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Introduction

Soit N un entier positif. Soit f une forme modulaire classique, cuspidale, non-CM, de niveau
N et propre pour I'action des opérateurs de Hecke {1}y et {Us}gy. Pour un nombre premier
p soit prp: Gg — GLQ(@p) la représentation de Galois p-adique associée a f. Ribet a montré
un résultat de “grande image” pour la représentation py .

THEOREME 1. Pour presque tout premier p l'image de py,, contient le conjugué d’un sous-
groupe de congruence principal non-trivial de SLa(Zy).

Dorénavant on fixe un premier p > 5 qui ne divise pas N. Dans [Hil5] Hida a prouvé
un analogue du Théoreme 1 pour une famille p-adique de formes modulaires ordinaires. On
présente briévement ce résultat. Soit A = Z,[[T]] I'algebre d’Iwasawa. Soit T°¢ un facteur
local de la grande algeébre de Hecke ordinaire de niveau modéré N, construite en [Hi86] ; il
s’agit d’une A-algebre finie et plate. L’algebre de Hecke abstraite H de niveau modéré N admet
un morphisme H — T qui interpole les systemes de valeurs propres associés & des formes
propres classiques ordinaires. Si T'? est résiduellement non-Eisenstein les représentations de
Galois p-adiques associées aux formes classiques de la composante sont interpolées par une
grande représentation prora: Gg — GL2(Td). Soit #: T4 — I un morphisme de A-algebres
définissant une composante irréductible de T'd et soit pg: Gg — GLa(I) la représentation
induite par ppora. On dit que la famille 8 est CM si toutes ses spécialisations classiques sont
CM. Pour un idéal [ de A, soit I'z(l) le sous-groupe de congruence principal de niveau [ de
SLa(A).

THEOREME 2. [Hil5, Theorem I| Supposons que la famille 6 est non-CM. Alors il existe
un élément g € GLa(I) et un idéal non-nul I de A tels que
(1) TA(l) Cg-Tmpg-g "

Il existe un plus grand idéal [y de A entre ceux qui satisfont (1) pour un g € GLy(I)
; on 'appelle le niveau galoisien de 6. Hida a donné une description des facteurs premiers
du niveau galoisien, comme suit. L’algébre de Hecke T°"d admet des composantes CM, pour
lesquelles le Théoreme 2 n’est pas valable. La famille non-CM 6 peut croiser certaines de ces
composantes. De tels croisements peuvent étre interprétés comme des congruences entre une
famille “générale” (c’est-a-dire, telle que ses spécialisations classiques ne sont pas des transferts
de formes automorphes pour un groupe de rang plus pétit) et des familles “non-générales” (dans
ce cas, celles qui sont induites par un caractére de Hecke d’un corps quadratique imaginaire).
Dans le cas de GLs les seules familles non-générales sont celles qui sont CM. Hida a défini un
idéal ¢y de A, I'idéal de congruence CM, qui mésure les congruences entre 6 et les composantes
CM.

THEOREME 3. [Hil5, Theorem II] Les idéauz ly et ¢y ont le méme ensemble de facteurs
PTremiers.

Dans sa these [Lang16] J. Lang a amélioré le Théoreme 2. Son résultat est inspiré par une
version plus forte du Théoreme 1, due & Momose [Mo81] et Ribet [Ri85, Theorem 3.1]. Elle
considere encore une famille ordinaire non-CM §: T4 — T et définit un (2,2, ..., 2)-groupe fini
T" de self-twists conjugués pour 0, c’est-a-dire automorphismes de la A-algebre I qui induisent un
isomorphisme de pg avec une de ses tordues par un caractere d’ordre fini. Soit Iy le sous-anneau
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de I fixé par I'. Pour un idéal I de Iy, soit I'1,([) le sous-groupe de congruence principal de
niveau [ de SLa(Ip).

THEOREME 4. [Langl6, Theorem 2.4] Il existe un élément g € GLa(I) et un idéal non-nul
[ de Iy tels que
(2) I, (D Cg-Tmpy-g '

L’existence d’un self-twist conjugué pose une restriction sur la largeur de I'image de pg, donc
I’anneau Iy est optimal par rapport a la propriété décrite par le Théoreme 4. Les preuves des
Théoremes 2 et 4 invoquent I'existence d’un élément conjugué a

CT:<U—1<1O+T> T)

dans I'image par pg d’un groupe d’inertie en p ; ce fait est une conséquence de l'ordinarité
de pg. La conjugaison par un élément comme ci-dessus induit une structure de A-module
sur 'intersection de Im py avec les sous-groupes unipotents a un parametre de SLa(Iy). Cela
est combiné avec 'existence de certains éléments non-triviaux dans Im py, construits grace au
résultat de Momose et Ribet et a la théorie de Pink des algebres de Lie des pro-p sous-groupes
de SLy(Iy). Une étape clé dans la preuve du Théoréme 4 est un résultat de J. Lang sur le
relevements de self-twists d’un corps p-adique & l’anneau Iy [Lang16, Theorem 3.1].

Dans un travail commun avec A. Iovita et J. Tilouine (voir Chapter 2 et [CIT15]) on a
prouvé des analogues des Théorémes 4 et 3 pour une famille p-adique de formes propres de pente
finie. Dans ce contexte on a rencontré plusieurs problemes et phénomenes qui n’apparaissent pas
dans le cas ordinaire. Les formes propres de pente finie et niveau modéré N sont interpolées par
une courbe rigide analytique sur Q,, la courbe de Hecke construite par Coleman, Mazur [CM98|
et Buzzard [Bu07], mais cet objet n’admet pas de structure entiere globale analogue a l’algebre
ordinaire T°¢. En particulier D admet un morphisme vers I’espace des poids W = (Spf A)rig ,
le morphisme des poids, mais celui-ci n’est pas fini. Pour cette raison on doit fixer une paire
(h, Bp,), composée d'un h € Q> et d’un disque ouvert de centre 0 et rayon 7, dépendant de
h, telle que le morphisme des poids soit fini si on le restreint au sous-domaine D%h des points
de D de pente < h et poids dans By. Celle-ci est une “paire adaptée” dans la terminologie de
[Bel2, Section 2.1]. Pour tout h € Q™ il existe un rayon ry, tel que (h, By) soit adaptée, mais
pour l'instant on ne sait pas donner une borne inférieure pour r; en termes de h.

Soient Ap, et Tp les anneaux des fonctions bornées par 1 sur les espaces rigides analytiques
(sur Qp) By, et D%h, respectivement. L’algebre T a une structure de Ap-algebre finie et elle

est notre analogue de la A-algebre T de Hida. On appelle famille de pente bornée par h
une composante irréductible de pente positive de T}, décrite par un morphisme de Ap-algebres
0: Tj — I°. Dans le cas résiduellement irréductible on définit une représentation pyp: Gg —
GL2(I°). La notation ° signale qu’on travaille avec une structure entiére ; plus tard on aura
besoin d’inverser p. Pour simplifier notre présentation on suppose que I° est normal, mais cette
hypothese n’est pas essentielle. Une différence importante avec le cas ordinaire est donnée par
le fait que les formes CM de pente finie ne forment pas des familles, mais elles définissent un
sous-ensemble discret de SpecI® (Corollary 2.2.8). On peut donc prouver un résultat de grande
image de Galois pour toute famille de pente positive.

On définit un groupe I" de self-twists pour 6 et on note I le sous-anneau de I° fixé par I'. Il est
nécessaire ici d’utiliser les arguments de J. Lang sur le relevement des self-twists ; ils s’appliquent
aussi a des familles non-ordinaires. Vu que la représentation de Galois est non-ordinaire, on
ne sait pas si son image contient un élément conjugué a la matrice C7 qui apparait dans le
travail de Hida et Lang. Cependant on construit un opérateur avec des propriétés analogues
grace a la théorie relative de Sen. Pour pouvoir le faire on a besoin d’étendre nos coefficients a
I’anneau des fonctions rigides analytiques sur un disque fermé de rayon r plus pétit que r}, puis
de considérer des produits tensoriels complétés avec C, ; on note ces opérations par 1’adjonction

d’indices r et C, en bas. A partir de I et pg, on définit un anneau B, et une sous-algebre de
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Lie &, de gly(B,) associée a Im py (Section 2.4.1). Ensuite on construit un opérateur de Sen
¢ € Ma(B,c,) dont I'exponentiel normalise &,.c, et a des valeurs propres explicites (Section
2.4). La conjugaison par cet élément induit une structure de Ap-module sur les sous-algebres
nilpotentes de &, ¢, associées aux racines de SLy. Sous une hypothese technique qu’on appelle
(Ho, Zp)-régularité (voir Definition 2.3.6), les sous-algebres nilpotentes de &, c, contiennent
des éléments non-triviaux, grace au résultat résiduel de Momose et Ribet et a un argument
d’approximation di a Hida et Tilouine. Notre premier résultat est le théoreme ci-dessous.

THEOREME 5. (Theorem 2.5.2) Supposons que I° est normal et que pg est (Ho, Zy)-réguliére.
1l existe un idéal non-nul [ de Iy tel que

(3) [-sly(B,) C &,.

On remarque qu’on arrive a se débarasser de l'extension de scalaires a C,, mais pas de
Iinversion de p. On appelle niveau galoisien de 6 1'idéal ly de Iy le plus grand entre ceux qui
satisfont (3).

On décrit le lieu des points CM de la famille par un idéal de congruence CM accidentel ¢y
de I (voir Definition 2.2.12), ou le terme “accidentel” met en évidence le fait que ses facteurs
premiers ne correspondent pas a des congruences entre une famille générale et des familles non-
générales, mais a des points CM isolés. Dans notre deuxieme résultat on compare le niveau
galoisien et I'idéal de congruence pour la famille 6.

THEOREME 6. (Theorem 2.6.1) Supposons que pp n’est pas induite par un caractére du
groupe de Galois absolue d’un corps quadratique réel. Les ensembles de facteurs premiers de
co N1Ip et ly coincident en dehors des diviseurs de (1 +T —u) -y (les facteurs de poids 1).

Le but des chapitres 3 et 4 est d’étudier le probleme de la définition et comparaison du
niveau galoisien et de 1’idéal de congruence pour des familles p-adiques de formes modulaires de
Siegel de genre 2 et pente positive finie. Dans [HT15] Hida et Tilouine ont étudié le probleme
pour des familles qui sont résiduellement de type “Yoshida tordu et grand” : dans ce cas
les seules congruences possibles sont celles avec des transferts p-adiques de familles de formes
modulaires de Hilbert pour Res p/gGLy/p, out F' est un corps quadratique réel. Les transferts
des formes classiques sont interpolés par des composantes irréductibles de dimension 2 de la
grande algebre de Hecke ordinaire, donc I'idéal de congruence qui en résulte est un analogue de
I'idéal de congruence CM défini par Hida : il décrit des congruences entre une famille générale
et les familles non-générales. Il serait possible d’étudier les phénomenes de congruence pour
des familles résiduellement de type Yoshida tordu et grand et de pente positive, avec les mémes
techniques développées ici ; on trouverait encore des familles non-générales de dimension 2 et
une généralisation directe de I'idéal de congruence défini dans le cas ordinaire. Pour avoir plutot
un analogue de I'idéal de congruence CM accidentel associé a des familles de pente positive pour
GLo, on considére des familles de formes modulaires de Siegel qui sont résiduellement de type
“cube symétrique grand”, comme expliqué ci-dessous. En plus du type différent de congruences
permises, le cas de pente positive présente de nombreux nouveaux aspects par rapport au cas
ordinaire.

Les formes de niveau modéré N, propres pour l'action de Hecke, sont interpolées par un
espace rigide analytique D de dimension 2, construit par Andreatta, Iovita et Pilloni [AIP15].
Cet espace est muni d’un morphisme non-fini vers I’espace des poids de dimension 2, W, =
(Spf A2)"8. Comme dans le cas de pente positive pour GLa, on doit fixer dans une étape
préliminaire h € Q> et un disque By, de centre 0 et rayon suffisamment petit 75, dans I'espace
des poids. Soit D%h le sous-domaine admissible de D des points de pente < h et poids dans By,

Le morphisme de poids induit un morphisme fini D%h — Bp. Soient Ay et Tj les anneaux des

fonction bornées par 1 sur les espaces rigides analytiques (sur Q) By, et D%h, respectivement.
On appelle famille de pente bornée par h une composante irréductible de Ty, définie par un
morphisme de Ap-algebres 6: Tj, — 1°. Dans le cas résiduellement irréductible I'interpolation des
représentations de Galois p-adiques associées aux points classiques de # donne une représentation
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po: Gg — GSp,(I°). On suppose que la représentation résiduelle associée py est de type cube
symétrique grand, dans le sens ou

Sym3SLy(F) € Im B, C Sym3GLy(F)

pour un corps fini non-trivial F. Cette condition crée une restriction forte sur les congruences
possibles : si un point classique est non-général, il doit correspondre a I'image d’une forme
propre pour GLo par le transfert associé au cube symétrique, construit par Kim et Shahidi
[KS02]. Une telle forme définit un point sur une courbe de Hecke pour GLs d’un niveau
modéré dépendant de N. On trouve que la notion d’étre un transfert de type cube symétrique
a un sens aussi pour des points non-classiques : si la représentation associé a un point de D
est de la forme Sym®p’ pour quelque p': Gg — GL2(Q,), alors p’ est associée & une forme
surconvergente pour GLg, donc a un point d’'une courbe de Hecke pour GLy. Cela suit de la
conjecture de Fontaine-Mazur surconvergente [Em14, Theorem 1.2.4] apres avoir adapté des
résultats de Di Matteo [DiM13] pour montrer que p’ est trianguline (Theorem 3.10.30).

Les points non-généraux sont contenus dans une sous-variété de dimension 1 de D en raison
d’une restriction sur leur poids, donc il n’y a pas de famille non-générale de dimension 2.
Cependant il y a des points de type cube symétrique qui forment des familles & un parametre. On
peut construire de telles familles grace a des résultats de Bellaiche et Chenevier [BC09, Section
7.2.3]. Soit D?OH*CM la partie non-CM de la courbe de Hecke pour GLs d’un certain niveau
auxiliaire dépendant de N. On interpole les transfert des points classiques en construisant un
morphisme D?OH_CM — D d’espaces rigides analytiques (Section 3.9.2). L’image dans D d’une
famille de D?OH_CM est une famille non-générale a un parametre de formes modulaires de Siegel.

On définit le groupe I' de self-twists pour 6 (Section 4.3) et on note I le sous-anneau de
I° fixé par I". On montre que le résultat crucial de Lang sur le relevement des self-twists peut
étre adapté a ce contexte (Proposition 4.4.1). Le théoreme de Momose and Ribet admet un
analogue pour les formes modulaires de Siegel (Theorem 3.11.3) ; ceci est une conséquence
d’un résultat tres général de Pink sur les sous-groupes compacts et Zariski-denses des groupes
algébriques linéaires (Theorem 3.11.4). On le combine avec le résultat de relevement des self-
twists et argument d’approximation de Hida et Tilouine (Proposition 4.7.1) pour construire
des éléments non-triviaux dans les sous-groupes unipotents de Im pg. On fixe un rayon r € pQ@
plus petit que rp. On définit un anneau B, et une sous-algebre de Lie &, de gsp,(B,) associée
a 'image de py (Section 4.10.1). Grace a la théorie rélative de Sen on construit un élément ¢
de GSp,(B,.c,) qui normalise &,.c, et a des valeurs propres explicites (Proposition 4.10.20). La
conjugaison par ¢ induit une structure de Ajp-module sur les sous-algebres nilpotentes de &,.c,
associées aux racines de Sp,. Cela nous amene au résultat suivant.

THEOREME 7. (Theorem 4.11.1) Il exziste un idéal non-nul [ de Iy tel que
(4) [-sp,(B,) C &,.

On appelle niveau galoisien de 6 1'idéal Iy de Ty le plus grand entre ceux qui satisfont (4).
On définit un idéal de congruence Sym? accidentel ¢y de Iy qui décrit le lieu des points non-
généraux de 0 (Definition 4.8.7). Grace a U'interpolation p-adique du transfert associé au cube
symétrique, on sait qu’il existe des familles pour lesquelles I'idéal de congruence admet des
composantes de dimension 0 et 1. On compare le niveau galoisien et 1'idéal de congruence en
dehors d’un ensemble fini de premiers mauvais.

THEOREME 8. (voir Theorem 4.12.1 pour le résultat précis) Les ensembles de facteurs pre-
miers de lg et ¢y coincident en dehors d’un ensemble fini et explicite de premiers mauvais.

On espere revenir sur la question de décrire les paires adaptées pour GLg et GSpy, c’est-
a-dire de trouver une estimation pour le rayon du disque Bp en fonction de la pente h. Des
bornes pour le rayon analogue existent pour les variétés de Hecke associées aux groupes unitaires
définis, grace a des résultats de Chenevier [Ch04, Section 5]. Pour GLg ce probleme est lié a
des résultats de Wan [Wa98] dans le cadre des conjectures de type Gouvéa-Mazur, mais les
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estimations disponibles concernent seulement les fibres aux poids classiques et ne s’appliquent
pas a ’étude de la finitude du morphisme des poids sur des voisinages p-adiques.

Il apparait comme naturel de généraliser les Théorémes 7 et 8 a des familles p-adiques
de formes automorphes sur des groupes réductifs G pour lesquels la variétés de Hecke a été
construite. Un cadre général pourrait étre comme suit. Soit Wg 'espace des poids pour G et
Dq la variété de Hecke paramétrisant les formes surconvergentes de pente finite pour G ; elle est
munie d’un morphisme des poids Dg — We. Supposons qu’on puisse fixer une paire adaptée
(h, Bp), composée de h € QT et d’un disque By, dans W,, définissant un sous-domaine Dg de
D¢ tel que le morphisme des poids Dg — By, soit fini. Soit T}, 'anneau des fonctions rigides
analytiques bornées par 1 sur D’é. Considérons une composante irréductible de Ty, définie par
un morphisme 6: T, — I. Supposons qu’on puisse associer a f une représentation de Galois
po: Gg — LG(T), ont LG est le groupe dual de Langlands de G. L’image de py est Zariski-dense
dans les I-points de son groupe de Mumford-Tate, qu’on écrit sous la forme ©H pour un certain
groupe réductif H. Les techniques développées pour GLa et GSp, pourraient étre adaptées
pour montrer qu'un H-niveau galoisien existe pour la famille §. Pour tout groupe réductif H'
de rang plus petit que celui de H et pour tout morphisme de L-groupes “H’ — “H pour lequel
le transfert de Langlands classique est connu, il semble possible de définir un transfert p-adique
par interpolation. Cela nous ameénerait a la définition d’un idéal de congruence qui mésure soit
les congruences entre la H-famille 6 et les H'-familles, soit des congruences accidentelles dues
a l'existence de H’-sous-familles de 6, soit une combinaison des deux phénomeénes. Dans ce
contexte il y a un sens a comparer le niveau galoisien at I'idéal de congruence pour la famille
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Introduction

Let N be a positive integer. Let f be a non-CM, cuspidal classical modular form of level N
that is an eigenform for the action of the Hecke operators {1} ¢y and {Up}y. For a prime p
let psp: Gg — GL2(Qp) be the p-adic Galois representation associated with f. Ribet proved a
result of “big image” for the representation py .

THEOREM 1. For almost every prime p the image of py, contains the conjugate of a non-
trivial principal congruence subgroup of SLa(Zy).

From now on, fix a prime p > 5 not dividing N. In [Hil5] Hida proved an analogue of
Theorem 1 for a p-adic family of ordinary modular forms. We briefly present his result. Let
A = Z[[T]] be the Iwasawa algebra. Let T°'d be a local factor of the big ordinary Hecke
algebra of tame level N constructed in [Hi86]; it is a finite flat A-algebra. The abstract
Hecke algebra H of tame level N admits a morphism H — T°d that interpolates systems of
eigenvalues associated with classical ordinary eigenforms. If T}, is residually non-Eisenstein the
representations associated with the classical forms of the component are interpolated by a big
Galois representation prora: Gg — GLa(T°). Let 6: T — T be a morphism of A-algebras
defining an irreducible component of T°¢ and let pg: Gg — GLa(I) be the representation
induced by ppora. We say that the family 6 is CM if all its classical specializations are CM. For
an ideal [ of A, let I'z(I) be the principal congruence subgroup of level [ of SLa(A).

THEOREM 2. [Hil5, Theorem I| Suppose that the family 6 is non-CM. Then there exists an
element g € GLa(I) and a non-zero ideal | of A such that
(5) Ta() Cg-Tmpy-g~".

There exists a largest ideal [y of A among those satisfying (5) for some g € GLa(I); we
call it the Galois level of 6. Hida gave a description of the prime factors of the Galois level,
as follows. The Hecke algebra T admits some CM components, for which Theorem 2 does
not hold. The non-CM family 6 may intersect some of these components. Such crossings can
be interpreted as congruences between a “general” family (i.e. such that its specializations are
not lifts of eigenforms for a group of smaller rank) and “non-general” ones (in this case, those
induced by a Grossencharacter of an imaginary quadratic field). In the case of GLg the only
non-general families are the CM ones. Hida defined an ideal ¢y of A, the CM-congruence ideal
of 6, that measures the amount of congruences between 6 and the CM components.

THEOREM 3. [Hil5, Theorem II] The ideals ly and ¢y have the same set of prime factors.

In her Ph.D. thesis [Langl6] J. Lang improved Theorem 2. Her result is inspired by a
stronger version of Theorem 1, due to Momose [Mo81] and Ribet [Ri85, Theorem 3.1]. She
considered again a non-CM ordinary family 6: T°"¢ — T and defined a finite (2,2, ..., 2)-group T
of conjugate self-twists for 0, i.e. automorphisms of the A-algebra I that induce an isomorphism
of pg with one of its twists by a finite order character. Let Iy be the subring of I fixed by T'.
For an ideal [ of Iy let I'g,(I) be the principal congruence subgroup of level [ of SLa(Ip).

THEOREM 4. [Langl6, Theorem 2.4] There exists an element g € GLa(I) and a non-zero
ideal | of Iy such that
1

(6) () Cg-Impg-g .
9



The existence of a conjugate self-twist gives a restriction on the size of the image of pg,
so the ring Iy is optimal with respect to the property described in Theorem 4. The proofs of
Theorems 2 and 4 rely on the existence of an element conjugate to

Cr — < u‘l(lo—l— T) I >

in the image of an inertia group at p via pg; this is a consequence of the ordinarity of py.
Conjugation by such an element induces a structure of A-module on the intersection of Im pg
with the one-parameter unipotent subgroups of SLa(Ip). This is combined with the existence of
some non-trivial unipotent elements in Im py, constructed via the result of Momose and Ribet
and Pink’s theory of Lie algebras of pro-p subgroups of SLy(I). A key step in the proof of
Theorem 4 is a result of J. Lang on lifting self-twist from a p-adic field to the ring Iy [Lang16,
Theorem 3.1].

In a joint work with A. Iovita and J. Tilouine (see Chapter 2 and [CIT15]) we proved
analogues of Theorems 4 and 3 for a p-adic family of finite slope eigenforms. In this setting we
encountered various problems and phenomena that do not appear in the ordinary case. First,
finite slope eigenforms of tame level N are interpolated by a rigid analytic curve over Q,, the
eigencurve D constructed by Coleman, Mazur [CM98] and Buzzard [Bu07], but this object
does not admit a global integral structure analogue to the ordinary algebra T°™. In particular,
D admits a morphism to the weight space W = (Spf A)"® (the weight map), but this is not
finite. For this reason we need to fix a pair (h, By), consisting of h € Q™ and a disc of
centre 0 and radius 7, depending on h, such that the weight map is finite when restricted to
the subdomain DJhSh of points of D of slope < h and weight in Bp. This is an “adapted pair” in
the terminology of [Bel2, Section 2.1]. For every h € Q" there exists a radius rj, such that
(h, By) is adapted, but at the moment we cannot give a lower bound for 7, in terms of h.

Let Ap, and T}, be the rings of functions bounded by 1 on the rigid analytic spaces (over Q)
B;, and D%h, respectively. The algebra T}, has a structure of finite Aj-algebra and is our analogue

of Hida’s A-algebra T°'d. We call family of slope bounded by h a positive slope irreducible
component of Tp, described by a morphism of Ap-algebras 6: Ty, — 1°. In the residually
irreducible case we define a representation pg: Gg — GL2(I°). The notation ° signals that we
work with an integral structure; later we will need to invert p. To simplify our presentation we
suppose that I° is normal, but this hypothesis is not essential. An important difference with
respect to the ordinary case is that the finite slope CM eigenforms do not form families, but
they define a discrete subset of SpecI® (Corollary 2.2.8). Hence we are able to prove a result of
big Galois image for all positive slope families.

We define a group I of self-twists for # and we denote by Ij the subring of I° fixed by I.
We have to use the arguments of J. Lang on the lifting of self-twists; they can also be applied
to non-ordinary families. Since the Galois representation py is not ordinary, we do not know
whether its image contains an element conjugate to the matrix Cr appearing in Hida and Lang’s
work. However we can construct an operator with similar properties via relative Sen theory. In
order to do this we need first to extend our coefficients to the ring of rigid analytic functions on
a closed disc of radius 7 smaller than 7, then to consider completed tensor products with C,;
we denote these operations by adding subscripts r and C,. Starting with Iy and pg, we define
a ring B, and a Lie subalgebra &, of gly(B,) associated with Im py (Section 2.4.1). Then we
construct a Sen operator ¢ € Ma(B,.c,) such that its exponential normalizes &,.c, and has some
explicit eigenvalues (Section 2.4). Conjugation by this element induces a Ap-module structure
on the nilpotent subalgebras of &, c, associated with the roots of SLy. Under a technical
hypothesis called (Ho, Zj)-regularity (see Definition 2.3.6) the nilpotent subalgebras of &, c,
contain some non-trivial elements, thanks to the residual result of Momose and Ribet and to
an approximation argument due to Hida and Tilouine. Our first result is given by the theorem
below.
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THEOREM 5. (Theorem 2.5.2) Suppose that 1° is normal and that pg is (Ho,Zy)-regular.
There exists a non-zero ideal | of Iy such that

(7) [ sly(B,) C ®,.

Note that we manage to get rid of the extension of scalars to C,, but not of the inversion
of p. We call Galois level of 6 the largest ideal [y of Iy satisfying (7).

We describe the locus of CM points of the family by a fortuitous CM-congruence ideal cg of
Iy (see Definition 2.2.12), where the term “fortuitous” higlights the fact that its prime factors
do not correspond to congruences between a general family and the non-general ones, but to
isolated CM points. In our second result we compare the Galois level and the congruence ideal
for the family 6.

THEOREM 6. (Theorem 2.6.1) Suppose that py is not induced by a character of the absolute
Galois group of a real quadratic field. Then the sets of prime factors of ¢g N1y and ly coincide
outside of the divisors of (1 +T —u) -1y (the factors of weight 1).

The goal of Chapters 3 and 4 is to study the problem of the definition and comparison of the
Galois level and the congruence ideal for p-adic families of Siegel eigenforms of genus 2 and finite
positive slope. In [HT15] Hida and Tilouine studied this problem for families that are residually
of “large twisted Yoshida type”: in this case the only possible congruences are those with p-adic
lifts of families of Hilbert modular forms for Res p/gGLy/r, where F' is a real quadratic field.
The lifts of classical forms are interpolated by two-dimensional irreducible components of the
big ordinary Hecke algebra, hence the resulting congruence ideal is an analogue of the CM-
congruence ideal defined by Hida: it describes congruences between a general family and the
non-general ones. It would be possible to study the congruence phenomena for positive slope
families of twisted Yoshida type with the same techniques developed here; we would find again
two dimensional non-general families and a direct generalization of the congruence ideal defined
in the ordinary case. In order to obtain instead an analogue of the fortuitous CM-congruence
ideal associated with positive slope families for GLgy, we focus on families of GSp,-eigenforms
that are residually of large symmetric cube type, as explained below. In addition to the different
type of congruences that we allow, the positive slope case presents several new features with
respect to the ordinary one.

The eigenforms of tame level N are interpolated by a rigid analytic space D of dimension 2
constructed by Andreatta, Iovita and Pilloni [AIP15]. This space is endowed with a non-finite
map to the two-dimensional weight space Wa = (Spf A2)'8. As in the positive slope case for
GLg, a preliminary step requires us to fix h € QT and a disc By, of centre 0 and sufficiently
small radius rj, in the weight space. Let Dgh be the admissible subdomain of D consisting of the

points of slope < h and weight in Bj,. The weight map induces a finite morphism Dgh — By.
Let Ay and T}, be the rings of functions bounded by 1 on the rigid analytic spaces (dver Qp)
B;, and ’D%h, respectively. We call family of slope bounded by A an irreducible component of
T}, defined by a morphism of Ap-algebras 6: Tj, — I°. In the residually irreducible case the
interpolation of the representations attached to the classical points of 6 gives a representation
p: Gg — GSp,(I°). We suppose that the associated residual representation py is of large
symmetric cube type, in the sense that it satisfies

Sym?®SLy(F) € Im 7y C Sym3GLy(F)

for a non-trivial finite field F. This condition creates a strong restriction on the possible congru-
ences: if a classical point is non-general, then it must correspond to the symmetric cube lift of a
GLg-eigenform via the transfer constructed by Kim and Shahidi [KS02]. This GLg-eigenform
defines a point on a GLo-eigencurve of a suitable tame level, depending on N. It turns out that
the notion of being a symmetric cube lift also makes sense for non-classical points: if the repre-
sentation associated with a point of D is of the form Sym?p’ for some p': Gg — GLo (@p), then
p is associated with an overconvergent GLo-eigenform, hence with a point of an eigencurve for
GLg. This follows from the overconvergent Fontaine-Mazur conjecture [Em14, Theorem 1.2.4]
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after adapting some results of Di Matteo [DiM13] to show that p’ is trianguline (Theorem
3.10.30).

The non-general points are contained in a one-dimensional subvariety of D due to a re-
striction on their weight, so there are no two-dimensional non-general families. However some
symmetric cube lifts form one-parameter families. We can construct such families thanks to
some results by Bellaiche and Chenevier [BC09, Section 7.2.3]. Let D?OH_CM be the non-CM
part of the GLo-eigencurve of a suitable level depending on N. We interpolate the symmetric
cube lifts of the classical points to construct a morphism D?On*CM — D of rigid analytic spaces

D?On*CM is a non-general one-parameter family

(Section 3.9.2). The image in D of a family in
of GSpy-eigenforms.

We define the group I' of self-twists for 6 (Section 4.3) and we let I be the subring of I°
fixed by I'. We show that the crucial result of Lang on lifting self-twists can be adapted to
this setting (Proposition 4.4.1). The theorem of Momose and Ribet admits an analogue for
Siegel modular forms (Theorem 3.11.3); this is a consequence of a very general result of Pink
on Zariski-dense compact subgroups of linear algebraic groups (Theorem 3.11.4). We combine
it with the lifting result for self-twists and with the approximation argument by Hida and
Tilouine (Proposition 4.7.1) to construct some non-trivial elements in the unipotent subgroups
of Im pyg. We fix a radius r € p? smaller than r,. We define a ring B, and a Lie subalgebra
&, of gsp,(B,) associated with the image of py (Section 4.10.1). Thanks to relative Sen theory
we can construct an element ¢ of GSp4(IB%T7@p) that normalizes &, ¢, and has some explicit
eigenvalues (Proposition 4.10.20). Conjugation by ¢ induces a Ap-module structure on the
nilpotent subalgebras of &, ¢, associated with the roots of Sp,. This leads to the following
result.

THEOREM 7. (Theorem 4.11.1) There exists a non-zero ideal | of Iy such that
(8) [-sp,(B,) C &,.

We call Galois level of § the largest ideal [y of I satisfying (8). We define a fortuitous Syms3-
congruence ideal ¢y of Iy describing the locus of non-general points of the family € (Definition
4.8.7). Thanks to the p-adic interpolation of the symmetric cube lift we know that there exist
families for which the congruence ideal admits both zero- and one-dimensional components. We
can compare the Galois level and the congruence ideal outside of a finite set of bad primes.

THEOREM 8. (see Theorem 4.12.1 for the precise result) The sets of prime divisors of ly
and ¢y coincide outside of a finite and explicit set of bad primes.

We hope to return to the question of describing the adapted pairs for GLs and GSp,, namely
of finding an estimate for the radius of the disc By, as a function of the slope h. Some bounds for
the analogous radius exist for the eigenvarieties associated with the eigenvarieties for definite
unitary groups, thanks to some results by Chenevier [Ch04, Section 5]. For GLy this problem
is related to some results of Wan [Wa98] in the context of conjectures of Gouvéa-Mazur type,
but the available estimates only concern the fibres at the classical weights and do not apply to
the finiteness of the weight map over p-adic neighborhoods.

It seems natural to try to generalize Theorems 7 and 8 to p-adic families of automorphic
forms on reductive groups G for which eigenvarieties have been constructed. A general setup
could be as follows. Let Wg be the weight space for G and let D¢ be the eigenvariety parametriz-
ing finite slope overconvergent eigenforms for Gj it is equipped with a weight map Dg — Wg.
Suppose that we can fix an adapted pair (h, By), consisting of h € Q™ and of a disc By, in Wy,
defining a subdomain D’C’; of Dg such that the weight map Dg — By, is finite. Let T} be the
ring of rigid analytic functions bounded by 1 on Dg and consider an irreducible component of
T},, defined by a morphism 6: T" — I. Suppose that we can attach to 6 a Galois representation
po: Gg — YG(I), where LG denotes the Langlands dual group of G. The image of pg is Zariski-
dense in the I-points of its Mumford-Tate group, that we write as ©H for some reductive group
H. The techniques developed for GLy and GSp, could be adapted to show that an H-Galois
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level exists for the family 6. For every reductive group H’ of rank smaller than the rank of H,
and for every morphism of L-groups “H’ — LH for which the classical Langlands transfer is
known, it seems possible to define a p-adic transfer via interpolation. This would lead us to
the definition of a congruence ideal that can either measure congruences between the H-family
0 and the H’-families or fortuitous congruences due to the existence of lower-dimensional H'-
subfamilies of #, or a combination of the two phenomena. In this setting it makes sense to
compare the Galois level and the congruence ideal associated with the family 6.
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CHAPTER 1

The eigenvarieties for GL, and GSp,

1.1. Preliminaries

We fix some notations and conventions. In the text p will always denote a prime number
strictly larger than 3. Most argument work for every odd p; we specify when this is not sufficient.
We choose algebraic closures Q and @p of Q and Q,, respectively. If K is a finite extension of
Q or Q, we denote by G'i its absolute Galois group. We equip G g with its profinite topology.
We denote by Of the ring of integers of K. If K is local, we denote by mg the maximal ideal of
Of. For every prime p we fix an embedding ¢,: Q < @p, identifying G, with a decomposition
group of Gg. This identification will be implicit everywhere. We fix a valuation v, on @p
normalized so that v,(p) = 1. Tt defines a norm given by | - | = p~%(). We denote by C, the
completion of @p with respect to this norm.

All rigid analytic spaces will be considered in the sense of Tate (see [BGR84, Part C]). Let
K/Q, be a field extension and let X be a rigid analytic space over K. We denote by O(X) the
K-algebra of rigid analytic functions on X, and by O(X)° the Og-subalgebra of functions with
norm bounded by 1 (we often say “functions bounded by 1”7 meaning that they are bounded in
norm). When f: X — Y is a map of rigid analytic spaces, we denote by f*: O(Y) — O(X) the
map induced by f. There is a Grothendieck topology on X, called the Tate topology; we refer
to [BGR&84, Proposition 9.1.4/2] for the definition of its admissible open sets and admissible
coverings.

We say that X is a wide open rigid analytic space if there exists an admissible covering
{X;}ien of X by affinoid domains X; such that, for every i, X; C X;;; and the map O(X;11) —
O(X;) induced by the previous inclusion is compact.

There is a notion of irreducible components for a rigid analytic space X; see [Con99] for
the details. We say that X is equidimensional of dimension d if all its irreducible components
have dimension d.

We denote by A? the d-dimensional rigid analytic affine space over Q,. Given a point
r € AYC,) and r € p@, we denote by By(x,r) the d-dimensional closed disc of centre z and
radius r. It is an affinoid domain defined over C,. We denote by Bg(z,r™) the d-dimensional
wide open disc of centre x and radius r, defined as the rigid analytic space over C, given by
the increasing union of the d-dimensional affinoid discs of centre x and radii {r;};cny with r; < r
and lim; oo 7 = 7. With an abuse of terminology we refer to By(z,r) as the d-dimensional
“closed disc” and to Bg(x,r) as the d-dimensional “open disc”, even though both are open
sets in the Tate topology.

Let X be an affinoid or a wide open rigid analytic space. We denote by O(X){{T'}} the
ring of power series Y-, a; 7" with a; € O(X) and lim; |a;|r® — 0 for every r € RT. This is the
ring of rigid analytic functions on X x Al.

Let S be any subset of X(C,). We say that S is:

(1) a discrete subset of X (C,) if SN A is a finite set for any open affinoid A C X(Cp);
(2) a Zariski-dense subset of X(C,) if, for every f € O(X) vanishing at every point of S, f is
identically zero;
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(3) an accumulation subset of X(C,) if for every € S there exists a basis B of affinoid
neighborhoods of x in X such that for every A € B the set SN A(C,) is Zariski-dense in A.

Terminology (3) is borrowed from [BC09, Section 3.3.1]. The subsets of X (C,) that are accu-
mulation and Zariski-dense are called “very Zariski-dense” in [ChO05, Section 4.4], but we do
not use this phrase.

Let g > 1 be an integer and let s be the g x ¢ antidiagonal unit matrix (6; ,—i(Z,7))1<i j<g-
5
0
similitudes for J,, defined over Z; for every ring R the R-points of this group are given by

GSpyy(R) = {A € GL4(R) | 3v(A) € R* st. "AJA = v(A)J}.

For g = 1 we have GSp, = GLa. The map A — v(A) defines a character v: GSp,(R) — R*.
We refer to v as the similitude factor and we set Spy,(R) = {A € GSpy,(R) |v(A) = 1}.

We denote by By the Borel subgroup of GSpy, such that for every ring R the R-points of
By are the upper triangular matrices in GSpy,(R). We let T, be the maximal torus such that
for every ring R the R-points of Tj are the diagonal matrices in GSpy,(R). We write U, for the
unipotent radical of B,. We have B, = T,U,. We will always speak of weights and roots for
GSpy, with respect to the previous choice of Borel subgroup and torus. For every root a we
denote by U the corresponding one-parameter unipotent subgroup of GSpy,. For every prime
¢, we write I, , for the Iwahori subgroup of GSpgg(@g) corresponding to our choice of Borel
subgroup. For every n > 1 we denote by 1,, the n X n unit matrix.

Let J, be the 2g x 2g matrix > . We denote by GSp,, the algebraic group of symplectic

For every integer ¢ > 1, we identify GSpgg(z) with a maximal compact subgroup of
GSpay(Ag) via the diagonal inclusion 7 — Ag. For every prime ¢ and every integer n > 0
we define some smaller compact open subgroups of GSpy, (Ag) by:

(1) TE(07) = {h € GSpyy(Z) | he (mod (") € By(Z/"T)};

(2) T{(0%) = {h € GSpyy(Z) | b (mod €7) € Uy(Z/0"Z)};

(3) TW(£7) = {h € GSpyy(Z) | he = 1o (mod £7)}.

In particular for n = 1 the ¢~component of I'g(¢) is the Iwahori subgroup of GSp,(Qy). Let N
be an arbitrary positive integer. Write N = [[, £ for some distinct primes ¢; and some n; € N.
We set I‘gg)(N) =N Fgg)(ﬁz“) for 7= ,0,1. For g = 1 we will omit the upper index (1).

We denote by gspy, the Lie algebra of GSpy, and by spy, its derived Lie algebra, which is
the Lie algebra of spy,. We denote by Ad : GSpy, — Aut(spy,) the adjoint action of GSpy, on

§Pyg- It is an irreducible representation of GSpy,.
By “classical modular form for GSp,” we will always mean a vector-valued modular form.

1.2. The eigenvarieties

1.2.1. The weight spaces. There is an isomorphism Z; = (Z/(p — 1)Z) x Z, depending
on the choice of a generator u of Z;. We choose once and for all u = 1+ p. Let g be a
positive integer. Consider the Iwasawa algebra Z,[[(Z,)]]. A construction by Berthelot [dJ95,
Section 7] attaches to the formal scheme Spf Zy[[(Z,;)?]] a rigid analytic space that we denote
by Wy (see [dJ95, Section 7] and Section 2.2.1 below). If A is a Qp-algebra, the A-points of

W, are the continuous characters (Z, ) — A*. Let (Z/(p — 1)Z)9 be the group of characters
(Z/(p—1)Z)9 — Cj;. The following map gives an isomorphism from W, to a disjoint union of

g-dimensional open discs By(0,17) indexed by (Z/ (p/—\l)Z)g :

Ng: Wy = (Z/(p — 1)Z)9 x By(0,17),
k= (Klzp-nzyes (Ku, 1,.0001) = Lk(lLu, 1,0, 1) = 1, k(1,0 L u) — 1)),
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We write A, for the algebra Z,[[T1,Ts,...,T,]] of formal series in g variables over Z,. It
is the ring of rigid analytic functions bounded by 1 on a connected component of the weight
space. -

For z € (Z/(p — 1)Z)9 x By(0,17) we denote by r; the only character (Z, )Y — C,; such that
Ng(kz) = x. From now on we will work with the connected component Wy of W, containing
unity. We identify W7 with By(1,17) via n,. The classical weights in W, are the characters of
the form

—1)k —1)k —1)k
($1,$2,...,I’g)l—>($§p )1,x§p “,...,xép )g)
for some ki,ko,..., kg € N. If K is of the above form for some ki, ko,...,k; € N, we write

w(k) = ((p — Dk, (p — V)ka,...,(p — 1)ky) for the corresponding element of N9. We have
ng(k) = (uP=Dk — 1 P=Dk2 7 y(P=Dks 1) € B,(0,17). The set of classical weights is
an accumulation and Zariski-dense subset of Wj.

We call arithmetic primes the primes of Ag@)Zp(Cp of the form Py = (1+T1 —e1(u)u*, 1+
Ty — ea(w)ub2, ... )1+ T, — g4(u)ue) for a g-tuple of integers k = (k1,ko,...,k,;) and a finite
order character €: (Z, )¢ — C,. We will usually take € to be the trivial character 1; in this case
we simply write P, = Py 1.

There exists a character rwy,: (Z;)? — Zp[[(Z,)?]]* with the following universal prop-
erty: for every x € Wy(Cp) there exists a unique character a;: Zy[[(Z))?]]* — C; such
that x; = agokyw,. The character ryy, maps (a1,az,...ay) € (Z;)? to the analytic func-
tion kw, (a1, az,...,ay) on Wy defined by rwy, (a1, a2,...,ay)(x) = kg(ai,az,...,a,y) for every
x € W,. We call kyy, the universal character of W.

Let A = Spm R be an affinoid subdomain of W,. The inclusion 14: A < W, induces a map
Uit Zpl[(Z))%]]* — R. Define a character k4: (Z, )9 — R* by ka = 1% o kyy,. Then x4 has the
following universal property: for every x € A(C,) there exists a unique character a,: R* — C;
such that k; = a, 0 ka. We call k4 the universal character of A. By [Bu07, Proposition 8.3]
there exists r € p¥ such that x4 is r-analytic, in the sense that it can be extended to a character
((Zy)9 - By(1,7)) — R*. The radius of analyticity of x4 is the largest such r; we denote it by

Thye

1.2.2. The eigenvariety machine. We recall some elements of Buzzard’s “eigenvariety
machine” [Bu07]. We call eigenvariety datum a 5-tuple OV, H, (M (A, w))Aw, (PAw)Aw,"N)
where:

(1) there exists an integer g > 1 such that W = W, is the g-dimensional weight space defined
in the previous section;

(2) (A, w) varies over the couples consisting of an affinoid A C W and a sufficiently large w € Q;

(3) for every (A, w) with A = Spm R, M(A,w) is a projective Banach R-module;

(4) H is a commutative ring;

(5) paw: H — Endpg cont(M (A, w)) is an action of H on M (A, w);

(6) n € M is an element such that ¢4, (n) is a compact operator on M (A, w) for every (A, w);

(7) when A and w vary the modules M (A, w) with their H-actions satisfy the compatibility
properties assumed in [Bu07, Lemma 5.6].

Buzzard’s construction allows for more general weight spaces, but we only need to work
with those of the form W, for some g.

REMARK 1.2.1. The rational w in the couple (A, w) must satisfy p~* < ry, for the radius
of analyticity v, of ka.

Let K be a finite extension of Q.

DEFINITION 1.2.2. A morphism A: H — K is called a K-system of eigenvalues for the
given datum if there exists a point k € W(K), an affinoid A = Spm R containing K, a rational

w and an element m € M(A,w) ®gp K (where R — K is the evaluation at k) such that
GAaw(T)m = NT)m for all T € H.
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THEOREM 1.2.3. For every eigenvariety datum (W, H, (M (A, w))Aw, (9Aw)Aw,N) there ex-
ists a triple (D,v,w) consisting of
(1) a rigid analytic space D over Qp,
(2) a morphism of Q,-algebras ¢: H — O(D)°,
(3) a morphism of rigid analytic spaces w: D — W (called the weight morphism ),
with the following properties:

(1) (n) is invertible in O(D);
(2) for every finite extension K/Q, the map

(1.1) D(K) — Hom(H, K)

z = (T = (T)(x))

mduces a bijection between the K-points of D and the K-systems of eigenvalues for the
given datum.

We call (D, 1, w) the eigenvariety for the given datum.

We often leave ¥ and w implicit and just refer to D as the eigenvariety.
Since the space W, is equidimensional of dimension g, [Ch04, Proposition 6.4.2] implies the
following.

PROPOSITION 1.2.4. The eigenvariety D associated with the datum

Wy, Hy (M (A, w)) A (Daw) Aws )
is equidimensional of dimension g.

We briefly review Buzzard’s construction. Let (A, w) be a pair appearing in the eigenvariety
datum, with A = Spm R. Let P4, (n; X) be the characteristic series of the operator ¢4 .,(n)
acting on M(A,w); it is a well-defined element of R{{X}} because M(A,w) is a projective
R-module and ¢4,,,(n) is a compact operator. Since the actions of H are compatible when
varying the pair (A, w), there exists an element Py, (n; X) that restricts to Pa,(n; X) for every
A.

Let Z4,, be the subvariety of A x G,, defined by the equation Py, (n; X) = 0. Let Z be
the subvariety of W x G, defined by the equation Py (n; X) = 0, which can also be obtained
by gluing the varieties Z4,, when (A, w) varies. We call Z the spectral variety. It is endowed
with two natural maps wz: Z2 — W and vz: Z — G,,. Note that in general wz is not finite.
Consider the set C of affinoid subdomains Y of Z satisfying the following conditions:

(1) the map wly: Y — w(Y) is finite and surjective;

(2) Y is disconnected from its complement in w ™! (w(Y)).

Buzzard showed in [Bu07, Theorem 4.6] that C is an admissible covering of Z. Now let (A4, w) be
a pair appearing in the eigenvariety datum, with A = Spm R. For every element Y € C satisfying
wz(Y) = A, consider the ideal of functions in R[X] that vanish on Y. By the discussion in
[Bu07, Section 5] this ideal is generated by a polynomial Q(X), and there is a decomposition
Ppyw(n; X) = Q(X)S(X) for some S(X) € R{{X}} prime to Q(X). Note that the constant
term of Q(X) is invertible in R. Let d be the degree of Q and let Q*(X) = XQ(1/X). Then
Riesz theory for Banach modules [Bu07, Theorem 3.3] gives a decomposition

(1.2) M(A,w) = Ny (A,w) & Fy (A, w)

where

Ny (A,w) and Fy (A, w) are R-submodules stable under the action of H;
Ny (A, w) is projective of rank d over R;

Q*(¢a.w(n)) is zero on Ny (A, w) and it is invertible on Fy (A, w);

the characteristic power series of ¢4 .,(n) on Ny (A4, w) is Q(X).
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Let Ty (A, w) be the R-subalgebra of Endg cont(Ny (A, w)) generated by the image of H. Then
Ty (A, w) is a Qp-affinoid algebra and it is finite over R. Since the constant term of Q(X)
is invertible in R, ¢4 ,(n) is invertible in Ty (A, w). The projection A{{X}}/Pa,(n; X) —
A{{X}}/Q(X) induces a finite map Spm Ty (A, w) — Y. When A, w and Y vary the affinoid
varieties Spm Ty (A, w) and the morphisms Spm Ty (A, w) — Y glue into a rigid analytic variety
D over Q, and a finite morphism D — Z [Bu07, Construction 5.7]. The composition of the last
morphism with wz: Z — W gives the weight map D — W. The natural maps H — Ty (A, w)
are compatible when A, w and Y vary, hence they glue to give a global map ¢: H — O(D).
Moreover (n) is invertible in O(D) since it is invertible in Ty (A, w) for every A, w,Y.

REMARK 1.2.5. The weight map D — W is not finite in general, but it is locally-on-the-
domain finite: by construction every point of D has a neighborhood of the form Spm Ty (A, w) for
some A,w,Y as above. The weight map Spm Ty (A, w) — A is finite since it is the composition
of the finite maps Spm Ty (A, w) — Z4, and Z4,, — A.

Thanks to property (1) in Theorem 1.2.3, we can give the following definitions.

DEFINITION 1.2.6.

(1) Let v € O(D) be the function defined by v = (n)~L. We see v as a map of rigid analytic
spaces D — Gyy,.

(2) Let sl: D(Cp) — RZ0 be the function defined by sl(z) = —v,(v(z)) = vy(¥(n)(z)) for every
x € D(Cp). We call sl(x) the slope of x.

REMARK 1.2.7.
(1) The morphism v is the composition of the maps D — Z and vz: Z — G,,.

(2) The function sl: D(C,) — R is locally constant since it is the p-adic valuation of the rigid

analytic function ¢(n). In particular sl is bounded over A(C,) for every affinoid subdomain
A of D.

DEFINITION 1.2.8. We call ordinary eigenvariety for the given datum the largest open sub-
variety DY of D with the property that y(n)|pea € (O(D4)°)*.

We give an extra property of the weight morphism.

PROPOSITION 1.2.9. [ChO04, Corollary 6.4.4] If I is an irreducible component of D, then
w(I) is a Zariski-open subset of the weight space W .

1.2.3. Accumulation and Zariski-dense sets on eigenvarieties. Let (D, v, w) be the
eigenvariety associated with some data (W, H, (M (A, w))A,w, (#4,w)Aw,n). For every weight x
we denote by D, the set-theoretic fibre of w: D — W at . Let S be a subset of D(C,). For
every weight x and every h € R we write
(1) Sy ={z € S|w(zx) =k},

(2) S=h = {x € S|sl(x) < h};
(3) Ssh =S, nS=h,

We will work with various sets S satisfying the “control” condition below, that was intro-
duced in [ChO05, Section 4.4]. Note that in loc. cit. the condition is called (Cl) and it is defined
for a classical structure on the eigenvariety, rather than for a set of points.

(Class) There exists an accumulation and Zariski-dense set ¥ C W(C,) with the following
property: for every h € RZ0 the set of weights x € ¥ such that the inclusion D" C S holds is
the complement of a finite set in X.

The following result is proved in [Ch05, Proposition 4.5].

PROPOSITION 1.2.10. Let S be a subset of D(C,p) satisfying condition (Class). Then S is
an accumulation and Zariski-dense subset of D(C,).
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PROOF. Let X be the set given by condition (Class). Let Z denote any irreducible component
of D. By Proposition 1.2.9 w(Z)(C,) is a Zariski-open subset of W(C,,). Since ¥ is Zariski-dense
in W(C,), there exists a weight k € ¥ Nw(Z)(C,). Let z € Z(C,) be a point of weight x. By
Remark 1.2.7(2) we can choose an affinoid neighborhood A of x such that the slope is constant
equal to h(x) on A. By Remark 1.2.5 we can suppose, up to restricting A, that w: A — w(A)
is finite. The image w(A) is an affinoid neighborhood of k. Since ¥ is accumulation and
Zariski-dense in W(C,,), ¥ Nw(A)(Cp) is Zariski-dense in w(A)(C,). By condition (Class) with
h = sl(z) we have D" C S for all k € ¥, where ¥, is the complement of a finite subset of .
In particular A,, C S for all kK € X, which means that w=!(X;,) € S. Since ¥, is Zariski-dense
in w(A) and the morphism A — w(A) is finite and flat, the set w=!(3,) is Zariski-dense in A,
hence also in the irreducible component Z containing A. Note that the same is true if we replace
A by any smaller affinoid, hence it is true for all the affinoids in a basis of neighborhoods of x
contained in A.

Since S is Zariski-dense in every irreducible component of D, it is Zariski-dense in D. By the
results of the previous paragraph, for every point € S there is a basis of affinoid neghborhoods
of = such that, for every A in the basis, the set A(C,)NS is Zariski-dense in A(C,). We conclude
that S is accumulation and Zariski-dense in D(C,). O

For later use we state a simple lemma.

LEMMA 1.2.11. Let f: X — Y be a finite morphism of schemes or rigid analytic spaces over
C,. Suppose that X and Y are both equidimensional and their dimensions coincide. Let Sy be
a Zariski-dense subset of Y (Cp). Let Sx be a subset of X(C,) such that f(Sx) = Sy. Then the
Zariski-closure of Sx contains an irreducible component of X.

1.2.4. The Hecke algebras. We describe the spherical and Iwahoric Hecke algebras as-
sociated with the group GSpy,. We follow the conventions of [GTO05, Section 3|. See also
the standard reference [CF90, Chapter VII] for the unramified algebras, but some conventions
there are different.

1.2.4.1. The abstract spherical Hecke algebra. Let £ be a prime. Let G be a Z-subgroup
scheme of GSpy, and let K C G(Q¢) be a compact open subgroup. For v € G(Qy) we denote
by 1([K~vK]) the characteristic function of the double coset [KyK]. Let H(G(Qy), K) be the
Q-algebra generated by the functions 1([KvK]) for v € G(Qy), equipped with the convolution
product.

DEFINITION 1.2.12. The spherical Hecke algebra of GSpy, at £ is H(GSpy,(Qr), GSpyy(Zy))-
The algebra H(GSpa,(Qr), GSpy,(Ze)) is generated by the elements

Té(,g) = ]l([GSp2g(Zg)diag (]li, f]lggf%, EQHi)GSpgg(Zg)]),

for i = 0,1,...¢9, and (Té%))*l. Note that our operator Tz(%) is often denoted by Ség) in the
literature.

1.2.4.2. The dilating Twahori Hecke algebra. The Hecke algebra H(T,(Qy),T4(Z¢)) carries

a natural action of the Weyl group W, = 7, x (Z/2Z)7 of GSp,,, where . is the group of
permutations of {1,2,...,¢}: if diag (vty,... ,Vtg,tg_l, e ,tfl) is an element of the torus, .7
acts by permuting the ¢;’s and the non-trivial element in each Z/2Z sends t; to ti_l. We denote

the action of w € Wy on ¢t € T(Qy) by ¢t — w.t. We define a character e”: T(Q;) — Q; by
e (diag (vty,. .., I/tg,tgl, ... ,tl_l)) = p9lg+1)/2 H tf_iﬂ.
1<i<yg

We define a twisted action of the Weyl group on H(T,(Qy), Ty(Z¢)) by ¢¥(t) = e?(w™L.t)e P (t)p(t)
for all w € Wy, ¢ € H(T,(Qp), Ty(Zy)) and t € T,(Qy).
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The twisted Satake transform SggSpQ is a morphism of Q-algebras
g

H(GSpoy(Qr), GSpay(Ze)) — H(Ty(Qe), Ty(Zy))
defined by

e, ()0 = () | otm)du

for all ¢ € H(GSpay(Qr), GSpe,y(Ze)) and t € Ty(Qy). The morphism Sggsp2 induces an isomor-
9

phism of H(GSp,,(Qr), GSpay(Ze)) onto its image, which is the subalgebra of H(Ty(Qr), Ty(Zy))
consisting of W-invariant elements. In particular H(7T,(Qy),Ty(Z,)) is a Galois extension of
H(GSpay(Qr), GSpy,(Ze)) of Galois group Wy,

Fori=0,1,...,g let té?i) = 1([diag (1;,124—2;, £*1;)T4(Z)]). Note that the element téf’o) is
Sé"smg (Tzo). The set (tg,gi))izl,m,g generates H (T, (Qu), Ty(Ze)) over H(GSpyy(Qr), GSpay(Zy)).

We call an element v € T,(Zy) dilating if v,(a(v)) < 0 for every positive root a. Let Ty(Zy)
be the subset of T,(Zy) consisting of dilating elements and let H(T4(Qy),T4(Z;))~ be the Q-
subalgebra of H(Ty(Qy),Ty(Z¢)) generated by the functions 1([yTy(Z,)]) with v € Ty (Qp)™.

Since 11T, (ZO) (' Ty(Ze))) = L/ Ty(Z)]) for 7,7 € Ty(Qe), the functions 1(17, (Z1))
with v € T,(Qg)~ form a basis of H(Ty(Qy), Ty(Z¢))™ as a Q-vector space.

REMARK 1.2.13. Every v € T(Qg) can be written in the form v = 175+ with 1,72 €
T(Zg)~. A character x: H(Ty(Qq), Ty(Ze))~ — Q, can be extended uniquely to a character

X H(Ty(Q), Ty(Ze)) — Qp by setting x™([YT(Ze)]) = x((nT(Ze))x([v2T(Zo)] ") for some
v1 and 7o as before. It can be easily checked that x* is well-defined.

DEFINITION 1.2.14. Let H(GSpyy(Qr), Iye)~ be the subalgebra of H(GSpy,(Qy), Iye) gener-
ated by the functions 1([1ev1y4]) with v € T(Z¢)~. We call H(GSpgy(Qe), Iye)~ the dilating
Iwahori Hecke algebra at £.

The algebra H(GSpoy(Qr), Iy)~ is generated by the elements
Ue(z) = 1([Iydiag (1;, (1og—2;, £21;) 1y 4]),

fori=0,1,...,9, and (Ug(%))_l.
We define a map LZI,Z: H(GSpoy(Qr), Ig,e)™ — H(Ty(Qu), Ty(Ze))~ by sending 1(1yev1ge)
to 1(Ty(Ze)vTy(Zy)) for every v € T(Zy)™.

LEMMA 1.2.15. The map ngz: H(GSpay(Qr), Ige)™ — H(Ty(Qe), Ty(Ze))™ is an isomor-
phism of Q-algebras. 7

PROOF. The argument is the same as in [BC09, Proposition 6.4.1]. By the calculation
in [Ca95, Lemma 4.1.5] we have 1([I, 71y s]) - 1([Ig,eY'Ig0]) = L([Lge7v7 I4,.]) for all v, €

T4(Q¢)~. This implies that nge is a morphism of Q-algebras and that the functions 1([Zg ¢vI¢])
for v € T(Zy)~ form a basis of H(GSpy,(Qy), Iy¢)”~ as a Q-vector space. We deduce that LZ"Z is
bijective since it sends a Q-basis of H(GSpa,(Qr), Iy¢)~ to a Q-basis of H(Ty(Qe), Ty(Z¢))~. O

Let p be a prime and N be a positive integer such that (N,p) = 1.

DEFINITION 1.2.16. Set

HP = Q) H(GSPay(Qr), GSpay(Ze))
Q,¢tNp
and
Hfgv = Hfgvp 2] H(GSp2g(Qp)a Igp)™-

We call ”Hév the abstract Hecke algebra spherical outside N and Iwahoric dilating at p.
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The algebra Hév acts on the space of classical vector-valued modular forms for GSp,,(Q) of
level T'1 (N)NTo(p). With an abuse of notation we will consider the elements of one of the local
algebras as elements of Hé\f via the natural inclusion (tensoring by 1 at all the other primes).

