
HAL Id: tel-01408021
https://hal.science/tel-01408021v1

Submitted on 2 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Mine First to See Better: Constraint-based Data Mining
for Computer Vision Applications

Elisa Fromont

To cite this version:
Elisa Fromont. Mine First to See Better: Constraint-based Data Mining for Computer Vision Appli-
cations. Machine Learning [cs.LG]. Université Jean Monnet, Saint-Etienne, 2015. �tel-01408021�

https://hal.science/tel-01408021v1
https://hal.archives-ouvertes.fr

Habilitation à Diriger des Recherches

Section CNU : 27 - Informatique

Mine First to See Better: Constraint-based Data

Mining for Computer Vision Applications

présentée par
Elisa Fromont

Mâıtre de Conférences
Université Jean Monnet de Saint-Etienne

Laboratoire Hubert Curien UMR CNRS 5516

Soutenue le 11 Décembre 2015 devant la commission d’examen composée de :

Luc De Raedt Prof. Katholieke Universiteit Leuven (Belgique) Rapporteur

Pascale Kuntz-Cosperec Prof. École Polytechnique, Université de Nantes Examinatrice
Katharina Morik Prof. TU Dortmund (Allemagne) Rapportrice
Marc Sebban Prof. Université Jean Monnet, Saint-Etienne Examinateur
Arno Siebes Prof. Universiteit Utrecht (Pays Bas) Rapporteur
Alexandre Termier Prof. Université de Rennes 1 Examinateur

2

Acknowledgments

I would like to thank the members of my jury, Professor Luc De Raedt, Professor Pascale
Kuntz-Cosperec, Professor Katharina Morik, Professor Marc Sebban (who is my referee
for this ”habilitation”), Professor Arno Siebes and Professor Alexandre Termier for
taking time to thoroughly engage with my work and provide valuable feedback.

In particular, I am grateful to Pascale Kuntz-Cosperec and Alexandre Termier for
coming all the way from Nantes and Rennes to evaluate my work. Katharina, Arno, Luc:
all of you have been special in my life. Katharina is for me a very lively and enthusiastic
person who introduced me to wonderful persons in many conferences, whose constant
fight to make sure that women are never forgotten in our male-dominated computer
science community is, in my opinion, essential and has impacted my life at many levels
over the years. Arno has crossed my path at every steps of my journey in the last
10 years: he reviewed the European project I worked in when I was in Leuven, I was
contaminated by his enthusiasm during his MDL crusade, he introduced me to the IDA
community (that ended up with me organizing the conference in Saint-Etienne) and
even visited us in Saint-Etienne to talk about his new research passion. As always, it
will take me some years to understand how inspiring and deep your current work is
but I am already convinced that it will have an impact on my research life as strong
as everything else you did in the past years. Luc has been in my thoughts during all
my PhD on Inductive Logic Programming (one of the many subjects he fathered). He
made sure that I was well integrated into his team in Leuven and allowed me to expand
my culture in Machine Learning and Data mining immensely compared to the young
padawan I was when I washed up on Leuven’s shore in 2006. Thanks to him and to
Hendrik (who will get some special thanks later) I was able to work in a wonderful
environment with incredibly brilliant people. Without my stay in Leuven, none of the
career opportunities that I had afterwards would have existed.

I’ll thus start by thanking my colleagues in Leuven. The first one should be Maurice
Bruynooghe, head of the DTAI group in Leuven (and former supervisor of dozens of well
known researchers in Machine Learning including Luc De Raedt and Hendrik Blockeel)
where I did my post-doc from February 2006 until August 2008. Maurice has trusted
me from the beginning and even hosted me in his own house for weeks when I arrived
in Belgium. He is one of the wisest person I know and I guess I would not have felt
so comfortable in this new world without him and his family. Hendrik Blockeel is
another very special person in my research life. After meeting me in few conferences
and accepting to be in my PhD jury, Hendrik also took me as a post doc in his research
group. He is not only a very brilliant colleague but, after sharing many adventures which
involve bikes, walks, dancing, eating and playing, he has also become a dear friend over
the years. I won’t mention all the other protagonists in those adventures but they can
rest assured that they will not be forgotten (and I actually make sure that some of them
e.g. Kurt and Fabian do not forget me either by invading their home regularly!). In

i

ii

Leuven, I was involved in a Belgium national project and a European one which brought
me to work with many interesting people such as Siegfried Nijssen, Bart Goethals, Toon
Calders, Adriana Prado who all become important persons in my life. I thank all of you
for everything you have brought me over the years, your kindness, your brightness and
your time.

In September 2008, I joined the Machine Learning team at the Hubert Curien Lab-
oratory in Saint-Etienne. Again, as always in my life, somebody had to see through
my insecurity, my doubts and my strange sense of humour and trust me enough to give
me a position. This time, the key person was Colin de la Higuera. Of course I will
never thank him enough for everything he had made possible by giving me his trust. He
allowed me to meet incredible people with whom I have been working over the last seven
years. I am not going to thank everybody although many persons, students and profes-
sors, in the team, in the lab and in our partner teams (in particular at LIRIS), would
deserve a particular chapter. I’ll just give a special thank to Pierre, Baptiste, Rémi and
Leonor who had to share an office with me and put up with my constant babbling, my
very loud (and prohibited) Skype sessions, my recurring technical problems, and my
never satisfied gluttony. I cannot forget Marc Sebban, my mentor and my friend, who
can understand my most incomprehensible thoughts or my very sparse sentences, who
can spend hours answering my very naive questions without looking annoyed and who
miraculously knows how to call out the best in me. Marc, I am not sure that I would
have done anything good without you the last past years so thank you a million times
for everything.

At the end of my PhD, I moved from my home town, Rennes, to discover other
horizons. By moving, I have weakened the bounds that tied me to my family and many
of my friends. However, all my family (and in particular my parents and my brother)
and many of my friends have kept visiting me (from Rennes, Nantes, Bordeaux, Paris,
Lyon, Grenoble, Toulouse, Lille and Nancy) over the last years and made it possible for
me to enjoy my research environment while being so far away from them. Thank you
all for your presence, your love and your joy.

To conclude, I would like to thank Olivier, my first and probably only fan, who has
never stopped believing in me and my skills even when I was really doubtful about them
myself. You are the co-author of my best work so far: my two wonderful children. They
are currently too young to understand any of what I am presenting in this document
but they take a huge part of my life and strongly contribute to my personal equilibrium.
Thank you.

Elisa

Contents

Acknowledgments iii

(In French) Résumé étendu v
I Débuts . v
II Post-doctorat . v
III MdC à l’UJM . vii

My Publications xiv

1 Introduction 1

2 Constraint-based Data Mining for Inductive Databases 6
1 Mining Views . 6

1.1 Representing Models as Sets of Concepts 8
1.1.1 Itemsets and Association Rules 8
1.1.2 Decision Trees . 8
1.1.3 Clustering . 10

1.2 Discussion . 11
2 Induction of Optimal Decision Trees . 12

2.1 Relationships between Itemsets and Decision Trees 14
2.1.1 Itemsets . 14
2.1.2 Decision trees . 15
2.1.3 Link between Decision Trees and Itemsets 15

2.2 Constraints on Decision Trees . 17
2.2.1 Properties of Constraints and Criteria 17

2.3 Building Optimal Decision Trees from Lattices 20
2.3.1 Decision Trees from Lattices 20
2.3.2 Computing Lattices Beforehand 22
2.3.3 Computing Lattices on the Fly 24

2.4 Discussion . 25
3 (Dynamic) Plane Graph Mining . 26

3.1 Definitions . 26
3.1.1 Plane Graphs . 26
3.1.2 Isomorphism and Subgraph Isomorphism 28
3.1.3 Support and Frequency of a Subgraph Pattern 29
3.1.4 Dynamic Plane Graph 29
3.1.5 Occurrence Graph and Spatio-Temporal Patterns . . . 30

3.2 Mining Spatio-Temporal Patterns 33
3.2.1 Extensions . 34

iii

iv CONTENTS

3.2.2 Graph Codes . 35
3.2.3 Code Search Space and Canonical Codes 36
3.2.4 Algorithms . 37

3.3 Experiments . 41
4 Conclusion . 41

3 Data mining for BOW-based Image classification 44
1 Supervised Learning of Gaussian Mixture Models for Better BOW . . . 44

1.1 Notations and Definitions . 45
1.2 Supervised GM-based Dictionary Learning 46

1.2.1 Intuitive Idea . 46
1.2.2 Joint Optimization of the Likelihood and the Purity . . 47
1.2.3 EM-based Learning Algorithm 50

2 Pattern Mining in BOW . 50
2.1 Frequent Local Histogram (FLH) Mining 51
2.2 Finding the Best FLHs for Image Classification 53
2.3 Kernel Function for Effective Pattern Classification 55
2.4 GRID-FLH: Incorporating Global Spatial Information to FLH . 55

3 Experiments . 55
3.1 Image Datasets and Data Preparation 56
3.2 Experimental Results for the GMM Approach 57

3.2.1 Other Approaches . 57
3.2.2 Pre-processing and Setting 58
3.2.3 Results . 58

3.3 Experimental Results for the FLH-based Approach 61
3.3.1 Comparison with Non-mining Methods 62
3.3.2 Comparison with State-of-the-art Methods 62

4 Conclusion . 64

4 Data mining for Object Tracking in Videos 66
1 Images and Videos as Graphs . 66

1.1 RAG and Triangulation . 67
1.2 Video Datasets . 67

2 Object Tracking Using Graph Mining 70
2.1 Tracking with Patterns . 70

2.1.1 Spatio Temporal Path 70
2.1.2 Clusters of Spatio-Temporal Patterns 71

2.2 Meaningfulness of the (Spatio-Temporal) Patterns 74
2.2.1 Output of Plagram (plane graph patterns) 75
2.2.2 Output of DyPlagram and DyPlagram st 76

2.3 Spatio-Temporal Paths for Object Tracking 79
2.4 Clusters of Spatio-Temporal Patterns for Tracking 81

2.4.1 Experimental Design 81
2.4.2 Results . 82

3 Conclusion . 87

5 Conclusion 88

Bibliography 97

(In French) Résumé étendu

I Débuts

Après un DEA en Informatique option Génie Logiciel et Méthodes Formelles en 2002
à l’Université de Rennes 1, mes travaux de recherche se sont (ré)orientés en doctorat
vers un domaine de l’informatique tout autre et lié à l’intelligence artificielle : celui de
l’apprentissage automatique. Dans le cadre du projet RNTS CEPICA (Conception et
Évaluation d’une Prothèse Implantable Cardiaque), en collaboration avec le Ltsi (Labo-
ratoire de Traitement du Signal et de l’Image de L’Université de Rennes1) et le CHU de
Rennes, l’objectif principal de ma thèse (nov. 2002 - déc. 2005) était d’évaluer l’impact
de l’apport de nouvelles sources de données sur la caractérisation et la reconnaissance
des arythmies cardiaques. Ces travaux ont donné lieu aux publications [14, 13, 4, 6, 12],
[30, 31, 32, 33, 38] qui ne feront pas l’objet d’un développement dans ce manuscrit.

II Post-doctorat

De Février 2006 à Août 2008, j’ai effectué un post-doc à l’Université Catholique de
Leuven en Belgique sur un projet lié aux bases de données inductives (BDI). Ce post-
doc m’a permis d’étendre ma culture en apprentissage automatique et de me spécialiser
dans le domaine de la fouille de données.

Le cadre des BDI, introduit par Imielinski et Mannila en 1996, propose de con-
sidérer l’extraction de connaissances comme un processus d’interrogation interactif au
sens des bases de données. Les requêtes portent alors sur les données (par exemple pour
sélectionner un contexte de fouille), sur des abstractions ou généralisations des données,
sur des modèles (par exemple pour sélectionner des règles descriptives intéressantes) ou
sur les deux composantes (par exemple pour identifier des objets qui satisfont certaines
règles). Ces requêtes dites “inductives” sont ainsi utilisées pour générer (fouiller) ou
appliquer les modèles induits sur les données.

Ce travail a été effectué en collaboration avec l’Université d’Anvers et en particulier,
Bart Goethals, Toon Calders (qui travaille maintenant à l’Université libre de Brux-
elles) et Adriana Prado (qui travaille maintenant à l’Université Fédérale Fluminense
au Brésil). Ils ont proposé en 2006 une approche relativement intuitive permettant de
stocker et de manipuler des objets particuliers issus d’une fouille de motifs que sont les
itemsets fréquents et les règles d’associations. Cette approche se base sur les bases de
données relationnelles standards et le langage SQL. Du point de vue de l’utilisateur,
des tables contenant tous les itemsets et toutes les règles d’association pouvant être
extraites d’un ensemble de données sont à disposition pour effectuer toutes sortes de
requêtes. La manière dont ces tables sont remplies et les algorithmes de fouille de
données utilisés pour les remplir sont transparents pour l’utilisateur. Nous avons étudié

v

vi (IN FRENCH) RÉSUMÉ ÉTENDU

cette approche et ses avantages pour apprendre et manipuler des modèles “globaux” tels
que les arbres de décision ou les règles de prédiction, les algorithmes de clustering ou
les réseaux Bayésiens. Par exemple, pour découvrir des règles d’association, l’utilisateur
doit imposer des contraintes sur les règles qu’il recherche (typiquement dans ce cadre,
leur support et leur confiance) et l’algorithme fournit un ensemble de règles qui remplis-
sent ces contraintes. Les systèmes d’apprentissage d’arbres de décision standards (ou
de clustering) ne permettent d’obtenir qu’un seul arbre de décision à la fois et les con-
traintes imposables sur l’arbre lui-même sont, en général, limitées au nombre minimum
d’exemples “couverts” par chaque feuille de l’arbre. L’arbre appris n’est pas le plus précis
construit à partir de l’ensemble des données d’apprentissage ni le plus petit ni celui qui
permet d’obtenir la meilleure généralisation en suivant certains critères ; les algorithmes
d’apprentissage utilisant des heuristiques permettent simplement d’obtenir des arbres
relativement petits avec une précision relativement bonne. En intégrant l’apprentissage
d’arbres de décision (de “clustering” ou de réseaux Bayésiens) sous contraintes dans les
bases de données inductives, nous cherchions à fournir une approche aussi précise que
peut être une approche liée à la recherche de règles d’association : l’utilisateur spécifie
quel(s) type(s) d’arbre(s) il recherche, et le système recherche ces arbres efficacement.

Pour répondre à ces objectifs, j’ai suivi deux axes principaux : la création avec
l’Université d’Anvers d’un premier prototype de bases de données inductives permettant
à la fois de faire des requêtes sur des motifs locaux mais aussi sur des motifs globaux tels
que les arbres de décision [2, 3] [23, 24, 26, 25]. Ce prototype permet d’extraire depuis les
requêtes, des contraintes sur la taille de l’arbre et sur sa précision minimale en appren-
tissage. Pour pouvoir répondre à des requêtes recherchant tous les arbres répondants à
des critères donnés, nous avons développé un algorithme d’apprentissage permettant une
recherche exhaustive d’arbres sous contraintes. Les problèmes de complexité d’une telle
recherche nous ont conduit à développer un algorithme efficace permettant de générer
des arbres optimaux (selon les critères spécifiés par l’utilisateur) sous contraintes [18, 19].
Les contraintes utilisées concernent le nombre minimum d’exemples dans chaque feuille
de l’arbre, la taille, la précision et la profondeur de l’arbre, mais aussi le coût de l’arbre
(en terme d’erreur en apprentissage et de coût des tests utilisés dans l’arbre). Notre al-
gorithme repose essentiellement sur la relation existant entre les contraintes applicables
aux arbres de décision et celles applicables aux itemsets. Nous proposons d’exploiter
des treillis d’itemsets pour extraire des arbres de décisions optimaux en temps linéaire
et nous avons développé différentes stratégies permettant de construire ces treillis effi-
cacement en tirant partie des années de recherche sur l’extraction d’itemsets fréquents.
Lorsque les contraintes jouent un rôle crucial dans l’application, nous avons montré que
notre algorithme obtient de meilleurs résultats que des algorithmes dédiés, par exem-
ple pour l’apprentissage d’arbres de décision sensibles aux coût (cost-sensitive decision
trees). En outre, c’est un outil idéal dans le cadre des bases de données inductives
puisqu’il garantit une réponse exacte à un problème donné. Nous avons également pro-
posé dans [15] un algorithme qui répond au premier objectif dans le cas du “clustering”.
Ces travaux sont développés dans le Chapitre 2 de ce manuscrit.

Lors de ce post-doc en Belgique, j’ai travaillé dans le contexte de projets nationaux
(FWO) et dans le cadre du projet Européen FP6-IST IQ (Inductive Queries for Mining
Patterns and Models). Ce contexte international m’a permis de tisser des liens forts avec
certaines universités européennes qui ont perduré jusqu’à aujourd’hui : ils continuent de
donner lieu à des visites (bilatérales) entre partenaires et des collaborations fructueuses.

III. MDC À L’UJM vii

III MdC à l’UJM

J’entame en Septembre 2015 ma 7ème année en tant que Mâıtre de Conférences à
l’Université Jean Monnet. Ces sept années ont été ponctuées par la naissance de mes
deux enfants. Ma première année (2008-2009) dans l’équipe “Machine Learning” du
Laboratoire Hubert Curien (LaHC) a été marquée par une forte volonté d’effectuer une
reconversion thématique vers des sujets importants pour le département “Informatique,
Image, Telecom” du LaHC liés à l’analyse d’images et de vidéos. J’ai pu entamer des col-
laborations très fructueuses non seulement avec des membres de ma propre thématique
mais aussi avec des membres de la thématique “image” du même département. Ces
collaborations ont été initiées dans le cadre du projet ANR SATTIC au cours duquel les
membres du département image nous ont présenté des problématiques de structuration
et de sélection des descripteurs bas niveaux décrivant les images et les vidéos qui pou-
vaient nécessiter l’utilisation et le développement de nouvelles méthodes d’apprentissage
automatique ou de fouille de données (i.e. des méthodes non supervisées).

Sac de mots visuels La représentation par sac de mots est une description de
l’image initialement développée dans le contexte d’analyse de documents textuels. Cette
représentation se base sur le fait que l’ensemble des descripteurs “bas niveau” (par ex-
emple un vecteur encodant les 3 signaux RGB d’un pixel dans une image) peut être
décrit de manière abstraite au moyen d’un dictionnaire de “mots visuels”. Une image
peut être ainsi représentée par un histogramme (i.e un vecteur) des occurrences des mots
qui la composent : pour une image donnée, chaque mot se voit affecter le nombre de
fois qu’il apparâıt dans l’image. Ce vecteur de représentation, potentiellement parci-
monieux (ou clairsemé), a donc la même taille que le dictionnaire. La i-ème composante
du vecteur indique le nombre d’occurrences du i-ème mot du dictionnaire dans l’image.
La constitution du dictionnaire est une étape critique pour les performances des systèmes
utilisant une telle représentation. Elle consiste en un “clustering” de l’ensemble de tous
les descripteurs décrivant toutes les images du corpus en un nombre fixe de clusters égal
à la taille du vocabulaire désiré. Le centröıde de chaque cluster ainsi obtenu devient
un mot visuel. Chacun des attributs initiaux est alors comparé à tous les mots visuels
obtenus et on leur associe le mot visuel dont il est le plus proche (selon une distance
préétablie). Une image devient donc décrite par son histogramme de mots visuels ou,
son sac de mots. L’utilisation des mots visuels a été popularisée en 2004 [64] et leur
construction se fait principalement à partir de descripteurs SIFT à 128 dimensions. En
analyse d’images et dans les meilleures conférences du domaine, des centaines d’articles
ont vu le jour cette dernière décennie pour améliorer l’utilisation de ces mots visuels. J’ai
pris part à ce domaine très actif en me consacrant plus particulièrement à la découverte
de représentations de “moyens niveaux” (c’est à dire des représentations basées soit
directement sur les pixels, soit sur une description bas niveau issue du traitement du
signal) plus discriminantes qui permettent d’améliorer significativement l’état de l’art
en analyse d’images et de vidéos [11, 16, 21, 10, 8, 9, 1][36, 40, 29].

Contributions Nous avons dans un premier temps proposé une méthode qui permet
de représenter les images sous forme de séquences pondérées de mots visuels et un nouvel
algorithme de distance d’édition sur ces séquences pondérées [1]. Le processus de con-
struction des séquences choisi nous semblant trop arbitraire pour réellement bénéficier
à une châıne de traitement systématique de l’image, nous nous sommes ensuite focalisé
sur la création des sacs de mots et en particulier sur un des aspects clé de leur création:

viii (IN FRENCH) RÉSUMÉ ÉTENDU

la méthode de clustering utilisée. Dans le contexte de l’image, le nombre de bases de
données (étiquetées) disponibles est très important. Nous avons donc mis au point des
nouveaux algorithmes de clustering qui puissent prendre en compte une information
supervisée partielle [9][29, 41]. L’article paru dans le journal “Pattern recognition” [9]
décrit ainsi une méthode permettant d’intégrer un terme supervisé à un algorithme
d’optimisation qui apprend les paramètres d’un mélange de Gaussiennes. Ce mélange
permet de construire un clustering flou (“soft-clustering”) où chaque descripteur de
l’image est assigné (de manière pondérée) à un ensemble de clusters de telle sorte que
des descripteurs appartenant à des images d’une classe donnée soient plus susceptibles
de se retrouver dans un même cluster.

Nous avons ensuite exploré la possibilité d’étendre des algorithmes de régression
logistique au cadre multi-classe pour effectuer une sélection automatique des mots visuels
les plus discriminants pour un problème de classification donné [8]. Ces travaux nous ont
également permis d’établir des liens entre les noyaux marginalisés et les probabilités en
sortie d’un algorithme de régression logistique. Les résultats obtenus en classification se
sont révélés meilleurs que ceux des méthodes de l’état de l’art permettant de fusionner
plusieurs types de dictionnaires de mots visuels, et ce pour plusieurs benchmarks connus
en classification d’images.

En parallèle de ces recherche sur l’apprentissage supervisé, nous avons exploré l’uti-
lisation de méthodes totalement non supervisées comme la fouille de motifs fréquents
pour l’amélioration du traitement de l’image (et en particulier la classification) [10, 11] et
de la vidéo (et en particulier le ”tracking” d’objets dans les vidéos) [20, 7, 21][28, 37, 40].

Nous avons montré que la recherche de motifs récurrents dans les sacs de mots
et la sélection intelligente de ces motifs dans le contexte de la classification d’images
pouvaient améliorer significativement l’état de l’art en classification d’images sur la
plupart des benchmarks connus [10, 11]. Notons que ces benchmarks n’incluent pas
ceux qui contiennent plusieurs millions d’images tel qu’IMAGENET1, qui sont traités,
de nos jours, principalement à partir de méthodes basées sur l’apprentissage de réseaux
de neurones [10, 11] pour des raisons qui seront développées dans la conclusion de ce
document. Ces contributions en sélection a posteriori des motifs calculés exhaustivement
sont non seulement utiles pour le domaine de la vision par ordinateur mais également
pertinentes pour le domaine de la fouille de motifs et en particulier en découverte de
sous groupes discriminants.

Ces sept dernières années à Saint-Etienne m’ont également permis d’obtenir une
bonne expérience de l’encadrement doctoral. J’ai co-encadré avec mes collègues Bap-
tiste Jeudy et François Jacquenet deux doctorats sur l’analyse de vidéos à partir de
méthodes basées sur la fouille de motifs. La première, celle de Fabien Diot, concernait
la fouille de graphes pour le suivi d’objets dans les vidéos. Elle a été soutenue le 3
Juin 2014. Cette thèse CIFRE avec Alcatel-Lucent Bell-Labs a donné lieu au dépôt de 2
brevets. Nous avons pu montrer tout au long de cette thèse l’intérêt des motifs fréquents
(et en particulier, dans ce cas, des sous-graphes fréquents) trouvés de manière non su-
pervisée pour suivre des objets dans les vidéos dans des contextes généralistes où l’objet
d’intérêt n’est pas connu a priori et peu prendre n’importe quelle forme [20, 7][28, 37].
La deuxième thèse, celle de Hoang-Tung Tran s’intéressait à la correction automatique
de “tags” dans les vidéos déposées sur des sites de partage tel que Youtube. Elle s’est
intéressée à l’utilisation de la seule information visuelle pour la comparaison automa-
tique des vidéos (en utilisant des motifs fréquents) et à la propagation automatique de

1http://www.image-net.org/

III. MDC À L’UJM ix

tags sur des vidéos au contenu visuel similaire [21][40]. Cette thèse a été soutenue le 17
Juillet 2014.

J’ai également collaboré avec des collègues Belges rencontrés lors de mon post-
doctorat, sur l’utilisation de la fouille de motifs (tels que des ensembles faiblement
structurés) dans des flots de données pour l’analyse de vidéos [16][27, 36]. Ces résultats,
par la proposition de nouveaux algorithmes efficaces, ont contribué à l’état de l’art
en fouille sous contraintes dans les flux de données et offrent à terme la possibilité
d’analyser les vidéos en temps réel (ce qui n’était pas possible avec les algorithmes
proposés précédemment).

Enfin, depuis l’acceptation du projet ANR Solstice que je coordonne depuis Février
2014, je co-encadre deux thèses sur la découverte (supervisée ou non) de représentations
discriminantes pour l’analyse d’images et de vidéos. La thèse de Romain Deville (en
co-encadrement avec Baptiste Jeudy et Christine Solnon du Liris) fait suite à la thèse
de Fabien Diot sur l’utilisation de la fouille de sous-graphes fréquents pour l’analyse
de vidéos. Elle a fait tout d’abord l’objet d’un stage de Master 2 dans un contexte
d’images et a fourni des résultats prometteurs pour l’utilisation de sacs de sous-graphes
géométriques pour la description pertinente des images. La thèse de Damien Fourure
est orientée vers une technique d’apprentissage automatique particulièrement populaire
avec l’avènement du centre Facebook Research : le “deep learning”. Le sujet porte
sur l’apprentissage de représentations 3D et temporelles pour la segmentation de scènes
extérieures [34, 35, 39]. Le deep learning est une des méthodes actuelles qui obtient les
meilleurs résultats pour résoudre des problèmes de classification dans le domaine de la
vision par ordinateur mais également dans le domaine de la reconnaissance de la parole
ou du traitement de la langue naturelle. L’ambition de cette thèse est de contribuer à
ce domaine mais également de comparer les méthodes se basant sur cette approche avec
les méthodes de fouille de données développées précédemment.

Ces nouveaux projets de recherche sont complétés actuellement par des travaux
dans le domaine bio-médical [17, 5], des travaux centrés sur l’acquisition automatique
de modèles de langue [22] et sur le traitement automatique des langues (TAL) en général,
des travaux sur la détection de fraudes bancaires (initiés par l’intermédiaire d’une nou-
velle thèse CIFRE) et de nouvelles pistes portant sur l’utilisation des architectures telles
que les auto-encodeurs pour découvrir des motifs temporels de manière non supervisée
ainsi que sur l’analyse d’images satellites. Dans le domaine bio-médical, nous travaillons
par exemple à prédire des réactions allergiques lors d’une transfusion sanguine à partir
de marqueurs moléculaires présents dans les poches de sang au moment de la transfu-
sion. Si des modèles relativement simples tels que les arbres de décision peuvent être
utilisés dans un premier temps, l’ajout de données concernant les patients, le caractère
non indépendant et identiquement distribué (I.I.D) de ces données ainsi que le grand
déséquilibre des classes apprises (il y a beaucoup moins de cas positifs) nous amène à
réfléchir sur de nouveaux algorithmes d’apprentissage plus efficaces dans un tel contexte.
C’est aussi le cas dans le domaine de la fraude bancaire où notre but est non seulement
de caractériser les fraudes (en terme d’achats et de profils utilisateur) mais également
d’identifier les profils de consommateurs (par exemple en utilisant les informations des
cartes de fidélité) pour réduire au maximum le nombre de faux positifs déclenchés par
les systèmes de détection automatique. Dans ce contexte, un même client peut faire
plusieurs transactions (éventuellement corrélées) au cours du temps (les données ne sont
donc pas I.I.D) et le pourcentage de fraudes est infime comparé au nombre de transac-
tions effectuées par exemple sur une année dans une châıne de magasins (les classes sont
donc également très déséquilibrées).

x (IN FRENCH) RÉSUMÉ ÉTENDU

Dans le cadre du TAL, nous travaillons actuellement dans deux contextes différents.
Dans le premier, nous cherchons à comprendre comment des modèles de langues peu-
vent être appris en prenant en compte le contexte précis dans lequel les phrases sont
prononcées. Dans le second, nous travaillons sur l’assistance intelligente au pilotage
de réunions. En particulier, nous cherchons à répondre à des questions du type: i)
Comment construire, manipuler et mettre à jour dynamiquement une représentation
sémantique des informations échangées au cours d’une réunion ? ii) Comment concevoir
de nouveaux algorithmes d’apprentissage automatique et de fouille de données capables
d’apprendre des modèles des interactions entre les participants à des réunions ? iii)
Comment prendre en compte l’information contextuelle d’une réunion pour rendre les
tâches précédentes plus précises ? En particulier, nous travaillons à apprendre automa-
tiquement les contraintes d’un CSP (”Constraint Satisfaction Problem”) en utilisant des
méthodes à la frontière entre la programmation logique inductive et la fouille de motifs.

Ce document dresse le bilan des travaux que j’ai pu mener ces dix dernières années.
Il montre la diversité des champs d’application et de recherche (en fouille de motifs et
en apprentissage automatique) que j’ai pu couvrir et qui ont donné lieu à des publica-
tions de très bonne qualité. Il illustre également mon implication dans l’encadrement
doctoral (2 étudiants ont soutenu leur doctorat et j’encadre actuellement 3 nouveaux
étudiants). Il n’y sera pas fait état du reste des activités valorisées dans le cadre d’une
HDR : l’encadrement de Masters (14 à ce jour), mon investissement dans l’administration
de la recherche (notamment à travers l’écriture de projets, la recherche de financements,
la participation à des jurys, des comités, des conseils, l’organisation de conférences, etc.)
mais aussi pour l’enseignement (par le biais des responsabilités que j’ai pu prendre, le
nombre de cours que j’ai pu enseigner et créer).

My Publications

Authored Journals/Top-conferences Peer-reviewed Articles

[1] Cécile Barat, Christophe Ducottet, Élisa Fromont, Anne-Claire Legrand, and Marc
Sebban. Weighted symbols-based edit distance for string-structured image clas-
sification. In Proceedings of the European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML/PKDD), volume 6321 of Lecture Notes
in Computer Science, pages 72–86. Springer, 2010.

[2] Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana Prado,
and Céline Robardet. An inductive database prototype based on virtual mining
views. In KDD, pages 1061–1064, 2008.

[3] Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana Prado,
and Céline Robardet. An inductive database system based on virtual mining views.
Data Min. Knowl. Discov., 24(1):247–287, 2012.

[4] Lucie Callens, Guy Carrault, Marie-Odile Cordier, Élisa Fromont, François Portet,
and Rene Quiniou. Intelligent adaptive monitoring for cardiac surveillance. In
ECAI, pages 653–657, 2008.

[5] Fabrice Cognasse, Aloui Chaker, Kim Anh Nguyen, Hind Hamzeh-Cognasse, Fa-
gan Jocelyne, Arthaud Charles-Antoine, Eyraud Marie-Ange, Marc Sebban, Elisa
Fromont, Bruno Pozzetto, Sandrine Laradi, and Olivier Garraud. Platelet com-
ponents associated with adverse reactions: predictive value of mitochondrial DNA
relative to biological response modifiers. Transfusion, page To appear, 2015.

[6] Marie-Odile Cordier, Élisa Fromont, and Rene Quiniou. Learning rules from multi-
source data for cardiac monitoring. International Journal of Biomedical Engineer-
ing and Technology (IJBET), special issue on ”Warehousing and Mining Complex
Data: Applications to Biology, Medicine, Behavior Health and Environment”, Vol-
ume 3, Issue 1/2:133–155, 2010.

[7] Fabien Diot, Élisa Fromont, Baptiste Jeudy, Emmanuel Marilly, and Olivier Mar-
tinot. Graph mining for object tracking in videos. In Machine Learning and Knowl-
edge Discovery in Databases - European Conference, ECML PKDD 2012, Bristol,
UK, September 24-28, 2012. Proceedings, Part I, volume 7523 of Lecture Notes in
Computer Science, pages 394–409, 2012.

[8] Basura Fernando, Élisa Fromont, Damien Muselet, and Marc Sebban. Discrimina-
tive feature fusion for image classification. In 2012 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Providence, RI, USA, June 16-21,, pages
3434–3441, 2012.

xii

[9] Basura Fernando, Élisa Fromont, Damien Muselet, and Marc Sebban. Supervised
learning of gaussian mixture models for visual vocabulary generation. Pattern
Recognition, 45(2):897–907, 2012. 1.2.2, 1.2.2

[10] Basura Fernando, Élisa Fromont, and Tinne Tuytelaars. Effective use of frequent
itemset mining for image classification. In ECCV 2012 - 12th European Confer-
ence on Computer Vision, Florence, Italy, October 7-13, 2012, Proceedings, Part I,
volume 7572 of Lecture Notes in Computer Science, pages 214–227. Springer, 2012.

[11] Basura Fernando, Élisa Fromont, and Tinne Tuytelaars. Mining mid-level features
for image classification. International Journal of Computer Vision, 108(3):186–203,
2014.

[12] E. Fromont, M.-O. Cordier, and R. Quiniou. Extraction de connaissances provenant
de données multisources pour la caractérisation d’arythmies cardiaques. RNTI-E-4,
Cepaduès Editions, Fouille de données complexes, 2005.

[13] E. Fromont, R. Quiniou, and M.-O. Cordier. Learning rules from multisource data
for cardiac monitoring. In S. Miksch, J. Hunter, and E. Keravnou, editors, AIME’05
(Artificial Intelligence in Medicine), volume 3581 of LNAI, pages 484–493, Ab-
erdeen, Scotland, July 2005. Springer Verlag.

[14] Elisa Fromont, Marie-Odile Cordier, and René Quiniou. Learning from multi source
data. In PKDD’04 (Knowledge Discovery in Databases), volume 3202 of Lecture
Notes in Artificial Intelligence, pages 503–505, Pise, Italie, 2004. Springer.

[15] Élisa Fromont, Adriana Prado, and Céline Robardet. Constraint-based subspace
clustering. In Proceedings of the SIAM International Conference on Data Mining,
SDM 2009, April 30 - May 2, 2009, Sparks, Nevada, USA, pages 26–37. SIAM,
2009.

