory

An alternative parallel programming technique, which addresses synchronisa-

tion issues through transactions. The access to the shared data are enclosed in

transactions which are executed speculatively without blocking by locks. 13

U

uniform memory access

All the processors have the equal access to one single centralized memory. 7

V

version management

Handles the storage policy for permanent and transient data copies. 17

W

wait freedom

Every active process or thread can complete in a finite number of steps. 13

writeset

A writeset of a transaction is a set of locations accessed by the transaction. 19

Appendix A

Runtime Parallelism Variation by the

Simple and Probabilistic Models on

NUMA

logic time (1K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

3
8
0

3
9
0

4
0
0

4
1
0

simple

probabilistic

(a) one phase

logic time (1K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

simple

probabilistic

(b) three phases

Figure A.1: Runtime parallelism variation by the simple and probabilistic models for
EigenBench on the NUMA platform.

vi

vii

logic time (1K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

0 1 2 3 4 5 6 7 8 9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

3
2

3
3

3
4

3
5

3
6

3
7

3
8

3
9

4
0

4
1

4
2

4
3

4
4

4
5

simple

probabilistic

(a) intruder

logic time (1K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

2
1
0
0

2
2
0
0

2
3
0
0

simple

probabilistic

(b) ssca2

logic time (1K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

simple

probabilistic

(c) genome

logic time (1K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

3
8
0

3
9
0

4
0
0

4
1
0

4
2
0

4
3
0

simple

probabilistic

(d) vacation

logic time (1K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

simple

probabilistic

(e) yada

logic time (1K commits)

th
re

a
d
 n

u
m

b
e
r

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

simple

probabilistic

(f) labyrinth

Figure A.2: Runtime parallelism variation by the simple and probabilistic models for
STAMP on the NUMA platform.

Appendix B

Runtime Throughput Comparison on

Static Parallelism and Dynamic

Parallelism by the Simple and

Probabilistic Models

logic time (1k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

0
1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

3
8
0

3
9
0

4
0
0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

2threads

4thread

8threads

16threads

32threads

simple

probabilistic

(a) one phase

logic time (1k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

10

20

30

40

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

●
●

●

●

●

●
● ●

●

2threads

4thread

8threads

16threads

32threads

simple

probabilistic

(b) three phases

Figure B.1: Throughput comparison for EigenBench. Fig. B.1(a) presents the re-
gression curve of the throughput over time, meaning that the throughput has been
smoothed. Fig. B.1(b) illustrates the original data to better present the clear phase
change.

viii

ix

logic time (300k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

1000

2000

3000

4000

5000

6000

0 2 4 6 8

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

2threads

4thread

8threads

16threads

32threads

simple

probabilistic

(a) intruder

logic time (10k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0
100
200
300
400
500
600
700
800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800
1900
2000
2100
2200
2300
2400
2500
2600
2700
2800
2900
3000
3100
3200
3300
3400
3500
3600
3700
3800
3900
4000
4100
4200

0

1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

7
0
0

8
0
0

9
0
0

1
0
0
0

1
1
0
0

1
2
0
0

1
3
0
0

1
4
0
0

1
5
0
0

1
6
0
0

1
7
0
0

1
8
0
0

1
9
0
0

2
0
0
0

2
1
0
0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

2threads

4thread

8threads

16threads

32threads

simple

probabilistic

(b) ssca2

logic time (10k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

● ●
●

● ● ● ●●

●

2threads

4thread

8threads

16threads

32threads

simple

probabilistic

(c) genome

logic time (10k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

1500

1600

1700

1800

1900

2000

2100
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

2
6
0

2
7
0

2
8
0

2
9
0

3
0
0

3
1
0

3
2
0

3
3
0

3
4
0

3
5
0

3
6
0

3
7
0

3
8
0

3
9
0

4
0
0

4
1
0

4
2
0

4
3
0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

2threads

4thread

8threads

16threads

32threads

simple

probabilistic

(d) vacation

logic time (10k commits)

th
ro

u
g
h
p
u
t(

 k
tx

/s
)

0

100

200

300

400

500

600

700

800

900

1000

0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

1
1
0

1
2
0

1
3
0

1
4
0

1
5
0

1
6
0

1
7
0

1
8
0

1
9
0

2
0
0

2
1
0

2
2
0

2
3
0

2
4
0

2
5
0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

2threads

4thread

8threads

16threads

32threads

simple

probabilistic

(e) yada

commits (15)

th
ro

u
g
h
p
u
t(

 t
x
/s

)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440

0 2 4 6 8
1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

5
6

5
8

6
0

6
2

6
4

6
6

6
8

7
0

● ● ● ● ● ● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

2threads

4thread

8threads

16threads

32threads

simple

probabilistic

(f) labyrinth

Figure B.2: Throughput comparison for STAMP. Regression curves are utilised.
Fig. B.2(c) illustrates the original data.