1.2.4.3. The Hecke polynomials. In the following we will specialize to the cases g = 1,2. We
record here some results and calculations that we will need later.

For g = 1, the degree two extension H(T1(Qy),T1(Z¢)) over H(GLa(Qy), GLa(Zy)) is gener-
ated by the element téll) = 1([diag (1,£)T1(Z¢)]). Let w denote the only non-trivial element of

the Weyl group Wi. The minimal polynomial of téll) is

Panin (15 X) = (X = 1)) (X = (1§)").
By an explicit calculation we obtain
(1.3) Prin(t)(X) = X2 = 70X + ¢1().
For g = 2, the degree eight extension H(712(Qy), T2(Zy)) over H(GSp4(Qr), GSp4(Zy)) is gen-
erated by the two elements té?l) = 1([diag (1,4, ¢, ¢*)T»(Z,)]) and th) = 1([diag (1,1, £, 0)T5(Zy)])-
Each of them has an orbit of order four under the action of the Weyl group, hence degree four

over H(GSp4(Qr), GSp4(Z¢)). We denote by P, mm(té )) the minimal polynomial of té? over
H(GSp4(Qe), GSpy(Zy)).-

If t = diag (vty, vte, tfl, t;l) is an element of the torus we denote by wg, w1, ws the gener-
ators of the Weyl group satisfying t*° = diag (vte, vti, t;l,tfl), t*1 = diag (thl, vta, t1, t;l),
t"? = diag (vt1, vty L tfl, t2). Note that t%) is invariant under wy. Its minimal polynomial is

2 2 2)\w 2)\w 2)\wiw
(1) Pan(t:X) = (X —)(X = (2)")(X = (#)") (X — (1)),
By an explicit calculation we obtain (see [An87, Lemma 3.3.35]):
2 2 2 2 2 2) (2 2

(15)  Puin(tis) = X' = T3 X3 + (T[22 — T,7) — CT,5) X2 — BT Tia X + (5(T,5)>%.
Note that ¢ = (t\9)(t}5

2)\w 2 2)\wiw
Pain(t) (X) = (X = ) (X = (1)) (X = (#3)")(X = (1)) =

1
= (X =5 (1) (X = (6)" (1)) (X = 63 (17)") (X = (53)" (1)),

) 7

)(tf))wl is invariant under wj. Its minimal polynomial is
2)

)

(1.6)

1.2.5. The cuspidal GLs-eigencurve. Fix a prime p and an integer N > 1 such that
(N,p) = 1. Let HY be the abstract Hecke algebra for GLg, spherical outside N and Iwahoric
dilating at p, defined in Section 1.2.4. For every affinoid A = Spm R C W; and every sufficiently
large rational number w, Coleman and Mazur [CM98, Section 2.4] defined a Banach R-module
M (A, w) of w-overconvergent cuspidal modular forms for GLy of weight k4 and tame level N.

For each (A,w) there is an action gb}q,w: HY — Endg contM1(A,w). Set UISI) = U(l) Then

Wy, 1Y, (Ml(A,w))A,w,(¢1)A7w,U£1)) is an eigenvariety datum. The eigenvariety machine
produces from this datum a triple (D), 1, w1), consisting of a rigid analytic variety DIV over
Qp and maps 1 : HY — O(DY) and wy: DY — Wi (the weight morphism) with the properties
given by Theorem 1.2.3. Note that DJ¥ is equidimensional of dimension 1 by Proposition 1.2.4,
hence its classical name “eigencurve”. The eigencurve was constructed by Coleman and Mazur
in [CM98] for p > 2 and N = 1 and by Buzzard in [Bu07, Part II] for every p and N.

The weight map wy: DY — W), is neither finite nor étale. It is locally-on-the-domain finite
by Remark 1.2.5. Moreover it satisfies the valuative criterion for properness, as proved by the
recent work of Diao and Liu [DL16].

Let f be a classical GLa-eigenform of level I'y (N) N To(p) and weight k > 2. Let x1: HY —
@p be the system of Hecke eigenvalues associated with f.
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DEFINITION 1.2.17. Let xjom: HY — @p be the character defined by

norm norm

X1y " = xiy" for every £{ Np,

1 —k 1
MG (U50) =7 TG U,
1 1
g™ (U = X" (U 7).
We call x7°™ the normalized system of Hecke eigenvalues associated with f.

REMARK 1.2.18. The eigenvariety DY interpolates the normalized systems of Hecke eigen-
values of the classical eigenforms, rather than the usual systems. More precisely, for every f

as in Definition 1.2.17 there exists a point x of DY such that ev, oy = X}°™, where ev, is

the evaluation of a rigid analytic function at x and x}°™ s the normalized system of Hecke

eigenvalues of f.

We call a point € DI (C,) classical if the system of Hecke eigenvalues associated with
x by the map (1.1) is that of a classical modular form f of level I';(N) N T'y(p) and weight
wi(x). In this case wi(x) is clearly a classical weight. In the proposition below we recall two
important results. As before w(w1(x)) denotes the only integer k such that wi(z): Z; — Z, is
the character a — a*. By an abuse of terminology we say that a classical point = has weight k
if w(wy(z)) = k.

PROPOSITION 1.2.19. Let x be a Cp-point of DY such that wi(x) is classical. Let k =
w(wi(x)). Suppose that h(z) < k — 1. Then:
(1) x is a classical point [C0o96, Theorem 6.1];
(2) the weight map w1: DY — W, is étale at x [Ki03, Theorem 11.10].

Note that a classical point x of weight k has slope sl(z) < k — 1, so the only classical points
that do not satisfy the hypotheses of Proposition 1.2.19 are those of weight k& and slope k — 1
for some k € N. From Proposition 1.2.19 we deduce the following well-known result.

PROPOSITION 1.2.20. Let S denote the set of classical points in Di¥(C,). Then S is
accumulation and Zariski-dense in DY (C,).

PRrROOF. By Proposition 1.2.19, for every h € R, the inclusion Dkgh C Sﬁl is satisfied by
all classical weights k such that kK — 1 > h. Since the set of such weights is accumulation and
Zariski-dense in Wi, the set S° satisfies the hypothesis (Class) where we take as X the set
of classical weights. By applying Proposition 1.2.10 we deduce that S is accumulation and
Zariski-dense in D{V’f (Cp). O

1.2.5.1. The ordinary eigencurve. Let Div’ord be the ordinary eigencurve obtained by ap-

plying Definition 1.2.8 to DI¥. For every pair (A, w) appearing in the eigenvariety datum, with
A = SpmR, let Ti‘,w be the R-algebra generated by qﬂﬂu(’H{V) in Endg cont(Mi1(A,w)). For
every such (A, w) there exists an idempotent element e%‘fu € Th,w such that ¢,14,w(UzEl)) is in-
vertible on e°'d(M;(A,w)) and topologically nilpotent on (1 — e°*4)(M;(A,w)). The element
e‘}{iu is defined as the limit of (¢}47w(Uél)))"! for n — 4+00. When (A, w) varies the elements

e%‘}u glue to give a global nilpotent element ™ e O(D{V )° with the property that Div’ord is

the subvariety of DJ¥ defined by ¢ — 1 = 0. In particular D{V’Md is a connected component of
DN,

Much earlier then the work of Coleman and Mazur, Hida interpolated ordinary GLas-
eigenforms in p-adic analytic families (see [Hi86]). It follows from Hida theory that the weight

map wll,DiV,ord : D{V’Ord — W is finite and that it is étale at every classical point of weight k& > 2.
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1.2.5.2. The eigencurve of slope bounded by h. In Definition 1.2.6 we introduced a slope
function sl: DY (C,) — R*. Let h € Q. The set of C,-points € DY satisfying sl(z) < h
admits a structure of rigid analytic subvariety of DY. We denote this subvariety by D{\j b

1.2.5.3. The non-CM eigencurve. We recall the following standard definitions.

DEFINITION 1.2.21. We say that a classical point of DY is CM if it corresponds to a classical

CM modular form. We say that an irreducible component of DY is CM if all its classical points
are CM.

REMARK 1.2.22. By [Hil5, Proposition 5.1], if an irreducible component contains a classical
ordinary CM eigenform of weight k > 2 then the component is CM. In particular there exist CM
irreducible components of the ordinary eigencurve, and every ordinary CM classical point belongs
to a CM component. On the contrary, the CM classical points of the positive slope eigencurve
form a discrete set (recall that this means that they are finite in each affinoid domain). This is
a consequence of Corollary 2.2.8, where it is shown that the eigencurve DT=" contains a finite
number of CM classical points.

The goal of the next chapter will be to interpolate the classical Langlands transfer associated
with the symmetric cube map Sym?®: GLy(C) — GSp,(C). The existence of this transfer has
been proved by Kim and Shahidi in [KS02] (see Theorem 3.3.3). Ramakrishnan and Shahidi
proved in [RS07] that a GLgy-eigenform can be lifted to a GSp,-eigenform via such a transfer,
but if the starting form is CM form we do not know whether its lift is cuspidal. Since non-
cuspidal Siegel modular forms are not interpolated by an eigenvariety at the moment, we will
need to work on the part of the eigencurve in which non-CM classical points are Zariski-dense.
For this reason we give the following definition.

DEFINITION 1.2.23. Let D{V’g be the Zariski-closure in D{V of the set of non-CM classical
points. We call Div’g the non-CM eigencurve.

The upper index G stands for “general”, since CM components are exceptional among the
irreducible components of Di.

REMARK 1.2.24.

(1) By Remark 1.2.22 the set of non-CM classical points is Zariski-dense in an irreducible
component of DY if and only if the component is non-CM. Hence D{V’g is the union of all
the non-CM irreducible components of D{V. By Remark 1.2.22 again every positive slope
wrreducible component is non-CM, so Div’g contains the positive slope eigencurve.

(2) Since the set of classical points is accumulation and Zariski-dense in every irreducible com-
ponent of DIV and the set of CM classical points is discrete in D{V’g, the set of non-CM
classical points is an accumulation and Zariski-dense subset of D{V’g.

1.2.6. The cuspidal GSp,-eigenvariety. Let p be an odd prime. Fix an integer M > 1
such that (M, p) = 1. Let H3! be the abstract Hecke algebra for GSp,, spherical outside M and
Iwahoric dilating at p, defined in Section 1.2.4. For every affinoid A = Spm R C W, and every
sufficiently large rational number w, Andreatta, Iovita and Pilloni [ATP15, Section 8.2] defined
a Banach R-module Ms(A,w) of w-overconvergent cuspidal GSp,-modular forms of weight 4
and tame level T';(M). For each (A,w) there is an action ¢1247w: HY — Endp con Ma(A, w).

Set UZSZ) = ;5,21)U;§22)- Then (Wa, HY, (M2(A, w)) A.w, (¢2)A,w,UZg2)) is an eigenvariety datum.
The eigenvariety machine constructs from this datum a rigid analytic variety over QQ,. We
call it the GSp,-eigenvariety of tame level M and we denote it by DJ!. It is endowed with a
weight morphism wy: DY — Wy and a map 1)9: H)T — O(DY)°. By Proposition 1.2.4 D is
equidimensional of dimension 2. The weight map ws: D) — W, is neither finite nor étale. It
is locally-on-the-domain finite by Remark 1.2.5.
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Let F' be a classical GSpy-eigenform of level I'y (M) N To(p) and weight (k1, k2) with &y >
ko > 3. Let xa: Hé” — @, be the system of Hecke eigenvalues associated with F'.

DEFINITION 1.2.25. Let x5°™: HA — @p be the character defined by
Xou = Xaq " for every {1 Mp,
2 ke — 2
W5 (U) =97 R, (U7,

norm 2 — 2
B (U2)) = p e, (U),

norm 2 2
X2p (Ué,z) )= X27p(U;§,2) )-

We call x5°™ the normalized system of Hecke eigenvalues associated with F'.

REMARK 1.2.26. The eigenvariety Dé\/l interpolates the normalized systems of Hecke eigen-
values of the classical eigenforms, rather than the usual systems. More precisely, for every F
as in Definition 1.2.25 there exists a point x of Déw such that evy o1g = x3°™, where ev, s
the evaluation of a rigid analytic function at x and x5°™ is the normalized system of Hecke
eigenvalues of F.

An analogue of Proposition 1.2.19(1) holds for the GSp,-eigenvariety.

ProposITION 1.2.27. ([BPS16, Theorem 5.3.1], see also Remark 1 in the Introduction of
loc. cit.) Let x be a Q,-point of DY such that we(x) = (k1,k2) is cohomological and sl(z) <
ko + 3. Then x is a classical point.

Unfortunately we do not know of an analogue of Proposition 1.2.19(2). A partial result in
this direction for the tame level 1 eigenvariety is given by [AIP15, Proposition 8.3.2].

1.2.6.1. The ordinary GSp,-eigenvariety. Let Dé\/l’ord be the ordinary GSp,-eigenvariety ob-
tained by applying Definition 1.2.8 to Dé‘/f . For every pair (A, w) appearing in the eigenvari-
ety datum, with A = Spm R, let T% , be the R-algebra generated by the image ¢? , (H3T)

in Endg cont(M2(A,w)). For every such (A,w) there exists an idempotent element e‘XfU €

Ti’w such that ¢§W(U,§2)) is invertible on e (My(A,w)) and topologically nilpotent on (1 —
") (Ma(A,w)). The element e‘ﬁv is the limit of (¢?4,w(U,§2)))"’ for n — 4+00. When (A4, w)

varies the elements efﬁu glue to give a global nilpotent element €™ e O(Dé\/[ )° with the prop-

erty that Dé\/f ©rd s the subvariety of D) defined by >4 — 1 = 0. In particular Déw ord i g

connected component of D}

As in the case of GLg, the ordinary eigenvariety enjoys better properties than the whole
eigenvariety. This is a consequence of Hida theory for GSp,, which is a result of the pa-
pers [TU99|, [Hi02], [Ti06] and [Pill12a]. It follows from Hida theory that the weight map

,or

'U)Q’,Déw,ord: D, — W, is finite and that it is étale at every classical point of weight (k1, k2)

with k1 > ko > 3.

1.2.6.2. The eigenvariety of slope bounded by h. Let sl: D}(C,) — R* be the slope function
given by Definition 1.2.6. Let h € Qt. The set of C,-points z € D) satisfying sl(z) < h admits
a structure of rigid analytic subvariety of Dé\/[ . We denote this subvariety by Dé\/[h.

1.2.7. Newforms and oldforms on the eigencurve. We recall the following classical
result.

PRrROPOSITION 1.2.28. [Li75, Theorem 3| The slope of a p-new eigenform of level T'1(N) N
Lo(p) and weight k > 2 is (k — 2)/2.
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We say that a classical point of D{V is p-old if it corresponds to a p-old eigenform; we say
that it is p-new otherwise. Let Sg{d denote the set of p-old classical points in D{V (Cp). We apply
Proposition 1.2.10 to obtain a corollary of Proposition 1.2.28.

COROLLARY 1.2.29. The set S, is accumulation and Zariski-dense in DY (C,).

PROOF. Let Sg{d i be the subset of points of weight £ in Sg%d i For any h € R, the inclusion

D,fh C Sg{d i is verified for all weights k satisfying (k —2)/2 > h by Proposition 1.2.28. Since
the set of such weights is accumulation and Zariski-dense in Wy, condition (Class) is satisfied
for S(‘ﬂd and we conclude by applying Proposition 1.2.10. O

COROLLARY 1.2.30. The set of p-old, non-CM classical points is accumulation and Zariski-
dense in Di\f,g‘

PROOF. Since S9, is accumulation and Zariski-dense in DY, its intersection with D{V’g
is accumulation and Zariski-dense in D{V’g. The set of CM points is discrete in Div’g, so its
complement in S, is still an accumulation and Zariski-dense subset of D{V’g((Cp). O
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CHAPTER 2

Galois level and congruence ideal
for finite slope families of modular forms

This chapter contains the results of a joint work of the author with A. Iovita and J. Tilouine
(see [CIT15]). Our goal is to define a Galois level and a CM-congruence ideal for a p-adic family
of finite slope GLo-eigenforms, and to compare them. There are a few differences in the notations
with respect to [CIT15].

2.1. The eigencurve

All rigid analytic spaces we consider are implicitly Q,-analytic. Before Section 2.2 all spaces
are defined over Q,: indeed the weight space and the eigencurve can be admissibly covered by
affinoid subdomains defined over Q,.

In this chapter we work with the one-dimensional weight space given by the construction in
Section 1.2.1 for g = 1.

2.1.1. Adapted pairs and the eigencurve. Let N be a positive integer prime to p.
We recall the definition of the spectral curve ZV and of the cuspidal eigencurve DV of tame
level T';(N). These objects were constructed in [CM98]| for p > 2 and N = 1 and in [Bu07]
in general. We follow the presentation of [Bu07, Part II], but we give a description of the
admissible covering of the spectral variety as in [Bel2, Part II]. Let Spm R C W be an affinoid
domain and let r = p~® for s € QQ be a radius smaller than the radius of analyticity of kg.
We denote by Mp, the R-module of r-overconvergent modular forms of weight k. It is
endowed it with a continuous action of the Hecke operators Ty, £ { Np, and U,. The action
of U, on Mg, is completely continuous, so we can consider its associated Fredholm series
Fr,(T) = det(1 — U,T|Mg,) € R{{T'}}. These series are compatible when R and r vary, in
the sense that there exists F' € A{{T'}} that restricts to Fr,(T") for every R and r.

The series Fg,(T) converges everywhere on the R-affine line Spm R x AL 5o it defines a
rigid curve ZﬁT = {Fg,(T) =0} in Spm R x A*", When R and r vary, these curves glue into
a rigid space ZV endowed with a quasi-finite and flat morphism wz: Z¥ — W. The curve ZV
is called the spectral curve associated with the Up-operator. For every h > 0, let us consider

ZN=h _ ZN A (sme X B(O,ph)) .

By [Bu07, Lemma 4.1] Zg’gh is quasi-finite and flat over Spm R.
We now recall how to construct an admissible covering of Z*V.

DEFINITION 2.1.1. We denote by C the set of affinoid subdomains Y C Z such that:
e there exists an affinoid domain Spm R C W such that Y is a union of connected components
of wy'(Spm R);
e the map wyzly: Y — Spm R is finite.
PROPOSITION 2.1.2. [Bu07, Theorem 4.6] The covering C is admissible.
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Note in particular that an element Y € C must be contained in Zg’gh for some h.

For every R and r as above and every Y € C such that wz(Y) = Spm R, we can associate to
Y a direct factor My of Mg, by the construction in [Bu07, Section I.5]. The abstract Hecke
algebra H = Z[Ty]yn), acts on Mp, and My is stable with respect to this action. Let Ty be
the R-algebra generated by the image of H in Endg(My) and let DY = Spm Ty. Note that it
is reduced as all Hecke operators are self-adjoint for a certain pairing and mutually commute.

For every Y the finite covering Dg — Spm R factors through Y — Spm R. The eigencurve
DV is defined by gluing the affinoids Dg into a rigid curve, endowed with a finite morphism
DN — ZN. The curve DV is reduced and flat over W since it is so locally.

We borrow the following terminology from Bellaiche.

DEFINITION 2.1.3. [Bel2, Def. I1.1.8] Let Spm R C W be an affinoid open subset and h > 0
be a rational number. The couple (R, h) is called adapted if Zg,gh s an element of C.

The sets of the form Z}]%/,gh are actually sufficient to admissibly cover the spectral curve by
[Bel2, Corollary 11.1.13].

Now we fix a finite slope h. We want to work with families of slope < h which are finite
over a wide open subset of the weight space. In order to do this it will be useful to know
which pairs (R, h) in a connected component of W are adapted. If Spm R’ C Spm R are affinoid
subdomains of W and (R, h) is adapted then (R',h) is also adapted by [Bel2, Proposition
I1.1.10]. By [Bu07, Lemma 4.3], the affinoid Spm R is adapted to h if and only if the weight

map Zg’éh — Spm R has fibres of constant degree.

REMARK 2.1.4. Given a slope h and a classical weight k, it would be interesting to have a
lower bound for the radius of a disc of centre k adapted to h. A result of Wan [Wa98, Theorem

2.5] asserts that for a certain radius ry, depending only on h, N and p, the degree of the fibres of
N,<h
ZB(]C,T]-L)
the degree is constant at all weights of B(k,rp,), so this is not sufficient to answer our question.
Estimates for the radii of adapted discs exist in the case of eigenvarieties for groups different
than GLa; see for example the results of Chenevier on definite unitary groups [Ch05, Section

5.

— Spm B(k,ry) at classical weights is constant. Unfortunately we do not know whether

2.1.2. Pseudo-characters and Galois representations. Let K be a finite extension
of Q, with valuation ring Ok. Let X be a rigid analytic variety defined over K. We denote
by O(X) the ring of global analytic functions on X equipped with the coarsest locally convex
topology making the restriction map O(X) — O(U) continuous for every affinoid U C X. It
is a Fréchet space isomorphic to the inverse limit over all affinoid domains U of the K-Banach
spaces O(U). We denote by O(X)° the O-algebra of functions bounded by 1 on X, equipped
with the topology induced by that on O(X).

LEMMA 2.1.5. [BC09, Lemma 7.2.11(ii)] If X is reduced and wide open, then O(X)° is a
compact (hence profinite) Ok -algebra.

Note that “wide open” rigid analytic spaces are called “nested” in [BCO09].
We will be able to apply Lemma 2.1.5 to the eigenvariety thanks to the following.

PROPOSITION 2.1.6. [BC09, Corollary 7.2.12] The eigenvariety DY is nested for K = Q,.

Given a reduced nested subvariety X of DV defined over a finite extension K of Qp there is
a pseudo-character on X obtained by interpolating the classical ones. Let QVP be the largest
algebraic extension of Q unramified outside Np and let Gg v, = Gal(QV?/Q).

PROPOSITION 2.1.7. [Bel2, Theorem IV.4.1] There exists a unique pseudo-character
7: Go.np = O(X)°
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of dimension 2 such that for every £ prime to Np, T(Froby) = ¢x(1y), where ¥x is the compo-
sition of : H — O(CN)° with the restriction map O(DN)° — O(X)°.

REMARK 2.1.8. One can take as an example of X a union of irreducible components of CV
in which case K = Q). Later we will consider other examples where K # Q,.

2.2. The fortuitous congruence ideal

In this section we will define families with slope bounded by a finite constant and coefficients
in a suitable profinite ring. We will show that any such family admits at most a finite number
of classical specializations which are CM modular forms. Later we will define what it means for
a point (not necessarily classical) to be CM and we will associate with a family a congruence
ideal describing its CM points. Contrary to the ordinary case, the non-ordinary CM points
do not come in families so the points detected by the congruence ideal do not correspond to a
crossing between a CM and a non-CM family. For this reason we call our ideal the “fortuitous
congruence ideal”.

2.2.1. The adapted slope < h Hecke algebra. Throughout this section we fix h € R>9.
Let DV:=" be the subvariety of DV consisting of the points of slope < h. Unlike the ordinary
case treated in [Hil5] the weight map w<": DN'<F — W is not finite which means that a family
of slope < h is not in general defined by a finite map over the entire weight space. The best
we can do in the finite slope situation is to place ourselves over the largest possible wide open
subdomain U of W such that the restriction of the weight map w="|;;: CN=F Xy U — U is
finite. This is a domain “adapted to h” in a sense analogous to that of Definition 2.1.3 where
only affinoid domains were considered. The finiteness property will be necessary in order to
apply going-up and going-down theorems.

Let us fix a rational number s, such that for r, = p~*» the closed disc B(0, ) is adapted
for h. We assume that sp > z% (this will be needed later to assure the convergence of the
exponential map). Let B be the open disc of centre 0 and radius p~*" in the weight space. We
give a model of By, over Q,, adapting the construction of Berthelot [dJ95, Section 7] of rigid
analytic spaces associated with formal schemes. Fori > 1, let s; = s,+1/2% and B; = B(0,p~%).
The open disc By, is the increasing union of the affinoid discs B;. Write s, = g for some a,b € N.
For each i a model for B; over Q, is given by Spm A? [p~!], where

A%, = Zy(t, Xa) /(70 = p" P20 X;).

For every i we define a morphism res; : Aiw , — A7, given by
tst,
Xz'-i—l — aniZ .

The morphisms res; induce compact morphisms A7, | [p~1] — AP [p~!], hence open immersions

B; — B;;1 defined over Kj. We define the wide open disc By as the inductive limit of the
affinoids B; with respect to the transition maps above. Let Aj be the ring of rigid analytic
functions bounded by 1 on Bp. There is an isomorphism
Ap = @A;ﬂl
i
where the transition maps are the res;’s. We define an element ¢t € Ay as the projective limit
over ¢ of the variables ¢ of the A} ’s.
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REMARK 2.2.1. Let ny, € @p be an element of p-adic valuation s, and let Oy, = Z,[n|. The
ring Ay, is not a power series ring over Z,. However there is an isomorphism Ay®z,Op = Oy|[t]].
Note that in [CIT15, Section 3.1] a ring AS™T = O[[t]] is defined (we write an upper index
to distinguish it from the ring Ap defined here) and it is stated in [CIT15, Section 4.1] that
the self-twists of p over Zp[n]] fix a form of AEIT over a subring Opo of Op. Thanks to the
construction of this section we can identify such a form with Oy - Ay,

Since the s; are strictly bigger than s for each i, B(0,p™%) = Spm A7, [p~1] is adapted to
h. Therefore for every r > 0 sufficiently small and for every ¢ > 1 the image of the abstract
Hecke algebra acting on My, , provides a finite affinoid A7 -algebra T%g - The morphism

WA - Spm Ti? , — Spm A} is finite. For ¢ < j we have natural inclusions Spm Tjg ,
7 i j’

Spm ']I‘i}f , and corresponding restriction maps T§§ ;= ']I‘%ff - We denote by Dy, the increasing
i ;0 T

union UieN,r>0 Spm fo?, 5 it is a wide open subvariety of DN. We denote by T}, the ring of
rigid analytic functions bounded by 1 on Dy. We have T), = O(Dy)° = I'&nw’]l‘if. - There is
a natural weight map wy: D, — By, that restricts to the maps wae ;. It is finite because the
closed ball of radius 7, is adapted to h. Since O(B},)° = Ay, the map wy, gives T}, the structure
of a finite Ap-algebra; in particular T}, is profinite.

There is a natural map A — Ay, given by the restriction to By, of analytic functions bounded
by 1 on the open unit disc.

DEFINITION 2.2.2. We say that a prime of Ay is arithmetic if it lies over an arithmetic
prime P, of A. By an abuse of notation we still denote by Py an arithmetic prime of Ay, lying
over Py,.

REMARK 2.2.3. An arithmetic prime P, of A satisfies PyAp # Ay if and only if the weight
k belongs to the open disc By,.

2.2.2. The Galois representation associated with a family of finite slope. Let m
be a maximal ideal of T},. The residue field k = T}, /m is finite. Let Ty, denote the localization
of T, at m. Since A, is henselian, Ty, is a direct factor of Ty, hence it is finite over Ay; it is
also local noetherian and profinite. It is the ring of functions bounded by 1 on a connected
component of Dy. Let W = W (k) be the ring of Witt vectors of k. By the universal property of
W, Ty, is a W-algebra. The affinoid domain Spm Ty, contains a Zariski-dense and accumulation
subset of points x corresponding to cuspidal eigenforms f, of weight w(z) = k, > 2 and level
Np. The Galois representations py, associated with f, give rise to a residual representation
p: Go,np = GLa(k) that is independent of f,. Since D}, is wide open, Proposition 2.1.7 gives a
pseudocharacter

Tl - GQ,N;D — Tm
such that for every classical point x: Ty, — L, defined over some finite extension L/Q,, the
specialization of 7t at x is the trace of the usual representation Gg np — GL2(L) attached to
T.

PROPOSITION 2.2.4. Ifp is absolutely irreducible there exists a unique continuous irreducible
Galois representation
Pl * GQ,Np — GL2 (Tm),
lifting p and whose trace is Tr,,.

This follows from a result of Nyssen [Ny96] and Rouquier [R096, Corollary 5.2] because Ty, is
local henselian.

We call family of GLo-eigenforms of slope bounded by h an irreducible component of Spec Tj,
defined by a surjective morphism 6: T;, — 1° of Ap-algebras for a finite torsion-free Ap-algebra.

32



Since such a map factors via T,, — I° for a maximal ideal m of T}, we can define a residual
representation p: Gg — GLa(k) associated with 6, where k is the residue field of Ty. Suppose
that p is irreducible. Thanks to Proposition 2.2.4 we can define a Galois representation p: Gg —
GL2(I°) associated with 6.

2.2.3. Finite slope CM modular forms. In this section we study non-ordinary finite
slope CM modular forms. We say that a family is CM if all its classical points are CM. We
prove that there are no CM families of positive slope. However, contrary to the ordinary case,
a non-CM family of finite positive slope may contain classical CM points of weight k > 2. Let
F be an imaginary quadratic field, f an integral ideal in F', I; the group of fractional ideals of F’
prime to f. Let o1, 09 be the embeddings of F into C (say that oy = Idr) and let (ky, ko) € Z2.
A Grossencharacter ¢ of infinity type (k1, k2) defined modulo f is a homomorphism v: I; — C*
such that ¥((a)) = o1(a)® o3 ()2 for all & = 1 (mod*f) . Consider the g-expansion

> (e,

OCOF,(a,f):l

where the sum is over ideals a of Op and N (a) denotes the norm of a. Let F'/Q be an imaginary
quadratic field of discriminant D and let 1 be a Grossencharacter of exact conductor § and
infinity type (k — 1,0). By [Sh71, Lemma 3] the expansion displayed above defines a cuspidal
newform f(F, ) of level N(f)D.

Ribet proved in [Ri77, Theorem 4.5] that if a newform g of weight k¥ > 2 and level N has
CM by an imaginary quadratic field F', one has g = f(F, ) for some Grossencharacter i of F
of infinity type (k — 1,0).

DEFINITION 2.2.5. We say that a classical modular eigenform g of weight k and level Np
has CM by an imaginary quadratic field F if its Hecke eigenvalues for the operators Ty, £ 1 Np,
coincide with those of f(F,v) for some Gréssencharacter v of F' of infinity type (k—1,0). We
also say that g is CM without specifying the field.

REMARK 2.2.6. If g, F and ¢ are as in the definitions above, the Galois representations
Pgs Pf(Fy): Go — GLQ(@p) associated with g and f(F,) are isomorphic. We deduce that the
image of the representation associated with a classical eigenform is contained in the normalizer
of a torus in GLo if and only if the form is CM.

PROPOSITION 2.2.7. Let g be a CM modular eigenform of weight k and level Np™ with N
prime to p and m > 0. Then its p-slope is either 0, %, k — 1 or infinite.

PROOF. Let F' be the quadratic imaginary field and ¥ the Grossencharacter of F' associated
with the CM form ¢ by Definition 2.2.5. Let § be the conductor of 1.

We assume first that ¢ is p-new, so that ¢ = f(F,v¢). Let a, be the U,-eigenvalue of
g. If pis inert in F' we have a, = 0, so the p-slope of ¢ is infinite. If p splits in F' as pp,
then a, = ¥ (p) + ¥ (p). We can find an integer n such that p” is a principal ideal («) with
a = 1 (mod*f). Hence 9((a)) = o*~1. Since a is a generator of p" we have a € p and «a ¢ p;
moreover o*~1 = 1((a)) = (p)", so we also have 1(p) € p — p. In the same way we find
Y(p) € p — p. We conclude that ¥ (p) + ¢ (p) does not belong to p, so its p-adic valuation is 0.

If p ramifies as p? in F, then a, = ¥(p). As before we find n such that p” = (a) with
o = 1 (mod*f). Then (¢(p)) 1 (p") = p((a)) = o*~1 = p™*k~1) By looking at p-adic valuations
we find that the slope is k—gl

If g is not p-new, it is the p-stabilization of a CM form f(F,) of level prime to p. If
ap is the Tp-eigenvalue of f(F,1)), the Up-eigenvalue of g is a root of the Hecke polynomial
X? - apX + ¢p"~1 for some root of unity ¢. By our discussion of the p-new case, the valuation
of a, belongs to the set {0, %, k— 1}. Then it is easy to see that the valuations of the roots

of the Hecke polynomial belong to the same set. U
We state a useful corollary.
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COROLLARY 2.2.8. There are no CM families of strictly positive slope.

PRrROOF. We show that the eigencurve D contains only a finite number of points corre-
sponding to classical CM forms. It will follow that almost all classical points of a family in Dy
are non-CM. Let f be a classical CM form of weight k£ and positive slope. By Proposition 2.2.7
its slope is at least % If f corresponds to a point of Dy, its slope must be < A, so we obtain
an inequality % < h. The set of weights K satisfying this condition is finite. Since the weight
map D, — By, is finite, the set of points of Dy, with weight in K is finite. Hence the number of
CM forms in Dy, is also finite. O

We conclude that, in the finite positive slope case, classical CM forms can appear only as
isolated points in an irreducible component of the eigencurve Dj,. In the ordinary case, the
congruence ideal of a non-CM irreducible component is defined as the intersection ideal of the
CM irreducible components with the given non-CM component. In the case of a positive slope
family 6: T} — I°, we need to define the congruence ideal in a different way.

2.2.4. Construction of the congruence ideal. Let 0: T;, — I° be a family. We write
=)

Fix an imaginary quadratic field F' where p is inert or ramified; let —D be its discriminant.
Let 9 be a primary ideal of T; then ¢ = Q N Ay, is a primary ideal of Aj. The projection Ay —
A /q defines a point of By, (possibly non-reduced) corresponding to a weight kg : Zj, — (An/q)*.
For r > 0 we denote by B, the ball of centre 1 and radius r in C,. By [Bu07, Proposition 8.3]
there exists r > 0 and a character rq,: Z; - B, — (An/q)* extending rq.

Let o be an embedding ' — C,. Let r and kg, be as above. For m sufficiently large
o(1+p™OF) is contained in Z; - B;, the domain of definition of xg ;.

For an ideal f C OF let I; be the group of fractional ideals prime to §. For every prime ¢
not dividing Np we denote by a, q the image of the Hecke operator T in I°/Q. We define here
a notion of non-classical CM point of 6 (hence of the eigencurve Dp,) as follows.

DEFINITION 2.2.9. Let F,0,Q,r,kq, be as above. We say that Q defines a CM point of
weight kq , if there exists an integer m > 0, an ideal §f C Op with norm N(f) such that DN (F)
divides N, a quadratic extension (1/Q)" of 1/Q and a homomorphism v: Iyym — (1/Q)™ such
that:

(1) o(1+p™OF) C Z) - By;

(2) for every a € Op with a = 1 (mod*fp™), ¥ (()) = ke ()a™!;

(3) agq =0 if L is a prime inert in F' and not dividing Np;

(4) asa =)+ (1) if £ is a prime splitting as I in F and not dividing Np.

Note that kg (o) is well defined thanks to condition (1).

REMARK 2.2.10. If B is a prime of 1 corresponding to a classical form f then B is a CM
point if and only if f is a CM form in the sense of Section 2.2.3.

PROPOSITION 2.2.11. The set of CM points of Specl is finite.

PROOF. Let S be the set of CM points of Specl. By contradiction assume that S is infinite.
Since I has Krull dimension 1, the set S is Zariski-dense in Specl. Hence we have an injection
I— H‘Be gI/PB. We can assume that the imaginary quadratic field of complex multiplication is
constant along I. We can also assume that the ramification of the associated Galois characters
Ap: Gp — (I/B)* is bounded (in support and in exponents). On the density one set of primes
of F prime to fp and of degree one, the characters Ay take values in the image of I, hence they
define a continuous Galois character A\: Gp — I* such that pg = Indg(ik We find that this is
absurd by specialing at a non-CM classical point, that exists by Corollary 2.2.8. O

DEFINITION 2.2.12. The fortuitous CM-congruence ideal ¢y associated with the family 0 is
defined as the intersection of all the primary ideals of 1 corresponding to CM points.
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We will usually refer to ¢y simply as the “congruence ideal”.

REMARK 2.2.13. (Characterizations of the CM locus)

(1) Assume that py = Indggx for a unique imaginary quadratic field K. Then the closed

subscheme V (¢y) = Specl/cy C Specl is the largest subscheme on which there is an isomor-

phism of Galois representations pg = pg ® <K—/Q) Indeed, for every artinian Qp-algebra

A, a CM point x: 1 — A is characterized by the conditions x(Ty) = x(Ty) <KT{Q) where ¢
varies over the primes not dividing Np.

(2) Note that N is divisible by the discriminant D of K. Assume that I is N-new and that D is
prime to N/D. Let Wp be the Atkin-Lehner involution associated with D. Congjugation by
Wp defines an automorphism vp of Ty, and of 1. Then V (¢g) coincides with the (schematic)

invariant locus (Specl)*?=1.

2.3. The image of the representation associated with a finite slope family

In [Lang16, Theorem 2.4] J. Lang shows that, under some technical hypotheses, the image of
the Galois representation p: Gg — GLa(I°) associated with a non-CM ordinary family 6: T —
I° contains a congruence subgroup of SLg(If), where I§ is the subring of I° fixed by certain
“symmetries” of the representation p. In order to study the Galois representation associated
with a non-ordinary family we will adapt some of the results in [Lang16] to this situation. Since
the crucial step [Lang16, Theorem 4.3] requires the Galois ordinarity of the representation (as
in [Hi15, Lemma 2.9]), the results of this section will not imply the existence of a congruence
subgroup of SLa(I§) contained in the image of p. However, we will prove in later sections the
existence of a “congruence Lie subalgebra” of sly(If) contained in a suitably defined Lie algebra
of the image of p, by means of relative Sen theory.

For every ring R we denote by Q(R) its total ring of fractions.

2.3.1. The group of self-twists of a family. We follow [Langl6, Section 2| in this
subsection. Let h € QT and let 6: T, — I° be a non-CM family of slope < h defined over a
finite torsion free Ajy-algebra I°.

DEFINITION 2.3.1. We say that o € Autga,)(Q(I°)) is a conjugate self-twist for 0 if there
exists a finite order character ns: Gg — 1> such that

o(0(Tr)) = ne(0)0(17)
for all but finitely many primes £.

The conjugate self-twists for § form a subgroup of Autg,,)(Q(I°)). We recall the following
result which holds without assuming the ordinarity of 6.

LEMMA 2.3.2. [Langl6, Lemma 7.1] ' is a finite abelian (2,2, ...,2)-group.

We suppose from now on that I° is normal. The only reason for this hypothesis is that in
this case I° is stable under the action of T" on Q(I°), which is not true in general. This makes
it possible to define the subring I of elements of I° fixed by I'.

REMARK 2.3.3. The hypothesis of normality of 1° is just a simplifying one. We could work
without it by introducing the Ap-order 15, = Ay[0(Ty),£ + Np| in 1°: this is an analogue of
the A-order I defined in [Langl6, Section 2| and it is stable under the action of T'. This is
what we will do when we study families of GSpy-eigenforms in Chapter 4, where we will give a
Galois-theoretic definition of I, .
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We define two open normal subgroups of G by:

Hy = () ker o3
oel’
H = Hy Nker(detp).

Note that Hy and H are open normal subgroup of Gg. a pro-p open normal subgroup of Hy
and of Gg.

2.3.2. The level of a general ordinary family. We recall the main result of [Lang16].
Denote by T the big ordinary Hecke algebra, which is finite over A = Z,[[T]]. Let 6: T — I°
be an ordinary family with associated Galois representation p: Gg — GL2(I°). Recall that
we fixed an embedding Gg, < Gg. The representation p is p-ordinary, which means that its
restriction p\G@p is reducible. More precisely there exist two characters €,6: Gg, — 1>, with
0 unramified, such that p|((;@p is an extension of € by J.

Denote by F the residue field of I° and by 7 the representation Gg — GL2(FF) obtained by
reducing p modulo the maximal ideal of I°. Lang introduces the following technical condition.

DEFINITION 2.3.4. The p-ordinary representation p is called Ho-regular if
g’(GQPQI‘I() # S‘GQPQH()'
The following is a “big image” result for p.

THEOREM 2.3.5. ([Langl6, Theorem 2.4], improving [Hil5, Theorem I]) Let p: Gg —
GLy(I°) be the representation associated with an ordinary, non-CM family 0: T — 1°. Assume
that p > 2, the cardinality of F is not 3 and the residual representation p is absolutely irreducible

and Hg-reqular. Then there exists v € GLa(I°) such that v-Imp-~~1 contains a congruence
subgroup of SLa(I).

One ingredient of the proof is the analogous result proved by Momose [Mo81] and Ribet [Ri75,
Theorem 3.1] for the p-adic representation associated with a classical modular form (see the
Introduction).

2.3.3. An approximation lemma. In this subsection we prove an analogue of [HT15,
Lemma 4.5]. It replaces Pink’s Lie algebra theory, which is relied upon in the proof of Theorem
2.3.5. Let A be a local domain that is finite torsion free over Aj,. It does not need to be related
to a Hecke algebra for the moment.

Let N be an open normal subgroup of Gg and let p: N — GLy(A) be an arbitrary continuous
representation. We denote by m4 the maximal ideal of A, by F the residue field A/my4 and by ¢
its cardinality. In the lemma we do not suppose that p comes from a family of modular forms.
We only assume that it satisfies the condition given by the following definition.

DEFINITION 2.3.6. Keep the notations as above. We say that the representation p: N —
GLo(Ig) is Zp-regular if there exists d € Tm p with eigenvalues di,dz € Z) such that d} # d3
(mod p). We call d a Zyregular element. If N is an open normal subgroup of N then we say
that p is (N', Zy)-regular if p|n+ is Zy-reqular.

Let BT denote the Borel subgroups consisting of upper, respectively lower, triangular ma-
trices in GLy. Let UT be the unipotent radical of B*.

PROPOSITION 2.3.7. Suppose that p is Zy-reqular and that a Z,-reqular element d € Im p is
diagonal. Let P be an ideal of A and pp: N — GLo(A/P) be the representation given by the
reduction of p modulo P. Let U (p) and U*(pp) be the upper and lower unipotent subgroups of
Im p and Im pp, respectively. Then the natural maps U™ (p) — Ut (pp) and U~ (p) — U~ (pp)
are surjective.
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REMARK 2.3.8. The ideal P in the proposition is not necessarily prime. At a certain point
we will need to take A =1 and P = P - 1§ for a prime ideal P of Ay,.

As in [HT15, Lemma 4.5] we need two lemmas. Since the argument is the same for U+
and U™, we only treat here the upper triangular case U = U" and B = B™.
For x = U, B and every j > 1 we define the groups
[.(P7) = {x € SLy(A) |z (mod P?) € (A/P’)}.
Let I'4(P7) be the kernel of the reduction morphism m;: SLa(A) — SLo(A/P7). Note that
I'y(P7) =T4(P)U(A). Let K = Imp and
Ky(P)) = KNTy(P?), Kp(P)=KNTg(P’).
Since U(I§) and T'yg(P) are p-profinite, the groups I'y(P7) and Ky (P7) for all j > 1 are
also p-profinite. Note that

a b e f B bg —cf  2(af — be)
c —a )\ g —e \ 2(ce—ag) cf —bg '
From this we obtain the following.

LEMMA 2.3.9. If X, Y € sly(I§) N (Pj Pk) for some natural numbers i, j, k satisfying

P PJ
P2 >k, then [X,Y] € (BT RIL).
We denote by DI'yy(P7) the topological commutator subgroup (I'y/(P7),Ty(P7)). Lemma
2.3.9 tells us that

(2.1) DI'y(P?) c Tg(P¥) NIy (PY).

By assumption, there exists a diagonal Z,-regular element d € K. Consider the element
8 = lim,, 00 dP", which belongs to K since this is p-adically complete. In particular ¢ normalizes
K. Tt is also diagonal with coefficients in Z;, so it normalizes Ky (P’) and I'g(P7). Since ¥ = 4,

the eigenvalues §; and & of § are roots of unity of order dividing p— 1. They still satisfy 67 # &3

as p # 2.
Set o = d1/d2 € IE‘; and let a be the order of « as a root of unity. We see « as an element

of Z; via the Teichmiiller lift. Let H be a p-profinite group normalized by ¢. Since H is
p-profinite, every z € H has a unique a-th root. We define a map A: H — H given by

Az) = [z-ad (8)(2)® - ad (62)(x)* - -+ -ad (8971) (x)* "]/
LEMMA 2.3.10. Ifu € Dy (P7) for some j > 1, then A%(u) € Ty(P%) and m;(A(u)) = m;(u).

PROOF. Ifu € T'y(P7), we have m;(A(u)) = mj(u) as A is the identity map on U (I3 /P7). Let
DI'yy(P7) be the topological commutator subgroup of I'yy(P7). Since A induces the projection
of the Z,-module I'y;(P7)/DI'y(P7) onto its a-eigenspace for ad (d), it is a projection onto
U(I3)DI'y (P7) /DIy (PY). The fact that this is exactly the a-eigenspace comes from the Iwahori
decomposition of I'yy(P7), that gives a similar direct sum decomposition for the abelianization
Py (P9)/DLy (P9).

By (2.1) we have DIy (P7) C T'g(P%)NT'y(P7). Since the a-eigenspace of I'y(P7) /DIy (PY)
is inside I'g(P?/), A projects ul'y (P7) to

A(u) € (Tp(P¥) NTy(PY))/Dly (P7).
In particular, A(u) € Tp(P%)NTy(P7). Again apply A. Since I'p(P¥)/T's(P?) is sent to
Ty (P%) /T (P%) by A, we get A?*(u) € Ty (P¥) as desired. O

PROOF. We can now prove Proposition 2.3.7. Let uw € U(I§/P) N Im(pp). Since the
reduction map Im (p) — Im (pp) induced by m is surjective, there exists v € Im (p) such that
mi(v) = u. Take u; € U(If) such that m(u;) = w. This is possible because m: U(Ap) —
U(Ap,/P) is surjective. Then vu; ' € I (P), so v € Ky(P).
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By compactness of Ki(P) and by Lemma 2.3.10, if we start with v as above the sequence
A™(v) converges P-adically to an element A (v) € U(I§) N K when m +— co. Such an element
satisfies m1 (A (v)) = u. O

As a first application of Proposition 2.3.7 we give a result that we will need in the next
subsection.

PROPOSITION 2.3.11. Let 6: Ty, — 1° be a family of slope < h and pg: Gg — GL2(I°) be the
representation associated with 6. Suppose that pg is (Ho, Zy)-regular and let p be a conjugate of
po such that Im p|g, contains a diagonal Zy-regular element. Then U™ (p) and U~ (p) are both
non-trivial.

PRrROOF. By density of classical points in T} we can choose a prime ideal P C I° correspond-
ing to a classical modular form f. The modulo P representation pp is the p-adic representation
classically associated with f. By the results of [Ri75] and [Mo81] and the Z,-regularity condi-
tion, there exists an ideal [p of Z, such that Im pp contains the congruence subgroup FZP(IP).
In particular UT (pp) and U~ (pp) are both non-trivial. BY Proposition 2.3.7 applied to A = I°
and the representation p the maps UT(p) — U™ (pp) and U~ (p) — U~ (pp) are surjective, so
we can find non-trivial elements in U™ (p) and U~ (p). O

We adapt the work in [Lang16, Section 7] to show the following.

PROPOSITION 2.3.12. Suppose that the representation p: Gg — GLo(1°) is (Ho, Zyp)-regular.
Then there exists g € GLa(I°) such that the conjugate representation gpg~! satisfies the following
two properties:

(1) the image of gpg~!|m, is contained in GLo(I5);
(2) the image of gpg~t|m, contains a diagonal Z,-regular element.

PROOF. As usual we choose a GLg(I°)-conjugate of p such that the Z,-regular element d is
diagonal. We still write p for this conjugate representation. It will turn out to have property

(1).

By the definition of self-twist, for every o € I there is a character n,: Gg — (I°)* and an
equivalence p? = p ® n,. Then for every o € T' there exists t, € GL2(I°) such that, for all
g € Gy,

(2.2) p°(9) = toma(9)p(g)t, .

We prove that the matrices t, are diagonal. Choose t € Gg such that p(t) is a non-scalar
diagonal element in Im p (for example d). Evaluating (2.2) at ¢ = ¢ we find that t, must be
either a diagonal or an antidiagonal matrix. Now by Proposition 2.3.11 there exists u* € Gg
such that p(u™) is a non-trivial element of € Im p N U T (I°). Evaluating (2.2) at g = u™ we find
that t, cannot be antidiagonal.

It is shown in [Lang16, Lemma 7.3] that there exists an extension A of I°, at most quadratic,
and a function ¢: I' = A* such that o — t,((c)~! defines a cocycle with values in GLa(A).
The proof of this result does not require the ordinarity of p. Equation (2.2) remains true if we
replace t, with t,((o)™!, so we can and do suppose from now on that t, is a cocycle with values
in GLa(A). In the rest of the the proof we assume for simplicity that A = I°, but everything
works in the same way if A is a quadratic extension of I° and F is the residue field of A.

Let V = (I°)? be the space on which Gg acts via p. As in [Lang16, Section 7] we use the
cocycle t, to define a twisted action of I on (I°)2. For v = (v1,v2) € V we denote by v the
vector (v{,v]) with I' acting on each coordinate. We write vl for the vector t;'v”. Then
v — 019 gives an action of T since o — t, is a cocycle. Note that this action is I[5-linear.

Since t, is diagonal for every o € I', the submodules V; = I°(1,0) and V5 = I°(0,1) are
stable under the action of I'. In the following we show that each V; contains an element fixed
by I'. We denote by mpo the maximal ideal of I° and by F the residue field I°/mj. Note that
the action of I on V; induces an action of I' on the one-dimensional F-vector space V; ® I°/mye.
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We show that for each i the space V; ® I°/mpo contains a non-zero element v; fixed by I'. This
is a consequence of the following argument, a form of which appeared in an early preprint of
[Lang16]. Fix a non-zero element w of V; ® I°/mpo. for a € F the sum

Saw = Z(aw)[‘ﬂ

cel’

is clearly T-invariant. We show that we can choose a such that Sy, # 0. Since V; ® I°/myo is
one-dimensional, for every o € I' there exists a, € F such that wl?) = a,w. Then

Sow = Z(aw)["] = Z a®wll = Za"aaw = (Z a"aga1> aw.

cel cel cel’ el

By Artin’s lemma on the independence of characters, the function f(a) = >, cp a”asa™! cannot
be identically zero on F. By choosing a value of a such that f(a) # 0 we obtain a non-zero
element 7; = Sy, fixed by I

We show that v; lifts to an element v; € V; fixed by I'. Let 09 € I'. By Lemma 2.3.2 " is a
finite abelian 2-group, so the minimal polynomial P,,(X) of [0¢] acting on V; divides X 2
for some integer k. In particular the factor X — 1 appears with multiplicity at most 1. We show
that its multiplicity is exactly 1. If P, is the reduction of P,, modulo mye then P, ([oo]) = 0
on V; ® I°/mpo. By our previous argument there is an element of V; ® I°/mye fixed by I" (hence
by [00]), so we have (X — 1) | Pp(X). Since p > 2 the polynomial X2° — 1 has no double roots
modulo mye, so neither does P,,. By Hensel’s lemma the factor X — 1 lifts to a factor X — 1 in
P,, and v; lifts to an element v; € V; fixed by [og]. Note that I°-v; =V} since ©; # 0.

We show that v; is fixed by I'. Let W) = [°v; be the one-dimensional eigenspace for [o0]

in V;. Since I' is abelian W, is stable under I'. Let o € I'. Since ¢ has order 2% in T for some

k > 0, there exists a root of unity ¢, of order 2* satisfying UZ[U] = (,v;. Since EEO] = v;, the
reduction of {, modulo mp must be 1. As before we conclude that {, = 1 since p # 2.

We found two elements v; € Vi, vo € Vs fixed by I'. We show that every element of v € V
fixed by I' must belong to the Ij-submodule generated by v1 and va. We proceed as in the end
of the proof of [Langl6, Theorem 7.5]. Since V; and V; are I'-stable we must have v € V] or
v € Vo, Suppose without loss of generality that v € V3. Then v = awv; for some a € I°. If
a € [ then v € IJvy, as desired. If o ¢ I3 then there exists o € I' such that a” # «. Since
vy is [o]-invariant we obtain (aw;)ll = a"v[fr} = a%v; # awvp, so av; is not fixed by [o], a
contradiction.

Since (v, v2) is a basis for V' over I°, the I§-submodule Vy = [§v; +Ijvs is an I§-lattice in V.
Recall that Hy = (), cp kern,. We show that ;) is stable under the action of Hy via p|g,, i.e.
that if v € V is fixed by I, so is p(h)v for every h € Hp. This is a consequence of the following
computation, where v and h are as before and o € I':

(p(9)0) = ;05 (9)p(9) 70" = t; b p(g)t; 07 = p(g)vl”.
Since Vj is an I§-lattice in V' stable under p|g,, we conclude that Im p|g, C GLo(I5). O

2.3.4. Fullness of the unipotent subgroups. Upon replacing p by an element in its
GL2(I°) we can suppose that p|p, € GL(I§). Recall that H = ker(det |p,). As in [Langle,
Section 4] we define a representation H — SLy(I) by

—1/2
po = plr ® (det pl 7>,

The square root of the determinant is defined thanks to the definition of H. We will use the
results of [Lang16] to deduce that the Ap-module generated by the unipotent subgroups of the
image of pg is big. Later we will deduce the same for p.

We fix from now on a height one prime P C Ay with the following properties:

(1) there is an arithmetic prime P, C A satisfying k > h+ 1 and P = PAp;

39



(2) every prime B C I° lying above P corresponds to a non-CM point.

Such a prime always exists. Indeed, by Remark 2.2.3 every classical weight k£ > h + 1 contained
in the disc By, defines a prime P = P Ay, satisfying (1), hence such primes are Zariski-dense in
Ap, while the set of CM primes in I° is finite by Proposition 2.2.11.

REMARK 2.3.13. Since k > h + 1, every point of SpecT), above Py is classical by [Co96,
Theorem 6.1]. Moreover the weight map is étale at every such point by [Ki03, Theorem 11.10].
In particular the prime PIy = Pl splits as a product of distinct primes of 1.

Make the technical assumption that the order of the residue field F of I° is not 3. For every
ideal P of Ifj over P we let mp be the projection SLy(I) — SLa(I5/P). We still denote by mp
the restricted maps U= (I5) — U= (I5/P).

Let G = Im pg. For every ideal P of I we denote by pg p the representation mp o py and by
Gp the image of pp, so that Gp = mp(G). We state two results from Lang’s work that come
over unchanged to the non-ordinary setting.

PROPOSITION 2.3.14. [Lang16, Corollary 6.3] Let B be a prime of I§ over P. Then Gy
contains a congruence subgroup I'ye jm(a) C SLao(I5/B). In particular Ge is open in SLa(I5/9).

PROPOSITION 2.3.15. [Langl6, Proposition 5.1] Assume that for every prime P C 1§ over
P the subgroup Gy is open in SLa(I5/%B). Then the image of G in [y p SL2(I5/B) through the
map Hgm p Ty contains a product of congruence subgroups Hgm p L p(ag).

REMARK 2.3.16. The proofs of Propositions 2.3.14 and 2.3.15 rely on the fact that the big
ordinary Hecke algebra is étale over A at every arithmetic point. In order for these proofs to
work in the non-ordinary setting it is essential that the prime P satisfies the properties given
above Remark 2.3.15.

We let U*(pg) = GNUE(IS) and U*(pp) = Gp N UF(I5/P). We denote by U(pp) either
the upper or lower unipotent subgroups of Gp (the choice will be fixed throughout the proof).
By projecting to the upper right element we identify U (pg) with a Z,-submodule of I$ and
U™ (po,p) with a Zy-submodule of I /P. We make analogous identifications for the lower unipo-
tent subgroups. We will use Proposition 2.3.15 and Proposition 2.3.7 to show that, for both
signs, U%(p) spans I§ over Ay,.

First we state a version of [Lang16, Lemma 4.10], with the same proof. Let A and B be
Noetherian rings with B integral over A. We call A-lattice an A-submodule of B generated by
the elements of a basis of Q(B) over Q(A).

LEMMA 2.3.17. Any A-lattice in B contains a non-zero ideal of B. Conversely, every non-
zero ideal of B contains an A-lattice.

We prove the following proposition by means of Proposition 2.3.7. We could also use Pink
theory as in [Lang16, Section 4].

PROPOSITION 2.3.18. Consider U (pg) as subsets of Q(I3). For each choice of sign the
Q(Ap)-span of UE(po) is Q(I3). Equivalently the Ap,-span of U (pg) contains a Ap-lattice in TS,

ProOF. Keep the notations as above. We omit the sign when writing unipotent subgroups
and we refer to either the upper or lower ones (the choice is fixed throughout the proof). Let
P be the prime of Aj, chosen above. By Remark 2.3.13 the ideal PIj splits as a product of
distinct primes in IIj. When 3 varies among these primes, the map @‘BI p Tp gives embeddings

of Ap/P-modules 15/ PI§ < @y p 15/B and U(pprg) < Dgyp U(pgp). The following diagram
commutes:

D |p ™R
Ulppig) < Doy p Ulop)

(2.3) j [

o o) @mupﬂ'qj o
I5/PIy ——— Dqp /B
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By Proposition 2.3.15 there exist ideals agp C I5/B such that

D | (Grig) > D Trgpmlap).

PP PP
In particular (B p mp) (U (pr1g)) O D p(ap). By Lemma 2.3.17 each ideal ags contains a basis
of Q(I5/PB) over Q(An/P), so that the Q(An/P)-span of Py p agp is the whole Py p Q(I5/)-
Then the Q(Ap/P)-span of (B p mp)(Gp N U(py)) is also Doy p Q(I5/PB). By commutativity
of diagram (2.3) we deduce that the Q(Ay/P)-span of GpNU(ppig) is Q(I5/PIG). In particular
GpigNU (pp]lg) contains a Ayp,/P-lattice, hence by Lemma 2.3.17 a non-zero ideal ap of I/ PI{.

Note that the representation po: H — SLo(I]) satisfies the hypotheses of Proposition 2.3.7.
Indeed we assumed that the image of p|p, contains a diagonal Z,-regular element d. Since H
is a normal subgroup of Hy, p(H) is a normal subgroup of p(Hp) and it is normalized by d.
By a trivial computation we see that the image of pg = p @ (det p)~¥/2: H — SLy(I3) is also
normalized by d.

Let a be an ideal of Ijj projecting to ap C U(p07p]18). By Proposition 2.3.7 applied to pg we
obtain that the map U(po) — U(po pig) is surjective, so the Z,-module a N U(pg) also surjects
to ap. Since Ay is local we can apply Nakayama’s lemma to the Ap-module Ayp(a N U(pg) to
conclude that it coincides with a. Hence a C Ay, - U(po), so the Ap-span of U(pg) contains a
Ap-lattice in I§. O

We show that Proposition 2.3.18 is true if we replace pg by p|m. This is done in [Langl6,
Proposition 4.2] for an ordinary representation by using the description of subnormal sugroups
of GLo(I°) presented in [Taz83]. We will also follow this approach, but since we cannot induce
a Ap-module structure on the unipotent subgroups of G we need a preliminary step. For a
subgroup G C GLy(I3) define G? = {gP, g € G} and G = GP N (1 + pMs(I3)). Let G*» be the
subgroup of GLg(I°) generated by the set {g": g € G.\ € Ar} where g = exp(Alogg). We
have the following.

LEMMA 2.3.19. The group GMn contains a congruence subgroup of SLa(If) if and only if both
the unipotent subgroups G NUT(I3) and GNU~(I3) contain a basis of a Ay-lattice in I5.