[16] Hoang Thanh Lam, Wenjie Pei, Adriana Prado, Baptiste Jeudy, and Élisa Fromont.
Mining top-k largest tiles in a data stream. In Machine Learning and Knowl-
edge Discovery in Databases - European Conference, ECML PKDD 2014, Nancy,
France, September 15-19, 2014. Proceedings, Part II, pages 82–97, 2014.

[17] Kim Anh Nguyen, Hind Hamzeh-Cognasse, Marc Sebban, Elisa Fromont, Patricia
Chavarin, Lena Absi, Bruno Pozzetto, Fabrice Cognasse, and Olivier Garraud.
A computerized prediction model of hazardous inflammatory platelet transfusion
outcomes. PLoS One, 9(5):e97082, 2014.

[18] S. Nijssen and E. Fromont. Mining optimal decision trees from itemset lattices.
In SIGKDD International COnference on Knowledge Discovery and Data Mining,
pages 530–539, San Jose, CA, USA, 2007.

[19] Siegfried Nijssen and Elisa Fromont. Optimal constraint-based decision tree in-
duction from itemset lattices. Data Mining and Knowledge Discovery, 21(1):9–51,
2010.

[20] Adriana Prado, Baptiste Jeudy, Élisa Fromont, and Fabien Diot. Mining spatiotem-
poral patterns in dynamic plane graphs. Intell. Data Analysis, 17(1):71–92, 2013.

xiii

[21] Hoang-Tung Tran, Élisa Fromont, François Jacquenet, and Baptiste Jeudy. Accu-
rate visual features for automatic tag correction in videos. In Advances in Intelligent
Data Analysis XII - 12th International Symposium, IDA 2013, London, UK, Oc-
tober 17-19, 2013. Proceedings, pages 404–415, 2013.

Other Authored Articles (including books, peer-reviewed
workshops and national conferences)

[22] Leonor Becerra-Bonache, Elisa Fromont, Amaury Habrard, Michael Perrot, and
Marc Sebban. Speeding up syntactic learning using contextual information. In
JMLR: Workshop and Conference Proceedings, pages 1–5, 2012.

[23] H. Blockeel, T. Calders, E. Fromont, B. Goethals, and A. Prado. Mining views:
Database views for data mining. In ECML/PKDD-2007 International Workshop on
Constraint-Based Mining and Learning (CMILE), pages 21–33, Warsaw, Poland,
2007.

[24] Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, and Adriana Prado.
Mining views: Database views for data mining. In Proc. IEEE ICDE, pages 1608–
1611, 2008.

[25] Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana Prado, and
Céline Robardet. Inductive querying with virtual mining views. In Sašo Džeroski,
Bart Goethals, and Panče Panov, editors, Inductive Databases and Constraint-
Based Data Mining book. Springer, Germany, 2010.

[26] Hendrik Blockeel, Toon Calders, Élisa Fromont, Bart Goethals, Adriana Prado, and
Céline Robardet. A practical comparative study of data mining query languages.
In Sašo Džeroski, Bart Goethals, and Panče Panov, editors, Inductive Databases
and Constraint-Based Data Mining book. Springer, Germany, 2010.

[27] Toon Calders, Élisa Fromont, Hoang Thanh Lam, and Baptiste Jeudy. Analysis
of videos using tile mining. In ECML/PKDD Workshop on Real-World Challenges
for Data Stream Mining, 2013.

[28] Fabien Diot, Elisa Fromont, Baptiste Jeudy, Emmanuel Marilly, and Olivier Mar-
tinot. Unsupervised tracking from clustered graph patterns. In International Con-
ferencerence on Pattern Recognition, 2014.

[29] B. Fernando, E. Fromont, D. Muselet, and M. Sebban. Accurate visual word
construction using a supervised approach. In Image and Vision Computing New
Zealand (IVCNZ), 2010 25th International Conference of, pages 1–7, Nov 2010.

[30] E. Fromont, M.-O. Cordier, R. Quiniou, and A.I. Hernandez. Kardio and calicot:
a comparison of two cardiac arrhythmia classifiers. In AIME’03 Workshop: Quali-
tative and Model-based Reasoning in Biomedicine, pages 29–33, Protaras, Cyprus,
2003.

xiv

[31] E. Fromont and F. Portet. Pilotage d’un système de monitoring cardiaque mul-
tisource. In Actes de conférence de MajecStic’2005 (MAnifestation des JEunes
Chercheurs STIC), pages 346–354, Rennes, France, 2005.

[32] E. Fromont, R. Quiniou, and M-O. Cordier. Apprentissage multisource par pro-
grammation logique inductive. In RFIA’2006 : 15ème Congrès Reconnaissance des
Formes et Intelligence Artificielle, page pp.115, Tours, France, 2006.

[33] Élisa Fromont, Hendrik Blockeel, and Jan Struyf. Integrating decision tree learning
into inductive databases. In Sašo Džeroski and Jan Struyf, editors, Knowledge Dis-
covery in Inductive Databases ”Revised selected papers of the workshop KDID’06”,
volume 4747 of Lecture Notes in Computer Science, pages 81–96. Springer Berlin
Heidelberg, 2007.

[34] Taygun Kekec, Rémi Emonet, Elisa Fromont, Alain Trémeau, and Christian Wolf.
Contextually constrained deep networks for scene labeling. In Proceedings of the
British Machine Vision Conference (BMVC), 2014.

[35] Taygun Kekec, Rémi Emonet, Elisa Fromont, Alain Trémeau, and Christian Wolf.
Prise en compte du contexte pour contraindre les réseaux profonds: Application à
l’Étiquetage de scènes. In CAp’2014 (Conférence d’Apprentissage), Saint-Etienne,
2014.

[36] Hoang Thanh Lam, Wenjie Pei, Adriana Prado, Baptiste Jeudy, and Élisa Fromont.
Extraction des k plus grandes tuiles dans un flux de données. In CAp’2013
(Conférence d’Apprentissage), Lille, 2013.

[37] Adriana Prado, Baptiste Jeudy, Elisa Fromont, and Fabien Diot. PLAGRAM :
un algorithme de fouille de graphes plans efficace. In Conférence d’Apprentissage
(CAp), pages 342–360, 2011.

[38] René Quiniou, Lucie Callens, Guy Carrault, Marie-Odile Cordier, Elisa Fromont,
Philippe Mabo, and François Portet. Intelligent adaptive monitoring for cardiac
surveillance. In Isabelle Bichindaritz, Sachin Vaidya, and Ashlesha Jain, editors,
Computational Intelligence in Healthcare 4, Advanced Methodologies Series: Studies
in Computational Intelligence. Springer, Germany, 2010.

[39] Jose Carlos Rangel, Miguel Cazorla, Ismael Garcia-Varea, Jesus Martinez-Gomez,
Elisa Fromont, and Marc Sebban. Computing image descriptors from annotations
acquired from external tools. In ROBOT 2015: Second Iberian Robotics Conference,
Lisbon, Portugal, 2015.

[40] Hoang-Tung Tran, Élisa Fromont, François Jacquenet, Baptiste Jeudy, and Adrien
Martins. Unsupervised video tag correction system. In Extraction et gestion des
connaissances (EGC’2013), Actes, 29 janvier - 01 février 2013, Toulouse, France,
pages 461–466, 2013.

[41] Imtiaz Masud Ziko, Elisa Fromont, Damien Muselet, and Marc Sebban. Supervised
spectral subspace clustering for visual dictionary creation in the context of image
classification. In ACPR 2015: 3rd IAPR Asian Conference on Pattern Recognition,
Kuala Lumpur, Malaysia, 2015.

Chapter 1

Introduction

This is the era of “Big Data”. This catchword is present everywhere in the media
and in most of our research calls for projects. For good reasons: the amount of data
(on every possible subjects) and its complexity is growing incredibly fast (thanks to
smarter computing devices, more accessible acquisition tools, cheaper storage facilities,
worldwide connections to name a few). Just as a particular example, according to
a market survey performed by IDC1, between 2009 and 2020 the amount of digital
information will grow by a factor of 44. In the case of digital multimedia content
and if we consider for example the particular case of YouTube, the statistics provided
by that company2 say that, in 2014, ”over 6 billion hours of video are watched each
month on YouTube — that’s almost an hour for every person on Earth, and 100 hours
of video are uploaded to YouTube every minute”. If “with great power comes great
responsibility” then, for sure, with great data comes the necessity to design great tools
to make sense of them. That is where data mining comes into play. The data mining
step is a subpart of the knowledge discovery process which consists in discovering useful
(unexpected, targeted, descriptive, meaningful) information in data. Data miners have
not waited for the “Big data” era to come out to start designing algorithms that are as
efficient as possible and can tackle large and complex data. In particular, the researches
presented in this document focus on the use of constraints to either make data mining
algorithms more efficient and/or more meaningful and/or more accurate (e.g. in the
case of classification tasks).

Chapter 2 of this document will be dedicated to constraint-based data mining in
the context of inductive databases (IDB). In particular, it will present a number of
contributions that I have made in this domain during my Post-doc at the KULeuven
(between 2006 and 2008) with Prof. Hendrik Blockeel. An inductive database is a
database that contains not only data, but also generalizations (patterns and models)
valid in the data. For such databases, ordinary (SQL) queries can be used to access and
manipulate data, while inductive queries can be used to generate (mine), manipulate,
and apply patterns.

We first designed, in collaboration with researchers in Antwerp a system which stores
frequent itemsets, association rules [2, 3], [24, 26, 25] and decision trees [23] in a straight-
forward way, using usual relational database tables and the standard SQL language to
represent, store and query the new generalizations made on the data. From the user’s

1J. Gantz and D. Reinsel, “The Digital Universe Decade, Are You Ready?,” 2011. http://www.emc.

com/digital_universe
2http://www.youtube.com/yt/press/statistics.html

1

http://www.emc.com/digital_universe
http://www.emc.com/digital_universe

2 CHAPTER 1. INTRODUCTION

point of view, tables with itemsets, rules, trees, etc. exist and can be queried like any
other table. How these tables are filled (which data mining algorithm is run, with which
parameters, etc.) is transparent. For example, when mining itemsets to discover as-
sociation rules, the user imposes some constraints on the rules to be found (typically
confidence and support) and the algorithm yields the set of all rules fulfilling these
conditions. On the contrary, typical machine learning algorithms, e.g. decision tree
learners, only compute one particular model. In the case of decision tree, this computed
tree is generally not the most accurate tree on the training set, nor the smallest one,
nor the most likely to generalize well according to some criteria; the learning algorithm
only tends to give relatively small trees with relatively high accuracy. The algorithm
has usually a number of parameters, the meaning of which can be described quite pre-
cisely in terms of how the algorithm works, but not in terms of the results it yields. By
integrating constraint-based mining of decision tree learning into inductive databases,
we wanted to have an approach for decision tree learning that was just as precise as it
was for association rules discovery: the user specifies what kind of trees he wants, and
the system looks for such trees.

The complexity issues inherent to exhaustively searching for the best model, par-
ticularly in this Big Data context, naturally brought me to a second related research
direction also described in Chapter 2: the search for efficient constraint-based deci-
sion tree learning algorithms that could be integrated in an IDB. In collaboration with
Siegfried Nijssen (also post-doc at KULeuven at that time), we developed DL8 [18, 19],
an algorithm to learn decision trees under constraints which optimizes criteria such as
the size, the accuracy or the depth of the tree. The constraints used are: the minimal
number of examples in each leaf of the tree, the size, depth and accuracy of the tree.
The key idea behind our algorithm is that there is a relationship between constraints on
decision trees and constraints on itemsets. We showed that optimal decision trees can be
extracted from lattices of itemsets in linear time and gave several strategies to efficiently
build these lattices. Apart from its obvious use in the context of inductive databases,
such an algorithm can be used to evaluate the performance and better understand the
behavior of current heuristic decision trees learners. For example, we showed that un-
der the same constraints, DL8 obtains better test accuracy results than the well-known
decision tree learner C4.5, which confirms that exhaustive search does not always imply
over-fitting.

We also investigated how clustering algorithms could fit in this setting in [15]. We
showed that to find efficiently an ”optimal” clustering (i.e. which would exactly fulfills
some user requirements), an approach could be to look at different subspaces under
constraints such as the size of the clusters but also instance-level constraints which
could give some information about whether two objects should be part of the same
cluster or not. Chapter 2 also includes the description of an exhaustive constraint-based
graph mining algorithm called Plagram and its extension to dynamic graphs called
DyPlagram. These algorithms were developed more recently but could well fit in the
context of inductive databases.

Note that during this stay in Belgium, I worked in the context of national Belgium
projects (funded by FWO) and in the context of the European project FP6-IST IQ
(Inductive Queries for Mining Patterns and Models). This international working context
helped me to start collaborations with renowned European research groups which are
still active nowadays and have resulted in several bilateral visits and publications.

Chapters 3 and 4 present either new methods that were driven by computer vision
applications or applications of methods presented in Chapter 2 to computer vision prob-

3

lems. These works coincide with my arrival at Jean Monnet University in Saint-Etienne
as an associate professor in September 2008. I joined the “Machine Learning” team
(now called “Data Intelligence”) of Marc Sebban in the Hubert Curien laboratory. This
team is part of a “Computer Science, Image processing and Telecom” department and
I naturally started to work on computer vision related problems with the members of
the image processing team. In particular, some members of both the computer and the
image processing teams were involved in a joint ANR national project called SATTIC
and were working on designing algorithms for structured data to solve some simple im-
age classification tasks. In particular, the choices of the low level features and of the
structure to use were an open problem.

A common approach to represent an image content was to use histograms of color,
texture and edge direction features [59, 119]. Although they are computationally effi-
cient, such histograms only use global information and so provide a crude representa-
tion of the image content. That’s why, in the 2000’s, most of the image classification
techniques were using other features called bag-of-visual-words (BOW). These features
come from the bag-of-words representation of text documents [112]. They are computed
through four basic steps: (i) a keypoint detection step, (ii) a keypoint description step,
(iii) a codebook creation step and (iv) an image representation step. Keypoints refer
to small regions of interest in the image. They can be sampled densely [86], randomly
[122] or extracted with various detectors [100]. Once extracted, keypoints are charac-
terized using a local descriptor, the most widely used (and the one mainly used in this
document) being SIFT [96]. A visual codebook is then learned over the collection of
descriptors of a training set by using a clustering algorithm [64]. Each cluster represen-
tative (typically the centroid) is considered as a visual word of a visual dictionary and
each image can then be mapped into this new space of visual words leading to a BOW
(or histogram of visual words) [64].

Most of my research works of the last years have been focused on improving this
BOW representation mainly by adding some structural information to this initial image
representation. We first proposed a method for representing images in the form of
strings whose symbols were weighted according to a TF-IDF-based weighting scheme,
inspired from information retrieval. To be able to handle such real-valued weights, we
introduced a new weighted string edit distance that kept the properties of a distance
[1]. The chosen string representation seemed too arbitrary to be broadly used for image
classification. Therefore, we decided to focus on a critical step in the BOW creation
process: the clustering algorithm (step iii mentioned before). In image processing, the
number of labeled image datasets available is important. We thus decided to improve
the k-means algorithm that was traditionally used for the BOW creation step by taking
into account partial supervised information directly while building the visual vocabulary
[9],[29, 41]. In particular, our Pattern Recognition article [9] describes how to integrate a
semi-supervised optimization term while learning the parameters of a Gaussian mixture
model (GMM) over the space of descriptors. This GMM is used to build a soft clustering
where each image is partially assigned to some clusters such that images of the same
class are more likely to belong to the same clusters. We then explored how to extend
logistic regression-based algorithms to multi-class problems to be able to select the
most discriminant visual worlds in a large dictionary (or a concatenation of multiple
dictionaries) [8]. The parameters of the regression were used to weigh the visual words
and keep the most discriminant ones for the given classification problem. We also
designed a new marginalized kernel for SVM which could use directly the probabilities
output by the regression algorithm. This method is particularly relevant when, in a Big

4 CHAPTER 1. INTRODUCTION

Data context, one cannot decide what the best low level features to learn a dictionary
are, or how big these dictionaries should be. This method allowed us to obtain state-of-
the-art results for many image classification benchmark datasets.

In parallel to these works, we decided to assess the use of unsupervised methods such
as the pattern mining methods described in Chapter 2 to improve the current image and
video low level representations. We showed that frequent patterns over BOW followed
by a smart post-processing step to select the best patterns, could help us to build a very
good mid-level representation that could be further used by classification algorithms
such as SVMs [10, 11]. In particular our proposed method drastically improved the
state-of-the-art results in image classification over a very large set of datasets (excluding
benchmarks such as IMAGENET which can contain several millions of images and for
which other kinds of methods are more successful as discussed in the conclusion of this
document). The post-processing steps proposed also helped extending the state-of-the-
art in pattern mining and in particular in discriminative subgroup discovery.

These past seven years in Saint-Etienne have allowed me to gain some experience
in supervising PhD students. I have co-supervised (with Baptiste Jeudy and François
Jacquenet) two PhD theses on subjects at the crossroad between pattern mining and
video analysis. The PhD thesis of Fabien Diot, defended in June 2014, dealt with the
use of graph mining for object tracking in videos. This thesis was done in collaboration
with an industrial partner, Alcatel-Lucent Bell-Labs, and allowed us to file two patents.
We have shown that frequent patterns, and in this case, subgraph patterns, could be
relevant features to track objects in videos without any supervised information and in
very general contexts [20, 7], [28, 37]. In particular, our method is especially promising
when the objects to track are not known in advance, can take any shape and, when
the camera as well as the objects, are moving (which prevents us to use a standard
background subtraction technique). The second thesis from Hoang-Tung Tran, defended
in July 2014, dealt with automatically correcting tags in videos uploaded in general
platform such as Youtube. Our main assumption was that tags that are manually
added to videos are, in general, either incomplete or incorrect. To automatically correct
the tags, we relied on visual information to compare similar videos (based on shared
frequent visual patterns) and on a propagation method to remove or add new tags to
a video according to its neighbors [21],[40]. On a similar application domain, I also
collaborated with Belgian colleagues met during my Post-doc on the problem of mining
frequent patterns in data streams [16],[27, 36]. Besides helping us to analyze videos
in real time (which was not possible with the previous PhD works), the new proposed
algorithms also contributed to improve the state-of-the-art in constraint-based stream
mining.

Finally, in 2014, the Solstice (Similarity of locally structured data in computer vi-
sion) ANR project that I led was accepted. This project aims to explore the use of lo-
cally structured data, which combine visual features (such as interest points, segmented
regions or visual words in images) with discrete structures (such as strings, trees, com-
binatorial maps or, more generally, graphs) in order to model local (spatio-temporal)
relationships holding between these features. Since then, I am co-supervising two new
PhD students who are working on the (supervised or not) discovery of discriminative
representations for image and video analysis. The first PhD student, Romain Deville
(co-supervised with Baptiste Jeudy and Christine Solnon from the LIRIS) works on a
topic which is a direct continuation of Fabien Diot’s PhD thesis. He explores the use
of subgraphs patterns to analyze 2D and 3D objects (in particular images and videos).
In particular, Romain is developing new geometric graph mining algorithms to extract

5

different kinds of substructures from a database of graphs. The second PhD student,
Damien Fourure, works on a very popular machine learning technique since the rise of
the Facebook research center : deep-learning. His subject is related to learning with deep
neural networks how to fully label outdoor scenes using both temporal and 3D informa-
tion [34, 35, 39]. Deep learning is one of the most successful learning method in computer
vision nowadays (it is also very successful in other domains such as speech recognition
and natural language processing) thanks to the availability of huge datasets and of the
still increasing processing power of computers. With this PhD subject, we hope to be
able not only to contribute to the field of machine learning but also to compare deep
learning approaches to the pattern mining methods previously mentioned.

This Habilitation à Diriger des Recherches aims at assessing the work I did for the
last ten years after defending my PhD thesis. It shows not only the coherence but
the evolution and the multidisciplinary aspects of my work. It is organized as follows.
In Chapter 2, I will present the constraint-based exhaustive data mining tools I have
developed in the context of inductive databases. In particular, I will focus on the
definition of a general framework of inductive database and then on the constraints and
their properties to restrict the search space and make this exhaustive search possible
in the case of decision trees, clustering, closed sets and graph mining. Chapters 3 and
4 will develop my computer vision applications and will give some results obtained by
applying the previously introduced algorithms as well as new algorithms dedicated to
this particular context. I will, in particular, cover applications in image classification
and object tracking in videos. The last chapter concludes this report and draws some
possible prospects for this work.

Chapter 2

Constraint-based Data Mining for
Inductive Databases

Data mining is not a one-shot activity, but rather an iterative and interactive process.
During the whole discovery process, many different data mining tasks are usually per-
formed, their results are combined, and possibly used as input for other data mining
tasks. To support this knowledge discovery process, there is a need for integrating
data mining with data storage and management. The concept of inductive databases
(IDB) has been proposed as a means of achieving such integration [83]. This chapter
will first present the framework, called Mining views we proposed to implement such
inductive databases and will then present two constraint-based exhaustive algorithms
DL8 and Plagram that have been developped and can be integrated in this context.
To understand this chapter, we expect the reader to have some knowledge about data
mining in general and pattern mining in particular. For further information, we refer
the interested reader to [80].

1 Mining Views

To tackle the task of building an IDB, one has to i) choose a query language that can
be general enough to cover most of the data mining and machine learning toolkit while
providing enough flexibility to the users in terms of constraints, ii) ensure a closure
property to be able to reuse intermediate results, and iii) provide an intuitive way to
interpret the results.

Here, we describe how such an inductive database can be implemented in practice, as
presented in [56], [2] and [33, 24]. Contrary to numerous proposals of data mining query
languages [79, 99, 84, 124, 125, 115, 126, 104, 50], we propose a relational database
model based on the so-called virtual mining views. The mining views are relational
tables that virtually contain the complete output of data mining tasks. E.g., for itemset
mining, we would consider that any IDB contains a table called Sets virtually storing all
frequent patterns. In other words, as far as the user is concerned, all possible patterns
are stored. On the physical layer, however, these tables are actually empty; whenever
a query is formulated selecting, for instance, itemsets from these tables, the database
system triggers a data mining algorithm (e.g., Apriori [43]), which computes the result
of the query, in exactly the same way that normal views in databases are only computed
at query time, and only to the extent necessary for answering the query. The complete
model is illustrated in Figure 2.1.

6

1. MINING VIEWS 7

Figure 2.1: An Inductive Database.

create table T Concepts
select A1, A2, . . . , An
from T
group by cube
A1, A2, . . . , An

Figure 2.2: Data cube.

A user can use the mining views in his or her query as if they were regular database
tables. Given a query, the parser is then invoked by the database system, creating an
equivalent relational algebra expression. At this point, the expression is processed by
the Mining Extension which extracts from the query the constraints to be pushed into
the data mining algorithms. The output of these algorithms is then materialized in the
mining views. After the materialization, the work flow of the system continues as usual
and, as a result, the query is executed as if all patterns and models were always stored
in the database.

The mining views framework consists of relational tables that virtually contain the
complete output of data mining algorithms executed over a given dataset. Every time
a dataset T is created in the system, all virtual mining views associated with T are
automatically created.

In order to represent the patterns and models as general as possible, we propose
to add to the system a mining view called Concepts. Given a table T (A1, . . . , An),
let Dom(T) = Dom(A1) × . . . × Dom(An) denote the domain of T . The mining view
T Concepts(cid , A1, . . . , An) is such that for every tuple t in T , there exist up to 2n

unique tuples {t′1, . . . , t′2n} in T Concepts. More specifically, for any t in T , T Concepts
contains all t′ for which it holds that for each Aj , t

′
i.Aj = t.Aj or t′i.Aj =′?′.

In fact, T Concepts represents exactly a data cube [77] built from table T with the
difference that the dummy value “ALL” introduced in [77] is replaced by the value ‘?’
(see Figure 2.3). By following the syntax introduced in [77], the mining view T Concepts
would be created with the SQL-query shown in Figure 2.2 (consider adding cid after its
creation).

As each of the concepts can actually cover more than one tuple in T , a unique identi-
fier cid is associated to each of them. A tuple, or concept, (cid , a1, . . . , an) ∈ T Concepts
represents all tuples from Dom(T) satisfying the condition

8 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

playtennis
Day Outlook Temp Humidity Wind Play

D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
.

P laytennis Concepts
cid Day Outlook Temp Humidity Wind Play

1 ? Sunny ? High ? No
2 ? Sunny ? Normal ? Yes
3 ? Overcast ? ? ? Yes
4 ? Rain ? ? Strong No
5 ? Rain ? ? Weak Yes
6 ? ? ? ? ? ?
. .

Figure 2.3: The playtennis data table and its corresponding mining view Concepts.

∧
i|ai 6=′?′ Ai = ai.

Figure 2.3 shows a data table for the classic playtennis example [102], together
with a sample of its corresponding mining view Concepts.

1.1 Representing Models as Sets of Concepts

Given a data table T , and its corresponding mining view T Concepts, we now explain
how a variety of models can be represented using yet other mining views. Although all
mining views are defined over T , we omit the prefix T when it is clear from the context.

1.1.1 Itemsets and Association Rules

As itemsets in a relational database are conjunctions of attribute-value pairs, they can
be represented as concepts. The result of frequent itemset mining can therefore be repre-
sented by a view Sets(cid , supp). For each itemset, there is a tuple with cid the identifier
of the itemset (concept) and supp its support. Also other attributes, such as χ2 [103] or
any correlation measure, could be added to the view to describe the itemsets. Similarly,
association rules can be represented by a view Rules(rid , cida, cidc, cid , conf), where
rid is the rule identifier, cida and cidc are the identifiers for the concepts representing
the antecedent and the consequent of the rule respectively, cid is the union (disjunction)
of these, and conf is the confidence of the rule. Again, many other attributes, such as
lift, conviction, or gini index, could be added to describe the rules.

In Figure 2.4, queries (A) and (B) are example mining queries over itemsets and
association rules, respectively. Query (A) asks for itemsets having support of at least
30 and size of at most 5, while query (B) asks for association rules having support of at
least 30 and confidence of at least 80%. Note that these two common data mining tasks
and the well known constraints “minimum support” and “minimum confidence” can be
expressed quite naturally with SQL queries over the mining views.

1.1.2 Decision Trees

A decision tree learner typically induces a single decision tree from a data set. This
setting contrasts strongly with discovery of itemsets and association rules, which is set-

1. MINING VIEWS 9

(A) (B)

select C.*, S.supp
from Sets S, Con-
cepts C
where C.cid = S.cid

and S.supp ≥ 30
and S.sz ≤ 5

select R.rid,
C1.*, C2.*,
R.conf

from Sets S, Rules R,
Concepts C1,
Concepts C2

where R.cid = S.cid
and C1.cid =

R.cida
and C2.cid =

R.cidc
and S.supp ≥ 30
and R.conf ≥ 80

Figure 2.4: Example mining queries over itemsets and association rules.

oriented: given certain constraints, the system finds all itemsets or association rules that
fit the constraints.

In decision tree induction, given a set of (sometimes implicit) constraints, one tries
to find one tree that fulfills the constraints and, besides that, optimizes some other
criterion.

In the inductive databases context, decision tree induction looks somewhat different.

Here, a user would typically write a query asking for all trees that fulfill a certain
set of

constraints, or optimizes a particular condition. The user might ask, for instance,
for the tree

with the highest training set accuracy among all trees of size at most 5; or the tree
that

maximizes some function of size and training set accuracy. This leads to a much
more declarative

way of mining for decision trees.

Such an approach blends in nicely in the virtual mining views framework. The set
of all trees

predicting a particular target attribute Ai from other attributes is represented by a
view

Trees Ai(treeid, cid). A unique identifier treeid is associated with each tree and

each of the trees is described as a set of concepts cid, each concept describing one
leaf

of the tree. Figure 2.5 shows a decision tree built to predict

the attribute Play using all other attributes in the data table, and its representation

in the mining view Trees P lay, using the mining view Concepts from

Figure 2.3.

Additionally, a view representing several characteristics of a tree learned for one
specific target attribute Ai is added: Treescharac Ai (treeid , acc, sz). For every tree,
there is a tuple with a tree identifier treeid and its corresponding accuracy (acc) and
size (sz, in number of nodes). Again, other attributes could be added to describe the
decision trees.

10 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

Trees P lay

treeid cid

1 1

1 2

1 3

1 4

1 5

Outlook

sunnysssss

sssss overcast rain
IIIII

IIII

Humidity

high
���

���� normal
999

9999

?>=<89:;Yes Windy

strong
			

			 weak
666

6666

?>=<89:;No ?>=<89:;Yes ?>=<89:;No ?>=<89:;Yes

Figure 2.5: Decision Tree built to predict the attribute Play.

In Figure 2.6, we present some example mining queries over decision trees. Query (C)
selects decision trees having the attribute Play as the target attribute, having maximal
accuracy among all possible decision trees of size ≤ 5. Query (D) asks for decision trees
having a test on “Outlook=Sunny” and on “Wind=Weak”, with a size of at most 5 and
an accuracy of at least 80%.

(C) (D)

select T.treeid, C.*
from Concepts C, Trees Play
T,

Treescharac Play D
where T.cid = C.cid

and T.treeid = D.treeid
and D.sz ≤ 5
and D.acc =
(select max(acc)
from Treescharac Play
where sz ≤ 5)

select T1.treeid, C1.*, C2.*
from Trees Play T1, Trees Play
T2,

Concepts C1, Concepts C2,
Treescharac Play D

where C1.Outlook = ’Sunny’
and C2.Wind = ’Weak’
and T1.cid = C1.cid
and T2.cid = C2.cid
and T1.treeid = T2.treeid
and T1.treeid = D.treeid
and D.sz ≤ 5
and D.acc ≥ 80

Figure 2.6: Example mining queries over decision trees.

Prediction In order to classify a new example using one or more of the learned decision
trees, one simply looks up the concept that covers the new example. More generally, if
we have a test set S, all predictions of the examples in S are obtained by equi-joining
S with the semantic representation of the decision tree given in the virtual mining view
Concepts. We join S to Concepts using a variant of the equi-join that requires that
either the values are equal, or there is a wildcard value.

Consider the playtennis example of Figure 2.3. Figure 2.7
shows a query that predicts the attribute Play for all unclassified examples in table
Test set(Day, Outlook,Temp,Humidity,Wind), using the tree of Figure 2.5 (which

has identification number 1).

1.1.3 Clustering

We focus here on non-probabilistic extensional clustering procedures, i.e., procedures
that

1. MINING VIEWS 11

(E)
select T.treeid, S.*, C.Play
from Test set S, Concepts C, Trees Play T
where T.cid = C.cid

and (S.Outlook = C.Outlook or C.Outlook =
’?’)

and (S.Temp = C.Temp or C.Temp = ’?’)
and (S.Humidity = C.Humidity or

C.Humidity = ’?’)
and (S.Wind = C.Wind or C.Wind = ’?’)
and T.treeid = 1

Figure 2.7: Prediction query.

defines clusters simply as sets of elements. Clusterings are then easily represented
as sets of clusters which are themselves sets of instances or concepts.

All possible clusterings that can be learned from T are represented in the view
Clusterings(clusid , clid) and all clusters belonging to all clusterings are represented in
the view Clusters(clid , cid). A unique identifier clusid is associated to each clustering
and each of the clusterings is described by a set of clusters. A unique identifier clid is
associated to each cluster and each of the clusters is described by a set of concepts.

Again, a view representing the characteristics of all clusterings is added:
Clusteringscharac(clusid , sz), with sz the number of clusters. Of course other attributes
could be added to this view.

Note that since the mining views Concepts virtually contain a finite number of con-
cepts (depending on the data table), the number of partitions (in the case of clustering)
as well as the number of trees that can be described using these concepts is also finite.

In Figure 2.8, queries (F) and (G), respectively, are examples of how the user can
formulate the popular must-link (two instances must be in the same cluster) and cannot-
link (two instances must not be in the same cluster) constraints [123] in our approach.
In both queries, I Concepts(Day, cid) is a view associating every instance in the data
table with its covering concepts, which can be easily created by the user. Hence, query
(F) asks for clusterings in which the instances “D1” and “D2” are in the same cluster,
that is, in which both instances are covered by concepts describing the same cluster.
Query (G) is formulated by using the opposite reasoning.

For more examples of possible scenarii, we refer the reader to [2] and [24, 25]. Note
that a subspace clustering algorithm which could interact with the Concepts table has
been published in [15].

1.2 Discussion

Note that the system can potentially support as many virtual mining views as types of
patterns of interest. To make the framework more general, we have represented it by
an intuitive common set of mining views. However, this framework should be extended
to fit more structured data such as, e.g. graphs. Graphs are typically well represented
in a relational databases (and not in a single “flat” table as shown in Figure 2.3) using
separate tables to describe its edges and nodes. In the case of such structure data, the
Concepts table would not be sufficient to describe the components of the graph as it
lacks structural information. One possibility to describe a graph would be to use a table

12 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

(F) (G)

select C.*
from Clustering C

Clusters Cl1, Clusters Cl2,
I Concepts I1, I Concepts

I2
where I1.Day = ’D1’

and I2.Day = ’D2’
and Cl1.cid = I1.cid
and Cl2.cid = I2.cid
and Cl1.clid = Cl2.clid
and C.clid = Cl1.clid

select C1.*
from Clustering C1, Cluster-
ing C2,

Clusters Cl1, Clusters Cl2,
I Concepts I1, I Concepts

I2
where I1.Day = ’D1’

and I2.Day = ’D2’
and Cl1.cid = I1.cid
and Cl2.cid = I2.cid
and C1.clusid = C2.clusid
and C1.clid = Cl1.clid
and C2.clid = Cl2.clid
and Cl1.clid ¡¿ Cl2.clid

Figure 2.8: Example mining queries over clusterings.

Subgraphs instead of the table Concepts to describe the possible subgraphs of a single
graph or of a graph database.

Besides the design of a general and intuitive framework, another problem that arises
when creating such an inductive database concerns the types of constraints that can
actually be extracted from the mining queries. A first step towards solving this problem
is described in [56]. For implementation details and use case, the reader can refer to [3]
and [25, 26].

The last problem concerns the availability of algorithms that can find an exact
solution in a reasonable time with respect to the constraints that can be extracted from
the query. The next two sections present two attempts to design such algorithms first
for decision tree learning and then for graph mining.

2 Induction of Optimal Decision Trees

Decision trees are among the most popular predictive models and have been studied from
many perspectives. However, no general framework exists to constrain the induction of
decision trees and guarantee an exact result with respect to the given constraints. On
the other hand, the topic of exhaustively (i.e exactly) determining all patterns satisfying
certain constraints has been studied extensively in the area of local pattern mining (see
[42, 133, 81] to cite a few of the initial works). A natural question addressed in this
section, is hence if we can exploit the experience in local pattern mining for the discovery
of decision trees under constraints. As such, our work takes the LeGo approach [88, 54],
in that it studies how local pattern mining techniques can be used to build global models.