Appendix C

Résumé de Thèse en Français

x

C.1. TITRE DE THÈSE xi

C.1 Titre de Thèse

Contrôle Autonomique du Parallélisme et du Placement de Threads pour les Mémoires

Transactionnelles Logicielles

xii APPENDIX C. RÉSUMÉ DE THÈSE EN FRANÇAIS

C.2 Résumé de Thèse

L’exécution de programmes paralléles demande à établir un compromis entre le temps

de calcul (nombre de threads) et le temps de synchronisation. Ce compromis dépend

principalement du nombre de threads actifs. Un haut degré de parallélisme (beau-

coup de threads) permet généralement de diminuer le temps de calcul, mais peut aussi

avoir pour conséquence d’augmenter les surcoûts de synchronisation entre threads. De

plus, le placement des threads sur les cœurs peut impacter les performances du pro-

gramme, car le temps pour accéder aux données en mémoire peut varier d’un cœur

à l’autre en raison de la contention sur la hiérarchie mémoire. Ainsi, la performance

d’un programme peut être améliorée en adaptant le nombre de threads actifs et en

plaçant correctement les threads sur les cœurs de calcul. Cependant, il n’existe pas de

règle universelle permettant de décider a priori du niveau de parallélisme optimal et

du placement de threads d’un programme, en particulier pour un programme avec les

changemets de comportement dynamique. D’ailleurs, un paramétrage hors ligne est

moins précis. Cette thèse présente un travail sur la gestion dynamique du parallélisme

et du placement de threads. Cette thèse s’attaque au problème de gestion de threads

utilisant de la mémoire transactionnelle logicielle (Software Transactional Memory,

STM). La mémoire transactionnelle logicielle constitue une technique prometteuse

pour traiter le problème de synchronisation en évitant les verrous. Le concept de cal-

cul autonomique offre aux programmeurs un cadre de méthodes et techniques pour

construire des systèmes auto-adaptatifs ayant un comportement maîtrisé. L’idée clé

est d’implémenter des boucles de rétroaction afin de concevoir des contrôleurs sûrs,

efficaces et prédictibles, permettant d’observer et d’ajuster de manière dynamique les

systèmes contrôlés, tout en minimisant le surcoût d’une telle méthode. La thèse pro-

pose de concevoir des boucles de rétroaction afin d’automatiser le gestion de threads à

l’exécution avec comme objectif la réduction du temps d’exécution des programmes.

	Abstract
	Research Collaboration and Scientific Context
	Acknowledgements
	Introduction
	Contributions
	Thesis Outline

	Background
	Multi-core Processors
	Thread affinity
	Memory Affinity

	Synchronisation Mechanisms
	Lock-based Synchronisation Techniques
	Other Synchronisation Techniques

	Transactional Memory
	Concepts of Transactional Memory
	TM Design Choices
	TM Metrics
	Implementation Schemes
	Software Transactional Memory Platforms
	Restrictions of STM

	Benchmarks for Evaluation of TM Systems
	EigenBench
	STAMP

	Control of Autonomic Computing Systems
	Concepts of Autonomic Computing
	MAPE-K Loop
	Degrees of Autonomicity
	Control Theory in Self-adaptive Systems

	Conclusion Remarks

	Overview of Algorithms and Architecture
	Overview of System Architecture
	Runtime Profiling Approaches
	General TM Profiling Concepts
	Phase-based Profiling Algorithm
	Periodical Hill-Climbing Profiling Algorithm

	Implementation
	How to Collect Profile Information
	How to Dynamically Control Threads

	Conclusion Remarks

	Autonomic Parallelism Adaptation
	Introduction
	Simple Model for Parallelism Adaptation
	Overview of the Profiling Algorithm
	Feedback Control Loop of the Simple Model

	Probabilistic Model for Parallelism Adaptation
	The Autonomic Manager
	Parallelism Prediction Decision Function

	Benchmark Setting
	Performance Evaluation
	Performance of Static Parallelism
	Performance Evaluation on the UMA Platform
	Performance Evaluation on NUMA

	Discussion
	Conclusion Remarks

	Autonomic Thread Mapping Adaptation
	Introduction
	Dynamic Thread Mapping
	Inputs and Outputs
	Decision Functions

	Performance Evaluation
	Static Thread Mapping
	Performance Comparison on Static and Dynamic Mapping

	Discussion
	Conclusion Remarks

	Coordination of Parallelism and Mapping
	The Complexity of Dynamic Thread Control
	The Threshold of Parallelism Degree for Thread Mapping
	The Frequency of Thread Mapping Prediction
	The Order of Decision Making

	Overview of the Profiling Procedure
	Control Coordination
	Inputs and Outputs
	Coordination of Control Loops

	Performance Evaluation
	Results on the UMA Machine
	Results on the NUMA Machine

	Discussion
	Conclusion Remarks

	Related Work
	Dynamic Parallelism Adaptation on TM systems
	Thread Mapping Adaptation
	Coordination of Parallelism and Thread Mapping Adaptation
	Conclusion Remarks

	Conclusion and Future Work
	Conclusion
	Future Work
	Thread Mapping Strategy
	From STM to HTM
	Coordination of Feedback Control Loops
	From STM to Other Parallel Platforms

	Bibliography
	Glossary
	Appendix Runtime Parallelism Variation on NUMA
	Appendix Runtime Throughput Comparison on NUMA
	Appendix Résumé de Thèse en Français
	Titre de Thèse
	Résumé de Thèse