PROOF. It is easy to see that G N U™ (IF) contains the basis of a Ap-lattice in I if an only
if the same is true for G N U *(I5). The same is true for U~. By a standard argument, used
in the proofs of [Hil5, Lemma 2.9] and [Langl6, Proposition 4.3], G C GLy(I3) contains
a congruence subgroup of SLy(I§) if and only if both its upper and lower unipotent subgroup
contain an ideal of I§. We have U™ (I$)NG*" = A, (GNUT(I3)), so by Lemma 2.3.17 U+ (I3)NG*»
contains an ideal of I§ if and only if GNU T (I) contains a basis of a Ap-lattice in I§. We proceed
in the same way for U~. U

Now let Gy = Im p|g, G = Im pg. Note that Gy N SLa(I§) is a normal subgroup of G. Let
f: GLa(I8) — SLa(I3) be the homomorphism sending g to det(g)~'/2g. We have G = f(Go) by
definition of py. We show the following.

PROPOSITION 2.3.20. The subgroups Go N UT(I3) both contain the basis of a Ap-lattice in
I3 if and only if G N U(I3) both contain the basis of a Ap-lattice in I5.

~ ~— ~ ~—A
PROOF. Since G = f(Gg) we have G = f(Gp). This implies GM = f(Gy ). We remark
A ~ A A
that Gy " N SLy(I3) is a normal subgroup of G*». Indeed Gy "N SLy(I§) is normal in Gy " so
its image f(G5" N SLy(I3)) = Go* N SLy(I3) is normal in f(GH*) = GM.

By [Taz83, Corollary 1] a subgroup of GLy(I§) contains a congruence subgroup of SLa(I§)
if and only if it is subnormal in GLa(I§) and it is not contained in the centre. We note that
—~A —_—

Go "' n SLo(I5) = (Go N SLa(I5)) M is not contained in the subgroup {#1}. Otherwise also
GoNSLa(I§) would be contained in {£1} and Im p N SLy(If) would be finite, since Gy is of finite
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index in GE. This would give a contradiction: indeed if 9 is an arithmetic prime of I° of weight
greater than 1 and ' = P NI, the image of p modulo P’ contains a congruence subgroup of
SLo(I5/%8’) by the result of [Ri75].

~A ~
Now since Gy " N SLy (I§) is a normal subgroup of GM, we deduce by Tazhetdinov’s result

—~A —~A ~
that Gy " NSLy(I3) (hence Gy ) contains a congruence subgroup of SLy(I8) if and only if G
does. By applying Lemma 2.3.19 to G = Gy and G = GG we obtain the desired equivalence. [

By combining Propositions 2.3.18 and 2.3.20 we obtain the following.

COROLLARY 2.3.21. The Ay,-span of each of the unipotent subgroups U (p) contains a Ay, -
lattice in Ij.

Unlike in the ordinary case we cannot deduce from the corollary that Im p contains a congru-
ence subgroup of SLa(I[j), since we cannot induce a Ajp-module structure (not even a A-module
structure) on Im p N U*. The proofs of [Hil5, Lemma 2.9] and [Lang16, Proposition 4.3] rely
on the existence, in the image of the Galois group, of an element inducing by conjugation a
A-module structure on Im pNU®. In their situation this is predicted by the condition of Galois
ordinarity of p. In the non-ordinary case we will find an element with a similar property via
relative Sen theory. This will force us to state a “big image” result in terms of Lie algebras
rather than groups.

2.4. Relative Sen theory

We use the notations of Section 2.2.1.

We defined in Section 2.3.1 a subring Ig C I°, finite over Ay. Let I}, = H"@AhA;fi and
., = I3®a, 0.r;» Poth endowed with their p-adic topology. Note that ()" = . o

Consider the representation p: Gg — GL2(I°) associated with a family 6: T, — I°. We
observe that p is continuous with respect to the profinite topology of I° but not with respect
to the p-adic topology. For this reason we cannot apply Sen theory to p. We fix instead an
arbitrary radius r among the 7; defined above and consider the representation p,: Gg — GLa(Iy})
obtained by composing p with the inclusion GL2(I°) < GLg(I?). This inclusion is continuous,
hence the representation p, is continuous with respect to the p-adic topology of I7 .

Recall from Proposition 2.3.12 that, possibly after replacing p by a conjugate, the restriction
plm, takes values in GL2(I§) and is Zy-regular. Then p,|m,: Ho — GL2(I7 ) is continuous with

respect to the p-adic topology on GLQ(]I%O).

2.4.1. Big Lie algebras. Recall that we fixed an embedding Gg, C Gq. Let G, and Gloc
be the images of Hy and G, N Hy, respectively, under the representation p,|g,: Hy — GLa( 270).
Note that they are actually independent of r as topological Lie groups.

For every ring R and ideal I C R we denote by I'qp,(r)(/) the congruence subgroup of
GL2(R) consisting of the elements g € GLa(R) such that ¢ = 12 (mod I). Let G, = G, N
FGLz(H,‘?O)(p) and G°¢ = Gloe N FGLQ(]I,?O)(p)a so that G, and GH°° are pro-p groups. Note
that the congruence subgroups FGLQ(HT,O)(Pm) are open in GLy(I, () for the p-adic topology. In
particular G/, and G2°° can be identified with the images under p of the absolute Galois groups
of finite extensions of Q and Q,, respectively.

REMARK 2.4.1. We choose an arbitrary ro and we set G = G, N Lar,ag y(p) for every r.
sTO
Then G!. is independent of r as a topological group, since G, is, and it is a pro-p subgroup of

G, for every r. We define in the same way G, This will be important in Section 2.6.1 when

we take projective limits over r of various objects.
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We set A, = A2[p~1] and Lo = I2,[p~!]. We consider from now on G’ and Gy°¢ as
subgroups of GLy(I,() via the inclusion GL2( ro) = GLa(A,).

We define Lie algebras associated with the groups G and G, For every non-zero ideal a
of A, we denote by G, , and G;J}g ¢ the images of G and G21°°0, respectively, under the natural

projection GLa(I,0) — GL2(L,o/al, ). The pro-p groups G, and G;Z};)C are topologically of

r,a

finite type so we can define the corresponding Q,-Lie algebras &, , and (’5}95 using the p-adic

logarithm map. We set &, , = Q, - Log G/m and (’51;’5 = Q, - Log G;’}fc. They are closed Lie
subalgebras of the finite dimensional Q,-Lie algebra Ma (L, o/al,.o).

Let P, = (u'(1+T)—1)-A,. Let B, = @(a Pi)=1 A, /aA, where the inverse limit is taken
over the non-zero ideals a C A, prime to Pi, with respect to the natural transition maps. The
reason for excluding P; will be clear later. We endow B, with the projective limit topology

coming from the p-adic topology on each quotient. We have an isomorphism of Q,-algebras

B.= [ (Ar) s

P#P;

where the product is over primes P of A, and (747) p = lm _ A /P™, that is an inverse
limit of finite dimensional Q,-vector spaces, hence a Q,-Fréchet space for the natural family
of seminorms. Similarly, let B, = 1'£1(a Pry=1 L.o/al,o, where as before a varies over all the

non-zero ideals of A, prime to P;. We have an isomorphism of Q,-algebras

B, = H (HT/;)PL-,O = H (Tr\,())q:; = L&l Hr,O/Q,

P+£P; PrPy (Q,P1)=1

where the second product is over primes B of I, o and the projective limit is over primary ideals

Q of I, 9. Here (Hr’g)m = l'£1M> . L.o/PB™, that is again an inverse limit of finite dimensional
Q,-vector spaces, hence a Q,-Fréchet space for the natural family of seminorms. The rightmost
isomorphism follows from the fact that I, is finite over A,, so there is an isomorphism of
Qp-FrA@chet spaces I,.0 @ (A,)p = [1y (Ir,0)g where P is a prime of A, and 9 varies among
the primes of I, o above P. We have natural continuous inclusions A, < B, and I,o — B,,
both with dense image. The map A, — I, induces an inclusion B, — B, with closed image.
We will work with B, for the rest of this section, but we will need B, later.

For every a we defined Lie algebras &, 4 and @}Pc‘f associated with the finite type Lie groups
G! , and G;{lg °. We take the projective limit of these algebras to obtain Lie subalgebras of

r,a

Mo (B,).

DEFINITION 2.4.2. The Lie algebras associated with G and Gy are the closed Qp-Lie
subalgebras of Ma(B,.) given respectively by

&, = 1£1 67“,(1
(u,Pl):l

and

Gl = lim O,
(a,Pl):l

where as usual the limits are taken over the non-zero ideals a C A, prime to P;.

For every ideal a of A, prime to P;, we have continuous surjective homomorphisms &, —
&, q and Bloc 6}95

REMARK 2.4.3. The limits in Definition 2.4.2 can be replaced by limits over primary ideals
of Io. Explicitly, let Q be a primary ideal of I, 9. Let G;’Q be the image of G.. via the natural
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projection GLz(I0) — GL2(I,0/Q) and let &, q be the Qp-Lie algebra associated with G|, o
(which is a finite type Lie group). We have an isomorphism of topological Qp-Lie algebras
& = lm .0,
(Q,P1)=1
where the limit is taken over primary ideals Q of I.o and the topology on the right is the
projective limit one.

2.4.2. The Sen operator associated with a Galois representation. Let K and L be
two p-adic fields, following [Sen93]. We recall the definition of the Sen operator associated with
a representation 7: Gal(K/K) — GL,,(%Z) where % is an L-Banach algebra. We can suppose
L C K; if this is not true we restrict 7 to the open subgroup Gal(K/KL) C Gal(K/K).

Let Lo, be a totally ramified Z,-extension of L. Let v be a topological generator of I' =
Gal(Loo/L), T, be the subgroup of I' generated by ?" and L, = LL , so that Lo, = U, Ly,.
Let L), = L, K and G, = Gal(L/L.). If #™ is the Z-module over which Gal(K/K) acts via T,
define an action of Gal(K /K) on Z&1,C, by letting o € Gal(K/K) map 2®y to 7(c)(z) @0 (y).
Then by the results of [Sen73] and [Sen93] there is a matrix M € GL,, (22.C,), an integer
n > 0 and a representation §: I';, = GL,,(Z ®p, L)) such that for all 0 € G,

M7 (0)o(M) = (o).

DEFINITION 2.4.4. The Sen operator associated with T is
log(é(c))

= € My (Z31.C,).
?= M Toa(x (o)) € Mm(#ELC)
log (o
The limit exists as for ¢ close to 1 the map o — M is constant. It is proved in
log(x(c))

[Sen93, Section 2.4] that ¢ does not depend on the choice of § and M.

If L =% = Q,, we define the Lie algebra g associated with 7(Gal(K/K)) as the Q,-
vector space generated by Log (7(Gal(K/K))) in M;,,(Q,). In this situation the Sen operator ¢
associated with 7 has the following property.

THEOREM 2.4.5. [Sen73, Theorem 1] For a continuous representation 7: Gal(K/K) —
GL(Qyp), the Lie algebra g of the group 7(Gal(K/K)) is the smallest Qp-subspace of M, (Q)
such that g@QpCp contains .

The proof of this theorem relies heavily on the fact that the image of the Galois group is a finite
dimensional Lie group. It is doubtful that its proof can be generalized to the relative case.

2.4.3. The Sen operator associated with p,. Recall that we fixed a finite extension
K, of Q, such that G'T’IOC is the image of p[Gal(K/KT) and, for an ideal P C A, and m > 1,

G;;}Ig; is the image of pTva‘Gal(E/KT)' From now on we imply write K = K, noting that for
the moment 7 is fixed. Following [Sen73] and [Sen93] we can define a Sen operator associated
with pr‘Gal(F /) and pr pm| Gal(K/K) for every ideal P C A, and every m > 1. We will see that
these operators satisfy a compatibility property. We write for the rest of the section p, and
pr.pm while implicitly taking the domain to be Gal(K/K).

Set lorc, = ]Ino@Qp(Cp. It is a Cp-Banach space. Let B, c, = IB%T(EA@QP(CP; it is the topo-
logical Cp-algebra completion of B, ®q, C, for the (uncountable) set of nuclear seminorms p
induced by the p-adic norms on the quotients o, c, / allp,-c, via the specialization morphisms
7ot Br ®q, Cp = lorc,/alorc,. Let &rqc, = &rq ®g, Cp and (’5}35’@17 = (‘5},05 ®q, Cp. Then
we define &, ¢, = Q5r®@p@p as the topological C,-Lie algebra completion of &, ®q, C, for the
(uncountable) set of seminorms p, induce by the p-adic norms on &, ¢, via the specialization
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loc

morphisms 7q: &, ®q, Cp = &4, We also define & Cp@%@@p(cp and give it the topology
induced by the p-adic norms (’5}?5 C,- Note that we have isomorphisms of C,-Banach spaces

~ ~ loc

6.c, = lim B¢, and G% = lm G%c.
(a,P1)=1 (a,P1)=1
We apply the construction of the previous subsection to L = Q,, #Z = I, which is a Q-
Banach algebra for the p-adic topology, and 7 = p,. We obtain an operator ¢, € Ma(lo.c,)-
Recall that we have a natural continuous inclusion I, o < B,., inducing inclusions Iy ¢, <= B, c,
and Mz (Ip,c,) = Ma(B;.c,). We denote all these inclusions by ip, since it will be clear each

time to which one we are referring. We will prove in this section that ¢p, (¢,) is an element of

loc
r,Cp-

Let a be a non-zero ideal of A,. Let us apply Sen’s construction to L = Qp, Z = I,¢/al,
and 7 = p,4: Gal(K/K) — GLa(I.o/al,.0); we obtain an operator ¢, € Mg((}lno/a]lno)@@p(cp).
Let
Ta: Ma(Ir,08g,Cp) = Ma((I0/al,0)®qg,Cp)
and
75+ GLa(I,,08q,Cp) — GLa((Ir0/al-0)®q,Cp)
be the natural projections.

PROPOSITION 2.4.6. We have ¢, = mo(¢y) for all a.

PROOF. Recall from the construction of ¢, that there exists M € GLo (I[Om(cp), n > 0 and
§: Ty, = GLo(I,,08q,Qp,) such that for all ¢ € G, we have

(24) M pu(o)0 (M) = 8(0)
and
(2.5) b — lim 1220(0)

Let My = (M) € GLao(Iprc,/alo,c,) and 8 = 7 0 8: Ty — GLa((Ir0/al0)®g, Qp.,)
Denote by ¢rq € Ma((I0/al-0)®q,Q,.,) the Sen operator associated with p,a. Now (2.4) gives

(2.6) Ma_lpr,a(a)U(Ma) = 6a(0)
so we can calculate ¢, q as

. 10g(5a (0))
(2.7) Pra = ;1_)ml m,
that is an element of Ma(%®q,Cp).

By comparing this with (2.5) we see that ¢, q = mq(¢r). O

Let ¢, B, = tg,(¢r). For a non-zero ideal a of A, let mp, 4 be the natural projection B, —
L.o/al.o. Clearly mg, o(¢rB,) = Ta(¢r) and ¢rq = ma(¢p,) by Proposition 2.4.6, so we have

QST,]BT = m(u,Pl)zl Qbr,a-
We use Theorem 2.4.5 to show the following.

PROPOSITION 2.4.7. Let a be a non-zero ideal of A, prime to Pi. The operator ¢, q belongs
to the Lie algebra &1°°

7,a,Cp "

PROOF. Let n be the dimension over Q, of I, /al, 9. By choosing a Qp-basis (w1, ...,wy)
of this algebra, we can define an injective ring morphism o: Ma (I o/al, ) < M2, (Q,) and
an injective group morphism a*: GLy(I,0/al,9) < GL2,(Qp). In fact, an endomorphism
f of the (]Ir,o/al[no)—module (]Ir70/a]1r70)2 = (]Ino/Cl]L»’Q) -e1 D (]Ln,()/aﬂn()) - eg is Qp—linear, so it
induces an endomorphism a(f) of the Q,-vector space (I.o/al,.)? = EBZ ; Qp-wiej; furthermore
if @ is an automorphism then «a(f) is one too. In particular p,, induces a representation
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pra =" oprq: Gal(K/K) — GL2,(Qp). The image of p2, is the group G}fg’a = a*(G5). We
loc,a loc,«

consider its Lie algebra &, = Q, - Log (Grq") C M2, (Qp). The p-adic logarithm commutes
with o in the sense that a(Log x) = Log (a*(x)) for every @ € I', /a1, ,(P), where rg is the

radius chosen in Remark 2.4.1, so we have QS}S?O‘ = 04(61%:) (recall that @}f’)g =Qp - Log G}f’g)

Let ¢, € M2,(C,) be the Sen operator associated with pf,: Gal(K/K) — GL2,(Q,). By
Theorem 2.4.5 we have ¢, € Qii?;’gp = esi‘j&“@c,,. Let ac, = a®1: Mo (o, c, /alorc,) —
M2, (Cp,). We show that ¢ﬁ§p = ac,(¢ra), from which it follows that ¢, € ®loc . since

r,a,Cp

raC,y = acp(@f”c‘f@p) and ac, is injective. Now let My, dq be as in (2.6) and M:C” = ac, (M,),
—1 Qacp

ot = ac, © ds. By applying ac to (2.4) we obtain (Mpr) Pr.a (O’)O’(M:Cp) = 5;1@”(0) for
every o € (G, so we can compute

loc,acp

ac, .. log(éfc” (a))

r,a m —————

o—1 log(x(0))

that coincides with ac,(¢ra)- O

9

PROPOSITION 2.4.8. The element ¢,p, belongs to Qﬁ}f&p, hence to &,.c,-

Proor. Recall that QSIT‘:(EP = l'&n(aﬂ):1 Bloc By Proposition 2.4.6 we have ¢,p, =

r,a,Cp”
loc

@a ¢ra and by Proposition 2.4.7 we have ¢,, € &, a.Cp for every a. We conclude that
$rp, € B . 0

REMARK 2.4.9. In order to prove that our Lie algebras are “big” it will be useful to work
with primary ideals of A, as we did in this subsection. However, in light of Remark 2.4.3, all
of the results can be rewritten in terms of primary ideals Q of I, o. This will be useful in the
next subsection, when we will interpolate the Sen operators corresponding to the representations
attached to the classical modular forms.

From now on we identify Iy, c, with a subring of B,.c, via tp,, so we also identify Ma (I q)
with a subring of Ma(B,) and GLa(Ig,c,) with a subgroup of GLa2(B,c,). In particular we
identify ¢, with ¢,p, and we consider ¢, as an element of &, c, N Ma(lgc,)-

2.4.4. The characteristic polynomial of the Sen operator. Sen proved the following
result.

THEOREM 2.4.10. Let L1 and Lo be two p-adic fields. Assume that Lo contains the nor-
mal closure of Ly. Let 7: Gal(L1/L1) — GLy,(L2) be a continuous representation. For each
embedding o: L1 — Lo, there is a Sen operator ¢, € My, (Cp, @1, » L2) associated with T and
o. If T is Hodge-Tate and its Hodge-Tate weights with respect to o are hig,...,hpy o (with
multiplicities, if any), then the characteristic polynomial of ¢r o is [[21(X — hiq).

Now let k& € N and let P, = (u~*(1 4 T) — 1) be the corresponding arithmetic prime of A,.
Let *B; a prime of I, above P, associated with the system of Hecke eigenvalues of a classical
modular form f. The specialization of p, modulo 9B is the representation ps: Gg — GLa2(I. /By)
classically associated with f, defined over the field Ky = I./9BL,.. By a theorem of Faltings
[Fa87], when the weight of the form f is k, the representation ps is Hodge-Tate of Hodge-Tate
weights 0 and k — 1. In such a case, by Theorem 2.4.10, the Sen operator ¢, associated with
py has characteristic polynomial X (X — (k—1)). Let B0 = By NI o. The specialization of p,
modulo Py gives a representation p,gq,,: Gal(K/K) — GLa(I0/%By,0), that coincides with
pf‘Gal(?/K)‘ In particular the Sen operator ¢, s, , associated with p,g3,( is ¢f.

By Proposition 2.4.6 and Remark 2.4.9, the Sen operator ¢, € Ma(Io,.c, ) specializes modulo
Bro to the Sen operator ¢y, , associated with p, g, , for every f as in the previous paragraph.
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Since the primes of the form By o are dense in Iy, c,, the eigenvalues of ¢, are given by the
unique interpolation of those of p,sp, -
Given f € A, we define its p-adic valuation by v, (f) = inf,ep(,) vp(f(7)), where v, is our

chosen valuation on Cp,. Then if v/(f — 1) < p_ril there are well-defined elements log(f) and
exp(log(f)) in A,, and exp(log(f)) = f.

Let ¢, = log(u)¢,. Note that ¢, is a well-defined element of My (B, c,) since log(u) € Q.
Recall that we denote by Cr the matrix diag (u='(1+4 T),1). We have the following.

PROPOSITION 2.4.11.

(1) The eigenvalues of ¢l are log(u=*(1+T)) and 0. In particular the exponential ®, = exp(¢..)
is defined in GLa(B,c,). Moreover ®,. is conjugate to Cr in GLa(B,c,).
(2) The element ®;. of part (1) normalizes &,.c,.

PRrROOF. For every Br as in the discussion above, the element log(u)¢, specializes to
log(u)¢rsp,, modulo Pro. If Pro is a divisor of Py, the eigenvalues of log(u)¢, g, , are
log(u)(k — 1) and 0. Since 1 + 7T = uF modulo Py for every prime P dividing Py, we
have log(u~1(1 + 7)) = log(u*~!) = (k — 1)log(u) modulo B;o. Hence the eigenvalues of
log(u) sy, , are interpolated by log(u='(1+4T)) and 0.

1
Recall that in Section 2.2.1 we chose rj smaller than p~ »=1. Since r < rj, we have v;(T) <

pip%l. In particular log(u~!(1 + T)) is defined and exp(log(u~'(1 + T))) = v~ (1 + T), so
®, = exp(¢)) is also defined and its eigenvalues are u=(1 + 7) and 1. The difference between
the two is u~ (1 + T) — 1; this element belongs to P;, hence it is invertible in B,. This proves
(1).

By Proposition 2.4.8, ¢, € &,.c,. Since &, c, is a Qp-Lie algebra, log(u) ¢, is also an element
of &, c,. Hence its exponential ®! normalizes Src,- ]

2.5. Existence of the Galois level for a family with finite positive slope

Let r, € pN]o, p_ﬁ[ be the radius chosen in Section 2.2. As usual we write r for any one
of the radii r; of Section 2.2.1. Recall that &, C Ma(B,) is the Lie algebra we attached to the
image of p, (see Definition 2.4.2) and that &, c, = QiT@(Cp. Let u™, respectively ua, be the
upper and lower nilpotent subalgebras of &, and &,.c,, respectively. As before we suppose that
rg < r < rp, where rq is the radius chosen in Remark 2.4.1.

REMARK 2.5.1. The Lie algebras &, and &, c, are independent of r since the groups Gy
+

are, by Remark 2.4.1. Hence the same is true for the commutative Lie subalgebras u™.
aP)=1 L. o/al, this
induces an inclusion B,» — B,. We will consider from now on B, as a subring of B, for every
r < 1. We will also consider Mz (I, c,) and Mz(B,s) as subsets of Ma(Ig,c,) and Ma(1B,)
respectively. These inclusions still hold after taking completed tensor products with C,.

Recall the elements ¢ = log(u)¢, € Ma(B,c,) and @ = exp(¢,.) € GLy(B,c,) defined
at the end of the previous section. The Sen operator ¢, is independent of r in the following
sense: if r < r’ < 7, and B, c, — By c, is the natural inclusion then the image of ¢,» under the
induced map Mz (B, c,) = M2(B,.c,) is ¢». We deduce that ¢;. and ®;. are also independent of
r (in the same sense).

By Proposition 2.4.11, for every r < rj, there exists an element 3. € GLa(B,.c,) such that
B,®.5, ' = Cr. By Proposition 2.4.11(2) @/ normalizes &,¢,, so Cr = 3@, normalizes
/Brﬁr,CpB; ! .

For r < 7’ there is a natural inclusion Iy, < L. Since B, = @(
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We denote by U+ the upper and lower nilpotent subalgebras of sly. Note that 1 4+ T is
invertible in A, since T = p’tt with r;, = p~*, therefore Cp is invertible. The action of Cp on
&, c, by conjugation is semisimple, so we can decompose 3,8, c, /3, I as a sum of eigenspaces
for Cr:

57“67“,@1;6;1 = (57~Q5r,<cp5;1) [1] D (67‘67",@1,/8;1) [uil(l + T)] S2) (/Br@r,(Cpﬁril) [u(l + T)il]
with
(ﬁr‘@r,(cpﬁr_l) [u_l(l + T)] C Lﬁ_ (BT,Cp) and (ﬁrﬁr,cpﬁr_l) [u(l + T)_l] apiy (]B’I",CP)'

Moreover, the formula

(u—l(lo+T) ?)(é i)(u_l({)%—T) (1)>1:<(1) u_1(11+T))\>

shows that the action of C'r on Ll+(IB%T7(Cp) by conjugation coincides with multiplication by
u~!(1 + T). By linearity this gives an action of the polynomial ring C,[T] on Br&..c, B, In
U* (B, c,), compatible with the action of C,[T] on U* (B, c,) induced by the inclusions C,[T] C
Ah@)Qp(Cp C Brc, C By.c,. The first two inclusions in the previous chain are of dense image,
so Cp[T7] is dense in B, c,. Since &,c, is a closed Lie subalgebra of Ma(B,,c,) we can define
by continuity a By c,-module structure on ﬁréir,(cp By In il+(]B%r,(cp) compatible with that on
Ut (B, c,). Similarly we have

<u—1<10+T> c1>></1£ c11><u—1(%+T> (11)’1:<u(1+1T)_1N ‘1)>

By twisting by (1 +7) — (1+T)"! we can also give 3,6,¢,5, ! N (B, c,) a structure of
B;.c,-module compatible with that on 4™ (B,.c,).

By combining the previous remarks with Corollary 2.3.21, we prove the following “fullness”
result for the Lie algebra &,.

THEOREM 2.5.2. Suppose that the representation p is (Ho, Zy)-reqular. Then there ezists a
non-zero ideal | of Iy such that for every r € {r;};>1 the Lie algebra &, contains [-sla(B,).

PROOF. Since U*(B,) = B,, we can and shall identify u* = Q,-Log G.N*(B,) with a Q,-
vector subspace of B, (actually of Iy), and u(Jcrp with a Cp-vector subspace of B, c,. By Corollary
2.3.21, u* NIy contains a basis {e; +}ics of Q(Ip) over Q(Ay). In particular u* contains the
basis of a Ap-lattice in Iy. From Lemma 2.3.17 we deduce that Aju™ contains a non-zero ideal
a™ of Iy. Hence we also have Bh@pu('c'rp D B,.c,a". Now a® is an ideal of Iy and B, ¢, Iy = B, c,,
so B.c,at =B, c,a" is an ideal of B,c,. We conclude that B,c,u* D B, c,a* for a non-zero
ideal a™ of Iy. We proceed in the same way for the lower unipotent subalgebra, obtaining
By c,u” DB, c,a” for a non-zero ideal a™ of Ij.

Consider now the Lie algebra B, c,&c, C M2(B,,c,). Its nilpotent subalgebras are BT,(Cpu+
and B,.c,u~ and we showed that BT,@pqu DB, a®™ and B.c,u” D B, c,a”. Denote by t C sly
the subalgebra of diagonal matrices over Z. By taking a Lie bracket, we see that

[a+ ’ u+(BT,Cp)7 a -4 (Br,(cpﬂ =a-a - t(Br,(Cp)'
From the decomposition sly (B, c,) = 4~ (B, c,) ®t(B,c, aut (B,.c,) we deduce that B, c,®c, D
at-a"sly (Bc,). Let a= at-a~. Now a-sly (B,,c,) is a B, c,-Lie subalgebra of slz(B,.c,). Since
By € GLQ(]:BT,CP) we have S, (Cl 'E[Q(En(cp)) 5;1 =a- E[Q(BT7CP). Thus BT,(Cp (IBT@T,Cpﬁfl) D
a-sly(B.c,). In particular, if ua’g " denote the nilpotent subalgebras of 3,&,.c, B, 1 we have

Br’(cpu(:ctf " D By c,a for both signs. By the discussion preceding the proposition the subalgebras
uaﬁ " have a structure of B, c,-modules, which means that uaﬁT = Bncpuaﬁ ". We conclude that

uaﬁ "Da- ﬂi(Er,@p) for both signs. By taking a Lie bracket as before we obtain 3,6, c, [, IS
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asly (B,.c,). We can untwist by the invertible matrix 3, to conclude that &,.c, O [-sly(B,.c,)
for [ = a?.

Let us get rid of the completed extension of scalars to C,. For every ideal a C I, not
dividing Py, let &, 4 be the image of &, in My (I, o/al, ). Consider the two finite dimensional
Qp-vector spaces &, and [ - sly(I,.o/al, ). Note that they are both subspaces of the finite
dimensional Q,-vector space Ma(L,o/al, o). After extending scalars to C,, we have

(2.8) [-sly (]Ino/aﬂno) ®@p (Cp C er,a &® (Cp.

Let {ej}icr be an orthonormal basis of the Q,-Banach space C,, for an index set I such
that 1 € {e;}ier. Let {vj}j=1,.n be a Qp-basis of Ma(Il,o/al, o) such that, for some d < n,
{vj}j=1,..a is a Qp-basis of &, ,.

Let v be an element of [ -sly(I,.o/al.0). Then v® 1 € [-sly(I,o/al, o) ® C, and by (2.8) we
have v ® 1 € 6,4 ® Cp. As {v; ® €;}1<j<dicr and {v; ® €;}1<j<n,icr are orthonormal Qp-bases
of &, ® C, and Ma(I,o/al,.o) ® Cp, respectively, there exist \;; € Qp, (4,7) € {1,2,...d} x I
converging to 0 in the filter of complements of finite subsets of {1,2,...,d} x I such that v®1 =
Djmt,dsicr 23 (V) © €i).

But v®1 € Ma(Lo/all,0) ®1 C Ma(I,.0/al, ) ® Cp, and therefore v@1 = Z1gj§n aj(v;®1),
for some a; € Qp, j = 1,n. By the uniqueness of a representation of an element in a Q,-Banach
space in terms of a given orthonormal basis we have

d d
v®1= Z aj(v;®1) ie. v= Zajvj €&,
j=1 J=1

By taking the projective limit over a, we conclude that
[-sl(B,) C &,.
O

DEFINITION 2.5.3. The Galois level of the family 0: Ty, — 1° is the largest ideal ly of To[P;"]
such that &, D ly - sla(B,) for every r € {ri}i>1.

It follows from the previous remarks that [y is non-zero.

2.6. Comparison between the Galois level and the fortuitous congruence ideal

Let 6: T, — I° be a family of GLo-eigenforms of slope bounded by h. We keep all the
notations from the previous sections. In particular p: Gg — GL2(I°) is the Galois representation
associated with 8. We suppose that the restriction of p to Hy takes values in GLy(I§). Recall that
[ =1°[p~!] and Iy = I[p~!]. Also recall that Py is the prime of A;, generated by u=1(1+7T) — 1.
Let ¢ C I be the fortuitous CM-congruence ideal associated with 6 (see Definition 2.2.12). Set
¢ =cNIly and ¢ = coﬂg[Pl_l}. Let [ =1y C ]Io[Pl_l] be the Galois level of the family 6 (see
Definition 2.5.3). For an ideal a of To[P; '] we denote by V'(a) the set of prime ideals of To[P; ']
containing a. We prove the following.

THEOREM 2.6.1. Suppose that

(1) p is (Ho, Zyp)-reqular;

(2) there exists no pair (F,1), where F is a real quadratic field and ¢: Gal(F/F) — F* is a
character, such that p: Gg — GLo(F) = Indgw.

Then we have V(1) =V (¢q).
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Before giving the proof we make some remarks. Let P be a prime of Io[P; 1] and @Q be a prime
factor of PI[P;]. We consider p as a representation Gg — GLa(I[P;!]) by composing it with
the inclusion GLg(I) = GLo(I[P;!]). We have a representation pg: Gg — GLo(I[P;']/Q)
obtained by reducing p modulo Q. Tts restriction pg|m, takes values in GLa(To[P;']/(Q N
Io[P; 1)) = GLa(To[P; ']/ P) and coincides with the reduction pp of p|g,: Hy — GLa(Io[P;'])
modulo P. In particular pg|m, is independent of the chosen prime factor @) of PI[P; .

Let K be a p-adic field and A be a finite-dimensional K-algebra. We say that a subgroup of
GL2(A) is small if it admits a finite index abelian subgroup. Let P, @ be as above, Gp be the
image of pp: Hy — GLa(To[P;']/P) and Gg be the image of pg: Go — GL2(I[P;']/Q). By
our previous remark pp coincides with the restriction pg|m,, so Gp is a finite index subgroup
of Gg for every (). In particular Gp is small if and only if G is small for all prime factors @
of PI[P .

If @ is a CM point the representation pg is induced by a character of Gal(F/Q) for an
imaginary quadratic field F'. Hence Gg admits an abelian subgroup of index 2 and Gp is also
small.

Conversely, if Gp is small then G is small for every prime Q" above P. Choose any such
prime @Q'; by the argument in [Ri77, Proposition 4.4] G has an abelian subgroup of index
2. It follows that pg is induced by a character of Gal(F¢/Fq) for a quadratic field Fg. If
we suppose that the residual representation p: Gg — GL2(F) is not induced by a character of
Gal(F/F) for a real quadratic field F' then Fgy is imaginary and @’ is CM. Under assumption
(2) of Theorem 2.6.1, the above argument proves that Gp is small if and only if all points
Q' C I[P;!] above P are CM.

ProoOF. Fix a radius r € {r;};>1. We prove first that V(¢;) C V(I). By contradiction,
suppose that a prime P of Io[P; '] contains ¢; - I[P;'] but not I. Then there exists a prime
factor Q of PI[P; '] such that ¢ C Q. By definition of ¢ the point @ is CM in the sense of
Section 2.2.4, hence the representation PLp Y. has small image in GLa(I[P;']/Q). Then its
restriction py Pfl}yQ‘ H, = pp also has small image in GLg(Io[P; ']/ P). We deduce that there is
no non-zero ideal Jp of Io[P; ']/ P such that the Lie algebra &, p contains Jp -sly(I.o[P; ]/ P).

By definition of [ we have [ - sla(B,) C &,. Since reduction modulo P gives a surjection
&, — &, p, by looking at the previous inclusion modulo P we find [-sly (]Ino[Pfl] /PL.o[P; 1]) C
&, p. If | ¢ P we have [/P # 0, which contradicts our earlier statement. We deduce that [ C P.

We prove now that V() C V(c1). Let P C Iy[P; '] be a prime containing [. Recall that
To[P; "] has Krull dimension one, so xp = Ig[P;!]/P is a field. Let Q be a prime of I[P;}]
above P. As before p reduces to representations pg: Gg — GLo(I[P;']/Q) and pp: Hy —
GLa(Io[P; ]/ P). Let f C Iy[P; '] be the P-primary component of [ and let 2 be an ideal of
Iy [Pl_l] containing P such that the localization at P of 2(/3 is one-dimensional over kp. Let
5= ASP - sla (I, 0[P ]/P) N B,.p, that is a Lie subalgebra of A/ - sla (I, 0[P} ]/PB).

We show that s is stable under the adjoint action Ad (pg) of Gg. Let Q be the Q-primary
component of [ - I[P 1]. Recall that &,y is the Lie algebra associated with the pro-p group
Im p, ol H, N FGLQ(HTO,O[Pfl}/m) (p), where the radius 79 was fixed in Remark 2.4.1. Since the
above group is open in Im p, g C GLo(I.[P;!]/Q), the Lie algebra associated with Im p,.q is
again ®,q. In particular &,y is stable under Ad (pg). Since &,.q C sla(I, 0[Py *]/%R) we have
A/P-slo (L 0[P; ]/ PB)NS, 5 = A/B sl (L. [P 1]/Q) NS, q. Now A/B sl (1. [P1]/9Q) is clearly
stable under Ad (pg), so the same is true for 2/ - sla(I,[P; *]/Q) N &,.q, as desired.

We consider from now on s as a Galois representation via Ad (pg). By the proof of Theorem
2.5.2 we can assume, possibly considering a sub-Galois representation, that &, is a B,.-submodule
of 5l3(B,) containing [ - sly(B,) but not a- sly(B,) for any ideal a of Iy[P; '] strictly bigger than
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[. This allows us to speak of the localization sp of s at P. Note that, since ¥ is the P-
primary component of [ and Ap/Bp = kp, by P-localizing we find &, (py O Bp-shk(B, p)) and
&, (p) 2 Ap - sb(B, (p)).

The localization at P of A/ - sla (I, o[P;]/B) is sla(kp), so sp is contained in sly(kp). It
is a kp-representation of G (via Ad (pg)). We study its dimension, which is at most 3.

We cannot have sp = 0. By exchanging the quotient with the localization we would obtain
(le . ﬁ[Q(Bn(p)) N ®T7(p))/mp = (0. By Nakayama’s lemma 2Ap - 5[2(Br,(P)) N Q5T7(P) = 0, which
is absurd since 2Ap - sl2(B, (p)) N &, (p) D Pp - sla(B, py) # 0.

We also exclude the three-dimensional case. If sp = slao(kp), by exchanging the quotient
with the localization we obtain (Up-sla(B,. p)N&,.p)/PBp = ™Ap-sla(To,p[P; ) /Brlorp[Pr Y]
because leﬂomp[Pfl}/‘BpHOVTyp[Pfl] = kp. By Nakayama’s lemma we conclude that &, p D
2 - sly(B, p), which contradicts our choice of 2.

We are left with the one and two-dimensional cases. If sp is two-dimensional we can always
replace it by its orthogonal in sly(xp) which is one-dimensional. Since the action of Gg via
Ad (pq) is isometric with respect to the scalar product Tr(XY") on sly(kp).

Suppose that slo(kp) contains a one-dimensional stable subspace. Let ¢ be a generator of
this subspace over kp. Let x: Gg — kp be the character satisfying pg(g)dpo(g)™t = x(9)¢
for all g € Gg. Now ¢ induces a non-trivial morphism of representations pg — pg ® x. Since
po and pg ® x are irreducible, ¢ must be invertible by Schur’s lemma. Hence we obtain an
isomorphism pg = pg ® x. By taking determinants we see that x must be quadratic. If Fy/Q
is the quadratic extension fixed by kery, then pg is induced by a character ¢ of Gal(Fy/Fp).
By assumption the residual representation pgm,: Gg — GL2(F) is not of the form Ind%w for a
real quadratic field F' and a character Gal(F/F) — F*. We deduce that Fy is imaginary, so Q
is a CM point by Remark 2.2.13(1). By construction of the congruence ideal we obtain ¢ C Q
and ¢; C (QNTp)-To[P; '] = P. 0

We prove a corollary.
COROLLARY 2.6.2. If the residual representation p: Gg — GLa(IF) is not dihedral then [ = 1.

PROOF. Since p is not dihedral there cannot be any CM point in the family 8: T; — I°.
By Theorem 2.6.1 we deduce that [ has no non-trivial prime factor, hence it is trivial. O

REMARK 2.6.3. Theorem 2.6.1 gives another proof of Proposition 2.2.11. Indeed the CM
points of a family 0: Ty, — 1° correspond to the prime factors of its Galois level, which are finite
in number.

We also give a partial result about the comparison of the exponents of the prime factors of
¢; and [. This is an analogous of what is proved in [Hil5, Theorem 8.6] for an ordinary family;
our proof also relies on the strategy there. For every prime P of Io[P; 1] we denote by ¢!’ and
(¥ the P-primary components of ¢; and [, respectively.

THEOREM 2.6.4. Suppose that p is not induced by a character of Gr for a real quadratic
field F/Q. Then (¢I)? c (P c of.

PRrOOF. The inclusion I C ¢f” is proved in the same way as the first inclusion of Theorem
2.6.1.

We show that the inclusion (¢I)2 C I holds. If ¢/ is trivial this reduces to Theorem
2.6.1, so we can suppose that P is a factor of ¢;. Let @ denote any prime of I[P 1] above
P. Let c? be a Q-primary ideal of I[P;!] satisfying c? NIo[P '] = . Since P divides
¢1, @ is a CM point, so we have an isomorphism pp = Ind%q/) for an imaginary quadratic
field F//Q and a character ¢: G — C;. Choose any r < 7. Consider the xp-vector space
S = &, N - sly(I0) /B, Nel P-sly(I o). We see it as a subspace of sly(c’ /¢l P) 2 sly(kp).
By the same argument as in the proof of Theorem 2.6.1, S.p is stable under the adjoint action
Ad (pc?Q): Go — Aut(sla(kp)).
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Let xr/q: Gg — C; be the quadratic character defined by the extension F/Q. Let € € Gg
be an element projecting to the generator of Gal(F/Q). Let ¢°: Gp — C; be given by 1°(7) =
P(ere™t). Set ¢~ = /1. Since pg = Indgw, we have a decomposition Ad (pg) = xr/@ ©
Ind(%w_, where the two factors are irreducible. Now we have three possibilities for the Galois
isomorphism class of s.p: either it is Ad (pg) or it is isomorphic to one of the two irreducible
factors.

Ifs.p = Ad (pg) then 5.p = slo(kp) as kp-vector spaces. By Nakayama’s lemma &, O ¢l -
sl(B,.). This implies ¢ C [’ hence ¢f’ = ¥ in this case.
If 5, P is one-dimensional then we proceed as in the proof of Theorem 2.6.1 to show that

Pag: G@ — GLo (I[P }/C?Q]I [P;1]) is induced by a character v Q" Gr — CJ. In particu-
lar the image of p.rp: H — GLa( 0[Py Y]/¢V Pl,p) is small. This is a contradiction, since ¢}

is the P-primary component of ¢;, hence it is the smallest P-primary ideal 2 of I[Py '] such
that the image of pg: Gg — GLQ( [ /21, [PY)) is small.

Finally, suppose that s = IndF@Z)_. Let d = diag(di,d2) € p(Gg) be the image of a
Zy-regular element Since d; and da are non-trivial modulo the maximal ideal of Ij, the image
of d modulo ¢} “(Q is a non-trivial diagonal element d QQ = diag (d, Qg d, CQQ> €p QQ(GQ) We
decompose s.p in eigenspaces for the adjoint action of dc?Q, writing s.p = s.p[a] s p[1]®s r[a -1)
where a = dl,c?Q/dQ,c?Q' Now s.r [1] is contained in the diagonal torus of sly(kp), on which the
adjoint action of G is given by the character xr/q. Since xr/q does not appear as a factor of
s.p, we must have s p [1] = 0. This implies that 5P [a] # 0 and 5P [a=1] # 0. Since 5P [a] = crda
ut(kp) and 5P [a~ ] = sep u~ (kp), we deduce that s.p contains non-trivial upper and lower
nilpotent elements u+ and w—. Then vt and u~— are the images of some elements v and u~ of
&, Nl - sly(I0[P;!]) non-trivial modulo ¢/ P. The Lie bracket ¢ = [u*,u~] is an element of
&, Nt(L.o[P;']) (where t denotes the diagonal torus) and it is non-trivial modulo (¢!”)?P. Hence
the kp- _vector space §.py2 = &, N (cf)? - sla(To,c, [P /6.0 ()P +sly(lo,c, [P ']) contains

non-trivial diagonal, upper nilpotent and lower nllpotent elements, so it is three-dimensional.
By Nakayama’s lemma we conclude that &, D (cf’)? -5[2(Hr,0[Pf1]), so ()2 CIf. O
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CHAPTER 3

A p-adic interpolation of the symmetric cube transfer

Let N be a positive integer. The goal of this chapter is to define a morphism of rigid analytic
spaces D{V — Dé\/[ , for an integer M depending on NN, interpolating the classical Langlands lift
of automorphic representations associated with the symmetric cube map GL2(C) — GSp,(C).
The existence of this lift was proven by Kim and Shahidi in [KS02]. A technique for the p-adic
interpolation of a lift defined at classical points was first developed by Chenevier in [Ch05],
where he applied it to the Jacquet-Langlands correspondence. His arguments have been adapted
to other known cases of classical Langlands functoriality by White [Wh12] and Ludwig ([Lul4],
[Lul4]). In our context it will be more convenient to use the approach presented by Bellaiche
and Chenevier in [BC09, Section 7.2.3], which is a reformulation of Chenevier’s idea in terms
of a notion of uniqueness of eigenvarieties. The advantage of this method is that it allows to
work with Zariski-closed subspaces of the eigenvarieties that are not themselves eigenvarieties
in the sense of Buzzard.

3.1. Galois representations attached to classical automorphic forms

We recall here the main properties of the Galois representations attached to classical eigen-
forms for GLp and GSpy.

We recall that the cohomological weights are the integers k with & > 2 for GLo and the
pairs of integers (k1, ko) with k; > ko > 3 for GSp,.

Given two rings R and S and a morphism yx: R — S, we extend x to a morphism of
polynomial algebras R[X] — S[X]| by applying it to the coefficients of each polynomial. We
still denote this map by x. In most cases R will be an abstract Hecke algebra, S a subfield of C,
or a ring of analytic functions on a rigid analytic space, and x the system of Hecke eigenvalues
associated with an eigenform or a family of eigenforms.

THEOREM 3.1.1. Let g =1 or 2 and let f be a GSpy,-eigenform of level N and cohomological
weight. Let x(f): HN — Q be the system of Hecke eigenvalues of f and, for a prime {, let
xe(f) = veox(f): HN — Q. When q varies over the rational primes, there exists a system of
Galois representations

Pfaq: GQ — GSpgg(@q)
with the following properties:
(1) if £ is a prime not diwiding Nq, py,q is unramified at ¢;
(2) if € is a prime not dividing Nq and Froby € Gq is a lift of the Frobenius automorphism at
£, then

(3.1) det(1 — X pyg(Froby)) = xe(f) (Puin(t); X))

This result is due to Eichler and Shimura for g = 1 and weight 2 [Sh73], Deligne for g = 1
and arbitrary weight [De71], Taylor [Tay93], Laumon [Lau05] and Weissauer [Weiss05] for
g=2.

There is an analogue of Theorem 3.1.1 for the local representation at ¢. See Section 3.10.1
for a summary of the basic definitions in p-adic Hodge theory, or the reference [Fo94|. Given
n > 1 and a crystalline representation p: Gg, — GL,(Q,), we denote by Deis(p) the module
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associated with p by Fontaine’s theory: it is an n-dimensional @q—vector space endowed with

a @q—linear Frobenius automorphism ¢is(p). Faltings proved that if ¢ does not divide N the
representation py 4|p, is crystalline (see Theorem 3.10.5(2)).

THEOREM 3.1.2. [Ur05, Theorem 1] The Frobenius map @eris(pfq) acting on Deis(pf,q)
satisfies

(3.2) det(1 — X90cris(pf,q)> = Xq(f)Pmin(tt(;,;Q X).
REMARK 3.1.3. Because of the analogy between Equations (3.1) and (3.2) the element t(g‘?g
s sometimes called the “Hecke-Frobenius” element.

We recall some conditions for the representations py, to be irreducible.

THEOREM 3.1.4.

(1) [Ri77, Theorem 2.3] Let f be a cuspidal GLa-eigenform of cohomological weight. Then the
(-adic representation pye: G — GL2(Qy) is irreducible for every prime (.

(2) ([HT15, Proposition 3.1], [CG13, Theorem 4.1]) Let f be a cuspidal GSp,-eigenform of
cohomological weight. Suppose that f is neither CAP nor endoscopic and that the Lang-
lands functoriality transfer from GSpy to GL4 holds. Then the representation pyre: Gg —
GL2(Qy) is absolutely irreducible for every prime (.

In the following we will always take ¢ to be our fixed prime p not dividing N.

3.2. Generalities on the symmetric cube map

If R is a ring and M is a free R-module, we denote by Sym>®M the symmetric cube of M.
It is the quotient of the tensor product M®3? = M ® M ® M by the R-submodule generated by
the set

ISym3 ={mi; @ ma @ mz — Me(1) @ Me(2) @ Me(3) |mi,me,m3 € M, e € 3},

where .3 is the group of permutations of {1,2,3}. There is a non-canonical isomorphism
between Sym3M and the R-module Rle1,ea,...,e,]%% 3 of homogeneous polynomials of degree
3 in n variables. If {ej,eq,...,e,} is an R-basis of M, one such isomorphism is given by the
unique R-linear map sending e; ® e; ® ey, to e;ejer. We will often identify an element of Sym?> M
with its image in Rle, ez, ..., e,]9%8 3 via the isomorphism above.

If G is a group acting on the module M, we define an action of G on M®3 by g.(m; @ ma ®
ms3) = g.m1®g.mao®g.ms3. The module Isym3 18 G-stable, hence there is a well-defined action of
G on Sym®M. We call it the symmetric cube of the G-module M. When M is two-dimensional
and {e1, ez} is a basis for M, the set {e3,e2es, e1e3,e3} is a basis for Sym®> M. These choices
give identifications GLa(R) & Autzr(M) and GL4(R) = Autp(Sym3M). The action of GLa(R)
on M induces an action of GLy(R) on Sym®M, hence a group morphism GLa(R) — GL4(R).
We call it the symmetric cube map and we denote it by Sym%: GLa(R) — GL4(R). Explicitly,

for every ( CCL Z ) € GLy(R) we have

a3 3a2b 3ab? b3
Sym3, [ @ b\ | 3a®c a%d+2abc b3*c+ 2abd 3b*d
YRR ¢ a ) T | 3ac® 2b+2acd d*a+2bed 3bd>
3 3c2d 3ed? a3
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A direct calculation shows that ker(Sym%) = uz(R). Since GLa(R) preserves the symplectic

. 1 : .
form on M defined by the matrix ( , the image of Sym‘;’% preserves the symplectic form

0
-1 0
on Sym>®M defined by the matrix

00 0 1
s( 0 1\ [ 0o 0 -10
Sym1%(—10_0100

~10 0 0

Hence Sym?%, defines a morphism Sym%: GLg(R) — GSp,(R). This map arises from a morphism
Sym?®: GLy — GLy4 of group schemes over Z. The following is an exact sequence of group
schemes over Z:

0 — pus — GLa2 — GSpy,.

From now on we will drop the subscript R and simply write Sym®: GLa(R) — GSp,(R) for the
morphism induced by Sym3. For every representation p of a group with values in GLy(R) we
set Sym3p = Sym? o p.
Let g € GLa(R). Let g act on R? via the standard representation and let
P(g;X)=det(l - X -g)=X*-TX+D

be the characteristic polynomial of g. If the eigenvalues of g are elements a and 8 of an
extension of R, the eigenvalues of the element Sym?3g of GSp,(R) acting on R* via the standard
representation are o, o3, af?, 82. Then a simple calculation with the symmetric functions
T and D of a and 8 shows that the characteristic polynomial of Sym?3g is

P(Sym?g; X) = det(1 — X - Sym®g) =
= X1 (1% - 2TD)X3 + (T* - 3DT? + 2D*)X? — D3(T® 4 2T'D)X + DS.
If T, D € R are arbitrary and P(X) = X2 —TX + D, we define the symmetric cube of P(X) as
Sym?*P(X) = X4 — (T3 — 2TD)X3 + (T* — 3DT? + 2D?)X? — D3(T3 + 2T D)X + D°.

(3.3)

3.3. The classical symmetric cube transfer

Kim and Shahidi proved the existence of a Langlands functoriality transfer from GLo to
GLy4 associated with Sym®: GLy(C) — GL4(C) [KS02, Theorem B]. Thanks to an unpublished
result by Jacquet, Piatetski-Shapiro and Shalika [KS02, Theorem 9.1], this transfer descends
to GSp,. We briefly recall these results.

Let m = @), ™ be a cuspidal automorphic representation of GLa(Ag), where v varies over
the places of Q. Let p, be the two-dimensional representation of the Weil-Deligne group of
Q, attached to m,. Consider the four-dimensional representation SymeU = Sym3 o p, of
the same group. By the local Langlands correspondence for GL4, Sym?®p, is attached to
an automorphic representation Sym®r, of GL4(Q,). Define a representation of GLy(Ag) as
Sym?r = R, Sym®7,. Then we have the following theorems.

THEOREM 3.3.1. [KS02, Theorem B| The representation Sym> is an automorphic repre-
sentation of GL4(Ag). If m is attached to a non-CM eigenform of weight k > 2, then Sym?®r is
cuspidal.

THEOREM 3.3.2. [KS02, after Theorem 9.1] If 7 is attached to a non-CM eigenform of
weight k > 2, then there exists a globally generic cuspidal automorphic representation 11 of
GSp,(Aq) such that Sym>r is the functorial lift of I1 under the embedding GSp,(C) — GL4(C).
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If K is a compact open subgroup of GSp4(Z), we call level of K the smallest integer M
such that K contains the principal congruence subgroup of GSp4(2) of level M. Given an
automorphic representation II of GSp,(Ag), we call level of II the smallest integer M such that
the finite component of II admits an invariant vector by a compact open subgroup of GSp4(z)
of level M.

Recall that we fixed for every prime ¢ an embedding Gg, — Gg. If 0: Gg — GL,(Q,)
is a representation and £ is a prime different from p, set o, = U’G@Z. We denote by N(o,?)
the conductor of oy, defined in [Ser70]. The prime-to-p conductor of ¢ is defined as N (o) =
IL 2N (0,0). We recall a standard formula giving N (o, /) for every ¢ prime to p (see [Liv89,
Proposition 1.1]). Let I C Gg, be an inertia subgroup and for £ > 1 let I}, be its higher inertia
subgroups. Let V' be the two-dimensional @p—vector space on which Gg acts via 0. For every
subgroup H C Gg let dy, be the codimension of the subspace of V' fixed by o(H). Then
N(o,l) = {"t where

dr, 77
(3.4 ot = i+ 3 (1.
k>1 Tk

Write 11y for the component of II at the finite places and I, for the component of II at oo.
Since the representation II given by the above theorem is globally generic, it does not correspond
to a holomorphic modular form for GSp,. However Ramakrishnan and Shahidi showed that
the generic representation II,, can be replaced by a holomorphic representation IT2 such that
I1; ® 129! belongs to the L-packet of II. This is the content of [RS07, Theorem A’], that we
recall below. Note that in loc. cit. the theorem is stated only for 7 associated with a form f of
level I'g(N) and even weight £ > 2, but Ramakrishnan pointed out that the proof also works
when f has level I'1(N) and arbitrary weight k£ > 2. The theorem also gives an information on
the level of the representation produced by the lift.

Let m be the automorphic representation of GL2(Ag) associated with a cuspidal, non-CM
eigenform f of weight & > 2 and level I'y (V) for some N > 1. Let p be a prime not dividing NV
and let ps,, be the p-adic Galois representation attached to f.

THEOREM 3.3.3. (see [RS07, Theorem A’]) There exists a cuspidal automorphic represen-
tation TI"°! = @, M1 of GSpy(Aqg), satisfying:
(1) TI'! s in the holomorphic discrete series;
(2) L(s,11"") = L(s,m,Sym?);
(8) TI'! s unramified at primes not dividing N ;
(4) TI*! admits an invariant vector by a compact open subgroup K of GSpy(Ag) of level
N(Sym®p;,,).

We deduce the following corollary.

COROLLARY 3.3.4. Let f be a cuspidal, non-CM GLso-eigenform of weight k > 2. For every
prime £ let pyyg be the L-adic Galois representation associated with f. There exists a cuspidal
GSpy-eigenform F of weight (2k—1, k+1) with associated (-adic Galois representation Sym3pf7g
for every prime £. For every prime p not dividing N, the level of F is a divisor of the prime-to-p
conductor of Sym3pf7p.

Note that the weight (2k — 1,k + 1) is cohomological since k > 2.

Proor. Everything except for the weight of F' follows immediately from Theorem 3.3.3.
We obtain the weight of F' by looking at the Galois representation pg,, for a prime p { N. See
Section 3.10.1 below for a summary of the definitions and results we need from p-adic Hodge
theory. Let E be a finite extension of Q, such that the representation py, is defined with
coefficients in E and let V' be a two-dimensional E-vector space on which Gg, acts via py .

Let Gg, act on Sym®V via the representation Sym3pf7p = prp. By Remark 3.10.6 V is a
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Hodge-Tate representation with Hodge-Tate weights (0, k — 1), which means that the Q,-vector
space

(Cptl ®Qp V)GQP
is one-dimensional if ¢ = 0 ori= —(k — 1) and zero-dimensional otherwise. Let vy, vx_1 € V be
two elements such that ¢* ® vy and t* ® vi_1 are G@p—invariant. Then the elements

1®vg Ry vy € Cp ®Qp Sym3V
t=* D @ vy @ vy @ vy € Cpt~ ¢V 0g Sym3V

t726D @ g @ vp_1 @ vp_ € (Cpt_Q(k_l) ®q, Sym?®V
¢—3(k=1) QR V1 @ Up—1 QUg_1 € Cpt_g(k_l) ®Q, Sym3V
are G, -invariant, hence the Hodge-Tate weights of Sym3V are (0,k—1,2(k—1),3(k—1)). By
Remark 3.10.6 we deduce that the weight of F'is (ki, k) = (2k — 1,k + 1). O

We denote by Sym?f the cuspidal Siegel eigenform given by the corollary. Let N(f) and
N (Sym?f) be the levels of f and Sym?f, respectively. Thanks to the property (4) in Theorem
3.3.3 we can give an upper bound for N(Sym?f) in terms of N(f) by comparing N(Sym?’pﬁp)
and N(py,p) for a prime p not dividing N(f).

As before let 0: Gg — GL,(Q,) be a representation and let oy = 0|, for every prime /.

LEMMA 3.3.5. For every prime { different from p we have N (Sym3ay) | N(o¢)®. In particular
N(Sym30) | N(0)3.

PROOF. We use the notations of formula (3.4). We see immediately that, for every subgroup
H of Gg:
(1) if dye = 0 then dpy g3, = 0;
(2) if dye =1 then dy g3, < 3;
(3) if dmo = 2 then trivially dy g 3, < 4.

In all cases dy g3, < 3dm,o, so formula (3.4) gives N(Sym3a,¢) | N(o,£)3. Since the prime-
to-p conductor is defined as the product of the conductors at the primes £ different from p, we
obtain that N(Sym3c) | N (o). O

DEFINITION 3.3.6. Let N be a positive integer and let N = H‘ij:l 07" be its decomposition in
prime factors, with {; # £ if i # j. For everyi € {1,2,...,d} set:
ed =11ifa;=1;

7
e a = 3a; if a; > 1.

7

We define an integer M, depending on N, by M = []¢ )

i=1"%
COROLLARY 3.3.7. Let N = N(f) and let M = M(N) be the integer given by Definition
3.3.6. Then N(Sym®f) | M.

PRrROOF. Let 7y = @), 7 be the automorphic representation of GL2(Ag) associated with
f. Let mg 35 = @y Tgym3 s, Pe the automorphic representation of GSp,(Ag) associated with

Sym?f. For every prime ¢ the Galois representations associated with the local components Ly
and g3, are pyy and Sym3pf7g, respectively. As before let N = Hle ¢" be the decompo-
sition of IV in prime factors. If £{ N the representation 7, is unramified, so Tgym3 f,¢ 1S also
unramified.

Let i € {1,2,...,d}. If a; = 1 the local component 7, is Iwahori-spherical, hence Stein-
berg. Then the image of the inertia subgroup at ¢; via ps ¢, contains a regular unipotent element
u. The image of the inertia subgroup at ¢; via Sym?>p ,; contains the regular unipotent element
Sym>u, so the automorphic representation Tgym? f,¢; 1 Iwahori-spherical. Hence the factor ¢;

appears with exponent one in N (Sym? f).
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Now suppose that a; > 1. By a classical result of Carayol N(pyy,) is a divisor of £;". Let
p be a prime not dividing N. By Lemma 3.3.5 the conductor N(Sym3pf7p,€i) is a divisor of
N(psp,4i)?, hence of E?a". By Corollary 3.3.4 the power of ¢; appearing in N (Sym? f) is a divisor
of N (Symgpfyp,&), hence the factor ¢; appears with exponent at most 3a; in N (Sym3 f)- O

3.4. The morphisms of Hecke algebras

As usual we fix an integer N > 1 and a prime p not dividing N. We work with the abstract
Hecke algebras H1Y, HYY defined in Section 1.2.4. Recall that they are spherical outside N and
Iwahoric dilating at p.