Our main starting point is that many decision tree learning problems can be formu-
lated as queries of the following canonical form:

argmin
T

f(T) subject to ϕ(T), (Canonical Decision Tree Learning Query)

i.e, we are interested in finding the best tree(s) according to a function f(T), among all
trees which fulfill the constraints specified in the formula ϕ(T).

2. INDUCTION OF OPTIMAL DECISION TREES 13

For instance, the following questions could be of interest for a decision tree user:

• Which tree has the smallest error? In this case f(T) is an error function that we
wish to minimize.

• Which is the smallest tree with sufficiently high accuracy? In this case the (rank-
ing) function f(T) should prefer smaller trees among sets of sufficiently accurate
trees. Alternatively, we can reformulate the problem in a Bayesian setting [55, 62].

• Which tree is least sensitive to noise in the class labels? This could require that
every leaf of a decision tree has at least a significant majority class. The latter
can be seen as a constraint ϕ(T) on the trees of interest.

• Which tree preserves privacy best by being well-balanced? This would impose a
constraint ϕ(T) on the trees of interest [75, 97].

• Which tree incurs the smallest amount of classification costs? For example, it
can be desirable that the expected costs for classifying examples do not exceed a
certain predefined threshold value [116].

• Which tree is most justifiable from an expert’s perspective, by satisfying predefined
constraints on the predictions that can be made by the tree? For instance, one
could wish to enforce that certain examples are never misclassified, or certain tests
are always executed in a given order.

Observe that some of these problem settings are conventional, in the sense that they
are formalizations of the problem of finding models of good predictive accuracy. Other
problems are less conventional, the main focus being on the syntax of the predictive
model.

Many algorithms have been proposed to address these learning problems. Most
common are the algorithms that rely on the principle of top-down induction through
heuristics (for example C4.5 [110] and cart [53]). These algorithms do not explicitly
minimize a global optimization criterion, but rely on the development of a good heuristic
to obtain reasonable solutions. In practice, for each new problem setting that was
studied, a new heuristic was proposed in the literature.

The benefit of an exact algorithm is that we do not need to develop new heuristics
to deal with many types of learning problems and constraints. We are sure that its
result is the best that one can hope to achieve according to the predefined optimization
criterion and constraints; no fine-tuning of heuristics is necessary. Hence, the results of
an exact algorithm can also be used to determine how well an existing heuristic decision
tree learner approximates a global optimization criterion.

The development of an exact algorithm for learning decision trees has seldom been
considered because many decision tree learning problems are known to be NP-complete
[82]. Therefore an efficient algorithm for the general case most likely does not exist.
This theoretical result however does not imply that the problem is intractable in all
cases. Many frequent itemset mining algorithms have been applied successfully despite
the exponential nature of the itemset mining problem. This is an indication that, on
some datasets, exact decision tree induction may still be feasible if we can do this by
using itemset mining results.

In the work pubslihed in [19], we have provided evidence that for a reasonable number
of datasets, exact decision tree induction is indeed practically feasible by taking this

14 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

Figure 2.9: The Hasse diagram of a part of an itemset lattice for items
{A,¬A,B,¬B,C,¬C}; binary decision tree A(B(C(l,l),l),C(l,l)) is marked in this di-
agram

approach. We showed that decision trees can also be learned from the condensed itemset
representation of closed itemsets [108]. This observation allows us to obtain better
practical performance. For the proofs of the theorems and lemmas stated in this section,
we also refer the interested user to [19].

2.1 Relationships between Itemsets and Decision Trees

Let us first introduce some terminology concerning frequent itemsets and decision trees
before studying the relationships between these domains.

2.1.1 Itemsets

Let I = {i1, i2, . . . , im} be a set of items and let D = {t1, t2, . . . , tn} be a bag of
transactions, where each transaction tk is an itemset such that tk ⊆ I. A transaction
tk contains a set of items I ⊆ I iff I ⊆ tk. The transaction identifier set (TID-set)
tid(I) ⊆ {1, 2, . . . n} of an itemset I ⊆ I is the set of identifiers of all transactions that
contain itemset I. The frequency of an itemset I ⊆ I is defined to be the number of
transactions that contain the itemset, i.e. freq(I) = |tid(I)|; the support of an itemset
is support(I) = freq(I)/|D|. An itemset I is said to be frequent if its support is higher
than a given threshold minsup; this is written as support(I) ≥ minsup (or, equivalently,
freq(I) ≥ minfreq).

A useful property of itemsets is that they constitute a lattice.

Definition 1 A complete lattice is a partially ordered set in which any two elements
have a unique least upper bound and a unique greatest lower bound.

In this case the partial order is defined by the subset relationship ⊆ on the elements
in the set 2I . The least upper bound of two sets is computed by the intersection (∩)
operator, the greatest lower bound by the union (∪) operator. The lower bound ⊥ of
this lattice is ∅; the higher bound > is the set I.

Part of a lattice is depicted in Figure 2.9 in a Hasse diagram, where we assume
I = {A,¬A,B,¬B,C,¬C}; we only depict itemsets in which an item i and its negation
¬i do not occur together. Edges denote a subset relation between sets; sets are depicted
as nodes. On top of the lattice is the lower bound which corresponds to the empty set

2. INDUCTION OF OPTIMAL DECISION TREES 15

∅ (level 0); the higher bound {A,¬A,B,¬B,C,¬C} is not depicted as it includes items
as well as their negations. There is an edge between a node in a given level and a node
in the next level if the set of the former is strictly included in the set of the latter and
if the size of the two sets only differs by one item.

2.1.2 Decision trees

Figure 2.10: An example tree

Our running decision tree example is given in Figure 2.10. We assume that all tests
are Boolean; non-binary attributes are transformed into Boolean attributes by mapping
each possible value to a separate attribute. Numerical attributes are discretized and
binarized beforehand (they will then be called features). The input of a decision tree
learner is hence a binary matrix B, where Bij contains the value of feature i of example
j.

A common way to represent a decision tree is as a set of rules [110]. Each leaf of the
tree corresponds to a rule. Our example tree can be represented in the following way:

if A = 1 and B = 1 then predict 1
if A = 1 and B = 0 and C = 1 then predict 1
if A = 1 and B = 0 and C = 0 then predict 0
if A = 0 and C = 1 then predict 0
if A = 0 and C = 0 then predict 1

Hence we can see decision tree learning as finding a set of rules with certain properties
that allow the set to be represented as a tree.

2.1.3 Link between Decision Trees and Itemsets

A main observation in the LeGo framework [88] is that there is a link between rules
in predictive models and patterns in pattern mining. Assume that we are given an
attribute-value table B in which all features are binary. We can transform table B into
a transactional form D such that tj = {i |Bij = 1} ∪ {¬i |Bij = 0}. Thus, every feature
value is mapped to a positive i or a negative item ¬i. The head of a rule, for instance,

A = 1 and B = 0 and C = 1

16 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

can now be transformed into an itemset {A,¬B,C}. Transactions in which the head of
the rule is true correspond to transactions in which the itemset is contained. Hence the
decision tree of Figure 2.10 can equivalently be represented by a set of class association
rules:

{A,B} → 1
{A,¬B,C} → 1
{A,¬B,¬C} → 0
{¬A,C} → 0
{¬A,¬C} → 1

A class association rule I → c [94] consists of an itemset I and a class value c.
The problem of learning a decision tree is now a problem of finding a set of class as-

sociation rules. As we are usually interested in finding accurate trees, we can reduce this
further to a problem of finding itemsets, that is, class association rules without heads:
assume we compute the frequency freqc(I) of an itemset I for each class c separately,
we can associate to each itemset the class label for which its frequency is highest,

c(I) = argmax
c′∈C

freqc′(I),

as this will minimize the prediction error for the examples in the leaf. Given a deci-
sion tree T , we denote the set of itemsets corresponding to leaves by leaves(T); in our
example,

leaves(T) = {{A,B}, {A,¬B,C}, {A,¬B,¬C}, {¬A,C}, {¬A,¬C}};

itemsets corresponding to internal nodes are denoted by internal(T), in our example,

internal(T) = {∅, {A}, {A,¬B}};

Finally, all itemsets that correspond to paths in the tree are denoted with paths(T) =
internal(T) ∪ leaves(T).

The problem of finding a decision tree can now alternatively also be formulated as
follows. We are interested in finding a set of itemsets P ⊆ 2I such that

∃T : paths(T) = P and T = argmin
T

f(T) subject to ϕ(T).

Note that we can easily characterize which sets of itemsets represent decision trees.

Lemma 1 Given a set of itemsets P ⊆ 2I , then ∃T : paths(T) = P if and only if for
every itemset I ∈ P either:

(1) there is no I ′ ∈ P such that I ⊂ I ′ (in this case I ∈ leaves(T));

(2) there is exactly one item i ∈ I such that I ∪ {i}, I ∪ {¬i} ∈ P (in this case
I ∈ internal(T)).

Hence, the problems of finding decision trees T and sets of itemsets P fulfilling the
conditions of Lemma 1 are equivalent. Indeed, the reader can check in our example that
a set P fulfilling these conditions corresponds to a decision tree with paths(T) = P.

An important observation that we will exploit is that a lattice of itemsets can be
thought of as a compact representation of a set of decision trees. This is illustrated

2. INDUCTION OF OPTIMAL DECISION TREES 17

in Figure 2.9, where we have highlighted the decision tree of Figure 2.10; in principle
any decision tree over binary features {A,B,C} consists of a similar set of paths in this
lattice. Note that we assume that trees never have an item and its negation in one
path and that we hence do not need to consider the part of the lattice containing such
itemsets.

The most basic problem one could be interested in is that of finding an accurate
decision tree. The accuracy of a decision tree is derived from the number of misclassified
examples in the leaves:

accuracy(T) =
|D| − error(T)

|D|
where error(T) =

∑
I∈leaves(T)

error(I)

and error(I) is the number of examples ending up in leaf I not labeled with the majority
class of the examples in I:

error(I) = freq(I)− freqc(I)(I)

For the size of a tree we take the size of the set paths(T).
An example of a decision tree learning problem is to find the tree

argmin
T

(error(T), |(|T))

that minimizes error in the first place and cuts ties between trees of equal error using
the size function.

2.2 Constraints on Decision Trees

We are interested in expressing decision tree learning problems as queries of the form

argmin
T

f(T) subject to ϕ(T)

which corresponds to finding the best tree(s) according to the function f(T) among all
trees which fulfill the constraints specified in the formula ϕ(T). In most applications
the constraints in ϕ(T) and the criteria in f(T) have properties that can be exploited.

In the following, the functions I1 = child1(I, T) and I2 = child2(I, T) return the
itemsets representing respectively the left-hand and right-hand child node of the internal
node I in binary tree T .

2.2.1 Properties of Constraints and Criteria

When an optimization criterion f(T) is specified, this criterion may have properties
that we will refer to as additivity and structure independence.

Additivity An additive optimization criterion is a function f(T) over a tree T which
can be rewritten as follows:

f(T) =
∑

I∈leaves(T)

fleaf (I) +

∑
I∈internal(T)

finternal (I, child1(I, T), child2(I, T)),

where function fleaf (I) ≥ 0 is a leaf criterion and function finternal (I, I1, I2) ≥ 0 is
an internal criterion. An example of an additive optimization criterion is size, in
which fleaf (I) = 1 and finternal (I, I1, I2) = 1.

18 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

Structure Independence An additive optimization criterion f(T) is structure inde-
pendent if we can rewrite the leaf criteria and internal criteria as follows: finternal (I, I1, I2) =
f ′internal (tid(I), tid(I1), tid(I2)) and fleaf (I) = f ′leaf (tid(I)), for functions f ′internal
and f ′leaf over sets of transactions. Hence, the evaluation depends only on the
transactions covered by the nodes, not on the structure of the tree. Please note
that size is also a structure independent criterion according to our definition; the
reasoning is that the size of a tree is only determined by the number of partitions
induced by the tree in the set of transactions; otherwise the structure of the tree
is unimportant.

We show that many common optimization criteria are additive and that a restriction
to such criteria is not very restrictive. For constraints we can formulate similar properties
as for criteria. In most cases, the constraint ϕ(T) is a conjunction of a number of
independent constraints, which can have the following properties.

Conjunctivity over Paths A conjunctive path constraint is a formula over a tree
which can be written as:

ϕconjunctive(T) =
∧

I∈leaves(T)

ϕleaf (I) ∧

∧
I∈internal(T)

ϕinternal (I, child1(I, T), child2(I, T)),

where formula ϕleaf (I) is a leaf constraint and formula ϕinternal (I, I1, I2) is an
internal constraint.

An example of an internal constraint is that internal nodes should not have pure
class distributions:

ϕinternal (I, I1, I2) = (|tid(I)| 6= max
c∈C
|tid c(I)|). (2.1)

This internal constraint is special in the sense that it only takes I, not its children,
into account. An example of a leaf constraint is that the number of examples not
belonging to a majority class is small:

ϕleaf (I) = ((|tid(I)| −max
c∈C
|tidc(I)|) ≤ maxfreq). (2.2)

An example of an internal constraint in which the left-hand and right-hand child
are used, is:

ϕinternal (I, I1, I2) = (||tid(I1)| − |tid(I2)|| ≥ mindif),

which states that an internal node splits examples in balanced proportions.

Structure Independence A structure independent constraint ϕstructure ind (T) is a con-
junctive path constraint in which ϕinternal (I, I1, I2) = ϕ′internal (tid(I), tid(I1), tid(I2))
and ϕleaf (I) = ϕ′leaf (tid(I)), for formulas ϕ′internal and ϕ′leaf over sets of transac-
tions.

An example of a structure independent path constraint is minimum support, in
which

ϕleaf (I) = ϕinternal (I, I1, I2) = (|tid(I)| ≥ minfreq);

it is easy to see that this constraint is computed from tid(I) only.

2. INDUCTION OF OPTIMAL DECISION TREES 19

Anti-Monotonicity An anti-monotonic constraint is a formula ϕantim(I) over paths
which ignores the left-hand and right-hand children of internal nodes and satisfies:

∀I ⊆ I ′ : ϕantim(I)→ ϕantim(I ′).

Minimum support is an anti-monotonic constraint. The constraint in equation (2.2)
is an example of a constraint which is not anti-monotonic. If an anti-monotonic
constraint is used as leaf constraint, the internal nodes will also satisfy the con-
straint. Internal node constraints can also be anti-monotonic if they only have one
itemset as parameter; for instance, the impurity constraint (see equation (2.1)) is
anti-monotonic; however, note that this constraint will usually not be used as a leaf
constraint. Hence, we can distinguish internal and leaf anti-monotonic constraints;
the one type will be denoted with ϕinternal ,antim , the other with ϕleaf ,antim .

Constraints of these types can freely be combined. For instance, if we are searching for
trees in which leaves are frequent, internal nodes are not pure and leaves have strong
majority classes, we have a problem in which:

ϕ(T) =
∧

I∈internal(T)

(|tid(I)| 6= max
c∈C
|tid c(I)|)

∧
I∈leaves(T)

(((|tid(I)| −max
c∈C
|tid c(I)|) ≤ maxfreq) ∧ (|tid(I)| ≥ minfreq)).

We can categorize these constraints as follows according to their properties:

ϕinternal (I, I1, I2) = (|tid(I)| 6= max
c∈C
|tid c(I)|),

ϕleaf (I) = ((|tid(I)| −max
c∈C
|tid c(I)|) ≤ maxfreq) ∧ (|tid(I)| ≥ minfreq),

ϕleaf ,antim(I) = (|tid(I)| ≥ minfreq).

Note that some constraints (for example |tid(I)| ≥ minfreq) may belong to multiple
categories.

Optimization Constraints If a constraint can be written as

ϕ(T) = (g(T) ≤ θ),

where g(T) is an integer optimization criterion and θ is a threshold value, the constraint
is called an optimization constraint. Properties of optimization criteria, such as addi-
tivity and structure independence, extend to optimization constraints. In particular,
if g(T) returns a vector of values, θ can also be a vector of thresholds, each of which
should be satisfied.

For example, in [19], we have shown how the error-based pruning (used for example
as pruning measure in the C4.5 algorithm [110]) can be cast as an additive, structure
independent optimization criterion; the problem of learning optimal dyadic decision
trees [48] can be cast as a conjunction of constraint, one is anti-monotonic, structure
dependent, conjunctive path constraint, the other one internal node constraint; the
problem of learning bayesian probability estimation trees [55, 62, 46] can be cast as
a anti-monotonic, structure independent minimum support constraint; the problem of
learning cost-sensitive decision trees [116, 70] can be cast as an additive and structure
dependent criterion which uses a conjunctive, anti-monotonic constraint, etc.

20 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

2.3 Building Optimal Decision Trees from Lattices

Given our categorization of the previous section, these are the requirements for this
algorithm:

1. The optimization criterion must be additive.

2. The constraints must be either conjunctive over paths or based on an additive
optimization criterion.

3. There should be at least one anti-monotonic path constraint.

As seen in the previous section, we decompose a query in the following components,
some of which may be empty:

• the anti-monotonic leaf constraint ϕleaf ,antim(I);

• the leaf constraint ϕleaf (I), which includes the anti-monotonic leaf constraint;

• the internal constraint ϕinternal (I, I1, I2);

• the leaf optimization criterion fleaf (I);

• the internal optimization criterion finternal (I, I1, I2);

• the leaf optimization constraint gleaf (I);

• the internal optimization constraint ginternal (I, I1, I2);

• the optimization constraint threshold(s) θ.

The algorithm, which we called DL8 (Decision Trees from Lattices), is based on the link
between itemset mining and decision tree learning. In this section, we first discuss how
to compute trees from itemset lattices. Next, we discuss how to compute these lattices,
where we consider two options:

1. Building the trees from pre-computed itemsets (the lattice is computed before
building the decision trees).

2. Integrating itemset mining into the decision tree construction (the lattice is com-
puted while building the decision trees).

2.3.1 Decision Trees from Lattices

The algorithm for constructing decision trees from lattices is given in Algorithm 1. Its
main component is the DL8-Recursive procedure, which is called for an itemset and
computes decision trees for that itemset. The main reasons why DL8 is more efficient
than näıve enumeration algorithms are:

• We optimize the left-hand and right-hand branch of a node in a tree independently
from each other, hence avoiding that we enumerate all possible combinations of
sub-trees for the left-hand and right-hand branch of a test.

• When we compute a tree for an itemset, we store the result, and reuse it later on,
hence avoiding that we compute the same result for other possible orders in which
the same tests can occur in a path.

2. INDUCTION OF OPTIMAL DECISION TREES 21

Algorithm 1 DL8(ϕleaf ,antim , ϕleaf , ϕinternal , fleaf , finternal , gleaf , ginternal , θ)

1: T ←DL8-Recursive(∅)
2: Compute argminT∈T T.f
3:

4: procedure DL8-Recursive(I)
5: if DL8-Recursive(I) was computed before then
6: return stored result
7: end if
8: initialize T to be an empty associative array with domain {0, . . . , θ}
9: if ϕleaf (I) then

10: T.tree ← leaf (c(I))
11: T.f ← fleaf (I)
12: T.g ← gleaf (I)
13: if T.g ≤ θ then
14: T [T.g] = T
15: end if
16: end if
17: for all i ∈ I do
18: if ϕinternal (I, I ∪ {i}, I ∪ {¬i}) and
19: ϕleaf ,antim(I ∪ {i}) and ϕleaf ,antim(I ∪ {¬i}) then
20: T1 ← DL8-Recursive(I ∪ {i})
21: T2 ← DL8-Recursive(I ∪ {¬i})
22: for all T1 ∈ T1, T2 ∈ T2 do
23: T.tree ← node(i, T1.tree, T2.tree)
24: T.f ← finternal (I, I ∪ {i}, I ∪ {¬i}) + T1.f + T2.f
25: T.g ← ginternal (I, I ∪ {i}, I ∪ {¬i}) + T1.g + T2.g
26: if T.g ≤ θ and (T [T.g] is empty or T [T.g].f > T.f) then
27: T [T.g] = T
28: end if
29: end for
30: end if
31: end for
32: store T as the result for I and return T
33: end procedure

• We do not recurse the search when the anti-monotone constraints are not satisfied.

The correctness of this approach follows from the following facts.

• We consider queries which are additive and conjunctive, and hence, we can evaluate
optimization criteria and constraints for the left-hand and right-hand branch of a
node in a tree independently from each other.

• All constraints and optimization criteria are computed for itemsets, independent
of the order of the items in these sets.

• If an anti-monotonic constraint is not satisfied for a path, any tree which contains
this path cannot be a solution to the query either.

If κ is the number of edges in a lattice, the complexity of the algorithm is Θ(κ), as we
consider every edge in this lattice exactly once.

22 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

In our algorithm, we use several data structures. The main data structure is the
one in which the lattice is stored. For every itemset I we have an associative data
structure T which allows us to associate a tree and its attributes to a vector of integers.
In case no optimization constraints are specified, this structure T contains at most one
tree. Note that at the implementation level we do not need to store associated trees in
their entirety: it is sufficient to only store the roots of these trees, as the subtrees can
be recovered from the lattice recursively, by searching for the trees associated to the
left-hand and right-hand branch of an internal node.

In more detail, our algorithm works as follows:

Line 8: For each possible value that the optimization constraint can take we will store
one associated tree. Initially, this data structure is empty. Note that we require
an optimization criterion that is used as optimization constraint to have an integer
codomain.

Line 9–14: In case the itemset corresponds to a possible leaf, we initialize this leaf and
its statistics T.f and T.g.

Line 17–31: We iterate over all possible tests to split the examples further.

Line 19: For a possible test, we determine whether or not we create a tree in which
this test is a valid internal node; furthermore we determine if we create two paths
that can be part of a tree in which the anti-monotonic constraints are satisfied.

Line 20–21: If we can satisfy the constraints, we determine the best trees for the left-
hand and right-hand branches, independently from each other; both calls return
sets of trees, each tree associated to a vector of integers, each integer representing
a possible value of one of the optimization constraints for the tree (if we do not
have an optimization constraint, each set contains at most one tree).

Line 22–29: We consider all combinations of left-hand and right-hand trees.

Line 27: The optimization constraint of the generated tree is evaluated; if the best
known tree for this constraint value is improved, we store the new tree. We only
need to store intermediate trees for which the optimization constraint is not higher
than the threshold value, as the additivity means that other sub-trees cannot be
part of the final tree.

2.3.2 Computing Lattices Beforehand

While DL8 is executing, it needs to evaluate constraints based on the data. In this
section we study the following question: assuming that we would like to use an itemset
mining algorithm beforehand to find the itemsets and their properties in the data, which
constraints should we use in this itemset miner? In other words, how do we push the
decision tree mining constraints in the itemset mining process?

First, let us consider why we may be interested in separating the execution of DL8
from the itemset mining process. We believe there could be two reasons for this.

1. There are many optimized itemset mining algorithms; by using these, we exploit
these optimizations, and reduce implementation efforts.

2. INDUCTION OF OPTIMAL DECISION TREES 23

2. We might consider decision tree construction as one part of an interactive data
analysis process, in which it could be of interest to know in which cases we can
reuse a set of itemsets to build multiple decision trees.

The main class of constraints used by itemset miners is the class of anti-monotonic
constraints. We can see that if we find all itemsets satisfying ϕleaf ,antim(I), we find
sufficiently many itemsets to build decision trees for the case that ϕleaf ,antim(I) is the
leaf constraint. A more interesting question is the reverse question: are all these itemsets
needed? The following example illustrates that this is not the case. Assume that {A} is
a frequent itemset, but {¬A} is not; then no tree will contain a test on feature A, as one
of the branches resulting from this test will lead to an infrequent leaf. Consequently,
itemset {A}, even though frequent, is redundant. The following explains how we can
characterize the itemsets relevant to decision trees induction.

If we consider the DL8 algorithm, an itemset I = {i1, . . . , in} is needed only if there
is an order [ik1 , ik2 , . . . , ikn] of the items in I (which corresponds to an order of recursive
calls of DL8-Recursive) such that for none of the proper prefixes I ′ = [ik1 , ik2 , . . . , ikm]
(m < n) of this order:

• the ϕinternal (I
′, I ′ ∪ {ikm+1}, I ′ ∪ {¬ikm+1}) predicate is false;

• the conjunction ϕleaf ,antim(I ′ ∪ {ikm+1}) ∧ ϕleaf ,antim(I ′ ∪ {¬ikm+1}) is false.

Definition 2 Let ϕleaf ,antim be an anti-monotonic constraint and ϕinternal be an internal
constraint. Then the relevance of an itemset I, denoted by rel(I), is defined by

rel(I) =



ϕinternal (I), if I = ∅ (Case 1)

true, if ∃i ∈ I such that
rel(I − i) ∧ ϕinternal (I − i, I, I − i ∪ {¬i})∧
ϕleaf ,antim(I) ∧ ϕleaf ,antim(I − i ∪ ¬i) (Case 2)

false, otherwise (Case 3)

Theorem 2.1 Let L1 be the set of itemsets stored by DL8, and let L2 be the set of
itemsets {I ⊆ I|rel(I) = true}. Then L1 = L2.

If we assume that the internal constraint is also anti-monotonic, relevance can also
be used in itemset miners that exploit anti-monotonic constraints.

Theorem 2.2 If both the internal constraint and the leaf constraint are anti-monotonic,
itemset relevance is an anti-monotonic property.

It is relatively easy to integrate the computation of relevance in both breadth-first
and depth-first frequent itemset mining algorithms, as long as the order of itemset
generation is such that all subsets of an itemset I are enumerated before I is enumerated
itself.

We implemented two versions of DL8 in which the relevance constraints are pushed
in the frequent itemset mining process: DL8-Apriori, which is based on Apriori [42],
and DL8-Eclat, which is based on Eclat [133].

24 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

2.3.3 Computing Lattices on the Fly

The second option is to access the data while building decision trees. One reason for
doing this could be to avoid possible overhead caused by traversing the lattice multiple
times. Another, more important, reason involves the possibility to use closed itemsets
effectively.

The main observation that we exploit to this purpose is that if we are dealing with
a structure independent query we can restrict our attention to an even smaller set of
itemsets than the relevant itemsets.

The main reason for this is that if two itemsets I and I ′ cover the same set of
examples (i.e., tid(I) = tid(I ′)), and the query is structure independent, the tree(s) we
find for both itemsets must be the same. To reduce the number of itemsets that we have
to store, we should avoid storing such duplicate sets of results.

To ensure that results are re-used between itemsets covering exactly the same ex-
amples, we propose to compute for every itemset its closure. The closure of an itemset
I is the largest itemset that all transactions in tid(I) have in common. More formally,
let items be the function which computes

items(tids) = ∩k∈tidstk

for a TID-set tids, then the closure of itemset I is the itemset items(tid(I)). An itemset
I is called closed iff I = items(tid(I)) [108]. If tid(I1) = tid(I2) it is easy to see that
also items(tid(I1)) = items(tid(I2)).

We can use this observation by modifying DL8: instead of associating decision trees
to itemsets, we associate decision trees to closed itemsets. We change line 5 such that
it checks if a decision tree has already been computed for the closure of I; in line 32, we
associate computed decision tree(s) to the closure of I instead of to I itself. We refer to
this algorithm as DL8-Closed.

In practice this means that we build a data structure of closed itemsets instead of
ordinary itemsets. Lattices of closed itemsets are also known as concept lattices; closed
itemsets are also known as formal concepts, and have been studied extensively in the
literature [76]. In principle, one could also develop a step-wise approach in which one
first computes closed itemsets and subsequently mines decision trees. However, in our
algorithm we do not only need the closed itemsets; we also need the relationships between
them, i.e., if we add an item to an itemset we need to know what the closure of the
resulting itemset is. In other words, we do not only need to know the formal concepts, we
also need to know the edges in the Hasse diagram of these itemsets. Storing these edges
would not only increase the memory requirements of our algorithm, determining them in
a post processing step is also not straightforward: a näıve algorithm for computing this
diagram would take quadratic time, while also less näıve recent algorithms (such as [47])
require significant computation times. An approach in which itemsets are mined and
decision trees are built at the same time hence seems more promising. The remainder
of this section is devoted to an outline of the choices that we made in the integrated
approach that we used in our experiments. This approach builds on choices that are
commonly made in closed itemset mining algorithms.

The main idea is that during the search, we keep track of those items and transactions
that are ‘active’. As parameters to DL8-Recursive we add the following:

• the item i that was last added to I;

2. INDUCTION OF OPTIMAL DECISION TREES 25

• a set of active items, which includes item i, and represents all tests that can still
be added to the itemset I − i;

• a set of active transaction identifiers representing tid(I − i);

• the set of all items C that are in the closure of I − i, but are not part of the set of
active items.

In the first call to DL8-Recursive, all items and transactions are active. At the start
of each recursive call (before line 5 of DL8-Recursive is executed) we scan each active
transaction, and test if it contains the last added item i; for each active transaction that
contains item i, we determine which other active items it contains. We use this scan to
compute the frequency of the active items, and build the new set of active transaction
identifiers tid(I). Those active items of which the frequency equals that of I, are added
to the closure C. If it turns out we have encountered this closure before, we return the
corresponding previously computed result. Otherwise, we now build a new set of active
items. For every item we determine if ϕleaf ,antim(I ∪ {i}), ϕleaf ,antim(I ∪ {¬i}) and the
internal constraint ϕinternal (I, I ∪ {i}, I ∪ {¬i}) are true; if so, we add the item to the
new set of active items. In line 17 we traverse the set of active items. In line 20 and
21 the updated sets of active transactions and active items are passed to the recursive
calls. By computing the closure of every itemset, we traverse the Hasse diagram of
closed itemsets.

Our approach for maintaining sets of active transactions is akin to the idea of main-
taining projected databases that is implemented in Eclat [133] and FP-Growth
[81]. In contrast to these algorithms, we know in our case that we have to main-
tain projections that contain both an item i and its negation ¬i. As we know that
|tid(I)| = |tid(I ∪ i)| + |tid(I ∪ ¬i)|, it is less beneficial to maintain TID-sets as in
Eclat, and we prefer a solution in which we call DL8-Recursive with the set of ac-
tive transactions tid(I − i) instead of tid(I). We project a transaction set by reordering
the transactions in an array. Consequently, the memory use of our algorithm is deter-
mined by the amount of memory that is needed to store the database and the closed
itemsets with associated information. Per closed itemset we only store the associative
array T for later retrieval; to reduce memory demands, we do not store support val-
ues, edges of the Hasse diagram, or TID sets. A tree in the associative array is only
represented by its root node, as any subtrees can be recovered recursively from infor-
mation associated to other itemsets. The information that we store for every itemset
is hence only determined by the optimization criteria that are used; if we assume the
query given, the information stored per itemset is constant. Consequently, the memory
use is θ(|D|+ |S|), where |S| is the size of a data structure storing all closed itemsets.

Even though we hence attempt to limit the memory required by our algorithm, it
should be repeated that the number of closed itemsets can be exponential in the size of
the database; in practice the complexity remains high.

2.4 Discussion

The original paper that describe this work [19] also shows how to improve the efficiency
of the DL8 algorithm by adding redundant constraints. Furthermore, the experiments
show that: i) these constraints can improve the resulting accuracy of a tree; ii) an
exact algorithm can indeed give significantly better results than a heuristic learner if
the optimisation criterion is well-defined; iii) exact results allow to study the behavior
of the trees with respect to constraints.

26 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

It is still an open question how efficient decision tree miners could become if they
were thoroughly integrated with algorithms such as LCM, FP-Growth, or algorithms
developed within the formal concept analysis community for processing (concept) lat-
tices. Our investigations showed that high runtimes are however not as much a problem
as the amount of memory required for storing huge amounts of itemsets. A challenging
question for future research is what kind of condensed representations could be devel-
oped to represent the information that is used by DL8 more compactly; an alternative
could be to trade space and time complexity more carefully.

DL8 can be seen as a relatively cheap type of post-processing on a set of itemsets. In
particular, it does not require access to the training data when the model is constructed,
in contrast to other approaches that use patterns for classification. Hence DL8 suits
itself perfectly for interactive data mining on stored sets of patterns. This means that
DL8 might be a key component of inductive databases [83] that contain both patterns
and data.

3 (Dynamic) Plane Graph Mining

In this section we investigate how (dynamic) plane graphs can be efficiently and exhaus-
tively mined under a set of constraints in order to extract meaningful subgraph patterns.
To do this, we take advantage of a polynomial plane subgraph isomorphism algorithm
([67]) to efficiently find the occurrences of each pattern. This work has originally been
done for in application context where patterns represented objects to track in videos
[20, 7][37]. Each frame of the video was considered as a (plane) graph and a video was
either considered as a set of graphs (one per frame) or as sequence of graphs forming a
dynamic graph where both nodes and edges could evolve over time. In this particular
context, some constraints that could guarantee the temporal and spatial coherence of
the patterns were particularly relevant to find a restricted yet meaningful set of graph
patterns. We thus developed two distances, a temporal one and a spatial one, and use
them to output only patterns that meet some spatial and temporal constraints. The
representation used to transform a video into a (dynamic) graph is given in Chaper 4.
In this section, we only consider algorithmic contributions and, in particular, we de-
scribe a plane graph mining algorithm called Plagram, a dynamic plane graph mining
algorithm called DyPlagram, and one that directly implements the spatio-temporal
constraints called DyPlagram st.

3.1 Definitions

3.1.1 Plane Graphs

Graphs are powerful mathematical tools that are used to model relationships among a
set of elements. Simple graphs are defined as a pair of elements G =< V,E > where
V = {v1, ..., vn} is a set of nodes and E ⊆ V × V a set of edges connecting them. If
there is an edge between each pair of nodes, the graph is said to be complete. Often,
labels are given to nodes and edges to model more precisely the features of the elements
and their relationships. Those graphs are called labeled or attributed graphs.

Definition 3 (Labeled Graph) A labeled graph is a graph G =< V,E,L > where
V = {v1, ..., vn} is a set of nodes, E ⊆ V × V a set of edges connecting pairs of nodes
(vi, vj). The labeling function L : V ∪E → N maps each edge and each node of the graph
to a label.

3. (DYNAMIC) PLANE GRAPH MINING 27

Note that, in the case of directed graphs, each edge is an ordered pair of nodes
(vi, vj), while in the case of undirected graphs the pairs of nodes are unordered. Graph
mining algorithms look for subgraphs that appear frequently in the database.

Definition 4 (Subgraph) Given two graphs G =< V,E > and G′ =< V ′, E′ >, G′ is
a subgraph of G if and only if V ′ ⊆ V and E′ ⊆ E.

Definition 5 (Induced Subgraph) Given two graphs G =< V,E > and G′ =<
V ′, E′ >, G′ is an induced subgraph of G if and only if V ′ ⊆ V and E′ = E ∩ V ′ × V ′.

If a subgraph G′ of another graph G is complete, G′ is called a clique of G.

A path in a graph G =< V,E > is a sequence such that consecutive nodes are
connected by edges. A finite path is a path with a finite number of nodes. Its first node
is called the starting node and its last one the ending node. If the starting node and the
ending node are the same the path is called a cycle. A path is said to be simple if it
never passes twice through the same node.

Most of the time graph mining algorithms deal with connected graphs, i.e., graphs
in which there exist at least one path connecting each pair of nodes.

Trees are also particular graphs that are the focus of many graph mining algorithms.
A tree is a connected graph with no cycle. A rooted tree, is a tree for which one node is
singled out as the root. If no root is designated, the tree is called a free tree.

Planar graph are graphs that can be drawn in the plane without any of their edges
crossing. A plane graph is a planar embedding of a planar graph. Each plane graph is
composed of a set of faces.

Definition 6 (Face) Given a plane graph, a face is a connected region of the plane
which is bounded by a cycle of edges. It is represented by the list of nodes encountered
when following the circuit such that the face is always on the left-hand side.

Definition 7 (Plane graph) A plane graph is a tuple G = (V,E, F, fe, L) where V is
a set of nodes, E is a set of edges, F is a set of faces and L is a labeling function on
V ∪ E. The unbounded region fe in the embedding of the graph is called the outer face
of the graph. The other faces are called internal faces.

For example, Figure 2.11 presents three plane graphs and the graph g1 has two
internal faces 〈1, 2, 3〉 and 〈2, 4, 5, 3〉, and its outer face is 〈1, 3, 5, 4, 2〉.

Definition 8 (k-connectedness) A plane graph is k-connected if k is the size of the
smallest subset of vertices such that the graph becomes disconnected if you delete them.

The k-connectedness can also be defined using Menger’s theorem [98].

Theorem 2.3 (Menger’s theorem) A graph G is k-connected if and only if every
pair of vertices is connected by k internally disjoint paths.

Note that, using Menger’s theorem, we can see that in a 2-connected graph each pair
of distinct nodes is connected by at least 2 internally disjoint paths forming a simple
cycle (no node or edge is used more than once). Therefore a plane graph is 2-connected
if each face (and in particular the outer face) is a simple cycle.

28 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

1 2

3
4

5

76

1

1

2
3

4 5

2

1

2
3

4 5

a

a

a
a

a
b

bb

b
b

a

c a
a

b

b

b

b b

b

b

b

a

ba

g gG

Figure 2.11: Plane graphs. The edge labels are in {a, b, c} and we assume that all node
labels are equal to a (not represented). Graph g1 is a plane subgraph of G while g2 is
not.

3.1.2 Isomorphism and Subgraph Isomorphism

Graph isomorphisms are used to assess if two graphs are equivalent, i.e., if we can find
a mapping between the nodes that preserves the edges and the labels.

Definition 9 (Graph Isomorphism) Two graphs G = (V,E, L) and G′ = (V ′, E′, L′)
are said isomorphic if and only if there exists a bijective function f : V → V ′ such that

• ∀v ∈ V,L(v) = L′(f(v)),

• ∀(v1, v2) ∈ V × V, (v1, v2) ∈ E ⇔ (f(v1), f(v2)) ∈ E′

• ∀(v1, v2) ∈ E,L(v1, v2) = L′(f(v1), f(v2)).

Definition 10 (Subgraph Isomorphism) A graph G1 is said to be subgraph isomor-
phic to a graph G2, noted G1 ⊆ G2, if there exists a subgraph G′2 of G2 such that G1 is
isomorphic to G′2.

A subgraph isomorphism of a pattern P in a graph G is called an occurrence of P
in G.

Those definitions can be extended to the specific case of plane graphs. As for general
graphs, a plane graph is a plane subgraph of another plane graph if there exists a
correspondence between their nodes which preserves the labels and the edges, except
that the correspondence between nodes should also preserve the internal faces (if the
outer face is also preserved, then the graphs are plane isomorphic).

Definition 11 (Plane subgraph isomorphism) Let G = (V,E, F, fe, L) and G′ =
(V ′, E′, F ′, f ′e, L) be two plane graphs. Graph G′ is plane subgraph isomorphic to G
(or G′ is a plane subgraph of G), denoted G′ ⊆ G, if there is an injective function
f : V → V ′ such that:

• ∀v ∈ V,L(v) = L′(f(v)),

• ∀(v1, v2) ∈ E,L(v1, v2) = L′(f(v1), f(v2)),

• ∀ internal faces F = 〈v1, ..., vk〉 of G, f(F) = 〈f(v1), ..., f(vk)〉 ∈ F ′.

As we can see in Figure 2.11, the internal faces 〈2, 4, 5〉, 〈2, 5, 7〉 and 〈4, 5, 7〉 of G
are not present in g2, therefore it is not plane subgraph isomorphic to G.

From this an occurrence of a plane graph in a larger graph is defined as follows:

3. (DYNAMIC) PLANE GRAPH MINING 29

Definition 12 (Occurrence of a plane graph in a larger graph) Let two plane graphs
G and G′. If G′ is plane subgraph isomorphic to G, the corresponding injective function
f is called an occurrence of G′ in G.

Example 2.4 In Figure 2.11, graph g1 is a plane subgraph of G. The internal faces
〈1, 2, 3〉 and 〈2, 4, 5, 3〉 of g1 correspond, respectively, to faces 〈2, 3, 4〉 and 〈3, 6, 7, 4〉 of
G, with f(1) = 2, f(2) = 3, f(3) = 4, f(4) = 6 and f(5) = 7. Graph g2 has three
internal mutually adjacent faces, one with four edges and two with three edges. Since
such configuration of faces does not exist in G, g2 is not a plane subgraph of G.

3.1.3 Support and Frequency of a Subgraph Pattern

The support of a subgraph pattern P in a database D corresponds to the number of
graphs Gi ∈ D to which it is subgraph isomorphic:

supportD(P) = |{Gi|P ⊆ Gi and Gi ∈ D}|.

The frequency of a pattern P is the ratio of its support divided by the size of the
database:

frequencyD(P) =
supportD(P)

|D|
.

3.1.4 Dynamic Plane Graph

We define a dynamic plane graph as an ordered set of graphs.

Definition 13 (Dynamic plane graph) A dynamic plane graph D is an ordered set
of plane graphs {G1, G2, .., Gn}. Each node of these graphs is associated to spatial coor-
dinates (x, y).

Building on the definition of an occurrence of a plane graph in a larger graph (see
definition 12) we define an occurrence of a plane graph in a dynamic plane graph and
its frequency.

Definition 14 (Occurrences of a plane graph in a dynamic graph) Given a plane
graph P and a dynamic graph D = {G1, ..., Gn}, the set of occurrences of P in D is de-
fined as Occ(P) = {(i, f) | f is an occurrence of P in Gi}.

Definition 15 (Barycenter of an occurrence) The barycenter of an occurrence is
the average of the coordinates of its nodes.

Definition 16 (Frequency of a plane graph in a dynamic graph) The frequency
freq(P) of a plane graph P in a dynamic graph D is the number of graphs Gi ∈ D in
which there is an occurrence of P , i.e., | {i | ∃f, (i, f) ∈ Occ(P)} |.

30 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

3.1.5 Occurrence Graph and Spatio-Temporal Patterns

To define a frequency that takes into account the spatio-temporal distance between the
occurrences, we define the notion of an occurrence graph in which occurrences of the
same pattern that are close to one another are linked. Then, we define spatio-temporal
patterns in this occurrence graph and the associated frequency.

Note that we use two different definitions of an occurrence graph, one for Plagram
and DyPlagram, and one for DyPlagram st.

Definition 17 (Occurrence graph and Spatio-temporal pattern) Two occurrences
of a plane graph P in a dynamic graph D, o = (i, f) and o′ = (i′, f ′), are close if the
distance between their barycenters is lower than a spatial threshold ε and their temporal
distance |i′ − i| is lower than a time threshold τ . Then, given a plane graph P and
a dynamic graph D, we define the occurrence graph of P as a graph where the set of
nodes is Occ(P) and the set of edges is {(o, o′) |o is close to o’}. In the rest of this docu-
ment, each connected component of the occurrence graph of P is called a spatio-temporal
pattern S based on P . The frequency of a spatio-temporal pattern corresponds to the
number of frames in which it has at least one occurrence.

Definition 18 (Frequency of a spatio-temporal pattern) The frequency of a spatio-
temporal pattern S in a dynamic graph D, denoted freqst(S), is | {i | ∃f, (i, f) ∈ S} |.

Given two plane graphs such that P ′ ⊆ P , if there is an occurrence of P in Gi, then
there is also an occurrence of P ′ in Gi. Thus freq(P) ≤ freq(P ′) and, therefore, if P ′

is not frequent, then neither is P . Given this behavior, we say that freq has the anti-
monotonicity property. Such property can certainly be exploited to prune non-promising
candidate subgraphs, as in classical graph mining algorithms.

However, when defining the occurrence graph as in definition 17, freqst is not anti-
monotone. Suppose that two occurrences a and b of P are close to each other, leading
to a single frequent spatio-temporal pattern S. Conversely, two occurrences a′ ⊆ a
and b′ ⊆ b of P ′ may be far from each other, possibly resulting in two non-frequent
spatio-temporal patterns S′ and S′′. In other words, two spatio-temporal patterns S′

and S′′ based on P ′ may be infrequent, while the spatio-temporal pattern S based on
P is frequent. This is illustrated in Figure 2.12.

Nevertheless, the frequency of a spatio-temporal pattern S based on a plane graph
P (i.e., freqst(S)) can be upper bounded with two anti-monotone measures as follows:

freqst(S) ≤ freqseq(P) ≤ freq(P),

where freqseq(P) is the subsequence frequency of P defined below.

Definition 19 (Subsequence frequency) The subsequence frequency of a plane graph
P in D, denoted freqseq(P), is defined as the size of the longest subsequence Gi1,Gi2,...,
i1 < i2 < ... of D such that

(a) for all j, Gij contains an occurrence of P and

(b) for all j, ij+1 − ij is lower than the time threshold τ .

Observe that freqseq(P) is an upper-bound on freqst(S), since the sequence of the
Gis that contains an occurrence of S satisfies (a) and (b) in Definition 19. Moreover, if

3. (DYNAMIC) PLANE GRAPH MINING 31

Figure 2.12: The euclidean distance between the barycenters of the two occurrences of
the sub-pattern (upper part of the image) is higher than the one of the super-pattern
in the bottom. This means the occurrences of the super-pattern can be close while the
corresponding ones of the sub-pattern are not, resulting in a super-pattern that can be
frequent, with respect to freqst, while its sub-pattern is not

P ′ ⊆ P then any sequence of Gis satisfying (a) and (b) for pattern P also satisfies them
for pattern P ′. freqseq(P) ≤ freqseq(P

′) and therefore freqseq has the anti-monotonicity
property.

While freqseq has the anti-monotonicity property, it only accounts for the temporal
constraint. To ”give” the anti-monotonicity property to freqst we need to redefine the
occurrence graph so that it is not possible anymore for two distinct spatio-temporal pat-
terns, based on the same pattern, to merge in a single spatio-temporal pattern composed
of more occurrences than the two initial ones. To do so we used a different spatial dis-
tance than the euclidean distance between the barycenters of the occurrences. Instead
we measure the distance between each node of one occurrence and its corresponding
node in the other occurrence and keep the maximum one.

Definition 20 (Distance between occurrences) The distance between two occur-
rences o = (i, f) and o′ = (i′, f ′) of a plane graph P = (V,E, F, fe, L) in a dynamic
graph D is defined as: dist(o, o′) = maxs∈V d(f(s), f ′(s)), where d denote the Euclidean
distance between the nodes.

This distance has an anti-monotonic property:

Proposition 2.5 For any pairs of patterns P = (V,E, F, fe, L) and P ′ = (V ′, E′, F ′, f ′e, L
′)

such that P is a plane subgraph of P ′ and two occurrences o1 = (f1, i), o2 = (f2, i) of
P and two occurrences o′1 = (f ′1, i), o

′
2 = (f ′2, i) of P ′ such that f1 is a restriction of f ′1

(i.e., f1 = f ′1 on V) and f ′2 is a restriction of f2, then we have dist(o1, o2) ≤ dist(o′1, o
′
2).

Figure 2.13 gives a graphical example of this spatial distance.

To redefine the occurrence graph so that freqst has the anti-monotonicity property,
we used the parent relationship on patterns, defined by the depth-first traversal of the
search space performed by our mining algorithm.

32 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

Figure 2.13: Extending a pattern cannot result in a lower spatial distance, therefore this
distance has an anti-monotonic property.

Definition 21 (Parent of a pattern and of an occurrence) Given a pattern P with
n ≥ 2 internal faces, the pattern p(P) with n − 1 faces that can be extended into P by
the addition of one face is called the parent of P . And given an occurrence o = (i, f) of
P , we call the parent of o the occurrence p(o) = (i, f ′) such that f ′ is the restriction of
f to the nodes of p(P).

The definition of the parent of an occurrence is then used to define the occurrence
graph. The nodes of the occurrence graph are the occurrences of a pattern and the edges
connect “close” occurrences. This graph is constructed for each pattern in the mining
algorithm.

Definition 22 (Occurrence graph and Spatio-temporal pattern) Given a spatial
distance dist, a spatial threshold ε, a temporal threshold τ , a plane graph P = (V,E, F, fe, L)
and a dynamic graph D, we define the occurrence graph of P as an oriented graph whose
set of nodes is Occ(P).

• If P has only one face, then there is an edge between the occurrences o1 = (i, f1)
and o2 = (j, f2) such that j > i if 0 < j − i ≤ τ and dist(o1, o2) ≤ ε.(j − i) and
there is no occurrence o3 = (k, f3) with i < k < j and dist(o1, o3) ≤ ε.(k − i).

• If P has more than one face, then there is an edge from o1 = (i, f1) to o2 = (j, f2)
if there is an edge (p(o1), p(o2)) in the occurrences graph of p(P) and dist(o1, o2) ≤
ε.(j − i).

A spatio-temporal pattern S based on P is a connected component of the occurrence
graph of P .

This definition is such that the occurrence graph of a pattern P is always a subgraph
of the occurrence graph of its parent pattern p(P) (if we identify the node o of the
occurrence graph of P with the node p(o) of the occurrence graph of p(P)). In practice,
P is obtained by extending occurrences of p(P) and removing the ones that do not
respect the spatio-temporal constraints. This ensures that the spatio-temporal patterns
based on P get “smaller” as the pattern P grows, and this ensures that the frequency
of a spatio-temporal pattern freqst has the anti-monotonicity property. Beside, contrary

3. (DYNAMIC) PLANE GRAPH MINING 33

1 4
5
6

7
8
9

10

2 3 11

frame 2 frame 3 frame 4 frame 5frame 1

6 9
11

32

87

Occurrence graph:Distance threshold:

Pattern:

10541

Figure 2.14: Occurrences of a pattern and occurrence graph with τ = 3.

to defintion 17, with this definition, the spatial constraint now takes into account the
number of frames separating two occurrences. The idea is that if we expect an object
to move 10 pixels between frames t and t + 1, we should expect it to move 10 × 2
pixels between t and t + 2, therefore the spatial threshold is multiplied by the number
of frames separating the two occurrences. Another improvement is the fact that we
now only connect occurrences with the closest occurrences in term of time-stamp. In
other words, if two occurrences o1(i, f) and o2(g, i + 1) are connected, no occurrence
o3(h, j) with j > i+1 can be connected to o1, even if the spatio-temporal constraints are
met. This reduces the number of edges in the occurrence graph by removing redundant
transitivity edges without breaking any connected component.

Fig. 2.14 shows 11 occurrences of a pattern P in a video with five frames for τ = 3
and with freq(P) = 5 (since it occurres in all 5 frames). Since occurrences 1 and 4 are
close to each other, i.e., their spatial distance is lower than 2 × ε and their temporal
distance is 2 ≤ τ , there is an edge (1, 4) in the occurrence graph of P . Conversely,
the edges (3, 5) or (2, 11) do not exist in the occurrence graph, as the spatial distance
between 3 and 5 or the temporal distance between 2 and 11 are too large. There are
4 spatio-temporal patterns based on P: S1 = {1, 4, 5, 7, 8, 10}, S2 = {3, 6, 9}, S3 = {2}
and S4 = {11}. The frequencies of these patterns are: freqst(S1) = 4, freqst(S2) = 3,
and freqst(S3) = freqst(S4) = 1.

Proposition 2.6 Given a pattern P with more than one face, and given a spatio-
temporal pattern S based on P , there is a spatio-temporal pattern S′ based on the parent
p(P) of P with a larger freqst, i.e., freqst(S) ≤ freqst(S

′).

This proposition shows that, given a minimum threshold σst on freqst, if a pattern
does not have a frequent spatio-temporal pattern then any super-pattern does not either.
This allows us to prune the search space of candidate patterns.

3.2 Mining Spatio-Temporal Patterns

Problem Definition Given dynamic graph D, a frequency threshold σst, a spatial
threshold ε and a time threshold τ , the problem is to compute all spatio-temporal
patterns of D with freqst greater than σst.

DyPlagram st takes advantage of the new definition of an occurrence graph (def-
inition 22) and can use freqst to mine spatio-temporal patterns directly. Plagram and
DyPlagram do not use freqst, instead they respectively use freq and freqseq. There-
fore, to solve the problem defined above with those two algorithms, the idea is to first

34 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

Algorithm Occurrence graph Frequency Constraints enforced
variant definition used measure used during mining

Plagram
def 17

freq none
DyPlagram freqseq temporal

DyPlagram st def 22 freqst spatio-temporal

Table 2.1: Major differences between Plagram, DyPlagram and DyPlagram st

mine for all frequent graph patterns (using either freq or freqseq) and then, in a post-
processing step, construct the occurrence graph of each frequent pattern to compute the
spatio-temporal patterns, as described in Definition 17. The key differences between the
three variants of our algorithm are summarized in table 2.1.

The rest of this subsection will give the details concerning the extension strategy used
by our algorithms, the canonical codes used to avoid processing several times the same
subgraph and the strategy to explore the search space. Then we give the pseudo-codes
for the three variants of our approach.

3.2.1 Extensions

Our algorithms use a depth-first exploration strategy: each time a frequent pattern
is found, it is extended into a bigger candidate pattern for further evaluation. As
gSpan, our algorithms only generate promising candidate graphs, that is, subgraphs
that actually occur in D. However, our extension strategy limits the number of different
extensions that can be generated from a given frequent pattern, as described below.

Definition 23 (Valid extension) Given a plane graph g and two nodes u 6= v on
the outer face of g, g can only be extended by the addition of a new path P = (u =
x1, x2, . . . , xk = v) to g between u and v. This path must lie in the outer face of g.
Nodes x2,..., xk−1 are (k − 2) ≥ 0 new nodes. This new graph is denoted g ∪ P . Given
a plane graph G such that g ⊂ G, P is a valid extension of g in G if g ∪ P ⊆ G.

In other words, this definition states that any pattern graph g composed of aggre-
gated faces can only be extended by the addition of another face lying in the outer face
of g. This new face must share at least one edge with g (since u 6= v). This restriction
is related to that of gSpan, where a graph is extended by the addition of a single edge,
and only to nodes of the rightmost path of the depth-first search tree. A consequence
of this extension strategy is that the generated patterns are always 2-connected (this
means that for any two nodes of the pattern, there is always a cycle that contains both).

In Figure 2.15, there is only one occurrence of g1 in G and, for this occurrence,
there are three valid extensions of g1 in G. Since these extensions have two edges, a
new node 6 is added in the outer face of g1. The extensions are: P1 = (1, 6, 3) (which
corresponds to 2, 5, 4 in G), P2 = (3, 6, 5) (corresponding to 4, 5, 7 in G) and P3 = (4, 6, 1)
(corresponding to 6, 1, 2 in G). Observe that the path P4 = (1, 5) is not a valid extension
since g1 ∪ P4 is the graph g2, which is not a plane subgraph of G (see subsection 3.1.2).

Given a pattern graph g and a graph Gi in D, our algorithms compute all occurrences
of g in Gi. Then, for each occurrence, they generate all possible extensions. For each
occurrence of g in Gi and from each node of the external face of g, there is only one
possible extension.

3. (DYNAMIC) PLANE GRAPH MINING 35

1 2

3
4

5

76

1

1

2
3

4 5

2

1

2
3

4 5

a

a

a
a

a
b

bb

b
b

a

c a
a

b

b

b

b b

b

b

b

a

ba

g gG

Figure 2.15: Plane graphs. The edge labels are in {a, b, c} and we assume that all node
labels are equal to a (not represented). Graph g1 is a plane subgraph of G while g2 is
not.

3 2

5 2

45 12

4

5

34

5

1 1 34 3 21a
a

b
b

b

b

a
a

b
b

b

b

a
a

b
b

b

b

a
a

b
b

b

b

Figure 2.16: Four copies of g1 of Figure 2.15 with node indices corresponding, respec-
tively, to the codes α, β, γ, and δ in Table 2.2.

3.2.2 Graph Codes

To avoid multiple generations of the same pattern, the graphs are represented by canon-
ical codes. Therefore, to find the frequent patterns, our algorithms explore a code search
space. Here, we define these new codes. Next, we present important properties of the
code search space.

A code for a plane graph g is a sequence of the edges of g. Each edge is represented
by a 5-tuple (i, j, L(i), L(i, j), L(j)), where i and j are the indices of the nodes (from
1 to n, where n is the number of nodes in g). The nodes are numbered as they first
appear in the code.

Definition 24 (Valid code for a plane graph)

• If g = (V,N, F, fe, L) is a plane graph with only one internal face 〈v0, ..., vn−1〉
(i.e., g is a cycle), then a valid code for g is (1, 2, L(1), L(1, 2), L(2)).(2, 3, . . .),
(3, 4, . . .) . . . , (n− 1, n, . . .).(n, 1, . . .). We use a “dot” to denote the concatenation
of each 5-tuple representing an edge of g.

• If g = g′ ∪ P and P is a valid extension of g′ in g, then a valid code for g is the
concatenation of a valid code for g′ and the code of P .

It is not obvious from Definition 24 that every 2-connected plane graph g has at least
one valid code. Indeed, since g is 2-connected, it is always possible to construct a valid
code by first choosing an internal face of g and then iteratively adding valid extensions
to it.

Table 2.2 shows four valid codes of graph g1 in Figure 2.15 (among seven valid codes).
Figure 2.16 shows the corresponding node numbering on graph g1 (recall that there is
a different numbering of nodes for each code). Codes α, γ, δ start with the 4-edge face
and then a 2-edge extension is added to build the second face. Code β starts with the

36 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

Edge α β γ δ

1 (1,2,a,b,a) (1,2,a,b,a) (1,2,a,b,a) (1,2,a,a,a)
2 (2,3,a,b,a) (2,3,a,b,a) (2,3,a,a,a) (2,3,a,b,a)
3 (3,4,a,a,a) (3,1,a,a,a) (3,4,a,a,a) (3,4,a,b,a)
4 (4,1,a,a,a) (3,4,a,b,a) (4,1,a,b,a) (4,1,a,a,a)
5 (4,5,a,b,a) (4,5,a,b,a) (3,5,a,b,a) (1,5,a,b,a)
6 (5,1,a,b,a) (5,1,a,a,a) (5,4,a,b,a) (5,2,a,b,a)

Table 2.2: Four valid codes for graph g1.

3-edge face and then a 3-edge extension is added. In each column, the line separates the
edges of the first face from the edges of the valid extension. A valid code for this graph
can start with any of the six edges. For the edge that belongs to the two internal faces,
the code can start with any of the two faces, hence the seven possible codes.

3.2.3 Code Search Space and Canonical Codes

The set of valid codes is organized in a code tree. A code C ′ is a child of C in the code
tree if there is a valid extension P of C such that C ′ is the concatenation of C with the
codes of the edges of P . The root of the code tree is the empty code.

An example tree rooted at code α (of Table 2.2) is represented in Figure 2.17. Notice
that the codes at a given level of the tree represent graphs that have one more face than
the codes of the level just above. In this code tree, each graph is represented by several
codes (for instance, we have already seen that graph g1 has seven valid codes). In
Figure 2.17 we also see that codes α.A.D and α.C.F represent the same graph.

Naturally, exploring several codes that represent the same graph is not efficient. We
therefore define canonical codes such that each graph has exactly one such code: we
start by defining an order on the valid codes. We assume that there exists an order
on the labels. Then, we define an order on the edges by taking the lexicographic order
derived from the natural order on node indices and the order on labels. It means that
(i, j, L(i), L(i, j), L(j)) < (x, y, L(x), L(x, y), L(y)) if i < x or (i = x and j < y) or (i = x
and j = y and L(i) < L(x)), and so on. Afterwards, we extend this order on edges to a
lexicographic order on the codes. We thus define the canonical code of a graph as the
biggest code that can be constructed for this graph.

Definition 25 (Canonical code for a plane graph) The canonical code of a plane
graph is defined as the biggest valid code that can be constructed for this graph.

In Figure 2.16, we assume that a < b < c. Therefore, α > β since they have the
same first two edges and the third edge of β is smaller than the third edge of α. Because
of the second edge, β > γ and, finally, γ > δ since the first edge of γ is bigger than the
first edge of δ. Code α is then the biggest code for graph g1.

Plagram and DyPlagram do a depth-first exploration of a code tree. The next
theorem states that, if they find a non-canonical code C, then it is not necessary to
explore the descendants of C; the whole subtree rooted at C can be safely pruned.

Theorem 2.7 In the code search tree, if a code is not canonical, then neither are its
descendants.

Proof 1 Let C be a non-canonical code of a graph G and C.E a code of a descendant
G′ of G. Let Cc be the canonical code of G. As such, code Cc can be extended to a new

3. (DYNAMIC) PLANE GRAPH MINING 37

3 2

1

5

4

6
4 4 4

1
1

1

23

5 6 5

3 2 3

5

6

2

1 1 1 1

2 2 2 23333

4 4 4 4

5 5 5 5

6 6 6
6

7 7

a

a

b
b

b b
a

a
c

a

a

b
b

b

a

b

a

a

b
b

b b
a

a

a

a

b
b

b b

a

a

b
b

b b
a

a

a
c

a

a

b
b

b

a

b
a

a

a

a

b
b

b b
a

a

a
c

a

a

b
b

b

a

b
a

a

Figure 2.17: Part of the code tree starting from code α of Table 2.2. For each pattern,
the gray face corresponds to the last added extension. The extension codes are A, ..., G
(the complete code of the last line leftmost pattern is thus α.A.D). The crossed codes
are pruned since they are not canonical.

code Cc.F for G′. Since Cc is the canonical code of G, Cc > C and thus Cc.F > C.E.
Therefore, C.E is not the biggest one and thus not canonical.

In Figure 2.17, α.A.D and α.C.F are two codes for the same graph. Since α.A.D >
α.C.F , any extension of α.A.D will be bigger than any extension of α.C.F . Therefore,
the latter code can be safely pruned.

3.2.4 Algorithms

Pseudo-codes of Plagram and DyPlagram The pseudo-code of Plagram is given
in Figures 2.18. The pseudo-code of DyPlagram is very similar to the one of Plagram
except for the use of the subsequence frequency mentioned below.

The overall outline is very similar to that of gSpan. The main differences are the
graph code used to represent a plane graph and the way extensions are generated. As
for gSpan, our algorithms perform a depth-first recursive exploration of the code tree.
Although the first level of the code tree contains codes representing graphs with one face,
for efficiency reasons, Plagram and DyPlagram start their exploration with frequent
edges. In both algorithms, the function mine explores the part of the code tree rooted
at a code given by its parameter. It computes their extensions on every target graph in
D (lines 1-4) and makes a recursive call on the frequent and canonical ones (line 9).

The difference between Plagram and DyPlagram is on the exploited frequency
measure in function mine (line 6). The subsequence frequency used by DyPlagram
needs a time threshold τ , which defines the maximum gap allowed between two occur-
rences of a pattern (see Definition 19). Since freq ≥ freqseq, the number of extensions

38 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

Algorithm: Plagram(D, σ)
Input: graph database D and frequency threshold σ.
Output: plane subgraphs P in D such that freq(P) > σ.

1 Find all frequent edge codes in D
2 for all frequent edge code E do
3 mine(E,D,σ)

mine(P ,D, σ)
Input: the code of a pattern P , D, and σ.

1 LE = ∅ //list of extensions of P

2 for all graph Gi ∈ D do
3 for all occurrences f of P in Gi do
4 LE = LE ∪ build extensions(P,Gi, f)
5 for all extensions E in LE do
6 if freq(E) > σ then
7 if P.E is canonical then
8 output(P.E)
9 mine(P.E,D,σ)

Figure 2.18: Algorithm Plagram.

that are pruned (in line 6) is higher in DyPlagram than in Plagram.

Next, we present a complexity study of the main steps of function mine. We denote
m the number of edges of a given pattern P , and mi the number of edges of every target
graph Gi.

Pattern matching (line 3): For each pattern P , function mine must find all oc-
currences of P in every target graph Gi. Each occurrence is found with a subgraph
isomorphism test([67]), which works as follows: first, it looks for an edge e of Gi that
corresponds to the first edge of P . Once this match is performed, the complexity of
matching the remaining edges of P is O(m). So, the complexity of finding one occur-
rence is, in the worst case, O(m.mi).

The function mine uses an optimization that makes this subgraph isomorphism test
linear: it stores, along with pattern P , the list of edges e that match the first edge of P ,
in every target graph Gi. This list is updated in line 4 when generating the extensions.
Therefore, to find the occurrences of P in Gi, it is not necessary to consider every edge
of Gi, but only those in this list. In this way, for each occurrence, the cost of a matching
becomes O(m). Since the number of occurrences of P in a target graph Gi cannot be
higher than 2mi (the first edge of P may match each edge of Gi in two “directions”),
the complexity of computing all occurrences of P in all target graphs Gi is O(m

∑
mi)

(which is bounded later by O(
∑
m2
i) in Theorem 2.8). We show in the experimental

subsection that this complexity improvement over gSpan is visible in the measured
matching times.

Extension building (line 4): For every occurrence f of P in a target graph Gi,
function mine builds all possible extensions. This is done by finding a valid extension
starting from every node of the outer face of f(P). The complexity of this operation

3. (DYNAMIC) PLANE GRAPH MINING 39

is linear in the total size of P plus the size of the extensions. This is lower than 2mi

since one edge of Gi is either in f(P) or in at most two of its extensions. Since there
are at most 2mi occurrences of P in Gi, the complexity of building all extensions of all
occurrences of P in all target graphs Gi is O(

∑
m2
i).

Every time a new extension is added to the list LE, its frequency is updated. This
enables the test in line 6. In the case of DyPlagram, the last value of i such that
the extension appears in Gi is also stored for the computation of freqseq. The LE list
is implemented in a way such that the addition of a new extension (together with its
frequency counting) is done with a logarithmic complexity (as a function of the number
of edges of the extension). Therefore, for a fixed pattern P , we bound this complexity
by the total size of all its extensions in all Gis, i.e, by O(

∑
m2
i).

According to the conducted experiments, the extension building step of function
mine was found to be the most expensive step.

Canonical test (line 7): This test is done by comparing code P.E with the canon-
ical code of the graph represented by P.E. Since two plane graphs are isomorphic if
their canonical codes are the same, the complexity of this test is at least as high as an
isomorphism test. The complexity of graph isomorphism, in the general case, is un-
known, but for plane graphs, polynomial algorithms exist (see, for instance, [67] for a
quadratic algorithm). The simplest algorithm is to enumerate every possible code for a
graph to test if one particular code is canonical (with an exponential complexity). Here
is a sketch of our canonical test: the canonical code of a graph is constructed by first
choosing a starting face and a starting edge in this face. Since a pattern P has m edges
and considering that each edge belongs to at most two faces, there are at most 2m such
choices. Then, the code is extended with the biggest valid extension code. Each of these
steps has a complexity of O(m) and must be repeated as many times as the number of
faces in P , which is lower than m. Therefore, the complexity of finding the canonical
code of a graph is, in the worst case, O(m3). Although not quadratic, experimental
evaluations show that the canonical tests are not the bottleneck of our algorithms.

Theorem 2.8 (Complexity) The total complexity of the function mine (excluding the
complexity of recursive calls in line 9) is O(m3+

∑
m2
i), where m is the size of the pattern

P (in number of edges) and mi is the size of the target graph Gi (in number of edges).

A consequence of this theorem is that, contrary to general graph mining algorithms
as gSpan, Plagram and DyPlagram have a polynomial output delay, i.e., the time
between the output of two frequent patterns is polynomial in the size of the input

∑
mi

(since, of course, m <
∑
mi).

Theorem 2.9 (Correctness) Plagram and DyPlagram find and output exactly
once all frequent 2-connected plane subgraphs in D (using, respectively, freq and freqseq
as the frequency measure).

Proof 2 Since there is a one-to-one correspondence between canonical codes and 2-
connected plane graphs, we must show that the algorithms do not miss any frequent
canonical code. The algorithms prune a branch of the tree either because the code is not
frequent (line 6) or because it is not canonical (line 7). The frequency of the descendants
of a code C cannot be higher than the frequency of C. Therefore, if a code is not frequent,
its descendants are not either, and thus the pruning step in line 6 is safe. If the code is

40 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

Input: List of occurrences of P , frequency (freqst) threshold σ, time threshold
τ , and spatial threshold ε.
Output: frequent spatio-temporal patterns based on P .

1 The occurrence graph of P is empty.
2 for all occurrences (x, y, k) do
3 for all 0 < j ≤ k and k − j ≤ τ do
4 for all occurrences (x′, y′, j) do
5 if (x′ − x)2 + (y′ − y)2 < ε2 then
6 add edge ((x, y, k), (x′, y′, j)) to the occurrence graph
7 Build the connected components of the occurrence graph

// each connected component is a spatio-temporal pattern

8 Output the frequent connected components.

Figure 2.19: Generation of spatio-temporal patterns.

not canonical, we know from theorem 2.7 that its descendants cannot be either. So, the
pruning in line 7 is safe as well. In this way, the algorithms can never miss a frequent
canonical code. Finally, every output code (line 8) is frequent and canonical and, since
there is only one canonical code for each graph, a graph is output only once.

Actually, the algorithms output codes and not graphs. However, since a code is a
list of edges, it is easy to reconstruct a graph from its code.

Once patterns have been extracted using either Plagram or DyPlagram, the
occurrence graph can be constructed in a post-processing step to generate the spatio-
temporal patterns. This is done by connecting occurrences of the same pattern with an
edge if they respect the spatio-temporal constraints, and then computing the connected
components of the occurrence graph.