Let f5* be the stabilization of a non-CM GLsg-eigenform f of level I'y1 (V) and weight k > 2.
Let Xi\[p : Hin — @p and xV: HY — @p be the systems of Hecke eigenvalues of f and f5t,
respectively. In general, and conjecturally always, there are two different forms p-stabilizations
of f.

Let M be the integer given by Definition 3.3.6, depending on N. Let Sym?f be the classical,
cuspidal GSpy-eigenform of level M given by Corollary 3.3.4. Since M and N have the same
prime factors, Sym®f is an eigenform for the action of ”HéVp and thus it defines a system of
Hecke eigenvalues Xé\/p : Hév LG @p. We p-stabilize Sym®f to obtain a form of Iwahoric level.
There are in general eight different p-stabilizations of Sym?®f. Each of them defines a system of
Hecke eigenvalues ’Hév — @p. In Propositions 3.4.2 and 3.4.5 we will compute the systems of

eigenvalues of all possible p-stabilizations of Sym?®f in terms of that of Xf]p .
If x is a system of Hecke eigenvalues, we write x, for its local component at the prime /.

DEFINITION 3.4.1. For every prime {1 Np, let
Av: H(GSpy(Qe), GSpy(Ze)) — H(GL2(Qy), GL2(Zy))
be the morphism defined by
T = (Tf)?,
T s —(T))0 + (40— 2T (T )) + (66 — 42 (T)2(T))? — 3EA(TLY)?,
183 o (Y - e E)
Let A\NP: ’HéVp — Hin be the morphism defined by ANP = ®epr Ag.

PROPOSITION 3.4.2. Let R be a ring. Let xin: ”Hf/p — R, XéVp: HéVp — R be two morphisms
and let p1: Gg — GLa(R), p2: Gg — GSpy(R) be two representations satisfying:

(1) for g = 1,2 pg is unramified outside Np;
(2) for g =1,2, every prime £{ Np and a lift Frob, € Gg of the Frobenius at ¢,

det(1 — X p;(Froby)) = x;"*(Panin (t); X));
(8) there is an isomorphism ps = Sym?3p;.
Then ANP is the only morphism Hé\[p — Hf[p such that XéVp = xin o AVP,
PROOF. Let ¢ be a prime not dividing Np. By Equation (1.3) we have Pmin(tgll); X)=X2—-
Tf(,ll)( )X + 0T, e(,l)' Hence hypothesis (2) with g = 1 gives 7
(3.5) det(1 — X p;(Froby)) = 1 P(X2 — T ()X + €T.p).
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Then Equation (3.3) allows us to compute
(3.6)
det(1 — XSym®p(Froby)) = X* — (T,) — 201 YT} ) X3+
1 1
H(TL)) = BT (1)) + 22(T() ) X% = (T P (T + 20T )T X + 9(Tyg)°.
By Equation (1.5) we have
Prin(tf3: X) = X* = TX 4+ (1,39 =17 — PT{) X7+
2) (2 2
TS+ Ty
so hypothesis (2) with g = 2 gives
det(1 — X Sym®p(Froby)) = x5 (X* — 4(22)X3
(3.7) (2)2 ( ) 272 x2 _ 3@ p(2) 6 ((2)y2
Iy -1 - PTE)X - PTRTEX + (T2,

By comparing the coefficients of the right hand sides of Equations (3.6) and (3.7) we obtain the
relations

X P(TD) = xd P (—(T))8 + (40 = 2T, (T + (60 — 4 (T ) ATV ) = 33(TL))?),
BT = (T — 24TV T,
BT = P UT))).
We deduce that A\ is the only morphism H(GSp,(Qr), GSps(Zy)) — H(GL2(Qp), GL2(Zy))

satisfying XéVp(Sym?’f) = xf[p o A\g. Since this is true for every £{ Np, we conclude that AP is
the only morphism HéVp — ”Hf[p satisfying Xé\]p = Xin o VP, O

As a special case of Proposition 3.4.2 we obtain the following corollary.

COROLLARY 3.4.3. Let f be a classical, non-CM GLg-eigenform f of level T1(N) and system
of eigenvalues Xi\[p: Hin — @p outside Np. Let Sym®f be the symmetric cube lift of f given by
Corollary 3.3.4. Then the system of eigenvalues XéVp of Sym?® f outside Np is Xf[p o \NP: ’HéVp —
Q,.

PRrROOF. The corollary follows from Proposition 3.4.2 applied to R = @p, Xin and Xé\fp
in the statement, p1 = pyp and p2 = pgy3y,,- U

Now we study the systems of Hecke eigenvalues of the p-stabilizations of Sym? f.
DEFINITION 3.4.4. Fori € {1,2,...,8} we define morphisms

Aip: H(T2(Qp), Ta(Zy))™ — H(T1(Qy), T1(Zy))-

Fori e {1,2,3,4} the morphism X; is defined on a set of generators of H(12(Qp), T2(Zy))~ as
follows:

(1) A1 maps

(2) Ao, maps



(3) A3, maps
t(?) — t(l) t(lz)élu

(4) Aap maps

1
For i€ {5,6,7,8} the morphism X\; p: H(T2(Qyp), T2(Zy)) — H(T1(Qp), T1(Zy)) is given by
i p= do )\i—4p

where 0 is the automorphism of H(T1(Qyp), Ti(Zy)) defined on a set of generators of the subal-
gebra H(T1(Qp), T1(Zp))~ by

1 1
i 3(t0) = 1
(3:8) (1)) _ 1) 1)y
6(tp,1) - tp,O(tp,l)

and extended in the unique way.

Let f5 be the p-stabilization of a classical, non-CM GLa-eigenform f of level T'y (V). Let
Xip: H(GL2(Qp), GL2(Zp)) — Q, and xF',: H(GL2(Qy), 1)~ — Q, be the system of Hecke
cigenvalues at p of f and f*', respectively. Note that x1, is the restriction of xi', to the
abstract spherical Hecke algebra at p. Let (Sym®f)** be a p-stabilization of Sym®f. Let
X2p: H(GSpy(Qp), GSpy(Zp)) — Qp, x5, H(GSp4(Qy), f2p)~ — Q, be the systems of Hecke
eigenvalues at p of Sym®f and (Sym?f)t, respectively. Again X2,p is the restriction of x%fp to
the abstract spherical Hecke algebra at p.

By Lemma 1.2.15, for g = 1,2 there is an isomorphism

b2 H(GSDyg (@), Iop) ™ — H(Ty(Qy), Ty(Z,)) ™

Let L?”’: H(T,(Qp), T, (Zp))_ — H(GSpyy(Qp), Iyp)~ be its inverse. In particular xj' Obé
is a character H(Ty(Qp), Ty(Zy))~ — Q,. By Remark 1.2.13 the character x5, o Lé« can be
extended uniquely to a character (x§', ° Lé«g PV H(Ty(Qp), Ty(Zy)) — Q.

PROPOSITION 3.4.5. There exists i € {1,2,...,8} such that

T> T1 \ext
X2 Ly (X1 °ln, ) o Xip-

Moreover, if Ap: H(T2(Qp), T2(Zp)) = H(T1(Qyp), T1(Zy)) is another morphism satisfying

X3 o = (X el ) e Ay,
then there exists i € {1,2,...,8} such that A\, = X\;.

PrOOF. We will use Equation (3.2) in order to construct the local morphisms. In this
proof we will leave the composition with the isomorphism Lilp and Lﬁp implicit and we will
consider x3', and x3', as characters respecti\ﬁaly of H(T1(Qy), T ) (Zy))~ and H(T2(Qyp), T2(Zy))~
for notational ease. Let py,: Gg — GL2(Q,) be the p-adic Galois representation associated
with f, so that the p-adic Galois representation associated with Sym?®f is Sym?p tp- Via p-adic
Hodge theory (see Section 3.10.1 below) we attach to pf, a two-dimensional @p-vector space
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De:is(pfp) endowed with a Q,-linear Frobenius endomorphism ¢eis(pf,). By Equation (3.2)
specialized to ¢ = 1 and to the form f we obtain

det(1 — Xeris(prp) = X1.p(Priin(tl 3; X))

We will use the notations of Section 1.2.4.3 for the elements of the Weyl groups of GL2 and
GSp,. Let a;, and ), be the two roots of x1 p( mm(tﬁ%;X)), ordered so that xf',(t (1)) = .
With this choice we have 8, = x{',((t 1()1%)“’)

Let Dcris(psym3 f7p) be the 4-dimensional Q,-vector space attached to Psym3fp Dy p-adic
Hodge theory. Denote by %ris(pgyms f7p) the Frobenius endomorphism acting on Dyis( PSym? f,p)'
By Equation (3.2) specialized to g = 2 and to the form Sym?f we obtain

2
det(l - X@Cris(pSym:;f,p)) = X2,p(Pmin(t1()7%; X))

Note that the coefficients of Pin (¢ I(J%,

X27p(Pmin(t;?%; X)) = X2,p(Pmin(tl(f%a X)). From Psym?f = Sym? ptp we deduce that

X) belong to the spherical Hecke algebra at p, so we have

(3.9) x3p(Panin (11725 X)) = det(1— X eris(Pgyms 7)) = (X—a,%xx—a,%ﬁp)(X—apﬂgxx—ﬁ;).

By developing the left hand side via Equation (1.4) and the right hand side via Equation
(3.9) we obtain

(X = X35t (X = X3, (™)) - (X = X3, (E59) ) (X — x5, (1) 12)) =
= (X — a?)(X — a28,)(X — ap82)(X — B2).

In particular the sets

{X2,p(t(2)) X5 p((th))wl)7 X%fp((té?z))w2)v th,p((t?g))wle)}

)

and

{ap7 p/BIH apﬁz') 53}

must coincide. Since th) (tﬁ) yiwz = (t%) )wl(tfg

Four possibilities for the 4-tuple

)2 we are reduced to eight possible choices.

X (8 ) X3 ()Y, X3 (8 0) ), X ()12

are
( p7 pﬁpu apﬂ;ga BS) (a?)7 apﬁz7 a?)ﬁ]ﬂ 5;)7
(@38p, O B pBy), (0B, Bs i, pl3).-
The other four possibilities are obtained by exchanging a), with 3, in the ones above.
Since t( ) t(2) (té ))wl and t( ) t%) (t%))“’l“’?, the displayed 4-tuples give for

2 s 2 2
O, () 35 (82, X3, (15))

the choices
303 .5 3 303 402 3
(O[pﬁp’ O[pﬁpv ap)? (Oépﬁlﬂ Oépﬁp? ap)’
303 5 2 323 204 2
(apﬂ;w apﬂpa apﬁp)v (apﬁgﬂ apﬁp? apﬁp)'
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By writing o, = Xﬁfp(tgi), By = Xﬁfp((tgi)w) and recalling that ¢! ()] = t(l)( I(H)w, the previous
triples take the form
1) 1 1
O (1) X (8 ;3@;{) )Xt (1)),
1

(3 (1) X () (1)) X3 (1)),

1 1,01
<xl,p<t§,,3> AR xlp<; ).
00 (10 () ™) X tht):
The triples corresponding to the other four possibilities are obtained by replacing t( ) and t(l)
in the triples above by their images via the automorphism ¢ of H(T1(Qy), T1(Zy)) deﬁned by

Equation (3.8).
Let A\p: H(T2(Qp), T2(Zyp))~ — H(T1(Qp), T1(Zy)) be a morphism that satisfies

X2 = (Xl )eXt °Ap o Lo ps

(3.10) ))

(Xl,p( p,0

where we leave the maps ngp implicit as before. By the arguments of the previous paragraph

this happens if and only if the triple ()\iyp(t](f[))), )\i,p(tg{), /\i,p(t;(;?%)) coincides with one of the four

listed in (3.10) or the four derived from those by applying . A simple check shows that these
triples correspond to the choices A\, = \; , for ¢ € {1,2,...,8}. O

REMARK 3.4.6. Since all the Hecke actions we consider are for the algebras Hg ,g=12,
that are dilating Twahoric at p, we want to know whether the morphisms X; p, i € {1,2,...,8},

can be replaced by morphisms /\Z-_p of dilating Hecke algebras that satisfy X%Ep = Xslt’p oA . Equw—
alently, we look for the values of i such that there exists a morphism )\;p: H(GSp4(Qp), L2p)~
H(GL2(Qp), I1 )~ making the following diagram commute:

LI2,;D

H(GSP4(Qp), [25)” —2 H(T2(Qy), Ta(Z,))~

“P Lll,p _
_ T - 4
H(GLQ(QP)711»P) — H(Tl(Qp)aTl(Zp)) — H(Tl(Qp)7T1(Zp))-
Clearly A;, exists if and only if the image of A, lies in H(T1(Qp), T1(Zyp))~. A simple check
shows that this is true only for i € {1,2,3}.

DEFINITION 3.4.7. Let i € {1,2,3}. Let A; )t H(GSps(Qp), L2p)” — H(GL2(Qp), [15)~ be
the morphisms making diagram (3.4.6) commute. Let \;: HY — HY be the morphism defined
by A = AP ® Aip-

Keep the notations as before. Let X;t i ’Hév — @p be the character defined by
(1) X;tg = x5 o Ai for every prime £ { Np;

< I
(2) X;tpZ = (le”?ll )ext O/\ZPOLTZP'
We combine Propositions 3.4.2 and 3.4.5 to prove the following.

COROLLARY 3.4.8. For every i € {1,2,...,8}, the form Sym>f admits a p-stabilization
(Sym? )5t with associated system of Hecke ezgem}alues XS“. Conwersely, if (Sym®f)* is a p-

stabilization of Sym®f with associated system of Hecke eigenvalues X3, then there exists i €
{1,2,...,8} such that x§' = X;t’z.
PRrROOF. The systems of Hecke eigenvalues of the p-stabilizations of Sym? f are the characters
50 HY — Q, that satisfy the following conditions:

(1) x3' = X2, for every £{ Np;
(2) the restriction of x5', to H(GSp,(Qy), GSpy(Zp)) is x2,p-
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By Propositions 3.4.2 and 3.4.5 a character x5! satisfies (1) and (2) if and only if x5 = x5 for
some 1. 0

Recall from Remark 1.2.26 that the map 19: HY — O(Dz) interpolates p-adically the
systems of normalized Hecke eigenvalues associated with the classical GSp,-eigenforms.

Keep the notations of Definition 3.4.7. For i € {1,2,...,8} set F; = (Sym®f)5*. Let
h = sl(f) be the slope of f and sl(F;) be the slope of F; for every i. Recall that sl(f) =

v (G (UY)) and SU(Fy) = v, (x5 "™ (U)), with Ug = UL and U = URUS).

COROLLARY 3.4.9. The slopes of the eight p-stabilizations of Sym?f are:
sl(F1) = Th,sl(Fy) = sl(F3) = k — 1+ 5h,sl(Fy) = 4(k — 1) — h,
sl(F5) =7(k —1— h),sl(Fs) =sl(F7) = 6(k — 1) — bh,sl(Fs) = 3(k — 1) + h.

PrOOF. For f as in the statement we have vp(x(f)(UIS’lO))) =k —1 and Up(X(f)(U;E,lo))) =
h. By definition UZSQ) = 15721)U1£722) . The corollary follows from Proposition 3.4.5 via simple
calculations. (]

We make explicit the dependence on f of the characters X;t’i by adding a lower index f and
writing X;t’;. For a @p—point x of Dé\/l let xz: Hév — @p be the system of Hecke eigenvalues
associated with x. s B

For i € {1,2,...,8} let Sl-sym be the set of Q,-points = of DA defined by the condition

T € Sis ym? <= d a cuspidal, classical, non-CM GLs-eigenform f such that y, = X;t’]f.

Then we have the following.
COROLLARY 3.4.10. If2 < i < 8, the set Sisym3 is discrete in D3

PrROOF. Let i € {2,3,...,8}. Let A be an affinoid subdomain of D! and let x be a point
of the set S,L»S ym® N A(@p). Let f be a classical, cuspidal, non-CM GLs-eigenform of weight &
and level T'1(N) NTy(p) satisfying x, = X;t]f Let h be the slope of f. By Remark 1.2.7(2) the
slope vp(i/)A(Uzgz))) is bounded on A by a constant c4. Then Corollary 3.4.9 together with the
inequality 0 < h < k—1 gives a finite upper bound for &k (e.g. for i = 2 we obtain k—1+5h < cy4,
so k < cyq + 1). There is only a finite number of classical GLg-eigenforms of given weight and
level, so there is only a finite number of choices for f as above. We conclude that the set
Ssym?,i N A(Qp) is finite, as desired. O

REMARK 3.4.11. As a consequence of Corollary 3.4.10 the only symmetric cube lifts that

3
we can hope to interpolate p-adically are those in the set Slsym . We will prove in Section 3.12
that the Zariski closure of this set intersects each irreducible component of DY in a subvariety
of dimension 0 or 1.

3.5. The Galois pseudocharacters on the eigenvarieties

In this section p is a fixed prime, M is a positive integer prime to p and ¢ is 1 or 2. For
a point € DM (C,) we denote by ev,: O(D))° — C, both the evaluation at z and the
map GSpQQ((’)(DéW )°) = GSpg,(Cp) induced by ev,. Recall that the GSp, -eigenvariety Dé\/l is
endowed with a morphism

by Hyt — O(D)')°

that interpolates the normalized systems of Hecke eigenvalues associated with the cuspidal
GSpo,-eigenforms of level T'1 (V) N To(p). For a classical point = € Dy(@p) let 1, = evy o 1)y.
Let f. be the classical GSpy,-eigenform having system of Hecke eigenvalues ¢, and let p,: Gg —
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GSpy, (@p) be the p-adic Galois representation attached to f,. When z varies, the traces of the
representations p, can be interpolated into a pseudocharacter with values in O(Déw )°; this is
the main result of this section. Unfortunately the pseudocharacter obtained this way cannot be
lifted to a representation with coefficients in (’)(Dé\/[ )°. We will be able to obtain a lift only by
working over a sufficiently small admissible subdomain of cDéVI (see Section 4.1.4).

3.5.1. Classical results on pseudocharacters. We recall the definitions and some clas-
sical results in the theory of pseudocharacters. In this subsection A is a commutative ring with
unit and R is an A-algebra with unit (not necessarily commutative). Let k be any positive
integer and let .7} be the group of permutations of the set {1,‘27 ..., k}. Given any v € ¥}, we
write e(v) for its sign and we decompose it in cycles as v = [[2* (jifi2 - - - Jig;)- Set

iy
T, (x1,22,...,2%) = H(wjmxjm o .':Uji,éi)
i=1

for every (x1,z9,...,2;) € R¥. We define a map Sj: R* — A by letting
Si(@n,. o van) = 3 )Ty (an,... a)

VeI
for every (z1,x9,...,x1) € RF.

DEFINITION 3.5.1. Let d be a positive integer. We say that a map T: R — A is a pseu-
docharacter of dimension d if it satisfies the following conditions:
(1) T is A-linear;
(2) T(xy) =T (yx) for every x,y € R;
(3) the map S;i1(T): R — A is identically zero for i = d and d is the smallest value of i
such that this happens.

This definition is motivated by thefollowing result.

PROPOSITION 3.5.2. Let 7: R — My(A) be a representation. The map Tr(17): R — A is a
pseudocharacter of dimension d.

The only non-trivial property to prove is (3). The proposition above was first proved by
Frobenius, who showed that Si(T) is identically zero if and only if d > k+ 1. We call Tr(7) the
pseudocharacter associated with 7. Thanks to the following result of Carayol a representation
is uniquely determined by its associated pseudocharacter.

THEOREM 3.5.3. [Ca94| Suppose that A is a complete noetherian local ring. Let A" be a
semilocal extension of A. Let 7': R — My(A’) be a representation. Suppose that the traces of
7’ belong to A. Then there exists a representation 7: R — My(A), unique up to isomorphism
over A, such that T is isomorphic to T’ over A’.

Let G be a group. By an abuse of terminology, we will say that a map T: G — A is a
pseudocharacter of dimension d if it can be extended A-linearly to a pseudocharacter A[G] — A
of dimension d.

Under some hypotheses on the ring A it is known that every pseudocharacter arises as the
trace of a representation. Let d be a positive integer. The following theorem is due to Taylor
when char(A) = 0 and Rouquier when char(A) > d.

THEOREM 3.5.4. ([Ta91],[R096|) Suppose that A is an algebraically closed field of charac-
teristic either O or greater than d. Let T: R — A be a d-dimensional pseudocharacter. Then
there exists a representation 7: R — My(A) such that Tr(7) =T.

The following result was proved independently by Nyssen and Rouquier.
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THEOREM 3.5.5. ([Ny96],[R096, Corollary 5.2]) Suppose that A is a local henselian ring in
which d! is invertible and let ¥ denote the residue field of A. Let T': R — A be a pseudocharacter
of dimension d and T: R — F be ils reduction modulo the mazimal ideal of A. Suppose that

there exists an irreducible representation T: R — My(F) such that Tr(7) = T. Then there is an
isomorphism R/ker T = My(A) and the projection R — R/ kerT is a representation lifting T.

We mention for the sake of completeness that Chenevier studied the case where 0 <
char(A) < d in [Ch14]. He introduced the notion of determinant, which is a generalization
of that of pseudocharacter. He showed that analogues of Theorems 3.5.4 and 3.5.5 hold if we
replace pseudocharacters with determinants and A is an algebraically closed field or a local
henselian ring with algebraically closed residue field, without any assumptions on the charac-
teristic of A (see [Ch14, Theorems A and B]).

We introduce a notion of characteristic polynomial of a pseudocharacter. Let 7: G —
GL4(A) be a representation and let T'= Tr(7). For g € G let ay, a9, ..., a4 be the eigenvalues

of 7(g). For every n € N we have T'(¢") = Zf-l:l af', so the functions T'(¢g") generate over Q
the ring of symmetric polynomials with rational coefficients in the variables oy, g, ..., a,. We

deduce that there exist polynomials fi, fo,..., fqg € Q[z1,22,...,z4], independent og g, such
that det(1 — X7(g)) = 1+ X0, fi(T(9), T(g?), ..., T(¢*)X".

DEFINITION 3.5.6. If T: G — A is a d-dimensional pseudocharacter, we let Popar(T): G —
A[X198=4 be the polynomial defined by

d
Poar(T) =1+ Y fi(T(9), T(g"), -, T(g") X",
=1

where fi, fa,..., fa are as in the discussion above. We call Pear(T') the characteristic polyno-
mial of T.

For example for d = 2 we have

(3.11) Pae(T)(g) = 1 - T()X + <T<~">;T(g>> X

For later use (especially in Section 3.12) we introduce the notion of symmetric cube of a
two-dimensional pseudocharacter.

DEFINITION 3.5.7. Let T: G — A be a two-dimensional pseudocharacter. The symmetric
cube of T is the pseudocharacter Sym>T: G — A defined by

T(9)*(3T(g%) — T(g)?)
2

Sym’T(g) =
This definition is justified by the lemma below.

LEMMA 3.5.8. Let 7: G — GLa(A) be a representation and let T = Tr(7). Then the trace
of the representation Sym37: G — GSpy(A) is Sym3T.

PROOF. Let g € G. Thanks to formula (3.11) we can write the characteristic polynomial of
7(g) as
T(92)> X2,

det(1—X -7(g9)) =1—-T(g9)X + (T(g)t

Then the trace of Sym37(g) can be computed from Equation (3.3). O
REMARK 3.5.9. If T = Tr(7), Lemma 3.5.8 and the definition of Peyar give
Pchar(symgT) (9) = Pchar(sym37(g)) = Symgpchar(T(g)) = Sym3Pchar(T) (9)-
By definition of Pear this implies that Pchar(Sym3T) = Sym3PChar(T) for every pseudocharacter

T: G — A (not necessarily defined as the trace of a representation). This can also be checked
by a direct calculation.
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3.5.2. Interpolation of the classical pseudocharacters. Every classical point of Dé”
admits an associated Galois representation given by Theorem 3.1.1. In this subsection we show
how to interpolate the trace pseudocharacters attached to these representations to construct a
pseudocharacter over the eigenvariety.

As before let g € {1,2}. We remind the reader that for every ring R we implicitly extend a
character of the Hecke algebra Hg/f — R* to a morphism of polynomial algebras Hé\/l [X] — R[X]
by applying it to the coefficients. Recall that we fixed an embedding Gg, < G for every prime
¢, hence an embedding of the inertia subgroup I, in Gg. As usual Frob, denotes a lift of the
Frobenius at ¢ to G,

Let S denote the set of classical points of Déw . Let 2 € S°'. We keep the notations ev,,
1z, pz as in the beginning of the section. We let T,: Gg — @p be the pseudocharacter defined
by T, = Tr(pz).

THEOREM 3.5.10. There exists a pseudocharacter
TDé‘/f: GQ — O(’Dé\/l)

of dimension 2g with the following properties:

(1) for every prime £ not dividing Np and every h € I, we have Tpm (h) =2, where 2 € (’)(Dé\/[)
denotes the function constantly equal to 2;
(2) for every prime £ not dividing Np we have

Petar(Tpyr ) (Frobg)(X) = (P (t(7); X);

(3) for every x € S we have
Vg © TDéW = T:E

The proof of the theorem relies on an interpolation argument due to Chenevier, who applied
it to the eigenvarieties for definite unitary groups in [Ch04, Proposition 7.1.1].

PROOF. The set S is Zariski-dense in Dé\/[ by Proposition 1.2.20, so there is an injection
ev: O(Dé\/[ ) = [Lyese Cp given by the product of the evaluations at z € S°.
We define a map Try: Gg — [[,cga Cp by

Trg(v) = (Tu(7))zesa-
We show that:

(i) for every prime ¢ { Np and every h € I, we have Try(h) = 2, where 2 denotes the image
of the constant function 2 via ev;
(ii) Try is a pseudocharacter of dimension 2g;

(iii) for every prime ¢t Np we have Pchar(TDévz)(Frobg)( ) = g mm(tggg), X));
(iv) there exists a map Tpy: G — O(D)") such that Try = eve Tppr-

By Proposition 3.1.1 we have, for every x € S°:
(a) pg(h) =1dy for every prime ¢t Np and every h € Iy;
(b) Trp,(Froby) = 1/Jx(TZ(“Z)) and det p, = 1, (£5(T, (2)) ) for every prime ¢{ Np.

Now (a) gives Tr(pz(h)) = 2 for every prime ¢ { Np and every h € I;, hence (i) above. To
prove (ii) we observe that conditions (1-3) in the definition of a pseudocharacter of dimension
2g can be checked separately on each factor C,. This does not require any work: definition
the component of Tr, corresponding to a single factor C, is the trace of a representation of
dimension 2g, so it is a pseudocharacter by Proposition 3.5.2.
By Theorem 3.1.1 and Remark 3.5.9 we have, for every 2 € S¢,
Petnar(T) (Froby)(X) = det(1 — X po(Froby)) = e Panin (t); X)).
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Since 1), = ev, 014 we deduce that
Penar(Trg) (X) (Froby) = (Penar (T2 ) (Frobe) (X)) pe ga =
= (Yo (Punin(tg): X)))ness = ov o g (Pain(t); X)),

g’
hence (iii).

We show that (iv) holds. Note that Dé‘/[ is a BC-eigenvariety by Corollary 3.6.5, so the
ring O(Dé\/[) is compact by [BC09, Corollary 7.2.12 and Lemma 7.2.11(ii)]. The injection
ev: O(Dé\/[ ) = [I,c5a Cp is a continuous map from a compact topological space to a separated
one, so it is closed by a standard topological argument. In particular eV(O(Dé\/[ )) is closed in

[I.cga Cp. By part (i) we have Try(yFrobyy™!) = ev(z/Jg(Te(?)) € ev(O(Dé‘/[)) for every £t Np
and v € Gg, so the image of the set {”yFrob[y*l}g;prWeGQ via Tr, is contained in ev((’)(Déw)).
Since this set is dense in G by Chebotarev’s theorem, the image of Gg via Tr, is contained in
the closure of ev(O(D)!)), which is just ev(O(D)')) by the argument above. Hence there exists
amap Tpy: Gg — (’)(Dé\/[) such that Try = ev o Tpu.

We conclude the proof of the theorem. The map Tpéu given by (iv) is a pseudocharacter
of dimension 2g since Tr, is. Then (i) and (iii) give the properties (1) and (2) stated in the
theorem. Property (3) follows from the definitions of Tr, and Tpp. O

For every rigid analytic subvariety V, of Déw we denote by 7y, : O(Dé‘/l ) = O(Vy) the re-
striction of analytic functions on Dé\/l to Vy and by vy, =1y, 0ty: ny — O(Vy) the system of
Hecke eigenvalues associated with V,;. Then Theorem 3.5.10 allows us to define a pseudochar-
acter associated with V.

COROLLARY 3.5.11. Let V4 be any rigid analytic subvariety of Dé\/[. There exists a pseu-
docharacter

Ty,: Go — O(Vy)
of dimension 2g with the following properties:

(1) for every prime £ not dividing Np and every h € I, we have Ty, (h) = 2, where 2 € O(Vy)
denotes the function constantly equal to 2;
(2) for every prime £ not dividing Np we have

Penar (T, ) (Frobg) (X) =y, (Punin (t); X));

(3) for every classical point x of V, we have
€eVy ° Tyg = Tw.
PROOF. It is easily checked that the pseudocharacter Ty, = ry, OTDé\l has the desired
properties. O

As a special case of Corollary 3.5.11, by choosing V, to be a point of Dé\/l we can associate a
pseudocharacter with every overconvergent GLa- or GSp,-eigenform. From this pseudocharacter
we can construct a p-adic Galois representation, as precised in the following remark.

B REMARK 3.5.12. Let x € Déw(@p). Consider the 2g-dimensional pseudocharacter T, : Gg —
Q,, defined by
T, =evgyoThy,.

By Theorem 3.5.4 there ewists a Galois representation py: Gg — GL4(@p) satisfying

T, = Tr(py).
We will see in Section 4.1.4 that, when p, is absolutely irreducible, ps is isomorphic to a
representation Gg — GSpy(Q,).
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REMARK 3.5.13. Let z € Déw(@p). When x wvaries in a connected component of Dé\/[,

the residual representation p,: Go — GSpgg(@p) s independent of x. We call it the residual
representation associated with the component.

Let p: Gg — GLo(F,) be a representation. Let Df}% be the union of the connected com-
ponents of D{V having p as associated residual representation. From now on we replace D{V by
a subspace of the form D{Yﬁ for some p; we do it implicitly, so we still write DY for D{\jﬁ. We
make the following assumption on p:

(3-twist) there exists no character 77: Gg — F; of order 3 satisfying n ® p = p.

REMARK 3.5.14. There is a map Sym3 from the set of classical, cuspidal non-CM eigenforms
3
ofD{\jp to the set Slsym of Corollary 3.4.10; it is defined by f — (Sym3f)§t. Thanks to condition
(8-twist), if x1 and x2 are two points of D{\’[p satisfying Sym®p,, = Sym3p,,, then pg, = pa,.
In particular Sym‘rf 1$ injective.

3.6. Eigenvarieties as interpolation spaces of systems of Hecke eigenvalues

In this section we recall Bellaiche and Chenevier’s definition of eigenvarieties and some
of their results, following [BCO09, Section 7.2.3]. We refer to their eigenvarieties as BC-
etgenvarieties, in order to distinguish this notion from the definition of eigenvariety we gave
in Section 1.2.2 (a product of Buzzard’s eigenvariety machine).

As usual fix a prime p > 5. We call “BC-datum” a 4-tuple (g, H,n,.7!) where:

g is a positive integer;

‘H is a commutative ring;

7 is a distinguished element of H;
! is a subset of Hom(H,Q,) x Z9.

The superscript “cl” stands for “classical”. In our applications H will be a Hecke algebra and
! will be a set of couples (¢, k) each consisting of the system of eigenvalues ¢ and the weight
k of a classical eigenform. In the proposition below Wy is the connected component of unity
in the g-dimensional weight space, introduced in Section 1.2.1. Recall that we identify Z9 with
the set of classical weights in W¢g. Also recall that for an extension L of @p and an L-point z
of a rigid analytic space X we denote by ev,: O(X) — L the evaluation morphism at x.

DEFINITION 3.6.1. [BCO09, Definition 7.2.5] A BC-eigenvariety for the datum (g,H,n,.#)
is a 4-tuple (D, v, w, S) consisting of
e a reduced rigid analytic space D over Qp,
e a ring morphism ¢: H — O(D) such that 1 (n) is invertible,
e a morphism w: D — W of rigid analytic spaces over Qp,
an accumulation and Zariski-dense subset S C D(Q,) such that w(S) C 29,
satisfying the following conditions:
(1) the map

(3.12) v=(w,¥(n)""): D= W xGp,

induces a finite morphism D — v(D);
(2) there exists an admissible affinoid covering C of v(D) such that, for every V € C, the map

YRV HR,OV) — (’)('17_1(V))
18 surjective;
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(3) the evaluation map
&v: S — Hom(H,Q,) x Z¢,
T (Yo, w(z)),

where 1, = evy o1, induces a bijection S — .7,

(3.13)

We often refer to D as the BC-eigenvariety for the given BC-datum and leave the other
elements of the BC-eigenvariety implicit.

We recall a few properties of BC-eigenvarieties. Let (g, H,n,.7) be a BC-datum and let
(D, 4, w, SY) be a BC-eigenvariety for this datum (it may not exist).

LEMMA 3.6.2. [BC09, Lemma 7.2.7]

(1) The rigid analytic space D is an admissible union of affinoid domains of the form v—(V)
for an affinoid subdomain V' of Wy x Z9.

(2) Two points x,y € D(Q,) coincide if and only if w(z) = w(y) and VY, = 1py.

If a BC-eigenvariety for the given BC-datum exists then it is unique in the sense of the
proposition below.

PROPOSITION 3.6.3. [BC09, Proposition 7.2.8] Let (D1,v1, w1, SS) and (Da, 2, wa, SS') be
two BC-eigenvarieties for the same BC-datum (g,H,n, 7). Then there is a unique isomor-
phism ¢: D1 — Da of rigid analytic spaces over Q, such that 11 = (o1, w1 = wao( and
¢(s) = S5,

In the previous sections we defined various rigid analytic spaces via Buzzard’s eigenva-
riety machine. We check that these spaces are BC-eigenvarieties for a suitable choice of
BC-datum. As a first step we prove the lemma below. Consider an eigenvariety datum
W, H, (M(A, W) Aw, (PAw)Aw,n) and let (D, 1, w) be the eigenvariety produced from this
datum by Theorem 1.2.3.

LEMMA 3.6.4. The triple (D,v,w) satisfies conditions (1) and (2) of Definition 3.6.1.

PROOF. We refer to Buzzard’s construction summarized in Section 1.2.2. Let Z be the
spectral variety for the given datum. Let v be the map defined by Equation (3.12). By con-
struction of D we have (D) = Z and the map v: D — Z is finite, so condition (1) of Definition
3.6.1 holds.

Let C be the admissible affinoid covering of Z defined by Buzzard. For V € C let A =
Spm R = wz(V) be its image in W°. Let w € Q be sufficiently large, so that the module
M(A,w) is defined. Let M(A,w) = Ny(A,w) ® Fy(A,w) be the decomposition given by
Equation (1.2). Then O(r~1(V)) is the R-span of the image of H in Endg cont Ny Since O(V)
is an R-module, the map ¢: H ® O(V) — O(r~'V) is surjective, hence condition (2) is also
satisfied. O

Suppose that there exists an accumulation and Zariski-dense subset S of D such that the
set

I = (Yo, w(@)) |2 € 5}

is contained in Hom(?—[,@p) x 79. Then (D, v, w, S) clearly satisfies condition (3) of Definition
3.6.1 with respect to the set .7!, hence the following.

COROLLARY 3.6.5. The 4-tuple (D, 1, w, SY) is a BC-eigenvariety for the datum (g, H,n, ).
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3.7. Changing the BC-datum

Let (D, 1, w, SY) be a BC-eigenvariety for the datum (g, H, 7, ). Let S be an accumu-
lation subset of S and let Dy be the Zariski closure of 5’81 in D. Let Yod be the image of Sgl
via the bijection S — .7 Let tg: H — O(Dy) be the composition of 1: H — O(D) with
the restriction O(D) — O(Dy). Let wo = w|p,.

LEMMA 3.7.1. The 4-tuple (Do, to, wo, S§) is a BC-eigenvariety for the datum (g, H,n,-75).

PRrROOF. We check that the conditions of Definition 3.6.1 are satisfied by (Dy, 1o, wo, Sgl),
knowing that they are satisfied by (D, 1, w, S%). Let 7 = (w,(n)~1): D — W° x G, and let
Z =v(D). Let Zyp = v(Dy). Since v: D — Z is finite and Dy is Zariski-closed in D, the map
Vlp,: Do — 2y is also finite, hence (1) holds.

Consider an admissible covering C of Z satisfying condition (2). Then {V N Zy}yec is an
admissible covering of Zy. Let V € C and Vj = V N Z,. Consider the diagram

Heow) Y27 o 1(V))

|

H o 0W) 28 o (Vo)

The horizontal arrows are given by the restriction of analytic functions. Since the left vertical
arrow is surjective, the right one is also surjective, giving (2)
By definition of S§' the map év induces a bijection S§ — ¢!, so (3) is also true. O

We prove some relations between BC-eigenvarieties associated with different BC-data.

LEMMA 3.7.2. Let g1 and g be two positive integers with g1 < ga. Let ©: Wg — Wy, be an
immersion of rigid analytic spaces that maps classical points of Wy, to classical points of W,

Let (g1, H,n, %) and (g2, H,n, 75" be two BC-data satisfying

{(1,0(k)) € Hom(H,Q,) x Z% | (¢, k) € #'} € F5!

Let (D1,91, w1, SSY) and (Da, b2, w2, SSY) be the BC-eigenvarieties for the two data. Then there
exists a closed immersion of rigid analytic spaces {g: D1 — Da such that ¢y = {§ oo, w1 =
wy o g and &o(SY) C S§L.

PROOF. Let DY = D, Xyve, Wy, where the map W, — W is ©. Let ¢®: DY — Dy and

wP: DY — Wy, be the natural maps fitting into the cartesian diagram

(€]
DO~ D,

b |-

o @ [e]
Wy, —— W,

Then ¢® induces a ring morphism ¢®*: O(Dy) — O(D?). Let ¥ = (®* o1hy. Note that ¢® is
a closed immersion.
Let

Cyle = {(¢a ) € HOHl(H,@p) X 79" | (TIZ), ( )) € yZd}
Then the 4-tuple (D?, C@ o, W ,C@ (S1) is a BC-eigenvariety for the datum (g1, H, 0, -7P).

By assumption .7 € .7°. Consider the Zariski-closure D} of &v ' (.Z) in DP. Let «/: D} —
DP be the natural closed immersion and let w] = w1@|pi, Y = (/)" o9. By Lemma 3.7.1

the 4-tuple (D}, ¢}, w},ev _1(5”"1)) is a BC-eigenvariety for the BC-datum (g1, H,n, ). Since
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(Dy, 41, wl,Yfl) is a BC-eigenvariety for the same datum, Proposition 3.6.3 gives an isomor-
phism of rigid analytic spaces (: D; — D} compatible with all the extra structures. The
composition g = (g ot/ o (: D1 — Dy is a closed immersion with the desired properties. O

Let (g,H,n1,.7%) and (g, H,n2,.°) be two BC-data that differ only by the choice of the
distinguished elements of H. Let (D1, 1, wr, S§') and (Da, b2, w2, S§') be BC-eigenvarieties for
the two data. Recall that for ¢ = 1,2 the map

vi: Dy — W; X G,
= (wi(x), evy o () ™)
induces a finite morphism D; — v;(D;). Make the following assumption:
(Fin) the map
vi2: D1 = Wy x Gy,
x> (wi(x), evy o Pi(n) ")

induces a finite morphism D; — vy 2(Dy).

LEMMA 3.7.3. Under hypothesis (Fin), there exists an isomorphism of rigid analytic spaces
&yt D1 — Do such that 11 = & o tha, w1 = w20 &, and £(5¢Y) = S¢.

PrOOF. We check that the 4-tuple (Di,1,ws,S§) is a BC-eigenvariety for the datum
(9, H,m2, ). All properties of Definition 3.6.1 except (1) are satisfied because (D1, 41, w1, S§')
is a BC-eigenvariety for the datum (g, H,nm1,.7). Property (1) is satisfied thanks to hypothesis
(Fin). Then (D1, %1, w1, S$) and (Da, b2, w2, SS') are BC-eigenvarieties for the same datum,
and Proposition 3.6.3 gives an isomorphism of rigid analytic spaces D1 — Do with the desired
properties. U

LEMMA 3.7.4. Let Hi and Ho be two commutative rings and let A\: Hy — Hi be a ring
morphism. Let (g, H1,m,- %) and (g, H2,n2,-75") be two BC-data that satisfy m = \(n2) and

(3.14) S ={(Wo k)| (¥, k) € S5},

Let (D1, 1, w1, S and (Do, 1o, w2, SS') be BC-eigenvarieties for the two data. Suppose that the
map 5 — S defined by (1, k) > (o \, k) is a bijection. Then there exists an isomorphism
of rigid analytic spaces &x: D1 — Dy such that 11 o A = &5 o1ha, w1 = wo o £y and £(S§!) = SS.

PRrOOF. Consider the 4-tuple (D1, %1 o A, w1, S§'). We show that it defines a BC-eigenvariety
for the datum (g, Ha,n2,.7s1). Property (1) of Definition 3.6.1 is satisfied since 1 o A(12) =
11 (1) and the map (w, vy (1) ~") is finite by property (1) relative to the datum (g, Hi, 11, ).
Property (2) is a consequence of equality (3.14) together with the fact that S§! is Zariski-dense
in D;. Property (3) follows immediately from equality (3.14).

Now the 4-tuples (D1, 11 o A, wy, S and (Dg, v, ws, S§!) define two BC-eigenvarieties for
the datum (g, Ha, 12, -75'), so Proposition 3.6.3 gives a morphism &y : Dy — Dy of rigid analytic
spaces such that 1)1 o A = £J o 9hg, w1 = wy 0 &) and Ex(SS) =SS!, as desired. O

3.8. Auxiliary eigenvarieties

Fix a prime p and an integer N > 1 prime to p. Let M be the integer given as a function of
N by Definition 3.3.6. Set A = A1, where A;: ’Hév — H{V is the morphism given by Definition
3.4.7.

We will work from now on with the curves DY xyy,, W? and D3 xyy, W3. We still denote
them by D and D) in order not to complicate notations. Our aim is to construct a closed
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immersion D{V — Dé\/[ interpolating the map defined by the symmetric cube transfer on the
classical points. As in [Lul4] we define two auxiliary eigenvarieties.

3.8.1. The first auxiliary eigenvariety. Recall that for every affinoid subdomain A =
Spm R of W) and for every sufficiently large rational number w there is a Banach R-module
M (A, w) of w-overconvergent modular forms of weight k4 and level N, carrying an action
qﬁhw: H{V — Endpg cont M1 (A, w). We let Hév act on M7 (A, w) through the map

G = Pl o At HY = Endg contMi(A, w).
We have
1,aux Laux  77(2) (2)77(2 1 1
DL (UP) = 65 USUR) = 8 W MU USD)) = 6l (UL O3,
This operator is compact on M;(A,w) since it is the composition of the compact operator

¢Z%X(U£}1) ) with a continuous operator.

DEFINITION 3.8.1. Let (D{\’[)\, Y1 x, w1 ) be the eigenvariety associated with the datum

W7 1Y (M (A, w0)) 4, (D550 A USY)
by the eigenvariety machine.

Since WY is equidimensional of dimension 1, the eigenvariety D{Y ) is also equidimensional
of dimension 1 by Proposition 1.2.4.

We denote by Sfl the set of classical points of D and by Sfl’g the set of classical non-
CM points of D). Recall that we defined a non-CM eigencurve Div’g as the Zariski-closure of
Sfl’g. The set Sfl’g is an accumulation subset of D{V’g by Remark 1.2.24(2) and the weight map
wy D{V’g — WY is surjective by Remark 1.2.24(1).

We define two subsets of D{V \ by

ST )\ = {z DY A%z = xg oA for a classical GLg eigenform f},
st aux = 17 € DY ' ¥z = Xy o A for a classical non-CM GLy eigenform f}.

DEFINITION 3.8.2. Let DY aux V€ the Zariski-closure of the set St aux U1 D{Y)\.

We denote by 11 aux: HY — O(D] 3Lux) and w1 aux: D{\jaux — W} the morphisms obtained
from the corresponding morphisms for D1 \-

3.8.2. The second auxiliary eigenvariety. We identify W} with B1(0,17) and W5 with
Bs(0,17) via the isomorphisms 7; and 7y of Section 1.2.1. This way we obtain coordinates T
on Wy and (T7,T5) on Ws.

Let k > 2 be an integer. Let f be a cuspidal GLg-eigenform of weight & and level T'1 (V)
and let f5* be a p-stabilization of f. Let F' = (Sym®f)s* be one of the p-stabilizations of Sym? f
defined in Corollary 3.4.8. By Corollary 3.3.3 (Sym?®f)5! has weight (2k —1,k+1). In particular
/5t defines a point of the fibre of DY at T' = u* — 1, and (Sym? J)5* defines a point of the fibre
of DM at (T1,Tp) = (w1 — 1,uF+1 —1).

The map u* — 1+ (u?*~1 — 1,41 — 1) is interpolated by the morphism of rigid analytic
spaces

L: Wi — Wy,
T W 'A+T7)*=1,ul+T) - 1).

The map ¢ induces an isomorphism of WY onto its image, which is the rigid analytic curve in
WS defined by the equation u=3(1 + T3)% — (1 + T1) = 0. By construction ¢ induces a bijection
between the classical weights of Wy and the classical weights of W3 belonging to «(WVy). Since
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the classical weights form an accumulation and Zariski-dense subset of WY, they also form an
accumulation and Zariski-dense subset of t(AY).

After Corollary 3.4.9 we defined for i € {1,2,...,8} aset Sisym3 C D} (Q,). By construction

3
of ¢, for every i the weight of every point in Sis Y™ is a classical weight belonging to t(WY). Since
t(WY) is a one-dimensional Zariski-closed subvariety of WS, the image of the Zariski-closure in
3 3
DM of Sis Y™ under the weight map is contained in ¢(WY). By Remark 3.4.11 the set Sis Y s

J— 3
discrete in D (Q,) if i > 2, so the only interesting Zariski-closure is that of Sls e

3
DEFINITION 3.8.3. Let D3%, . be the Zariski closure of SO in DM and let 1y aux : DY —
DM be the natural closed immersion. Define wa aux: Dé\j[aux — WY and 2 aux: HY — (’)(Dé‘f[aux)

_ ,—1 %
as W2 aux =L ~ °© w2’DéVfaux and wQ,aux = 19 aux © 3.

3.9. The morphisms between the eigenvarieties

In this section we construct morphisms of rigid analytic spaces

¢: DN - DY

1,aux>

. N M
§a: Dl,aux — D?,auxv

. M M
&3 Dy aux — Dy

making the following diagrams commute:

Do —E D, 2o DY S DY
Wy — = WP — = Wy — s W
(3.15) B 3
HY ——— HY ———— ) — 2 uy
My & M & N & NG
O(D2 ) E— O(DQ,aux) B O(Dl,aux) E— O(Dl )

In order to construct &1, & and &3 we will interpret the eigenvarieties appearing in the
diagrams as BC-eigenvarieties for suitably chosen BC-data and rely on the results of Section
3.6.

3.9.1. The BC-eigenvarieties. We define two subsets .7{! and Yfl’g of Hom(H{,Q,) x Z
by

S ={(¢, k) € Hom(HY,Q,) x Z|¢ = x¢
for a cuspidal classical GLy-eigenform f of weight k},

A9 = {(4, k) € Hom(HY,Q,) x Z|v = x;
for a cuspidal classical non-CM GLg-eigenform f of weight k}.
We define two subsets .77 and .77 aux of Hom(H3 ,@p) x Z by
S = {(¥. k) € Hom(HY',Q,) x Z | = xs o A
for a cuspidal classical GLg-eigenform f of weight k},
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S ux = {1, k) € Hom(H3', Q) x Z[ ) = xj A
for a cuspidal classical non-CM GLg-eigenform f of weight k}.
LEMMA 3.9.1.
(1) The 4-tuple (DY, 41, w1, SS) is a BC-eigenvariety for the datum (1,HY, U,gl),yfl).
(2) The 4-tuple (DN, 11, w1, 55 is a BC-eigenvariety for the datum (1, HY, )\(U1§2)), .
(3) The 4-tuple (D{V’g, P1,wi, Sfl’g) is a BC-eigenvariety for the datum (1,HY, A(U1§2)), yfl’g).
(4) The 4-tuple (D{V/\,wl A WA Sfl)\) is a BC-eigenvariety for the datum (1, HY, UIEZ), Yfl)\)
(5) The 4-tuple (DY o Y1auxs Waux, ST aux) is a BC-eigenvariety for the datum (1, H5 (2) It auX)

PRrROOF. Part (1) follows from Lemma 3.6.5.

For part (2), observe that the couple (wq, wl(UZgl))) satisfies condition (Fin) since /\(UISQ)) =
U (1)(U (1))7 Hence Lemma 3.7.3 gives an isomorphism between the eigenvarieties for the data
(1, HY, \(U, U )) S and (1, HY é),yd) as desired.

We prove part (3). Let év: S — ¢ be the evaluation map given in property (3) of
Definition 3.6.1. By definition the eigenvariety D{V’g is the Zariski-closure in DIV of the set
SClg. The image of Sdg in ¢! via év is yfl’g, so our statement follows from Lemma 3.7.1

applied to S = 5S¢ and S = Sfl’g.
Part (4) follows from Deﬁnition 3.8.1 and Corollary 3.6.5.
The proof of part (5) is analogous to that of part (3). Let ev: S‘flA — Yfl/\ be the evaluation

map. By definition the eigenvariety Dl aux 18 the Zariski-closure in DN of the set S aux- Lhe
image of S aux 11 5”16 \ Vvia ev is S ‘auxs S0 the desired conclusion follows from Lemma 3.7.1
applied to Sd Sfl)\ and S§! = S§! e g

Now consider the second auxﬂlary eigenvariety D2/ aux- Recall that DQ aux 15 defined as the
Zariski-closure in Dé‘/f of the set S} Sm® 1t is equipped with maps 12 aux: 7—[2 — O(D, aux) and
W2 aux : D%ux — WS. Define a subset, .75} “aux Of Hom(H5 ,Qp) x 7 by

y2 ,aux {(wa ) € Hom(HéVa@p) X Z | ¢ = XF
where F = (Sym?f)5* for a cuspidal classical non-CM GLy-eigenform f of weight k}.

LEMMA 3.9.2. The 4-tuple (D%ux,wg,wg,Slsym3) defines a BC-eigenvariety for the datum
(LHQI’ Uﬁg )’y2 aux)

PROOF. It is clear from the definitions of Sgl and 5’;1 that the evaluation of (92 aux, W2 aux)

3 3
at a point x € Sls v SIS Y 5 £ Then the lemma follows from Corollary

3.7.1 applied to the choices D = D}, S5 = Ssymg, go =1 and ¢y = ¢. O

REMARK 3.9.3. The sets Yf)\ and S5 aux coincide.  Indeed (Sym? )5t is well-defined for
every cuspidal non-CM GLs- ezgenform 7 and a GSpy-eigenform F' satisfies xp = xfo A if and
only if F = (Sym?3 f)st.

Let SS§! be the set of classical points of D). Define a subset .75 of Hom (HY ,Q,) x Z* by

5 ={(¥,k) € Hom(H3', Q) x 2% = xr
for a cuspidal classical GSp,-eigenform F' of weight k}.

induces a bijection

LEMMA 3.9.4. The 4-tuple (Dé\/l, o, Wwa, 551) is a BC-eigenvariety associated with the datum
@1y, U, 75).

Proor. This is an immediate consequence of Corollary 3.6.5. (]
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3.9.2. Existence of the morphisms. We are ready to prove the existence of the mor-
phisms fitting into diagram (3.15).

PROPOSITION 3.9.5. There exists an isomorphism & : Dy NG DN, aux 0f Tigid analytic spaces
over Q, such that the following dmgmms commute:

N N
_—>
1,aux HQ Hl

(3.16) l l l l

Wf — Wf O(D{Vaux) i) O(Divvg)

A
Divv DN

PROOF. Note that the map .7} clg _, 52 anx defined by (¢, k) = (¢ o A k) is a bijection by
Remark 3.5.14. Thanks to Lemma 3.9.1(3,5) we know that the 4-tuples (DN’ 1, w1, S fl’g)
and (D{\faux, Y1 aux, W1,aux; Sf}aux) are BC-eigenvarieties for the data (1, H, )\(U;g )), 5’01 g) and
(1, 1Y, U]§2), St aux), respectively. Hence Lemma 3.7.4 applied to the morphism \: H3 — HY
and the two data above gives an isomorphism &;: D; NG D{Vaux that makes diagrams (3.16)

commute. O

PROPOSITION 3.9.6. There exists an isomorphism & : D{\faux — ,Déw,aux of rigid analytic
spaces over Q, such that the followmg diagrams commuite:

N M N___ = 4N
Dl ,aux DQ ,aux HQ HQ

| I l

_ &
Wy —=— we 0Dy, ) —— O(D,.)

PrROOF. Lemmas 3.9.1(5) and 3.9.2 together with Remark 3.9.3 imply that the 4-tuples
(D{Yaux, Wy, wy, Sf}aux) and (Dé‘/faux, g, Wa, Sglaux) are both BC-eigenvarieties for the datum g =

LH=HY n= UZ(;Q) and .79 = ¢! aux = 73 ! - Now the proposition follows from Proposition
3.6.3. 0

PROPOSITION 3.9.7. There exists a closed immersion &£3: Dé\{aux — DM of rigid analytic
spaces over Q such that the following diagrams commute:

DZ aux L) D2 Hé\[ — ’Hé\]

Col L

Wlo — WQO (’)(Dé‘/[) B O(DQ aux)

PRrOOF. This is a consequence of Lemma 3.7.2 applied to the BC-data (2, HY, UI@, ) and
(1, 1Y ,§ ), 1), with the morphism Wy — W, being . O

Fmally7 we can define the desired p-adic interpolation of the symmetric cube transfer.

DEFINITION 3.9.8. We define a morphism &: D{V’g — DM of rigid analytic spaces over Qp
by
£=2E80&&.
The properties of &1, &, &3 imply that € is a morphism of eigenvarieties, in the sense that
the following diagrams commute:

A
DN S, pd HY ——— HY

(3.17) o [ |

WP —= W5 o(Dyf) —— oD}’
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REMARK 3.9.9. Since &1 and & are isomorphisms and &3 is a closed immersion, the mor-
phism £ is a closed immersion.

3.10. Overconvergent eigenforms and trianguline representations

In this section V' is a finite-dimensional Q,-vector space endowed with the p-adic topology
and with a continuous action of Gg,. For every vector space or module W carrying an action
(not necessarily linear) of Gg,, we denote by Sym®W the symmetric cube of W. We always
equip Sym®W with an action of G, in the standard way. We recall some definitions and results
from p-adic Hodge theory and the theory of (¢,I')-modules. We always write invariants under
a group action by an upper index.

3.10.1. Fontaine’s rings and admissible representations. Let K and E be two p-adic
fields with £ C K. Let B be a topological F-algebra equipped with a continuous action of G.
We say that B is (E, G)-regular if:

(1) B is a domain;

(2) BE% = (FracB)%x;

(3) if b € B is non-zero and the line B - b is G-stable, then b is invertible in B.
The simpler examples of (E, G )-regular rings are @p and C,,.

We suppose from now on that B is (F, Gk )-regular. Let V be a finite dimensional E-
representation of G . We introduce the notion of B-admissibility of V; our reference is [Fo94,
Chapitre 1]. For every K-representation V' the B-module B&g V' is free and carries a semilinear
action of Gg. Set

D(V) = (B®p V)©r.
Then D is a K-vector space and there is a natural K-linear map
aB,V: B®g D(V) —B®gV.

The map ap,y is always injective. We say that V' is a B-admissible representation of G if
ap,v is an isomorphism. Then
V is B-admissible <= dimg D(V) =dimgV <
<= B ®pg V is a trivial B-representation of G.
Consider the following condition:
(%) the ring B is (E, Ggr)-regular for every finite extension K’ of K.

For B satisfying (x), we say that V is potentially B-admissible if there exists a finite exten-
sion K’ of K such that V is B-admissible as a representation of Gg.

ProposiTiON 3.10.1. IfB is a @p—algebm that satisfies (x), then a potentially B-admissible
representation V is B-admissibile.

Fontaine defined some (F, Gk )-regular rings Byr, Bgr, Bst, Beris. The lower indices stand
respectively for Hodge-Tate, de Rham, semi-stable and crystalline. We refer to [Fo94] for the
details of the constructions. All the rings above satisfy condition (x). We recall that

BHT = @ (Cptz7
€L
where g.t = x(g)t for the cyclotomic character y, and that Bgg is a field. All of Fontaine’s rings
are independent of E, and the rings Byt and Bgr are also independent of K. When B is one
of Fontaine’s rings, we replace the notation Dy by Dy, Dgr, Dgt or Deis depending on B.
We say that the representation V' is Hodge-Tate, de Rham, semi-stable or crystalline if it is
B-admissible respectively for By, Bgr, Bst or Beis. We recall some basic results.
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PROPOSITION 3.10.2. There is a chain of implications between the admissibility properties
of V:

crystalline = semi-stable =—> de Rham == Hodge-Tale.

Note that Bgr satisfies the assumptions of Proposition 3.10.1. By combining this with
Proposition 3.10.2 we obtain that a potentially semi-stable V' is de Rham. The converse is also
true and is a result by Berger.

THEOREM 3.10.3. [Be02, Théoreme 0.7] A finite dimensional E-representation of Gk is de
Rham if and only if it is potentially semi-stable.

Suppose that V is Hodge-Tate and let d = dimg V. Then the K-vector space

Gk
Dyut = (Bur ®p V)9 = (@ Cpt' ®p V)
1€Z

is d-dimensional.

DEFINITION 3.10.4. The Hodge-Tate weights of V' are the values of © € 7Z such that the
dimension

d; = dimp (Cpt~* @p V)9%
1s positive. The multiplicity of a Hodge-Tate weight i of V is d;.

It can be shown that
Dyr = P(Cpt' @p V)9,
1€EL
hence the sum of the Hodge-Tate weights of V' with multiplicities is d.
An important class of de Rham representations is given by the Galois representations asso-
ciated with classical automorphic forms. We state the result only for the cases we need. Let

g =1or 2 and let N be a positive integer. Let F' be a classical, cuspidal GSpy,-eigenform of
level T'1 (V). Let

prp: Gg = GSpyy(Q,)
be the p-adic Galois representation associated with F'.

THEOREM 3.10.5.

(1) for every prime p not dividing N, ,OF,p|GQp s a crystalline representation;
(2) for every prime p, pryp

Gy, is a de Rham representation.

The first statement is a consequence of Faltings’s proof of Fontaine’s C¢yis conjecture [Fa89).
The second one follows from Tsuji’s proof of the Cg conjecture formulated by Fontaine and
Jannsen [Ts99]. In the case g = 1 this is the confirmation of one implication of the Fontaine-
Mazur conjecture [FM95]. For the converse see Emerton’s result (Theorem 3.10.18(2)).