Post-Processing Generation of Spatio-Temporal Patterns Plagram and Dy-
Plagram respectively use freq and freqseq instead of freqst and do not build the oc-
currence graph during the mining phase. Nonetheless, to generate the spatio-temporal
patterns from the frequent patterns returned by both algorithms, the occurrence graph
needs to be built in a post processing phase. When those two variants output a frequent
pattern P (line 8, in function mine), they also output a list of the occurrences of P .
This list consists of triplets (x, y, k) where (x, y) are the coordinates of an occurrence,
and k is the index of Gk ∈ D where this occurrence appear. From this list, the algorithm
of Figure 2.19 computes the spatio-temporal patterns based on P as follows:

first, it builds the occurrence graph of pattern P with respect to ε and τ , as defined
in Definition 22 (lines 1-6). Given an occurrence (x, y, k), the algorithm computes
its distance with every other occurrence in the τ previous graphs Gj . The number
of these occurrences is at most O(τ.maxi(mi)), where maxi(mi) is the maximal size
of the graphs in D. Therefore, the complexity of building the occurrence graph of a
pattern is O(τ.maxi(mi).

∑
imi) (since the number of occurrences of a pattern is at

most 2
∑

imi). The computation of the connected components and their frequency
(line 7) is done by a traversal of the occurrence graph (linear complexity). Finally, the
complexity of computing all frequent spatio-temporal patterns based on a pattern P is
O(τ.maxi(mi).

∑
imi).

4. CONCLUSION 41

Pseudo-code of DyPlagram st Given a frequency threshold σ (also called mini-
mum support), a minimum threshold σst for freqst a spatial threshold ε and a temporal
threshold τ , the proposed algorithm DyPlagram st computes all spatio-temporal pat-
terns with freqst ≥ σst based on patterns with freq ≥ σ (the thresholds ε and τ are used
in the construction of the occurrence graph, see Def. 22).

With the new distance used for freqst, the frequency constraint is now anti-monotonic
(see definition 20), therefore we can use it in the DyPlagram st algorithm directly
during the mining phase. However, this frequency is not defined on patterns but on
spatio-temporal patterns. We must therefore also build the occurrence graph and the
spatio-temporal patterns in the algorithm.

As its predecessors, DyPlagram st uses canonical codes to represents patterns and
extensions. This allows us to efficiently enumerate only the so called valid extensions
of a pattern. Informally, a valid extension of a pattern is an extension that lead to a
pattern not already considered by the algorithm. This is a very efficient way to avoid
considering several times the same pattern.

As can be seen in the pseudo code of the DyPlagram st algorithm in Figure 2.20,
first all frequent one face patterns are built and then the recursive function mine is called
for all of them.

Lines 1, 6, 7, 8, 9, 10, and 11 of the algorithm in Figure 2.20 were not in DyPlagram.
Thanks to Prop. 2.6, this algorithm is correct and output exactly the spatio-temporal
patterns whose freqst is above the user defined threshold σ.

3.3 Experiments

Our Plagram algorithm is very similar to the well known gSpan ([129]) algorithm.
gSpan also uses a Depth-First Search (DFS) traversal of its nodes and a corresponding
DFS code to encode the graph. However the expension strategy is different in gSpan
as it extends graph patterns edge by edge, and several extensions may be generated
from one node. Besides, it also uses a general graph isomorphism test while mining
which is more expensive than the plane graph isomorphism used in Plagram. In a
series of experiments shown in [20][37] we have compared i) how Plagram and gSpan
scaled on our video data (see Chapter 4), ii) how efficient Plagram is in finding the
patterns we are interested in and iii) the impact of the spatio-temporal constraints on the
efficiency of the mining phase. The experiments proved that Plagram and its variants
are more efficient at mining 2-connected plane graph databases than the general purpose
algorithm which cannot be directly used to mine our video datasets with reasonable
support thresholds. Our expension strategy turned out to be the most critical reason
for the efficiency of Plagram compared to gSpan. Besides, our algorithm benefits a
lot from enforcing spatial and temporal constraints during the mining process. Indeed,
by permitting to directly mine spatio-temporal constraints the algorithm generates less
occurrences resulting in a lower processing time.

4 Conclusion

This chapter has presented an inductive database framework called Mining views that
can be used to query patterns as well as data in a single database. To allow this to work
in practice, exact algorithms that can take into account a wide range of constraints
should be developed. We have presented two attempts in that direction: DL8 for
mining optimal decision trees and Plagram for mining plane subgraph patterns. Note

42 CHAPTER 2. CONSTRAINT-BASED DATA MINING FOR IDB

Algorithm: DyPlagram st(D, σ, σst, τ, ε)
Input: graph database D, frequency threshold σ, spatio-temporal frequency
threshold σst, time threshold τ and spatial threshold ε.
Output: spatio-temporal patterns S in D such that freqst(S) > σst and
freqseq(P) > σ with P the pattern on which S is based.

1 Find all frequent face codes in D
2 for all frequent face code E do
3 mine(E,D, σ, σst, τ, ε)

mine(P,D, σ, σst, τ, ε)

1 occurrences graph(P) = empty graph
2 LE = ∅ //list of extensions of P

3 for all graph Gi ∈ D do
4 for all occurrences f of P in Gi do
5 LE = LE ∪ build extensions(P,Gi, f)
6 Add this occurrence to occurrences graph(P)
7 Computes the edges of occurrences graph(P) (using ε and τ)
8 Computes all spatio-temporal patterns based on P
9 for each spatio-temporal pattern S based on P do
10 if freqst(S) ≥ σst then output(S)
11 if there is no frequent spatio-temporal pattern then return
12 else
13 for all extensions E in LE do
14 if freqseq(E) > σ then

15 if P.E is canonical then
16 mine(P.E, σ, σst, τ, ε,D)
17 return

Figure 2.20: DyPlagram st algorithm

that the subspace clustering algorithm presented in [15] could also be integrated in such
framework. While both algorithms presented in this chapter meet the specifications
to be integrated into an IDB, in practice, they may lack efficiency to be used in an
interactive data mining session.

In the case of DL8, one possible way to improve efficiency is to reuse previous results
as much as possible. The system should be able to memorize the previously computed
trees to check if the answer of the current query has not already been computed before
triggering the data mining algorithm. For e.g, if the user is asking for all trees of size
lower than 8 and later, for all trees of size lower than 6, the results computed from the
first query should be reusable for the second query. Another type of problem occurs
if the database has been modified between two queries. How to reuse some previously
computed predicted models to compute more efficiently new predictive models from a
modified database is still an open problem.

In the case of graph mining, the problem is simply too complex to be solved in real
time in the general case (and thus integrated in an IDB). To gain efficiency, we already
restricted ourself to the case of plane graphs which are rich enough representations for
particular application domains such as computer vision. In the same line of work, we

4. CONCLUSION 43

are also exploring geometric graphs which particular structure could further help us
answering queries in real time.

To tackle real-time problems we have also investigated the problem of mining stream
data. In particular, we have focused on the problem of mining the top-k largest tiles
[16][36, 27] in a data stream for moderate window sizes. Large tiles in a database are
itemsets with the largest area which is defined as the itemset frequency in the database
multiplied by its size. Mining these large tiles is an important pattern mining problem
and we showed that it could be used both in computer vision and for emerging topic
monitoring (e.g. for social media).

In the next chapter, we present a concrete computer vision application that can
greatly benefit from the use of advanced data mining techniques.

Chapter 3

Data mining for BOW-based
Image classification

Classification of images is of considerable interest in many image processing and com-
puter vision applications. A common approach to represent the image content is to use
histograms of color, texture and edge direction features [59, 119]. Although they are
computationally efficient, such histograms only use global information and so, provide a
crude representation of the image content. One trend in image classification is towards
the use of bag-of-visual-words (BOW) features [65] that come from the bag-of-words rep-
resentation of text documents [112]. The creation of these features requires four basic
steps: (i) the keypoints detection (ii) the keypoints description, (iii) a codebook creation
and (iv) the image representation steps. Keypoints refer to small regions of interest in
the image. They can be sampled densely [86], randomly [122] or extracted with various
detectors [100] commonly used in computer vision. Once extracted, the keypoints are
characterized using a local descriptor which encodes a small region of the image in a
D-dimensional vector. The most widely used keypoint descriptor is the 128-D SIFT
descriptor [96]. Once the keypoints are described, the collection of descriptors of all
images of a training set are clustered, often using the K-means algorithm, to obtain
a visual codebook. Each cluster representative (typically the centroid) is considered
as a visual word in a visual dictionary and each image can be mapped into this new
space of visual words leading to a bag-of-visual-words (or an histogram of visual words)
representation. Some of my works have been dedicated to improving either this BOW
creation [9, 8][29] or to build better representations from them [1, 10, 11], to improve
image classification. This chapter presents the ideas developped in [9] and [11] which
give both aspects. Experiments on the two presented methods are given at the end of
this chapter.

1 Supervised Learning of Gaussian Mixture Models for
Better BOW

Generally, unsupervised clustering algorithms, such as K-means, are employed to create
the clusters from which one can deduced the visual dictionaries of the BOW. One of the
common features of the unsupervised clustering methods is that they only optimize an
objective function fitting to the data but ignoring their class information. Therefore,
this reduces the discriminative power of the resulting visual dictionaries. For example,
the K-means algorithm minimizes the within-cluster sum of squares of distances without

44

1. SUPERVISED LEARNING OF GAUSSIAN MIXTURE MODELS FOR BETTER BOW45

considering the class of the data (i.e. the label of the image the descriptor has been
extracted from). Without any supervision, only one dictionary can thus be created
for all the categories in the dataset, usually called universal dictionary/vocabulary. In
[29], we presented an incremental gradient descent-based clustering algorithm which
optimizes the visual word detection using some supervised information on the true class
labels, leading to much better BOW-based classification results. However, this method
assumes that each descriptor is generated from a single class and ignores the correlation
in the D-dimensional space representing the descriptors. Moreover, this method, as well
as other semi-supervised ones, do not try to optimize at the same time the likelihood of
the training data and the purity of the clusters.

By integrating both criteria in the objective function to optimize, we claim that it
is possible to jointly manage the two kinds of uncertainty the descriptors are usually
subject to: the cluster uncertainty and the class uncertainty. The cluster uncertainty
expresses the fact that it is something of an over-simplification to achieve a hard as-
signment (like K-means) during the construction of the clusters. For instance, a wheel
can contribute to the construction of a visual word representing either a wheel of a
bicycle or a wheel of a stroller, with different probabilities of membership. Taking into
account this uncertainty during the creation of the visual dictionary can be realized
using soft clustering such as Gaussian Mixture (GM) models, which have already been
shown to outperform hard assignment-based approaches [121]. The class uncertainty
can be illustrated by the following example: a brown patch descriptor may have been
generated from both dog and cow classes. So given a brown patch descriptor, it would
be short-sighted to label it by only one of these two classes. This type of uncertainty
is usually ignored at the image descriptor level in most of the supervised dictionary
creation algorithms. To overcome this limitation, we propose to exploit the probability
for each descriptor to belong to each class. The estimation of these probabilities can be
achieved by resorting to learned classifiers and approximating the Bayesian rule.

1.1 Notations and Definitions

Let X = {xk|k = 1 . . . n , xk ∈ RD} be the set of training examples, i.e. descriptors
extracted from images and living in aD-dimensional space (e.g. SIFT descriptors usually
live in a 128-dimensional space). Let C = {cj |j = 1 . . . R } be the set of classes (i.e.
the labels of the original images). Since labeling data can be very expensive, we assume
that X may contain both labeled and non-labeled data. Let S = {si|i = 1 . . . I} be the
set of clusters, where I > 1.

A Gaussian Mixture (GM) model is a generative model where it is assumed that
data are i.i.d from an unknown probability density function [107]. In our approach, the
distribution over the set of clusters is modeled using a GM model Θ = {θi, i = 1 . . . I}
where θi = {µi,Σi, wi} are the model parameters of the ith Gaussian (corresponding to
the cluster si). Here, µi is the mean, Σi is the covariance matrix and wi is the weight
of the ith Gaussian. Given the GM model defined by its parameters Θ, the probability
of the descriptor xk ∈ X is computed as follows:

p(xk|Θ) =
I∑
i=1

wi ×Nµi,Σi(xk), (3.1)

46 CHAPTER 3. DATA MINING FOR BOW-BASED IMAGE CLASSIFICATION

where Nµ,Σ(x) is the multivariate Gaussian distribution, such that

Nµ,Σ(x) =
1

(2π)D/2|Σ|
1
2

exp(−1

2
(x− µ)

′
Σ−1(x− µ)). (3.2)

In a GM model, the posterior probability p(si|xk,Θ) is calculated as follows:

p(si|xk,Θ) =
wi × p(xk|si, θi)∑
twt × p(xk|st, θt)

(3.3)

subject to
Σiwi = 1, (3.4)

where p(xk|si, θi) is the probability for xk to belong to the ith Gaussian and that is
exactly equal to Nµi,Σi(xk) given by Eq.3.2.

Usually, GM models are trained using the Expectation Maximization (EM) algorithm
to find maximum likelihood parameters [68]. This is achieved by maximizing the log
likelihood L(X) of the training set X defined as follows:

L(X) = log(

n∏
i=1

p(xi|Θ)) =
n∑
i=1

log(p(xi|Θ)). (3.5)

Since p(si|xk,Θ) and p(xk|Θ) are unknown, they will be estimated by the GM and
will be denoted by p̂(si|xk,Θ) and p̂(xk|Θ) respectively in the rest of the paper. Note
that we will use the same notation for all the other unknown probabilities.

Unlike the K-means algorithm which builds clusters such that each descriptor be-
longs to the cluster with the nearest mean, a GM model has the ability to allow soft
assignments by providing a probability for a given instance to belong to each cluster
(thanks to Eq.3.3). It can be very useful to exploit these probabilities not only during
the visual dictionary construction (as we will see in the next section) but also in the
recognition step as shown in Fig. 3.1.

1.2 Supervised GM-based Dictionary Learning

1.2.1 Intuitive Idea

We claim that a relevant visual dictionary must be composed of visual words which are
not only specific enough to be sufficiently discriminative, but also general enough to
avoid overfitting phenomena. Note that to fulfill these two required conditions, one has
to find a good compromise between the cluster purity and the likelihood of the data. If
only the purity of the clusters is optimized using supervised information and without
considering the likelihood of the data, the resulting clusters will be very discriminative
but the generalization behavior of the BoW model will be likely subject to an overfitting
phenomenon. On the other hand, when no class information is considered (e.g in a
standard K-means algorithm), the resulting clusters will tend to be too general and each
cluster (visual word) might represent (too) many classes, reducing the discriminative
ability of the visual dictionary built from the clusters. Our objective is to optimize
not only the likelihood of the data but also the cluster purity by resorting to a convex
combination of both criteria optimized by a standard EM-based approach. The aim
is to find a good trade-off allowing us to generate visual words that are discriminative

1. SUPERVISED LEARNING OF GAUSSIAN MIXTURE MODELS FOR BETTER BOW47

Figure 3.1: Soft assignment vs. hard assignment. Let us assume that the visual dic-
tionary is made of three visual words A, B and C and that three descriptors have been
extracted from three images I1, I2 and I3. With a hard assignment, the label A is as-
signed to the descriptors of I1, B to those of I2 and C to those of I3. By representing
each image by a (normalized) histogram, the (Euclidean) distances between I1, I2 and
I3 are all the same while I1 and I2 are closer in the D-dimensional space. Applying a
soft assignment (at the bottom) allows us to better reflect the realities of the situation.

enough to classify instances of various concepts and general enough to represent an
object model. The motivation behind our method is graphically presented in Fig. 3.2.

1.2.2 Joint Optimization of the Likelihood and the Purity

In our method, we use a GM model where each Gaussian models a visual word. Con-
trary to standard GM-based approaches, our supervised GM algorithm not only takes
advantage of the soft assignment allowed by a GM model, but also integrates in the
objective function a term estimating the purity of the clusters.

Let F (si|θi) be the purity of the cluster si, defined from the entropy of that cluster
as follows:

F (si|θi) = −log(−
∑
j

p̂(cj |si, θi)× log(p̂(cj |si, θi))) + φ. (3.6)

where p̂(cj |si, θi) is the estimated probability of class cj given cluster si which depends
on the GM parameters θi of cluster si

1. φ is a constant equal to log(log(R)) if R > 2,
otherwise φ = 0. This constant makes sure that F (si) is a positive function. The higher
the value of F (si), the purer the cluster.

p̂(cj |si) is estimated using its marginal distribution expansion w.r.t. all possible
samples x ∈ X:

1To simplify the notations, θi will be omitted when it is explicitly related in a formula to cluster si.
This is the case e.g. for F (si|θi) or p̂(cj |si, θi).

48 CHAPTER 3. DATA MINING FOR BOW-BASED IMAGE CLASSIFICATION

Figure 3.2: Rough illustration of the idea behind our approach. (A) Original data con-
sisting of two classes. (B) Totally unsupervised clustering (e.g. K-Means). The purity
of the cluster on the right is very low but the global likelihood (w.r.t. the centroids of the
clusters) is optimized. (C) Totally supervised approach. The purity is optimal but the
resulting clusters are too specific to allow some generalization ability. (D) Combination
of both likelihood and purity criteria leading to a “good” trade-off.

p̂(cj |si) =

∑
k p̂(xk|cj)× p̂(xk|si)∑

t

∑
k p̂(xk|ct)× p̂(xk|si)

. (3.7)

The above equation is nothing more than a generalization of the proportion of ex-
amples which belong to a class cj given a cluster si. But since we are using a GM,
probabilities are used to estimate p̂(cj |si) rather than counting examples. To do that,
we first need to estimate p̂(xk|si). This can be done using the posterior probability
p̂(si|xk,Θ) (i.e. the so-called cluster uncertainty) given by Eq.3.3. Second, we have to
estimate p̂(xk|cj). To achieve this task, we suggest to learn a classifier, use it to compute
the posterior probability p̂(cj |xk) (i.e. the so-called class uncertainty), and apply the
Bayesian rule to get the estimate p̂(xk|cj). Note that this way to proceed allows the
computation of the purity F (si) even in situations where the training set is composed
of both labeled and unlabeled examples. Indeed, by taking advantage of the learned
classifier to estimate p̂(cj |xk), it is possible to deal with a set X containing unlabeled
instances xk and therefore reduce the risk of errors and the expensive cost of manually
and hardly labeling a large amount of data.

As mentioned before, the GM parameters are generally estimated by only optimizing
the log likelihood of the data using the expectation maximization (EM) algorithm. Here,
our objective is to find the parameters Θ by optimizing not only the likelihood of Eq.3.5
but also the cluster purity of Eq.3.6. By this way, the two-fold uncertainty p̂(cj |xk) and
p̂(si|xk) are taken into consideration in the estimation. The objective function we aim
at maximizing is defined as follows:

J(Θ) = (1− α)×
∑
xk∈X

log(p̂(xk|Θ)) + α×
I∑
i

log(F (si)), (3.8)

where α (0 ≤ α ≤ 1) is a control parameter of the algorithm that determines the level

1. SUPERVISED LEARNING OF GAUSSIAN MIXTURE MODELS FOR BETTER BOW49

of supervision authorized in the GM. If α = 0, the algorithm is totally unsupervised and
so only optimizes the likelihood. In this case, it boils down to learning a standard GM
model with the limitations already mentioned in the context of image classification. If
α = 1, the optimization process only aims at building pure clusters with the obvious risk
to lead to overfitting phenomena. Therefore, α plays an important role in our method
and deserves a special attention in order to find a good compromise between these two
extreme situations.

Our objective is to find the optimal model parameters Θ∗ that maximize the above
objective function such that:

Θ∗ = argmaxΘJ(Θ). (3.9)

We can analytically find the solution of the objective function J(Θ) by computing
the derivatives with respect to each model parameter µi,

∑
i, wi for i = 1 . . . I. Since we

are constrained by Eq.3.4, we use a Lagrange multiplier λ as follows:

J̃(Θ) = J(Θ) + λ(1−
∑
i

wi). (3.10)

Computing the partial derivatives of Eq.3.10 w.r.t. µi,
∑

i, wi respectively and equat-
ing them to zero allows us to find the optimal parameters. The general formula of the
derivative of Eq.3.10 w.r.t. µi or

∑
i (noted (µi,

∑
i)) is given by (see [9] for more

details):

∂J̃

∂(µi,
∑

i)
=

∑
k

{(1− α)p̂(si|xk) + (3.11)

αBi
∑
j

aji × p̂(xk|cj)× p̂(xk|si)} ×

∂

∂(µi,
∑

i)
log(p̂(xk|si))

where Bi, the normalization parameter of the ith Gaussian, is given by

Bi =
−1

F (si)[
∑

j p̂(cj |si)× log(p̂(cj |si))]
(3.12)

× 1∑
t

∑
k p̂(xk|ct)× p̂(xk|si)

,

and where

aji = 1 + log(p̂(cj |si)). (3.13)

Using either µi or Σi in Eq.11, and equating to zero we find the optimal parameters
of each Gaussian such that:

µi =

∑
k{(1− α)p̂(si|xk) + αBi

∑
j a

j
i p̂(xk|si)p̂(xk|cj)}xk∑

k{(1− α)p̂(si|xk) + αBi
∑

j a
j
i p̂(xk|si)p̂(xk|cj)}

, (3.14)

50 CHAPTER 3. DATA MINING FOR BOW-BASED IMAGE CLASSIFICATION

Σi =

∑
k{(1− α)p̂(si|xk) + αBi

∑
j a

j
i p̂(xk|si)p̂(xk|cj)}Aki∑

k{(1− α)p̂(si|xk) + αBi
∑

j a
j
i p̂(xk|si)p̂(xk|cj)}

, (3.15)

where Aki = (µi − xk)(µi − xk)t.

Computing the derivatives of Eq.3.10 with respect to parameter wi (see [9] for more
details), we get

∂J̃(Θ)

∂wi
= Σk

p̂(xk|si)
Σtwt × p̂(xk|st)

− λ, (3.16)

and equating to zero, we get

wi =

∑
k p̂(si|xk)
n

. (3.17)

In the next section, we will use Equations 3.14,3.15 and 3.17 to update the parameters
of the GM model using an EM-based iterative learning algorithm.

1.2.3 EM-based Learning Algorithm

After an initialization step, our EM-based algorithm iteratively performs (as usually)
an expectation (E) step and a maximization (M) step. The E-step consists of estimat-
ing from the training set the expected value of the parameters, which are then used in
the M-step (i) to maximize the expected value of our objective function J and (ii) to
estimate the new model parameters.

To initialize our GM model, we have to predetermine the number of clusters I (i.e.
the number of visual words). We also have to provide to the EM-algorithm a first series
of estimates for the parameters µi,Σi and wi, i = 1 . . . I. To do this, we simply run K-
means algorithm on the training set X. The mean µi corresponds to the centroid of the
ith cluster si and Σi to the corresponding covariance matrix. Finally, the initial weight
wi is calculated by counting the number of training examples located in the cluster si
and by normalizing it to satisfy Condition 3.4.

The pseudo-code of our algorithm (called GEMP) is presented in Algorithm 2. The
convergence of GEMP is reached if the objective function J does not increase sufficiently
between two iterations. This condition can be verified w.r.t. a given threshold. But
note that since J is a weighted average computed from more than 30 examples, we can
apply the central limit theorem stating that J asymptotically convergences towards a
normal distribution and check the convergence by resorting to a statistical test of average
equivalence.

2 Pattern Mining in BOW

Mid-level or semi-local features learnt using class-level information are potentially more
distinctive than the traditional low-level local features constructed in a purely bottom-
up fashion such as the traditional SIFT-BOW [65]. In [11, 10] we proposed a new
and effective scheme for extracting mid-level features for image classification, based on
relevant pattern mining. In particular, we mine relevant patterns of local BOW. We
refer to the new set of obtained patterns as Frequent Local Histograms or FLHs. During

2. PATTERN MINING IN BOW 51

Algorithm 2 GEMP Algorithm.

1: X = {x1...xn}, a number of clusters I, and a learned classifier providing p̂(cj |xk)
∀j, k

2: Result Final GM parameters
3: t← 0
4: Initialization-Step: use of K-means to initialize parameters Θ0

5: while No convergence do
6: E-Step
7: Estimate expected value for p̂(xk|si), p̂(si|xk), p̂(xk|cj), Bi and aji , ∀i, j, k
8: M-Step
9: Update parameters Θt+1 using Equations 3.14,3.15 and 3.17

10: Evaluate objective function J(Θt+1)
11: t← t+ 1
12: end while
13: return parameters Θt;

this process, we pay special attention to keeping all the local histogram information
and to selecting the most relevant reduced set of FLH patterns for classification. The
careful choice of the visual primitives and an extension to exploit both local and global
spatial information allow us to build powerful bag-of-FLH-based image representations.
We show that these bag-of-FLHs are more discriminative than traditional bag-of-words
and yield state-of-the-art results on various image classification benchmarks.

After introducing some notations, we explain how we mine frequent local histograms
(FLHs) (section 2.1). We then show how we select the most relevant set of FLHs for
image classification (section 2.2) and present a suitable kernel for relevant pattern-based
image classification (section 2.3).

Each image I is described by a set of features {fi|i = 1 . . . nI} and a class label
c, c ∈ {1 . . . C}. We assume that all the descriptors have been clustered to obtain a
set of so-called visual words. Then, each key point fi is given a label wi ∈ W known
as the visual word index. |W | is the visual word dictionary size. In our approach, for
each feature fi we compute a local histogram (also called a local bag-of-words LBOW),
xi ∈ N|W | using the K spatial nearest neighbours of fi (based on the distance between
image coordinates and also including fi itself as a neighbour). In practice, we use all
features within a local square neighbourhood of size n× n around the feature. The set
of all the local histograms xi created from all images is denoted by Ω.

2.1 Frequent Local Histogram (FLH) Mining

Items, Transactions and Frequencies: In order to avoid loss of information during
the transaction creation process without generating ghost patterns, we propose the
following new definition of an item. An item is defined as a pair (w, s), w ∈ W and
s ∈ N, with s being the frequency of the visual word w in the local histogram. Note
that 0 < s ≤ K and for a given image there is at most one item per histogram bin.

Next, we create the set of transactions X from the set of local histograms Ω. For
each x ∈ Ω there is one transaction x (i.e. a set of items). This transaction x contains
all the items (wj , sj) such that the bin corresponding to wj in x has the nonzero value
sj . A local histogram pattern is an itemset t ⊆ Γ, where Γ represents the set of all
possible items. For any local histogram pattern t, we define the set of transactions that

52 CHAPTER 3. DATA MINING FOR BOW-BASED IMAGE CLASSIFICATION

Figure 3.3: FLH mining and image representation process. First dense SIFT descriptors
are extracted. Each descriptor is assigned to a visual word (hard assignment). For each
dense descriptor, its K spatial nearest neighbors are selected (in practice, we use all local
descriptors within a square n × n neighbourhood). From these descriptors a local bag-
of-words (LBOW) representation is created for each dense point. Then we mine for the
most frequent local histograms from the entire dataset. These frequent local histograms
are known as FLH patterns or just FLHs. Afterwards, using a post processing step, we
select the most suitable set of FLHs for image classification. We encode the LBOWs in
an image using these relevant FLH patterns (but note that some of the LBOWs won’t
be captured by any of the selected FLH patterns). Finally by counting how many times
each FLH pattern is used to encode an image, we create a bag-of-FLHs representation.

include the pattern t, X(t) = {x ∈ X|t ⊆ x}. The frequency of t is |X(t)|, also known as
the support of the pattern t or supp(t).

Frequent Local Histogram: For a given constant T , also known as the minimum
support threshold, a local histogram pattern t is frequent if supp(t) ≥ T . A pattern t is
said to be closed if there exists no pattern t′ such that t ⊂ t′ and supp(t) = supp(t’).

The set of frequent closed patterns is a compact representation of the frequent pat-
terns (i.e we can derive all the frequent patterns from the closed frequent ones). In
this work we refer to a frequent and closed local histogram pattern as a Frequent Local
Histogram or FLH. Υ is the set of all FLHs.

FLH Mining: Given the set of transactions X, we can use any existing frequent
mining algorithm to find the set of FLHs Υ. What is specific to our method is that i)
the input of our algorithm is a set of local histograms Ω, and ii) a preprocessing step is
performed building the set of transactions X from the local histograms xi as described
above. Items (wk, sk) in a transaction x ∈ X can then be regarded as standard items in
itemset mining.

The problems of finding these frequent itemsets are fundamental in data mining, and
depending on the applications, fast implementations for solving the problems are needed.

2. PATTERN MINING IN BOW 53

In our work, we use the optimised LCM algorithm [118]. LCM uses a prefix preserving
closure extension to completely enumerate closed itemsets. This allows counting the
support of an itemset efficiently during the mining process. The LCM algorithm [118]
supports database reduction, so that it can handle dense traditional datasets in short
time and computes frequencies in linear time. It includes a strong pruning method
to further reduce the computation time when the number of large frequent itemsets
is small. It also generates closed itemsets with no duplication. For all these reasons,
LCM is preferred over the well-known APRIORI algorithm [43]. Note though that the
outcome does not depend on the choice of mining algorithm.

Encoding a new image with FLHs: Given a new image, we extract features by
dense sampling and assign them to visual words. For each feature, we compute a LBOW
around it, considering its K spatial nearest neighbours. Given this LBOW x, we convert
it into a transaction x and check for each FLH pattern t ∈ Υ whether t ⊆ x. If t ⊆ x
is true, then x is an instance of the FLH pattern t. The frequency of a pattern t in a
given image Ij (i.e., the number of instances of t in Ij) is denoted as F (t|Ij). We again
refer to figure 3.3 for an example.

2.2 Finding the Best FLHs for Image Classification

We want to use the FLH set Υ as a new set of mid-level features to represent an image.
To this end, we first need to select the most useful FLH patterns from Υ because i) the
number of generated FLH patterns is huge (several millions) and ii) not all discovered
FLH patterns are equally relevant for the image classification task. Usually, relevant
pattern mining methods select patterns that are discriminative and not redundant. On
top of that, we introduce a new selection criterion, representativity, that takes into
account that, when using LBOW, a single image generates multiple transactions. As a
result, some patterns may be frequent and considered discriminative but they may occur
in very few images (e.g. due to repetitive structures). We believe that such features are
not representative and therefore not the best choice for image classification. A good FLH
pattern should be at the same time discriminative, representative and non-redundant.
In this section we discuss how we select such patterns.

Relevance criterion: We use two criteria for pattern relevance: a discriminativity
score D(t) [61] and a new representativity score O(t).

The overall relevance of a pattern t is denoted by S(t) defined as:

S(t) = D(t)×O(t) (3.18)

We claim that if a pattern t has a high relevance score S(t), it is likely to be dis-
criminative and repeatable across images, hence suitable for classification.

Discriminativity score: To find discriminative patterns, we follow the entropy-based
approach of [61], where a discriminativity score D(t) (0 ≤ D(t) ≤ 1) for a pattern t is
defined as:

D(t) = 1 +

∑
c p(c|t) · log p(c|t)

logC
, (3.19)

with p(c|t) the probability of class c given the pattern t, computed as follows:

54 CHAPTER 3. DATA MINING FOR BOW-BASED IMAGE CLASSIFICATION

p(c|t) =

∑N
j=1 F (t|Ij) · p(c|Ij)∑N

j=1 F (t|Ij)
. (3.20)

Here, Ij is the jth image and N is the total number of images in the dataset. p(c|I) =
1 if the class label of Ij is c and 0 otherwise. A high value of D(t) implies that the pattern
t occurs only in very few classes. Note that in Eq. 3.19, the term logC is used to make
sure that 0 ≤ D(t) ≤ 1.

Representativity score: The second factor for the relevance S(t) is the represen-
tativity O(t). To compute it, we compare the distribution of the patterns over all
the images with the optimal distribution with respect to a class c. A pattern hav-
ing an optimal distribution is called an optimal pattern and denoted by t∗c for class
c. This optimal distribution is such that i) the pattern occurs only in images of class
c, i.e. p(c|t∗c) = 1 (giving also a discriminativity score of 1), and ii) the pattern in-
stances are equally distributed among all the images of class c, i.e. ∀Ij , Ik in class c,
p(Ij |t∗c) = p(Ik|t∗c) = (1/Nc) where Nc is the number of images of class c.

To find patterns with distributions close to the optimal one, we define the represen-
tativity score of a pattern t denoted by O(t). It considers the divergence between the
optimal distribution for class c p(I|t∗c) and the distribution for pattern tp(I|t), and then
takes the best match over all classes:

O(t) = max
c

(exp{−[DKL(p(I|t∗c)||p(I|t))]}) (3.21)

where DKL(.||.) is the Kullback-Leibler divergence between two distributions. The quan-
tity p(I|t) is computed empirically from the frequencies F (t|Ij) of the pattern t:

p(I|t) =
F (t|I)∑
j F (t|Ij)

(3.22)

Redundant patterns: We propose to remove redundant patterns in order to obtain
a compact representative set of FLHs. We take a similar approach as in [128] to find
affinity between patterns. Two patterns t and s ∈ Υ are redundant if they follow similar
document distributions, i.e if p(I|t) ≈ p(I|s) ≈ p(I|{t, s}) where p(I|{t, s}) gives the
document distribution given both patterns {t, s}.

p(I|{t, s}) =
F (t|I) + F (s|I)∑
j F (t|Ij) + F (s|Ij)

(3.23)

We define the redundancy R(s, t) between two patterns s, t as follows:

R(s, t) = exp{−[p(t) ·DKL(p(I|t)||p(I|{t, s})) + p(s) ·DKL(p(I|s)||p(I|{t, s}))]} (3.24)

where p(t) is the probability of pattern t:

p(t) =

∑
Ij
F (t|Ij)∑

tj∈Υ

∑
Ij
F (tj |Ij)

(3.25)

Note that 0 ≤ R(s, t) ≤ 1 andR(s, t) = R(t, s). For redundant patterns, DKL(p(I|t)||p(I|t, s))
≈ DKL(p(I|s)||p(I|t, s)) ≈ 0 which increases the value of R(s, t).

3. EXPERIMENTS 55

Finding the most suitable patterns for classification: We are interested in find-
ing the most suitable pattern subset χ where χ ⊂ Υ for classification. To do this we
define the gain of a pattern t denoted by G(t) s.t. t /∈ χ and t ∈ Υ as follows:

G(t) = S(t)−maxs∈χ{R(s, t) ·min(S(t), S(s))} (3.26)

In Eq. 3.26, a pattern t has a higher gain G(t) if it has a higher relevance S(t) (i.e.
it is discriminative and representative) and if the pattern t is non redundant with any
pattern s in set χ (i.e. R(s,t) is small). To find the best k patterns we use the following
greedy process. First we add the most relevant pattern to the relevant pattern set χ.
Then we search for the pattern with the highest gain (non redundant but relevant) and
add this pattern into the set χ until k patterns are added (or until no more relevant
patterns can be found).