REMARK 3.10.6. Since pr) is a de Rham representation it is also Hodge-Tate. Its Hodge-
Tate weights can be given in terms of the weight of F':

e if g=1 and F is a form of weight k, then the Hodge-Tate weights of pry are 0 and k — 1;
e if g=2 and F is a form of weight (ki, kz), then the Hodge-Tate weights of pr, are 0, ky — 2,
ki —1 and k1 + ko — 3.
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3.10.2. Trianguline representations and overconvergent modular forms. We recall
a few results from the theory of (¢, I')-modules. We refer mainly to [Fo90], [Be02] and [Col08|.
As before F is a finite extension of QQ,, fixed throughout the section. Let I' be the Galois group
over E of a Zy-extension of E and let Hy = Gg/I'. Let Z be the Robba ring over E. Let &
be the field of bounded elements of %Z. The rings # and &' carry commuting actions of I" and
of a Frobenius operator .

A (p,T)-module over & or Z is a free module D of finite type carrying commuting actions
of T and ¢ and such that (D) generates D as a module (over &' or #). We say that a (¢,T')-
module D over Z is triangulable if it is obtained via successive extensions of (¢, I')-modules of
rank one over Z. _

We refer to [Fo90] and [Be02] for the definitions of the rings B and Biig and of the

categories of étale (¢,I')-modules over &' and of (¢,I')-modules of slope 0 over %Z. For a
finite-dimensional E-representation V' of Gg,, let

DI(V) = (BT ®g, V)"o.
Then Df(V) carries a natural structure of étale (p, T')-module over &1, and
V = DI(V)

defines a functor Dt from the category of finite-dimensional E-representations of G, to the
category of (o, T')-modules on &T. Conversely, for every (¢, I')-module D, let

V(D)= (D® o D)#=1,
D

Then VT(D) is a finite-dimensional E-vector space with a natural action of Gg,, and
D+ V(D)

defines a functor VT from the category of (¢,I')-modules on &' to the category of finite-
dimensional E-representations of Gg,.

THEOREM 3.10.7. [Fo90, Proposition 1.2.6] The functors DT and VT are inverses of one

another and induce an equivalence between the category of finite-dimensional E-representations
of Gg, and that of (¢,I')-modules on &t

Now for a finite-dimensional E-representation V' of G, let
D,ig(V) = Z @41 DI(V)
with its natural structure of (¢, I')-module over #Z. Then
V = Dyig(V)

defines a functor from the category of finite-dimensional E-representations of G, to the cate-
gory of (p,I")-modules over Z. For a (¢, I')-module D over Z, let

V(D) = (Bl @, D)¥="

rig
and equip it with its natural structure of E-representation of Gg,. Then
D — V(D)

defines a functor from the category of (¢, I')-modules over Z to the category of finite-dimensional
E-representations of Gg,.

THEOREM 3.10.8. [Col08, Proposition 1.7] The functors Dy and V are inverses of one
another and induce an equivalence between the category of finite-dimensional E-representations

of G, and that of (¢,I')-modules of slope 0 on Z%.

We recall an important definition.
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DEFINITION 3.10.9. [Col08, Section 0.4] A finite-dimensional E-representation V' of Gg,
is trianguline if the (¢,T")-module Dyig(V') is triangulable.

Thanks to the results of [Be02], we can recover Fontaine’s modules D¢yis(V) and D (V)
from Dyig(V). Note that we formulate this result as in [Col08, Proposition 1.8], since we did
not introduce the ring Bjgg.

LEMMA 3.10.10. ([Be02, Theorem 0.2], see [Col08, Proposition 1.8])

(1) The structure of (¢,I')-module on Dyig(V') induces a structure of filtered p-module on
(Z[1/t] @4 Drig(V)) such that there is an isomorphism

Deis(V) 2 (Z[1/t] ® Dy (V).

(2) The structure of (¢,I')-module on Dyig(V') induces a structure of filtered (¢, N')-module on
(Z[1/t,1og T) @2 Dyig(V))T such that there is an isomorphism

Dst(v) = (%[1/t7 IOg T] Q% Drig(v))r-

The cyclotomic character x induces an isomorphism I' — ZJ that we still denote by y.
Let 7, be the pre-image of our chosen generator u of Z). Let 0: Q) — E* be a continuous
character. We define #(0) as the rank one (¢, I')-module having a basis element es such that
p.es = d(p)es and vy.es = d(x(u))es-

PROPOSITION 3.10.11. [Col08, Théoreme 0.2(i)] For every rank one (p,I')-module D over
X, there exists a unique continuous character §: Q) — E* such that D = %(5).

If n: Gx — E* is a character, we denote by V() the E-representation of G obtained by
twisting V' by 1. We recall a result by Colmez.

LEMMA 3.10.12. [Col08, Proposition 4.3] When V is two-dimensional the following condi-
tions are equivalent:
(i) V is trianguline;
(ii) there exists a continuous character n: Gg, — O, such that Des(V(n)) # 0.

As an immediate consequence we have the following.

COROLLARY 3.10.13. If V' is two-dimensional and trianguline and n: Gg, — OF is a con-
tinuous character, then V(n) is also trianguline.

Some potentially trianguline representations are provided by p-adic Hodge theory.
PRrROPOSITION 3.10.14. If V is a de Rham representation then it is potentially trianguline.

An important class of trianguline representations is given by the Galois representations
associated with overconvergent modular forms. Let f be an overconvergent GLo-eigenform and
let prp: Gg — GLQ(@p) be the p-adic Galois representation associated with f. As Berger
observed in [Bell, Section 4.3], the following result is a combination of [Ki03, Theorem 6.3]
and [Col08, Proposition 4.3].

THEOREM 3.10.15. The representation ﬂf,p|GQp 1s trianguline.

The analogous result for an overconvergent GSp,-eigenform can be deduced from a recent
work of Kedlaya, Pottharst and Xiao [KPX]. Keep all notations as before. Let ¥ be the set of
embeddings K < E. Every o € ¥ restricts to a character z,: K* — E*.

THEOREM 3.10.16. [KPX, Theorem 6.3.13] Let X be a rigid analytic space over L. Let M be
a (¢, T')-module over Zx (rg) of rank d. Suppose that M is densely pointwise strictly trianguline
with respect to a Zariski-dense subset X, of X and ordered parameters 61,...,6q: K* —
O(X)*. Then for every z € X the specialization M, is trianguline with parameters 61z, ..., 04z,
where 5§7z =0z [loes zo"7 for some integers Nizo-
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We specialize the theorem to the GSp,-eigenvariety. Since we cannot construct a big Galois
representation over the whole eigenvariety, we need to rely on the construction of families that
we will explain in Section 4.1.2; we use the notations defined there. Let F' be an overconvergent,
finite slope GSpy-eigenform and let pp,: Gg — GSp4(@p) be the p-adic Galois representations
associated with F.

COROLLARY 3.10.17. The restriction PF,p|GQp is trianguline.

Proor. Let K = ' = Q, and d = 4. Let V be a neighborhood of the weight of F' such
that the weight map Déw "/h — V is finite. Then the construction in Section 4.1.4 gives a Galois

representation ppmvn: Gg — GL4((’)(D§/[{/h)). Let M be the (¢, I')-module over Z,m.n(mg,)
2,V ’ 2,V
associated with the local Galois representation PpMh |G@p‘ Let X, be the set of classical points
2,V
of Déw "/h with cohomological weight and distinct Hodge-Tate weights. Let w*: O(V) — O(Dé\/[ "/-h)

be the morphism of Q,-algebras induced by the weight map w: D%}h — V. Let (037,...,0%) be
the 4-tuple of characters Z, — O(DJ) determined by

(69, ., 09)(u) = w* o (Lu (1 +T1),u2(1 + To),u (1 4+ T1)(1 + T2))).

For i = 1,...,4 let §; be an extension of 7 to a character Q; — O(D)*. We obtain the
corollary by applying Theorem 3.10.16 to the above data and then specializing the resulting
triangulation to the (¢, I')-module associated with prplcg, - O

3.10.3. Modularity results. We recall an important theorem, the proof of which is a com-
bination of an overconvergent modularity result by Emerton [Em14, Corollary 1.2.2] and a pro-
modularity result deriving from the work of Bockle, Diamond-Flach-Guo, Khare-Wintenberger
and Kisin [Em14, Theorem 1.2.3]. Here E is a finite extension of Q, with ring of integers Op
and residue field F. We denote by x: Gg — Z, the cyclotomic character and by X: Gg — F)
its reduction modulo p.

THEOREM 3.10.18. [Em14, Theorem 1.2.4] Let 7: Gg — GL2(OF) be a continuous, irre-
ducible, odd representation unramified outside a finite set of primes. Let T: Gg — GLa(IF) be
the residual representation associated with 7. Suppose that:

(a) p > 2;

(b) F‘GQ(Cp) is absolutely irreducible;

(c) there exists no character n: Gg — F* such that T is an extension of n by itself or of n by
nX-

In this setting the following conclusions hold:

(1) ifT\G@p is trianguline, then T is the twist by a character of the Galois representation attached
to a finite slope, cuspidal, overconvergent GLa-eigenform;

(2) if T|GQP is de Rham with distinct Hodge-Tate weights, then T is the twist by a character of
the Galois representation attached to a cuspidal classical GLo-eigenform of weight k > 2.

Part (2) of the theorem is a confirmation of one implication of the Fontaine-Mazur conjecture
[FM95, Conjecture|. A different proof of this statement was given by Kisin [Ki03, Theorem
6.6].

An analogue of Theorem 3.10.18 is not yet available for the representations associated with
overconvergent GSp,-eigenforms.
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3.10.4. Non-abelian cohomology and semilinear group actions. We recall a few
results from the theory of non-abelian cohomology. call pointed set a set with a distinguished
element. Let S and T be two pointed sets with distinguished elements s and ¢, respectively.
Let f: S — T be a map of pointed sets. We define the kernel of f by ker f = {s € S| f(s) = t}.
Thanks to this notion we can speak of exact sequences of pointed sets.

Let G be a topological group. Let A be a topological group endowed with a continuous
action of G, compatible with the group structure. For i € {0,1} let H*(G, A) be the continuous
cohomology of G' with values in A. Then H{ (G, A) has the structure of a pointed set with
distinguished element given by the class of the trivial cocycle. For i = 0 we have H(G, A) = A®,
the pointed set of G-invariant elements in A; its distinguished point is the identity. Since A is
not necessarily abelian, we have no notion of continuous cohomology in degree greater than 1.
Let B, C be two other topological groups with the same additional structures as A, and let

(3.18) 154585051

be a G-equivariant short exact sequence of topological groups. Then there is an exact sequence
of pointed sets

(3.19) 1 A% - BY - % % HYG, A) —» HY(G,B) — HY(G,C).

The connecting map 4 is defined as follows. Let ¢ € C% and let b € B such that 3(b) = c¢. Then
d(c) is the map given by
g—a (b7l g.b)

for every g € GG. It is easy to check that this is a good definition and that ¢ is a cocycle. We
call (3.19) the long exact sequence in cohomology associated with (3.18).

Now suppose that A and B are topological groups with the same structures as before, but
C is just a topological pointed set with a continuous action of G that fixes the distinguished
element of C. Since C is not a group we cannot define H'(G,C). However the pointed set
HY(G,C) = OF of G-invariant elements of C' is well-defined; its distinguished element is the
distinguished element of C.

ProrosiTION 3.10.19. Let A, B, C be as in the discussion above. Suppose that
1A—->B—>C—1

is an exact sequence of topological pointed sets. Then there is an exact sequence of pointed sets
1 A% - BY » ¢ % HY(G, A) —» HY(G, B).

The connecting map ¢ is defined as in the case of an exact sequence of groups. This definition
does not rely on the group structure of C.

ProOF. We check exactness at every term as in the case of an exact sequence of groups.
None of these checks relies on the group structure of C. (]

Let R be a ring and let 0: R — R be an automorphism. Let M be an R-module. We say

that a map f: M — R is o-semilinear if:
o f(z+y) = f(x)+ f(y) for every x,y € M,
e f(rx)=o(r)f(x) for every r € R and every x € M.

Let G be a topological group. Let B be a topological ring equipped with a continuous
action of G, compatible with the ring structure. Let M be a B-module. A semilinear action
of G on M is a map that associates with every g € G a g-semilinear map g(-): M — M, in
such a way that gh(xz) = g(h(x)) for every g,h € G and x € M. When M is free we also say
that M is a semilinear B-representation of G. We say that M is irreducible if the only G-stable
B-submodules of M are 0 and M.

Let n be a positive integer and let M be a free B-module of rank n, endowed with the
topology induced by that on B. We say that two semilinear actions of G on M are equivalent
if they can be obtained by one another via a change of basis. We choose a basis (e1, €2, ..., ¢ey)
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of M, hence an isomorphism GL(M) = GL,(B). We let G act on GL,(B) via its action on
B. Two semilinear actions ¢(-); and g(-)2 of G on M are equivalent if and only if there exists
A € GL(M) such that g(x); = M - g(z)2 - (g(A))~! for every g € G and x € M. There is a
bijection
(3.20)

{Equivalence classes of semilinear and continuous actions of G on M} <+ H'(G, GL,(B)).

Given a semilinear action of G on M, we define a € H'(G, GL,(B)) as the class of the cocycle
that maps g € Gg, to the matrix (afj)i,j € GLy(B) satisfying

g(e;) = Z a?jej
J

for every i € {1,2,...,n}.

We say that G acts trivially on M if there exists a basis (€}, €),...,e),) such that g.e; = ¢}
for every ¢ € G and every i € {1,2,...,n}. The action of G is trivial if and only if the
corresponding class in H'(G, GL,(B)) is trivial. We say that the action of G is triangular if

there exists a basis with respect to which the matrix (agj)i,j is upper triangular for every g € G.

3.10.5. Representations with a de Rham symmetric cube. Now suppose that B is
a Cp-algebra equipped with a continuous action of Gg,, compatible with the ring structure and
with the natural action of Gg, on C,. Suppose that the subring of Gg,-invariant elements in

B is Q.
Recall that there is an exact sequence of algebraic groups over Z:
(3.21) 1— us — GLQ — GL4,

where pus — Gl sends ( to ¢ - 1o and GLy — GLy4 is the symmetric cube representation.
Consider the exact sequence induced by (3.21) on the B-points:

(3.22) 1 — p3(B) — GLy(B) — GLy(B).

Let Gq, act on each term via its action on B; this action is clearly continuous and compatible
with the group structure on each term. The above sequence is G, -equivariant. We split it into
the short exact sequence

(3.23) 1 — p3(B) = GLo(B) & (GLa/p3)(B) — 1

and the injection

(3.24) 1 = (GLa/us)(B) 2% GLy(B).

Both this sequences are Gg,-equivariant. Since Sym®GLy(B) is not normal in GL4(B) we
cannot complete (3.24) to a short exact sequence of groups. However we can complete it to
an exact sequence of pointed sets. Let H be the algebraic group Sym3GLy. Let [GLy, H](B)
be the set of right classes {M - H(B)| M € GL4(B)}. We equip [GL4, H] with a structure of
topological pointed set by giving it the quotient topology and letting the class H(B) be the
distinguished point. Let Gg, act on [GL4, H|(B) by g.(M - H(B)) = (g9.M) - H(B); this action
is continuous and it leaves the distinguished point fixed. Then there is a Gg,-equivariant exact
sequence of topological pointed sets

where the first two non-trivial terms also have a group structure compatible with the action of
Gq,- Thanks to Proposition 3.10.19 there is an exact sequence of pointed sets

1 — ((GLz/p3)(B))“% — (GL4(B))“% — ([GLq, H](B))“% —

(326) Hl(symii)
—_—

—~ H' (G, CLa/p3(B)) H'(Gq,, GLy(B)).
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REMARK 3.10.20. Let [GL4, H](Qy) be the subset of [GLy, H|(B) consisting of right classes
{M-HB)|M € GL4(Qp)}. Since Gg, acts on each term of (3.25) via its action on B, we
have

((GLa/p3)(B))“% = (GLa/p3)(Qp),
(GL4(B))“2 = GL4(Qp),
([GL4, H|(B))“% = [GLy, H](Qy).

In particular the map (GL4(B))“% — ([GLy4, H|(B))“% that appears in the ezact sequence
(3.26) is surjective. Hence the kernel of the map H'(Sym?) is trivial, i.e. it contains only the
distinguished point of H'(Gg,, GLa/us(B)).

Now consider the short exact sequence of topological groups (3.23):
1 — p3(B) & GLa(B) — (GLg/u3)(B) — 1.
The associated long exact sequence of pointed sets is

1= (u3(B))“% — (GL2(B))“% — ((GLz/u3)(B))“% —
(3.27) ) Y ()
— H'(Gq,, n3(B)) — H'(Gy,, GL2(B) —— H'(Gq,, GL2/u3)(B)).

Let M be a free B-module of rank 2, endowed with the topology induced by B. Suppose
that Gq, acts continuously on M. Then Sym®M is a free B-module of rank 4 endowed with
the natural semilinear action of Gg, induced by that on M. We use the exact sequences
we constructed, together with the bijection (3.20), to prove the second part of the following

proposition.

ProrosiTIiON 3.10.21.
(1) If the action of Gg, on M is trivial then the action of Gg, on Sym>®M s trivial.

(2) If the action of Gg, on Sym?3M is trivial then there exists a subgroup H of Gq, of index 3
that acts trivially on M.

PROOF. If (m1,ms) is a B-basis of M on which Gg, acts trivially, then the image in Sym?M
of the set (my ® m1 @ my, mi @ My ® Mg, mi ® Mg @ ma, Mo @My @ ms) is a B-basis of Sym>M
on which Gg, acts trivially. This proves the first part of the proposition.

We prove the second statement. The bijection (3.20) associates with the action of Gg, on
M a class 0 € H'(Gg,, GL2(B)). Recall the maps

H'(m): H'(Gq,, GL2(B)) = H'(Gq,, GLa2/p3(B))
and
H'(Sym®): H'(Gq,, GL2/u3(B)) — H'(Gg,, GL4(B))

that appear in the sequences (3.27) and (3.26). The class in H'(Gg,, GL4(B)) associated with
the action of Gg, on Sym®M is (H'(Sym?) o H'(7))(o); by assumption it is trivial. By Remark
3.10.20 the kernel of H'(Sym?) is trivial, hence (H'(7))(o) is trivial. Now by the exactness of
(3.27) the class o belongs to the image of H'(:): H'(Gq,, u3(B)) — H'(Gg,,GL2(B)). Let 7
be an element of H'(Gg,, u3(B)) satisfying (H'(1))(7) = o.

Since C, C B, p3(B) is the group of cubic roots of 1, that we simply denote by p3. We have

HY(Gq,,p13) = QP/QIS;. An isomorphism Qp/(@g — H'(Gq,, p3) is defined as follows: given

1/3

y e Qy/ Qg we choose a representative x € @, and a cubic root z'/° € C, and we send y to

the cocycle g — g.z'/3 /23, Now let y € Qp/(@g be the element that corresponds to 7 via the
given isomorphism, and let z € Q, be a representative of y. Then the cocycle 7 is trivial on
the subgroup H = Gal(@p/(@p[xl/?’]) of Gg,. Since o = (H'(¢))(7), o is also trivial on H. By
definition of the bijection (3.20), the above implies that the action of H on Sym3M is trivial.
Since H is a subgroup of G, of index 1 (if y is trivial) or 3, this concludes the proof. O
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REMARK 3.10.22. There is a Gg,-equivariant isomorphism of Bqr-vector spaces
P: Sym3 (B4r XQ, V)= Bgr ® Symgv.
It is defined by

P (Z(bm ®i1) ® (big ®vi2) @ (big® Ui,S)) = Z bi,1bi2b; 3 ® (Vi1 @ vi2 @ v;3)

i [

for every b; j € Bar and v;j € V, with j € {1,2,3} and i in a finite set.

PROPOSITION 3.10.23. The representation V' of Gq, is de Rham if and only if Sym?®V is de
Rham.

PROOF. By definition V' is de Rham if and only if the semilinear action of Gg, on Bqr @ V'
is trivial, and the analogous statement is true for Sym3V. By Proposition 3.10.21(1), if Gq,
acts trivially on Bgr ® V' then it also acts trivially on Sym? (Bar ® V). By the Gg,-equivariant
isomorphisms of Remark 3.10.22 we obtain that G, acts trivially on Bar ®Sym?3V. Conversely,
if G, acts trivially on Bqr ® Sym3V, it acts trivially on Sym?®(Bgr ® V). Then Proposition
3.10.21(2) gives a subgroup Hg, of Gg, of index 3 that acts trivially on Bqr ® V. This
means that the representation Gg, is potentially de Rham, hence it is de Rham by Proposition
3.10.1. 0

3.10.6. Symmetric cube of a (¢,I')-module. Let E be a p-adic field and let V' be an E-
vector space carrying an E-linear action of Gg,. Let D be a (¢, I')-module over . We define a
(¢, T)-module Sym>D over Z as follows. The underlying Z-module of Sym?3D is the symmetric
cube of the underlying %Z-module of D. The action of T' on Sym>D is defined as follows: for
v € I' and dy,ds,ds € D we set v.v1 ® va @ v3 = (7.d1) ® (7.d2) ® (7.d3) and then extend by
semilinearity with respect to the action of I" on Z. If ¢p is the Frobenius of D, the Frobenius
Psym?p Of Sym®D is defined by setting @SymsD(vl ®uvy®v3) = pp(v1) ® p(v2) ® wp(vs) for
v1,v2,v3 € D and extending by semilinearity with respect to the Frobenius of #Z. The action
of T on Sym®D commutes with Pgym3p since the action of I' on D commutes with ¢p. We can

check that ¢g 3 p(Sym?D) generates D as an %Z-module.

REMARK 3.10.24. There is an isomorphism Sym?®(Dyig(V)) = Dyig(Sym3V') of (¢, T')-modules

over #. Indeed the isomorphism P: Sym3(]§Lg ®q, V) — ﬁiig

®qQ, Sym3V given by
P <Z(bi,l ®@vi1) @ (bi2 ®vi2) @ (big® Ui,3)> = Z bi1bi 203 ® (Vi1 ® V2 ® Vi 3)

% %

for every b; ; € ]A?;Iig and v;; € V, with j € {1,2,3} and i in a finite set, is seen to be Gg,-
equivariant for the natural actions on the two sides. The morphism induced by P on the
Z-modules of Hg,-invariants is compatible with the Frobenius maps, hence it is the desired

isomorphism of (¢, T')-modules.

3.10.7. Representations with a trianguline symmetric cube. We consider now the
case where Sym3V is trianguline. The goal of this subsection is to prove the following.
PROPOSITION 3.10.25. Suppose that V' is irreducible.

(i) If the representation V is trianguline then Sym?V s trianguline.
(ii) If the representation Sym3V is trianguline then either V' is trianguline or V is a twist of
a de Rham representation. In particular V is a twist of a trianguline representation.
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The first statement is immediate. The proof of the second one relies on a technique used by
Di Matteo in [DiM13], together with the classification of two-dimensional potentially triangu-
line representations carried on by Berger and Chenevier in [BC10]. Di Matteo considers two
representations V' and W such that the tensor product representation V' ® W is trianguline,
and proves that in this case V and W are potentially trianguline. We will adapt his arguments
to our situation.

Let K be a p-adic field. Let B be a topological field equipped with a continuous action of
Gg. Let Cg be the category of semilinear B-representations of Gx. The B-linear dual of an
object of C]I?f and the tensor product over B of two objects of Cé{ define new objects in the usual
way. In this section all duals and tensor products are in C][_Df except when stated otherwise.

Let n: Gk — B* be a cocycle. Let B(n) be a one-dimensional B-vector space with a
generator e, equipped with the semilinear action of Gk defined by g.e = n(g)e for every g € G.
We simply write B when 7 is the trivial cocycle. Clearly every one-dimensional object in Cf:f is
isomorphic to B(n) for some cocycle 7. Note that if 7 takes values in B¢X then 7 is a character.
For every object M of C§ we set M(n) = M @ B(n).

For every object M of Cg and every finite extension K’ of K, we consider M as an object
of Cg " with the action induced by the inclusion G’ C G-

We say that an n-dimensional object M of C]I_gf is triangulable if there exists a filtration

M=MyDMDMyD>...OM,_1DM,=0
where, for every i € {1,2,...,n}, M; is a Gg-stable subspace of M and M;_1/M; is one-
dimensional. If there exists such a filtration that satisfies M;_1/M; = B(n;) for some characters
N1,M2, .- 1n: G — BEK | then we say that M is triangulable by characters. These definitions
are analoguous to those in the beginning of [DiM13, Section 3], but we omit the specification

“split” since we use Colmez’s terminology for trianguline representations rather than Berger’s.
From now on M is a two-dimensional irreducible object in Cg .

LEMMA 3.10.26. Let X and X' be two irreducible objects in C. If X ® X' has a one-
dimensional quotient in Cg, then dimg X = dimg X"’.

PROOF. The one-dimensional quotient of X ® X’ is isomorphic to B(n) for a cocycle
n: Gxg — B. Consider the following tautological exact sequence in Cg :

0> kerd — X @ X' % B(n) — 0.
There is a Gi-equivariant map ¢': X — (X')*(n) sending =z € X to the function ¢'(x) €
(X")*(n) defined by 2’ — ¢(x @ 2’) for every ’ € X'. Since ¢ is non-zero, ¢’ is also non-zero.
The representations X and (X’)*(n) are irreducible, hence the non-zero G k-equivariant map ¢’
is an isomorphism. We conclude that dimg X = dimg(X’)*(n) = dimg X'. O

LEMMA 3.10.27. Suppose that Sym>®M is triangulable by characters. Let m,n2,n3,n4: G —
BCK be the characters appearing in the triangulation of Sym®>M. Then:

(i) there exists an irreducible object My of Cg such that Sym3M = M, ® M;
(ii) there is a decomposition Sym>M = @?:1 B(n;) in CK.
The central ingredients in the proof are [DiM13, Lemma 3.1.3] and the proof of [DiM13,
Corollary 3.1.4].
PROOF. Let
Sym*M =Y DY DY, DYDY, =0
be a filtration of Sym®M satisfying Y;_1/Y; = B(n;) for 1 < i < 4. In particular B(n;) is
a quotient of Sym®M and B(n4) is a subobject of Sym3M. Let 7, : Sym*M — B(n;) and
7: Sym?>M ® M — Sym3M be the natural projections.
Consider the following exact sequence in C]I?f :

0 — kerm — Sym?’M @ M = Sym*M — 0
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The surjection 7, om: Sym2M®M — B(ny) defines a one-dimensional quotient of Sym2M ® M.
If Sym?M is irreducible then Lemma 3.10.26 implies that dimg Sym?M = dimg M, which is a
contradiction since Sym?M is three-dimensional. Then Sym?M is reducible; this means that it
admits a non-trivial filtration in Cg (i.e. a filtration in G k-stable subspaces). For simplicity, set
X = Sym?M. All the maps and the filtrations we write are in C]I_Df . There are three possibilities:

(1) there is a filtration
X:XoDXlDXQDng()
with dlmB(Xz—l/Xz) =1fori= 1,2,3;
(2) there is a filtration
X=X0D0X12Xo=0
with dimg(X/X;) = 1, dimp X; = 2 and X irreducible;
(3) there is a filtration
X=X0D0X1D2X2=0
with dimg(X/X;) = 2, dimg X; = 1 and X/X; irreducible;
Suppose that (1) holds. Since X is obtained from X /X7, X; /X5 and X» by successive extensions,
X ® M is obtained by successive extensions of (X/X;) ® M, (X1/X2) ® M and X @ M.
Hence there exists i € {1,2,3} such that the surjection X ® M — B(7;) induces a surjection
Xi1/X; ® M — B(n;). Since X;_1/X; and M are irreducible, Lemma 3.10.26 implies that
dimp(X;—1/X;) = dimp M = 2, a contradiction since dimp(X;_;/X;) = 1 for every i.
Suppose that we are in case (2). As before, there exists ¢ € {1,2} such that X @ M —
B(n1) induces a surjection m, (X;—1/X;) ® M — B(n). If i = 1 Lemma 3.10.26 implies that
dimp(X/X;) = dimp M, a contradiction. Hence there is an exact sequence

0 — kerm, — X1 ® M — B(n).

Since X; and M are irreducible, this sequence splits by [DiM13, Lemma 3.1.3]. In particular
there is a section B(n;) — X7 ® M. By composing this section with the inclusion X; ® M —
X ® M and the projection X @ M — Sym®M we obtain a section of the map Ty, hence a
splitting of the exact sequence

0 — kerm,, — Sym*M Imy B(m) — 0.

By definition of m,, we have Y; = kerm,,, so Sym3M =Y, ®B(m). Now Y3 is a subobject of Y7,
hence Y5 @ B(71) is a subobject of Sym3M. There is an isomorphism Sym3M/(Ys @ B(n1)) =
Y1/Ys = B(n2), giving a projection m,,: Sym*M — B(n2). By replacing 7, with m,, in the
above argument, we obtain that the sequence

3 Tng
0 — kerm,, = Sym°M —= B(n2) = 0

splits. Then Sym*M = kerm,, ® B(n). Since kerm,, = Y @ B(n1) we obtain Sym®M =
Yo @ B(m) @ B(n2). We repeat the argument for the projection to B(n3) and we obtain a
decomposition Sym?3M = @?:1 B(n;), together with maps m,,: X1 ® M — B(n;).

Now consider the map ¥: X1 ® M — Sym>M obtained by composing the inclusion X; ®
M — X ® M with 7: X ® M — Sym>®M. By the results of the previous paragraph, Sym>M =
@?:1 B(7n;) and for every i € {1,2,3,4} there is a map m,,: X1 ® M — B(n;). Hence 9 is
surjective. Since X1 ® M and Sym3M are both 4-dimensional, 1) is an isomorphism. Moreover
X is irreducible, so part (1) of the lemma is true with M; = X;.

Suppose that we are in case (3). Consider the map v¥: X; ® M — Sym®M obtained by
composing the inclusion X;®M — Sym?M ® M with the projection 7: Sym?> M @M — Sym>M.
Since X7 is one-dimensional and M is irreducible, X1 ® M is irreducible. Hence the kernel of
1 is either 0 or X7 ® M. In the first case the image of ¥ defines a two-dimensional irreducible
subobject of Sym3M, contradicting the fact that Sym>®M is triangulable. In the second case
7 factors via a surjective map 71: (X/X1) ® M — Sym®M. Since dimp((X/X1) ® M) =
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dimp Sym>M, 7, is an isomorphism. Now X /X is irreducible, so part (1) of the lemma is true
with M; = X/Xl.

The decomposition of Sym3M given in part (2) of the lemma follows from part (1) and
[DiM13, Corollary 3.1.4]. O

We recall another result of [DiM13].

LEMMA 3.10.28. [DiM13, Lemma 3.2.1] Let N and N’ be two objects of C& such that N@N'
1s triangulable by characters. Let {"72'}1('1:1 be the set of characters G — BEYK appearing in the
triangulation of N @ N'. Then 771_1771' is a finite order character for every i € {1,2,...,d}.

The following lemma is proved in the same way as [DiM13, Theorem 3.2.2], with the
difference that we work in the language of (p, I')-modules rather than in that of B-pairs. Recall
that E is a p-adic field and V' is a two-dimensional E-representation of G, .

LEMMA 3.10.29. Suppose that V is irreducible. If Sym3V is trianguline, then V is potentially
trianguline.

PRrOOF. Consider the (p,I')-modules Dyig(V) and Dyig(Sym®V). They are free %Z-modules
carrying a semilinear action of Gg,. By Remark 3.10.24 there is an isomorphism of (¢,I')-
modules Dyig(Sym®V) = Sym®D,ig(V). In particular this is an isomorphism of semilinear
representations of Gg,, where we let Gg, act via Gg, — TI.

Since Sym>V is trianguline, Drig(Sym?’V) is obtained by successive extensions of rank one
(¢, T)-modules D;, 1 < i < 4. By Proposition 3.10.11, for every i € {1,2,3,4} there exists a
character 7;: Q — E* such that D; = %(n;). Note that E* = Z°*", s0 ni|q, takes values in
e

Since V is irreducible, [DiM13, Corollary 2.2.2] implies that Dyig(V') is irreducible as a
semilinear Z-representation of Gg,. In particular the choice M = Dyjg(V') satisfies the assump-
tions of Lemma 3.10.27, hence part (2) of that lemma gives a Gg,-equivariant decomposition
Dyig (Sym®V) = @i, Z(n;)-

Now by Lemma 3.10.28 there exists a finite extension L of E such that 7, 1771»\(; ,, is trivial for
every i. Hence there is an isomorphism Dyig(Sym3V)(n; ') = @?:1 X of #-representations of
Gr. This means that Dy (Sym3V)(n; ') is a trivial %Z-representation of Gr. Let ': Gg — @;
be a character satisfying Dyig(11) = Z(11). Then Dyig((Sym®V)(1™1)) = (Dyig(Sym®V)) (n ).
By Lemma 3.10.10(2) there is an isomorphism

Dy (Sym®V (1)) = (Z[1/t, T] @2 Duig(Sym3V))F'z

of filtered (p, N)-modules. We know that Gy, acts trivially on Dy ((Sym3V)(n; 1)), so the
module Dyg;((Sym3V)(n;!)) is four-dimensional. This means that (Sym®V)(u~!) is a semi-
stable representation of G;. In particular it is a de Rham representation of Gp.

Let p/(x) = p(x)/|u(x)]: QF — Op. Let Ey be a finite extension of E that contains pt/6
and let Ly be a finite extension of L such that y'|g, is trivial modulo the maximal ideal
of Op. Then there exists a character p1/6: Q — E such that (/fl/6)6 = pu~ . Since
Sym?(V (u=/%)) = (Sym®V)(p~') and (Sym®V)(u~1) is de Rham, V(u~'/%) is also de Rham
by Proposition 3.10.23. Hence V(,u_l/ﬁ) is potentially trianguline by Proposition 3.10.14. The
twist V' of V(,u_l/6) is still potentially trianguline by Corollary 3.10.13. (]

Now we can prove Proposition 3.10.25

PRrROOF. We prove (i). Suppose that V' is trianguline. By definition there is a basis {v, v2}
of Dyig(V') in which the actions of Gg, and ¢ are described by upper triangular matrices. By
Remark 3.10.24 there is an isomorphism D (Sym?V) & Sym®D,;, (V). Hence the set

{01®U1®U1,U1®U1®U2,U1®v2®v2>1}2®02®v2}
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is a basis of D,ig(Sym3V). We see immediately that the actions of Ggq, and ¢ on D,ig(Sym3V)
are described by upper triangular matrices in this basis.

We prove (ii). Since Sym?3V is trianguline, V is potentially trianguline by Lemma 3.10.29.
Then V satisfies one of the three conditions listed in [BC10, Théoréme A]. By assumption V
is irreducible, so it cannot satisfy (2). Hence (1) or (3) must hold, as desired. O

3.10.8. Representations with symmetric cube of automorphic origin. Consider
two continuous representations p;: Gg — GL2(Q,) and p2: Gg — GSpy(Q,).

THEOREM 3.10.30. Suppose that:

(1) p2 is odd and it is unramified outside a finite set of primes;

(2) the residual representation py associated with pa is absolutely irreducible;
(3) p2 = Sym®p;.

Then the following conclusions hold.

(i) If p2 is associated with an overconvergent cuspidal GSp4-eigenform, then py is associated
with an overconvergent cuspidal GLy-eigenform.

(ii) If pa2 is associated with a classical cuspidal GSp,-eigenform, then py is associated with a
classical cuspidal GLy-eigenform.

ProoOF. Note that assumption (1) implies that the residual representation p; is absolutely
irreducible.

We prove part (i). The representation ps is associated with an overconvergent cuspidal GSp,-
eigenform F', so it is trianguline by Theorem 3.10.15. By Proposition 3.10.25 the representation
p1 is a twist of a trianguline representation. Then Theorem 3.10.18(2) implies that p; is the twist
by a character of a representations associated with an overconvergent cuspidal GLs-eigenform.
We show that the character occurring here can be taken to be trivial.

Let V' be a two-dimensional E-vector space carrying an action of Gg, via p; and let V be

the associated residual representation. Let a: Gg — @; be a character and N be a positive
integer such that V(«) is associated with an overconvergent cuspidal GLg-eigenform f of level
I'1(N)NTo(p). Let = be the point of the eigencurve DY corresponding to f. Let M be the
positive integer associated with N by Definition 3.3.6. Let &: D{V’g — Dé‘/f be the morphism of
Definition 3.9.8. Let Sym?f be the overconvergent GSp,-eigenform corresponding to the point
(). The Galois representation associated with Sym?®f is Sym?(V (a)).

For a continuous representation W of Gg,, we denote by ¢w the generalized Sen operator
associated with W (see [Ki03, Section 2.2] for the construction). Let (K1, k2) be the eigenvalues
of ¢y. A calculation shows that Psymv has eigenvalues (3k1, k1 + 2k2,2K1 + K2,3kK2). Since

Sym3V is attached to an overconvergent GSp,-eigenform we must have 3x; = 0, hence x; = 0.
Set kK = kg, so that the eigenvalues of ¢y are (0,x). Recall that the weight of the character
a is defined by w(a) = log(a(u))/log(u), where u is a generator of Z,. The eigenvalues of
by (a) are (w(a),k + w(a)). Since V' comes from an overconvergent GLg-eigenform we must
have w(a) = 0. In particular the eigenvalues of Pgymsy and g s((q)y are the same. This

means that Sym3V and Sym?(V («)) are associated with two overconvergent GSp,-eigenforms
F and Sym?®f of the same weight, given in our usual coordinates by (k+1,2x—1). Let Xri,me DE
the specialization at (k + 1,2k — 1) of the p-adic deformation of the cyclotomic character. The
determinants of Sym3V and Sym®(V'(«)) are given by the product of x4, x, With the central
characters of F and Sym?f, respectively. In particular the two determinants differ by a finite
order character. We deduce that af, hence «, is a finite order character. By twisting the
overconvergent GLa-eigenform f by the finite order character o~ we obtain an overconvergent
GLo-eigenform with associated Galois representation V.

We prove part (ii). Since po is associated with a classical cuspidal GSp,-eigenform, it is a
de Rham representation by Theorem 3.10.5. Then Proposition 3.10.23 implies that p; is also a
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de Rham representation. The representation po is trianguline because it is de Rham, so part
(i) of the theorem implies that p; is attached to an overconvergent GLa-eigenform f. Since p;
is de Rham, the form f is classical. (]

3.11. Big image for Galois representations
attached to classical modular forms of residual Sym® type

Let N be a positive integer and let p be a prime not dividing N. Let F be a GSp,-eigenform
of level T'1(N). Let prp: Gg — GSpy(Q,) be the p-adic Galois representation associated with
F. 1t is defined over a p-adic field K. In this section we prove that if pp, is “Z,-regular” (see
Definition 3.11.1) and of “residual Sym?® type” (see Definition 3.11.2), the image of pr, is “big”,
in the sense that it contains a congruence subgroup of Sp,(Op) for the ring of integers Op of
a suitable p-adic field £ C K. The main ingredient of our proof is a theorem of Pink [Pink98,
Theorem 0.7].

In the following definitions, let £ be a finite extensions of Q,. Let R be a local ring
with maximal ideal mp and residue field F. Let 7: Gg — GSp4(R) be a representation. Let
PGSps(R) = GSpy(R)/R*, where R* is identified with the subgroup of scalar matrices; note
that this group is in general different from the group of R-points of the algebraic group PGSp,.
We denote by 7: Gg — GSpy(F) the reduction of 7 modulo mg and by Ad7: Gg — PGSp,(R)
the composition of 7 with the projection GSp,(R) — PGSp,(R). Recall that T denotes the
torus consisting of diagonal matrices in GSpy.

We give a notion of Z,-regularity of 7, analogous to that in [HT15, Lemma 4.5(2)].

DEFINITION 3.11.1. We say that T is Zy-regular if there exists d € Im7 N T>(R) with the
following property: if a and o' are two distinct roots of GSpy then a(d) # o/(d) (mod mpg). If
d has this property we call it a Zy-regular element.

From now on we focus on representations that are of residual symmetric cube type in the
sense of the definition below. Note that this type of assumption already appeared in [Pil12,
Proposition 5.9].

DEFINITION 3.11.2. We say that T is of residual Sym® type if there exists a non-trivial
subfield B of F and an element g € GSp,(F) such that

Sym3SLy(F') € g(Im7) g~ € Sym>GLy(F').

Recall that we write sp,(K) for the Lie algebra of Sp,(K) and Ad®: GSp,(K) — End(sp,(K))
for the adjoint representation. Let F' and pp): Gg — GSp4(Ok) be as in the beginning of the
section. Let E be the subfield of K generated over Q) by the set {Tr(Ad (p(g)))}gec,- Let Op
be the ring of integers of . We will prove the following result.

THEOREM 3.11.3. Assume that:

(1) prp is Zy-regular;

(2) prp is of residual Sym® type;

(3) there is no GLa-eigenform f such that pp, = Symgpﬂp, where py, is the p-adic Galois
representation associated with f.

Then the image of pr, contains a principal congruence subgroup of Spy(OF).
We recall a result of Pink that plays a crucial role in the proof of Theorem 3.11.3.

THEOREM 3.11.4. [Pink98, Theorem 0.7] Let F be a local field and let H be an absolutely
simple connected adjoint group over F. Let T' be a compact Zariski-dense subgroup of H(F').
Suppose that the adjoint representation of I' is irreducible. Then there exists a closed subfield
E of F and a model Hg of H over E such that T is an open subgroup of Hg(E).
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We prove a lemma that we will use repeatedly in the text.

LEMMA 3.11.5. Let G be a profinite group and let Gy be a normal open subgroup of G. Let
F be a field. Let 7: G — GSpy(F) be a continuous representation. Suppose that:
(1) there exists a representation 7| : Gy — GLo(F) such that T|g, = Sym37;
(2) the image of T contains a principal congruence subgroup of SLa(F);
(3) there exists a character n: G — F* such that det T = 0.
Then there exists a finite extension v: F — F' and a representation 7': G — GLa(F") such that
Lo = Sym37/.

ProOOF. We denote by Sym>GLz(F) the copy of GLa(F) embedded in GSpy(F) via the
symmetric cube map. In order to prove the lemma it is sufficient to find a finite extension F’
of F such that ¢o7(G) C Sym3GLy(F'). For g € GSp,(F) let Ad(g): GSp,(F) — GSp,(F) be
conjugation by g. Since G; is an open normal subgroup of G, 7(G) normalizes 7(G;). Let g be an
arbitrary element of 7(G). The map Ad (g) restricts to an automorphism Ad (g)|,g,) of 7(G1).
Since 7|g, = Sym®7{, the symmetric cube map induces an isomorphism 7(G;) = 7/(G;). Hence
Ad (g) induces an automorphism Ad (g)" of 7{(G1), which is a subgroup of GL2(F') containing
a congruence subgroup of SLo(F). By applying Corollary 4.6.5 to the map Ad (g)": 71(G1) —
71(G1) we deduce that there exists hy € GLa(F'), a field automorphism o of F' and a character
@: 11(G1) — F* such that

(3.28) Ad (9)'(z) = p(x)hga”hy*

for every x € G;. Since every operation in Equation (3.28) is F-linear, the automorphism o must
be the identity. Moreover Ad (g)’ is induced by Ad (g), so by taking characteristic polynomials
on both sides of the equation we obtain that ¢ is trivial. Hence by applying the symmetric
cube map to both sides of Equation (3.28) we obtain

Ad (g)|T(Q'1) = Ad (Sym3h9)|7(g1)7

so the element g(Sym>h,)~! centralizes 7(G).

By Schur’s lemma g(Sym?’hg)_1 is a scalar for every g € 7(G). Let 54 be the element of
the field F' satisfying g(Sy]rn?’hg)*1 = 7414. Choose a set of representatives S for the finite
group G/Gi. Let F’ be the finite extension of F' obtained by adding the cubic roots of all the
elements in the set {y,|g € 7(S)}. Let ¢.: F — F' be the inclusion. For g € vo7(S) we have
1(7414) € Sym®GLa(F') by construction of F”, so t(g) = t(7414 - Sym®hy) € Sym*GLy(F"). For
every g € 7(G) we can write g = g1go with g € 7(G1) and gz € 7(S). Since 7(G1) C Sym3GLy(F)
we obtain ¢(g) = ¢(g1)t(g2) € Sym3GLy(F'). We conclude that ¢ o 7(G) C Sym3GLa(F").

For every g € G, let 7/(g) be the unique element of GLg(F”) that satisfies:

(1) Sym*r'(g) = v 7(g);

(2) det7'(g) = von(g).

Such an element exists by the result of the previous paragraph. Then the map 7': Gg —
GLo(F") defined by g +— 7/(g) is a representation satisfying Sym37’ = to 7. O

The rest of the section is devoted to the proof of Theorem 3.11.3. Let (Impg)p) be the
derived subgroup of Impp, and let G = (Impp,p) N Spy(K). We denote by G the Zariski-
closure of G in Sp,(K). As in [HT15, Section 3|, we will show first that under the hypotheses
of Theorem 3.11.3 we have G = Sp,(K), and second that G is p-adically open in G. We will
replace the ordinarity assumption in loc. cit. by that of Zjy-regularity. Let G° denote the
connected component of the identity in G.

Let H be any connected, Zariski-closed subgroup of Sp,, defined over K. As in [HT15,
Section 3.4] we have six possibilities for the isomorphism class of H over K:

(1) H = Spy;
(2) H= SL2 X SLQ;
(3) H = SLs embedded in a Klingen parabolic subgroup;
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(4) H = SLy embedded in a Siegel parabolic subgroup;

(5) H = SLg embedded via the symmetric cube representation SLa — Spy;

(6) H={1}.

When (5) holds we write H = Sym®SLy. We show that for H = G~ only two of the choices
listed above are possible.

PROPOSITION 3.11.6. We have either G~ = Spy or G° = Sym®SL,.

PROOF. Let mg be the maximal ideal of Ok and let Fx = Ok /mg. The group (Im ppp)
is contained in H(Of ). By reducing modulo mx we obtain that the derived subgroup (Impy,,)’
of Impp, is contained in H(Fx). Since pr,, is of residual Sym? type H cannot satisfy any one
of the conditions (2,3,4,6) of the discussion above. O

We show that if G° = Sym®SLs then the GSp,-eigenform F' does not satisfy assumptions
(3) of Theorem 3.11.3.

PROPOSITION 3.11.7. Suppose that G~ = Sym3SLy. Then there exists a GLa-eigenform f
such that ppy, = Symgpf,p.

PROOF. Since G°(K) is of finite index in G(K), Lemma 3.11.5 implies that G(K) C
Sym3SLy(K), so Im pPrp C Sym3GLy(K). Hence there exists a representation p’ satisfying
PEp = Sym?p’. Since pFp is associated with a GSp,-eigenform, Theorem 3.10.30(i) implies that
P is associated with a GLo-eigenform f. O

Theorem 3.11.3 is a consequence of the following proposition.

PROPOSITION 3.11.8. Suppose that G = Sp,(K). Then the group G contains an open
subgroup (for the p-adic topology) of Spy(E).

PRrOOF. Consider the image G® of G under the projection Sp,(K) — PGSp,(K). It is
a compact subgroup of PGSp,(K). Since G = Sp,(K), the group G*! is Zariski-dense in
PGSp4(K). By Theorem 3.11.4 there is a model H of PGSp, over E such that G*! is an open
subgroup of H(E). By the assumption of Z,-regularity of p, there is a diagonal element d with
pairwise distinct eigenvalues. The group H(F) must contain the centralizer of d in PGSp,(E),
which is a split torus in PGSpy(E). Since H is split and H xg K = PGSpy/k, H is a split
form of PGSp, over . Then H must be isomorphic to PGSp, over E by unicity of the quasi-
split form of a reductive group. Hence G®! is an open subgroup of PGSp,(E). Since the map
Spy(K) — PGSp,(K) has degree 2 and G N Sp,(F) surjects onto G* N PGSp,(FE), G must
contain an open subgroup of Sp,(FE). In particular G contains a principal congruence subgroup
of Sp,(OF). O

3.12. The symmetric cube locus on the GSp,-eigenvariety

In this section p is a prime number, N is a positive integer prime to p and M is the
integer, depending on N, given by Definition 3.3.6. By an abuse of notation, if V; and Vs are
subvarieties of DY and DY, respectively, we write 11: HY — O(Vy) and ¢o: HY — O(Vs)
for the compositions of 11 and 15 with the restrictions of analytic functions to V; and Vs,
respectively.

THEOREM 3.12.1. Let Vs be a rigid analytic subvariety of DY. Consider the following four
conditions.
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(1a) There exists a morphism of rings 1/151): ’Hf[p — O(Vs) such that the following diagram
commutes:

Hévp ANP Hf]p
lﬂ& /wél)
O(Va)
(1b) There exists a pseudocharacter Ty, 1: Gg — O(V2) of dimension 2 such that

(3.30) Ty, = Sym®Ty, ;.

(2a) There exists a rigid analytic subvariety Vi of DY and a morphism of rings ¢: O(Vy) —
O(V2) such that the following diagram commutes:

(3.29)

P2
(3.31) plr A Ne P o) —2 O(Wy)

(2b) There exists a rigid analytic subvariety Vi of DY and a morphism of rings ¢: O(Vy) —
O(Va) such that

(332) Ty, = Sym3(¢ °© TV1)'
Then:

(i) (1a) and (1b) are equivalent;

(ii) (2a) and (2b) are equivalent;

(iii) (2b) implies (1b);

(iv) when Vo is a point, the four conditions are equivalent.

PrOOF. We prove (i), (ii), (iii) for an arbitrary rigid analytic subvariety V, of D3!.

(la) = (1b). Let @bél): ’Hf{p — O(V2) be a morphism of rings making diagram (3.29)
commute. By the argument in the proof of Proposition 3.4.2, the commutativity of diagram
(3.29) gives an equality

(3.33) Va(Pain(t{9: X)) = Sym® (18" (Puin (£1]; X))).

Choose a character &1 satisfying €} = €. For every £ not dividing Np, let P, be a polynomial
in HYP[X)e8=2 gatisfying:

(3.34) Sym®Py(X) = ¢2(Pmin(té?2); X));
and
(3.35) P(0) = &1 - (1 4 T)losx(9))/log(u)

Such a polynomial exists thanks to Equation (3.33) and to Remark 4.1.20, and it is clearly

unique. The roots of P, differ from those of ¢2(Pmin(tg22) ; X)) by a factor equal to a cubic root
of 1.
By Chebotarev’s theorem the set {vFrobm_l}&NpWGGQ is dense in Gp. The map

P {vFrobey™ Y npvec, = OV) (X952,
yFrobyy ™! — P,

is continuous with respect to the restriction of the profinite topology on Gg. This follows from
the fact that the maps

{yFrobey ™ Yonprecy — O(Va)[ X1~
’}/FI"Ob[}/_l — ¢2(Pmin(t§?2);X)) = Sym3P('yFrobg7_1)(X)
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and
{7Frobry ™ Yenpirecy = OV2)*
~Frobyy ™! — P(yFrobyy™1)(0) = &1 - (1 + T)'°e(x(9))/ log(w)
are continuous on {'yFrobm_l}ng; veGq- Hence P can be extended to a continuous map
P: Gg — O(Vy)[X]e=2,
Now define a map Ty, 1: Gg — O(Vs) by

P(g)(1) + P(g)(—1
() = PO POCY
The right hand side is simply the sum of the roots of P(g). We can check that Ty, ; is a
pseudocharacter of dimension 2. Its characteristic polynomial is P, so the fact that Ty, =
Sym?T3, 1 follows from Equation (3.34).

(1b) = (1a). Suppose that there exists a pseudocharacter Ty, 1: Gg — Oy, such that
Ty, = SymBTVQJ. Then Pepar(Ty,) = Sym3PChar(Tv271). By evaluating the two polynomials at
Frob, we obtain

3(Panin (t§95 X)) = Pear(Ti) (Froby) = Sym?® Pagar (T, 1) (Froby) =

TV271 (Fl"Obg)2 — TV2,1 (Frob%) )
2

where the first equality is given by Corollary 3.5.11 and the last one comes from Equation (3.11).

(3.36)

9

= Sym? <X2 — Ty, 1(Froby) X +

Let zpél) : Hi\fp: O(V3) be a morphism of rings satisfying

Ty, 1 (Frobg)? — Ty, 1 (Frobj
(3:37) X = Ty (Froby) X + 222 R0 =Tt (RO ez y 0 x4 P (rfy)
for every £ 1 Np. It is clear that such a morphism exists and is unique. Note that the right

hand side of Equation (3.37) is wz ( mm(té 1) ; X)). Then Equation (3.36) gives

o (Prin(t95 X)) = Sym® (45" (P (£ X))).
Exactly as in the proof of Proposition 3.4.2, by developing the two polynomials and comparing
their coefficients we obtain that ¥y = wél) o ANP_ Hence wgl) fits into diagram (3.29).

(2a) <= (2b). Let V1 be a subvariety of DIV and let ¢: O(V1) — O(V2) be a morphism
of rings. We show that the couple (V1, ¢) satisfies (2a) if and only if it satisfies (2b). For every
prime £ { Np Corollary 3.5.11 gives

(3.38) Pear (T, ) (Froby) = 1 (Pumin (1475 X))
and

(3.39) Penar (TV2)(FrOb€) ¢2( min (té 2) ’ X))
The argument in the proof of Proposition 3.4.2 gives an equality
(340) >\Np( mln( é22)a )) - Sym ( mm( él)’X))

Since the set {yFrob,y~1} UNp;veGy 18 dense in Gg, the pseudocharacters Sym?(¢ o Ty,) and Ty,
coincide if and only if their characteristic polynomials coincide on Froby for every ¢ {1 Np. By
Equations (3.38) and (3.39) the condition above is equivalent to

Sym ((b wl( mln(t§1)> ))) 7/}2( mln(tgg)aX))
for every 1 Np. Thanks to Equation (3.40) the left hand side can be rewritten as

Sym*(¢ o ¥ (Punin(t475 X)) = ¢ 0 1 (Sym® (Prin (1) X)) = ¢ 0 1 0 AP (Ponin (179 X)).
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When ¢ varies over the primes not dividing Np the coefficients of the polynomials Pmin(t%) ; X)
generate the Hecke algebra Hé\]p . Hence the equality

¢ 01 0 AVP(Poin (£195 X)) = 2 (Pasin(t9; X))
holds for every ¢ 1 Np if and only if
¢ othy o AP = 4y,

This is precisely the relation describing the commutativity of diagram (3.31).

(2b) = (1b). Suppose that condition (2b) is satisfied by some closed subvariety V; of
DY and some morphism of rings ¢: O(V;) — O(V). Consider the pseudocharacter Ty, 1 =
poTy, : Gg = O(Vs). Clearly Ty, 1 satisfies condition (1b).

It remains to prove that (1b) = (2b) when V, is a Q,-point of DJ’. For this step we
will need the results we recalled in Section 3.10. Write zo for the point Vo; the system of
eigenvalues 1), is that of a classical GSp,-eigenform. By Remark 3.5.12 T}, is the pseudochar-
acter associated with a representation pg,: Gg — GL4(Q,). Let E be a finite extension of Q,,
over which pg, is defined. Suppose that x, satisfies condition (1b). Let T, 1: Gg = Q,
be a pseudocharacter such that T,, = Sym®T,,;. By Theorem 3.5.4 there exists a rep-
resentation py,1: Go — GLQ(@p) such that Ty, 1 = Tr(pg,,1). Then Lemma 3.5.8 implies
that py, = Sym®p,,1. Since p,, is attached to an overconvergent GSp,-eigenform, Theorem
3.10.30(ii) implies that p,, 1 is the p-adic Galois representation attached to an overconvergent
GLg-eigenform f. Such a form defines a point z; of the eigencurve DI¥.Thus the subvariety
V) = x; satisfies condition (2b). O

The four properties stated in the theorem are stable when passing to a subvariety.

LEMMA 3.12.2. Let Vs and V} be two rigid analytic subvarieties of D' satisfying Vj C Vs.
Let (x) denote one of the conditions of Theorem 3.12.1. If (x) holds for Vo then it holds for V5.

ProOOF. Thanks to the theorem it is sufficient to prove the statement for * = 1b and * = 2b.
Let ry;: O(V2) — O(V3) denote the restriction of analytic functions. It is easy to check that:

(i) if Ty, 1: Gg = GL2(O)y,) is a pseudocharacter satisfying condition (1b) for the variety Vs,
then the pseudocharacter ry;, o Ty, 1: Gg — O(V3) satisfies condition (1b) for the variety
Va;
(ii) if ¢: O(V2) = O(V1) is a morphism satisfies condition (2b) for the variety Vs, then ry; o ¢
satisfies condition (2b) for the variety V.
U

In light of Theorem 3.12.1 we give the following definitions.

DEFINITION 3.12.3. (1) We say that a subvariety Vo of DT is of Sym?® type if it satisfies
the equivalent conditions (2a) and (2b) of Theorem 3.12.1.
(2) The Sym>-locus of D3 is the set of points of DY of Sym? type.

REMARK 3.12.4. A wariety Vo of Sym?® type also satisfies conditions (1a) and (1b) of The-
orem 3.12.1 thanks to the implication (2b) = (1b).

Let ¢: Wy — W3 is the closed immersion constructed in Section 3.8.2. Let D% be the
one-dimensional subvariety of D} fitting in the cartesian diagram

M ; M
D? ,aux D2

I

W) —— W3
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COROLLARY 3.12.5. The Sym?®-locus of DM is contained in the one-dimensional subvariety
DM

PROOF. By definition of the Sym3-locus, if = € Dé\/f then the associated representation p,
is isomorphic to Sym®p,, for a point x; of D). By calculating the generalized Hodge-Tate

weights of Sym?p,, in terms of those of p,, we obtain that the weight of # belongs to the locus
L(WVY). O

The Sym3-locus of D)’ admits a Hecke-theoretic definition thanks to condition (2b) of
Theorem 3.12.1. We elaborate on this. Consider the following maps:

" 5 (DY)

e
w2 o))
We define an ideal Zg 3 of O(DM) by
Tgyms = Y1 (ker(yz2 0 XP)) - O(DY").

We denote by DéMSyms the analytic Zariski subvariety of DJ! defined as the zero locus of the
ideal Zgy 3.

PROPOSITION 3.12.6. (i) The Sym3-locus of D) is the set of points underlying Dé\/lsymg.
(i) The variety Dé\f[SymS is of Sym?® type.

(i4i) A rigid analytic subvariety Vo of DM is of Sym?® type if and only if it is a subvariety of
M
DQ,Sym3 :
(iv) A rigid analytic subvariety Vo of DY satisfies conditions (1a) and (1b) of Theorem 3.12.1
if and only if it is a subvariety of DQ’Symg,.

PROOF. We prove (i). Let 3 be any Q,-point of D}’ and let ev,,: O(D3) — Q, be the
evaluation at x3. The system of eigenvalues corresponding to g is ¥y, = evy, 02 HéVp — @p.
By definition x5 is of Sym? type if and only if there exists a morphism of rings evy, ! (’)(D{V ) —
Q,, such that the following diagram commutes:

eVay  —

Q

" = 0(D})

Np
Jj\ A1

' s (DY)

By elementary algebra the map ev,, exists if and only if ev,,(ker(i9 o ANP)) = 0. This is
equivalent to the fact that the point xs is in the zero locus of the ideal Lgyms-

For (ii) it is sufficient to observe that there exists a morphism of rings = oY) —

* .
Sym?

O(Dé\j[Sym‘"’) fitting into the commutative diagram

TSymB © 1/)2

=k

s 7P P o(DN) 2, o(pM

ANP
27Sym3)

(3.41) HoP
Such a E;y

Note that the “if” implications of (iii) and (iv) follow from Lemma 3.12.2, together with
Remark 3.12.4 for (iv).

. . o). M N
3 exists since by definition of Dz’symg we have TDéwsym‘s o g (ker(ANP o ¢Sym3)) =0.

95



To prove the other direction of (iii) we look again at diagram (3.31) for a subvariety Vs, of D).
In order for V; to satisfy condition (2a) of Theorem 3.12.1 we must have 7y, (ker(AVP o E;ymg,)) =
M
2,Sym?3”

Finally, let V, be a rigid analytic subvariety of D) satisfying conditions (1a) and (1b) of
Theorem 3.12.1. Let x5 by a point of V. By Lemma 3.12.2 x5 satisfies conditions (1la) and

(1Ib). By Theorem 3.12.1, x2 also satisfies conditions (2a,2b), so it is a point of Dé”symg,. We

conclude that Vs is a subvariety of Dé\/lsymg. O

0, so Vs is contained in D

REMARK 3.12.7. By Proposition 3.12.6 the Sym®-locus in DM can be given the structure of
a Zariski-closed rigid analytic subspace. From now on we will always consider the Sym?®-locus
as equipped with this structure.

COROLLARY 3.12.8. The Sym?>-locus intersects each irreducible component of Dé\/f mn a
proper analytic Zariski subvariety of dimension at most 1.

PROOF. By Proposition 3.12.6 the Sym?®-locus intersects each irreducible component of Dé”
in an analytic Zariski subvariety. By Corollary 3.12.5 this subvariety has dimension at most
1. O

Proposition 3.12.6 allows us to improve the result of Theorem 3.12.1.

COROLLARY 3.12.9. For every rigid analytic subvariety Vo of D! the conditions (1a), (1b),
(2a), (2b) of Theorem 3.12.1 are equivalent.

PRrOOF. This follows immediately from Proposition 3.12.6(iii) and (iv). O
oDy — O(Dé\/[,sym?’) appearing in the commutative diagram
(3.41); it induces a map of rigid analytic spaces Zg 31 D

Consider the map Egymgz

éwsymg — DY. Our choice of notation
for this map is due to the fact that Eg s is related to the map ¢ given by Definition 3.9.8.
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CHAPTER 4

Galois level and congruence ideal
for finite slope families of Siegel modular forms

In this chapter we prove our main theorems. In section 4.1.2 we define families of GSp,-
eigenforms. We show that the representation associated with such a family has “big image”
(Theorem 4.11.1), in a Lie-algebraic sense, and that the size of the image can be described in
terms of congruences of symmetric cube type (Theorem 4.12.1).

4.1. Finite slope families of eigenforms

Let p be a prime number and let N and M be two positive integers prime to p. Let
h € RZ%, In Sections 1.2.5.2 and 1.2.6.2 we defined the slope < h eigenvarieties Div’h and Déw’h
as subvarieties of DY and D), respectively. The slope < h eigenvarieties are in general not
finite over the respective weight space if A > 0. In order to have finiteness we will restrict the
weights of our families to a sufficiently small disc in the corresponding weight space. Recall
that we always identify the g-dimensional weight space with a disjoint union of open discs of
centre 0 and radius 1. As in Section 2.2.1 we centre the weights of our families at 0, but this is
not necessary and the same construction can be carried out for any other centre.

4.1.1. Families of Gls-eigenforms. In Section 2.2.1 we defined finite slope families of
GLg-eigenforms of level I'y (N )Ny (p). We briefly recall this construction, adapting the notations
for their use in this chapter. We rely on the proofs in Section 2.2.1. As before fix h € Q™*.
For a radius r € p@ let Di\,[gbl(ﬂ,r_) = D{V’h Xwe B1(0,77). There exists rp, € p¥ such that the

N,h

1B (0,r) — By, is finite. We simply write By = B1(0,7, ). The

weight map UJ1|DN,h

1,B1(0,7},)
open disc Bjj admits a Qp-model thanks to Berthelot’s construction; from now on we work
with this model.

We call genus 1, h-adapted Twasawa algebra the ring of analytic functions A; ;, = O(By1)°.

Let Ty p = (’)(Df]}; (© T,))O. We call Ty ;, the genus 1, h-adapted Hecke algebra.
;D1 YTy,

DEFINITION 4.1.1. A family of GLs-eigenforms of slope bounded by h is an irreducible

N,h

component T of DLBI(OJ’?).

The ring of analytic functions bounded by 1 on Z is a profinite local ring I° with a structure
of finite A; j-algebra induced by the weight map wz = wa|z: Z — B1(0,7; ). The component Z
is described by the surjective map Ty — 1° defined by the restriction of analytic functions. We
sometimes refer to this morphism when speaking of a finite slope family.

For every ideal P of I° let evep: I° — I° /B be the natural projection. Let "Dy, oMY —

(’)(DN’h _.) be the restriction of analytic functions and set
1,B1(0,7,)

g =0o0ronn oty HY —1°
1By,
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DEFINITION 4.1.2. We say that a prime ideal B of 1° is classical if the ring morphism
evey o Yp: HN — 1°/B defines the system of Hecke eigenvalues associated with a classical GSp,-
eigenform.

4.1.2. Families of GSp,-eigenforms. We define families of finite slope GSp,-eigenforms
of level T'1(M)NTy(p). Fix again h € Q7. Note that in statements involving families of GLo-
and GSp,-eigenforms at the same time we may need to take different bounds on the slope for
the two groups. The restriction of the weight map wo: Dé\/f LN W3 is in general not finite if
h > 0. To solve this problem we will restrict the weights of the family to a sufficiently small
disc in the weight space.

For every affinoid subdomain V' of W, let Dé\? "/h = Déw h Xwg V and let

M,h
woy = w27h‘Dé\4‘,/h: ,D27V — V.

PROPOSITION 4.1.3. [Bel2, Proposition 11.1.12] For every x € W5(Q,) there exists an
affinoid neighborhood V' of k in W5 such that the map wa v s finite.

REMARK 4.1.4.
(1) Every affinoid neighborhood of k € W5 contains a wide open disc centred in r. Then
Proposition 4.1.3 implies that there exists a radius rp . € pQ such that

Mk

W3 Byt ) Do) 7 B2 )

s a finite morphism.

(2) Thanks to Hida theory for GSp, we know that the ordinary eigenvariety Dé\/l’o s finite over
Ws. Hence for h =0 we can just take ro, = 1 for every k.

(3) We would like to have an estimate for ry . independent of k and with the property that
Th — 0 for h = 0, in order to recover the ordinary case in this limit. This is not available
at the moment for the group GSp,. An estimate of the analogue of this radius is known
for the eigenvarieties associated with unitary groups compact at infinity by the work of
Chenevier [Ch04, Théoreme 5.3.1].

From now on we set £ = (0,0) € B2(0,17); we write in short x = 0 and 7, (9,0) = 7. Let
1, be the largest radius in p@ such that:

. M,h SN e
(i) Wy By(07) " DQ,Bg(O,r;) — B3(0,7,) is finite;

(i) rp < piﬁ.
Such a radius is non-zero thanks to Remark 4.1.4(1). Let s;, be a rational number satisfying
rp = p°*. Let ny be an element of Q,, satisfying v, (n,) = sp. Let Kj = Qp(ny) and let Oy be
the ring of integers of K},. Let 17, T5 be the coordinates of W3 defined in Section 3.8.2 and let
t1=mn; ' T, ta = n;, ' Tb.

We write in short Byj = B2(0,7,). We define a model for By over Q, by adapting
Berthelot’s construction (see [dJ95, Section 7]). Write s;, = 2 for some a,b € N. For i > 1, let
si=sp+1/2" and r; = p~®. Set

A, = it b, X) /(7 —p™ 20X 85— p" 20X
and A,, = A7, [p~']. Set B; = Spm A,,. Then B; is a Qp-model of the disc of centre 0 and radius
;. We define morphisms A7, s A7 by
Xip1 — p" X7,
t1 — 11,
to > to.
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They induce compact maps A, , — A;, which give open immersions B; — B;;1. We de-
fine By = hglz B; where the limit is taken with respect to the above immersions. We have
0(32,h)0 = @l O(Spm Bi)o = 1&12 A?z

DEFINITION 4.1.5. Let Ay, = O(B2(0,7},))°. We call Ay, the genus 2, h-adapted Iwasawa
algebra. We define t1,t2 € Ayy, as the projective limits of the variables t1,t2, respectively, of
AL

Since we will mainly work with the genus 2 algebra from now on, we drop the superscript
and simply write Aj, = Ag . The algebra Ap is not a ring of formal power series over Z,, but
there is an isomorphism

A, ®z7, On = Oyllts, to]].

DEFINITION 4.1.6. Let D%’;; L= Déw’h Xwg Bap and let Ty p = O(D%’;; h)o. We call Tqy,
the genus 2, h-adapted Hecke algebra.

By definition Tj j, has a structure of Aj-algebra. Thanks to our choice of 7, Ty, is a finite
Ap-algebra.

DEFINITION 4.1.7. We call family of GSp,-eigenforms of finite slope (bounded by h) an

' , M,h
irreducible component I of DQ,BZ,L-

We will usually refer to I simply as a finite slope family. For such an I let I° = O([).
Then I° is a finite Ap-algebra and I is determined by the surjective morphism Ty ; — I°. We
sometimes refer to this morphism as a finite slope family. The notation °© denotes the fact that
we are working with integral objects, i.e. that p is not invertible. When introducing relative
Sen theory in Section 4.10 we will need to invert p and we will drop the ° from all rings.

REMARK 4.1.8. Since Ay, is profinite and local and Ty, is finite over Ay, Tap, is profinite
and semilocal. The connected components of D%’BZ . are in bijection with the mazximal ideals of
Top. Let 0: Top — 1° be the morphism of Ap-algebras defining a finite slope family I. Then
ker 6 is contained in the unique maximal ideal my corresponding to the connected component of

Dé\j[é};h containing I. The Ap-algebra 1° is profinite and local with mazimal ideal mpo = 6(my).

From now on we replace implicitly Tq; by one of its local components.

DEFINITION 4.1.9. Let g =1 or 2. We say that a prime of Ay is arithmetic if it lies over
an arithmetic prime of Ag.

By an abuse of notation we will write again P}, for an arithmetic prime of Ay, lying over
the arithmetic prime P} of A,.

REMARK 4.1.10. Let k = (ki, ko) with ki > ko > 3. Consider the arithmetic prime Py, C Ao
and the ideal PyAy, defined via the natural inclusion Ay — Ay. Then there exists an arithmetic
prime P of Ay, lying over Py if and only if the classical weight k belongs to the disc B(0,r;);
otherwise we have PyAp = Ap. Since P, = (1+ T — uF 1+ Ty — qu), the weight k belongs to
B(0, 7)) if and only if vy(uF —1) > v,(rp,) and vy(u2—1) > v,(ry). Now vy(uFr —1) = 14-vy (k1)
and vp(u*? — 1) = 1+ wvy(kz), so the previous inequalities become vy(k1) > —vp(ry) — 1 and
vp(ka) > —vp(ry) — 1. Note that the closed disc of centre 0 and radius 1/p contains all the
classical weights.

For every ideal B of I° we denote by evyp: I° — I° /B the natural projection. Set
Yy = QOTDM,h o1y Héw —I°.
2,B),
DEFINITION 4.1.11. We say that a prime ideal B of 1° is classical if the ring morphism

evy o hg: HYT — 1°/P defines the system of Hecke eigenvalues associated with a classical GSpy-
eigenform.
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REMARK 4.1.12. The set of classical primes of 1° is Zariski-dense by the following argument.
We have I° = O(I)° for an admissible subdomain I of D). Then I contains at least one classical
point by Proposition 1.2.27, so it contains a Zariski-dense susbset of classical points by their
accumulation property. If f is an element of I° such that f € B for every classical prime R of
I°, then f is a function on I that vanishes on a Zariski-dense subset, so f = 0.

4.1.3. Non-critical points on families. Let 6: Ty ;, — I° be a family of GSp,-eigenforms.

DEFINITION 4.1.13. We call an arithmetic prime P, C Ay non-critical for I° if:
(1) every point of the fibre of w3 g+ Ap — I° at Py is classical;
(2) w;BM: Ap — 1° is étale at every point of the fibre of w;BM at Py.
We call Py, critical for I° if it is not non-critical. We also say that a classical weight k is critical
or non-critical for D% if the corresponding arithmetic prime has the same property.

REMARK 4.1.14. By Proposition 1.2.27, if k is a classical weight belonging to By ) and
ko > h—3 then every point of the fibre ofDéij}; . at k is classical. Since the weight k corresponds

to the prime Py via the identification By ), = (Spf Ap)'®, the first condition of Definition 4.1.13
is satisfied by P, when ko > h — 3. However we do not know of a simple assumption on the
weight that guarantees that the second condition is satisfied. We will still know that there are
sufficiently many non-critical classical points thanks to Proposition 4.1.15 below.

Later we will have to choose a non-critical arithmetic prime of Aj satisfying certain addi-
tional properties (see Section 4.9.1). We will need the following result in order to show that
such a point exist.

PROPOSITION 4.1.15. The set of non-critical arithmetic primes is Zariski-dense in Ap,.

PROOF. Suppose by contradiction that the conclusion is not true. Then the set of critical
classical weights must be Zariski-dense in By, since the set of all classical weights is Zariski-
dense in By,. Consider the subset ¥ of critical classical weights k = (ki, k2) in By, satisfying
h < kg +3. This condition excludes only a finite number of weights, so £t is still Zariski-dense
in Bj,. Let S be the set of points # € D} 5 such that w(x) € X" and w is not étale at

x. Let D™ DQ B, denote the locus of non-étaleness of w. It is Zariski-closed of non-zero
codimension in D;‘ B, and it contains S°rit,

By Proposition 1.2.27 condition (i) of Definition 4.1.13 is satisfied for all £ € ¥ so

condition (ii) must be false for all & € X, In particular the weight map gives a surjection
of S onto the Zariski-dense subset St C Bj,. Since w: Déw 1’3};

Lemma 1.2.11 to find that some irreducible component of Déw jBIZ must be contained in the Zariski

— By, is finite we can apply

closure of S hence in D™, This is a contradiction. O

4.1.4. The Galois representation associated with a finite slope family. Let §: T), —
I° be a finite slope family of GSpy-eigenforms. Let Fr, denote the residue field of Tj. Let
TDé” : Gg — O(DJ1)° be the pseudocharacter given by Theorem 3.5.10. Let

M M,h
rpgf[é};: O<D2 ) — O('Dzth)
be the map given by the restriction of analytic functions. Define a pseudocharacter Tr, : Gg —
T}y, by setting

T’ﬂ‘ = T ~M,h oTHn.
h D2th Dy
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By reducing 77, modulo the maximal ideal of T} we obtain a pseudocharacter TTh: Gg —
Fr,. By Theorem 3.5.4 the pseudocharacter T, is associated with a unique representation
pr,: Go — GL4(F,). We call pr,, the residual Galois representation associated with Tp,.

We assume from now on that:

the residual representation py, is absolutely irreducible.

By the compactness of G there exists a finite extension F’ of Fr, such that pr, is defined
on F'. Let W(Fr,) and W (F’) be the rings of Witt vectors of Fr, and F’, respectively. Let
T, = Th Qwr, ) W(F'). We consider T, as a pseudocharacter Gg — T} via the natural

h W (Fr,) n Q h

inclusion Ty, < Tj. Then Tr, satisfies the hypotheses of Theorem 3.5.5, so there exists a
representation

pry - Gg = GL4(T},)
such that TrpT}/L = Tr,. By Theorem 3.5.10, for every prime ¢ not dividing Np we have

(4.1) Te(Dr, )(Frobe) = rppn o Ua(TS3).

In particular Tr(Dr, )(Froby) is an element of T}. Since Ty, is complete, Chebotarev’s theorem
implies that Tr, (¢) is an element of Ty, for every g € Gg. By Theorem 3.5.3 there exists a
representation
PTy, - GQ — GL4(T}L)
that is isomorphic to pr, over T}.
The morphism 6: Ty, — I° induces a morphism GL4(T,) — GL4(I°) that we still denote by
6. Let pro: Gg — GL4(I°) be the representation defined by
pre = 00 pr,.
Recall that we set ¢g = 0 orpmn o1)a: HI — T°. Let
2,8y,

Ity = An[{Tr(po(9)) }gecql-
Since A, C Ig, C I°, the ring I5, is a finite Ap-algebra. In particular I, is complete. By

Corollary 3.5.11 we have
Petar (Tr(pre ) (Froby)) = v( Punin (£ 9: X)).
We deduce that
Iy = An[{Tr(po(9)) }gecol-
Since the traces of ppo belong to I7,, Theorem 3.5.3 provides us with a representation
Py GQ — GL4(]IOTr)
that is isomorphic to pro over I°.

We keep our usual notation for the reduction modulo an ideal B of I7,.

DEFINITION 4.1.16.  We say that a prime *B of I3, is classical if it lies under a classical
prime of 1°.

REMARK 4.1.17.

(1) By Remark 4.1.12 the set of classical primes of 1° is Zariski-dense. Since the map 15, — I°
is injective, the set of classical primes of I, is also Zariski-dense.

(2) Let P1 and Po be two classical primes of 1° lying over the same prime Py of 13,. Let
pp = evpopg: Gg — GLy(I5,/B). Then pp becomes isomorphic to the reductions of po
modulo By and Py over I° /Py and 1° /Pa, respectively. For this reason we will say that pyp
is the representation associated with B’ for every prime B’ of I° lying over B.

Thanks to the following lemma we can attach to 6 a symplectic representation. The argu-
ment here is similar to that in [GT05, Lemma 4.3.3] and [Pil12, Proposition 6.4].
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LEMMA 4.1.18. There exists a non-degenerate symplectic bilinear form on (I[?Fr)4 that s
preserved up to a scalar by the image of pg.

PROOF. Let S be the set of classical primes of [7,. It is Zariski-dense in I7, by Remark
4.1.17(1). Let P € S For every P € S the representation pyp is symplectic, since it
is the p-adic Galois representation attached to a classical GSp,-eigenform. In particular pyg
is essentially self-dual: if p% denotes the dual representation of py, there exists a character
vy GSpy (15, /B) — I, /B and an isomorphism

(4.2) py = Vg ®py.

We can write explicitly vy = ex®1 %273 where € is the central character of the eigenform

corresponding to B and x: Gg — Z, is the p-adic cyclotomic character. Note that the central
character ¢ is independent of the chosen classical prime 3 of I°.

Consider the representation py: Gg — GL4(I3,) dual to pp. Let vg: Gg — I3, be the
character defined by vy = e(1 + T))&(k1+k2=3)/log(w)  When 9 varies in S the representations
p‘% are interpolated by p; and the characters vy are interpolated by vg. By Equation (4.2),
for every g € Gg and every P € S the reductions evsy ° Tr(pg)(g) and evy o (Tr(py) @ vy(g))
coincide. Since S is Zariski-dense in I, we deduce that

Tr(pg) = Tr(py @ vp),

so the representations pg and py ® vy are isomorphic by Theorem 3.5.3. This means that
the representation py is essentially self-dual. Since py is irreducible by assumption, py is also
irreducible. Hence there exists a non-degenerate bilinear form b: (I3,)* x (I3,)* — I3, that is
preserved by Im pg up to a scalar. If ¢ € S the form b specializes modulo 9 to a bilinear
form by : (I3, /P)* x (I5,/P)* — I3,/B that is preserved by Im py up to a scalar. Since py is
irreducible the form by is non-degenerate. We know that py is symplectic since it is the p-adic
Galois representation associated with a classical GSp,-eigenform. Hence by is symplectic. We
deduce that b is symplectic too. O

Thanks to the lemma, up to replacing it by a conjugate representation, we can suppose that
po takes values in GSp,(IT,). We call pg: Gg — GSp,(I5,) the Galois representation associated
with the family 6: Tj, — I7,.. In the following we will work mainly with this representation, so
we denote it simply by p. We write F for the residue field of I3, and p: Gg — GSp,(F) for the
residual representation associated with p.

REMARK 4.1.19. There is an inclusion F — Fr, and the representations p and pr, are
isomorphic over Fr, . In particular the representation p is absolutely irreducible.

REMARK 4.1.20. Let f be a GSp,-eigenform appearing in the family 0. Let ¢ be the central
character, (ki,k2) the weight and ¢y HY — @p the system of Hecke eigenvalues of f. Let py
be the p-adic Galois representation attached to f and let £ be a prime not dividing Mp. Then

det prp(Frobr) = (4(Ty7)) = ep(Ox (¢4,

The determinant of p(Froby) interpolates the determinants of psp(Froby) when f varies over
the forms corresponding to the classical primes of the family. Note that 7 is independent of
the choice of the form f in the family. Since the classical primes are Zariski-dense in 17, the
interpolation is unique and coincides with

det p(Froby) = E%Q(Tﬁ}) = e(0)(u 01 + T)) (1 + Tp))'osx(O)/los(w) ¢ 7,

where € is the central character of the family. By density of the conjugates of the Frobenius
elements in G, we deduce that

det p(g) = e(g)(u™0(1 + T1)(1 + Ty))?loex(9)/los(w) ¢ A,
for every g € Gg.
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4.2. The congruence ideal of a finite slope family

Let §: Tj, — I° be a finite slope family and let p: Gg — GSp,(I7,) be the representation
associated with 0 in the previous section. Recall that p is absolutely irreducible by assumption.
We make two more hypotheses on p, that will hold throughout the whole text:

(Zy-regularity) p is Zy-regular as in Definition 3.11.1;
(residual Sym? type) 7 is of residual Sym?® type as in Definition 3.11.2.
In this section we define a “fortuitous congruence ideal” for the family 6. It is the ideal de-

scribing the intersection of the Sym3-locus of Dé\/f with the family 6. Recall that the Sym®-locus
is the zero locus of the ideal Zg s of O(D}")° defined in Section 3.12 and that 7 s : O(D3F)° —
2,B),

T}, denotes the restriction of analytic functions.

DEFINITION 4.2.1. The fortuitous Sym3-congruence ideal for the family 6: Ty — 1° is the
ideal of I° defined by
Cp = (9 o ’I”Dév’fé;;)(zsym:s) -I°.

The reason for this terminology will be explained after the proof of Proposition 4.2.4. In
most cases we will simply refer to ¢y as the “congruence ideal”.

REMARK 4.2.2. As before we denote by I the irreducible component of D%’gf; defined by 6.

There is a map rr: O(DM)° — 1° given by the restriction of analytic functions on DM to I.
Clearly rr = 0o Tpih , S0 WE can also define ¢g as ?"I(Isymg) -I°.
Bp

The following proposition describes the main properties of the congruence ideal. Let J be
an ideal of I° and let J1, = IN1I3,. Let p5: Gg — GSp,(I%,./Ir) be the reduction of p modulo
J. If 61: Tp1 — J is a finite slope family of GLg-eigenforms we denote by pg, : Gg — GLa(J)
the associated Galois representation. For an ideal J of J we let pg, 7: Gg — GL2(J/J) be the
reduction of pg, modulo 7.

PROPOSITION 4.2.3. The following are equivalent:
(i) T D cp;
(ii) there exists a finite extension I' of I3, /Imv and a representation p31: Gg — GLa(I') such
that py = Sym®py 1 over I';
(i4i) there exists a finite slope family of GLa-eigenforms 01: Ty 7, — J°, an ideal J of J° and
a map ¢: J°/J — 13, such that p; = ¢o Symgpgl,g over I7,.

Note that we did not specify the image in the weight space of the admissible subdomain of
DN associated with the family 6;. It is the preimage in W of the disc By j, via the immersion
t: WP — W5 defined in Section 3.8.2.

PROOF. Since all the coefficient rings are local and all the residual representations are
absolutely irreducible, we can apply the results of Section 3.12 by replacing the pseudocharacters
everywhere with the associated representations, that exist by Theorem 3.5.5 and are defined
over the ring of coefficients of the pseudocharacter by Theorem 3.5.3 (see the argument in the
beginning of Section 4.1.4).

Now the equivalence (i) <= (ii) follows from Proposition 3.12.6(iv) applied to the rigid
analytic variety Vo = I. The equivalence (ii) <= (iii) follows from Proposition 3.12.6(iii) by
checking that the slopes satisfy the required inequality: this is a consequence of Corollary 3.4.9
and Remark 3.4.11. O

PROPOSITION 4.2.4. The ideal ¢y is non-zero.

PRrROOF. Suppose by contradiction that ¢g = 0. By Remark 4.2.2 ¢y = ’I“[(Isyms) -1°, so
we must have rl(Isyms) = 0. This means that the 2-dimensional rigid analytic variety I is
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contained in the zero locus DM, , of g, m3- Since DM . is Zariski closed in Dé\/f the Zariski
2,Sym ym 2,Sym

closure of I is also contained in Dé\/lsymg. By Corollary 3.12.5 Dé”symg has no components of
dimension 2, so we obtain a contradiction. O

The fortuitous Sym3-congruence ideal is an analogue of the congruence ideal of Definition
2.2.12. There is an important difference between the situation studied here and in Chapter 2 and
those treated in [Hil1l5] and [HT15]. In [Hil15] and [HT15] the congruence ideal describes the
locus of intersection between a fixed “general” family (i.e. such that its specializations are not
lifts of forms from a smaller group) and the “non-general” families. Such non-general families
are obtained as the p-adic lift of families of overconvergent eigenforms for smaller groups (e.g.
GL; /i for an imaginary quadratic field K in the case of CM families of GLg-eigenforms, as in
[Hil5], and GLy/p for a real quadratic field F' in the case of “twisted Yoshida type” families
of GSp,-eigenforms, as in [HT15]). In our setting there are no non-general families: the
overconvergent GSp,-eigenforms that are lifts of overconvergent eigenforms for smaller groups
must be of Sym?® type by Proposition 3.11.6 and Theorem 3.10.30, and we know that the Sym3-
locus on the GSp,-eigenvariety does not contain any two-dimensional irreducible component by
Proposition 4.2.4. Hence the ideal ¢y measures the locus of points that are of Sym?>-type, without
belonging to a two-dimensional family of Sym? type. For this reason we call it the “fortuitous”
Sym?3-congruence ideal. This is a higher-dimensional analogue of the situation of Chapter 2,
where we showed that the positive slope CM points do not form one-dimensional families but
appear as isolated points on the irreducible components of the eigencurve (see Corollary 2.2.8).

Note that conditions (ii) and (iii) in Proposition 4.2.3 only depend on the ideal J NI, so
we expect ¢y to be generated by elements of I7,. We prove this in the following.

PROPOSITION 4.2.5. Let ¢o v = ¢g NI3,. Then cg = co 1y - I°.

PROOF. By definition ¢p1e = 0 077(Zgy,,s) - I°. By definition Zg s = v (ker (¢ o AMPpY),

where the notations are as in diagram (3.12). Since ker (i1 o A\MP) C ’Héwp we have
00 r1(Zgyns) = 007 o ha(ker(v1 o XMP)) C 0o rpohy(Hy'™).

By the remarks of Section 4.1.4 the ring I3, contains @ o7y o wg(Héwp) in I°, so 0 or(Zgy,s) is
a subset of I, and the ideal ¢y = 0 o r[(ISymg) - I5, satisfies ¢g = cg 1y - I°. O

Proposition 4.2.3 can be translated into a characterization of the ideal ¢y 1. For an ideal J
of I, let py: Gg — GSp4(I%,/J) be the reduction of p modulo J.

COROLLARY 4.2.6. Let J be an ideal of IT,.. The following are equivalent:
(i) 3D €0, Trs
i1) there exists a finite extension I' of 1°/J and a representation py1: Go — GLa(I') such
K Q
that py = Sym®py1 over I;
111) there exists a finite slope family of GLa-eigenforms 01: Ty, /71 — J°, an ideal J of J° and
/7,
a map ¢: J°/3 — I3, such that py = ¢ o Sym?py, ;.
We use the results of Chapter 3 to obtain some information on the height of the prime

divisors of ¢y. Here ¢: W) — W3 is the inclusion defined in Section 3.8.2. For a classical weight
k in Wy we have (k) = (k + 1,2k — 1), with the obvious abuse of notation.

PROPOSITION 4.2.7. Suppose that there exists a non-CM classical point x € DY of weight
k such that sl(z) < h/7 and v(k) € By, and k > h — 4. Then the ideal ¢y has a prime divisor
of height 1.

PROOF. Let z be a point satisfying the assumptions of the proposition and let f be the
corresponding classical GLo-eigenform. Let Sym>z be the point of D that corresponds to the

form (Sym3f)$t defined in Corollary 3.4.8. Let &: Dfl’g — D) be the map of rigid analytic
spaces given by Definition 3.9.8. The image of an irreducible component J of D{V’g containing
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r is an irreducible component &(.J) of DY that contains Sym3z. By Corollary 3.4.9 we have
sl(Sym3z) < h. Since k 4+ 1 > h — 3 the weight map is étale at the point Sym>z, so there
exists only one finite slope family of GSp,-eigenforms containing Sym3z. This means that &(.J)
intersects the admissible domain I in a one-dimensional subspace. The ideal of I° = O(I)°
consisting of elements that vanish on £(J) is a height one ideal of I that divides the congruence
ideal ¢y. In particular ¢y admits a height one prime divisor. O

4.3. The self-twists of a (Galois representation

Given a ring R, we denote by Q(R) its total ring of fractions and by R"™ its normalization.

Now let R be an integral domain. For every homomorphism o: R — R and every v € GSp,(R)
we define 77 € GSp,(R) by applying o to each coefficient of the matrix . This way o induces
an automorphism []7: G(R) — G(R) for every algebraic subgroup G C GSp, defined over R.
For such a G and any representation p: Gg — G(R), we define a representation p”: Gg — G(R)
by setting p?(g) = (p(g))? for every g € Gg.

Let S be a subring of R. We say that a homomorphism o: R — R is a homomorphism of R
over S if the restriction of o to S is the identity. The following definition is inspired by [Ri85,
Section 3] and [Langl6, Definition 2.1].

DEFINITION 4.3.1. Let p: Gg — GSpy(R) be a representation. We call self-twist for p over
S an automorphism o of R over S such that there is a finite order character n,: Gg — R* and
an isomorphism of representations over R:

(4.3) P’ = 1. @ p.
We list some basic facts about self-twists.

PROPOSITION 4.3.2. Let p: Gg — GSp4(R) be a representation.

(1) The self-twists for p over S form a group.

(2) If R is finite over S then the group of self-twists for p over S is finite.

(3) Suppose that the identity of R is not a self-twist for p over S. Then for any self-twist o the
character 1, satisfying the equivalence (4.3) is uniquely determined.

(4) Under the same hypotheses as part (3), the association o +— 1, defines a cocycle on the
group of self-twist with values in R*.

PROOF. (1) Let 7, 7/ be two self-twists for p over S and let n,, 7, be characters satisfying

Equation (4.3) for o = 7 and o = 7/, respectively. Then there are equivalences o = (pT)T/ &
(n: p)T/ = 77;' = 77;/7%’ p. In particular 77’ is a self-twist with associated finite order character
77; Nrt-

(2) Every self-twist can be extended to an automorphism of Q(R) fixing Q(S). Since R is
finite over S, Q(R) is finite over Q(.S). In particular there exists only a finite number of distinct
automorphisms of Q(R) over Q(.S), so the number of distinct self-twists is also finite.

(3) Let o be a self-twist. Suppose that there exist two finite order characters 7, and 7.
satisfying p” &7, ® p = 1’ ® p. From the second equivalence we deduce that p = 7! @ n. ® p,
so the identity is a self-twist with associated finite order character 7, 'r/.. This contradicts our
assumption.

(4) Let 7 and 7’ be two self-twists and let n;, 1./, 7, be characters satisfying Equation
(4.3) for 0 = 7, 0 = 7/ and ¢ = 77’ respectively. By part (3) these three characters are
uniquely determined. By the calculation of part (1) the character 17 7+ satisfies Equation (4.3)
for o0 = 77/, so we must have 7, = 77;/777/. (]

Let I, s denote the group of self-twists for the representation p over S. Let S[TrAd p| denote
the ring generated over S by the set {Tr(Ad (p)(9))}gecq-

105



PROPOSITION 4.3.3. There is an inclusion S[TrAd p] C Rl»s.

PRrROOF. Let 0 € I') 5. By definition of self-twist there exists a character 7,: Gg — R* and
an isomorphism p? = 7, ® p. Passing to the adjoint representations we obtain an isomorphism
Ad p? = Ad p. The traces of the representations on the two sides must coincide, so we can write
(Tr(Ad p)(g))? = Tr(Adp?(g)) = Tr(Adp(g)) for every g € Gg. Hence o leaves Tr(Ad p(g))
fixed for every g € Gg. By definition o leaves S fixed, so it also leaves S[TrAd p| fixed. Since
this holds for every o € I', s we conclude that S[TrAd p] is fixed by I',, 5. O

Let 0: T}, — I° be a family of GSp,-eigenforms as defined in Section 4.1.2. Let p: Ggp —
GSp,(I5,) be the Galois representation associated with 6. Recall that I3, is generated over Ay
by the traces of p. We always work under the assumption that p: Gg — GSp,(F) is absolutely
irreducible.

Let T be the group of self-twists for p over A,. We omit the reference to Ay from now on
and we just speak of the self-twists for p.

DEFINITION 4.3.4. Let Ij = (JI?H)F be the subring of 1T, consisting of the elements fized by
every o € I.

LEMMA 4.3.5. There is a tower of finite ring extensions
Ay C Iy C I, CI°.

Proor. Since I' is the group of self-twists for p over A; we have A, C Ij. The other
inclusions follow trivially from the definitions. Since I° is finite over Ay, all of the extensions in
the tower are finite. O

We can study the order of I' thanks to an argument similar to that in [Lang16, Proposition
7.1].

LEMMA 4.3.6. The only possible prime factors of card(I') are 2 and 3.

PROOF. Let £ be any prime not dividing Np. Consider the element

(Trp(Froby))!

4.4 =
(44) T et p(Froby)

of I§,. For every o € I' and every g € Gg Equation (4.3) gives Trp?(g) = n(g9)Trp(g) and
det p(g) = n(g)* det p(g). In particular aJ = a, for every o € I, so a; € I§. By Remark 4.1.20
we have

det p(Froby) = e(£)x(€)>F1+k2=3) ¢ A, |

where ¢ is the central character of the family 6 and x: Gg, — Z; denotes the cyclotomic
character. In particular det p(Frob,) € I§.
Let
I' = B3a,*, det p(Froby) /%, ¢4,
where (4 is a primitive fourth root of unity. It is a Galois extension of I§. Equation (4.4) gives
an inclusion I3, C I, hence an inclusion I' C Gal(I'/If). Since I is obtained from I by adding
some fourth roots, the order of an element of Gal(I'/If) cannot have prime divisors greater than
3. This concludes the proof. O

Later we will construct from p a representation with values in GSp,(If). One of our main
goals is to prove, for the image of such a representation, a fullness result analogous to Theorem
2.5.2.
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4.4. Lifting self-twists

This section is largely inspired by [Lang16, Section 3|. Let §: T}, — I° be a family, p: Gg —
GSp,(I5,) be the associated Galois representation and I' be the group of self-twists for p over Ay,
Let P, C Ay be any non-critical arithmetic prime, as in Definition 4.1.13. The representation
p reduces modulo P;I3, to a representation pp, : Gog — GSp,(I3,/Psl3,). Let o € I' and let
n: Gg — (I3.)* be the character associated with o (we will use the notations ¢ and 7 for
different objects). The automorphism o fixes Aj by assumption, so it induces via reduction
modulo P4l a ring automorphism op, of 1%, /P;l7,. The character 7: Gg — I3, induces
modulo Py a character 7jp, : Gg — (I3,/Pxl$,), and the isomorphism p° = 7j® p over I3, gives
an isomorphism of represéntations over I,/ Pplg,:

op, ~

(4.5) Pp, ENﬁPk ® pp,-

Since P} is non-critical I° is étale over Ay at Py, hence I3, is also étale over Ay at Pj.
In particular P can be decomposed as a product of distinct primes in I7,; denote them by
PB1,Pa, ..., Py Since gp, is an automorphism of I, / P,lg, = Hi:l I3, /%Bi, there is a permuta-
tion s of the set {1,2,...,d} and isomorphisms o, : Tr/‘BZ — I5,/Bs) fori =1,2,...,d such
that 5|H0Tr /3, factors through oyp,. The character ﬁ;PE can be written as a product Hf-l:l npp, for
some characters 7y, : Gg — (I7,/%:)*. From the equivalence (4.5) we deduce that

U‘Dz ~

Py = M) @ PRy
The goal of this section is to prove that, if we are given, for a single value of 7, data s(i), oy, and
ﬁvp satisfying the isomorphism above for a single value of i, there exists an element of I' giving
rise to ogp, and 1) Ny, via reduction modulo P;. We state this precisely in the proposition below,
which is an analogue of [Langl6, Theorem 3.1]. The notations are those of the discussion
above.

PROPOSITION 4.4.1. Leti,j € {1,2,...,d}. Let o: I3, /PB; — 13, /B; be a ring isomorphism
and ne: Gg = (I5,/%B;)* be a character satzsfymg

(4.6) oG, = e ® .

Then there exists o € I' with associated character : Gg — (I3,)* such that, via the construction
of the previous paragraph, s(i) = j, oqp, = o and 1y, = 1.

We will need Proposition 4.4.1 in the proofs of two key results, Propositions 4.6.1 and 4.9.8.
Note that in the statement ¢ and j are not necessarily distinct. We prove the proposition in a
way similar to Lang’s, taking care of some complications that arise when adapting her work to
the group GSp,. The strategy is the following:

(1) we lift o to an automorphism ¥ of a deformation ring for p;
(2) we show that ¥ descends to a self-twist for p.

Before proving Proposition 4.4.1 we give a corollary. Keep the notations introduced above
and let P € {P1,Po, ..., Pa}. Let pp: Gg — GSpy(I7,./B) be the reduction of p modulo P
and let I'yy be the group of self-twists for py over Z,. Let T'(P) = {o € T'|o(P) = P}; it is a
subgroup of I'. Let ¢ € I" and let 1j: Gg — (I,/%)* be the finite order character associated
with . Via reduction modulo B, ¢ and 7 induce a ring automorphism oy of I3, /P and a finite
order character nyp: Go — (I7, /%)™ satisfying pg’? X Ny @ py- Hence o is an element of T'y.
The map I'(P) — I'y defined by o — o is clearly a morphism of groups.

COROLLARY 4.4.2. The morphism I'(B) — I'p is surjective.

Proor. This results from Proposition 4.4.1 by choosing B; = P; = P. (]
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4.4.1. Lifting self-twists to the deformation ring. This subsection follows closely
[Lang16, Section 3.1]. Keep the notations from the beginning of the section. In particular let
1, 7,°Bi,*B;j, 0 and 1, be as in Proposition 4.4.1. Let QNP denote the maximal extension of Q

unramified outside Np and set Ggp = Gal(Q™P/Q). Then p factors via Ggp by Theorem 3.1.1.
In this subsection we consider p as a representation Ggp — GL4(I3,) via the natural inclusion

GSpy(I3,) — GL4(I3,). Coherently, we consider Ggp as the domain of all the representations
induced by p and we take as their range the points of GL4 on the corresponding coefficient ring.
Note that the equivalence (4.6) implies that 7, also factors via Ggp , S0 we see it as a character
of this group. For simplicity we will write n = 7,.

Recall that we write mpe, for the maximal ideal of I3, and F for the residue field I, /mmye.
The residual representation p: Ggp — GL4(TF) is absolutely irreducible by assumption.

We briefly recall the definition of deformation ring for the classical representations we work
with. Our reference is [Ma89]. Let W denote the ring of Witt vectors of F. Let C denote
the category of local, p-profinite W-algebras with residue field F. Fix a positive integer n. Let

T Ggp — GL,(FF) be a representation. Consider a couple (R, 7) consisting of an object R € C

with maximal ideal mgr and a representation 7: Ggp — GL,(R). Denote by 7 the representation

Ggp — GL,,(F) obtained by reducing 7 modulo mg. We call (R, 7) a universal couple for 7 if:

(1) there is an equivalence 7 = T;

>~

(2) for every A € C and every representation r: Ggp — GL,(A) satisfying 7 = 7, there exists

a unique W-algebra homomorphism «(r): R — A such that r» = a(r) o 7.

We call a representation r as in (2) a deformation of . If (R, ) is a universal couple for 7,
we call R the universal deformation ring and 7 the universal deformation of 7. We will usually
write such a couple as (R, 7™Y).

We define in the natural way the isomorphisms of two couples (R,7) and (R',7’) (not
necessarily universal). The following is [Ma89, Proposition 1].

THEOREM 4.4.3. (Mazur) If 7 s absolutely irreducible, there exists a universal couple
(R, ™) for ™. Moreover (Rz7T"™V) is unique up to isomorphism.

Let O be the subring of I3, generated over W by the image of 7,. Since W =W (F) C O C
[7,, the residue field of O is F. For any commutative W-algebra A we set A =0 ey A.

Since o: 15, /Bi — I3, /% is an isomorphism, it maps the maximal ideal of I, /9; onto that
of I, /%B;. In particular ¢ induces an automorphism & of the residue field F. Let 7,, Ggp — F~
be the reduction of 1, modulo the maximal ideal of I, /B;. By the properties of Witt vectors
o lifts to an automorphism W (7) of W. For every commutative W-algebra A we set A7 =
A®w,w ) W, where the tensor product is taken through the map W(a): W — W. We denote
by t(o, A): A — A7 the map defined by (7, A)(a) = a®1 for every a € A. It is an isomorphism
of rings with inverse given by (771, A).

The representations p, p° and 7, ® p are all absolutely irreducible. By Theorem 4.4.3 the
universal couples for the three representations exist. We denote them respectively by (R, Uiy,
(Rg7, (p7)"™) and (Ry,ep, (11, @ p)"™).

The equivalence (4.6) induces an equivalence p? = 77, ® p. Then Theorem 4.4.3 gives an
isomorphism (R, (p7)™") 2 (Ry, p, (T, © p)™"). From now on we identify the two couples
via the isomorphism above. The following lemma is [Langl16, Lemma 3.2] with GLo replaced
by GL4. The proof is unchanged, since it relies only on the properties of deformation rings that

we recalled above.
LEMMA 4.4.4. (cf. [Langl6, Lemma 3.2|)
1) There is a canonical isomorphism ¢: RZ — R of right W -algebras such that
P P
(ﬁﬁ)univ o~ ¢ o L(E, Rp) oﬁuniv
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as representations Ggp — GL4(RY).

(2) Consider (7, ® p)"™V as a representation with values in GLy(° Rugp) via the natural map
Rigp — ORﬁ(@p. Consider n, as a character Ggp — (ORﬁ)X by letting it act on the left
on the O-coefficients. Then there is a natural W-algebra morphism v: Ry op — ORp such
that . ‘

ne@p™ = (1) (mep)™
as representations Ggp — GL4(°R5).
ProoOF. Exactly as the proof of [Langl6, Lemma 3.2]. O

We use Lemma 4.4.4 to show that the automorphism @ of F can be lifted to an automorphism
>} of the W-algebra ORﬁ. We need an intermediate step. Define an isomorphism m(a,F): F7 —
F by m(,F)(z @ y) = 5(2)y. Let ¢: R77 — RS and ¢: Ry ep — 9R5 be the ring morphisms
given by Lemma 4.4.4. Define a ring morphism

m(a, ORp): OR% — ORﬁ
by m(7,7Rp) = (1@ 1) (1@ ¢),
LEMMA 4.4.5. (cf. [Langl6, Lemma 3.3]) The morphism m(7,° R;) is a lift of m(a,F).

PRrROOF. We follow the proof of [Langl6, Lemma 3.3]). Since F is the residue field of O,
the tensor products with O become trivial after reduction by the maximal ideals of the various
deformation rings. In particular the morphisms of residue fields induced by 1 ® ¥ and 1 ® ¢
coincide with those induced by ¢ and 1, respectively. Denote these morphisms by ¢: F@zF — F
and ¢: F — F. Then m(7, ORp) induces 1) o ¢ on the residue fields. It is sufficient to show that
¢ =m(7,F) and 1 is the identity on F.

By definition of ¢ there is an isomorphism (p%)"™V = ¢o (7, R;) o p™". By reducing
modulo the maximal ideal of Rg we obtain p° & ¢o1(T R5) o 7"V By the universal property

of p"™V we have p° = ¢ o7(7,F). Since @ = m(7,F) o 1(7,F) and (7, F) is an isomorphism, we
conclude that ¢ = m(a,TF).

By definition of ¢ there is an isomorphism (1 ® v) o (n ® p)"™V = 5 ® p™ V. By reducing
modulo the maximal ideal of © R; we obtain 1o (7 ® p) 2 7 ® p. In particular ¢ acts trivially
on the traces of 7 ® p. These traces generate F since the traces of p generate I3, over Aj. We
conclude that v is trivial on F. O

Define an automorphism X: Rz — R; by ¥ = m(c, 9 R5) o (7, Ry).
COROLLARY 4.4.6. The morphism ¥ induces & upon reduction by the mazximal ideal of Rj.

PROOF. By Lemma 4.4.5 the morphism m(7, °R;) is a lift of m(,F). By definition ¥ =
m(a, 9 R;) o u(7, Rp). Since & = m(7,F) o (7, F), the morphism ¥ is a lift of &. O

We prove some additional properties of ¥ that we will need in the following. Let 9% = ¥ =
m(E, OR?) © (1 ® L(E7 Rﬁ)): ORﬁ - Rﬁ‘
PRrROPOSITION 4.4.7. (cf. [Langl6, Proposition 3.4])
(1) For allw € W we have °L(1 @ w) = 1 ®@ W(7)(w).
(2) For all x € O we have °YL(z® 1) = 0 ® 1.
(3) The automorphism & of F is trivial.
(4) There is an isomorphism p =7 ® p. . .
(5) The automorphism ¥ of Ry satisfies ¥ o p™™" = nop"™V,
(6) The automorphism ¥ of Ry is a lift of o.

PROOF. The proof is similar to that of [Langl6, Proposition 3.4]. Part (1) follows from
a direct calculation, by recalling that ¢ is a right W-algebra morphism and ¢ is a W-algebra
morphism. Part (2) follows immediately from the definition of ©¥.
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We use (1) and (2) to deduce (3). Indeed, for every x € O,
wel=Swel)=L1low) =10 W(@)(w) =W@)(w)®1.

Hence the morphism W(o) ® 1: W @w R; — W ®@w Rp is trivial. Since the map W — Rp is
injective, we conclude that & is trivial.

Part (4) is obtained by reducing p? = n ® p modulo the maximal ideal of I3, and applying
part (3).

By taking determinants in the equivalence of (4) we deduce that 7* is trivial. In particular
O is an unramified extension of W, which means that O = W since both rings have residue field
F. In particular we have equalities R = “R; and S = £ = (1®¢) o (1®1) o (7, R5) = 9. By
definition of v there is an isomorphism v o (7 ® p)"™V = n ® p™. By part (4) and the equality
¥ = v we deduce that ¥ o 7™ 2 5 ® p"V, hence (5).

Let a: R — I3, be the unique morphism of W-algebras satisfying p & aop"™V. Let
mp, : Iy — 19, /P and my, : 13, — I3, /%, be the natural projections. From the isomorphism
p° =2 n® p and the previous remarks we deduce that

—univ —univ

goﬂmioaoﬁunivgn(g(ﬂ';pjoaop )%ﬂmjoao(n(g)p

univ

)gﬂ'mjoaoZoﬁ

By the universal property of "™V we conclude that o o Ty, o a = iy, o ao X, which means that

Y is a lift of o. O

Let A be an object of C and 7: Gg — GL4(A) be a representation satisfying 7 = p. Let
ar: Rz — A be the morphism of local, pro-p W-algebras associated with 7 by the universal
property of (Rﬁ’puniv). We define a representation 7: Gg — GL4(A) by 7% = a; o X o gV,
The following is a corollary of Proposition 4.4.7(4).

COROLLARY 4.4.8. There is an isomorphism 7 =1 & T.

PRrOOF. By applying Proposition 4.4.7(5) we obtain

7_2) = a, oEoﬁuniv ~ Qo (n®puniv> ~ 77® (067— opuni\/) _ 77®7_’
as desired. O

Recall that p is the Galois representation associated with the finite slope family . The
goal of the next section is to show that the representation p™ is associated with a family of
GSp,-eigenforms of a suitable tame level and of slope bounded by h. Thanks to Corollary 4.4.8
it is sufficient to show that the representation 1 ® p is associated with such a family.

4.5. Twisting classical eigenforms by finite order characters

We show that the twist of a representation associated with a classical Siegel eigenform by
a finite order Galois character is the Galois representation associated with a classical Siegel
eigenform of the same weight but possibly of a different level. By an interpolation argument we
will deduce the analogous result for the representation associated with a family of eigenforms.

REMARK 4.5.1. We regard a Galois character x: Gg — @; of finite order m as a Dirichlet
character of conductor m and vice versa via the isomorphism (Z/mZ)* = Gal(Q((n)/Q),
where (p, is an m-th root of unity. We will switch implicitly between the two points of view as
convenient.

Let f be a cuspidal GSpy-eigenform of weight (K1, k2) and level I'y (M) and let pf,,: Gg —

GSp4(@p) be the p-adic Galois representation attached to f. Let n: Ggp — @; be a character
of finite order mg prime to p. Thanks to the following proposition we can give a notion of the
twist of f by 7.
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PROPOSITION 4.5.2. There exists a cuspidal Siegel eigenform f @ n of weight (k1,ke) and
level Ty (lem(M, mg)?) such that the p-adic Galois representation associated with f@mn is & py.

Our proof relies on the calculations made by Andrianov in [An09, Section 1]. He only
considers the case k1 = ko, but as we will remark his work can be adapted to forms of any
classical weight. For A € M,,(R) we write A > 0 if A is positive semi-definite and A > 0 if A is
positive-definite. Recall that f, seen as a function on a variable Z in the Siegel upper half-plane

H" = {X +iY | X,Y € M,(R) and Y > 0}

admits a Fourier expansion of the form f(Z) =3 jcpn 4> @ 4q”, where ¢ = €2mT1(A2) 5pd

1
A" = {A = (ajk)j,k e M, <2Z> ‘tA = A and aj; € Z for 1 <j< n} .
. ) A B .
The weight (k1, k2) action of c D € GSp4(C) on f is defined by

(4.7) ( an ) f = (Sym"*2(Std) ® det *2(Std))(CZ + D) f (%) ,

where Std denotes the standard representation of GL2. As in [An09], we define the twist of f
by n as
fen=>_ n(Tr(A)aag”.
AcAn, A>0
Note that Andrianov considers a family of twists by 1 depending on an additional 2 x 2 matrix
L, but we only need the case L = 1.
The notation I'(m) in [An09] stands for the congruence subgroup

C D
where all blocks are two-dimensional. In particular we have inclusions
(4.8) 'y (m?) c T(m) C Ty(m).

We recall some results of [An09]. For A € GSp,(C) and a congruence subgroup I' C
GSp,4(C), we let the double class [['AT'] act as a Hecke operator on forms of level T" by the usual
formulae. Recall that p(A) denotes the similitude factor of A.

f(m):{(A B)\AEDEHQ (mod m), C = 0 (modm2>}

PROPOSITION 4.5.3. Let n be a Dirichlet character of conductor m and f be a cuspidal form
of weight (k,k) and level T'(m).
(1) The expansion f @ n defines a cuspidal form of level f(m) [An09, Proposition 1.4]. In
particular f @ n defines a form of level T'1(m?) via the first inclusion of (4.8).
(2) If A € GSpy(C), [['1(m?)AT1(m?)].(f @n) = n(u(A))[T(m)AT (m)].f [An09, Theorem 2.3].

We remark that the same result holds for a form f of arbitrary classical weight (ki,k2),
with the same proof. Indeed all the steps in the proofs of [An09, Proposition 1.4] and [An09,
Theorem 2.3] only involve the action of upper unipotent matrices on f via formula (4.7). The
action of such matrices is clearly independent of the weight of f, hence all calculations are still
true upon replacing the weight (k, k) action with the weight (k1, k2) action.

By the second inclusion of (4.8), a form of level I'; (m) can be seen as a form of level T'(m).
We can thus rewrite Proposition 4.5.3 for a general weight and in the form that we will need.
PROPOSITION 4.5.4. Let n be a Dirichlet character of conductor m and f be a cuspidal form
of weight (ki,ks) and level T1(M). Let M’ = lem(mq, N)?.
(1) The expansion f @ n defines a cuspidal form of level T'1(M').
(2) If A € GSpy(C), [[1(m?)AT1(m?)].(f @) = n(u(A))([[1(m)AT1(m)].f) @ 1.
We are now ready to prove Proposition 4.5.2.
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PROOF. We see the form f of level I'1(M) as a form of level I'y(lem(M,mp)) and the
character 7 of conductor m as a character of conductor lem(M, mg). By applying Proposition
4.5.4(1) with m = lem(M,mg) we can construct a form f ® n of level 'y (lem(M,mg)?). Let
Pronp: Go — GSp4(@p) be the p-adic Galois representation associated with f ® n. We show

that preyp =1 pyp-
For every congruence subgroup I' C GSp,(C) and every prime ¢, we denote by Ty o, Ty and

Ty 2 the Hecke operators associated with the double classes [['diag (¢, ¢, ¢, ¢)I'], [[diag (1, ¢, £, £*)T]
and [['diag (1,1, ¢, ¢)T'], respectively. We do not specify the congruence subgroup with respect to
which we work, since this does not create confusion in the following. Now Proposition 4.5.4(2)
gives, for every prime ¢ 1 Mmy, the relations

Tyo(f @n) = n(*)Tyo(f) @,
Tya(f ®@n) = ()T (f) ©n,
Ty2(f@n) =n0)Te2(f) @n.

Since f is a Hecke eigenform we can write T ;(f) = A f for i =1,2,3 and some \;; € C. Then
the previous equalities become

Tyo(f @n) = n()*Xeof @,
(4.9) Tpa(f @n) =n()* 1 f @,
Top(f@n) =n(OAe2f @n.
Recall from Proposition 3.1.1 that for £+ Mmgp we have
det(1 — py ,(Froby) X) = x s (X* = T2 X? + (Ty2)* — Ty1 — 2Tp0) X% — Ty oTio X + €%(Tu)?)

where x r is the character of the Hecke algebra defining the system of eigenvalues of f. It follows
that
(4.10)

det(1 — (n ® pyp)(Froby) X) =

= Xy (X =n(O)Te2X? +n(0)*(Tr2)? — Tea — CT00) X* = n(0)*CTy2Tr0 X + n(0)*°(Ty0)?).
Again by Proposition 3.1.1 together with formulae (4.9) we can compute
det(1 — pran,p(Froby) X) =
= Xpon (X" = Te2X? + (Trp)® — Tug — CT00)X? = CTy2TooX + (Ty0)?) =
= Xf (X = n(OT02 X + (n(O)Tr2)? = 1(0)* o — C(0)*Ty0) X2+
—C () Tr2) (1(0)*Ty0) X + 0 (1(0)*Ty0)?).

Since this polynomial coincides with that in Equation (4.10) for every ¢4 Mmgp, the represen-
tations n ® py, and prey, are equivalent. U

Under the hypotheses of the previous proposition we prove the following.

COROLLARY 4.5.5. Let M' = lem(mg, M)?. Let x be a classical p-old point of D} having
weight (k1,ke), slope h and associated Galois representation p,. Then there exists a classical
p-old point x) ofDé‘/I/ having weight (ki, k2), slope h and associated Galois representation py, =
1N Pg-

PROOF. Since z is p-old, it corresponds to the p-stabilization of a GSp,-eigenform f of level
M and weight (k1,k2). Let f ® n be the eigenform of weight (k1, k) and level M’ given by
Proposition 4.5.2. We show that it admits a p-stabilization of slope h.

We are working under the assumption that the conductor of 7 is prime to p, so Equations
4.9 hold for ¢ = p. In particular

Xton(Puin(t59)) = x4 (X* = 1(0)Tp2 X> + (0(0) Tp2)? — 01(0)*Tp1 — p*0(p)*Tp0) X2+

() Tp.2) (1(0)*Tp0) X + p5(1(9)*Tp0)?).
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Let {o;}i=1,.. 4 be the four roots of X f(Pumin(t (2%)) Then Equation (4.11) shows that the roots

of X oo (Pain(ty2)) are {n(p)ai}ici..a.

Suppose that f is p-old. Recall that we identify U (2) with ¢ % via the isomorphism Tk I of
Section 1.2.4.2. By the discussion in the proof of Prop. 3.4.5 there are eight p—stablhzatlons of
f ®mn, one for each compatible choice of Uliz) and (U;;QQ))M among the roots of Xf(Pmm(t(Q))).

Let f5* be a p-stabilization of f with slope h = ’Up(stt(UIEQ))). Since UIE ) = (U(z)) (U;Q))wl,
there are 7,7 € {1,2,3,4} such that stt(U,§2)) = a?aj. Then by the remark of the previous

paragraph there exists a p-stabilization (f ® 1) of f ® 7 such that

X(ran= (U2 = (n(p)ai)*(n(p)ay) = n(p)*aia;.
In particular the slope of (f ® n)

Up(X(f®n)St(Ugg2))) = Up(n(p)g)vp(azzaj) = 3up(n(p)) + h.
Since p is prime to the conductor of 7 we have that n(p) is a unit, hence the slope of (f ® n)
is h.
The level of the eigenform (f ®n)%t is I'y (M’)NTo(p), so it defines a point of the eigenvariety
D' as desired. U

Consider the family 0: T;, — I° fixed in the beginning of the section. For every p-old
classical point = of 0, let x, be the point of the eigenvariety DM " provided by Corollary 4.5.5.
Let 7}, be a radius adapted to h for the eigenvariety Déw ". Let A}, be the genus 2, h-adapted
Iwasawa algebra for Dé\/[ " and let T}, be the genus 2, h-adapted Hecke algebra of level M’. Note
that 7}, < 7y, so there is a natural map ¢,: Ay, — A}

LEMMA 4.5.6. There exists a finite A} -algebra J°, a family 6': T} — I° and an isomor-
phism «: HTr®AhAh — I3, such that the representation py : Gg — GSp,(J%,) associated with 0’
satisfies

(412) Po’ %'77®04°p9

PROOF. Let S be the set of p-old classical points of §. Let S’ be the subset of S consisting
of the points with weight in the disc B(0,r},). We see S’ as a subset of the set of classical points
of DY’ via the natural inclusion D) < DI’ Thanks to the conditions on the weight and the
slope we can identify S” with a set of classical points of T}. Note that S’ is infinite.

Let

Sy =A{zy |z e S},

which is also contained in the set of classical points of Dé\/f ". For every x € S’ the weight and
slope of z;, coincide with the weight and slope of . In particular 57’7 can be identified with an
infinite set of classical points of T). Since T} is a finite A}-algebra, the Zariski-closure of S in
T}, contains an irreducible component of T}. Such a component is a family defined by a finite
A} -algebra J° and a morphism 6": T}, — J°.

Let pgr: Gg — GSpy(J5,) be the Galois representation associated with 6. Let Sz' be the
subset of S% consisting of the points that belong to €’; it is Zariski-dense in J° by definition of
0. Let S¥ ={x € S|z, c 5’2/}. For every x € S? let py,, be the specialization of pg at  and
let pg ., be the specialization of py at z,. By the definition of the correspondence x — x; we
have

PO’ 2, = ne Po,x
over @p for every = € S?. Hence the representation 1 ® py . coincides with ¢j, o pgr on the set

Sg,. Since this set is Zariski-dense in J, there exists an isomorphism «: H%&r@@AhA;z — J%, such
that pgr =2 n® a o pg, as desired. O
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REMARK 4.5.7. With the notation of the proof of Lemma 4.5.6, Equation (4.12) implies that
all points of the set S;] belong to the family 0', because of the unicity of a point of Déw given its
associated Galois representation and slope.