2.3 Kernel Function for Effective Pattern Classification

After computing the k most relevant and non-redundant FLHs, we can represent each
image using a new representation called bag-of-FLHs by counting the occurrences of
such FLHs in the image. Let L be such a bag-of-FLHs for the image IL and M be the
bag-of-FLHs for the image IM . We propose to use the kernel function

K(L,M) =
∑
i

min(
√
L(i),

√
M(i)) (3.27)

to find the similarities between the bag-of-FLHs of L and M . Here L(i) is the
frequency of the ith selected pattern in histogram L. This kernel provides good classifi-
cation accuracies for our frequent pattern-based image representation. It is a standard
histogram intersection kernel but with non-linear weighting. This reduces the impor-
tance of highly frequent patterns and is necessary since there is a large variability in
pattern frequencies. Similar power-low normalization methods are used in improved
Fisher Vector-based methods [109, 63].

2.4 GRID-FLH: Incorporating Global Spatial Information to FLH

Finally, we propose a variant of bag-of-FLHs that incorporates both global and local
spatial information. We build on the spatial pyramid idea [90] and apply it in our FLH
mining framework. First we create LBOW for all features in the image. Then we discover
grid-specific relevant FLH patterns by employing the process described in Section 2.2.
For each image, we concatenate these grid-specific bag-of-FLH representations to create
a new representation called GRID-FLH. The GRID-FLH is a more structured local-
global representation with more flexibility than traditional spatial pyramids [90]. Note
that we mine FLHs specific to a grid cell from all the images and then create a bag-
of-FLHs in a grid specific way. As a result each grid-cell uses a different set of FLH
patterns.

3 Experiments

In order to assess the efficiency of our two dictionary creation methods, the GMM-based
method called GEMP presented in Section 1 and the FLH-based method presented in
Section 2, we carried out experiments on different very well known datasets of the
computer vision domain.

56 CHAPTER 3. DATA MINING FOR BOW-BASED IMAGE CLASSIFICATION

Figure 3.4: Sample images drawn from the 10 classes of PASCAL VOC-2006 dataset.

3.1 Image Datasets and Data Preparation

For the experiments which concern GEMP we used:

1. the well-known challenging PASCAL-VOC-2006 dataset [72] which contains 5,304
images, 2,618 for training and 2,686 for testing including 9,507 annotated objects
for 10 classes equally distributed between the training and the test sets.

2. the Caltech-10 [89, 92] dataset which contains 400 images for training and 2644 for
testing for 10 classes equally distributed between the training and the test sets.

For the experiments which concern the FLH-based method, we used:

3. GRAZ-01 [106] which consists of two object classes (bike and person) and a com-
plex yet representative background class. For each object class (bike or person)
we randomly sample 100 negative images (50 from the background class and 50
from the other object class) and 100 positive images, as done in [90].

4. Oxford-Flowers17 [105] which contains 17 flower categories where each category
contains 80 images. We randomly select 60 images from each category for training
and 20 images for testing as in [105].

5. 15-Scenes [90] which contains 15 scene categories. This dataset is useful for evalu-
ating scene classification. From each scene category, 100 randomly selected images
are used for training and the rest are used for testing as in [90].

6. Land-Use [130] is a new dataset consisting of 2100 images of area imagery of
various urban areas. There are 21 classes including various spatial structures
and homogeneous textures. For this dataset, we also keep 50% of the images for
training and 50% for testing.

7. PASCAL-VOC2007 dataset [71] consists of 20 object classes and 9,963 images.
This dataset is one of the most interesting image classification benchmarks. The
data has been split into 50% for training/validation and 50% for testing.

We use classification accuracy to evaluate our results on the Oxford-Flower and
Land-Use datasets and the mean classification accuracy computed over per-class-based
classification accuracies for the 15-scenes dataset as done in the literature (and for
comparison purpose). For the GRAZ-01 dataset we report ROC equal error rate. For

3. EXPERIMENTS 57

PASCAL-VOC-2006, Caltech-10 and Pascal-VOC-2007, the dataset, we report the mean
average precision or mAP.

For all datasets, we start from SIFT descriptors [95] that either describe patches
found by a Harris-Laplace [101] key point detector using the implementation provided
in 2 or densely sampled over the image with patches of size 16 × 16 pixels and a grid
spacing of 8 pixels (for the FLH-based method). As pointed out in [73], dimensionality
reduction is an important step in GM-based BoW image representation. This makes sure
that the most relevant directions of the input feature space are identified and that the
remaining noisy directions discarded. Moreover, this allows us to substantially reduce
the computational complexity of the algorithm. Therefore, for GEMP, we performed a
principal component analysis to reduce the dimension D of the descriptors from 128 to
32.

To be able to achieve this classification task, an image P has to be represented
in the form of a feature vector H. For the hard assignment-based methods (e.g. K-
means), we used a standard normalized term frequency histogram approach. In this
case, a component Hi of H corresponds to the proportion of times the ith visual word
(representing cluster si) has been assigned to the descriptors extracted from the image
P . More formally,

Hi =
1

|P |
∑
xk∈P

11[si=NN(xk)], (3.28)

where 11[si=NN(xk)] is an indicator function which takes the value of 1 if the center of
si is the nearest neighbor NN(xk) (using the Euclidean distance) of the descriptor xk
and 0 otherwise, and where |P | is the number of descriptors extracted from the image P .

For the soft-assignment methods based on a GM model, each component is obtained
by summing (and normalizing) the conditional probabilities p̂(si|xk) for a descriptor xk
to belong to cluster si, that exactly corresponds to the observed frequency of descriptors
in cluster si. More formally,

Hi =
1

|P |
×

∑
xk∈P

p̂(si|xk). (3.29)

We then use LIBSVM [57]3 to train an SVM over image representation vectors. We
use the square root intersection kernel in the SVM for FLH-based methods as presented
in Section 2.3.

3.2 Experimental Results for the GMM Approach

3.2.1 Other Approaches

We compared our algorithm GEMP with three other approaches:

• The K-means clustering algorithm which will be used as a baseline.

2http://staff.science.uva.nl/~ksande/research/colordescriptors/
3http://www.csie.ntu.edu.tw/∼cjlin/libsvm/

http://staff.science.uva.nl/~ksande/research/colordescriptors/

58 CHAPTER 3. DATA MINING FOR BOW-BASED IMAGE CLASSIFICATION

• The SDLM model introduced in [92] which combines an unsupervised model (a
GM) and a supervised model (a logistic regression model) in a probabilistic frame-
work. To avoid having to implement this method and to allow us to simply report
the results presented in [92], we used the same experimental setup.

• The incremental gradient descent-based clustering algorithm (SA for short) pre-
sented in [29] which optimizes the visual word detection by the use of the class label
of training examples. Unlike SDLM, note that SA is a supervised hard-assignment
method.

Note that the choice of these methods has been driven by our desire to compare
GEMP with the state of the art dictionary methods, that is with either (i) unsupervised
methods (K-means) or (ii) supervised methods with hard-assignment (SA) or (iii) su-
pervised methods with soft-assignment (SDLM).

3.2.2 Pre-processing and Setting

For both datasets, we built the visual dictionary using 20,000 SIFT descriptors per class
leading to a whole training set X of 200,000 examples. Among these data, we only
used 40,000 labeled descriptors (i.e. 20% of X) to create the dictionary. These labeled
examples have been obtained from training images using a bounding box surrounding
the considered object (see Figure 3.4) for the PASCAL-VOC-2006 dataset and using
the boundaries of the object provided by the authors for the Caltech-10 dataset. Note
that the 80% remaining descriptors have been generated from the whole image without
bounding boxes and their posterior probability p̂(cj |xk) (required in our algorithm) has
been estimated after having learned a Random Forest classifier [52] (with 20 trees and
8 random features used during the induction process).

To compare the different visual dictionaries learned by the four approaches and assess
their respective discriminative power, we performed an image classification task. For
both datasets (PASCAL-VOC-2006 and Caltech-10), we learned 10 classifiers (one for
each class against the others) using a Support Vector Machine algorithm and a chi-square
kernel as used in [92].

3.2.3 Results

The best mean average precisions (Mean AP) are reported in Tables 3.1 and 3.2 for
each binary classification problem. In each table, we indicate the number of visual
words (parameter I) required to reach the best performance. Note that we used a value
α = 0.5 for GEMP. Several remarks can be made:

• First, for both datasets, our GEMP algorithm allows us to outperform all the other
supervised and unsupervised methods. Using a Student paired-t test, we can show
that the difference is significant in favor of our method. We obtain a precision
of 0.8257 for GEMP versus 0.6425, 0.6715 and 0.7516 for K-means, SDLM and
SA respectively for the PASCAL-VOC-2006 dataset and 0.9293 for GEMP versus
0.8373, 0.8928 for K-means and SDLM respectively for the Caltech-10 dataset.

• Second, on the PASCAL-VOC-2006 dataset, for all the binary classification prob-
lems, GEMP is better than SDLM. Better still, for 9 binary problems out of 10,
GEMP significantly outperforms SDLM using a Student paired-t test with a Type

3. EXPERIMENTS 59

K-Means SA SDLM GEMP
2,000 1,000 400 400

Object class

Bicycle 0.7295 0.7081 0.8198 0.8267
Bus 0.4994 0.6457 0.8538 0.8959
Car 0.6822 0.6538 0.8122 0.9038
Cat 0.7131 0.7119 0.7537 0.8639
Cow 0.6358 0.6469 0.7581 0.8582
Dog 0.5917 0.6635 0.7234 0.7617

Horse 0.6431 0.6966 0.6322 0.7604
Motorbike 0.6890 0.6216 0.7946 0.8332

Person 0.5773 0.6686 0.6307 0.6818
Sheep 0.6905 0.6982 0.7376 0.8714

Mean AP 0.6425 0.6715 0.7516 0.8257

Table 3.1: Mean average precision evaluated on PASCAL VOC-2006 dataset. An av-
erage precision in bold font means that GEMP significantly outperforms all the other
methods using a Student paired-t test with a Type I error of 5%.

I error of 5% (the difference is not significant only for the class Bicycle). For the
Caltech-10 dataset, GEMP is better than both oether methods on 9 out of 10
dataset and statistically significantly better on 5 out of 10 datasets. This consti-
tutes an experimental evidence of the efficiency of GEMP since SDLM has already
been proven to be very competitive in comparison with state of the art approaches
[92]. The main reason of this improvement comes from the fact that we do not
assume in our approach that each image descriptor has been generated from a
single object category. By taking into consideration the two-fold uncertainty in
our GM model, GEMP is able to improve the discriminative power of the created
visual words.

• Finally, we can note that like SDLM, GEMP is sparse in terms of visual words
required to reach the optimal performance. Indeed, for the PASCAL-VOC-2006
dataset, 400 visual words are sufficient for GEMP and SDLM while 1,000 clusters
are necessary for SA, and 2,000 for K-means. The same remark can be made for
the Caltech-10 dataset for which SDLM and GEMP need a small number of visual
words (I = 200) to outperform the other methods. Through this classification
in terms of required visual words to reach the optimal behavior, we can confirm
that (i) using supervised information is better (�) than resorting to a standard
K-Means clustering (i.e. SA� K-means), (ii) allowing a soft-assignment is better
than hardly assigning a descriptor to the nearest centroid (i.e. SDLM � SA)
and finally (iii) taking into consideration in a GM model the two-fold uncertainty
provides better results (i.e. GEMP � SDLM).

To show the behavior of our method on various sizes of visual dictionaries, we re-
ported on Figure 3.5 the results obtained with GEMP according to an increasing number
of visual words from 50 to 1,000. We can see that whatever the size, GEMP is very
competitive and thus, an interesting sparse method. A comparison with the behavior of
K-Means (see Figure 3.6) confirms that the use of supervised information for building
dictionaries dramatically improves the quality of the resulting visual words. K-Means

60 CHAPTER 3. DATA MINING FOR BOW-BASED IMAGE CLASSIFICATION

K-Means SDLM GEMP
200 200 200

Object class

airplanes 0.8253 0.8803 0.9253
bonsai 0.8020 0.8649 0.8721

car 0.7981 0.8000 0.8981
chandelier 0.8286 0.9310 0.9486

faces 0.8988 0.9772 0.9989
hawksbill 0.7816 0.7375 0.8217

ketch 0.7948 0.9153 0.9248
leopards 0.8956 0.9157 0.9957

motorbikes 0.8781 0.9314 0.9381
watch 0.8697 0.9750 0.9697

mAP 0.8373 0.8928 0.9293

Table 3.2: Mean average precision evaluated on Caltech-10 dataset.

requires much more visual words (1,000 for PASCAL-VOC-2006 - in fact it needs 2,000
clusters to reach its optimum- and 400 for Caltech-10) to reach a rather poor average
precision (0.6425). We also made experiments to evaluate the purity of the clusters
according to number of visual words (using α = 0.5). We noted that the average purity
increases showing that clusters generally tend to be specialized for a given class. Inter-
estingly, we can also note that the standard deviation of the purity grows as we increase
the number of words. This can be explained by the nature of our objective function
which aims at jointly optimizing the likelihood and the entropy. Therefore, this leads
to some clusters having a high purity and some others having moderate purity but high
likelihood. In order to give an idea about which kind of words contributes the most to
a good performance in image categorization, we estimate the mean average precision
with (i) only words of high purity, (ii) only words of low purity and (iii) “intermediate”
words representing a compromise between high purity and high likelihood. To achieve
this task, we split the optimal set of visual words obtained for PASCAL VOC-2006
and Caltech-10 (i.e. 400 and 200 words respectively) into three balanced subsets: the
most pure words, the less pure words, and the remaining intermediate ones. The results
showed that using only words of high purity or of low purity is not sufficient to obtain
a good precision. Though a good behavior is obtained with the intermediate words,
we can see that one needs the three categories to reach the best performance (with the
same number of words) that provides an experimental evidence of the interest of our
algorithm.

The effects of the parameter α in GEMP are explained in details in [9]. In particular,
we show that:

• As expected, for small values (α < 0.15), the level of supervision is not sufficient
to take advantage of GEMP. We obtain more or less the same results as K-Means.
On the other hand, for large values (α > 0.85), the clusters become purer and
purer leading to overfitting phenomena. Therefore, even if in both situations
the obtained average precisions are almost the same (smaller than 0.65), this is
definitely not due to the same reasons. In the first case, the resulting clusters are
too general to be discriminative, while in the second case, the visual words are too
specific to allow us to generalize.

3. EXPERIMENTS 61

Figure 3.5: Mean average precision of GEMP (using α = 0.5) evaluated on PASCAL
VOC-2006 and Caltech-10 on different dictionary sizes (from 50 to 1,000 visual words).

Figure 3.6: Mean average precision of K-Means evaluated on PASCAL VOC-2006 and
Caltech-10 on different dictionary sizes (from 50 to 1,000 visual words).

• The best results are obtained with middle values (α ≈ 0.5). Even if we are aware
that the optimal α obviously depends on the application we deal with, we can note
that a good balance between the two criteria (i.e. likelihood and purity) of the
objective function seems to be a relevant way to obtain good results.

3.3 Experimental Results for the FLH-based Approach

Experimental results which assess the interest of frequent itemset mining with differ-
ent parameter settings (in particular the binarization method, the size of the original
descriptor, the dictionary size, the neighborhood of the local BOW) compared to tradi-
tional BOW-based image classification settings can be found in [11]. Because of the size
of the Pascal-VOC-2007 and Land-Use datasets, we did not perform any baseline com-
parisons nor parameter optimizations for them, we simply report the results obtained
with the parameters optimized for the other datasets.

62 CHAPTER 3. DATA MINING FOR BOW-BASED IMAGE CLASSIFICATION

3.3.1 Comparison with Non-mining Methods

In this section we compare FLH with non-mining methods that exploit local structural
statistics. Specifically we compare our method with the spatial pyramid co-occurrence
method (SPCK) of Yang et al. in [130] and the unbounded-order spatial features method
of Chen and Zhang [131]. We also compare our method with the mid-level feature con-
struction method of Boureau et al. in [51] and the PDK method [93] which uses prox-
imity distribution kernels based on geometric context for category recognition. Results
are reported in Table 3.3. GRID-FLH outperforms all other non-mining methods for
both GRAZ-01 and 15-Scenes datasets. Note that for these methods, no results were
reported for the Oxford-flower dataset.

The mid-level features method of [51] using macro-features seems to work quite well
on 15-Scenes. This method also uses dense SIFT features but a visual dictionary of 2048.
In this method the sparsity and supervision is enforced during the feature construction.
The Bag-of-FLH representation, on the other hand, is quite sparse after the relevant
pattern mining step. For example, in the case of Oxford-Flower dataset, there were
17.6% non-zero bins before the relevant pattern mining step and 5.13% non-zeros bins
after. One of the key differences between the macro-features and FLH is that macro-
features capture very small neighborhood of 2 × 2 while FLHs capture comparatively
larger neighborhoods of 5 × 5. Secondly for macro-features larger discriminative and
supervised dictionaries seem to work well. For an unsupervised smaller dictionary of
size 1048 macro-features reported only 83.6%.

Neither the spatial pyramid co-occurrence method of Yang et al. in [130] nor the
unbounded-order spatial features method of Chen and Zhang [131] work as good as our
GRID-FLH method. This could be due to the fact that none of these methods capture
database wide spatial statistics.

Table 3.3: Comparison with non-mining methods

Dataset GRAZ-Bike GRAZ-Person 15-Scenes

GRID-FLH 95.8 91.4 86.2

FLH+BOW 95.0 90.1 83.0

FLH 94.0 89.2 70.4

SPCK [130] 91.0 87.2 82.5

PDK [93] 95.0 88.0 -

Higher Order Features [131] 94.0 84.0 -

Mid-Level Features [51] - - 85.6

3.3.2 Comparison with State-of-the-art Methods

In this section we compare FLH using the parameters optimized as above with, to the
best of our knowledge, the best results reported in the literature.

GRAZ-01: The results reported in Table 3.4 show that on average all FLH -based
methods outperform the state-of-the-art. The GRID−FLH representation, combining
local and global spatial information, yields the best results. For the “Bike” class, the
higher order features [131] seem the best. But on average FLH outperforms the higher
order features [131] and the co-occurrence spatial features [130].

3. EXPERIMENTS 63

Table 3.4: Equal Error Rate (over 20 runs) for categorization on GRAZ-01 dataset

Method Person Bike Average

SPCK+ [130] 87.2 91.0 89.1

NBNN [49] 87.0 90.0 88.5

Higher Order Features [131] 84.0 94.0 89.0

FLH 94.0 89.2 91.6

FLH + BOW 95.0 90.1 92.6

GRID-FLH 95.8 91.4 93.8

Oxford-Flower: The results are reported in Table 3.5. Note that only using SIFT
features we get a classification accuracy of 92.9%, reaching the state-of-the-art. GRID-
FLH only gives an insignificant improvement of 0.4% compared to FLH. Note that we
use only SIFT features for classification. Most of the other works such as [105, 114, 127],
[8] use multiple features such as Hue and ColorName descriptors [120]. To the best of
our knowledge the best results on Oxford-Flower17 using a single feature is reported
by Rematas et al. [111], 85.3%. We should mention that when we combine SIFT with
color information (using the ColorName descriptor [120]) we obtain a classification
accuracy of 94.0% outperforming the state-of-the-art.

Table 3.5: Classification accuracy (over 20 runs) on the Flower dataset

Method Accuracy

Nilsback [105] 88.3

CA [114] 89.0

L1 −BRD [127] 89.0

LRFF [8] 93.0

Pooled NBNN Kernel [111] 85.3

FLH 92.5

FLH + BOW 92.7

GRID-FLH 92.9

15-Scenes: Results are shown in Table 3.6. This dataset is strongly aligned. FLH does
not exploit this and therefore by itself cannot obtain state-of-the-art results. However,
the GRID-FLH method described in section 2.4 does take the global spatial information
into account and achieves close to state-of-the-art results (86.2%). This is only outper-
formed by [132] who report 87.8% using CENTRIST and SIFT features along with LLC
coding. In our defense, our method uses only SIFT features. As far as we know the
previous best classification accuracy using SIFT features was reported by Tuytelaars et
al. in [117] combining a NBNN kernel and a SPM method.

Land-Use: Yang and Newsam proposed a spatial pyramid co-occurrence method
called SPCK [130] to classify Land-Use images. Most of these images are texture domi-
nant. They use two types of spatial predicates: the proximity predicate and the orienta-
tion predicate, to define the SPCK method. We obtain a best result of 79.2% for this
dataset, again outperforming best results reported in [130]. The results for Land-Use
dataset are shown in Table 3.7.

64 CHAPTER 3. DATA MINING FOR BOW-BASED IMAGE CLASSIFICATION

Table 3.6: Results on 15-Scenes dataset

Method Accuracy

SPM 80.9

SPCK + + [130] 82.5

NBNN Kernel+SPM [117] 85.0

(AND/OR) [132] 87.8

FLH 70.4

FLH+BOW 83.0

GRID-FLH 86.2

Table 3.7: Results on recent Land-Use dataset

Method Accuracy

BOW 71.9

SPM 74.0

SPCKSP1[130] 72.6

SPCKSP3+[130] 76.1

FLH 76.8

FLH+BOW 77.2

GRID-FLH 79.2

Pascal-VOC2007: Results are reported in Table 3.8. For this dataset Fisher Vec-
tor [109, 60] is the best performing method so far and the authors report a mAP of
61.7. The FLH-based method alone gives a mAP of 60.4. In combination with BOW
of SIFT-128 and 5000 visual word vocabulary (with a weighted average kernel with
weights learned using train/validation set), we obtain a state-of-the-art mAP of 62.8.
Note that the score for each individual class often varies a lot between the FLH+BOW
and the Fisher Vector [109] method. Our method does especially well on what are
known to be ’hard’ classes such as bottle (+34% improvement), dining table (+11%),
potted plant (+16%), or tv monitor (+23%). This suggests that both methods are
complementary. To evaluate this claim we also performed another experiment in which
we average the output score of Fisher vector method [109, 60] with the output scores
of (FLH+BOW) method. This yields a mean average precision of 72.2. This approach
clearly outperforms the state-of-the art by a significant margin. Not only this confirms
the complementary nature of FLH and Fisher vectors but the improvement is consistent
over every PASCAL-VOC class.

4 Conclusion

We have presented two very successful methods to improve BOW-based image classi-
fication. The first one, called GEMP is a soft-clustering method which integrates the
use of background class information to improve the BOW representation. The second
one, called FLH, is a mid-level representation built from the BOW to create more dis-
criminant features for image classification. Note that both methods could be combined
to further improve the classification results since our experiments with the first method
have proved that the K-means algorithm, used in Section 2 is not the ideal clustering
algorithm when trying to quantize descriptions of images. Our experiments have shown

4. CONCLUSION 65

Table 3.8: Results on PASCAL-VOC 2007 (Mean average precision)

Class

Fisher Vectors(FV) 78.8 67.4 51.9 70.9 30.8 72.2 79.9 61.4 56.0 49.6

FLH 67.9 70.6 41.0 54.6 64.9 60.9 85.8 56.6 59.6 40.0

FLH+BOW 69.2 73.0 42.7 56.3 64.9 60.9 86.6 58.9 63.3 41.8

FLH+FV 78.6 76.3 55.7 75.0 74.9 75.6 87.4 66.2 65.7 50.6

FLH+BOW+FV 80.0 78.0 55.9 76.2 75.5 75.6 88.1 67.0 67.3 51.8

Class m.AP

Fisher Vectors(FV) 58.4 44.8 78.8 70.8 85.0 31.7 51.0 56.4 80.2 57.5 61.7

FLH 64.7 47.3 56.6 65.7 80.7 46.3 41.8 54.6 71.0 77.6 60.4

FLH+BOW 74.3 48.4 61.8 68.4 81.2 48.5 41.8 60.4 72.1 80.8 62.8

FLH+FV 75.7 52.4 78.7 77.0 88.8 53.9 51.7 68.7 83.6 82.0 70.9

FLH+BOW+FV 80.9 51.9 78.9 77.3 89.8 58.5 51.8 72.0 83.9 84.5 72.2

that our results highly depends on some parameters. For example GEMP is dependant
on the parameters α which gives the trade-off between the cluster and the class uncer-
tainties in the optimization process or simply on the parameter that set the number of
Gaussians in the mixture. For FLH, without mentioning the countless parameters asso-
ciated to the BOW creation, the user also needs to decide the number of (good) local
histograms to keep for his image description and could want to use other quality criteria
than the ones described in Section 2 of this chapter. To achieve the best results, the
user should be able to run multiple experiments and use the parameters as constraints
to improve the efficiency of the algorithms.

In both cases, we tried experiments to combine our descriptors with other ones (for
example adding a color-descriptor as a low level representation or at the BOW level)
and we showed that this can further increase the end classification results. This also
confirms that the image classification process needs to be an iterative and interactive
process where a user should be able to run experiments, store intermediate results,
combine them, run the algorithms with different parameters, etc. To integrate these
requirements, one would need all those algorithms to be integrated in an inductive
database such as the one presented in Chapter 2.

Chapter 4

Data mining for Object Tracking
in Videos

In Chapter 2, we have presented a plane graph mining algorithm called Plagram and its
extension to be used on an ordered sequence of graphs called DyPlagram. We also have
shown how spatio-temporal constraints could be integrated to the previous algorithm
to obtain the DyPlagram st algorithm. In this chapter, we present an application of
this algorithm to the analysis of videos and, in particular, the task of tracking objects
in videos. The work presented in this chapter has been mainly published in [28],[20].
Note that the first problem when applying our algorithm to videos is to transform the
video into a sequence of graphs. Different solutions have been explored in [20] but also
in [113, 66]. The first section of this chapter explains our chosen representation.

Figure 4.1: Example of segmented images with 4 regions (left) and its corresponding
RAG (right)

1 Images and Videos as Graphs

There exist various methods (described in details in [69]) to represent images in ways
that capture more semantic information than a simple matrix of pixels. A video can
be seen as a sequence of such images (frames) and does not necessarily need a different
processing.

66

1. IMAGES AND VIDEOS AS GRAPHS 67

1.1 RAG and Triangulation

To create our dynamic plane graph, we decided to first pre-process each frame of the
video using a segmentation algorithm. Segmentation is the process of partitioning an
image into multiple segments, i.e., sets of neighbor pixels that share a common property
(e.g., their color). From the segmentation and for each frame we create a region adja-
cency graph (RAG) ([58]). In a RAG, each node represents a region and an edge connects
two nodes if the corresponding two regions are adjacent in the image (see Figure 4.1).
We associate to each node the coordinates (x, y) of the barycenter of its representing re-
gion. One special node is added to represent an unbounded region encompassing all the
image. Informations on the regions (e.g., size, average color etc...) and on their borders
(e.g, length for example) can be added to nodes and edges as labels. In our experiments
we mostly used two types of node labels based either on a discretization of the size of
the regions or a discretization of their average color. The inclusion relationship can also
be represented by a label on the edges.

As our RAGs greatly depend on the segmentation, we tried two types of segmen-
tation. The first segmentation (static) is done independently on each frame using the
algorithm1 presented in [74]. This algorithm has three parameters for which we use
the default values. The second segmentation is the (dynamic) video segmentation al-
gorithm2 presented in [78]. This algorithm outputs regions that are identified through
time, i.e, it provides a correspondence between regions in different frames. Figure 4.2
shows examples of RAGs representing a frame of our videos.

For the sake of comparison, we give some experiments using another plane graph
representation. This representation, called triangulation, consists in triangulating the
nodes (barycenter of the segmented regions) using a Delaunay triangulation [91].

1.2 Video Datasets

There exist multiple video benchmarks for object tracking in the literature (see [69]).
However, the existing benchmarks are not entirely satisfactory because most of them
focus on video surveillance setups or are composed of videos with too few frames for the
mining step to extract meaningful patterns. Note that in these cases, our algorithms
could also be used but may perform worse than the optimized dedicated ones. To assess
the qualities of our algorithm, we thus introduce our own datasets. We used 4 videos for
these experiments. They can be downloaded from 3. The two first ones are synthetic
videos. They allow us to avoid the possible segmentation problems by using the true
colored regions. The two last ones are real videos.

Synthetic videos The original video has 721 frames in total. We made two versions
out of it. In the first version, called Anim1, three identical objects (X-Wings) are moving
in the video such that they may overlap or even get partially out of the video frames (this
helped us to evaluate how well spatio-temporal patterns can be used to represent the
trajectory of the X-Wings individually, as reported in subsection 2.2.2 of this chapter.

We first transformed this video into a Triangulated dataset. The final graphs had,
on average, 197.33 nodes with an average degree of 2.93. The labels of the nodes were
generated based on the size of the regions (in number of pixels). The size of the regions

1Efficient graph base segmentation source code available here: http://cs.brown.edu/~pff/segment/
2Video segmentation web service at this address: http://videosegmentation.com/
3http://perso.univ-st-etienne.fr/frel9915/Diot/interface.html

http://cs.brown.edu/~pff/segment/
http://videosegmentation.com/

68 CHAPTER 4. DATA MINING FOR OBJECT TRACKING IN VIDEOS

Figure 4.2: Example of frames and RAGs obtained from the synthetic videos (top), from
the segmented real drone video (middle), and from the segmented car video (bottom).

were discretized into 10 bins containing the same number of regions, which led to 10
possible node labels. Note that, in this dataset, each graph is a 2-connected graph.

We also represented each frame as a RAG (Region Adjacency Graph). More pre-
cisely, the nodes are computed in the same way as for the Triangulated dataset, except
that there is also one node representing the outer region. Each continuous frontier be-
tween two regions is represented by one edge. On average, each frame led to a graph
with 245.2 nodes, with an average degree of 2.23, and the labels of the nodes were
discretized in the same way as for the Triangulated dataset. Contrarily to the graphs
in the Triangulated dataset, the edges of the target graphs are more meaningful, since
they represent adjacencies between regions. Moreover, if different regions have the same
barycenters, they are not discarded as for the Triangulated dataset. This explains the
higher number of nodes in this new dataset.

One disadvantage of the RAG dataset, however, is that the generated graphs may not
be 2-connected. Since Plagram mines only 2-connected patterns, it is not able to find
a pattern that spans on several 2-connected components. Indeed, in the experiments,
we found bigger patterns in the Triangulated dataset. Nevertheless, interesting patterns

1. IMAGES AND VIDEOS AS GRAPHS 69

were also found by Plagram in the RAG dataset.
Some example frames (left) along with their triangulated (middle) and RAG (right)

representations are illustrated in Figure 4.3.

Figure 4.3: Example video frames (left) along with their corresponding triangulated (mid-
dle) and RAG (right) representations. In the latter, the upper-left node represents the
outer region.

Based on Anim1, we produced Anim2 which is identical except for the color of the
X-Wings that is different for each one of them (cf. top of Figure 4.2). These videos
were used to assess whether our approach can deal with scenes involving several objects
occluding each others and moving out of the field of view.

Real Videos The first real video (cf. middle of Figure 4.2) is composed of 950 frames,
each RAG has on average 194.5 nodes with an average degree of 5.35. This video shows
a drone flying across a covered parking lot. This video is simple but the segmentation
still suffers from the illumination changes. The second real video (cf. bottom of Figure
4.2) is made of 5619 frames, each RAG has on average 207.5 nodes with an average
degree of 5.5. This video is shot from a car while following another car (the main
object). In this video the main object goes out of the field of view, its scale changes, the
global illumination changes all the time and it is also longer than the other ones which

70 CHAPTER 4. DATA MINING FOR OBJECT TRACKING IN VIDEOS

allows us to test the efficiency of our approach. This video has been divided into 3 parts
(car1000, car2000, car3000) which correspond to the 1000, 2000 and 3000 first frames of
the car video. This has been done since the tracking difficulty gradually increases along
the video.

For both videos, we use the same modified segmentation algorithm with standard
parameters to segment the images. With these videos, we want to assess whether our
approach can deal with changing appearances and with the segmentation inaccuracies.

2 Object Tracking Using Graph Mining

In Chapter 2, we described the Plagram algorithm. It can be used to efficiently extract
frequent plane graph patterns from a database of plane graphs. We also demonstrated
that using spatio-temporal constraints could further increase the efficiency of the mining
process. This chapter studies how meaningful the extracted patterns are in the context
of object tracking.

The appearance of moving objects changes over time and so does their graph repre-
sentation. Besides, the instability of the segmentation process also results in different
graph representations of the same object from one frame to another. Consequently, it
is very unlikely to be able to follow an object using one single spatio-temporal pattern.
Instead we have to find a way of combining several patterns to obtain complete tracks
of the interesting objects. To do so, we use two different strategies described in Section
2.1. Both of them use the spatio-temporal patterns discovered by the DyPlagram st
algorithm and described in Chapter 2.

2.1 Tracking with Patterns

We first describe a strategy that uses spatio-temporal paths in a global occurrence graph
to track object. Then we detail an alternative hierarchical clustering approach.

2.1.1 Spatio Temporal Path

When tracking an object in a real video, we cannot expect the object to be represented
by the same graph pattern during the whole video (e.g., due to changes in view point
or instability of the segmentation). Thus, if we want to track it, we need to use several
spatio-temporal patterns. To do so, we propose to merge the occurrence graph of each
pattern into a global occurrence graph, and add similarity edges to it so that similar
occurrences of different patterns that appear in the same frame are connected. In this
way, it is possible for a path in the occurrence graph, called a spatio-temporal path, to
“jump” from a spatio-temporal pattern to another one that has similar occurrences. The
similarity between two occurrences is derived from their overlap in term of nodes. It can
be efficiently computed by counting how many regions they have in common. Indeed,
since the similarity edges connect only occurrences that appear in the same frame, their
set of common nodes can be obtained by computing the intersection between their node
list.

Definition 26 (Similarity of two occurrences) Let o = (i, f) and o′ = (i, f ′) be
two occurrences of two different patterns P = (V,E, F, fe, L) and P ′ = (V ′, E′, F ′, f ′e, L

′)
with f, f ′ the mappings of the nodes of the patterns to the graph of the ith frame. The

similarity between these occurrences is defined as sim(o, o′) = |f(V)∩f ′(V ′)|
|f(V)| .

2. OBJECT TRACKING USING GRAPH MINING 71

This similarity is used to weight the similarity edges of the global occurrence graph
in combination with the spatial distance between occurrences. Note that this similarity
is not symmetric in order to favor the transition from smaller patterns to bigger ones.
The other edges of the global occurrence graph, i.e., the ones connecting occurrences
of the same pattern if they are close in space and time, are weighted according to the
temporal distance between the occurrences.