By combining Lemma 4.5.6 and Corollary 4.4.8 we obtain the following.

COROLLARY 4.5.8. There exists a finite A} -algebra J°, a family §': T} — J° and an isomor-
phism «: HS[&«@)AhAlh — IS, such that the representation py : Gg — GSpy(J%,) associated with 0’
satisfies

(413) Po’ 2o pz.

4.5.1. Descending to a self-twist of the family. We show that the automorphism 3 of
R5 defined in the previous subsection induces a self-twist for p. This will prove Proposition 4.4.1.
Our argument is an analogue for GSp, of that in the end of the proof of [Lang16, Theorem
3.1]; it also appears in similar forms in [Fi02, Proposition 3.12] and [DG12, Proposition A.3].
Here the non-criticality of the prime P} plays an important role.

PROOF. (of Proposition 4.4.1) Let p: Gg — GSp4(F) be the residual representation associ-
ated with p. Let R; be the universal deformation ring associated with p and let p"™" be the
corresponding universal deformation. By the universal property of R; there exists a unique
morphism of W-algebras ay: R; — I3, satisfying p = ajo puiv,

Consider the morphism of W-algebras a? = aroX: R; — I7,. We show that there exists
an automorphism o : I3, — I7, fitting in the following commutative diagram:

ay °
Rp — HTr

(4.14) lz § l&

af 5

R; —— I3,
We use the notations of the discussion preceding Lemma 4.5.6. Consider the morphism 6 ®
1: Tp®a, A, = I°®4p, A}, where the completed tensor products are taken via the map ¢y : Ay, —
A},. For every Aj-algebra A we denote again by ¢, the natural map A — AR A, A}~ The natural

inclusion Déw — Dé” " induces a surjection sp: T) — ']I‘h@/\hl\%. We define a family of tame
level T';(M’) and slope bounded by h by

oM = (0@ 1) osp: T) — I°®4, Al

The Galois representation associated with 6™ is porr = tpop: Gg — GSp,(I5,®4,A}). Let
¢': T, — J° be the family given by Corollary 4.5.8. We identify I3, @, A} with J9, via the
isomorphism « given by the same corollary; in particular the Galois representation associated
with ¢’ is pgr = p*: Gg — GSpy (15, @4, A}).

Recall that we are working under the assumptions of Proposition 4.4.1. In particular we
are given two primes B; and PB; of I3, an isomorphism o: I3, /B; — I3, /B, and a character
No: Go — (I3,/%B;)™ such that pf = 1, @ py;. Let B, be the image of P; via the map
up: 15,®, A}, The specialization of porr at P is pp,. Let f’ be the eigenform corresponding
to PB;. By Remark 4.5.7 there is a point of the family 6’ corresponding to the twist of f by
n; let i, be the prime of I5,®a, A}, defining this point. The specialization of py at RUSE
1 & pg,;, which is isomorphic to p%i by assumption. Let f,’l be the eigenform corresponding to
the prime ‘Bgm. The forms f” and f{7 have the same slope by Corollary 4.5.5 and their associated
representations are obtained from one another via Galois conjugation (given by the isomorphism
o). Hence f’ and f/7 define the same point of the eigenvariety D2/ ". Such a point belongs to
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both the families 0" and ¢'. Since By, is non-critical, T} is étale at every point lying over Py,
so the families 0™ and ¢ must coincide. This means that there is an isomorphism

o' I ®a, Ay = In®a, A
such that py = & opM'. Then & induces by restriction an isomorphism A [Tr(pM")] —
N} [Tr(pgr)]. Note that A} [Tr(pM")] = 15 (13,) and

AL Tr(pgr)] = AJ[Tr(5 o pM')] = & (A4 [Te(p™)]) =
= & (A[Tr(en 0 p)]) = & (eh(An[Trp])) = & (tn(1%,))-

In particular ¢’ induces by restriction an isomorphism ¢y, (I5,) — ¢4 (I5,). Since ¢y, is injective we
can identify ¢’ with an isomorphism &: I, — I3,. By construction ¢ fits in diagram (4.14). O

4.6. Rings of self-twists for representations attached to classical eigenforms

Let f be a classical GSpy-eigenform and py,,: Gg — GSpy (@p) the p-adic Galois represen-
tation associated with f. Up to replacing py, with a conjugate we can suppose that it has
coefficients in the ring of integers Ok of a p-adic field K. Suppose that f satisfies the hy-
potheses of Theorem 3.11.3, i.e. py,, is of Sym?® type but f is not the symmetric cube lift of

a GLo-eigenform. Let I'y be the group of self-twists for p over Z;, and let O;f be the subring
of elements of Ok fixed by I'y. As in in Section 3.11 we define another subring of O by
Op = Zy[Tr(Ad p)]. We prove that the two subrings of Ox we just defined are actually the
same.

PROPOSITION 4.6.1. There is an equality 0 = Og.

Before proving the proposition we recall a theorem of O’Meara about isomorphisms of
congruence subgroups. It is a generalization to symplectic groups of arbitrary genus of a result
of Merzljakov for GLy [Me73, Theorem)], cited in the proof of [Langl6, Proposition 5.3]. The
notations of [OMT78, Theorem 5.6.4-5] are as follows: o is any integral domain and F' is its
quotient field, n is an even positive integer, V is an n-dimensional F-vector space with an
alternating bilinear form, M is an o-module contained in a free o-submodule of V, Sp,, (V') and
I'Sp,, (V') are respectively the groups of symplectic isometries and similitudes for V, RL, (V)
is the group of scalar endomorphisms of V, a is any ideal of o, Sp,,(M, a) is the subgroup of
Sp,,(V) consisting of elements o satisfying oM = M and (o — 1)M C aM. As usual let PSp,
and PGSp,, be the projective symplectic groups. Let (o1, F1, M1, n1,V1,a1) be another choice
of the above data.

Let o: F — F} be an isomorphism. We say that a map S of V into Vj is o-semilinear if it
is additive and satisfies S(Av) = o(A)S(v) for every v € V and A € F.

In the following we choose V = F?9, equipped with the bilinear alternating form defined by
the matrix .J; of Section 1.1, and M = 0%, so that Sp, (M, a) becomes the usual congruence
subgroup of level a of Spy,(0). We choose Vi = F12 9. again with the form defined by the matrix

Jg, and My = 0?9 . We suppose that the characteristics of F' and Fj are different from 2. In
this setting [OMT78, Theorem 5.6.4] implies the following result for isomorphisms of projective
congruence subgroups.

THEOREM 4.6.2. (cf. [OMT8, Theorem 5.6.4]) Let A and Ay be subgroups of PGSpy,(F)
and PGSpy, (F1), respectively, satisfying

PSpy,(0,a) C A

and
PSpgg(Ol, Cl1) C Ay
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Let ©: A — Ay be an isomorphism of groups. Then there exists an isomorphism of fields
o: F — F| and a bijective, symplectic, o-semilinear map S: V — Vi satisfying

Oz = SzS~!
for every x € A.

REMARK 4.6.3. Let o: F — F} be an isomorphism. Denote by x — x° the isomorphism
GSpy, (F) — GSpy,(F1) obtained by applying o to the matriz coefficients. For every bijective,
symplectic, o-semilinear map S: 'V — Vi there exists v € Gszg(Fl) such that SxS™1 = yxo~~1
for every x € GSpy(F).

Thanks to Remark 4.6.3 we can rewrite the theorem as follows.

COROLLARY 4.6.4. Let A and Ay be subgroups of PGSpy,(F') and PGSp,,(F1), respectively,
satisfying
PSPQQ(U, a) C A
and
PSpy,(01,a1) C Ay.
Let ©: A — A1 be an isomorphism of groups. Then there exists an automorphism o of F' and
an element v € PGSpy, (F') satisfying
Oz = ya°y !
for every x € A.

From Corollary 4.6.4 we deduce a result on isomorphisms of congruence subgroups of
Sp2g(F)'

COROLLARY 4.6.5. [OM78, Theorem 5.6.5] Let A and Ay be two subgroups of GSpy,(F)
satisfying
Spag(0,a) C A
and
Spag(0,a1) C Aj.
Let ©: A — A1 be an isomorphism of groups. Then there exists an automorphism o of F, a
character x: A — F* and an element v € GSpy,(F) satisfying

Oz = x(x)yz7y !

for every x € A.

Before proving Proposition 4.6.1 we fix some notations. Let End(sp,(K)) be the K-vector
space of K-linear maps sp,(K) — sp,(K) and let GL(sp,(K)) be the subgroup consisting
of the bijective ones. Let Aut(gsp,(K)) be the subgroup of GL(sp,(K)) consisting of the Lie
algebra automorphisms of sp, (K). Let maq be the natural projection GSp,(Ok) — PGSp,(Ok)
and let Ad : PGSp,(K) < GL(sp4(K)) be the injective group morphism given by the adjoint
representation. By definition the image of Ad is the group of inner automorphisms of the Lie
algebra sp,(K). The group of automorphisms of a the Lie algebra associated with a classical
group is the semidirect product of the group of inner automorphisms with the group of outer
automorphisms (i.e. the automorphisms of the associated Dynkin diagram). Since sp, admits
no outer automorphisms, Ad induces an isomorphism of PGSp,(K) onto Aut(sp,(K)). For
simplicity we write p = py, in the following proof (but recall that in the other sections p is the
Galois representation attached to a family).

PROOF. (of Proposition 4.6.1) The inclusion O C Ozf follows from Proposition 4.3.3.
To prove that (’)Ir(f C O we need the following lemma.

LEMMA 4.6.6. Let R be an integral domain and let Ry and Ro be two subrings of R. Suppose
that every automorphism of R over Ry leaves Ry fized. Then R5°™ C R}™.

116



Note that (92’0 and Op are normal since they are the rings of integers of finite extensions of
Qp. Hence by Lemma 4.6.6 it is sufficient to show that an automorphism of Ok over Of leaves

(’)g{f fixed. Consider such an automorphism o. Since Op is fixed by o we have (Tr(Ad p)(g))” =
Tr(Ad p(g)) for every g € Gg, hence Tr(Ad p?(g)) = Tr(Ad p(g)). The equality of traces induces
an isomorphism between the adjoint representations Ad p, Ad p?: Gg — GL(sp,):

Adp? = Adp.
This means that there exists ¢ € GL(sp,(K)) satisfying
(4.15) Adp® =¢oAdpogt.

We show that ¢ is actually an inner automorphism of sp,(K).

Clearly Ad induces an isomorphism maq (Imp) = ImAdp. For every x € GL(sp,(K))
we denote by ©, the automorphism of GL(sp,(K)) given by conjugation by x. In particular
we write Equation (4.15) as Ad p” = ©4(Ad p). By combining Theorem 3.11.3 and Corollary
4.6.4 we show that we can replace ¢ by an element ¢/ € Aut(sp,(K)) still satisfying Ad p? =
O (Ad p(¢)).

We identify PGSp,(Og) with a subgroup of PGSp4((’)§<f ) via the inclusion O C O;f given
in the beginning of the proof. Consider the group A = (maq Im p) "PGSp,(Or) C PGSp,(Ok)
and its isomorphic image Ad(A) C GL(sp,). By assumption f satisfies the hypotheses of
Theorem 3.11.3, so Imp contains a congruence subgroup I'p,(a) of GSp,(OFg) of some level
a C Op. Hence maq Im p contains the projective congruence subgroup PI'p, (a) of PGSp,(OF)
and A also contains PI'p, (a). In particular A satisfies the hypotheses of Corollary 4.6.4. Since
Ad p? = ©4(Ad p) we have an equality (Ad (A))? = O4(Ad (A)), where we identify both sides
with subgroups of PGSp,(Opg). Now o acts as the identity on PGSp,(Opg), so the previous
equality reduces to Ad (A) = O4(Ad (A)). Let © = Ad™1o©,0Ad: A — A. Since Ad is an

isomorphism, the composition © is an automorphism. Moreover it satisfies
(4.16) ©4(Ad (0)) = Ad (©(9))
for every § € A. By Corollary 4.6.4 applied to F = F; = K, Ay = A and ©: A — A, there
exists an automorphism 7 of K and an element v € GSp,(K) such that
O(8) =67y

for every 6 € A. We see from Equation (4.16) that 7 is trivial. It follows that O4(y) =
Ad(y)oyoAd(y)~! for all y € Ad(A). By K-linearity we can extend ©4 and © g (v) to iden-
tical automorphisms of the K-span of Ad (A) in End(sp,(K)). Since A contains the projective
congruence subgroup PI'p, (a), its K-span contains Ad (GSp4(K)); in particular it contains the
image of Ad p. Hence ©4 and ©4q(,) agree on Ad p, which means that Equation (4.15) implies

Adp” = Oaq(y)(Adp).
Then by definition of ©,4(,) we have
Adp” = Ad(y)e Adpo (Ad(7))™" = Ad (vpr 7).

From the displayed equation we deduce that there exists a character 1, : Gg — O satisfying
p°(9) = ns(g)yp(g)y~! for every g € Gg, hence that p? = 5, ® p. We conclude that o is a
self-twist for p. In particular o acts as the identity on (’);{ , as desired. O

REMARK 4.6.7. Let p: Gg — GSp,(I3,) be the big Galois representation associated with a

family 0: Ty, — 1°. We can define a ring Ap[Tr(Ad p)] analogous to the ring O defined above.
We have an inclusion Ap[Tr(Ad p)] C 1§ given by Proposition 4.3.3. However the proof of the

inclusion O;f C Og in Proposition 4.6.1 relied on the fact that Im py,, contains a congruence
subgroup of GSp,(Og). Since we do not know if an analogue for p is true, we do not know
whether an equality between the normalizations of Ap[Tr(Ad p)] and I§ holds.
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Suppose that the GSp,-eigenform f appears in a finite slope family 6: Ty, — 1°. Let P be
the prime of I, associated with f and suppose that N A, is a non-critical arithmetic prime Pj.
Let Bo = PNI;. Theorem 3.11.3 gives a fullness result with respect to the ring Og. Thanks to
Proposition 4.6.1, this implies fullness with respect to the ring O;f . We use Proposition 4.4.1

to compare (’)g(f and the residue ring of I at Po, as in [Langl6, Proposition 6.2].

PROPOSITION 4.6.8. There is an inclusion I§ /By C Ozf.

PROOF. Let o0 € I'y and let n,: Gg — (I5,/%B)* be the character associated with o. We
use the notations of Section 4.4. By Corollary 4.4.2 there exists a self-twist o: I, /P — I3, /B
with associated character nz: Gg — (I%,/%)* such that P is fixed under o, op = o and
Nssp = 7o. Since & € I' and I§ = (I3,)" we have I§ C (15,)'?), where (7) is the cyclic group
generated by &. Since g leaves P fixed, we can reduce modulo 8 the previous inclusion to
obtain I3/Po C (I3,)®/P. Again since & leaves ¥ fixed and & induces ¢ modulo R, we
have (I5,)(@ /B = (13, /%)), hence I3/Po C (I3, /B)). This holds for every o, so I3 /Bo C
(15, /)17 0

The following corollary summarizes the work of this section.

COROLLARY 4.6.9. Let p = Gg — GSpy(I3,) be the representation associated with the family
0. Let B be a prime of I, corresponding to a classical eigenform f which is not a symmetric
cube lift of a GLa-eigenform. Let Py = P NI5. Then the image of pp: Gg — GSpy(I5,/B)
contains a non-trivial congruence subgroup of GSp,(I5/%Bo).

PRrOOF. As before let Op = Z,[TrAd pg]. By Theorem 3.11.3 the image of py contains
a congruence subgroup of GSp,(Og). By combining Propositions 4.6.1 and 4.6.8 we obtain
I5/%Bo C O, hence the corollary. O

REMARK 4.6.10. In [Langl6]| and in Chapter 2, where Galois images for families of GLq-
etgenforms are studied, the intermediate step given by Proposition 4.6.1 is not necessary. Indeed
the fullness result for the representation attached to a GLa-eigenform, due to Ribet and Momose
([Mo81] and [Ri85, Theorem 3.1]) is stated in terms of the ring fized by the self-twists of the
representation, hence an analogue of Proposition 4.6.8 is sufficient.

4.7. An approximation argument

In this section we prove an easy generalization of the approximation argument presented in
the proof of [HT15, Lemma 4.5]. An analogue for GLy was given in Proposition 2.3.7.

Here g is an arbitrary positive integer. Recall that we fixed a maximal torus T, and a Borel
subgroup B, of GSpy,, determining a set of roots and a subset of positive roots.

PROPOSITION 4.7.1. Let A be a profinite local ring of residual characteristic p endowed with
its profinite topology. Let G be a compact subgroup of the level p principal congruence subgroup
Lsp,, (4) (p) of GSpy,(A). Suppose that:

(1) the ring A is complete with respect to the p-adic topology;
(2) the group G is normalized by a diagonal Z,-regular element of GSpy,(A).
Let a be a root of GSpgy. For every ideal Q of A, let mg: GSpay(A) — GSpey(A/Q) be the
natural projection, inducing a map 7g o: U*(A) = U*(A/Q). Then
TQ(G)NU%(A/Q) = mo(GNU*(A4)).

Since the inclusion 7o(G N U*(A)) C mo(G) N U*(A/Q) is trivial, we can rephrase the

conclusion of Proposition 4.7.1 by saying that the natural projection 7g: GNU(A) — mo(G)N

U“(A/Q) is surjective for every a. In our applications G will be the image of a continuous
representation of a Galois group in GSpa,(4).
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PROOF. Let a be a root of GSpy,. As stated above, it is sufficient to show that 7g: G N
U*(A) — mg(G) NU*(A/Q) is surjective. The unipotent subgroups U®* and U~* generate a
subgroup of GSpy,(A) isomorphic to SLz(A). We denote it by SL5(A). We write I'4(p) for
the level p principal congruence subgroup of SL§(A). Throughout the proof we identify U*®
with subgroups of SL§(A). In this proof we write 7' = T, and B = B;. Let T = T'N SL%
and B® = T*U®. We also write sI$, uT * b for the Lie algebras of the SLS, U*®, T®, B¥®,
respectively. For every positive integer j, we denote by 7, the natural projection GSpy,(A) —
GSpyy(A/Q7), as well as its restriction SL§(A) — SL$(A/Q’). We define some congruence

subgroups of SLg(A) of level pQ? by setting
PA(Q7) = {z € SL§ NTa(p) | mgi (z) = a6},

Pya(Q?) = {z € SLY NTa(p) | mgs (x) € U (A/Q7)},

Ppa(Q’) = {z € SL NTa(p) | mgi(z) € B*(A/Q")}.
Note that we leave the level at p implicit. All the groups we consider in this proof are trivial
modulo p. We set Gpa(Q?) = GNT'ya(@Q?) and Gpa(Q?) = GNT'pa(Q?). Given two elements
X,Y € GSpy,(A4), we denote by [X,Y] their commutator XY X 1Y ~1. For every subgroup
H C GSpy,(A) we denote by DH its commutator subgroup {[X,Y]|X,Y € H}. We write

[, ]Lie for the Lie bracket on gspy,(A).
We prove the following lemma.

LEMMA 4.7.2. For every j > 1 we have
DIye(Q) € Tpe(Q¥) N Tye(Q).

PROOF. A matrix X € Iya(Q’) can be written in the form X = UM where U € U® and
M €T 4(Q7). In particular its logarithm is defined, it satisfies exp(log X) = X and it is of the
form log X = u + m with u € u®(A) C sl§(A) and m € Q’sl$(A). Now let X, X1 € I'ya(Q7)
and let log X = u + m and log X1 = u; + m1 be decompositions of the type described above.
Modulo Q% we can calculate

log[X, X1] = [log X,log Xi]rie = [u, u1]ric + [, u1]Lie + [U, m1]Lie + [Mm, M1 ]Lie-
Since u,u; € u® and m, m; € Q/sI$(A) we have [u, u1|rie = 0 and [m, m1]Lie € Q¥sIS(A), so
log[X, X1] = [m, u1]rie + [u, m1]rie (mod QQj).
Now write m = u~%+b% and my = uy *+b¢ with u™% u]* € QIu=%(A) and b=, b7 " € Q7b¥(A).
Then [m, u1]Lie = [u_a, u1|Lie+[b%, u1]Lie, Which belongs to @Q7b%(A) since [u™%, u1]Lic € Q7t*(A)
and [bY u1|Lie € @76%(A). In the same way we see that [u,m1]rie € b%(A). We conclude that

log[X, X1] € Q76 (mod Q%), so [X,X1] € I'pa(Q¥). Trivially [X, X1] € Tya(Q7), so this
proves the lemma. O

Let d € G be a diagonal Z,-regular element. Since A is p-adically complete the limit
lim,, o0 dP" defines a diagonal element § € GSpyy(A). Clearly 67 = 4, so 6P~1 = 15, and the
order of ¢ in GSpgg(A) is a divisor a of p — 1. By hypothesis G is a compact subgroup of
FGszg( 4)(p), so G is a pro-p group and d normalizes G. We denote by ad (d) the adjoint action
of 6 on GSp,,(4).

Consider the pro-p subgroup I'4(p) of SL§. Every element of I' 4 (p) has a unique a-th root
in I'a(p). Since ¢ is diagonal, it normalizes I'4(p). We define a map A: T'4(p) — Ta(p) by
setting

A@) = (2 (2 (@)D - (ad (2)() @ - (ad (2" 1))@ )"

for every z € T'4(p). Note that A is not a homomorphism, but it induces a homomorphism of
abelian groups A®: T'4(p)/DT 4(p) — T a(p)/DI 4(p).
The following lemma is the analogue of [HT15, Lemma 4.7].
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LEMMA 4.7.3. If u € Tya(Q?) for some positive integer j, then mgi(A(u)) = mgi(u) and
A%(u) € Tya(Q¥).

PROOF. Let u € I'ya(Q’). By the definition we see that A maps Q'T'a(p) to itself, so
it induces a map Ag;: Ta(p)/QTa(p) — Talp)/QTa(p). For & € U*(A/Q7) we have
mgi(ad (0)(z)) = ad (mgi(6))(x) = mgi(a(d))(x). From this we deduce that Ag,(z) = = for
z € U*(A/Q). Since mg;(u) € U*(A/Q7) we obtain mg; (A(u)) = Ags(mgi(u) = mgi (u).
Now consider the homomorphism A®": T'4(p)/DI'4(p) — T'a(p)/DI' 4(p). By a direct com-
putation we see that ad (6)(A(z)) = a(d)(A*(z)) for every x € T'4(p)/DI' a(p), so the image
of A® lies in the a(d)-eigenspace for the action of ad (§) on I'4(p)/DT 4(p). This space is just
U“(A)DT' 4(p)/DT 4(p), as we can see by looking at the Iwahori decomposition of I 4(p).
From the first part of the proposition it follows that A?P induces a homomorphism A%?]a : Tya(Q7)/Dlya (Q-

Iya (Q7) /DLy« (Q7). By the remark of the previous paragraph

AP (Tye(Q7)/DIya(Q7)) C Ty, (Q7)DTye (Q7)/DTya (Q7).
By Lemma 4.7.2 we have DI'yja (Q7) C I'ga(Q%) NTya(Q7), so

AR, . (Tye(Q7)/DIya(Q)) C I'pa(Q¥) NTya(Q?)/Dlye(Q).

We deduce that A(u) € T'pa(Q%) NTya(Q7).
By the same reasoning as above, A induces a homomorphism

AR : Tpa(Q¥) /Dl pa(Q¥) — T'pa(Q%) /DI pa (QY).

The image of Aat;a is in the a(0)-eigenspace for the action of ad (§), that is U*(Q%)DI' ga (Q%) /DI ga (Q%).
Note that DI'ga (Q%) C U*(Q%), so

AR (Cpe(Q¥) /Dl pa(QY)) C Tya(Q¥) /DL e (Q¥).
Since A(u) € T'ga(Q%) we conclude that A%(u) € Tya(Q%). O

We complete the proof of the proposition. We look at GNU*(A) and mg(G) NSL2(A/Q) as
subgroups respectively of SL§(A) and SLS(A/Q). From this point of view the statement of the
proposition stays the same. Let @ € mg(G) N U*(A/U). Choose u; € G and us € U*(A) such
that 7¢(u1) = mg(u2) = 4. Then ujuy ' € TA(Q), so u1 € GNTya(Q). Note that G Ny (Q)
is compact since G and I'yo(Q) are pro-p groups. By Lemma 4.7.3 we have WQ(A2m (u1)) =
and A%" (u1) € T'ya(Q?™) for any positive integer m. Hence the limit lim,, oo A2 (u1) defines
an element u € SLy(A) satisfying mg(u) = u. We have v € G NT'ya(Q) since G N I'ya(Q) is
compact. This proves the surjectivity of the map G NU*(A) — mo(G) N SL2(A/Q). O

We give a simple corollary.

COROLLARY 4.7.4. Let p: Gg — GSp,(I3,) be the Galois representation associated with a
finite slope family 6: Ty, — 1°. For every root a of GSpy, the group Im pNU*(I3,) is non-trivial.

PROOF. Let B be a prime of I° corresponding to a classical eigenform f which is not the
symmetric cube lift of a GLo-eigenform. The reduction py: Gg — GSpy (15, /B) of p modulo B is
the p-adic Galois representation associated with f. Let O = Z,[Tr(Ad pyp)]. By Theorem 3.11.3
Im pyp contains a non-trivial congruence subgroup of Sp,(Og). In particular Im pg N U (1%, /B)
is non-trivial for every root . Now we apply Proposition 4.7.1 to g = 2, A = I3,, G = Imp
and @ = P. We obtain that the projection Im p N U*(I%,) — Im pp N U*(13,/B) is surjective
for every . In particular Im p N U(I3,) must be non-trivial for every a. (]
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4.8. A representation with image fixed by the self-twists

Let 6: Tj, — I° be a finite slope family. As before let p: Gg — GSp,4(I7,) be the repre-
sentation associated with 6, that we assumed to be residually irreducible and Z,-regular (see
Definition 3.11.1). Consider the group I' of self-twists for p and the subring I§ of I, consisting
of the elements fixed by I'. By restricting the domain of p and replacing it with a suitable con-
jugate representation, we will obtain a Zj-regular representation with coefficients in Ig. This
is the main result of this section. In an important intermediate step we will need to apply
Corollary 4.7.4.

We write 1, for the finite order Galois character associated with a self-twist o € I". Let
Hy =, er kerno. Since I' is finite the subgroup Hy is open and normal in Gg. The following
is an immediate consequence of the definition of Hy.

LEMMA 4.8.1. For every g € Hy we have Tr(p(g)) € GSp4(I5).

PROOF. Let ¢ € Hy and ¢ € I'. By definition of self-twist we have an equivalence of
representations p? = 7, ® p. In particular the traces of the two representations must coincide,
so (Tr(p(g))? = Tr(p?(g9)) = n-(9)Tr(p(g)). Since Hy C kern, we deduce that (Tr(p(g)))? =
Tr(p(g)). Then Tr(p(g)) is fixed by all self-twists, so it is an element of I. O

Consider the restrictions p|m,: Ho — GSpy(I%,) and pla,: Ho — GSpy(F). If p|g, is
irreducible, then by Theorem 3.5.3 there exists g € GL4(I7,) such that the representation
p? = gpg~! satisfies Im p9| g, C GL4(I5). Since we prefer not to assume that p|, is irreducible
we follow the approach of Proposition 2.3.12, that comes in part from the proof of [Langl6,
Theorem 7.5]. Our result is the following.

PROPOSITION 4.8.2. There exists an element g € GSpy(I%,) such that:

(1) gpg™"(Ho) C GSpy(lo);
(2) gpg~*(Hp) contains a diagonal Zy,-reqular element.

In the proof of the proposition we will need the following lemma.

LEMMA 4.8.3. Let F be a field and o be a root of GSp,. Suppose that there exist ug € U*(F)
and g € GSp,(F) such that gupg=t € U*(F). Then g normalizes U*(F).

PRrOOF. Counsider the subgroup of My(F') defined by N*(F) = {u — 14|u € U%(F)}. For
no = up— Lg, we have NY(F) ={fno | f € F} and U*(F) = {ls+n|n € N*(F)}. Conjugation
by g on My(F) is F-linear, so for every f € F' we have

g(La+fno)g ' = glag ' +gfnog "t = Lat+fgnog ' = La+fg(uo—14)g~" = La+f(guog ' —14).

By hypothesis gugg~ € U*(F), so gugg~' — 14 € N*(F). Hence f(guog~' —14) € N%(F) and
14+ f(guog™! — 14) € U*(F). This concludes the proof. O

PROOF. (of Proposition 4.8.2) Let V' be a free, rank four I5,-module. The choice of a basis
of V' determines an isomorphism GL4(I%,) = Aut(V'), hence an action of p on V. Let d be a
Zy-regular element contained in Imp. We denote by {e;}i—1,.. 4 a symplectic basis of V' such
that d is diagonal. Until further notice we work in this basis.

By definition of self-twist, for each o € I' there exists a character 7, : Gg — (I3,)* satisfying

p° = n, ® p. This equivalence of representations implies that there exists a matrix C, €
GSpy(I5,) such that
(4.17) p7(9) = neCoplg)C, "

Recall that we write mye for the maximal ideal of I, and IF for the residue field of I7,. Let C,
be the image of C; under the natural projection GSp,(I5,) — GSp,(IF). We prove the following
lemma.

LEMMA 4.8.4. For every o € I' the matriz C, is diagonal and the matriz C, is scalar.
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PROOF. Let a be any root of GSp, and u® be a non-trivial element of Im pNU*(I3,). Such
a u” exists thanks to Corollary 4.7.4. Let g“ be an element of Gg such that p(¢%) = u®. By
evaluating Equation (4.17) at g® we obtain C,u®C;! = (u®)?, which is again an element of
U*(I%,). From Lemma 4.8.3 applied to F' = Q(I%,), up = u® and g = C, we deduce that
Cy normalizes U*(Q(I7,)). This holds for every root «, so C; normalizes the Borel subgroups
of upper and lower triangular matrices in GSp4(Q(I%,)). Since a Borel subgroup is its own
normalizer, we conclude that C, is diagonal.

By Proposition 4.4.7(3) the action of I" on I5, induces the trivial action of I' on F. By
evaluating Equation (4.17) at ¢® and modulo mpe  we obtain, with the obvious notations,

6gﬂa(ég)_i = (u*)? = u® Since C, is diagonal and u® € U*(F), the left hand side is

equal to a(Cy)u®. We deduce that a(C,) = 1. Since this holds for every root a, we conclude
that C, is scalar. O

We write C' for the map I' — GSp,(I5,) defined by C(o) = C,. We show that C can
be modified into a 1-cocycle C’ such that C’(o) still satisfies Equation (4.17). Define a map
c: I? — GSpy(I3,) by c(o,7) = CLCIC; for every o, 7 € T. By using multiple times Equation
(4.17) we find that for every g € Gg

NorCorp(9)Cot = p77(g) = nim-CoCrp(9)CyH (Co) ™

By rearranging the terms we obtain

p(9) = nazngnec(o, T)p(g)e(o, 7).
Recall that n7n; = n,- by Proposition 4.3.2(4), so the matrix ¢(o, 7) commutes with the image
of p. Since p is irreducible, ¢(o, 7) must be a scalar.
For every o € T and every i € {1,2,3,4} let (C,); denote the i-th diagonal entry of C,.
Define a map C!: T' — GSp,(13,) by Ci(0) = (Cy); 'Cy. Let ci(o,1) = Cl(or) " Cl(0)™Cl(T)
for every o,7 € " and i € {1,2,3,4}. Then

(4.18) ci(o,7) = ((Cor); H(Co)i(Cr)i) e(o, 7).

2

Since (Cyr); 1 (Cy)T(Cy); is the i-th diagonal entry of ¢(o,7) and ¢(o,7) is scalar, the quantity

7 7

(Cyr)H(Cy)i(C); is independent of i and ((Cyr); H(Cy)i(Cr)i)~Le(o, ) = 14 for every i. From

K3 3

Equation (4.18) we deduce that C/ is a 1-cocycle.
Set C! = C!(o). We have

(4.19) p7(9) = 1oCop(9)Cyt = noCop(g)(Ch) .

By Lemma 4.8.4 C, is scalar, so we C!, = (C,,);'C, = 14 with the obvious notations.

Recall that {e;}i—1, .4 is our chosen basis of the free I,-module V, on which Gg acts
via p. For every v € V we write as v = Z?Zl Ai(v)e; its unique decomposition in the basis
(€i)i=1,...4, with A\;(v) € I, for 1 < i < 4. For every v € V and every o € T' we set vlol =
(cry—t Zj‘zl \i(v)%¢;. This defines an action of T" on V since C”, is a 1-cocycle. Let VI denote

the set of elements of V fixed by I'. The action of I is clearly Ij-linear, so VI has a structure
of I[g-submodule of V.

Let v € VIl and h € Hy. Then p(h)v is also in VI as we see by computing for every o € T
(p(R)0)7T = (Co) ™ (p(h)0)” = (Co) ™ p7 (h)v” = (Co) ™M (Cop(h)(Co) ™07 = p(h)ol),
where we used Equation (4.19) as an intermediate step. We deduce that the action of Gg on

V via p induces an action of Hy on VI We will conclude the proof of the proposition after
having studied the structure of VI,

LEMMA 4.8.5. The Ij-submodule VI of V is free of rank four and its [%,-span is V.

ProoF. Choose ¢ € {1,...,4}. We construct a non-zero, I'-invariant element w; € I3, e;.
The submodule I, e; is stable under I" because C, is diagonal. The action of I" on I3, e; induces
an action of I' on the one-dimensional F-vector space I7,e; Qe F. Recall that the self-twists
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induce the identity on F by Proposition 4.4.7(3) and that the matrix C7, is trivial for every
o €1, so I acts trivially on I, e; Qe F.

Now choose any v; € I, e;. Let w; =) cel UZ[U]. Clearly w; is invariant under the action of
I". We show that w; # 0. Let 7;, w; denote respectively the images of v; and w; via the natural
projection Ijye; — I, e; @3 F. Then w; = ppp— EEU} = > ger Ui = card(I") - 7; because I' acts
trivially on I5,e; @1 F. By Lemma 4.3.6 the only possible prime factors of card(T') are 2 and
3. Since we supposed that p > 5 we have card(T") # 0 in F. We deduce that w; = card(I")7; # 0
in F, so w; # 0.

Note that {w;};—1,. 4 is an I5,-basis of V since w; # 0 for every i. In particular the I§-span
of the set {w;}i—1, 4 is a free, rank four If-submodule of V. Since VI has a structure of
I8-module and w; € VI for every i, there is an inclusion Z?:l ISw; € VITL. We show that
this is an equality. Let v € VI, Write v = E?:l Aiw; for some \; € I3,. Then for every
o € T we have v = vl = Z?Zl )\;-’wz[o] = Z?‘Zl A wj. Since {w;}i=1,. 4 is an I3 -basis of V, we
must have \; = A{ for every i. This holds for every o, we obtain \; € Ij for every i. Hence
v =i Awi € Y, Tgwi.

The second assertion of the lemma follows immediately from the fact that the set {w;}i—1. 4
is contained in VI and is an [7,-basis of V. O

Now let h € Hy. Let {w;}i=1,. 4 be an I§-basis of VI satisfying w; € I5,€i, such as that
provided by the lemma. Since 7, - vl = V, {wi}i=1,.4 is also an [7,-basis of V. Moreover
{w;}i=1,....4 is a symplectic basis of V, since w; € I5,e; for every i and {e;} is a symplectic basis.
We show that the basis {w;}i=1,. 4 has the two properties we want.

(1) By previous remarks VIl is stable under p, so p(h)w; = Z?Zl a;jw; for some a;; € I§.
This implies that the matrix coefficients of p(h) in the basis {w;};=1, .4 belong to I§. Since
{wi}i=1,.. 4 is a symplectic basis, we have p(h) € GSp,(I5).

(2) By our choice of {e;}i=1,. 4, the Zyregular element d is diagonal in this basis. Since
w; € I3, e;, d is still diagonal in the basis {w;}i=1, . 4.

O

From now on we always work with a Z,-regular conjugate of p satisfying p(Hy) C GSp4(I§).

4.8.1. The [j-congruence ideal. Starting from Corollary 4.2.6 we can descend further
and prove that ¢y is generated by elements invariant under the action of the group of self-twists.

PROPOSITION 4.8.6. Let ¢y o = cov N15. Then comr = coo - [,

PROOF. Let o be a self-twist and let 7,: Gg — (I3,)* be the associated finite order charac-

ja

ter. Let ¢Jr, = o(c%,). Since o is an automorphism of I3, , it induces an isomorphism I3, /cp v =
I3,/¢§ - In particular we can consider the two representations p, 1,,1: Gg — GSpy(I;/¢f 1)
and pg, | =00 peyq,,1: Gg = GSpy(Ig/¢f 1) By Corollary 4.2.6 applied to the ideal T = ¢y, v
there exists a representation pe, ., 1: Gg — GL2(I°/co1y) such that pe, v = Sym®pe, 1,1 We
apply o to both sides of this equivalence and we obtain
Ia) 3
ng,Tr = Sym ng,Tryl'
By definition of self-twist we have p? = 7, ® p. By reducing modulo ¢§ .. we obtain, with the
obvious notations,
(pg)cg,Tr = na,cgyTr & pcg,“-

Now (pg)‘é’,n = (peg.1y )7 80 by combining the two displayed equations we deduce

o 3 0
(p )cg,Tr = na’cg,ﬁ ® Sym pcG,Tryl'
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: . : : . o
Since Noc§ o, 188 finite order character, there exists an extension I; of I5,./ 6. Tx of degree at most

. . 3 _
3 and a character 10,65 1 satisfying (ngvchTrvl) = Nocg 1, Then

(pg)cg,’I‘r = Syrrlg(,r]a"cg,Tr’1 ® pg‘G,Thl)’

so the implication (ii) = (i) of Corollary 4.2.6 gives ¢ 1, D ¢gv. This holds for every o € T,
hence (), cr ¢§ v O ¢o,7r- This is an equality because the inclusion in the other direction is trivial.
We conclude that ¢y 1y is I'-stable, so the ideal cg 1 NI§ of I§ satisfies (¢ NIG) - 19, = o O

DEFINITION 4.8.7. We call ¢gq the fortuitous (Sym?,I3)-congruence ideal for the family
0: T, —1I°.

For an ideal J of I§ we denote by p3: Hy — GSpy(I§/J) the reduction of p|p, modulo J.
The ideal ¢y admits a characterization similar to that of ¢y and cg 1v.

PROPOSITION 4.8.8. Let Py be a prime ideal of I. The following are equivalent.
(Z) P() D 0,05
(ii) there exists a finite extension I of 1,/ Polg, and a representation pRog, 10 Go — GLy(T')
such that PRI, = Sym?®pr over I;
(iii) for one prime P of I3, lying above Py there exists a finite extension I' of I3, /P and a
representation ppy: Gg — GLao(I') such that pp = Symgpgl over I';
(iv) there exists a representation pp,1: Ho — GL2(I§/3) such that pp, = Sym3pp071 over 13/7.

Proor. We prove the chain of implications (i) = (ii) = (ili) = (iv). If Py D ¢
then Py -I5, D ¢co0 - IS, = co1v. Now (ii) follows from Corollary 4.2.6.

If (ii) holds for some I" and Ppos, 1 and if P is a prime of I3, lying above P then P O Pplly,,
so it makes sense to reduce PPyI2, 1 modulo PI'. The resulting representation pp1: Gg —
GLy(I5,/P) satisfies (iii).

If (iii) is satisfied by some pp, 1 then pp 1 = pp1|H, satisfies (iv).

We complete the proof by showing that (iv) = (ii) and (iii) == (i). If (iv) holds then
the image of pp, is contained in Sym3GLy(I3/J). Since pp, = PRoIg, |H, Lemma 3.11.5 implies
that, after extending the coefficients to a finite extension Ij, of I3, /FPylf, the image of PPyIS, 18
contained in Sym®GLy(T}). This proves (ii).

Suppose that (iii) holds. By Corollary 4.2.6 P D ¢g 1. Hence Py = P NI§ D ¢y, which is
condition (i). O

The following is a corollary of Proposition 4.2.4.
COROLLARY 4.8.9. The ideal cg is non-zero.

PRroOOF. If ¢g9 = 0, then ¢y = ¢y - I° = 0. This contradicts Proposition 4.2.4. O

4.9. Lifting unipotent elements

We give a definition and a lemma that will be important in the following. Let B < A an
integral extension of Noetherian integral domains.

DEFINITION 4.9.1. An A-lattice in B is an A-submodule of B generated by the elements of
a basis of Q(B) over Q(A).

The following is essentially [Lang16, Lemma 4.10]. The proof is the same as that given in
loc. cit..

LEMMA 4.9.2. Every A-lattice in B contains a non-zero ideal of B. Conversely, every
non-zero ideal of B contains an A-lattice in B.
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Let 6: Tj, — I° be a finite slope family of GSp,-eigenforms and let p: Gg — GSp,(I%,) be
the representation associated with 6. For every root «, we identify the unipotent group U*(I§)
with I§ and Im p N U*(I§) with a Z,-submodule of I§. The goal of this section is to show that,
for every a, Imp N U® contains a basis of a Ap-lattice in I§. Our strategy is similar to that
of Section 2.3.4, which in turn is inspired by [HT15] and [Langl6]. We proceed in two main
steps, by showing that:

(1) there exists a non-critical arithmetic prime Py C Aj such that Im ppge N UY(I5/PElg)
contains a basis of a Ay /Py-lattice in If / P,Ig; -
(2) the natural morphism Im p N U*(I§) — Im pp e N U(I5/ Pel) is surjective, so we can lift

a basis as in point (1) to a basis of a Ay-lattice in Ig.

Part (1) is proved by adapting the work of [Langl6, Sections 3 and 5] to our situation and
combining it with Theorem 3.11.3. Part (2) will result from an application of Proposition 4.7.1.

4.9.1. Big image at a non-critical arithmetic prime. We choose an arithmetic prime
Py, C Ay, satisfying the following conditions:
(1) Py is non-critical in the sense of Definition 4.1.13;
(2) for every prime B C I° lying above Py, the classical eigenform corresponding to B satisfies
the assumptions of Theorem 3.11.3 (i.e. it is not the symmetric cube lift of a GLo-eigenform).

Note that the form corresponding to the prime 9 in (2) is necessarily classical because Py
is non-critical. We have to show that a prime with the desired properties exists.

LEMMA 4.9.3. There exists an arithmetic prime P, C Ay, satisfying conditions (1) and (2)
above.

PROOF. Let X" be the set of non-critical arithmetic primes of Aj. By Proposition 4.1.15
37T is Zariski-dense in Ap. Consider the set S Sym?® of prime ideals 3 of I° satisfying the following
conditions:

(1) P A, € B0,
(2) the classical eigenform associated with B is the symmetric cube lift of a GLg-eigenform.

The inclusion Ay < I° is finite and defines a map w: GSym?® _, yner (the usual weight map). It
is sufficient to show that w is not surjective. By contradiction suppose that it is. Then Lemma
1.2.11 implies that the Zariski-closure of SSYm* contains an irreducible component of I°. Since
I° is irreducible, this means that S8ym® s Zariski-dense in I°. By definition the congruence
ideal ¢y is contained in the intersection of the primes in the set Ssym3, so it must be 0. This
contradicts Proposition 4.2.4. O

Let mg denote the maximal ideal of Ij. We define a subgroup H of Hy by
H={g€ Hy|lp(g) =1 (mod myp)}.

This is a normal open subgroup of Hy, hence of Gg. Thanks to Proposition 4.8.2 we can suppose
that p(Hp) C GSpy(I§). We define a representation pg: H — Sp,(I§) by setting

po = plu @ det(plm) /2.

Here the square root is defined via the usual power series, that converges on p(H).

Even though our results are all stated for the representation p, in an intermediate step we
will need to work with pg and its reduction modulo a prime ideal of Ijj. In order to transfer our
results to pg we need to relate the images of the two representations to each other.
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4.9.2. Subnormal subgroups of symplectic groups. Let R be a local ring in which 2
is a unit. In the proof of [Langl16, Proposition 5.3|, the author compares the images of p and
po via the classification of the subnormal subgroups of GLa(R) by Tazhetdinov [Taz83]. Our
technique relies on the analogous classification of the subnormal subgroups of Sp,(R), which is
also due to Tazhetdinov [Taz85]. We recall the main result of his paper. If N and K are two
groups, we write N < K if N is a normal subgroup of K. Let m be a positive integer. We write
N <™ K if there exist subgroups K; of K, for i =0,1,2,...,m, that fit into a chain

N=Ky<Ki<Ky«... <K, =K.

We say that a subgroup N of K is subnormal if N <™ K for some m.

For an ideal J of R, let 'r(J) be the principal congruence subgroup of Sp,(R) of level J.
For M € Spy(R), let J(M) be the smallest ideal of R such that M € {£1}-T'r(J). If N is a
subgroup of Spy(R) let J(N) = > 1;cn J(M), so that N C {£1} - T'g(J(N)). For a positive
integer m, let f(m) = {5(11™ —1).

THEOREM 4.9.4. [Taz85, Theorem| If N is a subgroup of Spy(R) such that N <™ Sp,(R),
then
PR(I(N)) € N € {21} - Tr(J(N)).

We will need the following corollary.

COROLLARY 4.9.5. If N is a subnormal subgroup of Sp,(R) and it is not contained in {£1},
then it contains a non-trivial congruence subgroup of Spy(R).

ProOOF. If N is not contained in {£1}, the ideal J(N) is non-zero. The conclusion follows
from Theorem 4.9.4. O

Let P be the arithmetic prime we chose in the beginning of the section. By the étaleness
condition in Definition 4.1.13, P,I° is an intersection of distinct primes of 1°, so Pl is an
intersection of distinct primes of I§. Let Q1,Qo,...,Q4 be the prime divisors of PI.

Let J be either PiI§ or Q; for some i € {1,2,...,d}. Let py: Hy — GSp,(I5/J) and
pos: H — Spy(I§/3T) be the reductions modulo J of p and pg, respectively. Let G = p3(H) and
Go = pos(H). Let f: GSpy(I3) — Spy(I5) be the homomorphism sending g to det(g)~'/2g. We
have G = f(Gp) by definition of py. We show an analogue of Lemma 2.3.20.

LEMMA 4.9.6. The group G contains a non-trivial congruence subgroup of Spy(I5/3) if and
only if the group Gy contains a non-trivial congruence subgroup of Sp,(I5/7).

PrOOF. Clearly the group G N Sp,(I§/J) is a normal subgroup of G. Then the group f(GN
Sp4(I§/73)) is a normal subgroup of f(G). Now f(G) = Go and f(GNSp,(I§/3)) = GNSpy,(I5/T)
since the restriction of f to Sp,(I§/J) is the identity. Hence G N Spy(I§/J) is a subnormal
subgroup of Sp,(I§/J) if and only if Gy is a subnormal subgroup of Sp,(I§/J). By Corollary
4.9.5 a subnormal subgroup of Sp, (I /J) contains a non-trivial congruence subgroup of Sp, (I /J)
if and only if it is not contained in {£1}. Neither G N Sp,(I§/J) nor Gy is contained in {£1},
since the image of py, contains a non-trivial congruence subgroup of Sp4(I§/%;) by Theorem
3.11.3. Hence Corollary 4.9.5 gives the desired equivalence. (]

The following is a consequence of Proposition 4.6.9 and Lemma 4.9.6, together with our
choice of P.

LEMMA 4.9.7. Let Q be a prime of I lying over P,. Then the image of poga contains a
non-trivial congruence subgroup of Spy(I§/Q).

PROOF. Let ‘B be a prime of I3, lying above Q. Let pyp be the reduction of p: Gg —
GSp,(I5,) modulo B. The representation pg is the restriction of pyp to Hy. By Proposition
4.6.9 the group pyp(Gg) contains a non-trivial congruence subgroup of Spy(I§/Q). Since H is
a finite index subgroup of Gg, the group pg(H) is a finite index subgroup of pp(Gg), so it
also contains a non-trivial congruence subgroup of Sp,(I5/9Q). Now the conclusion follows from
Lemma 4.9.6 applied to J = Q. O
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4.9.3. Big image in a product. Lifting the congruence subgroup of Proposition 4.9.7 to
I° does not provide the information we need on the image of pg. We need the following fullness
result for pp, .

PROPOSITION 4.9.8. The image of the representation pp, contains a non-trivial congruence
subgroup of Sp4(I§/Plg).

The strategy of the proof is similar to that of [Langl6, Proposition 5.1]. There is an
injective morphism I3/ P,I5 < [[%, 13/9Qi. Let G be the image of Tm pg p, in [[4, 13/9Q; via
the previous injection. Proposition 4.9.8 will follow from Lemma 4.9.6, once we prove that G
is an open subgroup of Hle I§5/9Q;. This is a consequence of a lemma of Ribet (Lemma 4.9.18)
and the following.

LEMMA 4.9.9. Let 1 <i < j < d. Then the image of G in I§/Q; x I5/Q; is open.

We will show that if the conclusion of the lemma is not true, then there is a self-twist o of
p such that o(9Q;) = Qj, which is a contradiction since If is fixed by all self-twists. The first
part of the proof follows the strategy of [Lang16, Proposition 5.3], which is inspired by [Ri75,
Theorem 3.5].

We will need Goursat’s Lemma, that we recall here. Let K1 and K be two groups and let
G be a subgroup of K1 x I such that the two projections m1: G — Ky and mo: G — Ko are
surjective. Let N7 = ker my and No = ker m;. We identify N7 and N with 7 (N7) with ma(N3),
hence with subgroups of G and G, respectively. Clearly N1 x N5 D G. The natural projections
induce a map G — K1 /Ny x Ko/ Na.

LEMMA 4.9.10. (Goursat’s Lemma, [Go1889, Sections 11 and 12], [La02, Exercise 5, p.
75]) The image of G in K1 /N1 x Ko/N3 is the graph of an isomorphism K1 /N1 = Ko/ No.

Another ingredient is the isomorphism theory of open subgroups of GSp, over local rings,
due to O’Meara [OMT8]. This replaces the analogous theory for SLo, that is due to Merzljakov
[Me73] and appears in the proof of [Lang16, Proposition 5.3].

PROOF. (of Lemma 4.9.9) By Lemma 4.9.7 there exist two non-zero ideals [; and [y of
I5/9Q; and 1§/9Q;, respectively, such that I're /o, (I1) C Im po o, and I'e /g, (l2) C Im pg a;. Recall
that the domain of the representation pg is the open normal subgroup H of Gg defined in the
beginning of this subsection. Consider the group

Hy={he€ H[h (mod ;) € I'ig/,(11) and h (mod Q) € I'te /9, (I2)}.

Since the subgroups I'rs /g, (I1) and I'g /q,(l2) are normal and of finite index in Spy(I5/Q;) and
Sp4(I5/9;), respectively, the subgroup H; is normal and of finite index in H. It is clearly closed,
hence it is also open.

Let 1 <i < j <d. The couple (4, j) will be fixed throughout the proof. Let K1 = pg q,(H1),
K2 = pogn,;(H1) and let Gy be the image of po(H1) in K1 x Ko. Note that K1, K2 and Gy are
profinite and closed since they are continuous images of a Galois group. By definition of [y,
o and H; we have K; = FHS/Qial) and Ko = FHS/QJ.([Q). In particular K and Ko are normal
and finite index subgroups of Sp,(I§/9Q;) and Sp4(I5/Q;), respectively. Define N and N as
in the discussion preceding Lemma 4.9.10. They are normal closed subgroups of K1 and Ko,
respectively, since they are defined as kernels of continuous maps. In particular N and N5 are
subnormal subgroups of Sp,(I§/9Q;) and Sp,(I5/9;), respectively.

Suppose that A7 is open in K; and N5 is open in Ks. Then the product A7 x N is
open in K; x K. Since Gy contains N7 x N, it is also open in K; x Ko. The subgroup
K1 x Ko = Tpg/q,(i) x I'igjq;(l2) is an open subgroup of I5/Q; x I5/Q;, so Go is open in
I5/9Q; x I§/9Q;. Then the conclusion of Lemma 4.9.9 is true in this case.

Now suppose that one among N7 and N> is not open. Without loss of generality, let it be
Ni. Since Nj is closed in the profinite group Kp, it is not of finite index in ;. By Lemma
4.9.10 there is an isomorphism K1/N7 = Ko/Na, hence Ns is not of finite index in K. In
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particular A; and N> are not of finite index in Sp,(I§/9Q;) and Sp,(I§/Q;), respectively. Since
N is subnormal and not of finite index in Sp,(I3/Q;), it is contained in {+1} by Corollary
4.9.5. The same reasoning gives that N5 is contained in {£1}. By definition of H the image
of pg lies in I'rg (mﬂg); this implies that the centres of X1 and Ky are trivial since p > 2. We
conclude that A7 = {1} and Ny = {1}.

By the result of the previous paragraph we have K;/AN7 = K; and Ko/Ny = Ky, Hence
Lemma 4.9.10 gives an isomorphism a: K; = Ky such that, for every (z,y) € K1 xKa, (z,y) € Gy
if and only if y = a(z). By Corollary 4.6.5, applied to F' = Q(I5/Q;), 1 = Q(I5/9,),
A = Ky, Ay = Ky, there exists an isomorphism a: Q(I5/9Q;) — Q(I5/Q;), a character x: K1 —
Q(I5/9Q;)* and an element v € GSp4(Q(I5/Q;)) such that for every z € Ky we have

(4.20) a(z) = x(z)yalz)y ™,
where as usual we define a: Spy(Q(I5/9Q;)) — Spy(Q(I5/9Q;)) by applying « to the matrix

coefficients. Since the centre of g is trivial, the character x is also trivial. By recalling the
definitions of K1, K2 and Gy we can rewrite Equation (4.20) as

po.a,;(h) =75 ' e(po.a, (h)Yg !

for every h € Hy. The last equation gives an isomorphism

(4.21) po.0: |7, = poa; |,
of representations of H; over Q(I5/LQ;). Denote by m; the projection I — I5/Q;. By definition
of po we have polm, = pla, ® (det p|gr,) /2. Define a character ¢: H; — Q(I5/Q;)* by setting
det p(h)
h)=mj| ———
o00) =5 (S Gaet o

for every h € Hi. Then Equation 4.21 implies that
(4.22) p;lF, = ® pa;lm

We will use the isomorphism (4.22), together with Proposition 4.4.1, to construct a self-twist
for p. Let *B; and P; be primes of I3, that lie above Q; and 9, respectively.

LEMMA 4.9.11. The isomorphism o: Q(I5/9Q;) — Q(I5/Q;) and the character ¢: Hi —
Q(I5/9Q;) can be extended to an isomorphism a: Q(I3,./B:) — Q(I3,./B;)* and a character
¢: Gg = Q(I5, /%)™, respectively, such that

(4.23) P%i = 0@ py;.

We prove Lemma 4.9.11 by using obstruction theory, following the strategy presented in
[Lang16, Section 5]. The proofs in loc. cit. only need a few changes. Let n be a positive
integer. Let N be a normal subgroup of Gg. Let K be a finite extension of @, and let
r: N = GL,(K) be a continuous, absolutely irreducible representation. For every g € Gg let
r9: N — GL,(K) be the representation defined by r9 = r(ghg~!) for every h € N. Assume
that the following condition holds:

(obstr) for every g € G there is an isomorphism 79 = r over K.

PROPOSITION 4.9.12. There exists a map c: Gg — GLy(K) with the following properties:
(1) e(1) = 1;

(2) c(hg) = c(h)c(g) for every h € N, g € Go;
(3) r=c(g)~tr9c(g) for every g € Gg.

Let A = Gg/N. The map b: (Gg)? — GL,,(K) defined by b(g1, 92) = c(g1)c(g2)c(g1g2) ™! is
trivial on N2, hence we can and do consider it as a map b: A2 — GL,(K). Since r is absolutely
irreducible, b is a 2-cocycle with values in K*. We denote by Ob (r) the class of b in the
cohomology group H?(A, K*). We denote by 1 the class of the trivial cocycle in H?(A, K*).

An extension of r to Gg is a representation r: Gg — GLy,(K) satisfying 7|y = r.
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PROPOSITION 4.9.13.

(1) There ezists an extension v of r to Gq if and only if Ob (r) = 1.
(2) If 7 is an extension of r to Gg then every other extension 7’ of r to Gg satisfies

TETRY
for a character 1: Go — K™ that is trivial on N.

Let By = Q(I5/Qi), Ex = Q(I5/9;), K1 = Q(I5,/%Bi), K2 = Q(I%,./B;). They are all
p-adic fields and there are natural inclusions £y C K7 and Fo C K5. Recall that there is an
isomorphism «: E; — E5 and a character ¢: H; — 152X that fit in Equation (4.22). Let L; and
Lo be arbitrary finite extensions of K and K respectively. Consider p1|p, as a representation
Hy, — GL4(Lq), then po|g, and pl\%l as representations H; — GLy4(Ls2) and ¢ as a character
H; — L. We check that each of these representations satisfies condition (obstr) with N = H;
and K equal to the corresponding coefficient field.

LeEMMA 4.9.14. (cf. [Langl6, Lemma 5.5]) The representations p1|m,, p2|lm, p1lg, and ¢
satisfy condition (obstr). Moreover Ob (p1|m,) and Ob (p1|m,) are trivial, and Ob (¢ ® pa|m,) =
Ob (¢)Ob (p2|m,)-

PRroor. For every g € G there is an isomorphism p] = py over L. By restriction we obtain
an isomorphism p{|g, = p1|m, over Ly, so p; satisfies (obstr). The same reasoning shows that
p2 satisfies (obstr). Moreover the classes Ob (p1|m,) and Ob (p1|m,) are trivial by Proposition
4.9.13, since pi|g, and p2|m, both admit extensions to Gg.

Let 7: K1 — @p be an extension of . Then the representation p is an extension to G of
p1l%,- In particular (p])9 = p] over Q,, for every g € G, so

~

pilin, = (01) [ = (01| = i,

over @p. The previous isomorphism also holds over Ks.
Since p1|%, and pe|u, satisfy (obstr), for every g € Gg we have

0 ® palmy, = 1l = (o1l,)? = 07 @ (p2lny)? = 09 @ pa|o,,

s0 polH, & 0 ' ®pI®pa|y, . Recall that the representation ps is the p-adic Galois representation
associated with a classical GSp,-eigenform. Hence by Theorem 3.11.3 the image of p2 is open
in GSpy(K2). This implies that pa cannot be isomorphic to a twist of itself by a non-trivial
character, so the previous equality gives @9 = . We conclude that ¢ satisfies (obstr).

Let ¢z and ¢, be maps Gg — L3 satisfying the conditions of Proposition 4.9.12 for r = pa|n,
and r = ¢ respectively. Then an easy check shows that c, - co satisfies the conditions of
Proposition 4.9.12 for r = ¢ ® pa2|n,, so that Ob (¢ ® p2|H1) = Ob (¢)Ob (p2|H, )- O

We show that for a certain choice of L; and Lo there exists an isomorphism «&: L1 — Lo
extending «: Fy — Fs and a character ¢': Gg — L extending p: Gg — L. Let 7: K1 — @p
be an arbitrary extension of o to Ki. Let Ly = Ko - 7(K7). Let 7/: Ly — @p be an extension
of 771: 7(K1) — Ky and let L1 = 7/(Lg). Set & = (7/)~': L1 — La. Then & is an extension of
. In particular p§: Gg — L is an extension of 1|3, 0 Ob (p1]%,) = 1. Thanks to Lemma
4.9.14 we have

1= Ob (p1l3r,) = Ob (¢)Ob (p2|m,) = Ob (¢),
so ¢ can be extended to a character ¢': Gg — L.
Thanks to the following proposition we can modify ¢’ in order to satisfy Equation (4.23).