Definition 27 (Global occurrence graph) Given a set of patterns P, temporal and
spatial thresholds τ and ε, a similarity threshold µ, the global occurrence graph is a
weighted oriented graph: its node set is V = ∪P∈POcc(P) and its edge set is E =
EP ∪ Esim where :

• EP is the union of the edge sets of all patterns’ occurrence graphs. The weight of

an edge ((i, f), (i′, f ′)) is w = (i′−i−1)
τ .

• Esim = {(o, o′, w)| o = (i, f), o′ = (i, f ′), sim(o, o′) > µ} is the set of similarity
edges with

w =

{
0 if |V | < |V ′|
1
2(1−sim(o,o′)

1−µ + d
ε) otherwise.

where V and V ′ are the node sets of the patterns corresponding respectively to
occurrences o and o′, and d is the distance between the barycenters of o and o′.

A spatio-temporal path is a path in the global occurrence graph.

In definition 27, the edges in EP are edges between 2 occurrences of the same pattern
that are not in the same frame. If these two occurrences are in consecutive frames, the
weight is 0 (when i′ = i+ 1) otherwise the weight increases with the number of frames
between them (normalized by the temporal threshold τ).

The edges in Esim are similarity edges between 2 occurrences of different patterns
that are in the same frame and whose similarity is above µ. To favor paths that use
large patterns we set the weight of edges going from smaller occurrences to bigger ones
to 0. The weight of an edge from an occurrence of a large pattern to a smaller one
increases as the similarity decreases and the spatial distance increases. Otherwise the
weight on the edges increases as the spatial distance increases and the similarity between
the occurrences decreases.

2.1.2 Clusters of Spatio-Temporal Patterns

In this second approach, we want to cluster the spatio-temporal patterns. To do so, we
first need to define a distance function between them and then a clustering algorithm
that can regroup them in clusters corresponding to interesting objects. One of the main
difficulties here is to estimate how many clusters to produce, and how to choose the ones
that are more likely to represent an interesting object.

Dissimilarity between spatio-temporal patterns Each spatio-temporal pattern
p can be represented as a trajectory ptr = {(xpi , y

p
i)| f

p
s ≤ i ≤ fpe } with fps and fpe

respectively the starting and ending frames of p. For each spatio-temporal pattern,
the coordinates (xpi , y

p
i) of the points of its trajectory are obtained by computing the

barycenters of its occurrences in each frame i. For example, in Figure 4.4, we would

72 CHAPTER 4. DATA MINING FOR OBJECT TRACKING IN VIDEOS

1

2 4

3

5

6

7
9

8

11

10 12

Figure 4.4: Example of an occurrence graph for a given pattern P which occurs 12
different times in 6 frames of a given video.

A

B

2 3 4 5 6 7 8

frame1

a b c

Figure 4.5: Example of two overlapping (on 3 frames) spatio-temporal patterns A and
B

compute the barycenter of occurrences 1 and 2 for the second spatio-temporal pattern.
Since the temporal threshold τ allows spatio-temporal patterns to have gaps in the
sequence of their occurrences, the coordinates of the points of the trajectory in those
frames are interpolated between the previous and the next known points.

Let A and B be two patterns. Let fs = max(fAs , f
B
s) and fe = min(fAe , f

B
e). The

distance between two spatio-temporal patterns is defined as:

d(A,B) =


if fe − fs > 0
then dtraj(A,B) ∗ (2− dov(A,B))
else ∞

where dtraj(A,B) =
∑fe

fs

√
(xAi −xBi)2+(yAi −yBi)2

fs−fe+1

and dov(A,B) = fs−fe+1
min(fAs ,f

B
s)−max(fAe ,f

B
e)+1

In words, if two patterns never belong to the same frames, their distance is infinite.
Otherwise, their distance is the normalized (over the number of common frames) sum of
the Euclidean distances between the barycenters of the patterns that appear in common
frames. We added a penalty between 1 and 2 to take into account the proportion of
common frames compared to the span of the union of the two spatio-temporal patterns.
For example, in Figure 4.5, the distance between the two patterns is (a+b+c)

6−4+1 ∗(2−
3

8−1+1).

Clustering algorithm To cluster our spatio-temporal patterns without knowing in
advance the number of interesting clusters, we decided to use a simple hierarchical
clustering algorithm ([45]) with the distance function previously defined. The main

2. OBJECT TRACKING USING GRAPH MINING 73

1

8

5
4

2
3 k=3.16

lifetime of cluster ST

A B C D P

level

TQ R S...

Figure 4.6: Example of hierarchy of clusters with the lifetime of cluster ST depicted with
a red arrow. The hierarchy is cut at level 5 because cluster ST has the longest lifetime
among those below level k =

√
20/2 = 3.16.

problem of this algorithm is the choice of the criterion to cut the hierarchy of the
dendogram without any information a priori about the quality of the resulting clustering.
We decided to cut the hierarchy at the level of the creation of the cluster with the
highest lifetime ([44]). The lifetime of a cluster corresponds to the difference between
the similarity at which it has been formed and the similarity at which it is merged with
another cluster. However, the lifetime criterion tends to behave badly in the presence
of outliers which are fused at the top of the hierarchy and often have the maximum
lifetime (the hierarchy is thus cut at a high level with very few clusters). To overcome
this drawback, we decided to ignore the 10% first levels of the hierarchy (note that there
are i clusters at level i) before computing the lifetime. A visual example of the lifetime
is depicted in Figure 4.6. We also tried an other criteria, called the gain ([85]), but this
criteria tended to cut the hierarchy at the top, even when ignoring the 10% first levels,
which resulted in clusters with low precision.

Selection of the best clusters in the clustering Since with our approach, a lot
of the spatio-temporal patterns of the background are not part of any precise cluster,
the optimal number of clusters is usually much higher than the true number of main
objects.

Therefore, after having cut the hierarchy, we still have to decide which clusters are
the most interesting. The idea is to rank the clusters and only keep the best ranked
ones. In the rest of this document, the size of a cluster refers to the number of spatio-
temporal patterns composing it and the length of a cluster refers to the number of frames
it covers. More precisely, the length is computed as the difference between the frame
number of the first and last frames the cluster has an occurrence in. We tried different
strategies to rank the clusters. We first ranked them according to their length only or
size only but the strategy of ranking the clusters according to their length first and then

74 CHAPTER 4. DATA MINING FOR OBJECT TRACKING IN VIDEOS

according to their size gave better results overall. This third strategy still has problems.
In particular, in the case where interesting objects do not appear in all the frames of
the video, top ranked clusters do not always represent those interesting objects. Instead
they often are small clusters composed of few patterns with low discriminative power
that cover all the video but do not represent anything interesting. To deal with this
problem we changed our ranking strategy to favor the biggest clusters among the ones
that covered the majority of the video. More precisely, we first keep all the clusters with
length l such that lmax ≥ l ≥ lmax − 0.1 × |D|, where lmax is the length of the longest
cluster and |D| is the number of graphs in the database (i.e., the number of frames in
the video). Within the clusters of this length, we select the one (or randomly among the
ones) with the highest number of spatio-temporal patterns and then the highest number
of occurrences. This cluster is called the longest in the rest of this document.

To decide how many interesting objects should be tracked in the video in a completely
unsupervised manner (without selecting them in the first frame), we could either assume
that there is only one object, or find among the longest clusters the ones that are
sufficiently far from each other. However, in our experiments, we select for each video
the n longest clusters, with n being the number of main objects in the video. We then
measure their precision and recall with respect to the ground truth.

2.2 Meaningfulness of the (Spatio-Temporal) Patterns

To evaluate how meaningful our (spatio-temporal) patterns are, before constructing any
spatio-temporal path or clusters, we study whether they can be used to track a given
object in a video.

We start by introducing two measures which assess how precisely a (spatio-temporal)
pattern p corresponds to a given target object o in the video frames. These measures,
also used later on to evaluate our more elaborate tracking strategies, are adaptations of
the popular measures precision and recall as described below:

• precision: fraction of the occurrences of p (in the target graphs) for which every
node maps to the object o in the corresponding video frames. The intuition behind
this measure is to evaluate the purity of p, that is, p has the maximum precision
if it maps only to the object o and nothing else.

• recall: Let n be the number of frames in which o is present. The recall is defined
as the fraction of n in which there exists at least one occurrence of p where every
node maps to o. Here, the intuition is to evaluate the completeness of p. More
precisely, the idea is to check whether the occurrences of p map to all occurrences
of o in the set of video frames.

Since our algorithms are exhaustive, that is, they mine for all frequent (spatio-
temporal) patterns in the graph database without supervision, the mining results may
consist of different (spatio-temporal) patterns corresponding to different objects, or even
to no specific one (w.r.t. the proposed measures). Therefore, to follow a specific object
in the video, the user should be able to select from the entire set of output (spatio-
temporal) patterns those that correspond to this object. A basic strategy for this task
is the following:

1. First, the user selects a frame area where there exists an object he or she is
interested in tracking, that is, the target object. This is done in a user selected
frame, referred to here as f , where this object occurs.

2. OBJECT TRACKING USING GRAPH MINING 75

Triangulated RAG
Support precision (%) recall (%) precision (%) recall (%)

721 96.2 99.8 97.1 99.9
711 97.6 98.9 97.2 99.8
701 99.3 97.7 96.5 99.0
691 99.7 96.3 93.9 95.6
681 99.8 95.0 92.8 93.9
671 99.8 93.7 92.5 93.5
661 99.9 92.5 92.5 93.5
651 99.9 91.0 91.8 92.6

Table 4.1: Average precision and recall (in percentage) computed for the patterns selected
at step 3 of the proposed object tracking strategy.

2. Afterwards, the user starts the graph mining process by executing either Plagram
with a given minimum support or DyPlagram with a given minimum support
and time constraint as input, followed by the post-processing step described in
section 3.2.4 with a spatial constraint. Alternatively, spatio-temporal patterns
can be directly extracted using DyPlagram st.

3. Next, the (spatio-temporal) patterns that have no occurrences in the user-selected
area, in frame f , are discarded. The remaining patterns are considered the target
patterns, i.e., those that characterize the target object.

4. Finally, all the occurrences of the target (spatio-temporal) patterns are mapped
to the video frames, allowing the user to detect the position of the target object
through the video.

2.2.1 Output of Plagram (plane graph patterns)

We first evaluated our strategy on the patterns returned by Plagram (the plane pat-
terns). In those experiments we used the simple video with only one X-Wing. We
checked whether it would be possible to follow the X-Wing in this basic video by con-
sidering the patterns that matched it in the first frame, i.e., patterns that where inside
the user selected area. As might be expected, those patterns had different precision and
recall with respect to the X-Wing. Some examples are given in Figure 4.7. In (b) and
(c), we show 2 different occurrences of a pattern with 100% support, 52% precision,
and 100% recall in the RAG dataset. Now, consider the graph in (d). It illustrates an
occurrence of a pattern with support of 378 frames in the RAG dataset. Note that this
occurrence had a node outside of the X-Wing area; this decreased the precision of the
corresponding pattern. Indeed, it had 0% precision and recall.

After executing step 3, we got the patterns whose average precision and recall (in
percentage) are shown in Table 4.1.

Observe that the selected patterns had, on average, very good quality, making step
4 successful. Considering the Triangulated dataset, the average precision increased in
inverse proportion to the minimum support, while the average recall decreased with the
minimum support. Here, lower minimum support led to bigger patterns with higher
precision and lower recall. In the RAG dataset, the behavior was different: big patterns
had nodes that did not map to the X-Wing. In addition, small patterns with low support
did not have good precision nor recall. As a consequence, the average precision and recall
decreased with the minimum support.

76 CHAPTER 4. DATA MINING FOR OBJECT TRACKING IN VIDEOS

(a) (b)

(c) (d)

Figure 4.7: (a): pattern with 100% precision and recall in the Triangulated dataset.
(b) & (c): 2 occurrences of the same pattern (the X-Wing and a keyboard, respectively)
with 52% precision and 100% recall in the RAG dataset. (d): example pattern with 0%
precision and recall in the RAG dataset.

However, in a less simplistic context (e.g., when multiple identical object are present),
the precision and recall of the patterns returned by Plagram drops dramatically. This
is due to the fact that, in the video used for these experiments (see Figure 4.3), the
3 X-Wings may overlap and two of them can partially go out of the video frames.
Besides, as the target X-Wings are identical, some ambiguities may happen w.r.t the
target patterns. For example, a target pattern may be very frequent just because it
maps to multiple X-Wings and thus appear in almost every frame, but imprecise (i.e.,
with a low precision) with respect to a given X-Wing o if it maps not only to o, but
to different X-Wings through the video. Therefore, to track a given object in our more
complex video, the use of spatio-temporal constraints becomes necessary.

2.2.2 Output of DyPlagram and DyPlagram st

To check whether the defined spatio-temporal patterns can well represent the individual
trajectory followed by several similar objects, or the trajectory of objects in real videos,
we used the previously described strategy on the video Anim1 that shows 3 identical
X-Wings moving in a room and using the size discretization to label the nodes of the
RAGs. We also performed experiments on the real video with the drone to assess
the meaningfulness of the spatio-temporal patterns when the appearance of the target
changes and segmentation errors are introduced.

Experiments on Anim1 For DyPlagram, we first extracted all frequent patterns
with a frequency threshold of σ = 721, corresponding to the number of frames in the
video, and a temporal constraint τ = 1 to focus on patterns that appear in every
frame (note that some occurrences of the same pattern may correspond to different

2. OBJECT TRACKING USING GRAPH MINING 77

DyPlagram with post-processing DyPlagram st
Precision(%) Recall(%) # ST patterns Precision(%) Recall(%) # ST patterns

ε = 10, σst = 10

X-Wing 1 78 7 151 78 7 114
X-Wing 2 72 3 129 95 3 71
X-Wing 3 87 2 131 88 2 84

ε = 20, σst = 50

X-Wing 1 77 15 73 82 17 65
X-Wing 2 93 26 43 100 29 39
X-Wing 3 100 10 60 100 10 60

ε = 170, σst = 50

X-Wing 1 45 38 27 51 42 24
X-Wing 2 51 10 15 49 8 17
X-Wing 3 60 12 21 69 13 19

Table 4.2: Evaluation of the spatio-temporal patterns issued from all patterns with σ =
721 and τ = 1 for DyPlagram and for DyPlagram st. The labels are created
from the size of the region. For both algorithms, the third column indicates how many
spatio-temporal patterns have been discovered. Those experiments were conducted on the
synthetic video Anim1 with 3 identical X-Wings.

spatio-temporal patterns). Then, we post-processed them to generate spatio-temporal
patterns using the strategy described in 3.2.4. The same temporal threshold τ = 1 and
frequency threshold σ = 721 where used to directly extract comparable spatio-temporal
patterns with DyPlagram st.

Next, the precision and recall of every spatio-temporal pattern whose first occurrence
mapped to an object o in a video frame i were computed with respect to the object o.
The precision allows to assess if spatio-temporal patterns are robust, i.e, if they tend to
follow the same object on all frames they have an occurrence in. The recall tells us how
much of a target, in term of number of frames, spatio-temporal patterns cover.

Table 4.2 summarizes the results obtained with the spatio-temporal patterns gener-
ated by post processing the frequent patterns of DyPlagram, and the spatio-temporal
patterns of DyPlagram st. The spatio-temporal patterns were generated with a min-
imum freqst threshold σst = 10 and 50, and 3 different spatial thresholds ε of 10, 20,
and 170 pixels (from 20 to 160 pixels, the results were quite similar and thus are not
reported here). For each experimented pair (σst, ε) and for each target X-Wing in the
video, the first two columns give the average precision and recall computed for its as-
sociated spatio-temporal patterns (as defined in our strategy). In addition, the third
column shows the total number of such patterns.

Table 4.2 shows that the spatio-temporal patterns obtained with DyPlagram st
are in general less numerous, more precise and have a better recall than the ones obtained
with DyPlagram. The distance threshold ε has an important impact on the obtained
results. Indeed, if it is set too low (to 10 pixels, in our example), we obtain spatio-
temporal patterns with high average precision for each X-wing as different occurrences
of patterns which map to different X-wing are very well distinguished. However, this
leads to a low average recall: since only very close occurrences of the same pattern are
linked, the spatio-temporal patterns tend to be short (i.e., have low freqst). When using
a distance threshold ε = 10, no spatio-temporal patterns with freqst ≥ 50 were found for
X-wing2 for DyPlagram, which explains why we used σst = 10 in this case. Conversely,

78 CHAPTER 4. DATA MINING FOR OBJECT TRACKING IN VIDEOS

Table 4.3: Precision and recall computed for the spatio-temporal patterns produced by
DyPlagram st on the real video with σ = σst, and µ = 0.65

ε = 10 ε = 20

τ σst Precision(%) Recall(%) # ST patterns Precision(%) Recall(%) # ST patterns

10
100 100 26.18 10 92.48 22.97 13
50 93.55 17.40 20 91.35 15.44 25
10 89.78 2.87 294 89.70 2.72 334

25
100 91.28 35.34 11 89.02 30.03 14
50 90.28 25.12 18 83.79 20.14 24
10 88.90 3.18 307 89.47 2.94 358

100
100 89.52 38.21 14 89.02 31.03 19
50 92.27 24.38 27 90.30 22.45 30
10 89.01 4.03 258 89.88 3.63 302

for a higher ε of 170 pixels, the average precision drops as the different X-wings are
not well distinguished anymore. For example, it was possible to obtain spatio-temporal
patterns with higher recall for the X-Wing 1 (when comparing to the other experiments),
but, they had low average precision. Since the X-Wing 1 gets partially out of the video
frames around 6 times, a higher number of spatio-temporal patterns were derived for
this X-wing for σst = 50 and ε of at least 20, which represent the different time intervals
where this X-wing is visible through the video. As another example, the X-Wing 2 is
hidden only twice by the X-Wing 3 (during around 15 frames) and never goes out of
the video frames. This explains the lower number of spatio-temporal patterns found
for this object, also for σst = 50 and ε ≥ 20. Note that, in the case of our example
video, increasing the time constraint τ could increase the length of the spatio-temporal
patterns and thus their recall but this would lead to a lower precision.

Experiments on the drone video The aim of those experiments is to demonstrate
that spatio-temporal patterns can serve has a basis to track objects in real videos. We
experimented on the influence of different values for the spatio-temporal thresholds,
using τ = 10, 25, 100 and ε = 10, 20 (above 20 the precision started to drop significantly
which is expected for large ε values), and different values for the frequency threshold
with σst = 10, 50 and 100. The precision and recall results for the spatio-temporal
patterns returned by DyPlagram st under those parameters are presented in Table
4.3.

As expected, the precision is a little higher with ε = 10 (100% for ε = 10 when
τ = 10 and σst = 100 against 92.48% for ε = 20). The fact that the average recall also
decreases with a higher distance is more surprising at first glance. This is explained by
the fact that most of the time, ε = 10 is enough to follow the drone, but sometimes the
drone or the camera movement accelerates. In those cases a higher distance might give
longer and better spatio-temporal patterns but also might introduce some noisy ones
which would decrease the average recall and precision.

The average recall also decreases when we lower σst. This is due to the fact that when
using a low σst DyPlagram st outputs short spatio-temporal patterns that necessarily
have a low recall. Lowering σst slightly reduces the precision of the spatio-temporal
patterns but increases their number.

As also expected, higher gaps lead to better recall (38.21% for τ = 100 when ε = 10

2. OBJECT TRACKING USING GRAPH MINING 79

and σst = 100 against 26.18% for τ = 10) as well as improve the coverage of the spatio-
temporal patterns in the whole video. The precision does not seem to be influenced by
τ when we allow small spatio-temporal patterns (i.e., a low σst).

Overall this series of experiments have shown that spatio-temporal patterns are
robust and can follow a target with high precision. The fact that a single spatio-
temporal pattern is not enough to track an object across all the frames of a video is also
confirmed by the low recall results. In the next sections we will present the experiments
we conducted to show how this problem can be solved with the spatio-temporal paths
or clusters of spatio-temporal patterns.

2.3 Spatio-Temporal Paths for Object Tracking

To assess the effectiveness of the spatio-temporal paths for object tracking, we apply the
following strategy. We first build the occurrence graph and then, for each target object,
we select the occurrences matching it in the first frame. Then we compute the path of
lowest cost starting from those occurrences and reaching the last frame using Dijkstra’s
shortest path algorithm. This means that this strategy is better suited to cases where
the target appears in the last frame. Although it could still follow a target that is not
present in the end of the video, in the last frames, this strategy would drift to some
pattern that does not represent the object. In all experiments reported here we use a
similarity of 2/3 (µ = 0.65). We also tried with a similarity of 3/4 (µ = 0.75) but in this
caused the occurrence graph to have to few edges to find a complete track of any object.
With a similarity of 1/2 (µ = 0.5) the occurrences graphs took a lot of space in memory
because of the number of edges between the occurrences and the track obtained drifted
easily to elements of the background.

In practice the minimum support threshold σ can be set, for example, to 1/5 of
the total number of frames (to make sure that the patterns occur enough and help the
mining process). By default, it will be equal to the σst threshold. σst should be set as
low as possible (depending on available memory). The τ should, in general, be set as
high as possible (as will be shown in the experiments). The ε constraint depends on the
motion speed of the target object and on the resolution of the video. Most of the time
we use 20 pixels.

Evaluation of the Spatio-Temporal Path for Object Tracking For the synthetic
videos Anim2 with the 3 different airplaines, and for the drone video, we report the
precision and recall results for the spatio-temporal paths. Each time we selected the
spatio-temporal pattern with lowest weight starting from an occurrence in the area
selected by the user and ending in the last frame. The precision and recall results are
computed on the occurrences taken by the spatio-temporal path with lowest weight.

Experiments on the Synthetic Video Anim2 The experiments reported in Table
4.4 show the precision and recall results for the paths obtained on the synthetic video
when varying the gap between 10 and 100.

Because of the nature of the video, we use a global minimum support σ of 250 in
order to prune the number of frequent patterns. Indeed, since the synthetic video has
been especially made to produce stable graphs, DyPlagram st returns a lot of frequent
patterns on this dataset which leads to a huge global occurrence graph that possibly
does not fit into memory for processing. To be able to perform various experiments,
especially with the size discretization which does not permit to distinguish the three

80 CHAPTER 4. DATA MINING FOR OBJECT TRACKING IN VIDEOS

Table 4.4: Evaluation of the spatio-temporal path with σ = 250, σst = 150, µ = 0.65,
ε = 20. The numbers between parenthesis correspond to the best precision and recall of
the best path in term of recall, and the emphasized results are the best results for each
X-Wing

Size Discretization Color Discretization
τ Precision(%) Recall(%) Paths Precision(%) Recall(%) Paths

X-Wing 1
10

98.32 (99.72) 97.50 (99.30) 34 93.92 (99.74) 93.60 (99.86) 21
X-Wing 2 99.63 (99.73) 97.26 (98.19) 24 98.65 (100) 96.82 (99.02) 17
X-Wing 3 9.49 (16.64) 8.70 (15.39) 4 - (-) - (-) 0

X-Wing 1
25

95.79 (100) 94.59 (99.02) 38 99.17 (99.73) 98.40 (100) 21
X-Wing 2 65.66 (99.61) 64.61 (98.05) 32 98.54 (100) 96.34 (99.02) 20
X-Wing 3 2.93 (9.09) 2.50 (8.59) 29 31.95 (31.95) 29.54 (29.54) 2

X-Wing 1
100

79.05 (100) 74.37 (94.31) 42 97.76 (100) 95.36 (99.30) 29
X-Wing 2 72.57 (97.53) 67.05 (93.62) 35 98.87 (100) 96.30 (99.02) 39
X-Wing 3 5.42 (18.46) 4.82 (16.36) 31 86.27 (90.52) 75.92 (82.80) 23

X-Wings at the mining step, we set the σst to 150 (although as already discussed, it is
better to set it as low as possible).

Overall, we obtain very good results for the first two X-Wings (precision and recall
close to 100%). We can clearly see the lack of discriminative power of the size dis-
cretization when the gap increases. Indeed the paths start to follow different X-Wings,
reducing their precision and their recall. For those two X-Wings the color discretization
always shows good results, with average precisions and recalls close to the ones of the
best paths (values in brackets). Since the 3rd X-Wing moves back and forth horizontally
across the field of view (getting almost completely out every 120 frames), only few paths
starting on this X-Wing manage to reach the end of the video when we use a low gap.
The paths which uniquely follow this X-Wing are thus more expensive than other paths
on which the algorithm can ”jump” using the similarity edges, decreasing the precision
and recall. As we can see, increasing the gap allows to overcome this problem with the
color discretization while keeping good results for the other two X-Wings.

Real Video with the drone The experiments reported in Table 4.5 were made
without using a global minimum support threshold (which is equivalent to set σ = σst).
Because of the segmentation, this dataset is a lot less stable than the synthetic one
resulting in less frequent patterns. For this one, only the color discretization gave good
precision/recall results (we also tried the size and some other color discretizations using
the HSV color space but our simple discretization of the RGB space worked better).

Table 4.5 shows the results for the spatio-temporal patterns of DyPlagram st on
the real dataset for the color discretization.

A distance ε equal to 20 gives the best results in most cases with high precision and
good recall (99.0380.63σst = 10 for example). However, the values for τ = 10 show
the limits of the use of the shortest path algorithm to tackle our problem. Similarly to
what was happening with the third X-Wing in the synthetic video, the shortest path
might not always be following the object we want to track if elements in the background
or other objects offer better stability than the original target and are close enough to
”jump” on them.

The results with our preferred setting (low σst = 10, high τ = 100 and a distance

2. OBJECT TRACKING USING GRAPH MINING 81

Table 4.5: Precision and recall computed for the spatio-temporal paths for the real video
with σ = σst and µ = 0.65, using the color discretization to label the nodes of the graphs.

ε = 10 ε = 20

τ σst Precision(%) Recall(%) Paths Precision(%) Recall(%) Paths

10
100 96.30 (96.30) 67.89 (67.89) 1 98.23 (100) 80.94 (82) 2
50 98.25 (100) 70.00 (71.26) 2 26.16 (38.96) 24.03 (36.21) 3
10 91.93 (93.34) 69.60 (70.63) 8 18.75 (36.09) 17.88 (34.73) 8

25
100 98.43 (100) 68.89 (70) 6 98.51 (100) 78.68 (79.68) 6
50 98.66 (100) 69.05 (70) 7 98.72 (100) 78.82 (79.68) 7
10 99.06 (100) 69.36 (70.21) 10 99.03 (100) 80.63 (81.36) 10

100
100 100 (100) 67.42 (67.78) 8 100 (100) 77.52 (79.68) 9
50 100 (100) 67.36 (67.68) 9 100 (100) 77.54 (79.68) 9
10 100 (100) 67.21 (67.78) 10 99.26 (100) 79.17 (79.78) 10

ε = 20) show that the spatio-temporal paths can indeed be used to follow an object in
the video. The similarity edges introduced are very useful to increase the recall of the
patterns and experiments with a higher similarity constraint (for example with µ = 0.8)
provide worst results. This shows the importance of this ”inexact” matching phase in
the process. On the downside, the choice of the labels on the node (here it is a color
information) seems to play a very important role to get interesting spatio-temporal
patterns although it is difficult to evaluate in an unsupervised setting what could be the
best ones. One solution could be to attach more diverse informations on the labels of
the nodes to overcome this problem.

2.4 Clusters of Spatio-Temporal Patterns for Tracking

In this section we present the experiments we conducted to show that the top clusters,
according to our ranking strategy, correspond to interesting objects and can be used to
follow those objects.

2.4.1 Experimental Design

To asses the quality of the tracks returned by our approach, we compare our algorithm
to two other state-of-the-art algorithms called TLD ([87]) and CT ([134]). We also
apply our algorithm on the video segmentation of [78]. To summarize we compare the
4 following approaches:

• TLD (Track Learn Detect) is a tracking algorithm [87] that requires manual se-
lection of the target.

• CT (Compressive Tracking) is a tracking algorithm [134] that also requires manual
selection of the target.

• TRAP is our tracking algorithm which mines frequent spatio-temporal patterns
and clusters them. It uses the simple segmentation algorithm presented in [74] for
the real video (and the original regions for the synthetic ones). The value for the
three parameters of the algorithm (τ , σst and ε) are discussed bellow.

82 CHAPTER 4. DATA MINING FOR OBJECT TRACKING IN VIDEOS

• TRAP + VS (Video Segmentation) uses the second type of segmentation presented
in [78].

For the clusters obtained with our approach, the precision corresponds to the pro-
portion of occurrences of the cluster that have all their nodes in the bounding box of
the ground truth (at the corresponding frame). The recall of a cluster is the number of
frames in which at least one occurrence of this cluster has all its nodes in the bounding
box of the ground truth.

TLD and CT are given the ground truth of the first frame of each video as input.
Both algorithms return a sequence of bounding boxes representing the track of the
followed objects. The precision is the area the bounding boxes of the track and of the
ground truth have in common, divided by the area of the bounding boxes of the track.
The recall of the algorithm is the number of frames in which the center of the bounding
box of the track is inside the bounding box of the ground truth.

As explained in Section 2.1.2, the choice of the clusters that are used to track the
objects of interest is an important problem. In the experiments, we will show the results
for the Longest cluster as defined in Section 2.1.2 but also the results for the Best cluster
in the hierarchy (we chose the best cluster for all possible cut of the clustering hierarchy).
This best cluster is the one for which the Precision ∗ Recall ∗ 100 is the highest. Of
course, these “best” results are just given to assess the possible improvements for our
algorithm since they cannot be used in an unsupervised setting. In some experiments,
the two criteria we use (cut with the lifetime and keep the longest cluster) are not always
the best but we can show that a very good cluster exists and could be found using a
different criteria.

Parameters of DyPlagram st The spatial threshold ε should be high enough de-
pending on the motion of the objects and the motion of the camera. This can be
estimated on the first frames of the video using optical flow techniques (see [69] for
more details). However, setting this to 20 (pixels) for all experiments gave sufficiently
good results. In general, giving a high value for this parameters will increase the mining
time but will not harm the results. Similarly the time threshold τ is set for all videos
to 25 frames (1 second of the video). Again, this may not be the best set of parameters
especially for the car video which is the most complex to deal with. The frequencies
thresholds (σ and σst) should be set after having found a working τ and ε to obtain a
significant number of spatio-temporal patterns (600 < #patterns < 2000). A too large
number would also slow down the algorithm. By default σ = σst. Note that σ controls
the frequency of the patterns from which the spatio-temporal patterns can be generated.
However, a very high σst threshold (for example, more than 20% of the length of the
video) means that the structure of the object (and thus of the patterns representing it)
should not change at all during 20% of the frames which is not very reasonable for most
of the real videos that are recorded by amateurs. Thus, we impose that σst is always
bellow 20% of the length (in frames) of the video. If the number of patterns is still too
big with this bound, we can increase σ to get inside the #patterns bounds.

2.4.2 Results

We now present the results obtained for our clusters of spatio-temporal patterns in term
of tracking quality and efficiency.

2. OBJECT TRACKING USING GRAPH MINING 83

Anim 1: Identical Objects Animation 2: 6= Objects
Obj 1 Obj 2 Obj 3 Obj1 Obj2 Obj3

P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%)
TLD 22 14 90 17 0 0 14 13 36 5 0 0
CT 39 52 0 0 0 0 68 96 0 0 0 0

TRAP
Longest 97 90 41 99 21 63 100 99 91 99 8 12

Best 99 90 92 88 87 49 100 99 91 99 72 92

VS+C
Longest 14 14 47 55 35 38 91 95 67 84 18 43

Best 100 52 97 63 100 21 91 95 97 63 53 45

Figure 4.8: Precision and Recall of the CT, TLD and TRAP algorithms using
the standard color segmentation, the TRAP algorithm using the video segmentation
(TRAP+VS) and the video segmentation alone with a clustering phase (VC+C) on
the two synthetic videos Anim1 and Anim2.

Drone Car 1000 Car 2000 Car 3000
P(%) R(%) P(%) R(%) P(%) R(%) P(%) R(%)

TLD 63 88 65 68 55 46 55 31
CT 84 99 9 14 8 8 5 5

TRAP
Longest 81 99 92 83 10 98 4 52

Best 97 99 90 98 90 51 90 34

VS+TRAP
Longest 24 95 92 90 5 82 5 65

Best 95 94 93 98 85 54 85 36

VS+C
Longest 90 100 0 0 0 0 0 0

Best 100 100 95 100 84 100 98 79

Figure 4.9: Percentage of Precision (P) and Recall (R) of the CT, TLD and TRAP
algorithms using the standard color segmentation, the TRAP algorithm using the video
segmentation (TRAP+VS) and the video segmentation alone with a clustering (VC+C)
on the two real videos.

Figure 4.10: Occurrences of frequent patterns (in green) in the longest cluster for the
first 1000 frames of the car video

Tracking quality

Synthetic videos In Figure 4.8 we can see that CT and TLD do not give good results
on the synthetic video especially when the 3 planes are identical. Indeed, the initial
bounding box given in the ground truth includes a lot of background between the wings
of the planes which corrupts the appearance model learned. Besides, there are occlusions
between the objects and their rapid changes in direction make them hard to track. Our
approach gives good results (97/90 P/R for Anim1 and 100/99 for Anim2) on the first
plane which is the most stable. However there is no really good cluster (where the recall

84 CHAPTER 4. DATA MINING FOR OBJECT TRACKING IN VIDEOS

and the precision would be both above 90%) in all the hierarchy representing the second
and the third object. For the second object, the best cluster has 92% precision and 88%
recall but this cluster exists only when cutting the hierarchy at 11 clusters whereas our
lifetime criteria cuts the hierarchy at 252 clusters and thus does not allow us to find the
best one. For the third object, the best cluster was only 361 frames long so it was not
selected as the longest one. Because the third object goes almost completely out of the
field of view for 3 to 4 seconds several times in the video, the clusters representing this
object were easily split. When directly clustering the patterns extracted from the video
segmentation (VS+C) and for Anim1, the best clusters have a high precision but their
recall is low, reaching 63 (less for the longest cluster). This comes from the fact that the
video segmentation is of course less accurate than the original segmentation and tends
to over-segment regions due to the frame-to-frame region matching which decreases the
relevance of the patterns.

The results for Anim2 show that the color difference between the three objects
usually helps all the trackers (except for TLD). For our approach, the longest clusters at
the highest lifetime were the best ones in the hierarchy as can been seen in Figure 4.11
(top). The difference between the objects was discriminative enough to be able to follow
the third object with a best cluster with 72% precision and 92% recall. Unfortunately
this good cluster was at the 14th level of the hierarchy while it was cut at the 70th level
as can be seen in Figure 4.11 (middle). In this later case the size of the best cluster
decreases around the 50th level of the hierarchy which causes it to be ranked lower than
bigger clusters that do not match the third object.

The video segmentation did less mistakes on this animation and the results are thus
better for the VS+C method. As we can see, the best cluster for the first X-Wing was
the longest one with a precision of 91% and a recall of 95%. For the second X-Wing, the
recall drops to 84% and the precision to 67%. For the last object, there is not enough
patterns to build good clusters (the best one only has 53% precision and 42% recall).

Real videos TLD and CT both track the drone for almost all the video, the former
with 63/88% (P/R) and the later with 84/99% (P/R) (see Figure 4.9). TLD loses it
for some frames which results in a lower recall. Due to the large size of the output
bounding box in some frames, the precision is lower than for our approaches for both
algorithms. TRAP also follows the drone with 99% recall, but the longest cluster is
less precise than the best cluster (81% versus 97%). Note that just reducing σst to
10 in this case would allow us to find the best cluster. Clustering the spatio-temporal
patterns extracted from the video segmentation (VS+TRAP) also produces some good
clusters but not at the level the lifetime cuts the hierarchy. Thanks to a high number
of spatio-temporal patterns, VS+C obtains good results (the longest cluster has 100%
recall and 90% precision).

From Figure 4.9, we can confirm that the car video is a much more difficult tracking
problem. TLD follows the car until the frame 1305, losing it occasionally, but never with
a good precision. CT never succeeds in following the car. For both types of segmentation,
the longest cluster returned by TRAP follows the car until the frame 1200 and then loses
it. At this point of the video the car is small and both segmentation segmented it in
only one region. Since occurrences of frequent spatio-temporal patterns have at least 3
nodes (1 face, this is imposed by the DyPlagram st algorithm), there is none matching
the car in this part of the video. The best patterns for the first 2000 and 3000 frames
all end at this frame, and, since there is no other long pattern matching the car, the

2. OBJECT TRACKING USING GRAPH MINING 85

Figure 4.11: Precision an recall results of the best and longest clusters output by TRAP
for the object 1 (top) and object 3 (middle) of animation 2 and for the car (bottom) for
car1000. The vertical red line is the lifetime cut.

longest clusters has a bad quality. As shown in tab 4.12, augmenting the gap allows us
to skip the frames of the video where the car is too small which produces better results.
However, the algorithm faces the same situation for a longer time at the frame 2300.
This shows that if the gap threshold τ can allow us to deal with some situations where
the object is hard to detect, it would be better to introduce a mechanism specifically

86 CHAPTER 4. DATA MINING FOR OBJECT TRACKING IN VIDEOS

Car1000 Car2000 Car3000
P R P R P R

TRAP
Long 90 99 96 73 7 83
Best 90 99 93 87 92 61

VS Long 90 99 93 87 7 84
+TRAP Best 92 98 88 91 22 39

Figure 4.12: Percentage of Precision (P) and Recall (R) obtained for the car video when
increasing the gap τ to 75 for the TRAP algorithm.

Exec Time (s)
patterns

Mine Clust Total

Anim1
TRAP 11 1042 1053 1708
VS+C 0 7 7 116

Anim2
TRAP 9 1180 1189 1667
VS+C 0 6 6 113

Drone
TRAP 28 952 980 1421

VS+TRAP 9 722 731 1349
VS+C 0 521 521 1095

Car1000
TRAP 109 231 340 575

VS+TRAP 212 204 416 520
VS+C 0 4560 4560 2923

Car2000
TRAP 153 1005 1158 1046

VS+TRAP 153 954 1107 985
VS+C 0 28524 28524 5196

Car3000
TRAP 153 1758 1911 1232

VS+TRAP 153 1981 2134 1237
VS+C 0 69866 69866 6543

Figure 4.13: Execution time and number of patterns output by the TRAP algorithm and
the method which uses the video segmentation followed by a clustering step (VS+C)

designed to deal with long term occlusions. Figure 4.11 shows that, on the first 1000
frames, the longest cluster returned by TRAP is always the best one until the lowest
levels of the hierarchy. This shows that the length criterion can be very good to find the
best cluster when sufficient patterns representing the objects can be extracted and when
no long disappearance of the targets splits the clusters. The VS+C method builds good
clusters but only at the higher levels of the hierarchy, they are thus not found using our
lifetime criterion.

In conclusion, our unsupervised methods give comparable (and most of the time
better) results than the state-of-the-art trackers TDL and CT. However, we do not need
to select the objects of interests in the first frame of the video which makes this method
usable in practice to treat batches of off-line recorded videos such as Youtube ones.

Efficiency For the synthetic videos, when keeping the default parameters for τ and
ε we fell into the number of patterns problem mentioned in Section 2.4.1. For both
animations, σst was set to 150 but σ was set to 250 for the first animation and to 220
for the second one. As can be seen in the Figure 4.13 it takes more than 15 minutes to

3. CONCLUSION 87

process 1700 patterns in both cases. For the video segmentation (VS), we can not control
the number of output patterns and for the simple animation video, we get only around
100 of them which made the clustering process very fast. Because of many changes in
appearance for the real videos, there were less frequent patterns so we could keep the
default setting for all parameters (except σst as discussed in Section 2.4.1). For TRAP,
we used σst = 15 for the drone and σst = 25 for the car, and we set it to 35 for both
videos when mining the more stable video segmentation. We mined the 5600 frames of
the car video at once and then restricted the occurrence graph to the first 1000, 2000,
and 3000 frames, this explains why the time results for the mining step of this video are
constant. This is also why the number of patterns can be as low as 500 when processing
only the first 1000 frames. As we can see, the VS+C approach produces a lot more
patterns which greatly increased the computation time.

In conclusion, the mining phase can give better results and is more efficient than
directly using the output of the dynamic segmentation for real videos. However, both
methods are far from usable in real time although the clustering step could easily be
improved by designing an optimized algorithm.

3 Conclusion

We have presented experiments which show the usefulness of the patterns mined by
the algorithms presented in Chapter 2. In particular, the experiments we conducted on
the spatio-temporal patterns show that the patterns are meaningful in a video tracking
context: when the first occurrence of a spatio-temporal pattern matches an object, the
rest of its occurrences tend to also match the same object with high precision.

We also described two strategies that use spatio-temporal patterns to track the main
objects of videos. In a first strategy, we build a graph which is the concatenation of
the occurrence graphs of all frequent patterns. We add edges to this graph connecting
the occurrences of different patterns that are similar. Then, we look for paths called
spatio-temporal paths in this global occurrence graph. With this method, the user needs
to select a region of interest in the first frame of the video by drawing a bounding box.
We then select the shortest spatio-temporal path (with respect to some weights on the
edges) that starts from one of the occurrences contained in the selected area.

The second strategy exploits a similarity measure between the trajectories of the
spatio-temporal patterns to group them into clusters representing the objects of the
scene. The clusters are obtained with a hierarchical clustering algorithm. With this
approach, we cut the hierarchy to obtain the best clusters (i.e., clusters that best match
the main objects) automatically.

The spatio-temporal paths suffer from multiple limitations. They still require the
user to select the target himself. They also tend to drift from the target, especially if
the video is long. Indeed, it is sometimes less costly to move from the original selected
occurrences to occurrences of a pattern that can be more easily followed. Therefore,
sometimes, the computed shortest path starts by taking multiple similarity edges until
it reaches the occurrence of a more stable pattern than the ones matching the target.

Our clustering approach solved the problem of the target selection. However, it is
still unclear where exactly to cut the hierarchy to obtain the clusters and how many of
them are matching an interesting object. Nonetheless, the highest ranked cluster often
corresponds to the main object of the video.

Chapter 5

Conclusion

In this “Habilitation à Diriger des Recherches” thesis, I presented the research domains I
have explored for the last 10 years, as a post-doc in the Machine Learning team in Leuven
(Belgium) and as an associate professor in the Data Intelligence team at University Jean
Monnet, Saint-Etienne. These domains include the design of an inductive database
framework and the development of new exact constraint-based algorithms for this type
of databases, as well as the development of new data mining algorithms to solve computer
vision problems such as image classification and object tracking in videos.

As already discussed in the conclusion of Chapter 3, computer vision problems are
complex tasks which usually necessitate important pre-processing, parameter tuning,
and post-processing steps that would benefit from integrated systems such as inductive
databases that could allow us to perform an entire knowledge discovery process. The
usefulness of data mining techniques (in the broad sense including machine learning) to
help computer vision has been proven a decade ago and this is confirmed every year by
looking at the content of the top conferences in both the computer vision (CVPR, ICCV
and ECCV) and the data mining (NIPS, KDD, ICML) domains. However, if the trend
in domains such as pattern mining goes toward the elaboration of more and more generic
(exact) algorithms triggered by more and more declarative query languages, it seems that
when computer vision is concerned, the trend goes towards the opposite: very specific
algorithms with ad hoc parameters that tend to be difficult to compare. Difficult then
to integrate such algorithms to generic systems such as inductive databases... When
trying to extract a meaningful representation for images, the main reasons for these
countless algorithms lie in the fact that it is difficult to define what an exact solution to
an image representation problem could be or which constraints one could add to his/her
algorithms to obtain better classification results (apart from the class information that
we used for the GEMP algorithm presented in Chapter 3). Furthermore, the number of
data available in computer vision is so big than looking for and storing an exhaustive
descriptive solution for such problems does not seem reasonable.

A generic alternative to these countless algorithms to extract better representations
from images or videos might come from the recent use of deep learning architectures.
These architectures and, in particular, convolution neural networks, learn automatically
in their early layers a mid-level representation of the data suitable to achieve impressive
classification results directly from the pixel information. The results shown since 2012
in the literature using those networks are far better than the results obtained by semi
hand-crafted methods such as the ones presented in Chapter 3 (which rely on low level
image descriptions). The main reasons why these “old” (in the history of machine

88

89

learning algorithms) networks are so effective nowadays come from the fact that we
are able to gather a huge amount of labelled image data to learn the equally huge
number of parameters of these networks and also from the recent advances of computer
architectures and in particular the now common use of GPUs to speed up the learning
process. Whatever the reasons, they have finally make everybody agree on a common
solution to learn a suitable representation for images. Besides, the datasets used to
learned those networks (such as Imagenet1) are so big and so diversified that the features
learned by one network are easily (and successfully) transferable to many other problems.
However, one still needs to train a network for days to get good performance and needs
to train it almost from scratch (with a new architecture) when a new label needs to
be added. Because of these drawbacks, this solution is nowadays still not suitable for
an interactive process and thus for an inductive database system. Another drawback of
this technique is that it does not take into account structural information in images or
videos that could maybe further improve the results.

As far as using pattern mining for discovering better image representation (as shown
in Chapter 3) is concerned, my conclusion is that one needs to work hand-in-hand with
these deep architectures. For example, it would be possible to use neural architectures
such as auto-encoders to automatically discover temporal patterns without unsupervised
information. Or, one could imagine building patterns on the features extracted from
the deep architectures. Another direction could be to mine directly the architectures
to better understand the features that are extracted. Exploring this is one of the goals
of the two ANR projects I am involved in: Solstice, mentioned in the introduction of
this thesis and Lives (Learning with Interacting ViEwS). Within the Solstice project,
we hope to further explore the possibilities of deep learning architectures to solve new
computer vision tasks such as, for example, outdoor scene labelling. This task would be
particularly useful to devices such as self-driving cars or for visually-impaired persons
wearing smart glasses. Within this project, we will also try to evaluate how, more struc-
tured patterns, could help building better representation of images. Our first attempt
in this line is the development of a geometric graph mining algorithm called GRIMA
which can mine interesting substructures in a grid of descriptors. For GRIMA to be
competitive with the state-of-the-art, the description of the images could be made us-
ing the information provided by the descriptive layers of a convolutional neural network.
Within the Lives project, we will work on integrating different views (for example depth
maps in addition to colour images or, in this particular project, multiple brain images
acquired with different medical imaging devices to build a computer-aided diagnosis tool
for neurological disorders) to learn better representation of a problem e.g. using deep
learning architectures.

In addition to these computer vision applications, I am currently starting new
projects on different domains: a fraud detection, a bio-medical and two language pro-
cessing applications. In the bio-medical domain, we are interested in predicting adverse
reactions when transfusing blood samples according to proteins and other molecular
markers contained in the samples. If simple prediction models such as decision trees can
be used to give some interesting results [17, 5], by adding additional knowledge about
the patient being transfused, because the data are not independent and identically dis-
tributed (i.i.d.) and because the classes to predict are highly unbalanced, we now need
to design new types of algorithms that could cope with these specific data. This is also
true for the bank fraud detection application. I will start working on this problem with

1http://www.image-net.org/

90 CHAPTER 5. CONCLUSION

the new PhD thesis of Guillaume Metzler funded by an industrial contract with the Blitz
company. In this context, our goal is to model precisely what a fraud is in terms of bas-
ket analysis and user buying behavior. In addition, we want to model user profiles (e.g.
by using information about loyalty cards) to reduce as much as possible the number of
false alarms triggered by an automatic fraud detection system that would monitor the
use of credit cards or cheques when paying in a supermarket. In this context, a single
customer might make multiple (correlated) transactions along the time (the data are
thus non i.i.d.) and the fraction of frauds compared to the total number of transactions
in a supermarket is very low (the classes are again unbalanced).
In the context of language processing, I started projects in two different directions. In
the first one, we want to explore how language models can be inferred by taking into ac-
count the precise context in which the sentences are pronounced [22]. In the second one,
we work on building tools for automatic meeting management. In particular, we would
like to answer questions such as: i) how can we build, manipulate and dynamically up-
date a semantical representation of all information exchanged during a meeting? ii) how
can we conceive new data mining algorithms able to learn models about the interactions
between the meeting participants? iii) how can we take into account the contextual in-
formation of a meeting to facilitate the previous tasks? This last point is related to our
first language processing problem. We would like to automatically learn the constraints
of a CSP (Constraint Satisfaction Problem) using methods at the crossroad between
inductive logic programming and pattern mining.

This document shows the diversity of the applications that I have tackled and of the
researches (in data mining) that I have conducted. These researches have produced a
good number of high quality publications. I have acquired a good experience in super-
vising PhD students (2 of them have already defended their thesis, 3 have started) but
also master students (14 up to this day) during the past ten years. I am also involved in
the research administration through project proposal writing, conference organizations,
programme committee memberships, jury memberships, university council memberships
and research management. And least but not last, I have spent a fair amount of time
trying to create and teach interesting lectures to my students at all university levels.
I am particularly involved in the management of the masters in computer science in
Saint-Etienne.

91

Other Publications Cited in the Document

[42] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen, and
A. Inkeri Verkamo. Fast discovery of association rules. In Usama M. Fayyad,
Gregory Piatetsky-Shapiro, Padhraic Smyth, and Ramasamy Uthurusamy, editors,
Advances in Knowledge Discovery and Data Mining, pages 307–328. AAAI/MIT
Press, 1996.

[43] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining association
rules in large databases. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo,
editors, VLDB’94, Proceedings of 20th International Conference on Very Large
Data Bases, pages 487–499. Morgan Kaufmann, 1994.

[44] LNF Ana and Anil K Jain. Robust data clustering. In Computer Vision and Pattern
Recognition (CVPR), volume 2, pages II–128. IEEE, 2003.

[45] Michael R Anderberg. Cluster analysis for applications. Technical report, DTIC
Document, 1973.

[46] Nicos Angelopoulos and James Cussens. Exploiting informative priors for bayesian
classification and regression trees. In Leslie Pack Kaelbling and Alessandro Saf-
fiotti, editors, IJCAI-05, Proceedings of the 19th International Joint Conference on
Artificial Intelligence, pages 641–646. Professional Book Center, 2005.

[47] Jaume Baixeries, Laszlo Szathmary, Petko Valtchev, and Robert Godin. Yet a faster
algorithm for building the Hasse diagram of a concept lattice. In Sébastien Ferré
and Sebastian Rudolph, editors, ICFCA’09, Proceedings of the 7th International
Conference on Formal Concept Analysis, Lecture Notes in Computer Science, pages
162–177. Springer, 2009.

[48] G. Blanchard, C. Schäfer, Y. Rozenholc, and K. R. Müller. Optimal dyadic decision
trees. Machine Learning, 66(2-3):209–241, 2007.

[49] O. Boiman, E. Shechtman, and M. Irani. In defense of nearest-neighbor based
image classification. In CVPR, 2008.

[50] Francesco Bonchi, Fosca Giannotti, Cludio Lucchese, Salvatore Orlando, Raffaele
Perego, and Roberto Trasarti. A constraint-based querying system for exploratory
pattern discovery information systems. Information System, 2008. Accepted for
publication.

[51] Y.-L. Boureau, F. Bach, Y. LeCun, and J. Ponce. Learning mid-level features for
recognition. In CVPR, 2010.

[52] Leo Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

[53] Leo Breiman, Journal H. Friedman, R. A. Olshen, and C. Journal Stone. Classifi-
cation and Regression Trees. Statistics/Probability Series. Wadsworth Publishing
Company, Belmont, California, U.S.A., 1984.

[54] Björn Bringmann, Siegfried Nijssen, and Albrecht Zimmermann. Pattern-based
classification: A unifying perspective. In Arno Knobbe and Johannes Fürnkranz,
editors, LeGo’09, Proceedings of the ECML PKDD 2009 Workshop ‘From Local
Patterns to Global Models’, 2009.

92

[55] W. Buntine. Learning classification trees. Statistics and Computing, 2:63–73, 1992.

[56] Toon Calders, Bart Goethals, and Adriana Prado. Integrating pattern mining in
relational databases. In Proc. PKDD, pages 454–461, 2006.

[57] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support vector ma-
chines. ACM Transactions on Intelligent Systems and Technology, 2:27:1–27:27,
2011.

[58] Ruey-Feng Chang, Chii-Jen Chen, and Chen-Hao Liao. Region-based image re-
trieval using edgeflow segmentation and region adjacency graph. In International
Conference on Multimedia and Expo (ICME), volume 3, pages 1883–1886. IEEE,
2004.

[59] O. Chapelle, P. Haffner, and V. Vapnik. SVMs for histogram-based image classifi-
cation. IEEE transactions on Neural Networks, 10(5):1055, 1999.

[60] K. Chatfield, V. Lempitsky, A. Vedaldi, and A. Zisserman. The devil is in the
details: an evaluation of recent feature encoding methods. In BMVC, 2011.

[61] Hong Cheng, Xifeng Yan, Jiawei Han, and Chih-Wei Hsu. Discriminative frequent
pattern analysis for effective classification. In ICDE, pages 716 –725, april 2007.

[62] Hugh A. Chipman, Edward I. George, and Robert E. McCulloch. Bayesian CART
model search. Journal of the American Statistical Association, 93(443):935–947,
1998.

[63] Ramazan Gokberk Cinbis, Jakob Verbeek, and Cordelia Schmid. Image categoriza-
tion using fisher kernels of non-iid image models. In CVPR, 2012.

[64] Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski, and Cédric
Bray. Visual categorization with bags of keypoints. In In Workshop on Statistical
Learning in Computer Vision, ECCV, pages 1–22, 2004.

[65] Gabriella Csurka, Christopher R. Dance, Lixin Fan, Jutta Willamowski, and Cédric
Bray. Visual categorization with bags of keypoints. In Work. on Statistical Learning
in CV, pages 1–22, 2004.

[66] G. Damiand. Définition et étude d’un modèle topologique minimal de représentation
d’images 2d et 3d. Thèse de doctorat, Université Montpellier II, Décembre 2001.

[67] Guillaume Damiand, Colin De La Higuera, Jean-Christophe Janodet, Émilie
Samuel, and Christine Solnon. A polynomial algorithm for submap isomorphism.
In Graph-based Representation in Pattern Recognition (GBR), pages 102–112.
Springer, 2009.

[68] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incom-
plete data via the em algorithm. Royal Statistical Society, 39(1):1–38, 1977.

[69] Fabien Diot. Fouille de Graphes pour le Suivi d’Objets dans les Vidéos. PhD thesis,
Université Jean Monnet de Saint Etienne, 2014.

93

[70] Saher Esmeir and Shaul Markovitch. Anytime induction of cost-sensitive trees. In
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou, editors, NIPS’07, Proceedings
of the 21st Conference on Neural Information Processing Systems, pages 425–432.
MIT Press, 2007.

[71] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman.
The PASCAL Visual Object Classes Challenge 2007 Results. http://www.pascal-
network.org/ challenges/VOC/ voc2007/workshop/ index.html, 2007.

[72] M. Everingham, A. Zisserman, C. K. I. Williams, and L. Van Gool. The PASCAL
Visual Object Classes Challenge 2006 (VOC2006) Results. http://www.pascal-
network.org/challenges/VOC/voc2006/results.pdf.

[73] J.D.R. Farquhar, Sandor Szedmak, Hongying Meng, and John Shawe-Taylor. Im-
proving bag-of-keypoints image categorisation: Generative models and pdf-kernels.
Technical report, University of Southampton,, 2005.

[74] Pedro F Felzenszwalb and Daniel P Huttenlocher. Efficient graph-based image
segmentation. International Journal of Computer Vision (IJCV), 59(2):167–181,
2004.

[75] Arik Friedman, Assaf Schuster, and Ran Wolff. k-anonymous decision tree in-
duction. In Johannes Fürnkranz, Tobias Scheffer, and Myra Spiliopoulou, editors,
PKDD’06, Proceedings of the 10th European Conference on Principles and Practice
of Knowledge Discovery in Databases, Lecture Notes in Computer Science, pages
151–162. Springer, 2006.

[76] B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer, 1999.

[77] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,
and Murali Venkatrao. Data cube: A relational aggregation operator generalizing
group-by, cross-tab, and sub-total. Data Mining and Knowledge Discovery, pages
152–159, 1996.

[78] Matthias Grundmann, Vivek Kwatra, Mei Han, and Irfan Essa. Efficient hierarchi-
cal graph-based video segmentation. In Computer Vision and Pattern Recognition
(CVPR), pages 2141–2148. IEEE, 2010.

[79] Jiawei Han, Yongjian Fu, Wei Wang, Krzysztof Koperski, and Osmar Za-
iane. DMQL: A data mining query language for relational databases. In SIG-
MOD’96 Workshop on Research Issues in Data Mining and Knowledge Discovery
(DMKD’96), Montreal, Canada, 1996.

[80] Jiawei Han and Micheline Kamber. Data Mining: Concepts and Techniques (The
Morgan Kaufmann Series in Data Management Systems). Morgan Kaufmann,
September 2000.

[81] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without candidate
generation. In Weidong Chen, Jeffrey Naughton, and Philip A. Bernstein, editors,
SIGMOD’00, Proceedings of the 2000 ACM SIGMOD International Conference on
Management of Data, pages 1–12. ACM Press, 2000.

94

[82] Laurent Hyafil and Ronald L. Rivest. Constructing optimal binary decision trees
is NP-complete. Information Processing Letters, 5(1):15–17, 1976.

[83] Tomasz Imielinski and Heikki Mannila. A database perspective on knowledge dis-
covery. Communications of the ACM, 39:58–64, 1996.

[84] Tomasz Imielinski and Aashu Virmani. Msql: A query language for database min-
ing. Data Mining Knowledge Discovery, 3(4):373–408, 1999.

[85] Yunjae Jung, Haesun Park, Ding-Zhu Du, and Barry L Drake. A decision criterion
for the optimal number of clusters in hierarchical clustering. Journal of Global
Optimization, 25(1):91–111, 2003.

[86] Frederic Jurie and Bill Triggs. Creating efficient codebooks for visual recognition. In
ICCV ’05: Proceedings of the Tenth IEEE International Conference on Computer
Vision (ICCV’05) Volume 1, pages 604–610, Washington, DC, USA, 2005. IEEE
Computer Society.

[87] Zdenek Kalal, Jiri Matas, and Krystian Mikolajczyk. Pn learning: Bootstrapping
binary classifiers by structural constraints. In Computer Vision and Pattern Recog-
nition (CVPR), 2010 IEEE Conference on, pages 49–56. IEEE, 2010.

[88] Arno Knobbe, Bruno Crémilleux, Johannes Fürnkranz, and Martin Scholz. From
local patterns to global models: the LeGo approach to data mining. In Johannes
Fürnkranz and Arno Knobbe, editors, LeGo’08, Proceedings of the ECML PKDD
2008 Workshop ‘From Local Patterns to Global Models’, pages 1–16, 2008.

[89] R. Fergus L. Fei-Fei and P. Perona. Learning generative visual models from few
training examples: an incremental bayesian approach tested on 101 object cat-
egories. In IEEE. CVPR 2004, Workshop on Generative-Model Based Vision.,
2004.

[90] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories. In CVPR, pages
2169–2178, 2006.

[91] Der-Tsai Lee and Bruce J Schachter. Two algorithms for constructing a delau-
nay triangulation. International Journal of Computer & Information Sciences,
9(3):219–242, 1980.

[92] Xiao-Chen Lian, Zhiwei Li, Changhu Wang, Bao-Liang Lu, and Lei Zhang. Prob-
abilistic models for supervised dictionary learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition(CVPR 2010), pages 2305
–2312, 2010.

[93] Haibin Ling and S. Soatto. Proximity distribution kernels for geometric context in
category recognition. In ICCV, 2007.

[94] Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and association
rule mining. In Knowledge Discovery and Data Mining, pages 80–86. AAAI Press,
1998.

95

[95] D. G. Lowe. Object recognition from local scale-invariant features. In Proceedings
of the International Conference on Computer Vision(ICCV 1999), volume 2, pages
1150–1157 vol.2. IEEE Computer Society, 1999.

[96] David G. Lowe. Distinctive image features from scale-invariant keypoints. Int. J.
Comput. Vision, 60(2):91–110, 2004.

[97] Ashwin Machanavajjhala, Daniel Kifer, Johannes Gehrke, and Muthuramakrishnan
Venkitasubramaniam. l-diversity: Privacy beyond k-anonymity. ACM Transactions
on Knowledge Discovery from Data, 1(1):3, 2007.

[98] Karl Menger. Zur allgemeinen kurventheorie. Fundamenta Mathematicae, 10(1):96–
115, 1927.

[99] Rosa Meo, Giuseppe Psaila, and Stefano Ceri. An extension to sql for mining
association rules. Data Mining and Knowledge Discovery, 2(2):195–224, 1998.

[100] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest point
detectors. Int. J. Comput. Vision, 60(1):63–86, 2004.

[101] Krystian Mikolajczyk and Cordelia Schmid. Scale & affine invariant interest point
detectors. Computer Vision, 60:63–86, 2004.

[102] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[103] Siegfried Nijssen and Joost N. Kok. Multi-class correlated pattern mining. In
Revised selected papers of the workshop KDID’05, pages 165–187, 2006.

[104] Siegfried Nijssen and Luc De Raedt. Iql: A proposal for an inductive query
language. In Revised selected papers of the workshop KDID’06, pages 189–207,
2007.

[105] M.-E. Nilsback and A. Zisserman. Automated flower classification over a large
number of classes. In ICVGIP, pages 722 –729, dec. 2008.

[106] Andreas Opelt, Michael Fussenegger, Axel Pinz, and Peter Auer. Weak hypotheses
and boosting for generic object detection and recognition. In ECCV, pages 71–84,
2004.

[107] D. Ormoneit and V. Tresp. Averaging, maximum penalized likelihood and bayesian
estimation for improving gaussian mixture probability density estimates. IEEE
Transactions on Neural Networks, 9(4):639 –650, 1998.

[108] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Efficient mining of association
rules using closed itemset lattices. Information Systems, 24(1):25–46, 1999.

[109] Florent Perronnin, Jorge Sánchez, and Thomas Mensink. Improving the fisher
kernel for large-scale image classification. In ECCV, pages 143–156, 2010.

[110] Ross J. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann,
1993.

[111] Konstantinos Rematas, Mario Fritz, and Tinne Tuytelaars. The pooled nbnn
kernel: Beyond image-to-class and image-to-image. In ACCV, volume 7724, pages
176–189, 2012.

96

[112] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Commun. ACM, 18(11):613–620, 1975.

[113] E. Samuel. Recherche de motifs dans des images : apport des graphes plans. PhD
thesis, Université Jean Monnet de Saint Etienne, 2011.

[114] F. Shahbaz Khan, J. van de Weijer, and M. Vanrell. Top-down color attention for
object recognition. In ICCV, pages 979 –986, 2009.

[115] Zhao H. Tang and Jamie MacLennan. Data Mining with SQL Server 2005. John
Wiley & Sons, 2005.

[116] P. Turney. Cost-sensitive classification: Empirical evaluation of a hybrid genetic
decision tree induction algorithm. Journal of Artificial Intelligence Research, 2:369–
409, 1995.

[117] Tinne Tuytelaars, Mario Fritz, Kate Saenko, and Trevor Darrell. The nbnn kernel.
In ICCV, pages 1824–1831, 2011.

[118] Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura. LCM ver. 2: Efficient Min-
ing Algorithms for Frequent/Closed/Maximal Itemsets. In Roberto Bayardo, Bart
Goethals, and Mohammed J. Zaki, editors, FIMI ’04, Proceedings of the IEEE
ICDM Workshop on Frequent Itemset Mining Implementations, CEUR Workshop
Proceedings. CEUR-WS.org, 2004.

[119] A. Vailaya, M.A.T. Figueiredo, A.K. Jain, and H.J. Zhang. Image classification for
content-based indexing. IEEE Transactions on Image Processing, 10(1):117–130,
2001.

[120] Joost van de Weijer and Cordelia Schmid. Applying color names to image descrip-
tion. In ICIP, pages 493–496, 2007.

[121] Jan C. van Gemert, Cor J. Veenman, Arnold W.M. Smeulders, and Jan-Mark
Geusebroek. Visual word ambiguity. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 32:1271–1283, 2010.

[122] Michel Vidal-Naquet and Shimon Ullman. Object recognition with informative
features and linear classification. In ICCV ’03: Proceedings of the Ninth IEEE
International Conference on Computer Vision, page 281, Washington, DC, USA,
2003. IEEE Computer Society.

[123] K. Wagstaff and C. Cardie. Clustering with instance-level constraints. In Pro-
ceedings of the Seventeenth International Conference on Machine Learning, pages
1103–1110, 2000.

[124] H. Wang and C. Zaniolo. Nonmonotonic reasoning in ldl++. Logic-based artificial
intelligence, pages 523–544, 2001.

[125] Haixun Wang and Carlo Zaniolo. Atlas: A native extension of sql for data mining.
In Proc SDM, pages 130–144, 2003.

[126] Jö Wicker, Lothar Richter, Kristina Kessler, and Stefan Kramer. Sinbad and siql:
An inductive databse and query language in the relational model. In Proc ECML
PKDD, pages 690–694, 2008.

97

[127] Nianhua Xie, Haibin Ling, Weiming Hu, and Xiaoqin Zhang. Use bin-ratio in-
formation for category and scene classification. In CVPR, pages 2313 –2319, june
2010.

[128] Xifeng Yan, Hong Cheng, Jiawei Han, and Dong Xin. Summarizing itemset pat-
terns: a profile-based approach. In ACM SIGKDD, 2005.

[129] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining. In
International Conference on Data Mining (ICDM), pages 721–724. IEEE, 2002.

[130] Yi Yang and Shawn Newsam. Spatial pyramid co-occurrence for image classifica-
tion. In ICCV, 2011.

[131] Tsuhan Chen Yimeng Zhang. Efficient kernels for identifying unbounded-order
spatial features. In CVPR, 2009.

[132] Junsong Yuan, Ming Yang, and Ying Wu. Mining discriminative co-occurrence
patterns for visual recognition. In CVPR, pages 2777 –2784, june 2011.

[133] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara, and Wei
Li. New algorithms for fast discovery of association rules. In David Heckerman,
Heikki Mannila, and Daryl Pregibon, editors, KDD’97, Proceedings of the 3rd In-
ternational Conference on Knowledge Discovery and Data Mining, pages 283–286.
AAAI Press, 1997.

[134] Kaihua Zhang, Lei Zhang, and Ming-Hsuan Yang. Real-time compressive tracking.
In European Conference on Computer Vision (ECCV), pages 864–877. Springer,
2012.

	Acknowledgments
	(In French) Résumé étendu
	Débuts
	Post-doctorat
	MdC à l'UJM

	My Publications
	Introduction
	Constraint-based Data Mining for Inductive Databases
	Mining Views
	Representing Models as Sets of Concepts
	Itemsets and Association Rules
	Decision Trees
	Clustering

	Discussion

	Induction of Optimal Decision Trees
	Relationships between Itemsets and Decision Trees
	Itemsets
	Decision trees
	Link between Decision Trees and Itemsets

	Constraints on Decision Trees
	Properties of Constraints and Criteria

	Building Optimal Decision Trees from Lattices
	Decision Trees from Lattices
	Computing Lattices Beforehand
	Computing Lattices on the Fly

	Discussion

	(Dynamic) Plane Graph Mining
	Definitions
	Plane Graphs
	Isomorphism and Subgraph Isomorphism
	Support and Frequency of a Subgraph Pattern
	Dynamic Plane Graph
	Occurrence Graph and Spatio-Temporal Patterns

	Mining Spatio-Temporal Patterns
	Extensions
	Graph Codes
	Code Search Space and Canonical Codes
	Algorithms

	Experiments

	Conclusion

	Data mining for BOW-based Image classification
	Supervised Learning of Gaussian Mixture Models for Better BOW
	Notations and Definitions
	Supervised GM-based Dictionary Learning
	Intuitive Idea
	Joint Optimization of the Likelihood and the Purity
	EM-based Learning Algorithm

	Pattern Mining in BOW
	Frequent Local Histogram (FLH) Mining
	Finding the Best FLHs for Image Classification
	Kernel Function for Effective Pattern Classification
	GRID-FLH: Incorporating Global Spatial Information to FLH

	Experiments
	Image Datasets and Data Preparation
	Experimental Results for the GMM Approach
	Other Approaches
	Pre-processing and Setting
	Results

	Experimental Results for the FLH-based Approach
	Comparison with Non-mining Methods
	Comparison with State-of-the-art Methods

	Conclusion

	Data mining for Object Tracking in Videos
	Images and Videos as Graphs
	RAG and Triangulation
	Video Datasets

	Object Tracking Using Graph Mining
	Tracking with Patterns
	Spatio Temporal Path
	Clusters of Spatio-Temporal Patterns

	Meaningfulness of the (Spatio-Temporal) Patterns
	Output of Plagram (plane graph patterns)
	Output of DyPlagram and DyPlagram_st

	Spatio-Temporal Paths for Object Tracking
	Clusters of Spatio-Temporal Patterns for Tracking
	Experimental Design
	Results

	Conclusion

	Conclusion
	Bibliography