LEMMA 4.9.15. (cf. [Langl6, Lemma 5.6]) There exists an extension ¢: Gg — L3 of
w: Hi — L3 such that there is an isomorphism

(4.24) P

I

)
over L.
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PROOF. Since ¢’ is an extension of ¢, the representation ¢’ ® py is an extension of p1|x,.
Since p¢ is also an extension of pi|g,, Proposition 4.9.13 implies that there is a character
V: Gg — L, trivial on Hy, such that pf = ¢ ® @’ ® pa. Then the character $ defined as ¢@’
satisfies Equation (4.24). O

In order to prove Lemma 4.9.11 it is sufficient to show that « restricts to an isomorphism
I3,/ — I3, /%B; and that ¢ takes values in I3, /9B;. We write (I3, /9;)[#] for the subring of L
generated over I, /B; by the values of @.

REMARK 4.9.16. Since § ® py takes values in GLa((I3,/%B;)[@]), the representation p§ also
takes values in GL4((I3,/%B;)[®]). In particular a(Tr(pi(h))) € (I3,/B;)[@] for every h € H;.
Since the traces of the representation py generate the ring Iy /B; over Z,, we conclude that o

restricts to an isomorphism (I3, /B:)[¢] = (I5,./B;)[¢]-

LEMMA 4.9.17. (cf. [Langl6, Lemma 5.7]) There are equalities (I, /%:)[¢] = 15, /B and
(I /B) 2] = 11,/

PROOF. As before let x be the p-adic cyclotomic character. Recall that J3; and 3, lie over
the prime Py of A, with & = (ki,k2). By taking determinants in Equation (4.24) and using
Remark 4.1.20 we obtain
4 _ det(pf) _ a(PMithed)

det(pz) X2(k‘1+k2*3)

Since the quantity on the right defines an element of I3, /%B;, the degree [(I5,/%B;)[@]: I3,/%B;] is
at most 4. In particular the extension (I3, /9;)[¢] is obtained from I%, /9B; by adding a 2-power
root of unit, hence it is an unramified extension. The same is true for the extension (I%,/%B:)[¥]
over I3, /PB; thanks to the isomorphism c.

Note that the residue fields of (I, /%:)[¢] and (I%,/%;)[@] are identified by & and those of
I5,/%; and I3, /9B, coincide by the non-criticality of P, (see the étaleness condition in Definition
4.1.13). Let E and F be the residue fields of (I3, /%;)[¢] and I3, /9B; respectively. To conclude
the proof it is sufficient to show that E = F. The isomorphism & induces an automorphism &
of the residue field E and the character ¢ induces a character @: Gg — E*. Then E is the field
F[®] generated over F by the values of 3. Let s be an integer such that @ is the s-th power of the
Frobenius automorphisms. By reducing Equation 4.25 modulo the maximal ideal of (I%, /%;)[#]
we obtain

(4.25)

4 a(XQ(kH-kz—S)) B X2(p371)(k1+k‘273)

2Utha—3)
Since p is odd, 2(p® — 1) is a multiple of 4. In particular F[g*] C F[x*], that implies F[g] C F.
We conclude that E = F, as desired. O

Thanks to Remark 4.9.16 and Lemma 4.9.17, a: L1 — Lo restricts to an isomorphism
a: I3, /P — I3, /PB; and ¢ takes values in I3, /B;. Hence a and ¢ satisfy the hypotheses of
Lemma 4.9.11.

We conclude the proof of Lemma 4.9.9. Set 0 = a: I3, /B; — I3,./B; and n = ¢: Gg —
I%./%B;. Thanks to Lemma 4.9.11, o and 7 satisfy the hypotheses of Proposition 4.4.1. Hence
there exists a self-twist o: I3, — I3, for p over Aj that induces o. In particular o(;) = PB;.
Since B; and P; lie over different primes of I, the self-twist o does not fix I, a contradiction.
Recall that the assumption of this argument is that A7 is not open in Ky or N> is not open in
KCo. When this is not the case we already observed that the conclusion of Lemma 4.9.9 holds,
so the proof of the lemma, is complete. O

We recall a lemma of Ribet. Let k be an integer greater than 2 and let G1,Go, ..., G be
profinite groups. Suppose that for every i € {1,2,...,k} the following condition holds:

(comm)
if I is an open subgroup of G; the closure of the commutator subgroup of K is open in G;.
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Let Gp be a closed subgroup of G; X Go X - -+ X G.

LEMMA 4.9.18. [Ri75, Lemma 3.4] Suppose that for every i,j with 1 <i < j < k the image
of Go in G; X Gj is an open subgroup of G; xG;. Then Go is an open subgroup of G1 X Ga X - - - X Gy,.

We are ready to complete the proof of Proposition 4.9.7.

PROOF. For 1 < i < k let G; be the image of posp,: H — Spy(I§/Q;). As before let Gy
be the image of Im pg p, via the inclusion Spy(I5/Pelg) — [1; Sp4(I5/LQ:l5). The groups G; are
profinite and they satisfy condition (comm). The group Gy is closed since it is the continuous
image of H. By Lemma 4.9.9 it is open in G; x G; for every 4,j with 1 <4 < j < d. Hence
Lemma 4.9.18 implies that Gy is open in [[, G; =[], G-

By Proposition 4.9.7 the group G; is open in Sp,(I§/Plj) for every i, hence ], G; is open
in [, Spy(I5/Q:l5). We deduce that Gy is open in [[, Spy(I5/Pkl), so Impg p, is open in
Sp4(I§/Pl§). In particular Im pg p, contains a non-trivial congruence subgroup of Sp,(I§/ P15).
Now Lemma 4.9.6 applied to J = P implies that Im pp, contains a non-trivial congruence
subgroup of Sp, (I§/Pelj). - O

4.9.4. Unipotent subgroups and fullness. Recall that for a root « of GSp, we denote
by U the corresponding one-parameter unipotent subgroup of GSpy,.

We relate the fullness of the image of a representation to the fullness of its unipotent
subgroups. This way we can gather useful informations by lifting unipotent elements in the
image of a residual representation to unipotent elements in the image of the “big” representation.
This is the same strategy that was used in [Hil15], [Lang16] and Chapter 2 for GLg, and in
[HT15] for GSp,. It is based on the simple result below. We call “congruence subalgebra” of
spy(R) a Lie algebra of the form a - sp,(R) for some ideal a of R.

LEMMA 4.9.19. Let R be an integral domain and let & be a Lie subalgebra of sp,(R). The
following are equivalent:

(1) the Lie algebra & contains a congruence Lie subalgebra a - sp,(R) of level a non-zero ideal
a of R;
(2) for every root o of Spy, the nilpotent Lie algebra & Nu®*(R) contains a non-zero ideal a, of
R via the identification u®(R) = R.
Moreover:
(i) if condition (1) is satisfied for an ideal a then condition (2) is satisfied if we choose a, = a
for every a;
(ii) if condition (2) is satisfied for a set of ideals {ay}a then condition (1) is satisfied for the
ideal a =[], a®, where the product is over all roots a of Spy.

PROOF. It is clear that if a- gsp,(R) C & for a non-zero ideal a of R then a C & Nu®(R) for
every root . For the converse, suppose that a® C & Nu®*(R) for every a and a set of non-zero
ideals {aq}a- Let {a1,a2,..., a4} be a set of simple roots for Spy,. For i =1,2,...,g let uq,
be generators of the unipotent subalgebras uy,,(R) as R-modules and let ¢,, = [uq,, U—q,]. The
elements {tq, }i=12,.. 4 generate the toral subalgebra t of sp,(R). Since a1q, C & Nuiq, (R) for
every i, we can write a chain of inclusions

S O{[X+, X_]| Xy €BNuy,(R),X_€&Nu_,,(R)} D
{[X+aX*] |X+ S 'uai(R)vX* € o 'u*ai(R)} = Oa;0—q; " ta;-

K3

Set a =[], a®, where the product is over all roots of Sp,. Since R is an integral domain a is
a non-zero ideal. The hypotheses of the lemma and the displayed inclusions give & D a - ¢,
for every i and & D a-u, for every . Since the set (J;_;, (a-ta,) UU,(a-us) generates
a-spy(R) as an additive group, we conclude that & D a - sp,(R). O
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Lemma 4.9.19 admits an analogue dealing with unipotent and congruence subgroups rather
than Lie algebras.

LEMMA 4.9.20. Let R be an integral domain and let G be a subgroup of GSpy(R). The
following are equivalent:
(1) the group G contains a principal congruence subgroup T'r(a) of level a non-zero ideal a of
R;
(2) for every root a of Spy, the unipotent group G NU*(R) contains a non-zero ideal a, of R
via the identification U%(R) = R.
Moreover:
(i) if condition (1) is satisfied for an ideal a then condition (2) is satisfied if we choose a, = a
for every a;
(ii) if condition (2) is satisfied for a set of ideals {ay}o then condition (1) is satisfied for the
ideal a =[], an, where the product is taken over all roots of Spy.

ProoOF. This follows from an argument analogous to that of Lemma 4.9.19, by replacing
the Lie bracket with the commutator. (]

REMARK 4.9.21. In both Lemma 4.9.19 and Lemma 4.9.20, if there is an ideal a’ of R such
that the choice a, = @' for every a satisfies condition (2), then the choice a = (a')? satisfies
condition (1). This follows immediately from the arguments of the proofs.

By applying Proposition 4.9.8 and Lemma 4.9.20 to R = I§/P.lj and G = Im pg p, we
obtain the following corollary.

COROLLARY 4.9.22. For every root a of GSp, the group Im pp, NU*(I/ Pylg) contains the
image of an ideal of 1§/ Pyl§.

4.9.5. Lifting the congruence subgroup. If « is a root of Sp,, we write U* for the
one-parameter unipotent subgroup of Sp, associated with «. If G is a group, R is a ring and
7: G — GSp,(R) is a representation, let U%*(7) = 7(G) N U*(R). We always identify U%*(R)
with R, hence U%(7) with an additive subgroup of R.

Recall that p: Hy — GSp,(I§) is the representation associated with a finite slope family
0: Tp, — I° and that pp, is the reduction of p modulo P,I;. We use Corollary 4.9.22 together
with Proposition 4.7.1 to obtain a result on the unipotent subgroups of the image of p.

PROPOSITION 4.9.23. For every root a of GSpy, the group U(p) contains a basis of a
Ap-lattice in Ij.

PRrROOF. Let my: I§ — I§/ Pl be the natural projection. We denote also by 7, the induced
map GSpy(I§) — GSpy(I5/Pily). For a root a of GSpy, let m: U*(I5) — U(I5/P,lg) be the
projection induced by 7. -

Let G =Impn FGs;4(Hg)(p) and G'p, = mx(G). We check that the choices A =13, g = 2,
G=Impn FGSp4(]I8)(p) and @ = P, satisfy the hypotheses of Proposition 4.7.1:

e the group G is compact since Im p is the continuous image of a Galois group and FGSP4(H8)(p)
is a pro-p group;

e by assumption Imp contains a diagonal Zj,-regular element d, and since FGSp4(H8)(p) is a
normal subgroup of GSp,(A) the element d normalizes Im p N FGSp4(H8)(p).

Hence by Proposition 4.7.1 7f’ induces a surjection G N U*(I§) — G N U*(I5/Pelg). Let

G = GNUIE) and G = G NU*(I5/PI3). As usual we identify them with Z,-submodules

of I§ and I/ P, IS, respectively.

By Corollary 4.9.22 there exists a non-zero ideal aj of I§/P.I§ such that ap C Impp, N
U*(I5/Pel§). Set by, = pag. Then by, C Gf. By the result of the previous paragraph the map
G — GY induced by 7} is surjective, so we can choose a subset A of G* that surjects onto by.
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Let M be the Ap-span of A in I§. Let b be the pre-image of by, via 7j: I§ — I5/P,l5. Clearly
A C b, so M is a Ap-submodule of b. Moreover M /P, M = by, by the definition of A. Since A
is local Nakayama’s lemma implies that the inclusion M < b is an equality. In particular the
Ap-span of G* contains an ideal of Ij. By Lemma 4.9.2 this implies that G* contains a basis of
a Ap-lattice in I§. O

4.10. Relative Sen theory

We recall some of the notations of Section 4.1.2. We write r,, = p~®» for the radius of a
disc adapted to h and 7 for an element of @p of valuation sp. For i > 1, let s; = sp + 1/i
and r; = p~*. We constructed Q,-models Bj, and B;, i > 1 of the open discs B(0,7, ) and
the affinoid discs B(1,p™%), i > 1. We write A, = O°(Bp,) and A7, = O°(B;). We have
Ay = 1'm2, A7, where the transition maps in the projective limit correspond to the restrictions
of analytic functions from larger to smaller discs. If §: Tj, — I° is a family, the rings I3, and
g defined in Sections 4.1.2 and 4.3 are finite Aj-algebras. All the Ay-algebras we listed are
endowed with their profinite topology.

We give some new definitions. For every i there is a natural map ¢,,: A, — A,,. Set

I.o= H8®Ah14%-- We endow 17, ; with its p-adic topology.
REMARK 4.10.1.

(1) The ring 1§ admits two inequivalent topologies: the profinite one and the p-adic one. The
representation p is continuous with respect to the profinite topology on I but it is not
necessarily continuous with respect to the p-adic one.

(2) Since I is a finite Ap-algebra, I7. o ts a finite A7 -algebra. There is an injective ring mor-
phism v, 2 1§ — I7. o sending f to f®1. This map is continuous with respect to the profinite
topology on Ij and the p-adic topology on I ;.

We will still write ;. for the map GSp4(I§) < GSpy(I}, §) induced by ;. .

We associated with € a representation p|m,: Ho — GSp4(I) that is continuous with respect
to the profinite topologies on both its domain and target. By Remark 4.10.1(1) p|p, needs not
be continuous with respect to the p-adic topology on GSp,(If). This poses a problem when
trying to apply Sen theory. For this reason we introduce for every ¢ the representation

pri: Ho — GSpy(I7, o)

defined by pr, = v, ©p|lg,. We deduce from the continuity of ¢ that p,, is continuous with
respect to the profinite topology on Hy and the p-adic one on I} ;. It is clear from the definition
that the image of p,, is independent of ¢ as a topological group.

There is a good notion of Lie algebra for a pro-p group that is topologically of finite type.
For this reason we further restrict Hp so that the image of p,, is a pro-p group. Let H, =
{9 € Ho|pr,(9) = 14 (mod p)} and set H,, = H,, for every ¢ > 1. The subgroup {M €
GSpy(I7, o) [ M = 14 (mod p)} is of finite index in GSpy(I7, ). Note that this depends on the
fact that we extended the coefficients to I, o, since {M € GSp,(I§) | M = 14 (mod p)} is not
of finite index in GSp,(Ip). We deduce that H,, is a normal open subgroup of Gg. Let Kpg,

be the subfield of Q fixed by H,,. It is a finite Galois extension of Q.
Recall that we fixed an embedding Gg, — G, identifying Gg, with a decomposition

subgroup of Gg at p. Let H,,, = H,, N Gg,. Let KHWp be the subfield of @p fixed by H,, .
The field Ky, p will play a role when we apply Sen theory.

For every i, let G,, = p,,(Hy,) and G\°° = p,,(Hy, p).
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REMARK 4.10.2. The topological Lie groups G, and G°¢ are independent of v, in the fol-
lowing sense. For positive integers i,j with ¢ < j let Ljﬁ;',: L, .0 = Ly 0 be the natural morphism
induced by the restriction of analytic functions A,, — Ay,. Since H,;, = H,, = H,, by definition,
Lyt induces isomorphisms

LZ:;I G, = Gy,
and

~

ri . loc loc
by Gt — G

4.10.1. Big Lie algebras. As before let r be a radius among the r;, i € N>, We will
associate with p,(H,,) a Lie algebra that will give the context in which to apply Sen’s results.
Our methods require that we work with Q,-Lie algebras, so we define the rings A, = A7 [p~!]
and I,0 = I2,[p™"].

Let a be a height two ideal of I.o. The quotient I o/a is a finite-dimensional Q,-algebra. Let
Ta: Lo = I 0/a be the natural projection. We still denote by 74 the induced map GSpy (L, o) —
GSpy(I,0/a). Consider the subgroups G, o = mq(G,) and G}ffg = 74(GY°) of GSpy(L.0/a). They
are both pro-p groups and they are topologically of finite type since GSp, (I, o/a) is. Note that
it makes sense to consider the logarithm of an element of G, (or G}f’g) since this group is
contained in {M € GSpy(L.o/a) | M = 14 (mod p)}.

We attach to G and GI° the Q,-vector subspaces &, , and QS}S& of gsp, (I, 0/a) defined by

,a
Gra=Q-logGra and &% = Q- log G

The Q,-Lie algebra structure of gsp, (I o/a) restricts to a Q,-Lie algebra structure on &, o and
®,%. These two Lie algebras are finite-dimensional over Q,, since gsp,(I.0/a) is.

REMARK 4.10.3. The Lie algebras &, 4 and (’5&9& are independent of r, in the following sense.
For positive integers i,j with © < j let L;:;'_: L., 0 = Ly, 0 be the natural morphism. By Remark

4.10.2 L;; induces isomorphisms

by Grja = B
and
Lyt (’.’)}f;fa = 0512?11.

REMARK 4.10.4. The definitions of &, and (’51;’& do not make sense if a is not a height two
ideal. In this case I, o/a is not a finite extension of Q, and G, and G'°¢ need not be topologically
of finite type. We can define subsets &, and &1°¢ of gsp,(I.o/a) as above but they do not have
in general a Lie algebra structure. In particula;“ the choice a = 0 does not give Lie algebras
for G, and G°°. We will construct these Lie algebras via a different approach, which consists
in taking a suitable limit of the finite-dimensional Q,-Lie algebras &, o and @}?g when a varies
over certain height two ideals of I, 0. Another reason for defining our algebras this way is that
some results of Sen theory are available only for finite-dimensional Lie algebras over a p-adic

field (see Remark 4.10.12).

Recall that there is a natural injection Ay < Ay, hence an injection As[p~!] < Ap[p~1].
For every k = (ki, ko) the ideal PyAy[p~!] is either prime in Ay[p~!] or equal to Ay[p~1]. We
define the set of “bad” ideals SR of Ay[p~!] as

SR ={(1+ T —u), 1+ To =), (1 + T — u(1+ 1)), (L + T1) (1 + T2) — )},
Then we define the set of bad prime ideals of Ay[p~!] as
sPad — £ P prime of Ay[p~!]| PN Ax[p~t] € SKadY.

We will take care to define rings where the images of the ideals in SP®d consist of invertible
elements. The reason for this will be clear in Section 4.10.4. Let Sy be the set of ideals a of
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Lo of height two such that a is prime to P for every P ¢ Sbad et S! be the subset of prime
ideals in S3. We define the ring
Br — 1£1 Hr,O/aa
aEeSs2

where the limit of finite-dimensional QQ,-Banach spaces is taken with respect to the natural
transition maps I,o/a; — L, o/az defined for every inclusion of ideals a; C az. We equip I, o/a
with the p-adic topology for every a and B, with the projective limit topology. There is a
natural injection g, : I, o — B, with dense image.

REMARK 4.10.5. There is an isomorphism of rings

(4.26) B, = [ @o)p.

pes),

where (I0) p = Jim, I,.o/P" with respect to the natural transition maps, but (4.26) is not an

isomorphism of topological rings if we equip (I,0)p with the P-adic topology for every P. In
this case the resulting product topology is not the topology on B,., which is the p-adic one.

For later use we define an analogue of the ring B, constructed from A, rather than I, o. We
start by defining the sets

SPI={PNA,|Pe s},

SQ’A = {aﬂAT ‘ ae Sz},

Sya={anA, ae S}
We define a ring

B, = @ A, /a,
acSy A

where the limit of finite-dimensional QQ,-Banach spaces is taken with respect to the natural
transition maps A,/a; — A, /as defined for every inclusion of ideals a; C as. We equip A, /a
with the p-adic topology for every a and B, with the projective limit topology. There is a
natural injection tp,.: A, — B, with dense image.

REMARK 4.10.6. There is an isomorphism of rings

(4.27) B.= [[ (4)p

PESQA

where (1/47) p = Hm A, /P! with respect to the natural transition maps, but (4.27) is not an

—

isomorphism of topological rings if we equip (A,)p with the P-adic topology for every P. In this
case the resulting product topology is not the topology on B,, which is the p-adic one.

REMARK 4.10.7. For every P € SP® we have P - B, = B,, since the limit defining B, is
taken over ideals prime to P. In the same way we have P - B, = B, for every P € Szad.

Recall that I, is a finite A,-algebra. Then I,o/a is a finite A,/(a N A, )-algebra for every
a € S9, so the ring B, has a natural structure of topological B,-algebra. For every a € S5 the
degree of the extension I,o/a over A,/(aN A,) is bounded by that of I,y over A,. We deduce
that B, is a finite B,-algebra. We work with the ring B, for the moment, but B, will play an
important role in Section 4.11.
We proceed to define the Lie algebras of G, and GI°¢ as subalgebras of gsp,(B,.). Let
&, = 1£1 Q5r,a
a€Ss
and
Bl = lim B,
aeSs
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where &, , and B¢ are the Lie algebras we attached to Grq and Glo¢. The Qp-Lie algebra

7,0 r,a
structures on &, , and Qﬁ?g induce Q,-Lie algebra structures on &, and Qﬁlroc. We endow @&,
and ®!°¢ with the p-adic topology induced by that on gsp,(B,.).

When we introduce the Sen operators we will have to extend the scalars of the various
rings and Lie algebras to C,. We denote this operation by adding a lower index C,. Explic-
itly, we set Hr,O,(Cp = Hng@(@pcp, Ar,(cp = A,«@Qp(cp, Bry(cp = B, ®Q, (Cp, Br’(cp = BT@)QPCP,
8G,c, = @T@)QPCP and QSIT?(EP = (’51T°C®QP(CP. We still endow all these rings with their p-
adic topology. Clearly I, 0c, has a structure of finite A, c, -algebra and B, c, has a struc-
ture of finite B, c, -algebra. The injections tp, and ¢p, induce injections with dense image
tB,.C, " Iro,c, = Brc, and tp,. c,: Arc, = By c,. The Lie algebras &,.c, and 051,?&0 are Cp-Lie
subalgebras of gsp,(B,c,).

REMARK 4.10.8. The Qp-Lie algebras &, and Qiioc do not have a priori any B, or B,-module
structure. As a crucial step in our arguments we will use Sen theory to induce a By c,-vector
space (hence a B, c,-Lie algebra) structure on suitable subalgebras of &, c, .

4.10.2. The Sen operator associated with a p-adic Galois representation. Let L
be a p-adic field and let #Z be a Banach L-algebra. Let K be another p-adic field, m be a
positive integer and 7: Gal(K/K) — GL,,(#) be a continuous representation. We recall the
construction of the Sen operator associated with 7, following [Sen93].

We fix embeddings of K and L in @p. The constructions that follow will depend on these
choices. We suppose that the Galois closure L& of L over Qp is contained in K. If this is not
the case we simply restrict 7 to the open subgroup Gal(K /K L%!) ¢ Gal(K/K). We denote by
x: Gal(L/L) — Z) the p-adic cyclotomic character. Let Ly, be a totally ramified Z,-extension
of L. Let v be a topological generator of I' = Gal(Ls/L). For a positive integer n, let I,, C T'
be the subgroup generated by 4*" and L,, = Lf{f ) be the subfield of L fixed by I';,. We have
Loo = UpLy. Let L), = L, K and G!, = Gal(L/L})).

Write #Z™ for the %Z-module over which Gal(K/K) acts via 7. We define an action of
CGal(K/K) on #™®1C, by letting ¢ € Gal(K/K) send z ® y to 7(c)(z) ® o(y). Then by
[Sen93] there exists a matrix M € GL,, (%@ £Cp), an integer n > 0 and a representation
§: Ty, = GL(Z @1, L)) such that for all o € G!, we have

(4.28) M7 (0)o(M) = (o).
DEFINITION 4.10.9. The Sen operator associated with T is the element
5 i 105(50)
o—1log(x(c))
of My (Z#21,C,).

log(d())
log(x(0))
[Sen93, Section 2.4] that ¢ does not depend on the choice of § and M.

Now suppose that #Z = L and that 7 is a Hodge-Tate representation with Hodge-Tate
weights hq, ha, ..., hy. Let ¢ be the Sen operator associated with 7; it is an element of M,,,(Cp).
The following theorem is a consequence of the results of [Sen80]; see in particular the discussion
in the beginning of Section 2.2 and the Corollary to Theorem 6 in loc. cit..

The limit exists as for o close to 1 the map o — is constant. It is proved in

THEOREM 4.10.10. The characteristic polynomial of ¢ is [[\"1 (X — hs).

We restrict now to the case L = # = Qp, so that 7 is a continuous representation
Gal(K/K) — GL,,(Q,). Define a Q,-Lie algebra g C M,,(Q,) by g = Q, - log(1(Gal(K/K))).
We say that g is the Lie algebra of 7(Gal(K/K)). For any Q,-vector space V contained in
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M, (Qp) we consider V®Qpcp as a C,-subspace of M,,(C,). The Sen operator ¢ associated
with 7 has the property given by the following result.

THEOREM 4.10.11. [Sen73, Theorem 1] The Sen operator ¢ is an element of g@QP(Cp.

REMARK 4.10.12. The proof of Theorem 4.10.11 relies on the fact that 7(Gal(K/K)) is a
finite dimensional Lie group. It is doubtful that this proof can be generalized to the relative case.

4.10.3. The relative Sen operator associated with p,. Fix a radius r in the set
{ri}ien>0. Consider as usual the representation p,: Hy — GSpy(L.o). We defined earlier a
p-adic field Kp, . Write Gk, , for its absolute Galois group. We look at the restriction

priGe, +GKy,, = GSpy(lro) as a representation with values in GL4(I;,0). Recall that Bloc

TP L ’ )

is the Lie algebra associated with the image of p,ﬂ|GKH . The goal of this section is to prove
7P

an analogue of Theorem 4.10.11 for this representation, i.e. to attach to pT|GKH , @ “B,-Sen

operator” belonging to 05?(%1,' We start by constructing various Sen operators via Definition

4.10.9.

(1) The Qp-algebra I,.¢ is complete for the p-adic topology. We associate with PT|GKH,,_,I, a Sen
operator ¢, € My(I.oc,).

(2) Let a € Sp. Then I, p/a is a finite-dimensional Q,-algebra. As usual write mq: L, o — L, o/a
for the natural projection. Denote by p,, the representation g o pr|GKHT,p: Gky,, —
GL4(I0/a). We associate with p,q a Sen operator ¢, o € M4((]Ir70/a)<§><@p(3p).

(3) Let a € Sy. Let d be the Q,-dimension of I, o/a. Let k be a positive integer. An I.o/a-
linear endomorphism of (I, /a)" is also Q,-linear, so it defines a Q,-linear endomorphism of
the underlying Q,-vector space ngd. This gives natural maps ag, : My(I.o/a) = Mpq(Qp)
and aép: GLg(L0/a) = GLkq(Qp) (we omit the index k in the symbol of the morphism
since this does not generate confusion). Choose k& = 4 and consider the representation
p?fg = a@p o pra: Go = GL44(Qp). We associate with ,09“53 a Sen operator gf)gﬁ € Myq(C,p).

Note that Theorem 4.10.11 applies only to representations with coefficients in @Q,, hence to
construction (3) above. We will prove that the operators constructed in (1), (2) and (3) are re-
lated, so that it is possible to transfer information from one to the others. We write 7y ¢, = ma®
1:Ioc, — Iroc,/alr0c,. We still write 7o c, for the maps My(I.0c,) = Ma(I.oc,/al 0c,)
and GL4(I0,c,) = GL4(I0,c,/al;0,c,) obtained by applying s c, to the matrix coefficients.
As before we let d be the Qp-dimension of I.g/a. For every positive integer k, we set ac, =
oQ, ® 1: My (HT,O,Cp/aHr,O,(Cp) — Mkd(Cp) and OAEP = Oz(ép ®1: GLk(Hr,O,Cp/aHr,O,Cp) — GLkd(Cp).

REMARK 4.10.13. For every positive integer k, the map ag, commutes with the logarithm
map log: Myq(I,0/a) — GLya(L,.0/a) in the sense that

log o a@p = ag, ° log.
The same is true for the maps ac, and aép :
log © aép = ag, ° log.
Our result is the following.

PROPOSITION 4.10.14. For every a € Sy the following relations hold:
(i) ¢r,a = Ta,C,p ((z)r);'
(ii) ¢ = oc, (6ra)-
PROOF. We deduce this result from the construction of the Sen operator presented in Section
4.10.2. We first specialize it to the representation p,|q Ki Gry,, = GL4(I,.0); in particular
we choose m = 4, K = Ky, , and L = Q,. By the discussion preceding Definition 4.10.9,
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there exists a matrix My € GL4(HT70,(CP), an integer ng > 0 and a representation dp: I'y,, —
GL4(I,,0®q, (Qp)h,) such that for all o € Gal(Q,/(Qp),,,) We have

(4.29) M pr(o)o(My) = bo(0).

Let Moq = mac,(Mo) € Ma(Iy0.c,/aly0.c,) and 8o, = Tac, © ot Tng = GLa((I10/0)&q, (Qp)h, )-
By applying 7, c, to both sides of Equation (4.29) we obtain

(4.30) Mg 4 pra(0)o(Moa) = do.a(0)

,a

for every o € Gal(Q,/(Qp),,,)- Hence the choices M = Mya, n = ng and § = &g satisfy
Equation (4.28) specialized to the representation p,o. Then, by definition, the Sen operator
associated with p, 4 is

that coincides with

L log(5u(0))
71 Tog(x(0))

im log(ﬂa@p > %0()) =7 = Ta,c,(Pr)
o1 log(x(0)) " e
This proves (i).
For (ii), keep notations as in the previous paragraph. Let M(()@g = aép(MO,u) and 5% =

oz(ép © d0,a- By applying oz(ép to both sides of Equation (4.30) we obtain

(4.31) (Mo) "1 p2r (0)o (M) = 652 (o)

r,0,a

for every o € Gal(Q,/(Qp)},,)- Then the choices M = Mgﬁ ,nmn=ngpand § = 53’; satisfy Equation

(4.28) specialized to the representation pg&a, so by definition the Sen operator associated with

Q.
pr,O,a 18

Q
o _ . 1o8()
Or 00 = m ——F"—.
e 551 log(x(o))
Thanks to Remark 4.10.13 the right hand side of the equation above can be rewritten as

lim log(a(ép 0582(0)) = lim ac, © log(do,a(0)) _
o—1 lOg(X(U)) o—1 log(X(o-))

= m w = «

= ag, (o-_ﬂ IOg(X(O-)) ) Cp(¢7’,a).

This concludes the proof. O

Recall that there is a natural inclusion L{BT c," L.oc, < By, It induces an injection
My(I0,c,) = Ms(B,c,) that we still denote by tp, c,. We define the B,-Sen operator attached
to pT|GKHT,p as

QS]BT = L{BT,(CP (¢7")
By definition ¢p, is an element of My(B,.c,). Since B,c, = @ae S L.o/a, it is clear that

bB, = @aesz Ta,c,(¢r). Then Proposition 4.10.14(i) implies that

(4.32) ¢5, = lm dre.
aEeS2

We use Proposition 4.10.14(ii) to show the following.
PROPOSITION 4.10.15. The operator ¢p, belongs to the Lie algebra Qﬁ}fy’ép.
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PRrROOF. For every a € S, let dy be the degree of the extension I, o/a over Q. Let QﬁL?S’Qp

be the Lie subalgebra of Mg, associated with the image of p%, defined by
loc,
e = Q- log(Im prh).
Let 6;05’&’ = Q5IT?§’Q”®QPCP. Since Im pgﬁ = a@p (Im prq), Remark 4.10.13 implies that

1 ’
(4.33) B e = ac, (BF ).
Qp

The representation p, g satisfies the assumptions of Theorem 4.10.11, so the Sen operator
qbQP belongs to o0 By Proposition 4.10.14(ii) gb% = ac,(¢r,a). Then Equation (4.33) and

7,0,a r,a,Cp
the injectivity of ac, give
(4.34) bra € B0,
Since &% =lim__ . &% - . Equations (4.32) and (4.34) imply that ¢, € )% . O

The following corollary follows trivially from the inclusion &!°¢ C &,..

COROLLARY 4.10.16. The operator ¢, belongs to the Lie algebra &, c,.

4.10.4. The exponential of the Sen operator. We use the work of the previous section
to construct an element of GL4(B,) that has some specific eigenvalues and normalizes the Lie
algebra 65@' Such an element will be used in Section 4.11 to induce a B, c,-module structure
on some subalgebra of &, c,, thus replacing the matrix “p(c)” of [HT15] that is not available
in the non-ordinary setting.

Recall that A;.c, is a subring of the ring of C,-analytic functions on the affinoid disc B(0, 7).
Denote by v, the p-adic valuation on A, c, defined by v,(f) = inf,cp(o) vp(f(7)). We still
denote by v, an extension of v, to I.oc,. Consider the two subrings

1
Did = { € boe, 1500 > 15

and
1

> ~ 1
I+ ¢, = {f €lroc, | vp(f —1) > p—l} .
> 1
The exponential series is convergent on I} &; and defines a map

>-1 >-1
exp: Hﬁé’:@p -1+ HT7(§’7(CP.
S 1
The logarithmic series is convergent on 1 +1_ 7 TC; and defines a map

> 1 > 1

. p—1 p—1

log: 1+ Hr,o,cp — Hr,o,cp'

1

For f € Hi@ we have log(exp(f)) = f and exp(log(1+ f)) =1+ f.

1
Let M4(I[r707(cp)>ﬁ be the subring of My(l,o,c,) consisting of matrices having all their
1

. . >o= . 1 . .
eigenvalues in I_J CL' For a matrix M € M4(Hr,0,<cp)>”‘1, the exponential series defines an

element exp(M) € GL4(I.0c,)-

Let ¢, € My(Ioc,) be the Sen operator defined in the previous section. We rescale it to
define an element ¢! = log(u)¢,, where u = 1 + p. Let (T1,T%) be the images in A, of the
coordinate functions on the weight space.

PROPOSITION 4.10.17. The eigenvalues of ¢, are 0, log(u™?(1+13)), log(u™'(1+11)) and
log(u=3(14+T1)(1+ Ty)).
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REMARK 4.10.18. The logarithms in Proposition 4.10.17 are well-defined. The reason is
1

that in Section 4.1.2 we chose a radius vy, satisfying v, < p p=1. Using this inequality we
1

can compute Up((1 +T1) — 1) = infeep,, vp(T1(x)) < p_p%, hence (1+Ty) € 1+ ]Izopf1 and
log(1 + Ty) is defined. Clearly the same is true for log(u='(1+ T1)). An analogous calculation
shows that log(u=2(1 + T3)) and log(u=3(1+ T1)(1+ T»)) are also defined.

PROOF. (of Proposition 4.10.17) Let P; be an arithmetic prime of Ay, with k = (ki1, k2).
Let P be a prime of I° that lies above P, and corresponds to a classical GSpy-eigenform fp
of weight k. Let B = P NI%. As usual pp: Gg — GSpy(If,/%) denotes the reduction of
p: Gg = GSp,(I3,) modulo *B.

Let ¢q be the Sen operator associated with pg,. It is an element of M4((H°Tr/iﬁ)®@p(cp).
By Remark 3.10.6 py,; is a Hodge-Tate representation with Hodge-Tate weights (0,ko — 2,k —
1,ky + k2 — 3). By Theorem 4.10.10 these weights are the eigenvalues of the operator ¢g.

Now let B0 = (P NI - 175 Recall that o 2 I/ — 12 /PL7 is the natural inclusion.
There is an isomorphism of Galois representation p,.yp, , = L%Qm ° py|H,,- Then the eigenvalues
of the Sen operator ¢, , attached to p.sp, , are the images of those of ¢ via L;,O,p.

Let 52 be the set of primes of I° that correspond to classical GSp,-eigenforms. Consider
the set

S6= ={(PNI) Ly | P e 5w},
Since S is Zariski-dense in I°, Sﬁ}gss is Zariski-dense in I7 ;. In particular the eigenvalues of
the Sen operator ¢, are given by the unique interpolation of the eigenvalues of ¢;.g, , when B;. ¢
varies in 5’1‘3}355. If BroN A, = Py - Ay, the eigenvalues of ¢, , are (0,ky —2, k1 — 1, k1 + k2 —3)
by the discussion above. For every arithmetic prime P of Ap, the element

(O,kig -2,k — 1,k1+k2—3)

is the evaluation at Py - A, of the function A, — Cfo defined by
(4.35) (T1,Ty) — (0,log(u"2(1 + T»)),log(u 1 (1 4+ T1)), log(u™3(1 + T1)(1 + T»))).
Hence this function gives the desired interpolation. U

COROLLARY 4.10.19.

1
(1) The operator gb;yo belongs to M4(]Ino’ccp)zpj. In particular the exponential series defines an

element exp(¢;.o) € GLa(I-0.c,)-
(2) The eigenvalues of exp(¢;.q) are 1, w214 Ty), u (1 +T1) and u=3(1 + T1)(1 + Tb).

PRroOF. By Proposition 4.10.17 the eigenvalues of gb;,,o are in the image of the logarithm
map, so (i) holds. By exponentiating them we obtain (ii). O

Let @0 = tB, ¢, (exp(¢y,)). By definition @, is an element of GL4(B;,c,). We show that
it has the two properties we need. We define a matrix Cr, 1, € GSpy(B,.c,) by

w1+ T1)(1 4 Td) 0 0 0

O 0 u (1 +Ty) 0 0
htb = 0 0 u?(14+Ty) 0
0 0 0 1

PROPOSITION 4.10.20. (1) There exists v € GSpy(B,.c,) satisfying
(4.36) ®p, =vCr, 1,7 "
(2) The element @, normalizes the Lie algebra &,.c,.

ProOOF. The matrices @, and Cr, 7, have the same eigenvalues by Corollary 4.10.19(2).
Hence there exists v € GL4(B,.c,) satisfying (4.36) if and only if the difference between any
two of the eigenvalues of ®p, is invertible in B,. We check by a direct calculation that each one
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of these differences belongs to an ideal of the form P - B, with P € S”*d  hence it is invertible
in B, by Remark 4.10.7. Since both ®p, and Cp, 1, are elements of GSp4(IBST7@p), we can take
v e Gsp4(Br,(Cp)'

Part (2) of the proposition follows from the fact that qﬁfgr € &,c,, given by Corollary
4.10.16. U

4.11. Existence of the Galois level

We have all the ingredients we need to state and prove our first main theorem.

THEOREM 4.11.1. Let h € QT*. Let : T, — I° be a family of cuspidal Siegel modular
eigenforms of level T'1(N) N To(p) and slope bounded by h. Suppose that the residual Galois
representation associated with 6 is absolutely irreducible. Let p: Gg — GSpy(I7,) be the Galois
representation associated with 6. Suppose that:

(1) p is residually of Sym?® type in the sense of Definition 3.11.2;

(2) p is Zy-regular in the sense of Definition 3.11.1.

For every radius v in the set {r;};cn>0 defined in Section 4.1.2, let &, be the Lie algebra that
we attached to Im p in Section 4.10.1. Then there exists a non-zero ideal | of Iy such that

(4.37) [-spy(B,) C &,
for every r as above.

Let A be the set of roots of GSp, with respect to our choice of maximal torus. Recall
that for @ € A we denote by u® the nilpotent subalgebra of gsp, corresponding to a. Let r
be a radius in the set {ri}i>1. We set U = &, Nu*(By) and U = &, ¢, Nu?(B,c,), which
coincides with ﬂ?@@pCp. Via the isomorphisms u®(B,) = B, and u®(B,c,) = B, c, we see L[
as a QQ)-vector subspace of B, and L[;f"(cp as a Cp-vector subspace of B, c,.

Recall that U denotes the one-parameter unipotent subgroup of GSp, associated with the
root c.. Let H, be the normal open subgroup of Gg defined in the beginning of Section 4.10.
Note that Proposition 4.9.23 holds with p|y, replaced by p|m, since H, is open in Gg. Let
U*(pla,) = UI5) Np(Hy) and U*(p,) = U N pr(H,). Via the isomorphisms U®(Iy) = Iy and
U*(L,.0) = 1o we identify U*(p|n,) and U%(p,) with Z,-submodules of Iy and I, o, respectively.
Note that the injection I — I}, induces an isomorphism of Z,-modules U*(p|n,) = U(p;).

We define a nilpotent subalgebra of gsp, (L. o) by

I.o = Qp-log(U%(pr)).
As usual we identify U =~ with a Qp-vector subspace of I, 9. Note that the natural injection
(B, : Ir o — B, induces an injection ilﬁo — 4> for every a.

LEMMA 4.11.2. For every a € A and every r there exists a non-zero ideal [* of Iy, indepen-
dent of v, such that the By-span of U contains (“B,.

PROOF. Let d be the dimension of Q(I3) over Q(Ap). Let a € A. By Proposition 4.9.23
the unipotent subgroup U%(p|n, ) contains a basis E = {e;};=1,..q of a Ap-lattice in I§. Lemma
4.9.2 implies that the Aj[p~!]-span of E contains a non-zero ideal [* of Iy. Consider the map
1> U*(Ip) — u®(B,) given by the composition

U™(To) < U*(I0) 25 u®(I,0) < u®(By,),

where all the maps have been introduced above. Note that (*(U(p|m,)) C US. Let Ep, = 1*(E).
Since (% is a morphism of Iy-modules we have

B, U D B, By, =B, - (M[p7']- Ep,) = B, - 1*(Ap[p~ ] - E) D B, - 1.2(1%) = B,
By construction and by Remark 4.10.2 the ideal [¢ can be chosen independently of r. U
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By Proposition 4.10.20(1) there exists v € GSpy(B,,c,) such that

®p, = vCr, 1,7
Let 8o = 7718,.c,7. For each a € A let e =u(Brc,) NG o .
We prove the following lemma by an argument similar to that of [HT15, Theorem 4.8].

LEMMA 4.11.3. For every o € A the Lie algebra Ll:’gp is a By.c,-submodule of B,.c,.

PROOF. By Proposition 4.10.20(2) the operator ®p,_ normalizes &,.c,, hence Cry 7, normal-
izes & . Since Cry 1, is diagonal it also normalizes 7 . Moreover

Ad (CT1,T2)U = a(CT17T2)ua

for every u® € ﬂ;”gp. Let a1 and agy be the roots sending diag (t1, t2, I/tz_l, th_l) € Tj to t1/ts

and v~ 1#2, respectively. With respect to our choice of Borel subgroup, the set of positive roots
of GSp, is {a1, ag, a1 + a2, 21 + as}. The Lie bracket gives an identification

Q1 (V0271 ,a1+a2
[ur,(Cp ’ uT,(Cp] - ur ,Cp

Conjugation by Cr, 1, on the Cp-vector space u* (B,.c,) induces multiplication by a1 (Cry 1) =
u=?(1+4T3). Since u™? € Z and ilzy’g; is stable under Ad (Cr, 1,), multiplication by 1+ 75 on
u®(B,c,) leaves U] stable. Now we compute

(1+To) - 4707 = (14 Ty) - (08 806 =
= [(1+T) - 40E, 402%) € LOE, 40 e?] = 0o,
where the inclusion (1 + 7%) -MZ’S; C il:’g; is the result of the previous sentence. We deduce

that multiplication by 14 T on u*'*2(B,.c ) leaves il:’(g:raz stable.

Similarly, conjugation by Cry 1, on the C,-vector space u®?(B,c,) induces multiplication

by ao(Cry 1) = - i? Since u € Z; and 4()¢* is stable under Ad (Cr,,1,), multiplication by

14T on u*?(B,.c,) leaves 117’0‘2 stable. The same calculation as above shows that multiplication
by H? on u**2(B, ¢ ) leaves LlZ:g;Jr” stable.

Having proved that multiplication by both 1475 and ﬁ? leaves iﬂ’aﬁaz stable, we deduce

that multiplication by (1 + 1) - }I? = 14T also leaves MZ’aZfaz stable. Since £(); O‘;+a2 is

a Cp-vector space, we obtain that the C,[T7,75]-module structure on u*'**2(B, ¢ ) induces
a Cp|T,T>]-module structure on ilfy’aﬁm. With respect to the p-adic topology U ’a1+°‘2 is

complete and C,[T7, T3] is dense in BT C,» 50 the B, ¢, -module structure on yartaz (Br,(cp) mduces
a1 +0c2

a By c,-module structure on Ll C
If B is another root, we can erte

BT Cp .L['V’ﬁp — Br,(Cp [u%a1+a2 u’yﬁ oy — CMQ] -

’7&14—&2 7,,8—&1—&2 77a1+a2 Wvﬁ_al_QQ _ 776
- [ L[ L[7",(Cp ] [ﬂ i’lr,(Cp ] - i’[r,(Cp’

, a1+ C u:,(g; +ag

where the inclusion B,.c, - 4 c, is the result of the previous paragraph. U

PROOF. (of Theorem 4.11.1) Let Eg, C 4% be the set defined in the proof of Lemma 4.11.2.
Let Eg, c, ={e®1|e € Ep,} C Uc . Consider the Lie subalgebra B;.c, - 8¢, of gspy(Br.c,)-
For every a € A we have B, c, - &,¢c, Nu*(B,.c,) = B¢, - 4. By Lemma 4.11.2 there exists
an ideal [* of Iy, independent of r, such that [ -B,.c, C B.c, - U. Let lp = [[,ca [*. Then
Lemma 4.9.19 gives an inclusion

(4.38) lo-sp4(Brc,) C By, - Brg,-
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Let v € GSpy(B,.c,) be the element satisfying ®p, = vCr, 1,7~ *. The Lie algebra I -
sp,(B,c,) is stable under Ad (y™!), so Equation 4.38 implies that
lo-5ps(Brc,) =7 ' (lo - 5pa(Brc,))y €7 (Brg, - &)y =
= B,c, 7 '®&y =B, 8].
We deduce that, for every a € A,
o - u*(B,c,) = u"(Brc,) Nl spa(Brc,) Cu*(Brc,) N Bre, &) c =
= Brc, (W (Brc,) NS¢ )= Brc, U¢

7,Cp”

(4.39)

By Lemma 4.11.3 ilf;gp is a By c,-submodule of u,.(B,.c,), so B,c, ~Ll:’gp = ﬂZ’gp. Hence
Equation (4.39) gives

(4.40) lo - u*(By.c,) C 478

for every a. Set I; = [3. By Lemma 4.9.19 and Remark 4.9.21, applied to the Lie algebra &,
and the set of ideals {[iB, }nea, Equation (4.40) implies that

[1 . 5p4(Br,Cp) C Qj;y,(cp'
Observe that the left hand side of the last equation is stable under Ad (), so we can write
(4.41) - 5ps(Brc,) = 7(h - 5py(Brc,)y ' C8l e v ! = Gig,.

To complete the proof we show that the extension of scalars to C, in Equation 4.41 is
unnecessary, up to restricting the ideal [;. By Equation 4.41 we have, for every «,

(4.42) [ Brc, C U,

We prove that the above inclusion of C,-vector spaces descends to an inclusion [y - B, C U of
Qp-vector spaces. Let I be some index set and let {f;}icr be an orthonormal basis of C, as a
Qp-Banach space, satisfying 1 € { f;}icr. Let a be any ideal of I o belonging to the set Sa. Recall
that the Qp-vector space B, /aB, = I, ¢/a is finite-dimensional. We write m, for the projection
B, — I,0/a and also for its restriction I,o — I.o/a. Let n and d be the Q,-dimensions of
Ir0/a and ma (L), respectively. Choose a Q,-basis {v;}j=1,..n of I.o/a such that {v;};—1, 4 is
a Qp-basis of LI,

Let v be any element of 74(l;). Then v ® 1 € ma(l1)®g, Cp and by Equation (4.42) we have
v® 1€ m(U)Rq,Cp. Now {v; ® fi}1<j<n;icr and {v; ® f;}1<j<a;ics are orthonormal Q,-basis
of B, /a®q,C, and ma(8%)®g, Cp, respectively. Hence there exists a set {\;;}1<j<aicr C Qp
converging to 0 in the filter of complements of finite subsets of {1,2,...,d} x I such that
vl = Zj=1,...,d;iel Aji(v; ® fi). By setting A\;; = 0 for d < j < n we obtain a representation
V@1 =301 ierXii(vj ® fi) with respect to the basis {v; ® fi}1<j<n;ier of (B,/a)®q, Cp.
On the other hand there exist a; € Qp, j = 1,2,...,n, such that v = Z;LZI ajvj, sov®1 =
> j—1a;(v; ®1) is another representation of v ® 1 with respect to the basis {v; ® fi}1<j<n;ier-
By the uniqueness of the representation of an element in a Q,-Banach space in terms of a given
orthonormal basis we must have a; = A;; if f; = 1. In particular a; = 0 for d < j < n, so
v = Z?Zl ajvj is an element of mq(LUS).

The discussion above proves that mq(l1) C mq () for every a € Se. By taking a projective
limit over a with respect to the natural maps we obtain [; - B, C 4. Let [ = [2. From Lemma
4.9.19 and Corollary 4.9.21, applied to the Lie algebra &, ¢, and the set of ideals {liB;}aca,
we deduce that

[-spy(B,) C &,.

4
[:[%:[3:([[%).

aEA

By definition we have
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For every « the ideal [* provided by Lemma 4.11.2 is independent of r, so [ is also independent
of . This concludes the proof of Theorem 4.11.1. O

DEFINITION 4.11.4. We call Galois level of 0 and denote by ly the largest ideal of Iy satisfying
the inclusion (4.37).

4.12. Galois level and congruence ideal in the residual symmetric cube case

We work in the setting of Theorem 4.11.1. In particular h is a positive rational number,
§: T, — I° is a family of GSp,-eigenforms of slope bounded by h and p: Gg — GSp,(I5,) is
the Galois representation associated with §. We make the same assumptions on 6 and p as in
Theorem 4.11.1.

With the family 6 we associate two ideals of l:

e the ideal ¢y -Io, where ¢p is the fortuitous (Sym?, II§)-congruence ideal (see Definition 4.8.7);
e the Galois level [y (see Definition 4.11.4).

In the theorem below we prove that the prime divisors of these two ideals are the same
outside of a finite explicit set of bad primes. This is an analogue of Theorem 2.5.2.For every
ring R and every ideal J of R we denote by Vi(J) the set of primes of R containing J. The set
of bad primes of Iy already appeared in Section 4.10.1: it is

§Pad — [P prime of Ap[p~!]| PN Agfp~'] € SR},
where SKad is the set of prime ideals of Ag[p~!] defined by
Ghad — {A+T —w), A+ Ty —u?), 14+ T —u(l+T1)), (1 +T1)A + Tp) — u®)}.
To simplify notations we write ¢y o for cg o - Io.
THEOREM 4.12.1. The following equality holds:
Vi (ca,0) — S™ = Vi, (1) — S
Recall that there is a natural inclusion ¢,: Iy < I, g.

PROOF. First we prove that Vi,(cg0) — S”* C Vi, (lg) — S”d. Choose a radius r in the
set {ri}ien>o defined in Section 4.1.2. Let P € Vi, (cg) — SP*d and let pp be the reduction of
play: Ho — GSp4(Ip) modulo P. By Proposition 4.8.8 there exists a representation pp1: Hy —
GL2(Ip/P) such that pp = Sym3pp71. Let pr.p =ty o pp and p. p1 = ¢ o pp1. The isomorphism
above gives p, p = Sym?’pn P1-

Suppose by contradiction that [y ¢ P. By definition of [y we have &, D Iy - sp,(B,). Recall
that B, /P = I, o/P by the construction of B,. By looking at the previous inclusion modulo P
we obtain

(4.43) &.p D (lg/(PNly))-spy(lro/P).

Since lp ¢ P we have lp/(P Nly) # 0. By definition &, p = Q) - logIm p, p. By our previous
argument Im p, p C Sym3GLs (L0/PlL,.0), so log Im p, p cannot contain a subalgebra of the form
J-spy(Lo/PlL,o) for a non-zero ideal J of I, o/ Pl . This contradicts Equation (4.43).

We prove the inclusion Vi, (Ig) — SP2d € Vi, (¢g9) — SP*. Let P be a prime of Iy. We have
to show that if P ¢ SP® and [y C P then ¢p,0 C P. Every prime of I is the intersection of the
maximal ideals that contain it, so it is sufficient to show the previous implication when P is a
maximal ideal.

Let P be a maximal ideal of Iy such that P ¢ SP®d and Iy C P. Let kp be the residue field
Io/P. We define two ideals of I, by ly, = ¢,(lp)l,0 and P, = ¢,(P)l,o. Note that ¢, induces
an isomorphism Io/P = 1, o/P,. In particular P, is maximal in I, and I, o/P, = kp, which is
a local field.
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As before let p,,p = iy o pp. The residual representation p, p: Ho — GSp4(]I$70 / mﬂgo) asso-

ciated with p, p coincides with p|p,. In particular p, p is of residual Sym? type in the sense

of Definition 3.11.2. Let G, p = Im p, p and ij p be the connected component of the identity

in G, p. Let G° G° % be the Zariski closure of Gy p in GSpy(I,0/Py). Since p, p satisfies the

hypotheses of Proposmon 3.11.6, one of the followmg must hold:
(i) the algebraic group G;f P AT s isomorphic to Sym3SLy over Lo/ Py;
(ii) the algebraic group G? Pzar is isomorphic to Sp, over L./ FP;.

In the two cases let H? denote the normal open subgroup of Hy satisfying Im p,. p|go = G, p-
Since Hy is open and normal in Gg, H° is also open and normal in Gg. In case (i) there
exists a representation pgp: HY — GL2(I,0/P) such that p,p|go = Sym3p27p. Since the
image of p, p|go is Zariski-dense in the copy of SLa (I, o/P,) embedded via the symmetric cube
map, the image of p% p s Zariski-dense in SLy(I,o/P,). From Lemma 3.11.5 we deduce that
Im pg’ p contains a congruence subgroup of SLa(I,.o/P,). Now the hypotheses of Lemma 3.11.5
are satisfied by the representation p?} p and the group H V. so we conclude that there exists a
representation leo,r, p: Hy = GLa(L,0/P,) such that pg,,p = Sym3p}{07r’ p- By Proposition

4.8.8 the prime P must contain ¢y, as desired.

o Za
We show that case (ii) never occurs. Suppose by contradiction that G¢ Ho,rP = Sp, over

L.o/P,. By Propositions 4.6.1 and 4.6.8 we know that the field Io/P is generated over Q, by
the traces of Ad (pp|n,). Hence the field I, o/ P, is generated over @, by the traces of Ad p, p.
By Theorem 3.11.4 applied to Imp, p there exists a non-zero ideal [, p of L./P, such that
Gp contains the principal congruence subgroup I'y  /p, (Ir p) of Spy(I;0/F). By definition
&,.p = Qp - log(Imp, p|p,) where H, is an open Gg, so up to replacing [, p by a smaller
non-zero ideal we have

(4.44) rp - 804 (Iro/ ) Clog(T'y, /e, (Inp)) C log(tro(Gp)) C &y p.

The algebras &, p are independent of r in the sense of Remark 4.10.3, so there exists an ideal
[p of Ip/P such that, for every r in the set {r;};>1, the ideal [, p = ¢,(Ip) satisfies Equation
(4.44). We choose the ideals [, p of this form.

As before A is the set of roots of GSp, with respect to the chosen maximal torus. Let a € A.
Let 4 and L7 be the nilpotent Lie subalgebras respectively of &, and &,,p, corresponding
to a. We denote by mp, the projection gsp,(B,) — gsp,(B,/P.B,). Clearly &, p. = wp.(&,), so
Ut p, = mp, (U7). Equation (4.44) gives I pu®(L.o/F;) C UYp . Choose a subset A% of u®(lp)
such that, for every 7, ¢,(A%) C U and 7p, (1,(AP)) = I pu® (L, 0/ P). Such a set exists because
the algebras 4 are independent of r by Remark 4.10.3 and the ideals [, p have been chosen of
the form ¢,(Ip). Set Ap = ([T en Qlclé)4. By the same argument as in the proof of Theorem
4.11.1, the ideal A} satisfies

b (AP) - spy(By) C &,
Since lp - 5p4(B,) C &, for every r, we also have (ly + 2% p)sps(B,) C &, for every r.

By assumption lp C P, so wp(ly) = 0. By definition of A3y, p we have mp(AP) D wp(Ap) =
Ip, so mp(lg+Ap) = [p. We deduce that [y + 2A% is strictly larger than lp. This contradicts the
fact that [y is the largest among the ideals [ of Ij satisfying [ - sp,(B,) C &,. O
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Résumé

Soit g = 1 ou 2 et p > 3 un nombre premier. Pour le groupe symplectique GSpy,, les
sytemes de valeurs propres de Hecke apparaissant dans les espaces de formes automorphes
classiques, d’un niveau modéré fixé et de poids variable, sont interpolés p-adiquement par un
espace rigide analytique, la variété de Hecke pour GSpy,. Un sous-domaine suffisamment petit
de cette variété peut étre décrit comme ’espace rigide analytique associé a une algebre profinie
T. Une composante irréductible de T est définie par un anneau profini I et un morphisme
f: T — I. Dans le cas résiduellement irréductible on peut associer a 6 une représentation
po: Gal(Q/Q) — GSpy,y(I). On étudie I'image de py quand 6 décrit une composante de pente
positive de T. Pour g = 1 il s’agit d’un travail en commun avec A. Iovita et J. Tilouine. On
suppose que g = 1 ot que g = 2 et 0 est résiduellement de type cube symétrique. On montre que
Im pg est “grande” et que sa taille est liée aux “congruences fortuites” de 6 avec les transferts
de familles pour groupes de rang plus petit. Plus précisement, on agrandit un sous-anneau I
de I[1/p] en un anneau B et on définit une sous-algebre de Lie & de gsp,,(B) associée & Im py.
On prouve qu'il existe un idéal non-nul [ de Iy tel que [ - spy,(B) C &. Pour g = 1 les facteurs
premiers de [ correspondent aux points CM de la famille 8. Pour g = 2 les facteurs premiers
de [ correspondent a des congruences fortuites de 6 avec des sous-familles de dimension 0 ou 1,
obtenues par des transferts de type cube symétrique de points ou familles de la courbe de Hecke
pour GLs.

Abstract

Let g =1or 2 and p > 3 be a prime. For the symplectic group GSp,, the Hecke eigensystems
appearing in the spaces of classical automorphic forms, of a fixed tame level and varying weight,
are p-adically interpolated by a rigid analytic space, the GSpy,-eigenvariety. A sufficiently small
subdomain of the eigenvariety can be described as the rigid analytic space associated with a
profinite algebra T. An irreducible component of T is defined by a profinite ring I and a
morphism ¢: T — 1. In the residually irreducible case we can attach to 6 a representation
po: Gal(Q/Q) — GSpagy(I). We study the image of pg when 6 describes a positive slope compo-
nent of T. In the case g = 1 this is a joint work with A. Iovita and J. Tilouine. Suppose either
that g = 1 or that ¢ = 2 and 6 is residually of symmetric cube type. We prove that Im pyg is
“big” and that its size is related to the “accidental congruences” of 6 with the subfamilies that
are obtained as lifts of families for groups of smaller rank. More precisely, we enlarge a subring
Ip of I[1/p] to a ring B and we define a Lie subalgebra & of gsp,,(B) associated with Im pg. We
prove that there exists a non-zero ideal [ of Iy such that [-spy, (B) C &. For g = 1 the prime
factors of | correspond to the CM points of the family 6. Such points do not define congruences
between 6 and a CM family, so we call them accidental congruence points. For g = 2 the prime
factors of [ correspond to accidental congruences of # with subfamilies of dimension 0 or 1 that
are symmetric cube lifts of points or families of the GLs-eigencurve.
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